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Titre : Etudes sur la photochirogenèse supramoléculaire en utilisant un anticorps synthétique 
et des nanorubans d'hybrides (silice-organique) chiraux 

Résumé : Dû à l’augmentation de la demande de nouveaux matériaux chiraux, la préparation 
de molécules chirales est actuellement l'un des domaines les plus essentiels de la chimie 
synthèse chimique. La photoréaction supramoléculaire est une stratégie efficace de 
photoréaction régio- et énantio-sélective qui permet d’éviter le problème de la courte durée 
de vie de l’état excité de la molécule clé-intermédiaire, ainsi que des faibles interactions dues 
aux états excités. Cette thèse décrit, la photocyclodimérisation supramoléculaire du 2-
anthracènecarboxylate à l’aide de deux procédés différents dans l'eau. Dans une solution 
aqueuse de molécules, moins de 25% de dimères tête-à-tête (HH) sont formés. Cependant, 
avec les nanorubans hybrides (organique-silice) chiraux comme template, on 97% de dimères 
HH sont obtenus. Les anticorps synthétiques sélectionnés pour leur reconnaissance des 
dimères HH, ont également conduit à 92% de dimères HH avec un excès énantiomérique de 
48% pour le dimère HH chiral. 

Mots clés :  chimie supramoléculaire, photochimie, chiralité, anticorps, nanostructure, 
anthracène 

 

Title : Studies on supramolecular photochirogenesis mediated by synthetic antibody and 
chiral silica-organic hybrid nanoribbons. 

Abstract : As the demand of chiral material increases, synthesis of chiral molecules is one of 
the most essential fields in chemistry. Supramolecular photoreaction is a powerful strategy 
for regio- and enantio-selective photoreaction to overcome the short-lifetime excited state 
key-intermediate molecule and weak interactions in the excited state issues. In this thesis, 
the supramolecular photocyclodimerization of 2-anthracenecarboxylate mediated by two 
different media in water are reported. Molecular solution in bulk water, less than 25 % of 
head-to-head (HH) dimers are produced due to the electronic repulsion of carboxylate. 
However, using the chiral silica-organic hybrid nanoribbons as dimerization template, 97 % 
HH dimers were observed with increased reaction rate. The synthetic antibodies, selected by 
the HH dimer recognition, also gave 92 % HH dimers and 48 % ee of a chiral HH dimer. The 
intensive studies, such as the binding kinetics and the effects of external factors, will be 
discussed. 

Keywords : supramolecular chemistry, photochemistry, chirality, antibody, nanostructure, 
anthracene 
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PREFACE 
 

This study has been carried out under the supervision of Professor Takehiko Wada at The 

Institute of Multidisciplinary Research for Advanced Materials and The Department of Chemistry, 

Graduate School of Science, Tohoku University, Japan, and Professor Reiko Oda at The Institute of 

Chemistry and Biology of Membranes and Nano-objects, CNRS UMR 5248, University of Bordeaux, 

France from October 2017 to July 2020. 

The objective of the thesis is to investigate and utilize the synthetic antibody and chiral silica-

organic hybrid nanoribbons for supramolecular asymmetric regio- and enantioselective 

photochemical reaction as the alternative chiral supramolecular hosts. Not only regioselectivity and 

enantioselectivity but also interactions, chirality inductions, stabilities, irradiation conditions and the 

other related topics will be demonstrated and discussed, which can be generally useful information 

for similar systems. In addition, the interdisciplinary of this research, composed of chirality, 

photochemistry, supramolecular chemistry, protein engineering and nanomaterial, makes this 

research a unique topic. 

The author hopes that the experimental results and discussions in this thesis will contribute 

to further development of chiral supramolecular photochemistry. 

 

 

 

Wijak YOSPANYA 

 

 

Department of Chemistry, Graduate School of Science 

Tohoku University, Sendai, Japan 

Doctoral School of Chemical Science 

University of Bordeaux, Bordeaux, France 

 

August 2020 

 

 

 

 



 

 

 

 

 

 

 

 



 

 

ABSTRACT 
 

 

The photochemical approaches to asymmetric synthesis have several unique, inherent 

advantages over the thermal counterparts, since photochemical reaction proceeds through 

the electronically excited state and often provides strained and/or thermally difficult-to-

accessible products of unique structures in a single step. However, major drawbacks of 

photochemical reactions, such as the short lifetime of the excited-state molecules, make them 

difficult to control. Previously reported, the supramolecular asymmetric photocyclodimerization 

of 2-antharcenecarboxylate using mammalian serum albumins as chiral reaction media favor the 

syn-head-to-tail dimer with high product distribution of 77 % with 97 % enantiomeric excess (ee). 

However, in general, it is difficult to obtain head-to-head dimers in aqueous solution due to the 

steric hindrance and electronic repulsion between carboxylate groups.  

Here, the supramolecular photocyclodimerization of 2-anthracenecarboxylate 

mediated by two different chiral media in water are reported. The chiral silica-organic hybrid 

nanoribbons, gemini-surfactant double-bilayer structure covered with silica network, can 

generate a complete head-to-head regioselective photosynthesis of 2-anthracenecarboxylate 

dimers even at room temperature. The synthetic single-chain antibody (scFv) can also be used 

for enantioselective of anti-head-to-head 2-anthracenecarboxylate dimer with 48 % ee and 

more than 90 % head-to-head regioselectivity. 

The chiral organic-silica hybrid nanoribbons were synthesized from the self-

assemblies of gemini surfactants and silica transcription. First, the gemini 16-2-16 L- or                   

D-tartrate surfactants were synthesized. Their self-assemblies in water yield twisted 

nanostructures with specific handedness depending on the enantiomer of tartrate. Then, they 
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were transcribed using tetraethyl orthosilicate giving the chiral silica outer layer while still 

retaining the organized organic structure inside, called silica-organic hybrid nanoribbons.  

The hybrid nanoribbons could maintain the chiral assembly of gemini even after 

exchanging tartrate counter anions with achiral anions, and this assembly can in turn induce 

chirality to these anions, such as methyl orange. In this work, tartrate was exchanged with            

2-anthracenecarboxylate, which also showed the exceptional induced CD signals (g-factor 

−6 ×10−3 and 7 × 10−3 for L-hybrid nanoribbons). The efficiency and the stability of the chirality 

induction strongly depend on temperature, time, and the ratios of 2-anthracenecarboxylate to 

gemini surfactant inside hybrid nanoribbons. Using different spectroscopic techniques (CD, VCD, 

IR, NMR and Fluorescence), the organization of 2-anthracenecarboxylate inside the 

nanoribbons were studied. The photocyclodimerization of 2-anthracenecarboxylate inside the 

nanoribbons showed more than 97 % selectivity to the head-to-head dimers with similar ratio 

between anti- and syn-isomers. 

Toward tailor-made chiral biomolecular hosts, synthetic single-chain antibody (scFv) 

prepared by a conventional phage display technique was used as an alternative biomolecular 

chiral media. The ligand in phage display was syn-head-to-head dimer linked to polyethylene 

glycol spacer and biotin with amide bonds. The phage display protocol is reported, and the 

best antibody candidate was expressed in E. coli. Together with the optimization of 

photochemical reaction conditions, the photocyclodimerization of 2-anthracenecarboxylate in 

the antibody cavity yielded head-to-head dimers up to 92 % with 48 % ee for anti-head-to-head 

dimer.  

Although the synthesis of anti-head-to-head dimer was promoted, the undesired 

syn-head-to-head dimer was also observed with high distribution. After analysing the structure 

derived from the sequence of antibody, the new design of the ligand for phage display 

technique is proposed, which includes the new design of anthracene heterodimer, changing 

the directions of carboxylate groups and removing amide bond. The synthesis and separation 

of 2-anthracenecarboxylic acid and 6-hydroxy-2-anthracenecarboxylic acid hetero dimer, 

a new dimer for ligand in phage display technique, is reported. 

In conclusion, the applications of silica-organic hybrid nanoribbons and synthetic 

antibody for the supramolecular regio- and enantioselective [4+4] photocyclodimerization of 

2-anthracenecarboxylate were demonstrated.  



 

 

要約 

 

 不斉光合成は、熱的反応では多段階を必要とする、或いは合成困難な歪みの高い化合物を

一段階で合成可能といった利点を有し、有機化学において極めて重要な研究分野である。し

かし、光反応の鍵中間体である励起状態はその寿命が短く、また相互作用も弱いことから反

応の制御は困難とされている。これまでに、哺乳類の血清アルブミンをキラル反応場として

使用した 2-アントラセンカルボキシレートの超分子非対称光二量化は、77％と 97％ee で

syn-head-to-tail 二量体を生成することが報告されているが、一般に、カルボン酸塩の電子反

発力や立体障害により、水中で head-to-head 二量体を得るのは困難と見做されきた。 

 本博士論文では、水中の 2 つの異なる媒体によって媒介される 2-アントラセンカルボキシ

レートの超分子光二量化反応について報告する。まず、水中で二重二分子膜の界面活性剤組

織を内側に、シリカ壁を外側に持つキラルな有機-シリカ複合ナノリボン構造体を用いて、

室温においても AC 二量体の優れた位置選択的光合成を達成した。また、合成一本鎖抗体

（scFv）は、48％ee および 90％以上の head-to-head の位置選択性を備えた anti-head-to-head

の AC 二量体のエナンチオ選択性を達成した。 

 有機-シリカ複合ナノリボン構造体は、界面活性剤の自己組織化とシリカの複合化により

合成した。 初めに、ジェミニ型 L-または D-酒石酸塩界面活性剤を合成し、水中での自己組織

化により、酒石酸塩の鏡像異性体キラリティーに依存し、特定の巻き方向を持つ、ねじれた

配向を有する螺旋状ナノ構造体を形成した。次に、キラル有機テンプレートを用いたテトラ

エトキシシランのソル-ゲル法により、ハイブリッド有機シリカナノリボンと呼ばれる内部

の組織化された有機構造を保持しながら、キラルシリカの外層を形成した。 
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 複合ナノ構造体は、酒石酸対アニオンをアキラルアニオンと交換した後でもジェミニの螺

旋キラル構造を維持でき、このキラル構造は、メチルオレンジといったアニオン化合物にキ

ラリティーを転写できる。本研究では、酒石酸塩を 2-アントラセンカルボキシレートと交換

することで、2-アントラセンカルボキシレートも強力な誘起 CD ピークを示し（L ハイブリッ

ドナノリボンの g-factor : −6 × 10−3 と 7 × 10−3）、キラリティー誘導の効率と安定性は、ハイブ

リッドナノリボン内の AC とジェミニ界面活性剤の化学量論比、温度、および時間に大きく

依存することが分かった。さまざまな分光法（CD、VCD、IR、NMR、蛍光）を使用してナノ

構造内の 2-アントラセンカルボキシレートの組織化を検討し、ナノ構造内での 2-アントラセ

ンカルボキシレートの光二量化では、anti 異性体と syn 異性体の比率が同程度で、97％以上

の極めて高い選択性で、head-to-head 型二量体が得られる事を明らかとした。 

 より一般的な戦略として、従来のファージディスプレイ技術によって調製された人工一本

鎖抗体（scFv）を、生体分子キラル反応場とした超分子不斉合成を検討した。ファージディ

スプレイにおけるリガンドは、スペーサーとしてポリエチレングリコール、およびアミド結

合を有するビオチンに連結された syn-head-to-head の AC 二量体（ACD3）を使用した。ファ

ージディスプレイ法を用い、ADC3 に対する選択性の最も優れた抗体を選択し、その遺伝子

配列を確定後、遺伝子工学手法を駆使し大腸菌で目的抗体を発現可能であることを確認した。

光反応条件の最適化と合わせて、抗体認識表面での 2-アントラセンカルボキシレートの光二

量化により、最大 92％の head-to-head の二量体が得られ、anti-head-to-head の二量体につい

ては 48％ee だった。 

 Anti-head-to-head 二量体の合成が促進された一方、目的とは異なる syn-head-to-head の二

量体も高い割合で得られた。抗体の配列に由来する構造の分析後、新しい方向とカルボン酸

基の数、およびアミド結合の除去を含む、ファージディスプレイ技術のためのリガンドの新

設計を提案し、ファージディスプレイ技術におけるリガンドの新しい二量体である、2-アン

トラセンカルボキシレートと 6-ヒドロキシ-2-アントラセンカルボン酸ヘテロ二量体の合成

と単離を達成した。 

以上、2-アントラセンカルボキシレートの超分子不斉[4 + 4]光二量化をベンチマーク的光

反応として、ハイブリッドシリカ-有機ナノリボンおよび人工抗体が有効に機能することを

明らかとした。 
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RESUME 

 

Récemment, la photosynthèse supramoléculaire régio- et énantiosélective a été l'un des 

domaines de recherche importants en chimie organique, en raison de ses nombreux avantages 

uniques, tels que la possibilité de synthétiser en une seule étape des produits contraints et/ou 

thermiquement difficiles d'accès. Cependant, les inconvénients majeurs des réactions 

photochimique, tels que la faiblesse des interactions et la courte durée de vie à l'état excité, 

peuvent rendre le contrôle des réactions plus difficiles. Dans notre groupe, il a été montré que la 

photocyclodimérisation supramoléculaire asymétrique du 2-antharcenecarboxylate (AC) en 

utilisant des albumines sériques de mammifères comme milieu réactionnel chiral favorise la 

formation du dimère tête-à-queue syn avec un rendement de 77 % et 97 % excès 

énantiomérique. Cependant, il généralement difficile d'obtenir des dimères tête-à- tête dans 

l'eau à cause de la répulsion électronique des groupes carboxylates.  

Cette thèse décrit la photocyclodimérisation supramoléculaire du 

2-anthracènecarboxylate à l’aide de deux procédés différents dans l'eau. Les nanorubans 

hybrides (organique-silice) chiraux formés par organisation supramoléculaire des tensioactifs 

en double bicouche à l'intérieur d’une paroi externe de silice, sont utilisés efficacement pour 

la photosynthèse régiosélective complète des dimères 2-anthracènecarboxylate, même à 

température ambiante. L'anticorps synthétique à chaîne unique (scFv) a également montré 

son efficacité pour la photosynthèse énantiosélective de dimères 2-anthracènecarboxylate 

tête-à-tête anti avec 48% d'excès énantiomériques et plus de 90% de régiosélectivité. 

Les nanorubans hybrides (silice-organique) chiraux ont été préparés par auto-

assemblages de tensioactifs suivis d’une transcription par de la silice. Tout d'abord, les 
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tensioactifs gemini ayant comme contre ion du L- ou D-tartrate ont été synthétisés. Leurs auto-

assemblages dans l'eau conduit à la formation de nanostructures torsadées dont le sens de 

rotation dépend de l'énantiomère L- ou D-tartrate utilisé. La transcription des nanostructures 

organiques obtenues à l'aide d'orthosilicate de tétraéthyle conduit à une nanostructure 

hybride composée d’une couche chirale externe de silice à l’intérieur de laquelle 

l’organisation supramoléculaire des tensioactifs est maintenue, et que nous avions nommée 

« nanorubans hybride organique-silice ». 

Cet assemblage des nanofibres hybrides permet de conserver l’organisation chirale 

des surfactants géminés même après avoir échangé les contre-anions tartrate par d’autres 

anions achiraux. L’organisation chirale de ces hybrides peut ensuite induire la chiralité sur des 

anions achiraux comme le méthyl orange. Dans ce travail, le tartrate a été échangé par le 

2-anthracènecarboxylate, et ces assemblages à base de 2-anthracènecarboxylate ont montré 

de forts signaux en CD induits, avec des facteurs g de −6 × 10−3 et 7 × 10−3 pour L-nanorubans 

hybrides. L'efficacité et la stabilité de cette induction de chiralité dépend fortement du 

rapport stoechiométrique entre l’anion 2-anthracènecarboxylate et le surfactant gemini à 

l'intérieur des nanorubans hybrides, de la température et du temps de réaction. 

L'organisation du 2-anthracènecarboxylate à l'intérieur des nanostructures a été étudiée par 

différentes techniques de spectroscopie telles que le CD, VCD, IR, RMN et Fluorescence. La 

photocyclodimérisation du 2-anthracènecarboxylate à l'intérieur des nanostructures hybrides 

a montré une sélectivité de plus de 97 % pour les dimères tête-à-tête, et un rapport similaire 

pour les isomères anti et syn. 

Comme stratégie plus générale, un anticorps synthétique à chaîne unique (scFv) 

préparé par la technique de « phage display » a été utilisé comme milieu biomoléculaire chiral 

alternatif. Le ligand dans le « phage display » était un dimère tête-à-tête anti lié à un espaceur 

polyéthylène glycol et à la biotine par liaisons amides. Le protocole du « phage display » est 

également décrit. Nous avions montré que le meilleur anticorps a été exprimé dans E. coli. 

Parallèlement à l'optimisation des conditions de réaction photochimique, la 

photocyclodimérisation de l'AC dans la cavité de l'anticorps a conduit à 92% de dimères 

tête-à-tête anti avec 48 % d'ee. 
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Bien que le dimère tête-à-tête anti ait été favorablement obtenu, l’isomère tête-à-

tête syn indésirable a été également significativement obtenu. Après l'analyse de la structure 

dérivée de la séquence d'anticorps, une nouvelle structure du ligand adaptée à la technique 

de « phage display » a été proposée. Elle tient en compte la géométrie et le nombre des 

groupes carboxylates, et élimine les liaisons amides. Ainsi, pour la synthèse et la séparation 

de 2-anthracènecarboxylate et de l'acide 6-hydroxy-2-anthracènecarboxylique, un nouveau 

ligand dimère pour la technique de phase display est décrit. 

En conclusion, lors de ce travail, nous avions réussi le régio- et énantiosélective 

photocyclodimérisation [4+4] supramoléculaire de 2-anthracènecarboxylate à l’aide de 

nanorubans hybrides organique-silice et d’un anticorps synthétique. 



 

 

 

 

 



 

 

LIST OF ABBREVIATION 
 

% v % volume 

% w % weight 

× g Centrifugation Force in Earth Gravitation Force Unit (9.8 m/s2) 

°C Degree Celsius 

1-AC 1-Anthracenecarboxylate or 1-Anthracenecarboxylic Acid 

9-AC 9-Anthracenecarboxylate or 9-Anthracenecarboxylic Acid 

AB 2-Anthraceneboronate or 2-Anthraceneboronic Acid 

AC 2-Anthracenecarboxylate or 2-Anthracenecarboxylic Acid 

AC* Electronically Excited 2-Anthracenecarboxylate 

AC-Chd (2-trans-Hydroxycyclohexyl)-2-anthroate 

AC-Chd-MAC trans-1,2-Cyclohexanediyl 1-(6-Methoxy-2-anthroate)-2-(2-

anthroate) 

ACD 2-Anthracenecarboxylate Dimer 

ACD1 anti-head-to-tail 2-Anthracenecarboxylate Dimer 

ACD2 syn-head-to-tail 2-Anthracenecarboxylate Dimer 

ACD3 anti-head-to-head 2-Anthracenecarboxylate Dimer 

ACD4 syn-head-to-head 2-Anthracenecarboxylate Dimer 

AC-HAC dimer3 2-Anthracenecarboxylic Acid and 6-Hydroxy-2-anthracenecarboxylic 

Acid anti-head-to-head Heterodimer 

aq Aqueous Solution 

ASO 9,10-Dimethylanthracene-2-sulfonate 

CD Circular Dichroism Spectroscopy 

CDR Complementarity-Determining Regions 

Chd trans-1,2-Cyclohexanediol 

Chd(AC-HAC dimer3) trans-1,2-Cyclohexanediyl 6-Hydroxy-2-anthroate 2-Anthroate anti-

head-to-head Heterodimer 

CPL Circularly Polarized Luminescence Spectroscopy 

d Day 

D-hybrid nanohelices Silica-Organic Hybrid Nanohelices of Gemini 16-2-16 D-Tartrate 

D-hybrid nanoribbons Silica-Organic Hybrid Nanoribbons of Gemini 16-2-16 D-Tartrate 

D-hybrid nanostructures Silica-Organic Hybrid Nanostructures of Gemini 16-2-16 D-Tartrate 

Dimethyl(AC-HAC dimer3) Methyl 6-Hydroxy-2-anthroate Methyl 2-Anthroate anti-head-to-

head Heterodimer 

DMAP 4-Dimethylaminopyridine 

DMF Dimethylformamide 

DMSO Dimethyl Sulfoxide 
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DNA Deoxyribonucleic Acid 

E. coli Escherichia coli 

EDC∙HCl 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Hydrochloride 

EDTA Ethylenediaminetetraacetic Acid 

ee Enantiomeric Excess 

ELISA Enzyme-Linked Immunosorbent Assay 

eq Equivalence 

ESI-QTOF Electrospray Ionization Quadrupole Time-of-Flight (Mass 

Spectroscopy) 

ESI-TOFMS Electrospray Ionization Time-of-Flight Mass Spectroscopy 

EtSH Ethanethiol 

ɛ Molar Extinction Coefficient 

g Gram 

h Hour 

HAC 6-Hydroxy-2-anthracenecarboxylic Acid 

HOBt Hydroxybenzotriazole 

HPLC High Performance Liquid Chromatography 

HT High Tension 

Hybrid nanohelices Silica-Organic Hybrid Nanohelices of Gemini 16-2-16 Tartrate  

Hybrid nanoribbons Silica-Organic Hybrid Nanoribbons of Gemini 16-2-16 Tartrate  

Hybrid nanostructures Silica-Organic Hybrid Nanostructures of Gemini 16-2-16 Tartrate  

IFL Fluorescence Intensity 

IPTG Isopropyl β-D-1-Thiogalactopyranoside 

LED Light-Emitting Diode 

L-hybrid nanohelices Silica-Organic Hybrid Nanohelices of Gemini 16-2-16 L-Tartrate 

L-hybrid nanoribbons Silica-Organic Hybrid Nanoribbons of Gemini 16-2-16 L-Tartrate 

L-hybrid nanostructures Silica-Organic Hybrid Nanostructures of Gemini 16-2-16 L-Tartrate 

M Molar 

MAC 6-Methoxy-2-anthracenecarboxylic Acid 

MALDI-TOF Matrix-Assisted Laser Desorption Ionization Time-of-Flight (Mass 
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1.1 Chirality 
 

 Chirality is a property of structure having mirror image that cannot be superimposed to itself. 

Such isomer is called stereoisomer and each individual is called enantiomer.1 The most common 

example would be biological appendages, such as our left and right hands. This observation has been 

with mankind since the origin, but never received much attention, although found in daily basis, 

because they are usually in pairs. 

Scientists, such as Faraday, discovered the rotation of polarized light passing through some 

certain media, but the ideas of enantiomers were mixed up with the influence of external magnetic 

field.2 In 1848, Pasteur isolated crystal of sodium ammonium L- and D-tartrate and discovered that 

they can rotate polarized light to the opposite direction with the same magnitude (dextrorotatory and 

levorotatory).3 Moreover, in 1858, he found that the fermentation of D-tartaric acid is significantly 

more efficient than L-isomer. By using racemic mixture of tartaric acid for fermentation, D-tartaric acid 

is consumed while L-tartaric acid stays intact, the first evidence of biological chiral selectivity.4–6  

Later, van’t Hoff7 and Le Bel8 introduced the idea of carbon atom having 4 different bonds in 

tetrahedral structure as an original source of chirality. Any molecules having this asymmetry, in 

isolated of mirror-image structure, will be optically active, defining the terminology “optical isomers.”9 

In, 1886 Piutti isolated D-asparagine and discovered that it has a sweet taste while L-asparagine has no 

taste,10 which inspired the research on taste and stereochemistry until now.11–14 Fischer, in 1891, 

discovered that sugars in nature are in the same isomer, defined with his notations as D 

configutations.15,16  

       

Figure 1-1. (a) Examples of chirality in different scales (DNA and stair pictures from Pixabay, hands and tower 
photos from Unsplash, and galaxy photo from NASA), and (b) Snail species with different chirality (sinistral 

Busycon pulleyi and dextral Fusinus salisbury) and a species with chiral dimorphism (Amphidromus perversus). 
(reprinted from ref 19 with permission from Springer Nature) 

Even though this thesis focuses on only molecular-level chirality, it is important to address 

that chirality in living organisms are not only in molecular level but also anatomy level. Simple as it 

sounds, the normal position of human heart to the left of the body is one of them. There are also other 

visible examples such as helical parts of plant growing in certain handedness induced by twisted cells,17 

or more than 90 % of snail taxa having dextral shells.18,19 (Figure 1-1 b) Every specific chirality in 
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anatomy level comes from the assemblies of small chiral units such as cells. Moreover, the existence 

of chirality can be found in large scale in the universe, such as the shapes of galaxies and circularly 

polarized light produced by reflection nebulae.20 Chirality-inspired design and architecture are also 

abundant in human civilizations. (Figure 1-1 a) 

1.1.1 Notations 

 

Figure 1-2. Examples of notations for enantiomers. 

There are different notations for enantiomers depending on types of enantiomer and 

differentiating properties. (Figure 1-2) The (+)- and (−)- notations, the original nomenclature, are 

defined by the ability to rotate the plane polarized light ((+) for dextrorotatory or clockwise rotation, 

and (−) for levorotatory or counterclockwise rotation). It was the most convenient notation because 

it directly relates to the experimental results, but the molecules having multiple chiral points are not 

suitable for these notations because the rotation can be different depending on wavelength. 

Therefore, the notations based on molecular structures are more popular nowadays. 

For the basic point chirality such as sp3 carbon with all different substitutions, S and R-

configuration is separated by the actual positions of connected atoms. If there are multiple chiral 

points, all are designated. For biomolecules, L- and D- are designated based on Fischer projection such 

as D-glucose and L-arginine which are natural carbohydrate and amino acid.15,16 For planar or helical 

chirality, P- and M- are used to identify the right- and left-handed rotations. For octahedral metal 

complex, Δ and Λ are used to distinguish the orientation of ligands encapsulating metal ions such as 

in the case of Ru(bpy)3Cl2.21 

With the advancement of technologies, various techniques have been developed to identify 

chirality in different levels. For examples, computational calculation is used to determine the absolute 

configurations of chiral molecules,22,23 electron diffractions are used to determine the absolute 

configurations of organic nanocrystals,24 and scanning electron microscope can be used to identify the 

patterns of nanostructures. 

1.1.2 Optical Activity 

In the early discovery of chirality, the optical activity was used to define two different 

enantiomers. The (+)- and (−)- or d- and l-isomers are defined from the directions of rotated linear 

polarized light to clockwise or counterclockwise, called optical rotation (OR). It is actually the results 

of circular birefringence, the velocity difference between circularly polarized light through the chiral 

media causing the phase difference.  
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Circular dichroism (CD) is the difference between the absorption of opposite circularly 

polarized light. Nowadays, CD is more popular technique than OR because only small amount of 

sample is needed for the measurement. CD can be defined as 

∆A = ARCPL − ALCPL 

∆ε = εRCPL − εLCPL 

When ARCPL and ALCPL are the absorption of right- and left-handed circularly polarized light, and the 

same to molar circular dichroism (Δɛ). Similar to molar extinction coefficient, molar circular dichroism 

is a unique character of each chiral molecules, and enantiomers will always have the same Δɛ with the 

opposite sign.  

 

Figure 1-3. (a) Summation of left- and right-handed cicularly polarized light at the same phase with the same 
amplitude is linearly polarized light, but (b) different amplitude will give elliptical polarized light, and (c) 

definition of θ for CD measurement. 

Normally, the measurement of CD is ellipticity (θ). The physical meaning of this ellipticity is 

the summations of right- and left-handed circularly polarized light in the same phase after passing 

through the sample. (Figure 1-3 b and c) θ can be defined as 

tan(θ) =
ERCPL − ELCPL

ERCPL + ELCPL
 

When E is the electric field for each circularly polarized light. From this equation and approximation 

that θ is very small and ΔA << 1, the relation between θ and ΔA can be derived as 

θ = ∆A(
ln10

4
) 

In equation (1-1), θ is in radians, but θ is usually small, so that the unit mdeg is used in general. 

θ (mdeg) = ∆A (
ln10

4
) (

360 ∙ 1000

2π
) 

θ (mdeg) ≈ 32980∆A                            

Kuhn’s dissymmetry factor (g factor) is a dimensionless value showing the dissymmetry of the 

system. The higher dissymmetry gives the higher absolute g factor (positive and negative sign indicate 

the opposite dissymmetry). For CD, g factor is defined by ΔA/A (from –2 to 2), which means it is 

(1-1) 
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independent to concentration, path length or the absolute absorptivity. It only indicates the 

proportions of anisotropic absorption to the total absorption. If g factor is ±2, only one circularly 

polarized light is absorbed. If g factor is 0, there is no difference between the absorption of both 

circularly polarized light. The g factor can be obtained from θ and absorption as follow. 

g =
θ (mdeg)

A ∙ 32980
        

In addition, g factor can be used to compare dissymmetry among different systems.25,26 

However, as shown in Figure 1-3 a, the linearly polarized light can be considered as a 

summation of opposite-direction circularly polarized lights with the same amplitude at the same phase. 

Meaning, linear dichroism (LD) can affect the CD measurement. The main difference is that CD is 

independent to the measurement directions, while rotating sample will severely affect LD. In the case 

of solution, the chiral molecules have high degree of rotations and diffusion. Therefore, LD is negligible. 

However, in the solid or aggregation states, the alignment in certain directions can induce LD. In 

chapter 2, which is related to the chirality of nanostructures, every CD measurement was carefully 

checked that LD was low enough to be negligible.27 

There are other optical activities of chiral molecules which are not discussed in this work. For 

examples, circularly polarized luminescence (CPL) is a phenomenon that the chiral chromophores, 

excited by nonpolarized light, emit circularly polarized light,25,28,29 or magneto-chiral dichroism (MChD) 

is the change in the light absorption of chiral molecules depending on magnetic field directions.30,31 

1.1.3 Producing Enantiopure Chiral Compounds 

As living organisms composed of homochirality,20 different enantiomers can have different 

outcomes when applied to biological system, especially to human. Thus, the demand of enantiopure 

chiral molecules is in various fields such as foods,32–34 agricultures35 and the most important field, 

pharmaceuticals. Since the thalidomide tragedy in 1961,36,37 serious attentions in chirality of drugs 

drastically increased the demand of enantiopure materials not only as drugs themselves but also as 

components in synthesis and purification procedures.38 In addition, optical active properties of chiral 

molecules lead to possible fabrication of functional materials,39–47 enantioselective binding properties 

were utilized in biosensors,48–51 and many other research fields were developed based on the unique 

properties of chiral molecules.52 

Despite the endless demand, syntheses of enantiopure chiral molecules are challenging 

because enantiomers are mirror images, impossible to selectively obtain by fundamental synthesis. 

There are several methods to produce enantiopure chiral molecules. The majority of commercially 

available enantiopure chiral molecules are synthesized from homochiral natural products as starting 

materials. Even so, the stereocontrolled synthetic pathway must be carefully planned to maintain 

chirality throughout the syntheses.53–55 Different steps can induce isomerization or loose the chirality, 

such as eliminations of sp3 carbon to sp2. 

Another method is the separations after syntheses. For examples, the racemic mixture can be 

converted to diastereomers, causing the difference in fundamental properties such as solubility; 

therefore, they can be easily isolated.56–59 Also, different apparatus modified by chiral molecules,60 

(1-2) 



CHAPTER 1: GENERAL INTRODUCTION AND LITERATURE REVIEW 

7 

 

such as chiral column chromatography,61 can also be used. This approach is the most widely used in 

preparative scales.62 This field is still one of the most active research in chirality, and alternative 

techniques, such as capillary electrophoresis,63–65 adsorption on metal-organic framework66 and 

anisotropic crystallization,67–69 are vastly proposed. Still, there are several drawbacks such as 

additional reactions, additional purifications, and the loss of half of the synthesized compounds. 

The final method is to use chiral templates or chiral catalysts.38,70 Chiral catalyst is the only 

way to increase the number of chiral molecules in the total system, called asymmetric synthesis. The 

recyclable chiral templates also have similar properties. Supramolecular chiral hosts and chiral metal 

complexes are intensely developed for this purpose. Griesbeck and Meierhenich categorized 

asymmetric photochemistry to photochemistry in isotropic media (supramolecular directivity in 

solution, sensitized enantioselectivity and chiral memory), photochemistry in anisotropic media (solid-

state and zeolites) and absolute photochemistry (magneto chirality and asymmetric photolysis using 

circularly polarized light).71 This challenge inspired regio- and enantioselectivity in this thesis. 

To indicate the purity of chiral molecules, % enantiomeric excess (ee) can be used as an 

indication. Enantiomeric excess is defined as 

% ee =
Difference of amount between enantiomers

Sum of amount of enantiomers
× 100% 

0 % ee means racemic mixture, and 100 % ee means pure enantiomer. Positive and negative signs are 

used to differentiate enantiomers. Similarly, diastereomeric excess is calculated using equation (1-3) 

but using amount of diastereomers instead of enatiomers. % ee can be determined by different 

technique, such as HPLC, CD and other chiral separation methods. 

 

1.2 Photochemical Reaction 
 

 

Figure 1-4. Simplified Jablonski diagram including ground state (S0), first singlet excited state (S1), first triplet 
excited state (T1) and photochemical reaction. The solid-line and dashed arrows indicate radiative and 

nonradiative processes, respectively. 

Photochemical reaction, a filed in photochemistry, is defined as reaction driven by light or 

photochemical process.72 The simplified Jablonski diagram, named after Aleksander Jabłoński,73 

(Figure 1-4) shows the starting point when electron is excited by light (photon) and promoted to 

(1-3) 
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excited state. In this state, the energy of electron increases significantly, allowing the synthesis of wide 

variety of compounds even with higher free energy, such as strained and multi-cycle products, which 

is difficult by ground-state electron of thermal reactions.74  

However, higher energy comes with less stability. Electronically excited state is finite, and the 

life time is very short. For example, fluorescence lifetime of anthracene is 10−8
 to 10−9 s. Other 

relaxation pathways, such as emissions and internal conversions, are competing against 

photochemical reactions. Therefore, controlling photochemical reaction is crucial in practical and 

preparative-scale applications. Nevertheless, different photochemical reactions, especially organic 

photochemistry, have been reported with more understanding over the last decades, giving the bright 

future to applications of photochemical reaction.75 

1.2.1 Cycloaddition Reactions 

There are numerous discovered photochemical reaction and photobiological processes, and 

most of them are not possible by thermal reactions.76 Cycloaddition, formation of σ bond from excited 

π electrons, is a good case study. This reaction, also known as Diels-Alder reactions,77 is very useful to 

create rings in a single step even between separated molecules. In thermal reaction, [4+2] 

cycloaddition occurs simply by heating. However, [2+2] and [4+4] cycloaddition does not occur via 

thermal reaction. 

 

Figure 1-5. (a) π molecular orbitals of ethylene and 1,3-butadiene, and (b) suprafacial orientation for 
cycloaddition. [4+2] cycloaddition can occur when both reactants are in ground state, but [4+4] and [2+2] 

cycloadditions require one excited reactant to proceed. 

The prediction can be explained by conjugated π molecular orbitals. (Figure 1-5 a) In 

electrolytic reactions, electron from HOMO of one reactant is donated to the LUMO of the other. 

Therefore, terminal π orbitals HOMO of one reactant must have the same face (suprafacial) as LUMO 

of the other.  As a result, [4+2] cycloaddition is possible in ground state, while electron of one reactant 

must be excited from π to π* orbital for [2+2] and [4+4] cycloaddition.78 (Figure 1-5 b) Cyclobutane 

can be synthesized from 2 alkenes, 8-membered rings can be synthesized from butadiene derivatives, 

and other multi-cycles compound can be synthesized via photocycloadditions.79,80 Together with 

thermal reaction, [2+2], [4+2], [4+4], and other cycloadditions can be achieved. 
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1.2.2 [4+4] Photocyclodimerization of Anthracene 

One of the first discovered photochemical reactions is [4+4] photocyclodimerization of 

anthracene in benzene by Fritzsche in 1866.81 He reported that when he kept the anthracene solution 

in benzene under sunlight, the white precipitate having different color, solubility and melting point 

was formed.82 After that, the photochemistry has grown into different fields, but relatively 

unsatisfactory due to the lack of understanding in quantum chemistry at that time.83 

Soon, the structure of anthracene dimer and different mechanisms were proposed, including 

not only anthracene but also 9-substituted derivatives.84,85 The singlet state is accepted as a pathway 

of [4+4] photocyclodimerization of anthracene. However, the fluorescence emission, oxidation, 

excimer formation and triplet-triplet annihilation cause the mechanism to be complicated.86 The 

excimer is expected to be the transition state, which is different from [2+2] photocycloaddition that is 

known to proceed through radical reactions.87 Despite the fact that it has been discovered over a 

century, new insights of [4+4] photocycloadditions are continuously reported.82,88–94 

The dissociation of anthracene dimers back to monomers can be achieved by thermal and 

photochemical processes, which has been utilized in different research fields such as energy 

storage,95,96 photo responsive materials97–99 and data storage.100,101 On the other hand, few have 

utilized anthracene derivative dimers as synthesis building blocks or catalysts.102–105 

 Due to the short lifetime and only weak interactions associated in the electronically excited 

states, intermolecular photochemical reactions are not efficient at low concentration and difficult to 

control. Similarly, anthracene dimerization efficiency significantly depends on concentrations and 

diffusions.106–108 Controlling selective [4+4] photocyclodimerization of anthracene derivatives is still 

not practical. 

1.2.3 Sustainable Chemistry 

Sustainable Chemistry (or Green Chemistry) is a chemistry research with the aim to reduce 

the toxicity and waste from the chemical process, especially the synthesis. Some examples include 

replacing the solvent to less toxic one such as water or alcohol, reducing synthesis and purification 

step or one-pot synthesis, avoiding rare or toxic metal catalysts, and designing the recyclable systems. 

Because photochemical reactions use light as an energy source, they are related to sustainable 

chemistry most of the time, not to mention the light energy harvesting systems which is the future 

solution for the energy crisis of mankind. Therefore, many researches have been devoted to the 

development of visible-light driven and nontoxic photochemical reactions.109–113  

In this work, the photochemical reaction was developed with the idea of sustainable chemistry. 

The water was used as a main solvent for conducting photochemical reactions. The synthetic antibody, 

a biodegradable protein, was obtained from animal-free experiments and produced from bacteria. 

The chiral silica-organic hybrid nanoribbons are easy to handle at room temperature in water, easy to 

synthesize, and possibly recyclable templates. Finally, the arrangement of starting compounds was 

expected to increase the reaction efficiency, reducing energy and time of photoirradiation. 
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1.3 Supramolecular Chemistry 
 

Supramolecular chemistry is the chemistry of the intermolecular bond based on weak 

(noncovalent) interactions.114 This concept has been introduced in 80s, but the growth is remarkable. 

The weak interactions allow the reversibility and easily manipulated binding. This property makes 

supramolecular chemistry a promising approach in different fields such as functional materials,115,116 

sensors,117–119 purifications, and reaction control.120–122 This thesis incorporates the use of synthetic 

antibody and chiral silica-organic hybrid nanoribbons as chiral templates for photochemical reaction. 

1.3.1 Supramolecular Chirality Induction, Chirality Transfer and Asymmetric Synthesis 

Chirality induction is the method to induce chiral properties, mostly optical activity, to achiral 

molecules. Achiral molecules can exhibit chiral properties under anisotropic influences including chiral 

organizations or polarization from chiral environment.123–125 The chirality inducers can be referred as 

chiral templates or chiral hosts. The supramolecular chirality inductions can be achieved without 

chemical modification of original achiral molecules, so that the new design or synthesis are not needed, 

and other physical properties do not change much. Moreover, the chirality induction system can be 

applied to different achiral molecules with similar structures with minimum optimization.124 Chirality 

transfer is similar as chirality induction, but the induction is more permanent. The induced chiral 

property must remain even after dissociated from the chiral templates through different mechanisms 

such as isomerization, asymmetric synthesis or asymmetric degradation.126–130 

Asymmetric synthesis, previously mentioned in “Producing Enantiopure Chiral Molecules” is 

defined as a synthesis that breaks the symmetry of the products.71 The major product of any reactions 

depending on different factors such as transition states, intermediates, stability and energy level of 

products. However, enantiomers, without any chiral influence, going through the same path and have 

the same energy level. Therefore, the racemic mixture (symmetric product) is usually produced. To 

break this symmetry, chiral molecules can be used as chiral sources to differentiate the reactions 

pathway or final free energy of the products, making one enantiomer more favorable than the other. 

It is one of the most widely used methods to produce one enantiopure chiral compounds.131–133 

Because antibody is naturally homochiral, many studies utilized antibodies, both wild and 

synthetic, as chiral templates or even catalysts.134–137 However, only few cases have reported the use 

of antibody in asymmetric photochemical reactions.138–141 Likewise, there are numerous reports on 

using chiral self-assembled systems as supramolecular chiral templates in different reactions, but 

relatively less reports utilize them for asymmetric photochemical reactions.142–145 In addition, self-

assemblies of amphiphiles, driven by hydrophilic and hydrophobic interactions such as micelles and 

bilayers, are less efficient than others because the they are relatively dynamics. Consequently, it is 

difficult to use as a rigid template. Therefore, in this thesis, synthetic antibody and hybrid gemini-type 

surfactant were utilized as chiral templates for regio- and enantioselective photochemical reactions. 
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1.3.2 Catalytic Antibody 

Antibody has known to have specific binding sites for different organic molecules, and 

different types of antibodies can be generated, a basis of immune system, inside living organisms from 

the stimulation of different antigens. The variety of these sites is suitable for the design of selective 

catalysts.146,147 Therefore, catalytic antibody is one of the most versatile catalytic biomolecules.134 

Catalytic antibodies can be obtained from hybridoma technique, which is usually used to 

obtain therapeutic antibodies with high binding affinity to certain antigens.148 The molecule that 

resembled the transition state of the reaction is used as a target for antibody binding. This molecule 

is usually conjugated to some proteins and injected to animals. The myeloma cells are fused with the 

extracted spleen cells of animal, and monoclonal antibodies can be harvested from growing 

hybridoma cells. The antibody candidates are screened for the best results, and they can be harvested 

repeatedly by growing hybridoma clones.149,150 

Another method is to conduct the mutation on the antibody. With this method, it is the most 

direct approach for constructing the desired reaction sites.151–153 The problem is this technique 

requires meticulous design of reaction-site architect, careful selection of antibody, the complete 

knowledge and experience on mutation regions, and the ability to predict the tertiary structure of 

antibodies. On the other hand, there has been some development on computational design and 

random mutagenesis evolution for enzymes, which can be a future for mutation technique.136,154 

The recent advancement led to the phage display technique. The protein library with random 

sequences are generated and stored in the form of vectors in phage particles. The target molecules 

are attached to biotin with some linker such as polyethylene glycol (PEG). The phage library can be 

mixed with this modified target molecules in vitro, and the phages with proteins bound to the target 

molecules are isolated using streptavidin, bound to biotin, on surface of paramagnetic beads. The 

bound phages are infected to Escherichia coli (E. coli) for reproduction, and the panning can be 

repeated as preferred (usually 3 - 6 rounds). After screening the candidates, the information of desired 

protein can be obtained from vector in infected E. coli cells. Using genetic engineering methods to 

transform this gene to E. coli, the desired protein can be produced from bacteria. 

This technique was first used for peptide therapeutics. The antibody, however, is more 

complicated to be fully expressed in E. coli. Tomlinson et al. succeeded in expressing full human single-

chain (sc) Fv antibody in E. coli, the breakthrough of antibody phage display library. For Tomlinson I 

and J libraries, the random sequences give more than 109 variety of antibodies, which is obviously less 

than hybridoma technique. On the other hand, besides the animal-free and faster procedure, the 

sequence of antibody can be obtained. Together with the known structure, the models of synthetic 

antibody can be constructed with high accuracy.  

1.3.3 Chiral Self-Assembly of Amphiphile 

Amphiphile, the molecule containing hydrophilic and hydrophobic parts, always has 

significant influence in self-assembly field.155 The wide variety of building blocks, relatively simple 

synthesis and the possible use in both hydrophilic and hydrophobic solvents increase the variety of 
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application. In addition, the ability to form different self-assembled structures make amphiphile a 

forerunner in bottom-up synthesis of nanotechnology.156,157 

 

Figure 1-6. Simplified graph showing temperature-solubility relations of typical ionic surfactant. 

The important parameter for self-assemblies of amphiphiles or surfactants is Krafft 

temperature (TK) and critical micelle concentration (CMC). (Figure 1-6) CMC is defined as the 

concentration that surfactant monomers start to form micelles, beyond CMC, self-assemblies occur. 

TK is defined as a temperature exhibiting discontinuous increase of solubility. Based on this 

information, the self-assemblies of amphiphiles in different crystalline structures and micelles can be 

manipulated by changing concentration and temperature. It is possible to form homogeneous 

crystalline structures by heating the solid amphiphile to micellar or soluble domains and cooling 

down.158 For ionic surfactants, TK and CMC strongly depend on the lengths of hydrophobic chain and 

the nature of counterions.159–161 

The self-assembly of chiral molecules can sometimes lead to chiral mesoscopic structures such 

as chiral patterning or helical structure in nano- to micrometer scales.162–164 The use of gemini 

surfactant is particularly interesting in the field. The term “gemini” was introduced in 1991 for 

surfactant having a pair of hydrocarbon chains and ionic groups, where the two ionic groups are linked 

by a covalent linker.165–167 There are different reports on making twisted nanostructure from chiral 

gemini surfactants.168–172 

In the group of Oda, there have been several reports related to chiral self-assembly from ionic 

gemini surfactants directed by chiral cations since over 2 decades.169,173–178 The properties of 

surfactants influenced by hydrocarbon chains and counterions were studied.159,179 Moreover, the 

structure of self-assembly in molecular level and parameters affecting morphologies were 

elucidated,176,180–183 establishing standard and reproducible procedure for preparing twisted 

nanoribbons and helices in water and organic solvents.  

Furthermore, not only the morphology of twisted nanoribbons but also the chirality induction 

and chiral memory in stable materials were developed. The chiral morphology (and even molecular 

chirality) can be transferred to silica nanostructure via sol-gel transcription.184 In a suitable condition, 

homogeneous chiral silica nanofibers can be synthesized in water.185,186 The twisted silica nanofibers 
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exhibit chirality in molecular level and possess enantioselective property.187,188 They can also be used 

as a chiral template in chirality induction of polyoxometalates for organic synthesis purpose and gold 

nanoparticles for circular dichroism in visible region.189–192 Alignment of silica nanofibers were also 

developed, expanding application to solid state. 193,194  

Recently, the new paradigm of using silica nanofibers having surfactant inside, called hybrid 

nanofibers, was explored. Interestingly, the silica walls conserve chirality of gemini self-assemblies 

even after exchanging chiral counterions to achiral ones. In addition, the inversed chirality induction 

from gemini self-assemblies (chirally arranged achiral molecules) to achiral counterions occurs.195–197 

 Even though chiral self-assemblies have been used as templates in different asymmetric 

reactions,198 the surfactant self-assemblies are dynamic structures; therefore, they are difficult to use 

as reaction templates. However, the silica walls of hybrid nanofibers were proved to maintain the 

chiral assemblies of gemini while offering them suspendability in aqueous media. Thus, utilizing silica-

organic hybrid nanoribbons as chiral supramolecular template for photochemical reaction is one 

objective of this thesis. 

 

1.4 Selective [4+4] Photocyclodimerization of Anthracene Derivatives 
 

 

Figure 1-7. Photocyclodimerization products of (a) anthracene, (b) 9-anthracenecarboxylic acid and (c)              
2-anthracenecarboxylic acid. In the case of single substitution, only 1- or 2-substituted anthracene will yiled 2 

chiral dimers. 

[4+4] Photocyclodimerization of anthracene simply gives one dimer as a product. However, 

anthracene derivatives can have different regio isomers and enantiomers depending on the 

orientation of anthracenes. (Figure 1-7) There are different attempts to the regio- and 

enantioselective syntheses of anthracene derivative dimers. 

1.4.1 Solid State Photocyclodimerization 

The distinct organization of organic molecules in crystal has been vastly utilized for 

photochemical reactions dated back to pioneer works in 1970s.199–201 The organization of anthracene 

molecules in crystal based on aromatic interactions, so that anthracene molecules are usually in face-

to-face alignment, which is preferable for photocyclodimerization. In crystal, not only the appropriate 

distance between anthracene molecules but also the lattice change after reactions are essential for 
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the reaction to proceed. Salzillo and Brillante categorized photocyclodimerization of anthracene 

derivatives to topochemical, non-topochemical and reversible photocyclodimerization.202 

Topochemical photocyclodimerization is the case that the products correspond to the original 

orientation of monomers such as photocyclodimerization of 9-methylanthracene.203 Moreover, the 

original orientation can be manipulated in different ways. The co-crystals of anthracene, such as 

9-(methylaminomethyl)anthracene and silver(I) complex, and azaanthracene and HCl, could also 

promote the usually unfavorable photocyclodimerization in solids with absolute regioselectivity.204,205 

Similarly, enantioselective [4+4] photocycloaddition of anthracene and naphthalene can be induced 

by chiral linker, giving up to 100 % ee.206 

Non-topochemical photodimerization, however, is more complicated system that the dimer 

products are not related to the orientation of the original anthracene crystal structure. In the case of 

β-9-anthracenecarboxylic acid crystal, it can form three different products, and the lattice becomes 

more disorder with photoirradiation.207 9-cyanoantracene and 9-anthraldehyde gives head-to-tail 

dimer even though the crystal structure favors head-to-head.208 The formation of stable but 

non-favored dimer in solid-state originates from the defects in crystal. The monomer in the crystal will 

be shifted to defective sites and turn to head-to-tail orientations.209 

Reversible photodimerization is the case when dimerization proceeds but not complete, so 

the dimers will dissociate back to monomer after some time even without irradiation or heating. For 

example, α-9-anthracenecarboxylic acid crystal, which dimerizes quickly in solution to head-to-tail 

dimer,210 can be dimerized to give meta-stable head-to-head dimer, but it will turn back to monomer 

after stop irradiation and kept in the dark. Contradictory, the crystallization of head-to-tail dimer from 

solution state showed solvent molecules incorporated inside the crystal lattice,211 so that it is not 

possible to make pure crystal of 9-anthracenecarboxylic acid that favors head-to-tail dimerization. 

On the other hand, the changes of lattice positions in crystals, even topochemical 

photocyclodimerization, were utilized as a driving force for mechanical motions of anthracene crystals, 

called photosalient behavior. 212–214 Similarly, this mechanical force can also be used as a driving force 

of dimerization or dissociation.92,93,215–217 

Still, the drawback of photoirradiation to the crystal is the limitations of anthracene 

orientation in crystal lattice. 

1.4.2 Supramolecular Photocyclodimerization Using Cyclodextrin 

Cyclodextrin is known to be a good host for different hydrophobic molecules and can enhance 

intermolecular reactions such as Diels-Alder reactions.218 With different sizes and modifications, the 

guest can be selected, and the orientation inside the cavity can be manipulated. Moreover, the 

monomer of cyclodextrin is saccharide, providing chiral cavity for any guest molecules. It houses 

aromatic molecules such as naphthalene, anthracene and pyrene.  

Tamaki et al. discovered that the cavity of γ-cyclodextrin is suitable for inclusion of 2 

anthracene molecules, which accelerate photodimerization and induce head-to-tail regioselectivity, 

or even sensitization.219–221 β-cyclodextrin can also form 2 : 2 complex with anthracene that allow 
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different selectivity of dimer products.222 The major photocyclodimerization products of 2-substituted 

anthracene obtained from cyclodextrins are head-to-tail dimers. 

Later, Inoue and col. continued this work focusing on not only regioselectivity but also 

enantioselectivity of 2-anthracenecarboxylate in γ-cyclodextrin. syn-head-to-tail dimer is produced up 

to 45 % product distribution and 32 % ee.223 Significant improvements from modifying cyclodextrin 

and controlling external factors were reported.224–232 By capped γ-cyclodextrin, ee can be improved to 

71 % and 58 % of the antipodal enantiomer.225,226 Diguanidino-γ-cyclodextrin can produce anti-head-

to-head dimer with 72 % product distribution and 86 % ee, and 46 % product distribution with 64 % 

ee of antipodal enantiomer in different solvents, which is opposite to the native γ-cyclodextrin.233  

The linked β-cyclodextrin, despite the complicated synthesis, can induce absolute enantiopure 

syn-head-to-tail 2-anthracenecarboxylate dimer in certain conditions and generate 

5,8:9’,10’-cyclodimers (slipped dimers) in another condition.234,235 

The host molecules providing similar cavity, such as cucurbit[n]uril, were also utilized for 

photocyclodimerization.236 Cucurbit[8]uril and cucurbit[10]uril can promoted the photodimerization 

of 9-substituted anthracenes,237 and the cucurbit[8]uril showed complete head-to-head 

regioselectivity of cyclodextrin-appended 2-anthracenecarboxylate.238 

1- and 9-anthracenecarboxylic acid, on the other hand, could not form 2 : 1 complex with  

γ-cyclodextrin.219 In addition, enantioselectivity and promotion of photocyclodimerization of 

2-hydroxyanthracene is much lower.239 Hence, the substitution to anthracene is crucial for 

photocyclodimerization in confined media, the limitation of cyclodextrins. 

1.4.3 Supramolecular Photocyclodimerization Using Serum Albumin 

With natural chirality, protein is the most abundant class of chiral molecules. Enzymes catalyze 

reactions in living organisms with an absolute enantioselectivity. Together with variety of amino acid 

residues, including artificial ones, and the different secondary, tertiary and quaternary structures, 

numerous utilizations of proteins in photochemical reactions have been reported.240–243 

Serum albumins (SAs), the most abundant serum protein in mammals, were utilized as chiral 

hosts for supramolecular [4+4] photochirogenesis of 2-anthracenecarboxylate, pioneer work from 

Wada and col. Different SAs catalyze different products.244–246 Mostly, they are suitable for 

synthesizing head-to-tail dimers. For examples, canine SA (CSA) yields syn-head-to-head dimer with 

97 % ee with 77 % product distribution, while porcine SA (PSA) yields 89 % ee of antipodal enantiomer 

with 69 % product distribution. Moderate ee and product distribution of head-to-head dimers were 

also reported in bovine and sheep SA (BSA and SSA). 

Due to multiple binding sites for anthracene derivatives, the variety of products and inactive 

bound anthracene monomers were found. But the thorough investigation is difficult due to the 

limitations of information. For instant, BSA crystal structure was just reported in the last decade.247  

Therefore, much attention was devoted to human SA (HSA) having well studied structure and binding 

sites.248,249 The studies included photophysical properties of 2-anthracenecarboxylate-HSA 
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complex,250–252 the photoirradiation in catalytical manner253 with the details of binding sites,252,254 and 

specific mutations to accelerate the reaction.255  

Still, the limitation of using wild type protein is the unpredictable outcomes of both product 

distributions and ee, the multiple binding sites and limited information for further improvement. 

1.4.4 Supramolecular Photocyclodimerization Using Other Media 

There are still countless reports on manipulating [4+4] photocyclodimerization of anthracene. 

Some other selections are introduced in this session. Metastable liquid crystal can align                                  

2-anthracenecarboxylate methyl ester in head-to-head orientation and give more than 75 % syn-head-

to-head dimer with more than 85 % ee.256 The combination of cucurbit[8]uril and chiral ionic liquid 

also induced 41 % ee of syn-head-to-tail,257 and 91 % head-to-head dimers in aqueous solution.258 The 

nano helices of silver and copper provide proper surface for regio- and enantioselective 

photocyclodimerization of AC. Immobilizing AC on the surface and irradiate by light after drying yields 

absolute head-to-head AC dimer with detectable ee.259 The hydrogen-bonding templates were also 

used for synthesizing anthracene and 2-anthracenecarboxylic acid cross dimer,260 and regio- and 

enantioselective synthesis of 2,6-anthracenedicarboxylic acid dimer up to 55 % ee.261 Prolinol was also 

used as hydrogen-bonding template, forming 2 : 2 complex giving exclusively head-to-head dimers 

with 72 % ee as the products at low temperature.262,263 Directly linking 2 anthracene molecules with 

chiral linkers, although it is not supramolecular chemistry approaches, can yield close to absolute 

regio- and enantioselectivity of anti-head-to-head dimer.264–267 Chiral organogel was used as a head-

to-head regioselective media with detectable ee.268 Chiral self-assisted amidine-carboxylate template 

consisted of anthracene can form double-helix structure. Photoirradiation yielded up to 99% ee.269,270 

There are also other host biomolecules utilized for this reaction, such as Insulin fibril superstructure 

and prefoldin protein.271,272 Dual amylose-cyclodextrin showed an interesting result in switching 

between enantiomers of anti-head-to-head dimer at different temperature (−10 % to +10 % ee).273 

The regioselective photocyclodimerization of 9-substituted anthracene, even without enantio-

selectivity, using micelles and Nafion membrane are pioneer works in the field of utilizing surfactant 

self-assemblies as photochemical reaction media.210,274,275 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2: SUPRAMOLECULAR CHIRALITY INDUCTION AND REGIOSELECTIVE [4+4] 

PHOTOCYCLODIMERIZATION OF 2-ANTHRACENECARBOXYLATE USING CHIRAL 

SILICA-ORGANIC HYBRID NANORIBBONS 
 



 

 

 

 

  



CHAPTER 2: SUPRAMOLECULAR CHIRALITY INDUCTION AND REGIOSELECTIVE [4+4] PHOTOCYCLODIMERIZATION OF 2-ANTHRACENECARBOXYLATE USING 

CHIRAL SILICA-ORGANIC HYBRID NANORIBBONS 

21 

 

2.1 Objective 
  

 The objective of this chapter is to utilize chiral silica-organic hybrid nanostructures as the 

supramolecular hosts in [4+4] photocyclodimerization of AC in water. The synthesis and stability of 

the chiral silica-organic hybrid nanostructures are discussed. The induced chirality, organization, 

exchange kinetics and stability of AC (and the other molecules) are explained. Finally, the results of 

photocyclodimerization of AC in chiral silica-organic hybrid nanostructures are reported. 

 

2.2 Introduction 
 

Chiral supramolecular self-assemblies received much attention nowadays because the 

fabrication though bottom-up approach can be easily manipulated depending on the basic building 

blocks.167 The chiral properties of self-assembled systems are widely utilized directly as chiral materials 

and indirectly as chirality inducers or reaction templates.167,171 

 

Figure 2-1. (a) Structure and figure representation of gemini L-tartrate, (b) the 3D and cross-section structure 
of self-assemblied double-bilayer of gemini tartrate, (c) the nano-scale morphologies (left to right: ribbon, helix 

and tube) and classes (top to bottom: organic, hybrid and silica) of chiral twisted nanostructures. 

In 1998, Oda et al. reported the formation of chiral twisted nanostructures in the form of 

hydrogel from previously reported gemini surfactant in the presence of chiral counterions such as 

tartrate.173 The formation of chiral supramolecular self-assembled organic nanostructures from N,N’-

dihexadecyl-N,N,N’,N’-tetramethylethylene diammonium tartrate (hereafter mentioned as gemini 

tartrate, Figure 2-1 a) has been investigated. The self-assembled double-bilayer of gemini L- or 
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D-tartrate surfactants show the nano-scale chiral morphologies: twisted ribbon (Gaussian curvature), 

helix (cylindrical curvature) and tube. (Figure 2-1 b and c) The control on the formation of each 

morphology is well established, mostly based on time, temperature and concentration.169,181,183 

In order to make such self-assembled structures to more robust nano-objects, silica 

transcription procedure using tetraethyl orthosilicate condensation was developed to imprint and 

transfer the chiral helical morphology to silica nanostructures.187 (Figure 2-1 c) After removing the 

gemini tartrate by washing with hot methanol, the silica nanostructures can be used as a chiral 

template for chirality induction of other materials, such as gold nanoparticles,191–193 chromophores276 

and polyoxometalates189,190 in both solid and suspension forms. Polyoxometalate-grafted silica helices 

were used as a heterogeneous catalyst for a selective oxidation of sulfides.189,190 

It was also shown that chiral silica-organic hybrid nanostructures before removing the gemini 

tartrate (hereafter refer as hybrid nanostructures, Figure 2-1 c) form stable host for anions in 

suspension. Chiral supramolecular assemblies of gemini tartrate was kept in the silica wall after 

transcription. The chiral silica-organic hybrid nanoribbons and nanohelices (hereafter called hybrid 

nanoribbons and hybrid nanohelices) could be synthesized with slightly modified protocols. The silica 

walls, covering the surfactant self-assemblies, have the ability to sustain the chiral assemblies of 

gemini even the tartrate, the only chiral molecule, was exchanged by other counterions. Moreover, 

the memorized chirality of  gemini structure can be used to induce the chirality to the other 

counterions such as halides and sulfonate dyes.195–197 

Inspired from these results, we attempted to use the synthesized hybrid nanoribbons and 

hybrid nanohelices as chiral templates for entrapping the AC in aqueous solution and for the chirality 

induction to the co-organized AC with gemini in the chiral nano space within the hybrid nanoribbons. 

The AC organization, binding and stability will be discussed. The supramolecular regioselective 

photocyclodimerization of AC are demonstrated as the first attempt to use hybrid nanoribbons as a 

supramolecular host for isomer-selective photochemical reaction. As gemini tartrate has low UV 

absorption below 240 nm, hybrid nanostructure can be used in variety of photoreactions without 

competitive photoabsorption or photodecomposition. The length of the gemini hydrocarbon chains 

and spacer are also tunable. These cause hybrid nanostructures to be a potential supramolecular host 

for various photochemical reactions.  
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2.3 Synthesis of Chiral Silica-Organic Hybrid Nanoribbons 
  

 

 

Figure 2-3. TEM images of (a-c) organic nanoribbons and (d-f) organic nanohelices with negative staining by 
uranyl acetate. All scale bars are 100 nm. 

The chiral supramolecular self-assembled organic nanoribbons or nanohelices from gemini 

tartrate were obtained following the reported protocols.183,186 (see experimental procedure session 

for the details of the monomer synthesis and self-assembled formation) The formation of the desired 

structure was confirmed by TEM with negative staining of uranyl acetate. (Figure 2-3) In this state, 

surfactants formed twisted double-bilayer solely from the thermodynamics effect of cooling. 

Therefore, their organization can be easily disturbed by heat or other additives.  

 

 

 

a b c 

d e f 
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Figure 2-4. The TEM images of (a-c) hybrid nanoribbons and (d-f) nanohelices. All scale bars are 100 nm.  

 The hybrid nanostructures were synthesized as previously reported,186 and the morphology of 

the nanostructures were confirmed by TEM (Figure 2-4). Due to the high contrast of silica, staining 

was not necessary. Although both nanoribbons and nanohelices were synthesized, the experiments in 

this chapter mainly focused on nanoribbons because of the synthetic simplicity. Also, the pre-

hydrolysis and transcription times used in this work are shorter than in the previous report to minimize 

the formation of silica particles not associated to the nanoribbons.   

While the morphology of these nanostructures can be observed at nanometer scale as 

transmission images with TEM (no information on the handedness), only small part of suspension can 

be observed at a time. Therefore, it is difficult to quantitatively establish the standard for the hybrid 

nanostructure stocks synthesized independently. In addition, only the silica component on the outside 

can be seen, while the surfactant self-assemblies inside hybrid nanostructures are not visible.  

 

a b c 

d e f 
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Figure 2-5. g-factors and UV-Vis absorption spectra of (a) gemini tartrate at 70 °C, (b) hybrid nanoribbons aging 
1.5 h at 20 °C and (c) hybrid nanohelices aging 5 d at 20 °C. 

On the other hand, CD, giving the information on the cooperative chirality from self-assembly 

versus molecular chirality, is a simpler and faster way to determine the average chirality information 

in the overall suspension stock.  Indeed, as shown in Figure 2-5. The CDs of hybrid nanostructures are 

different from gemini tartrate forming micellar structure. (The Krafft temperature of gemini 16-2-16 

tartrate is lower than 60°C.) Finally, the g-factor of hybrid ribbons (absolute maximum about 

1.5 × 10−3) and hybrid helices (absolute maximum about 1.0 × 10−3) were estimated. To standardize 

hybrid nanostructures, the samples with g-factor 20 % different from these values were not used in 

any experiments. 

 The scattering from the hybrid nanostructures due to the high refractive index of silica and 

the aggregation formation causes the artefact on the measurements of UV-Vis and the determination 

of g-factor. The aggregation, in this case, can be divided to 2 main categories: micro aggregation 

(surfactant double-bilayer assemblies and silica networks) and macro aggregation (the entanglement 

among nanostructures). Usually, Mie scattering and Rayleigh scattering are used to fit and remove the 

scattering pattern of micro aggregations.277 However, the sizes and shapes of the nanostructures are 

not applicable to estimate the scattering in this work. Another way is to use standard silica particles 

to obtain scattering pattern, but commercially available silica particle standards are mostly in spherical 

shapes. Moreover, the macro aggregation is not uniform, increasing the distribution of light-scattering 

particles. Thus, the approximation of scattering profile is not applicable with the information in the 

present study. 

Indeed, while the scattering of silica and gemini can be removed by subtracting the scattering 

of chloride-exchanged hybrid nanostructures, which do not have any absorption at the wavelength 

longer than 200 nm, the scattering due to the molecular aggregation of gemini tartrate still remains. 

In addition, the macro aggregation of chloride-exchange hybrid nanostructures can be completely 

different than the original gemini-tartrate hybrid nanostructures due to the heavy centrifugation. 

Therefore, the scattering was kept as a part of the system. 

a b c 
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After every synthesis of hybrid nanoribbons stock, CD and TEM were used to confirm the 

consistency. The concentration of hybrid nanoribbons and nanohelices were calculated from the 

lyophilized sample based on the previously reported calculated and empirical results.197  

 

2.4 Supramolecular Chirality Induction of 2-Anthracenecarboxylate by Chiral 

Silica-Organic Hybrid Nanoribbons 
 

2.4.1 CD Induction of AC from Hybrid Nanoribbons 

The AC stock solution in NaOH 10 mM (aq, pH < 8.5) and the hybrid nanoribbons stock solution 

in water were mixed and diluted by water to the desired concentration. The mixture was incubated 

on roller mixer at 20 °C overnight in the dark to any prevent photobleaching. 

 

Figure 2-6. (a) Photo of AC in aqueous solution, AC in D-hybrid nanoribbons suspension and AC in L-hybrid 
nanoribbons suspension (from left to right, observed under 352 nm light), (b) photo AC in L-hybrid nanoribbons 

suspension after centrifugation (pbserved under 352 nm light), and (c) CD and UV-Vis absorption spectra of 
AC-exchanged hybrid nanoribbons ([AC] : [hybrid nanoribbons] 100 µM: 200 µM) after 20 h at 20 °C. 

Figure 2-6 a and b clearly show the incorporation of AC molecules in the hybrid nanoribbons 

suspension. This corresponds to the exchange between anions previously reported, in this case AC 

and tartrate.196,197,278 The AC-exchanged hybrid nanoribbons showed distinctive induced CD 

throughout the absorption spectrum. (Figure 2-6 c)  

The CD of tartrate at 210-240 nm is negligible in these spectra because the induced CD of AC 

is much higher than tartaric acid or gemini tartrate in hybrid nanoribbons (absolute maximum less 

than 20 mdeg for tartaric acid 200 µM). Also, gemini tartrate and tartaric acid do not show absorption 

peaks longer than 240 nm, which means the CD signal from 240 nm to 400 nm belongs solely to AC. 
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Figure 2-7. CD and UV-Vis absorption spectra of (a) hybrid nanoribbons 50 µM, (b) chloride-exchanged hybrid 
nanoribbons 50 µM, and (c) mixture of AC 100 µM and chloride-exchanged hybrid nanoribbons 100 µM diluted 

by half (final concentration [AC] = [chloride-exchanged hybrid nanoribbons] = 50 µM). 

We then performed the AC exchange through gemini chloride. First, the hybrid nanoribbons 

(Figure 2-7 a) were washed by KCl solution until complete substitution, producing chloride-exchanged 

hybrid nanoribbons.197 The substitution was followed by CD spectra. Because chloride does not have 

absorption at the wavelength longer than 200 nm, the diminished CD signal (Figure 2-7 b) implies the 

complete exchange of tartrate with chloride. 

Without tartrate, the UV-Vis absorption spectra should decrease. In contrast, the scattering 

profiles greatly increased, indicating more aggregated suspension. The washing protocols consist of 

centrifugation, which could be the main reason for this elevated aggregation. Thus, the chloride-

exchanged hybrid nanoribbons were sonicated by probe sonicator again to reduce the aggregation. In 

addition, the concentration was measured again by lyophilization, avoiding any errors from the loss 

of hybrid nanoribbons during washing procedure. 

Then, AC was added to the chloride-exchanged hybrid nanoribbons. As a result, the CD spectra 

(Figure 2-7 c) are similar to those obtained from AC mixture with the original gemini-tartrate hybrid 

nanoribbons. This not only confirm the assumption that the observed induced CD signals belong to AC 

but also clarify that the chirality of AC is induced by memorized chirality of gemini supramolecular 

assemblies, not the chiral tartrate molecules. However, there are some difference in the CD spectra 

possibly due to the properties of tartrate and chloride. The tartrate is dianion, while chloride is 

monoanion, and the tartrate has stronger interactions to gemini than chloride. The effects of the 

starting anions will be discussed later in this chapter. 
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Figure 2-8. TEM images of L-hybrid nanoribbons (a) before and (b) after adding AC ([AC] : [hybrid 

nanoribbons] 100 µM: 200 µM) for 3 d at 20 °C, and (c) stoichiometry of AC-tartrate anion exchange.  

 From the TEM images (Figure 2-8 a and b), the silica morphologies of hybrid nanoribbons 

changed after adding AC. The less consistent twisted structures indicated the perturbation of both 

organic and silica structures. This change is reasonable considering the size of AC and tartrate. 

Stoichiometry of AC to tartrate is 2 to 1 because tartrate is dianion, but AC is monoanion. (Figure 2-8 

c) Although the absolute organization of AC is not known, the molecular size of AC is larger than 

tartaric acid. From the molar mass and density (predicted by ACD/Labs Percepta Platform), the 

molecular size of AC and tartaric acid are 284 and 131 Å3. Therefore, 4 times increase in size is expected, 

which can perturb both gemini supramolecular assemblies and silica wall. 

 The AC incorporation was induced by the presence of cationic gemini in the hybrid 

nanoribbons. Therefore, negative control was conducted using silica nanoribbons. Although there is a 

report that 2,6-dihydroxyanthracene can be adsorbed on the surface of silica nanohelices,279 AC, as 

expected, did not aggregate when mixing with the silica nanoribbons, and CD i+=nduction was not 

observed, supporting the presumption that the aggregation and chirality induction of AC molecules 

come from the interactions to the gemini assemblies. (Appendix) 

a b 

c 
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2.4.2 Time-dependent CD of AC-exchanged hybrid nanoribbons 

 

Figure 2-9. CD and UV-Vis absorption spectra of AC-exchanged hybrid nanoribbons ([AC] = 100 µM, [hybrid 
nanoribbons] = 50, 100 and 200 µM) incubated at 20 °C for 20 h and 52 h in (a) 200 - 300 nm and (b) 280 - 420 

nm ranges. The abnormal CD intensity at 220-260 nm is due to the saturation of the detector (HT > 600 V). 

Although the preliminary results show distinctive induced CDs, they are not stable over time. 

The AC-exchanged hybrid nanoribbons in different ratios were incubated on roller mixer at 20 °C, and 

the CD spectra were measured after 20 h and 52 h (Figure 2-9). The CDs of all samples after 52 h clearly 

decreased, especially the sample with hybrid nanoribbons 50 µM that the CD signals at 300 - 400 nm 

completely disappeared.  
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Figure 2-10. CD and UV-Vis absorption spectra of AC-exchanged L-hybrid nanoribbons ([AC] = 100 µM, [hybrid 
nanoribbons] = 50, 100 and 200 µM, diluted by half prior to the measurement) after incubation for 1 d and 5 d 

at (a) 20 °C and (b) 4 °C. 

To understand why the CD signal decreases over time, the temperature dependency was 

investigated. The AC 100 µM and L-hybrid nanoribbons 50, 100 and 200 µM were mixed and incubated 

at 20 °C and 4 °C. The CD spectra were measured after 1 d and 5 d of incubation with half of the original 

concentration to reduce the saturation at the 220 - 280 nm range. As a result, the CD spectra of the 

samples incubated at 4 °C were more stable and have higher intensities than at 20 °C. (Figure 2-10) 

The drawback of this measurement is the changes of absorption. Mixing the solution on a 

roller mixer for 5 d could cause a significant aggregation, resulting in reducing the absorption and 

increasing the scattering. Thus, the time-dependent CD measurements, shorter time of measurement 

and incubation, were performed. 

The time-dependent CD measurements of AC-exchanged hybrid nanoribbons were performed 

to observe the time with maximum and stable CD intensity, which is necessary for reproducibility and 

consistency among each experiment. The parameters were the same as the other CD measurements 
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except the accumulation is 1 instead of 4. The AC and hybrid nanoribbons were mixed (in the ice bath 

for 4 °C and at room temperature for 20 °C) in the quartz cell and immediately placed in the CD 

spectrometer. The temperature of the holder was preset at 4 and 20 °C. The solution was constantly 

stirred throughout the measurement. 

 

Figure 2-11. Time-dependent CD and UV-Vis absorption spectra of AC 50 µM and L-hybrid nanoribbons 50 µM 
mixture at (a) 4 °C and (b) 20 °C and the plots of CD intensity and UV absorption at (c) 225 nm and (d) 390 nm 

comparing 4 °C (blue) and 20 °C (orange). 

 The results of time-dependent CD measurements showed totally different CD evolution 

between 4 °C and 20 °C. (Figure 2-11 a and b) At 4 °C, the CD slowly increased over time with the 

similar shape of the overall spectra. The absorption peak at 257 nm, the original peak of AC in solution, 

also gradually decreased, coinciding with the decrease of free AC in the solution. The absorption at 

234 nm decreased and then increased. This absorption peak corresponds to the AC bound to gemini. 

However, the free AC also has a high absorption here, causing the absorption to decrease at the 

beginning but then increase after the bound AC concentration overcome the free AC. On the other 

hand, 20 °C incubated sample showed more complicated results. The CD intensity reached the 

maximum immediate after mixing and decreased over time, suggesting the spontaneous exchange 
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between AC and tartrate but with non-stable initial organization. In addition, the initial CD does not 

have a shoulder at 260 nm, and the initial absorption is too high considering high CD intensity, implying 

that there are different mechanisms of CD induction, so the induced CD spectra can be different. Even 

though the exchange mechanisms are still ambiguous, it is clear that more than one exchange 

mechanism are involved, and they are dependent to the temperature. 

 The plots at 225 nm (Figure 2-11 c) and 390 nm (Figure 2-11 d) showed that the CD signals of 

the AC-exchanged L-hybrid nanoribbons at 4 °C slowly increased to the constant with maximum CD 

intensity after 8 h. Contrarily, the AC-exchanged L-hybrid nanoribbons at 20 °C slowly decreased to the 

constant reached at around 8 h. Furthermore, both 4 °C and 20 °C have bathochromic shift at low 

energy transition (350 - 400 nm), a unique property of J-aggregation.280,281 

 

Figure 2-12. Plots of time-dependent CD and UV-Vis absorption of AC 50 µM and L-hybrid nanoribbons 50 µM 
mixture at (a) 250 nm and (b) 390 nm at 4 °C with 1-day-old (blue), 3-day-old (green) and 9-day-old (orange)     

L-hybrid nanoribbons. 

 Another important factor is the hybrid nanoribbons stock. Even though the hybrid 

nanostructures stocks kept at 4 °C showed the stable CD at least after a week, the AC-to-tartrate 

exchange decreased in the older stocks. Figure 2-12 shows the time-dependent CD measurements of 

the same L-hybrid nanoribbons stock at 4 °C. The time-dependent CD using 1-day-old L-hybrid 

nanoribbons had the highest CD intensity, the 3-day-old L-hybrid nanoribbons had slightly lower 

intensity, and 9-day-old L-hybrid nanoribbons had the lowest intensity less than half of 1-day-old one.  

This is probably due to the structure of the silica walls. After the transcription, the silica walls 

were still porous due to incomplete dehydration, allowing molecules to pass through them easily. 

However, the dehydration continued over time, and the silica became less porous, so the exchange 

efficiency decreased. Nevertheless, the CD of the hybrid nanoribbons did not change because the 

gemini tartrate organizations were preserved, impossible to be detected. Therefore, the experiment 

in this research used hybrid nanoribbons within 3 days after preparation. 
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2.4.3 CD titration experiment between AC and hybrid nanoribbons 

 

Figure 2-13. CD and UV-Vis absorption spectra of AC-exchanged L-hybrid ribbons in different ratios and the g-
factors calculated from them. (a) AC (50, 100 and 200 µM) was varied with fixed L-hybrid nanoribbons (100 

µM), and (b) vice versa. All suspensions were incubated at 4 °C for 16 h on a roller mixer and diluted to 25 % of 
the original concentration before the measurement.  

 The CD titration between AC and hybrid nanoribbons were conducted by fixing the 

concentration of either AC or hybrid nanoribbons. The titration with fixed AC concentration (Figure 2-

13 a) shows the increase of CD intensity from the [AC] : [hybrid nanoribbons] 50 µM : 100 µM to 100 

µM : 100 µM by twice. However, the intensities of 200 µM : 100 µM and 100 µM : 100 µM are almost 

no change. The UV-Vis absorption spectra shows that beyond [AC] : [hybrid nanoribbons] 1:1, the 

spectra mostly correspond to the free AC, indicating the saturation of AC exchange at this ratio despite 

the fact that the stoichiometry of the exchange is [AC] : [hybrid nanoribbons] 2 : 1. (Figure 2-8 c)  

 

Figure 2-14. Schematic representation of AC exchange for hybrid nanostructures with gemini tartrate double-
bilyer assemblies. 

At the ratio 1 : 1, the CD of AC, induced by hybrid nanoribbons, shows the highest g-factor, 

particularly strong exciton-coupling CD signal (maximum g-factor of 7 × 10−3 at 240 nm and −6 × 10−3 
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at 230 nm for L-hybrid nanoribbons and vice versa for D-hybrid nanoribbons). This exciton-coupling CD 

signal can be observed only when the AC molecules are located close to each other. Therefore, the 

organization of AC molecules are expected to be tightly packed inside the hybrid nanostructures. 

The quantitative NMR of organic surfactant inside hybrid nanoribbons of 1 : 1 shows that the 

ratio of AC : tartrate : gemini was 1.2 : 0.45 : 1.0 (Appendix), meaning that all AC molecules can 

exchange with tartrate and incorporated inside hybrid nanoribbons at this ratio. The possible cause of 

half exchange of AC is the double-bilayer assemblies of gemini tartrate which separates tartrate to 2 

types: outer-layer tartrate with more exchange efficiency and inner-layer with less exchange efficiency.  

It is possible to exchange the inner-layer tartrate by other anions such as halides or methyl 

orange.196,197 However, as the molecular size becomes larger, it becomes more difficult to reach the 

stoichiometric ratio. For example, the maximum exchange for methyl orange is  8 : 5, not 2 : 1. In 

addition, AC molecule is larger and has strong aromatic interactions with the other AC molecules,281 

making it more difficult to penetrate through gemini assemblies and can cause significant perturbation 

to the gemini organization. The perturbation was investigated with IR spectroscopy below. 

 The titration with fixed hybrid nanoribbons concentration shows consistent results. The CD 

intensity of [AC] : [hybrid nanoribbons] 100 µM : 50 µM is significantly lower than 100 uM : 100 uM, 

and the free AC absorption spectra are found at 100 µM : 5 µM ratio, revealing that there were not 

enough hybrid nanoribbons to induce chirality of AC at this ratio. In contrast, the 100 µM : 100 µM 

and 100 µM : 200 µM have similar CD intensities, meaning the excess gemini tartrate in the hybrid 

ribbons did not have any effect on chirality induction. The UV-Vis absorption spectra, however, are 

different possibly because the certain organization of AC inside the hybrid nanoribbons that did not 

affect chirality induction were different. 

 

Figure 2-15. CD and UV-Vis absorption spectra of AC 10 µM with (a) L- and (b) D-hybrid nanoribbons in different 
concentrations after incubation for 19 h. To avoid using low concentration of hybrid nanoribbons, [AC] : 

[hybrid-nanoribbons] 1 : 1 and 2 : 1 were prepared using higher concentration and diluted prior the 
measurements. 
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Although the difference between [AC] : [hybrid nanoribbons] 1 : 1 and 1 : 2 was negligible, the 

1 : 10, 5 times higher hybrid nanoribbons concentration than previous titration, showed an obvious 

increase in CD intensity. (Figure 2-15) Meaning, AC already perturbed the organization of the gemini 

even at the ratio 1 : 1. On the other hand, [AC] : [hybrid nanoribbons] 1 : 50, too high hybrid 

nanoribbons content, shows lower CD intensity because the chirality of AC was induced from only the 

organized gemini structure, but the AC molecules do not aggregate much to have high induced CD 

from their own organization. The scattering can also affect the CD measurement, but it was not a 

problem here because the HT was less than 450 V, which is in the normal range for CD measurement. 

Unfortunately, the concentration of AC (10 µM) was too low to discuss the low-energy band. 

The different shapes at the wavelength lower than 220 nm of the CD at [AC] : [hybrid 

nanoribbons] 1 : 50 came from the CD and UV absorption of tartrate, which is up to 240 nm. The effect 

is estimated to be insignificant in the other ratios, but the titration of AC with chloride-exchanged 

hybrid nanoribbons, having no absorption peak longer than 200 nm, was performed. 

 

Figure 2-16. CD and UV-Vis absorption spectra of AC 10 µM with chloride-exchanged (a) L- and (b) D-hybrid 
nanoribbons in different concentrations after incubation for 22 h. To avoid using too low concentration of 
chloride-exchanged hybrid nanoribbons, 1 : 1 and 2 : 1 ratio were prepared using higher concentration and 

diluted prior the measurements. 

The result of AC and chloride-exchanged hybrid nanoribbons titration shows induced CD with 

similar spectral shapes at all ratios. (Figure 2-16) The [AC] : [hybrid nanoribbons] 1 : 10 ratio gave the 

highest CD intensity, same as the previous hybrid nanoribbons titration. In this case, the increase of 

absorption came from the scattering of chloride-exchanged hybrid nanoribbons, not the absorption 

of AC. Also, AC could exchange with chloride faster than tartrate, causing the abrupt change of overall 

assemblies similar to the exchange at 20 °C. 

2.4.4 Fluorescence Spectra of AC-exchanged hybrid nanoribbons 

 The AC-exchanged hybrid nanoribbons were expected to have high CPL because the 

exceptionally high CD intensities. Unfortunately, CPL could not be observed. Nevertheless, the 

changes of fluorescence spectra comparing to free AC in solution will be discussed. 
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Despite the fact that the AC concentration is the same (10 µM) for every samples, the 

fluorescence emission spectra showed different intensities and shapes for the different AC to hybrid 

nanoribbons ratios. Usually, the fluorescence intensity, even with the same excitation and emission 

wavelengths and bandwidths, cannot be compared because it depends on the detector, light source 

and factory setting of each fluorometer. Even the same fluorometer can show different intensities if 

the flux of the light source decreases, or the resistance of the detector increases due to the long-time 

usage. However, every measurement was conducted using the same CPL spectrometer with the same 

parameters within the same day (except the free AC 10 µM that was measured 1 day earlier), so the 

spectra can be compared with high reliability. 

 

Figure 2-17. Fluorescence emission spectra of AC 10 µM in the presence of (a) L-hybrid nanoribbons, (b) 

D-hybrid nanoribbons, (c) chloride-exchanged L-hybrid nanoribbons and (d) chloride-exchanged D-hybrid 
nanoribbons with fixed AC and different hybird nanoribbons concentrations after overnight incubation at 4 °C 

on a roller mixer. The samples of hybrid nanoribbons 5 and 10 µM were prepared with 100 µM and then 
diluted prior the measurements. The spectra were measured with CPL-300 spectrometer. The excitation was 

350 nm. Both excitation and emission bandwidths are 10 nm, and HT was 800 V. 

From Figure 2-17, the [AC] : [hybrid ribbons] 1 : 50 to and 1 : 10 showed distinct vibrational 

states. It has been reported that the vibrational states of anthracenecarboxylic acid derivatives 

broaden because of the hydrogen bonding of carboxylic acid groups to the solution and/or other 

anthracenecarboxylic acid molecules.282,283 Thus, the vibrational states are broader in protic solvent 

such as water and ethanol, but sharper and more distinct in non-protic solvent such as tetrahydrofuran. 

(Appendix). Therefore, the sharpening of vibronic bands in fluorescence spectra indicated the AC 

bound to gemini with electrostatic interactions, reducing the microenvironmental polarity of AC. 

(Figure 2-8 c) The spectra of 2 : 1 ratio are broad, similar to free AC, supporting this hypothesis. 
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Considering the fact that the absorption at 350 nm is the same for free AC and AC bound to 

hybrid nanoribbons (Figure 2-11 a), the fluorescence quantum yield of AC obviously decreases in the 

existence of hybrid nanoribbons. Because AC molecules are expected to tightly packed on the outer 

layer of double-bilayer assemblies, it is logical that the quenching was promoted by adjacent AC 

molecules (photocyclodimerization, re-absorption, excimer formation, energy transfer, etc.) or gemini 

and silica walls (non-radiative energy transfers). (Figure 2-17) The kinetics of photocyclodimerization 

will be discussed later in this chapter to support this assumption. 

The difference between AC with gemini-tartrate hybrid nanoribbons and AC with chloride-

exchanged hybrid nanoribbons is the fluorescence intensity of [AC] : [hybrid nanoribbons] 1 : 50 and 

1 : 10. Chloride-to-AC exchange (Figure 2-17 c and d) showed stepwise decrease of fluorescence from 

1 : 50 to 1 : 1, which correlates to the higher AC density on double-bilayer causing more efficient 

quenching. Instead, tartrate-to-AC exchange (Figure 2-17 a and b) showed the same fluorescence for 

1 : 50 and 1 : 10, which is similar to chloride-to-AC exchange 1 : 10.  

 

Figure 2-18. Schematic representation of the AC exchange at [AC] : [hybrid nanoribbons] 1 : 50. The position of 
tartrate (blue dumbbell) and chloride (grey circle) represent the top view of counteranions organized on the 

outer layer of double-bilayer assemblies of (a) gemini tartrate and (b) gemini chloride. 2 AC molecules (yellow 
circle) were exchanged with existed counteranions. Considering the fact that only the outer layer can be 

exchanged, 2 AC can be exchanged with 1 in 25 tartrate molecules and 2 in 50 chloride atoms. 

The only difference is the starting anions. It is possible that a pair AC spontaneously exchanged 

with a single tartrate, while 2 AC exchanged with chloride randomly. (Figure 2-18) Therefore, the 

counterions-to-AC exchange occurred by mono-anions for chloride-to-AC exchange whereas it formed 

di-anions for tartrate-to-AC exchange; thus, the local density of AC on the double-bilayer of tartrate-

to-AC exchange is higher than chloride-to-AC exchange at 1 : 50, causing the fluorescence quenching 

to be more efficient. The explanation of the same fluorescence of tartrate-to-AC exchange at 1 : 50 

and 1 : 10 is too low AC density, so the quenching of the spontaneously exchanged pair is dominant. 
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2.4.5 IR and VCD spectra of AC and hybrid nanoribbons 
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Figure 2-19. IR spectrum of hybrid nanoribbons of AC-exchanged gemini L-tartrate (1 : 5) in D2O solution. 

The IR spectrum of hybrid nanoribbons of AC-exchanged gemini L-tartrate (1 : 5) in D2O is 

shown as a typical example (Figure 2-19) in the 3100-950 cm−1 spectral range. This IR spectrum exhibits 

bands related to the different constituents of the hybrid nanoribbons, which are gemini, L-tartrate, AC 

and silica. The gemini is characterized by the antisymmetric (aCH2) and symmetric (sCH2) stretching 

modes of the methylene groups at 2919 and 2850 cm−1, respectively, by the antisymmetric (aCH3) 

stretching modes of the methyl groups at 2955 cm−1, and by the bending modes of methyl (δaCH3, 

δs’CH3 and δsCH3) and methylene (δCH2) groups in the 1510-1420 cm−1 region.182 The frequencies 

obtained for the aCH2 (ca 2919 cm−1) and sCH2 (ca 2850 cm−1) modes along with the δCH2 mode 

which shows a splitting (around 1470 and 1466 cm−1) indicate that the alkyl chains are well organized 

in an orthogonal packing with mainly an all trans conformation. The L-tartrate is characterized by the 

antisymmetric (aCO2
−) and symmetric (sCO2

−) stretching modes of the carboxylate groups at 1611 

and 1384 cm-1, respectively, and by the bending mode of the C*H group at 1340 cm−1.182 The AC is 

characterized by several bands in the 1650-1510 cm−1 spectral range, related to carboxylate (1584 and 

1414 cm−1) and C=C stretching modes of anthracene (1627, 1572, 1552, 1530 cm−1).284,285 Finally, the 

silica is characterized by the strong band at 1082 cm−1, associated with the transverse optic (TO) mode 

of the asymmetric (aSi-O-Si) stretching vibration of Si˗O˗Si groups.187 The band at 970 cm−1 can be 

assigned to the Si-OH stretching vibration of free silanol groups. 

 

 

 

 

[AC] : [hybrid ribbons] 1 : 5 
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Figure 2-20. IR spectra of AC-exchanged L- hybrid nanoribbons in different ratios ([AC] : [hybrid nanoribbons] 
1 : 1, 1 : 5, 1 : 10 and 1 : 50) in D2O solution as well as IR spectra of L-hybrid nanoribbons and sodium salt of AC 

in (a) 3000-2800 cm−1 and (b) 1700-1300 cm−1 ranges. 

The IR spectra of hybrid nanoribbons of AC-exchanged gemini L-tartrate in different ratios 

([AC] : [hybrid] 1 : 1, 1 : 5, 1 : 10 and 1 : 50) in D2O solution as well as IR spectra of L-hybrid nanoribbons 

and of sodium salt of AC were measured in the 3000-2800 cm−1 and 1700-1300 cm−1 ranges, 

respectively. (Figures 2-20) The spectra show that the organization of the alkyl chains of gemini, in an 

orthogonal packing with mainly an all trans conformation, is not modified by the exchange of tartrate 

with AC. Indeed, any modification of the frequencies for the aCH2 (ca 2919 cm−1) and sCH2 (about 

2850 cm−1) modes is observed when the proportion of AC increases and the splitting of the δCH2 mode 
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is always present at 1470 and 1466 cm−1. Only a very low broadening of the aCH2 and sCH2 bands 

associated with a shift by one wavenumber at higher frequencies are observed for the [AC] : [tartrate] 

= 1 : 1 sample. 
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Figure 2-21. Variation of the intensities of (a) the 1611 cm−1 band with the % of tartrate (fitted line plot : 
y = −0.0069 + 0.0026 x, r = 0.998) and (b) the 1530 cm−1 band with the % of AC (fitted line plot : y = −0.001 + 

0.00057 x, r = 0.9999). 

Figure 2-20 b reveals the decrease of the antisymmetric (aCO2
−) stretching modes of the 

carboxylate groups of L-tartrate at 1611 cm−1 (black dotted line) and the increase of the bands related 

to AC (orange dotted line) when the proportion of AC increases. This indicates that the exchange of 

tartrate with AC occurred, independent to the chiral induction property. The variation of the 

intensities of the 1611 and 1530 cm−1 bands with the % of tartrate and AC, respectively, are reported. 

(Figures 2-21 a and 2-21 b) These relations follow linear functions with y-intercepts close to zero, as 

expected for a perfect exchange, which agrees to the CD titration experiments. 
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Figure 2-22. IR spectra of L-hybrid nanoribbons (black), 9-AC-exchanged L-hybrid nanoribbons (1 : 1) (red) and 
AC-exchanged L-hybrid nanoribbons (1 : 1) (blue) in D2O in the 1700-1300 cm−1 range. 

% AC % tartrate 
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The comparison between the exchangeability of AC and 9-anthracenecarboxylate (9-AC) was 

studied. The IR spectra of L-hybrid nanoribbons, 9-AC-exchanged L-hybrid nanoribbons and 

AC-exchanged L-hybrid nanoribbons in D2O in the 1700-1300 cm−1 range were recorded. (Figure 2-22) 

The black and red spectra are very similar, revealing that the exchange of tartrate with 9-AC did not 

occur, or occurred in relatively much low efficiency. The carboxylate group must be at one end of the 

anthracene to promote the efficient exchange with tartrate. 
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Figure 2-23. VCD spectra of AC-exchanged L- hybrid nanoribbons in different ratios ([AC] : [hybrid nanoribbons] 
1 : 1, 1 : 5, 1 : 10 and 1 : 50) in D2O as well as of L-hybrid nanoribbons in the 1700-1300 cm−1 spectral range. 

The VCD spectra of AC-exchanged L-hybrid nanoribbons in different ratios in D2O were 

measured in the 1700-1300 cm−1 range. (Figure 2-23) The VCD spectrum of organic gemini L-tartrate 

has already been reported.182 This spectrum exhibits a bisignate band for the aCO2
– mode (positive 

couplet for gemini L-tartrate) and a negative band for the sCO2
– mode. The VCD spectrum reveals also 

the chirality induction from chiral tartrate to non-chiral gemini. Indeed, a (+, −, +) pattern is observed 

for the two split components of the bending (δCH2) mode of methylene groups located at 1470 and 

1466 cm−1. The VCD spectrum of L-hybrid nanoribbons is similar to the one of gemini L-tartrate in the 

1700-1300 cm−1 range. Moreover, this spectrum is slightly modified by the exchange of L-tartrate with 

AC, except of the 1 : 1 composition. Indeed, a marked diminution of the VCD intensities is observed 

for this composition, revealing a certain modification in the chiral structure of the supramolecular 

assemblies.  In contrast, the AC at certain lower ratios enlarged the VCD intensities of tartrate, which 

might indicate more rigid chiral assemblies. 
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2.5 Supramolecular Regioselective [4+4] Photocyclodimerization of 

2-Anthracenecarboxylate Using Chiral Silica-Organic Hybrid Nanoribbons 
 

 The AC-exchanged hybrid nanostructures were irradiated by UV light (352 nm), so that the AC 

aggregated inside the hybrid nanostructure underwent [4+4] photocyclodimerization. The effects of 

temperature, incubation time, concentration and ratios were studied.  

 

Figure 2-24. HPLC chromatograms of the products from (a) [4+4] photocyclodimerization of AC in alkaline 
solution and (b) supramolecular regioselective [4+4] photocyclodimerization of AC with L-hybrid nanoribbons. 

 The solvent in the suspension was removed and the nanostructures were dried by 

lyophilization. It is not only to remove the water but also to remove any dimerization products from 

free AC outside of hybrid nanostructures. The product of photocyclodimerization inside hybrid 

nanostructures was extracted from the lyophilized solid by hot methanol, and the methanol was dried 

to afford the solid organic components of hybrid nanostructures. Finally, the dried product was 

re-dissolved in acetonitrile and sodium hydroxide mixture, filtered, and injected to HPLC equipped 

with chiral column and fluorescence detector (excitation 254 nm, emission 420 nm). (Figure 2-24) The 

identity of each peak was reported286 and the product distribution was calculated from integrating 

each peak area. 

 
Figure 2-25 Supramoleculae regioselective [4+4] photocyclodimerization of AC using hybrid nanoribbons. 
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Table 2-1. Photoirradiation products of AC-exchanged hybrid nanoribbons at room temperature. 

 

Starting from incubating [AC] : [hybrid nanoribbons] 1 : 1 at 20 °C for 3 h, the AC-exchanged 

hybrid nanoribbons were irradiated by 352 nm lamp at room temperature. (Figure 2-25) After 1 h, the 

fluorescence of the suspension disappeared, meaning that AC was significantly consumed. The 

products inside the hybrid nanoribbons were analyzed by HPLC. (Table 2-1) The average and s.d. 

showed in the table were calculated from 3 HPLC analyses of the same samples to show the error of 

the analysis. 

 Even though it was the first trial, the preference of the photocyclodimerization product is 

orthogonally head-to-head. As shown in Table 1, the product distribution of head-to-head dimers of 

ACDs are 97 %, which is the only system that can produce more than 95 % head-to-head in water at 

room temperature. Unfortunately, the ee of ACD3 (anti dimer) was too low and not consistent. 

Therefore, the ee will not be discussed further. 

The ratio between ACD3 and ACD4 (syn dimer) are within 5 % difference. Still, AC-exchanged 

L-hybrid nanoribbons 10 µM yielded ACD3 slightly more than the other samples, which implies the 

stability problem. To improve this drawback, the other factors were studied. 

2.5.1 Temperature, Time, Ratio Effects and Types of Hybrid Nanoribbons 

 To control the supramolecular regioselective [4+4] photocyclodimerization of AC, the 

different parameters that may affect the photochemical reactions were investigated. The effects of 

temperature, time, ratios and original hybrid nanoribbons are discussed. 

Table 2-2. Photoirradiation of AC-exchanged hybrid nanoribbons at low temperature with different time. 

 

 From the results of time-dependent induced CD, the AC-exchanged hybrid nanoribbons are 

more stable at low temperature, so the temperature could be a potential factor to control the 
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photocyclodimerization. The samples were prepared by mixing L-hybrid nanoribbons and AC stocks, 

and immediately irradiated by UV lamp without incubation. The irradiations were stopped after 

different time. The sample irradiated for 30 min showed less head-to-head product distribution, but 

after 60 min, the results are similar. (Table 2-2) 

 There are two possible reasons. First, the head-to-tail dimers are produced inside hybrid 

nanoribbons. The low concentration in hybrid nanoribbons surface allow bound AC to react with 

unbound free AC, which is at high concentration at the beginning. Second, the head-to-tail dimers are 

produced outside the hybrid nanoribbons and later exchange with tartrate, becoming dimers inside 

the ribbons. In both scenarios, the head-to-head dimers will be observed even the AC and ACDs in free 

solution were removed by centrifugation. Here, the conversion of the reaction was not determined, 

so the product distributions represent the ratios within the same sample but not the absolute yield. 

The challenge is to determine the absolute yield of the samples, but it is still impossible due to the 

gemini and tartrate contamination, and anthraquinone-2-carboxylate as a by-product. 

Table 2-3. Photoirradiation of AC-exchanged hybrid nanoribbons incubated at 20 °C. 

 

 Next, the incubation at 20 °C was attempted. In the time-dependent CD measurement, the 

exchange rate of AC to tartrate in hybrid nanoribbons at 20 °C was much faster than at 4 °C, so the 

samples were mixed at room temperature, incubated at 20 °C for 1 or 2 h, and then irradiated at 4 °C 

for 1 h. The product distribution of head-to-head dimers are slightly lower for 2 h incubation. 

Unusually, samples with 2 h incubation show higher product distribution of ACD3 and lower product 

distribution of ACD4, leading to [ACD3] : [ACD4] 2 : 1, which is a unique result. (Table 2-3) 

Table 2-4. Photoirradiation of AC-exchanged hybrid nanoribbons at low temperature after overnight incubation. 

 

 From the results up to now, the simplest way to control the photoirradiation is to do the 

experiment at 4 °C. Three repetitions of [AC] : [hybrid nanoribbons] 100 µM : 100 µM samples were 

conducted in the different day from different hybrid nanoribbons stocks with different incubation time 

(but at least 12 h) and different irradiation time (1.5 h for 1 repetition and 3 h for 2 repetitions). After 
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1.5 h, the fluorescence was quenched similar to the case at room temperature. As a result, the product 

distributions are precise for all 3 repetitions, resulting in relatively low s.d. values. (Table 2-4) The 

results between L- and D-hybrid nanoribbons are also the same. In summary, the product distribution 

of ACD3 and ACD4 are 53 % and 44 %, resulting in 97 % head-to-head dimers. 

Table 2-5. Photoirradiation of AC-exchanged hybrid nanoribbons at −20 °C. 

 

 The attempt with the lowest temperature was at −20 °C. The samples were prepared and 

incubated same as previous 4 °C experiment, but the reaction cannot be conducted directly at −20 °C 

because the water will be frozen. Therefore, the same volume of cold acetone was added to each 

sample, and the sample was irradiated while vigorous stirring in beaker. Acetone cannot dissolve 

gemini tartrate, so the double-bilayer self-assemblies of gemini tartrate and gemini AC will not be 

destroyed. However, acetone also absorbed the light at 352 nm, so the suspension still had 

fluorescence after 1.5 h. The major products are head-to-head, but the product distribution was 

shifted to ACD4. (Table 2-5) As a result, ACD4 became a major product at −20 °C.  

This mean that the temperature can switch the major product of photocyclodimerization of 

AC, and it is likely that the ACD3 favors higher temperature than ACD4. By reducing the temperature, 

the rotation of AC molecules is more limited. In static state, syn-head-to-head AC orientation might 

be more favorable to resemble carboxylate group positions of tartrate. However, the anti-head-to-

head AC orientation becomes more favorable at higher temperature probably because the 

electrostatic repulsion between carboxylate groups. Anyway, the effects of acetone cannot be 

neglected, so the pure effect of the low temperature is not easy to discuss with this information. The 

effect of the temperature higher than 20 °C is also difficult to be experimented because increasing the 

temperature can disturb the organization of gemini tartrate self-assemblies. 

Table 2-6. Photoirradiation of AC-exchanged hybrid nanoribbons at different AC to hybrid nanoribbons ratio. 

 

 The ratio between AC and hybrid nanoribbons are discussed. The result of 1 : 50 is slightly 

different from 1 : 1. (Table 2-6) This probably because the organization of 1 : 50, even though filled 

with tartrate, is less dense than 1 : 1, so the more freedom of AC molecules reduced the 
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regioselectivity. Still, the substitution of a single tartrate molecule by 2 AC molecules allow the 

photodimerization to be occurred. 

Table 2-7. Photoirradiation of AC-exchanged hybrid nanoribbons prepared from chloride-exchange hybrid 
nanoribbons. 

 

 The photocyclodimerization products of the samples prepared from AC and chloride-

exchanged hybrid nanoribbons does not have much different in the total product distribution of head-

to-head dimers. (Table 2-7) The modest difference of orientation (the slightly different induced CD 

spectra) is probably not the one that differentiate head-to-head and head-to-tail.  

2.5.2 CD and Absorption After Irradiation 

 

Figure 2-26. CD and UV-Vis absorption spectra of AC-exchanged hybrid nanoribbons before and after 
irradiation. Note that the spectra before and after the irradiation was from 25 µM and 200 µM, respectively. 
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 After the irradiation, the intensity of absorption spectra decreased significantly, especially at 

350 - 400 nm range, indicating the decrease of monomeric AC concentration. The shape of the 

spectrum also changed. The CD intensity immensely decreased throughout the spectrum. The shape 

of the CD also changed. The CD peaks have bathochromic shift, and instead of having 2 zero-crossing 

points (at 235 and 340 nm), there are 3 zero-crossing points (at 240, 270 and 290 nm) after irradiation. 

(Figure 2-26) This change clearly shows chemical reactions. The induced CD of ACD, which will be 

discussed in further session, is not the same as the CD after irradiation. Thus, it can be concluded that 

the ACDs produced from photocyclodimerized AC-exchanged hybrid nanoribbons are organized 

differently comparing to the ACDs that were mixed with hybrid nanoribbons.  

2.5.3 Organization of AC in Hybrid Nanoribbons 

 

Figure 2-27. Orientation of AC in gemini double-bilayer self-assemblies. The orientation of AC molecules on the 
outer layer (a) pointing outward or (b) lie on the surface of double-bilayer, and (c) between double-bilyer 

(inner layer). Also, (d) the possible 3D orientation of AC on the twisted gemini double-bilayer self-assemblies. 

The results of a strong preference on head-to-head dimers supports the earlier hypothesis 

that AC molecules organized closely to each other with the long side pointing outward the double-

bilayer self-assemblies (Figure 2-27 a), not parallel to the bilayer surface. (Figure 2-27 b) That is the 

only case to obtain only head-to-head dimers. Also, AC does not exchange with the inner layer tartrate 

because there will not be any regioselectivity at the organization of inner layer. (Figure 2-27 c)  

Nevertheless, this model representation is not complete. The AC molecules are not perfectly 

parallel to each other because they show strong exciton coupling on CD spectrum. Moreover, this 

exciton coupling is the highest CD signals over the spectrum, meaning the asymmetric orientation of 

AC, the origin of this exciton coupling, is uniformed throughout the structure. (Figure 2-27 d) The 

nonuniform orientation of AC will result in lower and non-reproducible exciton coupling. In addition, 

the surface of double-bilayer should be considered as 2-dimension, so that the orientation of AC 

should compose of 2 directions, both through aromatic stacking and side-to-side interactions. 

Therefore, the orientation of AC cannot be explained by simple helical organization as shown in Figure 

2-27 d. The organization of exchanged counteranions in hybrid nanostructures is still a big mystery for 

the future of hybrid nanostructure research. 
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2.5.4 Kinetics of Photocyclodimerization of AC with or without Hybrid Nanoribbons 

 

Figue 2-28. Fluorescence emission spectra of (a) AC 10 µM and (b) AC-exchanged L-hybrid nanoribbons ([AC] = 

[L-hybrid nanoribbons] = 10 µM, overnight incubation at 4 °C on roller mixer at 100 µM and diluted prior 
measurement) with repeated scans. The spectra were measured with CPL-300 spectrometer. The excitation 
was 350 nm, and excitation and emission bandwidths are 10 nm. The scan speed was 100 nm/min, and the 

detector HT was 700 and 850 V for AC and AC-exchanged L-hybrid nanoribbons, respectively. 

As already mentioned, the AC-exchanged hybrid nanoribbons did not show clear CPL signals. 

However, the shape of fluorescence spectra changed drastically comparing to the free AC in solution, 

lower intensity and more distinct vibronic transitions. Moreover, the photostability also decreased 

rapidly. The fluorescence intensity of AC-exchanged hybrid nanoribbons 10 µM was reduced to half 

after 20 scans, while showing less than 2 % loss for AC 10 µM aqueous solution after 40 scans. (Figure 

2-28) The main bleaching is considered to be [4+4] photocyclodimerization of AC because the AC 

molecules are aggregated on the surface of double-bilayer gemini assemblies in the hybrid 

nanohelices. The photooxidation of AC is considered to be the same with or without hybrid 

nanoribbons, so it is not considered as a major cause of bleaching. 

Considering the photocyclodimerization of AC, it follows the second-order chemical reaction. 

AC* + AC  →  ACD 

Where AC* is electronically excited AC molecule, and ACD is a representative of AC dimers. Assuming 

reaction rate (r) and rate constant (k) are same for all dimers, the reaction rate can be expressed as: 

𝑟 =  𝑘[𝐴𝐶∗][𝐴𝐶]  =  
𝑑[𝐴𝐶𝐷]

𝑑𝑡
 

The formation of ACD is equal to the consumption of AC or AC*. 

[𝐴𝐶𝐷] = [𝐴𝐶∗]0 − [𝐴𝐶∗] =  [𝐴𝐶]0 − [𝐴𝐶] 

Hence,   [𝐴𝐶∗] =  [𝐴𝐶∗]0 − [𝐴𝐶𝐷] and [𝐴𝐶] =  [𝐴𝐶]0 − [𝐴𝐶𝐷] 

By substituting equation (2-2) to equation (2-1) and solving the differential equation, the following 

equation can be derived. 

ln (
[𝐴𝐶]

[𝐴𝐶∗]
∙

[𝐴𝐶∗]0

[𝐴𝐶]0
) =  ([𝐴𝐶]0 − [𝐴𝐶∗]0)𝑘𝑡 

(2-1) 

(2-2) 

(2-3) 
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Normally, the [AC*] in the solution is approximated to be much lower than [AC] (Appendix), so the 

following assumption can be deduced. 

[𝐴𝐶∗]  << [𝐴𝐶]  

Therefore, 

[𝐴𝐶]

[𝐴𝐶]0
 ≈  1 and [𝐴𝐶]0 − [𝐴𝐶∗]0 ≈  [𝐴𝐶]0 

The equation (2-3) can be approximated as: 

           ln (
[𝐴𝐶∗]0

[𝐴𝐶∗]
) =  [𝐴𝐶]0𝑘𝑡 

           ln[𝐴𝐶∗]0 − ln[𝐴𝐶∗] =  [𝐴𝐶]0𝑘𝑡 

    ln[𝐴𝐶∗] =  −[𝐴𝐶]0𝑘𝑡 + ln[𝐴𝐶∗]0 

This derivation is called pseudo first-order reaction, a useful approximation for the second-order 

reaction when one of the reactants has much higher concentration than the other.287 Because the 

concentration of AC is low (10−5 M) and the fluorescence quantum yield is quenched by the reaction, 

the fluorescence emission intensity (IFL) is approximately a direct variation of [AC*]. 

𝑎 ∙ 𝐼𝐹𝐿 =  [𝐴𝐶∗] 

when a is a constant. The equation (2-4) can be rewritten as: 

         ln 𝐼𝐹𝐿 =  −[𝐴𝐶]0𝑘𝑡 + ln
[𝐴𝐶∗]0

𝑎
 

     =  −[𝐴𝐶]0𝑘𝑡 + 𝑏 

when b is a constant. As a result, by plotting ln IFL versus time, k can be calculated from −slope/[AC]0. 

 

Figure 2-29  Plots of ln(IFL) versus time of (a) AC 10 µM alone (grey) and with L- and D-hybrid nanoribbons 
10 µM (yellow and blue, respectively), and (b) AC 100 µM and  D-hybrid nanoribbons 100 µM (blue) and 

L-hybrid nanoribbons 50 µM (orange). The ln(IFL) was calculated using the maximum IFL of each sample.   

The plot of natural logarithm of fluorescence emission intensity at 397 nm versus time 

(Figure 2-29 a) shows acceptable linear relationships over 2 h. Although the data taken from CPL is the 

intensity versus scanning rounds, the time of each scan (102 s) was calculated from the known 

(2-4) 

(2-5) 
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scanning speed (100 nm/min) and scanning range (380 - 550 nm). For the AC solution, the linear 

regression functions were fitted to 1st, 10th, 20th, 30th and 40th scan. The obtained function is fitted 

with the R2 of 0.91, not so high R2 because the change of IF is too minimal, so that the noise of the 

measurement also affects the calculation. The k was estimated to be 2.74 × 10−1 M−1s−1. 

For the AC-exchanged hybrid nanoribbons, the data from 1000 to 9000 s range, which is the 

closest range to linear, was used to calculate k. The linear regression functions were fitted with the 

minimum R2 of 0.98. The average of k was 2.10 (± 0.22) × 101 M−1s−1, 2 order of magnitude higher than 

of free AC in solution, indicating a significant acceleration of photocyclodimerization of AC. 

(Figure 2-29 a blue and yellow lines) 

Unfortunately, the quantitative calculation is not simple. If this approximation can be applied 

to any concentration, photocyclodimerization of AC-exchanged hybrid nanoribbons at 100 µM, having 

the same k, must have 10 times steeper slope than 10 µM (Slope = -k[AC]). However, the graph showed 

only 1.1 times steeper, which contradicts to the approximation. (Figure 2-29 b, blue line) Moreover, 

the higher AC ratio ([AC] : [hybrid nanoribbons] 100 µM : 50 µM, Figure 2-29 b, orange line) showed 

higher k, which is not expected. More insight analysis of reaction mechanism is necessary for the 

accurate quantitative calculation of photocyclodimerization kinetics. 

 

2.6 Chirality Induction of Naphthalene Derivatives, Anthracene Derivatives and 

2-Anthracenecarboxylate Dimers Using Chiral Silica-Organic Hybrid 

Nanoribbons 
 

 Carboxylate group is no doubt the important component in the exchange and aggregation of 

AC in hybrid nanoribbons. To demonstrate this, the incubation of AC and hybrid nanoribbons in 

acetone was performed. Under this condition, AC takes carboxylic acid form. Similarly, the exchange 

of anthracene, without any acidic functional groups, and hybrid nanoribbons in acetone was 

investigated. The naphthalene derivatives with 1 and 2 carboxylate groups were used to investigate 

the importance of the number of carboxylate groups. The anthracene derivatives were used to attest 

the effects of acid groups and positions. Finally, the selective exchange between tartrate and the 

mixture of ACDs are discussed. 
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2.6.1 Induced CD of Anthracene and AC in Acetone by Hybrid Nanoribbons 

 

Figure 2-30 CD spectra, UV-Vis absoprtion spectra and g-factor of (a) AC and hybrid nanoribbons mixture (both 
100 µM, solid line), and (b) anthracene and L-hybrid nanoribbons (both 100 µM, solid line) compared with AC-

exchanged L-hybrid nanoribbons ([AC] : [hybrid nanoribbons] 25 µM : 25 µM, dash line). 

Acetone (4 °C) was used as a solvent during incubation because gemini tartrate double-bilayer 

self-assemblies are stable in acetone, AC dissolves well in acetone, and AC is in carboxylic acid form. 

The incubation procedure are same as the incubation in water (2 mL). However, acetone has a high 

cut-off wavelength causing impossible CD and UV-Vis absoprtion measurement in solvated state. 

Consequently, the suspension was centrifuged at 3893 × g and 4 °C for 12 min in order to remove 

acetone. The gel was washed by water 4 °C twice, and re-suspended in water at 4 °C 2 mL. The g-factor 

obtained from AC incubated with gemini-tartrate hybrid nanoribbons in acetone is significantly lower 

than in water, demonstrating lower chirality induction. Also, the absolute CD intensities and UV-Vis 

absorptions, even though slightly suffered from the lost during washing, is much lower (Figure 2-30 a. 

Note that the concentration of the sample incubated in acetone is 4 times higher than in water.), 

meaning the less exchange between AC and tartrate. Anyway, the original CD pattern of hybrid 

nanoribbons with lower intensity (200-230 nm) was found, implying that the organization of gemini 

tartrate is preserved in acetone.  

 The binding between anthracene and L-hybrid nanoribbons was investigated with similar 

procedure in acetone. As expected, only original CD of L-hybrid nanoribbons was found. (Figure 2-30 

b) This is an evidence that the AC aggregation in the hybrid nanoribbons occur solely through anion 

exchange driven by carboxylate group. These two experiments clearly demonstrated that carboxylate 

group (anions) is nessesary for molecules to bind and aggregate in hybrid nanostructures. 
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2.6.2 Induced CD of Naphthalene Derivatives by Hybrid Nanoribbons 

 

Figure 2-31 (a) Structure of NC and NDC, (b) CD and UV-Vis absorption spectra of NC and NDC with hybrid 
nanoribbons, and (c) CD spectra after subtracted by CD spectra of gemini tartrate. 

 The effect of the number of carboxylate groups on the chirality induction are evaluated. To 

compare with AC, 2,3-anthracenedicarboxylic must be synthesized. Fortunately, 2-naphthalene-

carboxylic acid (NC) and 2,3-naphthalenedicarboxylic acid (NDC) are commercially available. (Figure 

2-31 a) Although naphthelene has weaker aromatic interactions than anthracene,288 it can be easily 

dissolved in alkaline solution, a good model to study the effect of the number of carboxylate groups. 

 The experiment was conducted similar to AC-exchanged hybrid nanoribbons. To make the 

same stoichiometry between naphthalene and tartrate, NC 20 µM and NDC 10 µM dissolved in alkaline 

solution were incubated with hybrid nanoribbons 100 µM in water. As a result, the NC showed strong 

induced exciton-coupling CD similar to the AC cases. However, the CD of NDC is rather complicated. 

 The induced CD of NDC in hybrid nanoribbons is too low, overwhelmed by the CD signals from 

tartrate in the original hybrid nanoribbons structure. (Figure 2-31 b) Assuming that NDC was 

completely exchanged with tartrate, the ratio of anions in hybrid nanoribbons will be [NDC] : 

[tartrate] : [gemini] 20 : 80 : 100 µM. By subtracting the CD with the original CD of hybrid nanoribbons 

80 µM, the estimated induced CD of NDC was obtained. (Figure 2-31 c) As a result, relatively low 

induced CD without exciton-coupling was found. With higher NDC ratio, the exciton-coupling can also 

be observed. (Appendix) 

 This result shows that the number of carboxylic groups strongly affects the chirality induction 

at the low exchanging anions : hybrid nanoribbons ratio. While the monoanionic aromatic molecules 

with single carboxylic acid group will exchange with tartrate in pairs, showing exciton-coupling CD 

even at low concentration, dianionic aromatic molecules with two carboxylic acid groups will exchange 

randomly, so the concentration threshold to obtain exciton coupling is higher. 
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2.6.3 Induced CD of Anthracene Derivatives 

  

Figure 2-32. Some of commercially available acidic anthracene derivatives 

The other commercially available acidic anthracene derivatives (Figure 2-32) were also 

exchanged to tartrate in hybrid nanoribbons and compared with AC. However, it was difficult to 

determine the concentration of each derivative because they do not dissolve completely in NaOH 

1 mM solution, except sulfonate derivative. Therefore, the stock solution of each derivative was 

prepared with the same method as AC, and the concentration is considered to be no more than 1 mM. 

In the case of AC, more than 1 : 1 ratio to hybrid nanoribbons will saturate the CD signals. 

Comparatively, the other derivatives were prepared with no more than 1 : 1 ratio, and the g factors 

were compared instead of absolute CD signals. 

 

Figure 2-33. CD spectra, UV-Vis absorption spectra and g factor of (a) AC 8.3 µM (light blue and ligh orange) 
and 9,10-dimethylanthracene-2-sulfonate (ASO) 8.3 µM (dark blue and drak orange) with hybrid nanoribbons 
(1 : 1), (b) AC 25 µM with hybrid nanoribbons 25 µM (light blue and ligh orange) and 2-anthraceneboronate 

(AB) less than 50 µM with hybrid nanoribbons 50 µM (dark blue and drak orange), and (c) AC 25 µM with 
hybrid nanoribbons 25 µM (light blue and ligh orange) and 1-anthracenecarboxylate (1-AC) less than 50 µM 

with hybrid nanoribbons 50 µM (dark blue and drak orange). 

 Previously, methyl orange was reported to be a good anion to exchange with tartrate.195 

Therefore, sodium 9,10-dimethylanthracene-2-sulfonate (ASONa), the closest sulfonate derivative of 

AC, was used. Surprisingly, the induced CD, both absolute signal and g factor, is much lower than AC, 

probably due to 2 factors. (Figure 2-33 a) First, the substitution at 9 and 10 positions of anthracene 

and/or the size of overall anions are crucial. Second, it is also possible that at nearly neutral pH, 

sulfonate (strong acid) or carboxylate (pKa 4.2)289 functional groups on anthracene do not show 

significant different. As a result, tartrate can exchange with AC relatively easy comparing to ASONa. 
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 2-Anthraceneboronate (AB) was also exchanged to tartrate in hybrid nanoribbons. Boronic 

acid usually has pKa more than 8, weaker acid than carboxylate. Therefore, interactions of AB are much 

lower than AC. Nevertheless, it was proved in the case of AC that if the AC to hybrid nanoribbons ratio 

is less than 1 : 1, g factor does not change (or even slightly increase when decrease AC proportion). 

Thus, if AB has less exchange efficiency but same induced chirality as AC, the g factors of AB and AC 

should be similar. However, the g factor of AB is much lower than AC and does not have exciton 

coupling signal. (Figure 2-33 b) (The cross point at 210 nm is originated from tartrate.) This is possibly 

because 2 protons of boronic acid can be deprotonated, becoming dianion. Exchanging one tartrate 

then requires only one AB, reducing the aromatic stacking interactions that usually happened with AC. 

 Next, 1-anthracenecarboxylate (1-AC) was used to investigate the importance of the positions 

of the functional group. 1-AC also showed less exchanging efficiency with much lower g-factor even 

though the exciton coupling was observed. (Figure 2-32 c). As already discussed in IR and VCD section, 

9-AC has less exchange efficiency than AC. These two results reach to the same conclusion that the 

carboxylate group at the end of anthracene molecular structure allows better stacking of anthracene 

molecules in hybrid nanoribbons confined space, which corresponds to the proposed organization 

(Figure 2-27). The stackings of 1-AC and 9-AC molecules are limited comparing to AC because the 

substitution requires more space on the surface of double-bilayer plane. 

2.6.4 Induced CD and Selective Binding of ACDs  

 The mixture of ACDs synthesized from AC photodimerization in tetrahydrofuran was mixed 

with L-hybrid nanoribbons and incubated at 4 °C overnight. The ACDs inside the nanoribbons were 

analyzed by HPLC. Considering that ACDs have 2 carboxylate groups, and only half of the tartrate 

(outer-layer tartrate) can be exchanged, the maximum stoichiometry to exchange ACD to tartrate will 

be [ACD] : [gemini tartrate] 1 : 2. If every ACD is equally presented in the mixture (HPLC of pure ACDs 

was analyzed after this experiment.), the minimum ratio of 1 : 1 and 2 : 1 ratio should be more than 

enough for the tartrate to completely exchange with head-to-head ACDs and single ACD, respectively.  

Table 2-7. Distribution of ACDs obtained inside the hybrid nanoribbons from mixing the mixture of different 
ACDs to L-hybrid nanoribbons. 

 

Interestingly, all the samples with different AC to hybrid ratio show the increase product 

distribution of head-to-head dimers. The efficiency strongly depends on the ratio and temperature. 

(Table 2-7). With the ACDs to hybrid nanoribbons ratio of 1 : 1 and 2 : 1, the selectivity of the head-to-

head dimers increased to 62 and 64 % respectively comparing to 36.8 % in free solution, while the 4 : 

1 ratio can selectively bind only 51.4 % head-to-head product distribution. It was clear that the main 
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dimers responsible for the variation of the % head-to-head for all three ratios was the increase of 

ACD4 and the decrease of ACD1. The binding constant of each dimer can be ranked as ACD4 > ACD3 > 

ACD2 > ACD1. Moreover, this trend becomes clear when incubating at 20 °C, which head-to-head 

dimers 86 % can be obtained. This time, the distribution of head-to-tail dimers are relatively low and 

the ACD4 increases, but the ACD3 remains the same. Therefore, the hybrid nanoribbons can be used 

to selectively capture and enrich the product distribution of ACD4. 

 

Figure 2-34. CD and UV-Vis absorption spectra of (a) ACDs-exchanged L-hybrid nanoribbons and (b) ACDs (all 
dimers 50 µM) and AC (13 µM) mixture with D-hybrid nanoribbons (13 µM). 

 Unfortunately, the enantiomeric excess (ee) cannot be observed. The ACDs exchange was 

repeated with D-hybrid nanoribbons with [ACDs] : [hybrid nanoribbons] 2 :1. The water was removed 

by centrifugation at 3893 × g and 4 °C for 20 min, and the nanoribbons were re-dispersed in water 

4 °C. Comparing to pure D-hybrid nanoribbons, the UV absorption increased, indicating the presence 

of ACDs. (Figure 2-34 a) The CD signal belonging to ACDs (240 - 270 nm) was also found. However, 

after heating the ACDs-exchanged hybrid nanoribbons at 70 °C, the CD peak of ACDs disappeared, 

indicating that the CD was not originated from the ee of ACDs, but it was an induced CD originated 

from the chiral organization of ACDs entrapped in the chirally arranged gemini. 

Finally, the difference in the affinity between AC and ACDs with the hybrid nanoribbons was 

examined. (Figure 2-33 b) The mixture of ACDs and AC with excess amount of ACDs (4 times higher 

concentration than AC, 8 times more carboxylate groups) were mixed with D-hybrid nanoribbons. The 

resulting CD spectrum shows induced CD profile similar to AC-exchanged D-hybrid nanoribbons (Figure 

2-33 b, green line), but the intensity is much lower, while the absorption was higher, indicating that 

major exchanging anion is ACDs. The induced CD of ACDs in hybrid nanoribbons is much lower than of 

AC, causing the opposite results between CD and absorption. Still, the fact that induced CD of AC can 

still be observed even with excess ACDs concentration means that AC can bind hybrid nanoribbons 

even in the existence of ACDs, showing a possibility to recycle hybrid nanoribbons after 

photocyclodimerization of AC inside. 
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2.7 Conclusion 
 

 The chiral hybrid nanoribbons were synthesized and used as a chiral template to induce 

chirality of AC. Because of the anion exchange between tartrate and AC, the AC exhibits the induced 

CD throughout the spectrum with particularly strong exciton-coupling CD signal with the g-factor 

difference (positive absolute maxima − negative absolute maxima at the exciton-coupling) of 1.3 × 

10−2. The chirality of AC was induced from the chiral double-bilayer self-assemblies of gemini 

molecules, not the chiral tartrate. Lowering the temperature slows down the exchange between 

tartrate and AC but gives a more stable and higher induced CD spectrum. The exchange efficiency also 

depends on the age of hybrid nanoribbons stocks. The AC can exchange with only half of the tartrate 

on the outer layer of double-bilayer assemblies. At higher AC content, the AC molecules will begin to 

penetrate through gemini layer, revealed by VCD and IR spectra, causing the perturbation to the 

assemblies. The exchange efficiency depends not only on the acidity but also on the structure of anions. 

For example, the position of carboxylate group can greatly affect the exchange, and the number of 

carboxylate groups is an essential factor to obtain the exciton-coupling CD at low concentration ratio. 

These studies on dynamics of AC and tartrate exchange are useful to not only this system but also the 

other systems utilizing hybrid nanostructures or any other hybrid surfactant self-assemblies. 

Even though the enantioselectivity was too low to be discussed, hybrid nanoribbons showed 

high regioselectivity toward head-to-head dimers (ACD3 and ACD4). The maximum selectivity was 

97 %, which is a near perfect absolute regioselectivity. This is so far the only complete supramolecular 

head-to-head regioselective photocyclodimerization of AC using only water as a solvent and at the 

temperature higher than 0 °C (even at room temperature).233,246,259,263 (the combination of chiral ionic 

liquid and cucurbit[8]uril in aqueous solution show the closest result of 91 % at 25 °C,258 and complete 

head-to-head selectivity of anthracene is also possible on dried surface of helical nanometal.259) Also, 

this is the first regioselective reaction utilizing hybrid nanoribbons.189,190,290 Moreover, the 

photocyclodimerization of AC using hybrid nanoribbons is exceptionally versatile. From temperature 

−20 °C to 20 °C, the product distribution of head-to-head dimers are more than 90 % in almost any 

conditions. The temperature (and maybe additional solvent) is important to control the ratio between 

syn- and anti-head-to-head dimers. The enantioselectivity and the selectivity between syn- and anti-

isomers can be interesting topics for the future research. Together with the titration experiment, the 

orientation of AC on the self-assembled double-bilayer of gemini surfactants was proposed. 

The kinetics determination also showed a significant increase of photocyclodimerization rates 

by using hybrid nanoribbons as chiral media even at 10 µM. The hybrid nanoribbons can be used for 

capturing and enriching ACD4. In addition, AC can exchange with tartrate in hybrid nanoribbons even 

with relatively higher ACDs concentration, illustrating the possibility to recycle the hybrid nanoribbons 

after reactions. Using hybrid nanoribbons demonstrates not only a significant improvement of 

regioselectivity but also a potential reduction of time, energy and cost in photoreactions. 
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2.8 Experimental Procedure 
 

2.8.1 Synthesis of Gemini Bromide (N,N’-dihexadecyl-N,N,N’,N’-tetramethylethylene 

diammonium bromide)   

Tetramethylethylenediamine 1.00 mL (6.63 mmol) and 1-bromohexadecane 6.08 mL 

(19.88 mmol, 3 eq) were dissolved in acetonitrile 50 mL. The solution was stirred at 85 °C for 2 d, and 

the white precipitate was formed. The solution was cooled to room temperature. The precipitate was 

centrifuged at 3893 × g and 20 °C for 20 min. The supernatant was removed, and the precipitate was 

washed by acetone 40 mL 4 times. The precipitate was dried under vacuum to give gemini bromide 

2.76 g (3.83 mmol, 57.8 % yield) as a white solid: 1H NMR (CD3OD, 400 MHz): δ (ppm) = 0.87 (t, J = 6.6 

Hz, 6H, CH3), 1.18 - 1.45 (m, 52H, CH2), 1.82 (br, 4H, CH2), 3.23 (s, 12H, N-CH3), 3.45 (t, J = 8.5 Hz, 4H, 

N-CH2), 3.98 (s, 4H, N-CH2). 

2.8.2 Synthesis of Gemini Acetate (N,N’-dihexadecyl-N,N,N’,N’-tetramethylethylene 

diammonium acetate)   

Gemini bromide 2.78 g (3.83 mmol) was dissolved in methanol 60 mL while heated at 50 °C. 

Silver acetate 2.44 g (14.6 mmol, 4 eq) was added to the solution and stirred at 50 °C in the dark for 

1 d. The solution was filtered by celite. The precipitate was washed by methanol. The combined filtrate 

was dried by evaporator resulting in the yellow viscous oil. The oil was re-dissolved in methanol 2 mL, 

heated at 40 °C and sonicated until completely dissolved. Acetone 10 mL was added, and the white 

precipitate was observed. The suspension was kept at 4 °C overnight. The supernatant was removed 

by centrifugation at 3893 × g and 4 °C for 10 min. The precipitate was washed by acetone 40 mL 3 times 

and dried under vacuum to give gemini acetate 2.29 g (3.34 mmol, 87.2 % yield) as a white solid: 1H 

NMR (CD3OD, 300 MHz): δ (ppm) = 0.87 (t, J = 6.6 Hz, 6H, CH3), 1.25 - 1.45 (m, 52H, CH2), 1.84 (br, 4H, 

CH2), 1.89 (s, 6H, CH3), 3.23 (s, 12H, N-CH3), 3.41 (t, J = 8.7 Hz, 4H, N-CH2), 3.90 (s, 4H, N-CH2). 

2.8.3 Synthesis of Gemini L- and D-Tartrate (N,N’-dihexadecyl-N,N,N’,N’-

tetramethylethylene diammonium L- and D-tartrate)   

D-Tartaric acid 302 mg (2.01 mmol, 2 eq) was dissolved in methanol and acetone mixture 35 

mL (1:9). Gemini acetate 687 mg (1.00 mmol) in the same solvent mixture with the same volume was 

added dropwise to the tartaric acid solution. The white precipitation was formed during addition. The 

solution was stirred for 3 h at room temperature. The suspension was centrifuged at 3893 × g and 4 °C 

for 10 min, and the supernatant was removed. The precipitate was washed by methanol and acetone 

mixture 45 mL (1:9) 2 times and cold water 9 times until the pH became more than 6. The solid was 

washed by acetone 45 mL 2 times and dried under vacuum to give gemini D-tartrate 562 mg (786 µmol, 

78.4 % yield) as a white solid. The similar procedure was carried out with L-tartaric acid 320 mg (2.13 

mmol, 2 eq) and gemini acetate 685 mg (1.00 mmol) to give gemini L-tartrate 589 mg (824 µmol, 82.4 % 

yield) as a white solid: 1H NMR (CD3OD, 300 MHz): δ (ppm) = 0.90 (t, J = 6.8 Hz, 6H, CH3), 1.25 - 1.45 

(m, 52H, CH2), 1.82 (br, 4H, CH2), 3.21 (s, 12H, N-CH3), 3.41 (t, J = 7.5 Hz, 4H, N-CH2), 3.91 (s, 4H, N-CH2), 

4.30 (s, 2H, CH). 
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2.8.4 Synthesis of Organic Nanoribbons, Nanohelices and Nanotubes 

The gemini L- or D-tartrate was dissolved in water to the final concentration of 1 mM. The 

solution was heated at 60 - 70 °C in water bath for 5 min, sonicated in the sonication bath for 2 min, 

and heated again for 5 min. If the volume of the solution was more than 5 mL, it would be divided to 

5 mL each into 15 mL centrifuge tube while heating in water bath. The solution was cooled and aged 

in the temperature-controlled chamber at 20 °C. The organic nanoribbons, nanohelices and nanotubes 

were formed after 1 h, 2 d and 15 d, respectively. 

2.8.5 Synthesis of Hybrid Nanoribbons, Nanohelices and nanotubes 

First, the tetraethyl orthosilicate 5 % v was pre-hydrolyzed in tartaric acid solution (aq) 0.1 mM 

(final concentration) with the same enantiomer as the gemini tartrate. The solution was vortexed and 

sonicated for 1 min before mixed by roller mixer at 20 °C for 5 h. The solution was sonicated again and 

transferred to the gemini-tartrate-aging tube (1 h for nanoribbons, 3 d for nanohelices and 3 weeks 

for nanotubes) with the exact same volume. The solution was mixed by gentle inversed-shaking to 

avoid breaking the formed nanofibers. The solution was aged for 14 h on roller mixer at 20 °C. The 

nanofiber aggregates could be observed after the aging. The solution was centrifuged at 3893 × g and 

4 °C for 12 min, and the supernatant was disposed to remove the excess hydrolyzed tetraethyl 

orthosilicate and quench the transcription. To completely remove excess tetraethyl orthosilicate, the 

obtained precipitate (hydrogel) was washed 4 times with the following procedure. The hydrogel was 

re-dispersed in water 14 mL at 4 °C by vortexing and sonicating 1 min in ice bath, the suspension was 

centrifuged at 3893 × g and 4 °C for 12 min, and the supernatant was disposed. After washing, the 

hydrogel was re-dissolved in water 5 mL at 4 °C (or less). The suspension was sonicated by the probe 

sonicator for 5 s 2 times to make homogeneous suspension. The concentration was determined by 

lyophilization of 200 µL sample in a small aluminium cup. The morphology was checked by TEM, and 

the organization of gemini tartrate was confirmed by CD.  

2.8.6 Synthesis of Silica Nanoribbons and Nanohelices 

To remove the gemini tartrate assemblies, the hybrid nanofibers were washed by methanol 

5 times with the following procedure. First, the suspension was centrifuged at 3893 × g and room 

temperature for 12 min. The supernatant was disposed, and the gel was re-dispersed in methanol by 

vortexing and sonicating. The suspension was heated at 60 °C for 5 min and sonicated for 10 min, it 

was centrifuged at 3893 × g and room temperature for 12 min, and the methanol supernatant was 

removed. The gel was re-dispersed in designated solvent, and the suspension was sonicated by the 

probe sonicator for 5 s 2 times to make homogeneous suspension. The concentration was determined 

by drying 200 µL sample in a small aluminium cup using oven or by lyophilization. The morphology 

was checked by TEM. The CD spectrum from 200 to 240 nm must be 0, showing the complete removal 

of the gemini tartrate from the silica structure. 

2.8.7 Transmitted Electron Microscope Measurement 

The TEM sample was prepared using blotting technique. The 400-mesh carbon-coated copper 

grids (DELTA Microscopies, France) were used. First, the carbon side of the grid was hydrophilized by 
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UV/Ozone ProCleaner 220 for 20 - 30 min. After that, the suspension containing nanostructures 8 µL 

was dropped on the carbon surface. After 1 min, the excess liquid was blotted using filter paper. In 

case of organic nanostructures, uranyl acetate 2 % w 8 µL was dropped and blotted after 1 min. The 

surface was dried at the room temperature. The TEM images were taken from either Philips CM-120 

20-120 kV (FEI Company, USA) or LVEM5 5 kV (Delong Instruments, Czech Republic). The ImageJ 

software (NIH and University of Wisconsin) was used to edit or scale the final images. 

2.8.8 Synthesis of Chloride-Exchanged Hybrid Nanoribbons 

The hybrid nanoribbons were washed by KCl 100 mM solution (aq) at 4 °C until CD signal of 

tartrate was minimized or disappeared. First, the hybrid nanoribbons suspension was centrifuged at 

3893 × g and 4 °C for 12 min, and supernatant was removed. Few mL of KCl solution was added, and 

the suspension was mixed by pipetting. After that, the tube was filled by KCl and vortexed. The 

suspension was centrifuged at 3893 × g and 4 °C for 12 min, the supernatant was removed, and the 

procedure was repeated for 5 to 10 rounds until CD signal of tartrate was minimized. To remove excess 

KCl, the same procedure was repeated with water at 4 °C for 3 to 5 rounds. The suspension was stored 

in the desired volume at 4 °C. The concentration was determined by lyophilization similar to the case 

of hybrid nanostructures. The molar concentration was calculated with the same method as hybrid 

nanoribbons with gemini tartrate but converted to gemini chloride molecular weight. 

2.8.9 Preparation of AC Stock in Alkaline Solution 

 The excess amount of AC powder was dissolved in NaOH 1 mM aqueous solution. The solution 

was sonicated using probe sonicator for 5 min (1 s on and 1 s off, total 10 min) in the ice bath. The 

solution was filtered by 0.25 µM syringe filter unit. The concentration of AC was determined by 

absorption spectra at 387 nm. 

2.8.10 Titration between 2-Anthracenecarboxylate and Hybrid Nanoribbons 

 The AC stock was added to the hybrid nanoribbons and diluted to the desired concentration 

at the designated temperature. For the CD measurement, 3 mL of each sample was prepared and 

incubated on a roller mixer. The lowest concentration of hybrid nanoribbons was prepared at 100 µM 

to avoid the CMC problems, and the samples were diluted to the desired concentration just before 

the CD measurements. All samples in the same spectra were prepared from the same AC and hybrid 

nanoribbons stock with the 20 min interval, which is the time required for each CD measurement, 

ensuring as precise as possible incubation time for the same set. The samples for the other CD 

measurements were prepared in the similar manner. 

2.8.11 Circular Dichroism Spectroscopy Measurement 

 The JASCO J-815 CD machine (JASCO, Japan) was equipped with Single Position Peltier Cell 

Holder. The suspension sample was diluted to the designated concentration for at least 2 mL volume 

in 1 × 1 cm quartz cuvette with a stirrer bar. All the preparation procedure was done in an ice bath 

unless otherwise mentioned. The measurement was conducted with scan speed 100 nm / min, 

bandwidth 2.00 nm, data integration time 0.5 s, standard sensitivity, accumulation 4 times at 4 °C 
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while stirring, unless otherwise mentioned. All the data discussed in this chapter has linear dichroism 

(LD) less than 0.001 and high tension (HT) less than 600 V to ensure the identity of the CD signal. 

2.8.12 Fluorescence Spectroscopy Measurement 

The fluorescence emission spectra were measured from the CPL-300 spectrometer (JASCO, 

Japan). The sample 2 mL was in 1 × 1 cm quartz cuvette with stirrer bar. The sample chamber was 

cooled to 4 °C, and the sample was always stirred. The excitation wavelength is 350 nm and detection 

wavelength is 380 - 540 nm range with 100 nm / min scan speed. For the comparison of fluorescence 

intensity, the detector HT was set at 800 V for both AC and AC-exchanged hybrid nanoribbons samples 

with single scan. For the photochemical reaction kinetics study, the samples were scan repeatedly. 

The detector HT was set to 700 for AC and 850 V for AC-exchanged hybrid nanoribbons to give the 

best quality of the fluorescence intensity. 

2.8.13 Infrared and Vibrational Circular Dichroism Measurements.  

The infrared (IR) and Vibrational Circular Dichroism (VCD) spectra were recorded with a 

ThermoNicolet Nexus 670 FTIR spectrometer equipped with a VCD optical bench.291 In this optical 

bench, the light beam was focused on the sample by a BaF2 lens (191 mm focal length), passing an 

optical filter (1850-800 cm-1), a BaF2 wire grid polarizer (Specac) and a ZnSe photoelastic modulator 

(Hinds Instruments, Type II/ZS50). The light was then focused by a ZnSe lens (38.1 mm focal 

length) onto a 1 × 1 mm HgCdTe (ThermoNicolet, MCTA* E6032) detector. IR absorption and VCD 

spectra were recorded at a resolution of 4 cm-1 by coadding 50 scans and 24000 scans (8h acquisition 

time), respectively.  

The samples of hybrid nanoribbons were prepared by exchanging of D- or L-tartrate with AC in 

different proportions for 5 mL in water at 4 °C overnight. The suspensions were centrifuged at 3893 × 

g and 4 °C for 10 min. The supernatant of each sample was removed, and the gel was washed by D2O 

4 °C 5 mL twice. The samples were held in a demountable CaF2 cell (Biotools) with fixed path length of 

55 m. In order to compare the IR spectra and to ensure the consistency of the gel in the cell, the IR 

spectra were normalized with respect to the 2919 cm-1 band related to the antisymmetric (aCH2) 

stretching vibration of the methylene groups of gemini.  

Additional IR and VCD spectra were performed for L-hybrid nanoribbons and 9-AC-exchanged 

L-hybrid nanoribbons (1 : 1) as well as IR spectrum of sodium salt of AC. Baseline corrections of the 

VCD spectra were performed by subtracting the raw VCD spectra of the D2O solvent. The photoelastic 

modulator was adjusted for a maximum efficiency in the mid-IR region at 1400 cm-1. Calculations were 

performed via the standard ThermoNicolet software, using Happ and Genzel apodization, de-Haseth 

phase-correction and a zero-filling-factor of one. Calibration spectra were recorded using a 

birefringent plate (CdSe) and a second BaF2 wire grid polarizer, following the experimental procedure 

previously published.292 IR spectra were shown with solvent absorption subtracted. 

2.8.14 Photocyclodimerization of AC Mediated with Hybrid Nanoribbons or Nanohelices 

 The water used for AC stock preparation and dilution in photocyclodimerization was bubbled 

by N2 gas for at least 1 h. The hybrid nanoribbons were diluted and the AC stock was added to the 
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suspension to the desired concentration and volume. If the temperature is 4 °C, all the components 

were cooled in ice bath or refrigerator before mixing. The suspension was incubated before irradiated 

by lamp F8T5BL 8 W 352 nm (Ushio) under the designated conditions.  

 After irradiation, the suspension was centrifuged at 3893 × g and 4 °C for 20 min. The 

supernatant was removed, and the gel was washed twice by water 4 °C with the same volume as the 

removed supernatant. The hydrogel obtained from the last centrifugation was lyophilized to 

completely remove water. 

 The methanol 4 mL was added to the dried hybrid nanostructures. The suspension was heated 

at 50 °C for 10 min and sonicated for 10 min. The suspension was centrifuged at 3893 × g and 25 °C 

for 20 min. The supernatant 3 mL was separated, filtered by cotton and dried in the oven to obtain 

the powder for further HPLC analysis. 

2.8.15 HPLC Analysis of 2-Anthracenecarboxylate Dimers 

Table 2-8. Parameters for analysis HPLC of ACDs with chiral column 

 

The powder containing ACDs were dissolved in NaOH 10 mM. The same volume of acetonitrile 

was added, and the sample was filtered through 0.45 µM pore size syringe filter unit. Regarding the 

previous report, the sample was injected to the fluorescence-detector-equipped HPLC. (Table 2-8) 

2.8.16 Preparation of Anthracene and Naphthalene Derivatives Stock in Alkaline Solution 

 The acidic anthracene derivatives were prepared similar to AC stock. The powder was 

dissolved in NaOH 1 mM solution (aq). The solution was sonicated using probe sonicator for 5 min (1 

s on and 1 s off, total 10 min) in the ice bath. The solution was filtered by 0.25 µM syringe filter unit. 

The concentration was assumed to be no more than 1 mM. For NC, NDC and ASO, the powders were 

dissolved by mixing and shaking, and the concentration was calculated by weight. 

2.8.17 The Selective Binding of ACDs to L-Hybrid Nanoribbons 

 The ACDs stock solution was prepared by dissolving ACDs powder in NaOH solution (aq) same 

as AC stock. The estimate concentration was calculated using the absorption at 201 nm (ɛ201 ≈ 85000 

M−1cm−1) The ACDs stock, L-hybrid nanoribbons and water were cooled and mixed in the ice bath. The 
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suspension was incubated overnight at 4 °C on roller mixer. The suspension was centrifuged at 

3893 × g and 4 °C for 20 min. The supernatant was removed. The hydrogel obtained from the last 

centrifugation was lyophilized to completely remove water. The same methanol extraction procedure 

and the HPLC analysis are the same as for the photocyclodimerization products.
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3.1 Objective 
 

 The objective of this chapter is to utilize synthetic antibody as a supramolecular host for 

photocyclodimerization of AC in water. The antibody synthesis, starting from the ligand synthesis for 

phage display panning to antibody expression, and the optimized supramolecular 

photocyclodimerization conditions of AC are reported. 

 

3.2 Introduction 
 

From cyclodextrin and serum albumin cases, the possibility of supramolecular asymmetric 

syntheses mediated by biomolecules had been indicated with high efficiency and wide variety of 

media. Especially, the photocycloaddition is one of the most compatible reactions because the starting 

material can be specifically excited at the wavelength that products and host molecules do not absorb, 

avoiding reversible reaction and damage to the host molecules. However, a major drawback is the 

variety of the product distribution and ee causing the difficult selection of the products. In addition, 

the product distribution and ee can be in the opposite directions depends on which protein was 

utilized. For example, the native γ-cyclodextrin can induce product distribution of ACD2 to 46 % with 

41 % ee,223 and HSA induces the ee of ACD3 to 88 % but suppresses product distribution to only 11 %.245 

Also, they have multiple reaction sites which can produce different products.254 The natural 

biomolecules were not designed for photochemical reaction, so it is difficult to predict the products 

when utilizing any biomolecules even with thorough knowledge of their structures. Synthetic antibody 

can be used as the simple and customizable biomolecular reaction template. 

 Besides the generality in thermal reaction, only few cases of catalytic antibodies for 

supramolecular photochirogenesis have been reported,138,139,142–144 even though the concepts of 

catalytic enzyme are more appropriate in the design of synthetic antibody.293 The antibodies are 

usually obtained by conjugating target molecules294 with proteins to elicit monoclonal antibodies by 

standard hybridoma technique.149,150,295 On the other hand, the phage display technique, despite the 

fact that it is very efficient method to obtain therapeutic antibody with high binding affinity to specific 

targets,296–299 has not been used for obtaining synthetic antibodies for photochirogenesis. Even though 

using antibody phage display technique reduced a diversity of antibodies because the limitation of 

antibody structure, the structure can be approximated using the identified sequence and the known 

antibody structure from protein database as a model, which is simpler than hybridoma technique. 

Furthermore, it is also possible to conduct mutagenesis with the known information of amino acid 

residues by directly manipulate the vector. 

Based on these backgrounds, we reported the utilization of synthetic antibody obtained by in 

vitro selection from a conventional phage display technique, an animal-free and inexpensive 

technique providing antibody in a relatively short time,299 to the [4+4] photocyclodimerization of AC 

from the phage display panning and protein engineering to the optimization of photoirradiation 

conditions. Due to the customizability, high efficiency, low cost, short time and animal-free 
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experiment, it is proved that the synthetic antibody obtained from phage display technique can be a 

good chiral reaction templates in a wide variety of photochemical reactions. 

 

3.3 Synthesis of ACD3-PEG5-Lys-Biotin Ligand 
 

 

Figure 3-1.  ACD3-PEG5-Lys(Biotin) ligand. 

 For phage display screening, the ligand consisting of the target for antibody, linker and binding 

part for the paramagnetic beads. Based on the assumption that ACD molecules resembled the 

transition state orientation of the AC photocyclodimerization, ACD3 was used as a target for antibody. 

The ligand was designed composing of ACD3 as a target site, a flexible polyethylene glycol (3-[(17-

Amino-3,6,9,12,15-pentaoxaheptadec-1-yl)oxy]propanoic acid: NH2-PEG5-COOH) linker, and a biotin 

moiety for binding to streptavidin magnetic beads. (Figure 3-1) 

The designed ACD3-PEG5-Lys(Biotin) ligand was synthesized by the stepwise peptide solid-

phase synthesis of Fmoc-amino acids on Novasyn TGR resin according to a reported procedure300 with 

Fmoc-AA-OH (Fmoc-Lys(Biotin)-OH and Fmoc-NH-PEG5-OH) using 2-(7-aza-1H-benzotriazole-1-yl)-

1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) and 1-Hydroxy-7-azabenzotriazole (HOAt) 

in diisopropylethylamine (DIEA) as coupling reagents. (Figure 3-2) Each coupling step was checked by 

Fmoc test and Kaiser test. 

The enantiopure (P)-ACD3 was synthesized following the method of Fukuhara, et al.264,22 

(provided by M. Nishijima and G. Fukuhara). For the conjugation of ACD3 to the N-terminal amino 

group, Fmoc deprotected peptide resin, was incubated with the mixture of ACD3, HATU, HOAt, and 

DIEA in N-methyl-2-pyrrolidone / dimethyl sulfoxide for 2 h. The resin was washed by chloroform and 

ethanol, and dried under vacuum overnight.  

A crude product was purified with Reverse-Phase (RP-) HPLC to afford ACD3-PEG5-Lys(Biotin) 

ligand stock solution (370 μM, 200 μL, 74 nmol). Although, the overall yield of the synthesis was only 

1.5%, it was enough for phage display screening. The purity was calculated to be 80 % based on the 

HPLC analysis of purified ligand. The purified ACD3-PEG5-Lys(Biotin) ligand was identified by mass 

spectroscopy.  
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Figure 3-2.  Solid phase synthetic scheme for ACD3-PEG5-Lys(Biotin) 

 

3.4 Antibody Phage Display Screening and Protein Expression 
 

The antibody phage display technique was performed using ACD3-PEG5-Lys(Biotin) ligand. 

With solution phase panning method, phages bound to ACD3 moiety can be isolated by the strong 

interactions between the biotin and streptavidin immobilized on paramagnetic beads.301,302,303 After 

three rounds of panning procedure, monoclonal phage candidates from the last phage pool were 

isolated and screened by Enzyme-Linked Immunosorbent Assay (ELISA).304,305 The phage with the high  

selectivity to ACD3 was chosen. The DNA sequence for protein expression was determined and stop 

codon was eliminated. The amino acid residues were mapped on the known antibody structure. The 

vector was subcloned and the protein was expressed in periplasm of E. coli. 
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3.4.1 Antibody Phage Display Panning Procedure 

Figure 3-3. Structure of scFv antibody (PDB: 3AUV).306 The CDRs region, containing random sequences, is 
expected to be the binding site to ACD3, which is shown in blue and pink colors. 

Tomlinson I and J phagemid synthetic libraries were used in this experiment.307 Tomlinson I 

and J libraries are commercially available scFv libraries widely used, composed of a single human 

framework for υh and υκ with the diversity of 18 random amino acids incorporated in complementary-

determining region (CDR) 2 and 3, often contributed to the antigen binding (Figure 3-3). 

 

Figure 3-4. Schematic representation of antibody phage display panning. The panning was conducted 3 rounds 
with reducing concentration of the ACD3-PEG5Lys(Biotin) ligand. The negative selection was also conducted 

before 2nd and 3rd rounds using bare streptavidin paramagnetic beads. 

The solution phase panning procedure was performed using streptavidin-conjugated 

paramagnetic beads. (Figure 3-4) The beads were pre-incubated with blocking buffer to prevent 

unspecific bindings. Also, the 2-Amino-2-hydroxymethyl-propane-1,3-diol hydrochloride (Tris HCl) 

buffer solution containing Tween-20 (0.1 %) was used as a washing reagent for the same reason. The 

phages were first incubated with ACD3-PEG5-Lys(Biotin) ligand, and then the solution mixture was 
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added to the beads and incubated at room temperature. The beads, which is bound to the ACD3-

PEG5-Lys(Biotin) ligand bound to phages in this state, were isolated by washing multiple times on 

magnetic stand. Next, the phages must be infected to the E. coli TG1 cells for the amplification. 

However, the phages bound to the magnetic beads cannot infect the bacterial cells, so the free ACD3 

molecules were added to saturate and remove phages from the beads. The solution was separated 

completely from the beads and the phages were infected to TG1 cells. 

Before the panning procedure of the 2nd and 3rd rounds, the negative selection, incubation of 

phages in with streptavidin-conjugated paramagnetic beads, was conducted to eliminate the phages 

that bind to streptavidin instead of the ligand. To prepare E. coli TG1 cells for the infection, the cells 

were grown in 2xTY medium until they reach an OD of 0.4 at 600 nm. The infection was conducted by 

mixing the recovered phages solution with the TG1 cells in the medium and incubating without shaking. 

The titering procedure was performed to estimate the number of recovered phages. The cells were 

plated on the LB agar plate and grown overnight. The grown E. coli cells were collected and stored in 

the LB medium containing 15% glycerol at −20 °C. A part of the stock was amplified and infected by 

helper phages, allowing bacterial cells to reproduce phages. The phages were purified and prepared 

as a new library for the next round of panning procedure. 

After the 3 rounds of panning process, the monoclonal phages were isolated from single 

colonies on a titering plate. The cells were grown in LB medium and infected by helper phages. The 

purified phages were used for ELISA304,305 on the streptavidin immobilized plate in three different 

protocols: with ACD3-PEG5-Lys(Biotin) ligand, without ACD3-PEG5-Lys(Biotin) ligand, and with both 

ACD3-PEG5-Lys(Biotin) ligand and excess amount of free ACD3. The phage having desired affinity must 

show binding affinity in the presence of ACD3-PEG5-Lys(Biotin) ligand. However, if the phage also 

shows binding affinity in the absence of the ligand, the phage is binding to the streptavidin instead of 

to the ACD3-PEG5-Lys(Biotin) ligand. Likewise, if the phage shows high affinity in the excess amount 

of free ACD3, it binds to another part of the ligand instead of ACD3. Thus, the phage must have low 

binding affinity in the case of without ACD3-PEG5-Lys(Biotin) ligand, and with ACD3-PEG5-Lys(Biotin) 

ligand and excess amount of free ACD3. 
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Figure 3-5. Absorption from ELISA screening of (a) first-selected candidates and (b) scFv J-20 clone. 

From Tomlinson library I and J, 2 and 6 candidates were obtained from the screening of 48 

clones each (Figure 3-5 a). Although Tomlinson I and J libraries are based on the same human scFv 

antibody, only 2 candidates with moderate results were obtained using Tomlinson I library while 6 

candidates with much better results were given by Tomlinson J library. The difference between these 

libraries is the availability of the random sequence pattern. Thus, the amino acid sequences of the 

human scFv antibody are crucial to define the binding properties to ACD3. 

For assessing the target selectivity of obtained phages, the competitive ELISA assay using the 

other ACD isomers was performed. Mostly, The ELISA signals were selectively decreased by the 

addition of ACD3. However, the addition of ACD4 also reduced the signals in most cases because of 

the similarity of head-to-head conformation. On the other hand, the addition of ACD1 and ACD2 must 

not affect the signals. Otherwise, the selectivity of the antibody will not fit the criteria. As a result, 

scFv J-20 clone showed the most suitable properties among the candidates. (Figure 3-5 b) Therefore, 

scFv J-20 clone was selected for subclone and protein expression. 

3.4.2 Sequencing and Protein Expression of scFv J-20 Antibody 

It is known that antibody phage display technique has less diversity of antibody library than 

hybridoma because the antibody structures are identical, human scFv. Nevertheless, one significant 

advantage over hybridoma technique is the possibility to determine amino acid sequences from the 

specific engineered vector of the library. The location of amino residues can be estimated using the 

known scFv structure, and they can be easily manipulated directly on the DNA plasmid vector. Besides, 

another advantage is no experiment in animals, causing faster, cheaper, less facilities needed and 

more environmental friendly.308 
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1/1          31/11 

Nde I 

  5’-G GAA TTC cat atg AAA TAC CTA TTG CCT ACG G -3’ 32nt Tm=62°C SS-pelB-Fw-01 

ATG AAA TAC CTA TTG CCT ACG GCA GCC GCT GGA TTG TTA TTA CTC GCg gcc cag ccg gcC 

MET Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala Ala Gln Pro Ala 

-> pelB Leader 

 

61/21          91/31 

ATG GCC GAG GTG CAG CTG TTG GAG TCT GGG GGA GGC TTG GTA CAG CCT GGG GGG TCC CTG 

Met Ala Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu 

  Heavy -> 

121/41          151/51 

AGA CTC TCC TGT GCA GCC TCT GGA TTC ACC TTT AGC AGC TAT GCC ATG AGC TGG GTC CGC 

Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ala Met Ser Trp Val Arg 

 

181/61          211/71 

CAG GCT CCA GGG AAG GGG CTG GAG TGG GTC TCA ACG ATT GGT GGT TAG GGT ACT CGG ACA 

Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Thr Ile Gly Gly Gln Gly Thr Arg Thr 

           

241/81          271/91 

TTT TAC GCA GAC TCC GTG AAG GGC CGG TTC ACC ATC TCC AGA GAC AAT TCC AAG AAC ACG 

Phe Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr 

 

301/101          331/111 

CTG TAT CTG CAG ATG AAC AGC CTG AGA GCC GAG GAC ACG GCC GTA TAT TAC TGT GCG AAA 

Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Lys 

 

361/121          391/131 

ACG AGT CGG CCT TTT GAC TAC TGG GGC CAG GGA ACC CTG GTC ACC GTC TCG AGC GGT GGA 

Thr Ser Arg Pro Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly 

                      G3S Linker -> 

421/141          451/151 

GGC GGT TCA GGC GGA GGT GGC AGC GGC GGT GGC GGG TCG ACG GAC ATC CAG ATG ACC CAG 

Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Thr Asp Ile Gln Met Thr Gln 

          Light −> 

481/161          511/171 

TCT CCA TCC TCC CTG TCT GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC CGG GCA AGT 

Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser 

 

541/181          571/191 

CAG AGC ATT AGC AGC TAT TTA AAT TGG TAT CAG CAG AAA CCA GGG AAA GCC CCT AAG CTC 

Gln Ser Ile Ser Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu 

 

601/201          631/211 

CTG ATC TAT CAT GCA TCC TCG TTG CAA AGT GGG GTC CCA TCA AGG TTC AGT GGC AGT GGA 

Leu Ile Tyr His Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly  

  

661/221          691/231 

TCT GGG ACA GAT TTC ACT CTC ACC ATC AGC AGT CTG CAA CCT GAA GAT TTT GCA ACT TAC 

Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr 

 

721/241          751/251 

TAC TGT CAA CAG GCT GCT GCG AAT CCT CCT ACG TTC GGC CAA GGG ACC AAG GTG GAA ATC 

Tyr Cys Gln Gln Ala Ala Ala Asn Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 

 

781/261     Not I        811/271 

AAA CGG gcg gcc gcA CAT CAT CAT CAC CAT CAC GGG GCC GCA GAA CAA AAA CTC ATC TCA 

Lys Arg Ala Ala Ala His His His His His His Gly Ala Ala Glu Gln Lys Leu Ile Ser 

   -> 6 x His Tag   Myc Tag 

 

841/281             Amber   871/291 

GAA GAG GAT CTG AAT GGG GCC GCA TAG ACT GTT GAA AGT TGT TTA GCA AAA CCT CAT ACA 

  <- 3’- TA GAC TTA CCC CGG CGT ATC -5’ 20nt Tm = 62°C  pHEN-Term-01 

Glu Glu Asp Leu Asn Gly Ala Ala *** Thr Val Glu Ser Cys Leu Ala Lys Pro His Thr 

       ->Phage gIII Coat Protein 

 

 

Figure 3-6 DNA and amino acid sequences of scFv J-20 in pIT2 vector. The bold and underlined characters 
indicate the random sequences and CDRs. The primers (SS-pelB-Fw-01 and pHEN-Term-01) used for PCR are 

also shown.  
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Figure 3-7.  Subcloning of scFv J-20 into pET-22b(+) vector. 
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T7-Pro-01 Primer, 20b, Tm = 56 °C 

                 BgIII                 5’-T AAT ACG ACT CAC TAT AGG G-3’ -> 

GCG TAG AGG ATC aga tct CGA TCC CGC GAA ATT AAT ACG ACT CAC TAT AGG GGA ATT GTG 

 

                        Xba I                        rbs           Nde I    

AGC GGA TAA CAA TTC CCC tct aga AAT AAT TTT GTT TAA CTT TAA GAA GGA GAT ATA cat 

 

1/1          31/11 

Nde I 

  5’-G GAA TTC cat atg AAA TAC CTA TTG CCT ACG G -3’ 32nt Tm=62°C SS-pelB-Fw-01 

ATG AAA TAC CTA TTG CCT ACG GCA GCC GCT GGA TTG TTA TTA CTC GCg gcc cag ccg gcC 

MET Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala Ala Gln Pro Ala 

-> pelB Leader 

 

61/21          91/31 

ATG GCC GAG GTG CAG CTG TTG GAG TCT GGG GGA GGC TTG GTA CAG CCT GGG GGG TCC CTG 

Met Ala Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu 

  Heavy -> 

121/41          151/51 

AGA CTC TCC TGT GCA GCC TCT GGA TTC ACC TTT AGC AGC TAT GCC ATG AGC TGG GTC CGC 

Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ala Met Ser Trp Val Arg 

 

181/61          211/71 

CAG GCT CCA GGG AAG GGG CTG GAG TGG GTC TCA ACG ATT GGT GGT cAG GGT ACT CGG ACA 

Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Thr Ile Gly Gly Gln Gly Thr Arg Thr 

          

241/81          271/91 

TTT TAC GCA GAC TCC GTG AAG GGC CGG TTC ACC ATC TCC AGA GAC AAT TCC AAG AAC ACG 

Phe Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr 

 

301/101          331/111 

CTG TAT CTG CAG ATG AAC AGC CTG AGA GCC GAG GAC ACG GCC GTA TAT TAC TGT GCG AAA 

Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Lys 

 

361/121          391/131 

ACG AGT CGG CCT TTT GAC TAC TGG GGC CAG GGA ACC CTG GTC ACC GTC TCG AGC GGT GGA 

Thr Ser Arg Pro Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly 

                      G3S Linker -> 

421/141          451/151 

GGC GGT TCA GGC GGA GGT GGC AGC GGC GGT GGC GGG TCG ACG GAC ATC CAG ATG ACC CAG 

Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Thr Asp Ile Gln Met Thr Gln 

          Light −> 

481/161          511/171 

TCT CCA TCC TCC CTG TCT GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC CGG GCA AGT 

Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser 

 

541/181          571/191 

CAG AGC ATT AGC AGC TAT TTA AAT TGG TAT CAG CAG AAA CCA GGG AAA GCC CCT AAG CTC 

Gln Ser Ile Ser Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu 

 

601/201          631/211 

CTG ATC TAT CAT GCA TCC TCG TTG CAA AGT GGG GTC CCA TCA AGG TTC AGT GGC AGT GGA 

Leu Ile Tyr His Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly  

  

661/221          691/231 

TCT GGG ACA GAT TTC ACT CTC ACC ATC AGC AGT CTG CAA CCT GAA GAT TTT GCA ACT TAC 

Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr 

 

721/241          751/251 

TAC TGT CAA CAG GCT GCT GCG AAT CCT CCT ACG TTC GGC CAA GGG ACC AAG GTG GAA ATC 

Tyr Cys Gln Gln Ala Ala Ala Asn Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 

 

781/261     Not I     XhoI         811/271     

AAA CGG gcg gcc gcA ctc gag CAC CAC CAC CAC CAC CAC TAA TAA TGA CTA GTC AGC TGA 

Lys Arg Ala Ala Ala Leu Glu His His His His His His *** *** *** 

           -> 6 x His Tag    

 

 

Figure 3-8. DNA and amino acid sequences of scFv J-20 in pET-22b(+) vector. The bold and underlined 
characters indicate the random sequences and CDRs. The primer T7-Pro-1 used for PCR are also shown. 

The TAG codon on the random sequence was mutated to CAG. 
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The target plasmid can be easily produced and extracted from the infectious E. coli TG1 cells. 

The cells infected with scFv J-20 phages were inoculated into 2xTY medium 1 mL containing ampicillin 

100 µg / mL and glucose 1 %. This culture was incubated at 30 °C overnight while shaking. pIT2 vector 

containing scFv J-20 coding was purified using QIAGEN Plasmid Purification Kits and the plasmid stock 

was kept at −20 °C. The sequences of all constructs were verified by dye-terminator sequencing.309–311 

(Figure 3-6) Here, one stop codon TAG was found on a randomly generated sequence, which is 

translated to glutamine in E. coli TG1.312 The codon was mutated to CAG using overlap-extension313 

mutation method and subcloned to pET-22b(+) vector. (Figure 3-7 and Figure 3-8) The vector was 

transformed into BL21(DE3) competent E. Coli cells. 

The protein was expressed in periplasmic space of BL21(DE3) at 25 °C overnight in the LB 

medium containing ampicillin 100 μg / mL and glucose 0.2 % under the control of T7 promoter with 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) 0.2 mg / mL (0.84 mM). After centrifugation at 2330 × g 

and 4 °C for 10 min to remove the E. coli cells, the protein was purified from the medium with Ni-NTA 

and Sephadex G-25 (GE Healthcare) columns. The purity and MW were characterized by sodium 

dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)314 and gel permeation 

chromatography. The typical protein expression with LB 250 mL produces scFv J-20 antibody 2.5 mL 

with approximately 8 μM. The concentration of the antibody was calculated by the absorption at 280 

nm (ε0 = 38640 M-1cm-1 for secreted protein based on ExPASy315). The CD spectrum was measured and 

used to analyze the formation of protein secondary structure using BeStSel specially developed for β-

structure selection.316,317 The result showed that scFv J-20 antibody composes of antiparallel β-

structure 39.7 %, others (loop in this case) 44.4 %, turn 14.3 % and α-helix 1.7 %, which is consistent 

to the structure of scFv antibody. (Figure 3-3) (Appendix) 

Table 3-1. Summary of amino acid residues of scFv J-20 in total, only in CDRs and only randomly generated 
sequences. 
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Figure 3-9 Location of 3 arginine residues in CDRs of scFv J-20. The randomly generated arginine residues, 
expected to interact with carboxylate groups of ACD3, are highlighted in pink. 

 It is possible that the main driving force of ACD3 binding scFv J-20 antibody is hydrophobic 

interactions. However, the discrimination among different ACDs is the position of 2 carboxylate groups. 

Therefore, the electrostatic interactions must exist on the binding site, which will determine the 

location of carboxylate groups. As it is in aqueous solution with pH 7.5, the carboxylate groups will 

have strong electrostatic interactions toward basic amino acids. There are 1 lysine and 3 arginine 

residues in CDRs of scFv J-20 (Table 3-1), and 2 arginine residues generated from random codons are 

located nearby each other. (Figure 3-9) This region is expected to be the binding site of ACD3 during 

phage display panning. 

 

3.5 Interactions of scFv J-20 Antibody to 2-Anthracenecarboxylate and Dimers 
 

Although the selective binding of the phage clone J-20 to ACD3 is high, the properties of free 

antibody (not on the membrane of the phages) should be confirmed. From ACDs to AC, the 

interactions of antibody are discussed.  

3.5.1 Ground-State Interaction between Antibody and ACD Isomers 

There is a chance that antibodies in the solution will have the different binding properties as 

the ones on the phage particles. Therefore, the binding properties of scFv J-20 were tested with ACDs 

mixture. Unlike the hybrid nanoribbons, the antibodies are stable in the maximum concentration of 

10−6 M, and they have strong UV absorptions and CD spectra up to 300 nm due to amino acid side 

chains.318,319 Therefore, the qualitative binding property was observed by simply adding ACD mixture 

stock to scFv J-20 in Tris HCl 20 mM buffer pH 7.5 containing NaCl 150 mM (TBS), filtering scFv J-20 

using protein filter (Millipore), and analyzing the free ACD mixture left in the filtrate. The filtrate was 

diluted by acetonitrile before injecting to HPLC analysis equipped with chiral column and fluorescence 

detector (excitation 254 nm, emission 420 nm).286 The control chromatogram was prepared in the 

same way but using only TBS instead of scFv J-20 in TBS. 
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Figure 3-10. Analystical HPLC (fluoresence) of free ACDs in the solution with scFv J-20 (orange) and control 
(grey). The number 1 to 4 indicates ACD1 to ACD4, while + and − indicate the different enatiomer. 

 The chromatograms were normalized by the peaks of ACD2. Clearly, the proportions of ACD3 

and ACD4 in free solution after mixed with scFv J-20 are reduced. (Figure 3-10) Although the absolute 

binding affinity cannot be calculated, it is clear that the scFv J-20 antibody has a higher binding affinity 

to head-to-head dimers than head-to-tail dimers.  

3.5.2 Ground- and Excited-State Interactions Between Antibody and AC 

Using ACD3 as a target molecule in phage display technique, it is not certain that scFv J-20 can 

also bind AC monomer. If it cannot, scFv J-20 can only be used for ACD3 and ACD4 purification, which 

is not the main objective of this research. Therefore, the interactions between scFv J-20 and AC must 

be inspected. In the case of serum albumins having high stability at 10−5 M, the CD titration is used to 

determine the binding affinity to AC.244,245 In the case of scFv J-20, the CD titration was also attempted, 

but only the decrease of the original CD of antibody was observed similar to ACD case, which means 

the binding constant could not be quantitatively analyzed by this technique. However, the qualitative 

study was conducted similarly to the case of scFv J-20 and ACDs, but analyzed by simple fluorimeter. 

The AC stock was added to scFv J-20 in TBS in the ratio 2 to 1, the solution was filtered by protein filter, 

and the filtrate was analyzed by fluorescent emission spectroscopy. The control sample was prepared 

with the same manner using only TBS instead of scFv J-20 in TBS. 
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Figure 3-11. (a) Fluorescence spectra of free AC in the solution with scFv J-20 (orange) and control (grey). The 
excitation wavelength was 365 nm with 5 nm bandwidth, the emission bandwidth was 3 nm, the pathlength 

for excitation was 0.2 cm and for emission was 1.0 cm, and the sensitivity was set to high with 1 s respense. (b) 
The fluorescence decay spectrum of AC in the presence of scFv J-20 antibody. The excitation laser was 390 nm, 
the detection was at 420 nm, and the AC and scFv J-20 ratios were 1 µM : 0 µM, 2 µM : 2 µM and 1 µM : 2 µM. 

The filtrate from AC and scFv J-20 mixture showed fluorescence intensity of 243 a.u., while 

the control experiment has fluorescence intensity of 495 a.u. at 420 nm. (Figure 3-11 a) The 

concentration of AC used was 17 µM, which was low enough to estimate the linear relationship 

between concentration and fluorescence intensity.283 Meaning, half of AC was efficiently bound to 

scFv J-20, which is high considering the fact that AC was not used as a target for phage display panning.  

The fluorescence lifetime measurement was used to study the excited-state interactions. The 

fluorescence lifetime of AC was measured in the presence of the scFv J-20 antibody in different ratios. 

From the decay graph (Figure 3-11 b), the decay curve can be fitted to the following equation.  

I(t) = A1 e
−t/τ1

+ A2 e
−t/τ2 

I(t) is fluorescence intensity with function of time, t is time, and A1 and A2 are the contribution of τ1 

and τ2. In this case, 2 lifetime decays are considered.  

Table 3-2. Fluorescence lifetime components of AC in the presence of scFv J-20. 

 

 From equation (3-1), the lifetimes of AC in the presence of scFv J-20 can be calculated. The 

fitting shows second component with a short lifetime decay in the presence of scFv-J-20 antibody 

(Table 3-2), suggesting the microenvironmental changes of AC. This can be due to the hydrophobic 

environment in scFv J-20 antibody cavity, fluorescence quenching by tryptophan composed in scFv 

(3-1) 
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J-20 antibody or the promotion of AC photocyclodimerization.245,250 Either way, this result shows that 

AC molecules are incorporated in the confined cavity of scFv J-20 antibody. 

3.6 Supramolecular Regio- and Enantioselective [4+4] Photocyclodimerization 

of 2-Anthracenecarboxylate Using Synthetic scFv Antibody  
 

 

Figure 3-12 Supramolecular regio- and enantioselective [4+4] photocyclodimerization of AC using scFv J-20 
antibody as a chiral host. 

After confirming the ground- and excited-state interactions to AC and ACDs, the scFv J-20 

antibody was used as a chiral host for supramolecular [4+4] photocyclodimerization of AC. (Figure 

3-12) The reactions were carried out using different ratios of scFv J-20 and AC. The optimized external 

factors, photochemical reaction conditions, are also described. 

3.6.1 Photocyclodimerization of AC Using scFv J-20 and Analysis of ACD Products 

 

Figure 3-13. Analytical HPLC (fluoresence) of supramolecular [4+4] photocyclodimerization of AC mediated by 
scFv J-20 antibody. AC concentration was 5.0 µM and scFv J-20 antibody concentration was 2.5 µM. 

The photocyclodimerization was conducted by irradiating the mixture of AC and scFv J-20 

antibody in TBS. The scFv J-20 antibody stocks were freshly prepared. TBS was bubbled by Ar to reduce 

the oxygen in the solution. The AC 5.0 µM was mixed with scFv J-20 antibody 0 to 5.0 µM. The mixture 

was incubated at room temperature for 30 min before irradiation. The sample was irradiated for 1 h 

at 20 °C. The light source for irradiation was xenon lamp 500 W with the glass filter to give only light 

with the wavelength longer than 320 nm (340 nm longpass filter). At this wavelength, only AC absorb 

the light. Therefore, ACDs photodissociation or protein photo-denaturation are negligible. The scFv J-

20 antibody was denatured by adding acetonitrile with the same volume as the original solution. The 

solution was incubated overnight and filtered. The filtrate was analyzed by HPLC. (Figure 3-13) The 
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product distribution and ee of each ACD were calculated based on the integration of HPLC peaks. Here, 

+ and − sign of % ee refer to the first and second elution of the ACD2 and ACD3, which correspond to 

(M)- and (P)-isomer of both dimers.22 

Table 3-3. Photocyclodimerization of AC mediated by scFv J-20 antibody.  

 

As mentioned in chapter 2, the head-to-tail products (ACD1 and ACD2) are relative favorable 

comparing to the head-to-head products (ACD3 and ACD3), especially in aqueous solution. However, 

the existence of scFv J-20 antibody significantly increased the product distribution of ACD3 and ACD4 

from 14.5 % and 10.1 % to 32.4 % and 51.4 %, increasing the head-to-head product distribution for 3.4 

times. Not only product distribution, but also the ee of ACD2 and ACD3 were observed at 40 % and 

41 %. It is important to disclaim that the product distribution of ACD2 was low, so the 40 % ee analysis 

was not as accurate as of ACD3. 

The assumption that ground-state interactions between scFv J-20 antibody and AC was crucial 

to achieve the contribution of scFv J-20 antibody as a chiral reaction media in photocyclodimerization 

was undoubtedly demonstrated with these results. From previous section, the ground-state 

interactions between scFv J-20 antibody and AC showed not perfect binding affinity. Half of AC was 

found in the filtrate even though the ratio of AC to scFv J-20 antibody was 2 to 1, suggesting not 

complete binding. Also, the contribution of short decay component in excited-state interactions was 

only 10 %. Consequently, even in the case of 1 to 1 ratio, there are also ACD1 and ACD2, likely to be 

produced from the dimerization of AC in the solution rather than inside the cavity of scFv J-20 antibody. 

In addition, the ELISA test and ground-state interactions study showed that the scFv J-20 antibody has 

high binding affinity to not only ACD3, but also ACD4, which is the cause of the increase of ACD4 

product distribution, too.  

Another unexpected result is that (P)-ACD3 was produced by this antibody, but the (M)-ACD3 

was used as a target for antibody phage display. So, the result does not exactly follow the plan. It 

might be the nature of proteins that the cavity is more favorable for (P)-ACD3. For example, 

mammalian serum albumins usually produce (P)-ACD3, which can be a serious limitation.246 On the 

other hand, the anisotropy of ACD3 production solely comes from the nature of phage library. 

Therefore, by utilizing racemic ligand for phage display, there is a great chance to observe the ee from 

the supramolecular asymmetric reactions mediated by obtained synthetic antibodies. 
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3.6.2 Effects of External Factors to Photocyclodimerization 

Even though the significant improvement in regio- and enantioselectivity is clear, the product 

distribution and ee are still far from practical uses. There are 3 components which can improve the 

results of this strategy, antibody phage libraries, ligand and external factors. The antibody libraries can 

be improved by optimizing the antibody structures and random sequences. However, the antibody 

phage library is usually custom made, so it is difficult to access any new libraries. In addition, it is also 

difficult to predict the performance of the new libraries with present computational techniques. For 

the ligand, the new design will be discussed in chapter 4. Here, the optimization of external factors, 

photochemical reaction conditions, is explained. 

 

Figure 3-14. Docking model of ACD3 and scFv J-20 antibody. (Software: PyMOL) 

According to the docking model (Figure 3-14), the positions of the randomly generated 

arginine residues on CDR are similar to the distance between carboxylate groups of ACD3. Therefore, 

these two arginine residues may provide electrostatic interactions to ACs, resulting in the 

discrimination of the production among ACDs. Unfortunately, they are located at the outer space of 

the antibody, a high microenvironmental polarity region. The interactions between carboxylate group 

of AC and guanidino group of arginine are disturbed by the solvation of water and ions in the solution, 

giving different possibilities of AC orientation in the cavity. Hence, not only (P)-ACD3, but also 

antipodal (M)-ACD3 and another head-to-head product, ACD4, were produced competitively. 

Assuming that the origin of this limitation is the location of the arginine residues, there are 

two solutions: obtaining new antibody having the arginine residues located inside the cavity, and 

increasing the interactions between arginine residues and AC. The strategy in obtaining new 

antibodies is related to the new ligand design in the next chapter. The external factors, however, can 

be applied to increase the specific orientation of AC molecules in the cavity, especially when the 

reaction site is located at the outside of the antibody. 4 factors were studied: temperature, time, pH 
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and salt. The knowledge of the effects from these factors are useful not only to this system but also 

bio-molecular reaction hosts in general. 

Table 3-4. Temperature-dependent photocyclodimerization of AC mediated by scFv J-20 antibody.  

 

 The [4+4] Photocyclodimerization of AC mediated by scFv J-20 antibody was conducted in the 

same protocol, but the incubation and irradiation temperature at 4 °C was carried out. The reduction 

of temperature shows small increase of ACD3 product distribution, moderate increase of ee, but 

significant increase of ACD 4, causing the head-to-head product distribution to be more than 90 %. 

(Table 3-4) The possible reasons are the stability of antibody and at low temperature and/or the 

motions of antibody. Moreover, this result also corresponded to the previous study about the entropy-

controlled asymmetric photochemistry.320 Hence, the temperature is an important factor for protein 

as a regio- and enantioselective template. 

 

Figure 3-15. UV-Vis absorption spectra of photocyclodimerization solution of AC 5.0 µM mediated by scFv J-20 
antibody 2.5 µM after different irradiation time (0 - 120 min). The conditions are described in table 3-5. 

Table 3-5. Irradiation-time-dependent photocyclodimerization of AC mediated by scFv J-20 antibody.  
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Next, the effects of irradiation time were investigated. The absorbance at 387 nm is too low 

to be accurately determined, so the absorbance at 280 nm was used instead. (Figure 3-15) Both AC 

and ACDs can absorb at this wavelength, but AC has significantly higher molar extinction coefficient. 

Therefore, the absorption decreases with the increase of irradiation time. There is not much difference 

in product distribution and ee. The 60 min irradiation time has slightly higher regioselectivity than the 

others. Therefore, the irradiation time is set at 60 min in the other experiments. 

Table 3-6. pH-dependent photocyclodimerization of AC mediated by scFv J-20 antibody.  

 

The pH dependency was studied by changing the pH of TBS. Normally, the pH of TBS is 7.5, 

but the higher pH buffer solutions were prepared. Here, the scFv J-20 stocks were prepared separately 

with different TBS. In this range of pH 7.5 to 9.0, the electrostatic interactions should remain 

unchanged because the pKa of AC and arginine are 4.2 and 12.5, respectively.289 However, at pH 8.0, 

the ee of ACD3 increased to 48 %. (Table 3-6) The cause of this moderate improvement might be the 

conformational change of scFv J-20 antibody, which pI was estimated to be 9.03 (ExPASy315,321,322). 

Thus, the net charge of protein is closer to neutral, and the hydrophobicity of the antibody was 

increased, inducing more compact conformation, reducing the microenvironmental polarity of the 

reaction site because the arginine residues are more enclosed inside the antibody. As a result, there 

was a slight improvement of ee.  

On the other hand, at pH 8.5, the hydrophobicity of the scFv J-20 antibody causes the 

aggregation, and the result turned to be slightly worse, especially the decrease of % head-to-head. 

The aggregation can suppress the binding affinity of proteins, so the head-to-tail dimers, assumed to 

be formed in the solution, increase. This postulation was supported by the failure of the scFv J-20 

antibody harvesting in TBS at pH 9.0 probably due to the aggregation. So, the effects of pH are 

complicated yet important for improving the supramolecular asymmetric synthesis mediated by any 

proteins or biomolecules. 
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Table 3-7. Salt-dependent photocyclodimerization of AC mediated by scFv J-20 antibody.  

 

Another factor is the salt in buffer. Usually for scFv antibody, TBS contains NaCl 150 mM. In 

this experiment, TBS (pH 7.5) with different salt concentration and types were prepared and used for 

antibody harvesting. The ionic strength can be calculated from the following equation. 

𝐼𝑜𝑛𝑖𝑐 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
1

2
∑ 𝑐𝑖𝑧𝑖

2

𝑛

𝑖=1

 

ci is the molar concentration of each ion, and zi is the charge of each ion. Considering the 

relative low concentration of HCl used for adjusting the pH of the buffer and the low concentration of 

AC, the ionic strength can be estimated from the Tris HCl concentration (20 mM) and salt 

concentration (75-500 mM). (Table 3-7) 

The result of 500 mM NaCl (ionic strength 520 mM) showed the slight increased ee of ACD3. 

This improvement was assumed to be the result of the ionic strength of NaCl in the solution, limiting 

the motion of the antibody. However, the high concentration of NaCl also interrupts the interactions 

between AC and arginine, so the product distributions of ACD1 and ACD2 increase. Changing the types 

of salt to KCl do not show any significant effects to the photocyclodimerization products at 75 mM. 

However, they are quite different at 500 mM concentration. In KCl 500 mM, the head-to-head product 

distribution is higher than NaCl 500 mM, but the ee is slightly lower. Therefore, not only the ionic 

strength but also the type of ions also affects the photochemical reaction. 

3.6.3 Organic Solvent Toleration of scFv J-20 Antibody During Photocyclodimerization 

A mixture of water and organic solvents can increase the solubility of most of starting material 

of chemical reactions, so the toleration of scFv J-20 antibody to ethanol and dimethyl sulfoxide were 

studied because both of the solvents have UV cut-off lower than 280 nm, and they are miscible in 

water. Apart from the product distribution and ee, the conversion rate should also be compared, but 

because the concentration is too low, the absorbance at 387 nm cannot be quantified. Even though 

the reduction of the absorbance at 280 nm does not represent the real conversion, it is still a good 

indication to compare the relative conversion (similar to time-dependent study). In addition, the 

preparation for HPLC analysis was changed. The solvent incompatibility from ethanol and dimethyl 

sulfoxide caused the duplication of HPLC peaks. Thus, after denaturation by acetonitrile, the solvent 

exchange using monolithic silica extraction tips was used instead of simple filtration. 

(3-2) 
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Table 3-8. Photocyclodimerization of AC mediated by scFv J-20 antibody in the solution of TBS mixed with 
ethanol and dimethyl sulfoxide. 

 

As expected, % ee and % head-to-head decreased with the increase of organic solvent 

concentration. (Table 3-8) At ethanol 10 % and dimethyl sulfoxide 5 %, the ee of ACD3 slightly 

decreases. In contrast, the regioselectivity is greatly affected. The % head-to-head reduced to less than 

65, and it becomes less than half at double concentration for both solvents. The existence of organic 

solvents affects the regioselectivity more than enantioselectivity. Still, with ethanol 30 %, the ee 

drastically reduced to almost 0. Interestingly, A280 reduction also decreased when adding ethanol and 

dimethyl sulfoxide. Both of organic solvents do not absorb at the irradiated wavelength, so the 

decrease of A280 reduction is from the protein denaturation. At the same time, this means scFv J-20 

antibody increases the AC photocyclodimerization efficiency. Also, the tertiary structure of scFv J-20 

is crucial to provide the appropriate cavity for reaction. 

 

3.7 Conclusion 
 

To obtain synthetic antibody from phage display screening, ACD3-PEG5-Lys(Biotin) ligand 

containing ACD3 as a target product was synthesized from solid-phase synthesis. After 3 rounds of 

panning and ELISA screening of 96 phage clones, 2 and 6 candidates having binding affinity to ACD3 

were isolated from Tomlinson I and J libraries, respectively. From the competitive ELISA screening, 

J-20 candidate showed high selectivity to head-to-head over head-to-tail ACDs. The randomly 

generated STOP codon was mutated, the target DNA was subcloned into pET-22b(+) vector, and the 

synthesis and purification of scFv J-20 antibody was achieved by protein expression in E. coli BL21(DE3) 

cells using Ni-NTA and Sephadex G-25. The amino acid sequence of the scFv J-20 was determined. 

Together with the human scFv structure from the protein database, the binding site of ACD3 was 

located based on the position of arginine residues.  



CHAPTER 3: SUPRAMOLECULAR REGIO- AND ENANTIOSELECTIVE [4+4] PHOTOCYCLODIMERIZATION OF 2-ANTHRACENECARBOXYLATE USING SYNTHETIC 

ANTIBODY OBTAINED FROM PHAGE DISPLAY TECHNIQUE 

87 

 

The ground-sate interaction between scFv J-20 antibody and ACD3, and the ground- and 

excited-state interaction between scFv J-20 antibody and AC were observed. Although, the 

quantitative analysis was not successfully conducted, the existence of AC-antibody complex was 

explicit. In the existence of scFv J-20 antibody, supramolecular regio- and enantioselective [4+4] 

photocyclodimerization of AC clearly occurred. The product distributions of ACD3 and ACD4, which 

are less favorable in an aqueous solution, increased to 32.4 % and 51.4 %. Also, 41 % ee of ACD3 was 

found. This efficient increase of product distributions and ee proved the possibility on our proposed 

strategy, supramolecular regio- and enantioselective photoreactions mediated by synthetic antibody 

obtained from phage display technique. Moreover, the photochemical reaction conditions, including 

AC to scFv J-20 antibody ratio, pH, temperature, time and salt, were optimized.  

Even though each of these factors did not show strong improvement on the photocyclo-

dimerization, the synergistic effects of pH and temperature significantly improved the result. The ee 

and product distribution of ACD3 can be increased to 48 % and 33 %, respectively. In addition, % head-

to-head ratio was maximized to 91 %. From these results, the cause of moderate product distribution 

and ee of ACD3 is likely to be the high microenvironmental polarity of arginine residues at the reaction 

sites, leading to the different strategies for enhancing the interactions between arginine and AC by 

optimizing effects of external factors, photochemical reaction conditions, which is important to not 

only synthetic antibody but also any supramolecular reactions mediated by biomolecules. 

  

3.8 Experimental Procedure 
 

3.8.1 Synthesis of ACD3-PEG-5-Lys(Biotin) Ligand 

The ACD3-PEG-5-Lys(Biotin) ligand was synthesized by the solid-phase stepwise elongation of 

Fmoc-amino acids. Novasyn TGR resin (Novabiochem) 22 mg (5 μmol) was placed into the empty 

column PD-10 with the filter (GE Healthcare) and washed by dimethylformamide 2 mL 5 times and 

piperidine 20 % in N-methyl-2-pyrrolidone 2 mL. The resin was incubated in piperidine 20 % in 

N-methyl-2-pyrrolidone 2 mL for 20 min, and washed again by dimethylformamide 2 mL  5 times. 

The mixture of Fmoc-Lys(Biotin)-OH 31 mg (52 μmol, 10 eq), HATU 23 mg (60 μmol, 10 eq), and HOAt 

7.7 mg (57 μmol, 10 eq) dissolved in DIEA 18 μL and N-methyl-2-pyrrolidone 500 μL was added to the 

resin and incubated for 20 min. 

The solution was removed by filtration, and the resin was washed by dimethylformamide 2 mL 

5 times. The Kaiser test was conducted, and the resin was washed by piperidine 20 % in N-methyl-

2-pyrrolidone 2 mL. The resin was incubated in piperidine 20 % in N-methyl-2-pyrrolidone 2 mL for 20 

min, and washed again by dimethylformamide 2 mL 5 times. The absorption at 301 nm of the 

combined filtrate from the piperidine 20 % in N-methyl-2-pyrrolidone washing step was measured and 

the amount of the removed Fmoc was calculated (4.6 μmol). The resin was washed again by 

dimethylformamide 2 mL 5 times. The mixture of  Fmoc-NH-PEG5-COOH 1 M 50 μL (50 μmol, 10 eq), 

HATU 19.9 mg (52 μmol, 10 eq) and HOAt 7.5 mg (55 μmol, 10 eq) dissolved in DIEA 18 μL and 

N-methyl-2-pyrrolidone 500 μL was added to the resin and incubated for 25 min. 
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The solution was removed and the resin was washed by dimethylformamide 2 mL 5 times. The 

Kaiser test was conducted, and the resin was washed by piperidine 20 % in N-methyl-2-pyrrolidone 

2 mL. The resin was incubated in piperidine 20 % in N-methyl-2-pyrrolidone 2 mL for 20 min, and 

washed again by dimethylformamide 2 mL 5 times. The absorption at 301 nm of the combined filtrate 

from the piperidine 20 % in N-methyl-2-pyrrolidone washing step was measured and the amount of 

the removed Fmoc was calculated (4.04 μmol). The resin was washed again by dimethylformamide 

2 mL 5 times. The solution of enantiopure (P)-ACD3 provided by M. Nishijima and G. Fukuhara 5.4 mg 

(12 μmol, 2 eq) in dimethyl sulfoxide 250 μL was added to the solution of HATU 6.0 mg (15 μmol, 3 eq) 

and HOAt 2.3 mg (17 μmol, 3 eq) in DIEA 11 μL and NMP 500 μL. The mixed solution was added to the 

resin and incubated for 2 h. 

The solution was removed by filtration, and the resin was washed by dimethylformamide 2 mL. 

The filtrate was kept, and the resin was washed by dimethylformamide 2 mL 5 times, chloroform 2 mL 

5 times, and ethanol 2 mL 5 times, respectively. The column was blown by Ar gas for 1 min and dried 

under vacuum overnight. The synthesized ligand was cleaved from the dried resin (25.5 mg) by stirring 

with phenol 0.25 g, trifluoroacetic acid 5 mL, water 250 μL and triisopropylsilane 250 μL at room 

temperature for 2 h. The reaction solution was transferred back to the column and filtered. The filtrate 

was evaporated to obtain small amount of colorless liquid. The ether was added to the residue and 

the solution was centrifuged at 2330 × g and 4 °C for 10 min. The supernatant was removed and the 

same procedure was repeated. The pellet was dried under vacuum for 1 h and dissolved in acetonitrile 

300 μL and acetic acid 700 μL.  

Table 3-9. Parameters for RP-HPLC for ACD3-PEG5-Lys(Biotin) ligand purification and analysis. 

 

A crude ACD3-PEG5-Lys(Biotin) ligand was purified and analyzed with RP-HPLC. (Table 3-9) 

The purity was calculated to be 80 % base on the analysis of purified ligand (Appendix). The purified 

ACD3-PEG5-Lys(Biotin) was dried by evaporator and lyophilized to obtain a white solid. It was 

dissolved in acetonitrile 50 % (aq) 200 μL to afford 370 μM ACD3-PEG5-Lys(Biotin) ligand solution stock, 

which was stored at −20 °C. MS (ESI-TOF) m/z: [M + H]+ Calcd for C61H76N6O13S 1133.37; Found 1133.64. 
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3.8.2 Kaiser Test 

The Kaiser test was performed by mixing phenol 4 g / mL in ethanol 20 μL, potassium cyanide 

13 mg / mL in ethanol 20 μL, ninhydrin 50 mg / mL in ethanol 20 μL and small amount of the resin. The 

solution was mixed by tapping and heating in hot water (near 100 °C). If the color turns to blue or 

purple (positive result), it indicates the uncoupled amino group on the resin. In that case, the coupling 

will be repeated. However, all the tests showed negative results in this chapter. 

3.8.3 Solution Phase Panning Procedure 

The solution phase panning procedure was performed using streptavidin-conjugated 

paramagnetic beads (Promega). The beads (0.6 mL suspension) were incubated in Protein-Free (TBS) 

blocking buffer 1 mL (Piercs) at 4 °C for 1 h and washed with Tris HCl 50 mM buffer containing NaCl  

150 mM and Tween-20 (TBST) 0.1 % with pH 7.5 (TBST 0.5 % for the following rounds) 1 mL 4 times. 

The phages (3.4 × 109, 4.2 × 1011, 3.2 × 103 pfu for 1st, 2nd, 3rd round, respectively for Tomlinson I library; 

4 × 109, 5.2 × 109, 5.4 × 109 pfu for 1st, 2nd, 3rd round, respectively for Tomlinson J library) were 

incubated with ACD3-PEG5-Lys(Biotin) ligand (1, 0.1, 0.01 μM for 1st, 2nd, 3rd round, respectively) in 

TBST (0.1 % for 1st round and 0.5 % for the following rounds) at 25 °C for 30 min.  

The phages and ACD3-PEG5-Lys(Biotin) mixture was added to the beads and incubated at 

room temperature for 20 min. The beads were pelleted by centrifugation in a low-speed benchtop 

centrifuge and captured by a magnetic stand. The unbound phages in the supernatant were removed 

and the target-bound beads were washed 10 times with TBST (0.1 % for 1st round and 0.5 % for the 

following rounds). Free ACD3 10 μM in Tris HCl buffer containing NaCl 150 mM (TBS) 500 μL was added 

to the beads and incubated at room temperature for 1 h to elute the phages. The beads were pelleted 

by centrifugation in a low-speed benchtop centrifuge and the solution contained recovered phages 

was isolated from the beads on magnetic stand, and this procedure was repeated again to ensure the 

complete removal of the beads. The recovered phages were submitted to a titering procedure for 

quantification and amplified for the next round. 

Before the panning procedure of the 2nd and 3rd rounds, the negative selection was conducted. 

The streptavidin magnetic beads (0.6 mL suspension) were incubated in Protein-Free (TBS) blocking 

buffer 1 mL at 4 °C for 1 h and washed with TBST 0.5 % 1 mL 4 times. The phages in TBS 200 μL, and 

TBST 2.5 % 50 μL were added to the beads. The solution was incubated at room temperature for 30 

min. The supernatant containing phages, which did not bind to streptavidin beads, was separated from 

the beads by transferring to the new tube on magnetic holder. The separation was repeated to ensure 

the complete removal of the beads. The phages were then subjected to the solution phase panning 

procedure mentioned above. 

3.8.4 Phage Titering 

E. coli TG1 cells were grown in 2xTY medium at 37 °C until reaching 0.4 of OD at 600 nm. 

Recovered phages after each panning (250 μL) were added to the TG1 culture 1.75 mL and incubated 

at 37 °C for 30 min without shaking, allowing phages to infect to TG1 cells. The incubated media 5 μL 

was diluted by 2xTY medium 495 μL, making a serial dilution of factors of 100. Each dilution (10 μL) 
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was plated on a LB agar plate containing ampicillin 100 μg / mL and glucose 1 %, and incubated at 

37 °C overnight. The number of colonies was counted to determine the quantity of infectious phages. 

3.8.5 Amplification of Recovered Phage 

The infected TG1 culture (Recovered phage 250 μL) was added to the TG1 culture with an OD 

of 0.4 at 600 nm (1.75 mL) and incubated at 37 °C without shaking for 30 min allowing the infection. 

The culture was centrifuged at 3000 × g for 10 min and the supernatant was removed.  The pelleted 

cells were resuspended in 2xTY medium 100 μL and plated on an LB agar plate containing ampicillin 

100 μg / mL and glucose 1 %. After incubation at 37 °C overnight, the cells were suspended in LB 

medium 2 mL containing 15 % glycerol using a glass spreader. The glycerol stock was stored at −20 °C. 

Before storing in the freezer, the recovered TG1 cells (50 μL from 2 mL glycerol stock) were 

added to 2xTY medium 50 mL containing ampicillin 100 μg / mL and glucose 1 % and incubated at 

37 °C with shaking until they reach an OD of 0.4 at 600 nm. The grown cells (10 mL) were transferred 

into a new tube and added KM13 helper phage (2 x 1011 pfu). The cells were incubated at 37 °C without 

shaking for 30 min allowing the infection. The cells were harvested by centrifugation at 3000 × g for 

10 min and resuspended in 2xTY medium 50 mL containing ampicillin 100 μg / mL, kanamycin 

50 μg / mL and glucose 0.1 %. The infected cells were incubated at 30 °C with shaking overnight and 

then centrifuged at 3300 × g for 15 min. The supernatant was transferred into a new tube and 

centrifuged again at 3300 × g for another 15 min. The supernatant 40 mL was transferred into a new 

tube and polyethylene glycol 8000 20 % solution containing NaCl 2.5 M (PEG/NaCl) 10 mL was added. 

The mixture was incubated at 0 °C on an ice bath for 1 h and centrifuged at 3300 × g for 30 min at 4 °C. 

The precipitate was dissolved in TBS 1 mL and centrifuged at 11600 × g for 5 min and 4 °C to remove 

insoluble substances.  The supernatant was transferred into a new tube and stored at 4 °C for the use 

in the next round panning procedure. 

3.8.6 Preparation of Monoclonal Phage Clone for ELISA 

The single colonies from the titration plate from the 3rd round of panning procedure LB agar 

plate were steaked out on an LB agar plate containing ampicillin 100 μg / mL and glucose 1 %. After 

incubation at 30 °C overnight, a single colony from each clone was inoculated in 2xTY medium 2 mL 

containing ampicillin 100 μg / mL and glucose 1 %. The cells were grown at 30 °C with shaking overnight. 

Each starting cell culture 20 µL was added to the new 2xTY medium 2 mL containing ampicillin 

100 μg / mL and glucose 1 %. (The rest was stored in the form of glycerol stock as mentioned above.) 

The medium was incubated at 37 °C with shaking for 2 h. The KM13 helper phage (1 x 1010 pfu) 

dissolved in 2xTY medium 250 μL containing ampicillin 100 μg / mL and glucose 1 % was added to the 

cell culture and incubated at 30 °C without shaking for 30 min allowing the infection. The cells were 

centrifuged at 3000 × g for 10 min and the supernatant was removed. The cells were resuspended in 

2xTY medium 2 mL containing ampicillin 100 μg / mL and kanamycin 50 μg / mL, and incubated at 

30 °C overnight. The overnight culture 1.25 mL was transferred into a new tube and centrifuged at 

130000 rpm for 5 min. The supernatant 1 mL containing monoclonal phages was transferred into a 

fresh tube and used for ELISA. 
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3.8.7 Monoclonal Phage Enzyme-Linked Immunosorbent Assay (ELISA) 

The phage ELISA was performed using 96-wells immobilizer amino plate (NUNC). The 

streptavidin 10 μg / mL in NaHCO3 buffer (0.1 M, pH 8.3) 100 μL was added into each well and 

incubated at 4 °C overnight. After removing the excess streptavidin in solution, Protein-Free (TBS) 

blocking buffer 200 μL was added into each well and the plate was incubated at 4 °C for 1 h. Each 

monoclonal phage clone was incubated with ACD3-PEG5-Lys(Biotin) ligand 0.1 μM, without ACD3-

PEG5-Lys(Biotin) ligand, and with ACD3-PEG5-Lys(Biotin) ligand 0.1 μM and excess amount of ACD3 

0.1 mM in TBST 0.1 % for 1 h at room temperature, and transferred into a streptavidin-coated 96-well 

plate. After incubation at 25 °C for 1 h, the plate was washed 6 times with phosphate buffer saline 

solution containing NaH2PO4 3 mM, Na2HPO4 9 mM, NaCl 150 mM and Tween-20 0.1 % with pH 7.2 

(PBST). The horseradish peroxidasbe (HRP) conjugated anti-M13 monoclonal antibody (GE Healthcare) 

dissolved in Protein-Free (TBS) blocking buffer (1 : 5000 dilution) 100 μL was added into each well and 

incubated at room temperature for 1 h. After washing the plate 10 times with PBST, the HRP substrate 

solution (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) 11 mg and H2O2 30 % in 50 

mM sodium citrate buffer (pH 4.0) 137 mL) 200 μL / well was added and the plate was measured the 

absorption at 405 nm subtracted by absorption at 630 nm to remove the background scattering. 

 From the ELISA test, the candidates having high absorption (high binding affinity) in the 

presence of ACD3-PEG5-Lys(Biotin) ligand, but low absorption without ACD3-PEG5-Lys(Biotin) ligand 

or excess amount of free ACD3 (competitive binding) were isolated. From Tomlinson I and J libraries, 

2 and 6 candidates were obtained from the screening of 48 clones each. The candidates were screened 

by the ELISA test again with a similar procedure, but each monoclonal phage clone was incubated also 

with ACD3-PEG5-Lys(Biotin) ligand (0.1 μM) and excess amount of free ACD1, ACD2 and ACD4 

(0.1 mM). The candidate having low ELISA signal with the excess amount of ACD3, but high signal in 

the others was selected as the best candidate, which was J-20. 

3.8.8 Purification and Sequence Determination of pIT2-scFv-J-20 Vector 

The E. Coli TG1 cells having the desired pIT2-scFv-J-20 vector were amplified by streaking out 

on LB agar plate from the glycerol stock and grown at 37 °C overnight. A single colony was inoculated 

into 2xTY medium 5 mL containing ampicillin 100 μg / mL. The cells were grown overnight by 

incubating at 37 °C with shaking and collected by centrifuging at 3000 × g for 10 min.  

After removing supernatant, the purification and sequencing protocols were conducted using 

QIAGEN Plasmid Purification Kits. The buffer P1 250 μL was added, and the TG1 cells were 

resuspended by pipetting. The solution was transferred to a new tube. The buffer P2 250 μL was added 

and mixed by inverse shaking following by buffer N3 350 μL with similar method. The solution was 

centrifuged at 9500 × g for 10 min and the supernatant was transferred and filtered by QIAprep 2.0 

Spin Column on the benchtop centrifuge. The precipitate was washed by buffer PB 500 μL and buffer 

PE 750 μL. Then, the filter was dried by centrifuging at 16000 × g for 1 min. The column containing 

precipitate on the filter was transferred to a new tube. The filter was incubated in buffer EB 50 μL for 

1 min to elute the plasmids from the filter, and the eluted solution was collected by centrifuging at 

16000 × g for 1 min. The solution was transferred to a new tube and stored at −20 °C as a pIT2-scFv-J-20 

plasmid stock. 
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DNA sequence was verified by dye-terminator sequencing (Sanger sequencing) method using 

sequencer kit (ThermoFisher). The two PCRs (forward and backward) were conducted with two 

primers: 5’- G GAA TTC CAT ATG AAA TAC CTA TTG CCT ACG G -3’ (ss-pelB-FW-01) and 5’- CTA TGC 

GGC CCC ATT CAG AT -3’ (pHEN-Term-01). The PCRs were conducted using the following protocols 

PCR Mixture Thermal Cycle 

Plasmid 300 ng 1 μL 

Primer 1.6 pmol/ μL 1 μL 

sH2O 3 μL 

1 / 3 BIGDYE / 5 × Sequence buffer 3 μL 

Total 8 μL 

 

The PCR products were purified by mixing with ethanol 95 % 25 μL, sodium acetate 3 M 1.2 

μL, and sterilized water (sH2O) 5.8 μL. The mixture was incubated for 20 min at room temperature, 

and centrifuged at 21500 × g and 4 °C for 30 min. The supernatant was removed and the ethanol 70 % 

125 μL was added and mixed by vortexing. The solution was centrifuged at 21500 × g and 4 °C for 

15 min, and the supernatant was removed. The pellet was dried on the 95 °C water bath for 1 min and 

in the clean bench at room temperature for 20 min. The dried pallet was resuspended in Hi-Di 

formamide (ThermoFisher) 20 μL. The solution was heated at 95 °C on water bath for 2 min and 

subjected to the DNA sequencer. 

3.8.9 Subcloning of scFv-J-20 Fragment to pET-22b(+) Vector  

The TAG stop codon on υh of pIT2-scFv-J-20 vector was mutated to CAG by overlap extension 

PCR using Blend TAQ enzyme with two pairs of primers: ss-pelB-FW-01 and 5’- ACC ACC AAT CGT TGA 

GAC CCA CTC CAG C -3’, and pHEN-Term-01 and 5’- CTA TGC GGC CCC ATT CAG AT -3’. The PCRs were 

conducted using the following protocols. 

PCR Mixture Thermal Cycle 

1 / 30 diluted pIT2 plasmid stock   5 μL 

Primer 1 10 pmol / μL   5 μL 

Primer 2 10 pmol / μL   5 μL 

dNTP 2 mM   5 μL 

10 × Blend TAQ buffer   5 μL 

Blend TAQ   1 μL 

sH2O 24 μL 

Total 50 μL 
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 The PCR mixtures were then mixed together and the thermal cycling was conducted again 

with the same thermal cycle, and the desired DNA fragments (877 bp) were purified by agarose gel 

electrophoresis. The 100-bp marker 5 µL and the mixture of PCR product 100 μL with 5 × loading dye 

25 μL were loaded to agarose gel 1.5 %. Electrophoresis was conducted with 100 V in 5 × TBE. The gel 

was soaked in ethidium bromide for 20 min and 5 × tris-borate-EDTA buffer (TBE) for 30 min before 

observed under UV-light illuminator. A part containing desired fragments was separated by cutting. 

The gel containing desired DNA fragment was weighted (150 mg) in the new tube, and QG 

buffer 450 μL (3 eq) was added. The gel was dissolved by heating at 55 °C on water bath for 10 min 

and vortexing. Isopropanol 150 μL (1 eq) was added, and the solution was vortexed again. The solution 

was filtered by QIAquick Spin Column (100 bp ~ 10 kbp) and DNA fragments on the filter were washed 

with QG buffer 500 μL and buffer PE 750 μL using the benchtop centrifuge. The filter was dried by 

centrifuge at 16000 × g for 1 min. The filter was transferred to a new tube, and the DNA fragments 

were eluted by buffer EB 50 μL. The filter was centrifuged at 16000 × g for 1 min, and the filtrate was 

kept as a scFv-J-20 PCR product stock at −20 °C. 

 

Figure 3-16.  pET-22b(+) vector map (Novagen) 
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The PCR products were ligated into pET-22b(+) vector (Figure 3-16) via the NdeI/NotI 

restriction sites. First, the restriction digestions of scFv-J-20 PCR product and the pET-22b(+) were 

conducted by incubated the following mixtures at room temperature overnight. 

Restriction Digestion of scFv-J-20 PCR Product  Restriction Digestion of pET-22b(+) vector 

  

The digested scFv-J-20 PCR product (790 bp) and pET-22b(+) vector (5.4 kbp) were purified by 

agarose gel electrophoresis. For digested scFv-J-20 PCR product, the 100-bp marker 5 µL and the 

mixture of digested PCR scFv-J-20 product 65 μL with 5 × loading dye 16 μL were loaded to agarose 

gel 1.5 %. For digested pET-22b(+) vector, the 1-kbp marker 5 µL and the mixture of digested PCR 

pET-22b(+) vector 100 μL with 5 × loading dye 25 μL were loaded to agarose gel 1.0 %. Both 

electrophoreses were conducted with 100 V in 5 × TBE. The separation and extraction were conducted 

in the same way as previously described. The purified digested products were stored at −20 °C. 

The ligation was conducted by incubating the ligation mixture composed of purified digested 

scFv-J-20 PCR product 1 µL (PCR insert), purified Digested pET-22b(+) vector 3 µL, T4 DNA ligase 1 µL 

and sH2O 5 µL at room temperature for 1 h. After 40 min of incubation, E. coli XL1-Blue competent 

cells 200 μL were prepared by dissolving on ice bath. After 1 h of incubation, the transformation was 

performed by transferring XL1-Blue competent cells to the ligation mixture. The solution was mixed 

by pipetting and incubated on ice for 30 min. Cells were heated at 43 - 45 °C on water bath for exactly 

45 seconds and immediately cooled on ice for 2 min. LB medium 800 μL was added and, the medium 

was incubated at 37 °C for 20 min. 

The LB medium containing XL1-Blue cells 25 μL was plated on the LB agar plate containing 

ampicillin 100 μg / mL. The rest was centrifuged at 3400 × g for 1 min, and 900 μL of supernatant was 

removed. XL1-Blue cells were resuspended in the leftover LB medium and plated on the LB agar plate 

containing ampicillin 100 μg / mL. The cells were grown at 37 °C overnight. 

8 single colonies were streaked out on LB agar plate containing ampicillin 100 μg / mL and 

glucose 1 % and grown at 37 °C overnight. The colonial PCR was performed by inoculating single colony 

from each streak out to the following PCR mixture before thermal cycling using ss-pelB-FW-01 and 

pHEN-Term-01 as primers. 

 

scFv-J-20 PCR product 48    μL 

NE buffer 4   6.5 μL 

NdeI (20 u / μL)   6.5 μL 

NotI (20 u / μL)   2    μL 

10 × BSA   2    μL 

Total 65    μL 

pET-22b(+) pATCH   10    μL 

NE buffer 4   10    μL 

NdeI (20 u / μL)     2    μL 

NotI (20 u / μL)     2    μL 

10 × BSA   10    μL 

sH2O   66    μL 

Total 100    μL 
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PCR Mixture Thermal Cycle 

 

The PCR products were analyzed by agarose gel electrophoresis. The 100-bp marker 5 µL and 

the mixture of each colonial PCR product 5 μL with 5 × loading dye 1.25 μL were loaded to agarose gel 

2.0 %. Electrophoresis was conducted with 100 V in 5 × TBE. The gel was dyed and observed using the 

previously described procedure. As a results, all colonies giving the electrophoresis band around 

900 bp (target DNA size is 877 bp), meaning all cells are consisted of the pET22b(+)-scFv-J-20 vector. 

The vector was purified, the sequence was determined, and the vector was transformed to the 

BL21(DE3) cells using the same procedures as already described in the case of XL1-Blue. The new 

sequence showing the success of STOP codon mutation from TAG to CAG. The glycerol stock of E. coli 

BL21(DE3) having pET22b(+)-scFv-J-20 vector was prepared and stored previously described. 

3.8.10 Antibody Expression and Purification 

 The antibody was expressed using T7 promoter in BL21(DE3) cells activated by IPTG. The 

glycerol stock of BL21(DE3) having pET22b(+)-scFv-J-20 vector was streaked out on the LB agar plate 

containing ampicillin 100 μg / mL and incubated at 37 °C overnight. The single colony obtained from 

the streak out plate was inoculated into LB medium 5 mL containing ampicillin 100 μg / mL and 

incubated at 30 °C overnight with shaking to make a starting culture. The main culture was prepared 

by diluting starting culture 100 times (or more) to the LB medium 50 to 250 mL containing ampicillin 

100 μg / mL and glucose 0.2 %. The main culture was incubated at 37 °C with shaking for 2 h before 

reducing temperature to 25 °C. When an OD at 600 nm reached 0.6, the IPTG 100 mg / mL was added 

to give a final concentration of 0.2 mg / mL. The cells were continuously incubated overnight. 

 The main culture containing scFv J-20 antibody was centrifuged at 2330 × g and 4 °C for 10 (50 

mL) to 30 min (250 mL) depending on the volume of the medium. The supernatant (medium) was 

filtered by Sartolab RF 180C2 vacuum filter 0.22 µm (Sartorius AG), kept in ice, and subjected to Ni-

NTA agarose gel. The cells left in the centrifuge tube were stored at −20 °C for at least 30 min. The 5 × 

BugBuster Master Mix (2.5 mL in the case of medium 100 mL) was added. After resuspended, the cells 

were shaken for 30 min at room temperature. The cells were centrifuged at 9500 × g for 10 min. The 

supernatant was separated, subjected to Ni-NTA agarose gel and incubated for 15 min.  

The Ni-NTA agarose gel was prepared by adding Ni-NTA agarose gel solution 1 mL (Ni-NTA 

agarose gel 500 mg) to the GE-PD10 empty column with a filter. The agarose gel was recharged 

according to the manual when it was reused. The gel was then washed by binding buffer (Tris HCl 20 

Primer 1 10 pmol / μL   5    μL 

Primer 2 10 pmol / μL   5    μL 

dNTP mix 2 mM   5    μL 

10 × Blend TAQ buffer   5    μL 

Blend TAQ   0.5 μL 

sH2O 29.5 μL 

Total 50    μL 



CHAPTER 3: SUPRAMOLECULAR REGIO- AND ENANTIOSELECTIVE [4+4] PHOTOCYCLODIMERIZATION OF 2-ANTHRACENECARBOXYLATE USING SYNTHETIC 

ANTIBODY OBTAINED FROM PHAGE DISPLAY TECHNIQUE 

96 

 

mM buffer pH 7.9 containing imidazole 5.0 mM and NaCl 500 mM) 5 mL. The solution (extracted from 

cells or filtered medium) was subjected to the gel, and the gel was washed by binding buffer 5 mL and 

washing buffer (Tris HCl 20 mM buffer pH 7.9 containing imidazole 30 mM and NaCl 500 mM) 3 mL. 

The antibody was eluted by adding elution buffer (Tris HCl 20 mM buffer pH 7.9 containing imidazole 

1.0 M and NaCl 500 mM) 3 mL. The gel was washed by water and kept at 4 °C for next usage.  

The eluted solution containing desired antibody was exchanged and the product was purified 

by GE-PD10 column. The column was pre-eluted by TBS 25 mL. Then, the solution containing desired 

antibody 2.5 mL was added to column and the solution coming out of the column in this step was 

discarded. The solution was collected when TBS 3 mL was added to the column. The column was 

washed by water 25 mL and kept at 4 °C for the next usage. The collected antibody solution was stored 

at 4 °C. 

Table 3-10. Parameters for gel permeation chromatography of scFv J-20 antibody. 

  

The leftover antibody in elution buffer (0.5 mL) was used for SDS-PAGE to determine the purity. 

The 100-kDa marker and the mixture of sample 100 µL and SDS loading buffer 100 μL were loaded to 

polyacrylamide gel 15 % SDS. The electrophoresis was conducted at 200 V in SDS-PAGE running buffer 

(Tris 3 g / L, glycine 14 g / L and SDS 5 g / L). The result showed a clear single band near 29.0 kDa 

marker from antibody purified from medium, while 2 unclear bands (the same band near 29.0 kDa 

and the other smaller-size band) were found from antibody purified from cells. (Appendix) The gel 

permeation chromatography was used to analyze the antibody purified from medium, confirming the 

purity of the antibody. (Table 3-10) Thus, the antibody that would be mediated in the 

photocyclodimerization of AC was collected and purified from medium. The concentration of the 

antibody was determined by absorption at 280 nm (ε0 = 38640 M-1cm-1). 

3.8.11 Circular Dichroism Spectroscopy Measurement 

 The JASCO J-820 CD machine (JASCO, Japan) was equipped with Single Position Peltier Cell 

Holder. The antibody sample was diluted to 2 µM with TBS buffer solution (pH 7.5) in 1 × 1 cm quartz 

cuvette. The measurement was conducted with scan speed 100 nm/min, bandwidth 1.00 nm, data 

integration time 2 s, standard sensitivity, accumulation 4 times at 4 °C. The TBS buffer has high 

absorption at 200 nm, inducing high HT at this wavelength and below. At scFv J-20 2 µM concentration, 

HT at 200 nm is 850 V, but it was rapidly reduced to less than 600 V at 203 nm and longer wavelength, 

indicating the acceptable accuracy of the spectrum for calculating the protein secondary structure. 
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3.8.12 HPLC Analysis of 2-Anthracenecarboxylate Dimers 

Table 3-11. Parameters for analytical HPLC of ACDs with chiral column. 

 

The sample was prepared by adding acetonitrile to give the final 50 % acetonitrile solution 

(aq), and injecting to HPLC. (Table 3-11) In the case of photocyclodimerization products containing 

antibody, the solution was diluted by the same volume of acetonitrile and incubated overnight for 

antibody denaturation. The solution was filtered using syringe filter unit 0.45 µM (Starlab), removing 

the denatured antibody. The sample was injected to HPLC with the same conditions. 

 If the solution is a mixture of TBS and the other organic solvents, such as in the organic solvent 

toleration experiment, the HPLC sometimes showed double or broad peaks due to the solvent 

incompatibility. In that case, the MonoTipTM C18 (GLScience) was used for the solvent exchange 

instead of filtering with syringe filter. The sample was eluted by acetonitrile 50 µM containing TFA 

0.1 %, and directly injected 30 µL to HPLC. 

3.8.13 Ground-State Interactions Between scFv J-20 Antibody and ACD Isomers 

The mixture of scFv-J-20 antibody 2.4 μM and ACD1, 2, 3 and 4 mixture (synthesized by 

photodimerization in tetrahydrofuran) 12 μM (in total) was incubated for 1 h at room temperature in 

TBS. The scFv J-20 antibody was filtered using the centrifugal protein filter (AmiconUltra-0.5 mL, 

Millipore). The filtrate was separated and diluted by the same amount of acetonitrile before injected 

100 μL to the analytical HPLC. The control experiment was conducted with the similar protocols, but 

TBS was used instead of scFv-J-20 antibody solution.  

3.8.14 Ground-State Interactions Between scFv J-20 Antibody and AC 

The mixture of scFv J-20 antibody 8.3 μM and AC 16.7 μM was incubated for 1 h at room 

temperature in TBS. The scFv J-20 antibody was filtered using the centrifugal protein filter 

(AmiconUltra-0.5 mL). the filtrate 500 μL was placed into the 0.2 cm × 1.0 cm quartz cell and the 

fluorescence emission spectrum was measured (excitation 365 nm with 5 nm bandwidth and 0.2 cm 

pathlength, emission bandwidth 3 nm with 1.0 cm pathlength, response 1 s, high sensitivity, scan 

speed 100 nm / min). The control experiment was conducted with the similar protocols, but TBS was 

used instead of scFv J-20 antibody solution.  
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3.8.15 Excited-State Interactions Between scFv J-20 Antibody and AC 

The mixture of scFv J-20 antibody 2 μM and AC 1 or 2 μM 1 mL was prepared in the 0.2 × 1.0 cm 

quartz cell. The temperature of the solution was adjusted to 10 °C before the measurement. AC was 

excited at 390 nm using a pulse laser from a Ti:sapphire laser system (Spectra-Physics, Tsunami; 3950-

L2S, fwhm 150 fs, 82 MHz) converted from 780 nm to 390 nm using SHG crystals. The emission at 420 

nm was captured by a streak camera (Hamamatsu C4334) in photon counting mode. The fluorescence 

decay curve was analyzed using the U8167-01 program (Hamamatsu). 

3.8.16 Photocyclodimerization of AC Mediated by scFv J-20 antibody 

 TBS was bubbled by Ar for minimum of 30 min before use. The scFv J-20 antibody stocks were 

freshly prepared by protein expression of E. Coli BL21(DE3) having pET22b(+)-scFv-J-20 plasmid in LB 

medium 250 or 500 mL. The scFv J-20 stock was stored at 4 °C and used within 24 h after preparation. 

The AC solution was prepared by dissolving AC in TBS, sonicating, and filtering by syringe filter 0.45 μm 

(Starlab). The concentrations of scFv J-20 antibody (ε0 at 280 nm = 38640 M−1cm−1) and AC (ε0 at 387 

nm = 3400 M−1cm−1) solution were determined by UV-Vis absorption spectra. 

The reaction solution was prepared by mixing the scFv J-20 antibody solution, AC solution, and 

the same TBS to the required concentration for a final volume of 3 mL in 1.0 cm × 1.0 cm quarts cell. 

The solution was incubated in the dark before irradiated by Xe lamp 500 W equipped 340 nm longpass 

glass filter. The initial and final absorption spectra were measured to confirm the conversion. For the 

control experiment, the AC was mixed with TBS instead of scFv J-20 antibody solution. For the external 

factor experiments, the TBS conditions and temperature are changed as mentioned in each session.
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4.1 Objective 
 

The objective of this chapter is to synthesize a new type of anthracene heterodimer based on 

the new designed target structure for antibody phage display panning. The concept of the design, the 

optimized synthesis of 6-methoxy-2-anthracenecarboxylic acid, and the synthesis of 6-hydroxy-2-

anthracenecarboxylic acid and 2-anthracenecarboxylic acid using covalent linker are reported. 

 

4.2 Introduction 
 

In previous chapter, the synthetic antibody obtained from phage display technique showed a 

promising potential as a chiral supramolecular host for [4+4] photocyclodimerization of AC, especially 

after the optimization of external factors. However, the limitation is at 48 % ee and 34 % product 

distribution of ACD3. To improve this limitation, a better antibody must be obtained. As Tomlinson I 

and J libraries were the only commercially available libraries, optimizing the ligand for phage display 

technique is simpler than obtaining a new phage library.  

 

Figure 4-1. Schematic representative explaining the flaws of the antibody obtained using previous ligand 
(green) and the expected imrpovement from the new antibody obtained using the new designed ligand (blue). 

The new ligand was designed to improve 3 issues: the number of carboxylate groups, the 

position of carboxylate groups and the existence of amide bond. (Figure 4-1) Previously, ACD3 was 

used as a starting material for the ligand synthesis, one of the carboxylate group was modified to 

amide bond. Therefore, only 1 carboxylate was available for the recognition of antibody, while the 

selectivity of AC dimerization solely depends on the position of 2 carboxylate groups. Moreover, this 

modification introduced amide bond, which does not exist in the product. The recognition of antibody 

to amide group can reduce the selectivity of synthetic antibody to ACD3. In addition, the position of 

carboxylate points outward the antibody, so the recognition site (containing arginine residues) are 

located in outer layer of antibody. Therefore, the recognition site has relatively high 

microenvironmental polarity, a reasonable cause of undesired ACD4 and the other ACD3 enantiomer. 
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Figure 4-2. Structure of (left) the head of the new ligand and (right) the anti-head-to-head anthracene 
heterodimer needed for new ligand synthesis. 

The most challenging part of this design is to synthesize the heterodimer between AC and 

6-hydroxy-2-anthracenecarboxylic acid (HAC) (Figure 4-2). In this chapter, the synthesis of 6-methoxy-

2-anthracenecarboxylic acid (MAC), the selective dimerization between AC and HAC, and the synthesis 

of the new ligand were discussed. 

 

4.3 Synthesis of 6-Methoxy-2-anthracenecarcoxylic Acid 
 

 

Figure 4-3. Synthesis scheme of MAC. 

The synthesis of MAC was divided into 5 main steps containing one to few reactions (Figure 

4-3). Even though this synthesis was based on reported protocols, some reactions did not proceed as 

described possibly because the scales were different. Here, the reactions for preparative-scale 

synthesis were optimized and discussed. 

The first step was to synthesize Weinreb amide.323 This reaction had a very high yield even 

with 9 g scale synthesis without any further purification. The synthesis of compound c started from 

the formation of diaryl ketone. By using palladium catalyst and tert-butyl hydroperoxide, ortho-

directed aryl imino carboxylic acid was synthesized.324 Hydrochloric was used to hydrolyze oxime to 

form diaryl ketone c.325,326 The purification, however, was complicated. By only column 

chromatography, the purified ketone was brown and the NMR result showed significant amount of 

impurities. The only way to get a high-purity product is recrystallization, but the yield lost is also too 
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high. Therefore, activated charcoal and basic extraction were used to purify the crude product before 

column chromatography. The limitation of this synthesis is the amount that can be purified by column 

chromatography each time. It was difficult to sperate ketone and imine. To purify crude product 3 - 5 g, 

the amount of silica gel and eluent used were 400 g and 5 L, respectively. Still, the purified ketone is 

pale-yellow, not white solid as it should. 

Compound c was first reduced by triethylsilane for 5 d, selective reduction at carbonyl group 

and avoiding the reduction of carboxylic acid group.327,328 However, the reaction did not proceed. Thus, 

the Pd / C and H2 were used instead,329 and compound d was synthesized. Nevertheless, increasing 

the synthesis scale was difficult. At gram-scale synthesis, the reduction sometimes needed to be 

repeated even with Pd / C 30 w% probably because the impurities from the previous step quenched 

the Pd / C. Moreover, H2 bubbling in acetic acid for long time dried the solution at the end of H2 tube. 

This accumulated the dried starting material and Pd / C at the end of the tube, clogging the H2 flow. 

The synthesis of compound e was divided into 2 steps: the anthrone cyclization and the 

reduction.330 Polyphosphoric acid was used in the first step,331,332 and the viscosity was the main 

problem. The cyclized anthrone was reduced to anthracene by NaBH4.333 The NMR of the crude 

products from both steps showed that the majority of the product were anthrone and anthracene, 

but the color of the crude produce was grey, while anthracene color should be yellow. After column 

chromatography, compound e was obtained with yellow color as expected but in low yield. 

The final step of the synthesis was the oxidation of methyl group, but position 9 and 10 of 

anthracene are sensitive to oxidation, forming anthraquinone. Therefore, they were protected by 

fumaric acid, which took 3 d, before oxidation using potassium permanganate.330 After purification, 

the deprotection was conducted at a high temperature, causing partial dissociation of anthracene 

itself. The crude product was brown, clearly indicating the impurity. The crude product was purified 

by sublimation and less than half of the product was recovered, causing the overall yield of this step 

to be the lowest. On the other hand, the purified product was in bright yellow color, and the NMR 

showed a high purity.  
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4.4 Synthesis of Chd(AC-HAC dimer3) 
 

 

Figure 4-4. Possible products from [4+4] photocyclodimerization of AC and HAC. There are (top) AC dimers, 
(middle) HAC dimers and (bottom) AC-HAC heterodimers. The “*” indicate the chiral dimers.  

Normally, the cross-dimerization of 2 different anthracene derivatives will give a variety of 

different products. For example, the photodimerization of AC and HAC will give a total of 12 different 

dimers, and 8 of them are chiral. (Figure 4-4) Therefore, simple dimerization and purification are not 

suitable for having the desired anti-head-to-head AC-HAC heterodimer (hereinafter referred to as 

AC-HAC dimer3). 

 

Figure 4-5. The synthesis of ACD3 using trans-1,2-cyclohexanediol as a chiral linker. 

 

Figure 4-6. Selective synthesis of Chd-(AC-HAC dimer3). 
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The synthesis of AC-HAC dimer3 was inspired by the selective synthesis of enantiopure ACD3 

(anti-head-to-head anthracenecarboxylic acid dimer) using trans-1,2-cyclohexanediol (Chd) as a 

covalent linker.267 (Figure 4-5) However, the reaction conditions were optimized to suite the 

preparative-scale synthesis. The coupling was performed in two step using EDC, DMAP and HOBt as 

coupling reagents. Also, the additional demethylation was necessary. (Figure 4-6) 

First, Chd was coupled with AC to form AC-Chd monoester. Although the AC was added 

dropwise to the Chd solution, the diester was also formed. Therefore, the product was purified by 

column chromatography. Less than 50 % yield was recovered because the condition of the 

esterification was mild. Next, excess amount of AC-Chd was coupled with MAC to form AC-Chd-MAC 

diester. The product was purified again to remove non-reacted starting material. 70 % yield of product 

was obtained because of the excess amount of AC-Chd and coupling reagents.  

The product was irradiated by 365 nm light under Ar atmosphere, avoiding oxidation of 

anthracene. According to the reference, the photoirradiation was performed at the maximum of 

10−5 M scale. However, it was not applicable for the synthesis purpose. Hence, the 

photocyclodimerization was tested at the concentration of 10−3 M with 3, 20 and 100 mL. The NMR 

showed that the dimer was formed as a major product. The product was purified by column 

chromatography to remove intermolecular dimerization products. As a result, the pure product was 

obtained with 69 % yield.  

The trans-1,2-cyclohexanediol was kept in this step as a protection group in further step. 

Finally, the methoxy group was hydrolyzed under mild conditions (AlCl3 in the mixture of ethanethiol 

and dichloromethane) to preserve the ester groups linking the dimer with Chd. After purification, the 

Chd(AC-HAC dimer3) was obtained. 

 

4.5 Synthesis of (AC-HAC dimer3)-PEG4-Biotin Ligand 
  

 

Figure 4-7. Structure of (a) the previously used ligand and (b) the design of new ligand with AC-HAC dimer3. 

 The new ligand structure was modified from the previous ligand not only the dimer part but 

also the linker (Figure 4-7). Although the structure is simpler than the previous one, the synthesis was 

more complicated. Each component of the previous ligand was linked by peptide bond, so that only 
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consecutive solid-phase peptide synthesis was enough. On the other hand, AC-HAC dimer3 in the new 

ligand was linked by ether bond, so the Williamson ether synthesis was required. 

 

                         

Figure 4-8. (a) Synthesis of (AC-HAC dimer3)-PEG4-COOH resulting in dissociation of dimer to monomer, and 
(b) the optimized structure of Chd-(AC-HAC dimer3) and (c) AC-HAC dimer 3 based on UFF minimum energy 

calculation from Avogadro software. 

The first attempt was to link dimer and polyethylene glycol, creating (AC-HAC dimer3)-PEG4-

COOH molecule. After that, the carboxylic acid group at the end of polyethylene glycol, which is not 

protected, will be used to form peptide bond to biotin using solid-phase synthesis. However, the result 

was not as expected. From the NMR spectrum, the dimer was dissociated (Figure 4-8 a), even though 

the AC dimers and MAC dimers are known to be stable at 70 °C.334,335 The photo-induced dissociation 

is unlikely because the reaction was performed in the dark, and acetone, the reaction solvent, has a 

high absorption at the wavelength lower than 300 nm. One of the possible explanations is that the 

trans-1,2-cyclohexanediol linker distorts the structure of AC-HAC dimer3, decreasing the thermal 

stability of Chd-(AC-HAC). (Figure 4-8 b and c) Moreover, the isolation of (AC-HAC dimer3)-PEG4-COOH 

was failed, same as the re-intramolecular photocyclodimerization of the dissociated product.  

 

Figure 4-9. Deprotection by trans-1,2-cyclohexandiol cleavage in basic solution. 

Therefore, the best solution was to remove trans-1,2-cyclohexanediol in ambient 

temperature. The hydrolysis was conducted in the mixture of methanol and dichloromethane using 

KOH as a catalyst.336 (Figure 4-9) According to NMR spectrum, the AC-HAC dimer3 was expected to be 

a major product with small amount of AC and HAC monomer. For the purification, HPLC equipped with 

a 

b c 
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CHIRALPAK® IA column was used instead of normal column chromatography to perform both 

purification and enantioseparation simultaneously. As a result, the (P)- and (M)-dimers were isolated. 

Only 43 % yield in total was recovered after purification because of two reasons: the monomers (from 

the dissociation of dimers) were found, and the syn-head-to-head dimers were also formed during the 

photocyclodimerization step. 

 

Figure 4-10. CD and UV-Vis absorption spectra of dimethyl(AC-HAC dimer3) first (blue) and second (orange) 
elution purified by HPLC with chiral column. The spectra were normalized to have the same absorption at 

270 nm. The grey area signify the region with HT more than 600 V. 

The CD spectra indicate that the purified samples were enantiomers as expected. (Figure 4-10) 

However, the NMR and MS revealed that the products were dimethyl(AC-HAC dimer3), which was not 

obtained in the previous report.336 Even with the addition of water, the product was still dimethyl 

ester instead of dicarboxylic acid. 

 

Figure 4-11. Hydrolysis of methyl ester groups in basic solution. 

Therefore, further hydrolysis was attempted using KOH (aq) and the mixture of water and 

tetrahydrofuran as a solvent at 65 °C. (Figure 4-11) The crude product dissolved in only polar solvent, 

such as methanol and tetrahydrofuran, so the purification was complicated. However, the mass 

spectroscopy confirmed that methoxy groups were completely hydrolyzed. In addition, the monomers 

were not observed, which supports the idea that the trans-1,2-cyclohexanediol is the cause of the 

reduced stability of AC-HAC heterodimer. 
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Figure 4-12. (a) CD and UV-Vis absorption spectrum of AC-HAC dimer3 hydrolyzed from dimethyl(AC-HAC 
dimer3) first elution (blue) and the calculated CD and UV-Vis absorption spectrum of (P)-AC-HAC dimer3 (red). 
The intensity of calculated spectra are not absolute. The grey area signify the region with HT more than 600 V. 

(b) The optimized structure of AC-HAC dimer3 

The CD spectrum of AC-HAC dimer3 was, as expected, similar to dimethyl(AC-HAC dimer3). 

(Figure 4-12 a) The enantiomers were assigned based on the CD calculation of (P)-AC-HAC dimer3 

similar to previously reported anthracene derivative dimers.22 In brief, the excited-state properties 

were calculated using RICC2/DFT-D4-TPSS level with def2-TZVPP basis-set. The CD spectrum identified 

the first elution to be (P)-dimethyl(AC-HAC dimer3). (Figure 4-12) 

 

4.6 Conclusion 
 

 The 6-methoxy-2-anthracenecarboxylic acid was synthesized from 4-anisic acid. The synthesis 

including 5 main steps was optimized. The anti-head-to-head heterodimer between 6-methoxy-2-

anthracenecarboxylic acid and 2-anthracenecarboxylic acid was synthesized from intramolecular 

photocyclodimerization using trans-1,2-cyclohexanediol as a covalent linker. The methoxy group of 

the heterodimer was converted to hydroxy group, and the linker was cleaved to methyl ester. The 

heterodimer was purified and the enantiomers were separated using HPLC equipped with chiral 

column. The methyl ester was hydrolyzed to give a final anti-head-to-head heterodimer of 6-hydroxy-

2-anthracenecarboxylic acid and 2-anthracenecarboxylic acid. Even though (AC-HAC dimer3)-PEG4-

Biotin ligand was not synthesized at the moment, the synthetic pathway and identifications of AC-HAC 

dimer3, the key building block to the ligand, were established. 
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4.7 Experimental Procedure 
 

4.7.1 Synthesis of compound b (N,4-Dimethoxybenzamide: C9H11NO3)  

Compound a (4-anisic acid: C8H8O3) 9.11 g (59.9 mmol) was dissolved as much as possible in 

85 mL dichloromethane under Ar in the ice bath. Oxalyl chloride 6.2 mL (72 mmol, 1 eq), followed by 

DMF 8 drops, were added dropwise at 0 °C. During the addition of dimethylformamide, the gas was 

formed. After the addition, the solution was stirred at room temperature while monitored with TLC. 

After 1 h, the solution became clear and colorless. The solution was dried by rotatory evaporator to 

yield acid chloride derivative (white crystal in yellow oil). Small amount of ethyl acetate was added. 

K2CO3 16.6 g (120 mmol, 2 eq) and O-Methylhydroxylammonium chloride were dissolved in ethyl 

acetate 240 mL and water 120 mL in ice bath. The acid chloride solution was added dropwise at 0 °C 

with vigorous stirring. The solution was stirred at room temperature for 1.5 h while monitored with 

TLC. The biphasic solution was separated, and the aqueous layer was extracted by ethyl acetate 3 

times. The combined ethyl acetate solution was dried by Na2SO4 and rotatory evaporator. The 

compound b 10.8 g (59.6 mmol, 99.5 % yield) was obtained as white solid with high purity: 1H NMR 

(CDCl3, 400 mHz): δ (ppm) = 3.85 (s, 3H), 3.88 (s, 3H), 6.92 (d, J = 8.8 Hz, 2H), 7.71 (d, J = 9.2 Hz, 2H), 

8.60 (s, 1H); MS (ESI-QTOF) m/z: [M + H]+ Calcd for C9H12NO3 182.08; Found 182.09. 

4.7.2 Synthesis of compound c (4-methoxy-2-(4-methylbenzoyl)benzoic acid: C16H14O4)  

Compound b 2.91 g (16.1 mmol), tert-butyl hydroperoxide 70 % (aq) 10.8 mL (80 mmol, 5 eq), 

palladium(II) acetate 36.0 mg (0.16 mmol, 0.01 eq), p-tolualdehyde 8 mL (64 mmol, 4eq), dimethyl 

sulfoxide 40 mL and dioxane 10 mL were mixed. Borontrifluoride diethyl ether complex 0.8 mL (6.4 

mmol, 0.25 eq) was added to the mixture while stirring. The solution was refluxed at 130 °C for 12 h. 

The solution was cooled down and monitored by TLC. HCl 12 M 30 mL (360 mmol, 23 eq) was added, 

and the solution was heated at 100 °C for 2 d. The solution was cooled down to room temperature. 

Water 80 mL and ethyl acetate 40 mL were added to the solution. The solution was separated and the 

aqueous layer was extracted by ethyl acetate 4 times. The combined organic layer was washed by 

water 1 time, and dried by brine and Na2SO4. The product was purified in 3 steps: activated charcoal, 

basic extraction and column chromatography, respectively. 

The activated charcoal 5 g was added to the product solution in ethyl acetate and stirred for 

1.5 h. After filtering charcoal, the solution was dried by rotatory evaporator. The crude product was 

re-dissolved by diethyl ether 100 mL and NaOH 5 % (aq) 50 mL. The biphasic solution was separated, 

and the organic layer was extracted by NaOH 5 % (aq) 2 times. The combined aqueous solution was 

washed by diethyl ether 3 times. The diethyl ether was removed completely by rotatory evaporator. 

Then, the solution was cooled in ice bath and acidified by HCl until pH less than 3. The light-brown 

precipitate was formed. The suspension was filtered and dried under vacuum. The product was 

purified by column chromatography using diethyl ether and hexane at 1:1 to 3:1 with 1 % acetic acid 

and 50 times silica gel weight. The compound c 2.29 g (8.51 mmol, 52.9 % yield) was obtained as pale-

brown solid: 1H NMR (500 mHz, CDCl3): δ (ppm) = 2.40 (s, 3H), 3.86 (s, 3H), 6.81 (d, J = 7.5 Hz, 1H), 7.00 

(dd, J = 2.6 Hz, J = 11.5 Hz, 2H), 7.21 (d, J = 7.9 Hz, 2H), 7.62 (d, J = 8.2 Hz, 2H), 8.03 (d, J = 8.8 Hz, 1H); 
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13C NMR (CDCl3, 125 MHz): δ (ppm) = 21.66, 42.65, 55.68, 61.68, 112.78, 114.66, 119.70, 129.14, 

133.13, 134.47, 163.43, 169.70; MS (ESI-TOF) m/z: [M − H]− Calcd for C16H13O4 269.08; Found 269.08.  

4.7.3 Synthesis of compound d (4-methoxy-2-[(4-methylphenyl)methyl]benzoic acid: 

C16H16O3)  

Compound c 510 mg (1.89 mmol) was dissolved in acetic acid 3 mL and dimethylformamide 

3 mL at 70 °C until completely dissolved. The solution was bubbled by Ar for 50 min to minimize oxygen 

content. Pd / C 10 % 46 mg (10 w %) was added to the solution under Ar flow. The solution was bubbled 

by H2 and the reaction was monitored by TLC. After 24 h, the Pd / C suspension was filtered and 

washed by dimethylformamide. Water 150 mL was added to the filtrate, and the product was 

precipitated in the form of white solid. The solution was cooled at 4 °C overnight to maximize the 

recovery. The white precipitate was recovered by filtering and dried under vacuum. The compound d 

388 mg (1.51 mmol, 79.9 % yield) was obtained as white solid: 1H NMR (CDCl3, 400 MHz): δ (ppm) = 

2.33 (s, 3H, Ar-CH3), 3.82 (s, 3H, OCH3), 4.43 (s, 2H, CH2), 6.72 (d, J = 2.4 Hz, 1H, Ar-H), 6.82 (dd, J = 2.8 

Hz, J = 8.8 Hz, 1H, Ar-H), 7.09 (m, 4H, Ar-H), 8.10 (d, J = 8.8 Hz, 1H, Ar-H), 11.10 (br, 1H, COOH). MS 

(ESI-TOF) m/z: [M − H]− Calcd for C16H15O3: 255.10; Found 255.19. 

4.7.4 Synthesis of compound e (2-methoxy-6-methylanthracene: C8H8O3)  

Compound d 1.44 g (5.60 mmol) and polyphosphoric acid 18 g was stirred and heated at 80 °C 

for 4 h. Water 100 mL and dichloromethane 100 mL were added to the solution and separated. The 

aqueous solution was extracted by dichloromethane 3 times. The combined organic layer was washed 

by NaOH 10 % (aq) 50 mL and brine, and dried by Na2SO4, rotatory evaporator and under vacuum 

overnight. The dried compound was dissolved in diglyme 20 mL under Ar. The solution was bubbled 

by Ar for 1.5 h before addition of NaBH4 869 mg (23 mmol, 4 eq). The solution was bubbled for 30 min 

and stopped. The solution was cooled in the ice bath. Additional NaBH4 436 mg (12 mmol, 2 eq) in 

methanol 10 mL was added, and the solution was stirred at room temperature for 18 h. Acetic acid 50 

mL was added, and the solution was stirred for additional 3 h. Water 100 mL was slowly added while 

the solution was vigorously stirred. The precipitate was filtered, washed by water 100 mL and dried 

under vacuum overnight. The precipitate was purified by column chromatography (hexane : ethyl 

acetate 1 : 0 to 100 : 1). The pure compound e 371 mg (1.67 mmol, 29.8 % yield) was obtained as 

yellow solid: 1H NMR (CDCl3, 400 MHz): δ (ppm) = 2.53 (s, 3H, Ar-CH3), 3.96 (s, 3H, OCH3), 7.14 (dd, 

J = 2.4 Hz, J = 8.0 Hz, 1H, Ar-H), 7.18 (d, J = 2.4 Hz, 1H, Ar-H), 7.30 (m, 1H, Ar-H), 7.72 (s, 1H, Ar-H), 7.86 

(m, 2H, Ar-H), 8.23 (d, J = 4.0 Hz, 1H, Ar-H).  

4.7.5 Synthesis of MAC (6-methoxy-2-anthracenecarboxylic acid: C8H8O3)  

The synthesis of MAC composed of 3 steps: protection, oxidation and deprotection. The 

protection step was ethanoanthracene synthesis. Compound e 301 mg (1.36 mmol) and fumaric acid 

351 mg (3.02 mmol, 2 eq) were dissolved in 8.5 mL dioxane under Ar atmosphere. The solution was 

refluxed for 3 d and dried by rotatory evaporator. The dried product was dissolved in chloroform 15 

mL. The precipitate (fumaric acid) was washed by chloroform 5 mL 2 times. The combined organic 

solution was extracted by NaOH 10 % (aq) 30 mL 2 times and water 20 mL. The combined aqueous 

layer was acidified by HCl until pH less than 4 and extracted by chloroform 50 mL 2 times. The 
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combined organic layer was dried by Na2SO4 and rotatory evaporator. 2-methoxy-6-methyl-9,10-

dihydro-9,10-Ethanoanthracene-11,12-dicarboxylic acid (ethanoanthracene derivative) 314 mg (0.929 

mmol, 68.5 % yield) was obtained as pale-yellow solid. This step was repeated several times with the 

same scale. 

The ethanoanthracene derivative was oxidized by KMnO4. The ethanoanthracene derivative 

919 mg (2.72 mmol) was dissolved in NaOH 0.5 M (aq) 30 mL at 70 °C until completely dissolved. 

KMnO4 1.07 g (6.79 mmol, 2.5 eq) was added, and the solution was stirred for 20 h. The solution was 

filter. The precipitate was washed by hot water 8 mL 2 times. The filtrate was acidified by HCl until pH 

less than 4 and extracted by diethyl ether 30 mL 3 times. The combined organic layer was dried by 

Na2SO4 and rotatory evaporator. The crude oxidized ethanoanthracene derivative 800 mg (2.17 mmol, 

80.0 % yield) was obtained. 

The fumaric acid was deprotected from anthracene under high temperature. The oxidized 

ethanoanthracene derivative 503 mg (1.37 mmol) was dissolved in diphenylether 10 mL. The solution 

was freeze-pump-thaw degassed 7 times. Then, it was heated at 255 °C for 5 h. The sublimed white 

solid (fumaric acid) was observed. The solution was separated from the sublimed solid. Hexane was 

added and filtered. The precipitate was washed by hexane, carbon tetrachloride and small amount of 

ethyl acetate. The precipitate was purified by sublimation (210 °C, 18 mmHg). The pure MAC 150 mg 

(0.595 mmol, 43 % yield, overall yield for 3 steps is 24 %) was obtained as bright-yellow solid: : 1H 

NMR ((CD3)2SO, 600 MHz): δ (ppm) = 3.95 (s, 3H, OCH3), 7.44 (d, J = 2.4 Hz, 1H, Ar-H), 7.91 (dd, J = 1.8 

Hz, J = 9.0 Hz, 1H, Ar-H), 8.05 (d, J = 9.0 Hz, 1H, Ar-H), 8.08 (d, J = 9.0 Hz, 1H, Ar-H), 8.47 (s, 1H, Ar-H), 

8.72 (s, 1H, Ar-H), 8.74 (s, 1H, Ar-H). 13.02 (br, 1H, COOH); 13C NMR ((CD3)2SO, 150 MHz): 

δ (ppm) = 55.22, 103.78, 120.86, 123.81, 124.23, 127.72, 128.44, 128.45, 130.01, 131.64, 132.55, 

133.91, 157.59, 157.59, 167.39; MS (ESI-TOF) m/z: [M − H]− Calcd for C16H11O3: 251.07; Found 251.06. 

4.7.6 Synthesis of AC-Chd ((2-trans-hydroxycyclohexyl)-2-anthroate: C21H20O3) 

AC 229 mg (1.0 mmol), trans-1,2-cyclohexanediol 118 mg (1.0 mmol, 1 eq), DMAP 62 mg (0.51 

mmol, 0.5 eq), EDC∙HCl 384 mg (2.0 mmol, 2 eq) and HOBt 337 mg (2.5 mmol, 2.5 eq) were dissolved 

in the solvent mixture of toluene 16 mL and dichloromethane 8 mL in the ice bath under Ar 

atmosphere. The solution was heated to room temperature and stirred overnight. The additional 

dichloromethane 10 mL was added and the reaction solution was kept stirring until 24 h. The crude 

product was obtained from solvent evaporation and purified by column chromatography 

(dichloromethane : hexane 1 : 1 to 2 : 1). The pure AC-Chd 143 mg (0.446 mmol, 43 % yield) was 

obtained as pale yellow solid: 1H NMR ((CD3)2SO, 400 MHz): δ (ppm) = 1.25-1.53 (m, 4H, C-H2), 1.63-

1.74 (m, 2H, C-H2), 1.90-1.98 (m, 1H, C-H2), 1.99-2.07 (m, 1H, C-H2), 3.65 (m, 1H, O-C-H), 4.81 (m, 1H, 

H-C-O), 5.05 (d, J = 7.4 Hz, 1H, OH), 7.60 (m, 2H, Ar-H), 7.97 (dd, J = 13.3 Hz, J = 2.4 Hz, 1H, Ar-H), 8.15 

(dd, J = 10.8 Hz, J = 3.7 Hz, 2H, Ar-H), 8.19 (d, J = 13.7 Hz, 1H, Ar-H), 8.67 (s, 1H, Ar-H), 8.85 (m, 2H, 

Ar-H); 13C NMR ((CD3)2SO, 150 MHz): δ (ppm) = 23.02, 23.24, 29.34, 32.92, 70.08, 77.53, 123.82, 126.04, 

126.72, 127.07, 128.02, 128.28, 128.45, 128.57, 129.77, 131.49, 131.61, 131.99, 132.51, 165.42; 

MS (ESI-TOF) m/z: [M + Na]+ Calcd for C21H20O3Na 343.13; Found 343.14. 
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4.7.7 Synthesis of AC-Chd-MAC (trans-1,2-cyclohexanediyl 1-(6-methoxy-2-anthroate)-2-

(2-anthroate): C37H30O5) 

MAC 50 mg (0.20 mmol), AC-Chd 157 mg (0.49 mmol, 2.5 eq), DMAP 26 mg (0.21 mmol, 1 eq), 

EDC∙HCl 76 mg  (0.40 mmol, 2 eq) and HOBt 64 mg (0.48 mmol, 2.4 eq) were dissolved in the solvent 

mixture of toluene 12 mL and dichloromethane 8 mL in the ice bath under Ar atmosphere. The solution 

was heated to room temperature and stirred for 49 h. The crude product was obtained from solvent 

evaporation and purified by column chromatography (dichloromethane : hexane 1 : 1 to 2 : 1, 

chloroform). The pure AC-Chd-MAC 77 mg (0.14 mmol, 70 % yield) was obtained as a pale yellow solid: 
1H NMR ((CD3)2SO, 400 MHz): δ (ppm) = 1.50-1.61 (m, 2H, CH2), 1.72-1.81 (m, 2H, CH2), 1.81-1.88 (m, 

2H, CH2), 2.23 (m, 1H, CH2), 2.26 (m, 1H, CH2), 3.90 (s, 3H, OCH3), 5.29-5.36 (m, 2H, OCH), 7.21 (dd, 

J = 9.2 Hz, J = 2.4 Hz, 2H, Ar-H), 7.36 (d, J = 2.4 Hz, 1H, Ar-H), 7.52-7.58 (m, 2H, Ar-H), 7.83 (dd, J = 8.9 

Hz, J = 1.6 Hz, 1H, Ar-H), 7.85 (dd, J = 8.9 Hz, J = 1.7 Hz, 1H, Ar-H), 7.99 (d, J = 5.9 Hz, 1H, Ar-H), 8.00 (d, 

J = 5.9 Hz, 1H, Ar-H), 8.05-8.10 (m, 3H, Ar-H), 8.36 (s, 1H, Ar-H), 8.64 (s, 1H, Ar-H), 8.70 (d, J = 0.6 Hz, 

1H, Ar-H), 8.73 (s, 1H, Ar-H), 8.76 (d, J = 0.7 Hz, 1H, Ar-H); MS (ESI-TOF) m/z: [M]+ Calcd for C37H30O5Na 

554.21; Found 553.99, [M + Na]+ Calcd for C37H30O5Na 577.20; Found 576.93. 

4.7.8 Synthesis of Chd(AC-MAC dimer3) (trans-1,2-cyclohexanediyl 6-methoxy-2-

anthroate 2-anthroate anti-head-to-head heterodimer: C37H30O5) 

AC-Chd-MAC 77 mg (0.14 mmol) was dissolved in tetrahydrofuran 140 mL under Ar 

atmosphere. To completely remove the oxygen, the solution was freeze-pump-thaw degassed for 

7 times and warmed to room temperature. The solution was then irradiated by 365 nm light using 

monochrome LED 365L2 (max 360 mW, max 700 mA, mounted LED by Thorlabs, Inc.) with 300 mA 

(100 mW) for 11 h. The time of irradiation is varied depending on the volume. The reaction was 

followed by absorption spectra at 380 nm, which is typical anthracene absorption but will be 

disappeared when becoming dimers. The crude product was recovered by solvent evaporation as 

brown clear viscous oil. The dimer was purified by column chromatography (dichloromethane : hexane 

4 : 1 to 8 : 1, chloroform). The pure Chd(AC-MAC dimer3)  53 mg (0.096 mmol, 69 % yield) was obtained 

as a light cream color solid: 1H NMR (CDCl3, 600 MHz): δ (ppm) = 1.48 (m, 2H, CH2), 1.63 (m, 2H, CH2), 

1.88 (m, 2H, CH2), 2.18 (d, J = 13.6 Hz, 2H, CH2), 3.65 (s, 3H, OCH3), 4.36 (d, J = 10.5 Hz, 1H, Ar-CH), 4.39 

(d, J = 10.4 Hz, 1H, Ar-CH), 4.47 (d, J = 10.6 Hz, 1H, Ar-CH), 4.50 (d, J = 10.6 Hz, 1H, Ar-CH), 5.01 (m, 2H, 

OCH), 6.43 (dd, J = 2.5 Hz, J = 8.1 Hz, 1H, Ar-H), 6.48 (d, J = 2.5 Hz, 1H, Ar-H), 6.86-7.02 (m, 9H, Ar-H), 

7.50 (m, 2H, Ar-H); MS (MALDI-TOF) m/z: [M]+ Calcd for C37H30O5 554.21; Found 554.21, [M + Na]+ 

Calcd for C37H30O5Na 577.20; Found 576.83 

4.7.9 Synthesis of Chd(AC-HAC dimer3) (trans-1,2-cyclohexanediyl 6-hydroxy-2-anthroate 

2-anthroate anti-head-to-head heterodimer: C36H28O5) 

Chd(AC-MAC dimer3) 53 mg (0.096 mmol) was dissolved in dichloromethane 1 mL in the ice 

bath under Ar atmosphere. AlCl3 387 mg (2.9 mmol, 30 eq) was dissolved in ethanethiol 1 mL and 

dichloromethane 1 mL in the ice bath under Ar atmosphere. The AlCl3 solution was added to the 

Chd(AC-MAC dimer3) solution under Ar atmosphere. The solution was heated to room temperature 

and stirred overnight. The cold HCl (aq) pH 3 20 mL was added to the cold reaction solution followed 
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by dichloromethane 20 mL. The solution was separated and the aqueous layer was extracted by 

dichloromethane 4 times. The combined organic layer was dried by Na2SO4 and rotatory evaporator, 

and purified by column chromatography (dichloromethane, chloroform). The fairy pure (85 % purity 

estimated by 1H NMR) Chd(AC-HAC dimer3) 33 mg (0.061 mmol, 64 % yield) was obtained as light 

cream solid: 1H NMR (CDCl3, 600 MHz): δ (ppm) = 1.48 (m, 2H, CH2), 1.63 (m, 2H, CH2), 1.89 (m, 2H, 

CH2), 4.34-4.54 (m, 4H, Ar-CH), 5.01 (m, 2H, OCH), 6.36 (dd, J = 3.8 Hz, J = 11.9 Hz, 1H, Ar-H), 6.43 (d, 

J = 3.8 Hz, 1H, Ar-H), 6.83 (d, J = 11.9 Hz, 1H, Ar-H), 6.89-7.03 (m, 8H, Ar-H), 7.51 (m, 2H, Ar-H); 

MS (ESI-QTOF) m/z: [M − H]− Calcd for C36H27O5 539.19; Found 539.16. 

4.7.10 Synthesis of dimethyl(AC-HAC dimer3) (methyl 6-hydroxy-2-anthroate methyl 2-

anthroate anti-head-to-head heterodimer: C32H24O5) 

Chd(AC-HAC dimer3) 33 mg (0.061 mmol assuming 100 % purity) was dissolved in 

dichloromethane 4 mL and methanol 3 mL. KOH 1 M in methanol 618 uL (10 eq) was added to the 

solution and stirred for 2 h. Water 10 mL and dichloromethane 5 mL was added to the solution and 

separated. The aqueous layer was extract by DCM 5 mL. The combined organic layer was dried by 

Na2SO4 and rotatory evaporator to yield basic extraction product 30 mg. The aqueous layer was 

acidified by HCl until pH less than 2. Then, it was extracted by dichloromethane 5 mL 3 times and 

diethyl ether 5 mL 1 time. The combined organic layer was dried by Na2SO4 and rotatory evaporator 

to afford the acidic extraction product 8 mg.  

Table 4-1. Parameters for HPLC purification of dimethyl(AC-HAC dimer3) 

 

Both acidic and basic products were purified by HPLC equipped with chiral column. (Table 4-1) 

Two enantiomers of dimethyl(AC-HAC dimer3) were obtained as pale-yellow powder 6.6 mg (0.014 

mmol, 23 %) and 6.0 mg (0.012 mmol, 20 % yield). The CDs were mirror images, and the NMRs were 

identical: 1H NMR (CDCl3, 500 MHz): δ (ppm) = 3.83 (s, 6H, OCH3), 4.51 (d, J = 11.0 Hz, 1H, Ar-CH), 

4.65-4.78 (br, 1H, OH), 6.29 (dd, J = 2.5 Hz, J = 8.0 Hz, 1H, Ar-H), 6.47 (d, J = 2.5 Hz, 1H, Ar-H), 6.77 (d, 

J = 8.0 Hz, 1H, Ar-H), 6.87 (m, 2H, Ar-H), 6.92-7.01 (m, 4H, Ar-H), 7.50 (d, J = 1.5 Hz, 1H, Ar-H) , 7.49 (d, 

J = 2.0 Hz, 1H, Ar-H) 7.58 (br, 2H, Ar-H); 13C NMR (CDCl3, 125 MHz): δ (ppm) = 51.98, 52.50, 53.19, 

53.43, 53.55, 112.18, 114.68, 126.00, 126.06, 127.15, 127.17, 127.38, 127.47, 127.68, 127.74, 127.88, 
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128.14, 134.98, 142.34, 143.26, 143.77, 144.10, 149.07, 153.57, 167.02; MS (ESI-QTOF) m/z: [M + H]+ 

Calcd for C32H25O5 489.2; Found 489.2. 

4.7.11 Synthesis of (P)-AC-HAC dimer3 ((P)-6-hydroxy-2-anthracenecarboxylic acid 2-

anthracenecarboxylic acid anti-head-to-head heterodimer: C30H20O5) 

(P)-Dimethyl(AC-HAC dimer3) 6.3 mg (12 µmol) was dissolved in THF 300 µL and water 420 µL. 

After completely dissolved, KOH 5 M (aq) 480 µL was added, and the solution was stirred at 65 °C for 

3 h. Water 10 mL and chloroform 10 mL were added and separated. The organic layer was dried by 

Na2SO4 and rotatory evaporator, and kept as basic extracted solution. The aqueous solution was then 

acidified by HCl 6 M and extracted by chloroform 20 mL 2 times and dichloromethane 20 mL 2 times. 

The solid formed during the acidification that did not dissolve in organic layer was also kept. The 

combined organic layer was dried by Na2SO4 and rotatory evaporator, and kept as acidic extract. The 

acidic extract was purified by TLC, but the product was not pure and used as a crude (P)-AC-HAC: 

MS (ESI-QTOF) m/z: [M − H]− Calcd for C30H19O5 459.12; Found 459.12. 

4.7.12 Circular Dichroism Measurement of Dimethyl(AC-HAC dimer3) and (P)-(AC-HAC 

dimer3) 

 The JASCO J-820 CD machine (JASCO, Japan) was equipped with Single Position Peltier Cell 

Holder. The sample was diluted by tetrahydrofuran in 1 × 1 cm quartz cuvette. The measurement was 

conducted with scan speed 100 nm / min, bandwidth 1.00 nm, data integration time 4 s, standard 

sensitivity, accumulation 4 times. Tetrahydrofuran has UV cut off at 220 nm; therefore, HT exceeds 

600 nm at 225 nm and the shorter wavelength. In this region, the CD and absorption intensities are 

not reliable, so only the rough spectral patterns are considered. 

4.7.13 Circular Dichroism Calculation of (P)-(AC-HAC dimer3)  

The calculation mostly based on previously reported method with some slight modification.22 

The calculation was performed using TURBOMOLE Version 7.4.1 software.337 The basis set used for all 

atoms is def2-TZVPP.338 For the ground state, the DFT calculation was carried out with TPSS meta-GAA 

(generalized gradient approximation) functional and DFT-D4 dispersion.339  The excited-state 

calculation was performed in RICC2 (coupled cluster with the resolution of identity approximation) 

level.340,341 The information, including energy, oscillator strength and rotator strength, of 30 excited 

states was generated. 

With large basis set of def2-TZVPP, the length and velocity rotational strengths are less than 

10 % difference, showing comparable calculated rotatory strength to the experimental CD spectrum. 

The CD and UV-Vis absorption spectra were simulated by overlapping Gaussian functions of all 30 

transitions with the length-gauge representations as relative intensity. The 0.2 eV red shift was 

performed similar to previous report.22 The distribution coefficient (variance) is the same for both CD 

and absorption spectra; however, the intensities were fitted differently corresponding to the 

experimental data. 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

GENERAL CONCLUSION 
 

 

Supramolecular photocyclodimerization of 2-anthracenecarboxylate mediated by two 

different media in water were demonstrated with high regioselectivity of head-to-head 

2-anthracenecarboxylate dimers, which are not favourable in water due to the steric hinderance and 

electrostatic repulsion, and enantioselectivity of anti-head-to-head 2-anthracenecarboxylate dimer. 

 The chiral silica-organic hybrid nanoribbons, containing self-assembled twisted double-bilayer 

of gemini L- or D-tartrate surfactants inside silica walls, were used as a template for the chirality 

induction of 2-anthracenecarboxylate. Strong exciton-coupling induced CD signal at 240 nm was found 

(g-factor −6 and 7 × 10−3 at the maxima for L-isomer and vice versa). The anion exchange between 

tartrate and 2-anthracenecarboxylate depends on the temperature and the condition of hybrid 

nanoribbons stock. The intensity and stability of induced CD depend on concentration, time and 

temperature. For 2-anthracenecarboxylate, the maximum of half of gemini surfactant was utilized for 

AC binding. The exchange efficiency depends on not only the acidity but also the structure of anions. 

Together, the orientation of 2-anthracenecarboxylate was proposed. This insight information is useful 

to expand the use of chiral silica-organic hybrid nanostructures and other surfactant self-assemblies. 

The supramolecular [4+4] photocyclodimerization of 2-anthracenecarboxylate was conducted 

inside the silica-organic hybrid nanoribbons, which is the first time utilizing this silica-organic hybrid 

nanostructure as a reaction template. At the ratio of 2-anthracenecarboxylate to hybrid nanoribbons 

1 to 1, the head-to-head dimers can be produced up to 97 % product distribution, which can be 

considered as a near-perfect regioselectivity. This result is by far the only absolute head-to-head 

photocyclodimerization of 2-anthracenecarboxylate using only water as a solvent at room 

temperature. Any lower temperature and / or 2-anthracenecarboxylate to hybrid nanoribbons ratio 

can afford more than 90 % head-to-head product distribution. The reaction rate increased significantly, 

so typical 8 W UV-A lamp can be used as a light source for the photocyclodimerization. Using hybrid 

nanoribbons demonstrates not only a significant improvement of regioselectivity but also a potential 

reduction of time, energy and cost used in photochemical reactions. There are many interesting 
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prospects in this system such as enantioselectivity, syn- and anti-isomer selectivity, or recycling silica-

organic hybrid nanoribbons. 

The synthetic antibody, obtained from phage display screening, was used as a chiral 

supramolecular host for [4+4] photocyclodimerization of 2-anthracenecarboxylate. The phage display 

technique does not involve animal experiment, reducing time and cost of operations. The confined 

cavity of synthetic antibody was designed to resemble target product, anti-head-to-head 

2-anthracenecarboxylate dimer. The amino acid sequence of obtained antibody is accessible, so the 

binding site can be located, and the manipulation of antibody is possible. Although this technique has 

been used in protein therapeutics, it has not been widely used for catalytic antibodies.  

The antibody was synthesized by protein expression in E. coli BL21(DE3) cells containing the 

engineered plasmid. The protein was collected and purified from periplasm. The interactions between 

the synthetic antibody and both 2-anthracenecarboxylate and dimer were investigated. By using this 

antibody as a chiral supramolecular host, [4+4] photocyclodimerization of 2-anthracenecarboxylate 

favors head-to-head dimers and affords enantioselectivity for anti-isomer. With optimized external 

factors, the product distributions of syn- and anti-head-to-head dimers became 58 % and 33 %, giving 

a total of 91 % head-to-head selectivity. In addition, 48 % enantiomeric excess of anti-head-to-head 

was found.  Effect of external factors is important information for not only synthetic antibody but also 

any supramolecular biomolecule templates. This result can lead to different possible future research 

such as different photochemical reactions or products, stabilization of antibody, different antibody 

libraries, and the improvement of the other phage display protocols. 

The initiation on improving phage display protocols is also reported in this work. The new 

target molecule, anti-head-to-head heterodimer of 6-hydroxy-2-anthracenecarboxylic acid and 

2-anthracenecarboxylic acid, was designed based on the combination of external factor effects and 

reaction site structures. The synthesis and purification of heterodimer was finished, and hopefully can 

be applied to phage display screening in the near future.   

Moreover, this work proposed sustainable supramolecular photochemical reaction systems. 

The silica-organic hybrid nanostructures are good candidates for stable and recyclable templates. 

Synthetic antibodies obtained from animal-free experiment are biodegradable. In addition, both 

systems can be performed in water without any rare metal catalysts, and both templates can increase 

the reaction rates, reducing time and energy consumption. Finally, they possess potential to be 

generalized and widely used in different photochemical reactions and products. 
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MATERIAL AND EQUIPMENT 
 

Material 
  

All the chemicals used were ordered from FUJIFILM Wako Pure Chemical Corporation (Osaka, 

Japan), Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan) and Sigma-Aldrich, Inc. (St. Louis, Missouri, 

USA) unless stated otherwise. The water mentioned in this document was deionized water purified by 

Milli-Q® Ultrapure Water System with electrical resistance of 18.2 MΩ∙cm. Tomlinson I and J phage 

libraries were purchased from Danaform (Yokohama, Japan). Amino acid derivatives and reagents for 

solid-phase peptide synthesis were purchased from Novabiochem (Darmstadt, Germany) or 

Watanabe Chemical Co. (Hiroshima, Japan). The reagents for plasmid purification and PCRs were 

purchased from Novagen (Darmstadt, Germany) and QIAGEN (Hilden, Germany). The Br-PEG5-COOH 

was ordered from BioPharm (China). 

 

Equipment 
 

1   High Performance Liquid Chromatography 1 (Shimadzu)  

Pump: SHIMADZU LC-10ACvp Pump 

Detector: Shimadzu-SPD10A UV-Vis Detector 

Column: Cosmosil 5C18-AR-II column (10ID × 250 mm) for purifying of ACD3-PEG5-Lys(Bio) ligand 
   Cosmosil 5C18-AR-II column (4.6ID × 150 mm) for analysis of ACD3-PEG5-Lys(Bio) ligand  
   (Nacalai Tesque, Kyoto, Japan) 

2   High Performance Liquid Chromatography 2 (JASCO)  

Pump: JASCO PU-2080 Plus Intelligent Pump 

Detector: JASCO UV-2075 Plus UV/Vis Intelligent Detector   
JASCO FP-2025 Plus Intelligent Fluorescence Detector 

Column: GPC Superdex 75 10/300 GL for analysis of antibody   
Cosmosil 5C18-MS-II column (4.6ID × 150 mm) and CHIRALCEL OJ-RH column (2.1ID × 
120 mm) for analysis of photochemical reaction products 
(Nacalai Tesque, Kyoto, Japan) 

3   High Performance Liquid Chromatography 3 (JASCO)  

Pump: JASCO PU-2080 Plus Intelligent Pump 

Detector:  JASCO UV-2075 Plus Intelligent UV/Vis Detector 

 JASCO MD-2018 Plus Photodiode Array Detector 

Column: CHIRALPAK® IA (20ID × 250 mm) 
  (Daicel Corporation, Osaka, Japan) 

4   Microplate Reader: CORONA ELECCTRIC MTP-880 Lab 
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5   UV-Vis Absorption Spectrometer: JASCO V-560, JASCO V-570, JASCO V-670 JASCO V-770 and Varian 

Cary 300 

6   Fluorescence Spectrometer: JASCO FP-6500 

7   Circular Dichroism Spectrometer: JASCO J-820 and JASCO J-815 

8   Circularly Polarized Luminescence Spectrometer: JASCO CPL-300 

9   Thermal Cycler: Applied Biosystems 2720 

10 Autoclave: TOMY ES-215 

11 Centrifuge: KUBOTA 5500, HITACHI CT 15RE, TOMY CAPSULFUGE PMC-060 

12 Incubator: TAITEC BioShaker BR-23FP 

13 Cool Water Circulator: SIBATA CoolMan C-580 

14 Photoirradiation 

Photocyclodimerization of AC with synthetic antibody: USHIO Optical ModuleX 500-watt Xe short 
arc lamp with 340 nm long-pass filter  

Photocyclodimerization of AC with hybrid nanoribbons or helices: USHIO F8T5BL (8 W 352 nm)  

Photocyclodimerization of AC-Chd-MAC: THORLABS LED M365L2 (365 nm) DC2200 power supply 

15 DNA Sequencer: Applied Biosystems / HITACHI 3500 Genetic Analyzer 

16 Freeze Dryer: EYELA FDU-120 (Tokyo Rikakikai, Tokyo, Japan) 

17 Fluorescence Lifetime Measurement 

Laser: Ti:sapphire Second Harmonic Generation (388 nm) fwhm 150 fs, Spectra-Physics, Tsunami 
3950-L2S 

Detector: Streak Scope C4334-01Shimadzu-SPD10A, Hamamatsu Photonics 

18 Fourier-Transform Infrared Spectrometer: ThermoNicolet Nexus 670 FTIR spectrometer equipped 

with a VCD optical bench 

19 Transmission Electron Microscope: Philips CM-120 (FEI Company, USA) and LVEM5 (Delong 

Instrument, Austria) 

20 Nuclear Magnetic Resonance Spectrometer: Bruker Avance II 300 MHz spectrometer, Bruker 

Avance III 400 MHz spectrometer, Bruker Avance III 500 MHz spectrometer, Bruker Avance III 600 MHz 

spectrometer 

21 Mass Spectrometer: JEOL AccuTOF LC-plus JMS-T100LP ESI-TOF Mass Spectrometer, Bruker 

Daltonics micrOTOF-Q II-S1 ESI-QTOF Mass Spectrometer, Bruker AutoFlex Speed-S1 MALDI-TOF Mass 

Spectrometer 

22 Probe sonicator: VCX 130 PB Sonicator with 3 mm Microtip 
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A1 UV-Vis, CD and Fluorescence Spectroscopy 
 

Chapter 2 

 

Figure A1-2-1. CD and UV-Vis absorption spectrum of AC 50 µM and L-silica nanoribbons 0.1 g / L in 
aqueous solution. 

 

 

Figure A1-2-2. UV-Vis absorption spectrum of AC 0.1 mM in tetrahydrofuran. 
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Figure A1-2-3. CD and UV-Vis absorption spectra of NDC 10 µM with hybrid nanoribbons 20 µM and 10 µM. 

 

Chapter 3 

 

Figure A1-3-1 (a) CD and UV-Vis absorption spectra of scFv J-20 antibody 2 µM and (b) calculated result from 
the BeStSel protein secondary structure estimation. 
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A2 NMR Spectroscopy 
 

Chapter 2 

 

Figure A2-2-1. 1H NMR spectrum of N,N’-dihexadecyl-N,N,N’,N’-tetramethylethylene diammonium bromide. 

 

 

Figure A2-2-2. 1H NMR spectrum of N,N’-dihexadecyl-N,N,N’,N’-tetramethylethylene diammonium acetate. 
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Figure A2-2-3. 1H NMR spectrum of N,N’-dihexadecyl-N,N,N’,N’-tetramethylethylene diammonium L-tartrate. 

 

 

Figure A2-2-4. 1H NMR spectrum of N,N’-dihexadecyl-N,N,N’,N’-tetramethylethylene diammonium D-tartrate. 
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Quantitative NMR for AC-Exchanged Hybrid Nanoribbons 

 The 10 mL suspension of AC 100 µM mixed with D-hybrid nanoribbons 100 µM was incubated 

overnight at 4 °C on the roller mixer. The suspension was centrifuged at 3893 × g and 4 °C for 12 min. 

The gel was washed twice by water 4 °C, and lyophilized. The deuterated methanol 1 mL was added 

to the dried nanoribbons. The suspension was heated at 50 °C for 10 min, sonicated for 10 min, and 

centrifuged at 3893 × g and 20 °C for 12 min. The supernatant 0.5 mL was measured the NMR (1H, 400 

MHz, D1 = 60 s). 

 

Figure A2-2-5. 1H NMR spectrum of AC-exchanged D-hybrid nanoribbons (1 : 1). 

 The ratio of AC was calculated from average integrations of the peaks 8.46 (s, 1H, Ar-H), 8.56 

(s, 1H, Ar-H) and 8.66 ppm (s, 1H, Ar-H). The ratio of tartrate was calculated from the integration of 

the peak 4.30 ppm (s, 2H, CH), and the ratio of gemini was calculated from the average integrations 

of the peaks 1.81 (s, 4H, CH2) and 3.92 ppm (s, 4H, N-CH2). As a result, the ratio of [AC] : [tartrate] : 

[gemini] is 1.2 : 0.45 : 1.0, correlating to the 1 : 1 exchanged ratios.  
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Chapter 4 

 

Figure A2-4-1. 1H NMR of N,4-Dimethoxybenzamide. 

 

 

Figure A2-4-2. 1H NMR of 4-methoxy-2-(4-methylbenzoyl)benzoic acid. 
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Figure A2-4-3. 1H-1H COSY NMR of 4-methoxy-2-(4-methylbenzoyl)benzoic acid. 

 

 

Figure A2-4-4. 13C NMR of 4-methoxy-2-(4-methylbenzoyl)benzoic acid. 
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Figure A2-4-5. HSQC NMR of 4-methoxy-2-(4-methylbenzoyl)benzoic acid. 

 

 

Figure A2-4-6. HMBC NMR of 4-methoxy-2-(4-methylbenzoyl)benzoic acid. 
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Figure A2-4-7. 1H NMR of 4-methoxy-2-[(4-methylphenyl)methyl]benzoic acid. 

 

 

Figure A2-4-8. 1H NMR of 2-methoxy-6-methylanthracene. 
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Figure A2-4-9. 1H NMR of 6-methoxy-2-anthracenecarboxylic acid. 

 

 

Figure A2-4-10. 13C NMR of 6-methoxy-2-anthracenecarboxylic acid. 
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Figure A2-4-11. 1H NMR of (2-trans-hydroxycyclohexyl)-2-anthroate. 

 

 

Figure A2-4-12. 1H-1H COSY NMR of (2-trans-hydroxycyclohexyl)-2-anthroate. 
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Figure A2-4-13. 13C NMR of (2-trans-hydroxycyclohexyl)-2-anthroate. 

 

 

Figure A2-4-14. HSQC NMR (high field) of (2-trans-hydroxycyclohexyl)-2-anthroate. 
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Figure A2-4-15. HSQC NMR (low field) of (2-trans-hydroxycyclohexyl)-2-anthroate. 

 

 

Figure A2-4-16. 1H NMR of trans-1,2-cyclohexanediyl 1-(6-methoxy-2-anthroate)-2-(2-anthroate). 
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Figure A2-4-17. 1H-1H COSY NMR of trans-1,2-cyclohexanediyl 1-(6-methoxy-2-anthroate)-2-(2-anthroate). 

 

 

Figure A2-4-18. 1H NMR of trans-1,2-cyclohexanediyl 6-methoxy-2-anthroate 2-anthroate 
anti-head-to-head heterodimer. 
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Figure A2-4-19. 1H-1H COSY NMR of trans-1,2-cyclohexanediyl 6-methoxy-2-anthroate 2-anthroate 
anti-head-to-head heterodimer. 

 

 

Figure A2-4-20. 1H NMR of methyl 6-hydroxy-2-anthroate methyl 2-anthroate anti-head-to-head 
heterodimer (P-isomer). 
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Figure A2-4-21. 1H NMR of methyl 6-hydroxy-2-anthroate methyl 2-anthroate anti-head-to-head 
heterodimer (M-isomer). 

 

 

Figure A2-4-22. 1H-1H COSY NMR of methyl 6-hydroxy-2-anthroate methyl 2-anthroate 
anti-head-to-head heterodimer. 
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Figure A2-4-23. 13C NMR of methyl 6-hydroxy-2-anthroate methyl 2-anthroate anti-head-to-head heterodimer. 

 

 

Figure A2-4-24. HSQC NMR of methyl 6-hydroxy-2-anthroate methyl 2-anthroate 
anti-head-to-head heterodimer. 
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Figure A2-4-25. HMBC NMR of methyl 6-hydroxy-2-anthroate methyl 2-anthroate 
anti-head-to-head heterodimer. 

 

A3 Mass Spectroscopy 
 

Chapter 3 

 

Figure A3-3-1. ESI-TOFMS spectrum of purified ACD3-PEG5-Lys(Biotin) ligand 
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Chapter 4 

  

Figure A3-3-2. ESI-QTOFMS spectrum of N,4-Dimethoxybenzamide; m/z: [M + H]+ Calcd for C9H12NO3 182.08; 
Found 182.09. 

 

 

Figure A3-3-3. ESI-TOFMS spectrum of 4-methoxy-2-(4-methylbenzoyl)benzoic acid; m/z: [M − H]− Calcd for 
C16H13O4 269.08; Found 269.09. 
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Figure A3-3-4. ESI-TOFMS spectrum of 4-methoxy-2-[(4-methylphenyl)methyl]benzoic acid; m/z: [M − H]− 
Calcd for C16H15O3: 255.10; Found 255.19. 

 

Figure A3-3-5. ESI-TOFMS spectrum of 6-methoxy-2-anthracenecarboxylic acid; m/z: [M − H]− Calcd for 
C16H11O3: 251.07; Found 251.06. 
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Figure A3-3-6. ESI-TOFMS spectrum of (2-trans-hydroxycyclohexyl)-2-anthroate; m/z: [M + Na]+ Calcd for 
C21H20O3Na 343.13; Found 343.15. 

 

Figure A3-3-7. ESI-TOFMS spectrum of trans-1,2-cyclohexanediyl 1-(6-methoxy-2-anthroate)-2-(2-anthroate); 
m/z: [M + Na]+ Calcd for C37H30O5Na 577.20; Found 577.20. 
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Figure A3-3-8. MALDI-TOF (tetracyanoquinodimethane as matrix) spectrum of trans-1,2-cyclohexanediyl 
6-methoxy-2-anthroate 2-anthroate anti-head-to-head heterodimer; [M]+ Calcd for C37H30O5 554.21; Found 

553.99, [M + Na]+ Calcd for C37H30O5Na 577.20; Found 576.93. 

 

 

Figure A3-3-9. ESI-QTOFMS spectrum of trans-1,2-cyclohexanediyl 6-hydroxy-2-anthroate 2-anthroate 
anti-head-to-head heterodimer; m/z: [M − H]− Calcd for C36H27O5 539.19; Found 539.16. 
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Figure A3-3-10. ESI-QTOFMS spectrum of methyl 6-hydroxy-2-anthroate methyl 2-anthroate 
anti-head-to-head heterodimer; m/z: [M + H]+ Calcd for C32H25O5 489.2; Found 489.2. 

 

Figure A3-3-11. ESI-QTOFMS spectrum of 6-hydroxy-2-anthracenecarboxylic acid 2-anthracenecarboxylic acid 
anti-head-to-head heterodimer; m/z: [M − H]− Calcd for C30H19O5 459.12; Found 459.12. 
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A4 HPLC Chromatography 
 

Chapter 3 

 
 

Figure A4-3-1. Analytical HPLC of purified ACD3-PEG5-Lys(Biotin) ligand. 

 

 

Figure A4-3-2. Gel-permeable HPLC of scFv J-20 antibody. 
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A5 Image  
 

Chapter 2 

 

Figure A5-2-1. Example of TEM Imgage of hybrid nanohelices stock. The stock having pure nanohelices is rare. 

 

Chapter 3 

Figure A5-3-1. SDS-PAGE of scFv J-20 antibody with marker. The calculated molecular weight is 26.9 kDa. 
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A6 Calculation 
 

Chapter 2 

Calculation of AC molar extinction coefficient in aqueous solution 

 AC stocks were prepared in NaOH 1 mM solution. However, it is difficult to completely dissolve 

AC at this NaOH concentration, and using too high basic concentration will dissolve silica. Therefore, 

the concentration of AC was determined by UV absorption spectrum. 

 

Figure A6-2-1. Calibration curve of AC in tetrahydrofuran. 

 First, the molar extinction coefficient in tetrahydrofuran, the solvent that AC can dissolve well, 

was determined from 4 separately prepared samples to be 4.40 × 103 M−1cm−1 at 394 nm (lowest-

energy λmax). (Figure A6-2-1) This data shows precision of sample preparation procedure. 

 

Figure A6-2-2. Calibration curve of AC in 60 % THF and 40 % NaOH 1 mM (aq). 

Then, AC was dissolved in the mixture of THF (60 %) and NaOH 1 mM (aq) (40 %). AC was first 

dissolved by THF, and NaOH 1 mM (aq) (40 %) was slowly added, avoiding any precipitation. The 

calibration curve was plotted from 4 separately prepared samples to be 4.54 × 103 M−1cm−1 at 386 nm. 

(Figure A6-2-2) 

 

Figure A6-2-3. Calibration curve of AC in in NaOH 1 mM (aq). Concentration was determined by absorption 
spectrum in THF 60 % and NaOH 1 mM (aq) 40 %. 
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Finally, AC was prepared by dissolving in NaOH 1 mM (aq) and filtering, the same method used 

for every preparation of AC stock. This solution was diluted to 10 %, 20 % and 40 % in NaOH 1 mM (aq), 

and the absorption of each sample was measured. The similar procedure was performed but using 

tetrahydrofuran and NaOH 1 mM (aq) mixture for dilution to give the final ratio of THF 60 % and 

NaOH 1 mM (aq) 40%. With this method, the concentration of AC can be calculated from molar 

extinction coefficient in THF 60 % (4.54 × 103 M−1cm−1), which was plotted against absorption diluted 

by only NaOH 1 mM (aq). (Figure A6-2-3) As a result, the molar extinction coefficient of AC in NaOH 1 

mM (aq) is 3.40 × 103 M−1cm−1.  

Calculation of excited AC concentration in CPL-300 spectrometer 

 It is difficult to get exact concentration of AC* because many unknown factors are involved. 

By assuming that AC solution completely absorb photons (which was less in this experiment), the 

maximum possible concentration can be estimated. First, the number of photons / s is estimated. The 

wavelength used in the experiments was 350 nm.  

Photon Energy =
hc

λ
 

=
(6.63 × 10−34 J ∙ s)(3 × 108 m ∙ s−1)

350 × 10−9 m
 

= 5.68 × 10−19 J ∙ photon−1 

In the case of laser, the number of photons can be calculated by dividing total energy with the 

energy of each photon with high accuracy. However, the light source in spectrometer is Xe arc lamp 

150 W, so most of the photons are removed by excitation slit. Therefore, inequation is used instead. 

Number of Photon <
Energy of Light Source

Energy of Photon
 

<
150 J ∙ s−1

5.68 × 10−19 J ∙ photon−1
 

< 2.64 × 1020 photon ∙ s−1 

Next, the concentration of AC* at any time t can be calculated using lifetime equation (3-1). 

[AC∗] = [AC∗]0e
−t

τ⁄  

From this equation and the fact that the fluorescence lifetime of AC in aqueous solution is 18 ns, 

concentration of AC* will reduce to 1 % of the original concentration at 83 ns. For 83 ns, less than 

2.19 × 1011 photons are emitted from Xe lamp (calculated by above inequation).  

Here, the calculation is complicated because the decay and excitation are happened 

simultaneously and continuously. So, the situation is simplified. Instead of Xe lamp, the 

femtosecond-pulse laser is considered as a light source. At the beginning, 2.19 × 1011 photons were 

irradiated from pulse laser excited simultaneously with negligible fluorescence decay. With 

continuous excitation from Xe lamp (2.19 × 1011 in 83 ns), the fluorescence decay is involved causing 



APPENDIX 

cc 

 

the amount of AC* to be always less than 2.19 × 1011 molecules. With this estimation, the inequation 

is maintained. 

The concentration of AC used in this experiment is 10 µM, and the volume is 2 mL, meaning 

1.2 × 1016 molecules (2.0 × 10−8 mol) exist. We can conclude that the amount of AC* is much less than 

AC. Moreover, this assumption based on the extreme approximation that photons are completely 

absorbed (They were partially absorbed in the experiments.), 150 W power of light source is 

completely converted to 350-nm light (Most of the photons of the lamp with different wavelength 

was removed by emission slit.), the excitation was not disturbed by fluorescence decay for 83 ns, and 

the lifetime of AC in hybrid nanoribbons is 18 ns (It should be reduced). 

Therefore, the concentration of AC* in reality is much less than the approximation, more 

support to the approximation that [AC*] << [AC]. 

Chapter 4 

AC-HAC dimer3 Atomic Coordinates for Calculations 

atomic coordinate atom charge isotope 

-1.52310666 0.28869285 2.71136348 C 6 0 

-0.25468088 -2.43053628 2.08724567 C 6 0 

-4.05014013 0.58605448 1.41462532 C 6 0 

-4.01559642 1.17086635 -1.17150962 C 6 0 

-6.292847 1.43369688 -2.45623611 C 6 0 

-8.59056095 1.11452824 -1.20367776 C 6 0 

-8.60183187 0.53028159 1.36835106 C 6 0 

-6.32567041 0.27429553 2.68387703 C 6 0 

0.16796318 2.43319683 1.88537442 C 6 0 

0.20138205 3.02117414 -0.70400437 C 6 0 

-1.46486329 1.45807291 -2.41744866 C 6 0 

1.68419871 3.78693745 3.55861118 C 6 0 

3.25003686 5.71064344 2.68006025 C 6 0 

3.28918799 6.29414898 0.1010901 C 6 0 

1.75084432 4.94357003 -1.58003524 C 6 0 

2.30234161 -2.12668424 0.85233612 C 6 0 

2.33821799 -1.53628161 -1.73645433 C 6 0 

4.638558 -1.20064882 -2.97281278 C 6 0 

6.90514184 -1.42760137 -1.65601999 C 6 0 

6.87088325 -2.01002993 0.92345895 C 6 0 

4.55772814 -2.36615397 2.1637575 C 6 0 

-1.90573766 -4.00037321 0.36556362 C 6 0 

-1.86143449 -3.41750402 -2.21924992 C 6 0 

-0.18382412 -1.25814588 -3.03994498 C 6 0 

-3.43680449 -5.9530959 1.23967058 C 6 0 
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-4.93035514 -7.32741267 -0.44537679 C 6 0 

-4.88159828 -6.75173548 -3.01508314 C 6 0 

-3.34183687 -4.80002054 -3.89787206 C 6 0 

-10.79529161 0.19103722 2.71796832 O 8 0 

9.21098159 -2.26332057 2.43362882 C 6 0 

-1.77623786 0.35494124 4.75927802 H 1 0 

-0.03325103 -3.39099971 3.90131532 H 1 0 

-6.29046297 1.88916298 -4.4590229 H 1 0 

-10.36470733 1.32653255 -2.21999017 H 1 0 

-6.37167088 -0.17718039 4.68500941 H 1 0 

-1.67961791 2.42088539 -4.23128187 H 1 0 

1.65402565 3.3253463 5.55926488 H 1 0 

4.43856021 6.75853051 3.97722084 H 1 0 

1.8138494 5.43036337 -3.57241301 H 1 0 

4.65930102 -0.74275227 -4.97445398 H 1 0 

8.69541525 -1.15665461 -2.6125185 H 1 0 

4.57843296 -2.8175331 4.16532512 H 1 0 

0.08342087 -1.32069234 -5.08674617 H 1 0 

-3.46624662 -6.40240832 3.24395193 H 1 0 

-6.12030359 -8.84860289 0.2474207 H 1 0 

-6.0322362 -7.82423159 -4.33282657 H 1 0 

-3.29729926 -4.3488647 -5.90169048 H 1 0 

-12.22006315 0.42309038 1.5915172 H 1 0 

4.91935633 8.30615546 -0.95520194 C 6 0 

6.32980774 9.510957 0.84651275 O 8 0 

5.04818466 8.88099727 -3.17965592 O 8 0 

7.31572244 10.77130822 -0.06356726 H 1 0 

11.35658706 -1.89393722 1.03810153 O 8 0 

9.29571696 -2.74265397 4.68263284 O 8 0 

12.75243101 -2.09941199 2.22056157 H 1 0 

 

 


