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Introduction

God made the integers, all else is the work of man.

Leopold Kronecker

Theoretical physicists endeavor to explain mathematically the observed phenomena. In order to formulate the questions, experimental data is paramount and most often, answers are obtained by contemplating and incorporating knowledge from seemingly apart fields. Historical examples are the roots that general relativity bears in the geometry of Riemann or the statistical physics insight on the renormalization group (RG) that helped interpreting divergent scattering amplitudes of particle physics. In the first case, there was intuition but without an adequate formalism, it is faltering; in the second, formalism leads to seemingly nonsensical results, and without proper interpretation, it fails to give any understanding. Hence a multiplicity of points of view can only strengthen and enrich the accumulated knowledge. Today, we sit on stunningly accurate representations of our environment. The microscopic part of the spectrum is captured, within the framework of quantum field theory, by the Standard Model describing elementary matter particles (the Fermionic quarks, leptons and their anti-particles), their interactions (mediated by SU (3) × SU (2) × U (1) gauge Bosons), plus the celebrated scalar Higgs Boson. The model arranges inside a single language three of the four fundamental forces: electromagnetic, weak and strong. It is tested with incredible success in particle colliders such as the Large Hadron Collider up to (center-of-mass) energies of 13TeV. 4 On the other part of the spectrum, gravity, the weakest forces of all, 5 rules at large scales. Our sharpest understanding of it comes from Einstein's equations of general relativity

R µν - 1 2 (R -2Λ)g µν = 8πG c 4 T µν . (1) 
The left-hand side comprises geometric information in terms of the metric g µν , the Ricci curvature R µν and scalar R (we have also included a cosmological constant Λ), and the right-hand side codes for the matter energy content through the stress-energy tensor T µν . As summarized by J. A. Wheeler's words: "Space tells matter how to move, matter tells space how to curve". Again, the equations hold support from a profusion of experiments, such as gravitational lensing and more recently gravitational waves. However neither picture is complete. Both theories raise puzzles within themselves, such as the swarm of 19 parameters of the Standard Model or the arising of spacetime singularities in typical cosmological solutions. It is not clear how one should approach those issues and ultimately, if the idea, how so pleasing, of a single and consistent framework unifying all interactions is possible. The problem is that the energy scales at which the gravitational interaction would start compete with other forces, around the Planck energy c 5 /G ≈ 10 15 T eV , lie far beyond
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what experiments can reach today, but would be relevant near the curvature singularity of black holes or of the Big Bang. So not only we don't know under what laws we could describe the universe at those energies but we don't know what data to fit to. Still, keeping this formidable goal of a quantum theory of gravity in mind, we can only aim at mathematical consistency.

Later in the text, we will revisit a sample of approaches to quantum gravity. For the moment, we will assume that matter and gravitational, in the form of the underlying geometry, degrees of freedom can be considered separately, and will look for a coherent quantization of the latter. The path integral is a preeminent tool inside the arsenal of quantum theory, that in essence sums over all configurations Ψ available to the system, with a particular weight determined by the action S[Ψ], itself motivated by symmetry postulates. In Euclidean signature, which unless stated, we will exclusively be concerned with, it is the partition function Z = DΨe -S [Ψ] (2)

that holds in principle all the information about the system. In gravitational systems, the configuration space contains all metric structures on manifolds M quotiented by diffeomorphism, including different topologies. A procedure for making sense of this expression is first to discretize the configurations and then to take a continuum limit, hoping to recover in a low-energy limit the Einstein-Hilbert action

S EH [g µν , M] = c 4 16πG M d D x |g| (2Λ -R) . (3) 
Hence one has to sum over all piecewise linear D dimensional manifolds up to diffeomorphism. 6 Those can be obtained from gluing D-simplices and it occurs that such geometries appear as the Feynman diagrams of "colored" tensors of rank D. The action of the model is taken as invariant under a symmetry group of size N . Using tensors of rank 2, i.e. matrices, this point of view lead to much progress regarding two-dimensional quantum gravity, making also contact with string theory. The crux is to use N as a perturbative parameter relating it to Newton's constant as ln N ∼ 1/G, and to tune the coupling constants appropriately such that the large N limit is non-trivial. Surprisingly, in contrast with the matrix models which require the sum of all planar diagrams at large-N , models of rank D ≥ 3 enjoy a solvable large-N limit, that encompasses a restriction of planar diagrams, coined the melonic family. 7 Being close relatives of branched polymers, a tree-like phase of Hausdorff dimension 2 and spectral dimension 4/3, melons were insufficient to resolve higher dimensional geometries from tensors and different approaches had to be looked for.

A few years after the large-N limit of tensors was established, the same class of diagrams arose in a one-dimensional quantum mechanical model of N interacting Majorana Fermions with quenched disorder, the Sachdev-Ye-Kitaev (SYK) model. Melons came by because a tensor served as the coupling of interaction. More interestingly, in addition to its large N solvability, this Fermionic model showed features akin to the near-horizon limit of near-extremal black holes. Though, set in the framework of holography, which stipulates that a theory of quantum gravity is equivalently described by a gauge theory living on the asymptotic boundary of the first, the presence of the disorder was unsatisfying. Lifting the zero-dimensional tensor models into one dimension rendered properly quantum mechanical theories (i.e. without disorder) with similar features at large N as the SYK model, and all together they were identified as melonic INTRODUCTION 3 theories. Whereas there has been tremendous progress on working out the gravitational dual of the SYK model, for tensor models it remains challenging. Indeed, as opposed to vectors or matrices, tensors don't have a canonical algebra and usual techniques to handle the former have to be revisited. Their contraction patterns become quickly intractable as the number of contracted tensors grows. Until 2015, research constituted a vast supply of techniques to treat their special diagrammatic, or considered models where the covariance broke explicitly the tensor symmetry, allowing the notion of a renormalization group on their indices. Yet, defined on a higher dimensional flat background, tensor models define genuine quantum field theories, tensor field theories. Their symmetry group, smaller than that of vectors or matrices, yields a much richer structure of possible interactions, hence of theories. This provides a motivation for studying them independently of their origins in quantum gravity.

Within the sea of all quantum field theories, fixed points of the renormalization group are like harbours that control the surrounding flows and are specified by a few features, among others the symmetries of the theory. Very often, there exists a tangible physical system with the corresponding symmetries and its properties at a critical point of its phase diagram will be dictated by the appropriate fixed point. 8 Thus, a classification of possible fixed points in different dimensions according to their symmetries is a commendable goal.

Lagrangians of tensor field theories are taken typically invariant under O(N ) q or U (N ) q with the integer q > 2 related to the rank of the tensor. How do they differ with respect to traditional vector and matrix theories? What kind of phase transitions do they support and how do they break their symmetries? Are there properly tensorial interacting fixed points of the renormalization group? If any, what are the associated conformal field theories? Relying on the solvability of the melonic large N limit, we tackle those questions for specific tensor models. Accordingly, our first concern during the thesis was to investigate a few properties of melonic tensor field theories. More specifically, we study the renormalization group flows of a Fermionic and a Bosonic model in (or close to) three dimensions, look for their fixed points and respectively understand the structure of the vacuum around the fixed points or the nature of the spectrum of conformal operators at the fixed points. That is exposed in Chapters 2 and 3.

Our second point of interest, contemplating quantum gravity from afar, was to develop the subject of quantum field theory on a random geometry. Important in the framework of constructive physics, a rigorous analysis of its renormalization group is set up. For ultimate simplicity we consider a scalar φ 4 model on Galton-Watson trees, but the techniques apply to more general random objects, only sufficiently good control over the heat-kernel is necessary. This is the content of Chapter 4.

In order to make the next chapters more digest and to provide them with a wider perspective, we continue in Chapter 1 with a more extensive overview of the developments we have just sketched. Since it is the core of our work, we open in Section 1.1 with a review of the renormalization group applied to quantum field theory, explaining how it is implemented through standard regularizations or the rigorous multi-scale analysis. Where we are aware of results on constructive models of quantum field theory, we also add some discussion on them. We end this part with a few examples that we think emblematic of RG or relevant to the cases we study later. Going along or against an RG flow we may end up on fixed points, that characterize the low or high energy limit of the theory. In many cases, the scale invariant fixed points enjoy a larger symmetry group forming a conformal field theory (CFT). We will detail some recently INTRODUCTION developed techniques helpful regarding the melonic CFTs in Section 1.2. In Section 1.3, after a brief summary of what we should expect quantum gravity to answer and an account on different approaches to it, we sketch our understanding of studies of random geometry, with an emphasis on the more familiar two-dimensional case connected to random matrices. The two next Sections 1.4 and 1.5 detail the techniques and results attached respectively to the SYK and tensor models. For the latter, we tried to portray the historical evolution of questions, and how they each build up on previous tools. In retrospect, although this account seems pretty diverse, we hope that it will also be enjoyable. We reserved the last Section 1.6 for a more extended description of Chapters 2 to 4.

To close, our concluding Chapter 5 takes on many questions that we left open regarding the two considered directions, sprinkled with some speculative comments.
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Chapter 1

Tensor Field Theory: Background and Motivations

Renormalization

Quantum field theory (QFT) is a very powerful framework that describes a landscape of natural phenomena ranging from cosmology to elementary particles. It has started as an extension of quantum mechanics to quantize multiple (an infinite amount of!) degrees of freedom in a Lorentz invariant manner. Given quantum fields φ(x) at position x, corresponding to the fundamental degrees of freedom of the theory, the most important object in QFTs is its set of correlation functions:

O 1 (x 1 ) . . . O n (x n ) , (1.1) 
where O i 's are operators depending on φ. 1 The expectation value may be taken on the vacuum, under assumptions of its uniqueness and it generating any other state by acting on it with a finite number of operators. They are the analogs of the moments of a probability distribution.

In order to calculate correlation functions, our approach will be perturbative. More precisely, we will be concerned with Lagrangian theories with a free and interacting part, for example, in d dimensions:

S[φ] = d d x d d y 1 2 φ(x)C -1 (x, y)φ(y) + λφ q (x) . (1.2) 
Depending on the goal, different representations of the propagator are more adequate. Typically, one deals with the following three:

• direct-space:

C -1 (x, y) = [-∂ 2 x + m 2 ]δ(x -y) , (1.3) 
• momentum:

C(p) = d d xe ip•(x-y) C(x, y) = 1 (2π) d 1 p 2 + m 2 , (1.4) 
• parametric (Schwinger proper time):

C(x, y) = ∞ 0 dα (4πα) d/2 e -|x-y| 2 4α -m 2 α , (1.5) 
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the last of which as the rather explicit interpretation of integrating over all times α the probability that a random walker from x takes to reach y, given by the heat-kernel. The perturbative series comes from Taylor expanding the interaction part and, at fixed order p in the interaction couplings, Wick contracting the fields with respect to the Gaussian term. Then, a correlation function writes as an expansion in Feynman diagrams G:

A (p) (x 1 , . . . , x n ) = (-λ) p p!sym(G) G∈G 1≤k≤p d d y k (y i ,y j )∈E(G)
C(y i , y j ).

(1.6)

The sum is done over all graphs G with V (G) vertices: p q-valent vertices (with q half-edges), and n other "external" single-valent vertices (one half-edge), identified with (x i ) 1≤i≤n . All halfedges are then contracted pairwise with propagators forming the edges E(G) of the graph. The factor sym(G) denotes the permutations of the half-edges that preserve the Feynman diagram.

The integration is done over all internal vertices. Expressed in momentum space, momenta are conserved at the interaction vertices, due to the local and Lorentz scalar interaction term, and to every loop is associated a running momentum. We will call an amputated graph one from which the propagators attached to the external vertices have been removed. Perturbative approaches immediately stumble on a number of problems through divergences. First, because of an infinite number of degrees of freedom interacting at arbitrary distances (infrared or IR divergences), that can fluctuate at arbitrary high energy scales (ultraviolet or UV). Second, because at a fixed order p of the expansion, certain correlation functions behave as p! (the renormalons2 ) or because of the factorially growing number of Wick contractions to sum over. The first problem is tackled by working in a finite volume. Amazingly, a proper renormalization procedure sweeps over all last three problems.

The procedure

Let us treat the UV divergences that haunted theoretical physics for the first half of the last century. Diverging amplitudes are identified by power-counting on the amputated amplitude.

To each diagram G is associated a U V degree of divergence ω(G):

ω(G) = dL -2I∆ φ + p∆ i , (1.7) 
with I the number of internal propagators, p the number of interaction vertices and ∆ φ , ∆ i the mass dimensions of the fundamental field and of the interaction. For some number λ > 1, it gives the scaling dimension one finds after rescaling all positions by 1/λ. The graphs with ω(G) ≥ 0 will be called superficially divergent and superficially convergent otherwise.

After the introduction of regulators rendering the theory finite, the goal is to relate bare (indiced by 0) to new renormalized variables (indiced by r) with an expansion:

λ 0 = λ r + n≥2 α n λ n r , (1.8) 
and similar expressions holding for all the couplings of the theory, through a set of renormalization conditions on a finite minimal ensemble of diverging amplitudes (without regulators), such that the theory expressed in the renormalized variables is finite at any given order in its couplings when the regulators are removed. Those renormalization conditions will fix the dependence of the α n coefficients on the regulators and on a probing scale µ at given order. With the standard approach, one employs all means to compute the regulated diverging integral. In the multiscale point of view, preliminary to a constructive analysis, we decompose a propagator in scales and working scale by scale, we need to control convergence properties of the full correlation function as the sum over all scale assignments on the involved propagators is performed. At a given order in the perturbative parameter, when only a finite number of coupling redefinitions are enough to remove all divergences, the theory is said renormalizable and welldefined at all scales. If otherwise, it is said non-renormalizable and one must precise its range of validity.

Stepping back

Perturbative renormalization proved itself useful after the works of Feynman, Schwinger, Tomonaga and culminating with Dyson [START_REF] Dyson | The Radiation theories of Tomonaga, Schwinger, and Feynman[END_REF] showing that the theory of quantum electrodynamics was renormalizable at all orders. The calculation of the anomalous magnetic dipole moment of the electron obtained by Schwinger [START_REF] Schwinger | On Quantum electrodynamics and the magnetic moment of the electron[END_REF] at second order and today up to 10th order [START_REF] Aoyama | Tenth-Order Electron Anomalous Magnetic Moment -Contribution of Diagrams without Closed Lepton Loops[END_REF], agreeing with its experimental value up to 10 significant digits, constitute one of the most precise fits between theory and experiment.

However, renormalization flourished after the brilliant insight of Wilson, connecting the divergences in particle physics with the block spin transformations of Kadanoff and the effective theory point of view of Gell-Mann and Low (see [START_REF] Wilson | The renormalization group and critical phenomena[END_REF] for a historical perspective). The idea is to cutoff the theory at a UV scale Λ and an IR scale κ, regulating all divergences, and to construct the theory at an intermediate scale κ < k < Λ. Schematically, after decomposing our field in components associated to different scales (for instance by restricting its Fourier components) φ = φ k ′ <k + φ k ′ >k an effective action at scale k is found from integrating out all fluctuations above k:

e -S k [φ <k ] = k<k ′ <Λ Dφ k ′ e -S[φ k ′ <k +φ k ′ >k ] , (1.9) 
generating new effective interactions between the remaining components. In order to form the renormalization group, one has to rescale the momenta as well as the field

K = lk ′ , Φ K = Z(l) -1/2 φ k ′ , (1.10) 
with l = Λ/k to recover the original range of momenta and kinetic term with a new action S ′ [Φ]. This way, the renormalization group produces a trajectory from the UV towards the IR within the space of all possible interactions

S ′ [Φ] = R(t)S[φ] , (1.11) 
writing t = log l. After a small renormalization step, one can linearize the flow,

S ′ [Φ] = S[φ] + d dt (R(t)S[φ]) t=0 dt + O(dt 2 ) , (1.12) 
which, assembling all couplings under the notation {λ i } i∈N , leads to an infinite set of coupled non-linear differential equations tracing the evolution of the couplings through the beta functions

dλ i dt = β i ({λ j }). (1.13) 
Within this view, one relies on techniques of dynamical systems to study generic properties of QFTs, as for example stability analysis or merging of fixed points. This idea is also supporting a notion of universality: the fact that flows are governed by their fixed points 3 , characterized by a 10 CHAPTER 1. TENSOR FIELD THEORY: BACKGROUND AND MOTIVATIONS few features. Those are the symmetry group of the theory (at the fixed point, the initial theory may have its symmetry spontaneously broken during the flow), the space-time dimension, the number of degrees of freedom and a few extra parameters corresponding to relevant perturbations emanating from the fixed points (FP). By construction, a fixed point will be a scale-invariant theory. But there are situations where the scale symmetry is enhanced to the full conformal group SO(d + 1, 1) putting strong constrains on the structure of the correlation functions. In the next section, we will spell out more details on aspects of conformal field theories relevant to our later chapters.

Generically, in the Lagrangian description of the fixed point, we can understand the RG flow as coming from adding operator perturbations in the action. The effect of the pertubation depends on its dimension ∆, obtained either perturbatively around an RG fixed point or nonperturbatively (for instance by bootstrap constraints), such that for:

• ∆ < d: the operator is called relevant and it drives away from the FP ,

• ∆ > d: the operator is called irrelevant and it drives towards the FP ,

• ∆ = d: the operator is called marginal and one needs further quantum corrections to understand its effect.

Note that irrelevant operators are the ones that would lead to non-renormalizable theories and this means that to study the RG flow around some FP, we are only required to consider renormalizable (and marginal) interactions.

Some regularization schemes

In order to establish notations and conventions, let us recall how to apply in practice this procedure to quantum fields. We start with a bare action, defined at the UV scale, around d = 4 and including only the renormalizable and marginal interactions:

S = d d x 1 2 (∂φ 0 ) 2 + 1 2 m 2 0 φ 2 0 + 1 4! λ 0 φ 4 0 . (1.14)
For the purpose of renormalization, we rewrite the action with renormalized variables, that will contain our physical parameters (m, λ) as well as the counterterms (introduced through Z, Z m and Z λ ) and some regulator (implicit below):

S = d d x Z 2 (∂φ) 2 + Z m 2 m 2 φ 2 + m 4-d Z λ 4! λφ 4 . (1.15) 
Note that we made the renormalized couplings explicitely dimensionless, as it will be easier to track down how they will then flow with the energy scale. In a renormalizable theory we will be able to relate bare to renormalized variables such that, when the regulator is removed, all φ correlation functions are finite at any given order in the renormalized couplings. For both actions to match, bare and renormalized fields and couplings are connected by

φ 0 = √ Zφ , (1.16) m 2 0 = m 2 Z m /Z , (1.17) 
λ 0 = λm 4-d Z λ /Z 2 , (1.18) 
We define those parameters through renormalization group conditions on the superficially diverging one particle irreducible (1PI) diagrams, at some scale µ, for instance:

φ(p)φ(-p) | p 2 =µ 2 = 1 µ 2 + m 2 , φ(p 1 )φ(p 2 )φ(p 3 )φ(-p 1 -p 2 -p 3 ) | p 2 i =µ 2 = -λ . (1.19)
1.1. RENORMALIZATION 11 We emphasize that the first condition fixes the position of the pole of the propagator at p 2 1 = -m 2 and its residue to be one. In case we want to compute correlation functions with insertions of more general operators (φ n and derivatives), we should fix similar renormalization conditions on the superficially diverging amplitudes that contain them. Enforcing those conditions determines our counterterms at any given order of the coupling expansion, and their divergent part expresses as a series in the regulator. Within dimensional regularization, setting ǫ = 4d, the counterterms take all this form:

Z i = 1 + n≥1 a (i) n (m, λ, µ) ǫ n + (regular) , (1.20) 
with terms containing poles in ǫ and others regular as ǫ vanishes. Unitarity constraints on the Källen-Lehmann representation of the two-point function impose the bounds 0 ≤ Z < 1 for an interacting theory (see for a standard exposition [START_REF] Itzykson | Quantum Field Theory[END_REF]). Eventually, we have the following invertible relations: λ 0 = λ 0 (m, Z, λ, ǫ, µ).

(1.21)

A convenient regularization procedure is the minimal subtraction, where counterterms are tailored to cancel only the divergent parts of the amplitudes. In this case, only the residue contributes in the β function. Naturally, the second condition in eq. (1.19) will generically lead to a polynomial function in the coupling λ.

Another renormalization scheme is the BPHZ subtraction formula that expresses directly the renormalized amplitude R(G) of an amplitude G as

R(G) = Γ γ i ∈Γ ∆ γ i * G /Γ . (1.22) 
We have to consider all forests Γ of disjoint (no internal line and no vertex in common) or included one in the other UV diverging 1PI subdiagrams γ i of G, including the empty set. ∆ γ i is the counterterm associated to the diverging subgraph γ i , G /Γ is the (amplitude of the) graph obtained by shrinking the subgraphs in Γ to local vertices and the * -operation concatenates the amplitude of G /Γ with all the corresponding counterterms. Zimmerman [START_REF] Zimmermann | Convergence of Bogolyubov's method of renormalization in momentum space[END_REF] proved that the renormalized amplitude integrated over its external momenta was absolutely convergent when, given a diverging subgraph of degree of divergence ∆, the counterterms were chosen to subtract the Taylor expansion around zero external momenta of the amplitude up to order ∆. However, the procedure needs modification to be applied to massless theories [START_REF] Lowenstein | The Power Counting Theorem for Feynman Integrals with Massless Propagators[END_REF]. Afterwards we can study the effect of changing the renormalization scale µ on correlation functions with n insertions of operators:

Γ (n) 0 (x 1 , . . . , x n ) = Z(µ, λ) n/2 Γ (n) r (µ; x 1 , . . . , x n ) (1.23)
using the bare and the renormalized action and fields, on the left-and right-hand side respectively. Since the left-hand side doesn't depend on the scale µ, differentiating both sides by µ∂ µ leads to

[µ∂ µ + β(λ)∂ λnγ(λ)] Γ (n) r (µ; x 1 , . . . , x n ) = 0, (1.24)

β(λ) = ∂λ ∂ log µ , γ(λ) = ∂ log Z ∂ log µ , (1.25) 
namely the Callan-Symanzik equations, telling that the flowing couplings must be compensated by the wave-function renormalization Z making up the anomalous dimension γ of the field. It naturally generalizes to include a diversity of couplings. If we were to use a UV-cutoff regulator Λ, since the renormalized couplings are made dimensionless, the dependence in the scale µ must be replaced by the dimensionless combination µ/Λ and differentiation with respect to µ can be traded with (minus) one with respect to Λ. By definition, β(λ) gives the variation of λ with the probing scale, hence, we can obtain it by doing a perturbative expansion of the renormalization conditions with respect to the bare variables and differentiate with respect to the probing scale, step after which we can express the bare coupling in terms of the renormalized one. This procedure generalizes to theories with several couplings, but extracting the β functions is more tedious since one has to keep track of how the different operators mix. Combinatorial factors are crucial since they affect the sign and zeroes of the β function. In the following chapters, we will work out the details of different such examples. Let us also remark that when considering correlation functions of some composite operators in the fundamental field of canonical dimension ∆ O , their renormalization happens in two steps. First by Wick ordering the operator, second by introducing additional counterterms associated to all operators of dimension lower than ∆ O (see [START_REF] Zinn-Justin | Quantum field theory and critical phenomena[END_REF]).

Fixed points λ * are given by solutions to the equation β(λ * ) = 0 and critical exponents correspond to eigenvalues of the derivatives ∂β(λ * )/∂λ at the fixed points. They give the scaling dimension ∆ = dν of the operator associated to the eigenvector. With several couplings, we will define the scaling operators as the right eigenvectors of the stability matrix. It may happen that the stability matrix is non-diagonalizable, in which case we can extract the conformal data from its Jordan normal form. This signals the presence of a logarithmic CFT, with several conformal primaries of the same dimension (see the next section).

Under an invertible reparameterization of the couplings g = g + αg 2 + O(g 3 ), coming from a different renormalization scheme, the β function changes as

β(g) = β(g) ∂g ∂g . (1.26) 
Expanding perturbatively the right-hand side, we see that beyond order 2, the coefficients of the β functions depend on the renormalization scheme. However the fixed points and the eigenvalues of the stability matrix remain invariant.

The constructive point of view

Getting over the remaining two problems requires to set the theory in a proper mathematical frame. This means obeying a set of axioms (Wightman axioms [START_REF] Wightman | Quantum Field Theory in Terms of Vacuum Expectation Values[END_REF][START_REF] Streater | PCT, spin and statistics, and all that[END_REF]): it must be a Lorentz-invariant formulation of quantum mechanics with operators transforming under given unitary representations, it assumes the existence and uniqueness of Lorentz invariant vacuum state, plus conditions on the domain of definition of operators, it must obey causality and linear combinations of finite number of operators acting on the vacuum must form a dense set. Under analytic continuation to Euclidean signature, the Euclidean field theory will then obey the Osterwalder-Schrader axioms [START_REF] Osterwalder | Axioms for Euclidean Green's functions[END_REF][START_REF] Osterwalder | Axioms for Euclidean Green's Functions. 2[END_REF] (analyticity, regularity, invariance under Euclidean symmetries, ergodicity and reflection positivity). The theorem implies that one could work equivalently in one or the other signature. Up to now, verifying those axioms on realistic theories as the Standard Model is very hard and was achieved only for a handful of cases, some of which will be mentioned later. This enters the realm of constructive quantum field theory, recently reviewed in [START_REF] Summers | A Perspective on Constructive Quantum Field Theory[END_REF]. In order to control the perturbative expansion, we need to prove its Borel summability through precise bounds on the correlation functions at any order, which also provides its non-perturbative meaning. Non-perturbative techniques are essential in order to explain among others spontaneous breaking of symmetry, phase transitions or contributions of instantons.

Prevailing tools of constructivists are: random walk or current expansions, cluster and multiscale expansions, the lace expansion. 4 For example, a recent notable result is the proof of the triviality of scalar φ 4 4 through its formulation as a spin model and precise bounds of the intersection probability of currents defining correlation functions [START_REF] Aizenman | Marginal triviality of the scaling limits of critical 4D Ising and φ 4 4 models[END_REF]. Motivated by many earlier works (see the references in [START_REF] Aizenman | Marginal triviality of the scaling limits of critical 4D Ising and φ 4 4 models[END_REF]) and by Monte Carlo simulations [START_REF] Wolff | Precision check on triviality of phi**4 theory by a new simulation method[END_REF], it sets rigorously the logarithmic decay of the continuum limit of quartic coupling with respect to the probing scale. 5 Far ahead for the mathematical physicist lie the gauge theories, as reminds the pending Millenium Prize of constructive four dimensional Yang-Mills theory (which means to prove existence of a mass-gap, quark confinement and chiral symmetry breaking) [START_REF] Jaffe | The millennium prize problems[END_REF].

Multiscale analysis

Very close to Wilson's original idea of fluctuations of higher energy scales to contribute in effective actions of lower energy scales, the multiscale analysis was developed to set on a firmer ground the earlier analysis and to establish constructive results, that will ensure a proper nonperturbative definition of the theory by tackling the last two problems of the perturbative expansion of amplitudes. Our presentation follows [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF] (see also [START_REF] Vignes-Tourneret | Renormalisation des theories de champs non commutatives[END_REF]).

Multiscale decomposition. Given an arbitrary constant M > 1, the first step is to slice the free propagator into scales:

C = ρ i=0 C i , (1.27) 
C i (x, y) = M -2(i-1) M -2i dα (4πα) d/2 e -|x-y| 2 4α -m 2 α , (1.28) 
C 0 (x, y) = ∞ 1 dα (4πα) d/2 e -|x-y| 2 4α -m 2 α . (1.29)
In a scalar theory in d dimensions, it is easy to show that for all 0 ≤ i ≤ ρ, there are constants δ < 1 and K, {K k } k∈N > 1, such that:

C i (x, y) < KM (d-2)i e -δM i |x-y| , (1.30) 
∂ µ 1 . . . ∂ µ k C i (x, y) < K k M [(d-2)+k]i e -δM i |x-y| . (1.31) 
A few remarks:

• In renormalizing UV divergences, we set the maximal scale ρ to be the UV cutoff.

• There are several ways to define slices, each suitable for different constructive purposes.

• There are also different conventions for selecting the scale of the external propagators, that we will denote by C ρ .

Then any amplitude of a graph G with internal and external legs l(G) and l(G) decomposes as a sum over all scales for each propagator in eq. (1.6)

A(G) = µ∈N l A G,µ , (1.32) 
14
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A G,µ = 1≤k≤p d d x k (xa,x b )∈l(G) C µ(ab) (x a , x b ) (xc,x d )∈l(G) C ρ (x c , x d ), (1.33) 
the assignement µ attributing the scale µ(ab) to the internal leg attached to the vertices x a and x b .

For renormalizable theories, it will be possible to absorb all divergences coming from such sum over all graphs appearing in a given correlation function (up to a given order in the perturbative parameter) into a finite number of redefinitions of parameters of the theory. This is the BPHZ theorem:

Theorem 1.1.1 (BPHZ). There is a series for the renormalized constants in terms of the bare ones such that amplitudes, expanded with respect to the renormalized constants, have a finite limit at each order when the UV regulator is removed.

Instead of proving the theorem, we will give the gist of the ideas necessary to prove it and say how they fit into each other.

High subgraphs. Given a subgraph g ⊂ G and a scale assignement µ, we define the scales

i g (µ) = inf l internal edge of g µ(l), e g (µ) = sup l external edge of g µ(l). (1.34)
High subgraphs satisfy the condition

i g (µ) > e g (µ). (1.35) 
In other words, they are "quasi-local", since from the point of view of the external legs of the subgraph, the inner legs stay at higher or more local scale. Now given some scale σ, we write G σ the subgraph obtained from G by keeping all propagators l with µ(l) > σ, and {G σ k } 1≤k≤κ(σ) the corresponding high subgraphs, forming κ(σ) disjoint components (no vertex or edge in common). With respect to the scale σ, the collection of high subgraphs

0≤σ≤ρ 1≤k≤κ(σ) G σ k (1.36)
forms an inclusion forest, that is being either included into one another or non-intersecting. The important point is that only them appear as an upper bound to the amplitude, giving them their superficial degree of divergence:

A G,µ ≤ K V (G) σ κ(σ) k=1 M ω(G σ k ) . (1.37)
Weinberg's theorem follows, stating that a graph without any diverging subgraph is superficially convergent, with a bound exponential in the number of vertices. Let us take the example of a superficially convergent graph with n ≥ 2 external legs in φ 4 theory, whose divergence degree obeys:

ω(G) = 4 -n ≤ -n/3, (1.38) 
and introduce for a vertex v and assignment µ the scales

i v (µ) = inf l attached at v µ(l), e v (µ) = sup l attached at v µ(l).
(1.39)
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We have then the inequalities:

σ κ(σ) k=1 M ω(G σ k ) ≤ σ κ(σ) k=1 M -n(G σ k )/3 (1.40) ≤ v∈V (G) M -|ev(µ)-iv(µ)|/3 , (1.41) 
since for each scale σ, a vertex v belongs to a unique high subgraph G σ k only if σ ≤ e v (µ) and this G σ k has external legs attached to v if σ < i v (µ), hence the last absolute value. In our case, since each vertex has at most 4 half-edges attached, from which we can form at most 6 pairs of half-edges (l, l ′ ) which naturally obey |µ(l)µ(l ′ )| < |e v (µ)i v (µ)|, we deduce the crude bound:

v∈V (G) M -|ev(µ)-iv(µ)|/3 ≤ v∈V (G) (l,l ′ ) attached at v M -|µ(l)-µ(l ′ )|/18 .
(1.42)

Next, one needs to pick an order for the internal edges {l 1 , . . . , l I(G) } such that l 1 starts at x n and, for m ≤ |I(G)|, all subsets {l 1 , . . . , l m } are connected. Further, at any edge l j we associate an edge l p(j) of lower scale with p(j) < j and sharing a vertex, bringing the bound

v∈V (G) (l,l ′ ) attached at v M -|µ(l)-µ(l ′ )|/18 ≤ |I(G)| j=1 M -|µ(l j )-µ(l p(j) )|/18 (1.43)
Given this order that amounts to organise all edges of the graph in a tree and the above exponential bound, a sum over all scale assignments is bounded by a constant for each internal line. Ultimately, their total I(G) depending linearly on the number of vertices V (G), we recover Weinberg's bound. At the same time, only superficially divergent high subgraphs need to be renormalized and bring the only necessary counterterms in diverging amplitudes. With a single strike, this reorganisation solves the overlapping divergence problem (since diverging subgraphs don't overlap anymore) and that of the renormalons.

To see this last point, we need to explain how the renormalization is carried out. It applies the BPHZ formula through a localization operator τ , whose application on a diverging amplitude g of divergent degree D reads in Fourier space.

τ g(k 1 , . . . , k n ) = δ i k i D j=0 1 j! d j dt j g(tk 1 , . . . , tk n )| t=0 .
(1.44)

In direct space, if a(x 1 , . . . , x n ) is a test function on which the amplitude is integrated on6 , this operation amounts to translate the external vertices to a single vertex, here x n

dx i τ g(x 1 , . . . , x n )a(x 1 , . . . , x n ) = dx i g(x 1 , . . . , x n )τ * a(x 1 , . . . , x n ), (1.45) τ * a(x 1 , . . . , x n ) = D j=0 1 j! d j dt j a(x 1 (t), . . . , x n (t))| t=0 , x i (t) = t(x i -x n ) + x n . (1.46)
For an amplitude A G,µ , we define the diverging forest D(G, µ) containing the superficially divergent high subgraphs. On each subgraph g ∈ D(G, µ), one recursively selects the external vertex v g where the localization operator τ g will attach the other vertices, such that if g ⊂ h and v h 16 CHAPTER 1. TENSOR FIELD THEORY: BACKGROUND AND MOTIVATIONS is also external to g, one takes v g = v h . Otherwise and if g and h are disjoint, v g and v h are chosen arbitrarily (in accordance with the other inclusion relations). In this way, g∈D(G,µ) τ g is acting commutatively on D(G, µ). All in all, the renormalized amplitude will be obtained from

A G,µ = τ A G,µ + (1 -τ )A G,µ (1.47) 
The first term, fully local, repackages all the superficial divergences of the original amplitude. We need to make sure that the second term, rest of the Taylor expansion, can be summed over all scale assignments, leading to the renormalized amplitude.

The essence of the argument can be gained from the displacement of a single external propagator at scale j:

C j (x, z) =C j (x e , z) + 1 0 dt d dt C j (x e + t(x -x e ), z) (1.48) =C j (x e , z) + 1 0 dt(x -x e ) µ ∂ µ C j (x e + t(x -x e ), z). (1.49)
Because of the internal propagators C i in G that must be at higher scales for the divergence to occur, we can use a part of the stronger associated exponential decay (1.30) to bound the difference |x -

x e | |x -x e |e -δM i |x-xe| ≤ 2 δM i e -δM i |x-xe|/2 , (1.50) 
and another part to change the decaying exponential e -δM j (xe+t(x-xe)-z) to e -δM j (xe-z) , such that in total our amplitude is bounded by a factor M -|i-j| , summable over all scale assignments of internal propagators baring scales i > j as we saw for Weinberg's theorem. At this point appears that the only essential counterterms are coming from internal scales higher than the external ones. The effective expansion of correlation functions takes precisely this consideration seriously to define effective couplings at each scale j such that the above counterterms are introduced to renormalize the diverging high subgraphs over higher scales that j. In short, this leads to a series for the coupling λ j in terms of the couplings λ i>j (and of the other parameters of the theory at the higher scales). The resulting bounds are free of any factorial in the number of internal vertices, in other words of renormalons. The drawback is that one has to keep track of the external scale, and in this sense the resulting effective counterterms are not strictly local in the "space of scales". By contrast, the initial renormalized series in the BPHZ works applied the "localization" operator on all subgraphs including those that were not high. The resulting subtractions are then local but all unnecessary counterterms spawn the renormalons.

Forest formulas. In order to deal with the second essential problem of factorially growing number of diagrams to sum over, one has to resort to trees. Indeed, a famous result of Cayley says that there are n n-2 ≈ n! different trees between n vertices, the largest factor one can afford in the diagrammatic expansion, cancelling the factorial of the denominator from developing the exponential. Here is where the forest formulas come into play. Briefly, they correspond to Taylor expansions of the amplitudes with integral rest. One could say much more about them, see e.g. [START_REF] Gurau | Renormalization: an advanced overview[END_REF], but since we didn't use them in later chapters, we will keep the reader on her/his hunger.

Key examples and a few remarks

Massless case. As we raised the point earlier, for massless theories, one cannot subtract amplitudes at zero momentum, as they diverge, neither at exceptional momenta (for which at least one partial sum vanishes). In that case, one has to introduce a non-zero IR cutoff by hand, for instance with a mass or defining the renormalization conditions with momenta at some nonexceptional point. For example in four dimensions, one can resort to the symmetric point for the four external momenta k i , such that

k i k j = µ 2 (δ ij -1/4) . (1.51)
See [START_REF] Zinn-Justin | Quantum field theory and critical phenomena[END_REF] for more discussion on the simplifications that occur in the Callan-Symanzik equations.

Perturbative parameters. Rare are the exactly solvable models. And when we hold one, the most courageous hope is that pertubation around it is legit and will lead to non-trivial information. But we can be audacious with the parameter that we choose to expand in. Three are commonly used in field theory: the coupling of the interaction, the space-time dimension and the number of components of the field. Specifically about this last item, commonly called a large-N limit, finding the appropriate scaling of the interaction such that still an infinite set of diagrams contributes in correlation functions and that their maximal power in N is bounded from above, is a non-trivial problem. All the more, when we have several interactions to rescale such that more than one contributes in the limit. We will also be searching for optimal scalings, that is the minimal power beyond which any large-N limit would be doomed. The choice of optimal scalings for several couplings is a hard problem as will be highlighted in Section 1.5.

Let us recapitulate the basic features of RG through simple examples, that we will rely upon later in the text and incidentally have become cornerstones of QFT.

Wilson-Fisher. The textbook example of renormalization is the quartic scalar field in d dimensions, of which the interacting fixed point describes the critical point of models in the Ising universality class. Its action writes

S = d d x 1 2 (∂φ) 2 + 1 2 m 2 φ 2 + 1 4! λφ 4 , d = 4 -ǫ. (1.52)
Renormalizing the four-point coupling λ leads to the one-loop beta function (from the diagram 1.1)

β(λ) = -(4 -d)λ + αλ 2 , (1.53) 
which, in addition to the Gaussian FP (λ = 0), presents in d < 4 the famous Wilson-Fisher FP [START_REF] Wilson | Critical exponents in 3.99 dimensions[END_REF][START_REF] Wilson | The Renormalization group and the epsilon expansion[END_REF]: λ = ǫ/α, where the quartic operator becomes irrelevant with critical exponent -ǫ. This procedure, applied to O(N ) models, allowed to determine perturbatively in ǫ critical exponents of many physical systems in three dimensions setting ǫ = 1 using Borel resummation [START_REF] Guida | Critical exponents of the N vector model[END_REF].

Figure 1.1: One loop contribution to the running of the quartic coupling.
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Gross-Neveu. A second example is a quartic Fermionic theory, with N fields

ψ i [22] 7 S = d 2 x ψi / ∂ψ i + λ 2N ( ψi ψ i ) 2 , (1.54) 
which forbids a mass-term from its chiral symmetry ψ → γ 5 ψ. The theory is renormalizable in two dimensions and λ is asymptotically free. At leading order in 1/N , its beta function reads

β λ = - λ 2 π , (1.55) 
obtained by summing all diagrams at leading order in 1/N , trees of bubbles (see Figure 1.2).

Corrections for each order in 1/N are given by adding a loop of bubbles. This can be seen from the intermediate field formalism

S = d 2 x ψi / ∂ψ i - N 2λ σ 2 + σ ψi ψ i , (1.56) 
such that integrating out σ reproduces (1.54) and on-shell σ = ψi ψ i . The effective potential for constant σ, integrating out the Fermions and introducing a UV-cutoff Λ is:

V ef f (σ) = N 2λ σ 2 + N 4π σ 2 log σ 2 Λ -1 . (1.57)
We see that N , being a global factor, is the counterpart of -1 and from power counting, each loop of the σ field brings an extra 1/N factor. At large-N , the saddle-point is given by

σ = Λ exp (-π/λ) , (1.58) 
that is providing a non-perturbative effective mass to the Fermions and spontaneously breaking the chiral symmetry. The saddle is a minimum only when λ stays positive, otherwise the massless Fermions remain the stable vacuum.

In three-dimensions, the interaction is non-renormalizable, however a large-N expansion eliminates all diverging graphs but the bubbles and as will be detailed in the next chapter, leads to a non-trivial UV fixed-point [START_REF] Rosenstein | Dynamical symmetry breaking in four-fermion interaction models[END_REF], in fact existing in the range of dimensions 2 < d < 4. 8Constructive analyses for Fermionic models were performed using phase space expansions. First, [START_REF] Feldman | A Renormalizable Field Theory: The Massive Gross-Neveu Model in Two-dimensions[END_REF][START_REF] Gawedzki | Gross-Neveu model through convergent perturbation expansions[END_REF] established renormalizability and Borel summability of the two-dimensional case by brute force, formalism later facilitated by much simpler inequalities to show analyticity of the partition function [START_REF] Disertori | Continuous constructive fermionic renormalization[END_REF]. Spontaneous chiral symmetry breaking was also considered [START_REF] Kopper | Mass generation in the large N Gross-Neveu model[END_REF][START_REF] Rivasseau | Constructive physics: Results in field theory, statistical mechanics and condensed matter physics[END_REF]. Finally, the three-dimensional case at large-N was renormalized in [START_REF] Rivasseau | Constructive physics: Results in field theory, statistical mechanics and condensed matter physics[END_REF][START_REF] De Calan | Constructing the three-dimensional Gross-Neveu model with a large number of flavor components[END_REF].

Bardeen-Moshe-Bander. Three-dimensional scalar fields with sextic interactions have been a model for tricritical points, appearing for instance in mixtures of He3-He4 [START_REF] Amit | Breaking of Scale Invariance in φ 6 Theory: Tricriticality and Critical End Points[END_REF]. The action writes

S = d d x 1 2 (∂φ) 2 + 1 2 m 2 φ 2 + 1 4!N λ 4 φ 4 + 1 6!N 2 λ 6 φ 6 , (1.59) 
with, in d = 3, two relevant directions (φ 2 and φ 4 ) and one marginal (φ 6 ). At large N the beta function of the sextic coupling vanishes, resulting in a line of fixed points at zero renormalized m r and λ 4,r , terminating at a UV FP λ 6,r = (4π) 2 , above which the non-perturbative effective potential for φ 2 (obtained for instance through a variational principle) becomes unstable at φ = 0 (the Bardeen-Moshe-Bander phenomenon [START_REF] Bardeen | Spontaneous Breaking of Scale Invariance and the Ultraviolet Fixed Point in O(N ) Symmetric ( φ6 3 in Three-Dimensions) Theory[END_REF])

V (φ) = (16π 2 -λ 6,r )|φ| 3 , (1.60) 
hence displaying another example of spontaneous symmetry breaking of conformal invariance, and another of an asymptotically safe scalar theory [START_REF] Litim | Asymptotic safety of scalar field theories[END_REF].

Let us note that this emergent segment of fixed points is a large N artefact and only the endpoints remain at finite N . We point to [START_REF] Yabunaka | Surprises in O(N ) Models: Nonperturbative Fixed Points, Large N Limits, and Multicriticality[END_REF][START_REF] Fleming | The finite N origin of the Bardeen-Moshe-Bander phenomenon and its extension at N = ∞ by singular fixed points[END_REF] for a recent discussion that explains the nature of the BMB fixed point as the intersection between a line of regular and another of singular fixed points using the functional RG formalism. They demonstrate the presence of non-perturbative fixed points with which the BMB FP can collide in the (N, d) phase space, going from infinite to finite N . It sheds light on the dependence on N and on the space-time dimension in order to preserve this particular critical behaviour.

Non-abelian gauge theory. Finally, we had to mention the most notorious example of asymptotically free theory, that is QCD. For SU (N ) Yang-Mills coupled to n f flavors of Fermions

S = 1 2g 2 d 4 xF µν F µν + n f j=1 i ψj / Dψ j , (1.61) 
F a µν = ∂ µ A a ν -∂ ν A a µ + f abc A b µ A c ν , (1.62) 
D µ = ∂ µ -it a A a µ , (1.63) 
the β function is9 

β g = - g 3 4π 2 11 12 N - 1 6 n f , (1.64) 
indeed negative for N = 3 and n f = 6. Beyond providing trust to perturbation theory near the ultraviolet, this result also asks for a phase transition at some scale of order Λ QCD = Λ exp(π 2 /g 2 ) where the coupling grows breaking all convergence of the perturbative series and would lead to hadronization of the quarks. This is the confinement problem. Two-dimensional Yang-Mills is quite well-understood (see for instance Witten's preface in [START_REF] Rivasseau | Constructive physics: Results in field theory, statistical mechanics and condensed matter physics[END_REF]). In contrast, divergences in three and four dimensions are more difficult to control and among approaches to tame them there were lattice discretization (e.g. [START_REF] Balaban | Renormalization Group Approach to Lattice Gauge Fields Theories. 1. Generation of Effective Actions in a Small Fields Approximation and a Coupling Constant Renormalization in Four-dimensions[END_REF][START_REF] Federbush | A phase cell approach to Yang-Mills theory[END_REF] that begin the long program), continuous with introduction of a mass-term [START_REF] Magnen | Construction of Y M(4) with an infrared cutoff[END_REF] or flow equations for an effective action [START_REF] Efremov | Renormalization of SU(2) Yang-Mills theory with flow equations[END_REF]. The interested reader will find a concise review of the current status of rigorous results on this subject in [START_REF] Chatterjee | Yang-Mills for probabilists[END_REF].
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Aspects of Conformal Field Theories

Fixed points of the RG flow are scale invariant theories. Assuming unitarity and Lorentz invariance, a stronger conformal symmetry typically comes along forming the conformal group SO(d + 1, 1). This was proven in two dimensions with Zamolodchikov's c-theorem that identifies a c-function, monotonically decreasing with the RG flow and matching the central charge at the fixed point. There are strong indications that it holds in four, looking at the flow of an anomaly coefficient (Cardy's a-theorem). A standard review on this topic is [START_REF] Nakayama | Scale invariance vs conformal invariance[END_REF].

In two dimensions, proving that statistical models on the lattice preserved conformal invariance was achieved through the introduction of Schramm-Loewner Evolution (SLE), intuitively a continuous curve towards which the interface between domains of different phases converges in the thermodynamic limit at the critical point. It sets a rigorous framework for conformal invariance of the scaling limit of statistical systems (see [START_REF] Duminil-Copin | Conformal Invariance of Lattice Models[END_REF] for a self-contained introduction).

The conformal group contains d translations, d(d -1)/2 rotations, d special conformal transformations and one dilation. 10 The set of eigenvectors of the dilation operator form the primary fields O ∆,J characterized by spin J and dimension ∆. Differentiating the primaries, we get the descendants O μ ∆,J ,11 which form a conformal multiplet, an irreducible representation of the conformal group. Conformal symmetry constrains completely the form of the two-and three-point functions (modulo a normalization factor of the two-point function). For the simplest, scalar fields φ ∆ i of dimension ∆ i (i = 1, 2, 3), we have

φ ∆ i (x 1 )φ ∆ j (x 2 ) = Cδ ij |x 1 -x 2 | 2∆ i , (1.65) 
φ ∆ 1 (x 1 )φ ∆ 2 (x 2 )φ ∆ 3 (x 3 ) = C ∆ 1 ,∆ 2 ∆ 3 |x 1 -x 2 | ∆ 1 +∆ 2 -∆ 3 |x 2 -x 3 | ∆ 2 +∆ 3 -∆ 1 |x 3 -x 1 | ∆ 3 +∆ 1 -∆ 2 , (1.66) 
where C and

C ∆ 1 ,∆ 2 ∆ 3
are numbers. The coefficients of the three-point functions appear in the operator product expansion (OPE), characterizing the singularity of product of fields at nearby points

x 1 ∼ x 2 : φ ∆ i (x 1 )φ ∆ j (x 2 ) = k C ∆ 1 ,∆ 2 ∆ k P 12k (x 1 -x 2 , ∂ x 2 )O ∆ k (x 2 ), (1.67) 
the sum being done only on primaries and P 12k (x 1x 2 , ∂ x 2 ) is a differential operator fully constrained by the conformal invariance of the three-point function. This operator valued equality holds under expectation values. 12All higher-point correlation functions are computed from OPE expansions of the considered operators. Hence, in addition to the central charge, 13 the conformal dimensions of the fields and their OPE coefficients fully characterize the CFT.

A Lorentzian CFT is unitary if all states of the theory have positive norm. In a (Wickrotated) Euclidean CFT, the equivalent statement by the Osterwalder-Schrader reconstruction theorem is that of reflection positivity of correlators

Θ[O 1 (x 1 )]Θ[O 2 (x 2 )] . . . O 2 (x 2 )O 1 (x 1 ) . . . ≥ 0, (1.68) 
Θ conjugating and reflecting the operators O(x) with respect to a chosen codimension 1 plane. This condition imposes that the central charge c is positive and that the conformal dimensions ∆ of spin J primaries obey

∆ ≥ d-2 2 if J = 0 , J + d -2 if J > 0 . (1.69)
Of course, effective descriptions of many statistical systems are not bound to be unitary. Non-unitary CFTs occur for example:

• in non-integer dimension: it was shown [START_REF] Hogervorst | Truncated conformal space approach in d dimensions: A cheap alternative to lattice field theory?[END_REF][START_REF] Hogervorst | Unitarity violation at the Wilson-Fisher fixed point in 4-ǫ dimensions[END_REF] studying φ 4 in d = 4ǫ that the theory at the fixed point disposed of a extra number of evanescent operators that would vanish in integer dimension but not otherwise. Certain of them have negative norm and imaginary conformal dimension.

• from Lagrangians with imaginary couplings: as the Lee-Yang minimal model with a cubic potential V (φ) = ihφ + iλφ 3 , which serves to describe, above the critical temperature, the critical behaviour of the (analytically continued) magnetization of a 2 ≤ d < 6 dimensionial Ising model with respect to the magnetic field close to a branch point singularity [START_REF] Fisher | Yang-Lee Edge Singularity and phi**3 Field Theory[END_REF]. In two dimensions, it has a single primary φ, with negative dimension h = -1/5 and a negative central charge c = -22/5 [START_REF] Cardy | Conformal Invariance and the Yang-lee Edge Singularity in Two-dimensions[END_REF].

• as logarithmic CFTs (for a review [START_REF] Hogervorst | The ABC (in any D) of Logarithmic CFT[END_REF]), for which the dilation operator is non-diagonalizable.

This induces the presence of extra logarithmic divergences in the above correlations (1.65).

The fishnet theories, deformations of N = 4 SYM, belong to this class (cf. for example [START_REF] Gürdogan | New Integrable 4D Quantum Field Theories from Strongly Deformed Planar N = 4 Supersymmetric Yang-Mills Theory[END_REF][START_REF] Gromov | Exact Correlation Functions in Conformal Fishnet Theory[END_REF]), or special singular limits of statistical systems, as the n → 0 limit of the two-dimensional O(n) model [START_REF] Cardy | Logarithmic conformal field theories as limits of ordinary CFTs and some physical applications[END_REF].

Later, we will encounter other examples of non-unitary CFTs with particular tensor field theories that develop an imaginary spectrum of conformal dimensions for some bilinear operators in the fundamental fields. 14

Conformal partial wave decomposition

Let us focus now on the four-point function of scalar fields φ i of dimension ∆ i (i = 1, . . . , 4). Using two OPEs in the channel (12 → 34), it also writes as:

φ 1 (x 1 )φ 2 (x 2 )φ 3 (x 3 )φ 4 (x 4 ) = ∆,J C ∆ 1 ,∆ 2 ∆,J C ∆ 3 ,∆ 4 ∆,J G ∆ i ∆,J (x i ), (1.70) 
with the conformal blocks G ∆ i ∆,J , which can be seen as transmitting an operator of dimension ∆ and spin J. We used a condensed notation ∆ i and x i to stand for a dependence on the four conformal dimensions or positions.

An important formalism in recent studies of d dimensional CFTs (e.g. [START_REF] Liu | d-dimensional SYK, AdS Loops, and 6j Symbols[END_REF][START_REF] Simmons-Duffin | A spacetime derivation of the Lorentzian OPE inversion formula[END_REF]) introduces the (unphysical) shadow operators Õ ∆,J of dimension ∆ = d -∆, dual to operators O ∆,J , and the conformal partial waves

Ψ ∆ i ∆,J (x i ) = dx 0 φ 1 (x 1 )φ 2 (x 2 )O(x 0 ) cs Õ(x 0 )φ 3 (x 3 )φ 4 (x 4 ) cs . (1.71)
We denoted by • cs the conformal structure of correlators with OPE coefficients set to one. Conformal partial waves form an orthogonal set when integrated over the spatial positions they 

d d y Õ ∆,J (x 1 ) Õ ∆,J (y) cs O ∆,J (y)O 2 (x 2 )O 3 (x 3 ) cs = S O 2 O 3 O Õ ∆,J (x 1 )O 2 (x 2 )O 3 (x 3 ) cs ,
(1.72) or more explicitely

S ∆ 1 ,∆ 2 ∆,J = π d/2 Γ(∆ -d/2)Γ(∆ + J -1)Γ( ∆+∆ 1 -∆ 2 +J 2 )Γ( ∆+∆ 2 -∆ 1 +J 2 ) Γ(∆ -1)Γ(d -∆ + J)Γ( ∆+∆ 1 -∆ 2 +J 2 )Γ( D+∆ 2 -∆ 1 +J 2 )
.

(1.73)

Conformal partial waves can be written as linear combination of the conformal blocks:

Ψ ∆ i ∆,J (x i ) = - 1 2 J S ∆ 1 ,∆ 2 ∆,J G ∆ i ∆,J (x i ) + - 1 2 J S ∆ 3 ,∆ 4 ∆,J G ∆ i ∆,J (x i ) . (1.74)
Note the exchange of ∆ with ∆ between the two terms. We will make use later of the irreducible four-point kernel of scalar fields φ with the same conformal dimension ∆ φ , in the channel (12 → 34), defined as:

K(x 1 , x 2 ; x 3 , x 4 ) = dx a dx b G 1a G 2b δΣ 34 δG ab , (1.75) 
with Σ and G corresponding to the self-energy (1PI amputated two-point function) and the two-point function of the field φ. Their indices are here a shorthand for the position of the field (1 for x 1 , etc.). Notice that under conformal transformations, K transforms as two δ functions since Σ transforms as an inverse two-point function. In section 1.5 with the 2PI language, we will show that the four-point function in this same channel decomposes as a series in K:

φ 1 φ 2 φ 3 φ 4 (12→34) = dx a dx b 1 1 -K (x 1 , x 2 ; x a , x b ) (G a3 G b4 + G a4 G b3 ) . (1.76) 
Representation theory also tells us that15 

φ 1 φ 2 φ 3 φ 4 = 1 |x 12 | 2∆ φ |x 34 | 2∆ φ + J d/2+i∞ d/2 d∆ 2πi ρ(∆, J)Ψ ∆ φ ∆,J (x i ), (1.77) 
the first term coming from the insertion of the identity operator and the second term corresponding to the expansion of the propagation through the channel (12 → 34). One can show that the first two terms in this channel are given by

φ 1 φ 3 φ 2 φ 4 + (1 ↔ 2) = j d/2+i∞ d/2 d∆ 2πi ρ 0 (∆, J)Ψ ∆ φ ∆,J (x i ), (1.78) ρ 0 (∆, J) = 1 + (-1) J n ∆,J t 0 S ∆φ ,(∆,J) ∆φ S ∆ φ ,(∆,J) ∆φ , (1.79) 
where n ∆,J and t 0 are known constants depending on the dimensions d, ∆ and spin J. Conformal invariance implies that

d d x 3 d d x 4 K(x 1 , x 2 ; x 3 , x 4 ) φ 3 φ 4 O ∆,J (x) = k(∆, J) φ 1 φ 2 O ∆,J (x) . (1.80)
From eq. (1.76) follows

ρ(∆, J) = 1 1 -k(∆, J) ρ 0 (∆, J). (1.81)
The symmetry of the density ρ(∆, J) = ρ( ∆, J) and the decomposition (1.74) allows to extend the integration contour on the whole imaginary axis:

φ 1 φ 2 φ 3 φ 4 (12→34) = J d/2+i∞ d/2-i∞ d∆ 2πi 1 1 -k(∆, J) ρ 0 (∆, J) - 1 2 J S ∆ φ ∆ φ ∆,J G ∆ φ ∆,J (x i ) . (1.82)
Closing the contour on the right takes up poles coming from k(∆, J), the Γ functions hiding in ρ 0 , the shadow coefficients and the conformal blocks, but the only ones that don't cancel are those such that k(∆ n , J) = 1, leading to

φ 1 φ 2 φ 3 φ 4 (12→34) = J,n C ∆ φ ∆ φ ∆n,J 2 G ∆ φ ∆n,J (x i ), (1.83) 
with

C ∆ φ ∆ φ ∆n,J = Res 1 1 -k(∆, J) ; ∆ n ρ 0 - 1 2 J S ∆ φ ∆ φ ∆,J . (1.84) 
Actually, the question of what poles contribute is more subtle [START_REF] Simmons-Duffin | A spacetime derivation of the Lorentzian OPE inversion formula[END_REF][START_REF] Caron-Huot | Analyticity in Spin in Conformal Theories[END_REF]. Since this formula was proved when the dimensions of the external operators lie on the principal series (∆ φ = d/2 + ir, r ∈ R ≥0 ), and closing the contour on the right, we keep the poles on the right of d/2 (the situation for poles on d/2 is more tricky). When we consider more generic external dimensions, the contour has to be deformed to pass through those dimensions all the while leaving only the poles taken up earlier on its right. This peculiarity will be met in Chapter 3.

Remarks

Long-range models. We will later study a model with fractional power of the inverse Laplacian as free propagator

S = d d xφ(-∂ 2 ) ζ φ + S int [φ]. (1.85)
Such rescaling corresponds physically to long-range models, for instance spins correlated at arbitrary distance. Without interactions they are known as generalized free fields, that are trivially conformal. With interaction, models have also been proved to possess conformal fixed points, by embedding them in a space of larger dimension D = d + 2 -2ζ, localizing the kinetic term while the interaction appears as a defect, and by considering the Ward identities under scaling and special conformal transformations, show that they are proportional to the β functions of the system. This implies that conformal invariance is restored at the fixed point. Concerning Bosonic models, a large work focused on φ 4 models around dimension 3 [START_REF] Paulos | Conformal Invariance in the Long-Range Ising Model[END_REF]. Depending of the value of ζ, different critical properties are laid out:

Gaussian (ζ < d/4), short-range (ζ > ζ * ) or long-range (d/4 < ζ < ζ * ), for some ζ * .
Perturbative and rigorous estimates of critical exponents have been obtained as well as a perturbative proof of conformal invariance. 16
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With Fermions, [START_REF] Gawedzki | Renormalizing the nonrenormalizable[END_REF] used such rescaling on a two-dimensional quartic model, such that the marginal interaction becomes non-renormalizable, but leading to a UV fixed point that could be reached perturbatively in ǫ. Finally for models that are close to conformal (such as the SYK model that we will discuss later), it is worthwhile to tune their dimension to match the nearly-conformal one, in order to study the conformal sector of the theory [START_REF] Gross | A line of CFTs: from generalized free fields to SYK[END_REF].

One important point is that the free propagator is not renormalized, being non-local, while radiative corrections contribute only local divergences. A second remark is that by manipulating the field dimension, we can tune the critical dimension until the interaction becomes marginal, while the space-time dimension remains fixed. This provides another way to study perturbatively the RG flow without generating any anomalous dimension of the bare fields.

Quantum Gravity and Random Geometry 1.3.1 Panorama of Quantum Gravity

The two most powerful and predictive theories at hand for now are general relativity and quantum mechanics, which unfolded into quantum field theory, or quantum mechanics at each point of space. The first one, deterministic, flourishes at large distances, it gives dynamics to spacetime and predicted among others deflection of light around massive objects, gravitational waves and black holes. Its natural mathematical language is that of geometry. The second one excels at microscopic scales, with the LHC reminding continuously the precision of the Standard Model, lasers displaying the emergence of collective phenomena or the development of quantum computers that may revolutionize the way we deal with information or simulate systems. We are more familiar seeing it expressed with algebra or analysis. But its intrinsically random nature, the status of the observer in measurement, disconcert and are subject to unceasing philosophical discussions.

Naive attempts to reconcile both in order to write a theory of gravity valid at all scales describing all the while its interactions with matter seemed flawed since general relativity is non-renormalizable as a four dimensional field theory. To proceed, we would need to abandon at least one of the axioms that seed each theory: locality, general covariance, unitarity or something else. Among the questions that divide are: the treatment of the geometry as a background on which matter distributes or as emerging with the matter from a single entity, the existence of a minimal length scale, the validity of quantum field theoretic language at the Planck scale, etc. Also, the extent to which a simple Wick-rotation from Euclidean signature is enough to learn about the four dimensional space-time remains blurry.

But what is sure, is that a quantum theory of gravity should provide a resolution of a pressing problem deeply rooted in Einstein's equations: cosmological singularities, such as the Big Bang and black holes. We will not discuss the first, nevertheless the second already highlights many curious aspects of the quantum nature of gravity.

Until recently, black holes remained quite hypothetical predictions of Einstein's theory of general relativity, with only indirect evidence of their existence such as observation of their accretion disks and X-ray emissions, or of stars orbiting around them. Today, gravitational waves detectors allow to decipher much finer signals, such as that emitted from the merging and ringdown of two stellar mass black holes [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF] matching precisely with numerical simulations. More recently, the EHT collaboration is taking a closer look at the event horizon of very compact objects and made available the first "picture" of a black hole in April 2019 [START_REF] Akiyama | First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole[END_REF].

From a theoretical standpoint, black holes are filled with puzzles. To start, according to the "no-hair theorem" obtained in the early 1970s, a generic stationary black hole solution to Einstein's equations is given by the Kerr-Newman metric, characterized by only three parameters: mass, angular momentum, and electric charge. At about the same time, a formula for its entropy was derived [START_REF] Bekenstein | Black holes and entropy[END_REF], proportional to the area of its horizon, S bh = c 3 k B A/4G , followed further by the four laws of black hole thermodynamics [START_REF] Bardeen | The Four laws of black hole mechanics[END_REF], assimilating a black hole with a thermodynamical system at equilibrium. At what temperature? In 1975, Hawking quantized a scalar field on the background of a Schwarzschild black hole of mass M , concluding that the "vacuum state" was filled with thermal radiation at temperature T H = c 3 /8πGk B M [START_REF] Hawking | Particle Creation by Black Holes[END_REF]. Hence the black hole was evaporating and an initial pure state associated to the matter before the collapse would evolved into a final thermal state. 17 Where did the initial information contained in the matter that formed the black hole go to? In other words, how could this evaporation correspond to a unitary process in a quantum theory? This is the information paradox. In order to preserve unitarity, Page [START_REF] Page | Information in black hole radiation[END_REF], considering a finite quantum mechanical system, has argued that the Von Neumann entropy of the radiation should, starting from zero, first obey a linear increase in time as it is emitted by the black hole, and after reaching a maximum (at the Page time), should return to zero (in a power law, non-universal manner). As we will point later, recovering this curve for a realistic system in a fully controlled way, may not be completely out of sight today. Nevertheless, understanding how evaporation happens dynamically or what happens to an observer traversing an event horizon would require a clearer picture of the involved fine-grained gravitational degrees of freedom. At the same time, this problem questions basic assumptions in the physicists' toolbox such as the use of effective field theory far from the horizon, the decay of exponential corrections approaching the horizon, the validity of quantum mechanics, etc. For a short survey of the information paradox, some of the tentatives to tackle it and relation of astronomical data, see [START_REF] Compère | Are quantum corrections on horizon scale physically motivated?[END_REF].

The preceding elaboration seems to hint that gravity is an emergent phenomenon, much as hydrodynamics is a effective description at large scale of numerous microscopic interacting degrees of freedom. 18 Except that in view of the dependence of the entropy on the area of the horizon, the fundamental degrees of freedom seem to hide in a "spacetime" of one dimension less. This argument, developed in the 1990s, lead to the "holographic principle" [START_REF] Hooft | Dimensional reduction in quantum gravity[END_REF][START_REF] Susskind | The World as a hologram[END_REF]. Recently, considerable emphasis has been put on establishing connections between gravity and quantum information theory, in particular entanglement properties of quantum field theories (e.g. [START_REF] Witten | APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory[END_REF]). For example, qubit circuits have been designed to model black hole evaporation [START_REF] Osuga | Qubit Transport Model for Unitary Black Hole Evaporation without Firewalls[END_REF].

At the crossroad

This said, different approaches have emerged to tackle the more general problem of quantizing gravity with very different conceptual foundations. They essentially divide into continuum and discrete approaches, the second akin to the lattice version of QFT, except that the lattice must be dynamical.

String Theory. In the same way that quantum field theory considers elementary particles as point-like objects propagating in (a fixed) space-time, string theory quantizes string degrees of freedom (of string length l s ) that propagate in space-time (the target space), sweeping a two-dimensional surface, the worldsheet [START_REF] Polchinski | What is string theory?[END_REF]. Two formulations of the theory are employed, as a sigma model of fields (forming ultimately the target space) on the worldsheet, from which, when the fields are quantized, the spectrum is extracted, scattering amplitudes computed, etc. or as an effective low energy classical field theory background above which fields are quantized, reproducing the preceding spectrum. 19 Among its achievements, we count the existence of a massless spin two particle in its spectrum [START_REF] Scherk | Dual Models for Nonhadrons[END_REF], the UV-finiteness of correlation functions up to two loops [START_REF] Morozov | NSR Superstring Measures Revisited[END_REF] due to the non-locality of the string interactions and a profusion of dualities [START_REF] Polchinski | Dualities of Fields and Strings[END_REF]. Mathematical coherence has also contributed many new mathematical results and interpretations of them in number theory, algebraic geometry, etc. However, for the theory to be consistent, supersymmetry and a ten-dimensional space-time are required and getting away of these two conundrums leads to an extraordinary number of models and vacua. In addition to strings, second fundamental dynamical objects in the theory are Dp-branes. Of p-dimensional spatial extension, they may serve perturbatively as endpoints of open strings but arise also as non-perturbative solutions in the string coupling. Given N coincident branes, the two ends of the string may be described by an effective hermitian N × N matrix. More precisely, massless excitations of open strings transverse to the brane correspond to SU (N ) gauge fields on the brane. When a large number of branes is stacked together, they form black holes. The entropy of extremal supersymmetric black holes has been computed [START_REF] Strominger | Microscopic origin of the Bekenstein-Hawking entropy[END_REF] and found to match the 1/4 factor of Bekenstein-Hawking.

Gauge/gravity duality. The idea of gravitational degrees of freedom being encoded in a lower dimensional spacetime, as a hologram, was made concrete through a duality arising in string theory, between a gauge theory and a gravitational one living in one more dimension [START_REF] Maldacena | The Large N limit of superconformal field theories and supergravity[END_REF]. It gives a dictionary that relates symmetries, states, operators and correlation functions of both sides (see e.g. the review [START_REF] Hubeny | The AdS/CFT Correspondence[END_REF]). The duality originally grew and is much better understood in asymptotically AdS spacetimes, where the quantum theory is viewed as living on the timelike asymptotic boundary which presents conformal symmetry. 20 It is a strong/weak duality in the following sense. If the gauge coupling of the boundary SU (N ) gauge theory is given by g Y M , with 't Hooft coupling λ = g 2 Y M N , those parameters are related to the string coupling g s and bulk curvature l/l s by

4πg s = g 2 Y M = λ N λ 1/4 ∼ (4πg s N ) 1/4 = l l s , (1.86) 
such that the bulk approximates to classical gravity in the limits N ≫ λ ≫ 1, that is computations in a strongly coupled field theory are reformulated in terms of a semi-classical process on a gravitational background. Incidentally, it brings an interesting geometrization of the renormalization group: boundary correlation functions at different energy scales are computed at different radial positions in AdS, UV degrees of freedom close to the boundary and moving deep in the bulk as the RG flows. Quite curiously this conjecture has brought contributions in many different fields: string theory, condensed matter, quantum information theory, pure mathematics, etc.

Higher-spins. Higher-spin gauge theories generalize the structure equations of the spinconnection and the vielbein to involve in non-linear equations an infinite tower of massless higher spins gauge fields (reviews include [START_REF] Bekaert | Nonlinear higher spin theories in various dimensions[END_REF][START_REF] Didenko | Elements of Vasiliev theory[END_REF]). In particular, they always contain a spin two gauge field, the graviton. They use techniques of twistor and non-commutative theories. They are consistently written on background with non vanishing cosmological constant, in any dimension, and have obtained support from the holographic conjecture. In particular, gauged vector models are believed to be the boundary duals of higher-spin theories, the gauging condition being necessary for matching the spectra of primary operators on both sides. Further substance to the correspondence is given by precise equivalence of three-point functions, nontrivial to compute in the bulk. 21 Duality between correlation functions of Fermions, Bosons, free and critical models has been brought to light, with similar relations in the higher-spin duals going from the free to the interacting model by changing the boundary conditions of the bulk fields [START_REF] Giombi | Higher Spin -CFT Duality[END_REF]. Extensions of this line of work go towards getting the spectrum of operators when the higher-spin symmetry is (weakly) broken. Recently, tensor models have been conjectured to be dual to multi-particle versions of higher-spin theories [START_REF] Vasiliev | From Coxeter Higher-Spin Theories to Strings and Tensor Models[END_REF].

Asymptotic safefy. The program of asymptotic safety postulates that gravity may be nonperturbatively renormalizable, or said otherwise, present a non-Gaussian UV fixed point of the renormalization group with a finite number of relevant operators, an idea vented by Weinberg [START_REF] Weinberg | Ultraviolet divergences in quantum theories of gravitation[END_REF]. One way to test such idea relies on the non-perturbative functional RG to generate flow equations of a truncated gravitational effective action including couplings for the (dimensionless) Newton's and cosmological constants. Notably such a non-trivial fixed point has been found [START_REF] Reuter | Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation[END_REF] and resists in larger truncations. The late [START_REF] Bonanno | Critical reflections on asymptotically safe gravity[END_REF] contains a critical overview of the program. Surprising at first sight, a reduction of the effective spectral dimension (cf. Subsection 1.3.3) of the spacetime was observed [START_REF] Lauscher | Fractal spacetime structure in asymptotically safe gravity[END_REF], changing from four at large scales to two at UV scales, dimension at which general relativity becomes renormalizable. This property was also encountered in another approach (see below).

Non-commutative geometry. Another point of view assumes that a minimal lengthscale renders non-trivial commutation relations between space (or spacetime) coordinates of space. Such a scale arises naturally if one attempts to probe a small enough region of spacetime, which according to Heisenberg's principle, would necessitate enough energy such as to create a black hole. A characteristic problem in this framework is the appearance of mixing of UV and IR divergences when attempting to renormalize the theory. The addition of a harmonic potential for the non-commutative parameter cured the problem and interacting quantum field theories were shown asymptotically safe, with restoration of translation and Lorentz invariance in the planar sector. One can find excellent reviews in [START_REF] Wulkenhaar | Quantum field theory on noncommutative spaces[END_REF] and for a broader perspective on non-commutative geometry in [START_REF] Connes | Noncommutative Geometry, the spectral standpoint[END_REF][START_REF] Poulain | On the quantum structure of spacetime and its relation to the quantum theory of fields: κ-Poincaré invariant field theories and other examples[END_REF].

Loop Quantum Gravity. Loop Quantum Gravity goes by quantizing general relativity as a constrained system under diffeomorphism invariance. Focusing on the background independent side of the story, it has a covariant formulation in terms of the partition function for spin-foams, or 2-complexes, whose graph structure codes for an SU (2) connection at each edge, leading to Lorentz invariance. Group Field Theories are a Lagrangian formulation that generate those spin foam amplitudes from their Feynman diagrams. They are close relatives to the tensor models we will discuss in details later, in that the field components take their values on copies of a group. Interestingly many of those models are asymptotically free [START_REF] Carrozza | Flowing in Group Field Theory Space: a Review[END_REF].

Dynamical triangulation. Others assume that spacetime could emerge as a continuum limit of a discrete lattice built by gluing simplices together, tuning the partition function of the system towards a UV critical point; crudely it is statistical physics for random geometry. The Regge action of a discrete configuration mimics the Einstein-Hilbert action, depending on the number of simplices of different dimensions (giving a phase space parametrized by a coupling to the volume and another to a discrete notion of curvature). Mostly relying on Monte-Carlo simulations, CHAPTER 1. TENSOR FIELD THEORY: BACKGROUND AND MOTIVATIONS they construct diffeomorphism invariant observables (such as mean volume of subsimplices, curvature, etc.) to characterize phases and phase transitions. Causal dynamical triangulation, where a preferred direction is imposed such that gluing the simplices foliate the spacetime, features notable emergent properties: dimensional reduction [START_REF] Ambjorn | Spectral dimension of the universe[END_REF][START_REF] Reuter | Fractal space-times under the microscope: A Renormalization Group view on Monte Carlo data[END_REF] and a second order phase transition from which a continuous limit can be taken. For an overview of recent developments in the discrete approach to quantum gravity, we refer to the special issue [START_REF] Carrozza | Editorial for the Special Issue "Progress in Group Field Theory and Related Quantum Gravity Formalisms[END_REF].

2d Quantum Gravity

Since in four dimensions, gravity is non-renormalizable and manifolds are difficult to classify, it is worthwhile to start quantizing in lower dimensions, more specifically two. Dividing the partition function into a gravitational and a matter part, we have

Z = topologies DXDg exp (-S EH [g ab ] -S m [g ab , X]) , (1.87) 
S EH [g ab ] = 1 4π d 2 ξ |g|(R -2Λ), (1.88) S m [g ab , X] = 1 8π d 2 ξ |g|g ab ∂ a X µ ∂ b X µ , (1.89) 
where we are supposed to integrate over all distinct differentiable structures and topologies are classified by the genus of the surface. The integral of the Ricci curvature R gives 4π(2 -2h), from Gauss-Bonnet theorem, with h the genus of the surface, hence is topological. Assigning a coupling log g s in front of the gravitational action, one finds the string expansion in the genus g

2(h-1) s
describing the different topologies of the worldsheet parametrized by the coordinates ξ. The matter action S m could contain some extra potential V (X). Different procedures were adopted to work out this partition function and matter correlation functions, splitting in a continuum or a discrete perspective.

From the continuum

In the path-integral approach, by the Riemann uniformization theorem that allows to gauge transform any two-dimensional metric g to a reference metric ĝ

g = e φ ĝ , (1.90) 
up to a dilaton φ, leaving a residual two-dimensional conformal group, the partition function rewrites as Liouville conformal field theory

Z = DφDXD(gh)e -Sm[X,ĝ]-S gh [b,c,ĝ]+S L [φ,ĝ] , (1.91) 
S L [φ, ĝ] = 1 4π d 2 ξ ĝ ĝab ∂ a φ∂ b φ + Q Rφ + 4πΛe γφ , (1.92)
where Λ is a cosmological constant, R is the curvature and the bc ghosts have central charge c g = -26. The Liouville action S L is conformally invariant if we take

Q = 25 -c m 6 = 2 γ + γ 2 , (1.93) 
ĝ → e σ ĝ φ → φσ/γ (1.94)
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and the central charge is c L = 1 + 6Q 2 . Conformal field theory was born and techniques were developed to extract correlation functions and associated critical exponents.

In particular [START_REF] Knizhnik | Fractal Structure of 2D Quantum Gravity[END_REF] studied how the critical exponents of minimal CFTs (0 < c m < 1) coupled to 2d gravity (in the light-cone gauge) changed with respect to pure gravity. When the theory was defined on a surface of fixed area, they found that the string susceptibility γ str , controlling the scaling of the partition function with respect to the area, was given by

γ str = 1 12 c m -1 -(1 -c m )(25 -c m ) , (1.95) 
which remains real only for c m ≤ 1 and c m ≥ 25. This was the reason of the c m = 1 barrier in non-critical strings. Further the conformal dimensions ∆ primary fields involving matter are modified with respect to those on fixed geometry ∆ 0 , in a typical relation encoded by the KPZ relation:

∆ 0 = ∆ + γ 2 4 ∆(∆ -1), γ = 25 -c m 6 - 1 -c m 6 .
(1.96)

These relations were extended to higher genera in [START_REF] David | Conformal Field Theories Coupled to 2D Gravity in the Conformal Gauge[END_REF][START_REF] Distler | Conformal Field Theory and 2D Quantum Gravity[END_REF]. For a more comprehensive account, we refer to [START_REF] Di Francesco | 2-D Gravity and random matrices[END_REF][START_REF] Anninos | Notes on Matrix Models[END_REF].

However a proper definition of the dilaton measure was missing, as well as a proper treatment of the exponential term. The upgrade came from probability theory and was phrased in the terms of "Gaussian multiplicative chaos" (a distributional limit), from which the measure was rigorously defined. Among other results, the three-point function (DOZZ formula) was recovered [START_REF] Vargas | Lecture notes on Liouville theory and the DOZZ formula[END_REF] and correlation functions on the sphere and surfaces of higher genus were computed in [START_REF] David | Liouville quantum gravity on complex tori[END_REF].

From Feynman Graphs

Feynman diagrams are used as a perturbative tool for evaluating amplitudes in a QFT Taylor expanding the interaction term and Wick-contracting the fields. From another point of view, they generate particular (piecewise-linear) discretized geometries to which the associated amplitude is a natural measure, vertices corresponding to interactions and edges to the propagators. This observation was particularly fruitful for realizing two dimensional quantum gravity from a perturbative expansion of matrix models. By analogy, it will be tempting to increase the number of indices for discretizing higher-dimensional geometries, hence tensor models.

Let us consider a zero-dimensional real matrix field M of size N × N and quartic potential

Z(g) = dM exp (-N Tr S(M )) S(M ) = 1 2 M 2 + g 4 M 4 , (1.97) 
where the integration measure is taken as follows:

dM = N i=1 dM ii 1≤i<j≤N dM ij = 1≤i<j≤N |λ i -λ j | 2 N i=1 dλ i dΩ N , (1.98) 
with the first factor being the Vandermonde determinant and Ω N the Haar measure on the sphere S N . The partition function Z can be computed using Wick's theorem with the propagator

M ij M kl = 1 N δ ik δ jl , (1.99) 
depicted as two parallel strands, while interaction vertices are drawn as crossroads (Fig. 1.3). This leads to an expansion in terms of connected graphs F n with n interaction vertices:

Z(g) = e F (g) F (g) = n≥0 (-1) n g n N n-E+L F n (g).
(1.100)
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We made explicit the factors of N coming for the insertions of interactions (n), the propagators from the Wick contractions (edges E) and the loops L coming from contracting the matrix indices, since propagators and interaction bring each a factor of N , and each loop another factor of N .

Figure 1.3: The propagator, the interaction and a two-vertex vacuum graph, in ribbons.

From the Euler formula n -E + L = 2 -2h between the number of faces L, edges E and vertices n of a graph and its genus h, the partition function sums as:

Z = N 2 G N 2-2h(G) .
(

Hence, matrix models feature a topological expansion, entirely analogous to that encountered earlier with g s = 1/N , with planar diagrams dominating the series at large-N . This simplification was first noted by 't Hooft for treating QCD [START_REF] Hooft | A Planar Diagram Theory for Strong Interactions[END_REF]. 22 To determine the partition function, one has now to enumerate planar graphs or more precisely maps. The Cori-Vauquelin-Schaeffer bijection allows to identify those maps, picked at random, with particular correlated random walks. The original graph supports a metric structure (e.g. the graph distance) and the problem amounts to establish convergence in the Gromov-Hausdorff limit of this random space to a continuous limit.

Two schools have grown, working either in the direction just outlined (see e.g. [START_REF] Gall | Random geometry on the sphere[END_REF][START_REF] Miermont | Aspects of random maps[END_REF]) or making sense of the Liouville path-integral measure straight in the continuum, studying two-dimensional conformally invariant growth processes (the earlier mentioned SLE curves), depending on the above γ parameter (see [START_REF] Gwynne | Mating of trees for random planar maps and Liouville quantum gravity: a survey[END_REF][START_REF] Miller | Liouville quantum gravity as a metric space and a scaling limit[END_REF] for recent reviews). At the special value γ = 8/3, physically corresponding to pure gravity, both points of view were shown to match [START_REF] Miller | Liouville quantum gravity and the Brownian map I[END_REF], identifying the canonical metric structure of the limiting two-dimensional surface. Other values of γ ∈ (0, 2) describe statistical models coupled to the planar maps, corresponding to models with central charge c < 1, and can be studied in the matrix point of view by decorating the planar map with loops. More precisely, through polynomial potentials at least of order m and by an appropriate tuning of the couplings, one can reach a multi-critical point of order m and change the string susceptibility to γ str = -1/m. This family is described in the continuum limit by the non-unitary (2m -1, 2) minimal CFT. The generic (p, q) minimal models whose central charge is c p,q = 1 -6(pq) 2 /pq, are obtained from multi-matrix models [START_REF] Anninos | Notes on Matrix Models[END_REF]. More recently, a generalization for c ∈ (1, 25) has been devised [START_REF] Gwynne | Liouville Quantum Gravity with Matter Central Charge in (1, 25): A Probabilistic Approach[END_REF]. Its physical interpretation is that the vacuum on which correlation functions are computed is unstable [START_REF] David | A Scenario for the c > 1 barrier in noncritical bosonic strings[END_REF]. The KPZ relations have been also confirmed in the planar map context [START_REF] Garban | Quantum gravity and the KPZ formula[END_REF][START_REF] Gwynne | KPZ formulas for the Liouville quantum gravity metric[END_REF].

Looking for analogs of the KPZ relations between critical behaviour in flat and dynamical quantum geometry in higher dimensions remains an important challenge.

Random matrix models (seen as formal or convergent integrals) dispose of a wealth of techniques to be confronted with [START_REF] Eynard | Random matrices[END_REF][START_REF] Eynard | Counting Surfaces[END_REF]. For instance, with normal matrices in a potential V (M ), it can be helpful to diagonalize the matrix and study the effective action for the eigenvalues

S[λ 1 , . . . , λ N ] = 1 N N i=1 V (λ i ) - 1 N 2 1≤i<j≤N log(λ i -λ j ) 2 , (1.102) 
the logarithmic repulsion coming from the Vandermonde in the earlier Jacobian. 23 When we will consider the intermediate formalism in tensor models, the logarithmic contribution of the matrix intermediate field will be subleading with respect to the potential. In the large-N limit, one can solve for the continuous eigenvalue density (a kind of emergent geometry). One can also write (loop) equations for correlation functions, all encoded in the solution to an algebraic equation, the spectral curve; they were formalized as topological recursion and had a large impact for proving Witten's conjecture on intersection numbers of moduli spaces of Riemann surfaces. The reasoning was also generalized to two-matrix models [START_REF] Bergere | Loop equations and topological recursion for the arbitrary-β two-matrix model[END_REF].

Random Geometry from the bottom up

Our approach to random geometry will also start from discrete graphs with a finite number of vertices connected between each other by edges. The graph is naturally equipped by the symmetric graph distance. A scaling limit is taken by sending the number of vertices to infinity and the graph distance appropriately to zero, such that the limiting geometry is continuous. One should provide an appropriate measure to the initial graphs and study various properties of the continuum limit (topology, metric, Hausdorff or spectral dimensions, etc.). If one eyes the quantization of gravity, the measure should be related to the Einstein-Hilbert action and the resulting continuous geometry should be a non-trivial higher than three-dimensional manifold, which we are, to some extent, supposed to experience.

Recurring themes once we are looking for the scaling limit of random ensembles of objects are the fractal nature of the continuous object and the emergence of universality, i.e. that the limit does not depend on details of the initial set.

Correspondingly, on fractal spaces, depending on the information we are concerned with, two definitions of dimension are especially useful:

• Hausdorff dimension: it gives a global picture, close to the topological dimension. More precisely, given a set A, its Hausdorff dimension is:

d H (A) = inf d ≥ 0 : lim r→0 inf i r d i = 0, such that balls S of radii r i ∈ (0, r) cover A , (1.103) 
• spectral dimension: Formally, given a set A and a random walk {X t } t≥0 starting at x ∈ A, noting the probability that the random walker is at y ∈ A at time t by q t (y, x), the spectral dimension of A is

d s (A) = -2 lim t→∞ log q t (x, x) log t . (1.104)
The spectral dimension provides a more local picture of the landscape.
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Two categories of random geometries are very well-understood: trees and surfaces. Their associated field theoretic models are respectively vector and matrix models in their large-N limit for planar surfaces.

In the same way that the scaling limit of discrete random walks is the Brownian motion, trees and surfaces both have their continuous representative. For the first it is the continuous random tree (CRT) of Aldous, a random metric space, scaling limit of various critical models. For example, the branching process corresponding to Galton-Watson trees (which we will encounter later), at criticality (such that the growth continues indefinitely with an average of a child per generation), converges towards the CRT. Galton-Watson trees appear in many physical models related to growth. The Hausdorff dimension of the CRT has been shown to be 2 [START_REF] Duquesne | Probabilistic and fractal aspects of Levy trees[END_REF][START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF], same as for the Brownian motion, and its spectral dimension to be 4/3 [START_REF] Durhuus | The Spectral Dimension of Generic Trees[END_REF][START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF]. Subcritical trees present a different scaling limit with a single vertex of infinite degree to which are attached Galton-Watson trees. Branching processes with infinite variance (α-stable laws, α ∈ (1, 2]) have also been considered and shown to lead to still different scaling limits, of Hausdorff dimension d H = α/(α -1) [START_REF] Duquesne | Probabilistic and fractal aspects of Levy trees[END_REF][START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF] and spectral dimension d s = 2α/(2α -1) [START_REF] Croydon | Random walks on Galton-Watson trees with infinite variance offspring distribution conditioned to survive[END_REF][START_REF] Croydon | Spectral Asymptotics for Stable Trees[END_REF].

The universal planar random surface, bearing the name Brownian sphere (or Brownian map), has been constructed in the two ways we mentioned earlier. The Brownian map is homeomorphic to the 2-sphere (has topological dimension 2) [START_REF] Le Gall | Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere[END_REF][START_REF] Miermont | On the sphericity of scaling limits of random planar quadrangulations[END_REF] and is reached independently of the polygon used to pave the sphere [START_REF] Gall | Uniqueness and universality of the Brownian map[END_REF][START_REF] Bettinelli | The scaling limit of uniform random plane maps, via the Ambjørn-Budd bijection[END_REF][START_REF] Addario-Berry | Convergence of odd-angulations via symmetrization of labeled trees[END_REF]. In [START_REF] Gall | The topological structure of scaling limits of large planar maps[END_REF], it was proved that the Brownian map had Hausdorff dimension 4, the intuitive reason being that it could be constructed by gluing two Brownian random walks motions on each other. It was later shown in [START_REF] Ambjørn | On the fractal structure of two-dimensional quantum gravity[END_REF][START_REF] Gwynne | Random walk on random planar maps: spectral dimension, resistance, and displacement[END_REF] that its spectral dimension was two for the whole range γ ∈ (0, 2). The dependence of the Hausdorff dimension with the central charge is on the other hand less clear, with the propositions of Watabiki [START_REF] Watabiki | Analytic study of fractal structure of quantized surface in two-dimensional quantum gravity[END_REF], and Ding and Goswami [START_REF] Ding | Upper Bounds on Liouville First-Passage Percolation and Watabiki's Prediction[END_REF] closest to numeral simulations [START_REF] Barkley | Precision measurements of Hausdorff dimensions in two-dimensional quantum gravity[END_REF]. Other topologies than the sphere were also worked out, such as the disk [START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF] or the half-plane [START_REF] Baur | Geodesic rays in the uniform infinite half-planar quadrangulation return to the boundary[END_REF].

Essential tools for analytically establishing the above properties are bijections with trees, the Brownian motion, SLE curves or with pairs of them [START_REF] Gwynne | Mating of trees for random planar maps and Liouville quantum gravity: a survey[END_REF]. In particular, to determine the spectral dimension, one has different tools available. Within the discrete approaches to quantum gravity, Monte-Carlo simulations of diffusion process on the considered geometry allow a direct estimate of d s , e.g. [START_REF] Benedetti | Spectral geometry as a probe of quantum spacetime[END_REF]. Otherwise, estimates have been obtained either from the generating function of random walks or from a direct control of the heat-kernel, as we shall develop in Chapter 4. In the Appendix 4.A, we explain in more details how the spectral dimension can be obtained from bounds on the heat kernel.

Sorting out ensembles of random geometries of dimensions higher than two is much harder, since the genus itself is not enough any more to distinguish the non-equivalent differentiable structures (the non-orientable case can be amended with some surgery, that is opening a hole and gluing a Moebius strip). Inspiration may come from numerical simulations gluing a large number of simplices with a Regge-like action as done in dynamical triangulation, or without any a priori, to determine average observables of a (r + 1)-regular colored graphs uniformly picked at random [START_REF] Carrance | Triangulations colorées aléatoires[END_REF]. Both approaches lead however to a "crumpled" phase, that is a highly connected object, with average distance between two points uniformly bounded. With dynamical triangulations, one also observes a first-order phase transition towards a branched polymer phase. In 4d causal dynamical triangulation, a Hausdorff four-dimensional phase (with properties analogous to a de Sitter geometry) is present, separated from three unphysical phases, relatives of the preceding crumpled and branched polymer phases, by first and at least one second order phase transitions [START_REF] Ambjørn | Towards an UV fixed point in CDT gravity[END_REF][START_REF] Ambjorn | Renormalization in quantum theories of geometry[END_REF].

A novel idea consists in iterating the mating procedure of two trees that allowed to con-
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struct the Brownian map. Namely, Lionni and Marckert proposed the first random geometric object that could generalize the Brownian sphere in higher dimensions [START_REF] Lionni | Iterated foldings of discrete spaces and their limits: candidates for the role of Brownian map in higher dimensions[END_REF]. The first iteration reproduces the CRT (d H = 2), the second gives the Brownian map (d H = 4) and the following D ones are conjectured to have d H = 2 D . Spectral dimension, topology, etc. still need to be analyzed.

The SYK Model and Black Holes

Devised initially as a model of strange metal [START_REF] Sachdev | Gapless spin fluid ground state in a random, quantum Heisenberg magnet[END_REF], the Sachdev-Ye-Kitaev model [START_REF] Kitaev | A simple model of quantum holography[END_REF] is a disordered quantum mechanical system of N strongly interacting Majorana Fermions, with Hamiltonian:

H = i q/2 1≤i 1 <•••<iq≤N J i 1 ...iq ψ i 1 . . . ψ iq , J 2 i 1 ...iq = J 2 (q -1)! N q-1 .
It is parametrized by the inverse temperature β, the order of interaction q and the number of Fermions N . Within the holographic duality, it describes at low temperature the nearhorizon geometry of near-extremal black holes, since at large N it saturates the chaos bound and displays the same effective action breaking reparameterization invariance through the Schwarzian action [START_REF] Kitaev | A simple model of quantum holography[END_REF][START_REF] Polchinski | The Spectrum in the Sachdev-Ye-Kitaev Model[END_REF][START_REF] Maldacena | Remarks on the Sachdev-Ye-Kitaev model[END_REF][START_REF] Maldacena | Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space[END_REF]. Let us explain a bit deeper those two features.

A notion of a quantum chaos has been developed for quantum systems, by computation of a specific correlator, evaluated at inverse temperature β:

C(t) = [V (t), W (0)] 2 β . (1.105) 
Seen as the quantization of Poisson brackets between the classical observables associated to V and W , this correlator would probe the sensitiviy to initial conditions. If V was the position and W the conjugate momentum, classically, it would grow exponentially in a chaotic system. Such a growth however can only happen at short times, and C(t) reaches a plateau at longer times, as the system equilibrates. The approach to equilibrium in a quantum system is dictated by Pollicott-Ruelle resonances, to which the black hole analogs are the quasi-normal modes (e.g. [START_REF] Zworski | Mathematical study of scattering resonances[END_REF]). The early Lyapunov exponential growth is related to the exponential redshift observed by an observer near the horizon, for a wave-packet escaping to infinity after bouncing on the event horizon [START_REF] Polchinski | Chaos in the black hole S-matrix[END_REF]. The most relevant term that shapes its evolution is the out-of-timeorder correlator (OTOC):

OT OC(t) = V (t)W (0)V (t)W (0) β . (1.106)
For quantum systems with a large number N of degrees of freedom, this correlator follows a typical structure [START_REF] Maldacena | A bound on chaos[END_REF]:

OT OC(t) V V β W W β = 1 - A N f (t) + O 1 N 2 , (1.107) 
where f (t) ≤ e κt and κ ≤ 2π/β. The bound was argued to be saturated when probing systems with a dual black hole and this was verified in multiple settings, notably from scattering on a BTZ black hole [START_REF] Shenker | Black holes and the butterfly effect[END_REF][START_REF] Shenker | Multiple Shocks[END_REF]. In case of gravitational scattering with massive particles of spin J > 2, the bound generalizes to κ ≤ 2π(J -1)/β (J being the highest spin present) [START_REF] Perlmutter | Bounding the Space of Holographic CFTs with Chaos[END_REF]. We follow from here the analysis of [START_REF] Maldacena | Remarks on the Sachdev-Ye-Kitaev model[END_REF]. In order to build a dimensionless parameter to describe different regimes of the theory, one can use βJ, the UV-dimension of J being 1. Then a lowtemperature (or infrared) regime, at fixed coupling, can be as well described by a strong coupling regime at fixed temperature, or βJ ≫ 1 (finite temperature or not will be distinguished by the domain of the Euclidean time τ ).

To start, we need to obtain the Euclidean two-point function

G(τ, τ ′ ) = 1 N i ψ i (τ )ψ i (τ ′ ) (1.108)
or from time translation invariance, its Fourier transform, 24

G(ω) = ∞ -∞ dτ e iωτ G(τ ). (1.109) 
At finite temperature, the (Matsubara) frequencies are quantized:

ω n = 2π β (n + 1/2)
and the Euclidean time is bounded 0 ≤ τ ≤ β. It is also convenient to define the quantities ∆ = 1/q, J 2 = qJ 2 2 q-1 . At leading order in 1/N , with the free propagator G -1 0 (ω) = iω and the self-energy Σ(ω), the Schwinger-Dyson (SD) equations in the large N limit read

G -1 (ω) = G -1 0 (ω) -Σ(ω), Σ(τ ) = J 2 G(τ ) q-1 , (1.110) 
that is depicted in Fig. 1.4. 25 Notice that they have this simple form written in terms of Fourier and direct space respectively. Given the resemblance of the self-energy with melons, the limiting equations bear the name "melonic". The "blob" indicates a full propagator and a quenched average was taken. The first equation is the usual one linking the complete two-point function to the self-energy. Then, taking advantage of the form of the free propagator, the IR limit simplifies the above equation to the simpler convolution

dτ ′ J 2 G(τ -τ ′ )G(τ ′ -τ ′′ ) q-1 = -δ(τ -τ ′′ ). (1.111)
Reparametrization invariance of eq. (1.111) under any differentiable function f : (1.112) suggests to search for a particular solution of type A way to proceed is to diagonalize the rung operator K. However if 1 is an eigenvalue of K, we will face a divergence and need to return to the full SD equations.

G(τ, τ ′ ) → [f ′ (τ )f ′ (τ ′ )] ∆ G(f (τ ), f (τ ′ )), Σ(τ, τ ′ ) → [f ′ (τ )f ′ (τ ′ )] ∆(q-1) Σ(f (τ ), f (τ ′ )),
G c (τ ) = b|τ | -2∆ sign τ, J 2 b q π = 1 2 -∆ tan(π∆). ( 1 
Recalling the formula for the two point function in the approximate conformal (infrared) limit at zero temperature

G c (τ ) = b |τ | 2∆ sgnτ with b q J 2 π = 1
2 -∆ tan(π∆) we find that in this limit the kernel K becomes (after symmetrizing with respect to (τ 1 , τ 2 ) ↔ (τ 3 , τ 4 ))

K c (τ 1 , τ 2 , τ 3 , τ 4 ) = - 1 α 0 sgn(τ 13 )sgn(τ 24 ) |τ 13 | 2∆ |τ 24 | 2∆ |τ 34 | 2-4∆ , (1.120) 
α 0 = 2πq (q -1)(q -2) tan(π/q) . (1.121)
Conformal invariance allows us to simplify the problem by reexpressing K as a function of the cross ratio χ = τ 12 τ 34 τ 13 τ 24 acting on single variable rung functions

F n+1 (χ) = d χ χ2 K c (χ, χ)F n ( χ).
(

To further simplify the diagonalization, it is important to find out operators commuting with K c . Recalling the SL(2, R) invariance of the two-point function, the associated Casimir operator

C = χ 2 (1 -χ)∂ 2 χ -χ 2
∂ χ is such an operator, with a known complete set of eigenvectors Ψ h (χ) with eigenvalues h(h -1). They are therefore also the eigenvectors of K c (χ, χ). The strategy to compute F can then be roughly summarized as

• Find properties of F n ( χ) and the eigenvectors Ψ h (χ) of the Casimir operator C with these properties.

• Deduce conditions on h. One finds two families, h = 2n with n ∈ N ⋆ and h = 1 2 + is, s ∈ R

• Compute the eigenvalues k c (h) of the kernel K c and the inner products Ψ h , F 0 and Ψ h , Ψ h .

• Conclude that the 4 point function is

F = 1 1 -K F 0 = h Ψ h (χ) 1 1 -k c (h) Ψ h , F 0 Ψ h , Ψ h . (1.123)
• But... one finds a single h = 2 mode with k c (h) = 1, which requires a special desingularization.

For h = 1 2 + is or h = 2n one can compute, for χ < 1, 

Ψ h = A Γ(h) 2 Γ(2h) χ h F 2 1 (h, h, 2h, χ) + B Γ(1 -h) 2 Γ(2 -2h) χ h F 2 1 (1 -h, 1 -h, 2 -2h, χ) , (1.124) 
Ψ h = Γ( 1-h 2 )Γ( h 2 ) √ π F 2 1 h 2 , h 2 , 2 -2h 2 , 2 -2χ χ 2 , (1.125) 
Ψ h = 1 2 ∞ -∞ dy |χ| h |y| h |χ -y| h |1 -y| 1-h . (1.126) 
The conformal spectrum of K follows as:

k c (h) = -(q -1) Γ( 3 2 -∆)Γ(1 -∆) Γ( 1 2 + ∆)Γ(∆) Γ( h 2 + ∆) Γ( 3-h 2 -∆) Γ( 1-h 2 + ∆) Γ(1 + h 2 -∆) , (1.127) 
and is depicted in Figure 1.7.

The conformal part of the four-point function

F h =2 (χ) α 0 = ∞ 0 ds 2π 2h -1 π tan(πh) k c (h) 1 -k c (h) Ψ h (χ) + n≥2 2h -1 π 2 k c (h) 1 -k c (h) Ψ h (χ) h=2n = - m≥0 Res h -1/2 π tan(πh/2) k c (h) 1 -k c (h) Ψ h (χ) h=hm = m≥0 c 2 m N α 0 χ hm F 2 1 (h m , h m , 2h m , χ) , (1.128) 
c 2 m = -α 0 N h m -1/2 π tan(πh m /2) Γ(h m ) 2 Γ(2h m ) 1 -k ′ (h m ) , (1.129) 
is written as a sum over conformal blocks, indicating the spectrum of operators of the model. However this regular contribution is subdominant in the IR regime. A careful treatment of the dominant, although conformally divergent mode h = 2 will show that the MSS bound is indeed saturated.

The h = 2 Divergent Mode

To treat this divergent mode, we need to compute the deviations to conformal invariance at least to first order in 1/βJ. Corrections to the rung operator eigenvalues can be obtained
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as in time-independent perturbation theory in quantum mechanics. Anticipating the analytic continuation, it is convenient to work on the thermal circle: θ = 2πτ /β. Then, varying the conformal SD equations, one finds that reparametrizations of the two-point function are K ceigenfunctions with eigenvalue k(h) = 1 and of proper conformal weight h = 2. For linearized reparametrizations θ → θ + ǫ(θ), written as ǫ n = e -inθ , the reparametrization modes Ψ h=2 mode break into an infinite family

Ψ 2,n = γ n e -iny 2 sin x 2 f n (x), f n (x) = sin nx 2 tan x 2 -n cos nx 2 , (1.130) x = θ 12 , y = θ 1 + θ 2 2 , γ 2 n = 3 π 2 |n|(n 2 -1)
.

(1.131)

At large q, an analytic expression for the K-eigenfunctions and their eigenvalues can be found for all couplings. Selecting among the first those that lead to the above functions in the IR, the associated eigenvalues are then used to get the first IR-corrections to the K-eigenvalues

k(2, n) = 1 - 3|n| βJ + 7n 2 (βJ ) 2 + O (βJ ) -2 .
(1.132)

Supported by numerical solutions, [START_REF] Maldacena | Remarks on the Sachdev-Ye-Kitaev model[END_REF] extrapolated large q results to estimate for finite

q k(2, n) = 1 - α K βJ |n| + O (βJ ) -2 , α K ≡ -qk ′ (2)α G . (1.133) 
Plugging into F and taking down the extra two-point functions of the reparametrizations we get at leading order

F h=2 (θ 1 , θ 2 , θ 3 , θ 4 ) G(θ 12 )G(θ 34 ) = 6α 0 π 2 α K βJ |n|≥2 e in(y ′ -y) n 2 (n 2 -1) sin nx 2 tan x 2 -n cos nx 2 sin nx ′ 2 tan x ′ 2 -n cos nx ′ 2 .
(1.134)

For θ 1 > θ 3 > θ 2 > θ 4 :

F h=2 (θ 1 , θ 2 , θ 3 , θ 4 ) G(θ 12 )G(θ 34 ) = 6α 0 π 2 α K βJ θ 12 2 tan θ 12 2 -1 -π sin θ 1 2 sin θ 2 2 sin θ 12 2 , (1.135) 
with θ 3 = π, θ 4 = 0. For the "regularized" OTOC [START_REF] Maldacena | A bound on chaos[END_REF],

θ 2 = π/2 -2πit/β = θ 1 + π F h=2 (θ 1 , θ 2 , θ 3 , θ 4 ) G(θ 12 )G(θ 34 ) = 6α 0 π 2 α K βJ 1 - π 2 cosh 2πt β , (1.136) 
hence λ L = 2π/β. In units where = 1 this is the MSS bound.

Other approaches leading to the chaos exponent are worth mentioning. For instance, correlation functions of the Fermions can be obtained from the (non-local) effective action of the two-point function and self-energy. A simpler way, if one is only interested in the chaotic regime, is to look for eigenfunctions of the ladder kernel (using analytically continued propagators) with eigenvalue 1 and exponential in time (see [START_REF] Maldacena | Remarks on the Sachdev-Ye-Kitaev model[END_REF], or [START_REF] Murugan | More on Supersymmetric and 2d Analogs of the SYK Model[END_REF] when applied to the two-dimensional, Bosonic and supersymmetric variant).

This large N computation allows to see the initial growth in time of the correlation function. However one needs to sum the full perturbative series in order to see it reaching the equilibrium values. This is done in [START_REF] Maldacena | Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space[END_REF] from the bulk point of view (where the 1/N expansion becomes a G expansion).

At leading order, we can take the annealed partition function [START_REF] Gurau | Quenched equals annealed at leading order in the colored SYK model[END_REF], and integrating out the Fermions, we are left with an effective action for the two-point function G and its Lagrange multiplier Σ:

I ef f [G, Σ] N = - 1 2 log det (δ(τ -τ ′ )∂ τ -Σ(τ, τ ′ )) + 1 2 τ,τ ′ Σ(τ, τ ′ )G(τ, τ ′ ) - J 2 4 G(τ, τ ′ ) 4 .
(1.137) Note the bilocality of the right-hand side. Varying the action with respect to G recovers the SD equation. Besides, looking fluctuations around the saddle-point G c , Σ c , leads to

I ef f = I CF T + I S , (1.138) 
I CF T N = - 1 2 log det (-Σ(τ, τ ′ )) + 1 2 τ,τ ′ Σ(τ, τ ′ )G(τ, τ ′ ) - J 2 4 G(τ, τ ′ ) 4 , (1.139) 
I S N = - C J ∞ -∞ dτ Sch [f (τ ), τ ] , Sch[f (τ ), τ ] = f ′′′ (τ ) f ′ (τ ) - 3 2 f ′′ (τ ) f ′ (τ ) 2 , (1.140) 
where the constant C in front is obtained from a numerical match [START_REF] Maldacena | Remarks on the Sachdev-Ye-Kitaev model[END_REF][START_REF] Sárosi | AdS 2 holography and the SYK model[END_REF]. The key to understand the low-energy dynamics of near-extremal black holes is precisely the Schwarzian action of this reparameterization symmetry breaking h = 2 mode, since in their near-horizon limit, they have an AdS 2 factor with a dilaton, the boundary action of which, under a suitable regularization, is precisely described by such Schwarzian (e.g. [START_REF] Maldacena | Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space[END_REF][START_REF] Yang | The Quantum Gravity Dynamics of Near Extremal Black Holes[END_REF][START_REF] Suh | Dynamics of black holes in Jackiw-Teitelboim gravity[END_REF] for a selection of works).

The leading order diagrammatic structure of higher n-point correlation functions has been worked through [START_REF] Gross | All point correlation functions in SYK[END_REF] and comes out as typical of the melonic theories we will detail below.

More recent progress

JT gravity was simple enough that it allowed to apply explicitly the prescriptions to compute the entanglement entropy of boundary subregions and extract the Page curve of two copies of SYK models coupled to a bath serving to absorb the emitted radiation [START_REF] Almheiri | Islands outside the horizon[END_REF][START_REF] Penington | Replica wormholes and the black hole interior[END_REF], with arguments that the lessons would apply also in higher dimensions [START_REF] Almheiri | Entanglement islands in higher dimensions[END_REF].

Non-perturbative contributions to the bilocal effective action given by replica-symmetry breaking terms have been also considered [169]. A very subtle point concerns the applicability of those lessons to quantum systems without disorder averaging, that the replica wormholes seemed to heavily rely upon, see especially the discussions in [START_REF] Penington | Replica wormholes and the black hole interior[END_REF][START_REF] Marolf | Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information[END_REF].

In short, this toy model has galvanized intense activity in numerous directions, that either stiffen the holographic dictionary, study quantum chaos [START_REF] Kobrin | Many-Body Chaos in the Sachdev-Ye-Kitaev Model[END_REF], connect with random matrix integrals [START_REF] Stanford | JT Gravity and the Ensembles of Random Matrix Theory[END_REF], quantum groups [START_REF] Berkooz | Towards a full solution of the large N double-scaled SYK model[END_REF], or still return to its condensed matter roots as a simple model of strange metals [START_REF] Facoetti | Classical Glasses, Black Holes, and Strange Quantum Liquids[END_REF] -and often several at the same time. It has also seen proposals for experimental realizations [START_REF] Pikulin | Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System[END_REF].

Large N limits of Tensor Models

The idea to use tensors T i 1 ...ir of rank r ≥ 3, with invariance group of size N , as higher dimensional analogs of matrices was around since the 90's, coding for simplices that glued together would form r-dimensional manifolds [START_REF] Ambjorn | Three-dimensional simplicial quantum gravity and generalized matrix models[END_REF][START_REF] Sasakura | Tensor model for gravity and orientability of manifold[END_REF][START_REF] Boulatov | A Model of three-dimensional lattice gravity[END_REF]. However too much advanced in their time, models with indistinguishable indices were considered, such that the geometries they were summing over were singular [START_REF] Gurau | Lost in Translation: Topological Singularities in Group Field Theory[END_REF], allowing multiple and self gluings between simplices, spoiling a 1/N expansion akin to the topological expansion of matrix models. This technicality was overcome with the introduction of colored models, where the indices stood distinguishable in contrast to their predecessors. They were first formulated in the language of Group Field Theory [START_REF] Gurau | Colored Group Field Theory[END_REF] and subsequently, preserving the essential structure of the interactions, rewritten as tensor models.

To start, their Feynman diagrammatic expansion provides a discretization of piecewise-linear manifolds of topological dimension d ≥ 3, obtained by gluing simplices, 26 weighted by an action analogous to that of Regge that discretized the Einstein-Hilbert action [START_REF] Regge | General relativity without coordinates[END_REF]. The recurrent themes are an expansion in integer powers of N characterized by a half-integer, the Gurau degree, and their large-N solvability due to the iterative structure of the leading diagrams based on "melons". Beyond their roots in quantum gravity, their relevance to holography and black holes through the melons, tensor models present an unusual large-N field theoretic flavor in view of the peculiar CFTs they possess as RG fixed points, with some remaining tough challenges, such as the nature of their subleading corrections, the difficulty to get around a branched polymer phase or the rapid growth of group invariants. We begin in Subsection 1.5.1 by recalling the definitions of the main models, their different scalings, their combinatorial amplitudes and the revisited 2PI formalism. Subsection 1.5.2 will adress the one dimensional tensor versions of the SYK model and Subsection 1.5.3 will discuss their higher dimensional cousins in search of properly tensorial CFTs. References for the first part are [START_REF] Gurau | Random Tensors[END_REF][START_REF] Gurau | Notes on Tensor Models and Tensor Field Theories[END_REF][START_REF] Lionni | Colored discrete spaces: higher dimensional combinatorial maps and quantum gravity[END_REF][START_REF] Valette | New Limits for Large N Matrix and Tensor Models: Large D, Melons and Applications[END_REF], whereas the last two can be supplemented with the set of lectures notes [START_REF] Gurau | Notes on Tensor Models and Tensor Field Theories[END_REF][START_REF] Klebanov | TASI Lectures on Large N Tensor Models[END_REF][START_REF] Benedetti | Melonic CFTs[END_REF].

Combinatorics and other tools

Many variations of the models have been studied, playing with their symmetries, their rank or their dimension and before surveying the main results and concerns, we will set the frame by detailing two different classes of tensor models with which the 1/N expansion started: colored and uncolored. Given a pair of indices (ij) (i = j), they transform respectively as

Colored. Colored models consist of r + 1 tensors

T (j) a j 1 ...a j r (0 ≤ j ≤ r, 1 ≤ a j i ≤ N , 1 ≤ i ≤ r) of rank r,
T (i) a i 1 ...a i j ...a i r → T (i) a i 1 ...b i j ...a i r = O (ij) b i j a i j T (i) a i 1 ...a i j ...a i r , (1.141) 
T (j) a j 1 ...a j i ...a j r → T (j) a j 1 ...b j i ...a j r = O (ij) b j i a j i T (j) a j 1 ...a j i ...a j r , (1.142) 
with O (ij) ∈ U (N ) and similarly for T with O † instead of O.

The action is chosen as

S = N r/2 r+1 j=1 A j T (j) A j C -1 T (j) A j + λI(T ) + λI( T ) , (1.143) 
I(T ) = i<j δ a i j a j i r+1 j=1 T (j) A j , (1.144) 
with invariance group U (N ) r(r+1)/2 . We used the collective notation A j = (a j 1 . . . a j r ). In the original zero-dimensional tensor models, the covariance was taken trivial C = 1.

The associated Feynman graphs are usually depicted in either the stranded or the colored representation. The first has a line propagator labeled by a pair (ij) denoting the color i of the tensor and the position j of the contracted index. It is a natural extension of the matrix ribbon graphs. As in lower ranks, the number of faces is identified by counting closed loops. However, diagrams become quickly cluttered. In the colored representation, we draw a dot for each tensor (filled or hollow for T (j) or T (j) interactions respectively), with r + 1 colored half-legs attached for each tensor. Then we join the half legs that are Wick-contracted. Hence the interaction vertex is a canonically colored r-simplex, coloring the subsimplices according to the colors of their boundaries. Further, the Feynman diagram, an (r + 1)-colored graph, becomes a gluing of simplices that respect the matching of colors. Note that the U (N ) symmetry constrains the Feynman diagrams to be bipartite, i.e. white vertices Wick-contracted only to black vertices and reciprocally. Let us evaluate the power of N associated to a vacuum graph. Each propagator brings a factor N -r/2 and each interaction vertex a factor N r/2 . Additionally, one needs to count the CHAPTER 1. TENSOR FIELD THEORY: BACKGROUND AND MOTIVATIONS total number of faces Φ(G), that is closed bicolored cycles for all pairs of colors (ij) labelling the strands, which bring each a factor of N . In total, an amplitude has a power:

A(G) ∼ N -r 2 (E(G)-V (G))+Φ(G) . (1.145)
It is interesting to see how from this exponent we come to the 1/N expansion.

Proposition 1.5.1. The number of faces can be written as:

Φ(G) = rC(G) + r(r -1) 4 V (G) -ω(G), ω(G) = 1 2(r -1)! J k(J ) . (1.146)
Here C(G) count the disconnected components of G (in the sense of (r + 1)-colored graphs) and J are the jackets, i.e. the set of permutations (modulo orientation and cyclicity) of r + 1 colors attached at each vertex. Once a permutation is fixed, it allows an embedding of the Feynman graph on a surface to which a (non-orientable) genus k(J ) can be now assigned. For any (r + 1)-colored graph, there are r! such jackets. ω(G) is the (Gurau) degree of the graph and is positive being a sum of genera. Let us show how the relation between faces and degree (1.146) comes about.

Proof. Let us focus on a single connected component of G. Given a jacket J π associated to a permutation π of the colors (0, . . . , r), Euler's formula tells that the genus of the jacket k(J π ) obeys

V (G) - r + 1 2 V (G) + r p=0 Φ (π p (0)π p+1 (0)) (G) = 2 -k(J π ) , (1.147) 
using for the second term the graph relation 2E(G) = (r + 1)V (G) on the vacuum graph, Φ (ij) standing for the faces of alternating edges (ij) (and we sum over the ones selected by the jacket). However, each face of type (ij) will appear in 2(r -1)! cycles: (ij . . . ) and (ji . . . ). Hence, summing over all the jackets both members of the equality, we obtain eq. (1.146).

Again from the relation (r + 1)V (G) = 2E(G), we find the large-N expansion indexed by the degree

A(G) ∼ N r-ω(G) . (1.148) 
It was shown [START_REF] Gurau | The 1/N expansion of colored tensor models[END_REF][START_REF] Gurau | The 1/N expansion of colored tensor models in arbitrary dimension[END_REF][START_REF] Gurau | The complete 1/N expansion of colored tensor models in arbitrary dimension[END_REF] that the leading order graphs, with ω = 0 have a recursive structure starting from a ring graph and iteratively inserting, on every edge, two vertices connected by r propagators. The first insertion with two vertices, the fundamental melon, stands on the left of Fig. 1.9 -looking like a Cantaloup melon, or a bunch of "bananas" according to the amplitude community [START_REF] Broedel | An analytic solution for the equal-mass banana graph[END_REF]). All together they form the melonic family, a member of which is shown on the right of Fig. 1.9. Notice that the interaction vertices have been reduced to a point and that the edges 27 are assumed to respect the color labeling. The melons are planar for every jacket, hence can be embedded on the sphere S r .

Correlation functions of fundamental fields are obtained from successively opening edges. For instance, leading order two-point functions come by from cutting a propagator of a vacuum graph. The full two-point function is determined by the usual Schwinger-Dyson equation in terms of the self-energy Σ, at leading order taking a simple form

G -1 = C -1 -Σ , Σ = λ λG r-1 + O(1/N ).
(1.149)
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A(G) ∼ N B∈G s(B)+ i Φ (0i) (G) . (1.152)
Note that, compared to the colored models, only the bicolored cycles (0i) for i = 1, . . . , r bring factors of N by closed loops. However we can view the graph as colored and compute the total number of faces

Φ(G) = 1≤i≤r Φ (0i) (G) + 1≤i<j≤r Φ (ij) (G) , (1.153) 
where the last bicolored faces occur only in the interaction bubbles. Then, using the degree relation (1.146) for the left-hand side (r + 1 colors) and the last term of the right-hand side (r colors), we can rewrite the amplitude as

A(G) ∼ N B∈G s(B)-r[1+ B∈G (C(B)-1)-C(G)]-[ω(G)-r r-1 ω(G 0 )] . (1.154) 
Denoting G 0 the graph where the propagators (the edges of color 0) have been removed, we have that the existence of a large-N expansion relies on the two inequalities:

29 ω(G) ≥ r r -1 ω(G 0 ), (1.155) 1 + B∈G 0 (C(B) -1) ≥ C(G) . (1.156)
With the jackets of G 0 associated to permutations π 0 , the first is equivalent to

π k(J π ) ≥ r π 0 k(J π 0 ) . (1.157) 
Indeed, we obtain a jacket of G from a jacket of G 0 by adding the edges of color 0 and there are r possible ways to insert them around the vertices. Furthermore, the genus can only increase by adding an edge30 such that k(J π ) ≥ k(J π 0 ) and one can conclude.

The second inequality holds for graphs G that are connected when considering the interaction bubbles as reduced to a vertex (i-connected in the language of [START_REF] Benedetti | Conformal Symmetry and Composite Operators in the O(N ) 3 Tensor Field Theory[END_REF]), which occur in the logarithm of the partition function. Then the left-hand side counts the edges of a tree that joins the interaction bubbles (forming a minimal i-connected graph), this way linking some of the connected components of each interaction, plus the left alone disconnected components of each interaction bubble. This gives indeed the maximal number of possible disconnected components of an i-connected graph G.

Once again, the leading order graphs appearing in the partition function displayed the same melonic structure as above, 31 and melonic bubbles dominated in all correlation functions: lim

N →∞ 1 N B(T, T ) = G V (B) (if B is melonic) 0 (else), (1.158) 
Wick contractions preserving the melonic structure of the Feynman diagrams, G solving the same equation (1.149). The fact that at leading order expectation values of several melonic bubbles disconnect indicates a large-N factorization property, providing the tensor models with a universality class of Gaussian character [START_REF] Gurau | Universality for Random Tensors[END_REF]. This contrasts strikingly with matrix models, for which the large-N planar diagrams entail many more contraction patterns.

The melonic universality class

From another perspective, an analysis of the Schwinger-Dyson equation of the two-point function brings about the distinctive continuum limit of the melonic universality class [START_REF] Bonzom | Revisiting random tensor models at large N via the Schwinger-Dyson equations[END_REF]. 32 In the 0dimensional case, the melonic equation (1.149) can actually be solved exactly by Fuss-Catalan numbers:

G = n≥0 1 rn + 1 rn + 1 n λ λ (r -1)! C r n C . (1.159)
One can show by recursion that edge-colored rooted r-ary trees are counted by the same numbers, establishing in this way a bijection between the latter and melonic diagrams [START_REF] Bonzom | Critical behavior of colored tensor models in the large N limit[END_REF][START_REF] Bonzom | Counting Line-Colored D-ary Trees[END_REF]. A detailed computation of the Hausdorff and spectral dimension of the geometry associated with melonic diagrams, 2 and 4/3 respectively [START_REF] Gurau | Melons are branched polymers[END_REF], cemented their connection to branched polymers, recurrent in euclidean and causal dynamical triangulations as seen in Section 1.3. Given the series expansion of the leading order two-point in terms of the coupling λ λ = z, we can look for their radius of convergence |z c | = r r (r+1) r+1 and the way they approach the singularity

G(z) = n≥0 c n z n ∼ (z -z c ) 1-γ . (1.160)
As realized in the matrix models, Subsection 1.3.2, the (string) susceptibility γ controlling the non-analytic behaviour is a critical quantity that gives information about the continuum limit of the theory. In this limit, the coupling is tuned to approach the large N singularity in a way that an infinite number of interaction vertices contribute and at the same time that the graph dual of the Feynman diagrams have a finite volume. The exponent can then be extracted from the asymptotics of the series expansion of G (see for example [START_REF] Lionni | Multi-critical behaviour of 4-dimensional tensor models up to order 6[END_REF])

c n ∼ αz -n c n γ-2 .
(1.161)

While planar matrix models have γ = -1 2 , associated to the Brownian sphere, the melonic limit of tensor models possess γ = 1 2 , characteristic of branched polymers or the continuum random tree. As for vector and matrix models, multicritical points were also obtained [START_REF] Bonzom | Random tensor models in the large N limit: Uncoloring the colored tensor models[END_REF] with susceptibilities γ = m/(m+1) matching those of branched polymers. They were given a physical interpretation in terms of hard dimers on random lattices, tuning activities appropriately [START_REF] Bonzom | Multicritical tensor models and hard dimers on spherical random lattices[END_REF]. In the quest to generate higher-dimensional manifolds from a large-N limit, it is thus imperative to escape the melonic limit.

Stepping in the footprints of the rank two predecessor [START_REF] Di Francesco | 2-D Gravity and random matrices[END_REF], an idea was to consider a double scaling limit, where additional terms from all subleading orders are taken into account by tuning the approach to the critical value of the coupling with a dependence in N . Applied to matrix models, this boosts contributions of all genera and although it can be analyzed using orthogonal polynomials [START_REF] Bleher | Double scaling limit in the random matrix model: the Riemann-Hilbert approach[END_REF], the factorial growth of the relevant graphs makes the partition function non-summable. In tensor models of rank strictly less than 6, with melonic interactions, a double-scaling limit was seen to retain the same non-analytic behaviour corresponding to branched polymers [START_REF] Bonzom | The double scaling limit of random tensor models[END_REF]. The graphs contributing in the limit were mapped to trees with the end leaves decorated by loops, an exponentially bounded family. To the contrary, in higher rank than 6, all 3-valent graphs were contributing at the critical point, hence non-summable.

A more drastic option is to search for optimal scalings of the interactions, or enhancements with respect to the scaling (1.151), so that a large-N limit still exists, while making the dominant class of graphs larger than the melonic family [START_REF] Bonzom | Large N Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension d ≥ 2[END_REF]. If further boosted, the associated interaction would contribute in amplitudes with arbitrary high powers of N . A necessary criterion for optimality is that the interaction appears infinitely often at any order in N . Against all odds, the melonic universality class is a pretty strong attractor.

Since melonic bubbles already appear at leading order, Gurau's degree is the only scaling that allows for a non-trivial large-N limit as far as they are concerned. If other interactions are also rescaled by their Gurau degree, we had that the large-N limit remains Gaussian since melonic bubbles dominate the Feynman diagrams.

This uniqueness has been extended to generalized melonic interactions [START_REF] Bonzom | Tensor models with generalized melonic interactions[END_REF], built from insertions of C-bidipoles, with C ≤ r/2. An example of 2-bidipole for a rank 5 tensor is given in Fig. 1.12. The unique choice of enhancement is:

s(B) = C |C|b C - r(V (B) -2) 2 , (1.162) 
where b C counts the number of C-bidipole insertions to obtain the bubble B. If the action doesn't include bubbles with the symmetric (r/2)-dipole insertions, then the leading order theory is Gaussian. Otherwise, planar diagrams are generated and the critical exponent of the Brownian map can be obtained. An intermediate critical phase of "baby universes" with γ = 1/3, also present in matrix models e.g. [START_REF] Das | New Critical Behavior in d = 0 Large-N Matrix Models[END_REF][START_REF] Alvarez-Gaume | A Proposal for strings at D ¿ 1[END_REF], could be obtained with particular adjustements of the couplings, the melonic interactions balancing the planar bubbles (see also [START_REF] Lionni | Multi-critical behaviour of 4-dimensional tensor models up to order 6[END_REF][START_REF] Bonzom | Enhancing non-melonic triangulations: A tensor model mixing melonic and planar maps[END_REF] for the first tensor models to observe it).

Melonic and generalized melonic interactions have the convenient feature to be equivalent to (multi-)matrix models through an intermediate field reformulation, which will serve in the next chapter. This formalism is at the heart of a beautiful bijection between edge colored graphs and Figure 1.13: Two MST interactions of order 6, with complex tensors of rank 3 and real ones of rank 5. particular combinatorial (stuffed Walsh) maps, simplifying the enumeration of graphs at any order [START_REF] Bonzom | Tensor models with generalized melonic interactions[END_REF][START_REF] Bonzom | Colored triangulations of arbitrary dimensions are stuffed Walsh maps[END_REF].

A different extension of the melonic family to encompass generalized melonic Feynman diagrams has been obtained as follows [START_REF] Carrozza | O(N ) Random Tensor Models[END_REF][START_REF] Ferrari | A New Large N Expansion for General Matrix-Tensor Models[END_REF], see also [START_REF] Benedetti | Conformal Symmetry and Composite Operators in the O(N ) 3 Tensor Field Theory[END_REF]. For rank r tensors, the action takes the form:

S N (T ) = N r/2 T C -1 T + B t B N -ρ(B) I B , ρ(B) = F B r -1 - r 2 , (1.163) 
F b counting the number of faces (bicolored cycles) of the bubble b.

If the tensor is of prime rank and the interaction bubble B * is a complete graph, 33 it was proven [START_REF] Ferrari | A New Large N Expansion for General Matrix-Tensor Models[END_REF] in the framework of matrix-tensor models that the enhanced scaling ρ(B * ) is optimal. In an expansion characterized by an integer generalizing the degree, the index, the dominant graphs were melons formed by mirrored pairs of B * and the usual melons constructing from melonic bubbles. Applied for example to O(N ) 3 quartic models with tetrahedron, pillow and double-trace interactions, with respective scalings ρ(B) = 0, 1/2, 3/2 that allows the tetrahedron to enter the large-N expansion, always in pairs. Other examples with bubbles of order 6 will be looked at in Chapter 3 with the MST interactions in figure 1. [START_REF] Osterwalder | Axioms for Euclidean Green's functions[END_REF].

Regarding tensors of any odd rank, this scaling is optimal for a particular type of invariants, called maximally-single-trace (MST) which similarly form generalized melonic diagrams from pairwise contractions. 34 They possess the minimal number of faces allowed, that is one face for each two colors. Furthermore, their connected correlations also obey the bound [START_REF] Benedetti | Conformal Symmetry and Composite Operators in the O(N ) 3 Tensor Field Theory[END_REF] 

B 1 . . . B n c ≤ N r-rn/2 , (1.164) 
which applied on a generic correlation function of MSTs gives at leading order

B 1 . . . B n = P B∈P j∈B B j c , (1.165) 
where we sum over all partitions P into blocks B of the n bubbles, will make dominate correlations of pairs of MSTs if we assume that the one-point functions vanish. This continues the Gaussian large-N factorization we saw earlier (4.148).

Other symmetry groups were also explored for uncolored models, each allowing for a different class of interactions. For instance, multi-orientable models U (N ) × O(N ) × U (N ) [START_REF] Tanasa | Multi-orientable Group Field Theory[END_REF][START_REF] Tanasa | The Multi-Orientable Random Tensor Model, a Review[END_REF], symplectic groups Sp(N ) 3 [START_REF] Carrozza | SYK-like tensor quantum mechanics with Sp(N ) symmetry[END_REF], or in the much harder case of reduced symmetry, two coupled symmetric rank 3 tensors [START_REF] Gurau | The 1/N expansion of tensor models with two symmetric tensors[END_REF] and a single tensor in the three irreducible representations of O(N ) [START_REF] Benedetti | The 1/N expansion of the symmetric traceless and the antisymmetric tensor models in rank three[END_REF] were all shown to display melonic limits. With motivations that spring from the original string theoretic matrix models and the large dimension limit of general relativity, tensors with symmetry groups of different dimension O(D) × U (N ) × U (N ) (and their real counterpart) enter the melonic universality class, in a large N followed by a large D limit, that extracts the summable class from the planar diagrams [START_REF] Ferrari | The Large D Limit of Planar Diagrams[END_REF]. When discussing SYK-like models, we will touch upon their uncommon low-energy physics.

Another attempt to overcome the melonic barrier went by explicitly breaking the colorsymmetry of tensors. In a quartic theory with a single color pillow interaction, [START_REF] Benedetti | Symmetry breaking in tensor models[END_REF] found, from the matrix-like intermediate field theory, a regime where the O(N ) got spontaneously broken. Considering then a double-scaling limit in the O(N ) symmetric or broken phases, the former had at leading order the summable 3-valent planar graphs, symptomatic of a Brownian map scaling limit, whereas the later was composed of a tree of planar 3-valent graphs. We shall see in Chapter 2 that the color symmetry may also break spontaneously (breaking the continuous symmetry at the same time).

The 2PI formalism

To deal with effective actions of tensor models, a formalism mostly used in many-body theory has been revisited [START_REF] Gurau | Notes on Tensor Models and Tensor Field Theories[END_REF][START_REF] Benedetti | 2PI effective action for the SYK model and tensor field theories[END_REF]. The 1PI effective action Legendre transforms the Lagrangian of the generating function of connected correlations, with respect to a source for one-point function. The 2PI effective action takes a Legendre transform with respect to a bilinear in the fields.

Given the generating function of connected correlations W [J, J ]

W [J, J ] = ln Dφ exp -S[φ] + J a φ a + 1 2 φ a J ab φ b , (1.166) 
in the compact DeWitt notation where indices stand for spacetime dependence and all other internal degrees of freedom, we have its Legendre transform 35 

Γ[Φ, G] Γ[Φ, G] = -W [J, J ] + J a Φ a + 1 2 Φ a J ab Φ b + 1 2 G ab J ab . (1.167)
In the middle and right equation, (J, J ) are implicit functions of (Φ, G) obtained by inverting the relations that define the connected one-and two-point functions:

Φ a [J, J ] = δW δJ a [J, J ], G ab [J, J ] = δ 2 W δJ a δJ b [J, J ] = 2 δW δJ ab - δW δJ a δW δJ b . (1.168)
and others analogous with Γ exchanging sources with fields, assumed invertible for (J, J ) and (Φ, G) respective inverse, allow to go from one set of variables to the other. Denoting the free propagator C -1 = δ 2 S δφ 2 , we obtain in a loop expansion (expanding the field φ around its expectation value

φ = Φ + f ) Γ[Φ, G] = S[Φ] + 1 2 Tr ln G -1 + 1 2 Tr C -1 G + Γ 2P I [Φ, G]. (1.169)
The first terms in the last equality come from quadratic terms in f . Γ 2P I , containing the higher orders, is (minus) the generating function of the 2PI graphs, i.e. graphs that stay connected cutting 2 lines, drawn with with propagators G -1 and interaction vertices of S int . The equations of motion for Φ and G obtained by varying the effective action can be studied in a 1/N expansion keeping the leading order graphs in Γ 2P I . The source J is typically introduced to study symmetry-breaking phases and since we will assume that the symmetry is preserved (Φ = 0), we let J = 0 in the following 36 . We recover the self-energy Σ (amputated 1PI two-point function) by differentiation and analogously introduce the irreducible four-point kernel K:

Σ ab = -2 δΓ 2P I δG ab , K ab;cd = G aa ′ G bb ′ δΣ cd δG a ′ b ′ . (1.170)
Its interest lies in that the four-point function is expressed from the kernel K. Indeed the four-point function in the channel (ab → cd) is

φ a φ b φ c φ d ab;cd := 4 δ 2 W δJ ab δJ cd = φ a φ b φ c φ d -φ a φ b φ c φ d . (1.171)
Besides we have from eq. (1.167) and (1.168):

δ 2 Γ δG ab δG cd = 1 2 
δJ cd δG ab = 1 4 δ 2 W δJ ab δJ cd -1 , (1.172) 
while from (1.169) and (1.170)

δ 2 Γ δG ab δG cd = 1 2 G -1 aa ′ G -1 bb ′ (S -K) a ′ b ′ ;cd . (1.173) 
Combined, the last equations mean, with all the effect of the projector S moved onto the numetor:

φ a φ b φ c φ d ab;cd = 1 1 -K ab;c ′ d ′ (G c ′ c G d ′ d + G c ′ d G d ′ c ) . (1.174) 
This relation is generic, but the luxury of tensor models, and by extent of melonic theories, stands upon the fact that we control the truncation of the kernel K at large-N .

Taking advantage of the 1/N expansion, the restriction to 2PI graphs in tensor models allows to write an effective action. In particular, melonic insertions are not allowed as they would form 2PR graphs.

Renormalizing in tensor theory space. Before we jump to tensor field theories, let us say a few words on results that have been obtained for RG flows when the tensor indices serve to discretize the space. The locality principle in usual renormalization is replaced by an invariance principle of the interactions under a certain symmetry group and a non-trivial propagator in index space will break this symmetry, such that the IR direction corresponds to smaller and smaller values of indices. This point of view was initiated with matrices [START_REF] Brezin | Renormalization group approach to matrix models[END_REF], and other variations, including the Grosse-Wulkenhaar model, shown asymptotically safe at one loop (e.g. [START_REF] Wulkenhaar | Construction of a quantum field theory in four dimensions[END_REF]). Using a multiscale analysis [START_REF] Ben Geloun | Renormalizable Tensor Field Theories[END_REF] or functional RG methods [START_REF] Carrozza | Flowing in Group Field Theory Space: a Review[END_REF][START_REF] Eichhorn | Status of background-independent coarse-graining in tensor models for quantum gravity[END_REF] a plethora of models have been analysed: with rescaled momenta p 2α (α ∈ (0, 1]), with an extra U (1) or SU (2) gauge invariance, etc. Constructive results have also been obtained, relying on the (multiscale) Loop-Vertex-Expansion, ending up proving convergence and analyticity of free energy in "cardioid" domains for theories with melonic interactions (quartic in rank 3 [START_REF] Delepouve | Constructive Tensor Field Theory: The T 4 3 Model[END_REF] and 4 [START_REF] Rivasseau | Constructive Tensor Field Theory: The T 4 4 Model[END_REF]).
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SYK-like models

The melonic structure of leading order diagrams in the two-and four-point functions allowed to write quickly colored and uncolored Fermionic tensor models enjoying a low-energy behaviour similar to SYK and saturating the chaos bound.

In the colored case, with r + 1 Majorana fields ψ (0) , . . . , ψ (r) , transforming as in (1.142), the action of the Gurau-Witten (GW) model, invariant under O(N ) r(r+1)/2 is taken as [START_REF] Witten | An SYK-Like Model Without Disorder[END_REF] 

S = dt i 2 r k=0 ψ (k) A k ∂ t ψ (k) A k -i (r+1)/2
J N r(r-1)/4 ψ (0) . . . ψ (r) (1.175)

(the i in the interaction makes the term hermitian) where the same notation as in eq. (1.143).

Based on the preceding analysis of [START_REF] Gurau | Regular colored graphs of positive degree[END_REF], [START_REF] Gurau | The complete 1/N expansion of a SYK-like tensor model[END_REF] identified the structure of two-and four-point correlation functions, respectively in terms of melons, and unbroken or broken ladders. An uncolored version, nicknamed Carrozza-Tanasa-Klebanov-Tarnopolsky (CTKT), was written in [START_REF] Klebanov | Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models[END_REF], using a rank-3 tensor ψ abc :

S = dt i 2 ψ abc ∂ t ψ abc + g 4 ψ a 1 b 1 c 1 ψ a 1 b 2 c 2 ψ a 2 b 1 c 2 ψ a 2 b 2 c 1 , (1.176) 
where the invariance subgroup is O(N ) 3 . Naturally, both colored and uncolored models present the same leading order melonic SD equations that we have just discussed in Subsection 1.5.1 and in the SYK context. The diagonalization of the four-point ladder kernel could be reproduced to determine the conformal spectrum of bilinear operators in the (broken) CFT characterizing the low-energy theory. In particular, the spectrum contained the mode dual to the stress-energy tensor, signalling the dynamical gravitational dual and the saturation of chaos.

Extending the results of [START_REF] Gurau | Regular colored graphs of positive degree[END_REF] on the next-to-leading orders of colored tensor models, [START_REF] Bonzom | Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders[END_REF] characterized in detail the structure of the ladders interlaced in the four-point function for a colored version of the SYK model and all tensor SYK-like models discussed here. Although in both cases the diagrams involved are similar, since their faces are counted differently, beyond the leading order similar diagrams contribute at different orders in 1/N : for tensors all bicolored cycles are counted, whereas the vector case considers only 0i faces. In a sense, the tensors were breaking the degeneracy of graphs of SYK.

As we mentioned earlier, the bilocal effective action was crucial in the SYK model to understand the departure from conformal invariance leading to quantum chaos. Using the formalism of the 2PI effective action, [START_REF] Benedetti | 2PI effective action for the SYK model and tensor field theories[END_REF] derived a similar bilocal action for the above tensor models. Applying this formalism first to SYK, [START_REF] Benedetti | 2PI effective action for the SYK model and tensor field theories[END_REF] recovered at leading order in 1/N the SD equations of SYK and at next-to-leading order a Tr log term that could be interpreted as arising from integrating out a quadratic field with the same covariance as in [START_REF] Jevicki | Bi-Local Holography in the SYK Model[END_REF][START_REF] Kitaev | The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual[END_REF]. 37 For the CTKT model, they rewrote the effective action for the two-point function as follows:38 

Γ CT KT [G] = - 1 2 Tr ln G -1 (t, t ′ ) - 1 2 Tr[∂ t G(t, t ′ )] - 1 8 λ 2 t,t ′ G 4 (t, t ′ ), (1.177) 1 2 Tr ∂ t G(t, t ′ ) = - α 2 dt∂ t H∂ t H + O(H 3 ). (1.178)
The first and third terms are gauge invariant under O(N ) 3 , 39 and give the melonic SD equations in the IR limit. The second term brings corrections taking the form of a non-linear σ-model for the generators H of the O(N ) 3 symmetry locally broken by the second term. α stands for a regulator that comes from evaluating at a gauge-invariant saddle the second order derivative of ∂ t G term with respect to G. This derivation provided support for the conjecture of [START_REF] Choudhury | Notes on melonic O(N ) q-1 tensor models[END_REF] about the effective action of tensor models. The GW model features a similar leading order 2PI effective action40 

Γ GW [G (0) ] =N q-1 q 2 Tr ln G (0) -N q-1 q 2 Tr ∂ t G (0) -N q-1 λ 2 2 t,t ′ G (0) (t, t ′ ) q + N (N -1) 2 q 2 1 2 Tr ln 1 -λ 4 [ K(0) ] 2 I + + N (N -1) 2 + (N -1) q 2 1 2 Tr ln 1 -λ 4 [ K(0) ] 2 I - + (q -1) 1 2 Tr ln 1 + λ 2 [ K(0) ]I - + 1 2 Tr ln 1 -(q -1)λ 2 [ K(0) ]I - , (1.179) 
with the ladder kernel

K(0) (t a , t a ′ ; t b , t b ′ ) = (-1)G (0) (t a , t b )G (0) (t a ′ , t b ′ )[G (0) (t b , t b ′ )] q-2 (1.180)
and the four-point projectors

I ± = I = ± I × 2 , I = (t a , t a ′ ; t b , t b ′ ) = δ(t a -t b )δ(t a ′ -t b ′ ) , I × (t a , t a ′ ; t b , t b ′ ) = δ(t a -t b ′ )δ(t a ′ -t b ) . (1.181)
Notably the subleading orders correspond to those obtained from a postulated effective action [START_REF] Choudhury | Notes on melonic O(N ) q-1 tensor models[END_REF] S

eff [G] = 1 2 q c=1
Tr ln

G (c) - 1 2 q c=1
Tr (G

(c) 0 ) -1 G (c) - λ 2 2N (q-1)(q-2)/2 t,t ′ q c=1 G (c) acbc (t, t ′ ) c 1 <c 2 δ ac 1 c 2 ac 2 c 1 δ bc 1 c 2 bc 2 c 1 (1.182) expanded around a symmetric saddle point G (0) G (c) acbc (t, t ′ ) = G (0) (t, t ′ )δ acbc + g (c) acbc (t, t ′ ) .
(1.183)

Here fluctuations g (c) (1 ≤ c ≤ q) for each color c are an N q-1 × N q-1 matrix. The important observation is that the covariance of fluctuations factorizes, when the latter are decomposed as

g (c) acbc (t, t ′ ) = g (c) (t, t ′ ) i =c δ a ci b ci + i =c g (ci) a ci b ci (t, t ′ ) j =i,c δ a cj b cj + ĝ(c) acbc (t, t ′ ) . (1.184)
We recognize traces (giving the last line of eq. (1.179)), a 2-color submatrix, splitting into antisymmetric (second line of eq. (1.179))) and symmetric traceless terms (third line of eq. (1.179))), and finally the rest, which doesn't contribute above. 41In short, the global symmetry of tensor models is reflected in the low-energy effective action as correcting the Schwarzian term. Further studies [START_REF] Yoon | SYK Models and SYK-like Tensor Models with Global Symmetry[END_REF] have shown that only the Schwarzian mode contributes to chaos in the four-point function, the others bringing subleading or subexponential behaviours. Connections to the SYK model with extra global symmetries are worth further exploration, e.g. [START_REF] Gross | A Generalization of Sachdev-Ye-Kitaev[END_REF][START_REF] Liu | Note on global symmetry and SYK model[END_REF][START_REF] Kapec | Matrix ensembles with global symmetries and 't Hooft anomalies from 2d gauge theory[END_REF].

Remarks

Energy Spectrum. After Wigner's footsteps, a complementary approach to characterize quantum chaos comes from the distribution of the energy spectrum. After some relaxation time, it follows the distribution of an ensemble of random matrices, with symmetries specific to the model. This was explored in depth for the SYK model [START_REF] Cotler | Black Holes and Random Matrices[END_REF], mainly relying on numerical diagonalization of the Hamiltonian. 42 It was alluring to attempt a similar analysis for tensors. The prevailing challenge is to cope with the size of the Hamiltonian 2 N r . Latest progress [START_REF] Pakrouski | Spectrum of Majorana Quantum Mechanics with O(4) 3 Symmetry[END_REF] (restricting to N = 4 and heavily relying on the discrete symmetries that hide in the Hamiltonian) seems to advocate that the random matrix ensemble followed by tensors is different than that of SYK (see also [START_REF] Gaitan | Hagedorn Temperature in Large N Majorana Quantum Mechanics[END_REF]). Simulations with a more consequent size of the tensors are tantamount to outline finer details of their holographic dual and to get a handle on the effect of subleading corrections on the dominant melons.

Invariants. A major difference between the vector, matrix and the tensor models (hence between SYK and its tensor analogues) is the number of connected group invariants at fixed number of fields. For vectors, there is only one: i φ 2 i . For matrices, there is one single-trace invariant per number of matrices: Tr M n . In constrast, without a canonical algebra, the indices of tensors can be contracted in multiple ways. At quartic order for an O(N ) 3 tensor, there are five different possible contractions, cf. Fig. 1.11. At order six there are already 18.

First enumerations of contractions depending on the number of vertices or fields, identified a factorial growth, 43 using decomposition formulas of characters of the permutation group S r (the latest review is [START_REF] Ben Geloun | On the counting tensor model observables as U (N ) and O(N ) classical invariants[END_REF]). Subsequently, using characters of O(N ) 3 decomposition of the partition function, [START_REF] Bulycheva | Spectra of Operators in Large N Tensor Models[END_REF][START_REF] Beccaria | Partition function of free conformal fields in 3-plet representation[END_REF] interpreted this growth as a vanishing Hagedorn temperature T H = 1/ log N , that is a temperature above which the partition function doesn't converge anymore. 44 Obviously, this calls for further investigation.

Towards black holes. Two melonic models U (N ) 2 × O(D) and U (N ) × O(D) (with quartic, sextic or both interactions, and included a mass m) were studied in imaginary and real time, presenting quite remarkable features [START_REF] Ferrari | Phases Of Melonic Quantum Mechanics[END_REF]. The first presented a line of first-order transition between an SYK-like phase and a Gaussian one, terminating at a critical point and was saturating the quantum chaos bound. The second showed a crossover between those two phases, but in the zero-temperature limit, broke spontaneously the SL(2, R) symmetry with a two-point function possessing two different power law decays in the limits of t → ±∞. While it showed the same residual zero-temperature entropy as the first model, it was not maximally chaotic. From a string theoretic perspective, those models 45 could describe the formation of a black hole, as we go from the Gaussian to the SYK-like phase. Understanding how those models behave when coupled to additional matter fields might provide a quantum mechanical description of matter crossing an event horizon.

Melonic CFTs

SYK-like models were one-dimensional and not only it was natural to examine higher-dimensional versions of the non-disordered models in the quantum chaos perspective, but a better understanding of the field theoretic content of higher-dimensional tensor models was pending. As we will review, Bosonic and Fermionic versions were explored, 46 featuring those characteristic melonic graphs in leading order Schwinger-Dyson equations. What relevant perturbations would generate an RG flow with a non-Gaussian IR fixed point? Is the fixed point conformal, unitary?

A quick power counting analysis determines the critical dimension in the different models. With an interaction of order q and a Gaussian term of dimension 2ζ (ζ = 1 for Bosons with standard Laplacian and 0 < ζ < 1 to preserve reflection positivity), we deduce that the interaction is relevant if

d 1 - q 2 + qζ > 0. (1.185)
Thus, quartic Fermions with standard propagator (ζ = 1/2) have critical dimension 2. The critical dimension of quartic Bosons is 4, but one can reduce it to d = 4ζ. The treatment of melonic CFTs follows the following schematic procedure. Having worked out that the leading two-point function obeys a melonic structure

G -1 = C -1 -λ 2 G q-1 , (1.186) 
we have, when the free covariance C is neglegible,47 a power-law solution:

G(x) = c |x| 2∆ φ , ∆ φ = d/q , (1.187) 
and c is a normalization factor. Given that the four-point function in the channel (12 → 34) involves an infinite sum of ladders generated by a kernel K itself fully determined by the twopoint function:

F = n≥0 K n = 1 1 -K , K(x 1 , x 2 ; x 3 , x 4 ) = λ 2 G(x 13 )G(x 24 )G(x 34 ) q-2 (1.188)
we head for the spectrum of the (to be shown) conformal primaries. The three-point function between O h , a bilinear in the fields of dimension h, and two fundamental fields also contains a sum of ladders at leading order in N , cf. Fig 1 .14, hence it must stay invariant under the addition of a rung:

O h (x 1 )φ(x 2 )φ(x 3 ) = dx a dx b K(x 1 , x 2 ; x a , x b ) O h (x 1 )φ(x a φ(x b ) = k(h) O h φφ . (1.189)
The eigenvalues k(h) can be computed analytically inserting the dependence of K on the twopoint function G and the assumed conformally invariant form for the three-point correlator.

Solving for k(h) = 1 gives the spectrum of bilinear conformal operators. This equation can also be generalized to operators involving spin (descendants) and informs us about the content in higher-spin (in a local theory, the stress-energy tensor of dimension h = d and spin s = 2 would be one of them).

The form of the leading order beta function β t was however interesting:

β t = λ 3 t , (1.191) 
with IR attractive Gaussian fixed point, and taking d = 2ǫ, generates an IR attractive fixed point λ * = √ ǫ.

Bosons

Bosonic tensor field theories were first written in [START_REF] Klebanov | Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models[END_REF]. With a quartic potential, they deduced that a real spectrum appeared only for d > 4, but at the fixed point the values of the melonic couplings turned complex. Formally, it was also possible to analytically continue the ladder kernel to generic d and q [START_REF] Giombi | Bosonic tensor models at large N and small ǫ[END_REF], .193) and search for the critical values d c , that only contained real operator spectrum. It allowed to conjecture the existence of another melonic fixed point for a sextic model in 2.97 < d < 3, with again imaginary couplings at the fixed points. 49A way to circumvent the above inconveniences proceeded from the introduction of a nonlocal propagator in the bare action while at the same time allowing the tetrahedral coupling to take complex values [START_REF] Benedetti | Line of fixed points in a bosonic tensor model[END_REF]. From a controlled renormalization group analysis, the quartic model:

K = (q -1)λ 2 G(x 13 )G(x 24 )G(x 34 ) q-2 (1.192) G(x) = C φ λ 2/q 1 |x| 2d/q , C φ =   - Γ( d q )Γ d(q-1) q π d Γ d(2-q) 2q Γ d(q-2) 2q   1/q , ( 1 
S = d d xφ abc (-∂ µ ∂ µ ) ζ φ abc + S int , (1.194) 
presented four lines of fixed points, parametrized by the value of the quartic coupling λ t up to a critical value. Besides, for an imaginary λ t = ig, the spectrum of bilinear operators O hn,J was found real:

h 0 = d 2 ± 2 Γ( d 4 ) 2 Γ( d 2 ) -3g 2 + O(g 3 ) (1.195) h n,J = d 2 + J + 2n + 2 3g 2 Γ( d 4 ) 4 Γ(n + J)Γ(n + 1 -d 2 ) sin -π d 2 Γ( d 2 + J + n)Γ(n + 1)π + O(g 4 ), (1.196) 
above the unitarity bound and asymptoting to their free value h n,J = d/2 + J + 2n at large n. In a subsequent study [START_REF] Benedetti | Hints of unitarity at large N in the O(N ) 3 tensor field theory[END_REF], the OPE coefficients from three-point functions of bilinear primaries with two fundamental fields were also shown to be real. Note that at any d there is no h = 2 solution, associated to the stress-tensor, and that the imaginary coupling λ t comes in pairs in the leading order correlation functions in order to form melons, hence only its absolute value appears above.

Yet, further work was required in order to ensure conformal invariance and unitarity of those long-range fixed points. A more recent work [START_REF] Benedetti | Conformal Symmetry and Composite Operators in the O(N ) 3 Tensor Field Theory[END_REF], inspired by the techniques of [START_REF] Paulos | Conformal Invariance in the Long-Range Ising Model[END_REF] showed that the vanishing of the beta functions at the fixed points implies the validity of the conformal Ward identities at all orders in perturbation theory, by an embedding in a higher dimensional space 56 CHAPTER 1. TENSOR FIELD THEORY: BACKGROUND AND MOTIVATIONS that localized the kinetic term. Computation of two-and three-point functions of (renormalized) operators corroborated this fact, suggesting that at leading order in 1/N the fixed point is a unitary CFT.

A different non-melonic large-N limit was devised in [START_REF] Giombi | Prismatic Large N Models for Bosonic Tensors[END_REF], by starting from a two-tensor model, interacting through a tetrahedron: (1.197) which, when integrating out the field χ lead to a prism-type interaction:

S[φ, χ] = d d x 1 2 (∂ µ φ abc ∂ µ φ abc ) + λ t 3!N 3/2 φ a 1 b 1 c 1 φ a 1 b 2 c 2 φ a 2 b 1 c 2 χ a 2 b 2 c 1 + 1 2 χ abc χ abc ,
S[φ] = d d x 1 2 (∂ µ φ abc ∂ µ φ abc ) + λ 2 t (3!) 2 N 3 φ a 1 b 1 c 1 φ a 1 b 2 c 2 φ a 2 b 1 c 2 φ a 3 b 3 c 1 φ a 3 b 2 c 3 φ a 2 b 3 c 3 . (1.198)
Three bilinears could be written ψψ, ψχ and χχ, resulting in a 3-by-3 ladder kernel to diagonalize. They numerically studied the spectrum of conformal dimensions of bilinears and windows of reality opened for d < 1.68 and 2.81 < d < 3. An RG analysis was also made for d = 3ǫ, including all eight O(N ) 3 invariant sextic couplings, using finite-N β function results of multi-scalar interactions. A unique real fixed point was found, that included all eight couplings.

On the importance of being gauged. From the holographic standpoint, it is difficult to interpret a number of bulk fields, growing with a power of N , dual to the fundamental tensors. Hence, the global (here O(N ) or U (N )) symmetry is typically gauged. 50 In the one-dimensional case, since the gauge field is non-dynamical, this constraint leaves as only observables the gauge invariant operators. In higher-dimensions, the dynamics of the gauge field has to be taken into account. Particularly in three dimensions, one can couple to Chern-Simons theory which has the particularity that the gauge coupling takes only integer values, thus it cannot flow under the renormalization group. This simplification, as well as the already well studied 3d gauged vector models, motivated us to look at a similar question for tensors. Much the same conclusions were reached in [START_REF] Popov | Supersymmetric tensor model at large N and small ǫ[END_REF], in the meantime discussing supersymmetric generalizations.

1.6 Overview and Summary

Melonic field theories

When discussing the renormalization group, we have emphasized that symmetries are decisive criteria to distinguish universality classes determining critical properties of quantum field theories. Their breaking, spontaneous or explicit, is as important. Matrix and tensor models can be seen as breaking the continuous symmetry of a vector into a smaller group. For instance, a vector φ I (1 ≤ I ≤ N ) transforming under O(N ), can also be reassembled as a matrix

Φ ab (1 ≤ a, b ≤ √ N ) and ask for invariance under O( √ N ) × O( √ N ) or as a tensor ϕ abc (1 ≤ a, b, c ≤ N 1/3 ), with invariance O(N 1/3 ) × O(N 1/3 ) × O(N 1/3
) and so on. The allowed interactions are different, so are their respective large N limits and this can lead to theories with very different content.

Over the next two chapters, we will explore the tensorial counterpart of two well-known three-dimensional vector theories: the quartic Fermionic and the sextic Bosonic. The underlying 50 Nevertheless, [START_REF] Maldacena | To gauge or not to gauge?[END_REF][START_REF] Berkowitz | Gauged And Ungauged: A Nonperturbative Test[END_REF] considered the difference between gauged and ungauged boundary U (N ) global symmetry of a D0-brane matrix model and argued from the bulk and the boundary (in the latter case, with support of Monte-Carlo simulations), that their free energies near zero temperature differed by non-perturbative corrections in the temperature.

OVERVIEW AND SUMMARY

57

thread is to pinpoint how their field theoretic structures differ, in terms of symmetry patterns of the vacuum as well as their renormalization group flows and fixed points.

First, we will be concerned with the tensorial analog of the Gross-Neveu model. The large-N diagrammatics of the self-energy will in a certain regime of couplings uphold spontaneous chiral symmetry breaking through mass-generation. We extract the β functions and in addition to the trivial IR fixed point and to the standard UV fixed point of the Gross-Neveu model (where the tensorial interactions that break the U (N 3 ) symmetry are absent), we find two new fixed points: one with two relevant directions, and another with one relevant and one irrelevant direction. Since the properly color-invariant U (N ) 3 tensor model presents spontaneous breaking of colorsymmetry, we first analyze the resulting U (N ) × U (N 2 ) effective theory, which essentially is a rectangular matrix model. Eventually, we identify three phases of the vacuum by analyzing the effective potential of the intermediate field: a massless phase preserving all the symmetries of the model; a phase with dynamically generated mass, breaking only the chiral symmetry; and a phase breaking the chiral symmetry, as well as one of the U (N ) subgroups of the symmetry group (and as a consequence breaking also the color symmetry, when present in the original model). We find that the conformal dimension of the unconstrained component of the intermediate field (and thus of the corresponding composite operator ψψ) is the same at all the nontrivial fixed points, ∆ ψψ = 1 (to be compared to the Gaussian fixed point value, ∆ ψψ = 2), thus matching that of the critical vector GN model. The dimensions of the (integrated) quartic operators are instead different, as they change from relevant to irrelevant from one fixed point to another, but are the same in modulus, which is always equal to one.

A natural extension of this model is to gauge the SU (N ) symmetry with a Chern-Simons term, as had been previously done with vector models (which lead to a wonderful set of dualities between Fermionic and Bosonic models, free and interacting, and the unifying picture of a dual higher-spin theory [START_REF] Giombi | Higher Spin -CFT Duality[END_REF]). In our case, we argue that at large-N , the gauge field doesn't affect the tensor field equations of motion, while restricting observables to SU (N ) singlets.

The second chapter focuses on sextic Bosonic models with bipartite (rank 3) and nonbipartite interactions (rank 5). In both cases, we allow long-range propagators, tuning the dimension of the field in order to keep the sextic interactions marginal for d < 3. Short-range sextic tensor models have been considered before, but either without actually studying the existence of fixed points [START_REF] Giombi | Bosonic tensor models at large N and small ǫ[END_REF] (and only for rank 5), or for a different scaling in N of the couplings than the optimal one [START_REF] Giombi | Prismatic Large N Models for Bosonic Tensors[END_REF]. Here, we compute the beta functions for our models, at leading order in the 1/N expansion, and at four-loop order, expanding on top with respect to a small parameter, such as ǫ = 3d in the short-range case, or an exactly marginal coupling in the long-range case.

Our main results are: in rank 3, we find two non-trivial infrared fixed points for the shortrange model in d < 3, and for the long-range model a line of infrared fixed points parametrized by one of the sextic couplings. In both cases, the couplings are real and we find a window with real spectrum of bilinear operators. However, the short-range model has a non-diagonalizable stability matrix, sign of a non-unitary, logarithmic CFT. Surprisingly, in rank 5, the only fixed point is non-interacting.

We will compare to two other series of works. Firstly, as we had mentioned in Subsection 1.5.3, to the studies of quartic long-range models [START_REF] Benedetti | Line of fixed points in a bosonic tensor model[END_REF], where in order to find a real line of fixed points parametrized by the non-renormalized tetrahedral coupling, the analog of our sextic wheel coupling, this quartic coupling is taken imaginary. Real OPE coefficients [START_REF] Benedetti | Hints of unitarity at large N in the O(N ) 3 tensor field theory[END_REF] and correlation functions between primaries displaying a conform structure [START_REF] Benedetti | Conformal Symmetry and Composite Operators in the O(N ) 3 Tensor Field Theory[END_REF] strongly support that the fixed points form a line of unitary CFTs. Secondly to those of [START_REF] Giombi | Bosonic tensor models at large N and small ǫ[END_REF], as we give solid ground to the conjectured melonic fixed point for sextic model, that we disprove in rank-5 but show to exist in a rank-3 model. Common to both these lines, reality of the spectrum at the fixed points will again constrain the expansion parameter (be it ǫ or the marginal coupling) in a very small window.

Perturbative quantum field theory on random trees

In the last chapter of our work, we turn to a quite different topic, with different formalism, tools and goals. Our idea was that since the critical dimension of the interacting quartic Fermionic theory discussed earlier was two, and the theories in one and two-dimensions have been extensively discussed, we wondered if we could reach interesting conclusions about theories in intermediate dimensions. In other words, fractals. The object we had in mind was the Aldous continuum random tree, known to have Hausdorff dimension d H = 2 and spectral dimension d s = 4/3, and closely connected to the large N limit of tensors. We mentioned earlier some results on theories in fractional dimensions stating for instance their non-unitarity, but they were relying on analytic continuation of formulas obtained in integer dimensions. We wanted more constructive results. Hence, in order to define a quantum theory on such a beast, we needed a propagator. Once we rewrite the latter as a sum over random walks and look for the probability to reach one point from another, we open the door to a vast topic in probability theory dealing with random walks on random environments. Concretely, we were looking for precise estimates of the heat-kernel on the tree.

Actually, the use of random walks in QFT was introduced, after Symanzik, as a constructive tool to prove that correlators obeyed OS axioms. The idea is to associate the renormalization group scale with the proper time of the random walker, which then limits the distance it may travel on average. In the perturbative expansion, we need to evaluate the probability of intersection of multiple random walks. This point of view provided a constructive proof of the triviality of quartic scalar field theory in d ≥ 4 and non-triviality in d = 2, 3 [START_REF] Fernandez | Random walks, critical phenomena, and triviality in quantum field theory[END_REF].

We will limit ourselves to perturbative results on Feynman amplitudes for a self-interacting scalar theory. We take as propagator a fractional rescaled Laplacian as in [START_REF] Gross | A line of CFTs: from generalized free fields to SYK[END_REF][START_REF] Brydges | Critical φ 4 3,ǫ[END_REF] to put ourselves in the interesting just renormalizable case. Our basic tool is the multiscale analysis of Feynman amplitudes [START_REF] Feldman | Bounds on completely convergent Euclidean Feynman Graphs[END_REF], which remains available on random trees since it simply slices the proper time -i.e. Feynman's parameter in high energy physics language -of the random path representation of the inverse of the Laplacian.

Combining this slicing with the probabilistic estimates of Barlow and Kumagai [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF][START_REF] Kumagai | Random Walks on disordered media and their scaling limits[END_REF] we establish basic theorems on power counting, convergence and renormalization of Feynman amplitudes. Our main results, Theorems 4.2.2 and 4.3.1 below, use the Barlow-Kumagai technique of "λ-good balls" to prove that the averaged amplitude of any graph without superficially divergent subgraphs is finite and that logarithmically divergent graphs and subgraphs can be renormalized via local counterterms.

The conclusion is that the superficial degree of divergence of amplitudes is expressed in terms of the spectral dimension of the geometry (4/3 in our case), instead of the usual spacetime dimension. This approach provides field theory amplitudes as a different tool to probe the spectral dimension of a geometry, a local property. An analogous result was phrased by Eyink [START_REF] Eyink | Quantum Field Theory Models on Fractal Space-time. 1: Introduction and Overview[END_REF] in an earlier study of quantum field theory on a fixed fractal geometry, and although the estimates on heat-kernels were much less understood, still allowed a rigorous Wilson block renormalization construction for hierarchical models.

Finally, let us remark that Barlow and Kumagai obtained heat-kernel bounds [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF] for the Incipient Infinite Cluster (IIC) on Cayley trees (regular and rooted). This graph contains as subgraphs all clusters connected to the root of given size n, for all n ∈ N, when considering the 1.6. OVERVIEW AND SUMMARY 59 critical percolation on Cayley trees [START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF]. In the continuum limit it is the Aldous Continuum Random Tree (CRT) [START_REF] Aldous | The Continuum Random Tree I, II and III, The Annals of Probability[END_REF]. [START_REF] Croydon | Convergence of simple random walks on random discrete trees to Brownian motion on the continuum random tree[END_REF] showed that the scaling limit of random walks on Galton-Watson trees is the Brownian motion on the CRT and [START_REF] Croydon | Volume growth and heat kernel estimates for the continuum random tree[END_REF] obtained quenched bounds on heat-kernel on the CRT compatible with the ones of [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF], although, in our understanding, with less explicit ranges of validity. Their techniques generalize more easily to the random graphs known as Random Conductance Models (see for instance Ch. 8 of [START_REF] Kumagai | Random Walks on disordered media and their scaling limits[END_REF] for an overview of results and their proofs).

Chapter 2

Tensorial Gross-Neveu in d = 3

In this chapter, Section 2.1 begins by shortly reviewing the large-N study of the three-dimensional Gross-Neveu model. Going from vectors to rectangular matrices, Section 2.2 undertakes the analysis the RG flow and effective potential of the matrix intermediate field, where equations of motion can be explicitly solved. Appendix 2.B discusses a different intermediate field decomposition of the rectangular matrix case. Follows in Section 2.3 the analysis of the color-symmetric tensor model, where a similar phase diagram is found, while the details of our analysis of the effective potential are assembled in Appendix 2.C. Finally in Section 2.4, we explain what are the consequences of gauging the global symmetries and compare with the vector model analysis. The Appendix 2.A details our conventions on the used γ matrices.

A brief reminder of the vectorial Gross-Neveu model

The Gross-Neveu model [START_REF] Gross | Dynamical Symmetry Breaking in Asymptotically Free Field Theories[END_REF] has been extensively studied, in particular in two dimensions, where it provides a model of asymptotic freedom and dynamical mass generation, which is also integrable. Here, we are rather interested in its three-dimensional version, which despite being perturbatively non-renormalizable, is renormalizable in the 1/N expansion [START_REF] Parisi | The Theory of Nonrenormalizable Interactions. 1. The Large N Expansion[END_REF] and admits an ultraviolet fixed point at large N [START_REF] De Calan | Constructing the three-dimensional Gross-Neveu model with a large number of flavor components[END_REF][START_REF] Rosenstein | Four-fermion theory is renormalizable in 2+1 dimensions[END_REF] which renders the model meaningful at arbitrarily high energies (see [START_REF] Rosenstein | Dynamical symmetry breaking in four-fermion interaction models[END_REF] for a review). The nontrivial fixed point theory has been conjectured to be dual to a particular version of higher spin theory in AdS 4 [START_REF] Klebanov | AdS dual of the critical O(N) vector model[END_REF][START_REF] Sezgin | Holography in 4D (super) higher spin theories and a test via cubic scalar couplings[END_REF], a conjecture which has passed several tests (see [START_REF] Giombi | Higher Spin -CFT Duality[END_REF] and references therein).

In view of the upcoming generalizations, we define here the model for the case of N 3 Dirac Fermions in Euclidean signature (see Appendix 2.A for conventions on γ matrices). The action is

S GN [ψ, ψ] = d 3 x ψi / ∂ψ i - λ N 3 ( ψi ψ i ) 2 . (2.1)
Expressing the four-Fermion interaction in terms of an intermediate field σ, the action writes

S[ψ, ψ, σ] = d 3 x ψi / ∂ψ i + σ ψi ψ i + N 3 4λ σ 2 . (2.2)
Besides the U (N 3 ) invariance (with the Fermions transforming in the fundamental representation), the model has also a discrete chiral symmetry, which acts as 

ψ → γ 5 ψ ψ → -ψγ 5 σ → -σ. ( 2 
m λ = 8m Λ d 3 p (2π) 3 1 p 2 + m 2 , (2.4) 62 CHAPTER 2. TENSORIAL GROSS-NEVEU IN D = 3
where the divergent integral is regulated by a UV cutoff Λ. The integral on the right-hand side of the gap equation is a monotonically decreasing function of m, hence it has a maximum at m = 0, which defines a critical coupling

1 λ c ≡ 8 Λ d 3 p (2π) 3 1 p 2 , (2.5) 
above which the gap equation (2.4) admits a real solution m = 0, besides the trivial one. Using the intermediate field formulation (2.2), and integrating out the Fermions, one finds that for λ > λ c the stable solution of the effective potential is the non-zero solution. Therefore, the theory has a dynamically generated mass for λ > λ c , and this in turn means that the chiral symmetry is spontaneously broken.

Using the gap equation for λ > λ c , the effective potential writes

V eff (σ) = 1 π 1 3 |σ| 3 - m 2 σ 2 , (2.6) 
with an evident minimum at σ = m. For 0 ≤ λ ≤ λ c the symmetry is instead preserved, as m = 0 is stable. The phase transition at λ = λ c is second order.

The β-function of the adimensional coupling λ ≡ Λλ is obtained from eq. (2.4) derivating both sides with respect to Λ, leading to

β = Λ∂ Λ λ = λ - 4 π 2 λ2 . (2.7) 2.2 U (N ) × U (N 2 )-symmetric model
The U (N ) × U (N 2 )-symmetric model is obtained by first rearranging the label i = 1, . . . , N 3 as a set of two labels a and A, so that we rewrite ψ i → ψ aA , with a = 1, . . . , N and A = 1, . . . , N 2 , and ψ aA transforming in the fundamental of the product group. 1 In order to explicitly break the symmetry from U (N 3 ) to U (N ) × U (N 2 ), while preserving the discrete chiral invariance, we add the following interaction to the GN model:

λ p N 2 ψaA ψ a ′ A ψa ′ A ′ ψ aA ′ . (2.8)
In view of the next generalization, we will actually replace also the index A by a pair of indices, each taking values from 1 to N , i.e. we write ψ i → ψ abc . The total action then reads

S[ψ, ψ] = S free [ψ, ψ] + S int [ψ, ψ] , (2.9) 
with S free [ψ, ψ] = d 3 x ψabc / ∂ψ abc , (2.10)

S int [ψ, ψ] = - λ N 3 d 3 x ( ψabc ψ abc ) 2 - λ p N 2 d 3 x ψabc ψ a ′ bc ψa ′ b ′ c ′ ψ ab ′ c ′ . ( 2 

.11)

1 There is a slight redundancy in denoting the symmetry group as U (N ) × U (N 2 ): its action on ψ aA is not faithful, because the action of the two U (1) subgroups of U (N ) and U (N 2 ) are indistinguishable. Therefore, a faithfully acting symmetry group of the theory would be U (1) × (SU (N )/Z N × SU (N 2 )/Z N 2 ), where we have quotiented also by the residual centers of the special unitary groups. A similar caveat applies of course also to the symmetry group of section 2.3. In the rest of the chapter, for compactness of notation we will stick to the non-faithful denotation of the symmetry group.

CHAPTER 2. TENSORIAL GROSS-NEVEU IN

D = 3 or 1 λ + λ p = 8 |p|<Λ d 3 p (2π) 3 1 p 2 + m 2 = 4 π 2 Λ -m arctan Λ m , (2.15) 
that is the analog of (2.4). After a rewriting in terms of the dimensionless couplings ( λp ≡ Λλ p and λ ≡ Λλ), and derivating both sides with respect to Λ, we get

1 λ + λp - Λ λ + λp 2 ∂ Λ λ + λp = 4 π 2 1 - m Λ 2 .
Defining κ ≡ 4/π2 , and taking Λ ≫ m, we find the following combination of beta functions:

β + β p ≡ Λ∂ Λ λ + Λ∂ Λ λp = λ + λp -κ λ + λp 2 .
(2.16)

Taking into account the different structure of diagrams that contribute to the flow of the couplings (see Fig. 2.3), we can disentangle the beta functions and obtain

β = λ -κ λ2 + 2 λλ p , (2.17 
) One sees, in addition to the trivial IR-fixed point λ, λp = (0, 0), three new non-trivial

β p = λp -κ λ2 p . ( 2 
fixed points at 1 κ , 0 ≡ FP 1 , -1 κ , 1 κ ≡ FP 2 , and 0, 1 κ ≡ FP 3 .
The first of them is the usual interacting CFT of the vector GN model, while the other two are new interacting CFTs. The fixed point at the origin is IR-stable, while FP 2 is UV-stable, and the other two are saddles. The irrelevant directions at FP 1 and FP 3 can be understood as a statement of the fact that their universality classes are stable against symmetry breaking perturbations (for FP 1 , which being the usual GN fixed point has a larger symmetry, namely U (N 3 )) and trace perturbations (for FP 3 , which lies on the tracelessness constraint subspace of the diagram). The critical exponents are all ±1 with the signs determined by the corresponding eigenperturbation being relevant or irrelevant. 

Effective potential and phase diagram

The next question to raise concerns the nature of the phase diagram of the stable vacuum.

Following [START_REF] Benedetti | Tensorial Gross-Neveu models[END_REF], we introduce a Hermitian matrix M ij as intermediate field, such that the interaction terms rewrite as3 

S int [ψ, ψ, M ] = 1 2 Tr M 2 + b (1 -b)N (Tr M ) 2 + 2λ p N ψibc ψ jbc M ij , (2.19) 
b ≡ -λ λp , allowing to integrate out the Fermions and obtain

S[M ] = 1 2 Tr M 2 + b (1 -b)N (Tr M ) 2 -N 2 tr Tr ln / ∂ + 2λ p N M . ( 2 

.20)

To remove the N factor from inside of the log-term, we rescale M → N M . We are interested in the effective potential, which in the large-N limit is simply given by (2.20) evaluated at constant M . 4 Then the last term, up to a constant independent of M , gives tr Tr

d 3 k (2π) 3 ln / ∂ + 2λ p M = -4 Tr d 3 k (2π) 3 n>0 ik k 2 2λ p M 2n 1 2n = 1 π 2 Λ 0 dkk 2 Tr log 1 + 2λ p M 2 k 2 = Tr 3π 2 4λ p ΛM 2 -2(2λ p M 2 ) 3 2 arctan Λ 2λ p M 2 +Λ 3 log 1 + 2λ p M 2 Λ 2 .
(2.21)

Switching to dimensionless variables and couplings, we find the following effective potential:

V eff [ M ] ≡ S[ M = const.] N 2 Λ 3 Vol = 1 4 λp Tr M 2 + b (1 -b)N (Tr M ) 2 - 1 3π 2 Tr   2 M 2 -2 M 3 arctan 1 M + log 1 + M 2   , (2.22) 
where we defined

M ≡ 2λ p M Λ , λ ≡ λΛ, λp ≡ λ p Λ, Vol = d 3 x . (2.23) 
Owing to the U (N )-invariant form of the effective potential (2.22), we can diagonalize the matrix M and recover an effective potential for its set of eigenvalues5 µ i , 1 ≤ i ≤ N :

V eff [{µ i }] = i 1 4 λp µ 2 i + 1 3π 2 κ(µ i ) - λ 4 λp ( λ + λp )N i µ i 2 , (2.24) 
κ(µ) = 2µ 3 arctan 1 µ -2µ 2 -log 1 + µ 2 . (2.25)
An important point is that the potential (2.24) is unbounded from below in the regions λp < 0 and λp + λ < 0 (this is most easily seen by studying special symmetric configurations such as those we will encounter below for the stationary points), therefore considered unphysical.

The only extremum of the potential which preserves all the symmetries of (3.4) is the trivial solution M = 0, for which our potential is normalized such that V eff [0] = 0. Stationary points with non-zero eigenvalues µ i = µ (1 ≤ i ≤ N ), spontaneously break the chiral symmetry of (3.4) (reflected in the symmetry M → -M ), whereas if the eigenvalues are not all equal, the original U (N ) symmetry of (3.4) is spontaneously broken as well.

In the green parallelogram region of the phase diagram in Fig. 2.5, we can show that the potential is non-negative, and the solution µ = 0 gives a global vacuum. Indeed, the term in square brackets of eq. (2.24) is (for each i) non-negative and convex (with a global minimum at the origin) in the range 0 < λp < π 2 /4. Consequently, if i µ i = 0 and λ < 0 then

V eff [{µ i }] > 0 = V eff [0].
In the case λ > 0, we can use the Cauchy-Schwarz inequality to bound

V eff [{µ i }] ≥ i 1 4 λp µ 2 i + 1 3π 2 κ(µ i ) - λ 4 λp ( λ + λp ) µ 2 i ≡w(µ i ) , (2.26) 
which is convenient, as the eigenvalues decouple. By taking first and second derivatives of each term we can now prove that µ i = 0 is the unique minimum of w(µ i ), and hence µ i = 0 ∀i is the global minimum of V eff [{µ i }] for 0 ≤ λ + λp ≤ π 2 /4 and 0 ≤ λp ≤ π 2 /4:

w ′ (x) = 2x π 2 α 1 -α + αx arctan 1 x > 0 (x > 0, 0 < α < 1), (2.27) 
w ′′ (x) = 2 π 2 α 1 -α 1 + 2x 2 1 + x 2 + 2αx arctan 1 x > 0 (0 < α < 1) , (2.28) 
having introduced α = 4( λ + λp )/π 2 . At α > 1 the origin becomes unstable.

The stability of the trivial solution is more properly analyzed by studying the full Hessian. Coming back to eq. ( 2.22), we can want to compute the second derivative around the point M = 0, for which we can discard the arctan term, as it is of cubic (and higher) order in the fluctuations. The first derivative gives

∂V ∂ Mij = A Mji + B Tr M N δ ij + C Mji , (2.29) 
A = 1 2 λp , B = b 2 λp (1 -b) , C = - 2 π 2 .
(2.30)

The second derivative

∂ 2 V ∂ Mij ∂ Mkl = (A + C)δ ik δ jl + B δ ij δ kl N , (2.31) 
can be rewritten as follows

H = α(1 -P ) + βP (2.32) α = A + C β = A + B + C , P ij,kl ≡ δ ij δ kl N , (2.33) 
introducing P that projects on the trace. Articulated as such, the Hessian H is easy to diagonalize, as the eigenfunctions are easily found to be:

-traceless matrices, with eigenvalue α = 1 π 2 . This suggests that the trivial solution becomes unstable towards traceless perturbations at λp ≥ π 2 /4 and towards trace perturbation at λ + λp ≥ π 2 /4. Therefore, the following two particular non-zero solutions are examined: 6
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• µ i = µ = 0 ∀i: The potential takes the form

1 N V eff (µ) = µ 2 4 λp 1 + b 1 -b - 8 λp 3π 2 + 2 3π 2 |µ| 3 arctan 1 |µ| - 1 3π 2 log 1 + µ 2 , (2.34)
and the equation of motion that µ must satisfy is

µ arctan 1 µ = 1 - π 2 4( λ + λp ) . (2.35)
The range of values of the left-hand side tells us that such a solution exists only for λ + λp ≥ π 2 /4.

• Tr M = 0: Then the potential reduces to a sum over the eigenvalues. We obtain

V eff [ M ] = i v(µ i ) , (2.36) 
where

v(µ) = µ 2 4 λp 1 - 8 λp 3π 2 + 2 3π 2 |µ| 3 arctan 1 |µ| - 1 3π 2 log 1 + µ 2 .
(2.37)

The equation of motion for µ i is

µ i arctan 1 µ i = 1 - π 2 4 λp . (2.38) 
The range of the left-hand side tells us that such a solution exists only for λp ≥ π 2 /4. Furthermore, being an even function, monotonic on each semiaxis, there are only two solutions µ i = ±τ . The tracelessness condition finally tells us that the two must come in equal number (for odd N we necessarily have either a zero eigenvalue or a violation of the tracelessness condition, which amounts to a subleading effect in 1/N ).

Using the equations of motion, we need to compare the values of the potential at the above critical points:

V eff (q) = τ (q) 2 12q - 1 3π 2 log 1 + τ (q) 2 , (2.39) 
with q = λ + λp in the uniform case and q = λp in the traceless one, and τ (q) being the solution of τ arctan (1/τ ) = 1π 2 /(4q). Since τ (q) 2 is a monotonically increasing function, and since as a function of q, V eff (q) is decreasing monotonically starting from 0 (the trivial solution), we conclude that λp > λ + λp =⇒ V eff (q traceless ) < V eff (q unif orm ) (2.40) and reciprocally. In other words, the traceless solution wins over the uniform one for λ < 0, while the uniform wins for λ > 0. Such transition can be qualitatively understood in terms of the double-trace term: we see that if λ < 0, then the double-trace term comes with a positive sign and has to be minimized, showing why the traceless solution wins (when it exists, i.e. for λp > π 2 /4), while if λ > 0, then the coefficient of the double-trace term is negative and has to be maximized, leading to the uniform solution.

At last, the phase diagram is as shown in Fig. 2.5. Knowing the value of the potential at the different vacua, we see that the transition from red and blue to green are continuous, hence of second order. Indeed, comparing eq. (2.35) with eq. (2.38), we see that taking the limit λp + λ or λp to π 2 /4, µ and τ decrease monotonically to zero. On the other hand, a first order transition separates the two non-trivial phases: at λ = 0 and λp > π 2 /4, they both have same potential energy (but are distinct), and as the coupling λ grows or decreases, the uniform or traceless solution become global minima, respectively.

Schwinger-Dyson equations in the traceless phase

In Sec. 2.2.1 we derived the gap equation and beta functions from the Schwinger-Dyson equations in the U (N )×U (N 2 )-symmetric phase. Although we expect the beta functions to be independent of such choice it is instructive to do an explicit check, now that we discovered a broken phase.

Assuming that the two-point function breaks the U (N ) × U (N 2 ) symmetry into U (N/2) 2 × U (N 2 ), with the following ansatz:

M 1 = m(1 N -2P N ), P N = 0 N/2 0 N/2 0 N/2 1 N/2 , (2.41) 
G -1 (p) = i / p 1 1 ⊗ 1 2 ⊗ 1 3 + M 1 ⊗ 1 2 ⊗ 1 3 , (2.42) 
the Schwinger-Dyson equation becomes

G -1 (p) = i / p1 1 ⊗ 1 2 ⊗ 1 3 + 2 λ p N 2 d 3 q (2π) 3 (Tr \1 tr [G(q)]) ⊗ 1 2 ⊗ 1 3 , (2.43) 
where Tr \c is a trace on all indices except the one of color c. The coupling λ is missing from the equation because it multiplies a full trace of G(q), which is zero for the ansatz above. Forgetting momentarily the trace over the γ-matrices, we have

Tr \1 [G(q)] = N 2 -i / p + M 1 p 2 + m 2 , (2.44) CHAPTER 2. TENSORIAL GROSS-NEVEU IN D = 3
such that the Schwinger-Dyson equation reduces to

M 1 = 2λ p d 3 q (2π) 3 tr -i / p + M 1 p 2 + m 2 , ( 2.45) 
or the mass gap equation

m = 8λ p d 3 q (2π) 3 m p 2 + m 2 , (2.46) 
that is, nothing more than eq. (2.15) with λ = 0, thus leading directly to (2.18).

Anomalous dimension

We have three non-trivial fixed points (out of which one has two relevant directions while the others have one), and for each of them we can compute the conformal dimension of the intermediate field. It happens, that in all cases, the computation is almost unchanged and gives the same result:

• ( λ, λp ) = (π 2 /4, 0)
This is the UV fixed point of the usual GN model. The limit λ p → 0 constrains to zero the traceless part of the intermediate field [START_REF] Benedetti | Tensorial Gross-Neveu models[END_REF], and thus it is equivalent to starting from the action (2.2). Integrating out the Fermions:

S int [σ] = N 3 d 3 x 1 4λ σ 2 -log / ∂ + σ . (2.47) 
At the fixed point, σ = 0 and the inverse propagator is obtained by the second functional derivative with respect to σ, computed at σ = 0, i.e.:

1

N 3 σ(p)σ(-p) -1 = 1 2λ -tr d 3 q (2π) 3 / q( / q -/ p) q 2 (q -p) 2 = 1 2λ -4 d 3 q (2π) 3 q 2 -q • p q 2 (q -p) 2 . (2.48)
The last integral can be computed as

4 d 3 q (2π) 3 q 2 -q • p q 2 (q -p) 2 = 2 π 2 Λ 0 dq - 2p 2 (2π) 2 +∞ 0 dq +1 -1 d(cos θ) 1 q 2 + p 2 -2qp cos θ = 2 π 2 Λ - p 4 .
(2.49)

The linear divergence is cancelled by the fixed point condition λ = π 2 4Λ , thus yielding

σ(p)σ(-p) = 4 N 3 p , (2.50) 
corresponding to a conformal dimension ∆ σ = 1, which is also the dimension of ψabc ψ abc .

• ( λ, λp ) = (0, π 2 /4) Let us recall the effective action of the intermediate field

S int [M ] = 1 2 M * ij K ij;kl M kl -N 2 tr Tr log / ∂ + 2λ p N M , (2.51) 
K ij;kl = δ ik δ jl + b (1 -b)N δ ij δ kl . (2.52) 
It is convenient to introduce again the rescaled matrix M = √ 2λp N M . Derivating twice with respect to an eigenvalue m i of M , and setting b = 0, gives, after a Fourier transform

1 N 2 δ 2 S int δm 2 m=0 = 1 2λ p -tr d 3 q (2π) 3 / q( / q -/ p) q 2 (q -p) 2 , (2.53) 
namely the same expression as (2.48), with λ p replacing λ. The linear divergence is cancelled by the fixed point condition, 1 2λp = 2Λ π 2 , and we arrive at the same propagator (hence same conformal dimension) as in the usual three-dimensional Gross-Neveu model.

• ( λ, λp ) = (-π 2 /4, π 2 /4)
Here, because b = 1 is a singular point of K, we need to take a few steps back [START_REF] Benedetti | Tensorial Gross-Neveu models[END_REF]. The Fermionic interaction action was written with a matrix-like field B ij = ψibc ψ jbc as

S int = - λ p N 2 B * ij C ij;kl B kl , (2.54) 
C ij;kl = δ ik δ jl - b N δ ij δ kl = (1 -P ) ij;kl + (1 -b)P ij;kl , P ij;kl = δ ij δ kl N . (2.55) 
Since P projects on the trace part of the matrix, it appears clearly that b = 1 restricts us to work with a traceless B. Except for this constraint on the fields (which then follows for the matrix-like intermediate field M7 ), the computation of the effective propagator will be identical to other two cases above.

U (N ) × U (N ) × U (N )-symmetric model

Adding to the model defined in (3.4)-(2.11) other pillow interactions which differ by simultaneous permutations of the three tensor indices of all the fields, we break the U (N ) × U (N 2 ) symmetry down to U (N ) × U (N ) × U (N ). In the tensor model literature it is usual to refer to an index location (first, second, or third index, in our case) as a color, and hence such permutations of indices are called color permutations. There are three distinguishable colorings for the pillow interaction, one for each choice of transmitted color , i.e. for each choice of index being associated to the vertical lines of Fig. 2.1. Considering that of course there is only one coloring for the double-trace interaction, we have in general four independent couplings. We will restrict the theory space by demanding color symmetry of the action, i.e. invariance under permutations of the indices, thus writing for the new interacting part of the action

S int [ψ, ψ] = - λ N 3 d 3 x ( ψabc ψ abc ) 2 - λ p N 2 3 ℓ=1 P ℓ [ψ, ψ] , (2.56) 
where P ℓ [ψ, ψ] is the pillow interaction with transmitted color ℓ. 
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Schwinger-Dyson equations and β-functions

Following [START_REF] Benedetti | Tensorial Gross-Neveu models[END_REF], the SD equations in momentum space write as8 

G -1 (p) = G -1 0 (p) + 2 d 3 q (2π) 3 tr λ N 3 Tr G(q) + λ p N 2 Tr \1 G(q) + Tr \2 G(q) + Tr \3 G(q) , (2.57 
) as also depicted in Fig. 2.6. Assuming that the U (N ) symmetry is unbroken by the vacuum, an ansatz for the full propagator is again given by (2.12), with the diagonal Ĝ(p) -1 = i / p + m; thus, similarly to subsection 2.2.1, the gap equation is

m = 2(λ + 3λ p ) d 3 q (2π) 3 tr -i / q + m q 2 + m 2 , (2.58) or 1 λ + 3λ p = 8 |p|<Λ d 3 p (2π) 3 1 p 2 + m 2 = 4 π 2 Λ -m arctan Λ m . (2.59) 
In terms of the dimensionless couplings ( λp ≡ Λλ p and λ ≡ Λλ) and with κ ≡ 4/π 2 , the β-functions read

β + 3β p = λ + 3 λp -κ λ + 3 λp 2 .
(2.60)

By direct inspection of the one loop diagrams at leading order in 1/N , depicted in Fig. 2.7, we can disentangle the two beta functions, obtaining:

β = λ -κ λ2 + 6 λλ p + 6 λ2 p , (2.61) 
β p = λp -κ λ2 p . (2.62)
With the experience of the previous section, we can also consider the case of broken U (N ) symmetry, and disentangle the two beta functions by combination of the symmetric and broken results. Anticipating the results of section 2.3.2, it turns out that there is a broken phase where we can make precisely the same ansatz as in (2.42). The calculation then proceeds exactly as in that section, after having noticed that in (2.57) the Tr \2 and Tr \3 terms vanish because the trace on color 1 is zero. Therefore, the beta function for λ p is unchanged, and combining it with that of the unbroken case (eq. (2.60)), we find again (2.61), as expected.

It is also interesting to point out that β + 2β p = 0 along λ + 2λ p = 0. We picture the resulting flow on Fig. 2.8, seemingly a distorted version of Fig. 2.4. In fact the critical exponents are also the same as in the previous model. 

Effective potential and phase diagram

Rewriting all the quartic interactions in terms of intermediate fields, the action takes the following form

S[M 1 , M 2 , M 3 ] = 1 2 c=1,2,3 Tr M 2 c + b (1 -b)N (Tr M c ) 2 -tr Tr ln / ∂ + 2λ p N R (2.63) R ≡ M 1 ⊗ 1 2 ⊗ 1 3 + 1 1 ⊗ M 2 ⊗ 1 3 + 1 1 ⊗ 1 2 ⊗ M 3 ; b = - λ 3λ p , (2.64) 
with the three intermediate fields M 1 , M 2 , M 3 needed for the three pillow interaction terms. The original GN-interaction is split into three identical parts, thus in effect changing λ → λ/3 in each of the (Tr M c ) 2 terms. Again, coming to adimensional variables, rescaling such that Mi ≡ N Λ 3/2 M i , ∀i, and using the U (N ) symmetry to diagonalize, we arrive at

V [{µ 1,i , µ 2,j , µ 3,k }] ≡ S M1 , M2 , M3 | Mi =const. N 3 Λ 3 Vol = 1 N c 1 4 λp   i µ 2 c,i - λ ( λ + 3 λp )N i µ c,i 2   + 1 N 3 1≤i,j,k≤N 1 3π 2 κ(µ 1,i , µ 2,j , µ 3,k ) , (2.65) 
κ(µ 1,i , µ 2,j , µ 3,k ) = 2µ 3 arctan 1 µ -2µ 2 -log 1 + µ 2 , (2.66) µ ≡ µ 1,i + µ 2,j + µ 3,k . (2.67) 
We are looking for the vacua of this potential. The equations of motion for µ c,i read

1 2 λp µ c,i - λ ( λ + 3 λp )N j µ c,j + 2 π 2 N 2 1≤j,k≤N µ 2 arctan 1 µ -µ = 0. (2.68)
To begin, a useful remark is that the three different color-intermediate fields must have the same trace at the saddle points. Indeed, this is seen by summing eq. (2.68) over i. Because the second term in squared brackets depends only on µ, all colors end up with the same equation (of the type Tr Mc = F [{µ}], with the same right-hand side), hence the equality of traces.

Another straightforward observation is that M i = 0 ∀i is always a solution. In order to find other solutions, it is helpful to search for unstable directions around this point, i.e. analyse the Hessian of the potential.

Developing around the point R = 0 allows to discard the arctan term, of higher order. The first derivative gives9 

∂V ∂M c,ij = (A + C)M c,ji + B Tr M c N δ (c) ij + c ′ =c C Tr M c ′ N δ (c) ij , (2.69) 
A = 1 2 λp , B = b 2 λp (1 -b) , C = - 2 π 2 .
(2.70)

The second derivative is

∂ 2 V ∂M c,ij ∂M c ′ ,kl = δ cc ′ (A + C)δ ik δ jl + B δ ij δ kl N + C δ (c) ij δ (c ′ ) kl N , (2.71) 
and can be rewritten as a matrix in color-space

H =      α(1 -P 1 ) + βP 1 C Π 1 Π 2 N C Π 1 Π 3 N C Π 2 Π 1 N α(1 -P 2 ) + βP 2 C Π 2 Π 3 N C Π 3 Π 1 N C Π 3 Π 2 N α(1 -P 3 ) + βP 3      , (2.72) 
α = A + C β = A + B + C. (2.73)
We defined the projector P c on the trace of a matrix of given color c

P c;ij,kl ≡ 1 N Π c,ij Π c,kl , Π c,ij ≡ δ (c) ij .
(2.74) Articulated as such, the Hessian H is easy to diagonalize10 :

• we have the set of eigenvectors associated to traceless matrices, of form

E 1 =   Q 0 0   , E 2 =   0 Q 0   , E 3 =   0 0 Q   , Tr Q = 0, (2.75) 
with eigenvalue α = 1 2 1 λp -4 π 2

;

• the eigenvector associated to matrices proportional to the identity, of the form

E s = γ   1 1 1   , (2.76) 
with eigenvalue β

+ 2C = 3 2 1 λ+3 λp -4 π 2 ;
• and finally the are eigenvectors

e 1 = γ 1   1 -1 0   , e 2 = γ 2   1 0 -1   , (2.77) 
with eigenvalue β -C = 3 λp λ+3 λp

.

The first two correspond to instabilities that decrease the potential (in the ranges where the eigenvalues become negative), while the last always increases it for the range of couplings allowed by the requirement of boundedness of the potential (and in addition they do not satisfy the equations of motion, because the traces of the three matrices are not equal).

In light of this analysis, we can constrain the form of the intermediate field in our search of new minima of the potential:

• Assuming M i = m1 N (i = 1, 2, 3
), the equations of motion imply for m the equation

1 -3m arctan 1 3m = π 2 4 1 λ + 3 λp , (2.78) 
allowing such solutions to exist only for λ + 3 λp > π 2 /4. After using eq. (2.78) to remove the arctan term, their potential energy is given by

V [m] = 1 12( λ + 3 λp ) (3m) 2 - 1 3π 2 log 1 + (3m) 2 , (2.79) 
corresponding to a non-trivial minimum as soon as λ + 3 λp > π 2 /4.

• Assuming that the intermediate fields are traceless reduces the equations of motion (2.68) to the following:

µ 1,i π 2 4 λp -1 + 1 N 2 jk (µ 1,i + µ 2,j + µ 3,k ) 2 arctan 1 µ 1,i + µ 2,j + µ 3,k = 0 . (2.80)
Taking only one non-trivial matrix M 1 = w(1 N -2P N ), and

M 2 = M 3 = 0 N , w is hold by eq. (2.80) to 1 -w arctan 1 w = π 2 4 λp , (2.81) 
while the potential energy is

V [w] = 1 12 λp w 2 - 1 3π 2 log 1 + w 2 , (2.82) 
again corresponding to a non-trivial minimum for λp > π 2 /4.

The cases of two and three traceless matrices are examined in App. 2.C, where we show in detail that the single-traceless potential dominates double-and triple-traceless solutions above λp = π 2 /4.

The potentials of eq. (2.79) and (2.82) compare easily: m and w are controlled by similar equations, and they grow monotonically with the coupling. Consequently, we have that

V [w] < V [m] for λ + 3 λp > λp or λ + 2 λp > 0.
In other words, the green line outlined in Fig. 2.8 and 2.9 sets apart the traceless vacuum from the traceful one.

Let us summarize the results. Integrating out the Fermions, we obtained the effective potential of the intermediate fields. The associated equations of motion were too difficult to solve in full generality. Nevertheless, after a stability analysis around the trivial vacuum, showing that the unstable perturbations beyond some critical lines are given by traceless and pure trace modes, we explored those two types of solutions (i.e. traceless matrices and matrices proportional to the identity) and showed in what range of the couplings they minimized the energy. The conclusion is very similar to that of the previous section. Indeed, three phases appear: the trivial, traceful or traceless solutions dominate in turn, as displayed on the phase diagram of Fig. 2.9. However, in the last case, a startling new feature is the breaking of color-symmetry. The transitions between trivial and traceful or traceless are continuous, while a discontinuous transition separates the non-trivial phases. and analogously for the other colors. Thus, in order to have a proper large N limit, we take k ≡ N 2 λ , with λ fixed. Propagators in the lightcone gauge are given by

ψ ijk (p) ψlmn (-q) 0 = -i / p + m p 2 + m 2 δ(p -q)δ ijk lmn =: G 0 (p) , (2.89) 
A (c)ij µ (p)A (c ′ )mn ν (-q) 0 = (2π) 3 δ(p -q)G 0,µν δ cc ′ δ in δ jm , (2.90) 
G 0,+3 (p) = -G 0,3+ (p) = 4πi kp + .
(2.91)

Free and interacting Fermions

First, let us assume that the Fermions don't have any self-interaction in S pillow . From the stranded representation, the connected diagrams can be classified with respect to N as follows.

Each gauge propagator brings a factor 1/N 2 and each loop (alternating gauge field and Fermion lines, or purely Fermionic), also called face, gives a factor of N . For a given color i, in order to count the total factor of N , one removes the edges of different color and counts: l i loops strings (s) and v i isolated vertices, illustrated on diagrams of Fig. 2.10. Writing the total number of edges E = i E i , with E i edges of color i, then the factor of N associated to a given diagram is

N -2E+ i (L i +v i ) , (2.92 
)

introducing L i = C i c=1 (l i,c + 1)
, the sum being made on each connected component (after removal of the other colors). Using the well-known relation l i = E i -V i + C i where V i counts all vertices of color i in connected components (differing from a single point) i.e. v i = V -V i , we have that L i = E i -V i + 2C i and eq.(2.92) can be reshaped into

N i (2E i -2V i +2C i )+3(V -E) = N 2 i l i +3(1-l) , (2.93) 
this time l counting all loops in the diagram disregarding the colors associated to each edge. We define then ω ≡ 3(l -1) -

2 i l i = i l i + 3L -3 , (2.94) 
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denoting with L the loops that are made by mixing edges of different colors. We need to minimize ω in order to find the leading order vacuum graphs. It is then clear that the leading order graphs don't have any loops of color i, neither disregarding the colors. In a word, they are trees of the form displayed on the center of Figure 2.10. However, all those graphs made of tadpoles vanish. In order to find the next-to-leading order graphs, it is useful to introduce V n counting the vertices of valence n (without consideration for the color of the edges), such that

2E = n nV n . (2.95)
Then on a connected graph (without tadpoles),

l = E -V + 1 = n>1 n 2 -1 V n + 1 . (2.96)
This relation shows that the diagrams that minimize l have only two-valent vertices, as represented on the right of Figure 2.10, of specific color. The power of N decreases progressively with each additional loop, as in usual vector models, and when different colors mix, it decreases even more. This allows a full classification of the diagrams contributing at given order. Then, to go from a vacuum graph to a two-point Fermion graph, we simply cut a Fermion propagator, i.e. divide the scaling by N 2 . Graphically, this corresponds to open a vertex, as in Fig. 2.11.

At leading order in 1/N , the Schwinger-Dyson equations for the 2-point functions of the Fermions G(p) and of the gauge fields G (i) (p) are

G(p) = G 0 (p) + 1 N i d 3 q (2π) 3 G 0 (p)γ α G 0 (p -q)γ β G 0 (p)G (i) αβ (q), (2.97) 
G (i)-1 (p) = G (i)-1 0 (p) -S(p), (2.98) 
with the self-energy11 

S(q) = d 3 p (2π) 3 Tr γ + 1 i / p + m γ 3 1 i( / p + / q) + m -(γ 3 ↔ γ + ) (2.99) = 6imq + d 3 p (2π) 3 1 p 2 + m 2 1 (p + q) 2 + m 2 (2.100) = 3i 4 q + 1 0 dx 1 R ≡F (|α|) , R 2 ≡ 1 -α 2 x(1 -x) , q 2 = -α 2 /m 2 , (2.101) 
F (α) = 1 α log 1 + α/2 1 -α/2 . ( 2 

.102)

This q + appearance in the self-energy allows to rewrite the full gauge propagator at large-N as

G (i) (p) = 4πi kp + 1 1 + πF (|p/m|)/3k . ( 2 

.103)

The first corrections to the Fermion propagator are depicted on Fig. 2.11 and the self-energy of the gauge field on Fig. 2.12. Figure 2.12: Self-energy of the gauge field.

Interacting Fermions

Bringing back the original pillow interactions in the action, we find that the Fermions don't see the gauge field at large N , as the tadpole diagram dominates the two-point function (cf. the right-hand side of Figure 3.4), along with the free propagator, thus returning to the preceding sections. At leading order, no other divergent diagram with the gauge field renormalizes the Fermionic interactions. The only sign of the presence of the gauge field is an additional non-local effective pillow interaction. Furthermore, because of how the pillows assemble themselves to form chains of bubbles (if one reduces a pillow to a point, one recovers Figure 1.2), this non-local vertex will not affect the flow of the local vertices constructed earlier, whereas the flow of the former is completely taken into account by the full gauge propagator (2.103).

Relation to the vector case analysis

Let us explain why our result differs from those of [START_REF] Giombi | Chern-Simons Theory with Vector Fermion Matter[END_REF], considering a single color for tensors. 12 For vectors, the interaction between the gauge field and the Fermions takes the form

A ij µ ψi γ µ ψ j , (2.104) 
while for tensors, we only added two extra indices

A ij µ ψiab γ µ ψ jab . (2.105)
In both cases, integrating out the gauge field leads to an effective quartic interaction for the Fermions, eq. (2.88). We depict both vertices on the left of Fig. 2.13. The full line represents contraction in flavor space, the dotted line stands for contraction in spinor space and the marked line, residue of the gauge field, transports momentum. Then at large-N , the Fermion propagator (without the free part) is a tadpole in both cases, but of different structure (see the right diagrams of Fig. 2.13). In particular, the left tadpole of Fig. 2.11 vanishes by parity and because of the trace over the γ-matrices.

Similarly to what we did above, we could integrate out the Fermions and study the effective action of the intermediate field A µ . However, we do not expect any spontaneous symmetry breaking that would imply a breaking of Lorentz invariance. Another approach is instead to integrate over A µ and compute the 2PI effective action Γ(Ψ, G) of the Fermions. In the limit λ → 0, we expect no breaking of U (N ) or chiral symmetries (hence take Ψ = 0). The leading order diagram (right of Fig. 2.13) vanishes since it is two Fermionic tadpoles, such that we arrive at an effective action for the Fermions as:

Γ(0, G) = + Tr ln G -1 + Tr G -1 0 G , (2.106) 
or on-shell up to an irrelevant constant Γ(0, G 0 ) = Tr ln i / p .

(2.107)

The conclusion is that at large N , the gauged tensor forgets about the gauge field (Fermion self-interactions contribute at leading order), whereas the analysis is non-trivial for vectors. Indeed, the second tadpole leads to a non-trivial effective action of the form, 2πi k

d 3 qd 3 p (2π) 6 1 q + Tr G(-p)γ + G(p -q)γ 3 (2.108)
from which all the discussion of [START_REF] Giombi | Chern-Simons Theory with Vector Fermion Matter[END_REF] proceeds. In fact, using U (N 2 ) gauge fields in the tensor case (assembling the above N 2 indices (a, b) into N 2 capital indices A, cf. App. 2.B)

A AB µ ψiA γ µ ψ iB , (2.109) 
that is as if the color symmetry were broken, 13 one could also make the rightmost diagram contributing at leading order Schwinger-Dyson equations, as is most clearly seen from the stranded diagram Fig. 2.14. It would be interesting to analyse what the consequences of both "triviality" in the color-symmetric phase and return to a matrix theory when the color-symmetry is broken, would be in the potential higher-spin duals of tensor models [START_REF] Vasiliev | From Coxeter Higher-Spin Theories to Strings and Tensor Models[END_REF].

Figure 2.14: Stranded representation of the leading order 2PI graphs in the rectangular case (keeping as above the marked line standing for the gauge field).

2.A γ-matrices in odd-dimensions

Construction irreducible representations of the Clifford algebra in any dimension D

{γ µ , γ ν } = 2η µν , (2.110) 
is quite standard (see for instance [START_REF] Park | Lecture Notes on Clifford Algebra[END_REF]). Even dimensions admit a unique irreducible representation, with matrices of dimension 2 D/2 , that can be constructed with the following cyclic structure 14 :

γ 1 ≡ σ 1 ⊗ 1 ⊗ 1 . . . (2.111) γ 2 ≡ σ 2 ⊗ 1 ⊗ 1 . . . (2.112) γ 3 ≡ σ 3 ⊗ σ 1 ⊗ 1 . . . (2.113) γ 4 ≡ σ 3 ⊗ σ 2 ⊗ 1 . . . (2.114) γ 5 ≡ σ 3 ⊗ σ 3 ⊗ σ 1 . . . , (2.115) 
and so on, stopping at D. There, one can also introduce an extra hermitian matrix, squaring to one and anticommuting with γ i (1 dimensional representation as in D -1 dimensions taking γ D = ±γ (D) as the last needed to complete the set. Two inequivalent representations exist, differing by this "±" sign.

≤ i ≤ D) γ (D+1) ≡ γ 1 • • • γ D . ( 2 
In the main text, it was convenient to work with a reducible representation of the Clifford algebra, in order to define a chiral transformation in terms of γ 5 . We use the following realization of the three dimensional Euclidean Clifford algebra. The γ-matrices write as

γ µ = γµ 0 0 -γ µ γ1 = σ 1 = 0 1 1 0 γ2 = σ 2 = 0 -i i 0 γ3 = σ 3 = 1 0 0 -1 . (2.117)
The Fermion fields write as

ψ = ψ 1 ψ 2 , (2.118) 
where ψ i 's are 2-component Dirac spinors. Finally our choice for a "γ 5 "-matrix, such that {γ µ , γ 5 } = 0 and (γ 5 ) 2 = 1, is

γ 5 = 1 1
.

(2.119)

2.B Other representations of the U (N )×U (N 2 )-symmetric model

Given the rectangular matrix structure of the U (N ) × U (N 2 ) model of Sec. 2.2, one might wonder why we perform the intermediate field analysis on the index taking values from one to N and not on the one taking values from one to N 2 , and whether choosing the second option we would discover also a spontaneous symmetry breaking of the U (N 2 ) subgroup. The intuitive reason why such option is not favorable is that we would have an intermediate field which is an N 2 × N 2 matrix, thus containing more variables than the original Fermionic field. We would then expect such formulation to contain redundant information.

In order to illustrate this in a simplified context, let us consider the zero dimensional Bosonic analogue of our model, with only one pillow interaction and no double-trace, i.e. the model studied in [START_REF] Benedetti | Symmetry breaking in tensor models[END_REF], which however we now rewrite in rectangular matrix notation. 15 The model is defined by the partition function

Z(g) = [dϕd φ]e -N 2 ( φaA ϕ aA -g 2 φaA ϕ a ′ A φa ′ A ′ ϕ aA ′ ) , (2.120) 
where the measure is normalized with respect to the free theory, as usual we have summation on the repeated indices, and with respect to (3.4) we have rescaled the fields by N to pull out an N 2 in front of the action. Notice that the action can be viewed as a square-matrix action for either φ ab ≡ ϕ aA φbA (2.121) or Φ AB ≡ φaA ϕ aB .

(2.122)

Naively, one would expect an action of order N 3 in the first case, and an action of order N 4 in the second, as the action writes in terms of single traces of square matrices of size N and N 2 , respectively. However, being one and the same model, the free energy must be the same in the two cases. The reason why the naive reasoning fails is that the two square matrices φ ab and Φ AB have the same number of non-zero eigenvalues, which are the squares of the non-zero singular-values of the rectangular matrix ϕ aA . The singular-value decomposition was applied to rectangular matrix models in [START_REF] Anderson | Complex random surfaces[END_REF][START_REF] Francesco | Rectangular matrix models and combinatorics of colored graphs[END_REF], and we concisely repeat it here. We write

ϕ aA = P ab X bB Q † BA , (2.123) 
where P ∈ U (N ) is a unitary transformation that diagonalizes φ ab , Q ∈ U (N 2 ) is a unitary transformation that diagonalizes Φ AB , and X bB = δ bB x b is a rectangular matrix whose only non-zero entries are the positive square roots of the eigenvalues of φ ab . Due to the invariance of such decomposition, the matrices P and Q are not unique, hence one should restrict the angular variables to (P,

Q) ∈ (U (N ) × U (N 2 )/(U (N 2 -N )) × U (1) N ).
Including the Jacobian of the transformation (ϕ, φ) → (X, P, Q) [START_REF] Anderson | Complex random surfaces[END_REF][START_REF] Francesco | Rectangular matrix models and combinatorics of colored graphs[END_REF][START_REF] Morris | Checkered surfaces and complex matrices[END_REF] we rewrite the partition function (2.120) as

Z(g) = 1 N N i=1 dx i x 2(N 2 -N )+1 i e -N 2 (x 2 i -g 2 x 4 i ) ∆(x 2 ) 2 , (2.124 
) 15 For tensor models with a rectangular-matrix interpretation see also [START_REF] Gurau | The double scaling limit in arbitrary dimensions: a toy model[END_REF][START_REF] Bonzom | Tensor models from the viewpoint of matrix models: the case of loop models on random surfaces[END_REF].

where the angular variables have been factored out, and canceled with the normalization. The leftover normalization is in the factor N , equal to the integral in (2.124) evaluated at g = 0. Lastly, ∆(x 2 ) = 1≤i<j≤N (x 2 i -x 2 j ) is the standard Vandermonde determinant for the eigenvalues of φ ab . The latter is subdominant in the large-N limit, but the factor x 2(N 2 -N ) i is not, and must be taken into account. However, unlike the Vandermonde determinant, such term does not couple different eigenvalues, hence in the large-N limit we have a simple saddle point equation in which the eigenvalues are mutually decoupled:

x i -gx 3 i - 1 x i = 0 for i = 1, . . . , N . (2.125) 
The solutions are

x 2 ± = 1 ± √ 1 -4g 2g , (2.126) 
in agreement with [START_REF] Benedetti | Symmetry breaking in tensor models[END_REF], 16 where they were obtained by an intermediate field representation of the square of φ ab , as we did in Sec. 2.2. For g ≤ 1/4, the free energy at leading order is obtained by evaluating the effective action for the eigenvalues on the saddle point solution x i = x -, ∀i, which as shown in [START_REF] Benedetti | Symmetry breaking in tensor models[END_REF] is the only minimum of the action (and contrary to x + , it is regular at g = 0):

- 1 N 3 ln(Z(g)) = x 2 -- g 2 x 4 --ln x 2 --1 , (2.127) 
where the minus one comes from the normalization factor N . By explicit check, the result above coincides with the one in [START_REF] Benedetti | Symmetry breaking in tensor models[END_REF]. Now, what happens if we introduce instead an intermediate field representation for the square of Φ AB ? The partition function (2.120) rewrites

Z(g) = [dϕd φdH]e -N 2 ( φaA ϕ aA -√ gϕ aA φaB H AB + 1 2 H AB H BA) = [dH]e -N 2
2 Tr(H 2 )-N Tr ln(1-√ gH) .

(2.128)

Diagonalizing the matrix H, and counting the trace as a contribution of order N 2 (since the matrix H is of size N 2 ), we conclude that the logarithmic term in the action is subleading, while the logarithm of the Vandermonde determinant originating in the change of variables is of N 4 as the Gaussian part of the action. On the other hand, the Gaussian integral on H is normalized to one by construction, hence the free energy at leading order (LO) (order N 4 ) is correctly zero. In order to obtain the first non-trivial contribution to the free energy, we have to go to next-to-leading order (NLO) (order N 3 ). Let us denote the eigenvalues of H by y i , i = 1 . . . N 2 . Writing explicitly the normalization as before, the partition function (2.128) now writes

Z(g) = 1 N ′ N 2 i=1 dy i e -S eff (y) , (2.129) 
with

S eff (y) ≡ N 4 S 0 (y) + N 3 S 1 (y) , (2.130) 
S 0 (y) = 1 2N 2 N 2 i=1 y 2 i - 2 N 4 1≤i<j≤N 2 ln |y i -y j | , (2.131) 
S 1 (y) = 1 N 2 N 2 i=1 ln(1 - √ gy i ) . (2.132)
Both S 0 (y) and S 1 (y) are of order one, and the order in N has been made explicit in (2.130).

Notice that the subleading term (of order N 3 ) is dominant over the one-loop correction, which is of order N 2 . Therefore, we will not need to compute any loop corrections, and the NLO free energy is given by simply evaluating the subleading term of the action on the LO saddle point.

In fact, the saddle point ȳ has an expansion (omitting the indices)

ȳ = y LO + 1 N y NLO + O 1 N 2 , (2.133) 
and the action then expands as

S eff (ȳ) = N 4 S 0 (y LO ) + N 3 ∂S 0 ∂y y=y LO • y NLO + S 1 (y LO ) + O(N 2 ) . (2.134)
Since ∂S 0 ∂y y=y LO = 0 by definition of y LO , and since ln(N ′ ) = -N 4 S 0 (y LO ) + O(N 2 ), we obtain

- 1 N 3 ln(Z(g)) = S 1 (y LO ) + O 1 N . (2.135) 
In order to complete the calculation, we need the explicit solution y LO , which is given in terms of the famous Wigner semicircle law. This is given in terms of the density of eigenvalues ρ(y) = 1 2π 4y 2 , from which we obtain

S 1 (y LO ) = +2 -2 dyρ(y) ln(1 - √ gy) = x 2 -- g 2 x 4 --ln x 2 --1 , (2.136) 
precisely the result we obtained before.

In conclusion, we have learned that it is possible to obtain the same results in three different ways: singular-value decomposition, intermediate field on the U (N ) sector, and intermediate field on the U (N 2 ) sector. The first one is maybe the most enlightening for the zero dimensional case, but it becomes not viable in higher dimensions, where the angular variables do not decouple due to the derivative term (the action has a global invariance, not a local one). The last one is instead definitely the most difficult, as one needs to go to NLO and use the matrix model solution. For these reasons, in Sec. 2.2 we have followed the second option, which is of course also the standard one.

There remains to comment on the question of spontaneous breaking of the U (N 2 ) symmetry. The fact that the saddle point of the intermediate field H is given by the Wigner law would seem to indicate a complete breaking of the symmetry: the eigenvalues are spread along the interval [-2, +2], hence the matrix is far from being proportional to the identity, as demanded by invariance under the symmetry group. However, it is wrong to identify the saddle point solution of H with its expecation value. In fact, in going from (2.128) to (2.129) we have canceled the integral over the unitary group with the normalization, but if we have an insertion of a non-invariant observable, such as H AB , the integral does not drop. Furthermore, since the unitary matrices appearing in the change of variables from H to its eigenvalues have no action term (because the action is invariant), we cannot do anything but perform the full integral. We have:

H AB = 1 N ′ N 2 i=1 dy i e -S eff (y) Y CD [dU ]U AC U † DB = δ AB N 2 1 N ′ N 2 i=1
dy i e -S eff (y)

i y i = 0 , (2.137) 
where we introduced the diagonal matrix of eigenvalues Y AB = y A δ AB and used the known formula for integration over the unitary group

[dU ]U AC U † DB = 1 N 2 δ AB δ CD . (2.138)
Lastly, owing to the fact that the distribution of eigenvalues in the Wigner law is symmetric around the origin, Tr[Y ] = 0 when evaluated on the saddle point solution.

To conclude, we should remark that a similar phenomenon of symmetry restoration (à la Mermin-Wagner) will happen also in d > 0. In higher dimensions, due to terms with derivatives in the action, the angular variables do not drop out of the action in general because we only have a global symmetry, not a local one. However, in the intermediate field representation the derivatives only appear in the higher-dimensional generalization of the logarithmic term in the action (2.128), which is subleading in this case. Hence, the same reasoning as in the zero dimensional case above applies also to the higher dimensional case. In brief, the U (N 2 ) part of the symmetry group does not undergo spontaneous symmetry breaking.

2.C Details on two and three traceless matrices 2.C.1 Two traceless matrices

Imposing the intermediate field to have the form

M 1 = m 1 (1 N -2P N ), M 2 = m 2 (1 N -2P N ), M 3 = 0 , (2.139) 
the equations on motion have, for m 1 , the form

N 2 2 1 λp - 4 π 2 (±m 1 )+ N 2 π 2 (±m 1 + m 2 ) 2 arctan 1 ±m 1 + m 2 + (±m 1 -m 2 ) 2 arctan 1 ±m 1 -m 2 = 0 , (2.140 
) which combined with a similar one exchanging m 1 and m 2 , lead to

1 λp - 4 π 2 + 4 π 2 2 arctan 1 = 0 , (2.141) 
△ 1 λp - 4 π 2 + 4 π 2 △ 2 arctan 1 △ = 0 , (2.142) 
≡ m 1 + m 2 , △ ≡ m 1 -m 2 .
(2.143)

This implies either = 0 or △ = 0, which after renaming gives m 1 = m 2 = m, or if neither is zero we have = △ forcing m 1 = m 2 = 0. In the non-trivial case, the consequence for the effective potential is that we compare

V 1 = 1 4 λp m 2 + 1 3π 2 κ(m), (2.144) 
V 2 = 1 2 1 4 λp 2 + 1 3π 2 κ( ) , (2.145) 
κ(x) = 2x 3 arctan 1 x -2x 2 -log 1 + x 2 , (2.146) 
with m and , obeying the same algebraic equation linking them to λp . Now the dominance of the single over the double traceless matrices appears straightforwardly, as soon as they acquire negative values, that is for λp > π 2 /4.

2.C.2 Three traceless matrices

Imposing the intermediate field to have the form

M 1 = m 1 (1 N -2P N ), M 2 = m 2 (1 N -2P N ), M 3 = m 3 (1 N -2P N ) , (2.147) 
the equations of motion can be shaped into

1 λp - 4 π 2 α + 3 π 2 ᾱ + 2 π 2 β + γ + δ = 0 , (2.148) 1 λp - 4 π 2 β + 3 π 2 β + 2 π 2 ᾱ + γ + δ = 0 , (2.149) 1 λp - 4 π 2 γ + 3 π 2 γ + 2 π 2 ᾱ + β + δ = 0 , (2.150) 
1 λp - 4 π 2 δ + 3 π 2 δ + 2 π 2 ᾱ + β + γ = 0 , (2.151) 
x ≡ x 2 arctan 1 x , (2.152)

α ≡ m 1 + m 2 + m 3 , β ≡ m 1 -m 2 + m 3 , γ ≡ m 1 + m 2 -m 3 , δ ≡ -m 1 + m 2 + m 3 .
(2.153)

We then rearrange into

1 λp - 4 π 2 α + 1 π 2 α 2 arctan 1 α = (α → β) = (α → γ) = (α → δ) ! = K , (2.154) 
for K some constant. First, if we assume that K vanishes, then the variables that are non-zero must obey the single-traceless equation of motion (2.81). And two different options come: α = β (or α = γ or α = δ) letting us with the double-traceless case (m 1 = m 2 = m ; m 3 = 0) (or permutations), or 17 Secondly, for non-zero K and introducing λp = (1+ǫ)π 2 /4, we found that non-trivial solutions (not resulting in α = β = γ = δ) existed only in the range ǫ ∈ [0, ǫ * ] with ǫ * ≈ 0.37. In this region, again by numerical exploration, we found two non-trivial solutions: 

β = γ (or γ = δ or β = δ) giving m 1 = m 2 = m 3 = m.
• (α = 3β, β = γ = δ) =⇒ m 1 = m 2 = m 3 = m,
V 3 = 3m 2 π 2 (1 + ǫ) + κ(3m) + 3κ(m) 12π 2 ;
(2.156) 

• (α = 0.08β, δ = -1.92β, β = γ) =⇒ -0.46m 1 = m 2 = m 3 ,
V ′ 3 = 0.92 2 2 + 1 m 2 π 2 (1 + ǫ) + κ(0.08m) + 2κ(m) + κ(-1.92m) 12π 2 .
(2.158)

We studied numerically the differences V 1 -V 3 and V 1 -V ′ 3 , and found both to be negative, hence we conclude that the single-traceless solution is dominant.

Chapter 3

Renormalization of sextic tensor fields

This chapter is organised as follows. In Section 3.1, we start by setting the scene with definitions of our models in rank 3 and 5, long-and short-range, and a description of the leading order diagrams. We continue in Section 3.2 and 3.3 by computing the two-and four-point functions. Section 3.4 contains a detailed derivation of the β-functions of our sextic couplings, as well as their fixed points. Before concluding, we compute in Section 3.5 the spectrum of bilinears (including spin dependence) through the now standard eigenvalue equation. In three appendices, we spell out details on our conventions and on the main loop integrals.

The models

Both models we are going to consider can be viewed as symmetry-breaking perturbations of a free O(N )-invariant action for N scalar fields φ a (x), with a = 1, . . . ,

N , x ∈ R d : 1 S free [φ, φ] = d d x φa (x)(-∂ µ ∂ µ ) ζ φ a (x) . (3.1)
The scalar fields will be either complex or real (in the latter case φa = φ a and we multiply the action by a factor 1/2). ζ is a free parameter, which must be positive in order to have a well-defined thermodynamic limit, and it must be bounded above by one in order to satisfy reflection positivity. We will later fix it to be either ζ = 1, as in [START_REF] Klebanov | Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models[END_REF][START_REF] Giombi | Bosonic tensor models at large N and small ǫ[END_REF][START_REF] Giombi | Prismatic Large N Models for Bosonic Tensors[END_REF], or ζ = d/3, as in [START_REF] Benedetti | Line of fixed points in a bosonic tensor model[END_REF][START_REF] Benedetti | Hints of unitarity at large N in the O(N ) 3 tensor field theory[END_REF]. 2 The free propagator is

C(p) = 1 p 2ζ , C(x, y) = Γ (∆ φ ) 2 2ζ π d/2 Γ(ζ) 1 |x -y| 2∆ φ , (3.2) 
1 As usual, a summation is implied for repeated indices. 2 For ζ < 1, the fractional Laplacian can be defined in several ways [START_REF] Kwasnicki | Ten equivalent definitions of the fractional laplace operator[END_REF]. In Fourier space, with the convention that f (x) =

d d p (2π) d e -ip•
x f (p), we simply have:

S free [φ, φ] = d d p (2π) d φa (p)(p 2 ) ζ φ a (p) .
In direct space we can instead write it as a kernel:

S free [φ, φ] = c(d, ζ) d d x d d y φa (x)φ a (y) |x -y| d+2ζ , with c(d, ζ) = 2 2ζ Γ( d+2ζ 2 ) π d/2 |Γ(-ζ)| .
Notice that often in the literature on the long-range Ising model (e.g. [START_REF] Paulos | Conformal Invariance in the Long-Range Ising Model[END_REF][START_REF] Behan | A scaling theory for the long-range to short-range crossover and an infrared duality[END_REF]) one finds the free action to be defined as above, but with c(d, ζ) = 1.
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with ∆ φ = d-2ζ

2 . Perturbing the free action above by a quartic O(N )-invariant potential leads to the usual short-range (ζ = 1, e.g. [START_REF] Moshe | Quantum field theory in the large N limit: A Review[END_REF]) or long-range (ζ < 1, e.g. [START_REF] Brezin | The crossover region between long-range and short-range interactions for the critical exponents[END_REF][START_REF] Defenu | Fixed-point structure and effective fractional dimensionality for O(N ) models with long-range interactions[END_REF]) O(N ) model.

The general type of tensor field theories we have in mind will have N = N r , and a potential explicitly breaking the O(N ) symmetry group down to G r , with either G = O(N ) (for real fields) or G = U (N ) (for complex fields). For example, for r = 3, we will write the field label as a triplet, a = (abc), and impose invariance of the action under the following transformation rule:

φ abc (x) → R (1) aa ′ R (2) bb ′ R (3) cc ′ φ abc (x) , R (i) ∈ G . (3.3)
Proper tensor field theories have r > 2, otherwise we talk of vector (r = 1) or matrix (r = 2) field theories. We will explicitly consider two models with sextic interactions, for r = 3 and r = 5. For r = 4 we could write a model qualitatively very similar to r = 5, but we would not learn much more, so we will not present it.

Rank 3

Action. We first consider a rank-3 Bosonic tensor model in d ≤ 3 dimensions, with U (N ) 3 symmetry and sextic interactions. The bare action is

S[φ, φ] = d d x φabc (-∂ µ ∂ µ ) ζ φ abc + S int [φ, φ] , (3.4) 
S int [φ, φ] = d d x 5 b=1 λ b 6N 3+ρ(I b ) I b . (3.5) 
The U (N ) 3 invariants I b are all those that can be constructed with six fields, and their respective parameter ρ(I b ) will be chosen according to the optimal scaling defined in [START_REF] Carrozza | O(N ) Random Tensor Models[END_REF]:

ρ(I b ) = F (I b ) -3 2 , (3.6) 
with F (I b ) counting the total number of cycles of alternating colors i and j with i, j ∈ {1, 2, 3}, and the colors being introduced in the following paragraph.

It is customary to represent the tensor invariants as colored graphs [START_REF] Gurau | Random Tensors[END_REF]. To that end, we represent every tensor field as a node (black and white for φ and φ, respectively) and every contraction of two indices as an edge. Each edge is assigned a color red, blue, or green (or a label 1, 2, or 3) corresponding to the positions of the indices in the tensor. We call the resulting graphs 3-colored graphs. As a consequence of the U (N ) 3 symmetry, such graphs are bipartite, that is, edges always go from a white to a black node. With the aid of such representation we can write the interacting part of the action as:

S int [φ, φ] = d d x     λ 1 6N 3 + λ 2 6N 4 + λ 3 6N 4 + λ 4 6N 5 + λ 5 6N 6    , (3.7) 
where a (normalized) sum over color permutations should be understood, whenever it is nontrivial (see App. 3.A for more details on our conventions). The graphs representing the tensor
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invariants are also called bubbles. Bubbles which are composed of one, two, or three connected components are referred to as single-trace, double-trace, or triple-trace, respectively, for analogy with the matrix case, and bubbles I b for which ρ(I b ) = 0 are called maximally single trace (MST), as each of their 2-colored subgraphs are single trace. The I 1 invariant is the only MST bubble in our action.

Colored graphs and Feynman diagrams. We introduce some (mostly standard) notation for the perturbative expansion of the free energy (and the connected n-point functions) of the theory [START_REF] Bonzom | Random tensor models in the large N limit: Uncoloring the colored tensor models[END_REF]. Each interaction invariant is represented as a 3-colored graph as above. Expanding around the free theory, the Gaussian average leads to the usual Wick contraction rules, for which we represent the propagators as edges of a new color, connecting a white and black node. We choose the black color for such propagators, or equivalently, the label 0. We give an example of the resulting 4-colored graphs in Fig. 3.1. Ordinary Feynman diagrams, the only objects that we will actually call by such name here, are obtained by shrinking each interaction bubble to a point, which we will call an interaction vertex, or just vertex. We give an example of such a Feynman diagram in Fig. 3.2. While Feynman diagrams are sufficient for representing Feynman integrals, the 4-colored graphs are necessary in order to identify the scaling in N . Indeed, in a 4-colored graph, each propagator identifies all three indices on its two end tensors whereas each edge of color i identifies only one pair of indices between its end tensors. The indices will then circulate along the cycles of color 0i, which we call faces, hence each face gives rise to a free sum, that is, a factor N . The amplitude of a Feynman diagram G thus scales as A(G) ∼ N F -3n 1 -4n 2 -4n 3 -5n 4 -6n 5 , with F the total number of faces in the associated 4-colored graph and n i the number of bubbles of the interaction i. The existence of the large-N limit relies on the fact that the power of N is bounded from above [START_REF] Gurau | Random Tensors[END_REF][START_REF] Carrozza | O(N ) Random Tensor Models[END_REF]. Melonic graphs and melonic diagrams. Melonic k-valent graphs are defined constructively starting from the fundamental melon, i.e. the unique graph built out of two k-valent vertices without forming self-loops (or tadpoles), and then iteratively inserting on any edge a melonic 2-point function, i.e. the graph obtained from the fundamental melon by cutting one edge in the middle. Notice that melonic k-valent graphs are always bipartite, and edge colorable with k colors.

An important result in rank-r tensor models is that if one only allows for interaction bubbles which are melonic r-valent graphs, then in the perturbative expansion the leading order vacuum graphs at large N are melonic (r +1)-valent graphs [START_REF] Bonzom | Random tensor models in the large N limit: Uncoloring the colored tensor models[END_REF]. However, it is important to notice that melonic (r + 1)-valent graphs do not correspond to melonic Feynman diagrams, i.e. they do not remain melonic after shrinking the colors from 1 to r. From the point of view of the Feynman diagrams, melonic (r + 1)-valent graphs reduce to the same type of cactus diagrams appearing in the large-N limit of vector models, and therefore field theories based on such interaction are not expected to lead to very different results than vector models. 3Adding non-melonic bubbles, things get more complicated, and possibly more interesting. In particular, it was found in [START_REF] Carrozza | O(N ) Random Tensor Models[END_REF] that non-melonic interaction bubbles can be scaled in such a way that they also contribute at leading order in the 1/N expansion, and that for some interactions (in that specific example, the quartic tetrahedron interaction) their leading-order Feynman diagrams are melonic. The possibility of restricting the spacetime Feynman diagrams to the melonic type by means of a large-N limit has been a main reason for studying tensor field theories in dimension d ≥ 1, starting from [START_REF] Klebanov | Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models[END_REF].

The large-N limit. The I 1 invariant in (3.5) (i.e. the first bubble in (3.7), which we call the wheel graph, and which is also known as the complete bipartite graph K 3,3 ) stands out as the only non-melonic bubble in our action, and as a consequence, as the only interaction that does not lead only to tadpole corrections to the propagator at large N . It leads instead to Feynman diagrams which are of melon-tadpole type [START_REF] Lionni | Colored discrete spaces: higher dimensional combinatorial maps and quantum gravity[END_REF][START_REF] Lionni | Multi-critical behaviour of 4-dimensional tensor models up to order 6[END_REF][START_REF] Prakash | Melonic Dominance in Subchromatic Sextic Tensor Models[END_REF] (see Fig. 3.2), i.e. diagrams obtained by repeated insertions of either melon or tadpole two-point functions (Fig. 3.4) on the propagators of either one of the two fundamental vacuum graphs in Fig. 3.3. The 4-colored graph corresponding to the fundamental melon is built from two mirror wheel graphs (i.e. completing in a straightforward way Fig. 3.1), while the triple-tadpole is built on any of the interactions. 4As tadpole corrections just renormalize the mass, the effect of I 2 to I 5 , and of the I 1 tadpoles, will be ignored in the discussion of the Schwinger-Dyson equations for the two-point function, assuming that we are tuning the bare mass to exactly set the effective mass to zero. Along the same line of thoughts, we have not included quartic interactions in our action, assuming that they can be tuned to zero. In fact, we will be using dimensional regularization, which for massless theories results in the tadpoles (and other power-divergent integrals) being regularized to zero (e.g. [START_REF] Zinn-Justin | Quantum field theory and critical phenomena[END_REF]); thus we will actually need no non-trivial tuning of bare parameters, and we will be able to keep mass and quartic couplings identically zero.

Rank 5

Action. The second sextic model we will consider is a O(N ) 5 Bosonic tensor model in d dimensions. We consider a real tensor field of rank 5, φ abcde transforming under O(N ) 5 with 

S[φ] = 1 2 d d x φ abcde (-∂ µ ∂ µ ) ζ φ abcde + S int [φ] , (3.8) 
S int [φ] = d d x 6 b=1 κ b 6N 5+ρ(J b ) J b .
(3.9)

The interaction part of the action can be written with the same graphical representation as for the previous model. However, because we are now considering a rank-5 model, the graphs representing the interactions will be 5-colored graphs, and because we have real fields with O(N )5 symmetry, the graphs will not be bipartite and the nodes will have all the same color (black). An action containing all the O(N ) 5 invariants would be rather long, 6 and difficult to handle. We will restrict the potential by exploiting the large-N limit: we start from the interaction whose bubble is a complete graph (i.e. in which for every pair of nodes there is an edge connecting them), and then include only the other interactions which are generated as radiative corrections, until we obtain a renormalizable model, at large N . A set of interactions of this type has been introduced in [START_REF] Ferrari | A New Large N Expansion for General Matrix-Tensor Models[END_REF] with the name of melo-complete family. As we will explain further below, it turns out that besides the complete graph we need to include only the melonic bubbles (a straightforward generalization of the melonic bubbles of rank 3) and one new 94 CHAPTER 3. RENORMALIZATION OF SEXTIC TENSOR FIELDS non-bipartite bubble:

7 S int [φ] = d d x      κ 1 6N 5 + κ 2 6N 8 + κ 3 6N 8 + κ 4 6N 9 + κ 5 6N 10 + κ 6 6N 7      , (3.10) 
where a sum over color permutations should be understood. The conventions are detailed in App. 3.A.

Colored graphs and Feynman diagrams. The expansion into Feynman diagrams is done similarly as for the previous model. Again, the propagators are represented by black edges. We give some examples of resulting 6-colored graphs in Fig. 3.5 and 3.6. The large-N expansion. Like other tensor models, this model has also a 1 N expansion. First, we observe that every sextic interactions can be obtained as radiative corrections from the first interaction term J 1 (we call it the complete vertex, as its bubble is the complete graph on six vertices, also known as K 6 ). For example, the interaction J 6 (or the prism) is a rung with 3 edges between two complete vertices (see Fig. 3.6), J 2 (or the long-pillow) and J 4 (or the pillowdipole, our only double-trace interaction) are ladders made of two such rungs with different permutations of the colors between the rungs (see Fig. 3.7). J 5 (or the triple-dipole, our only triple-trace interaction) is a ladder made of three rungs and J 3 a ladder made of four rungs. Then in any graph G, we replace every interaction by their minimal representations in terms of complete vertices. This way, we obtain a new graph Ĝ with only complete vertices. Since the rank of our model is a prime number, and the complete graph is the unique maximally single trace (MST) invariant, we can use the result of [START_REF] Ferrari | A New Large N Expansion for General Matrix-Tensor Models[END_REF] (see also [START_REF] Klebanov | Majorana Fermion Quantum Mechanics for Higher Rank Tensors[END_REF]), where it has been proved that in this case, the leading order vacuum Feynman diagrams are the melons constructed with two mirrored complete MST interactions (see the diagram on the left in Fig. 3.5), and the usual iterative insertions of melonic two-point functions. Notice that unlike for the rank-3 wheel (which is MST, but not a complete graph), the leading order diagrams include no tadpoles. This means that the leading order diagrams of our rank-5 model are melonic after substituting every sextic interactions by their minimal representations in terms of the complete vertex. In terms of the original interactions, the leading order diagrams are again melon-tadpole diagrams (see Fig. 3.2, with tadpoles now associated to J b with b ∈ [START_REF] Pelissetto | Critical phenomena and renormalization group theory[END_REF][START_REF] Wilson | The renormalization group and critical phenomena[END_REF]), i.e. they are obtained by iterated insertions of melons and double tadpoles. The double tadpoles are based on the interactions J i vertices (i ∈ [START_REF] Pelissetto | Critical phenomena and renormalization group theory[END_REF][START_REF] Wilson | The renormalization group and critical phenomena[END_REF]) and the end vertices of melons are complete vertices. Therefore, the diagrammatics is somewhat similar to that of the quartic model [START_REF] Benedetti | Line of fixed points in a bosonic tensor model[END_REF], where the tetrahedron is a complete graph and it is associated to melonic diagrams, while the melonic graphs (pillow and double-trace) are associated to tadpoles.

Again, as explained for the previous model, we will ignore the effects of the tadpoles formed by J 2 to J 6 , as tadpole corrections just renormalize the mass. We will also not include quartic interactions, assuming that they can be tuned to zero.

Radiative corrections to the prism interaction. A comment is in order regarding the nonmelonic interaction J 6 . We presented in Figure 3.6 a melonic contraction of two J 1 interactions that has J 6 as a boundary graph. It turns out that it is the only melonic diagram built with J 1 vertices that produces it. Indeed, we notice in J 6 the presence of two mirrored triangles (with edges red-green-blue in (3.10)) and each can result from 1, 2 or more complete graphs. The first case corresponds to Figure 3.6, but we see that the second case already requires non-melonic diagrams as in figure 3.8. In order to construct such a triangle from more that two J 1 vertices, we need at least two propagators (for the two colored edges that leave the nodes of the triangle) between each vertex, which in addition to at least two other propagators required to connect the mirror symmetric nodes of the two triangles, make the diagram non-melonic. Incomplete set of invariants. As we said, the set of invariants we considered in the action is incomplete: there are more O(N ) 5 invariants. However, it is closed. Indeed, we just showed that a O(N ) 5 model with the complete interaction is dominated in the large-N limit by melonic graphs. Therefore, it is enough to consider only the O(N ) 5 invariants that can be generated from a melonic graph constructed with complete vertices. Those invariants are exactly J 2 to J 6 in the action of the model. The other O(N ) 5 invariants will never be generated by a leading order six-point graph as they cannot be obtained from a melonic graph with complete vertices. Thus, at leading order in N , the set of invariants we consider is closed.

Rank-4 model. Lastly, we notice that, as in rank 5, also in rank 4 there is a unique MST interaction [START_REF] Prakash | Melonic Dominance in Subchromatic Sextic Tensor Models[END_REF]. It turns out that the set of interactions it generates as radiative corrections are exactly of the same form as J 2 to J 6 in (3.10), except that each multi-edge has one edge less than in rank 5 (for example, they can be obtained by removing the purple color in (3.10)). Therefore, besides some different combinatorial factors, we do not expect important qualitative differences with respect to rank 5, and we chose to work with rank 5 as it contains a complete bubble, making the analogy to the quartic model [START_REF] Benedetti | Line of fixed points in a bosonic tensor model[END_REF] more evident.

Renormalization: power counting

We consider G a connected amputated Feynman diagram with n(G) 6-valent vertices, E(G) edges and r(G) external points. Computing the amplitude of the diagram G in momentum space, we get an independent integral d d p for every loop and a propagator p -2ζ for every edge. Then, under a global rescaling of all the momenta by t, the amplitude is rescaled by:

t d(E(G)-n 6 (G)-n 4 (G)+1)-2ζE(G) = t d(n 4 (G)+2n 6 (G)+1-r(G) 2 )-ζ(4n 4 (G)+6n 6 (G)-r(G)) = t d-r(G) 2 (d-2ζ)+n 6 (G)(2d-6ζ)+n 4 (G)(d-4ζ)
where we have used 2E(G) = 6n(G)r(G).
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Short-range propagator. For d = 3 and ζ = 1, the amplitude is rescaled as:

t 3(1-r(G) 6 ) . (3.11)
Thus, in d = 3, the sextic interactions are marginal (the power counting does not depend on the number of internal vertices). The two-point and four-point diagrams are power divergent and the six-point diagrams are logarithmically divergent in the UV. Diagrams with more than eight external points are UV convergent.

Therefore, in the following, we will use dimensional regularization, setting d = 3ǫ. We will be interested in Wilson-Fisher type of fixed points, hence we will also consider ǫ finite, but small.

Long-range propagator. For d < 3 and ζ = d 3 , the amplitude is rescaled as:

t d(1-r(G) 6 ) . (3.12)
Again, the sextic interactions are marginal. The two-point and four-point diagrams are power divergent and the six-point diagrams are logarithmically divergent in the UV. Graphs with more than eight external point are UV convergent.

We will again use dimensional regularization but in this case we will keep d < 3 fixed and set ζ = d+ǫ 3 . In this case will be interested in fixed points that arise at ǫ = 0, as in [START_REF] Benedetti | Line of fixed points in a bosonic tensor model[END_REF], by a different mechanism than in Wilson-Fisher.

Two-point function

Rank 3

The standard Schwinger-Dyson equation (SDE) for the two-point function is, in momentum space:8 

G(p) -1 = C(p) -1 -Σ(p) , (3.13) 
where G(p) is the Fourier transform of the full two-point function N -3 φabc (x)φ abc (0) , and Σ(p) is the self-energy, i.e. the sum of non-trivial one-particle irreducible two-point diagrams.

In a theory which is dominated by melon-tadpole diagrams, the self-energy at leading order in 1/N is obtained by summing up all the Feynman diagrams which can be obtained from those in Fig. 3.4 by repeated insertions of either one of the two diagrams on internal lines. The resummation of all such diagrams can be represented by the same diagrams as in Fig. 3.4, but with the edges decorated by the full two-point function. Therefore, it can be expressed in momentum space as:9 When ζ = 1, using a power counting argument, we see that the solution admits two regimes for d < 3. First, in the ultraviolet, there is a free scaling regime G(p) -1 ∼ p 2 : the free propagator dominates over the self energy. Second, in the infrared, there is an anomalous scaling regime G(p) -1 ∼ p 2∆ with ∆ = d 3 : the self energy dominates over the free propagator. Indeed, if we rescale the q i by |p|, the melon integral gives a global factor of |p| 4d-10∆ which must scale as |p| 2∆ . This gives indeed ∆ = d 3 . We thus choose the following ansatz for the IR two-point function: 10

Σ(p) = λ 2 1 4 q 1 ,q 2 ,q 3 ,q 4 G(q 1 )G(q 2 )G(q 3 )G(q 4 )G(p + q 1 + q 2 + q 3 + q 4 ) - 1 2 (3λ 1 + λ 2 + λ 3 + λ 4 + λ 5 ) q G(q) 2 . ( 3 
G(p) = Z p 2d/3 . (3.15)
Neglecting the free propagator in the IR, the SDE reduce to:

p 2d/3 Z = - λ 2 1 4 Z 5 M d/3 (p) . (3.16)
The melon integral M d/3 (p) is computed in App. 3.B, giving

M d/3 (p) = - p 2d/3 (4π) 2d 3 d Γ(1 -d 3 )Γ( d 6 ) 5 Γ( d 3 ) 5 Γ( 5d 6 )
.

(3.17)

We thus obtain:

Z = λ 2 1 4(4π) 2d 3 d Γ(1 -d 3 )Γ( d 6 ) 5 Γ( d 3 ) 5 Γ( 5d 6 ) -1/6 . (3.18) 
Wave function renormalization. We introduce the wave function renormalization as φ = φ R √ Z with φ the bare field and φ R the renormalized field. Notice that Z is distinguished from Z, as the latter is the full coefficient of the nonperturbative solution in the IR limit, while Z is the usual perturbative wave function renormalization, to be fixed by a renormalization condition, as we will specify below.

After renormalization of the mass terms to zero, we have for the expansion of the renormalized two-point function at lowest order:

Γ (2) R (p) ≡ G R (p) -1 = Zp 2 - λ 2 1 4 Z -5 M 1 (p) . (3.19)
The integral M 1 (p) is computed in App. 3.B, Eq. (3.132). At leading order in ǫ, we have:

M 1 (p) = -p 2-4ǫ 2π 2 3ǫ(4π) 6 + O(1) . (3.20)
At last, we fix Z such that

lim ǫ→0 dΓ (2) R (p) dp 2 | p 2 =µ 2 = 1 , (3.21)
with µ the renormalization scale. At quadratic order in λ 1 , we obtain:

Z = 1 + λ 2 1 4 M1 (µ) = 1 -µ -4ǫ λ 2 1 π 2 6ǫ(4π) 6 , (3.22) with M1 (µ) = d dp 2 M 1 (p)| p 2 =µ 2 .
10 Notice that we choose a different convention for Z (and Z below) than in [START_REF] Benedetti | Line of fixed points in a bosonic tensor model[END_REF].

ζ = d 3
The value of ζ in this case is chosen to match the infrared scaling of the two-point function. We now have only one regime and the full SDE is solved by the ansatz:

G(p) = Z p 2d/3 . (3.23)
For the vertex renormalization in Sec. 3.4 we will use analytic regularization, keeping d < 3 fixed and setting ζ = d+ǫ 3 , but since the two-point function is finite, as we will now see, we can here set ǫ = 0.

The computations are the same as in the IR limit of the previous section, but we do not neglect the free propagator. Thus, we obtain:

1 Z 6 - 1 Z 5 = λ 2 1 4(4π) 2d 3Γ(1 -d 3 )Γ( d 6 ) 5 dΓ( d 3 ) 5 Γ( 5d 6 ) . (3.24)
At the first non-trivial order in the coupling constant, this gives:

Z = 1 - λ 2 1 4(4π) 2d 3Γ(1 -d 3 )Γ( d 6 ) 5 dΓ( d 3 ) 5 Γ( 5d 6 ) + O(λ 4 1 ). (3.25)
This expression is finite for d < 3. Moreover, as we did not neglect the free propagator, Z has an expansion in λ 1 , as the perturbative wave function renormalization, with which it can be identified in our non-minimal subtraction scheme. Therefore, in the case ζ = d/3, the wave function renormalization is finite.

Rank 5

For the O(N ) 5 model, the Schwinger-Dyson equation in the large-N limit is:

G(p) -1 = C(p) -1 -Σ(p) , (3.26) 
with

Σ(p) = κ 2 1
6 q 1 ,q 2 ,q 3 ,q 4 G(q 1 )G(q 2 )G(q 3 )G(q 4 )G(p + q 1 + q 2 + q 3 + q 4 )

-(κ 2 + κ 3 + κ 4 + κ 5 + κ 6 ) q G(q) 2 .
(3.27)

The only differences with the rank-3 model are the combinatorial factors in front of the melon and tadpole integrals. Thus, we can use the results of the previous section.

ζ = 1

In the IR limit, the SDE is solved again by G(p) = Z p 2d/3 with:

Z = κ 2 1 6(4π) 2d 3 d Γ(1 -d 3 )Γ( d 6 ) 5 Γ( d 3 ) 5 Γ( 5d 6 ) -1/6 . (3.28)
The wave function renormalization is given by: The full SDE is solved again by G(p) = Z p 2ζ with:

Z = 1 + κ 2 1 6 M1 (µ) = 1 -µ -4ǫ λ 2 1 π 2 9ǫ(4π) 6 . ( 3 
Z = 1 - κ 2 1 2(4π) 2d Γ(1 -d 3 )Γ( d 6 ) 5 dΓ( d 3 ) 5 Γ( 5d 6 ) + O(κ 3 1 ) . (3.30)
This is directly the wave function renormalization which is thus finite.

2PI effective action and four-point kernels

In this section, we compute the four-point kernels of both models using the 2PI formalism (see [START_REF] Benedetti | 2PI effective action for the SYK model and tensor field theories[END_REF]). We will make use of them first for showing that indeed there is no need of counterterms with quartic interactions, and then, in the next section, for the discussion of the all-orders beta functions for the sextic couplings.

Rank 3

In rank 3 and at leading order in 1/N , the 2PI effective action is given by:

-Γ 2P I [G G G] = - 1 6 3λ 1 N 3 δ (1) adbcef + 5 i=2 λ i N 3+ρ(I i ) δ (i) ab;cd;ef dx G G G (a,x)(b,x) G G G (c,x)(d,x) G G G (e,x)(f ,x) + 1 2 
λ 1 6N 3 2 3 δ (1) 
abcdef δ

(1)

ghjkmn × dxdy G G G (a,x)(g,y) G G G (b,x)(h,y) G G G (c,x)(j,y) G G G (d,x)(k,y) G G G (e,x)(m,y) G G G (f ,x)(n,y) . (3.31)
This is obtained by summing the contributions of the leading-order vacuum diagrams which are also two-particle irreducible (2PI), i.e. cannot be disconnected by cutting two lines, and with arbitrary propagator G G G on each line. As we already know, all the leading-order vacuum diagrams are obtained from the diagrams in Fig. 3.3 by repeated insertions of the two-point diagrams in Fig. 3.4, but since all such insertions lead to two-particle reducible diagrams, we are left with just the two fundamental diagrams of Fig. 3.3, whose evaluation leads to Eq. (3.31).

One recovers the self-energy from (using the further condensed notation A = (a, x)): 

Σ[G G G] AB = - δΓ 2P I [G G G] δG G G AB , ( 3 
K[G G G] AB,CD = G G G AA ′G G G BB ′ δΣ[G G G] CD δG G G A ′ B ′ . (3.33)
Applying such definition to Eq. (3.31) we obtain: In momentum space this four-point kernel becomes:

K (a,x)(b,y)(c,z)(d,w) = dx ′ dy ′ G xx ′ G yy ′ - 1 3 (9λ 1 + 2λ 2 + 3λ 3 + λ 4 )δ x ′ y ′ δ x ′ z δ x ′ w G x ′ x ′ δp ab;cd - 1 3 (λ 2 + 2λ 4 + 3λ 5 )δ x ′ y ′ δ x ′ z δ x ′ w G x ′ x ′ δd ab;cd + λ 2 1 4 G 4 x ′ y ′ (3 δp ab;cd δ x ′ w δ y ′ z + 2 δd ab;cd δ x ′ z δ y ′ w ) , (3.34 
K (a,p 1 )(b,p 2 )(c,p 3 )(d,p 4 ) =(2π) d δ(p 1 + p 2 + p 3 + p 4 )G(p 1 )G(p 2 ) - 1 3 (9λ 1 + 2λ 2 + 3λ 3 + λ 4 ) q G(q) δp ab;cd - 1 3 (λ 2 + 2λ 4 + 3λ 5 ) q G(q) δd ab;cd + λ 2 1 4 3 δp ab;cd q 1 ,q 2 ,q 3 G(q 1 )G(q 2 )G(q 3 )G(-p 1 -p 4 -q 1 -q 2 -q 3 )
+2 δd ab;cd q 1 ,q 2 ,q 3 G(q 1 )G(q 2 )G(q 3 )G(-p 1p 3q 1q 2q 3 ) .

(3.35)

For convenience, we introduce also a reduced kernel, with the tadpoles set to zero, i.e.:

K(a,x)(b,y)(c,z)(d,w) = λ 2 1 4 G 4 zw (3 δp ab;cd G xw G yz + 2 δd ab;cd G xz G yw ) . (3.36)
In fact, since the propagator is massless, the tadpoles are zero in dimensional regularization, hence the reduced kernel is all we need. The full four-point function at leading order in 1/N is obtained by summing ladders of arbitrary lenghts with the (reduced) four-point kernel acting as rung (see [START_REF] Gurau | Notes on Tensor Models and Tensor Field Theories[END_REF][START_REF] Benedetti | Line of fixed points in a bosonic tensor model[END_REF]). More precisely, defining the forward four-point function as

F (a,x)(b,y)(c,z)(d,w) ≡ φ a (x) φb (y)φ c (z) φd (w) -G(x -y)G(z -w)δ ab δ cd , (3.37) 
one finds that at leading order in 1/N it is given by a geometric series on the (reduced) kernel:

F (a,x)(b,y)(c,z)(d,w) = dz ′ dw ′ (1 -K) -1 (a,x)(b,y)(c,z ′ )(d,w ′ ) G w ′ w G z ′ z . (3.38)
We represent the series of ladder diagrams in Fig. 3.10, where the crossings do not contribute here because we consider a bipartite model with U (N ) 3 symmetry.

For dimensional reasons, the propagators being massless and by the use of dimensional regularization, we do not expect the four-point function to require a renormalization of the quartic The full forward four-point function as a series of ladders. The crossings should be omitted for our rank-3 model, because it is built on complex fields, with bipartite graphs. However, they contribute for the rank-5 model, which has real fields. couplings, which are dimensionful. We verify this explicitly at lowest order in perturbation theory, that is by considering the fully amputated four-point kernel, with G(q) replaced by the bare propagator C(q). Therefore, the reduced kernel writes:

= + + + + + + . . .
λ 2 1 4 Z 4 (3 δp ab;cd U ζ (p 1 + p 4 ) + 2 δd ab;cd U ζ (p 1 + p 3 )) , (3.39) 
with

U ζ (p 1 + p 4 ) = q 1 ,q 2 ,q 3 1 q 2ζ 1 q 2ζ 2 q 2ζ 3 (p 1 + p 4 + q 1 + q 2 + q 3 ) 2ζ . (3.40)
Using Eq. (3.129), we find: Long-range propagator. For ζ = d/3 and d < 3, this is also finite:

U ζ (p 1 + p 4 ) = |p 1 + p 4 | 3d-8ζ (4π) 3d/2 Γ(d/2 -ζ) 4 Γ(4ζ -3d/2) Γ(ζ) 4 Γ(2d -4ζ) . ( 3 
U d/3 (p 1 + p 4 ) = |p 1 + p 4 | d/3 (4π) 3d/2 Γ(d/6) 4 Γ(-d/6) Γ(d/3) 4 Γ(2d/3) . (3.43)
In both cases, there are no divergences in the four-point kernel. We thus do not need to renormalize the four-point couplings and we can take them to be zero from the beginning.

Rank 5

In rank 5 and at leading order in 1/N , the 2PI effective action is given by:

-Γ 2P I [G G G] = - 1 6 6 i=2 κ i N 5+ρ(J i ) δ (i) ab;cd;ef dx G G G (a,x)(b,x) G G G (c,x)(d,x) G G G (e,x)(f ,x) + 1 2 κ 1 6N 5 2 δ (1) abcdef δ (1) ghjkmn × dxdy G G G (a,x)(g,y) G G G (b,x)(h,y) G G G (c,x)(j,y) G G G (d,x)(k,y) G G G (e,x)(m,y) G G G (f ,x)(n,y) .
(3.44)

One recovers the self-energy from: where the extra factor 2 with respect to Eq. (3.32) is due to the difference between real and complex fields. The amputated four-point kernel is still obtained by derivating the self energy with respect to G G G.

Σ[G G G] = -2 δΓ 2P I [G G G] δG G G , ( 3 
The right-amputated four-point kernel on-shell is then:

K (a,x)(b,y)(c,z)(d,w) =G xx ′ G yy ′ -2 κ 6 + κ 3 + 2κ 2 3 + κ 4 3 δ x ′ y ′ δ x ′ z δ x ′ w G x ′ x ′ δp ab;cd -2 κ 2 3 + 2κ 4 3 + κ 5 δ x ′ y ′ δ x ′ z δ x ′ w G x ′ x ′ δd ab;cd + 5κ 2 1 6 δ x ′ w δ y ′ z G 4
x ′ y ′ δp ab;cd .

(3.46)

The structure is the same as for the rank-3 model: the only difference comes from the combinatorial factors. Then, the Feynman amplitudes are the same as before and there are still no divergences. We can thus again take the four-point couplings to be zero from the beginning. Eliminating also the tadpoles, the four-point kernel is reduced to:

K(a,x)(b,y)(c,z)(d,w) = G xw G yz 5κ 2 1 6 G 4 zw δp ab;cd .
(3.47)

Beta functions

We have seen in Sec. 3.2 that the Schwinger-Dyson equations for the two-point functions admit a conformal IR limit for ζ = 1, and a conformal solution valid at all scales for ζ = d/3. The argument is by now quite standard in theories with a melonic large-N limit, and in one dimension, for the SYK model or its tensor generalizations, it is sufficient for concluding that the theory is conformal (in the IR limit or at all scales). However, for field theories in higher dimensions we should also consider the renormalization of the couplings. In particular, it is not possible to restrict the model to having only one interaction (the one leading to melonic diagrams), as we have seen that other interactions are generated by radiative corrections, and these lead to a renormalization group flow of the other couplings, which hence cannot be set to zero. In fact, in order to claim that we found a non-trivial conformal field theory, we should identify an interacting fixed point of the renormalization group. 11 Therefore, in this section we will study the beta functions for the full actions (3.7) and (3.10), and their relative fixed points. We will explain the general structure of the beta functions in the rank-3 case. As we will see, the rank-5 case is very similar, except for the presence of an additional type of interaction, J 6 (the prism), a difference which however turns out to be crucial.

Rank 3

The amputated connected six-point function can be decomposed into the different interaction terms: Γ (6) (p 1 , . . . , p 6 ) = 5 i=1 Γ (6,i) (p 1 , . . . , p 6 ) δi .

(3.48)

The renormalized sextic couplings g i are defined in terms of the bare expansion of the sixpoint functions by the renormalization condition:

g i = µ -2ǫ Z 3 Γ (6,i) (p 1 , . . . , p 6 ) (3.49)
where the power of the renormalization scale µ is fixed by demanding that g i are dimensionless, and it is the same both for ζ = 1 in d = 3ǫ dimensions and for ζ = d+ǫ 3 in general d < 3. For the external momenta we choose a symmetric subtraction point (generalizing the quartic case, see [START_REF] Brezin | Wilson's theory of critical phenomena and callan-symanzik equations in 4-epsilon dimensions[END_REF][START_REF] Kleinert | Critical properties of phi**4-theories[END_REF]):

p i • p j = µ 2 9 (6δ ij -1) . (3.50)
This choice of external momenta satisfies the momentum conservation, 6 i=1 p i = 0, and it is non-exceptional, in the sense that i∈I p i = 0 for any subset I of the set of indices {1, . . . , 6}, therefore avoiding IR divergences in all diagrams.

The beta functions are defined by β i = µ∂ µ g i . We will obtain them by differentiating the bare expansion with respect to µ (using the fact that the bare couplings are independent of the renormalization scale µ) and then replacing the bare couplings by their expressions in terms of the renormalized one.

At leading order in 1/N the wheel vertex does not receive any radiative corrections, i.e.:

g 1 = µ -2ǫ Z 3 λ 1 . (3.51) Since Z = 1 + O(λ 2 1
), the inverse λ 1 (g 1 ) is guaranteed to exist in the perturbative expansion, at least. 12 Its beta function will then be

β 1 ≡ µ∂ µ g 1 = (-2ǫ + 3η)g 1 , (3.52) 
where we defined the anomalous dimension η = (µ∂ µ ln Z)| λ 1 (g 1 ) . Clearly, if ǫ = 0 and Z is finite, as in the long-range case ζ = d/3 with d < 3, then the beta function is identically zero, and we have a chance of finding a one-parameter family of fixed points, as in [START_REF] Benedetti | Line of fixed points in a bosonic tensor model[END_REF]. On the other hand, for ǫ > 0, in order to find a non-trivial fixed point we have to rely on a Wilson-Fisher type of cancellation between the tree level term and the quantum corrections, hence we need η = 0, that is, we need a short-range propagator. We now compute the bare expansion of the other couplings. The expansion starts of course at tree level, with a bare vertex with any I i interaction. At order two in the coupling constants, there is only one diagram which contributes: two wheel vertices connected by three internal edges (we call this Feynman diagram the candy). At order three, we have one more diagram: two wheel vertices connected to each other by four internal edges and each of them connected by another internal edge to a vertex with any I i interaction (including the wheel itself). These diagrams are the only tadpole-free six-point diagrams that can be obtained by cutting edges of vacuum melon-tadpole diagrams, at this order in the couplings, and they are pictured in Fig. 3.11.

We can actually construct the leading order 6-point graphs at all orders using the forward four-point function introduced in Eq. (3.38). Indeed, the amputated connected six-point functions can be obtained by deleting three different lines in the vacuum diagrams, without disconnecting the diagrams. On the other hand, vacuum diagrams are given in Fig. 3.3, with lines decorated by melonic and tadpole insertions, but we should not leave any closed tadpoles otherwise the diagram will evaluate to zero in dimensional regularization. Therefore, we can have at most one tadpole vertex; this fact does not limit the number of wheel vertices, as they 12 For the long-range model, it is actually easier to write the inverse relation, because at ǫ = 0 we can solve the exact equation (3.24) by multiplying it by Z 6 and using Z 6 λ 2 1 = g 2 1 :

Z = 1 - g 2 1 g 2 c , g -2 c = 1 4(4π) 2d 3Γ(1 -d 3 )Γ( d 6 ) 5 dΓ( d 3 ) 5 Γ( 5d 6 )
.

Therefore, λ 1 = g 1 /Z 3 exists for g 1 < g c . can appear in melonic insertions as well, but it has the important consequence that the couplings λ 2 to λ 5 appear at most linearly in Γ (6) . Equivalently, we can just consider the two diagrams in Fig. 3.3 with only melonic insertions. Furthermore, for the trefoil on the right of Fig. 3.3, we should cut an internal line on each of the three (decorated) leaves. At last, we should notice that each time we delete a line in a melonic two-point function, we generate a ladder diagram.

In fact, starting from the SDE equation G = (C -1 -Σ[G]) -1 , and using (3.33), we obtain

δG AB δC EF = (1 -K) -1 AB,A ′ B ′ G A ′ E ′ C -1 E ′ E G B ′ F ′ C -1 F ′ F + (E ↔ F ) . (3.53) 
When using this formula on vacuum diagrams, we should then strip off the factors G • C -1 in order to obtain amputated n-point functions. We thus obtain the right-amputated version of Eq. (3.38).

In conclusion, we then have three different types of leading-order 6-point graphs. First, we can connect three full forward four-point functions on every pairs of external legs of the bare vertex of Fig. 3.11, thus obtaining the graph on the left of Fig. 3.12. We can also do the same with the candy and obtain the graph in the middle of Fig. 3.12. Finally, we can also connect three full forward four-point functions and obtain the graph on the right of Fig. 3.12. The last two have been encountered for example in [START_REF] Gross | All point correlation functions in SYK[END_REF][START_REF] Gross | The Bulk Dual of SYK: Cubic Couplings[END_REF], where they have been called contact and planar diagrams, respectively. Figure 3.12: The three types of diagrams contributing to the bare expansion of the sixpoint couplings in the large-N limit at all order in the coupling constants. The black circles represent wheel vertices and the white circles can be any of the I i interactions (including the wheel). The grey squares represent the full forward four-point function.
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This implies that renormalized couplings g i , with i > 1, have a bare expansion of the form:

g i = µ -2ǫ Z 3 λ i + A i (λ 2 1 ) + j=1...5 B ij (λ 2 1 )λ j , (3.54) 
with A i (x) and B ij (x) starting at linear order in x. The term λ i + j=1...5 B ij (λ 2 1 )λ j is a resummation of contribution from the graphs on the left of Fig. 3.12, while A i (λ 2 1 ) resums the other two. Although we could at least write the relative Feynman integral expressions in terms of forward four-point functions and six-point kernels, as we will not need them, and the combinatorics is different for different bubbles, we will not be more precise than that.

For i > 1 the relation between bare and renormalized couplings is linear and thus it can be easily inverted:

λ i = (1 + B) -1 ij µ 2ǫ g j Z 3 -A j λ 1 =λ 1 (g 1 ) , (3.55) 
where

1 ij = δ ij .
Using the fact that the flow of g 1 is independent of the others, then one arrives at the conclusion that the beta functions of the other couplings are linear combinations of the couplings, with coefficients that are functions of g 2 1 :

β i = (-2ǫ + 3η)g i + Ãi (g 2 1 ) + j Bij (g 2 1 )g j , (3.56) 
where

Ãi (g 2 1 ) = µ -2ǫ Z 3 µ∂ µ A i - j,k (µ∂ µ B ij )(1 + B) -1 jk A k λ 1 =λ 1 (g 1 ) , (3.57) 
Bij (g 2 1 ) = j (µ∂ µ B ij )(1 + B) -1 jk . (3.58)
As we saw above, the combination -2ǫ + 3η is either identically zero, or it is zero at the fixed point of g 1 . In order to find the fixed points we are left with a linear problem.

In the following we will compute explicitly the beta functions at lowest order in the perturbative expansion, i.e. we will only include the contribution of the diagrams in Fig. 3.11.

The ζ = 1 case

We will now compute the beta function only up to order 3 in the coupling constants for ζ = 1.

Expanding the six-point functions of Eq. (3.49) to order three, we have the bare expansions:

g 2 = µ -2ǫ Z 3 λ 2 - 9 2 D 1 (µ)λ 2 1 + S 1 (µ)λ 2 1 9λ 1 + 1 2 λ 2 , g 3 = µ -2ǫ Z 3 λ 3 + S 1 (µ) 3 4 λ 2 1 λ 3 , g 4 = µ -2ǫ Z 3 λ 4 + S 1 (µ)λ 2 1 27 2 λ 1 + 3λ 2 + 3λ 3 + 11 4 λ 4 , g 5 = µ -2ǫ Z 3 λ 5 -D 1 (µ) 1 6 λ 2 1 + S 1 (µ)λ 2 1 1 4 λ 2 + λ 4 + 15 4 λ 5 , (3.59) 
where Z is given in Eq. It is convenient to rescale the couplings as gi = g i /(4π) d (and we immediately forget the ∼). To compute the beta functions we need:

µ∂ µ D 1 = - 4π (4π) 3 µ -2ǫ + O(ǫ) , (3.60) 
µ∂ µ S 1 = 8π 2 (4π) 6 µ -4ǫ + O(ǫ) , (3.61) 
µ∂ µ Z = µ -4ǫ 2g 2 1 π 2 3 . (3.62) 
Then, using µ∂ µ λ i = 0, the beta functions β i ≡ µ∂ µ g i come as:

β 1 = -2g 1 ǫ -g 2 1 π 2 , (3.63) 
β 2 = -2g 2 ǫ -g 2 1 π 2 + 4g 2 1 π 2 9 2π + 18g 1 + g 2 , (3.64) 
β 3 = -2g 3 ǫ -4 g 2 1 π 2 , (3.65) 
β 4 = -2g 4 ǫ -g 2 1 π 2 + g 2 1 π 2 (108g 1 + 24g 2 + 24g 3 + 22g 4 ) , (3.66) 
β 5 = -2g 5 ǫ -g 2 1 π 2 + g 2 1 π 2 2 3π + 2g 2 + 8g 4 + 30g 5 . (3.67) 
First, we notice that if g 1 = 0, then all the other coupling have a trivial running, dictated by their canonical dimension (2ǫ). In such case, for ǫ > 0 we have only the trivial fixed point, g * i = 0 ∀i. For ǫ = 0 instead, we have a 4-dimensional manifold of fixed points. This is a generalization of the vector model case, where the (φ i φ i ) 3 interaction is exactly marginal at large N , and which in fact corresponds to the case in which we retain only the triple-trace term I 5 in our action. In that case it is known that at some critical coupling non-perturbative effects lead to vacuum instability with a consequent breaking of conformal invariance [START_REF] Amit | Breaking of Scale Invariance in φ 6 Theory: Tricriticality and Critical End Points[END_REF][START_REF] Bardeen | Spontaneous Breaking of Scale Invariance and the Ultraviolet Fixed Point in O(N ) Symmetric ( φ6 3 in Three-Dimensions) Theory[END_REF]. It would be interesting to study the vacuum stability of our model with g 1 = 0 in order to explore the possibility of a similar phenomenon, but we leave this for future work.

We are here interested in melonic fixed points, with g 1 = 0, for which we need ǫ > 0. In that case, we obtain two interacting fixed points:

g * 1 = ± √ ǫ π ; g * 2 = 9 2π -1 ∓ 4 √ ǫ ; g * 3 = 0; (3.68) g * 4 = 54 11π 1 ± 3 √ ǫ ; g * 5 = -1021 ∓ 2700 √ ǫ 990π . (3.69) 
The standard linear stability analysis of the system of beta functions consists in diagonalizing the stability matrix B ij ≡ ∂β i /∂g j | g * , thus identifying the scaling operators and their scaling dimensions, from its right-eigenvectors and eigenvalues, respectively. In the present case, we find the slightly unusual situation of having a non-diagonalizable stability matrix. In fact, we find that both melonic fixed points have the same eigenvalues (critical exponents):

(4ǫ; 4ǫ; 6ǫ; 22ǫ; 30ǫ) , (3.70) 
with the 4ǫ eigenvalue having algebraic multiplicty two, but geometric multiplicity one; hence the stability matrix is not diagonalizable. In terms of the couplings {g 1 , g 2 , g 3 , g 4 , g 5 }, the associated eigendirections are, respectively:

{0, 3, 0, -4, 1}; {∓ 1 6 √ ǫ , 2(-236 ± 5265 √ ǫ) 6435ǫ , 0, 1108 ∓ 12285 √ ǫ 19305ǫ , 0}; (3.71) 
108 CHAPTER 3. RENORMALIZATION OF SEXTIC TENSOR FIELDS {0, 0, 2, -3, 1} {0, 0, 0, -1, 1}; {0, 0, 0, 0, 1} ,

with the first two forming a Jordan chain of length two. Each (generalized) eigendirection, by its scalar product with the vector of renormalized operators arranged in the same order as the corresponding couplings, defines a scaling operator O i of dimension ∆ i = d + θ i , with the θ i being the critical exponent associated to that eigendirection. As our critical exponents are all positive, all the scaling operators are irrelevant at the fixed points, and therefore the latter are infrared stable. The fact that the stability matrix is not diagonalizable implies that the fixed point theory is a logarithmic conformal field theory (see for example [START_REF] Hogervorst | The ABC (in any D) of Logarithmic CFT[END_REF]). Therefore, although we find real exponents, as opposed to the complex ones of the quartic model [START_REF] Giombi | Bosonic tensor models at large N and small ǫ[END_REF], the fixed-point theory is still non-unitary.

The ζ = d 3 case Using the results of App. 3.C, along with the fact that there is no diverging wave-function renormalization in this case, the bare expansion gives:

g 1 = µ -2ǫ Z 3 λ 1 , g 2 = µ -2ǫ Z 3 λ 2 - 9 2 Z 3 D d/3 (µ)λ 2 1 + Z 6 S d/3 (µ)λ 2 1 9λ 1 + 1 2 λ 2 , g 3 = µ -2ǫ Z 3 λ 3 + Z 6 S d/3 (µ) 3 4 λ 2 1 λ 3 , g 4 = µ -2ǫ Z 3 λ 4 + Z 6 S d/3 (µ)λ 2 1 27 2 λ 1 + 3λ 2 + 3λ 3 + 11 4 λ 4 , g 5 = µ -2ǫ Z 3 λ 5 -Z 3 D d/3 (µ) 1 6 λ 2 1 + Z 6 S d/3 (µ)λ 2 1 1 4 λ 2 + λ 4 + 15 4 λ 5 , (3.73) 
with Z given in Eq. (3.25). After rescaling of the coupling constants by (4π) d , the beta functions at ǫ = 0 read:

β 1 = 0 , (3.74) 
β 2 = g 2 1 Γ(d/6) 3 Γ(d/3) 3 Γ(d/2) - 2Γ(-d/6)Γ(d/6) Γ(d/3)Γ(2d/3) 9g 1 + 1 2 g 2 + 9 , (3.75) 
β 3 = -3g 2 1 g 3 Γ(-d/6)Γ(d/6) 4 2Γ(d/3) 4 Γ(d/2)Γ(2d/3) , (3.76) 
β 4 = -g 2 1 Γ(-d/6)Γ(d/6) 4 Γ(d/3) 4 Γ(d/2)Γ(2d/3) 27g 1 + 6g 2 + 6g 3 + 11 2 g 4 , (3.77) 
β 5 = g 2 1 Γ(d/6) 3 Γ(d/3) 3 Γ(d/2) - 2Γ(-d/6)Γ(d/6) Γ(d/3)Γ(2d/3) 1 4 g 2 + g 4 + 15 4 g 5 + 1 3 . (3.78) 
This time, in addition to a 4-dimensional manifold of fixed points (set by g * 1 = 0, and thus analogue to what we discussed for the case ζ = 1 at ǫ = 0), we also find a line of fixed points parametrized by the exactly marginal coupling g 1 :

g * 2 = -18g 1 + 9Γ(d/3)Γ(2d/3) Γ(-d/6)Γ(d/6) ; g * 3 = 0; (3.79) g * 4 = 54 11 3g 1 - 2Γ(d/3)Γ(2d/3) Γ(-d/6)Γ(d/6) ; (3.80) g * 5 = - 30 11 g 1 + 1021Γ(d/3)Γ(2d/3) 495Γ(-d/6)Γ(d/6) . (3.81) 
The critical exponents are:

55g 2 1 α 2 ; 11g 2 1 α 2 ; 3g 2 1 α 2 ; g 2 1 α , (3.82) 
with

α = - Γ(-d/6)Γ(d/6) 4 Γ(d/3) 4 Γ(d/2)Γ(2d/3) > 0 , for d < 3 . (3.83) 
The respective eigendirections in terms of {g 2 , g 3 , g 4 , g 5 } are: {0, 0, 0, 1}; {0, 0, -1, 1}; {0, 2, -3, 1}; {3, 0, -4, 1}.

Since the critical exponents are again positive, the eigendirections correspond again to irrelevant perturbations. In this case, the stability matrix is diagonalizable, with real exponents, hence we have so far no signal of non-unitarity.

Rank 5

The diagrams contributing to the six-point function at large N are again the ones of Fig. 3.11 (or Fig. 3.12 at all orders). However, now the black vertices represent the complete interaction and the white vertices represent only the other interactions J i for i > 1. This will slightly change the bare expansion of the couplings and their beta functions.

The ζ = 1 case

There is no radiative corrections for the coupling of the complete interaction, the renormalized coupling is just rescaled by the wave function renormalization of Eq. (3.29):

g 1 = µ -2ǫ Z 3 κ 1 . (3.85) 
Then, we obtain the following bare expansions up to order three in the coupling constants:

g 2 = µ -2ǫ Z 3 κ 2 + κ 2 1 S 1 (µ) 2κ 6 + 2 3 κ 2 , g 3 = µ -2ǫ Z 3 κ 3 + κ 2 1 κ 3 S 1 (µ) , g 4 = µ -2ǫ Z 3 κ 4 + κ 2 1 S 1 (µ) 3κ 6 + 4κ 3 + 10 3 κ 2 + 7 3 κ 4 , g 5 = µ -2ǫ Z 3 κ 5 + κ 2 1 S 1 (µ) κ 2 + 8 3 κ 4 + 5κ 5 , g 6 = µ -2ǫ Z 3 κ 6 - 10 3 κ 2 1 D 1 (µ) , (3.86) 
with D 1 (µ) and S 1 (µ) defined in the previous section.

Let us rescale all the coupling constants as κ1 = κ 1 (4π) d and forget about the tilde. Then the beta functions are:

β g 1 = -2ǫg 1 + 4 3 π 2 g 3 1 , β g 2 = -2ǫg 2 + 4 3 π 2 g 2 1 g 2 + 8π 2 3 g 2 1 (6g 6 + 2g 2 ) , β g 3 = -2ǫg 3 + 4 3 π 2 g 2 1 g 3 + 8π 2 g 2 1 g 3 , 110 
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β g 4 = -2ǫg 4 + 4 3 π 2 g 2 1 g 4 + 8π 2 3 g 2 1 (9g 6 + 12g 3 + 10g 2 + 7g 4 ) , β g 5 = -2ǫg 5 + 4 3 π 2 g 2 1 g 5 + 8π 2 3 g 2 1 (3g 2 + 8g 4 + 15g 5 ) , β g 6 = -2ǫg 6 + 4 3 π 2 g 2 1 g 6 + 40π 3 g 2 1 . (3.87) 
The only fixed point when ǫ = 0 is the trivial one: g * i = 0, ∀i. We do not find any Wilson-Fisher like fixed point. This is due to the beta function of the prism. The non-zero fixed point of

β g 1 is g * 1 = √ ǫ
2π . If we put it in the beta function of the prism, we obtain an expression independent of g 6 and proportional to g 2 1 . This would imply g 1 = 0 which is incompatible with g * 1 =

√ ǫ 2π when ǫ = 0. This solution is not a fixed point of the whole system.

The ζ = d 3 case When ζ = d/3, the wave function renormalization is finite and equal to Z, given in Eq. (3.30). In this case the bare expansion is:

g 1 = µ -2ǫ Z 3 κ 1 , g 2 = µ -2ǫ Z 3 κ 2 + κ 2 1 Z 9 S d/3 (µ) 2κ 6 + 2 3 κ 2 , g 3 = µ -2ǫ Z 3 κ 3 + κ 2 1 κ 3 Z 9 S d/3 (µ) , g 4 = µ -2ǫ Z 3 κ 4 + κ 2 1 Z 9 S d/3 (µ) 3κ 6 + 4κ 3 + 10 3 κ 2 + 7 3 κ 4 , g 5 = µ -2ǫ Z 3 κ 5 + κ 2 1 Z 9 S d/3 (µ) κ 2 + 8 3 κ 4 + 5κ 5 , g 6 = µ -2ǫ Z 3 κ 6 - 10 3 Z 6 κ 2 1 D d/3 (µ) . (3.88) 
Then, the beta function of the complete interaction is again exactly zero. The other beta functions are, after rescaling of the coupling constants by (4π) d :

β g 2 = -2g 2 1 Γ(d/6) 4 Γ(-d/6) Γ(d/3) 4 Γ(d/2)Γ(2d/3) 2g 6 + 2 3 g 2 , β g 3 = -2g 2 1 g 3 Γ(d/6) 4 Γ(-d/6) Γ(d/3) 4 Γ(d/2)Γ(2d/3) , β g 4 = -2g 2 1 Γ(d/6) 4 Γ(-d/6) Γ(d/3) 4 Γ(d/2)Γ(2d/3) 3g 6 + 4g 3 + 10 3 g 2 + 7 3 g 4 , β g 5 = -2g 2 1 Γ(d/6) 4 Γ(-d/6) Γ(d/3) 4 Γ(d/2)Γ(2d/3) g 2 + 8 3 g 4 + 5g 5 , β g 6 = 20 3 Γ(d/6) 3 Γ(d/3) 3 Γ(d/2) g 2 1 . (3.89) 
The beta function for g 6 admits a unique fixed point with g * 1 = 0. The other beta functions are then exactly zero. Starting from nonzero couplings, we find that the flow is driven by g 6 flowing to minus infinity in the IR, and the other couplings flow towards:

g * 2 = -3g 6 ; g * 3 = 0; g * 4 = 3g 6 ; g * 5 = -3g 6 . (3.90) 
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Spectrum of operators

For the rank-3 case we found IR fixed points with non-zero wheel coupling, both in the shortrange and long-range versions of the model. In order to better understand the conformal field theory at such IR fixed points, 13 we wish to compute the spectrum of operators that appear in the operator-product expansion (OPE) of φ abc (x) φabc (0). Schematically, these are expected to be the bilinear operators φ abc (∂ 2 ) n φabc , and their spectrum can be obtained using the conformal Bethe-Salpeter (BS) equation [START_REF] Klebanov | Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models[END_REF][START_REF] Giombi | Bosonic tensor models at large N and small ǫ[END_REF], or equivalently, the spectral decomposition of the fourpoint function [START_REF] Liu | d-dimensional SYK, AdS Loops, and 6j Symbols[END_REF][START_REF] Gurau | Notes on Tensor Models and Tensor Field Theories[END_REF][START_REF] Benedetti | Hints of unitarity at large N in the O(N ) 3 tensor field theory[END_REF]. The four-point function of our CFT can be written in a standard representation-theoretic form as [START_REF] Liu | d-dimensional SYK, AdS Loops, and 6j Symbols[END_REF][START_REF] Simmons-Duffin | A spacetime derivation of the Lorentzian OPE inversion formula[END_REF][START_REF] Gurau | Notes on Tensor Models and Tensor Field Theories[END_REF]:

1 N 6 φ abc (x 1 ) φabc (x 2 )φ a ′ b ′ c ′ (x 3 ) φa ′ b ′ c ′ (x 4 ) =G(x 1 -x 2 )G(x 3 -x 4 )+ + 1 N 3 J d 2 +ı∞ d 2 -ı∞ dh 2πı 1 1 -k ζ (h, J) µ d ∆ φ (h, J)G ∆ φ h,J (x i ) + (non-norm.) , (3.91) 
with G ∆ φ h,J (x i ) the conformal block, µ d ∆ φ (h, J) the measure, and k ζ (h, J) the eigenvalues of the two particle irreducible four-point kernel. The non-normalizable contributions are due to operators with dimension h < d/2, and they should be treated separately [START_REF] Simmons-Duffin | A spacetime derivation of the Lorentzian OPE inversion formula[END_REF]. 14 The subleading term is the most interesting part, and it is related to the forward four-point function that we introduced in Eq. (3.37). The appearance of k ζ (h, J) should be clear from Eq. (3.38). Closing the contour to the right, we pick poles at k ζ (h, J) = 1 (other poles are spurious and they cancel out [START_REF] Simmons-Duffin | A spacetime derivation of the Lorentzian OPE inversion formula[END_REF]), and we recover an operator-product expansion in the t-channel (12 → 34):

1 N 6 φ abc (x 1 ) φabc (x 2 )φ a ′ b ′ c ′ (x 3 ) φa ′ b ′ c ′ (x 4 ) = G(x 1 -x 2 )G(x 3 -x 4 ) + 1 N 3 m,J c 2 m,J G ∆ φ h m,J ,J (x i ) , (3.92 
) where h m,J are the poles of (1k ζ (h, J)) -1 , and the squares of the OPE coefficients are the residues at the poles [START_REF] Liu | d-dimensional SYK, AdS Loops, and 6j Symbols[END_REF][START_REF] Gurau | Notes on Tensor Models and Tensor Field Theories[END_REF][START_REF] Benedetti | Hints of unitarity at large N in the O(N ) 3 tensor field theory[END_REF]. We will limit ourselves to just studying the location of the poles, i.e. the spectrum of operators in the OPE.

Eigenfunctions of the kernel are known to take the form of three-point functions of two fundamental scalars with an operator. For example, in the case of spin zero we have:

v 0 (x 0 , x 1 , x 2 ) = O h (x 0 )φ abc (x 1 ) φabc (x 2 ) = C Oφ φ (x 2 01 x 2 02 ) h/2 (x 2 12 ) 1 2 ( d 3 -h) . (3.93) 
Therefore, we need to find the eigenvalues k(h, J) of the kernel from the equation:

k ζ (h, J)v J (x 0 , x 1 , x 2 ) = d d x 3 d d x 4 K(x 1 , x 2 ; x 3 , x 4 )v J (x 0 , x 3 , x 4 ), (3.94) 
where the form of the kernel is obtained from (3.36) to be

K(x 1 , x 2 ; x 3 , x 4 ) = λ 2 1 4 [3G(x 14 )G(x 23 ) + 2G(x 13 )G(x 24 )] G(x 34 ) 4 , (3.95) 
and since we integrate over x 3 and x 4 , both terms can be combined into one.

ζ = 1

Since the corresponding integrals are simpler to solve in position space, we wish to set up the eigenvalue equation in position space. For that, we need the two-point function in position space, which for the case ζ = 1 is as follows:

G(x) = d d p (2π) d e -ip•x G(p) = Z d d p (2π) d e -ip•x p 2d/3 = Z 2 d/3 (4π) d/2 Γ( d 6 ) Γ( d 3 ) 1 (x 2 ) d/6 = F 1 1 (x 2 ) d/6 , (3.96) 
where

F 1 = Z 2 d/3 (4π) d/2
Γ( d 6 ) Γ( d3 ) . To perform the integrals at J = 0, we shall use the following identity [START_REF] Giombi | Bosonic tensor models at large N and small ǫ[END_REF],

d d x 0 1 (x 2 01 ) α 1 (x 2 02 ) α 2 (x 2 03 ) α 3 = L d (α 1 , α 2 ) (x 2 12 ) d/2-α 3 (x 2 13 ) d/2-α 2 (x 2 23 ) d/2-α 1 , (3.97) 
with

α 1 + α 2 + α 3 = d, and L d (α 1 , α 2 ) = π d/2 Γ( d 2 -α 1 )Γ( d 2 -α 2 )Γ( d 2 -α 3 ) Γ(α 1 )Γ(α 2 )Γ(α 3 )
.

To solve for the eigenvalues, let us first perform the integral over x 3 using (3.97),

d d x 3 1 (x 2 03 ) h/2 (x 2 23 ) d/6 (x 2 34 ) 5d/6-h/2 = L d h 2 , d 6 (x 2 02 ) -d/3+h/2 (x 2 04 ) d/3 (x 2 24 ) d/2-h/2 (3.98)
with,

L d h 2 , d 6 = π d/2 Γ( d 3 )Γ(-d 3 + h 2 )Γ( d 2 -h 2 ) Γ( d 6 )Γ( 5d 6 -h 2 )Γ( h 2 ) . (3.99) 
Now, performing the remaining integral over x 4 , we get

d d x 4 1 (x 2 04 ) d/3+h/2 (x 2 24 ) d/2-h/2 (x 2 14 ) d/6 = L d ( d 3 + h 2 , d 2 -h 2 ) (x 2 02 ) d/3 (x 2 01 ) h/2 (x 2 12 ) d/6-h/2 , (3.100) 
with

L d d 3 + h 2 , d 2 - h 2 = π d/2 Γ( d 3 )Γ( h 2 )Γ( d 6 -h 2 ) Γ( d 3 + h 2 )Γ( d 2 -h 2 )Γ( d 6 )
.

Collecting the terms from the first and second integrals, and combining their coefficients from Eq. (3.96), Eq. (3.99) and Eq. (3.101), we get the J = 0 eigenvalues of the kernel to be

k 1 (h, 0) = 5 4 λ 2 1 F 6 1 π d Γ( d 3 ) 2 Γ(-d 3 + h 2 )Γ( d 6 -h 2 ) Γ( d 6 ) 2 Γ( 5d 6 -h 2 )Γ( d 3 + h 2 ) = 5 4 λ 2 1 1 π d 4 λ 2 1 d 3 Γ( d 6 )Γ( 5d 6 ) Γ(1 -d 3 )Γ( d 3 ) π d Γ( d 3 ) 2 Γ(-d 3 + h 2 )Γ( d 6 -h 2 ) Γ( d 6 ) 2 Γ( 5d 6 -h 2 )Γ( d 3 + h 2 ) = -5 × Γ( 5d 6 )Γ( d 3 )Γ(-d 3 + h 2 )Γ( d 6 -h 2 ) Γ(-d 3 )Γ( d 6 )Γ( 5d 6 -h 2 )Γ( d 3 + h 2 ) . (3.102) 
To find the spectrum of the bilinears, we must solve the above equation for k 1 (h, 0) = 1, with d = 3ǫ. We use the method of [START_REF] Benedetti | Hints of unitarity at large N in the O(N ) 3 tensor field theory[END_REF], setting h = 1 + 2n + 2z, and treating z as a perturbation of the classical dimension, which is justified for small ǫ.

For n = 0 and n = 1, we find the following solutions:

h 0 = 1 + 29 3 ǫ + O(ǫ 2 ), h 1,J = 3 + J + -4J 2 -8J + 27 3(2J + 3)(2J + 1) ǫ + O(ǫ 2 ), (3.108) 
h n,J = 1 + 2n + J - ǫ 3 + 5ǫ 2 3n(n -1)(n + 1/2 + J)(n -1/2 + J) + O(ǫ 3 ) , n > 1. (3.109)
Notice that these can all be written in the form h n,J = d -2 + 2n + J + 2z n,J , with d = 3ǫ.

For J = 0, we recover the solutions we found in the beginning of this section, except for h q . This is due to the fact that the factor Γ(-d 3 + h 2 + J/2) in Eq. (3.106) only leads to a singularity for h > 0 if J = 0. Therefore, for J > 0, we only have dimensions corresponding to bilinear operators and no longer have a dimension corresponding to a quartic operator.

One can check at leading order in ǫ from Eq. (3.107), or to all orders directly from Eq. (3.106), that the spin-2 operator with n = 0 has the classical dimension h 0,2 = 3ǫ = d, as expected from a conserved energy-momentum tensor.

ζ = d 3

The computation of the spectrum of bilinears of the long range model with the modified propagator goes exactly along the same lines as the one with the normal propagator. The only difference lies in the structure of the two-point function. The position space expression for the renormalized propagator (or two-point function) is:

G(x) = F d/3 (x 2 ) d/6 , F d/3 = Z 2 d/3 (4π) d/2 Γ( d 6 ) Γ( d 3 ) , (3.110) 
where Z is the solution of (3.24). Once again we solve the same eigenvalue Eq. (3.94) using the same kernel (3.95). The resulting eigenvalue, for J = 0, is:

k d/3 (h, 0) = 5 4 λ 2 1 F 6 d/3 π d Γ( d 3 ) 2 Γ(-d 3 + h 2 )Γ( d 6 -h 2 ) Γ( d 6 ) 2 Γ( 5d 6 -h 2 )Γ( d 3 + h 2 ) = 5 4 λ 2 1 Z 6 1 (4π) 2d Γ( d 6 ) Γ( d 3 ) 4 Γ(-d 3 + h 2 )Γ( d 6 -h 2 ) Γ( 5d 6 -h 2 )Γ( d 3 + h 2 ) = 5 4 g 2 1 Γ( d 6 ) Γ( d 3 ) 4 Γ(-d 3 + h 2 )Γ( d 6 -h 2 ) Γ( 5d 6 -h 2 )Γ( d 3 + h 2 ) , (3.111) 
where in the last line we used the renormalized coupling defined in 3.4.1, namely g 1 = 1 (4π) d λ 1 Z 3 . In order to find the OPE spectrum we have to solve for k d/3 (h, 0) = 1. The main difference with respect to the previous case is that the spectrum will now depend on the value of the exactly marginal coupling, which will replace ǫ in the role of small parameter.

Again we use the method of [START_REF] Benedetti | Hints of unitarity at large N in the O(N ) 3 tensor field theory[END_REF] to solve k d/3 (h, 0) = 1, and we find the following solutions:

h 0 = d 3 + 15Γ(1 -d/6) dΓ(2d/3)Γ(d/2) Γ(d/6) Γ(d/3) 4 g 2 1 + O(g 4 1 )
,

h n = d 3 + 2n + (-1) n+1 n! 5Γ(n -d/6) 2Γ(2d/3 -n)Γ(d/2 + n) Γ(d/6) Γ(d/3) 4 g 2 1 + O(g 4 1 ) . (3.112) 
Notice that at g 1 = 0, we recover the classical dimensions h classical n = d/3 + 2n. At g 1 = 0, all dimensions are real, and they are greater than d/3 for g 2 1 > 0 and small. 116 CHAPTER 3. RENORMALIZATION OF SEXTIC TENSOR FIELDS

Conclusions

In this chapter, we presented an analysis of the melonic large-N limit in various versions of Bosonic tensor models with sextic interactions. We considered explicitly tensors of rank 3 and 5, but we expect rank 4 to behave similarly to rank 5. And we chose as free propagator either the standard short-range propagator, or a critical long-range propagator. We discussed in detail some standard properties of melonic theories, as the closed Schwinger-Dyson equation for the two-point function, and the Bethe-Salpeter equation for the spectrum of bilinear operators. However, as we emphasized, the conformal solution of these equations are only justified if the quantum field theory actually admits a fixed point of the renormalization group. In this respect, we found a striking difference between the rank-3 and rank-5 models, as only the former (both in the short-range and long-range versions) admits a non-trivial (and real) fixed point for d < 3, with an interaction leading to melonic dominance. The rank-5 model instead has only one trivial (i.e. non-interacting) fixed point. It would be interesting to check whether such conclusion would remain valid after including in the action (3.10) the other possible sextic interactions that we have omitted by restricting to a melo-complete family.

Comparing our findings for the short range model with those of the sextic model in [START_REF] Giombi | Bosonic tensor models at large N and small ǫ[END_REF], we observe similar results for two-point function and spectrum of operators. However, we do so for the rank-3 model, where such analysis is justified by the existence of a melonic fixed point, whereas their analysis was formally based on a rank-5 model, which we showed is inconsistent. The fact that we find the same result is not a coincidence: our kernel eigenvalue (3.102) coincides with the q = 6 case of the eigenvalue computed in [START_REF] Giombi | Bosonic tensor models at large N and small ǫ[END_REF] for a general q-valent melonic theory. Such eigenvalue depends only on the assumption that a q-valent interaction leads to melonic dominance. The latter can for example be obtained with a rank-(q -1) model with a complete interaction, as assumed in [START_REF] Giombi | Bosonic tensor models at large N and small ǫ[END_REF]. However, as argued in [START_REF] Prakash | Melonic Dominance in Subchromatic Sextic Tensor Models[END_REF], and as we saw also here, rank q -1 is not necessary: a q-valent interaction can lead to a melonic limit even in a tensor model of rank r < q -1 (in which case the model was called subchromatic in [START_REF] Prakash | Melonic Dominance in Subchromatic Sextic Tensor Models[END_REF]); this is the case of our rank-3 model with wheel interaction.

Comparing instead our long-range model to the quartic long-range model of [START_REF] Benedetti | Line of fixed points in a bosonic tensor model[END_REF], we see some similarity but also an important difference: on one hand, both models admit a line of fixed points, parametrized by the interaction that leads to melonic dominance; on the other, in the quartic case, the fixed point and conformal dimensions are real only for purely imaginary tetrahedral coupling [START_REF] Benedetti | Line of fixed points in a bosonic tensor model[END_REF], while in our sextic model, we have a real fixed point and real spectrum for a real wheel coupling. Furthermore, unlike in [START_REF] Benedetti | Line of fixed points in a bosonic tensor model[END_REF], in the present case the appearance of complex dimensions at some critical value of the marginal coupling seems to be compatible with the scenario conjectured in [START_REF] Kim | Symmetry Breaking in Coupled SYK or Tensor Models[END_REF], according to which it is a signal of an instability of the vacuum.

We have also encountered some of the recurring aspects of melonic theories (for rank 3, at least): for the short-range version, reality of the CFT constrains ǫ to stay very small; in the long-range version, we have instead the freedom to reach an integer dimension (d = 2 in this case), by keeping the marginal coupling small, but at the price of loosing the energy-momentum tensor (as usual in long-range models [START_REF] Paulos | Conformal Invariance in the Long-Range Ising Model[END_REF]). It would be interesting to get a better understanding of how general these features are.

One new feature that we found is that the fixed point of the short-range model has a nondiagonalizable stability matrix, even in the range of ǫ for which the exponents are real. This is an indication that the fixed-point theory is a logarithmic CFT, and thus it is non-unitary. We hope to explore this aspect more thoroughly in the near future.

Concerning the question of gauging, since unfortunately in rank 3, the short-range tensorial fixed points (with non-zero λ 1 ) occur in d < 3 dimensions, gauging with Chern-Simons would not make sense. Then strictly speaking, writing a covariant derivative in the long-range model would introduce an infinite number of interactions between the gauge field and the tensors.
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We briefly noticed that certain eigenvalues of the ladder-kernel, earlier wrongly identified as indicating mixing with higher order operators, had to be discarded since corresponding to shadow operators. We are currently investigating with D. Benedetti, a non-disordered cubic interacting vector model, that also shows melonic dominance. After the quartic and sextic models, it provides us with a third category of melonic field theories for drawing a clearer picture of how is to be deformed the contour using the partial wave decomposition of the four-point function, in order to pick the physical poles.

Lastly, it would be important to understand the fate of our line of fixed points (in the long-range model) at higher orders in the 1/N expansion. At some order in the expansion we expect to find vertex corrections also to the wheel interaction, and therefore a non-zero beta function β 1 . A similar situation occurs in the vector φ 6 model, where the leading-order beta function vanishes identically, but already at next-to-leading order in 1/N one finds a non-zero beta function [START_REF] Pisarski | Fixed point structure of (PHI**6) in three-dimensions at large N[END_REF], thus reducing the leading-order line of fixed points to an isolated fixed point.

3.A Conventions for the interaction terms

We write here in an explicit form the interactions appearing in Eq. (3.5) and (3.9), as well as the quartic invariants, in terms of contraction operators built as linear combinations of products of Kronecker delta functions.

3.A.1 Rank 3

Using the compact notation a = (a 1 a 2 a 3 ), the U (N ) 3 quartic invariants, also known as pillow and double-trace invariants, respectively, are:

I p = δ p ab;cd φ a (x) φb (x)φ c (x) φd (x) , (3.116) 
I d = δ d ab;cd φ a (x) φb (x)φ c (x) φd (x) , (3.117) 
with:

δ p ab;cd = 1 3 3 i=1 δ a i d i δ b i c i j =i δ a j b j δ c j d j , δ d ab;cd = δ ab δ cd , (3.118) 
and δ ab = 3 i=1 δ a i b i . The sextic invariants depicted in Eq. (3.5) are instead:

I 1 = δ (1) abcdef φ a (x) φb (x)φ c (x) φd (x)φ e (x) φf (x) , (3.119) 
I b = δ (b) ab;cd;ef φ a (x) φb (x)φ c (x) φd (x)φ e (x) φf (x) , b = 2, . . . , 5 , (3.120) with δ (1) 
abcdef = δ a 1 b 1 δ a 2 f 2 δ a 3 d 3 δ c 1 d 1 δ c 2 b 2 δ c 3 f 3 δ e 1 f 1 δ e 2 d 2 δ e 3 b 3 , δ (2) 
ab;cd;ef = 1 9

3 i=1 j =i δ a i f i δ b i c i δ c j d j δ e j f j k =i δ a k b k l =j δ e l d l m =i,j δ cmfm + cd ↔ ef + cd ↔ ab , δ (3) 
ab;cd;ef = 1 3

3 i=1 δ a i f i δ b i c i δ d i e i j =i δ a j b j δ c j d j δ e j f j , δ (4) 
ab;cd;ef = 1 3 δ ab δ p cd;ef + δ cd δ p ab;ef + δ ef δ p ab;cd , δ

ab;cd;ef = δ ab δ cd δ ef .

(3.121)

Besides the color symmetrization, to simplify the computation of the beta-functions, we have included a symmetrization with respect to exchange of pairs of black and white vertices.

3.A.2 Rank 5

Using the compact notation a = (a 1 a 2 a 3 a 4 a 5 ), the O(N ) 3 melonic quartic invariants are:

I p = δ p ab;cd φ a (x)φ b (x)φ c (x)φ d (x) , (3.122) 
I d = δ d ab;cd φ a (x)φ b (x)φ c (x)φ d (x) , (3.123) 
with:

δ p ab;cd = 1 5 5 i=1 δ a i d i δ b i c i j =i δ a j b j δ c j d j , δ d ab;cd = δ ab δ cd , (3.124) 

3.B. THE MELON INTEGRAL

119 and δ ab = 5 i=1 δ a i b i . The sextic invariants depicted in Eq. (3.9) are instead:

J 1 = δ (1) abcdef φ a (x)φ b (x)φ c (x)φ d (x)φ e (x)φ f (x) , (3.125) 
J b = δ (b) ab;cd;ef φ a (x)φ b (x)φ c (x)φ d (x)φ e (x)φ f (x) , b = 2, . . . , 6 , (3.126) with δ (1) 
abcdef = δ a 1 b 1 δ a 2 f 2 δ a 3 e 3 δ a 4 d 4 δ a 5 c 5 δ b 2 c 2 δ b 3 d 3 δ b 4 f 4 δ b 5 e 5 δ c 3 f 3 δ c 4 e 4 δ c 1 d 1 δ e 1 f 1 δ e 2 d 2 δ d 5 f 5 , δ (2) 
ab;cd;ef = 1 60

5 i=1 j =i δ a i c i δ b i d i δ c j e j δ d j f j k =i δ a k b k l =j δ e l f l m =i,j δ cmdm + cd ↔ ef + cd ↔ ab , δ (3) 
ab;cd;ef = 1 5

5 i=1 δ a i f i δ b i c i δ d i e i j =i δ a j b j δ c j d j δ e j f j , δ (4) 
ab;cd;ef = 1 3 δ ab δ p cd;ef + δ cd δ p ab;ef + δ ef δ p ab;cd , δ

ab;cd;ef = δ ab δ cd δ ef , (5) 
ab;cd;ef = 1 60

5 i=1 j =i k =i,j δ a i c i δ b i d i δ c j e j δ d j f j δ a k e k δ b k f k l =i,k δ a l b l m =j,k δ emfm n =i,j δ cndn .

3.B The melon integral

In this section we compute the melon integral contributing to the wave function renormalization. We want to compute:

M ∆ (p) =
q 1 ,q 2 ,q 3 ,q 4 G 0 (q 1 )G 0 (q 2 )G 0 (q 3 )G 0 (q 4 )G 0 (p + q 1 + q 2 + q 3 + q 4 ) ,

with G 0 (p) = 1 p 2∆ . We will use the following formula to compute M (p):

d d k (2π) d 1 k 2α (k + p) 2β = 1 (4π) d/2 Γ(d/2 -α)Γ(d/2 -β)Γ(α + β -d/2) Γ(α)Γ(β)Γ(d -α -β) 1 |p| 2(α+β-d/2) . (3.129)
We obtain:

M ∆ (p) = p 4d-10∆ (4π) 2d Γ(d/2 -∆) 5 Γ(5∆ -2d) Γ(∆) 5 Γ(5d/2 -5∆) . (3.130) 
For ∆ = d 3 , this simplifies to:

M d/3 (p) = - p 2d/3 (4π) 2d 3 d Γ(1 -d 3 )Γ( d 6 ) 5 Γ( d 3 ) 5 Γ( 5d 6 ) 
.

We will also need the melon integral for d = 3ǫ and ∆ = 1:

M 1 (p) = p 2-4ǫ (4π) 6-2ǫ Γ(2ǫ -1)Γ( 1-ǫ 2 ) 5 Γ( 5 2 (1 -ǫ)) . (3.132) 
At first order in ǫ, this gives: 

M 1 (p) = - p 2-4ǫ (4π) 6 

2-loop amplitude

We want to compute the two-loop amputated Feynman integral (the candy) represented in the middle of Fig. 3.11. We use the subtraction point defined in Sec. 3.4.1. Then, respecting the conservation of momenta, we can write the candy integral as:

D ∆ (µ) = q 1 ,q 2 G 0 (q 1 )G 0 (q 2 )G 0 (-p 1 -p 2 -p 3 -q 1 -q 2 ). (3.134) 
This gives with G(q) = 1 q 2∆ :

D ∆ (µ) = q 1 ,q 2 1 q 2∆ 1 q 2∆ 2 (p 1 + p 2 + p 3 + q 1 + q 2 ) 2∆ . (3.135) 
We use twice Eq. (3.129) and obtain (using

|p 1 + p 2 + p 3 | = µ): D ∆ (µ) = 1 (4π) d Γ(d/2 -∆) 3 Γ(3∆ -d) Γ(∆) 3 Γ(3d/2 -3∆) 1 µ 2(3∆-d) . (3.136) 
For ζ = 1, we set ∆ = 1 and d = 3ǫ. We obtain at first order in ǫ:

D 1 (µ) = µ -2ǫ 1 (4π) 3 2π ǫ + O(1) . (3.137) 
For the modified propagator case, we set ∆ = d+ǫ 3 and d < 3. We obtain at first order in ǫ:

D d/3 (µ) = µ -2ǫ 1 (4π) d Γ( d 6 ) 3 Γ( d 3 ) 3 Γ( d 2 )ǫ + O(1) . (3.138) 

3.C.2 4-loop amplitude

We compute the following four-loop amputated Feynman integral:

d d xd d y G(x -y) 4 G(x -z)G(y -z) .
Again we use the symmetric subtraction point and we can write the integral in momentum space as:

S ∆ (µ) = q 1 ,q 2 ,q 3 ,q 4 G 0 (q 1 )G 0 (q 2 )G 0 (q 3 )G 0 (q 4 )G 0 (-p 1 -p 2 -q 4 )G 0 (-p 1 -q 1 -q 2 -q 3 -q 4 ) . (3.139)
With G 0 (q) = 1 q 2∆ , this gives:

S ∆ (µ) = q 1 ,q 2 ,q 3 ,q 4 1 (p 1 + q 1 + q 2 + q 3 + q 4 ) 2∆ 1 (q 4 + p 1 + p 2 ) 2∆ 1 (q 1 q 2 q 3 q 4 ) 2∆ . (3.140) 
We integrate loop by loop using Eq. (3.129), until we are left with a triangle-type one-loop integral:

S ∆ (µ) = 1 (4π) 3d/2 Γ(d/2 -∆) Γ(∆) 4 Γ(4∆ -3d/2) Γ(2d -4∆) q 4 1 (q 4 + p 1 + p 2 ) 2∆ 1 q 2∆ 4 1 (p 1 + q 4 ) 2(4∆-3d/2) .
(3.141)
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We use a Mellin-Barnes representation [START_REF] Davydychev | A Magic connection between massive and massless diagrams[END_REF][START_REF] Dwyer | Epsilon Expansion for Multicritical Fixed Points and Exact Renormalisation Group Equations[END_REF] to rewrite the remaining integral as:

q 4 1 (q 4 + p 1 + p 2 ) 2∆ 1 q 2∆ 4 1 (p 1 + q 4 ) 2(4∆-3d/2) = π d/2 ((p 1 + p 2 ) 2 ) d/2-i ν i Γ(d -i ν i ) i Γ(ν i )(2πi) 2 i∞ -i∞ dsdt (2π) d x s y t Γ(-s)Γ(-t)Γ(d/2 -ν 2 -ν 3 -s) × Γ(d/2 -ν 1 -ν 3 -t)Γ(ν 3 + s + t)Γ( i ν i -d/2 + s + t) , (3.142) with ν 1 = ν 2 = ∆, ν 3 = 4∆ -3d/2 and x = p 2 1 /(p 1 + p 2 ) 2 , y = p 2 2 /(p 1 + p 2 ) 2 .
In the case ζ = 1, we set ∆ = 1 and deforming the contour on the right and picking the residue at s = t = 0, 15 we find in the last Γ function the only contribution to the pole in 1/ǫ from a d = 3ǫ expansion. Putting everything together, we find, at first order in ǫ:

S 1 (µ) = µ -4ǫ (4π) 6 Γ(1/2) 4 Γ(3/2) Γ(-1/2) 2ǫ = µ -4ǫ (4π) 6 -2π 2 ǫ + O(1) . (3.143) 
In the case ζ = (d + ǫ)/3, we set ∆ = ζ and again only the residue at s = t = 0 gives a contribution to the pole in 1/ǫ. We find:

S d/3 (µ) = µ -4ǫ (4π) 2d Γ(d/6) 4 Γ(-d/6) 2ǫΓ(d/2)Γ(d/3) 4 Γ(2d/3) + O(1) . (3.144) 
Chapter 4

Renormalization of a scalar field on Galton-Watson trees

The chapter is structured as follows. In Section 4.1, we introduce the ensemble of random trees that will be of concern as well as the random walk approach to the propagator of the theory. We also recall the multiscale point of view for renormalization towards an infrared fixed point and motivate the rescaling of the Laplacian appropriate for just renormalizable models. After presenting briefly in Section 4.2 the needed results of [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF], we prove upper and lower bounds on completely convergent graphs. In Section 4.3, we obtain upper bounds on differences on amplitudes when transporting external legs, important in order to assure local counterterms. We discuss in Section 4.4 the setting that we think would stand for an analog of finite temperature field theory in this framework and the description of a model that would naturally serve as a concrete playground for the methods exposed below. Finally, the last Appendix 4.A details the probabilistic results that we relied upon, first focusing on branching processes, then on heat kernels over fixed and random graphs.

4.1 Quantum Field Theory on a Graph 4.1.1 φ q QFT on a graph

For this introductory section we follow [START_REF] Gurau | Renormalization: an advanced overview[END_REF] (in particular its section 3.3.2). Let us consider a space-time which is a proper connected graph Γ, with vertex set V Γ and edge set E Γ . It can be taken finite or infinite. The word "proper" means that the graph has neither multiedges nor self-loops (often called tadpoles in physics). In the finite case we often omit to write cardinal symbols such as |V Γ |, |E Γ | when there is no ambiguity. In practice we shall here consider mostly trees, more precisely either finite trees Γ for which V Γ = E Γ + 1, or infinite trees in the sense of [START_REF] Durhuus | The Spectral Dimension of Generic Trees[END_REF] which can be also interpreted as conditioned percolation clusters or Galton-Watson trees conditioned on non-extinction in the sense of [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF]. The main characteristic of such infinite trees is to have a single infinite spine S(Γ) ⊂ V (Γ). This spine is decorated all along by lateral independent Galton-Watson finite critical trees, which we call the branches. An artistic view of a cut on the spine is depicted on Fig. 4.1, and the approach towards a continuum limit. On any such graph Γ, there is a natural notion of the Laplace operator L Γ . We recall that on a directed graph Γ the incidence matrix is the rectangular V by E matrix with indices running over vertices and edges respectively, such that The V by V square matrix with entries d v on the diagonal is called the degree or coordination matrix D Γ . The adjacency matrix is the symmetric V × V matrix A Γ made of zeroes on the diagonal: A Γ (v, v) = 0 ∀v ∈ V , and such that if v = w then A Γ (v, w) is the number of edges of G which have vertices v and w as their ends. Finally the Laplacian matrix of Γ is defined to be L Γ = D Γ -A Γ . Its positivity properties stem from the important fact that it is a kind of square of the incidence matrix, namely

• ǫ Γ (v, e) is +1 if e ends at v, • ǫ Γ (v, e) is -1 if e starts at v,
L Γ = ǫ Γ • ǫ t Γ , (4.1) 
where ǫ t stands for the transpose of ǫ. Remark that this Laplacian is a positive rather than a negative operator (the sign convention being opposite to the one of differential geometry). Its kernel (the constant functions) has dimension 1 since Γ is connected. The kernel C Γ (x, y) of the inverse of this operator is formally given by the sum over random paths ω from x to y

L -1 Γ = C Γ (x, y) = n 1 D Γ A Γ n 1 D Γ (x, y) = ω:x→y v∈Γ 1 d v nv(ω) (4.2) 
where

d v = D Γ (v, v) = L Γ (v, v)
is the coordination at v and n v (ω) is the number of visits of ω at v. We sometimes omit the index Γ when there is no ambiguity. As we know this series is not convergent without an infrared regulator (this is related to the Laplacian having a constant zero mode). For a finite Γ we can take out this zero mode by fixing a root vertex in the graph and deleting the corresponding line and column in L Γ . But it is more symmetric to use the mass regularization. It adds m 2 1 to the Laplacian, where 1 is the identity operator on Γ, with kernel δ(x, y). Defining C m Γ (x, y) as the kernel of (L Γ + m 2 1) -1 we have the convergent path representation

C m Γ (x, y) = ω:x→y v∈Γ 1 d v + m 2 nv(ω) (4.3)
and the infrared limit corresponds to m → 0.

A scalar Bosonic free field theory φ on Γ is a function φ : V Γ → R defined on the vertices of the graph and measured with the Gaussian measure

dµ C Γ (φ) = 1 Z 0 e -1 2 φ(L Γ +m 2 1)φ x∈V Γ dφ(x), (4.4) 
where Z 0 a normalization constant. It is obviously well-defined as a finite dimensional probability measure for m > 0 and Γ finite. We meet associated infrared divergences in the limit of m = 0 and they are governing the large distance behavior of the QFT in the limit of infinite graphs Γ.

The systematic way to study QFT divergences is through a multiscale expansion in the spirit of [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF][START_REF] Feldman | Bounds on completely convergent Euclidean Feynman Graphs[END_REF][START_REF] Chandra | An analytic BPHZ theorem for regularity structures[END_REF][START_REF] Benfatto | [END_REF]. No matter whether an ultraviolet or an infrared limit is considered, the renormalization group always flows from ultraviolet to infrared and the same techniques apply in both cases. The φ q interacting theory is then defined by the formal functional integral [START_REF] Gurau | Renormalization: an advanced overview[END_REF]:

dν Γ (φ) = 1 Z(Γ, λ) e -λ x∈V Γ φ q (x) dµ C Γ (φ) , (4.5) 
where the new normalization is

Z(Γ, λ) = e -λ x∈V Γ φ q (x) dµ C Γ (φ) = dν Γ (φ). (4.6)
The correlations (Schwinger functions) of the φ q model on Γ are the normalized moments of this measure:

S N (z 1 , ..., z N ) = φ(z 1 )...φ(z N ) dν Γ (φ), (4.7) 
where the z i are external positions hence fixed vertices of Γ. The case of fixed flat d-dimensional lattice corresponds to Γ = Z d . As well known the Schwinger functions expand in the formal series of Feynman graphs

S N (z 1 , ..., z N ) = ∞ V =0 (-λ) V V ! G A G (z 1 , ..., z N ), (4.8) 
where the sum over G runs over Feynman graphs with V internal vertices of valence q and N external leaves of valence 1. Beware not to confuse these Feynman graphs with the "space-time" graph Γ on which the QFT lives. More precisely E G is the disjoint union of a set I G of internal edges and of a set N G of external edges, and for the interaction φ q these Feynman graphs have V G = V internal vertices which are regular with total degree q and N G = N external leaves of degree 1. Hence qV G = 2E G + N G . If q is even this as usual implies parity rules, namely N G has also to be even. We often write simply V , E, N instead of V G , E G and N G when there is no ambiguity. Besides, for our purpose, we will neither focus on exact combinatoric factors nor about convergence of this series although these are of course important issues treated elsewhere [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF]. We also shall consider only connected Feynman graphs G, which occur in the expansion of the connected Schwinger functions.

As usual the treatment of external edges is attached to a choice for the external arguments of the graph. Our typical choice here is to use external edges which all link a q-regular internal vertex to a 1-regular leaf with fixed external positions z 1 , . . . z N in Γ. The (unamputated) graph amplitude is then a function of the external arguments obtained by integrating all positions x v of internal vertices v of G over our space time, which is V (Γ). Hence

A G (z 1 , • • • , z N ) = xv∈V Γ v∈V G ℓ∈E G C m Γ (x ℓ , y ℓ ) (4.9)
where x ℓ and y ℓ is our (sloppy, but compact!) notation for the vertex-positions at the two ends of edge ℓ.

We consider now perturbative QFT on random trees, which instead of Γ we note from now as T . The universality class of random trees [START_REF] Aldous | The Continuum Random Tree I, II and III, The Annals of Probability[END_REF] is the Gromov-Hausdorff limit of any critical Galton-Watson tree process with fixed branching rate [START_REF] Harris | The theory of branching processes[END_REF], and conditioned on non-extinction.
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It has a unique infinite spine, decorated with a product of independent Galton-Watson measures for the branches along the spine [START_REF] Durhuus | The Spectral Dimension of Generic Trees[END_REF]. We briefly recall the corresponding probability measure, following closely [START_REF] Durhuus | The Spectral Dimension of Generic Trees[END_REF], but instead of half-infinite rooted trees with spine labeled by N we consider trees with a spine infinite in both directions, hence labeled by Z.

The order |T | of a rooted tree is defined as its number of edges. To a set of non-negative branching weights w i , i ∈ N ⋆ is associated the weights generating function g(z) := i≥1 w i z i-1 and the finite volume partition function Z n on the set T n of all rooted trees T with root r of order

|T | = n Z n = T ∈Tn u∈T \r w du , (4.10) 
where d u denotes the degree of the vertex u. The generating function for all Z n 's is , at each vertex s k of the spine (recall the degree of k is indeed d k ). The set of such infinite trees is called T ∞ . It is equipped with a probability measure ν that we now describe. This measure is obtained as a limit of measures ν n on finite trees of order n. These measures ν n are defined by identically and independently distributing branches around a spine with measures where ν is the probability measure on T concentrated on the subset of infinite trees T ∞ [START_REF] Durhuus | The Spectral Dimension of Generic Trees[END_REF]. Moreover the spectral dimension of generic infinite tree ensembles is d spec = 4/3 . In fact the trees in T ∞ conditioned to have a single infinite spine can be constructed by redefining the branching weights w i , let us say of mean m, through

Z(ζ) = ∞ n=1 Z n ζ n . ( 4 
w * i = iw i m (4.16)
for one vertex per generation, such that the probability to have no child vanishes [START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF][START_REF] Abraham | An introduction to Galton-Watson trees and their local limits[END_REF].

From now on we write E(f ) for the average according to the measure dν of a function f depending on the tree T , and P for the probability of an event A according to dν. Hence P(A) = E(χ A ) where χ A is the characteristic function for the event A to occur. For simplicity and in order not to loose the reader's attention into unessential details we shall also restrict (4.17)

Fractional laplacians

Since the most interesting QFTs (including, in dimension 1, the tensorial theories à la Gurau-Witten) are the ones with just renormalizable power counting, we want to state our result in that case. A time-honored method for that is to raise the ordinary Laplacian to a suitable fractional power α in the QFT propagator [START_REF] Gross | A line of CFTs: from generalized free fields to SYK[END_REF][START_REF] Brydges | Critical φ 4 3,ǫ[END_REF]. We assume from now on that this fractional power obeys 0 < α < 1 and call C α the corresponding propagator, i.e. the kernel of L -α . It is most conveniently computed using the identity

L -α = sin πα π ∞ 0 2m 1-2α L + m 2 dm (4.18)
since this "Källen-Lehmann" representation, with density m 1-2α respects the positivity properties of the random path representation of the ordinary Laplacian inverse.

In the continuum R d case, we have the ordinary heat-kernel integral representation

C α R d (x, y) = sin πα π ∞ 0 2m 1-2α dm ∞ 0 e -m 2 t-|x-y| 2 4t dt t d/2 , (4.19) 
On Z d the rescaled kernel of the Laplacian between points x and y is similarly obtained from eq. (4.18), using the random walk representation: (4.20) where n v (ω) is the number of visits of ω at v. Notice that each vertex on Z d has degree 2d.

C α Z d (x, y) = sin πα π ∞ 0 2m 1-2α dm ω:x→y v 1 2d + m 2 nv(ω)
As remarked above in the case of a general graph Γ we no longer have translation invariance of Fourier integrals but still the random path expansion, so that

C α Γ (x, y) = sin πα π ∞ 0 2m 1-2α dm ω:x→y v 1 d v + m 2 nv(ω) (4.21)
where the walks ω now live on Γ and d v is the degree at vertex v. In integer dimension d, standard QFT power counting with propagator C α relies on the standard notion of degree of divergence. For a regular Feynman graph of degree q with N external legs, this degree is defined as

ω(G) = (d -2α)E -d(V -1) = (d -2α)(qV -N )/2 -d(V -1). (4.22) 128CHAPTER 4 
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This power counting is neutral (hence does not depend on V ) in the critical or just-renormalizable case α = (q -2)d 2q (4.23) in which case we have

ω(G) = d 1 - N q . (4.24)
For instance if q = d = 4 we recover that the φ 4 4 theory with propagator p -2 is critical, and if d = 1 we recover the critical index α = 1 2 -1 q of the infrared SYK theory with q interacting Fermions [START_REF] Sachdev | Gapless spin fluid ground state in a random, quantum Heisenberg magnet[END_REF][START_REF] Kitaev | A simple model of quantum holography[END_REF][START_REF] Polchinski | The Spectrum in the Sachdev-Ye-Kitaev Model[END_REF][START_REF] Maldacena | Remarks on the Sachdev-Ye-Kitaev model[END_REF].

As we will show in section 4.3, a just-renormalizable φ q theory is obtained by substituting in the above formulas the spectral dimension d = 4/3 of random trees, namely

α = 2 3 - 4 3q , ω(G) = 4 -N 3 . (4.25)
This is not surprising since this spectral dimension is precisely related to the short-distance, long-time behavior of the inverse Laplacian averaged on the random tree. We shall fix from now the fractional power α to its critical value. Nevertheless this simple rule requires justification, which is precisely provided by the next sections.

Slicing into scales

The multiscale decomposition of Feynman amplitudes is a systematic tool to establish power counting and study perturbative and constructive renormalization in quantum field theory [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF][START_REF] Gurau | Renormalization: an advanced overview[END_REF][START_REF] Feldman | Bounds on completely convergent Euclidean Feynman Graphs[END_REF]. It relies on a sharp slicing into a geometrically growing sequence of scales of the Feynman parameter for the propagator of the theory. This parameter is nothing but the time in the random path representation of the Laplacian. The short time behavior of the propagator is unimportant since the graph Γ is an ultraviolet regulator in itself. We are therefore interested in infrared problems, namely the long distance behavior of the theory (in terms of the graph distance). In the usual discrete random walk expansion of the inverse Laplacian, the total time is the length of the path hence an integer. This integer when non trivial cannot be smaller than 1. However the results of [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF] are formulated in terms of a continuous-time random walk which should have equivalent infrared properties. In what follows we shall use both points of view.

Definition 1 (Time-of-the-Path Slicing). We introduce the infrared parametric slicing of the propagator 1/(L + m 2 ):

C = ∞ j=0 C j ; C 0 = 1 , C j = ω:x→y M 2(j-1) ≤n(ω)<M 2j v∈Γ 1 d v + m 2 nv(ω) ∀j ≥ 1 . (4.26)
M is a fixed constant which parametrizes the thickness of a renormalization group slice (the craftsman trademark of [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF]). Each propagator C j indeed corresponds to a theory with both an ultraviolet and an infrared cutoff, which differ by the fixed multiplicative constant M 2 . An infrared cutoff on the theory is then obtained by setting a maximal value ρ = j max for the index j. The covariance with this cutoff is therefore

C ρ = ρ j=0 C j .
(4.27)

In the continuum R d case we have the ordinary heat-kernel representation hence the explicit integral representation

C α,j R d (x, y) = sin πα π ∞ 0 2m 1-2α dm M 2(j+1) M 2j e -m 2 t-|x-y| 2 4t dt t d/2 , (4.28) 
from which it is standard to deduce scaling bounds such as

C α,j R d (x, y) ≤ KM (2α-d)j e -cM -2j |x-y| 2 , (4.29) 
for some constants K and c. From now on, we use most of the time c or K as generic names for any inessential constant (therefore they are the same as the O(1) notation in the constructive field theory literature). We shall also omit from now on to keep inessential constant factors such as sin πα π . In Z d the sliced propagator then writes

C α,j Z d (x, y) = ∞ 0 2m 1-2α dm ω:x→y M 2(j-1) ≤n(ω)<M 2j v 1 2d + m 2 nv(ω)
.

(4.30)

It still can be shown easily to obey the same bound (4.29). For a general tree T the sliced decomposition of the propagator then writes

C α T (x, y) = ∞ j=0
C α,j T (x, y); C α,0 T = 1, and for j ≥ 1 , (4.31)

C α,j T (x, y) = ∞ 0 2m 1-2α dm ω:x→y M 2(j-1) ≤n(ω)<M 2j v∈T 1 d v + m 2 nv(ω) . (4.32) 
Remark that after n steps a path cannot reach farther than distance n (for the discrete time random walk). In particular we can safely include the function χ j (x, y) in any estimate on C α,j T , where χ j (x, y) is the characteristic function for d(x, y) ≤ M 2j . 1 A generic tree T in T has spectral dimension 4/3 so that we should expect for such a tree C α,j T (x, y) ≤ KM (2α-4 3 )j χ j (x, y) .

A fixed tree can nevertheless be non-generic, hence has no a priori well defined dimension d. At the same time, since it always contains an infinite spine which has dimension 1, the propagator on any tree T in T should obey the following bound:

C α,j T (x, y) ≤ KM (2α-1)j χ j (x, y) . (4.34)

However we do not need a very precise bound for exceptional trees since as we will see in the next section, they will be wiped by small probabilistic factor. In fact a very rough "dimension zero" bound can be obtained for all points x, y on T :

C α,j T (x, y) ≤ KM 2αj χ j (x, y) . (4.35)
Indeed, overcounting the number of paths from x to y in time t as the total number of paths from x in time t leads to this inequality. In the binary tree case each vertex degree is bounded by 3. At a visited vertex v we have d v choices for the next random path step so that where K and c are some inessential constants. 2 Then the naive inequality

ω:x→y M 2(j-1) ≤n(ω)<M 2j v∈T 1 d v + m 2 nv(ω) ≤ M 2(j-1) ≤n<M 2j
K ∞ 0 m 1-2α dm M 2j M 2(j-1) dte -ctm 2 ≤ K ′ M 2jα , (4.38) 
allows to conclude. Yet none of the bounds (4.33)-(4.35) are sufficient to establish the correct power counting of Feynman amplitudes averaged on T ∈ T . We need to combine the multiscale decomposition (best tool to estimate general Feynman amplitudes on a fixed space) with probabilistic estimates to show that the prefactor M (2α- 4 3 )j in (4.33) is indeed the typical one and that the typical volume factors for the integrals on vertex positions correspond also to those of a space of dimension 4/3.

Multiscale analysis

From this subsection onward, we will drop the α of the propagator C α,j to lighten the notation. Consider a fixed connected Feynman graph G with n internal vertices, all with degrees q = 4, N external edges and L = 2n -N/2 internal edges. There are in fact several possible prescriptions to treat external arguments in a Feynman amplitude [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF][START_REF] Feldman | Bounds on completely convergent Euclidean Feynman Graphs[END_REF], but they are essentially equivalent from the point of view of integrating over inner vertices the product of propagators. A convenient and simple choice is to put all external legs in the most infrared scale, namely the infrared cutoff scale ρ (similar to a zero external momenta prescription in a massive theory), and to work with amputated amplitudes which no longer depend on the external positions z 1 , . . . , z N but only on the position x 0 of a fixed inner root vertex v 0 . It means we forget the N (G) external propagators C T (x v(k) , z k ) factors in A G and shall integrate only the n -1 positions x v , v ∈ {1, . . . , n -1}. In this way we get an amplitude A amp G (x 0 ) which is solely a function of x 0 . 3 However we should remember that fields and propagators at the external cutoff scale have a canonical dimension which in our case for a field of scale j is M -j/3 . To compensate for the missing factors after amputation we shall multiply this amputated amplitude by M -ρN/3 , and for the fixing of position x 0 , we shall add another global factor M 4ρ/3 . Hence we define

Ãamp G (x 0 ) := M ρ(4-N )/3 xv∈V (T ) 1≤v≤n-1 ℓ∈I(G) C T (x ℓ , y ℓ ) . (4.39) 
For simplicity, we write now A G again, instead of Ãamp G . The decomposition (??) leads to the multiscale representation for a Feynman graph G, which is:

A G (x 0 ) = M ρ(4-N )/3 µ A G,µ (x 0 ) , (4.40) 
A G,µ (x 0 ) = xv∈V (T ) 1≤v≤n-1 ℓ∈I(G) C j ℓ T (x ℓ , y ℓ ) . (4.41)
µ is called a "scale assignment" (or simply "assignment"). It is a list of integers {j ℓ }, one for each internal edge of G, which provides for each internal edge ℓ of G the scale j ℓ of that edge. A G,µ is the amplitude associated to the pair (G, µ), and (4.40)-(4.41) is the multiscale representation of the Feynman amplitude. We recall that the key notion in the multiscale analysis of a Feynman amplitude is that of "high" subgraphs. In our infrared setting, this means the connected components of G j , the subgraph of G made of all edges ℓ with index j ℓ ≤ j. These connected components are labeled as G j,k , k = 1, ..., k(G j ), where k(G j ) denotes the number of connected components of the graph G j .

A subgraph g ⊂ G then has in the assignment µ internal and external indices defined as are exactly the high ones. This definition depends on the assignment µ. For a high subgraph g and any value of j such that i g (µ) < j ≤ e g (µ) there exists exactly one value of k such that g is equal to a G j,k . High subgraphs are partially ordered by inclusion and form a forest in the sense of inclusion relations [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF][START_REF] Feldman | Bounds on completely convergent Euclidean Feynman Graphs[END_REF].

i g (µ) = sup l internal edge of g µ(l) , (4.42 
The key estimates then keep only the spatial decay of a µ-optimal spanning tree τ (µ) of G, which minimizes ℓ∈τ (µ) j ℓ (µ) (we use the notation τ for spanning trees of G in order not to confuse them with the random tree T ). The important property of τ (µ) is that it is a spanning tree within each high component G j,k [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF][START_REF] Feldman | Bounds on completely convergent Euclidean Feynman Graphs[END_REF]. It always exists and can be chosen according to Kruskal greedy algorithm [START_REF]On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem[END_REF]. It is unique if every edge is in a different slice; otherwise there may be several such trees in which case one simply picks one of them.

Suppose we could assume bounds similar to the R d case. It would mean that a sliced propagator in the slice j ℓ would be bounded as

C j ℓ T (x ℓ , y ℓ ) ≃ KM -2j ℓ /3 e -M -j ℓ d(x ℓ ,y ℓ ) (4.45)
and that spatial integrals over each x v would be really 4/3 dimensional, i.e cost M 4jv/3 if performed with the decay of a scale j v propagator. Picking a Kruskal tree τ (µ) with a fixed root vertex v * , and forgetting the spatial decay of all the edges not in τ , one can then recursively organize integration over the position x v of each internal vertex v from the leaves towards the root. This can be indeed done using for each v the spatial decay of the propagator joining v to its unique towards-the-root-ancestor a(v) in the Kruskal tree. In this way calling j v the scale of that propagator we would get as in [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF][START_REF] Feldman | Bounds on completely convergent Euclidean Feynman Graphs[END_REF] an estimate

|A G,µ | ≤ K V (G) M -N ρ/3 ℓ∈I(G) M -2j ℓ /3 v∈V (G)\v * M 4jv/3 (4.46) = K V (G) ρ j=1 k(G j ) k=1 M ω(G j,k ) (4.47)
where the divergence degree of a subgraph S ⊂ G is defined as • uniform exponential bounds for completely convergent graphs [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF].

ω(S) = 2 3 E(S) - 4 
• renormalization analysis: when high subgraphs have positive divergent degree we can efficiently replace them by local counterterms, which create a flow for marginal and relevant operators. The differences are remainder terms which become convergent and obey the same bounds as for convergent graphs, provided we use an effective expansion which renormalizes only high subgraphs [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF][START_REF] Feldman | Bounds on completely convergent Euclidean Feynman Graphs[END_REF].

In fact these bounds cannot be true for all particular trees T since they depend on the Galton-Watson branches being typical. In more exceptional cases, for instance for a tree reduced to the spine plus small lateral branches the effective spatial dimension is 1 rather than 4/3. Such exceptional cases become more and more unlikely when we consider larger and larger sections of the spine. Our probabilistic analysis below proves that for the averaged Feynman amplitudes everything happens as in equation (4.47). To give a meaning to these averaged amplitudes, we fix the position of the root vertex x 0 to lie on the spine of T . Averaging over T restores translation invariance along the spine, so that we have finally to evaluate averaged amplitudes E(A G ) which are simply numbers. It is for these amplitudes that we shall prove in the next sections our main results Theorem 4.2.2 and 4.3.1. But we need to introduce first our essential probabilistic tool, namely the λ-good conditions on trees of [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF].

Probabilistic Estimates

We have first to recall the probabilistic estimates on random trees from [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF] that we are going to use, simplifying slightly some aspects inessential for our discussion. More details on those techniques are collected in the Appendix 4.A, where we provide a framework applicable to a larger class of graphs. As mentioned above, [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF] mostly considers random paths which are Markovian processes with continuous times, but those are statistically equivalent to above discrete processes in the interesting long-time infrared limit, as is discussed in the remark 5.3 of [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF].

For x ∈ T , we note B(x, r) the ball of T centered on x and containing points at most at distance r from x, and M (x, r) the number of points of T at distance 1 + [r/4] of x, where [.] means the integer part. For a subgraph A ⊂ T , we define the volume V (A) = v∈A d v and more concisely V (x, r) = V (B(x, r)). For (x, y) ∈ T 2 , we also write q t (x, y) (or sometimes q t,x (y) to emphasize the starting point x) for the sum over random paths in time t. More precisely given a continuous time random walk Y on T , starting at x at t = 0 and jumping from a vertex v to its neighbours with probability 1/d v , waiting at v for a time sampled from a Poisson distribution of mean 1, the heat-kernel writes

q t (x, y) = P x (Y t = y) d y , (4.49) 
where P x (Y t = y) denotes the probability that the random walk Y sits at y at the time t.

For λ ≥ 64, the ball B(x, r) is said λ-good (Definition 2.11 of [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF]) if:

r 2 λ -2 ≤ V (x, r) ≤ r 2 λ , (4.50) 
M (x, r) ≤ 1 64 λ , V (x, r/λ) ≥ r 2 λ -4 , V (x, r/λ 2 ) ≥ r 2 λ -6 . (4.51)

See the Appendix 4.A for details. Remark that if B(x, r) is λ-good for some λ, it is λ ′ -good for all λ ′ > λ. We will also say λ-bad for a ball B(x, r) that is not λ-good. for any L 1 function f with 0 ≤ f (x, y) ≤ 1, ∀x, y ∈ T .

Proof. We introduce two indices k ∈ N, and l ∈ N with the condition l ≥ l 0 := sup{M 2 , 64} and parameters λ k,l := k + l. We also define radii r j,k := M 2j/3 k 5/3 , (4.58)

r j,k,l := M 2j/3 (k + l) 5/3 , (4.59) 
and the balls B T j,k and B T j,k,l centered on x with radius r j,k and r j,k,l (we put an upper index T to remind the reader that these sets depend on our random space, namely the tree T ). We also define the annuli A T j,k := {y : d(x, y) ∈ [r j,k , r j,k+1 [}, (4.60) so that the full tree is the union of the annuli A T j,k for k ∈ N:

T = ∪ k∈N A T j,k . (4.61) 
Remark that A T j,k ⊂ B T j,k+1 ⊂ B T j,k,l for any l ∈ N ⋆ . Remark also that with these definitions

I j = [M 2j-2 , M 2j ] ⊂ I(λ k,l , r j,k,l ) = [r 3 j,k,l λ -6 k,l , r 3 j,k,l λ -5 k,l ] , (4.62) 
where I(λ, r) is as in Theorem 4.2.1, since our condition l ≥ l 0 ≥ M 2 ensures that r 3 j,k,l λ -6 k,l ≤ M 2j-2 . Finally defining K k := M 2/3 (k + 1) we have

d(x, y) ≤ K k t 1/3 , ∀t ∈ I j , ∀y ∈ A T j,k . (4.63)
Since the propagator is pointwise positive we can commute any sum or integral as desired. Taking (4.61) into account we can organize the sum over y according to the annuli A T j,k . Commuting the sum E and the sum over k, according to the Borel-Cantelli argument in the section above, there exists (almost surely in T ) a smallest finite l such that the B T j,k,l ball is λ k,l -good. Defining the random variable L = min{l ≥ l 0 : B T j,k,l is λ k,l -good}, we can partition our E sum according to the different events L = l. We now fix this l so as to evaluate, according to (4.56)

E y C j T (x, y)f (x, y) = ∞ k=0 ∞ l=l 0 P[L = l]E| L=l y∈A T jk I j dtt α-1 q t (x, y)f (x, y) , (4.64) 
where E| A means conditional expectation with respect to the event A. We are in position to apply Theorem 4.2.1 since all hypotheses and conditions are fulfilled (including λ k,l ≥ 64 since l 0 ≥ 64). We have for some inessential constant c, under condition L = l q t (x, y) ≤ c(1

+ K k )M -4j/3 λ 3 k,l , ∀t ∈ I j , ∀y ∈ A T j,k . (4.65) 
Hence integrating over t ∈ I j

C j T (x, y) ≤ c(k + l) 7/2 M -2j/3 , ∀y ∈ A T j,k , (4.66) 
for some other inessential constant c. We can now sum over y ∈ A T j,k , overestimating the volume of the annulus A T j,k by the volume of the B T j,k,l ball (the number of vertices it contains), to obtain

y∈A T j,k C j T (x, y)f (x, y) ≤ c(k + l) 7/2 M -2j/3 vol(B T j,k,l ) , (4.67) 
since f is bounded by one. The condition L = l allows to control the volume vol(B T j,k,l ) by the λ k,l -good condition. More precisely (4.50) implies

E| L=l [vol(B T j,k,l )] ≤ r 2 j,k,l λ k,l . (4.68) 
Using Lemma 4.2.1 we conclude that A lower bound of the same type is somewhat easier, as we do not need to exhaust the full spatial integral but can restrict to a subset, in fact a particular λ-good ball. Proof. We follow the same strategy than for the upper bound but we do not need the index k and the annuli A j,k , since most of the volume is typically in the first annulus -namely the k = 0 ball B j . Restricting the sum over y this ball is typically enough for a lower bound of the (4.71) type.

E y C j T (x, y)f (x, y) ≤ c ∞ k=0 ∞ l=l 0 P[L = l](k + l) 7/2 M -2j/3 r 2 j,k,l λ k,l ≤ cM 2j/3 ∞ k=0 ∞ l=l 0 e -c ′ (k+l) (k + l)
So we work at k = 0 but we need again probabilistic estimates to tackle the case of untypical volume of the ball B j . Therefore we define for l ≥ l 0 := sup{M 2 , 64}, the parameter λ l = l and the two balls B T j,l = B(x, r j,l ) and BT j,l = B(x, rj,l ) ⊂ B T j,l of radii respectively r j,l := M 2j/3 λ 5/3 l and rj,l := c 2 r j,l λ -19 l (in order for (4.55) to apply below). We introduce the random variable L = min{l ≥ l 0 : B T j,l and BT j,l are both λ l -good} . (4.72)

Again, our choice of r j,l ensures that

I j = [M 2j-2 , M 2j ] ⊂ I(λ l , r j,l ) = [r 3 j,l λ -6 l , r 3 j,l λ -5 l ] , (4.73) 
and the summands being positive, we will restrict the sum over y to the smaller ball BT j,l ⊂ B T j,l , in order for (4.55) to apply. We get 

E y C j T (x, y) ≥ P[L ≤ l]E| L≤l y∈ BT j,l I j dtt α-1 q t (x, y) , ∀l, (4.74 

Bounds for convergent graphs

In this section we prove our first main result, namely the convergence of Feynman amplitudes of the type (4.39)-(4.41) as the infrared cutoff ρ is lifted. Therefore we consider a fixed completely convergent graph G with n inner vertices and N external lines, hence for which N (S) ≥ 6 ∀S ⊂ G. In this graph we mark a root vertex v 0 with fixed position x 0 , lying on the spine, i.e. common to all trees T . By translation invariance of the infinite spine, the resulting amplitude A G (x 0 ) is in fact independent of x 0 and we have Theorem 4.2.2. For a completely superficially convergent graph (i.e. with no 2-or 4-point subgraphs) G of order V (G) = n, the limit as lim ρ→∞ E(A G ) of the averaged amplitude exists and obeys the uniform bound

E(A G ) ≤ K n (n!) β (4.78)
where β = 52 3 .5 

Proof. From the linear decomposition

A G = µ A G,µ follows that E(A G ) = µ E(A G,µ ).
As mentioned above we use only the decay of the propagators of an optimal Kruskal tree τ (µ) to perform the spatial integrals over the position of the inner vertices. It means that we first apply Cauchy-Schwarz inequalities to the n + 1 -N/2 edges ℓ ∈ τ (µ).

To be exact, the first Cauchy-Schwarz inequality applies to the Markovian random walk with heat-kernel q 2t (x, y) which rewrites as an inner-product by the Chapman-Kolmogorov property q 2t (x, y) = z∈V (T ) q t (x, z)q t (z, y) = q t,x , q t,y 2 ≤ q 2 t,x 2 q 2 t,y 2 = q 2t (x, x)q 2t (y, y).

We refer to [START_REF] Kumagai | Random Walks on disordered media and their scaling limits[END_REF] for more details and will again use this inner product in Section 4.3. A second Cauchy-Schwarz inequality is then used for the scalar product (f, g) = ∞ 0 dtt α-1 f (t)g(t) with f standing for q 2t (x, x) and analogously for g.

Labeling all the corresponding half-edges (not in τ (µ)) as fields f = 1, • • • 2n + 2 -N and their positions and scale as x f and j f we have

ℓ ∈τ (µ) C j ℓ T (x ℓ , y ℓ ) ≤ c n ℓ ∈τ (µ) C j ℓ T (x ℓ , x ℓ )C j ℓ T (y ℓ , y ℓ ) = c n 2n+2-N f =1 [C j f T (x f , x f )] 1/2 , (4.80) 
making use of eq. (4.56).

Each inner vertex v ∈ {1, • • • n -1} to integrate over is linked to the root by a single path in τ (µ). The first line, ℓ v , in this path relates v to a single ancestor a(v) by an edge ℓ v ∈ τ (µ). This defines a scale j v := j ℓv (µ) for the sum over the position x v .

Taking (4.80) into account, we write therefore

E[A G,µ ] ≤ E c n {xv} n-1 v=1 C jv T (x v , x a(v) ) 2n+2-N f =1 [C j f T (x f , x f )] 1/2 . ( 4.81) 
We apply now to the n -1 spatial integrals exactly the same analysis than for the single integral of Lemma 4.2.2. The main new aspect is that the events of the previous section do not provide independent small factors for each spatial integral. For instance if two positions x v and x v ′ happen to coincide and the smallest-l λ l -good event occur for a ball centered at x v , it automatically implies the λ l-1 -bad event for the ball centered at x v and at x v ′ , because it is the same event. Therefore in this case we do not get twice the same small associated probabilistic factor of Lemma 4.2.1. This is why we loose a (presumably spurious) factorial [n!] β in (4.78).

More precisely we introduce for each v ∈ [1, n -1] two integers k v and l v ≥ l 0 , the radii r jv,kv , r jv,kv,lv and the parameters λ kv,lv exactly as before. We introduce also all these variables for every field f ∈ [1, • • • 2n + 2 -N ] not in τ (µ). We define again the random variable L v for v ∈ [1, n -1] as the first integer ≥ l 0 such that the ball B T jv,kv,lv is λ kv,lv -good and L f for f ∈ [1, 2n + 2 -N ] as the first integer ≥ l 0 such that the ball B T j f ,k f ,l f is λ k f ,l f -good. The integrand is then bounded according to Theorem 4.2.1, leading to

E[A G,µ ] ≤c n {kv },{lv } {k f },{l f } P(L v = l v , L f = l f ) n-1 v=1 M 2jv/3 [k v + l v ] 47/6 2n+2-N f =1 M -j f /3 [k f + l f ] 7/4 . (4.82)
Now as mentioned already the 3n + 1 -N events L v = l v or L f = l f are not independent so we use only the single best probabilistic factor for one of them. It means we define m = sup v,f {k v + l v , k f + l f } and use that P

[L v = l v , L f = l f ] ≤ c ′ e -cm
to perform all the sums with the single probabilistic factor e -cm from (4.53). Since each index is bounded by m, the big sum 

{kv ≤m},{lv ≤m} {k f ≤m},{l f ≤m} n-1 v=1 [k v + l v ] 47/6 2n+2-N f =1 [k f + l f ] 7/4 (4.
≤ c n [n!] β , β = 52 3 , (4.84) 
we obtain the usual power counting estimate up to this additional factorial factor:

E[A G,µ ] ≤ c n [n!] β µ n-1 v=1 M 2jv/3 2n+2-N f =1 M -j f /3 . ( 4 

.85)

From now on we can proceed to the standard infra-red analysis of a just renormalizable theory exactly similar to the usual φ 4 4 analysis of [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF][START_REF] Gurau | Renormalization: an advanced overview[END_REF][START_REF] Feldman | Bounds on completely convergent Euclidean Feynman Graphs[END_REF]. Organizing the bound according to the inclusion forest of the high subgraphs G j,k we rewrite

n-1 v=1 M 2jv/3 2n+2-N f =1 M -j f /3 = j,k M ω(G j,k ) (4.86) 138CHAPTER 4 
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with ω(S) = 2 3 E(S) -4 3 (V (S) -1) = 4-N (S) 3

and get therefore the bound

E[A G,µ ] ≤ c n [n!] β µ j,k M [4-N (G j,k )]/3 . (4.87)
The sum over µ is then performed with the usual strategy of [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF][START_REF] Gurau | Renormalization: an advanced overview[END_REF][START_REF] Feldman | Bounds on completely convergent Euclidean Feynman Graphs[END_REF]. We extract from the factor j,k M [4-N (G j,k )]/3 an independent exponentially decaying factor (in our case at least M -|j f -j f ′ |/54 for each vertex v and each pair of fields (f, f ′ ) hooked to v of their scale difference |j fj f ′ |6 ). We can then organize and perform easily the sum over all scales assigned to all fields, hence over µ, and it results only in still another c n factor. This completes the proof of the theorem.

A lower bound

E y [C j T (x, y)] 2 ≥ c (4.88)
can be proved exactly like Lemma 4.2.3 and implies that the elementary one loop 4-point function is truly logarithmically divergent when ρ → ∞.

Taken all together the results of this section prove that for the φ q interaction at q = 4 the value α = 1 3 is the only one for which the theory can be just renormalizable. Extending to any q can also be done following exactly the same lines and proves that α = 2 3 -4 3q , as in (4.25), is the only exponent for which the theory is just renormalizable in the infrared regime.

Localization of High Subgraphs

When the graph contains N = 2 or N = 4 subgraphs, we need to renormalize. According to the Wilsonian strategy, renormalization has to be performed only on high divergent subgraphs, and perturbation theory is then organized into a multi-series in effective constants, one for each scale, all related through a flow equation. This is standard and remains true either for an ultraviolet or for an infrared analysis [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF].

Two key facts power the renormalization machinery and their combination allows to compare efficiently the contribution of a high divergent subgraph to its Taylor expansion around local operator [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF][START_REF] Gurau | Renormalization: an advanced overview[END_REF]:

• the quasi-locality (relative to the internal scale i S (µ)) between external vertices of any high subgraph S = G j,k provided by the Kruskal tree (because it remains a spanning tree when restricted to any high subgraph);

• the small change in an external propagator of scale e S (µ) = j M when one of its arguments is moved by a distance typical of the much smaller internal ultraviolet scale i S (µ) = j m ≪ j M .

Taken together these two facts explain why the contribution of a high subgraph is quasi-local from the point of view of its external scales, hence explain why renormalization by local counterterms works. However usual tools of ordinary quantum field theory such as translation invariance and momentum space analysis are no longer available on random trees, and we have to find the probabilistic equivalent of the two above facts in our random-tree setting:

• in our case, the proper time of the path of a propagator at scale j is t j ≃ M 2j and the ordinary associated distance scale is r j ≃ t 1/3 j ≃ M 2j/3 . We expect the associated scaled decay between external vertices of any high subgraph G j,k provided by the Kruskal tree to be true only for typical trees. However we prove below that the techniques used in Lemma 4.2.2 to sum over y validate this picture;

• in our case, the small change in an external propagator of scale j M should occur when one of its arguments is moved by a distance of order r jm ≃ M 2jm/3 . We shall prove that in this case we gain a small factor M -(j M -jm)/3 compared to the ordinary estimate in M -2j M /3 of (4.70) for C j M T . This requires comparing propagators with different arguments hence some additional work.

Hence, the following analysis justifies the heuristic power counting argument given in Subsection 4.1.3 and that the subtraction of local counterterms allows indeed to control the diverging amplitude in this context of random trees (with some additional subtleties in the 2-point function case).

Preliminaries: subtractions

We explain first on a simplified example how to implement these ideas, then give a general result. Our first elementary example consists in studying the effect of a small move of one of the arguments of a sliced propagator C j T (x, y). We need to check that it leads, after averaging on T , to a relatively smaller and smaller effect on the sliced propagator when j → ∞.

Consider three sites x, y and z on the tree and the difference

∆ j T (x; y, z) := |C j T (x, y) -C j T (x, z)|. (4.89) 
We want to show that when d(y, z) ≪ r j = M 2j/3 , we gain in the average E[∆(x, y, z)] a small factor compared to the ordinary estimate in M -2j/3 for a single propagator without any difference. This is expressed by the following Lemma.

Lemma 4.3.1. There exists some constant c such that for any T and any t ∈ I j |q t (x, y)q t (x, z)| ≤ cM -j d(y, z)q t (x, x).

Moreover E[∆ j T (x; y, z)] ≤ cM -2j/3 M -j/3 d(y, z).

This bound is uniform in x ∈ S and the factor M -j/3 d(y, z) is the gain, provided d(y, z) ≪ r j = M 2j/3 .

Proof. We use again results of [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF]. With their notations, it is proved in their Lemma 3.1 that

|f (y) -f (z)| 2 ≤ R ef f (y, z)E(f, f ) (4.92)
where the effective graph resistance R ef f (y, z) in the case of a tree T is nothing but the natural distance d(y, z) on the tree, and noting as earlier f, g 2 the L 2 (T ) scalar product y∈T f (y)g(y),

E(f, f ) := f, Lf 2 (4.93)
is the natural positive quadratic form associated to the Laplacian. Applying this estimate to the function f t,x defined by f t,x (y) = q t (x, y) exactly as in the proof of Lemma 4. The next Lemma describes a simplified renormalization situation: a single propagator C j M T (x, y) mimicks a single external propagator at an "infrared" scale j M and another propagator C jm T (y, z) mimicks a high subgraph at an "ultraviolet" scale j m ≪ j M . The important point is to gain a factor M -(j M -jm)/3 when comparing the "bare" amplitude

A b T (x, z) := y∈T C j M T (x, y)C jm T (y, z) (4.96) 
to the "localized" amplitude at z

A l T (x, z) := C j M T (x, z) y∈T C jm T (y, z) (4.97)
in which the argument y has been moved to z in the external propagator C j M T . Introducing the averaged "renormalized" amplitude

Āren T (x, z) := E[A b T (x, z) -A l T (x, z)], (4.98) 
we have

Lemma 4.3.2. | Āren T (x, z)| ≤ cM -(j M -jm) . (4.99) 
This Lemma shows a net gain M -(j M -jm)/3 compared with the ordinary estimate M -2(j M -jm)/3 which we would get for A b T or A l T separately. Proof. We replace the difference C j M T (x, y) -C j M T (x, z) by the bound of Lemma 4.3.1. Taking out of E the trivial scaling factors

| Āren (x, z)| ≤ cM -j M /3+2jm/3 E y∈T d(y, z) sup t∈I j M t ′ ∈I jm [ q t (x, x)q t ′ (y, z)] . (4.100) 
We apply the same strategy that in the previous sections, hence we introduce the radii r jm,km and r jm,km,lm and the corresponding balls and annuli as in the proof of Lemma 4.2.2 to perform the sum over y using the q t ′ (y, z) factor. We also introduce the radii r j M ,k M ,l M to tackle the q t (x, x) which up to trivial scaling is exactly similar to a field factor in [C [START_REF] Scherk | Dual Models for Nonhadrons[END_REF], hence leads to a M -2j M /3 factor. The y∈T then costs an M 4jm/3 factor, the d(y, z) factor costs an M jm/3 factor and the q t ′ (y, z) brings an M -4jm/3 . Gathering these factors leads to the result. 

j f T (x f , x f )] 1/2 in (4.

Renormalization of four-point subgraphs

|A G,µ | ≤ K V (G) M -N ρ/3 ℓ∈I(G) M -2j ℓ /3 v∈V (G) M 4jv/3 (4.101) 4.3. LOCALIZATION OF HIGH SUBGRAPHS 141 = K V (G) ρ j=1 k(G j ) k=1 M ω(G j,k ) (4.102)
of its bare amplitude. When there are 4-point subgraphs this amplitude, which is finite at finite ρ, diverges when ρ → ∞ since there is no decay factor between the internal scale i µ (S) and the external scale... In the effective series point of view we fix a scale attribution µ and renormalization is only performed for the high subgraphs G j,k with N (G j,k ) = 4. They form a single forest F µ for the inclusion relation. Therefore in this setting the famous "overlapping divergences" problem is completely solved from the beginning. Such divergences are simply an artefact of the BPHZ theorem and completely disappear in the effective series organized according to the Wilsonian point of view [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF].

In other words, for every 4-point subgraph S we choose a root vertex v S , with a position noted x S 1 , to which at least one external propagator, C(z 1 , x S 1 ) of S hooks, and we introduce the localization operator τ S which acts on the three of the four external propagators C attached to S through the formula

τ S C(z 2 , x S 2 )C(z 3 , x S 3 )C(z 4 , x S 4 ) := C(z 2 , x S 1 )C(z 3 , x S 1 )C(z 4 , x S 1 ). ( 4 

.103)

The effectively renormalized amplitude with global infrared cutoff ρ is then defined as

A ef f G,ρ (x 0 ) := M ρ(4-N )/3 µ A ef f G,ρ,µ (x 0 ) , (4.104) 
A ef f G,ρ,µ (x 0 ) := S∈Fµ (1 -τ S ) n-1 v=1 xv∈V (T ) ℓ∈I(G) C j ℓ T (x ℓ , y ℓ ). (4.105) 
The result on a given tree still depends on the choice of the root vertex (because there is no longer translation invariance on a fixed given tree). Nevertheless translation invariance is recovered along the spine for the averaged amplitudes and our second main result is:

Theorem 4.3.1. For a graph G with N (G) ≥ 4 and no 2-point subgraph G of order V (G) = n, the averaged effective-renormalized amplitude E[A ef f G ] = lim ρ→∞ E[A ef f G,ρ
] is convergent as ρ → ∞ and obeys the same uniform bound than in the completely convergent case, namely

E(A ef f G ) ≤ K n (n!) β . ( 4 

.106)

Proof. Since the renormalization operators 1τ S are introduced only for the high subgraphs, they always bring by estimates (4.90)-(4.91) a factor M -(eg(µ)-ig(µ))/3 . Exactly like in the previous section, we obtain therefore a bound

|A ef f G,µ | ≤ K V (G) M -N ρ/3 ℓ∈I(G) M -2j ℓ /3 v∈V (G) M 4jv/3 (4.107) = K V (G) ρ j=1 k(G j ) k=1 M ω ren (G j,k ) (4.108) with ω ren (G j,k ) = ω(G j,k ) = 4-N (G j,k ) 3 if N (G j,k ) > 4 and ω ren (G j,k ) = -1 3 if N (G j,k ) = 4. Therefore A ef f G = µ A ef f
G,µ can be bounded exactly like A G , using the same single λ-good condition as for the proof of Theorem 4.2.2. It therefore obeys the same estimate.
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The perturbative theory can be organized in terms of these effective amplitudes provided the bare coupling constant at a vertex v with highest scale j h (v) is replaced by an effective constant λ j h (v) .

Remember that in the usual BPHZ renormalized amplitude we must introduce the Zimmermann's forest sum, that is introduce τ S counterterms also for subgraphs that are not high. Such counterterms cannot be combined efficiently with anything so have to be bounded independently, using the cutoff provided by the condition that they are not high. This unavoidably leads to additional factorials which this time are not spurious, as they correspond to the socalled renormalons. These renormalons disappear in the effective series [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF], and the problem is exchanged for another question, namely whether the flow of the effective constants remains bounded or not.

Multiple subtractions

Finally in the general perturbative series there occurs also 2-point subgraphs. For them we need to perform multiple subtractions. In the φ q theory with q = 4 the 2-point function has divergence degree ω = 2/3 so it is not cured by a single difference as above. We need a kind of systematic analog of an operator product expansion around local or quasi-local operators. In our model the Laplacian is the main actor which replaces ordinary gradients in fixed space models. It is also the one that can be transported easily from one point to another, gaining each time small factors. Therefore if our problem requires renormalization beyond strictly local terms (such as wave function renormalization) we shall describe now a possibly general method to apply.

For any function f we can write the expansion

f (u) = f (u) + L f (u) (4.109)
where f is the local average 1 du v∼u f (v) = 1 D Af over the neighbors of u, and L := 1 D L = 1 -1 D A is the normalized operator that appears in the discretized heat equation on T . Remark indeed that from (4.2) we deduce

[C n+1 -C n ](x, y) = 1 D A -1 C n (x, y) = -[L C n ](x, y) (4.110) 
where C n (x, y) is the sum over discrete random walks from x to y in exactly n steps.

Iterating we can define for any fixed p ∈ N (where we simply put d for d u when there is no ambiguity) an expansion:

f = f + L f + L 2 f + • • • + L p f + L p+1 f. (4.111) 
From now on we forget the discretized notations and return to the infrared continuous time notation in which the heat equation reads

d dt q t = -Lq t . (4.112) 
Lemma 4.3.3. Consider the function ψ x (t) = q 2 t,x 2 = q 2t (x, x). The r-th time derivatives φ r = (-1) r ψ (r) are all positive monotone decreasing.

Proof. The heat equation (4.112) means by induction that φ r = 2 r q t,x , L r q t,x 2 ≥ 0. q t,x , L r q t,x 2 ≤ c r q c ′ r t (x, x)t -r . (4.114)

Proof. For any r since φ r is positive monotone decreasing, we have

φ r (t) ≤ 2 t t t 2 φ r (s)ds = 2 t [φ r-1 t 2 -φ r-1 (t)] ≤ 2 t φ r-1 t 2 (4.115)
so that (4.114) follows by induction with c r = 2 r(r+1)/2 and c ′ r = 2 1-r . Local transport up to p-th order of the function f from point z to y is then defined as

f (z) = f + Lf + L 2 f + • • • + L p f (y) (4.116) + ∆ yz f + Lf + L 2 f + • • • + L p f + L p+1 f (z) (4.117)
where ∆ yz g := g(z)g(y). Each difference term is then evaluated in the case f = q t,x as

|∆ yz L r q t,x | ≤ u∼y v∼z |L r q t,x (u) -L r q t,x (v)| (4.118) ≤ c r d(y, z)E(L r q t,x , L r q t,x ) (4.119) ≤ c r d(y, z)q c ′ r t (x, x)t -r-1/2 (4.120)
and the last term L p+1 f (z) is a finite sum of differences of the type L p • q t,x (z) -L p • q t,x (u) for u close to z. It does not need to be transported, since again |L p q t,x (z) -L p q t,x (u)| ≤ c p d(z, u)q c ′ p t (x, x)t -p-1/2 .

(4.121)

The constants in these equation may grow very fast with p, but renormalization shall require such bounds only up to a very small order p, typically two. Applying now the usual probabilistic estimates in the manner of the previous section means that the q c ′ t (x, x) averages to a cM -2j/3 factor uniformly for t j ∈ I j . Therefore we have the following analogs of Lemma 4.3.1: Corollary 4.3.1.2. There exists some constant c r such that uniformly for t

j ∈ I j E[|∆ yz L r q t,x |] ≤ c r M -2j/3 M -(2r+1)j d(y, z), (4.122 
)

E[|∆ yz L r C T j (x, z)|] ≤ c r M -(2r+1)j d(y, z), (4.123 
)

E[|L p+1 C T j (x, z)|] ≤ c p M -(2p+1)j . ( 4 

.124)

These bounds coincide with those of Lemma 4.3.1 for r = 0 but improve rapidly with r. They should be useful for further renormalization, such as the one of the more divergent 2-point function. In the φ 4 model above, since our propagator is a fractional power of the Laplacian, the corresponding "wave function renormalization" is not the standard one of the Laplacian. Moreover, physics is not directly associated to perturbative renormalization but rather to renormalization group flows, which require the computation of beta functions that are model dependent. For all these reasons we shall not push further the study of the scalar φ 4 model here. 

Field Theory on Unicycles

We now begin the investigation of a quantum field on unicycles dressed by Galton-Watson trees, the unicycle being the compactified spine encountered above. We first define our unicycle ensemble, then precise how should be set an interacting Fermionic model on it. Nevertheless, we would need extra imputs to write a random walk expansion, which would differ from our preceding discussion. Hence, we turn to a Bosonic version of it and look to solve for a melonic Schwinger-Dyson equation.

Unicycles

The cycle C ℓ of length ℓ is the connected graph with ℓ vertices and ℓ edges forming a single circuit. Unicyclic graphs Γ are very mild modifications of trees. Instead of having no cycle they have a single cycle C(Γ). They can therefore be embedded on the sphere as planar graphs with two faces (recall that trees have a single "external" face). The order n = |Γ| of a unicycle Γ is still defined as its total number of edges which is also its total number of vertices. Another important integer for a unicycle Γ is its length ℓ ≥ 1 which is defined as the length of C(Γ). Hence ℓ ≤ n.

For simplicity we choose an orientation of the cycle and we orient every decorating tree from leaves to root, hence we can consider Γ as an oriented graph or digraph. Again for simplicity we shall restrict to the binary case. It means that we shall consider unicycles whose vertices have degree either 1 or 3. All vertices of a cycle have degree ≥ 2, hence in the binary case they must have degree three. A binary unicycle of length ℓ is therefore characterized by the set of ℓ cyclically ordered rooted trees T 0 , • • • , T ℓ-1 attached to it. It really means that the set U ℓ of unicyclic graphs of length ℓ can be identified to the set [ ℓ-1 k=0 T k ]/Cyc(ℓ) of ℓ identical copies T k of the set of rooted binary trees T , quotiented by the group Cyc(ℓ) of cyclic permutations of {0, • • • , ℓ -1}.

Calling C = {t 0 , • • • t ℓ-1 } the set of vertices of the cycle, since each t k is of degree 3, there is a set {t ′ 0 , • • • t ′ ℓ-1 } of tree vertices, each t ′ k being joined to t k by a single edge not belonging to the cycle; therefore the order of a binary unicycle of length ℓ is at least 2ℓ (see Figure 4.

2).

This characterization of binary unicycles suggests to define a probability measure for finite unicycles whose infinite order limit is closely related to the previous class T ∞ of infinite binary random trees. 7 The cycle of the unicycle should be thought of as a finite analog of the spine of an infinite tree in T ∞ . Each s k is indeed the root of a binary Galton Watson tree T k , and we can equip these trees with independent probability measures 2 -|T k | .

We can then in the same vein as earlier define a measure dν ℓ over the set U ℓ of unicyclic graphs of length ℓ. It is just the product of independent Galton-Watson critical measures over the attached trees T k :

dν ℓ = ℓ-1 k=0 µ(T k ). ( 4.125) 
We shall not consider directly the limit lim ℓ→∞ dν ℓ since it is delicate to define an analog of the infinite spine with a periodic boundary condition. Instead we can work with asymptotics of expectation values for dν ℓ as ℓ → ∞, just like a thermodynamic or infrared limit can be defined as the large size limit of finite size partition functions and correlation functions.

In the next section we shall therefore define the SYK model on unicycles in U ℓ with finite ℓ, define their correlation functions averaged over dν ℓ and we shall study the infrared limit of these correlations when ℓ → ∞. The cycle in the unicycle is the analog of the lattice-regularized Euclidean time at a certain non-zero temperature. The trees of the unicycle introduce the new "random gravity" aspects of this Euclidean time.

Lattice-regularized SYK

Consider a graph Γ 0 of length ℓ and order n = ℓ, that is without any decoration by trees. We want to define the Fermionic SYK model on Γ 0 . For the moment consider a one component Majorana Fermion ψ, the generalization to N components being straightforward.

The U (1) Euclidean circle of length β is replaced by an oriented finite cycle C ℓ = {t 0 , • • • t ℓ-1 } with t k = ak and ℓ = β/a. The ultraviolet limit a → 0 and infrared limit β → ∞ then both imply ℓ → ∞, by keeping constant the perimeter of the circle.

We have first to implement the antiperiodic boundary conditions. Antiperiodicity on the lattice means that ψ is in fact periodic but with period 2β instead of β hence should be analyzed in terms of 2ℓ frequencies πq β = πq aℓ with q = 1, • • • 2ℓ, but that only odd Matsubara frequencies ω p = (2p + 1) π β for p = 0, • • • ℓ -1 contribute. The discrete Fourier transforms are defined as

ψ(ω p ) = 1 √ ℓ ℓ-1 k=0 e -iωp•t k ψ(t k ) = 1 √ ℓ ℓ-1 k=0 e -(2p+1)iπk ℓ ψ(ak). (4.126) 
Remark that ψ(ω ℓ-p-1 ) = ψ(ω p ) (4.127)

and that the inverse Fourier law gives antiperiodic fields of antiperiod β 

ψ(t k ) = 1 √ ℓ ℓ-1 p=0 e iωp•t k ψ(ω p ) = 1 √ ℓ ℓ-1 p=0 e (2p+1)iπk ℓ ψ (2p + 1)π β = -ψ(t k + β). ( 4 
Q lat (ψ) = ℓ-2 k=0 ψ(t k )ψ(t k+1 ) -ψ(t ℓ-1 )ψ(t 0 ) , (4.130) 
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where the last term is subtle: because of antiperiodicity, ψ(t ℓ ) should be identified with -ψ(t 0 ). The total interacting SYK lattice action is therefore

I lat = N i=1 i 2 Q lat (ψ i ) -ai q/2 ℓ-1 k=0 1≤i 1 <•••<iq≤N J i 1 ,••• ,iq ψ i 1 (t k ) • • • ψ iq (t k ). (4.131)
Remark that in order to have a non zero normalization (for q even) the total number ℓ should be even, a condition which we assume from now on. We can rewrite the quadratic (free) action in Fourier space. Forgetting the trivial i index, it means

Q lat (ψ) = ℓ-2 k=0 ψ i (t k )ψ(t k+1 ) -ψ(t ℓ-1 )ψ(t 0 ) (4.132) = 1 ℓ ℓ-1 p=0 ℓ-1 q=0 ℓ-2 k=0 e iπ ℓ [(2p+1)k+(2q+1)(k+1)] -e iπ ℓ [(2p+1)(ℓ-1) ψ(ω p ) ψ(ω q ) (4.133) = 1 ℓ ℓ-1 p=0 ℓ-1 q=0 e iπ(2q+1) ℓ ℓ-1 k=0 e 2iπ ℓ (p+q+1)k ψ(ω p ) ψ(ω q ) (4.134) = ℓ-1 p=0 e -iπ(2p+1) ℓ -1 ψ(ω p ) ψ(ω p ) . (4.135) 
In the last line, we took advantage of the fact that the sum over k gives zero unless e 2iπ ℓ (p+q+1) = 1 hence p + q + 1 = ℓ. We also added the -1 because it is the Fourier transform of a mass term hence is zero and we used (4.127) .

Remark that the factor e -iπ(2p+1) ℓ -1 is never zero and behaves as -iπ(2p + 1) for small p. Hence the free lattice propagator is invertible and approximates at small p the inverse of the continuous free propagator, hence the inverse of the Matsubara frequency.

Consider now any unicycle Γ with decorating trees oriented from leaves to the cycle. We want to define the Fermionic SYK model on Γ.

We impose two conditions. First we want the free action of the N -component Majorana field ψ to be a quadratic form i 2 Q Γ (ψ) with a good non-zero normalization. Second we want to impose the anti-periodic boundary conditions along the spine to coincide with the ones of the ordinary free SYK model on the trivial unicycle Γ 0 (not decorated by the trees).

A naive quadratic form would couple a Fermion on each vertex to its nearest neighbours. However it does not work, since as soon as a single branch of Γ is non trivial, the corresponding free theory has zero normalization. Indeed in this case the tree has a non trivial terminal branch with two leaves s 1 and s 2 related to a node s 3 , and the Grassmann integral contains a term such as dψ(s 1 )dψ(s 2 )dψ(s 3 )e ψ(s 1 )ψ(s 3 )+ψ(s 2 )ψ(s 3 ) , which is zero.

In fact our two conditions lead to the same conclusion, namely that we need some kind of Fermion doubling. The SYK model on Γ requires a single N -component Fermion variable not only for the n vertices of Γ but also for the n edges of Γ. With this convention we can define

Q Γ (ψ) = e,v ǫ ev ψ(e)ψ(v) . (4.136) 
To implement the anti-periodicity we fix a particular root vertex v 0 on the spine and we reverse the last half-arrow e ℓ into that vertex. Lemma 4.4.1. The normalization of the free theory at any unicycle Γ, Z Γ , is 2 N ℓ , so that

Z -1 Γ e Q Γ (ψ) dψ = 1. (4.137)
Proof. First treat the spine, then continue by induction, adding a leaf.

There are really 2ℓ Fermions on the spine, ℓ ones for the vertices and ℓ ones for the edges. This allows to automatically implement the evenness condition, hence we can use the normalized quadratic form Q C in the form

Q lat (ψ) = ℓ-2 k=0 ψ(t k )ψ(t k+1 ) -ψ(t ℓ-1 )ψ(t 0 ) . (4.138) 
Let us note that this is the simplest way to introduce Fermions on a graph, the general case taking the Dirac operator as acting on the cliques of the graph [START_REF] Knill | The Dirac operator of a graph[END_REF]. 8

Bosons

For the moment let us focus on the two-point function for Bosonic version of SYK. The bare SYK model on Γ can be defined by the discretized action

I Γ = u∈V (Γ) 1 2 φ(u)(L Γ + m 2 1)φ(u) - i q/2 q! 1≤i 1 <•••<iq≤N J i 1 •••iq φ i 1 (u) • • • φ iq (u) , (4.139) 
where L Γ is the lattice Laplacian on Γ and the disordered coupling has second moment:

J 2 i 1 •••iq = (q -1)!J 2 N q-1 . (4.140)
In the N → ∞ limit we get a self-consistent melonic equation for the two-point function G mel (x, y)

[G mel (x, y)] -1 = -[G mel 0 (x, y)] -1dτ ′ J 2 [G mel (x, y)] q-1 , (4.141) which simplifies in the infrared limit [START_REF] Gurau | The ıǫ prescription in the SYK model[END_REF] into the convolution equation: z∈Γ J 2 G mel ir (x, z)[G mel ir (z, y)] q-1 = -δ(x, y). (4.142)

We shall now assume that the effective infrared two point function G mel ir (x, y) is asymptotic to an α-regularized propagator on Γ, namely G α Γ (x, y) = 2 ∞ 0 m -2α+1 G m Γ (x, y)dm. We shall average over unicycles Γ of given length ℓ and search for the right value of α to fulfill (4.142). Since we average over different Γ's but which share all the same cycle of length ℓ it makes sense to consider x and y in that cycle, but the intermediate point z can be anywhere on Γ, including in the decorating trees.

So we are searching for the value of α such that for x, y ∈ C ℓ the equation For the scope of these notes, as we remain cavalier with the constants, we will for now only track down the space scaling read from the above equation. On a fixed graph Γ it is convenient to express the regulated two-point function as G α,j T (x, z) (G α,j T (x, z)) q-1 ≃ E G α,j T (x, z) E z G α,j T (x, x)

G α (x, y) = ∞ 0 dtt α-1 q t (
q-1 , (4.148) 
and collecting all factors, we have E z G α,j T (x, z) (G α,j T (x, x)) q-1 ≃ M -4(q-1)j 3 +2qαj . (4.149)

Returning to eq. (4.143), we find

M -4(q-1)j 3 +2qαj ≃ M -4j 3 =⇒ α = 2 3 - 4 3q . (4.150) 
Let us note that the scaling associated to the Kronecker delta that selects the critical value of α making the q-th order interaction marginal, must correspond to the spectral dimension (here 4/3). The effective infrared propagator, Fourier transformed on the spine, then behaves on the unicycle as G α (p) ℓ ≃ p -2α = p -4 3 + 8 3q , (4.151)

hence very differently from the flat deterministic case p -1+2/q . An interesting exercise might be, in order to better control eq. (4.148) to reproduce this scaling from the convolution of propagators (4.145), using the quenched estimates for q t and decomposing the walks until the point z inside the branches as walks inside the branches, plus walks on the unicycle, similarly to the ideas of [START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF], except that a single random walk was considered, whereas we are looking at the intersection of q distinct ones. 

4.A. AN EXCURSION INSIDE PROBABILITY THEORY

4.A An Excursion inside Probability Theory

This appendix compiles many useful results, well-known to probabilists, exploited in this chapter. We emphasize that none of them are ours, but we think that presenting them can be helpful to understand how such derivations are obtained. First we will discuss generic estimates of number of vertices at and below given heights for the Galton-Watson processes that constituted our underlying geometry preceedingly, determining the typical volumes that occur. We will then switch to on-diagonal and off-diagonal heat-kernel bounds on fixed graphs. Aiming at describing random graphs, we will subsequently specify conditions under which those estimates, quenched or annealed, will hold with sufficiently high probability, and comment on their application to the Galton-Watson trees. The main reference for this part is [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF] and for the second, we relied on [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF][START_REF] Kumagai | Random Walks on disordered media and their scaling limits[END_REF]. 9 Since all detailed proofs can be found in the references, we will stay casual about them.

Before we start, let us pull out the Borel-Cantelli lemma, in the toolkit of every probabilist [START_REF] Feller | An Introduction to Probability Theory and Its Application[END_REF]. the probability that an infinite subset of events occurs is zero

P lim n→∞ n≥0 k≥n E k = 0 . (4.153) 
We also recall the use of denoting c i for appropriate O(1) constants, and if they change when varying some parameter, say λ, they will be denoted by c i (λ).

4.A.1 Aspects of random trees and branching processes

We define the branching process {X n≥0 } with root X 0 = 1, and critical offspring distribution Bin(n 0 , 1/n 0 ), n 0 ≥ 2, such that each vertex has mean number of children m = 1. We also take the random variable Y n = n k=0 X k , counting all vertices until the height n. Two generating functions of the momenta are useful to consider: giving to the effective resistance its interpretation in terms of "current" (of probability). We now have the next crudest possible bounds on the on-diagonal heat-kernel. (2) For any ball B(x, r), one also has the lower bound

q 2t (x, x) ≥ P x (τ B > t) 2 V (x, r) , ∀t > 0 . (4.182) 
The first bound can be seen arising from a Faber-Krahn inequality on the smallest eigenvalue of the Laplace operator outside some set Ω ⊂ X, cf. [START_REF] Kumagai | Random Walks on disordered media and their scaling limits[END_REF]. The second bound arises from P(τ B > t) 2 ≤ P(Y t ∈ B) 2 = y∈B q t (x, y) ≤ V (B) y∈B q t (x, y) 2 ≤ V (B)q 2t (x, x) , (4.184) first unconditioning the walk, then Cauchy-Schwarz, then Chapman-Kolmogorov (see also the earlier proof of Th. 4.2.2).

However, if one knows more about the connectivity of the graph, a finer upper bound can be constructed, constituting the plinth of what will come. then the heat-kernel obeys

q t (x, x) ≤ c ′ 1 t d H /(d H +α) c * ∨ r d H V (x, r) . ( 4 

.186)

The inequality results from defining the functions f t (y) := q t (x, y) and ψ(t) := f 2t (x), which obeys the heat equation (see also below, the remark at eq. (4.192)). Then, one can write for any radius r and ball B(x, r)

ψ(t) ≤ 2 V (r) ∨ 2r α t , (4.187) 
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Precise definitions vary slightly but this behaviour of the resistance, combined with a lower bound with the same power α, essentially characterizes strongly-recurrent graphs [START_REF] Kumagai | Heat kernel estimates for strongly recurrent random walk on random media[END_REF]. We combine the bounds on the volume and the resistance to form the F R,λ condition

F R,λ =    V (x, R) ≤ λR d H ; R ef f (x, z) ≤ c * d(x, z) α , ∀z ∈ B R V (x, ǫ λ R) ≥ (ǫ λ R) d H λ ; R ef f (x, B c R ) ≥ R α λ    (4.188)
where ǫ λ = 1/(3c * λ) 1/α . These assumptions allow to sharpen the lower bound on the heat-kernel.

Theorem 4.A.6. If F R,λ holds, then there are constants c 1 (c * ), q 0 , q 1 > 0, such that ∀y ∈ B(x, ǫ λ R):

q 2t (y, y) ≥ c 1 λ q 1 1 t d H /(d H +α) , for t ∈ 1 4λ q 0 R d H +α , 1 2λ q 0 R d H +α .
(4.189)

One relies on the upper bound (4.182) and on the following lemma, that controls the probability that the escape time is not too large: Lemma 4.A.5. Assuming F R,λ , there are constants c 1 (c * ), q 0 > 0 such that

E x (τ B(0,R) ) ≥ c 1 λ -q 0 R d H +α , (4.190) 
P x (τ B(0,R) > t) ≥ c 1 λ -q 0 R d H +αt 2c * λR d H +α , ∀t ≥ 0, x ∈ B(0, ǫ λ R) . (4.191) Let us only say that those result from the inequalities introduced in eq. (4.177) and (4.180) as well as the assumptions in F R,λ .

From the linear behaviour of the resistance with the distance, we find the spectral dimension 4/3 on trees. It is possible to generalize those bounds on the heat-kernel from less strict upper and lower bounds on volumes and resistances, by only delimiting upper and lower polynomial bounds [START_REF] Kumagai | Heat kernel estimates for strongly recurrent random walk on random media[END_REF].

Remark. How does one go from on-diagonal to off-diagonal bounds? As in Lemma 4.3.1 of the main text, this derives from (3) of Lemma 4.A.4, by defining the function f t (y) := q t (x 0 , y) and having |f t (y)f t (x 0 )| 2 ≤ R ef f (x 0 , y)f t (x 0 )/t . 

Bounds for random weighted graphs

Let us now take an ensemble of weighted graphs {(X(ω), µ ω ) : ω ∈ Ω} satisfying the same conditions as previously and determined by a probability space (Ω, F, P). Then, given a sampled graph (X(ω), µ ω ) we are interested into quenched estimates on graphs for which we can characterize typical properties such as the typical volume of balls or the scaling of the resistance. This generalizes the earlier encountered λ-good balls.

Theorem 4.A.7. For constants R 0 , λ 0 ≥ 1 and assuming that there exists a function p(λ), with some constants c 1 , q 0 > 0, such that 0 ≤ p(λ) ≤ c 1 λ -q 0 . If additionally P [{ω : (X(ω, µ ω ) satisfies F R,λ }] ≥ 1p(λ) , (4.195) then there are constants α 1 , α 2 and a dense subset Ω 0 ⊂ Ω, with P(Ω 0 ) = 1 such that: ∀ω ∈ Ω 0 and x ∈ X(ω), there are T x (ω) ∈ R + , for which (log t) -α 1 t -d H /(d H +α) ≤ q ω 2t (x, x) ≤ (log t) α 1 t -d H /(d H +α) , ∀t ≥ T x (ω) . (4.196) Besides, if one has p(λ) ≤ exp(-c 2 λ q 0 ) then the log are replaced by log log oscillations.

To simplify, we focus on the case where x is the root, x = 0. By the two bounds (4.186) and (4.189), taking t = c 1 (λ)R d H +α , the probability that the heat kernel stays confined in the corresponding range is high

P c 1 λ q 1 ≤ t d H /(d H +α) q ω 2t (0, 0) ≤ c 1 λ q 1 ≥ 1 -2p(λ) . (4.197) 
From Borel-Cantelli on p(λ), one can find a constant K 0 (ω) and sequences t k = e k , λ k = k 2/q 0 , such that for any k ≥ K 0 (ω), the bounds (4.196) are obeyed for the appropriate T 0 (ω), absorbing the constant c 1 inside the logarithms.

As we saw in (4.162) and (4.167), for Galton-Watson trees, it is actually this last exponential bound that occurs.

At last, the annealed bounds recover the exponential form (4.171) without logarithmic factors. Theorem 4.A.8. Taken the F R,λ condition holding with a function p(λ) ≥ 0 in eq. (4.195), such that lim λ→∞ p(λ) = 0 then c 4 t -d H /(d H +α) ≤ E[q ω 2t (x, x)] , ∀t > 0 . The technique for obtaining lower bounds on an average, is to restrict to events that behave nicely, namely that already satisfy the bound. This happens, as we have seen in Th. 4.A.6, if we take events say F obeying F R,λ , for λ and R chosen sufficiently large, such that their probability 156CHAPTER 4. RENORMALIZATION OF A SCALAR FIELD ON GALTON-WATSON TREES to occur is large enough (bounded is enough). To extend the result for any t > 0, one has to change appropriately the radius R, that will change the probability P(F ) of F to occur. Finally, for the last upper bound, taking a ball B(x, R) such that t = R d H +α , we consider all its possible volumes and resistances controlling them with a sequence λ = k and call H k the corresponding event in eq. (4.199), event which ensures the validity of the upper bound (4.186) that is summable from the assumption (4.199).

Chapter 5

Conclusions and Future Prospectives

The Road goes ever on and on Down from the door where it began. Now far ahead the Road has gone, And I must follow, if I can, Pursuing it with eager feet, Until it joins some larger way Where many paths and errands meet. And whither then? I cannot say.

J. R. R. Tolkien, The Fellowship of the Ring.

Melonic Phase Transitions, CFTs and Holography

Tensor models unveil a new large-N limit that presents evidently conformal interacting fixed points, melonic CFTs. With a short-range kinetic term, they seem generically non-unitary, whereas when long-ranged and the interaction tuned marginal, unitarity is not ruled out. To the well-studied quartic models, we have added sextic ones, allowing real fixed points with real couplings. We understand well the spectrum of bilinears1 and it remains to obtain OPE coefficients and to compute correlation functions of primaries to substantiate conformal symmetry. Particularly regarding the sign of logarithmic CFT of the short-range case, it would be neat to find the logarithmic multiplet that displays logarithmic factors in its correlation functions. Leading order four-point functions of the logarithmic fishnet theories resum also chains of ladders [START_REF] Gromov | Exact Correlation Functions in Conformal Fishnet Theory[END_REF]. Are there more connections to draw?

We have also seen that the perturbative parameter is bound to a small window in order to preserve reality of the fixed points and outside the window, the fixed points merge to form complex CFTs. It would be interesting to frame better this behaviour.

Moreover, besides the bilinear operators, the spectrum contains many others, some not reducible using the equations of motion. Can we show that the latter are irrelevant at leading order in the CFT data? It is important to understand how the spectrum of all invariants organises inside the CFT. This question is also relevant to the holographic content of tensor models. Rephrasing the theory in terms of its vast number of invariants requires more ingenuity that in its lower rank relatives. Perhaps, inspiration may come from considering analogs of matrix eigenvalues for tensors. 2 This problem pends on determining from first principles the 158 CHAPTER 5. CONCLUSIONS AND FUTURE PROSPECTIVES low-energy effective action of tensor models. Also what are the implications of such growth in the bulk?

Regarding the symmetries we have explored, we went through large-N fixed points preserving the groups U (N ) × U (N 2 ), U (N ) 3 and O(N ) 3 . The interactions we have picked are specific instances of multifield potentials of the form λ ijkl φ i φ j φ k φ l or their sextic analog, see e.g. [START_REF] Osborn | Seeking fixed points in multiple coupling scalar theories in the ǫ expansion[END_REF]. There have been recent progress for finding the CFT data of O(m) × O(n) fixed points using analytical and numerical bootstrap [START_REF] Henriksson | Analytic and Numerical Bootstrap of CFTs with O(m) × O(n) Global Symmetry in 3D[END_REF]. 3 Since they present a method that could be applied to fixed points with any global symmetry, it might be an interesting exercise to revisit the large-N conformal data of the quartic Bosonic tensor fields. This technique may perhaps simplify the tackling of 1/N corrections to the conformal spectrum.

In the Fermionic color-symmetric U (N ) 3 model, we found the phase diagram of the vacuum, with two phases spontaneously generating mass: one U (N ) 3 symmetric and the second with residual symmetry U (N/2) 2 × U (N ) 2 . In order to probe how general such symmetry breaking might be, the phases of the sextic Bosonic theory could be analysed with a multi-matrix intermediate field [START_REF] Bonzom | Tensor models with generalized melonic interactions[END_REF]. As discussed in [START_REF] Benedetti | Tensorial Gross-Neveu models[END_REF], the Goldstone Bosons of the phase with broken U (N ) subgroup are governed by a complex Grassmannian non-linear sigma model, more precisely with Grassmannian Gr(N, N/2) ≡ U (N )/(U (N/2) × U (N/2)). Although we have not made further use of this fact, it is interesting to notice the appearance of such models in the context of tensor models, something that might deserve further study. 4 Lastly, it would be interesting to continue working on models with different symmetry groups allowing MST interactions [START_REF] Carrozza | SYK-like tensor quantum mechanics with Sp(N ) symmetry[END_REF], as is the tetrahedral quartic interaction. Finding healthy nontrivial fixed points for Fermionic systems in the presence of such interaction has so far remained challenging (see [START_REF] Prakash | A Complex Fermionic Tensor Model in d Dimensions[END_REF][START_REF] Benedetti | Tensorial Gross-Neveu models[END_REF]), but it is worth persevering, as such models would have higher chance of displaying genuinely new physical behavior [START_REF] Ferrari | Phases Of Melonic Quantum Mechanics[END_REF].

QFT on Random Geometry

We have only started the renormalization analysis of a field theory on a random geometry through this random walk formulation, and immediate questions concern actual determination of correlation functions and beta functions, providing therefore a concrete realization of Wilson's QFT in non-integer dimension. 5 We are wondering if other types of expansion, such as the current expansion used in spin systems (e.g. [START_REF] Aizenman | Marginal triviality of the scaling limits of critical 4D Ising and φ 4 4 models[END_REF]), could be of use and how generic inequalities, as Griffiths-Hurst-Sherman, would be modified once taken quenched or annealed on random graphs. Naturally for this more general purpose, one should return also to short-range propagators.

Extensions to more interesting models would be next on the list. To name one, melonic models (for which long range propagators were also studied as we saw) would then lead to trees on trees. Nevertheless, tackling Fermionic matter will need special care, since the Fermionic random walk expansion differs from the Bosonic one, the first having Hausdorff dimension d H = 1 [START_REF] Jaroszewicz | Random walk representations and four fermion interactions[END_REF] as opposed to d H = 2 for the latter. Thus the preceding bounds on propagators require adequate reconsideration. Perhaps, since after all a Fermionic propagator can be obtained by differentiating a scalar one with respect to the momentum in the proper time formalism, a starting point may be to study those derivatives.

Different ensembles of trees can be looked at. For instance, we know that under specific conditioning of the branching process, it is possible to force the Galton-Watson tree to grow a finite number p > 1 of infinite spines [START_REF] Abraham | Penalization of Galton-Watson processes[END_REF]. It would be interesting to characterize heat-kernel bounds relying on the techniques of [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF], their scaling limit (since Aldous' CRT has a single spine) and determine the renormalization group properties of field theories on such trees. Are they related to the supercritical processes or those generated by stable laws with index β ∈ (1, 2) for which the spectral dimension are 2β/(2β -1) [START_REF] Croydon | Random walks on Galton-Watson trees with infinite variance offspring distribution conditioned to survive[END_REF]?

We have argued that similar techniques could generalize directly to the strongly-recurrent graphs, among which are the random planar maps of spectral dimension d s = 2 [START_REF] Gwynne | Random walk on random planar maps: spectral dimension, resistance, and displacement[END_REF]. Computation of correlation functions in this formalism may present another approach to the KPZ exponents.

Additionally, we are now quite familiar that single and double scaling limits of large-N tensor models roam between the Aldous tree and the Brownian map. The analog of the genus-expansion of correlation functions of matrix models for tensors is given by a half-integer (so-called degree) that combines geometric with topological information. We hope, that decomposing a single tensor model into its large N limit and subleading contributions seen as a fluctuating scalar field on top of this background, this point of view may help explore different scaling limits and indicate a way to probe a larger set of families within the degree expansion.

Ultimately, returning to the unicycles, we think that albeit modest, this work may serve the subject of a "random holography". Up to now, having in mind the SYK model, the disorder has been introduced through the interaction, whereas here it is the underlying geometry that is being averaged on. In the former case, an effective geometry, fleshed by wormholes connecting the boundaries where the quantum systems live, seems to emerge out of the disorder average [START_REF] Penington | Replica wormholes and the black hole interior[END_REF]. Could a similar property occur in our case? In particular, in melonic models, is there an analogous reparameterization invariance on the spine? The next step will consist in computing the ladder kernel on which rest dynamical properties such as, perhaps, chaos. In the original papers, the technique relies on an analytic continuation from Euclidean to Lorentzian propagators as described in [START_REF] Murugan | More on Supersymmetric and 2d Analogs of the SYK Model[END_REF]. Whether a similar procedure makes sense for the effective propagator on the spine requires more work. Within the same framework, could we recover the periodic expression of the propagator in our random walk setting? Still, it is not yet clear what type of decorating trees one should use on the spine, if non-critical are enough or if one needs to resort to critical trees as well. To have good control on the computation, it would be important to set up a proper continuum limit of those objects.

A closely related perspective considers the partition function of a looping random walk on a two dimensional hyperbolic surface as the quantization of JT gravity ( [START_REF] Stanford | Finite-cutoff JT gravity and self-avoiding loops[END_REF] and references therein) from what they derived the density of states in three distinct regimes, depending on the pressure and length of the loop. Allowing branches to grow on the spine or loop changed for us the resulting boundary propagator. How would the corresponding partition function change?

As a closing remark, we find quite amusing that models that were designed to generate higherdimensional geometries as emerging from a continuum limit, reappear from a holographic point of view at the boundary... For the moment, it looks only coincidental. The Tensor Track may reserve many surprises yet to come.

Appendix A

Résumé en français

Les phénomènes naturels aux échelles mesurables par l'être humain peuvent être décrits à partir de quatre forces fondamentales qui, classées dans ordre de l'intensité relative de leur couplage à l'échelle de 10 -15 m, sont les forces: forte (10 38 ), électromagnétique (10 36 ), faible (10 32 ) et gravitationnelle [START_REF] Patashinskii | Second order phase transitions in a bose fluid[END_REF]. Cet incroyable écart semble leur suggérer une nature très différente. En effet, les trois premières sont aujourd'hui très bien décrites par le Modèle Standard, une théorie quantique des champs, fondamentalement probabiliste, pour laquelle les particules observées sont des excitations de champs quantiques. À partir de l'échelle de l'ordre du mètre (et jusqu'aux confins de l'univers observable), la force gravitationnelle prend le dessus sur les trois autres. La meilleure théorie que nous en ayons est la relativité générale, dont les équations relient la géométrie de l'espace-temps à la distribution de matière qui s'y propage. Parmi ses postulats, s'inscrivent la localité des interactions et le respect de la causalité. Il semble ainsi que notre conception de la Nature distingue l'espace-temps de la matière qu'il contient. Le domaine de la "gravité quantique" vise à unifier ces deux points de vue. Suivant le postulat mis en doute, différentes théories sont développées, à l'instar de la théorie des cordes (dont les particules fondamentales sont des cordes) ou de la gravitation quantique à boucles (qui part d'une description discrète de la géométrie).

Les modèles de tenseurs sur lesquels nous nous sommes penchés sont curieusement reliées à ces deux théories. Ce sont des théories de champs quantiques tensoriels T i 1 i 2 ...iq de rang q ≥ 3, se transformant sous G ⊗q , à l'aide d'un groupe classique G de taille N (nous avons regardé les groupes U (N ) et O(N )). Leur point de départ est une fonction de partition euclidienne:1 Z = DT e -S[T ] , S[T ] = T i 1 i 2 ...iq C -1 T i 1 i 2 ...iq + S int [T ] ,

(A.1) de laquelle découlent toutes les fonctions de corrélation du système, caractérisant la dynamique de la théorie. L'interaction S int [T ], typiquement un polynôme en T , est prise invariante sous G q . Les fonctions de corrélations sont alors obtenues par une expansion de Taylor du terme d'interaction et par l'intégration de l'exponentielle gaussienne, conduisant aux diagrammes de Feynman. Certains modèles de tenseurs de rang q dits "colorés", avec une interaction d'ordre q+1 correspondant à un q-simplexe, voient leurs diagrammes de Feynman discrétiser des variétés linéaires par morceaux de dimension topologique q. On peut alors chercher à construire une limite continue telle que la dynamique de la géométrie résultante serait décrite par les équations d'Einstein. Attaqué de front, c'est un problème difficile. Une approche consiste à remarquer que les modèles colorés sont solubles dans la limite de N grand. Une telle limite simplifie dans de nombreux cas des équations de théorie des champs, une fois que le couplage de l'interaction 164 APPENDIX A. R ÉSUM É EN FRANC ¸AIS continues et discrètes des modèles de tenseurs. La question de jauger la symétrie globale est aussi discutée, d'où on conclut qu'une telle jauge ne change pas le comportement du modèle à grand N .

Dans les modèles sextiques, de groupes de symétrie U (N ) 3 et O(N ) 5 , un couplage nonmelonique adjoint d'une puissance de N optimale nous conduit à une expansion melonique généralisée, suivant les travaux de [START_REF] Carrozza | O(N ) Random Tensor Models[END_REF][START_REF] Ferrari | A New Large N Expansion for General Matrix-Tensor Models[END_REF]. Les termes cinétiques sont pris de courte ou longue portée et on étudie, à grand N , perturbativement les différents groupes de renormalisation des couplages d'ordre 6, jusqu'à quatre boucles. Une des difficultés techniques réside dans la détermination des coefficients combinatoires devant les différentes contributions de chaque couplage. Tandis que le modèle de rang 5 ne présente pas de point fixe non-trivial, celui de rang 3 possède deux points fixes non-triviaux réels de type Wilson-Fisher dans le cas à courte portée (que l'on relie à des théories conformes logarithmiques, non-unitaires) et une ligne de points fixes dans l'autre. On obtient enfin les dimensions conformes réelles des opérateurs primaires bilinéaires en le champ fondamental. On remarque toutefois que le paramètre d'expansion doit se restreindre à une étroite fenêtre pour préserver la réalité du point fixe.

Une autre raison qui a motivé l'étude des théories tensorielles définies sur R d fut l'apparition de diagrammes meloniques dans la limite de grand N d'un modèle quantique de N fermions en interaction sujet à du désordre, le modèle de Sachdev-Ye-Kitaev [START_REF] Kitaev | A simple model of quantum holography[END_REF]. Celui-ci possède dans un régime de basse température des propriétés analogues à celles de régions proches de l'horizon de trous noirs presqu'extrêmes, reliées à la notion de chaos quantique [START_REF] Maldacena | Remarks on the Sachdev-Ye-Kitaev model[END_REF][START_REF] Maldacena | Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space[END_REF]. Ainsi, celui-ci fournit un exemple "élémentaire", i.e. à basse dimension, de correspondance holographique où une théorie quantique est duale à une théorie gravitationnelle de dimension supérieure. Dans le cas où la théorie gravitationnelle est asymptotiquement Anti-de Sitter, celle quantique possède une invariance conforme [START_REF] Maldacena | The Large N limit of superconformal field theories and supergravity[END_REF]. Cette année, ce modèle a suscité d'importants progrès concernant le paradoxe de l'information impliqué par l'existence de trous noirs 4 , cf. la revue [START_REF] Almheiri | The entropy of Hawking radiation[END_REF]. Toutefois, la présence de désordre dans le modèle le rend exotique par rapport aux cas standards de la dualité. De ce fait, les modèles de tenseurs, sans désordre et dont la limite melonique implique le même comportement de basse énergie que SYK, ont suscité l'intérêt de la communauté de physique de haute énergie (par exemple [START_REF] Witten | An SYK-Like Model Without Disorder[END_REF][START_REF] Klebanov | Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models[END_REF]) et l'étude de leurs propriétés conformes ou autour dudit point fixe. Notre travail s'inscrit dans ce registre.

Parmi les questions encore ouvertes, nous comptons l'effet des corrections en 1/N sur les propriétés décrites plus haut (retrouvons-nous des points fixes meloniques non-triviaux?) ou encore l'étude d'opérateurs d'ordre supérieur à deux en les champs fondamentaux, qu'il est nécessaire de comprendre pour une description complète de la CFT tensorielle.

La deuxième partie de la thèse aborde le groupe de renormalisation à l'aide de la technique constructive de l'analyse multi-échelle [START_REF] Rivasseau | From perturbative to constructive renormalization[END_REF], qui offre un contrôle essentiel pour se débarrasser de divergences de type "renormalons" ou étudier des propriétés d'analyticité de la fonction de partition. Par là, nous revenons à la question de la gravité quantique en formalisant la notion de théorie des champs sur une géométrie aléatoire à partir de techniques probabilistes [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF] pour borner des propagateurs, exprimés sous forme de marches aléatoires, une idée de Symanzik [START_REF] Symanzik | Euclidean Field Theory[END_REF]. Notons que des expansions similaires sont utilisées pour étudier de façon rigoureuse des propriétés de fonctions de corrélations. Cela permit l'obtention de bornes sur des fonctions beta, des relations entre des exposants critiques sous la dimension critique des modèles ou encore la preuve de la trivialité de la classe d'universalité de φ 4 en dimensions d ≥ 4 (voir par exemple [START_REF] Aizenman | Marginal triviality of the scaling limits of critical 4D Ising and φ 4 4 models[END_REF][START_REF] Fernandez | Random walks, critical phenomena, and triviality in quantum field theory[END_REF]). En règle générale, il s'agit de déterminer le volume, la probabilité d'intersections de marcheurs aléatoires sur le graphe ou d'autres propriétés de structures typiques étant donné un ensemble aléatoire de graphes. Nous nous concentrons sur un modèle scalaire 165 quartique avec un terme cinétique à longue portée rendant l'interaction marginale, sur des arbres de Galton-Watson critiques. Au point critique, l'émergence d'une spine infinie fournit un espace sur lequel calculer des fonctions de corrélations moyennées. Nos bornes sur les amplitudes renormalisées et notre procédure de soustraction des divergences confirment l'attribution d'une dimension effective 4/3 à la spine. On esquisse aussi l'extension du formalisme à des fermions et à une spine compactifiée afin de généraliser les résultats de renormalisation à des modèles plus riches, comme les tenseurs discutés plus haut.

Détaillant l'obtention des bornes probabilistes sur le noyau de la chaleur dans un graphe aléatoire, nous espérons faciliter l'usage de ces techniques en théorie des champs, sur des ensembles aléatoires de graphes plus généraux. Au long terme, les techniques développées pourraient servir à étendre les relations de KPZ [START_REF] Knizhnik | Fractal Structure of 2D Quantum Gravity[END_REF] obtenues à deux dimensions, à un ensemble de géométries plus large, précisant l'effet d'une géométrie fluctuante sur la matière quantique qui s'y propage.
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 12 Figure 1.2: Left: A tree of bubbles. Right: A loop of bubbles contributing to 1/N correction.
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 221 TENSOR FIELD THEORY: BACKGROUND AND MOTIVATIONS depend on. It is a complete set when including all integer J and ∆ = d/2 + ir, r ≥ 0 (called the principal series) in d > 1 and supplemented by the discrete values ∆ = 2n, n ≥ 1 for d = 1. Contracting a shadow operator with its dual in a three-point function defines the shadow coefficients S O 2 O 3 O :
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 36116 Figure 1.6: The Rung Operator.
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 17222 Figure 1.7: The spectrum of bilinears of the SYK model and the h = 2 mode, in red.

  different position being assigned a different color.
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 18 Figure 1.8: The stranded and the colored representations of the propagator T (0) T (0) and of the tetrahedral interaction vertex.
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 19 Figure 1.9: Feynman diagrams of a vacuum correlation function (the fundamental melon on the left and a member of the family on the right).
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 111 Figure 1.11: All quartic bubbles of the rank 3 O(N ) 3 tensor model. From left to right: tetrahedron, pillow (up to color permutation), double-trace.
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 1 Figure 1.12: A quartic bubble of a rank 5 tensor with two 2-bidipole insertions.
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 3 In the large-N limit one can write a closed Schwinger-Dyson equation for the Fermion 2-point function, which reduces to a gap equation for the Fermion mass m = σ :
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 18 This leads to the flow diagram of Fig.2.4.
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 23 Figure 2.3: Leading order graphs renormalizing the λ and λp couplings respectively.
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 24 Figure 2.4: Renormalization group flow in the λ, λp -plane. Arrows point towards the IR, blue dots denote the fixed points, and red lines mark the zeros of either β p or β + β p .
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 25 Figure 2.5: Phase diagram of the Fermionic TGN model in 3d. The red zone has a vacuum M ∝ 1, the blue one to a traceless vacuum and the green parallelogram to M = 0. The grey zone corresponds to an unstable model.
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 26 Figure 2.6: Schwinger-Dyson equation at large N for the self-energy.
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 28 Figure 2.8: Renormalization group flow in the λ, λp -plane. Arrows point towards the IR, black dots denote the fixed points, and red lines mark the zeros of either β p or β + 3β p . The green line corresponds instead to β + 2β p = 0, which morally replaces the vertical line β = 0 of Fig. 2.4.
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 210 Figure 2.10: Different diagrams, to illustrate the counting of N . The grey dots represent the Fermion degrees of freedom, while the colored lines stand for gauge field propagators. On the left, the red and green edges form a loop each, the green ones a branching loop and the black one a string. Isolated vertices are neither connected to a string, nor to a branching loop -(l r = l v = 1, l b = 0, v r = 3, v g = 2, v b = 4). Examples of leading (center) and next-to-leading order graphs (right).
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 211 Figure 2.11: Diagrams contributing to the full Fermion propagator. Left: Tadpole, O(1). Right: O(1/N ).

Figure 2 . 13 :

 213 Figure 2.13: Effective vertices of the vector (first) and the tensor (second) case. The third diagram represents the only leading order two-particle irreducible graph with Fermion propagators dashed. The rightmost diagram is also at leading order in the vector case.
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 11622 Irreducible representations in odd dimensions D use the same
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 314 Figure 3.1: 4-colored graph corresponding to a two-loop Feynman diagram with external tensor contractions equivalent to I 2 .
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 32 Figure 3.2: An example of melon-tadpole Feynman diagram. Double tadpoles are based on the I b (b ∈ [1, 5]) vertices and melons are based on I 1 vertices.
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 33 Figure 3.3: The two Feynman diagrams (the fundamental melon on the left, and the triple-tadpole, or trefoil, on the right) starting from which all the vacuum melontadpole diagrams can be built. The melon is based on the wheel vertices and the tripletadpole is based on any of the interactions I i (for explicit examples of the corresponding colored graphs in rank 5, see Figure 3.5).
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 34 Figure 3.4: The two minimal two-point function Feynman diagrams used in the iterative construction of melon-tadpole diagrams. The melon is based on wheel vertices and the double tadpole is based on any of the interactions I i .
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 35 Figure 3.5: Two examples of vacuum 6-colored graphs.
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 366 Figure 3.6: 6-colored graph corresponding to a two-loop correction to the six-point function, with external tensor contractions equivalent to J 6 (the prism).
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 37 Figure 3.7: Feynman diagram consisting in a ladder with two rungs and complete vertices. Its external tensor contractions are equivalent to J 2 (the long-pillow).
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 3 Figure 3.8: 6-colored graph corresponding to a non-melonic Feynman diagram whose exterior tensor contractions are equivalent to J 6 .
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 32 which can be seen to reproduce Eq.(3.14) in momentum space.The right-amputated four-point kernel on-shell is obtained by taking two derivatives of Γ 2P I [G G G] with respect to G G G and then multiplying by two full propagators on the left:
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 39 Figure 3.9: The contractions corresponding to a 4-point rung in the ladder making the 4-point function (a pillow on the left and a double trace on the right).

Figure 3 .

 3 Figure3.10: The full forward four-point function as a series of ladders. The crossings should be omitted for our rank-3 model, because it is built on complex fields, with bipartite graphs. However, they contribute for the rank-5 model, which has real fields.
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 4114 Standard propagator. For ζ = 1 and d = 3ǫ, this is finite (no poles in ǫ):U 1 (p 1 + p 4 ) = -|p

Figure 3 . 11 :

 311 Figure 3.11: The three diagrams that contribute to the bare expansion of the sixpoint couplings up to order three (bare coupling, D and S, see Sec. 3.4.1). The black circles represent wheel vertices and the white circles can be any of the I i interactions (including the wheel itself).

  (3.22), D 1 (µ) is the candy integral, and S 1 (µ) the integral corresponding to the Feynman diagram on the right of Fig.3.11. The integrals are both computed in App. 3.C.
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 441 Figure 4.1: Zooming towards the continuum random tree

. 11 ) 1 0

 111 It satisfies the equation (cf. App. 4.A)Z(ζ) = ζg(Z(ζ)).(4.12)Assuming a finite radius of convergence ζ 0 for Z one definesZ -Watson probabilities p i := ζ 0 w i+1 Z i-for i ∈ N are then normalized:∞ i=0 p i = 1.We then consider the class of infinite random trees defined by an infinite spine of vertices s k , k ∈ Z, plus a collection of d k -2 finite branches T (1) k , . . . , T (d k -2) k
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 411 Viewing ν n (T ) = Z -1 n u∈T \r w du , T ∈ T n , as a probability measure on T we haveν n → ν as n → ∞ ,(4.15)
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 1 QUANTUM FIELD THEORY ON A GRAPH 127 ourselves from now on to the case of critical binary Galton-Watson trees. It corresponds to weights w 1 = w 3 = 1, and w i = 0 for all other values of i. In this case the above formulas simplify. The critical Galton-Watson process corresponds to offspring probabilities p 0 = p 2 = 1 2 , p i = 0 for i = 0, 2. The generating function for the branching weights is simply g(z) = 1 + z 2 and the generating function for the finite volume treesZ(ζ) = ∞ n=1 Z n ζ n obeys the simple equation Z(ζ) = ζ(1 + Z 2 (ζ)),which solves to the Catalan function Z = In the above notations the radius of convergence of this function is ζ 0 = 1 2 . Moreover Z 0 = lim ζ↑ζ 0 Z(ζ) = 1 and the independent measure on each branch of our random trees is simply µ(T ) = 2 -|T | .
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 13 The random tree critical power α = 2 3 -4 3q

3 3 + m 2 n( 4 . 36 ) 1

 24361 The graph distance d(x, y) denotes the smallest number of steps on the tree needed to connect x to y.
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 4 RENORMALIZATION OF A SCALAR FIELD ON GALTON-WATSON TREES

  the condition e g (µ) > i g (µ) (high condition) (4.44)

  3 (V (S) -1) = 4 -N (S) 3 . (4.48) Standard consequences of such bounds are 132CHAPTER 4. RENORMALIZATION OF A SCALAR FIELD ON GALTON-WATSON TREES

134CHAPTER 4 .

 4 RENORMALIZATION OF A SCALAR FIELD ON GALTON-WATSON TREES Lemma 4.2.2 (Single Integral Upper Bound). There exists some constant c such that E y C j T (x, y)f (x, y) ≤ cM 2j/3 , (4.57)

Lemma 4 . 2 . 3 (

 423 Single Integral Lower Bound).

  y) ≥ cM 2j/3 . (4.71)

83 ) is bounded by c n m 59 6

 8359 

The 4 -

 4 point subgraphs N (S) = 4 in this theory have ω(S) = 4-N (S) 3 hence are logarithmically divergent. Consider now a graph G which has no 2-point subgraphs, hence with N (S) ≥ 4 for any subgraph S. Recall the previous evaluation
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 442 Figure 4.2: This unicycle of length ℓ = 8 and order n = 42 is binary, every vertex has degree either 3 or 1.

z∈Γ J 2

 2 G α Γ (x, z)[G α Γ (z, y)] q-1 ℓ = -δ(x,y) (4.143) 148CHAPTER 4. RENORMALIZATION OF A SCALAR FIELD ON GALTON-WATSON TREES holds. In this discrete setting, the right hand side is a Kronecker delta. Consequently we take x ≃ y on the left and the Kruskal tree is made of a single propagator connecting x to z. The average . ℓ means averaging with dν ℓ , hence over all unicycles of length ℓ with independent critical binary Galton-Watson measure on the trees decorating the cycle. The d sp -dimensional δ function has a representation as: δ(x, y) = lim ǫ→0 Γ( dsp 2ǫ) 2 2ǫ π d/2 Γ(ǫ) 1 |x -y| dsp-2ǫ . (4.144)
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 4 A.1 (Borel-Cantelli). For a sequence of events {E n } n≥0 whose probability convergesn≥0 P(E n ) < ∞ ,(4.152)

  f n (s) = E[s Xn ] , g n (s) = E[s Yn ] .(4.154)They both obey recursive relationsf n+1 (s) = f n (f (s)) , g n+1 (s) = sf (g n (s)) ,(4.155)denoting f (s) for f 1 (s). The first equation comes from conditioning on the preceding generation and using that descendants are identically distributing:f n+1 (s) = E[E[s X n+1 |X n ]X 1 ] = E[f (s) Xn ] .(4.157)restricting over walks from x to y that stay inside B for all times. It obeys the property:g B (x, y) = P x (σ y < τ b )g B (y, y) . (4.177)One can relate the effective resistance with conductance and escape time to the following results, that we do not prove:R ef f (B, A) -1 = x∈B µ x P x (σ A < σ + B ) , if A c is finite,(4.178)P x (σ A < σ B ) ≤ R ef f (x, A ∪ B) R ef f (x, A) , if A c and B c are finite,(4.179)E x [τ B ] ≤ R ef f (x, B c )V (B) , if B is finite,(4.180)

Theorem 4 .

 4 A.4. (1) If V (x, r) ≥ c 1 r d H for all x ∈ X and r ≥ 1, with d H ≥ 1, then sup x∈X q t (x, x) ≤ c 2 1 t d H /(d H +1) , ∀t ≥ 1 .(4.181)

2 ,

 2 

Theorem 4 .A. 5 .

 45 Let us consider graphs for which is assumed a bound on the resistanceR ef f (x, y) ≤ c * d(x, y) α , ∀y, r ∈ N ,(4.185)

  (

(4. 198 ) 6 E

 1986 If added to the condition F R,λ(4.195), there are constants c 5 > 0, λ 0 > 1 andq ′ 0 B(x, R)), R ef f (x, y) ≤ λd(x, y) α , ∀y ∈ B(x, R) ≥ 1all R ≥ 1, λ ≥ λ 0 . Then with a constant c [q ω 2t (x, x)] ≤ c 6 t -d H /(d H +α) , ∀t > 0 . (4.200) 

  N 3 δ d ab;cd (see App. 3.A). The colored graphs corresponding to the last line are depicted in Fig.3.9.

	3.3. 2PI EFFECTIVE ACTION AND FOUR-POINT KERNELS	101
	where we defined the rescaled pillow and double-trace contraction operators δp ab;cd = 1 N 2 δ p ab;cd and δd ab;cd = 1
		)

  47/6 ≤ cM 2j/3 . Proof. Taking f (x, y) = δ xy in Lemma 4.2.2 gives the bound.

		(4.69)
	Corollary 4.2.1.1 (Tadpole). There exists some constant c such that	
	E C j T (x, x) ≤ cM -2j/3 .	(4.70)

  Indeed for the last inequality we remark that lim l→∞ P[L ≤ l] = 1 (by Lemma 4.2.1) hence sup l≥l 0 P[L ≤ l]l -161/3 is a strictly positive constant that we absorb in c.
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	≥ cM -2j/3 l -17 P[L ≤ l] E| L=l [vol( BT j,l )], ≥ cM 2j/3 P[L ≤ l]l -161/3 , ≥ cM 2j/3 .	∀l , ∀l ,	(4.75) (4.76) (4.77)
			)

  (y)f t,x (z)| ≤ cM -j d(y, z)q t (x, x) (4.95)for any t ∈ I j . From there on (4.91) follows easily by an analysis similar to Corollary 4.2.1.1.
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	hence to		
	|f t,x		
	z)	q t (x, x) t	(4.94)

3 of [127] leads to |f t,x (y)f t,x (z)| 2 ≤ d(y,

  x, y) . (4.145) Then the multiscale analysis is especially interesting. According to the earlier Lemma 4.2.2, it results into Remembering eq. (4.81) in the proof of Theorem 4.2.2, which can be framed as

	E	z	G α,j T (x, z) ≃ M	4j 3 M -4j 3 +2αj ,	(4.146)
	and the tadpoles count each for				
		E G α,j T (x, x) ≃ M -4j 3 +2αj .	(4.147)
	E				
	z				

  4.192) As in Lemma 4.3.3, one uses the heat-kernel ψ(t) := f 2t (x 0 ) that obeys the heat equationψ(t) ′ = -2E(f t , f t ) .

(4.193) 

In order to conclude, this last equation and the monotonicity it implies for ψ(t) aid to show

tE(f t , f t ) ≤ 2 t t/2 dsE(f s , f s ) ≤ ψ(t/2) ≤ f t (x 0 ) . (

4

.194) 

Nevertheless, naturally plagued with divergences, such operators should be viewed as normal ordered operator-valued distributions, but we will be pedestrian in this overview and always assume that such regularization has been taken care of.

As well as instantons, but they will not be discussed here. I thank F. Vignes-Tourneret and V. Rivasseau for the clarification.

But it may also contain limit cycles.

Up to now, the main progress has been done for scalar fields in various dimensions. For Fermionic fields, controlling the perturbative expansion is easier as it truncates by Pauli's principle. However, the difficulty lies at low energies, in approaching the extended singularity of the Fermi surface[START_REF] Salmhofer | Renormalization in condensed matter: Fermionic systems -from mathematics to materials[END_REF][START_REF] Polchinski | Effective field theory and the Fermi surface[END_REF].

All the crux is to go beyond Wilsonian perturbation theory and obtain the behaviour of the beta function at large coupling.

Typically, the external legs attached to the external vertices of g.

From here on, repeated indices imply a summation, unless specified.

For a discussion in the functional renormalization group framework, see[START_REF] Gehring | Fixed-point structure of low-dimensional relativistic fermion field theories: Universality classes and emergent symmetry[END_REF].

A tour de force giving the 2004 Nobel Prize to D. Gross, F. Wilczek and H. D. Politzer.

Among the countless lecture notes on the topic, we referred to[START_REF] Simmons-Duffin | The Conformal Bootstrap[END_REF].

The multi-index μ = µ 1 . . . µ r , standing for the derivatives ∂ µ1 . . . ∂ µr that act upon the primary.

Let us note that around a fixed point of which we know the CFT data, one can alternatively find the coefficients in the bare expansion by computing the OPE generating the considered operator (see[START_REF] Cardy | Scaling and renormalization in statistical physics[END_REF] for a pedagogical exposition of this technique).

In d ≥ 2, it is defined as the coefficient C of the two-point function of the stress-energy tensor and restricting to the contribution of a given field, we define its proper central charge.

For a deeper connection between non-unitary CFTs and complex CFTs we refer to[START_REF] Gorbenko | Walking, Weak first-order transitions, and Complex CFTs[END_REF].

To obtain the full four-point function, one has also to take into account non-normalisable Ψ's in order to subtract unphysical poles from closing the contour of the principal series.

See also[START_REF] Paulos | Conformal Invariance in the Long-Range Ising Model[END_REF] for progress on non-perturbative results.

Let us remark that a quick calculation tells us that in the 2.7K CMB, black holes of mass smaller than 10 22 kg would start evaporate and that those of mass smaller than 10 11 kg would do so within the age of the universe. Contrariwise, astronomical black holes have a mass typically larger that 10 30 kg (1M ⊙ ).

Incidentally, relations between Navier-Stokes and Einstein's equations have been established[START_REF] Hubeny | The fluid/gravity correspondence[END_REF].

However, for many non-trivial backgrounds, it is difficult to find the equivalent worldsheet path-integral formulation, hence saying that string theory has no complete non-perturbative description at the moment.

Today, flat and dS variants are being developed in parallel (e.g.[START_REF] Laddha | The Holographic Nature of Null Infinity[END_REF][START_REF] Cotler | Emergent unitarity in de Sitter from matrix integrals[END_REF]).

However, the theory incorporating fields with an infinite number of derivatives is questioning the usual notion of locality while even Riemanian geometry has to be reconsidered.

Let us note that for one-dimensional matrix models, a hamiltonian formalism translates the dynamics of the eigenvalues into a decoupled system of N Fermions in a non-trivial potential[START_REF] Brézin | Planar Diagrams[END_REF].

A diagrammatic proof identifying the leading order graphs was provided later in[START_REF] Bonzom | Diagrammatic proof of the large N melonic dominance in the SYK model[END_REF].

Hereby they are also linked to crystallization theory[START_REF] Casali | Topology in colored tensor models via crystallization theory[END_REF].

We note that the degree or genus of disconnected components is the sum of that of the different components.

When removing an edge, either the graph stays connected and the number of faces can only decrease, or the graph disconnects and the total number of faces is unchanged.

Remember that in the colored representation of the colored model, the vertices of the melonic diagrams corresponded to interaction vertices, whereas now they are associated to the individual tensors.

A similar discussion can be done with the free-energy, since the two-point function can be obtained from selecting a particular edge of a vacuum graph.

Enumerations of possible complete interactions up to rank 13 were studied in[START_REF] Gubser | Higher melonic theories[END_REF].

However listing all the leading order graphs in this case is a harder problem.

We use the functional derivative with symmetric projector δJ ab δJ cd = 1 2 (δ ac δ bd + δ ad δ bc ) =: S ab;cd .

The classical solution Φ should obey the equations of motion derived from the action, and the equations derived from the effective action should be consistent. However, non-trivial solutions that preserve a smaller symmetry group (SO(3) invariant instead of O(N 3 )) also exist[START_REF] Benedetti | SO(3)-invariant phase of the O(N ) 3 tensor model[END_REF], with evidence for their stability. They also possess Feynman diagrams dominated by melonic graphs with insertions of background field and they have a similar 2PI effective action to that of the CTKT model we will encounter shortly.

However, it is inaccurate to extend this analysis at following orders: disorder averaging before or after setting the theory on shell leads to different results, in the same way that at subleading orders, the different replicas interact and a replica-diagonal ansatz is not enough[169].

Here the trace Tr is tracing on, or picturally closing the strand of, every color separately and integrating over the two times.

If the Gaussian term in the action is discarded, the global O(N ) 3 symmetry becomes trivially local.

The analysis was made easier by[START_REF] Bonzom | Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders[END_REF] where the graph structure of the following orders in 1/N was detailed.

In fact such clearcut interpretation for each order in N was holding for q ≥ 6, whereas in q = 4, 1/N corrections to G 0 have to be included as well as an extra set of 2PI diagrams[START_REF] Bonzom | Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders[END_REF].

A peculiar part of the approach towards equilibrium could be recovered from a bulk analysis[START_REF] Saad | A semiclassical ramp in SYK and in gravity[END_REF].

As emphasized for instance in[START_REF] Bulycheva | Spectra of Operators in Large N Tensor Models[END_REF], the number of operators involving 2k tensors grows like 2 k k!.

Let us note that those formulas are using however the UV dimensions of the operators which aren't necessarily appropriate to study the theory near its IR fixed point.

And even supersymmetric ones[START_REF] Popov | Supersymmetric tensor model at large N and small ǫ[END_REF], although we will not discuss them.

In the case of long-range models, one selects the free covariance to scale as the full two-point function.

For the quartic case, they also used a finite N expression of the β functions to find appropriate scalings that lead to a non-trivial fixed point, whereas the finite N β functions of the sextic theory were written down in[START_REF] Giombi | Prismatic Large N Models for Bosonic Tensors[END_REF].

In our convention, the critical exponent corresponds to the mass-dimension of the integrated operator (opposite to that of the relative coupling), hence relevant ones have negative critical exponents.

In App. 2.B, we will explain what happens if instead we choose to introduce an intermediate field by cutting the pillow interaction along the index of size N 2 (or double index in the tensor notation).

Remember that the effective potential is defined as the effective action Γ[M ] (the one-particle-irreducible generating functional) at constant field, and that Γ[M ] is the Legendre transform of W [J], the generating functional of connected n-point functions. Since the latter is given in the large-N limit simply by the Legendre transform of S[M ], and since the Legendre transform is an involutive transformation, we conclude that Γ[M ] = S[M ].

The Vandermonde determinant originating in the change of variables is subleading in 1/N (the action is of order N 3 and the logarithm of the Vandermonde determinant is of order N 2 , see[START_REF] Nguyen | An analysis of the intermediate field theory of T 4 tensor model[END_REF]), hence it is not included.

Other solutions are possible, as in appendix D of[START_REF] Benedetti | Tensorial Gross-Neveu models[END_REF]. In that case it was possible to show that such solutions are never global minima of the potential; here the analysis is more complicated and we limit ourselves to conjecture that the analysis of the following two types of solutions suffices to understand the full phase diagram of the model.

The trace of M couples to that of B and its effective action will be identical to eq. (2.20), except for an absent double-trace term.

Tr is a trace on all the color indices, while with Tr \c the color c is not traced on. As before, tr is a trace on the γ-matrix space.

The exponent (c) in δ (c) ij only serves to keep track of what color the indices belong to.

Using a simplified notation in which, for instance, an element a on the second line of the column vector is intended to represent the element 1 ⊗ a ⊗ 1, and analogously with the other lines.

The first line uses [γ a , γ b ] = 2iǫ abc γ c .

We focus on the case of non-self-interacting Fermions.

This is reminiscent of the Chern-Simons coupling to bifundamental matter fields with U (N ) × U (M ) treated in the limit M/N ≪ 1[START_REF] Gurucharan | Anomalous dimensions in non-supersymmetric bifundamental Chern-Simons theories[END_REF].

The eigenvalues of the intermediate field H ab in[START_REF] Benedetti | Symmetry breaking in tensor models[END_REF] are a ± = √ gx 2 ± , because H ab is conjugate to √ gφ ab .

They can nevertheless lead to new phases with patterns of spontaneous symmetry breaking which are impossible in the vector case, as we saw in the Chapter 2.

[START_REF] Schwinger | On Quantum electrodynamics and the magnetic moment of the electron[END_REF] Notice that the leading 4-colored graph of the trefoil is unique for the melonic bubbles (essentially tadpoles like to be based on multilines), while there are three leading-order trefoils that can be built on the wheel.

The optimal scaling is now defined as ρ(J b ) = F (J b )-10 4 with a straightforward generalisation of[START_REF] Carrozza | O(N ) Random Tensor Models[END_REF].

Using the code provided in[START_REF] Avohou | On the counting of O(N ) tensor invariants[END_REF] (built on a generalization of the methods of[START_REF] Ben Geloun | Counting Tensor Model Observables and Branched Covers of the 2-Sphere[END_REF][START_REF] Ben Geloun | Tensor Models, Kronecker coefficients and Permutation Centralizer Algebras[END_REF]), we can count the total number of sextic invariants, with their different coloring choices, to be 1439.

Following the same logic for rank-3, starting with the wheel interaction, we would have obtained the same action as in(3.7). As in that case the set of interactions exhausts the sextic U (N ) 3 invariants, we have chosen a different perspective in its presentation.

We denote the momenta p, q and so on. We define p ≡ d d p (2π) d .

See Footnote 4 for the factor 3 in the double-tadpole contribution of the wheel.

In principle a fixed point provides us only with a scale invariant theory, full conformal invariance having to be proved case by case or on the basis of the available theorems in dimensions two and four. See for example[START_REF] Nakayama | Scale invariance vs conformal invariance[END_REF] for a review.

We assume here that our fixed points correspond to conformal field theories.

As we will see below, we will actually encounter an operator with dimension h 0 < d/2. We will be cavalier in its treatment.

The other contributions from poles at (s = n ≥ 1, t = m ≥ 1), (s = n-2ǫ, t = m-2ǫ) and (s = n-2ǫ, t = m), (s = n, t = m -2ǫ) (assuming n, m ∈ N) cancel, as well as those at (s = 0, t = m ≥ 1) with (s = 0, t = m -2ǫ) or (s = n ≥ 1, t = 0) with (s = n -2ǫ, t = 0).

For the upper inequality, we used that for any m > 0,

3/(3 + m 2 ) > 1/(1 + m 2 ). The lower one is obtained by comparing the Taylor expansions of both members around m = 0. K is chosen such that the inequality between the rational function and the exponential holds. Whereas c is independent of m, if m < 1, K > 5 is enough.3 In a usual theory there is no x 0 dependence because of translation invariance, but for a particular tree T there is no such invariance.

We refer to Ch. 2 of[START_REF] Durhuus | Quantum geometry. A statistical field theory approach[END_REF] for details on going from the discrete to continuous time propagators, the exponential factor stemming from the mass regulator.

We do not try to make β optimal. We expect that a tighter probabilistic analysis could prove subfactorial growth in n for E(A G ).

The attentive reader wondering about the factor 54 will find that it comes from the fact that (N -4)/3 ≥ N/9 for N ≥ 6 and that there are 6 different pairs at a φ 4 vertex.

Of course we expect that this limit is universal i.e. would be the same for p-ary random unicycles, but our emphasis here is not on this point.

An i-clique being a subset of i vertices of the graph, such that any two vertices in the set are adjacent in the graph. See also[START_REF] Gubser | Spin in p-adic AdS/CFT[END_REF] for a similar definition of Fermions on a tree graph in the context of p-adic AdS/CFT.

We also refer to[START_REF] Kumagai | Anomalous random walks and diffusions:From fractals to random media[END_REF]for a short although very comprehensive picture for other inequalities equivalent to heat-kernel bounds -such as Parabolic Harnack, and the important questions in the field of propagation on random media.

We are studying with D. Benedetti how, in the language of conformal partial wave decomposition of the four-point function, the contour needs to be deformed, when varies the order of the interaction, to pick the physical poles.

First shots on this program, applied to Gaussian tensors, studied the distribution of the largest eigenvalue

[START_REF] Evnin | Melonic dominance and the largest eigenvalue of a large random tensor[END_REF] or generalized the matrix resolvent[START_REF] Gurau | On the generalization of the Wigner semicircle law to real symmetric tensors[END_REF].[START_REF] Dyson | The Radiation theories of Tomonaga, Schwinger, and Feynman[END_REF] There m is taken fixed and depending on the scheme, when n is taken finite or large.[START_REF] Schwinger | On Quantum electrodynamics and the magnetic moment of the electron[END_REF] A different pattern of spontaneous symmetry breaking has been discussed in[START_REF] Diaz | Spontaneous Symmetry Breaking in Tensor Theories[END_REF], in which a U (N ) 2 subgroup of the symmetry group gets broken down to its diagonal subgroup U (N ).[START_REF] Aoyama | Tenth-Order Electron Anomalous Magnetic Moment -Contribution of Diagrams without Closed Lepton Loops[END_REF] Constructive issues, such as the analyticity domain of the annealed partition function, are also intriguing, but these would require some non-perturbative analysis such as the Loop-Vertex-Expansion, described in[START_REF] Rivasseau | Loop Vertex Expansion for Higher Order Interactions[END_REF], and we don't have any idea yet on how to use it on trees.

Les indices répétés sont supposés sommés.

À savoir, que devient l'information qui a traversé l'horizon, une fois le trou noir évaporé.

Acknowledgments

Corollary 2.12 of [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF] proves that P(B(x, r) is not λ-good) ≤ c 1 e -c 2 λ . (4.52) This inequality together with the Borel-Cantelli lemma (cf. App. 4.A) imply that given r and a real monotonic sequence {λ l } l≥0 with lim l→∞ λ l = +∞, there is, with probability one, a finite l 0 such that B(x, r) is λ l 0 -good. In particular Lemma 4.2.1. Defining the random variable L = min{l : B(x, r) is λ l -good} we have

Proof. This is because the ball B(x, r) must then be λ l-1 -bad.

Besides, the conditions of λ-goodness allow to bound with the right scaling the random path factor q t (x, y) for y not too far from x. More precisely the main part of Theorem 4.6 of [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF] reads Theorem 4.2.1. Suppose that B = B(x, r) is λ-good for λ ≥ 64, and let I(λ, r) = [r 3 λ -6 , r 3 λ -5 ]. Then

• for any K ≥ 0 and any y ∈ T with d(x, y) ≤ Kt 1/3

• for any y ∈ T with d(x, y) ≤ c 2 rλ -19 q 2t (x, y) ≥ ct -2/3 λ -17 for t ∈ I(λ, r) . (4.55)

Notice that these bounds are given for q 2t (x, y) but the factor 2 is inessential (it can be gained below by using slightly different values for K) and we omit it from now on for simplicity.

Preliminaries: two-point function

To translate these theorems into our multiscale setting, we introduce the notation I j = [M 2(j-1) , M 2j ] and we have the infrared equivalent continuous time representation 4

This relates our sliced propagator (4.32) to the kernel q t of [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF]. We forget from now on the inessential Γ(1α) factor. In our particular case q = 4, α = 1/3, (4.56) means that we should simply multiply the estimates on q t established in [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF] by cM 2j/3 to obtain similar estimates for C j T . However we have also to perform spatial integrations not considered in [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF], which complicate the probabilistic analysis. As a warm up, let us therefore begin with a few very simple examples. Recall that we do not carefully track inessential constant factors in what follows, and that we can use the generic letter c for any such constant when it does not lead to confusion.
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The second comes by decomposing on all possible combinations leading to the total population, using again that descendants are i.i.d. :

and proceeding by recursion. Kesten, Ney, Spitzer [START_REF] Kesten | The Galton-Watson process with mean one and finite variance[END_REF] proved that asymptotically the nonextinction probability is driven by the variance (if finite) of the critical branching process

Denoting, for an integer k, X[k] = k i=1 X i , where the variables X i are identically distributed with the random variable X, we can estimate the probability that the number of vertices at and below a certain height n doesn't exceed respectively the height and the height square: Lemma 4.A.2. For all λ > 0, there are constants c 1 , c 2 > 0 such that

)

Those are consequences of two inequalities

coming from the recusive relations (4.155) and of the Chernoff bound saying that for a random variable X and all t > 0, P [X ≥ a] ≤ E[e tX ]e -ta . More precisely, decomposing the branching process into those that go extinct before height n/2 and those that survive after, relying on the estimate (4.160) and on the backwards Chebyshev inequality

Barlow and Kumagai obtain a finer control on the number of vertices of the tree up to height n: Lemma 4.A.3. (1) There are constants c 0 , p 0 > 0 such that

(2) For random variables η n with distributions Bin(n, p 0 /n), then for all λ > 0

The last upper bound follows from the dominance (2) on the binomial variable η n , 10 while to show the lower bound, it is enough to condition on the trees that have stoped before a height m = n/k, for k ≥ 1. Finally in order to estimate the average volume of a ball B(x, r) around any point x on the graph, one takes the size-baised processes of the off-the-spine branches Xn≥0 and analogous Ỹn = n k=1 Xk , such that X0 = 1 on the spine, X1 distributed as Bin(n 0 -1, 1/n 0 ), (since the spine is growing in another direction) and Xn distributed with Bin(n 0 , 1/n 0 ) as before. 10 Notice how the lower bound metamorphoses into an upper bound.
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Entirely similar bounds as those of Lemma 4.A.3 were obtained for the sized-baised Ỹn . The point of this was to be able to decompose any ball B(x, r) as three types of processes X growing on the geodesic from x to the root of the graph, off the geodesic but still on the spine and descendants of x after the geodesic. For the three cases, the largest volume is obtained from at most r independent processes. This drives to the following: Theorem 4.A.1. For λ > 0, r ≥ 1, there are constants c 0 , c 1 , c 2 , c 3 > 0

To be complete, we will also have to estimate the minimal number of "gates" at distance r from which to escape a ball B(x, r), or more precisely, M (x, r) being the smallest integer m such that for A = {z 1 , . . . z m } with the points z i at distance d(x, z i ) ∈ [r/4, 3r/4], any geodesic from x to B(x, r) c passes through A. Theorem 4.A.2. There are constants c 1 , c 2 > 0 such that for each r ≥ 1 and x ∈ X

In order to show this, the idea remains similar to the preceding theorem. That is to count descendants and ancestors of x outwards and towards the spine at the distance r/4, themselves still having descendants at distance r/4. From the estimate (4.160), such vertices z i have distributions Ber(p r ) with p r ≤ c 0 /r. By rewriting the distribution of the total number of vertices z i as a martingale (plus a controlled correction), [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF] could conclude. Since all conditions for the λ-goodness of the ball B(x, r), eq. ( 4.50), are assured with probabilities exponential in λ, leading to the inequality (4.52).

4.A.2 Heat-kernel bounds on random graphs

Here, we want to share a broader view on determination of heat-kernel estimates on random graphs, that hopefully can be useful for pursuing the application of quantum field theoretic techniques on more generic random graphs than trees. We recall that the heat-kernel q t (x, y) gives the probability that a random walker starting at x reaches y in a time t. The goal is to give conditions under which one can say that the heat-kernel behaves as

in the sense of providing upper and lower bounds for a certain range of time t and for points x, y separated by distance d(x, y), where c, c ′ are inessential constants. There are two dimensions entering the game. The Hausdorff dimension d H which tells about the number of points in a ball of given radius that x can reach and the walking dimension d w that tells the time it takes to escape the ball. Compared to a Brownian random walk on R d , if d w > 2, then the walk is said subdiffusive. We see that the spectral dimension, setting y = x, corresponds to d s = 2d H /d w .

When the probability to return at the starting point in the limit of infinite time doesn't vanish, the random walk is called recurrent. Otherwise it is said transient. A classic result of Pólya [START_REF] Pólya | Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend dieIrrfahrt im Strassennetz[END_REF] states that: 
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Heat-kernels on graphs

We first set a few definitions. We start with a weighted graph (X, µ), where weights µ xy are assigned to all edges xy. Two adjacent vertices x, y will be written x ∼ y. The graph will be taken infinite, 11 locally finite, connected and having a marked vertex, the root. Also, we assume a metric function d, such that for a ball B(x, r) = {y ∈ X : d(x, y) ≤ r}, we will write V (x, r) = V (B(x, r)) = y,z∈B(x,r) µ yz for the analog of the volume of the ball. B c will mean the complement of B. And as in propositional logic, we will write a ∧ b or a ∨ b for the mininum or maximum between the values a and b.

We introduce the energy function

as well as the space H 2 := {f : E(f, f ) < ∞}. We define the effective resistance between two points

The effective resistance presents some nice properties. (2) If (X, µ) is a tree and c 2 := sup x,y∈X µ xy < ∞, then R ef f (x, y) ≥ d(x, y)/c 2 , for all x, y ∈ X.

(

Hence, from (1) and ( 2), the effective resistance between two points of a tree is, uniformely on the graph, proportional to their distance. For the trees considered above, the effective resistance is linked to the earlier number of "gates" M (x, r) around x through

for a constant c, which follows straightforwardly from Ohm's laws on electric circuits (r being the length of the wire and M (x, r) giving the minimal number of parallel components).

Let us consider a continuous-time random walk 12 Y {t≥0} on (X, µ), launched at Y 0 = x, that is q t (x, y) = P x (Y t = y)/µ xy . (4.175) P x (A) and E x (A) will stand for the probability and expectation of event A conditioned under a random walk starting at x ∈ X. We will also need the "escape time" from the ball B, 13 τ B = inf{t ≥ 0 : Y t / ∈ B}, its counterpart σ B = inf{t ≥ 0 : Y t ∈ B} and the stricter σ + B = inf{t > 0 : Y t ∈ B}. The green density on a ball B is defined as g B (x, y) = t P x (Y t = y : t < τ B )/µ y , (4.176)

11 Otherwise its spectral dimension vanishes. 12 There are subtleties on going from discrete to continuous time random walks, the first requiring care with respect to the parity of the number of steps and the latter requiring a proper definition of the distribution from which the time of each jump is taken. Holding to [START_REF] Barlow | Random Walk on the Incipient Infinite cluster on trees[END_REF], we take the second one, sampling the jump time from an exponential law of mean one. For more details on the first case, see [START_REF] Kumagai | Random Walks on disordered media and their scaling limits[END_REF]. 13 The name assumes that Y t starts inside the ball, but it is not necessary.