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Résumé

Dans cette these, nous nous intéressons a la stabilisation par rétroaction des systeémes
quantiques ouverts soumis a des mesures imparfaites en temps continu. Tout d’abord,
nous introduisons la théorie du filtrage quantique pour décrire 1’évolution temporelle
de l'opérateur de densité conditionnelle représentant un état quantique en interaction
avec un environnement. Ceci est décrit par une équation différentielle stochastique a
valeurs matricielles. Deuxiemement, nous étudions le comportement asymptotique des
trajectoires quantiques associées a des systemes de spin a /N niveaux pour des états initiaux
donnés, pour les cas avec et sans loi de rétroaction. Dans le cas sans loi de rétroaction,
nous montrons la propriété de réduction de 1’état quantique a vitesse exponentielle.
Ensuite, nous fournissons des conditions suffisantes sur la loi de controle assurant une
convergence presque sure vers un état pur prédéterminé correspondant a un vecteur propre
de 'opérateur de mesure. Troisiemement, nous étudions le comportement asymptotique
des trajectoires de systemes ouverts a plusieurs qubits pour des états initiaux donnés.
Dans le cas sans loi de rétroaction, nous montrons la réduction exponentielle de 1'état
quantique pour les systemes N-qubit avec deux canaux quantiques. Dans le cas particulier
des systemes a deux qubits, nous donnons des conditions suffisantes sur la loi de controle
assurant la convergence asymptotique vers un état cible de Bell avec un canal quantique,
et la convergence exponentielle presque stire vers un état cible de Bell avec deux canaux
quantiques. Ensuite, nous étudions le comportement asymptotique des trajectoires des
systemes quantiques ouverts de Spin—% avec les états initiaux inconnus soumis a des mesures
imparfaites en temps continu, et nous fournissons des conditions suffisantes au controleur
pour garantir la convergence de I'état estimé vers 1’état quantique réel lorsque le temps
tends vers 'infini. En conclusion, nous discutons de maniere heuristique du probleme
de stabilisation exponentielle des systemes de spin a /N niveaux avec les états initiaux
inconnus et nous proposons des lois de rétroaction candidates afin de stabiliser le systeme
de maniere exponentielle.

I1I






Abstract

In this thesis, we focus on the feedback stabilization of open quantum systems under-
going imperfect continuous-time measurements. First, we introduce the quantum filtering
theory to obtain the time evolution of the conditional density operator representing a
quantum state in interaction with an environment. This is described by a matrix-valued
stochastic differential equation. Second, we study the asymptotic behavior of quantum
trajectories associated with N-level quantum spin systems for given initial states, for
the cases with and without feedback law. For the case without feedback, we show the
exponential quantum state reduction. Then, we provide sufficient conditions on the feed-
back control law ensuring almost sure exponential convergence to a predetermined pure
state corresponding to an eigenvector of the measurement operator. Third, we study the
asymptotic behavior of trajectories of open multi-qubit systems for given initial states. For
the case without feedback, we show the exponential quantum state reduction for N-qubit
systems with two quantum channels. Then, we focus on the two-qubit systems, and provide
sufficient conditions on the feedback control law ensuring asymptotic convergence to a
target Bell state with one quantum channel, and almost sure exponential convergence
to a target Bell state with two quantum channels. Next, we investigate the asymptotic
behavior of trajectories of open quantum spin—% systems with unknown initial states
undergoing imperfect continuous-time measurements, and provide sufficient conditions
on the controller to guarantee the convergence of the estimated state towards the actual
quantum state when time goes to infinity. Finally, we discuss heuristically the exponential
stabilization problem for N-level quantum spin systems with unknown initial states and
propose candidate feedback laws to stabilize exponentially the system.
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[ntroduction (version francaise)

1.1 Motivation et contexte

La théorie du controle quantique est un domaine de recherche en plein essor, cepen-
dant de nombreux efforts doivent encore étre effectués pour rendre cette spécialité plus
pratique dans l'ingénierie des dispositifs quantiques. La capacité de controler les systemes
quantiques, par exemple, de préparer et de protéger un état quantique souhaité, joue un
role essentiel dans le développement de technologies quantiques avancées. Les technologies
quantiques [NCO02] sont censées dépasser les technologies conventionnelles: I'informatique
quantique peut étre beaucoup plus rapide que I'informatique classique pour résoudre cer-
tains problemes, et la métrologie quantique sera beaucoup plus précise que les techniques
conventionnelles dans I'estimation des parametres.

La dynamique de systemes quantiques fermés simples peut étre décrite par les équations
de Schrodinger (dépendantes du temps). Pour de tels systemes, nous pouvons définir des
taches de contréle simples pouvant étre réalisées a ’aide de techniques de contréle en boucle
ouverte. Cela signifie qu'un signal de commande classique prédéterminé est appliqué a un
systeme quantique fermé et qu’aucune rétroaction n’est impliquée ; vous pouvez trouver un
traitement complet dans [d’A07]. La stratégie de controle en boucle ouverte a été appliquée
dans différents contextes, comme I’approche du contrdle optimal [TR04, KRK 05, BCS09],
probléemes de controlabilité [BBR10, BCR10], etc. En raison de problémes de robustesse,
une approche de controle en boucle ouverte ne peut pas s’appliquer aux taches de controle
quantique complexes, telles que la suppression de la décohérence (c’est-a-dire la perte
d’informations en raison du couplage inévitable avec I’environnement) et le bruit quantique.
Il est donc important d’introduire I'analogue quantique de la théorie de controle de la
rétroaction classique afin de compenser certaines perturbations, telles que les incertitudes
et les dérives des parametres décrivant le systeme dynamique, les perturbations externes et
les bruits de mesure, pour accroitre la robustesse du systeme. Grossierement, il existe deux
types courants de controle de rétroaction quantique en fonction de la nature du controleur




de rétroaction: la rétroaction cohérente et la rétroaction basée sur les mesures. Pour la
rétroaction cohérente, le controleur est un autre systeme quantique communiquant avec le
systeme quantique dynamique a controler par un signal quantique, c¢’est-a-dire un faisceau
de lumiere [L1000], voir Fig 1.1. Ce type de retour a récemment été appliqué a différentes
taches telles que "amélioration de la compression [GW09, WM94], les mémoires quantiques
et la correction d’erreur [KNPM10]. Pour la rétroaction basée sur les mesures, le controleur
est un systeme classique qui traite les informations classiques obtenues en mesurant un
observable du systeme dynamique quantique a controler et met en oceuvre 'entrée de
controle appropriée, voir Fig 1.1. Ce type de rétroaction a été envisagé pour la préparation
des états pressés [TMWO02], la réduction de 'état quantique [vHSMO5a, MDRO09], etc.

Dans cette these, nous nous concentrons sur la stabilisation par retour basée sur la
mesure des systemes quantiques ouverts, c’est-a-dire des systéemes en interaction avec
un environnement. L’évolution d'un systeme quantique ouvert soumis a des mesures
indirectes en temps continu est décrite par ’équation maitresse stochastique quantique,
qui a été dérivée par Belavkin en utilisant la théorie du filtrage quantique [Bel89]. La
théorie du filtrage quantique, reposant sur le calcul quantique stochastique et la théorie
des probabilités quantiques (développée par Hudson et Parthasarathy [HP84]) joue un role
important en optique quantique et calcul quantique.

Le controle de rétroaction basé sur des mesures quantiques peut étre considéré comme
une branche du controle stochastique, qui a été développé pour la premiere fois par
Belavkin dans [Bel83]. Ce domaine a suscité I'intérét de nombreux chercheurs théoriques
et expérimentaux, principalement a partir du début des années 2000, donnant des résultats
fondamentaux [vVHSMO05a, AAST02, MvHO07, Tsu08, ADL02, YTH07, MKO05]. En particu-
lier, les études théoriques effectuées dans [MvHO7, DMB*09, MDR09, ARM11, ASD*13]
ont abouti a la premiere mise en oeuvre expérimentale de la rétroaction quantique en
temps réel basée sur la mesure dans [SDZ"11].

Dans [BvHO08], les auteurs ont établi un principe de séparation quantique. De maniére
similaire au principe de séparation classique, ce résultat permet d’interpréter le probleme
de controle comme un probleme de controle de retour basé sur I’état pour le filtre (la
meilleure estimation, c’est-a-dire ’état conditionnel), sans se soucier de I’état quantique
actuel. Cela motive la conception de rétroaction basée sur 1’état pour I’équation de filtrage
quantique basée sur la connaissance de I’état initial. Dans ce contexte, la stabilisation des
filtres quantiques vers les états purs (c’est-a-dire la préparation d’états purs) a un impact
majeur sur le développement de nouvelles technologies quantiques.

Dans ce qui suit, nous introduisons d’abord tres brievement quelques postulats impor-
tants issus de la mécanique quantique, des systemes a spin quantique et de 'oscillateur
harmonique quantique. Ensuite, nous présentons rapidement les systemes quantiques
ouverts et le filtrage quantique. Enfin, nous évoquons le plan de cette these avec les
principales contributions.




Meécanique quantique

Systéeme Systéeme Sortie
» Dynamique Y 3! Dynamique >
Quantique p Quantique p
Signal Signal Slgpal -
Quantique Quantique Classique
Y
Contréleur |, Contréleur 4—/3—-<—~
- -
Quantique Classique
(a) Controle de retour cohérent (b) Controle du retour basé sur les mesures

FIGURE 1.1 — (a) Le systeme dynamique et le controleur sont des systeémes quantiques inter-
agissant 'un avec 'autre. Le controleur quantique obtient le signal quantique d’un systeme
dynamique et le traite en utilisant la logique quantique, puis le renvoie de maniere cohérente
dans le systeme dynamique quantique. (b) Le systéeme dynamique est un systéeme quantique,
tandis que le controleur de rétroaction est un systeme classique, qui ne peut traiter que le signal
classique. Le filtre est utilisé pour former un estimateur de 1’état actuel du systeme dynamique
en fonction des résultats du détecteur. Ensuite, le controleur de rétroaction fournit I’entrée de
controle, c’est-a-dire une fonction de I’estimateur, qui est appliquée pour controler le systeme
dynamique.

1.2 Mécanique quantique

1.2.1 Postulats de la mécanique quantique

En mécanique classique, le mouvement de tout systeme physique est déterminé si la
position et la vitesse de chacun de ses points sont connues en tant que fonctions du temps.
Toutes les grandeurs physiques associées au systeme, a savoir la position, ’énergie, le
moment cinétique, etc., peuvent étre mesurées avec précision, et ces mesures n’affectent
pas le systeme en général. La mécanique quantique differe beaucoup de la mécanique
classique. Dans ce qui suit, nous donnons les principaux postulats de la mécanique
quantique [CTDL18, SN14].

Premier postulat : A tout moment fize to, l’état d’un systéme physique est défini en
spécifiant un vecteur d’état 1(to) appartenant a un espace de Hilbert complexe séparable
‘H. Dans la notation de Dirac, nous désignons ce vecteur d’état par |¢(to)) et 'appelons
ket. Le vecteur d’état correspondant appartenant au double espace H est noté (¢ (to)| et
appelé bra. Alors le produit intérieur de deux kets |¢) et |¢) appartenant a H est défini
par (|¢p) = (p[1p)*. Ce premier postulat implique un principe de superposition : une
combinaison linéaire de vecteurs d’état est également un vecteur d’état.

Deuxieme postulat : Chaque grandeur physique mesurable 2 est décrite par un
opérateur hermitien X agissant dans H, cet opérateur est un observable.

Troisieme postulat : Le seul résultat possible de la mesure d’une quantité physique
2 est U'une des valeurs propres de 'observable correspondant X . Une mesure de 2~ donne
toujours une valeur réelle, puisque X est hermitien. Si le spectre de X est discret, les
résultats pouvant étre obtenus en mesurant 2  sont quantifiés.

Quatrieme postulat (cas de dimension finie) : Lorsque la quantité physique 2
est mesurée sur un systeme a l’état normalisé 1), la probabilité P(x,) d’obtenir la valeur

3



propre x, de la valeur correspondante observable X est : P(x,) = > 9 [(ui]¥) %, o
gn est le degré de dégénérescence de x, et |ul) avec i = 1,2,...,g, est un ensemble
orthonormal de vecteurs qui constitue une base dans l’espace électronique H,, associé a la
valeur propre x,. Pour la valeur propre z,, nous avons X|u!) = x,|u’) avec i =1,..., gy,
puis nous développons le vecteur d’état |¢) dans la base orthonormale {|u%)} et obtenons
[y = > >S9 b ul) ot ¢, = (ul|4). Alors la probabilité P(z,,) d obtenir la valeur propre
non dégénérée x,, de 'observable correspondant X est: P(xz,,) = D7, [(uf|)|> = 39 | |2
Ensuite, nous définissons le projecteur sur H, : P, = Y ", |un>(un|, oun PP = P, et
P? = P,, la probabilité mentionnée ci-dessus peut étre écrite: P(x,,) = (| P,|v). Puisque
nous pouvons écrire 'observable sous la forme X =z, P,, l'attente correspondante
de X est définie par (X) := > x,P(x,) = (¢|X]|¢). Une conséquence importante de ce
postulat est la suivante : les probabilités prédites pour une mesure arbitraire sont les
meémes pour deux vecteurs d’états proportionnels, elles représentent donc le méme état
physique. Ainsi, les états d'un systéme quantique sont des rayons dans un espace de Hilbert

H.

Cinquieme postulat : Si une mesure de la quantité physique Z  sur un systeme de
I’état o)) donne le résultat x,,, I’état du systéme immédiatement aprés la mesure est la
Pnl¢)

(| Pnli)
qu’on appelle I'effondrement de ’état ou la réduction du paquet d’onde.

projection normalisée de |1)) sur l’espace propre associé a x,. Ce postulat est ce

Sixieme postulat : L’évolution temporelle du vecteur d’état |1(t)) est régie par
l’équation de Schrodinger:

d
th—[¥(8)) = H(t)[¢(1)), (1.1)

ou H(t) est l'observable associé a l’énergie totale du systéme, appelé opérateur hamiltonien.
La solution de I'équation de Schrédinger ci-dessus est donnée par |¢(t)) = U(t,to)|¢(t0)),

ou U(t,ty) = exp < F ft dT) et il s’agit d'un opérateur unitaire agissant sur H. En

particulier, si H ne dépend pas du temps (cas des systémes conservateurs), nous avons
Ult,ty) = e tHE=t)/h 1] est également instructif d’étudier la dynamique de I'attente d'un
X observable dans un état donné |¢(t)),

(X)(t) = (0(B)| X (to)|10(t)) = (W (to)|[U™ (L, t0) X (to)U (¢, o) [ (t0)), (1.2)

ot notons 'observable X &ty comme X (to). Etant donné que la nature dépendant du temps
du systeme doit étre assurée par une combinaison des vecteurs d’état et des opérateurs, il
existe deux approches pour traiter les systemes évoluant dans le temps en général:

1. représentation de Schrodinger: [¢(t)) — |¥(t)) = U(t, )] (to)), ou les opérateurs
sont inchangés.

2. représentation de Heisenberg: Xy (ty) = X(to) — Xu(t) = U*(t,t0) Xu(to)U(t, o),
ot les vecteurs d’état sont inchangés. Ici, I'indice H est utilisé pour souligner I'image
de Heisenberg.

De (1.2), nous pouvons voir intuitivement que ces deux approches sont équivalentes.
En raison de (1.2) et de I’équation de Schrodinger, la dynamique du systeme dans la
représentation de Heisenberg est donnée par ihis Xy (t) = [Xp(t), H(t)], cette équation
s’appelle I’équation de Heisenberg.

Jusqu’a présent, nous avons considéré des systemes dont les états sont parfaitement
connus et nous pouvons étudier leurs évolutions dans le temps et prévoir les résultats
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Meécanique quantique

de diverses mesures effectuées. Cependant, dans la pratique, I’état du systeme n’est
souvent pas parfaitement déterminé. Ensuite, nous introduisons 1’opérateur de densité pour
représenter 1’état d’un systeme quantique, qui code une situation avec des informations
incompletes d’une maniere plus générale qu'un vecteur d’état. Les informations incompletes
sur le systeme en mécanique quantique signifient que son état est un mélange statistique
d’états |11), [11), ... avec des probabilités py, pa, . ... Les états |¢1), |¢2), ... ne sont pas
nécessairement orthogonaux.

Nous utilisons ensuite 'opérateur de densité p(t) pour décrire le mélange statistique
d’états. On dit que le systeme est a ’état pur si son état est parfaitement connu, c’est-a-dire
que p(t) = |[(t)) ()| ou |1(t)) est le vecteur d’état du systéme a 'instant ¢. Notez
que, pour les états purs, nous avons p?> = p et Tr(p?) = 1. Pour les états mixtes, nous
avons p =y, PrPk avec pr = |[tbg) (Yx| Vopérateur de densité de I’état pur correspondant a
|1). Ainsi, nous concluons que l'opérateur de densité possede trois propriétés principales:
p* = p, Tr(p) = 1 et p > 0. Ensuite, nous généralisons les quatrieme, cinquieme et sixieme
postulats ci-dessus au cas en ce qui concerne les opérateurs de densité.

Quatrieme postulat (cas de dimension finie) : Lorsque la quantité physique 2
est mesurée sur un systéme dans p, la probabilité P(x,) de l’obtention de la valeur propre
x, de l'observable correspondant X est: P(z,) = Tr(pP,). En conséquence, l'attente de X
est donnée par (X) = Tr(pX).

Cinquieme postulat : Si une mesure de la quantité physique Z sur un systeme dans

p donne le résultat x,, 'état du systéme immédiatement apres la mesure est TI;’EZII,?”).

Sixieme postulat : L’évolution temporelle de l'opérateur de densité p(t) est régie par

l’équation de Liouville-von Neumann: ih-p(t) = [H(t), p(t)].

1.2.2 Systemes de spin quantiques

La fameuse expérience de Stern-Gerlach [CTDL18] a démontré que le moment angulaire
du spin est quantifié, c’est-a-dire le moment angulaire du spin ., , . mesuré le long de
I'axe-,y, 2 n’a que deux valeurs possibles g et —;1. Nous associons d’abord un observable
S, a ., qui a deux valeurs propres g et —g, et notons les vecteurs propres orthonormés
par |+) et |—), c’est-a-dire que S.|+) = L|+) et S.|—) = —%|—). Ensuite, notez l'espace
d’état de spin par Hs, qui est bidimensionnel et étalé par |[+) et |—). Le vecteur d’état
|1)) € Ho peut étre représenté par une superposition linéaire de |+) et |—), c’est-a-dire,
|) = o |+) +_|=) avec |1, |* + [_|* = 1. Ainsi, dans la base {|+),|—)}, I'observable
S. peut étre représenté sous forme de matrice S, = 2 (§ % ). Les relations de commutation

des moments cinétiques le long des trois axes dans le cas de spin—% sont données par
Sz, Sy] = ihS., 1Sy, S:] = ihS,, [S,, Sz] = 1hS,,.

Dans la base {|+), |—)}, les variables observables S, et S, peuvent étre représentées sous

: _h(01 _h(0—i ; _ 2
forme de matrice sous la forme S, = 5 (9§) et S, = 5 (7 3'). Ici, on note o, . = £5: 4.,

les matrices o, 0, et o, sont appelées matrices de Pauli. De toute évidence, toutes les
matrices de Pauli sont hermitiennes et ont deux valeurs propres +1. Notez que, avec

I'identité 1, la matrice de Pauli constitue une base pour ’espace vectoriel des matrices

appartenant & C**2, donc toute matrice M = (i} 12 peut étre décomposé comme

m m mi —m m m m m
_ 11—; 22]l+ 112 220Z+ 1242- 210m+2. 12—; 21%.

M




Par conséquent, toute matrice dans C?*2? peut étre exprimée sous la forme M = ayl +
ay04 + ayoy + .0, avec ag, Ay, ay, a, € C.

Considérons maintenant spin—% particules. En placant ’appareil le long d’un angle 6,
nous pouvons préparer un état [¢) tel que [¢) = ¢4 |+) +_|—) avec |4 > + [P_|2 =1
et ces deux coefficients sont déterminés par ’angle #. Si nous mesurons ., nous aurons
deux résultats possibles 2 et —2 avec les probabilités P(+) = (¢[(|4+) (+])[¢) = |14 |* et
P(—) = @[(|-)(=D|¥) = [1»_|* respectivement. L’espérance correspondante est (S.) =
(|S:10) = L(|14|* — |1—|?). Considérons un atome dans un champ magnétique uniforme
: ’hamiltonien indépendant du temps décrivant I'énergie totale du systeme donné par
H = wyS,, o w > 0 représente la vitesse angulaire. Ensuite, nous avons H|+) = E |+)
et H|-) = E_|-) avec B, = 0 et E_ = —™0 1a “fréquence de Bohr” est donnée
par E*;E‘. Par I’équation de Schrédinger, nous obtenons [¢)(t)) = e~ E0)/My(t,)).
Utilisons 'opérateur de densité p pour décrire 1’état d’un systeme quantique a deux
niveaux, ot p € Sy 1= {p € C**?|p* = p,Tr(p) = 1,p > 0}. En raison des propriétés
des matrices de Pauli, nous pouvons écrire p sous la forme p = w avec
(r,y,2) € B:= {(z,y,2) € R*z? + y* + 22 < 1}. Ainsi, S, est isomorphe a B, ce qui
signifie que tout état d’un systeme quantique a deux niveaux peut étre représenté par un
vecteur tridimensionnel (x,y, z) appartenant & la balle d'unité. Un tel vecteur s’appelle le

vecteur de Bloch.

Considérons un systeme quantique qui a deux états dont les énergies sont proches
mais tres différentes des énergies des autres états du systeme. Sous cette hypothese, nous
pouvons ignorer tous les autres niveaux d’énergie du systeme et analyser le systeme
dans un espace a deux dimensions Hs. Prenons les deux vecteurs propres |e) et |g) de
I'hamiltonien H, dont les valeurs propres sont respectivement E, et E, (E, < E.), comme
base orthonormale de H,. Ensuite, nous pouvons appliquer la représentation ci-dessus
d’un modele spin—% aux systemes quantiques généraux a deux niveaux.

Nous considérons maintenant les systemes de spin quantiques de niveau supérieur et
dénotons 'espace d’état de spin de dimension N par Hy, avec 2 < N < oco. Associez le
moment cinétique le long de I'axe-z, y, 2 aux opérateurs hermitiens .J, , .. Les relations de
commutation des moments cinétiques le long des trois axes sont données par

o, ) =ihd.,  [J, ) =ihds, [ J.,J.] =ihJ,.

En se référant a [CTDLI18, SN14], pour tous les n € {0,..., N — 1}, les valeurs propres et
les vecteurs propres des trois opérateurs de moment angulaire sont donnés par

Jelen) = culen) + cnyilenta),  Jylen) = —icalen1) +icapilenta),  Jilen) = (J —n)len),
ou J = %, Cn = M et (en|em) = dpmn. L'ensemble des vecteurs d’état orthonormés
{le1),...,|en)} forme une base de I'espace d’état Hy. Ainsi, dans cette base, les opérateurs

de moment cinétique peuvent étre représentés dans les formes matricielles suivantes

0 C1 0 77;61 J
c1 O co icit O —ica J—1

c2j-1 0 cag icog—1 0 —icay —J+1
c2g 0O icoy 0O —J
Dans ce cas, 'opérateur de densité p agissant sur H appartient a ’espace Sy := {p €
CNN|p* = p, Tr(p) = 1,p > 0}, le vecteur de Bloch correspondant au niveau de N est
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donné dans [KKO05]. Semblable au cas & deux niveaux, les systemes quantiques généraux
a N, avec 2 < N < oo, dont 'Hamiltonien a N valeurs propres non dégénérées, peuvent
étre analysés par le modele a moment angulaire a N niveaux.

1.2.3 Oscillateur harmonique quantique

L’oscillateur harmonique unidimensionnel est un systeme important en mécanique
classique et quantique. De nombreux systemes peuvent étre approximés par le modele

d’oscillateur harmonique. Considérons un oscillateur harmonique conservateur unidimen-

i N ) : 2 .
sionnel, selon la deuxieme loi de Newton et la loi de Hooke, nous avons fﬁ‘; = —%x ou
m > 0 représente la masse de la particule et k£ > 0 décrit la rigidité du ressort et notons

w? = % L’énergie totale de ce systeme est alors la somme de 1’énergie potentielle et de

5, . .. 2 2,2
I'énergie cinétique, ' = 7— + "5,

En mécanique quantique, nous définissons deux observables () et P, qui sont des
opérateurs auto-adjoints sur l'espace de Hilbert H associés a la position physique des
quantités x et a la quantité de mouvement p, la relation de commutation canonique de

Heisenberg [Q, P] = ihl. Conformément au cas classique, nous définissons l'opérateur
meQZ

hamiltonien du systeme comme suit H = % + , il n’est pas évident de résoudre
I'équation de valeur propre H|i) = E|¢). Ensuite, nous définissons deux opérateurs non
hermitiens a = /%2 (Q + i) et son conjugué a* = /22 (Q —i-L-), connus sous le
nom d’opérateur d’annihilation et d’opérateur de création, et ils peuvent nous aider a
étudier les valeurs propres et les vecteurs propres de H. Notons N := a*a, par un calcul
simple, nous avons

2

)

| =

mw 1 H
N—g(Qz‘i‘ )—i_%[Qv‘P]_E_

m2w?
ce qui implique que H = hw (N + %), ou N est appelé opérateur numérique. Ensuite,
un calcul direct montre [N,a] = —a et [N,a*] = a*. Notons une valeur propre et un
vecteur propre associé de N par n et |n), c’est-a-dire N|n) = n|n), ou |n) sont appelés
états de Fock et forment une base orthogonale de 'espace de Hilbert H, (n|m) = d,.m
et > |n)(n| = 1. Par conséquent, nous pouvons facilement obtenir a|0) = 0. Puisque
n = (n|N|n) = |la|n)||* > 0, alors n n’est pas négatif. En conséquence, nous avons

Naln) = ([N, a] + aN)|n) = (n — 1)a|n),

Na*|n) = ([N,a*] + a*N)|n) = (n + 1)a*|n), (13)

ce qui implique que a|n) et a*|n) sont également des vecteurs propres de N avec
des valeurs propres diminuées et augmentées de un respectivement. De la relation
H|n) = hw (n + 1) |n), on remarque que la diminution ou 'augmentation d’une unité a
n représente ’annihilation ou la création d’une unité quantique d’énergie hw. De plus,
comme conséquence de (1.3), a|n) est parallele & [n — 1) et a*|n) est parallele to [n+1), ce
qui signifie a|n) = ag|n — 1), a*|n) = as|n + 1). En raison de la relation de commutation
canonique, nous avons [a,a*] = 1, donc aa* = N + 1. Puisque n = (n|a*a|n) = |a;|? et
n+1= (n|(N + 1)|n) = (nlaa*|n) = |as|?, et en supposant que a; et s sont réels et non
négatifs, nous avons a; = /n et ay = v/n + 1. Enfin, nous obtenons

aln) = v/nln — 1), a*|n) = vVn+1n+1).




Par conséquent, dans la base {|n)}, le hamiltonien H, l'opérateur de création a* et
I'opérateur d’annihilation a peuvent étre représentés par les matrices suivantes

100 00 0 01 0
030 Lo 0 00 V2 0
huw 0 v2 0 - - S
H="10 0 5 * = =
2 SR T T SURN Rl L I

De plus, I'état général d'un oscillateur harmonique peut étre exprimé par une superposition
des états de Fock |n). Ces états sont appelés états cohérents et sont définis par

ala) = ala),

ou a est 'opérateur d’annihilation et une solution triviale de I’équation ci-dessus est 'état
de vide |0) pour a = 0.

Maintenant, nous analysons l'oscillateur harmonique dans 'image de Heisenberg et
discutons de I'évolution temporelle des opérateurs. Par souci de simplicité, nous n’ajoutons
pas l'indice H pour mettre en valeur I'image de Heisenberg. L’équation de Heisenberg de
a est donnée par

d 1
& = -l H] = —iwla, N] = —ia,
ce qui implique que a(t) = a(ty)e w0,

1.3 Systemes quantiques ouverts

Dans la section précédente, nous avons brievement discuté du formalisme des systemes
quantiques fermés. Cependant, tout systeme quantique interagit inévitablement avec
un systeme quantique externe, comme un grand environnement ou un bain de chaleur
quantique, etc. Ce type de systeme est appelé systéeme quantique ouvert.

Systémes quantiques bipartites Afin de développer un cadre théorique pour traiter
ces interactions, considérons un cas simple, ou le systeme quantique d’intérét consiste en
deux sous-systemes quantiques S; et Sy. Ceci est appelé systeme quantique bipartite et est
noté S7 ® Sy. En raison du premier postulat de la mécanique quantique, on suppose que le
sous-systeme quantique S est défini par I'état ¢; € H; et que le sous-systeme quantique
Sy est défini par 1'état 1, € Hy. Le systeme couplé S; ® Sy est défini par I'état 1y ® 1o
appartenant au produit tenseur H; ® Ho. Si X7 et X5 sont observables des sous-systemes
quantiques S; et s, respectivement, ils peuvent étre étendus comme observables du
systeme quantique S; ® Sy agissant sur H; ® Ho en considérant les opérateurs X; ® 1
et 1 ® Xy, respectivement. De méme, si p; et ps sont des opérateurs de densité de S; et
S,, respectivement, alors p; ® py est un opérateur de densité du systeme S; ® S;. Par
conséquent, nous pouvons étendre les six postulats discutés dans la section précédente au
cas des systemes quantiques bipartites. Ensuite, afin de déterminer les états marginaux
des systemes quantiques bipartites, nous devons introduire la trace partielle (voir par
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exemple, [Att, Chapter 2]), ce qui nous aide & moyenner le systéme complémentaire. Etant
donné un opérateur de densité p sur H; ® Ho, 'état marginal p; sur H; peut étre calculé
par

p1 = Ter (p)a

ou la trace partielle est définie par
Tr(Try, (p)X1) = Tr(p(X; ® 1)), (1.4)

pour tous les observables X, sur H;.

Systémes quantiques ouverts Les systemes quantiques ouverts peuvent étre considérés
comme la famille de tous les systemes quantiques bipartites. Définissons le systeme
d’intéret quantique dynamique .S sur un espace de Hilbert Hg, et décrivons I’environnement
par un systeme quantique W sur un espace de Hilbert Hyy. Le systeme-environnement
S ® W peut étre considéré comme un systeme quantique plus vaste défini sur 'espace
de Hilbert Hg ® Hy . Notons pg(t) et pw(t) en tant qu'opérateurs de densité du systeme
et de 'environnement, dont les états initiaux sont donnés par pg(to) et pw (to). Ensuite,
I’évolution temporelle de 'opérateur de densité p(t) de 'environnement systéme est donnée
par
p(t) = Ul(t,to) (ps(to) ® pw(to) ) U™ (¢, to) = ps(t) = Try,, (p(1)),

ou U(t,ty) est 'opérateur unitaire agissant sur Hg ® Hy. Nous mesurons les X; ®@ 1
observables. Indiquez I’ensemble des valeurs propres de X; par {z;} et ’ensemble des
projecteurs associés par {P;}. Apres la mesure, I'état devient immédiatement

() = PU(t, 1) (ps(to) ® pw (to))U*(t, to) Py
P = T (Bt to) (ps(t) @ pw (1)) U= (t, to) Py

ol le dénominateur donne la probabilité d’obtenir x,,. Par conséquent, I’état marginal de
post-mesure p(t) est donné par

Do oy Tragy (PaU(t, 1) (ps(to) @ pw (o)) U (¢, to) Pn)
pS(t> - TI'HW (p (t)) - TI‘(PnU(t,tQ)<p5(t0) ® Pw(to))U*(t,to)Pn) 3

(1.5)

qui décrit I’évolution temporelle du systeme quantique ouvert en cours de mesure.

Equation de filtrage quantique Considérons maintenant un systeme quantique ouvert
défini sur Hg en interaction avec un champ électromagnétique a I’état de vide défini sur
Hw en cours de mesure en temps continu. Ne considérer qu’un seul canal de mesure de
détection homodyne a la fois. Heuristiquement, le champ électromagnétique peut étre
considéré comme une collection d’oscillateurs harmoniques quantiques, décrits par les
opérateurs de champ A, (processus d’annihilation) et Al (processus de création), définis
sur Hw et qui ne commutent pas entre eux. Ensuite, la dynamique conjointe de I'opérateur
unitaire U; de I'ensemble du systeme, c¢’est-a-dire du systéme quantique ouvert et du champ
électromagnétique, défini sur 'espace de Hilbert Hg ® Hy, est donnée par 1'équation
différentielle stochastique quantique suivante (EDSQ)

at, = (L@ dal - 1 @dd, - ((L'L/2+iH) @1)dt) U, Uy =1,




Entré Systéme i M Esti
ntrée j (X)y: A Sortie »| Détecteur esure sl Filtre stimateur
At ,A: t t t ut*At ut Yt = U:(A;FA:) ut ﬂr(X)
ut*Atf ut

FIGURE 1.2 — Procédure de filtrage quantique. En fonction du résultat du détecteur Y;, le filtre
fournit un estimateur de 1'observable X a l'instant ¢. Notez que nous identifions X et X ® 1, A
et 1® Ay, AI et 1® AI dans le diagramme ci-dessus.

Alors I’évolution temporelle de I'observable X sur Hg est j;(X) = U (X ® 1)U, et
Pobservation de la détection homodyne & temps ¢ est ¥, = UF(1 @ (4, + A]))U;, voir
Fig 1.2.

Par le calcul quantique It6 [HP84], nous avons

djp(X) = L(ji(X))dt + dAJ[(X), ju(L)] + [je(L7), i(X)]dA,,
dY, = (ju(L) + ji(L*))dt + dA; + dA],

ou L(X) :=i[H,X]|+ L*XL — L*LX/2 — XL*L/2 est appelé générateur de Lindblad.
Comme la théorie classique du filtrage stochastique [Kall3, Xio08], selon la formule de
Kallianpur-Stribel et la formule It6, la dynamique d’attente de j;(X) conditionnée par les
mesures enregistrées Y; jusqu’a temps ¢, noté m(X), voir Fig 1.3, peut étre décrit par une
équation de filtrage normalisée. Cette équation est guidée par le processus d’innovation
correspondant au processus d’observation.

i_l

7 (X)
o(Y,0<s<t)

FIGURE 1.3 — L’espérance conditionnelle 7;(X) peut étre considérée comme la projection sur
I'espace couvert par ’enregistrement de mesures o(Ys,0 < s <1).

Dans la représentation de Schrodinger, nous avons m,(X) = Tr(p,X), ou p; est un
opérateur de densité conditionné par les observations jusqu’au temps t. Ainsi, on peut
obtenir une équation différentielle stochastique a valeur matricielle pour I’évolution de
I'opérateur de densité du systéme sous des mesures parfaites en temps continu (homodyne),
appelée équation principale stochastique. Il s’agit de I’analogue quantique de ’équation de
Kushner-Stratonovich ou FKK,

dpt = £*(pt)dt + (Lpt + ptL* — TI'((L + L*>pt)pt)th7
dY, = dW, + Tr((L + L*)p, ) dt,

ou W, est un processus de Wiener unidimensionnel. Des arguments similaires permettent
de décrire la dynamique du systeme sous des mesures imparfaites.

L’efficacité de la mesure est donnée par n € [0,1). Notez que, si H et L sont invariants
dans le temps, I'espérance classique de I’équation maitresse stochastique (1.6) s’appelle
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I’équation maitresse de Lindblad

d

) = L7 (E(pr))-

De plus, E(p;) peut également étre dérivé en calculant la trace partielle,

E(pr) = Tray, (Us(po @ 0)(O)TT).

Nous observons donc que I’équation maitresse de Lindblad joue le role d’équation de
Fokker-Planck associée a I’équation maitresse stochastique (1.6).

1.4 Plan de la these

Dans cette these, nous étudions la stabilisation exponentielle a rétroaction de systemes
quantiques ouverts subissant des mesures imparfaites en temps continu, vers un état cible
prédéterminé qui est un état pur correspondant a un vecteur propre des opérateurs de
mesure.

Le chapitre 3 fournit une introduction a la théorie du filtrage quantique. Nous intro-
duisons d’abord la théorie des probabilités quantiques comme une extension de la théorie
des probabilités classique, qui permet de décrire les phénomenes quantiques. Ensuite,
nous présentons les systemes de spin quantiques et ’oscillateur harmonique quantique
dans le cadre de la probabilité quantique. Ensuite, nous discutons des processus stochas-
tiques quantiques sur ’espace de Fock, qui sont appliqués pour caractériser les champs
électromagnétiques quantiques libres. Apres cela, nous décrivons le calcul quantique de
Hudson-Parthasarathy et obtenons des équations différentielles quantiques stochastiques.
Enfin, par la formule non commutative de Kallianpur-Striebel, nous obtenons une équation
différentielle stochastique matricielle appelée équation de filtrage quantique ou équation
de maitre stochastique et décrivant I’évolution dans le temps de 'opérateur de densité de
systemes quantiques ouverts en interaction avec un champ électromagnétique subissant
des mesures imparfaites en temps continu.

Le chapitre 4 est consacré a la stabilisation exponentielle a rétroaction des systemes
de spin quantique de niveau N soumis a des mesures en temps continu avec des états
initiaux connus. Ce chapitre est basé sur nos publications [LAMI18, LAMI19a]. Nous
étudions d’abord le cas ou l'entrée de controle est désactivée et montrons la réduction
exponentielle de I’état quantique en moyenne et presque strement. En utilisant des outils
de controle stochastiques et géométriques, nous fournissons des conditions suffisantes
sur la loi de controle par rétroaction assurant une convergence exponentielle presque
stire vers un état pur prédéterminé correspondant a un vecteur propre de l'opérateur de
mesure J,. Afin d’atteindre ces résultats, nous établissons des caractéristiques générales
des trajectoires quantiques qui présentent un intérét en elles-mémes. Nous illustrons
les résultats en concevant une classe de lois de commande a rétroaction satisfaisant les
conditions susmentionnées et, enfin, nous démontrons l'efficacité de notre méthodologie
par le biais de simulations numériques pour les systemes de spin quantique a trois niveaux.

Le chapitre 5 est consacré a la stabilisation en retour des systemes multi-qubits soumis
a des mesures en temps continu avec des états initiaux connus. Ce chapitre est basé
sur les publications [LAM19b] et [LAMal. Nous étudions d’abord les systemes multi-bits
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avec deux canaux quantiques lorsque l'entrée de controle est désactivée, et montrons
la réduction exponentielle de I’état quantique en moyenne et presque sturement. Nous
considérons ensuite un systeme a deux qubits soumis a des mesures en temps continu. En
présence d’un canal, nous établissons une convergence asymptotique vers un état de Bell
prédéterminé. Avec deux canaux, nous fournissons des conditions suffisantes a la loi de
commande de rétroaction continue assurant une convergence exponentielle presque sire
vers un état de Bell prédéterminé. Ceci est obtenu en appliquant des outils stochastiques,
des méthodes de Lyapunov et des outils de controle géométrique. Dans les deux cas, nous
fournissons des expressions explicites de lois de commande de rétroaction satisfaisant les
conditions susmentionnées. Enfin, nous démontrons 'efficacité de notre méthodologie par
des simulations numériques.

Le chapitre 6 est consacré a la stabilisation exponentielle a rétroaction des systemes de
spin quantiques ouverts avec des états initiaux inconnus. Ce chapitre est basé sur [LAMD].
Nous considérons d’abord les systemes de spin—% quantique ouverts avec des états initiaux
inconnus et fournissons des conditions suffisantes sur le controleur de rétroaction du filtre
quantique associé, qui assurent la convergence de la fidélité de 1’état réel et de ’état estimé
vers un, quand ¢ tend vers l'infini. Ensuite, nous montrons 'efficacité de notre méthodologie
par des simulations numériques. Par la suite, de maniere heuristique, nous discutons de
la stabilisation exponentielle a rétroaction des systemes de spin quantiques ouverts de
niveau N avec des états initiaux inconnus. Nous terminons ce chapitre en proposant des
simulations numériques pour les systemes de spin quantiques a trois niveaux.

Le chapitre 7 propose des extensions naturelles aux résultats décrits dans les chapitres
mentionnés ci-dessus.

Annexe A fournit des notions de base et des théoremes issus du calcul stochastique et
de la théorie du controle stochastique.
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Introduction

2.1 Motivation and context

Quantum control theory is a rapidly developing research domain, however there are
still many efforts that should take place to make this field more practical in engineering of
quantum devices. The ability to control quantum systems, e.g., preparing and protecting
a desired quantum state, plays an essential role to develop further quantum technologies.
Quantum technologies [NC02] are supposed to outperform the conventional technologies.
For example, quantum computing can be much faster than conventional computing when
solving certain problems, and quantum metrology will be much more precise in parameter
estimation than conventional techniques.

The dynamics of simple closed quantum systems can be described by (time-dependent)
Schrodinger equations. For such systems, we can define some simple control tasks which
can be achieved by using open-loop control techniques. This means that a predetermined
classical control signal is applied to a closed quantum system and no feedback is involved,
a comprehensive treatment can be found in [d’A07]. Open-loop control strategy has been
applied in different contexts like optimal control approach [TR04, KRK'05, BCS09],
controllability issues [BBR10, BCR10], etc. Because of robustness issues, an open-loop
control approach may fail to apply for complex quantum control tasks, such as suppressing
decoherence (i.e., the loss of information due to unavoidable coupling to the environment)
and quantum noise. Thus, it is important to introduce quantum analogue of classical
feedback control theory, in order to compensate some disturbances, i.e., uncertainties and
drifts in the parameters describing the dynamical system, external perturbations and
measurement noises, in order to increase the robustness of the system. Roughly speaking,
there exist two common types of quantum feedback control depending on the nature of
the feedback controller: coherent feedback and measurement-based feedback. For coherent
feedback, the controller is another quantum system communicating with the quantum
dynamical system to be controlled by a quantum signal, i.e., a beam of light [L1o00], see
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Quantum Quantum Output
»  Dynamic ULyl Dynamic >
System p System p
Quantum Quantum C-Ic,z?ssiclal Detector
Signal Signal 'gha
Y
Quantum |, Classical p
Controller Controller Filter
(a) Coherent feedback control (b) Measurement-based feedback control

FIGURE 2.1 — (a) Both dynamical system and controller are quantum systems interacting
with each other. The quantum controller obtains quantum signal from a dynamical system and
processes such signal by using quantum logic, and then feeds the signal coherently back into the
quantum dynamical system. (b) The dynamical system is a quantum system, while the feedback
controller is a classical system, which can only process classical signal. The filter is used to form
an estimator of the actual state of the dynamical system based on the outcomes of the detector.
Then the feedback controller provides the control input, i.e., a function of the estimator, which is
applied to control the dynamical system.

Fig 2.1. This kind of feedback has been recently applied for different tasks such as squeezing
enhancement [GW09, WM94], quantum memories and error correction [KNPM10]. For
measurement-based feedback, the controller is a classical system that processes classical
information obtained by measuring an observable of the quantum dynamical system
to be controlled, and implement the suitable control input, see Fig 2.1. This type of
feedback has been considered for squeezed states preparation [TMWO02], quantum state
reduction [vHSMO05a, MDR09], etc.

In this thesis, we focus on measurement-based feedback stabilization of open quantum
systems, i.e., systems which are in interaction with an environment. The evolution of an open
quantum system undergoing indirect continuous-time measurements is described by the so-
called quantum stochastic master equation, which has been derived by Belavkin in quantum
filtering theory [Bel89]. The quantum filtering theory, relying on quantum stochastic
calculus and quantum probability theory (developed by Hudson and Parthasarathy [HP84])
plays an important role in quantum optics and computation.

Quantum measurement-based feedback control, can be considered as a branch of
stochastic control which has been first developed by Belavkin in [Bel83]. This field has
attracted the interest of many theoretical and experimental researchers mainly starting
from the early 2000s, yielding fundamental results [vHSMO05a, AAST02, MvH07, Tsu08,
ADLO02, YTHO07, MKO5]. In particular, theoretical studies carried out in [MvH07, DMB*09,
MDRO09, ARM11, ASD"13] lead to the first experimental implementation of real-time
quantum measurement-based feedback control in [SDZ*11].

In [BvHOS], the authors established a quantum separation principle. Similar to the
classical separation principle. This result allows to interpret the control problem as a
state-based feedback control problem for the filter (the best estimate, i.e., the conditional
state), without caring of the actual quantum state. This motivates the state-based feedback
design for the quantum filtering equation based on the knowledge of the initial state. In
this context, stabilization of quantum filters towards pure states (i.e., the preparation of
pure states) has a major impact in developing new quantum technologies.
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Quantum mechanics

In the following, we first introduce very briefly some important postulates from quan-
tum mechanics, quantum spin systems and the quantum harmonic oscillator. Next, we
present shortly open quantum systems and quantum filtering. Finally, we give the main
contributions of this thesis with the outline.

2.2 Quantum mechanics

2.2.1 Postulates of quantum mechanics

In classical mechanics, the motion of any physical system is determined if the position
and velocity of each of its points are known as functions of time. All the physical quantities
associated with the system, e.g., position, energy, angular momentum, etc. can be measured
precisely, and such measurements do not affect the system in general. The quantum
mechanics differs a lot from the classical mechanics. In the following, we give the main
postulates of quantum mechanics [CTDL18, SN14].

First postulate: At any fixed time ty, the state of a physical system is defined by
specifying a state vector 1(to) belonging to a separable complex Hilbert space H. In Dirac’s
notation, we denote such state vector by [(to)) and call it ket. The corresponding state
vector belonging to the dual space of H is denoted (¢ ()| and called bra. Then the inner
product of two kets [¢) and |¢) belonging to H is defined by (|p) = (¢|1)*. This first
postulate implies a superposition principle: a linear combination of state vectors is also a
state vector.

Second postulate: Fvery measurable physical quantity 2 is described by an Hermitian
operator X acting in H, this operator is an observable.

Third postulate: The only possible result of the measurement of a physical quantity
2 is one of the eigenvalues of the corresponding observable X. A measurement of 2
always gives a real value, since X is Hermitian. If the spectrum of X is discrete, the results
that can be obtained by measuring 2" are quantized.

Fourth postulate (finite dimensional case): When the physical quantity 2 is
measured on a system in the normalized state |1), the probability P(x,) of obtaining the

eigenvalue x,, of the corresponding observable X is: P(x,) = Y. 9", [(ul,|¥)|?, where g,
is the degree of degeneracy of x, and |u') with i = 1,2,..., g, is an orthonormal set
of vectors which forms a basis in the eigensubspace H, associated with the eigenvalue
r,,. For the eigenvalue z,,, we have X|u') = z,|u’) with i = 1,...,g,, then we expand

the state vector [¢0) in the orthonormal basis {|u})} and obtain [¢)) = Y >S9 ¢ |ul)
where ¢! = (u!|1)). Then the probability P(z,,) of obtaining the non-degenerate eigenvalue
x, of the corresponding observable X is: P(xz,) = Y7, |[(ub|¥)]* = Y97, |c4|*. Next
we define the projector onto H,, : P, = Y 9" |u’)(u}], where P¥ = P, and P? = P,,
the probability mentioned above can be written: P(z,) = (| P,|¢). Since we can write
the observable as X = ) x,P,, the corresponding expectation of X is defined by
(X) = >, z,P(x,) = (¥|X]|¢). An important consequence of this postulate is the
following: the probabilities predicted for an arbitrary measurement are the same for two
proportional state vectors, thus they represent the same physical state. Thus the states of

a quantum system are rays in a Hilbert space H.
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Fifth postulate: If a measurement of the physical quantity Z on a system in the
state |1)) gives the result x,, the state of the system immediately after measurement is

the normalized projection —222_ onto the eigensubspace associated with x,,. This
proj o ) g p

postulate is so-called collapse of the state or reduction of the wave packet.

Sixth postulate: The time evolution of the state vector |1(t)) is governed by the
Schrodinger equation:

. d
th—[¥(8)) = H(t)[¢(1)), (2.1)

where H(t) is the observable associated with the total energy of the system, which is
called Hamiltonian operator. The solution of the above Schrodinger equation is given

by |¢(t)) = U(t,to)|v(to)), where U(t, ty) = exp (—% fti H(T)dT) and it is an unitary
operator acting on #H. In particular, if H does not depend on time (case of conservative

systems), we have U(t,ty) = e H=%)/" Tt is also instructive to study the dynamics of
the expectation of an observable X in a given state [¢(t)),

(X)(t) = (W)X (t0)|(t)) = ((t0)|U(t, t0) X (t0)U(E, to)[¥ (t0)), (2.2)

where we denote the observable X at ty as X (o). Since the time-dependent nature of the
system must be carried by some combination of the state vectors and the operators, there
are two approaches to deal with systems evolving in time in general:

1. Schrédinger picture: [1(tg)) — |¢(t)) = U(t, to)|1(ty)), where operators are unchan-
ged.

2. Heisenberg picture: Xy (tg) = X (to) = Xu(t) = U*(t,t0) Xu(to)U(t,ty), where state
vectors are unchanged. Here, the subscript H is used to emphasize the Heisenberg
picture.

From (2.2), we can see intuitively that these two approaches are equivalent. Due to (2.2)
and Schrodinger equation, the dynamics of the system in Heisenberg picture is given by
ihd Xy (t) = [Xu(t), H(t)]. This equation is called Heisenberg equation.

Until now, we have considered systems whose states are perfectly well known and we
can study their time evolutions and predict the results of various measurements performed
on them. However, in practice, the state of the system is often not perfectly determined.
Then, we introduce the density operator to represent the state of a quantum system,
which encodes a situation with incomplete information in a more general way than a
state vector. The incomplete information about the system in quantum mechanics means
the state of the system is a statistical mixture of states |¢1), [t)1),... with probabilities
p1, P2, ... The states [i1), [the),... are not necessarily orthogonal. Then we use density
operator p(t) to describe the statistical mixture of states. The system is said to be in a
pure state if the state of the system is perfectly known, i.e., p(t) = |1(t))(¢(t)| where
|1(t)) is the state vector of the system at time t. Note that, for the pure states, we have
p? = p and Tr(p?) = 1. For the mixed states, we have p = Y, prpr With pp = [¢5) (U]
the density operator of the pure state corresponding to [¢). Thus, we conclude that the
density operator possesses three main properties: p* = p, Tr(p) = 1 and p > 0.

Next, we generalize the above fourth, fifth and sixth postulates to the case with respect
to density operators.

Fourth postulate (finite dimensional case): When the physical quantity 2 is
measured on a system in p, the probability P(x,) of obtaining the eigenvalue x, of the
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Quantum mechanics

corresponding observable X is: P(x,) = Tr(pF,). As a consequence, the expectation of X
is given by (X) = Tr(pX).

Fifth postulate: If a measurement of the physical quantity & on a system in p gives

the result x,,, the state of the system immediately after measurement is P’(ng:).

Sixth postulate: The time evolution of the density operator p(t) is governed by the
Liouville-von Neumann equation: ih%p(t) = [H(t), p(t)].

2.2.2 Quantum spin systems

The famous Stern-Gerlach experiment [CTDL18] demonstrated that the spin angular
momentum is quantized, that is the spin angular momentum .#, , . measured along the
axis-z, y, z has only two possible values g and —g. We firstly associate an observable S,
with ., which has two eigenvalues % and —g, and denote the corresponding orthonormal
eigenvectors by |+) and |—), ie., S.|+) = Z|+) and S.|-) = —Z|-). Then denote
the spin state space by Hy which is 2-dimensional and spanned by |+) and |—). The
state vector |1)) € Hy can be represented by a linear superposition of |[+) and |—), i.e.,
|0) = 4 |+) +1_|—) with |[¢hy|* +[¢_|*> = 1. Thus, in the {|+),|—)} basis, the observable
S. can be represented in matrix form S, = 2 (§ %). The commutation relations of the
angular momenta along the three axis in the case of sp1n—§ are given by

S0, 8,] = ihS.,  [S,.S.] =ihSs,  [S.,S.] = ihS,.

In the {|4),|—)} basis, the observables S, and S, can be represented in matrix forms as
Sy =12(9%) and S, =2 (% "). Here, we denote 0,,,. = 25, ., the matrices o,, 0, and
o, are called Pauh matrices. Obviously, all Pauli matrices are Hermitian and have two
eigenvalues +1. Note that, together with the identity 1, the Pauli matrix form a basis for
the vector space of matrices belonging in C?*2, thus, any matrix M = (1! 12

mal a2 ) can be
decomposed as

m m miy — m m m m m
M— 11-2F 22]l+ 112 22(7,2 12;— 21%_’_@, 12-2F 21%.

Therefore, any matrix in C**? can be expressed in the form M = a¢l + a,0, + a,0, + a.0.
with ao, a,, ay,a, € C.

Now, let us consider Spin—% particles. By placing the apparatus along an angle 6,
we can prepare a state [¢) such that [¢) = ¥y|+) + ¢_|—) with [ > + |[¢_]* =1
and these two coefficients are determined by the angle 6. If we measure .#,, then we
have two possible outcomes 2 and —2 with the probabilities P(+) = (¢|(|+)(+])[¢) =
|¢4]? and P(—) = (w|(|—)(—|)|¢) = |¢_|? respectively. The corresponding expectation
is (S.) = (¥]S.|v) = L(|v4]* — |¢—|?). Consider an atom in a uniform magnetic field:
the time-independent Hamiltonian describing the total energy of the system given by
H = wyS,, where w > 0 represents the angular velocity. Then we have H|+) = F,|+) and
H|-) = E_|-) with B, =0 and E_ = -0 the “Bohr frequency” is given by By E‘.
By the Schrédinger equation, we get |¢(¢ )) = e_ZH(t /M4 (ty)). Let us use the densfcy
operator p to describe the state of a two-level quantum system, where p € Sy := {p €
C**%|p* = p, Tr(p) = 1, p > 0}. Due to the properties of the Pauli matrices, we can write p
in the form p = H2HNH with (1 y 2) € B = {(x,y,2) € R¥|a? +y? + 2% < 1}. Thus
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Sy is isomorphic to B, that is any state of two-level quantum system can be represented
by a three-dimensional vector (x,y, z) belonging to the unit ball. Such a vector is called
the Bloch vector.

Consider a quantum system which has two states whose energies are close to each other
and very different from the energies of other states of the system. Under this assumption,
we can ignore all the other energy levels of the system, and analyze the system in a
two-dimensional space Hy. Take the two eigenvectors |e) and |g) of the Hamiltonian H,
whose eigenvalues are E. and E, (E, < E.) respectively, as an orthonormal basis of Hs.
Then we can apply the above representation of a spin—% model to general two-level quantum
systems.

Now, we consider higher level quantum spin systems, and denote the N-dimensional
spin state space by Hy, with 2 < N < co. Associate the angular momentum along the
axis-z,y, z with Hermitian operators J,, .. The commutation relations of the angular
momenta along the three axis are given by

o, ) =ik, [J, ) =ihds, [ J.,J.] = ihJ,.

Referring to [CTDL18, SN14], for all n € {0,..., N — 1}, the eigenvalues and the eigen-
vectors of the three angular momentum operators are given by

Jx’en> = cn‘€n> + Cn+1‘€n+1>7 Jy’en> = _icn|en71> + icn+1‘€n+1>a Jz‘€n> = (J - n)len>7
where J = %, Cp = M and (e,len) = Omn. The set of the orthonormal state
vectors {|e1), ..., |en)} form a basis of the state space Hy. Thus, in this basis, the angular

momentum operators can be represented in the following matrix forms

0 ¢ 0 —icy J
c1 O c2 icpt O —ico J—1

Jo = ) Jy: ) J. =

c2j-1 0 cag icog—1 0 —icay —J+1
c2g O icay 0 —J

In this case, the density operator p acting on Hx belongs to the space Sy = {p €
CN*N|p* = p, Tr(p) = 1, p > 0}, the corresponding N-level Bloch vector is given in [KK05].
Similar to the two-level case, the general N-level quantum systems, with 2 < N < oo,
whose Hamiltonian has N non-degenerate eigenvalues can be analyzed by the N-level
angular momentum model.

2.2.3 Quantum harmonic oscillator

The one-dimensional harmonic oscillator is an important system in both classical and
quantum mechanics. A lot of systems can be approximated by the harmonic oscillator
model. Consider a one- dimensional conservative harmonic oscillator, by Newton’s second
law and Hooke’s law, we have ¢ = ——:c where m > 0 represents the mass of the particle
and k£ > 0 describes the stiffness of the spring, and denote w? = k . Then the total energy

of this system is the sum of the potential energy and the klnetlc energy, K = 2’% + m“’TQmQ
In quantum mechanics, we define two observables () and P, which are self-adjoint

operators on the Hilbert space H associated with the physical quantities position z and
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Quantum mechanics

momentum p, satisfying the Heisenberg’s canonical commutation relation [@, P] = ih1. In
accordance with the classical case, we define the Hamiltonian operator of the system as
H = % + %?QQ, however, it is not obvious to resolve the eigenvalue equation H |¢)) = E|¢).
Then we define two non-Hermitian operators a = \/”;:;; (Q + 2%) and its conjugate
a* = \/’;‘:;J (Q — i%), the two non-Hermitian operators are known as the annihilation
operator and the creation operator, and they can help us to study the eigenvalues and

eigenvectors of H. Denote N := a*a, by a straightforward calculation, we have

P? 1 H 1
2 10.pPl =2 _=
m%ﬂ) N 2h[Q’ ] hw 27

which implies that H = hw (N + %), where N is called number operator. Then a direct
computation shows [V, a] = —a and [N, a*] = a*. Denote an eigenvalue and an associated
eigenvector of N by n and |n), i.e., N|n) = n|n), where |n) are called Fock states and form
an orthogonal basis of the Hilbert space H, (n|m) = 6,., and > |n)(n| = 1. Consequently,
we can obtain easily a|0) = 0. Since n = (n|N|n) = ||a|n)||* > 0, then n is non-negative.
As a result, we have

mw
N:— 2
oh <Q+

Na|n) = ([N, a] + aN)|n) = (n — 1)a|n), (2.3)

Na*|n) = ([N, @] + a"N)n) = (n + 1)a"[n), '
which implies that a|n) and a*|n) are also eigenvectors of N with eigenvalues decreased
and increased by one respectively. From the relation H|n) = hw (n + %) In), we note that
the decrease or increase of n by one amounts to the annihilation or creation of one quantum
unit of energy hw, as the consequence of (2.3), a|n) is parallel to |n — 1) and a*|n) is
parallel to |n + 1), which means a|n) = a;|n — 1), a*|n) = az|n + 1). Due to the canonical
commutation relation, we have [a,a*] = 1, thus aa* = N + 1. Since n = (n|a*a|n) = |ay|?
and n+1 = (n|(N + 1)|n) = (n|aa*|n) = |az|?, and by assuming «; and ay to be real and
non-negative, we have oy = y/n and ay = v/n + 1. Finally, we obtain

aln) = v/nln — 1), a*|n) =vVn+1n +1).

Therefore, in the {|n)} basis, the Hamiltonian H, the creation operator a* and the
annihilation operator a can be represented by the following matrices

1 00 00 0 01 0 0
0 30 L0 0 00 +v2 0
hw 0 v2 0 - - o
H == * = =
5 (005 cd =y 0 v3 .. | 00(.)\/'3.‘

Furthermore, the general state of an harmonic oscillator can be expressed as a superposition
of Fock states |n). Such states are called coherent states and are defined by

ala) = aa),

where a is the annihilation operator and a trivial solution of the above equation is the
vacuum state |0) for a = 0.
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Now, we analyze the harmonic oscillator in the Heisenberg picture and discuss the time
evolution of the operators. For the purpose of simplicity, we do not add the subscript H
to emphasize the Heisenberg picture. The Heisenberg equation of a is given by

da 1
8 _ 14, H] = —iw[a, N] = —i
7 Z,h[a, ] iwla, N] iwa,

which implies that a(t) = a(ty)e ™),

2.3 Open quantum systems

In the previous section, we have briefly discussed the formalism of the closed quantum
systems. However, any quantum system interacts unavoidably with an external quantum
system, like a large environment or a quantum heat bath. This type of system is called
open quantum system.

Bipartite quantum systems In order to develop a theoretical framework for treating
these interactions, let us consider a simple case, where the quantum system of interest
consists of two quantum subsystems S; and S,. This is called bipartite quantum system and
is denoted by S; ® Ss. Due to the first postulate of quantum mechanics, we suppose that
the quantum subsystem S is defined by the state ¢; € H; and the quantum subsystem S5
is defined by the state 15 € Ho. Then the coupled system S; ® Ss is defined by the state
11 ® 1y belonging to the tensor product H; ® Hs. If X; and X, are observables of the
quantum subsystems S; and S5, respectively, then they can be extended as the observables
of the quantum system S; ® Sy acting on H; ® Ho by considering the operators X; ® 1 and
1 ® Xy, respectively. Similarly, if p; and py are density operators of Sy and Ss, respectively,
then p; ® po is a density operator of the system S; ® S5. Therefore, we can extend all
six postulates discussed in the previous section to the case of bipartite quantum systems.
Next, in order to determine the marginal states for bipartite quantum systems, we need
to introduce the partial trace (see e.g., [Att, Chapter 2]), which helps us to average the
complementary system. Given a density operator p on H; ® Hs, the marginal state p; on
H1 can be calculated by

,01 - TrHQ <p>7
where the partial trace is defined by

Tr(Try, (p)X1) = Tr(p(X; ® 1)), (2.4)

for all observables X; on H;.

Open quantum systems Open quantum systems can be considered as the family of all
bipartite quantum systems. Let us define the quantum dynamical system of interest .S on
a Hilbert space Hg, and describe the environment by a quantum system W on a Hilbert
space Hyy. The system-environment S ® W can be considered as a larger quantum system
defined on the Hilbert space Hg ® Hy . Denote pg(t) and pw (t) as the density operators
of the system and the environment, whose initial states are given by pg(to) and pw (to).
Then the time evolution of the density operator p(t) of system-environment is given by

p(t) = Ul(t, to) (ps(to) @ pw(te))U* (L, to) = ps(t) = Tryy, (p(t)),
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Open quantum systems

where U(t, ) is the unitary operator acting on Hg ® Hy,. We measure the observable
X7 ® 1. Denote the set of eigenvalues of X; by {x}, and the set of associated projectors
by {P.}. After the measurement, the state immediately becomes

() = PU(t, o) (ps(to) ® pw(t0))U*(t,t0) Py
P = W (Bt to) (ps(t) @ pw (t0)) U= (, to) Py

where the denominator gives the probability of obtaining x,. Therefore, the post measure-
ment marginal state pi(t) is given by

/ _ / _ Tr'HW (PNU(ta tO) (pS(tU) ® pW(tO))U*<t7 tO)Pn)
s = T (0'0)) = B T 10} (pstho) © g () U- (10} )

which describes the time evolution of the open quantum system undergoing measurements.

(2.5)

Quantum filtering equation Now, let us consider an open quantum system defined on
Hs in interaction with an electromagnetic field in the vacuum state defined on Hy, under-
going continuous-time measurements. Consider only one homodyne detection measurement
channel at a time. Heuristically, the electromagnetic field can be considered as a collection
of quantum harmonic oscillators, described by the field operators A; (annihilation process)
and AI (creation process), which are defined on Hy and do not commute with each other.
Then the joint dynamics of the unitary operator U, of the whole system, i.e., open quantum
system and the electromagnetic field, defined on the Hilbert space Hg ® Hyy, is given by
the following quantum stochastic differential equation (QSDE)

at, = (L@aal - L @dd, - ((L'Lj2+iH) @1)dt) U, Uy =1,

Then the time evolution of the observable X on Hg is j:(X) = U (X ® 1)U, and the
observation of homodyne detection at time ¢ is ¥; = Uy (1 ® (A, + A}))U;, see Fig 2.2.

System i
Input ; (X)); X U Output »| Detector Measurement | Filter Estimator,
At,Atf t t t U:At ut Yt = ut*(At—i_Atf) ut ﬂ-t(X)
u Al u,

FIGURE 2.2 — Quantum filtering procedure. Based on the outcome of the detector Y;, the filter
provides an estimator of the observable X at time t. Note that, we identify X and X ® 1, A
and 1 ® A, AI and 1 ® AI in the above diagram.

By the quantum It6 calculus [HP84], we have

djp(X) = L(ji(X))dt + dAJ[j(X), ju(L)] + [je(L*), jo(X)]d A,
dY, = (ju(L) + ji(L*))dt + dA, + dA],

where £(X) :=i[H,X]|+ L*XL — L*LX/2 — XL*L/2 is called Lindblad generator. Like
classical stochastic filtering theory [Kall3, Xio08], by the Kallianpur-Stribel formula and It6
formula, the dynamics of expectation of j;(X) conditioned on the recorded measurements
Y; up to time ¢, denoted by m;(X), see Fig 2.3, can be described by a normalized filtering
equation. This equation is driven by the innovation process corresponding to the observation
process.
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7,(X)
o(Y,0<s<t)

FIGURE 2.3 — The conditional expectation m¢(X) can be considered as the projection onto the
space spanned by the measurements record o(Y;,0 < s < t).

In the Schrédinger picture, we have m(X) = Tr(p:X), where p; is a density operator
conditioned on the observations up to time ¢. Thus we can obtain a matrix-valued stochastic
differential equation for the evolution of the density operator of the system under perfect
continuous-time (homodyne) measurements, which is called stochastic master equation,
and it is the quantum analogue of the Kushner-Stratonovich or FKK equation,

dps = L*(pe)dt + (Lps + peL* — Tr((L + L*)pr) pe) AW,
dY; = dW, + Tr((L + L*)p;)dt,

where W, is a one-dimensional Wiener process. By similar arguments, the dynamics of the
system under imperfect measurements can be described by

The measurement efficiency is given by n € (0, 1). Note that, if H and L are time-invariant,
the classical expectation of the stochastic master equation (2.6) is called Lindblad master
equation

d

%E(Pt) =L (E(Pt)) :

Moreover E(p;) can also be derived by calculating the partial trace,

E(pr) = Tew,, (Us(po ® [0)(0)T7).

Thus we observe that Lindblad master equation plays the role of Fokker-Plank equation
associated with the stochastic master equation (2.6).

2.4 Contribution and Qutline of dissertation

In this thesis, we study feedback exponential stabilization of open quantum systems
undergoing imperfect continuous-time measurements, towards a predetermined target state
which is a pure state corresponding to an eigenvector of measurement operators.

Chapter 3 provides an introduction to the quantum filtering theory. We first introduce
quantum probability theory as an extension of the classical probability theory, which
allows to describe quantum phenomena. Then, we present quantum spin systems and
the quantum harmonic oscillator in the framework of quantum probability. Next, we
discuss quantum stochastic processes on Fock space, which are applied to characterize
free quantum electromagnetic fields. After that, we describe the Hudson-Parthasarathy
quantum Ito calculus and obtain quantum stochastic differential equations. Finally, by
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the noncommutative Kallianpur-Striebel formula, we obtain a matrix-valued stochastic
differential equation which is called quantum filtering equation or stochastic master equa-
tion. This equation describes the time evolution of the density operator of open quantum
systems in interaction with an electromagnetic field undergoing imperfect continuous-time
measurements.

Chapter 4 is devoted to feedback exponential stabilization of N-level quantum spin
systems undergoing continuous-time measurements with known initial states. This chapter
is based on our publications [LAM18, LAM19a]. We first study the case where the control
input is turned off, and show the exponential quantum state reduction in mean and almost
surely. By using stochastic and geometric control tools, we provide sufficient conditions on
the feedback control law ensuring almost sure exponential convergence to a predetermined
pure state corresponding to an eigenvector of the measurement operator J,. In order to
achieve these results, we establish general features of quantum trajectories which are of
interest by themselves. We illustrate the results by designing a class of feedback control
laws satisfying the above-mentioned conditions and finally we demonstrate the effectiveness
of our methodology through numerical simulations for three-level quantum spin systems.

Chapter 5 is devoted to feedback stabilization of multi-qubit systems undergoing
continuous-time measurements with known initial states. This chapter is based on the
publication [LAM19b] and [LAMa]. We first study multi-qubit systems with two quan-
tum channels when the control input is turned off, and show the exponential quantum
state reduction in mean and almost surely. Then we consider a two-qubit system under-
going continuous-time measurements. In presence of one channel, we establish asymptotic
convergence towards a predetermined Bell state. With two channels, we provide suffi-
cient conditions on the continuous feedback control law ensuring almost sure exponential
convergence to a predetermined Bell state. This is obtained by applying stochastic tools,
Lyapunov methods and geometric control tools. In both cases, we provide explicit ex-
pressions of feedback control laws satisfying the above-mentioned conditions. Finally, we
demonstrate the effectiveness of our methodology through numerical simulations.

Chapter 6 is devoted to feedback exponential stabilization of open quantum spin
systems with unknown initial states. This chapter is based on [LAMDb]. We first consider
open quantum spin—% systems with unknown initial states, and provide sufficient conditions
on the feedback controller of the associated quantum filter, which ensure the convergence of
the fidelity of the actual state and the estimated state towards one at infinity. Then we show
the effectiveness of our methodology through numerical simulations. Then, heuristically,
we discuss feedback exponential stabilization of N-level open quantum spin systems with
unknown initial states. We finish this chapter by providing numerical simulations for
three-level quantum spin systems.

Chapter 7 proposes some natural extensions to the results described in the chapters
mentioned above.

Appendix A provides some basic notions and theorems from stochastic calculus and
stochastic control theory.
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Quantum filtering theory

In this chapter, we introduce the general framework of quantum probability and we
focus mainly on quantum filtering theory.

Inspired by the classical filtering problem [Kall3, Xio08], whose purpose is to determine
the best estimation of the state of a classical system from noisy observations, the quantum
analogue was developed in the 1960s by Davies [Dav69, Dav76] and extended by Belavkin
in the 1980s [Bel83, Bel89, Bel95, Bel92|, relying on the quantum probability theory
and the quantum stochastic calculus [HP84, Par12, Mey06]. For a modern treatment of
quantum filtering, we refer to [BvHJO7].

Roughly speaking, using quantum filtering theory, we can derive a matrix-valued
stochastic differential equation called stochastic master equation, to describe the time
evolution of the state of an open quantum system interacting with an electromagnetic
field under homodyne detection.

3.1 From classical to quantum probability

The Russian mathematician A. Kolmogorov provided a rigorous mathematical foun-
dation for the classical probability theory in 1930s, firstly introduced the notion of the
probability space, and considered random variables as functions from the probability space
to R. Quantum probablity theory provides an approach generalizing the Kolmogorov’s
probability theory in the framework of quantum mechanics. In this approach, the algebra
of classical random variables is replaced by a more general non-commutative algebra
appropriate to represent observables of the system (analogue of classical random variables),
which helps us to discuss the statistical inference of quantum states.

As a preliminary step towards an introduction of quantum probability, we recall below
the main definitions and properties of conditional expectation from classical probability
theory.
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3.1.1 Classical probability

An important concept in classical probability theory is the notion of probability space,
which models a real-world “experiment” containing more than one possible outcome. A
probability space (€2, F,P) consists of three parts:

1. a sample space €2, which is the set of all possible outcomes, each outcome is denoted
by w;

2. aset of events F, which is a o-field of subsets of €2, each event in F is a set containing
Zeros or more outcomes

3. P is a probability measure on F, i.e., P: F — [0, 1], which assigns the probabilities
to the events. Since the probability measure contains all the information available
on the outcome of any observation, we can consider P as the “state” of such random
system.

A real-valued random variable X on (2 is represented as a real-valued measurable map
X:Q—>R ie, X YF)eF (X YF) is an event) for all E € R, where R is the o-field
of Borel subsets of R. The law or distribution of a random variable X is the pushforward
measure px = X o P of X, which is also the probability measure on the Borel subsets of
R given by

px(E) = P(X_I(E)) =PweX(w)eE), VEER.

Random variables are interpreted as real-valued observable of a system by physicists.
In particular, the mean value or expectation can be obtained by repeatedly measuring
an observable and averaging. Mathematically, the expectation of an integrable random
variable X is given by the following integral

E@ﬁzlmeMMw=L%ﬂWA@

where the second equality can be shown by applying Radon—Nikodym theorem. Suppose f
is a Borel measurable real-valued function and px-integrable, then f(X) is still a random
variable given by (f(X))(w) = f(X(w)), we have

E(f(X) = | (FO0)@dB) = [ F(X@)dP) = [ fa)dux(a)
By taking f as the exponential function, we can obtain the so-called characteristic function
Dy (t) :=E (") = /Remdux(x), vVt e R.
Because of the invertibility of Fourier transform, the characteristic function of a random

variable completely determines its law or distribution.

Now, let us consider the random vector X, which is a mapping from € to R*, i.e.,
w— X(w) = (X1(w), ..., Xn(w)). Then X is simply a n-tuple random variables, and X is
measurable if and only if each X; is. The joint distribution of a n-tuple random variables
(X1,...,X,) is given by

px (B % - x B,) =P (ﬁxﬁ(g)) —P(we QX1 (w) € E,..., X, (w) € Ey),
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From classical to quantum probability

where each F; € R. For the Borel measurable function f, which is pux-integrable, we have

Q R™
Then the characteristic function of the random vector X is given by

CI)X(t) — (eit1X1+"-+itan)

Y

which completely determines the distribution of the random vector X and the one of
its marginals X;. In this case, the random variables X1, ..., X,, are said to be (totally)
independent if and only if for all E; € R, we have

P (ﬁ Xl.l(Ei)) = ﬁp(xl

There are two important properties concerning the independence of the random variables,

1. if X1,..., X, are independent random variables and f1, ..., f,, are Borel measurable
functions, then fi1(Xy),..., fn(X,) are independent random variables ;

2. X1,...,X, are independent if and only if

E (H f(X») = f[E(f(X

for all bounded Borel measurable real-valued functions f.

When an observer possesses only the partial information, it is important to introduce
the concept of conditional probability. Given a probability space (€2, F,P) and two events
E., A € F, the probability of E occurring knowing A occurred is given by

P(ENA)
P(A)

If P(A) =0, we set P(E|A) =0 for all E € F. Clearly, P(:|A) is a probability measure on
F, which is called the “conditional probability relative to A”. The integral of an integrable
random variable X with respect to this probability measure is called the “conditional
expectation relative to A”:

P(E|A) = P(A) > 0. (3.1)

E(XA) : /X VAP (w|A) = /X AP (w (3.2)
Let {A;|i > 1} be a countable measurable partition of €2, i.e.,

Q=JN, NeF, ANNA =0, ifi].

=1

Then, due to Equations (3.1) and (3.2), we have the following properties, which are called
law of total probability and law of total expectation respectively,

:iP(AmE ZIP P(E|A;),
= Z /A X(w)dP(w) = ZP(AZ‘>E(X|A¢>7
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provided that X is integrable. Let us now turn to the conditional expectation with
respect to the o-Borel field G generated by a countable partition {A;|7 > 1}, which
plays a fundamental role in classical estimation and filtering theory. The definition of the
conditional expectation with respect to G is given by the following theorem.

Theorem 3.1.1. Suppose X is an integrable random variable on (2, F,P), and G C F
is a sub o-field of F. Then there exists a random variable B(X|G) called the conditional
expectation of X given G, which has the following two properties

1. E(X|G) is G-measurable ;
2. for all G € G, E(X1¢) = E(E(X|G)1g), where

E@Lg:LX@mmw,E@awmg:AEuwmmmw.

Let X and Y be integrable random variables on (2, F,P), and let G and £ be sub o-fields
of F, then we state the following important properties of the conditional expectation,

1. irrelevance of independent information : if X is independent of G, then E(X|G) =
E(X);
linearity: for all o, 8 € R, E(aX + BY|G) = oE(X|G) + FE(Y|G);
stability: if X is G-measurable, then E(X|G) = X ;
module property: if X is G-measurable, then E(XY'|G) = XE(Y|G);
tower property: if £ C G C F, then E(E(X|G)|E) = E(X[£);
6. law of total expectation: E(E(X|G)) = E(X).
The next lemma, called L2-projection property, concerns the estimation of the exact value
of a random variable X based on the information represented by G.

Lemma 3.1.2. Let X be an integrable random variable on (2, F,P), and let G C F. Then

Gk o

E((X-E(X]9)") = min E((X-Y)).

YeL?(Q,G,P)

The above lemma implies that the conditional expectation E(X|G) is the “best” esti-
mation for X among all G-measurable random variable. The following result is an abstract
version of the Bayes formula [Xio08], which corresponds to the key concept in the non-linear
filtering theory, Kallianpur-Striebel formula.

Theorem 3.1.3. Suppose that X is an integrable random variable on (2, F,P) and G is
a sub-o-field of F. Let Q > P (i.e., P is absolutely continuous with respect to the measure
Q) be another probability measure such that M = 2% (Radon—Nikodym derivative). Then

E%(XM|G)
P9 TG

3.1.2 Quantum probability

Below, we introduce the framework of quantum probability and in particular we provide
the analogue of the definitions and properties stated in the previous subsection.
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From classical to quantum probability

Quantum random variable Here, we want to interpret the quantum random variable,
in the probabilistic view, as a spectral measure on a real line R by the famous von
Neumann spectral theorem (see [RS80, Att]). In physicist’s language, observables are given
by self-adjoint operators on a Hilbert space H and also called quantum random variables
(see the fourth postulate of quantum mechanics). Then, we first introduce the powerful
tools to study self-adjoint operators: the spectral measure (or projection-valued measure)
and the corresponding spectral integration.

Given a Hilbert space H, denote P(H) the set of orthogonal projectors on H, i.e., the
bounded operator P on H satisfying P2 = P* = P. Let us consider a measurable space
(R, R), where R is the o-field of Borel subsets of R. A H-valued spectral measure on (R, R)
is a mapping & : R — P(H), which satisfies £(0)) =0, £(R) =1 and {(U; Bi) = >, E(Ey)
for every sequence of disjoint set {F;} belonging to R, and E; | @) implies £(E;) — 0 in
the strong topology. We fix 1) € H, and consider the mapping £ € R — (¢, {(E)y) =
I1E(E)Y||* € Ry. Due to the Riesz-Markov theorem, the above mapping uniquely defines a
measure fu,(-) := [|€(-)¥]|?, such that py(R) = ||¢]]2. Note that, if ¢ is a unit vector on H,
then p,(+) is a probability measure on (R, R).

Then, we define the spectral integral for any Borel function. We begin by considering
the case of a simple function f on R, that is f(z) = Y"1, a;1g,(x) where the sets E; € R
are two by two disjoint and 15, denotes the indicator of E;. We define the spectral integral
of such f with respect to &,

/f )de(z Zazs

which implies that, for any ¢ € H,

(W, / f(2)de(z) ) = / F(@)dpug(2)

By introducing the essential supremum and showing the convergence of the integral, we
can extend the notation from the simple function to any bounded Borel function. Then,
for any Borel function f, we define the set

Dyi={uven \ [ 1@ dta) < o0},

which is a dense subspace of H. Finally, given a real bounded Borel measurable function f,
we can define the spectral integral fR x)d&(x) on Dy, which is a bounded and self-adjoint
operator on H (The proof can be found in [Att, Proposition 1.98]).

Next, we state the following important theorem: von Neumann’s spectral theorem,
which connects the physicist’s and probabilist’s interpretations of random variable (for
more details, we refer to [Att, Chapter 7], [Mey06, Chapter 1] and [Par12, Chapter 1]).

Theorem 3.1.4 (von Neumann'’s spectral theorem [Mey06]). For every self-adjoint ope-
rator X, there exists a unique spectral measure & : R — P(H), such that

X = /Ra:df(:c)

Then, given any (real or complex) Borel function f on the line, the spectral integral

Jo F( is denoted by f(X).
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Due to the one-to-one correspondence between the self-adjoint operator and the
associated spectral measure on R stated by above theorem, we may define the law of a
given self-adjoint opertaor X on H under the state ¢ € H as follows

() = (W, E(E)) = [E(E)¢* € [0,1],

where F € R and £ is spectral measure corresponding to X. Then we can define its
associated expectation, if it exists, by the following integral

B(X) = (4, X0) = [ adug(z).

R

For any bounded Borel function f, we have

E(f(X)) = (¢, f(X)) = / F (@) ().

Hence the corresponding characteristic function is given by

Bx(t) = E() = (0. 0) = [ ey (o),

R

Note that we can consider X as a random variable in the classical probability space
(R, R, uy), the associated spectral measure {(E) describes the event that the random
variable X takes a value in E € R.

Furthermore, by [Parl2, Theorem 1.8, we can generalize the above discussion on
spectral measure and spectral integral for one random variable to the ones for multiple
random variables. Next, let us consider the case of two commuting real-valued random
variables A and B. By the definition in [RS80, Chapter VIII|, two (possibly unbounded)
self-adjoint operators A and B are said to be commute if and only if all the projections in
their associated spectral measures commute. Then we have the following two equivalent
statements:

1. A and B commute.
2. For all 5,t € R, et4eisB = ¢isBeitd,

Due to [Parl2, Corollary 10.9], we can view the two commuting real-valued random
variables A and B as a single R%-valued random variable. Then, by [Par12, Proposition
10.10], we can define the joint probability distribution of the commuting random variables
A and B as the probability measure p,, on R? for which

/ €ita+i8bd,uw(a, b) — <¢’ eitAeisB¢> — <¢7€isB€itA¢>’ VS,t c RQ. (33)
R2

Moreover, the random variables A and B can be realized by the function f,(a,b) = a and
fv(a,b) = b on the larger probability space (R? R?, j1,).

If the two random variables A and B do not commute, then such two random variables
belong to two different probability spaces, we cannot define the joint probability distribution
and they cannot be simultaneously realized. It corresponds to the fact that it is impossible
to measure two non-commuting observables simultaneously.
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From classical to quantum probability

Quantum probability space By what precedes, for a given unit vector ¢ € H, we
may associate a common probability measure depending on ¢ for all commuting quantum
observables (self-adjoint operators). However, this does not extend to non-commuting
observables.

However, in order to generalize the classical (Kolmogorov) probability theory to allow
the quantum mechanical models, following the approach of [BvHJ07, Maa03], we consider
the algebra of random variables as the fundamental concept and encode the information
contained in the classical structure into an appropriate algebra (von Neumann algebra),
then introduce the notion of quantum probability space.

Let us first introduce the following important notions [Maa03]

Definition 3.1.5. A von Neumann algebra is a collection A of bounded linear operator
on a Hilbert space H containing the identity 1 with the following properties,

1. A is a linear space: A, B € A and «, § € C implies oA + B € A.
2. A is x-algebra: A, B € A implies AB € A and A* € A.
3. A is strongly closed: A; € A and for all ¢ € H, lim; .o, A;%0 = Ay implies A € A.

Definition 3.1.6. A state ¢ on von Neumann algebra A is a functional ¢ : A — C with
the following properties,

1. linearity: A, B € A and a, § € C implies p(aA + 8B) = ap(A) + Be(B).
2. positivity: for all A € A, then ||A||, := @(A*A) > 0.
3. normalization: ¢ (1) = 1.

Moreover, a state ¢ is called faithful if ¢(A*A) = 0 implies A = 0. It is called normal for
every sequence Aj, Ao, ... in A with strong limit A, we have lim,, ., ¢(4,) = ¢(A).

Let us illustrate the above notions by a simple example. Given a probability
space (2, F,P), two function spaces L>=(Q, F,P) and L*(Q, F,P) are well defined. Here
L>(Q, F,P) is a Banach space and L?(2, F,P) is a Hilbert space. For any f € L>(Q, F,P)
determines an multiplication operator M, on the Hilbert space L*(Q, F,P) by (M) (w) =
f(w)¥(w). Then, the following result provides a method to construct the von Neumann
algebra and the associated state.

Proposition 3.1.7 ([Maa03, Proposition 1.1]). Let (2, F,P) be a probability space. Then
the algebra
A= {M;|f € L™(Q,F,P)}

is a commutative von Neumann algebra of the operators on H = L*(Q, F,P), and ¢ :
My~ [ fdP is a faithful normal state on A.

The fundamental result in theory of operator algebra known as Gelfrand’s theo-
rem [Maa03, Theorem 1.2], states that the commutative von Neumann algebra is equi-

valent to the algebra of bounded functions acting by multiplication on the Hilbert space
L?*(Q, F,P) for some probability space (Q, F,P).

In the following, we consider the non-commutative case. We define a quantum probability
space as a pair (A, ¢), which consists of a von Neumann algebra A on a Hilbert space H,
which is the quantum counterpart of o-algebra in the classical probability theory, and a
faithful normal state ¢ on A, which plays a role of a probability measure. Next, let us
show the following three most commonly used types of von Neumann algebra A4 [BvHJO7],
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1. the set of all bounded linear operators on H, denoted by Z(H), is a von Neumann
algebra;

2. L*(Q, F,P) acting on L*(2, F,P) by pointwise multiplication is a commutative von
Neumann algebra;

3. denote the set called commutant of B C A(H) by B := {A € B(H)|AB =
BA, VB € B}, then the double commutant of any self adjoint set ! B, denoted by

B", is a smallest von Neumann subalgebra of (#) that contains 5. In particular,
B is a von Neumann algebra if and only if B = B”.2

Let A be a von Neumann algebra acting on a Hilbert space H. An operator X is said
to be affiliated to A, if H is stable under every operator in A’, the commutant of A, and
XAy = AX9 for all A € A" and ¢ € H (see [Mey06, Chapter A.4.3]). Thus, if a bounded
and self-adjoint operator X is affiliated to a von Neumann algebra A, then X € A” which
is equal to A. Due to the spectral decomposition of X which is unique, its spectral measure
¢(E) € Afor all E € R. Thus, for a bounded and self-adjoint operator X affiliated to A,
the probability of the event that X on H takes a value in the Borel set £ € R is given by

P(w e Q| X(w) € E) = ¢(£(E)),

which is called the law or distribution of X. The associated expectation is given by
B(X) = [ wdiy (6(0))
R

Next, for the final purpose of the quantum filtering theory, we give the definition of
conditional expectation in a quantum probability space. The existence and uniqueness of
the quantum conditional expectation have been shown in [BvHJ07, Section 3.3].

Definition 3.1.8. Let (A, ¢) be a quantum probability space and let B C A be a
commutative von Neumann subalgebra. Denote the set called commutant of B C Z(H)

in Aby B :={A e A|AB = BA, VB € B}. Then the map ¢(:|B) : B' — B is called (a
version of) the conditional expectation from B’ onto B, if for all X € B’ and S € B,

P(p(X|B)S) = p(X5).

Given a quantum probability space (A, ), let X be the operators affiliated to the B,
the commutant of B C A, then we have the following properties of the quantum condition
expectation, which are analogous to the classical case,

1. linearity: for all o, 8 € C, p(aX + Y |B) = ap(X|B) + Sp(Y|B);
2. positivity: if X > 0, then ¢(X|B) > 0;

3. module property: if Y1,Ys> € B, then (Y1 XY5|B) = Yiep(X|B)Y;;
4. tower property: if C C B C A, then ¢(@(X|B)|C) = ¢(X|C);

5. law of total expectation: ¢ (p(X|B)) = ¢(X).

The next result [BvHJ07, Theorem 3.16] is the quantum analogue of L?-projection property
of the conditional expectation.

1. If S € B, then S* € B.
2. This is von Neumann bicommutant theorem [Mey06, Chapter A.4.3].
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From classical to quantum probability

Lemma 3.1.9. Given a commutative quantum probability space (A, ), let X be the
operators affiliated to the B', the commutant of commutative von Neumann subalgebra
B C A. Then

X —p(X =min || X — Y.

IX = ¢ (X[B)l|p = min | le

The above lemma implies that the quantum conditional expectation ¢ (X|B) is the
“best” estimation for X among all operators in B. A crucial tool for quantum filtering
theory, quantum analogue of Bayes formula, is given by the following lemma.

Theorem 3.1.10 (Quantum Bayes formula). Given a quantum probability space (A, ),
denote B' as the commutant of a commutative von Neumann subalgebra B C A. Choose
V € B such that V*V > 0 and @o(V*V) = 1. Then we can define a new state w on B’ by
w(X) = (V*XV) and

o(V*XV|B)

, VX eRB.
p(V*V|B)

w(X|B) =

3.1.3 Revision of quantum spin systems and quantum harmonic
oscillators

Here, we discuss two important quantum system models, quantum spin systems and the
quantum harmonic oscillator, in the framework of quantum probability. For the purpose
of simplicity, we consider only the case of pure states.

Quantum spin systems The observables of the quantum spin systems, which we have
discussed in Section 2, are bounded self-adjoint operators acting on a finite dimensional
Hilbert space H. Thus it is easy to construct the associated finite dimensional quantum
probability space, the commutative von Neumann algebra A can be obtained as the span of a
set of orthogonal projections { P, } such that > P, = 1. Moreover, in the finite dimensional
case, every observable affiliated to A belongs to A and all elements of A commute with
each other. The corresponding state is given by the map ¢ : X € A — (¢, Xo)) € C with a
fixed unit vector 1) € H. It is easy to verify that the finite dimensional quantum probability
space (A, ¢) is isomorphic to a classical probability space (2, F,P) with card(§2) = dim(H).
The probability of the event that the random variable X takes its eigenvalue x,, is given
by P(z,) = ¢(P,) = (¥, P,1), where P, is the eigenprojector corresponding to x,,. The
more details and examples in finite dimensional quantum probability space are referred
to [BvHJ09].

Quantum harmonic oscillators Two common observables are the position operator ()
and the momentum operator P on a Hilbert space H satisfying the canonical commutation
relation [P, Q)] = —ihl, which have been already discussed in Section 2 in a heuristic way.
Now, we want to reformulate this canonical pair (P, ()) more rigorously in the framework of
quantum probability. P. A. Meyer stated the following phrase to emphasize the importance
of the canonical pair in his lecture notes [Mey86], “les couples canoniques jouent en
probabilités quantique le role des variables aléatiores classiques.” 3

3. The canonical pair in quantum probability plays the role of the classical random variables.
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Note that, the canonical commutation relation was impossible to be satisfied for the
linear operators P and () acting on a finite dimensional Hilbert space unless A = 0, since
in this case we have Tr([P,Q]) = 0 and Tr(—il) # 0. Furthermore, the two operators
satisfying the canonical commutation relation cannot be both bounded (see [RS80, Chapter
VIIL5]), which can be shown by contradiction. If they were both bounded, then

[Q", P] = (Q"P—Q"'PQ) + (Q"'PQ - Q" ?PQ*) +- -+ (QPQ"™ — PQ")
=Q"Q, Pl +Q"?[Q, PIQ + -+ QQ, PIQ"™" = ihn@Q" ",
which implies that 2||P||||Q]|" > nA||Q]|"~*. Then, for all n, we have 2||P||||Q|| > nh.

Here is specific example of @), P satisfying the canonical commutation relation so-called
Schrodinger representation (the physical introduction can be found in [CTDL18; Chapter
2]). We can represent the canonical pair as two unbounded operators on H = L%*(R) such
that, for all ¢ € H,

(Qu)a) = e0(a), (PY)(x) = i () (3.4

where the two unbounded operators @ and P are self-adjoint (see [RS80, Chapter VIII]).
Furthermore, Stone-von Neumann theorem [Mey06, Chapter I11.6] shows the uniqueness
of Schrodinger representation of the canonical commutation relation.

Stone’s theorem on one-parameter unitary groups [RS80, Chapter VIII.4] can help us to
get rid of the unboundedness of the operators P and (). This provides the mathematically
rigorous Weyl commutation relation equivalent to the canonical commutation relation.
Firstly, let us introduce one parameter unitary groups. Suppose that A is a self-adjoint
operator on a Hilbert space H. By von Neumann spectral theorem (Theorem 3.1.4), define
an operator-valued function U; such that, for all ¢t € R,

U, = et = / e dé ().
R

Then {U, }+cr are unitary operators that satisfy
1. the group property, i.e., for all s,t € R, U, = U, U, ; and
2. strong continuity property, i.e., for all t, € R and ¢ € H, lim; 4, Upp = Uy 2.

Theorem 3.1.11 (Stone’s theorem). Let {U,;}ier be a strongly continuous one-parameter
group on a Hilbert space H. Then there is a self-adjoint operator A on H such that U, = e™A.

Then, by Stone’s theorem, we can obtain the following two one-parameter unitary groups
U, = e and V, = @ determined by the self-adjoint operators Q and P, whose action
on H is given by

(Unp)(z) = p(z +nt),  (Vsp)(z) = €™ 4 (x),

which deduces the Weyl commutation relation,
UV, = "™ V,U,. (3.5)
Based on the above argument, we can take the von Neumann algebra A as the set

of all bounded linear operator on % = L*(R). As an example, we consider a unit vector
1 € H given by

(z=p)?
402

Y(z) = (2m) o712
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Quantum stochastic calculus

where 1 (z) is the probability density function of a normal distribution N (u, o), thus we
have

W.0) = [ Wade =1
R
Therefore, the characteristic functions of the ) and P are given by

t202

%WZEM%4%WW=Aw@¥%@MﬁwW‘%

122

Br(t) = E(W:) = (5, U) = [ v@)ilar+ hydo = 55

Therefore, Q and P are Gaussian random variables such that Q ~ N(u,0?) and P ~
N (0, % /40?%). Note that, the variance of @ is inversely proportional to the one of P, which
implies

}12

1

which attains the minimal uncertainty of the Heisenberg uncertainty relation, i.e.,
Var(Q)Var(P) > %2. Furthermore, the minimal uncertainty states of the canonical pair
are Gaussian [Mey06, Chapter I1I].

Var(Q)Var(P) =

3.2 Quantum stochastic calculus

3.2.1 Stochastic processes on Fock space

Fock space In the previous section, we have discussed the relation between the single
classical probability space and the single quantum probability space. In classical probability
theory, N different statistical systems, described in NV different classical probability spaces
(Qy, Fi, P;), can be represented in a “big” single classical probability space (2, F,P) by
taking the Cartesian product, i.e., Q@ = Q; X --- X Qun, F = F; X +-- X Fy which is
the smallest o-algebra containing all rectangle of E; x --- x Ey with E; € F;, and
P =1P; x --- x Py satisfies the following property, for all F; € F;,

Hp(lfl X+ X lzbv) = th(fgl) .. .H?p](lzvv>.

Now, we present the quantum analogue of the above description, merging indefinite
different quantum systems into one picture, by introducing the tensor products of Hilbert
spaces [RS80, Att], which are key concepts on open quantum systems. Here, we first
describe the tensor product of two Hilbert spaces H; and H,. For each ¢; € H; and
Yy € Ho, let 11 ® 1y denote the conjugate bilinear form which acts on H; x Hy by

(Y1 @ ) (@1, P2) = (D1, V1) (D2, Pa).

Let & be the set of all finite linear combinations of such forms, we define an inner product
(-,-) on &£ by setting
(1 @ P2, Y1 @ a) = (@1, 1) (P2, ¥2).

and extending by linearity to €. Let (H,)1<n<n be a sequence of Hilbert spaces, we can
generalize the above construction to define the tensor products of finitely many Hilbert
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space (H,)i<n<n, denoted by ®,]LV:1 H,,. In particular, for a Hilbert spaces H and for
any finite integer N, H®Y := H ® --- ® H is called N-fold tensor product of H. Then,
we can define the countable tensor product ®:§ ‘H,, as the inductive limit of the space
QN H,, when N tends to 400 (see [Att, Chapter 2.2]). Based on the above construction
of the tensor products of Hilbert spaces, let us introduce the important notions of Fock
spaces [Mey06, Parl2, Att, RS80], to realize the combination of indefinite number of
quantum systems. They are fundamental for modelling the typical states (i.e., zero particle
states, one particle states and so on) in quantum fields (i.e., electromagnetic fields, etc.).
Let H be a complex Hilbert space, consider its N-fold tensor product H®Y with N > 1.

For ui,...,uy € H, we define the symmetric tensor product *
1
UL O+ OUN :Zm Z Ug(1) & =+ & Ug(N), (36)
cEPN

where Py is permutation group on N elements. For u € H, we denote u® :=uo---ou
and u®" ;= u ® --- ® u. By the definition (3.6), we can easily deduce v = u®V. The
closed subspace of H®N generated by all vectors (3.6) is called the N-fold symmetric
tensor product of H, denoted by H°Y. Moreover, we have the following scalar products
defined on H®N and H°N respectively,

(U1 @+ Quy,v ® -+ QUNn)g = (ug,v1) ... {Un,VN); (3.7a)
(3.7b)

(up o+ 0ouUN,V1 0 - OUN) = Per((ui,vﬁ)oémsw
where Per denotes the permanent of a matrix, i.e., the determinant without the minus signs.
Note that, for the case N = 0, we make the convention u®® = u® =1 € C, H®" = H® = C

and call it vacuum subspace.

Definition 3.2.1 (Fock space [Att, Chapter 8.2]). We call free (or full) Fock space over

‘H the Hilbert space
+00

Tr(H) =P H"

We call symmetric (or bosonic) Fock space over H the Hilbert space

—+00

T(H) = EPH"

n=0

In quantum probability, the symmetric (bosonic) Fock space I'y (LZ(R+)) is very
important for quantum stochastic calculus, where R, corresponds to the time set. It can
help us to describe the particle states of the quantum fields in time representation. Then
we will see that the Wiener process emerges within this model. Next, let us focus on the
symmetric Fock space I's(H) for a given Hilbert space H. There exists a particular useful
set of vectors e(u) € I's(H) associated with u € H, called exponential vectors or coherent

vectors, given by
Xn

e(u) = Q_}O ?/m w0, (3.8)

4. In this thesis, we focus on the symmetric case. For the definition of antisymmetric tensor product,
we refer to [Mey06, Parl2, Att, RS80]
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with the convention that
e(0)=1®000®...,

which is called vacuum vector. It implies that

(e(w).efv)) = <@ Eane ﬁ> =Y ey = 3 L))" = et (39

where the second equality is due to the direct sum of sequence of Hilbert spaces, the
third equality comes from (3.7a). Note that, for the purpose of simplicity, we omitted
the label for the different types of scalar product. We denote by £(H) the space of finite
linear combinations of exponential vectors, i.e., E(H) := span{e(u)|u € H}. This space
is called exponential domain and is dense in I'y(H) (see [Att, Chapter 8.2]). Moreover,
the generators e(u) of £(H) are linearly independent and £(H) is total® in T'y(H). Then
we show an important property of the symmetric Fock space carried by the exponential
vectors (3.8) satisfying the relation (3.9).

Theorem 3.2.2 (Exponential property [Parl2, Proposition 19.6]). Let H; and Hs be
Hilbert spaces. Then there exists a unique unitary isomorphism U : Ts(H1 @ Hs) —
Is(H1) ® Ts(Hz) satisfying the relation

Ue(u®v) =e(u)®e(v), Yuée€ Hp, Yv € Hs.

Because of this exponential property, the symmetric Fock spaces are often considered
as “exponentials of Hilbert spaces”.

Creation and annihilation operators Now, let us introduce two important operators
on symmetric Fock spaces by following the approach of Parthasarathy [Par12, Chapter
I1.20] creation and annihilation operators, which are discussed heuristically in Chapter 2.

Given a group of rigid motions of a given Hilbert space H, any element of such group
can be described by a pair (u,U), where u € H and U is a unitary operator on H. The
action of the pair (u,U) on v € H is given by

(u,U)v =Uv + u,

then v is “rotated” by U and “translated” by u. We define a family of operators, so-called
Weyl operators W (u, U), by their action on the exponential vectors e(v) for all v € H,

W (u, U)e(v) = e~ U=l 2e(17y 4 u). (3.10)

By the linear independence of the different exponential vectors, we can specify the action
of W(u,U) on the exponential domain E(H). Moreover, for v, h € H, we have

(W (u,U)e(h), W (u,U)e(v)) = e~ U= Wha=lle(Uh 4 u), e(Uv + u))
_ 6—<u,UU)—<Uh,u)—Hu||2e(Uh-‘ru,Uv-‘ru) _ 6(Uh,UU) _ e(h,v) _ <€(h), 6(U)>

where the second and the last equality are due to (3.9). It implies that a Weyl operator
W (u,U) is an isometry of £ onto itself. Since £(H) is total in I'(H), then by [Parl2,

5. A subset £ C X is total in X if the smallest closed subspace containing £ is X'.
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Proposition 7.2], W (u,U) can be uniquely extend to a unitary operator on the entire
['s(#H). From (3.10), we can obtain Weyl commutation relation, which is the more general
form than (3.5),

W(ul, Ul)W(UQ, UQ) = 67i1m<u1’U1u2>W((U1, Ul)(UQ, UQ)) . (311)

Let us consider two special cases, take (u1,U;) = (u,1) and (ug, Us) = (0,U), then we
have
W(u,U) =W (u, 1)IW(0,U).

The operator A(U) := W(0,U) is called the second quantization of U and it can lead
to the concept of quantum Poisson process (gauge process). More details can be found
in [Par12, Mey06]. We denote W, := W (u, 1), which corresponds to the translation by the
vector u. Since Wy, Wi, = Wisisyu, Wwe may define a one-parameter unitary group W, for
t € R, which is strongly continuous. By Stone’s theorem (Theorem 3.1.11), for any u € H,
there exists a self-adjoint operator (random variable or observable) B(u) such that

Wy = e B vt e R, (3.12)

where B(u) is called the field operator. As we mentioned above [RS80, Chapter VIII], for
u,v € H, B(v) and B(u) commute if and only if W (tu) and W (tv) commute. Due to Weyl
commutation relation (3.11), if (u,v) is real, then W (tu) and W (tv) commute. Moreover,
for all u,v,h € H, we have the following relation [Parl2, Proposition 20.4],

[B(w), B(v)]e(h) = 2ilm(u, v)e(h), (3.13)

which is a consequence of applying Weyl commutation relation (3.11). Based on the above
discussion, we define the annihilation operator associated with u € H by

o(u) = —B(iu);— Z'B(u)7 (3.14)

and define the creation operator associated with u € H by

at(u) = =2 WQ_ iB(w) (3.15)

The creation and annihilation have the following properties
a(u)e(v) = (u,v)e(v), (3.16a)

a'(we(v) = (de(v + tw)/dt) |i=o, (3.16Db)
e(h), a(u)e(v)) = (u,v){e(h), e(v)), )
f(w)e(v)) = (h,u){e(h), e(v)), (3.16d)

) )

)

)

’5

h), a(u)e(v)) = {(a'(u)e(h), e(v)), (3.16e
[ e(h) = [a'(w), a' (v)]e(h) = 0, (

la(u),a'(v)]e(h) = (u,v)e(h). (3.16g
The proof of above properties can be found in [Par12, Chapter 11.20]. Then the next

properties explain why a(u) and a'(u) are called the annihilation and creation operators
associated with u,

a(u)e(0) = 0, a(u)v® = VN (u, v)o®¥ 1, (3.17a)
af (u)pp® = \/Nli—i—l nz:% (V" @ u @ v®N ) (3.17Db)
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Quantum stochastic calculus

Equation (3.17) shows that a(u) is a mapping from H°Y to H°N~! and a'(u) is a mapping
from HN to HONTL

Quantum stochastic processes Now, we focus on the Hilbert space L*(R,). For
0<s<t<ooandue L*R,), we suppose that there are no jump points and adopt the
notations used in [BvHJ07] such that

ug = ulpy g, Upyg = ulsy,  up = uly .
Moreover, we have the following decomposition of the Hilbert space L*(R, ),
L*(Ry) = L*([0, s]) & L*([s, t]) & L*([t, 00)).
Thus, for every u € L*(R,) can be uniquely written as a sum
U = Ug) + Usy] + Ut,

where uy € L*([0,5]), uy € L*([s,t]) and up € L*([t,00)). Due to the exponential
property of the Fock space, Theorem 3.2.2,

D,(E2(Ry)) = Ty (Z2(10, ) @ Ty (E2([s, 1)) @ T (L2(t, 50)))

where the identification between the left and the right sides is established through a unique
unitary isomorphism. Next, we define the following von Neumann algebras [Par12, Chapter
111.24],

B = @(rs(y([o, s]))), By = %(FS(L2([s,t]))>, By = gg(rs (L2([t, oo)))),

which realize a decomposition of the von Neumann algebra %g, = % <FS (LQ(R+))>, the
set of all bounded operators on I'y (LZ(R+)),

B, = %s] X %[s,t] X 93[15. (3.18)

+

A quantum process {X;|t € R, }, i.e., a one-parameter family of self-adjoint operators,
is called adapted if X, is affiliated to %, for every ¢ € R, equivalently it is of the form
Xy ® 1 as an operator on I'y (L2([0, t])) ® T, (L2([t, oo))) This concept plays the same
role as, a stochastic process adapted to a filtration, in the classical probability theory.

Let us revisit the field operator B(u). We define the following processes, for t € R, ,

Q¢ = —B(ilyy), P,:=B(lpy).

Since P, — P,, commute with P, — P,,, due to (3.13) for 0 < t; <ty < t3 <ty < 00,
we can define the joint probability distribution similar to (3.3) of these two commuting
random variables. For x,y € R, the corresponding characteristic function is given by
characteristic function is given by the following formula. For

(0)’ eiZB(Pt‘l*PtS)eiy(Ptz 7Pt1)€(0>>
<e(0)7eil’B(ﬂ[t3,t4])ein(ﬂ[tl,tg])6(0)> — <€(0),W(—I]l[tg,t4})W(—y]l[tl,t2])6(0)>
= <e(0)7 W(_m]l[tz,td - y]l[tl,t2])€<0)> = e_Hxn[t?"M]—i_yn[tth]H 2 <€(O), 6(—1']1[153’154] - y]l[tl,t2]>>

2
= 67||xﬂ[t3,t4]+yﬂ[t1,t2]H /2 _ e—a:2(t4—t3)/26—y2(t2—t1)/2’

T~
s
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where we have used the relations (3.18), (3.12), (3.11), (3.10) and (3.9). The above formula
implies that the process P; has independent increments and P, — P, ~ N(0,t — s) for
0 < s <t < oo under vacuum vector. Moreover, we have Fy, = 0, and by double
commutant technique we can construct a commutative von Neumann algebra, so that we
can represent the process B; on a single probability space. Therefore, P, defines a Wiener
process (Brownian motion) under the vacuum vector. By the same argument, we can
show that ); also defines a Wiener process under the vacuum vector, but in a different
probability space with respect to the one defined by FP;, since ); do not commute with P;.
Hence, the quantum probability space (%R+,gof) with ¢, : X € %Br, — (e(0), Xe(0)),
admits the above-mentioned two quantum Wiener processes. In quantum optics, these two
non-commuting processes can be observed by measuring the vacuum via the homodyne
detection [Jacl4].

Based on the two quantum Wiener processes, the creation operator (3.15) and the
annihilation operator (3.14), let us introduce two fundamental quantum noises

_Q-iP,
2 Y

Qi+l

AtZ 9 y

Al

where A; is called annihilation process and AI is called creation process, which play the
important role in the quantum stochastic calculus and the quantum stochastic integral.

3.2.2 Classical and quantum stochastic calculus

Classical stochastic calculus Let us first briefly review some important concept of
classical stochastic calculus [0ks03, CW90, LG16, RY13]. Consider the one dimensional
Wiener process Wy, which can be characterized by the following four facts

1. W() = 0;

2. Wy is almost surely continuous;

3. W, has independent increments ;

4. (W, = W,) ~N(0,t —s), for 0 < s < t.

Moreover, a celebrated theorem by Paley, Wiener and Zygmund states that, for every w € €,
the Wiener sample path W.(w) is nowhere differentiable. Thus instead of considering the
differential equation formulation, it is more reasonable to describe some physical behavior
by means of an integral equation

T T
XT = X() + / f(t,w)dt + / g(t, w)th.
0 0

Hence, we need to define a stochastic integral fOT g(t,w)dW,”. This type of integral is
called Tto stochastic integral, and it is a stochastic generalization of the Riemann-Stieltjes
integral [RS80] in analysis. Let V denote the class of all simple predictable processes
(see [CWOI0, Chapter 2.4]), ¢(t,w) : Ry x © — R, of the following form

N-1

¢(t7 w) = Z an(w)ﬂ(tn7tn+1]<t>’

n=1
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Quantum stochastic calculus

where 0 =ty < --- <ty =T is a partition of [0, 7] and a,(w) is a bounded F;, -measurable
random variable. For ¢ € V| we define the [t0 stochastic integral as

/0 o(t,w)dWy = i an(w) (th+1 — th)(w).

By a straightforward calculation, for all ¢ € V, we can obtain the following properties,

which are called 1t6 isometry,
T 2 T
( / gb(t,w)th) _E < / S, w)dt) C(3.19)
0 0

E (/OT gzﬁ(t,w)th) ~0, E

Furthermore, for each predictable process ¢(t,w) such that E ( fOT g3 (t, w)dt) < 00, there

exists a sequence ¢y (t,w) € V such that

lim E (/OT g(tw) — ¢N(t,w)]2dt) ~0.

N—oo

Then we define 1t6 integral of ¢g(t,w) as below

T T
| atewrawii= tw [ oxiewaw,
0 0

N—o0

where the limit exists in L? due to It6 isometry (3.19). In fact, the domain of the integrand
g can be extended to a larger class, more details referred to [Wks03, CW90, LG16, RY13].
Finally, the above-mentioned integral equation of X; is well defined, and its equivalent
differential form is given by

Then let us introduce the most famous theorem in classical stochastic calculus, Ito
formula [Vks03, Theorem 4.1.2].

Theorem 3.2.3 (It6 formula). Let X, be an Ito process (Ito stochastic integral), which is
given by
dX, = f(t, X,)dt + g(t, X,)dW;.

Let h(t,z) be twice continuously differentiable in x and once in t, then Y; = h(t, X;) is
also an Ito process and

oh
dY; = ZLh(t, X;)dt + %g(t, X;)dWr,

Ooh  Oh 10%h

(3.20)
t Xt)QQ(t7 Xt)7

which is computed according to the following Ito rules
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Quantum stochastic calculus Let us return to the quantum case and focus on the
complete model, the main system (e.g., atoms) interacting with a quantum electromagnetic
field. We have already discussed the two fundamental noises A; and AI on the von Neumann
algebra %r, , which can characterize the quantum electromagnetic field. Similar to the
classical case, we want to define the quantum stochastic integral (stochastic integration
of adapted operator-valued process) with respect to these noises, in view of constructing
quantum stochastic differential equations (QSDESs) to describe the behavior of the entire
model. Denote H; as the associated Hilbert space with the main system. In order to
couple the fundamental noises to the main system interacting with the field, we need a
“larger” Hilbert space H := Hs ® L' (LQ(RQ) together with the von Neumann algebra
o = B(Hs) ® PBr. .

As in the classical case, let us firstly define a quantum stochastic integral of an adapted
simple operator-valued process L; in &/ with respect to M;, where M; denotes A; or AI.
For 0 < s <t < oo, by the factorizability property [Par12, Chapter 11.25], M; — M, is
affiliated to 4, and acts on exponetial vectors as follows

(Mt - MS)G(U) = 6(“5]) ® ((Mt - MS)e(U[S,t])) ® 6<u[t)a

where u € L*(R;) and (M; — My)e(ujsy) € Is(L?([s,t])). This property is related to the
notation of classical process with independent increments. The adapted simple operator-
valued process L; means that L, is affiliated to B(H,) ® %y for every t € Ry, and can be
written in the following form

N—-1
Lt - Z Ltn]l(tnytn-&-l}(t)7
n=1

where 0 =ty < --- <ty =T is a partition of [0,7]. Now, we extend A; and AI in H by
ampliating, i.e., tensor them with identity on H,. For the purpose of simplicity, we identify
these operators with their ampliations in H. Following [Par12, Chapter 11.25] and [HP84],
the quantum stochastic integral of L; with respect to M; on H = Hs ® E(LQ(R+)) is
given by

( /0 ' Ltht) F®e(u) =

where f € H, and e(u) € £(L*(R4)).

N-1

Z (Ltnf ® e(utn])) ® ((Mtn+1 - Mtn)e(u[tn,tn+ﬂ>) ® e(u[tn+1)7

n=1

Following the classical approach, we want to extend the quantum stochastic integral to
a large class of adapted integrands, by approximating with simple processes and taking the
limit. However, as stated in [RS80, Chapter VIIL.7], the abscence of a common domain is
especially troublesome for the convergence of unbounded operators. The solution of Hudson
and Parthasarathy [HP84] is to define all relative operators (integrands, integrators and
integrals) on H 6, which can ensure the existence of the limit in a certain sense.

6. In fact, in [HP84], the authors work on Hs; ® D with D := {e(u)|u € L*(R4) N LY. (R4)} C
& (L2(R+)), rather than H directly, due to the difficulty of defining the quantum stochastic integral with
respect to the third fundamental noise Ay, which we do not discuss in this thesis. For our case that

integrator is A; or AI, it is sufficient to choose the exponential domain &£ (L2 (R+)) [Mey06, Chapter
VI.1.6].
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Quantum stochastic calculus

Now, we briefly introduce the idea of Hudson-Parthasarathy to define a quantum
stochastic integral

T
Iy = / (F,dA; + GdAl + Hydt) (3.21)
0

as a limit of a sequence of integrals
T
i = / (F™aa, +GVaaf+ i)
0

for adapted simple processes Ft(N), GEN) and Ht(N). Firstly, [HP84, Corollary 1] which plays
a role as It6 isometry (3.19) in the classical case provides an estimation of the quantum
stochastic integral, for all f € H, and e(u) € £(L*(R,))

T
Hrf @ e(u)|* < C(T, u)/o (IFf @ e()|* + |Gof @ e()lI* + | Hef @ e(u)]?) dt,

(3.22)
where C'(T,u) < oo for T' > 0. Similar to the classical case, we can define the quantum

stochastic integral I for more general integrands as a limit of a sequence I:(FN) in the
following sense: for all f € H and e(u) € S(LQ(R+)),

Jlim < <1T . I;N)> Foe(u), (JT - J;N)) Fo® e(u)> —0. (3.23)

By (3.22), the above limit (3.23) exists if there exists sequences Ft(N), GEN) and Ht(N), such
that for all f € H, and e(u) € E(L*(R,)),

2

i + H (Gt — GIEN)> f®e(u)

N—oo

s OT (H (Ft - Ft(N)) f®e(u)
+ H (Ht - Ht(N)) f® e(u)HQ) dt = 0.

Finally, [HP84, Proposition 3.2] shows that every adapted square-integrable process such
that for any T < oo,

T
/ ILof ® e()|Pdt < 00, Vf € H, and e(u) € £(L(R.)),
0

admits a suitable approximation by simple processes. The quantum stochastic integral for
the adapted square-integrable processes on H is well-defined.

Now let us continue to follow the approach of Hudson-Parthasarathy to obtain the
quantum analogue of It6 formula on H, by introducing the first fundamental lemma and the
second fundamental lemma [Par12, Chapter 11.25] and [HP84, Hud03]. By considering a
quantum stochastic integral as a “matrix” intuitively, the first fundamental lemma displays
its matrix elements. It can be easily proved with applying (3.16) and above-mentioned
approximating procedure by simple processes.

Theorem 3.2.4 (First fundamental lemma). Let

T
Iy = / (F,dA; + GdAl + Hydt)
0
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where Fy, Gy and H; are adapted square-integrable processes. Then, for all f,g € Hs,
e(u),e(v) € E(L*(Ry)) and v,u € L*(Ry),

(f ®e(u),Irg @ e(v)) = /0 (f ®e(u), (Fo(t) +u*(t)Gy + Hy)g @ e(v)) dt (3.24a)

_/OT <f®e(u), 1,0 (1)] {gz ﬂ L}(lt)} g®e(v)>dt. (3.24b)

In order to avoid the domain problem of the “multiplication” of two integrals I7 and
I, Hudson and Parthasarathy study the scalar product

(I-f ®@e(u), Itg ®e(v)), Vf,g € Hs, e(u),e(u) € E(L*(Ry)) and u,v € L*(Ry),

which is always well-defined, and provides the second fundamental lemma, which can also
be easily proved by similar approach as the first one.

Theorem 3.2.5 (Second fundamental lemma). Let
T T
Iy = / (FdA, + GidA] + Hydt), T = / (F/dA; + G,dAl + H,dt),
0 0

where Fy, Gy, Hy, F!, G}, and H] are adapted square-integrable processes. Then, for all
f.9 € Hy, e(u),e(v) € E(L*(Ry)) and u,v € L*(Ry),

(Irf @ e(u),Irg @ e(v))

= /0 (ITf @ e(u), (Fo(t) + u*(t)Gy + Hy) g @ e(v)) dt (3.25a)
+ /T ((F{u@) +v* ()G, + H)) f @ e(u), Irg ® e(v)) dt (3.25Db)

+ /0 (G f ®e(u),Grg ® e(v)) dt. (3.25¢)

Now, let us translate the second fundamental lemma to the more explicit quantum Ito
rule. We need to introduce the concept of adjoint-pair: two operators L and L' are said to
be an adjoint-pair, if for all f,g € H,, e(u),e(v) € E(L*(R,)) and u,v € L*(R,),

(f ®e(u), Lg® e(v)) = (LTf @ e(u), g @ e(v)).
Suppose (Fy, Gy, Hy) and (FtT, Gl HJ) are three adjoint-pairs, if (F}, Gy, H;) are adapted
square-integrable, then (FtT, GI , HZ ) are also adapted square-integrable. Define

T
Il = / (GIdA, + F/dA] + Hdt).
0

By the properties (3.16) applied to A; and AI , we can easily show that I, and ItT are
adjoint-pairs as well. Under the setting of Theorem 3.2.5, we use the following notation

dI, = FidA, + Gy dAl + Hidt, dIl = F/dA, + GdA] + H.dt,
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to describe the two quantum stochastic integrals
T T
Ir—1Iy = / (FydA; + GdA] + Hydt), I — I, = / (FldA, + G)dAl + H/dt).
0 0

Thus, we have
(Ipf @ e(u), Irg @ e(v)) = (f @ e(u), (I7) Irg ® e(v)). (3.26)

Let us exchange the role of I} and (I})" in (3.26), by Theorem 3.2.5, we can write (3.26)
in the following matrix form,

(f ®e(u), It Irg ® e(v))

T

B o [IH +HIL+FG, IF+FL][ 1

_/O <f®e(u),[1,u (t)] G, + G, 0 o(t) g®e(v) )dt.
(3.27)

By Theorem 3.2.4 and Theorem 3.2.5, we can show that I7.Ir is still a quantum stochastic
integral of the form (3.21). Then, compare the matrix in (3.27) to the one in (3.24b), we
can obtain the coefficients of the integral (I}.17) with respect to the three integrators dA;,
dAl and dt, such that

d(I1) = (I'H, + H/I, + F/Gy)dt + (I'F, + F/1)dA, + (I,G, + G,I,)dA].

Finally, we can obtain the following explicit form of the quantum It6 rule [HP84, Theorem
4.5].

Theorem 3.2.6 (Quantum It6 rule). Let I, and I be quantum stochastic integrals of the

form
dI, = F,dA; + G dAl + Hydt, dI} = FldA, + GidA] + H)dt,

where Fy, Gy, Hy, Fl, G, and H| are adapted square-integrable processes, and are all
bounded in the sense that sup,, || - || < oo for all finite t. Then

d(I1) = LI, + (dI)1, + dI}dI,,

where Ildl, = I'F,dA; + IIGidA] + I'Hydt, (dI))], = F/IdA, + GiL,dA] + H/I,dt and
dljdl; = F|Gdt are evaluated according to the following rules

ar\dl, | dA, dA] dt
dA, 0 dt 0
dA! 0o 0 0
dt 0 0 0

3.2.3 Quantum stochastic differential equations

Now, we are ready to discuss the evolution of the main system (e.g., a collection of
atoms) interacting with an electromagnetic field. This evolution can be described by a
unitary operator on the composite space H, ® I', (LQ(R+)). From physics point of view, by
the suitable assumptions and approximations (see [WMO09] for more details, and [vHSMO5b]
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for a brief introduction), the free electromagnetic field along the z-axis is described by a
stationary Gaussian wide-band noise a(t, z). If we assume that the atoms are localized at
z = 0, then the dynamics of the open system on H, ® I'; (LZ(R+)) can be described by
the following differential equation

%ﬁ(t} = (—iH(t) + La*(t,0) — L*a(t,0))U(t), U(0) =1, (3.28)
where we omit the symbol of tensor product and set A = 1. The bounded self-adjoint
operator L € Z(Hs) is the atomic operator specifying the interaction between the atoms
and the field, and the bounded self-adjoint operator H(t) € B(H,) for t € R, represents
the time-dependent Hamiltonian of the main system. H(t) can be taken of the form
Hp +u(t)H., where Hy = Hj represents the free atomic Hamiltonian and H, = H;
represents the control atomic Hamiltonian modulated by a deterministic (open-loop)
scalar control input u; € R. By an approximation procedure (see [vHSMO05b] and the
references therein), Equation (3.28) may be replaced with the following quantum stochastic
differential equation (QSDE) driven by the two fundamental quantum noises A; and AI,

1
dU, = (LdAI — L*dA, — S L7 Ldt — z’H(t)dt) U, Up=1, (3.29)

where we identify the operators L, H; and H, with their ampliations on H, ® I'; (LQ(R+)).
The existence and uniqueness of this QSDE can be ensured by a Picard iteration argu-
ment [HP84, Par12, Mey06]. Define

1
AUy = U? <L*dAt — LdA] — gL Ldt + il (t)dt) , Us =1,

by the quantum Ito rule, Theorem 3.2.6, we can show that
d(UUy) =d(UUS) =0, UgUy =UgUs =1,

thus the solution of (3.29) U, is unitary for all ¢, which is consistent with the case of the
solution of the Schrédinger equation. Then we use such U; to describe the evolution of the
open quantum system. For every atomic observable X on H,, in Heisenberg picture, the
time evolution of this observable X is given by a flow

.jt X ® ]11" — Ut*(X (24 ]lp)Ut (330)

where 1r denotes the identity on I';(L*(R,)). By applying quantum It6 rule and identifying
X and X ® 11, we have

dj(X) = jo(L7 (X)) dt + jo([L*, X])dA, + jo([X, L])dA], (3.31)

where

1
L(X):=i[H(t),X]|+L"XL— i(L*LX + XL*L) (3.32)
is called Lindblad generator [Lin76].

Equation (3.31) can describe the time evolution of the observable of the main system
(atoms) interaction with the field, in the Heisenberg picture. Such interaction can be
viewed as a noisy driving force. Now, let us focus on the influence of the main systems on
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Quantum stochastic calculus

the quantum field, which is measured by homodyne detection. Note that, in real experi-
ments [Bel92, vHSMO05b, vHSMO05a], the (homodyne) detection cannot be implemented
perfectly, which means that there exists another additional noise A, independent of A, that
does not interact with the main system. Such noise A, is called corrupting noise. Then we ex-
tend the operators L, Hy, Hy, Uy, UF, A, Al, A, and A, onto H, T, (L2(Ry)) T (LA (Ry))
by tensoring them with identities. Following [Bar(06], which deals with the case of quantum
optical measurements, the output noise Z; on H, @ I's(L*(Ry)) @ T's(L*(Ry)) is given by

Zy = A+ Al + k(A + A, k>0, (3.33)
and therefore the associated observation process Y; is given by
Y, = U Z,U, = Uf (A + ADU; + w(A; + A). (3.34)

From the physics point of view, we measure the field observable A; +~AI after interaction
with the main system, corrupted by the uncorrelated noises A; and AI. Due to quantum
It6 formula (Theorem 3.2.6) we have

dY; = ji(L + L*)dt + dA; + dA] + k(dA, + dA}), (3.35)

where j; is ampliated in such a way that j, : X @ Ir @ Ir — U (X ® Ir ® 1r)U;, and
Y; may be interpreted as a noisy observation process of j;(L + L*). By using the double
commutant technique, we construct a commutative von Neumann algebra ), generated by
the observation process Y for s < t, given by

V= vN{Yals <t} = ({Vi s <t} U{¥][s < 1})".
In the following, we state two fundamental properties of Y; and ).

Proposition 3.2.7 (Nondemolition property [BvHO08, Proposition 2.1]). The observation
process Yy satisfies the self-nondemolition condition, i.e., Yy is commutative for allt € [0, T
with T < o0, and is nondemolition with respect to the flow, i.e., j,(X) € Y, for all
X € B(Hs) and t € [0,T].

The self-nondemolition of the observation process implies that Y; can be considered as
a classical stochastic process. Moreover, the non-demolition property ensures the existence
of the conditional expectation ¢ (j:(X)|):) on the quantum probability space (A, ¢) with
A=B(H,) @ PBr, ®PBr, and p = o R¢; ¢, where ¢ () = Tr(p-) for a fixed density
operator of the main system p on H,, and ¢,(-) = (e(0),-€(0)). Due to Lemma 3.1.9, such
conditional expectation ¢ (j:(X)|V:) provides the “best” estimation for j;(X) on V.

We have already discussed the dynamics of an open quantum system where the atmoic
Hamiltonian H(t) = H; + u(t)H, is modulated by an open-loop scalar control input.
Then we follow the approach of [BvHO08] to introduce the dynamics of an open quantum
system in a feedback control scenario. Denote Z;, = vN{Z,|s < t} as the commutative
von Neumann algebra generated by the output noise Z; defined by (3.33). Next, we define
the atomic Hamiltonian as H; := Hy + u(Zs<;)H,., where u(Zs<;) is a bounded real scalar
function of the output noise up to time ¢, and H, is affiliated to Z;. Then the controlled
quantum stochastic differential equation is given by

1
dU, = (LdAI — LA, — S L Ldt - thdt) U, Uy=1.
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By similar calculation to those in the open-loop case (3.31), for an atomic observable
X € B(Hs), which is identified with X ® 1 ® 1 , we have

djo(X) =5 ([L7, X])dA; + . ([X, L])dA] + %jt(ZL*XL — (L*LX + XL*L))dt
+ ji (i[Hy, X)) dt + u(Yezr)ji (i He, X)) dt,

where we used the fact that ji(i[u(Zs<;)He, X]) = u(Ye<)je (i[He, X]) with Y, defined
by (3.34), and the atomic Hamiltonian is modulated by a bounded real scalar function of
the observation history.

(3.36)

3.3 From classical to quantum filtering theory

In this section, we want to use the information obtained from the observation process
to estimate the dynamics of open quantum system. By applying the quantum filtering
theory proposed by Belavkin [Bel92], which is close to the classical stochastic filtering
theory [Xio08, Kall3], we can obtain the quantum filtering equation of Belavkin, which is
also called stochastic master equation.

3.3.1 Classical stochastic filtering theory

Here, we focus on a simple signal-observation model : the real one-dimensional signal
process x;, which is what we want to estimate, and the real one-dimensional observation
process y; satisfies

dl’t = b(xt)dt + C(.Tt)dBt,
dyt = h(xt)dt + dBt,

where B; is the Brownian motion and the mappings b, ¢ and h are bounded and Lipschitz
continuous. We want to estimate the signal x; based on the available information up to
time ¢, /. The “best” estimator of the signal &; is given by Lemma 3.1.2,

JAft = E(xt’f?) .
Note that, E(z|F}) is F{-measurable. Normally, a function of the signal f(z;) may be

—

more interesting than the signal x; itself to estimate. Unless f(-) is linear, f(z:) = f(Z¢),
in the other cases, we have to find the best estimator of f(x;). For all w € ), consider
P(x; € -|F/)(w) as a probability measure. Then, by the monotone convergence theorem,
the “best” estimator of f(xz;) is given by E(f(x)|F}). Denote L, := — fg h(x;)dB; which a
continuous local martingale, since h(-) is bounded. By [L.LG16, Theorem 5.23], the stochastic
process (see Definition A.1.1), &(L;) given by

&(L,) = exp (— /0 () dBs — % /O t h?(a;s)ds)

is a uniformly integrable martingale. Set Q@ as the measure on €2 that is absolutely
continuous with respect to P, such that its Radon-Nickodym derivative on (€2, F?) is

dQ

= =ew).

7P
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From classical to quantum filtering theory

In virtue of Girsanov’s theorem (Theorem A.1.2) and Levy’s characterization,
t
By —[B, L], = B +/ h(xy)dB; =y
0
is a FP Brownian motion under the probability measure Q, where [-,-]; denotes the

quadratic (co)variation defined in (A.1). Set

dP
Mt = QE_l(Lt> == @

)
B
‘Ft

by applying Bayes’ formula (3.1.3), we can obtain the formula that calculates the conditional
expectation under the P by calculating the ones under the Q, which is called Kallianpur-
Striebel formula,

EQ(f () M| FY 9t
m(f) = E(f(z)|F) = Iéé((]\/;Af;) : - atijlt))’

where o, is called the unnormalized filter and 7; is called the optimal filter. By using the
stochastic Fubini theorem [Xio08, Lemma 5.4] and It6 formula 3.2.3, we can obtain the
following linear equation for the unnormalized filter oy(f), which is called Zakai’s equation,

oi(f) = oo(f) + /Ot o,(ZLf)ds + /Ot os(hf)dys,

where .Z f is the infinitesimal generator of f(X;) defined in (3.20). Define the innovation
process dW; = dy; — my(h)dt, which is a F/-Brownian motion under the original probability
measure P. Finally, by Kallianpur-Striebel formula, we can obtain the stochastic differential
equation for the optimal filter 7, (f), which is called Kushner-Stratonovich equation or
FKK equation,

m(f) = molf) + / (L f)ds + / (ma(hf) — mo(B)m(f)) AWV,

3.3.2 Quantum filtering theory

Based on the discussion of previous sections, two system-observation models may be
considered in the quantum probability space (A, ), one corresponds to the open-loop
Hamiltonian control given by,

dj(X) =5, ([L*, X])dA; + ji ([X, L])dA] + %jt(ZL*XL — (L*LX + XL*L))dt

+ je (¢[Hy, X)) dt + u(t) i (i[He, X])dt,
dY, =j,(L + L*)dt + dZ,,

while the other one corresponds to the feedback Hamiltonian control given by,
1
dj (X) =35, ([L*, X)) dA, + 5 ([X, L])dA] + Ejt(QL*XL — (L*LX + XL*L))dt

+ e (i[Hy, X)) dt + u(Yezy)je (i[He, X])dt,
dY; =j;(L + L*)dt + dZ;,
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where dZ, = dA, + dAI + Ii(dzzlt + d[li) with k¥ > 0 denotes the output noise. In order to
make the theory allow the above two cases, let us introduce a new state on the quantum
probability space

@ (X) = (U XUL),
where the unitary operator U, is the solution of the quantum stochastic differential equation
defined in the previous section. Due to the definition of quantum conditional expecta-
tion (3.1.8), we can easily deduce that, given a commutative von Neumann subalgebra

B C A,

@ (X) = (Ui XU,) = Uw (X |B)U; = (U XU|U;BUY), (3.37)
where X € B’ and U;BU; = vN{U;XU}|X € B}. Denote Z; := vN{Z|s < t} and
Vi = vN{Y,|s < t}, then we have ), = U;Z,U, since Y; = U;Z;U;. Thus, by the
property (3.37), for all ampliate atomic observable X, we have

U@ (X|2)U: = @ (j:(X)|V2).

Due to the nondemolition property 3.2.7 of Z; and Y}, the existence of the above conditional
expectations are ensured. In the classical stochastic filtering theory, Girsanov’s theorem
appears as a powerful tool where we are able to change the measure, for example, we can
consider the observation process as a Wiener process in a new probability space. The next
lemma can be considered as the quantum analogue of Girsanov’s theorem. This lemma is
necessary to present the quantum filtering equation. In our presentation, we follow the
approaches applied in [BvHJ07, BvHO0S].

Lemma 3.3.1. Given the quantum probability space (A, @), let D;, Fy, F, and Gy be
bounded processes, and let

AV, = (DdA] + FydA, + Gidt)V;,  dV; = (D, dA] + FdA, + Gudt) V.
Then, o(ViXV;) = @(VFXV,) for all X € A.

Under the notations of Section 3.2.3, we define
1
dv, = (LdAI — LdA, — éL*Ldt — z'H(t)dt) Vi, Vo=1, (3.38)

the only difference between the expressions of dV; and dU; defined in (3.29) is the coefficient
of dA;. Due to Lemma 3.3.1, for all ampliate atomic observable X, we have

w@(X) == (U XU,) = (VX V)).

By the quantum It6 formula 3.2.6, we have
t t
VXV, =X+ / (VIL(X)V;)ds + / (VA (L*X + XL)VS) (dA, + dA}), (3.39)
0 0

where £(X) denotes the Lindblad generator (3.32), for the open-loop case H(t) = Hy +
u(t)H,. and for the feedback case Hy = H; + u(Zs<;)H.. Due to the properties of the
quantum conditional expectation, the following exchange formulas for quantum conditional
expectation and integral, play the same role as the stochastic Fubini theorem [Xio08,
Lemma 5.4] in the classical case,

t t t
72 (/ K.ds Zs> :/ p(Ks|Zs)ds, ¢ (/ K.dZ,
0 0 0

50

zs) -/ (K Z)dZ,. (3.40)




From classical to quantum filtering theory

where K is adapted and K, with s < t is affiliated to Z!. Recall that 7, = A; +
Al + k(A + A)) with & > 0, where A; and Al are independent of 4, and A. Denote
M, = (1 —n)(A, + A)) — nr(A4, + A}), for some 1 € R then we have

At+AI:nZt+Mta VUGR
By quantum Ito formula, we have
dZ,dM, = (1 —n — nr?)dt.

Note that, if we choose n = 1/(1 4 k?) € (0,1], we have dZ;dM; = 0, which can intuitively
be interpreted as the independendence between Z; and M;.

t
© (/ K.dM, Zs) =0,
0

which can be easily show by elementary arguments and the property (3.40), we have

@ (/Ot st(AS+A;)‘ZS) = /Otgo(KS|zs)d(As+A§).

Taking the conditional expectation on (3.39) and setting n = 1/(1 + k?). Then by the
above-mentioned exchange formulas, we have

t t
PV XV Z,) = (X)+ / o (V:L(X)V,|2,)ds+ / (VA (L*X + X L)Vy|2,) (dA,+dAD),
0 0

Denote the unnormalized filter o,(X) = Upp(V* X Vi Z,) Uy € Yy, by quantum It6 formula,
we can obtain Belavkin-Zakai equation,

doy(X) = o (L(X))dt + noy(L* X + X L)dY;. (3.41)

Due to the self-nondemolition property of Y;, Y; can be consider as a classical stochas-
tic process, so that the above differential equation can be considered as classical one.
Due to quantum Bayes formula (3.1.10), we define the optimal filter, which is called
noncommutative Kallianpur-Striebel formula,

o (X)

m(X) = @) (3.42)

and then by classical 1t6 formula (3.2.3), we have
dmy(X) = m(L(X))dt+ /n(m(L*X + X L) —m(L* + L)me (X)) (/ndYs + /nme(L* + L)dt).

Following the physical convention, we normalize the observation process by replacing
dY; by /ndYy, i.e. (\/ﬁdYt)2 = dt. Moreover, as we have already discussed, all the states
of an open quantum system on a finite-dimensional Hilbert space can be expressed as
Tr(pX) for some density operator p. Hence, in our atom-field model with finite dimensional
Hs, we can always write m(X) = Tr(p:X), where the conditional density matrix p; is a
random function of the observations up to t. Finally, we obtain a matrix-valued stochastic
differential equation, which is called the quantum stochastic master equation,

dpy = —[Hp+uiH, pi)dt + (Lp,L* — L*Lp/2 — p,L*L/2)dt

+i(Lpe + pe L — Te((L + L)p)pe) (dY; — Te((L + L¥)p)dt), (3.43)
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where u; = u(t) € R for the open-loop case, u; € ), for the feedback case and 7 € (0, 1].
By applying the innovations method [BvHJ07, Section 7], we have

AW, = dY; — /iTr((L + L) py)dt,
where W, is a one-dimensional standard Wiener process.

Remark 3.3.2. In this chapter, we only considered a simplified case, where the main
system is finite dimensional, the operators describing the interaction between the main
system and the field are time-independent. There is only one quantum channel and the
control input affects only on the atomic Hamiltonian. Based on the preliminary discussion
on the quantum filtering theory of this chapter, we can adapt the results to more general
cases by using more sophisticated arguments [Mey06, Par12, Bel92].
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Feedback stabilization of open quantum spin
systems

In this chapter, we consider the quantum stochastic master equation (3.43) as the
starting point and assume that the initial state of the quantum filter (the conditional
density operator) po matches the actual quantum initial state perfectly, then Equation (3.43)
precisely describes the time evolution of the state (density operator) of the main system
(atom) interacting with the electromagnetic field. The “wrongly initialized” case will be
discussed in Chapter 6.

A quantum stochastic master equation (3.43) is composed of a deterministic part and
a stochastic part. The deterministic part, which corresponds to the average dynamics,
is given by Lindblad generator (3.32). The stochastic part represents the back-action
effect of continuous-time measurements. The solutions of this equation are called quantum
trajectories and their properties have been studied in [MvHO07, Pel08g].

In this chapter, we focus on N-level quantum spin systems (quantum angular momentum
systems) interacting with an electromagnetic field, whose stochastic master equation is
given by

dpe = F(pe)dt + /nG(p)dW, (4.1)

where
e W, is a one-dimensional standard Wiener process on a filtered probability space
(Q, F,(F),P), where F; is the natural filtration of the process W,
e the quantum state is described by the density operator p, which belongs to the
compact space Sy := {p € CV*N|p = p*, Tr(p) = 1,p > 0},
e the drift term is given by

F(p) == —ilwd, + wdy, p| + M (J.pJ. — J2p/2 — pJ2/2)

and the diffusion term is given by G(p) := vV M(J.p + pJ, — 2Tr(J.p)p),
e u :=u(p) denotes the feedback law,
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e J, is the (self-adjoint) angular momentum along the axis z, and it is defined by

J.en = (J —n)ey,

N—-1

where J = 2= represents the fixed angular momentum and {ey, . .

2

n€{0,...,2J},

., €2} corres-

ponds to an orthonormal basis of CV. With respect to this basis, the matrix form

of J, is given by

J

J—1

—J+1

—J

(4.2)

e J, is the (self-adjoint) angular momentum along the axis y, and it is defined by

Jyen = _icnenfl + icn+1en+17

where ¢,, = $1/(2J + 1 — m)m. The matrix form of J, is given by

0

iCl

—i01

0

—7:02

1C25-1

n € {0,...,2J},

0

iCQJ

—iCyy

0

(4.3)

e 1 € (0,1] measures the efficiency of the detectors, M > 0 is the strength of the
interaction between the light and the atoms, and w > 0 is a parameter characterizing
the free Hamiltonian.

If the feedback u(p) is in C'(Sy,R), the existence and uniqueness of the solution of (4.1)
as well as the strong Markov property of the solution are ensured by the results established
in [MvHO7].

In the following sections, we first analyze the behavior of the quantum stochastic
differential equation (4.1) for open quantum spin systems, when we turn off the Hamiltonian
control input (i.e., u = 0), which leads to quantum state reduction phenomena. Based on
the benefits and disadvantages of such phenomenon for our control goal, we will review three
state-feedback stabilization methods proposed in [vHSMO05a, MvHO7, Tsu08]. Then we
introduce our feedback approach which guarantees the exponential stabilization [LAMI19a,
LAM18].

4.1 Quantum state reduction

Purification Let us first discuss which roles the drift term F'(p) and the diffusion term
G(p) of Equation (4.1) play on the preparation of pure states, and why it is interesting
to analyze the behavior of an open quantum system when we turn off the Hamiltonian
controller (i.e., u = 0). As Tr(p?) = 1 if and only if p is pure, we define the following
formula to measure the “distance” between the actual state and the set of all pure states,

denoted by P := {p € Sy|Tr(p?) =1},

S(p) == 1 - Tr(p?), (4.4)
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Quantum state reduction

which is called impurity. The infinitesimal generator of S(p) is given by

Z8(p) = —2Tx(F(p)p) —nTr(G*(p)) (45)

=2M (Te(p*J2) — Te(pJ.pJ.)) — nTe(G*(p)), '
where G(p) = G*(p). By Cholesky decomposition [Bhal3], we can write the density
operator as p = pp* with p € CV*V_ then we have

Te(pJopJs) = Te(p" Lpp*Jop) = 0" Leplls, Te(p*T2) = pLllis, Te(G*(p)) = IG ()l

where || X||%¢ := Tr(X*X) for a finite dimensional matrix X is called Hilbert-Schmidt
norm. By Cauchy—Schwarz inequality, we have

Tr*(pJ.pJ.) < Tr*(p*J2) = Tr(pJ.pJ.) < Tr(p*J?)

and the equality holds if and only if pJ, and J,p are parallel, which implies that p should
satisfy [p, J,] = 0 if the equality holds. Note that ZS(p) does not depend on the control
input u(p). Moreover, the first term of the right hand side of (4.5) is positive and the second
term is negative, which implies that the diffusion term G(p) of the quantum stochastic
master equation (4.1), unlike the drift term, contributes to increase the purity of the
quantum state.

Quantum state reduction Now, we then analyze Equation (4.1) with « = 0 and discuss
how the diffusion term increases the purity of the quantum state. Such behavior known
as quantum state reduction has been already discussed [ABBHO1, vHSMO05a, MvH07],
by stochastic Lyapunov-type approach [Khall, Mao07]. Denote by p,, := e,eX with n €
{0,...,2J}, where e, is an eigenvector of J,, then the set of all equilibria of Equation (4.1)
with v = 0 is given by

E = {p07 Tt 7p2J}'

Consider the “variance function” ¥ (p) := Tr(J%p) — Tr*(J.p) > 0 of J, as a candidate
Lyapunov function. Then we have,

LY (p) = =T*(L.G(p)) = —4Mn¥*(p) <0,

where ¥ (p) = 0 if and only if p € E. By means of the stochastic LaSalle-type theorem
(Theorem A.2.3), we can show that ¥ (p;) converges to 0 almost surely, when ¢ goes to
infinity. Then we can conclude that, if u = 0, the diffusion term of Equation (4.1) induces
a collapse of the quantum state p; towards a pure state corresponding to one of the
eigenvectors of the measurement operator J, almost surely. This suggests that combining
the continuous measurement with the feedback control may provide an effective strategy
for preparing a selected target state p. in practice. Some relevant results concerning
the construction of such a feedback controller [vHSMO05a, MvHO7, Tsu08] will be briefly
discussed in Section 4.2.

Exponential quantum state reduction Here, we show exponential convergence to-
wards the set £. This is essential to achieve our main control goal which concerns exponen-
tial stabilization of a target state p;. For this purpose, we have estimated the convergence
rate of p; towards E by stochastic Lyapunov-type method in [LAM19a, Theorem 5.1]. Note
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that a similar problem has also been discussed in [BP14]. The authors show the quantum
state reduction of (jump-diffusion) stochastic master equation, undergoing continuous-time
non-demolition measurement with an exponential convergence rate. In order to prove
such a result, they applied martingale techniques and Girsanov theorem, rather than the
Lyapunov-type method.

Firstly, we provide an invariant property of p; in this case inspired by analogous results
established in [Khall, Mao07]. This lemma can also make the condition of It6 formula be
verified, which will be used in the proof of Theorem 4.1.2. Denote the projection of p onto
the state p, as pri = Tr(ppy).

Lemma 4.1.1 ([LAM19a, Lemma 4.1]). Assume v = 0. If px(0) = 0 for some k €
{0,...,2J}, then P(ppx(t) = 0,Yt > 0) = 1, i.e., the set {p € Sy|pri = 0} is a.s.
invariant for Equation (4.1). Otherwise, if the initial state satisfies pyr(0) # 0, then
P(prx(t) #0,¥t > 0) = 1.

Proof. For u = 0, the dynamics of py, is given by

dpi(t) = /(G (1)), AW, = 24/nM (T = k = Tr(Lpr) ) pre s (D) dW.

In particular |\/7(G(p1)), | < Rprx(t), for some R > 0, yielding the first part of the
lemma.

Let us now prove the second part of the lemma. Assume that py x(0) > 0 and P(py x(t) #
0,Vt > 0) < 1. In particular P(7 < co) > 0, where 7 := inf{t > 0| ppx(t) = 0}. Let T
be sufficiently large so that P(7 < T) > 0. Now, let € € (0, py,(0)), and consider any C?
function V' defined on S such that

1 )
Vip)=—, if ppp>e.
Pk .k

Then we have £V (p) = p;i(\/ﬁG(p))ik < R*V(p) if prx > €. We further define the
time-dependent function f(p,t) = e ®'V(p), whose infinitesimal generator is given by
Zfp,t) = e (= RV (p) + LV (p)) < 0if pyy > e. Now, define the stopping time
7. = inf{t > 0| ppx(t) & (&,1)}. By It6 formula, we have

TeNT

1
Prik(0)

Since 7 > 7. we deduce that, conditioning to the event {r < T}, f(prrr, 7 NT) =

f(pr,72) = e FTe=1 which implies

E(f(pronrs 7= NT)) = Vo + E < ,jff(ps,s)ds> <V =

0

1
Prik(0)

Thus, P(7 < T) =E (I{r<1}) < £e™T [ px(0). Letting € tend to 0, we get P(7 < T) =0
which gives a contradiction. The proof is then complete. U

E <6_R2T€_1]I{TST}> =E (f(pr., ) Lir<ry) S E(f(pronr 7= AT)) <

Then we show that the quantum state reduction for the system (4.1) towards the
invariant set F = {p,, ..., pPys} occurs with exponential velocity with respect to the Bures
distance (see Definition A.2.4).
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Quantum state reduction

Theorem 4.1.2 (Exponential quantum state reduction). For system (4.1), with u =0
and py € Sy, the set E is exponentially stable in mean and a.s. with average and sample
Lyapunov exponent less than or equal to —mM /2. Moreover, the probability of convergence
to p, € E is Tr(pop,,) forn € {0,...,2J}.

Proof. Let I := {k| prx(0) = 0} and S; := {p € Sn|prx = 0 if and only if k£ € I'}. Then
by Lemma 4.1.1, S is a.s. invariant for (4.1). Consider the function

Z \/Tr (pp,)Tr(pp,,) = Z VPrnPmm = 0 (4.6)

n,m=0 n,m=0
n;ém n#Em

as a candidate Lyapunov function. Note that V(p) = 0 if and only if p € E. As S; is
invariant for (4.1) with v = 0 and V is twice continuously differentiable when restricted to
Sy, we can compute £V (p) < —%MV(/)). By Ito formula, for all pg € S, we have

B(V(p) = Vi) + [ BLLV(p))ds < Vi) 50 "B (p))ds

In virtue of Gronwall inequality, we have E(V (p;)) < V(po)e_nTMt. Next, we show that the
candidate Lyapunov function is bounded by the Bures distance from E. Firstly, we have

J

V( ) Z(\/pn_nZ\/pmM) _22\/07”1 pnn Pnn-

m##n —0

Combining with Z _0,/pnn > Z 0Pnn = 1, we have 1dB(p, E) < V(p). Let us now
prove the converse inequality. Assume that dB (p, E /2 — 2/pan for some index 7,

then \/prm < /1 — pan < dp(p, E) for m # . In partlcular each addend in V' (p) is less
than or equal to dg(p, E), and V(p) < J(2J + 1)dg(p, E'). Thus, we have

where Cy = 1/2, Cy = J(2J + 1). It implies,
= 02 =\ —nMy
E(dg(p, E)) < EdB(PmE)@ 2%, Vpo € Sw.
1

which means that the set F is exponentially stable in mean with average Lyapunov
exponent less than or equal to —nM /2.

Now we consider the stochastic process Q(p;,t) = e%t‘/(pt) > 0 whose infinitesimal
generator is given by ZQ(p,t) = e%t(nMﬂ V(p) + 2V (p)) < 0. Hence, the process
Q(pi,t) is a positive supermartingale. Due to Doob’s martingale convergence theorem
[RY'13], the process Q(p;,t) converges almost surely to a finite limit as ¢ tends to infinity.
Consequently, Q(p;,t) is almost surely bounded, that is sup,>, Q(p¢,t) = A, for some a.s.
finite random variable A. This implies sup,~, V (p;) = Ae "2 as. Letting t goes to infinity,
we obtain limsup,_, . 1 log V(p;) < —% a.s. By the inequality (4.7),
hmsup ! logdp(ps, E) < —M, a.s.

t—o00 2
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which means that the set F is a.s. exponentially stable with sample Lyapunov exponent
less than or equal to —nM/2.

In order to calculate the probability of convergence towards p, € E, we follow an
approach inspired by [ASD"13, ABBHO1]. According to the first part of the theorem,
the process Tr(p;p,) converges a.s. to 1y, 3. Therefore, by applying the dominated
convergence theorem, Tr(p;p,) converges to 1y,,, 3 in mean. As ZTr(p:p,) = 0, then
Tr(pp,,) is a positive martingale. Hence,

P(pr = p,) = lim E(Tr(pip,)) = Tr(pop,).

and the proof is complete. [l

Simulations confirming the quantum state reduction phenomena are shown in Fig. 4.1.
In particular, we observe that the expectation of the Lyapunov function E(V(pt)) is

bounded by the exponential function V(po)e_nTMt, and the expectation of the Bures
_nM,

distance E(dg(p, E)) is always below the exponential function Cy/Cidg(po, E)e™ 2 F,
with C; = 1/2 and Cy = 3 (see Equation (4.7)) in accordance with Theorem 4.1.2.
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FIGURE 4.1 — Quantum state reduction of a three-level quantum angular momentum system
with v = 0 starting at diag(0.3,0.4,0.3) when w = 0, n = 0.3 and M = 1 : the black curve
represents the mean value of 10 arbitrary sample trajectories, and the red curve represents the
exponential reference with exponent —nM /2. The figures at the bottom are the semi-log versions

of the ones at the top.

The results of this section provide the preliminary step to study the exponential
stabilization towards the target state p;. This will be discussed in Section 4.3.

4.2 Asymptotic stabilization of open quantum spin sys-
tems

Because of the topological structure of the state space Sy and the quantum state
reduction phenomena, many natural feedback controllers cannot stabilize the system (4.1),
see [AT08] for examples. In this section, we discuss three main approaches to construct
feedback controllers. In [vHSMO05a], the authors design for the first time a continuous
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Asymptotic stabilization of open quantum spin systems

quantum feedback controller that globally stabilizes a quantum spin—% system (which
is a special case of quantum spin systems) towards a pure state corresponding to an
eigenvector of o, (two-level version of .J,) in the presence of imperfect measurements (i.e.,
n € (0,1)). This feedback controller has been designed by looking numerically for an
appropriate global Lyapunov function. Then, in [MvHO07], by analyzing the stochastic flow
and by using stochastic Lyapunov techniques, the authors constructed a switching feedback
controller which globally stabilizes the N-level quantum spin system to a target state, in
the presence of imperfect measurements. A continuous version of this feedback controller
has been proposed in [T'su08]. The essential ideas in [vHSMO05a, Tsu08] for constructing
the continuous feedback controller remain the same: the controllers consist of two parts,
the first one contributing to the local convergence to the target state, and the second one

driving the system away from the antipodal states.

4.2.1 Continuous feedback laws for open quantum spin-% Sys-
tems

Here, we want to discuss the main ideas of [vHSMO05a] to construct a continuous
feedback controller. Consider the two-level case of (4.1), with the Hamiltonian given by
H = u,0, and the measurement operator given by o, where o, and o, are the two-level
versions of J, and J,. Recall that o,, 0, and o, are called Pauli matrices given by

o 1 o —i 1o
=01 o0 Tl ool FT o =1

where 02 = 02 = ¢ = 1. Then, Equation (4.1) becomes

2
y
dpy = ( —iufoy, pr] + M(0.pi0, — pt))dt + /M (azpt + pio, — 2Tr(azpt)pt) dWy. (4.8)

As we introduced in Chapter 2, for a two-level quantum system, p can be uniquely
characterized by the Bloch sphere coordinates (x,y, z) as

(4.9)

p_]l+a:ax+yay+zaz_1 [1—%2 x—z'y}
— =3 ,

2 r+iy 1—z2
The vector (z,y, z) belongs to the ball
B:={(2,y,2) e R®2? +y*+ 22 < 1}.

The stochastic differential equation (4.8) expressed in the Bloch sphere coordinates takes
the following form

dxy = (—2Mxy + ugzy)dt — 2N/ M a2, dWy, (4.10a)
dyt = —2Mytdt — 2\/ nMytthWta (410b)
dZt = —utxtdt + 2\/ 77M<1 — Z?)th (410(3)

Since the equations of z; and z; do not depend on ¥, we can just focus on Equation (4.10a)
and (4.10c) on a disc {(z,2) € R*|2? + 2*> < 1}. Let us choose p, := diag(0, 1) as the
target state, which corresponds to (0,0, —1) in Bloch sphere coordinate. In order to ensure
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that the feedback controller is non-zero at the antipodal state p, := diag(1, 0) and vanishes
at the target state, the authors construct the feedback laws in [vHSMO05a] as below,

u = a1+ z) + By, (4.11)

where o and 3 are non-zero and belong to R. By the heuristic discussion for the case n =1
in [vHSMO5a], we can see that, when p; is around the antipodal state p,, the first term
of (4.11) dominates the control input, which holds non-zero and contributes to drive the
system away the antipodal eigenstate ; when p; is around the target state p , the second
term of (4.11) dominates the control input, which contributes to the local convergence to
the target state. However, it is not easy to find an analytical way to construct the suitable
Lyapunov function, corresponding to the chosen feedback controller (4.11), to show the
almost sure global asymptotic stability of the target state.

Then, given «, 5, M and 7, by applying a semidefinite programming technique (e.g.,
Matlab toolbox SOSTOOLS) based on the semialgebraic geometry, we may look for a
global Lyapunov function V'(z, z) > 0 such that £V (z, z) < 0. The following example was
given in [vHSMO05a], suppose M =2, n=1/2, « = —1 and = 4, the Lyapunov function
found by SOSTOOLS is given by,

V(z,2) =21.8(1 + 2) — 5.732% + 10.42(1 + 2) — 5.63(1 + 2)?,

whose infinitesimal generator satisfies £V (z,z) < 0. Thus the target state p, can be
shown almost surely globally asymptotically stable by applying the stochastic LaSalle-type
theorem (Theorem A.2.3).

Therefore, the procedure of asymptotically stabilizing a target state p, of (4.1)
in [vHSMO5a] can be resumed through the following steps:

1. fix the parameters appearing in (4.1), i.e., w, M and n;

2. construct a suitable feedback controller u(p) with the fixed parameters ensuring that
the target state p,, be the only equilibrium of Equation (4.1);

3. apply the semidefinite programming technique to find a global Lyapunov function
guaranteeing the effectiveness of the feedback laws.

By the above-mentioned approach, we can construct a continuous feedback controller for
some low-level open quantum spin systems. However, it is difficult to show the stability
of target state for higher-level systems or in case of unknown parameters due to the
computational capacity of the computer.

4.2.2 Switching feedback laws for open quantum spin systems

To bypass the limitation of the approach in [vHSMO05a], the authors in [MvHO07]
proposed an entirely analytical method to globally stabilize a N-level open quantum
spin system towards the target state p; by implementing a switching feedback laws. The
contribution in [MvHO7] can be considered as a foundation work for many of the later papers.
In particular, the exponential stabilzation results obtained in our works [LAM19a, LAM18)|
combine some of the arguments in [MvHO7] together with further stochastic and geometric
control tools, which will be discussed later.

As we mentioned above, the main challenge is due to the geometric symmetry hidden in
the state space Sy. The approach proposed in [MvHO7] consists in analyzing the quantum
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trajectory p; in two subsets of Sy, which are defined based on the value of the function
V(p) =1—Tr(pp;) as below,

So1y i ={p SN[l -7 <V(p) <1}, Scaqyp:={peSn[0<V(p) <1-7/2},

where v € (0,1). Note that there are two obvious but important properties on the above
two subsets,

e all antipodal eigenstates belongs to S1_., i.e., E\ p; C S>1_, and p, & S>1_;
e the only eigenstate belonging to S<i_, /2 is the target state p;.

Due to this important fact, one can solve the control problem in the following four steps,

Step 1.
Step 2.

Step 3.

Step 4.

there exists a v € (0, 1) such that S>1_, is not invariant when we take the feedback
controller as a non-zero constant, e.g., u(p) = 1;

for almost every sample path w € €, the quantum trajectory p;(w) can exit S>1_,
under the constant control input in finite time T3 (w);

for almost every sample path w € €2, there exists a finite time T (w), for all t > Ty (w),
the quantum trajectory p;(w) under a suitable (switching) feedback controller stays
in S<;_,/2 and never exits;

for all py € Sy, p: converges to the target state p, under a suitable feedback controller
almost surely.

Then let us resume the proof and clarify the significance of each step briefly.

1.

Step 1 can be proved by showing that the same property holds for the corresponding
deterministic control system !, and applying the support theorem (Theorem A.2.1).
It means that, there exists a v € (0, 1) such that, for all py € S>1_,, the probability
that p; exits this domain in finite time is non-zero. Thus, the constant control input
can break the symmetry of the state space in probability.

Step 2 can be shown by the so-called Dynkin estimation [Dyn65] based on the
compactness of Ss1_, and Feller continuity [MvH07, Lemma 4.5], such technique is
widely used in studying one-dimensional diffusion processes [RY13, Chapter VIL.3].
Thus, Step 2 is a strengthened version of Step 1, which allows to conclude that
the probability of exiting S>;_ in finite time 7} is one. We represent this result

heuristically by
u(p)=1

P (SSI_W o=, 821,7> — 1. (4.12)

Note that the above mentioned finite time 77 is a random variable.

. The infinitesimal generator of V' (p) is given by 2V (p) = u(p)U(p, p;), where u(p)

denotes the feedback controller, U(p, p;) := Tr(i[Jy, p|p;) and U(p, p;) = 0 for all
p € E. By the stochastic Lyapunov-type argument [MvH07, Theorem 2.2|, if we
choose u(p) = —U(p, p;) then LV (p) = —U?(p, p;;) < 0 and the probability of
py exiting S>q1_, /2 from S<;_, is less than one strictly, which can be represented

heuristically by,
u(p)=-U

P (Sciy 55 Sorap) < 1, (4.13)
where the mentioned two domains are defined as
Sciy ={p€SI0<V(p) <1 =7} C Sciqp,
So1qp={p€S|I1—7/2<V(p) <1} CSs1 4.

1. See Theorem A.2.1 to determine the corresponding deterministic control system of the stochastic
differential equation (4.1)
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Because of the two properties Equation (4.12) and Equation (4.13), by the strong
Markov property of p, [MvH07, Proposition 3.7] and Borel-Cantelli lemma [Chu01],
for all py € Sy, after a finite time T5, p, stays in S<;_,/» and never exits almost
surely. Moreover, the only eigenstate in S<i_, /7 is the target state p;. In particular,
the above-mentioned switching feedback control laws break the symmetry of the
system.

4. Due to the stochastic LaSalle theorem [MvHO07, Theorem 2.3], restricted in S<i_ 2,
we can show that p; converges to the target state p, almost surely under the feedback
controller u(p) = —U(p, p;), when ¢ goes to infinity. By using Step 3, we can show
that p, is almost surely globally asymptotically stable under the switching feedback
control laws.

Then we conclude the above analysis by the following theorem [MvH07, Theorem 4.2].

Theorem 4.2.1. Consider the system (4.1) evolving in the set Sx. Let p, be the target
state and let v > 0. Consider the following control law :

1. U(p) = _U(p7 pﬁ) fO’f’ JZS S§1—7 ;

2. u(p) =1 for p € Ss1_y2;

3. forp e B = {p e S|v/2 < Tr(pp;) <}, then u(p) = =U(p, p) if pr entered B
through the boundary V(p) =1 —~, and u(p) = 1 otherwise.

Then, there exists v > 0, such that u(p) almost surely globally stabilizes the system (4.1)
towards p;,.

Fig 4.2 presents a heuristic illustration of the application of the above theorem.

4.2.3 Continuous feedback laws for open quantum spin systems

As we discussed in the previous subsection, [MvHO7] for the first time rigorously
demonstrated the existence of a feedback controller which almost surely globally stabilizes
the system (4.1). However, the switching nature of the feedback law in [MvHO07, Theorem
4.2] makes difficult its implementation. Then, based on the analysis of [MvHO7], the author
in [Tsu08] proposed a continuous version of this switching feedback controller given by,

u(p) = —alU(p, pp) + BPa(p), (4.14)

where
e o, >0 and 5%/8an < 1, where n € (0, 1] describes the efficiency of the detectors;
o Py(p):=J—n— Tr(J.p), and restricted on E, Py(p) = 0 if and only if p = p,.
The esssential ideas to construct such a feedback remain the same as the one given in (4.14)
is same as the one of (4.11): —aU/(p, p;,) contributes to the local convergence to the target
state, and SP;(p) driving the system away from the antipodal states. The effectiveness of
the continuous feedback controller (4.14) can be shown in the following two steps:

1. provide a domain of attraction for a fixed feedback controller (4.14), such that every
trajectory staying in this domain and never exiting, p; converges almost surely to
the target state p; ;

2. show that, under the effect of the continuous feedback controller, for almost every
sample path w € €2, there exists a finite time T'(w), such that for all t > T'(w), py(w)
stays in the above-mentioned domain of attraction and never exits.
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Vip)=1-y Po Pay
Vip)=1-y/2

pﬁ—l '02+1

FIGURE 4.2 — A sample path of quantum trajectory starting at an antipodal eigenstate,
after four times entering-exiting, p; enters in S<;_,/; and never exits, then converges to the
target state p; when t goes to infinity. The whole disc corresponds to the state space Sy, we
divide it into several parts based on the value of V(p). The largest circle represents the set
{p € Sn|V(p) = 1}, which contains all antipodal eigenstates ; the two other circles describe the
set {p € Sn|V(p) =1—~/2} and {p € Sn|V(p) = 1 — v} respectively; the center of the disc
represents the set {p € Sy|V(p) = 0}, i.e., the target state p;. The curve with arrows describes
the quantum trajectory, the green parts represent the ones with u(p) = 1, and the brown parts
represent the ones with u(p) = —U(p, p;)-

For Step 1, consider a new Lyapunov function,

Vip) =1-T*(pp;),

whose infinitesimal generator is given by

LV (p) = 2Te(pps)Tr(F(p)p;) — Tr* (G (p)ps)

= ~2Tr(pp,) (a( = BPa(p) /20 = Ulp, p,))" + 20P2(p) (Tr(pp,) = ) )

where g := 32 /8an belongs to (0,1). Thus, for all p € {p € S| Tr(pp,) > Y0}, which can
be denoted as S<i_,, under the setting of the previous subsection, we have £V (p) < 0.
Moreover, the only eigenstate of J, contained in S<;_., is the target state p,. By the
stochastic LaSalle theorem [MvH07, Theorem 2.3], the proof of Step 1 is complete. We
note that the role of the diffusion term is crucial in the above argument.

The proof of Step 2 is more difficult than the one with constant control (Steps 1, 2
and 3 of the previous subsection). Unfortunately some parts of the proof of Step 2 have
not been given in [Tsu08]. We refer to [LAMI19a, Lemma 6.1] and the first two parts of
the proof of [LAM19a, Theorem 6.2] for the rigorous and complete demonstration.
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4.3 Exponential stabilization of open quantum spin sys-
tems

Motivated by exponential convergence given in Theorem 4.1, and inspired by the analysis
in [vHSMO05a, MvHO7, Tsu08], we have proposed a more general method in [LAMI19a] to
analyze the open quantum spin systems 2, and provided some general conditions on the
feedback law enforcing the exponential convergence towards the target state p;. These
conditions are obtained mainly by studying the asymptotic behavior of quantum trajectories.
Roughly speaking, under such conditions, and making use of the support theorem and
other classical stochastic tools, we show that any neighborhood of the target state may be
approached with probability one starting from any initial state (Lemma 4.3.6). This result
shows the exponential convergence towards the target state by applying local Lyapunov-
type arguments (Theorem 4.3.8). To show the convergence towards the target state,
previous works applied stochastic LaSalle theorem (see e.g., [vHSMO05a, MvH07, Tsu08])
which, unlike Lyapunov-type arguments, do not guarantee exponential stability and does
not provide any information on the convergence rate. As demonstration of the general
result, explicit parametrized stabilizing feedback laws are exhibited (Theorem 4.3.8 and
Theorem 4.3.10). Note that to obtain our main results, some preliminary results on the
asymptotic behavior of quantum trajectories associated with the considered system were
needed, see Section 4.3.1. We believe that these results are significants by themselves. We

point out that the exponential stabilization problem for open quantum spin—% system (4.8)
has been discussed in [LAMI1S].

4.3.1 Properties of the quantum trajectories

Our aim here is to establish some basic properties of the quantum trajectories corres-
ponding to Equation (4.1). This subsection is instrumental in order to prove our main
results.

Recall that we denote the projection of p onto the state p, as pi i := Tr(pp;). In the
following we state a lemma inspired by analogous results established in [[Khall, Mao07],
which is the version with the feedback control of Lemma 4.1.1. This lemma can be served
to overcome the problem of singularity of Lyapunov function in application of Ito formula,
which is a necessary condition to show the exponential stability in Theorem 4.3.8.

Lemma 4.3.1. Let n € {0,...,2J}. Assume that u € C'(Sy,R) and u(p,) = 0. If the
initial state satisfies py # p,,, then P(p; # p,,, ¥t > 0) = 1.

Proof. Given € > 0, we consider any C? function on Sy such that

1

Vip) = = pon

, if ppn<1—e.

We find DTy plp) | AnMIJ = 1 = Te(Jop))pal?
_ulp)Lr(e|Jy, plPy n — N — 1r{J2p))Pnn
ZLV(p) = (1— pn,n)2 + (1— pn,n)3 ’

2. This method is not limited to just analyzing quantum spin systems, it can be use to study the other
control problem, which will be discussed in the following chapters.
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whenever p,,,, <1 —e¢.

By applying the assumptions u € C'(Sy,R) and u(p,) = 0, we deduce that |u(p)| =

lu(p) —u(p,)| < Cllp — pullirs < V2C /T = ppn, where as matrix norm we have used the
Hilbert-Schmidt norm. Then by

Tr(ilJy, plpn) = 2cn1Re{pnpi1} — 2c.Re{pppn-1}
S 2(Cn+1 + Cn) pn,n(l - pn,n)7

we have |u(p)Tr(i[Jy, p|p,)| < 2C(cpi1+cn)(1— pny). Also, as we have |J —n—Tr(J,p)| <
2J(1 — pnn), we get LV (p) < KV(p), with K = 2C(cpy1 + ¢,,) + 16J*nM. To conclude
the proof, one just applies the same arguments as in the previous lemma. 0

Consider the observation process of the system Y;, whose dynamics satisfies

dY; = dW; + 2v/nMTr(J,p;)dt.

By Girsanov’s theorem (Theorem A.1.2), the process Y; is a standard Wiener process under
a new probability measure Q equivalent to P. Denote by F} := o(Y;,0 < s < t) the o-field
generated by the observation process up to time ¢. Due to Belavkin-Zakai equation (3.41)
and noncommutative Kallianpur-Striebel formula (3.42), the Zakai equation associated
with Equation (4.1) takes the following linear form

dpr = F(p)dt + /1G(pr)dY;, (4.15)

where jp, = pf > 0, F(p) is defined as in (4.1), and G(5) := VM (J.jp; + pJ.). The
equation (4.15) has a unique strong solution [Xio08, Pro04], and the solutions of the
equations (4.1) and (4.15) satisfy the relation

pt = p/Tr(py), (4.16)

which can be verified easily by applying [t6 formula and corresponds to the noncommutative
Kallianpur-Striebel formula (3.42). In the following lemma, we adapt [MvH07, Lemma
3.2] to the case of positive-definite matrices.

Lemma 4.3.2. The set of positive-definite matrices is a.s. invariant for (4.1). More in
general, the rank of p; is a.s. non-decreasing.

Proof. The initial state of (4.15) with respect to the basis of its eigenstates is given by
po = Y, NiiF, where pow; = A\t fori € {0,...,2J}. If py > 0, due to the relation (4.16),
we have py > 0, thus X >0 for all ¢. Extend the probability space by defining ftY W=
o(ys, Ws,0 < s < t), where W, is a Brownian motion independent of Y;. Set B, :=

VY + V1 — nWt, whose quadratic variation satisfies [B, B]; = t. Following [MvHO07,
Lemma 3.2], we consider the equations

dp} = F(p})dt + Glpi)v/ndYs + Glpi)y/T = dWe,  py = i,
dii(t) = (iw ], — i Jy — M/2J2)i(t)dt + VM Li(t)dBy,  4(0) = ¢,
where 1;(t) € CN. The solutions of the equations above satisfy pi = 1;(t)r(t) by Itd

formula. In virtue of [Pro04, Theorem §.48]7 for all ¢ > 0, there exists an almost surely
invertible random matrix U; such that ¢;(t) = Ut;.
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Let p, = >, A\ipi, so that in particular pj = gy and p} = U;poU;". Due to the linearity
of F(-) and G(-), the stochastic Fubini theorem [Xio08, Lemma 5.4] and the It6 isometry,

t

(o) FY) = i) + / F(E(AFY))ds + / G (B F)) yidYe.

By the uniqueness in law [RY13, Proposition 9.1.4] of the solution of the equation (4.15),
the laws of p; and E(p}|F)) = E(UipoUf|FY) are equal for all ¢ > 0. By what precedes
po > 0 implies p; > 0 a.s. which in turn yields p; = p;/Tr(p:) > 0 a.s. We have thus proved
that the set of positive-definite matrices is a.s. invariant for (4.1).

Let us now consider the general case in which pg is not necessarily full rank. We have
rank(p;) = rank(U;poU;") = rank(pg) = rank(pg), a.s. (4.17)

Note that the kernel of any positive semi-definite matrix p € C¥*¥ coincides with the
space {¢p € CV|ip*pp = 0}, and that for almost every path p}(w)

{v € CYE( p|F) = 0} € { € C¥ [y pl(w)y = 0}

This implies rank(p;) > rank(p;) = rank(pg) for any ¢ > 0 almost surely, which concludes
the proof. 0

Lemma 4.3.3. If n =1, then the boundary of the state space
OSy = {p € Sn| det(p) = 0}

is a.s. invariant for (4.1).

Proof. Based on the proof of Lemma 4.3.2 if n = 1, we have B; = Y; which implies p; = pj.

Then by applying the relation (4.17), we get the conclusion. O
The Stratonovich form of Equation (4.1) is given by

~

where
F(p) = —ilwJ. + u(p)Jy, p) + 20MTx(J.p)(Jop + pJ. — 2Tx[L.plp)

1+
+M <(1 —n)J.pJ. — Tn(pr +pJ2) + 2nTr(J3p)p) :
and G is defined as in (4.1). The corresponding deterministic control system is given by

pult) = F(p,(0)) + /G (0, (0)0(0). p,(0) = po. (4.19)

where v(t) € V, where V is the set of all piecewise constant functions from R, to R. By the
support theorem (Theorem A.2.1), the set Sy is positively invariant for Equation (4.19).

In the following, we state two important preliminary results, which provide the sufficient
conditions on the continuous feedback controller to overcome the challenge of breaking
the symmetry of the state space, and will be applied to our stabilization problem in the
following subsection. For this purpose, we fix a target state p;, for some n € {0,...,2J}.
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Proposition 4.3.4. Suppose n € (0,1) and the feedback controller satisfying the as-
sumptions of Lemma 4.3.1. Assume that Vu - G(py) # 0 or Vu - ﬁ(po) # 0 for any
po € {p € Sv \ pPa| prix = 0 for some k, and u(p) = 0}. Then for any initial condition
po € {p € SN\ pPs| pei =0 for some k} and € > 0, there exists at most one trajectory
pu(t) of (4.19) starting from po which lies in OSy for t in [0,€|. For any other initial state
po € OSn \ pr and v €V, p,(t) >0 fort > 0.

Proof. Define Z,(t) := Span{ey| (pv(t))lC . = 0} and Z5(t) the eigenspace corresponding to
the eigenvalue 0 of p,(t). By definition, Zl(t) C Zy(t) for all £ > 0. Since all the subspaces
which are invariant by J, take the form Span{ey,,...,ex, } for {ki,..., kn} C{0,...,2J},
we deduce that Z;(t) is the largest subspace of Zs(t) invariant by .J,.

Denote by Ax(t) and 1, (t) for k € {0,...,2J} the eigenvalues and eigenvectors of p,(t),
where, without loss of generality, we assume A (t) € C! since p,(t) € C* ([Kat76, Theorem
2.6.8]). In addition, we suppose that the eigenvectors ¢ (t) form an orthonormal basis of
CN.

Let ¢y (t) € Zy(t) for t € [0,¢]. In order to provide an expression of the derivative for
the eigenvalue )\ along the path, we observe that

1
BRTACER NG

Since 1 is a unit vector, then by compactness, we can extract a sequence d,, \, 0 such
that 1, (t + 6,) converges to an eigenvector ¥ (t) of p,(t). By passing to the limit on
the left-hand and right-hand sides of Equation (4.20), we get Ag(t) = 1% () po(t)hp(t) =

If i (t) ¢ Z1(t) then J bk (t) ¢ Zs(t), since otherwise Z;(t) would not be the largest
subspace invariant by .J, contained in Zy(t). Thus A\, (t) > 0, which implies A(s) > 0 for
any s —t > 0 sufficiently small, then we can deduce that dim Z,(s) < dim Z;(¢). Moreover,
by continuity of p,(t), we have Z;(s) C Z(t), for any s —t > 0 sufficiently small. Now
we consider the case where Z;(t) # 0 for t > 0. In this case, we have two possibilities:
either u(p,(-)) = 0 on [0,¢] for some € > 0; or u(p,(t)) # 0 for arbitrarily small ¢ > 0.
Note that under the assumptions of the proposition there exists at most one v such that
u(pv()) = 0. It is therefore sufficient to show that, for the second possibility, p,(t) belongs
to the interior of Sy for all ¢ > 0. For this purpose, we first show that for all ¢ > 0 such that
u(py(t)) # 0 and Z;(t) # 0, there exists s — ¢ > 0 arbitrarily small such that u(p,(s)) # 0
and Z(s) G Zi(t).

(t+9) = pu(t)
t

L Onle+0) = ulr) (vit+0)” ). @)

Let us pick k such that e, € Z;(t), and at least one between e;_; and ey, is not
contained in Z;(t)®. We now show by contradiction that e; ¢ Z;(s) for some s —t > 0
arbitrarily small. We assume that e, € Z,(7) for 7 € [t,t + €|, with € > 0. By setting
q"(7) := py(T)en, for n € {0,...,2J} and 7 > 0, the condition (pv(T))n’n = 0 is equivalent
to ¢"(7) = 0. In particular, by assumption, ¢*(7) = 0 for 7 € [t,t + ¢]. On this interval we
have

qk(T) = iu(pv(T))pv(T)Jyek = u(pv(T))pv(T)?/) =0,
where ¢ := crep_1 — cgr1€x11- By taking € small enough we may assume u(pv(T)) # 0 and
therefore the previous equality implies p, (7)1 = 0. This means that ¢ € Z5(7) and, since

3. If k = 0, the condition is replaced by ey ¢ Z;(t) while if k = 2J, we assume eay_1 ¢ Z1(t).
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Y ¢ Zy(7), by the above argument we have J,1 ¢ Zy(7) and
¢*pv(7)¢ = M(l - n)w*szv(T)qu/J >0,

leading to a contradiction.

Hence, there exists s —¢ > 0 arbitrarily small such that Z,(s) & Zi(t) and, by continuity
of u, u(pv(s)) # 0. Thus, by repeating the arguments for a finite number of steps, we can
show that there exists s — ¢ > 0 arbitrary small such that Z;(s) = 0. As ¢t may also be
chosen arbitrarily small, this means that there exists an arbitrarily small s > 0 such that

pu(s) > 0.

To conclude the proof, we show that if p, (o) > 0 for some ¢y > 0, then p,(t) > 0 for all
t > to. This can be done by considering the flow @, : Sy — Sy of Equation (4.19) which
associates with each py, the value p,(t). Since ®,, is a diffeomorphism, if p € Sy \ Sy,
there is an open neighborhood U of the state p such that ®,,U C Sy is also an open
neighborhood of ®;,p. Thus, ®;,p € Sy \ Sn. The proof is then complete. O

Corollary 4.3.5. Suppose that the assumptions of Proposition 4.3.4 are satisfied. Then
for all pg € OSN \ p;, either p; stays on the boundary of OSn and converges to p, ast goes
to infinity or it exits the boundary in finite time and stays in the interior of Sy afterwards,
almost surely.

Proof. By the support theorem (Theorem A.2.1) and Proposition 4.3.4, we have P(p, >
0) > 0 for all » > 0 independently of the initial state py € Sy \ p,. Define the set
S<¢c = {p € Sn| det(p) < ¢} \ B,(p5) for any r arbitrary small and the stopping time
7c .= inf{t > 0| p; ¢ S<¢}. Now by compactness of S<¢ and the Feller continuity of p;
([IMvHO7, Lemma 4.5]), it is easy to see that for any v > 0 and ¢ > 0 small enough, there
exists € > 0 such that P, (7c < v) > ¢, independently of py € S<¢. Then we can conclude
that sup, cs_ Py (7c = ) <1 —e. By Dynkin inequality [Dyn65],

v v
< — < o0.

sup Epy(7) <
POES<¢ pol ¢ 1- SUPppes<, Ppo (TC > V) €

By Markov inequality, for all py € S<¢, we have
P, (1¢ =00) = lim P, (¢ > n) < lim E, (7¢)/n = 0.
n—oo n—oo

By arbitrariness of  we deduce that, either p, > 0 for some positive time t or p;, converges
to p;; as t tends to infinity while staying in Sy, almost surely. In addition, by the strong
Markov property of p; and Lemma 4.3.2, once p; exits the boundary and enters the interior
of §, it stays in the interior afterwards. The proof is hence complete. U

4.3.2 Exponential stabilization by continuous feedback

In this subsection, we study the exponential stabilization of system (4.1) towards a
selected target state p, with n € {0,...,2J}. Firstly, we establish a general result ensuring
the exponential convergence towards p, under some assumptions on the feedback control
law and an additional local Lyapunov type condition. Next, we design a parametrized
family of feedback control laws satisfying such conditions.

4. Recall that P, corresponds to the probability law of p; starting at pg; the associated expectation is
denoted by E, .
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Almost sure global exponential stabilization Inspired by [Tsu08, Lemma 3.4] and
[RY'13, Proposition 3.1], in the following lemma we show that, wherever the initial state is,
the trajectory p; enters in B,.(p.) with r > 0 in finite time almost surely.

Before stating the result, we define Py := {p € Sy|J —n — Tr(J.p) = 0} and the
“variance function” ¥ (p) := Tr(J2p) — Tr*(J.p) of J..

Lemma 4.3.6. Assume the feedback controller satisfying the assumptions of Lemma 4.3.1.
Suppose that for any py € {p € Sn| pan = 0}, there exists a control v(t) € V such
that for all t € (0,¢), with € sufficiently small, u(p,(t)) # 0, for some solution p,(t) of
Equation (4.19). Assume moreover that

Vp € Pa\ pr,  20MV (p)pas > w(p)Tr(ilJy, plps)- (4.21)

Then for all r > 0 and any given initial state py € Sy, P(1. < 00) = 1, where 7, := inf{t >
0| p: € B(p;,)} and py corresponds to the solution of system (4.1).

Proof. The lemma holds trivially for py € B,(p;), as in that case 7, = 0. Let us thus
suppose that py € Sy \ B.(p;). We show that there exists T' € (0,00) and ¢ € (0, 1) such
that P, (7. < T') > (. For this purpose, we make use of the support theorem. Therefore,
we consider the differential equation

(5o(1)) . = D (po(8)) + 20/ nM Pr(po(1)) (pu(8)) 0 (D),

where v(t) € V is the control input, and

An(p) = 20M (Te(J2p) — (J = 7)?) pan — ulp) Tr (il Jy, plps)
+4AnM Py (p)Tr(J.p) pam,
Pi(p) :=J —n—"Tr(J,p).

Consider the special case in which py 7(0) = 0. By applying similar arguments as in the
proof of Proposition 4.3.4, there exists a control input v € V such that (pv(t))ﬁﬁ > 0 for
all £ > 0. Thus, without loss the generality, we suppose p;(0) > 0. Then we show that
there exist a control input v and a time 7" € (0, 00) such that p,(t) € B,.(p;) for t <T in
the two following separate cases.

1. Let n € {0,2J}. We have P;; = p,. Since S\ B,(p;,) is compact, Az(p) is bounded
from above in this domain and |P;(p)| is bounded from below. Then by choosing
the control input v = K Py(p)/pn.n, with K > 0 sufficiently large, we can guarantee
that p,(t) € B,(p) for t <T with T' < oo if p; 5(0) > 0.

2. Now suppose 1 € {1,---,2J — 1}. Due to the compactness of P \ B,(p;) and the
condition (4.21), we have

m: = min Ay
pEPa\B:(pr) (p)

= min (%M YV (p)pan — u(ﬂ)Tr(i[Jy,p]an > 0.

pEeP7\B:(p7)

Then we define an open set containing P \ B.(p;),

P\ B.(ps) C U= {p € S| Au(p) > m/2} C Sy.
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Thus, setting v(t) = 0 whenever p,(t) € U, we have
(pv(t))m = An(pu(t)) >m/2 on U.

Moreover, (Sy \ B,(p;)) \ U is compact, then Az(p) is bounded from above and
| P7(p)| is bounded from below in this domain. For all p,(t) € {p € Sn|pnn > 0},
we can take the feedback v = K Py(p)/pnn with K > 0 sufficiently large, so that
(,év(t))ﬁ’ﬁ is bounded from below on (S\ B,(p;))\U. The proposed input v guarantees

that p,(t) € B,(p5s) for t <T with T' < oo if p; 7(0) > 0.

Therefore, there exists T' € (0,00) such that, for all py € Sy \ B.(p;,), there exists v(t)
steering the system from pg to B,(p;;) by time T. By compactness of Sy \ B,(p;) and the
Feller continuity of p;, we have sup, cs\5,(p.) Poo (7 = T) <1 —=( < 1, for some ¢ > 0.
By Dynkin inequality [Dyn65],

E,, (1) < ! <1 <
sup ) < < — < oo.
poESN\Br(p5) " 1 —sup,csa\B,(p,) Pro (. >T) = ¢
Then by Markov inequality, for all py € Sy \ B, (p;,), we have
By (1, = 00) = lim Byy(r, > n) < lim Eyy(r)/n = 0,
which implies P, (7, < 0o) = 1. The proof is complete. O

Remark 4.3.7. The above lemma provides a sufficient condition on the feedback to ensure
that p; enters in an arbitrary neighborhood of the target state in finite time almost surely.
This result is stronger than [MvH07, Lemma 4.5 and 4.6] which only obtains the existence
of a neighborhood where the previous property holds, for a constant control input.

In the following, we state our general result concerning the exponential stabilization of
N-level open quantum spin systems (4.1).

Theorem 4.3.8. Assume that the feedback control law satisfies the assumptions of
Lemma 4.3.6. Additionally, suppose that there exists a positive-definite function V(p)
such that V(p) = 0 if and only if p = p;,, and V is continuous on Sy and twice conti-
nuously differentiable on the set Sy \ p;. Moreover, suppose that there exist positive
constants C, Cy and Cy such that

(i) Crdp(p, p,) < V(p) < Cadp(p, py), for all p € Sy, and
ZV(p)

(i) limsup,_,, o < —C.

Then, p;, is a.s. exponentially stable for the system (4.1) with sample Lyapunov exponent

less than or equal to —C — £, where K :=liminf,,, ¢*(p) and g(p) = \/ﬁa‘ggp)%'

Proof. The proof proceeds in three steps:
1. first we show that p_ is locally stable in probability ;

2. next we show that for any fixed » > 0 and almost all sample paths, there exists
T < oo such that for all t > T, p; € B,.(p;); and

3. finally, we prove that p; is a.s. exponentially stable with sample Lyapunov exponent

less than or equal to —C' — %
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Step 1 : By the condition (i), we can choose r > 0 sufficiently small such that £V (p) <
—C(r)V(p) for p € B,.(p;) \ ps, for some C(r) > 0. Let € € (0,1) be arbitrary. By the
continuity of V(p) and the fact that V(p) = 0 if and only if dg(p, p;) = 0, we can find
d = d(e,r) > 0 such that
/e sup Vi(py) < Chyr. (4.22)
po€Bs(pr)

Assume that py € Bs(p;,) and let 7 be the first exit time of p; from B, (p;). By It6 formula,
we have

tAT
E(V(pinr)) < Vipo) = C(r)E (/ V(ps)ds> < Vi(po)-
0
For all t > 7, dg(pinr, pr) = dB(p-, p;) = r. Hence, by the condition (i),
]E(v<pt/\7')) > E(]l{Tgt}V(Pr)) > E(]]-{Tgt}CIdB(pT7 pﬁ)) - CITP<T < t)

Combining with the inequality (4.22), we have

E(V(Pt/\r)) < Vi(po) <

Plr<it) < .
(T_)_ 017’ B ClT’ =€

Letting t tend to infinity, we get P(7 < 00) < € which implies
P(dg(pr, pn) <rfort>0)>1—e.

Step 2 : Since u = 0 in E if and only if p = p. by Lemma 4.3.6 we obtain, for all py € Sy,
P(75 < 00) = 1, where 75 := inf{t > 0| p; € Bs(p;)}. It implies that p; enters Bs(p;,) in
a finite time almost surely. Due to Step 1, for all py € Bs(p;), P(0, < o©0) < g, where
o, = inf{t > 0| p; ¢ B.(ps)}-

We define two sequences of stopping times {0¥};>0 and {7F};>; such that % = 0,
I = inf{t > o*| p; € Bs(p;)} and o**! = inf{t > 75| p, ¢ B,(p,)}. By the strong
Markov property, we find

P, (07" < o0) =P, (15 < 00,0, <00,...,00" < 0)

=P, (0, < oo)---IPpTgn(ar < o0) <eg™.
i

Thus, for all pg € Sy, we have P(¢7" < oo, Ym > 0) = 0. We deduce that, for almost all
sample paths, there exists T' < oo such that, for all t > T, p, € B,(p,), which concludes
Step 2.

Step 3 : In this step, we obtain an upper bound of the sample Lyapunov exponent by
employing an argument inspired by [Mao07, Theorem 4.3.3]. For p # p,,

ZLlogV(p) = DZX’;‘(/p()p) — gzép)‘

Due to Lemma 4.3.1, p, cannot be attained in finite time almost surely, then by Ito
formula, we have
tjv 5 t 1 t
o8 Vo) =togVipw) + [ X i [ gipam, — 5 [ o
o Vi(ps) 0 2 Jo
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Let m € Z+( and take arbitrarily € € (0,1). By the exponential martingale inequality (see
e.g. [Mao07, Theorem 1.7.4]), we have

IF’(S [/t( )dw, 8/t2( )d}>210 )< L
u R . — — Jds| >—logm | <—.
sw | glp A RAG —log —

Since Y, # < o0, by Borel-Cantelli lemma we have that for almost all sample paths
there exists mg such that, if m > mg, then

t t
2

sup (/ 9(ps)dWs — E/ gQ(pS)ds) < —logm.

o<t<m \Jo 2 Jo €

Thus, for 0 <t < m and m > my,

t 2 € t
/ g(ps)dWs < glogm+—/ g°(ps)ds, a.s.
0 0

2
We have
L LV (ps) 2 1—¢ [
logV/ <logV = s+ 21 — 2(pg)d 8.
og V(p:) < log (po)+/0 7000 s+ logm 5 /Og(p)& a.s
It gives
. 1 , 1/( "2V (ps) l—e [*,
] “logVip,) <1 - = T\ s J)d 5.
eV o (S0 55 i) oo

Letting ¢ tend to zero, we have

1 L[ "LV (ps) 1/t ) )
lim sup — log V' < lim sup — ————~ds — = < )ds a.s.
msup - log (pr) < m Sup (/0 7000 2/, g (ps)

For every fixed T' > 0 consider the event
Qr = {p: € B.(p;) for all t > T}.

Due to the condition (%), for almost all w € Qr,

/Tt {Y—[Ei};)ds — %/Tt gQ(ps)dS)

2

. 9°(p)
< —C(r)— f )
- <T) PEBrl(Ifl’ﬁ)\Pﬁ 2

: 1 (
< lim sup —

t—o00

Since T can be taken arbitrarily large and Step 2 implies that limz_,., P(27) = 1, we can
conclude that

2
lim sup % logV(p)) < =C(r)—  inf g°(p)

., a.s.
t—o0 PEBr(p)\Pn 2

Finally, due to the condition (i) and since r can be taken arbitrarily small, we have

1 K
lim sup i logdp(pt, pr) < —C — —, a.s.

t—o00 o 2

which yields the result. ]
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Feedback controller design The purpose of this part is to design parametrized feed-
back laws which stabilize exponentially the system (4.1) almost surely towards some
predetermined target state. For the choice of target state, we consider first the particular
case n € {0,2J} and then the general case n € {0,---,2J}.

In the following theorem, we consider the case n € {0,2.J}. Before stating the result,
we note that we can describe the set B, (py) \ p, as follows

Dx(pn) = {p € Sn|0 < XA < ppn <1} = Byny(P5) \ Pas

where 7(\) = V2 — 2V/\,

Theorem 4.3.9. Consider system (4.1) with py € Sy and assume n € (0,1). Let p;, €
{po, P2y} be the target state and define the feedback controller

un(p) == a (1= Tr(ppy))” = 7 Tr(ilJy, plpy), (4.23)

where v >0, 8> 1 and o > 0. Then the feedback controller (4.23) exponentially stabilizes
System (4.1) almost surely to the equilibrium p,, with sample Lyapunov exponent less than
or equal to —nM .

Proof. To prove the theorem, we show that we can apply Theorem 4.3.8 with the Lyapunov
function V4 (p) = /1 — Tr(pp;,) for n = 0 and n = 2J. First, it is easy to see that us
satisfies the assumptions of Lemma 4.3.6 and Lemma 4.3.1. Then, we need to show that
the conditions (i) and (7i) of Theorem 4.3.8 hold true. Note that %idB(p, pn) < Valp) <
dg(p, py), so that the condition (i) is shown. We are left to check the condition (7). The
infinitesimal generator .Z'V;; takes the following form

Cua T(ilJy plpa) M (] = 7= Ti(Jep) “Tr(ppy)
IO =5 N V) |

If n =0, and p € Dy(p,), we find

up Te(i[Jy, plpo)
2 Valp)

< acy (Vo(p)” < aei(1=X)F Vo(p),

since |Tr(i[Jy, plpy)| = 2c1|Ref{po,1 }| < 2¢1]poa| < 2¢1Vo(p). Moreover, we have

2.7 27
J —Tr(J.p) = Z kprr > Zpk,k =1—poo= (VO(P))Q-
k=1 k=1

2 B—1

Thus, for all p € Dy(p,), LVolp) < —CoaVo(p), where Cyy = X —qe)(1 - N) 7.

2
The case n = 2J may be treated similarly. In particular, for all p € D,(p,;), one gets

LVa(p) < —CoyaVay(p), where Cojy = HMQ—/\Q — acyy(1 — A)% = Co,.

Furthermore, for n € {0,2J}, we have g*(p) > nMM?, for all p € D,(p,). Hence, we
can apply Theorem 4.3.8 for n € {0,2J}, with C' = % and K = nM. The proof is
complete. O

In the following theorem, we consider the general case n € {0,...,2J}.
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Theorem 4.3.10. Consider system (4.1) with py € Sx \ OSy. Let p,, € E be the target
state and define the feedback controller

un(p) = a(Pﬁ(p))B =a(J—n— Tr(JZp))ﬁ, (4.24)

where > 1 and o > 0. Then the feedback controller (4.24) exponentially stabilizes

system (4.1) almost surely to the equilibrium p,, with sample Lyapunov exponent less than
or equal to —mM if n € {0,2J} and —nM/2 if n € {1,...,2J — 1}.

Proof. Consider the following candidate Lyapunov function
=3 VTr(omy). (4.25)
k#n

Due to Lemma 4.3.2; all diagonal elements of p; remain strictly positive for all £ > 0 almost
surely. Since V;(p) is C* in Sy \ OSn, we can make use of similar arguments as those in
Theorem 4.3.8. First, we show that the following conditions are satisfied.

prn > unTr(i[Jy, plps), Vo € Pa\ pn,
C.2. uﬁ( ) < V( )

with C > 0, Vp € Dix(p,).
Roughly speaking, by Lemma 4.3.6, C.1 provides a sufficient condition guaranteeing

the accessibility of any arbitrary small neighborhood of p;. C.2 is helpful to obtain a
bound of the type £V, < —CV; on Dy(p;).

We now show that these conditions are satisfied. The property C.1 follows from the
fact that, for all p € Py \ p,,, we have uz(p) = 0 and ¥ (p) > 0.

Next, we can show that the property C.2 holds true, because

|Pr(p)| = ‘ Z kper —n(l — pan)

k#n

S T(]- - pﬁﬁ)u

where T := max{n,2J — n}. Then, for all p € D,(p,),
un(p) < a1 = pag) 2\ /T = pra < aXP(1 = 1772V (p).

Consider the Lyapunov function (4.25). In the following, we verify the conditions (1) and
(1) of Theorem 4.3.8. First note that by Jensen inequality, we have V;(p) < vV2J\/1 — pia-

Then we get %dg(p, p:) < Va(p) < vV2Jdg(p, p;), hence the condltlon (i) is shown. In
order to verify the condition (7i), we write the infinitesimal generator of the Lyapunov
function which has the following form

up = Te(iJy, plpy) M 2
zm(@——;k; N ;(Pap)) VP

‘Tr(i[*]wp]pk)’ _ \CkRe{Pk,kq} - Ck+1Re{/)k,k+1}\ < Ck|/)k,k71| + Ck+1’pk,k+1\
\/ Pk k Pk k a \/ Pk k
< Ckn/Pr—1k—1 + Cht1n/Prt1 k1 S Cp + Cy1-
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For k # n and for all p € Dy(p;,) with A > 1 —1/T, we have
|J —k—Te(Jp)| > |n—k|—|Pi(p)| > 1—="(1—prrn) >1—="T(1—-X) >0.
Thus, for all p € Dy(p;),

LValp) < — (nM(l — ;f(l —N) ol YA(1 — /\)5‘1/2> Va(p) < —=CaaVa(p),

2
where I' := >, (cx + cg41) and Gy \ = w —al'TP(1 — \)F~1/2,
Furthermore, for n € {0,2J}, we have ¢g*(p) > nMMN?, for all p € Dy(p;). Since Cj »
and nM\? converge respectively to % and nM as A tends to one, by employing the same
arguments used earlier in the proof of Theorem 4.3.8, we find that the sample Lyapunov
exponent is less than or equal to —C' — K/2 where C = % for n € {0,...,2J}, K =nM
for n € {0,2J} and K =0 forn € {1,...,2J —1}.

Remark 4.3.11. Locally around the target state p,, the asymptotic behavior of the
Lyapunov function (4.25) is the same as the one of the Lyapunov function (4.6). This is
related to the fact that, under the assumptions on u;, the behavior of the system around the
target state is similar to the case u = 0. In particular, without feedback and conditioning
to the event {3t' > 0| p, € B,.(p;,), YVt > t'}, one can show that the trajectories converge
a.s. to p, with sample Lyapunov exponent equal to the one in Theorem 4.3.10.

Remark 4.3.12. Note that the feedback controller satisfies the assumptions of Propo-
sition 4.3.4, that is ), OFu(p) (G(p))kk # 0 when uz(p) = 0 and p # p,, (this can be

Opk,k
easily shown by applying Cauchy-Schwarz inequality). If € (0, 1), Theorem 4.3.10 and

Corollary 4.3.5 guarantee the convergence of almost all trajectories to the target state
even if the initial state pg lies in the boundary of Sy (the argument is no more valid if
n = 1 because of Lemma 4.3.3). Unfortunately, these results do not ensure the almost sure
exponential convergence towards the target state whenever pg lies in OSy \ p;,. However,
we believe that under the assumptions imposed on the feedback, we can still guarantee
such convergence property. This is suggested by the following arguments.

Set the event Q. = (,oo{p¢r > 0} which is Fy,-measurable. By the strong Markov
property of p;, and by applying Blumenthal zero—one law [RW00a], we have that either
P(Q-) =0 or P(Q-g) = 1. In order to conclude that P(25¢) = 1, it would be enough to
show that P(Qs¢) > 0, i.e., p; exits the boundary and enters the interior of Sy immediately
with non-zero probability. Proposition 4.3.4 provides some intuitions about the validity
of this property, as it proves that the majority of the trajectories of the associated
deterministic equation (4.19) enter the interior of Sy immediately. It is then tempting to
conjecture that under the assumption of Proposition 4.3.4, for all py € Sy \ p;,, pr > 0
for all t > 0 almost surely. If this conjecture is correct, we can generalize Theorem 4.3.10
to the case py € Sy.

Simulations We illustrate here our results by numerical simulations in the case of a
three-level quantum angular momentum system. We illustrate the convergence towards
the target states p, and p; by applying feedback laws of the form (4.23) and (4.24),
respectively.
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First, we set p, as the target state; the corresponding simulations with a feedback law
of the form (4.23) and initial condition p, are shown in Fig. 4.3. For this case, we note
that a larger o can speed up the exit of the trajectories from a neighborhood of the state
p-. Similarly, a larger v may speed up the accessibility of a neighborhood of the target
state p,. Finally, a larger § can weaken the role of the first term in the feedback law (4.23)
on neighborhoods of the target state (a more detailed discussion for the two-level case may

be found in [LAMI18]).
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FIGURE 4.3 — Exponential stabilization of a three-level quantum angular momentum system
towards p, with the feedback law (4.23)starting at p, with w =0, n = 0.3, M =1, a = 10,
8 =5 and v = 10 : the black curve represents the mean value of 10 arbitrary sample trajectories,
the red and blue curves represent the exponential references with exponents —nM /2 and —nM
respectively. The figures at the bottom are the semi-log versions of the ones at the top.

Then, we set p; as the target state ; the simulations with a feedback law of the form (4.24)
and initial condition diag(0.3,0.4,0.3) € int(Sy)) are shown in Fig. 4.4. Finally, we repeat

Tt

=g

b

= 05

m

= 3 :

60 80 100 0 20 40 60 80 100
Time Time

Vi(pe)

Time Time

FIGURE 4.4 — Exponential stabilization of a three-level quantum angular momentum system
towards p; with the feedback law (4.24) starting at diag(0.3,0.4,0.3) with w = 0, n = 0.3,
M =1, a=0.3 and § = 10 : the black curve represents the mean value of 10 arbitrary sample
trajectories, and the red curve represents the exponential reference with exponent —nM /2. The
figures at the bottom are the semi-log versions of the ones at the top.

the last simulations for the case where the initial condition is p,. Simulations show that
the trajectories enter immediately in the interior of Sy and converge exponentially towards

the target state.
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FIGURE 4.5 — Exponential stabilization of a three-level quantum angular momentum system
towards p; with the feedback law (4.24) starting at py with w =0, 7n=10.3, M =1, « = 0.3 and
B =10 : the black curve represents the mean value of 10 arbitrary sample trajectories, and the
red curve represents the exponential reference with exponent —nM /2. The figures at the bottom

are the semi-log versions of the ones at the top.
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Feedback stabilization of multi-qubit systems

In view of the rapid development of quantum information science [NC02], the generation
of quantum entangled states [BZ17] has become essential in a variety of applications such
as quantum teleportation, quantum cryptography and quantum computation. The simplest
entangled states are the Bell states, which are pure states corresponding to maximal
quantum entanglement of two Spin—% systems (i.e., two-qubit systems). The four Bell states
are given by ¥, = U, U% and ®, = &, P’ where

1 }
0

0 )
+1

0

oo (ol [ - 2]
oo (e bl 1) - Bl

The extension of Bell states to n-qubit are called GHZ states, which are a class of N = 2"
entangled states given by GHZ; = |ghz)(ghz| for k € {1,..., N/2} where

N 1 n n
|ghz;;) = 7 (g |Fm) iﬁ@ 11— k‘m>) , Ak, €10,1}.

Moreover, we can easily verify that {|ghz;)} forms an orthogonal basis of CV. Note that
the above mentioned entangled states, Bell states and GHZ states, are all pure states.

[y

Multi-qubit systems undergoing continuous-time measurements represent a particular
example of open quantum systems whose evolution can also be described by quantum
filtering equations. Here, we consider the following stochastic master equation, more general
compared to (3.43), which contains n quantum channels [Bel92, BG09],

dpy = Fo(pr)dt + > Fulp)dt + > /ikGrl(p)dWil(t), (5.1)
k=1 k=1

where the quantum state is described by the density operator p;, which belongs to the
compact space Sy = {p € CV*N| p = p* Tr(p) = 1, p > 0} with N = 2" and n the number
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of entangled qubits. Here W; = (Wj(t))1<k<n is a n-dimensional standard Wiener process
with the natural filtration F;, and W), are independent, i.e., for 7,7 = 1,...,n, one has
(Wi(t), W;(t)) = d; ;t. The filtered probability space associated with the above evolution
is (Q, F, (F),P). The measurement efficiency for the k-th channel is given by 7, € (0, 1].
The functions Fy, Fy and Gy are given by the following expressions

Fo(p) := —i[Ho, p] — i 3272, wi(p)[Hj, pl,
Fi(p) == LypLy, — Lip/2 — pL3/2, (5.2)
Gr(p) :== Lxp + pLi, — 2Tr(Lyp)p.

The function u appearing in Fy denotes the feedback law taking values in R™, while
Hy = Hi € CY*V is the free Hamiltonian, H; = H; € CV*N are the control Hamiltonians
and Ly = L; € CV*N are the measurement operators which may be degenerate. If the
feedback u € C!'(Sy,R™), the existence and uniqueness of the solution of (5.1) as well
as the strong Markov property of the solution can be ensured by the results established
in [MvHO7].

Concerning stabilization of two-qubit systems with only one quantum channel, some
interesting results have been derived in [YTHO7] and [MvH07]. In [YTHO07], the methods
in [vHSMO05a] are adopted in order to construct a continuous feedback controller stabilizing
the target Bell state starting from almost any initial pure state when the measurement is
perfect. Then, in [MvHO7], the authors design a switching quantum feedback controller
that asymptotically stabilizes the system towards two specific Bell states. On the other
hand we are not aware of any result on feedback stabilization of multi-qubit systems, with
n > 2, towards an arbitrary GHZ state.

In the following sections, we will first analyze the behavior of n-qubit systems (5.1) for
u = 0. Starting from the phenomenon of quantum state reduction of two-qubit systems,
we will review the switching state-feedback stabilization method in [MvHO7] and our
continuous version [LAMI19b] for two-qubit systems with only one quantum channel. Then,
we introduce our feedback approach which ensures the exponential stabilization of two-qubit
systems with two quantum channels towards the target Bell state (see [LAM19b]).

5.1 Quantum state reduction for n-qubit systems

As in the paragraph “Purification” of Section 4.1, we can conclude that only the
diffusion terms of (5.1) contribute to the increase the purity of the quantum state. Then
we discuss how the diffusion terms of (5.1) increase the purity of n-qubit systems with
n > 2, when we turn off the control input.

Let us consider the case of n-qubit systems with n quantum channels. Assume that
the measurement operator of each quantum channel denoted by L; has K; different real
eigenvalues A}, ... X, and the algebraic multiplicity of each eigenvalue \}, is M}, where

Z,I::ll M, = N. Consider the “variance function” of L;
Yi(p) = Tr(Lip) — Tr*(Lip).
By the eigendecomposition, we write L; with respect to a basis of eigenstates as L; =

Ki i (NME i i VF) o i i i i My, i\ i
Do M (20 uy,, (ug,) ) with Liuj, = Ay, Denote aj == 374 (uy,)"pu, > 0 then
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Quantum state reduction for n-qubit systems

S K ab =1, due to Jensen inequality, we have

K;

Tr(Lip) — Z (Ae)%al (Z /\kozk> >0,

=1

.

the last equality holds if and only if there exists a k such that o = 1, which is equivalent
to say that p is an eigenstate of L; associated with A, i.e., L;p = Aip. Thus, {p €
Sn| D%, Yi(p) = 0} is the set of common spaces of the pure states corresponding to

eigenvectors of L1, ..., L,. Suppose Hy, L1, ..., L, commute with each other, then we have
2
LVi(p) = —4ni(%(p))” =Y T (LiGrlp)) < —dni(%i(p))*s
k#i

which implies

& (Z %(p)) <—4 (Z m(%(p))2> < —4g (Z %(M) :

where 1 := min{7n,,...,n,} > 0. By using the stochastic LaSalle-type theorem (Theo-
rem A.2.3), we can show that > " | ¥(p;) converges to 0 almost surely, when ¢ goes to
infinity.

In order to observe the phenomenon of quantum state reduction of n-qubit systems
to realize our objective, and in view of stabilizing the systems towards an arbitrary GHZ
state, it is sufficient to implement two quantum channels such that the common states
of the corresponding measurement operators coincide with the Bell states or GHZ states.

For the purpose of simplicity, we take L1 = /ML, and Ly = /ML, with My, My > 0
describing the strength of measurement and

LZ:diag(ll,...,lN/g,lN/Q,...7l1), L;E:O'fm, (53)

where [; # [; if @ # j, and we denote [ > 0 the minimum absolute difference between
any two different I; and [;, i.e., | := minj;{|l; — [;|}. Denote Ay, := pys + pgj with
k:= N + 1 — k, then we have

NJ2 N/2 2

Yi(p) = My (Tx(L2p) — Th*(L. ZzzAk > hAg] | >0,

2
N/2

V3(p) = Ma(Tr(L2p) — Tr*(Lop)) = My [ 1= [ Y 2Re{p, i} | | > 0.

For n-qubit systems, we denote the set of all GHZ states by
Ey:={GHZ},...,GHZy ,}.

Then, we deduce that -
{p € Sn|7(p) + Y2(p) = 0} = En.

By the above argument and if Hy commutes with L,, L., we can show that a n-qubit
system converges to one GHZ state almost surely, when ¢ goes to infinity. However, if
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we implement only one quantum channel, and the corresponding measurement operator
is chosen to be Ly, then the system converges to the subspace {p € Sy| Ay = 1} for
k€ {1,...,N/2}, which contains two GHZ states GHZ;’.

Now, we focus on n-qubit systems with two quantum channels, assuming again that
the two measurement operators are Ly = /ML, and Ly = /M,L,, which are defined
in (5.3), and with Hy satisfying [Hy, L1] = [Ho, Lo] = 0. It is well known that, we cannot
obtain any information on the rate of convergence by LaSalle theorem. Then, inspired by
the approach adopted in the case of quantum spin systems in Theorem 4.1.2, we introduce
our method to study n-qubit systems with two quantum channels.

Firstly, we provide the invariant properties of p; in this case by the following two
lemmas, which are analogous to the first part of Lemma 4.1.1.

Lemma 5.1.1. Assume u = 0. If A,(0) = 0 for some k € {1,...,N/2}, then P(A(t) =
0,Vt > 0) = 1. If the initial state satisfies Ay(0) > 0, then P(A(t) > 0,Vt >0) = 1.

Proof. For u =0, the dynamics of Ag(t) is given by

dAk(t) = 2¢/m My Ay (t) (Le—Tr (L. py) ) dW5 (£) 42/ 1o Mo (2Re{ py . } = Tr (Lo pe) Ak () ) dWa ().
Since p > 0 one has, for all k € {1,..., N/2}, 2Re{p; .} < A. In particular we have

‘2\/771M1Ak(t)(lk - Tr(szt))’ < RAL(D),
2V (2Re{py 5} — Tr(Lap)Aelt)| < RAK(E),

for some R > 0, which yields the first part of the lemma.

Let us now prove the second part of the lemma. Given ¢ > 0, consider any C? function
on S such that

1

A simple computation shows that ZVj(p) < KVi(p) if Ax > ¢ for some positive constant
K. To conclude the proof, one just applies the same arguments as in Lemma 4.1.1. Roughly
speaking, by setting f(p,t) = e %!V, (p), one has £ f < 0 whenever A, > ¢. From this fact
one proves that the probability of Ay becoming zero in a finite fixed time T is proportional
to € and, being the latter arbitrary, it must be 0. This concludes the proof. 0

We denote V,(p) := 1 — Tr*(L,p).

Lemma 5.1.2. Assume u = 0. If Vy(po) = 0 then P(V,(ps) = 0,Vt > 0) = 1. If the initial
state satisfies Vy(po) > 0, then P(V,(py) > 0,Vt > 0) = 1.

Proof. For u =0, the dynamics of V,(p;) is given by
dVy(pi) = — 4 MiT*(p,)dt — A MoV, (pr)dt
— A/ M Tr(Lop)U(pe)dW1 (1) — 4/ 1Mo Tr(Lopy) Va (o) dWa (1),

where I'(p) := Tr(L,L,p) — Tr(L.p)Tr(L.p). Moreover, we can write I'(p) in following
form,

1+Tr(Lsp)

Tr(L.L.p) + Tr(L.p) + % < CVi(p), if Tr(L.p) <O,

I(p) {Tr(LxLZp) — Tr(L.p) + Tr(Lep)Valp) < CVi(p), if Tr(Lyp) > 0;
p =
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Quantum state reduction for n-qubit systems

for some C' > 0. It implies that
[4m M2 (p) + 4 MV (p)] < RV:(p),
|4/ m M Tr(Lop)T(p)| < RV (p),
|44/ 2 M2 Tr(Lap) Va(p)| < RVa(p),
for some R > 0, which yields the first part of the lemma.
Let us now prove the second part of the lemma. Given ¢ > 0, consider any C? function

on Sy such that

V.(p) = V.0) if V.(p) > e.

A simple computation shows that £V,(p) < KV,(p) if V.(p) > ¢ for some positive
constant K. To conclude the proof, one just applies the same arguments as in the previous
lemma and Lemma 4.1.1. 0

We now show the exponential convergence towards £, in mean and almost surely for
n-qubit systems when u = 0.

Theorem 5.1.3 (Exponential quantum state reduction). For system (5.1) with L; =
VML,, Ly = /MyL,, w = 0 and py € Sy, the set E, is exponentially stable
m mean and a.s. with average and sample Lyapunov exponent less than or equal to
—min{n M,1?/2, 2noMy5}. Moreover, the probability of convergence to p € Ey is Tr(pop).

Proof. Let I := {k|Ax(0) =0} and S; := {p € Sy| Ay =0 if and only if £ € I}. Then by
Lemma 5.1.1, Sy is a.s. invariant for (5.1) in this case. Consider the function

Vip) =Ulp) + v Vi(p) 20 (5.4)

as a candidate Lyapunov function, where

Up) =Y VAl >0, Vi(p) =1-T*(L,p) > 0.

kh

Note that V(p) = 0 if and only if p € Ej,. Since the candidate Lyapunov function V(p) is
twice continuously differentiable when restricted to the invariant sets S;N{p € Sn| Va(p) >
0} and Sy N {p € Sy|Vz(p) = 0}, we can compute the infinitesimal generator of V(p),

_771]\/fll2
2

LV (p) < U(p) = 2maMa\/Va(p) < =CV(p).

where C' := min{n; M1%/2,2n,M,}. For all py € S, we have

E(V (o)) = V(po) — 0/0 E(V(ps))ds.

In virtue of Grénwall inequality, we have E(V (p;)) < V(po)e C!. By a straightforward
calculation, we can show that the candidate Lyapunov function is bounded from below
and above by the Bures distance from FEy,

Cidg(p, En) < V(p) < Cadp(p, En), (5.5)
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where C; = 1/8 and Cy = N(N/2 — 1) + 4. It implies

_ C _
E(dp(pi. Bn)) < & di(po, Ea)e™ ", Vo € Sy,
1

which means that the set E, is exponentially stable in mean with average Lyapunov
exponent less than or equal to —C.

Now we consider the stochastic process Q(p,t) = ¢“*V (p;) > 0 whose infinitesimal
generator is given by ZQ(p,t) = e“'(C'V(p) + LV (p)) < 0. Hence, the process Q(pt, 1)
is a positive supermartingale. Due to Doob’s martingale convergence theorem [RY13], the
process Q(ps, t) converges almost surely to a finite limit as ¢ tends to infinity. Consequently,
Q(py,t) is almost surely bounded, that is sup;s, Q(ps, t) = A, for some a.s. finite random
variable A. This implies sup,~, V (p;) = Ae~“" a.s. Letting t goes to infinity, we obtain
limsup,_,., +log V(p;) < —C a.s. By the inequality (5.5),

1 _ _
limsup - log dg(p, En) < —C, a.s. (5.6)

t—o00 t

which means that the set E, is a.s. exponentially stable with sample Lyapunov exponent
less than or equal to —C'.

Finally, the fact that the probability of convergence to p € E, is Tr(pyp) may be
proved by standard arguments (see e.g., Theorem 4.1.2). The proof is complete. [l

The simulations for a two-qubit system with two quantum channels, where L, = 0, ®0c,
and L, = 0, ® 0, in the case u = 0 are shown in Fig. 5.1, we observe that the expectation
of the Lyapunov function E(V(,ot)) is bounded by the exponential function V(py)e= !
with C' = min{2nm; M1, 27, M, }. Denote the set of four Bell states by

Eg = {‘I’i, @i}

We can also observe that the expectation of the Bures distance E(dB(pt, Ez)) is always
bounded by Cy/C1dg(po, E)e~¢t, which confirms the results of Theorem 5.1.3.
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FIGURE 5.1 — Quantum state reduction with two quantum channels and u = 0 starting at
diag(0.2,0.3,0.1,0.4), when w = 0.3, 71 = 0.3, M1 = 1, 7o = 0.4 and My = 0.9 : the black
curve represents the mean value of the 10 arbitrary samples, and the red curve represents the
exponential reference with exponent —C'. The figures at the bottom are the semi-log versions of
the ones at the top.
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5.2 Asymptotic stabilization of two-qubit systems

In this section, we consider two-qubit systems with only one quantum channel. As
we discussed above, the diffusion term of (5.1) contributes to the convergence of the
system towards the set of pure states corresponding to vectors belonging to the one of
the eigenspaces of the measurement operator Lq, but not necessarily towards a Bell state.
Thus, in this case the feedback controller plays two roles,

1. it breaks the attraction of the antipodal eigenspace?!, and

2. it stabilizes the system towards the target Bell state.

We first introduce the switching feedback control law proposed in [MvHO07]. Then, inspired
by this method and based on the analysis of each sample path of quantum trajectory
in [LAM19a], we propose a continuous feedback controller [LAM19b].

Switching feedback control law The method for stabilizing quantum spin systems,
discussed in subsection 4.2.2, can be extended to two-qubit systems. For stabilizing
quantum spin systems, we need to construct a suitable feedback controller to break the
attraction of the antipodal states. However, the obstacle here is more difficult since, in the
presence of a single measurement operator, the quantum state reduction phenomenon only
predicts the convergence to a subset, and not to an isolated state (unlike Theorem 5.1.3).

In [MvHO07], the control goal is to stabilize the system towards p € {®,,®_}, then
the author choose Ly =0, ® 1 + 1 ® 0, = diag(2,0,0, —2) as the measurement operator,
which contains the eigenvector associated with the target Bell state. The advantage of this
choice of L; is that each antipodal eigenspace corresponds to only one pure state. Now, let
us consider ®_ as the target Bell state, the case ®, as the target Bell state can be done
in the same manner. In order to avoid the attraction of the antipodal eigenspaces, which
are in fact only two pure states given by p, := diag(1,0,0,0) and p, := diag(0,0,0, 1), the
authors analyze the quantum trajectory in the following two subspaces of &4, which are
defined based on the value of the function V(p) =1 — Tr(p®_) as below,

So1y={p €81 -7 V(p) <1}, Sciqypi={pe€S0<V(p) <1-17/2},

where v € (0,1). Note that, the above two subspaces have two obvious but important
properties,

o {p1,ps, P} C S>1-; and

e the only Bell state belonging to S<;_,/» is the target state ®_.
Due to these facts, we can solve the control problem in the following three steps,

1. by the support theorem, Feller continuity and Dynkin estimation, we can show
that, there exists a v € (0, 1) such that, under the effect of the control Hamiltonian
H, =0, ® 1 and a constant feedback controller u; = 1, p; exits S>;_, in finite time
almost surely ;

2. by the strong Markov property, stochastic Lyapunov-type argument and Borel-
Cantelli lemma, we can show that, for almost every sample path w € €2, there exists

1. The antipodal eigenspaces the sets of pure states corresponding to vectors belonging to the eigenspaces
of the measurement operator, which do not contain the vector associated with the target state.
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a finite time T'(w), such that for all ¢ > T'(w), the quantum trajectory p;(w) stays in
S<i_/2 and never exits, under the (switching) feedback controllers u; and s ;

3. by stochastic LaSalle theorem [MvH07, Theorem 2.3|, for all py € Sy, p; converges to
the target state ®_ under suitable (switching) feedback controllers u; and uy almost
surely.

Note that, in order to apply a stochastic Lyapunov-type argument or stochastic LaSalle
argument, we need to find a Lyapunov function whose infinitesimal generator is not positive.
In fact, it is never obvious to construct such a Lyapunov function for the system with only
one control Hamiltonian, and this issue would be much easier to treat if one adds a second
control Hamiltonian. Then we sum up the above analysis by the following theorem [MvHO07,
Theorem 5.1].

Theorem 5.2.1. Consider the system (5.1) evolving in the set Sy, which contains only
one quantum channel Ly = o, ® 1+ 1 ® o, and two control Hamiltonians Hy = o, ® 1,
Hy=1®o0,. Let ®_ be the target state and let v > 0. Consider the following control law :

1. wi(p) =1 —Tr(i[Hy, p]®-) and us(p) =1 — Tr(i[Ha, p|®_) for p € S<i_;

2. ui1(p) =1 and up(p) = 0 for p € Ss1_y/2;

3. for p € B = {p € S|v/2 < Tr(pp;) <}, then ui(p) = 1 — Tr(i[Hy, p]®_) and
us(p) = 1 — Tr(i[Ha, p|®_) if py entered B through the boundary V(p) =1 —~, and
ur(p) =1 and up(p) = 0 otherwise.

Then, there exists v > 0, such that u(p) almost surely globally stabilizes the system towards
P_.

Continuous feedback control law Our purpose here is to stabilize the system (5.1)
towards an arbitrary Bell state p € Ey = {¥ L, .} with only one quantum channel under
a continuous feedback controller. We choose

Li=+/ML, L,:=0,®0,=diag(l,—1,-1,1)

as the measurement operators, and the set of pure states corresponding to the eigenspaces
of L; and Lo contain all Bell states. In this case, the diffusion term strengthens the
convergence ? towards Sy, U Sp, where

Suy ={p€Silpaa=p33=0} Sa, :={p€SEilp11=psa=0}
Here, we take Hy = wlL, with w > 0.

Generally speaking, based on the support theorem, trajectories of Equation (5.1) may
be interpreted as limits of solutions of the following deterministic equation

po(t) = —i[Ho + > py weHe , po(£)] + (1 = m) (L1pu(t) L1 — pu(t))
20 TE(Lap) G (pul1)) + /G (p(0) 1 (1),

with v1(t) € V, where V is the set of all piecewise constant functions from R, to R, and
(71 is defined as in (5.2). In particular, the set S, is positively invariant for Equation (5.7).
Then we provide sufficient conditions on the feedback controller, such that p; can enter an
arbitrary neighborhood of the target Bell state. Denote X5(p) := Tr(pp).

(5.7)

2. In fact, we can show this convergence is exponential in mean and almost surely, by the similar
approach as the proof of Theorem 4.1.2.
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Lemma 5.2.2. Let p = £ with £ € {Vy, P} and suppose 1 € (0,1). Assume that the
feedback controllers and control Hamiltonians satisfy the following conditions:

C.1. uw e CH8E,R™), us # 0 and up =0 for k > 1 on the set {p € S4| X5(p) =0} ;

C.2. & H.& and L, H\& are linearly independent and Hy does not admit an eigenvector
orthogonal to the space spanned by them ;

C.3. On S\ p, > i, ug[Hy, p] is not tangent to Se.

Then for all r > 0 and any given initial state py € Sy, P(7, < 00) = 1, where 7, := inf{t >
0| p: € B.(p)} and p; corresponds to the solution of System (5.1) in this case.

Proof. The lemma holds trivially for py € B,(p), as in this case 7, = 0. Let us thus
suppose that py € Sy \ B,.(p). We show that there exists T € (0,00) and ¢ € (0, 1) such
that P,, (7, < T') > (. For this purpose, we make use of the support theorem. Consider
the following differential equation derived from (5.7),

Xo(po(t)) = =Ou(pu(t)) + ©1(pu(1)) + 2X5 (pu(t)) VMM Pr (pu (1)) vi (2),

where vy (t) € V is the control input, and

Ou(p) == > uTr(i[Hy, plp), ©1(p) := 4m M Tr(L.p) Pi(p) X5(p),

Pi(p) :== A\, — Tr(L.p) where L.p = \.p.

Firstly, we show by contradiction that, if X, (p,(0)) =0 then X, (p,(t)) > 0 immedia-
tely. Suppose X;(p,(s)) =0 for s € [0, €] with e > 0, which is equivalent to p,(s)¢ = 0,
take this assumption into account in Equation (5.7), then combining with the condition
C.1, we have

po(8)E = —tuipy(s)H1§ = 0,

which implies p,(s)H1£ = 0 since u; # 0. After a straightforward calculation, for s € [0, €],
we have

§ Hipy(s)H & = My(1 —m)§"HiLp,(s)L.H,§ =0,

which implies p,(s)L,H1§ = 0. Thus, for s € [0,¢], due to the condition C.2, ¢ is not
an eigenvector of H; then [Hi, p,(s)] # 0 which leads to a contradiction. Hence, we can
conclude that, under the assumptions of the lemma on the feedback controller and control
Hamiltonians, i.e. C.1 and C.2, if X, (pv(O)) = 0, there exits an arbitrarily small ¢y > 0
such that X, (p,(to)) > 0.

Next, we show that, if P; (pU(O)) = 0 then |P (pv(t))| > 0 immediately. One ea-
sily checks that Py(p) = 0 implies p € S, so that Fi(p) = Gi(p) = 0. In particu-
lar, if Pi(p,(0)) = 0 then the right-hand side of Equation (5.7) at time 0 becomes
—iy v uk[Hy , pp(0)]. Due to the condition C.3, if p,(0) € S¢ \ p, there exists an arbitra-
rily small o > 0 such that p,(to) ¢ S¢, which implies |P;(p,(to))| > 0.

Therefore, without loss of generality, we suppose P; (pv(O))Xp (pv(O)) > 0. For t > 0,
we can thus take the feedback v; = KPi(p)Xz(p) with K > 0 sufficiently large. The
proposed control input v guarantees that p,(t) € B,(p) for t < T with T'" < co. Now,
considering the stochastic solution of (5.1) in this case, we deduce that P(p; € B.(p)) > 0
for t < T from the support theorem.
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By compactness of S; \ B,(p) and the Feller continuity of p;,, we have
SUD e84\ B, (p) oo (Tr = T) <1 —=( < 1, for some ¢ > 0. By Dynkin inequality [Dyn65],

<

E, (7)< T
sup Tr) =
ESOB(B) 1 —supcs\8.(p) Poo(7r 2 T)

ke

Then by Markov inequality, for all py € S, \ B.(p), we have

P, (1, =00) = lim P, (7, > n) < lim E, (7,)/n =0,

n—oo n—o0

which implies P, (7, < oo) = 1. The proof is complete. O

By employing the first two steps of the proof of Theorem 4.3.8, we can obtain a general
result concerning the asymptotic stabilization of System (5.1) with only one quantum
channel towards the target Bell state.

Theorem 5.2.3. Assume that the feedback law u satisfies the assumptions of Lemma 5.2.2
and u(p) = 0. Additionally, suppose that there exists a twice continuously differentiable
positive function V(p) such that V(p) = 0 if and only if p = p. Moreover, suppose that
there exist positive constants C', C7 and Cs such that

(i) Cid%(p,p) < V(p) < Cody(p, p) withp >0, for all p € Sy, and
(ii) LV (p) <0, for all p € B.(p) with r > 0.
Then, p is a.s. asymptotically stable for System (5.1) in this case.

Remark 5.2.4. Theorem 5.2.3 ensures the global asymptotic stabilization of the system
only providing local Lyapunov type condition. The additional assumptions on u; and Hy
are used to avoid the presence of invariant subsets of S;. These conditions are not optimal
and may be easily weakened. We believe that by applying Proposition 4.3.4, we can relax
these conditions for the case n < 1. We note that we do not need to find a global Lyapunov
condition or apply the LaSalle theorem as in [MvHO07, YTHO07].

We next discuss an example of application of the previous result. We define the following
continuously differentiable function on [0, 1],

0, if x € [0, €);
f(x) = ¢ 3sin <—W(§ZE€:—1€Z)€2)> + 3, ifa€lea,e);
1, if 7 € (€2, 1],

where 0 < €1 < €5 < 1. As an example of application of the previous result, we propose the
following continuous feedback law and control Hamiltonians inspired by Theorem 5.2.1.

Proposition 5.2.5. Consider the system (5.1) with py € Sy, m € (0,1) and m = 2. Let
p € Es be the target state. Define Hy =0, ® 0y + 0, ® 0, + 1 ® 0, and the feedback laws
in the following form

v — Tr(i[Hy, plp),
F(Xp(p) (v — Tx(i[Ha, plp)),

ui(p)

uz(p) o9

where || is sufficient large. If
o p=V, take Hy = Fo,®0,*+0,®0,—0,®1;
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Exponential stabilization of two-qubit systems

o p=>,, take Hy = Foy,®o0, 0, X0, +0,® 1.
Then p is a.s. asymptotically stable.

Proof. We apply Theorem 5.2.3 with the Lyapunov function V(p) =1 — Xz(p). We can
easily verify that the feedback law and control Hamiltonians satisfy the assumptions of
Lemma 5.2.2, d%(p, p) < V(p) < 2d%(p, p) in S; and £V (p) < 0 in a neighborhood of p.
Hence, the proof is complete. [l

The simulations in the case with only one quantum channel are shown in Fig. 5.2
and Fig. 5.3 for ¥, as the target state and ®_ as the target state respectively. Such
simulations confirm the validity of Proposition 5.2.5.
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FIGURE 5.2 — Asymptotic stabilization of system (5.1) in this case towards W with the feedback
laws (5.8) starting at ®_, when w = 0.3, 7, = 0.3, M} =1, ¢; = 0.1, e2 = 0.4 and 7 = 8 : the
black curve represents the mean value of the 10 arbitrary samples.

Vipe)
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FIGURE 5.3 — Asymptotic stabilization of system (5.1) in this case towards ®_ with the feedback
laws (5.8) starting at ¥4, when w = 0.3, 71 = 0.3, M1 =1, ¢ = 0.1, e = 0.4 and v = 8 : the
black curve represents the mean value of the 10 arbitrary samples.

5.3 Exponential stabilization of two-qubit systems

In this section, we consider two-qubit systems with only one control Hamiltonian H; and
two quantum channels. The associated measurement operators are given by L; = /ML,
with M; > 0 and Ly = /M,L, with My > 0, where L, := 0, ® 0, and L, := 0, ® 0.
Here M, My > 0 are the strengths of the interaction between the light and the atoms. We
also take Hy = wL, with w > 0 and use only one control Hamiltonian H;. Note that the
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four Bell states coincide with the common eigenstates of the chosen operators L; and Ls.
Due to the quantum state reduction in this case, Theorem 5.1.3, if we turn off the control
input u = 0, the system (5.1) converges exponentially towards one Bell state belonging to
Ey = {W., ®_.}. Based on this powerful result, we study the exponential stabilization of
system (5.1) towards a target state p € E,. We first establish a general result ensuring
the exponential convergence towards p under some assumptions on the feedback law and
an additional local Lyapunov type condition. Next, we design a parametrized family of
feedback control laws satisfying such conditions for some choice of the control Hamiltonian.

Denote X5(p) := Tr(pp) and ©,(p) := u(p)Tr(i[H1, p|p).

Lemma 5.3.1. Assume that the initial state satisfies py # p, u € C*(S4,R) and u(p) = 0.
Then P(p; # p,¥t > 0) = 1.

Proof. Given € > 0, we consider any C? function on S such that

1
Vip)=——,  ifX,(p)<1—c
We find
Ou(p 4 My (N, = Te(L.p)) “Tr*(pp) | 42 Ma(As — Tr(Lap)) "Tr*(pp)
ZLV(p) = — () 2 ( )3 + ( ?&

(1 - Xﬁ(ﬂ)) (1 - Xﬁ(ﬂ))

whenever X (p) < 1 — ¢, where L.p = \,p and L,p = \,p.

(1= Xa(p)

By applying the assumptions v € C*(S;,R) and u(p) = 0, we deduce that

[u(p)| = lu(p) = u(p)| < Cillp — pllns < V2C11/1 = X (p)

for some positive constant C, where || - ||zs denotes the Hilbert-Schmidt norm. By the
similar argument, we have |Tr(i[H}, p]p)| < v/2Ca+/1 — X,(p) for some positive constant
C5. Then we have |0,(p)| < C(1 — X;(p)) for some positive constant C. Moreover,

_ - 1

Ao = Tr(Lap)l <2(1=X5(p)), Ao = Tr(Lap)] < 5 (1 = X5(p)),
it is easy to check that ZV(p) < KV(p) for some K > 0. To conclude the proof, one just
applies the same arguments as in Lemma 4.1.1 . O

Based on the support theorem, the corresponding deterministic control system corres-
ponding to Equation (5.1) in this case is given by

polt) = Folpo(®)) + 3 F5(pu(1)) + 3 VG5 (o) vs 1), (5.9)

with v1(t) and vs(t) belonging to V, where V is the set of all piecewise constant functions
from R, to R, and

Fi(p) =(1 = m1)(L1pL1 — p) + 2mTe(L1p)G1(p),
Fy(p) :=(1 — m)(LapLa — p) + 2 Tr(Lap)Ga(p),

with Fpy, G and Go defined as in (5.2). In particular, the set Sy is positively invariant for
Equation (5.7).
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Exponential stabilization of two-qubit systems

Lemma 5.3.2. Let p = &€ with £ € {Vy, P}, Suppose ni,ne € (0,1) and the feedback
controller satisfying the assumptions of Lemma 5.3.1. Assume that the feedback controller
and control Hamiltonian satisfy the following conditions:

1. w# 0 on the set {p € S4| Xp(p) =0} ;

2. ¢, Hi&, L,H& and L,H & are linearly independent.
Then for all r > 0 and any given initial state py € Sy, P(7, < 00) = 1, where 7, := inf{t >
0| p: € B.(p)} and p; corresponds to the solution of System (5.1) in this case.

Proof. The lemma holds trivially for py € B,(p), as in this case 7, = 0. Let us thus
suppose that py € S\ B,.(p). We show that there exists T € (0,00) and ¢ € (0, 1) such
that P, (7, < T) > (. For this purpose, we make use of the support theorem. Consider
the following differential equation derived from (5.9),

2 2

Xﬁ(pv<t)) = _@u(Pv(t» + Z@j (pv( )) + 2X Z n M t))vj<t)

j=1 j=1
where vy (t) and vy(t) belonging to V are the control inputs, ©,(p) := u; Tr(i[H;, p|p) and

O1(p) == 4m M Tr(L.p) Pi(p) Xp(p),  Pi(p) := A: — Tr(L.p) where L.p = \.p;
Oa(p) = Ao MoTr(L,p) Pa(p) Xp(p), Pa(p) := Ay — Tr(Lyp) where L,p = A\, p.

Firstly, we show by contradiction that X,(p,(t)) > 0 for ¢ > 0. Suppose X, (ps(s)) =0
for s € [0,¢] with € > 0, which is equivalent to p,(s)§ = 0. Take this assumption into
account in Equation (5.9), for s € [0, €], we have

,01;(3)5 = _iUpv(S)H1§ =0

which implies p,(s)H1£ = 0 since u # 0. After a straightforward calculation, for s € [0, €],
we have

§ Hipy(s)H1§ = Mi(1 —m)&" HiLzpy(s)LoHr&§ + Ma(1 — 12)§" HiLypy(s) Lo H1€ = 0,
which implies that p,(s)L.H1{ = 0 and p,(s)L.Hi{ = 0. Thus, for s € [0, €], under

the assumption of the lemma, p,(s) € C*** has four linearly independent eigenvectors
corresponding to the eigenvalue zero, which leads to a contradiction. Hence, we can conclude
that, under the assumption of the lemma on the feedback law and H, if X, (pU(O)) =0,
there exists an arbitrarily small ¢, > 0 such that X, (p,(to)) > 0.

Set P; := {p € S| Pi(p) = 0} and Py := {p € 84| Po(p) = 0}. We note that

P1 NPy, = p. For t > t5, we can thus take the feedbacks vy = KPi(p)Xz(p) and

= K P5(p)Xp5(p) with K > 0. The proposed control input v guarantees that p,(t) € B,.(p)

for t < T with tyg < T < o0, if K is sufficiently large. Now, considering the stochastic

solution of Equation (5.1) in this case, we deduce that P(p; € B,(p)) > 0 for ¢t < T from
the support theorem (Theorem A.2.1).

By compactness of S; \ B.(p) and the Feller continuity of p;, we have
SUD pye8:\ B (p) Poo(Tr 2 T) <1 —( < 1, for some ¢ > 0. By Dynkin inequality [Dyn65],

E, (1) < T < T
sup 7) < <.
ESN\B(P) 1 —sup,esn.(p) Poo(7r 2 T) ~ ¢
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Then by Markov inequality, for all py € Sy \ B,.(p), we have

P, (1, = 00) = lim P, (1, > n) < lim E, (7,)/n =0,

n—00 n—o0

which implies P, (7, < oo) = 1. The proof is complete. O

By combining Lemma 5.3.2 and following arguments similar to Theorem 4.3.8, we get
the following general result concerning the exponential stabilization towards Bell states.

Theorem 5.3.3. Assume that pg € Sy and the assumptions of Lemma 5.5.2 are satisfied.
Additionally, suppose that there exists a positive-definite function V(p) such that V(p) =0
if and only if p = p € Ey, and V is continuous on S, and twice continuously differentiable
on the set Sy \ p. Moreover, suppose that there exist positive constants C, Cy and Cy such
that

(i) Cidg(p,p) <V(p) < Cadp(p,p), Vp € S, and

(1) hmsuppﬁp‘g;/VT;)p) < -—C.

Then, p is a.s. exponentially stable for the system (5.1) with sample Lyapunov exponent less

than or equal to —C'—% | where K :=liminf, ,; (g7(p)+g3(p)) with g;(p) := \/n_ja‘gﬁp) (\;/jT(pp))
forj=1,2.

Next, we derive general conditions on the feedback law and the control Hamiltonian
which allows us to apply the previous theorem.

Theorem 5.3.4. Let py € Sy and p € Ey be the target state. Suppose that the assumptions
of Lemma 5.3.2 and the following relation

limsup ©,(p) /d3(p, p) = 0 (5.10)

p—p

are satisfied. Then p is almost surely exponentially stable with sample Lyapunov exponent
less than or equal to —C' where C' = min{n; My, neMs}.

Proof. To prove the theorem, we show that we can apply Theorem 5.3.3 with the Lyapunov
function V(p) = /1 — X,(p) with p € E,. Note that dg(p,p) < V(p) < v2dp(p,p),
we are then left to show the condition (ii). The infinitesimal generator of the Lyapunov
function satisfies,

2v(p) < 2ulo) Kol )(;(P%p) £ P2p),

~2V(p ) 2V73(

Since p > 0, by estimating the right hand side of the above inequality, we obtain the
following for all p € Sy \ p,

2V < -5V (X0 - Zars ).

As g3(p) + g5(p) > CX2(p) and by using the relation (5.10), we can apply Theorem 5.3.3
with C' = C/2 and K = C. The proof is hence complete. O

An application of the previous results is given below.
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Proposition 5.3.5. Consider system (5.1) with py € Sy and n1,m5 € (0,1). Let p € Fy
be the target state. Define the control Hamiltonian as Hy = 0, ® 0y + 0., @0, + 1 R 0,

and the feedback law as
B . _
u(p) = a(l = Xp(p))" = yTe(i[Hy, plp), (5.11)

wherey > 0, 6 > 1 and o > 0 sufficiently large. Then p is almost surely exponentially stable
with sample Lyapunov exponent less than or equal to —C' where C' = min{n, My, noMs}.

Proof. By simple computations one can show that the feedback law and the control
Hamiltonian satisfy the relation (5.10), the assumptions of Lemma 5.3.1 and Lemma 5.3.2.

The result then follows Theorem 5.3.4. O

The simulations for the case with two quantum channels are shown in Fig. 5.4 and
Fig. 5.5.
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FIGURE 5.4 — Exponential stabilization of system (5.1) towards ¥ with the feedback law (5.11)
starting at ®_, when w =03, =03, M1 =1,1n10=04, My =09, =10, §=12and y=1:
the black curve represents the mean value of 10 arbitrary samples, and the red curve represents
the exponential reference with exponent —C. The figures at the bottom are the semi-log versions

of the ones at the top.
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FIGURE 5.5 — Exponential stabilization of system (5.1) towards ®_ with the feedback law (5.11)
starting at W, when w =0.3, 71 =03, M1 =1, 170 =04, My =09, a=10,=12and y=1:
the black curve represents the mean value of 10 arbitrary samples, and the red curve represents
the exponential reference with exponent —C. The figures at the bottom are the semi-log versions

of the ones at the top.
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Feedback stabilization of open quantum spin
systems with unknown initial states

In Chapter 3, we have already introduced the quantum filtering theory and obtained the
stochastic master equation (3.43) whose solution gy, called quantum filter, is the optimal
estimator in L? sense of the actual quantum state p,. If the initial state py is known,
then we can set pp = po, and the stochastic master equation (3.43) describes the time
evolution of the quantum state p; the feedback stabilization in this case has been discussed
in Chapter 4 and Chapter 5. However, if the quantum filter is “wrongly initialized”, i.e.,
po # po, how can we ensure that the distance between the estimator p, and the true
quantum state p; converges to zero when t goes to infinity ?

This problem has been investigated in some papers. In a series of papers by van Han-
del [vHOG6, vHO9b, vH09a, vH10], a sufficient observability condition has been established
so that such convergence is guaranteed. However, such condition is not easy to verify even if
the system is finite dimensional. In [DKSAO06], by showing that the Hilbert-Schmidt inner
product of p; and py, i.e., Tr(pip:), is a sub-martingale, the authors proved the convergence
to one of the distance between p; and p; when at least one of them is always pure. Then,
in [Roull], by applying Uhlmann’s technique [NC02, Theorem 9.4], the author showed
that the fidelity between the state of the discrete-time quantum filter [SDZ"11] and the
state of the open quantum system is a sub-martingale via a Kraus map. However, this
sub-martingale property of the fidelity cannot ensure the convergence of the filter state
towards the actual one. In [AMR11] the authors show that the fidelity is a sub-martingale
for continuous-time quantum filters with the perfect measurement for arbitrary mixed
states. By quantum repeated interaction approach, such result has been extended to the
continuous-time case with general measurement imperfections in [APR14]. Then, in [BP14]
, the authors showed that, for a more general quantum filter dynamics, which is described
by a jump-diffusion stochastic differential equations, when the control input is turned off
under non-demolition perfect measurements, the convergence is ensured.

In this chapter, we will firstly consider the convergence problem for the quantum
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state of actual quantum spin—% systems with imperfect measurements and the estimated
state [LAM20]. Next, we discuss the exponential stabilization problem of N-level quantum
spin systems (6.8) undergoing imperfect measurements with the unknown initial data
towards the predetermined pure state associated with an eigenvector of the measurement
operator J, [LAMDb].

6.1 Convergence property of quantum spin-% systems

Here, we consider quantum Spin—% systems. The stochastic master equations of the

actual system and its corresponding filter follow the following dynamics,

dpe = Fu(pr)dt + L(p;)dt + G(pe) (dY; — 24/nMTr(o.py)dt),
dpy = Fulpo)dt + L(p)dt + G(p) (AY; — 24/nM Ta(po)dt)

where

e the actual quantum state of spin—% system is described by p, which belongs to the
space Sy == {p € C**?| p = p*, Tr(p) = 1, p > 0}. The associated estimated state is
described by p € Ss,

o F.(p) := —i/2lwo. +uoy, p], L(p) := M/4(0.po. — p) and G(p) := v/nM/2(0.p +
po. — 2Tr(0.p)p),

e Y, denotes the observation process of the actual quantum spin—% system, which is a
continuous semi-martingale whose quadratic variation is given by [V, Y], = ¢. Its
dynamics satisfies dY; = dW,; + /nMTr(o,p;)dt, where W; is a one-dimensional
standard Wiener process,

e u := u(p) denotes the feedback controller as a function of the estimated state p,

e w is the difference between the energies of the excited state and the ground state,
n € [0, 1] is determined by the efficiency of the detectors, and M > 0 is the strength
of the interaction between the system and the probe. The matrices o, o, and o,
are the Pauli matrices.

By setting dY; = dW; +2/nMTr(o,p;)dt, we obtain the following matrix-valued stochastic
differential equations describing the time evolution of the pair (p;, p;) € Sa X Sa,

dpy = Fu(pr)dt + L(py)dt + G(py)dWr, (6.1)
If u € C'(Sy, R), the existence and uniqueness of the solution of (6.1) and (6.2) can be
shown by similar arguments as in [MvHO7, Proposition 3.5].

We focus on the fidelity F(p, p) which defines a “distance” between the real state p
and the estimated state p. In the two-level case, the fidelity can be written in the following

form

F(p,p) = Tr(pp) + 2+/det(p) det(p).
Recall that a density operator can be uniquely characterized by the Bloch sphere coordinates
(2,9,2) as

p_]l—i—xax—i—yaijzaz_l{l—i—z x—iy}

2 T 9 lr4iy 11—z
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Convergence property of quantum spin-% systems

The vector (z,y, z) belongs to the ball
B:={(z,y,2) € R’|2® +y° + 2* < 1}.

Thus the fidelity in the Bloch sphere coordinates is given by

Flp.p) = Fo.v) = 5 (1430 + T VAT - )

where v := (z,y, z) denotes the real state and v := (Z,y, 2) denotes the estimated state in
Bloch sphere coordinates. Thus, for the two special cases F(p, p) = 1 and F(p, p) =0,

1. if F(p,p) =1, we have v = v;
2. if F(p,p) =0, we have v+ v =0 and ||v]]* = ||v|* = 1.

The stochastic differential equation (6.1) expressed in the Bloch sphere coordinates
takes the following form

M
dr, = (—wegyt - 7% + @tzt) dt — /nMzz,dWy, (6.3&)
M
dyy = (Wegxt - ?yt) dt — /My, z, dWy, (6.3b)
dZt = —Yltl’tdt + 7]M<]. — Z?)th (63C)

The stochastic differential equation (6.2) in the Bloch sphere coordinates is given by,

M
d‘%t — (—Weg?)t — Ti‘t + thZA’t + nthét('%t — Zt)> dt — \ T]Mli'tZA’tth, (64&)
Ay = | Wegdy — 7% + My 22 — 2) | dt — /M2 dW,, (6.4b)
dzy = (—Qedy — M (1 — 27) (% — 20)) dt + /nM (1 — 27)dW,. (6.4c)

In order to apply the It6 formula on the fidelity F(p, o), we need the unattainability of
the boundary for p and p. By straightforward calculations, we can show that

{p € S| det(p) = 0} = {p € S| Tr(p*) = 1}, (6.5)

which means that the boundary 08, is equal to the set of all pure states P. By a similar
argument as in Lemma 4.1.1, we can obtain the following lemma, which states some
invariance properties for Equation (6.1) and Equation (6.2). Note that the following result
can also be shown by applying Lemma 4.3.2 and Lemma 4.3.3.

Lemma 6.1.1. If py > 0, then P(p, > 0, ¥Vt > 0) = 1. The same results hold true for
pi. Also, if n = 1, 053 X Sy and Sy x 08y are a.s. invariant for Equation (6.1) and
FEquation (6.2).

Proof. The dynamics of the purification function S(p;) := 1 — Tr(p?) is given by

dS(p) = M((l - n)él — =) - (1= UZE)S(Pt))dt - 2\/77_MZtS(Pt)th-
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Then, if n = 1, it is obvious that the set of all pure states P for Equation (6.1) is a.s.
invariant.

Next, let us prove the first part of the lemma. Given € > 0, consider any C? function

on S such that 1
Vip) = ——, if S(p) > e.

We find

1 — 22

LV (p) = (4M— (1—n) 50) ) Vip), ifS(p)>e.

Since 1— 2% > 25(p), then we have £V (p) < KV (p) if S(p) > € for some positive constant
K. To conclude the proof, one just applies the same arguments as in Lemma 4.1.1. Roughly
speaking, by setting f(p,t) = e 5V (p), one has .Zf < 0 whenever S(p) > . From this
fact one proves that the probability of S(p) becoming zero in a finite fixed time 7T is
proportional to € and, being the latter arbitrary, it must be 0. Due to the equality (6.5),
P(p; > 0, ¥t > 0) = 1 when py > 0. Concerning p; and Equation (6.2), the result can be
proved in the same manner. [l

We then propose a new method to analyze the behavior of p; and p; at the boundary.
Denote p, := diag(1,0) and p, := diag(0, 1), which are the the pure states corresponding
to the eigenvectors of o,.

Lemma 6.1.2. Assumen € (0,1) and u € C'(Sy, R). Suppose that py lies in dS:\{p,. p.},
then p; > 0 for all t > 0 almost surely. In particular, if u(p,)u(p.) # O then, for
all po € 083, pr > 0 for all t > 0 almost surely. Moreover, under the assumption
po € 0S8 \{p,, p.}, then p; > 0 for allt > 0 almost surely. In particular, if u(p,)u(p.) # 0
then, for all py € 0Ss, p; exits the boundary in finite time and stays in the interior of So
almost surely.

Proof. Firstly, consider the purification function S(p) := 1 — Tr(p?) for Equation (6.2),
whose dynamics is given by

(I—=n)(1—2%)
2

as(p) = M( — (L= nZ))S(pn) — Anz — 2028 (po) ) dt — 2/ ES (pr)dW,.
Now, since 1 € [0,1), for all p € 9S8, \ {Be(p,) N Be(p,)}} with € > 0 arbitrarily small. By
compactness, there exists a ¢ > 0 such that 2M (1 — n)(1 — 2?) > (. Define 7 := inf{t >
0 pe ¢ 08> \ {Be(p,) N Be(p.)}, for all po € S \ {Be(p,) N Be(p,.)} and t > 0, by Itd’s

formula, we have

B(Sue) B ([ 00— )1 - as ) 2 Bt )

By continuity and the definition of 7, S(pinr-) = 0 almost surely. This implies that
E(t A7) = 0. Since we have E(t A7) > tP(7 > t) we deduce that P(7 > ¢) = 0 for all ¢ > 0.
Due to the arbitrariness of ¢, if py € 982\ {p,, p.} then p; exits the boundary immediately.
Combining with the strong Markov property and Lemma 6.1.1, p; > 0 for all ¢ > 0, almost
surely. Moreover, if py € {p,, p.} then by the condition u(py) # 0 we deduce the same
result.

By repeating the previous lines for the purification function S(p), we can show that, if
po € 982\ {p,, p.}, then p; > 0 for all £ > 0 almost surely. Moreover, if u(p,)u(p,) # 0
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Convergence property of quantum spin-% systems

and u € C'(8,,R), then there exist a neighborhood of p, denoted by B, (p,) and a
neighborhood of p, denoted by B, (p,) such that, u(p) # 0 for all p € B, (p.) U B,,(p,)-
By applying the similar argument as in the last part of the proof of Lemma 4.3.6, we can
show that p; can enter in B, (p.)U B, (p,) in finite time almost surely, which means u(p;)
can become non-zero in finite time almost surely. At once u # 0, p; can exits the boundary
and stay in the interior of S almost surely. The proof is complete. U

Proposition 6.1.3. Assume u(p,)u(p,) # 0 and u € C'(Sy,R), then for all (po, po) €
Sy X S, Fl(pt, pr) converges to one almost surely.

Proof. By Lemma 6.1.1, if n = 1, then 0S; x 08, and int(Ss) x int(Sy) are invariant
for the coupled system (6.1)-(6.2) almost surely. Moreover, if p; or p; stay in boundary
of Sy, then F(p,p) = Tr(pp) € C% For the case n € (0,1), under the assumptions of
feedback controller: u(p,)u(p,) # 0 and u € C'(Sz,R), by Lemma 6.1.2, (p;, p;) can exit
the boundary and stay in int(S;) x int(S;) in finite time almost surely. Note that the
fidelity function is C? in int(Sy) X int(Sy).

Consider the Lyapunov function V(p,p) := 1 — F(p,p). Denote = :=
V(= [[V[2) (1 = [[V][?). For any u € C'(Sy,R), the infinitesimal generator of F(p, p)
is given by

2Fp.p) =202 —viv -3+ Y0 (1 ey

(1= 22 (1= [9]?) + 2221 = VT — 2)Z - 21 - 22)2). (6.6)

In particular, if n = 1, we have

LF(p,p) = %(1 )1 -vv-2)=MQ1-2)(1-F(p.p)). (6.7)

For n = 0, we have

PRy (LEL T FYLEE LT I
M (=20 VR + (= A0 ) o e
=4 a - V== 29 - )
M

— = (VIR =31 = VP - VIVP =50 - 9P)

Therefore, for all n € [0,1] and (p, p) € int(Ss) x int(Sy), we have ZF(p, p) > 0 which
implies that £V (p, p) < 0. By the stochastic LaSalle-type theorem in [Ma099], we deduce
that lim; oo ZF(ps, pr) = 0 almost surely. Since ZF(p,p) for any n € (0,1] can be
written as a convex combination of the expressions (6.7) and (6.8), we have that either |Z|
converges to one or F(p, p) converges to one almost surely. This concludes the proof of
the first part of the proposition. The additional assumption u(p.)u(p,) # 0 rules out the
first possibility, completing the proof of the proposition. O

The simulations of the fidelity F(p;, p;) are shown in Fig. 6.1 and the one of the
trajectories of p; and p; is shown Fig. 6.2. We set p, as the initial state of the real quantum
system and p, as the initial state of the quantum filter.
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FIGURE 6.1 — Convergence of the fidelity F(p, p¢) towards one with the feedback law u(p) =1
starting at (po, po) = (pe, P,), when w = 0.3, 7 = 0.3 and M = 1 : the black curve represents the
mean value of the 10 arbitrary samples.

FIGURE 6.2 — Behavior of the trajectories p; and p; with the feedback law u(p) = 1 during three
seconds, starting at (p,, pg) described by the black and the red point respectively, when w = 0.3,
m = 0.3 and M = 1. The black curve represents the mean value of the 10 arbitrary samples of
pt ; the blue point describes the means value of end point of p;; the red curve represents the
mean value of the 10 arbitrary samples of p;; and the magenta point describes the means value
of end point of p;.
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Exponential stabilization of the coupled N-level quantum spin system

6.2 Exponential stabilization of the coupled N-level quan-
tum spin system

In this section, we consider N-level quantum spin systems with unknown initial states.
The stochastic master equations are given by

dp; = Fu(pi)dt + L(p)dt + G(p) (dY: — 2¢/nMTr(J.py)dt),
dpr = Fu(pe)dt + L(p)dt + G(pe) (dY; — 24/nMTr(J.p,)dt),

where

e the actual quantum state of the quantum spin systems is described by p, which
belongs to the space Sy := {p € CV*N|p = p*, Tr(p) = 1, p > 0}. The associated
estimated state is described by p € Sy,

o Fu(p) = —ilwl. + uldy,pl|, L(p) :== 2(2J.pJ. — J2p — pJ?) and the diffusion term
is given by G(p) :== /nM (J.p + pJ. — 2Tx(J.p)p),

e Y, denotes the observation process of the actual quantum spin system, which is
a continuous semi-martingale whose quadratic variation [Y, Y], = t. Its dynamics
satisfy dY; = dW; + 2¢/nMTr(J,p;)dt, where W; is a one-dimensional standard
Wiener process,

e u = u(p) denotes the feedback controller as a function of the estimated state p,

e J. and J, are the (self-adjoint) angular momenta along the axis z and y respectively,
J = % represents the fixed angular momentum, they are defined by Equation (4.2)
and Equation (4.3),

e 7 € (0,1] measures the efficiency of the detectors, M > 0 is the strength of
the interaction between the system and the probe, and w > 0 is a parameter
characterizing the free Hamiltonian.

By setting dY; = dW; +2y/nMTr(J,p;)dt, we obtain the following matrix-valued stochastic
differential equations describing the time evolution of the pair (p;, p;) € Sy X Sy,

dpr = Fu(pe)dt + L(p)dt + G(pr)dWr, (6.8)
dpr = Fu(pe)dt + L(py)dt + 2/nMG(py) Tr(J.(pr — pr))dt + G(p)dW,. (6.9)

If u € C*(Sy, R), the existence and uniqueness of solutions of (6.8) and (6.9) can be shown
by similar arguments as in [MvH07, Proposition 3.5].

Our purpose is to provide sufficient conditions on the feedback controller u(p), which
stabilizes exponentially almost surely the coupled system (6.8) and (6.9) towards the
target state (p;, p;) with 7 € {0,...,2J}. Note that, if we turn off the feedback controller,
there are N? equilibria (p,,, p,,) with n,m € {0,...,2J} for the coupled system. However,
since the system (6.8) satisfies the non-demolition condition [BP14, Definition 2] and
the measurement operator J, satisfies the non-degeneracy condition [BP14, Assumption
(ND)], based on [BP14, Proposition 3|, we find that the pair (p;, p¢) exponentially converges
towards the following set

E = {(po,po), ) (p2J7p2J)}7

when v = 0 and n = 1, which is similar to the exponential quantum state reduction
phenomenon established in Theorem 4.1.2. Here, we aim to generalize to the coupled
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system the methodology developed in Section 3.3 for the quantum trajectories. This is the
goal of our work in preparation [LAMD].

Now let us discuss heuristically our method for the feedback exponential stabilization
of the coupled system (6.8) and (6.9) towards the target state (p;,, p;). Firstly, we note
that the two subsystems share the same feedback controller u(p), which is only a function
of the estimated state p. Hence, if we assume u(p;) = 0 and u(p,,) # 0 for all k& # i, then
(pi, pr) with k € {0,...,2J} are the N equilibria of the coupled system (6.8) and (6.9).
This is one of the major obstacles for our control goal.

Next, similar to Lemma 4.3.6, we need to provide sufficient conditions on the feedback
controller to guarantee that (p, p;) can enter in any neighborhood of the target state in
finite time almost surely. The first step is to apply the support theorem (Theorem A.2.1)
to analyze the corresponding deterministic control systems given by

po(t) = Fu(po(t)) + L(pu(t)) + 28/ nM Tr(Lpo (1) G (pu(t)) + G (pu(1))v(t),  (6.10)
pu(t) = Fu(pu(t)) + L(pu(t)) + 20/ nMTx (Lpo(1) G (p(1)) + G (pu(D)v(r).  (6.11)

with p,(0) = po, pu(0) = po and v(t) € V, where V is the set of all piecewise constant
functions from R, to R and L(p) := M (1 =n)Tpd. — HL(I2p + pJ2) + 20 Te(J2p)p).
Then we are left to show that there exist trajectories (p,(t), p,(t)) which can enter in any
neighborhood of the target state in finite time under some suitable feedback controller
u and control input v. In fact, it is not easy to find appropriate v and v, which achieve
the control purpose. The second step would be to show that the probability of the above-
mentioned event is one. This could be proved by means of a Dynkin estimation, as in
Lemma 4.3.6, if one establishes the existence of a compact “domain of attraction” for the
equilibrium (p., p,). This seems to be difficult to be shown due to the presence of further
N — 1 equilibria.

Finally, by applying the local stochastic Lyapunov technique provided in the proof of
Theorem 4.3.8, we can establish a general result ensuring the exponential convergence
under some assumptions on the feedback control law u(p) and an additional local Lyapunov
type condition.

Because of the similarity in the above-mentioned method for the coupled system and
the analysis of the exponential stabilization of System (4.1) in Section 4.3, based on
Theorem 4.3.9 and Theorem 4.3.10 for System (4.1), it is then tempting to conjecture the
following.

Conjecture 6.2.1. Consider the coupled system (6.8) and (6.9) with (po, po) € Sy X
Sn \ (ps, pr) and assume 1 € (0,1). Then, the feedback controller

un(p) = (1 = Tr(pp,))’, a>0, B>1, (6.12)

exponentially stabilizes (p;, pr) to (p,, pn) almost surely for the special case n € {0,2J}
with sample Lyapunov exponent less than or equal to —nM. Moreover, the feedback
controller

ua(p) = a(J —n—Tr(p)’, a>0, B>1, (6.13)

exponentially stabilizes (p;, p;) to (p,, p5) almost surely for the general case n € {0,...,2J}
with sample Lyapunov exponent less than or equal to —nM/2 for i € {1,...,2J — 1} and
—nM for n € {0,2J}.
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In the following, we illustrate the above conjecture through simulations for a three-level
quantum spin system. First, we set (p,, p,) as the target state. The corresponding simula-
tions with a feedback law of the form (6.12) and initial condition (po, po) = (P4, p;) are
shown in Fig. 6.3. Then we set (py, p;) as the target state. The simulations with a feedback
law of the form (6.13) and initial condition (pg, po) = (diag(0.2,0.2,0.6), diag(0.8,0.1,0.1))
belonging to int(S;) x int(S;3) are shown in Fig. 6.4.

fo)

[N]

dg((pt, Pt ),
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FIGURE 6.3 — Exponential stabilization of a three-level quantum spin system towards (pg, pg)
with the feedback law (6.12) starting at (po,po) = (py, p1) With w = 0.3, n = 0.3, M = 1,
a =>5and § = 2. Vo(p,p) = /1 — poopo,o denotes the Lyapunov function, dg((p, p), py) :=
dg(p, po) + dB(p, py) and ?Vb(p,f)) < dg((p,p), o) < V2Vo(p, p). The black curve represents
the mean value of 10 arbitrary sample trajectories, and the red and blue curves represent the
exponential references with exponents —nM /2 and —nM respectively. The figures at the bottom
are the semi-log versions of the ones at the top.

Then, we repeat the last simulations for the case where the initial condition is (pg, po) =
(ps, py)- As simulations show, the trajectories p; and p; enter immediately in the interior
of 83 x 83 and converge exponentially towards the target state (p,, p;).
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FIGURE 6.4 — Exponential stabilization of a three-level quantum spin system towards (p;, p;)
with the feedback law (6.13) starting at (po, po) = (diag(0.2,0.2,0.6), diag(0.8,0.1,0.1)) with w =
03,n=03, M =1, a=2and g =2. Vi(p,p) = Zk# (\/m-i- \/@) denotes the Lyapunov
function, dg((p, p), p1) = dg(p. p1) + dp(p, py) and LVi(p,p) < d((p, p),p1) < V2Vi(p. ).
The black curve represents the mean value of 10 arbitrary sample trajectories, and the red curve
represents the exponential reference with exponent —nM /2. The figures at the bottom are the
semi-log versions of the ones at the top.
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FIGURE 6.5 — Exponential stabilization of a three-level quantum spin system towards (p;, p;)
with the feedback law (6.13) starting at (po, po) = (pg, Pp) Withw =03, n =03, M =1, a =2
and 8= 2. Vi(p,p) = > )1 (\/m + /Pr,) denotes the Lyapunov function, dg((p, p), p;) :=
ds(p, p;) +dp(p, p1) and @Vl(p, p) < ds((p,p), py) < V2Vi(p,p). The black curve represents
the mean value of 10 arbitrary sample trajectories, and the red curve represents the exponential
reference with exponent —nM /2. The figures at the bottom are the semi-log versions of the ones

at the top.
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Conclusion and perspective

In this thesis, we have studied the asymptotic behavior of quantum trajectories
associated with different open quantum systems undergoing imperfect continuous-time
measurements for the cases with and without feedback law. In Chapter 3, we have
introduced the quantum probability theory and the quantum filtering theory. In particular,
we have derived stochastic master equations which describe the time evolution of conditional
density operators. In Chapter 4, we have discussed the asymptotic behavior of trajectories
associated with N-level quantum spin systems for the cases with and without feedback
law. Firstly, we have reviewed some previous works on this topic. Then, for the system
without feedback, we have shown the exponential convergence towards the set of pure
states associated with eigenvectors of the measurement operator .J, (quantum state
reduction with exponential rate nM/2). We have next proved the exponential convergence
of N-level quantum angular momentum systems towards an arbitrary predetermined
target eigenstate under some general conditions on the feedback law. This was obtained
by applying stochastic Lyapunov techniques and analyzing the asymptotic behavior of
quantum trajectories. For illustration, we have provided a parametrized feedback law
satisfying our general conditions, which stabilizes exponentially the system towards the
target state. In Chapter 5, we have studied the asymptotic behavior of trajectories of open
multi-qubit systems. Firstly, for the case of two quantum channels and without feedback,
we have shown the exponential convergence towards the set of GHZ states. Then we focused
on two-qubit systems, for the system with one quantum channel, we have briefly reviewed a
previous work and proposed a continuous feedback law stabilizing the system asymptotically
towards the target Bell state. In particular, for the case of two quantum channels, we
have provided a general result concerning the feedback exponential stabilization towards
the target Bell state by applying local stochastic Lyapunov techniques and analyzing
the asymptotic behavior of quantum trajectories. Furthermore, we have constructed a
parameterized continuous feedback law satisfying the conditions of our general results. In
Chapter 6, we have first studied the asymptotic behavior of trajectories of actual open
quantum spin—% systems with unknown initial states and its associated quantum filter
undergoing imperfect continuous-time measurements. Then we have provided sufficient
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conditions on the feedback controller, which is a function of quantum filter states, to
guarantee that the actual quantum state and the estimated state converge to the same
target state when time goes to infinity. Finally, we have discussed feedback exponential
stabilization of N-level quantum spin systems with unknown initial states, and heuristically
introduced our stabilization method and precised the difficulties that we need to overcome.

Below, we resume some possible future research directions.

The proof of the conjecture proposed in Remark 4.3.12 is a natural future research
line.

One short term objective is to generalize the results in Chapter 5 concerning
the exponential stabilization of multi-qubit systems towards an arbitrary GHZ
state [LAMal.

A further short term goal is to generalize the results in Chapter 4 concerning the
exponential stabilization of N-level quantum spin systems towards a predetermined
state to the case with unknown initial state [LAMDb], which is the topic discussed
in Section 6.2.

We also want to extend our results to the case where there are some delays in the
feedback loops. We believe that our results can be naturally adapted for this case.

Further, we want to extend our results to general open quantum systems. This
means that measurement operators have general forms and we have both homodyne
and photon counting detections, i.e., the stochastic master equations are driven by
both Wiener and Poisson processes.

For general open quantum systems, we look for exponential stabilization towards a
chosen pure subspace by applying feedbacks, similar to the work done in [BPT17],
with an open-loop control strategy.

In addition, for general open quantum systems, we would like to study feedback
stabilization when the target states can be non-classical states like Schrodinger cat
states and/or the feedback strategy is not based on measurements, for example,
when the feedback is coherent.

Moreover, the stabilization methods of [MvHO7, LAMI18, LAM19a] are based on
the real-time simulation of a quantum filter equation to obtain an estimate of the
quantum state. However, this quantum filter equation is in general high-dimensional.
It is difficult to achieve real-time simulation of the filter equation as the time scales
of quantum systems are short. One possible direction is to look for a reduced filter
equation as in [NHMO09, TAM17] and provide feedback laws stabilizing such reduced
filters.
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Appendix

In this appendix, we firstly recall some notions and theorems of stochastic calculus.
Then we provide a brief introduction of stochastic control theory, notions of different types
of stability and some basic theorems needed in this thesis.

A.1 Stochastic calculus

Definition A.1.1 (Stochastic exponential [Pro04]). For a semimartingale x; with xy = 0,
the stochastic exponential (Doléans-Dade exponential) of z; is denoted by &(x;),

E(z) = exp <xt - %[xt,xt]) |

It is the semimartingale z; which is the solution of the following SDE,

t
z =1 +/ zdry < dzy = zpdxy, 2o = 1.
0

In the above definition, the bracket process [-, -], means the quadratic (co)variation
process. For all T > 0,if 0 = t§ < --- <7 =T is a sequence of subdivisions of [0, 7]
whose mesh tends to 0, and for two semi-martingales z; and y;,

Pn
[z, Yl = nlgfolo Z(ﬁt? - l"t;.tl)(yt;? - yt;l,l) = TtYr — /$tdyt - /?Jtdﬂft- (A1)
i=1

Theorem A.1.2 (Girsanov’s theorem [LG16]). Assume that the probability measures P
and Q are mutually absolutely continuous on F,. Let Ly be the unique continuous local
martingale, E(Ly) be the martingale with cadlag sample continuous paths such that, for
everyt > 0, %%‘EW = E(Ly). Then, if M, is a continuous local martingale under P, the

process ]\Z = M, — [M, L}y is a continuous local martingale under Q.
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Theorem A.1.3 (It6 formula). Given a stochastic differential equation dg; = f(q:)dt +
9(q)dWy, where q; takes values in () C RP, the infinitesimal generator is the operator £
acting on twice continuously differentiable functions V : Q) x R, — R in the following way

oV (q,t) P IV (g, 1)

2V(gt) = Tt Y T )+ S Te(0" @DV (a0,

i=1

where D*V (q,t) is the Hessian of the function V (-,t). Ité formula describes the variation

of the function V' along solutions of the stochastic differential equation and is given as

follows

oV (q,t)
Jq

dV(q.t) = 2LV (q, t)dt + i 9i(q)dW;.

i=1

A.2 Stochastic control theory

Consider a stochastic differential equation in Ito6 form in R¥

dry = Xo(z)dt + Y Xp(2)dWi(t), 20 =1, (A.2)
k=1

where W (t) = (Wk(t))1<k<n is a n-dimensional standard Wiener process on the canonical
Wiener space (€2, F,P), and X}, for 0 < n satisfy the usual linear growth and local Lipschitz
continuous conditions for existence and uniqueness of solutions [Pro04]. Equation (A.2)
can be written in the following Stratonovich form [RW00b)]

dr, = Xo(z,)dt + ZXk(yct) odWF, xy=u,
k=1

where X,(z) = Xo(z) — %Efil Sy 0%, (z)(Xp)i(z), (Xi); denoting the component [ of

ox;

the vector X, and X (z) = X, (z) for k # 0.

Theorem A.2.1 (Support theorem [SV72]). Let Xo(t, z) be a bounded measurable function,
uniformly Lipschitz continuous in x and Xy (t,x) be continuously differentiable in t and
twice continuously differentiable in x, with bounded derivatives, for k # 0. Consider the
Stratonovich equation

dry = Xo(t, z,)dt + ZXk(t,xt) odWF, xy=u.
k=1

Let P, be the probability law of the solution x; starting at x. Consider in addition the
associated deterministic control system

%w) = Xo(t,z,(t) + Y Xilt, 2, (1))0" (1),  2,(0) = z.

with v* € V, where V is the set of all piecewise constant functions from Ry to R. Now we
define W, as the set of all continuous paths from Ry to RX starting at z, equipped with
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Stochastic control theory

the topology of uniform convergence on compact sets, and I, as the smallest closed subset
of W, such that P,(x. € Z,,) = 1. Then,

L, = {z,(-) € Wy|v €V} C W,.

Suppose that the system (A.2) is equipped with the metric d(x,y) for 2,y € R then
the distance between a state  and a set F C R¥ is defined by d(z, E) = min,eg d(x,y).
Given E C RE and r > 0, we define the neighborhood B,(E) of E as

B.(E) ={z e R¥|d(z,F) < r}.

Definition A.2.2 ([Mao07, Khall]). Let E be an invariant set of system (A.2), then £
is said to be
1. locally stable in probability, if for every € € (0,1) and for every r > 0, there exists
0 = d(e,r) such that,
P (2, € B.(E) fort > 0) > 1 —¢,

whenever zy € Bs(E).
2. almost surely asymptotically stable, if it is locally stable in probability and,

P (tlgglo d(xs, B) = O) =1,

whenever z, € RE.

3. exponentially stable in mean, if for some positive constants a and [,
E(d(z, E)) < ad(zy, E)e ™,

whenever zy € RE. The smallest value —f3 for which the above inequality is satisfied
is called the average Lyapunov exponent.
4. almost surely exponentially stable, if

1 _
lim sup i logd(z;, E) <0, a.s.

t—o00

whenever z, € R¥. The left-hand side of the above inequality is called the sample
Lyapunov exponent of the solution.

Note that any equilibrium z of (A.2), that is any state satisfying
Xo(z) = X1(7) = - = X,(2) =0,

which is a special case of invariant set.

Theorem A.2.3 (stochastic LaSalle-type theorem [Ma099]). Let E be a bounded invariant
set with respect to the solutions of (A.2) and xq € E. Suppose there exists a continuous,
twice differentiable function V : E — Ry such that £V (x) < 0 for all x € E. Then
limy o, £V (xy) = 0 almost surely.
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Now we consider N-dimensional quantum systems with N < oo whose state space is
given by
Sy ={p e CVNp=p"Tr(p) =1,p>0}.

The Bures distance [BZ17] is defined as follows.

Definition A.2.4. The Bures distance between two quantum states p, and p, in Sy is
defined as

dp(pa; po) = \/2 —2Tr ( \//pra\//Tb)

In particular, the Bures distance between a quantum state p, € Sy and a pure state p is
given by

dp(pa, p) = \/2 — 2/ Tr(pap).

Also, the Bures distance between a quantum state p, and a set E C Sy is defined as

dB(paa E) = gél]gl dB(pau p)

Given E C Sy and r > 0, we define the neighborhood B,(FE) of E as

B.(E) = {p € Sn|dp(p, E) <r}.
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Résumé : Dans cette thése, nous nous intéressons
a la stabilisation par rétroaction des systemes quan-
tiques ouverts soumis a des mesures imparfaites
en temps continu. Tout d’abord, nous introdui-
sons la théorie du filtrage quantique pour décrire
I’évolution temporelle de I'opérateur de densité condi-
tionnelle représentant un état quantique en interac-
tion avec un environnement. Ceci est décrit par une
équation différentielle stochastique a valeurs matri-
cielles. Deuxiemement, nous étudions le comporte-
ment asymptotique des trajectoires quantiques as-
sociées a des systémes de spin a NV niveaux pour des
états initiaux donnés, pour les cas avec et sans loi de
rétroaction. Dans le cas sans loi de rétroaction, nous
montrons la propriété de réduction de I'état quan-
tique a vitesse exponentielle. Ensuite, nous fournis-
sons des conditions suffisantes sur la loi de controle
assurant une convergence presque slre vers un
état pur prédéterminé correspondant a un vecteur
propre de l'opérateur de mesure. Troisiemement,
nous étudions le comportement asymptotique des
trajectoires de systémes ouverts a plusieurs qubits

pour des états initiaux donnés. Dans le cas sans loi
de rétroaction, nous montrons la réduction exponen-
tielle de I'état quantique pour les systemes N-qubit
avec deux canaux quantiques. Dans le cas particu-
lier des systemes a deux qubits, nous donnons des
conditions suffisantes sur la loi de contrble assurant
la convergence asymptotique vers un état cible de
Bell avec un canal quantique, et la convergence ex-
ponentielle presque slre vers un état cible de Bell
avec deux canaux quantigues. Ensuite, nous étudions
le comportement asymptotique des trajectoires des
systemes quantiques ouverts de spin-% avec les états
initiaux inconnus soumis a des mesures imparfaites
en temps continu, et nous fournissons des conditions
suffisantes au controleur pour garantir la convergence
de I'état estimé vers I'état quantique réel lorsque le
temps tends vers [l'infini. En conclusion, nous discu-
tons de maniére heuristique du probléme de stabilisa-
tion exponentielle des systemes de spin a N niveaux
avec les états initiaux inconnus et nous proposons
des lois de rétroaction candidates afin de stabiliser le
systeme de maniere exponentielle.

Title : Feedback exponential stabilization of open quantum systems undergoing continuous-time measure-

ments

Keywords : Stochastic stability, Exponential stability, Quantum control, Open quantum systems, Quantum

filtering, Lyapunov techniques

Abstract : In this thesis, we focus on the feedback
stabilization of open quantum systems undergoing im-
perfect continuous-time measurements. First, we in-
troduce the quantum filtering theory to obtain the time
evolution of the conditional density operator represen-
ting a quantum state in interaction with an environ-
ment. This is described by a matrix-valued stochastic
differential equation. Second, we study the asymptotic
behavior of quantum trajectories associated with V-
level quantum spin systems for given initial states, for
the cases with and without feedback law. For the case
without feedback, we show the exponential quantum
state reduction. Then, we provide sufficient conditions
on the feedback control law ensuring almost sure ex-
ponential convergence to a predetermined pure state
corresponding to an eigenvector of the measurement
operator. Third, we study the asymptotic behavior of
trajectories of open multi-qubit systems for given ini-
tial states. For the case without feedback, we show the

exponential quantum state reduction for N-qubit sys-
tems with two quantum channels. Then, we focus on
the two-qubit systems, and provide sufficient condi-
tions on the feedback control law ensuring asymptotic
convergence to a target Bell state with one quantum
channel, and almost sure exponential convergence to
a target Bell state with two quantum channels. Next,
we investigate the asymptotic behavior of trajectories
of open quantum spin-1 systems with unknown ini-
tial states undergoing imperfect continuous-time mea-
surements, and provide sufficient conditions on the
controller to guarantee the convergence of the estima-
ted state towards the actual quantum state when time
goes to infinity. Finally, we discuss heuristically the
exponential stabilization problem for N-level quantum
spin systems with unknown initial states and propose
candidate feedback laws to stabilize exponentially the
system.
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