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Résumé en français

La description des co-variations entre plusieurs variables aléatoires observées est un problème délicat.
Les réseaux de dépendance sont des outils populaires qui décrivent les relations entre les variables
par la présence ou l’absence d’arêtes entre les nœuds d’un graphe. Bien entendu, il ne s’agit là que
d’une vue simplifiée de la dynamique multidimensionnelle. Aucun graphe ne peut espérer décrire
pleinement toutes les subtilités d’une distribution aléatoire multivariée. Il existe donc de nombreux
types de réseaux différents qui codent chacun un type différent d’informations sur les variables.
La structure de corrélation d’un vecteur aléatoire est une bonne candidate pour être représentée
sous forme de graphe. Toutefois, dans les applications réelles, la matrice de corrélation du vecteur
aléatoire a toutes les chances d’être entièrement connectée. En effet, deux événements ou mesures
séparés sont susceptibles d’être liés l’un à l’autre, au moins de manière très diffuse, par une châıne
de plusieurs variables corrélées intermédiaires, dans une sorte d’“effet domino”.
Dans un tel scénario, on peut préférer une description plus épurée de la dynamique, où seuls les
“dominos” consécutifs sont marqués comme étant liés. Représenter uniquement les corrélations
“directes” ou “explicites” entre les variables est précisément l’ambition des réseaux de corrélation
conditionnelle. Dans ces réseaux, il existe un écart entre deux composantes Yi et Yj du vecteur
aléatoire Y ∈ Rp si et seulement si corr(Yi, Yj |(Yk)k 6=i,j) 6= 0. L’idée est que s’il reste une corrélation
entre deux caractéristiques après conditionnement par toutes les autres, alors les deux partagent un
lien intime qui ne peut pas s’exprimer comme un simple transfert d’information de l’une à l’autre
par des variables intermédiaires. Ces réseaux sont souvent étudiés sous l’hypothèse gaussienne et
sont donc appelés “modèles graphiques gaussiens” (GGM).
Un seul réseau peut être utilisé pour représenter les tendances globales identifiées au sein d’un
échantillon de données. Cependant, lorsque les données observées sont échantillonnées à partir d’une
population hétérogène, il existe alors différentes sous-populations qui doivent toutes être décrites
par leurs propres graphes. De plus, si les étiquettes des sous-populations (ou “classes”) ne sont pas
disponibles, des approches non supervisées doivent être mises en œuvre afin d’identifier correctement
les classes et de décrire chacune d’entre elles avec son propre graphe.
Dans ce travail, nous abordons le problème relativement nouveau de l’estimation hiérarchique des
GGM pour des populations hétérogènes non labellisées. Nous explorons plusieurs axes clés pour
améliorer l’estimation des paramètres du modèle ainsi que l’identification non supervisée des sous-
populations. Notre objectif est de s’assurer que les graphes de corrélations conditionnelles inférés
sont aussi pertinents et interprétables que possible.

Premièrement - dans le cas d’une population simple et homogène - nous étudions les deux prin-
cipaux paradigmes de l’état de l’art. Le premier de ces estimateurs parcimonieux est le maximum
de vraisemblance pénalisé “graphical lasso” (GLASSO) [13,179]. Le second est l’agrégation de mul-
tiples régressions linéaires par nœud appelé “GGMselect” [56]. Dans ce chapitre, nous soutenons
que le GLASSO appartient à une famille de “méthodes globales” qui considèrent le graphe entier en
une seule fois, alors que GGMselect appartient aux “méthodes locales”, qui construisent des graphes
bord à bord autour de chaque nœud. Nous démontrons que les deux approches ont des défauts dans
les paramètres de taille d’échantillon de haute dimension et de faible taille et proposons un algo-
rithme composite pour canaliser leurs forces respectives dans une seule méthode, afin d’en corriger
les faiblesses. Dans un second temps, nous appliquons les concepts de sélection de modèle développés
pour notre algorithme composite afin de mettre au point une nouvelle méthode avec un critère de
sélection explicite dans le cas particulier des graphes cordaux.
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Pour les populations hétérogènes non labellisées, nous proposons d’estimer un mélange de GGM
avec un algorithme espérance-maximisation (EM). Cependant, l’algorithme EM optimise une fonc-
tion non-convexe. Qui plus est, les réseaux de corrélations conditionnelles sont généralement étudiés
pour décrire un assez grand nombre de variables. Par conséquent, plus la dimension est élevée, plus
il est facile de tomber au cours de l’optimisation de la fonction objectif dans des extrema locaux
sous-optimaux. L’initialisation devient alors extrêmement influente. Ainsi, afin d’améliorer les solu-
tions de cet algorithme EM, et d’éviter de tomber dans ces extrema locaux, nous introduisons une
version tempérée de cet algorithme EM, dont nous étudions aussi bien les garanties théoriques de
convergence que le comportement et les performances empiriques.
Enfin, nous améliorons l’identification des variables cachées par l’algorithme EM en tenant compte
des potentiels effets de co-facteurs externes sur les variables mesurées. En effet, une hypothèse cru-
ciale derrière tout algorithme EM est que, dans l’espace des variables observées, les données sont
organisées géométriquement en amas qui correspondent à des sous-populations intéressantes ou à
des variables cachées. Cependant, dans certains cas, les amas de données sont plus corrélées avec
des co-facteurs externes qui sont triviaux ou facilement observables, mais qui ont un impact fort
sur les valeurs des variables observées. Cette situation est rendue encore plus complexe lorsque les
effets des co-facteurs sur les variables sont hétérogènes au sein de la population. Pour résoudre cela,
nous développons un mélange de modèles graphiques gaussiens conditionnels (CGGM). Les CGGM,
introduits par [173] et [171], prennent en compte les effets des co-facteurs sur les variables et les
suppriment afin de réajuster la position de chaque point de données. Cette correction regroupe
les points de données appartenant à chaque sous-population et permet de rendre plus pertinente
l’estimation ultérieure des paramètres.
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Chapter 1

Introduction

Describing the co-variations between several observed random variables is a delicate problem. De-
pendency networks are popular tools that depict the relations between variables through the presence
or absence of edges between the nodes of a graph. Of course, this is only a simplified view of the
multidimensional dynamic. No single graph can hope to describe fully all the intricacies of a mul-
tivariate random distribution. Hence, many different kinds of networks exist that each encode a
different type of information about the variables. The correlation structure of a random vector is a
good candidate to be represented as a graph. However, in real applications, the correlation matrix
of the random vector has every chance to be fully connected. Indeed, any two separate events or
measures are likely to be linked to one another, at least in a very diffuse way, through a chain of
several intermediary correlated variables, in some sort of “domino effect”.
In such a scenario, one may prefer a sparser description of the dynamic, where only the consecu-
tive “dominoes” are marked as connected. Representing only the “direct” or “explicit” correlations
between the variables is precisely the ambition of the conditional correlation networks. In such net-
works, there is an edge between two components Yi and Yj of the random vector Y ∈ Rp if and only if
corr(Yi, Yj |(Yk)k 6=i,j) 6= 0. The idea is that if there remains a correlation between two features after
conditioning by all the others, then the two share an intimate connection that cannot be expressed
as a simple transfer of information from one to the other through intermediary variables. A single
network can be used to represent the overall tendencies identified within a data sample.
However, when the observed data is sampled from a heterogeneous population, then there exist dif-
ferent sub-populations that all need to be described through their own graphs. What is more, if the
sub-population (or “class”) labels are not available, unsupervised approaches must be implemented
in order to correctly identify the classes and describe each of them with its own graph.
To estimate conditional correlation graphs from observed data, [35] introduce the “Covariance Se-
lection” procedure. They propose to model the variables as a Gaussian vector Y ∼ N (µ,Σ) and
make a sparse estimation of the inverse-covariance (or “precision”) matrix Λ := Σ−1. Indeed, within

a Gaussian model, we have corr(Yi, Yj |(Yk)k 6=i,j) = − Λij√
ΛiiΛjj

. Hence the sparsity of the precision

matrix is the same as the sparsity of the conditional correlation network. Gaussian modelling has
other advantages. First, for a general multivariate distribution, corr(Yi, Yj |(Yk)k 6=i,j) is a function
of (Yk)k 6=i,j , not a constant. As a result, each edge weight of the conditional correlation graph is ac-
tually a function of the values in the vector. Having such a complex and unstable description would
be a significant hindrance. Within the Gaussian model however, this function is a constant, as a
consequence, conditional correlation graphs are only ever considered under the Gaussian assumption.
A another advantage of Gaussian modelling is that un-correlation and independence are equivalent
corr(Yi, Yj |(Yk)k 6=i,j) = 0 ⇐⇒ Yi ⊥⊥ Yj |(Yk)k 6=i,j , which facilitate interpretation. This modelling
of a random vector as following a multivariate normal distribution with sparse inverse-covariance,
hence sparse conditional correlation graph, has been called “Gaussian Graphical Modelling”.
Gaussian Graphical Models (GGM) have generated an extensive interest following [35]. For homo-
geneous populations, several different sparse estimation of the conditional correlation graph have
been proposed. Some well known approaches include statistical tests [41], node-wise linear regres-
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sions [115], penalised Maximum Likelihood Estimation (MLE) [13, 179], penalised reconstruction
problem [18], and Bayesian techniques [94,162].
Several authors considered heterogeneous labelled population, and designed methods to estimate
jointly all the different sub-population networks, with elements of common structure. Many of them
adapt the penalised MLE approach to the hierarchical case, as for instance [119] [30] and [172]. They
each propose different regularisation that enforce different forms of common structure between the
graphs.
Unlabelled heterogeneous populations have been less explored. Recent works have adapted the pe-
nalised MLE approach to the unsupervised case. They propose to estimate Mixtures of GGM with
regularised Expectation-Maximisation (EM) algorithms. Recent examples that make use of penal-
ties that encourage common structure include [52] and [61].

In this work, we tackle the fairly new problem of Hierarchical GGM estimation for unlabelled
heterogeneous populations. We explore several key axes to improve the estimation of the model
parameters as well as the unsupervised identification of the sub-populations. Our goal is to ensure
that the inferred conditional correlation graphs are as relevant and interpretable as possible.
In chapter 2, we provide an extensive literature review that delves into the history of the many GGM
techniques developed to describe homogeneous, heterogeneous and unlabelled populations. This no-
tably includes the literature surrounding alternative models such as the Matrix Normal Graphical
Models (MNGM), Conditional Gaussian Graphical Models (CGGM) and Dynamic Gaussian Graphi-
cal Models (DGGM). Moreover, we discuss key elements of the EM literature, since this optimisation
method plays such an important role in the unsupervised approach to GGM.
In chapter 3, we explore the problem of model selection and validation criteria, particularly for the
high dimension low sample size setting. In the simple case with homogeneous population, the most
popular sparse GGM estimator is the penalised MLE of [179] and [13], which is colloquially referred
to as the “Graphical Lasso” (GLASSO) estimator in reference to the work of [50]. The GLASSO
estimator is not unique as it depends on an hyper-parameter: the penalty intensity. The necessity
of choosing a value for this hyper-parameter naturally raises the question of model selection. Other
works such as [56] have addressed with their GGMselect algorithm the problem of model selection
in the case of the node-wise estimator of [115]. In this chapter, we argue that the GLASSO belongs
to a family of “global methods” that considers the whole graph all at once, whereas GGMselect be-
longs to the “local methods”, which build graphs edge by edge around each node. We demonstrate
that the two approaches have flaws in the high dimension low sample size settings and propose a
composite algorithm to channel their respective strengths into a single method. In particular, a key
element of our method is the model selection procedure through the Out of Sample Cross Entropy
or Kullback–Leibler (KL) divergence of the estimated distribution with regards to the empirical
observed one. In addition to providing theoretical guarantees about our method, we show through
many experiments that it outperforms GLASSO and GGMselect in the high dimension low sample
size setting. In particular, we demonstrate that our selection criterion is more farsighted than the
local proposed one in [56]. Even though this is done in the simple case for homogeneous popula-
tions, we acquire through this study valuable knowledge that we apply to the hierarchical case. In
particular, the results of this chapter encourage us to confidently use the Out of Sample (OoS) KL
divergence as a selection criteria or success metrics even when working with Hierarchical Models.
In chapter 4, we delve deeper into model selection within a more specific family of graphs: the chordal
graphs. Chordal graphs, also called “decomposable graphs”, are graphs where there is no cycle of
more than three edges. They enjoy a certain popularity in graph theory since for any chordal graph,
there exists a maximal prime sub-graphs decomposition into the set of maximal cliques C and the set
of their intersections, the separator cliques P. This is further developed in [91]. Interestingly, some
authors, such as [57] and [14], have developed in interest for the estimation of conditional correlation
graphs that remain within the chordal family. In this chapter, we apply the conclusions of chapter 3
and propose a model selection procedure that follows the KL divergence. Thanks to the properties
of the chordal graphs, we are able to find, with an explicit formula, an unbiased estimator of the KL
divergence of the proposed distribution with the real divergence. This exempts us from having to
split the data into a training set and a validation set in order to compute the OoS KL divergence.
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We prove a theoretical result on the selection with our new selection criterion and demonstrate with
experiments it performs even better than the OoS KL divergence.
In chapter 5, we turn our gaze towards the EM algorithm, a crucial component of any unsupervised
MLE approach to Mixtures of GGM. Networks are generally used to describe a somewhat large
number of variables, and GGM are no exception. However, with mixtures, the EM algorithm opti-
mises a non convex function. Hence, the higher the dimension, the easier it is to fall for sub-optimal
local maxima and the more important the initialisation becomes. Escaping the initialisation in the
context of non-convex optimisation is a very well known problem. The simulated annealing of [82]
and later the parallel tempering (annealing MCMC) of [53, 149] were developed to address this is-
sue. Adding a temperature that weakens at first the attractive power of the potential wells and
overall makes the likelihood profile less radical allows the optimisation procedure to explore more
before settling for the best local maximum encountered. Such a procedure can be used to improve
the performances of the EM algorithm. Some works have introduced tempered EMs, such as [156]
with their deterministic annealing EM and [120] who propose an alternative temperature profile
for this algorithm. Both these works are very empirical and propose different temperature profile
on the basis of their experimental successes. In this chapter, we prove a convergence theorem that
provides guarantees for the tempered-EM (tmp-EM) under certain conditions on the temperature
profile. We see that these conditions are very mild, which justifies the use of a much wider category
of temperature profile than the previously proposed ones. Including for instance non-monotonous
or oscillating profiles. Additionally, we provide a very extensive experimental study of the tmp-EM
algorithm, confronting it to many adversarial scenarios and following many metrics. All of these
demonstrate the amazing efficiency of the tempering when it comes to escaping the initialisation. In
addition to all that, we introduce a new, more general framework of deterministic approximated EM
algorithms that all benefit from the same convergence guarantees. The tmp-EM is but one of the
methods that belong to this framework. In particular, we propose a new Riemann approximation
EM, a deterministic alternative to the Monte Carlo EM [166] to deal with intractable E steps. Of
course, the tmp-EM and the Riemann approximation EM can be combined into one method that
fulfils both their objective and still benefits from the convergence guarantees.
In chapter 6, we examine how the cluster identification of the EM for Mixtures of GGM can be
greatly improved with proper consideration of the potential effects of co-factors. Indeed, a crucial
assumption behind any EM algorithm is that, in the feature space, the data is geometrically or-
ganised in clusters that correspond to interesting sub-populations or hidden variables. However,
we argue that, with real data, the geometrical clusters have every chance of being correlated with
external co-factors that are trivial or easily observable, but have a potent impact on the features’
values. For instance, certain medical or biological measures are likely to be more correlated with
gender or age group than with diagnosis or disease type. This situation is rendered more complex
when the co-factors effects on the feature are heterogeneous over the population. As a consequence,
we make use of the Conditional Gaussian Graphical Models (CGGM) introduced in [173] and [171],
and notably used by [69] in the supervised hierarchical case. For an unlabelled population, we pro-
pose the Mixture of CCGM. This model takes into account the potentially heterogeneous effect of
co-factors and remove them in order to readjust the position of each data point. This correction
groups together the data points belonging to each sub-population and allows the subsequent pa-
rameter estimation to be more meaningful. We develop a regularised EM algorithm to compute a
penalised MLE from this model. We show that this EM can be used with any of the state of the art
structure-inducing penalties developed for the supervised case. We demonstrate with experiments
that our EM with mixture of CGGM performs much better than the previously introduced EM with
mixtures of GGM of [52] and [61]. Additionally, we prove a theorem that provides conditions on the
regularisation in order for our EM to benefit from convergence guarantees. Moreover, we propose a
tempered version of our EM and proves that it benefits from the guarantees of chapter 5. Additional
experiments demonstrate how the tempering can improve even further the cluster recovery of the
Mixture of CGGM.
Finally, in chapter 7, we synthetize our contributions. We widen the discussion by showcasing more
grounded, pragmatic, applications of Hierarchical GGM and Mixtures of GGM to real problemat-
ics. We present in particular some of our recent clinical collaborations for ciliopathy and Cushing’s
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syndrome patients. In the end, we lay the groundwork for future works.
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Chapter 2

Literature Review

In this chapter, we provide an extensive review of the literature surrounding the Gaussian Graphical
Models (GGM) and conditional correlation networks. From the simple GGM that describe homoge-
neous populations to the unsupervised Mixtures of GGM for unlabelled heterogeneous populations.
Given its omnipresence in the field of unsupervised Mixture of Gaussians inference, we also provide
a rapid overview of the work done on the Expectation-Maximisation (EM) algorithm. Moreover, we
discuss several alternative models such as the Matrix Normal Gaussian Graphical Models (MNGM)
or Conditional Gaussian Graphical Models (CGGM) that each adapt the GGM concept for their
own specific situation.

2.1 Simple models

The genesis of GGM can be found in [35]. In this work, Dempster seeks to describe a vector of ran-
dom variables with their conditional correlation network. For that purpose, he proposes to model
the variables as a Gaussian vector, Indeed, within the Gaussian model, both the sparsity and edge
weights of the conditional correlation graph can be directly recovered from the inverse-covariance
(precision) matrix. Moreover, as previously discussed, the Gaussian model makes the graph a con-
stant instead of a function of the variables’ values, a property so crucial that it makes Gaussian
modelling inevitable for conditional correlation network analysis. To infer a conditional graph from
data samples, Dempster proposes to make a sparse approximation of the variable’s precision matrix.
Indeed, un-constrained empirical estimators are rarely sparse, and fully connected graphs not very
interesting. He calls “Covariance Selection” this procedure. Although the term “Gaussian Graphical
Models” (GGM), popularised by later works, is the one that over the years came to be the default
designation of this field of the study. These GGM have found application in many areas, such as
biology and medicine, in particular genetic, see [167] for an early, very applied, example.
As an aside, note that although the GGM approach naturally links inverse-covariance matrix and
conditional correlation graph, the transition from one to the other is not symmetrical. If the matrix
is known, getting the graph is trivial, since they have the exact same sparsity. And even if one wishes
to recover a weighted graph, the edge weights are related to the matrix coefficient with an explicit
formula. However, estimating a sparse precision matrix from an unweighted conditional correlation
graph is not so easy. When the edge weight information is not available, the sparse matrix has to
be estimated from data. Works with a formal approach to graph theory such as [146] and [91] have
introduced technical algorithms to compute, from an independent identically distributed (iid) data
sample, the graph-constrained Maximum Likelihood Estimator of the precision matrix. Works such
as [158] and then [157] provide extensive analyses of the properties of this constrained MLE.
The bulk of the literature however, focuses on designing methods to find the conditional correlation
graph from data. Which they do either by working on the graph directly or by first estimating
a sparse approximation of the inverse-covariance matrix. We present here some of the most no-
table, most influential works in that regard. The authors [41] use statistical tests to construct a
graph edge by edge. With a penalised likelihood approach, the authors of [70] induce sparsity in
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the Cholesky decomposition coefficient. Around the same time, [115] propose to solve sparse lin-
ear regression problems in parallel in which the value on each node is predicted by its neighbours.
Shortly after, a very influential technique is introduced: the authors of [179] and [13] propose a
convex, l1−penalised maximum likelihood problem to estimate a sparse inverse-covariance matrix.
The relaxed convex problem scales very well in high dimension. This technique is mostly known as
the “Graphical LASSO” (GLASSO), however this name technically describes only one of the many
numerical schemes later proposed to solve this l1−penalised maximum likelihood problem, namely
the method of [50]. Alternative algorithms that all solve this optimisation problem include the
work of [29], [136], and [137], the Nesterov smooth gradient descent of [31] and [110], the Alternat-
ing Direction Method of Multipliers (ADMM) of [180] and [139], the Interior Point Method (IPM)
of [99], the Sparse INverse COvariance selection algorithm (SINCO) of [140], the Newton method
of [161] and [125], the Projected Subgradient Methods (PSM) of [43], the QUadratic approximation
of Inverse Covariance matrices (QUIC) of [66], the Dual Primal Graphical LASSO (DP-GLASSO)
of [114], the High-dimensional Undirected Graph Estimation package (HUGE) of [186], the Proximal
Gradient descent of [40] and the Reproducing Kernel Hilbert Space (RKHS) method of [98]. Works
such as [89] and [133] study the theoretical properties of the solution of the convex optimisation
problem.
However, there are many other methods that estimate sparse graphs/matrix and that are not equiv-
alent to the the convex l1−penalised maximum likelihood problem. Some slight variants are still
regularised MLE, for instance [45], who proposes an adaptative LASSO and a Smoothly Clipped Ab-
solute Deviation (SCAD) penalty. Another example is the nonparanormal model of [105] and [104]
that relaxes the Gaussian assumption. The pathway Graphical Lasso [58], that takes into account
prior knowledge about sets connected components (pathways), is also a MLE. Other methods differ
more radically from the regularised MLE, such as the Dantzig-type estimator of [177], the Con-
strained l1-minimization for Inverse Matrix Estimation (CLIME) algorithm of [18] which solves
a sparse matrix reconstruction problem and makes no Gaussian assumption. Other more recent
original GGM estimators include the Sparse Column Inverse Operator (SICO) method [108], the
Tuning-Insensitive Graph Estimation and Regression (TIGER) [106], the GGMselect [56], the scaled
LASSO of [148] and the False discovery rate control based technique of [107]. When there is a latent
structure within the graph, the authors of [7] developed the iterative SIMoNe (Statistical Inference
for Modular Networks) algorithm.
There is also an abundant literature on Bayesian techniques for sparse inverse-covariance matrix
estimation. These methods estimate the posterior distribution of the precision matrix, each with
different, sparse priors. Popular priors used in the GGM context include the G-Wishart prior [94],
the graphical LASSO prior [131,162], the continuous spike and slab prior [102,163] and the graphical
horseshoe prior [100]. Recent works such as [51], [101] and [39] propose deterministic algorithms to
explore efficiently the different possible posterior distributions.

These works, despite their methodological divergences, all address the same, plain, sparse Gaussian
estimation problem. Some authors have deviated significantly more from this classical situation,
and addressed altered problems.
The authors of [21] have introduced the problem of GGM estimation with latent variables. That
is to say a subset of the variables in the graph are actually hidden. A framework that was later
explored in more details by [112], [109] and [116]. In a similar fashion, the authors of [147] studied
the case of GGM with missing values, while the very recent [10] addresses the problem of GGM
censored values (i.e. where the too low and/or high values are capped at certain levels).
In order to describe random distributions with heavier tails, some works consider data following
Student’s t-distribution instead of the normal distribution. In particular, Finegold and Drton [47]
adapt the Glasso of [50] into the tlasso and Ashurbekova et al [8] adapt the CLIME of [18] into the
tCLIME.
Some authors alter the Gaussian model. The Matrix (or Matrix-variate) Normal distribution, al-
ready present in the work of [32] and more formally introduced in [60], describes a Gaussian vector
that can naturally be reshaped into a matrix (usually with 2 entries, but any number is possible).
This is a specific case of the Gaussian distribution with less degrees of freedom, since only the covari-
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ance between the rows and the columns of the newly formed random matrix are free. The covariance
matrix of the whole vector is the Kronecker product between the covariance matrices of the rows
and of the columns. Although introduced in a more general context, this specialised Gaussian model
adapted for the GGM case in [6] and [184]. These Matrix Normal Graphical Models (MNGM) were
re-introduced by [93] who also provide a theoretical analysis. The authors of [174] make the argu-
ment that the MNGM are essential to study genomics data. They also provide a model selection
procedure with theoretical bounds. The authors of [155] provide, among other things, a very similar
bound on model selection with MNGM, which is supposedly better. Later works propose different
MNGM estimators, the most notable examples are the bigraphical lasso [80], the Gemini [188] and
the FDR-based method of [23]. Works such as [122] have proposed semi-parametric extensions of
the MNGM.
Some authors have considered the case of GGM in the presence of additional external co-factors X.
In the spirit of the Conditional Random Fields [88], they add these variables to the conditioning
that defines each edge of the conditional correlation network. To estimate this newly defined graph
with a Gaussian model, the authors of [173] introduce the Conditional Gaussian Graphical Model
(CGGM) where the distribution of the features Y conditionally to the co-features X takes the form
N (βX,Σ). They make no assumption on the distribution of X. They define a MLE estimator of
the CGGM that is the solution of a bi-convex regularised optimisation problem. Several later works
all consider the same estimator as [173], these include [19], [175] and [22]. A different work, [98],
proposes a two stage estimator of the CGGM with RKHS. The authors of [164] estimate the model
parameters with a series of penalised conditional regressions. Another brand of CGGM has been
developed in parallel to the model of [173]. Introduced independently by [143], [171] and [181],
these CGGM assume that the joint density of (Y,X) is not only known but also Gaussian. A more
recent work by [26] estimates such a CGGM in the case where prior information on the structure
is available. The authors of [11] adapt to the CGGM the problem with censored data that they
introduced for GGM in [10]. They propose different methods for both brands of CGGM.
Some authors tackle the issue of time varying (or dynamic) networks. There are many possibilities
when modelling the passing of time and the evolution of parameters, hence the work presented there
is less unified. One of the first notable example is [145] that estimates time varying Bayesian net-
works. Then, many consecutive works consider a smoothly varying time, see [24, 83, 132, 144, 189].
Whereas other authors such as [84] study discrete time jumps. A recent work proposed with the
group-fused graphical lasso to estimate discrete time varying networks [54]. There exist works such
as [165] that consider varying graph edge weight, but fixed sparsity structure.

Consequent efforts have been made to develop, tune and adapt GGM techniques in order to de-
scribe homogeneous population under many different circumstances. Likewise, much effort has be
made to transfer the know-how, the models and the algorithms from the homogeneous case to the
case of a heterogeneous population with several, already identified and labelled, sub-populations to
describe.

2.2 Hierarchical models

All the methods mentioned so far estimate only a single conditional correlation graph that is meant
to correspond to the whole studied population. In the context of a heterogeneous population, au-
thors have proposed Hierarchical Gaussian Graphical Models in order to allow each sub-population
to be described with its own inverse-covariance matrix. In the supervised framework, where the
population labels are known, this hierarchical problem is separable into as many simple problems as
there are sub-populations. However, the different sub-populations may share core common elements
which would be better identified if the dataset remained whole. Moreover, some sub-populations
may contain too few data points to run a model successfully. These could benefit from the addi-
tional information contained within the data points belonging to other sub-populations, which are
supposedly not completely alien with regards to each other. For these reasons, most authors have
elected to estimate jointly all the parameters of their Hierarchical models and enforce and certain
notion of common structure between them.
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Early works such as [65, 160] estimate different matrices for each of the sub-population, but they
all share the same sparsity structure. Most of the later works allow, and encourage, the different
estimated matrices to have different sparsity structure, which in turn allows the different populations
to have distinct conditional correlation networks. Some of the most influential works in this domain
include [59], one of the pioneer of the joint Hierarchical GGM, who proposes a non-convex problem in
which the common structure takes a multiplicative form. Later, lesser known work include [25] who
imposed sign coherence between the different structures, [182] who used a fused nodewise lasso in a
scenario with only 2 classes. A notable paper from Hara and Washio [62] treats the general case with
K classes by considering an additive common structure and defining an estimator that is solution of
a convex loss. A trend that many methods follow afterwards. The following later approaches became
much more well known and influential. Zhu et al [192] design the Structural Pursuit algorithm with
a concave l1-type loss and prior on the groups that should have similar coefficients. The authors
of [119], with their node joint graphical lassos, adapt the penalised maximum likelihood approach
of [179] to the hierarchical case with a node based penalty. This is the more realised version of
a prototype that they had proposed two years prior in [118]. Works such as [30] and [172] take a
similar approach, with different penalties that enforce different types of structures, in their joint
Graphical LASSO and Fused Multiple Graphical Lasso respectively. Departing from the regularised
MLE, two later papers, [92] and [20], both generalise the CLIME algorithm [18] to the hierarchical
case. In the same vein, [63] design a method with the Gaussian assumption relaxed (nonparanormal
model) inspired by [20]. Actually, there are several works that take successful methods from the
homogeneous case and adapt them to the hierarchical case. For instance, [134] uses statistical tests
like [41]. Likewise, [111] proposes a neighbourhood selection approach with nodewise linear regres-
sions similar to those of Meinshausen and Bühlmann [115].
Among the very recent works, many tackle tweaked problems, with additional objectives or con-
straints than simply estimating Hierarchical GGM. For instance in [183] there are both different
populations and different data types. Which results in two “directions” of different covariance
matrices. For the situation where there is prior knowledge about the interactions between some
components, Wu et al [170] propose the Weighted Fused Pathway Graphical Lasso which generalises
the pathway approach of [58] to the heterogeneous case.
Bayesian methods have also been implemented in the Hierarchical scenario. One of the first joint
Bayesian estimator [130] use the G-Wishart prior. Afterwards [103] designed a joint Bayesian equiv-
alent of the nodewise approach of Meinshausen and Bühlmann [115]. Then, [102] introduced the
Bayesian Joint spike-and-slab Graphical LASSO. Other Bayesian works such as [151] consider the
brand of models that express the common structure in a more complex, multiplicative, way. A
recent work [142] takes a Bayesian approach to the problem of [183] where there are both different
populations and different data types.
We discussed the methods that all estimate Hierarchical GGMs, albeit with some occasional ad-
ditional constraints. Just like in the Homogeneous case, there are many opportunities to consider
other models to describe a Heterogeneous population.

We find that, in the Heterogeneous case, the literature has yet to catch up when it comes the
alternative models such as the MNGM and CGGM, and fewer works can be found.
The most notable Hierarchical MNGM example is Huang et al [67], who adapted some of the struc-
ture inducing penalties of [30] to the MNGM. A later work [191] also considers data following the
Hierarchical MNGM model, but focuses on the estimation of the column-wise covariance matrix of
the model only.
Chun et al [27] introduce a pseudo-Hierarchical CGGM model where the features Y can come from
different “sources” (sub-populations) but not the co-features X, who are shared by all sources. They
proposed a regularised MLE approach. Huan et al [69] later introduced a fully Hierarchical CGGM,
where the pairs (Y,X) each belong to one of K sub-populations. Once again, they adapted some
of the well known joint GGM penalties to the CGGM parameters. In a parallel work, they even
proposed an extension to dynamic Hierarchical CGGM [68]. A very recent work [46] considers a
model similar to Hierarchical CGGM, but only with a univariate co-factor.
A new method emerged to describe different sub-populations: the differential networks estimation,

8



where the inferred parameter is the difference between two precision matrices [185]. This method
does not recover the common edges and focuses on describing the difference between groups. A later
study introduces a differential estimator with lasso penalized D-trace loss [176]. A very recent work
proposes a shrinkage-thresholing algorithm [152]. On a different note, the authors of [79] estimate
sparse differential networks with a l1 penalty in the context of Quadratic Discriminant Analysis.
Some authors have considered variants of the joint differential networks analysis. In particular, we
note applications to the Hierarchical MNGM [78], to the case with latent variables [124], and to the
Hierarchial CGGM [123].

We see that numerous efforts have been made to describe Heterogeneous populations with Hier-
archical GGM. All this work was done for labelled data, when the sub-population affiliations are
known. For unsupervised heterogeneous populations, the literature is much less abundant.

2.3 Mixture models

Sometimes, the population is heterogeneous, and when the data arrives, the class labels are un-
known. This is relatively uncharted territories with relation to the previously mentioned supervised
hierarchical models.
For unlabelled populations, authors such as [187] and [86] have considered Mixtures of GGM. Since
the MLE of a Mixture of Gaussian is a non convex problem, they propose Expectation-Maximisation
(EM) algorithms [36] to find local likelihood maxima. The regularised MLE problems they consider
include penalties that encourage the recovery of sparse precision matrices. However, they do not
include any penalisation that would encourage the presence of common structure between the esti-
mated matrices. Recent works like [52] and [61] correct this by using joint GGM penalties such as
the Fused and Group Graphical LASSO penalties. In a similar fashion, the authors of [150] estimate
a Bayesian Mixture of GGM. Other works such as [138] also propose a joint GGM estimation but
adopt a completely different approach from the EM, and use instead a graph of proximity between
the sub-populations.
We also mention some recent works that do not technically fit in the GGM context but face similar
issues when inferring graphs for unlabelled populations. For instance, in the clustering problem
of [48], the sparsity is imposed on the covariance and not on the precision matrix. They infer cor-
relation graphs and not conditional correlation graphs. Maretic and Frossard [113] also focus on
different matrices: the laplacian matrices, but they use the same kind of EM for Mixtures of sparse
Gaussians. More recently, Ni et al [121] have worked with reciprocal graphs, which are a bit different
since their are both directed and undirected. They develop several estimation techniques that do
not make use if the EM algorithm.

To the best of our knowledge, there is no mention yet of unsupervised version of the alternative
models such as the MNGM or the CGGM. This is one notable motivation behind our introduction
of the Mixture of CGGM in Chapter 6. There is however another, very different, domain of research
that makes use of models that exhibit some formal similarities with the Mixture of CGGM: the
“Finite Mixture Regression models” (FMR). The FMR, see [37] or [81] for early examples of unpe-
nalised FMR and penalised FMR respectively, consist of K parallel linear regressions of the form
Y (i) = βkX

(i), with unlabelled data (Y (i), X(i)). The class label of each pair (Y (i), X(i)) and the
parameters βk are estimated with an EM algorithm. Unlike our approach in Chapter 6, in FMR the
predicted feature Y is usually one-dimensional, and the clustering is focused on identifying different
linear models X 7→ Y . There are some rare examples of FMR that consider a multivariate feature
vector Y , such as [77]. Nevertheless, they consider no GGM-type penalty on the inverse-covariance
of Y . This is very estranged from the GGM approach, that focuses on recovering the conditional
covariance structure between the Y , and within which the inclusion of the effect of the co-feature X
is mainly a tool to improve the clustering of the Y . The very recent FMR work of [129] portraits
a one-dimensional feature Y and multidimensional co-features X with in-homogeneous generative
models. Underlining the idea that the focus of this domain of research is on mixed linear regressions
and not on graphical models for the features.
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Many of these unsupervised methods make use of the EM algorithm to estimate a Mixture of GGM.
In the following, we give a very brief overview of the main contributions in the EM literature,
in particular those related to the convergence guarantees of the EM algorithm. The Expectation
Maximisation algorithm was introduced by Dempster et al [36] to maximise non convex likelihood
functions defined from inherent hidden variables. The algorithm is made of the iteration of an Ex-
pectation (E) step and a Maximisation (M) step. In addition to presenting the method, Dempster
et al [36] provides convergence guarantees on the sequence of estimated parameters, namely that
it converges towards a critical point of the likelihood function. Although their result was correct,
their proof contained a mistake which was later corrected in [169]. The convergence guarantees of
the algorithm were studied by Boyles [16]. On paper the EM algorithm can be applied with any
likelihood function. In practice some likelihood functions can have problematic E step and/or M
step. For thorny M steps, Wu [169] and Lange [90] proposed inexact optimisations with a coordinate
descent and a gradient descent respectively. They both provide theoretical analysis of the conver-
gence of their methods. Several later works tackle the case likelihood with intractable E steps. They
replace the intractable E step by an approximation, usually relying Monte Carlo (MC) methods and
Stochastic Approximations (SA). Notable examples include Delyon, Lavielle and Moulines [33] with
the SAEM, Wei and Tanner [166] for the MC-EM, Fort and Moulines [49], the MCMC-EM, Kuhn
and Lavielle [87] and Allassonnière, Kuhn and Trouvé [4], the MCMC-SAEM, and Chevalier and
Allassonnière [2] for the Approximate SAEM. We highlight these contributions since they all come
with their own theoretical convergence guarantees.

We brought to light that the literature on unsupervised GGM for Unlabelled Heterogeneous popu-
lation is still new and growing. In this PhD thesis, we contribute to the development of this field by
studying different key problematics. In particular, we delve into the EM algorithm for the Mixtures
of GGM.
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Chapter 3

Gaussian Graphical Model
exploration and selection in high
dimension low sample size setting

This Chapter has been published in IEEE-TPAMI. Ref: 10.1109/TPAMI.2020.2980542

Gaussian Graphical Models (GGM) are often used to describe the conditional correlations be-
tween the components of a random vector. In this Chapter, we compare two families of GGM
inference methods: the nodewise approach of [115] and [56] and the penalised likelihood maximi-
sation of [179] and [13]. We demonstrate on synthetic data that, when the sample size is small,
the two methods produce graphs with either too few or too many edges when compared to the
real one. As a result, we propose a composite procedure that explores a family of graphs with a
nodewise numerical scheme and selects a candidate among them with an overall likelihood criterion.
We demonstrate that, when the number of observations is small, this selection method yields graphs
closer to the truth and corresponding to distributions with better KL divergence with regards to the
real distribution than the other two. Finally, we show the interest of our algorithm on two concrete
cases: first on brain imaging data, then on biological nephrology data. In both cases our results are
more in line with current knowledge in each field.

3.1 Introduction

Dependency networks are a prominent tool for the representation and interpretation of many data
types as, for example, gene co-expression [56], interactions between different regions of the cortex [17]
or population dynamics. In those examples, the number of observations n is often small when com-
pared to the number of vertices p in the network.
Conditional correlation networks are graphs where there exists an edge between two vertices if and
only if the random variables on these nodes are correlated conditionally to all others. This structure
can be more interesting than a regular correlation graph. Indeed, in real life, two phenomena, like
the atrophy in two separate areas of the brain or two locations of bird migration, are very likely
to be correlated. There almost always exists a ”chain” of correlated events that ”link”, ever so
slightly, any two occurrences. As a result, regular correlation networks tend to be fully connected
and mostly uninformative. On the other hand, when intermediary variables explain the totality
of the co-variations of two vertices, then these two are conditionally uncorrelated, removing their
edge from the conditional correlation graph. The conditional correlation structure captures only the
direct, explicit interactions between vertices. In our analyses, these interactions are the ones of most
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interest.

A Gaussian Graphical Model (GGM) is a network whose values on the p vertices follow a Cen-
tred Multivariate Normal distribution in Rp: X ∼ N (0p,Σ). This assumption is almost sys-
tematic when studying conditional correlation networks for three main reasons. First, it ensures
that each conditional correlation corr(Xi, Xj |(Xk)k 6=i,j) is a constant and not a function of the
p − 2 dimensional variable (Xk)k 6=i,j ; a crucial property allowing us to talk about a single graph
and not a function graph. Second, it equates the notions of independence and un-correlation, in
particular: corr(Xi, Xj |(Xk)k 6=i,j) = 0 ⇐⇒ Xi ⊥⊥ Xj |(Xk)k 6=i,j . This makes interpretation much
clearer. Finally, under the GGM assumption, we have the explicit formula: corr(Xi, Xj |(Xk)k 6=i,j) =

− Kij√
KiiKjj

, where K := Σ−1 is the inverse of the unknown covariance matrix. This means that the

conditional correlations graph between the components of X is entirely described by a single ma-
trix parameter, K. Moreover the graph and K have the exact same sparsity structure. With this
property in mind, the author of [35] introduced the idea of Covariance Selection which consists of

inferring - under a Gaussian assumption - a sparse estimation K̂ of K and interpreting its sparsity
structure as a conditional dependency network.
Subsequently, many authors have proposed their own estimators K̂. In [115], a local edge selection
approach that solves a LASSO problem on each node is introduced. It was noticeably followed
by [55, 56], who developed the GGMselect algorithm, a practical implementation of this approach
coupled with a model selection procedure. We call these methods ”local”, since they focus on solving
problems independently at each node, and evaluating performances with an aggregation of nodewise
metrics. Other works within the local paradigm have proposed Dantzing selectors [177], constrained
l1 minimisation [18], scaled LASSO [148], or merging all linear regression into a single problem [136].
On a different note, the authors of [179] and [13] considered a more global paradigm where the es-
timator is solution of a single l1-penalised log-likelihood optimisation problem, that has the form of
Eq. (3.1).

K̂ := argmax
K̃�0

L
(
K̃
)
− ρ

∑
i<j

∣∣∣K̃ij

∣∣∣ . (3.1)

We call this point of view ”global” since the likelihood estimates at once the goodness of fit of
the whole proposed matrix. The introduction of problem (3.1) generated tremendous interest in
the GGM community, and in its wake, many authors developed their own numerical methods to
compute its solution efficiently. A few notable examples are block coordinate descent for the Graph-
ical Lasso algorithm (GLASSO) of [50], Nesterov’s Smooth gradient methods [31], Interior Point
Methods (IPM) [99], Alternating Direction Methods of Multipliers (ADMM) [139,180], Newton-CG
primal proximal point [161], Newton’s method with sparse approximation [66], Projected Subgradi-
ent Methods (PSM) [43], and multiple QP problems for the DP-GLASSO algorithm of [114]. The
theoretical properties of the solutions to Eq. (3.1) are studied in [137], [89] and in [133]. Other
methods within the global paradigm include [45], with penalties other than l1 in (3.1), and [98],
with a RKHS estimator.
More recent works have proposed more involved estimators, defined as modifications of already
existing solutions and possessing improved statistical properties, such as asymptotic normality or
better element-wise convergence. The authors of [135] and [74] adapted solutions of local regression
problems including [115], whereas [76] modified the solutions of (3.1). In [75], the two approaches
are unified with a de-biasing method applied to both local and global estimators.

In our applications - where the number of observations n is a fixed small number, usually smaller
than the number of vertices p - we did not find satisfaction with the state of the art methods from ei-
ther the local or the global approach. On one hand, GGMselect yields surprisingly too sparse graph,
missing many of the important already known edges. On the other hand, the only solutions from
the penalised likelihood problem (1) that are a decent fit for real distribution have so many edges
that the information is hidden. To interpret a graph, one would prefer an intermediary number of
edges. Additionally, the low sample size setting requires a method with non-asymptotic theoretical
properties.
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In this paper, we design a composite method, combining the respective strengths of the local and
global approaches, with the aim of recovering graphs with a more reasonable amount of edges, that
also achieves a better quantitative fit with the data. We also prove non-asymptotic oracle bounds
in expectation and probability on the solution.

To measure the goodness of fit, many applications are interested in recovering the true graph struc-
ture and focus on the ”sparsistency”. In our case, the presence or absence of an edge is not sufficient
information. The correlation amplitude is of equal interest. Additionally, we need the resulting
structure to make sense as a whole, that is to say: describe a co-variation dynamic as close as
possible to the real one despite being a sparse approximation. This means that edgewise coefficient

recovery - as assessed by the l2 error
∥∥∥K − K̂∥∥∥2

F
=
∑
i,j(Ki,j − K̂i,j)

2 for instance - which does not

take into account the geometric structure of the graph as a whole is not satisfactory either. We
want the distribution function described by the proposed matrix to be similar to the original distri-
bution. The natural metric to describe proximity between distribution functions is Cross Entropy
(CE) or, equivalently, the Kullback-Leibler divergence (KL). In the end, the CE between the original

distribution and the proposed one - N
(

0, K̂−1
)

- is our metric of choice. Other works, such as [95]

and [190], have focused on the KL in the context of GGM as well.

In the following, we quantify the shortcomings of the literature’s local and global methods when
the data is not abundant. The GGMselect graphs are very sparse, but consistently and substan-
tially outperform the solutions of Eq. (3.1) in terms of KL, regardless of the penalisation intensity ρ.
In the KL/sparsity space, the solutions of GGMselect occupy a spot of high performing, very sparse
solutions that the problem (3.1) simply does not reach. Additionally, the better performing solutions
of (3.1) are so dense that they are excessively difficult to read. Subsequently, we demonstrate that
despite its apparent success, the GGMselect algorithm is held back by its model selection criterion
which is far too conservative and interrupts the graph exploration process too early. This results in
graphs that are not only difficult to interpret but also perform sub-optimally in terms of KL.
With those observations in mind, we design a simple nodewise exploration numerical scheme which,
when initialised at the GGMselect solution, is able to extract a family of larger, better performing
graphs. We couple this exploration process with a KL-based model selection criterion to identify
the best candidates among this family. This algorithm is composite insofar as it combines a careful
local graph construction process with a perceptive global evaluation of the encountered graphs.
We prove non-asymptotic guarantees on the solution of the model selection procedure. We demon-
strate with experiments on synthetic data that this selection procedure satisfies our stated goals.
Indeed, the selected graphs are both substantially better in terms of distribution reconstruction (KL
divergence), and much closer to the original graph than any other we obtain with the state of the
art methods. Then, we put our method to the test with two experiments on real medical data. First
on a neurological dataset with multiple modalities of brain imaging data, where n < p. Then on
biological measures taken from healthy nephrology test subjects, with p < n. In both cases, the
results of our method correspond more to the common understanding of the phenomena in their
respective fields.

3.2 Covariance Selection within GGM

3.2.1 Introduction to Gaussian Graphical Models

Let S+
p and S++

p be respectively the spaces of positive semi-definite and positive definite matrices in
Rp×p. We model a phenomenon as a centred multivariate normal distribution in Rp: X ∼ N (0p,Σ).
To estimate the unknown covariance matrix Σ ∈ S++

p , we have at our disposal an iid sample(
X(1), ..., X(n)

)
assumed to be drawn from this distribution. We want our estimation to bring inter-

pretation on the conditional correlations network between the components of X. No real network is
truly sparse, yet it is natural to propose a sparse approximation. Indeed, this means recovering in
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priority the strongest direct connections and privileging a simpler explanation of the phenomenon,
one we can hope to infer even with a small amount of data. Sparsity in the conditional corre-
lations structure is equivalent to sparsity in the inverse covariance matrix K := Σ−1. Namely
Kij = 0 ⇐⇒ Corr (Xi, Xj |(Xk)k 6=i,j) = 0. As a consequence, our goal is to estimate from the

dataset a covariance matrix Σ̂ ∈ S++
p with both a good fit and a sparse inverse K̂. We say that

Σ̂ := K̂−1 is ”inverse-sparse”.

In the following, we use the Cross Entropy to quantify the performances of a proposed matrix
K̂. The CE, H(p, q) = −Ep [logq(X)] =

∫
x
−p(x)ln(q(x))µ(dx), is an asymmetric measure of the

deviation of distribution q with regards to distribution p. The CE differs from the KL-divergence
only by the term H (p, p), which is constant when the reference distribution p is fixed. In GGM,

the score H(fΣ, fΣ̂) represents how well the normal distribution with our proposed covariance Σ̂

is able to reproduce the true distribution N (0,Σ). We call this score the True CE of Σ̂. This
metric represents a global paradigm where we explicitly care about the behaviour of the matrix as a
whole. This is in contrast to a coefficient-wise recovery, for instance, which is a summation of local,
nodewise, metrics. After removal of the additive constants, we get the simple formula (3.2) for the
CE between two centred multivariate normal distributions N (0,Σ1) and N (0,Σ2).

H (Σ1,Σ2) := H (fΣ1
, fΣ2

) ≡ 1

2

(
tr (Σ1K2)− ln(|K2|)

)
. (3.2)

In the general case, the CE between a proposed distribution fθ and an empirical distribution f̂n =
1
n

∑n
i=1 1x=X(i) defined from data is the opposite of the log-likelihood:

H(f̂n, fθ) = − 1

n
log pθ(X

(1), ..., X(n)) .

In the GGM case, we denote the observed data X :=
(
X(1), ..., X(n)

)T ∈ Rn×p, and set S :=
1
nX

T X ∈ S+
p , the empirical covariance matrix. The opposite log-likelihood of any centred Gaussian

N (0,Σ2) satisfies:

H (S,Σ2) := H
(
f̂n, fΣ2

)
≡ 1

2

(
tr (SK2)− ln(|K2|)

)
, (3.3)

similar to Eq. (3.2). As a result, we adopt an unified notation. Details on calculations to obtain
these formulas can be found in Section 3.10.1.

We use the following notations for matrix algebra, let A be a square real matrix, then: |A| denotes

the determinant, ‖A‖∗ := tr
((
ATA

) 1
2

)
the nuclear norm, ‖A‖F := tr

((
ATA

)) 1
2 =

(∑
i,j A

2
ij

) 1
2

the Frobenius norm and ‖A‖2 := sup
x

‖Ax‖2
‖x‖2

= λmax(A) the spectral norm (operator norm 2) which

is also the highest eigenvalue. We recall that when A is symmetrical positive, then ‖A‖∗ = tr(A)

and ‖A‖F = tr(A2)
1
2 . We also consider the scalar product 〈A,B〉 := tr

(
BTA

)
on Rp×p.

3.2.2 Description of the state of the art

After its introduction, problem (3.1) became the most popular method to infer graphs from data
with a GGM assumption. Reducing the whole inference process to a single loss optimisation is
convenient. What is more, the optimised loss is a penalised version of the likelihood - which is an
estimator of the True CE - hence the method explicitly takes into account the global performances
of the solution. However, even though the l1 penalty mechanically induces sparsity in the solution, it
does not necessarily recover the edges that best reproduce the original distribution, especially when
the data is limited. Indeed, the known ”sparsitency” dynamics of the solutions of (3.1), see [89],
always involve a large number of observations tending towards infinity. We demonstrate in this
paper that, when the sample size is small, other methods recover consequently more efficient sparse
structures, inaccessible to the l1 penalised problem (3.1).
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On the other hand, the local approach of [115] carefully assesses each new edge, focusing on making
the most efficient choice at each step. We confirm that the latter approach yields better performance
by comparing the solutions of problem (3.1) and GGMselect [56] on both synthetic and real data
(Sections 3.4 and 3.5). However, the loss optimised in GGMselect, Crit(G), see (3.4), is an amalgam
of local nodewise regression score, with no explicit regard for the overall behaviour of the matrix:

Crit(G) :=

p∑
a=1

[∥∥∥Xa −X
[
θ̂G

]
a

∥∥∥2

2

(
1 +

pen(da(G))

n− da(G)

)]
, (3.4)

where pen is a specific penalty function, da(G) is the degree of the node a in the graph G, Xa are
all the observed values at node a, such that X = (X1, ..., Xp) ∈ Rn×p is the full data, and:

θ̂G := argmin
θ∈ΛG

‖X(Ip − θ)‖2F

= argmin
θ∈ΛG

p∑
a=1

‖Xa −X [θ]a‖
2
2

=

{
argmin
θa∈ΛaG

‖Xa −Xθa‖22

}p
a=1

,

(3.5)

where ΛG is the set of p × p matrices θ such that θi,j is non zero if and only if the edge (i, j) is
in G, and ΛaG is the set of vectors θa ∈ Rp such that (θa)i is non zero if and only if the edge (i, a)
is in G . Note that by convention, auto-edges (i, i) are never in the graph G, and, in our work, G
is always undirected. The full expression of pen can be found in Eq. 3 of [56]. It depends on a
dimensionless hyper-parameter called K which the authors recommend to set equal to 2.5. We first
tried other values without observing significant change, and decided to use the recommended value
in every later experiment.

The expression (3.5) illustrates that each nodewise coefficients
[
θ̂G

]
a

in the GGMselect loss are

obtained from independent optimisation problems which each involve only the local sparsity of the
graph in the vicinity of the node a, as seen in the definition of ΛaG . In each parallel optimisation

problem argmin
θa∈ΛaG

‖Xa −Xθa‖22, the rest of the graph is not constrained, hence is implicitly fully

connected. In particular, the solutions of such problems involve an estimation of the covariance
matrix between the rest of the vertices that is not inverse-sparse. This can bias the procedure
towards the sparser graphs since it actually implicitly measures the performances of more connected
graphs. Finally, the GGMselect model selection criterion (GGMSC) explicitly penalises the degree of
each node in the graph making it so that string-like structures are preferred over hubs. Empirically,
we observe that with low amounts of data, graphs with hubs are consistently dismissed by the
GGMSC. Overall, we expect the selected solutions to be excessively sparse, which experiments on
both synthetic and real data in Sections 3.4 and 3.5 confirm.

3.2.3 Graph constrained MLE

Even though a covariance matrix Σ uniquely defines a graph with its inverse K, the reciprocal is not
true. To a given graph G := (V,E), with vertex set V and edge set E, corresponds a whole subset
ΘG of S++

p :

ΘG :=

{
Σ̃ ∈ S++

p

∣∣∣∀i 6= j, (i, j) /∈ E ⇒
(

Σ̃−1
)
ij

= 0

}
.

When data is available, the natural matrix representing G is the constrained MLE:

Σ̂G := argmax
Σ̃∈ΘG

pΣ̃(X(1), ..., X(n)) = argmin
Σ̃∈ΘG

H
(
S, Σ̃

)
. (3.6)

The existence of the MLE is not always guaranteed (see [35, 158]). When n < p, no MLE exists for
the more connected graphs. However, in this paper, we design a procedure that can propose a MLE
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for any n and any graph without computation errors. To tackle the issue of existence, we add a very
small regularisation term to the empirical covariance matrix S. This leads to solving:

Σ̂G,λ := argmin
Σ̃∈ΘG

H
(
S + λIp, Σ̃

)
. (3.7)

λ is not a true hyper-parameter of the model. Its value is set once and for all, and as small as
possible as long as the machine still recognises S + λIp as invertible. Typical values range between

10−7 and 10−4. This trick changes little for the already existing solutions. Indeed, if Σ̂G solution of
Eq. (3.6) exists, we observe empirically that for small values of λ: Σ̂G ' Σ̂G,λ. On the other hand,

if no solution Σ̂G to Eq. (3.6) exists, then we now are able to propose a penalised MLE Σ̂G,λ, thus
avoiding degenerated computations. From now on, the MLE we use are always solutions of (3.7).

We will omit the index λ and keep the notation Σ̂G for the sake of simplicity.

3.2.4 Our composite algorithm

The exploration steps of our method are a variation of the local paradigm of [115]. First, we use the
GGMselect solution as initialisation. Then we add edges one by one: at each step, for each vertex
independently, we run a sparse linear regression using as predictors the vertices that are not among
its neighbours yet, and as target the residual of the linear regression between the value on the vertex
and its neighbours. With these regressions, each vertex proposes to add to the current graph an edge
between them and their new best predictor. Here however, we deviate from the local paradigm by
using a global criterion - the out of sample likelihood of the whole resulting new matrix - to evaluate
each proposition and select one edge among these candidates. We end this exploration procedure
after a fixed number of steps, the result is a family of gradually more connected graphs. The final
selection step is done with a global metric: we pick, among the so constructed family, the graph
minimising the Cross Validated (with fresh data) Cross Entropy. See Figure 3.1 for the details.
In the spirit of [74,75,76,135], this method is designed to complete an already existing efficient, but
sparse, solution. As a result, it is sensitive to the initial graph.

3.3 Oracle bounds on the model selection procedure

In this Section, we give non-asymptotic guarantees on the model selection step of our algorithm. We
prove these results in Section 3.10. Using the statistical properties of our model selection criterion, in
particular the absence of bias and convergence towards the oracle criterion, we describe the difference
between the performance of the selected model and the oracle best performance (”regret”). This
regret is dependent on the convergence of a Wishart random variable towards its expectation. As
a result, we are able to prove non-asymptotic upper bounds in expectation and probability for the
regret.

3.3.1 Framework

In this Section we define or recall the relevant concepts and notations. Let Σ̃ ∈ ΘG and K̃ := Σ̃−1.
We recall and rephrase the definition, given in Eq. (3.7), of the constrained Maximum Likelihood
Estimator we build from a given graph G:

Σ̂G(S) = argmin
Σ̃∈ΘG

H
(
S + λIp, Σ̃

)
= argmin

Σ̃∈ΘG

H
(
S, Σ̃

)
+
λ

2

∥∥∥K̃∥∥∥
∗
.

We use the Cross Validated Cross Entropy (CVCE) H
(
Sval, Σ̂G(Sexpl)

)
as a criterion to pick a

graph ĜCV among the ones encountered. This Cross Validated criterion uses the partition of the
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Inputs: The train set are all the observations available for graph inference, Nb of steps T fixed
in advance.
Start:
Run GGMselect on the train set to get the initial graph G0 = (V,E0);
Partition the train set into a validation set and exploration set;
for t = 1, .., T do

Partition randomly the exploration set into a learning set and an evaluation set;
Compute the empirical covariance Steval from the evaluation set;
#We then ”ask” each node for its desired next neighbour:
for a ∈ V vertex of Gt−1 do

Let Nt−1(a) be the set of neighbours of a in Gt−1 and Ft−1(a) := V \ {Nt−1(a) ∪ {a}} the
remaining vertices;
Run on the learning set the linear regression with the vector Xa of the values on a as the
target, and the vectors {Xs|s ∈ Nt−1(a)} on the neighbour nodes as predictors. Let X̃a be
the residual of this regression;
Run on the learning set one step of the LARS algorithm of [44], with X̃a as the target, and
the remaining {Xs|s ∈ Ft−1(a)} as predictors. Call ct(a) ∈ Ft−1(a) the index of the feature
chosen by LARS;

end for
#We now have p potential new edges {(a, ct(a))}a∈V some of which can be identical
#We give priority to mutual selections: when ct(ct(a)) = a
if {(a, ct(a))}ct(ct(a))=a 6= ∅ then

Let C = {(a, ct(a))}ct(ct(a))=a be our set of candidate edges;
#We keep only the mutual selections

else
Let C = {(a, ct(a))}a∈V ;
#No mutual selection ⇒ keep the whole set

end if
for c ∈ C do

Compute, with the learning set, the MLE Σ̂ct from each new potential graph Gct := Gt−1 ∪ c;
end for
c∗ := argmin

c∈C
H
(
Steval, Σ̂

c
t

)
;

Gt := Gc∗t ;

Compute, with the exploration set, the MLE Σ̂t from Gt;
end for
Compute, with the exploration set, the MLE Σ̂0 from G0;
Compute the empirical covariance Sval from the validation set;

t∗ := argmin
t=0,...,T

H
(
Sval, Σ̂t

)
;

Ĝ := Gt∗ ;
Return: Inferred graph Ĝ.

Figure 3.1: Composite GGM estimation. We respectively identify with green or orange text the
steps adhering to a local or global paradigm. Comments are in blue.

17



training set into a validation set - used to build the estimation Sval of the true matrix Σ - and an
exploration set - used for the graph exploration process and to build the constrained MLE Σ̂G(Sexpl)

for each encountered graph G. We compare the graph ĜCV selected with CVCE with Ĝ∗ selected

with the True Cross Entropy H
(

Σ, Σ̂G(Sexpl)
)

of the matrix Σ̂G(Sexpl). We define formally those

graphs: in Eq. (3.8) and (3.9):

Ĝ∗ ∈ argmin
G∈M

[
H
(

Σ, Σ̂G(Sexpl)
)]

, (3.8)

ĜCV ∈ argmin
G∈M

[
H
(
Sval, Σ̂G(Sexpl)

)]
, (3.9)

where we call M the family of graphs uncovered by the Composite algorithm.

Remark. With the data available, the ideal model selection would be made with True Cross En-

tropy H
(

Σ, Σ̂G(Strain)
)

of the matrix Σ̂G(Strain) built from the whole train set. Comparing our-

selves to this criterion would allow to quantify the importance of having a balanced split between
validation and exploration set. This is outside the scope of this Section. We just compare our

H
(
Sval, Σ̂G(Sexpl)

)
to H

(
Σ, Σ̂G(Sexpl)

)
. In this case, the convergence of Sval towards Σ is the

only dynamic that matters.

3.3.2 Basic control

In this Section, we show a general upper bound on the regret, using only the properties of the model
selection criterion, and not yet the properties of the estimators. From this point on, we generally do
not highlight the dependency of Σ̂G in Sexpl to simplify notation. First of all, note that by definition
we always have the lower bound on the difference of CE:

0 ≤ H
(

Σ, Σ̂ĜCV

)
−H

(
Σ, Σ̂Ĝ∗

)
.

The rest of the guarantees focus on the upper bounds for this difference.

From the observation that H
(

Σ, Σ̂
)

= H
(
S, Σ̂

)
+ 1

2

〈
Σ− S, K̂

〉
, we get the control (3.10) on the

regret H
(

Σ, Σ̂ĜCV

)
−H

(
Σ, Σ̂Ĝ∗

)
:

H
(

Σ, Σ̂ĜCV

)
−H

(
Σ, Σ̂Ĝ∗

)
≤ 1

2

〈
Σ− Sval, K̂ĜCV − K̂Ĝ∗

〉
, (3.10)

where all the MLE Σ̂G depend only on G and Sexpl. The random variable Ĝ∗ is a function of Sexpl
only, whereas ĜCV depends on both Sval and Sexpl. Since Sval and Sexpl are independent, then:

E
[〈
Sval, K̂Ĝ∗(Sexpl)

〉 ∣∣∣Sexpl] =
〈

Σ, K̂Ĝ∗(Sexpl)
〉
.

In the end, with e := E
[
H
(

Σ, Σ̂ĜCV

)
−H

(
Σ, Σ̂Ĝ∗

)]
the expected regret, we have:

0 ≤ e ≤ 1

2
E
[〈

Σ− Sval, K̂ĜCV
〉]

. (3.11)

3.3.3 Control in expectation

In this Section, we use the sparsity properties of the estimator K̂ĜCV as well as the statistical
properties of Σ − Sval to obtain a more explicit control on the expected regret. In addition, we
use a known concentration result to obtain an alternative control in expectation. The result (3.11)

is completely agnostic of the way the matrices K̂G ∈ S++
p are defined as long as they depend on

Sexpl only. To get an order of this control, however, we use the assumption that Σ̂G is the graph
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constrained MLE defined in (3.7). Let us first notice that we can ensure
∥∥∥K̂G∥∥∥

∗
≤ p

λ thanks to our

penalised definition of (3.7). Let Σ∞ := max
i,j
|Σij |. We call Emax the union of the maximal edge sets

in M, and dmax = |Emax| ≤ p(p−1)
2 its cardinal. We underline here that, by convention, conditional

correlation graphs do not contain self loops, hence the edge sets E never include any of the pairs
{(i, i)}i=1,...,p. We then get the control (3.12) by using Cauchy-Schwartz’s inequality in (3.11).

Proposition 1. With the previously introduced notations, if the set Emax is independent of the
exploration empirical matrix Sexpl, we have:

0 ≤ e ≤ Σ∞

λ
√

2

(p+ 2dmax)
1
2 p

√
nval

. (3.12)

In the case of our Composite procedure, by construction Emax is a random variable depending on
the exploration set. However (3.12) still holds by replacing dmax with E [dmax]:

0 ≤ e ≤ Σ∞

λ
√

2

(p+ 2E [dmax])
1
2 p

√
nval

. (3.13)

We can get an alternative order of the control by using known concentrations inequalities.

Proposition 2. By using the Theorem 4 of [85], we get:

0 ≤ e ≤ cλmax(Σ)

λ
p

(√
p

nval
∨ p

nval

)
. (3.14)

Where c is a constant independent of the problem.

In the end, with (3.13) and (3.14), we have two different upper bounds on e and can use the
minimum one depending on the situation.

3.3.4 Control in probability

In this Section, we use the sparsity properties of the estimator K̂ĜCV as well as the concentration
properties of Σ− Sval around 0 to obtain a control in probability (concentration inequality) on the
regret. In addition to the controls in expectation we got in (3.11) and (3.12), there is in the CVCE
a concentration dynamic based on the convergence rate of a Wishart random matrix towards its
average. We call Πmax the orthogonal projection on the set of edges Emax ∪ {(i, i)}pi=1. That is

to say, for any matrix M ∈ Rp×p, Πmax(M)i,j = Mi,j1(i,j)∈Emax∪{(i,i)}pi=1
. Let W := K

1
2SvalK

1
2 .

Then nvalW ∼ Wp (nval, Ip) is a standard Wishart random variable depending only on the validation

data, hence independent of every matrix K̂G . Let P := P
(∣∣∣H (Σ, Σ̂ĜCV

)
−H

(
Σ, Σ̂Ĝ∗

)∣∣∣ ≤ δ) be

the probability that the regret is small. We get two different lower bounds (3.15) and (3.16) on P .

Proposition 3. With the previously introduced notations, the two following inequalities hold:

P ≥ P

‖W − Ip‖F ≤ δ

max
G

∥∥∥Σ
1
2 K̂GΣ

1
2

∥∥∥
F

 , (3.15)

P ≥ P

‖Πmax (Sval − Σ)‖F ≤
δ

max
G

∥∥∥K̂G∥∥∥
F

 . (3.16)

Moreover, the results (3.15) and (3.16) hold when every probability is taken conditionally to the
exploration data or, equivalently here, conditionally to Sexpl.
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If we work conditionally to the exploration data, then max
G

∥∥∥Σ
1
2 K̂GΣ

1
2

∥∥∥
F

, max
G

∥∥∥K̂G∥∥∥
F

and Emax

are constants of the problem. In that case, the lower bound in (3.15) only depends on the dynamic
of a standard Wishart Wp (nval, Ip). Similarly, the lower bound in (3.16) only depends on the
convergence dynamic of some coefficients of Sval towards the corresponding ones in Σ.
The bound in (3.16) has a less general formulation than (3.15), since the Sval 7→ Σ is a more specific
dynamic than W 7→ Ip. On the other hand, only the diagonal coefficients and those in Emax need
to be close, which can make a huge difference if p is very large and M contains only sparse graphs
and make the bound (3.16) tighter.

3.4 Experiments on synthetic data

We show in this Section the shortcomings of the global problem (3.1) of [179] and [13] and of the local
approach of [115] and [56] on synthetic data. We demonstrate that - when the data is not abundant
- the solutions of GGMselect consistently reproduce the true distribution much better than any
solution of the global problem (3.1). In addition to being outperformed in KL divergence, the best
solutions of (3.1) are also very connected, consequently more than the real graph. However, we also
illustrate that the solutions of GGMselect are always very sparse, regardless of the real graph. In
the end, we demonstrate that our selection criterion improves both the distribution reproduction
and the graph recovery of the previous two methods.

3.4.1 The solutions missed by the global paradigm: a comparison of
GLASSO and GGMselect

We start by comparing the two state of the art global and local paradigms, and show that the global
paradigm misses crucial solutions when the number of observations is small. We use the scikit learn,
see [127], implementation of the GLASSO of [50] to solve problem (3.1) for any penalisation level ρ
and the R implementation of GGMselect, see [56], to represent the [115] approach.
We use an inverse-sparse covariance matrix Σ fixed once and for all to generate a matrix of obser-
vations X. The same observations are provided to the two methods. On Figure 3.2, we compare
the True CE H(Σ, Σ̂) of each estimated matrix as a function of the number of non-zero, off diagonal

coefficients in their inverse K̂ (complexity of the model). The green dot is the MLE - computed as
in (3.7) - under the constraints of the GGMselect graph. In the case of GLASSO, different solutions

are obtained by changing the level of penalisation ρ in Eq. (3.1). We call those solutions Σ̂ρ, indexed
by their penalisation intensity ρ. They are represented by the blue curve on Figure 3.2. All of
them are inverse-sparse and define a graph we call G(ρ). The orange curve is the path of the MLEs

Σ̂G(ρ) - computed as in (3.7) - refitted from those same graphs without the l1 penalty of problem
(3.1). They have the same inverse-sparsity as their raw solution counterparts, but do not have the
extra-penalisation on the non-zero coefficients that every LASSO solution bears.
The three columns correspond to graphs with different connectivity - illustrated by a random ex-
ample on top of each column - and the two rows have different graph sizes, p = 30 and p = 50
respectively. For each simulation, the two methods were given the same n = 30 observations to work
with, and each figure represents the average and standard deviation of 100 simulations.

We notice that the GGMselect solution is always very sparse. When the true graph is sparse, GGMs-
elect outperforms the penalised likelihood problem (3.1) regardless of the penalty intensity. For large
connected graphs, the most connected solutions of (3.1) can perform better than the GGMselect
solution. However GGMselect is consistently better than the equally sparse problem (3.1) solution.
The failure of GLASSO to reach the spot of GGMselect in the performances/complexity with any
penalisation intensity - even when the MLE is refitted from the GLASSO graph without penalty -
indicates that when n is small, the l1 penalised likelihood problem (3.1) has difficulties selecting the
most efficient edges. Additionally, the better performing solutions of GLASSO have many edges -
usually much more than the real graph - which draws the focus away from the relevant ones and
makes it difficult to get a qualitative reading of the graph.
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Figure 3.2: Average performances as a function of the complexity for: the MLE from the GGMselect
graph (green), the GLASSO solutions (blue) and the MLEs from the GLASSO graphs (orange). The
average is taken over 100 simulations. In each simulation, n = 30 data points are simulated from a
given true graph, different for each subfigure. The two rows of subfigures correspond to two different
graph sizes, p = 30 and p = 50 vertices respectively. The three columns correspond to true graphs
with different connectivity. At the top of each column, a graph illustrates the typical connectivity
of the true graphs in said column.

When the number of observations is small, it seems that GGMselect’s numerical scheme allows it
to find high performing sparse graphs that problem (3.1) never can. This is the type of solution we
want, and the main reason why we choose to initialise our composite method from this point.

3.4.2 Conservativeness of the GGMselect criterion: an example with a
hub

We identified that GGMselect produced high quality, very sparse solutions. We argue here that they
might be too sparse for their own good.
As discussed in Section 3.2.2, the numerical scheme of the GGMselect algorithm is based on a
nodewise approach, and so is its model selection criterion. It penalises independently the degree of
every node in the proposed graph. This makes it very unlikely to select graphs with a hub, i.e. a
central node connected to many others. However recovering hubs is very important in conditional
correlation networks. Genetic regulation networks for instance often feature hubs. With synthetic
data, n = 30, p = 30, we encounter a ”soft cap” effect, where it becomes very hard for GGMselect to
propose a graph including a node of degree higher than 3. The penalty for such a node being too large
to be compensated by the improved goodness of fit. On the other hand, we see on Figure 3.3 that
the Cross Validated Cross Entropy selects a graph which features the entire hub, and is in addition
closer to the real graph regarding the remaining edges. Indeed, in the example of Figure 3.3, other
edges than the ones forming the hub are also ignored by GGMselect. With such a behaviour of the
model selection criterion when the number of observations n is small, the GGMselect graphs are
hard to interpret, with many key connections potentially missing.
Such observations motivated us to replace the GGMselect criterion with the Cross Validated Cross
Entropy for graph selection. The next subsection proposes a quantitative comparison of the graphs
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True graph Graph selected with the 
GGMselect criterion

Graph selected by 
Cross Validation

Figure 3.3: Graph selection in the presence of a hub. The first figure is the true graph. The second
and third are the graphs respectively selected by the GGMSC and CVCE on the same fixed graph
path going from the fully sparse to the fully connected, via the GGMselect graph and the true graph

selected by these two metrics.

3.4.3 The short-sightedness of the local model selection: a comparison of
the GGMselect criterion and the CVCE

In this Section, we compare solely the model section metrics - and not the graph exploration schemes
- on a fixed, shared, family of graphs. We demonstrate that our global approach to model selection
yields graphs much closer to the original one and that reproduces the true distribution much better
than the GGMselect criterion, which rejects the better, more connected graphs.
We compare the graphs selected by our Cross Validated CE (CVCE) and the GGMSC when shown
the same family of candidate graphs. We consider a given true graph (p = 30). We compute once
and for all one GGMselect solution with n = 30 observations drawn from this graph. With these key
graphs in hand, we build manually (without the exploration scheme of Figure 3.1) a deterministic
sequence of graphs. Starting from the Fully Sparse with no edges, we add one by one, and in an
arbitrary order, the edges needed to reach the GGMselect graph. From there, in the same manner,
we add the missing edges and remove the excess edges to reach the true graph. Finally, we add - still
one by one, still in an arbitrary order - the remaining edges until the Fully Connected graph, with all
possible edges. All the encountered graphs in this sequence constitute the fixed family of candidates
to be assessed by the model selection criteria. For each simulation, we generate n observations and
use them to compute the GGMSC and CVCE along the path. We make 1000 of those simulations.
The GGMSC uses the full data freely, while the CVCE must split the n points into the exploration
covariance Sexpl, to compute the graph constrained MLE Σ̂G(Sexpl), and a validation covariance
Sval to evaluate them. This leads to different results depending on the split size. Let Strain be the
empirical covariance matrix built with the full data. We assess the performances of each graph G
with the True CE (TCE) of the MLE built from Strain under the constraints of G: H(Σ, Σ̂G(Strain)).

Since there is a known true Σ we actually compute the True KL KL(Σ, Σ̂G(Strain)). This metric
differs from the TCE only by a constant, hence is equivalent when ranking methods, but offers a
sense of scale since the proximity to 0 in KL is meaningful. Figure 3.4 illustrates the behaviour
on one simulation. The most noticeable trend is that the GGMSC (in green) advocates a much
earlier stop than the CVCE (in red), which stops almost on the same graph as the TCE (in blue).
Additionally, on that run, the graph selected by the CVCE is actually the true graph (in grey).
Figure 3.5 represents the results over all simulations. We compare the average and standard devia-
tion of the performances (true KL, on the y axis) and complexity (number of edges, x axis) of the
models selected by the CVCE with different exploration/validation splits (in shades of red), GGMSC
(in green) and with the TCE (in blue). The three columns represent different number of available
observations (n = 25, 40, 100) and the second row is a zoomed in view of the first. This quantita-
tive analysis confirms that the GGMSC selects graphs that are way too sparse even when shown
more complex graphs with better performances. With the performances measured in KL, relative
improvement is meaningful, and we see the CVCE improving the GGMSC choice by a factor from 2
to 5, and being much closer to the oracle solution in terms of KL. Additionally, the graphs selected
by CVCE are also much closer to the original one. This is especially true when a large fraction
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Figure 3.4: On a single simulation: evolution of and model selected by GGMSC (green), CVCE
(red) and TCE (blue) along the fixed deterministic path. The true graph’s position on that path is
represented by a vertical grey line. GGMSC stops early whereas CVCE selects the true graph (the
vertical grey line and the dashed red one are the same). Moreover, the CVCE graph is very close to
the best graph in terms of True Cross Entropy.

of the data (35% or 40% of the training data) is kept in the validation set. The same results are

observed with two other oracle metrics: the l2 recovery of the True Σ,
∥∥∥Σ− Σ̂G(Strain)

∥∥∥
F

, and the

oracle nodewise regression l2 recovery
∥∥∥Σ

1
2 (Ip −ΘG(Xtrain))

∥∥∥
F

(the oracle metric of the GGMselect

authors [56]). Those metrics also reveal that when the validation set is small (20%), the variance of
the performances of CVCE increases and it can become less reliable depending on the metric. The
Figures and details on these two metrics can be found in supplementary materials.
This experiment illustrated how the model selection criterion of GGMselect can actually be very
conservative, and even though the numerical scheme of the method explores interesting graph fami-
lies, the model selection criterion might dismiss the more complex, better performing ones on them.
This leads us to believe we can make substantial improvements by using the CVCE on a path built
using the GGMselect solution as initialisation.

3.4.4 Execution time comparison

In this Section, we compare the runtimes of GLASSO, GGMselect and the Composite method for
several values of p. For each p, 20 simulation are made, with n = p/2 observations each. This num-
ber of observations is an arbitrary heuristic to have both n < p and n increasing with p. Table 3.1
synthesises the results. The runtime and complexity of the Composite method depend linearly on
the number of steps chosen by the user. As seen in Figure 3.1, this number of steps is the number
of graphs that are constructed and evaluated. Ideally, this sequence of graphs should be just long
enough to see the Oracle (or Out of Sample) performance improve as much as they can, and stop
when they start deteriorating, when the point of overfitting is reached. In this experiment, the
number of steps is chosen according to an heuristic depending on the number of edges in the initial-
isation graph with regards to p. The average number of steps over the simulations is also recorded
in Table 3.1.
The Composite method and GGMselect both include a model selection step, however GLASSO just
returns one solution of Eq. (3.1) for one given value of the penalty parameter ρ. As a result, all three
methods are not strictly comparable. This was corrected in this experiment: for every simulation,
the GLASSO is run on a grid of ρ with as many values as the number of estimated graphs by the
Composite method. We call this the ”grid GLASSO”.

Table 3.1 shows that GGMselect is faster than the other two methods by 1 and 2 orders of magnitude
in average. The Composite method is faster than the grid of GLASSOs when the dimension is small,
but suffers when the dimension goes above p = 100. The Composite algorithm has indeed a high
complexity in p, it runs p× nsteps ordinary linear regression with p− 2 features and computes then
evaluates (p+ 1)× nsteps graph constrained MLE of size p× p each.

The algorithmic of GGMselect and GLASSO were very well optimised by their respective authors.
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Figure 3.5: Average KL divergence (y axis) and complexity (x axis) of the models selected with
GGMSC (green), CVCE (shades of red) and TCE (blue) on synthetic data. The sparsity level of
the true graph is represented by a black dashed vertical line. The second row offers a zoomed in
view of the boxed areas to focus on the CVCE and TCE models. The graphs selected by the CVCE
are much closer to the best in True Cross Entropy in terms of performance and edge structure than
the GGMSC one. Moreover, they are also very close to the true graph used in the simulation, even
when the sample size is small.

Table 3.1: Average and (standard deviation) of the execution times of different GGM methods.
The grid GLASSO compute solutions for as many values of the penalty parameter ρ as there are
estimated graphs (steps) in the Composite method. The last column presents the average of this
number of steps/number of estimated graphs. The number of observations is n = p/2.

p GGMsel (fast) grid GLASSO Composite nb steps

30 0.19 (0.07) 14.9 (8.60) 3.09 (1.80) 8.4

50 0.39 (0.03) 62.1 (32.9) 16.6 (8.20) 14.9

100 1.66 (0.66) 247 (135) 226 (138) 26.3

300 25.8 (1.04) 1470 (775) 6847 (1453) 40

This shows in the very fast GGMselect computations, making it a very efficient initialisation for
our Composite method. However, the implementation of the Composite, see Figure 3.1, is naive
and sequential. By running the linear regressions and LARS in parallel, and not re-calculating the
MLE for the same graph several times, the performance would be greatly improved and closer to
GLASSO.

3.5 Experiments on real data with the Composite GGM es-
timation algorithm

In this Section, we present two experiments with our composite method on real data. First, we
demonstrate on brain imaging data from a cohort of Alzheimer’s Disease patients that it recovers
the known structures better than the classical local and global methods, while also having a better
Out of Sample goodness of fit with the data. Then, we showcase how it is able to describe known
dynamics between factors involved in Adrenal steroid synthesis on a database of Nephrology test
subjects.
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3.5.1 Experiment on Alzheimer’s Disease patients

We first confirm our previous observations and demonstrate the performances of the complete nu-
merical scheme of our composite procedure on real medical data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database. We have p = 343 features, n = 92 different patients. The
first 240 features are measures of atrophy (MRI) and glucose consumption (PET) in the 120 areas
of the cortex defined by the AAL2 map. The next 98 are two descriptors of the diffusion, fractional
anisotropy and mean diffusivity, followed in the 49 regions of the JHU ICBM-DTI-81 white matter
atlas. The rest of the features are basic descriptions of the patient.

Experiment

First we need a new evaluation metric. Indeed, with real data, we do not know the real covariance
matrix. So we cannot anymore compute the True Cross Entropy to evaluate the inferred matrices.
To replace the TCE, we keep n = 18 patients aside as a test set to define a test empirical covariance
matrix Stest, whereas the n = 74 patients left constitute the train set, used to define Strain. We
evaluate an inverse-sparse covariance matrix built from Strain with the negative Out of Sample Like-
lihood (OSL): H(Stest, Σ̂G(Strain)). The OSL is less absolute than the True CE, but still quantifies
with no bias the goodness of fit for real data. Additionally, we cannot use a KL divergence for scale
reference anymore, see Section 3.10.1 for more details.
The experiment run on the ADNI database is very simple: we compute the GGMselect solution and
build our Composite GGM estimation procedure from it. To be fair, we also evaluate every graph
our procedure encounters with the GGMSC, giving GGMselect a chance to change its mind if one of
the new graphs were to fit its criterion better. In addition, we used the GLASSO algorithm of [50]
to get the solutions of (3.1) for different penalty intensity.

Comparison of GLASSO and GGMselect

We confirm the observations and conclusions of Section 3.4.1. Figure 3.6 shows that, even with
varying penalty intensity, GLASSO does not encounter any solution with an OSL as good as GGMs-
elect. This indicates that the optimisation problem (3.1) cannot find high-performing sparse graphs
in this concrete setting either. The path of GLASSO is interrupted before its completion as we have
computational error with the scikit learn package at low penalty levels. We encounter such errors
eventually no matter how we regularise and precondition the empirical covariance S. This means
we do not get to see the more connected solutions of the GLASSO. This is not a problem since we
already go far enough in the GLASSO path to reach unacceptably complex graphs: 6% of the ∼
59000 possible edges, i.e. 3500 edges for a graph with 343 nodes. By stopping early, we only consider
the reasonable solutions of the GLASSO. In that case, GGMselect has a clear advantage, proposing
a solution with a better Out of Sample fit with the data and only 281 edges.

Comparison of GGMselect and the Composite GGM estimation algorithm

We represent the selected graphs on left panel of Figure 3.7, with the same conventions as Figure 3.5.
Once again the GGMSC (green) selects a sparse model, with 281 edges over the ∼ 60k possible. All
the reasonable validation fractions (from 10% to 30%) of the CVCE (shades of red) select one out of
two graphs, with both better OSL than the GGMSC one and closer to the OSL-optimum on the path
(blue). Those two graphs have 589 or 813 edges respectively. This indicates that many conditional
correlations were potentially missed by GGMSC, and that the CVCE graphs may propose a more
complete interpretation.

For a full comparison of the thee methods, the right panel of Figure 3.7 is a zoomed out view
that also includes the best model obtainable with problem (3.1) in terms of OSL (purple point). As
we have seen, it is a very complex model with many edges. We visualise the successive improvements
in Out of Sample Likelihood made first by GGMselect, with a sparser solution, then with our Com-
posite GGM estimation procedure, with a more complete model. This experiment demonstrates the
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Figure 3.6: Out of sample performances as a function of the complexity for: the MLE from the
GGMselect graph (green), the GLASSO solutions (blue) and the MLEs refitted from the GLASSO
graphs (orange).

quantitative benefits of running the Composite algorithm in a High Dimension Low Sample Size
setting.

In addition to those quantitative improvements, our method allows for a better qualitative inter-
pretation of the disease. Figure 3.8 represents, using the Colin 27 brain image of [64] and the
MRView software of [154], the graphs selected by GGMSC and CVCE (589 edges version), as well
as the best GLASSO graph in OSL (∼ 3500 edges). We recall that each of the methods estimates
a large graph with p = 343 vertices, a mix of different modalities measured in different areas of
the cortex. The full graph cannot be displayed on an image of the cortex. For the sake of clarity,
we only represent sub-parts of this one graph. On Figure 3.8, only edges in-between the 120 MRI
measures are represented. Additional views of the cortex can be found in supplementary materials.
The GGMselect network is mostly composed of inter-hemispheric connections between symmetrical
areas (hidden by the perspective in Figure 3.8, see the supplementary materials for different views).
These mainly reflect the symmetry of the atrophy pattern and are less informative for understanding
disease process. The intra-hemispheric connections have a better interpretation potential to explain
the pathology. Our algorithm reveals many more of these correlations - for instance in parietal areas,
which are thought to be key hubs in the disease process - promising a more interesting description
of the pathology. The GLASSO solution on the other hand, proposes many edges, making even this
simple sub-graph unreadable. Similar observations can be made for connections in-between PET
measures (see supplementary materials).
Additionally, Figure 3.9 shows that the GGMselect graph features absolutely no edge between MRI
and PET measures, effectively proposing a model in which there is no correlation whatsoever between
anatomical and functional variables, a very unlikely and unsatisfactory description. Our method on
the contrary recovers a reasonable amount of edges between those two modalities. GLASSO recovers
a similar number of edges in this sub-part of the graph. However, Figure 3.8 shows that it does so
while having an extremely large number of edges in other regions of the graphs. Sparser GLASSO
solution on the other hand, behave similarly to GGMselect and recover no edge linking MRI and
PET measures, see supplementary materials. Of all these solutions, the Composite method proposes
the most balanced.
These results suggest that our approach could be an interesting tool to study inter-regional and
inter-modality dependencies in Alzheimer’s Disease. This would need to be confirmed with larger
populations of patients and more extensive experiments, which is out of the scope of the present
paper and is left for future work.

3.5.2 Experiments on neprhology patients

In this Section, we compare qualitatively the methods in an environment with p < n. Although the
Composite procedure was developed specifically for the case n < p, we demonstrate here that it still
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Figure 3.7: Out of Sample Likelihood (y axis) and complexity (x axis) of models selected by GGMSC
(green), CVCE (shades of red) and OSL (blue) on real data. The right picture offers a zoomed out
view to include the model selected by OSL on the GLASSO path (purple). The left figure corresponds
to the boxed area of the right figure.

holds up to the state of the art outside of its intended application framework. We use a dataset of
variables relevant to the adrenal steroidogenesis on a cohort of healthy test subjects.
Adrenal steroid synthesis in childhood is a complex process involving an enzymatic cascade that
transforms cholesterol into mineralocorticoids, glucocorticoids or androgens, depending on the en-
zymatic equipment of each zona of the adrenal gland. Even though most important ways of adrenal
steroidogenesis are known, we now assess new related metabolite that may ask new questions re-
garding adrenal steroidogenesis. Thus, we analysed a pediatric cohort of n = 172 healthy volunteers
aged from 3 months to 16 years old with blood count and LC-MS/MS adrenal steroid profile analysis
(p = 35).

Figure 3.10 represents the matrices of pairwise conditional correlations corresponding to the GGM-
select solution (left), the Composite solution (middle) and a sparse GLASSO solution (right). The
rest of the path of GLASSO solution can be found in the supplementary materials. The other solu-
tions contain many more edges than any of the three matrices here.
The models proposed by the three matrices have been compared to literature data for hematologi-
cal parameters and steroidogenesis analysis. Regarding hematological analysis, both the Composite
and GGMselect models confirm well known relations such as strong direct positive links between
hemoglobin concentration (Hb) and red cells count (RBC); between hemoglobin concentration and
mean corpuscular volume (WCV); between white cells (WBC) and platelet counts (PC); and a strong
negative link between red cells count and mean corpuscular volume; between white cells count and
age. The GLASSO solution did not show any of them.
Regarding steroid metabolism, 11-β1 hydroxylase (11 Ohase B1) and 21 hydroxylase (21 Ohase) ac-
tivities, the Composite method and GGMselect reach the same conclusion: there is a strong positive
direct link between enzymatic activities and the concentration of their corresponding alternate prod-
uct. This is in accordance with common description of adrenal steroidogenesis process: decreased
activity leads to an accumulation product of the alternative pathway. The GLASSO solution failed
to show these relations. In the same way, GGMselect and the Composite method exhibit a negative
link between the lack of 11-β HSD type 2 (11b HSD2) activity (that catabolizes cortisol into cor-
tisone) and the concentration of its product, cortisone (e). The sparse GLASSO fails to underline
this link. All these data tend to show a better interpretation of steroids profile with the GGMselect
and Composite solutions. Interestingly, these models also underline a new link: a strong positive
link between 18-hydroxycorticosterone (18ohb) and 18-hydroxycortisol (18ohf) concentrations, two
steroids that are supposed to be independently produced in two different zonas of the adrenal gland.
This result could imply an alternative pathway in adrenal steroidogenesis that needs to be explored.
The GGMselect and Composite graphs are mostly identical, although some of the conditional cor-
relations are weaker in the Composite matrix. Among the subtle differences, two edges that are
coherent with the state of the art, and are present in the GGMselect graph, were alleviated in
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Figure 3.8: Selected edges by GGMselect (up), our Composite method (mid) and the best Out of
Sample GLASSO (down) in-between MRI measures. The perspective of the sagittal view hides the
many edges between symmetrical regions. GLASSO proposes too many to allow for interpretation.
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Figure 3.9: Selected edges by GGMselect (up), our Composite method (mid) and the best Out
of Sample GLASSO (down) between PET (yellow) and MRI (red) measures. GGMselect finds no
connection in this sub-part of the graph, although one may expect some.
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Figure 3.10: Conditional covariance matrix between the 35 variables measured on the cohort. The
positive correlations are in red and the negative in blue. The diagonal coefficients are ignored in
this study. GGMselect (left) and Composite (middle) share the same colour scale. The rightmost
figure corresponds to one of the sparsest GLASSO solution.

the Composite matrix (resulting in invisible connections in Figure 3.10): the link between the 18-
oxocortisol (18oxof) and cortisol (f) concentrations, and the very strong negative link between the
ratio cortisol/18-oxocortisol (F/18oxof) and 18-oxocortisol. The other very few additions and re-
movals in the Composite model are hard to validate or disprove with the current state of the art.
From a medical analysis point of view, all these results are preliminary and will have to be confirmed
by more in depth studies. From a purely machine learning point of view, this example illustrates
that the Composite method behaves appropriately when p < n. In this example, the GGMselect
solution seems already acceptable, and the Composite procedure does not deviate too much from it.

To summarise these experimental studies, Section 3.5.1 showed the quantitative and qualitative
improvements made by the Composite method on real data, in the High Dimension Low Sample size
setting (n < p) the method was designed for. In this Section, with enough data available (p < n),
hence outside the intended area of application, the qualitative analysis suggests that, running the
Composite procedure does not provide additional benefits, but does not cause any loss either.

3.6 Additional Oracle metrics

In this section, we present the results, evaluated with new oracle metrics, of the experiment on
synthetic data of section 4.3 ”Model selection on a deterministic path with the GGMselect criterion
and with the Cross Validated Cross Entropy” of the main paper. The new metrics are the widely

used l2 reconstruction of the True Σ,
∥∥∥Σ− Σ̂G(Strain)

∥∥∥
F

, and the oracle nodewise regression l2

recovery
∥∥∥Σ

1
2 (Ip −ΘG(Xtrain))

∥∥∥
F

(the oracle metric of the GGMselect authors [56]). Figure 3.11

shows the results in terms of performance and sparsity over 1000 simulations. In the top row, the
performances are measured with the KL, in the middle row with the matrix l2 and in the bottom
row, with the local regression l2. The observations wit the new metrics are the same as with the
KL: the solution selected by the Out of Sample criterion of the Composite method (shades of red) is
better in average (an in some case significantly better) than GGMselect (in green) according to the
metric in question. Moreover, these solution are closer in terms of number of edges to the best (in
blue) and real (with 35 edges) graphs. We observe that this particularly true when the fraction of
data reserved for the validation set is large (35% or 40% of the training data, the lighter nuances of
red in the figure, closest to yellow). Indeed, the graphs selected with a smaller validation set (20%)
have a larger variance in terms of their size, and in terms of their performances when the metric is
not the KL. They are also further away from the real graph in average and have the worst average
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performances of the solutions selected by CVCE. They are still better in average than the solutions
selected with the GGMSC though.

3.7 Cortex visualisation

We display different perspectives of the graphs proposed by GGMselect (281 edges) and the Com-
posite method (∼ 600 edges) as well as two GLASSO solutions on the Alzheimer’s Disease data
(ADNI) of Section 5.1 ”Experiment on Alzheimer’s Disease patients” of the main paper. The first
GLASSO solution corresponds to a value of the penalty parameter ρ that gives it a number of edges
similar to GGMselect (364 here). This allow to visually compare the sparse GLASSO graphs with
GGMselect. The second GLASSO solution is the best encountered on the GLASSO path in terms
of Out of Sample KL. It is much larger, with ∼ 3500 edges.
As explain in section 5.1 of the main paper, each graph is made of 343 nodes, representing both
different areas of the brain and different measured modalities. To visually represent such a complex
graph, we choose to display different subsets of its many edges. The following Figure 3.12 to 3.17
correspond to three of these subsets of edges.
The sub-graph containing only the inferred conditional correlations in-between MRI measures are
represented on Figure 3.12 for the GGMselect and Composite solutions, and Figure 3.13 for the two
GLASSO solutions. The best GLASSO has so many edges that the graph is hard to interpret. The
other graphs possess many connections between symmetric areas of the cortex. With the Composite
graph having comparatively more intra-hemispheric edges, and the sparse GLASSO comparatively
less edges overall, on this part of the graph.
The sub-graph containing only the inferred conditional correlations in-between PET measures are
represented on Figure 3.14 for the GGMselect and Composite solutions, and Figure 3.15 for the two
GLASSO solutions. The observations are mostly the same, but the sparse GLASSO has many more
edges than between the MRI measure. It has even more edges than GGMselect and Composite on
this part of the graph.
Finally on Figure 3.16 and 3.17, we represent the inter-modality edges between MRI (red) and PET
(yellow) nodes. We observe that neither GGMselect nor the sparse GLASSO put any edges in this
part of the graph, both methods hence excluding inter-modality conditional correlation from the
estimated model. On the other hand, the best GLASSO solution has as many edges as the Com-
posite method on this sub-part of the graph, despite having a considerably larger amount of edges
everywhere else.

3.8 GLASSO solutions on the nephrology patients

In this section, we display, see Figure 3.18, the path of GLASSO solutions applied to the neprhology
patients of Section 5.2 ”Experiments on neprhology patients” of the main paper. The bottom left
matrix, ρ = 0.8, is the one compared to the GGMselect and Composite solution in the main paper.
It was chosen as a representative because the other GLASSO solution have many more edges than
GGMselect and Composite. This decision allowed us to compare the first edges selected by GLASSO
on its path of solutions as ρ decreases with the edges highlighted by GGMselect. The medical analysis
in the main paper concluded that the GGMselect edges were much more consistent with the domain
knowledge. The other GLASSO solutions displayed here feature some of the important edges missed
by the first, sparse, solution, but these edges appear later in the path, alongside many other a priory
irrelevant edges.

3.9 Conclusion

When it came to inferring conditional covariance graphs from a small number of observations, we were
dissatisfied with the state of the art GGM methods. In this paper, we quantified the shortcomings in
terms of goodness of fit, distribution reconstruction and interpretability of the local approach of [115]
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Figure 3.11: Results of the experiment of section 4.3 of the main paper evaluated with the KL (top),
as well as two alternative metrics: the l2 recovery of Σ (middle) and the Oracle metric of GGMselect,
the nodewise l2 recovery (bottom). The behaviour and conclusion are the same as with the KL. We
also observe that when the validation set is too small (only 20% of the training set), there is a lot
of variance on the selection by CVCE, and the performances suffer.
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Figure 3.12: I.1 Sub-graph in-between MRI measures from the GGMselect (left) and
Composite (right) solutions. The GGMselect full graph has 281 edges in total, and the Com-
posite around 600. The sagittal, frontal and transverse views of the Cortex are displayed. With both
methods, many of the connections are inter-hemispheric, between symmetrical areas. Although the
Composite solution proposes a number of new, intra-hemispheric, edges.
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Figure 3.13: I.2 Sub-graph in-between MRI measures from a sparse GLASSO solution
(left) and the best Out of Sample GLASSO solution in KL (right). The full graph of the
sparse GLASSO solution has 364 edges in total. A number chosen to be close to the GGMselect
solution. The best OSL GLASSO solution features 3546 edges in total. The sparse solution features
mostly inter-hemispheric connections between symmetrical areas. The larger solution, with better
performances, is mostly unreadable.
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Figure 3.14: II.1 Sub-graph in-between PET measures from the GGMselect (left) and
Composite (right) solutions. The observations are similar to the MRI sub-graph: many inter-
hemispheric connections between symmetric regions, with new intra-hemispheric connections in the
Composite solution.
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Figure 3.15: II.2 Sub-graph in-between PET measures from a sparse GLASSO solution
(left) and the best Out of Sample GLASSO solution in KL (right). This figure reveals
that the sparse GLASSO solution possesses more edges in-between PET measures than in-between
MRI measures. The larger GLASSO is still mostly unreadable.

36



Figure 3.16: III.1 Sub-graph of the edges between MRI (red) and PET (yellow) measures
from the GGMselect (left) and Composite (right) solutions. Unlike the Composite method,
the GGMselect graph proposes no edge between any MRI and PET measures.
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Figure 3.17: III.2 Sub-graph of the edges between MRI (red) and PET (yellow) measures
from a sparse GLASSO solution (left) and the best Out of Sample GLASSO solution
in KL (right). Like with GGMselect, there is no edge in this part of the sparse GLASSO graph.
The larger GLASSO solution has edges in this sub-part of the graph. Unlike in the other regions
however, the large GLASSO features a number of edges similar to the corresponding Composite
method sub-graph.
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Figure 3.18: Matrices of the pairwise conditional correlations corresponding to the GLASSO solu-
tions applied to the nephrolgy patients. The value considered for the parameter ρ are 0.8 (top left),
0.4 (top right), 0.2 (bottom left) and 0.1 (bottm right)
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and the global optimisation problem of [13, 179]. We proposed a method composed of a structure
learning algorithm coupled with model selection criterion. In the latter, the structure learning steps
are a variation of the parallel nodewise linear regressions of [115] and the model selection steps guided
by out of sample versions of the likelihood optimised in [179] and [13]. The validity of our method
was demonstrated on synthetic and real data when n < p. Quantitatively, it consistently reached
consequently lower KL divergences and better sparsistency than the aforementioned state of the art
paradigms. A qualitative analysis on a neurological data set of real data, revealed that it better
recovered the known dynamics of the field. An additional real data experiment, with p < n, suggested
that the method did not cause any loss when used outside the intended scope of application. In the
future, optimising the numerical scheme will allow us to make further quantitative improvements.
Such as lower execution times and better performances with less reliance on the initialisation.

3.10 Proofs of the main results

3.10.1 Basic Cross Entropy calculus for Gaussian vectors

In this Section, we offer details and commentary on the Cross Entropy manipulation with normal
distributions and prove (3.2) and (3.3).
The formula of the Cross Entropy H (p, q) is given by:

H(p, q) := −Ep [log q(X)] =

∫
x

−p(x)ln(q(x))µ(dx) .

The likelihood pθ of a parametric distribution fθ with iid observations (X(1), ..., X(n)) is given by:

pθ(X
(1)), ..., X(n)) =

n∏
i=1

fθ(X
(i))) .

Let f̂n = 1
n

∑n
i=1 1x=X(i) be the empirical distribution of the sample (X(1), ..., X(n)), we see the

connection between CE and likelihood:

H
(
f̂n, fθ

)
= − 1

n

n∑
i=1

log(fθ(Xi)) = − 1

n
log pθ(x1, ..., xn) .

Proof of (3.2) and (3.3) . In the case of Centered Multivariate Gaussians, letH (Σ1,Σ2) := H (fΣ1 , fΣ2)
and let us omit the constant p

2 ln(2π) from the calculations:

H (Σ1,Σ2) ≡
∫
X

fΣ1
(x)

(
−1

2
ln(|K2|) +

1

2
XTK2X

)
dX

= −1

2
ln(|K2|) +

1

2

∫
X

fΣ1
(x)
〈
XXT ,K2

〉
dX

= −1

2
ln(|K2|) +

1

2

〈∫
X

fΣ1
(x)XXTdX,K2

〉
= −1

2
ln(|K2|) +

1

2
〈Σ1,K2〉 .

In the end, we get (3.2):

H (Σ1,Σ2) ≡ 1

2
(〈Σ1,K2〉 − ln(|K2|)) .

With the observed data X := (X1, ..., Xn)
T ∈ Rn×p, let S := 1

nXXT ∈ S+
p , the empirical covariance
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matrix. The log likelihood of any centred Gaussian distribution fΣ2 is given by:

H
(
f̂n, fΣ2

)
≡ 1

2n

n∑
i=1

(
−ln(|K2|) +XT

i K2Xi

)
= −1

2
ln(|K2|) +

〈
n∑
i=1

XiX
T
i

2n
,K2

〉

= −1

2
ln(|K2|) +

1

2
〈S,K2〉 ,

where, as in (3.2), we omit the constant term p
2 ln(2π) from the calculations. In the end, we get

(3.3):

H
(
f̂n, fΣ2

)
≡ 1

2
(〈S,K2〉 − ln(|K2|)) .

The likelihood H
(
f̂n, fΣ2

)
follows a similar formula as the Cross Entropy between two normal

distributions (3.2). When S defines a non degenerate normal distribution, what we actually have is

H
(
f̂n, fΣ2

)
= H (fS , fΣ2

). However, when n < p, S is singular and the density fS is not defined.

The formula (3.3) still holds though, and we write H (S,Σ2) := H
(
f̂n, fΣ2

)
since the formula is the

same as (3.2) for H (Σ1,Σ2).

Remark. When the density fS does exist, we have equality in the CE H
(
f̂n, fΣ2

)
= H (fS , fΣ2), but

not in the Entropies H
(
f̂n, f̂n

)
6= H (fS , fS), as a consequence the KL divergences are different as

well: KL
(
f̂n, fΣ2

)
6= KL (fS , fΣ2

). In practice KL (fS , fΣ2
) << KL

(
f̂n, fΣ2

)
and KL

(
f̂n, fΣ2

)
will never reach 0, since a normal distribution will tend to be closer to another normal distribution
than to an empirical one, this is particularly true with n small and Σ2 close to S. As a result,

KL
(
f̂n, fΣ2

)
offers a poor sense of scale, since the value 0 cannot be used as a reference. For this

reason, when we represent H (fStest , fΣ2
) as we do in Figure 3.7, we do not use it under the form of

a KL with 0 as its minimum for scale reference - as we do on synthetic data in Figure 3.5 - since the

only KL we can compute is the mostly irrelevant KL
(
f̂n, fΣ2

)
.

3.10.2 Preliminary results for the model selection guarantees

To prove the controls we stated in Sections 3.3.2, 3.3.3 and 3.3.4, we need the two following lemmas.

Lemma 3.10.1. Let S(λ) := S + λIp. With K̂G := Σ̂−1
G , where Σ̂G is defined as in (3.7), we have:

∀G ∈ M,
〈
S(λ), K̂G

〉
= p . (3.17)

Proof. Let ΠG be the orthogonal projection on the edge set EG ∪ {(i, i)}pi=1. That is to say, for
any matrix M ∈ Rp×p, ΠG(M)i,j = Mi,j1(i,j)∈EG∪{(i,i)}pi=1

. A property of the MLE is that

ΠG(Σ̂G) = ΠG(S(λ)), i.e. the matrices have the same values on the diagonal and the edge set,

see [35]. Additionally, note that, because of the sparsity of K̂G , for any matrix M , we have〈
M, K̂G

〉
=
〈

ΠG(M), K̂G

〉
. Then:〈

S(λ), K̂G

〉
=
〈

ΠG(S(λ)), K̂G

〉
〈
S(λ), K̂G

〉
=
〈

ΠG(Σ̂G), K̂G

〉
〈
S(λ), K̂G

〉
=
〈

Σ̂G , K̂G

〉
〈
S(λ), K̂G

〉
= p .
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Lemma 3.10.2. With K̂G := Σ̂−1
G , where Σ̂G is defined as (3.7), we have:∥∥∥K̂G∥∥∥

∗
≤ p

λ
.

Proof. We have: 〈
S + λIp, K̂G

〉
= p〈

S, K̂G

〉
+ λtr(K̂G) = p

tr
(
K̂

1
2

G SK̂
1
2

G

)
+ λtr(K̂G) = p .

Since K̂
1
2

G SK̂
1
2

G ∈ S+
p , we have tr

(
K̂

1
2

G SK̂
1
2

G

)
≥ 0 and λtr(K̂G) ≤ p, i.e.∥∥∥K̂G∥∥∥

∗
≤ p

λ
.

3.10.3 Bounds in expectation for the CVCE solutions

We prove the results of Sections 3.3.2 and 3.3.3.

Proof of (3.11), (3.12), (3.13), and (3.14) . We want to control the expected regret

e := E
[
H
(

Σ, Σ̂ĜCV

)
−H

(
Σ, Σ̂Ĝ∗

)]
.

First, note that by definition of Ĝ∗, we have

0 ≤ H
(

Σ, Σ̂ĜCV

)
−H

(
Σ, Σ̂Ĝ∗

)
.

So the lower bound:
0 ≤ e ,

is guaranteed.
From the definition of ĜCV (3.9), we get:

H
(
Sval, Σ̂ĜCV

)
≤ H

(
Sval, Σ̂Ĝ∗

)
.

We have for any Σ̃ ∈ S++
p , with K̃ := Σ̃−1:

H
(
Sval, Σ̃

)
= H

(
Σ, Σ̃

)
+

1

2

〈
Sval − Σ, K̃

〉
.

Hence:

H
(

Σ, Σ̂ĜCV

)
≤ H

(
Σ, Σ̂Ĝ∗

)
+

1

2

〈
Sval − Σ, K̂Ĝ∗

〉
− 1

2

〈
Sval − Σ, K̂ĜCV

〉
.

(3.18)

Since KĜ∗ is defined from Sexpl uniquely, and independently of Sval, we get

E
[〈
Sval − Σ, K̂Ĝ∗

〉 ∣∣∣Sexpl] =
〈
E [Sval − Σ|Sexpl] , K̂Ĝ∗

〉
= 0 .

(3.19)
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From (3.18) and (3.19) we get:

E
[
H
(

Σ, Σ̂ĜCV

)]
≤ E

[
H
(

Σ, Σ̂Ĝ∗
)]

+
1

2
E
[〈

Σ− Sval, K̂ĜCV
〉]

.

Which is exactly the result of Eq. (3.11):

e ≤ 1

2
E
[〈

Σ− Sval, K̂ĜCV
〉]

.

As we discussed in Section 3.3.3, to obtain Eq. (3.11), we only used the definitions of ĜCV for the

upper bound and Ĝ∗ for the lower bound. Since we assume nothing on the model family M, those
bounds are somewhat optimal in terms of the available information. Additionally, (3.11) is actually

independent of how the symmmetric positive matrices {Σ̂G}G∈M are defined as long as they are
function only of Sexpl. They do not need to be associated with a different graph each, or with any
graph for that matter. They do not need to be solutions of the MLE problem (3.7) and could be for
example all the solutions on the path of solution of the l1−penalised likelihood optimisation problem
(3.1).

To get a more explicit control on the CVCE however, we need the assumption that Σ̂G is the
constrained MLE defined in (3.7).
Let Σ∞ := max

i,j
|Σij |. We call Emax the union of the maximal edge sets in M, dmax = |Emax| ≤

p(p−1)
2 its cardinal and Πmax the orthogonal projection on Emax ∪ {(i, i)}pi=1. We have:

e ≤ 1

2
E
[〈

Σ− Sval, K̂ĜCV
〉]

=
1

2
E
[〈

ΠĜCV (Σ− Sval) , K̂ĜCV
〉]

≤ 1

2
E
[∥∥∥ΠĜCV (Σ− Sval)

∥∥∥2

F

] 1
2

E
[∥∥∥K̂ĜCV ∥∥∥2

F

] 1
2

≤ 1

2
E
[
‖Πmax (Σ− Sval)‖2F

] 1
2 E
[∥∥∥K̂ĜCV ∥∥∥2

∗

] 1
2

≤ 1

2

(
p∑
i=1

E
[(

Σii − Siival
)2]

+
∑

(i,j)∈Emax

E
[(

Σij − Sijval
)2
]) 1

2
p

λ

≤ 1

2

(
2Σ2
∞

nval
(p+ 2dmax)

) 1
2 p

λ
.

From which we finally get the result of (3.12):

e ≤ Σ∞

λ
√

2

(p+ 2dmax)
1
2 p

√
nval

.

If Emax is dependent on the exploration data - because the graph familyM was built from Sexpl for
instance - we have:
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E
[
‖Πmax (Σ− Sval)‖2F

] 1
2

=

(
p∑
i=1

E
[(

Σii − Siival
)2]

+ E

 ∑
i,j∈Emax

E
[(

Σij − Sijval
)2 ∣∣∣Sexpl]

) 1
2

≤
(

2Σ2
∞

nval
(p+ 2E [dmax])

) 1
2

.

We get the control (3.13), the same as (3.12) but with an additional expectation term:

e ≤ Σ∞

λ
√

2

(p+ 2E [dmax])
1
2 p

√
nval

.

In order to prove (3.14), we start by showing how the regret is bounded by operator norm ‖Σ− Sval‖2.
By tracial matrix Holder inequality:〈

Sval − Σ, K̂ĜCV

〉
≤ ‖Σ− Sval‖2

∥∥∥K̂ĜCV ∥∥∥∗
= ‖Σ− Sval‖2 tr

(
K̂ĜCV

)
≤
‖Σ− Sval‖2

λ
p .

Then, using (3.11), we get:

e ≤ E [‖Σ− Sval‖2]
p

2λ
. (3.20)

To prove (3.14), we first recall Theorem 4 of [85]:

Theorem 4 of [85]. Let X1, X2, ..., Xn be i.i.d. weakly square integrable centered random vectors
in a separable Banach space with norm ‖.‖ and Σ be their covariance operator. If X is Gaussian,
then there exist an absolute constant c, independent of the problem, such that:

E
[∥∥∥Σ̂− Σ

∥∥∥] ≤ c ‖Σ‖max
√E [‖X‖]2

n ‖Σ‖
,
E [‖X‖]2

n ‖Σ‖

 , (3.21)

where ‖.‖ for operators denotes the operator norm associated with the vector norm ‖.‖, that is to
say:

‖Σ‖ = sup
‖u‖=1

‖Σu‖ .

In our case, X ∼ N (0p,Σ) is a Gaussian vector in the Banach space Rp, with the euclidean norm
‖X‖2, that verifies the integrability properties of the Theorem and whose covariance operator is the
covariance matrix Σ. Hence the theorem can be applied. The operator norm for a symmetric positive
matrix Σ associated with the euclidean norm is also called the spectral norm, since it corresponds
to the highest eigenvalue: ‖Σ‖2 = λmax(Σ).
For a Gaussian vector: Z ∼ N (0p, Ip), we have:

E [‖Z‖2] ≤ √p.

Since K
1
2X ∼ N (0p, Ip), and

‖X‖2 =
∥∥∥Σ

1
2K

1
2X
∥∥∥

2

≤
∥∥∥Σ

1
2

∥∥∥
2

∥∥∥K 1
2X
∥∥∥

2
,
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we have:
E [‖X‖2] ≤

∥∥∥Σ
1
2

∥∥∥
2

√
p .

Since ‖Σ‖2 = λmax(Σ), we have by definition,
∥∥∥Σ

1
2

∥∥∥
2

= ‖Σ‖
1
2
2 . In the end, when we apply (3.21) to

our case, we get:

E [‖Sval − Σ‖2] ≤ cλmax(Σ)max

(√
p

nval
,
p

nval

)
. (3.22)

We apply this concentration result on (3.20) to obtain (3.14):

e ≤ cλmax(Σ)

λ
p

(√
p

nval
∨ p

nval

)
.

3.10.4 Bounds in probability for the CVCE solutions

We prove the results of Section 3.3.4.

Proof of (3.15) and (3.16). We want to lower bound the probability that the regret is small: P :=

P
(∣∣∣H (Σ, Σ̂ĜCV

)
−H

(
Σ, Σ̂Ĝ∗

)∣∣∣ ≤ δ). The concentration dynamic driving the results comes from

the convergence of random Wishart matrix Sval towards its average Σ, which is made stronger by
the number of observations nval in the validation set. Since:∣∣∣H (Σ, Σ̂ĜCV

)
−H

(
Σ, Σ̂Ĝ∗

)∣∣∣ ≤∣∣∣H (Σ, Σ̂ĜCV

)
−H

(
Sval, Σ̂ĜCV

)∣∣∣
+
∣∣∣H (Sval, Σ̂Ĝ∗)−H (Σ, Σ̂Ĝ∗

)∣∣∣ ,
then

∀G ∈ M,
∣∣∣H (Sval, Σ̂G)−H (Σ, Σ̂G

)∣∣∣ ≤ δ

2

=⇒
∣∣∣H (Σ, Σ̂ĜCV

)
−H

(
Σ, Σ̂Ĝ∗

)∣∣∣ ≤ δ .
Since:

H
(
Sval, Σ̂G

)
−H

(
Σ, Σ̂G

)
=

1

2

〈
Sval − Σ, K̂G

〉
,

then

∀G ∈ M,
∣∣∣〈Sval − Σ, K̂G

〉∣∣∣ ≤ δ
=⇒

∣∣∣H (Σ, Σ̂ĜCV

)
−H

(
Σ, Σ̂Ĝ∗

)∣∣∣ ≤ δ . (3.23)

From the logical implication (3.23), we can take two path to derive two different bounds: one
with a more general expression, and a more precise one taking into consideration the sparsity of the
models. For the first one, note that Sval = Σ

1
2WΣ

1
2 where nvalW ∼ Wp (Ip, nval) p is a standard

Wishart matrix. Then we have:

∀G,
〈
Sval − Σ, K̂G

〉
=
〈
W − Ip,Σ−

1
2 K̂GΣ−

1
2

〉
≤ ‖W − Ip‖F

∥∥∥Σ−
1
2 K̂GΣ−

1
2

∥∥∥
F

≤ ‖W − Ip‖F max
G∈M

∥∥∥Σ−
1
2 K̂GΣ−

1
2

∥∥∥
F
.
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We plug this result into (3.23) to obtain:

‖W − Ip‖F max
G∈M

∥∥∥Σ−
1
2 K̂GΣ−

1
2

∥∥∥
F
≤ δ

=⇒ ∀G ∈M,
〈
Sval − Σ, K̂G

〉
≤ δ

=⇒
∣∣∣H (Σ, Σ̂ĜCV

)
−H

(
Σ, Σ̂Ĝ∗

)∣∣∣ ≤ δ .
We end up with the control (3.15) by taking the probability in the previous expression:

P ≥ P

‖W − Ip‖F ≤ δ

max
G∈M

∥∥∥Σ−
1
2 K̂GΣ−

1
2

∥∥∥
F

 .

For the second result, let ΠG and Πmax be the orthogonal projections on the edge sets EG∪{(i, i)}pi=1

and Emax ∪ {(i, i)}pi=1 respectively. We have:

∀G,
〈
Sval − Σ, K̂G

〉
=
〈

ΠG(Sval − Σ), K̂G

〉
≤ ‖ΠG(Sval − Σ)‖F

∥∥∥K̂G∥∥∥
F

≤ ‖Πmax(Sval − Σ)‖F max
G∈M

∥∥∥K̂G∥∥∥
F
.

Hence we get, from (3.23), the logical implication:

‖Πmax(Sval − Σ)‖F max
G∈M

∥∥∥K̂G∥∥∥
F
≤ δ

=⇒ ∀G,
〈
Sval − Σ, K̂G

〉
≤ δ

=⇒
∣∣∣H (Σ, Σ̂ĜCV

)
−H

(
Σ, Σ̂Ĝ∗

)∣∣∣ ≤ δ .
From which we get the control (3.16) by taking the probability of the events:

P ≥ P

‖Πmax(Sval − Σ)‖F ≤
δ

max
G∈M

∥∥∥K̂G∥∥∥
F

 .

We underline that we obtain the two controls (3.15) and (3.16) directly from logical implications.
Hence, they remain true when every probability is taken conditionally to any random variable, for
instance the exploration data set, or the sufficient statistic built from it: Sexpl.

Remark. Since ∀G ∈ M,
∥∥∥K̂G∥∥∥

∗
≤ p

λ , both max
G∈M

∥∥∥Σ−
1
2 K̂GΣ−

1
2

∥∥∥
F

and max
G∈M

∥∥∥K̂G∥∥∥
F

are bounded

random variables. They depend only on the exploration empirical covariance Sexpl and can be seen
as constants of the problem if working conditionally to the exploration set. Likewise, Πmax is a
deterministic function conditionally to Sexpl.
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Chapter 4

Model selection without Cross
Validation for chordal graphs

4.1 Introduction

Dependency networks are a prominent tool for the representation and interpretation of many data
types as, for example, gene regulation, [56], interactions between different regions of the cortex, [17]
or social interaction in a large population. In those examples, the number of observations n is often
small when compared to the number of vertices p in the network. A common and interesting dy-
namic to represent as a network is the conditional correlation structure. In a conditional correlation
network, two vertices are connected by an edge if and only if the associated random variables are
correlated conditionally to all others. This notion of correlation can be refereed to as “direct” or
“explicit” correlations, they are usually more insightful than regular correlations. Indeed, any two
real life phenomena, like the atrophy in two separate areas of the brain or two locations of bird mi-
gration, are very likely to be correlated. The reason being that these kind of phenomena are smooth,
hence there often exists a path of highly correlated neighbouring vertices linking any two points of
the graph. As a consequence the regular correlation network is most of the time fully connected and
uninteresting. On the other hand, there is no conditional correlation between two vertices if their
co-variations are entirely explained by intermediary variables. Only the direct, explicit interactions
remain as edges in a conditional correlation network, which leads to a richer and less trivial analysis.

A Gaussian Graphical Model (GGM) is a network whose values on the p vertices follow a Cen-
tred Multivariate Normal distribution in Rp: X ∼ N (0p,Σ). Under this assumption, the condi-
tional correlations between the components of X have the sparsity of the inverse of the unknown
covariance matrix K := Σ−1. Dempster [35] introduced the famous Covariance Selection proce-
dure, which infers from data a conditional correlation network through a sparse approximation of
the precision matrix K. Many subsequent works developed methods to estimate a sparse precision
matrix [13, 179], or even directly a sparse graph [41, 115] within the Gaussian model. For methods
that return an unweighted conditional correlation graph, the corresponding precision matrix can be
estimated through a graph constrained Maximum Likelihood Estimation (MLE) problem, see [91].

Graphs with no cycle of length longer than three are called “chordal”, or “decomposable”. Some
authors have proposed GGM inference methods where the estimated graph is constrained to be
chordal, see [38, 57, 72], or [14]. With such graphs, there is an explicit formula for the constrained
MLE, allowing for better theoretical results and more efficient computations.

In a model selection context, one is presented with a family of candidate graphs among which a
choice must be made. Our goal is to design model selection criterion, backed by theoretical guaran-
tees, to make the best possible choice among any proposed chordal graphs.
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In our paradigm, the oracle best graph is the one whose associated precision matrix K̂ by con-

strained MLE defines the candidate distribution N
(

0p, K̂
−1
)

that best fits the true distribution

N (0p,Σ). As argued in Chapter 3, local metrics, like coefficient-wise recovery, do not explicitly
assess this behaviour as they consider each node independently to estimate the whole network. On
the other hand, the Cross Entropy (CE) - or equivalently the Kullback-Leibler divergence (KL) - is a
global metric designed to quantify the proximity between distributions. This is once again the metric
we adopt to evaluate the adequacy between any covariance matrix and the real one, the metric to
minimise to find the best approximation among the propositions. In the end, our objective in terms of
model selection is to find the graph that achieves the lowest KL with regards to the real distribution.

In the following, we find an explicit formula for an unbiased estimator of the CE with regards
to the true distribution. With it, we define the Unbiased Chordal Explicit Estimator (UCEE), a
new selection criterion for chordal graphs. Unlike the CVCE of Chapter 3, this criterion does not
need to split the data set into a training and a validation set. In addition to using the data to its
fullest potential, this also alleviates the need to tune the hyper-parameter that is the size of the
train/test split. We prove non asymptotic bounds on the performances of the model selected by
the UCEE. We compare both criteria empirically and demonstrate that the UCEE selects better
models than CVCE on synthetic and real data. On the hippocampus data we use, we are able to
recover graphs that take into consideration the long distance conditional correlations between the
deformations.

4.2 Presentation of the problem, the tools and the approach

In this section we introduce step by step the stakes as well as the core notations of this Chapter, as
well as many properties and remarks about the Cross Entropy that were not included in Chapter 3.

4.2.1 Model selection with Cross Entropy in Gaussian Graphical Models

Let p ∈ N∗, J1, pK is the set of integers between 1 and p inclusively. We call S+
p and S++

p the sets
of positive semidefinite and definite matrices in Rp×p respectively. We refer to matrices in S++

p as
“covariance matrices”. We assume we have a covariance matrix Σ ∈ S++

p and study X, the centred
Gaussian random variable in Rp with covariance Σ. We note: X ∼ N (0p,Σ), where 0p is the vector
of zeros of size p. The Gaussian vector X can be written component-wise as:

X = (X(1), ..., X(p))T ∈ Rp .

We note X−(ij) =
{
X(k)

}
k∈J1,pK,k 6=i,j the vectors of all the components of X excluding X(i) and

X(j). We call “conditional correlation” between X(i) and X(j) their correlation conditionally to all
other components: corr(X(i), X(j)|X−(ij)). The conditional correlations between the component of
a centred Gaussian vector X ∼ N (0p,Σ) are directly connected to the matrix K := Σ−1. We call
K the “inverse covariance matrix”, it is also sometimes referred to as the precision matrix or the
concentration matrix. We have the explicit relation:

corr(X(i), X(j)|X−(ij)) =
−Kij

KiiKjj
.

This means in particular that K and the conditional correlation structure of X have the same
sparsity:

corr(X(i), X(j)|X−(ij)) = 0 ⇐⇒ Kij = 0 .

Hence, if one takes interest in the conditional correlation network between the components of a
random vector X, modelling this X as multivariate Gaussian N (0p,Σ) allows to read the pursued
structure directly from K = Σ−1. This is why the Gaussian assumption is very adapted and very
popular in that context. When K is sparse, we say that Σ is “inverse sparse”.
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When many of the conditional correlations in a random vector X are null, in other words when
the conditional correlation structure is sparse, it can be interesting to represent this structure as a
graph m = (V,Em), with vertex set V and edge set Em. Traditionally, V is the set of components
of X, and there is an edge if Em if and only if the two corresponding components are conditionally
correlated. By convention Em contains no self loops and is not oriented. If X is Gaussian vector
with inverse covariance matrix K, we have:

∀(i, j) ∈ J1, pK2
, i 6= j, (i, j) /∈ Em ⇐⇒ Kij = 0 .

As a consequence, to any graph m naturally corresponds the set Θm of the covariance matrices
whose inverse verify the sparsity of the edge set Em:

Θm :=

{
Σ̃ ∈ S++

p

∣∣∣∀i 6= j, (i, j) /∈ Em =⇒
(

Σ̃−1
)
ij

= 0

}
. (4.1)

If Σ ∈ Θm and X ∼ N (0p,Σ), then the graph m describes the conditional correlation structure
of X. However, two phenomena are rarely truly conditionally uncorrelated. Likewise, no real life
covariance matrix Σ is truly inverse sparse. To describe the conditional correlation structure of a
random vector X in an insightful and understandable way, we have to propose a good inverse sparse
approximation of Σ, where the weakest, more superfluous, conditional correlations are removed and
only the most potent ones remain.

To define a best approximation Σm of the real Σ whose inverse Km := Σ−1
m corresponds to a

given sparse conditional correlation graph m, we need to choose a notion of distance or deviation d
and minimise it over the set of candidate matrices Θm:

Σm ∈ argmin
Σ̃∈Θm

d(Σ, Σ̃) . (4.2)

We want the solution Σm of the optimisation problem (4.2) to be the matrix of Θm that best
reproduces the behaviour of the real Σ. That is to say that we want the distribution N (0p,Σm) to
be as close to N (0p,Σ) as possible. A natural metric to express proximity between distributions is
the Cross Entropy (CE) - or equivalently the Kullback-Leibler (KL) divergence. The CE H (p, q)
measures how well distribution q reproduces p. As a consequence, the CE is the adequacy metric we
want to optimise. Since Σ is invertible, a result from [35] shows that when Σm is defined as follows,
it always exists and is unique:

Σm := argmin
Σ̃∈Θm

H
(
fΣ, fΣ̃

)
, (4.3)

where fΣ is the probability density function (pdf) of N (0p,Σ).

Now that we can define the best representative Σm for any graph m, the question of which graph
is the best arises. By definition of the problem, the fully connected graph, whose representative is
Σ, is the best, reproducing perfectly the behaviour of Σ. We always have H (Σ,Σ) ≤ H (Σ,Σm).
More generally, for any two graphs m1 and m2 with a relation of inclusion: Em1

⊂ Em2
, we have

Θm1 ⊂ Θm2 . This means that the problem (4.3) is less constrained for m2 than for m1, as a conse-
quence: H (Σ,Σm2) ≤ H (Σ,Σm1). In other words, more connected graphs are always better since
they correspond to less constrained optimisation problems.
As a consequence, defining the best graph m as the one producing the best matrix Σm in terms of CE
is quite meaningless. This all comes from the fact that the matrices Σm are directly computed from
Σ. With the full knowledge of Σ, better connected graphs always correspond to matrices resembling
more closely Σ and there is no advantage to being sparse. In a practical scenario however, Σ is
unknown and must be inferred from observations. In that case sparse estimates can perform better
than more connected ones, especially when the number of observations is low. A balance needs to
be found between having enough edges and having too many, and the best edges must be kept in
priority. This is the framework we want to work with and the problem we want to solve.
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We assume that we observe an independent identically distributed (iid) sample of size n drawn from
the distribution N (0p,Σ): X = (X1, ..., Xn)T ∈ Rn×p. We call S := 1

n

∑n
k=1XkX

T
k = 1

nX
TX ∈ S+

p

the empirical covariance matrix. If n < p, then, with probability 1, the rank of S is n, which implies

that S /∈ S++
p . Since Sij = 1

n

∑n
k=1X

(i)
k X

(j)
k , then, E [Sij ] = Cov(X(i)X(j)) = Σij and Sij →

n→∞
Σij .

As a result, S is an unbiased, convergent estimator of Σ. By definition, the matrix nS follows a cen-
tred Wishart distribution with n degrees of freedom and scale matrix Σ. We note nS ∼ Wp (Σ, n) p.
In the scenario where empirical data is all there is at our disposal, then we have no knowledge of the
real matrix Σ or of the pdf fΣ. Hence Σm defined in Eq. (4.3) are inaccessible. To a graph m, we can

now only associate the matrix Σ̂m that best fits the empirical distribution f̂n(x) := 1
n

∑n
i=1 1x=Xi :

Σ̂m := argmin
Σ̃∈Θm

H
(
f̂n, fΣ̃

)
. (4.4)

We remark that H
(
f̂n, fΣ̃

)
= − 1

n

∑n
i=1 log

(
fΣ̃(Xi)

)
is the negative log-likelihood of the observa-

tions (X1, ..., Xn) under the Gaussian model of parameter matrix Σ̃. In other words, the problem of
minimising the CE with relation to an empirical distribution is equivalent to the problem of max-
imising the likelihood of the corresponding observations.

In order to simplify the notations, we first notice that, for any two covariance matrices Σ1 and
Σ2, the CE between the pdf of N (0,Σ1) and N (0,Σ2) can be expressed as:

H (fΣ1
, fΣ2

) =
1

2

(
〈Σ1,K2〉 − log(|K2|) + p log(2π)

)
,

where 〈Σ1,Σ2〉 := tr (Σ1Σ2) is the Frobenius scalar product on the matrix space. Similarly, the
negative log-likelihood, which is the cross entropy between a normal distribution and the empirical
distribution, can be written:

H
(
f̂n, fΣ2

)
=

1

2

(
〈S,K2〉 − log(|K2|) + p log(2π)

)
.

Since the formulas are the same and only dependent in the covariance matrices, we adopt a unified
notation in Eq. (4.5). We also removed the additive constant.

H (Σ1,Σ2) :=
1

2

(
〈Σ1,K2〉 − log(|K2|)

)
,

H (S,Σ2) :=
1

2

(
〈S,K2〉 − log(|K2|)

)
.

(4.5)

As a consequence the definition (4.3) of Σm can simply be rewritten as:

Σm := argmin
Σ̃∈Θm

H
(

Σ, Σ̃
)
, (4.6)

and the definition (4.4) of Σ̂m as:

Σ̂m := argmin
Σ̃∈Θm

H
(
S, Σ̃

)
. (4.7)

We must address a technical issue here. Unlike Σm, the existence of Σ̂m in Eq. (4.7) is not guaranteed
for any graph when n is too small, see [35] and [158]. To propose a matrix for any graph and any
number of observation n, we define a penalised MLE that we will use instead:

Σ̂m,λ := argmin
Σ̃∈Θm

H
(
S + λIp, Σ̃

)
= argmin

Σ̃∈Θm

H
(
S, Σ̃

)
+
λ

2

∥∥∥K̃∥∥∥
∗
. (4.8)

As long as λ > 0, S(λ) := S+λIp ∈ S++
p and Σ̂m,λ exists. For the sake of simplicity, we keep noting

Σ̂m without the λ index throughout the whole paper. The only exception is Section 4.2.2, where we
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first show results for the unpenalised Σ̂m before generalising them to Σ̂m,λ, hence the need for the
distinction.

With this new estimable representative Σ̂m of any graph m, we are now fully equipped to look

for the best graph. The CE H
(

Σ, Σ̂m

)
still represents how well the distribution N

(
0p, Σ̂m

)
repro-

duces the behaviour of N (0p,Σ). However this time the CE is not mechanically lower for the most

connected graphs, since each Σ̂m is defined by an optimisation problem on S + λIp (Eq. (4.8)) and
not on Σ directly, unlike the matrices Σm (Eq. (4.6)).
A finite data set only offers a partial vision of the phenomenon it is generated from, as a result there
is only a limited quantity of information we can extract from a finite number of observations. With
that in mind, solving (4.8) with a too connected graph m requires to infer too many coefficients -
one per edge - with relation to this available quantity of information and will result in a poor or even

pathological matrix Σ̂m with a high divergence H
(

Σ, Σ̂m

)
. On the opposite side of the spectrum,

inference with too small graphs produces weak MLEs that do not fully exploit the amount of data
available and will also have a high divergence with the real Σ. In the middle ground, there are graphs
with just enough edges to extract all the information present in the observations. Those graphs pro-

duce the least pathological, most relevant MLEs Σ̂m, with the lower divergence H
(

Σ, Σ̂m

)
. This

is why we set the CE H
(

Σ, Σ̂m

)
between the MLE and the true matrix as our metric to assess

the quality of a graph: this deviation quantifies how complete and relevant of an interpretation the
graph can offer with the fixed, finite data set at hand. And this is the dynamic we want to
capture: minimising the deviation H (Σ,Σm) would yield the graphs that perform the best given
all the necessary information, and those are systematically the more connected ones. On the other

hand, minimising the deviation H
(

Σ, Σ̂m

)
will allow us to identify the graphs that can handle a

finite data set of observations and still produce good matrices.

The model selection framework we consider is the following: let M be a set of graphs, which
we call a family of models, we want to select among them the one realising the best performances
given the data. That is to say the graph m̂∗ whose associated MLE has the lowest deviation from
the real covariance matrix:

m̂∗ ∈ argmin
m∈M

[
H
(

Σ, Σ̂m

)]
. (4.9)

Even though all of the Σ̂m are calculable from the data, the CE with Σ - which we call the “True
CE” (TCE) - is not, because Σ is still unknown. We can minimise instead the In Sample Negative

Log-likelihood (ISNL), H
(
S(λ), Σ̂m

)
, and get model m̂0, defined by:

m̂0 ∈ argmin
m∈M

[
H
(
S(λ), Σ̂m

)]
. (4.10)

However, the ISNL is overly optimistic and mechanically favours the most connected graphs, in the
same way that the CE H (Σ,Σm) of the matrices Σm built from Σ and not from data is always
improved for larger graphs. We call m∗ the graph obtained from optimising the latter criterion:

m∗ ∈ argmin
m∈M

[H (Σ,Σm)] . (4.11)

Both m∗ and m̂0 are mechanically among the graphs in M with maximal edge sets. Moreover
if there is in M a maximum graph containing all the other, which is a common occurrence, then
automatically m∗ = m̂0. To avoid systematically selecting very connected graphs, we defined an
estimable model m̂pen which optimises a penalised ISNL:

m̂pen ∈ argmin
m∈M

[
H
(
S(λ), Σ̂m

)
+ pen(m)

]
. (4.12)
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The design of such penalties pen (m) with the goal of making the realised TCE H
(

Σ, Σ̂m̂pen

)
as close to the optimal TCE H

(
Σ, Σ̂m̂∗

)
as possible is the stake of this paper. Our approach

will consist in using pen (m) to correct the bias between the ideal target function to optimise

- the True CE H
(

Σ, Σ̂m

)
- and the observed ISNL H

(
S(λ), Σ̂m

)
. That is to say, we want:

E
[
H
(
S(λ), Σ̂m

)
+ pen(m)−H

(
Σ, Σ̂m

)]
= 0.

We consider the case when the family of graphs M is constituted only of chordal, also known a
“decomposable”, graphs. A very powerful result gives us an explicit formula for Σ̂m, which we use
in Section 4.3 to design an unbiased criterion.

Remark. The parallels between covariance selection and variable selection. The covariance selection
we undertake here, under the Gaussian Graphical Model X ∼ N (0,Σ), shares similarities with the
variable selection under the linear model y = βTx+ ε ∼ N

(
βTx, σ2

)
. The following points explain

in more details the parallels that are drawn in table 4.2.1:

• We call fΣ the pdf of X and f
(x,y)
β = f (x)f

(y|x)
β the joint pdf of (x, y), which we cut in two to

simplify since we assume that x does not depend on β, hence only the conditional pdf f
(y|x)
β

carries the dependency.

• In both cases the true value of the parameter can be expressed from the moments of the

random variables: K = Σ−1 = E
[
XXT

]−1
and β = E

[
xxT

]−1 E [xy].

• With no knowledge of those moments but with observations, one can search for the MLEs in-

stead: K̂ := argmin
K̃∈S++

p

H
(
f̂n, fΣ̃

)
and β̂ := argmin

β̃∈Rp
H
(
f̂

(x,y)
n , f

(x,y)

β̃

)
= argmin

β̃∈Rp
H
(
f̂

(x,y)
n , f

(y|x)

β̃

)
• For those two MLEs we have explicit formulas: K̂ =

(
1
n

∑n
k=1XkX

T
k

)−1
and

β̂ =
(

1
n

∑n
k=1 xkx

T
k

)−1 ( 1
n

∑n
k=1 xky

T
k

)
• When n < p the MLEs are not defined anymore: there are too many degrees of freedom and

too few information to infer a parameter of that size without constraints.

• Inferring less coefficients in the parameter by searching for it inside a subset with fixed spar-
sity can make the problem well defined again. Indeed, even when n < p, the MLE K̂m =

argmin
K̃,Σ̃∈Θm

H
(
f̂n, fΣ̃

)
can exist if the edge set Em is small enough. In a similar fashion, with Im

a subset of J1, pK, we can define the sparse parameter set Λm := {β ∈ Rp|i /∈ Im =⇒ βi = 0},
and β̂m := argmin

β̃∈Λm

H
(
f̂

(x,y)
n , f

(y|x)
β

)
. For β̂m there even an explicit existence condition:

|Im| ≤ n and an explicit formula β̂m =

(
1
n

∑n
k=1 x

(m)
k x

(m)
k

T
)−1 (

1
n

∑n
k=1 x

(m)
k yTk

)
, where

x
(m)
k ∈ R|Im| is the restriction of xk to its components in Im.

• Even when K̂m and β̂m exist, they can still be close to degenerate if they contain too many
coefficients with regards to the data. Searching for a balanced feature or edge set is the common
stake of variable and covariance selection.

• Hence, in variable selection, one is looking for the feature set Im̂∗ that will produce the best

MLE. In the case that we use the CE with the real pdf f
(x,y)
β to define this notion of “best”,

we have: m̂∗ := argmin
m

H
(
f

(x,y)
β , f

(x,y)

β̂m

)
= argmin

m
E
[(
xT (β − β̂m)

)2
]
. If we apply a similar

reasoning to the covariance selection problem, and look in that case for the edge set Em pro-
ducing the best MLE in terms of CE fΣ, we get Eq. (4.9), defining the ideal model.
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Covariance selection Feature selection
Model X ∼ N (0p,Σ) x ∈ Rp, y ∼ N

(
xTβ, σ2

)
pdf fΣ(X) = 1√

2π|Σ|
e−

1
2X

TΣ−1X
f

(x,y)
β (x, y) =

f (x)(x) 1√
2πσ2

e−
1

2σ2
(y−xT β)

2

Link Parame-
ter/Moment K = Σ−1 = E

[
XXT

]−1
β = E

[
xxT

]−1 E [xy]

Negative
Log-likelihood H

(
f̂n, fΣ̃

)
= H

(
S, Σ̃

)
H
(
f̂

(x,y)
n , f

(x,y)

β̃

)
≡ 1

n

∑n
i=1(yi−xTi β̃)2

Unconstrained
MLE K̂ = argmin

K̃∈S++
p

H
(
f̂n, fΣ

)
β̂ = argmin

β̃∈Rp
H
(
f̂

(x,y)
n , f

(x,y)

β̃

)
K̂ =

(
1
n

∑n
k=1XkX

T
k

)−1
= S−1 β̂ =

(
1
n

∑n
k=1 xkx

T
k

)−1 ( 1
n

∑n
k=1 xky

T
k

)
Constrained

MLE K̂m = argmin
K̃,Σ̃∈Θm

H
(
f̂n, fΣ̃

)
β̂m = argmin

β̃∈Λm

H
(
f̂

(x,y)
n , f

(y|x)

β̃

)
Best estimable

model m̂∗ ∈ argmin
m∈M

[
H
(

Σ, Σ̂m

)]
m̂∗ = argmin

m∈M
E
[(
xT (β − β̂m)

)2
]

Table 4.1: Summary of the parallels between covariance and feature selection. The left column
recaps the formalism we introduced to tackle the problem of covariance selection. The right columns
represent their equivalents in the classical feature selection with a linear model.

4.2.2 Some observations and results on the Cross Entropy

Notations. For any two elements Σ1,Σ2 ∈ S+
p , the Frobenius scalar product is:

〈Σ1,Σ2〉 = tr (Σ1Σ2) =

p∑
i,j=1

Σij1 Σij2 .

We also recall that, when Σ2 ∈ S++
p , and K2 := Σ−1

2 , the formula for the Cross Entropy without
additive constant is:

H (Σ1,Σ2) =
1

2

(
〈Σ1,K2〉 − log (|K2|)

)
.

We call Πm the orthogonal projection on
{
M ∈ Rp×p

∣∣∀i 6= j, (i, j) /∈ Em =⇒ Mij = 0
}

, the matrix
space with the sparsity of the edge set Em. In other words:

Πm(M)ij =

{
Mij if i = j or (i, j) ∈ Em
0 otherwise

General results. Let Σ, Σ1 and Σ2 ∈ S++
p be three covariance matrices with K1 := Σ−1

1 and

K2 := Σ−1
2 , and S ∈ S+

p a semi definite positive matrix not necessarily invertible. Then:

H (Σ,Σ1) = H (Σ,Σ2) +
1

2

(
〈Σ,K1 −K2〉 − log

(
|K1|
|K2|

))
, (4.13)

H (Σ,Σ1) = H (S,Σ1) +
1

2
〈Σ− S,K1〉 . (4.14)

The following lemma illustrates a very simple property of the Cross Entropy when the second
argument is an inverse sparse matrix.
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Lemma 4.2.1. With defintion (4.1) for Θm, we have: ∀M ∈ S++
p , ∀Am ∈ Θm:

H (M,Am) = H (Πm(M), Am) . (4.15)

In other words:

∀M ∈ S++
p , ∀Am ∈ Θm, · 7→ H (· , Am) is constant on Π−1

m (M) . (4.16)

Proof.

H (M,Am) =
1

2

( 〈
M,A−1

m

〉
− log

(∣∣A−1
m

∣∣) )
=

1

2

 ∑
i,j∈J1,pK2

M ijA−1
m

ij − log
(∣∣A−1

m

∣∣)
=

1

2

 ∑
i,j∈Em

M ijA−1
m

ij − log
(∣∣A−1

m

∣∣)
=

1

2

( 〈
Πm(M), A−1

m

〉
− log

(∣∣A−1
m

∣∣) )
= H (Πm(M), Am) .

The key element of the proof being that
〈
M,A−1

m

〉
=
〈
Πm(M), A−1

m

〉
.

Results on the MLE. In this section, we prove very general results when Σ̂m is the regular,
unpenalised MLE defined in (4.7).

For any graph m, [35] shows that the unpenalised MLE (4.7) exists when ∃S̃ ∈ S++
p , S̃|Em = S|Em .

In that case, we additionally have:

Πm(Σ̂m) = Πm(S) ,

Πm(K̂m) = K̂m .
(4.17)

Since Σ ∈ S++
p already, with the same arguments we have that the best sparse approximation of Σ

defined in (4.6) always exists for any graph m and that:

Πm(Σm) = Πm(Σ) ,

Πm(Km) = Km .
(4.18)

As a consequence of lemma 4.2.1, under the assumption that K̂m exists - i.e. that ∃S̃ ∈ Π−1
m (S)∩S++

p

- we get from Eq. (4.17) and (4.18) that:

H
(

Σ, Σ̂m

)
= H

(
Σm, Σ̂m

)
,

H (Σ,Σm) = H (Σm,Σm) ,

H
(
S, Σ̂m

)
= H

(
Σ̂m, Σ̂m

)
,

H (S,Σm) = H
(

Σ̂m,Σm

)
.

(4.19)

Some of these divergences have very simple formulas:

H
(
S, Σ̂m

)
= H

(
Σ̂m, Σ̂m

)
=

1

2

(
tr
(

Σ̂mK̂m

)
− log

(∣∣∣K̂m

∣∣∣))
=

1

2

(
tr (Ip)− log

(∣∣∣K̂m

∣∣∣))
=

1

2

(
p− log

(∣∣∣K̂m

∣∣∣)) .
(4.20)
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H (Σ,Σm) = H (Σm,Σm)

=
1

2
(tr (ΣmKm)− log (|Km|))

=
1

2
(tr (Ip)− log (|Km|))

=
1

2
(p− log (|Km|)) .

(4.21)

We also have a formula to link the divergences between Σ̂m and the two reference matrices S and
Σ:

H
(

Σ, Σ̂m

)
= H

(
Σm, Σ̂m

)
=

1

2

(
tr
(

ΣK̂m

)
− log

(∣∣∣K̂m

∣∣∣))
=

1

2

(
tr
(

ΣK̂m

)
− p
)

+
1

2

(
p− log

(∣∣∣K̂m

∣∣∣))
=

1

2

(
tr
(

ΣK̂m

)
− p
)

+H
(

Σ̂m, Σ̂m

)
=

1

2

(
tr
(

ΣK̂m

)
− p
)

+H
(
S, Σ̂m

)
,

(4.22)

where we used Eq. (4.20) to identify the formula of H
(
S, Σ̂m

)
. This result can also be obtained as

an application of (4.14) with the lemma 4.8.1 presented in appendix.

All of the results presented in this section - from (4.17) to (4.22) - come simply from the defi-

nition of Σm (4.6) as an approximation of Σ on one hand, and of Σ̂m (4.7) as an approximation of

S on the other. The penalised Σ̂m,λ are defined from S(λ) = S + λIp in a similar fashion. As a

consequence, EQ. (4.17) to (4.22) hold if we replace Σ̂m by Σ̂m,λ and S by S(λ) in all the formulas.

In that case, the existence of Σ̂m,λ is not in question, since S(λ) ∈ S++
p .

The last connection we can describe is between H (S,Σm) and H (Σ,Σm). We prove that there

actually is a very general and insightful dynamic between H
(
S, Σ̃

)
and H

(
Σ, Σ̃

)
for any positive

definite matrix Σ̃ independent of S. We give an explicit formula in proposition 4, whose proof is in
appendix.

Proposition 4. Let nS =
∑n
i=1XiX

T
i ∼ Wp (Σ, n) p, then for any matrix Σ̃ ∈ S++

p independent of

S, with K̃ := Σ̃−1, we have:

H
(
S, Σ̃

)
= H

(
Σ, Σ̃

)
+

1

2

(
p∑
i=1

λi(K̃
1
2 ΣK̃

1
2 )
χ

2 (i)
n − n
n

)
, (4.23)

where, conditionally to Σ̃,
(
χ

2 (i)
n

)
i∈J1,pK

are iid χ2 random variables with n degrees of freedom, and

λi(K̃
1
2 ΣK̃

1
2 ) are the eigenvalues of K̃

1
2 ΣK̃

1
2 .

In particular we have:

E
[
H
(
S, Σ̃

)]
= E

[
H
(

Σ, Σ̃
)]

. (4.24)

This proposition can be applied in particular to Σ̃ = Σm since Σm ∈ S++
p is a constant matrix,
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hence independent of S, to get:

H
(

Σ̂m,Σm

)
= H (S,Σm)

=
1

2

(
1

n

p∑
i=1

λi
χ

2 (i)
n − n
n

)
+H (Σ,Σm)

=
1

2

(
1

n

p∑
i=1

λi
χ

2 (i)
n − n
n

)
+H (Σm,Σm) ,

(4.25)

where λi := λi(K
1
2
mΣK

1
2
m) are the eigenvalues of K

1
2
mΣK

1
2
m.

In the proposition 4, we used that nS is a Wishart matrix, as a consequence we cannot directly
apply the results to S(λ). In (4.26), we do the additional work necessary to get the equivalent of the

relation (4.25) for Σ̂m,λ and S(λ)

H
(

Σ̂m,λ,Σm

)
= H

(
S(λ),Σm

)
=

1

2

(
tr
(
S(λ)Km

)
− log (|Km|)

)
=

1

2
(tr (SKm)− log (|Km|)) +

λ

2
tr (Km)

=
1

2

(
1

n

p∑
i=1

λi
χ

2 (i)
n − n
n

)
+H (Σ,Σm) +

λ

2
tr (Km)

=
1

2

(
1

n

p∑
i=1

λi
χ

2 (i)
n − n
n

)
+H (Σm,Σm) +

λ

2
tr (Km) .

(4.26)

4.3 Model selection criterion with explicit formula for chordal
graphs

In this section we propose an estimator of the CE when the graphs we are looking for are chordal.
With those graphs, the existence of a closed form expression for the MLE, allows us to find an
explicit formula to compute and correct the bias of the In Sample Negative Log-likelihood. We
prove guarantees on the performances of the models selected by the new criterion.

Properties of chordal graphs. Chordal graphs are graphs where there is no cycle of more than
three edges. They are also called decomposable, since there exists a maximal prime sub-graphs
decomposition into the set of maximal cliques C and the set of their intersections, the separator
cliques P, see [91] for more details. When m is chordal we have an explicit formula (4.27) for the
inverse of the MLE defined in (4.7) from its decomposition (Cm,Pm), see [91].

K̂m := Σ̂−1
m =

∑
c∈Cm

[
(Scc)

−1
]0
−
∑
p∈Pm

[
(Spp)

−1
]0
. (4.27)

The notation
[
(Scc)

−1
]0

indicates a matrix in Rp×p where the coefficients of the square sub-matrix

defined by clique c are those of S−1
cc and the rest are 0. We get as well a necessary and sufficient condi-

tion for the existence of Σ̂m (see [158]): n > |c|(m)
max, where |c|(m)

max is the size of the largest clique in m.

Thanks to the chordal hypothesis, we know whether Σ̂m defined in Eq. (4.7) exists, and we do
not need to penalise the MLE as Eq. (4.8) to be safe. Hence in this whole section, we set λ = 0 and

use the unpenalised Σ̂m which we compute directly with the formula (4.27).

56



Presentation. In this section we propose a criterion to optimise for model selection and offer

guarantees on its choices. The ideal, but inaccessible quantity to minimise is the true CE,H
(

Σ, Σ̂m

)
.

From the observation: H
(

Σ, Σ̂m

)
= H

(
S, Σ̂m

)
+ 1

2

〈
Σ− S, K̂m

〉
, we see that

〈
Σ, K̂m

〉
is the only

un-estimable term in this quantity. With (4.27), we can express this scalar product, and get, under

the assumption that n > |c|(m)
max + 1, an explicit formula for its expectation:

E
[〈

Σ, K̂m

〉]
=
∑
c∈Cm

n |c|
n− |c| − 1

−
∑
p∈Pm

n |p|
n− |p| − 1

=: f(m) . (4.28)

The term f(m) that emerges does not depend on Σ anymore, it is only a function of the graph m.

With f(m), we correct the bias of the In Sample Negative Log-likelihood H
(
S, Σ̂m

)
and define our

estimator Hm:

Hm := H
(
S, Σ̂m

)
+

1

2
(f(m)− p) ≡ H

(
S, Σ̂m

)
+

1

2
f(m) (UCEE) . (4.29)

This estimator is unbiased by construction:

E
[
Hm −H

(
Σ, Σ̂m

)]
= 0 . (4.30)

We call Hm the Unbiased Chordal Explicit Estimator (UCEE). In Eq. (4.29), the bias correction term

f(m) acts as a penalty that balances the optimistic In Sample Negative Log-likelihood H
(
S, Σ̂m

)
.

Its formula (4.28) shows that it does so by taking into account the very structure of the graph, and
not simply its size. Additionally, we stress out the fact that the UCEE is completely non-parametric.
The estimator can be used directly without the need to optimise any hyperparameter to get the best
performances out of it.

Guarantees. From definitions (4.12) and (4.29), we get a natural control on the performance of
UCEE’s choice with the best expected score for any given model:

E
[
H
(

Σ, Σ̂m̂

)]
≤ min
m∈M

E
[
H
(

Σ, Σ̂m

)]
+

1

2
E
[〈

Σ, K̂m̂

〉
− f(m̂)

]
. (4.31)

To remove the dependency in m̂ in Eq (4.31), we upper bound even further the inequality and get
the control (4.32) that has a more general expression. We have a similar bound, see Eq (4.33), when
working the best model on the data, m̂∗, as a reference.

E
[
H
(

Σ, Σ̂m̂

)]
≤ min
m∈M

E
[
H
(

Σ, Σ̂m

)]
+

1

2
E
[

max
m∈M

∣∣∣〈Σ, K̂m − E
[
K̂m

]〉∣∣∣] , (4.32)

E
[
H
(

Σ, Σ̂m̂

)]
≤ E

[
H
(

Σ, Σ̂m̂∗
)]

+ E
[

max
m∈M

∣∣∣〈Σ, K̂m − E
[
K̂m

]〉∣∣∣] . (4.33)

Let Cmax and Pmax be deterministic cliques sets such that ∀m ∈ M, Cm ∈ Cmax and Pm ∈ Pmax.

Let |c|max := max
m∈M

|c|(m)
max. If n > |c|max + 3, then Eq (4.34) and Eq (4.35) are upper bounds with

explicit orders of the controls (4.32) and (4.33) respectively.

Proposition 5. With the previously introduced notations, if n > |c|max + 3, then the following
inequalities hold:

E
[
H
(

Σ, Σ̂m̂

)]
− min
m∈M

E
[
H
(

Σ, Σ̂m

)]
≤

∑
c∈Cmax

√
n3

2

√
|c|

(n− |c| − 3)2
+

∑
p∈Pmax

√
n3

2

√
|p|

(n− |p| − 3)2
,

(4.34)

E
[
H
(

Σ, Σ̂m̂

)
−H

(
Σ, Σ̂m̂∗

)]
≤

∑
c∈Cmax

√
2n3

√
|c|

(n− |c| − 3)2
+

∑
p∈Pmax

√
2n3

√
|p|

(n− |p| − 3)2
. (4.35)
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Sketch of proof. We expose here the main steps necessary to prove equations (4.34) and (4.35).
The complete proof can be found in appendix. We already have (4.32) and (4.33), hence we just need

to prove that E
[

max
m∈M

∣∣∣〈Σ, K̂m − E
[
K̂m

]〉∣∣∣] ≤∑c∈Cmax

√
2n3

√
|c|

(n−|c|−3)2 +
∑
p∈Pmax

√
2n3

√
|p|

(n−|p|−3)2 .

To that end:

• We start by showing in Lemma 4.8.3 in appendix which provides the formula for the variance
of the trace of an inverse Wishart

• We then show that max
m∈M

∣∣∣〈Σ, K̂m − E
[
K̂m

]〉∣∣∣ ≤ ∑c∈Cmax

∣∣∣〈Σcc, (Scc)
−1 − E

[
(Scc)

−1
]〉∣∣∣ +∑

p∈Pmax

∣∣∣〈Σpp, (Spp)
−1 − E

[
(Spp)

−1
]〉∣∣∣

• Then that for any clique we find a Wishart W such that E
[∣∣∣〈Σcc, (Scc)

−1 − E
[
(Scc)

−1
]〉∣∣∣] ≤

V ar
[
tr
(
W−1

)] 1
2

• The formula of Lemma 4.8.3 allows us to conclude

4.4 Implementation principles

For the sake of illustrating the performances of our model selection criteria, we must test them on
real graph families. The algorithmic of our method is very simple: for every graph m in a familyM
of undirected chordal networks, we compute the MLE Σ̂m as defined in (4.8), then the UCEE (4.29).
We finally pick the model m̂ in M with the smallest UCEE. We can then compare this choice m̂ to
models proposed by other model selection procedures among M.
In this Chapter, we heavily focus on the model selection aspect of the problem not on the graph
exploration numerical scheme that builds the familyM. We adopt the same procedures as Chapter
3. With synthetic data, where everything is known, we manually make deterministic graph families.
With real data, we simply reuse the graph exploration procedure of the Composite algorithm 3.1 of
Chapter 3.

4.4.1 A preliminary question: how to efficiently evaluate the many mem-
bers of a graph family

To compute the UCEE for every model m ∈ M, it is necessary to compute every MLE K̂m. This
process can be sped up by taking into consideration the structure ofM. Iterative Proportional Scal-
ing (IPS) [34, 91] is a classical algorithm that starts from any matrix in Θm and converges towards

K̂m for a given empirical covariance S1 and the graph m. Initialising the algorithm with matrix
close to K̂m can significantly speed up the process. If M = {m1, ...,mN} is an increasing sequence
of graphs: Em1

⊂ ... ⊂ EmN , then a very natural way to speed up the estimation of the family

{K̂m}m∈M is to start with K̂m1
∈ Θm1

⊂ Θm2
and use it as initialisation for the computation of

K̂m2
. Then, iteratively use K̂mi as initialisation for K̂mi+1

until every MLE is computed. If there is

only a few edges of difference between the two consecutive models, not only do K̂mi and K̂mi+1 have
a similar number of non-zero coefficients, but those coefficients should be close. As a consequence,
the number of iteration to get K̂mi+1

can be greatly reduced.
This can be done even if M is not a single increasing sequence of graphs: in the general case, M
is composed of several increasing graph paths each leading to one of the maximal graphs in M, the
ensemble constituting an inclusion tree. Starting from the root of the tree, the MLEs just have to
be propagated along the different branches until the leaves. In our study, the model familiesM will
by design mostly be simple increasing paths of graphs.

We illustrate the time gain with synthetic data. We take an increasing family of 300 models with
one edge of difference between every two consecutive graphs. We compute each MLE with either
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Figure 4.1: Cumulative time to compute the MLEs. In blue, the MLE are computed from empir-
ical data, in orange from the real matrix directly. The dotted lines represent IPS initialised with
the sparser previously computed MLE (smart initialisation), whereas the full lines represent IPS
initialised with a diagonal matrix (neutral initialisation).

the previous one (smart initialisation) or a diagonal matrix (neutral initialisation). Many simula-
tions are made and aggregated. On Figure 4.1 we represent, with standard deviation, the average
cumulative estimation time of {K̂m}m as a function of the number of models m estimated. The
estimation can be done from simulated data (blue) or directly from the true matrix (orange). The
smart initialisation significantly reduces the computation times.

4.4.2 Algorithms

In this section we detail the algorithms we use to construct model families and showcase the perfor-
mances of our model selection criterion. After tackling the questions of the previous section, we see
the advantage of building families as paths of graphs, with gradually increasing edge sets. As we
described, we can take advantage of this inclusion structure to reduce the MLE computation time.
As mentioned, we work like in Chapter 3. With synthetic data, in a controlled environment, we use
our knowledge of the real graph to build deterministic paths. With real data, we use the exploration
scheme of the Composite algorithm 3.1.

Numerical scheme in a simulated environment

In a simulated environment, we give ourselves a true covariance matrix Σ ∈ Rp×p whose inverse K
has the sparsity pattern of a fixed graph m0. We can simulate without limitation from N (0p,Σ).

Family building. We use the knowledge we have in this synthetic environment to manually craft
an interesting familyM. We construct, edge by edge, a path of chordal graphs from the Fully Sparse
(FS), with no edge, to the Fully Connected (FC), with all possible edges, via m0, the true graph.
Having m0 as an imposed intermediary point forces M to contain good graphs.
The resulting familyM is a path increasing for the inclusion: the ideal case for efficient computations
of the MLEs.

Simulations and family evaluation. For each simulation, we generate n observations. Let S
be the empirical covariance matrix built with all of them. For every graph m of the family M,
we compute the MLE Σ̂m(S), then the associated value of the UCEE. The UCEE is an estimation

of the True Cross Entropy (TCE) H(Σ, Σ̂m(S)) of this MLE. This Cross Entropy represents the
performances we are concretely able to achieve with that data and that graph m.
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To assess the perceptiveness of the UCEE as a model selection criterion, we compare it to the
(1-fold) Cross Validated Cross Entropy (CVCE):

H
(
S2, Σ̂m(S1)

)
(Cross Validated Cross Entropy) (4.36)

To calculate the CVCE, we split the n available points into an inference set and a validation set.
The n1 points of the inference set are used to build an inference covariance S1, which is then used
to compute the MLE Σ̂m(S1) for each graph m ∈ M. On the other hand, the n2 points of the
validation set define a validation covariance S2, which serves as a replacement for Σ in the Cross
Entropy formula. Indeed, different split sizes define different versions of the CVCE and lead to
different results. We use Cross Validation as a benchmark for comparison since it is a very general,
tried and tested, method for model selection.
We compare on each simulation the performances in terms of True Cross Entropy of the models
selected by the different versions of CVCE, by our UCEE and by the TCE. We make N of those
simulations.

Our numerical scheme in an uncontrolled environment

When the phenomenon is observed and not simulated, we do not know the real graph anymore. In
that case we must work from the data to construct M.

The major changes. With real data, we do not know the real covariance matrix or its graph,
which is probably not truly sparse. So we cannot anymore compute the Oracle Criterion or make
a deterministic path through the real graph. To replace the TCE, we keep ntest data points aside
as a test set to define a test empirical covariance matrix Stest. Meanwhile, the ntrain points left are
used to make a train empirical covariance matrix Strain. With those two, we compute the Out of
Sample Negative Log-likelihood (OSNL) H(Stest, Σ̂m(Strain)). The OSNL is less absolute than the
TCE, but at least we still have a metric. Not knowing the true graph is more troublesome: we need
to explore an interesting graph family to showcase the performances of the UCEE model selection
criterion. Hence we design our own numerical scheme. We take a naive nodewise approach similar
to [115]. Starting from the fully sparse graph, we add edges one by one. At each step, to decide
which will be the new edge, we solve p linear prediction problem in parallel - one per vertex - with
the Least Angle Regression (LARS) [44] algorithm. For implementation details, see the composite
algorithm 3.1 of Chapter 3.

4.5 Results

With the algorithmic of Section 4.4, we construct families of chordal graph on both synthetic data
and real hippocampus data. We illustrate the quality of the models selected by UCEE (4.29) against
those selected by the Cross Validated Cross Entropy (CVCE) on those families. On one hand, the
Cross Validated Cross Entropy (CVCE), a general criterion that makes no use of the formula for
the MLE. On the other hand, our UCEE takes into account the additional information about the
graph structure.

4.5.1 Synthetic Data

Setup. We generate a covariance matrix Σ ∈ S++
p of size p = 30 and whose inverse is sparse with

a chordal pattern. We build a family of chordal graphs with the procedure of Section 4.4.2. For
each simulation we generate n observations from N (0p,Σ) and use them to compute the UCEE and
CVCE on for every graph in M. While the UCEE uses straightforwardly all the observations in its
formula, we recall that CVCE splits n into n1, for train, and n2, for validation. Once again we try
different values of n and α = n2

n , the fraction of observations put in the validation set of the CVCE.
For each scenario, we make N = 500 simulations.
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Figure 4.2: On a single simulation: evolution of and model selected by CVCE (orange), UCEE
(green) and TCE (blue) along the fixed deterministic path of chordal graphs. The models selected
by UCEE and TCE are very similar.

Illustration of the experiment on a single simulation. On Figure 4.2, we follow each criterion
along the graph path. We have n = 60 total observations, 20% of which went in the validation set
for CVCE. We display the KL divergence (CE minus the constant entropy H (Σ,Σ)) to give a sense
of scale: a KL of 0 means a perfect reconstruction of the distribution, hence the relative differences
in KL are meaningful. On this simulation, we see UCEE (green) and TCE (blue) reaching their
minima on very similar graphs, whereas the CVCE (orange) selects a less connected graph. It seems
UCEE is a better estimator of TCE and selects better graphs than the Cross Validation.

Quantitative analysis : aggregated metrics over multiple trials. To confirm this intuition,
we aggregate the results of several simulations. We take a grid of different total data set sizes (n =
40, 60, 80, 100) and fractions of data used in the validation set of CVCE (0.05, 0.1, 0.15, 0.2, 0.3, 0.4).
We run 500 simulations for each combination.
We describe the models selected by a certain criterion over all simulations by their performances
in KL divergence (KL(Σ, Σ̂m)) and their complexities (number of edges). We represent on Figure
4.3 the averages and standard deviations of those quantities, with the KL on the y axis and the
complexity on the x axis.
Each sub-figure corresponds to a different data set size. On each one, we can observe the path of
the CVCE solutions with different validation set sizes (shades of red). This allows us to identify,
in function of the total number of observations, the ideal balance between train and validation size
to get the best performances out of the CVCE. However, we see that for each n, the solution from
the UCEE (green) consistently beats CVCE regardless of the train/validation ratio. It is generally
closer to the optimal graph on the path (blue) both in terms of size and performances. This confirms
the observed trend on a single simulation.
As expected, the UCEE, with its explicit formula, makes good use of the very specific structure of
the problem and displays more perceptiveness in its selection. However, despite being agnostic to
the properties of the graphs inM, the CVCE is not far behind, the relative difference in KL between
the selected models of the two methods being is quite small.

4.5.2 Hippocampus Data

The UCEE showed promising behaviour on synthetic data. We put it to the test with real neuro-
logical data.
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Figure 4.3: Average KL divergence (y axis) and complexity (x axis) of the models selected with
CVCE (shades of red), UCEE (green) and TCE (blue).

Presentation of the data. We use a dataset containing measurements of the alteration of hip-
pocampi from 101 patients where about a half are MCI or AD patients. These alterations are
estimated by quantifying the deformation of a template hippocampus to each subject one. These
deformations are performed by a diffeomorphic registration technique from [117]. Inferring a condi-
tional correlation network between the areas of the hippocampus subject to deformation will help
us better understand their spatial dependencies and the pattern of degeneration.
Looking for a chordal conditional correlation network between those measures is natural. There is an
innate spatial organisation of the nodes, with good reasons for many of the geographical neighbours
to be conditionally correlated, since the deformation is a continuous phenomenon, impacting in a
similar fashion the nodes in proximity to one another. A chordal graph having no long chord-less
cycle imposes a similar notion of coherence, where neighbours are connected in chunks. Two distant
areas will have a tendency to be connected by thick strings of interconnected neighbours instead of
thin strings of consecutive, semi-isolated nodes.

We have p = 290 measured areas and 101 patients. A previous work, [3], already studied the
problem of inferring such networks on this dataset, but without specifically looking for chordal net-
works. In particular, they propose to use a variation of GGMselect from [56] where a prior graph
that accounted for local correlations is used to exhibit long distance conditional correlations which
did not appear otherwise. The idea was to project the data on the orthogonal of their prior and
estimate the remaining edges.

Setup. To compute the OSNL H(Stest, Σ̂m(Sfull train)), we set aside once and for all ntest = 20
patients to build the test covariance matrix Stest, and use the remaining nfull train = 81 patients
to make the train covariance matrix Sfull train. Those nfull train are the ones we let the various
methods use to infer graphs and for model selection.
We use the chordal variant of the procedure described in Section 4.4.2 to build a chordal familyM.
After excluding the patients used to build the graph path, 45 patients remain in the full train to be
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used by the model selection methods. We then compute for all the graphs in this family the UCEE,
using all those 45 points, and the CVCE, splitting those points into pure train and validation. As
usual, we try out different validation fraction α for the CVCE.

Selected Models. We represent the selected graphs by each criterion on Figure 4.4 with the
same conventions as the Figure 4.3. Here again, the UCEE model (green) outperforms all the
CVCE models (shade of red) but is on par with the best ones (validation fractions of 0.05 and 0.1).
This time the UCEE solution is significantly more connected than the best one (blue).
The strength of UCEE in this context is the absence of hyper-parameter. With Cross Validation
we do not know in advance the best train/validation split. Identifying it with only the full training
data would require an additional study, with an additional decomposition of the data into test and
training sets. This can be especially troublesome if n is small and offers no guarantee of actually
finding the right fraction in the end. The UCEE on the other hand can be used directly with its
parameter-less formula and reaches the same performances levels as the best splits in CVCE.

Comparison with previous works on long distance connections. On the left panel of Figure
4.5, we visualise the conditional correlation network of deformations in the hippocampus selected
by UCEE. On the right figure, we display only the long distance connections from this network,
pruning our estimate by removing the edges of close points (with respect to the Euclidean distance).
A connection is considered to be long distance when the distance between two nodes is among the
25% longest in the hippocampus. This shows us how the UCEE was able to select a graph featuring
not only the obvious co-occurrences of deformations between neighbours, but also some more subtle
long distance conditional correlations. The authors of [3] were also able to infer long distance
conditional correlations in the hippocampus with this dataset. However they require to have a prior
graph which, as mentioned by the authors, may be of different forms, leading potentially to very
different results. On the other hand, we were able, by exploring a family of chordal graphs, to find
and select graphs with both short distance and long distance conditional correlations without the
need of such a process.

Splitting the patients dataset according to the diagnosis. 57 patients of this database are
“control” and have not contracted the disease, the remaining 45 are either MCI or AD ans show
signs of the disease. In order to understand the effect and signs of the disease on the hippocampus,
we split the data in two and make one model for each population. The left graph of Figure 4.6,
is the inferred conditional network for the control patients, whereas the right graph is the inferred
network for the MCI and AD patients. To see more clearly, we represent on figure 4.7 the long dis-
tance correlations only. Once again, this means we only display an edge of the graph if the distance
between the two corresponding nodes is among the 25% largest in the hippocampus.
It appears on Figure 4.6 that the estimated graph for control patients has many more edges than
the MCI+AD patient one. This shows a first difference: the variability in terms of shape of the
hippocampus in control population is very structured and smooth in particular in the head part of
the anatomical structure where the network is highly dense.
When removing the local conditional correlations which although interesting are less informative,
the pruned networks show again different patterns for the two sub-populations. Indeed, the density
pattern of the edges looks uniform for the MCI-AD population whereas the control group shows
many more conditional correlations of the deformation in the top part of the shape. When pruning
the graph, this difference remains.
To compare with the previous study made in [3], the results are coherent. Their algorithm was
based on GGMselect leading to very sparse selected graph. The introduction of prior graph enabled
to make the long distance conditional correlation appear. Thank to our criterion, we can take into
account both the local smoothness of the deformation we are analysing imposing a chordal structure
and the long distance conditional correlations that appear since our criterion selects denser graphs.
However, the conclusions are quite similar on the whole population where one can see the important
coupling of the deformation of the top head and external side of the tail of the shape. Concerning
the sub-population analysis, the results were quite poor for the previous work whereas we are able
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Figure 4.4: KL divergence (y axis) and complexity (x axis) of the models selected with CVCE
(shades of red), UCEE (green) and TCE (blue).

to highlight very different graphs with many different edges in these two groups.

We are aware that the comparison of these graph shows very preliminary results that will need
to be confirmed by a larger analysis on an extended database.

4.6 Discussion: the difficulty of comparing oneself to Σm∗

We recall the respective definitions of the models m∗ and m̂∗:

m∗ ∈ argmin
m∈M

[H (Σ,Σm)] ,

m̂∗ ∈ argmin
m∈M

[
H
(

Σ, Σ̂m

)]
.

From the family of modelsM, we can define ΘM := {Θm}m∈M, the matrix space that any proposed

covariance matrix has to belong to. Throughout this paper, we used Σ̂m̂∗ , which by definition of
m̂∗ is the best MLE in ΘM, as the reference to get all our controls. From the definition of m∗, we
see that Σm∗ is actually the closest matrix to Σ of all the elements of ΘM. We already discussed
the idea that, since Σm∗ is constructed from Σ, which is equivalent to having at our disposal an
infinite amount of observation, setting Σm∗ as reference can be somewhat unfair and misguided. In
this section, we illustrated how, without any additional hypothesis on M, we cannot theoretically
discriminate good and bad matrices by comparing them to Σm∗ .
To make this argument, we only use the definition of each matrix Σm∗ , Σ̂m̂∗ , Σ̂m̂0

and their associated
models m∗, m̂∗, m̂0. Since we make no assumption on the models that are in M, we have no way
to compare m∗ and m̂∗ other than with their respective definitions. The only things we can tell of
those models without any further hypothesis are:

• ∀m ∈M, H (Σ,Σm∗) ≤ H (Σ,Σm) ,

• ∀m ∈M, H
(

Σ, Σ̂m̂∗
)
≤ H

(
Σ, Σ̂m

)
,

• m∗ is one of the maximal graphs of M.

Since we do not know what other models are inM, we loose no information in our task to compare
m∗ and m̂∗ by just evaluating the two previous equations in m̂∗ and m∗ respectively.
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Figure 4.5: Left: Spatial representation of the edges and nodes of the conditional correlation network
selected by the UCEE. Right: Spatial representation of the long distance connections only, in the
conditional correlation network selected by the UCEE.

Figure 4.6: Spatial representation of the edges and nodes of the conditional correlation networks
selected by the UCEE on control patients (left) and on MCI and AD patients (right).
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Figure 4.7: Spatial representation of the long distance connections only, in the conditional correlation
networks selected by the UCEE on control patients (left) and on MCI and AD patients (right).

In the end, the two following inequalities can be considered optimal, in the sense that we cannot
find any tighter bound without additional assumptions:

H
(

Σ, Σ̂m̂∗
)
≤ H

(
Σ, Σ̂m∗

)
, (4.37)

H (Σ,Σm∗) ≤ H (Σ,Σm̂∗) . (4.38)

We introduce a quantity defined as:

Am := H
(

Σ, Σ̂m

)
−H (Σ,Σm) . (4.39)

By definition of Σm and since Σ̂m ∈ Θm, we have:

∀m ∈M, Am ≥ 0.

We use (4.37) and (4.38) to get an upper and a lower control of H
(

Σ, Σ̂m̂∗
)

by the optimal

H (Σ,Σm∗). We start from (4.38):

H (Σ,Σm∗) ≤ H (Σ,Σm̂∗)

⇐⇒ H (Σ,Σm∗) ≤ H
(

Σ, Σ̂m̂∗
)

+H (Σ,Σm̂∗)−H
(

Σ, Σ̂m̂∗
)

⇐⇒ H (Σ,Σm∗) +H
(

Σ, Σ̂m̂∗
)
−H (Σ,Σm̂∗) ≤ H

(
Σ, Σ̂m̂∗

)
We can then work with both the lower and upper bound at the same time:

H (Σ,Σm∗) +H
(

Σ, Σ̂m̂∗
)
−H (Σ,Σm̂∗) ≤ H

(
Σ, Σ̂m̂∗

)
≤ H

(
Σ, Σ̂m∗

)
H (Σ,Σm∗) +H

(
Σ, Σ̂m̂∗

)
−H (Σ,Σm̂∗) ≤ H

(
Σ, Σ̂m̂∗

)
≤ H (Σ,Σm∗) +H

(
Σ, Σ̂m∗

)
−H (Σ,Σm∗)

H (Σ,Σm∗) +Am̂∗ ≤ H
(

Σ, Σ̂m̂∗
)
≤ H (Σ,Σm∗) +Am∗

We get in the end the control:

H
(

Σ, Σ̂m̂∗
)
−H (Σ,Σm∗) ∈ [Am̂∗ , Am∗ ] (4.40)

We worked with equivalences only from the inequalities (4.37) and (4.38). Hence, the control (4.40)
is also optimal in terms of the assumptions made.
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Remark.

Am̂∗ ≤ Am∗

⇐⇒ H
(

Σ, Σ̂m̂∗
)
−H (Σ,Σm̂∗) ≤ H

(
Σ, Σ̂m∗

)
−H (Σ,Σm∗)

⇐⇒ H
(

Σ, Σ̂m̂∗
)

+H (Σ,Σm∗) ≤ H
(

Σ, Σ̂m∗
)

+H (Σ,Σm̂∗)

Which is true by definition of m∗ and m̂∗. This only works with those two specific models.

Remark. Am̂∗ ≥ 0 means that H (Σ,Σm∗) ≤ H
(

Σ, Σ̂m̂∗
)

always, i.e. non matrix buildable from

S or S(λ) can ever beat the best matrix build from Σ. This is obvious when you write that ∀m ∈
M, H

(
Σ, Σ̂m

)
≥ H (Σ,Σm) ≥ H (Σ,Σm∗). Alternatively, remember that Σm∗ is the best matrix

in ΘM and that Σ̂m̂∗ ∈ ΘM.

Remark. Since the lower bound of the interval (4.40) solely comes from the definition of m∗, we
actually have:

∀m ∈M, 0 ≤ Am ≤ H
(

Σ, Σ̂m

)
−H (Σ,Σm∗)

And the particularity of m̂∗ is that it is the only model to get Am∗ as a guarantied upper bound.

We now put in perspective the upper bound we found. We know that m∗ is a maximal graph:
not the kind we want to infer. Indeed, because of the limited data, we need a balance in the number
of selected edges. Since n is small and M potentially contains large graphs, Σ̂m∗ is a priori a very

poor matrix with a large Cross Entropy H
(

Σ, Σ̂m∗
)

. Actually in most cases, maximal graphs like

m∗ have no unpenalised MLE and we are able to define Σ̂m∗ only because of the penalisation in λ.

In that case H
(

Σ, Σ̂m∗
)

will diverge when λ 7→ 0. Hence when λ is very small, which it always is

by design, H
(

Σ, Σ̂m∗
)

is often pathologically large. In a word, just as H
(

Σ, Σ̂m̂∗
)

represents the

best performances reachable with a MLE, H
(

Σ, Σ̂m∗
)

is a reference for the worst performances a

MLE can achieve within M.

From Eq. (4.40), we have that the optimal upper control we can find on the best reachable per-

formances H
(

Σ, Σ̂m̂∗
)

with H (Σ,Σm∗) is Am∗ . However, we have by definition of Am:

H
(

Σ, Σ̂m∗
)
−H (Σ,Σm∗) = Am∗ .

That is to say that Am∗ is also the exact order of the control of the “worst” performances H
(

Σ, Σ̂m∗
)

with H (Σ,Σm∗). In other words the controls we found for the best and the “worst” model are the
exact same. Moreover, we showed that we cannot find a tighter control on the good model m̂∗

without additional assumptions. As a consequence, it is pointless to set the true lowest possible
CE on M H (Σ,Σm∗) as a reference to assess the performance of any model m since even the best
model m̂∗ cannot be differentiated from m∗, one of the worst models.

The intuition behind this discussion is that the difference between the optimal CE H (Σ,Σm∗)

and the performances H
(

Σ, Σ̂m

)
of any model m is so large that it is approximately the same for

any model m making it difficult to discriminate between models. On the other hand, H
(

Σ, Σ̂m

)
is a reachable CE for the MLE defined from models in M, much closer to their own performances.
Hence, setting it as a reference allows us to better identify different order of control for different
models. Which is why this is the CE we use in our guarantees throughout the paper.
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4.7 Conclusion

We tackled the problem of model selection with Gaussian Graphical Models. To assess the relevance
of any new graph, we proposed to use the Cross Entropy of the Constrained Maximum Likelihood
Estimator (MLE) with relation to the real covariance matrix. This metric quantifies how well the
proposed matrix reproduces the law of the real once, we chose it because it explicitly describes the
global quality of said proposition, unlike local metrics such as coefficients recovery. To provide a
numerically stable method under all circumstances, we adopted a penalised definition of the MLE.
Since the real matrix is by nature unknown, the Cross Entropy had to be estimated before being
used for model selection. We proposed a new unbiased estimator of this deviation.
In the case of chordal graphs, we were able to capitalise on the existence of a closed from expression
for the MLE. We proposed an unbiased estimator of the Cross Entropy with an explicit formula
and no need for additional data: the Unbiased Chordal Explicit Estimator (UCEE). We proved
theoretical bounds on the performances of the selected models by the criterion.

We compared empirically the UCEE to the Cross Validation Cross Entropy (CVCE) of Chapter
3. The CVCE is completely general estimator, agnostic to the graph properties or the formula,
but has proven its worth on general graphs. On synthetic data, we demonstrated how the UCEE
consistently selects better performing models that are closer to the optimum. The CVCE, however,
is not far behind, with some of its train/validation splits reaching similar performances. On real
data, UCEE and the de facto optimal train/validation split for the CVCE achieved equivalent Out
of Sample performances.
Overhaul, if we consider CVCE with its best split size, both methods performed similarly. However,
this optimal split of Cross Validation is an unknown hyper-parameter that remains to be found by
fine tuning, whereas UCEE, in addition to performing well, has a non-parametric formula, saving
the trouble of running an additional study. This makes, in our opinion, UCEE the most relevant
criterion to use with chordal graphs.
The UCEE was tested on a database of diffeomorphic deformations of the hippocampus anatomical
shape. The results show that the deformation is not simple and that the atrophy is not random but
has a particular structural pattern. In addition, we were able to recover previous results based on
GGMselect where a prior informative graph was added to the model. For population comparison,
we were able to highlight differences in the deformation pattern. These will have to be further
investigated in order to exhibit potentially new pathological effect of the disease.

4.8 Proofs

In this section we prove the different results presented in the paper.

4.8.1 Lemmas

We start with two lemmas needed for the subsequent proofs.

Lemma 4.8.1. For any λ ≥ 0, let S
(λ)
1 = S1 + λIp. When K̂m as defined in (4.8) exists, we have:

∀m ∈M,
〈
S

(λ)
1 , K̂m

〉
= p. (4.41)

Proof. Let Πm be the orthogonal projection on the edge set Em. A property of the MLE is that

Πm(Σ̂m) = Πm(S
(λ)
1 ), i.e. the matrices have the same values on the edge set [35]. Additionally,

because of the sparsity of K̂m, we have from lemma 4.2.1 that for any matrix M ,
〈
M, K̂m

〉
=
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〈
Πm(M), K̂m

〉
. Then: 〈

S
(λ)
1 , K̂m

〉
=
〈

Πm(S
(λ)
1 ), K̂m

〉
〈
S

(λ)
1 , K̂m

〉
=
〈

Πm(Σ̂m), K̂m

〉
〈
S

(λ)
1 , K̂m

〉
=
〈

Σ̂m, K̂m

〉
〈
S

(λ)
1 , K̂m

〉
= p .

Lemma 4.8.2. For any λ > 0, with K̂m as defined in (4.8), we have:∥∥∥K̂m

∥∥∥
∗
≤ p

λ
.

Proof. We have: 〈
S1 + λIp, K̂m

〉
= p〈

S1, K̂m

〉
+ λtr(K̂m) = p

tr
(
K̂

1
2
mS1K̂

1
2
m

)
+ λtr(K̂m) = p .

Since K̂
1
2
mS1K̂

1
2
m ∈ S+

p , we have tr
(
K̂

1
2
mS1K̂

1
2
m

)
≥ 0 and λtr(K̂m) ≤ p, i.e.∥∥∥K̂m

∥∥∥
∗
≤ p

λ
.

4.8.2 Proof of proposition 4 (Section 4.2.2)

Let λi := λi(K̃
1
2 ΣK̃

1
2 ) = λi(Σ

1
2 K̃Σ

1
2 ).

H
(
S, Σ̃

)
= H

(
Σ, Σ̃

)
+

1

2

〈
S − Σ, K̃

〉
.

First:
〈

Σ, K̃
〉

= tr
(

ΣK̃
)

= tr
(

Σ
1
2 K̃Σ

1
2

)
=
∑p
i=1 λi.

We have S = 1
n

∑n
i=1XiX

T
i , with ∀i,Xi ∼ N (0p,Σ) iid. We can write Xi = Σ

1
2Ni with ∀i,Ni ∼

N (0p, Ip) iid. Let N := (N1, ..., Nn)T ∈ Rn×p, then S = 1
nΣ

1
2NTNΣ

1
2 . Additionaly, we define

the decomposition in orthonormal basis: Σ
1
2 K̃Σ

1
2 = PTDP . With P = (P1, ..., Pp)

T ∈ Rp×p the
orthonormal transfer matrix, and D = diag(λ1, ..., λp). We have:
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〈
S, K̃

〉
=

1

n
tr
(

Σ
1
2NTNΣ

1
2 K̃
)

=
1

n
tr
(
NTN Σ

1
2 K̃Σ

1
2

)
=

1

n
tr
(
NTN PTDP

)
=

1

n
tr
(
PNTNPT D

)
=

1

n

p∑
i=1

(
PNTNPT

)
ii
λi

=
1

n

p∑
i=1

PTi N
TNPi λi

=
1

n

p∑
i=1

n∑
j=1

(PTi Nj)
2 λi .

We now work conditionally to Σ̃, that is to say conditionally to P . Since P is orthonormal, we
have that each component PTi Nj follows a standard normal distribution N (0, 1). Additionally,{
PTi Nj

}
(i,j)∈J1,pK×J1,nK ∈ Rnp is a Gaussian vector ∼ N (0np, Inp) (see Eq. (4.42)). This implies

that all the Gaussian normal variables PTi Nj are iid. As a consequence, ∀i ∈ J1, pK , χ2 (i)
n :=∑n

j=1(PTi Nj)
2 follows a chi square distribution with n degrees of freedom and all the χ

2 (i)
n are in-

dependent.

{
PTi Nj

}
(i,j)∈J1,pK×J1,nK =



P1 0 · · · 0
0 P1 · · · 0
...

...
. . .

...
0 0 · · · P1

P2 0 · · · 0
0 P2 · · · 0
...

...
. . .

...
0 0 · · · P2

...
...

...
...

Pp 0 · · · 0
0 Pp · · · 0
...

...
. . .

...
0 0 · · · Pp




N1

N2

...
Nn

 ∼ N (0np, Inp) . (4.42)

In the end, we have: 〈
S, K̃

〉
=

1

n

p∑
i=1

λi χ
2 (i)
n . (4.43)

And

H
(
S, Σ̃

)
= H

(
Σ, Σ̃

)
+

1

2

〈
S − Σ, K̃

〉
= H

(
Σ, Σ̃

)
+

1

n

p∑
i=1

λi χ
2 (i)
n −

p∑
i=1

λi

= H
(

Σ, Σ̃
)

+

p∑
i=1

λi
χ

2 (i)
n − n
n

.

This concludes the proof.
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4.8.3 Chordal graph selection with the UCEE (Section 4.3)

Formula and absence of bias of the UCEE (Eq. (4.28) and Eq. (4.30))

From the chordal formula of the MLE (4.27), we get:〈
Σ, K̂m

〉
=
∑
c∈Cm

〈
Σcc, (Scc)

−1
〉
−
∑
p∈Pm

〈
Σpp, (Spp)

−1
〉
. (4.44)

Under the assumption that n > |c|max + 1, we can take the expectation of the inverse Wishart
matrices in that relation and prove Eq. (4.28):

E
[〈

Σ, K̂m

〉]
=
∑
c∈Cm

〈
Σcc,

n

n− |c| − 1
(Σcc)

−1

〉
−
∑
p∈Pm

〈
Σpp,

n

n− |p| − 1
(Σpp)

−1

〉

=
∑
c∈Cm

n |c|
n− |c| − 1

−
∑
p∈Pm

n |p|
n− |p| − 1

=: f(m) .

We use this f(m) as our bias correction term to define the UCEE:

Hm = H
(
S, Σ̂m

)
+

1

2
(f(m)− p) ≡ H

(
S, Σ̂m

)
+

1

2
f(m) .

Using the definition of f(m) and the fact that H
(

Σ, Σ̂m

)
= H

(
S, Σ̂m

)
+ 1

2 (
〈

Σ, K̂m

〉
−p), we prove

Eq. (4.30), the absence of bias property of the UCEE:

E
[
Hm −H

(
Σ, Σ̂m

)]
=

1

2

(
f(m)− E

[〈
Σ, K̂m

〉])
= 0 .

Controls on the UCEE solutions (Eq. (4.31), (4.32) and (4.33))

By definition (4.12) of m̂ we get a control (4.45). Note that Since m̂ is a random variable E
[〈

Σ, K̂m̂

〉]
6=

f(m̂), but instead: f(m̂) =
〈

Σ,E
[
K̂m

] ∣∣
m=m̂

〉
.

∀m ∈M, H
(

Σ, Σ̂m̂

)
≤ H

(
Σ, Σ̂m

)
+

1

2

(〈
Σ, K̂m̂

〉
− f(m̂)

)
− 1

2

(〈
Σ, K̂m

〉
− f(m)

)
. (4.45)

From (4.45) we can get two controls: one with the best expected score of any fixed model: min
m∈M

E
[
H
(

Σ, Σ̂m

)]
,

an another with the best score on the data min
m∈M

H
(

Σ, Σ̂m

)
= H

(
Σ, Σ̂m̂∗

)
. For the first result,

recall that ∀m ∈ M, E
[〈

Σ, K̂m

〉]
= f(m), then by taking the expectation in (4.45), we get both

Eq. (4.31) and Eq. (4.32):
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)]
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1
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〉
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E
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H
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2
E
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〉
− f(m̂)

]
E
[
H
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E
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H
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2
E
[
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(〈
Σ, K̂m

〉
− f(m)

)]
E
[
H
(

Σ, Σ̂m̂

)]
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m∈M

E
[
H
(
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+

1

2
E
[
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m∈M

∣∣∣〈Σ, K̂m

〉
− f(m)

∣∣∣]
E
[
H
(

Σ, Σ̂m̂

)]
≤ min
m∈M

E
[
H
(

Σ, Σ̂m

)]
+

1

2
E
[

max
m∈M

∣∣∣〈Σ, K̂m − E
[
K̂m

]〉∣∣∣] .
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To prove the control with the best model, Eq. (4.33), with fixed data m̂∗, we apply (4.45) to m = m̂∗:
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〈
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∣∣∣+
1

2
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〉
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∣∣∣
H
(

Σ, Σ̂m̂

)
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(
Σ, Σ̂m̂∗

)
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m∈M

∣∣∣〈Σ, K̂m

〉
− f(m)

∣∣∣
E
[
H
(

Σ, Σ̂m̂

)]
≤ E

[
H
(

Σ, Σ̂m̂∗
)]

+ E
[

max
m∈M

∣∣∣〈Σ, K̂m

〉
− f(m)

∣∣∣]
E
[
H
(

Σ, Σ̂m̂

)]
≤ E

[
H
(

Σ, Σ̂m̂∗
)]

+ E
[

max
m∈M

∣∣∣〈Σ, K̂m − E
[
K̂m

]〉∣∣∣] .
Order of the controls (Eq. (4.34) and (4.35))

We start by showing the following lemma for a standard inverse Wishart distribution:

Lemma 4.8.3. Let nW ∼ Wp (Ip, n) p follow a centred Wishart distribution. Then:

V ar
[
tr
(
W−1

)]
=

2n2(n− 1)p

(n− p)(n− p− 1)2(n− p− 3)
. (4.46)

Proof. Let D = diag(W−1) ∈ Rp be the vector of diagonal coefficients of W−1. Then tr
(
W−1

)
=

1T .D, and:

V ar
[
tr
(
W−1

)]
= V ar

[
1T .D

]
= 1T .Cov(D).1

=
∑

i,j∈J1,pK2
Cov(Di, Dj) .

Since W−1

n ∼ W−1
p (Ip, n) is an inverse Wishart, we have the formula:

Cov(Di, Dj) = n2 2 + 2(n− p− 1)1i=j
(n− p)(n− p− 1)2(n− p− 3)

.

Then:

V ar
[
tr
(
W−1

)]
=

∑
i,j∈J1,pK2

n2 2 + 2(n− p− 1)1i=j
(n− p)(n− p− 1)2(n− p− 3)

= 2n2p
p+ (n− p− 1)

(n− p)(n− p− 1)2(n− p− 3)

=
2n2(n− 1)p

(n− p)(n− p− 1)2(n− p− 3)
.

Theorem 4.8.4. If n > |c|max + 3, then:

E
[

max
m∈M

∣∣∣〈Σ, K̂m − E
[
K̂m

]〉∣∣∣] ≤ ∑
c∈Cmax

√
2n3

√
|c|

(n− |c| − 3)2
+

∑
p∈Pmax

√
2n3

√
|p|

(n− |p| − 3)2
. (4.47)
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Proof. For any m ∈M, we have, from (4.44):

∣∣∣〈Σ, K̂m − E
[
K̂m

]〉∣∣∣ =

∣∣∣∣∣∣
∑
c∈Cm

〈
Σcc, (Scc)

−1 − E
[
(Scc)

−1
]〉
−
∑
p∈Pm

〈
Σpp, (Spp)

−1 − E
[
(Spp)

−1
]〉∣∣∣∣∣∣

≤
∑
c∈Cm

∣∣∣〈Σcc, (Scc)
−1 − E

[
(Scc)

−1
]〉∣∣∣+

∑
p∈Pm

∣∣∣〈Σpp, (Spp)
−1 − E

[
(Spp)

−1
]〉∣∣∣

≤
∑

c∈Cmax

∣∣∣〈Σcc, (Scc)
−1 − E

[
(Scc)

−1
]〉∣∣∣+

∑
p∈Pmax

∣∣∣〈Σpp, (Spp)
−1 − E

[
(Spp)

−1
]〉∣∣∣ .

Since this is true for any model m, we have:

max
m∈M

∣∣∣〈Σ, K̂m − E
[
K̂m

]〉∣∣∣ ≤ ∑
c∈Cmax

∣∣∣〈Σcc, (Scc)
−1 − E

[
(Scc)
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]〉∣∣∣+ ∑

p∈Pmax

∣∣∣〈Σpp, (Spp)
−1 − E

[
(Spp)

−1
]〉∣∣∣ .

The sets Cmax and Pmax are not random variables, meaning that the expectation symbol can enter
the sums:

E
[

max
m∈M

∣∣∣〈Σ, K̂m − E
[
K̂m

]〉∣∣∣] ≤ ∑
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E
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E
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(Spp)
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]〉∣∣∣] . (4.48)

We control each term of the sums separately with Jensen’s Inequality:

E
[∣∣∣〈Σcc, (Scc)

−1 − E
[

(Scc)
−1 ]〉∣∣∣] ≤ E

[〈
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] 1

2

.

Which can be rewritten with the trace instead of the scalar product:

E
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[(
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(4.49)
We have:
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2
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.
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− 1
2

cc . Since nScc ∼ Wp (Σcc, n) |c|, then nW ∼ Wp

(
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)
|c|. Then (4.49)

becomes:
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=
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2

,

where we applied the previous lemma. We can plug this result in (4.48) to get:

E
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) 1
2

≤
∑
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(4.50)
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In the end, we directly apply this theorem to the controls (4.32) and (4.33) to get the upper
bounds (4.34) and (4.35) of their orders:
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[
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√
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√
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√
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.
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Chapter 5

Deterministic Approximate EM
algorithm; Application to the
Riemann approximation EM and
the tempered EM

This Chapter has been submitted for review.

The Expectation Maximisation (EM) algorithm is widely used to optimise non-convex likeli-
hood functions with hidden variables. Many authors modified its simple design to fit more specific
situations. For instance the Expectation (E) step has been replaced by Monte Carlo (MC) approxi-
mations, Markov Chain Monte Carlo approximations, tempered approximations... Most of the well
studied approximations belong to the stochastic class. By comparison, the literature is lacking when
it comes to deterministic approximations. In this paper, we introduce a theoretical framework, with
state of the art convergence guarantees, for any deterministic approximation of the E step. We
analyse theoretically and empirically several approximations that fit into this framework. First, for
cases with intractable E steps, we introduce a deterministic alternative to the MC-EM, using Rie-
mann sums. This method is easy to implement and does not require the tuning of hyper-parameters.
Then, we consider the tempered approximation, borrowed from the Simulated Annealing optimisa-
tion technique and meant to improve the EM solution. We prove that the the tempered EM verifies
the convergence guarantees for a wide range of temperature profiles. We showcase empirically how
it is able to escape adversarial initialisations. Finally, we combine the Riemann and tempered ap-
proximations to accomplish both their purposes, and prove that the resulting algorithm still benefits
from the convergence guarantees.

5.1 Introduction

The Expectation Maximisation (EM) algorithm was introduced by Dempster et al [36] to maximise
likelihood functions g(θ) defined from inherent hidden variables z that were non-convex and had
intricate gradients and Hessians. In addition to presenting the method, Dempster et al [36] provides
convergence guarantees on the sequence of estimated parameters {θn}n, namely that it converges
towards a critical point of the likelihood function. More convergence guarantees were studied by
Boyles [16]. Some likelihood functions are too complex to apply Dempster’s raw version of the EM.
As a consequence, authors of later works have proposed alternative versions, usually with new con-
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vergence guarantees. On the one hand, when the maximisation step (M step) is problematic, other
optimisation methods such as coordinate descent [169] or gradient descent [90] have been proposed.
On the other hand, several works introduce new versions of the algorithm where the expectation
step (E step), which can also be intractable, is approximated. Most of them rely on Monte Carlo
(MC) methods and stochastic approximations to estimate this expectation. Notable examples in-
clude Delyon, Lavielle and Moulines [33] with the SAEM, Wei and Tanner [166] for the MC-EM,
Fort and Moulines [49], the MCMC-EM, Khun and Lavielle [87], the MCMC-SAEM, and Chevalier
and Allassonnière [2] for the Approximate SAEM. All these variants come with their own theoretical
convergence guarantees for the models of the exponential family. These stochastic approximations
constitute an extensive catalogue of methods. Indeed, there are many possible variants of MCMC
samplers that can be considered, as well as the additional parameters, such as the “burn-in” period
length and the gain sequence decrease, that have to be set. All these choices have an impact on
the convergence of the EM and making the appropriate one for each problem can be overwhelming,
see [15, 96, 97], among others, for discussions on tuning the MC-EM alone. On several cases, one
might desire to dispose of a simpler method, possibly non-stochastic, and non-parametric to run
an “EM-like” algorithm for models with no closed forms. However the literature is lacking in that
regards. The Quasi-Monte Carlo EM, introduced by Pan and Thompson [126], is a deterministic
version of Monte Carlo EM, however theoretical guarantees are not provided. In that vein, Jank [73]
introduces the randomised Quasi-Monte Carlo EM, which is not deterministic, and does not have
theoretical guarantees either.
Other types of deterministic approximations of the E step have been proposed with the aim to im-
prove the solutions of the algorithm. One notable example is the tempering (or “annealing”) of the
conditional probability function. Instead of making the problem tractable, the tempering approxi-
mation is used to find better local maxima of the likelihood profile during the optimisation process,
in the spirit of the simulated annealing [82] and parallel tempering (annealing MCMC) [53, 149].
The deterministic annealing EM was introduced by Ueda and Nakano [156] with a decreasing tem-
perature profile; another temperature profile was proposed in [120]. Contrary to most of the studies
on stochastic approximations, these two works do not provide theoretical convergence guarantees for
the proposed tempered methods. Which, as a consequence, does not provide insight on the choice
of the temperature scheme. Moreover, the tempered methods do not allow the use of the EM in
case of an intractable E step. In their tempered SAEM algorithm, Chevallier and Allassonnière [2]
combine the stochastic and tempering approximations, which allows the EM to run, even with an
intractable E step, while benefiting from the improved optimisation properties brought by the tem-
pering. In addition, theoretical convergence guarantees are provided. However, this method is once
again stochastic and parametric.
Overall, most of the literature on approximated E steps focuses on stochastic approximations that
estimate intractable conditional probability functions. The few purely deterministic approximations
proposed, such as the tempered/annealed EM, are used for other purposes, improving the optimi-
sation procedure, and lack convergence guarantees.
In this paper, we propose a new, unified class of EM with deterministic approximations of the E
step. We prove that members of this class benefit from the state of the art theoretical convergence
guarantees of [33,90,169], under mild regularity conditions on the approximation. Then, we provide
examples of approximations that fall under this framework and have practical applications. First,
for E steps without closed form, we propose to use Riemann sums to estimate the intractable nor-
malising factor. This “Riemann approximation EM” is a deterministic, less parametric, alternative
to the MC-EM and its variants. Second, we prove that the deterministic annealed EM (or “tempered
EM”) of [156] is a member of our general deterministic class as well. We prove that the convergence
guarantees are achieved with almost no condition of the temperature scheme, justifying the use of a
wider range of temperature profile than those proposed in [156] and [120]. Finally, since the Riemann
and tempered approximations are two separate methods that fulfil very different practical purposes,
we also propose to associate the two approximations in the “tempered Riemann approximation EM”
when both their benefits are desired.
In section 5.2, we introduce our general class of deterministic approximated versions of the EM
algorithm and prove their convergence guarantees, for models of the exponential family. We discuss
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the “Riemann approximation EM” in section 5.3, the “tempered EM” in section 5.4, and their as-
sociation, “tempered Riemann approximation EM”, in section 5.5.
We demonstrate empirically that the Riemann EM converges properly on a model with and an in-
tractable E step, and that adding the tempering to the Riemann approximation allows in addition to
get away from the initialisation and recover the true parameters. On a tractable Gaussian Mixture
Model, we compare the behaviours and performances of the tempered EM and the regular EM.
In particular, we illustrate that the tempered EM is able to escape adversarial initialisations, and
consistently reaches better values of the likelihood than the unmodified EM, in addition to better
estimating the model parameters.

5.2 Deterministic Approximate EM algorithm and its con-
vergence for the curved exponential family

5.2.1 Context and motivation

In this section, we propose a new class of deterministic EM algorithms with approximated E step.
This class of algorithms is general and includes both methods that estimate intractable E steps
as well as methods that strive to improve the algorithm’s solution. We prove that members of
this class benefit from the same convergence guarantees that can be found in the state of the art
references [33, 90, 169] for the classical EM algorithm, and under similar model assumptions. The
only condition on the approximated distribution being that it converges towards the real conditional
probability distribution with a certain l2 regularity. Like the authors of [2, 33, 49], we work with
probability density functions belonging to the curved exponential family. The specific properties of
which are given in the hypothesis M1 of theorem 5.2.1.

The general framework of the EM is the following: a random variable x has a probability density
function with natural parameter θ ∈ Θ ⊂ Rl. We observe independent and identically distributed
(iid) realisations of the distribution: (x1, ..., xn) and wish to maximise with respect to θ the resulting
likelihood, which is noted g(θ). In the notations and the discourse, we mostly ignore x as a variable
since the observations (x1, ..., xn) are supposed fixed throughout the reasoning. We assume there
exists a hidden variable z informing the behaviour of the observed variable x such that g(θ) is the
integral of the complete likelihood h(z; θ): g(θ) =

∫
z
h(z; θ)µ(dz), with µ the reference measure. The

conditional density function of z is then pθ(z) := h(z; θ)/g(θ).
The foundation of the EM algorithm is that while ln g(θ) is hard to maximise in θ, the functions
θ 7→ ln h(z; θ) and even θ 7→ Ez [ln h(z; θ)] are easier to work with because of the information added
by the hidden variable z (or its distribution). In practice however, the actual value of z is unknown
and its distribution pθ(z) dependent on θ. Hence, the EM was introduced in [36] as the two-stages
procedure starting from an initial point θ0 and iterated over the number of steps n:

(E) With the current parameter θn, calculate the conditional probability pθn(z);

(M) To get θn+1, maximise in θ ∈ Θ the function θ 7→ Ez∼pθn (z) [ln h(z; θ)];

Which can be summarised as:

θn+1 := T (θn) := argmax
θ∈Θ

Ez∼pθn (z) [ln h(z; θ)] . (5.1)

Where we call T the point to point map in Θ corresponding to one EM step. We will not redo the
basic theory of the exact EM here, but this procedure noticeably increase g(θn) at each new step n.
However, in some cases, one may prefer or have to use an approximation of pθn(z) instead of the exact
analytical value. The authors of [2,33,49,87] for instance cannot compute this probability in closed
form and resort to stochastic approximation instead. The authors of [120, 156] use a deterministic
tempered approximation to reach better critical points. Finally the authors of [2] combine the two
approaches, with a stochastic tempered approximation.
In the following, we consider a deterministic approximation of pθ(z) noted p̃θ,n(z) which depends
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on the current step n and on which we make no assumption at the moment. The resulting steps,
defining the “Approximate EM”, can be written under the same form as eq. (5.1):

θn+1 := Fn(θn) := argmax
θ∈Θ

Ez∼p̃θn,n(z) [ln h(z; θ)] . (5.2)

Where {Fn}n∈N is the sequence of point to point maps in Θ associated with the sequence of ap-
proximations {p̃θ,n(z)}n∈N. As done in [49] with their stochastic approximation, we add a slight
modification in order to ensure the desired convergence guarantees: truncation with increasing com-
pact sets. Assume that you dispose of an increasing sequence of compacts {Kn}n∈N such that
∪n∈NKn = Θ and θ0 ∈ K0. Define j0 := 0. Then, the transition θn+1 = Fn(θn) is accepted only if
Fn(θn) belongs to the current compact Kjn , otherwise the sequence is reinitialised at θ0. The steps
of this algorithm, called “Stable Approximate EM”, can be written as:{

ifFn(θn) ∈ Kjn , then θn+1 = Fn(θn), and jn+1 := jn

ifFn(θn) /∈ Kjn , then θn+1 = θ0, and jn+1 := jn + 1
(5.3)

This re-initialisation of the EM sequence may seem like a hurdle, however, this truncation is mostly
a theoretical requirement. In practice, the first compact K0 is taken so large that it covers the most
probable areas of Θ and the algorithms eq. (5.2) and eq. (5.3) are identical as long as the sequence
{θn}n does not diverge towards the border of Θ.

5.2.2 Theorem

In the following, we will state the convergence theorem of Equation (5.3) and provide a brief de-
scription of the main steps of the proof.

Theorem 5.2.1 (Convergence of the Stable Approximate EM). Let {θn}n∈N be a sequence of the
Stable Approximate EM defined in Equation (5.3). Let us assume two sets of hypotheses:

• The M1− 3 conditions of [49].

M1. Θ ⊆ Rl, X ⊆ Rd and µ is a σ-finite positive Borel measure on X . Let ψ : Θ → R,
φ : Θ→ Rq and S : X → S ⊆ Rq. Define L : S ×Θ→ R and h : X ×Θ→ R+ \ {0}:

L(s; θ) := ψ(θ) + 〈s, φ(θ)〉 , h(z; θ) := exp(L(S(z); θ)) .

M2. Assume that

(a*) ψ and φ are continuous on Θ;

(b) for all θ ∈ Θ, S̄(θ) :=
∫
z
S(z)pθ(z)µ(dz) is finite and continuous on Θ;

(c) there exists a continuous function θ̂ : S → Θ such that for all s ∈ S, L(s; θ̂(s)) =
sup
θ∈Θ

L(s; θ);

(d) g is positive, finite and continuous on Θ and, for any M > 0, the level set
{θ ∈ Θ, g(θ) ≥M} is compact.

M3. Assume either that:

(a) The set g(L) is compact or

(a′) for all compact sets K ⊆ Θ, g (K ∩ L) is finite.

• The conditions on the approximation. Assume that p̃θ,n(z) is deterministic. Let S(z) =
{Si(z)}i=1,...,q. For all indices i, for any compact set K ⊆ Θ, one of the two following config-
urations holds: ∫

z

S2
i (z)dz <∞ and sup

θ∈K

∫
z

(p̃θ,n(z)− pθ(z))2
dz −→

n∞
0 . (5.4)

Or

sup
θ∈K

∫
z

S2
i (z)pθ(z)dz <∞ and sup

θ∈K

∫
z

(
p̃θ,n(z)

pθ(z)
− 1

)2

pθ(z)dz −→
n∞

0 . (5.5)
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Then,

(i) (a) With probability 1, lim
n∞

jn <∞ and sup
n∈N
‖θn‖ <∞;

(b) g(θn) converges towards a connected component of g(L).

(ii) If, additionally, g
(
L ∩ Cl

(
{θn}n∈N

))
has an empty interior, then:

g(θn) −→
n∞

g∗ ,

d(θn,Lg∗) −→
n∞

0 .

Where L := {θ ∈ Θ|∇g(θ) = 0} and Lg∗ := {θ ∈ L|g(θ) = g∗} .
Remark. • M2(a) is modified with regards to [49], we remove the hypothesis that S has to be a

continuous function of z that is not needed when the approximation is not stochastic. We call
M2 (a*) this new sub-hypothesis.

• The condition
∫
z
S2
i (z)dz <∞ of the condition eq. (5.4) can seem hard to verify since S is not

integrated against a probability function. However, when z is a finite variable, as is the case
for finite mixtures, this integral becomes a finite sum.

• The two sufficient conditions eq. (5.4) and eq. (5.5) involve a certain form of integral l2 conver-
gence of p̃θ,n towards pθ. If the hidden variable z is continuous, this excludes countable (and
finite) approximations such as sums of Dirac functions, since they have a measure of zero. In
particular, this excludes Quasi-Monte Carlo approximations. However, one look at the proof
of the theorem (in section 5.6.1) or at the following sketch of proof reveals that having for any

compact set K, sup
θ∈K

∥∥∥S̃n(θ)− S̄(θ)
∥∥∥ −→
n∞

0 is actually a sufficient condition to benefit from the

results of theorem 5.2.1. This condition can be verified by finite approximations.

5.2.3 Sketch of proof

The detailed proof of this results can be found in section 5.6.1, we propose here a abbreviated version
where we highlight the key steps.
The proof of theorem 5.2.1 follows the same steps as the proof of theorem 3 in [49]. theorem 5.2.1
is the direct consequence of the application of two intermediary propositions introduced and proven
in [49]. They are called Propositions 9 and 11 by the authors, and are stated as follows:

Proposition 6 (“Proposition 9”). Let Θ ⊆ Rl,K compact ⊂ Θ,L ⊆ Θ such that L ∩K compact.
Let us assume

• WC0 Lyapunov function with regards to (T,L).

• ∃un ∈ KN such that |W (un+1)−W ◦ T (un)| −→
n∞

0

Then

• {W (un)}n∈N converges towards a connected component of W (L ∩K)

• If W (L∩K) has an empty interior, then {W (un)}n converges towards w∗ and {un}n converges
towards the set Lw∗ ∩K

Lw∗ = {θ ∈ L|W (θ) = w∗}

Proposition 7 (“Proposition 11”). Let Θ ⊆ Rl, T and {Fn}n point to point maps on Θ. Let
{θn}n be the sequence defined by the Stable Approximate EM with likelihood g and approximate
maps sequence {Fn}n. Let L ⊂ Θ. We assume
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• the A1− 2 conditions of Proposition 10 of [49].

– (A1) There exists W , a C0 Lyapunov function with regards to (T,L) such that ∀M >
0, {θ ∈ Θ,W (θ) > M} is compact, and:

Θ = ∪n∈N
{
θ ∈ Θ|W (θ) > n−1

}
.

– (A2) W (L) is compact OR (A2’) W (L ∩K) is finite for all compact K ⊆ Θ.

• ∀u ∈ K0, lim
n∞
|W ◦ Fn −W ◦ T |(u) = 0

• ∀ compact K ⊆ Θ, lim
n∞
|W ◦ Fn(un)−W ◦ T (un)|1un∈K = 0

Then
With probability 1, limsup

n∞
jn <∞ and {un}n compact sequence

For the proofs of these two results, see [49]. The proof of theorem 5.2.1 is structured as follows:
verifying the conditions of proposition 7, applying proposition 7, verifying the conditions of propo-
sition 6 and finally applying proposition 6.

Verifying the conditions of proposition 7. We first make explicit which object of our model
plays which part in the Proposition. Let g be the likelihood function of a model of the curved
exponential family.

• The set of its critical points is called L: L := {θ ∈ Θ|∇g(θ) = 0}.

• We call T the point to point map describing the transition between θn and θn+1 in the exact
EM algorithm, that is to say T := θ̂ ◦ S̄.

• The general properties of the EM tell us that its stationary points are the critical points of g:
L = {θ ∈ Θ|T (θ) = θ}. Additionally, we have that g is a C0 Lyapunov function associated to
(T,L), hence it is fit to play the part of W from proposition 7.

• Let {θn}n be the sequence defined by the Stable Approximate EM, and {Fn}n the correspond-
ing sequence of point to point maps.

With this setup, the assumptions M1-3 of theorem 5.2.1 directly imply that A1 and A2 or A2’ are
verified.

We need to prove that the last two conditions for proposition 7 are verified:

∀θ ∈ K0, lim
n∞
|g ◦ Fn − g ◦ T |(θ) = 0 , (5.6)

∀ compact K ⊆ Θ, lim
n∞
|g ◦ Fn(θn)− g ◦ T (θn)|1θn∈K = 0. (5.7)

We denote S̃n(θn) the approximated E step in the Stable Approximate EM (so that Fn = θ̂ ◦ S̃n).
By using uniform continuity properties on compacts, we first obtain that

∀ compact K, sup
θ∈K

∥∥∥S̃n(θ)− S̄(θ)
∥∥∥ −→
n∞

0 , (5.8)

is a sufficient condition to obtain both eq. (5.6) and eq. (5.7), and conclude that we can apply
proposition 7. Writing S̃n and S̄ as integrals in z makes it clear that the two hypothesis eq. (5.4)
and eq. (5.5) of theorem 5.2.1 are both sufficient to have eq. (5.8). Which concludes this section of
the Proof.

Applying proposition 7. Since we verify all the condition of proposition 7, we can apply its
conclusion:

With probability 1, limsup
n∞

jn <∞ and {θn}n compact sequence ,
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which is specifically the result (i)(a) of theorem 5.2.1.

Verifying the conditions of proposition 6. With proposition 6, we prove the remaining points
of theorem 5.2.1: (i)(b) and (ii).
For the application of proposition 6:

• Cl ({θn}n) plays the part of the compact K

• {θ ∈ Θ|∇g(θ) = 0} = {θ ∈ Θ|T (θ) = θ} plays the part of the set L

• The likelihood g is the C0 Lyapunov function with regards to (T,L)

• {θn}n is the K valued sequence (since K is Cl ({θn}n)).

The last condition that remains to be shown to apply proposition 6 is that:

lim
n∞
|g(θn+1)− g ◦ T (θn)| = 0 .

We have more or less already proven that, in the previous section, with Fn(θn) in place of θn+1. The
only indices where Fn(θn) 6= θn+1 are when the value of the sequence jn experiences an increment
of 1.

|g(θn+1)− g ◦ T (θn)| = |g(θ0)− g ◦ T (θn)|1jn+1=jn+1 + |g ◦ Fn(θn)− g ◦ T (θn)|1jn+1=jn .

We have proven with proposition 7 that there is only a finite number of such increments and that
Cl({θk}k) is a compact. Since θn is always in Cl({θk}k) by definition, we can apply to K :=
Cl({θk}k) the result:

∀ compact K ⊆ Θ, lim
n∞
|g ◦ Fn(θn)− g ◦ T (θn)|1θn∈K = 0 ,

that we proved in order to verify proposition 7, and get the needed condition:

lim
n∞
|g(θn+1)− g ◦ T (θn)| = 0 .

Applying proposition 6 Since we verify all we need to apply the conclusions of proposition 6:

• {g(θn)}n∈N converges towards a connected component of g(L ∩ Cl({θn}n)) ⊂ g(L).

• If g(L ∩ Cl({θn}n)) has an empty interior, then {g(θn)}n∈N converges towards a g∗ ∈ R and
{θn}n converges towards Lg∗ ∩ Cl({θn}n). Where Lg∗ := {θ ∈ L|g(θ) = g∗}

Which are both respectively exactly (i)(b) and (ii) of theorem 5.2.1 and concludes the proof of the
theorem.

5.3 Riemann approximation EM

5.3.1 Context and motivation

In this section, we introduce one specific case of Approximate EM useful in practice: approximating
the conditional probability density function pθ(z) at the E step by a Riemann sum, in the scenario
where the hidden variable z is continuous and bounded. We call this procedure the “Riemann ap-
proximation EM”. After motivating this approach, we prove that it is an instance of the Approximate
EM algorithm and verifies the hypotheses of theorem 5.2.1, therefore benefits from the convergence
guarantees.
When the conditional probability pθ(z) is a continuous function, and even if h(z; θ) can be computed
point by point, a closed form may not exist for the re-normalisation term g(θ) =

∫
z
h(z; θ)dz. In

that case, this integral is usually approximated stochastically with a Monte Carlo estimation, see for
instance [2,33,49]. When the dimension is reasonably small, a deterministic approximation through
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Riemann sums can also be performed. Unlike the stochastic methods, which often require to define
and tune a Markov Chain, the Riemann approximation involves almost no parameter. The user
only needs to choose the position of the Riemann intervals, a choice which is very guided by the well
known theories of integration (Lagrange, Legendre...).
We introduce the Riemann approximation as a member of the Approximate EM class. Since z is
supposed bounded in this section, without loss of generality, we will assume that z is a real vari-
able and z ∈ [0, 1]. We recall that pθ(z) = h(z; θ)/g(θ) = h(z; θ)/

∫
z
h(z; θ)dz. Instead of using

the exact joint likelihood h(z; θ), we define a sequence of step functions
{
h̃n

}
n∈N∗

as: h̃n(z; θ) :=

h(bϕ(n)zc/ϕ(n); θ). Where ϕ is a strictly increasing function from N∗ → N∗, so that ϕ(n) −→
n→∞

∞.

For the sake of simplicity, we will take ϕ = Id, hence h̃n(z; θ) = h(bnzc/n; θ). The following re-
sults, however, can be applied to any strictly increasing function ϕ. With these steps functions,
the re-normalising factor g̃n(θ) :=

∫
z
h̃n(z; θ)dz is now a finite sum: g̃n(θ) = 1

n

∑n−1
k=0 h(bkzc/n; θ).

The approximate conditional probability p̃n(θ) is then naturally defined as: p̃n(θ) := h̃n(z; θ)/g̃n(θ).
Thanks to the replacement of the integral by the finite sum, this deterministic approximation is
much easier to compute than the real conditional probability.

5.3.2 Theorem and proof

We state and prove the following theorem for the convergence of the EM with a Riemann approxi-
mation.

Theorem 5.3.1. Under conditions M1 − 3 of theorem 5.2.1, and when z is bounded, the (Stable)

Approximate EM with p̃n,θ(z) := h(bnzc/n;θ)∫
z′ h(bnz′c/n;θ)dz′

, which we call “Riemann approximation EM”,

verifies the remaining conditions of applicability of theorem 5.2.1 as long as z 7→ S(z) is continuous.

Proof. This is the detailed proof of theorem 5.3.1.
The conditions M1 − 3 on the model are already assumed to be verified. In order to apply theo-
rem 5.2.1, we need to verify either Equation (5.4) or eq. (5.5). Here, with z 7→ S(z) continuous, we
prove Equation (5.4):∫

z

S2
i (z)dz <∞ and ∀compact K ⊆ Θ, sup

θ∈K

∫
z

(p̃θ,n(z)− pθ(z))2
dz −→

n∞
0 .

Since z is bounded (and assumed to be in [0, 1] for simplicity) and S is continuous, the first part of

the condition is easily verified:
∫ 1

z=0
S2
i (z)dz <∞. Only the second part remains to be proven.

First we note that h(z; θ) = exp(ψ(θ) + 〈S(z), φ(θ)〉) is continuous in (z, θ), hence uniformly contin-
uous on the compact set [0, 1]×K. Additionally, we have:

0 < m := min
(z,θ)∈[0,1]×K

h(z; θ) ≤ h(z; θ) ≤ max
(z,θ)∈[0,1]×K

h(z; θ) =: M <∞ .

Where m and M are constants independent of z and θ. This also means that m ≤ g(θ) =∫ 1

z=0
h(z; θ) ≤ M . Moreover, since h̃n(z; θ) = h (bnzc/n; θ), then we also have ∀z ∈ [0, 1] , θ ∈

K,n ∈ N, m ≤ h̃n(z; θ) ≤M and m ≤ g̃n(θ) =
∫ 1

z=0
h̃n(z; θ) ≤M .

Since h is uniformly continuous, ∀ε > 0,∃δ > 0,∀(z, z′) ∈ [0, 1]
2
, (θ, θ′) ∈ K2:

|z − z′| ≤ δ and ‖θ − θ′‖ ≤ δ =⇒ |h(z; θ)− h(z′; θ′)| ≤ ε .

By definition, bnzc/n− z ≤ 1/n. Hence ∃N ∈ N,∀n ≥ N, bnzc /n− z ≤ δ. As a consequence:

∀ε > 0,∃N ∈ N,∀n ≥ N, ∀(z, θ) ∈ [0, 1]×K,
∣∣∣h(z; θ)− h̃n(z; θ)

∣∣∣ ≤ ε .
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In other words, {h̃n}n converges uniformly towards h. Let ε be given, we assume that n ≥ N , then
∀(z, θ) ∈ [0, 1]×K:

p̃θ,n(z)− pθ(z) =
h̃n(z; θ)∫

z
h̃n(z; θ)dz

− h(z; θ)∫
z
h(z; θ)dz

=
h̃n(z; θ)− h(z; θ)∫

z
h̃n(z; θ)dz

+ h(z; θ)

∫
z

(
h(z; θ)− h̃n(z; θ)

)
dz∫

z
h(z; θ)dz

∫
z
h̃n(z; θ)dz

≤ ε

m
+M

ε

m2

= ε
m+M

m2
.

Hence:

∀n ≥ N, sup
θ∈K

∫ 1

z=0

(p̃θ,n(z)− pθ(z))2
dz ≤ ε2

(
m+M

m2

)2

,

By definition, this means that sup
θ∈K

∫ 1

z=0
(p̃θ,n(z)− pθ(z))2

dz −→
n∞

0. The last hypothesis needed to

apply theorem 5.2.1. Which concludes the proof.

5.3.3 Application to a Gaussian model with the Beta prior

We demonstrate the interest of the method on an example with a continuous bounded random
variable following a Beta distribution z ∼ Beta(α, 1), and an observed random variable following
x ∼ N (λz, σ2). In other words, with ε ∼ N (0, 1) independent of z:

x = λz + σε .

This results in a likelihood belonging to the exponential family:

h(z; θ) =
αzα−1

√
2πσ2

exp

(
− (x− λz)2

2σ2

)
.

Since z is bounded, and everything is continuous in the parameter (α, λ, σ2), this model easily verifies

each of the conditions M1-3. The E step with this model involves the integral
∫
z
zαexp

(
− (x−λz)2

2σ2

)
dz,

a fractional moment of the Gaussian distribution. Theoretical formulas exists for these moments,
see [168], however they involve Kummer’s confluent hypergeometric functions, which are infinite
series. Instead, we use the Riemann approximation to run the EM algorithm with this model:
h̃n(z; θ) := h(bϕ(n)zc/ϕ(n); θ). As done previously, we take, without loss of generality, ϕ(n) := n
for the sake of simplicity. The E step only involves the n different values taken by the step function
probabilities h(bnzc/n; θ):

p̃
(i)
θ,n

(
k

n

)
=

h(i)( kn ; θ)
1
n

∑n−1
l=0 h

(i)( ln ; θ)
.

Where the exponent (i) indicates the index of the observation xi. The M step is then written as:

α̂ =
1

N

N∑
i=1

n−1∑
k=0

p̃
(i)
θ,n

(
k

n

)∫ (k+1)/n

z=k/n

ln(z)dz ,

λ̂ =

∑N
i=1

∑n−1
k=0 p̃

(i)
θ,n

(
k
n

) ∫ (k+1)/n

z=k/n
xizdz∑N

i=1

∑n−1
k=0 p̃

(i)
θ,n

(
k
n

) ∫ (k+1)/n

z=k/n
z2dz

,

σ̂2 =
1

N

N∑
i=1

n−1∑
k=0

p̃
(i)
θ,n

(
k

n

)
λ̂2

∫ (k+1)/n

z=k/n

(
z − xi

λ̂

)2

dz .

(5.9)
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Where N is the total number of observations: x := (x1, ..., xN ) iid. We test this algorithm on
synthetic data. With real values α = 2, λ = 5, σ2 = 1.5, we generate a dataset with N = 100
observations and run the Riemann EM with random initialisation. This simulation is ran 2000
times. We observe that the Riemann EM is indeed able to increase the likelihood, despite the EM
being originally intractable. On fig. 5.1, we display the average trajectory, with standard deviation,
of the negative log-likelihood −ln (g(θ)) during the Riemann EM procedure. The profile is indeed
decreasing. The standard deviation around the average value is fairly high, since each run involves a
different dataset and a different random initialisation, hence different value of the likelihood, but the
decreasing trend is the same for all of the runs. We also display the average relative square errors
on the parameters at the end of the algorithm. They are all small, with reasonably small standard
deviation, which indicates that the algorithm consistently recovers correctly the parameters.
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Figure 5.1: (Right). Average values, with standard deviation, over 2000 simulations of the negative
log-likelihood along the steps of the Riemann EM. The Riemann EM increases the likelihood. (Left).
Average and standard deviation of the relative parameter reconstruction errors at the end of the
Riemann EM.

5.4 Tempered EM

5.4.1 Context and motivation

In this section, we consider another particular case of Deterministic Approximate EM: the Tem-
pered EM (tmp-EM). We first motivate this algorithm. Then, we prove that under mild conditions,
it verifies the hypothesis of theorem 5.2.1, hence has the state of the art EM convergence guarantees.
In particular, we prove that the choice of the temperature profile is almost completely free.
When optimising a non-convex function, following the gradients leads to one of the local extrema
closest to the initialisation. If the method was allowed to explore more the profile of the function to
be optimised, it would encounter points with better values and areas with stronger gradients missed
because of its early commitment to one of the nearest potential wells.
A very well known way to encourage such an exploratory behaviour is the tempering, also called

annealing. In its simplest form, the function to optimised g is elevated to the power g
1
Tn , with Tn a

temperature tending towards 1 as the number n of steps of the procedure increases. This manipu-
lation equalises the value of the function in the different points of the space, renders the gradients
less strong, and makes the potential wells less attractive the higher the temperature Tn is. As a
result, the optimisation procedure is not incited to limit itself to its starting region. Additionally,
the general shape of the function g, in particular the hierarchy of values, is still preserved, meaning
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that the early course of the algorithm is still made on a function replicating the reality. As Tn gets
closer to 1, the optimised function becomes identical to g and the potential wells become attractive
again. By this point, the assumption is that the algorithm will be in a better place than it was at
the initialisation.
These concepts are put in application in many state of the art procedures. The most iconic maybe
being the Simulated Annealing, introduced and developed in [1,82,159], where in particular Tn −→ 0
instead of 1. It is one of the few optimisation technique proven to find global optimum of non-convex
functions. The Parallel Tempering (or Annealing MCMC) developed in [53, 71, 149] also makes use
of these ideas to improve the MCMC simulation of a target probability distribution. The idea of ap-
plying a tempering to a classical EM was introduced in the Deterministic Annealed EM of [156] with
a specific decreasing temperature scheme. Another specific, non-monotonous, temperature scheme
was later proposed by [120]. In both cases, theoretical convergence guarantees are lacking. In [2],
tempering is applied to the SAEM, and convergence guarantees are provided with any temperature
scheme for this algorithm.
Here, we introduce the tmp-EM as a specific case of the Approximate EM of section 5.2. We use the

approximated distribution: p̃n,θ(z) := p
1
Tn

θ (z)/
∫
z′
p

1
Tn

θ (z′)dz′ = h(z; θ)
1
Tn /

∫
z′
h(z′; θ)

1
Tn dz′ (renor-

malised to sum to 1). Unlike [156] and [120], we do not specify any temperature scheme Tn, and
prove in the following theorem 5.4.1 that, under very mild conditions on the model, any sequence
{Tn}n ∈ (R∗+)N, Tn −→

n∞
1 guarantees the state of the art convergence.

Remark. Elevating pθ(z) to the power 1
Tn

, as is done here and in [120, 156], is not equivalent to

elevating to the power 1
Tn

the objective function g(θ), which would be expected for a typical annealed

or tempered optimisation procedure. It is not equivalent either to elevating to the power 1
Tn

the
intermediary function Ez∼pθn (z) [h(z; θ)] that is optimised in the M step. Instead, the weights pθn(z)
(or equivalently, the terms h(z; θn)) used in the calculation of Ez∼pθn (z) [h(z; θ)] are the tempered
terms. This still results in the desired behaviour and is only a more “structured” tempering. Indeed,
with this tempering, it is the estimated distribution of the hidden variable z that are made less
unequivocal, with weaker modes, at each step. This forces the procedure to spend more time
considering different configurations for those variables. Which renders as a result the optimised
function Ez∼pθn (z) [h(z; θ)] more ambiguous regarding which θ is the best, just as intended.

5.4.2 Theorem

We now give the convergence theorem for the Approximate EM with the tempering approximation.
In particular, this result highlights that there are almost no constraints on the temperature profile
to achieve convergence.

Theorem 5.4.1. Under conditions M1 − 3 of theorem 5.2.1, the (Stable) Approximate EM with

p̃n,θ(z) :=
p

1
Tn
θ (z)∫

z′ p
1
Tn
θ (z′)dz′

, which we call “Tempered EM”, verifies the remaining conditions of appli-

cability of theorem 5.2.1 as long as Tn −→
n∞

1 and for any compact K ∈ Θ, ∃ε ∈]0, 1[, ∀α ∈ B(1, ε):

• sup
θ∈K

∫
z
pαθ (z)dz <∞

• ∀i ∈ J1, qK, sup
θ∈K

∫
z
S2
i (z)pαθ (z)dz <∞

Where B(1, ε) is the closed ball centered in 1 and with radius ε in R, and the index i of Si(z)
indicates each of the real component of the S(z) ∈ S ⊂ Rq. The conditions on the integrability of
pαθ (z) and S2

i (z)pαθ (z) brought by the tempering are very mild. Indeed, in section 5.4.4, we will show
classical examples that easily verify the much stronger conditions: for any compact K ∈ Θ,∀α ∈ R∗+,

sup
θ∈K

∫
z
pαθ (z)dz <∞ ,

∀i ∈ J1, qK, sup
θ∈K

∫
z
S2
i (z)pαθ (z)dz <∞ .
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5.4.3 Sketch of proof

The detailed proof of theorem 5.4.1 can be found in section 5.6.2, we propose here a abbreviated
version.
In order to apply theorem 5.2.1, we need to verify five conditions. The three inevitable are M1, M2
and M3. The last two can either be that, ∀ compact K ∈ Θ:∫

z

S2
i (z)dz <∞ and sup

θ∈K

∫
z

(p̃θ,n(z)− pθ(z))2
dz −→

n∞
0 .

Or

sup
θ∈K

∫
z

S2
i (z)pθ(z)dz <∞ and sup

θ∈K

∫
z

(
p̃θ,n(z)

pθ(z)
− 1

)2

pθ(z)dz −→
n∞

0 .

The hypothesis of theorem 5.4.1 already include M1, M2, M3 and:

∀ compact K ∈ Θ, ∀i, sup
θ∈K

∫
z

S2
i (z)pθ(z)dz <∞ .

As a result, to apply theorem 5.2.1, it is sufficient to verify that, with the tempering approximation,
we have:

sup
θ∈K

∫
z

(
p̃θ,n(z)

pθ(z)
− 1

)2

pθ(z)dz −→
n∞

0 .

The proof of theorem 5.4.1 revolves around proving this result.

With a Taylor development in
(

1
Tn
− 1
)

, which converges toward 0 when n → ∞, we control the

difference (p̃θ,n(z)− pθ(z))2
:(

pθ(z)
1
Tn∫

z′
pθ(z′)

1
Tn

− pθ(z)

)2

≤ 2

(
1

Tn
− 1

)2

pθ(z)
2

((
ln pθ(z) e

a(z,θ,Tn)
)2

A(θ, Tn)

+B(θ, Tn)

)
.

The terms A(θ, Tn), B(θ, Tn) and a(z, θ, Tn) come from the Taylor development. With the previous
inequality, we control the integral of interest:

∫
z

(
pθ(z)

1
Tn∫

z′ pθ(z′)
1
Tn

− pθ(z)
)2

pθ(z)
dz ≤2

(
1

Tn
− 1

)2

A(θ, Tn)

∫
z

pθ(z)e
2a(z,θ,Tn)ln2 pθ(z)dz

+ 2

(
1

Tn
− 1

)2

B(θ, Tn) .

(5.10)

A(θ, Tn) andB(θ, Tn) have upper bounds involving
∫
z
pθ(z)

1
Tn ln pθ(z). Similarly, the term

∫
z
pθ(z)e

2a(z,θ,Tn)ln2 pθ(z)

is bounded by terms involving
∫
z
pθ(z)

2
Tn
−1ln2 pθ(z)dz.

Thanks to the hypothesis of the theorem, we prove that for any α ∈ B(1, ε) and θ ∈ K the two
terms,

∫
z
pθ(z)

αln pθ(z) and
∫
z
pθ(z)

αln2 pθ(z) are upper bounded by a constant C independent of
θ and α.

Since Tn −→
n 7→∞

1, then when n is large enough, 1
Tn
∈ B(1, ε) and 2

Tn
− 1 ∈ B(1, ε) meaning that

the previous result applies to the three terms A(θ, Tn), B(θ, Tn) and
∫
z
pθ(z)e

2a(z,θ,Tn)ln2 pθ(z)dz:
they are upper bounded by constants C1, C2 and C3 respectively, all independent of θ and Tn.
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The inequality eq. (5.10) then becomes:

∫
z

1

pθ(z)

(
pθ(z)

1
Tn∫

z′
pθ(z′)

1
Tn

− pθ(z)

)2

dz ≤ 2

(
1

Tn
− 1

)2

C1C2 + 2

(
1

Tn
− 1

)2

C3 .

By taking the supremum in θ ∈ K and the limit when n −→∞, we get the desired result:

sup
θ∈K

∫
z

1

pθ(z)

(
pθ(z)

1
Tn∫

z′
pθ(z′)

1
Tn

− pθ(z)

)2

dz −→
n→∞

0 .

5.4.4 Examples of models that verify the conditions

In this section we illustrate that the conditions of theorem 5.4.1 are easily met by common models.
We take two examples, first the Mixture of Gaussian (GMM) where the hidden variables belong
to a finite space, then the Poisson count with random effect, where the hidden variables live in a
continuous space.
In order to apply theorem 5.4.1, we need to verify the conditions

• M1, M2 and M3

• for any compact K ∈ Θ,∃ε ∈]0, 1[,∀α ∈ B(1, ε),

sup
θ∈K

∫
z
pαθ (z)dz <∞ ,

∀i, sup
θ∈K

∫
z
S2
i (z)pαθ (z)dz <∞ .

As previously stated, in both examples, we will actually verify the much stronger conditions: for
any compact K ∈ Θ,∀α ∈ R∗+ :

sup
θ∈K

∫
z

pαθ (z)dz <∞ and ∀i, sup
θ∈K

∫
z

S2
i (z)pαθ (z)dz <∞ .

Gaussian Mixture Model

Despite being one of the most common models the EM is applied to, the GMM have many known
irregularities and pathological behaviours, see [153]. As a consequence none of the convergence
results of the EM and their variants [33, 49, 90, 169] apply to the GMM. The hypothesis that the
GMM fail to verify is the condition that the level lines have to be compact (called M2 (d) in this
Chapter and [49]). In all the previously mentioned papers this hypothesis is used to prove that the
EM sequence stays within a compact. All is not lost however for the GMM, indeed they verify all the
other hypothesis of the convergence theorem (including the new tempering hypothesis introduced in
theorem 5.4.1 of this paper). As a result, if an EM sequence applied to a GMM were to stay within
a compact, then the convergence theorems would apply (including our theorem 5.4.1 for a tempered
EM sequence) and the sequence would be guaranteed to converge towards a critical point of the
likelihood function. Hence all that is needed in practice to ensure that there is convergence is to
observe that the EM sequence remains in a compact. The GMM belongs to the curved exponential
family, the complete likelihood is

h(z; θ) = exp

(
n∑
i=1

K∑
k=1

1zi=k

2

(
− (xi − µk)TΘk(xi − µk) + ln (|Θk|)

+ 2ln (πk)− pln (2π)
))

.

(5.11)

87



and the observed likelihood:

g(θ) =

n∏
i=1

K∑
k=1

exp

(
1

2

(
−(xi − µk)TΘk(xi − µk) + ln (|Θk|) + 2ln (πk)− pln (2π)

))
. (5.12)

This is an exponential model with

θ :=
(
{πk}Kk=1 , {µk}

K
k=1 , {Θk}Kk=1

)
∈
{
{πk}k ∈ [0, 1]

K

∣∣∣∣∣∑
k

πk = 1
}
⊗ Rp×K ⊗ S++

p
K
.

The verification of conditions M1-3 for the GMM (except M2 (d) of course) is a classical exercise
since these are the conditions our theorem shares with any other EM convergence result on the
exponential family. We focus here on the hypothesis specific to our Deterministic Approximate EM.

Condition on
∫
z
pαθ (z)dz Let α ∈ R∗+, in the finite mixture case, the integrals on z are finite

sums: ∫
z

pαθ (z)dz =
∑
k

pαθ (z = k) ,

which is continuous in θ since θ 7→ pθ(z = k) = h(z = k; θ)/g(θ) is continuous. Hence

∀α ∈ R∗+, sup
θ∈K

∫
z

pαθ (z)dz <∞ .

Condition on
∫
z
S2
i (z)pαθ (z)dz The previous continuity argument is still valid.

Poisson count with random effect

This model is discussed in [49], the authors prove, among other things, that this model verifies the
conditions M1-3.
The complete likelihood of the model, not accounting for irrelevant constants, is:

h(z; θ) = eθ
∑
k Yk .exp

(
−eθ

∑
k

ezk

)
. (5.13)

g(θ) =
∫
z
h(z; θ)dz can be computed analytically up to a constant:

g(θ) =

∫
z∈Rd

h(z; θ)dz

= eθ
∑
k Yk

∫
z∈Rd

exp

(
−eθ

∑
k

ezk

)
dz

= eθ
∑
k Yk

d∏
k=1

∫
zk∈R

exp
(
−eθezk

)
dzk

= eθ
∑
k Yk

(∫
u∈R+

exp (−u)

u
du

)d
= eθ

∑
k YkE1(0)d ,

(5.14)

where E1(0) is a finite, non zero, constant, called “exponential integral”, in particular independent
of α and θ.
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Condition on
∫
z
pαθ (z)dz Let K be a compact in Θ.

We have pθ(z) = h(z;θ)
g(θ) . Let us compute

∫
z
h(z; θ)α for any positive α. The calculations work as in

Equation (5.14):∫
z∈Rd

h(z; θ)α = eαθ
∑
k Yk

d∏
k=1

∫
zk∈R

exp
(
−αeθezk

)
dzk = eαθ

∑
k YkE1(0)d .

Hence: ∫
z

pαθ (z)dz = E1(0)(1−α)d .

Since E1(0) is finite, non zero, and independent of θ, we easily have:

∀α ∈ R∗+, sup
θ∈K

∫
z

pαθ (z)dz <∞ .

θ does not even have to be restricted to a compact.

Condition on
∫
z
S2
i (z)pαθ (z)dz Let K be a compact in Θ and α a positive real number.

In this Poisson count model, S(z) =
∑
k e

zk ∈ R. We have:

S2(z)pαθ (z) =

(∑
k

ezk

)2
exp

(
−αeθ

∑
k e

zk
)

E1(0)αd
. (5.15)

First, let us prove that the integral is finite for any θ. We introduce the variables uk :=
∑k
l=1 e

zl .
The Jacobi matrix is triangular and its determinant is

∏
k e

zk =
∏
k uk.

∫
z

S2(z)pαθ (z)dz =
1

E1(0)αd

∫
z∈Rd

(∑
k

ezk

)2

exp

(
−αeθ

∑
k

ezk

)
dz

∝
∫ +∞

u1=0

u1

∫ +∞

u2=u1

u2...

∫ +∞

ud=ud−1

u3
d exp

(
−αeθud

)
dud...du2du1 .

Where we removed the finite constant 1
E1(0)αd

for clarity. This integral is finite for any θ because

the exponential is the dominant term around +∞. Let us now prove that θ 7→
∫
z
S2(z)pαθ (z)dz is

continuous. From Equation (5.15), we have that

• z 7→ S2(z)pαθ (z) is measurable on Rd.

• θ 7→ S2(z)pαθ (z) is continuous on K (and on Θ = R).

• With θM := min
θ∈K

θ, then ∀θ ∈ K, 0 ≤ S2(z)pαθ (z) ≤ S2(z)pαθM (z)

Since we have proven that S2(z)pαθM (z) <∞, then we can apply the intervertion theorem and state
that θ 7→

∫
z
S2(z)pαθ (z)dz is continuous.

It directly follows that:

∀α ∈ R∗+, sup
θ∈K

∫
z

S2(z)pαθ (z)dz <∞ .

Note that after the change of variable, the integral could be computed explicitly, but involves d

successive integration of polynomial × exponential function products of the form P (x)e−αe
θx. This

would get tedious, especially since after each successful integration, the product with the next
integration variable uk−1 increases by one the degree of the polynomial, i.e. starting from 3, the
degree ends up being d+ 2. We chose a faster path.

89



5.4.5 Experiments with Mixtures of Gaussian

Context and experimental protocol

In this section, we will assess the capacity of tmp-EM to escape from deceptive local maxima,
on a very well know toy example: likelihood maximisation within the Gaussian Mixture Model.
We confront the algorithm to situations where the true classes have increasingly more ambiguous
positions, combined with initialisations designed to be hard to escape from. Although the EM is an
optimisation procedure, and the log-likelihood reached is a critical metric, in this example, we put
more emphasis on the correct positioning of the cluster centroids, that is to say on the recovery of
the µk. The other usual metrics are also in favour of tmp-EM, and can be found in section 5.7.
For the sake of comparison, the experimental design is similar to the one in [2] on the tmp-SAEM.
It is as follows: we have three clusters of similar shape and same weight. One is isolated and
easily identifiable. The other two are next to one another, in a more ambiguous configuration.
fig. 5.2 represents the three, gradually more ambiguous configurations. Each configuration is called
a “parameter family”.
We use two different initialisation types to reveal the behaviours of the two EMs. The first - which
we call “barycenter” - puts all three initial centroids at the centre of mass of all the observed data
points. However, none of the EM procedures would move from this initial state if the three GMM
centroids were at the exact same position, hence we actually apply a tiny perturbation to make them
all slightly distinct. The blue crosses on Figure 5.3 represent a typical barycenter initialisation. With
this initialisation method, we assess whether the EM procedures are able to correctly estimate the
positions of the three clusters, despite the ambiguity, when starting from a fairly neutral position,
providing neither direction nor misdirection. On the other hand, the second initialisation type -
which we call “2v1” - is voluntarily misguiding the algorithm by positioning two centroids on the
isolated right cluster and only one centroid on the side of the two ambiguous left clusters. The
blue crosses on Figure 5.4 represent a typical 2v1 initialisation. This initialisation is intended to
assess whether the methods are able to escape the potential well in which they start and make theirs
centroids traverse the empty space between the left and right clusters to reach their rightful position.
For each of the three parameter families represented on fig. 5.2, 1000 datasets with 500 observations
each are simulated, and the two EMs are ran with both the barycenter and the 2v1 initialisation.
Regarding the temperature profile of tmp-EM, the only constraint is that Tn −→ 1 and Tn > 0.

We use an oscillating profile inspired from [2]: Tn = th( n2r ) + (T0 − b 2
√

2
3π ) an/r + b sinc( 3π

4 + n
r ).

These oscillations are meant to momentarily increase the convergence speed (when the temperature
reaches low values) to “lock-in” some of the most obviously good decisions of the algorithm, before re-
increasing the temperature and continuing the exploration on the other, more ambiguous parameters.
Those two regimes are alternated in succession with gradually smaller oscillations, resulting in a
multi-scale procedure that “locks-in” gradually harder decisions. The hyper-parameters are chosen
by grid-search. The used parameters are T0 = 5, r = 2, a = 0.6, b = 20 for the experiments
with the barycenter initialisation, and T0 = 100, r = 1.5, a = 0.02, b = 20 for the 2v1 initialisation.
Although, we observe that in the case of 2v1, the oscillations are not critical, and a simple decreasing
exponential profile: Tn = 1 + (T0 − 1) exp(−r.n), with T0 = 100 and r = 1.5, works as well. We
have two different sets of tempering hyper-parameters values, one for each of the two very different
initialisation types. However, these values then remain the same for the three different parameter
families and for every data generation within them. Underlining that the method is not excessively
sensitive to the tempering parameters. Likewise, a simple experiment with 6 clusters, in section 5.7,
demonstrates that the same hyper-parameters can be kept over different initialisation (and different
data generations as well) when they were made in a non-adversarial way, by drawing random initial
centroids uniformly among the data points.

Quantitative analysis

In this section, we quantify the performances of EM and tmp-EM over all the simulations.
Figure 5.3 and 5.4 depict the results of one typical simulation for each of the three ambiguity level
(the three parameter families) starting from the barycenter and 2v1 initialisation respectively. The
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Figure 5.2: 500 sample points from a Mixture of Gaussians with 3 classes. The true centroid of each
Gaussian are depicted by black crosses, and their true covariance matrices are represented by the
confidence ellipses of level 0.8, 0.99 and 0.999 around the centre. There are three different versions
of the true parameters. From left to right: the true µk of the two left clusters (mu1 and mu2) are
getting closer while everything else stays identical.
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Figure 5.3: Typical final positioning of the centroids by EM (first row) and tmp-EM (second row)
when the initialisation is made at the barycenter of all data points (blue crosses). The
three columns represent the three gradually more ambiguous parameter sets. Each figure represents
the positions of the estimated centroids after convergence of the EM algorithms (orange cross), with
their estimated covariance matrices (orange confidence ellipses). In each simulation, 500 sample
points were drawn from the real GMM (small green crosses). In those example, tmp-EM managed
to correctly identify the position of the three real centroids.
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Figure 5.4: Typical final positioning of the centroids by EM (first row) and tmp-EM (second row)
when the initialisation is made by selecting two points in the isolated cluster and one
in the lower ambiguous cluster (blue crosses). The three columns represent the three gradually
more ambiguous parameter sets. Each figure represents the positions of the estimated centroids after
convergence of the EM algorithms (orange cross), with their estimated covariance matrices (orange
confidence ellipses). In each simulation, 500 sample points were drawn from the real GMM (small
green crosses). In those examples, although EM kept two centroids on the isolated cluster, tmp-EM
managed to correctly identify the position of the three real centroids.

simulated data is represented by the green crosses. The initial centroids are in blue. The orange
cross represents the estimated centroids positions µ̂k, and the orange confidence ellipses are visual
representations of the estimated covariance matrices Σ̂k. In section 5.7, we show step by step the
path taken by the estimated parameters of tmp-EM before convergence, providing much more detail
on the method’s behaviours.
On these examples, we note that tmp-EM is more correct than EM. The results over all simulations
are aggregated in table 5.1, and confirm this observation.
table 5.1 presents the average and the standard deviation of the relative l2 error on µk of the EMs.
For each category, the better result over EM and tmp-EM is highlighted in bold. The recovery of
the true class averages µk is spotlighted as it is the essential success metric for this experiment.
First we focus on the effect of the different initialisations and placement of (µ1, µ2) on the perfor-
mance of the classical EM. In the first parameter family of table 5.1, µ1 and µ2 are still far from
one another. The relative error on these two positions is around 0.50 when the initialisation is a the
neutral position at the barycenter of the dataset, and 1.50 when the initialisation is made by placing
two centroids in the right cluster (”2v1”), a much more adversarial initialisation. In the second pa-
rameter family, µ1 and µ2 are getting closer. The relative error with the barycenter initialisation has
doubled to reach 1.00, and, with the adversarial 2v1, it has increased to 1.70. Finally, in the third
parameter family, where µ1 and µ2 are so close that their distributions are hard to distinguish with
the naked eye, the relative error with the barycenter initialisation has gained another 0.50 points to
reach over 1.50, which was the initial error level with the 2v1 initialisation when µ1 and µ2 were well
separated (parameter family 1). In this very ambiguous setting however, the relative error with 2v1
initialisation has gone up to around 1.80-1.90. As expected, we see that the performances are always
hindered in average by the 2v1 initialisation, and that they also worsen when the relative positions
of µ1 and µ2 become more ambiguous, regardless of the initialisation. The barycenter initialisation
however is the one that suffers the most from the increasing ambiguity, gaining 0.5 points of relative
error at every transition, whereas 2v1 gain “only” around 0.2 points.
We compare these results and their progression with the ones of tmp-EM in table 5.1. In the first
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parameter family - the least ambiguous situation - the relative errors on µ1 and µ2 are around 0.05
with the barycenter initialisation and 0.30 with 2v1. In other words, with the tempered E step, we
divide by 10 and 5 respectively the relative errors with the barycenter and 2v1 initialisation. In the
next position of µ1 and µ2, in the second parameter family, the relative error with the barycenter
initialisation is now around 0.10, staying 10 times smaller than without tempering. With 2v1, the
relative error stayed fairly stable, reaching now 0.35 in average, and remaining approximately 5
times smaller than without tempering. We underline that up until this point (parameter families 1
and 2), the standard deviation of these errors was 3 times smaller with tempering in the case of the
barycenter initialisation, and around 2 times smaller in the case of the 2v1 initialisation. In the final
configuration, parameter family 3, the relative errors with tempering are 0.30 with the barycenter
initialisation (5 times smaller than without tempering) and 0.40 with the 2v1 initialisation (more
than 4.5 times smaller than without tempering). Moreover, the standards deviations are at least
1.8 times smaller with tempering. We note that, in similar fashion to EM, the errors on µ1 and µ2

with the barycenter initialisation reached, in the most ambiguous configuration, the level of error
seen with the 2v1 initialisation in the least ambiguous situation: 0.30. Which, as stated, remains 5
times smaller than the corresponding level of error without tempering: 1.50.
In the end, the progression of errors when µ1 and µ2 get closer is alike between EM and tmp-EM:
the barycenter initialisation is the most affected, the 2v1 initialisation error being higher but fairly
stable. However the level of error is much smaller with tmp-EM, being 5 to 10 times smaller in the
case of the barycenter initialisation, and 4.5 to 5 times smaller for the 2v1 initialisation. Similarly,
the standard deviation around those average levels is 1.8 to 2 times smaller with tmp-EM.
These quantitative results on the reconstruction error of µ1 and µ2 confirm exactly what was ob-
served on the illustrative examples: with tempering, the EM procedure is much more likely to discern
the true position of the three clusters regardless of the initialisation, and able to reach a very low
error rate even with the most adversarial initialisations. To bolster this last point, we underline that
even in the worst case scenario, 2v1 initialisation and very close µ1 and µ2, tmp-EM still outperforms
EM in the best scenario, barycenter initialisation and well separated clusters, with an error rate of
0.40 versus 0.50.

Table 5.1: Average and standard deviation of the relative error on µk, ‖µ̂k−µk‖
2

‖µk‖2
, made by EM

and tmp-EM over 1000 simulated dataset with two different initialisations. The three different
parameter families, described in fig. 5.2, correspond to increasingly ambiguous positions of classes 1
and 2. For both initialisations type, the identification of these two clusters is drastically improved
by the tempering.

EM tmp-EM

Parameter
family cl. barycenter 2v1 barycenter 2v1

1
1 0.52 (1.01) 1.52 (1.24) 0.04 (0.26) 0.29 (0.64)
2 0.55 (1.05) 1.53 (1.25) 0.05 (0.31) 0.30 (0.64)
3 0.01 (0.06) 0.01 (0.03) 0.03 (0.17) 0.03 (0.19)

2
1 1.00 (1.42) 1.69 (1.51) 0.09 (0.47) 0.37 (0.86)
2 1.03 (1.44) 1.71 (1.52) 0.12 (0.57) 0.32 (0.79)
3 0.01 (0.05) 0.02 (0.03) 5.10−3 (0.05) 0.04 (0.22)

3
1 1.56 (1.75) 1.79 (1.77) 0.31 (0.97) 0.39 (0.98)
2 1.51 (1.74) 1.88 (1.76) 0.30 (0.93) 0.39 (0.97)
3 0.02 (0.04) 0.02 (0.04) 0.01 (0.04) 0.07 (0.30)
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5.5 Tempered Riemann approximation EM

5.5.1 Context, Theorem and proof

The Riemann approximation of section 5.3 makes the EM computations possible in hard cases, when
the conditional distribution has no analytical form for instance. It is an alternative to the many
stochastic approximation methods (SAEM, MCMC-SAEM...) that are commonly used in those
cases. The tempering approximation of section 5.4 is used to escape the initialisation by allowing
the procedure to explore more the likelihood profile before committing to convergence. We showed
that both these approximation are particular cases of the wider class of Deterministic Approximate
EM, introduced in section 5.2. However, since they fulfil different purposes, it is natural to use
them in coordination and not as alternatives of one another. In this section, we introduce another
instance of the Approximate EM: a combination of the tempered and Riemann sum approximations.
This “tempered Riemann approximation EM” (tmp-Riemann approximation) can compute EM steps
when there is no closed form thanks to the Riemann sums as well as escape the initialisation thanks to
the tempering. For a bounded hidden variable z ∈ [0, 1], we define the approximation as: p̃n,θ(z) :=

h(bnzc/n; θ)
1
Tn /

∫
z′
h(bnz′c/n; θ)

1
Tn dz′, for a sequence {Tn}n ∈ (R∗+)N, Tn −→

n∞
1.

In the following theorem, we prove that the tempered Riemann approximation EM verifies the
applicability conditions of theorem 5.2.1 with no additional hypothesis from the regular Riemann
approximation EM covered by theorem 5.3.1.

Theorem 5.5.1. Under conditions M1 − 3 of theorem 5.2.1, and when z is bounded, the (Stable)

Approximate EM with p̃n,θ(z) := h(bnzc/n;θ)
1
Tn∫

z′ h(bnz′c/n;θ)
1
Tn dz′

, which we call “tempered Riemann approxima-

tion EM”, verifies the remaining conditions of applicability of theorem 5.2.1 as long as z 7→ S(z) is
continuous and {Tn}n ∈ (R∗+)N, Tn −→

n∞
1.

Proof. This proof of theorem 5.5.1 is very similar to the proof of theorem 5.3.1 for the regular
Riemann approximation EM. The first common element is that for the tempered Riemann approx-
imation EM, the only remaining applicability condition of the general theorem 5.2.1 to prove is
also:

∀compact K ⊆ Θ, sup
θ∈K

∫
z

(p̃θ,n(z)− pθ(z))2
dz −→

n∞
0 .

In the proof of theorem 5.3.1, we proved that having the uniform convergence of the approximated
complete likelihood {h̃n}n towards the real h - with both h̃n(z; θ) and h(z; θ) uniformly bounded -
was sufficient to fulfil this condition. Hence, we prove in this section that these sufficient properties

still hold, even with the tempered Riemann approximation, where h̃n(z; θ) := h (bnzc/n; θ)
1
Tn .

We recall that h(z; θ) hence uniformly continuous on the compact set [0, 1]×K, and verifies:

0 < m ≤ h(z; θ) ≤M <∞ .

Where m and M are constants independent of z and θ.

Since Tn > 0, Tn −→
n∞

1, then the sequence {1/Tn}n is bounded. Since h̃n(z; θ) = h (bnzc/n; θ)
1
Tn ,

with 0 < m ≤ h (bnzc/n; θ) ≤M <∞ for any z, θ and n, then we also have:

0 < m′ ≤ h̃n(z; θ) ≤M ′ <∞ ,

with m′ and M ′ constants independent of z, θ and n.
We have seen in the proof of theorem 5.3.1, that:

∀ε > 0,∃N ∈ N,∀n ≥ N, ∀(z, θ) ∈ [0, 1]×K, |h(z; θ)− h (bnzc/n; θ)| ≤ ε .

To complete the proof, we control in a similar way the difference h (bnzc/n; θ) − h (bnzc/n; θ)
1
Tn .

The function (h, T ) ∈ [m,M ]× [Tmin, Tmax] 7→ h
1
T ∈ R is continuous on a compact, hence uniformly

continuous in (h, T ). As a consequence: ∀ε > 0,∃δ > 0,∀(h, h′) ∈ [m,M ]
2
, (T, T ′) ∈ [Tmin, Tmax]2,

|h− h′| ≤ δ and |T − T ′| ≤ δ =⇒
∣∣∣h 1

T − (h′)
1
T ′ )
∣∣∣ ≤ ε .
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Hence, with N ∈ N such that ∀n ≥ N, |Tn − 1| ≤ δ, we have:

∀n ≥ N, ∀(z, θ) ∈ [0, 1]×K,
∣∣∣h (bnzc/n; θ)− h (bnzc/n; θ)

1
Tn

∣∣∣ ≤ ε .
In the end, ∀ε > 0,∃N ∈ N,∀n ≥ N, ∀(z, θ) ∈ [0, 1]×K:∣∣∣h(z; θ)− h̃n (z; θ)

∣∣∣ =
∣∣∣h(z; θ)− h (bnzc/n; θ)

1
Tn

∣∣∣
≤ |h(z; θ)− h (bnzc/n; θ)|+

∣∣∣h (bnzc/n; θ)− h (bnzc/n; θ)
1
Tn

∣∣∣
≤ 2ε .

In other words, we have the uniform convergence of {h̃n} towards h. From there, we conclude
following the same steps as in the proof of theorem 5.3.1.

5.5.2 Application to a Gaussian model with the Beta prior

We illustrate the method with the model of section 5.3.3:

h(z; θ) =
αzα−1

√
2πσ2

exp

(
− (y − λz)2

2σ2

)
.

We apply the tempered Riemann approximation. As in section 5.3.3, the resulting conditional
probability density is a step function defined by the n different values it takes on [0, 1]. For the
observation xi, ∀k ∈ J0, n− 1K:

p̃
(i)
θ,n

(
k

n

)
=

h(i)
(
k
n ; θ
) 1
Tn

1
n

∑n−1
l=0 h

(i)
(
l
n ; θ
) 1
Tn

.

The M step, seen in Equation (5.9), is unchanged. We compare the tempered Riemann EM to
the simple Riemann EM on a case where the parameters are ambiguous. With real parameters
α = 0.1, λ = 10, σ = 0.8, for each of the 100 simulations, the algorithms are initialised at α0 =
10, λ0 = 1, σ0 = 7. The initialisation is somewhat adversarial, since the mean and variance of the
marginal distribution of y are approximately the same with the real of the initialisation parameter,
even though the distribution is different. fig. 5.5 shows that the tempered Riemann EM better
escapes the initialisation than the regular Riemann EM, and reaches errors on the parameters orders
of magnitude below. The tempering parameters are here T0 = 150, r = 3, a = 0.02, b = 40.
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Figure 5.5: Results over many simulations of the Riemann EM and tmp-Riemann EM on the Beta-
Gaussian model. The tempered Riemann EM reaches relative errors on the real parameters that are
orders of magnitude below the Riemann EM with no temperature. The likelihood reached is also
lower with the tempering.
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5.6 Proofs of the two main Theorems

5.6.1 Proof of the general theorem

In this Section, we prove theorem 5.2.1 of the main paper, for the convergence of the Deterministic
Approximate EM algorithm.
We follow the proof of [49] with very few variations. We use two intermediary results of [49]: their
“Proposition 9” and “Proposition 11”, which we recall here:

Proposition 8 (“Proposition 9”). Let Θ ⊆ Rl,K compact ⊂ Θ,L ⊆ Θ such that L ∩K compact.
Let us assume

• WC0 Lyapunov function with regards to (T,L).

• ∃un ∈ KN such that |W (un+1)−W ◦ T (un)| −→
n∞

0

Then

• {W (un)}n∈N converges towards a connected component of W (L ∩K)

• If W (L∩K) has an empty interior, then {W (un)}n converges towards w∗ and {un}n converges
towards the set Lw∗ ∩K

Lw∗ = {θ ∈ L|W (θ) = w∗}

Proposition 9 (“Proposition 11”). Let Θ ⊆ Rl, T and {Fn}n point to point maps on Θ. Let
{θn}n be the sequence defined by the stable approximate EM with likelihood f and approximate maps
sequence {Fn}n. Let L ⊂ Θ. We assume

• the A1− 2 conditions of Proposition 10 of [49].

– (A1) There exists W , a C0 Lyapunov function with regards to (T,L) such that ∀M >
0, {θ ∈ Θ,W (θ) > M} is compact, and:

Θ = ∪n∈N
{
θ ∈ Θ|W (θ) > n−1

}
.

– (A2) W (L) is compact OR (A2’) W (L ∩K) is finite for all compact K ⊆ Θ.

• ∀u ∈ K0, lim
n∞
|W ◦ Fn −W ◦ T |(u) = 0

• ∀ compact K ⊆ Θ, lim
n∞
|W ◦ Fn(un)−W ◦ T (un)|1un∈K = 0

Then
With probability 1, limsup

n∞
pn <∞ and {un}n compact sequence

Remark. In [49], condition (A1) is mistakenly written as:

Θ = ∪n∈N {θ ∈ Θ|W (θ) > n} .

This is a typo that we have corrected here.

We need to prove that, under the conditions of theorem 5.2.1, we verify the conditions of Propo-
sition proposition 8 and proposition 9. Then we will have the results announced in theorem 5.2.1.
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Verifying the conditions of 9

f is the likelihood function of a model of the curved exponential family. L the set of its critical
points: L := {θ ∈ Θ|∇f(θ) = 0}. Let T be the point to point map describing the transition between
θn and θn+1 in the exact EM algorithm. The general properties of the EM tell us that its stationary
points are the critical points of f : L = {θ ∈ Θ|T (θ) = θ}. Additionally, f is a C0 Lyapunov function
associated to (T,L). Let {θn}n be the sequence defined by the stable approximate EM with {Fn}n∈N
our sequence of point to point maps.

We verify that under this framework - and with the assumptions of theorem 5.2.1 - we check the
conditions of proposition 9.

As in [49], M1− 3 implies A1− 2.

Let us show that we have the last two conditions for proposition 9:

∀θ ∈ K0, lim
n∞
|f ◦ Fn − f ◦ T |(θ) = 0 , (5.16)

and
∀ compact K ⊆ Θ, lim

n∞
|f ◦ Fn(θn)− f ◦ T (θn)|1θn∈K = 0 . (5.17)

We focus on eq. (5.17), since eq. (5.16) is easier to verify and will come from the same reasoning.
To that end, we reproduce the first steps of the reasoning of [49].

Equivalent formulation of the convergence We write Equation (5.17) under an equivalent

form. First note that Fn(θn) = θ̂(S̃n(θn)) and T (θn) = θ̂(S̄(θn)). Hence |f ◦ Fn(un)− f ◦ T (un)| =
|f ◦ θ̂(S̃n(θn))− f ◦ θ̂(S̄(θn))|. To show Equation (5.17):

|f ◦ θ̂(S̃n(θn))− f ◦ θ̂(S̄(θn))|1θn∈K →
n∞

0 ,

it is sufficient and necessary to have:

∀ε > 0, ∃N ∈ N, ∀n ≥ N, |f ◦ θ̂(S̃n(θn))− f ◦ θ̂(S̄(θn))|1θn∈K ≤ ε .

An other equivalent formulation is that there are a finite number of integers n such that |f ◦
θ̂(S̃n(θn))− f ◦ θ̂(S̄(θn))|1θn∈K > ε, in other words:

∀ε > 0,

∞∑
n=1

1|f◦θ̂(S̃n(θn))−f◦θ̂(S̄(θn))|1θn∈K>ε
<∞ .

Use the uniform continuity We aim to relate the proximity between the images f ◦ θ̂ of to the
proximity between the antecedents of f ◦ θ̂. The function f ◦ θ̂ : Rq → R is continuous, but not
necessarily uniformly continuous on Rq. As a consequence, we will need to restrict ourselves to a
compact to get uniform continuity properties. We already have a given compact K. S̃ : Θ → Rl
is continuous, hence S(K) is a compact as well. Let δ be a strictly positive real number. Let

S̄(K, δ) :=

{
s ∈ Rq

∣∣∣∣∣inft∈K
||S̄(t)− s|| ≤ δ

}
. Where we use any norm ||.|| on Rq since they are all

equivalent. S̄(K, δ) is a compact set as well. As a consequence f ◦ θ is uniformly continuous on
S̄(K, δ), which means that:

∀ε > 0, ∃η(ε, δ) > 0, ∀x, y ∈ S̄(K, δ), ‖x− y‖ ≤ η(ε, δ) =⇒ |f ◦ θ̂(x)− f ◦ θ̂(y)| ≤ ε . (5.18)

Let us show that, with α := min(δ, η(ε, δ)), ∀n,

|f ◦ θ̂(S̃n(θn))− f ◦ θ̂(S̄(θn))|1θn∈K > ε =⇒
∥∥∥S̃n(θn)− S̄(θn)

∥∥∥1θn∈K > α . (5.19)
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To that end, we show that:∥∥∥S̃n(θn)− S̄(θn)
∥∥∥1θn∈K ≤ α =⇒ |f ◦ θ̂(S̃n(θn))− f ◦ θ̂(S̄(θn))|1θn∈K ≤ ε .

Let us assume that
∥∥∥S̃n(θn)− S̄(θn)

∥∥∥1θn∈K ≤ α.

If θn /∈ K, then |f ◦ θ̂(S̃n(θn))− f ◦ θ̂(S̄(θn))|1θn∈K = 0 ≤ ε.
If, in contrary, θn ∈ K, then S̄(θn) ∈ S̄(K) ⊂ S̄(K, δ). Since

∥∥∥S̃n(θn)− S̄(θn)
∥∥∥ =

∥∥∥S̃n(θn)− S̄(θn)
∥∥∥1θn∈K ≤

α ≤ δ, then S̃n(θn) ∈ S̄(K, δ). Since (S̄(θn), S̃n(θn)) ∈ S̄(K, δ)2 and
∥∥∥S̃n(θn)− S̄(θn)

∥∥∥ ≤ α ≤ η(ε, δ),

then we get from Equation (5.18)

|f ◦ θ̂(S̃n(θn))− f ◦ θ̂(S̄(θn))|1θn∈K ≤ ε .

In both cases, we get that:∥∥∥S̃n(θn)− S̄(θn)
∥∥∥1θn∈K ≤ α =⇒ |f ◦ θ̂(S̃n(θn))− f ◦ θ̂(S̄(θn))|1θn∈K ≤ ε ,

which proves Equation (5.19).

Sufficient condition for convergence We use Equation (5.19) to find a sufficient condition for
eq. (5.17). Equation (5.19) is equivalent to

1|f◦θ̂(S̃n(θn))−f◦θ̂(S̄(θn))|1θn∈K>ε
≤ 1‖S̃n(θn)−S̄(θn)‖1θn∈K>α .

From that, we get

∀ε > 0, ∃α > 0

∞∑
n=1

1|f◦θ̂(S̃n(θn))−f◦θ̂(S̄(θn))|1θn∈K>ε
≤
∞∑
n=1

1‖S̃n(θn)−S̄(θn)‖1θn∈K>α .

As a consequence, if

∀α > 0,

∞∑
n=1

1‖S̃n(θn)−S̄(θn)‖1θn∈K>α <∞

Then

∀ε > 0,

∞∑
n=1

1|f◦θ̂(S̃n(θn))−f◦θ̂(S̄(θn))|1θn∈K>ε
<∞

In other, equivalent, words:

If
∥∥∥S̃n(θn)− S̄(θn)

∥∥∥1θn∈K −→
n∞

0

Then |f ◦ θ̂(S̃n(θn))− f ◦ θ̂(S̄(θn))|1θn∈K −→
n∞

0 .
(5.20)

Hence, having for all compact sets K ⊂ Θ,
∥∥∥S̃n(θn)− S̄(θn)

∥∥∥1θn∈K −→
n∞

0 is sufficient to have the

desired condition eq. (5.17). Similarly, we find that ∀θ ∈ K0:∥∥∥S̃n(θ)− S̄(θ)
∥∥∥ −→
n∞

0

=⇒ |f ◦ θ̂(S̃n(θ))− f ◦ θ̂(S̄(θ))| −→
n∞

0 ,
(5.21)

which gives us a sufficient condition for eq. (5.16).
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Further simplifications of the desired result with successive sufficient conditions We
find another, simpler, sufficient condition for eq. (5.17) from Equation (5.20). We first remove the
dependency on the terms {θn}n of the EM sequence:∥∥∥S̃n(θn)− S̄(θn)

∥∥∥1θn∈K ≤ sup
θ∈K

∥∥∥S̃n(θ)− S̄(θ)
∥∥∥ . (5.22)

From Equation (5.20), eq. (5.21) and eq. (5.22) we get that:

∀ compact K ⊂ Θ, sup
θ∈K

∥∥∥S̃n(θ)− S̄(θ)
∥∥∥ −→
n∞

0 ,

is a sufficient condition to have both Equation (5.16) and eq. (5.17).

To show that the hypotheses of theorem 5.2.1 imply this sufficient condition, we express it in
integral form. Let S = {Si}i=1,...,q. We recall that S̃n(θ) =

{∫
z
Si(z)p̃θ,n(z)dz

}
i

and S̄(θ) ={∫
z
Si(z)pθ(z)dz

}
i
. Hence:

S̃n(θ)− S̄(θ) =

{∫
z

Si(z) (p̃θ,n(z)− pθ(z)) dz
}
i

.

These q terms can be upper bounded by two different terms depending on the existence of the
involved quantities:∫

z

Si(z) (p̃θ,n(z)− pθ(z)) dz ≤
(∫

z

Si(z)
2dz

) 1
2
(∫

z

(p̃θ,n(z)− pθ(z))2
dz

) 1
2

,

and ∫
z

Si(z) (p̃θ,n(z)− pθ(z)) dz ≤
(∫

z

Si(z)
2pθ(z)dz

) 1
2

(∫
z

(
p̃θ,n(z)

pθ(z)
− 1

)2

pθ(z)dz

) 1
2

.

As a consequence, if
∫
z
Si(z)

2dz exists, then it is sufficient to show have:

sup
θ∈K

∫
z

(p̃θ,n(z)− pθ(z))2
dz −→

n∞
0 ,

and if
∫
z
Si(z)

2pθ(z)dz exists, then it is sufficient to show have:

sup
θ∈K

∫
z

(
p̃θ,n(z)

pθ(z)
− 1

)2

pθ(z)dz −→
n∞

0 .

Among the assumptions of theorem 5.2.1 is one that states that for all compacts K ⊆ Θ, one of
those scenarios has to be true. Hence our sufficient condition is met.

Conclusion With the hypothesis of theorem 5.2.1, we have

∀ compact K ⊆ Θ, sup
θ∈K

∥∥∥S̃n(θ)− S̄(θ)
∥∥∥ −→
n∞

0 ,

which is a sufficient condition to verify both Equation (5.16) and eq. (5.17). With these two condi-
tions, we can apply proposition 9.

Applying 9

Since we verify all the conditions of proposition 9, we can apply its conclusions:

With probability 1, limsup
n∞

pn <∞ and {θn}n compact sequence ,

which is specifically the result (i)(a) of theorem 5.2.1.
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Verifying the conditions of 8

With proposition 8, we prove the remaining points of theorem 5.2.1: (i)(b) and (ii).

For the application of proposition 8:

• Cl ({θn}n) plays the part of the compact K

• {θ ∈ Θ|∇f(θ) = 0} = {θ ∈ Θ|T (θ) = θ} plays the part of the set L

• The likelihood f is the C0 Lyapunov function with regards to (T,L)

• {θn}n is the K valued sequence (since K is Cl ({θn}n)).

The last condition that remains to be shown to apply proposition 8 is that:

lim
n∞
|f(θn+1)− f ◦ T (θn)| = 0 .

We have more or less already proven that, in the previous section of the Proof, with Fn(θn) in place
of θn+1. The only indices where Fn(θn) 6= θn+1 are when the value of the sequence pn experiences
an increment of 1. We have proven with proposition 9 that there is only a finite number of such
increments.

|f(θn+1)− f ◦ T (θn)| = |f(θ0)− f ◦ T (θn)|1pn+1=pn+1 + |f ◦ Fn(θn)− f ◦ T (θn)|1pn+1=pn .

Since there is only a finite number of increments of the value of pn, then ∃N ∈ N, ∀n ≥ N, 1pn+1=pn+1 =
0 and 1pn+1=pn = 1. In other words:

∃N ∈ N, ∀n ≥ N, |f(θn+1)− f ◦ T (θn)| = |f ◦ Fn(θn)− f ◦ T (θn)|
∃N ∈ N, ∀n ≥ N, |f(θn+1)− f ◦ T (θn)| = |f ◦ Fn(θn)− f ◦ T (θn)|1θn∈Cl({θk}k) .

Since θn is always in Cl({θk}k) by definition. Additionally proposition 9 tells us that Cl({θk}k) is
a compact. Moreover, in order to use proposition 9 in the first place, we had proven that:

∀ compact K ⊆ Θ, lim
n∞
|f ◦ Fn(θn)− f ◦ T (θn)|1θn∈K = 0.

We can apply this directly with K = Cl({θk}k) to conclude the desired result:

lim
n∞
|f(θn+1)− f ◦ T (θn)| = 0

Hence we verify all the conditions to apply proposition 8.

Applying 8

Since we verify all we need, we have the conclusions of proposition 8:

• {f(θn)}n∈N converges towards a connected component of f(L ∩ Cl({θn}n)) ⊂ f(L)

• If f(L ∩ Cl({θn}n)) has an empty interior, then {f(θn)}n∈N converges towards a f∗ ∈ R and
{θn}n converges towards Lf∗ ∩ Cl({θn}n). Where Lf∗ := {θ ∈ L|f(θ) = f∗}

Both points are respectively the statements (i)(b) and (ii) of theorem 5.2.1.
Which concludes the proof of the theorem.
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5.6.2 Proof of the tempering theorem

In this Section, we prove theorem 5.4.1 of the main paper, the convergence of the tempered EM
algorithm. For that, we need to show that we verify each of the hypothesis of the more general
theorem 5.2.1.
We already assumed the conditions M1, M2 and M3 in the hypothesis of theorem 5.4.1. To apply

theorem 5.2.1, we need to show that when p̃θ,n(z) :=
p

1
Tn
θ (z)∫

z′ p
1
Tn
θ (z′)dz′

, then ∀ compact K ⊆ Θ, one of

the two following configurations holds:∫
z

S(z)2dz <∞ and sup
θ∈K

∫
z

(p̃θ,n(z)− pθ(z))2
dz −→

n∞
0 ,

or

sup
θ∈K

∫
z

S(z)2pθ(z)dz <∞ and sup
θ∈K

∫
z

(
p̃θ,n(z)

pθ(z)
− 1

)2

pθ(z)dz −→
n∞

0 .

Since we have assumed:

∀ compact K ∈ Θ, ∀α ∈ B(1, ε),∀i, sup
θ∈K

∫
z

S2
i (z)pαθ (z)dz <∞ ,

then we already verify the first half of the second configuration for all the compacts K. Hence it is
sufficient to prove that:

∀ compact K ∈ Θ, sup
θ∈K

∫
z

(
p̃θ,n(z)

pθ(z)
− 1

)2

pθ(z)dz −→
n∞

0 , (5.23)

to have the desired result. The rest of the proof is dedicated to this goal.

Taylor development

We use the Taylor’s formula of the first order with the mean-value form of the reminder. For a
derivable function g:

g(x) = g(0) + g′(a)x, a ∈ [0, x] , (5.24)

where the interval [0, x] has a flexible meaning since x could be negative.
We apply it to:

g(x) = ex, g′(x) = ex, g(x) = 1 + xea, a ∈ [0, x] ,

and:

g(x) =
1

1 + x
, g′(x) = − 1

(1 + x)2
, g(x) = 1− x

(1 + a)2
, a ∈ [0, x] .

To make the upcoming calculation more readable, we momentarily replace pθ(z) by simply p and
Tn by T.

p
1
T = p

(
p

1
T −1

)
= pe( 1

T −1)ln p

= p+

(
1

T
− 1

)
p ln p ea, a ∈

[
0,

(
1

T
− 1

)
ln p

]
,

where a = a(z, θ, Tn) since it depends on the value of pθ(z) and Tn. Provided that the following
quantities are defined, we have: ∫

z

p
1
T = 1 +

(
1

T
− 1

)∫
z

p ln p ea ,
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Hence:
1∫
z
p

1
T

= 1−
(

1

T
− 1

) ∫
z
p ln p ea

(1 + b)
2 , b ∈

[
0,

(
1

T
− 1

)∫
z

p ln p ea
]
,

where b = b(θ, Tn) since it depends on the value of Tn the integral over z of a function of z and θ.
In the end, we have:

p
1
T∫

z
p

1
T

= p+

(
1

T
− 1

)
p ln p ea

(
1−

(
1

T
− 1

) ∫
z
p ln p ea

(1 + b)
2

)
−
(

1

T
− 1

)
p

∫
z
p ln p ea

(1 + b)
2 . (5.25)

Since for any real numbers (x+ y)2 ≤ 2(x2 + y2), then:(
p

1
T∫

z
p

1
T

− p

)2

≤ 2

(
1

T
− 1

)2

p2

(ln p ea)
2

(
1−

(
1

T
− 1

) ∫
z
p ln p ea

(1 + b)
2

)2

+

(∫
z
p ln p ea

(1 + b)
2

)2


= 2

(
1

T
− 1

)2

p2
(

(ln p ea)
2
A+B

)
.

where A = A(θ, Tn) and B = B(θ, Tn). So far the only condition that has to be verified for all the
involved quantities to be defined is that

∫
z
p ln p ea exists. With this Taylor development on hand,

we state, prove and apply two lemmas which allow us to get eq. (5.23) and conclude the proof of
the theorem.

Two intermediary lemmas

The two following lemmas provides every result we need to finish the proof.

Lemma 5.6.1. With
pθ(z) = exp (ψ(θ) + 〈S(z), φ(θ〉) ,

then ∫
z

pαθ (z) ln2 pθ(z)dz ≤ 2ψ(θ)2

∫
z

pαθ (z)dz + 2 ‖φ(θ)‖2 .
∑
i

∫
z

S2
i (z)pαθ (z) .

and ∫
z

pαθ (z) |ln pθ(z)| dz ≤ |ψ(θ)|
∫
z

pαθ (z)dz + ‖φ(θ)‖ .

(∑
i

∫
z

S2
i (z)pαθ (z)

∫
z

pαθ (z)

) 1
2

.

Proof. For the first inequality, using the fact that (a+ b)2 ≤ 2(a2 + b2), we have:∫
z

pαθ (z) ln2 pθ(z)dz ≤ 2ψ(θ)2

∫
z

pαθ (z)dz + 2

∫
z

pαθ (z) 〈S(z), φ(θ)〉2 ,

We use Cauchy-Schwartz:

〈S(z), φ(θ)〉2 ≤ ‖φ‖2 ‖S(z)‖2 = ‖φ‖2
∑
i

Si(z)
2 ,

to get the desired result:∫
z

pαθ (z) ln2 pθ(z)dz ≤ 2ψ(θ)2

∫
z

pαθ (z)dz + 2 ‖φ(θ)‖2 .
∑
i

∫
z

S2
i (z)pαθ (z) .

For the second inequality, we start with Cauchy-Schwartz on
〈∫
z
S(z)pαθ (z), φ(θ)

〉
:∫

z

pαθ (z) |ln pθ(z)| dz ≤ |ψ(θ)|
∫
z

pαθ (z)dz + ‖φ(θ)‖ .
∥∥∥∥∫

z

S(z)pαθ (z)

∥∥∥∥ .
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Moreover, since: ∫
z

Si(z)p
α
θ (z)dz ≤

(∫
z

S2
i (z)pαθ (z)dz

) 1
2
(∫

z

pαθ (z)dz

) 1
2

,

then ∫
z

pαθ (z) |ln pθ(z)| dz ≤ |ψ(θ)|
∫
z

pαθ (z)dz + ‖φ(θ)‖ .

(∑
i

∫
z

S2
i (z)pαθ (z)

∫
z

pαθ (z)

) 1
2

.

Lemma 5.6.2. With K compact and ε ∈ R∗+,

pθ(z) = exp (ψ(θ) + 〈S(z), φ(θ〉) ,

and

p̃θ,n(z) :=
p

1
Tn

θ (z)∫
z′
p

1
Tn

θ (z′)dz′
,

if

(i) Tn ∈ R∗+ −→
n∞

1 ,

(ii) sup
θ∈K

ψ(θ) <∞ ,

(iii) sup
θ∈K
‖φ(θ)‖ <∞ ,

(iv) ∀α ∈ B(1, ε), sup
θ∈K

∫
z
pαθ (z)dz <∞ ,

(v) ∀α ∈ B(1, ε), ∀i, sup
θ∈K

∫
z
S2
i (z)pαθ (z)dz <∞ .

then

sup
θ∈K

∫
z

(
p̃θ,n(z)

pθ(z)
− 1

)2

pθ(z)dz −→
n∞

0 .

Proof. Provided that the following integrals exist, we have, thanks to the Taylor development:

∫
z

1

p

(
p

1
T∫

z
p

1
T

− p

)2

≤ 2

∫
z

(
1

T
− 1

)2

p
(

(ln p ea)
2
A+B

)
= 2

(
1

T
− 1

)2

A

∫
z

pe2aln2 p + 2

(
1

T
− 1

)2

B .

(5.26)

In this proof, we find finite upper bounds independent of θ and Tn for A(θ, Tn), B(θ, Tn) and∫
z
pe2aln2 p, then - since

(
1
Tn
− 1
)
−→ 0 - we have the desired result.

We start by studying A(θ, Tn) =
(

1−
(

1
T − 1

) ∫
z
p ln p ea

(1+b)2

)2

. The first term of interest here is∫
z
p ln p ea. We have:

a ∈
[
0,

(
1

T
− 1

)
ln p

]
,

ea ∈
[
1, p

1
T −1

]
,

p ln p ea ∈
[
p ln p, p

1
T ln p

]
.
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where we recall that the interval is to be taken in a flexible sense, since we do not now a priory
which bound is the largest and which is the smallest. What we have without doubt though is:

|p ln p ea| ≤ max
(
|p ln p| ,

∣∣∣p 1
T ln p

∣∣∣) .
We find an upper bound on both those term. Let α ∈ B(1, ε), the second result of lemma 5.6.1 gives
us: ∫

z

pαθ (z) |ln pθ(z)| dz ≤ |ψ(θ)|
∫
z

pαθ (z)dz + ‖φ(θ)‖ .

(∑
i

∫
z

S2
i (z)pαθ (z)

∫
z

pαθ (z)

) 1
2

.

Thanks to the hypothesises (ii), (iii), (iv) and (v), we have:∫
z

pαθ (z) |ln pθ(z)| dz ≤ sup
θ∈K
|ψ(θ)| .sup

θ∈K

∫
z

pαθ (z)dz

+ sup
θ∈K
‖φ(θ)‖ .

∑
i

(
sup
θ∈K

∫
z

S2
i (z)pαθ (z)

) 1
2

.

(
sup
θ∈K

∫
z

pαθ (z)

) 1
2

=: C(α)

<∞ .

The upper bound C(α) in the previous inequality is independent of θ and z but still dependant of
the exponent α. However, since B(1, ε) is closed ball, hypothesises (iv) and (v) can be rephrased as:

(iv) sup
α∈B(1,ε)

sup
θ∈K

∫
z

pαθ (z)dz <∞ ,

(v) ∀i, sup
α∈B(1,ε)

sup
θ∈K

∫
z

S2
i (z)pαθ (z)dz <∞ .

Hence we can actually take the supremum in α as well:∫
z

pαθ (z) |ln pθ(z)| dz ≤ sup
θ∈K
|ψ(θ)| . sup

α∈B(1,ε)

sup
θ∈K

∫
z

pαθ (z)dz

+ sup
θ∈K
‖φ(θ)‖ .

∑
i

(
sup

α∈B(1,ε)

sup
θ∈K

∫
z

S2
i (z)pαθ (z)

) 1
2

.

(
sup

α∈B(1,ε)

sup
θ∈K

∫
z

pαθ (z)

) 1
2

=: C ′

<∞ .

This new upper bound C ′ is independent of α.
Since Tn 7→ 1, then ∃N ∈ N, ∀n ≥ N, 1

Tn
∈ B(1, ε). Hence for n ≥ N , we can apply the previous

inequation to either α = 1 or α = 1
Tn

. Which gives us that
∫
z
pθ(z) |ln pθ(z)|,

∫
z
p

1
Tn

θ (z) |ln pθ(z)|
and their supremum in θ are all finite, all of them upper bounded by C ′.

In the end, when n ≥ N , we have the control sup
θ∈K

∣∣∫
z
p ln p ea

∣∣ < C ′.

The next term to control is 1
(1+b)2

. Since b ∈
[
0,
(

1
T − 1

) ∫
z
p ln p ea

]
, then |b| ≤

(
1
T − 1

)
sup
θ∈K

∫
z
p ln p ea.

We already established that for all n ≥ N , sup
θ∈K

∣∣∫
z
p ln p ea

∣∣ ≤ C ′ <∞, hence sup
θ∈K
|b(θ, Tn)| −→

Tn−→1
0.

In particular, ∃N ′ ∈ N,∀n ≥ N ′,∀θ ∈ K we have |b(θ, Tn)| ≤ 1
2 . In that case:

(1 + b)
2
> (1− |b|)2 ≥ 1

4
1

(1 + b)
2 <

1

(1− |b|)2 ≤ 4 .
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In the end, when n ≥ max(N,N ′), for any θ ∈ K:

A(θ, Tn) ≤ 2 + 2

(
1

Tn
− 1

)2
(∫

z
p ln p ea

(1 + b)
2

)2

≤ 2 + 32

(
1

Tn
− 1

)2(
sup
θ∈K

∫
z

p ln p ea
)2

≤ 2 + 32

(
1

Tn
− 1

)2

C ′2

≤ 2 + 32ε2C ′2

=: C1 .

This upper bound does not depend en θ anymore and the part in Tn simply converges towards 0
when Tn −→ 1.

Treating the term B(θ, Tn) =
( ∫

z
p ln p ea

(1+b)2

)2

≤ 16

(
sup
θ∈K

∫
z
p ln p ea

)2

≤ 16C ′2 =: C2 is immediate

after having dealt with A(θ, Tn).

We now treat the term
∫
z
p e2aln2 p in the exact same fashion as we did A(θ, Tn):

p ln p ea ∈
[
p ln p, p

1
T ln p

]
=⇒ p (ln p ea)

2 ∈
[
p ln2 p, p

2
T −1ln2 p

]
=⇒ p (ln p ea)

2 ≤ max(p ln2 p, p
2
T −1ln2 p) .

We control those two terms as previously. First we apply lemma 5.6.1 (its first result this time) with
α ∈ B(1, ε). ∫

z

pαθ (z) ln2 pθ(z)dz ≤ 2ψ(θ)2

∫
z

pαθ (z)dz + 2 ‖φ(θ)‖2 .
∑
i

∫
z

S2
i (z)pαθ (z) .

Thanks to the hypothesis (ii), (iii), (iv) and (v), we can once again take the supremum of the bound
over θ ∈ K, then over α ∈ B(1, ε) and conserve finite quantities:∫

z

pαθ (z) ln2 pθ(z)dz ≤ 2sup
θ∈K

ψ(θ)2. sup
α∈B(1,ε)

sup
θ∈K

∫
z

pαθ (z)dz

+ 2sup
θ∈K
‖φ(θ)‖2 .

∑
i

sup
α∈B(1,ε)

sup
θ∈K

∫
z

S2
i (z)pαθ (z)

=: C3

<∞ .

The previous result is true for α = 1, and since once again ∃N ′′, ∀n ≥ N ′′, 2
Tn
− 1 ∈ B(1, ε)∩R∗+, it

is also true for α = 2
Tn
− 1 when n is large enough. C3 is independent of z, θ and Tn.

In the end ∀n ≥ N ′′,
∫
z
p e2aln2 p ≤ C3 <∞.

We replace the three terms A(θ, Tn), B(θ, Tn) and
∫
z
p e2aln2 p by their upper bounds in the in-

equality eq. (5.26). When n ≥ max(N,N ′, N ′′):∫
z

1

p

(
p

1
T∫

z
p

1
T

− p

)2

≤ 2

(
1

Tn
− 1

)2

C1C3 + 2

(
1

Tn
− 1

)2

C2 .

Which converges towards 0 when Tn −→ 1, i.e. when n −→ ∞. This concludes the proof of the
lemma.
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Verifying the conditions of Lemma 5.6.2

Now that the lemmas are proven, all that remains is to apply lemma 5.6.2.

(i) We have Tn ∈ R∗+ −→
n∞

1 by hypothesis.

(ii) and (iii) sup
θ∈K

ψ(θ) < ∞ and sup
θ∈K
‖φ(θ)‖ < ∞ are implied by the fact that ψ(θ) = ψ′(θ) −

log g(θ) and φ(θ) are continuous

(iv) and (v) Are also hypothesis of the theorem.
Hence we can apply lemma 5.6.2. This means that:

sup
θ∈K

∫
z

(
p̃θ,n(z)

pθ(z)
− 1

)2

pθ(z)dz −→
n∞

0.

With this last condition verified, we can apply theorem 5.2.1. Which concludes the proof.

5.7 Additional experiments on tmp-EM with Mixtures of
Gaussian

In this section, we present more detailed experiments analysing the tempered EM and comparing
it to the regular EM. As in section 5.4.5, we focus on likelihood maximisation within the Gaussian
Mixture Model. From the optimisation point of view, we demonstrate that tmp-EM does not fall in
the first local maximum like EM does but instead consistently finds better one. From the machine
learning point of view, we illustrate how tmp-EM is able to better identify the real GMM parameters
even when they are ambiguous and when the initialisation is voluntarily tricky.
The only constraints on the temperature profile is that Tn −→ 1 and Tn > 0. We use two different
temperature profiles. First, a decreasing exponential: Tn = 1 + (T0 − 1) exp(−r.n). We call it the
”simple” profile, it works most of the time. Second, we examine the capabilities of a profile with
oscillations in addition to the main decreasing trend. These oscillations are meant to momentar-
ily increase the convergence speed to ”lock-in” some of the most obviously good decisions of the
algorithm, before re-increasing the temperature and continuing the exploration on the other, more
ambiguous parameters. Those two regimes are alternated in succession with gradually smaller oscil-
lations, resulting in a multi-scale procedure that ”locks-in” gradually harder decisions. The formula

is taken from [2]: Tn = th( n2r ) + (T0 − b 2
√

2
3π ) an/r + b sinc( 3π

4 + n
r ). The profile used, as well as the

values of the hyper-parameters are specified for each experiment. The hyper parameters are chosen
by grid-search.
For the sake of comparison, the following Experiment 1 and 2 are similar to the experiments of [2]
on the tmp-SAEM.

5.7.1 Experiment 1: 6 clusters

We start by demonstrating the superior performance of the tempered EM algorithm on an example
mixture of K = 6 Gaussians in dimension p = 2. The real parameters can be visualised on fig. 5.6,
where the real centroids are represented by black crosses and confidence ellipses help visualise the
real covariance matrices. In addition, 500 points were simulated in order to illustrate, among other
things, the weights of each class. To quantify the ability of each EM method to increase the likelihood
and recover the true parameters, we generate from this model 20 different datasets with n = 500
observations. For each of these datasets, we make 200 EM runs, all of them starting from a different
random initialisation. To initialise the mixture parameters, we select uniformly 6 data points to act
as centroids. In each run, EM and tmp-EM start with the same initialisation. The number K of
clusters is known by the algorithms. For this experiment, the simple tempering profile is used with
parameters T0 = 50 and r = 2.
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Figure 5.6: 500 sample points from a Mixture of Gaussians with 6 classes. The true centroid of each
Gaussian are depicted by black crosses, and their true covariance matrices are represented by the
confidence ellipses of level 0.8, 0.99 and 0.999 around the centre.

Illustrative

First, we observe on the left of fig. 5.7, one example of the final states of the EM algorithm. The
observations can be seen in green, the initial centroids are represented by blue crosses, and the

parameters {µ̂k}Kk=1 and
{

Σ̂k

}K
k=1

estimated by the EM are represented in orange. In this EM run,

one of the estimated clusters became degenerated and, as counterpart, two different real clusters
were fused as one by the method. On the right of fig. 5.7, we observe the final state of the tmp-EM
on the same dataset, from the same initialisation. This time all the clusters were properly identified.
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Figure 5.7: EM and tmp-EM final states on the same simulation with the same initialisation. tmp-
EM positioned correctly the estimated centroides, whereas the regular EM made no distinction
between the two bottom classes and ended up with a degenerate class instead.
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Quantitative

To demonstrate the improvements made by tempering, we present aggregated quantitative results
over all the simulated datasets and random initialisations.

Likelihood maximisation EM and tmp-EM are optimisation methods whose target function is
the likelihood of the estimated mixture parameters. We represent on fig. 5.8 the empirical distribu-
tion of the negative log-likelihoods reached at the end of the two methods, EM in blue, tmp-EM in
orange. On those boxplots, the coloured ”box” at the centre contains 50% of the distribution, hence
it is delimited by the 0.25 and 0.75 quantiles. The median of the distribution is represented by an
horizontal black line inside the box. The space between the whiskers on the other end, contain 90%
of the distribution, its limits are the 0.05 and 0.95 quantiles. The table provides the numeric values
of these statistics.

EM tmp-EM

2200

2300

2400

2500

2600

2700
Negative log-likelihood

(a)

EM tmp-EM

median 2230 2215
mean 2247 2219
std 70 35
Q5 2177 2169
Q25 2205 2195
Q75 2262 2236
Q95 2405 2280

(b)

Figure 5.8: Empirical distribution of the negative log-likelihood reached by the EM algorithms. EM
is blue and tmp-EM in orange. The boxplot allow us to identify the quantiles 0.05, 0.25, 0.5, 0.75
and 0.95 of each distribution, as well as the outliers. Their numeric values can be found in the table,
the better ones being in bold. tmp-EM is better overall.

We note that the negative log-likelihood reached by tmp-EM is lower on average (higher likeli-
hood) than what EM obtains. Moreover, tmp-EM also has a lower variance, its standard deviation
being approximately half of the std of EM. More generally, we observe that the distribution of the
final loss of tmp-EM is both shifted towards the lower values and less variable. In particular, each
of the followed quantiles are lower for tmp-EM, and both the difference Q95-Q5 (space between
whiskers) and Q75-Q25 (size of the box) are lower for tmp-EM. This illustrates that it obtains
better, more consistent results on our synthetic example.

Parameter recovery The EM algorithm is an optimisation procedure. Stricto sensu, the opti-
mised metric - the likelihood - should be the only criterion for success. However, in the case of the
Mixture of Gaussians, the underlying Machine Learning stakes are always very visible. Hence we
dedicate time to assess the relative success parameter recovery of EM and tmp-EM.
The quality of parameter recovery is always dependent on the number of observation. The larger
n, the more the likelihood will describe an actual ad-equation with the real parameters behind the
simulation. Additionally, as n grows, the situation becomes less and less ambiguous, until all meth-
ods yield either the exact same, or at least very similar solutions, with all of them being fairly close
to the truth. All of our simulation are done with n = 500 data points. Not a very large number,
but since the lowest weight of our K = 6 classes is around 0.09, it is sufficient for all the classes
to be guaranteed to contain several points. The three families of parameters in a GMM are the
weights {πk}Kk=1, the averages (centroids positions) {µk}Kk=1 and the covariance matrices {Σk}Kk=1

of the K classes. We evaluate the error made on µ with the relative different in squared norm

2:
‖µ̂k−µk‖22
‖µk‖22

. For Σ, we compute the KL divergence between the real matrices and the estimates
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KL(Σk, Σ̂k) = 1
2

(
ln |Θk||Θ̂k| + tr(ΣkΘ̂k)− p

)
, with Θ := Σ−1 for all those matrices. Finally, the anal-

ysis on π is harder to interpret and less interesting, but reveals the same trend, with lower errors
for the tempering.
The error on the averages µk is usually the most informative and easy to interpret metric, quantifying
how well each methods position the class centres. fig. 5.9 and table 5.2 represent the distribution of

the relative error
‖µ̂k−µk‖22
‖µk‖22

. The results of tmp-EM are much better with average and median errors

often being orders of magnitude below the errors of EM, with similar or lower variance. The other
quantiles of the tmp-EM distribution are also either equivalent to or order of magnitudes below the
corresponding EM quantiles. The largest errors happen on Class 3 and 6, two of the ambiguous
ones, but are always noticeably smaller and less variable with the tempering.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
0
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|| k||2
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tmp-EM

Figure 5.9: Empirical distribution of the relative error in squared norm 2
‖µ̂k−µk‖22
‖µk‖22

between the real

centroid positions in µ and the estimations by the EM algorithms.

Table 5.2: Quantiles and other statistics describing the empirical distribution of the relative error

in squared norm 2
‖µ̂k−µk‖22
‖µk‖22

between the real centroid positions in µ and the estimations by the EM

algorithms. The error of tmp-EM is always closer to 0 with lower variance (with the exception of
class 2 where the variance is similar).

Cl. mean std Q5 Q25 Q50 Q75 Q95

1
EM 0.024 0.119 6.10−6 6.10−5 2.10−4 0.002 0.065
tmp-EM 0.002 0.014 6.10−6 4.10−5 1.10−4 4.10−4 0.005

2
EM 0.038 0.066 5.10−5 2.10−4 0.001 0.057 0.169
tmp-EM 0.032 0.070 5.10−5 2.10−4 5.10−4 0.013 0.210

3
EM 0.971 1.153 4.10−4 0.004 0.297 2.467 2.736
tmp-EM 0.743 1.072 3.10−4 0.003 0.235 1.500 2.681

4
EM 0.310 0.487 7.10−5 8.10−4 0.031 0.859 1.158
tmp-EM 0.287 0.476 3.10−5 5.10−4 0.025 0.076 1.188

5
EM 0.735 1.248 8.10−5 5.10−4 0.002 0.814 3.191
tmp-EM 0.432 1.054 6.10−5 4.10−4 7.10−4 0.002 3.180

6
EM 1.940 2.828 7.10−4 0.005 1.158 2.743 6.744
tmp-EM 0.807 1.735 4.10−4 0.002 0.010 1.066 3.243

The KL divergences KL(Σk, Σ̂k) assess whether each the covariances Σk of each class are properly
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replicated. Note that since the computation of the KL divergence involves the matrix inverse Θ̂k =
Σ̂−1
k , the outliers cases where a class vanishes in an EM have to be removed: they correspond to

pathological, non invertible matrices. fig. 5.10 and table 5.3 describe the distribution of the KL
divergence. The Figure is cropped and does not show some of the very rare, most upper outliers
(less than 1%). Overall, the results are similar to what we get on µ: in terms of average KL and
median KL, tmp-EM is better than EM, being either similar on some classes and much better on
others. Its standard deviation is also lower - sometimes by one order of magnitude - on all classes
except Class 4. The other quantiles are also overall better, with one exception on Q95 of class 4.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
0

1

2

3

4

5

6
||KL( k, k)||2

EM
tmp-EM

Figure 5.10: Empirical distribution of the KL divergenceKL(Σk, Σ̂k) between each covariance matrix
estimated by the EMs and the real covariance matrices Σ.

Table 5.3: Quantiles and other statistics describing the empirical distribution of the KL divergence
KL(Σk, Σ̂k) between each covariance matrix estimated by the EMs and the real covariance matrices
Σ. On every class but the 4th, the deviation of tmp-EM is closer to 0 with lower or similar variance.

Cl. mean std Q5 Q25 Q50 Q75 Q95

1
EM 2.741 39.879 0.003 0.009 0.017 0.136 3.222
tmp-EM 0.845 8.683 0.003 0.008 0.013 0.055 1.745

2
EM 0.852 9.006 0.004 0.015 0.042 0.636 1.015
tmp-EM 0.412 9.072 0.004 0.011 0.027 0.34 0.782

3
EM 1.185 14.636 0.015 0.078 0.183 0.414 1.742
tmp-EM 0.648 4.435 0.014 0.066 0.174 0.408 1.331

4
EM 2.008 13.156 0.008 0.043 0.386 1.034 4.553
tmp-EM 2.998 20.1 0.006 0.028 0.374 0.637 5.468

5
EM 1.772 12.175 0.005 0.015 0.035 0.664 5.813
tmp-EM 0.791 7.088 0.005 0.011 0.026 0.058 2.57

6
EM 2.909 59.913 0.012 0.045 0.195 0.676 4.371
tmp-EM 2.072 25.898 0.008 0.023 0.062 0.34 2.883

Conclusion We saw that tmp-EM achieved better average and median results with lower variances
both on likelihood maximisation and parameter recovery for every Class (with very rare exceptions).
A more global look at the overall distributions confirms this trend: the errors of tmp-EM are more
centred on 0 with less spread than EM. This indicates that the tempering allows the EM algorithm
to avoid falling into the first local maximum available and consistently find better ones. From
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Table 5.4: Synthetic table focusing solely on the average and standard deviation (in parenthesis)
of the losses and parameter reconstruction errors made by EM and tmp-EM. We note that the
likelihood reached is higher with lower variance, and similarly, the parameter metrics on almost
every class are better with lower variance for tmp-EM.

Metric class EM tmp-EM

−ln pθ̂ 2 247.08 (69.62 ) 2 218.80 (35.21 )

ln pθ0−ln pθ̂
ln pθ0

0.12 (0.04 ) 0.13 (0.04 )

1 −0.19 (0.36 ) −0.17 (0.29 )
2 0.11 (0.57 ) 0.04 (0.33 )

π̂k−πk
πk

3 0.56 (0.81 ) 0.45 (0.83 )

4 0.10 (0.57 ) 0.10 (0.43 )
5 −0.08 (0.48 ) −0.02 (0.31 )
6 −0.20 (0.43 ) −0.13 (0.40 )

1 0.02 (0.12 ) 2.10−3 (0.01 )
2 0.04 (0.07 ) 0.03 (0.07 )

‖µ̂k−µk‖2

‖µk‖2
3 0.97 (1.15 ) 0.74 (1.07 )

4 0.31 (0.49 ) 0.29 (0.48 )
5 0.73 (1.25 ) 0.43 (1.05 )
6 1.94 (2.83 ) 0.81 (1.74 )

1 2.74 (39.88 ) 0.84 (8.68 )
2 0.85 (9.01 ) 0.41 (9.07 )

KL(Σ, Σ̂) 3 1.18 (14.64 ) 0.65 (4.44 )
4 2.01 (13.16 ) 3.00 (20.10 )
5 1.77 (12.17 ) 0.79 (7.09 )
6 2.91 (59.91 ) 2.07 (25.90 )

the Machine Learning point of view, we highlighted that with our GMM parameters and n = 500
observations, it was able to better identify the different centroids, despite their ambiguity than the
regular EM procedure. table 5.4 presents a comparative synthesis of the results of EM and tmp-EM.

5.7.2 Experiment 2: 3 clusters

In this section, we will assess the capacity of tmp-EM to escape from sub-optimal local maxima near
the initialisation. The experimental protocol is the same as in the main paper. Let us recall it here.
We confront the algorithm to situations where the true classes have increasingly more ambiguous
positions, combined with initialisations designed to be hard to escape from. Even though we still
follow the log-likelihood as a critical metric, for illustrative purposes we put more emphasis in this
section on visualising whether the clusters were properly identify and following the paths in the 2D
space of the estimated centroids towards their final values during the EM procedures.
The setup is the following: we have three clusters of similar shape and same weight. One is isolated
and easily identifiable. The other two are next to one another, in a more ambiguous configuration.
fig. 5.11 represents the three, gradually more ambiguous configurations.
We use two different initialisation types to reveal the behaviours of the two EMs. The first - which
we call ”barycenter” - puts all three initial centroids at the centre of mass of all the observed data
points. However, none of the EM procedures would move from this initial state if the three GMM
centroids were at the exact same position, hence we actually apply a tiny perturbation to make them
all slightly distinct. The blue crosses on fig. 5.12 represent a typical barycenter initialisation. With
this initialisation method, we assess whether the EM procedures are able to correctly estimate the
positions of the three clusters, despite the ambiguity, when starting from a fairly neutral position,
providing neither direction nor misdirection. On the other hand, the second initialisation type - which
we call ”2v1” - is voluntarily misguiding the algorithm by positioning two centroids on the isolated
right cluster and only one centroid on the side of the two ambiguous left clusters. The blue crosses
on fig. 5.13 represent a typical 2v1 initialisation. This initialisation is intended to assess whether the
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methods are able to escape the potential well in which they start and make theirs centroids traverse
the empty space between the left and right clusters to reach their rightful position. For each of
the three parameter families represented on fig. 5.11, 1000 datasets with 500 observations each are
simulated, and the two EMs are ran with both the barycenter and the 2v1 initialisation. In the case
of tmp-EM, the oscillating temperature profile is used with parameters T0 = 5, r = 2, a = 0.6, b = 20
for the barycenter initialisation, and T0 = 100, r = 1.5, a = 0.02, b = 20 for the 2v1 initialisation.
Although in the case of 2v1, the oscillations are not critical, and the simple temperature profile with
T0 = 100 and r = 1.5 works as well. We have two different sets of tempering hyper-parameters values,
one for each of the two very different initialisation types. However, these values then remain the same
for the three different parameter families and for every data generation within them. Underlining
that the method is not excessively sensitive to the tempering parameters. The experiment with
6 clusters in section 5.7.1, already demonstrated that the same hyper parameters could be kept
over different initialisation (and different data generations as well) when they were made in a non-
adversarial way, by drawing random initial centroids uniformly among the data points.
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Figure 5.11: 500 sample points from a Mixture of Gaussians with 3 classes. The true centroid of each
Gaussian are depicted by black crosses, and their true covariance matrices are represented by the
confidence ellipses of level 0.8, 0.99 and 0.999 around the centre. There are three different versions
of the true parameters. From left to right: the true µk of the two left clusters (mu1 and mu2) are
getting closer while everything else stays identical.

Illustrative

First we illustrate on unique examples how tmp-EM is able to avoid falling for the tricky initialisa-
tions we set up.
As previously stated, the focus will be less on the likelihood optimisation for these illustrative ex-
amples. Indeed, they are meant to demonstrate that tmp-EM is able to cross the gaps and put the
clusters in the right place even with the disadvantageous initialisation. The more relevant metric to
assess success in this task is the error on µ (and in a lesser way, the error on Σ). One reason why
the likelihood looses its ability to discriminate between failure and success in escaping the traps set
by the initialisations is that there may not be a big likelihood gap between being completely wrong
and mostly right. For instance placing two centroids (one of which is linked to an empty class) on
the isolated left cluster and putting only one where the two ambiguously close clusters are could
have a decent likelihood while being blatantly wrong.

On fig. 5.12, we represent the results of each EM after convergence for every of the three parameter
set, when the start at the barycenter of all data points (blue crosses). The estimated means and co-
variance matrices of the GMM are represented by orange crosses and confidence ellipses respectively.
In those examples, tmp-EM correctly identified the real clusters whereas EM put two centroids on
the right, where only the isolated cluster stands, and only one on the left, where the two ambiguous
clusters are. Figure 5.13 shows similar results, with the same conventions in the case of the ”2v1”
initialisation.

These different outcomes are exactly what one would expect: unlike the classical EM, tmp-EM
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is by design supposed to avoid the local minima close to the initialisation by taking a more ex-
ploratory stance during its first steps. To demonstrate that point, we detail in fig. 5.14 to 5.17 the
paths taken by the estimated centroids by tmp-EM in those simulations. The paths of the regular
EM are straightforward convergences towards their final positions, and are not represented in these
supplementary materials. fig. 5.14 represents the paths of the three cluster centroids during the
iterations of tmp-EM. The parameter family is the least ambiguous (the two left cluster are well
separated) with the ”barycenter” initialisation. On fig. 5.15, the initialisation is ”2v1” instead. The
two following Figures, 5.16 and 5.17, also features the initialisations ”barycenter” and ”2v1” respec-
tively, but with the most ambiguous parameter set, where the two left clusters are very close to one
another.
These graphs are made of several rows of figures, each row representing a step in the EM procedure.
In order to make the Figures informative, the number of steps between each row is not fixed, instead
the most interesting steps are represented. Convergence is always achieved within 20 to 50 steps, so
there are never big differences between the step gaps anyway. The first row is always the initial stage
without any EM step, and the last one is the stage after convergence. Each of the three columns
corresponds to one of the three centroids estimated by the EM procedure and represents its evolu-
tion in the 2D space, from initialisation to convergence. The corresponding estimated covariance
matrix is represented by confidence ellipses. For each of the centroids, the observed data points
are coloured accordingly to their (un-tempered) posterior probability of belonging to the associated
class at this stage of the the algorithm. Plain blue being a low probability while bright green is a
high probability.
We make the following observations on the steps taken by tmp-EM: with a ”barycenter” initialisa-
tion (fig. 5.14 and 5.16), the three centroids gradually converge towards their final position (which
correspond to true class centres in these cases) without too much hesitation. We also note that, since
the three initial points are slightly distinct, there appears to be preferences at the very beginning,
with each class having different high probability points right at the initialisation stage. However
those preferences are not respected after a couple EM step, we generally see the centroids direct-
ing themselves towards different points than their initial favoured ones. This can be attributed to
the tempering reshuffling the positions and preferences at the beginning. The ”2v1” initialisation
illustrates this phenomenon more clearly and in doing so, showcases the true power of the tem-
pering. The very first steps after this very adversarial initialisation are not very remarkable: the
single centroid on the left solidifies its position at the centre of the two ambiguous clusters, while
the two centroids on the right try to share the single cluster they started in. However, very quickly
this status quo is shattered and every estimated centroid jumps to a completely different position.
On both fig. 5.15 and 5.17 we see the positions being completely reversed with the lonely centroid
moving from the two left clusters to the isolated right one whereas the two close centroids make the
inverse trip to reach the two clusters on the left. This jump is an indication that the tempering
flattened the likelihood enough to allow each centroid to escape their potential wells. Effectively
redoing the initialisation and allowing itself to start from more favourable positions. This behaviour
is unattainable with the classical EM.

Quantitative

The quantitative analysis can be found in section 5.4.5.

5.7.3 Experiment on real data: Wine recognition dataset

To further validate tmp-EM, we compare it once more to the unmodified EM, this time on real
observations from the scikit learn [128] classification data base ”Wine” [42]. This dataset contains
p = 13 chemical measurements of n = 178 wines each belonging to one of K = 3 families. Despite
being in high dimension, this dataset is known as not very challenging (the classes are separable)
and useful for testing new methods. We expect the unmodified EM to perform quite well already.
For tmp-EM, we use the simple decreasing temperature profile, with no oscillations, the tempering
parameters are T0 = 100, r = 4. table 5.5 shows the result of 500 runs of the EMs from different
random initial points. We focus on the likelihood and the error on µk, the other relevant metrics, not
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Figure 5.12: Typical final positioning of the centroids by EM (left column) and tmp-EM (right
column) when the initialisation is made at the barycenter of all data points (blue crosses).
The three rows represent the three gradually more ambiguous parameter sets. Each figure represents
the positions of the estimated centroids after convergence of the EM algorithms (orange cross), with
their estimated covariance matrices (orange confidence ellipses). In each simulation, 500 sample
points were drawn from the real GMM (small green crosses). In those example, tmp-EM managed
to correctly identify the position of the three real centroids.
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Figure 5.13: Typical final positioning of the centroids by EM (left column) and tmp-EM (right
column) when the initialisation is made by selecting two points in the isolated cluster
and one in the lower ambiguous cluster (blue crosses). The three rows represent the three
gradually more ambiguous parameter sets. Each figure represents the positions of the estimated
centroids after convergence of the EM algorithms (orange cross), with their estimated covariance
matrices (orange confidence ellipses). In each simulation, 500 sample points were drawn from the
real GMM (small green crosses). In those examples, although EM kept two centroids on the isolated
cluster, tmp-EM managed to correctly identify the position of the three real centroids.
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Figure 5.14: Paths of the centroids for tmp-EM with the ”barycenter” initialisation. Parameter set
1 (least ambiguous).

116



10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Figure 5.15: Paths of the centroids for tmp-EM with the ”2v1” initialisation. Parameter set 1 (least
ambiguous).
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Figure 5.16: Paths of the centroids for tmp-EM with the ”barycenter” initialisation. Parameter set
3 (most ambiguous).
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Figure 5.17: Paths of the centroids for tmp-EM with the ”2v1” initialisation. Parameter set 3 (most
ambiguous).
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presented here, show the same tendencies. We observe, as usual, that tmp-EM reaches in average
a lower negative log-likelihood with lower variance. The class centres are also better estimated.
As expected, the errors made by the EM are already fairly small, however tmp-EM manages to go
further and lower the errors on each class by approximately 17%, 18% and 11% respectively.
The results demonstrate that tmp-EM can improve the EM result on real data. Since this is an easy
dataset, the difference is not as drastic as in the hard synthetic cases we ran the EMs by. Still, there
was room to improve the EM results, and tmp-EM found those better solutions.

Table 5.5: Average and (standard deviation) of the EM and tmp-EM results over 500 random
initialisation on the Wine recognition dataset. The classes on this dataset are easily identifiable
hence the errors are low. Yet tmp-EM still improved upon the solutions of EM

metric cl. EM tmp-EM

−ln pθ̂ 2923 (77) 2905 (71)

‖µ̂k−µk‖2

‖µk‖2

1 0.017 (0.030) 0.014 (0.028)
2 0.026 (0.034) 0.021 (0.033)
3 0.089 (0.165) 0.079 (0.156)

5.8 Experiments on tmp-EM with Independent Factor Anal-
ysis

In this section, we present another application of the tmp-EM with Gaussian Mixture Models,
but this time as part of a more complex model. The Independent Factor Analysis (IFA) model was
introduced by [9] as an amalgam of Factor Analysis, Principal Component Analysis and Independent
Component Analysis to identify and separate independent sources mixed into a single feature vector.
From a practical standpoint, the mixing coefficient of each source is assumed to be drawn from a
GMM, hence the EM. After estimation of the GMM parameters, the sources are recovered with an
optimal non linear estimator. This is a complex model in which the EM plays a key part, works
like [5] and [2] use it to assess new variants of the EM on a very practical application. The model
is described as follows:

∀i = 1, ..., L′, yi =

L∑
j=1

Hijxj + ui .

Where y ∈ RL′ is one vector of observations, H ∈ RL′L is the fixed matrix of the sources, u ∈ RL′

the vector of noise, and x ∈ RL the random mixing coefficient. Each component xj is assumed to
be drawn from its own GMM.
An EM that converges too soon towards a local extremum has every chance to yield sub-optimal
estimated sources. We demonstrate in this section that an IFA method with tmp-EM can recover
sources closer to the original when they are known, and cleaner, more stable looking sources in
general.

5.8.1 Synthetic IFA

We start with a toy example, where the true sources are two easily distinguishable images. As shown
on fig. 5.19, one is a white square on a black background and the other is a white cross on a similar
black background but positioned differently. However, once these two sources are mixed and noised,
it becomes much harder to identify them with the naked eye - as illustrated by fig. 5.19 - and a
quantitative method is required to properly separate them. To separate the sources, the identification
model assumes that the coefficients used to mix the two sources are drawn from mixtures of Gaussian.
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Figure 5.18: The two real sources of a synthetic source mixing model. They are images of size 20×20
made of a black background with a white symbol localised either on the bottom left or top right
corner.

Figure 5.19: 6 typical observation obtained with the source mixing model. With the noise, the
sources are harder to identify.
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The outputs were voluntarily generated in a different way to show the generalisation capabilities
of the mixture of Gaussian assumption. We run an EM and a tmp-EM algorithm to estimate
the parameter of those mixtures, recovering in the process an estimation of the mixing matrix H.
fig. 5.20 illustrates the sources typically estimated by each of the two procedures. Although there
is noise, tmp-EM essentially identified and corrected the sources correctly. Whereas EM did not
manage to completely turn off the square symbol in the estimated sources supposedly dedicated to
the cross. fig. 5.21 displays the quantitative results of several runs over different simulated datasets.
It represents the empirical distribution of l2 errors made on the estimation of the source matrix H
by the two EMs. As illustrated by the table in fig. 5.21, the solutions of tmp-EM have lower mean
and median.

Figure 5.20: Estimated sources by EM (up) and tmp-EM (down). The two real sources were correctly
identify by tmp-EM, but EM did not fully separate the cross and the square.

5.8.2 ZIP code

We apply this IFA algorithm to the ZIP code dataset from Elements of Statistical learning. This
dataset contains handwritten digits between 0 and 9. In this study, we keep only the digits 0,3, 8 (all
three being ambiguously similar) and 7 (very different from the three others). We make all classes
even by removing half of the 0 which are originally more numerous. When applying Independent
Factor Analysis to such data, one hopes that the distinct digits will be identified as the separable
sources making up the signal. We run the IFA model with a Mixture of Gaussians model with a
regular and a tempered EM. In the mixing model used, each mixture is composed of two classes.
The tempering was made with the oscillating profile, with hyper-parameters: T0 = 50, b = 20, r =
3, a = 0.02.
fig. 5.22 displays the estimated sources by the IFA procedure with either EM or tmp-EM at their
core. EM did not really identify an ”8” source. Instead, its ”3” is a bit ambiguously close to and
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EM tempered EM
2

3

4

5

6

7

8

l2 error on the source matrix

(a)

EM tmp-EM

median 6.36 4.07
mean 6.01 4.75
std 1.05 1.65
Q5 3.72 2.79
Q25 5.78 3.44
Q75 6.65 6.17
Q95 7.13 7.64

(b)

Figure 5.21: Empirical distribution of the l2 error on the source matrix H made by EM and tmp-EM.
With tmp-EM, we shift the distribution towards the lower errors, with smaller average and median.
The numeric values of the quantiles and other statistics can be found in the table, the better ones
being in bold.

”8”, and the rightmost source in fig. 5.22 seems like an amalgamation of the four digits. Moreover,
the source ”7” estimated by EM is actually a mix between a ”7” and a ”0”. On the other hand, the
sources estimated by tmp-EM each correspond clearly to a different digit. There is an ”8”, the ”7”
is not fused with a ”0”, the ”3” is sharper and more distinct from an ”8” then the corresponding
EM source, and even the ”0” is more symmetrical with tmp-EM than with EM. Tempering the EM
within the IFA algorithm allowed for a cleaner separation of the sources. One can infer that tmp-EM
was able to identify and reach a better local maximum of the loss function.

Figure 5.22: Estimated sources by EM (up) and tmp-EM (down). The ”8” and the ”7” in particular
were much better identified by tmp-EM. Moreover, with tempering the ”0” has a more symmetrical
shape and the ”3” is sharper and less ambiguous.

5.9 Conclusions

We proposed the Deterministic Approximate EM class to bring together the many possible deter-
ministic approximations of the E step. We proved a unified theorem, with mild conditions on the
approximation, which ensures the convergence of the algorithms in this class. Then, we showcased
members of this class that solve the usual practical issues of the EM algorithm. For intractable E
step, we introduced the Riemann approximation EM, a less parametric and deterministic alterna-
tive to the extensive family of MC-EM. We showed on an empirical intractable example how the
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Riemann approximation EM was able to increase the likelihood and recover every parameter in a
satisfactory manner with its simplest design, and no hyper parameter optimisation. For cases where
one wants to improve the solution of the EM, we proved that the tempered EM, introduced under a
different form in [156], is a specific case of the Deterministic Approximate EM. Moreover, we showed
that the commonly used models benefit from the convergence property as long as the temperature
profile converges towards 1. This justifies the use of many more temperature profiles than the ones
tried in [156] and [120]. We ran an in-depth empirical comparison between tmp-EM and the regular
EM. In particular, we showed how tmp-EM was able to escape from adversarial initial positions,
a task that sometimes required complex non-monotonous temperature schemes, which are covered
by our theorem. Finally, we added the Riemann approximation in order to apply the tempering
in intractable cases. We were then able to show that the tmp-Riemann approximation massively
improved the performances of the Riemann approximation, when the initialisation is ambiguous.
Future works will improve both methods. The Riemann approximation will be generalised to be
applicable even when the hidden variable is not bounded, and an intelligent slicing of the integration
space will improve the computational performances in high dimension. For the tempered EM, tuning
the temperature parameters in an adaptive way during the procedure will remove the necessity for
preliminary hyper-parameter tuning by grid search.
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Chapter 6

Mixture of Conditional Gaussian
Graphical Models for unlabelled
heterogeneous populations in the
presence of co-factors

This Chapter has been submitted for review.

Conditional correlation networks, through Gaussian Graphical Modelling, are widely used to de-
scribe the direct interactions between the component of a random vector. In the case of a Heteroge-
neous population, Hierarchical Gaussian Graphical Models (GGM) are used to describe the different
sub-populations with one graph each. When the sub-population labels are unknown, unsupervised
methods must be implemented to estimate these labels in addition to the GGM parameters. Expec-
tation Maximisation (EM) algorithms for Mixtures of GGM were proposed as a natural unsupervised
extension of the Hierarchical GGM. However, we argue that, with most real data, class affiliation
cannot be described with a Mixture of Gaussian, which mostly groups data points according to geo-
metrical proximity in the feature space. In particular, there often exists external co-features whose
values affect the features’ average value, scattering across the feature space data points belonging
to the same sub-population. Additionally, if the co-features’ effect on the feature is Heterogeneous
(sub-population dependent), then the estimation of this effect cannot be separated from the cluster
identification. In this Chapter, we propose a Mixture of Conditional Graphical Models (CGGM)
that integrates co-features with heterogeneous effects. Within this model, the position of each data
point is readjusted in order to remove the effect of the co-features, and regroup the data points into
sub-population corresponding clusters. We develop a penalised EM algorithm to estimate the model
parameters with any desired sparsity structure for the graphs. We demonstrate on synthetic data
how this method fulfils its goal and succeeds in identifying the sub-populations where the Mixtures
of GGM are disrupted by the effect of the co-features. Likewise, on real Alzheimer’s Disease data,
we show that our method recovers patient clusters better correlated with the diagnostic.

6.1 Introduction

The conditional correlation networks are a popular tool to describe the co-variations between the
components of a random vector. Within the Gaussian Graphical Model (GGM) framework, intro-
duced in [35], the random vector of interest is modelled as a Gaussian vector N (µ,Σ), and the
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conditional correlation networks can be recovered from the sparsity of the inverse covariance ma-
trix Λ := Σ−1. In this Chapter, we consider the case of an unlabelled heterogeneous population,
in which different sub-populations (or “classes”) are described by different networks. Additionally,
we take into account the presence of observed co-features (discrete and/or continuous) that have a
heterogeneous (class-dependent) impact on the values of the features. The absence of known class
labels turns the analysis of the population into an unsupervised problem. As a result, any inference
method will have to tackle the problem of cluster discovery in addition to the parameter estimation.
The former is a crucial task, especially since the relevance of the estimated parameters is entirely
dependent on the clusters identified. The co-features, if their effects on the features are consequent,
can greatly disrupt the clustering. Indeed, any unsupervised method will then be more likely to
identify clusters correlated with the values of the co-features than with the hidden sub-population
labels. This occurs frequently when analysing biological or medical features. To provide a simple il-
lustration, if one runs an unsupervised method on an unlabelled population containing both healthy
and obese patients, using the body fat percentage as a feature, then the unearthed clusters are very
likely to be more correlated with the gender of the patients (a co-feature) rather than with the actual
diagnostic (the hidden variable). Additionally, the fact that the effect of the gender on the average
body fat is also dependent on the diagnostic (class-dependent effect) makes the situation even more
complex.
Unsupervised GGM have received recent attention, with works such as [52] and [61] adapting the
popular supervised joint Hierarchical GGM methods of [119] and [30] to the unsupervised case.
When the labels are known in advance, these joint Hierarchical GGM are useful models to estimate
several sparse conditional correlation matrices and are modular enough to allow for the recovery of
many different forms of common structure between classes. However, we argue that they are not
designed for efficient cluster identification in the unsupervised scenario, and will very likely miss
the hidden variable and find clusters correlated to the most influential co-features instead. Which
in turn will result in the estimation of irrelevant parameters. Even when there are no pre-existing
hidden variables to recover, and the unsupervised method is run “blindly”, it is uninteresting to re-
cover clusters describing the values to already known co-features. Instead, one would rather provide
beforehand the unsupervised method with the information of the co-features’ values and encourage
it to recover new information from the data.
In order to take into account the effect of co-features on features, [173] and [171] introduced the
Conditional Gaussian Graphical Models (CGGM). Within this model, the average effect of the
co-features is subtracted from the features, in order to leave only orthogonal effects. Both [173]
and [143] worked with homogeneous populations, but the Hierarchical form of the CGGM was
introduced by [27] to study labelled heterogeneous populations, with heterogeneous effects of the
co-features on the features. Recent works such as [69] and [123] have adapted the state of the art
supervised joint Hierarchical GGM methods for the CGGM. However, to the best of our knowledge,
there has been no effort to make use of the CGGM in the unsupervised case.
In this article, we introduce a Mixture of Conditional GGM that models the class-dependent effect
of the co-features on the features. We propose an Expectation-Maximisation (EM) procedure to es-
timate this model without prior knowledge of the class labels. This EM algorithm can be regularised
with all the structure-inducing penalties introduced for the supervised joint Hierarchical CGGM.
Hence, the recovered sparse conditional correlation graphs can present any of the desired form of
common structure. Moreover, with an additional penalty, we can also enforce structure within the
parameter describing the relation between co-features and features.
Thanks to the inclusion of the co-features within the model, our EM algorithm is able to avoid
trivial clusters correlated with the co-features’ values, and instead unearths clusters providing new
information on the population. Additionally, since our model takes into account heterogeneous ef-
fects of the co-features, our EM can handle the more complex scenarios, where the co-features act
differently on the features in each sub-population.
We demonstrate the performance of our method on synthetic and real data. First with a 2-
dimensional toy example, where we show the importance of taking into consideration the (het-
erogeneous) effects of co-features for the clustering. Then, in higher dimension, we demonstrate
that our EM with Mixture of CGGM consistently outperforms, both in terms of classification and
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parameter reconstruction, the EM with a Mixture of GGM (used in [52] and [61]), as well as an im-
proved Mixture of GGM EM, that takes into consideration a homogeneous co-feature effect. Finally,
on real Alzheimer’s Disease data, we show that our method is the better suited to recover clusters
correlated with the diagnostic, from both MRI and Cognitive Score features.

6.2 Supervised Hierarchical GGM and CGGM

In this section, we summarise the whys and wherefores of Gaussian Graphical Modelling: the simple
models for homogeneous populations, as well as the hierarchical models for heterogeneous popula-
tions. First, we explore the classical Gaussian Graphical Models techniques to describe a vector of
features Y ∈ Rp, then we discuss the Conditional Gaussian Graphical Models implemented in the
presence of additional co-features X ∈ Rq. For every parametric model, we call θ the full parameter,
and pθ the probability density function. Hence, in the example of a Gaussian model θ = (µ,Σ). For
hierarchical models with K classes, we will have K parameters (θ1, ..., θK).

6.2.1 Basics of Hierarchical Gaussian Graphical Models

In the classical GGM analysis introduced by [35], the studied features Y ∈ Rp are assumed to follow
a Multivariate Normal distribution: Y ∼ N (µ,Σ). The average µ is often ignored and put to 0.
With Λ := Σ−1, the resulting distribution is:

pθ(Y ) = (2π)−p/2 |Λ|1/2 exp
(
−1

2
Y TΛY

)
. (6.1)

In this case θ = Λ. Using the property that corr(Yu, Yv|(Yw)w 6=u,v) = − (Λ)uv√
(Λ)uu(Λ)vv

, the conditional

correlation network is obtained using a sparse estimation of the precision (or ”inverse-covariance”)
matrix Λ. Heterogeneous population, where different correlation networks may exist for each sub-
population (or “class”), can be described with the Hierarchical version of the GGM (6.1). With K
classes, Let θ := (θ1, ..., θk) be the parameter for each class and z ∈ J1,KK the categorical variable
corresponding to the class label of the observation Y . With θk := Λk and z known, the Hierarchical
density can be written:

pθ(Y |z) =

K∑
k=1

1z=kpθk(Y )

=

K∑
k=1

1z=k(2π)−p/2 |Λk|1/2 exp
(
−1

2
Y TΛkY

)
.

(6.2)

Mirroring the famous Graphical LASSO (GLASSO) approach introduced by [179] and [12] for ho-

mogeneous populations, many authors have chosen to estimate sparse Λ̂k as penalised Maximum
Likelihood Estimator (MLE) of Λk. For i = 1, ..., n, let Y (i) be independent identically distributed
(iid) feature vectors and z(i) their labels. These MLE are computed from the simple convex optimi-
sation problem

θ̂ = argmin
θ

− 1

n

K∑
k=1

n∑
i=1

1z(i)=k ln pθk(Y (i)) + pen(θ) . (6.3)

Where the convex penalty pen(θ) is usually designed to induce sparsity within each individual Λ̂k as
well as to enforce a certain common structure between the Λ̂k. This common structure is a desirable
outcome when the different sub-populations are assumed to still retain core similarities. Following
in the footsteps of [59], most authors propose such a joint estimation of the matrices Λk. In the case
of the penalised MLE estimation (6.3), the form of the resulting common structure is dependent
on the penalty. For instance, [30] propose the “Fused Graphical LASSO”” and “Group Graphical
LASSO” penalties that encourage shared values and shared sparsity pattern across the different
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Λk respectively. Likewise, [172] propose another fused penalty to incentivise common values across
matrices. With their node based penalties, [119] can encourage the recovery of common hubs in the
graphs.

Remark. Within a hierarchical model, one can also take θk := (µk,Λk), and adapt pθk(Y ) accord-
ingly, since it is natural to allow each sub-population to have different average levels µk.

6.2.2 Conditional GGM in the presence of co-features

In some frameworks, additional variables, noted X ∈ Rq and called “co-features” or “cofactors” can
be observed alongside the regular features within the Gaussian vector Y ∈ Rp. In all generality,
X can be a mix of finite, discrete and continuous random variables. In the GGM analysis, these
co-features are not included as nodes of the estimated conditional correlation graph. Instead, they
serve to enrich the conditioning defining each edge: in the new graph, there is an edge between the
nodes Yu and Yv if and only if cov(Yu, Yv|(Yw)w 6=u,v, X) 6= 0. The Conditional Gaussian Graphical
Models (CGGM) were introduced by [173] and [143] in order to properly take into account the effect
of X on Y and easily identify the new conditional correlation network in-between the Y . They
propose a linear effect, expressed by the conditional probability density function (pdf):

pθ(Y |X) = (2π)−p/2 |Λ|1/2 exp
(
−1

2
(Y + Λ−1ΘTX)TΛ(Y + Λ−1ΘTX)

)
, (6.4)

with Θ ∈ Rq×p and θ = {Λ,Θ}. In other words: Y |X ∼ N
(
−Λ−1ΘTX,Λ−1

)
. Two main branches

of CGGM exist, depending on whether the pdf of X is also modelled. In this work, we chose to
impose no model on X. The lack of assumption on the density of X provides far more freedom
than the joint Gaussian assumption. In particular, X can have categorical and even deterministic
components. This allows us to integrate any observed variables without restriction to the model.
To tackle heterogeneous populations, works such as [27] have introduced the Hierarchical version of
the CGGM pdf:

pθ(Y |X, z) =

K∑
k=1

1z=k

(
|Λk|

(2π)p

) 1
2

exp

(
−1

2
(Y + Λ−1

k ΘT
kX)TΛk(Y + Λ−1

k ΘT
kX)

)
. (6.5)

In particular, [69] have adapted the penalised MLE (6.3) to the Hierarchical CGGM density for
some of the most popular GGM penalties. With a idd sample (Y (i), X(i), z(i))ni=1, the corresponding
penalised CGGM MLE can be written;

θ̂ = argmin
θ

− 1

n

K∑
k=1

n∑
i=1

1z(i)=k ln pθk(Y (i)|X(i)) + pen(θ) . (6.6)

Remark. To include a regular average value for Y , independent of the values of X, one can simply
add a constant component equal to ”1” in X.

6.3 Mixtures of CGGM for unlabelled heterogeneous popu-
lation

In this section, we tackle the problem of an unlabelled heterogeneous population. We introduce a
Mixture of Conditional Gaussian Graphical Model to improve upon the state of the art unsupervised
methods by taking into consideration the potent co-features that can drive the clustering. We
develop a penalised EM algorithm to both identify data clusters and estimate sparse, structured,
model parameters. We justify that our algorithm is usable with a wide array of penalties and provide
detailed algorithmic for the Group Graphical LASSO (GGL) penalty.
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6.3.1 Presentation and motivation of the model

When the labels of a heterogeneous population are missing, supervised parameter estimation meth-
ods like (6.3) have to be replaced by unsupervised approaches that also tackle the problem of cluster
discovery. When z is unknown, the Hierarchical model (6.2) can easily be replaced by a Mixture
model with observed likelihood:

pθ,π(Y ) =

K∑
k=1

πkpθk(Y ) , (6.7)

and complete likelihood:

pθ,π(Y, z) =

K∑
k=1

1z=kπkpθk(Y ) . (6.8)

Where πk := P(z = k) and π := (π1, ..., πk) . Then, the supervised penalised likelihood maximisation
(6.3) can be adapted into the penalised observed likelihood optimisation:

θ̂, π̂ = argmin
θ,π

− 1

n

n∑
i=1

ln

(
K∑
k=1

πk pθk

(
Y (i)

))
+ pen(θ, π) . (6.9)

This is a non-convex problem, and authors such as [187] and [86] have proposed EM algorithms
to find local solutions to (6.9). They omit however the common structure inducing penalties that
are the signature of the supervised joint GGM methods. The works of [52] and [61] correct this by
proposing EM algorithms that solve (6.9) for some of the joint-GGM penalties, such as the Fused
and Group Graphical LASSO penalties.
By design, the EM algorithm must handle the cluster identification jointly with the mixture parame-
ters estimation. The underlying assumption is that the different sub-populations can be identified as
different clusters in the feature space. With real data, and especially medical data, this is generally
untrue, as many factors other than the class label can have a larger impact on the position of the
data points in the feature space. Even when there are no specific sub-populations to recover, and the
EM is ran “blindly” in order to observe which data points are more naturally grouped together by
the method, the unearthed clusters have every chance to be very correlated with very influential but
trivial external variables, such as the age group or the gender. In order to guide the cluster discovery
of the EM algorithm, we propose a Mixture of Conditional Gaussian Graphical Models with which
the overbearing effect of trivial external variables can be removed. By placing all external observed
variable into X, we define the Mixture of CGGM with its observed likelihood:

pθ,π(Y |X) :=

K∑
k=1

πkpθk(Y |X)

=

K∑
k=1

πk

(
|Λk|

(2π)p

) 1
2

exp

(
−1

2
(Y + Λ−1

k ΘT
kX)TΛk(Y + Λ−1

k ΘT
kX)

)
.

(6.10)

Within this model, the position of each feature vector Y is corrected by its, class-dependent, linear
prediction by the co-features X: E[Y |X, z = k] = −Λ−1

k ΘT
kX. In other words the “Mixture of

Gaussians” type clustering is done on the residual vector Y − E[Y |X, z = k] = Y + Λ−1
k ΘT

kX.
Hence, even if the co-features X have a class-dependent impact on the average level of the features
Y , the Mixture of CGGM model is still able to regroup in the feature space the observations Y (i)

that belong to the same class, z(i) = k. We illustrate this dynamic in section 6.4.1.
Like the previous works on joint-GGM estimation, our goal is to estimate the parameters of model
(6.10) with sparse inverse-covariance matrices Λk and common structure across classes. Sparsity
in the matrices Θk is also desirable for the sake of interpretation. Hence, we define the following
penalised Maximum Likelihood problem:

θ̂, π̂ = argmin
θ,π

− 1

n

n∑
i=1

ln

(
K∑
k=1

πk pθk

(
Y (i)|X(i)

))
+ pen(θ, π) . (6.11)
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As with (6.9), this is a non-convex problem, and we define an EM algorithm to find local minima of
the optimised function.

6.3.2 Penalised EM for the Mixture of CGGM

In this section, we provide the detailed steps of a penalised EM algorithm to find local solution of the
non-convex penalised MLE (6.11) in order to estimate the parameters of the mixture model (6.10)
with inverse-covariance sparsity as well as common structure. First we provide the different steps
of the algorithm and justify that it can be run with a wide array of penalty functions. Then, we
provide a detailed optimisation scheme for the Group Graphical Lasso (GGL) penalty specifically.

EM algorithm for Mixtures of CGGM. With n fixed
{
X(i)

}n
i=1

and n iid observations{
Y (i)

}n
i=1

following the mixture density pθ,π(Y |X) given in (6.10), the penalised observed nega-
tive log-likelihood to optimise is:

− 1

n

n∑
i=1

ln

(
K∑
k=1

πk pθk

(
Y (i)|X(i)

))
+ pen(θ, π) . (6.12)

We will not redo here all the calculations for the EM applied to a mixture. In the end, we get an
iterative procedure updating the current parameter (θ(t), π(t)) with two steps. The Expectation (E)
step is:

p
(t)
i,k := Pθ(t),π(t)(z(i) = k|Y (i), X(i)) =

p
θ
(t)
k

(Y (i)|X(i))π
(t)
k∑K

l=1 pθ(t)l
(Y (i)|X(i))π

(t)
l

.

More explicitly, by replacing pθk(Y |X) by its formula (6.4):

(E) p
(t)
i,k =

|Λk|−
1
2 exp

(
1
2 (Y (i) + Λ−1

k ΘT
kX

(i))TΛk(Y (i) + Λ−1
k ΘT

kX
(i))
)∑K

l=1 |Λl|
− 1

2 exp
(

1
2 (Y (i) + Λ−1

l ΘT
l X

(i))TΛl(Y (i) + Λ−1
l ΘT

l X
(i))
) . (6.13)

The M step is:

θ(t+1), π(t+1) = argmin
θ,π

− 1

n

K∑
k=1

n∑
i=1

p
(t)
i,k

(
ln pθk(Y (i)|X(i)) + ln πk

)
+ pen(θ, π) .

Assuming that there is no coupling between π and θ in the penalty, i.e. pen(π, θ) = penπ(π)+penθ(θ),
then the two optimisations can be separated:

θ(t+1) = argmin
θ

− 1

n

K∑
k=1

n∑
i=1

p
(t)
i,k ln pθk(Y (i)|X(i)) + penθ(θ) ,

π(t+1) = argmin
π

− 1

n

K∑
k=1

n∑
i=1

p
(t)
i,k ln πk + penπ(π) .

Let us denote the sufficient statistics n
(t)
k :=

∑n
i=1 p

(t)
i,k, S

k,(t)
Y Y := 1

n

∑n
i=1 p

(t)
i,kY

(i)Y (i)T , S
k,(t)
Y X :=

1
n

∑n
i=1 p

(t)
i,kY

(i)X(i)T and S
k,(t)
XX := 1

n

∑n
i=1 p

(t)
i,kX

(i)X(i T ). Then, the M step can be formulated as:

θ(t+1) = argmin
θ

1

2

K∑
k=1

(〈
Λk, S

k,(t)
Y Y

〉
+
〈

2Θk, S
k,(t)
Y X

〉
+
〈

ΘkΛ−1
k ΘT

k , S
k,(t)
XX

〉)
(M) − 1

2

K∑
k=1

n
(t)
k

n
ln(|Λk|) + penθ(θ) ,

π(t+1) = argmin
π

−
K∑
k=1

n
(t)
k

n
ln πk + penπ(π) .

(6.14)

130



The E step in Eq (6.13) is in closed form. With any reasonable penalty penπ, the optimisation on the
class weights π in Eq (6.14) will be trivial, and most likely in closed form as well. The update of θ in
the M step (6.14) takes exactly the same form as the supervised penalised MLE of Eq (6.6), see [69]
for the explicit supervised CGGM formulation. As a result, as long as the supervised case (6.6) is
solved, then the M step is tractable as well. In their work on joint Hierarchical CGGM, [69] show
that the supervised negative log-likelihood is a convex function of θ. As a consequence the problem
(6.14) is solvable for a very wide array of penalties penθ, in particular the convex differentiable
penalties.
In order to provide an algorithm with more specific and detailed steps, we consider in the rest of the
section the special case of the GGL penalty. The GGL penalty was noticeably used in the supervised
case by [69], who proposed a proximal gradient algorithm. Likewise, we can use a proximal gradient
algorithm to compute the M step (6.14) of our EM algorithm.

Proximal gradient algorithm to solve the M step with the GGL penalty. The Group
Graphical Lasso (GGL) penalty, introduced in [30] and adapted to the hierarchical CGGM by [69],
can be written:

penθ(θ) :=
∑

1≤i 6=j≤p

λΛ
1

K∑
k=1

∣∣∣Λ(ij)
k

∣∣∣+ λΛ
2

√√√√ K∑
k=1

(
Λ

(ij)
k

)2


+

∑
(i,j)∈J1,qK×J1,pK

λΘ
1

K∑
k=1

∣∣∣Θ(ij)
k

∣∣∣+ λΘ
2

√√√√ K∑
k=1

(
Θ

(ij)
k

)2

 .

(6.15)

Unlike in [69], whereλΛ
1 = λΘ

1 and λΛ
2 = λΘ

2 , we use different levels of penalisation for the parameters
Λ and Θ, since both their scales and their desired sparsity level can be very different. This penalty
borrows its design from the Group Lasso [178], where the l1 norm induces individual sparsity of each
coefficient, and the l2 induces simultaneous sparsity of groups of coefficients. In Eq. (6.15), for each

pair (i, j) belonging to the relevant space,
{

Λ
(ij)
k

}K
k=1

constitutes a group that can be entirely put to

0. This incites the algorithm to set a certain matrix coefficient to 0 over all K classes. These common
zeros constitute the common structure sought after by the GGL approach. In our CGGM case, the

same can be said for the group
{

Θ
(ij)
k

}K
k=1

. Regarding the theoretical analysis, we underline that

the l2 part of the penalty is not separable in a sum of K different penalties, which forces a joint
optimisation problem to be solved, even in the supervised framework.
We detail here how to solve the M step (6.14) with penθ(θ) defined as in Eq (6.15). We assume, as

usual, that the optimisation in π is both independent from the optimisation in θ = {Λk,Θk}Kk=1 and
trivial. The function to minimise in θ at the M step is:

f(θ) :=

K∑
k=1

(
−
n

(t)
k

n
ln(|Λk|) +

〈
Λk, S

k,(t)
Y Y

〉
+
〈

2Θk, S
k,(t)
Y X

〉
+
〈

ΘkΛ−1
k ΘT

k , S
k,(t)
XX

〉)
+ penθ(θ) .

As shown in [69], this function is convex and infinite on the border of its set of definition and as a
unique global minimum. We note f(θ) =: g(θ) + penθ(θ) for the sake of simplicity. The proximal
gradient algorithm, see [28], is an iterative method based on a quadratic approximation on g(θ). If
θ(s−1) is the current state of the parameter within the proximal gradient iterations, then the next
stage, θ(s), is found by optimising the approximation:

f
(
θ(s)
)

= f
(
θ(s−1) + θ(s) − θ(s−1)

)
≈ g

(
θ(s−1)

)
+∇g

(
θ(s−1)

)T
.
(
θ(s) − θ(s−1)

)
+

1

2α

∥∥∥θ(s) − θ(s−1)
∥∥∥2

2
+ penθ

(
θ(s)
)

≡ 1

2α

∥∥∥θ(s) −
(
θ(s−1) − α∇g

(
θ(s−1)

))∥∥∥2

2
+ penθ

(
θ(s)
)
.

(6.16)
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Where we removed in the last line the constants irrelevant to the optimisation in θ(s) and α denotes
the step size of the gradient descend. Note that we use the exponent (s) to indicate the current
stage of the proximal gradient iteration, to avoid confusion with the exponent (t) used for the EM
iterations (which are one level above). We underline that, in addition to g(θ) itself, the second order

term in the Taylor development of g(θ) is also approximated. Using 1
2α

∥∥θ(s) − θ(s−1)
∥∥2

2
instead

of 1
2

(
θ(s) − θ(s−1)

)T
.Hg

(
θ(s−1)

)
.
(
θ(s) − θ(s−1)

)
spares us from computing the Hessian Hg

(
θ(s−1)

)
and simplifies the calculations to come. The approximated formulation in Eq (6.16) leads to the
definition of the proximal optimisation problem:

proxα(x) := argmin
θ

1

2α
‖θ − x‖22 + penθ(θ) . (6.17)

So that the proximal gradient step can be written:

θ(s) = proxαs

(
θ(s−1) − αs∇g

(
θ(s−1)

))
. (6.18)

Where the step size αs is determined by line search. The usual proximal gradient heuristic is to take
a initial step size α0, a coefficient β ∈]0, 1[, and to reduce the step size, α←− βα, as long as:

g
(
θ(s−1) − αGα

(
θ(s−1)

))
> g

(
θ(s−1)

)
− α∇g

(
θ(s−1)

)T
.Gα

(
θ(s−1)

)
+
α

2

∥∥∥Gα (θ(s−1)
)∥∥∥2

2
,

with Gα
(
θ(s−1)

)
:=

θ(s−1)−proxα(θ(s−1)−α∇g(θ(s−1)))
α the generalised gradient.

To apply the proximal gradient algorithm, we need to be able to solve the proximal (6.17) with the
CGGM likelihood and the GGL penalty. Thankfully, [30] found an explicit solution to this problem in
the GGM case, which [69] adapted to the CGGM. The proximal optimisation is separable in Λ and Θ,
and the solutions Λ(prox) and Θ(prox) share the same formula. As a result, we use D as a placeholder
name for either Λ or Θ, i.e. depending on the context eitherDij

k = Λijk or Dij
k = Θij

k . Let S be the soft

thresholding operator: S(x, λ) := sign(x)max(|x| − λ, 0), and D̃ij
k,α := D

ij,(s−1)
k − α ∂g

∂Dijk

(
θ(s−1)

)
.

The solution of (6.17), with x = θ(s−1)−α∇g
(
θ(s−1)

)
, is given coefficient-by-coefficient in Eq (6.19):

D
ij,(prox)
k = S

(
D̃ij
k,α, λ

D
1 α
)
max

1− λD2 α√∑
k S(D̃ij

k,α, λ
D
1 α)2

, 0

 . (6.19)

Note that the partial derivatives ∂g

∂Dijk

(
θ(s−1)

)
, necessary to get D̃ij

k,α, are easily calculated in closed

form from the likelihood formula. With the proximal problem (6.17) and the line search easily
solvable, the proximal gradient steps can be iterated until convergence to find the global minimum
of f(θ). With f(θ) optimised, the M step (6.14) is solved.

6.4 Experiments

In this section, we demonstrate the performances of our EM with Mixture of CGGM. First on a
visual toy example in 2 dimension, then on a higher dimensional synthetic example and finally on
real Alzheimer’s Disease data. We compare the Mixture of CGGM to the regular Mixture of GGM
which ignores co-features and to a Mixture of GGM that assumes a uniform linear effect of the
co-features on the features.

6.4.1 An illustration of co-features with class-dependent effect

In this section, we present a simple visual example to illustrate the importance of taking into ac-
count heterogeneous co-feature effects. We show that even with a single binary co-feature, and with
low dimensional features, the state of the art unsupervised GGM techniques are greatly disrupted
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by the co-features. Whereas our EM with Mixture of CGGM (which we call “Conditional EM” or
“C-EM”) achieves near perfect classification.

Under the Mixture of Gaussians (MoG) model, the observed data, Y ∼
∑K
k=1 πkN (µk,Σk), belongs

to K classes which can directly be represented as K clusters in the feature space Rp. Each cluster
centred around a centroid at position µk and with an ellipsoid shape described by Σk. However,
when there exists conditioning variables X ∈ Rq that have an effect on Y , this geometric description
becomes more complex. Typically, the value of Y could depend linearly on the value of X, with
E [Y |X, z = k] = βTk X for some βk ∈ Rp×q. In this case, the average position in class k is not a
fixed µk but a function of X. If X contains categorical variables, this creates as many different
centroid positions as there are possible category combinations in X. The number of these de facto
clusters geometrically increases with the dimension q, which deters from simply running a clustering
method with an increased number of clusters K ′ to identify all of them. Moreover, if X contains
continuous variables, there is a continuum of positions for the centroid, not a finite number of de
facto clusters. If X mixes the two types of variables, the two effects coexist. This shatters any hope
to run a traditional MoG-based EM clustering algorithm, since its success is heavily dependent on
its ability to identify correctly the K distinct cluster centroids µk.
Since the X are observed, a possible solution is to run the linear regression Ŷ = β̂X beforehand,
and run the EM algorithm on the residual Y − Ŷ to remove the effect of X. This is what we call
the “residual EM” or “residual Mixture of GGM”. However this does not take into account the fact
that this effect can be different for each class k, β1 6= β2 6= ... 6= βK . Since the label is not known
beforehand in the unsupervised context, the linear regression Ŷ = β̂X can only be run on all the
data indiscriminately, hence is insufficient in general. On the other hand, the hierarchical CGMM
(6.5), which verifies: E [Y |X, z = k] = −Λ−1

k ΘT
kX, is designed to capture heterogeneous co-feature

effects. We design a simple experiment to substantiate this intuition.

In this example, Y ∈ R2, X ∈ {−1, 1} and z ∈ {1, 2}. Y |X, z follows the hierarchical conditional
model of (6.5). In this simple case, this can be written as Y = (β1X + ε1)1z=1 + (β2X + ε2)1z=2.

With ε1 ∼ N (0,Λ−1
1 ) and ε2 ∼ N (0,Λ−1

2 ). A typical iid data sample (Y
(i)
i=1)n is represented on the

left sub-figure of Figure 6.1. The hidden variable z is represented by the colour (blue or orange).
The observable co-feature X is represented by the shape of the data point (dot or cross). It is clear
from the figure that a Mixture of Gaussians model with K = 2 cannot properly separate the blue
and orange points in two clusters. Indeed, on the right sub-figure of Figure 6.1, we observe the final
state of an EM that fits a Mixture of Gaussians on Y . The two recovered clusters are more correlated
with the co-feature X than the hidden variable z. However, this method did not take advantage of
the knowledge of the co-feature X. As previously mentioned, one could first subtract the effect of X
from Y before running the EM. On the left sub-figure of Figure 6.2, we represent the residual data
Ỹ := Y − β̂X. Where β̂ is the Ordinary Least Square estimator of the linear regression between X
and Y over all the dataset (β̂ ≈ β1+β2

2 if n is large enough). Since the linear effect between X and Y
is not uniform over the dataset, but class dependent, the correction is imperfect, and the two class
clusters remain hardly separable. This is why the residual EM, that fits a Mixture of GGM on Ỹ is
also expected to fail to identify clusters related to the hidden variable. Which is shown by the right
sub-figure of Figure 6.2, where we see a typical final state of the residual EM.
On the leftmost sub-figure of Figure 6.3, we display the proper correction for the co-features’ effect
Ỹ ′ = Y − β1X1z=1 − β2X1z=2 = ε11z=1 + ε21z=2. Under this form, a Mixture of Gaussian can
separate the data by colour. This is precisely the kind of translation that each data point undergoes
within a Hierarchical CGGM. Hence a Mixture of CGGM can succeed in identifying the hidden
variable z, provided that it estimates correctly the model parameters. To illustrate this point, the
two next sub-figures in Figure 6.3 represent the same final state of the EM fitting a Mixture of
CGGM on Y . The middle sub-figure represents Ỹ ′ as well as the two estimated centered distribu-
tions N (0, Λ̂−1

k ) for k = 1, 2. We can see the two formally identified clusters after removing the
effect of X. The rightmost sub-figure represents the original data Y as well as the four estimated
distributions N (±Σ̂kΘ̂T

k , Λ̂
−1
k ) for k = 1, 2. The four de facto clusters present in the data Y before

removing the effect of X are well estimated by the method.
We confirm these illustrative results by running several simulations. We generate 50 datasets with
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n = 500 data points. For each simulation, we make 10 random initialisations from which we run
the three EMs: with GGM, residualised GGM or CGGM. Table 6.4.1 summarises the results. We
follow the errors made by the estimated class probabilities or “soft labels”, P̂(zi = k), which we call
the “soft misclassification error”, as well as the error made by the “hard labels”, 1ẑi=k, which we

call the “hard misclassification error”. They can be expressed as 1
2n

∑
i,k

∣∣∣1zi=k − P̂(zi = k)
∣∣∣ and

1
2n

∑
i,k |1zi=k − 1ẑi=k| respectively. We see that the Mixture of CGGM performs much better, with

less than 10% of misclassification in average, while the two GGM methods are both above 40% of
error, fairly close to the level of a random uniform classifier, 50%.
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Figure 6.1: (Left) Observed data Y in the 2D space. The observed conditioning variable X is binary.
Data points with X = −1 are represented as crosses, and the ones with X = 1 are represented as
dots. In addition, there is an unknown “class” variable z. Class 1 is in blue, class 2 in orange. Y |X, z
follows the hierarchical conditional model. As a result, the two classes (orange and blue) are hard
to separate in two clusters. (Right) Typical clusters estimated by an EM that fits a GGM mixture
on Y
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Figure 6.2: (Left) Residual Ỹ = Y − β̂Y data after taking into account the estimated effect of X.
Since the effect had different intensities on class 1 and 2, only the average effect was subtracted, and
two classes are still not well separated. (Right) Typical clusters estimated by the “residual EM”,
that fits a GGM mixture on Ỹ

6.4.2 Experiments in high dimension

In this section, we perform a quantitative analysis of the algorithms in a higher dimension framework,
where the matrix parameters Λ and Θ are more naturally interpreted as sparse networks. We confirm
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Figure 6.3: (Left) Observations Ỹ ′ = Y − β1X1z=1 − β2X1z=2 exactly corrected for the class-
dependent effect of X. In this state the two classes appear as two distinct clusters. The Conditional-
EM is designed to transform the data in this manner. (Middle) One possible representation of the
CEM results. The corrected observations Ỹ ′ are displayed alongside centered normal distributions
with the two estimated covariance matrices: N (0, Λ̂−1

k ). (Right) Another possible representation of
the same CEM results. The original observations Y are displayed, alongside with the four de facto
estimated distributions N (±Σ̂kΘ̂T

k , Λ̂
−1
k ).

Table 6.1: Average and standard deviation of the misclassification error achieved on the 2-
dimensional example with the EMs on the Mixture of GGM, the Mixture of GGM with residu-
alised data, and the Mixture of CGG. The two GGM methods are close to the threshold of random
classification (0.50), while the Mixture of CGGM is in average below 10% of error.

EM GGM EM resid. GGM EM CGGM

1
2n

∑
i,k

∣∣∣1zi=k − P̂(zi = k)
∣∣∣ 0.41 (0.11) 0.47 (0.05) 0.08 (0.17)

1
2n

∑
i,k |1zi=k − 1ẑi=k| 0.41 (0.12) 0.46 (0.06) 0.07 (0.17)
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that the Mixture of Conditional Gaussian Graphical Models is better suited to take into account
the heterogeneous effects of co-features on the graph.
For this experiment, the observed data follows a mixture model with K = 3 classes. Each class k
has the probability weight πk = 1

3 . An observation (Y,X) ∈ Rp × Rq belonging to the class k is

described by the distribution: Y |X ∼ N
(
−Λ−1

k ΘT
kX,Λ

−1
k

)
. No model assumption are made on X.

In this example, X contains two binary variables, two continuous variables, and a constant variable
always equal to 1. The inverse-covariance matrix Λk ∈ Rp×p and the transition matrix Θ ∈ Rq×p
are both sparse, with p = 10 and q = 5. We run 20 simulations. A simulation consists of n = 300
generated data points. On these data points, we run the compared methods, all initialised with
the same random parameters. For all simulations, we make 10 of these runs, each with a different
random initialisation. We compared the same three algorithms as in section 6.4.1: the EM for the
Mixture of GGM, the EM for the Mixture of GGM with average effect of X subtracted, and the EM
applied to the Mixture of CGGM. Additionally, we also run the tempered version of these three EM
algorithms.
We follow four metrics to assess the method’s success in terms of cluster recovery and fit with the
data. The classification error (both soft and hard labels versions), the recovery of the network
matrix Λ and an “ABC-like” metric. The “ABC-like” metric is meant to assess how well each of
the estimated solutions is able to replicate the observed data. Since each solution is the parameter
of a probability distribution, at the end of each EM, we generate new data following this proposed
distribution. Then, for each synthetic data point, we compute the distance to the closest neighbour
among the real data points. These minimal distances constitute our “ABC-like” metric. Finally, we
also compute the execution time of each EM, knowing that they all have the same stopping criteria.
We represent on Figure 6.4 the empirical distribution of these four metrics and we quantify with
Table 6.2 the key statistics (mean, standard deviation, median) that characterise them. With K = 3
and balanced classes, a uniform random classifier would guess the wrong label 66.7% of the time.
We observe that the two Mixture of GGM method are dangerously close to this threshold, with more
than 50% hard misclassification. The EM on the Mixture of CGGM (C-EM) on the other hand,
achieves a much better classification with less than 15% hard misclassifcation. This demonstrate
that, even when faced with a more complex situation, in higher dimension, the Mixture of CGGM
is better suited to correct for the effect of the co-features and discover the right clusters of data
points. This also underlines once more the importance of allowing different values of the effect of
X on Y for each class. Indeed, the residual Mixture of GGM - which took into account the average
effect of X on Y over the entire population - was unable to achieve better performances than the
EM that did not even use the co-features X. In terms of reconstruction of the observed data by
the estimated model (ABC-like metric), we see that the synthetic data points generated from the
estimated Mixture of CGGM model have closer nearest neighbours than the data points generated
by the other estimated models. In addition to all these observations, the C-EM is also faster than
the other two methods, reaching the convergence threshold faster.
In addition to the cluster recovery, we can also assess the parameter reconstruction of each method.

Table 6.2: Average, standard deviation and median (below) of the four followed performance metrics over the 30×5
simulations. The best values are in bold. We can see that the classification performances with the Mixture of CGGM
are much better than the two methods with Mixtures of GGM, and with faster computation times.

soft misclassif. hard misclassif. ABC-like metric runtimes

GGM 0.56 (0.03) 0.55 (0.04) 5.57 (0.09) 115 (61)
0.57 0.56 5.58 93

GGM resid. 0.51 (0.03) 0.50 (0.03) 4.64 (0.22). 253 (137)
0.51 0.49 4.64 256

CGGM 0.17 (0.05) 0.14 (0.06) 4.13 (0.14) 58 (91)
0.16 0.13 4.14 16
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Figure 6.4: Empirical distribution of several performance metrics measured over many simulations.
The sample is made of 30 simulations with 5 different initialisations each. Three methods are
compared. The EM and EM residual algorithms estimate a Mixture of GGM. The C-EM algo-
rithm estimates a Mixture of CGGM. The C-EM is much better performing and faster. (Upper

left) Soft mis-classification error
∣∣∣1zi=k − P̂(zi = k)

∣∣∣. (Upper right) Hard mis-classification error

|1zi=k − 1ẑi=k|. (Bottom left) ABC-like metric. (Bottom right) Run time.

137



Since the three clustering methods estimate different parametric models over the data, they do
not actually try to estimate the same parameters. Regardless, all the methods still estimate a
certain inverse covariance matrix Λk (conditional or not on the X depending on the model) of each

sub-population that they identify. In Table 6.3, we can check that the Λ̂k estimated by with the
Mixture of CGGM are indeed a much better fit for the real Λk then the estimated matrices from
the other models. This is expected, since the real Λk actually correspond to the CGGM model. The
two metrics followed are the Kullback–Leibler (KL) divergence between the Gaussian distribution

fΛk ∼ N (0,Λ−1
k )) and fΛ̂k

∼ N (0, Λ̂−1
k )), and the l2 difference given by the Froebenius norm:∥∥∥Λk − Λ̂k

∥∥∥2

F
.

To illustrate the different level of success concerning the conditional correlation graph recovery, we
display on Figure 6.5 the conditional correlation matrix (i.e. the conditional correlation graph with
weighted edges) estimated by each method. The three columns of figures correspond to the three
sub-populations. The first two rows of figures are the matrices estimated by the two Mixture of GGM
methods, with and without residualisation with the co-features. The third row of figures correspond
to the matrices estimated by the Mixture of CGGM. The final row displays the real conditional
correlation matrices. We observe that the two Mixtures of GGM recover way too many edges, with
no particular fit with the real matrix. By contrast, the matrices from the CGGM Mixture exhibit
the proper edge patterns. Not all the true edges are recovered, and some of the recovered ones have a
lower intensity than the real ones, but there are very few False Positives. This level of fidelity is very
impressive since the method was run from a random initialisation on a totally unsupervised dataset,
with heavily translated data points all over the 10 dimensional space. Moreover, the matrices in
Figure 6.5 all result from the inversion of the empirical covariance matrix, which is neither a very
geometrical nor a very stable operation. The figures in this example were obtained without fine
tuning of the penalty intensity. A lower penalty intensity should allow the CGGM Mixture graph to
resemble the true graph even more. Note that the matrices estimated by the Mixtures of GGM EMs
are less sparse than the CGGM ones, despite being estimated with the same penalisation intensity.
This is because the estimated clusters by the GGM Mixtures contain data points so far apart that
the corresponding empirical covariance coefficients are very large. Hence, a penalty with the same
intensity is not enough to put as many coefficients to 0 as in the case of the Mixture of CGGM.
In Figure 6.6, we represent the regression parameter Θ̂k estimated by with the Mixture of CGGM
alongside the real Θk. Once again, we see that the sparsity pattern is very well identified, with no
False Positive. Moreover, in this case, there are also almost no False Negative, and all the edge
intensities are correct. This is not a surprise. Indeed, the parameter Θ plays a huge role in the
correct classification of the data, since it serves to define the expected position of each data point in
the feature space (playing the part of the “average” parameter in Mixtures of GGM). Hence, a good
estimation of Θ is mandatory to reach a good classification. Since the EM with Mixture of CGGM
achieved very good classification results, it was expected that Θ would be well estimated.

Table 6.3: Average and standard deviation of the metrics describing the reconstruction of each inverse-covariance
matrix Λk. The matrices are consistently better reconstructed with the mixture of CGGM.

metric class EM GGM EM res. GGM EM CGGM

KL(fΛ, fΛ̂)
1 11.0 (3.0) 7.5 (6.8) 0.8 (0.2)
2 10.3 (2.2) 8.5 (5.0) 1.9 (0.3)
3 13.6 (2.5) 5.2 (2.3) 3.4 (1.1)

∥∥∥Λ− Λ̂
∥∥∥2

F

1 39.2 (48.4) 44.2 (114) 2.2 (0.8)
2 15.1 (12.2) 102 (73.9) 6.6 (0.9)
3 14.2 (13.8) 15.1 (25.7) 5.8 (4.0)
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Figure 6.5: Comparison between the several estimated and the true conditional correlation matrices
for each sub-population. The three columns of figures correspond to the three sub-populations. The
first two rows of figures are the matrices estimated by the two Mixture of GGM methods, with and
without residualisation with the co-features. The third row of figures correspond to the matrices
estimated by the Mixture of CGGM. The final row displays the real conditional correlation matrices.
Unlike the two GGM-based methods, the Mixture of CGGM recovers correct edges with very few
False Positives.
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Figure 6.6: Reconstruction of the Θk by the EM on the Mixture of CGGM. The three columns
of figures correspond to the three sub-populations. Almost all the edges are right, with no False
Positive and almost no False Negative. Moreover, the intensities are also mostly correct.

6.4.3 Experiments on real data

In this section, we confirm our experimental observations with a real, high dimensional, Alzheimer’s
Disease dataset. We illustrate that the EM with Mixture of CGGM is better suited to identify
clusters correlated with the diagnostic than the Mixture of GGM methods. We bring to light the
effect of co-features such as the gender and age on the medical features.
Our dataset is composed of the parameters ξ, τ, (wi)i=1,...,30 of longitudinal models estimated on real
Alzheimer’s Disease patients, see [141]. In summary, the evolution of several features are followed
over time for each patients. The features i = 1, ..., 10 correspond to MRI measures of atrophy in
different region of the brain. The features i = 11, ..., 30 correspond to cognitive scores obtained
through tests. A longitudinal model estimates a geodesic trajectory within a Riemannian manifold
of the parameter space that fits with the patient’s own evolution. More specifically, the longitudinal
model parameters describe how each patient’s trajectory deviates from a specific reference geodesic
trajectory. The parameter ξ is the time acceleration of the patient with regards to the reference.
The parameter τ is the time shift, so that a smaller τ corresponds a disease which starts early.
Each wi describes the space shift of the trajectory with regards to its corresponding feature. With
Y := ξ, τ, (wi)i=1,...,30 the vector of features, we have p = 32. We add three co-features to describe
each patient: the gender, the age baseline, and the number of years of education. With the addition
of the constant co-feature = 1, the vector of co-features is 4-dimensional, X ∈ R4. The dataset con-
tains 1400 patients, with half being healthy (“Control” patients), and the other half being diagnosed
with the Alzheimer’s Disease, either from the start or after a few visits (“AD” patients). The data
is centered and normalised over the entire population.
We run the three algorithms: EM, EM residual and C-EM on this dataset. In order to check the
stability of the results over several different runs, we implement a bootstrap procedure that only uses
70% of the data each time. We generate 10 such bootstrapped dataset. We initialise the algorithms
with a KMeans on the Y (i) data points. Since KMeans is not deterministic, we make 5 different
runs for each bootstrapped dataset, starting from 5 different possible KMeans initialisation each.
Like previously, for the sake of fairness, the EM and C-EM are always provided with the same ini-
tialisation, and the residual EM is initialised with a KMeans on the residual of Y after subtracting
the prediction by the X, a more relevant initialisation for this method. We make all these runs with
four different feature sets. First with no space shift variable Y = {ξ, τ} , p = 2, then we add only
the MRI space shifts Y = {ξ, τ, (wi)i=1,...,10} , p = 12, then only the Cognitive Scores space shifts
Y = {ξ, τ, (wi)i=1,...,10} , p = 22, and finally, with all the features Y = {ξ, τ, (wi)i=1,...,30} , p = 22.
The classification results are summarised in Table 6.4. With two balanced classes, the classification
error of a uniform random classifier is 50%. On the smallest dataset, p = 2, we can see that the
discovered cluster are somewhat correlated with the diagnostic, with classification errors below 30%.
The Mixture of GGM on the uniformly residualised data and the Mixture of CGGM achieve similar
levels of error, they are both better than the regular Mixture of GGM. When the MRI features are
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added, all the discovered cluster become more correlated with the diagnostic. The regular Mixture
of GGM achieves in average 16% of hard classification error, the residualised Mixture of GGM is at
11% of error, and the Mixture of CGGM even below, at 7%. The results with only the Cognitive
Scores are very similar, simply a bit worse for every method. However, when both the MRI and
Cognitive Scores feature are included, the performance of both GGM mixtures decrease, with both
higher average error and higher variance. On the other hand, the Mixture of CGGM achieves here
its best level of performance. This stability of the Mixture of CGGM’s performance as the size of
the feature set increases indicates that our model is the best suited to properly identify clusters
correlated with the diagnostic in high dimension.
We analyse the estimated Mixture of CGGM parameters on the full feature set p = 32. First, since
E[Y |X, z = k] = −ΛkΘT

kX in the CGGM, we display on Figure 6.7 the two estimated β̂k := −Λ̂kΘ̂k

(averaged over the bootstrap). They play the role of linear regression coefficients in the model.
The last column is the constant coefficient, while the first three are the gender, age baseline and
years of education coefficients respectively. Since the data is centered, negative and positive values
correspond to below average and above average values respectively. The cluster k = 1 is the one
very correlated with the Control patients sub-population. Similarly, the cluster k = 2 is the one
very correlated with the AD patients.
The most noticeable difference between the two β̂k are the constant vectors, who have opposite
effects on all features. In particular, the “AD cluster” is very correlated with high ξ and low τ , as
well as high LL Delay and LM IMM. The opposite being true for the “Control cluster”. These are
the expected effects: a high ξ corresponds to a quickly progressing disease, and a low τ to an early
starting disease. For some reason, the “AD cluster” is also negatively correlated with the atrophy
of the ventricles, which may not be an actual trait of AD patients, but an accidental characteristic
of this cluster. However, this behaviour is consistent over all the bootstraped datasets, which makes
us question whether it might actually be a relevant description of the disease. Further testing with
new datasets is required.
The non-constant linear regression coefficients are also different between the clusters, although these
differences are often in intensity and not in sign. In order to visualise more clearly the differences
in intensity, we represent on Figure 6.8, with the same conventions, the difference β̂2 − β̂1. In par-
ticular, within the AD cluster, we observe stronger positive effect of the Age baseline on the MRI
Amygdala, Enthorinal, Hyppocampus and Parahip atrophies. On the contrary, there is a stronger
positive effect of the education level on all the MRI attrophies for the Control patients. The age bl
has a stronger negative impact on the scores ECOG SELF mem, lang and dispat for the AD patients,
and a stronger negative impact on the scores LL Delay and LM IMM for the control patients.
Finally, we display on Figure 6.9 and 6.10 the average conditional correlation graphs estimated
for these two clusters by the Mixture of CGGM. Their only noticeable difference is the negative
conditional correlation between ξ and τ in the “Control cluster”, which is reversed in the “AD
cluster”. For the AD patients, this means that a disease that appears later tends to also progress
faster, which is in line with medical observations. Apart from this edge, the rest of the connec-
tions are almost identical in-between clusters. This suggests that the, cluster dependent, prediction
Eθ̂k [Y (i)|X(i), z = k] = −Σ̂kΘ̂T

kX
(i) takes into account enough of the cluster-specific effects so that

the remaining unexplained variance has almost the same form in both clusters. Hence, the condi-
tional correlations pictured in these graphs correspond to very general effects, such as the positive
correlations between related cognitive tests or areas of the cortex.

6.5 Conclusion

We introduced the Mixture of Conditional Gaussian Graphical Models in order to guide the cluster
discovery when estimating different Gaussian Graphical Models for an unlabelled heterogeneous
population in the presence of co-features. We motivated its usage to deal with the potential in-
homogeneous and class-dependent effect of the co-features on the observed data that would otherwise
disrupt the clustering effort. To estimate our Mixture model, we proposed a penalised EM algorithm
(“Conditional EM” or “C-EM”) compatible with a wide array of penalties. Moreover, we provided
detailed algorithmic steps in the specific case of the popular Group Graphical LASSO penalty.
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Figure 6.7: Average β̂k := −Σ̂kΘ̂T
k over 10 bootstrap sampling of the data. For each bootstrapped

dataset, 3 different runs of the C-EM are made, each with a different KMmeans initialisation of
the labels. (Left) β̂1, the cluster k = 1 is always very correlated with the Control patients sub-

population (less than 10% deviation). (Right) β̂2, the cluster k = 2 is likewise very correlated with
the AD patients. In each figure, the last column is the constant coefficient. The largest inter-cluster
differences are between the two constant terms. However there are some noticeable difference on the
other regression coefficients as well. Figure 6.8 makes these difference more explicit.
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Figure 6.8: Average β̂2−β̂1 over the 30 bootstrap runs of the C-EM. Here, the differences in intensity
between AD (k = 2) and Control (k = 1) patients are more explicit.
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Figure 6.9: Graph Control.
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Figure 6.10: Graph AD.
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Table 6.4: Recovery of the diagnostic labels (AD or control) with unsupervised methods on real longitudinal data.
The three compared methods are the EM, EM residual (both GGM) and the C-EM (CGGM). Four different feature
sets are tried: only {τ, ξ}, adding the MRI space shift coefficients wi, adding the Cognitive Score (CS) space shift
coefficients wi, and adding both the MRI and CS space shift coefficients. The table presents the average and standard
deviation of the misclassification error over 10 bootstrap iteration, with 5 different KMeans initialisation each. The
best results are in bold.

metric EM EM resid. C-EM

no CS, no MRI soft misclassif. 0.31 (0.02) 0.22 (0.03) 0.21 (0.01)
p = 2 hard misclassif. 0.31 (0.03) 0.18 (0.05) 0.19 (0.01)

only MRI soft misclassif. 0.15 (0.01) 0.13 (0.01) 0.08 (0.01)
p = 12 hard misclassif. 0.12 (0.01) 0.10 (0.01) 0.07 (0.01)

only CS soft misclassif. 0.17 (0.02) 0.15 (0.02) 0.09 (0.01)
p = 22 hard misclassif. 0.14 (0.03) 0.13 (0.03) 0.08 (0.01)

CS and MRI soft misclassif. 0.24 (0.09) 0.17 (0.04) 0.08 (0.01)
p = 32 hard misclassif. 0.21 (0.10) 0.15 (0.05) 0.07 (0.01)

Additionally, we proved a theorem providing conditions on the penalty under which the C-EM
benefits from state of the art convergence guarantees. Then, we demonstrated the interest of the
method with experiments on synthetic and real data. First, we showed on a toy example - with a 2-
dimensional feature space and a 1-dimensional co-feature - that the regular Mixture of GGM methods
were inadequate to deal with even the most simple in-homogeneous co-feature. We confirmed on a
more complex simulation, in higher dimension, that Mixtures of CGGM could identify much better
the clusters in the feature space, and recover the actual GGM structure of the data. Finally, we tested
all the methods on a real data set, with longitudinal model parameters describing the evolution of
several Alzheimer’s Disease patients. We demonstrated that our method was the best at identifying
the diagnostic with an unlabelled dataset. We unearthed some in-homogeneous effect of co-features
on the longitudinal parameter and recovered the conditional correlation graphs by cluster.

6.6 Appendix

In these appendices, we explore other aspects of our EM for Mixtures of CGGM. First, we prove a
convergence result on our algorithm which provides condition on the regularisation in order to benefit
from the convergence guarantees. Then, we propose a tempered version of our algorithm that fits
within the framework of Chapter 5. We prove that the theorem of convergence for the tempered
EM 5.4.1 of section 5 applies to the tempered EM for the Mixture of CGGM with conditions on the
regularisation. Afterwards, we include the tempered version of each EM in the high dimensional
experiments with synthetic data of section 6.4.2 to demonstrate how the tempering improves even
further the Mixture of CGGM EM. Finally, we discuss how the method can be extended beyond the
CGGM and to any model member of the curved exponential family.

6.6.1 Convergence of the EM for Mixtures of CGGM

In section 6.3, we proposed a tractable EM algorithm to estimate a Mixture of CGGM with joint
structure. In this section, we prove that our algorithm verifies the state of the art convergence
guarantees for EM algorithms on the exponential family [33]: convergence towards a critical point
of the likelihood function.

Convergence Theorem

The authors of [33] propose in their Theorem 1 a convergence result for the EM algorithm applied
to a distribution in the exponential family. In the formalism of [33], the different realisations of the

146



observed variable Y are considered fixed, hence Y is ignored in all notations. Hence, with z ∈ Rl the
hidden variable and ξ ∈ Ξ ⊆ Rd the parameter, the parametric complete likelihood is simply noted
Pξ(Y, z) =: f(z; ξ). Note that in the particular case where this formalism is applied to a mixture
model, the parameter called “ξ” here includes both the hierarchical model parameter θ and the class
weight parameter π. Considering µ a σ−finite positive Borel measure on Rl, they also define:

g(ξ) :=

∫
z

f(z; ξ)µ(dz)

l(ξ) := ln g(ξ)

p(z; ξ) :=

{
f(z; ξ)/g(ξ) if g(ξ) 6= 0

0 if g(ξ) = 0 ,

(6.20)

the observed likelihood (implicitly in Y ), observed log-likelihood (likewise, in Y ) and conditional
likelihood in z respectively. The same notations are used for a single data point (z = z(1) ∈ Rl)
or several independent identically distributed (iid) data points (z ≡

(
z(i)
)n
i=1
∈ Rl×n), since all the

probabilities are simply decomposed into products (and the log-probabilities into sums) in the latter
case. The authors of [33] then define the following conditions:

• M1. The complete likelihood belongs to the exponential density. That is to say: f(z; ξ) =

exp(ψ(ξ) +
〈
S̃(z), φ(ξ)

〉
). Where S̃ is a Borel function from Rl to S ⊆ Rm such that the

convex hull of S(Rl) ⊆ S. Additionally, ∀ξ ∈ Ξ :∫
z∈Rl

∣∣∣S̃(z)
∣∣∣ p(z; ξ)µ(dz) <∞ .

• M2. φ and ψ are twice continuously differentiable on Ξ.

• M3. s : Ξ −→ S defined as: ∫
z∈Rl

S̃(z)p(z; ξ)µ(dz) ,

is continuously differentiable in ξ.

• M4. The function l is continuously differentiable on Ξ and

∂

∫
z∈Rl

f(z; ξ)µ(dz) =

∫
z∈Rl

∂f(z; ξ)µ(dz)

• M5. Let L(s, ξ) := ψ(ξ) + 〈s, φ(ξ)〉 There exists a function ξ̂ : S −→ Ξ continuously differen-
tiable such that:

∀ξ ∈ Ξ, ∀s ∈ S, L(s, ξ̂(s)) ≥ L(s, ξ) .

Let us call T the map Ξ −→ Ξ describing one step of the EM algorithm run on the observed
likelihood g(ξ): ξ(t+1) =: T (ξ(t)). With the formalism of [33] and under their assumptions, this step

can be written: T (ξ) = ξ̂(s(ξ)). Moreover, the set of fixed points of T is equal to the set of critical
points of l(ξ): L := {ξ|∂ξl(ξ) = 0} = {ξ|T (ξ) = ξ}. Hence, under M1 − 5, the EM sequence (ξ(t))t
converges towards the set of critical points L of the log-likelihood l(ξ) provided that the sequence
ξ(t) := T t(ξ0) remains within a compact of Ξ. Using this remark, the authors of [33] call L(ξ) the
set of limit points of the sequence T t(ξ) and state the following Theorem:

Theorem 6.6.1 (Theorem 1 of [33]). Under M1−5, if additionally the closure clos(L(ξ)) is compact
of Ξ, then for any initial point ξ0, the sequence l(ξ(t)) is increasing and lim

t→∞
d(ξ(t),L) −→ 0.

Application to the Mixture of CGGM

In this section, we prove a theorem providing conditions under which the proposed EM for the
Mixture of CGGM verifies the hypothesis of Theorem 6.6.1.
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CGGM belongs to the exponential family. We did not specify a statistical model for X.
However we can formally consider a joint density of the form pθ(Y,X) = pθ(Y |X)× p(X) with the
improper prior p(X) = 1. Then, since the CGGM density (6.4) can be put under the form:

pθ(Y |X) = exp

(
1

2

(
−pln(2π) + ln |Λ| − tr

(
ΛY Y T + 2ΘY XT + ΘΛ−1ΘTXXT

)))
, (6.21)

then the vector (Y,X) ∈ Rp+q belongs to the exponential family, with

• ψ(θ) := 1
2 (−pln(2π) + ln |Λ|),

• S(Y,X) := vec(Y Y T , 2Y XT , XXT ), and

• φ(θ) := 1
2vec(Λ,Θ,ΘΛ−1ΘT )

Preliminary results. Before stating our own theorem, we prove some general results. With a
Mixture of CGGM, we have ξ := (θ, π). The observed likelihood g(ξ) of [33] is

∏n
i=1 pθ,π(Y (i)|X(i)),

where pθ,π(Y |X) is the observed density of a single data point, defined by Eq (6.10). Our EM algo-
rithm, defined by the E step (6.13) and the M step (6.14), actually optimises a penalised version of
this likelihood. The target function of the algorithm is defined in Eq (6.24), and takes the form of a
penalised negative log-likelihood: − 1

n ln g(ξ) + pen(ξ). An equivalent formulation is to consider the

new likelihood: g̃(ξ) := g(ξ)e−n pen(ξ). In the following, we show that the corresponding complete
likelihood f̃(z; ξ) = f(z; ξ)e−n pen(ξ) belongs to the exponential family as per hypothesis M1 of [33].
First, recall that we already showed with Eq (6.21) that the simple CGGM density belong to the ex-
ponential family, i.e. pθ(Y |X) = exp (ψ(θ) + 〈S(Y,X), φ(θ)〉). With ψ(θ) = 1

2 (−pln(2π) + ln |Λ|) , S(Y,X) =
vec(Y Y T , 2Y XT , XXT ), and φ(θ) = 1

2vec(Λ,Θ,ΘΛ−1ΘT ). Thanks to this observation, the mixture
of CGGM density can easily be expressed as a member of the exponential family as well. With a
single data point (X,Y, z), we have:

f(z; ξ) = pθ,π(Y, z|X)

=

K∑
k=1

1z=kπkpθk(Y |X)

=

K∑
k=1

1z=kπkexp (ψ(θk) + 〈S(Y,X), φ(θk)〉)

= exp

(
K∑
k=1

(1z=k (ln(πk) + ψ(θk)) + 〈1z=kS(Y,X), φ(θk)〉)

)
=: exp

(〈
S(Y,X, z), φ(θ, π)

〉)
,

(6.22)

with the sufficient statistics and natural parameters

S(Y,X, z) := (1z=k, 1z=kS(Y,X))
K
k=1

φ(θ, π) := ((log πk + ψ(θk)), φ(θk))
K
k=1 .

With several iid observations
(
Y (i), X(i), z(i)

)n
i=1

, let z := (z(1), ..., z(n)), the complete likelihood is
also written under the exponential form:

f(z; ξ) = exp

(〈
n∑
i=1

S
(
Y (i), X(i), z(i)

)
, φ(θ, π)

〉)
. (6.23)

Finally we get the penalised complete likelihood:

f̃(z; ξ) = exp

(
−n pen(θ, π) +

〈
n∑
i=1

S
(
Y (i), X(i), z(i)

)
, φ(θ, π)

〉)
, (6.24)
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which indeed belongs to the exponential family. In the formalism of [33], the sufficient statistics and
natural parameters are:

S(z) :=

n∑
i=1

S
(
Y (i), X(i), z(i)

)
=

(
n∑
i=1

1z(i)=k,

n∑
i=1

1z(i)=kvec(Y
(i)Y (i)T , 2Y (i)X(i)T , X(i)X(i)T )

)K
k=1

φ(ξ) := φ(θ, π) =

(
log πk +

1

2
(−pln(2π) + ln |Λk|) ,

1

2
vec(Λk,Θk,ΘkΛ−1

k ΘT
k )

)K
k=1

ψ(ξ) := −n pen(θ, π) .

(6.25)

Where S(z) ∈ S := SK × S+
p
K ×MK

qp × S+
q
K

. Under this form, we see that ξ 7→ φ(ξ) is C∞ on Ξ.

Moreover, the hidden variable z = (z(1), ..., z(n)) ∈ J1,KKn belongs to a finite space, hence all the
integrals expressed in the conditions of [33] are actually finite sums. Thanks to these two properties,
the conditions M1-4 are quickly verified.

Statement of the Theorem

Theorem 6.6.2 (Convergence of the penalised Mixture of CGGM EM). Assume that
{
Y (i), X(i)

}n
i=1

are observed data points. Let
{
ξ(t)
}
t∈N :=

{
θ(t), π(t)

}
t∈N be the EM sequence defined by the E step

(6.13) and the M step (6.14), with initial points π(0) ∈ SK :=
{

(π1, ..., πK) ∈]0, 1[K
∣∣∑

k πk = 1
}

and θ(0) ∈
(
S++
p ×Mq,p

)K
.

• Condition on penθ. Assume that penθ is C2 in θ. Assume in addition that there exists
α, β, γ ∈ R∗+ such that:

penθ(θ) ≥
∑
k

(
α ‖Λk‖+ β ‖Θk‖2 + γ

∥∥Λ−1
k

∥∥) , (6.26)

and that the Hessian matrix Hpenθ of this penalty is definite positive for all values of the
parameters:

∀θ, (Hpenθ)(θ) � 0 . (6.27)

• Condition on penπ. Assume that penπ is convex, C2 in π. Assume in addition that the

solution π(t+1) to (6.14) is C1 in the sufficient statistics

(
n
(t)
k

n

)n
k=1

.

Then the Theorem 1 of [33] applies: the penalised negative log-likelihood − 1
n ln g(ξ(t)) + pen(ξ(t)) is

decreasing and lim
t→∞

d(ξ(t),L) −→ 0. Where L is the set of critical points of ξ 7→ − 1
n ln g(ξ) + pen(ξ).

Remark. • All the requirements on penπ(π) are verified by penπ(π) := 0, since we have then

π
(t+1)
k =

n
(t)
k

n . A typical non-zero penalty that also verifies of all the requirements is penπ(π) :=

−δ
∑K
k=1 ln(πk) with δ > 0. Most noticeably, the solution to (6.14) is π

(t+1)
k =

n
(t)
k /n+δ

1+Kδ , which
is indeed C∞ in the sufficient statistic. In practice, most EM algorithms on mixture models
include, explicitly or not, this penalty with a very small δ, in order to avoid vanishing clusters.

• The lower bound of penθ(θ) by
∑
k γ
∥∥Λ−1

k

∥∥ is only needed as a sufficient condition to verify

that the EM sequence ξ(t) remains within a compact. If this lower bound condition is not
verified (γ = 0), then as long as the EM sequence is still observed to remain within a compact
of Ξ, then the theorem still applies, with all convergence guarantees.
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Proof First, the M1 − 4 conditions. We already proved that the complete likelihood could
be expressed as a member of the exponential family in (6.24). The sufficient statistics space is

S := SK ×S+
p
K ×MK

qp×S+
q
K

in our case. It is a convex space, and S(Rl) ⊆ S, with S defined as in

Eq (6.25). As a result, the convex hull of S(Rl) is as well included in S. This part of M1 is verified
as well. Since z = (z(1), ..., z(n)) ∈ J1,KKn belongs to a finite space, all the integrals expressed in
M1− 4 are actually finite sums. Additionally, the natural parameters φ(ξ) emerging from the Mix-
ture of CGGM are all C∞ in ξ = (θ, π) on their space of definition Ξ. The natural parameter ψ(ξ),
coming from the penalty pen(θ, π) is C2 in ξ by hypothesis. Thanks to this combination of finite
sums over z with the C2 natural parameters φ(ξ) and ψ(ξ), the conditions M1-4 are immediately
verified.

Condition M5 requires the solution ξ̂(s) = (π̂(s), θ̂(s)) of the M step (6.14) to be continuously
differentiable on the value of the sufficient statistics s. In our formulation of the M step (6.14), the
sufficient statistic is s = s(ξ(t)), and it defines the next step ξ(t+1). However, s(ξ(t)) can be replaced

by any element of S in the formula to define ξ̂(s) for any s ∈ S. First, note that π̂(s) is already
continuously differentiable in s by hypothesis. We underline that this property is not hard to have
in practice, since we showed that it is achieved with one of the most used penalties on π. As a result,
we just need to prove that, with our model and under the assumptions of the theorem, the solution
θ̂(s) exists, is unique and is continuously differentiable in s. This property can be shown using the
theorem of the implicit function. In order to apply this theorem, we prove that for any s ∈ S, the
solution to the M step (6.14) θ̂(s) is the global minimum of a convex function θ 7→ L(s, θ), and is
reached on the inside of its set of definition, and not on the border. To do so, we prove that for any

s ∈ S, θ 7→ L(s, θ) is infinite on its border. For s =
(
nk
n , S

k
Y Y , S

k
Y X , S

k
XX

)K
k=1
∈ S, let:

L(s, θ) :=
1

2

K∑
k=1

(〈
Λk, S

k
Y Y

〉
+
〈
2Θk, S

k
Y X

〉
+
〈
ΘkΛ−1

k ΘT
k , S

k
XX

〉)
− 1

2

K∑
k=1

nk
n
ln(|Λk|) + penθ(θ) .

(6.28)

Then, θ̂(s), defined as in our M step (6.14), is written:

θ̂(s) := argmin
Λ,Θ∈S++

p
K×MK

qp

L(s, θ) . (6.29)

We show that this minimisation is properly defined. First, let us show that the function θ 7→ L(s, θ)
takes infinitely large values on its border. We lower bound or rewrite each term defining L(s, θ).

First, notice that
〈
Λk, S

k
Y Y

〉
= tr(ΛkS

k
Y Y ) = tr(Λ

1
2

k S
k
Y Y Λ

1
2

k ) ≥ 0 since Λ
1
2

k S
k
Y Y Λ

1
2

k ∈ S+
p . Likewise,

we have
〈
ΘkΛ−1

k ΘT
k , S

k
XX

〉
= tr(ΘkΛ−1

k ΘT
k S

k
XX) = vec(Θk)T (SkXX ⊗Λ−1

k )vec(Θk) ≥ 0 since SkXX ⊗
Λ−1
k ∈ S+

pq, with ⊗ the Kronecker product. We also have penθ(θ) ≥
∑
k

(
α ‖Λk‖∗ + β ‖Θk‖2F

)
by

hypothesis. Since all norms are equivalent in finite dimension, we chose to express this inequality with
the nuclear norm ‖Λk‖∗ = tr(Λk) =

∑p
j=1 λ

j
k for Λk, and the Frobenius norm ‖Θk‖F = tr(ΘkΘT

k )
1
2

for Θk. The (λjk)j are the eigenvalues of Λk. With them, we can rewrite ln(|Λk|) =
∑
j ln(λjk).

Finally, the Cauchy-Schwartz inequality gives
〈
Θk, S

k
Y X

〉
≥ −‖Θk‖F

∥∥SkY X∥∥F . Combining all those
results, we get:

L(s, θ) ≥
K∑
k=1

‖Θk‖F
(
β ‖Θk‖F −

∥∥SkY X∥∥F )+

p∑
j=1

(
αλjk −

1

2

nk
n
ln(λjk)

)
=

K∑
k=1

hk1 (‖Θk‖F ) +

p∑
j=1

hk2

(
λjk

) ,

(6.30)
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With hk1 : x 7→ βx

(
x− ‖

SkYX‖F
β

)
and hk2 : x 7→ α

(
x− 1

2α
nk
n ln(x)

)
. An analysis on x ∈ R+

shows that these functions can all be lower bounded by a fixed constant that we call c. Moreover
hk1(x) −→

x−→+∞
+∞, hk2(x) −→

x−→+∞
+∞ and hk2(x) −→

x−→0
+∞. As a result, for any M > 0, there exists

m > 0 such that ∀k ≤ K:

∀x ≥ m, hk1(x) ≥M
∀x ≥ m, hk2(x) ≥M

∀x ≤ 1

m
, hk2(x) ≥M .

We define

Vm :=

{
(Λ,Θ) ∈ S++

p
K ×MK

qp

∣∣∀k, λmax(Λk) ≤ m,λmin(Λk) ≥ 1

m
, ‖Θk‖F ≤ m

}
. (6.31)

Vm is a compact set within S++
p

K×MK
qp. If (Λ,Θ) ∈

(
S++
p

K ×MK
qp

)
\Vm, then by definition there

is at least one k ∈ J1,KK such that either

• λmax(Λk) ≥ m, in which case hk2(λmax(Λk)) ≥M ,

• λmin(Λk) ≤ 1
m , in which case hk2(λmin(Λk)) ≥M ,

• ‖Θk‖F ≥ m, in which case hk1(‖Θk‖F ) ≥M .

These three options are of course not exclusive. Regardless, this results in the lower bound:

L(s, θ) ≥M + (K(p− 1)− 1)c .

Where (K(p − 1) − 1)c is a fixed constant depending only on s and the dimension of the problem.
Hence, we have proven that for any s ∈ S, for any M > 0, there exists m > 0 such that if

(Λ,Θ) ∈
(
S++
p

K ×MK
qp

)
\ Vm, then

L(s, θ) ≥M .

This means that L(s, θ) grows infinitely large outside of the sets Vm as m −→ +∞. Moreover, for

any s ∈ S, there exists at least one θ ∈ S++
p

K ×MK
qp such that L(s, θ) is finite (L(s, θ) is finite

for every θ ∈ S++
p

K ×MK
qp actually). As a consequence, there must exist a set Vm such that the

minimum of θ 7→ L(s, θ) is reached inside Vm.

Now, let us prove that this minimum is reached on a unique point θ̂(s), and that ∇θL(s, θ̂(s)) = 0.
According to the formula (6.28), the function θ 7→ L(s, θ) is the sum of two terms: L(s, θ) =:
L̃(s, θ) + penθ(θ). The term θ 7→ L̃(s, θ) is the negative log-likelihood of the hierarchical CGGM.
It is C∞ and convex in θ. In particular, this means that the hessian in θ is semi-positive definite:
∀s, θ, (HθL̃)(s, θ) � 0. By hypothesis, the penalty penθ(θ) is C2, convex in θ and ∀θ, (Hpenθ)(θ) �
0. As a consequence, θ 7→ L(s, θ) is itself C2, convex in θ and its Hessian is always positive definite
∀s ∈ S,∀θ, (HθL)(s, θ) = (HθL̃)(s, θ) + (Hpenθ)(θ) � 0. Which implies that θ 7→ L(s, θ) is even
strictly convex in θ. Since we have shown that the minimum of θ 7→ L(s, θ) is reached on the inside

of its definition set, this means that this minimum is reached for a unique value θ̂(s) which verifies

∇θL(s, θ̂(s)) = 0. Since the Hessian (HθL) is always positive definite, we also have (HθL)(s, θ̂) � 0.
Among other things, we have proven that the optimisation problem (6.29) is well defined and has a
unique solution.
Now we apply the theorem of the implicit function to the function (s, θ) 7→ ∇θL(s, θ), which is C2

in θ and C∞ in s. We have ∇θL(s, θ̂(s)) = 0. The Hessian HθL is the Jacobian of the gradient

∇θL. We have proven that (HθL)(s, θ̂) is invertible at the point θ̂(s). Hence, the theorem of implicit
function applies to θ 7→ ∇θL(s, θ). It states that there exists an open set Vs containing s and a
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unique function, continuously differentiable function θ̂s defined on Vs such that θ̂s(s) = θ̂(s) and for

any s′ ∈ Vs, ∇θL(s′, θ̂s(s
′)) = 0. Since θ 7→ L(s′, θ) is strictly convex, this means that:

θ̂s(s
′) = argmin

Λ,Θ∈S++
p

K×MK
qp

L(s′, θ) .

By uniqueness of the argmin, we have: ∀s′ ∈ Vs, θ̂s(s′) = θ̂(s′). Hence s 7→ θ̂(s) is continuously
differentiable on the open set Vs. Since this reasoning can be applied on all points s ∈ S, and
S ⊆ ∪s∈SVs, where the Vs are all open sets, we actually have that θ̂(s) is the unique, continuously

differentiable on S function such that ∀s ∈ S, θ̂(s) = argmin
Λ,Θ∈S++

p
K×MK

qp

L(s, θ). With this, condition

M5 is verified.

The final condition to apply Theorem 6.6.1 is that the sequence
{
ln(g̃(ξ(t)))

}
t

remains within a
compact of Ξ. The auhtors of [33] provide a sufficient condition to have that:

LC :=
{
ξ ∈ Ξ

∣∣− ln(g̃(ξ)) ≤ C
}
, (6.32)

is compact for any C ≥ 0. We prove this property by obtaining a lower bound on −ln(g̃(ξ)) similar
to (6.30). First, we express − 1

n ln(g̃(ξ)) starting from its formula in Eq (6.12):

− 1

n
ln(g̃(ξ)) = − 1

n

n∑
i=1

ln

(
K∑
k=1

πk pθk

(
Y (i)|X(i)

))
+ pen(θ, π)

= − 1

n

n∑
i=1

ln

(
K∑
k=1

πkpθk

(
Y (i)|X(i)

)
e−penθ(θ)

)
+ penπ(π)

= − 1

n

n∑
i=1

ln

(
K∑
k=1

πk

(2π)
p
2

exp

(
1

2
ln |Λk| − tr(ΘkY

(i)X(i)T )− penθ(θ)

− 1

2
tr(ΛkY

(i)Y (i)T )

− 1

2
tr(ΣkΘT

kX
(i)X(i)TΘk)

))
+ penπ(π)

≥ − 1

n

n∑
i=1

ln

(
K∑
k=1

1

(2π)
p
2

exp

(
1

2
ln |Λk| − tr(ΘkY

(i)X(i)T )− penθ(θ)
))

+ cst .

Where we used 1
2 tr(ΛkY

(i)Y (i)T ) ≥ 0 and 1
2 tr(ΣkΘT

kX
(i)X(i)TΘk) ≥ 0, which are true for the same

reasons as before. We also used πk ≤ 1 as well as the fact that penπ is lower bounded, since it is
continuous, and π lives in a compact. In the following, we will assume this lower bound to be 0 and
remove the “cst” term at the end. For the next steps, we re-use the hypothesis on penθ:

penθ(θ) ≥
∑
k

(
α ‖Λk‖∗ + β ‖Θk‖F + γ

∥∥Λ−1
k

∥∥
∗

)
.

Where we chose the nuclear norm ‖.‖∗ on Λ−1
k as we did for Λk. We write ‖Λk‖∗ =

∑p
j=1 λ

j
k,∥∥Λ−1

k

∥∥
∗ =

∑p
j=1(λjk)−1 and ln |Λk| =

∑p
j=1 ln(λjk). We also re-use tr(ΘkY

(i)X(i)T ) ≥ −‖Θk‖F
∥∥Y (i)X(i)T

∥∥
F

.
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We get:

− 1

n
ln(g̃(ξ)) ≥ − 1

n

n∑
i=1

ln

(
K∑
k=1

1

(2π)
p
2

exp

( p∑
j=1

1

2
ln(λjk)− αλjk − γ(λjk)−1

+ ‖Θk‖F
∥∥∥Y (i)X(i)T

∥∥∥
F
− β ‖Θk‖2F

+

K∑
l 6=k,l=1

p∑
j=1

−αλjl − γ(λjl )
−1

+

K∑
l 6=k,l=1

−β ‖Θl‖2F

))

= − 1

n

n∑
i=1

ln

(
K∑
k=1

1

(2π)
p
2

exp

(
−

p∑
j=1

hk2

(
λjk

)
− hk,i1 (‖Θk‖F )

−
K∑

l 6=k,l=1

p∑
j=1

u2(λjl )

−
K∑

l 6=k,l=1

u1 (‖Θk‖F )

))
.

(6.33)

Where hk,i1 : x 7→ βx

(
x− ‖

Y (i)X(i)T‖
F

β

)
, hk2 : x 7→ αx + γ 1

x −
1
2 ln(x), u1 : x 7→ βx2 and u2 :

x 7→ αx + γ 1
x . These functions are slightly different from the h1 and h2 previously defined in the

bound on L(s, θ), but are functionally identical. First, for x ∈ R+, they are all lower bounded by

a finite constant that we call c. Second, they have the same limits as before: hk,i1 (x) −→
x−→+∞

+∞,

hk2(x) −→
x−→+∞

+∞, hk2(x) −→
x−→0

+∞ and u1(x) −→
x−→+∞

+∞, u2(x) −→
x−→+∞

+∞, u2(x) −→
x−→0

+∞.

With the lower bound (6.33) established, let us prove that LC is compact for any C ≥ 0. Let us
assume that (θ, π) ∈ LC . By definition, π ∈ SK , the space of stochastic vectors of size K, which is
already a compact. To conclude the proof, we show that there exists m ≥ 0 such that θ belongs to
the compact Vm defined in Eq (6.31). We have that, for any M > 0, there exists m > 0 such that
∀(k, i) ∈ J1,KK× J1, nK:

∀x ≥ m, hk,i1 (x) ≥M
∀x ≥ m, hk2(x) ≥M

∀x ≤ 1

m
, hk2(x) ≥M

∀x ≥ m, u1(x) ≥M
∀x ≥ m, u2(x) ≥M

∀x ≤ 1

m
, u2(x) ≥M .

If θ = (Λ,Θ) ∈
(
S++
p

K ×MK
qp

)
\ Vm, then by definition there is at least one k ∈ J1,KK such that

either

• λmax(Λk) ≥ m, in which case hk2(λmax(Λk)) ≥M and u2(λmax(Λk)) ≥M ,

• λmin(Λk) ≤ 1
m , in which case hk2(λmin(Λk)) ≥M and u2(λmax(Λk)) ≥M ,

• ‖Θk‖F ≥ m, in which case ∀i, hk,i1 (‖Θk‖F ) ≥M and u1(‖Θk‖F ) ≥M .
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These three options are of course not exclusive. Regardless, this means that for all k ∈ J1,KK, at
least one of the terms in the sum:

p∑
j=1

hk2

(
λjk

)
+ hk,i1 (‖Θk‖F ) +

K∑
l 6=k,l=1

p∑
j=1

u2(λjl ) +

K∑
l 6=k,l=1

u1 (‖Θk‖F ) ,

is larger than M . The rest are all at least larger than c, the common lower bound. Hence ∀k ∈ J1,KK:

p∑
j=1

hk2

(
λjk

)
+ hk,i1 (‖Θk‖F ) +

K∑
l 6=k,l=1

p∑
j=1

u2(λjl ) +

K∑
l 6=k,l=1

u1 (‖Θk‖F ) ≥M + (K(p− 1)− 1)c .

Where (K(p− 1)− 1)c is a fixed constant depending only on the observed data and the dimension
of the problem. Hence, we have proven that for any M > 0, there exists m > 0 such that if

θ ∈
(
S++
p

K ×MK
qp

)
\ Vm, then

− 1

n
ln(g̃(ξ)) ≥ − 1

n

n∑
i=1

ln

(
K∑
k=1

1

(2π)
p
2

exp (−M)

)
= M − ln

(
K

(2π)
p
2

)
.

Since −ln(g̃(ξ)) ≤ C, then there must exists a m > 0 such that θ ∈ Vm. We have proven that
LC =

{
(θ, π) ∈ Ξ

∣∣− ln(g̃(ξ)) ≤ C
}

is included in the compact set Vm × SK . LC is also a closed
set as the reciprocal image of closed set by a continuous function, hence LC is a compact set. This
ensures that the sequence

{
ln(g̃(ξ(t)))

}
t

is bounded, and concludes the proof of the Theorem.

6.6.2 Convergence of the tempered EM for Mixtures of CGGM

Since the likelihood function of a mixture is non-convex, the critical point towards which the EM
converges will most probably be one of the local maxima closest to the initial point. This is a
consequent problem if the initialisation is not very good, and is a systematic hurdle in high dimension,
where the procedure converges without having explored at all the parameter space.
Hence, in this section, we propose an approximated variant of our algorithm with tempering on the
E step, in accordance with the framework of Chapter 5. We recall that the tempering approximation
is borrowed from the Simulated Annealing [82] optimisation technique. It weakens the gradients and
potential wells of the likelihood profile, which allows the procedure to escape the initialisation and
explore more of the parameter space before convergence. We prove that despite the approximation,
the tempered version of our algorithm still verifies the same theoretical convergence guarantees, and
demonstrate on the data that in practice, the end solution of the algorithm in consistently better.

We recall here the formalism used in Chapter 5 to define the tempered EM. With p(z, ξ(t)) = f(z,ξ(t))
g(ξ(t))

the posterior probability in z, the two steps E (6.13) and M (6.14) of our EM algorithm can be
expressed compactly as:

ξ(t+1) := argmax
ξ∈Ξ

Ez∼p(z,ξ(t)) [ln f(z; ξ)− npen(ξ)] . (6.34)

Let (Tt)t∈N be a sequence of positive temperatures, The tempered E step replaces p(z, ξ(t)) by the
approximated posterior density:

p̃(t)(z, ξ(t)) =
p(z, ξ(t))

1
Tt∫

z
p(z, ξ(t))

1
Tt µ(dz)

,

With our mixture model, this means replacing the posterior probability p
(t)
i,k, defined for the exact

E step (6.13), by the tempered version:

p̃
(t)
i,k :=

(
p

(t)
i,k

) 1
Tt

∑K
l=1

(
p

(t)
i,l

) 1
Tt

. (6.35)
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Afterwards, the M step is still defined using the same formula as the exact EM (6.14), where p
(t)
i,k is

replaced by p̃
(t)
i,k. In the end, one step of this approximated EM can be written as ξ(t+1) := F (t)(ξ(t)),

with:
F (t)(ξ(t)) := argmax

ξ∈Ξ
Ez∼p̃(t)(z,ξ(t)) [ln f(z; ξ)− npen(ξ)] . (6.36)

Here,
{
F (t)

}
t∈N is the sequence of point to point maps in Θ describing the tempered EM step. It

is dependent on the sequence of approximations
{
p̃(t)(z, ξ(t))

}
t∈N. Fort and Moulines [49], as well

as our Chapter 5, both propose convergence theorem for similarly approximated E steps. They also
include a slight modification of the EM dynamic. Assume that you dispose of an increasing sequence
of compacts {Kt}t∈N such that ∪t∈NKt = Θ and ξ(0) ∈ K0. Define j0 := 0. Then, the transition

ξ(t+1) = F (t)(θ(t)) is accepted only if F (t)(θ(t)) belongs to the current compact Kjt , otherwise the
sequence is reinitialised at θ(0). This algorithm is called a “Stable Approximate EM”. One step can
be written as: {

ifF (t)(ξ(t)) ∈ Kjt , then ξ(t+1) = F (t)(ξ(t)), and jt+1 := jt

ifF (t)(ξ(t)) /∈ Kjt , then ξ(t+1) = ξ(0), and jt+1 := jt + 1 .
(6.37)

In Chapter 5, we provide a convergence theorems for Stable Approximate EM belonging to the
exponential family, in particular for the tempering approximation. The convergence guarantees are
functionally the same as for the exact EM. In the following, we recall Theorem 5.4.1 of Chapter 5,
then we state a new theorem, providing conditions under which the Stable Approximate EM applied
to the penalised Mixture of CGGM benefits from these convergence guarantees.

General result for the tempered EM Let us recall quickly our convergence theorem from
Chapter 5 for the tempered EM. Theorem 5.4.1 describes the convergence of the Stable Approximate
EM (6.37) for any model of the exponential family, with the tempering approximation (6.35) and
no penalty pen(ξ), that is to say F (t)(ξ(t)) is defined from Eq (6.36) with pen(ξ) = 0. The Theorem
makes use of the following assumptions:

C1. f(z; ξ) can be written f(z; ξ) = exp(ψ(ξ) +
〈
S̃(z), φ(ξ)

〉
).

C2.

(a*) ψ and φ are continuous on Ξ;

(b) for all ξ ∈ Ξ, s̄(ξ) :=
∫
z
S(z)p(z; ξ)µ(dz) is finite and continuous on Ξ;

(c) with L(s; ξ̂(s)) := ψ(ξ) + 〈s, φ(ξ)〉, there exists a continuous function ξ̂ : S → Ξ such

that for all s ∈ S, L(s; ξ̂(s)) = sup
ξ∈Ξ

L(s; ξ);

(d) g is positive, finite and continuous on Ξ and, for anyM > 0, the level set {ξ ∈ Ξ, g(ξ) ≥M}
is compact.

C3. Assume either that:

(a) The set g(L) is compact or

(a′) for all compact sets K ⊆ Ξ, g (K ∩ L) is finite.

Then, our theorem can be stated as:

Theorem (Theorem 5.4.1 of Chapter 5). Under C1−3, if additionally Tn −→
n∞

1 and for any compact

K ∈ Ξ, ∃ε ∈]0, 1[, ∀α ∈ B(1, ε):

• sup
ξ∈K

∫
z
pα(z; ξ)dz <∞ ,

• ∀i ∈ J1,mK, sup
ξ∈K

∫
z
S2
i (z)pα(z; ξ)dz <∞ .
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Where B(1, ε) is the closed ball centered in 1 and with radius ε in R, and the index i of Si(z) indicates
each of the real component of the vector S(z) ∈ S.

Then, with L := {ξ ∈ Ξ|∇g(ξ) = 0} and Lg∗ := {ξ ∈ L|g(ξ) = g∗}, the Stable Approximate EM
sequence defined in Eq (6.37) benefits from the convergence guarantees:

(i) (a) With probability 1, lim
n∞

jt <∞ and sup
t∈N

∥∥ξ(t)
∥∥ <∞;

(b) g(ξ(t)) converges towards a connected component of g(L).

(ii) If, additionally, g
(
L ∩ Cl

({
ξ(t)
}
t∈N

))
has an empty interior, then:

g(ξ(t)) −→
t∞

g∗ ,

d(ξ(t),Lg∗) −→
t∞

0 .

Convergence theorem for the tempered EM applied to the Mixture of CGGM We prove
a new theorem, which provides conditions under which the tempered EM algorithm applied to the
Mixture of CGGM - as defined by equations (6.35), (6.36) and (6.37) - falls under the convergence
Theorem 5.4.1 of Chapter 5.

Theorem 6.6.3 (Convergence of the Stable Approximate EM for penalised Mixtures of CGGM).
Assume that

{
Y (i), X(i)

}n
i=1

are observed data points. Let
{
ξ(t)
}
t∈N :=

{
θ(t), π(t)

}
t∈N be the EM

sequence defined by the Stable Approximate EM (6.37), with initial points π(0) ∈ SK and θ(0) ∈(
S++
p ×Mq,p

)K
. Where SK :=

{
(π1, ..., πK) ∈]0, 1[K

∣∣∑
k πk = 1

}
. Call L := {ξ ∈ Ξ|∇g̃(ξ) = 0}

and Lg̃∗ := {ξ ∈ L|g̃(ξ) = g̃∗}. Assume that Tt −→
t−→∞

1 and:

• Condition on penθ. Assume that penθ analytic in θ. Assume in addition that there exists
α, β ∈ R∗+ such that:

penθ(θ) ≥
∑
k

(α ‖Λk‖+ β ‖Θk‖) , (6.38)

and that the Hessian matrix Hpenθ of this penalty is definite positive for all values of the
parameters:

∀θ, (Hpenθ)(θ) � 0 .

• Condition on penπ. Assume that penπ is convex and analytic in π. Assume in addition

that the solution π(t+1) to (6.14) is C1 in the sufficient statistics

(
n
(t)
k

n

)n
k=1

.

Then g̃
(
L ∩ Cl

({
ξ(t)
}
t∈N

))
has an empty interior and all the results of the Theorem 5.4.1 of

Chapter 5 apply. That is to say:

(i) (a) With probability 1, lim
n∞

jt <∞ and sup
t∈N

∥∥ξ(t)
∥∥ <∞;

(b) g̃(ξ(t)) converges towards a connected component of g̃(L).

(ii) g̃(ξ(t)) −→
t∞

g̃∗ and

d(ξ(t),Lg̃∗) −→
t∞

0 .
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Proof We verify the hypothesis of the Theorem 5.4.1 of Chapter 5. Conditions C1− 2 either are
immediate or were proven in the proof of Theorem 6.6.2. Although the assumptions of Theorem
6.6.3 are slightly different from those of Theorem 6.6.2, the relevant parts to verify C1−2 are included.

Condition C3. Note that ξ 7→ g(ξ) is composed of exponential, scalar products, determinants
(which are polynomial in the matrix entries) and logarithms, hence it is an analytic function. Then,
by assumption on pen(ξ), ξ 7→ g(ξ)e−n pen(ξ) = g̃(ξ) is also an analytic function on Ξ. Analytic func-
tions only have a finite number of zeros on any compact space. As a consequence, for all compact
sets K ⊆ Ξ, K ∩ L is finite, and g̃ (K ∩ L) is also finite. C3(a′) is verified.

We now prove that g̃
(
L ∩ Cl

({
ξ(t)
}
t∈N

))
has an empty interior. We have already shown that

ξ 7→ g̃(ξ) is C∞. As a result, Sard’s theorem applies and g̃ (L) is of empty interior. Then,

g̃
(
L ∩ Cl

({
ξ(t)
}
t∈N

))
⊆ g̃ (L) also has an empty interior.

Finally, we prove the two upper bounds on the integrals against pα(z; ξ)dz. Let α be any real
number. Since this is a mixture model,

∫
z
pα(z; ξ)dz and

∫
z
S2
i (z)pα(z; ξ)dz are actually finite sums

over z. We also have

pα(z; ξ) =

(
f̃(z; ξ)

g̃(ξ)

)α
=

(
f(z; ξ)

g(ξ)

)α
.

Hence ξ 7→ pα(z; ξ) is a finite, continuous function for any α and z. As a consequence, the applications
ξ 7→

∫
z
pα(z; ξ)dz and ξ 7→

∫
z
S2
i (z)pα(z; ξ)dz are also continuous, and we have for any compact

K ⊆ Ξ:

• sup
ξ∈K

∫
z
pα(z; ξ)dz <∞ ,

• ∀i ∈ J1,mK, sup
ξ∈K

∫
z
S2
i (z)pα(z; ξ)dz <∞ .

This is true for any α ∈ R, a much stronger property than the required one. This concludes the
proof.

6.6.3 High dimensional experiments with tempering

In this section, we present the results of the high dimensional synthetic experiments where each
of the three EM is also run with its counterpart tempered version. We consider two initialisation
procedures. A random one, where three initial centroids are picked at random from data points,
and a “smart” one, which initialise the EM with a KMeans on the l2 norm of Y . This initialisation
is good because the heterogeneous effect of the co-features in this experiment have different average
amplitudes for each sub-population. In this experiment, we do not penalise the likelihood optimised
by the EM. There is no sparsity constraints on the estimated parameters.
In Figure 6.11, we represent with boxplots the empirical distribution of the followed metrics for each
EM, tempered or not. Table 6.5 provides quantitative statistics on these distributions. Regardless of
the tempering, the EM and EM residual that estimate Mixtures of GGM are at a level of classification
error around 60%, very close to the threshold of 66.7%. On the other hand, the non-tempered EM
for Mixtures of CGGM is at half this level of error, with around 30% of error in average. These
performances are further improved by the tempering approximation, with an average classification
error that goes down to 24%. The tempering approximation allows the EM to escape the random
initialisation and find better values for the Mixture of CGGM parameters. Similar observations can
be made about the ABC-like metric that computes the average distance to the nearest real data point
of the virtual observations generated by the estimated statistical models. We note that according
to this metric, the residual EM represents a certain improvement from the EM. The computation
times are very low. This is a results of the absence of penalty, which makes each M step explicit,
and the overall method much faster.
Figure 6.12 and Table 6.6 offer the same description for the experiments done with the smart
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initialisation. In this case, the performances of the EM and residual EM are still poor, this is
because the Mixture of GGM that they estimate cannot properly reproduce the form of the true
data clusters. The EM with Mixture of CGGM on the other hand achieves very good performances,
6% of error, because this is a very favourable initialisation for the Mixture of CGGM parameters.
This is an example of situation in which the tempering is not required and does not offer significant
improvements. Looking back at the empirical distributions drawn on Figure 6.11 in the case of the
random initialisation, we see that the Mixture of CGGM EM with tempering approximation can
sometimes reach such levels of performances, but that this is rarer for the non-tempered version of
the method.
With this study, we have confirmed the observations of Chapter 5 on the benefits of tempering in
the case of the conditional EM with co-factors. We also delineated the cases where the tempering is
most useful by studying different types of initialisations.

Table 6.5: Average, standard deviation and median (below) of the four followed performance metrics over the 30×5
simulations. Both the regular and tempered (tmp) version of each EM was run from the random initialisation.
The best values are in bold. We can see that the classification performances with the Mixture of CGGM are better
than the two methods with Mixtures of GGM. The tempered version of the EM for CGGM is even better performing.

soft misclassif. hard misclassif. ABC-like metric runtimes

not tmp 0.60 (0.04) 0.60 (0.05) 5.36 (0.23) 4.1 (2.5)
0.61 0.61 5.33 3.5

GGM
tmp 0.59 (0.05) 0.59 (0.05) 5.37 (0.24) 4.5 (2.4)

0.60 0.59 5.36 4.2

not tmp 0.59 (0.04) 0.58 (0.05) 4.66 (0.11) 4.8 (2.9)
0.60 0.59 4.65 3.9

GGM resid.
tmp 0.58 (0.04) 0.57 (0.04) 4.66 (0.12) 5.7 (2.8)

0.59 0.58 4.66 5.4

not tmp 0.31 (0.17) 0.30 (0.17) 4.08 (0.20) 4.7 (2.9)
0.34 0.34 4.04 3.8

CGGM
tmp 0.24 (0.18) 0.24 (0.18) 4.03 (0.21) 4.9 (2.4)

0.27 0.27 3.98 4.4

6.6.4 Extension: EM for the exponential family

In this section, we prove that for any model pθ(Y ) of the exponential family, as long as the supervised
penalised maximum likelihood estimation (6.3) is tractable, then a tractable EM can be designed to
solve the corresponding unsupervised problem. Most of the works on unsupervised GGM [52,61,86,
187] adapt supervised MLE problems to the unsupervised scenario with an EM algorithm. Likewise,
our EM for the Mixture of CGGM relies on the tractability of the supervised Hierarchical CGGM
problem [69]. There is a more general result behind all of this, any supervised regularised MLE of
a Hierarchical model of exponential family densities can be adapted, with the same regularisation,
into an EM for the unsupervised scenario. This justifies the application of the EM algorithm for a
wider range of models and penalties than those previously studied. In addition to the CGGM, this
includes models such as the MNGM. This also allows the use of any of the structure-defining penalty
functions previously introduced by the literature for the supervised maximum likelihood estimation.
First, we recall the definition of the exponential family and re-write the original optimisation problem
(6.3) for a density of the exponential family. Let us assume that the random variable Y ∈ X ⊆ Rp
belongs to the curved exponential family of distributions with the parameter θ ∈ Ξ ⊆ Rl. Then
there are three applications ψ : Ξ→ R, φ : Ξ→ Rd and S : X → S ⊆ Rd such that the density is:

pθ(Y ) := exp (ψ(θ) + 〈S(Y ), φ(θ)〉) . (6.39)
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Figure 6.11: Empirical distribution of several performance metrics measured over many simulations
with the random initialisation. The sample is made of 30 simulations with 5 different initialisa-
tions each. Three methods are compared. The EM and EM residual algorithms estimate a Mixture
of GGM. The C-EM algorithm estimates a Mixture of CGGM. The C-EM is better performing and
its performances are improved even further by the tempering. (Upper left) Soft mis-classification

error
∣∣∣1zi=k − P̂(zi = k)

∣∣∣. (Upper right) Hard mis-classification error |1zi=k − 1ẑi=k|. (Bottom left)

ABC-like metric. (Bottom right) Run time.
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Figure 6.12: Empirical distribution of several performance metrics measured over many simulations
with the Smart initialisation. The sample is made of 30 simulations with 5 different initialisations
each. Three methods are compared. The EM and EM residual algorithms estimate a Mixture of
GGM. The C-EM algorithm estimates a Mixture of CGGM. The C-EM is much better performing

and faster. (Upper left) Soft mis-classification error
∣∣∣1zi=k − P̂(zi = k)

∣∣∣. (Upper right) Hard mis-

classification error |1zi=k − 1ẑi=k|. (Bottom left) ABC-like metric. (Bottom right) Run time.
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Table 6.6: Average, standard deviation and median (below) of the four followed performance metrics over the 30×5
simulations. Both the regular and tempered (tmp) version of each EM was run from the smart initialisation. The
best values are in bold. We can see that the classification performances with the Mixture of CGGM are much better
than the two methods with Mixtures of GGM, and with faster computation times.

soft misclassif. hard misclassif. ABC-like metric runtimes

not tmp 0.55 (0.03) 0.54 (0.04) 5.62 (0.22) 1.7 (0.8)
0.54 0.53 5.59 1.4

GGM
tmp 0.55 (0.03) 0.53 (0.04) 5.62 (0.27) 1.9 (0.6)

0.54 0.53 5.60 1.7

not tmp 0.51 (0.04) 0.50 (0.05) 4.66 (0.14) 1.6 (0.7)
0.51 0.50 4.65 1.4

GGM resid.
tmp 0.50 (0.03) 0.49 (0.04) 4.65 (0.13) 1.9 (0.5)

0.50 0.48 4.64 1.8

not tmp 0.06 (0.01) 0.05 (0.02) 3.83 (0.07) 3.5 (2.0)
0.06 0.05 3.82 2.7

CGGM
tmp 0.06 (0.01) 0.05 (0.01) 3.83 (0.07) 3.7 (1.4)

0.06 0.05 3.82 3.5

We consider the case of a supervised Hierarchical model of densities of the form (6.39), let (Y (i))ni=1 be
an independent sample following this Hierarchical distribution with z(i) their known labels. Within
the exponential family, the Hierarchical negative log-likelihood function minimised in the optimisa-
tion problem (6.3) can be re-written:

K∑
k=1

−
∑n
i=1 1z(i)=k

n
ψ(θk) +

K∑
k=1

−
〈∑n

i=1 1z(i)=kS(Y (i))

n
, φ(θk)

〉
+ pen(θ)

= −
〈
P (z), ψ(θ)

〉
−
〈
S(Y, z), φ(θ)

〉
+ pen(θ) .

Where P (z) :=
{∑n

i=1 1z(i)=k
n

}K
k=1

∈ [0, 1]K is a stochastic vector, ψ(θ) := {ψ(θk)}Kk=1 ∈ RK ,

S(Y, z) :=

{∑n
i=1 1z(i)=kS(Y (i))

n

}K
k=1

∈ SK ⊆ RdK , φ(θ) := {φ(θk)}Kk=1 ∈ RdK . Depending on the

observed data, P (z) and S(Y, z) can take any value in their respective spaces. As a result, the

optimisation problem (6.3) is solvable in θ if and only if, for any stochastic vector P ∈ [0, 1]K and

real vector S ∈ SK , the problem (6.40) has a solution θ̂.

θ̂ = argmin
θ

−
〈
P , ψ(θ)

〉
−
〈
S, φ(θ)

〉
+ pen(θ) . (6.40)

Now, we introduce an EM algorithm, solving the unsupervised version of (6.3) and put its Maximi-
sation (M) step under the form of (6.40). We recall that in the unsupervised setting, the hierarchical
model becomes a mixture model with class probabilities P

(
z(i) = k

)
=: πk and the following likeli-

hood to optimise:

θ̂, π̂ = argmin
θ,π

− 1

n

n∑
i=1

ln

(
K∑
k=1

πk pθk

(
Y (i)

))
+ pen(θ, π) .

We consider in all generality the possibility that there could be a penalty on π in addition to the
structure-inducing penalty on θ already present in the supervised problem. We recall that the
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EM can be expressed as an iteration of two steps updating the current parameter (θ(t), π(t)). The
Expectation (E) step:

p
(t)
i,k := Pθ(t),π(t)(z(i) = k|Y (i)) =

p
θ
(t)
k

(Y (i))π
(t)
k∑K

l=1 pθ(t)l
(Y (i))π

(t)
l

. (6.41)

And the M step:

θ(t+1), π(t+1) = argmin
θ,π

− 1

n

K∑
k=1

n∑
i=1

p
(t)
i,k

(
ln pθk(Y (i)) + ln πk

)
+ pen(θ, π) . (6.42)

Assuming once again that there is no coupling between π and θ in the penalty, i.e. pen(π, θ) =
penπ(π) + penθ(θ), then the M step (6.42) can be written as in (6.43).

θ(t+1) = argmin
θ

− 1

n

K∑
k=1

n∑
i=1

p
(t)
i,k ln pθk(Y (i)) + penθ(θ) ,

π(t+1) = argmin
π

− 1

n

K∑
k=1

n∑
i=1

p
(t)
i,k ln πk + penπ(π) .

(6.43)

The problem in π is easily solvable as long as penπ is convex and differentiable. Using the same
manipulations as on the supervised loss, the problem in θ can be re-written under the form of
Eq (6.40):

θ(t+1) = argmin
θ

−
〈
P (Y, θ(t)), ψ(θ)

〉
−
〈
S(Y, θ(t)), φ(θ)

〉
+ pen(θ) . (6.44)

With the stochastic vector P (Y, θ(t)) :=

{∑n
i=1 p

(t)
i,k

n

}K
k=1

∈ [0, 1]K , and the real vector S(Y, θ(t)) :={∑n
i=1 p

(t)
i,kS(Y (i))

n

}K
k=1

∈ SK ⊆ RdK . The parameter vectors ψ(θ) and φ(θ) are the same as in

Eq (6.40). We have already established that the supervised hierarchical problem (6.3) is solvable if
and only if the problem (6.40) is solvable for all P and S. As a consequence, when the supervised
problem (6.3) is solvable, then the M step (6.44) is as well, and the EM algorithm can be run to
completion. This concludes the proof.

162



Chapter 7

Conclusions and perspectives

7.1 Conclusions

The analysis of unlabelled heterogeneous population through the lens of Gaussian Graphical Models
is still a fledgling field of research. Most of the currently state of the art works are supervised
methods re-purposed for the unsupervised scenario. In this thesis, we set out to develop several
aspects of the estimation of Gaussian Graphical Models that we considered crucial for the successful
description of such unlabelled populations.
At first, we tackled the problem of model selection. These studies were made in the simple ho-
mogeneous case, but the results and conclusions have applicability to the heterogeneous case. In
particular regarding the use of the Kullback–Leibler divergence between distribution to estimate how
well, despite being a sparse approximation, a proposed graph can describe the multivariate relations
between features. We notably highlighted how local edge-wise methods that carefully consider each
edge to add to the graph are more efficient than global methods that estimate a full graph all at
once when there is few data available. Hence, we introduced, for the simple case, a new algorithm
that makes use of an edge-wise graph exploration procedure and a global KL divergence selection
criterion. We demonstrated how this composite method is able to capitalise on the strengths of the
local and global approaches and improve upon the state of the art.
Afterwards, we studied the Expectation-Maximisation algorithm that is a centrepiece of many of
the blooming unsupervised GGM methods. Since graphs are often considered in high dimensional
setting, the convergence of the EM algorithm is very tied to the initialisation. We proposed a sta-
ble tempered variant of the EM algorithm to navigate the high dimension non-convex likelihood
functions. We proved that this approach is theoretically sound, and still benefits from the same
convergence guarantees as the regular case. We demonstrated with an in-depth experimental anal-
ysis the capacities of this method, showing how it was able to escape even the most adversarial
initialisations and identify the right clusters within thorny data sets. Moreover, we introduced this
algorithm as part of a wider class of deterministic EM algorithms that all enjoy the convergence
guarantees and can be implemented to fulfil many different roles.
Finally, we introduced a new unsupervised method with a Mixture of Conditional Gaussian Graphi-
cal Models that takes into accounts co-factors and their heterogeneous effect on the graph variables.
Indeed, we argued that real data has every chance to be organised into either trivial or very ambigu-
ous clusters and we showcased how this disrupts regular maximum likelihood approaches. Hence,
we designed a model that takes into consideration the knowledge of observed co-factors, in order
to ensure that the clustering procedure will recover new, non-trivial information. We demonstrated
experimentally that this approach was able to correctly correct for the effect of co-factors and recover
more subtle, hidden clusters. We justified the theoretical validity of our method with a convergence
result, that we also extended to the tempered version of our EM algorithm. Subsequent experiments
showed how the tempering was able to improve even further the performances of our method in high
dimension.
In the following, we will widen the discussion with a few practical application of our work to medical
problems. We will showcase a few additional GGM problematics, such as the search for long distance
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correlations. In the end, we will discuss some of the future works that this PhD thesis leads to.

7.2 Recent clinical collaborations

In this section, we present some of our recent collaborations and our more applied work.

7.2.1 Ciliopathies

In the following, we present our contribution in collaboration with the Imagine Institute to the
C’IL-LICO project dedicated to next generation medicine for renal ciliopathies.
We were asked to propose visual interpretation of their data. The database follows 130 medical
concepts and is constituted of 75 ciliopathy patients, 30 “”Differential Diagnosis” (DD) patients
who have similar renal disease that are not ciliopathies, and 30 control, healthy, patients. In Figures
7.1, 7.2 and 7.3, we display the conditional correlation graph obtained for each of these three groups
with a supervised joint-GGM model, using the Group Graphical LASSO penalty for structure. The
graphical conventions are the same as Chapter 6, red and blue edges represent positive and negative
correlations respectively, and the edge width is proportional to the eight weight. The three structure
are indeed somewhat different, with the ciliopathy patients - who are the more numerous - offering
the most sensible graph. Most of the correlations however are completely obvious, if not semantically
mandatory. All the different type of cyst are related, so are the dysplasia, deafness is related to
hear loss, blindness to vision loss... This is to be expected with so many redundancies among the
features. Our graphs only capture the most basic, trivial correlations. We would prefer them to
capture the information of the less obvious correlations specific to each sub-population. Thankfully,
we have at our disposal a prior correlation matrix Σ0 established by the Institute that describes
all the prior correlation between all the concepts. The corresponding conditional correlation graph
can be seen on Figure 7.4. It is not sparse, hence the weaker edges were removed from the display.
This is a vision of overall “average” correlations, for any random individual of the world population.
Most of the obvious correlations are indeed present in this graph. We can remove this baseline

correlation structure from the data by replacing Y by Σ
− 1

2
0 Y . An operation which effectively takes

for each feature the residual of its linear prediction from the values of the others. With the new
residualised data, we make the same supervised joint-GGM estimation on the three sub-populations.
The resulting graphs are depicted in Figures 7.5, 7.6 and 7.7. We see that the obvious correlations
of Figure 7.4 have been removed, and there only remains “long distance” correlations.

We also estimate an unsupervised Mixture of GGM with a regularised EM algorithm to find out
which clusters are naturally identified by the method without knowledge of the labels. The three
estimated graphs can be seen on Figures 7.8, 7.9 and 7.10. Interestingly, the three graphs are very
distinct. In terms of sub-populations, the Ciliopathy patients are spread cross each clusters, with
cluster 2 having the most. All the DD patients are in cluster 2, which is the largest of the three and
contains a mix of all patient types. Cluster 3 has a similar constitution to cluster 1, but with more
control patients. From an interpretation standpoint, since the unsupervised GGM was estimated
from the raw data, the recovered correlations are of the obvious, trivial kind. In Figures 7.11, 7.12
and 7.13 we represent the result of the same method ran on the residualised data. We notice that the
patient distribution by cluster is curiously very similar to the case with the raw data. The ciloptahies
are spread out, cluster 2 contains the most. The DD patients are once again only found in cluster
2. And the cluster with the largest number of controls is cluster 3. The estimated correlations are
“long distance” as expected, with all clusters being quite different. In particular, cluster 2, which is
the largest and most diverse one, has a graph with many more strong correlations than any other.
Whereas the two other clusters, who are penalised with the same intensity, have sparse graphs. This
could be due to a high number of somewhat dissimilar individuals within this cluster that results in
an empirical precision matrix with higher values that get less affected by the penalty.

These results were presented at the April 2020 RHU3 scientific meeting and are currently under
scrutiny of the C’IL-LICO team members in order to provide a more versed interpretation.
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7.2.2 Cushing’s syndrome

In this section, we give an overview of our work with the Cochin Institute on Cushing’s syndrome.
In the following, you can find an abstract by Roberta Armignacco, submitted to the 37th congress
of the French Endocrinology Society (SFE 2020). In this work, we contributed to the establishment
of a proper statistical methodology to demonstrate the clinical interest of Genome methylation for
the diagnosis of Cushing’s syndrome.

Identification of a molecular signature for hypercortisolism by whole blood methy-
lome analysis
Armignacco R, Lartigue T, Jouinot A, Septier S, Neou M, Gaspar C, Perlemoine K, Bouys L, Braun
L, Riester A, Allassonnière S, Zennaro MC, Reincke M, Bertherat J, Beuschlein F, Assié G

The diagnosis of hypercortisolism is based on hormone assays. However, these assays do not re-
flect the individual risk for each complication of hypercortisolism, as inter-individual susceptibility
varies, particularly in sub-clinical forms.
The objective of this work is to identify biomarkers reflecting individual glucocorticoid impregnation
from the whole blood methylome. Methods: 47 patients with Cushing’s disease, separated into two
cohorts: training (clear cases, n=24) and validation (borderline cases, n=23). For each, a pair of
blood samples were taken: before and > 3 months after correction of hypercortisolism. The genera-
tion of the whole blood methylmeter is made by Illumina chip (850K probes).
The results are the following: in the training cohort, 28% genome methylation varies according to
cortisolic status. The neutrophil count inferred from the methylome is highly correlated with the
CBC (r=0.81). This variation in CBC is, as expected, associated with cortisolic status. To predict
the Cushing/non Cushing status from the methyloma, a penalized regression approach based solely
on the part not predicted by the CBC identifies a combination of a few genome locations (accuracies
of 1 and 0.8 on training and validation cohorts respectively), which improves the prediction on the
validation cohort compared to the CBC alone (accuracy=0.65).
We conclude that genome methylation is a biomarker of hypercortisolism. Several questions are
pending, such as the possibility of optimizing simple techniques for targeted methylation measure-
ments, the performance of this biomarker in hypercortisolism at minimal levels, and the links of the
methylation profile with the complications of hypercortisolism.

7.3 Perspectives

7.3.1 Neurology

Although the work in this thesis is mostly methodological, I supported each of our contributions
with applications on neurological data, in particular Alzheimer’s Disease data. Each of them gave
rise to observations that mostly matched, but sometimes challenged the current knowledge in the
field. From a clinical standpoint, these observations need to be verified and reproduced on new
independent datasets. Then, it is necessary to bring in the perspective of medical experts such as
neurolgist and neuroradiologist in order to properly validate and interpret each result. Only then
can we draw conclusions that contribute to the medical knowledge pool and begin to set up clinical
applications.

7.3.2 Statistical theory and methodology

In Chapter 3, I brought to light that edge-wise graph exploration could be more data-efficient than
global, self-contained, optimisation problems when it comes to estimate graphs. Despite that, many
of the unsupervised joint-GGM approaches propose Maximum Likelihood Estimators, including our
own method in Chapter 6. In the future, it will be interesting to design edge-wise methods for the
unsupervised hierarchical case, in particular within the low sample size setting.
The EM algorithm I proposed in Chapter 6 to optimise a regularised Mixture likelihood relies on
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our ability to optimise the corresponding supervised regularised Hierarchical density. In this, our
method is alike the previous unsupervised methods that use the EM algorithm to estimate Mixtures
of GGM. This observation however, has wider implications. At the end of Chapter6, I discuss the
fact that for any Hierarchical density that belongs to the exponential family, if the penalised MLE is
tractable, then the M step of the EM algorithm that optimises the corresponding Mixture likelihood
is tractable as well. Since these are finite Mixtures, the E step will also always be tractable. In
short, any supervised penalised MLE built from a density within the exponential family can be
adapted to the unsupervised case with an EM algorithm. This means that the extensive catalogue
of Maximum Likelihood Estimators for Hierarchical GGM can be ported to the unsupervised case.
This include any alternative model, such as the Matrix Normal Graphical Model, that also belongs
to the exponential family. This also includes the alternative frameworks such as the differential
networks, the censored data and so on...
I have laid the theoretical groundwork to propose a very large extension of many of the methods
designed for the labelled heterogeneous populations to the unsupervised case. This will be explored
in future works.

Acknowledgments

The research leading to these results has received funding from the European Research Council
(ERC) under grant agreement No 678304, European Union’s Horizon 2020 research and innova-
tion program under grant agreement No 666992 (EuroPOND) and No 826421 (TVB-Cloud), and
the French government under management of Agence Nationale de la Recherche as part of the
”Investissements d’avenir” program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and
reference ANR-10-IAIHU-06 (IHU-A-ICM). I would like to thank Pascal Houillier for his insightful
comments on the nephrological experiments.

166



maladies du rein

Hepatopathie

Echographie anormale

maladies osseuses troubles du myocarde
Pneumopathie

Polydactylie

Brachydactylie

Hypogonadisme

Syndrome d'Alagille

maladies musculaires

retard mental

affections psychiatriques

Retard de langage

Retard psychomoteur

troubles de la motilite oculaire

trouble comportemental

Deficit en hormone de croissance

HYPOTONIE

Puberte tardive

convulsions

autisme infantile

EPILEPSIE

TROUBLE DU LANGAGE

Syncinesie

Situs inversus

BRONCHECTASIE

Stenose pulmonaire

Craniostenose
cardiomegalie

Dysmorphie faciale

anomalie congenitale du septum interventriculaire

Dysmorphie

Polysplenie

Fente labiale

malformation genitale
Transposition des gros vaisseaux

hypertrophie des amygdales

SAOS

atresie des choanes

kyste hepatique

Fibroadenome kyste du pancreas

Hamartome

kyste splenique

Nodule thyroidien

naevus dysplasique

Dysphonie

Hepatosplenomegalie

Photophobie

Infection bronchique

Ichtyose

Hematurie microscopique

Achondroplasie

Pilosite

tache cutanee

Acne
hyperlaxite articulaire

Eczema

Fente palatine

Asthme

Microcytose

Anorexie

TH

Dysplasie de la hanche

dysgenesie du corps calleux

Ataxie cerebelleuse

Obesite

HYPOPLASIE DU CERVELET

dysplasie metaphysaire

Atrophie cerebelleuse

Dysplasie corticale

malformations oculaires

SURDITEMyopie

baisse de l'acuite visuelle

fond d'oeil anormalNYSTAGMUS

Astigmatisme

hypermetropie

strabisme

Genu valgum

nystagmus congenital

Scoliose

Cecite

Clinodactylie

pied plat valgus

strabisme congenital

PBVE

perte d'audition

Syndactylie

Ptosis

Polydipsie

POLYURIE

enuresie nocturne primaire

Enuresie

Infertiliteazoospermie

enuresie nocturne secondaire

oligospermie

Cryptorchidie

Cholestasefibrose hepatique

cholestase anicterique

Cytolyse hepatique

Hepatomegalie
Cholangite sclerosante

Cirrhose

Splenomegalie

Cirrhose biliaire

ictere cholestatique

hepatite cytolytique

fibrose portale

cholestase intrahepatique

Fibrose hepatique congenitale

dilatation des voies biliaires

CHOLANGITE
maladie de caroli

syndrome de budd-chiari

Insuffisance renale

Maladie renale chronique

Souffle systolique

Osteonecrose

DID

HVG

osteodystrophie

Insuffisance mitrale

Rachitisme

Coarctation aortique
Hyperlipidemie

Figure 7.1: Supervised hierarchical GGM. Ciliopathies.
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Figure 7.2: Supervised hierarchical GGM. Differential Diagnosis.
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Figure 7.3: Supervised hierarchical GGM. Controls.
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Figure 7.4: Graph prior.
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Figure 7.5: Supervised hierarchical GGM. Ciliopathies minus prior.
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Figure 7.6: Supervised hierarchical GGM. Differential Diagnosis minus prior.
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Figure 7.7: Supervised hierarchical GGM. Controls minus prior.
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Figure 7.8: Unsupervised identified cluster 1. Contains 24 Ciliopathies and 7 Controls.
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Figure 7.9: Unsupervised identified cluster 2. Contains 31 Ciliopathies, 30 Differential Diagnosis
and 9 Controls.
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Figure 7.10: Unsupervised identified cluster 3. Contains 20 Ciliopathies and 14 Controls.
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Figure 7.11: Unsupervised identified cluster 1 with residualised data. Contains 19 Ciliopathies and
6 Controls.
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Figure 7.12: Unsupervised identified cluster 2 with residualised data. Contains 31 Ciliopathies, 30
Differential Diagnosis and 9 Controls.
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Figure 7.13: Unsupervised identified cluster 3 with residualised data. Contains 25 Ciliopathies and
15 Controls.
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Titre : Mélanges de modèles graphiques gaussiens sous contraintes

Mots clés : Modèles graphiques, corrélations conditionnelles, estimation non-supervisée, algorithme EM

Résumé : La description des co-variations entre plu-
sieurs variables aléatoires observées est un problème
délicat. Les réseaux de dépendance sont des ou-
tils populaires qui décrivent les relations entre les
variables par la présence ou l’absence d’arêtes
entre les nœuds d’un graphe. En particulier, les
graphes de corrélations conditionnelles sont utilisés
pour représenter les corrélations “directes” entre les
nœuds du graphe. Ils sont souvent étudiés sous l’hy-
pothèse gaussienne et sont donc appelés “modèles
graphiques gaussiens” (GGM).
Un seul réseau peut être utilisé pour représenter les
tendances globales identifiées dans un échantillon
de données. Toutefois, lorsque les données ob-
servées sont échantillonnées à partir d’une popu-
lation hétérogène, il existe alors différentes sous-
populations qui doivent toutes être décrites par leurs
propres graphes. De plus, si les labels des sous-
populations (ou “classes”) ne sont pas disponibles,
des approches non supervisées doivent être mises en
œuvre afin d’identifier correctement les classes et de
décrire chacune d’entre elles avec son propre graphe.
Dans ce travail, nous abordons le problème relative-
ment nouveau de l’estimation hiérarchique des GGM

pour des populations hétérogènes non labellisées.
Nous explorons plusieurs axes clés pour améliorer
l’estimation des paramètres du modèle ainsi que
l’identification non supervisée des sous-populations.
Notre objectif est de s’assurer que les graphes de
corrélations conditionnelles inférés sont aussi perti-
nents et interprétables que possible.
Premièrement - dans le cas d’une population simple
et homogène - nous développons une méthode com-
posite qui combine les forces des deux principaux
paradigmes de l’état de l’art afin d’en corriger les
faiblesses. Pour le cas hétérogène non labellisé,
nous proposons d’estimer un mélange de GGM avec
un algorithme espérance-maximisation (EM). Afin
d’améliorer les solutions de cet algorithme EM, et
d’éviter de tomber dans des extrema locaux sous-
optimaux quand les données sont en grande dimen-
sion, nous introduisons une version tempérée de cet
algorithme EM, que nous étudions théoriquement et
empiriquement. Enfin, nous améliorons le clustering
de l’EM en prenant en compte l’effet que des co-
facteurs externes peuvent avoir sur la position des
données observées dans leur espace.

Title : Mixtures of Gaussian Graphical Models with constraints

Keywords : Graphical Models, Conditional Correlations, Unsupervised Estimation, EM algorithm

Abstract : Describing the co-variations between se-
veral observed random variables is a delicate pro-
blem. Dependency networks are popular tools that de-
pict the relations between variables through the pre-
sence or absence of edges between the nodes of a
graph. In particular, conditional correlation graphs are
used to represent the “direct” correlations between
nodes of the graph. They are often studied under the
Gaussian assumption and consequently referred to as
“Gaussian Graphical Models” (GGM).
A single network can be used to represent the ove-
rall tendencies identified within a data sample. Ho-
wever, when the observed data is sampled from a
heterogeneous population, then there exist different
sub-populations that all need to be described through
their own graphs. What is more, if the sub-population
(or “class”) labels are not available, unsupervised ap-
proaches must be implemented in order to correctly
identify the classes and describe each of them with
its own graph.
In this work, we tackle the fairly new problem of Hierar-

chical GGM estimation for unlabelled heterogeneous
populations. We explore several key axes to improve
the estimation of the model parameters as well as
the unsupervised identification of the sub-populations.
Our goal is to ensure that the inferred conditional cor-
relation graphs are as relevant and interpretable as
possible.
First - in the simple, homogeneous population case
- we develop a composite method that combines the
strengths of the two main state of the art paradigms
to correct their weaknesses. For the unlabelled he-
terogeneous case, we propose to estimate a Mixture
of GGM with an Expectation Maximisation (EM) al-
gorithm. In order to improve the solutions of this EM
algorithm, and avoid falling for sub-optimal local ex-
trema in high dimension, we introduce a tempered
version of this EM algorithm, that we study theoreti-
cally and empirically. Finally, we improve the cluste-
ring of the EM by taking into consideration the effect
of external co-features on the position in space of the
observed data.
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