
HAL Id: tel-02982921
https://theses.hal.science/tel-02982921

Submitted on 29 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Positivity of direct images and projective varieties with
nonnegative curvature

Juanyong Wang

To cite this version:
Juanyong Wang. Positivity of direct images and projective varieties with nonnegative curvature. Al-
gebraic Geometry [math.AG]. Institut Polytechnique de Paris, 2020. English. �NNT : 2020IPPAX048�.
�tel-02982921�

https://theses.hal.science/tel-02982921
https://hal.archives-ouvertes.fr


574

N
N
T
:2

0
2
0
IP
PA

X
0
4
8

Positivité des images directes et
variétés projectives à courbure positive

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École polytechnique

École doctorale n◦574 École doctorale de mathématiques Hadamard (EDMH)
Spécialité de doctorat : Mathématique fondamentale

Thèse présentée et soutenue à Palaiseau, le 27 août 2020, par

Juanyong Wang

Composition du Jury :

Claire Voisin
Directrice de recherche, Sorbonne Université (IMJ-PRG) Présidente

Benoît Claudon
Professeur, Université de Rennes 1 (IRMAR) Rapporteur

Thomas Peternell
Professeur, Universität Bayreuth (Mathematisches Institut) Rapporteur

Thomas Gauthier
Professeur Monge, École polytechnique (CMLS) Examinateur

Sébastien Boucksom
Directeur de recherche, École polytechnique (CMLS) Directeur de thèse

Junyan Cao
Maître de conférence, Sorbonne Université (IMJ-PRG) Co-directeur de thèse



Positivity of direct images and projective varieties with
nonnegative curvature

Juanyong Wang

under the supervision of
Sébastien Boucksom & Junyan Cao





Ma troisième maxime était de tâcher
toujours plutôt à me vaincre que la
fortune, et à changer mes désirs que
l’ordre du monde : et généralement de
m’accoutumer à croire qu’il n’y a rien
qui soit entièrement en notre pouvoir
que nos pensées.

Discours de la méthode, René Descartes

一切有为法，如梦幻泡影，如露亦如
电，应作如是观。
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Convention and Notations

Throughout this thesis, a complex variety means a reduced irreducible complex analytic
space. A(n) (analytic) fibre space is a proper morphism between complex varieties whose
fibres are connected. An analytic fibre space is called an algebraic fibre space if it is
also a projective morphism. An analytic fibre space f : X ! Y is called a Kähler fibre
space if locally over Y , X is a Kähler variety in the sense of [HP, Definition .]. A
Q-line bundle on a complex variety X means an element of Pic(X)⊗Q (c.f. also [Var,
Lecture , §., Definition .]) and we use "+" to denote the tensor product of two Q-
line bundles (and mix this notation with the addition of Q-divisors). Over a complex
variety, a "(analytic) Zariski open subset" signifies an open subset of the variety whose
complement is a closed analytic subspace.

Dans les parties en français, un espace analytique complexe, sauf mentionné explici-
tement, est toujours supposé d’être irréductible et réduit, donc correspond à « complex
variety » en anglais. Une variété complexe ou kählérienne est toujours supposée d’être
lisse, c-à-d., correspondent aux « complex manifold » et « Kähler manifold » en anglais
respectivement. En revanche, une variété projective n’est pas nécessairement lisse, c-à-d.,
correspond à "projective variety" en anglais. Une fibration (analytique) est un morphisme
propre entre espaces analytiques dont les fibres sont connexes, c-à-d., correspond à « ana-
lytic fibre space » en anglais. Une fibration analytique est dite algébrique si elle est aussi
un morphisme projectif. Une fibration analytique f : X ! Y est dite kählérienne si lo-
calement au-dessus de Y , X est est un espace kählérien au sens de [HP, Definition
.]. Un Q-fibré en droites sur un espace analytique complexe signifie un élément de
Pic(X)⊗Q (c.f. aussi [Var, Lecture , §., Definition .]) et l’on utilise "+" pour dési-
gner le produit tensoriel de deux Q-fibré en droites (et l’on mélange cette notation avec
l’addition des Q-diviseurs). Sur un espace analytique complexe, un « ouvert de Zariski
(analytique) » signifie un ouvert de l’espace dont le complémentaire est un sous-espace
complexe fermé (non-nécessairement irréductible).
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Introduction

Let k be a algebraically closed filed, one of the central problems in algebraic geometry
to classify all the algebraic varieties over k up to isomorphism; when k = C, one can also
consider more generally the classification problem of complex analytic spaces (especially
ones in the Fujiki class C ). This study is initiated, on one hand, by Bernhard Riemann,
Henri Poincaré, etc. in their works on the uniformization of Riemann surfaces (algebraic
curves) from the analytic point of view; and on the other hand, by the Italian school
(Guido Castelnuovo, Federigo Enriques, Francesco Severi, etc.) in the works on minimal
models of algebraic surfaces from the algebraic point of view. In the framework of mod-
ern mathematics, their ideas are further developed, and a lot of achievements have been
made in the last century by the remarkable works of Kunihiko Kodaira, David Mumford,
Shigeru Iitaka, Kenji Ueno, Shigefumi Mori, Eckart Viehweg, Yujiro Kawamata, János
Kollár, Vyacheslav Shokurov, etc. As a fruit of these works, the principle of the classifi-
cation problem is established and the problem can be divided into two aspects, namely,
the aspect of birational / bimeromorphic classification and the aspect of the construction
of (good compactification of) moduli spaces.

This thesis concentrates mainly on the first aspect of the classification problem, in
which great progress has recently been made by the works [BCHM; BDPP]. In
[BCHM] the Minimal Model Program (abbr. MMP) is almost established by following
the ideas of Vyacheslav Shokurov, while [BDPP] makes a significant progress towards
the Abundance by describing the positive cone of pseudoeffective divisors. Roughly
speaking, by combining these results, we have that smooth (or mildly singular) projective
varieties are divided into two (birationally stable) classes:

• varieties with pseudoeffective canonical divisors, which are shown to reach a min-
imal model (that is, a mildly singular variety with nef canonical divisor) under the
MMP;

• uniruled varieties, which are shown to reach a Mori fibre space (a fibre space whose
general fibre is a Fano variety of Picard number 1) under the MMP.

The general philosophy in the study of minimal varieties / uniruled varieties is to study
the canonical fibrations associated to them, which reduces the study to the study of the
base and of the general fibre. The main results of this thesis are developed respectively
along these two major lines, as is precised below.

For minimal varieties, the most important associated canonical fibration is the Iitaka-
Kodaira fibration defined by a sufficiently high multiple of the canonical divisor, whose
general fibre is of Kodaira dimension 0 and which is expected, by the Abundance con-
jecture, to be a everywhere defined fibre space (instead of a meromorphic/rational map-
ping) onto a canonically polarized variety (a canonical model). Although the Abundance
conjecture is largely open, much progress has been made in the proof of an important
corollary of it, known as the Iitaka conjecture Cn,m, which predicts the superadditivity of
the Kodaira dimension with respect to algebraic fibre spaces:
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Conjecture  (Iitaka Conjecture Cn,m, [Uen, §., Conjecture Cn, pp. -]). Let
f : X! Y be an algebraic fibre space between projective varieties with dimX = n and dimY =
m, and let F be the general fibre of f . Then we have

κ(X) > κ(Y ) +κ(F).

Recall that the Kodaira dimension κ(X) of a complex variety X is defined to be the
dimension of the image of the aforementioned Iitaka-Kodaira fibration, or equivalently,
the unique integer κ ∈ {−∞,0,1, · · · ,dimX} such that there are constants C1 ,C2 > 0 inde-
pendent of m satisfying

C1 ·mκ 6 h0(X,K⊗mX ) 6 C2 ·mκ,
for m sufficiently large and divisible. Recently an important special case of the Cn,m is
proved by Junyan Cao and Mihai Păun in [CP]. Although a large part of MMP is not
known for Kähler varieties, by using in depth the recent developments of complex an-
alytic methods, especially, the Ohsawa-Takegoshi type extension theorem with optimal
estimate obtained by Qi’an Guan and Xiangyu Zhou in [GZa, Theorem .] and gen-
eralized by Cao in [Cao, Theorem .] (c.f. [ZZ] for an alternative proof), I am able
to extend the main result of [CP] (and also a main result in [Vie]) to the Kähler case,
i.e. to prove the following:

Theorem A. Let f : X ! Y be a fibre space between compact Kähler manifolds with general
fibre denoted by F. And let ∆ be an effective Q-divisor on X such that (X,∆) is Kawamata log
terminal (abbr. klt). Suppose that one of the following conditions is satisfied:

(I) there is an integer m > 0 such that m∆ is an integral divisor and that the determinant
line bundle detf∗(K⊗mX/Y ⊗OX(m∆)) is big on Y ;

(II) Y is a complex torus.

Then
κ(X,KX +∆) > κ(F,KF +∆F) +κ(Y ),

where ∆F := ∆|F .

The proof of Theorem A relies on a positivity result for direct images of twisted rela-
tive pluricanonical bundles ([DWZZ, Theorem .], c.f. §.. for an alternative proof)
and a Green-Lazarsfeld-Simpson type result on the cohomology jumping loci ([Wan,
Theorem D]). In [DWZZ] a more general result on positivity for Lp-Finsler metrics on
direct images of twisted relative pluricanonical bundles is established by using a new
characterization of psh functions; in [Wan] I give an alternative proof for the L2 Her-
mitian metric, based on the Ohsawa-Takegoshi extension theorem with optimal estimate
obtained by Qi’an Guan and Xiangyu Zhou in [GZa] and generalized by Junyan Cao in
[Cao] (an alternative proof is given in [ZZ]). Let me recall that: for a vector bundle
E over a complex manifold, a singular Hermitian metric on E is given by a measurable
family of Hermitian functions on each fibre of E which is non-singular almost every-
where; on the direct image of the (twisted) relative canonical bundle, there is a natural
L2-Hermitian metric, which is defined by the fibrewise integrals of (twisted) differential
n-forms (n is the relative dimension of the fibre space).

In the other direction, i.e. the study of uniruled varieties, instead of studying the
Iitaka-Kodaira fibrations (which do not provide any information in the uniruled case),
one studies the Albanese maps and the maximal rationally connected (MRC) fibrations.
A general philosophy, inspired by the fundamental work of Shigefumi Mori [Mor], is
that when the anticanonical bundle or the tangent bundle of a variety admits certain pos-
itivity, these canonical fibrations should have a rigid structure (typically, being a locally
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constant fibration). For a projective variety with log canonical (lc) singularities, if the
anticanonical divisor is ample (Q-Fano case) the two aforementioned fibrations are both
trivial by the classical works of Kollár-Mori-Miyaoka [KMM] and of Frédéric Campana
[Cam] (and by Qi Zhang in [Zha] for the singular case); it is then natural to ask the
same question for varieties with nef anticanonical divisors. Recall that a Cartier divisor
or line bundle on a projective variety is called nef if its intersection number with any
curve is nonnegative, or equivalently, if it admits smooth Hermitian metrics whose cur-
vature forms have arbitrarily small negative parts (thus we can extend this notion to any
compact complex manifold, c.f. [DPS]). In the smooth case, the study of the Albanese
maps and of the MRC fibrations is accomplished by [Cao; CH], in these works it is
proved that for a smooth projective variety with nef anticanonical bundle the aforemen-
tioned two maps are (everywhere defined) locally constant fibrations, which implies that
smooth projective varieties with nef anticanonical bundles admit Beauville-Bogomolov
type decomposition: when passing to the universal cover they can be decomposed into
a product of Cq, a Calabi-Yau variety, a hyperkähler variety and a rationally connected
variety (the first three components are given by the classical Beauville-Bogomolov de-
composition). By the philosophy of the MMP, it is intended to generalize this structure
theorem to the singular case, i.e. the following conjecture:

Conjecture . Let X be a projective varieties with klt singularities and suppose that the anti-
canonical divisor −KX of X is nef. Then up to replacing X by a (finite) quasi-étale cover, the
Albanese map and the MRC fibration of X induce a decomposition of the universal cover X̃ of
X into a product

X̃ 'C
q ×Z ×F ,

where q is the augmented irregularity of X, Z is a klt projective variety with trivial canonical
divisor and F is a rationally connected variety.

Similar to the smooth case, by applying the klt Beauville-Bogomolov decomposition
theorem established by the successive works [GKP; Drua; GGK; HP], the vari-
ety Z in the decomposition above can be further decomposed as a product of Calabi-Yau
varieties and of irreducible symplectic varieties. However, different from the case of va-
rieties with numerically trivial canonical divisor, even in the smooth case one cannot in
general get a product structure up to finite (quasi-)étale cover for varieties with nef an-
ticanonical divisor due to the appearance of the rationally connected factor, e.g. there
are ruled surfaces over an elliptic curve which cannot split into a product of the elliptic
curve and P

1 up to finite étale cover(c.f. [Drub, Example ., Example .], [EIM,
Example .]).

In this thesis the Conjecture  is partially established by generalizing the main results
of [Cao] and [CH] to the klt singular case. Recall that a normal projective variety
X is called of Fano type (resp. semi-Fano type), if there is an effective Q-divisor ∆ on X
such that (X,∆) is a klt pair and that the twisted anticanonical divisor −(KX +∆) is ample
(resp. nef), c.f. [PS, Definition ., Lemma-Definition .]. The principal results are
the following:

Theorem B. Let X be a normal projective variety of semi-Fano type. Then the Albanese map
albX : X d AlbX is an everywhere defined locally constant fibration, i.e. albX is an analytic
fibre bundle with connected fibres such that X is equal to the product of the universal cover of
AlbX by the fibre of albX quotient by a diagonal action of π1(AlbX).

Theorem C. Let X be a normal projective variety of semi-Fano type with simply connected
smooth locus Xreg. Then the MRC fibration of X induces a decomposition of X into a product
F ×Z with F rationally connected and KZ ∼ 0.
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Let us remark that the local triviality (also known as the "isotriviality", especially in
algebraic geometry) of the Albanese map of X is obtained in the work of Zsolt Patakafalvi
and Maciej Zdanowicz [PZ, Corollary . (Corollary A.)] under the additional as-
sumption that X is Q-factorial. The strategy in their paper is to show that every (closed)
fibre is isomorphic by proving the numerical flatness of the direct images on every com-
plete intersection curve. In this thesis, we can use analytic methods to prove more gener-
ally the global numerical flatness of the direct images, and thus can obtain the stronger
result that the Albanese map is not only locally trivial but also a locally constant fibra-
tion.

The basic idea of the proof of this theorem is the same as [Cao; CH]: study the
positivity of the direct images of powers of a relative very ample line bundle, and prove
that up to a twisting they are numerically flat. For the Albanses map, we can directly
conclude since it is everywhere defined; as for the MRC fibration, this can only provide
us with a decomposition of the tangent sheaf into algebraically integrable foliations. The
problem is that these foliations are singular foliations on a singular variety, then we can-
not apply the general theory of (regular) foliations; to overcome this difficulty, a key
observation is that the decomposition implies that the foliations are weakly regular in
the sense of [Drub].

Methodology

In this section, let us briefly summarize the methods and main tools applied in the study
of the classification problem, especially in this thesis. In order to study the classifica-
tion of complex varieties, one needs both algebraic and complex analytic methods. The
technical core of algebraic methods is the Hodge Theory, whose modern version has been
totally rewritten by Pierre Deligne in terms of homological algebra and largely devel-
oped by Morihiko Saito from the viewpoin t of mixed Hodge modules. All the vanishing
theorems and positivity results of direct images can be deduced from the Hodge The-
ory. The application of analytic methods to classification problem is initiated by the
works of Yum-Tong Siu, Shing-Tung Yau and Jean-Pierre Demailly. The central idea is to
study the singular metrics on vector bundles as well as the multiplier ideals associated to
them, e.g. the Hodge metric on the direct image of the relative canonical bundle and the
(singular) Kähler-Einstein metrics on (the tangent bundle of the regular locus of) com-
plex varieties. By introducing the (semi)positivity notion for singular Hermitian metrics
on vector bundles, we can formulate and prove more general (Nadel) vanishing theo-
rems and more general (metric version of) positivity results for direct images (c.f. [PT;
HPS; DWZZ]), and thus in many cases the analytic methods can totally replace the
algebraic ones. The proof of these results relies on the (variants of) Ohsawa-Takegoshi
type extension theorems with optimal estimates, c.f. [GZb; Cao]. In order to obtain
more refined structure theorems for complex varieties, a very important ingredient is the
foliation theory, which provides a path towards uniformization type results. Neverthe-
less the classical results on foliations is not sufficient for the classification problem since
by the philosophy of MMP one needs to treat mildly singular varieties, in consequence
much effort has been made for the development of the theory of singular foliation over
(mildly) singular varieties. A paradigm of the application of this theory is the proof of
the klt version of the Beauville-Bogomolov decomposition theorem as mentioned above,
especially the work of Stéphane Druel in [Drua; Drub].





On the Iitaka conjecture Cn,m for Kähler fibre spaces

Let X be a compact complex variety and let L be a (Q-)line bundle on X, recall that the
Iitaka(-Kodaira) dimension of L, denoted by κ(X,L), is the maximum of the dimension of
the image of X̄ via the meromorphic mapping X̄d PH0(X̄,ν∗L⊗m) defined by the linear
series

∣∣∣ν∗L⊗m∣∣∣ for m ∈ Z>0 sufficiently large and divisible (if
∣∣∣ν∗L⊗m∣∣∣ = ∅ for all m ∈ Z>0

then we say that κ(X,L) = −∞), where ν : X̄! X is the normalization of X. In particular,
the Kodaira dimension of a compact complex variety X, denoted by κ(X), is the Iitaka-
Kodaira dimension of the canonical bundle of any smooth model of X, and κ(X) is known
to be the most important bimeromorphic invariant of X.

The Iitaka conjecture Cn,m , in its original form, predicts the superadditivity of the
Kodaira dimension with respect to algebraic fibre spaces (c.f. [Uen, §., Conjecture
Cn , pp. -]); more precisely, for f : X! Y a fibre space between normal projective
varieties whose general fibre is denoted by F, the conjecture Cn,m predicts that

κ(X) > κ(F) +κ(Y ).

This conjecture is intimately related to the study of birational classification of complex
algebraic varieties (the Minimal Model Program). According to the philosophy of MMP,
the conjecture Cn,m is naturally generalized to the log version, usually called Clog

n,m ; More-
over, Frédéric Campana further generalize Cn,m to the setting of geometric orbifolds,
called Corb

n,m , which is formulated in [Cam, Conjecture .] and in [Cam, Conjecture
.]. In addition, by taking into consideration the variation of the fibre space, Eckart
Viehweg also propose a stronger version of the Cn,m , called C+

n,m, which plays a role in
the study of moduli spaces.

As shown in [KMM] (resp. [Kaw]), the conjecture Cn,m (resp. C+
n,m) can be re-

garded as the consequence of the famous Minimal Model Conjecture and the Abundance
Conjecture; moreover, in virtue of the superadditivity of Nakayama’s numerical dimen-
sions (c.f. [Nak, §V..a, ..Theorem(), pp. -]), Clog

n,m follows from the so-called
generalized Abundance Conjecture (for Q-divisors), c.f. [Fuj, Remark .].

Although initially stated for projective varieties, the conjecture Cn,m , as well as the
MMP and the Abundance, are considered as still hold for complex varieties in the Fujiki
class C (c.f. [Fuj; Cam; HP; CHP; Fuj]); nevertheless they do not hold true in
general for non-Kähler compact complex varieties, c.f. [Uen, Remark ., p. ] for
a counterexample. As mentioned above, one of the main results of this thesis is to prove
the klt Kähler version of Clog

n,m in two important special cases and further generalize the
second one to the geometric orbifold setting.

The conjecture Cn,m is already known in lower dimensions (for example: dimX 6 6,
[Bir]; dimY = 1, [Fuj; Kaw]; dimY = 2, [Kaw; Vie; Cao]). As for higher
dimensions, it has been proved, by using the method of positivity of direct images devel-
oped by Phillip Griffiths, Takao Fujita, Yujiro Kawamata, Eckart Viehweg, Bo Berndtsson,
Mihai Păun, Shigeharu Takayama, etc., in the following three important cases:

. Y is of general type (Kawamata [Kaw]; Viehweg [Vie]; Campana [Cam], in
the geometric orbifold setting);

. there exists an integerm > 0 such that detf∗(K⊗mX/Y ) is big on Y , i.e. κ(Y ,detf∗(K⊗mX/Y )) =
dimY (Viehweg [Vie]);

. Y is an Abelian variety (Cao & Păun [CP], the klt version).

In this thesis I treat the Kähler (log or orbifold) version of the above three cases.
Theorem A(I) generalizes [Vie, Theorem II], which is intimately related to C+

n,m (c.f.
[Vie] for more details; this thesis, however, will not pursue in this direction); while
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Part (II) generalizes [CP, Theorem .] and it will be further generalized to the setting
of geometric orbifolds, in other word, we will prove Corb

n,m for f when Y is a complex torus.
Moreover, by following the same strategy of the proof of Part (I), we recover the result

that klt Kähler version of Clog
n,m holds for f : (X,∆)! Y when Y is of general type, which

generalizes [Kaw, Theorem ]; we also further generalize this result to the geometric
orbifold setting. Let us remark that the general (log canonical) version of Corb

n,m for Y of
general type (in the orbifold sense) has already been proved in [Cam]; the proof is
based on a weak positivity result for direct images of twisted pluricanonical bundles, for
which [Cam] only proves the projective case, and gives some hints for the Kähler case;
it is established in this generality in [Fuj].

Now let us explain the strategy of the proof of Theorem A. Generally speaking, as in
the mainstream of works on Cn,m (among others, [Fuj; Kaw; Kaw; Vie; CP;
Fuj]), our proof is based on the positivity of relative pluricanonical bundles and of
their direct images.

The key ingredient of the proof of Part (I) of Theorem A is the positivity of the relative
m-Bergman kernel metric for Kähler fibre spaces, which is proved by Junyan Cao in
[Cao] by applying the Ohsawa-Takegoshi extension theorem with optimal estimate for
Kähler fibre spaces (c.f. Theorem ..) also obtained in [Cao] (c.f. also [GZa]), and
states as follows (c.f. Theorem ..):

Let f : X ! Y be a Kähler fibre space between complex manifolds and let
(L,hL) be holomorphic line bundle on X endowed with a singular Hermitian
metric whose curvature current is positive. Suppose that on the general fibre
of f there exists a section of K⊗mX/Y ⊗ L satisfying the L2/m-integrability condi-

tion for somem, then the relativem-Bergman kernel metric h(m)
X/Y,L on K⊗mX/Y ⊗L

has positive curvature current.

With the help of this positivity result, Part (I) of Theorem A, as well as the klt Kähler
version of Clog

n,m for general type bases can both be deduced from (a global version of) the
Ohsawa-Takegoshi type extension (Theorem ..) as follows:

• First by the useful Lemma .., we can reduce the proof of the addition formula
to that of the non-vanishing of the (twisted) relative pluricanonical bundle, up to
adding an ample line bundle from the base.

• If Y is of general type in the orbifold sense, the non-vanishing result mentioned
above follows easily from the Ohsawa-Takegoshi type extension (Theorem ..) in
contrast to the proof in [Vie; Cam; Fuj], where such non-vanishing results
are deduced from the weak positivity of the direct images. Let us remark that: by
generalizing the weak positivity theorem for f Kähler fibre space and for ∆ log
canonical, the general (log canonical) version is proved in [Cam; Fuj].

• In the situation of Part (I) of Theorem A, the proof of this non-vanishing result
follows the same strategy, but requires an extra effort to establish a comparison
theorem between the determinant of the direct image and the canonical bundle of
X, see Theorem .., which is a Kähler version of [CP, Theorem .].

The analytic proof given above does not explicitly involve any positivity result of direct
images while it has the drawback of not being able to tackle the log canonical case.

Now we turn to the proof of Part (II) of Theorem A, for which we follow step by step
the same argument in [CP]. It is based on the positivity of the canonical L2 metric on
direct images sheaves (c.f. Theorem ..) which is stated as following:
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Let f : X ! Y be a Kähler fibre space between complex manifolds and let
(L,hL) be a holomorphic line bundle on X endowed with a semipositively
curved singular Hermitian metric. Then the canonical L2-Hermitian met-
ric gX/Y,L on the direct image sheaf f∗ (KX/Y ⊗L⊗J (hL)) is a semipositively
curved singular Hermitian metric which satisfies the L2 extension property.

The main strategy for the proof of the above positivity result is already implicitly com-
prised in [HPS], and the result is explicitly shown in [DWZZ] by proving a more
general positivity theorem for singular Lp-Finsler metrics on direct images. In fact, this
result is a consequence of the Ohsawa-Takegoshi extension theorem with optimal esti-
mate obtained in [GZa] and generalized to Kähler case by [Cao] (c.f. [ZZ] for
an alternative proof); the new feature is the L2 extension property, which generalizes
the well-known property of O that a L2 holomorphic function extends across any ana-
lytic subset (compare this with the "minimal extension property" in [HPS, Definition
.]). By combining the above positivity result of the canonical L2 metric on direct im-
ages with the positivity of the relativem-Bergman kernel metric and by using the explicit
construction of the relativem-Bergman kernel metric to get rid of the multiplier ideal (as
in [CP, §, p.]), we obtain the following positivity theorem for direct images of
twisted pluricanonical bundles, which serves as a key ingredient of the proof of Theorem
A(II):

Theorem D. Let f : X ! Y a Kähler fibre space with X and Y complex manifolds. Let ∆ be
an effective Q-divisor on X such that the pair (X,∆) is klt. Then for any integer m > 0 such
that m∆ is an integral divisor, the torsion free sheaf

Fm,∆ := f∗
(
K⊗mX/Y ⊗OX(m∆)

)
admits a canonical semi-positively curved singular Hermitian metric g(m)

X/Y,∆ which satisfies the
L2 extension property.

Historically, the study of the positivity of direct images of (twisted) (pluri)canonical
bundle(s) is initiated by the works of Phillip Griffiths on the variation of Hodge struc-
tures in the s, and is pursued by Fujita in [Fuj] and by Kawamata in [Kaw]; after-
wards the study splits into two (related and complementary) main streams: the Hodge-
theoretical aspect is further developed by Viehweg in the framework of weak positivity
by algebro-geometric methods, while the curvature aspect is exploited by Bo Berndtsson,
Mihai Păun and Shigeharu Takayama (among others) by complex-analytic methods and
by introducing the notion of (semipositively curved) singular Hermitian metrics. The
results mentioned above follow the philosophy of the latter stream. Let us remark that
for a torsion free sheaf on a (quasi-)projective variety, the existence of a semi-positively
curved singular Hermitian metric implies the weak positivity, while the reciprocal im-
plication is not yet known (it is in fact a singular version of Griffiths’s conjecture). The
advantage to have such a metric is that: in case that the determinant line bundle is trivial,
one can further deduce, by using the L2 extension property, that this torsion free sheaf
is a Hermitian flat vector bundle (c.f. Theorem ..). In this way we obtain a stronger
regularity and our proof of Theorem A(II), like [CP], leans on this regularity.

As a corollary of Theorem D, one finds that the induced metric detg(m)
X/Y,∆ on the de-

terminant bundle detFm,∆ has positive curvature current. Now let Y = T be a complex
torus; by an induction argument we can further assume that T is a simple torus, that is,
containing no non-trivial subtori. Then by a structure theorem for pseudoeffective line
bundles on complex tori [CP, Theorem .] we have the following dichotomy accord-
ing to the sign of detFm,∆:
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• there is a integer m > 0 sufficiently large and divisible such that detFm,∆ is ample;

• for every m sufficiently large and divisible, detFm,∆ is numerically trivial.

Apparently the first case falls into the situation of the Theorem A(I). Hence we only
need to tackle the second case, where one can use the L2 extension property to further
conclude that (Fm,∆ , g

(m)
X/Y,∆) is a Hermitian flat vector bundle. Furthermore, by a standard

argument which dates back to Yujiro Kawamata, we are reduced to the case κ(X,KX+∆) 6
0, i.e. it is enough to prove that κ(F,KF +∆F) > 1 implies κ(X,KX +∆) > 1. This reduction
relies on the following a log Kähler version of [Kaw, Theorem ], which follows from
[Cam, Theorem .] or [Fuj, Theorem.] (or Theorem .. for the klt case):

Theorem E. Let X be a compact Kähler manifold. Suppose that there is an effective Q-divisor
∆ on X such that (X,∆) is log canonical and that κ(X,KX+∆) = 0 (i.e. X is bimeromorphically
log Calabi-Yau). Then the Albanese map albX : X! AlbX of X is a fibre space.

The proof of this theorem will be given in §., it is similar to that of [Kaw]. In fact,
when ∆ = 0 and X projective, the theorem is proved in [Kaw]; for ∆ = 0 and X Kähler
a proof is also sketched in [Kaw, Theorem ], but does not contain enough details. In
virtue of [Fuj, Theorem .] (or Theorem .. for the klt case) one can easily obtain
Theorem E by following the strategies of [Kaw], and it is exactly in this way our proof
in §. proceeds. Let us remark that a similar result with ∆ = 0 for special varieties in
the sense of Campana is also stated in [Cam] where the proof is sketched based on
[Kaw].

Now we are reduced to show that κ(F,KF + ∆F) > 1 implies that κ(X,KX + ∆) > 1.
Fm,∆ being Hermitian flat, it is given by a unitary representation ρm of the fundamen-
tal group of T . The group π1(T ) being Abelian, this representation is decomposed into
1-dimensional sub-representations. If the image of ρm is finite, then one can use the
parallel transport to extend pluricanonical sections on F to X; if the image of ρm is infi-
nite, then a fortiori κ(X,KX +∆) > 1 by the following pluricanonical klt Kähler version of
the structure theorem on cohomology jumping loci à la Green-Lazarsfeld-Simpson (c.f.
[GL; Sim]), which is another key ingredient of the proof of Theorem A(II).

Theorem F. Let g : X ! Y be a morphism between compact Kähler manifolds. Let ∆ be an
effective Q-divisor on X such that (X,∆) is a klt pair. Then for every m > 0 such that m∆ is an
integral divisor and for every k > 0, the cohomology jumping locus

V 0
k

(
g∗

(
K⊗mX ⊗OX(m∆)

))
:=

{
ρ ∈ Pic0(Y )

∣∣∣ h0(Y ,g∗(K⊗mX ⊗OX(m∆))⊗ ρ) > k
}

is a finite union of torsion translates of subtori in Pic0(Y ).

The study of cohomology jumping loci was initiated by the works of Green-Lazarsfeld
[GL; GL], which assure that every component of cohomology jumping loci is a trans-
late of a subtorus, and is further developed by Carlos Simpson in [Sim], where he
proves that these translates are torsion translates. Recently, the main result of [Sim]
is generalized by Botong Wang to the Kähler case in [Wana], where he treats the case
g = idX , m = 1 and ∆ = 0 in the statement of Theorem F and this is the starting point of
our proof of Theorem F. In fact, when g = idX and X projective, the proof of the theorem
is already implicitly comprised in [CKP] although they only explicitly state and prove
in [CKP] a result corresponding to our Corollary .. with X smooth projective and
(X,∆) log canonical by using [Sim]; we thus follow the strategy in [CKP] to deduce
Theorem F from the basic case treated in [Wana, Corollary .]. Notice that [Wana]
and hence our Theorem F require that X is "globally" Kähler; by contrast, Theorem D
holds for any Kähler fibre space (X is only assumed to be locally Kähler over Y ). Let us
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remark that in the hypothesis of Clog
n,m it is essential to suppose that X is globally Käh-

ler, in fact [Uen, Remark ., p. ] provides an example of a Kähler fibre space for
which Cn,m does not hold.

Let us explain how to finish the proof of Theorem A(II) by using Theorem F. By
following the argument in [CP] one easily deduces from Theorem F (c.f. Corollary
..):

• KX +∆ is the most effective Q-line bundle in its numerical class.

• If κ(X,KX +∆) = κ(X,KX +∆+L) = 0 for some numerically trivial (Q-)line bundle L,
then L is a torsion point in Pic0(X).

Now the proof of Theorem A(II) can be finished as follows: if Im(ρm) is infinite, by the
decomposition of Fm,∆ one sees that KX +∆ has non-negative Kodaira dimension up to
twisting a non-torsion numerically trivial (Q-)line bundle, hence the first point above
shows that κ(X,KX + ∆) > 0; moreover, if κ(X,KX + ∆) = 0 then the second point will
lead to a contradiction, hence a fortiori κ(X,KX + ∆) > 1, thus we finish the proof of
Theorem A. As a by-product of the first point above, we can prove the Kähler version
of the (generalized) log Abundance Conjecture in the case of numerical dimension zero
(c.f. Theorem ..) by using the divisorial Zariski decomposition obtained in [Bou]
(c.f.[Bou, Definition .]) .

Let us remark that one can follow the same strategies in [CP, §] to prove more
generally that the Clog

n,m is true if detFm,∆ is numerically trivial for some m ∈Z>0 (i.e. the
Kähler version of [CP, Theorem .]) by using the remarkable result of Zuo in [Zuo,
Corollary ]. In this thesis, however, we will not further pursue in this direction.

Finally by using an induction argument and by applying the results already obtained
we generalize Part (II) of Theorem A to the geometric orbifold setting:

Theorem G. Let f : X ! T be a fibre space with X compact Kähler manifold and T complex
torus and let F be the general fibre of f . Let ∆ be an effective Q-divisor on X such that (X,∆)
is klt. Then

κ(X,KX +∆) > κ(F,∆F) +κ(T ,Bf ,∆).

where ∆F := ∆|F and Bf ,∆ denotes the branching divisor on T w.r.t f and ∆.

In the theorem above, the branching divisor is defined as following: for any analytic
fibre space f : (X,∆) ! Y between compact complex manifolds with ∆ an effective Q-
divisor on X, the branching divisor Bf ,∆ (with respect to f and ∆) is defined as the most
effective Q-divisor on Y such that f ∗Bf ,∆ 6 Rf ,∆ modulo exceptional divisors, where the
ramification divisor (w.r.t. f and ∆) is defined as Rf ,∆ := Rf +∆ and

Rf :=
∑

f (W ) is a divisor on Y

(RamW (f )− 1)W

with RamW (f ) denoting the ramification (in codimension 1) index of f along W . Pre-
cisely, assume the singular locus of f is contained in a (reduced) divisor ΣY ⊆ Y and
write

f ∗ΣY =
∑
i∈I
biWi ,

where Wi are prime divisors on X, then for i ∈ Idiv where

Idiv := set of indices i ∈ I such that f (Wi) is a divisor on Y ,
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we have bi = RamWi
(f ) and thus

Rf =
∑
i∈Idiv

(bi − 1)Wi .

Let us remark that the above definition of Bf ,∆ coincides with [Cam, Definition .]
(orbifold base) when ∆ is lc on X, c.f. §..

On the structure of klt projective varieties with nef anticanonical
divisors

A general philosophy in the study of uniruled varieties is that a variety whose anticanon-
ical bundle or the tangent bundle admits certain positivity, should exhibit certain bira-
tional rigidity, e.g. the canonical fibrations associated to them (the Albanese maps and
the MRC fibrations) should have some rigid structure (typically, being locally constant
fibration). This is inspired by the fundamental works of Shigefumi Mori [Mor] and
of Siu-Yau [SY], proving the conjecture of Hartshorne-Frankel; their works character-
ize the projective spaces in terms of the amplitude of the tangent bundle (also true in
positive characteristics), or equivalently, the positivity of the holomorphic bisectional
curvature (also true for compact Kähler manifolds). An analytic generalization of Mori-
Siu-Yau’s result is obtained by Ngaiming Mok in [Mok] for compact Kähler manifolds
with nonnegative holomorphic bisectional curvature: he proved that the universal cov-
ers of these manifolds are decomposed into products of Cq, of projective spaces and of
(irreducible) compact Hermitian symmetric spaces of rank > 2. In order to establish the
algebro-geometric counterpart of the main result of [Mok], considerations are given
to compact Kähler manifolds with nef tangent bundles, whose structures are settled by
[DPS], modulo the Campana-Peternell conjecture (it conjectures that smooth Fano va-
rieties with nef tangent bundle are rationally homogeneous), by showing that the Al-
banese map is a locally constant fibration with Fano fibres. Then attention are further
paid to smooth projective varieties (or more generally, compact Kähler manifolds) with
nef anticanonical bundles. By MMP methods, the 3-dimensional case is extensively stud-
ied by Thomas Peternell and his collaborators in [PS; BP]. Recently the structure
theorem for these varieties is established in [Cao; CH] by applying the method of
positivity of direct images and by using the results in the previous works [Zha; Pău;
Pău; Zha; LTZZ]; moreover, the result is extended to klt pairs by [CCM] when
the variety is smooth projective. According to the general philosophy of MMP, it is then
natural to extend this structure theorem to the mildly singular case, as stated in Conjec-
ture .

In order to prove Conjecture  we follow the idea of [Cao; CH] and intend to
show:

. The Albanese map albX : Xd AlbX of X is a (everywhere defined) locally constant
fibration;

. The fundamental group of Xreg is of polynomial growth, equivalently (by [Gro,
Main Theorem]), π1(Xreg) is virtually nilpotent (i.e. admits a nilpotent subgroup of
finite index);

. If π1(Xreg) = {1} then the maximal rationally connected (MRC) fibration of X is
everywhere defined and induces a decomposition of X into a product of a rationally
connected variety and of a projective variety with trivial canonical divisor.
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The Points  and  above will be shown in this thesis (c.f. Theorem B and Theorem
C) while the Point  seems quite difficult, at least the method in [Pău] do not apply
to this case. Apart from trying to prove the Point , there is also hope that one can
directly prove the Conjecture  without studying the fundamental group (or at least by
proving something much weaker on the fundamental group), c.f. [CCM] and §.. As
a consequence of Theorem B and Theorem C we can reduce Conjecture  to the following
Conjecture . The detailed proof of this reduction will be given in §...

Conjecture . Let X be a normal projective variety of semi-Fano type. Then the fundamental
group of Xreg is of polynomial growth.

As to be shown in §., this conjecture extends the Gurjar-Zhang conjecture on the
finiteness of the fundamental group of the smooth locus of varieties of Fano type (c.f.
[GZ; GZ; Zha; Sch; Xu; GKP; TX]), which is recently settled by L.Braun
in [Bra]. It can also be regarded as a natural generalization of the following folklore
conjecture (c.f. [GGK]):

Conjecture . Let X be a klt projective variety with trivial canonical divisor and vanishing
augmented irregularity. Then the fundamental group of Xreg is finite.

We will see in §. that Conjecture  implies Conjecture . In the sequel let us briefly
explain the ideas of the proof of Theorem B and Theorem C:

• First, an easy observation shows that [Cao, ..Proposition] is still valid even the
total space is singular (c.f. Proposition ..), hence the problem of proving that a
fibre space is a locally constant fibration can be reduced to proving that the direct
images of the powers of a relative ample line bundle are numerically flat.

• By [CH, Proposition .] (c.f. Proposition ..) the proof of the numerical flat-
ness of a reflexive sheaf can be divided into two parts: first, prove that the direct
image admits weakly semipositive singular Hermitian metrics; second, prove that
the determinant bundle of the direct image sheaf is numerically trivial. The first
part can be deduced from the general positivity result of direct image sheaves (c.f.
[CCM, Theorem .] or Corollary ..) by using the fact that −KX is nef, c.f.
[CCM, Lemma .] or Proposition ..; while the second part can be estab-
lished, at least birationally, with the help of the main result of [Zha] (Proposition
..), c.f. Proposition ...

• By using the method of [LTZZ] we can prove that the Albanese map of X is flat,
then we can further improve the aforementioned birational version of the numeri-
cal flatness result and show that the direct image of powers of some relatively very
ample line bundle is numerically flat; by Proposition .. this proves Theorem B .

• As for Theorem C, a similar yet much more subtle argument as that in [CH, §.C]
applied to the MRC fibration ofX shows that birationallyX can be decomposed into
a product, which gives rise to a splitting of TX into direct sum of two algebraically
integrable foliations, one having rationally connected Zariski closures of leaves, the
other having trivial canonical class. However, X being singular and these foliations
being singular, one cannot directly apply [Hör, ..Corollary]. To overcome
this difficulty, we observe that the decomposition implies that the two foliations
are weakly regular, then we can use the related results in [Dru; Drub] to show
that, up to a Q-factorial terminal model, the MRC fibration is everywhere defined.
In this situation, we can use a similar argument as the one in the proof of Theorem
B to show the numerical flatness of the direct images up to a base change, and
finally [Drua, Lemma .] permits us to conclude.
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Organization of the thesis

The thesis is organized as following: in Chapter  we recall some preliminary results
which will be used in the proof of the main theorems; and Chapter  is devoted to the
development of the main tools needed in this thesis, as mentioned above in the section
of Methodology, especially, Theorem D is proved in §.. After this, the last two chapters
are devoted to the proof of the main results of the thesis:

• In Chapter  we consider the Iitaka conjecture Cn,m for Kähler fibre spaces, and
Theorem A is proved; in particular, Theorem A(I) is proved in §., Theorem E is
proved in §., in §. we show Theorem F and in §. we conclude the proof of
Theorem A by combining the previous results, finally the proof of Theorem G is
given in §..

• In Chapter  we study klt projective varieties with nef anticanonical divisors; in
particular, Theorem B and Theorem C are proved respectively in §. and §.,
and in §. we study the fundamental groups of the smooth locus of these vari-
eties, especially we prove that the Conjecture  can be reduced to the Conjecture .
The §. is added after all the other parts of Chapter  has been finished, where we
discuss the foliations (in particular the algebraically integrable ones) with numer-
ically trivial canonical class by following the suggestions of Stéphane Druel and
give an alternative proof of Theorem C.
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Introduction (Français)

Soit k un corps algébriquement clos, un des problèmes centraux en géométrie algébrique
est de classifier les variétés algébriques sur k à isomorphisme près ; si k = C, on peut
aussi considérer plus généralement le problème de classification pour les espaces analy-
tiques complexes (irréductible et réduit, en particulier ceux dans la classe C de Fujiki).
Cette étude est initiée, d’une part par Bernhard Riemann, Henri Poincaré, etc. dans leurs
travaux sur l’uniformisation des surfaces de Riemann (courbes algébriques) du point de
vue analytique ; d’une autre part par l’École italienne (Guido Castelnuovo, Federigo En-
riques, Francesco Severi, etc.) sur les modèles minimaux des surfaces algébriques du
point de vue algébrique. Dans le cadre des mathématiques modernes, leurs idées ont
été davantage développées et de nombreuses avancées ont été réalisées au cours du siècle
dernier, surtout les travaux remarquables de Kunihiko Kodaira, David Mumford, Shigeru
Iitaka, Kenji Ueno, Shigefumi Mori, Eckart Viehweg, Yujiro Kawamata, János Kollár, Vya-
cheslav Shokurov, etc.. Comme fruit de ces travaux, le principe du problème de classifica-
tion est établi et, selon ce principe, le problème peut se diviser en deux aspects, à savoir,
l’aspect de la classification birationelle / biméromorphe et l’aspect de la construction de
(une bonne compactification de) l’espace des modules.

Cette thèse se concentre principalement sur le premier aspect du problème de classifi-
cation, sur lequel de grand progrès ont été faits récemment avec les travaux de [BCHM ;
BDPP]. Dans [BCHM] le programme des modèles minimaux (abbr. MMP) est presque
établi en suivant les idées de Vyacheslav Shokurov, tandis que [BDPP] fait un progrès
significatif vers l’abondance en décrivant le cône positif des diviseurs pseudoeffectifs. En
combinant ces résultats, on voit que les variétés projectives lisses (ou légèrement singu-
lières) peuvent se diviser en deux classes (birationellement stables) :

• les variétés à diviseur canonique pseudoeffectif, pour lesquelles le MMP aboutit
à un modèle minimal (c’est-à-dire, une variété légrèrement singulière à diviseur
canonique nef) ;

• les variétés uniréglées, celles pour lesquelles le MMP aboutit à une fibration de
Mori (une fibration dont la fibre générale est de Fano à nombre de Picard 1) sous le
MMP.

La philosophie générale dans l’étude des variétés minimales / variétés uniréglées est
d’étudier les fibrations canoniques qui leur sont associées, ce qui réduit cette étude à
étudier la base et la fibre générale. Les résultats principaux de cette thèse sont développés
le long ces deux grandes lignes, comme précisés ci-dessous.

Pour les variétés minimales, la plus importante fibration associées est la fibration
d’Iitaka-Kodaira définie par un multiple suffisamment grand du diviseur canonique,
dont la fibre est de dimension de Kodaira dimension 0 et qui, selon la conjecture d’abon-
dance, devrait être un morphisme définie partout (au lieu d’une application rationnelle
/ méromorphe) vers une variété canoniquement polarisée (un modèle canonique). Bien
que la conjecture d’abondance reste encore largement ouverte, beaucoup de progrès ont
été faits dans la direction d’un corollaire important, connu sous le nom « conjecture Cn,m





d’Iitaka », qui prédit la sur-additivité de la dimension de Kodaira par rapport aux fibra-
tions algébriques :

Conjecture  (Conjecture Cn,m d’Iitaka, [Uen, §., Conjecture Cn, pp. -]). Soit
f : X! Y une fibration algébrique entre variétés projective lisses avec dimX = n et dimY =m,
et soit F la fibre générale de f , alors nous avons

κ(X) > κ(Y ) +κ(F).

Rappelons que la dimension de Kodaira κ(X) d’un espace analytique complexe X est
définie comme étant la dimension de l’image de la fibration d’Iitaka-Kodaira mentionnée
ci-dessus, ou de façon équivalente, l’unique entier κ ∈ {−∞,0,1, · · · ,dimX} tel qu’il existe
des constantes C1 ,C2 > 0 indépendantes de m satisfaisant l’inégalité

C1 ·mκ 6 h0(X,K⊗mX ) 6 C2 ·mκ,

pour tout m suffisamment grand et divisible. Récemment un cas spécial important de la
conjecture Cn,m a été démontré par Junyan Cao and Mihai Păun [CP]. Tandis qu’une
grande partie du MMP reste inconnue pour les variétés kählérienne, en utilisant en pro-
fondeur le développement récent des méthodes analytiques, en particulier les théorème
d’extension du type Ohsawa-Takegoshi obtenus par Qi’an Guan et Xiangyu Zhou dans
[GZa, Theorem .] et généralisés Cao dans [Cao, Theorem .] (c.f. [ZZ] pour
une preuve alternative), j’arrive à étendre le résultat principal de [CP] (ainsi que l’un
des résultats principaux de [Vie]) au cas kählérien :

Théorème A. Soit f : X! Y une fibration entre variétés kählérienne dont la fibre générale est
dénotée par F, et soit ∆ un Q-diviseur effectif sur X tel que (X,∆) soit Kawamata log terminal
(abbr. klt). Supposons qu’une des conditions suivantes est satisfaite :

(I) Il existe un entier m > 0 tel que m∆ est un diviseur entier et que le fibré déterminant
detf∗(K⊗mX/Y ⊗OX(m∆)) est gros sur Y ;

(II) Y est un tore complexe.

Alors
κ(X,KX +∆) > κ(F,KF +∆F) +κ(Y ),

où ∆F := ∆|F .

La preuve du théorème A repose sur la positivité des images directes des fibrés pluri-
canoniques relatifs tordus ([DWZZ, Theorem .], c.f. §.. pour une preuve alterna-
tive) et un résultat du type Green-Lazarsfeld-Simpson sur les lieux de sauts de cohomo-
logie ([Wan, Theorem D]). Dans [DWZZ] un résultat plus général sur la positivité
des métriques Lp-finslériennes sur les images directes des fibrés pluricanoniques rela-
tifs tordus est établie en utilisant une caractérisation nouvelle des fonctions psh ; dans
[Wan] je donne une démonstration pour les métrique L2-hermitienne, basée sur le
théorème d’extension d’Ohsawa-Takegoshi avec estimation optimale obtenu par Qi’an
Guan et Xiangyu Zhou dans [GZa] et généralisé par Cao dans [Cao] (une preuve
alternative est donnée dans [ZZ]). Rappelons que pour un fibré vectoriel E sur une va-
riété complexe, une métrique hermitienne singulière sur E est donnée par un famille me-
surable de fonctions hermitiennes sur chaque fibre de E qui est non-singulière presque
partout ; sur l’image directe des fibrés pluricanoniques relatifs (tordus), il y a une mé-
trique L2-hermitienne naturelle, qui est définie par l’intégrale fibre à fibre des n-formes
différentielles tordues (n désigne la dimension relative de la fibration).
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Dans l’autre direction, c-à-d., dans l’étude des variétés uniréglées, au lieu d’étudier
la fibration d’Iitaka-Kodaira (ce qui ne fournit aucune information pour variétés uniré-
glées), on étudie l’application d’Albanese et la fibration rationnellement connexe maxi-
male (MRC). La philosophie générale, inspirée par les travaux fondamentaux de Shige-
fumi Mori [Mor], est que, quand le fibré anticanonique ou le fibré tangent d’une variété
admet certaine positivité, ces fibrations canoniques devraient avoir une structure rigide
(typiquement, être une fibration localement constante). Pour une variété projective à sin-
gularités log canonique (lc), si son diviseur anticanonique est ample (le cas des variétés
de Q-Fano) les fibrations sont toutes triviales par les travaux classiques de Kollár-Mori-
Miyaoka [KMM] et de Frédéric Campana [Cam] (et par Qi Zhang dans [Zha] pour
le cas singulier) ; il est donc naturel de poser la même question pour les variétés projective
à diviseur anticanonique nef. Rappelons qu’un diviseur de Cartier ou un fibré en droites
sur une variété projective est dit nef si son nombre d’intersection avec toute courbe est
> 0, ou de façon équivalente, s’il admet des métriques hermitiennes lisses dont la cour-
bure a une partie négative arbitrairement petite (donc on peut étendre cette notion à tout
espace analytique complexe compact, c.f. [DPS]). Dans le cas lisee, les études de l’ap-
plication d’Albanese et de la fibration MRC sont menées à leurs termes dans [Cao] et
[CH] respectivement. Dans ces travaux il est établi que pour une variété projective à fi-
bré anticanonique nef, les deux applications rationnelles mentionnées ci-dessus sont des
fibrations localement constante (définies partout), ce qui implique qu’une variété pro-
jective lisse à diviseur anticanonique nef admet une décomposition du type Beauville-
Bogomolov : le revêtement universel d’une telle variété peut être décomposé en un pro-
duit de C

q, des variétés de Calabi-Yau, des variétés hyperkählériennes et d’une variété
rationnellement connexe (les trois premiers facteurs sont donnés par la décomposition
de Beauville-Bogomolov classique). Selon la philosophie du MMP, on se propose de géné-
raliser ce théorème de structure au cas singulier, c’est à dire de démontrer la conjecture
suivante :

Conjecture . Soit X une variété projective à singularités klt et supposons que le diviseur
anticanonique −KX de X est nef. Alors quitte à remplacer X par un revêtement quasi-étale,
l’application d’Albanese et la fibration MRC de X induisent une décomposition du revêtement
universel X̃ de X en un produit

X̃ 'C
q ×Z ×F ,

où q désigne l’irrégularité augmentée deX, Z est une variété projective klt à diviseur canonique
trivial et F est une variété rationnellement connexe.

Comme dans le cas lisse, en appliquant la version singulière (klt) de la décomposi-
tion de Beauville-Bogomolov établie par les travaux successifs [GKP ; Drua ; GGK ;
HP], la variété Z ci-dessus peut être décomposée davantage en un produit des variétés
projectives de Calabi-Yau par des variétés irréductibles symplectiques projectives. Ce-
pendant, assez différent du cas des variétés à diviseur canonique numériquement trivial,
même dans le cas lisse on ne peut en général pas obtenir une structure de produit à re-
vêtement (quasi-)étale fini près pour les variétés à diviseur anticanonique nef à cause de
l’apparition du facteur rationnellement connexe, par exemple il y a des surfaces réglées
au-dessus d’une courbe elliptique qui ne peuvent pas se décomposer en un produit de la
courbe elliptique par P1 à revêtement étale fini près (c.f. [Drub, Example ., Example
.], [EIM, Example .]).

Dans cette thèse la conjecture  est partiellement établie en généralisant les résultats
principaux de [Cao] et de [CH] au cas singulier klt. Rappelons qu’une variété pro-
jective normale X est dite du type Fano (resp. du type semi-Fano), s’il existe un Q-diviseur
∆ sur X tel que la paire (X,∆) soit klt et que le diviseur anticanonique tordu soit ample
(resp. nef), c.f. [PS, Definition ., Lemma-Definition .]. On montre les théorèmes
suivants concernant la structure des variétés du type semi-Fano :





Théorème B. Soit X une variété projective normale du type semi-Fano. Alors son applica-
tion d’Albanese albX : X d AlbX est une fibration localement constante (définie partout), i.e.
albX est une fibration localement triviale telle que X est isomorphe au produit du revêtement
universel de AlbX par la fibre de albX quotienté par une action diagonale de π1(AlbX).

Théorème C. Soit X une variété projective normale du type semi-Fano dont le lieu lisse Xreg
est simplement connexe. Alors la fibration MRC de X induit une décomposition de X en un
produit F ×Z avec F rationnellement connexe et KZ ∼ 0.

Remarquons que la trivialité locale (aussi connue sous le nom « iso-trivialité », surtout
en géométrie algébrique) de l’application d’Albanese de X a été déjà obtenue dans le
travail de Zsolt Patakafalvi et Maciej Zdanowicz [PZ, Corollary . (Corollary A.)]
sous l’hypothèse supplémentaire que X est Q-factorielle. La stratégie dans leur article
est de montrer que les fibres (fermées) sont toutes isomorphes en prouvant la platitude
numérique des images directes sur les courbes intersections complètes. Dans cette thèse,
on peut utiliser les méthodes analytiques pour démontrer plus généralement la platitude
numérique « globale » des images directes, et donc peut obtenir le résultat plus fort que
l’application d’Albanese est non seulement localement triviale mais aussi une fibration
localement constante.

L’idée de base de la preuve de ces deux théorèmes est la même que [Cao ; CH] :
étudier la positivité des images directes des puissances d’un fibré en droites relativement
très ample, et prouver qu’elles sont numériquement plates à un twist près. Pour l’applica-
tion d’Albanese, on peut conclure directement comme l’application est définie partout ;
quant à la fibration MRC, ceci nous fournit seulement une décomposition du faisceau
tangent en feuilletages algébriques. Le problème est que ces feuilletages sont singuliers
sur une variété projective singulière, en conséquence, on ne peut pas appliquer direc-
tement la théorie générale des feuilletages (réguliers) ; afin de surmonter cette difficulté,
une observation clé est que les feuilletages sont faiblement réguliers au sens de [Drub].

Méthodologie

Dans cette section, récapitulons les méthodes et les outils principaux appliqués à l’étude
du problème de classification, surtout ceux dans cette thèse. Afin d’étudier le problème
de classification pour les espaces analytiques complexes, on a besoin à la fois des mé-
thodes algébriques et analytiques complexes. Le cœur technique des méthodes algé-
briques est la théorie de Hodge, dont la version moderne a été totalement réécrite par
Pierre Deligne en termes d’algèbre homologique et largement développée par Morihiko
Saito du point de vue des modules de Hodge mixtes. Tous les théorèmes d’annulation
et résultats de positivité des images directes peuvent se déduire de la théorie de Hodge.
L’application des méthodes analytiques au problème de classification est initiée par les
travaux de Yum-Tong Siu, Shing-Tung Yau et Jean-Pierre Demailly. L’idée centrale est
d’étudier les métriques singulières sur les fibrés vectoriels ainsi que les idéaux multipli-
cateurs qui leur sont associés, e.g. la métrique de Hodge sur l’image directe du fibré cano-
nique relatif et les métriques de Kähler-Einstein (singulières) sur (le fibré tangent du lieu
lisse de) les espaces analytiques complexes. En introduisant la notion de (semi)positivité
pour les métriques hermitiennes singulières sur les fibrés vectoriels, on peut formuler et
prouver des théorèmes d’annulation (de Nadel) plus généraux et (la version métrique
de) des résultats plus généraux de positivité des images directes (c.f. [PT ; HPS ;
DWZZ]), et donc dans de nombreux cas les méthodes analytiques peuvent totale-
ment remplacer les méthodes algébriques. La preuve de ces résultats repose sur (des va-
riantes du) le théorème d’extension du type Ohsawa-Takegoshi à l’estimation optimale,
c.f. [GZb ; Cao]. Afin d’obtenir des théorèmes de structure plus raffinés pour les
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espaces analytiques complexes, un ingrédient très important est la théorie des feuille-
tages, qui pointe dans la direction de résultats du type uniformisation. Pourtant les ré-
sultats classiques sur les feuilletages ne suffisent pas pour le problème de classification
car la philsophie du MMP exige que l’on traite les variétés légèrement singulières, en
conséquence beaucoup d’efforts ont été faits pour le développement de la théorie des
feuilletages singuliers sur les variétés (légèrement) singulières. Un paradigme de l’appli-
cation de cette théorie est la preuve de la version klt du théorème de décomposition de
Beauville-Bogomolov mentionnée ci-dessus, en particulier le travail de Stéphane Druel
dans [Drua ; Drub].

Sur la conjecture Cn,m d’Iitaka pour les fibrations kählériennes

Soit X un espace analytique complexe compact et soit L un (Q-)fibré en droites sur X,
rappelons que la dimension d’Iitaka(-Kodaira) de L, notée par κ(X,L), est le maximum de
la dimension de l’image de X̄ via l’application méromorphe X̄ d PH0(X̄,ν∗L⊗m) définie
la série linéaire

∣∣∣ν∗L⊗m∣∣∣ pour m ∈ Z>0 suffisamment grand et divisible (si
∣∣∣ν∗L⊗m∣∣∣ = ∅

pour tout m ∈ Z>0 alors on pose κ(X,L) = −∞), où ν : X̄ ! X est la normalisation de
X. En particulier, la dimension de Kodaira d’un espace analytique complexe compact X,
notée par κ(X), est la dimension d’Iitaka-Kodaira du fibré canonique d’un modèle lisse
de X, et κ(X) est l’invariant biméromorphe le plus important de X.

La conjecture Cn,m d’Iitaka, dans sa forme originale, prédit la sur-additivité de la
dimension de Kodaira par rapport aux fibrations algébriques (c.f. [Uen, §., Conjec-
ture Cn , pp. -]) ; plus précisément, pour f : X ! Y une fibration entre variétés
projectives normales dont la fibre générale est notée par F, la conjecture Cn,m prédit que

κ(X) > κ(F) +κ(Y ).

Cette conjecture est intimement liée à l’étude de la classification birationnelle des varié-
tés algébriques (le programme des modèles minimaux). Selon la philosophie du MMP,
la conjecture Cn,m se généralise naturellement à sa version logarithmique, généralement

appelée Clog
n,m . Frédéric Campana, quant à lui, généralise davantage Cn,m au cadre des or-

bifoldes géométriques, appelée Corb
n,m , ce qui est formulée dans [Cam, Conjecture .]

et [Cam, Conjecture .]. Par ailleurs, en prenant en compte la variation de fibration,
Eckart Viehweg propose aussi une version plus forte de Cn,m , nommée C+

n,m.
La conjecture Cn,m (resp. C+

n,m) peut se voir, par [KMM] (resp. [Kaw]), comme
une conséquence des fameuses conjecture des modèles minimaux et conjecture d’abon-
dance ; de plus, en vertu de la sur-additivité de la dimension numérique de Nakayama
(c.f. [Nak, §V..a, ..Theorem(), pp. -]), Clog

n,m se déduit de ce que l’on appelle
la conjecture d’abondance généralisée (pour les Q-diviseurs), c.f. [Fuj, Remark .].

Bien qu’elle ait été initialement énoncée pour les variétés projectives, la conjecture
Cn,m , ainsi que les conjectures des modèles minimaux et d’abondance, est naturelle-
ment étendue aux espaces analytiques complexes compacts dans la classe C de Fujiki
(c.f. [Fuj ; Cam ; HP ; CHP ; Fuj]) ; pourtant ces conjectures ne sont pas vraies
pour les variétés complexes non-kählériennes, c.f. [Uen, Remark ., p. ] pour
un contre-exemple. Comme mentionné ci-dessus, un des résultats principaux dans cette
thèse est de démontrer la version kählérienne klt de Clog

n,m dans deux cas spéciaux impor-
tants et de généraliser davantage le deuxième au cadre des orbifoldes géométriques.

La conjecture Cn,m est déjà connue dans la dimension basse (par exemple : dimX 6
6, [Bir] ; dimY = 1, [Fuj ; Kaw] ; dimY = 2, [Kaw ; Vie ; Cao]). Quant aux
résultats en dimension supérieure, on montre la conjecture, en appliquant la méthode
de positivité des images directes développée par Phillip Griffiths, Takao Fujita, Yujiro
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Kawamata, Eckart Viehweg, Bo Berndtsson, Mihai Păun, Shigeharu Takayama, etc., dans
les trois cas importants suivants :

. Y est de type général (Kawamata [Kaw] ; Viehweg [Vie] ; Campana [Cam],
cadre des orbifoldes géométriques) ;

. Il existe un entier m > 0 tel que detf∗(K⊗mX/Y ) soit gros sur Y , i.e. κ(Y ,detf∗(K⊗mX/Y )) =
dimY (Viehweg [Vie]) ;

. Y est une variété abélienne (Cao & Păun [CP], la version klt).

Dans cette thèse, on traite la version (log ou orbifolde) kählérienne de ces trois cas.
Le théorème A(I) généralise [Vie, Theorem II], qui est intimement lié à C+

n,m (c.f.
[Vie] pour les détails ; cette thèse, cependant, ne poursuivra pas dans cette direction) ;
la partie (II) généralise [CP, Theorem .] et on le généralisera davantage au cadre des
orbifoldes géométriques, autrement dit, on prouve la conjecture Corb

n,m pour f quand Y est
un tore complexe.

De plus, en suivant la même stratégie de la preuve du théorème A(I), on retrouve le
résultat que la version klt kählérienne deClog

n,m est vraie pour f : (X,∆)! Y quand Y est de
type général, qui généralise [Kaw, Theorem ] ; et l’on généralisera davantage ce résul-
tat au cadre des orbifoldes géométriques. Remarquons que la version plus générale (log
canonique) de Corb

n,m pour Y de type général (au sens des orbifoldes géométriques) a été
démontrée [Cam] ; la preuve repose sur un résultat de positivité faible pour les images
directes des fibrés pluricanoniques tordus, pour lequel [Cam] seulement montre le cas
projectif, et donne quelques indications pour le cas kählérien ; ce résultat de positivité
faible est établi dans cette généralité dans [Fuj].

Expliquons maintenant la stratégie de la démonstration du théorème A. Gross modo,
comme dans le courant principal des travaux sur la conjecture Cn,m (parmi eux, [Fuj ;
Kaw ; Kaw ; Vie ; CP ; Fuj]), ma démonstration repose sur la positivité des
fibrés pluricanoniques relatifs et de ses images directes.

L’ingrédient clé dans la démonstration de la partie (I) du théorème A est la positivité
de la métrique du noyau dem-Bergman relatif pour les fibrations kählériennes, ce qui est
prouvée par Junyan Cao dans [Cao] en appliquant le théorème d’extension d’Ohsawa-
Takegoshi avec l’estimation optimale pour les fibrations kählériennes (c.f. le théorème
..) aussi obtenue dans [Cao] (c.f. aussi [GZa]), et s’énonce comme suivant (c.f. le
théorème ..) :

Soit f : X ! Y une fibration kählérienne entre variétés complexes et soit
(L,hL) un fibré en droites holomorphe sur X équipé d’une métrique hermi-
tienne singulière à courant de courbure positif. Supposons que sur la fibre
générale de f il existe une section de K⊗mX/Y ⊗ L satisfaisant la condition L2/m-
intégrabilité pour certainm, alors la métrique du noyau dem-Bergman relatif
h

(m)
X/Y,L sur K⊗mX/Y ⊗L est à courant de courbure positif.

À l’aide de ce résultat de positivité, la partie (I) du théorème A, ainsi que la version
klt kählérienne de Clog

n,m pour les bases de type général, peut se déduire (d’une version
globale) du théorème d’extension du type Ohsawa-Takegoshi (théorème ..) comme
suit :

• D’abord par l’utile lemme .., on peut réduire la preuve de la formule d’addition
à la non-annulation du fibré pluricanonique relatif tordu, quitte à ajouter un fibré
en droites ample venant de la base.
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• Si Y est de type général au sens des orbifoldes géométriques, la non-annulation
mentionnée ci-dessus se déduit facilement du théorème d’extension du type Ohsawa-
Takegoshi (théorème ..) tandis que dans [Vie ; Cam ; Fuj] de tels résultats
de non-annulation se déduisent de la positivité faible des images directes. Remar-
quons que : en généralisant le théorème de positivité faible pour f fibration kählé-
rienne et pour ∆ log canonique, la version générale (log canonique) de ce résultat
est démontré dans [Cam ; Fuj].

• Dans la situation de la partie (I) du théorème A, la démonstration de la non-annulation
suit la même stratégie, mais exige des efforts supplémentaires pour établir un théo-
rème de comparaison entre le déterminant de l’image directe et le fibré canonique
de X, voir le théorème .., qui est la version kählérienne de [CP, Theorem
.].

La preuve analytique présentée ci-dessus n’implique pas explicitement de résultat de po-
sitivité pour les images directes tandis qu’elle a l’inconvénient de ne pas pouvoir traiter
le cas log canonique.

Tournons-nous maintenant vers la démonstration de la partie (II) du théorème A, pour
laquelle l’on suit pas à pas le même argument que [CP]. Elle repose sur la positivité
de la métrique canonique L2 sur les images directes (c.f. le théorème ..) s’énonçant
comme ci-dessous :

Soit f : X ! Y une fibration kählérienne et soit (L,hL) un fibré en droites
holomorphe sur X équipé d’une métrique hermitienne singulière à courant
de courbure positif. Alors la métrique L2-hermitienne canonique sur l’image
directe f∗ (KX/Y ⊗L⊗J (hL)), dénotée par gX/Y,L, est une métrique hermitienne
singulière semipositive qui satisfait la propriété d’extension L2.

La stratégie principale pour la preuve du résultat de positivité ci-dessus a été implicite-
ment comprise dans [HPS], et le résultat a été explicitement démontré dans [DWZZ]
en prouvant un théorème de positivité plus général pour les métrique Lp-finslériennes
singulières sur les images directes. En effet, ce résultat est une conséquence du théo-
rème d’extension d’Ohsawa-Takegoshi avec estimation optimale obtenu dans [GZa] et
généralisé au cas kählérien par [Cao] (c.f. [ZZ] pour une preuve alternative) ; l’élé-
ment nouveau dans l’énoncé est la propriété d’extension L2, ce qui généralise la propriété
bien connue de O qu’une fonction holomorphe L2-intégrable s’étend à travers des sous-
espaces analytiques non-nécessairement irréductibles (comparer cette notion avec celle
de la « propriété d’extension minimale » dans [HPS, Definition .]). En combinant le
résultat ci-dessus sur la positivité pour la métrique L2 avec la positivité de la métrique
du noyau dem-Bergman relatif et en utilisant la construction explicite de la métrique du
noyau de m-Bergman relatif pour se débarrasser de l’idéal multiplicateur (comme dans
[CP, §, p.]), on obtient le théorème suivant de positivité pour les images directes
des fibrés pluricanonique relatifs tordus, qui sert d’ingrédient clé dans la démonstration
du théorème A(II) :

Théorème D. Soit f : X ! Y une fibration kählérienne avec X et Y des variétés complexes.
Soit ∆ un Q-diviseur effectif sur X tel que la paire (X,∆) soit klt. Alors pour tout entier m > 0
tel que m∆ soit un diviseur entier, le faisceau sans torsion

Fm,∆ := f∗
(
K⊗mX/Y ⊗OX(m∆)

)
admet une métrique hermitienne singulière canonique semipositive g(m)

X/Y,∆ satisfaisant la pro-
priété d’extension L2.
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Historiquement, l’étude de la positivité des images directes du fibré (pluri)canonique
(tordu) est initiée par les travaux de Phillip Griffiths sur la variation des structures de
Hodge dans les années , et est poursuivie par Takao Fujita dans [Fuj] et par Yu-
jiro Kawamata dans [Kaw] ; ensuite l’étude s’est divisée en deux courants principaux
(liés et complémentaires l’un de l’autre) : l’aspect de la théorie de Hodge est développé
davantage par Eckart Viehweg dans le cadre de la positivité faible par des méthode algro-
géométriques, tandis que l’aspect de la courbure est exploité par Bo Berndtsson, Mihai
Păun et Shigeharu Takayama (parmi d’autres) par des méthodes analytiques complexes
en introduisant la notion de métrique hermitienne singulière (semipositive). Le résul-
tat mentionné ci-dessus suit la philosophie de ce dernier courant. Remarquons que pour
un faisceau sans torsion sur une variété (quasi-)projective, l’existence d’une métrique
hermitienne singulière semipositive implique la positivité faible, mais l’implication ré-
ciproque n’est pas connue (c’est en effet une version singulière de la conjecture de Grif-
fiths). L’avantage d’avoir une telle métrique est que : au cas où le fibré déterminant est
(numériquement) trivial, on peut en déduire, en utilisant la propriété d’extension L2, que
ce faisceau sans torsion est un fibré vectoriel hermitien plat (c.f. Theorem ..). De cette
façon on obtient une régularité assez forte pour les images directe, et notre preuve du
théorème A(II), comme [CP], repose sur cette régularité.

Comme un corollaire du théorème D, la métrique induite detg(m)
X/Y,∆ sur le fibré dé-

terminant detFm,∆ a un courant de courbure positif. Soit maintenant Y = T est un tore
complexe ; par récurrence l’on peut supposer davantage que T est un tore simple, c’est-
à-dire, n’admettant aucun sous-tore non-trivial. Alors par le théorème de structure pour
les fibré en droites pseudoeffectif sur les tores complexes [CP, Theorem .] on a la
dichotomie suivante selon le signe de detFm,∆ :

• il existe un entierm > 0 suffisamment grand et divisible tel que detFm,∆ soit ample ;

• pour tout m suffisamment grand and divisible, detFm,∆ est numériquement trivial.

Évidemment le premier cas tombe dans la situation du théorème A(I). Donc il suffit de
traiter le second cas, où l’on peut utiliser la propriété d’extension L2 pour conclure que
(Fm,∆ , g

(m)
X/Y,∆) est un fibré vectoriel hermitien plat. De plus, par un argument standard

qui remonte à Yujiro Kawamata, on peut se ramener au cas où κ(X,KX +∆) 6 0, c-à-d., il
suffit de prouver que κ(F,KF +∆F) > 1 implique κ(X,KX +∆) > 1. Cette réduction repose
sur la suivante version log kählérienne du [Kaw, Theorem ], qui se déduit de [Cam,
Theorem .] ou [Fuj, Theorem.] (ou du théorème .. pour le cas klt) :

Théorème E. Soit X une variété kählérienne compacte. Supposons qu’il existe un Q-diviseur
effectif ∆ sur X tel que la paire (X,∆) soit log canonique et que κ(X,KX +∆) = 0 (i.e. X est
biméromorphiquement log Calabi-Yau). Alors l’application d’Albanese albX : X ! AlbX de X
est une fibration.

La preuve de ce théorème sera donnée dans §., qui est similaire à celle dans [Kaw].
En effet, quand ∆ = 0 et X projective, le théorème a été démontré dans [Kaw] ; pour
∆ = 0 et X kählérienne une preuve a été aussi esquissée dans [Kaw, Theorem ], mais
ne contient pas assez de détails. En vertu de [Fuj, Theorem .] (ou du théorème ..
pour le cas klt) on peut en déduire le théorème E en suivant la stratégie de [Kaw], et
c’est exactement de cette façon que nous procédons dans §.. Remarquons qu’un résul-
tat similaire avec ∆ = 0 pour les variétés spéciales au sens de Campana est énoncé dans
[Cam] dont la preuve est esquissée en s’appuyant sur [Kaw].

Maintenant on se ramène à prouver que κ(F,KF +∆F) > 1 implique que κ(X,KX +∆) >
1. Étant hermitien plat, Fm,∆ est donné par une représentation unitaire ρm du groupe
fondamental de T . Le groupe π1(T ) étant abélien, cette représentation est décomposée
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en sous-représentations de dimension 1. Si l’image de ρm est finie, alors on peut étendre
les sections pluricanoniques sur F à X par transport parallèle ; si l’image de ρm est infinie,
alors a fortiori κ(X,KX +∆) > 1 par une version pluricanonique klt du théorème de struc-
ture sur les lieux de sauts de cohomologie à la Green-Lazarsfeld-Simpson (c.f. [GL ;
Sim]) suivante, ce qui est un autre ingrédient clé dans la démonstration du théorème
A(II).

Théorème F. Soit g : X! Y un morphisme entre variétés kählériennes compactes. Soit ∆ un
Q-diviseur effectif sur X tel que la paire (X,∆) soit klt. Alors pour tout m > 0 tel que m∆ est
un diviseur entier et pour tout k > 0, le lieu de sauts de cohomologie

V 0
k

(
g∗

(
K⊗mX ⊗OX(m∆)

))
:=

{
ρ ∈ Pic0(Y )

∣∣∣ h0(Y ,g∗(K⊗mX ⊗OX(m∆))⊗ ρ) > k
}

est une réunion finie des translations de torsion des sous-tores dans Pic0(Y ).

L’étude des lieux de sauts de cohomologie est initiée par les travaux de Green-Lazarsfeld
[GL ; GL] qui affirme que chaque composante des lieux de sauts de cohomologie est
une translation d’un sous-tore, et est développée davantage par Carlos Simpson dans
[Sim], où il prouve que cette translation est de torsion. Récemment, le résultat prin-
cipal de [Sim] est généralisé par Botong Wang au cas kählérien dans [Wana], où il
traite le cas où g = idX , m = 1 et ∆ = 0 dans l’énoncé du théorème F, and c’est le point
de départ de notre preuve du théorème F. En effet, quand g = idX et X projective, la
preuve du théorème a été implicitement comprise dans [CKP] tandis qu’ils seulement
énoncent explicitement et prouvent dans [CKP] un résultat correspondant à notre co-
rollaire .. avec X projective lisse et (X,∆) log canonique en appliquant [Sim] ; on
suit alors la stratégie dans [CKP] pour déduire le théorème F du cas fondamental traité
dans [Wana, Corollary .]. Notons que [Wana], et donc le théorème F exige que X
soit « globalement » kählérienne ; en revanche, le théorème D est vrai pour toute fibra-
tion kählérienne (X est seulement supposée d’être kählérienne localement au-dessus de
Y ). Remarquons que dans l’hypothèse de la conjecture Clog

n,m il est essentiel de supposer
que X est « globalement » kählérienne, en effet [Uen, Remark ., p. ] fournit un
exemple de fibration kählérienne pour laquelle Cn,m n’est pas vraie.

Expliquons comment finir la preuve du théorème A(II) en appliquant le théorème F.
En suivant l’argument dans [CP] on déduit facilement du théorème F (c.f. le corollaire
..) que :

• KX +∆ est le Q-fibré en droites le plus effectif dans sa classe numérique.

• Si κ(X,KX +∆) = κ(X,KX +∆+ L) = 0 pour un certain (Q-)fibré en droites numéri-
quement trivial L, alors L est un point de torsion dans Pic0(X).

Maintenant la preuve du théorème A(II) peut s’accomplir comme suivant : si Im(ρm) est
infinie, alors par la décomposition de Fm,∆ on voit que KX +∆ a dimension de Kodaira
non-négative quitte à tensoriser avec un (Q-)fibré en droites numériquement trivial non-
torsion, donc le premier point ci-dessus prouve que κ(X,KX+∆) > 0 ; de plus, si κ(X,KX+
∆) = 0 alors le second point mène à une contradiction, donc a fortiori κ(X,KX +∆) > 1, ce
qui achève la preuve du théorème A. Comme un sous-produit du premier point ci-dessus,
on obtient une version log kählérienne de la conjecture (généralisée) d’abondance au cas
où la dimension numérique est zéro (c.f. le théorème ..) en utilisant la décomposition
divisorielle de Zariski obtenue dans [Bou] (c.f.[Bou, Definition .]) .

Remarquons que l’on peut suivre la même stratégie de [CP, §] pour démontrer
plus généralement que Clog

n,m est vrai si detFm,∆ est numériquement trivial pour un m ∈
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Z>0 (i.e. la version kählérienne de [CP, Theorem .]) en utilisant le résultat remar-
quable de Kang Zuo dans [Zuo, Corollary ]. Dans cette thèse, cependant, on ne pour-
suivra pas dans cette direction.

Pour conclure, on généralise la partie (II) du théorème A au cadre des orbifoldes géo-
métriques en utilisant un argument de récurrence et en appliquant les résultats déjà
obtenus :

Théorème G. Soit f : X ! T une fibration analytique avec X une variété kählérienne et T
un tore complexe, et notons F la fibre générale de f . Soit ∆ un Q-diviseur effectif sur X tel que
(X,∆) soit klt. Alors

κ(X,KX +∆) > κ(F,∆F) +κ(T ,Bf ,∆).

où ∆F := ∆|F et Bf ,∆ désigne le diviseur de branchement sur T par rapport à f et ∆.

Dans le théorème ci-dessus, le diviseur de branchement Bf ,∆ est défini comme sui-
vant : pour une fibration f : (X,∆)! Y entre variétés complexes avec ∆ un Q-diviseur
effectif sur X, le diviseur de branchement Bf ,∆ (par rapport à f et ∆) est défini comme le
Q-diviseur le plus effectif sur Y tel que f ∗Bf ,∆ 6 Rf ,∆ modulo diviseurs exceptionnels, où
le diviseur de ramification (par rapport à f et ∆) est défini comme Rf ,∆ := Rf +∆ et

Rf :=
∑

f (W ) est un diviseur de Y

(RamW (f )− 1)W

avec RamW (f ) désigne l’indice de ramification (en codimension 1) de f le long W . Plus
précisément, supposons que le lieu singulier de f est contenu dans un diviseur réduit
ΣY ⊆ Y et écrivons

f ∗ΣY =
∑
i∈I
biWi ,

où les Wi sont des diviseurs premiers sur X, alors pour i ∈ Idiv où

Idiv := l’ensemble des indices i ∈ I tels que f (Wi) est un diviseur sur Y ,

on a bi = RamWi
(f ) et donc

Rf =
∑
i∈Idiv

(bi − 1)Wi .

Remarquons que la définition de Bf ,∆ ci-dessus coïncide avec [Cam, Definition .]
(« orbifold base ») quand ∆ est lc on X, c.f. §..

Sur la structure des variétés projectives klt à diviseur anticano-
nique nef

Une philosophie générale dans l’étude des variétés uniréglées est que les variétés dont
le fibré anticanonique ou le fibré tangent admet une certaine positivité, devraient pré-
senter une certaine rigidité birationnelle, par exeple les fibrations leur associées (l’ap-
plication d’Albanese et la fibration MRC) devraient avoir une structure rigide (typique-
ment être une fibration localement constante). Ceci est inspirée par le travail fondamen-
tal de Shigefumi Mori [Mor] et de Siu-Yau [SY], ce qui montrent la conjecture de
Hartshorne-Frankel ; Leurs travaux caractérisent les espaces projectifs en terme de l’am-
plitude du fibré tangent (qui est aussi valable en caractéristique positive), ou de façon
équivalente, la positivité (stricte) de la courbure bisectionnelle holomorphe (pour les
variétés kählériennes compactes). Une généralisation analytique du théorème de Mori-
Siu-Yau est obtenue par Ngaiming Mok dans [Mok] pour les variétés kählériennes
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compactes à courbure bisectionnelle holomorphe : il montre que le revêtement univer-
sel d’une telle variété se décompose en un produit de C

q, d’espaces projectifs et d’es-
paces hermitiens symétriques compacts (irréductibles) à rang > 2. Afin d’établir l’équi-
valent algébro-géométrique du résultat principal de [Mok], on considère les variétés
kählériennes compactes à fibré tangent nef, dont le théorème de structure est établi par
[DPS], modulo la conjecture de Campana-Peternell (elle prédit que les variétés de Fano
lisse à fibré tangent nef sont rationnellement homogènes), en démontrant que l’applica-
tion d’Albanese est une fibration localement constante à fibre de Fano. Puis on s’intéresse
aux variétés projectives lisses (ou plus généralement, les variétés kählérienne compactes)
à fibré anticanonique nef. Par les méthodes du MMP, le cas 3-dimensionnel a été étu-
dié de façon approfondie par Thomas Peternell et ses collaborateurs dans [PS ; BP].
Récemment le théorème de structure de ces variétés est établi par [Cao ; CH] en ap-
pliquant la méthode de la positivité des images directes et en utilisant les résultats dans
les précédents travaux [Zha ; Pău ; Pău ; Zha ; LTZZ] ; de plus, leurs résultats
sont étendus aux cas des paires klt par [CCM] quand la variété est projective lisse.
Selon la philosophie générale du MMP, il est alors naturel d’étendre ce théorème aux
variétés légèrement singulières, comme énoncé dans la conjecture .

Afin de démontrer la conjecture  on suit l’idée de [Cao ; CH] qui vise à prouver :

. L’application d’Albanese albX : Xd AlbX deX est une fibration localement constante
(définie partout) ;

. Le groupe fondamental de Xreg est à croissance polynomiale, de façon équivalente
(par [Gro, Main Theorem]), π1(Xreg) est virtuellement nilpotent (i.e. admet un
sous-groupe nilpotent d’indice finie) ;

. Si π1(Xreg) = {1} alors la fibration maximale rationnellement connexe (MRC) de X
est définie partout et induit une décomposition de X en un produit d’une variété
rationnellement connexe par une variété projective à diviseur canonique trivial.

Les points  and  ci-dessus sont démontrés dans cette thèse (c.f. le théorème B et
le théorème C) tandis que le point  semble assez difficile, et au moins la méthode dans
[Pău] n’a pas l’air de s’appliquer à ce cas. Outre l’essai de démontrer le point , il
est aussi espéré que l’on puisse démontrer directement la conjecture  sans étudier le
groupe fondamental (ou au moins par montrer un résultat beaucoup moins fort sur le
groupe fondamental), c.f. [CCM] et §.. Comme une conséquence des théorème B
et théorème C, on peut réduire la preuve de la conjecture  à celle de la conjecture 
suivante. La démonstration détaillée de cette réduction est donnée dans §...

Conjecture . Soit X une variété projective normale du type semi-Fano. Alors le groupe fon-
damental de Xreg est à croissance polynomiale.

On montrera dans §. que cette conjecture généralise la conjecture de Gurjar-Zhang
sur la finitude du groupe fondamental du lieu lisse des variétés du type Fano (c.f. [GZ ;
GZ ; Zha ; Sch ; Xu ; GKP ; TX ; GGK]), conjecture qui a été récemment
établie par Lukas Braun dans [Bra]. Elle peut se voir aussi comme une généralisation
naturelle de la conjecture folklore suivante (c.f. [GGK]) :

Conjecture . Soit X une variété projective à singularités klt et à diviseur canonique trivial
dont l’irrégularité augmentée est nulle. Alors le groupe fondamental de Xreg est fini.

On verra dans §. que la conjecture  implique la conjecture . Dans la suite expli-
quons brièvement les idées de la démonstration des théorème B et théorème C :
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• D’abord, par une observation facile on montre que [Cao, ..Proposition] est en-
core valable dans le cas où l’espace est singulier (c.f. la proposition ..), donc
afin de montrer qu’une fibration est une fibration localement constante on peut
se ramener à montrer que les images directes des puissances d’un fibré en droites
relativement amples sont numériquement plates.

• Par [CH, Proposition .] ou [Wu, Corollary of the Main Theorem] (c.f. Pro-
position ..) la preuve de la platitude numériquement d’un faisceau réflexif peut
se diviser en deux étapes : premièrement, prouver que l’image directe admet une
suite de métriques hermitiennes singulière qui lui rend faiblement semipositive ;
puis prouver que le fibré déterminant de l’image directe est numériquement trivial.
La première partie se déduit du résultat général de positivité des images directes
(c.f. [CCM, Theorem .] or Corollary ..) en utilisant le fait que −KX is nef,
c.f. [CCM, Lemma .] ou Proposition .. ; tandis que la seconde partie peut
s’établir, au moins birationnellement, à l’aide du résultat principal de [Zha] (c.f.
Proposition ..).

• En utilisant la méthode de [LTZZ] on peut démontrer que l’application d’Al-
banese de X est plate, donc on peut encore améliorer la version birationnelle du
résultat de platitude numérique mentionné ci-dessus et démontrer que les image
directes des puissances d’un fibré en droites relativement très ample sont numéri-
quement plates ; par la proposition .. ceci prouve le théorème B .

• Quant au théorème C, un argument similaire mais beaucoup plus subtile comme
[CH, §.C] s’appliquant à la fibration MRC de X montre que birationnellement
X peut se décomposer en un produit, ce qui donne lieu à un scindage de TX en
somme directe de deux feuilletages algébriques, un dont l’adhérence de la feuille
générale est rationnellement connexe, l’autre à classe canonique triviale. Cepen-
dant, X étant singulière et ces feuilletages étant singuliers, on ne peut directement
appliquer [Hör, ..Corollary]. Afin de surmonter ces difficulté on observe que
la décomposition implique les deux feuilletages sont faiblement réguliers, et donc
que l’on peut utiliser des résultats dans [Drub] pour montrer que la fibration
MRC est définie partout. Dans cette situation, l’on peut raisonner de façon simi-
laire à la preuve du Théorème B pour montrer la platitude numérique des images
directe à un changement de base près, et finalement [Drua, Lemma .] nous
permet à conclure.

Organisation de la thèse

Cette thèse est organisée comme suit : dans le chapitre  l’on rappelle des résultats pré-
liminaires qui seront utiles dans la démonstration des théorèmes principaux ; puis le
chapitre  se consacre au développement des outils principaux nécessaire dans la thèse,
comme mentionné ci-dessus dans la section de Méthodologie, en particulier le théorème
D est montré dans §.. Ensuite, les deux chapitres qui suivent se consacrent à la preuve
des théorème principaux dans la thèse :

• Dans le chapitre  l’on considère la conjecture Cn,m d’Iitaka pour les fibration käh-
lérienne, et l’on prouve le théorème A. En particulier, le théorème A(I) est démontré
dans §., le théorème E est démontré dans §., dans §. l’on démontre le théo-
rème F et dans §. on conclut la démonstration du théorème A en combinant les
précédents résultats, enfin la preuve du théorème G est donnée dans §..

• Dans le chapitre  on étudie les variétés projectives klt à diviseur anticanonique nef.
En particulier, le théorème B et le théorème C sont démontrés respectivement dans





§. et §., et dans §. on étudie le groupe fondamental du lieu lisse de telles
variétés, en particulier l’on prouve que la conjecture  se déduit de la conjecture .
La section §. vient s’ajouter après que toutes les autre parties du chapitre  ont
été accomplies, où l’on discute les feuilletages (surtout ceux qui sont algébrique)
à classe canonique numériquement triviale en suivant les suggestions de Stéphane
Druel.
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Chapter 

Preliminary results

In this chapter we collect some preliminary results which will be used for the proof of
our main theorems.

. An analytic geometry toolkit

In this section we recall some auxiliary results which are well-known in algebraic geom-
etry, but whose analytic versions, as far as we know, have not yet been well formulated
in literatures; we will not give the detailed proofs but instead indicate how to get rid of
the algebraicity hypothesis.

(A) A Covering Lemma
First we state a covering lemma which allow us to reduce problems on pluricanonical

bundles to the case of the canonical bundle.

Lemma ... Let X be compact complex manifold. and let L be a line bundle on X such that
κ(X,L) > 0. Suppose that there exists an integerm > 0 such that there exists an effective divisor
D ∈

∣∣∣L⊗m∣∣∣ whose support is SNC. Then there is a compact complex manifold V admitting a
surjective generically finite projective morphism f : V ! X such that the direct image of KV
admits a direct decomposition:

f∗KV '
m−1⊕
i=0

KX ⊗L⊗i ⊗OX(−
⌊ i
m
D
⌋
).

The construction of f is done by taking a cyclic cover along D followed by a desingu-
larization. This construction is standard. However, there are three main ingredients in
this construction that need to be clarified:

(a) The construction of cyclic covers: c.f. [Laz, §..B, pp. -, vol.I] and [Kol,
§., p. ], which can be easily generalized to the analytic case.

(b) Viehweg’s results on rational singularities in [Vie]:

(b) A finite ramified cover over a smooth projective variety with the cover space
being normal and the branching locus being a SNC divisor, has quotient sin-
gularities ([Vie, Lemma ]); in this case, the singularity is toroidal, and the
result is standard from [KKMS].

(b) A quotient singularity is a rational singularity ([Vie, Proposition ]). This
follows from Kempf’s criterion on rationality of singularities (c.f. [KKMS,
§I., condition (d)(e) pp. -]), which is essentially an analytic result.
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(c) A duality theorem for canonical sheaves (the canonical sheaf of a complex variety
is defined as the (−d)-th cohomology of the dualizing complex, where d denotes
the dimension of the complex variety) on singular complex varieties, which can be
proved by applying [RR] or [BS] combined with a spectral sequence argument.

Remark ... For later use, we remark that the point (b) above can be further general-
ized to higher relative dimension by a local computation as in [Vie, Lemma .] and
by [KKMS]: for f : X! Y be a proper flat morphism between complex manifolds such
that the singular locus ΣY ⊆ Y is a smooth divisor and the preimage f ∗ΣY is a reduced
SNC divisor, then for any surjective morphism φ : Y ′ ! Y with Y ′ smooth, the fibre
product X ×

Y
Y ′ has (at most) rational singularities. C.f. also [Hör, ..Lemma].

(B) A Flattening Lemma
In order to prove Theorem A we need the following auxiliary result, which is an ana-

lytic version of [Vie, Lemma .] :

Lemma ... Let p : V !W a morphism of complex manifolds, then there exists a commu-
tative diagram

W

V

W ′

V ′

pp′

πW

πV

with V ′ and W ′ complex manifolds, the morphisms πW and πV projective and bimeromor-
phic such that the morphism p′ verifies the following propriety: every p′-exceptional (i.e.
codimW ′ p

′(D ′) > 2) divisor D ′ of V ′ is πV -exceptional (i.e. codimV (πV (D ′)) > 2). In ad-
dition, we can further assume that

(a) πW is an isomorphism over W0, the (analytic) Zariski open subset ofW over which p is
smooth;

(b) πV is an isomorphism over p−1W0 ;

(c) ΣW ′ := π−1
W (W \W0) and p′∗ΣW ′ are divisors of SNC support.

Proof. This is simply a consequence of [Hir, Flattening Theorem].

In the sense of [Cam], the lemma above shows that any fibre space admits a (higher)
bimeromorphic model which is neat and prepared (c.f. [Cam, §..]). Moreover,
Lemma .. is well behaved with respect to klt/lc pairs, as implies the following fact:

Lemma ... Let X be a complex variety and ∆ an effective Q-divisor on X such that the
pair (X,∆) is klt (resp. lc). For any log resolution µ : X ′ ! X of (X,∆), there is an effective
Q-divisor ∆′ over X ′ with SNC support such that the pair (X ′ ,∆′) is also klt (resp. lc) and that
µ∗∆′ = ∆. Moreover we have κ(X ′ ,KX ′ +∆′) = κ(X,KX +∆).

Proof. This is well known to experts of MMP, we nevertheless give a proof for the conve-
nience of the readers. The pair (X,∆) being klt, we can write (an isomorphism of Q-line
bundles):

KX ′ +µ
−1∗ ∆−

∑
ai<0

aiEi ' µ∗(KX +∆) +
∑
ai>0

aiEi , (.)
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where the Ei ’s are µ-exceptional prime divisors and

ai := a(Ei ,X,∆)

denotes the discrepancy of Ei with respect to the pair (X,∆). Put

∆′ := µ−1∗ ∆−
∑
ai<0

aiEi ,

then ∆′ is an effective Q-divisor with SNC support and µ∗∆′ = ∆. The hypothesis that
(X,∆) is klt (resp. lc) implies that ai > −1 (resp. ai > −1) for every i and that the coeffi-
cients of prime components in ∆ are < 1 (resp. 6 1), hence the coefficients of the prime
components in ∆′ are all < 1 (resp. 6 1). By [KM, Corollary .(), p. ] the pair
(X ′ ,∆′) is klt (resp. lc). The equality κ(X ′ ,KX ′ +∆′) = κ(X,KX +∆) results from [Deb,
Lemma ., p. ] and (.).

. Negativity Lemma in analytic geometry

The negativity lemma is an important auxiliary result in the study of the bimeromor-
phic/birational classification of complex analytic/algebraic varieties. In the algebraic
setting it is well known, c.f. [KM, Lemma ., p. -]. However, to our knowl-
edge the analytic version of the lemma has never been explicitly written and proven in
the literatures. In this section we will give a detailed proof. The idea of the proof comes
from [BdF, Proposition .].

Lemma .. (the Negativity Lemma). Let h : Z! Y be a proper bimeromorphic morphism
between normal complex varieties. Let B be a Cartier divisor on Z such that −B is h-nef. Then
B is effective if and only if h∗B is effective.

Proof. First notice that if B is effective, then h∗B is effective; hence it remains to show that
h∗B is effective⇒ B is effective. To this end we proceed in three steps:

(A) Reduction to the case where h is a sequence of blow-ups with smooth centres
For any proper bimeromorphic morphism f : Z ′ ! Z, B is effective⇔ f ∗B is effective;

moreover, if we note h′ = h ◦ f , then h′∗f ∗B = h∗B and −f ∗B is h′-nef. This observation
gives us the flexibility to replace Z with a higher bimeromorphic model. In particular,
by Chow’s Lemma ([Hir, Corollary ]) we can suppose that h is projective. In addition,
by Hironaka’s construction in [Hir] we see that h is in fact the blow-up of an analytic
subspace (a coherent ideal) of X (c.f. [Hir, Definition .]); hence by Hironaka’s resolu-
tion of singularities, we can take a principalization h′ of this ideal, which is constructed
by a sequence of blow-ups with smooth centres, by the universal property of blow-ups, h′
dominates h. C.f. also [BJ, Lemma .]. Now up to replacing h′ with h, we can assume
that h is a locally finite (over Y ) sequence of blow-ups with smooth centres; moreover
the problem being local over Y , one can further assume that h is a finite sequence. In
particular, (e.g. by an induction on the number of blow-ups contained in h) there exists
an effective Cartier divisor h-exceptional divisor A such that −A is h-ample.

(B) Reduction to the case where −B is h-ample by an approximation argument
In this step we use an approximation argument to reduce to the case where −B is h-

ample. To this end, assume that the lemma is true for h-anti-ample divisors. By Step
(A), one gets an h-exceptional divisor A such that −A is h-ample. Since h∗A = 0, our
assumption implies that A is effective. For every m > 0, the Cartier divisor−mB−A is h-
ample; in addition, h∗(mB+A) = mh∗B > 0, hence by our assumption, mB+A is effective.
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By arguing coefficients by coefficients and by letting m tend to +∞ we obtain that B is
effective.

(C) The case where −B is h-ample
By the reduction procedures (A) and (B), we can suppose that h is projective and that B

is a Cartier divisor on Z such that −B is h-ample. Since −B is h-ample, then for anym >> 0,
the Cartier divisor −mB is relatively globally generated, i.e. we have an surjection

h∗h∗OZ(−mB)� OZ(−mB) .

In particular, OZ(−mB) = h−1am · OY where am = h∗OZ(−mB) fractional ideal on Y (i.e. a
torsion free subsheaf of rank 1 ofMY the sheaf of germs of meromorphic functions on Y )
since h is bimeromorphic. It remains to see that am is an authentic ideal. To this end it
suffices to consider the inclusion (by hypothesis h∗B is effective)

am = h∗OZ(−mB) ⊆ OY (−mh∗B) ⊆ OY ,

where the inclusion h∗OZ(−mB) ⊆ OY (−mh∗B) above results from Lemma ...

. Reflexive hull of the direct image of line bundles

In this subsection we will prove the following theorem, which is nothing but an analytic
version of [Nak, III...Lemma, pp. -]. The proof of the theorem is not essen-
tially different from that in [Nak]; except that, for the analytic case, one has to modify
the arguments, especially in the Step  below, so that on can avoid the usage of the rel-
ative Zariski decomposition (which is not known in analytic case; even in the algebraic
case, it is only established in some special cases in [Nak] and it does not hold in general
due to a counterexample in [Les]).

Theorem ... Let π : X ! S be a proper surjective morphism between normal complex
varieties, and let L be a π-effective (i.e. π∗L , 0) line bundle on X. Then there is an effective
π-exceptional (i.e. codimS π(E) > 2) Weil divisor E such that for any k ∈Z>0 one has[

π∗
(
L⊗k

)]∧ ' π∗ [L⊗k ⊗OX(kE)
]
. (.)

Intuitively the theorem means that the vertical poles of the sections of L⊗k are linearly
bounded. The proof of Theorem .. proceeds in five steps:

Step  First let us remark that we can always assume that X is smooth by taking a
desingularization by the following observation

Lemma ... Let h : Z! Y a bimeromorphic morphisme between normal complex varieties.
Then for every Weil divisor D on Z, we have an inclusion

h∗OZ(D) ⊆ OY (h∗D).

Proof. Since h is an isomorphism over a(n) (analytic) Zariski open subset of codimension
> 2 in Y , h∗OZ(D) and OY (h∗D) are isomorphic in codimension 1; h∗OZ(D) being torsion

Let us remark that in many cases, when there is no ambiguity, by saying that "a divisor is effective" we
mean that it is linearly equivalent to an effective divisor; but in the statement of the Negativity Lemma ..
we take "effectivity" in its strict sense.
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free and OY (h∗D) reflexive, we have (noting that on a normal complex variety reflexive
sheaves are determined in codimension 1):

h∗OZ(D) ↪! (h∗OZ(D))∧ ' OY (h∗D) .

In fact, assume that Theorem .. holds for X smooth, let us prove that it holds in
general. To this end, let µ : X ′ ! X be a desingularization of X, then by our assumption,
there is an effective divisor E′ on X ′ such that[

π′∗
(
µ∗L⊗k

)]∧
= (π′)∗

[
µ∗L⊗k ⊗OX ′ (kE′)

]
,

hence by Lemma .. and the projection formula we have an inclusion[
π∗

(
L⊗k

)]∧
= π∗

(
L⊗k ⊗µ∗OX ′ (kE′)

)
↪! π∗

(
L⊗k ⊗OX(kE)

)
↪!

[
π∗

(
L⊗k ⊗OX(kE)

)]∧
where E := µ∗E′. Since the inclusion is an isomorphism in codimension 1, it is in fact an
equality. Consequently, we always assume that X is smooth in the sequel.

Step  By the coherence of the reflexive hull (π∗L)∧ there is an π-exceptional divisor
E making the equation (.) holds for k = 1 (and thus one can choose E such that (.)
holds for a finite number of k).

Step  In virtue of Step  we are able to prove the reflexivity criterion below:

Proposition .. (Reflexivity Criterion). Let π : X ! S and L as in Theorem ... Sup-
pose that for every effective π-exceptional divisor G, there is a component Γ of G such that
[L⊗OX(G)] |Γ is not π|Γ -pseudoeffective, then π∗L is reflexive on S.

Let us recall the notion of relative pseudoeffectivity for (Q-)line bundles / Cartier
divisors in the analytic setting: Let p : V !W a proper surjective morphism of analytic
varieties and let L be a Q-line bundle on V , then L is said to be p-pseudoeffective if
its pull-back L|F̃ is pseudoeffective (c.f. [Dem, §.A, (.) Definition, p. ]) where F̃
denotes a desingularization of the general fibre F of p. A Q-Cartier divisor D on V is said
to be p-pseudoeffective if its associated Q-line bundle OX(D) is so. Before going to the
proof let us first prove the following auxiliary lemma:

Lemma ... Letπ : X! S and L as in Proposition .., then for any effectiveπ-exceptional
divisor B on X, one has:

π∗L ' π∗ [L⊗OX(B)] (.)

Proof. B is effective, one can write

B =
r∑
i=1

biBi ,

with bi ∈Z>0 and r ∈N (r = 0 simply means that B = 0). Note

b :=
r∑
i=1

bi .

Now let us prove (.) by induction on b : By our hypothesis on L (the condition in Propo-
sition ..), ∃ i ∈ {1, · · · , r } such that [L⊗OX(B)] |Bi is non-π|Bi -pseudoeffective, thus

(π|Bi )∗ [L⊗OX(B)] |Bi = 0.
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Consider the short exact sequence

0−! OX(−Bi)−! OX −! OBi −! 0.

By tensoring with L⊗OX(B) and applying the functor π∗ one gets

0! π∗ [L⊗OX(B−Bi)]−! π∗ [L⊗OX(B)]−! (π|Bi )∗ [L⊗OX(B)] |Bi = 0

hence π∗ [L⊗OX(B−Bi)] ' π∗ [L⊗OX(B)] . Apply the induction hypothesis we obtain that
π∗ [L⊗OX(B−Bi)] ' π∗L, which proves the isomorphism (.).

Now return to the proof of the Reflexivity Criterion .. :

Proof of Proposition ... By Step  there is an effective π-exceptional E, such that

(π∗L)∧ ' π∗ [L⊗OX(E)] ;

Apply Lemma .. to E and we obtain:

π∗L ' π∗ [L⊗OX(E)] ' (π∗L)∧ ,

hence π∗L is reflexive.

Step  In this step, we prove that in the situation of Theorem .. there exists a π-
exceptional divisor which is not relatively pseudoeffective on each component of Exc(π).
More precisely we will show:

Proposition ... For any π : X ! S as in the Theorem .., there is an effective π-
exceptional divisor E such that for anyπ-exceptional prime divisor Γ , E|Γ is notπ|Γ -pseudoeffective.

The proof is the same as that in [Nak, III...Lemma, pp. -]. For the con-
venience of the readers, we provide the details below:

Proof. The starting point of the proof is the following observation: if π is flat, then π∗L
is always reflexive. Consider thus a flattening of π (c.f. [Hir], or for the algebraic
case, [Ray, §., Theorem , p. ]): let ν : S ′ ! S be a projective bimeromorphic
morphism (a sequence of blow-ups with smooth centres) which flattens π and let X ′ be

the normalization of the main component of X ×
S
S ′ equipped with morphisms X ′

µ
−! X

and X ′
φ
−! S ′ (µ is projective and φ is equidimensional).

S

X

S ′

X ×
S
S ′

X ′

� π

ν

µ

φ
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By the construction of ν, there is a π-exceptional effective (Cartier) divisor ∆ such
that −∆ is ν-ample. Consider the divisor E := µ∗(φ∗∆). Then E is effective since ∆ is
effective; E is Cartier since X is smooth. Moreover, −∆ is ν-ample, hence −φ∗∆ is µ-nef:
in fact, let C be a curve contracted by µ, then φ∗C (which is, by definition, a curve on S ′ if
C is not contracted by φ or is equal to 0 otherwise) is contracted by ν since π ◦µ = ν ◦φ,
hence by the projection formula we get

(−φ∗∆ ·C) = (−∆ ·φ∗C) > 0,

µ being projective, this implies that −φ∗∆ is µ-nef; then so is µ∗E −φ∗∆. Now since

µ∗(µ∗E −φ∗∆) = E −E = 0,

then we have µ∗E −φ∗∆ 6 0 by the Negativity Lemma ...
Assume by contradiction that there exists a π-exceptional prime divisor Γ such that

E|Γ is π|Γ -pseudoeffective and set

Γ ′ := the strict transformation of Γ by µ−1.

S

X

S ′

X ′
ΓΓ ′

π(Γ )φ(Γ ′)

π

ν

µ

φ π|Γφ|Γ ′

µ|Γ ′

ν|φ(Γ ′ )

⊂⊂

⊂⊂

Then µ∗E|Γ ′ is (π◦µ)|Γ ′ -pseudoeffective, hence φ∗∆|Γ ′ is (ν◦φ)|Γ ′ -pseudoeffective since
µ∗E 6 φ∗∆. On the other hand, by our construction −∆ is ν-ample, then −∆|φ(Γ ′) is ν|φ(Γ ′)-
ample, and thus

−φ∗∆|(Γ ′) = (φ|(Γ ′))∗(−∆|φ(Γ ′))

is (ν ◦φ)|Γ ′ -nef. Therefore −φ∗∆|(Γ ′) is (ν ◦φ)|Γ ′ -numerically trivial, which implies that
−∆|φ(Γ ′) is ν|φ(Γ ′)-numerically trivial. But −∆|φ(Γ ′) is ν|φ(Γ ′)-ample, this cannot happen
unless ν|φ(Γ ′) : φ(Γ ′)! π(Γ ) is finite. We finally get the sought contradiction by showing
that ν|φ(Γ ′) cannote be finite:

Since φ is the composition of a finite morphism (normalization) followed by a flat
morphism, φ is equidimensional; in particular, φ(Γ ′) is Weil divisor on S. Moreover,
ν(φ(Γ ′)) = π ◦ µ(Γ ′) = π(Γ ) is of codimension > 2, hence φ(Γ ′) is ν-exceptional; in partic-
ular, the general fibre of the morphism ν|φ(Γ ′) : φ(Γ ′)! π(Γ ) is of dimension > 1 . Thus
we prove the proposition.

Step  Let π : X ! S and L a π-effective line bundle on X as in Theorem ... The
problem begin local, one can replace X (resp. S) by a neighbourhood of a compact in X
(resp. in S); in particular the set of π-exceptional prime divisors, denoted by Exc (π), is a
finite set, and thus we can write:

Exc (π) = {Γ1, · · · , Γt }
By Step  an effective π-exceptional divisor E such that E|Γi is non-π|Γi -pseudoeffective.
In the sequel we will deduce Theorem .. from the Reflexivity Criterion ..:
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. E being π-exceptional effective, we can write

E =
t∑
i=1

aiΓi , ai ∈Z>0 .

We claim that the ai ’s are all strictly positive. Otherwise, there exists a j such that aj =
0, implying that Γj * Supp(E), then E|Γj is an effective divisor, in particular it is π|Γj -
pseudoeffective, contradicting the hypothesis on E.

. Moreover we claim that there is a b ∈Z>0 such that ∀β > b ,β ∈Q>0 ,
(
L+ βE

)∣∣∣∣
Γi

is

a Q-line bundle which is non-π|Γi -pseudoeffective for all i = 1,2, · · · , t. Otherwise there is

a sequence of positive rational numbers βn! +∞ such that for every n,
(
L+ βnE

)∣∣∣∣
Γin

is a

π|Γin -pseudoeffective Q-line bundle for some in . Etextxc (π) being finite, we can assume

that there exists an index i such that
(
L+ βnE)

∣∣∣∣
Γi

is πΓi -pseudoeffective for every n (up to

considering a subsequence). Hence (
E +

1
βn
L

)∣∣∣∣∣∣
Γi

is an π|Γi -pseudo-effective Q-line bundle for every n. This implies (by letting βn ! +∞)
that E|Γi is π|Γi -pseudoeffective, contradicting to the point  above.

. Let us set
Lk = L⊗k ⊗OX(kbE) ,

then in order to prove Theorem .. we only need to show that π∗Lk is reflexive. In fact,
since S is normal, and since π∗

(
L⊗k

)
and π∗Lk are isomorphic outside an analytic subset

of codimension > 2, therefore as soon as π∗Lk is reflexive, we get immediately

π∗Lk '
[
π∗

(
L⊗k

)]∧
.

We finally prove that π∗Lk is reflexive in virtue of Proposition ... It suffices to check
that Lk satisfies the conditions in Proposition ..: let G be an π-exceptional effective
divisor, then there is a minimal c ∈Q>0 such that cE > G. In fact, if we write

G =
t∑
i=1

giΓi ,

then we can take

c = max
i=1,··· ,t

{
gi
ai

}
.

In particular, by the minimality of c there exists an i such that Γi * Supp(cE−G), implying

that the Q-divisor
(
cE −G

)∣∣∣∣
Γi

is π|Γi -pseudoeffective. However by the point  above, the

Q-line bundle (
Lk +G

)∣∣∣∣
Γi

+
(
cE −G

)∣∣∣∣
Γi

= k
[
L+

(
b+

c
k

)
E
]∣∣∣∣∣
Γi

is non-π|Γi -pseudoeffective, hence a fortiori the line bundle
(
Lk +G

)∣∣∣∣
Γi

is notπ|Γi -pseudoeffective.

Therefore Lk satisfies the conditions in Proposition .., thus Lk is reflexive. This ends
the proof of Theorem ...





. Singular Hermitian metrics over vector bundles

In this section we recall the notion of (Griffiths) semipositively curved singular Hermi-
tian metrics on vector bundles / torsion free sheaves. Let us fix X a complex manifold.

Definition ... Let E be holomorphic vector bundle on X. A (Griffiths) semipositively
curved singular Hermitian metric h on E is given by a measurable family of Hermitian
functions on each fibre of E, such that for every (holomorphic) local section s ∈H0(U,E∗)
of the dual bundle E∗, the function log |σ |2h∗ is psh on U . The vector bundle E is said
semipositively curved if it admits a semipositively curved singular metric.

Remark ... This definition implies that h is bounded almost everywhere, moreover, fix
any smooth Hermitian metric h0 on E, then as a consequence of [Pău, ..Remark,
..Remark] the singular metric h is locally uniformly bounded from below by C ·h0 for
some constant C > 0.

The semi-positivity of singular Hermitian metrics is preserved by tensor products,
pull-back by proper surjective morphisms, and by generically surjective morphisms of
vector bundles (thus by symmetric and exterior products), c.f. [GG, II.B.] and [Pău,
..Lemma, ..Lemma]. Moreover one has the following extension theorem for semi-
positively curved singular Hermitian metrics:

Proposition .. (c.f. [CH, ..Proposition]). Let E be a holomorphic vector bundle onX.
Suppose that there is a (analytic) Zariski open subset X0 , ∅ of X and a semipositively curved
singular Hermitian metric h on E|X0

. Then h extends to a semipositive singular Hermitian
metric on E if one of the following two conditions is verified:

() codim(X\X0) > 2;

() h is locally uniformly bounded below by a constant C > 0 on X0 with respect to some
smooth Hermitian metric on E.

In virtue of Proposition .. and [Kob, Corollary .., p. ] one can extend
Definition .. to torsion free sheaves:

Definition ... Let X be a complex manifold and let F be a torsion free sheaf on X. By
[Kob, Corollary .., p. ], F is locally free in codimension 1. A semipositively
curved singular Hermitian metric h on F is a semipositively curved singular Hermitian
metric on F |U for some (analytic) Zariski open subset U such that codimXU > 2 and
F |U locally free. The torsion free sheaf F is said to be semipositively curved if it admits
a semipositively curved singular Hermitian metric.

Remark ... The notion of semipositively curved metric on torsion free sheaves can
lead to some unexpected pathology, e.g. e.g. the ideal sheaf IZ of a analytic subset Z of
codimension > 2 admits a natural semipositively curved singular Hermitian metric. In
order to exclude such pathology we introduce in the Definition .. below the notion of
"L2-extension property".

Let F and h as in the Definition .. above, then h induces a semipositively curved
singular Hermitian metric deth on the line bundle detF where the determinant bundle
detF is defined as

detF :=

 r∧
F

∧
with r = rkF and ()∧ = ()∗∗ denotes the reflexive hull (c.f. [Kob, §., pp. -]).

We end this subsection by two regularity theorems:
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Theorem ... Let (E,h) be a holomorphic vector bundle on X equipped with a semipositively
curved singular Hermitian metric h. Suppose that the metric deth is locally bounded from
above, then the coefficients of the Chern connection form θE (defined by the equation hθE =
∂h) are L2

loc on X, and in consequence the total curvature current Θh(E) of E is well defined
and semipositive in the sense of Griffiths, which can be locally written as Θh(E) = ∂̄θE . In
particular, if the curvature current Θdeth vanishes, then (E,h) is Hermitian flat.

Proof. The theorem is proved in [Rau, Theorem .] by an approximation argument
(c.f. also [Pău, ..Theorem, ..Corollary]). Heuristically, this is a higher rank ver-
sion of the well known fact (the line bundle case) that if a psh function φ is L∞loc, then ∇φ
is L2

loc. As for the last statement (c.f. [Pău, ..Corollary] and [CP, ..Theorem]):
by our first statement the total curvature currentΘh(E) is well defined and Griffith semi-
positive, then the vanishing of Θdeth implies the vanishing of Θh(E); the regularity of h
results from the ellipticity of the Laplacian ∂∂̄.

In the sequel we introduce the notion of "L2-extension property", which is simply an
analogue of the property of O that every L2 holomorphic function extends. It helps to
exclude certain unexpected pathology as mentioned in the Remark .., e.g. the natural
semipositively curved (generically flat) singular Hermitian metric on the ideal sheaf IZ
of a analytic subset Z of codimension > 2 does not satisfy the L2 extension property.

Definition ... Let F be a torsion free sheaf on X equipped with a singular Hermitian
metric h. The metric h is said to satisfy the "L2-extension property" if for any open subset
U ⊆ X, for any Z $ U analytic subset of U such that F is locally free over U\Z and for
any section σ ∈H0(U\Z,F ) such that∫

U\Z
|σ |2hdµ < +∞ ,

the section σ extends (uniquely) to a section σ̄ ∈H0(U,F ).

This propriety is particularly useful when we consider a torsion free sheaf whose de-
terminant bundle is numerically trivial. Nevertheless let us remark that the condition
on the L2 extension property is indispensable in the theorem above. For example, as
mentioned above, the ideal sheaf IZ of an analytic subset Z of codimension > 2 admits
a natural semipositively curved singular Hermitian metric hIZ , which equals to the flat
metric of O on X\Z. The determinant of IZ is trivial, but definitely IZ is not a (Hermi-
tian flat) vector bundle. Notice that (IZ ,hIZ ) does not satisfy the L2 extension property:
let B be a small ball in X meeting Z, then non-zero constant functions on B\Z (which are
L2) cannot extend across Z. Now we can state:

Theorem ... Let X be a connected complex manifold and let F be a torsion free sheaf of
rank r on X equipped with a semipositively curved singular Hermitian metric h. Suppose that

() detF is numerically trivial, i.e. c1(detF ) = c1(F ) = 0;

() h satisfies the L2-extension property as in Definition ...

Then (F ,h) is a Hermitian flat vector bundle.

Proof. The proof is essentially analogous to that of [CP, Theorem .]. Since h is semi-
positively curved, the metric deth on detF is semipositively curved, thus the curva-
ture current Θdeth(detF ) is positive; but detF is numerically trivial, hence a fortiori
Θdeth(detF ) = 0. Then by Theorem .., (F |XF ,h|XF ) is a Hermitian flat vector bundle
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(i.e. h|XF is a smooth Hermitian metric F |XF whose curvature vanishes) where XF de-
notes the locally free locus of F . By [Kob, Proposition .., p. ] the Hermitian flat
vector bundle (F |XF ,h|XF ) is defined by a representation

π1(XF )!U(r).

The codimension of X\XF being at least 2, the group π1(XF ) is isomorphic to π1(X) and
we actually have a representation

π1(X)!U(r),

which gives rise to a Hermitian vector bundle (E,hE) of rank r onX. Then by construction
we have an isometry

φ : F |XF ! E|XF .
By reflexivity of HomOX (F ,E) this extends to an injection of sheaves F ↪! E which we
still denote by φ. It remains to show that φ is surjective. The problem being local,
we can assume that X is a small open ball, so that E is trivial. Now take u ∈ H0(X,E) a
holomorphic section of E, since hE is a flat metric (hence smooth), |u|hE ,z is finite for every
z ∈ X. The map φ|XF being an isometry, there exists a section v0 ∈ H0(XF ,F ) such that
i(v0) = u|XF and |v0|h,z = |u|hE ,z < +∞ for all z ∈ XF . But (F ,h) satisfies the L2 extension
property, v0 extends to a section v ∈H0(X,F ), thus φ(v) = u, implying the surjectivity of
φ.

. Albanese map of quasi-projective varieties

In this section, we recall some general results about the Albanese maps of smooth quasi-
projective varieties. Our main reference is [Fuj, §], c.f. also [Kaw, §]. First recall
the definition of semi-Abelian varieties. Let us remark that they are called "quasi-Abelian
varieties" by Iitaka and [Kaw; Fuj] (which is different from the notion of "quasi-
Abelian varieties" in [AK]); we choose to use the name "semi-Abelian variety", which
seems to be more commonly used in algebraic geometry.

Definition .. ([Kaw, §, Definition, p. ]; [Fuj, Defniition .]). Let G be a
connected algebraic group and let

1!H ! G! A! 1

be the Chevalley decomposition (c.f. [Con, Theorem .]) of G, where H is a linear
algebraic group andA is an Abelian variety. G is called a semi-Abelian variety ifH 'G

dimH
m

where Gm denotes the multiplicative group C
∗.

We collect some elementary properties of semi-Abelian varieties as following:

Proposition .. ([Fuj, Lemma ., Lemma .]). LetG be a semi-Abelian variety and
let

1!G
d
m! G! A! 1

be its Chevalley decomposition with A an Abelian variety. Then

(a) G is a principal Gdm-bundle over A ;

(b) G is a commutative group ;

(c) the universal cover of G is CdimG and G ' C
dimG/π1(G) with π1(G) viewed as a lattice

in C
dimG.
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Analogous to the case of Abelian varieties (or even complex tori, c.f. [Uen, Lemma
., Theorem ., pp. -]), the closed subvarieties of semi-Abelian varieties have
the following rigidity property:

Proposition .. ([Fuj, Theorem .]). Let G be a semi-Abelian variety and let W be a
closed subvariety of G. Then the logarithmic Kodaira dimension κ̄(W ) > 0 and κ̄(W ) = 0 if
and only if it is a translate of a semi-Abelian subvariety of G.

Let us recall the notion of logarithmic Kodaira dimension as mentioned in the propo-
sition above (c.f. [Kaw, §, Definition, p. ] and [Fuj, Definition .]):

Definition ... Let V ◦ be a smooth quasi-projective variety (or more generally an alge-
braic variety), and take V to be a smooth compactification of V ◦ such that DV := V \V ◦ is
a (reduced) SNC divisor (the existence of such V is ensured by Nagata’s compactification
theorem, Chow’s lemma and Hironaka’s resolution of singularities). Then the logarithmic
Kodaira dimension of V ◦, denoted by κ̄(V ◦) is defined to be the Iitaka-Kodaira dimension
of KV +DV , that is

κ̄(V ◦) := κ(V ,KV +DV ).

Now let us turn to the Albanese maps of smooth quasi-projective varieties:

Proposition-Definition .. ([Fuj, Theorem .]). LetU be a smooth quasi-projective
variety and let u be a fixed point of U . Then there is a semi-Abelian variety ÃlbU and
an algebraic morphism ãlbU :U ! ÃlbU such that ãlbU (u) = 0 and that for any algebraic
morphism α : U ! G to a semi-Abelian variety G satisfying α(u) = 0G, there is a unique
morphism of algebraic groups f : ÃlbU ! G such that α = f ◦ ãlbU ; and ãlbU is uniquely
determined by this universal property. ãlbU is called the Albanese map of U and ÃlbU is
called the Albanese variety of U . Moreover, if U is compact, then ãlbU coincide with the
Albanese map of U .

See [Fuj, §] for the construction of ÃlbU and ãlbU and be careful that in [Kaw;
Fuj] this is called the "quasi-Albanese map". Nevertheless, we call it simply the Al-
banese map, because this is the only reasonable one (there is no other way to define it
and hence "quasi-" is a little bit redundant). Now let us recall some basic properties of
the Albanese map.

Proposition .. ([Fuj, Lemma .]). Let U be a smooth quasi-projective variety and let
ãlbU :U ! ÃlbU be its Albanese map. Then the induced morphism

(ãlbU )∗ : H1(U,Z)!H1(ÃlbU ,Z)

is surjective and the kernel of (ãlbU )∗ is equal to the torsion part of H1(U ,Z).

Proposition ... Let U be a smooth quasi-projective variety and let ãlbU : U ! ÃlbU be
its Albanese map. Take V be a compactification of U such that V \U is SNC divisor. Let

1!G
d
m! ÃlbU

p
−! AU ! 1

be the Chevalley decomposition of ÃlbU . Set Z be the closure of Im(ãlbU ). Then

(a) AU is isomorphic to the Albanese variety AlbV of V such that albV |U = p ◦ ãlbU .

(b) Z generates ÃlbU .
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Proof. (a) simply results from the construction in [Fuj, Lemma .-.]. As for (b), let
G be the algebraic subgroup of ÃlbU generated by Z, and set W be the image of Z in
AU ; then W is the image of albV , and by [Uen, Lemma ., pp. -] (c.f. also
Proposition ..(b)) W generates AU = AlbV , hence the morphism G ↪! ÃlbU ! AU is
surjective, therefore we can write the Chevalley decomposition of G as

1!H ! G! AU ! 1.

with H ⊆ G
d
m. Since H is diagonalizable, by [Spr, ...Corollary, p. ] H is a direct

product of a finite Abelian group with an algebraic torus; butG is connected then so isH ,
henceH is an algebraic torus and thus by definition G is a semi-Abelian variety. Then the
morphism U ! G satisfies the universal property of the Albanese map, hence a fortiori
G = ÃlbU .

. Horizontal divisors and base changes

Let V be a complex variety which is fibred over another complex variety W (c.f. Defini-
tion ..). By looking at the dimension of the image of its components in W , a (Weil)
divisor on V can be divided into a sum of the horizontal part plus the vertical part (c.f.
[Laz, §..C, Proof of Corollary .., p. ]). The aim of this appendix is to show
that the notion of "horizontality" for divisors on an equidimensional fibre space is stable
under base change. This result is of course well known to experts, we nevertheless pro-
vide a detailed account here for the convenience of the readers. The main result is the
following:

Proposition ... Let f : V ! W be an equidimensional fibre space between complex va-
rieties with W quasi-projective and let D be a Cartier divisor on V which is horizontal with
respect to V , then for any morphism g :W ′ !W , the pullback divisor g∗VD is horizontal with
respect to the base change morphism f ′ : V ′!W ′ where V ′ := V ×

W
W ′ and gV : V ′! V is the

natural morphism.

The key point in the proof of the proposition above consists in proving the following
auxiliary:

Lemma ... Let f : V ! W be an equidimensional fibre space between complex varieties
of relative dimension d and let D be an effective Weil divisor on V which is horizontal with
respect to f . Suppose thatW is quasi-projective. Then D is equidimensional overW of relative
dimension d − 1.

Proof. By induction on the dimension of W . If dimW = 0 there is nothing to prove. For
arbitrary W , the result follows if OD is flat over W . In general, we apply the generic
flatness [Mat, (.A) Lemma , pp. -] (c.f. also [HL, Lemma .., p. ] and
[ACG, Proposition (.), p. ]) to f and OD to find an effective divisor H on W (by
using quasi-projectivity of W ) such that OD is flat over W \H . Since D is horizontal and f
is surjective, D is mapped surjectively onto W , hence by [Mat, (.B) Theorem (),
p. ]D is equidimensional overW \H of relative dimension d−1. Again by horizontality
of D, f −1(H) cannot be contained in Supp(D), hence D |f −1(H)red

is still an effective Weil
divisor and is horizontal overH , then by applying the induction hypothesis to f |f −1(H)red

:
f −1(H)red!Hred which is still a equidimensional fibre space of relative dimension d we
see that D is equidimensional over W of relative dimension d −1 (Hred may be reducible,
yet by considering component by component we can conclude).

Now let us turn to the proof of the Proposition ...
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Proof of the Proposition ... By definition, it suffices to treat the case that D is a prime
divisor. Suppose by contradiction that g∗VD contains a component E which is vertical with
respect to f ′. Since f is equidimensional, then so is f ′, hence f ′(E) is of codimension 1 in
W . By [Mat, (.B) Theorem (), p. ] the restriction of E to any fibre of f ′ is either
empty or of dimension d, where d denotes the relative dimension of f (hence also that of
f ′). In consequence D must contain a d-dimensional component of a fibre of f ′. But this
is impossible by the Lemma ...
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Chapter 

Main tools

. Ohsawa-Takegoshi type extension theorems

As is explained above, the key point of the proof of Theorem .., like many other results
in complex geometry, is the Ohsawa-Takegoshi extension theorem. In this subsection we
will state theorems of Ohsawa-Takegoshi type for Kähler fibre spaces in the following
two forms:

Local Version For a Kähler fibre space whose base is an open ball in some Cd , we have
the following extension theorem of Ohsawa-Takegoshi type with optimal estimation:

Theorem .. (higher dimensional version of [Cao, Theorem . (Corollary .)]). Let
p : X ! B be a analytic (Kähler) fibre space with X a Kähler manifold and B ⊆ C

d the open
ball of centre 0 and of radius R. Let (L,hL) be a holomorphic line bundle on X equipped with
hL a singular Hermitian metric such that the curvature current of hL is positive. Suppose
that X0 := p−1(0) is a smooth fibre of p, and that hL|X0

is not identically +∞. Then for any
holomorphic section f ∈H0(X0,KX0

⊗L|X0
⊗J (hL|X0

)), there exists a section F ∈H0(X,KX⊗L)
such that F|X0

= f and
1
µ(B)

∫
X
|F|2e−φL 6

∫
X0

|f |2e−φL ,

where µ(B) denotes the Lebesgue measure of B.

Proof. We obtain the theorem by applying [Cao, Theorem .] to the fibre space X
p
−! B

with E = p∗O ⊕dB , v = p∗t where t = (t1, · · · , td) and ti ’s are standard coordinates of C
d ,

A = 2d logR, cA(t) ≡ 1, and by letting δ! +∞ (c.f. also [GZa, §., Lemma .]). In
particular, when d = 1 one recovers [Cao, Theorem . (Corollary .)].

Global Version In many cases, one needs a global version of Ohsawa-Takegoshi ex-
tension theorem for Kähler fibre spaces over projective bases; in this case, one cannot
obtain an optimal estimation, but one still has an surjection of section spaces up to a
twisting by a ample line bundle coming from the base, along with a weaker estimation
on the L2 norm. In fact we have the following:

Theorem .. (Kähler version of [Dena, Corollary .]). Let Y be a smooth projective
variety of dimension d and let f : X ! Y be a surjective morphism between compact Kähler
manifolds with connected fibres. Let (AY , y) be any pair with AY ample line bundle on Y and
y ∈ Y0 (where Y0 denotes the smooth locus of f ), such that the Seshadri constant

ε(AY , y) > dimY = d.
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Let (L,hL) be any holomorphic line bundle on X equipped with a singular Hermitian met-
ric hL whose curvature current is positive, such that hL|Xy . +∞. Then for any section
u ∈ H0(Xy ,KXy ⊗ L|Xy ⊗ J (hL|Xy )), there is a section σ ∈ H0(X,KX ⊗ L ⊗ f ∗AY ) such that
σ |Xy = u with an L2 estimate independent of L.

For the proof, we refer to [Dena, Corollary .]. Just remark that: in [Dena]
this theorem is only stated for f a projective morphism. The above Kähler version holds
because the proof of [Dena, Corollary .] depends only on [Dem, (.)Theorem]
(c.f. also [Dena, Theorem .]), which is valid for any pseudo-convex Kähler manifold.

. Positivity of the twisted relative pluricanonical bundles and
their direct images

Let f : X ! Y be a Kähler fibre space between complex manifolds (c.f. the definitions
in Convetion and Notations). Let (L,hL) be a line bundle on X equipped with a singu-
lar Hermitian metric hL whose curvature current ΘhL(L) is positive. The main purpose
of this section is to establish the positivity result for the L-twisted relative pluricanoni-
cal bundles and their direct images mentioned in Introduction (c.f. Theorem .. and
Theorem ..). To this end, we will explain the construction of the relative m-Bergman
kernel metric h(m)

X/Y,L on K⊗mX/Y ⊗L and of the canonical L2 metric gX/Y,L on the direct image
sheaf f∗ (KX/Y ⊗L⊗J (hL)).

Let us recall briefly the history of the study of these canonical metrics. Initially, the
case with hL a smooth metric and f smooth is considered in [Ber], where the positivity
of f∗(KX/Y ⊗ L) is proved by an explicit calculation of the curvature; as a simple conse-
quence, one deduces the positivity of the relative Bergman kernel metric (with m = 1),
c.f. [BP, §, p. ]. In the more general case where f is projective but not neces-
sarily smooth and f∗(KX/Y ⊗ L) is locally free, the positivity of f∗(KX/Y ⊗ L) is proved in
[BP, Theorem .] based on the work of Berndtsson; this result is in turn used in [BP,
Corollary .] to prove the positivity of the relative m-Bergman kernel metric under the
assumption that the direct image sheaf f∗

(
K⊗mX/Y ⊗L

)
is locally free. In [PT], these pos-

itivity results are established for f projective with the locally freeness conditions for
direct images removed: it is made clear that the positivity of the relative m-Bergman
kernel metric can be regarded as a consequence of the Ohsawa-Takegoshi extension The-
orem with the optimal estimate, and thus can be obtained independently of the positivity
of direct images; while the proof of the positivity of f∗(KX/Y ⊗ L) is based on [BP] and
is done by a semistable reduction plus an explicit calculation. A little later, it is realized
that the positivity of the canonical metric is also a consequence of the Ohsawa-Takegoshi
extension theorem with the optimal estimate, as is explained in [HPS]. Therefore
in order to obtain a Kähler version of this theorem, all one needs is to generalize the
Ohsawa-Takegoshi extension theorem to the Kähler case. Thanks to [Cao], this result
is established and the positivity of the relative m-Bergman kernel metric is also proved
in [Cao] as a corollary; in consequence, by virtue of the main result in [Cao] one
can follow the same arguments in [HPS] to demonstrate the positivity of the canoni-
cal L2 metric gX/Y,L for f Kähler fibre space. Recently we are informed that this result
is established in [DWZZ] by following the strategy of [HPS] and by a more general
positivity theorem for singular Finsler metrics on direct images. For the convenience of
the readers, we will nevertheless provide some details of the proof in §...
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.. Positivity of the relative m-Bergman kernel metrics

Let f : X ! Y be an analytic fibre space between complex manifolds and let (L,hL) be
a holomorphic line bundle on X equipped with a singular Hermitian metric hL with
curvature current ΘhL(L) > 0. Set n = dimX, d = dimY and e = dimX −dimY = n−d. Let
us recall the construction of the relative m-Bergman kernel metric on K⊗mX/Y ⊗ L. We will
follow [CP, §.] and [Cao, §.]; for more details, c.f. [BP, §].

Let Y0 be the (analytic) Zariski open subset of Y over which f is smooth. Let x ∈
f −1(Y0) and let z1, · · · , zd+e be local coordinates near x; write y = f (x) ∈ Y0 and let t1, · · · , td
be local coordinates near y such that zj+e = f ∗tj . Suppose in addition that over the coor-
dinate neighbourhood of x (resp. of y) chosen as above the line bundle L as well as the
canonical bundles of X are trivial (resp. the canonical bundle of Y is trivial).

Suppose that f∗
(
K⊗mX/Y ⊗L

)
, 0. We define a L2/m-Finsler norm on H0(Xy ,K

⊗m
Xy
⊗ L|Xy )

by taking the integral over the fibre

‖u‖
2
m
m,y,L :=

∫
Xy

|u| 2m e− 1
mφL , (.)

where φL denotes the local weight of the metric hL (we authorize this to be +∞, which
is the case when hL|Xy ≡ +∞). In addition, we denote by Fu the coefficient of (dz1 ∧ · · · ∧
dzd+e)⊗m in the local expression of u∧ f ∗(dt1∧· · ·∧ td)⊗m. Then local weight φ(m)

X/Y,L of the

relative m-Bergman kernel metric h(m)
X/Y,L is given by

eφ
(m)
X/Y,L(x) = sup

‖u‖m,y,L61
|Fu(x)|2 . (.)

Let us remark that if hL|Xy ≡ +∞ (.) is equal to 0 by convention and thus φX/Y,L(x) =

−∞. The metric h(m)
X/Y,L = e−φ

(m)
X/Y,L can also be described in an intrinsic way as follows: for

ξ ∈ (K⊗(−m)
X/Y ⊗L−1)x, we have

|ξ |
h

(m)∗
X/Y,L,x

= sup
‖u‖m,y,L61

|ξ(u(x))| .

Suppose in the sequel of this subsection that f is a Kähler fibre space with X and
Y complex manifolds. By using the Ohsawa-Takegoshi extension theorem with optimal
estimate (c.f. Theorem ..) Junyan Cao proved in [Cao] that the relative m-Bergman
kernel metric constructed above is semipositively curved (since the construction is local
over Y , the Kähler hypothesis on X and Y in the original statement of [Cao, Theorem
.] is in fact not necessary, and can be replaced by the hypothesis that f is a Kähler fibre
space, in which case X is only assumed to be Kähler locally over Y ):

Theorem .. ([Cao, Theorem . (Theorem .)]). Let f : X! Y be a Kähler fibre space
with X and Y complex manifolds and (L,hL) be a holomorphic line bundle on X equipped with
a singular Hermitian metric hL whose curvature current is positive. Letm be a positive integer.
Suppose that for a general point y0 ∈ Y there exists a non-zero section u ∈H0(Xy0

,K⊗mXy0 ⊗L|Xy0 )
satisfying ∫

Xy0

|u| 2m e− 1
mφL < +∞ ,

then the curvature current of the relative m-Bergman kernel metric h(m)
X/Y,L is positive. More

precisely, there is an (analytic) Zariski open subset of f −1(Y0) (c.f. Remark .. below) such
that the local weight φ(m)

X/Y,L of the metric h(m)
X/Y,L defined above is a psh function uniformly

bounded from above, thus it admits a unique (psh) extension on X.
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Remark ... Though we do note use this, let us make it precise the (analytic) Zariski
open in the Theorem .. above. Define for every (quasi-)psh function φ and for every
integer m > 0 the ideal sheaf Jm(φ) by taking

Jm(φ)x :=
{
f ∈ OX,x

∣∣∣∣∣ |f | 2m e− 1
mφ ∈ L1

loc

}
,

which is proved to be coherent in [Cao]. Then the integrability condition in Theorem
.. is equivalent to the non-vanishing condition that f∗(K⊗mX/Y ⊗L⊗Jm(hL)) , 0. And the
open subset mentioned in Theorem .. can be taken to be f −1(U ) where U ⊆ Y0 is the
(analytic) Zariski open subset consist of all point t ∈U such that

h0(Xt , (K
⊗m
X/Y ⊗L⊗Jm(hL)|Xt ) = rkf∗(K⊗mX/Y ⊗L⊗Jm(hL)).

In particular by the Grauert’s semi-continuity theorem [Uen, Theorem .(), p. ],
f∗(K⊗mX/Y ⊗ L ⊗ Jm(hL)) satisfies the base change property over U . For more details, c.f.
[Cao, Proof of Theorem .] and Lemma .. below.

By an explicit local calculation as in [CP, Theorem .] or [Pău, ..Theorem]
we obtain (in virtue of Theorem .. the proof in [CP] apparently does not require
the projectivity of f ):

Proposition .. (Kähler version of [CP, Remark .] or [Pău, ..Remark]). Let
f : X! Y be a Kähler fibre space withX and Y complex manifolds and (L,hL) be a holomorphic
line bundle on X equipped with a singular Hermitian metric hL whose curvature current is
positive. Let m be a positive integer. Suppose that for a general point y0 ∈ Y there exists a
non-zero section u ∈H0(Xy0

,K⊗mXy0 ⊗L|Xy0 ) satisfying∫
Xy0

|u| 2m e− 1
mφL < +∞ ,

(as in the hypothesis of Theorem ..). Then we have

Θ
h

(m)
X/Y,L

(K⊗mX/Y ⊗L) >m[Σf ] (.)

in the sense of currents, where the divisor Σf is defined in the Introduction. In particular, the
current Θ

h
(m)
X/Y,L

(K⊗mX/Y ⊗L) is singular along the multiple fibres of f in codimension 1.

Proof. Let us remark that in [CP] the proof of inequality (.) is only sketched for
m = 1. For the convenience of the readers let us give a detailed proof for the general
case here. Since a positive (1,1)-current extends across analytic subsets of codimension
2, it suffices to check the inequality around a general point of Wi for every i ∈ Idiv (so
that one can assume that every Wi is smooth). Say i = 1 ∈ Idiv, and let x be a general
point of W1. Take a small ball By (of radius < 1) around y = f (x) with holomorphic local
coordinates (tj )j=1,··· ,d and a small ball Ωx ⊂ f −1(By) around x with holomorphic local
coordinates (zi)i=1,··· ,n, such that W1 is locally defined by the equation ze+1 = 0 and that
f (W1) is defined by t1 = 0. Then f is locally given by the formula (up to reordering the
indices):

(z1 , · · · , ze , ze+1 , · · · , zn) 7−! (zb1
e+1 , ze+2 , · · · , zn).

Now let y0 ∈ By\(t1 = 0), and let u ∈H0(Xy0
,K⊗mXy0 ⊗L|Xy0 ) satisfying the L2/m condition

as in the hypothesis; up to a normalization one can suppose that ‖u‖m,y0,L = 1. Then by
the construction of Fu we have

1 = ‖u‖
2
m
m,y0,L

=
∫
Xy0

|u| 2m e− 1
mφL >

∫
Ωx∩Xy0

∣∣∣∣∣∣∣ Fu

z
m(b1−1)
e+1

∣∣∣∣∣∣∣
2
m

dµXy0
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where dµXy0 is the Lebesgue measure on Xy0
with respect to the zi ’s. Notice that

Ωx ∩Xy0
=

{
zb1
e+1 = t1(y0) , ze+i = ti(y0) ,2 6 i 6 d

}
,

hence by applying the Ohsawa-Takegoshi type extension theorem [DWZZ, Theorem
.] (or [BP, ..Proposition]) toΩ =Ωx , p = (ze+1 , · · · , zn) andφ = (b1−1)log |ze+1|2, the
holomorphic function Fu extends to a function Gu defined onΩx satisfying the following
L2/m-integrability condition:

∫
Ωx

∣∣∣∣∣∣∣ Gu

z
m(b1−1)
e+1

∣∣∣∣∣∣∣
2
m

dµX 6 µ(By).

By valuative integrability criterion [Bou, Theorem .] the generic Lelong number
of log |Gu | over W1 is greater than m(b1 − 1), implying that

log |Gu |2 6m(b1 − 1)log |ze+1|2 +Cy0

for some uniform (the section space H0(Xy0
,K⊗mXy0 ⊗ L|Xy0 ) being finite-dimensional) con-

stant Cy0
depending on y0. Hence by the construction (.) we have

φ
(m)
X/Y,L(z) 6m(b1 − 1)log |ze+1|2 +Cf (z) ;

by the mean-value inequality the constant Cf (z) can be chosen locally uniform. The func-

tion φ(m)
X/Y,L−m(b−1−1)log |ze+1|2 is psh outside ze+1 = 0 (since log |ze+1|2 is pluri-harmonic

outside ze+1 = 0), but it is bounded, hence it is a psh function and this proves (.).

.. Positivity of the canonical L2 metric on the direct images

In this subsection, let f : X ! Y be an analytic fibre space between complex manifolds
and let (L,hL) be a holomorphic line bundle on X equipped with a singular Hermitian
metric hL with curvature currentΘhL(L) > 0. We will show in the sequel that the canonical
L2 metric on the direct image sheaf f∗(KX/Y ⊗L⊗J (hL)) is semipositively curved, that is,
to prove the following theorem:

Theorem .. (Kähler version of [PT, Theorem (b)]). let f : X ! Y be a Kähler fibre
space between complex manifolds and let (L,hL) be a holomorphic line bundle on X equipped
with a singular Hermitian metric hL with curvature current ΘhL(L) > 0. Then the torsion
free sheaf f∗ (KX/Y ⊗L⊗J (hL)) admits a canonical semipositively curved singular Hermitian
metric gX/Y,L which satisfies the L2 extension property.

The argument is very close to that in [HPS, §-]. For the convenience of the
readers, we will nevertheless explain it in details.

First recall the construction of the canonical L2 metric on the direct image of the
adjoint line bundle (twisted by the multiplier ideal). Briefly speaking, it is done as fol-
lowing: when Y = pt, then X is compact, and this is nothing other than the natural L2

norm on H0(X,KX⊗L⊗J (hL)); for the general case, we just do this construction in family.
Precisely, gX/Y,L is constructed as following: let Y0 be the Zariski open of Y over which

f is smooth and let y ∈ Y0. Take a coordinate neighbourhood B of y, so that KY is trivial
over B, then there is a nowhere vanishing holomorphic d-form η such that KB ' OB ·η. For
any section u ∈H0(B,f∗(KX/Y ⊗L⊗J (hL))), one can regard it as a morphism of OB-modules
(in virtue of the projection formula)

u : KB −! f∗(KX ⊗L⊗J (hL))|B
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Thus we obtain a section u(η) ∈ H0(B,f∗(KX ⊗ L ⊗J (hL))) = H0(f −1(B),KX ⊗ L ⊗J (hL)).
Locally over f −1(B∩Y0) we can write u(η) = σu ∧ f ∗η; whilst the choice of σu depends on
η, its restriction to the fibre σu |Xy does not. The local sections σu |Xy ’s glue together to give
rise to a section σu,y ∈H0(Xy ,KXy⊗(L⊗J (hL))|Xy ). Then we define the canonical L2 metric
as following: for two local sections u,v of f∗(KX/Y ⊗L) (resp. of f∗(KX/Y ⊗L⊗J (hL))), define

gX/Y,L(u,v)(y) =
(√
−1

)n2
∫
Xy

σu,y ∧ σ̄v,ye−φL . (.)

Before proving the result, let us recall the following comparison result of the restric-
tion of the multiplier ideal of a metric to a fibre and the multiplier ideal of the restriction
of the metric to a fibre:

Lemma ... Let f : X ! Y and (L,hL) as in the Theorem .. above. Suppose that f is
smooth. Then for any y ∈ Y we have

J (hL|Xy ) ⊆ J (hL)|Xy .
Moreover, for almost every y ∈ Y we have

J (hL|Xy ) = J (hL)|Xy .

Proof. The inclusion J (hL|Xy ) ⊆ J (hL)|Xy results from the local Ohsawa-Takegoshi exten-
sion theorem (see e.g. [Bło, Theorem ]) while the equality for a.e. y ∈ Y is simply a
consequence of the Fubini’s theorem. C.f. [Pău, ..Remark] for more details. Let us
remark that the same result holds for Jm as defined in Remark ...

Next let us fix some notations for later use:

Notations: Set Y1 the (analytic) Zariski open subset of Y0 such that

(i) f∗(KX/Y ⊗ L⊗J (hL)) and the quotient sheaf of f∗(KX/Y ⊗ L) by f∗(KX/Y ⊗ L⊗J (hL))
are both locally free over Y1 ;

(ii) f∗(KX/Y ⊗ L) satisfies the base change property over Y1 , i.e. f∗(KX/Y ⊗ L) ⊗ κ(y) '
H0(Xy ,KXy ⊗ L|Xy ) for every y ∈ Y1 (e.g. if the function y 7! h0(Xy ,KXy ⊗ L|Xy ) is
locally constant on Y1, c.f. [Uen, Theorem .(), p. ]).

Set in addition GL := f∗(KX/Y ⊗L⊗J (hL)). With these notations we get immediately from
Lemma .. the following:

Lemma ... We have inclusions

H0(Xy ,KXy ⊗L|Xy ⊗J (hL|Xy )) ⊆ GL ⊗κ(y) ⊆ f∗(KX/Y ⊗L)⊗κ(y) = H0(Xy ,KXy ⊗L|Xy )
for every y ∈ Y1.

For any y ∈ Y1, since f∗(KX/Y ⊗L) satisfies the base change property, the expression of
the metric gX/Y,L is simpler: for u ∈ GL⊗κ(y), u can be regarded as a section in H0(Xy ,KXy⊗
(L⊗J (hL))|Xy ) ⊆H0(Xy ,KXy ⊗L|Xy ), and we have

|u|2gX/Y,L,y =
∫
Xy

|u|2e−φL . (.)

In particular, |u|2gX/Y,L,y (y ∈ Y1) is finite if and only if u ∈ H0(Xy ,KXy ⊗ L|Xy ⊗ J (hL|Xy )).
Now let us prove the following result which ensures that gX/Y,L is well-behaved:
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Proposition ... The metric gX/Y,L defined above on f∗(KX/Y ⊗ L ⊗J (hL)) is measurable,
and is non-degenerate and bounded almost everywhere.

Proof. We check successively:

(a) gX/Y,L is measurable: this is surely well known to experts, but since it does not
appear explicitly in the literatures we give the details for the convenience of the
readers and take this chance to fix some notations for later use. Let s ∈H0(B,GL) be
a local section on Bwith B a small ball in Y , we will show thatΛs := |s|2gX/Y,L is a mea-
surable function. To this end, we can assume that B is contained in Y0; in addition, s
can be regarded as a section in H0(f −1B,KX/Y ⊗L), and thus s(y) ∈H0(Xy ,KXy⊗L|Xy );
s∧f ∗η ∈H0(f −1B,KX⊗L) where η is a nowhere vanishing holomorphic d-form, giv-
ing rise to a trivialization KB ' OB · η. By definition, for any y ∈ B∩Y1 we have

Λs(y) =
∫
Xy

|s(y)|2e−φL ,

By Ehresmann’s theorem (c.f. for example [Voi, §.., Proposition ., pp. -
]) we have a diffeomorphism X0 ×B τ

−! f −1B such that τ |X0×{0} ◦ i0 = idX0
where

iy : X0! X0×B is the natural inclusion which identifies X0 à X0×{y} in X0×B. Then
we can write

Λs(y) =
∫
X0

Gs(y, · )VolX0
(.)

where VolX0
is a fixed volume form on X0 and Gs is a function such that

Gs(y, · )VolX0
=

∣∣∣∣τ∗(s∧ f ∗η)
∣∣∣
X0×{y}

∣∣∣∣2 e−φL . (.)

φL being a psh function, the function Gs is lower semi-continuous and is well de-
fined on X0× (B∩Y1), in particular it is measurable. Hence by Fubini’s theorem, Λs
is measurable.

(b) gX/Y,L is non-degenerate and bounded almost everywhere (c.f. also [Pău, ..Re-
mark]): first one notices that by the formula (.) the metric gX/Y,L is non-degenerate
over Y1 since φL is a psh function. In order to show that gX/Y,L is bounded almost
everywhere, it suffices to prove that the natural inclusion

H0(Xy ,KXy ⊗L|Xy ⊗J (hL|Xy )) ↪! GL ⊗κ(y)

is an isomorphism for y ∈ Y1 almost everywhere. This simply results from Lemma
...

By virtue of Proposition .., in order to prove that gX/Y,L defined above extends to
a semipositively curved singular Hermitian metric on GL , it remains to show: for U ⊆ Y
an open subset, and for α ∈ H0(U,G ∗L ) a non-zero section, ψα := log |α|2g∗X/Y,L (a function

well-defined on U ∩Y0) extends to a psh function on U . To this end, we will successively
establish (by Proposition .., ψα . −∞ on U ∩Y0):

(A) ψα is locally uniformly bounded from above on U1 :=U ∩Y1;

(B) ψα is upper semi-continuous on U1 ;

(C) ψα satisfies the mean value inequality on any disc in U1.
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In fact, the points (B) and (C) imply that ψα is a psh function over U1; and the point
(A) implies moreover that ψα |U1

admits a unique psh extension to U . In addition, let us
remark that up to replacing Y par U , one can suppose that α is a global section; in this
case ψα is a function well defined over Y0. The proof of theses three points relies on the
Ohsawa-Takegoshi type extension Theorem .., which enables us to extend a section on
the fibre to a neighbourhood along with an L2 estimate (in some cases we should require
this estimate to be optimal).

Proof of (A): let y0 ∈ Y , we will prove that y0 admits a neighbourhood such that on its
intersection with Y1 the function ψα is uniformly upper bounded. To this end, take a
small open ball B0 of centre y0 in Y and denote B1 := 1

2B0, B = B2 := 1
4B0 and R0 = radius

of B0. We will prove in the sequel that ψα is uniformly upper bounded on B∩ Y1. This
proceeds in two steps:

(A) Firstly we prove that

ψα |B∩Y1
6 punctual supremum of the family of functions

{
log |α(s)|2

}
s∈SM0

(.)

where SM0
denotes the set of sections s ∈H0(B1,GL) = H0(f −1(B1),KX/Y ⊗L⊗J (hL))

satisfying the following L2 condition:∫
f −1B1

∣∣∣s∧ f ∗η|B1

∣∣∣2 e−φL 6 (3
4

)d
µ(B0) :=M0, (.)

where µ(B0) denotes the Lebesgue measure of B0 and η a nowhere vanishing holo-
morphic n-form on B0 (which gives rise to a trivialization KB0

' OB0
· η).

For every y ∈ B∩Y1 such that hL|Xy . +∞ (if hL|Xy ≡ +∞, then ψα(y) = −∞ and (.)
is automatically established at y), we have

ψα(y) = log
∣∣∣α(y)

∣∣∣2
g∗X/Y,L,y

= sup
‖u‖y,L61

log
∣∣∣α(y)(u)

∣∣∣2 .
The set

{
u ∈H0(Xy ,KXy ⊗L|Xy )

∣∣∣‖u‖y,L 6 1
}

being compact, the supremum is attained
by a vector vy ∈ GL⊗κ(y) satisfying ‖vy‖y,L = |vy |gX/Y,L,y = 1 (we denote ‖·‖1,y,L = ‖·‖y,L,
compare (.) and (.)); in particular vy ∈ H0(Xy ,KXy ⊗ L|Xy ⊗J (hL|Xy )). Consider

the open ball By := B(y, 3
4R0) of centre y and of radius = 3

4R0. Then B ⊆ B1 ⊆ By ⊆ B0.
By Theorem .. we get a section sy ∈ H0(By ,GL) such that sy |Xy = vy and satisfies
the following L2 condition:∫

f −1By

∣∣∣∣sy ∧ f ∗η|By ∣∣∣∣2 e−φL 6 µ(By) · ‖vy‖y,L = µ(By) =
(3

4

)d
µ(B0) =M0 .

In particular, sy |B1
satisfies Condition (.), then sy |B1

∈ SM0
. In addition, we have

ψα(y) =
(
log

∣∣∣α(sy)
∣∣∣2) (y),

which proves (.).

(A) By the previous step, it remains to prove that the functions log |α(s)|2 (s ∈ SM0
) are

all uniformly upper bounded over B̄ by a uniform constant. In fact we can prove
the following more general:
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Lemma ... For a fixed M > 0, define

SM :=
{
s ∈H0(B1,GL) = H0(f −1(B1),KX/Y ⊗L⊗J (hL))

∣∣∣∣∣ ∫
f −1B1

∣∣∣s∧ f ∗η|B1

∣∣∣2 e−φL 6M}
,

then for every compact K ⊆ B1, there exists a constant CK > 0 (independent of s) such
that

sup
K
|α(s)| 6 CK

for every s ∈ SM .

Proof. The lemma is deduced from some well known facts about the Fréchet space
structure on the cohomology spaces of coherent sheaves over complex spaces, as
presented in [GR, §VIII.A, pp. -]. By [GR, §VIIII.A, .Theorem, pp. -
], for any coherent sheaf on an analytic space, we can equip its section spaces
with a unique Fréchet space structure, s.t. the restriction morphisms are continu-
ous.

(a) By [GR, §VIII.A, .Theorem, pp. -], the section α, regarded as a mor-
phism GL! OY , induces continuous map between Fréchet spaces

α|B1
: H0(B1,GL)−!H0(B1,OX).

(b) By uniqueness, the a priori different topologies on the two isomorphic spaces
H0(B1,GL) and H0(f −1(B1),KX/Y ⊗L⊗J (hL)) are homeomorpic.

(c) SM ⊆H0(B1,GL) is compact with respect to the Fréchet space topology. This is
a result of (b) and Montel’s Theorem.

(d) By [Car, §V.., Proposition ., pp. -] the compacts in H0(B1,OX)
are closed and bounded.

By combining (a) (c) and (d) we establish the lemma.

Proof of (B): let y0 ∈ Y1, and let {yk}k>0 be any sequence in Y1 convergent to y0, we will
prove that

limsup
k!+∞

ψα(yk) 6 ψα(y0).

The problem being local, we can replace Y by B0 a small open ball of centre y0 (y0 = 0

in B0) in Y . Note R0 := the radius of B0 and Bi :=
(

1
2

)i
B0. Since there is a subsequence

of {ψα(yk)}k>0 which converges to the limit superior of {ψα(yk)}k>0, we can assume that
the sequence {ψα(yk)}k>0 is convergent. In addition, up to shifting the numbering of the
sequence we can assume that {yk}k>0 ⊆ B3; we can also assume that ψα(yk) , −∞, ∀k (in
particular, hL|Xyk . +∞). As in the step (A) above, there exists for every k ∈Z>0 a vector

vk ∈H0(Xyk ,KXyk ⊗L|Xyk ⊗J (hL|Xyk )) such that ‖vk‖yk ,L = 1 and

ψα(yk) = log
∣∣∣α(yk)(vk)

∣∣∣2 .
Consider Byk := B(yk ,

7
8R0) the open ball of centre yk and of radius 7

8R0, then B3 ⊆ B2 ⊆
B1 ⊆ Byk ⊆ B0. Still by Theorem .., we obtain a section sk ∈H0(Byk ,GL) = H0(f −1(Byk ),KX/Y⊗
L⊗J (hL)) such that sk |Xyk = vk and∫

f −1(Byk )
|sk |2e−φL 6

(7
8

)d
µ(B0) :=M ′0.
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Denote Fk = α(sk)|B1
and θk := log |Fk |2, then Fk is a holomorphic function on B1 and θk is

a psh function (with analytic singularities); in addition, we have that ψα(yk) = θk(yk). By
Lemma .. (taking M =M ′0 and K = B̄2), there is a constant CB̄2

independent of k such
that |Fk | 6 CB̄2

on B̄2 for every k; in consequence, the derivatives of Fk satisfy

|∇Fk |2 6 C̃B̄2
:=

16
√
n

R0
CB̄2

on B̄3 (c.f. [Car, §V.., Lemme, p. ]). In particular, since {yk}k>0 ⊆ B3, we have∣∣∣|Fk(0)| − |Fk(yk)|
∣∣∣ 6 ∣∣∣Fk(0)−Fk(yk)

∣∣∣ 6 C̃B̄2
|yk − 0|! 0 when k! +∞,

hence we get

lim
k!+∞

θk(yk) = lim
k!+∞

(log |Fk(yk)|) = lim
k!+∞

(log |Fk(0)|) = lim
k!+∞

θk(0) (.)

By definition, we have

|α(sk)| 6 |α|g∗X/Y,L |sk |gX/Y,L ⇒ ψα + logλk > θk ,

where λk :=Λsk = |sk |2gX/Y,L . By passing to the limit superior we obtain (in virtue of (.))

ψα(0) + limsup
k!+∞

(logλk(0)) > limsup
k!+∞

θk(0) = lim
k!+∞

θk(0) = lim
k!+∞

θk(yk) = lim
k!+∞

ψα(yk).

It remains thus to show
limsup
k!+∞

(logλk(0)) 6 0,

and this amounts to show (the function log being increasing and continuous)

limsup
k!+∞

λk(0) 6 1.

Now up to taking an extraction, we can assume that the sequence {λk(0)}k>0 is conver-
gent. By the compactness of SM ′0 (Point (b) in the proof of Lemma ..), up to taking a
subsequence, we can further assume that {sk}k>0 converges uniformly on all compacts in
B1 to a section s ∈ SM ′0 . By (.) (c.f. Point (a) in the proof of Proposition ..) we have
for y ∈ B1 ∩Y1 that

λk(y) =
∫
X0

Gsk (y, · )VolX0
,

Λs(y) =
∫
X0

Gs(y, · )VolX0
.

By (.) the compact convergence {sk}k>0 implies that
{
Gsk

}
k>0

converges uniformly over
all compacts to Gs (especially over B̄3). By Point (a) in the proof of Proposition .., the
Gsk ’s as well as Gs are all lower semi-continuous functions, thus

Gsk (0, · ) 6 liminf
l!+∞

Gsk (yl , · ) ,
Gs(0, · ) 6 liminf

l!+∞
Gs(yl , · ) ,

and in consequence (by a diagonal process)

Gs(0, · ) 6 liminf
k!+∞

Gsk (yk , · ).
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Then Fatou’s lemma implies that,

lim
k!+∞

λk(0) =Λs(0) =
∫
X0

Gs(0, · )VolX0
6

∫
X0

liminf
k!+∞

Gsk (yk , · )VolX0

6 liminf
k!+∞

∫
X0

Gsk (yk , · ) = liminf
k!+∞

λk(yk) = 1,

which proves the result.

Proof of (C): Let ∆ be any disc contained in Y1, we will prove that

ψα(0) 6
1

µ(∆)

∫
∆
ψαdµ. (.)

We can assume that Y = ∆ (= Y1 = Y0), in particular, f is a smooth fibration. If ψα(0) =
−∞, then the inequality (.) is automatically established; hence we can assume that
ψα(0) , −∞, in particular hL|X0

. +∞. As in the step (A), there is a section v ∈H0(X0,KX0
⊗

L|X0
⊗J (hL|X0

)) such that ‖v‖0,L = 1 and

ψα(0) = log |α(0)(v)|2 .
Again by Theorem ..we get a section s ∈H0(X,KX/∆⊗L⊗J (hL)) such that s|X0

= v and∫
∆
Λs(t)dt =

∫
X
|s|2e−φL 6 µ(∆).

In particular
(
log |α(s)|2

)
(0) = ψα(0). By definition we have

|α(s)| 6 |α|g∗X/Y,L |s|gX/Y,L ⇒ ψα + logΛs > log |α(s)|2.
The function log |α(s)| being psh on ∆, it satisfies the mean value inequality, hence we
have

1
µ(∆)

∫
∆
ψαdµ+

1
µ(∆)

∫
∆

logΛsdµ >
1

µ(∆)

∫
∆

log |α(s)|dµ >
(
log |α(s)|2

)
(0) = ψα(0).

It remains to show that ∫
∆

logΛsdµ 6 0,

but the function log being concave, this is a result of Jensen’s inequality: Λs being inte-
grable, we have ∫

∆
logΛs

dµ

µ(∆)
6 log

(∫
∆
Λs

dµ

µ(∆)

)
=6 log1 = 0.

This proves (.), and thus finishes the proof of the step (C). Hence gX/Y,L is a semipos-
itively curved singular Hermitian metric on GL.

In order to finish the proof of Theorem .., it remains to show that (GL , gX/Y,L) satis-
fies the L2 extension property. To this end, take an open subset U of Y and Z an analytic
subset of U , and take a local section s ∈ H0(U\Z,GL) satisfying the L2 integrability con-
dition, we will show that s extends to a section over U . The problem being local, we
can replace U by a small ball B in Y (with t1, · · · , td the standard coordinates). Then
s ∈H0(B\Z,GL) = H0(f −1(B\Z),KX/Y ⊗L⊗J (hL)) satisfies the following L2 condition:

Ms :=
∫
B\Z

(
|s|2gX/Y,L

)
η =

∫
f −1(B\Z)

|s∧ f ∗η|2e−φL < +∞,
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where η = dt1 ∧ · · · ∧ dtd is a nowhere vanishing holomorphic d-form (giving rise to a
trivialization KB ' OB · η). Then it is an elementary consequence of Riemann extension
that s extends to a section in H0(f −1(B),KX/Y ⊗L⊗J (hL)) = H0(B,GL). For the convenience
of the readers, let us gives the details of the argument. Let x ∈ f −1(Z) and let Ω be the
ball centred at x of radius ε such that Ω′ = 2Ω is contained in f −1B (with ε sufficiently
small). Set µε = µ(Ω) and set z1, · · · , zn the local coordinates of Ω′. In addition, let σL be a
local basis of L (i.e. L|Ω′ ' OΩ′ · σL) , then e−φL |Ω′ = |σL|2hL and we can write:

s∧ f ∗η =Φs · (dz1 ∧ · · · ∧ dzn)⊗ σL
for some holomorphic functionΦs onΩ′∩f −1(B\Z). The function φL is psh, in particular
it is uniformly bounded from above over Ω′ (since it is sufficiently small), hence there
is a constant C such that φL 6 C over Ω′. ∀y ∈ Ω ∩ f −1(B\Z), we have B(y,ε) ⊆ Ω′ and
therefore

|Φs(y)|2 6 1
µ(B(y,ε))

∫
B(y,ε)∩f −1(B\Z)

|Φs|2dz 6 e
C

µε

∫
B(y,ε)∩f −1(B\Z)

|s∧ f ∗η|2e−φL 6 Me
C

µε
< +∞.

Hence Φs is uniformly bounded on Ω, then by Riemann extension Φs extends to a holo-
morphic function over Ω. This implies that s extends to a section in H0(f −1B,KX/Y ⊗
L⊗J (hL)) = H0(B,GL), meaning that (GL , gX/Y,L) satisfies the L2 extension property. This
finishes the proof of Theorem ...

.. Positivity of direct images of twisted relative pluricanonical bundles

In this subsection, we will apply Theorem .. and Theorem .. to prove Theorem D,
which will serve as a key ingredient in the proof of Theorem A.

Proof of Theorem D. Recall that

Fm,∆ := f∗
(
K⊗mX/Y ⊗OX(m∆)

)
.

If Fm,∆ = 0, then there is nothing to prove; hence we assume that Fm,∆ , 0. Since (X,∆) is
klt (implying that (Xy ,∆y) is klt for y general by [Laz, §..D, Theorem .., pp. -
, vol.II]) andFm,∆ , 0, the condition in the hypothesis of Theorem .. is satisfied for
L = OX(m∆) and hL = h⊗m∆ where h∆ is the canonical (singular) Hermitian metric defined

by the local equations of ∆, then we obtain a singular Hermitian metric h(m)
X/Y,m∆ over

K⊗mX/Y ⊗ OX(m∆) whose curvature current is positive. However one cannot directly apply
Theorem .. to obtain a semipositively curved singular Hermitian metric on Fm,∆. In
order to overcome this difficulty, we introduce the line bundle

Lm−1 = K⊗(m−1)
X/Y ⊗OX(m∆),

equipped with the metric
hLm−1

:= (h(m)
X/Y,m∆)⊗

m−1
m ⊗ h∆.

Then the curvature current of hLm−1
is positive. We are now ready to apply Theorem ..

to L = Lm−1, except that we need to establish in addition that the natural inclusion

f∗
(
KX/Y ⊗Lm−1 ⊗J (hLm−1

)
)
↪! Fm,∆

is generically an isomorphism.
To this end, let Y2 be the (analytic) Zariski open subset of Y0 satisfying Conditions

(i)(ii) in the definition of Y1 for L = Lm−1 (see Notations) and such that the pair (Xy ,∆y) is
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klt for ∀y ∈ Y2 (c.f. [Laz, §..D, Theorem .., pp. -, vol.II]). By virtue of the
base change property of Fm,∆ over Y2 and of Lemma .., it suffices to prove that the
natural inclusion

H0(Xy ,KXy ⊗Lm−1|Xy ⊗J (hLm−1
|Xy )) ↪!H0(Xy ,KXy ⊗Lm−1|Xy ) (.)

is an isomorphism for y ∈ Y2. But this results from the following Lemma ...

Lemma ... Let f : X ! Y be a Kähler fibre space between complex manifolds and let N
be a Q-line bundle endowed with a semipositively curved singular Hermitian metric hN such
that J (hN |Xy ) = OXy for almost every y ∈ Y0 (which is the case, e.g. if J (hN ) = OX , by Lemma
..). If the direct image sheaf f∗(K⊗mX/Y ⊗N⊗m) , 0, then by Theorem .. one can construct

the relative m-Bergman kernel metric h(m)
X/Y,mN on K⊗mX/Y ⊗ N⊗m whose curvature current is

positive. Set
Nm−1 := K⊗(m−1)

X/Y ⊗N⊗m
and

hNm−1
:= (h(m)

X/Y,mN )⊗
m−1
m ⊗ hN .

Then the natural inclusion

H0(Xy ,KXy ⊗Nm−1|Xy ⊗J (hNm−1
|Xy )) ↪!H0(Xy ,KXy ⊗Nm−1|Xy )

is an isomorphism (or equivalently, surjective) for a.e. y ∈ Y0.

Proof. Let y ∈ Y0 be a point such that J (hN |Xy ) = OXy and let v ∈H0(Xy ,KXy ⊗Nm−1|Xy ) =
H0(Xy ,K

⊗m
Xy
⊗N⊗m|Xy ), then with the same notations as in §.. we can write

v ∧ (dt1 ∧ · · · ∧ dtd)⊗m = Fv · (dz1 ∧ · · · ∧ dzn)⊗m.

Since J (hN |Xy ) = OXy , we have

‖v‖
2
m
m,y,mN =

∫
Xy

|v| 2m e−φN =
∫
Xy

(
|Fv |

2
m e−φN

)
VolXy < +∞, (.)

where φN denotes the local weight of the metric hN . By (.) (c.f. also [BP, §A., p. ])
the local weight φ(m)

X/Y,mN satisfies

φ
(m)
X/Y,mN = log

 sup
‖u‖m,y,mN61

|Fu |2
 > log

 |Fv |2
‖v‖2m,y,mN

 ,
and thus

log |Fv |2 6 φ(m)
X/Y,mN +O(1) ⇒ |Fv |

2(m−1)
m e−

m−1
m φ

(m)
X/Y,mN 6O(1). (.)

Regarded as a holomorphic n-form with values in the line bundle Nm−1|Xy , the section v
satisfies

|v|2e−φNm−1 = |Fv |2e−
m−1
m φ

(m)
X/Y,mN−φN ·VolXy ,

where φNm−1
denotes the local weight of the metric hLm−1

, hence by (.) and (.) we
have

‖v‖2y,Nm−1
=

∫
Xy

|v|2e−φNm−1 =
∫
Xy

(
|Fv |2e−

m−1
m φ

(m)
X/Y,N−φN

)
VolXy

=
∫
Xy

(
|Fv |

2
m e−φN

)
·
(
|Fv |

2(m−1)
m e−

m−1
m φ

(m)
X/Y,N

)
VolXy

6 C

∫
Xy

(
|Fv |

2
m e−φN

)
VolXy = C · ‖v‖

2
m
m,y,N < +∞,
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where C is a constant given by (.). Therefore v ∈ H0(Xy ,KXy ⊗ L|Xy ⊗ J (hNm−1
|Xy )),

which proves the lemma.

By combining Theorem D and Theorem .. we immediately get:

Corollary ... Let f : X ! Y and ∆ as in Theorem D. Suppose that the determinant of

Fm,∆ is numerically trivial. Then
(
Fm,∆ , g

(m)
X/Y,∆

)
is a Hermitian flat vector bundle.

.. Generalizations

In this subsection we extend the notion of (Griffiths) semipositivity for singular Her-
mitian metrics introduced in §. to a more flexible one and generalize some of results
stated above to this general setting. Throughout this subsection letW be a complex man-
ifold. For a (holomorphic) vector bundle E over W , a singular Hermitian metric h on E
is given by a measurable family of semipositive definite Hermitian functions on each
fibre of E which is non-singular almost everywhere. Let θ be a smooth (1,1)-form on
W , then h is called θ-semipositive if for every open subset U of W and for every local
holomorphic section s ∈ H0(W,E∗) of the dual bundle of E, the function log |s|2h∗ is (−θ)-
plurisubharmonic ((−θ)-psh), i.e. ddc log |s|2h∗ − θ is a positive current on U . Moreover,
suppose that (W,ω) is a compact Kähler manifold with Kähler metric ω. Then the vector
bundle E is called θ-weakly semipositively curved if for every ε > 0 small there exists a
singular Hermitian metric hε on E which is (−εω+θ)-semipositive. If θ is a smooth form
in the first Chern class of some (Q-)line bundle L, then a θ-semipositive metric is also
called L-semipositive and a θ-weakly semipositively curved vector bundle is also called
L-weakly semipositively curved. In particular, E is called weakly semipositively curved if it
is θ-weakly semipositively curved for θ = 0.

By definition, h is semipositively curved if it is θ-semipositive for θ = 0. Let us remark
that if E is a line bundle on W projective, then being (weakly) semipositively curved is
equivalent to being pseudoeffective.

As in the semipositivity case, the θ-semipositivity of singular Hermitian metrics
is preserved by tensor products (up to multiplying θ), pullback by proper surjective
morphisms (up to pulling back θ), and by generically surjective morphisms of vector
bundles (thus by symmetric and exterior products, up to multiplying θ). Moreover θ-
semipositive singular Hermitian metrics extend (and remaining θ-semipositive) across
closed analytic subsets of codimension > 2 and across closed analytic subsets of codi-
mension 1 under the condition that the metric is locally bounded (c.f. [CH, Proposi-
tion .]). In virtue of the aforementioned extension theorem and of [Kob, Corollary
.., p. ] one can naturally extend of the notion of θ-semipositive singular Hermi-
tian metrics to torsion free sheaves.

Remark .. (Comparison with the algebro-geometric notion of weak positivity). Sup-
pose that W is projective. For a torsion free sheaf F on W projective, being (weakly)
semipositively curved implies the weak positivity (in the sense of Nakayama [Nak;
Fuj]), c.f. [PT; Pău]; the reciprocal implication is also expected to be true (but still
open), and can be regarded as a singular version of Griffiths’s conjecture.

Then we can generalize Theorem D to the following:

Theorem ... Let f : V !W be a fibre space between Kähler manifolds and let (L,hL) be a
line bundle on V equipped with a singular Hermitian metric hL such that the curvature current
ΘhL(L) > f ∗θ for some smooth closed (1,1)-form on Y . Suppose that there is an m ∈ Z>0

such that J (h1/m
L |Vw ) ' OVw for general w ∈ W . Then the canonical L2 metric g(m)

V /W,L on
f∗OV (mKV /W +L) is θ-semipositive on Y .





Proof. This is essentially proved in [CP, Lemma .], see also [CH, ..Proposition]
and [CCM, Theorem .()]. For the convenience of the readers, we briefly recall the
proof. As in the proof of Theorem D, we construct the m-Bergman kernel metric h(m)

V /W,hL
on the twisted relative canonical bundle mKV /W + L, and equip the line bundle Lm−1 :=
(m− 1)KV /W +L with the metric

hLm−1
:=

(
h

(m)
V /W,hL

)⊗m−1
m ⊗ h⊗

1
m

L ;

then the metric g(m)
V /W,L is constructed as the canonical L2 metric on the direct image

Gm,L := f∗OV (KV /W +Lm−1) = f∗OV (mKV /W +L).

Since the construction of the m-Bergman kernel metric and of the L2 metric is local over
W (c.f. §.. or [BP; Pău; HPS]), we can assume (by the ddc-lemma) that θ is
given by a weight function ρ, i.e. θ = ddcρ. Then h1,L := hL · e ρ◦f defines a new singular
Hermitian metric on L whose curvature current is positive:

Θh1,L
(L) =ΘhL(L)− ddc(ρ ◦ f ) =ΘhL(L)− f ∗θ > 0.

Now by [Cao, Theorem .] the m-Bergman kernel metric h(m)
V /W,h1,L

on the twisted rel-
ative canonical bundle mKV /W + L is semipositively curved. Now equip the line bundle
Lm−1 with the singular Hermitian metric

h1,Lm−1
:=

(
h

(m)
V /W,h1,L

)⊗m−1
m ⊗ h⊗

1
m

L ,

since J (h1/m
1,L |Vw ) ' J (h1/m

L |Vw ) ' OVw for general w ∈ W , by Lemma .., the natural
inclusion

f∗(OV (mKV /W +L)⊗J (h1,Lm−1
)) ↪! Gm,L

is a generic isomorphism. Thus by [DWZZ, Theorem .] or Theorem .. the canon-
ical L2 metric

gV /W,h1,Lm−1
= g(m)

V /W,L · e−ρ

is semipositively curved. In other word, for every local section s of the dual sheaf of Gm,L ,
we have

0 6 ddc log |s|2g∗V /W,h1,Lm−1

= ddc log |s|2
g

(m)∗
V /W,L

− ddcρ ,

which means that the metric g(m)
V /W,L is θ-semipositive.

As a result of the above Theorem .., we have:

Corollary .. ([CCM, Theorem .()]). Let f : V !W , (L,hL) and m as in the Theo-
rem ... Assume further that f is projective, V andW are compact and L is f -big. Then for
any nef line bundleN on V , the direct image sheaf f∗OV (mKV /W +N +L) is θ-weakly positively
curved.

Proof. For the convenience of the readers, we briefly recall the proof. Since L is φ-big,
there is a singular Hermitian metric h on L such that Θh(L) + f ∗(ωW −θ) > ωV as current
for some Kähler form ωW onW (such that ωW is still a Kähler form) and for some Kähler
form ωV on V . Since N is nef, there are smooth Hermitian metrics (gδ)δ>0 on N such that
Θgδ(N ) + δωV > 0. Now consider the singular Hermitian metric

hε := h1−ε
L ⊗ hε ⊗ gε





on the line bundle L⊗N . Then for ε sufficiently small (with respect to h) we have

J (h1/m
ε |Vw ) = J (h(1−ε)/m

L ⊗ hε/m|Vw ) ' OVw
for general w ∈W . And by a direct computation we have

Θhε (L⊗N ) > f ∗(−εωW +θ).

Then Theorem .. implies that f∗OV (mKV /W+N+L) is θ-weakly semipositively curved.

. Numerically flat vector bundles and locally constant fibra-
tions

In this section we recall the notion of numerically flat vector bundles as well as its re-
lation to the local constancy of fibre spaces; then we recall a fundamental criterion for
numerical flatness. First let us define the numerical flatness for vector bundles on com-
pact Kähler manifolds (c.f. [DPS, Definition . & Definition .]):

Definition ... Let W be a compact complex manifold. A holomorphic vector bundle
E on W is said nef if the line bundle O

PE(1) on PE is nef (c.f. [DPS, Definition .] for
the more general definition of nefness of holomorphic line bundles on (non-necessarily
algebraic) compact complex manifolds). The vector bundle E is said to be numerically
flat if both E and its dual E∗ are nef.

As shown in [DPS, Proposition . & Proposition .], nefness of vector bundles
is preserved by tensor products, by surjection of vector bundles, by pullbacks via sur-
jective morphisms, and thus by symmetric and exterior products. Moreover, by [DPS,
Theorem .], [Sim, Corollary .] (c.f. also [Denb, Ch., Theorem V]) and [Cao,
Lemma ..], we have the following structure result on numerically flat vector bundles:

Theorem ... Let W be a compact Kähler manifold and let E be a numerically flat vector
bundle on W . Then we have:

(a) E admits a filtration
{0} = E0 $ E1 $ E1 $ · · · $ Ek = E.

where the Ei are vector bundles and the quotients Ei+1/Ei are Hermitian flat vector bun-
dles, that is, induced by unitary representations π1(X)!U(ri).

(b) E is isomorphic to the underlying holomorphic vector bundle of a local system L, such
that the natural Gauss-Manin connection ∇ on L is compatible with the filtration in (a)
and induces flat connections on the quotients Ei+1/Ei . In particular, every section of
H0(X,E) is parallel with respect to ∇.

Next let us define:

Definition ... Let f : V !W be a fibre space. We call f a locally constant fibration if
f is a locally trivial fibre bundle with fibre F and there is a representation ρ : π1(W )!
Aut(F) such that V isomorphic to the quotient of W̃ × F by the action of π1(W ) given by
γ · (w,z) = (γ ·w,ρ(γ)z) where W̃ denotes the universal cover of W .

Remark ... In the definition above, we see that π1(W ) acts diagonally on W̃ ×F. Hence
if we suppose in addition that V is normal, then the natural decomposition TW̃×F '
pr∗1TW̃ ⊕pr∗2TF induces a splitting of the tangent sheaf of V into foliations.
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As a corollary of Theorem .. we have the following proposition which reveals the
relation between local constancy of fibre spaces and numerical flatness of direct images
(c.f. [Cao, ..Proposition] and [CCM, Proposition .]; c.f. also [CH, ..Propo-
sition] and [Cao, Proposition ..]):

Proposition ... LetW be a compact Kähler manifold and let f : V !W be a flat projective
morphism with connected fibres (V is not necessarily smooth). Suppose that there is a f -
very ample line bundle L on V such that for every m > 1 the direct image Em := f∗(mL) is a
numerically flat vector bundle. Then f is locally constant.

Proof. We will follow the main line of the argument in the proof of [CCM, Proposition
.]. We nevertheless give some details in order to illustrate how the proof works for
V singular. Since L is f -very ample, we have an embedding i : V ! PE1 over W with
i∗O

PE1
(1) = L. Let IV be the ideal of V in PE1, we will show that (up to twisting with

some power of O
PE1

(1)) the generating polynomials ofIV have coefficients being constant
functions over W .

By relative Serre vanishing, for m large enough we have a short exact sequence

0! p∗(IV ⊗OPE1
(m))! p∗(OPE1

(m))! Em = f∗(mL)! 0, (.)

where p denotes the natural morphism PE1!W . By hypothesis E1 is a numerically flat
vector bundle, then by Theorem .. it is a local system, equipped with the Gauss-Manin
connection ∇E1

. Take γ : W̃ !W the universal covering of W , then γ∗E1 is trivial. And
there are r + 1 global sections e0, · · · , er in H0(W̃ ,γ∗E1) which are parallel with respect to
∇E1

and generate γ∗E1, where r := rkE1 − 1.
Now set Fm := p∗(IV ⊗ OPE1

(m)). The morphism f being flat, IV is flat over W , thus
by the same argument as that in [Har, §III., Proof of Theorem ., pp. -], Fm
is a vector bundle for m sufficiently large. Then by the short exact sequence (.) and
by [DPS, Proposition .], Fm is numerically flat. Then again by Theorem .. Fm is
a local system, equipped with the Gauss-Manin connection ∇Fm . By the same argument
as above, γ∗Fm is a trivial vector bundle and admits generating global sections f1, · · · , fsm
which are parallel with respect to ∇Fm , where sm := rkFm.

Consider the inclusion

η : γ∗Fm ↪! γ∗p∗OPE1
(m) = γ∗SymmE1.

By Theorem .., the sections η(fi) are all parallel with respect to the connection∇SymmE1

induce by ∇E1
on SymmE1. Since SymmE1 is generated by the flat global sections(

eα0
0 · · ·eαrr

)
αj∈Z>0,α0+···+αr=m

we can write, for every i = 1, · · · , sm
η(fi) =

∑
α=(α0,··· ,αr )∈Zr+1

>0
|α|=m

ci,α · eα0
0 · · ·eαrr ,

for some constants ci,α ∈ C. This then implies that the embedding of Ṽ := V ×
W
W̃ into

W̃ ×Pr over W̃ is defined by polynomials whose coefficients are independent of w ∈ W̃ .
Hence Ṽ splits into a product W̃ × F where F is the general fibre of f . Since E1 is a flat
bundle, it is induced by a representation ρ1 : π1(W )! PGL(r + 1). Let γ ∈ π1(W ), then
ρ1(γ) sends Vw to Vγ(w) viewed as subvarieties of P

r . But as seen before, the defining
polynomial of Vw in P

r is independent of w hence ρ1(γ) can be seen as an element of
Aut(F), and hence a representation ρ : π1(W )! Aut(F). By construction V is isomorphic
to the quotient of Ṽ by the action of π1(W ), and hence f is locally constant fibration.
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To finish this subsection let us recall the following numerical flatness criterion, which
is proved in [CCM, Proposition .] when W is projective and is extended to Kähler
case by [Wu, §, Corollary of Main Theorem]:

Proposition ... Let W be a smooth projective variety and let F be a reflexive sheaf on W .
Suppose that F is weakly positively curved and that detF is numerically trivial. Then F is
a numerically flat vector bundle on W .

. Holomorphic foliations on normal varieties

In this section, we attempt to recollect some results coming from different literatures in
order to give a somewhat general account on singular foliations on normal varieties, with
some emphasis on the algebro-geometric aspect, for the convenience of the readers. Some
results will be used in §..

.. General results on holomorphic foliations

First recall some definitions:

Definition ... Let X be a normal complex variety and let TX := (Ω1
X)∗ denotes the

tangent sheaf of X (then it is a coherent reflexive sheaf on X). A (singular) foliation on X
is a subsheaf F of TX satisfying the following two conditions:

(i) [F ,F ] ⊆ F , i.e. F is stable under the Lie bracket (we call such F involutive);

(ii) F is saturated in TX , i.e. the quotient TX /F is torsion free (which implies that F
is reflexive).

The codimension of F is defined to be n − rkF . The normal sheaf of F is defined to
be NF := (TX /F )∗∗. A leaf L of F is a maximal connected and immersed holomor-
phic submanifold of X◦ such that TL = F |L where X◦ denotes the Zariski open subset
of Xreg on which F |Xreg

is a subbundle of TXreg
(by [Kob, Corollary .., p. ],

codim(X\X◦) > 2). If X is projective, the canonical divisor KF of F is defined to be a Weil
divisor on X satisfying detF ' OX(−KF ) (defined up to linear equivalence).

The following lemma says that the involutivity of a saturated subsheaf of TX can be
checked over any Zariski open of X:

Lemma ... Let X be a normal complex variety and F a saturated subsheaf of TX . Then F
is involutive if and only if F |X0

is involutive for some Zariski open X0 ⊆ X.

Proof. The "only if" part is obvious, we will prove the "if" part as following: notice first
that the problem is local, hence we can assume X is a Stein variety, so that every coherent
sheaf on X is globally generated (so is F , and H , H1 below). Consider the hom sheaves

H :=HomOX (
2∧
F ,F ) ⊆H1 :=HomOX (

2∧
F ,TX),

since F and TX are reflexive, by the tensor-hom adjunction and [Har, Corollary .],
so are H and H1. Moreover, H1/H is contained in HomOX (

∧2F ,TX /F ), which is tor-
sion free since TX /F is torsion free (again by the tensor-hom adjunction and [Har,
Corollary .]), hence H1/H is also torsion free (H is saturated in H1). Now consider

The reciprocal is not true, e.g. consider the natural inclusion O
A

1 (−D) ↪! O
A

1 ' T
A

1 for D effective
divisor, O

A
1 (−D) is reflexive (locally free) but it is not saturated in O

A
1 .
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σ = [ · , · ]
∣∣∣∧2F

, regarded as a (global) section of H1. Then the involutivity of F is equiv-
alent to σ ∈ H . This amounts to show that the image σ̄ of σ in H1/H is zero. By our
assumption, σ̄ |X0

is zero; but H1/H is torsion free, a fortiori σ̄ = 0, this completes the
proof.

An important observation is that giving a foliation on X is equivalent to giving a
meromorphic differential form. In fact we have:

Proposition-Definition .. (c.f.[ADb, §.]). Let X be a normal complex variety of
dimension n. Then we have the following two reciprocal constructions:

• Let F be a codimension q foliation on X, then the surjection TX ! TX /F induces
an inclusion N ∗F ↪!Ω

[1]
X :=

(
Ω1
X

)∗∗
, which gives rise to a detNF -valued reflexive q-

form ω ∈ H0(X,Ωq
X[⊗]detNF ) (where ‘[⊗]’ denotes the reflexive hull of the tensor

product), which satisfies the following three properties:

(a) The vanishing locus of ω is of codimension 2;

(b) ω is locally decomposable (around a general point of X), that is, in a neigh-
bourhood of a general point of X, we can write ω =ω1∧· · ·∧ωq with ωi ’s local
1-forms;

(c) ω is integrable, that is, for the local decomposition ω = ω1 ∧ · · · ∧ωq as in (b),
one has dωi ∧ω = 0 for every i = 1, · · · ,q.

• LetL be a reflexive sheaf of rank 1 on X, and let ω ∈H0(X,Ωq
X[⊗]L ) satisfying the

above three conditions (a)(b)(c), consider the morphism TX ! Ω
q−1
X [⊗]L given

by the contraction with ω, then the kernel of this morphism is a codimension q
foliation on X.

Proof. This is surely well known to experts and is formulated in another way in the liter-
atures when F is regular and X is smooth (see e.g. [MM, §., pp. -]). However,
due to lack of references treating the singular case, we will give a proof here for the con-
venience of the readers. The idea of the proof is borrowed from [MM, §., pp. -].

• Let F be a foliation on X, then there is a Zariski open subset X◦ ⊆ Xreg such that
codim(X\X◦) > 2 and thatF |X◦ ⊆ TX◦ is a subbundle. Thenω is nowhere vanishing
on X◦, hence the vanishing locus of ω is of codimension > 2. Locally in X◦, we
can take v1 , · · · ,vn trivializing sections (local vector fields) of TX◦ , among which
v1 , · · · ,vn−q generate F |X◦ . Let α1 , · · · ,αn be the dual sections of the vi ’s. Then
locallyN ∗F = (TX /F )∗ is generated by αn−q+1 , · · · ,αn , and hence detN ∗F is generated

by αn−q+1∧· · ·∧αn. Sinceω is induced by the inclusion detNF ↪!Ω
[q]
X , hence under

the local trivialisation ofL |X◦ given by αn−q+1∧· · ·∧αn the differential q-form ω is
equal to the tautological section αn−q+1∧ · · · ∧αn , hence ω is locally decomposable.

And the kernel of the morphism TX !Ω
q−1
X [⊗]detNF can be locally expressed as{

v local holomorphic vector field
∣∣∣αi(v) = 0,∀i = n− q+ 1 , · · · ,n

}
,

which is then equal to F on X◦; both of them are reflexive, then F = Ker(TX !
Ω
q−1
X [⊗]detNF ). Finally let us check that ω is integrable. To this end, take any two

The condition (a) is not essential in the construction. In fact, ω can also be regarded as a L (D)-valued
q-form for any effective (Weil) divisor D on X, as section of Ω

q
X [⊗]L (D) ω vanishes along D; but this does

not change the kernel of the contraction morphism, in fact TX !Ω
q−1
X [⊗]L (D) is nothing other then com-

position of TX !Ω
q−1
X [⊗]L and the inclusion L ↪!L (D). Nevertheless, the condition (a) guarantees that

the construction is reciprocal to the first one.
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local sections v and w of F , then by the formula (definition) of exterior derivative
we get

dαi(v,w) =
1
2

[v(αi(w))−w(αi(v))−αi([v,w])] = 0, ∀i = n− q+ 1 , · · · ,n (.)

since [v,w] is still a local section ofF as a result of the involutivity ofF . Therefore,
for every i = n− q+ 1, · · · ,n , we can write

dαi =
n∑

j=n−q+1

ηij ∧αj ,

for some local differential 1-forms ηij . Hence dαi ∧αn−q+1 ∧ · · · ∧αn = 0.

• Reciprocally, letL be a reflexive sheaf of rank 1 on X and ω ∈H0(X,Ωq
X[⊗]L ) sat-

isfying the conditions (a)(b)(c) as above. Now consider F = Ker(TX !Ω
q−1
X [⊗]L ).

Since Ωq−1
X [⊗]L is torsion free (being reflexive), F is saturated in TX (thus reflex-

ive). We check that F is involutive. In virtue of Lemma .., up to replacing X
by a Zariski open whose complement is of codimension > 2, we can assume that
X is smooth, that ω is nowhere vanishing on X and that ω is locally decomposable
around every point of X. Locally we can write ω =ω1∧ · · ·∧ωq, since ω is nowhere
vanishing, the ωi ’s are everywhere linearly independent. Then we can complete
{ωi}i=1,··· ,q into a family of trivializing local sections ω1, · · · ,ωn of Ω1

X . Then locally
F is equal to{

v local holomorphic vector field
∣∣∣ωi(v) = 0, ∀i = 1, · · · ,q

}
. (.)

Since ω is integrable, thus dωi ∧ω1 ∧ · · · ∧ωq = 0 for every i = 1, · · · ,q. Write

dωi =
∑

16j<k6n

aijkωj ∧ωk ,

since ωj ∧ωk ∧ω1 ∧ · · · ∧ωq = 0 for j 6 q, we get from the integrability condition:∑
q+16j<k6n

aijkωj ∧ωk ∧ω1 ∧ · · · ∧ωq = 0,

which implies that aijk = 0 if j 6 q+ 1. Hence we can write

dωi =
q∑
j=1

ηij ∧ωj

for some local 1-forms ηij ; in particular, for every i = 1, · · · ,q, dωi annihilates F
. Then by the formula (.), we see that [F ,F ] is annihilated by every ωi , i =
1, · · · ,q, which in turn implies, by the local characterization (.) of F above, that
[F ,F ] ⊆ F . Hence F is a foliation on X. Moreover, by the the local expression
(.) we see that (ωi)i=1,··· ,q is a family of local trivializing sections of (TX /F )∗. In

consequence, ω loc= ω1 ∧ · · · ∧ωq is equal to the the rational q-form induced by F .

With the help of the construction above, we can define the pullback of a foliation:





Proposition-Definition .. (c.f.[Drua, §.]). Let µ : X d Y a dominant meromor-
phic mapping between normal complex varieties, which restricts to a surjective mor-
phism µ◦ : X◦ ! Y ◦ with X◦ and Y ◦ smooth Zariski open subsets of X and of Y respec-
tively. Let G be a foliation on Y , then it induces a foliation µ−1G on X as following: as
in the Proposition-Definition .., G gives rise to a meromorphic differential q-form
ω ∈ H0(Y ,Ωq

Y [⊗]detNG ), then (µ◦)∗(ω|Y ◦) extends to a meromorphic q-form τ on Xreg.
By well choosing a rank 1 reflexive sheaf L on X, τ can be regarded as a section in
H0(X,Ωq

X[⊗]L ) whose vanishing locus has codimension 2 in Xreg (thus in X). And by
construction it is clear that τ is locally decomposable and integrable, then by Proposition-
Definition .. τ induces a foliation on X, which we denote by µ−1G . By construction
µ−1G is the unique foliation on X whose associated differential q-form coincides with
(µ◦)∗(ω|Y ◦) on X◦.

In the proof of our main theorem, we will treat the situation where the tangent sheaf
admits a direct sum decomposition into foliations, and we expect that under certain con-
dition this decomposition can be retained via pullback. When the morphism is bimero-
morphic, the following lemma provides a criterion to ensure this.

Lemma ... Let µ : X ! Y be a bimeromorphic morphism between normal complex vari-
eties and let G1 and G2 be foliations on Y . Suppose that we have a direct sum decomposition
TY ' G1 ⊕ G2 , and suppose that the natural morphism det(µ−1G1) ! det

(
TX /µ

−1G1

)
is an

isomorphism. Then the decomposition of TY pulls back to X:

TX ' µ−1G1 ⊕µ−1G2

Remark ... The lemma does not holds in general without the assumption on the nat-
ural morphism between determinant line bundles even for regular foliations on smooth
varieties. For example, consider Y = P

1 ×P1 and µ : X ! Y be the blow-up of a general
point on P

1 ×P1. Then TY admits a natural decomposition

TY ' pr∗1TP1 ⊕pr∗2TP1

into regular (algebraically integrable) foliations. This decomposition cannot pullback via
µ to X. Otherwise, if it were the case then we have a decomposition

TX ' F1 ⊕F2

with Fi the pullback foliation of pr∗i TP1 , (the Zariski closure of) whose general leaf is
rationally connected. By semicontinuity F1 and F2 are locally free, hence are regular
foliations. Therefore, by [Hör, ..Corollary], F1 induces a smooth holomorphic sub-
mersion, whose fibres are transverse to the leaves of F2; then by the classical Ehresmann
Theorem .. (c.f. [CL, §V., Theorem  and Theorem , pp. -]), X splits into
a product of two curves. But X is rationally connected, hence simply connected, then it
must be isomorphic to P

1 ×P1, which is absurd

Lemma .. follows immediately from the following general fact:

Proposition ... Let X be a normal complex variety and let E be a reflexive sheaf on X and
E1 ,E2 saturated subsheaves of E. Suppose that there is a Zariski open X0 of X such that

E1|X0
⊕E2|X0

' E, (.)

and suppose that the natural morphism detE1! det(E/E2) is an isomorphism. Then the direct
sum decomposition extends globally:

E ' E1 ⊕E2.
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Proof. Since X is normal, E, E1 and E2 are reflexive, up to replace X by a Zariski open
whose complementary is of codimension > 2, we can assume that X is smooth, E is a
vector bundle and E1 and E2 are subbundles of E. Now consider the natural morphism

σ : E1 ↪! E� E/E2,

By (.) σ is an isomorphism over X0, then it must be injective (Ker(σ ) is torsion free
and generically 0 hence must be 0). Hence E1 is a locally free (thus reflexive) subsheaf
of the vector bundle E/E2. In addition, the morphism detσ : detE1 ! det(E/E2) is an
isomorphism by the hypothesis. Then by [DPS, Lemma .] E1 is a subbundle of E/E2,
hence they must be isomorphic. In particular this means that the short exact sequence

0! E2! E! E/E2! 0

splits, thus we get the desired direct decomposition.

Remark ... The proposition does not hold in general without the assumption even
on the natural morphism between determinant bundles. For example (pointed out by
Junyan Cao), consider X = A

2 and E = T
A

2 ' O ⊕2
A

2 with E1 the foliation generated by the
global vector field

v1 = z1 · ∂∂z1
+ z2 · ∂∂z2

,

and E2 the foliation generated by the global vector field

v2 = z2 · ∂∂z1
+ z1 · ∂∂z2

.

Then E1 and E2 are locally free subsheaves of E = T
A

2 , and generically (out of the line
(z1 = z2)) E ' E1 ⊕E2. But the decomposition cannot extend globally. In fact, the natural
morphism detE1! det(E/E2) is zero along the line (z1 = z2).

.. Pfaff fields and invariant subvarieties

Definition ... Let X be a normal complex variety. A Pfaff vector field of rank r on
X is a non-trivial morphism η : Ωr

X ! L where L is a reflexive sheaf of rank 1. The
singular locus Sing(η) of η is the closed analytic subspace of X defined by the ideal sheaf

Im(Ωr
X[⊗]L ∗

η[⊗]L ∗
−−−−! OX). IfL is invertible, then set-theoretically Sing(η) consists of the

points at which η is not surjective.

Definition .. ([Drub, Definition .]). Let F be a foliation on X, then F induces
a Pfaff field of rank r = rkF on X

ηF :Ωr
X =

r∧
Ω1
X !

r∧
F ∗! detF ∗.

The singular locus Sing(F ) of the foliation F is defined to be the singular locus of the
Pfaff field ηF . And F is called weakly regular if Sing(F ) = ∅.

Remark ... If X is smooth, then one deduces easily from [DPS, Lemma .] that
(set-theoretically)

Sing(F )red =
{
x ∈ X

∣∣∣F ! TX is a injective bundle map at x
}

=
{
x ∈ X

∣∣∣F is a subbundle of TX at x
}
.
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Definition ... Let X be a normal complex variety and let η :Ωr
X !L be a Pfaff field

of rank r on X. Suppose that some reflexive power of L is invertible. A closed analytic
subspace Y of X is called invariant under η if

• none of the irreducible components of Y is contained in Sing(η);

• for some m ∈ Z>0 such that L [m] is invertible, the restriction η⊗m : (Ωr
X)⊗m

∣∣∣
Y
!

L [m]
∣∣∣
Y

factors through the natural map (Ωr
X)⊗m

∣∣∣
Y
! (Ωr

Y )⊗m. Y is said invariant
under a Q-Gorenstein foliation F on X if Y is invariant under its associated Pfaff
field ηF .

Remark ... Suppose that Y is a reduced analytic subspace of X and that none of
its irreducible components is contained in Sing(η). Then Y is invariant under η if and
only if the restriction η|Yreg

: Ωr
X

∣∣∣
Yreg
! L |Yreg

factors through Ωr
X

∣∣∣
Yreg
! Ωr

Yreg
. More

generally, one can replace Yreg above by any Zariski dense subset of Yreg. This results
from the following useful lemma (by taking Y0 = Yreg or any Zariski dense subset of Yreg ,
M = (Ωr

X)⊗m
∣∣∣
Y

and N = (Ωr
Y )⊗m and noting that by [Har, §II., Proposition ., p. ]

the natural morphism (Ωr
X)⊗m|Y ! (Ωr

Y )⊗m is surjective):

Lemma .. (c.f.[EK, Proof of Proposition ., p. ]). Let Y be a reduced complex
analytic space, and let L , M and N be coherent sheaves on Y with a surjective morphism
α : M ! N . Then a morphism β : M ! L factors through α if and only if β annihilates
Ker(α). Suppose thatL is torsion free, then β factors through α if and only if there is a Zariski
dense subset Y0 of Y such that β|Y0

factors through α|Y0
.

Proof. By arguing components by components we can assume that Y is irreducible, so
that Y is a complex variety. Since α is surjective, N = Im(α) = Coker(Ker(α)!M ), then
the first statement results from the universal property of cokernels. Now turn to the
second statement: since β|Y0

factors through α|Y0
, then by the first statement

β|Y0
(Ker(α|Y0

)) = β(Ker(α))|Y0
= 0;

but β(Ker(α)) ⊆ L is a subsheaf of a torsion free sheaf, hence also torsion free, thus a
fortiori β(Ker(α)) = 0, which implies, by the first statement, that β factors through α.

The following lemma gives a characterization of invariant subvarieties which are not
contained in the singular locus (other examples of invariant subvarieties can be found in
[Drub, Lemma .]):

Lemma .. (c.f.[AD, Lemma .]). Let X be a complex manifold and F a rank r foli-
ation on X with associated Pfaff field η = ηF : Ωr

X ! detF ∗. Set S := Sing(F )red. Let Y be
a closed subvariety of X of dimension r such that Y is not contained in S. Then Y is invariant
under η if and only if Y \S is a leaf of F

Proof. First note that since X is smooth, S is characterized by Remark ..; it is of
codimension > 2 by [Kob, Corollary .., p. ]. Up to replacing X by X\S we
can assume F is a subbundle of TX so that S = ∅ (i.e. F is a regular foliation). Now
take x ∈ Yreg and take v1, · · · ,vr local holomorphic vector fields around x that generate
(locally trivialize) F . By construction η is the dual morphism of the inclusion map
detF ↪!

∧rTX , hence locally it is given by

α 7−! α(v1 , · · · ,vr ) ·α0 (.)

where α0 is a a section of detF ∗ such that α0(v1, · · · ,vr ) = 1. Since Ωr
X |Y !Ωr

Y is surjec-
tive, by Lemma .. Y is invariant under η if and only if Ker(Ωr

X

∣∣∣
Y
! Ωr

Y ) is annihi-

lated by η|Y . Locally around x (Y is smooth around x) Ker(Ωr
X

∣∣∣
Y
! Ωr

Y ) consists of the
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r-forms of the form df ∧ β with f a local holomorphic function vanishing along Y and β
any local differential (r−1)-form. Combined with (.) we see easily that locally around
x, Y is invariant under η if and only if

df ∧ β(v1 , · · · ,vr )
∣∣∣
Y

= 0.

Since df ∧β|Y = d(f β)|Y − f dβ|Y = d(f β)|Y since f |Y = 0, hence by the formula of exterior
derivative we get

df ∧ β(v1 , · · · ,vr )
∣∣∣
Y

= d(f β)(v1 , · · · ,vr )
∣∣∣
Y

=
1
r

r∑
i=1

(−1)ivi(f β(v1 · · · , v̂i , · · · ,vr ))
∣∣∣
Y

+
1
r

∑
16i<j6r

(−1)i+jf β([vi ,vj ],v1 · · · , v̂i , · · · , v̂j , · · · ,vr )
∣∣∣
Y

=
1
r

r∑
i=1

(−1)ivi(f β(v1 · · · , v̂i , · · · ,vr ))
∣∣∣
Y

=
1
r

r∑
i=1

(−1)i
(
vi(f )

∣∣∣
Y
· β(v1 , · · · , v̂i , · · · ,vr )

∣∣∣
Y

+ f · vi(β(v1 , · · · , v̂i , · · · ,vr ))
∣∣∣
Y

)
=

1
r

r∑
i=1

(−1)ivi(f )
∣∣∣
Y
· β(v1 , · · · , v̂i , · · · ,vr )

∣∣∣
Y

Hence Y is invariant under η around x if and only if vi(f )
∣∣∣
Y

= 0 for every local holomor-
phic function f vanishing along Y and for every i = 1, · · · , r. Since Y is a r-dimensional
holomorphic submanifold ofX at x, this condition is equivalent to saying that TYreg

= F |Y
around x. In consequence, Y is invariant under η ⇔ Yreg is contained in a leaf of F ⇔
Y = Yreg is a leaf of F (noting that F is a regular foliation by our assumption).

To end this subsection, let us recall the following lemma concerning the extension of
Pfaff fields to the normalization:

Lemma .. ([Sei, §, Theorem C, Corollary, p. ],[ADK, Proposition .],[ADb,
Lemma .]). Let X be a normal complex variety and let η : Ωr

X !L be a Pfaff field of rank
r on X whereL is reflexive sheaf of rank 1 such thatL [m] is invertible for some m ∈Z>0. Let
Y be a subvariety of X invariant under η, whose normalization is denoted by ν = νY : Ȳ ! Y .
Then the morphism (Ωr

Y )⊗m ! L [m]
∣∣∣
Y

extends (uniquely) to a generically surjective mor-

phism (Ωr
Ȳ

)⊗m! ν∗
(
L [m]

∣∣∣
Y

)
.

.. Algebraically integrable foliations

Definition ... Let X be a normal algebraic variety and let F be a foliation on X.
A leaf of F is called algebraic if it is (Zariski) open in its Zariski closure. F is called
algebraically integrable if every leaf of F is algebraic.

Remark ... A typical example of algebraically integrable foliation is one induced
by a equidimensional fibre space, i.e. F = TX/Y := (Ω1

X/Y )∗ with π : X ! Y a proper
equidimensional morphism between normal algebraic varieties with connected fibres.
In fact, F is clearly reflexive, and by virtue of Lemma .. one can easily prove that
F is involutive by showing that F involutive over the smooth locus of π, hence F is
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a foliation on X. In addition, by [CKT, Lemma .] the canonical divisor of F is
described by the following equality:

OX(KF ) = det(Ω1
X/Y ) ' OX(KX/Y −Ram(π)) ,

where the ramification divisor Ram(π) is defined by:

Ram(π) =
∑

D prime divisor on X

max(0,multD(f ∗f∗D)− 1) ·D.

Notice that π is equidimensional, then π−1(Y \Yreg) is still of codimension 2 in X, hence
pullbacks of Weil divisors are well-defined (c.f. [CKT, Construction .]).

The following proposition, due to [AD, Lemma .], says that every algebraically
integrable foliation on a normal projective variety is of the form as in Remark .. up
to pullback by a birational morphism. In particular, one can construct a family whose
general fibre parametrizes the closure of a general leaf of F .

Proposition .. (c.f.[AD, Lemma .]). Let X be a normal projective variety and let
F a algebraically integrable foliation. Then there is a unique closed subvariety T of Chow(X)
whose general point parametrize the Zariski closure of a general leaf of F . That is, let U ⊆
T × X be the universal cycle along with morphisms π : U ! T and β : U ! X, then β is
birational and for a general point t ∈ T , β(π−1(t)) ⊆ X is the Zariski closure of a leaf of F .

Proof. First note that the Zariski closure of any leaf of F is irreducible and reduced,
hence a subvariety of X. Let T1 be the Zariski closure of the points of Chow(X) that
parametrize leaves of F , then T1 is a reduced subscheme of Chow(X); since Chow(X)
has only countably many components (c.f. [Kol, §I., . Definition, . Theorem,
pp. -]), then so is T1. Consider the universal cycleU1 over T1. Since the leaves are in-
tegral, the universal cycle over each component of T1 is irreducible, hence the irreducible
components of U1 are in one-to-one correspondence with that of T1, in particular U1 also
has only countably many irreducible components; now the natural map U1 ! X is sur-
jective, there is a unique component U of U1 which is dominant over X, and denote by
T the component of T1 corresponding to U . Let π : U ! T and β : U ! X be the natural
morphisms.

T ×X

T X

U

pr1 pr2

π β

Now it remains to show that for t ∈ T general, β(π−1(t)) ⊆ X is the Zariski closure
of a general leaf of F . To this end, first note that: up to replace X by X◦ the Zariski
open of Xreg where F is a subbundle of TXreg

, T by T ◦ where T ◦ is a Zariski open of
Treg whose points correspond to the cycles that are not contained in X\X◦ , and U by
U ∩ pr−1

1 (T ◦) ∩ pr−1
2 (X◦) we can assume that X and T are smooth and F regular (by

definition, a leaf is always contained in X◦, c.f. Definition ..). In particular KF is a
Cartier divisor, and F induces a Pfaff field η = ηF : Ωr

X ! OX(KF ) where r = rgF . In
the sequel we will use Lemma .. to conclude; to this end, we will show that η induces
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a Pfaff field on T ×X whose restriction to U factors through Ωr
U/T . In fact, η induces a

Pfaff field on T ×X

pr−1
2 η :Ωr

T×X '
r∧

(pr∗1Ω
1
T ⊕pr∗2Ω

1
X)

projection
−−−−−−!

r∧
pr∗2Ω

1
X ' pr∗2Ω

r
X

pr∗2 η−−−! OT×X(pr∗2KF ).

Then we will show that the restriction morphism pr−1
2 η

∣∣∣
U

: Ωr
T×X

∣∣∣
U
! OU (β∗KF ) fac-

tors through the composition map Ωr
T×X

∣∣∣
U
! Ωr

U � Ωr
U/T (c.f. [Har, §II., Propo-

sition ., p. ]). By construction there is a Zariski dense subset of T whose points
parametrize the leaves of F ; then by the proof of Lemma .. Ker(Ωr

T×X
∣∣∣
U
! Ωr

U/T )

is annihilated by pr−1
2 η

∣∣∣
U

over a Zariski dense of U , thus is annihilated by pr−1
2 η

∣∣∣
U

ev-

erywhere on U since OU (β∗KF ) is torsion free. By Lemma .. we see that pr−1
2 η

∣∣∣
U

factors through ΩT×X |U ! Ωr
U/T . By the base change for Kähler differentials ([Har,

§II., Proposition ., p. ]) for every t ∈ T we have Ωr
U/T

∣∣∣
Ut
'Ωr

Ut
and thus every Ut

is invariant under pr−1
2 η, which amounts to say that every β(Ut) is invariant under η. By

the generic flatness (c.f. [Mat, §, pp. -]) and [EGAIV-, Théorème ..(x),
pp. -], for general t ∈ T , Ut is irreducible and reduced (then so is β(Ut)), hence by
Lemma .., β(Ut) is the closure of a (general) leaf of F .

The morphism π :U ! T constructed above is called the family of leaves of F . In the
following proposition we study the relation between the canonical divisor of F and that
of the pullback of F to the family of leaves.

Proposition .. ([ADb, Remark .], [ADa], [AD, §.]). Let X be a projective
normal variety and F be a algebraically integrable foliation on X. Let π :U ! T the family of
leaves of F as constructed in Proposition ... Let T ′! T be any surjective morphism with
T ′ normal and let U ′ = UT ′ be the pullback of the universal family U , whose normalization
is denoted by ν = νU ′ : Ū ′ ! U ′. Let βT ′ (resp. πT ′ , resp. β̄T ′ , resp. π̄T ′ ) be the induced
morphism U ′! X (resp. U ′! T ′, resp. Ū ′! X, resp. Ū ′! T ′). Then

(a) The pullback foliation β̄−1
T ′F is equal to TŪ ′/T ′ := (Ω1

Ū ′/T ′ )
∗ ;

(b) Assume thatF is Q-Gorenstein, then there is a canonical effective Weil Q-divisor∆T ′ on
Ū ′ such that Kβ̄−1

T ′F
+∆T ′ ∼Q β̄∗T ′KF . If T ′! T is birational then ∆T ′ is β̄T ′ -exceptional.

T

T ×X

U

T ′

T ′ ×X

U ′ =UT ′

Ū ′

X

pr1pr1

β

pr2

ν = νU ′

π̄T ′

β̄T ′

Proof. First notice that since ν is a finite morphism, π̄T ′ : Ū ′! T ′ is still equidimensional
and hence TŪ ′/T ′ is a foliation on Ū ′. Then (a) is clear : in fact, since T ′! T is surjective,
by Proposition .. there is a Zariski open of T ′ over which the fibres of πT ′ : U ′ ! T ′
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are leaves of F , hence β̄−1
T ′F and TŪ ′/T ′ coincide over a Zariski open of Ū ′, then by the

uniqueness in Proposition-Definition .. a fortiori β̄−1
T ′F = TŪ ′/T ′ . Now turn to the

proof of (b). Consider the Pfaff field associated to F

η := ηF :Ωr
X ! OX(KF ),

as in the proof of Proposition .. η induces a Pfaff field on T ′ ×X (T ′ ×X is normal)

pr−1
2 η :Ωr

T ′×X ! OT ′×X(pr∗2KF ),

where pr∗2 above denotes the pullback of Weil divisors (or algebraic cycles) by equidimen-
sional (or flat) morphisms (c.f. [CKT, Construction .] or [Ful, §., pp. -]);
moreover, the restriction morphism

(pr−1
2 η)⊗m

∣∣∣
U ′ : (Ωr

T ′×X)⊗m
∣∣∣
U ′ ! OU ′ (mβ

∗
T ′KF )

factors through (Ωr
T ′×X)⊗m

∣∣∣
U ′ ! (Ωr

U ′/T ′ )
⊗m where m is a positive integer such that mKF

is Cartier, in particular U ′ is invariant under pr−1
2 η. Now by Lemma .. we get a

generically surjective morphism

(Ωr
Ū ′ )
⊗m! OŪ ′ (mβ̄∗T ′KF )

which factors through the natural surjection ΩŪ ′ �ΩŪ ′/T ′ . Then we get an injection of
rank 1 reflexive sheaves

det(Ω1
Ū ′/T ′ )

⊗m ↪! OŪ ′ (mβ̄∗T ′KF ),

hence there is a unique effective Weil Q-divisor ∆T ′ (m∆T ′ is the Weil divisor defined by
this injection) such that

Kβ̄−1
T ′F

+∆T ′ ∼Q β̄∗T ′KF .
Moreover, combining this with Remark .. we get

KŪ ′/T ′ −Ram(π̄T ′ ) +∆T ′ ∼Q β̄∗T ′KF .

If T ′! T is birational, then by Proposition .. ∆T ′ is β̄T ′ -exceptional.

We close this subsection by considering algebraically integrable foliations that are
weakly regular (c.f. Definition ..). It is clear that a foliation induced by a equidi-
mensional fibre space (c.f. Remark ..) is weakly regular, the following result says
that the converse is true for (weakly regular) foliations with canonical singularities over
Q-factorial klt projective varieties.

Theorem .. ([Drub, Theorem .]). Let X be a (normal) Q-factorial projective vari-
ety with klt singularities, and let G be a weakly regular algebraically integrable foliation on
X. Suppose in addition that G has canonical singularities. Then G is induced by an equidi-
mensional fibre space ψ : X! Y onto a normal projective variety Y . Moreover, there exists an
open subset Y ◦ with complement of codimension > 2 in Y such that ψ−1(y) is irreducible for
any y ∈ Y ◦.

In the study of algebraically integrable foliations, the family of leaves is a quite useful
tool which permits the enter of algebro-geometric methods; nonetheless, by passing to
the family of leaves, one loses the control of the singularities. The above Theorem ..
implies that weakly regular foliations with canonical singularities on a projective variety
X with mild singularities have the advantage that there is no need to pass to the family
of leaves (since it is isomorphic to X itself), c.f. also Remark ...
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.. Foliations transverse to holomorphic submersions

In this subsection we consider regular foliations which are transverse to a smooth fibra-
tion and we recall the important (analytic version of) classical Ehresmann theorem. Let
f : V ! W be a smooth morphism (holomorphic submersion) between complex mani-
folds and let F be a regular foliation on V . Then F is said to be transverse to f if the
following two conditions are verified:

(i) The tangent bundle sequence of f gives rise to a direct decomposition TV ' TV /W ⊕
F .

(ii) The restriction of f to any leaf of F is an étale (not necessarily finite) cover.

By [CL, §V., Proposition , pp. -] (by [Voi, §., Proposition ., pp. -]
f can be viewed as a C ∞ fibre bundle), if f is proper then the condition (i) implies (ii).
The most important result for these foliations is the following analytic version of the
classical Ehresmann theorem :

Theorem .. ([Hör, ..Theorem]). Let f : V ! W be a holomorphic submersion
between complex manifolds and letF be a regular foliation on V transverse to f . Suppose that
W and the general fibre F of f are connected. Then f is an analytic fibre bundle. Moreover,
there is a representation ρ : π1(Y )! Aut(F) such that X is biholomorphic to (Ỹ × F)/π1(Y )
where π1(Y ) acts on Ỹ × F via α : (y,s)! (α(y),ρ(α)(s)), and Ỹ ! Y denotes the universal
cover of Y ; in particular, f is a locally constant fibration.

See [CL, §V., Theorem  and Theorem , pp. -] for the proof. The above
statement is taken from [Hör, ..Theorem].
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Chapter 

On the Iitaka conjecture Cn,m for
Kähler fibre spaces

In this chapter we consider the Iitaka conjecture Cn,m for Kähler fibre spaces, which is
the main content of the article [Wan].

. Log Kähler version of results of Kawamata and of Viehweg

In this section we will apply the Ohsawa-Takegoshi type extension Theorem .. to
prove the Theorem A(I). Along the way we also give a proof of the conjecture Cn,m over
general type bases (c.f. Theorem .. below) which is a main ingredient in the proof of
Theorem E in §..

Classically the proof of Theorem A(I) and Theorem .. is based on Viehweg’s weak
positivity theorem on the direct image; here we will take a new argument which only
depends on the Ohsawa-Takegoshi type extension Theorem ... Precisely, Theorem
.. is used to ensure the effectivity of the twisted relative canonical bundle up to adding
an ample line bundle from the base, in virtue of the following auxiliary result:

Lemma ... Let f : X! Y be an analytic fibre space with X a normal complex variety and
Y a projective variety. Let L be a holomorphic line bundles on X such that κ(L) > 0 and let A
be a ample line bundle on Y . Then

κ(X,L⊗ f ∗A) = κ(F,L|F) + dimY

where F denotes the general fibre of f .

Before giving the proof, let us remark that this simple but useful result has been
implicitly used in the works on Cn,m , e.g. [Esn; Vie]; it is explicitly formulated in
[Cam, Lemma .] but without proof. For the convenience of the readers, we will give
the detailed proof.

Proof of Lemma ... Up to multiplying L and AY by a sufficiently large and divisible
integer, we can assume that H0(X,L) , 0 and A is very ample; we can further assume that
the closure of the image of the meromorphic mapping

Φ :=Φ|L⊗f ∗A| : Xd PV

with V := H0(X,L⊗f ∗A) is of dimension κ(X,L⊗f ∗A). Up to blowing up X we can assume
that Φ is an analytic fibre space (c.f. [Uen, Lemma ., pp. -, and Corollary .,
p. ]). Then consider the sub-linear series defined by the inclusion

H0(Y ,A) 'H0(X,f ∗A) ↪!H0(X,L⊗ f ∗A) 'H0(PV ,O
PV (1)),
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this gives rise to a meromorphic mapping

PV d PH0(Y ,A).

On the other hand, sinceA is very ample, the linear series |A| defines an closed embedding
i :=Φ|A| : Y ↪! PH0(Y ,A), thus we have the following "commutative" diagram:

Y

X

PH0(Y ,A).

PV

f

Φ|f ∗A|

Φ :=Φ|L⊗f ∗A|

i :=Φ|A|

In particular, the general fibre G of Φ is contracted by f , hence we get an analytic fibre
space

Φ |F : F! Im(Φ |F),

whose general fibre is isomorphic to G. Φ |F is defined by the linear series |L ⊗ f ∗A| re-
stricted to F, which is a sub-linear series of |(L⊗ f ∗A)|F | ' |L|F |, hence we have

κ(F,L|F) > dimIm(Φ |F) = dimImΦ −dimY = κ(X,L⊗ f ∗A)−dimY .

In addition, by applying the easy inequality [Uen, Theorem ., pp. -] toΦ |F and
(L⊗ f ∗AY )|F we get

κ(F,L|F) = κ(F, (L⊗ f ∗A)|F) 6 κ(G, (L⊗ f ∗A)|G) + dimIm(Φ |F) = dimIm(Φ |F),

therefore κ(X,L⊗ f ∗A) = κ(F,L|F) + dimY .

.. Kähler version of Clog
n,m over general type bases

In this subsection we will apply the Ohsawa-Takegoshi type extension Theorem .. to
recover the result that Clog

n,m holds for fibre spaces over general type bases, i.e. to give a
new proof of the following theorem:

Theorem .. (Kähler version of [Kaw, Theorem ], [Vie, Theorem III]). Let f : X!
Y be a fibre space between compact complex varieties in Fujiki class C and let ∆ be an Q-
effective divisor on X such that (X,∆) is klt. Suppose that Y of general type (thus Moishezon).
Then

κ(X,KX +∆) > κ(F,KF +∆F) + dimY ,

where F denotes the general fibre of f and ∆F := ∆|F .

Let us remark that by virtue of the easy inequality [Uen, Theorem ., pp. -],
the inequality in the theorem is in fact an equality. In order to establish Theorem ..,
we first prove the following lemma, which can be regarded as a (log) Kähler version of
[Vie, Corollary .]:

Lemma ... Let f : X ! Y be an analytic fibre space with X a (compact) Kähler manifold
and Y a smooth projective variety. Let ∆ be an effective Q-divisor on X such that the pair
(X,∆) is klt. Then for any ample Q-line bundle AY on Y , we have

κ(X,KX/Y +∆+ f ∗AY ) = κ(F,KF +∆F) + dimY . (.)

where F denotes the general fibre of f , and ∆F := ∆|F .
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Proof. If κ(F,KF +∆F) = −∞, then for any integer µ > 0 sufficiently large and divisible (so
that A

⊗µ
Y is a line bundle and µ∆ is an integral divisor) we have

Fµ,∆ := f∗
(
K
⊗µ
X/Y ⊗OX(µ∆)

)
= 0,

thus Fµ,∆ ⊗A⊗µY = 0, and in particular

H0(X,K
⊗µ
X/Y ⊗OX(µ∆)⊗ f ∗A⊗µY ) = H0(Y ,Fµ,∆ ⊗A⊗µY ) = 0,

therefore κ(X,KX/Y +∆+ f ∗AY ) = −∞, hence the equality (.).
Suppose in the sequel that κ(F,KF+∆F) > 0. Letm be a sufficiently large and divisible

positive integer, so that A⊗mY is a line bundle, m∆ is an integral divisor, Fm,∆ , 0 and that
there is a very ample line bundle A′Y on Y satisfying (A′Y )⊗2 ' A⊗mY such that A′Y ⊗K−1

Y is
ample ant that the following inequality for Seshadri constant holds:

ε(A′Y ⊗K−1
Y , y) > dimY , for general y ∈ Y .

Such an m exists by [Laz, §., Example .., p.  and Example .., p. ,
Vol.I]. By Theorem .. the relativem-Bergman kernel metric h(m)

X/Y,m∆ on K⊗mX/Y ⊗OX(m∆)
is semi-positively curved. Then as in the proof of Theorem D we consider the line bundle

Lm−1 := K⊗(m−1)
X/Y ⊗OX(m∆)

equipped with the semi-positively curved metric

hLm−1
:= (h(m)

X/Y,m∆)⊗
m−1
m ⊗ h∆,

where h∆ denotes the singular Hermitian metric whose local weight is defined by the
local equation of ∆. Then apply Theorem .. to L = Lm−1 (by virtue of Lemma ..)
and we get a surjection

H0(X,KX ⊗Lm−1 ⊗ f ∗(A′Y ⊗K−1
Y ))�H0(F,KF ⊗Lm−1|F),

i.e.
H0(X,K⊗mX/Y ⊗OX(m∆)⊗ f ∗A′Y )�H0(F,K⊗mF ⊗OF(m∆F)),

which implies that
H0(X,K⊗mX/Y ⊗OX(m∆)⊗ f ∗A′Y ) , 0. (.)

By (.) we can apply Lemma .. to L = K⊗mX/Y ⊗OX(m∆)⊗ f ∗A′Y and A = A′Y and we get

κ(X,KX/Y +∆+ f ∗AY ) = κ(X, (mKX/Y +m∆+ f ∗A′Y ) + f ∗A′Y )

= κ(F, (mKX/Y +m∆+ f ∗A′Y )|F) + dimY

= κ(F,KF +∆F) + dimY .

By virtue of Lemma .., one easily deduces Theorem ..:

Proof of Theorem ... By Lemma .., up to replacing Y by a higher smooth model and
up to taking a desingularization of the fibre product, we can assume that X and Y are
smooth. Since Y is of general type, it is projective. Then fix an ample line bundle H
on Y ; its canonical bundle KY being big, the Kodaira Lemma (c.f. [KM, Lemma .,
pp. -]) implies that there exists an integer b > 0 such that K⊗bY ⊗H−1 is effective. Now
by applying Lemma .. to AY = 1

bH we obtain

κ(X,KX +∆) > κ(X,bKX/Y + b∆+ f ∗H)

= κ(F,KF +∆F) + dimY ,

and it ends the proof of Theorem ...
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.. Iitaka conjecture for Kähler fibre spaces with big determinant bundle
of the direct image of some relative pluricanonical bundle

The proof of Theorem A(I) is obtained by combining Lemma .. and Theorem ..
plus the following result:

Theorem .. (Kähler version of [CP, Theorem .]). Let f : X ! Y be a fibre space
with X a compact Kähler manifold and Y a smooth projective variety andd let F be the general
fibre of f . Let L be a holomorphic Q-line bundle on X equipped with a singular Hermitian
metric hL such that its curvature current ΘhL(L) > 0 and that J (hL) ' OX . Suppose that there
is an integer m > 0 such that L⊗m is a line bundle and that

f∗
(
K⊗mX/Y ⊗L⊗m

)
, 0. (.)

Such m exists if and only if κ(F,KF + L|F) > 0. Suppose that there is a SNC divisor ΣY con-
taining Y \Y0 where Y0 is the (analytic) Zariski open subset over which f is smooth, such that
f ∗ΣY has SNC support (in other word, f is prepared in the sense of [Cam]). Then there
exists a constant ε0 > 0 and an f -exceptional effective Q-divisor E such that the Q-line bundle

KX/Y +L+E − ε0f
∗detf∗

(
K⊗mX/Y ⊗L⊗m

)
(.)

is pseudoeffective.

Before giving the proof, let us remark that:

Remark ... The condition (.) concerning the positivity of the Kodaira dimension of
the general fibre does not appear in the original statement of [CP, Theorem .], but
is indispensable. In fact, consider for example the case where Y = pt, X is a smooth
Fano variety (or more generally a smooth uniruled projective variety) with ∆ = 0, f is
the structural morphism X ! pt and L = OX ; f being a smooth morphism, there is no
f -exceptional divisors, and the direct image (space of global sections) of K⊗mX is always
0, then the Q-line bundle (.) is equal to KX , which can never be pseudoeffective for X
Fano (or uniruled projective, by [BDPP]).

Proof of Theorem ... The proof follows the same idea as that of [CP, Theorem .];
in fact, the algebraicity of f (or equivalently, the algebraicity of X) is not essential in
the original proof: it is only used in [CP] to apply the Ohsawa-Takegoshi extension
theorem and [Nak, III...Lemma, pp. -]; as have been seen in §. and §.
respectively, both of them can be generalized to the Kähler case. Nevertheless, the proof
being highly technical, we will give more details for the convenience of the readers. Let
us summarize the central idea of the proof as follows: from the natural inclusion of
the determinant into the tensor product, we can construct, by the diagonal method of
Viehweg, a non-zero section on X(r) (where X(r) denotes the resolution of some fibre
product Xr of X over Y ) of a line bundle of the form (.) (with X replaced by Xr and
ε0 = 1); and then we "restrict" this section to the diagonal so that we get a section of the
line bundle (.) on X. However one cannot deduce the effectivity of the line bundle
(.), since the section constructed as above can vanish along the diagonal. To overcome
this difficulty, we have to take a twisted approach: at the cost of tensoring by an ample
divisor coming from Y , we can use the Ohsawa-Takegoshi extension Theorem .. to
extend pluricanonical forms on the general fibre F (by virtue of the condition (.)) to
sections of the line bundle of the form (.) on X(r), then one can restrict them to the
diagonal and get non-zero sections. However, these sections usually have poles, due to
the singularities of f ; in order to get rid of them, one has to carefully analyse these sin-
gularities (this analysis takes up a technical part of the proof), then it turns out that the
poles are supported on the non-reduced fibres in codimension 1 and hence one can use
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Proposition .. to control them. Finally one use an approximation argument to con-
clude the pseudoeffectivity of the line bundle (.). The proof of the theorem proceeds
in six steps:

(A) Analysis of singular fibres of f .
In this step, we will use a standard argument to show that the (analytic Zariski) open

subset of y ∈ Y such that Xy is Gorenstein is of codimension > 2 (whilst the generic
smoothness only ensure this to be analytic Zariski open). To this end, note

Yf := Yflat ∩YFm,L
the (analytic) Zariski open subset over which f is flat andFm,L := f∗

(
K⊗mX/Y ⊗L⊗m

)
is locally

free; and denote Xf := f −1Yf . since X and Y are reduced, codimY (Y \Yf) > 2 (c.f. [Kob,
Corollary .., p. ] and [Ful, Example A.., p. ]). By [Mat, Theorem .,
p. ], for every y ∈ Yf, the fibre Xy is Gorenstein.

(B) Construction of the fibre product Xr and the canonical section.
Over Yf one has a natural morphism (injection of vector bundles)

detf∗
(
K⊗mX/Y ⊗L⊗m

)
↪!

r⊗
f∗

(
K⊗mX/Y ⊗L⊗m

)
, (.)

where r := rkFm,L , which gives rise to a non-trivial section of r⊗
f∗

(
K⊗mX/Y ⊗L⊗m

)⊗ (
detf∗

(
K⊗mX/Y ⊗L⊗m

))−1
. (.)

over Yf. In order to get a section of a line bundle of the form (.), we will apply the
diagonal method of Viehweg (c.f. for example [Vie, §., pp. -]). Let

Xr := X ×
Y
X ×
Y
· · · ×

Y
X︸           ︷︷           ︸

r times

be the r-fold fibre product of X over Y , equipped with a morphism (a Kähler fibration)
f r : Xr ! Y as well as the natural projections pri : Xr ! X to the i-th factor. Denote
Xrf := (f r )−1Yf, then f r |Xf

is flat; moreover, since Y and Xry = Xy × · · · × Xy are Cohen-
Macaulay for every y ∈ Yf, X

r
f is also Cohen-Macaulay (by [Mat, (.C) Corollary ,

p. ]). By the base change formula for relative canonical sheaves we see that Xrf is
Gorenstein and

ωXr ⊗ f r∗K−1
Y =ωXr /Y '

r⊗
i=1

pr∗i KX/Y (.)

Note

Lr :=
r⊗
i=1

pr∗i L,

then by an induction argument, the projection formula together with the base change
formula imply that (c.f. [Hör, Lemma .])

r⊗
f∗

(
K⊗mX/Y ⊗L⊗m

)
' (f r )∗

(
ω⊗mXr /Y ⊗L⊗mr

)
over Yf.

In consequence, the morphism (.) gives rise to a non-zero section

s0 ∈H0(Xrf ,ω
⊗m
Xr /Y ⊗L⊗mr ⊗ (f r )∗

(
detf∗

(
K⊗mX/Y ⊗L⊗m

))−1
)

= H0(Yf,

 r⊗
f∗

(
K⊗mX/Y ⊗L⊗m

)⊗ (
detf∗

(
K⊗mX/Y ⊗L⊗m

))−1
). (.)
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(C) Analysis of the singularities of Xr .
Take a desingularization µ : X(r)! Xr which is an isomorphism over the smooth locus

of Xr . Note f (r) := f r ◦µ and X(r)
f := µ−1Xrf . The natural morphism

µ∗KX(r) !ωXr , (.)

which is an isomorphism over Xrrat where Xr denotes the (analytic Zariski) open subset
of point with rational singularities on Xr , gives rise to a meromorphic section of the line
bundle (by virtue of (.))

K−1
X(r)/Y

⊗µ∗
 r⊗
i=1

pr∗i KX/Y

 ,
whose zeros and poles are contained in X(r)\µ−1Xrrat. In consequence, there are two effec-
tive divisors D1 and D2 over X(r) such that Supp(D1),Supp(D2) ⊆ X(r)\µ−1Xrrat and that

KX(r)/Y ⊗OX(r)(D1) = µ∗
 r⊗
i=1

priKX/Y

⊗OX(r)(D2). (.)

Now let us further analyse the rational singularities locus Xrrat by virtue of our hy-
pothesis on ΣY and f ∗ΣY . Write

f ∗ΣY =
∑
i

Wi +
∑
j

ajVj (.)

with the Wi ’s and Vj ’s prime divisors over X and ai > 2; by hypothesis,

W :=
∑
i

Wi et V :=
∑
j

Vj

are (reduced) SNC divisors. As is explained in Remark .., the fibre product

(Xf\(V∪f −1 Sing(ΣY )))r := (Xf\(V ∪ f −1 Sing(ΣY ))) ×
Yf\Sing(ΣY )

· · · ×
Yf\Sing(ΣY )

(Xf\(V ∪ f −1 Sing(ΣY )))︸                                                                                         ︷︷                                                                                         ︸
r times

is contained in Xrrat .
In consequence, both D1 and D2 are contained in the set D where D denotes the

set of divisors D on X(r) such that every component Γ of D satisfies (at least) one of the
following three conditions:

(D) f (r)(Γ ) ⊆ Y \Yf (in particular, Γ is f (r)-exceptional);

(D) Γ is pri ◦µ-exceptional for some i;

(D) pri ◦µ(Γ ) = Vj for some i and j.

(D) Extension of pluricanonical forms on X(r)
y by Ohsawa-Takegoshi.

The section s0 (c.f. (.)) gives rise the section

µ∗s0 ∈H0(X(r)
f ,K⊗m

X(r)/Y
⊗µ∗L⊗mr ⊗OXr)(mD1)⊗ f (r)∗ (detf∗

(
K⊗mX/Y ⊗L⊗m

))−1
).
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Since codimY Yf > 2, the section µ∗s0, regarded as a section of the torsion free sheaf (.)
over Yf, extends to a global section s̄0 of the reflexive hull r⊗

f∗
(
K⊗mX/Y ⊗L⊗m

)⊗ (
detf∗

(
K⊗mX/Y ⊗L⊗m

))−1
∧

=
[
f

(r)
∗

(
K⊗m
X(r)/Y

⊗µ∗L⊗mr ⊗OXr)(mD1)⊗ f (r)∗ (detf∗
(
K⊗mX/Y ⊗L⊗m

))−1
)]∧

.

By Theorem .., there is an f (r)-exceptional effective divisor D3 such that

[
f

(r)
∗

(
K⊗m
X(r)/Y

⊗µ∗L⊗mr ⊗OX(r)(mD1)⊗ f (r)∗ (detf∗
(
K⊗mX/Y ⊗L⊗m

))−1
)]∧

=
[
f

(r)
∗

(
K⊗m
X(r)/Y

⊗µ∗L⊗mr ⊗OX(r)(mD1)
)]∧
⊗ f (r)∗ (detf∗

(
K⊗mX/Y ⊗L⊗m

))−1

= f (r)
∗

(
K⊗m
X(r)/Y

⊗µ∗L⊗mr ⊗OX(r)(mD1 +D3)
)
⊗ f (r)∗ (detf∗

(
K⊗mX/Y ⊗L⊗m

))−1

= f (r)
∗

(
K⊗m
X(r)/Y

⊗µ∗L⊗mr ⊗OX(r)(mD1 +D3)⊗ f (r)∗ (detf∗
(
K⊗mX/Y ⊗L⊗m

))−1
)
,

hence s̄0 can be regarded as a (global) section of the line bundle

K⊗m
X(r)/Y

⊗µ∗L⊗mr ⊗OXr)(mD1 +D3)⊗ f (r)∗detf∗
(
K⊗mX/Y ⊗L⊗m

)−1
.

Moreover, since the torsion free sheaf (.) is locally free on Yf , hence

f (r) (Supp(D3)) ⊆ Y \Yf ,

in particular, D3 ∈D . Now choose ε ∈Q>0 small enough such that ∆0 := εdiv(s̄0) is klt on
X(r).The Q-line bundle OX(r)(∆0) is equipped with a canonical singular Hermitian metric
h∆0

whose local weight is given by

φ∆0
=
ε
2

log |gs̄0 |2,

where gs̄0 denotes a local equation of div(s̄0). Denote L0 := µ∗Lr ⊗ OX(r)(∆0), this Q-line
bundle is equipped with the singular Hermitian metric

hL0
:= h∆0

⊗
r⊗
i=1

µ∗pr∗i hL .

whose curvature current is positive. By strong openness [GZa, Theorem .] for ε
sufficiently small we have

J (hL0
) = J (

r⊗
i=1

µ∗pr∗i hL). (.)

Since µ is supposed to be an isomorphism over Y0 , we have X(r)
y ' Xy × · · · ×Xy for y ∈

Y0 (c.f. Step (E) below), then by Lemma .. and [DEL, Theorem .(i)] we have
J (hL0

|
X

(r)
y

) = O
X

(r)
y

for a.e. y ∈ Y0.

Let AY be an ample line bundle over Y such that the line bundle AY ⊗K−1
Y is ample

and that the Seshadri constant ε(AY ⊗ K−1
Y , y) > d := dimY for general y ∈ Y0 (such AY

exists by [Laz, §., Example .., p.  and Example .., p. , Vol.I]). We
claim that the restriction map

H0(X(r),K⊗k
X(r)/Y

⊗L⊗k0 ⊗ f (r)∗AY )−!H0(X(r)
y ,K

⊗k
X

(r)
y

⊗L⊗k0 |X(r)
y

) (.)
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is surjective for any k sufficiently large and divisible and for every y ∈ Y0 such that
J (hL0

|
X

(r)
y

) = O
X

(r)
y

. In fact, ∆0 being effective, the hypothesis (.) implies that

f
(r)
∗

(
K⊗k
X(r)/Y

⊗L⊗k0

)
= f (r)
∗

(
K⊗k
X(r)/Y

⊗µ∗L⊗kr ⊗OX(r)(k∆0)
)

⊇ f (r)
∗

(
K⊗k
X(r)/Y

⊗µ∗L⊗kr
)
, 0

for k sufficiently large and divisible (e.g. such that εk ∈ Z>0 and k divisible by m) hence
the integrability condition in Theorem .. is satisfied (c.f. Remark ..). Moreover,
since ΘhL0

(L0) > 0, Theorem .. implies that the k-Bergman kernel metric h(k)
X(r)/Y ,kL0

is semi-positively curved. Set Mk := K
⊗(k−1)
X(r)/Y

⊗ L⊗k0 , equipped with a singular Hermitian
metric

hMk
:=

(
h

(k)
X(r)/Y ,kL0

) k−1
k ⊗ hL0

whose curvature current is positive. Then by Lemma .. one has

H0(X(r)
y ,K

⊗k
X

(r)
y

⊗L⊗k0 |X(r) ⊗J (hMk
|
X

(r)
y

)) = H0(X(r)
y ,K

⊗k
X

(r)
y

⊗L⊗k0 |X(r)) (.)

for a.e. y ∈ Y0. Hence we can apply Theorem .. to

KX(r) ⊗Mk ⊗ f (r)∗(AY ⊗K−1
Y ) = K⊗k

X(r)/Y
⊗L⊗k0 ⊗ f (r)∗AY

to obtain the surjectivity of the restriction morphism (.) for a.e. y ∈ Y0. Moreover, set

Hk := AY ⊗detf∗
(
K⊗mX/Y ⊗L⊗m

)⊗(−εk)
, then we can rewrite (.) as

H0(X(r),
(
KX(r)/Y ⊗µ∗Lr

)⊗ (1+εm)k ⊗OX(r)(εkmD1 + εkD3)⊗ f (r)∗Hk)

restriction
−−−−−−!!H0(X(r)

y ,
(
K
X

(r)
y
⊗µ∗Lr |X(r)

y

)⊗ (1+εm)k
) (.)

for a.e. y ∈ Y0 and for k sufficiently large and divisible.

(E) Extension of pluricanonical forms from Xy via restriction to the diagonal.
For general y ∈ Y0 take a section

u ∈H0(Xy ,
(
KXy ⊗L|Xy

)⊗ (1+εm)k
)

with k sufficiently large and divisible, we will construct a section s in

H0(X, (KX/Y ⊗L)⊗ (1+εm)kr ⊗OX(CkV + kE0)⊗ f ∗H⊗rk ) ,

for C > 0 a constant and E0 an f -exceptional effective divisor, both independent of k,
such that s|Xy = u⊗r .

(E) Extending the section u to a section over X(r) by Step (D)
Set

Xr0 := X0 ×
Y0

X0 ×
Y0

· · · ×
Y0

X0 ⊆ Xr ,

where X0 := f −1(Y0), then Xr0 is smooth, hence µ−1(Xr0)
µ∼
−! Xr0 is an isomorphism. In

particular, we have

X
(r)
y

µ
∼
−! Xry = Xy ×Xy × · · · ×Xy︸               ︷︷               ︸

r times

. (.)
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Hence u gives rise to a section

u(r) := µ∗
 r⊗
i=1

pr∗i u

 ∈ H0(X(r)
y ,

(
K
X

(r)
y
⊗µ∗Lr |X(r)

y

)⊗ (1+εm)k
) , (.)

such that the restriction of u(r) to the diagonal is equal to u⊗r . Using the surjection (.)
we obtain a section σ (r) of the line bundle(

KX(r)/Y ⊗µ∗Lr
)⊗ (1+εm)k ⊗OX(r)(εkmD1 + εkD3)⊗ f (r)∗Hk , (.)

such that σ (r)|
X

(r)
y

= u(r).

(E) Restricting the section σ (r)|µ−1Xr0
to the diagonal

In order to restrict σ (r)|µ−1Xr0
to the diagonal, use (.) to rewrite the line bundle (.)

as follows:(
KX(r)/Y ⊗µ∗Lr

)⊗ (1+εm)k ⊗OX(r)(εkmD1 + εkD3)⊗ f (r)∗Hk

= µ∗
 r⊗
i=1

pr∗i (KX/Y ⊗L)

⊗ (1+εm)k

⊗OX(r)(−kD1 + (1 + εm)kD2 + εkD3)⊗ f (r)∗Hk . (.)

In consequence, σ (r) can be regarded as a meromorphic section of the line bundle

µ∗
 r⊗
i=1

pr∗i (KX/Y ⊗L)

⊗ (1+εm)k

⊗ f (r)∗Hk (.)

whose poles are contained Supp(D2)∪ Supp(D3). Locally, by choosing a trivialization of
the line bundle (.), the section σ (r) can be written as a meromorphic function F(r) such
that

g−kD1
g

(1+εm)k
D2

gεkD3
·F(r) (.)

is holomorphic, where gDl is a local equation of the divisor Dl (l = 1,2,3).
By construction, D1,D2,D3 ∈ D (in particular, D3 is f (r)-exceptional), hence there

exist constants C1 et C2 such that

Dl 6 Cl ·µ∗
r∑
i=1

pr∗i V , pour l = 1,2 (.)

over X(r)
f \S where S ⊆ X(r) denotes the union of the components in D1 +D2 which are

pri ◦µ-exceptional for every i = 1, · · · , r. By Step (D) we have

f (r) (Supp(D3)) ⊆ Y \Yf ,

hence locally over X(r)
f \S the meromorphic function

F(r) ·
r∏
i=1

(
(pri ◦µ)∗gV

)C2(1+εm)k
= F(r) ·

r∏
i=1

(pri ◦µ)∗
(
g
C2(1+εm)k
V

)
is holomorphic where gV =

∏
j gVj is a local equation of V .

Note δX,r : X! Xr the inclusion of the diagonal. Then pri ◦δX,r = idX for ∀i = 1, · · · , r.
Since the Dl ’s (l = 1,2,3) are disjoint from

µ−1Xrrat ⊇ µ−1Xr0 ⊇ µ−1(δX,r(X0)) ,





then locally the meromorphic function F(r) is holomorphic over µ−1Xr0 . Therefore we can
restrict σ (r)|µ−1Xr0

to the diagonal and obtain a section

s1 := (µ|−1
Xr0
◦ δX,r |X0

)∗
(
σ (r)|µ−1Xr0

)
over X0 of the line bundle

(KX/Y ⊗L)⊗ (1+εm)kr ⊗ f ∗H⊗rk . (.)

Locally over an open subset of X0 trivializing the line bundle (.) the section s1 is given
by a holomorphic function

F1 := (µ|−1
Xr0
◦ δX,r |X0

)∗
(
F(r)|µ−1Xr0

)
.

(E) Extending the section s1 across the singular fibres of X
In order to extend s1 across f −1ΣY , one needs to know its behaviour around the Wi ’s

and the Vj ’s; this can be done by analysing the poles along the Dl ’s of σ (r), regarded as a
meromorphic section of the line bundle (.), as we explain in the sequel:

(E-i) By Step (C) (Xf\(V ∪ Sing(W )))r is contained in Xrrat, thus disjoint to the Dl ’s (l =
1,2,3); considering F1 as a holomorphic function on δX,r(X0)), one has

µ∗F1 = F(r)|µ−1(δX,r (X0)),

but the poles of F(r) are contained in Supp(D2)∪ Supp(D3), hence the function F1
is bounded near Xf\(V ∪ f −1 Sing(ΣY )), and thus F1 can be extended to Xf\(V ∪
f −1 Sing(ΣY )) by Riemann extension theorem; moreover, by Hartogs extension the-
orem, F1 extends to a holomorphic function over Xf\V .

(E-ii) In general, F1 is not bounded around V . Nevertheless, by Step (E) the meromor-
phic function

F(r) ·µ∗
r∏
i=1

pr∗i
(
g
C2(1+εm)k
V

)
is holomorphic over Xrf \S. And the restriction of S to the diagonal is an analytic
subset of codimension > 2 (c.f. (E) for the definition of S), hence the function

F1 · gC2(1+εm)kr
V

is bounded around a general point of V ∩Xf. By Riemann extension theorem (as
well as Hartogs extension theorem) F1 extends across V ∩Xf as a holomorphic local
section of the line bundle

(KX/Y ⊗L)⊗ (1+εm)kr ⊗OX(CkV )⊗ f ∗H⊗rk ,
where C := C2(1 + εm)r is a constant independent of k. Combining this with (E-i)
we obtain an extension of s1 to a section over Xf:

s̄1 ∈H0(Xf, (KX/Y ⊗L)⊗ (1+εm)kr ⊗OX(CkV )⊗ f ∗H⊗rk ) .

(E-iii) At last, we will extend s̄1 to a global section, which provides us with the sought
section s. In fact, s̄1 can be regarded as a section of the direct image sheaf

f∗
(
(KX/Y ⊗L)⊗ (1+εm)kr ⊗OX(CkV )⊗ f ∗H⊗rk

)
(.)
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over Yf. But codimY (Y \Yf) > 2, hence s̄1 extends to a global section s of the reflexive
hull of the (torsion free) sheaf (.). By Theorem .., there is an f -exceptional
effective divisor E0 , independent of k, such that

f∗
(
(KX/Y ⊗L)⊗ (1+εm)kr ⊗OX(CkV )⊗ f ∗H⊗rk

)∧
= f∗

(
(KX/Y ⊗L)⊗ (1+εm)kr ⊗OX(CkV + kE0)⊗ f ∗H⊗rk

)
,

hence
s ∈H0(X, (KX/Y ⊗L)⊗ (1+εm)kr ⊗OX(CkV + kE0)⊗ f ∗H⊗rk ).

Moreover, by (.) as well as the construction of the section u(r) (c.f. (.)) we
have

s|Xy = s1|Xy = (δ ◦µ)∗u(r) = u⊗r .

This finishes (E) and thus the Step (E).

(F) Conclusion.
By the hypothesis (.), for any general y ∈ Y and for any integer k sufficiently large

and divisible (e.g. such that εk ∈ Z>0 and that k divisible par m), we have a non-zero
section

u ∈H0(Xy ,
(
KXy ⊗L|Xy

)⊗ (1+εm)k
).

Assume further that y ∈ Y0 and J (hL0
|
X

(r)
y

) = O
X

(r)
y

, then by Step (E) above, we can con-
struct a section

s ∈H0(X, (KX/Y ⊗L)⊗ (1+εm)kr ⊗OX(CkV + kE0)⊗ f ∗Hk),
for C and E0 independent of k such that s|Xy = u⊗r . In particular s , 0, implying that the
line bundle

(KX/Y ⊗L)⊗ (1+εm)kr ⊗OX(CkV + kE0)⊗ f ∗H⊗rk (.)

is effective. By writing V = Vdiv + Vexc with Vdiv (resp. Vexc) the non-exceptional (resp.
exceptional) part of V with respect to f , one can rewrite the line bundle (.) as follows:

(KX/Y ⊗L)⊗ (1+εm)kr ⊗OX(CkV + kE0)⊗ f ∗H⊗rk
= (KX/Y ⊗L)⊗ (1+εm)kr ⊗OX(CkVdiv + kE1)⊗ f ∗H⊗rk

where E1 = CVexc +E0 is f -exceptional.
In addition, the hypothesis (.) implies that the relative m-Bergman kernel metric

h
(m)
X/Y,L on K⊗mX/Y ⊗L⊗m is semi-positively curved, hence by Proposition .. and (.) the

line bundle
KX/Y ⊗L⊗OX(−bVdiv)

is pseudoeffective, where b := minj{aj − 1}. There the Q-line bundle(
(1 + εm)kr +

Ck
b

)
(KX/Y +L) + kE1 + rf ∗AY − εkrf ∗detf∗

(
K⊗mX/Y ⊗L⊗m

)
is pseudoeffective. By letting k! +∞ and by putting

E :=
b

(1 + εm)br +C
E1 et ε0 :=

εbr
(1 + εm)br +C

we obtain the pseudoeffectivity of the Q-line bundle (.), thus ending the proof of The-
orem ...
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Now let us turn to the proof of Theorem A(I). In fact one can prove a stronger result
as following, whose proof is quite similar to [CP, Corollary .]:

Theorem ... Let f : X ! Y be a fibre space between compact Kähler manifolds. Let ∆ be
an effective Q-divisor on X such that (X,∆) is klt. Suppose that there exists an integer m > 0
such that m∆ is an integral divisor and the determinant line bundle detf∗(K⊗mX/Y ⊗OX(m∆)) is
big. Then

κ(X,KX +∆) > κ(Y ) +κ(F,KF +∆F). (.)

where F denotes the general fibre of f and ∆F := ∆|F . Moreover, if κ(Y ) > 0 then we have

κ(X,KX +∆) > κ(F,KF +∆F) + dimY .

Proof. The key point of the proof has already been proved in Theorem .., the rest is
quite similar to that of Theorem ... Nevertheless, in order to apply Theorem .., one
should be able to add an "exceptional" positivity to the pluricanonical bundle; therefore
we take a diagram as in Lemma .. :

Y ,

X

Y ′

X ′

ff ′

πY

πX

and take ∆′ an effective Q-divisor on X ′ as in Lemma .., so that every f ′-exceptional
divisor is also πX-exceptional and that (X ′ ,∆′) is klt. By construction, the morphism f ′
is smooth over Y ′0 := π−1

Y (Y0) where Y0 denotes the (analytic) Zariski open subset of Y
over which f is smooth; πX |X ′0 : X ′0 ! X0 with X ′0 := (f ′)−1(Y ′0) and X0 := f −1(Y0) is an
isomorphism. In particular, for y′ ∈ Y ′0, we have an isomorphism X ′y′ ' Xy (with y :=
πY (y′)) between complex manifolds, implying that F′ ' F where F′ denotes the general
fibre of f ′; moreover this isomorphism identifies ∆′F′ := ∆′ |F′ to ∆F .

In addition, we have the following (non-trivial) morphism of base change

π∗Y f∗
(
K⊗mX/Y ⊗OX(m∆)

)
! f ′∗

(
π∗X

(
K⊗mX/Y ⊗OX(m∆)

))
! f ′∗

(
K⊗mX ′/Y ′ ⊗OX ′ (m∆′)

)
, (.)

which is an isomorphism over Y ′0. But πY being birational, the line bundle

π∗Y detf∗
(
K⊗mX/Y ⊗OX(m∆)

)
is big over Y ′, therefore the morphism (.) implies that the determinant line bundle
detf ′∗

(
K⊗mX ′/Y ′ ⊗OX ′ (m∆′)

)
is also big over Y ′. In particular

f ′∗
(
K⊗mX ′/Y ′ ⊗OX ′ (m∆′)

)
, 0. (.)

Hence we can apply Theorem .. to f ′, and we get an f ′-exceptional Q-divisor E′ and
ε0 ∈Q>0 such that the Q-line bundle

KX ′/Y ′ +∆
′ +E′ − ε0(f ′)∗detf ′∗

(
K⊗mX ′/Y ′ ⊗OX ′ (m∆′)

)
is pseudoeffective. Let us fix a very ample line bundle AY ′ on Y ′ such that AY ′ ⊗K−1

Y ′ is
ample and that the Seshadri constant ε(AY ′ ⊗K−1

Y ′ , y) > dimY for general y ∈ Y ′ (such AY ′
exists by [Laz, §., Example .., p.  and Example .., p. , Vol.I]). Since
detf ′∗

(
K⊗mX ′/Y ′ ⊗OX ′ (m∆′)

)
is big, Kodaira’s Lemma (c.f. [KM, Lemma ., pp. -])
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implies that there exists a integer m1 > 0 sufficiently large and divisible and a pseudoef-
fective line bundle L0 on X such that m1∆

′ and m1E
′ are integral divisors and that

K⊗m1
X ′/Y ′ ⊗OX ′ (m1(∆′ +E′)) = (f ′)∗A⊗2

Y ′ ⊗L0.

And we have L0|F′ = K⊗m1
F′ ⊗ OF′ (m1∆

′
F′ ). Now L0 being pseudoeffective, we can equip it

with a singular Hermitian metric hL0
whose curvature current is positive. Since ∆′ is klt,

by strong openness [GZa, Theorem .] (or [Ber, Theorem .]) we can findm2 ∈Z>0
sufficiently large and divisible such that

J

(
h∆′ ⊗ h

⊗ 1
m2

L0

)
= OX ′ .

Now we can endow K⊗m2
X ′/Y ′ ⊗ OX ′ (m2∆

′)⊗ L0 with the relative m2-Bergman kernel metric

h
(m2)
X ′/Y ′,m2∆′+L0

, then by applying Lemma .. to the Q-line bundle N = ∆′ + 1
m2
L0 we have

H0(F′ ,KF′ ⊗ Nm2−1

∣∣∣
F′ ⊗J (hNm2−1

∣∣∣
F′ )) = H0(F′ ,KF′ ⊗ Nm2−1

∣∣∣
F

),

where Nm2−1 := K⊗(m2−1)
X ′/Y ′ ⊗OX ′ (m2∆

′)⊗L0 equipped with the singular Hermitian metric

hNm2−1
:=

(
h

(m2)
X ′/Y ′,m2∆′+L0

)⊗m2−1
m2 ⊗ h∆′ ⊗ h

⊗ 1
m2

L0
.

Now by Theorem .. we have a surjection

H0(X ′ ,KX ′ ⊗Nm2−1 ⊗ (f ′)∗(AY ′ ⊗K−1
Y ′ ))�H0(F′ ,KF′ ⊗ Nm2−1

∣∣∣
F′ )

which amounts to:

H0(X ′ ,K⊗m2
X ′/Y ′ ⊗OX ′ (m2∆

′)⊗L0 ⊗ (f ′)∗AY ′ )�H0(F′ ,K⊗(m1+m2)
F′ ⊗OF′ ((m1 +m2)∆′F′ ))

where the space on the right hand side is non-vanishing by (.).
Then by applying Lemma .. to L = K⊗m2

X ′/Y ′ ⊗ OX ′ (m2∆
′)⊗ L0 ⊗ (f ′)∗AY ′ (noting that

L|F′ = K⊗(m1+m2)
F′ ⊗ OF′ ((m1 +m2)∆′F′ )) and by [Deb, Lemma ., p. ] we obtain the

following inequality:

κ(X,KX/Y +∆) = κ(X ′ , (m1 +m2)(KX ′ −π∗Xf ∗KY +∆′) +m1E
′) since E′ is πX-exceptional

> κ(X ′ , (m1 +m2)(KX ′/Y ′ +∆
′) +m1E

′) since KY ′/Y is πY -exceptional effective

= κ(X ′ ,m2KX ′/Y ′ +m2∆
′ +L0 + 2(f ′)∗AY ′ )

= κ(X ′ ,L+ (f ′)∗AY ′ )
= κ(F′ ,KF′ +∆′F′ )) + dimY ′

= κ(F,KF +∆F) + dimY . (.)

If κ(Y ) = −∞ then the inequality (.) is automatically established; otherwise, there is
an integer k > 0 such that K⊗kY is effective, then by (.) we get

κ(X,KX +∆) = κ(X,kKX/Y + k∆+ kf ∗KY )

> κ(X,kKX/Y + k∆)

> κ(F,KF +∆F) + dimY .
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. Albanese maps of compact Kähler manifolds of log Calabi-
Yau type

Having proved Theorem .., one can follow the same argument as that in [Kaw] to
deduce Theorem E. Let us remark that in [Kaw] a result equivalent to Theorem E with
∆ = 0 is also stated ([Kaw, Theorem ]). Similar to [Kaw] the first step of the proof
of Theorem E is to obtain the following proposition, which generalize [Uen, Theorem
., pp.-] and can be regarded as an analytic version of [Kaw, Theorem ]:

Proposition ... Let p : V ! T be a finite morphism with V a compact normal complex
variety and T a complex torus. Then κ(V ) > 0, and there is a subtorus S of T and a (projective)
normal variety of general type W , which is finite over T /S, such that

(a) there is an analytic fibre space φp : V !W whose general fibre is equal to S̃, a complex
torus which admits a finite étale cover S̃! S over S.

(b) κ(W ) = κ(V ) = dimW ;

Before showing the proposition, let us recall the following lemma:

Lemma .. ([Uen, Lemma ., p. ]). A meromorphic mapping from a complex
manifold to a complex torus is always defined everywhere, thus gives rise to a morphism.

Proof of Proposition ... By [Uen, Lemma ., pp. -], we have κ(V ) > κ(T ) = 0.
Let ΦV : V ′ ! W ′ be (a model of) the Iitaka fibration of V where V ′ is smooth model
lying over V and W ′ a complex manifold. For a general point w′ in W ′, Vw′ and V ′w′
are bimeromorphic and thus κ(Vw′ ) = κ(V ′w′ ) = 0, where Vw′ is the image of V ′w′ in V .
Denote Sw′ = p(Vw′ ) for w′ ∈ W ′, then by [Uen, Theorem ., pp.-] we have
κ(Sw′ ) > 0; on the other hand, p being a finite morphism, [Uen, Lemma ., pp. -]
implies that κ(Sw′ ) 6 κ(Vw′ ) = 0 for w′ ∈ W ′ general, hence κ(Sw′ ) = 0 pour w′ general.
Again by [Uen, Theorem ., pp.-], Sw′ is a translate of a subtorus of T for w′
general (in particular, Sw′ is isomorphic to a complex torus for w′ general). Therefore
{Sw′ }w′∈W ′ ⊆ T ×W ′ forms an analytic family of complex varieties over W ′ whose general
fibre is isomorphic to a complex torus; but T has only countably many subtori, hence
there exists a subtorus S of T such that for very general w′ we have Sw′ ' S. Now by (the
analytic version of) [Kaw, Lemma ] (applied to f = (V ′ ! V ! T /S) and g = ΦV ),
this implies that we have a meromorphic mapping q′ :W ′d T /S; butW ′ is smooth, then
by Lemma .. the meromorphic mapping q′ is everywhere defined, hence q′ ◦ΦV is

equal to the composition morphism V ′! V
p
−! T

quotient
−−−−−! T /S.

Note W ′0 = q′(W ′) = image of V in T /S. Since we have

dimW ′ = dimV ′ −dimV ′w = dimp(V )−dimSw = dimW ′0 ,

q′ is generically finite. Let us consider a Stein factorization of q′ given by q : W ! T /S
a finite morphism and W ′ ! W an analytic fibre space; in addition, W is normal by
our construction. Since q′ is generically finite, W ′ ! W is a fortiori bimeromorphic, in
particular we have

dimW = dimW ′ = κ(V ). (.)

By construction q : W ! T /S also gives the connected part of the Stein factorization of

the proper morphism V ′ ΦV−−! W ′ q
′
−! T /S since ΦV ∗OV ′ = OW ′ ; V ′ ! V being a bimero-

morphic morphism, the fibres of the morphism V ′ ! V are connected, hence they are

contracted by V ′ ΦV−−!W ′ !W . By [Deb, §., Lemma ., pp.-] there is a mor-
phism φp : V ! W such that q ◦ φp is equal to the morphism V

p
−! T ! T /S, i.e. the

following diagram is commutative:
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V

T

T /S.

V ′

W ′

W

p
∃φp

quotient

ΦV

bimeromorphic

q′

q

Moreover, since V ′ ! V is bimeromorphic, Zariski’s Main Theorem (c.f. [Uen, Corol-
lary ., p. ]) implies that φp∗OV = OW , hence φp is an analytic fibre space; by our
construction φp and q provide us with the Stein factorization of the proper morphism
V ! T ! T /S . In order to prove (a) it suffices to apply [Kaw, Theorem ], which is
an analytic version of [KV, Main Theorem]. In fact, since κ(Vw) = 0 for w ∈ W gen-
eral (W ′ ! W bimeromorphic), [Kaw, Theorem ] implies that the finite surjective
morphism p|Vw : Vw ! p(Vw) = Sw ' S is a finite étale cover, hence Vw is isomorphic to a
(disjoint) union of copies of S̃ with S̃ a complex torus admitting a finite étale cover over
S; Vw being connected, we must have Vw ' S̃. In other words, φp is an analytic fibre
space whose general fibre equals to S̃. Let us remark that one can further prove that φp
a principle S̃-bundle, for this it suffices to apply [AS, Theorem ] which ensures that
the deformation of a complex torus is still a complex torus.

In order to establish (b), it remains, by virtue of (.), to show that that W is of
general type, i.e. κ(W ) = dimW . To see this, we will follow the same argument as in
[Uen, Proof of Theorem ., p. ]. Assume by contradiction that κ(W ) < dimW ,
then one can apply the above argument to the finite morphism q : W ! T /S and get the
following commutative diagram

T /S1,

W1

T /S

W

T

V

q1qp

quotient

φq

quotient

φp

where dimW1 = κ(W ) < dimW , S1 is a subtorus of T containing S, φq is an analytic fibre
space whose general fibre is equal to S̃1, a complex torus admitting a finite étale cover
over S1/S, and q1 is a finite morphism. Then φq ◦φp : V !W1 is an analytic fibre space
whose general fibre is denoted by F. By construction F admits a finite morphism F! S1,
thus F is Kähler and by (a) we have κ(F) > 0. Moreover, we have an analytic fibre space
φp|F : F ! S̃1 whose general fibre is equal to S̃. The canonical bundle KS̃1

being trivial,
consider the relative Bergman kernel metric hF/S̃1

on KF ' KF/S̃1
(c.f. §..). Since KFt '

KS̃ ' OS̃ is trivial for general t ∈ S̃1, then by (.) and by the Riemann extension theorem,
the local weight of hF/S̃1

is a constant psh function, hence (KF ,hF/S̃1
) is an Hermitian flat

line bundle. Consequently we have κ(F) 6 0 by [Uen, Example .., p. ], hence
κ(F) = 0. By the easy inequality [Uen, Theorem ., pp. -] we have

κ(V ) 6 κ(F) + dimW1 = dimW1 < dimW = κ(V ),

which is absurd. Therefore we must have κ(W ) = dimW = κ(V ).
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Proof of Theorem E. Let us consider the Stein factorization of the Albanese map ofX given
by f : X ! Y an analytic fibre space and p : Y ! T := AlbX a finite morphism. Then by
Proposition .., one can find a subtorus S of T and a projective variety Z of general
type which admits a finite morphism q : Z! T /S such that there is an Kähler fibre space
φp : Y ! Z whose general fibre S̃ is a complex torus, which is a finite étale cover over S.

T = AlbX

YX

T /S.

Z
f

albX
p

quotient

q

φp

u

Since Z is of general type, apply Theorem .. as well as the easy inequality [Uen,
Theorem ., pp. -] to the Kähler fibre space f ◦φp : X! Z and we get:

0 = κ(X,KX +∆) = κ(Xz,KXz +∆z) + dimZ > dimZ,

where z ∈ Z is a general point and ∆z := ∆|Xz . Hence Z must be a singleton. In con-
sequence Y = S̃ is a complex torus. By the universal property of the Albanese map, we
obtain a unique morphism u : T ! Y of complex tori, such that u◦albX = f (up to change
the base point of albX); in particular, the fibres of albX are connected, hence albX is also
an analytic fibre space, hence a Kähler fibre space, thus proves Theorem E. Let us re-
mark that albX being an analytic fibre space, then so is p (all its fibres are connected); p
is thus a fortiori an isomorphism by Zariski’s Main Theorem (c.f. [Uen, Theorem .,
pp. -]).

. Pluricanonical version of the structure theorem for coho-
mology jumping loci

In this section we will prove Theorem F by combining the Covering Lemma .. and the
main result in [Wana]. First let us recall some notions: let V be a complex manifold,
and let F be a coherent sheaf on V , for every k > 0 denote

V ik (F ) :=
{
ρ ∈ Pic0(V )

∣∣∣ hi(V ,F ⊗ ρ) > k
}
,

the "k-th jumping locus of the i-th cohomology". With the help of the Poincaré line
bundle on V × Pic0(V ), one can express this as the locus where a certain coherent sheaf
(in fact, some higher direct image sheaf) of Pic0(V ) has rank > k, hence V ik (F ) is a closed
analytic subspace of Pic0(V ). The study of the cohomology jumping loci was initiated in
the works of Green-Lazarsfeld [GL; GL] where they treat the case F = OV . When
F = Ω

p
V for V a smooth projective variety (resp. a compact Kähler manifold) these

cohomology jumping loci are described by the result of Simpson [Sim] (resp. of Wang
[Wana]). Now let everything be as in Theorem F, then as mentioned above, the case
g = idX , m = 1 and ∆ = 0 has been proved in [Wana]. In the sequel we will follow the
ideas in [CKP; HPS] to deduce Theorem F from this special case. First let us reduce
to the proof of Theorem F to a "key lemma".

Reduction to the Key Lemma ... The idea of the proof is similar to that of [HPS, The-
orem .]. In fact, when ∆ = 0, Theorem F is nothing but the Kähler version of [HPS,
Theorem .]; moreover, as in [HPS] the theorem is proved by a Baire category theo-
rem argument combined with the following "key lemma":
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Lemma .. (Key Lemma). Every irreducible component of V 0
k

(
g∗

(
K⊗mX ⊗OX(m∆)

))
is a

union of torsion translates of subtori in Pic0(Y ) .

Assuming that Key Lemma .. is true, let us prove Theorem F. Since Pic0(Y ) is
compact, the jumping locus

V 0
k

(
g∗

(
K⊗mX ⊗OX(m∆)

))
,

as a closed analytic subspace of Pic0(Y ), has only finite many irreducible components,
thus it suffices to prove that every irreducible component of

V 0
k

(
g∗

(
K⊗mX ⊗OX(m∆)

))
is a torsion translate of a subtorus. Let Z be a irreducible component of

V 0
k

(
g∗

(
K⊗mX ⊗OX(m∆)

))
.

By the Key Lemma .., Z is a union of torsion translates of subtori. Then by the fol-
lowing Lemma .., Theorem F is proved.

Lemma ... Let Z be a analytic subvariety of a complex torus T . Suppose that Z is a union
of torsion translates of subtori of T . Then Z itself is a torsion translate of a subtorus of T .

Proof. Since T has only countably many subtori (c.f. [BL, Chapter , Exercise (-b),
p. ]) and countably many torsion points, hence the set of torsion translates of subtori
is countable, then by hypothesis we can write Z =

⋃
n∈NEn with each En being a torsion

translate of a subtorus of T . By the Baire category theorem (Z is (locally) compact, hence
it is a Baire space: every countable union of closed subsets of empty interior is of empty
interior), there is one En , say E1 , which dominates Z, a fortiori Z = E1.

The following two subsections will be dedicated to the proof of the "key lemma".

Remark ... Remark that in order to prove Key Lemma .. it suffices to show that
every point of

V 0
k

(
g∗

(
K⊗mX ⊗OX(m∆)

))
is in a torsion translate of a subtorus contained in V 0

k

(
g∗

(
K⊗mX ⊗OX(m∆)

))
. In fact, assume

this to be true, and let Z be an irreducible component of

V 0
k

(
g∗

(
K⊗mX ⊗OX(m∆)

))
,

with Z0 be the dense (analytic Zariski) open subset of Z complementary to the other
irreducible components of

V 0
k

(
g∗

(
K⊗mX ⊗OX(m∆)

))
;

then Z0 is contained in a union of torsion translates of subtori: Z0 ⊆
⋃
λEλ , with each

Eλ ⊆ Z being a torsion translate of a subtorus. Hence Z =
⋃
λEλ by the density of Z0. By

Lemma .. we get Key Lemma ...

.. Result of Wang and reduction to the case g = id

In this subsection we consider the case where m = 1 and ∆ = 0, this is also the case
considered by Simpson and Wang. In particular, if g = id, Theorem F is proved by Botong
Wang in [Wana]; effectively, he proves the more general:

Proposition .. ([Wana, Corollary .]). Let V a compact Kähler manifold, then each
V ik (Ωp

V ) is a finite union of torsion translates of subtori in Pic0(V ).
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In the sequel we shall concentrate on the case i = 0, as in Theorem F. For every integer
k > 0 and for every coherent sheaf F on X, by the projection formula we have:

V 0
k (g∗F ) =

{
ρ ∈ Pic0(Y )

∣∣∣ h0(Y ,g∗F ⊗ ρ) > k
}

=
{
ρ ∈ Pic0(Y )

∣∣∣ h0(X,F ⊗ g∗ρ) > k
}

= (g∗)−1
(
V 0
k (F )∩ Img∗

)
(.)

where g∗ : Pic0(Y )! Pic0(X) is the morphism of complex tori given by L 7! g∗L. Then the
following lemma permit us to reduce to the case g = id:

Lemma ... Let α : T1 ! T2 a morphism of complex tori. Let t ∈ T2 a torsion point and
S ⊆ T2 a subtorus. Then α−1(t + S) is also a torsion translate of a subtorus in T1.

Proof. By [Deb, §., Théorème ., p. ] α can be factorized as

T1
quotient
−−−−−!! T1/(Kerα)0 ᾱ

−−−−!
isogeny

T1/Kerα = Imα
inclusion
↪−−−−−! T2 .

Thus it suffices to prove the lemma in the following three cases:

• α is the quotient by a subtorus,

• α is an isogeny,

• α is the inclusion of a subtorus.

Each of theses cases can be done by elementary linear algebra. We nevertheless give the
details for the convenience of the readers.

Case : α is the quotient T ! T /T ′ with T ′ ⊆ T being a subtorus.
Let t̄ ∈ T /T ′ be a torsion point such that mt̄ = 0 in T /T ′ with m ∈Z>0, and let S ⊆ T /T ′

be a subtorus. Then

α−1(t̄ + S) = α−1(t̄) +α−1S = t + T ′ +α−1S .

In addition, mt̄ = 0 in T /T ′ signifies that mt ∈ T ′. Since complex tori are divisible, there
is t′ ∈ T ′ such that mt′ =mt. Hence t+T ′ = (t− t′) +T ′ with m(t− t′) = 0 in T , i.e. t− t′ is a
torsion point in T . In consequence we have

α−1(t̄ + S) = (t − t′) + T ′ +α−1S = (t − t′) +α−1S ,

where α−1S is a subtorus of T and t − t′ a torsion point.

Case : α is the isogeny T1! T2 of degree n.
Let t be a torsion pint of T2 and S a subtorus of T2 , then we have α−1(t + S) = α−1(t) +

α−1S with

α−1S = finite union of subtori =
n′⋃
i=1

Si

α−1(t) = n distinct points = { t1, · · · , tn }
where n′ |n. Since t is a torsion point, there is m ∈ Z>0 such that mt = 0 in T2 , then for
j = 1, · · · ,n we have mα(tj ) = α(mtj ) = 0, i.e. mtj ∈ Kerα. But #(Kerα) = n, we must
have n · Kerα = 0, in particular nmtj = 0, ∀j, hence the tj ’s are all torsion points. In
consequence,

α−1(t + S) =
⋃
i,j

(tj + Si)

is a finite union of torsion translates of subtori.
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Case : α is the inclusion of a subtorus S1 ↪! T .
Let S2 be a subtorus of T and we will show that S1 ∩ (t + S2) is a torsion translate of a

subtorus in S1. Write T = C
g /Γ with g = dimT and Γ ⊆ C

g a lattice. By [Deb, Exercice
., pp.] or [BL, §., Exercise()], there are subgroups Γ1, Γ2 ⊆ Γ , such that for i = 1,2,
Γi is stable under multiplication by

√−1 and generates Si with rgΓi = 2hi (hi = dimSi).
For i = 1,2, letWi be the vector subspace of Cg generated by Γi , thenW1∩W2 is generated
by Γ1∩Γ2. Set k := dim

C
(W1∩W2), then rg(Γ1∩Γ2) = 2k. We are then reduced to show that

W1 ∩ (u +W2) (where u is a representative of t in C
g ) is of the form u′ +W ′ with u′ + Γ1 a

torsion point in S1 =W1/Γ1 and W ′ a vector subspace of W1.
Now let us choose a basis {vi | i = 1, · · · ,2g } of Γ such that v1, · · · ,v2k form a basis of Γ1∩

Γ2, v2k+1, · · · ,v2h1
generate a supplementary of Γ1∩Γ2 in Γ1, v2h1+1, · · · ,v2(h1+h2−k) generate a

supplementary of Γ1∩Γ2 in Γ2, and v2(h1+h2−k)+1, · · · ,v2g generate a supplementary of Γ1+Γ2
in Γ . Note that the vi ’s form a R-basis of Cg . If W1 ∩ (u +W2) = ∅, then there is nothing
to prove, hence we suppose that W1 ∩ (u +W2) , ∅, i.e. ∃w ∈ W2 such that u +w ∈ W1,
then W1∩ (u +W2) = (u +w) +W1∩W2; in addition, we have a fortiori u ∈W1 +W2. Since
w ∈W2 is determined up to W1 ∩W2, we can assume that the projection of w in W1 ∩W2
equals 0, i.e. we can write

w =
2(h1+h2−k)∑
i=2h1+1

wivi , wi ∈R .

And let us write (noting that u ∈W1 +W2):

u =
2(h1+h2−k)∑

i=1

uivi .

But u +w ∈ W1, a fortiori we have ui +wi = 0 for i = 2h1 + 1, · · · ,2(h1 + h2 − k). Since t ∈
T = C

g /Γ is a torsion point, there is m ∈Z>0 such that mt = 0 in T , meaning that mu ∈ Γ ,
hence mui ∈Z for i = 1, · · · ,2(h1 +h2−k) , and hence mwi ∈Z for i = 2h1, · · · ,2(h1 +h2−k) .
In consequence mw ∈ Γ2 , m(u +w) ∈ Γ1 , therefore (u +w) + Γ1 is a trosion point in S1 =
W1/Γ1 .

In particular we obtain immediately:

Proposition ... Let g : X ! Y a morphism between compact Kähler manifolds. Then for
every k > 0 and for every 0 6 p 6 n, V 0

k (g∗Ω
p
X) is a finite union of torsion translates of subtori

in Pic0(Y ) .

.. Proof of the "Key Lemma"

Let us now turn to the proof of Key Lemma ... It proceeds in four steps:

(A) Reduction to the case g = id.
First apply the formula (.) to F = K⊗mX ⊗OX(m∆) and then by Lemma .. we see

that Key Lemma .. is true for V 0
k

(
g∗

(
K⊗mX ⊗OX(m∆)

))
as soon as it holds for V 0

k

(
K⊗mX ⊗OX(m∆)

)
.

In consequence we can suppose that g = id (and X = Y ).

(B) Case m = 1 and ∆ = 0.
This is nothing but Proposition .. for p = n.
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(C) Case m = 1 and ∆ is of SNC support.
In this step, we consider the case where m = 1 and ∆ is an effective Q-divisor of SNC

support; in addition, we do not require ∆ to be an integral divisor, but only assume that
it is given by a line bundle L+, i.e. there is a line bundle L+, (L+)⊗N ' OX(N∆) for any
N ∈ Z>0 which makes N∆ an integral divisor. In this case, Key Lemma .. can be
deduced from Covering Lemma .. combined with the following auxiliary result (c.f.
also [Wana, Lemma .]):

Lemma .. (analytic version of [HPS, Lemma .]). Let F and G be coherent sheaves
on X such that F is a direct summand of G . Then for ∀i ∈N and ∀k ∈Z>0 , each irreducible
component of V ik (F ) is also an irreducible component of V il (G ) for some l > k.

Proof. This is simply a result of Grauert’s semi-continuity theorem (c.f. [BS, §III.,
Theorem .(i), p. ])

Now let L+ be the line bundle given by ∆. Since (X,∆) is a klt pair, then b∆c = 0.
Moreover, ∆ being a Q-divisor of SNC support, then for any N making N∆ an integral
divisor, we can construct, by Covering Lemma .., a generically finite morphism f :
V ! X of compact Kähler manifolds such that

f∗KV '
N−1⊕
i=0

KX ⊗ (L+)⊗i ⊗OX(−bi∆c).

By Lemma .. each irreducible component of V 0
k (KX ⊗L+) is also a irreducible compo-

nent of a certain V 0
l (f∗KV ) for some l > 0. Then by Step (B) (or Proposition ..), every

irreducible component of V 0
k (KX ⊗L+) is a torsion translate of a subtorus in Pic0(X) .

(D) General case.
In order to prove the general case we use a reduction to the case of Step (C). This

reduction process is inspired by[CKP, §.A-.C], whose idea has already appeared in
[Bud]. Let L be a point in

V 0
k

(
K⊗mX ⊗OX(m∆)

)
⊆ Pic0(X) ,

we will prove in the sequel that there exists a torsion translate of a subtorus contained in

V 0
k

(
K⊗mX ⊗OX(m∆)

)
which contains L. Pic0(X) being complex torus, thus divisible, we can then write L =
mL0 = L⊗m0 for some L0 ∈ Pic0(Y ). Then we have h0(X,Lm,∆) > k, where

Lm,∆ := K⊗mX ⊗OX(m∆)⊗L⊗m0 .

Now take a log resolution µ : X ′! X for both ∆ and the linear series
∣∣∣Lm,∆∣∣∣. Then we can

write

K⊗mX ′ ⊗OX ′ (m∆′) ' µ∗(K⊗mX ⊗OX(m∆))⊗OX ′ (
∑
i∈I+

maiEi) , (.)

µ∗
∣∣∣Lm,∆∣∣∣ =

∣∣∣µ∗Lm,∆∣∣∣ = Fm,∆ +
∣∣∣Mm,∆

∣∣∣ ,
where:
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•
{
Ei

∣∣∣ i ∈ I} denotes the set of µ-exceptional prime divisors, and

ai := a(Ei ,X,∆)

denotes the discrepancy of Ei with respect to the pair (X,∆); I+ (resp. I−) is the set
of indices i such that ai > 0 (resp. ai < 0).

• ∆′ is the effective Q-divisor on X ′ as in the proof of Lemma .., i.e.

∆′ := µ−1∗ ∆−
∑
i∈I−

aiEi ,

by Lemma .. the pair (X ′ ,∆′) is also klt.

• Fm,∆ (resp. Mm,∆) is the fixed part (resp. mobile part) of the linear series µ∗
∣∣∣Lm,∆∣∣∣;

by construction,
∣∣∣Mm,∆

∣∣∣ is base point free.

By construction (µ being a log resolution of ∆ and of
∣∣∣Lm,∆∣∣∣), m∆′ + ∑

i∈I Ei and Fm,∆ +∑
i∈I Ei are (integral) divisors of SNC support. Let H be a general member in

∣∣∣Mm,∆

∣∣∣, then
H has no common component either with Fm,∆ or with

∑
i∈I Ei or with ∆′; by Bertini’s

theorem, H is smooth (in particular H is reduced), H + Fm,∆ +
∑
i∈I Ei is of SNC support.

Set

F′m,∆ := Fm,∆ +
∑
i∈I+

maiEi ,

L′m,∆ := K⊗mX ′ ⊗OX ′ (m∆′)⊗µ∗L⊗m0 .

Then we have
L′m,∆ ' µ∗Lm,∆ ⊗OX(

∑
i∈I+

maiEi),

thus ∣∣∣L′m,∆∣∣∣ =
∣∣∣Mm,∆

∣∣∣+F′m,∆.

By [Deb, Lemma ., p. ] we have

H0(X,L′m,∆) 'H0(X,Lm,∆) 'H0(X ′ ,OX(Mm,∆)),

hence F′m,∆ is equal to the fixed part of the linear series
∣∣∣L′m,∆∣∣∣ and by construction it has

SNC support.
Put

µ−1∗ ∆ :=
∑
j∈J
djDj , dj ∈Q>0,

bj := coefficient of Dj in Fm,∆ , j ∈ J ,
bi := coefficient of Ei in Fm,∆ , i ∈ I− ,

and take

∆̄ := ∆′ −
∑
j∈J

min(dj ,
bj
m

)Dj −
∑
i∈I−

min(−ai , bim )Ei ,

F̄m,∆ := F′m,∆ −
∑
j∈J

min(mdj ,bj )Dj −
∑
i∈I−

min(−mai ,bi)Ei ,
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so that ∆̄ and F̄m,∆ have no common component. We see that ∆̄ 6 ∆′, F̄m,∆ 6 F′m,∆ . Now
consider the line bundle

L̄m,∆ := K⊗mX ′ ⊗OX ′ (m∆̄)⊗µ∗L⊗m0 ,

then the same argument as above shows that F̄m,∆ equals the fixed part of the linear series∣∣∣L̄m,∆∣∣∣, hence we have ∣∣∣L̄m,∆∣∣∣ = F̄m,∆ +
∣∣∣Mm,∆

∣∣∣ .
In addition we have

L̄m,∆ ⊗OX ′ (−
⌊m− 1
m

F̄m,∆
⌋
) = K⊗mX ′ ⊗OX ′ (m∆̄)⊗µ∗L⊗m0 ⊗OX ′ (−

⌊m− 1
m

(
F̄m,∆ +H

)⌋
)

' KX ′ ⊗OX ′ (∆+)⊗µ∗L0

where the Q-divisor ∆+ is defined by

∆+ := ∆̄+
{m− 1
m

(
F̄m,∆ +H

)}
.

Since H has no common component with either ∆̄ or F̄m,∆, hence

∆+ = ∆̄+
{m− 1
m

F̄m,∆

}
+
m− 1
m

H ;

but H is reduced, ∆̄ and F̄m,∆ have no common components, then the coefficients of the
irreducible components in ∆+ are all < 1; since ∆+ is of SNC support, then [KM, Corol-
lary .(), p. ] implies that the pair (X ′ ,∆+) is klt. A priori OX ′ (∆+) is only a Q-line
bundle, but by our construction ∆+ is given by a line bundle

L+ := OX ′ (∆
+) = L̄m,∆ ⊗OX ′ (−

⌊m− 1
m

F̄m,∆
⌋
)⊗K−1

X ′ ⊗µ∗L−1
0 .

Moreover, we have

h0(X ′ ,KX ′ ⊗L+ ⊗µ∗L0) = h0(X ′ , L̄m,∆ ⊗OX ′ (−
⌊m− 1
m

F̄m,∆
⌋
)) > h0(X ′ ,Mm,∆) > k,

which means that µ∗L0 ∈ V 0
k (KX ′ ⊗L+). Let W ′ be an irreducible component V 0

k (KX ′ ⊗L+)
containing µ∗L0 . By Step (C) W ′ is a torsion translate of subtorus, then we can write
W ′ = βtor + T ′0 with βtor a torsion point in Pic0(X ′) and T ′0 a subtorus, in particular µ∗L0
can be written as the sum of βtor and an element of T ′0 , thus

(m− 1)µ∗L0 +W ′ =mβtor + T ′0

is also a torsion translate of a subtorus as mβtor is also a torsion point of Pic0(X ′). In
addition, (m − 1)µ∗L0 +W ′ contains µ∗L = mµ∗L0 as µ∗L0 ∈ W ′. It remains to see that
(m− 1)µ∗L0 +W ′ is contained in V 0

k

(
K⊗mX ′ ⊗OX ′ (m∆′)

)
. In fact, for every α ∈W ′, we have

(since W ′ ⊆ V 0
k (KX ′ ⊗L+)):

h0(X ′ ,K⊗mX ′ ⊗OX ′ (m∆′)⊗µ∗L
⊗(m−1)
0 ⊗α) > h0(X ′ ,K⊗mX ′ ⊗OX ′ (m∆̄)⊗µ∗L⊗(m−1)

0 ⊗α)

= h0(X ′ , L̄m,∆ ⊗µ∗L−1
0 ⊗α)

> h0(X ′ , L̄m,∆ ⊗OX ′ (−
⌊m− 1
m

F̄m,∆
⌋
)⊗µ∗L−1

0 ⊗α)

= h0(X ′ ,KX ′ ⊗L+ ⊗α) > k .
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Therefore (m− 1)µ∗L0 +W ′ ⊆ V 0
k

(
K⊗mX ′ ⊗OX ′ (m∆′)

)
.

In virtue of the isomorphism (.) we have

V 0
k

(
K⊗mX ⊗OX(m∆)

)
=

{
ρ ∈ Pic0(X)

∣∣∣ h0(X,K⊗mX ⊗OX(m∆)⊗ ρ) > k
}

=
{
ρ ∈ Pic0(X) | h0(X ′ ,µ∗

(
K⊗mX ⊗OX(m∆)⊗ ρ

)
) > k

}
=

{
ρ ∈ Pic0(X) | h0(X ′ ,K⊗mX ′ ⊗OX ′ (m∆′)⊗µ∗ρ) > k

}
= (µ∗)−1

(
V 0
k

(
K⊗mX ′ ⊗OX ′ (m∆′)

)
∩ Imµ∗

)
,

where the third equality is a consequence of [Deb, Lemma ., p. ]. Hence by
Lemma ..,

W := (µ∗)−1 (((m− 1)µ∗L0 +W ′)∩ Imµ∗)

is a torsion translate of a subtorus contained in V 0
k

(
K⊗mX ⊗OX(m∆)

)
and L = mL0 ∈ W .

This proves the Key Lemma ...

Remark ... If X is a smooth projective variety, then one can prove Theorem F for log
canonical pair (X,∆) as follows:

• First apply [BW, Theorem .] along with [Voi, Théorème .(ii), p. ] to
prove the Key Lemma .. (thus also Theorem F) for m = 1 and ∆ a reduced SNC
divisor (c.f. also [Kaw]);

• Then by [CKP, Lemma .] and Lemma .. one can deduce further the Key
Lemma .. for the case of m = 1 and ∆ a log canonical Q-divisor of SNC support,
which is given by a line bundle, but is not necessarily an integral divisor;

• Finally one can follow the same argument as in Step (D) above to prove the Key
Lemma and thus Theorem F.

As for the Kähler case, as soon as [BW, Conjecture .] is solved, one can prove Theo-
rem F for log canonical pair (X,∆).

.. Kähler version of a result of Campana-Koziarz-Păun

Before ending this section, let us prove the following significant corollary of Theorem F,
which generalizes a result of Campana, Koziarz and Păun to the Kähler case, and will
be used in the proof of the Theorem A(II). In the algebraic case, it is proved in [CP,
Theorem .] for ∆ = 0, and in [CKP, Theorem .] for ∆ log canonical.

Corollary ... Let (X,∆) a klt pair with X a Kähler manifold, and let L0 a numerically
trivial line bundle on X, i.e. L0 ∈ Pic0(X). Then

(a) κ(X,KX +∆) > κ(X,mKX +m∆+ L0), ∀m ∈ Z>0 . Namely, for any Q-line bundle L on
X such that c1(L) = c1(KX +∆), we have κ(X,KX +∆) > κ(X,L).

(b) If there is an integer m > 0 such that κ(X,KX +∆) = κ(X,mKX +m∆+ L0) = 0, then L0
is a torsion point in Pic0(X).

Remark ... Before entering into the proof, let us remark that one cannot omit the
condition "κ(X,KX +∆) = 0" in the point (b) above. For example, if (X,∆) is of log general
type, then for any L0 ∈ Pic0(X) we always have κ(X,KX+∆) = κ(X,mKX+m∆+L0) = dimX.
In fact, since Pic0(X) is divisible, this a priori Q-line bundle L is an "authentic" line bundle.
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Proof of Corollary ... We will follow the argument in [CP] with a small simplifica-
tion. First prove the point (a) , the proof proceeds in three steps:

Step : Reduction to the case κ(X,KX ⊗ OX(∆)) 6 0. Assuming (a) for any klt pair
(X,∆) with κ(X,KX +∆) 6 0, we will prove it for any klt pair (X,∆) with κ(X,KX +∆) > 0.
Let g : X d W the Iitaka fibration (c.f. [Uen, §, Theorem ., p. ]) of the Q-line
bundle KX+∆ and f : Xd Y that ofmKX+m∆+L0 . By Lemma .. Point (a) is preserved
by log resolutions of (X,∆), we can thus suppose that f and g are morphisms (instead of
meromorphic mappings).

X W

Y

G

g

f

f |G

By construction we have dimY = κ(X,mKX +m∆+ L0) , dimW = κ(X,KX +∆) . Denoting
by F (resp. by G) the general fibre of f (resp. of g), we have

κ(X,KX +∆) > κ(X,mKX +m∆+L0) ⇔ dimW > dimY ⇔ dimG 6 dimF,

then it suffices to prove that G is contracted by f (i.e. f (G) = pt). By adjunction formula
the Q-line bundle

KG +∆G ' (KX +∆)|G
where ∆G := ∆|G , hence f |G is bimeromorphically equivalent to a meromorphic mapping
defined by a sub-linear series of

∣∣∣K⊗kmG ⊗OG(km∆)⊗L0|⊗kG
∣∣∣ for some k sufficiently large

and divisible. Therefore it suffices to show

κ(G,mKG +m∆+L0|G) = 0.

But by our construction

κ(G,KG +∆G) = κ(G, (KX +∆)|G) = 0,

hence our assumption implies that (a) holds for the klt pair (G,∆G). Since L0|G ∈ Pic0(G)
we have

κ(G,mKG +m∆G +L0|G) 6 κ(G,KG +∆G) = 0.

Step : By the previous step, we can assume that κ(X,KX + ∆) 6 0. If κ(X,mKX +
m∆ + L0) = −∞, then the inequality is automatically established, hence we can assume
that κ(X,mKX +m∆+L0) > 0; in addition, up to replacing m and L0 with some multiples,
we can assume that m∆ is an integral divisor and

H0(X,K⊗mX ⊗OX(m∆)⊗L0) , 0.

For every integer k > 0 denote

rk := h0(X,K⊗kmX ⊗OX(km∆)⊗L⊗k0 ) > 0.

Then L⊗k0 ∈ V 0
rk

(
K⊗kmX ⊗OX(km∆)

)
⊆ V 0

1

(
K⊗kmX ⊗OX(km∆)

)
, thus by Theorem F, L⊗k0 ∈

βtor + T0 ⊆ V 0
rk

(
K⊗kmX ⊗OX(km∆)

)
for βtor a torsion point in Pic0(X) and T0 a subtorus;

In the proof of [CP, Theorem .], it is said that f |G is equal to the Iitaka fibration ofmKG+m∆G+L0|G;
but it is not true in general.
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in particular, βtor ∈ V 0
rk

(
K⊗kmX ⊗OX(km∆)

)
. Let m0 > 0 an integer such that β⊗m0

tor ' OX .
Then

h0(X,K⊗kmm0
X ⊗OX(kmm0∆)) > h0(X,K⊗kmX ⊗OX(km∆)⊗ βtor) > rk . (.)

Step : By hypothesis we have κ(X,KX+∆) 6 0, hence (.) implies that κ(X,KX+∆) =
0, which means that rk 6 1 for every k ∈ Zk>0. Therefore κ(X,mKX +m∆ + L0) = 0. This
proves (a).

Now turn to the proof of (b): assume by contradiction that there is a line bundle
L ∈ Pic0(X) with L non-torsion such that κ(X,mKX +m∆+ L) = κ(X,KX +∆) = 0 for some
m > 0. Up to replacingm and Lwith some multiples, we can assume thatm∆ is an integral
divisor and that h0(X,K⊗mX ⊗ OX(m∆)⊗ L) = 1, then L ∈ V 0

1

(
K⊗mX ⊗OX(m∆)

)
. By Theorem

F there exists βtor ∈ Pic0(X)tor and T0 a subtorus in Pic0(X) such that L ∈ βtor + T0 ⊆
V 0

1

(
K⊗mX ⊗OX(m∆)

)
, then we can write L = βtor ⊗ F with F ∈ T0 . By our assumption L is

not a torsion point in Pic0(X), hence F cannot be trivial and thus T0 is not reduced to a
singleton. In consequence there is a (non-trivial) one-parameter subgroup (Ft)t∈R in T0
passing through F (by choosing an isomorphism T0 ' C

q/Γ , we can take Ft = t · F), then
for every t ∈R , βtor⊗Ft ∈ βtor +T0 ⊆ V 0

1

(
K⊗mX ⊗OX(m∆)

)
hence there is a non-zero section

st in
H0(X,K⊗mX ⊗OX(m∆)⊗ βtor ⊗Ft).

We claim that:

Claim (∗). There is a t ∈ R>0 such that the sections st ⊗ s−t and s⊗2
0 are not linearly inde-

pendent in H0(X,K⊗2m
X ⊗OX(2m∆)⊗ β⊗2

tor).

In fact, this leads to a contradiction: we have immediately

h0(X,K⊗2m
X ⊗OX(2m∆)⊗ β⊗2

tor) > 2,

which implies that

κ(X,KX +∆) = κ(X,K⊗2m
X ⊗OX(2m∆)⊗ β⊗2

tor) > 1,

and this contradicts the hypothesis that κ(X,KX +∆) = 0. Therefore (b) is proved.
Let us prove the Claim (∗). Assume by contradiction that st ⊗ s−t are s⊗2

0 are lin-
early dependent for every t ∈ R. Then ∀t ∈ R , div(st) + div(s−t) = 2div(s0); in particular,
div(st) 6 2div(s0) for every t ∈ R>0 . Take ε sufficiently small such that t 7! Ft is in-
jective for t ∈ ]− ε,ε[ . By Dirichlet’s drawer principle, there are t1, t2 ∈ ]0,ε[ such that
div(st1) = div(st2), hence the divisor

0 = div(st2)−div(st1) ∈
∣∣∣Ft2 ⊗F−1

t1

∣∣∣ ,
which implies that Ft1 = Ft2 in Pic0(X) with t1, t2 ∈]0,ε[; but this contradicts our hypoth-
esis on ε. This proves Claim (∗).

As a by-product of Corollary ..(a) we obtain the following special case of the Käh-
ler version of the (generalized) log Abundance Conjecture by using the divisorial Zariski
decomposition (c.f.[Bou, Definition .]):

Theorem ... Let (X,∆) be a klt pair with X a compact Kähler manifold whose numerical
dimension ν(X,KX +∆) = 0, then κ(X,KX +∆) = 0.

Proof. For the definition of the numerical dimension of (non necessarily nef) Q-line bun-
dles (or cohomology classes in H1,1(X,R)) over a compact Kähler manifold, c.f. [Dem,
§., p. ]. Since ν(KX +∆) = 0, the Q-line bundle KX +∆ is pseudoeffective, hence
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we can consider the divisorial Zariski decomposition (c.f. [Bou, Definition .] and
[Dem, §.(d), p. ]) of its first Chern class:

c1(KX +∆) =
{
N

(
c1(KX +∆)

)}
+ 〈c1(KX +∆)〉.

By hypothesis ν(c1(KX +∆)) = 0, which means that 〈c1(KX +∆)〉 = 0; in other word, the Q-
line bundle KX+∆ is numerically equivalent to the effective R-divisorN =N

(
c1(KX+∆)

)
,

a fortiori N is a Q-divisor. Therefore by Corollary ..(a), we have

κ(KX +∆) > κ(N ) > 0.

Finally by [Dem, §., p. ] we get κ(KX +∆) = 0.

. Kähler version of Clog
n,m for fibre spaces over complex tori

In this section, we will finish the proof of Theorem A. To this end, we do some reductions
by an induction on the dimension of T and by applying Theorem .., Theorem ..
and Theorem E; at last, we deduce Theorem A from Corollary ...

.. Reduction to the case T is a simple torus

By an induction on dimT we can assume that T is a simple torus, i.e. admitting no non-
trivial subtori. In fact, if T is not simple, take a non-trivial subtorus S ⊆ T and denote
by q : T ! T /S the canonical morphism (of complex analytic Lie groups), this is a Kähler
fibre space (more precisely a principle S-bundle). We obtain thus a Kähler fibre space
f ′ = q ◦ f : X! T /S, and then by induction hypothesis we have

κ(X,KX +∆) > κ(F′ ,KF′ +∆F′ ),

where ∆F′ := ∆|F′ with F′ the general fibre f ′. In addition, f |F′ : F′ ! S is also a Kähler
fibre space of general fibre F over a complex torus S of dimension < dimT , hence by
induction hypothesis we have

κ(F′ ,KF′ +∆F′ ) > κ(F,KF +∆F),

thus we get
κ(X,KX +∆) > κ(F,KF +∆F).

.. Dichotomy according to the determinant bundle and reduction to the
case of Hermitian flat direct images

For positive integer m such that m∆ is an integral divisor, consider the direct image

Fm,∆ := f∗
(
K⊗mX ⊗OX(m∆)

)
= f∗

(
K⊗mX/T ⊗OX(m∆)

)
.

If κ(F,KF +∆F) = −∞ then Part (II) of the Theorem A is automatically established; hence
we can assume that κ(F,KF+∆F) > 0. In consequence form sufficiently divisibleFm,∆ , 0.
Let us denote byM the set of positive integers m such that m∆ is an integral divisor and
that Fm,∆ , 0, then we can suppose that M , ∅, this is moreover an additive subset
of N. By Theorem D, for ∀m ∈ M the torsion free sheaf Fm,∆ admits a semi-positively

curved metric g(m)
X/T,∆; in addition, the induced metric detg(m)

X/T,∆ on its determinant bundle
detFm,∆ is of curvature current

θm,∆ :=Θ
detg(m)

X/T,∆
(detFm,∆) > 0.
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In particular, the line bundle detFm,∆ is pseudoeffective on T for every m ∈M . By §..
we can assume that T is a simple torus, hence [Cao, Proposition .] (c.f. also [CP,
Theorem .]) implies that we fall into the following two cases:

• Either θm,∆ . 0, in this case T is an Abelian variety equipped with detFm,∆ an ample
line bundle;

• Or θm,∆ ≡ 0, in this case detFm,∆ is a numerically trivial line bundle, and thus

Corollary .. implies that (Fm,∆ , g
(m)
X/T,∆) is a Hermitian flat vector bundle.

If there is an integer m ∈M such that the determinant bundle detFm,∆ is ample, then
Theorem A(II) can be deduced by Theorem A(I) (which is proved in §.., c.f. Theorem
..). Hence in order to finish the proof of Theorem A(II), one only need to tackle the
case that that the determinant bundle detFm,∆ is numerically trivial for every m ∈ M ,

which implies that (Fm,∆, g
(m)
X/T,∆) is a Hermitian flat vector bundle for every m ∈M .

.. Reduction to the case κ 6 0

In this subsection we will demonstrate that we can reduce to the case κ(X,KX +∆) 6 0,
which is an observation dating back to Kawamata, c.f. [Kaw, §, Proof of Claim ,
pp. -]. Suppose that Theorem A (II) holds true for klt pair (X,∆) with κ(X,KX +
∆) 6 0. Now take a klt pair (X,∆) such that κ(X,KX + ∆) > 1. By Lemma .., we
can freely replace X by a higher bimeromorphic model (the Kodaira dimension remains
unchanged), and in consequence we can suppose that the Iitaka fibration of KX +∆ is a
morphism, denoted by

φ : X! Y ,

whose general fibre is G. Then dimY = κ(X,KX + ∆) > 0 and κ(G,KG + ∆G) = 0 where
∆G := ∆|G. Consider

f |G : G! f (G) =: S ⊆ T ,
and take the Stein factorization of f |G:

S.

G

S ′f |G

Case : S , T .
T being a simple torus, [Uen, Theorem ., pp. -] implies that S is of general

type, then so is S ′ by [Uen, Lemma ., p. -]. By Theorem .., for general s ∈ S ′
we have

0 = κ(G,KG +∆G) = κ(Gs ,KGs +∆Gs ) + dimS ′ = κ(Gs ,KGs +∆Gs ) + dimS,

where ∆Gs := ∆|Gs = ∆G|Gs . This forces dimS = dimS ′ = 0, hence f (G) = pt, and in con-
sequence G is contained in F. Therefore φ|F : F ! φ(F) ⊆ Y is a Kähler fibre space of
general fibre G, and thus by the easy inequality [Uen, Lemma ., pp. -] we
obtain (noting that ∆G = ∆F |G):

κ(F,KF +∆F) 6 κ(G,KG +∆G) + dimh(F) = dimh(F) 6 dimY = κ(X,KX +∆).
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Case : S = T .
First we prove that S ′ ! S is a finite étale cover (thus S ′ is also a complex torus) with

the help of Theorem E. In fact, let albG : G! AlbG the Albanese map of (G,y) with base
point y such that f (y) = e ∈ T . By the universal property of the Albanese map we get a
(unique) morphism u : AlbG ! T of complex tori (a morphism of complex analytic Lie
groups) making the following diagram commutative:

T

G

S ′

T ′.

AlbG

f |G

albG

∃! u

'

Since f |G is surjective, then so is u. By [Deb, Théorème ., p. ] u can be factorized as
AlbG ! T ′ ! T with AlbG ! T ′ the quotient by Ker(u)0 and T ′ ! T a finite étale cover.
As κ(G,KG +∆G) = 0, then by Theorem E the morphism albG is an analytic (Kähler) fibre
space, thus so is G ! T ′. Therefore the construction of Stein factorization implies that
S ′ and T ′ are isomorphic. In particular, S ′ ! T is a finite étale cover and thus S ′ is a
complex torus.

Put F′ to be the general fibre of G! S ′, then for general t ∈ T , we have Gt ' F ∩G is
finite union of copies of F′. Now apply our assumption to G! T (κ(G,KG +∆G) = 0) and
we get

0 = κ(G,KG +∆G) > κ(F′ ,KF′ +∆F′ ).

where ∆F′ := ∆|F′ = ∆G|F′ . Furthermore, consider the Stein factorization of φ|F : F !
φ(F) =: Z ⊆ Y :

Z.

F

Z ′φ|F

For z ∈ Z general Fz ' F ∩G, hence the general fibre of the analytic fibre space F! Z ′ is
isomorphic à F′. Then by the easy inequality [Uen, Lemma ., pp. -] we obtain:

κ(F,KF +∆F) 6 κ(F′ ,∆F′ +∆F′ ) + dimZ ′ 6 dimZ ′ = dimZ 6 dimY = κ(X,KX +∆).

.. End of the proof of Theorem A

By §.. we have that (Fm,∆, g
(m)
X/T,∆) is a Hermitian flat vector bundle for every m ∈M .

In other words Fm,∆ is built from a unitary representation of the fundamental group (c.f.
for example [Kob, Proposition .., p. ] or [Dem, §, pp. -])

ρm : π1(T ,t0)!U(rm)
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where
rm := rkFm,∆ = h0(F,K⊗mF ⊗OF(m∆F)).

Since π1(T ,t0) is an Abelian group, every representation of π1(T ) can be decomposed
into (irreducible) sub-representations of rank 1, hence a decomposition of Fm,∆ into (nu-
merically trivial) line bundles:

Fm,∆ = L1 ⊕L2 ⊕ · · · ⊕Lrm , with Li ∈ Pic0(T ), ∀i = 1, · · · , rm. (.)

Step : First prove that Im(ρm) is finite for every m ∈ M . In fact, suppose by con-
tradiction that there exists m ∈ M such that Im(ρm) is infinite, hence there exists j ∈
{1,2 · · · , rm}, say j = 1, such that Lj is not a torsion point in Pic0(T ). Consider the natural
inclusion L1 ↪! Fm,∆ , which induces a non-zero section

H0(T ,Fm,∆ ⊗L−1
1 ) = H0(X,K⊗mX ⊗OX(m∆)⊗ f ∗L−1

1 ).

This implies that κ(X,mKX +m∆+ f ∗L1) > 0. As f ∗L1 ∈ Pic0(X), by Corollary ..(a) and
§.. we have

κ(X,mKX +m∆+ f ∗L1) 6 κ(X,KX +∆) 6 0,

hence a fortiori
κ(X,mKX +m∆+ f ∗L1) = κ(X,KX +∆) = 0. (.)

By Corollary ..(b), the equality (.) implies that f ∗L1 is a torsion point in Pic0(X),
i.e. there is an e > 0 such that f ∗L⊗e1 ' OX , meaning that L⊗e1 ' OT since the morphism

f ∗ : Pic0(T )! Pic0(X)

is injective (f being an analytic fibre space). This contradicts our supposition that L1 is
not a torsion element in Pic0(T ). Hence Im(ρm) is finite for each m ∈M .

Step : By the precedent step we see that Im(ρm) is a finite group. Set Hm := Ker(ρm),
then Hm is normal subgroup of π1(T ) of finite index. Hence Hm induces a finite étale
cover of T . Up to passing to this finite étale cover (the Kodaira dimension is invariant
under finite étale covers) we can assume that the representation ρm is trivial, and conse-
quently Fm,∆ is a trivial vector bundle, then we have

h0(X,K⊗mX ⊗OX(m∆)) = h0(T ,Fm,∆) = rm = h0(F,K⊗mF ⊗OF(m∆F)),

which implies that κ(X,KX +∆) = κ(F,KF +∆F).

. Geometric orbifold version of theCn,m-conjecture for Kähler
fibre spaces over complex tori

In this last section, we will prove Theorem G, in other word, generalize Part (II) of The-
orem A, established in §., to the geometric orbifold setting. Along the way, we also
show that Corb

n,m holds when (Y ,Bf ,∆) is of log general type. Before entering into the proof
of theses results, let us first clarify some definitions. Remind that for f : X ! Y ana-
lytic fibre space between compact complex manifolds and for ∆ effective Q-divisor on
X, the branching divisor Bf ,∆ is defined as the most effective Q-divisor on Y such that
f ∗Bf ,∆ 6 Rf ,∆ modulo exceptional divisors (see below, c.f. also Introduction); on the other
hand, in [Cam, Definition .] Frédéric Campana defines a divisor on Y with respect
to f and ∆ in the setting of geometric orbifolds, named "orbifold base". We will see in
the sequel that these two definitions coincide when (X,∆) is lc. Let us first recall the
definition of Campana:





Definition ... Let f : X ! Y and ∆ as above such that (X,∆) is lc. For any prime
divisor G on Y , write

f ∗G =
∑

j∈J(f ,G)

RamGj (f )Gj + (f -exceptional divisor) ,

where J(f ,G) is the index set of all prime divisors mapped onto G. Then the orbifold base
with respect to f and ∆ is defined to be the Q-divisor

Bf ,∆ :=
∑
G

(
1− 1

m(f ,∆;G)

)
G

where the multiplicity m(f ,∆;G) of G with respect to f and ∆ is defined to be

m(f ,∆;G) := inf
{
RamGj (f )m(∆;Gj )

∣∣∣ j ∈ J(f ,G)
}

with m(∆;Gj ) ∈Q>1 ∪ {+∞} satisfying

ordGj (∆) = 1− 1
m(∆;Gj )

.

Now we have:

Lemma ... Let f : X! Y and ∆ as above such that (X,∆) is lc.Let Bf ,∆ be the orbifold base
respect to f and ∆ in the sense of Campana, as defined in Definition .. above. Then there
is an f -exceptional effective Q-divisor E such that the Q-divisor Rf ,∆ +E − f ∗Bf ,∆ is effective;
and Bf ,∆ is the most effective Q-divisor on Y satisfying this property.

Proof. The second assertion is evident by construction of Bf ,∆. In fact, if B is a divisor on
Y such that f ∗B 6 Rf ,∆ , then for every prime divisor G on Y we have

ordGj (f
∗B) = RamGj (f )ordG(B) 6 ordGj (Rf ,∆) = RamGj (f )− 1 + ordGj (∆)

= RamGj (f )− 1
m(∆;Gj )

, ∀j ∈ J(f ,G) ,

where
f ∗G =

∑
j∈J(f ,G)

RamGj Gj + (f − exceptional divisor) ;

this implies that

ordG(B) 6 1− 1
RamGj (f )m(∆;Gj )

, ∀j ∈ J(f ,G) ,

and hence

ordG(B) 6 inf
j∈J(f ,G)

1− 1
RamGj (f )m(∆;Gj )

 = 1− 1

inf
{
RamGj (f )m(∆;Gj )

∣∣∣ j ∈ J(f ,G)
}

= ordG(Bf ,∆).

Now turn to the proof of the first assertion. To this end, it suffices to show that for
any prime divisor D on X such that f (D) is a divisor on Y we have

ordD(Rf ,∆) = ordD(Σf ) + ordD(∆) > ordD(f ∗Bf ,∆). (.)

Let ΣY be a (reduced) divisor containing Y \Y0 with Y0 ⊂ Y the smooth locus of f and
write

f ∗ΣY =
∑
i∈I
biWi ,
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then
Σf :=

∑
i∈Idiv

(bi − 1)Wi .

where Idiv denotes the set of indices in I such that f (Wi) is a divisor on Y . Now we
consider separately the two cases:

Case  : D 1 Supp(Σf ). Then ordD(Σf ) = 0 and a general point of f (D) is contained
in Y0 , thus

f ∗f (D) =D + (f -exceptional divisor).

In consequence RamD(f ) = 1 and J(f , f (D)) = {D}, which implies that m(f ,∆;f (D)) =
m(∆;D). Hence

ordD(f ∗Bf ,∆) = ordf (D)(Bf ,∆) = 1− 1
m(∆;D)

= ordD(∆) = ordD(Σf ) + ordD(∆).

Case  : D ⊂ Supp(Σf ). Then D = Wi for some i ∈ Idiv. In consequence, f (Wi) ⊂
Supp(ΣY ) and

f ∗f (Wi) =
∑

j∈J(f ,f (Wi ))

bjWj + (f -exceptional divisor),

with J(f , f (Wi)) =
{
j ∈ Idiv

∣∣∣f (Wj ) = f (Wi)
}

and RamWj
(f ) = bj . By definition we have

m(f ,∆;f (Wi)) = inf
{
bjm(∆;Wj )

∣∣∣ j ∈ Idiv and f (Wj ) = f (Wi)
}
6 bim(∆;Wi).

Hence

ordWi
(f ∗Bf ,∆) = bi · ordf (Wi )(Bf ,∆) = bi

(
1− 1

m(f ,∆;f (Wi))

)
6 1− 1

bim(∆;Wi)
= (bi − 1) + (1− 1

m(∆;Wi)
)

= ordWi
(Σf ) + ordWi

(∆).

In both cases, the inequality (.) is established for prime divisor D vertical w.r.t. f ,
hence it end the proof.

Remark ... As a corollary of the above lemma, one sees clearly:

• f ∗Bf ,∆ being a vertical divisor w.r.t. f (i.e. not dominating Y ), it is in fact the most
effective divisor on Y such that f ∗Bf ,∆ 6 Rf ,∆vert = Σf +∆vert where ∆vert denotes the
vertical part of ∆.

• If (X,∆) is klt and Fm,∆ := f∗
(
K⊗m(X,∆)/Y

)
, 0 for some m sufficiently large and divisi-

ble, one can easily deduce from Proposition .. (applied to L = OX(m∆horiz) with
∆horiz the horizontal part of ∆) that there is an f -exceptional effective Q-divisor E
such that the Q-line bundle Korb

f ,∆ +E is pseudoeffective, where the orbifold relative
canonical bundle is defined (as a Q-line bundle) by the formula:

Korb
f ,∆ := K(X,∆)/(Y ,Bf ,∆) = KX/Y +∆− f ∗Bf ,∆.

Before proving the Theorem G, let us first prove that the klt version of Corb
n,m holds for

fibre spaces over bases of general type in the sense of geometric orbifolds:
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Theorem ... Let f : X ! Y be a surjective morphism between compact Kähler manifolds
whose general fibre F is connected. Let ∆ be an effective Q-divisor on X such that (X,∆) is klt.
Suppose that (Y ,Bf ,∆) is of log general type. Then

κ(X,KX +∆) > κ(F,KF +∆F) + dimY ,

where ∆F := ∆|F .

Notice that a stronger (log canonical) version of the above theorem is proved in
[Cam] (for X projective) based on the a weak positivity theorem for direct images of
twisted pluricanonical bundles. We will give here a new argument depending on the
Ohsawa-Takegoshi extension theorem:

Proof of Theorem ... First, as in the proof of Theorem .., by passing to a higher
bimeromorphic model of f , we can assume that f is neat and prepared (in virtue of
Lemma .. and Lemma ..), that is, every f -exceptional divisor is also exceptional
with respect to some bimeromorphic morphism X ! X ′ and the the singular locus of f
is a (reduced) SNC divisor; in particular, for every effective f -exceptional divisor E0 on
X, we have κ(X,KX +∆) = κ(X,KX +∆+E0).

If κ(F,KF + ∆F) = −∞ then there is nothing to prove, hence suppose that κ(F,KF +
∆F) > 0, this implies that there is m > 0 sufficiently large and divisible such that Fm,∆ :=
f∗

(
K⊗m(X,∆)/Y

)
, 0. By Remark .., there is an effective f -exceptional Q-divisor E such

that the Q-line bundle Korb
f ,∆ +E is pseudoeffective. Since (Y ,Bf ,∆) is of log general type, Y

is projective, one can fix a very ample line bundle AY on Y such that the Q-line bundle
AY −KY − Bf ,∆ is ample and that the Seshadri constant ε(AY −KY − Bf ,∆ , y) > dimY for
general y (such an AY exists by [Laz, §., Example .., p.  and Example ..,
p. , Vol.I]). Now by our hypothesis KY + Bf ,∆ is a big Q-line bundle, then (up to
replacing m by a multiple) we can assume that m(KY +Bf ,∆) − 2AY is effective. Then we
have

κ(X,KX +∆) = κ(X,KX +∆+E) > κ(X,mKorb
f ,∆ +mE + 2f ∗AY ).

In virtue of Lemma .. it suffices to show that

H0(X, (Korb
f ,∆ )⊗m ⊗OX(mE)⊗ f ∗AY ) , 0,

which is a direct consequence of the Ohsawa-Takegoshi type extension Theorem .., as
we precise below:

Since ∆ is klt, by Theorem .. the relative m-Bergman kernel metric hX/Y,m∆horiz on
K⊗mX/Y ⊗OX(m∆horiz) is semipositive (noting that ∆horiz

∣∣∣
F

= ∆F). Set

Lm−1 := K⊗(m−1)
X/Y ⊗OX(m∆horiz),

L′m−1 := Lm−1 ⊗OX(mE +m∆vert − (m− 1)f ∗Bf ,∆),

respectively equipped with the singular Hermitian metrics:

hLm−1
:=

(
h

(m)
X/Y,m∆horiz

)⊗m−1
m ⊗ h∆horiz ,

hL′m−1
:= hLm−1

⊗ h⊗mE ⊗ h⊗m∆vert ⊗ f ∗h⊗(1−m)
Bf ,∆

.

where h∆horiz , h∆vert , hE and hBf ,∆ denote the canonical singular metrics defined by the
divisors. Then by Proposition .. and Lemma .. the curvature current of hL′m−1

sat-
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isfies

ΘhL′m−1
(L′m−1) =

m− 1
m

ΘhX/Y,m∆horiz (K⊗mX/Y ⊗OX(m∆horiz) + [∆] + (m− 1)[∆vert]

+m[E]− (m− 1)[f ∗Bf ,∆]

> (m− 1)
(
[Σf ] + [E] + [∆vert]− [f ∗Bf ,∆]

)
+ [∆] + [E]

> [∆] + [E] > 0.

Moreover, since L′m−1|F = Lm−1|F and hL′m−1
|F = hLm−1

|F , by Lemma .. the natural inclu-
sion

H0(F,KF ⊗L′m−1|F ⊗J (hL′m−1
|F)) = H0(F,KF ⊗Lm−1|F ⊗J (hLm−1

|F))

↪!H0(F,KF ⊗Lm−1|F) = H0(F,K⊗mF ⊗OF(m∆F))

is an isomorphism. Hence by Theorem .. we get a surjection

H0(X,KX ⊗L′m−1 ⊗ f ∗(AY ⊗K−1
(Y ,Bf ,∆))�H0(F,K⊗mF ⊗OF(m∆F)).

Since
KX ⊗L′m−1 ⊗ f ∗(AY ⊗K−1

(Y ,Bf ,∆)) = (Korb
f ,∆ )⊗m ⊗OX(mE)⊗ f ∗AY ,

this proves the non-vanishing of H0(X, (Korb
f ,∆ )⊗m ⊗OX(mE)⊗ f ∗AY ).

Finally, let us turn to the proof of Theorem G:

Proof of Theorem G. Let us proceed by induction on dimT . If Bf ,∆ = 0, then Theorem G
is reduced to Part (II) of Theorem A. Hence we assume that Bf ,∆ , 0. Then by [Cao,
Proposition .], there is a subtorus S of T of dimension < dimT and an ample Q-divisor
H on A := T /S such that π∗H = Bf ,∆ with π : T ! A = T /S the quotient map.

Now let f ′ = π◦f : X! A, which is a fibre space with general fibre F′. Then f |F′ : F′!
S is a fibre space with general fibre F. We have Bf |F′ ,∆F′ > (Bf ,∆)|S , as one can easily check:
for every component G of (Bf ,∆)|S , it arises from a prime divisor of X, hence Bf |F′ ,∆F′ has
the same vanishing order over G. This is enough for our use; we nevertheless remark
that we have in fact the equality Bf |F′ ,∆F′ = (Bf ,∆)|S since every component of Bf |F′ ,∆F′
must arise from a divisor on X: in fact, every component of Bf |F′ ,∆F′ is either the image
of a component of ∆F′ = ∆|F′ or the image of a component of Σf |F′ = (Σf )|F′ (we have the
equality if we choose S to be a general translate). Now the induction hypothesis gives:

κ(F′ ,KF′ +∆F′ ) > κ(F,KF +∆F) +κ(S, (Bf ,∆)|S ).

Furthermore, since κ(S, (Bf ,∆)|S ) > 0, we have

κ(F′ ,KF′ +∆F′ ) > κ(F,KF +∆F). (.)

We claim that
κ(X,KX +∆) > κ(F′ ,KF′ +∆F′ ) + dimA. (.)

If κ(F′ ,KF′ +∆F′ ) = −∞, then (.) evidently holds. Hence we can assume that κ(F′ ,KF′ +
∆F′ ) > 0. In this case, for m sufficiently large and divisible,

H0(F,K⊗mF′ ⊗OF′ (m∆F′ )) , 0.

Since (X,∆) is klt, (F′ ,∆F′ ) is klt, then by Theorem .. we can construct the relative

2m-Bergman kernel metric h(2m)
X/A,2m∆horiz on K⊗2m

X/A ⊗ OX(2m∆horiz) ' K⊗2m
X ⊗ OX(2m∆horiz).

Now put
L := K⊗(2m−1)

X ⊗OX(2m∆+ 2mE −m(f ′)∗H)





equipped with the singular Hermitian metric

hL :=
(
h

(2m)
X/A,2m∆horiz

)⊗ 2m−1
2m ⊗ h∆horiz ⊗ h⊗2m

∆vert ⊗ h⊗2m
E ⊗ (f ′)∗h⊗(−m)

H ,

where E is an f -exceptional effective divisor as in Lemma .. and h∆horiz , h∆vert , hE and
hH are the canonical singular metrics defined by the divisors. Then by Proposition ..
and Lemma .. the curvature current of hL satisfies

ΘhL(L) =
2m− 1

2m
Θ
h

(2m)

X/A,∆horiz

(
K⊗2m
X/A ⊗OX(2m∆horiz)

)
+ [∆horiz] + 2m[∆vert] + 2m[E]−m[(f ′)∗H]

> (2m− 1)[Σf ] + [∆horiz] + 2m[∆vert] + 2m[E]−m[f ∗Bf ,∆]

= [∆] + [E] + (m− 1)([Σf ] + [∆vert] + [E]) +m([Σf ] + [∆vert] + [E]− [f ∗Bf ,∆])

> [∆] + [E] + (m− 1)([Σf ] + [∆vert] + [E]) > 0.

Since hL|F = hL2m−1
|F , where L2m−1 := K⊗(2m−1)

X ⊗OX(2m∆horiz) equipped with the singular
metric

hL2m−1
:=

(
h

(2m)
X/A,∆horiz

)⊗ 2m−1
2m ⊗ h∆horiz ,

then by Lemma .. we see that the natural inclusion

f ′∗ (KX/A ⊗L⊗J (hL)) ↪! f ′∗ (KX/A ⊗L)

is generically an isomorphism, hence by Theorem .. the canonical L2 metric on

f ′∗ (KX/A ⊗L) = f ′∗ (K⊗2m
X/A ⊗OX(2m∆+ 2mE))⊗H⊗(−m)

is semi-positively curved. In particular its determinant is pseudoeffective, which implies
that detf ′∗ (K⊗2m

X/A ⊗ OX(2m∆ + 2mE)) is big on A. Since f ′∗ (K⊗2m
X/A ⊗ OX(2m∆ + 2mE)) and

f ′∗ (K⊗2m
X/A ⊗OX(2m∆)) are equal in codimension 1, hence

detf ′∗ (K⊗2m
X/A ⊗OX(2m∆+ 2mE)) = detf ′∗ (K⊗2m

X/A ⊗OX(2m∆)),

implying that detf ′∗ (K⊗2m
X/A ⊗ OX(2m∆)) is big on A. Since κ(A) = 0, (.) results from

Theorem ...
At last, by combining (.) and (.) with the easy inequality [Uen, Theorem

., pp. -] (applied to π : T ! A) we obtain:

κ(X,∆+X) > κ(F′ ,KF′ +∆F′ ) + dimA > κ(F,KF +∆F) +κ(S, (Bf ,∆)|S ) + dimA

> κ(F,KF +∆F) +κ(T ,Bf ,∆).





Chapter 

Structure of klt projective varieties
with nef anticanonical divisors

In this chapter we study the structure of klt projective varieties with nef anticanonical
divisors, which grows from the article [Wan].

. Positivity and flatness of the direct images

Let X be a klt projective variety with nef anticanonical divisor. In order to give a uni-
form treatment of the Albanese map and of the MRC fibration of X, we prove in this
section some general results on the dominant rational mapping from X to any smooth
non-uniruled variety Y ; in particular, by virtue of Proposition .. we study the direct
images of powers of a relatively very ample line bundle onX. Before stating these results,
let us set up some general notations (see also [CCM, Setting .]):

General Settings ... Let ψ : Xd Y be a dominant rational map between projective vari-
eties with Y smooth. Suppose that there is an effective divisor ∆ on X such that the pair (X,∆)
is klt and −(KX +∆) is nef. Let φ : M ! Y be an elimination of indeterminacy of ψ with M
smooth and let π :M ! X be the induced (birational) morphism. For convenience, we further
assume that the branch locus of φ is a SNC divisor on Y and that its inverse image on M has
SNC support. Let Y0 be the maximal Zariski open of Y such that φ is flat over Y0 and that for
every prime divisor D on Y0 the pullback φ∗D is not contained in the exceptional locus of π.

Y .

M X

φ

π

ψ

Write Exc(π) =
∑
i∈I Ei =: E. Since (X,∆) is klt, KX +∆ is Q-Cartier and we can write:

KM +π−1∗ ∆ ∼Q π∗(KX +∆) +
∑
i

aiEi (.)

with ai > −1, where π−1∗ ∆ denotes the strict transform of ∆ via π. We rewrite the formula
above by:

KM +∆M ∼Q π∗(KX +∆) +
∑
i∈I>0

aiEi (.)





where I>0 (resp. I>0) is the set of indices i such that ai > 0 (resp. ai < 0) and

∆M := π−1∗ ∆+
∑
i∈I<0

(−ai)Ei .

By the klt condition we see that the coefficients of the components in ∆M are all < 1 thus
(M,∆M ) is klt.

.. Birational geometry of ψ

Let everything be as in the General Setting ... In this subsection we recall some gen-
eral results on the birational geometry of ψ. They are essentially proved by Qi Zhang
in [Zha, Main Theorem]. The following result is explicitly formulated in [CCM,
Theorem .] for X is smooth.

Proposition ... Let everything be as in the General Setting .. except that we only as-
sume that the pair (X,∆) is log canonical (abbr. lc). Suppose further that Y is not uniruled.
Then we have:

(a) κ(Y ) = 0. Moreover, if NY is an effective Q-divisor Q-linearly equivalent to KY , then
φ∗NY is π-exceptional; in particular, NY is contained in Y \Y0.

(b) ∆ is horizontal with respect to ψ.

(c) π(φ−1(Y \Y0)) is of codimension > 2 in X. In particular, every φ-exceptional divisor on
M is also π-exceptional.

(d) Y0 has the following Liouville property: every global holomorphic function on Y0 is con-
stant.

(e) ψ is semistable in codimension 1 (c.f. [Zha, Definition ]), i.e. for every prime divisor
P on Y0 , write φ∗P =

∑
i ciPi with Pi being prime divisor on φ−1(Y0) for every i, then

ci > 1 implies that Pi is π-exceptional.

Proof. When X is smooth, the proposition is established in [CH, Lemma ., Propo-
sition .]. In the singular case, the proof becomes a little subtle. For the convenience
of the readers, we will briefly present the proof below following ideas from [Zha] and
[CH]. The same ideas are also used in the proof of Lemma .. below.

Up to further blowing-up M and Y , we can assume that φ is smooth outside a SNC
divisor DY :=

∑
jDY,j (called the branching divisor of φ) and that Supp(φ∗DY +E) is SNC.

In addition, let us fix a very ample line bundle L on X.
Now take AM an ample divisor on M, then for any ε ∈ Q>0 the Q-divisor −π∗(KX +

∆) + εAM is ample since −(KX +∆) is nef; choose an ample Q-divisor Hε on Y such that
−π∗(KX +∆) + εAM −φ∗Hε remains ample. Take

∆M,ε := ∆M +
1
k
· general member of the linear series

∣∣∣k (−π∗(KX +∆) + εAM −φ∗Hε)
∣∣∣ ,

for k sufficiently large and divisible. Then ∆M,ε is a Q-divisor with coefficients 6 1 and
has SNC support. By [KM, Corollary ., pp. -] the pair (M,∆M,ε) is lc, thus by
the weak positivity result [Fuj, Theorem .], the direct image φ∗OM(k(KM/Y +∆M,ε))
is weakly positive; moreover, since KM/Y +∆M,ε is linearly equivalent to εA +

∑
ai>0 aiEi

over the general fibre of φ, hence KM/Y +∆M,ε is relatively big, in particular we have

φ∗OM(k(KM/Y +∆M,ε)) , 0.





In consequence, the Q-divisor

KM/Y +∆M,ε +φ∗Hε ∼Q −φ∗KY +
∑
i∈I>0

aiEi + εAM

is Q-linearly equivalent to an effective Q-divisor (for details, see the proof of Lemma
..); by letting ε! 0, we see that −φ∗KY +

∑
ai>0 aiEi is pseudoeffective.

Finally take H1 , · · · ,HdimX−1 be general members of the linear series |π∗L|, and let

C :=H1 ∩ · · · ∩HdimX−1 ,

then C is a movable curve on M, thus

(−φ∗KY +
∑
i∈I>0

aiEi) ·C > 0.

When ai > 0 the divisor Ei is π-exceptional, then the projection formula implies that
Ei ·C = 0 for every i. Hence we haveφ∗KY ·C 6 0. By our hypothesis Y is not uniruled, then
by [BDPP, Corollary .] KY is pseudoeffective, since CY := φ∗C moves in a strongly
connecting family (c.f. [BDPP, §]), in particular it is movable, thus by [BDPP,
Theorem .] KY ·CY > 0. But on the other hand, we have seen that KY ·CY = φ∗KY ·C 6 0,
hence KY ·CY = 0; then by [BDPP, . Theorem] we have κ(Y ) = 0. If NY is an effective
Q-divisor Q-linear equivalent to KY , then by the projection formula we have

π∗φ∗NY ·LdimX−1 = φ∗NY ·C = 0;

but L being very ample, a fortiori π∗φ∗NY = 0, meaning that φ∗NY is π-exceptional. This
proves (a).

For the point (b), note that in the proof of (a), if we set

∆M,ε := π−1∗ ∆horiz +
∑
i∈I<0

aiEi +
1
k
· general member of

∣∣∣k (−π∗(KX +∆) + εAM −φ∗Hε)
∣∣∣ ,

with k sufficiently large and divisible, then the same argument as in (a) plus the equality
φ∗KY ·C = 0 shows that ∆vert ·C 6 0, but ∆vert is effective, then a fortiori ∆vert = 0, which
implies that ∆ is horizontal. Thus we proved (b).

Now let us prove (c). Take a prime divisor V on M such that φ(V ) ⊆ Y \Y0. By def-
inition of Y0, if φ(V ) is of codimension 1, then V is automatically π-exceptional; hence
we can suppose that φ(V ) is of codimension > 2, i.e. V is φ-exceptional. Let βY : Y1! Y
be a desingularization of the blow-up of Y at φ(V ), then φ(V ) ⊆ βY (Exc(βY )). Since Y is
smooth, we have KY1

∼ KY + FY with FY effective and βY -exceptional, moreover we have
Supp(FY ) = Exc(βY ). TakeM1 be a desingularization of the fibre productM×

Y
Y1, with the

induced morphisms βM : M1 !M and φ1 : M1 ! Y1. And let V1 be the strict transform
of V in M1. Then φ1(V1) ⊆ Exc(βY ).

Y .

M X

Y1

M1

φ

π

φ1

βM

βY

ψ
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By (b) there exists an effective Q-divisor NY which is Q-linearly equivalent to KY .
Then β∗YNY + FY is an effective Q-divisor Q-linearly equivalent to KY1

. Apply (a) to the
dominant rational map Xd Y1 one sees that φ∗1(β∗YNY +FY ) is (π ◦ βM )-exceptional. But

φ1(V1) ⊆ Exc(βY ) = Supp(FY ) ⊆ Supp(β∗YNY +FY ),

therefore V1 ⊆ Supp(φ∗(β∗YNY +FY )) and thus V1 is also (π◦βY )-exceptional. This implies
that V = βM(V1) is π-exceptional. Thus we proved (c).

Point (d) is a simple consequence of (c) by the same argument as [CH, §.A, Re-
mark ]. For convenience of the readers let us briefly recall the proof: let h : Y0 ! C

is a holomorphic function, then its pullback φ∗h induces a holomorphic function h1 on
π(φ−1(Y0)\E). By (c) the complement of π(φ−1(Y0)\E) in X has codimension > 2. Then
h1 extends to a holomorphic function on X, which is constant by Liouville’s Theorem.
Hence h is constant.

It remains to prove (e). To this end it suffices to show the following statement: for
every j write φ∗DY,j =

∑
lmj,lDj,l , if mj,l > 1 then Dj,l is π-exceptional. By Kawamata’s

covering techniques (a Block-Gieseker cover followed by cyclic cover, c.f. [Laz, Propo-
sition .., Theorem .., Theorem .., pp. -]) we can construct a flat finite
cover pY : Y ′ ! Y such that p∗YDY,j = mj,lDY ′,j for some smooth prime divisor DY ′,j on Y ′
and that Y ′ is smooth with

∑
i p
∗
YEi +

∑
k,j p

∗
YDY,k +DY ′,j being a reduced SNC divisor. By

[Laz, Proposition ..] the fibre product M ×
Y
Y ′ is singular along the singular locus

of the divisor φ∗DY,j , in particular, it is singular along the preimage of Dj,l since mj,l > 1.
Take M ′ a strong desingularization of M ×

Y
Y ′ with induced morphisms pM :M ′!M and

φ′ :M ′! Y ′.

Y .

M X

Y ′

M ′

φ

π

φ′

pM

pY

ψ

By [Kle, Proposition (), Remark ()(vii)], M ×
Y
Y ′ is Gorenstein and

KM×
Y
Y ′/Y ′ ∼ pullback of KM/Y to M ×

Y
Y ′ .

over p−1
Y (Yflat) where Yflat ⊆ Y denotes the flat locus of φ. By generic flatness and [Ful,

Example A.., p. ], Y \Yflat is of codimension > 2, then so is Y ′\p−1
Y (Yflat). By [Rei,

. Proposition] we can write (for details, see the proof of Lemma ..)

KM ′/Y ′ ∼Q p∗MKM/Y +EM×
Y
Y ′ +EM −G

where EM×
Y
Y ′ is a (non-necessarily effective) divisor which exceptional for M ′ !M ×

Y
Y ′,

EM is a (non-necessarily effective) divisor such that φ′(EM ) ⊆ Y ′\p−1
Y (Yflat) (in particular

EM is φ′-exceptional), and G is an effective divisor supported on the preimage of the
prime divisors with multiplicity > 1 in φ∗DY,j . In particular, pM(G) contains Dj,l . Com-
bine this with the formula (.) we get

KM ′/Y ′ ∼Q p∗Mπ∗(KX +∆)− p∗Mφ∗KY +
∑
λ∈Λ

bλE
′
λ +E′M×

Y
Y ′ +EM −G.
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where E′M×
Y
Y ′ is exceptional for M ′ !M ×

Y
Y ′ and, for every λ ∈ Λ, E′λ is prime divisor on

M ′ supported on the strict transform via M ′!M ×
Y
Y ′ of the pullback of

∑
i Ei on M ×

Y
Y ′

with bλ := aiλ ·multλ where iλ is the index such that Eiλ = pM(Eλ) and

multλ := multiplicity of the image of Eλ in the pullback of Ei on M ×
Y
Y ′ .

By construction of pY we see that multλ > 1 if and only if Eiλ coincide with a divisor
contained in the non-reduced part of φ∗DY,j . In particular, for λ ∈ Λ such that φ(Eiλ) 1
Supp(DY ) we have multλ = 1 and thus bλ = aiλ > −1.

Now take A′ an ample divisor on M ′. Since −KX is nef, for any ε ∈Q>0 the Q-divisor
−p∗Mπ∗KX +εA′ is ample; then choose an ample Q-divisor H ′ε on Y ′ such that −p∗Mπ∗KX +
εA− (φ′)∗Hε remains ample. Take

∆M ′ ,ε :=
∑

φ(Eiλ )1Supp(DY )
bλ<0

(−bλ)E′λ

+
1
k
· general member of the linear series

∣∣∣k (−p∗Mπ∗KX + εA− (φ′)∗Hε
)∣∣∣ ,

for k sufficiently large and divisible. Then (M ′ ,∆M ′ ,ε) is a lc pair. Moreover, since the
general fibre of φ and thus of φ′ is smooth, E′M×

Y
Y ′ is φ′-vertical; EM and G are φ′-vertical

by construction. Therefore KM ′/Y ′ +∆M ′ ,ε is big on the general fibre of φ′. Hence by the
same argument as in the proof of (a) we obtain that the Q-divisor

KM ′/Y ′+∆M ′ ,ε+(φ′)∗H ′ε ∼Q −p∗Mφ∗KY+
∑
bλ>0

bλE
′
λ+E′M×

Y
Y ′+EM−G−

∑
bλ60

φ(Eiλ )⊂Supp(DY )

(−bλ)E′λ+εAM ′

is Q-linearly equivalent to an effective Q-divisor; by letting ε! 0, we see that

−p∗Mφ∗KY +E′M×
Y
Y ′ +

∑
bλ>0

bλE
′
λ +EM −G −

∑
bλ60

φ(Eiλ )⊂Supp(DY )

(−bλ)E′λ

is pseudoeffective.
Finally take H ′1 , · · · ,H ′dimX−1 be general members of the linear series

∣∣∣p∗Mπ∗L∣∣∣, and let

C′ :=H ′1 ∩ · · · ∩H ′dimX−1 ,

then C′ is a movable curve on M ′, thus−p
∗
Mφ
∗KY +

∑
bλ>0

bλE
′
λ +E′M×

Y
Y ′ +EM −G −

∑
bλ60

φ(Eiλ )⊂Supp(DY )

−(bλ)E′λ

 ·C
′ > 0.

By construction, E′λ is (π ◦ pM )-exceptional for λ such that bλ > 0, so is E′M×
Y
Y ′ , hence

Eλ · C′ = E′M×
Y
Y ′ · C′ = 0 for λ such that bλ > 0. Furthermore, by construction EM is φ′-

exceptional, hence pM∗EM is φ-exceptional, then by (c) EM is π-exceptional and EM ·C′ =
0. Therefore we have

∑
bλ60

φ(Eiλ )⊂Supp(DY )

(−bλ)E′λ +G

 ·C
′ 6 −p∗Mφ∗KY ·C′ = −KY · (φ ◦ pM )∗C′ .
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Since KY is pseudoeffective (by assumption Y is not uniruled), (φ◦pM )∗C′ is movable, we
have 

∑
bλ60

φ(Eiλ )⊂Supp(DY )

(−bλ)E′λ +G

 ·C
′ 6 −KY · (φ ◦ pM )∗C′ 6 0.

But G is effective, a fortiori G ·C′ = 0 and bλ = 0 or E′λ ·C′ = 0 for every λ ∈Λvert such that
φ(Eiλ) ⊂ Supp(DY ). By the projection formula this implies that

(π ◦ pM )∗G ·LdimX−1 = 0.

Since L is very ample, we have (π◦pM )∗G = 0. In particular, since pM∗G ⊇Dj,l , this implies
that Dj,l is π-exceptional, which proves (d). By the way, the same argument shows that
bλ = 0 for every λ ∈Λvert such that φ(Eiλ) ⊂ Supp(DY ).

.. Positivity and numerical flatness of the direct images

Throughout this subsection, let everything be as in the General Setting .., and sup-
pose further that Y is not uniruled. The main purpose of this subsection is to study the
positivity of the φ-direct images of a sufficiently ample line bundle on M. Before stating
these results, let us fix some notations: by (.) the Q-divisor

− (KM/Y +∆M ) +E′ ∼
Q
−π∗(KX +∆) (.)

is nef, where E′ :=
∑
i∈I>0

aiEi − φ∗NY with NY being an effective Q-divisor Q-linearly
equivalent to KY (by Proposition ..(b) such an NY exists). By Proposition ..(a) E′ is
π-exceptional and the restriction of E′ to a general fibre of φ is effective. The basic result
in this subsection is the following (c.f. [CCM, Lemma .]):

Proposition ... Let everything be as in the General Setting .. with Y non-uniruled
and E′ as above. Let θ be a smooth (1,1)-form on Y and let G be a φ-big divisor on M such
that OM(G) admits a singular Hermitian metric hG such that ΘhG(OM(G)) > φ∗θ. Then for
any q ∈Z>0 the direct image sheaf φ∗OM(q(KM/Y +∆M ) +G+ pE′) is θ-weakly semipositively
curved for any p sufficiently large with respect to q.

Proof. This can be deduced immediately from the Corollary ... Let us briefly recall
how the proof goes. Let p ∈Z>0 such that pE′ is an integral divisor on M, and write

q(KM/Y +∆M ) +G+ pE′ = (p+ q)(KM/Y +∆M ) +G+ (−p(KM/Y +∆M ) + pE′)︸                       ︷︷                       ︸
nef

.

Let h∆M be the canonical metric on ∆M . Since (M,∆M ) is still klt, J (h∆M ) ' OM , thus by
[Laz, §..D, Theorem .., pp. -] J (h∆M |My

) ' OMy
for general y. Hence for

p sufficiently large

J ((h1/(p+q)
G ⊗ h∆M )|My

) ' OMy

for general y ∈ Y . For such a p Corollary .. implies that φ∗OM(q(KM/Y +∆M )+G+pE′)
is θ-weakly semipositively curved.

Then let us recall in the sequel some results in [CH]. We first remark that:

Remark ... Let us remark that most of the results below have been essentially con-
tained in [CCM]. We carefully state and prove them for the following reason: since X
is not necessarily smooth (nor Q-factorial), the pushforward of a (Cartier) Q-divisor on
M via π is not necessarily Q-Cartier, thus in general it does not make sense to talk about
pseudoeffectivity of them ([CCM] does not take care of this point). However, since the
effectivity of a Weil divisor still makes sense, we will use this to overcome this difficulty.





Proposition .. ([CCM, Lemma .]). Let everything be as in the General Settinng ..
with Y non-uniruled and let G be a φ-big divisor on M, then for any ample divisor AY on Y
and for any integers c, s ∈Z>0 the Q-divisor

π∗
(
G −φ∗DG,c,1 +

1
s
φ∗AY

)
is Q-linearly equivalent to an effective divisor on X, where DG,c,1 is the Q-divisor on Y defined
by

DG,c,1 :=
1
r
· the Cartier divisor on Y associated to the line bundle detφ∗OM(G+ cE)

with r = rkφ∗OM(G + cE). If moreover π∗(G −φ∗DG,c,1) is Q-Cartier on X, then it is pseudo-
effective; in particular, for k ∈ Z>0 sufficiently large G − φ∗DG,c,1 + kE is pseudoeffective on
M.

Proof. The proof is essentially the same as that of [CP, Theorem .] (c.f. [Wan,
Theorem .] for more details), see also [Cao, Proposition .], [CH, Lemma .]
and [CCM, Lemma .]. We give the detailed proof in order to clarify the problems
pointed out in Remark ..

(A) Construction of the fibre product and of the canonical section. Let Yf be the
Zariski open subset of Y over which φ is flat and φ∗OM(G + cE) is locally free. Then
codimY (Y \Yf) > 2 and for every y ∈ Yf the fibre My is Gorenstein (c.f. [Mat, §, Theo-
rem ., p. ]). Over Yf we have a natural inclusion

detφ∗OM(G+ cE)|Yf
' OYf

(rDG,c,1|Yf
) ↪!

r⊗
φ∗OM(G+ cE)|Yf

. (.)

Now we take the r-fold fibre product

Mr :=M ×
Y
M ×

Y
· · · ×

Y
M︸              ︷︷              ︸

r times

,

equipped with natural projections pri :Mr !M and the natural morphism φr :Mr ! Y
such that φ ◦pri = φr for every i. Set

Gr :=
r∑
i=1

pr∗i G,

Er :=
r∑
i=1

pr∗i E,

∆Mr :=
r∑
i=1

pr∗i ∆M .

Let µ : M(r) !Mr be a strong desingularization of Mr such that µ|µ−1(Mr
reg) is an isomor-

phism, and set pi := pri ◦µ, φ(r) := φr ◦ µ, G(r) := µ∗Gr , E(r) := µ∗Er , ∆M(r) := µ∗∆Mr . By the
projection formula and by induction we have

φ
(r)
∗ OM(r)(G(r) + cE(r))|Yf

' φr∗OMr (Gr + cEr )|Yf
'

r⊗
φ∗OM(G+ cE)|Yf

,

Then (.) induces a non-zero section

s0 ∈H0(Yf ,φ
(r)
∗ OM(r)(G(r) + cE(r))⊗ (detφ∗OM(G+ cE))−1),
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By [Nak, §III., ..Lemma, pp. -] (c.f. [Wan, Theorem .] for more details)
there is an effective divisor B1 supported in M(r)\(φ(r))−1(Yf) such that s0 extends to a
non-zero section

s̄0 ∈H0(M(r),OM(r)(G(r) + cE(r) +B1 − r(φ(r))∗DG,c,1)),

in particular ∆0 := G(r) + cE(r) + B1 − r(φ(r))∗DG,c,1 is (linearly equivalent to) an effective
divisor on M(r).

(B) Comparison of the relative canonical divisors. By induction and the base change
formula of the relative canonical sheaf [Kle, Proposition ()] we see that Mr

f is Goren-
stein and the relative dualizing sheaf

ωMr
f /Y
' OMr

f
(
r∑
i=1

pr∗i KM/Y ).

The natural morphism ωMr
f /Y
! µ∗OM(r)(KM(r)/Y )|Mr

f
(from [Har, §II., Proposition .,

p. ]) is an isomorphism over Mr
rat, the rational singularities locus of Mr . By assump-

tion (c.f. General Setting ..), the branch locus Branch(φ) of φ is a SNC divisor on Y
and f ∗Branch(φ) has SNC support. Write

f ∗Branch(φ) :=
∑
λ

Wλ +
∑
µ

aµVµ

with aµ > 1 for every µ and set

W :=
∑
λ

Wλ , V :=
∑
µ

Vµ ,

then by [Hör, ..Lemma] Mr
f has rational singularities along

(Mf\(V ∪φ−1 Sing(Branch(φ)))) ×
Yf\Sing(Branch(φ))

· · · ×
Yf\Sing(Branch(φ))

(Mf\(V ∪φ−1 Sing(Branch(φ)))).︸                                                                                                                                ︷︷                                                                                                                                ︸
r times

Hence there is a divisor B2 on M(r) supported on

E(r) ∪ (M(r)\µ−1(Mr
f ))∪ Supp(

r∑
i=1

pr∗i V )

such that

−(KM(r)/Y +∆M(r)) +B2 ∼
r∑
i=1

pr∗i (−(KM/Y +∆M ) +E′).

(C) Ohsawa-Takegoshi type Extension. For y ∈ Y general, the general fibre

Mr
y :=My × · · · ×My︸          ︷︷          ︸

r times

of φr is smooth; since µ is an isomorphism over Mr
reg, Mr

y is also the general fibre of φ(r).
Now fix a sufficiently ample divisor AY on Y divisible by 2, such that 1

2AY −KY separates





all the (2dimY )-jets. For s ∈ Z>0, since ∆0 = G(r) + cE(r) + B1 − r(φ(r))∗DG,c,1 is φ(r)-big,
there is ε ∈Q>0 sufficiently small such that εs∆0 +AY is big. Then we can write

εs∆0 +
1
2
AY ∼Q Hs,ε +∆s,ε.

with Hp,ε an ample Q-divisor and ∆p,ε an effective Q-divisor. Now let t ∈Z>0 sufficiently
large such that (

∆M(r) +
1
st
∆s,ε +

1− ε
t
∆0

) ∣∣∣
Mr
y

=
(
∆Mr +

1
st
∆s,ε +

1− ε
t
∆0

) ∣∣∣
Mr
y

is klt. Since st(−KM(r)/Y −∆M(r) +B2) +Hs,ε is ample, we can apply [Cao, Theorem .]
(c.f. also [Dena, Theorem .]) to the divisor

L : = st(−KM(r)/Y +B2) + s∆0 +
1
2
AY

∼
Q

[st(−KM(r)/Y −∆M(r) +B2) +Hs,ε] + (st∆M(r) +∆s,ε + (1− ε)s∆0)

to obtain the surjectivity of the restriction morphism

H0(M(r),OM(r)(stKM(r)/Y +L+
1
2
AY ))!H0(Mr

y ,OMr
y
(stKM(r)/Y +L+

1
2
AY )),

which can be rewritten as

H0(M(r),OM(r)(sG(r) + scE(r) + sB1 + stB2 + (φ(r))∗(AY − srDG,c,1)))�H0(Mr
y ,OMr

y
(sGr + scEr ))

(D) Restriction to the diagonal and conclusion. Now take a non-zero section (since
G+ cE is φ-big, such a section exists)

u ∈H0(My ,OMy
(pG+ pcE))

for y ∈ Y general, then

u(r) :=
r∑
i=1

pr∗i u ∈H0(Mr
y ,OMr

y
(sGr + scEr )).

By Step (C) we get a section

σ (r) ∈H0(M(r),OM(r)(sG(r) + scE(r) + sB1 + stB2 + (φ(r))∗(AY − prDG,c,1))))

such that σ (r)|Mr
y

= u(r). Since µ is an isomorphism over (M\Supp(V +W ))r ⊆ (Mr )reg,

then σ (r)|(M\Supp(V+W ))r can be restricted to the diagonal and gives rise to a section

σ ′ ∈H0(M\Supp(V +W ),OM(srG+ srcE +F′s,t +φ∗(AY − srDG,c,1)))

for some F′s,t supported in Supp(E) (by Proposition ..(c) any φ-exceptional divisor is
also π-exceptional thus contained in Supp(E)). By construction of B1 and B2 we know
that σ ′ is bounded around a general point of W ; moreover, by Proposition ..(d) V is
contained in Supp(E), hence there is a π-exceptional divisor Fs,t such that σ ′ extends to
a section

σ ∈H0(M,OM(srG+ srcE +Fs,t +φ∗(AY − srDG,c,1))).

By construction σ |My
= u⊗r , hence σ , 0, which implies that srG −+srcE + Fs,t +φ∗(AY −

srDG,c,1) is linearly equivalent to an effective divisor onM. But E and Fs,t areπ-exceptional,
hence

π∗
(
G −φ∗DG,c,1 +

1
s
φ∗AY

)




is Q-linearly equivalent to an effective (Weil) Q-divisor on X. Since this holds for any
s ∈Z>0 , we can take AY to be any ample divisor on Y .

If we assume moreover that π∗(G−φ∗DG,c,1) is Q-Cartier, then by taking a sufficiently
ample divisor A on X containing π∗φ∗AY , we see that π∗(G −φ∗DG,c,1) + 1

sA is Q-linearly
equivalent to an effective (Cartier) Q-divisor, hence π∗(G−φ∗DG,c,1) is pseudoeffective. In
particular, for k ∈Z>0 sufficiently large G −φ∗DG,c,1 + kE is pseudoeffective on M.

Proposition .. ([CH, Lemma .],[CCM, Proposition .]). Let everything be as in
the General Settinng .. with Y non-uniruled and let G be a φ-big divisor. Then there is an
c0 ∈ Z>0 such that for every c > c0 the natural inclusion detφ∗OM(G + cE)! detφ∗OM(G +
(c+ 1)E) is an isomorphism over Y0.

Proof. If X is smooth, then E cannot dominate Y and the proposition is proved in [CH,
Lemma .]. In our case, X is not necessarily smooth and it takes more effort to prove the
proposition. We will follow the same argument of [CCM, Proposition .] with some
clarifications (c.f. Remark ..). The proof can be divided into two steps:

Step : Constancy of the rank of the direct images with respect to c. Since rkφ∗OM(G+
cE) = h0(My ,OMy

(G + cE)) for y ∈ Y general, and since E is effective and π-exceptional,

it suffices to prove that h0(My ,OMy
(G + cE)) is bounded by a constant for all c ∈ Z>0. By

[Cao, Theorem .] and by the argument as in Step (C) of the proof of Proposition
.., for p sufficiently large and for AY sufficiently ample on Y divisible by 2 and such
that 1

2AY −KY separates all the (2dimY )-jets, we have a surjection

H0(M,OM(G+ cE + pE′ +φ∗AY )) = H0(M,OM(p(KM +∆M ) + p(−KM −∆M +E′) +G+ cE +φ∗AY ))

�H0(My ,OMy
(G+ cE + pE′)),

for y ∈ Y general. Since E′ |My
is effective, we have

h0(My ,OMy
(G+ cE)) 6 h0(My ,OMy

(G+ cE + pE′)) 6 h0(M,OM(G+ cE + pE′ +φ∗AY )).

It remains to see the boundedness of h0(M,OM(G + cE + pE′ +φ∗AY )). By [Nak, §III.,
..Lemma, pp. -], for c and p sufficiently large,

π∗OM(G+ (pk + c)E +φ∗AY ) ' (π∗OM(G+φ∗AY ))∗∗

for any k ∈ Z>0. Hence for sufficiently large c and for p sufficiently large with respect to
c and G we have

h0(M,OM(G+cE+pE′+φ∗AY )) 6 h0(M,OM(G+(c+pk)E+φ∗AY )) = h0(X, (φ∗OM(G+φ∗AY ))∗∗),

where k is a positive integer such that E′ 6 kE. In consequence h0(M,OM(G + cE + pE′ +
φ∗AY )) is bounded by a constant independent of c and p, and so is rkφ∗OM(G + cE). In
other word, there is c0 ∈ Z>0 such that for any c > c0, the rank of φ∗OM(G + cE) is inde-
pendent of c.

Step : Stability of the determinant sheaf over Y0. By contradiction, let us assume
that there is an increasing sequence (ck)k∈Z>0

such that c1 > c0, ck↗+∞ and that there is
some effective divisor Bk on Y such that Bk ∩Y0 , ∅ (in particular Bk , 0) and

rDG,ck+1,1 − (rDG,ck ,1 +Bk)





is linearly equivalent to an effective divisor on M for every k, where r := rkφ∗OM(G+ c0E)
and

DG,c,1 :=
1
r
· the Cartier divisor on Y associated to detφ∗OM(G+ cE).

By Step  for any c > c0, rkφ∗OM(G + cE) = r. Then by Proposition .. for any ample
divisor AY on Y and for any p ∈Z>0 the Q-divisor

π∗
(
G −φ∗DG,ck ,1 +

1
s
φ∗AY

)
is Q-linearly equivalent to an effective divisor. In particular, take s = r, we see that for
every N > 0

rπ∗G+π∗φ∗AY −
N∑
k=1

π∗φ∗Bk

is linear equivalent to a Weil divisor onX. But since Bk∩Y0 , ∅, φ∗Bk is not π-exceptional,
hence π∗φ∗Bk is non-zero effective for every k. By letting N ! +∞ we see that this is
impossible.

As an immediate corollary of Proposition .. we have

Corollary ... Let everything be as in the General Settinng .. with Y non-uniruled and
let G be a φ-big divisor. Let c0 be the integer given by the Proposition .. and let c > c0. For
every a ∈Z>0 set

DG,c,a :=
1
ra
· the Cartier divisor on Y associated to the line bundle detφ∗OM(aG+ acE)

where ra := rkφ∗OM(aG+ acE). Then

(a) φ∗OM(G + cE) is isomorphic to φ∗OM(G + kE + pE′) over Y0 for any k > c and for any
p ∈Z>0 rendering pE′ integral;

(b) Suppose that π∗G and π∗φ∗DG,c,b are Q-Cartier on X for some b ∈Z>0. Then φ∗OM(G+
cE) is 1

bDG,c,b-weakly semipositively curved over Y0.

Proof. By construction E′ =
∑
i∈I+ aiEi −φ∗NY with NY an effective Q-divisor on Y sup-

ported out of Y0, hence Proposition .. implies that rkφ∗OM(G+ kE +pE′) = r1 and that
the natural injection

OY (rDG,c,1) ' detφ∗OM(G+ cE) ↪! detφ∗OM(G+ kE + pE′)

is an isomorphism over Y0. By [DPS, Lemma .] this means that the natural inclusion

φ∗OM(G+ cE) ↪! φ∗OM(G+ kE + pE′) (.)

is an isomorphism over the locally free locus of φ∗OM(G+kE+pE′)
∣∣∣
Y0

. Since φ is flat over
Y0, both φ∗OM(G + cE) and φ∗OM(G + kE + pE′) are reflexive over Y0, hence (.) must be
an isomorphism over Y0. Thus (a) is proved.

As for (b), since by hypothesis π∗G and π∗φ∗DG,c,b are Q-Cartier on X, then by Propo-
sition .. we see that bπ∗G − π∗φ∗DG,c,b is a pseudoeffective (Q-Cartier) Q-divisor on
X. In consequence there is an integer k ∈Z>0 such that π∗G + kE − 1

bφ
∗DG,c,b is pseudoef-

fective on M. Then by Proposition .., for pk sufficiently large φ∗OM(G + kE + pkE′) is
1
bDG,c,b-weakly semipositively curved. Combine this with (a) we see that φ∗OM(G+ cE) is
1
bDG,c,b-weakly semipositively curved over Y0, which proves (b).





Proposition .. ([CH, Proposition .]). Let everything be as in the General Settinng
.. with Y non-uniruled. Suppose that ψ is almost holomorphic and let A be a sufficiently
ample divisor on X such that for general y ∈ Y the natural morphism

SymkH0(Xy ,OXy (A))!H0(Xy ,OXy (kA)) (.)

is surjective for every k ∈Z>0. Let c0 be the positive integer given by Proposition .. and let
c be any integer > c0. For every a ∈Z>0 set

DA,c,a :=
1
ra
· the Cartier divisor onY associated to detφ∗OM(aπ∗A+ acE)

where ra := rkφ∗OM(aπ∗A+ acE), and suppose that π∗φ∗DA,c,1 is Q-Cartier on X (e.g. when X
is Q-factorial). Then for any m ∈ Z>0 divisible by r := r1 such that π∗φ∗DA,c,m is Q-Cartier,
we have

π∗φ∗DA,c,m ≡mπ∗φ∗DA,c,1
where ≡ denotes the numerical equivalence.

Before proving the proposition, let us first prove the following auxiliary lemma:

Lemma ... Let everything be as in the General Settinng .. with Y non-uniruled. Sup-
pose that ψ is almost holomorphic and let A as in Proposition ... For every m divisible by r
set

Uc,m := Symmφ∗OM(π∗A+ cE)⊗OY (−mDA,c,1),

Vc,m := φ∗OM(mπ∗A+mcE)⊗OY (−mDA,c,1),

then Uc,m and Vc,m are both weakly semipositively curved on Y0.

Proof. By hypothesis π∗φ∗DA,c,1 is Q-Cartier on X, hence by Corollary ..(b) we see that
φ∗OM(π∗A + cE) is DA,c,1-weakly semipositively curved on Y0, which implies that Uc,m is
weakly semipositively curved on Y0.

By (.) and by [Deb, Lemma .] we have a surjection

SymmH0(My ,OMy
(π∗A+ cE))�H0(My ,OMy

(mπ∗A+mcE))

for y ∈ Y general, from which we see that the natural morphismUc,m! Vc,m is generically
surjective. Hence Vc,m is also weakly semipositively curved on Y0.

Moreover, in the statement of Proposition .. we presume the existence of a very
ample divisor A on X satisfying the condition (.). We will next show that such divisor
really exists. More generally we have:

Lemma ... Let V be a normal projective variety and let H be a semiample divisor. Then
up to multiplying H the natural morphism

SymkH0(V ,OV (H))!H0(V ,OV (kH))

is surjective for every k ∈Z>0.

Proof. The proof is quite similar to that of [Deb, §., Proposition ., pp. -].
First by [Deb, §., Proposition .(b), p. ], up to replacing V by the image of |rH |
for some r sufficiently large and replacing H by the hyperplane divisor, we can assume
that H is a very ample and V is embedded into PE so that OV (H) is equal to the pullback
of O (1) where E := H0(V ,OV (H)). Then by the Serre vanishing, for s sufficiently large, we
have

H1(PE,IV (ks)) = 0.





for any k ∈Z>0,where IX is the ideal of X in PE. Hence the surjectivity of

H0(PE,O (ks))!H0(V ,OV (ksH)).

But
H0(PE,O (ks)) ' SymksH0(PE,O (1)) ' SymksH0(V ,OV (H)), (.)

thus
SymksH0(V ,OV (H))�H0(V ,OV (ksH)).

in particular by taking k = 1 we get

SymksH0(V ,OV (H))� SymkH0(V ,OV (sH)).

Now the map (.) factorizes through

SymksH0(V ,OV (H))! SymkH0(V ,OV (sH)),

hence sH satisfies the condition, and the lemma is proved.

Now let us turn to the proof of Proposition ..:

Proof of Proposition ... By Proposition .., as soon as c > c0, for any a ∈ Z>0 the di-
visor π∗φ∗DA,c,a over X is independent of c. Hence it suffices to prove the proposition for
a particular choice of c > c0. By Kleiman’s criterion for numerical triviality [GKP,
Lemma .], it suffices to show that for any (dimX − 1)-tuple of ample line bundles
L1 , · · · ,LdimX−1 on X the intersection number

L1 · · · · ·LdimX−1 · (π∗φ∗DA,c,m −mπ∗φ∗DA,c,1) = 0.

To this end, let Hi be a general member of
∣∣∣L⊗ki ∣∣∣ for k sufficiently large and set C = H1 ∩

· · · ∩HdimX−1. By the projection formula it suffices to show that

(φ∗DA,c,m −mφ∗DA,c,1) · (π−1C) = 0.

Since π(Exc(π)) is of codimension 2 in X, C is disjoint from π(Exc(π)), then π−1C is
disjoint from E and thus CY := φ(π−1C) is contained in Y0. Let C̄Y be the normalization
of CY and let īCY : C̄Y ! Y be the natural morphism. Again by the projection formula,
we are reduced to show that

ī∗CY (DA,c,m −mDA,c,1) = 0.

As in Lemma .., we set for any m divisible by r

Uc,m := Symmφ∗OM(π∗A+ cE)⊗OY (−mDA,c,1),

Vc,m := φ∗OM(mπ∗A+mcE)⊗OY (−mDA,c,1),

Since Uc,m and Vc,m are torsion free, we can assume that CY is contained in the locally
free locus of them.

By Lemma .. Vc,m is weakly semipositively curved, since CY is a general complete
intersection curve, CY is not contained in the singular locus of the −εω-semipositive
metric of Vc,m, Vc,m|Y0

is semipositively curved on CY , in particular ī∗CY detVc,m > 0. But
detVc,m ' OY (rmDA,c,m −mrmDA,c,1), hence we have

ī∗CY (DA,c,m −mDA,c,1) > 0.
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On the other hand, π∗φ∗DA,c,m is Q-Cartier on X, then by Corollary ..(b) we see
that φ∗OM(π∗A+ cE) is 1

mDA,c,m-weakly semipositively curved over Y0, in consequence

ī∗CYφ∗OM(π∗A+ cE)

is ( 1
m ī
∗
CY
DA,c,m)-weakly semipositively curved. Hence

ī∗CY detφ∗OM(π∗A+ cE)− r
m
ī∗CYDA,c,m > 0,

implying that
ī∗CY (DA,c,m −mDA,c,1) 6 0.

. Albanese map of X

In this section, we take ψ in the General Setting .. to be the Albanese map albX of X
which admits an effective Q-divisor such that (X,∆) is klt and that the twisted anticanon-
ical divisor −(KX+∆) is nef. In this case, we can takeM any smooth model of X, φ = albM
and Y = Im(albM ) ⊆ AlbM , by [Uen, Proposition ., pp. -] ψ is independent
of the choice of the smooth model M.

First recall the basic properties of the Albanese map (c.f. [Uen, §, pp. -]):

Proposition ... Let V a compact Kähler manifold and let albV : V ! AlbV be its Albanese
map. Then we have:

(a) albV satisfies the following universal property: every morphism V ! T with T a complex
torus factorizes via albV : V ! AlbV ; in addition AlbV ! T is a morphism of analytic
Lie groups up to a translation. C.f. [Uen, Defintion ., pp. -].

(b) W := Im(albV ) generates AlbV , i.e. there is an integer k > 0 such that the morphism

W × · · · ×W︸        ︷︷        ︸
k times

−! AlbV ,

(w1, · · · ,wk) 7−! w1 + · · ·+wk ,

is surjective. C.f. [Uen, Lemma ., pp. -].

More generally, for V a compact complex variety in the Fujiki classC (not necessarily
smooth), the Albanese map albV of V is defined to be the meromorphic map induced by
the Albanese map of a smooth model of V (this definition is independent of the choice of
the smooth model by [Uen, Proposition ., pp. -]). In this case, albV has the
universal property that every meromorphic map from V to a complex torus factorizes
via albV (analogous to Proposition ..(a)), c.f. [Wanb, Theorem-Definition .].

.. Everywhere-definedness, surjectivity and connectedness of fibres of albX

In this subsection, we briefly recall how one proves that ψ = albX is everywhere defined,
surjective and with connected fibres:

• Since (X,∆) is a klt pair, in particular X has rational singularities (c.f. [KM,
Theorem ., pp. -]) hence by [Kaw, Lemma .], ψ is a(n) (everywhere
defined) morphism X! AlbX .
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• By Proposition ..(b), the Kodaira dimension of Im(ψ) is equal to 0, then [Uen,
Theorem .] implies that Im(ψ) is a translate of a subtorus of Y ; in virtue of
Proposition ..(b), a fortiori Im(ψ) = Y , i.e. ψ is surjective.

• To see that ψ has connected fibres, let us take π : Y ′ ! Y a Stein factorization of ψ
with Y ′ a normal projective variety, then by Proposition ..(b) we have κ(Y ′) = 0,
which implies, in virtue of [KV, Main Theorem], that π is a finite étale cover.
Then the theorem of Serre-Lang [Mum, §, pp. -] implies that Y ′ is an
abelian variety with π an isogeny. By Proposition ..(a) π is a fortiori an isomor-
phism.

.. Flatness of albX

In order to apply Proposition .. to ψ one needs to prove first that it is flat. In this
subsection we will settle this by following the argument of [LTZZ]. Recall that X is a
normal projective variety which admits an effective Q-divisor ∆ such that (X,∆) is a klt
pair and that the twisted anticanonical divisor −(KX +∆) is nef. The flatness of ψ can be
deduced from the following lemma. Let us remark that under the additional assumption
that V is smooth and D = 0, a stronger result is obtained in [EIM, Proposition .]
(they also prove the semistability of the fibre space).

Lemma ... Let f : V !W a surjective morphism with connected fibres with V a projec-
tive Gorenstein variety and W a smooth projective variety. Suppose that there is an effective
Q-divisor D on V such that (V ,D) is a log canonical pair and that the twisted relative anti-
canonical divisor −(KV /W +D) is nef on V . Then f is flat.

Proof. By the miracle flatness, it suffices to show that f is equi-dimensional. Suppose by
contradiction that f is not so, then there is a (closed) point w0 ∈W such that dimVw0

>
dimF where F denotes the general fibre of f . Now take S to be the complete intersection
of dimV − dimVw0

+ 1 general very ample divisors passing through w0. Then by Bertini
S is a smooth projective variety containing w0 of dimension dimS = dimVw0

−dimF + 1.
Set T = S ×

W
V with g : T ! S the induced morphism, then dimT = dimVw0

+ 1.

Let us remark that in [LTZZ] it is claimed that T is smooth in codimension ; but
this cannot be true in general since a priori Vw0

can be a non-reduced fibre of f which is
a codimension 1 subvariety contained in T . We will present below a proof avoiding the
use of this claim.

By construction T is a complete intersection in X, thus T is Gorenstein by [Mat, Ex-
ercise ., p. ]. By adjunction formula [CDGPR, §II., Proposition ., pp. -
] one finds that

KT /S = KT − g∗KS ∼ KV /W
∣∣∣
T

Now take a flattening morphism pS : S ′ ! S of g (c.f. [Hir, Flatenning Theorem])
and take T ′ a desginularization of the principal component of T ×

S
S with g ′ : T ′ ! S ′

and pT : T ′ ! T the induced morphisms. Then every g ′-exceptional divisor must be
pT -exceptional.
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S

T

T̄

S ′

T ′

W

V

�g fg ′

ν
pT̄

pS

pT

Take the normalization ν : T̄ ! T of T , then pT factors through ν, and denote by
pT̄ the induced morphism T ′ ! T̄ . By [Rei, . Proposition] (noting that T is Cohen-
Macaulay thus S2) we have

ν∗KT ∼ KT̄ + CondT̄

where CondT̄ is the effective Weil divisor defined by the conductor ideal on T̄ . Now we
can write

KT ′ + (pT )−1∗ DT ∼Q p∗T (KT +DT ) +ET −G,
KS ′ ∼ p∗SKS +ES ,

where DT :=D |T , ET is a (non necessarily effective) pT -exceptional (thus pT̄ -exceptional)
divisor, G is an effective divisor consisting of the non-exceptional components of the
pullback of CondT̄ , and ES is an effective pS-exceptional divisor (noting that S is smooth).
Hence

KT ′/S ′ + (pT )−1∗ DT ∼Q p∗T (KV /W +D)
∣∣∣
T

+ET −G − (g ′)∗ES .

Moreover, let F be the general fibre of g, then by construction it is also the general fibre
of f , by [KM, Lemma ., pp. -] (F,DF) is a lc pair where DF := D |F , hence the
horizontal part of ET −G has coefficients > −1. Write

(ET −G)horiz :=
∑
j∈J
bjBj

with the Bj ’s being prime divisors, and set

∆0 :=
∑

j∈J,bj<0

(−bj )Bj ,

then every coefficient in ∆0 is 6 1. By the construction of ∆0, we can rewrite ET +∆0 −G
as E′T −G′ with E′T being pT -exceptional and G′ being effective whose components come
from the conductor divisor of the normalization of T . Clearly the support of E′T (resp.
G′) is contained in that of ET (resp. G).

Since dimT = dimVw0
+1, p−1

T (Vw0
) is a non-pT -exceptional divisor in T ′, hence is not

g ′-exceptional, consequently g ′(p−1
T (Vw0

)) contains a codimension 1 component, which
we denote by E. Then pS(E) = {w0} hence E ⊆ Supp(ES ) (by assumption g is not flat,
hence ES , 0 and Supp(ES ) , ∅).

Take an ample divisor A on T ′, since −(KV /W + D) is nef then for any ε ∈ Q>0 the
Q-divisor − p∗T (KV /W +D)

∣∣∣
T

+εA is ample. Choose an ample Q-divisorHε on S ′ such that

−p∗T (KV /W +D)
∣∣∣
T

+ εA− (g ′)∗Hε is still ample. Let

∆ε := (pT )−1∗ DT +∆0 +
1
k
· general member of

∣∣∣∣k (− p∗T (KV /W +D)
∣∣∣
T

+ εA− (g ′)∗Hε
)∣∣∣∣ ,
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where k is a positive integer sufficiently large and divisible (so that ε · k ∈ Z and that
kHε is an integral divisor). Then the coefficients in ∆ε are 6 1, thus the pair (T ′ ,∆ε) is lc.
By [Fuj, Theorem .] the direct image sheaf g ′∗OT ′ (k(KT ′/S ′ +∆ε)) is weakly positive;
(ET −G)vert − (g ′)∗ES being g ′-vertical and (ET −G)horiz +∆0 being effective, KT ′/S ′ +∆ε is
big on the general fibre of g ′, in particular we have

g ′∗OT ′ (k(KT ′/S ′ +∆ε)) , 0.

Hence there is p ∈Z>0 such that

Ŝ
p
g ′∗OT ′ (k(KT ′/S ′ +∆ε))⊗OS ′ (kpHε) ' Ŝ

p
g ′∗OT ′ (k(εA+ET +∆0 −G − (g ′)∗ES ))

is generically globally generated, that is, there is a generically surjective morphism

O ⊕dS ′ ! Ŝ
p
g ′∗OT ′ (k(εA+ET +∆0 −G − (g ′)∗ES )) ,

where
d := dimH0(S ′ , Ŝpg ′∗OT ′ (k(εA+ET +∆0 −G − (g ′)∗ES ))) ∈Z>0.

Pull it back to T ′ and combined with the natural (non-trivial) morphism

(g ′)∗Ŝpg ′∗OT ′ (k(εA+ET +∆0 −G − (g ′)∗ES ))! OT ′ (kp(εA+ET +∆0 −G − (g ′)∗ES ))

one finds that εA+ET +∆0−G− (g ′)∗ES is Q-linearly equivalent to an effective Q-divisor.
Letting ε! 0, we obtain that ET +∆0 −G − (g ′)∗ES = E′T −G′ − (g ′)∗ES is pseudoeffective.
If (V ,D) is klt, the pseudoeffectivity result can also be obtained by the semipositivity of
the curvature current of the relative m-Bergman kernel metric on the twisted relative
canonical bundle (c.f. [Cao, Theorem .]).

Finally, let L be a very ample line bundle on T̄ , and let H1 , · · · ,HdimVw0
be general

members of the linear series
∣∣∣p∗̄
T
L
∣∣∣. Set

C :=H1 ∩ · · · ∩HdimVw0
,

then C is a movable curve on T ′, hence (E′T −G′−(g ′)∗ES )·C > 0 by [BDPP, . Theorem]
(c.f. also [Laz, vol.II, Theorem .., p. ]). The divisor E′T being pT̄ -exceptional,
we have E′T ·C = 0 by the projection formula. Thus we get

(g ′)∗E ·C 6 (g ′)∗ES ·C 6 −G′ ·C 6 0

where the last inequality results from the effectivity of G′. On the other hand, (g ′)∗E is
not pT̄ -exceptional, hence (pT̄ )∗(g ′)∗E is an effective (Weil) divisor on T̄ (e.g. it contains
ν−1(Vw0

)), thus again by the projection formula one gets

(g ′)∗E ·C = (pT̄ )∗(g ′)∗E ·LdimVw0 > 0,

which is a contradiction. Hence f is flat.

.. Reduction to Q-factorial case

In this subsection we prove that in order to prove Theorem B, we can assume that X is
Q-factorial. The key ingredient in the proof of this reduction is the following lemma:

Lemma ... Let p : S ! B and f : S ′ ! S be projective surjective morphisms between
normal complex varieties such that f∗OS ′ ' OS . Suppose that p ◦ f induces a decomposition
of S ′ into a product B × Y ′ with q(Y ′) = 0. Then there is a normal projective variety Y along
with a projective morphism g : Y ′! Y such that p induces a decomposition of S into a product
B×Y and that under the decompositions S ′ ' B×Y ′ and S ' B×Y we have f = idB×g.

Proof. This is the relative version of [Drua, Lemma .]. In fact, when B is a projective
variety, it is just a simple corollary of [Drua, Lemma .]; in order to apply to our sit-
uation we need to treat the case that B is a (non-necessarily compact) complex manifold.
The proof can be divided into four parts.
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(A) Construction of g. Since p : S! B is a projective morphism, there is a p-very ample
line bundle L on S; since q(Y ′) = 0 by (the analytic version of) [Har, §III., Exercise
., p. ] there are line bundles LB ∈ Pic(B) and LY ′ ∈ Pic(Y ′) such that

f ∗L ' pr∗1LB ⊗pr∗2LY ′

with pr1 := p ◦ f and pr2 being natural projections of S ′ ' B × Y ′. Up to replacing L by
L⊗ p∗L−1

B we can assume that f ∗L ' pr∗2LY ′ for some line bundle LY ′ . Since f ∗L is (p ◦ f )-
relatively generated, hence LY ′ is globally generated over Y ′. Then by [Laz, §..B,
Theorem .., pp. -, Vol.I] for m sufficiently large, L⊗mY ′ defines a morphism
g : Y ′ ! Y with connected fibres. In addition, by construction there is a very ample
divisor H on Y such that g∗OY (H) ' L⊗mY ′ .

(B) Contraction of the fibres of idB×g by f . Set (by identifying S ′ with B × Y ′) gB =
idB×g : S ′! B×Y . Then we have the following commutative diagram:

B.

S

S ′

B×Y

B×Y ′

p

fgB

∃ f̄

'

pr1

In this part we will prove that every fibre of gB is contracted by f . Let g−1
B (b,z) be a

positive dimensional fibre of gB (with (b,z) ∈ B × Y ), since g−1
B (b,z) ' g−1(z) =: Y ′z , it can

be regarded as a subvariety of Y ′ contracted by g. Let C any curve contained in g−1
B (b,z),

then C ⊆ (p ◦ f )−1(b) =: S ′b and since C is contracted by g we have

(f ∗L)|S ′b ·C = LY ′ ·C =
1
m
g∗H ·C = 0,

which means that C is contracted by f . Hence every fibre of gB is contracted by f .

(C) Factorization of f through gB. In this step we prove that f factorizes through gB.
This can be deduced from the following rigidity lemma, which is nothing but an analytic
version of [Deb, Lemma ., pp. -]:

Lemma ... Let f1 : S ′ ! S1 and f2 : S ′ ! S2 be proper surjective morphisms between
normal complex varieties such that f1∗OS ′ ' OS1

. If f2 contracts every fibre of f1, then f2
factorizes through f1.

Proof of the Lemma ... The proof is the same as the one of [Deb, Lemma ., pp. -
]. For the convenience of the readers we give the details below to illustrate that the ar-
gument in [Deb, Proof of Lemma ., pp. -] fits into the analytic case. Consider
the morphism

φ := (f1, f2) : S ′! S1 × S2.
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Let Γ be the image of φ and let p1 : Γ ! S1 and p2 : Γ ! S2 be the natural projections
restricted to Γ , then pi ◦φ = fi for i = 1,2. For any s ∈ S1, f2 contracts f −1

1 (s) = (φ◦p1)−1(s),
hence

p−1
1 (s) = φ(φ−1(p−1

1 (s))) = φ(f −1
1 (s))

is a singleton, hence the proper surjective morphism p1 : Γ ! S1 is a finite morphism. But
f1 has connected fibres, then so is p1, thus by Stein factorization [Uen, §, Theorem .,
pp. -] p1 is an isomorphism. Then we have φ = p−1

1 ◦ f1 and

f2 = p2 ◦φ = p2 ◦ p−1
1 ◦ f1.

(D) Conclusion. By (C°) there is a morphism f̄ : B×Y ! S such that f = f̄ ◦ gB. Hence

g∗B
(
f̄ ∗L⊗m

)
= f ∗L⊗m ' pr∗2L

⊗m
Y ′ ' pr∗2 g

∗OY (H) = g∗B(pr∗2OY (H)).

But g has connected fibres, hence so is gB, in consequence g∗B is an injective morphism be-
tween Picard groups, thus f̄ ∗L⊗m ' pr∗2OY (H). Since H is very ample and L is p-relatively
very ample, by looking at every fibre of p, we see that f̄ is a finite morphism; but

f̄∗OB×Y ' f̄∗gB∗OS ′ ' f∗OS ′ ' OS ,

hence f̄ is an isomorphism.

Now let us return to the proof of the reduction of Theorem B, whose idea comes from
the author’s personal communications with Stéphane Druel (of course, any mistake is the
author’s):

Reduction to the Q-factorial case. Suppose that Theorem B holds for X Q-factorial, let us
prove it for general X. Let g : Xqf ! X be a Q-factorialization of X, whose existence is
proved in [Kol, Corollary ., pp. -]. By construction, g is a small birational
morphism, hence

KXqf + g−1∗ ∆ ∼Q g∗(KX +∆)

then (Xqf, g−1∗ ∆) is a klt pair with the twisted anticanonical divisor −(KXqf + g−1∗ ∆) nef.
In particular albXqf is an everywhere defined morphism; and since the Albanese map is
independent of the choice of the birational model, we have AlbXqf = AlbX and

albXqf = g ◦ albX .

Now by our assumption albXqf is a locally constant fibration whose fibre has vanishing
irregularity, then by passing to the universal cover of AlbX and by Lemma .. we see
that albX is also a locally constant fibration.

In the sequel of the section, we always assume that X is Q-factorial (so that X itself
has klt singularities).

.. Local constancy of albX as fibration

In this subsection let us prove that albX is a locally constant fibration (c.f. Definition
..). In virtue of Proposition .., it suffices to find a ψ-very ample divisor A on X
such that ψ∗OX(mA) is numerically flat for every m where ψ = albX .

Recall that we set ψ = albX , π : M ! X a smooth model of X and φ = albM , Y =
AlbM = AlbX , as mentioned at the beginning of §.. By §.. we can assume that X is
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Q-factorial. Let A be a very ample divisor on X. Up to multiplying A we can assume that
for general y ∈ Y the natural morphism

SymkH0(Xy ,OXy (A))!H0(Xy ,OXy (kA))

is surjective for every k. As π is birational, π∗A is big and for every k ∈Z>0 and for general
y ∈ Y we have a surjection:

SymkH0(My ,OMy
(π∗A))�H0(My ,OMy

(kπ∗A));

in addition, for any m,c ∈Z>0 we have (c.f. [Deb, Lemma .])

π∗OM(mπ∗A+mcE) ' OX(mA),

hence
φ∗OM(mπ∗A+mcE) ' ψ∗OX(mA).

Set DA,m be the (unique up to linear equivalence) Cartier divisor on Y associated to the
line bundle detψ∗OX(mA), then by [Ful, §., Proposition .(c), pp. -] we have

π∗φ∗DA,m ∼ ψ∗DA,m
Since X is Q-factorial, by Proposition .., the (Q-Cartier) Q-divisor

A−ψ∗DA,1
is pseudoeffective. By Proposition .., up to multiplying A by a integer divisible by r,
we can assume that ψ∗DA,1 is an integral Cartier divisor (noting that Pic0(X) is an Abelian
variety, thus divisible). In consequence, by replacing A by A−ψ∗DA,1, we get an integral
Cartier divisor A on X such that:

• A is pseudoeffective on X;

• A is ψ-very ample;

• for general y ∈ Y and for any k ∈Z>0 the natural morphism

SymkH0(Xy ,OXy (A))!H0(Xy ,OXy (kA))

is surjective;

• DA,1 is trivial.

In the sequel we will show that ψ∗OX(mA) is numerically flat for every m ∈Z>0.
First, since π is birational, π∗A is φ-big and the natural morphism

SymkH0(My ,OMy
(π∗A))!H0(My ,OMy

(kπ∗A))

is surjective for all k ∈ Z>0. Since Y = AlbX is a complex torus, E′ is an effective divi-
sor, hence by Proposition .. ψ∗OX(mA) ' φ∗OM(mπ∗A + pE′) is weakly semipositively
curved for every m ∈ Z>0. By §.. ψ is flat and thus ψ∗OX(mA) is reflextive. More-
over, by Proposition .. DA,m ≡mDA,1 = 0, i.e. detψ∗OX(mA) is numerically trivial, then
Proposition .. implies that ψ∗OX(mA) is numerically flat for every m ∈ Z>0. In virtue
of Proposition .. we see that ψ is a locally constant fibration. The proof of Theorem B
is thus finished.
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. MRC fibration for X with simply connected smooth locus

Throughout the section, letX be a projective variety equipped with an effective Q-divisor
∆ such that the pair (X,∆) is klt and that the twisted anticanonical divisor −(KX +∆) is
nef, and suppose that π1(Xreg) = {1}. Take the ψ in the General Setting .. to be the
maximally rationally connected (MRC) fibration of X (c.f. [Deb, §., Theorem .,
pp. -]), we will prove in this section that ψ induces a product structure on X.

.. Splitting of the tangent sheaf

In this subsection we will prove that following decomposition theorem for the tangent
sheaf of X:

Theorem ... Let X be a projective variety whose smooth locus Xreg is simply connected.
Suppose that there is an effective divisor ∆ on X such that the pair (X,∆) is klt and that the
twisted anticanonical divisor −(KX +∆) is nef. Then the tangent sheaf of X admits a splitting

TX ' F ⊕G
with F and G being algebraically integrable foliations. Moreover, the closure of the general
leaf of F is rationally connected and detG ' OX .

The proof of this result can be divided into four steps:

Step : Reduction to the terminal case. To prove the theorem, we can assume that the
pair (X,∆) is terminal and Q-factorial. In fact, by [BCHM, Corollary ..] we can take
a (Q-factorial) terminal model g : X term! X of X, with an effective Q-divisor ∆term on X term

such that
KXterm +∆term ∼

Q
g∗(KX +∆).

Then −(KXterm +∆term) is nef. Suppose that TXterm admits a decomposition into algebraically
integrable foliations

TXterm ' F term ⊕G term

with detG term ' OXterm and the closure of the general leaf of F term is rationally connected.
Then we get a decomposition TX ' F ⊕G on X with

F := (g∗F term)∗∗ and G := (g∗G term)∗∗ .

By [Kol, Proposition ..(), p. ], the closure of the general leaf of F is also ratio-
nally connected. Since g is an isomorphism out of a codimension 2 subscheme of X, then
detG term ' OXterm implies that detG ' OX . It remains to prove that (X term)reg is simply con-
nected. Since Xreg\g(Exc(g)) can be regarded as an Zariski open in (X term)reg, by [FL,
§. (B)] it suffices to show that Xreg\g(Exc(g)) is simply connected. This can be obtained
easily by the following topological result:

Lemma ... Let W be a complex manifold and let Z be an analytic subspace of V of codi-
mension > 2. Then the natural morphism π1(W \Z) ! π1(W ) induced by the embedding
W \Z ↪!W is an isomorphism.

Proof. This result is of course well known to experts, we nevertheless give the proof for
the convenience of the readers. The argument is taken from [Pol]. Let us argue by
induction on dimZ. If dimZ = 0, then dimW > 2, and the lemma results from [God,
§X., Theorem ., p. ]. In general, by the induction hypothesis, π1(W \Zsing) !
π1(W ) is an isomorphism; then we apply [God, §X., Theorem ., p. ] to Zreg ⊂
W \Zsing to obtain an isomorphism π1(W \Z)! π1(W \Zsing), hence we have π1(W \Z) '−!
π1(W ).





Step : Triviality of the direct image sheaves. We will prove in this step the following
lemma:

Lemma ... Let X be a Q-factorial projective variety and suppose that there is an effective
Q-divisor ∆ on X such that the pair (X,∆) is terminal and −(KX +∆) is nef and let everything
as in the General Setting .. with ψ being the MRC fibration of X. Let A be a sufficiently
ample divisor on X such that for every k ∈Z>0 and for general y ∈ Y the natural morphism

SymkH0(Xy ,OXy (A))!H0(Xy ,OXy (kA))

is surjective. Then the following two torsion free sheaves

Uc,m := Symmφ∗OM(π∗A+ cE)⊗detφ∗OM(π∗A+ cE)⊗−
m
r

Vc,m := φ∗OM(mπ∗A+mcE)⊗detφ∗OM(π∗A+ cE)⊗−
m
r

are trivial on Y0 for every m ∈Z>0 divisible by r.

Proof. When X is smooth, the theorem is proved in [CH, Proposition .]; for the sin-
gular case, the proof is much more subtle but the main idea remains the same: take a
general complete intersection surface in X and prove the triviality of Uc,m and Vc,m on
this surface, then try to extend the trivializing sections to Y0. For the convenience of the
readers, we give the details below. Furthermore, for sake of clarity we divide the proof
into five parts:

. General settings: If dimX = 1 then everything is clear, so in the sequel we assume
that dimX > 2. We will only give the proof of triviality on Y0 for Vc,m, for Uc,m the
argument is exactly the same (and simpler since detUc,m ' OY ). Since φ is flat over Y0,
Vc,m is reflexive on Y0, hence in order to prove the triviality of Vc,m on Y0, it suffices to
show that Vc,m is trivial on Y0∩YVc,m where YVc,m is the locally free locus of Vc,m. For every
a ∈Z>0 set

DA,c,a :=
1
ra
· the Cariter divisor on Y associated to the line bundle detOM(aπ∗A+ acE)

where ra := rkφ∗OM(aπ∗A+ acE). Then we have

detVc,m ' OY (rmDA,c,m −mrmDG,c,1).

Since X is not necessarily smooth, the exceptional divisor E = Exc(π) can dominate Y ,
which will render the arguments in [CH] invalid. In order to overcome this difficulty,
we set Γ to be the normalization of the graph of the rational mapping ψ, up to further
blow up M we can assume that φ : M ! Y and π : M ! X both factorize through Γ and
denote by φ̄ : Γ ! Y and π̄ : Γ ! X the corresponding morphisms. By construction, ψ
is almost holomorphic (c.f. [Deb, §., Definition ., p. ] and [BCEKPRSW,
Definition .]), hence Exc(π̄) does not dominate Y .

Y .

Γ X

M

φ̄

π̄

π

φ

ψ





. Simple connectdeness of a general complete intersection surface in X: Let A
be a very ample divisor on X and take H1 , · · · ,Hn−1 be general hypersurfaces in |A|. Set
n := dimX and let S = H1 ∩ · · · ∩Hn−2 be the complete intersection surface cut out by
H1 , · · · ,Hn−2 (if n = 2 then we simply take S = X). Since terminal singularities are smooth
in codimension 2 (c.f. [KM, Corollary ., p. ]), S is smooth (see also [KM,
Theorem ., p. ]). Since X is normal, by [FL, §. (B), p. ] we have a surjection
between fundamental groups π1(Xreg)� π1(X), then π1(Xreg) = {1} implies that π1(X) =
{1}. We claim that S is also simply connected:

• If n = 2, then S = X is simply connected.

• If n > 3, then by [HL, Theorem ..] Xreg has the same homotopy type of the
space obtained from H1 ∩ Xreg by attaching cells of dimension > dimX, but the
fundamental group of a CW complex only depends on its 2-skeleton, so that we get
an isomorphism

π1(H1 ∩Xreg) '−! π1(Xreg),

hence π1(H1 ∩Xreg) = {1}. By iterating the argument, we see that π1(S ∩Xreg) = {1};
but since X is smooth in codimension 2 we have S ∩ Xreg = S, hence S is simply
connected.

. Triviality of the pullback of Uc,m and Vc,m to a general complete intersection
surface in X: Now set Ē := Exc(π̄), then π̄|Γ \Ē : Γ \Ē ! X\π̄(Ē) is an isomorphism and
S ∩ π̄(Ē) is of dimension 0. In particular, π̄−1(S\π̄(Ē)) = π̄−1(S)\Ē is smooth. By Lemma
..Vc,m is weakly positively curved on Y0 , in consequence φ̄∗Vc,m

∣∣∣
π̄−1(S)\Ē is also weakly

positively curved by §... By viewing Γ \Ē as a Zariski open of X via the isomorphism
π̄|Γ \Ē : Γ \Ē! X\π̄(Ē), φ̄∗Vc,m

∣∣∣
Γ \Ē extends to a reflexive sheaf on X, denoted by Wc,m. By

the projection formula we have:

detWc,m ' (π̄∗φ̄∗detVc,m)∗∗ ' (π∗φ∗detVc,m)∗∗,

hence the (unique up to linear equivalence) Weil divisor associated to detWc,m is equal to

π∗φ∗(rmDA,c,m −mrmDA,c,1).

Since X is Q-factorial, Proposition .. implies that detWc,m is a numerically trivial Q-
line bundle. Hence by Proposition .. Wc,m|S is a numerically flat vector bundle on S;
but S is simply connected, thenWc,m|S is a trivial vector bundle.

. Surjectivity of the restriction morphism: Since π̄(Ē) is of codimension > 2 in X,
then we have an isomorphism

H0(Γ \Ē, φ̄∗Vc,m) '−!H0(X,Wc,m).

Since (X,∆) is terminal,X has rational singularities and in particularX is Cohen-Macaulay.
For A sufficiently ample we have

H1(X,Wc,m ⊗OX(−H1)) 'Hn−1(X,ωX ⊗W ∗m ⊗OX(H1)) = 0,

where ωX denotes the dualizing sheaf of X. Then the canonical exact sequence 0 !
OX(−H1)! OX ! OH1

! 0 induces a surjection

H0(Γ \Ē, φ̄∗Vc,m) 'H0(X,Wc,m)�H0(H1 ,Wc,m|H1
).

By iterating this argument we see that for C := S ∩Hn−1 the restriction morphism (since
C is disjoint from π̄(Ē), we can identify π̄−1(C) and C)

H0(Γ \Ē, φ̄∗Vc,m)!H0(C,Wc,m|C)

is surjective.
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. Construction of the trivializing sections and Conclusion: ButWc,m|S is a trivial
vector bundle of rank rm, we get rm sections σ1 , · · · ,σrm in H0(Γ \Ē, φ̄∗Vc,m) whose restric-
tions to C are everywhere linearly independent. Then σ1 ∧ · · · ∧ σrm is a non-zero section
in H0(Γ \Ē, φ̄∗detVc,m), which extends, via the isomorphism π|Γ \Ē : Γ \Ē ! X\π̄(Ē), to a
non-zero section of H0(X,detWc,m); but detWc,m is a numerically trivial Q-line bundle,
then this section must be constant, which implies that σ1∧· · ·∧σrm is a non-zero constant.

We claim that for every i there is a section τi ∈H0(Y0,Vc,m) such thatφ∗τi = σi |φ̄−1(Y0)\Ē .
The argument is the same as in [CH, Proof of Proposition .]. In fact, since ψ is the
MRC fibration ofX, Ē does not dominate Y , then σi induces a section τ̄i ∈H0(Y0\φ̄(Ē),Vc,m).
It remains to show that τ̄i extends to Y0. Since Vc,m is reflexive on Y0, it suffices to
show that τ̄i extends to a general point of any divisor P in Y0. By Proposition ..(d)
φ̄∗P contains at least a reduced component, hence locally around a general point of P ,
φ̄|Γ \ĒΓ \Ē ! Y admits a local section, which implies that τ̄i is locally bounded (with re-
spect to any Hermitian metric) around a general point of P . Hence by Riemann extension
τ̄i extends to YVc,m ∩Y0 and thus to Y0 by the reflexivity of Vc,m|Y0

, in this way for every i
we obtain a section τi ∈H0(Y0,Vc,m) such that σi |φ̄−1(Y0)\Ē = φ̄∗τi .

Now
τ1 ∧ · · · ∧ τrm = φ̄∗(σ1 ∧ · · · ∧ σrm)

∣∣∣
φ̄−1(Y0)\Ē

is a non-zero constant, this implies that the sections τ1 , · · · , τrm are everywhere linearly
independent on Y0. Hence the τi ’s give a trivialization of Vc,m|Y0

.

Step : Birational version of the decomposition. In the sequel of the proof of Theorem
.., let us fix a very ample divisor A on X, such that

SymkH0(X,OX(A))!H0(X,OX(kA)) (.)

is surjective for every k ∈ Z>0. In this step we will prove that φ−1(Y0) is birational to a
product, which can be seen as a birational version of the decomposition theorem for X.
Let c0 be as in the Proposition .. and let c be any integer > c0. Set G := π∗A+ cE, and
for every a ∈Z>0 set

DA,c,a :=
1
ra
· the Cartier divisor on Y associated to the line bundle detφ∗OM(aG).

where ra := rkφ∗OM(aG). Then by the Lemma .. for every m ∈ Z>0 divisible by r := r1
the torsion free sheaves

Uc,m := Symmφ∗OM(G)⊗OY (−mDA,c,1)

Vc,m := φ∗OM(mG)⊗OY (−mDA,c,1)

are trivial on Y0. Up to blow up M, we can assume that, the φ-relative base locus of G,
i.e. the subscheme of M defined by the ideal sheaf Im(φ∗φ∗OM(G)⊗OM(−G)! OM ), is a
divisor. Then we can write

G = Gb +Gf

whereGb is the φ-relative fixed part of the linear series |G| andGf := G−Gb is φ-relatively
generated. Now the adjunction morphism admits a factorization

φ∗φ∗OM(G)� OM(Gf) ↪! OM(G),

that can be pushed down to Y and give morphisms

φ∗OM(G)! φ∗OM(Gf) ↪! φ∗OM(G).





By construction the composition morphism is the identity, hence the inclusionφ∗OM(Gf) ↪!
φ∗OM(G) is an isomorphism. Then the surjection φ∗φ∗OM(Gf)� OM(Gf) induces a mor-
phism πG : M ! P(φ∗OM(Gf)) such that OM(Gf) = π∗GOP(φ∗OM (Gf)(1). Set XG be the image
of πG with induced morphism ψG : XG ! Y , then we have the following commutative
diagram:

Y .

MX XG P(φ∗OM(Gf))

φ

π πG

ψG

p

ψ

The main purpose of this step is to prove the following lemma

Lemma ... In the above setting, we have ψ−1
G (Y0) ' Y0 × F, where F denotes the general

fibre of ψ (the MRC fibration ψ is almost holomorphic, hence it makes sense to talk about its
general fibre).

Before entering into the proof of the above lemma let us first prove the following
auxiliary result:

Lemma ... Let everything be as above. Then for general y ∈ Y we have Gf|My
∼ π∗A|My

and Gb|My
∼ cE|My

. In particular, the general fibre of ψG is isomorphic to F.

Proof. Let us first point out that a major difference between the singular case that we
consider in this article and the smooth case treated in [CH; CCM] is that if X is sin-
gular the exceptional divisor E can dominate Y , in particular E|My

/ 0. For general y ∈ Y
consider the morphism π|My

:My ! Xy , it is a birational morphism with the exceptional
divisor being E|My

. By the projection formula (c.f. [Deb, Lemma .]) we have

H0(My ,OMy
(G)) 'H0(Xy ,OXy (A)) (.)

but π∗A|My
is globally generated, hence π∗A|My

is a fortiori the mobile part of G|My
, that

is, Gf|My
= π∗A|My

; then Gb|My
= cE|My

. Consequently the morphism πG|My
: My ! (XG)y

is given by the linear series |π∗A|My
|. But A is very ample on X, hence for general y ∈ Y

the morphism πG|My
factors through Xy , and its image is isomorphic to Xy ' F.

Now let us turn to the proof of Lemma ..:

Proof of Lemma ... The idea of the proof is the same as that of [CH, §.C. Proof of
Theorem ., Step ], we nevertheless give the proof for the convenience of the readers.
By (.) and (.) the morphism

Symmφ∗OM(G)! φ∗OM(mG) (.)

is generically surjective. Twisting with OM(−mDA,c,1) we get a generically surjective
morphism Uc,m ! Vc,m, which gives rise to a global section s ∈ H0(Y ,U ∗c,m ⊗ Vc,m). By
Lemma .., Uc,m|Y0

and Vc,m|Y0
are trivial vector bundles, hence s|Y0

is constant by
Proposition ..(d), in particular the morphism Uc,m ! Vc,m has constant rank over
Y0. Consequently the morphism (.) is surjective over Y0. Now consider the inclusion
φ∗OM(mGf) ↪! φ∗OM(mG) we get the following commutative diagram





φ∗OM(mGf) φ∗OM(mG)

Symmφ∗OM(Gf) Symmφ∗OM(G)'

Since right column is the morphism (.), which is shown to be surjective over Y0, hence
by the Five Lemma the left column is also surjective over Y0. Again apply the Five Lemma
but exchange the role of rows and of columns, then we find that the bottom row is an
isomorphism over Y0. In particular, φ∗OM(mGf)⊗OY (−mDA,c,1) is trivial over Y0.

Let IXG be the ideal sheaf of XG in P(φ∗OM(Gf)). Twisting the exact sequence

0!IXG ! OP(φ∗OM (Gf))! OXG ! 0

with O
P(φ∗OM (Gf))(m) for m sufficiently large and divisible by r and pushing down to Y we

get (by relative Serre vanishing):

0! p∗IXG(m)! p∗OP(φ∗OM (Gf))(m) ' Symmφ∗OM(Gf)! ψG∗OXG(m)! 0. (.)

where we adapt the notation that for any coherent sheaf F on P(φ∗OM(Gf)) and for any
integer k we set F (k) := F ⊗ O

P(φ∗OM (Gf))(k). Since πG : M ! XG is birational (because
it birational on the general fibre of φ), the natural morphism OXG ! πG∗OM is injective,
hence by the projection formula we have an injection

ψG∗OXG(m) ↪! ψ∗OM(mGf).

Now we consider the composition morphism

Symmφ∗OM(Gf)� ψG∗OXG(m) ↪! φ∗OM(mGf),

which is shown to be surjective over Y0 (the left column of the diagram above), hence the
inclusion ψG∗OXG(m) ↪! φ∗OM(mGf) is an isomorphism over Y0, and in consequence its
twisting

ψG∗OXG(m)⊗OY (−mDA,c,1)

is trivial over Y0. By the exact sequence (.) we see that p∗IXG(m)⊗OY (−mDA,c,1) is also
trivial over Y0. By Proposition ..(d) this means that the defining equations of ψ−1

G (Y0)
in P(φ∗OM(Gf)|Y0

) ' Y0 ×Pr−1 are constant over Y0, hence ψ−1
G (Y0) is isomorphic to the

product Y0 ×F by Lemma ...

Step : Proof of the splitting theorem. In this step we will apply Lemma .. to con-
clude. The proof relies on the following auxiliary result:

Lemma ... Let everything be as in Step , then every codimension 1 component of the
exceptional locus of ψG|φ−1(Y0) : φ−1(Y0)! ψ−1

G (Y0) is contained in E.

Proof. The proof is similar to [CH, §.C. Proof of Theorem ., Step ], nevertheless
in our case X is possibly singular, then E can dominate Y and this renders the argument
a little subtle. For the convenience of the readers, we give the proof below. First notice
that we have the following observation:

Since π∗A is φ-relatively generated, hence Gb 6 cE. Let Γ be a component of any
fibre of φ not contained in E, then every component of E restricts to an effective
divisor on Γ , hence

Gf|Γ = π∗A|Γ + (cE −Gb)|Γ
is big, and thus Γ is not contracted by ψG.





Now let us turn to the proof of the lemma. Let D ⊂ φ−1(Y0) be an irreducible Weil divisor
contained in the exceptional locus of ψG|φ−1(Y0). Consider the two cases separately:

• IfD is φ-horizontal. Then for general y ∈ Y0, D |My
is ψG|My

-exceptional. But ψG|My
:

My ! (XG)y ' F = Xy is induced by the divisor π∗A|My
, hence D |My

is contained in
E|My

and thus D is contained in E.

• If D is φ-vertical. Since φ is flat over Y0 , φ(D) is also a divisor. For the general
fibre of φ|D : D ! φ(D), it is contracted by ψG, then by the observation above it is
contained in E. Therefore D is contained in E.

By Lemma .. we have ψ−1
G (Y0) ' Y0 ×F, then

Tψ−1
G (Y0) ' pr∗1TY0

⊕pr∗2TF . (.)

Set X0 := φ−1(Y0)\E, which can be regarded as a Zariski open of X via the embedding
π|M\E :M\E ↪! X. By Lemma .., ψG|X0

: X0! ψ−1
G (Y0) ' Y0×F is an embedding out of

a codimension > 2 subscheme. Hence the decomposition (.) induces a decomposition

TX0
' F ◦ ⊕G ◦, (.)

with F ◦ (resp. G ◦) corresponding to pr∗2TF (resp. pr∗1TY0
). By construction, F ◦ and G ◦

are algebraically integrable foliations over X0, with the closure of a general leaf of F ◦
equal to a Zariski open of F and

KG ◦ ∼ pr∗1KY0
= pr∗1KY |Y0

∼
Q

0.

since by Proposition ..(a) any effective Q-divisor Q-linearly equivalent to KY is sup-
ported out of Y0. By Proposition ..(c), X\X0 has codimension > 2, hence (.) gives
rise to a decomposition

TX ' F ⊕G .
with F (resp. G ) being the reflexive hull of the extension of F ◦ (resp. of G ◦) to X.
By Lemma .. F and G are algebraically integrable foliations; moreover, the Zariski
closure of a general leaf of F is rationally connected (in fact equal to F) and KG ∼Q
0. This means that detG |Xreg

is a torsion line bundle on Xreg, but π1(Xreg) = {1}, then
detG |Xreg

and thus detG must be trivial. As a byproduct we get additional information
on the splitting:

Lemma ... Let everything be as in the General Setting .. with ψ being the MRC fibra-
tion of X and suppose that the smooth locus Xreg of X is simply connected. Then there is a
Zariski open subset X0 of X such that X0 is embedded into the product space Y0 ×F.

Proof. We have proved this for (X,∆) terminal. For the klt case, let us take a terminal
model g : (X term,∆term) ! (X,∆). Then there is a Zariski open (X term)0 such that (X term)0
can be embedded into Y0 × F. Then (X term)0\Exc(g) can be regarded as a Zariski open X0
of X, whose complement is of codimension > 2 in X. Clearly X0 can be embedded into
Y0 ×F.

Remark ... To end this subsection let us make a remark about how to show that
φ∗OM(mGf) ↪! φ∗OM(mG) is an isomorphism over Y0 in the proof of Lemma .. in
Step  above. By taking

A1 := Symmφ∗OM(Gf)
∣∣∣
Y0
, B1 := Symmφ∗OM(G)

∣∣∣
Y0
,

A2 := φ∗OM(mGf)|Y0
, B2 := φ∗OM(mG)|Y0

,

we have the following commutative square:





A2 B2,

A1 B1
c1

'

a b

c2

with b being surjective. By completing the two row into short exact sequences we get

A2 B2

A1 B1

0 Coker(c2) 0.

0 0 0
c1

a b

c2

Since b is surjective, the Snake Lemma implies that Coker(a) ' Coker(b) = 0, hence a is
surjective. Then exchange the role of rows and of columns we get

B1 B2

A1 A2

0 Ker(b) 0.

0 Ker(a) 0
a

c1 '

b

c2

Again by the Snake Lemma we have Coker(c2) ' Coker(c1) = 0, hence c2 is also surjective.
Clearly this argument works in any Abelian category.

.. Decomposition theorem for X

In this subsection, let us prove Theorem C. Let X be a projective variety of semi-Fano
type with simply connected smooth locus Xreg. Then there is an effective Q-divisor on
X such that (X,∆) is klt and that the twisted anticanonical divisor −(KX +∆) is nef. By
§.. we have a direct decomposition of the tangent sheaf into reflexive subsheaves:

TX ' F ⊕G .
with F and G algebraically integrable foliations. Moreover, the Zariski closure of a gen-
eral leaf of F is rationally connected and detG ' OX . Set F (resp. Z) the Zariski closure
of the general leaf of F (resp. of G ) and we will prove in the sequel that X ' Z × F. In
fact, if ∆ = 0, this can be immediately deduced from the more general result of Stéphane
Druel [Drub, Theorem .] on the foliations with numerically trivial canonical class,
as will be discussed in §.. Nevertheless, we will present here a more elementary proof
of the decomposition Theorem C, since the argument can be also be applied to the more
general case without assumption on the fundamental group, and we hope that it can be
used to give a proof of Conjecture  without proving Conjecture  or at least reducing
it to a much weaker result on the fundamental group than Conjecture . The key obser-
vation is that the decomposition TX ' F ⊕G implies that F and G are weakly regular
foliations by [Drub, Lemma .] (c.f. Definition .. or [Drub, Definition .] for
the definition of the weak regularity).
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Step : Simple connectedness of the general leaf. In this first step, let us prove the
following preparatory result on the topology of the general leaves of the foliations F
and G :

Lemma ... As above let F (resp. Z) be the Zariski closure of a general leaf of F (resp. of
G ). Then both Freg and Zreg are simply connected.

Proof. This follows easily from Lemma ... In fact, by Lemma .., there is a Zariski
open X0 of X which can be embedded into Y0 × F such that codimX(X\X0) > 2. Up to
shrinking Y we can assume that X0 ⊆ Xreg, then we have codimXreg

(Xreg\X0) > 2. But
π1(Xreg) ' {1}, then Lemma .. implies that π1(X0) ' {1}. Since X0 is smooth, it can
be regarded as a Zariski open in Y0 × Freg. Then by [FL, §. (B), p. ], we have
π1(Y0 × Freg) ' {1}, which implies that π1(Y0) ' π1(Freg) ' {1}. Again by Lemma .., we
see that Y0 can be regarded as a Zariski open of Z (and thus of Zreg since Y0 is smooth).
Then by [FL, §. (B), p. ] π1(Zreg) ' {1}.

Step : Reduction to the Q-factorial terminal case. As in the §.., in this step we
will reduce the proof of Theorem C to the Q-factorial case. Assume that Theorem C for
X with terminal Q-factorial singularities, let us prove that it holds for general X. To this
end, we take a (Q-factorial) terminal model g : X term ! X of X (by [BCHM, Corollary
..]). By construction X term is equipped with an effective Q-divisor ∆term on X term such
that

KXterm +∆term ∼
Q
g∗(KX +∆).

hence the twisted anticanonical −(KXterm +∆term) is nef. By our assumption, the MRC fibra-
tion of X term induces a decomposition X term ' Z term×Fterm with KZterm ∼ 0 and Fterm rationally
connected. But by Lemma .. the irregularity of Fterm is zero, hence by [Drua, Lemma
.] we get a decomposition X ' Z ×F, and we have KZ ∼ 0 and F rationally connected.

Step : Weak Regularity of the foliations and everywhere-definedness of the MRC
fibration. In the sequel we always assume that X has Q-factorial terminal singularities.
As pointed above, F and G are weakly regular foliations. By construction F is an
algebraically integrable foliation, we intend to apply Theorem .. ([Drub, Theorem
.]) to prove that F is induced by an equidimensional fibre space. To this end, we need
to show:

Lemma ... Let everything as above, then the foliation F has canonical singularities (c.f.
[Drub, Definition .] or Definition .. below).

Proof. If KF is Cartier, then the lemma follows immediately from Lemma .. below
([Drub, Lemma .]). In the general case, KF ∼ KX is only Q-Cartier, in order to prove
the lemma we will make use of the fact that −(KX +∆) is nef and apply [Dru, Proposi-
tion .]; in fact, we will prove more generally that (F ,∆) is canonical (c.f. [Dru, §.]
or [Spi, Definition .]; by Proposition .., ∆ is horizontal with respect to the MRC
fibration, hence any component of ∆ is not invariant by F ). Let f : V !W be the family
of leaves of F , with the natural morphism β : V ! X. Then by Proposition .. and
Remark .., there is an effective β-exceptional divisor B on V such that

Kβ−1F +B ∼ KV /W −Ram(f ) +B ∼
Q
β∗KF , (.)

But since KF ∼ KX and since (X,∆) is terminal (thus X is terminal by Q-factoriality),
we must have f ∗KW + Ram(f )−B > 0. In particular, B is f -vertical. By [ADb, Remark
.] or [Dru, p. .] the general log leaf of F is (Vw,B|Vw ) for w ∈W general; since
B is f -vertical, B|Vw = 0. Moreover, by (.) (V ,β∗∆+B− f ∗KW −Ram(f )) is terminal (c.f.
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[Kol, . Definition]), then so is (Vw,β∗∆|Vw ) for general w ∈W by [KM, Lemma .,
pp. -]. Finally, by writing

−KF ∼ −KX = −(KX +∆) +∆

with −(KX + ∆) nef and ∆ effective, we see that the foliated pair (X,∆,F ) satisfies the
condition of [Dru, Proposition .] and hence (F ,∆) is canonical.

By virtue of Lemma .. above, we can apply Theorem .. ([Drub, Theorem
.]) to conclude thatF is induced by a surjective equidimensional fibre space f : X!W
onto a normal projective variety W . By construction, W is not uniruled. Moreover we
have:

Lemma ... Let everything be as above, then Wreg is simply connected.

Proof. Since X has terminal singularities, by [KM, Theorem ., pp. -] or
[Elk, Théorème ] it has rational singularities and in particular X is Cohen-Macaulay,
hence by the miracle flatness [Mat, Theorem ., p. ] the projective morphism
f |f −1Wreg

: f −1Wreg ! Wreg is flat. By [Mat, Theorem ., p. ] we see that Xreg ⊆
f −1Wreg and X is smooth at x ∈ f −1Wreg if and only if the fibre Xf (x) is smooth at x. Hence
F is locally free over Xreg and consequently F |Xreg

and G |Xreg
are both regular foliations

on Xreg. Then the tangent bundle sequence of the smooth morphism f |Xreg
: Xreg!Wreg

gives rise to an isomorphism G |Xreg
' f ∗TWreg

; and this means that the restricted mor-
phism f |Zreg

: Zreg!Wreg is an étale cover, but f |Zreg
is also projective, hence it is a finite

étale cover. By Lemma .. Zreg is simply connected, hence f |Zreg
is the universal cover

of Wreg and thus π1(Wreg) ' πét
1 (Wreg) is finite. Since f is a fibre space, by [SGA, §X.,

Corollary ., p. ] we have an exact sequence of étale fundamental groups

πét
1 (F)! πét

1 (f −1Wreg)! πét
1 (Wreg)! 1

But since Xreg is simply connected, by [FL, §. (B), p. ] we have πét
1 (f −1Wreg) = {1}

and thus π1(Wreg) ' πét
1 (Wreg) ' {1}.

Step : Decomposition of X. As shown in the preceding step, the MRC fibration is
everywhere defined, then the sequel of the proof is quite similar to the argument in
§... Take a desingularization µ :W ′!W of W , and let X ′ := X ×

W
W ′ be fibre product,

equipped with the natural morphisms µX : X ′! X and f ′ : X ′!W ′. Up to further blow-
ing up M and Y in the General Setting .., we can assume that π factorizes through
µX and W ′ = Y , and let π′ : M ! X ′ be the induced morphism. Since W is not uniruled,
then so is Y =W ′.

W .

X

W ′

X ′ := X ×
W
W ′

M

ff ′

µX

µ

π′

π

φ
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By Proposition .. f is semistable in codimension 1, hence the ramification divisor
of f is 0 (c.f. [CKT, Definition .]), then by [CKT, Lemma .] we have KX/W ∼
KF ∼ KX , which implies in particular that KW ∼ 0. Since f is equidimensional and since
W ′ is smooth, by [Kle, Proposition ()] we have KX ′/W ′ ∼ µ∗XKX/W ∼ µ∗XKX . Since ∆ is
horizontal with respect to f by Proposition ..(b), the pullback µ∗X∆ is horizontal with
respect to f ′ by the Proposition .., hence a fortiori we have µ∗X∆ = (µX)−1∗ ∆ (noting
that every µX-exceptional divisor is f ′-vertical) and thus we can rewrite (.) as

−(KM/W ′ +∆M ) +E′ ∼
Q
−(π′)∗(KX ′/W ′ + (µX)−1∗ ∆) ∼

Q
−π∗(KX +∆),

with E′ being π′-exceptional.
Take a very ample divisor A on X, such that for general w ∈W the natural morphism

SymkH0(Xw,OXw (A))!H0(Xw,OXw(kA))

is surjective for every k. For every integer b set

DA,b :=
1
rb
· the Weil divisor on W associated to the rank 1 reflexive sheaf detf∗OX(bA),

D ′A,b :=
1
rb
· the Cartier divisor on W ′ associated to the line bundle detf ′∗ OX ′ (bµ∗XA),

where rb := rkf∗OX(bA). Then by construction we have µ∗D ′A,b =DA,b and

π∗φ∗D ′A,b ∼ µX∗(f ′)∗D ′A,b ∼ f ∗µ∗D ′A,b = f ∗DA,b.

Notice that since f is equidimensional andW is normal, the pullback of Weil divisors via
f is defined, c.f. [CKT, Construction .]. Since X is Q-factorial and since π∗A is big,
by Proposition .. the (Q-Cartier) Q-divisor

A− f ∗DA,1 ∼ π∗(π∗A−φ∗D ′A,1)

is pseudoeffective.
By Proposition .., up to multiplying A by a integer divisible by r, we can assume

that f ∗DA,1 is an integral Cartier divisor (noting that Pic0(X) is an Abelian variety, thus
divisible). In consequence, by replacing A by A−f ∗DA,1, we get an integral Cartier divisor
A on X such that:

• A is pseudoeffective on X;

• A is f -very ample;

• for general w ∈W and for any k ∈Z>0 the natural morphism

SymkH0(Xw,OXw(A))!H0(Xw,OXw (kA))

is surjective;

• DA,1 is trivial.

Since π is birational, π∗A is φ-big and by [Deb, Lemma .] the natural morphism

SymkH0(My ,OMy
(π∗A))!H0(My ,OMy

(kπ∗A))

is surjective for all k ∈ Z>0. Then by Proposition .. we have that (noting that E′ is
π′-exceptional)

µ∗f∗OX(mA) ' f ′∗ OX ′ (mµ∗XA) ' φ∗OM(mπ∗A) ' φ∗OM(mπ∗A+ pE′)
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is weakly semipositively curved for every m ∈ Z>0. Moreover, by Proposition ..
f ∗DA,m ≡ mf ∗DA,1 = 0, i.e. detf∗OX(mA) is numerically trivial, and so is detf ′∗ OX ′ (mµ∗XA).
Since f ′ is equidimensional, f ′∗ OX ′ (mµ∗XA) is reflexive for every m, then Proposition ..
implies that f ′∗ OX ′ (mµ∗XA) is numerically flat for every m ∈ Z>0. By [Har, §III., Proof
of Proposition ., pp. -] (c.f. also [ACG, §IX., Proposition (.), p. ]) the lo-
cal freeness of f ′∗ OX ′ (mµ∗XA) implies that f ′ is flat. Then by virtue of Proposition ..
we see that f ′ is a locally constant fibration. Since Wreg is simply connected by Lemma
.., then by [FL, §. (B), p. ] so is Y = W ′. Hence f ′ induces a decomposition
X ′ ' F ×W ′. The decomposition of X then follows from [Drua, Lemma .]. In ad-
dition, the decomposition is induced by f , hence a fortiori W ' Z and hence X ' F ×Z.
Thus we have just proved Theorem C.

. Foliations with numerically trivial canonical class

As mentioned at the beginning of §.., Theorem C can be deduced directly by combin-
ing Theorem .. and the following theorem, which is a variant of [Drub, Theorem
.]:

Theorem ... Let X be a normal projective variety admitting an effective Q-divisor ∆ on X
such that (X,∆) is klt and let G be an algebraically integrable foliation with canonical singu-
larities. Suppose that the canonical class of G is numerically trivial. Then there are projective
varieties Z and F and a finite quasi-étale cover f : Z ×F! X, such that f −1G ' pr∗1TZ .

Before entering into the proof of Theorem .., let us first recall the notion of singu-
larities of foliations:

Definition .. ([Drub, Defintion .]; see also [McQ, §I.],[LPT, Section ],).
Let G be a Q-Gorenstein foliation on a normal complex variety X. For any projective
bimeromorphic morphism β : V ! X with V smooth, there are uniquely determined (c.f.
[LPT, Remark .]) rational numbers a(E,X,G ) such that

β∗detG ' detβ−1G +
∑
E

a(E,X,G )E ,

as Q-line bundles. where E runs over all the exceptional prime divisors of β. The number
a(E,X,G ) does not depend on β but only depends on the valuation defined by E on the
function filed of X. We say that G has canonical (resp. terminal) singularities if for every
E exceptional over X, a(E,X,G ) > 0 (resp. a(E,X,G ) > 0).

In particular, weakly regular foliations (c.f. Definition ..) on klt varieties have
canonical singularities. Indeed we have:

Lemma .. ([Drub, Lemma .]). Let X be a normal complex variety admitting an ef-
fective Q-divisor ∆ such that (X,∆) is klt, and let G be a foliation on X such that detG is a
line bundle. Suppose that G is weakly regular. Then G has canonical singularities.

For foliations with numerically trivial canonical class, the converse of Lemma ..
also holds:

Lemma .. ([Drub, Corollary .]). Let X be a normal complex variety admitting an
effective Q-divisor ∆ such that (X,∆) is klt, and let G be a foliation on X with canonical
singularities. Suppose that detG is a line bundle and is numerically trivial, then G is weakly
regular and there is a decomposition TX ' G ⊕E of TX into involutive subsheaves.
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Remark ... Let us remark that Lemma .. is a key ingredient in the proof of [Drub,
Theorem .]. In fact, let X be a klt projective variety and let G be an algebraically
integrable foliation on X with numerically trivial canonical class, let us briefly explain
the strategy of the proof of [Drub, Theorem .]: First by Lemma .. G is weakly
regular, hence by Theorem .. ([Drub, Theorem .]), up to replacing X by a Q-
factorialization one can assume that G is induced by an equidimensional fibre space.
Then by separating the Abelian variety factor we can reduce the proof to the case that the
leaf of G has vanishing irregularity and then [Drua, Lemma .] permits to conclude.

Remark ... In [Drub] the above two lemmas are stated for normal variety X with
klt singularities. But since the control on the singularities of X is only used to ensure
the existence and the universal property of the pullback maps of reflexive differentials
([Drub, §.]) and since this in fact holds for any "klt space" in the sense of Kebekus
(that is, a normal complex variety X admitting an effective Q-divisor ∆ such that the pair
(X,∆) is klt) by [Keb, Theorem ., Proposition .], we see immediately that the two
lemmas holds for klt spaces.

Now let us recall the following important characterization of having canonical singu-
larities for foliations with numerically trivial canonical class over projective varieties in
terms of uniruledness, which first appears in [LPT, Corollary .] for X smooth and is
generalized to singular case in [Drub, Proposition .]:

Proposition .. ([Drub, Proposition .]). Let X be a normal projective variety and
let G be a Q-Gorenstein foliation on X such that KG ≡ 0. Then G has canonical singularities
if and only if G is not uniruled.

Recall that a foliation G on the normal varietyX is called uniruled if through a general
point of X there is a rational curve which is everywhere tangent to G .

Let us turn to the proof of Theorem ... The proof is suggested to the author by
Stéphane Druel through personal communications (of course, any mistake is the au-
thor’s), and is very similar to Step  of Proof of [Drub, Theorem .]. The main idea is
to take a Q-factorialization of X, which enables us to apply [Drub, Theorem .]. In
order to descend the splitting to X we intend to use [Drua, Lemma .], to this end we
need the following:

Lemma .. ([Drub, Proposition .]). Let X be a normal projective variety and let E
be an algebraically integrable foliation with canonical singularities on X. Suppose that E '
O ⊕rkE
X . Then there exist an Abelian variety A, a normal projective variety V and a finite étale

cover f : A×V ! X such that f −1E ' pr∗1TA.

Now we can prove Theorem ..:

Proof of Theorem ... If ∆ = 0 this is nothing but [Drub, Theorem .]. For the gen-
eral case, let β : Xqf! X be a Q-factorialization ofX, whose existence is proved by [Kol,
Corollary ., pp. -], and let G qf := β−1G . By construction, β is a small birational
morphism, then

KXqf + β−1∗ ∆ ∼Q β∗(KX +∆),

so that (Xqf,β−1∗ ∆) remains a klt pair, but Xqf is Q-factorial hence Xqf itself is klt by [KM,
Corollary .(), pp. -]. Moreover, since β is small birational, we have

KG qf ∼
Q
β∗KG ≡ 0,

hence by [Drub, Lemma .()] G qf also has canonical singularities. Then we can apply
[Drub, Theorem .] to (Xqf,G qf) to obtain projective varieties Zqf and Fqf with klt sin-
gularities and a quasi-étale cover gqf : Zqf × Fqf ! Xqf such that (gqf)−1G qf ' pr∗1TZqf . And
we have

pr∗1KZqf ∼ (gqf)∗KG qf ≡ 0,
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implying that KZqf ≡ 0 (pr∗1 is an injective morphism between Picard groups). By [HP,
..Theorem], up to a quasi-étale cover, we can assume that Zqf ' Aqf ×Bqf with Aqf being
an Abelian variety and Bqf a normal projective variety with vanishing augmented irreg-
ularity. Now let X1 be the normalization of X in the function field of Zqf × Fqf, and let
β1 : Zqf × Fqf ! X1 and g : X1 ! X be the induced morphism. Set ∆1 := g∗∆ be the pull-
back of ∆ as Weil divisor (c.f. [CKT, Construction .]), then (X1,∆1) is klt by [KM,
Proposition ., p. ]. We have the following commutative diagram

X

X1

Xqf

Zqf ×Fqf

g, quasi-étalegqf, quasi-étale

β, small birational

β1, small birational

Then pr∗1TAqf is a direct summand of TAqf×Bqf×Fqf ' TZqf×Fqf , and pushes down via β1 to
an algebraically integrable foliation E1 on X1. Similarly, pr∗2TBqf induces an algebraically

integrable foliation G1 on X1. By construction E1 ⊕G1 ' g−1G and E1 ' O ⊕rkE1
X1

. Since E1
is a direct summand of TX1

, E1 is weakly regular (c.f. [Drub, Lemma .]), and thus
has canonical singularities by Lemma ... By applying Lemma .. to E1 we see that
there exist an Abelian variety A1, a normal projective variety X2 and a finite étale cover
g1 : A1 ×X2! X1 such that g−1

1 E1 ' pr∗1TA1
. Since g1 is a finite étale cover, (A1 ×X2, g

∗
1∆1)

is klt, and hence for general a ∈ A1, the pair (X2, (g∗1∆1)|pr−1
1 (a)) is klt (by identifying X2

with pr−1
1 (a)) by [KM, Lemma ., p. -]. Since g1 is a finite étale cover, we have

g−1
1 E1 ⊕ g−1

1 G1 ' g−1
1 g
−1G ,

hence g−1
1 G1 is a direct summand of pr∗2TX2

. In consequence, g−1
1 G1 descends to a a(n)

(algebraically integrable) foliation G2 on X2 via pr2, i.e. there is a foliation G2 on X2 such
that pr−1

2 G2 ' g−1
1 G1. Moreover, by construction G2 is a direct summand of TX2

, hence G2
is weakly regular.

By construction we have

β∗1KG1
∼ β1(KE1

+KG1
) ∼ β∗1Kg−1G ∼ KZqf ∼ 0,

hence KG1
∼ 0, which implies that KG2

∼ 0 and in particular KG2
is a Cartier divisor. By

Lemma .., G2 has canonical singularities. Clearly, in order to prove the theorem for
X and G , it suffices to prove this for X2 and G2. If dimAqf = 0, then Zqf ' Bqf has van-
ishing augmented irregularity, in this case [Drua, Lemma .] permits us to conclude;
otherwise, we have

dimX2 = dimX −dimA1 = dimX − rkE1 = dimX −dimAqf < dimX,

then since X2 admits an effective divisor ∆2 such that (X2,∆2) is klt, the proof is done by
an induction on the dimension.

Next let us give an alternative proof of Theorem C by using Theorem ..:

Alternative Proof of Theorem C. Let everything as in the General Setting .. with ψ :
X d Y being the MRC fibration of X. By Theorem .. the tangent sheaf admits a
splitting TX ' F ⊕G into algebraically integrable foliations with KG ∼ 0. Set F (resp. Z)
to be the Zariski closure of the general leaf ofF (resp. G ), then F is rationally connected.
By Lemma .., Y0 can be regarded as a Zariski open of Z, hence Z is birational to Y ;
but ψ is the MRC fibration of X, Y is not uniruled, then so is Z. This means that G is
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not uniruled, and by Proposition .., G has canonical singularities. By Theorem ..
there are projective varieties Z1 and F1 and a quasi-étale cover f : Z1 × F1! X such that
f −1G ' pr∗1TZ1

. Since π1(Xreg) ' {1}, f must be an isomorphism, then we have pr∗1TZ1
' G

and pr∗1TF1
' F . In particular, we have Z1 ' Z and F ' F1, hence X ' Z × F with KZ ∼ 0

and F rationally connected.

Hopefully we expect that, by proving a more general splitting theorem for tangent
sheaves (with no condition on the fundamental group), one is able to use Theorem ..
to prove the full Conjecture .

. Fundamental group of Xreg

Let X be a klt projective variety with nef anticanonical divisor −KX . In this section we
study the fundamental group of Xreg, especially the relation of π1(Xreg) to the decompo-
sition theorem and to other folklore conjectures (c.f. Conjecture ).

.. Albanese map of Xreg and torsion-free nilpotent completion of π1(Xreg)

In this subsection we will study the Albanese map of Xreg and deduce from this the
nilpotent completion of π1(Xreg) by using the same argument as in [Cam, §]. The
principal result of this subsection is the following:

Theorem ... LetX be a normal projective variety of semi-Fano type, i.e. there is an effective
Q-divisor ∆ on X such that (X,∆) is klt and that the twisted anticanonical divisor −(KX +∆)
is nef. Then

(a) The Albanese map ãlbXreg
: Xreg! ÃlbXreg

of Xreg is dominant.

(b) Let j : Xreg ↪! X be the open immersion. Then the morphism between fundamental
groups induced by albX ◦j gives rise to an isomorphism

π1(Xreg)nilp '−! π1(AlbX).

Before turning to the proof of the theorem, let us first recall the definition of the
nilpotent completion of a group (c.f. [Cam, Appendice A]). Let G be a group, define
the descending central series of G by G1 := G and Gk+1 = [G,Gk] for any k ∈Z>0 and set

G∞ :=
⋂
k∈Z>0

Gk .

Put
G′k =

√
Gk :=

{
g ∈ G

∣∣∣gm ∈ Gk for some m ∈Z>0

}
.

for 1 6 k 6∞. Then the torsion-free nilpotent completion of G is defined to be

Gnilp := G/G′∞ .

Let f : G! H be a group morphism, [Sta, ..Theorem] gives the following criterion
for the induced morphism between nilpotent completion to be injective or isomorphism
(c.f. also [Cam, A..Théorème]):

Proposition .. ([Sta, ..Theorem]). Let f : G ! H be a group morphism, and for
1 6 k 6∞ let G′k (resp. H ′k) be the radical of the k-th member in the descending central series
of G (resp. of H), as defined above. Suppose that the induced morphism Hi(f ) : Hi(G,Q)!
Hi(H,Q) is an isomorphism for i = 1 and surjective for i = 2. Then the morphism f ′k : G′k !H ′k
induced by f is injective for every 1 6 k 6∞, and is of finite index if k <∞. Moreover, if f is
surjective then f ′k is an isomorphism for every 1 6 k 6∞.
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Now let us turn to the proof of Theorem ..:

Proof of Theorem ... Let us first prove (a), i.e. the Albanese map of Xreg is dominant.
Let Y ◦ be the Zariski closure in ÃlbXreg

of the image of ãlbXreg
and let Y be a smooth

compactification of Y ◦ such that DY := Y \Y ◦ is a SNC divisor, then we get a dominant
rational map ψ : Xd Y . Take M to be a strong desingularization of the graph of ψ, then
the induced morphism π : M ! X is a birational morphism which is an isomorphism
over Xreg. Let E = Exc(π) be the exceptional divisor of π and let φ :M! Y be the natural
morphism, then by construction M\E ' Xreg and thus Supp(φ∗DY ) ⊆ E. Now we are in
the same situation as in General Setting .., hence by the proof of Proposition ..(a),
for a very ample line bundle L on X and for general members H1 , · · · ,HdimX−1 in the
linear series |π∗L|, we have

φ∗KY ·C 6 0

where C := H1 ∩ · · · ∩HdimX−1. Since φ∗DY is π-exceptional, we have φ∗DY ·C = 0 hence
by the projection formula we get

(KY +DY ) ·CY 6 0

where CY := φ∗C. By Proposition .. we know that κ̄(Y ◦) := κ(Y ,KY + DY ) > 0 (c.f.
Definition .. for the definition of logarithmic Kodaira dimension), hence we must
have

(KY +DY ) ·CY = 0,

but by construction CY is moves in a strong connecting family of curves (c.f. [BDPP,
§]) on Y , hence by [BDPP, ..Theorem] the numerical dimension ν(Y ,KY +DY ) = 0,
this implies that κ(Y ,KY + DY ) 6 ν(Y ,KY + DY ) = 0. Therefore we must have κ̄(Y ◦) =
κ(Y ,KY +DY ) = 0 . Again by Proposition .. we have that Y ◦ is a semi-Abelian sub-
variety of ÃlbXreg

; but by Propositionn .. Y ◦ generates ÃlbXreg
, hence we must have

Y ◦ = ÃlbXreg
, and this proves (a).

Now let us prove (b). It can be deduced by [Cam, ..Théorème] and by the more
general Theorem .. below. This theorem, as well as its proof, is pointed out to the
author by Benoît Claudon (any mistake, is of course, the author’s).

Theorem ... Let X be a normal projective variety which admits an effective Q-divisor ∆
such that the pair (X,∆) is klt and let j : Xreg ↪! X be the open immersion. Then

H1(j,C) : H1(X,C)!H1(Xreg,C)

is an isomorphism and
H2(j,C) : H2(X,C)!H2(Xreg,C)

is injective. In particular, j induces an isomorphism between the nilpotent completion of fun-
damental groups

π1(Xreg)nilp '−! π1(X)nilp.

Proof. The klt condition is used to guarantee the vanishing of R1j∗C. In fact, by [Bra,
Theorem ], for any point x ∈ X, there is an open neighbourhoodU of x such that π1(Ureg)
is finite, in particular H1(Ureg,C) = 0, hence we get R1j∗C = 0. Then consider the Leray
spectral sequence associated to j which gives the exact sequence

0!H1(X,C)!H1(Xreg,C)!H0(X,R1j∗C)!H2(X,C)!H2(Xreg,C),

by the vanishing of R1j∗C we get the isomorphism H1(X,C) ' H1(Xreg,C) and the injec-
tivity of H2(X,C)!H2(Xreg,C).
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It remains to show that π1(Xreg)nilp ' π1(X)nilp. By [FL, §. (B), p. ] the fun-
damental group morphism π1(j) : π1(Xreg) ! π1(X) is surjective, hence by Proposition
.. it suffices to show that

H1(π1(j),Q) : H1(π1(Xreg),Q)!H1(π1(X),Q)

is an isomorphism and

H2(π1(j),Q) : H2(π1(Xreg),Q)!H2(π1(X),Q)

is surjective. We have shown that H1(X,C) 'H1(Xreg,C), hence H1(π1(j),Q) is an isomor-
phism by [Sta, §]. On the other hand, the surjectivity H2(π1(j),Q) can be deduced
from [Cam, ..Lemma] and from the injectivity of H2(X,C)!H2(Xreg,C).

.. From fundamental group to decomposition theorem

In this subsection, we show that with the help of Theorem B and Theorem C the proof of
Conjecture  can be reduced to the study of the fundamental group ofX. Precisely speak-
ing, we will prove that Conjecture  implies Conjecture . Let us remark that when X is
smooth, the Conjecture  is proved by M.Păun in [Pău] by improving the arguments
in the previous work of [DPS, §] and by applying the famous theorem of Cheeger-
Colding [CC, Theorem .].

Theorem ... Let X be a normal projective variety of semi-Fano type. Suppose that Conjec-
ture  holds for X, i.e. π1(Xreg) is of polynomial growth, then (the log version of) Conjecture 
holds for X, i.e. up to replacing X by a finite quasi-étale cover, the universal cover X̃ of X can
be decomposed into a product

X̃ 'C
q ×Z ×F, (.)

with q being the augmented irregularity of X, Z being a klt projective variety with trivial
canonical divisor and F being rationally connected.

Proof. By [KM, Proposition ., pp. -], any quasi-étale cover of X is still of
semi-Fano type. By hypothesis π1(Xreg) is of polynomial growth (by [FL, §. (B),
p. ] so is π1(X)), hence by [Gro, Main Theorem] π1(Xreg) is virtually nilpotent, there-
fore, up to replacing X by a finite étale cover we can assume that π1(Xreg) is torsion-free
nilpotent.

By Theorem B, the Albanese map albX : X ! AlbX is a locally constant fibration. Let
V denotes the fibre of albX , then albX |Xreg

: Xreg! AlbX is a locally trivial fibration whose
fibre is isomorphic to Vreg. Apply [BT, §, p. ] to albX |Xreg

(viewed as a topological
fibre bundle) we get a homotopy sequence

· · ·! π2(AlbX)! π1(Vreg)! π1(Xreg)! π1(AlbX)! 1.

Butπ1(Xreg) is torsion free nilpotent, by Theorem .. the morphismπ1(Xreg)! π1(AlbX)
is an isomorphism. Moreover, since AlbX is an Abelian variety, we have π2(AlbX) ' {0},
hence π1(Vreg) ' {1}. Then the conclusion follows from Theorem C.

.. From Conjecture  to Conjecture 

In this subsection we will show that Conjecture  implies the Gurjar-Zhang conjecture
on the finiteness of the fundamental group of the smooth locus of varieties of Fano type
and the Conjecture . In fact, we can prove the following more general result:

Proposition ... Let X be a normal projective variety of semi-Fano type with vanishing
augmented irregularity. Suppose that π1(Xreg) is of polynomial growth, then π1(Xreg) is finite.
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Proof. First note that, as in the proof of Theorem .., in order to prove the finiteness
of π1(Xreg) we can replace X by any finite quasi-étale cover; in particular we can assume
that π1(Xreg) is a torsion-free nilpotent group (by [Gro, Main Theorem]), so that we
have π1(Xreg) ' π1(AlbX). But the augmented irregularity of X is zero, its Albanese
variety AlbX is trivial, then a fortiori π1(Xreg) ' {1}, in particular π1(Xreg) is finite. Thus
we proved the proposition.

By the proposition above, we see that Conjecture  implies Conjecture ; moreover,
since varieties of Fano type have vanishing augmented irregularity (every quasi-étale
cover of a projective variety of Fano type remains Fano type; by [Zha, Corollary .]
and [Tak] varieties of Fano type are simply connected), Conjecture  implies the Gurjar-
Zhang conjecture which states that for any projective variety of Fano type X the funda-
mental group of Xreg is finite and which has recently been confirmed in [Bra].

Finally, let us make some remarks on the history of the Gurjar-Zhang conjecture and
Conjecture :

Remark ... The Gurjar-Zhang conjecture is first proved for del Pezzo surfaces in [GZ;
GZ] (c.f. [GZ, last Remark] for weak Fano surfaces) and the question is explicitly
raised in [Zha, Introduction] for log Fano varieties (c.f. also [Sch, Question .])
and in [Zha] the conjecture is proved for canonical (klt) Fano threefolds under some
additional assumption that X has isolated singularities ([Zha, Theorem ]) or that the
index of X is > dimX − 2 ([Zha, Theorem ]). The three-dimensional Fano case is fully
confirmed by [TX, Theorem .]. Then it is proved in [Xu, Theorem ] and [GKP,
Theorem .] that the profinite completion of π1(Xreg) (which is, isomorphic to the étale
fundamental group of Xreg) is finite for X weak log Fano. Recently this conjecture has
been settled in [Bra].

As for Conjecture , the question is raised in [GGK] and it is proved therein that
for X klt projective with trivial canonical divisor and vanishing augmented irregularity
the fundamental group of Xreg has only finitely many k-dimensional complex represen-
tations for every k ∈ Z>0, and that the image of each finite dimensional representation
of π1(Xreg) is finite. It is also proved that the étale fundamental group of Xreg is finite
for X an irreducible holomorphic symplectic variety or an even-dimensional Calabi-Yau
varieties, c.f. [GGK, §.].
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Titre : Positivité des images directes et variétés projectives à courbure non-négative

Mots clés : Conjecture Cn,m d’Iitaka ; Programme des modèles minimaux, diviseur anticanonique, application
d’Albanese, fibration MRC, feuilletages rationnellement connexes

Résumé : La classification birationnelle des variétés
algébrique est un problématique central en géoémtrie
algébrique. Récemment grand progrès a été fait vers
l’établissement du MMP et l’abondance, et par ces
travaux, les variété projectives lisse (ou légèrement
singulières) sont birationnellement divisées en deux
catégories : 1. les variétés à diviseur canonique pseu-
doeffectif, qui sont montré d’aboutir à un modèle mi-
nimal par le MMP; 2. les variétés uniréglées, qui sont
recouvertes par des courbes rationnelles. Dans cette
thèse, des étude raffinées de ces deux catégories de
variétés est sont effectuées respectivement, by en sui-
vant la philosophie d’étudier les fibrations canoniques y
associées.
Pour une variété X dans la première catégorie, la fi-
bration la plus importante y associée est la fibration
d’Iitaka-Kodaira, dont la base est de dimension égale
à la dimension de Kodaira de X. Cette thèse traite un
corollaire important de l’abondance, à savoir, la conjec-
ture Cn,m d’Iitaka, qui énonce la sup-additivité de la di-
mension de Kodaira dimension par rapport aux fibra-
tion algébrique. Dans cette thèse la version kählérienne

de Cn,m est montré sous l’hypothèse que la base est
un tore complexe en développant davantage la positi-
vité des images directes et la version pluricanonique du
théorème à la Green-Lazarsfeld-Simpson sur les lieux
de sauts de cohomologie. Ceci généralise le résultat
principal de Cao-Păun (2017).
Pour les variétés dans la seconde catégorie, l’on étude
l’application d’Albanese et la fibration MRC fibration,
au lieu de la fibration d’Iitaka-Kodaira. La philosophie
dans cette enquête est que si le fibré tangent ou an-
ticanonique admet une certaine positivité, les deux fi-
brations susmentionnées doivent avoir une structure ri-
gide. Dans cette thèse j’étudie la structure des variétés
projective (légèrement singulières) à diviseur anticano-
nique nef. En appliquant la positivité des images di-
recte et des résultats de la théorie des feuilletages,
j’arrive à démontrer que l’application d’Albanese map
est une fibration localement constante et que si le lieu
lisse est simplement connexe la fibration MRC induit
une décomposition en un produit. Ceci généralise les
résultats correspondants pour les variétés lisses dans
Cao (2019) and Cao-Höring (2019).

Title : Positivity of Direct Images and Projective Varieties with Nonnegative Curvature

Keywords : Iitaka Conjecture Cn,m ; Minimal Model Program ; anticanonical divisor ; Albanese map ; MRC fibra-
tion ; rationally connected foliations

Abstract : The birational classification of algebraic va-
rieties is a central problem in algebraic geometry. Re-
cently great progress has been made towards the esta-
blishment of the MMP and the Abundance and by these
works, smooth (or mildly singular) projective varieties
can be birationally divided into two categories : 1. va-
rieties with pseudoeffective canonical divisor, which are
shown to reach a minimal model under the MMP; 2.
uniruled varieties, which are covered by rational curves.
In this thesis refined studies of these two categories of
varieties are carried out respectively, by following the
philosophy of studying the canonical fibrations associa-
ted to them.
For any variety X in the first category, the most impor-
tant canonical fibration associated to X is the Iitaka-
Kodaira fibration whose base variety is of dimension
equal to the Kodaira dimension of X. This thesis tacles
an important corollary of the Abundance conjecture, na-
mely, the Iitaka conjecture Cn,m, which states the su-
padditivity of the Kodaira dimension with respect to al-
gebraic fibre spaces. In this thesis the Kähler version
of Cn,m is proved under the assumption that the base

variety of the fibre space is a complex torus by fur-
ther developping the positivity theorem of direct images
and the pluricanonical version of the Green-Lazarsfeld-
Simpson type theorem on cohomology jumping loci.
This generalizes the main result of Cao-Păun (2017).
As for varieties in the second category, one studies the
Albanese map and the MRC fibration, instead of the
Iitaka-Kodaira fibration. A philosophy in this investiga-
tion is that when the tangent bundle or the anticanonical
divisor admits certain positivity, the aforementioned two
fibrations of the variety should have a rigid structure. In
this thesis I study in this thesis the structure of (mildly
singular) projective varieties with nef anticanonical di-
visor. By again applying the positivity of direct images
and by applying results from the foliation theory, I ma-
nage to prove that the Albanese map of such variety
is a locally constant fibration and that if its smooth lo-
cus is simply connected then the MRC fibration induces
a splitting into a product. These generalize the corres-
ponding results for smooth projective varieties in Cao
(2019) and Cao-Höring (2019).
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