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A B S T R A C T

Nowadays, video contents are ubiquitous through the popular use of internet
and smartphones, as well as social media. Many daily life applications such as
video surveillance and video captioning, as well as scene understanding require
sophisticated technologies to process video data. It becomes of crucial importance
to develop automatic means to analyze and to interpret the large amount of avail-
able video data. In this thesis, we are interested in video action recognition, i.e. the
problem of assigning action categories to sequences of videos. This can be seen as
a key ingredient to build the next generation of vision systems. It is tackled with
Artificial Intelligence (AI) frameworks, mainly with Machine Learning (ML) and
Deep Convolutional Neural Networks (ConvNets).
Current ConvNets are increasingly deeper, data-hungrier and this makes their
success tributary of the abundance of labeled training data. ConvNets also rely
on (max or average) pooling which reduces dimensionality of output layers (and
hence attenuates their sensitivity to the availability of labeled data); however, this
process may dilute the information of upstream convolutional layers and thereby
affect the discrimination power of the trained video representations, especially
when the learned action categories are fine-grained.
In the first part of this thesis, we introduce a hierarchical aggregation design based
on tree-structured temporal pyramids, for final pooling, that controls granularity
of the learned representations w.r.t the actual granularity of action categories.
Moreover, ConvNets are basically designed to handle vectorial data (such as still
images) but their extension to non-vectorial and semi-structured data (namely
graphs with variable sizes, topology, etc.) remains a major challenge. As a second
part of this thesis, we introduce a Graph Convolutional Network (GCN) model
based on a spectral decomposition of graph-Laplacians. It consists in learning
graph Laplacians as convex combinations of other elementary Laplacians each
one dedicated to a particular topology of the input graphs. Then, we introduce a
pooling operator, on graphs, which achieves permutation invariance. All models
are thoroughly evaluated on standard datasets and the results are competitive
w.r.t the literature 1.

Keywords : Deep Video Representations, Multiple Aggregation Learning, Hi-
erarchical Pooling, Graphs Construction, Graph Pooling and Convolution, Geo-
metric Deep Learning

1. This work is supported by the EDITE (Ecole Doctorale Informatique, Télécommunications
et Electronique de Paris) three years scholarship.
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abstract iii

De nos jours, les contenus vidéos sont omniprésents grâce à Internet et les
smartphones, ainsi que les médias sociaux. De nombreuses applications de la
vie quotidienne, telles que la vidéo surveillance et la description de contenus vi-
déos, ainsi que la compréhension de scènes visuelles, nécessitent des technologies
sophistiquées pour traiter les données vidéos. Il devient nécessaire de dévelop-
per des moyens automatiques pour analyser et interpréter la grande quantité de
données vidéo disponibles. Dans cette thèse, nous nous intéressons à la reconnais-
sance d’actions dans les vidéos, c.a.d au problème de l’attribution de catégories
d’actions aux séquences vidéos. Cela peut être considéré comme un ingrédient
clé pour construire la prochaine génération de systèmes visuels. Nous l’abordons
avec des méthodes d’intelligence artificielle, sous le paradigme de l’apprentissage
automatique et de l’apprentissage profond, notamment les réseaux de neurones
convolutifs.
Les réseaux de neurones convolutifs actuels sont de plus en plus profonds, plus
gourmands en données et leur succès est donc tributaire de l’abondance de don-
nées d’entraînement étiquetées. Les réseaux de neurones convolutifs s’appuient
également sur le pooling qui réduit la dimensionnalité des couches de sortie (et
donc atténue leur sensibilité à la disponibilité de données étiquetées) ; cependant,
ce processus peut diluer l’information des couches convolutives et ainsi affecter
le pouvoir discriminant des représentations vidéos obtenues, notamment lorsque
les catégories d’actions apprises sont de granularités fines.

Dans la première partie de cette thèse, nous introduisons une méthode d’agréga-
tion hiérarchique basée sur une pyramide temporelle arborescente, pour le pooling
final, qui contrôle la granularité des représentations apprises par rapport à la gra-
nularité réelle des catégories d’actions. De plus, les réseaux de neurones convolu-
tifs sont essentiellement conçus pour traiter des données vectorielles (telles que les
images fixes) mais leur extension aux données non vectorielles et semi-structurées
(à savoir des graphes de taille variable, ayant une forte variation topologique, etc.)
reste un défi majeur. Dans la deuxième partie de cette thèse, nous introduisons
un réseau de neurones convolutif sur les graphes basé sur une décomposition
spectrale de graphes Laplaciens. Il consiste à apprendre les Laplaciens de graphes
sous forme de combinaisons convexes d’autres Laplaciens élémentaires, chacun
est dédié à une topologie particulière de graphes en entrée. Ensuite, nous introdui-
sons un opérateur de pooling, sur des graphes, qui est invariant par permutation
des noeuds. Tous les modèles sont expérimentalement évalués sur des jeux de
données standards et les résultats obtenus sont compétitifs avec ceux de l’état de
l’art.

Mots clés : Apprentissage de Représentations Vidéos, Apprentissage d’Ag-
gregations Multiples, Pooling Hiérarchique, Construction de graphes, Pooling et
Convolution sur les Graphes, l’Apprentissage Profond Geométrique





I N S P I R I N G M I N D S

• " Le principal ingrédient de la première révolution quantique, la dualité onde-
particule, a conduit à des inventions telles que le transistor et le laser qui sont
à la base de la société de l’information. " Alain Aspect

• " Néanmoins, il reste concevable que les relations de mesure de l’espace dans
l’infiniment petit ne soient pas conformes aux hypothèses de notre géométrie (géométrie
Euclidienne), et, en fait, nous devrions supposer qu’elles ne le sont pas si, ce faisant,
nous devrions un jour être en mesure d’expliquer les phénomènes d’une manière
plus simple. " Bernhard Riemann

• " Je dirai que, alors que si, sur le plan de l’accès à la réalité empirique, la science est
seule reine, en revanche elle ne jouit d’aucun privilège lorsqu’il s’agit du "fond des
choses". Que là, l’émotion, artistique par exemple, se trouve (au moins!) à égalité
avec elle, l’une comme l’autre ne nous fournissant que des lueurs sur un domaine
qu’elles ne nous laissent qu’entrevoir. "
" Dans les zones tout à fait supérieures de la pensée, je fais une place à certains
discrets intuitifs et intuitives au moins à tels ou tels moments privilégiés qu’ils ont
connus. Un nombre infime d’entre eux est parvenu à s’exprimer par le moyen de la
grande littérature. Les autres gardent le silence: mais je sais qu’ils sont là, présents.
" Bernard d’Espagnat

• " Comme on le sait, le dernier continent inconnu à l’homme est l’homme, et le
centre de ce continent, le cerveau, nous est non seulement inconnu, mais encore
incompréhensible. "
" Comprendre, ce n’est pas tout comprendre, c’est aussi reconnaître qu’il y a de
l’incompréhensible. "
" La connaissance est une navigation dans un océan d’incertitudes à travers des
archipels de certitudes. " Edgar Morin

• " Des pensées sans matière sont vides, des intuitions sans concepts sont aveugles. "
" L’entendement ne peut rien percevoir, ni les sens rien penser. La connaissance ne
peut résulter que de leur union. " Emmanuel Kant

• " Il suffit de regarder une chose avec attention pour qu’elle devienne intéressante. "
Eugenio d’Ors Y Rovira
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vi inspiring minds

• " La connaissance du réel est une lumière qui projette toujours quelque part des
ombres. "
" Le réel n’est jamais ce qu’on pourrait croire, mais il est toujours ce qu’on aurait
dû penser. " Gaston Bachelard

• " L’homme raisonnable s’adapte lui-même au monde ; l’homme déraisonnable con-
tinue à essayer d’adapter le monde à lui-même. Donc, tout progrès dépend de
l’homme déraisonnable. " George Bernard Shaw

• " La philosophie procède par variation, l’art par variété et la science par variable.
La philosophie se dessine sur le plan d’immanence, l’art sur le plan de composition
et la science sur le plan de référence. La philosophie procède par concept, l’art par
sensation et la science par connaissance. " Gilles Deleuze

• " Une mesure exacte vaut l’avis d’un millier d’experts. " Grace Hopper

• " L’intelligence dans ce qu’elle a d’inné est la connaissance d’une forme, l’instinct
implique celle d’une matière. " Henri Bergson

• " La vérité sera toujours à trouver dans la simplicité, et non dans la complexité et
la confusion des objets. " Isaac Newton

• " Les principes de la théorie sont dérivés, comme ceux de la mécanique rationnelle,
d’un très petit nombre de faits primaires, dont les causes ne sont pas considérées par
les géomètres, mais qu’ils admettent comme les résultats d’observations communes
confirmées par toute expérience. " Joseph Fourier

• " Le fondement de l’intuition parmi nous vient du désir de se transporter hors de
soi. "
" Penser, c’est ce que nous savons déjà n’avoir pas encore commencé à faire. "
Jacques Derrida

• " Le critère de la scientificité d’une théorie réside dans la possibilité de l’invalider,
de la réfuter ou encore de la tester. " Karl Popper

• " Soit les mathématiques sont trop grandes pour l’esprit humain, soit l’esprit humain
est plus qu’une machine. " Kurt Gödel

• " Sans la curiosité de l’esprit, que serions-nous ? Telle est bien la beauté et la
noblesse de la science : désir sans fin de repousser les frontières du savoir, de traquer
les secrets de la matière et de la vie sans idée préconçue des conséquences éventuelles.
" Marie Curie

• " Au sens positif du temps on peut dire : seul le présent est, l’avant et l’après ne
sont pas mais le présent concret est le résultat du passé et il est plein de l’avenir. Le
présent véritable est, par conséquent, l’éternité. " Martin Heidegger
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• " Un scientifique est heureux, non pas en se satisfaisant de ses accomplissements
mais en étant constamment dans la recherche de nouvelles connaissances. " Max
Planck

• " Chaque grande et profonde difficulté porte en elle-même sa propre solution. Elle
nous oblige à changer notre façon de penser pour la trouver. " Niels Bohr

• " Pour atteindre la vérité, il faut une fois dans sa vie, se défaire de toutes opinions
que l’on a reçues, et reconstruire à nouveau et dès le fondement le système de ses
connaissances. "René Descartes

• " Il est admissible qu’un exotériste ignore l’ésotérisme, bien qu’assurément cette
ignorance n’en justifie pas la négation; mais, par contre, il ne l’est pas que quiconque
a des prétentions à l’ésotérisme veuille ignorer l’exotérisme, ne fût-ce que pratique-
ment, car le «plus» doit forcément comprendre le «moins». " René Guénon

• " Qu’importe à quel point ta théorie soit belle, que tu sois intelligent. Si elle est en
désaccord avec l’expérience, c’est qu’elle est fausse. " Richard Feynman

• " La science progresse mieux lorsque les observations nous obligent à modifier nos
idées préconçuess. " Vera Rubin

• " Paris est la grande salle de lecture d’une bibliothéque que travarse la Seine. "
Walter Benjamin

• " L’observateur influence l’observation. L’observateur ne peut être séparé de ce qu’il
observe. Sans observateur, pas de réalité à observer. "
" Quand je rencontrerai Dieu, je Lui poserai deux questions : Pourquoi la relativité
? Et pourquoi la turbulence ? Je pense réellement qu’il aura une réponse pour la
première " Werner Heisenberg

• " La réussite est la capacité de passer d’un échec à un autre sans perte d’enthousiasme.
" Winston Churchill
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1.1 Context

Since the dawn of the industrial revolution, traditional economical activities
have been transformed following the upgraded technologies. The latter have ex-
perienced a galloping rush thanks to the emergence of brand-new engineering
fields in order to oversee their development and hence to respond to the need of
contemporary society that keeps evolving [1].
Among these engineering fields, Artificial Intelligence (AI) has drawn a lot of
attention and has involved both academic and industrial partners to support so-
cietal challenges with concrete solutions [2].
AI can be defined as a field of study which ultimately aims at designing intelligent
machines capable of mimicking human intelligence and beyond [3, 4]. It has seve-
ral advantages ; on the one hand, it plays a key role in solving complex industrial
tasks automatically with the least possible error rate, and on the other hand, it
helps making progress in human intelligence understanding and its philosophical
implications.
We distinguish three types of AI : Weak, Strong and Super AI [5, 6]. Weak AI em-
phasises on achieving specific tasks accurately, it is also known as specialized AI.
Strong AI is able to achieve anything that humans can do. Super AI is the ultimate
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2 introduction

F igure 1.1 – Examples of different tasks in Computer Vision (CV).

F igure 1.2 – Example of video analysis task.

purpose which aims at surpassing the human ability, doing what human is not
able/imaginable to do. The current understanding of AI is limited and is still at
the era of weak AI where there is a lot of progress and effort to do. Despite the
fact that AI has been oscillating between waves of optimism and several AI win-
ters [7-9] for decades, it comes back as a key technology in miscellaneous domains.

Computer Vision (CV) is one of the rapidly growing and emerging sub-fields
of AI, whose goal is to understand, extract meaningful and semantic information
from visual scenes such as images and videos. Applications of CV include : 3D
pose estimation, image segmentation, object detection, video captioning etc. (see
examples in Figure 1.1).
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F igure 1.3 – Example of Handcrafted representation (based on Histogram of
Oriented Gradients (HOG), Histogram of Optical Flow (HOF) and
Motion Boundary Histogram (MBH)) and shallow classification me-
thod.

F igure 1.4 – Example of learned representation and deep classification method.

In this thesis, we are interested in video analysis, particularly in the task of
Action Recognition (AR). One of the motivations of this specific task resides in the
substantial increase of video contents while their manual annotation becomes out
of reach. For that reason, there is a need of reliable automatic video analysis solu-
tions able to annotate these large collections of data. One of the difficulties is that
video data are pixel-based carrying no explicit information. From a collection of
pixels, CV methods seek to transform them into meaningful information, abstract
them into high level features and concepts such as assigning action category to a
sequence of video frames, detecting and localizing persons, extracting their pose,
describing scenes etc. (see Figure 1.2).

One of the successful solutions that learn high level abstraction concepts from
raw video is Machine Learning (ML). Given a sample of labeled videos, referred as
training data, ML aims at designing decision criteria that assign action categories
to unseen data as illustrated in Figure 1.3. ML has achieved a rapid growth and
has drawn lots of attention thanks to the recent advances and success of Deep
Learning (DL) which is a subfield of ML based on biologically-inspired Artificial
Neural Networks (ANNs).
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F igure 1.5 – Trainable deep feature extractor and classifier. The images below
the scheme are taken from [10].

ANNs are trainable feature extractors that provide highly discriminant represen-
tations for classification from raw data in a hierarchical process as illustrated in
Figure 1.4. Early layers are dedicated to low-level visual characteristics including
edges and gradient orientation, intermediate layers provide mid-level characteris-
tics such as shapes and structures while deeper layers are dedicated to high-level
semantic concepts such as faces and objects (see Figure 1.5).

The embryonic stage of DL dates back to 1980s [11-13]. However, it has ex-
perienced two decades of hibernation following the success of Support Vector
Machines (SVMs), kernel methods during the 1990s and the lack of large amount
of learning data required for DL, as well as powerful computer resources to pro-
cess them in a reasonable time.

The resurgence of DL happened in 2012, in a CV competition of image classifi-
cation called ImageNet Large Scale Visual Recognition Challenge (ILSVRC). This
2012 edition was marked by the lightning win of AlexNet method [14] ; DL model
based on Convolutional Neural Networks (ConvNets) (see Figure 1.6).
This major success of DL is mainly due to : (i) the availability of a large labeled
dataset of about 1.2 million images, which was at least two orders of magnitude
larger than any other existing datasest and (ii) the advances in parallel program-
ming : graphics processing units and recently tensor processing units. Since then,
DL has been extended and applied to neighboring tasks in CV including action
recognition in videos [15].
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F igure 1.6 – Evolution of performances of ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) along with depth of networks. Picture
credit for [16].

1.2 Statistical Supervised Learning at a Glance

Broadly speaking, ML is a field of study that gives computers the ability to learn
without being explicitly programmed [Arthur Samuel, 1959]. ML models aim at
solving specific tasks by improving their generalization ability from training data.
This generalization ability is usually estimated with some performance measure.

We consider action recognition as a supervised learning task, i.e., an interpo-
lation problem in high dimensional space. The goal is to build an unknown
function f accessible only through annotated videos dataset D = {(xi, yi)}Ni=1 of
N examples, with xi ∈ X being the input video sequence and yi ∈ Y its corres-
ponding correct action category, known as label.

We denote F as the space of functions that maps X to Y . Thereby, the learning
problem consists at finding the function f̂ ∈ F that best fits the dataset D. In
order to measure the prediction of f(xi) w.r.t the ground truth yi, a loss function
l is introduced. Hence, we define the regularized loss L of f over D as

L(f,D) =
1

N

N∑
i=1

l(f(xi), yi) +R(f,D). (1.1)

The second term R(f,D) in Equation 1.1, is called a regularization term which
corresponds to a prior of f and makes it possible to tradeoff between data under-
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fitting and overfitting so that f better generalizes to unseen samples. In the above
equation l, R are data dependent, their choice vary from one task to another
following the problem to solve. Finally, the optimal model f̂ is found as

f̂ = arg min
f∈F

L(f,D). (1.2)

In practice, we use a muti-class cross-entropy loss function l to measure the
prediction accuracy of our models :

l(f(xi), yi) = −
C∑
c=1

y
(c)
i log(fc(xi)) + (1− y(c)i )log(1− fc(xi)). (1.3)

with C being the total number of action categories (classes), y(c)i a binary indicator
(0 or 1) whose value depends on whether action category c is the correct classifi-
cation for the example xi, and fc(xi) the output of the i-th example corresponding
to its predicted probability.
The performances of our models are measured with accuracy metric on test data.
This metric is defined as the ratio of the number of correct predictions to the total
number of examples.

1.3 Action Recognition

1.3.1 Task Definition

Video action recognition consists in assigning action categories to sequences
of observed videos. It requires capturing context encoded in the whole video
rather than at single frame. Action within sequence of frames may be performed
throughout the whole video or at specific part depending on the video trimming
process. For that reason, some videos encode only the actions of interest while
others encode extra context.

Action recognition is similar to image classification and can be seen as an ex-
tension of static image classification to multiple frames classification. The latter
is quite challenging since the score of classification requires prediction at video
level rather than at frame (image) level. Moreover, the strategies used to design
architectures that are capable to capture spatio-temporal information is not-trivial
and expensive. The possible strategies include : (i) end-to-end training or feature
extraction and classification in two separated processes, (ii) spatio-temporal net-



1.3 action recognition 7

work or (iii) two-streams network, separately for spatial and temporal information.

Existing action recognition techniques are usually based on ML [17-22] ; their
general principle consists first in describing video frames using handcrafted or
learned representations [23-25] as illustrated in Figure 1.3 and in Figure 1.4 prior
to assigning these representations to action categories using variety of ML algo-
rithms including SVMs and DL [26-28].

If DL strategies for image classification grow rapidly, progress in architecture
design and learning representations for action recognition is slow. It can be ex-
plained by the expensive computational cost of architecture search. For instance,
2D ConvNets for classifying 101 classes 1 have about 5 million parameters while
3D ConvNets (for the temporal dimension) include about 33 million parameters
[29].

1.3.2 Application Domains

In our daily life, many applications need real-time action recognition module
to solve tasks such as : scene understanding [30] and video captioning [31], as
well as video surveillance [32] as shown in Figure 1.7. Their automation helps
in drastically reducing the human labor in analyzing such abundant amount of
visual contents.

Video surveillance. For security reasons, several public areas are placed un-
der surveillance to identify suspicious and infrequent actions. Video surveillance
system is composed of a number of cameras powered by action recognition algo-
rithms to automatically supervise environments in real-time and to increase the
accuracy of capturing non-common actions such as criminal actions.

Video retrieval. Internet is characterized by an abundant amount of data. Vi-
sual data are of particular interest where people keep uploading and sharing
videos on different applications and websites. However, retrieving videos accor-
ding to their contents is challenging since most search engines operate on text
queries to manage video data. Text queries can be expressed as keywords, tags,
person names, titles. They can be difficult to express, inaccurate and may not fit
the targeted visual content. For that reason, alternative methods based on video
retrieval framework [33] have been designed to seek accurately for appropriate

1. UCF-101 video dataset has a comparable number of frames with ImageNet
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F igure 1.7 – Applications of action recognition.

videos.

Robotics and human-computer interaction. A wide range of applications in
domotic and industrial environments get benefits and facilities from human-robot
interaction. For instance, person with disabilities or with reduced mobility may
interact with a robot to perform certain tasks such as opening doors and welco-
ming guests, supervising children in parks, etc.

Autonomous vehicle driving. A vehicle is equipped with a set of camera sen-
sors endowed with action recognition and prediction algorithms. For safety rea-
sons, these sensors can help to avoid unexpected collisions with pedestrians by
localizing persons and predicting their actions following real-time motion trajec-
tory analysis.

1.3.3 Challenges

Video action recognition is among the most challenging problems in CV. It is
related to intrinsic and extrinsic acquisition conditions of videos such as their an-
notation process, their trimming, unconstrained environment and to the capture
conditions, their large intra-class and small inter-class variability, velocity, trunca-
tion, pose variation as well as variable subject scales which rise (i) the difficulty
to learn mapping models that assign action categories to sequences of frames
while being resilient to these acquisition conditions, and (ii) the hardness in hand-
labeling and trimming large collections of training videos prior to designing these
mapping models. The major challenges are presented below and illustrated in
Figure 1.8.
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• Occlusion : can be related to crowded scenes, camera motion, subject hiding
discriminating parts of actions. Occlusion is an impediment for cameras as
well as for human eye which can’t see through the wall and hence can sense
only visible objects [34]. A solution based on setting multiple cameras with
different viewpoints has been conceived to mitigate the effect of occlusion
[35, 36].

• Illumination : this highly depends on the type of sensors and cameras
[37], as well as on lighting conditions. Low lighting condition leads to object
confusion and occlusion [35]. Two images describing the same visual content
under different illumination conditions have different pixels distributions.
As a result, ML models may assign them to incorrect labels.

• Viewpoint change and camera motion : In the case of human actions, fron-
tal and profile human poses result into different appearance information
[38, 39] which may lead to confusion even if they belong to the same action
category. Moreover their tracking provides different trajectories.

• Motion blur : may be caused by the speed of moving objects, persons and/or
camera, as well as the difficulty for the latter to track motion accurately
beyond a given speed rate [40-42]. Moreover, visual scenes are captured
by camera with finite shutter speed [43] which results into the violation of
brightness constancy and hence results into inaccurate optical flow estima-
tion of pixels displacement.

• Frame rate : subtle details can be ignored by low frame rates [44] while
high frame rates capture better the sudden change in trajectories and is
well adapted for fine-grained actions. However, annotation is more time
demanding with high frame rates [45].

• Trimming : it is common that videos are not trimmed in the same way which
leads to different semantic information [46]. Some videos are endowed with
larger context including the one of the action while others include only
the action of interest [47]. As a consequence, ML models provide richer
representations to videos with larger contexts and may confuse between
videos belonging to different action categories due to the lack of context.

• Background clutter : can be related to arbitrary activities of people behind
actions such as their free motion (behind scenes) [48]. This may lead to
a strong fluctuating background in the clutter and to difficulties in dis-
tinguishing and tracking correctly the body parts of different people [49].
Moreover, instable lighting conditions render the task of clutter elimination
more challenging.
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• Multiple persons : this results into difficulties to distinguish persons partici-
pating actively in actions from passive ones and to re-identify incoming and
outgoing persons [49]. These difficulties are compounded by the fact that
several actions may occur simultaneously in the scene. Moreover, multiple
persons can also be the source of occlusion [50] and of cluttered background
due to persons overlapping, as well as of wrong tracking due to pose and
speed variation.

• Video duration : sequences of frames with different durations result into
temporal information imbalance. Real world applications involve videos
with different duration, ranging from a few seconds to a few minutes [51].
Videos with long duration encode larger context and provide richer infor-
mation than shorter ones [52]. However, long videos may include spurious
details that lead to confusion or provide extra helpful details for better dis-
crimination. Whereas short videos provide the necessary details for action
classification, they may be incomplete to build discriminant representations
especially for fine-grained actions.

In this thesis, we are interested in building robust learning approaches to tackle
some of these challenges by designing appropriate ML and DL models, as well as
discriminant representations for classification.

1.4 Motivation

The main power of DL models resides in their ability to learn representations,
well suited to the targeted tasks, from raw data. However, the design of appro-
priate network architectures for specific tasks remains open. As a consequence,
the emphasis has shifted from handcrafted representations design to network
architectures design.

Success of DL comes back to ResNet model [16] thanks to its skip connections
which attenuate the vanishing/exploding gradient problem [53]. Moreover, the
scalability of DL to large datasets such as ImageNet [54] for image classification
has aroused the interest of neighboring communities such as video analysis [15,
55, 56].
In the latter, the task consists at generalizing DL to video databases, which are
characterized by an extra temporal dimension and at achieving videos classifi-
cation. Three main problems occur : (i) video datasets are at least two orders of
magnitude smaller compared to images datasets [55] while video tasks such as
action recognition and prediction are more challenging due to their uncontrolled
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F igure 1.8 – Common challenges in action recognition.

acquisition conditions, (ii) the success of DL models is tributary to the availability
of large enough labeled training data [54], (iii) the difficulty to model moving sub-
jects (persons and objects) across the sequences of frames [57, 58] and to encode
explicitly their temporal structures [59].
Moreover, DL models operate directly on vectorial (raw) data such as images, des-
cribed by a collection of pixels on a regular grid [60-63]. However, wide spectrum
of applications such as video analysis as depicted in Figure 1.9 require handling
non-vectorial data, mainly graphs (semi-structured data) such as skeleton in ac-
tion recognition where complex geometric relationships between moving parts
should be considered.
In order to handle non-vectorial data, existing methods [64] first vectorize graphs
by yielding an embedding of graphs prior to learning their representations and
classifying them with DL models.
One of the main drawbacks of graph vectorization is the loss of structural infor-
mation. For instance, in human action recognition, moving objects can be seen
as a constellation of interacting body parts which come in the form of 2D/3D
skeletons described by a set of joints relying on the human body connectivity
[65-67]. For that reason, we argue that non-vectorial models are well suited to
encode the spatio-temporal relationship of body parts in videos.
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F igure 1.9 – Applications of non-vectorial Deep Learning (DL) on graphs. Pic-
ture credit for [84]

This thesis studies questions related to DL design and to video representations
for the specific task of action recognition :

• Building Global Pooling (GP) function for video classification

• Achieving DL on non-vectorial data : convolution and pooling on graphs

Global pooling for videos. GP function aggregates the convolutional feature
maps to build a global representation prior to fully connected layer in hierarchi-
cal way, by alternating with convolutional layers and non-linearities [14] such
as Rectified Linear Unit (ReLU) or applied only at the end of the back-end of
Convolutional Layers (CL). It plays the role of dimensionality reduction operator
where the operation can be max or averaging [68] over windows or regions of
pixels. As a result, it reduces the computational complexity and the number of
parameters of networks [68-70]. It helps also to keep the most informative infor-
mation and to learn localized representations capable to generalize to different
targeted tasks [70-74].

In action recognition, pooling plays a key role in enhancing the resilience of
DL models to the lack of training videos [75-83]. It helps discriminating coarse-
grained action categories while leading to a loss in discrimination power of fine-
grained action categories. As a first part of work in this thesis, we are interested in
designing a GP operator well suited to the task of action recognition that controls
its granularity level. This topic will be covered in Chapter 3.



1.4 motivation 13

DL on semi-structured (Graph) data. Recently, several fields such as quantum
physics [85], biology [86] and chemistry [87] need to deal with non vectorial data.
The remarkable success of DL in large scope of applications including CV [14],
Speech Recognition (SR) [88] and Natural Language Processing (NLP) [89] brought
on a keen interest in generalizing DL to non-vectorial data : graphs and manifolds,
denoted Geometric Deep Learning (GDL).

The generalization of DL to GDL is intrinsically related to a design principle of
Graph Convolutional Network (GCN) based on analogous properties of ConvNets,
namely : locality, translation invariance and equivariance, compositionality [63,
90-93], as well as a linear computational complexity in learning. Locality stands
for local invariance, an important property to capture intra-class variation where
similar representations are associated to similar regions independently of their
spatial locations in images. Translation invariance is also known as stationarity
which is a key property for convolutional layers. It shows that ConvNets produce
the same response regardless how their input images are shifted while transla-
tion equivariance means that the response of receptive fields varies equally with
distortion [91]. Compositionality is a property inspired by the visual cortex of the
brain [94]. It consists at aggregating simple structures in hierarchical way to build
high level abstract structures as shown in Figure 1.5.
To do so, during the two last decades, signal processing community has been
working actively to extend Fourier transform on graphs [60]. The techniques rely
on harmonic analysis combined with graph theory to build a well grounded Fou-
rier basis on graphs. They are based either on the eigen-decompostion of graph
Laplacian [95, 96] or on graph wavelets [97, 98].

The success of early GCN is observed on graphs with known and fixed topology
such as 2D/3D regular grids characterized by a fixed number of nodes and edges,
as well as constant degree. For instance, [99] propose a GCN based on spectral
convolutional operator for Optical Character Recognition (OCR) on a widely used
benchmark, namely MNIST. They show that their GCN is able to find out Fourier
basis on graphs (of regular grids) and hence provide competitive results compa-
red to ConvNets.

The main drawback of this GCN resides in its unsuitability to general graphs
with arbitrary topological characteristics such as variable number of nodes/edges
and heterogeneous degrees [100]. Moreover, in both ConvNets and GCN on re-
gular grids, pooling operator is well defined, it is invariant to node permutation
and node reordering by construction. This invariance is not satisfied for general
graphs, hence it requires a careful design of pooling operator, known also as graph
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coarsening [101, 102]. In addition to locality, translation invariance/equivariance,
compositionality, invariant pooling operator to node permutation needs to be
considered for learning on general graphs.

Since the first works on GDL [99], few emerging solutions attempt to extend
these models to action recognition, including [103] which models connectivity of
moving joints in videos using graphs where nodes correspond to joints descri-
bed by their spatial coordinates and their likelihood and edges characterize their
spatio-temporal interaction. One of the disadvantages of this extension resides in
the low power expressivity of joints representations which are deprived from rich
motion and appearance information.

The reasons of slow development of GDL for the task of action recognition are
several : lack of principled convolutional and pooling operator on general graphs,
difficulty to build graphs from visual scenes following the challenges discussed
in Section 1.3.3, as well as the appropriate network architecture (ResNet in the
case of ConvNets).

As a second part of work in this thesis, we are interested in designing GDL

models based on graphs for the specific task of action recognition in videos. The
contributions include a design principle of convolutional and pooling operator on
graphs, as well as graphs construction from 2D/3D skeletons and videos frames
while being invariant to arbitrary reordering of objects in the scenes especially
for highly complex ones with multiple interacting objects and persons. We devote
Chapter 4 to study these issues.

1.5 Contribution and Outline

In the following chapters of this thesis, we study and propose practical solutions
to tackle some of the challenges presented in Section 1.3.3 and to solve efficiently
the task of action recognition in videos by investigating the appropriate methods
discussed in Section 1.4 based on the limitations of current state-of-the-art and
hence research axes which are not sufficiently explored. Our contributions are
summarized in Figure 1.10.

In order to tackle the aforementioned issues, this thesis is structured as follows :
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F igure 1.10 – Overview of our contributions and keywords.

• Chapter 2 : we give an overview of existing state-of-the-art methods in video
action recognition, including handcrafted, learned representations as well as
shallow and deep classifiers to provide a background for the present work.

• Chapter 3 : we propose different hierarchical pooling methods based on
temporal pyramids and on Multiple Kernel Learning (MKL) to : (i) solve the
problem of video variable length while preserving its temporal structure,
(ii) control large context variation in videos. These methods allow also to
control the granularity of video representations w.r.t the ground truth of
action categories. The proposed solutions are based on solving a constrai-
ned minimization problem whose solution corresponds to the distribution
of weights associated to the nodes of the temporal pyramid. Moreover, we
propose a hierarchical pooling layer, learned in an end-to-end and in a dif-
ferentiable manner along with ResNet, and a surrogate back-propagation
algorithm to train large video datasets in a reasonable time. In contrast
to existing methods which preprocess videos to extract a fixed sample of
frames prior to feeding them to DL models and lead to information loss es-
pecially for fine-grained actions, our method leverages all the frames during
the training process by alternating between different frames through the
iterations.

• Chapter 4 : we propose a method to build graph inputs to train Geome-
tric Deep Learning (GDL) models based on 2D/3D skeletons and on video
frames for both appearance and motion modalities by exploiting the recent
advances in human pose estimation and extraction, and a pooling operator
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on graphs which is invariant to node permutations. Pooling is achieved in
two steps : context-dependent node expansion followed by a global average
pooling. We also propose a spectral graph convolutional network based on
convex combination of several Laplacians to learn a highly non-linear graph
Laplacian, each one is dedicated to a particular topology of the input graphs.
Finally, we propose a temporal pyramid GCN that captures different levels of
granularity inspired by the methods of Chapter 3 and by inception network
[104] to design effective convolutional operators on graphs.

• Chapter 5 : we summarize our contributions, then we open a discussion
about some research directions for a future work.

1.6 Related Publications

This thesis is based on the material published in the following papers and
summarized in Figure 1.11 :

• Ahmed Mazari, Hichem Sahbi, " Deep Temporal Pyramid Design for Action
Recognition, " In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2019

• Ahmed Mazari, Hichem Sahbi, " MLGCN : Multi-Laplacian Graph Convo-
lutional Networks for Human Action Recognition, " In the 30th British Ma-
chine Vision Conference (BMVC). 2019

• Ahmed Mazari and Hichem Sahbi. Coarse-To-Fine Aggregation For Cross-
Granularity Action Recognition. In the 27th IEEE International Conference
on Image Processing (ICIP). 2020
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F igure 1.11 – A map of our contributions and their relationship.
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2.1 Historical Notes on Human Actions Understan-
ding

Studying and analyzing human actions dates back to the 15th century in the
field of Arts where artistic representations were motivated by human representa-
tions. The first works come back to Leoardo Da Vinci, since his early age, he had
been studying human proportions and measurements as well as human anatomy

19
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for the purpose of improving his art.
This motivation emanates from the importance of understanding human and
animal insides to depict them correctly. He wrote in his On Painting : “it is in-
dispensable for a painter, to become totally familiar with the anatomy of nerves,
bones, muscles, and sinews, such that he understands for their various motions
and stresses, which sinews or which muscle causes a particular motion.”.
He added :“The space between the mouth and the base of the nose is one-seventh
of the face. The space from the mouth to the bottom of the chin is one-fourth of
the face and equal to the width of the mouth. The space from the chin to the base
of the nose is one-third of the face and equal to the length of the nose and to the
forehead.”.

Two centuries later, bio-mechanics have emerged to study the different struc-
tures, functions and motions of biological systems from mechanics standpoint.
One of the works include physiological study of movements by applying analy-
tical and geometrical models initiated by Galileo Galilei. Following his rigorous
studies, he concluded that bones serve as levers and muscles function, corrobora-
ted by mathematical principles.

Later on, 19th century is characterized by the emergence of cinematography
where Eadweard Muybridge invented a machine for displaying a recorded series
of images. He is considered as a pioneer of motion images and techniques for
studying human motion.

The birth of computers was a key moment in the history of human motion
representation and understanding. Five decades ago, Gunnar Johansson initiated
the first study of motion perception using a sequence of images to analyze an
elementary programmed human motion. As a consequence, his studies inspired
many works in computer vision later on for human perception understanding.
A historical overview of human action understanding is summarized in Figure 2.1.

Computer vision based motion techniques aim at providing a deep understan-
ding and representation of motion automatically from a sequence of images. The
process is achievable through intelligent machines able to think and reason. This
machine was conceived by Alan Turing who is considered as the father founder 1

of AI. It is initially designed to solve the fundamental problem of decidability in

1. The term Artificial Intelligence has not been chosen at random since it happened that John
McCarthy also would come up with this concept in 1956, two years after Alan Turing’s death.
Moreover, few centuries before, the term of Artificial Intelligence has already been thought in 1315

by Ramon Llull who cogitated about the idea of qualitative and quantitative reasoning could be
artificially implemented in machines.
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arithmetic which had a profound influence over several emerging fields of AI.
These fields include fuzzy logic, genetic programming and kernel methods, as
well as neural networks.

F igure 2.1 – Historical overview of human action understanding. This scheme
focuses on the important phases that have marked the history of
evolution of scientific thoughts for human motion understanding,
from early centuries until the emergence of computer vision and
the deep learning revolution. This figure is inspired by the talk of
[105].
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2.2 Overview on Modern Computer Vision Models
for Action Recognition

Despite the fact that deep neural networks have shown astonishing results and
outperform standard ML models on a wide spectrum of applications, until re-
cently it was still ambiguous for video analysis, whether general ML or DL models
are better for action representation and classification or their combination.
This ambiguity is due to the following reasons : (i) video classification is achieved
by applying directly the DL models targeted to image classification by adap-
ting their inputs format to video data 2 [15] as illustrated in Figure 2.15, initially
designed for image data. Besides, (ii) video data are spatio-temporal, encoding
appearance and motion information while images are static and describe only the
appearance of objects. As a consequence, the convolutional and pooling operators
of DL models don’t encode naturally the temporal aspects of data.
Moreover, the motion representation of video data is not clear. One may argue
that the sequence of frames describing video action is sufficient to achieve action
classification. However, building motion modality from RGB frames could be
helpful to encode rich temporal information while being complementary to spa-
tial information to provide discriminant representation prior to their classification.
Motion modality can be obtained by processing the sequences of frames via the
well known optical flow algorithm [106-109].

In the following sections, we present a review of existing approaches that ta-
ckle the problem of human action recognition from visual data. Various methods,
including hand-crafted detectors/descriptors, learned representations and hybrid re-
presentations as illustrated in Figure 2.2, as well as the classifiers that go along
with, namely shallow (standard machine learning) and the recent deep learning
classifiers which can be divided into two families, vectorial and non-vectorial (graph-
based) as shown in Figure 2.3.

Different approaches are discussed in the subsequent sections ; some of them
are closely related to our contribution while others not. However, the latter pro-
vide an important background about current challenges and solutions designed
up to now in the literature, as well as insights for ongoing research axes for a bet-
ter understanding of the field. Our work is by essence focused on deep learning
methods. The general scheme of action recognition representations approaches

2. Appearance inputs based on rgb frames and motion inputs based on the optical flow
components of rgb frames. The former models the spatial information while the latter the temporal
one.
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that we describe in subsequent sections are summarized in Figure 2.4

F igure 2.2 – Scheme of different methods for action recognition.

2.3 Handcrafted Video Representations

Hand-crafted representation design for action recognition has been an active
research and well studied during at least two decades before the resurgence of
neural networks. Handcrafted representations have achieved good performances
and hence were the standard approaches for different classification problems.
These approaches consist at extracting local statistics, referred to as descriptors,
for both appearance and motion information from raw video frames, followed
by their combination prior to classifying them with ML algorithms such as SVMs.
It includes three main techniques, namely space-time, fuzzy logic and human pose
contours.

2.3.1 Space-time Approach

An action contains several visual characteristics which describe its appearance
and motion information. The former can be color, edge histogram while the later
relies on motion history, conveying information about the temporal structure of
video action. This approach is composed of four ingredients respectively : feature
detector based on Space Time Interest Point (STIP) [110], feature descriptor, feature
aggregator and classifier.

STIP detector can be dense such as V-Fast [111], Hessian detector [112] or sparse
such as cuboid detector [113], Harris 3D [114] and Spatial-Temporal Implicit Shape
Model (STISM) [115]. It aims at detecting interest points for each video segment
w.r.t its spatio-temporal structure followed by their representation relying on local
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F igure 2.3 – This figure shows the different families of methods used in the li-
terature to tackle the problem of action recognition. The red cell
associated to graph methods represent the least investigated ap-
proaches for this particular task. Recently, few works based on
graph methods have emerged to achieve action recognition relying
on 2D/3D skeletons features (already provided). However, action
recognition with graph methods operating on sequences of rgb
frames has comparatively been less investigated and constitutes
one of our contributions in this thesis. Moreover, spatial graph tech-
niques shown in yellow cell are the most commonly used methods
and relatively well explored (in general and in the particular task
of action recognition) compared to spectral ones in green cell.

descriptors such as Enhanced Speeded-Up Robust Features (ESURF) [116], N-jet
[117] or global descriptors such as Histogram of Oriented Gradients (HOG) [118]
and Histogram of Optical Flow (HOF) 3 [119], as well as Motion Boundary Histo-
gram (MBH) [119].

HOG encodes information related to appearance while HOF and MBH provide
information about velocity and speed.

3. See modern computer vision approach (2008) based on hand-crafted video representations
(HOG and HOF) in Figure 2.1.
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F igure 2.4 – This figure gives a general overview on the different approaches for
video action representation, including handcrafted, learning and
hybrid approaches.

The aggregator then combine 4 the resulted STIP features relying on models
based on bag of words 5 such as bag of visual words [121], Fisher vector 6 [124,
125], improved dense trajectories 7 [126] or probabilistic models such as hidden

4. This step of aggregation is quite challenging since the semantic representations are hetero-
geneous. As a consequence, a simple combinations of histograms leads to poor classification.

5. It is introduced for textual contents and retrieval [120] then extended to computer vision
tasks. The general principle consists at representing a documents with a set of words and their
respective frequencies.

6. It is an encoding method inspired by Fisher kernel [122]. It relies on the assumption that
local descriptors can be modeled by a probability density function. Common FV methods use
concatenation or Spatial Pyramid Matching (SPM) [123] to encode coarse spatial information
which can be detrimental to fine-grained actions.

7. Method designed to estimate camera motion and to improve dense trajectories. It aims at
building a robust homography estimation in order to remove inconsistent matches in human
trajectories.
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Markov models, dynamic Bayesian action network [127], Gaussian mixture mo-
dels followed by their classification using SVMs.
For instance, Fisher vector models the distribution of representations over the
datastet using a probabilistic model to build features by keeping first and second
order statistics.

Space-time approaches can be divided also into two families : Space-time vo-
lume and Space-time trajectory.

Space-time volume. Video representation in space-time domain can be seen
as a volume that is represented in 3D spatio-temporal cuboids 8. The latter are
compared using a similarity measure which aims at computing the degree of
their correspondence. Later on, space-time volume has been extended to multiple
modalities, including motion energy image and motion history image [128] com-
bined with HOG prior to their classification with multi-instance SVMs.

Space-time trajectory. Video action can be described by its 2D/3D spatio-
temporal trajectories [129] given human joints. The trajectories are constructed
relying on the displacement field of joints obtained with optical flow.
In order to better estimate camera motion, dense optical flow is combined with
enhanced speeded-up robust features [130]. However, it is computationally expen-
sive to build dense trajectories. For that reason, a sparse trajectory representation
is introduced. It is called saliency map [131]. It allows to avoid the expensive
computational cost of dense features by discarding several features without com-
promising the discrimination power of the resulted representations. Saliency map
feature can be combined with HOG, HOF and MBH to build multi-source feature
representations.

Despite the advantages that space-time approach offer, mainly its invariance
to action speed, it remains challenging to track the joints and modeling multiple
persons in the scenes.

2.3.2 Fuzzy logic Approach

A few works based on Fuzzy Logic (FL) systems (sub-domain of AI) attempt also
to achieve action recognition. Fuzzy logic systems are of particular interest for this
task, especially for real world applications which are characterized by complex
scenes including multi-view variation, camera calibration and uncertainty hand-

8. Which can be sparse or dense.
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ling. In order to tackle these difficulties, fuzzy logic could be the suitable choice.
Its general principal consists at defining fuzzy sets of some parameters w.r.t the
task to solve and its environment. The rules of fuzzy logic system are designed
by an expert which is beneficial to build understandable and interpretable models.

[132] propose a fuzzy logic model to build human action representations based
on log-polar histograms and on temporal self-similarites before their classification
with SVM. Its inputs include human joints and the velocity of human actions.
Similar to [132], in [133] a fuzzy logic model based on C-means clustering is pro-
posed. It first extracts visual features such as human joints and their neighbors,
as well as their speed followed by a fuzzy C-means clustering procedure which
aims at learning different possibilities membership functions for these features.

Most of existing fuzzy logic models for action recognition [132, 133] provide
view dependent representations and hence are limited to recognize actions from
fixed view. However, complex action recognition applications require to recognize
human action from any viewpoint. One may consider to setup different cameras
and calibrate them which is a quite challenging solution when it comes to cope
with real time and real world scenarios. As an extension to [132, 133], authors in
[134] design a view invariant fuzzy logic model using only a single camera. It
proceeds in four steps : human poses contours are extracted relying on qualitative
Poisson human representation ; followed by the estimation of their views which
are then clustered before their classification.

[135] propose a neuro-fuzzy model to build view invariant human action re-
presentation. This model results from the combination of a biologically inspired
model and fuzzy logic model. This biologically inspired model detects motion
features and optimizes them using a quantum particle swarm optimization pro-
cedure, initialized with centroidal voronoi tessellations followed by a fuzzy infe-
rence step which models feature clusters as Gaussian membership functions.

2.3.3 Human Pose Contours-based Approaches

Human pose is composed of a collection of joints. These joints can be described
with their 2D/3D coordinates and with their surrounding joints w.r.t the human
body connectivity to form a cylinder, ellipsoid or skeleton based surface mesh 9.
In this approach, action representations can be built relying on the appearance,

9. Known also as visual hulls. It is a geometric representation based on silhouette shape. Visual
hull construction relies on the assumption that the foreground of an object can be separated by
the background. It results into foreground and background binary image.
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motion of human pose or their combination.

Appearance features are represented with the human joints and their contours
[136]. First, foreground joints are estimated from frames using segmentation tech-
niques [137] to detect contour points [138]. Then, each joint is described with the
foreground features of the image w.r.t its spatial location and with its neighboring
regions to enrich its context [138, 139]. [140] propose to extract scale-invariant fea-
tures from the contours of human pose which are then put into clusters to build
key poses. [141] suggest to divide a frame into a fixed number of cells and grids
to build mutli-scale pose representations of joints, followed by their clustering
before their classification.

Motion features are based on optical flow or its variants [142] such as motion
history image [143], motion histogram volume [144] or histogram of motion in-
tensity representations of joints. [145] use histogram of motion intensity to build
multi-view human motion representation.

Appearance and motion features can be fused in 3D volume such as cuboid to
build a video level representation which is view invariant [144, 146, 147]. Parti-
cularly [148] propose to represent human action as sequences of spatio-temporal
human poses, using a distance measure for matching joints.

2.4 Learning Methods

In the previous section, we described action representation approaches based
on handcrafted detectors and descriptors. Another family of approaches consists
in learning action representation automatically from raw videos in a partial or
complete end-to-end process 10.

We distinguish three learning approaches : (i) Evolutionary strategy, (ii) Dictio-
nary learning and (iii) Deep learning

2.4.1 Evolutionary Strategy

Evolutionary strategy is bio-inspired optimization technique based on the na-
tural evolution of biological populations.

10. End-to end process means that representations are learned and classified jointly and auto-
matically directly from raw data
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Genetic programming is a class of evolutionary strategy used mainly in data mode-
ling, feature selection and as black-box optimization [149]. Its principle consists
in optimizing a system without any prior knowledge on its results.

In action recognition, it is used to learn spatio-temporal motion feature repre-
sentations [125, 150]. Given a sequence of frames and their associated optical
flow components, a group of 3D operators such as Gabor filter and wavelet are
combined to build data-dependent descriptors. These descriptors keep evolving
over the group of 3D operators until meaningful representations are built and
hence action recognition accuracy is maximized through an appropriate fitness
function 11. An example of the whole process is illustrated in Figure 2.5.

F igure 2.5 – Learning video action recognition with genetic programming. Ge-
netic program is represented as tree structure of three components :
selection, crossover and mutation which aim at selecting best perfor-
ming spatio-temporal descriptors from a set of evolving candidates
through generations. Picture credit for [125].

2.4.2 Dictionary Learning

Dictionary learning is a signal processing technique which aims at building
sparse representation of data. In the context of action recognition, dictionary
learning is used to learn sparse descriptors from spatio-temporal action represen-
tation, similar to BoVW methods. It can be divided into three methods. (i) Over

11. Fitness function is an objective function which takes candidate solution as input to the
problem to solve and produces as output the fitting of the candidate solution.
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complete dictionary basis [151] which is a linear combination of small dictionaries
built upon spatio-temporal features. (ii) Dictionary based on hierarchical features
[152] and (iii) transferable cross-view dictionaries [153] as illustrated in Figure 2.6
which provides invariant multi-view action representation. While (i), (ii) and (iii)
are supervised models, [154] propose unsupervised dictionary learning variant
relying on locality constrained linear coding [155] and on trajectories of features.

F igure 2.6 – Cross-view transferable dictionary to build invariant multi-view
action representation. (a) Based on Bag of Visual Words (BoVW)
where the source and target dictionaries are learned individually
from two videos with different views but belonging to the same
action. (b) Based also on BoVW but the source and target dictionaries
are learned simultaneously. Picture credit for [153].

2.4.3 Resurgence of Neural Networks

Hand-crafted descriptors are data-dependent, their performances vary from
one task to another following the intrinsic and extrinsic acquisition conditions
of data. However, there is no universal hand-crafted descriptor. For that reason,
learning descriptors from raw data may be more advantageous.

In this spirit, artificial neural networks approach has been introduced, starting
from the formal neuron [156] and perceptron [157]. Artificial neural networks aim
at learning representations directly from raw data and classifying them jointly in
an end-to-end and differentiable manner. They are composed of a set of neurons
interconnected to build a hierarchical multi-layered structure.
One of the most commonly used artificial neural network for the task of classifi-
cation is feedforward network, which is a directed acyclic graph that maps inputs
to outputs. Artificial neural networks are learned by using Stochastic Gradient
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Descent (SGD) to minimize the loss function described in Equation 1.3, with gra-
dients computed by back-propagation [12, 158].

Multi-Layer Perceptron (MLP) is one of the artificial neural networks composed
of blocks of perceptron layers and non linear activation functions (eg. Sigmoid).
It is modeled as complete bi-partite 12 directed acyclic graph, which takes input
data (image) and outputs its label as depicted in Figure 2.7.

The key success of artificial neural networks resides in their ability to approxi-
mate any continuous function with enough neurons [159]. Deep neural networks
should contain sufficient number of layers and enough neurons to learn expres-
sive inputs-outputs mappings effectively. They learn hierarchical representations
from raw data with an increasing level of abstraction before classifying them.

In particular ConvNets have outperformed state-of-art handcrafted methods in
the task of image classification with a large margin (see Figure 1.6). The strength

F igure 2.7 – Multi layer perceptron for handwritten digits classification. Given
Digits ∈ [0,9], multi layer perceptron learns representations for each
digit and outputs result of classification in a vector of 10 values.
Picture credit for [160].

of ConvNets [11, 14, 158] resides in their ability to provide discriminant and stable
feature representation for classification. Moreover, they are able to learn complex
structures while being invariant to translations and rotations, as well as stability
to small deformation [91]. Figure 2.8 shows examples of translated, rotated and
deformed handwritten digits images that ConvNets are able to classify correctly.

12. Given two sets of vertices where every vertex of the first set is connected to vertices of the
second set.
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Common ConvNets architectures are built by stacking multiple blocks compo-
sed of convolutional operators whose filters are learned with backpropagation, a
non-linear activation function such as Rectified Linear Unit (ReLU) and a pooling
operator used to reduce the dimentionality of the resulting representations and
to build local invariance 13 to transformations at different image locations.

F igure 2.8 – This figure shows the different variations in representing a digit,
including transformation such as translation, rotation and deforma-
tion. A classifier should be invariant to translation, to rotation and
to relatively small deformation in order to classify them correclty.

F igure 2.9 – Architecture of LeNet. A convolutional neural network for hand-
written character recognition. Picture credit for [13].

The initial convolutional neural network architecture was shallow, it is com-
posed of five layers, called LeNet [13] which is initially designed for document

13. This process is similar to Spatial Pyramid Matching (SPM) which achieves local invariance
to transformations in the whole image.
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F igure 2.10 – This figure illustrates AlexNet architecture which won ILSVRC 2012

by outperforming all handcrafted methods on ImageNet dataset
and hence initiating the DL revolution. Picture credit for [14].

F igure 2.11 – VGG-16, an extension of AlexNet with deeper layers. Picture credit
for [161]

recognition. It is depicted in Figure 2.9. However, the first successful deep Conv-
Net was AlexNet, composed of eight layers, appeared 14 years later thanks to the
availability of large-scale datasets, namely ImageNet and efficient computational
GPUs resources to train them in reasonable time. The AlexNet architecture is dis-
played in Figure 2.10.
It won ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 with
a large margin w.r.t state-of-the-art followed then by its extension to ZF-Net (the
winner of ILSVRC 2013) [163], and CNN-F/M/S [164]. Later on, improved and dee-
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F igure 2.12 – Inception V1 architecture, well known as GoogLeNet composed of
22 layers. It obtained state-of-the-art for ImageNet classification in
ILSVRC 2014. Picture credit for [162].

F igure 2.13 – This figure displays ResNet-34, a deep residual network. These
residual connections ease the training process and allow to define
deeper networks while avoiding vanishing/exploiding gradients
problem. Its extension ResNet-152 won ILSVRC 2015. Picture credit
for [16].

per networks have been proposed, called VGG-11/16/19
14 [161]. VGG-16 is illus-

trated in Figure 2.11.

[161] Study the effect of network depth on the performance of classification.
They showed that depth is an important property of networks, increasing it leads
to clearly better performances. However, this requires a huge number of parame-
ters which comes at a high computational cost. In order to control the complexity
of networks and their depth while keeping the computational budget constant,
successive Inception networks (1, 2, 3 and 4) were designed [104, 162]. The first
version of Inception won ILSVRC 2014. It is illustrated in Figure 2.12. However,
increasing depth of networks without a careful design can lead to optimization
issues, resuling into vanishing/explosion of gradients [53]. To circumvent that, se-
veral networks have been designed to facilitate backpropagation including ResNet-
18/34/50/101/152 [16]. ResNet-34 is displayed in Figure 2.13. The ResNet version
with 152 layers won ILSVRC 2015 with a large margin as depicted in Figure 1.6.
Table 2.1 summarizes the statistics of ConvNets including depth and the number
of parameters.

14. 11,16,19 stand for the depth of the network
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Network Depth #Parameters
LeNet [13] 5 60000

Alexnet [14] 8 61M
VGG-11 [161] 11 132M

VGG-16 16 138M
VGG-19 19 143M

Inception V1 [104] 22 6M
Resnet-50 [16] 50 25M

Resnet-101 101 44M
Resnet-152 152 60M

Table 2.1 – Deep learning models complexity in depth and number of parame-
ters. M stands for million.

Later on, several variants have been introduced to reduce the complexity of net-
works and their computational time, including DenseNet [165], Multi-connection
width ConvNets [166, 167], Pyramidal-Net [168], Xception [169], ResNeXt [170]
and SqueezeNet [171], as well as MobileNet [172].

After the success of deep ConvNets on image classification, extension to neigh-
boring tasks such as action recognition have drawn a lot of attention. Nevertheless,
the progress was not as significant as still image classification as deep ConvNets
require huge amount of labeled (training) data which was not the case for action
recognition. However, the representation learned on ImageNet [173] have shown
their versatility and their transferablility to other tasks while outperforming hand-
crafted representations [174]. As a result, this makes it possible to generalize deep
ConvNets to small datasets in two steps ; pretraining them on ImageNet then
fine-tuning them on target datasets for the specific tasks while mitigating the risk
of overfitting, as achieved in early action recognition solutions based on deep
learning [15].

Action recognition in videos. Several action recognition approaches based on
deep neural networks are proposed. In the following sections, we discuss the ma-
jor works proposed in the literature. They can be convolutional or sequence-based,
including different streams (appearance and motion) and their type of aggrega-
tion : spatio-temporal, two-streams, as well different fusion type of sequences of
frames representations : single fusion, early fusion, late fusion and slow fusion.
Moreover, video actions can come from different natures such as raw frames and
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their optical flow components or 2D/3D skeletons features. Figure 2.4 shows dif-
ferent deep action representation methods.

2.4.4 Convolutional Methods

F igure 2.14 – Different approaches for fusing frames representations across tem-
poral dimension. Red, green and blue boxes indicate convolutio-
nal, normalization and pooling layers respectively. In the Slow
Fusion model, the depicted columns correspond to shared para-
meters. Picture credit for [56].

Videos are considered as 3D volumes including spatial and temporal dimen-
sions. As videos have variable duration, a preprocessing step is needed to build
a fixed-size representation to fit the input requirements of ConvNets and this is
usually achieved by sampling a fixed number of frames from all the videos [15,
28].

Deep learning methods for action recognition are by essence based on success-
ful ConvNets for image classification. We distinguish two approaches, namely
single stream and two stream networks. The former operate on rgb frame moda-
lity while the latter on optical flow modality in addition to rgb frames.

2D single stream networks. [56] investigate different ways to fuse temporal
information from a sequence of frames. These ways are illustrated in Figure 2.14,
namely : single frame, early fusion, late fusion and slow fusion. Single frame
approach relies on single frames representations which are fused at the last stage.
Early fusion approach consists at combining in the first layer a set of successive
frames representations. Late fusion approach uses two networks with shared
parameters, their predictions are fused at the last stage. In contrast, slow fusion
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approach is located between early and late fusion. It fuses frames representations
at different stages.
The experimental study conducted by [56] shows that the results are worse compa-
red to handcrafted state-of-the-art features with a large margin. One of the reasons
is that the learned representations do not capture motion features. For that reason,
two stream network has been introduced to encode explicitly motion information.

F igure 2.15 – This figure shows one of the first ConvNets for action recognition.
It is composed of two streams. One for appearance information
based on rgb frame input and another one for motion information
based on the optical flow components of successive frames. Picture
credit for [15].

2D two stream networks. The first successful extension of convolutional neural
networks to tackle action recognition task is modeled as a two stream 2D convolu-
tional network [15] pretrained on ImageNet and then fine-tuned on the targeted
task. One stream operates directly on rgb frames to capture static appearance
representation, called appearance stream and another one is based on optical flow
components of successive frames to describe the dynamic of motion information,
called motion stream. The overall classification accuracy is the combination of the
two stream scores as it is shown in Figure 2.15. This combination can be based on
averaging or SVMs. It is also known as late fusion combination.

Averaging is an intuitive and straightforward fusion strategy for combining
representations coming from appearance and motion stream, as well as for aggre-
gating frames representations before the classification layer. It has the advantage
of not needing any extra parameters to learn while keeping the computational
cost reasonable, thanks to independent back-propagation calculations, one for
each stream.
Despite its effectiveness and simplicity, it has the drawback of modeling spatial
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and temporal information separately. [175] show that their fusion prior to their
classification provide more discriminating representation and hence better results
than the combination of their scores at the end of training. The scheme of this
network is depicted in Figure 2.16. This approach takes the advantage of mo-
deling appearance and motion information explicitly through the two streams
and their fusion leads to good features abstraction capturing the spatio-temporal
aspects of video. This network is able to learn representations specific to each
class while being generic. Moreover, the hierarchy of the network allows to learn
progressively invariance to speed motion.

[176] investigate different methods of fusing appearance and motion represen-
tations in order to best encode spatio-temporal information 15. It includes sum
fusion, max fusion, concatenation fusion and convolutional fusion, as well as bi-
linear fusion. Sum fusion computes the sum of two feature maps at the same
spatial location and channel. Max fusion takes the maximum of the two fea-
ture maps. Concatenation fusion aims at stacking two feature maps at the same
spatial location across the feature channels. Based on the resulted concatenated
feature maps, convolutional fusion convolves them with a collection of trainable
filters to reduce the dimensionality of representations and to weight the combi-
nation of the two feature maps. Bilinear fusion consists at computing a matrix
outer product of the two feature maps at pixel level followed by their summation
w.r.t spatial location.

Temporal aggregation through the sequence of frames representation has also
been studied. While temporal average pooling is the most simple and less expen-
sive operation to aggragate convolutional feature maps over time, two methods
are evaluated to take advantage of complex operations that provide efficient fea-
ture maps while preserving the temporal structure of videos [176].3D pooling
applies directly max-pooling on the stacked feature maps. 3D convolution and
3D pooling convolves feature maps with a collection of filters, followed by a 3D
pooling. One of benefit of 3D pooling is its ability to provide invariance to small
changes of the features location across the frames.

[177] study different pooling strategies including convolutional pooling, late
pooling, slow pooling, local pooling and time-domain convolutional pooling and
find out that convolutional based max pooling outperforms the other pooling
operators. Convolutional pooling aims at performing max-pooling over the last
convolutional layer across the sequence of frames. Late pooling consists at pas-

15. Note that spatial fusion of networks is a well known problem in different applications and
it is not tied to the particular task of action recognition in videos.
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sing the last convolutional representations through fully connected layers before
applying max-pooling across video frames. Slow pooling is a hierarchical com-
bination of frames representations divided into segments. Max-pooling is first
applied over the convolutional features of the frames of a given segment followed
by a fully connected layer. Then, the last max-pooling layer combines the repre-
sentations of all the fully connected layers. Local pooling is relatively similar to
slow pooling. It combines frames representations after the last convolutional layer
followed by two fully connected layers. However, it contains only a single layer
of max-pooling after the convolutional layers compared to slow pooling. Time
domain convolutional pooling contains a temporal convolutional layer which
captures local relationships between successive frames over temporal window
before performing max-pooling in the temporal domain. The different operators
are illustrated in Figure 2.17.

F igure 2.16 – This figure displays a two stream convolutional neural network
based on the fusion of spatio-temporal representations prior to
the first fully connected layers . Activation maximization in red
is used to visualize the spatio-temporal convolutional representa-
tions. Picture credit for [175].

Handling videos of variable length.The ConvNets designed for action recog-
nition operate on fixed-size inputs. Hence, it requires to sample a fixed-size of
frames to fit the input dimensions of ConvNets. Defining a sampling strategy is
challenging since the resulted sample should preserve the temporal structure of
video. [178] propose ConvNet architecture based on Inception-V1 network [162]
(initially designed for image classification. see Figure 2.12) to build long range
temporal modeling for videos. It is called temporal segment network composed of
appearance and motion stream. They propose a sparse strategy to sample frames
across the video instead of random sampling. It consists at dividing the video into
several segments of equal duration. From each segment, snippets are sampled
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F igure 2.17 – This figure displays the different pooling operator architectures.
C stands for stacked convolutional layers. Purple, green, yellow
and orange rectangles represent max-pooling, time-domain convo-
lutional, fully-connected and softmax layers respectively. Picture
credit for [177].

at random. The latter are then fed to appearance and motion stream network.
Figure 2.18 displays the temporal segment network.
Moreover, in addition to rgb frames and their optical flow components modalities,
rgb difference and warped optical flow modalities have been evaluated, showing
their complementary aspects for action classification and hence establishing new
state-of-the-art.

Two-stream residual networks. After the success of ResNet-152 on image clas-
sification task, its two stream variant has been introduced for the task of action
recognition [179, 180] to model rich interaction between the two streams and to
provide discriminant local spatiotemporal features. The idea consists at adding
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F igure 2.18 – Temporal segment network (TSN), each input video is divided into
several segments and a short snippet is randomly selected from
each segment. The class scores of different snippets are fused by
the segmental consensus function to yield segmental consensus,
which is a video-level prediction. Predictions from all modalities
are then fused to produce the final prediction. Segmental consen-
sus function aims at combining the outputs resulted from multiple
snippets to obtain a consensus of class hypothesis among them.
Based on this consensus, the probability distribution of action ca-
tegory is predicted for the whole video sequence. Picture credit
for [178].

unidirectional residual connections from motion stream to appearance stream
only as depicted in Figure 2.19. The reason of the unidirectionality of residual
connections is the possible bias of both losses towards appearance information
because both streams are initialized with pre-trained ResNet weights of ImageNet
targeted to image classification.

[180] explore different cross stream residual connections to appropriately mo-
del the spatiotemporal interactions which is mainly important for discriminating
actions of similar appearance and motion patterns such as brushing teeth and
applying lipsticks. The different type of motion and appearance streams connec-
tions are displayed in Figure 2.20. The ablation study proposed by [180] shows
that simple cross residual connections (see (a) in Figure 2.20) between same layers
of the two streams decreases classification performance compared to separated
two stream network. One of the reason of this decrease in performance could be
related to a large change of signal distribution of given layer of one stream after
fusing it with signal of other stream. As an alternative, extra additive or multi-
plicative residual operators are integrated, separated or not with ReLU activation
function (see (b), (c) and (d) in Figure 2.20).
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F igure 2.19 – Two stream ConvNet with residual connections for action recog-
nition in videos. Picture credit for [179].

It turns out that multiplicative residual connection encodes better spatio-temporal
interaction and provides rich and discriminating features compared to additive
residual connection, as well as increasing the classification performance. The for-
mer better scale the appearance information from motion information and model
efficiently the spatio-temporal interaction thanks to the factorization of gradients
during the backpropagation with the other stream. The last case (see (e) in Fi-
gure 2.20) shows bidirectional residual connections between the two streams. The
performance results show that this bidirectionality lead to a loss in classification
performance which can be explained by the domination of motion stream by
appearance stream since both streams are initialized with ImageNet weights.

End-to-end optical flow generation. Motion stream of two stream networks
operates on optical flow components of successive frames. These components are
computed offline using the traditional optical flow algorithm. This preprocessing
step is required to build motion inputs while being computationally expensive
and storage demanding. [181] propose an unsupervised ConvNet network, called
MotionNet to generate optical flow components on-the-fly for a stack of successive
multiple frames. Given two successive frames f1 and f2, MotionNet generates a
flow field I . f2 and I are then used to reconstruct f1 as f ′

1 relying on inverse war-
ping which consists at minimizing the difference between f1 and f

′
1. Figure 2.21

displays the whole two stream network composed of appearance stream and mo-
tion stream. The latter is composed of two blocks MotionNet and motion stream
respectively.
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F igure 2.20 – This figure shows the different types of interaction created bet-
ween appearance and motion streams for learning rich spatio-
temporal features. In the four first blocks (a), (b), (c) and (d) we
observe four different unidirectional connections going from the
motion to the appearance stream while in the last block (e), bidi-
rectional gating connections between the two streams are created.
Picture credit for [180].

F igure 2.21 – This illustration shows the hidden two-stream network. Spatial
stream operates on a stack of frames to build appearance repre-
sentations which are projected to action categories. MotionNet
takes consecutive video frames as input and estimates motion in
an unsupervised manner followed by temporal (motion) stream
that maps the motion information to action categories. Finally,
late fusion is performed through the weighted averaging of the
prediction scores of the two streams. Picture credit for [181].

3D Convolutional neural networks. Several successful pretrained 2D ConvNets
models are used as image feature extractors. The features are mainly extracted
from the last fully connected layer, known as classification layer. The latter pro-
vides discriminating features ready for classification while being also well suited
for transfer learning tasks [182, 183]. However, these features are not directly sui-
table for videos for the following reasons : i) images are static while videos are
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dynamic, ii) deep image feature representations lack of motion modeling and this
results into less expressive spatio-temporal features.

F igure 2.22 – This figure shows a comparison of 2D (a) and 3D (b) convolutional
filters. The former is initially designed for static images while the
latter is well suited for videos. The sets of connections are color-
coded so that the shared weights are in the same color. Note that
all the 6 sets of connections do not share weights, resulting in two
different feature maps on the right. Picture credit for [55].

[55, 184] propose a 3D ConvNet to learn spatio-temporal features and to encode
explicitly the motion information in videos. 3D ConvNet is an extention of 2D
ConvNet achieved by adding a temporal dimension to 2D convolutional filters
and to 2D pooling kernels. [55] conduct the first study for extending 2D Conv-
Net to 3D ConvNet by designing 3D convolutional filters. The 3D convolution
is achieved by convolving the 3D filters with the cube of multiple frames rather
than a single frame as in the case of 2D filters. Figure 2.22 shows a comparison of
2D and 3D convolutional filters.
The 3D ConvNet proposed in [55] is relatively shallow, composed of 7 layers. It
operates on small-scale datasets and short videos duration of 3 classes (Trecvid)
and of 6 classes (KTH).
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[184] suggest an improved version targeted for large-scale datasets (Sports-1M
about 1.1 million sports videos belonging to 487 sport categories). It first studies
extensively the design of 3D convolutional filters, including convolution on single
frame, on multiple frames and on a cube of frames as depicted in Figure 2.23. It
shows that the choice of their temporal depth is crucial and requires a careful
design. From the experimental study, it is concluded that 3D ConvNet learns rich

F igure 2.23 – This figure shows the different possible types of convolutional fil-
ters targeted for video frames. a) Applying 2D convolution on an
image results in an image. b) Applying 2D convolution on a video
volume (multiple frames as multiple channels) also results in an
image. c) Applying 3D convolution on a video volume results
in another volume, preserving temporal information of the input
signal. Picture credit for [184].

descriptors, including jointly appearance and motion information in contrary to
2D ConvNet. Interestingly, 3D ConvNet captures appearance information from
the first few frames then track the motion information in the remaining frames 16.
This study confirms that ImageNet features (based on 2D ConvNet) are not di-
rectly well adapted for video data. Figure 2.24 illustrates a feature embedding
comparison of ImageNet based on 2D ConvNet and UCF-101 (video dataset des-
cribed in Section 2.5.1) and based on 3D ConvNet using t-distributed Stochastic
Neighbor Embedding (t-SNE) [185]. From this visualization, we observe that 3D
ConvNet features are well separated compared to those of ImageNet.

Two stream 3D convolutional networks. Despite the rich spatiotemporal fea-
tures that 3D ConvNets are able to learn from rgb frames, providing extra motion
modality could be advantageous.
Following the success of Two stream 2D convolutional network, [28] propose its
3D version. Unlike single 3D ConvNet based on rgb frames, two streams 3D Conv-
Net operates on rgb frames and on their optical flow components. One stream
for each modality. Howerver, training 3D convolutional networks from scratch is
challenging and can easily get the model exposed to over-fitting due to the lack
of labeled video data. One alternative is to take advantage of the successful 2D
ConvNets on image classification, using their pre-trained models.

16. This result is obtained by adding deconvolutional layers [163] to the 3D ConvNet model to
interpret its decision
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F igure 2.24 – Feature embedding visualization of ImageNet (images dataset in
the left) based on 2D ConvNet and UCF-101 (videos dataset in
the right) and based on 3D ConvNet. Each video is visualized as
a point and videos belonging to the same action have the same
color. Picture credit for [184].

[28] propose to repeat the (learned) weights of the 2D filters across the time
dimension and to rescale them in order to ensure that convolutional filter res-
ponse is the same. This study compares different 2D/3D ConvNets architectures,
including a) 3D ConvNet on a cube of rgb frames, b) separated two-stream 2D
ConvNets respectively on single rgb frames and on a stack of multiple optical
flow components of frames, c) 3D fused two stream ConvNet similar to the latter,
but followed by a 3D convolutional layer that fuses the appearance and motion
feature representations resulted from the 2D two streams, before their classifica-
tion and a d) two-stream 3D ConvNet based on late score fusion. It is composed
of an appearance stream which operates on multiple rgb frames and a motion
stream which takes as input a cube of optical flow components. Figure 2.25 de-
picts these different cases a), b), c) and d) respectively.
The Experimental results show that d) two stream 3D CNN performs better

than other two stream variants. Particularly, it outperforms single 3D ConvNet
based only on rgb frames, confirming the complementary aspect of optical flow
components even if 3D ConvNet should be able to capture motion information
from rgb frames directly. The need of motion modality can be explained by the
fact that optical flow is a recurrent algorithm that performs iterative optimization
for the flow fields while 2D/3D ConvNets lack of recurrence.
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F igure 2.25 – This figure shows the different video architectures based on
2D/3D ConvNets, including rgb frames and optical flow based
modalities. K stands for the total number of frames in a video,
whereas N stands for a subset of neighboring frames of the video.
Picture credit for [28].

Another 3D ConvNet based on the extension of DenseNet [165] to 3D is in-
troduced [186]. Unlike [28], [186] rely on a single 3D stream. It is particularly
composed of temporal pooling layer with multiple depths in the purpose of cap-
turing different temporal depths. This is achieved by pooling kernels of variable
temporal sizes.

Two-stream ConvNets understanding. Despite the success of 2D/3D two streams
ConvNets on action recognition task, the understanding of their decision remains
unclair. [175] study the spatio-temporal features learned by two stream ConvNets
by the visualization of their convolutional filters. Two key conclusions are repor-
ted. Early layers show similar spatial structure for appearance and motion while
higher layer at fusion level, filters are broadly tuned to multiple speeds and can
be specific but also generic across classes.

Visually, it is shown that the filters of the last convolution layer which fuses
appearance and motion convolutional representations (see Figure 2.16) are acti-
vated by different coloured blobs in the appearance input and by linear motion
of circular regions in the motion input (see section 4.2 in [175]) which reflect the
spatiotemporal representation of an action. Figure 2.26 displays the activation of
a single filter of the last convolutional layer on appearance and motion inputs.
The study confirms the importance of rgb and optical flow modalities, as well as
their interaction for learning rich video representation.
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F igure 2.26 – Studying a single filter at layer conv5 fusion : (a) and (b) show
what maximizes the unit at the input : multiple coloured blobs in
the appearance input (a) and moving circular objects at the mo-
tion input (b). (c) shows a sample clip from the test set, and (d)
the corresponding optical flow (where the RGB channels corres-
pond to the horizontal, vertical and magnitude flow components
respectively). Picture credit for [175].

Hybrid descriptors. [187] assess the complementary of handcrafted and lear-
ned video descriptors. Their combination improve action classification perfor-
mances with an important gap. The method is based on convolutional features
extracted from a targeted layer of two stream ConvNets to build a video represen-
tation. Different convolutional layers are exploited during the extraction to take
the advantage of the different levels of abstraction that each layer provides. The
obtained appearance and motion convolutional feature maps are normalized to
have the same spatial extent. These feature maps along with trajectories points 17

(handcrafted features) in the video are pooled over the 3D volume. The resulted
video representation is called trajectory-pooled deep convolutional descriptors (TDDs).
These TDDs are then encoded in Fisher vector prior to their classification with
linear SVMs. The process of TDDs construction is depicted in Figure 2.27.

2.4.5 Sequence Models

ConvNets were designed to deal with spatial data. Despite their success on
image classification task, they have the issue of ignoring the temporal structure
in the case of spatio-temporal data such as videos.
As an alternative, RNNs are proposed to model temporal dependencies in data.
However, standard RNNs are not appropriate for videos due to their difficulty of
learning over long sequences (videos of several frames), well known as vanishing
and exploding gradients problem [53]. To circumvent that, Long Short Term Me-
mory (LSTMs) which is a variant of RNN is introduced. They have the ability to use
memory cells in order to store, modify and access internal state for discovering

17. Based on improved dense trajectories [126] described in Section 2.3.1.
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F igure 2.27 – The overall scheme of trajectory-pooled deep convolutional des-
criptors (TDDs) construction. It is composed of three steps. 1)
trajectories extraction using improved dense trajectories [126]. 2)
Multi-scale convolutional feature maps extraction relying on two
stream network [15]. 3) computation of TDDs. Picture credit for
[187].

long range temporal dependencies while providing invariant representations to
ordering.

[188] suggest LSTMs based model to tackle the problem of action recognition in
videos. This model operates on handcrafted features built using Scale-Invariant
Feature Transform (SIFT) and BoVW descriptors which impede learning and fine-
tuning the features in an end-to-end manner.
In contrast, [189] propose to stack an LSTM layer on the top of 2D ConvNet layers
to incorporate explicit motion information modeling, fine-tuning convolutional
and recurrent layers jointly in an end-to-end manner directly from (raw) rgb
frames and their optical flow components.

In [190], the authors use a 3D ConvNet-LSTM model for video captioning. This
model is composed of encoder (ConvNets) and decoder (LSTM) layers designed
for the purpose of capturing local spatiotemporal information and an attention
mechanism to provide the global context of video action. This attention mecha-
nism is an alternative to global average pooling. Unlike the latter which averages
the representations across all the frames, the former applies a weighted average
operator to aggregate the representations. The weights associated to the attention
layer are based on the LSTM outputs. This encoder-decoder is then extended for
the specific task of action recognition [28, 191].
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2.4.6 Skeleton based Action Recognition

In the previous sections we presented state-of-art methods for action recogni-
tion. These methods operate on sequences of (rgb) frames and their respective op-
tical flow components modalities. Particularly, human actions can be represented
by the different trajectories of skeleton joints based on human body connectivity.
These joints are described either with their 2D or 3D coordinates. They are used
then to build motion information by tracking their trajectories.

Sequence based models. Human action recognition based on skeletons can
be seen as time series [192]. Different motion characteristics for each joint are
extracted over time to represent human actions. One of the successful models to
represent time series is recurrent neural network which is capable of modeling
at some extent long range contextual information of variable temporal sequences
such as skeletons.

[193] propose a hierarchical recurrent neural network for skeleton classification.
The skeleton is divided first into five parts, including left arm, right arm, trunk,
left leg and right leg. These parts are then fed into five bidirectional recurrent neu-
ral network BDRNN. The respective representations extracted from these BDRNN

are fused hierarchically. The last BDRNN before the classification layer contains
Long Short Term Memory (LSTMs) units employed in the purpose of overcoming
the exploding/vanishing gradient problem [53]. Figure 2.28 illustrate the whole
network.

Convolutional models based human pose estimation. Skeleton features ba-
sed 2D/3D coordinates can be handcraftedly designed or estimated from video
frames. This is a tedious task which requires lots of human involvement to anno-
tate them and may result into inaccurate labeling. This task aims at inferring the
position of a person and its joints from images or video frames. It rises several
challenges.

An image can contain a variable and unknown number of people at any location
with different scales. Dynamic visual scenes suffer from complex spatio-temporal
overlapping of people induced by their interactions which results into crowded
scenes, occlusion of body parts and the difficulty to associate correctly the body
parts.

[194] propose a ConvNet model for estimating 2D multi-person pose. This
model learns to detect body parts and their association jointly in an end-to-end
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F igure 2.28 – This figure shows the proposed hierarchical recurrent neural
network for skeleton action recognition. BRNN stands for bi-
directional recurrent neural network. Picture credit for [193].

manner. It outputs joint heatmaps indicating the estimated probability of each
joint at every pixel and the affinity between pairs of joints. This affinity is useful to
associate the different estimated joints into human skeleton. Figure 2.29 displays
examples of estimated poses in different environments.

Based on this 2D pose estimator, [195] propose a novel motion representation
of video action that encodes the probability distribution of human joints over
sequence of frames, as an alternative to optical flow which gives uniform impor-
tance to all the pixels independently of the context. This novel representation is
based on heatmaps associated to every joint across the frames. They are colorized
using a color indicating the time of the frame. The resulted colorized heatmaps of
each joint are summed across the video frames to build a fixed-size, high dimen-
sional and sparse video representation. The latter is fed to a ConvNet to achieve
action classification. Figure 2.30 depicts the process of poses estimation and their
colorization to build video level representation for action classification.
This representation has shown its complementary aspects to optical flow mo-

dality [28]. The late fusion of their scores brings important gain in performance.
Moreover, the combination of the scores of colorized heatmaps representation,
optical flow components and rgb frames modalities allows to achieve state-of-the
art results.

Graph ConvNets on skeletons. The generalization of ConvNets on irregular
domains [63] such as graphs and manifolds has drawn the attention of computer



52 action recognition state -of -the -art

F igure 2.29 – Examples of poses estimated in different environments. Picture
credit for [194].

vision community, particularly the one of human action recognition.

2D/3D human skeletons can be seen as graphs where the nodes and the edges
represent respectively the joints and their spatio-temporal interaction through
video frames. One of the advantages of graph methods over vectorial ones is
their ability to explicitly encode the geometric structure of objects into scenes, in
contrary to vectorial methods which vectorize scenes prior to their classification.

Despite the fundamental challenges in designing convolutional and pooling
operators on graphs [100], a few solutions have emerged, including spatial me-
thods [85] and spectral ones 18 (see the different families of methods in Figure 2.3)
[99].

[196] propose a spatial graph ConvNet, called STGCN to achieve action classi-
fication on graph skeleton. They represent skeleton as a spatio-temporal graph

18. Spectral methods consist in achieving convolution in the Fourier domain
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F igure 2.30 – This figure illustrates a motion representation of human action.
Given a video, joint heatmaps are extracted for each frame and co-
lorized using a color that depends on the relative time in the video
clip. For each joint, its colorized heatmaps across the sequence of
frames are aggregated to obtain the clip-level video representation
with fixed dimension. Picture credit for [195]

where joints are connected spatially according to the human body connectivity
and temporally connecting the same joints between successive frames. The resul-
ted graph is then fed to STGCN for classification.
STGCN is composed respectively of 2D and 1D convolutional layers to deal with
spatial skeletons and temporal ones. Figure 2.31 displays the architecture of
STGCN.

2.5 Evaluation Datasets

Datasets are crucial to train and to assess the relevance of ML models on the
targeted tasks along with corresponding evaluation metrics. The choice of appro-
priate dataset depends on multiple factors. (i) A suitable dataset should reflect
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F igure 2.31 – This figure shows the architecture of spatio-temporal graph Conv-
Net (STGCN). Inputs of STGCN consist of a collection of skeletons
estimated from rgb video frames, relying on a ConvNet for pose
estimation. Multiple layers of spatial-temporal graph convolution
STGCN will be applied and gradually generate higher-level fea-
ture maps on the graph. It will then be classified by the standard
Softmax classifier to the corresponding action category. Picture
credit for [196].

the constraints and challenges faced in concrete applications, as well as ensuring
that it covers large enough variability of real and complex environments. (ii) Its
size plays a crucial role in evaluating the validity of ML models and their sca-
lability. Moreover, ML models are data-hungry, particularly DL ones which are
quickly exposed to overfitting when trained on small datasets. (iii) Budget is a
major bottleneck to cope with. Successful models are data and computational
resources consuming. Finding a trade-off between training complex models (on
large datasets) and computational efficiency requires a careful design.

In this thesis, we choose datasets that cover the challenges discussed in Sec-
tion 1.3.3 of reasonable size to fit our computational resources. Including different
modalities, ranging from 2D/3D skeletons to RGB frames in order to show the
flexibility of our models and hence best fit real data that come from different
sources. Moreover, this choice relies also on the input requirements of models :
vectorial deep learning and geometric deep learning. Table 2.2 gives an overview
of the selected datasets.

2.5.1 UCF-101

UCF-101 is an action recognition dataset of realistic videos collected from You-
Tube. It is an extension of UCF-50 dataset. Table 2.3 summarizes the its characte-
ristics. It is particularly challenging due to its large variation in camera motion,
large intra-class variability, the presence of multiple persons (with different poses)
and objects at different scales. The action categories are divided into five types
as depicted in Figure 2.32 : human-object interaction, body-motion only, human-
human interaction, playing musical instruments and sports.
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Dataset #Actions Clips Background Camera motion Modalities Resource #Splits Evaluation metric
RGB Skeletons

UCF 101 13320 D 3 3 7 Y 3 Accuracy
HMDB 51 6766 D 3 3 7 M, Y, W 3 Accuracy
JHMDB 21 928 D 3 3 2D M, Y, W 3 Accuracy

SBU 8 282 S 7 3 3D L 5 Accuracy

Table 2.2 – Summary of datasets : UCF [197], HMDB [198], JHMDB [199] and
SBU [200]. From RGB frames, optical flow modality is computed
to represent the motion information in videos. D, S, M, Y, W and L
stand respectively for Dynamic, Static, Movies, YouTube, Web and
Laboratory environment. The splitting process of each dataset is
described in Section 2.5.4.

Actions 101

Clips 13320

Groups per action 25

Clips per group 4-7
Mean clip length 7.21 sec

Total duration 1600 mins
Min clip length 1.06 sec
Max clip length 71.04 sec

Frame rate 25 FPS
Frame size 320× 240

Audio Yes (51 actions)

Table 2.3 – Summary of the characteristics of UCF-101.

2.5.2 HMDB-51 and JHMDB-21

HMDB-51 is an action category dataset of realistic videos collected from mul-
tiple sources including movies, Prelinger archive database, YouTube and Google
videos. Each action category contains at least 101 clips. The actions are grouped
into five types : general facial actions, facial actions with object manipulation,
general body movement, body movement with object interaction, body move-
ments for human interaction. Table 2.4 summarizes the different characteristics
of HMDB-51 and its subset JHMDB-21.

Clips have diverse contents and are taken under extremely uncontrolled condi-
tions such the ones of UCF-101 described in Section 2.5.1. Moreover, HMDB-51

has its specific conditions including clip quality, visibility of body parts as illus-
trated in Figure 2.33. The 51 action categories belonging to HMDB and 21 ones
of JHMDB are illustrated in Figure 2.34.
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F igure 2.32 – UCF-101 dataset. The color of frame borders indicates to which
action category they belong : Human-object Interaction, Body-
Motion only, Human-Human interaction, Playing musical instru-
ments, Sports. Picture credit for [197].

One of the particularity of JHMDB-21 compared to HMDB-51 is its extra 2D
skeleton modality which can serves also as pose estimation dataset. However,
annotating all the clips of HMDB-51 to get the 2D coordinates of persons at
different frames is time consuming and adds extra difficulty due to variations in
pose, human sizes, motion blur, partial body visibility. For that reason, 21 action
categories from HMDB-51 are considered (in JHMDB-21) in the way that they
correspond to single person actions such as run, throw, shoot, etc. as illustrated
in Figure 2.34.
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HMDB JHMDB
Actions 51 21

Clips 6766 928

Frame rate 30* FPS 30* FPS
Frame size 320× 240 320× 240
Skeletons 7 2D

Table 2.4 – This table summarizes the characteristics of HMDB-51 dataset and
of its subset JHMDB-21. * stands for variable FPS. This variability is
due to the collection of videos from different sources. FPS is then
converted to 30 FPS for all the clips.

In spite of this, it remains challenging to achieve action classification as only 2D
joints coordinates through the sequences of frames are provided, deprived from
rich appearance and motion information.

F igure 2.33 – Specific characteristics of HMDB-51. a) Visible body part, b) Ca-
mera motion, c) Camera view point and d) Clip quality. Picture
credit for [198].

2.5.3 SBU

SBU-8 is a two-person interaction dataset acquired in a laboratory environ-
ment using the Microsoft kinect sensor which provides an adequate accuracy of
real-time full-body tracking with low cost [200]. It includes eight types of actions
performed by seven participants, namely : approaching, departing, pushing, ki-
cking, punching, exchanging objects, hugging and shaking hands as shown in
Figure 2.35. These actions are relatively challenging (but less challenging than
UCF-101, HMDB-51 and JHMDB-21) because they are non-periodic actions and
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F igure 2.34 – HMDB-51 dataset. The red color of frame borders indicates the
action categories that belong to JHMDB-21 dataset.
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Actions 8

Number of participants 7

Clips 282

Frame rate 15 FPS
Frame size 640× 480
Skeletons 3D

Table 2.5 – Summary of characteristics of SBU.

have similar body movements such as shaking hands and exchanging objects. The
entire dataset has 282 clips including three modalities, RGB images, depth map
and 3D skeletons (which are more accurate than the 2D skeletons of JHMDB-21).
The general characteristics of SBU are summarized in Table 2.5.

F igure 2.35 – Visualization of the eight two-persons interaction actions belon-
ging to SBU-8 dataset. Picture credit for [200].

In our work, SBU-8 and JHMDB-21 based respectively on 3D and 2D skele-
tons are of particular interest to achieve action recognition with geometric deep
learning models, where skeletons represent graphs.
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2.5.4 Train and Test Splits Construction

UCF-101. Three distinct pairs of training and test splits are generated. They
have been constructed in a way to keep the action groups separate, ensuring that
action clips from the same group are not shared in the same train and test split
since the clips which belong to the same group are obtained from a single long
video [197]. The clips of one action category are divided into 25 groups which
contain four up to seven clips each. Each test split has 7 different groups and their
respective remaining 18 groups are used for training [197].

HMDB-51. It is composed of three distinct pairs of train and test splits. They
have been built in a way to guarantee that clips from the same video are not used
in the same train and test split. In addition to, for each action category, 70 training
and 30 testing clips are selected w.r.t to the 70/30 balance for each characteristic
(see Figure 2.33)[198].
JHMDB-21 follows the same splitting protocol as the one proposed for HMDB-51

[199].

SBU-8. From 282 clips, divided into 21 sets 19 of two actors, five folds of 4-5
two-actor sets are constructed. Four folds are used for training and one for testing.
This partitioning ensures that each two-actor set appears only in training or only
in testing [200].

Accuracy metric. It is the most commonly used metric to evaluate the perfor-
mances of supervised models in the task of classification. It is defined as the ratio
of the number of correct test predictions to the total number of examples in the
test set. In the case of several splits, the overall performance corresponds to the
average accuracy over all the test splits.

2.6 Conclusion

In this chapter, we have provided the development of human action unders-
tanding, and we have reviewed several video representation methods including
handcrafted and learned approaches. We have also discussed several classes of
standard deep learning architectures and particularly those targeted for the task
of action recognition, which are the most relevant to our work. This discussion
includes the emerging field of geometric deep learning and its recent applications

19. Each set contains clips of a pair of different persons performing all the 8 actions. In each
action, one person is acting and the other person is reacting
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in action recognition. Moreover, we have presented different video action moda-
lities including rgb frames and their optical flow components, as well as 2D/3D
joint skeletons on which machine learning and deep learning models can ope-
rate. Finally, we have described the different datasets, and their proposed training
and test split procedures used to assess our video representations and our models.

Despite the different modalities and the multifariousness of action recognition
datasets we have, it is still challenging to achieve action recognition. The chal-
lenges include lack of understanding of the most important video features, and
the properties of machine learning and deep learning models to achieve action
recognition.

In the next chapter, we present our first contribution which consists in handling
videos with varying length and context and also the variable temporal granularity
in action categories. Our solution is based on temporal pyramid representation of
videos, and on multiple aggregation learning.
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Chapitre abstract

Deep Convolutional Neural Networks (ConvNets) are nowadays achie-
ving significant leaps in different pattern recognition tasks including
action recognition. ConvNets stack multiple convolutional, pooling
and fully connected layers. These networks are increasingly deeper,
data-hungrier and this makes their success tributary to the abundance
of labeled training data. While convolutional and fully connected ope-
rations have been widely studied in the literature, the design of pooling
operations that handle action recognition, with different sources of tem-
poral granularity in action categories, has comparatively received less
attention, and existing solutions rely mainly on max or averaging ope-
rations. The latter reduce dimensionality of output layers (and hence
attenuate their sensitivity to the availability of labeled data) ; howe-
ver, this process may dilute the information of upstream convolutional
layers and thereby affect the discrimination power of the trained re-
presentations, especially when the learned categories are fine-grained.

63



64 multiple aggregation networks for action recognition

Therefore, these existing pooling operators are clearly powerless to
fully exhibit the actual temporal granularity of action categories and
thereby constitute a bottleneck in classification performances.
In this chapter, we introduce a novel hierarchical pooling design that
captures different levels of temporal granularity in action recogni-
tion. Our design principle is coarse-to-fine and achieved using a tree-
structured network ; as we traverse this network top-down, pooling
operations are getting less invariant but timely more resolute and
well localized. Learning the combination of operations in this net-
work which best fits a given ground-truth is obtained by solving a
constrained minimization problem whose solution corresponds to the
distribution of weights that capture the contribution of each level (and
thereby temporal granularity) in the global hierarchical pooling pro-
cess. Besides being principled and well grounded, the proposed hierar-
chical pooling is also video-length and resolution agnostic. Extensive
experiments conducted on the challenging UCF-101, HMDB-51 and
JHMDB-21 databases corroborate all these statements.

The work in this chapter has led to the publication of two conference
papers :

• Ahmed Mazari and Hichem Sahbi. Deep Temporal Pyramid De-
sign for Action Recognition. In the 44th IEEE International Confe-
rence on Acoustics, Speech and Signal Processing (ICASSP). Brigh-
ton, United Kingdom, 12-19 May 2019, pp. 2077-2081.

• Ahmed Mazari and Hichem Sahbi. Coarse-To-Fine Aggregation
For Cross-Granularity Action Recognition. In the 27th IEEE In-
ternational Conference on Image Processing (ICIP). Abu Dhabi,
United Arab Emirates, 25-28 October 2020.

3.1 Introduction and Related Work

Action recognition is standing as one of the most challenging problems in vi-
deo processing which consists in assigning one or multiple semantic categories
to moving objects. The challenge in this task stems from (i) the difficulty to learn
mapping models that assign action categories to frames while being resilient
to the intrinsic properties of actions (human appearance and motion, articula-
tion, velocity, etc.) and also their extrinsic acquisition conditions (camera motion
and spatial-temporal resolution/scale/length, illumination, occlusion, cluttered



3.1 introduction and related work 65

background, etc.), as well as (ii) the hardness in hand-labeling large collections
of training videos prior to build these mapping models. Therefore, this affects
the accuracy of multiple related applications such as scene understanding [30,
201, 202], video surveillance [203, 204], video caption generation and retrieval [31,
205-213] as well as human computer interaction and robotics [214-217]. Most of
the existing action recognition solutions are based on machine learning (ML) [17,
19-22, 26, 126, 152] ; their general recipe consists in learning functions that map
visual content representations of frame sequences (either handcrafted or learned
[218-221]) into categories using widely known ML algorithms such as random
forests, support vector machines [20, 21, 222] and deep networks [15, 28, 175, 176,
179, 180, 195].

Among the ML solutions for action recognition those based on deep networks
are currently witnessing a major interest [16, 88, 223-226] but their success is tri-
butary to the availability of large amount of labeled training data and also the
appropriate choice of their architectures including convolutional and recurrent
ones [15, 28, 175, 176, 179, 180, 195, 227]. In particular, convolutional networks
are designed by stacking multiple convolutional, pooling and fully connected
layers ; successful architectures for action recognition include two-stream 2D/3D
ConvNets [15, 176] operating on appearance and motion flows, and ConvNets
combined with Long Short-Term Memory (LSTM) networks [228] that capture
coarse temporal structure of actions as well as 3D ConvNets [28] which capture
fine (local) temporal structures. However, and beside issues related to scarcity
of labeled data 1 and the large number of training parameters 2 (especially in 3D
ConvNet models), the effort in the design of deep networks, that capture the re-
levant motion information in videos, has been focused essentially on optimizing
their convolutional and fully connected layers 3 while comparatively the design of
optimized pooling layers received less attention especially on non-vectorial data
including video sequences. The difficulty in designing architectures with suitable
pooling (a.k.a aggregation) operators, particularly on video sequences stems from
the eclectic properties of videos (namely their duration, temporal resolution and
velocity of moving objects as well as the granularity of their action categories) and
this makes pooling design very challenging. This challenge is further exacerbated
by the lack of labeled video data (covering all the variability) compared to other

1. Labeled video data are usually difficult to collect and expensive even at reasonable frame
rates

2. Training and fine-tuning ConvNets (together with their hyper-parameters) for the challen-
ging task of action recognition is known to be memory and time demanding even when using
highly efficient GPU resources and reasonable size videos

3. Convolutions and multi-layer perceptron have been largely studied since the early age of
artificial neural networks and also in other problems in image processing including wavelet filter
design
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neighboring problems such as image classification that benefit from labeled sets
which are at least an order of magnitude larger compared to the current action
recognition datasets while the task is inherently far more challenging ; as a result,
these action recognition models are more subject to overfitting.

In order to attenuate such effect, pooling methods [69, 71, 229] have been de-
signed, and most of them are based on global measures including max and ave-
raging operators. Pooling plays a key role in reducing the dimensionality of
convolutional feature maps and thereby the number of training parameters and
enhances the resilience, of the learned ConvNet representations, to the lack of trai-
ning data and to the acquisition conditions. However, it comes at the detriment
of some relative loss in the discrimination power especially when video data
belong to fine-grained action categories. Indeed, pooling contributes in diluting
(averaging) convolutional features which are highly important in discriminating
fine-grained categories and these averaging operators are rather more appropriate
for coarse-grained actions (see Figure 3.1). Alternative and more recent solutions
[15, 28, 175, 176, 179, 180] rely on sampling and stacking ConvNet features in
order to build spectrogram-like fixed length representations that also preserve the
granularity of video actions. Nonetheless, both methods suffer from several draw-
backs ; on the one hand, pooling methods based on global statistical measures
are time/duration agnostic (and hence invariant) but less discriminating while
spectrogram-like (see Figure 3.7) methods are discriminating but time/duration
aware (less invariant) and highly sensitive to the aforementioned video acquisi-
tion conditions and may result into a loss of information, especially when videos
are not well resolute.

A more suitable pooling should gather the advantages of these two families of
methods while discarding their inconvenients. Following this goal, we consider
in our work a hierarchical aggregation scheme that describes moving scenes at
multiple temporal granularities while also being resilient to their highly variable
acquisition conditions. Top levels in this hierarchical aggregation provide order-
less (invariant) but less discriminating motion and appearance representations
which capture coarse-grained action categories (as global averaging technique)
while bottom levels correspond to fine-grained, timely resolute and order-sensitive
video representations [227, 230]. The design principle of our proposed solution
is coarse-to-fine and allows us to capture a gradual change of invariance and
granularity ; as we traverse the hierarchy top-down, our video representations
are getting less invariant but timely more resolute and fine-grained. However,
knowing a priori which levels in this hierarchy are the most appropriate in order
to capture the actual granularity of our video data is challenging and also com-
binatorial ; hence, learning this combination "end-to-end" and in a differentiable
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manner is rather more appropriate.

Considering this line of research, other related works [231-235] try to model
granularity of actions in videos by incorporating specific modules into ConvNets.
The method in [231] samples, from each video, frames as well as their associated
optical flow components and adds a spatio-temporal pyramid module to Conv-
Net in order to capture hierarchical relationships between appearance and motion
features. The method in [232] stacks a temporal pyramid pooling layer on the top
of motion and appearance ConvNet streams in order to build fixed-length video
representations. In [233], authors sample a set of frames by first splitting videos
into segments and taking frames from each segment, and build a spatial pyra-
mid to extract multi-scale appearance features from different convolutional layers.
These features are then concatenated and fed to a three level temporal pyramid.
The work in [234] samples video frames at different temporal resolutions, and
feeds them to a 3D ConvNet in order to extract their respective features follo-
wed by a temporal pyramid which down-samples and concatenates the resulting
features. Finally, the method in [235] achieves frame sampling followed by a tem-
poral pyramid pooling in order to build features at different pyramidal levels ; the
resulting features are afterwards fed to a temporal relational layer that groups
these features at different scales. While all these methods rely on a hierarchical
temporal aggregation scheme, none of them considers the issue of learning the
best combination of levels in these temporal aggregation hierarchies, and this
turns out to be highly effective as shown in the following sections.

In this chapter we introduce a novel scheme for action recognition based on
Multiple Aggregation Networks. Given a hierarchy of aggregation operations, the
goal is to learn a combination of these operations that best fits a given action
recognition ground-truth. We solve this problem by minimizing a constrained
objective function whose parameters correspond to the distribution of weights
through multiple aggregation levels ; each weight captures the granularity of its
level and its contribution in the global learned video representation. Besides hand-
ling aggregation at different levels, the particularity of our solution resides in its
ability to handle variable length videos (without any up or down-sampling) and
thereby makes it possible to fully benefit from the whole frames in videos.

The rest of this chapter is organized as follows. First, we describe in Section 3.2
our motion and appearance streams used to build frame-wise representations.
Then, we introduce in Section 3.3 our main contributions ; a method based on "li-
near/nonlinear kernel" combination as well as "end-to-end" two stream ConvNets
that aggregate and combine the obtained frame-level representations into tempo-
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F igure 3.1 – Examples of fine and coarse-grained actions. The first row shows
three action categories from the MLB-YouTube dataset [236] : “No
swing”, “Swing” and “Bunting” which are difficult to distinguish as
they have very small differences. The second row shows two instru-
ment playing actions from the UCF-101 dataset [197] : “cello” and
“violin” which are also difficult to distinguish as their arm/hand lo-
cations and directions are similar. In contrast, the third row shows
“Pat on back”, “Butt kick” and “Shaking hand” actions (taken from
NTU RGB+D dataset [237]) which are relatively easier to distin-
guish.

ral pyramids in order to achieve action recognition. Finally, we show, in Section 3.4,
the validity of these contributions through extensive experiments using standard
and challenging video datasets including UCF-101, HMDB-51 and JHMDB-21.

3.2 Frame-wise Two-Stream Video Description at
a Glance

We consider a collection of videos S = {Vi}ni=1 with each one being a sequence
of frames Vi = {fi,t}Tit=1 and a set of action categories (a.k.a classes or categories)
denoted as C = {1, ..., C}. In order to describe the visual content of a given video
Vi, we rely on a two-stream process (see Figure 3.2) ; the latter provides a com-
plete description of appearance and motion that characterizes the spatio-temporal
aspects of moving objects and their interactions. The output of the appearance
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F igure 3.2 – Our two stream network including a ResNet block, a temporal py-
ramid block and “batch norm+fully connected+softmax+late fu-
sion” layers. The temporal pyramid block achieves pooling either
by weighted averaging or weighted concatenation (see Equation 3.1
and also Figure 3.3) (Better to zoom the PDF version).
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F igure 3.3 – Aggregation by “averaging” vs. aggregation by “concatenation”.

stream (denoted as {φa(fi,t)}Tit=1 ⊂ R2048) is based on the deep residual network
(ResNet-101) 4 trained on ImageNet [223] and fine-tuned on UCF-101 [197] while
the output of the motion stream (denoted as {φm(fi,t)}Tit=1 ⊂ R2048) is also based on
the ResNet 101 network but trained on optical flow image pairs [178, 238] ; these
pairs correspond to the horizontal and the vertical displacement fields which are
linearly transformed in order to make their ranges between 0 and 255.
Besides the high performances reported in ImageNet classification [239], the par-
ticularity and the strength of ResNet resides in its skip connections which (i)
reduce the sensitivity of the network to its architecture and (ii) reduce the effect
of gradient collapse/explosion thereby making the optimization and fine-tuning
of this network parameters (through stochastic gradient descent) effective and
numerically more stable.

Following the line in [15, 178] and in order to adapt the pretrained ResNet-101

to optical flow data, we slightly update the input layer of the original ResNet 5.
Indeed, the number of channels is reset to 20 instead of 3 in the original ResNet ;
the initial weights of these 20 channels are obtained by averaging the 3 original
(appearance) channel weights and by replicating their values through the 20 new
motion channels. During training, closely related methods (namely [178]) split
each video into N continuous segments, and for each segment, a frame f is
randomly selected to feed an appearance stream ResNet and a stack of optical
flow is also taken (starting from f ) as an input to the motion stream. In the
setting of [178], scores obtained from the softmax layers of motion and appearance
streams are fused through different frames using a segmental consensus function
in order to make class prediction at the video level ; in other words, for each

4. Or on ResNet-152 trained on ImageNet only. See Table 3.1.
5. Already available/pretrained on ImageNet to capture the appearance.
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test video, 19 frames 6 are uniformly sampled and passed through appearance
and motion streams and their scores are combined as votes for all the action
categories. As shown subsequently, and in contrast to [178], our proposed method
relies on a different aggregation scheme that models coarse as well as fine grained
action categories ; our method does not require any frame (re)sampling which may
degrade performances (as also shown later in experiments) indeed, our method
effectively leverages the entire set of video frames.

F igure 3.4 – This figure shows frame aggregation at each node of the temporal
pyramid for appearance (top) and motion streams (down). φa(fi,t)
stands for the appearance representation of the tth frame of video Vi.
It can be based on the deep residual network (ResNet-152) trained
on ImageNet or on ResNet-101 trained on ImageNet and then fine-
tuned on UCF-101. φm(fi,t) is the motion representation of the tth

frame of video Vi obtained with ResNet-101 trained on optical flow
data of UCF-101 dataset.

6. The reason for choosing 19 frames is explained by the fact that the minimum number of
video frames in UCF-101 is 28, hence 19 is the maximum number from which a stack of 10 optical
flow frames can be taken.
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3.3 Multiple Aggregation Learning

Given a video Vi with Ti frames, we define N as a tree-structured network
with depth up to D levels and width up to 2D−1. Let N = ∪k,lNk,l with Nk,l
being the kth node of the lth level of N ; all nodes belonging to the lth level of
N define a partition of the temporal domain [0, Ti] into 2l−1 equally-sized sub-
domains. A given node Nk,l in this hierarchy aggregates the frames that belong
to its underlying temporal interval. Each node Nk,l also defines an appearance
and a motion representation respectively denoted as ψak,l(Vi), ψmk,l(Vi) and set as
ψak,l(Vi) = 1

|Nk,l|
∑

t∈Nk,l
φa(fi,t), ψmk,l(Vi) = 1

|Nk,l|
∑

t∈Nk,l
φm(fi,t) ; see Figure 3.4). De-

pending on the level in N , each representation captures a particular temporal
granularity of motion and appearance into a given scene ; it is clear that top-level
representations capture coarse visual characteristics of actions while bottom-levels
(including leaves) are dedicated to fine-grained and timely-resolute sub-actions.
Knowing a priori which levels (and nodes in these levels) capture the best – a
given action category – is not trivial. In the remainder of this section, we intro-
duce a novel learning framework which achieves multiple aggregation design and
finds the best combination of levels and nodes in these levels that fits different
temporal granularities of action categories.

Considering the motion stream, we define – for each node Nk,l – a set of va-
riables βm = {βmk,l}k,l (with βmk,l ∈ [0, 1] and

∑
k,l β

m
k,l = 1) which measure the

importance (and hence the contribution) of ψmk,l(Vi) in the global motion repre-
sentation of Vi (denoted as ψm(Vi)). Precisely, two variants are considered for ψm

(*) ψm(Vi) =
(
βm1,1ψ

m
1,1(Vi) . . . βmk,lψmk,l(Vi) . . .

)>
(**) ψm(Vi) =

∑
k,l

βmk,lψ
m
k,l(Vi).

(3.1)

As shown in Equation 3.1, the variant in (*) corresponds to a concatenation scheme
while (**) corresponds to averaging. The former relies on the hypothesis that
nodes in N (and hence sub-actions in different videos) are well aligned whereas
the latter relaxes this hypothesis (See Figure 3.5 and Equation 3.2 later). Similarly
to motion, we define the aggregations and the set of variables βa = {βak,l}k,l
associated to appearance stream. In the remainder of this section, and unless
explicitly mentioned, the symbols m, a are omitted in the notation and all the
subsequent formulation is applicable to motion as well as appearance streams.
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F igure 3.5 – Two actions belonging to the Ice-dancing category. Aligned/similar
sub-actions are surrounded with red, blue and green rectangles
(Better to zoom the pdf version).

3.3.1 Shallow Multiple Aggregation Learning

In this section, we consider all the representations {ψk,l(.)}k,l fixed on all the
video frames, and only the mixing parameters in β are allowed to vary. Given
the set of action categories C = {1, . . . , C} ; we train multiple classifiers (denoted
{gc}c∈C) on top of these level-wise representations. In practice, we use maximum
margin classifiers whose kernels correspond to combinations of elementary ker-
nels dedicated to {Nk,l}k,l. These classifiers are suitable choices as they allow us to
weight the impact of nodes in the hierarchyN and put more emphasis on the most
relevant granularity of the learned representations. Hence, depending on the gra-
nularity of action categories, these classifiers will prefer top or bottom levels of N .

Considering a training set of videos {(Vi, yic)}i associated to an action ca-
tegory c, with yic = +1 if Vi belongs to the category c and yic = −1 other-
wise, the max margin classifier associated to this action category c is given by
gc(V) =

∑
i α

c
iyicK(V ,Vi)+ bc, here bc is a shift, {αci}i is a set of positive parameters

and K is a positive semi-definite (p.s.d) kernel [240]. In order to combine different
nodes in the hierarchy N and hence design appropriate aggregation, we consider
multiple representation learning that generalizes [241] both to linear and nonli-
near combinations. Its main idea consists in finding a kernel K as a combination
of p.s.d elementary kernels {κ(., .)} associated to {Nk,l}k,l. Considering the two
map variants in Equation 3.1, we define these kernels as

K(V ,V ′) =
∑
l

∑
k

βk,l κ(ψk,l(V), ψk,l(V ′))

K(V ,V ′) =
∑
l,l′

∑
k,k′

βk,lβk′,l′ κ(ψk,l(V), ψk′,l′(V ′)).
(3.2)

As βk,l ∈ [0, 1], the kernel K is p.s.d resulting from the closure of the p.s.d of κ w.r.t
the sum and the product. Using K, we train the max margin classifiers {gc}c∈C
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whose kernels (in Equation 3.2) correspond to level-wise linear (resp. cross-wise
nonlinear) combinations of elementary kernels dedicated to {Nk,l}k,l. Hence, using
a maximum margin formulation, we find the parameters β = {βk,l}k,l and {αci}i,c
by solving

min
0≤β≤1,‖β‖1=1,{αc

i}

1

2

∑
c

∑
i,j

αciα
c
jyicyjcK(Vi,Vj)−

∑
i

αci

s.t. αci ≥ 0,
∑
i

yicα
c
i = 0, ∀i, c.

(3.3)

As the problem in Equation 3.3 is not convex w.r.t β, {αci} taken jointly and convex
when taken separately, an EM-like iterative optimization procedure can be used :
first, parameters in β are fixed and the above problem is solved w.r.t {αci} using
quadratic programming (QP), then {αci} are fixed and the resulting problem is
solved w.r.t β using either linear programming for (*) and QP for (**). This iterative
process stops when the values of all these parameters remain unchanged or when
it reaches a maximum number of iterations.

3.3.2 Deep Multiple Aggregation Learning

In this section, we consider an end-to-end framework that learns the parame-
ters βm and βa together with (i) the ResNet parameters (denoted as αa, αm) 7, (ii)
the MLP+softmax parameters (denoted as γa, γm) as well as (iii) the mixing pa-
rameters (referred to as wa and wm) which respectively capture the importance
of appearance and motion streams in action recognition. Considering E as the
regularized cross-entropy loss 8 associated to our complete network (in Figure 3.2),
we find the optimal α = {αm, αa}, β = {βm, βa}, γ = {γm, γa} and w = {wm,wa}
by solving the following constrained minimization problem

min
α,β,γ,w

E(α, β, γ,w)

s.t. 0 ≤ βmk,l ≤ 1,
∑
k,l

βmk,l = 1

0 ≤ βak,l ≤ 1,
∑
k,l

βak,l = 1.

(3.4)

In spite of having many differences w.r.t usual losses used in deep learning, this
objective function can still be solved using gradient descent and backpropagation.
However, many differences exist and should be carefully tackled ; indeed, whe-

7. In the rest of this chapter, the notation α refers to the ResNet parameters and not the max
margin classifiers anymore.

8. Regularization is achieved using `2 weight decay.
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reas the forward step can be achieved, gradient backpropagation (through our
multiple aggregation layer) should be achieved while considering videos with a
varying number of frames. Besides, constraints on β′s should also be handled. In
what follows, we discuss all these updates in the optimization process.

Optimization. Considering ρ() as the output of the final layer of our deep
network and considering ∂E

∂ρ
available, the gradients ∂E

∂w
, ∂E
∂γ

(w.r.t the preceding
mixing and MLP layers) could easily be obtained using a straightforward applica-
tion of the chain rule (as already available in the used PyTorch tool). However, ∂E

∂β
,

∂E
∂α

cannot be obtained straightforwardly ; on the one hand, any step following the
gradient ∂E

∂β
should preserve equality and inequality constraints in Equation 3.4

while a direct application of the chain rule provides us with a surrogate gra-
dient which ignores these constraints. On the other hand, the variable number
of frames for different training videos requires a careful update of ∂E

∂α
as shown

subsequently.

Constraint implementation. In order to implement the equality and inequality
constraints during the optimization of the objective function in Equation 3.4,
we consider a re-parametrization as βmk,l = h(β̂mk,l)/

∑
k′,l′ h(β̂mk′,l′) for some {β̂mk,l}k,l

with h being strictly monotonic positive function and this allows free settings of
the parameters {β̂mk,l}k,l during optimization while guaranteeing βmk,l ∈ [0, 1] and∑

k,l β
m
k,l = 1. During back-propagation, the gradient of the loss E (now w.r.t β̂’s)

is updated using the chain rule as

∂E

∂β̂mk,l
=

∑
p,q

∂E

∂βmp,q
.
∂βmp,q

∂β̂mk,l

with
∂βmp,q

∂β̂mk,l
=

h′(β̂mk,l)∑
k′,l′ h(β̂mk′,l′)

.(δp,q,k,l − βmp,q),
(3.5)

and δp,q,k,l = 1{(p,q)=(k,l)}. In practice h(.) = exp(.) and ∂E
∂βm

p,q
is obtained from layer-

wise gradient backpropagation (as already integrated in standard deep learning
tools including PyTorch). Hence, ∂E

∂β̂m
k,l

is obtained by multiplying the original gra-

dient
[
∂E
∂βm

p,q

]
p,q

by the Jacobian
[∂βm

p,q

∂β̂m
k,l

]
p,q,k,l

which simply reduces to
[
βmk,l(δp,q,k,l −

βmp,q)
]
p,q,k,l

when h(.) = exp(.). Similarly, we implement the constraints associated
to the appearance stream.

ResNet update. As discussed earlier, motion and appearance ResNets are recur-
rently (iteratively) applied frame-wise prior to pool the underlying feature maps
using multiple aggregation. It is clear that the number of frames intervening in
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this aggregation is video-dependent, and thereby the number of terms in these ag-
gregations (and the number of ResNet branches/instances) is also varying. Hence,
a straightforward application of the chain rule in the whole architecture – in order
to update ∂E

∂α
– becomes possible only when this architecture is unfolded, and

this requires fixing the maximum number of frames (denoted as T ) and sampling
temporally all the videos in order to make Ti constant and equal to T . Note that
beside requiring all the ResNet instances to share the same parameters (as in
Siamese nets), this results into a cumbersome architecture even for reasonable T
values. Furthermore, frame sampling requires interpolation techniques which are
highly dependent on quality, duration and temporal resolution of videos and this
may result into spurious motion/appearance details (especially on short videos ;
even when timely well resolute) which ultimately leads to a significant drop in
action recognition performances.

In order to avoid these drawbacks and to fully benefit from the available number
(and also temporal resolution) of frames — without using multiple instances of
“Siamese-like” ResNets and without resampling — we consider an alternative
gradient estimation. The latter relies on a membership measure µ which assigns
each frame fi,t to nodes in the temporal pyramid as µk,li,t = 1{t∈Nk,l}. Using this
membership measure together with the chain rule, the gradient of the loss E w.r.t
the parameters of the ResNet α can be updated as

∂E

∂αm
=

∑
k,l

∑
i,t

µk,li,t
∂E

∂ψmk,l

∂ψmk,l
∂φm(fi,t)

∂φm(fi,t)

∂αm
. (3.6)

Similarly, we evaluate the gradient for the appearance stream. From the above
equation, it is clear that when k = l = 1, all the frames {fi,t}i,t contribute in
the estimation of the gradient, while for other nodes, only a subsets of frames
(belonging to these nodes) are used. Nonetheless, all the frames contribute evenly
through all the nodes and hence in gradient estimate, without any sampling.
Note also that this formulation implicitly implements weight sharing as the above
gradient can equivalently be written as the sum of gradients, shared through
multiple streams of an unfolded architecture, with each stream being dedicated
to one frame. However, the advantage of the above formulation resides again in
its computational efficiency and also its ability to leverage all (possibly variable
numbers of) frames in videos while an unfolded architecture requires sampling
a fixed number of frames and handling multiple ResNet branches which may
clearly lead to intractable training.
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3.4 Experiments

In this section, we evaluate the impact of our multiple aggregation design on
the performance of action recognition and we compare it against other aggrega-
tion strategies as well as the related work using three standard datasets : UCF-101

[197], HMDB-51 [198] and JHMDB-21 [199]. UCF-101 — used to comprehensively
study the different settings of our model — is the largest and most challenging ;
it includes 13,320 video shots belonging to 101 categories with variable duration,
poor frame resolution, viewpoint and illumination changes, occlusion, cluttered
background and eclectic content ranging from multiple and highly interacting in-
dividuals to single and completely passive ones. We also consider HMDB-51 and
JHMDB-21 for further comparisons ; the latter include 6766 (resp. 928) videos be-
longing to 51 (resp. 21) action categories. The particularity of these three datasets
also resides in the fact that actions are misaligned as their videos are endowed
with large context while others are precisely trimmed and contain only the ac-
tions of interest (see the example of misalignments in Figure 3.5) ; for more details
about the datasets, see again Section 2.5. In all these experiments, we process all
the videos using ResNet-101 (as a backbone network 9) in order to extract all the
underlying appearance and motion representations framewise. Then, we apply
different aggregation schemes prior to assign those videos to classes. We use the
same evaluation protocols as the ones suggested in [197-199] (i.e., train/test splits)
and we report the average accuracy over all the categories of actions.

The purpose of our evaluation is to show the performance of the hierarchical
aggregation design of our temporal pyramid compared to different coarse and
fine aggregations as well as other baselines. We also extend the comparison of
action classification against reported results in the related work. Different settings
are considered in order to assess the performance of our method : i) multiple
depths of our hierarchical aggregation network, ii) two streams (motion and ap-
pearance) as well as their fusion, and iii) the two types of aggregations namely
"concatenation" and "averaging".

We train our complete temporal pyramid-based networks (in Figure 3.2) for
respectively 130, 100 and 65 iterations on UCF-101, HMDB-51 and JHMDB-21

using the PyTorch SGD optimizer. For appearance stream, we set the learning
rate to 0.001 and reduce it by a factor of 10 every 25, 20, 10 iterations for resp.
UCF-101, HMDB-51 and JHMDB-21. For motion stream, we set the learning rate
to 0.005 and we reduce it by the same factor after “80 and 110”, “60 and 80”,

9. ResNet-101 is trained on ImageNet and then fine-tuned on UCF-101. We also build appea-
rance representations based on ResNet-152 trained only on ImageNet.
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Deep convolutional networks UCF-101 # parameters (millions)
Pretrained AlexNet [14] 58.14 61M

Pretrained VGGNet11 [161] 63.12 132M
Pretrained VGGNet19 [161] 63.42 143M

Pretrained ResNet18 [16] 68.32 11M
Pretrained ResNet50 [16] 68.39 25M

Pretrained ResNet101 [16] 68.47 44M
Pretrained ResNet152 [16] 68.58 60M

Table 3.1 – Action classification performances using the temporal pyramid des-
cribed in Section 3.3.1 (based on concatenation (*). See Equation 3.2)
combined with different deep network architectures pretrained with
ImageNet (these networks were initially designed to extract appea-
rance features).

“50 and 60” iterations on the three sets respectively. Experiments on individual
streams are run using 4 Titan X Pascal GPUs (with 12 Gb) and last 72h for UCF101,
36h for HMDB-51 and 15h for JHMDB-21 (on the appearance stream) and 96h for
UCF101, 48h for HMDB-51 and 24h for JHMDB-21 (on the motion stream) while
on the joint stream experiments are run using 4 Tesla P100 GPUs (with 16 Gb)
and last 100h, 55h and 30h on the three sets respectively.

3.4.1 Convolutional Network Selection

The choice of the initial pretrained backbone convolutional network – that ope-
rates at the frame-level — should consider two factors ; its baseline classification
performances and the number of training parameters. The latter is particularly
crucial for action recognition as the size of training data is limited compared to
other neighboring tasks (such as image classification) on which these convolutio-
nal networks were initially trained. Hence, in order to select the most appropriate
convnet among a collection of existing ones (namely [14, 16, 161]), we measure the
performance of our temporal pyramid based on the design in [227]. The results
in Table 3.1 show that the deeper the network, the better are the performances.
However, in our experiments, we consider ResNet-101, which provides descent
action recognition performances while being relatively less memory and time de-
manding compared to the other networks and particularly ResNet-152 (see again
Table 3.1).
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Motion stream Shallow design Deep design
UCF-101 concatenation averaging concatenation averaging

TP (level 1) 78.40 78.40 78.66 78.66

TP (level 2) 79.53 79.54 79.86 79.76

TP (level 3) 79.70 79.71 79.93 79.83

TP (level 4) 79.76 79.77 81.14 80.66

TP (level 5) 80.23 80.24 81.43 80.84

TP (level 6) 79.96 79.98 81.69 80.12

Table 3.2 – This table shows level-wise performances using the motion stream
both for shallow and deep models. These performances are reported
both for “averaging” and “concatenation”. In these initial experi-
ments – in order to compare the performances of shallow and deep
designs under comparable conditions – we fine-tune only the last
fully connected layer of ResNet-101 along with the parameters of the
temporal pyramid (TP).

3.4.2 Performances

Firstly, we show a comparison of action recognition performances using dif-
ferent settings. Extensive experiments, reported in Table 3.2 and Table 3.3, show
that our hierarchical aggregation design makes it possible to select the best confi-
guration (combination) of level representations in order to improve the perfor-
mance of classification ; indeed, the results show a clear gain as the depth of the
hierarchy increases and compared to global average pooling (level 1). This gain
results from the match between the temporal granularity of the learned level-wise
representations in the hierarchy and the actual granularity of action categories.
Note that in all these performances, multi-level node concatenation provides a
clear gain compared to averaging, especially on deeper levels of the temporal
pyramid, both on motion and appearance streams. The rational is that multi-level
node concatenation preserves better the temporal granularity of actions compared
to averaging. Hence, in the remainder of these experiments, we keep concatena-
tion when learning “end-to-end” joint combination of appearance and motion
streams.

Secondly, we compare the performance of the two settings (shallow and deep)
of our multiple aggregation design using both motion and appearance streams
taken individually and combined ; as already discussed, the parameters wa, wm of
this fusion are optimized as a part of the end-to-end learning process. Results re-
ported in Table 3.4 show the complementary aspects of the two streams in all the
settings as their fusion brings a clear gain in performance. Moreover, we observe
that the contribution of the motion stream is strictly increasing (and a contrario



80 multiple aggregation networks for action recognition

Appear stream Shallow design Deep design
UCF-101 concatenation averaging concatenation averaging

TP (level 1) 80.28 80.28 80.31 80.31

TP (level 2) 81.77 81.78 82.16 82.21
TP (level 3) 82.17 82.17 82.74 82.89
TP (level 4) 82.51 82.50 83.52 83.38

TP (level 5) 82.50 82.51 83.63 80.83

TP (level 6) 81.96 81.96 83.92 80.83

Table 3.3 – This table shows level-wise performances using the appearance
stream both for shallow and deep models. These performances are
reported both for “averaging” and “concatenation”. In these initial
experiments – in order to compare the performances of shallow and
deep designs under comparable conditions – we fine-tune only the
last fully connected layer of ResNet-101 along with the parameters of
the temporal pyramid.

Fusion Shallow design (concat) Deep design (concat) Stream importance
UCF-101 Motion Appear Joint Motion Appear Joint wm wa

TP (level 1) 78.40 80.28 88.91 78.74 80.69 89.69 0.46 0.54
TP (level 2) 79.53 81.77 89.10 79.97 82.78 90.00 0.49 0.51
TP (level 3) 79.70 82.17 89.34 80.69 83.12 90.26 0.52 0.48

TP (level 4) 79.76 82.51 89.37 81.74 83.78 90.92 0.52 0.48

TP (level 5) 80.23 82.50 84.49 82.86 84.10 91.45 0.56 0.44

TP (level 6) 79.96 81.96 89.26 83.41 84.92 92.37 0.60 0.40

Table 3.4 – This table shows level-wise performances of joint (2-stream) fusion
for both shallow and deep methods. These results are shown only for
“concatenation” as the underlying baseline performances reported
in Table 3.2 and Table 3.3 are better than “averaging”. In contrast
to Table 3.2 and Table 3.3, all the parameters of the whole network
(including ResNet) are allowed to vary.

strictly decreasing for appearance stream) as the level of the temporal pyramid
increases (see the distribution of w in Table 3.4). This clearly corroborates the
highest impact of motion (compared to appearance) when modeling the temporal
granularity of action categories (see later Figure 3.6). We also observe a higher
positive impact on performances as the depth of our temporal pyramids increases ;
again, these results are obtained using “concatenation” instead of “averaging”,
as the former already globally overtakes the latter on motion and appearance
streams when taken individually (see again Table 3.2 and Table 3.3).

We further investigate the potential of our method using multiple instances of
temporal pyramids both for motion and appearance streams as well as their joint
fusion. The rational – from this setting – resides in the heterogeneity of action
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# of temporal Accuracy (concatenation)
pyramids per stream Appearance stream Motion stream Joint stream

1 83.92 81.69 90.78

2 83.95 81.73 90.79

4 83.97 81.79 90.84

8 83.92 81.86 90.89
16 83.89 81.83 90.85

Table 3.5 – This table shows the evolution of the performances w.r.t different #
of temporal pyramids per stream. In order to combine the outputs
of these multiple pyramids (when using concatenation), we add a
succession of FC+ReLU+BatchNorm to reduce the dimensionality
from “63 (number of nodes in TP of 6 levels) × 128 (node dimension)
× # TPs” to “128”. All these results correspond to temporal pyramids
of 6 levels.

categories and their dynamics which may affect the accuracy ; indeed, the apex of
some actions appears early in video clips while for others later or spread through
all the video duration. Hence, instead of learning a single monolithic temporal
pyramid per stream, we stack multiple instances of temporal pyramids with dif-
ferent weights β, each one dedicated to a subclass of actions whose dynamics (not
category) are similar 10. We learn the parameters of these pyramids “end-to-end”
as discussed earlier for single pyramids. Table 3.5 shows the performances w.r.t
the number of pyramids. In spite of an increase of the number of training pa-
rameters in these multiple pyramids (without any increase of training data), we
observe an improvement ; we believe that adding extra training data will bring a
further and clearer gain in performances.

3.4.3 Sampling, Surrogate Gradient and Efficiency

Table 3.6 shows the impact of our method – with and without frame sampling
– on the performance of action recognition. These results are obtained using a
single pyramid. From these results, it is easy to see that performances get better
as the number of sampled frames increases reaching asymptotically the best
performances when all the frames are used. This behavior is similar both on
motion and appearance streams. However, we notice that motion stream which is
based on optical flow data is more sensitive to sampling than appearance stream
so the accuracy of the former is clearly proportional to the number of frames. Put
differently, motion stream builds a better representation and hence becomes more

10. These subclasses of actions are not explicitly defined in a supervised manner but implicitly
by allowing enough flexibility in the multiple instances of temporal pyramids in order to capture
different (unknown) subclasses of action dynamics.
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Sampling # frames (train) # frames (test) Accuracy
strategies RGB OF RGB OF Appearance Motion Fusion

#1 25 25 25 25 84.23 81.27 91.65

#2 25 25 25 250 84.23 81.27 91.64

#3 25 50 25 50 84.23 81.86 91.69

#4 25 50 25 250 84.23 81.89 91.78

#5 64 64 250 250 84.62 82.05 91.89

#6 64 64 all all 84.81 82.77 92.09

#7 64 all all all 84.81 83.41 92.29

#8 all all all all 84.92 83.41 92.37

Table 3.6 – This table shows the evolution of the performance w.r.t to different
sampling strategies (i.e., number of frames in training and test vi-
deos). RGB and OF stand for the number of input RGB frames and
the number of optical flow frames used in the appearance and the
motion streams respectively. These performances are obtained using
a temporal pyramid of six levels.

important for the overall action classification when it is fed with more optical
flow data as shown again in Table 3.6 (settings #6 and #7). However, taking all the
frames during backpropagation, comes at the expense of a substantial increase
of computation ; when considering all the 2.5 millions frames of our videos on
UCF-101, training costs 72h (resp. 96h) for appearance (resp. motion) stream
using 4 Titan X GPUs (with 12 Gb) and 100h on the joint stream using 4 Tesla
P100 GPUs (with 16 Gb). This high cost results from the large number of visited
frames when (re)estimating the gradient, in Equation 3.6 w.r.t the parameters
of the ResNet, through the epochs of backpropagation. In order to make the
evaluation of Equation 3.6 (and hence training) more tractable (with a controlled
loss in classification performances), we consider a surrogate gradient defined as

∂E

∂αm
=

∑
k,l,i

∑
t∈Pi

r

µk,li,t
∂E

∂ψmk,l

∂ψmk,l
∂φm(fi,t)

∂φm(fi,t)

∂αm
, (3.7)

here P ir stands for a subset of selected frame time-stamps, in a given video Vi,
that contribute to gradient estimation at the rth epoch. We consider a periodic se-
lection mechanism which guarantees that all the frames are evenly used through
epochs ; in practice, P ir = {t ∈ [0, Ti], t ≡ r (mod K)} with 1/K being the fraction
of frames used per epoch. With this mechanism, gradient evaluation still relies
on the entire set of frames in the training set, but their use is distributed through
epochs and this makes the evaluation and training process far more efficient while
maintaining close performances (see Table 3.7). For instance, when K = 24, trai-
ning is 24× faster compared to the most accurate setting (strategy #8 in Table 3.6)
as only 8 frames are used (on average “per epoch-per video”) in Equation 3.7
instead of 185 ; furthermore, since all the frames contribute equally through all
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(a) Single temporal pyramid

(b) Multiple temporal pyramids (motion stream)

(c) Multiple temporal pyramids (appearance stream)

F igure 3.6 – (a) Weight distribution of motion and appearance streams obtained
when learning the parameters of a single temporal pyramid (cor-
responding to the first row of Table 3.5). (b-c) Weight distribution
of multiple temporal pyramids of motion and appearance streams
(corresponding to the fourth row in the same table). Warmer colors
correspond to higher weights while cooler colors to lower ones.

the epochs, the loss in accuracy is contained. These performances are obtained on
individual and joint streams using the same aforementioned hardware resources.
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Speed up Accuracy
factor (K) Avg. # frames per "epoch and training video" Appearance Motion Joint

1× 185 84.92 83.41 92.37

4× 92 84.27 82.59 91.74

8× 46 84.10 82.07 91.39

16× 23 83.96 81.23 90.70

24× 8 83.89 80.95 90.35

Table 3.7 – This table shows the performance of “surrogate back-propagation”
with different acceleration factors. Note that motion stream perfor-
mances are more sensitive to this acceleration compared to appea-
rance stream.

3.4.4 Comparison Against Related Work

Finally, we compare the performance and the complementary aspects of our
method against related state of the art action recognition methods [16, 28, 195,
227, 238] on UCF-101, HMDB-51 and JHMDB-21. The closely related methods
in [227, 230] are based on deep framewise representations which are aggregated
and classified using a hierarchy of multiple temporal granularities. However, this
method differs from the one proposed, in [227], in different aspects : first, frame-
wise representations are extracted using ResNet-152 pretrained only on ImageNet
and not fine-tuned on UCF-101. Besides, the method in [227] is based only on
appearance stream and more importantly, the design principle of the proposed
method in Section 3.3.2 is deep and consists in weighting the contribution of each
level in the temporal pyramid as a part of an "end-to-end" learning process while
in [227, 230] this weighting scheme is relatively shallow and excludes the ResNet
from training. Note that the variant in [230] – referred to as Deep Multiple Kernel
Learning (DMKL)) – relies on a contrastive loss design that makes training more
efficient and also still effective compared to the EM-like procedure in [227] ; howe-
ver, ResNet is also excluded from training in [230]. All these differences explain
the significant under-performances of [227, 230] compared to our "end-to-end"
framework (framewise representations obtained with ResNet trained on Image-
Net and then fine-tuned on UCF-101) as observed in Table 3.8.

Extra comparisons in Table 3.8 also include global averaging techniques as well
as spectrogram-like representations. The former produces a global representation
that averages all the frame representations while the latter keeps all the frame
representations and concatenate them prior to their classifications (see Figure 3.7).
Note that these two settings are related to the two extreme cases of our hierarchy,
i.e., the root and the leaves. In particular, the spectrogram of a video V with T

frames is obtained when the number of leaf nodes, in the hierarchy, is exactly
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2D colorized heatmaps [195] 64.38 54.90 60.5 32 (all,all) 7 7

2D motion + GAP [238] 79.4 59.13 61.39 32 (none,64) 3 7

2D appearance + GAP [238] 82.1 60.24 62.71 32 (3,none) 3 7

2D 2-streams + GAP [238] 88.5 63.31 64.11 32 (3,64) 3 7

3D motion [28] 96.41 80.39 7 15 (none,64) 3 3

3D appearance [28] 95.60 76.47 7 15 (64,none) 3 3

3D two-streams [28] 97.94 80.65 7 15 (64,64) 3 3

GAP-A of [227] (on ResNet152 [16]) 66.15 7 7 7 (all,none) 3 7

GAP-A of [230] 81.14 7 7 7 (all,none) 3 7

GAP-M of [230] 79.10 7 7 7 (none,all) 3 7

GAP-2S of [230] 89.16 7 7 7 (all,all) 3 7

Spect-A (on ResNet152+ResNet18 [16]) 64.41 54.85 60.61 32 (all,all) 3 7

Spect-A (on ResNet101+ResNet18 [16]) 78.40 57.76 61.26 32 (all,all) 3 7

Spect-M (on ResNet101+Resnet18 [16]) 76.46 55.38 60.66 32 (all,all) 3 7

Spect-2S (on ResNet101+Resnet18 [16]) 80.10 58.28 62.14 32 (all,all) 3 7

TP-A (EM) of [227] (on ResNet152 [16]) 68.58 58.63 62.16 7 (all,none) 3 7

TP-A (EM) of [230] 83.36 7 7 7 (all,none) 3 7

TP-M (EM) of [230] 81.07 7 7 7 (none,all) 3 7

TP-2S (EM) of [230] 89.91 7 7 7 (all,all) 3 7

TP-A (DMKL) of [230] 83.44 7 7 7 (all,none) 3 7

TP-M (DMKL) of [230] 81.17 7 7 7 (none,all) 3 7

TP-2S (DMKL) of [230] 89.95 7 7 7 (all,all) 3 7

Our "2D appearance + TP" 84.92 62.23 63.51 1 (all,all) 3 7

Our "2D motion + TP" 83.41 61.04 62.97 1 (all,all) 3 7

Our "2D two-streams + TP" 92.37 65.14 66.96 1 (all,all) 3 7

2D col-heatM[195] + our "2D motion + TP" 80.41 65.21 69.93 7 7 7 7

3D motion[28] + our "2D motion + TP" 96.61 80.54 7 7 7 7 7

3D appear[28] + our "2D appear + TP" 96.05 76.56 7 7 7 7 7

Table 3.8 – This table shows a comparison of our temporal pyramid (TP) w.r.t
different related works ; in this table, “col-heatM” stands for colo-
rized heatmaps, “Spect” for spectrograms, “A” for appearance, “M”
for motion, “2S” for two-streams, “GAP” for global averge pooling
and “OF” for optical flow. In our experiments, (i) ResNet-152 is pre-
trained on ImageNet, (ii) ResNet-101 is pretrained on ImageNet and
fine-tuned on UCF-101 (for both appearance and motion) and (iii)
ResNet18 is pretrained on ImageNet and fine-tuned on UCF-101

(again for appearance and motion). In these results, the symbol "7"
stands for "a method does not apply or was not applied (results not
available)" in the underlying works.
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F igure 3.7 – Different steps of spectrogram construction.

equal to T . Global averaging techniques (shown in Table 3.8) include [195] ; the
latter is based on colorized heatmaps and corresponds to timely-stamped and ave-
raged framewise probability distributions of human keypoints. These colorized
heatmaps are fed to a 2D CNN for classification ; note that colorized heatmaps
provide video-level representations which capture globally the dynamics of video
actions without any scheme to emphasize the most important temporal granu-
larities of these actions and this results into low accuracy as again displayed in
Table 3.8.

The last category of methods (shown in Table 3.8) includes convolutional net-
works based on 2D and 3D spatio-temporal filters [28, 238]. These methods are
based either on one or two streams ; one for motion and another one for appea-
rance followed by a global average pooling. Both methods are similar to ours ;
they combine motion and appearance streams and their design is end-to-end
but clearly differ in their pooling mechanisms and the way frames are exploited.
Indeed, these related techniques rely on sampling strategies that vectorize video
sequences into fixed length inputs while our method keeps all the frames in order
to build temporal pyramids. Another major difference w.r.t our method resides
in the huge set used in order to train these related architectures. Nevertheless,
while these streams are highly effective their combination with our hierarchical
aggregation, through a late fusion 11, brings a noticeable gain in performances.
We also observe the same behavior on all the combinations of our two stream

11. Late fusion is applied (instead of early one) as our video inputs are different from those
of 2D colorized heatmaps and convolutional 3D filters which are spatio-temporal while ours are
only spatial. We also exclude, from fusion, 2D methods+GAP as they correspond to a particular
setting of our method (namely temporal pyramid of level 1).
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model with other baselines and other related methods (including two stream 3D
CNNs [28] and spectrograms [227]) ; indeed, from the results shown inTable 3.8,
our hierarchical method brings a clear gain w.r.t most of these methods. Note
that some of these models rely on extra datasets (including Kinetics) in order to
pretrain their CNNs while our method is trained only on the original datasets.

3.5 Conclusion

We introduce in this chapter a temporal pyramid approach for video action
recognition. The strength of the proposed method resides in its ability to learn
hierarchical pooling operations that capture different levels of temporal granu-
larity in action recognition. This is translated into learning the distribution of
weights in the temporal pyramid, that capture these granularities, by solving
constrained minimization problems. Two settings are considered : shallow and
deep. The former relies on solving a constrained quadratic programming pro-
blem while the latter on optimizing the parameters of a deep network including
a temporal pyramid module both on motion and appearance streams as well as
their combination. We also consider variants of the deep learning framework that
design multiple instances of temporal pyramids each one dedicated to a parti-
cular subcategory of action granularities and also a procedure that allows us to
efficiently train the network at the detriment of a slight decrease of its classifi-
cation accuracy. The advantages of these contributions are established, against
different baselines as well as the related work, through extensive experiments on
challenging action recognition benchmarks including UCF-101, HMDB-51 and
JHMDB-21 datasets.

ConvNets, including those developed in this chapter, are designed to operate
on vectorial data including image sequences and videos. ConvNets rely on the
assumption that videos come in the form of 2D/3D regular grids. However,
actions in videos can be seen as constellations of interacting body parts which
can be represented in the form of skeletons (or graphs) where their joints (nodes)
describe the body parts and edges their interactions resulting into an explicit
encoding of the geometric structure of video actions. As ConvNets cannot directly
operate on skeletons, they require a careful update of convolution and pooling
operations on graphs, and this will be investigated in the subsequent chapter.
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Chapitre abstract

Convolutional neural networks (ConvNets) are nowadays witnessing a
major success in different pattern recognition problems. These learning
models were basically designed to handle vectorial data such as images
but their extension to non-vectorial and semi-structured data (namely
graphs with variable sizes, topology, etc.) remains a major challenge,
though a few interesting solutions are currently emerging.

In this work, we introduce MLGCN ; a novel spectral Multi-Laplacian
Graph Convolutional Network. The main contribution of this method
resides in a new design principle that learns graph-Laplacians as

89
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convex combinations of other elementary Laplacians, each one dedica-
ted to a particular topology of the input graphs.
Moreover, we generalize this MLGCN to tree-structured temporal py-
ramids referred to TP-MLGCN. The latter captures different levels of
granularity in the learned classes. It is inspired by the work in Chapter
3 and by inception network [104] to design effective convolutional ope-
rators on graphs.

We also introduce a novel pooling operator, on graphs, that proceeds
in two steps : context-dependent node expansion is achieved, followed
by a global average pooling ; the strength of this two-step process re-
sides in its ability to preserve the discrimination power of nodes while
achieving permutation invariance.

Experiments conducted on JHMDB (2D skeletons), SBU (3D skeletons)
and UCF-101 (video rgb frames) datasets, show the validity of our me-
thods for the challenging task of action recognition.

The work in this chapter has led to the publication of a conference
paper :

• Ahmed Mazari and Hichem Sahbi. MLGCN : Multi-Laplacian
Graph Convolutional Networks for Human Action Recognition.
In the 30th British Machine Vision Conference (BMVC). Cardiff,
Wales, United Kingdom, 2019

4.1 Introduction and Related Works

Video action recognition is a major task in computer vision which consists in
classifying sequences of frames into categories (or classes) of actions. This task
is known to be challenging due to the intrinsic properties (appearance and mo-
tion) of moving objects and also their extrinsic acquisition conditions (occlusions,
background clutter, camera motion, illumination, length/resolution, etc.). Most
of the existing action recognition methods are based on machine learning [17, 19,
21, 22, 26, 123, 126, 152] ; their general recipe consists in extracting (handcrafted
or learned) features prior to classifying them using inference techniques such as
kernel methods and deep networks [15, 28, 175, 176, 178-180, 195, 242].

Among the machine learning techniques for action recognition those based
on deep networks are particularly performant ; successful methods include two-
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stream 2D convolutional neural networks (CNNs) [15, 176], two-stream 3D CNNs
and simple 3D CNNs [28]. However, and beside being data-hungry, these models
rely on a strong assumption that videos are described as vectorial data ; in other
words, these methods assume that videos come only in the form of regular (2D
or 3D) grids. This assumption may not hold in practice : on the one hand, one
may consider moving objects as constellations of interacting body parts (such as
2D/3D skeletons or joints in human actions) and this requires processing only
these joints without taking into account holistically cluttered background or other
parts in the scenes. On the other hand, moving objects may be occluded with
spurious details which are not necessarily related to the moving object parts.
Hence, for these particular settings, graph convolutional networks (GCNs) [243]
are rather more appropriate where nodes, in these models, capture object parts
and links their spatio-temporal interactions.

Early GCNs are targeted to graphs with known/fixed topology 1 (fixed num-
ber of nodes/edges, constant degree, etc.) [62, 99] ; in existing solutions pixels
are considered as nodes and edges connect neighboring pixels. Despite their
relative success for some pattern classification tasks including optical character
recognition (on widely used benchmarks such as MNIST), these methods do not
straightforwardly extend to general graphs with arbitrary topological characteris-
tics (variable number of nodes/edges, heterogeneous degrees, etc.) and this limits
their applicability to other challenging tasks such as action recognition.

Recent attempts, to extend these methods to action recognition [103, 244, 245],
include [103] which models connectivity of moving joints in videos using graphs
where nodes correspond to joints (described by spatial coordinates and their
likelihoods) and edges characterize their spatio-temporal interactions. One of
the drawbacks of these extensions resides in the limited representational power
of joints and also the difficulty in achieving permutation invariance ; in other
words, parsing and describing joints while being invariant to arbitrary reorde-
ring of objects especially for highly complex scenes with multiple interacting
objects/persons.

From the machine learning point of view, GCN operates either directly in the
spatial domain [101, 242, 246-256] or require a preliminary step of spectral de-
composition of graphs using Fourier basis [60, 100, 257, 258] prior to achieve
convolution [61-63, 99, 102, 259-262]. While graph convolution in the spectral
domain is well defined, its success heavily relies on the choice of the Laplacian
operators [263] that capture the topology of the manifolds enclosing data. These

1. as 2D regular grids
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Laplacians, in turn, depend on many hyper-parameters which are difficult to set
using tedious cross-validation especially when training GCNs on large-scale da-
tasets.

In this chapter, we address the aforementioned issues (mainly Laplacian design
in GCNs and permutation invariance) for the particular task of action recognition.
Our solution achieves convolution in the spectral domain using a new design
principle that considers a convex combination of several Laplacian operators ;
each Laplacian is dedicated to a particular (possible) topology of our graphs. We
also introduce a novel context-dependent pooling operator that proceeds in two
steps : node features are first expanded with their contexts and then globally
averaged ; the strength of this two-step pooling process resides in its ability to
preserve/enhance the discrimination power of node representations while achie-
ving permutation invariance. The validity of these contributions is corroborated
through extensive experiments, in action recognition, using the challenging SBU-
skeleton and UCF-101 datasets.

4.2 Graphs Construction

In this section, we describe the video processing used to build our graph inputs
for sequences of skeleton joints and sequences of rgb frames. Note that skeleton
joint features are based on their 2D/3D coordinates while those of rgb frames are
based on the convolutional representations of raw frames.
This processing step consists in extracting and grouping joints (a.k.a keypoints)
into trajectories prior to modeling their spatio-temporal interactions with graphs.

Given a raw video, skeletons are obtained by detecting human joints in suc-
cessive frames using the state of the art human pose extractor 2 [194] ; as these
keypoints are labeled (see Figure 4.1), their trajectories are extracted by simply
tracking keypoints with the same labels.

Considering a finite collection of trajectories, we build an adjacency graph
G = (V , E) where each node v ∈ V corresponds to a labeled trajectory and an edge
(v, v′) ∈ E exists between two nodes iff the underlying trajectories are spatially
neighbors. Each trajectory (i.e., node in G) is described by aggregating motion
and appearance streams as shown subsequently.

2. This processing is only reserved to raw video datasets (including UCF [197]) while for other
databases, such as SBU [264] and JHMDB [199], skeletons are already available.
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F igure 4.1 – This figure shows the whole keypoint extraction, tracking and des-
cription process on motion and appearance streams

4.2.1 Graph Representation for Skeleton Joints

Considering a sequence of skeletons, we process the underlying trajectories
using temporal chunking : first we split the total duration of a video into C equally-
sized temporal chunks (C = 4 in practice), then we assign the keypoint coordi-
nates of a given trajectory v to the C chunks (depending on their time stamps)
prior to concatenate the averages of these chunks and this produces the descrip-
tion of v denoted as ψ(v). The whole process is displayed in Figure 4.1
Trajectories with similar keypoint coordinates but arranged differently in time,
will be considered as very different. Note that beside being compact and discri-
minant (as shown later in Table 4.11), this temporal chunking gathers advantages
while discarding drawbacks of two widely used families of techniques mainly
global averaging techniques (invariant but less discriminant) and frame re-sampling
techniques (discriminant but less invariant). Put differently, temporal chunking pro-
duces discriminant descriptions that preserve the temporal structure of trajectories
while being frame-rate and duration agnostic.

4.2.2 Graph Representation for RGB Frames

In contrast to skeleton data where 2D/3D joint coordinates through video se-
quences are provided, skeleton joints on rgb frames are not available. They are
estimated before aggregating their trajectories in order to build a graph represen-
tation at the video level.
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Appearance features. Given a video, ResNet [16] is applied framewise in order
to collect convolutional features associated to different keypoints. The steps of
the overall pipeline are depicted in Figure 4.2. Given a frame, local and global
convolutional features are extracted (as shown in step A) ; first, human poses in
a given frame are estimated using the 2D pose extractor of [194] which provides
the coordinates of 18 different joints. Afterwards, each region around a joint is
rescaled to a fixed width (set in practice to 50 pixels), and a 10 x 10 pixel region,
around this joint, is cropped and endowed with a convolutional feature (as shown
in step B). In order to enhance the discrimination power of each joint, global
convolutional features are also appended to the local ones (see step C). Finally,
the obtained joint features are hierarchically aggregated (through frames) resul-
ting into a global node representation at the video level (as shown in step D).

Motion features. Given a video, the method in [194] is used in order to ex-
tract 18 colorized heatmaps corresponding to 18 human joints tracked through
different frames. These heatmaps correspond to timely-stamped framewise pro-
bability distributions of these joints. Similarly to appearance features, 10x10 pixel
regions are first extracted around each joint at different instants, in the underlying
colorized heatmaps, and then aggregated resulting into a global node representa-
tion at the video level. The steps of the overall pipeline are depicted in Figure 4.3.
Note that the choice of heatmaps, instead of optical flow (e.g.,[28]), is motivated
by the fact that the horizontal and the vertical displacement fields of optical flow
are noisy and less discriminating, compared to colorized heatmaps, especially on
scenes with imperceivable motion.
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F igure 4.2 – Appearance graph representations at frame level.
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F igure 4.3 – Graph based motion features at video level. Each frame is fed to the
human pose estimator [194] to extract the joints and their respective
heatmaps. Each joint is associated with a heatmap describing its
probability distribution through the spatial extent of its frame. The
resulted heatmaps are then colorized and averaged to build a video
level representation.

4.3 Multi-Laplacian Convolutional Networks

Given a collection of videos, we describe each one using a graph Gi = (Vi, Ei) as
explained in Section 4.2. For each node v ∈ Vi, we extract two feature vectors, de-
noted ψm(v), ψa(v), respectively corresponding to motion and appearance streams
of v.
We also define a similarity between nodes in Vi as κm(v, v′) = exp(−‖ψm(v) −
ψm(v′)‖22/σm), here σm is the scale of the gaussian similarity and ‖.‖2 is the `2
norm. Similarly, we define κa(v, v′) using appearance features.
In the remainder of this chapter, unless explicitly mentioned, we denote a given
graph Gi simply as G. We also denote motion and appearance features ψm(v),
ψa(v) as ψ(v), scales σm, σa as σ, and similarities κm(v, v′), κa(v, v′) as κ(v, v′).

The goal is to design a GCN that returns the representation and the classifi-
cation of a given graph. This includes a novel design of Laplacian convolution and
pooling on graphs as shown subsequently.
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4.3.1 Spectral Graph Convolution at a Glance

Given a graph G = (V , E) with |V| = n, |E| being respectively the number
of its vertices and edges and L the Laplacian of G ; for instance, L could be
the normalized, unormalized or random walk Laplacians respectively defined as
L = In −D−1/2 A D−1/2, L = D − A and L = D−1A where In is an n× n identity
matrix, A is the affinity matrix built as [A]vv′ = 1{(v,v′)∈E} or by using the Gaussian
similarity κ(., .) as [A]vv′ = 1{(v,v′)∈E}.κ(ψ(v), ψ(v′)) and D a diagonal degree ma-
trix with each diagonal entry [D]vv =

∑
v′ [A]vv′ .

Considering the eigen-decomposition of L as UΛU ′ with U , Λ being respectively
the matrix of its eigenvectors (graph Fourier modes) and the diagonal matrix of its
non-negative eigenvalues, spectral graph convolution is a well defined operator
(see for instance [99]) which is achieved by first projecting a given graph signal ψ(.)

using the eigen-decomposition of L, and then multiplying the resulting projection
by a convolutional filter prior to back-project the result in the original signal space.

Formally, the convolutional operator ?G (rewritten for short as ?) on the graph
signal ψ(V) ∈ Rn×m is

(ψ ? gθ)(V) = U gθ(Λ) U ′ ψ(V) (4.1)

here gθ denotes a non-parametric convolutional filter defined as gθ(Λ) = diag(θ)

with θ ∈ Rn. As this filter is not localized, we consider instead [99]

(ψ ? gθ)(V) :=
K−1∑
k=0

θk Tk(L) ψ(V), (4.2)

with K fixed and θ = (θ1 . . . θK)′ ∈ RK being its learned convolutional filter
parameters ; in practice, we consider a rescaled version of the Laplacian (i.e.,
2L/λmax − In instead of L with λmax being its largest eigenvalue).

In the above equation, Tk is the k-th order Chebyshev polynomial recursively
defined as Tk(L) = 2L Tk−1(L) − Tk−2(L), with Tk(L) ∈ Rn×n and T0 = I , T1 = L

(for more details see again [99]).
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4.3.2 Multi-Laplacian Design

The success of the aforementioned convolutional process is highly dependent
on the relevance of the used Laplacian, which in turn depends on the appropriate
choice of the affinity matrix of the graph and its hyper-parameters.
Hence, knowing a priori which parameter to choose could be challenging and
usually relies on the tedious cross-validation.

Our alternative contribution in this work aims at designing convolutional La-
placian operators while learning the topological structure of the input graphs
(characterized by their Laplacians).
Starting from different elementary Laplacians 3 associated to multiple settings (for
instance, by varying the scale σ of the gaussian similarity κ(., .) and the Lapla-
cians), we train a multiple Laplacian as a deep nonlinear combination of multiple
elementary Laplacians.

Figure 4.4 shows our learning framework with d-layers in the multi-Laplacian ;
for each layer `+ 1 (` ∈ {0, . . . , d− 1}) and its associated unit p ∈ {1, . . . , n`+1}, a
Laplacian (denoted L`+1

p ) is recursively defined as

L`+1
p = g

( n∑̀
q=1

w`
q,p L

`
q

)
, (4.3)

where g is a nonlinear activation function (see details in Section 4.4), n` is the
number of units in layer ` and {w`

q,p}q are the (learned) weights associated to L`+1
p .

For any given graph G, a tensor of multiple elementary Laplacians {L1
q}q (as-

sociated to different combinations of {σ} and standard Laplacians namely unor-
malized, normalized, random walk, etc.) on G is considered as an input to our
deep network. These elementary Laplacians are then forwarded to the subsequent
intermediate layer resulting into n2 multiple Laplacians through the nonlinear
combination of the previous layer, etc. The final Laplacian Ld1 is a highly nonlinear
combination of elementary Laplacians.

We notice that the deep Laplacian network in essence is a multi-layer perceptron
(MLP), with nonlinear activation functions which is fed (together with the graph
signal ψ(V)) as input in order to achieve convolution (see Figure 4.4). Hence, we
can use standard backpropagation in order to optimize the parameters of both

3. Also referred to as single or individual Laplacians.
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F igure 4.4 – This figure shows the architecture of our multi-Laplacian graph
convolutional network (MLGCN). First, multiple elementary La-
placians (associated to G = (V , E)) and graph signal ψ(V) are fed
as input to an MLP in order to learn the best combination of La-
placians. Then, Chebyshev decomposition is achieved using the
learned multi-Laplacian in order to perform graph convolution,
followed by node expansion and global average pooling prior to
softmax classification.

the MLP and the GCN networks. Let J denotes the loss function associated to
our classification problem (namely cross-entropy) ; starting from the gradients
of this loss J w.r.t the final softmax output, we use the chain rule in order to
backpropagate the gradients w.r.t different layers and parameters (fully connected
and convolutional layers as well as the MLP of the multi-Laplacians), and to
update these parameters accordingly using gradient descent.

4.3.3 Temporal Pyramid MLGCN

As an extension, we define TP-MLGCN as a combination of multiple Lapla-
cians each one dedicated to a particular node in a temporal pyramid. Similarly to
chapter 3, nodes in this temporal pyramid capture coarse as well as fine temporal
granularities in actions. Finding the most relevant Laplacian, that captures the
best combination of granularities is not straightforward and requires a careful
design. This is achieved by instantiating our MLGCN to hierarchical Laplacian
learning where each node in the temporal pyramid is associated to a Laplacian
that captures its underlying granularity. With this hierarchy of Laplacians, TP-
MLGCN finds the best tradeoff between (i) top levels providing timely invariant
video representations and (ii) bottom levels yielding timely resolute and well lo-
calized representations. The corresponding tree-structured network of Laplacians
is illustrated in Figure 4.5.
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F igure 4.5 – Temporal pyramid on spatio-temporal graph data based on the
work described in the previous Chapter 3. Each node of the tempo-
ral pyramid is represented by a graph describing a part of video,
except the root node which takes the whole video sequence. This
temporal pyramid is applied to build appearance and motion graph
representation encoding different levels of granularity. The process
of describing graphs at each node is illustrated in Figure 4.1.

4.4 Activation Functions and Optimization

We consider two activation functions g in Equation 4.3 : ReLU and leaky ReLU
[225, 265, 266]. Note that only leaky ReLU provides negative entries in the lear-
ned Laplacians and both of these activations allow learning conditionally positive
definite (c.p.d) Laplacian matrices.

In what follows, we discuss the sufficient conditions about the choices of the
elementary input Laplacians, the parameters {w`

q,p} and the activation functions
that guarantee this c.p.d property.

Definition 4.1 (conditionally positive definite Laplacians). A Laplacian ma-
trix L is conditionally positive definite, iff ∀c1, . . . , cn ∈ R (with

∑n
i=1 ci = 0),∑

i,j cicjLij ≥ 0.

From the above definition, it is clear that any positive definite Laplacian is also
c.p.d. The converse is not true, however c.p.d is a weaker (but sufficient) condition
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in order to derive positive definite Laplacians (see following propositions).

Proposition 4.2 ([267]). Consider Li,j as an entry of a matrix L and define L̂ with

L̂i,j = Li,j − Li,n+1 − Ln+1,j + Ln+1,n+1 (4.4)

Then, L̂ is positive definite if and only if L is c.p.d.

[Proof of Proposition4.2]

“If” part : assuming L c.p.d, ∀c1, . . . , cn, cn+1 (with cn+1 = −
∑n

i=1 ci)

0 ≤
n+1∑
i,j=1

cicjLi,j

=
n∑

i,j=1

cicj Li,j + cn+1

n∑
i=1

ci Li,n+1 + cn+1

n∑
j=1

cj Ln+1,j + c2n+1 Ln+1,n+1

=
n∑

i,j=1

cicj
(
Li,j − Li,n+1 − Ln+1,j + Ln+1,n+1

)
=

n∑
i,j=1

cicjL̂i,j.

“Only If” part : assuming L̂ positive definite ∀c1, . . . , cn (including when
∑

i ci =

0) and for any u (for instance u ∈ {1, . . . , n})

0 ≤
n∑

i,j=1

cicjL̂i,j

=
n∑

i,j=1

cicj(Li,j − Li,u − Lu,j + Lu,u)

=
n∑

i,j=1

cicjLi,j −
n∑
i

ciLi,u

n∑
j=1

cj −
n∑
j=1

cjLu,j

n∑
i=1

ci + Lu,u

n∑
i=1

ci

n∑
j=1

cj

=
n∑

i,j=1

cicjLi,j

�

Now we derive our main result :



102 spectral graph convolutional neural networks for action recognition

Proposition 4.3. Provided that the input elementary Laplacians {L1
q}q are c.p.d, and

{w`
q,p}p,q,` belong to the positive orthant of the parameter space, any combination g(

∑
qw

`
q,p L

`
q),

with g equal to ReLU or leaky ReLU, is also c.p.d.

[Proof of Proposition4.3]

Details of the first part of the proof, based on recursion, are omitted and result
from the application of definition 4.1 to L =

∑
qw

`
q,p L

`
q (for different values of `)

while considering {L1
q}q c.p.d. Now we show the second part of the proof (i.e., if

L is c.p.d, then g(L) is also c.p.d for ReLU and leaky ReLU).

i) For g(L) = log(1 + exp(L)) [ReLU] : considering L c.p.d, and following the
proposition 4.2, one may define a positive definite L̂ and obtain ∀{ci}

n∑
i,j=1

cicj exp(Li,j) = exp(Ln+1,n+1)
n∑

i,j=1

(ci exp(Li,n+1)).(cj exp(Ln+1,j)). exp(L̂i,j
)
≥ 0

so exp(L) is also positive definite. Besides, for any arbitrary α > 0, (1 + exp(L))◦α

is also positive definite with ◦α being the entry-wise matrix power.
By simply rewriting (1 + exp(L))◦α = exp(α g(L)), it follows (from [268]) that g(L)

is c.p.d since exp(α g(L)) is positive definite for all α > 0.

ii) For g(L) = log(exp(aL) + exp(L)) with 0 < a � 1 [leaky-ReLU] : one may
write g as

g(L) = a L+ log(1 + exp((1− a) L)). (4.5)

Since exp(L) is positive definite, it follows that (1+exp((1−a) L))◦α is also positive
definite for any arbitray α > 0 and 0 < a� 1 so from [268], log(1 + exp((1− a) L))

is c.p.d and so is g(L) ; the latter results from the closure of the c.p.d with respect
to the sum.

�

From proposition 4.3, provided that i) the elementary Laplacians are c.p.d, ii)
the activation function g preserves the c.p.d (as ReLU and leaky-ReLU) and iii)
weights {w`

q,p} are positive, all the resulting multiple Laplacians in Equation 4.3
will also be c.p.d and admit equivalent positive definite Laplacians (following
proposition 4.2), and thereby spectral graph convolution can be achieved.
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Note that conditions (i) and (ii) are satisfied by construction while condi-
tion (iii) requires adding equality and inequality constraints to Equation 4.3, i.e.,
w`
q,p ∈ [0, 1] and

∑
qw

`
q,p = 1.

In order to implement these constraints, we consider a reparametrization in
Equation 4.3 as w`

q,p = f(ŵ`
q,p)/

∑
q′ f(ŵ`

q′,p) for some {ŵ`
q,p} with f being strictly

monotonic real-valued (positive) function and this allows free settings of the
parameters {ŵ`

q,p} during optimization while guaranteeing w`
q,p ∈ [0, 1] and∑

qw
`
q,p = 1. During backpropagation, the gradient of the loss J (now w.r.t ŵ’s)

is updated similarly to Section 3.3.2.

4.5 Pooling

If pooling on regular grids (or vectorial data in general) is well defined, it is not
the case for graphs [269]. As a consequence, most of GCN architectures do not
include pooling layers in their architectures [259, 270] excepting a few attempts
which try to incorporate pooling in a non explicit way using multi-level graph
coarsening (i.e., by reducing graphs by a factor of two at each level and describing
each node by the average or the max of its descendants [99, 271] or by using
clustering [272, 273] and reordering [242, 274-276]).

For highly irregular graphs (e.g., with heterogeneous degrees), this graph coar-
sening process usually results into imbalanced hierarchical representations and
this substantially affects the accuracy of the learned graph representations.
In practice, existing methods (for instance [99]) add fake nodes in the input graphs
in order to rebalance the coarsening process. However, fake nodes are spurious
and this may lead to contaminated graph representations after coarsening. Besides,
this pooling process is not invariant to node permutations and node reordering
(based on automorphisms) cannot guarantee permutation invariance for general
and irregular graphs.

In this section, we consider an alternative solution in order to achieve pooling.
Our method relies on two steps : an expansion-step is first achieved at the node
level followed by a global average pooling in order to achieve permutation inva-
riance.

Note that the first step (expansion) is necessary in order to generate high dimen-
sional (and sparse) node representations and hence preserve the discrimination
power of nodes before applying the second step of global average pooling. Put
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differently, without expansion, average pooling achieves permutation invariance
but dilutes node information and this results into less discriminant graph repre-
sentations as shown in experiments.

Considering Nr(v) as the set of r-hop neighbors of a given node v ∈ V and
Nr(v) = ∪Ll=1N l

r(v) as the union of L subsets 4, the expansion of v is defined as

φ(v)←

(ψ ? gθ)(v),
1

|N 1
r (v)|

∑
v′∈N 1

r (v)

(ψ ? gθ)(v
′), . . . ,

1

|N L
r (v)|

∑
v′∈NL

r (v)

(ψ ? gθ)(v
′)

 .

(4.6)
For a large and fine-grained neighborhood system Nr(v) = ∪Ll=1N l

r(v) (i.e., r ≥ 1

and L� 1), the expansion φ(v) takes into account not only the immediate neigh-
bors of v but also a large extent and this results into high dimensional, sparse and
discriminating representations.
Finally, a global average pooling is performed (as

∑
v∈V φ(v)) to achieve permuta-

tion invariance prior to the softmax fully connected classification layer (see again
Figure 4.4).

4.6 Experiments

We evaluate the performance of our multi-Laplacian graph convolutional net-
works (MLGCN) and our TP-MLGCN on the challenging task of action recogni-
tion, including 2D/3D skeleton and video (rgb) frames data, using three standard
datasets : 2D JHMDB [199] (see skeleton data for JHMDB in Section 2.5.2), 3D
SBU kinect [264] (see Section 2.5.3 ) and UCF-101 [197] (see Section 2.5.1).

Datasets Description. JHMDB is a subset of HMDB composed of 928 video
sequences belonging to 21 action categories obtained in difficult conditions (but
less challenging than HMDB. see again Section 2.5.2). It is quickly exposed to
over-fitting due to its small size, especially when trained with deep neural net-
works.
SBU is an interaction dataset acquired (under relatively well controlled condi-
tions) using the Microsoft Kinect sensor ; it includes in total 282 video sequences
belonging to 8 categories : “approaching”, “departing”, “pushing”, “kicking”,
“punching”, “exchanging objects”, “hugging”, and “hand shaking”.
In contrast to JHMDB and SBU which are skeleton datasets, UCF-101 is a video
dataset. It is larger and more challenging ; it includes 13,320 video shots belonging
to 101 categories with variable duration, poor frame resolution, viewpoint and

4. In practice, each subset N l
r(v) includes only nodes with labels equal to l (see again node

labels in Figure 4.1).
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illumination changes, occlusion, cluttered background and eclectic content ran-
ging from multiple and highly interacting individuals to single and completely
passive ones.
In all these experiments, we use the same evaluation protocols as the ones sug-
gested in [197, 199, 264] (i.e.,three splits for JHMDB-21, split2 for UCF-101 and
train-test split for SBU) and we report the average accuracy over all the classes of
actions.

4.6.1 Settings and Performances

Performances of MLGCN against elementary Laplacians without and with
expansion. We trained our MLGCN for 150 epochs on UCF-101, 40 epochs on
SBU and 50 epochs on JHMDB using the PyTorch SGD optimizer and we set the
learning rate to 0.0006 (decayed by a factor 0.1 after 100 epochs) for UCF-101, 0.17

for JHMDB and 0.7 for SBU. We set the batch size to 30 and the Chebyshev order
K to 4, 3, 4 respectively for UCF, JHMDB and SBU using grid search and cross
validation. All these experiments are run on GPUs ; Tesla P100 (with 16 Gb) for
UCF-101 and Titan X Pascal (with 12 Gb) for JHMDB and SBU.

Table 4.2, Table 4.4 and Table 4.6 show a comparison of action recognition
performances, using MLGCN against different baselines involving individual La-
placians (normalized, unormalized, random walk built on top of different affinity
matrices and scale parameters). These tables show the results using expansion
(as described in Section 4.5) and global average pooling (GP) while in Table 4.1,
Table 4.3 and Table 4.5, we show the results without expansion.
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2D skeletons Binary Binary × Gaussian Multi-lap
JHMDB 100σ 101σ 102σ 103σ 104σ 105σ 106σ

Unormalized
k = 1 54.33 52.33 49.67 54.33 54.33 53.67 53.67 55.03 55.03

k = 4 54.33 50.66 49.67 54.67 54.00 54.33 53.67 53.00 55.05

k = 15 54.33 52.33 50.33 54.67 54.00 53.67 53.67 53.33 55.10

Normalized
k = 1 54.33 52.33 54.00 54.33 54.33 54.33 54.67 56.38 56.38

k = 4 55.00 54.33 52.00 54.00 54.33 54.33 54.67 54.67 56.41

k = 15 55.00 54.33 52.33 54.00 54.00 54.33 54.67 54.67 58.71

Random walk
k = 1 54.00 53.00 54.00 53.67 54.33 55.00 55.00 53.66 55.64

k = 4 54.00 53.00 54.00 53.67 54.33 55.00 55.00 53.00 55.64

k = 15 54.00 52.33 54.00 53.67 54.33 55.00 55.00 53.67 55.65

Multi-lap (MLGCN) 55.93 54.93 54.22 54.90 55.85 55.77 55.58 54.98 58.08

Table 4.1 – Performances on JHMDB (over the three splits) without expansion for
different elementary Laplacians (normalized, unormalized and ran-
dom walk) and their marginal and total combinations using MLGCN
(note that our expansion is not used). In this table, "binary" means
that Ak is used to build the elementary Laplacian while "binary ×
Gaussian" means that “Ak× Gaussian similarity” is used instead ; for
each graph G, the scale σ of the Gaussian similarity is taken as the
average distance between node features in G. Table 4.2 shows results
with expansion as described in Section 4.5.

2D skeletons Binary Binary × Gaussian Multi-lap
JHMDB 100σ 101σ 102σ 103σ 104σ 105σ 106σ

Unormalized
k = 1 55.33 52.67 57.33 57.33 56.67 56.67 56.33 57.93 57.93

k = 4 57.33 53.67 52.67 57.67 57 56.67 56.67 56.00 57.85

k = 15 57.33 55.33 52.67 57.67 57.00 56.67 56.67 56.33 57.94

Normalized
k = 1 58.00 57.33 55.33 57.00 57.33 57.33 57.33 57.67 59.23

k = 4 58.00 57.33 55.00 57.00 57.33 57.33 57.67 57.67 58.85

k = 15 58.00 57.33 55.33 57.00 57.00 57.33 57.67 57.67 59.22

Random walk
k = 1 57.00 56.00 57.00 57.00 57.33 58.00 58.00 56.67 58.58

k = 4 57.00 56.00 57.00 56.67 57.33 58.00 58.00 56.67 58.48

k = 15 57.00 56.00 57.00 56.67 57.33 58.00 58.00 56.67 58.57

Multi-lap (MLGCN) 58.61 58.01 57.16 57.85 59.14 58.53 58.52 58.00 61.21

Table 4.2 – Performances on JHMDB (over the three splits) with expansion. See
Table 4.1 for results without expansion and for the settings.
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3D skeletons Binary Binary × Gaussian Multi-lap
SBU 10−6σ 10−5σ 10−4σ 10−3σ 10−2σ 10−1σ σ 10σ 102σ 103σ 104σ 105σ 106σ

Unorm
alized k = 1 92.22 91.73 91.73 91.73 91.73 91.73 91.73 91.73 91.73 91.71 91.71 91.71 91.71 91.71 92.69

k = 4 88.90 87.95 87.95 87.95 87.95 87.95 87.95 87.95 87.95 87.95 87.92 87.92 87.92 87.92 89.61

k = 32 85.78 84.48 84.48 84.48 84.48 84.48 84.48 84.48 84.50 84.50 84.50 84.50 84.50 84.50 86.28

Norm
aliz

ed k = 1 92.34 91.78 91.78 91.78 91.78 91.78 91.78 91.75 91.75 91.75 91.75 91.75 91.77 91.77 92.78

k = 4 89.67 88.56 88.56 88.56 88.56 88.56 88.56 88.56 88.59 88.59 88.59 88.56 88.56 88.56 90.13

k = 32 87.60 86.48 86.48 86.48 86.48 86.48 86.48 86.48 86.50 86.50 86.50 86.50 86.50 86.50 88.17

Random
w k = 1 92.57 91.17 91.17 91.17 91.16 91.17 91.17 91.17 91.20 91.20 91.20 91.17 91.17 91.17 92.88

k = 4 95.81 93.88 93.88 93.88 93.81 93.81 93.80 93.80 93.79 93.83 93.81 93.80 93.80 93.81 96.12

k = 32 95.77 93.85 93.85 93.85 93.85 93.85 93.86 93.86 93.86 93.84 93.84 93.84 93.84 93.84 96.10

Multi-lap 96.96 94.26 94.26 94.26 94.28 94.28 94.28 94.28 94.27 94.26 94.26 94.26 94.26 94.26 98.14

Table 4.3 – Performances on SBU without expansion. See Table 4.1 for the settings
and Table 4.4 for results with expansion.

3D skeletons Binary Binary × Gaussian Multi-lap
SBU 10−6σ 10−5σ 10−4σ 10−3σ 10−2σ 10−1σ σ 10σ 102σ 103σ 104σ 105σ 106σ

Unorm
alized k = 1 93.00 92.32 92.32 92.32 92.32 92.32 92.32 92.32 92.32 92.30 92.30 92.30 92.30 92.30 93.41

k = 4 89.25 88.87 88.87 88.87 88.87 88.87 88.87 88.87 88.87 88.87 88.86 88.86 88.86 88.86 90.07

k = 32 86.00 86.31 86.31 86.31 86.31 84.31 86.31 86.31 86.32 86.32 86.32 86.32 86.32 86.32 86.91

Norm
aliz

ed k = 1 93.00 92.28 92.28 92.28 92.28 92.28 92.28 92.26 92.26 92.26 92.26 92.26 92.28 92.28 93.49

k = 4 90.00 89.36 89.36 89.36 89.36 89.36 89.36 89.36 89.38 89.38 89.39 89.37 89.37 89.37 91.49

k = 32 88.00 88.31 88.31 88.31 88.31 88.31 88.31 88.31 88.32 88.32 88.32 88.32 88.32 88.32 89.21

Random
w k = 1 93.00 92.05 92.05 92.06 92.05 92.05 92.05 92.05 92.09 92.09 92.09 92.06 92.06 92.06 93.46

k = 4 96.00 94.06 94.06 94.06 94.00 94.00 94.00 94.01 94.00 94.01 94.00 94.00 94.00 94.00 96.31

k = 32 96.00 94.03 94.03 94.03 94.03 94.03 94.03 94.03 94.03 94.02 94.02 94.02 94.02 94.02 96.29

Multi-lap 97.15 94.61 94.58 94.61 94.63 94.63 94.63 94.62 94.63 94.63 94.63 94.63 94.63 94.63 98.6

Table 4.4 – Performances on SBU with expansion. See Table 4.1 for the settings
and Table 4.3 for results without expansion.

Video frames Binary Binary × Gaussian Multi-lap
UCF-101 10−6σ 10−5σ 10−4σ 10−3σ 10−2σ 10−1σ σ 10σ 102σ 103σ 104σ 105σ 106σ

Unorm
alized k = 1 54.78 49.08 49.08 48.08 48.08 48.10 48.10 48.10 48.13 48.13 48.13 48.13 48.09 48.10 55.38

k = 4 59.05 54.69 54.69 54.69 54.69 54.62 54.60 54.61 54.15 54.15 54.15 54.18 54.22 54.15 59.80

k = 32 54.66 51.37 51.37 51.37 51.37 51.52 51.52 51.50 51.51 51.51 51.78 51.78 51.78 51.75 55.31

Norm
aliz

ed k = 1 55.10 49.23 49.23 49.05 49.11 49.11 49.12 49.12 49.12 49.12 49.12 49.11 49.11 49.11 55.95

k = 4 59.2 54.89 54.89 54.89 54.60 54.62 53.95 53.95 53.95 53.95 53.95 53.96 53.96 53.96 59.98

k = 32 54.90 50.46 50.46 50.45 50.10 50.10 50.11 50.10 50.10 50.12 50.12 50.10 50.10 50.10 55.70

Random
w k = 1 59.78 56.71 56.71 56.71 56.77 56.71 56.71 56.71 56.74 56.66 56.66 56.66 56.66 56.68 60.10

k = 4 61.25 56.80 56.80 56.80 56.80 56.80 56.75 56.76 56.75 56.70 56.70 56.70 56.70 56.72 61.35

k = 32 59.95 56.74 56.74 56.74 56.74 56.74 56.74 56.74 56.76 56.68 56.68 56.68 56.65 56.65 61.16

Multi-lap 61.50 57.00 56.95 56.93 56.93 56.93 56.90 56.96 56.91 56.91 56.94 56.94 56.95 56.97 62.70

Table 4.5 – Performances on UCF without expansion. See Table 4.1 for the settings
and Table 4.6 for results with expansion.

Video frames Binary Binary × Gaussian Multi-lap
UCF-101 10−6σ 10−5σ 10−4σ 10−3σ 10−2σ 10−1σ σ 10σ 102σ 103σ 104σ 105σ 106σ

Unorm
alized k = 1 55.32 50.67 50.67 50.67 50.68 50.70 50.70 50.70 50.71 50.72 50.72 50.72 50.70 50.70 56.55

k = 4 59.23 55.22 55.22 55.22 55.22 55.20 55.20 55.20 54.95 54.96 54.95 54.98 55.00 54.98 60.05

k = 32 55.10 52.05 52.05 52.05 52.05 52.11 52.11 52.11 52.11 52.11 52.06 52.06 52.06 52.08 56.48

Norm
aliz

ed k = 1 55.6 50.78 50.77 50.27 50.42 50.40 50.42 50.42 50.42 50.42 50.42 50.42 50.42 50.42 56.80

k = 4 59.45 55.32 55.35 55.35 55.00 55.00 54.60 54.60 54.60 54.60 54.60 54.60 54.60 54.60 60.35

k = 32 55.25 51.19 51.19 51.19 49.78 49.79 49.79 49.79 49.79 49.78 49.78 49.77 49.77 49.77 56.52

Random
w k = 1 60.09 58.00 58.00 57.98 58.00 58.00 58.00 58.00 58.01 57.95 57.95 57.95 57.92 57.94 60.85

k = 4 61.63 58.05 58.05 58.05 58.05 58.05 58.02 58.02 58.02 57.98 57.98 57.98 57.98 58.02 61.90

k = 32 60.23 58.02 58.02 58.02 58.02 58.01 58.02 58.02 58.01 57.95 57.95 57.95 57.92 57.92 60.9
Multi-lap 62.00 58.24 58.16 58.14 58.14 58.14 58.15 58.15 58.13 58.14 58.16 58.18 58.15 58.17 63.27

Table 4.6 – Performance on UCF with expansion. See Table 4.1 for the settings
and Table 4.5 for results without expansion.
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Methods Video frames Skeletons
UCF-101 2D JHMDB 3D SBU

MLGCN (level 1) 62.70 58.08 98.14

TP-MLGCN (level 2) 63.11 58.63 98.47
TP-MLGCN (level 3) 63.34 58.96 98.35

TP-MLGCN (level 4) 63.19 58.77 98.26

Table 4.7 – Performances on UCF, JHMDB and SBU w.r.t the choice of granula-
rity level in TP-MLGCN. We show results without expansion here and
with expansion in Table 4.8.

Methods Video frames Skeletons
UCF-101 2D JHMDB 3D SBU

MLGCN (level 1) 63.27 61.21 98.6

TP-MLGCN (level 2) 63.91 61.72 98.90
TP-MLGCN (level 3) 64.17 61.96 98.83

TP-MLGCN (level 4) 64.00 61.79 98.72

Table 4.8 – Performances on UCF, JHMDB and SBU w.r.t the choice of granula-
rity level in TP-MLGCN. We show results with expansion here and
without expansion in Table 4.7.
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From all these tables, we observe a clear and consistent gain of MLGCN w.r.t
all the individual Laplacian settings. This gain is further amplified when using
our expansion method (described in Section 4.5) followed by global pooling.

TP-MLGCN vs MLGCN. We follow the parameter settings of MLGCN des-
cribed in previous paragraphs to train our TP-MLGCN in order to compare the
models in the same conditions. The batch size, the Chebyshev order K, and the
learning rate for the different datasets are identical to those of MLGCN while
the number of epochs in TP-MLGCN is increased since TP-MLGCN model is
more complex than MLGCN, including more parameters to learn. Hence, we set
210 epochs (instead of 150 epochs) on UCF-101, 70 epochs (instead of 40) on SBU
and 65 epochs (instead of 50 epochs) on JHMDB. We measure the performance of
our TP-MLGCN 5 without and with expansion (see Table 4.7 for results without
expansion and Table 4.8 for results with expansion) on the three datasets.

The first row of Table 4.7 and Table 4.8 show results of the first level of TP-
MLGCN which corresponds to MLGCN ; the coarse-grained level of video repre-
sentations and their associated graph Laplacians as shown in Figure 4.5 (node 1).
The three remaining rows report respectively results with an increasing granula-
rity level.
From the experimental results, we again observe the outperformance of the set-
tings with expansion over settings without expansion. This confirms the motiva-
tion of our expansion pooling design (see again Section 4.5) and its robustness in
different GCN architectures.

Different pooling strategies and skeleton representations. We also show in
Table 4.9, Table 4.10 and Table 4.11 the results for (i) different pooling strategies
(no-pooling, only GP, feature propagation [251] and feature propagation+GP), (ii)
various multi-Laplacian depths and activation functions 6 and (iii) different input
graph descriptions for skeleton data (JHMDB and SBU).

From all these results, we observe a clear gain of our TP-MLGCN and MLGCN
w.r.t single Laplacian settings regarding different pooling strategies and skeleton
representations. This gain results from the complementary aspects of the used ele-

5. Up to four levels
6. As shown in Table 4.10, performances improve/stabilize very quickly, as the depth increases,

since the size of the training set is limited compared to the large number of training parameters
in the MLP of the multi-Laplacian. These performances are consistently better when using leaky
ReLU (compared to ReLU) and this is explained by the modeling capacity of the former. Indeed,
leaky ReLU reflects better the (positive and negative) values of our Laplacians while ReLU cuts
off all the negative values.
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Pooling Single-lapl Multi-lap TP-MLGCN
JHMDB SBU UCF JHMDB SBU UCF JHMDB SBU UCF

No pooling 54.52 93.94 59.16 58.72 95.70 61.20 59.19 95.75 61.26

Global Pooling (GP) 54.00 93.90 59.10 58.08 95.62 61.17 58.67 95.68 61.21

Features prop [251] 55.19 94.27 59.30 58.97 96.36 61.31 58.82 96.38 61.37

Features prop [251] + GP 55.10 94.30 59.26 58.87 96.43 61.25 58.74 96.46 61.32

Exp (r = 1, L = 1)+GP 55.23 94.15 59.20 58.81 96.35 61.25 58.68 96.40 61.32

Exp (r = 2, L = 1)+GP 55.31 94.32 59.33 58.95 96.42 61.30 58.95 96.56 61.37

Exp (r = 1, L = n)+GP 58.00 96.00 61.63 61.21 98.60 63.27 61.96 98.90 64.17

Table 4.9 – Behavior of our MLGCN with and without expansion, i.e., after its
ablation and replacement with other pooling methods. Note that
results with the best single Laplacians taken from Table 4.2, Table 4.4
and Table 4.6 are also shown.

Depth Leaky ReLU ReLU
JHMDB SBU UCF JHMDB SBU UCF

1 61.21 98.60 63.10 61.19 98.57 63.07

2 61.20 98.56 63.27 61.16 98.52 63.25

3 61.11 98.30 63.27 61.07 98.23 63.23

Table 4.10 – Behavior of our MLGCN w.r.t different depths and activation func-
tions.

mentary Laplacians and also the match between the topological properties of the
learned multiple Laplacians and the actual topology of the manifolds enclosing
the input graphs. These Performances are further amplified when using “expan-
sion+GP” with a large spatial extent and a fine-grained neighborhood system
Nr(v) = ∪Ll=1N l

r(v) (i.e., r ≥ 1 and L� 1). expansion+GP aggregates the represen-
tations of the learned GCN filters in a way that maintains their high discrimination
power (at the node level) while achieving permutation invariance. The latter is
clearly necessary especially when handing videos with multiple interacting per-
sons that frequently appear in interchangeable orders (as in SBU and UCF).

4.6.2 Augmentation

In this section, we propose a graph augmentation method in order to increase
the size of action recognition datasets based on video (rgb) frames (UCF-101 in
our case) and to mitigate the effect of over-fitting, and also to enhance the perfor-
mance of classification.

Data augmentation plays an important role in ML and in DL. For instance, in
the case of image classification with ConvNets, augmentation consists in random
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Skeleton representation Single-Lap Multi-Lap TP-MLGCN
JHMDB SBU JHMDB SBU JHMDB SBU

Cloud of joints 37.87 31.65 40.97 34.25 41.97 34.36

Spatio-temporel skeletons 40.9 36.10 44.5 38.00 44.96 38.09

Orthocentred joints 7 43.25 7 45.80 7 45.91

Cylindrical features [277, 278] 43.02 38.42 46.15 40.10 46.69 40.15

3D coord +velocity features [279] 43.03 38.50 46.22 40.20 46.73 40.36

Joint joint orientation [280] 50.68 74.95 53.37 76.20 54 76.29

Joint line distance [280] 54.78 85.60 57.03 87.50 57.77 87.65

Our temporal chunking (Section 4.2) 58 96.00 61.21 98.60 61.96 98.90

Table 4.11 – Performance of MLGCN on SBU and JHMDB for different state
of the art skeleton graph/node representations ; again results are
also shown for the best underlying single Laplacians (taken from
Table 4.2, Table 4.4 and Table 4.6). In this table, "Cloud of joints"
stand for graphs based on the similarity between all the keypoints
of different frames ; "Spatio-temporel skeleton" graphs are obtained
by computing intra-frame joint similarity and by connecting them to
their predecessors and successors through frames ; "Orthocentered
joints" are obtained by centering the keypoint coordinates of each
skeleton in each frame. Details about the other used node features
(namely "Cylindrical features", "3D coord + velocity features", "
Joint joint orientation" and "Joint line distance") can be found in
[277-282]. 7means that orthocentred joints representation doesn’t
apply for JHMDB because there is one person per frame.

UCF-101 Accuracy
(Appearance features)

Single-Laplacian MLGCN TP-MLGCN

Global pooling Without augmentation 61.25 62.70 63.34

With augmentation 61.79 63.34 63.89

Expansion + Global pooling Without augmentation 61.63 63.27 64.17

With augmentation 62.12 64.00 64.74

Table 4.12 – Performance of Single Laplacian, MLGCN and TP-MLGCN on UCF-
101 (appearance features) without and with graph augmentation,
including global pooling and expansion + global pooling. The best un-
derlying single Laplacian, MLGCN and TP-MLGCN without aug-
mentation, with global pooling and with expansion + global pooling are
taken from Table 4.5, Table 4.6, Table 4.7 and Table 4.8.

flipping, rotating, and translating the input data.
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F igure 4.6 – The process of graph augmentation for joint features based on
convolutional features. See Section 4.2.2 for joints description (ap-
pearance features for UCF-101).

Here, we propose an augmentation for the specific task of human action recog-
nition (graph classification) based on joint features extracted from pretrained
ConvNets on ImageNet (see Section 4.2.2). Our skeleton graphs are characterized
by a central symmetry w.r.t to their vertical axis. Following this property, one way
to do augmentation is to permute the joints of the left side with those of the right
side. For instance, permuting the joints of right/left hands and shoulders. The
whole process of graph augmentation is depicted in Figure 4.6.

Table 4.12 shows the effectiveness of our graph augmentation method and the
extra gain in performance that it brings in different settings, including Single
Laplacian, MLGCN and TP-MLGCN along with global pooling and expansion +
global pooling.

4.6.3 Comparison Against State-Of-The-Art

In this section, we compare the classification performances of our MLGCN and
TP-MLGCN against related methods ranging from standard machine learning
ones (SVMs [227, 264], sequence based such as LSTM and GRU [283-285], 2D/3D
CNNs [15, 28, 194, 227] including appearance and motion streams) to deep graph
(no-vectorial) methods based on spatial and spectral convolution [99, 251, 259].
From the results in Table 4.13 and Table 4.14, MLGCN and TP-MLGCN bring a
substantial gain w.r.t state of the art graph-based methods on the three sets, and
provide comparable results with the best vectorial methods on JHMDB and SBU.
On UCF, while vectorial methods are highly effective, their combination with our
MLGCN and TP-MLGCN (through a late fusion) bring an extra gain despite
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the fact that bridging the last few percentage gap is challenging, and this clearly
shows its complementary aspect.
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80.35

90.41

93.3

99.02

90.5

91.51

94.9

97.2

95.7

93.7

58.3

59.46

60.08

59.33

61.21

61.96

57.00

61.1

62.5

54.1

61.2

61.5

GCNConv [259]

ArmaConv [260]

SGCConv [251]

ChebyNet [99]

Our best MLGCN

Our best TP-MLGCN

Raw coordinates [264]

Joint features [264]

Interact Pose [286]

CHARM [287]

HBRNN-L [288]

Co-occurence LSTM [289]

ST-LSTM [290]

Joint line distance[280]

Topological pose ordering[282]

STA-LSTM [285]

GCA-LSTM [284]

VA-LSTM [291]

DeepGRU [283]

Riemannian manifold traj [292]

GCNConv [259]

ArmaConv [260]

SGCConv [251]

ChebyNet [99]

Our best MLGCN

Our best TP-MLGCN

Colorized heatmaps [195]

P-CNN [293]

Action Tubes [294]

HLPF [199]

JointAP [295]

PA-AP [296]

Table 4.13 – Comparison against state of the art methods for 2D and 3D skele-
tons.
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64.00

64.74

68.58

64.38

70.46/70.58

68.21/ 68.30

77.34

79.18 / 79.27

91.12

93.23/ 93.29

95.60

95.92/ 95.94

96.41

96.63/ 96.65

97.94

GCNConv [259]

ArmaConv [260]

SGCConv [251]

ChebyNet [99]

Our best MLGCN

Our best TP-MLGCN

Temporal pyramid [227]

Colorized heatmaps [195]

Temporal pyramid [227] + our best MLGCN / TP-MLGCN

colorized heatmaps [195] + our best MLGCN /TP-MLGCN

Temporal pyramid [227] + colorized heatmaps [195]

Temporal pyramid [227] + colorized heatmaps [195]+ our best MLGCN /TP-MLGCN

2D two stream [15]

2D two stream [15]+ our best MLGCN /TP-MLGCN

3D appearance [28]

3D appearance [28]+ our best MLGCN / TP-MLGCN

3D motion [28]

3D motion [28]+ our best MLGCN /TP-MLGCN

3D two stream [28]

Table 4.14 – Comparison against state of the art methods for on UCF-101 (video
frames based dataset).
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4.7 Conclusion

We introduced in this chapter a novel spectral GCN method referred to as
MLGCN for action recognition. It consists in learning a graph Laplacian as a
convex combination of elementary Laplacians. This MLGCN is then extended
to tree-structured temporal pyramid referred to as TP-MLGCN to learn a hierar-
chical Laplacian. It is achieved by combining the learned Laplacians at different
nodes of the temporal pyramid. The strength of our method resides in its effective-
ness in learning combined Laplacian convolutional operators ; each one dedicated
to a particular setting of the manifold enclosing the input graph data. Particularly,
the TP-MLGCN variant has the ability to capture different levels of granularity
yielding discriminating representations for classification. We also introduced a
novel pooling process which is invariant to node permutation. This pooling pro-
cess first expands nodes with their context prior to achieve global averaging. This
results into representations which are more discriminating than those averaged
without expansion because expansion helps to better preserve the responses of
convolutional layers. Moreover, we proposed a method to build graph inputs to
train GCNs from raw 2D/3D skeletons and video (rgb) frames. Finally, we intro-
duced an augmentation for the specific task of human action recognition based
on the permutation of joints and the flipping of their features.
Extensive experiments conducted on the JHMDB and SBU, as well as the challen-
ging UCF-101 datasets, show the outperformance and also the complementary
aspect of our MLGCN/TP-MLGCN w.r.t different baselines and the related works
including graph methods.
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5.1 Summary of Contributions

In this thesis, we tackled the challenging problem of Action Recognition in
videos. We investigated an approach based on the interplay between Deep Lear-
ning, Geometric Deep Learning and Kernel Methods, where we identified miscel-
laneous limitations, for which we have proposed some solutions. Our contribution
is organized in two main points detailed below.

Hierarchical aggregation design for action recognition. Global pooling in
Deep Convolutional Neural Networks plays the role of dimensionality reduc-
tion operator. It helps keeping the most informative representations and reducing
the computational complexity of trained networks. However, this operator is not
well suited for the specific task of action recognition in videos. In Chapter 3, we
proposed a tree-structured hierarchical pooling operator that exhibits the mul-
tiple levels of temporal granularity of action categories. It consists in providing a
representation that jointly captures the global description of videos and also their
details. This hierarchical pooling operator has also the ability to handle the misa-
lignments of action categories while being well localized and agnostic to video
duration. We proposed two variants for learning the parameters of our hierar-
chical pooling function : shallow relying on linear/quadratic programming, and
an end-to-end deep framework based on ResNet. Moreover, we designed a proce-
dure that allows to efficiently train deep networks without downsampling videos
and hence benefiting from the whole frames of videos. We also extended this
framework by considering multiple instances of temporal pyramids to capture
the complex dynamic of action categories in a fully end-to-end and differentiable
manner. As a natural extension of this work, one may consider a differentiable

117
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formulation of the constrained quadratic programming problem to learn its pa-
rameters along with those of ResNet and also replacing the activation functions
and pooling operations of the temporal pyramids layer with explicit kernels.

Generalization of Deep Learning on graphs. Following the success of vectorial
DL in wide spectrum of applications, its generalization to irregular domains such
as graphs and manifolds has drawn a lot of attention. However, this generalization
is not straightforward as it requires a careful design of pooling and convolutional
operators that satisfy the properties of locality, translation invariance and equiva-
riance, compositionality, as well as a linear computational complexity in learning
as it is the case in standard ConvNets. Recently, in the geometric deep learning
framework, spatial and spectral methods have been explored to achieve classifi-
cation on regular grid graphs such as hand-written digits. In this thesis, we were
interested in achieving the particular task of action recognition with geometric
deep learning where few works have emerged. The latter are based on 2D/3D
skeletons features while those operating on sequences of video frames have been
less investigated in the literature especially with spectral methods. To do so, in
Chapter 4, we proposed spectral convolutional and pooling operators on graphs.
This spectral convolutional operator is based on convex combination of several
Laplacians ; each one dedicated to a particular (possible) topology of graphs ; in
order to learn a highly non-linear graph Laplacian. Then, we generalized it to a
tree-structured temporal pyramid to learn a hierarchical Laplacian. It is achieved
by combining the learned Laplacians at each node of the temporal pyramid. We
also introduced a pooling operator that proceeds in two steps : context-dependent
node expansion is achieved, followed by a global averaging. Moreover, we intro-
duced a method to build input graphs for skeletons and video frames relying on
the recent advances in human pose estimation and extraction. Finally, we desi-
gned a graph augmentation technique in order to increase the size of skeleton
based action recognition datasets.

5.2 Perspectives for Future Works

At the end of this work, multiple directions seem to be worth exploring to
improve action recognition models, to generalize to other tasks, and to open the
blackbox of deep learning in order to build principled and interpretable models.
We argue that Graphs/Manifolds Learning along with non-Euclidean Geometry, Causa-
lity and Self-Supervised Learning are one of the most important topics to be focused
on during this decade as next step in AI to design commonsense knowledge mo-
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dels and hence to graze Super Intelligent Machine.

Deep Multiple Kernel Learning. One of the extension of the work presented
in Chapter 3 is the design of Deep Multiple Non-Linear Kernels Model to achieve ac-
tion recognition on small datasets. This allows to avoid tuning the large amounts
of parameters in DL (especially 3D models) and to add extra context by learning
a set of different similarity functions. The advantages of incorporating kernels
in DL models are multiple : these methods are theoretically well grounded and
guarantee global minimum in supervised settings and since their properties are
well understood, it helps to control the learning capacity of models by designing
specific regularization functions for targeted tasks. Therefore, this can be a step
toward DL theory.
Despite the aforementioned advantages, one of the bottlenecks of deep kernels
is the difficulty to scale them up and to design hierarchical kernels that capture
compositional structures as it is the case for convolutional operators satisfying
some invariance properties and stability to small deformations.

Deep Graph Random Walk Kernels. Since kernel methods can be applied to
different types of data including sequences, vectors and graphs, we argue that the
work presented in Chapter 4 can be formulated as Graph Kernel Learning problem.
Particularly, to design a powerful pooling operator on graphs. In Chapter 4, we
modeled this operation on skeletons as the expansion of their dimensionality w.r.t
their context. Similarly, we think that this pooling operation can be expressed as
graph random walk kernel ; a finite symmetric Markov chain on undirected graphs.
The rational is that the expansion step could be implicitly achieved by random
walk kernels while benefiting from the interesting properties of kernels. Moreover,
this design may help to add extra geometric interpretation to GCNs.

GCNs and hypergraph representations. In Chapter 4, we showed how power-
ful spectral methods are to achieve convolution on graphs. Benefiting from the
well studied Fourier transform and the eigen-decomposition of graph Laplacians.
However, the latter can not be applied to large scale graphs due to its cubic com-
putational complexity. One way to achieve spectral convolution on these graphs is
to consider hypergraph representations or graphons [297]. The latter are particu-
larly interesting since they allow to define consistency between graphs of variable
sizes thanks to their regularity property which allow to capture the structure of
arbitrary large and variable size graphs.

From skeletons to generic graphs (supervoxels). In Chapter 4, we achieved
action recognition with GCNs relying on skeleton graphs. The latter are estimated,
and may result into inaccurate and missing joints/skeletons especially on videos
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with low frame resolution and multiple interacting individuals, which makes
their detection and tracking challenging. In order to circumvent that, one way to
construct input graphs from video sequences is to estimate them in an unsuper-
vised manner relying on supervoxel graphs. One of the advantages of supervoxel
representations is their invariance to the number of persons and to their reor-
dering. However, these representations have the drawbacks of being large-scale
graphs which require a careful design of pooling (graph coarsening) and convolu-
tional operators. Furthermore, it is difficult to track them across frames and this
requires an appropriate design of multiple object tracking and re-identification.
To do so, one may generalize optical flow algorithm on supervoxels, initially de-
signed for pixel level displacements. In addition, following the recent advances
of DL for physical processes, incorporating a prior knowledge can help to better
estimate motion, including Kalman filters and density estimation processes.

Video Activity Recognition. From a practical standpoint, our models can be
naturally extended to activity recognition. The latter is more general than action
recognition since it is characterized by sequences of very long duration. Moreover,
in activity recognition, several actions are occurring at the same time involving
several persons which may result into over-crowded scenes. As a consequence, it
requires deep and multiple temporal pyramids capable to discriminate the dif-
ferent actions that occur simultaneously. From a graph method standpoint, graph
representation of activities could be an attempting way to model the complex
geometric structure of over-crowed scenes.
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