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Abstract

A mesh adaption approach for strongly coupled problems is proposed, based

on a variational principle. The adaption technique relies on error indicated

by an energy-like potential and is hence free from error estimates. According

to the saddle point nature of this variational principle, a staggered solution

approach appears more natural and leads to separate mesh adaption for

mechanical and thermal fields. Using different meshes for different phenomena,

precise solutions for various fields under consideration are obtained. Internal

variables are considered constant over Voronoi cells, so no complex remapping

procedures are necessary to transfer internal variables. Since the algorithm is

based on a set of tolerance parameters, parametric analyses and a study of

their respective influence on the mesh adaption is carried out. This detailed

analysis is performed on uni-dimensional problems. The proposed method is

shown to be cost effective than uniform meshing, some applications of the

proposed approach to various 2D examples including shear bands and friction

welding are presented.



Contents

1 Motivation and general context 15

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1 Mesh adaptation . . . . . . . . . . . . . . . . . . . . . 18

1.2.2 Adaptation techniques . . . . . . . . . . . . . . . . . . 19

1.2.3 Adaptation criteria . . . . . . . . . . . . . . . . . . . . 20

1.2.4 Mesh adaptation for strongly coupled problems . . . . 21

1.2.5 Variational framework . . . . . . . . . . . . . . . . . . 22

1.3 Objectives and challenges . . . . . . . . . . . . . . . . . . . . 23

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Strongly coupled problems 28

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Problems in multiphysics . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Strong coupling . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Weak coupling . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Solution schemes . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Monolithic approach . . . . . . . . . . . . . . . . . . . 30

2.3.2 Staggered approach . . . . . . . . . . . . . . . . . . . . 31

2.4 Introduction to thermo-mechanics . . . . . . . . . . . . . . . . 32

2.4.1 Balance equations . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Thermo-elasticity example . . . . . . . . . . . . . . . . 34

2.4.2.1 Monolithic approach . . . . . . . . . . . . . . 36

2.4.2.2 Staggered approach with isothermal split . . . 37

2.4.2.3 Staggered approach with adiabatic split . . . 38

1



2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Variational formulation in coupled thermo mechanics 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Continuum modelling framework . . . . . . . . . . . . . . . . 43

3.2.1 Free energy and dissipation potential . . . . . . . . . . 43

3.2.2 Local evolution problem . . . . . . . . . . . . . . . . . 45

3.2.3 Variational formulation of the initial boundary value

problem . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Time discrete modelling framework . . . . . . . . . . . . . . . 48

3.3.1 Local constitutive problem . . . . . . . . . . . . . . . . 48

3.3.2 Incremental boundary value problem . . . . . . . . . . 50

3.3.3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Examples of constitutive models . . . . . . . . . . . . . . . . . 52

3.4.1 Purely thermal transient problem . . . . . . . . . . . . 52

3.4.2 Linear thermo-elasticity . . . . . . . . . . . . . . . . . 52

3.4.3 Thermo-elasto-visco-plasticity . . . . . . . . . . . . . . 53

3.5 Staggered algorithms . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Mesh adaptation Algorithm 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Local adaptation techniques . . . . . . . . . . . . . . . . . . . 60

4.2.1 Single Edge Bisection technique (SEB) . . . . . . . . . 60

4.2.2 A Backward Longest Edge Propagation Path (LEPP)

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Adaption criteria . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Refinement . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Coarsening . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Equivalence with error norms . . . . . . . . . . . . . . . . . . 70

4.5 Management of fields and internal variables . . . . . . . . . . 74

4.5.1 Management of internal variables during adaption pro-

cedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2



4.5.2 Interpolation of fields from one mesh to other . . . . . 75

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Unidimensional test cases 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Analytical solution . . . . . . . . . . . . . . . . . . . . 80

5.2.2 Numerical solution . . . . . . . . . . . . . . . . . . . . 81

5.2.3 Cost analysis . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.4 Parametric analysis . . . . . . . . . . . . . . . . . . . . 83

5.2.5 Improved algorithm . . . . . . . . . . . . . . . . . . . . 85

5.3 Thermo-elasticity . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Numerical solution fields . . . . . . . . . . . . . . . . . 87

5.3.2 Cost analysis . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Thermo-elasto-plasticity . . . . . . . . . . . . . . . . . . . . . 91

5.4.1 Numerical solution fields . . . . . . . . . . . . . . . . . 91

5.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Bidimensional test cases 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Steady state thermal . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Transient purely thermal test case . . . . . . . . . . . . . . . . 102

6.4 Linear thermo-elasticity . . . . . . . . . . . . . . . . . . . . . 104

6.5 Shear bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.6 Linear Friction Welding (LFW) . . . . . . . . . . . . . . . . . 112

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 125

3



List of Figures

1.1 High speed impact of a metal bar [1]. . . . . . . . . . . . . . . 16

1.2 Finite element solution with fixed mesh produces highly dis-

torted elements [1]. . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Channel flow simulation using Eulerian approach [1]. . . . . . 17

1.4 ALE simulation of metal bar impact problem [1]. . . . . . . . 17

4.1 The edge identified is BD. Therefore, the patch contains two

elements adjacent to edge BD. The refined version of patch

contains the new node E. . . . . . . . . . . . . . . . . . . . . 61

4.2 The edge identified is AB, which is on the boundary. Therefore,

the patch contains a single element DAB. The refined version

of the patch contains the new node E. . . . . . . . . . . . . . 61

4.3 The edge identified is BD. Therefore, the patch contains two

elements adjacent to edge BD. The refined version of patch

contains four new nodes shown in green. . . . . . . . . . . . . 61

4.4 The edge identified is AB which is on the boundary. Therefore,

the patch contains the single element DAB. The refined version

of patch contains three new nodes shown in green. . . . . . . . 61

4.5 Original algorithm of Rivara [61] based on target triangle.

Target triangle is t0. . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 The proposed algorithm based on target edge. Target edge is

ED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 The LEPP algorithm gives the single step refinement of several

edges. They are coarsened one by one. Here edge AGC is

coarsened to AC first, then edge AFB is coarsened to AB. . . 69

4



4.8 The diagram on the left shows a triangular parent element

with three integration points shown in different colours. The
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Introduction générale

La concurrence sur le marché a obligé les entreprises à accélérer le processus

de conception, de prototypage, de fabrication et de lancement de nouveaux

produits sans compromettre leur qualité. Pour atteindre cet objectif, elles

doivent repousser les limites technologiques. L’émergence d’équipements de

prototypage rapide tels que les imprimantes 3D résulte de ces efforts. Toute-

fois, tous les produits ne peuvent pas être prototypés rapidement ni rentables.

Une technologie qui peut permettre d’éliminer ou plutôt de réduire le besoin de

prototype est donc nécessaire. La croissance des technologies de l’information

et de l’informatique a augmenté le pouvoir de calcul comme jamais auparavant.

En conséquence, un nouveau domaine de la science informatique a émergé

en complément des sciences théoriques et expérimentales traditionnelles. La

mécanique numérique est une science informatique qui traite des solutions ap-

prochées aux problèmes de mécanique en utilisant des techniques numériques.

Ainsi, les simulations numériques permettent de réduire le besoin de proto-

types, en fournissant des données virtuelles, simulées du comportement de

tout ou partie d’un produit. Dans un monde idéal, une simulation numérique

devrait produire des résultats très proches du monde réel. Dans le monde réel,

chaque situation implique plusieurs phénomènes physiques. Par exemple, dans

un moteur à combustion, l’énergie chimique du carburant est convertie en

chaleur, qui est ensuite convertie en pression fluide qui, à son tour, produit le

mouvement mécanique. Le processus implique l’effet de phénomènes chim-

iques, thermiques, fluides et structurels les uns sur les autres. Une méthode

numérique qui incorpore ces intéractions sera capable de produire des résultats

précis. Cependant pour des questions de coût de calcul, une simulation ne
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peut out représenter, et est généralement produite en regard d’un objectif

précis, et donne des résultats valides dans un domaine borné.

Une méthode numérique très populaire pour les problèmes structurels est

la méthode des éléments finis. La méthode est basée sur une approche lagrang-

ienne où un maillage représentant la géométrie suit les points matériels de la

structure considérée. Pour les problèmes impliquant de grandes déformations,

une distorsion de maille sévère est observée, pouvant conduire un jacobien

négatif, et donc une solution non physique.

Par conséquent, une approche envisagée depuis dj fort longtemps est

d’adapter la forme et la taille des mailles au cours de la transformation. Cela

permet d’éviter le problème des distorsions sévères des mailles. De plus,

en simulant des processus industriels fortement couplés comme le forgeage,

l’usinage, le soudage par friction, etc., les effets dynamiques et transitoires

font que les domaines d’intérêt changent rapidement. Dans le cadre de la

méthode des éléments finis, cela signifie que les domaines d’intérêt changent

de position au cours du temps. Par conséquent, une stratégie d’adaptation de

maillage permet d’obtenir des solutions précises à chaque instant en affinant le

maillage dans les domaines d’intérêt et en déraffinant le maillage dans d’autres

domaines. Dans ce travail, nous présentons une stratégie d’adaptation de

maillage basée sur un principe variationnel dédiés aux problèmes fortement

couplés en thermo-mécanique.

Les stratégies d’adaptation sont basées sur des techniques et des critères

d’adaptation. Les techniques d’adaptation traitent essentiellement des as-

pects géométriques de l’adaptation. Les critères d’adaptation reflètent la

particularité du problème à l’étude. Les procédures d’adaptation de maillage

globale créent un maillage complètement nouveau et utilisent des procédures

de projection pour transférer des variables internes [50, 58]. Les méthodes

basées sur le remaniement global du domaine d’intérêt nécessitent le transfert

de variables internes entre les mailles, ce qui peut conduire à une diffusion

artificielle de ce dernier. Rivara et al. [62, 61, 60] propose des mises à jour

explicites pour les changements de maillage locaux. Grinspun et al. [26]

ont propos la méthode CHARMS pour le raffinement de maillage de facon

hiérarchique. Classiquement, les critères d’adaptation du maillage ont été
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basés sur des estimations d’erreur ou l’asymétrie du maillage. L’estimation

d’erreur de Z2 couramment utilisée depuis Zienkiewicz et Zhu [74] utilise les

contraintes dans un élément et est basée sur un processus de reconstruction

de champ pour obtenir un champ de contrainte de référence. La différence

dans l’élément entre les champs fournit une estimation d’erreur basée sur

le dégradé. La majorité des critères d’adaptation des mailles proposés dans

la littérature sont basés sur l’estimation d’erreurs. Dans ces méthodes, la

stratégie consiste à adapter le maillage pour minimiser une erreur liée; ou

par une application récursive des étapes de raffinement local [71, 2]. Mais ces

méthodes ont certaines limites: ils fonctionnent bien avec des modèles constitu-

tifs linéaires (par exemple l’élasticité), mais deviennent plus complexes lorsque

des modèles constitutifs non linéaires sont utilisés. En outre, les champs

admissibles doivent être reconstruits [37, 74]. De plus, les bornes d’erreur

standard nécessitent une certaine régularité de la solution pour assoir leur

validité [17]. Par conséquent, il peut être difficile et coûteux d’utiliser cette

approche pour des problèmes complexes impliquant des modèles constitutifs

non linéaires et / ou de grandes déformations. Une procédure d’adaptation

de maillage alternative pour des problèmes purement mécaniques a été pro-

posée par Mosler et al. [48, 49], basée sur une approche variationnelle de

[51]. Cette technique utilise un indicateur d’erreur plutôt qu’un estimateur

d’erreur. Dans une approche variationnelle, un potentiel d’énergie doit être

minimisé (ou maximisé), dont la valeur scalaire indique un certain niveau de

qualité de l’approximation effectuée. Aucune estimation d’erreur n’est utilisée

à n’importe quel stade de l’algorithme. Cette approche permet l’adaptation

de maillages en présence de grandes déformations et de comportements non

linéaires.

Alors que l’adaptation des mailles à l’aide d’estimateurs d’erreur est

bien établie pour les problèmes impliquant une seule physique, seules quelques

tentatives ont été proposées en ce qui concerne les méthodes d’adaptation

de maillage pour des problèmes fortement couplés. La plupart des méthodes

disponibles dans la littérature adaptent le maillage pour un seul des champs

considérés [5].
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Dans le présent travail, nous présentons une stratégie d’adaptation de

maillage pour des problèmes fortement couplés basés sur une approche vari-

ationnelle, et plus particulièrement des problèmes thermo-mécaniques. En

effet, les principes variationnels sont basés sur la minimisation ou la maximi-

sation d’une fonctionnelle, dont la valeur locale s’avère être un bon indicateur

d’erreur numérique sur un patch d’éléments finis. Les objectifs du présent

travail peuvent être énumérés comme suit:

1. Proposer un algorithme de h−adaptation pour des problèmes fortement

couplés en thermo-mécanique. Le défi dans les problèmes fortement

couplés est que les deux phénomènes, mécaniques et thermiques peu-

vent être à des échelles spatio-temporelles très différentes. En outre, les

emplacements spatiaux des domaines d’intérêt pour les deux champs peu-

vent être très différents. L’approche d’adaptation de maillage proposée

repose sur une approche décalée [3] couplée avec des maillages différents

pour différents champs. L’adaptation séquentielle de différents mail-

lages permet de capturer les différentes échelles spatiales des différents

champs.

2. L’approche proposée par Mosler et al. [48, 49] pour des problèmes

uniphysique permet de s’affranchir d’estimateurs d’erreur, et donc de

reconstructions coûteuse de champs. L’approche proposée a pour objet

d’utiliser cet avantage et de l’étendre à des problèmes couplés. Par

conséquent, le problème repose sur un indicateur d’erreur basé sur la

valeur de la fonctionnelle variationnelle.

3. Éviter la diffusion numérique excessive causée par les procédures de

projection complexes pour transférer des variables internes d’un maillage

à l’autre. En effet, les méthodes basées sur le remaniement global du

domaine d’intérêt provoquent une diffusion numérique significative, elles

ne sont donc pas considérées dans ce travail. Plutôt, les techniques

locales d’adaptation des mailles basées sur la bisection du bord sont

préférées. Dans le présent travail, les techniques d’adaptation ne sont

développées que pour les éléments triangulaires. En supposant une
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répartition constante des variables internes sur les cellules Voronöı, des

procédures de projection complexes provoquant une diffusion numérique

significative peuvent être évitées. Cet opérateur de transfert a été étudié

en détail par Ortiz et Quigley [50].

4. La méthode devrait être facilement adaptable pour différents problèmes.

Différents cas test d’abord unidimensionnels puis bidimensionnels sont

présentés aux chapitres 5 et 6, notamment des problèmes thermiques sim-

ples pour une illustration simple de la méthode, des problèmes fortement

couplés associés à la thermo-élasticité, un problème de simulation du

phénomène de bande de cisaillement et un cas représentatif de soudage

par friction. Ces applications étendues démontrent l’adaptabilité de

l’algorithme à différents problèmes.

5. L’algorithme proposé doir être efficient pour des problèmes suffisamment

complexes, c’est-à-dire moins coteux à précision donnée qu’un raffinage

uniforme, pour être utile dans des applications pratiques. Cette analyse

des cots est effectuée sur différents cas test dans les chapitres 5 et 6 en

profondeur et il est établi que l’algorithme est efficient par rapport à un

raffinage uniforme.
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Chapter 1

Motivation and general context

1.1 Background

Innovation has been the key for successful product development for centuries.

From the second part of 20th century, competition in the market has forced

companies to accelerate the process of designing, prototyping, manufacturing

and launching of new products without compromising the product quality.

Achieving this target requires to push technological boundaries. Emergence of

rapid prototyping equipments such as 3D printers is an example of outcome

of these efforts. However, neither every product can be rapid prototyped

nor it is cost-effective. A technology that can either eliminate or reduce the

need to prototype is thus needed. The growth in information technology and

computer science has increased computational power like never before. As

a result, a new field of computational science has emerged as a new leg of

science, in addition to theoretical and experimental ones. Computational

mechanics is a computational science that deals with finding approximate

solutions to problems in mechanics by using numerical techniques. Thus,

numerical simulations fulfill the need of technology that can reduce the need

of prototypes. A numerical simulation is designed to produce results that are

very close to the real world. In real world, every situation involves several

physical phenomenon. For example in an internal combustion engine, the

chemical energy of fuel is converted into heat, which is then converted to

fluid pressure which in turn produces the mechanical movement. The process
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involves effect of chemical, thermal, fluid and structural phenomena on each

other. A numerical method that incorporates these interactions will be able

to produce accurate results.

A very popular numerical method for structural problems is the finite

element method. The method is based on a Lagrangian approach where a

mesh is created that represents the geometry and the mesh follows material

points. However, for problems involving large strains, severe mesh distortion

may occur. For example, consider a simulation involving a high speed impact

of metal bar as shown in figure 1.1. When simulated using a finite element

approach with a mesh stuck on the body, a highly distorted mesh is obtained

as shown in figure 1.2. This poses several numerical difficulties involving flat

elements, Jacobian going to zero or negative etc.

Figure 1.1: High speed impact of a
metal bar [1].

Figure 1.2: Finite element solution
with fixed mesh produces highly dis-
torted elements [1].

In order to overcome this difficulty, several authors have proposed different

methods. First is an Eulerian method in which the mesh remains fixed in

space. That is, material points flow through the mesh. This approach is

suitable for problems in fluid mechanics such as flow problems. The channel

flow problem depicted in figure 1.3 demonstrates this approach. In order

to use this approach for structural problems, a very fine mesh would be

needed to capture material response making the method computationally very

expensive. In addition, transport of history variables causes loss in information
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Figure 1.3: Channel flow simulation
using Eulerian approach [1]. Figure 1.4: ALE simulation of metal

bar impact problem [1].

and therefore accuracy. Second, are ALE (Arbitrary Lagrangian Eulerian)

approaches in which the mesh inside the domain can move arbitrarily to

optimize the shape of elements while the mesh on the boundaries and the

interfaces of the domains can move along the materials to precisely track the

boundaries and interfaces of a multi-material system. For metal bar impact

problem, this is illustrated in figure 1.4. While it has the advantage that it

allows smoothing of distorted mesh, the main difficulty is the path dependent

behaviour of the plastic flow being modelled. Due to the path dependence,

the relative motion between the mesh and the material must be accounted

for in the material constitutive equations. In addition, the ALE method does

not allow new (damaged) surfaces to be created and is limited to geometries

where the material flow is relatively predictable [1]. Third, meshless methods

are also proposed that (theoretically) do not depend on any mesh, but face

difficulties in application of boundary conditions and robustness.

Therefore, one common idea is to consider mesh adaptation in the frame-

work of finite element method. This allows to avoid the problem of severe

mesh distortions. In addition, while simulating strongly coupled industrial

process like forging, machining, friction welding, etc., dynamic and transient

effects cause the domains of interest to change rapidly. In the framework

of finite element method, this means that the domains of interest change

their spatial location with time. Therefore, a mesh adaptation strategy also

allows to obtain precise solutions at each time step by refining the mesh in
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domains of interest and coarsening the mesh in other domains. In this work,

we present a mesh adaptation strategy based on a variational principle for

strongly coupled problems in thermo-mechanics.

The purpose of this chapter is to introduce the background of the problem,

make a brief state of the art of mesh adaption, and define objectives and

challenges. In order to put the work in context, a comprehensive literature

review is presented which revisits the major work in mesh adaptation tech-

niques, mesh adaptation criteria also the variational framework on which the

proposed mesh adaptation technique is based. Then the objectives of the

thesis along with the challenges are explained.

1.2 Literature review

1.2.1 Mesh adaptation

Numerical error in finite element approximation is related to the mesh size

h, the degree of polynomial appearing in the element shape function p and

regularity of the solution r as follows:

||e||Hm ≤ chα||u||Hr (1.1)

where Hk is the space of functions possessing k square integrable derivatives,

|| · ||Hk represents the Sobolev norm, c is a constant (element-dependent), u

represents the exact solution, and the exponent α is given by:

α = min(p+ 1−m, r −m) (1.2)

Mesh adaptation is a way to exploit this mathematical result in order to focus

efforts in the domain of interest and release in other areas. Mesh adaptation

processes can be divided into three broad categories. First is h-adaptation

where the mesh size is optimized [21]. This means, element size is adapted

using the same type of elements. Size is reduced where interpolation must

be enriched to achieve better accuracy. On the other hand, size is increased

where solution is sufficiently accurate. It may contain processes of element

refinement and/or coarsening, thereby increasing and/or reducing the number
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of degrees of freedom. Second, r-adaptation where the number of nodes are

same but their location and connectivity is changed [39, 56]. The strategy

simply involves redistribution of the nodes. This has advantage of preserving

number of degrees of freedom thereby not increasing the computational cost.

The data structure and the coding remains straightforward as it simply

involves changes in node co-ordinates and connectivities. Third, p-adaptation

where the order of interpolation polynomial within an element is changed

[52]. The strategy involves using a fixed finite element mesh and adapting

the interpolation order of the elements. In this strategy, the convergence

to the exact solution is dictated by chα if the exact solution is smooth as

seen from equation (1.1). A hybrid of h-adaptation and p-adaptation is also

proposed in the literature, and called hp-adaptation [57]. In this strategy,

along with mesh size, interpolation order is also adapted. The purpose of the

present work is to introduce an approach based on h-adaptation, however,

the extension of the strategy to p-adaptation is quite straightforward.

Mesh adaptation strategies depend on adaptive techniques and adaptation

criteria. Adaptive techniques essentially deal with geometric aspects of adap-

tation. On the other hand, the adaptation criteria captures the peculiarities

of the problem under consideration. The following subsections make a brief

review of adaptation techniques for h-adaptation.

1.2.2 Adaptation techniques

Several mesh adaptation techniques have been proposed in the literature.

Rivara et al. [62, 61, 60] propose explicit updates for local mesh changes.

Molinari et al. [47] use local coarsening and refinement method based on mesh

size for shear bands. Mesh adaptation for shear bands has also been studied

in plane strain [7, 11]. Global mesh adaptation procedures create a completely

new mesh and use remapping procedures to transfer internal variables [50, 58].

Using gradient based indicators, global remeshing technique has been applied

to impact problems [22]. Global remeshing techniques also handle mesh

distortions in machining problems [45]. Methods based on global remeshing

of the domain of interest require to transfer internal variables between meshes,
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which can lead to artificial diffusion of the latter unless specific methods are

used [13]. Camacho et al. [15] propose remeshing methods using advancing

front methods for ballistic penetration problems. In [19, 69], authors use

mesh adaptation for shape optimization of structures. Grinspun et al. [26]

proposed CHARMS method for hierarchical mesh refinement.

1.2.3 Adaptation criteria

Classically, the mesh adaptation criteria have been based on error-estimates

or mesh skewness. The commonly used Z2 error estimate proposed by

Zienkiewicz and Zhu [74] uses stresses within an element and is based on a

recovery process to obtain reference stress. The difference between element

and reference stress provides gradient based error estimate. Curvature based

error estimates have been proposed by Borouchaki et al. [12]. Error estimates

based on constitutive relation error have also been studied [38, 18, 36]. In

these methods, the finite element solution is described as a displacement-stress

pair such that the displacements satisfy kinematic constraints like boundary

conditions and initial conditions while the stresses satisfy the equilibrium

conditions. The displacements and stresses do not satisfy the constitutive

relations (stress-strain relations) which provides an error measure which they

refer to as the constitutive relation error. Romero et al. [63] propose an

error estimate based on time update. Gurtin [27] uses configurational forces

for r-adaptation. Some authors also use gradients of physical quantities as

mesh adaptation criteria [7, 11, 50]. Error estimates can also be based on

variational principles [33, 34, 16, 58]. Many other error estimators are studied

by various researchers [4, 35, 42, 24].

In the fluid mechanics community, the main emphasis is on the proper

resolution of flow field. Therefore, in order to capture boundary layers, shock

waves and high speed compressible flows, mesh adaptation techniques are

necessary. Significant amount of work has been done for mesh adaptation for

compressible flows [44, 54, 43, 29]. Most of these mesh adaptation criteria are

based on error estimates from gradients of flow fields. In the calculation of lift
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and drag of an airfoil in presence of shocks and viscous effects, error estimators

based on bounds on functional outputs have been proposed [53, 70].

A majority of mesh adaptation criteria proposed in the literature are based

on error-estimation. In these methods, the strategy is to adapt the mesh

to minimize an error bound among all meshes of fixed size; or by recursive

application of local refinement steps [71, 2]. But these methods have certain

limitations. They work well with linear constitutive models (for example

elasticity), but become more complex when non-linear constitutive models

are used. Moreover, admissible fields need to be reconstructed [37, 74]. In

addition, standard error bounds require a certain regularity of the solution for

their validity [17]. Therefore, it can be difficult and costly to use this approach

for complex problems involving non-linear constitutive models and/or large

deformation.

An alternative mesh adaptation criterion for purely mechanical problems

was proposed by Mosler et al. [48, 49], based on the variational approach of

[51]. This technique uses an error indicator rather than an error estimator.

In a variational approach, an energy like potential is to be minimized (or

maximized), the scalar value of which indicates the level of approximation

following the minimum (or maximum) criterion. No error estimates are used

at any stage of the algorithm. It allows mesh adaptation in presence of large

deformations and non-linear constitutive behavior. In addition, it was shown

in [48] that variational h-adaptation could be combined with variational

r-adaptation, at least for hyperelastic behavior. Indeed, r-adaptation would

involve remapping in the presence of internal variables, and was not considered

by these authors for dissipative behaviors. In [48, 49], the authors addressed

isothermal, steady state mechanical problems.

1.2.4 Mesh adaptation for strongly coupled problems

While mesh adaptation using error estimation is well established for single

field problems, only few attempts have been made towards mesh adaptation

methods for strongly coupled problems. Most of the methods available in

literature adapt the mesh for only one of the considered fields [5]. Solin et
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al. [64] use multimesh adaptation approach for weakly coupled problems,

but the method is limited to thermo-elasticity. Vokas et al. [72] consider a

single mesh and h-refinement affects all fields simultaneously, therefore the

method fails to capture different scales and spatial resolutions of different

fields. Moreover, the mesh adaptation criteria relies on error estimators that

work well with linear constitutive models, but are very complex in the case

of non-linear constitutive models due to their need to reconstruct admissible

fields. Therefore, it appears difficult and expensive to use this approach for

strongly coupled problems with non-linear constitutive models and/or large

deformation. Ramadan et al. [59] propose a bimesh method for strongly

coupled thermo-mechanical problems with localized deformations. These

authors propose a method in which a thermal mesh is uniformly fine; whereas,

the mechanical mesh uses the thermal mesh in the deformation zone and

coarsened version of thermal mesh in zone of insignificant deformation. This

strategy was mainly proposed to speed up the calculations as the mechanical

problem is quite expensive.

1.2.5 Variational framework

In the present work, we present a strategy of mesh adaptation for strongly cou-

pled problems based on a variational approach. Indeed, variational principles

are based on minimization or maximization of a functional, the local value of

which turns out to be a good indicator of numerical error on a patch of finite

elements. This idea has been proposed and exploited for purely structural

problems by Mosler et al. [48, 49]. Its extension to strongly coupled problems

requires an associated variational formulation. Thermo-elastic and thermo-

visco-elastic problems have been extensively investigated in [10, 9, 6, 8, 30, 46].

But, formulations for coupled thermo-mechanical problems involving non-

linear dissipative behaviour, such as thermo-elasto-visco-plasticity have been

recently summarized by Stainier [66, 73], which itself is an extension of former

work on variational visco-plastic constitutive updates proposed by Stainier

and Ortiz [51].
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1.3 Objectives and challenges

The major objective of the thesis is to propose an h-adaptation algorithm for

strongly coupled problems in thermo-mechanics. The challenge in strongly

coupled problems is that the two phenomena, mechanical and thermal can

develop at very different spatial and temporal scales. Moreover, the spatial

locations of domains of interest for the two fields can be very different.

Therefore, it is very difficult to have a single adaptive mesh that can effectively

capture both fields. The proposed mesh adaptation approach relies on a

staggered approach [3] coupled with different meshes for different fields.

Sequential adaptation of different meshes allows to capture different scales

and spatial resolutions of different fields. The second chapter of the thesis

gives an introduction to multi-physics and solution schemes in general setting.

Then a specific problem of thermo-mechanics is taken into consideration where

monolithic and staggered approaches are explained in detail.

The second objective is that the mesh adaptation criteria should be free

from any error estimates because of the drawbacks mentioned in the previous

section. In order to achieve this objective, the proposed approach extends the

approach proposed by Mosler et al.[48, 49] for single field problems. Therefore,

the problem relies on an error indicator based on the value of a variational

functional. The proposed approach exploits this thermo-mechanical varia-

tional formulation of [66, 73]. The third chapter presents this variational

framework for thermo-mechanical problems. These formulations allow to

represent the thermo-mechanical problem as a saddle point problem. First,

a continuum model is presented followed by a time discrete model. Some

examples of constitutive models are also presented.

The third objective is to avoid the excessive numerical diffusion caused by

the complex remapping procedures to transfer internal variables from one mesh

to another. Because the methods based on global remeshing of the domain of

interest cause significant numerical diffusion, they are not considered. Instead,

local mesh adaptation techniques based on edge bisection are preferred. In the

present work, adaptation techniques are only studied for triangular elements.

Assuming a constant distribution of internal variables over Voronöı cells,

23



complex remapping procedures causing significant numerical diffusion can be

avoided. This transfer operator was studied in detail by Ortiz and Quigley

[50] and is presented in Chapter 4. The same holds true between the steps

of the staggered scheme, avoiding significant numerical diffusion assuming

a constant distribution of internal variables over elementary cells consisting

of the intersection of Voronöı cells and triangular elements. Indeed, two

mesh adaptation techniques are presented. First, a Single Edge Bisection

(SEB) technique [48] is considered, allowing for anisotropic meshes. Second,

Rivara’s Longest Edge Propagation Path (LEPP) technique [62] is used which

constrains the element aspect ratio. One could also extend this strategy

for techniques like CHARMS [26] but this extension was not exploited here.

The fourth chapter presents the proposed mesh adaptation algorithm. The

considered adaptation techniques are presented in details followed by mesh

adaptation criteria that depend on the variational framework presented in

the third chapter.

Fourth, the proposed algorithm should be cost effective in case of suffi-

ciently complex problems with respect to using a single uniform mesh for it

to be useful in practical applications. An extensive cost analysis is performed

on different test cases and it is established that the algorithm is indeed cost

effective with respect to using single uniform mesh in case of sufficiently com-

plex problems even using the most pessimistic cost estimate for the adaptive

algorithm. Chapter 5 presents unidimensional test cases where analysis of

the proposed algorithm is presented, demonstrating the cost effectiveness of

the algorithm for complex problems. An extensive parametric analysis of the

algorithm parameters is also presented in chapter 5.

The fifth objective is that the method should be easily adaptable for

different problems. Different bidimensional test cases are presented in Chapter

6 including simple thermal problems, strongly coupled problems in thermo-

elasticity, a problem simulating shear band phenomenon and a representative

case of friction welding. These wide applications demonstrate the adaptability

of the algorithm to different problems.
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1.4 Conclusion

In this chapter the mesh adaptation for strongly coupled problems was

motivated. Following the literature review, the objectives and challenges of

the thesis were stated. Strategies to achieve the proposed objectives were

introduced and relevant bibliography was extracted.
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Problèmes fortement couplés

Un problème qui implique de nombreux phénomènes physiques s’influençant

les uns les autres est appelé un problème multiphysique couplé. Considérons

par exemple une bande de cisaillement dans laquelle la dissipation d’énergie

mécanique provoque une élévation de la température, laquelle amène le

matériau à ramollir, ce qui conduit à des contraintes de cisaillement plus

faibles. Pour résoudre ce problème, les ingénieurs doivent combiner des

modèles physiques et des algorithmes, contenant tous les phénomènes physiques

en présence pour rendre compte de l’effet observé. Pour beaucoup de problèmes

de l’ingénieur, les effets physiques d’intérêt résultent de la combinaison de

plusieurs physiques. Il est souvent rappelé que tous les problèmes devraient

être supposés couplés avant (pour certains) pour infirmer cette proposition.

Un système sera considŕé fortement couplé, si les sous-systèmes 1 et

2 s’influencent mutuellement de façon significative, par exemple la thermo-

mécanique, la thermo-viscoélasticité, l’aéroélasticité, etc. Un système est

faiblement couplé si le sous-système 1 a une influence significative sur le

sous-système 2, alors que le sous-système 2 a une influence modérée (ou

petite) sur le sous-système 1, par exemple en aéro-acoustique. Dans ce cas,

nous pouvons appliquer un schéma de résolution séquentiel o nous pouvons

résoudre le premier sous-système 1 (sous-système 1 en entrée), puis nous

résolvons le sous-système 2.

Il existe de nombreuses méthodes proposées dans la littérature afin de

résoudre des problèmes couplés. Deux d’entre elles sont les plus couramment

utilisées. Le premier est un schéma monolithique. Il consiste à résoudre

simultanément les équations des différents champs simultanément (avec un

algorithme implicite ou explicite). L’inconvénient est que le système devient
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vite énorme, de sorte qu’il présente un cot de calcul élevé. Le second est le

schéma étagé. L’objectif d’un schéma d’étagé est de diviser le problème couplé

en un ensemble de sous-problèmes, donc le schéma étagé résout différents

champs successivement. Les problèmes d’une préoccupation majeure pour

nous sont des problèmes fortement couplés où les deux phénomènes physiques

s’influencent mutuellement; En particulier, des problèmes thermomécaniques

fortement couplés. Dans ce travail, nous nous occupons de l’utilisation de

deux maillages différents pour les parties mécanique et thermique afin de

pouvoir tenir compte des échelles spatiales propres à ces deux physiques, nous

considérons donc uniquement l’approche étagée qui permet de séparer un

problème couplé en sous-problèmes liés à chaque phénomène physique.
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Chapter 2

Strongly coupled problems

2.1 Introduction

The purpose of this chapter is to introduce the problems of interest. First,

an introduction to multiphysics is presented in general sense. This allows

to introduce different solution schemes for strongly and weakly coupled

problems. Then, specific thermo-mechanical problems are tackled starting

from the presentation of balance equations. As an example of a constitutive

model, thermo-elasticity is presented. Finally, finite element discretization

for thermo-mechanical problems is recalled and solution schemes introduced

in general setting are applied to thermo-elasticity problem.

2.2 Problems in multiphysics

A problem that involves many physical phenomena influencing each other is

called a coupled multiphysics problem. Let’s take for instance the example

of a shear band in which mechanical dissipation causes temperature rise

which leads the material to soften and then to increase shear strains. To

deal with this issue, engineers must combine physical models and algorithms

allowing to capture the occuring physical phenomena to simulate the observed

effects. For many engineering problems, physical effects of interest result from

combination of many physics. Essentially, every problem should be assumed

to be coupled unless proven otherwise.
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In coupled systems, subsystems interact through interfaces in its general

sense, the interaction is called ”one way” if there is no feedback between

subsystems. The interaction is called ”two-way” or ”multiway” if there is

feedback between sub-systems. We are interested in this latter case, where the

response has to be obtained by solving simultaneously the coupled equations

which model the system. In computational multi-physics, two types of coupling

exist, named strong and weak couplings. Each of those two couplings is linked

directly to the tightness of coupling between equations describing the system.

2.2.1 Strong coupling

A system is called strongly coupled, if both sub-system 1 and sub-system 2

have influences on each others, for example thermo-mechanics, thermo-visco-

elasticity, aero-elasticity, etc. Consider for instance a system, where u1 and

u2 are the two fields. We can write the coupled system u1(t) and u2(t) as:

du1

dt
= L1(u1, u2)

du2

dt
= L2(u1, u2)

(2.1)

so that functions L1 and L2 are functions of both u1 and u2. In this case we

can apply different kind of schemes to solve the problem :

• Concurrent solution scheme such as monolithic schemes, where we solve

simultaneously all equations in one algorithm.

• Staggered schemes, where the coupled problem is split and each field is

treated by a different strategy.

• Alternated schemes / Gauss-Seidel approaches for which a fixed point

loop is added at each time step on the overall system. This approach

should lead to same results as a monolithic scheme, when convergence

is obtained.
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2.2.2 Weak coupling

A system is weakly coupled if sub-system 1 has significant influence on sub-

system 2, while subsystem 2 has moderate (or small) influence on subsystem 1,

for example in aero-acoustics. In this case, we can apply a sequential solution

scheme where we can solve sub-system 1 first (subsystem 1 as an input) and

then solve sub-system 2.

L1(u1, u2) ≈ L̂1(u1) (2.2)

Therefore, equations (2.1) can be rewritten as:

du1

dt
≈ L̂1(u1)⇒ u1(t)

du2

dt
= L2(u1(t), u2)

(2.3)

2.3 Solution schemes

2.3.1 Monolithic approach

Consider the interaction between two scalar fields u1 and u2 , where each field

has only one state variable u1(t) and u2(t). The monolithic scheme consists of

resolving simultaneously the fields equations u(t) (in u1 and u2) in one step

(whether implicit or explicit), where u(t) is defined as:

{u(t)} = {u1(t), u2(t)}T (2.4)

{u(0)} = {u0} (2.5)

d{u}
dt

= L({u}) (2.6)

Therefore, we obtain a complex system with a very large size, but have the

benefit to be unconditional stable for implicit algorithms, meaning that we

can go for larger time steps without affecting the stability of the system. On

the other hand, explicit algorithms lead to conditional stability, which means
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that the stability of the system is influenced by the size of time step, the time

step shall be less than a critical time step ∆t < ∆tcrit. If we denote ∆tcrit1 the

critical time step for the stability of the sub-system 1, and ∆tcrit2 the critical

time step for the stability of the sub-system 2, min(∆tcrit1,∆tcrit2) may be

<< max(∆tcrit1,∆tcrit2). Moreover, for a monolithic system, the critical time

step for the whole system ∆tcrit can be even smaller than the smallest critical

time steps of each subsystem, that is ∆tcrit << min(∆tcrit1,∆tcrit2). The

system obtained is very large, and the tangent matrix has the following form:[∂L1

∂u1

∂L1

∂u2
∂L2

∂u1

∂L2

∂u2

]
(2.7)

The system obtained is generally non-symmetric due to the coupling terms

of ∂L1

∂u2
and ∂L2

∂u1
, and this leads to high computational cost generated by

the inversion of the tangent matrix, especially when the coupling is strong,

where the sub-diagonal matrices should be taken into account. In fact, when

coupling is weak, these matrices can be neglected. Strong coupling may

influence convergence, but not inversion time with direct solvers.

2.3.2 Staggered approach

The goal of a staggered scheme is to split the coupled problem into a set of

sub-problems, therefore the staggered scheme (also called partitioned (without

a fixed point)) solves different fields separately L({u}) = L2({u}) + L1({u}).
The system becomes simpler due to the reduction of degrees of freedom of each

sub-system. Some of the advantages is that we can use the best algorithm of

resolution for each sub-system, the best discretization for each sub-system

and may use the best time increments for each sub-system [25] (which is not

so obvious in practice). One of the disadvantages is that a staggered scheme

is not always stable [3]. In case of thermo-mechanical problems, staggered

approach can be accomplished in two ways. First, the isothermal staggered

scheme in which mechanical part is solved considering isothermal condition

for thermal part. Second, the adiabatic staggered scheme in which mechanical

part is solved considering adiabatic condition for the thermal part. These

approached are examined in detail in the following section.
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2.4 Introduction to thermo-mechanics

2.4.1 Balance equations

Let us begin by recalling the continuum balance equations. In the following,

u is the displacement field, T is the external temperature, Θ is the internal

temperature and F is the deformation gradient tensor: grad(u).

Principle of mass conservation states that mass can neither be created

nor be destroyed. Therefore, mass of a material point dm always remains the

same.

dm = ρ0dV0 = ρdV (2.8)

where ρ0 is the initial material density, dV0 is the initial volume, ρ is the

material density and dV is the volume of the material point after deformation.

Equation (2.8) can be rewritten in terms of the deformation gradient tensor

F as follows:

ρ det [F] = ρ0 (2.9)

where, det [F] represents the change in volume of the material point.

Principle of conservation of linear momentum is obtained from Newton’s

second law of motion which states that sum of the forces acting on a body is

equal to the rate of change of momentum of the body, which yeilds in local

form:

ρv̇ = ρb + div{σ} (2.10)

where v is the velocity of the particle, b are the applied body forces and σ is

the Cauchy stress tensor, the divergence of which gives internal forces.

Conservation of angular momentum imposes that Cauchy stress tensor σ

should be symmetric. That is,

σ = σT (2.11)

or equivalently,

PFT = FPT (2.12)

where, P is the first Piola-Kirchchoff stress tensor.
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The first law of thermodynamics states that energy can be transformed,

but cannot be created nor destroyed. It is usually formulated as a balance of

internal energy by stating that the change in the internal energy of a system

is equal to the amount of heat supplied to the system, minus the amount

of work performed by the system on its surroundings, in other words it is a

transformation from heat energy to mechanical energy and vice-versa. It can

be written as:

ρU̇ = P : Ḟ + ρ0r − div0{q} (2.13)

where U is the internal energy density (per unit volume), q is the heat flux,

and div0 is divergence with respect to reference co-ordinates.

The second law of thermodynamics is rather an evolution principle than a

balance law. It is an expression of the tendency that over time, differences

in temperature, pressure, and chemical potential equilibrate in an isolated

physical system. From the state of thermodynamic equilibrium, the law

deduced the principle of the increase of entropy and explains the phenomenon

of irreversibility in nature. The first law of thermodynamics provides the

basic definition of thermodynamic energy (or internal energy), associated with

all thermodynamic systems, and states the rule of conservation of energy in

nature. However, the concept of energy in the first law does not account for

the observation that natural processes have a preferred direction of progress.

For example, spontaneously, heat always flows to regions of lower temperature,

never to regions of higher temperature without external work being performed

on the system. The first law is completely symmetrical with respect to

the initial and final states of an evolving system. The key concept for the

explanation of this phenomenon through the second law of thermodynamics

is the definition of a new physical property, the entropy S, defined as :

S =

∫
Ω

ρηdΩ (2.14)

where η is the specific entropy. The second law of thermodynamics can be

represented as follows:

Ṡ −
∫

Ω

ρr

T
dΩ−

∫
∂Ω

q · n
T

dS ≥ 0 (2.15)
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which can be rewritten as:∫
Ω

{
ρη̇ − ρr

T
+ div

(q

T

)}
dΩ ≥ 0 (2.16)

As the domain Ω is arbitrary, one can obtain Clausius-Duhem inequality from

equation (2.16) and (2.13) as follows:

Γ̇T = ρT η̇ + σ : D− ρU̇ − 1

T
q · grad{T} ≥ 0 (2.17)

where Γ̇T represents the dissipated power.

2.4.2 Thermo-elasticity example

As an example of a strongly coupled thermo-mechanical problem, let us

consider thermo-elasticity. In this case, the stress tensor σ is related to both,

the elastic strain ε and temperature rise θ = T − Tref as follows:

σ = E : (ε−αθ) (2.18)

where E is the elasticity tensor, Tref a reference temperature, and α is

the coefficient of thermal expansion tensor. Rise in temperature causes the

material to expand without inducing any stress. Therefore, strain responsible

for stress in the body is the difference between the total strain and strain

caused due to the thermal expansion of the material. This very phenomenon

is explained by the equation (2.18). Now, one can write the linear momentum

conservation equation (2.10) for thermo-elasticity as follows:

ρv̇ = div {E : (ε−αθ)}+ ρb (2.19)

Equation (2.19) represents the effect of thermal part on the mechanical part

for thermo-elasticity. On the other hand, expansion of material causes its

temperature to decrease and contraction causes its temperature to rise. One

can write the thermal problem as follows in order to incorporate this effect:

c̃ θ̇ = div{K̃ · grad(θ)} −α : E : ε̇+
r

Tref
(2.20)

where r is the external heat source, c is the heat capacity and c̃ = c
Tref

,

similarly, K is the thermal conductivity tensor and K̃ = K
Tref

. Equations
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(2.19) and (2.20) represent the strong form of coupled thermo-mechanical

problem.1 One can obtain the weak form easily by multiplying the equations

with test functions and integrating over the domain. For time integration,

one can consider Newmark scheme:

an+1 =
un+1 − un
β∆t2

− vn
β∆t

− 0.5− β
β

an

vn+1 = vn + (1− γ)∆tan + γ∆tan+1

(2.21)

here subscripts represent time step considered, a = v̇ = ü the acceleration, β

and γ are the algorithm parameters. For good stability, integration parameters

are chosen as β = 1
4

and γ = 1
2
. For finite element space discretization, we

consider finite element interpolation:

u =
Nnodes∑
i=1

Ni(x)ui

θ =
Nnodes∑
i=1

Ni(x)θi

(2.22)

where Ni(x) are the nodal shape functions, ui are nodal displacements and

θi are nodal temperatures. Mass matrix can be given from finite element

interpolation as a function of shape function matrix [N e] as follows:

[M e] =
nElements∑

i=1

∫
Ωe

ρ[N e]T [N e]dΩ (2.23)

The stiffness matrix is given as derivative of shape function matrix with

respect to spatial coordinates [De]:

[E] =
nElements∑

i=1

∫
Ωe

[De]T [E][De]dΩ (2.24)

1A more formal derivation of these equations will be provided in chapter 3.
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In case of thermo-elasticity problem we have the coupling matrix given as

follows:

[B] =
nElements∑

i=1

−
∫

Ωe

[De]T [αE][N e]dΩ (2.25)

Capacity matrix is similar to mass matrix and it is given by:

[C̃] =
nElements∑

i=1

∫
Ωe

c

Tref
[N e]T [N e]dΩ (2.26)

Conductivity matrix is similar to stiffness matrix and is given by:

[K̃] =
nElements∑

i=1

∫
Ωe

1

Tref
[De]T [K][De]dΩ (2.27)

Using the matrices defined above, the mechanical part of the finite element

problem can be written as follows:

1

β∆t2
[M ]{un+1}+ [E]{un+1}+ [B]{θn+1} =

1

β∆t2
[M ]{un}+

1

β∆t
[M ]{{vn}+ (0.5− β)∆t{an}}+ {b}+ {t} (2.28)

Whereas, the thermal problem is given as:

[B]T{un+1}−[C̃]{θn+1}−∆t[K̃]{θn+1} = −[C̃]{θn}+[B]T{un}−
{

r

Tref

}
+

∆t

Tref
{qn}

(2.29)

2.4.2.1 Monolithic approach

In the monolithic approach, we solve both the mechanical and thermal

problems simultaneously. The problem can be stated as follows:[ 1
β∆t2

[M ] + [E] [B]

[B]T −[C̃]−∆t[K̃]

]{
{un+1}
{θn+1}

}
=

{
{Fu}
{Fθ}

}
(2.30)
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Where, {Fu} and {Fθ} can be given as follows:

{Fu} =
[M ]

β∆t2
{un}+

[M ]

β∆t
{{vn}+ (0.5− β)∆t{an}}+ {b}+ {t}

{Fθ} = −[C̃]{θn}+ [B]T{un} −
{r}
Tref

+
∆t

Tref
{qn}

(2.31)

Velocity and acceleration can be given as represented by equation 2.21. As

explained earlier, this approach is unconditionally stable. However, if one

uses monolithic approach, the problem size is very big, therefore more com-

putational power is needed. Another disadvantage is that one can not use

two different meshes for mechanical and thermal part while using monolithic

approach. This is mainly because of the inability to construct a single coupling

matrix [B] on two different meshes.

2.4.2.2 Staggered approach with isothermal split

In a staggered approach, thermal and mechanical problems are split and

then are solved one by one. The simplest staggered technique is to consider

isothermal split in which first the mechanical problem is solved assuming no

variation in temperature and then the thermal problem is solved at fixed

geometry: [
1

β∆t2
[M ] + [E]

]
{un+1} = {Fu} − [B]{θn} (2.32)[

−[C̃]−∆t[K̃]
]
{θn+1} = {Fθ} − [B]T{un+1} (2.33)

The advantage of using isothermal split is that it is very simple to implement,

one can use different meshes for mechanical and thermal part. This allows us

to divide one big problem into two smaller problems. The main limitation of

using isothermal split is that the algorithm is not unconditionally stable as

shown by Simo et al.[3].
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2.4.2.3 Staggered approach with adiabatic split

In order to have a stable algorithm, one can use an adiabatic split in which,

while solving the mechanical part, adiabatic thermal conditions are assumed.

It is represented as follows:[ 1
β∆t2

[M ] + [E] [B]

[B]T −[C̃]]

]{
{un+1}
{θad}

}
=

{
{Fu}
{Fθ}

}
(2.34)[

−[C̃]−∆t[K̃]
]
{θn+1} = {Fθ} − [B]T{un+1} (2.35)

Note that in the mechanical step, one does not need to calculate θad since it

is not needed in the calculations. This split makes the algorithm stable when

used with a constant time step [3].

When using a staggered scheme with different meshes for mechanical

and thermal part, first thermal fields need to be interpolated on mechanical

mesh and then mechanical problem is solved. In this step, the coupling

matrix [B] is constructed only on the mechanical mesh. Then, the calculated

displacement field {un+1} is interpolated on the thermal mesh and then the

thermal problem is solved. Here, the coupling matrix [B] is constructed only

on the thermal mesh. Note that we only perform interpolations from one

mesh to the other, no extrapolations are performed.

2.5 Conclusion

This chapter introduced problems in multiphysics and relevant solution

schemes in general. Weak coupling and strong coupling in multiphysics

was presented. The problems of prime concern for us are strongly coupled

problems where both physical phenomena influence each other.

Particularly, we focus on thermo-mechanical problems which were pre-

sented in the final section, with example of thermo-elasticity, monolithic and

staggered approaches were presented. In this work, we are concerned with

using two different meshes for mechanical and thermal parts in order to have

separate mesh adaptation, therefore we only consider the staggered approach

which allows separation of a coupled problem in subproblems related to each

physical phenomena.
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The proposed mesh adaptation is based on variational principle which is

introduced in the following chapter.
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Formulation variationnelle en
thermo-mécanique couplée

L’algorithme d’adaptation de maillage proposé utilise un principe variationnel.

Pour les problèmes simples impliquant un phénomène physique unique, le

principe de l’énergie potentielle minimale constitue ce principe variationnel,

l’énergie potentielle étant la fonctionnelle. Cependant, dans les problèmes com-

plexes impliquant des variables internes et des problèmes thermomécaniques

couplés, la fonctionnelle associée au principe variationnel n’est pas toujours

évidente à identifier et nécessite une construction spécifique. Yang et al. [73]

ont proposé une fonctionnelle basée sur une thermique à deux champs. Ces

formulations variationnelles ont récemment été résumées par Stainier [66].

Il a été montré dans [73] qu’en utilisant deux idées clées, le problème

aux valeurs limites et initiales thermomécanique peut être resymétrisé. Tout

d’abord, une formulation thermique à deux champs permettant de séparer

la température interne Θ et la température extérieure inconnue T dans

l’équation d’énergie est introduite. L’égalité entre ces deux températures

est imposée comme une liaison interne et relâchée dans l’équation de Gibbs.

Deuxièmement, afin de trouver une forme variationnelle du problème général

en taux, un facteur d’intégration permettant de restaurer la symétrie requise

du système d’équations est identifié. Dans le travail de Yang et al. [73],

les auteurs ont considéré un facteur d’intégration obtenu en effectuant un

rééchelonnement temporel des processus en taux irréversibles.

En utilisant la fonctionnelle proposée, le problème thermo-mécanique ap-

parâıt comme un problème de type point selle. La fonctionnelle est convexe par

rapport au champ de vitesse et concave par rapport au champ de température.
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Puisque cette fonctionnelle est une quantité scalaire, et donc additive, elle est

égale à la somme de toutes ses valeurs locales dans les éléments. Dans ce

travail, cette caractéristique est exploitée pour l’adaptation de maillage. La

valeur de la fonctionnelle est utilisée comme indicateur d’erreur.
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Chapter 3

Variational formulation in
coupled thermo mechanics

3.1 Introduction

The proposed mesh adaption algorithm is based on a variational principle.

In case of simple problems involving single physical phenomenon, principle

of minimum potential energy makes this variational functional evident. For

example, steady state thermal problem can be described by the following

potential:

φ(T ) =
1

2

∫
Ω

∇(T ) ·K ·∇(T )dΩ−
∫

Ω

rTdΩ (3.1)

where T is the temperature field, K is the conductivity tensor and r is the

external heat source density. Taking the first variation of the above equation

and equating to zero, one can easily recover weak form of a steady state

thermal equation: ∫
Ω

K ·∇(T ) ·∇(δT )dΩ =

∫
Ω

r · δTdΩ (3.2)

However, in complex problems involving internal variables and coupled thermo-

mechanical processes, the variational functional is not evident and requires a

specific construction.

Yang et al.[73] proposed a variational functional that uses a two-fields

thermal construction. It allows to represent the thermo-mechanical problem

as a saddle point optimization problem. In many cases, the functional
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is convex in displacement and concave in temperature. These variational

formulations were recently summarized by Stainier [66]. This chapter revisits

these variational principles for thermo-elasticity, thermo-visco-elasticity and

thermo-plasticity.

The structure of the chapter is as follows: the next section introduces

continuum framework in which after introducing some concepts like free

energy, a local problem at Gauss points is developed. It is followed by a

variational boundary value problem in the continuum framework. In the third

section, time discrete framework is presented, in which time is considered

to have discrete increments. In this context, one needs to approximate the

time integral of the function over the time step. The variational functional is

incremental in this case and this allows to treat inertia terms in dynamics

which is also introduced. The fourth section gives some examples of consti-

tutive models in purely thermal transient problems, linear thermo-elasticity,

plasticity and thermo-elasto-visco-plasticity. The last section details the

algorithm for solving a strongly coupled thermo-mechanical problem using

the presented variational principle.

3.2 Continuum modelling framework

3.2.1 Free energy and dissipation potential

The Helmholtz free energy density potential is defined from internal energy:

W = U − Tρ0η (3.3)

where η is the specific entropy and ρ0η is the nominal entropy density. The

free energy can be represented in terms of state variables, deformation gradient

tensor F, temperature T and internal variables Z.

W = W (F, T,Z) (3.4)

On similar lines, a convex dissipation pseudo-potential ψ for generalized

standard materials [28] is defined as:

ψ = ψ(Ḟ, Ż; F, T,Z) (3.5)
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Forces conjugate to state variables are additively decomposed in equilibrium

part derived from free energy (3.4), and dissipative part derived from dis-

sipation pseudo-potential (3.5). The first Piola-Kirchchoff stress tensor is

conjugate to deformation gradient tensor:

P = Pe + Pd (3.6)

where Pe and Pd are the equilibrium and dissipative part of P respectively

given by:

Pe =
∂W

∂F
(F, T,Z) (3.7)

Pd =
∂ψ

∂Ḟ
(Ḟ, Ż; F, T,Z) (3.8)

similarly,

Y = Ye + Yd (3.9)

where Y is the force conjugate to internal variables Z. Since they are

associated to internal processes, these forces should not produce any work.

i.e.:

Y · Ż =
(
Ye + Yd

)
Ż = 0,∀Z (3.10)

Therefore, evolution laws for internal variables Z are obtained:

∂W

∂Z
(F, T,Z) +

∂ψ

∂Ż
(Ḟ, Ż; F, T,Z) = 0 (3.11)

In this work, it is assumed that the local thermal equilibrium is always verified

such that entropy η is given by:

ρ0η = −∂W
∂T

(F, T,Z) (3.12)

However for the purpose of writing a variational formulation, it is convenient

to define an equilibrium temperature Θ, that is the temperature that satisfies

local thermal equilibrium in terms of internal energy density:

Θ =
1

ρ0

∂U

∂η
(F, η,Z) (3.13)

which is a priori independent of the external temperature T .
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3.2.2 Local evolution problem

The variational formulation of thermo-mechanical boundary value problems

consist of a functional admitting a saddle point involving internal variables

Z and external fields, i.e. displacement u and temperature T . Since, the

optimality of the functional with respect to internal variables involves local

quantities defined at the scale of material point, while its optimality with

respect to external fields involve quantities defined on the whole domain Ω,

both can be described separately. In this subsection, evolution of internal

variables is considered, in the next subsection, evolution of external fields will

be considered.

Let’s consider a material point, the set of constitutive equations for a

nonlinear dissipative model can admit a variational principle by defining the

following functional:

D(Ḟ, η̇, Ż, T ; F, η,Z) =
d

dt
[U(F, η,Z)]− ρ0η̇T + ψ

(
Ḟ, Ż; F,Θ(F, η,Z),Z

)
(3.14)

In the above equation, Θ is the equilibrium or internal temperature defined

by equation (3.13). Using equation (3.3), one can rewrite the above equation

in terms of free energy W as follows:

D(Ḟ, η̇, Ż, T ; F, η,Z) =
d

dt
[W (F, T,Z)] + ρ0ηṪ + ψ

(
Ḟ, Ż; F,Θ(F, η,Z),Z

)
(3.15)

Notice that the functional D can be interpreted as the sum of the reversible

power per unit volume received by the system ẇτ :

ẇτ =
d

dt
[U(F, η,Z)]− ρ0η̇T =

d

dt
[W (F, T,Z)] + ρ0ηṪ (3.16)

and the dissipation potential representing the power per unit volume that can

be dissipated. Therefore, the functional D is the sum of the two homogeneous

terms representing power per unit volume, one is associated to reversible

processes, other is associated to irreversible processes.

The general rate problem does not have an obvious variational structure.

Weak formulation obtained by multiplying balance equations of energy and

linear momentum by admissible variation of fields does not derive from a
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potential. It was shown in [73] that by using two key ideas, the thermo-

mechanical initial boundary value problem can be made symmetric. First, a

thermal two-fields formulation that allows to separate internal temperature

Θ and unknown external temperature T in the energy equation is introduced.

Equality between these two temperatures is enforced as an internal constraint

and relaxed within the Gibbs’ equation. Second, in order to find a variational

form of the general rate problem, an integration factor that allows to recover

the requisite symmetry of the system of equations needs to be identified.

In the work of Yang et al.[73], the authors considered an integrating factor

obtained by performing a time rescaling of irreversible rate processes. So, the

pseudo dissipation potential ψ is written:

ψ = ψ(f(T,Θ)Ḟ, f(T,Θ)Ż; F, T,Z) (3.17)

so that the time is rescaled by the factor f(T,Θ). When external and internal

temperatures match, there should be no time scaling. Therefore:

f(T, T ) = 1 (3.18)

As shown in [73], a symmetric weak form is obtained by using:

f(T,Θ) =
T

Θ
(3.19)

Now, using this form of the dissipation potential in equation (3.17) and using

the above definition of f(T,Θ), D can be rewritten as:

D(Ḟ, η̇, Ż, T ; F, η,Z) =
d

dt
[U(F, η,Z)]− ρ0η̇T + ψ

(
T

Θ
Ḟ,
T

Θ
Ż; F,Θ,Z

)
(3.20)

The local thermal equilibrium imposes that Θ = T , which corresponds to the

stationarity of D with respect to η̇:

stat
η̇
D(Ḟ, η̇, Ż, T ; F, η,Z)⇔ ∂U

∂η
− ρ0T = 0⇔ T = Θ(F, T,Z) (3.21)

Stationarity of D with respect to Ż gives evolution laws, so that:

Ż = arg inf
Ż
D(Ḟ, η̇, Ż, T ; F, η,Z) (3.22)
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The effective value of D, that is the minimum value of D over Ż is represented

by Deff:

Deff(Ḟ, η̇, T ; F, η,Z) = inf
Ż
D(Ḟ, η̇, Ż, T ; F, η,Z) (3.23)

We recover the Piola-Kirchchoff stress tensor P by variation of Deff with

respect to Ḟ:
∂Deff

∂Ḟ
= Pe + Pd (3.24)

where the dissipative part of P is given by scaled dissipation potential:

Pd =
T

Θ

∂ψ

∂Ḟ
(3.25)

whereas the variation with respect to external temperature T leads to:

∂Deff

∂T
= −ρ0η̇ +

Dint

T
(3.26)

where Dint is the energy dissipation caused by dissipative forces viz. Pd and

Yd.

3.2.3 Variational formulation of the initial boundary
value problem

The initial boundary value problem consists of the transient heat transfer

problem plus a quasi-static mechanical one, and involves determining dis-

placement field u, temperature field T and internal variables Z. For this, one

needs to solve for momentum balance (2.10) without inertial terms, energy

balance (2.13) and constitutive equation summarized by the potential D

(3.20). We shall assume that the boundary ∂Ω of the domain Ω admits the

decomposition:

∂Ω = ∂Ωu ∪ ∂Ωt ; ∂Ωu ∩ ∂Ωt = ∅

∂Ω = ∂ΩT ∪ ∂Ωq ; ∂ΩT ∩ ∂Ωq = ∅

(3.27)
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on which given boundary conditions u = ū on ∂uΩ, σ ·n = t̄ on ∂tΩ, T = T̄ on

∂TΩ and q ·n = q̄ on ∂qΩ, where ū, t̄, T̄ and q̄ are the imposed displacement,

applied traction, imposed temperature and applied head flux respectively.

As shown by Yang et al. [73], the variational functional for this boundary

value problem is given by:

Φ(u̇, η̇, T ) =

∫
Ω

[
Deff(Ḟ, η̇, T )− χ

(
−gradT

T
; F,Θ(F, η,Z),Z

)]
dΩ

+

∫
Ω

[
ρr
T

Θ
− ρb · u̇

]
dΩ−

∫
∂tΩ

t̄ · u̇dS −
∫
∂qΩ

q̄
T

Θ
dS (3.28)

Heat conduction potential (Biot) χ is given as follows:

χ =
Θ

2

grad(T )

T
·K · grad(T )

T
(3.29)

where K is the thermal conductivity tensor. Stationarity of Φ with respect to

u̇ yields the balance equations of linear momentum (2.10) in its weak form:

< Du̇Φ, δu >= −
∫

Ω

δu · {∇0P + ρb} dΩ−
∫
∂tΩ

δu · (t̄−P · n) = 0 (3.30)

and with respect to T yields the energy conservation equation (2.13) in its

weak form:

< DTΦ, δT >=

∫
Ω

δT

{
−ρ0η̇ +

Dint

T

}
dΩ +

∫
Ω

Θ∇
(
δT

T

)
·K · ∇(T )

T
dΩ

+

∫
Ω

ρrδT

Θ
dΩ−

∫
∂qΩ

q̄δT

Θ
= 0

(3.31)

Note that the factor T
Θ

is obtained as unity through optimality with respect

to η̇.

3.3 Time discrete modelling framework

3.3.1 Local constitutive problem

Consider the discrete time increment ∆t = t− t0. It is assumed that the local

material state at time t0 i.e. {F0, η0,Z0} is completely known. In order to
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compute internal variables Z given F and η at time t, we need to approximate

the integral of the functional D in equation (3.20) over the time increment

∆t:

I (F, T,Z; F0, T0,Z0) ≈
∫ t

t0

D(Ḟ, η̇, Ż, T (τ); F(τ), η(τ),Z(τ))dτ (3.32)

Using the identity U̇ − ρ0η̇T = Ẇ + ρ0ηṪ , one can approximate the above

integral as:

I = W (F, T,Z)−W0+ρ0η0∆T+∆t

〈
ψ

(
T

T0

∆F

∆t
,
T

T0

∆Z

∆t
; F(τ), T (τ),Z(τ)

)〉
(3.33)

In the above equation, ∆(·) = (·) − (·)0 , W0 = W (F0, T0,Z0) and factors
T
Θ

have been replaced by T
T0

(Note that T0 denotes here temperature at the

beginning of timestep, not necessarily at t = 0). The last term on right hand

side between brackets denotes a consistent average value of the dissipation

function over the time increment ∆t. An expression for this term that satisfies

all the consistency conditions was proposed in [65]:

〈
ψ

(
T

T0

∆F

∆t
,
T

T0

∆Z

∆t
; F(τ), T (τ),Z(τ)

)〉
=

T

T0

ψ

(
T

T0

∆F

∆t
,
T

T0

∆Z

∆t
; Fα, T0,Zα

)
+

∆T

T
ψ

(
T

T0

∆F

∆t
,
T

T0

∆Z

∆t
; Fα, Tα,Zα

)
(3.34)

with algorithmic parameter α ∈ [0, 1]. A detailed study of influence of

parameter α on precision and convergence properties of variational update in

case of elasto-visco-plasticity can be found in [14].

Now, the variational update for internal variables Z, takes following

minimization form:

W(F, T ; F0, T0,Z0) = inf
Z

I (F, T,Z; F0, T0,Z0) (3.35)

That is:
∂W

∂Z
+
T

T0

∂

∂Ż

〈
ψ

(
T

T0

∆F

∆t
,
T

T0

∆Z

∆t

)〉
= 0 (3.36)
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and

lim
∆t→0

∂

∂Ż

〈
ψ

(
T

T0

∆F

∆t
,
T

T0

∆Z

∆t

)〉
=
∂ψ

∂Ż

(
Ḟ, Ż

)
(3.37)

Hence, provided external fields {F, T}, the internal variables Z can be com-

puted at each integration point at each discrete time step.

3.3.2 Incremental boundary value problem

Now consider discrete time increment for the variational boundary value

problem in order to compute external fields {u, T} at each time step. Here,

one needs to approximate the integral of the functional Φ (3.28) over time

increment ∆t:

I(u, T ) =

∫
Ω

[
W(F, T ; F0, T0,Z0)−∆t

〈
χ

(
−gradT

T
; F(τ), T (τ),Z(τ)

)〉]
dΩ

+

∫
Ω

[
∆t ρ r log

T

T0

− ρb ·∆u

]
dΩ−

∫
∂tΩ

t̄ ·∆udS −
∫
∂qΩ

∆t q̄ log
T

T0

dS

(3.38)

here, the average conduction dissipation potential 〈χ〉 can be treated in

a similar fashion as that of the dissipation potential 〈ψ〉 in the previous

subsection. Thus, external fields {u, T} can be computed as optimizers of

the above functional I(u, T ) (3.38).

{u, T} = arg stat
u,T

I(u, T ) (3.39)

Except for the cases of material instabilities like buckling, the incremental

potential W(F, T ) is normally a convex function of F and concave function

of T . Therefore, solution fields can be characterized as a saddle point of the

incremental functional:

{u, T} = arg inf
u

sup
T

I(u, T ) (3.40)

By repeating this optimization problem at each time step, taking results of

the previous time step as initial conditions {u0, T0,Z0} for the current time
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step, the evolution of thermo-mechanical systems can be computed. Note

that this problem yields a unique solution even in large strain framework

because of the convexity of the functional with respect to displacement field

and concavity with respect to the temperature field. However, this doesn’t

hold true for instabilities like buckling.

3.3.3 Dynamics

The introduction of inertia terms in the variational formulation is only possible

in the discrete time setting and in order to incorporate inertia terms in the

functional I (3.38), a specific time discretization (here Newmark) needs

to be embedded within the formulation. One can overcome this difficulty,

by extending approach proposed in [58] in isothermal context. However,

functional I in equation (3.38) accounts for transient thermal effects and rate

dependent behaviour. The modified functional I in order to take into account

inertia terms is given as [66]:

I(u, T ) =

∫
Ω

[
ρ

2β∆t2
∆u ·∆u + W(F, T )−∆t

〈
χ

(
−gradT

T
; F(τ), T (τ),Z(τ)

)〉]
dΩ

+

∫
Ω

[
∆t ρ r log

T

T0

− ρb∗ ·∆u

]
dΩ−

∫
∂tΩ

t̄ ·∆udS −
∫
∂qΩ

∆t q̄ log
T

T0

dS

(3.41)

In the above equation, b∗ = b− 1
β∆t

(u̇0 +(1
2
−β)∆tü0). Thus, the incremental

boundary value problem takes the variational form:

{u, T} = arg inf
u

sup
T

I(u, T ) (3.42)

Combined with following update rule for accelerations and velocities:

ü =
1
2
− β
β

ü0 +
1

β∆t
u̇0 +

∆u

β∆t2
(3.43)

u̇ = u̇0 + (1− γ)∆tü0 + γ∆tü (3.44)
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the stationary condition with respect to u yields a discrete conservation of

momentum equation corresponding to classical Newmark integration scheme

of dynamics.

The classical Newmark scheme is typically used with parameters β = 1
4

and γ = 1
2

in implicit dynamics so that unconditional stability in linear

elasto-dynamics is ensured.

3.4 Examples of constitutive models

3.4.1 Purely thermal transient problem

In case of purely thermal problem, the incremental potential (3.38) takes the

following form:

I(T ) =

∫
Ω

{
C

2∆t
(Tn+1 − Tn)2 +

1

2
grad(Tn+1) ·K · grad(Tn+1)− r(Tn+1 − Tn)

}
dΩ

(3.45)

It is easy to see that the discrete weak form is obtained by taking the first

variation of the functional above:

< DI, T ∗ >=

∫
Ω

{
C

∆t
(Tn+1 − Tn)T ∗ + grad(T ∗) ·K · grad(Tn+1)− rT ∗

}
dΩ = 0

(3.46)

3.4.2 Linear thermo-elasticity

For linear thermo-elasticity, the Helmholtz free energy takes the form:

W (ε, T ) =
1

2
ε : E : ε− ε : E : α(T − Tr)−

1

2
ρ0C

(T − Tr)2

Tr
(3.47)

where, E is the elasticity tensor, α is thermal dilatation tensor, C is the

specific heat capacity and Tr is the reference temperature. Denoting the

temperature increment as θ = T − Tr, the constitutive law reads:

σ =
∂(W )

∂ε
+ 0 = E : (ε−αθ) (3.48)

ρ0η = −∂W
∂T

= ρ0C
Θ

Tr
(3.49)
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The incremental variational functional (3.41) takes the following form:

I(un+1, θn+1) =

∫
Ω

[
ρ

2β

(
∆u

∆t

)2

+W (εn+1, θn+1)−W (εn, θn) + ηn∆θ

− ρ

β

(
vn +

(
1

2
− β

)
∆t an

)
∆u

∆t
−∆t χ(θn+1) + ∆t

r

Tr
∆θ − b∆u

]
dΩ

−
∫
∂tΩ

t ·∆udS −
∫
∂qΩ

q̄
∆θ

Tr
dS (3.50)

Taking first variation of the above functional with respect to displacement

field i.e. < Dun+1I,u
∗ >, one can obtain the mechanical discrete equations

(2.28). Similarly the first variation with respect to the temperature field i.e.

< Dθn+1I, θ
∗ >, gives the thermal discrete equations (2.29).

3.4.3 Thermo-elasto-visco-plasticity

In case of thermo-elasto-visco-plasticity in small strains and displacements,

the strain ε is split into elastic and plastic part ε = εe+εp. The plastic part εp

of the strain tensor is treated as an internal variable. Note that in case of finite

strains, a multiplicative split between elastic and plastic deformation tensors

is considered F = FeFp. However, for the sake of simplicity of presentation,

only the small strain case is described in this subsection. The free energy in

this case is defined as:

W (ε, εp, T ) = W e(ε− εp, T ) +W p(εp, T ) +W t(T ) (3.51)

where W e is the elastically stored energy (recoverable), W p is the plastically

stored energy (not directly recoverable) and W t the thermally stored energy

(heat capacity). Then the reversible stress σrev is given by:

σrev =
∂W

∂ε
=
∂W e

∂ε
= E : ((ε− εp)−αθ) (3.52)

Denoting the back stress by σc ≡ ∂W p

∂εp
, the mechanical dissipation D∗mech can

be given by:

D∗mech = −∂W
∂εp

: ε̇p =

(
∂W e

∂εe
− ∂W p

∂εp

)
: ε̇p = (σ − σc) : ε̇p (3.53)
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A plastic flow rule corresponding to von Mises-type plasticity reads:

ε̇p = ε̇pM (3.54)

where ε̇p is the magnitude of equivalent plastic strain rate, and M its direction.

The dissipation potential ψ(ε̇p; εp, T ) takes the general form:

ψ(ε̇p; εp, T ) =

{
κ(ε̇p; εp, T ) if ε̇p ≥ 0

+∞ otherwise
(3.55)

where κ is a convex function of its argument, and such that κ(0; εp, T ) = 0

and ∂ε̇pκ(0; εp, T ) = σY (εp, T ) ≥ 0. As an example, ψ can be considered as:

ψ = σY |ε̇p| (3.56)

3.5 Staggered algorithms

As seen in this chapter, one can transform a coupled thermo-mechanical

problem into an optimization problem using a variational formulation. It can

indeed be used to solve the problem using a staggered approach. First, a

mechanical problem is solved in which functional I(u, T ) in equation (3.41)

is minimized with respect to displacement field u. During this step, a

local optimization problem (3.35) is solved at each Gauss point and internal

variables Z are updated. One can use either isothermal setting or adiabatic

setting during this step. Once a solution for displacement field is obtained,

thermal problem can be solved. Now the functional I(u, T ) is maximized with

respect to temperature field T . Again, a local optimization problem (3.35) is

solved at each Gauss point during the computation and internal variables Z

are updated.

The above algorithm needs to use smaller time steps because the effect

of thermal problem on the mechanical field is lagged by a time step. Indeed,

one can imagine using thermal problem prior to mechanical one, in this case

effect of mechanical problem on thermal field is lagged by a time step. In

case of weak coupling, the independent physical phenomenon can be solved

first so that there is no lag. In order to be able to use larger time steps, one
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Algorithm 1 A general algorithm for staggered resolution of thermo-
mechanical problem using a variational approach.

1: for n= start time to n= end time (Time loop) do
2: Mechanical Problem
3: while Convergence is obtained, iterate k do
4: find ukn by minimizing functional I(ukn, Tn−1)
5: during the computation update Zk

n at each Gauss point by minimizing
functional I (Fk

n, Tn−1,Z
k
n)

6: end while
7: Thermal Problem
8: while Convergence is obtained, iterate k do
9: find T kn by maximizing functional I(ukn, Tn)

10: during the computation update Zk
n at each Gauss point by minimizing

functional I (Fk
n, Tn,Z

k
n)

11: end while
12: end for

can imagine an alternated version of time integration in which mechanical

and thermal steps are iterated within a time step until convergence. This is a

way to deal with lagged effect of one field on another. In our work we do not

consider this alternated scheme.

The algorithm to solve thermo-mechanical problems for general dissipative

solids using variational approach explained can be summarized as shown in

algorithm 1.

Isothermal and adiabatic staggered schemes differ in the 4th and 5th step

of the algorithm in algorithm 1. In these, an isothermal and adiabatic thermal

conditions are respectively assumed locally (i.e. at each material point).

3.6 Conclusion

This chapter presented the variational formulations for coupled thermo-

mechanical problems. It is seen that using the functional proposed, one

can represent a thermo-mechanical problem as a saddle point problem. The

functional is often convex in displacement and concave in temperature. There-

fore the optimization for mechanical part is minimization and for the thermal

part is maximization. In some problems that involve material instabilities,
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such as buckling the convexity (or concavity) of functionals is not guaranteed.

However, in this work, we are only concerned with cases when the convexity

(or concavity) of the functionals is guaranteed. An important characteristic

of the variational functional is that it is additive. That is, the global value of

the energy like potential is a sum over all its local values over all elements. In

this work, we intend to exploit this characteristic of the functional for mesh

adaptation. The value of the functional is used as an indicator of error. This

algorithm is explained in detail in the next chapter.
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Algorithme d’adaptation de
maillage

Comme expliqué précédemment, les stratégies d’adaptation de maillage

dépendent des techniques d’adaptation qui affectent les aspects géométriques

du maillage et des critères d’adaptation qui captent le phénomène physique

sous-jacent.

Deux techniques d’adaptation basées sur la bisection de bord sont utilisées

dans le présent travail. Tout d’abord, la technique de bisection à bord unique

(SEB). Dans ce cas, un seul bord à diviser est identifié et divisé en deux

pour que les triangles adjacents soient divisés en deux triangles chacun.

Il n’y a aucune contrainte sur le rapport d’aspect de l’élément dans cette

technique. Cela conduit à la génération de mailles anisotropes. Deuxièmement,

la technique du chemin de propagation de bord le plus long de Rivara (LEPP).

Dans cette technique, les bords plus longs sont divisés en deux fois par rapport

aux plus courts. Cela donne une limite supérieure sur le rapport d’aspect de

l’élément.

Le processus d’adaptation consiste à diviser la géométrie en plusieurs

patchs. Sur chaque patch, la décision de l’affiner (ou pas) est prise en

résolvant un problème thermomécanique sur sa version raffinée, puis en

utilisant des critères basés sur la croissance (ou la décroissance) de la fonc-

tionnelle énergétique calculée sur ce patch. Ce processus est poursuivi de

façon récursive jusqu’à ce qu’une tolérance soit satisfaite, et pour chaque

patch. L’ensemble des patchs (raffinés ou non) recouvrant le domaine de

calcul constitue dès lors le nouveau maillage sur lequel le problème global est

résolu à nouveau. Ce processus est itéré jusqu’à convergence. La convergence
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est définie par un critère basé encore sur un incrément de la fonctionnelle

énergétique.
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Chapter 4

Mesh adaptation Algorithm

4.1 Introduction

As explained in the first chapter, mesh adaption strategies depend on adaptive

techniques and adaption criteria. Adaptive techniques essentially deal with

geometric aspects of adaption. The objective of the thesis is to propose

a mesh adaption algorithm that avoids complex remapping procedures to

transfer internal variable data from one mesh to other. For r-adaption [56],

where the number of nodes are the same but their location and connectivity is

changed, remapping procedures can incur a lot of numerical diffusion. Hence,

the proposed approach is essentially for h-adaption [21] techniques based on

edge bisection. The basic idea can easily be extended for p-adaption [52].

The proposed algorithm exploits the additive property of the variational

functional. Variational functional is additive, that is all the local values of

the potential sum up to give the global value. Therefore, improvement in the

local value of the potential leads to the improvement in the global value of the

energy like potential. This allows to decompose the domain of computation

in a number of different patches and apply local refinement techniques to

these patches to improve the local values of energy-like potential. In this

way, domains of interest can be identified and can be refined by using local

refinement techniques.

In next section, mesh adaptation techniques are presented. All the tech-

niques are presented in 2D. The third section details the mesh adaptation
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criteria including refinement and coarsening strategies. The technique for

mesh coarsening is also presented. Management of internal variables is a very

important aspect of mesh adaptation and is dealt with in the fourth section.

4.2 Local adaptation techniques

Two adaption techniques based on edge bisection are used in the present

work. First, the single edge bisection (SEB) technique and second, Rivara’s

Longest Edge Propagation Path (LEPP) technique [62, 61].

4.2.1 Single Edge Bisection technique (SEB)

In this technique, a single edge to be bisected is identified. The patch then

consists of the ring of elements around this edge. If the edge is on the

boundary, the patch will consist of a single element, otherwise, the patch will

contain two elements. The refined version of the patch contains the bisected

edge. For P1 elements, one patch introduces only one new node as shown in

figures 4.1 and 4.2. For P2 elements, if the target edge is on the boundary,

three new nodes are added as shown in figure 4.4, otherwise four new nodes

are added as shown in figure 4.3.

The advantage of this technique is that it is a very simple technique and no

constraints are imposed on the geometrical properties of the mesh. Therefore,

only mesh adaption criteria drives the mesh adaption and coarsening. The

drawback is that there is no bound on the element aspect ratio, therefore

meshes obtained tend to be anisotropic. Hence, this technique allows to

obtain differing degrees of spatial resolution in different directions suitable

for the problem under investigation at the cost of elongated elements.
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Figure 4.1: The edge identified is BD. Therefore, the patch contains two
elements adjacent to edge BD. The refined version of patch contains the new
node E.
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Figure 4.2: The edge identified is AB, which is on the boundary. Therefore,
the patch contains a single element DAB. The refined version of the patch
contains the new node E.
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Figure 4.3: The edge identified is BD. Therefore, the patch contains two
elements adjacent to edge BD. The refined version of patch contains four
new nodes shown in green.
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Figure 4.4: The edge identified is AB which is on the boundary. Therefore,
the patch contains the single element DAB. The refined version of patch
contains three new nodes shown in green.
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Algorithm 2 Rivara’s original algorithm for Backward LEPP refinement of
a triangle t.

1: Backward-Longest-Edge-Bisection (T ,T )
2: while T remains without being bisected do
3: Find the LEPP(T)
4: if T ∗, the last triangle of the LEPP(T), is a terminal boundary triangle

then
5: Bisect T ∗

6: else
7: Bisect the (last) pair of terminal triangles of LEPP(T).
8: end if
9: end while

4.2.2 A Backward Longest Edge Propagation Path (LEPP)
Algorithm

This algorithm was proposed by Rivara in 1997 [61]. In this algorithm, a

simple edge bisection technique is performed several times. Provided that

the initial mesh is isotropic, the algorithm guarantees an upper bound on the

element aspect ratio. The triangulations obtained with the LEPP-Delaunay

algorithm have a smallest angle greater than 30◦ [61].

For any triangle T0 of any conforming triangulation T , the LEPP of

T0 will be the ordered list of all triangles T0,T1,...Tn−1,Tn, such that Ti is

the neighbour triangle of Ti−1 by the longest side of Ti−1, for i = 1, 2, ..., n

where n is the number of triangles in the LEPP [61]. For any triangle T of

any conforming triangulation of any bounded 2-D geometry Ω, the following

properties hold: (a) for any T , the LEPP(T) is always finite; (b) the triangles

T0,T1,...Tn−1,Tn have strictly increasing longest side (if n > 1); (c) For the

triangle Tn of the LEPP of any triangle T0, it holds that either (i) Tn has its

longest edge along the boundary, and this is greater than the longest edge of

Tn−1, or (ii) Tn and Tn−1 share the same common longest edge [61].

The original algorithm proposed by RIVARA is based on triangle bisection.

It is given in [61] as shown in algorithm 2.

For example, consider figure 4.5. The target triangle is T0. The longest

edge of triangle T0 is CD. Edge CD is shared by triangles T0 and T1. Longest
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Figure 4.5: Original algorithm of Rivara [61] based on target triangle. Target
triangle is t0.

edge of T1 is CB. Edge CB is shared by triangles T1 and T2. Longest edge

of T2 is CA, which is on the boundary. Therefore LEPP of triangle T0 is

{CED,BCD,ACB}. The terminal triangle is ACB. Therefore, in the first

step, its longest edge i.e. CA it is bisected. Now the updated LEPP for

triangle T0 is {CED,BCD,BvC}. The pair of terminal triangles in this case is

{BCD,BvC}. They share longest edge CB which is bisected in the second

step. The updated LEPP now contains only terminal triangles {CED,CwD}.
They share longest edge CD which is bisected in the third step. This way,

in order to refine triangle T0, we needed to introduce three new nodes v,w

and x. As shown in [61], the size of the patch always remains finite as it

always terminated either at the boundary or at the longest edge shared by

two triangles.

The proposed mesh adaption strategy in this work is based on an edge

bisection technique in which a single edge to be bisected is to be identified

as opposed to identifying a triangle to be bisected. Therefore, the LEPP

algorithm needs to be modified to focus on an edge to be bisected. The

modified LEPP algorithm proposes to use LEPP for both triangles connected

to the edge under consideration until it is bisected. The modified LEPP

algorithm is given as shown in algorithm 3.

For example, consider figure 4.6. Here, target edge is ED. Adjacent

triangles of edge ED are CED and DEF. Edge ED is the longest edge of

neither of triangles. Therefore, backward LEPP of both triangles is performed.
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Algorithm 3 Proposed backward LEPP refinement of an edge e.

1: Identify edge e to be bisected.
2: while e is not bisected do
3: Find adjacent triangles T1 and T2 of edge e
4: if e is the longest side of one of the triangles. then
5: T = Other triangle
6: Perform Backward LEPP for T as shown in figure 4.5.
7: else if e is the longest edge of both triangles T1 and T2 then
8: Perform simple edge bisection
9: else

10: Perform backward LEPP of T1 as shown in figure 4.5.
11: Perform backward LEPP of T2 as shown in figure 4.5.
12: end if
13: end while

B B B

C C C

A A A

D D D

E E E
F F F

G G G

v v
w w

x x

y y

z

Figure 4.6: The proposed algorithm based on target edge. Target edge is ED.

The backward LEPP of CED introduces 3 nodes v,w,x as seen previously in

figure 4.5. Longest edge of triangle DEF is EF which is shared with triangle

EFG. For triangle EFG also, the longest edge is EF. Therefore, EF is bisected

and node y is introduced. Now, adjacent triangles of edge ED are ExD and

EyD. ED is the longest edge of both the triangles. Therefore, simple edge

bisection of ED is performed and node z is introduced. The corresponding

patch would therefore contain polygon ABDFGEC with five new nodes.
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4.3 Adaption criteria

4.3.1 Refinement

As seen in the previous chapter, the incremental variational problem is an

optimization problem of the form:

inf
u∈V

sup
θ∈W

I(u, θ) (4.1)

where I(u, θ) is a semi-discrete functional (only time has been discretized),

so V and W are spaces of continuous and regular functions defined in the

problem domain Ω respecting Dirichlet boundary conditions. A staggered

solution scheme for the coupled problem [3] is preferred which allows to use

different meshes for mechanical and thermal parts.

In finite element analysis, the solutions lie in subspaces Vh and Wh of V

and W respectively, which are finite element interpolations on triangulations

Tu and TT of the domain Ω. In the present context of mesh adaption,

Vh and Wh are the nets of linear spaces generated by edge bisection and

parameterized by a directed index set A1. Hence, Vh1 ≤ Vh2 if triangulation

Th2 corresponding to Vh2 can be reached from Th1 corresponding to Vh1

by successive edge bisections. The initial triangulation and solution space

corresponding to the initial mesh are T0 and V0 respectively, therefore, the

corresponding element 0 ∈ A precedes all the other elements.

The variational functional being convex in displacement and concave in

temperature, provides a comparison criterion to judge the quality of meshes.

Thus, triangulation Tu1 with displacement field u1 is better than triangulation

Tu2 with displacement field u2 if and only if I(u1, θ) < I(u2, θ). Similarly,

triangulation TT1 with temperature field θ1 is better than triangulation TT2

with temperature field θ2 if and only if I(u, θ1) > I(u, θ2). This allows

to formulate the problem of variational mesh adaption as an optimization

problem:

inf
u∈Vh

sup
θ∈Wh

{
Ih(u, θ) + µugNu − µTgNT

}
(4.2)

1A directed set is a nonempty set A together with a binary relation ≤ with properties of
reflexivity(a ≤ a, ∀a ∈ A), transitivity(if a ≤ b and b ≤ c, then a ≤ c), and directedness(for
any pair a, b ∈ A, there exists a c ∈ A such that a ≤ c and b ≤ c).
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where, Nu and NT are the number of nodes in the triangulations of the

mechanical and thermal meshes respectively. Indeed, parameters µug and µTg

are needed to define a criterion to stop the mesh adaption process because

additional degrees of freedom will never worsen the variational potential.

When a node is added into a mechanical mesh, the value of the potential Ih

decreases because of the additional degree of freedom. At the same time, Nu

increases by one. The net effect of addition of one node is offset by an amount

µug due to the second term in equation (4.2). Hence, mesh refinement is

admissible only if additional node in mechanical mesh reduces the potential Ih

by a value greater than µug . So, these parameters are penalization parameters

linked to the cost of refinement of the mesh. Similarly, when a node is

added to the thermal mesh, the value of the potential Ih increases due to

the additional degree of freedom and NT increases by one. The net effect of

additional node in thermal mesh in equation (4.2), is offset by an amount µTg

due to the third term. For the thermal part, the mesh refinement is admissible

only if the additional node in the thermal mesh increases the potential Ih

by a value greater than µTg . Therefore, parameters µug and µTg are the energy

costs of adding a new node in mechanical and thermal meshes respectively

which should be strictly positive. If the improvement in the value of energy

potential is more than that of the cost of a node, refinement is admissible.

Assuming the mechanical problem is solved prior to the thermal problem

in an isothermal staggered approach, the mesh adaption problem (4.2) can be

represented separately for mechanical and thermal meshes at time step n as:

inf
u∈Vh

{
Ih(un, θn−1) + µugNu

}
≡ inf

u∈{Vh}
Iu(un, θn−1, Nu)

sup
θ∈Wh

{
Ih(un, θn)− µTgNT

}
≡ sup

θ∈{Wh}
IT (un, θn, NT )

(4.3)

here {Vh} and {Wh} denote a set of enriched spaces that contain all the

possible combinations of edge splitting in the base mesh of mechanical and

thermal part respectively. However, it is sometimes convenient to solve the
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thermal problem prior to the mechanical problem, especially in the case of

weak coupling with one-way effect of thermal part on the mechanical part. In

such scenario, the mesh adaption problem can be stated as follows:

sup
θ∈Wh

{
Ih(un−1, θn)− µTgNT

}
≡ sup

θ∈{Wh}
IT (un−1, θn, NT )

inf
u∈Vh

{
Ih(un, θn) + µugNu

}
≡ inf

u∈{Vh}
Iu(un, θn, Nu)

(4.4)

Here, fields with subscript n−1 are calculated at previous time step, hence

considered given in the above equations. In problem (4.3), the first equation

adapts the mechanical mesh and the displacement solution un at time n is

obtained. The second equation considers un as given and adapts thermal mesh

and the thermal solution θn at time n is obtained. Problems (4.3) and (4.4)

are of combinatorial complexity, that is, for each value of number of nodes,

several meshes with different values of incremental variational functional

are possible, also infinite choices for number of nodes are possible. This

combinatorial complexity makes these problems very hard to solve in general.

Hence, a greedy approach is used for iterative procedure taking advantage of

the additive property of the variational potential, Ih(u, θ) =
∑nElem

i Ii(ui, θi).

The geometry is divided into number of patches and refinable elements are

collected from each patch. This is done by locally refining each patch and

checking the following condition for the mechanical part:

Ii(u1, θ)− inf
u2∈Vh

Ii(u2, θ) > µur∆Nu (4.5)

where Ii represents the local variational potential for the ith patch, u1 is

the local displacement field calculated on the original patch, u2 is the local

displacement field calculated for the refined patch, θ is the local thermal field

interpolated from a different thermal mesh, µur is the cost of adding a new

node in the local patch of the mechanical mesh and ∆Nu are the number of

new nodes introduced in the refined patch. Similarly, the following condition
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is verified for the thermal part:

sup
θ2∈Wh

Ii(u, θ2)− Ii(u, θ1) > µTr ∆NT (4.6)

where θ1 is the local temperature field calculated on the original patch, θ2

is the local temperature field calculated on the refined patch, u is the local

displacement field interpolated from a different mechanical mesh, µTr is the

cost of adding a new node in the local patch of thermal mesh and ∆NT are

the number of new nodes introduced in the refined patch. If the improvement

due to the additional node in the value of the local energy like potential is

more than the energy cost of adding a node in that local patch, the refined

version of patch is retained, otherwise, the original patch is retained. Checking

conditions (4.5) and (4.6) involves solving a local problem on the refined patch

with fixed Dirichlet boundary conditions on the boundary of the patch (which

are available from the previous global solution).

4.3.2 Coarsening

For transient problems, domains of interest evolve over time and according

to the loading. Therefore, mesh coarsening is also important to adapt the

sole domain of interest. The process of mesh coarsening is similar to that of

mesh refinement. Just by identifying a previously refined edge for potential

coarsening allows to go back to the original mesh irrespective of the method

of refinement used. For example, consider the refinement obtained by LEPP

strategy in figure 4.7. One can easily go back to the original mesh by two

step coarsening procedure as shown in figure 4.7. Therefore, for coarsening

the following condition is checked for mechanical problem on each patch:

inf
u2∈Vh

Ii(u2, θ)− Ii(u1, θ) < µud (4.7)

where, u2 is the local displacement field on the coarsened patch, u1 is the

original displacement field and µud is the cost of a node in the local patch of

mechanical mesh. Note that only one node is removed from patch, therefore

the resulting increase in potential should be less than energy cost of a single
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node. Similarly for a thermal problem, the following condition is checked on

each patch:

Ii(u, θ1)− sup
θ2∈Wh

Ii(u, θ2) < µTd (4.8)

here θ1 is the local temperature field on original patch, θ2 is the local temper-

ature field on coarsened patch and µTd is the cost of a node in the local patch

of thermal mesh. Here, decrease in energy caused by coarsening should be

less than energy cost of a single node. In other words, if saving in the energy

cost of a node is more than the effect on solution field due to a node removal,

the patch can be coarsened. Whereas if the deterioration in the solution due

to node removal is significant with respect to the energy cost of a node, the

patch is not coarsened in order to obtain precise solution.

A B
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E

Figure 4.7: The LEPP algorithm gives the single step refinement of several
edges. They are coarsened one by one. Here edge AGC is coarsened to AC
first, then edge AFB is coarsened to AB.

In case of single field adaptation, first, the global problem is solved and the

value of initial functional IG1 is obtained. Then the geometry is divided into

number of different patches and each patch is checked for potential coarsening.

If the domains of interest remain in vicinity between two time steps and

refinement is considered prior to coarsening, the refinement builds children

elements with refined elements at the previous time step as parents. This does

not allow effective coarsening. Therefore, in order to have effective refinement

and coarsening, it is necessary to carry out the coarsening process prior to

that of refinement. After coarsening, the geometry is again divided into

patches for potential refinement. For each patch, the condition for refinement

is checked and necessary changes in the global mesh are made. Therefore,
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at the end, one obtains a new adapted mesh. Again, a global solution is

computed on this mesh and new value of functional IG2 is obtained. This

procedure is repeated until convergence.

For practical considerations, it is more convenient to consider relative

improvements of functionals with respect to their previous values as opposed

to absolute improvements. This allows to define an elegant convergence

criterion. Therefore, an algorithm is considered to be converged when relative

improvement in the value of energy like potential is insignificant. Any further

refinement of the mesh will add significant computational cost without consid-

erable improvement in the accuracy. One can define convergence parameter

Tol0 to represent the threshold relative improvement in the global value of

energy like potential. Similar arguments can be applied at the local level and

a parameter Tolr representing the threshold relative improvement in the local

value of energy like potential upon refinement can be introduced. In case of

coarsening, again relative deterioration of the solution upon coarsening is con-

sidered and parameter Told is introduced to represent the threshold relative

deterioration in the value of energy like potential. In the work that follows,

relative improvement parameters Tol0, Tolr and Told are used as opposed to

their absolute improvement counterparts µg, µr and µd respectively. Note

that allowing different values for parameters Tolur , TolTr , Tolud , TolTd , Tolu0

and TolT0 , a better control over the adaption procedure can be obtained.

The algorithm for a single field adaptation inf Iu(un, θn−1, Nu) or sup IT (un, θn, NT )

in equations (4.3) and (4.4) is described in algorithm 4.

Note that in the case of transient problems, at the beginning of each

time step, the mesh is coarsened to save computation cost as shown in the

algorithm above. The procedure for mesh adaption for coupled problems is

shown in algorithm 5.

4.4 Equivalence with error norms

The variational functional I in equation (3.38) is equivalent to H1 norm. We

demonstrate this here for transient purely thermal problem for simplicity.
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Algorithm 4 Single field mesh adaptation.

1: if Maximization (thermal problem in case of coupled adaption) problem
then

2: λ = 1
3: else
4: λ = −1
5: end if
6: We begin with an arbitrary coarse mesh and solve our problem on that

mesh. Get energy like potential IG1 .
7: i = 0
8: while

λ(IG2
−IG1

)

IG1
≤ Tol0 do

9: IG1 = IG2

10: if i = 0 then
11: Division of our full geometry Ω into different patches Ωi for coarsening

purpose.
12: for Ωi = First Patch to Ωi = Last Patch do
13: Locally coarsen the mesh on the patch.
14: Calculate the values of fields on deleted nodes by interpolation.
15: Calculate local values of energy like potentials with interpolated

values IL2 and calculated values IL1 .

16: if
λ(IL1

−IL2
)

IL1
< Told then

17: Coarsen the patch in the global mesh.
18: end if
19: end for
20: end if
21: Division of our full geometry Ω into different patches Ωi for refinement

purpose.
22: for Ωi = First Patch to Ωi = Last Patch do
23: Refine the current patch locally and solve a local problem on this

small patch with the temperature field on the boundary of the patch
imposed (given by the complete solution we calculated in earlier
iteration).

24: Calculate the local energy like potential IL2 .

25: if
λ(IL2

−IL1
)

IL1
> Tolr then

26: Refine the patch in global mesh.
27: end if
28: end for
29: Solve the problem again on the new mesh thus obtained and calculate

φG2 .
30: i = i+ 1
31: end while
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Algorithm 5 Mesh adaptation for coupled problems.

1: for t = initial time to t = final time do
2: Adapt the mechanical mesh by solving inf Iu(un, θn−1, Nu) by using the

algorithm described in box 4. Adiabatic or isothermal conditions can
be considered in this step.

3: Adapt the thermal mesh by solving sup IT (un, θn, NT ) by using the
algorithm described in box 4.

4: end for

One can rewrite equation (3.45) by ommitting the source term and diving by

a reference temperature Tref for transient purely thermal problem as:

I(Tn+1) =

∫ L

0

{
− C

Tref

T 2
n+1

2
+
CTn+1Tn
Tref

− CT 2
n

2Tref
−∆t

K

2Tref
∇T ·∇T

}
dx

(4.9)

One can substitute θ = T
Tref

, x = x∆tk
c

and J = − I(θ)
cTref

to obtain:

J = − I(θ)

cTref
=

∫ L

0

{
1

2
(θ − θn)2 +

1

2
∇θ ·∇θ

}
dx (4.10)

One can write the bilinear form as:

a(u, v) =

∫
Ω

{uv + ∇u ·∇v} dΩ (4.11)

It is easy to see that a(u, u) is the H1 norm of u. Now, θn is the temperature

field at previous time step which is an input for the current time step. so,

the linear form can be written as:

l(u) =

∫
Ω

uθndΩ (4.12)

Using these forms, J(θ) can be rewritten as:

J(θ) =
1

2
a(θ, θ)− l(θ) + c1 (4.13)

where the constant c1 can be given as:

c1 =

∫ L

0

1

2
θ2
ndx (4.14)
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One can obtain weak form by minimizing functional J(θ). The exact

problem can be written in the weak form assuming homogeneous dirichlet

boundary conditions as follows: Find θ ∈ V such that for all δθ ∈ V:

a(θ, δθ)− l(δθ) = 0 (4.15)

where, V is the space of continuous real valued functions in the problem

domain Ω.2

Let θh be the finite element solution and θ be the exact solution. The

error in potential J due to finite element discretization is:

J(θ)− J(θh) =
1

2
(a(θ, θ)− a(θh, θh)) + (l(θh)− l(θ)) (4.16)

Rearranging the terms, one can obtain:

l(θh) =
1

2
a(θh, θh)−

1

2
a(θ, θ) + l(θ) + J(θ)− J(θh) (4.17)

Now, H1 norm of error is the bilinear form from equation (4.11):

||θ − θh||H1 = a(θ − θn, θ − θn) (4.18)

One can expand a(θ − θn, θ − θn) to obtain:

||θ − θh||H1 = a(θ, θ) + a(θh, θh)− 2a(θ, θh) (4.19)

Now, θh ∈ V, so one can use equation (4.15) to obtain:

1

2
||θ − θh||H1 =

1

2
a(θ, θ) +

1

2
a(θh, θh)− l(θh) (4.20)

Substituting l(θh) from equation (4.17):

1

2
||θ − θh||H1 = a(θ, θ)− l(θ) + J(θh)− J(θ) (4.21)

Again, θ ∈ V, therefore again equation (4.15) can be used to obtain:

1

2
||θ − θh||H1 = J(θh)− J(θ) (4.22)

2Assumption of homogeneous boundary conditions makes variation space and trial
solution space same. Indeed, this assumption can be relaxed and one can still obtain the
demonstrated results by mathematical manipulations.
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Therefore, the difference in variational potential is directly related to the H1

norm of the interpolation error.

The algorithm explained in the preceding section exploits the additive

property of the energy like potential I which is equivalent to J . The global

value of I is sum of its local values over all elements. Therefore, improvement

in local value of I at a patch corresponds to improvement in global value

of I and thus results in reduction of error. Therefore, on each patch, one

would like to converge to the best possible discretization that minimizes I at

a computational cost determined by Tolr. Doing this on all patches reduces

the error norm on global level and the level of improvement at global level is

determined by Tol0 parameter. Indeed, parameters Tol0,Tolr and Told are

not independant. But in order to study the sole effect of one parameter, other

paramters are set to a constant value and the paramer under study is varied

in the parametric analysis of the algorithm.

4.5 Management of fields and internal vari-

ables

4.5.1 Management of internal variables during adap-
tion procedure

Mesh adaption problems often involve complex remapping procedures for

transferring the internal variable set from an initial mesh to an adapted mesh.

Remapping of internal variables causes significant numerical diffusion. In the

present work, the internal variables are assumed to be piece-wise constant

over the domains of an element (piece of Voronöı cells defined by integration

points). The piece of the Voronöı cell around a Gauss point, intersected with

the current element, represents the domain of influence of that Gauss point.

Therefore, at any given point in an element, the values of internal variables

are assumed to be equal to that of the closest integration point within that

element as shown in figure 4.8.

Upon edge bisection, when a new integration point is created, the process

of remapping involves simple inheritance of internal variables at the new
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integration point from the closest integration point in the parent element. In

this way, children elements remain consistent with the history of deformation

of their parent elements and satisfy the internal constraints. Upon coarsening,

again the old integration point inherits internal variables from the closest

integration point within the refined elements. Again, parent elements remain

consistent with the average history of deformation of their children elements

and satisfy the internal constraints. This process is demonstrated in figure

4.8. This variational transfer operator is dealt with in detail by Ortiz and

Quigley [50].

A B

C

B

C

A B

C

A

Figure 4.8: The diagram on the left shows a triangular parent element with
three integration points shown in different colours. The pieces of Voronöı cells
intersected with triangle corresponding to each Gauss point are shown in the
figure in the middle with respective colours. These Voronöı cells represent
the domain of influence of each Gauss point. The diagram on the right shows
the bisected triangle. Two new triangles are formed as a result of bisection.
The children Gauss points inherit data from parent Gauss points shown in
same colors in the figure above.

4.5.2 Interpolation of fields from one mesh to other

The problem of interest consists in using two different meshes for mechanical

and thermal problem. In order to deal with the coupling effects, information

transfer from one mesh to another is necessary. In case of nodal fields, this

transfer consists of simple interpolation of fields to the Gauss points of the

other mesh. Therefore, given an integration point, a search is made to find

the element in the other mesh in which the integration point lies. Using

the nodal values, a finite element interpolation is performed. In case of

variables defined at integration points, the process consists of finding the
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Figure 4.9: Figure on the left shows an element ABC and one of its Gauss
points on which fields from the other mesh are to be interpolated. The figure
in the middle shows the other mesh and the element ABC in dotted blue.
The element in which Gauss point of element ABC lies is identified as element
DEF as shown in the figure on the right. Therefore, the external fields can be
interpolated from nodal values at nodes D, E and F . Variables at integration
points are inherited from the closest integration point in element DEF which
is shown in red.

closest integration point in the other mesh and the values are inherited. Using

spatial coordinates, a linear search can allow to obtain the element in other

mesh in which the current integration point lies. This process is represented

in figure 4.9.

4.6 Conclusion

This chapter presented the algorithm for mesh adaption for strongly coupled

problems in thermo-mechanics. Two refinement techniques based on edge

bisection are presented viz. SEB and LEPP. Using only edge bisection

technique allows the effective management of internal variables avoiding

significant numerical diffusion as explained in the previous section. The mesh

adaptation criteria is based on the variational functional which was introduced

in Chapter 2. The problem of mesh optimization was also represented as

an optimization problem using the variational functional. Algorithms for

refinement and coarsening of the mesh were presented.

It is necessary to critically analyze the algorithm and confirm the adapt-

ability of the algorithm to complex problems, moreover, cost effectiveness

of the algorithm over using uniform mesh needs to be established. This is
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the topic of the following chapters that present analysis of the presented

algorithm with help of different test cases.
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Cas test unidimensionnels

L’algorithme d’adaptation de maillage proposé dans le chapitre précédent

est appliqué aux problèmes 1D de ce chapitre. La simplicité des problèmes

1D les rend adaptés à l’analyse de l’algorithme. Pour des éléments P1, le

raffinement consiste simplement à introduire un noeud au milieu d’un élément,

pour en définir deux. Pour un déraffinement, un noeud peut être supprimé

pour fusionner deux éléments.

Tout d’abord, un problème purement thermique stationnaire admettant

une solution analytique est considéré. Dans ce problème, un gradient de

température important permet d’observer une adaptation très visible du mail-

lage. L’existence d’une solution analytique permet une analyse d’erreur exacte

et une meilleure efficience de l’algorithme proposé para rapport à un raffine-

ment uniforme du maillage est montrée numériquement. Une analyse de

sensibilité aux paramètres algorithmiques est réalisée. Le paramètre Tolr

contrôle la précision de la solution. Le paramètre Tolr ajuste un compromis

entre la précision et le cot de calcul. Le paramètre Told dépend du paramètre

Tolr et doit être choisi égal ou inférieur au paramètre Tolr. D’autre part, le

paramètre Tol0 contrôle la convergence globale de l’algorithme.

Deuxièmement, un problème de thermo-élasticité fortement couplé est

analysé. Ce problème a été analysé dans [3] qui a permis d’obtenir une

solution de référence. Encore une fois, l’efficience de l’algorithme est analysée.

Troisièmement, un cas test basé sur le viscomètre de Couette avec un matériau

thermo-élastoplastique avec couplage faible est présenté.
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Chapter 5

Unidimensional test cases

5.1 Introduction

The algorithm for mesh adaptation proposed in the previous chapter is

applied to 1D problems in this chapter. Simplicity of 1D problems makes

them suitable for algorithm analysis. In this case, the refinement simply

consists of introducing a node in the middle of an element. For coarsening,

a node can be deleted to merge two adjacent edges. In 1D problems, one is

not constrained by the initial mesh provided and mesh can be coarsened even

beyond the initial mesh.

In the second section, a steady state thermal test case is studied. Exis-

tence of an analytical solution allows a detailed parametric analysis. Insights

obtained from parametric analysis allow to check the algorithm for poten-

tial improvement and extension. One such strategy is also checked and a

parametric analysis of this version is also performed. In the third section, a

strongly coupled problem in thermo-elasticity is examined. Cost effectiveness

analysis for both fields is presented. In the fourth section, an intermediate

test case with weak coupling studied. This is an axisymmetric test case with

an analytical solution. 2D problems will be treated in the next chapter.
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5.2 Steady state

5.2.1 Analytical solution

Consider a 1D steady state purely thermal problem with an external heat

source given by:

r = xq (5.1)

where x is the spatial coordinate, q is a constant and r is the external heat

source. Recalling the unidimensional steady state heat equation:

k
d2T

dx2
+ r = 0 ∀x ∈]0, L[ (5.2)

where k is the conductivity. Consider zero temperature imposed at both ends:

T (x = 0) = 0

T (x = L) = 0

(5.3)

One can analytically integrate equation (5.2) and use value of r from equation

(5.1):

k
dT

dx
+
xq+1

q + 1
= c1 ∀x ∈]0, L[ (5.4)

where c1 is an integration constant. Integrating the above equation again

with respect to x, one can obtain the form for temperature field T :

kT +
xq+2

(q + 1)(q + 2)
= c1x+ c2 ∀x ∈]0, L[ (5.5)

One can obtain values of the two integration constants c1 and c2 by using the

two prescribed boundary conditions (5.3). Therefore, the analytical solution

of the problem for bar of length L reads:

T =
1

k

[
Lq+1x

(q + 1)(q + 2)
− xq+2

(q + 1)(q + 2)

]
(5.6)
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The energy potential is given by

Φ(T ) =
k

2
L2q+3

[
1

(q + 1)2(2q + 3)
− 1

(q + 1)2(q + 2)2

]
− L2q+3

[
1

(q + 1)(q + 2)2
− 1

(q + 1)(q + 2)(2q + 3)

] (5.7)

This analytical solution is plotted in figure 5.1 with q = 51. Indeed, a high

value of q leads to a sharp temperature gradient which is interesting for testing

our mesh adaption algorithm.

5.2.2 Numerical solution

The algorithm is started with a coarse initial mesh of 4 elements, shown in

figure 5.2. Figure 5.3 shows the solution on an intermediate mesh; one can

observe mesh refinement being initialized in the region of sharp gradient. The

solution on the final mesh can be represented as shown in figure 5.4. From

figure 5.4, one can observe that on the right hand side, where a sharp temper-

ature gradient occurs, a greater number of elements have been introduced to

precisely capture the solution. However, in the remaining part of the domain,

the algorithm puts fewer elements which is sufficient to represent the solution.

In particular, nodes present in the initial mesh on the left side of the domain

have been removed.
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Figure 5.1: Analytical solution.
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Figure 5.2: Numerical solution on
the initial mesh.
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Figure 5.3: Numerical solution on
an intermediate mesh.
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Figure 5.4: Numerical solution on
the final mesh.

5.2.3 Cost analysis

In order to assess the usefulness of this algorithm, the error of the computed

solution with respect to the analytical one can be plotted as a function of the

number of nodes of the mesh. Three cases are considered. In the first case,

plot is made for the uniform refinement of the mesh. This will be used as a

reference. In the second case, we plot the error at each refinement iteration in

the adaptive mesh algorithm with respect to the number of nodes of the mesh.

However, since the mesh adaption is done in several iterations, a consistent

comparison between a uniform refinement and the variational one should

account for the path of refinement followed during mesh adaption. One way

to accomplish this is to account for a cumulated number of nodes associated

to all the calculations performed during the mesh adaption process. Therefore,

in the third case, the error at each refinement iteration in the variational

adaptive mesh algorithm is plotted with respect to the cumulative number

of nodes. Indeed, this analysis gives a very pessimistic idea of the cost with

respect to uniform mesh because essentially, it is assumed that algorithm

complexity of the computation is O(n) which is never possible. The best one

can do is an algorithm with cost O(n log n), but this case is also very rare. If

the matrix is full, algorithm complexity is cubical i.e.O(n3) and in this case,

there is significant amount of cost saving when solving two problems with n

degrees of freedom than solving a single problem of 2n degrees of freedom.

Figure 5.5 shows this plot for L2 norm of error in temperature field and

figure 5.6 shows the plot for energy norm of error in the energy like potential

82



100 101 102 103 104

Number of nodes
10-4

10-3

10-2

10-1

100

101

102

103

L
2
 e

rr
or

Adaptative algoritm, nodes cumulated
Adaptative algorithm, nodes non-cumulated
Uniform refinement

Figure 5.5: L2 norm error in temper-
ature field with respect to number of
nodes.

100 101 102 103 104

Number of nodes
10-4

10-3

10-2

10-1

100

101

102

103

En
er

gy
 e

rr
or

Adaptative algoritm, nodes cumulated
Adaptative algorithm, nodes non-cumulated
Uniform refinement

Figure 5.6: Energy norm error in en-
ergy like potential with respect to
number of nodes.

Φ which is given in equation (5.8).

||error||Φ =
Φ(Th)− Φ(Texact)

Φ(Texact)
(5.8)

From figures 5.5 and 5.6, the curve of adaptive meshing algorithm is below

the curve of uniform mesh refinement. Considering cumulated number of

nodes, the curve of adaptive meshing crosses from above the uniform mesh

one, showing there is a number of nodes beyond which the adaptive remeshing

technique is more performant and more cost effective than a uniform mesh

technique.

5.2.4 Parametric analysis

Three tolerance parameters have been introduced in the algorithm which

influence its performance.

Effect of Tol0: Figures 5.7 and 5.8 show the influence of the tolerance

parameter Tol0, while fixing Tolr and Told to a particular value.
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Figure 5.9: Effect of Tolr when Tol0
is 10−2 and Told is 10−4.
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Figure 5.10: Effect of Tolr when Tol0
and Told are fixed to 10−2.
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Figure 5.7: Effect of Tol0 when
Tolr and Told are fixed to 10−4.

100 101 102 103 104

Number of nodes
10-3

10-2

10-1

100

101

102

103

Er
ro

r

Tol0 =1.00E-04
Tol0 =5.00E-04
Tol0 =1.00E-03
Tol0 =5.00E-03
Tol0 =1.00E-02
Tol0 =5.00E-02
Tol0 =1.00E-01
Tol0 =5.00E-01
Uniform Refinement 

Figure 5.8: Effect of Tol0 when
Tolr and Told are fixed to 0.5.

The parameter Tol0 allows to decide when to stop the algorithm. It

doesn’t have any effect on the path followed. Therefore, one can observe

that as it decreases, the number of iterations followed increases. Therefore,

the parameter Tol0 should be selected such that the algorithm stops when

a solution of a required precision (with respect to the current Tolr) has

been obtained. For example as shown in figure 5.8, since the Tolr and Told

parameters are set at 0.5, a value of Tol0 ranging between 10−3 and 10−2 is

enough.

Effect of Tolr: Figures 5.9 and 5.10 show the influence of the tolerance

parameter Tolr, while fixing Tol0 and Told to a particular value. The pa-

rameter Tolr drives the precision of the converged solution. As shown in
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figure 5.9, when the Tolr ranges between 5 × 10−3 and 10−2 the error in

converged solution is of the order of 10−3. In the graphs, one can observe

that the algorithm carries out few more iterations even after convergence;

this is because in order to study the sole effect of Tolr, we have set the value

of Tol0 to a constant value. Whereas, in normal circumstances we change it

according to the value of Tolr so that the algorithm stops immediately after

reaching convergence.

Effect of Told: The results are shown in the figures 5.11 and 5.12. Conver-

gence and stability of the algorithm depends on parameter Told. Told should

be less than or equal to Tolr otherwise, the algorithm will keep on refining

and derefining the same patch entering in unending loop. For example, in

figure 5.12, Tolr is fixed to 102. All the curves which correspond to values of

Told less than or equal to 102 are converged to the solution, whereas all the

other curves diverge. This effect can also be observed in one of the curves of

figure 5.10.

5.2.5 Improved algorithm

In problems involving sharp gradients of the main field, many iterations of

this iterative adaption process may be performed before convergence occurs,

particularly if the initial mesh is coarse. Hence, it could be interesting to

accelerate the refinement procedure by dividing an element in more than two

elements. An application of this idea is shown in figures 5.13 and 5.14. The

refinement procedure is shown in algorithm 6.

Algorithm 6 Improved in the proposed algorithm.

1: if
IL2
−IL1

IL1
> Tolu then

2: Subdivide 1 element in 4 elements, where Tolu > Tolr.

3: else if Tolu >
IL2
−IL1

IL1
> Tolr then

4: Subdivide 1 element in 2 elements.
5: else if

IL2
−IL1

IL1
< Told then

6: Consider derefinement.
7: end if
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Figure 5.11: Effect of Told when Tol0
is 10−2 and Tolr is 10−3.
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Figure 5.12: Effect of Told when Tol0
is 10−2 and Tolr is 10−2.
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Figure 5.13: Comparison of L2 error in
Temperature analysis between original
and improved algorithm.
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Figure 5.14: Comparison of energy er-
ror analysis between original and im-
proved algorithm.

Parametric Analysis: Figures 5.15 and 5.16 show the results of a

parametric analysis carried out for the parameter Tolu while keeping Tolr

constant at 10−4. All algorithms give equivalent results after convergence and

at the beginning. However, there is a big difference in the path followed to

reach the converged state.
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Figure 5.15: Parametric analysis of
Tolu represented in terms of L2 error
in Temperature.
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Figure 5.16: Parametric analysis of
Tolu represented in terms of energy
error.

5.3 Thermo-elasticity

Consider a bar with homogeneous Dirichlet thermal and mechanical boundary

conditions at its two ends:

T (0, t) = T (L, t) = 0; u(0, t) = u(L, t) = 0 ∀t (5.9)

along with sinusoidal initial velocity:

u(x, 0) = 0; v(x, 0) = sin
(πx
L

)
; T (x, 0) = 0 ∀x ∈]0, L[ (5.10)

This test case has been introduced in [3]. With these conditions, the bar is

expected to vibrate, though damped through thermal dissipation.

5.3.1 Numerical solution fields

An adiabatic staggered scheme is used for the solution and the algorithm of

mesh adaption as explained in Chapter 3. The time step is set at 1 second

in this test case. The problem is solved on a very fine mesh (4097 nodes) to

obtain a reference solution, which has also been compared with the results

obtained in [3] to ensure correctness.
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Figure 5.17: Displacement field at
time = 1 second.
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Figure 5.18: Temperature field at
time = 1 second.
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Figure 5.19: Displacement field at
time = 50 seconds.
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Figure 5.20: Temperature field at
time = 50 seconds.

Figures 5.17, 5.18, 5.19, 5.20, 5.21 and 5.22 show the displacement and

temperature fields at times 1, 50 and 301 seconds respectively. In some parts

of the bar, the algorithm has put more nodes even where the solution field

does not vary much. First, our criterion for mesh refinement is not directly

related to smoothness of the solution profile but to the value of the energy

like potential (which also takes into account the variation of the solution field

with respect to time). Second, the mesh is not adapted at each time step

in order to achieve better cost effectiveness. Therefore, some more nodes

observed in the figures are needed to capture the solution at different time
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Figure 5.21: Displacement field at
time = 301 seconds.
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Figure 5.22: Temperature field at
time = 301 seconds.

steps for which the same mesh is used. This maintains the accuracy of the

solution field and also the cost-effectiveness of the algorithm.

However, it is evident from figures that a very good solution field is

captured at all the time steps.

5.3.2 Cost analysis

A cost analysis is performed on both meshes, that is the thermal mesh and

the mechanical mesh. L2 errors of the displacement field and the temperature

field are computed on mechanical and thermal meshes respectively.

The results are shown in figures 5.23, 5.24, 5.25, 5.26, 5.27, and 5.28.

Here, in order to obtain the results on a uniform mesh, a full solution at all

time steps is computed successively by uniformly refining a fixed mesh. It is

evident that the introduced mesh adaption algorithm is almost always more

cost-effective with respect to a simple uniform mesh for both thermal and

mechanical meshes.
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Figure 5.23: Cost analysis of mechan-
ical mesh at time=1 second.
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Figure 5.24: Cost analysis of thermal
mesh at time=1 second.
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Figure 5.25: Cost analysis of mechan-
ical mesh at time=50 seconds.
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Figure 5.26: Cost analysis of thermal
mesh at time=50 seconds.
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Figure 5.27: Cost analysis of mechan-
ical mesh at time=301 seconds.
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Figure 5.28: Cost analysis of thermal
mesh at time=301 seconds.

Recall that having cost-effectiveness and a good accuracy of the solution

at the first time step of calculation is very important, since the following

adapted meshes depend on the previous ones. For example, at time steps 50

and 301, any mesh adaption is not carried out because the mesh used at the

previous time step is good enough to represent the solution.

In this test case, the solution fields do not vary sharply with respect to

time and space. Therefore, the algorithm performs mesh adaption at very

few time steps, from time 1 to 301 seconds, mechanical mesh is adapted at

only 4 time steps whereas, the thermal mesh is adapted only at 3 time steps.

5.4 Thermo-elasto-plasticity

5.4.1 Numerical solution fields

Heuzé et al. [31] have extended the well-known viscometer test case to thermo-

elastic-plastic solid behaviors in small and large strains. In this test case,

the mechanical part only acts on the thermal part so that the mechanical

problem is solved independently of the thermal problem. The mechanical

problem is first solved followed by the thermal one taking into account the

effect of the mechanical solution. The geometry of the problem is shown in

figure 5.29. The gap between the two cylinders is discretized by a radial 1D

mesh. Zero displacement is prescribed on the inner cylinder while a driven
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Figure 5.29: Geometry of the test case [31].

rotation is prescribed on the outer cylinder. Temperature of external and

internal cylinders are fixed to zero. Therefore, the boundary conditions in

the problem can be stated as:

uθ(r = a) = 0

uθ(r = b) = uθ(b)

T (r = a) = 0

T (r = b) = 0

(5.11)

where a and b denote the inner and outer radii respectively, and uθ(b) the

curved arc length swept since the finite strain framework is assumed. However

the following differences arise between the test case given in [31] and the

test case dealt here. A hyperelastic-plastic constitutive law is considered,

whereas, in the article a hypo-elastic-plastic constitutive law was used. The

analytical solution developed in [31] relies on certain assumptions, that is:

dilatation effects are neglected, thermal and mechanical parameters are fixed

independently of the temperature and additional terms linked to the objective

derivative are neglected. The solution developed in small strains is extended
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Figure 5.30: Reference solution in
displacement [31].
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Figure 5.31: Reference equivalent
plastic strain [31].

to the large strains in a straightforward manner, but its validity remains

bounded from above when rotations and hence the objective derivative become

important. We solve the problem on a very fine mesh (5000 elements) with

the numerical data of [31] and use that solution as a reference solution.

The reference solutions in displacement and equivalent plastic strains are

plotted in figures 5.30 and 5.31 respectively. According to [31], the thermal

solution is valid once the viscometer is completely elastic-plastic. As seen

in figure 5.31, at rotation of θ = 3◦ of the outer cylinder, the viscometer

is completely elastic-plastic. Therefore, a coupled mechanical problem is

solved starting at a rotation of outer cylinder of 3 degrees, provided the initial

temperature being given by the analytical solution at that rotation, and a

rotation evolution of the outer cylinder prescribed so that the plastic crown

radius varies exponentially in time (eq.(35) of [31]), consistently with eq.(24)

of [31]. The reference solution in temperature is shown in figure 5.32. As seen

from figure 5.30, the displacement field does not vary much but the thermal

field presents the interest of a strong temperature gradient close to the inner

cylinder. Therefore, it will not be very interesting to use adaptive meshing

technique on the displacement mesh. Therefore, we solve our problem by

adapting only the thermal mesh and keeping the mechanical mesh constant.
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Figure 5.32: Reference solution in
temperature.
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Figure 5.33: Equivalent plastic
strain analytical[31] and numerical.
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Figure 5.34: Solution on adapted
mesh at rotation θ = 4◦ of outer cylin-
der.
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Figure 5.35: Solution on adapted
mesh at rotation θ = 5◦ of outer cylin-
der.
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Figure 5.36: Solution on adapted
mesh at rotation θ = 6◦ of outer cylin-
der.
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Figure 5.37: Solution on adapted
mesh at rotation θ = 9◦ of outer cylin-
der.
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Figures 5.34, 5.35, 5.36 and 5.37 show solutions on adapted mesh at

rotations θ = 4◦, 5◦, 6◦, 9◦ of the outer cylinder respectively. Figure 5.33 shows

analytical and numerical plastic strain distribution. One can observe that

the numerical solution is very close to the analytical solution. The small

differences between the numerical solution and the analytical one can be

attributed to the different formulations of the mechanical constitutive models

in large strains adopted in these two solutions. However, it is harmless for

the mesh adaption purpose we are interested in here.

5.4.2 Analysis

As seen from figure, 5.32, the important domains in the solutions field (domains

with high gradients of temperature) do not evolve much with time. Therefore,

our algorithm adapts mesh only at the first time step and then it decides to

use the same mesh for following time steps.
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Figure 5.38: L2 error analysis at ro-
tation θ = 4◦ of outer cylinder.
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Figure 5.39: L2 error analysis at ro-
tation θ = 5◦ of outer cylinder.
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Figure 5.40: L2 error analysis at ro-
tation θ = 6◦ of outer cylinder.
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Figure 5.41: L2 error analysis at ro-
tation θ = 9◦ of outer cylinder.

Figures 5.38, 5.39, 5.40, and 5.41 show the L2 error of the adapted mesh.

One can observe that mesh adaption has taken place only at rotation of 4

degrees, all other time steps use the same mesh. The adaptive meshing still

appears more economical than a uniform mesh.

5.5 Conclusion

In this chapter, various 1D test cases were studied. Simplicity of unidimen-

sional problems allows to perform a deeper analysis of the algorithm. First,

a purely thermal steady state problem with an analytical solution was con-

sidered. In this problem, a sharp temperature gradient allowed to have a

very visible mesh adaption. The presence of analytical solution allowed exact

error analysis and superiority of the mesh adaption over uniform meshes was

established. Parametric analysis of algorithmic parameters was performed.

As seen, the parameter Tolr controls the required accuracy of the solution.

Therefore, if very accurate solution is needed, smaller value of Tolr parameter

should be selected so that the adapted mesh is very fine and captures the

solution field accurately. However, accurate solution and fine meshes are asso-

ciated with high computational cost. So, if computational cost is of concern,

a higher Tolr should be chosen. Therefore, chosen value of Tolr parameter is

a trade-off between accuracy and the computational cost. Parameter Told

depends on the parameter Tolr and it should be chosen equal to or less than

Tolr parameter. On the other hand, parameter Tol0 controls the convergence
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to the adapted mesh. This parameter needs to be chosen such that the

algorithm stops as soon as it is converged to the optimal mesh no earlier,

no later. However, tracking of this exact value is often difficult, therefore,

one can choose to be on the conservative side and a few more iterations can

be allowed after convergence rather than terminating before convergence. In

practice, this does not add significant computational cost because as seen

earlier, the cost estimate used in this work is the most pessimistic one.

Second, a strongly coupled thermo-elasticity problem was analyzed. This

problem was analyzed in [3] which allowed to obtain a reference solution.

Again, cost-effectiveness of the algorithm over uniform meshing was estab-

lished. Third, an intermediate test cases with weak coupling was presented.

In every test case presented, the mesh adaption algorithm was shown to be

cost effective with respect to uniform meshing technique.

Having evaluated the algorithm on simpler 1D problems, it is now time to

consider more complex problems with geometric intricacies. Therefore in the

next chapter, 2D test cases are presented.
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Cas test bidimensionnel

Les problèmes nécessite des techniques d’adaptation plus sophistiquées que

les problèmes 1D, et permettent de définir des géométries plus complexes.

Comme expliqué dans le quatrième chapitre, deux techniques seront étudiées.

La première est la technique de bisection à bord unique (SEB) et la seconde

est la technique du chemin de propagation de bord le plus long de Rivara

(LEPP).

Tout d’abord, un problème thermique stationnaire admettant une solution

analytique est étudié, et la performance de l’algorithme d’adaptation est

analysée sur ce problème. L’existence d’une solution analytique permet ici

aussi de démontrer la meilleure efficence de l’approche proposée par rapport

à un raffinage uniforme du domaine de calcul. Deuxièmement, un cas de

test thermique transitoire est présenté. Le but de ce cas test est d’analyser

l’adaptation des mailles en cas de problèmes transitoires et de montrer le

raffinement et le déraffinement du maillage lorsque les domaines d’intérêt

bougent au cours de temps. Troisièmement, un problème fortement couplé

en thermo-élasticité est étudié afin de comparer l’adaptation des mailles en

utilisant les techniques SEB et LEPP. On constate que, en termes de potentiel

énergétique, SEB converge vers une solution exacte plus rapide que LEPP.

Ceci est conforme à nos attentes car, en ce qui concerne LEPP, il existe une

contrainte sur le rapport d’aspect de l’élément, alors que la technique SEB

est seulement guidée par des critères d’adaptation. Quatrièmement, un cas

test considérant une bande de cisaillement adiabatique est présenté, ce qui a

permis de démontrer l’efficacité de l’algorithme dans des problèmes complexes

avec de grandes déformations. Enfin, un cas test industriel de soudage par

friction linéaire est présenté.
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Chapter 6

Bidimensional test cases

6.1 Introduction

The previous chapter examined the mesh adaptation algorithm on 1D test

cases. While it allowed a deep analysis of the adaptation criteria, the mesh

adaptation technique was quite simple. Problems in 2D (and 3D) are the

major problem one needs to tackle with geometric complexities. This requires

more sophisticated adaptation techniques than 1D problems. As explained in

the fourth chapter, two techniques will be studied. First is the single edge

bisection (SEB) technique and second is Rivara’s longest edge propagation

path (LEPP) technique.

The second section introduces a steady state thermal test case with an

analytical solution. Cost analysis is performed for this test case as it has

an analytical solution. In order to demonstrate effective refinement and

coarsening in case of transient problems, in third section a transient thermal

test case is studied. This test case is set up such that the domains on interest

change their spatial location with time and mesh refinement and coarsening

is visible. In order to compare the SEB and LEPP techniques, a strongly

coupled test case with linear thermo-elasticity is presented. In case of strongly

coupled problems, a very important phenomenon is that of shear bands. This

is a very complex phenomenon and is presented in next test case with an

axisymmetric geometry. Finally, in order to present a test case similar to

an industrial process, a representative test case of linear friction welding is
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presented.

6.2 Steady state thermal

The first test case is a steady state thermal test case that admits a known

analytical solution. Therefore, one can easily compare the numerical error in

case of uniform meshing technique and mesh adaption technique.

Consider a rectangular plate of width W and height H subjected to the

following boundary conditions as shown in figure 6.1:

T = T1 at x = 0 and x = W ∀y ∈]0, H[, y = 0 ∀x ∈]0,W [

T = T2 at y = H ∀x ∈]0,W [
(6.1)

Here, the boundary conditions impose a jump in temperature from T1 to

T2 at the two top corners of the plate. Because of this jump, the energy

like potential (3.28) should indicate drastic improvement in the solution

through refinement of patches near these two corners. Therefore, the expected

adapted mesh obtained by the mesh adaption algorithm explained earlier in

chapter 3 should be very fine near these corners due to this singularity. This

simulation of mesh adaption was carried out using a starting mesh of four

6-Node triangular elements as shown in figure 6.1. The final adapted mesh

and the solution field is shown in figure 6.2. As expected, the adapted mesh

obtained is very fine near the corners with temperature discontinuity. This

simulation was carried out using SEB technique.

Note that here the obtained mesh is symmetric and well structured. This

is because of the symmetry of the geometry and loading of this problem

and the usage of quadratic elements. But, in general this is not true. One

often obtains anisotropic adapted meshes with elongated elements when a

SEB technique is used. The algorithm can be combined with other patching

strategies to produce meshes with desired geometric characteristics as it has

been done when using LEPP technique.

The analytical solution for this test case can be found in [32, Chapter 3].

The solution reads:

T − T1

T2 − T1

=
2

π

∞∑
n=1

sin
(nπx
W

) sinh(nπy/W )

sinh(nπH/W )
(6.2)

100



The efficiency of the algorithm is analyzed by comparing the error in the

numerical solution with respect to the analytical solution (6.2), as a function

of the number of nodes of the mesh.

Figure 6.1: Solution field on ini-
tial mesh along with the boundary
conditions.

Figure 6.2: Numerical solution on
adapted mesh.

Three cases are considered as explained in previous chapter. First for

uniform meshes used as a reference, second with number of nodes and third

for cumulated number of nodes.

101 102 103 10410-4

10-3

10-2

10-1

uniform mesh
adaptive mesh (non cumulated)
adaptive mesh (cumulated)

Figure 6.3: Analysis of the algorithm. Number of nodes on X axis and L2

error in temperature on Y axis.

Figure 6.3 shows this plot for L2 norm of error in temperature field with

respect to the analytical solution (6.2). One can observe that even the curve

101



using cumulated number of nodes crosses the line for uniform meshes. In

other words, beyond this crossing point, more precise solution is obtained

with less computational cost using variational mesh adaption.

6.3 Transient purely thermal test case

In order to demonstrate mesh adaption in case of transient problems, a

transient thermal test case is presented. Let’s consider a rectangular region

of size 10m× 10m, the boundary temperature of which is prescribed to zero.

An external heat source is introduced that follows a circular path in time

with center coinciding with that of the rectangle. The width of the heating

area at one instant is the arc length of 1 degree and the length is 1m. This

can be seen in figure 6.4. Every second, the heat source location moves one

degree in anticlockwise direction.

θ = 1◦

l = 1m

r uniformly distributed.

Figure 6.4: Representation of heating area at an instant.

Figures 6.5, 6.6, 6.7, 6.8, 6.9 and 6.10 show the solution fields on the

adapted meshes at different time steps. A strong mesh adaption is performed

in this test case because the location of strong temperature gradients moves

with the prescribed heat source. The mesh coarsening upstream from the

heat source appears as efficient as the mesh refinement where the heat source

is located. It is therefore evident that this adaption strategy works well and

is more cost effective than using a simple uniform mesh.
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Figure 6.5: Temperature field at time
step 1.

Figure 6.6: Temperature field at time
step 8.

Figure 6.7: Temperature field at time
step 24.

Figure 6.8: Temperature field at time
step 40.

Figure 6.9: Temperature field at time
step 48.

Figure 6.10: Temperature field at
time step 60.
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6.4 Linear thermo-elasticity

The purpose of this test case is to compare SEB and Rivara’s LEPP mesh

adaption techniques. Also, the test case demonstrates the application of mesh

adaption algorithm on a strongly coupled problem.

Consider a rectangular plate of size 32mm× 50mm with a circular hole of

radius 2.5mm at its center. The plate is submitted to compression through

imposed displacement in its Y direction. Making use of the symmetries, only

one quarter of the plate is modelled. Zero heat flux boundary condition is

prescribed for the thermal part whereas for the mechanical part, negative

displacement is imposed on top which increases at a rate of 0.0001 per second;

with symmetry conditions on planes x = 0 and y = 0, and free boundaries on

the remaining faces. Figure 6.11 shows the computational domain and the

boundary conditions.

uy = 0
q · n = 0

σnt = 0

σ · n = 0
q · n = 0

σnt = 0

q · n = 0
σnt = 0

uy = −u(t)

σnt = 0

ux = 0

q · n = 0

Figure 6.11: Geom-
etry and boundary
conditions for thermo-
elasticity problem.
σnt = 0 on all bound-
aries.

Figure 6.12: Initial
thermal and mechani-
cal mesh for thermo-
elasticity problem.

Due to the stress concentration near the hole as shown in figure 6.13, the
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mechanical mesh adaption should produce a finer mesh around the hole at

the first time step. Similarly, due to high temperature gradients near the hole

as shown in figure 6.14, the thermal mesh adaption should also produce a

finer mesh around the hole. Unlike the transient thermal test of section 6.3,

severe mesh coarsening and refinement should not be observed at each time

step because the domain of interest does not change with respect to time.

Initial mesh for both thermal and mechanical part is shown in figure 6.12.

Figures 6.15 and 6.16 show adapted meshes for mechanical part obtained by

using SEB technique and by using LEPP technique respectively. Observe

that in both cases, we have a fine mesh near the hole and a coarser mesh far

from the hole. Therefore, both these meshes represent a good solution field.

However, one can observe that in figure 6.15, the mesh has elongated elements

(anisotropic mesh). This difference is even more evident in the temperature

field shown in figures 6.17 and 6.18. Observe the four elongated elements

in figure 6.17, which shows the solution field on a mesh obtained by SEB

technique. This anisotropy is avoided in Rivara’s LEPP algorithm as shown

in figure 6.18. It is important to note that the mesh adaption is performed

only at the first time step and no major changes in the mesh are observed

after the first time step. The high computational cost associated with using

a uniform fine mesh is avoided by using adaptive algorithm irrespective of

the nature of patch used.
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Figure 6.13: Stress magnitude
along the radial direction on the
x-ligament.
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Figure 6.14: Magnitude of gradi-
ent of temperature along the radial
direction on the x-ligament.
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Figure 6.15: Mechanical adapted
mesh obtained using single edge
bisection technique.

Figure 6.16: Mechanical adapted
mesh obtained using Rivara’s tech-
nique.

Figure 6.17: Thermal adapted
mesh obtained using single edge
bisection technique.

Figure 6.18: Thermal adapted
mesh obtained using Rivara’s tech-
nique.

In order to compare SEB and LEPP techniques, at the first time step,

mesh adaption is allowed to continue for more iterations. However, while

making these comparisons, parameters for both the cases are chosen such

that precision level of required solution is of the similar order. Here we

leverage the fact that the mesh adaption is observed only at first time step.

In case of Rivara’s technique, there is a constraint on element aspect ratio.

However, in case of edge bisection technique, the sole criterion is the value

of energy potential. Therefore, only the underlying physics drives mesh

adaption without any geometrical constraint. Figures 6.19 and 6.20 show

the comparison of energy potential values for mechanical and thermal mesh

respectively. Recall that the mechanical step of the staggered scheme is

associated to a minimum of the functional while the thermal step is associated
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Figure 6.19: Comparison of mesh
adaption techniques for mechanical
mesh.

40 60 80 100 120 140 160
Number of nodes

7.18

7.20

7.22

7.24

7.26

7.28

En
er

gy
 P

ot
en

tia
l

1e 6 Temperature Mesh Comparison (sup)

SEB technique
LEPP technique

Figure 6.20: Comparison of mesh
adaption techniques for thermal
mesh.

to a maximum. The results show that SEB gives slightly better results in

terms of potential which is in accordance with the previous reasoning.

6.5 Shear bands

A shear band is a narrow region presenting large deformation and high

temperature rise which appears due to thermal softening in various ductile

materials [68]. The hat shaped specimen [68] is a well known experimental

apparatus, used to trigger shear bands and study rate dependent behaviour.

This system proves to be an interesting test case to demonstrate mesh adaption

in case of complex coupled problems in the framework of finite strains with

thermo-elasto-visco-plasticity. Its geometry as well as the considered boundary

conditions in a longitudinal cut are shown in figure 6.21. Zero heat flux is

imposed on all the boundaries, and the specimen is compressed by means of an

imposed displacement on the top. The geometry and imposed displacement on

the top (at a rate of 1mm per second) causes high shear stress along segment

AB, i.e. vector t in figure 6.21. The dissipation causes temperature to rise

along t and this leads to the softening of the α−Titanium alloy considered in

this test case which is known to be sensitive to shear banding. The constitutive

model used is thermo-visco-elasto-plasticity; one can refer to Stainier er al.

[67] for details material properties of α−Titanium alloy. Softening causes

intensification of plastic strains and the shear band appears.
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uz = 0
σzr = 0

B

uz = −f (t)
σzr = 0
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σrz = 0
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Axis of axisymmetry

σ · n = 0
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5mm
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15mm

Figure 6.21: Geometry and mechanical boundary conditions of shear band
specimen.

Figure 6.22: Initial mesh for thermal and mechanical parts.
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Figure 6.23: Final adapted thermal mesh with temperature field.

Figure 6.24: Final adapted mechanical mesh with equivalent plastic strain.
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Figure 6.25: Evolution in time of length of segment l for k = 0.3 in equation
(6.3).

The initial mesh for mechanical and thermal part is the same and is

shown in figure 6.22. Rivara’s LEPP mesh adaption technique is used in the

presented results. The final adapted thermal mesh at the final time step is

shown along with temperature distribution in figure 6.23. Mesh adaption can

be seen in areas where sharp temperature gradients need to be captured. The

final adapted mechanical mesh at final time step along with equivalent plastic

strain is shown in figure 6.24. In case of mechanical part, the mesh adaption

is driven by stress field and the concentration of high strain rate caused by

high temperature concentration.

In order to analyze the evolution of the temperature concentration over

time, the length of a segment l along direction n defined in figure 6.21 is

plotted. The segment l is defined as:

l = {x | T (x) > kTmax}, 0 < k < 1. (6.3)

It corresponds to a certain width of a domain within which sharp temperature

rise occurs due to the appearance of a shear band with time. At the beginning,

uniform temperature causes segment l to cover the whole domain. As the

shear band starts appearing, temperature concentration in the band region

starts increasing, this causes the chracteristic length of segment l to reduce

drastically and it covers the domain close to that of the actual shear band

when it propagates upto an arbitrary factor k. Evolution of this length l in

time is shown is figure 6.25. The length reduces representing the increase of
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Figure 6.26: Evolution of 〈σnt〉AB
with time.
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Figure 6.27: Evolution of maxi-
mum temperature Tmax with time.

temperature concentration in time. In order to study the evolution of the

shear stress in the band region, we consider the vector t along the segment

AB and the vector n, orthogonal to segment AB as shown in figure 6.21. The

evolution of the average shear stress σnt along segment AB is shown in figure

6.26. The shear stress increases till time 0.10 seconds when material softening

due to increased temperature starts, leading to reduction in shear stress. This

temperature rise is evident in figure 6.27. Here, maximum temperature is

plotted with time. A kink in temperature increase can be clearly observed at

time 0.10 seconds.

In the work of Su et al. [68], authors use an analytical solution developed by

Leroy et al. [40] for a 1-D shear band problem. The temperature distribution

is given by:

T (y) = Tmax − (Tmax − Tref )
log
(
cosh

(
y
h

))
log
(
cosh

(
H
h

)) (6.4)

and the velocity is given by:

V (y) = V0

tanh
(
y
h

)
tanh

(
H
h

) (6.5)

However, this solution is valid for 1-D problem and Dirichlet boundary

conditions in temperature are applied. Therefore, a regression1 is used in

order to find the parameter h appearing in equations (6.4) and (6.5) and

it is assumed that all the displacements lead to plastic strains so that the

1Regression is a process of finding values of parameters that represent best fit with
minimum L2 error.
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Figure 6.28: Numerical and analyt-
ical temperature profile along n at
time 0.103037.
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Figure 6.29: Numerical and analyt-
ical rate of plastic strain along n
at time 0.103037.

analytical expression of the plastic strain rate can be obtained by taking the

gradient of V (6.5). The plots in figures 6.28 and 6.29 show the numerical and

analytical solutions of temperature and plastic strain rate along n neglecting

the domains close to boundaries. It can be seen that analytical and numerical

profiles are close, the differences are due to the different boundary conditions.

This test case demonstrates how precise solutions of complex strongly coupled

problems can be obtained using the proposed mesh adaption strategy.

6.6 Linear Friction Welding (LFW)

Linear friction welding is an industrial process that involves very strong

thermo-mechanical coupling. Two parts to be welded are rubbed against each

other; the friction causes temperature to rise which causes material to soften

on a small skin depth and parts get welded by diffusion bonding. Therefore,

this is an interesting test case to demonstrate the mesh adaption technique

for industrial-like processes. Numerical simulation of linear friction welding

has been studied among others by Debeugny et al. [20], whereas M. Foca

et al. [23] use a mesh free approch for simulating the process. Li et al. [41]

use complete remeshing to advance their simulations. However, this costs

loss in precision due to significant numerical diffusion. Figure 6.30 shows the

geometry and boundary conditions for test case used by Li et al. [41].

In order to avoid stresses due to discontinuity in boundary conditions
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and to focus on stresses generated by linear friction welding, the sole bottom

part with free lateral boundary conditions is considered. Second, half of this

bottom part is meshed due to symmetry, so that ux = 0, σxy = 0 and q ·n = 0

are applied on segment AD. This modelling assumes the horizontally blocked

top part of figure 6.30 to be rigid, hence the loading is prescribed by means

of a displacement uy imposed segment DC. Segment BC is free, i.e. there

is zero traction and zero heat flux. On segment AB, contact is applied for

mechanical part, and in order to represent heat generation due to friction,

heat flux is applied. The modelled geometry and boundary conditions are

shown in figure 6.31. The applied heat flux consists of the friction shear stress

τ times the tangential velocity of oscillations v, here assuming that all the

heat generated in friction is assumed to contribute to the input heat flux q̄:

q̄ = τ · v = 4ταf (6.6)

where α is the magnitude of oscillations, f is the frequency of oscillations and

τ is the magnitude of friction stress given by:

τ = µσN (6.7)

where µ is the coefficient of friction and σN is the magnitude of normal

pressure applied. Johnson-Cook model for thermo-elasto-visco-plasticity is

used for computations.

The initial mesh used for thermal part is coarser than that of the mechan-

ical part, they are shown in figures 6.32 and 6.33 respectively. Single edge

bisection technique is used for mesh adaption in this problem. In the begin-

ning of loading, high strains occur close to boundary that cause mechanical

mesh refinement in that region as shown in figure 6.34. After a few time

steps, when the stress field is well developed, the mesh is adapted according

to the stress field as shown in figure 6.35. Figure 6.36 shows the stress field

at the final calculated time step.
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Contact

σ · n = 0

ux = 0

σyx = 0

Pressure

σxy = 0

σ · n = 0

ux = 0

σyx = 0

17mm

10mm

30mm

Figure 6.30: Geometry and bound-
ary conditions of the linear friction
welding problem in [41].

A B

CD

Figure 6.31: Simplified modeling
of the problem. Boundary condi-
tions of symmetry on AD, contact
and heat flux on AB and imposed
displacement on DC are applied.
Boundary BC is free.

Figure 6.32: Initial mesh for ther-
mal part for linear friction welding
test case.

Figure 6.33: Initial mesh for me-
chanical part for linear friction
welding test case.
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Figure 6.34: Stress field and me-
chanical mesh (along with reflec-
tion) at preliminary stages.

Figure 6.35: Mechanical mesh
(along with reflection) after devel-
oped stress field.

Figure 6.36: Stress field at last calculated time step along.
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Figure 6.37: Temperature field and
thermal mesh (along with reflec-
tion) at preliminary stages.

Figure 6.38: Thermal mesh (along
with reflection) at final time step.

The adapted thermal mesh captures a smooth temperature field, which is

clearly shown with the adapted mesh at the beginning in figure 6.37. Near the

contact surface, the maximum temperature is reached and far from contact

surface temperature is almost uniform. This causes finer mesh in between

these two zones in order to capture the gradient of temperature field. The

adapted thermal mesh along with the associated temperature field at final

calculated time step is shown in figure 6.38. Because the temperature gradient

is smooth, mesh is relatively coarser compared to figure 6.37. Fine mesh near

contact boundaries is seen because of distortions seen in figure 6.36.
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Figure 6.39: Temperature profile
on a line along y direction pass-
ing through mid-points of segments
AB and DC in figure 6.31.
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Figure 6.40: Magnitude of stress
tensor on a line along y direction
passing through mid-points of seg-
ments AB and DC in figure 6.31.

From the adapted meshes in figures 6.34,6.35,6.37 and 6.38 one can also
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observe refinement along x axis at some distance from bottom. This is because

the material is very soft in the skin depth which is being welded and there is

an interface between the soft part and the hard part. The adaptation of mesh

in the above mentioned region captures this interface. This can be seen when

a plot of temperature field and magnitude of stress tensor is made along y

direction. These plots are shown in figures 6.39 and 6.40 respectively. One

can observe the curvature of the field from y = 0.01 to y = 0.02. Comparing

this with the adapted meshes, the reason behind mesh adaptation can be

identified. As seen from results, the proposed mesh adaption strategy can be

useful in test cases involving strong thermo-mechanical coupling along with

large deformations.
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6.7 Conclusion

This chapter presented several test cases in two dimensions. First, a steady

state thermal problem with an analytical solution was analyzed for perfor-

mance. The availaibility of an analytical solution allowed to demonstrate the

cost effectiveness over uniform mesh. Second, a transient thermal test case

was presented. The purpose of this test case was to analyze mesh adaption

in case of transient problems and to show the dynamic mesh refinement and

coarsening when domains of interest change their spatial location drastically.

Third, a strongly coupled problem in thermo-elasticity was studied. A com-

parison of mesh adaption using SEB and LEPP techniques was carried out.

Fourth, a shear band test case was presented which allowed to demonstrate

the effectiveness of the proposed algorithm in complex problems with large

strains. Finally, an industrial like test case of friction welding was presented.
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General conclusion and
perspectives

General conclusion

In this work, a mesh adaptation strategy for strongly coupled problems was

proposed. In the second chapter, thermo-mechanical problems were introduced

starting the balance equations. The monolithic approach for coupled problems

consists in simultaneously solving all field equations of concerned physical

phenomena. This leads to big systems to be solved and needs same mesh for

all considered physical phenomena. Due to this, in order to capture different

scales and domains of interest of different phenomena, one needs to use a

very fine mesh everywhere which leads to an even bigger system. Such huge

systems are generally too costly for commercial simulations. On the other

hand, staggered approaches consist in sequential resolution of field equations

in which one physical phenomenon is considered at a time. This strategy

divides one big system into smaller systems that are cheaper to solve. This also

allows using different meshes for different physical phenomena and one can

adapt them separately to capture different scales and domains of interest for

each physical phenomenon. For thermo-mechanical problems, two staggered

techniques were presented: one using isothermal setting and another using

adiabatic setting. In isothermal setting, mechanical part is solved assuming

isothermal conditions. Whereas in adiabatic setting, mechanical part is

solved assuming adiabatic thermal conditions. The adiabatic setting gives

the required stability as shown in [3].

The proposed mesh adaptation approach is based on the variational

framework introduced in third chapter. Using a variational approach, thermo-
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mechanical problems can be restated as a saddle point problem of an energy

like functional. Generally, the functional is convex with respect to displace-

ment field and concave with respect to temperature field. Therefore, the

thermo-mechanical problem can be restated in terms of an energy like potential

I as shown in chapter 3:

{u, T} = arg inf
u

sup
T

I(u, T ) (6.8)

In case of staggered approaches, mechanical and thermal parts are sequentially

solved:

u = arg inf
u
I(u, T )

T = arg sup
T

I(u, T )

(6.9)

An indicator for mesh adaptation is derived from the above representation of

thermo-mechanical problem. Significant improvement in the value of energy

like potential upon refinement indicates significant error. This allows to define

mesh adaptation as an optimization problem as shown in chapter 4:

inf
u∈Vh

{
Ih(un, θn−1) + µugNu

}
≡ inf

u∈Vh

Iu(un, θn−1, Nu)

sup
θ∈Wh

{
Ih(un, θn)− µTgNT

}
≡ sup

θ∈Wh

IT (un, θn, NT )

(6.10)

That is, the problem is to find a mesh that represents the solution field

accurately with a computational cost derived from parameters µug and µTg .

This definition of mesh adaptation problem makes the approach free from

error estimates based on field reconstructions. The additive property of the

variational functional allows to use the local patch by patch approach to mesh

adaptation. Refinement process consists in solving a small (computationally

very cheap) problem on local patch to decide if that patch should be refined in
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the global mesh. Coarsening is also a similar patch by patch process. Doing

this for all patches gives a new adapted mesh. This is an iterative process and

the convergence criteria is related to the relative improvement in the value

of energy like potential between two successive iterations. Internal variables

are assumed to be constant over piece of Voronöı cells as explained in fourth

chapter. This avoids excessive numerical diffusion caused by avoiding the

complex remapping procedures.

Two mesh adaptation techniques were studied. First, the single edge

bisection (SEB) technique in which a patch consists of a ring of elements

around an edge. The patch is refined by adding a new node on that edge

and splitting the adjacent elements into two. Second, Rivara’s longest edge

propagation path (LEPP) technique. In this, a patch is constructed in such a

way that longer edges are bisected prior to shorter ones in immidiate viscinity.

Therefore, a patch consists of a series of edges of increasing length and ring of

elements around them; edges are bisected starting from the longest edge every

time dividing adjacent elements in two. This means a bigger LEPP patch

than a SEB patch if the edge under consideration is not the longest edge for

all adjacent elements. In case of SEB technique, one often obtains highly

anisotropic meshes. However, this anisotropy is related to the underlying

physics as sole mesh adaption criterion drives mesh refinement and coarsening

without constraining the element aspect ratio. Whereas, LEPP technique

constrains the element aspect ratio that allows to obtain meshes with smallest

angle grater than 30◦. This avoids highly anisotropic meshes at additional

computational cost. The superiority of SEB technique in terms of energy like

potential value was established using a linear thermo-elasticity test case in

the sixth chapter.

In order to analyze the algorithm, 1D test cases were introduced in fifth

chapter and 2D test cases were introduced in sixth chapter. The algorithm

was applied to steady state thermal problem with an analytical solution in

1D and in 2D. In both cases, cost effectiveness and superiority of the mesh

adaptation strategy over using a uniform mesh was established. A detailed

parametric analysis of all algorithmic parameters was carried out. Indeed, the

parameters Tol0, Tolr and Told are not independent, but keeping other two
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parameters constant, the sole effect of each parameter was studied. The Tolr

parameter should be chosen from a trade-off between required accuracy and

computational cost; parameter Tol0 should be chosen such that the algorithm

stops as soon as it is converged; lastly, Told parameter should be chosen less

than Tolr parameter for ensuring stability. The transient thermal problem in

2D demonstrated effective refinement and coarsening of the mesh in a case

with rapid change of domain of interest. Thermo-elasticity problem in 1D

introduced as a first example of strongly coupled problem. Thermo-elasto-

plasticity problem in 1D was an intermediate problem with weak coupling.

It adapted only one mesh whereas the other mesh was kept constant. The

cost effectiveness over uniform mesh was also established for these two test

cases in 1D. A strongly coupled problem of shear band was presented and

effective mesh adaptation was demonstrated. As an example of industrial like

test case, a test case of friction welding was presented. All these test cases

demonstrate the adaptability of the algorithm to different problems.

Perspectives

Adaptation criteria

First, the proposed adaptation criteria remains valid as long as the variational

functional is convex (or concave). Some extra development is necessary to

take into account non-convex functionals. This would mean to use a technique

similar to simulated annealing that will allow to escape the local minimum.

Problems of material instabilities and buckling can be considered as potential

applications of this development. Second, the improved algorithm of fifth

chapter that introduces another parameter can be extended to problems in

2D. Therefore if local improvement upon refinement is highly significant, then

patch can be considered for double refienement, so that an element would

be divided into four elements instead of two as shown in figure 6.41. Indeed,

if the patch is to be divided as shown, the patch would need subdivision of

elements out of the patch. This will reduce the number of interations thereby
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reducing the number of full solutions and allow to gain more computational

cost.

B

CD

A B

CD

A B

CD

A

Figure 6.41: If the initial patch is ABCD as shown in the diagram on the
left. The refined patch on which local problem will be solved is shown in the
middle diagram. If the error indicated is highly significant, even more refined
version of patch would be used in the global mesh as shown in the diagram
on the right.

Third, a robust parameter selection process needs to be investigated. This

would probably mean developing another algorithm that will choose correct

parameters for a given problem and required level of accuracy. One can also

imagine to generate data by running the algorithm for different test cases

using different parameters and use machine learning techniques to predict the

correct parameters for the given problem and given level of accuracy.

Adaptation techniques

First, similar to SEB technique, one can also imagine dividing a single triangle

in different ways. For example, a triangle can be divided into three by inserting

a new node at its centroid as shown in figure 6.42. Then a combination of

SEB and this technique can be used.
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Figure 6.42: Diagram on left shows an original triangle which can be divided
into three by inserting a new node at its centroid as shown in diagram on
right.

Second, other local refinement techniques in literature like CHARMS

[26, 55] can be tested.

Third, the algorithm should be extended to take into account 3D prob-

lems. This perspective is more related to adaptation technique as the same

adaptation criteria can be used. One can easily extend the SEB technique

in 3D. The patch involves the whole ring of tetrahedra around an edge in

3D and refined version divided each tetrahedron into two. This technique is

described by Mosler et al. [48] in their work. Rivara’s LEPP technique is also

available in 3D [60].

Fourth, the strategy can be extended to take into account p-adaptation.

This is quite straightforward, one can take one element and change the

interpolation order within the element by introducing more nodes along the

edges without changing spatial location of original nodes, and then one can

use the proposed mesh adaptation criteria. The coarsening would involve

reducing the interpolation order. However, this would require use of mixed-

order elements on a patch.
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framework for adaptive simulation. ACM Trans. Graph., 21(3):281–290,

July 2002.

[27] M.E. Gurtin. Configurational forces as basic concepts of continuum

physics. Springer, New York, 2000.

127



[28] Bernard Halphen and Quoc Son Nguyen. Sur les matériaux standard
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Résumé 
 
Une approche d'adaptation en mesh pour des problèmes 
fortement couplés est proposée, selon un principe 
variationnel. La technique d'adaptation repose sur une 
erreur indiquée par un potentiel énergétique et est donc 
exempte d'estimations d'erreur. Selon la nature du point 
de chevauchement de ce principe variationnel, une 
solution de solution décalée apparaît plus naturelle et 
conduit à une adaptation de maille distincte pour les 
champs mécaniques et thermiques.  
En utilisant différents maillons pour différents 
phénomènes, des solutions précises pour différents 
domaines à l'étude sont obtenues. Les variables internes 
sont considérées comme constantes par rapport aux 
cellules de Voronoi, de sorte qu'aucune procédure de 
remappage complexe n'est nécessaire pour transférer 
des variables internes. Étant donné que l'algorithme est 
basé sur un ensemble de paramètres de tolérance, des 
analyses paramétriques et une étude de leur influence 
respective sur l'adaptation de maille sont réalisées. Cette 
analyse détaillée est effectuée sur des problèmes 
unidimensionnels. La méthode proposée se révèle être 
rentable qu'un maillage uniforme, certaines applications 
de l'approche proposée pour différents exemples 2D, y 
compris les bandes de cisaillement et le soudage par 
friction, sont présentées. 
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Abstract 
 

A mesh adaption approach for strongly coupled problems 
is proposed, based on a variational principle. 
The adaption technique relies on error indicated by an 
energy-like potential and is hence free from error 
estimates. 
According to the saddle point nature of this variational 
principle, a staggered solution approach appears more 
natural and leads to separate mesh adaption for 
mechanical and thermal fields. 
Using different meshes for different phenomena, precise 
solutions for various fields under consideration are 
obtained. 
Internal variables are considered constant over Voronoi 
cells, so no complex remapping procedures are 
necessary to transfer internal variables. 
Since the algorithm is based on a set of tolerance 
parameters, parametric analyses and a study of their 
respective influence on the mesh adaption is carried out. 
This detailed analysis is performed on uni-dimensional 
problems. 
The proposed method is shown to be cost effective than 
uniform meshing, some applications of the proposed 
approach to various 2D examples including shear bands 
and friction welding are presented. 
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