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Abstract

Stroke is one of the highest causes of death worldwide. In Brazil, stroke is the leading
cause of death, and in 2009, it was responsible for 10.2% of deaths recorded. Non-
enhanced computed tomography (CT) and nuclear magnetic resonance imaging (MRI)
are the two main imaging techniques used to detect stroke. CT has a lower cost and greater
accessibility of the population, so it is still the main method used. In most cases, the
assessment of the compromised brain area is performed subjectively and may lead to
difficulties in diagnosis. This research work proposes an approach based on a
computational algorithm, highlighting regions of ischemic stroke. Different image
processing methods were used to enhance ischemic tissues. A set of 41 retrospective CT
scans from Botucatu Medical School (Brazil) was used, divided into 25 cases of acute
ischemic stroke and 16 normal patients. Stroke cases were obtained within 4.5 h of
symptom onset. After selection of CT slices, image averaging was performed to reduce
the noise. This was followed by a variational decomposition model and the expectation
maximization method was applied to generate enhanced images. We determined a test to
evaluate the performance of observers in a clinical environment with and without the aid
of enhanced images. The overall sensitivity of the observer’s analysis was 64.5 % and
increased to 89.6 % and specificity was 83.3 % and increased to 91.7 %. These results
show the importance of a computational tool to assist neuroradiology decisions,

especially in critical situations such as the diagnosis of ischemic stroke.

Key words: Stroke . Brain . Algorithms . Computed Tomography . Early diagnosis



Resumo
O acidente vascular cerebral (AVC) é uma das maiores causas de morte em todo o

mundo. No Brasil, o AVC ¢ a principal, sendo que em 2009, foi responsavel por 10,2%
das mortes registradas. A tomografia computadorizada (TC) e a ressonancia magnetica
nuclear (RMN) séo as duas principais técnicas de imagem usadas para detectar o AVC.
A TC tem um custo menor e maior acessibilidade da populacéo, por isso ainda é o
principal método de avaliacdo do acidente vascular cerebral. A avaliacdo do cérebro
comprometido é realizada de forma subjetiva e pode levar a dificuldades no diagndstico.
Esta pesquisa propde a implementacdo de um algoritmo computacional, destacando
regibes de AVC isquémico. Diferentes métodos de processamento de imagem foram
utilizados para melhorar a visualizacdo do tecido isquémico. Um conjunto de 41
tomografias retrospectivas obtidas na Faculdade Medicina de Botucatu foram utilizadas,
divididas em 25 casos de AVC isquémico e 16 pacientes controle. Os casos de AVC
foram obtidos dentro de 4,5 horas apds os primeiros sintomas. Apos a selecdo dos slices
com a possivel presenca de AVC, tais slices foram somados resultando em um Unico slice
com valores médios de forma a reduzir o ruido. Isto foi seguido por um modelo de
decomposicéo variacional onde se mantiveram componentes de interesse da imagem. O
método de maximizacdo de expectativas foi aplicado para gerar imagens melhoradas.
Determinamos um teste de desempenho de observadores em um ambiente clinico. A
sensibilidade geral da analise observacional foi de 64,5% e aumentou para 89,6% e
especificidade foi de 83,3% e aumentou para 91,7% quando usadas imagens originais e
realgadas, respectivamente. Estes resultados mostram a importancia de uma ferramenta
computacional para auxiliar as decisdes de neuroradiologia, especialmente em situagdes
criticas, como o diagnostico de AVC isquémico.

Palavras-chave: acidente vascular cerebral, processamento de imagens, tomografia

computadorizada, diagndstico precoce



Résumeé
Traitement d’images pour le rehaussement de I’”AVC ischémique sur des

examens de tomographie

L’ Accident Vasculaire Cérébral (AVC) est I'une des principales causes de déces dans
le monde. Au Brésil, les AVC sont la cause principale de déces. En 2009, ils étaient
responsables de 10,2% des déceés enregistrés. Le scanner et I'lmagerie par Résonance
Magnétique (IRM) sont les deux principales techniques d'imagerie utilisées pour détecter
les AVC. L’examen par scanner a un codt inférieur et une plus grande accessibilité a la
population, il reste donc la principale méthode de diagnostic. Dans la plupart des cas,
I'évaluation de la région cérébrale compromise est effectuée de maniere subjective et peut
entrainer des difficultés pour déterminer la région atteinte. Ce travail de these propose
une approche basée sur un algorithme permettant de mettre en évidence les régions
atteintes d’AVC ischémique dans les examens de scanner rétrospectifs. Différentes
méthodes de traitement des images ont été utilisées pour réhausser les régions des tissus
ischémiques. Afin de permettre aux médecins moins expérimentés de détecter de maniere
fiable les signes précoces AVC, une nouvelle approche est proposée pour améliorer la
perception visuelle de I’accident ischémique cérébral sur des images scanner. Une série
de 41 images scanner rétrospectifs ont été utilisées, réparties en 25 cas d’AVC
ischémiques et 16 patients normaux. Les cas d'AVC ont été obtenus dans les 4,5 heures
suivant l'apparition des symptdémes. Apres la sélection des coupes importantes, une
moyenne d'image est effectuée pour réduire le bruit. Ensuite, un modéle de décomposition
variationnelle est appliqué afin de conserver la composante pertinente de I'image. Enfin,
un algorithme d’espérance-maximisation est appliqué afin de genérer des images
rehaussées. Un test est proposé afin d’évaluer la performance des observateurs dans un
environnement clinique avec et sans l'aide d'images rehaussees. La sensibilité globale de

I'analyse de I'observateur a été améliorée de 64,5% a 89,6% et la spécificité de 83,3% a
5



91,7%. Ces resultats montrent I'importance d'un outil informatique d'aide a la décision en
neuroradiologie, notamment dans les situations critiques telles que le diagnostic
d'accident ischémique cérébral.

Mots clés: Accident vasculaire cérébral. Cerveau. Algorithmes. Scan

tomographique. Diagnostic précoce.
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Chapter 1

1. Introduction

This thesis is the result of a joint supervision agreement between S&o Paulo State
University (UNESP) in Brazil and the University of Orleans in France. The research was
developed at Botucatu Medical School (HCFMB-UNESP) under the guidance of
Associated Professor Diana Rodrigues de Pina, and at the I3MTO Laboratory of the

University of Orleans, France, under the guidance of Professor Rachid Jennane.

Prof. Diana Pina is a Professor in medical imaging and coordinator of the Laboratory
of Applied Physics in Radiodiagnosis (LAFAR) of Botucatu Medical School (Brazil).
Botucatu Medical School has a service coverage that includes the Regional Health
Department (DRS V1) with a population of approximately 1,623,027 inhabitants. The
Diagnostic Imaging Section of Botucatu Medical School has a vast infrastructure of
diagnostic imaging equipment such as computed tomography (CT) scanners, which
generated images for this research. The HCFMB-UNESP has two Toshiba Activion 16-
channel CT scanners and one General Electric 64-channel CT scanner. All retrospective
examinations of CT in this study were obtained from the Diagnostic Imaging Department

of Botucatu Medical School (UNESP).

Prof. Rachid Jennane is a full Professor of image processing at the University of
Orleans (France) where he is affiliated to the I3BMTO (Imagerie Multimodale Multiéchelle

et Modélisation du Tissu Osseux et Articulaire) Laboratory.
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This research also counted on the clinical and scientific support of Prof. Carlos Clayton
Macedo de Freitas (neurosurgeon HCFMB-UNESP), from Prof. Nitamar Abdala, Head
of the Diagnostic Imaging Department of the Paulista School of Medicine (UNIFESP)
and President of the Institute of Diagnostic Imaging Foundation, and Dr. Jodo Altemani,
radiologist of the Department of Radiology of UNICAMP. All those Brazilian physicians
participated actively in the study design as well as in the image evaluation, discussion of
cases, and in the writing of the scientific paper related to the results presented in this

thesis.

This research proposes the implementation of an image segmentation system,
highlighting areas of ischemic stroke in CT scans. A computational tool has been
developed that can assist radiologists and neuroradiologists to make a safer and more
accurate decisions in the detection of stroke. Computational algorithms were developed
to improve image contrast, to reduce noise, and to highlight the regions affected by
ischemic stroke. There was a comparison analysis between original images and those
highlighted by the computational algorithm, named enhanced images, which resulted in

a better visualization of stroke signs when analyzed by different radiologists.

The great differential of this proposal is to associate different methods of image
processing and to optimize them to improve the visualization and to perform the
enhancement of stroke. In this sense, we still propose a comparison between the objective
analysis of the radiologists with and without the use of enhanced images of stroke cases.
All these factors will contribute to a more accurate and safe diagnosis of stroke. This
research was possible due to the interdisciplinary team composed of neurologists,
neurosurgeons, radiologists, and medical physicists. The following is a summary of the

chapters of this PhD thesis.
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Chapter 1 is composed of the introduction to the thesis and describes the primary and

specific objectives addressed in this research.

Chapter 2 depicts the theoretical foundations for a better understanding of the
subsequent chapters. Some concepts that will be addressed in Chapter 2 are stroke
characteristic’s and diagnostic modalities used for diagnosing it; digital imaging concepts
and some computational methods applied in the last 20 years to enhance the visual

perception of ischemic stroke in different imaging methods.

Chapter 3 brings the material and methods since it describes all image-processing
methods used in this research, and presents the database and image selection criteria that
resulted in the cohort of patients. Each step of our proposed approach is also detailed, and
a section is dedicated to experiments with observers that analyzed enhanced images and

compared them with raw images of stroke and control cases.

Chapter 4 brings all detailed results from the application of the computational
algorithm in CT scan images, as well as the results from the observer’s evaluation both
before and after the use of enhanced images to diagnose stroke and control cases. Still, in
Chapter 4 we compared the results achieved with previous results found in literature,

together with other aspects relevant to the discussion.

In addition, in Chapter 5 brings the major and minor conclusion to this research,
responding to all the steps proposed in the objectives section. And also the perspectives

for future studies concerning stroke detection.

Chapter 6 is dedicated to the bibliography used in this research.

Furthermore, there are five appendices in this thesis.

19



Appendix 1 brings the document from the approval of the Brazilian Ethics Committee.

Appendix 2 and 3 summarize the tables with the complete results from the subjective

evaluations for all observers both before and after the analysis of enhanced images.

Appendix 4 shows the final paper of this research published in April of 2018 in
European Radiology, named “Ischemic Stroke Enhancement using a Variational Model

and the Expectation Maximization Method.”

Appendix 5 brings all the other papers published by the author during the period of the

PhD.

1.1 Objectives

This research aims to contribute to the detection of stroke in CT scans through image
processing techniques to improve image quality, to objectively highlight and enhance

areas affected by ischemic stroke.

This primary objective is divided into specific objects cited below:

« Construction of a database with retrospective CT examinations of patients with
confirmed ischemic stroke. The database was obtained in the Computed Tomography
Department of Botucatu Medical School.

»  Development of computational algorithms in Matlab® environment to enhance brain
areas of interest (normal brain, ischemic stroke) and improve their visualization in
the previously selected CT exams;

»  Comparison of three different segmentation methods (Expectation Maximization, K-

means, and Mean-shift) to achieve the best enhancement in ischemic stroke cases;

20



«  Comparison of the results obtained between the developed computational algorithm
and the subjective diagnostic evaluation of the stroke performed by radiologists both

with and without the aid of enhanced images.

Chapitre 1 - Résumé

Le chapitre 1 introduit et décrit les chapitres suivants ainsi que les objectifs principaux

de la thése.

Ce travail de recherche vise a contribuer a la détection des accidents vasculaires
cérébraux dans les scans tomographiques (CT: Computed Tomography) en utilisant des

techniques de traitement d'images. Pour ce faire, quatre objectifs principaux ont été fixeés :

e Construction d'une base de données avec examens CT rétrospectifs ;

e Développement d'algorithmes sous I'environnement Matlab® pour améliorer les

zones d'intérét du cerveau et améliorer leur visualisation ;
e Etude comparative entre trois méthodes de segmentation différentes ;

e Comparaison entre les résultats obtenus a 1’aide de 1’algorithme proposé et de

I'évaluation diagnostique subjective effectuée par les radiologues.

21



Chapter 2

2. Context and Theoretical Fundaments

The subjects dealt with in this section will be briefly reviewed in order to introduce
necessary theoretical foundations for understanding objectives and methodology

developed in this research.

2.1. Stroke

The human brain has a limited supply of nutrients such as oxygen and glucose. The
average brain function relies mostly on adequate perfusion by the cerebral circulation. It
is for this reason that cerebral vascular tone is intensely regulated, and alterations in
mechanisms that modulate cerebral vessel function can predispose to cerebrovascular

disease and stroke (James C. Grotta, 2016).

Stroke occurs with an abrupt onset of focal or global neurologic symptoms caused by
ischemia or hemorrhage. The terminology ‘stroke’ comprises several cerebrovascular
diseases from thromboembolic events and aneurysmal subarachnoid hemorrhage to

sinovenous occlusions (Osborn, 1999).

Stroke mainly affects individuals over 60 years of age. It is considered the most
significant cause of death worldwide (Health, 2007, Garritano et al., 2012). Between
November 2011 and October 2012, approximately 170 thousand individuals were

admitted in Brazilian hospitals with stroke symptoms. In Brazil, stroke is the leading
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cause of death, and it was responsible for 10.2% of all deaths registered (Abreu et al.,

2010, Garritano et al., 2012, Lavados et al., 2007).

The global impact of stroke on the years of life free of functional disability is
significant, occupying the sixth place among all diseases, and is expected to occupy the
fourth place in 2020 (Yusuf et al.al., 2001). Studies estimate that 70% of stroke patients
do not return to their work and that 30% will require help even to walk afterward, which
represents a high socioeconomic impact in society. The high degree of disability is
directly related to the poor quality of life in individuals that survived stroke (Cerniauskaite

etal., 2012).

There are four major types of stroke mostly caused by acute occlusion of a cerebral

artery. Table 1 depicts the most common types of stroke with its corresponding frequency.

Table 1 - Etiology of stroke with its frequency of occurrence.

Type Percentage (%)
Cerebral ischemia 80-85
Primary intracranial hemorrhage 15

Nontraumatic subarachnoid
hemorrhage (aneurysm)

Cerebral venous thrombosis
(sinovenous occlusion)

Ischemia describes the condition where blood flow decreases with the temporary or

permanent loss of organ functions. Cerebral ischemia occurs with diminished blood flow
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to all brain parts or selected regions (regional or focal). Ischemic stroke, which
corresponds to more than 80% of all cases, is a result of blockage or obstruction of vessels

that supply blood to the brain (Association, 2014, Tajiri et al., 2012).

Figure 1 illustrates the main arteries that supply blood to the brain, and a foreign mass
traveling through the bloodstream until it stops in a small artery causing an ischemic
stroke. This occurrence deprives the brain of oxygen and nutrients and initiates a dynamic
sequence of pathophysiological events. When the interruption of blood flow occurs, it

causes cell death and an irreversibly injured infarct core (Powers William et al., 2015).

Brain tissue
affected by blockage.

A foreign mass traveling through the
bloodstream is called an embolus.

If it lodges in a small artery, blood
flow to part of the brain stops.

Figure 1 - Ischemic stroke illustration (Powers William et al., 2015).

If the blood supply is not that severe or it lasts for a short period, then the brain tissue
may be recovered. Brain tissue may survive when blood flow restores quickly enough.
Ischemic penumbra accounts for this potentially reversibly damaged brain tissue that
surrounds the ischemic lesion core (TD, 1980). When blood flow is not restored the

penumbral tissue will proceed to infarction, and the original core lesion will grow. When
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a more substantial portion of the brain is affected, functional disability might appear and

be permanently damaged (Powers William et al., 2015).

Cerebral ischemia manifestations include some predictors including the duration of
the event, its location, tissue volume affected and how much the flow decreases Due to
an ischemic event, an area of coagulation necrosis can occur, which is called infarct. The
process by which an infarct develops is the infarction. There are two different areas in
acute infarcts: the central ischemic core, and the ischemic penumbra, lying in the

peripheral zone (Osborn, 1999).

The region of low perfusion (core) in which cells have lost their membrane potential
Is surrounded by the penumbra where intermediate perfusion prevails, and cells

depolarize intermittently (“peri-infarct depolarization™), as can be seen in Figure 2.

Morphology Biochemistry
lonic failure
: Anoxic depolarization
Infarction [ Glucose use
5 |
(Ll Glutamate release
=8 Glucose use t
Infl _ =8 Protein synthesis }
nflammation BB Aciqosis

and apoptosis Oxygen extraction 4

Selective gene expression

Figure 2 — Representation of the core and penumbra of ischemic stroke accompanied by

pathophysiological events occurring in both regions (James C. Grotta, 2016, Longa et al., 1989).

Hemorrhagic stroke, which occurs in 13% of cases, is caused by the rupture of a vessel

followed by the diffusion of the blood through brain tissues. This type of stroke accounts
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for 37% of all deaths reported by this disease. Even when it does not lead to death, stroke

can cause sequelae that compromise life quality in most patients (Association, 2014).

Early diagnosis of stroke is essential as brain morphological damage increases within
a few hours of symptom’s onset (Amar, 2011). When the Cerebral Blood Flow (CBF) is
reduced to 30-35% of normal, it causes functional suppression, mostly because of the lack
of energy-requiring ion pump mechanisms in brain cells (Osborn, 1999). Blood flow
obstructions of 5 to 10 minutes to areas of the brain can cause irreversible damage (Astrup

etal., 1981).

Most damage occurs in the infarcted core and spreads into the ischemic penumbra.
The penumbra is metabolically unstable with CBF of approximately 20-40% of normal.
If perfusion returns in a suitable period, it is still possible to recover the penumbra (Astrup
etal., 1981, Osman et al., 2011). There are some cases where more extended periods of
poor perfusion can recover without permanent injury. Those cases depend mainly on the

collateral circulation surrounding the stroke core (Ginsberg, 1997).

Effective stroke treatments are considered a difficult challenge since penumbral tissues
are only salvageable within few hours after its start (Wardlaw,2010). Therefore, the
primary therapeutic decisions are to quickly reestablish the main blocked artery to prevent
the infarct expansion. This was made possible with the advent of the thrombolytic agent

(alteplase, rt-PA, Tissue Plasminogen Activator) for the treatment of ischemic stroke.

When the early signs of ischemic areas with the potential to be preserved are detected
it increases the chances of using rt-PA. The treatment window for venous thrombolysis
with rt-PA is approximately 3 hours after the first symptoms (Jauch et al., 2013). Some

authors even reinforce that this treatment window can be expanded to 4,5 hours with good
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results (Tekle et al., 2012). The choice for rt-PA or other treatments depends on factors
such as size, location, vascular distribution of the infarcted region and presence or absence
of bleeding. This stage of diagnosis is fundamental because the detection of hemorrhagic
points in the middle of ischemic areas leads to entirely different choices of treatment.
Also, after thrombolytic therapy, the hemorrhagic transformation is a frequent

complication of ischemic stroke (Zhang et al., 2014).

In summary, the interactions between plasminogen activators and ischemic cerebral
tissue are not completely konwn. However, it is clear that thrombus dissolution in the
central nervous system can be achieved with the use of Pas and there are increased

intracerebral hemorrhage risks with its use (James C. Grotta, 2016).

In this research thesis, the greatest motivation was to develop a computational tool to
aid physicians in the early detection of ischemic stroke in CT examinations. This tool
could be possibly used within the thrombolytic treatment window and increase the
chances of tissue recovery. We aimed to contribute with a computational tool that could
provide more clearly the signs of ischemic stroke especially to those physicians with less

experience or that are not specialists in neuroradiology.

2.2. Diagnostic Modalities

This early stage diagnosis of stroke occurs through different imaging modalities.
Because time is critical to establish the diagnosis, a limited number of essential diagnostic
tests are recommended (Jauch et al., 2013). Stroke protocols and pathways must be clearly
defined before acute treatment decisions. Magnetic Resonance Imaging (MRI), Non-

enhanced computed tomography (CT), and computed tomography with perfusion are the
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main choices for diagnosing stroke (Amar, 2011). Since this research computed
tomography was the only modality used for image processing, it will be discussed in more
details. Other modalities such as MRI and computed tomography with perfusion will be
briefly explained below with their main advantages and disadvantages for the stroke

diagnosis.

2.2.1. Computed Tomography

After its introduction in 1971, CT has developed from an X-ray modality limited to
the generation of axial images of the brain in neuroradiology in a versatile 3D image
mode, allowing the generation of images of the whole human body. It currently covers a
wide range of applications, including oncology, vascular radiology, cardiology,
traumatology and interventional radiology (Dance et al., 2014, Hendee and Ritenour,
2002). The TC concept refers to the creation of cross-section images of an object from
the transmission of data collected in various directions (Bushberg, 2002). The CT image
acquisition process involves the measurement of the X-ray transmission profile through
the patient, from a large number of projections. These projections are obtained by rotating
the X-ray tube and the detectors around the patient, as shown in Figure 3. The
transmission profiles are used to reconstruct the CT image, composed of an array of pixels

(Dance et al., 2014, Bushberg, 2002, Hendee and Ritenour, 2002).
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Figure 3 - An example of the method of computed tomography imaging where the whole X-
ray and the detectors rotate around the patient (Dance et al., 2014).

The assigned values to the pixels in a CT image are associated with the attenuation of
the corresponding tissue, or, more specifically, the linear attenuation coefficient (u). The
linear attenuation coefficient depends on the composition and density of the tissue, as
well as the energy of the photon. The attenuation of the X-ray beam is described by

Equation 1 (Dance et al., 2014).

I(x) = e ™™ (1)

Where I(x) is the intensity of the attenuated X-ray beam, lo is the original beam intensity,
and x is the thickness of the material. When an X-ray beam transmitts through a patient,
different tissues have different linear attenuation coefficients. If the path through the
patient ranges from 0 to d, then the intensity of the attenuated X-ray beam, transmitted at
distance d, can be expressed by Equation 2 (Dance et al., 2014, Bushberg, 2002, Hendee

and Ritenour, 2002).

I(d) = I,e™Jo rax 2)
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Since a CT image is composed of an array of pixels, the scanned patient are represented
by an array of different linear attenuation coefficient volume elements (voxels). Figure 4
shows a 4x4 matrix representing the measured transmission across a line. For such
discretization, the attenuation is expressed in Equation 3 (Dance et al., 2014, Bushberg,

2002, Hendee and Ritenour, 2002).

I(d) = Ije~Zictmibx (3)

where n represents the size of the matrix in the sense of the analysis.

I(d)

)

Figure 4 - The principle of an X-ray beam attenuation in a simplified 4 x 4 matrix. Each
element of the matrix may have an associated linear attenuation coefficient (Dance et al., 2014).

Therefore, the underlying data necessary to generate a CT image are the intensities of
attenuated and non-attenuated X-ray beams, respectively I1(d) and lo. The image
reconstruction techniques can then be applied to derive the matrix of linear attenuation

coefficients, which is the basis of the CT image (Dance et al., 2014).
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In a CT image, the reconstructed linear attenuation coefficient matrix (umaterial) 1S
transformed into a corresponding matrix of Hounsfield Units (HU), where the HU scale
express the relation to the linear water attenuation coefficient (uwater), as shows Equation

4 (Dance et al., 2014, Bushberg, 2002).:

_ Hmaterial—Higua
HUmaterial - i x 1000 (4)
Hagua

It can be seen that HUwater = O (Umaterial = Magua), HUair = -1000 (Umaterial = 0) e HU = 1
is associated with 0.1% of the linear attenuation coefficient of water. From the definition
of HU, for all substances other than air and water, variations in HU values occur when
different voltages are used in the X-ray tube. The reason is that, as a function of photon
energy, different substances have a non-linear relationship of its linear attenuation
coefficients relative to that of water. This effect is most notable for substances that have
relatively higher effective atomic numbers, such as contrasting blood and bones (Dance

etal., 2014).

CT has excellent sensitivity to detect intracranial hemorrhage and to distinguish non-
vascular problems caused by neurological symptoms. Non-enhanced CT definitively
excludes parenchymal hemorrhage (The European Stroke Organisation Executive and
the, 2008). Its capacity is limited to the detection of ischemic areas due to the small
difference between ischemic tissue density and healthy tissue. However, CT continues to
be the primary modality for the rapid evaluation and diagnosis of patients with potentially
ischemic lesions (Jauch et al., 2013). The option for CT is due to its lower cost compared
to other methods, greater accessibility of the population, shorter execution time and
compatibility with prostheses, implants and metallic equipment (Amar, 2011, Adams et
al., 2007, Srinivasan et al., 2006b).

31



Due to its significant advantages, CT exams are still the first option for emergency
decisions concerning acute ischemic stroke. Therefore, in this research, we aim to
contribute to the early diagnosis of stroke in retrospective examinations of CT. All
techniques developed here and all results presented in the next sections were entirely

applied in CT examinations.

2.2.2. Magnetic Resonance Imaging

MRI is a technique that has excellent detection of ischemic tissues in the brain (van
Everdingen et al., 1998). This method of diagnosis in relation to CT better detects regions
with cytotoxic edema, better distinguishes acute ischemic regions from chronic ones, has
better spatial resolution and does not use ionizing radiation. However, MRI has
disadvantages such as the long examination time and the high sensitivity to movement
artifacts, which often makes it difficult to perform in patients with stroke. Its high
financial cost limits its use to the general population, making it difficult to use on a large
scale, especially in countries such as Brazil. In addition, another disadvantage is its

incompatibility with patients who have dentures and metal implants (Jauch et al., 2013).

2.2.3. Computed Tomography with perfusion

Perfusion computed tomography also has good sensitivity for ischemic stroke
detection. This method consists of the sequential acquisition of images in a specific CT
scan slice during contrast injection (Allmendinger et al., 2012). CT perfusion can be used
to generate functional perfusion maps, the most used being: cerebral blood volume, blood

flow, mean transit time (the difference between arterial and venous contrast passage), and
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time to peak contrast enhancement. Each of these produces a different-sized lesion, with
the processing algorithm also influencing the lesion size, even when the same parameter
Is estimated. Figure 5 shows an example of a CT scan with perfusion. In Figure 5a, no
abnormalities are seen. However, the use of CT with perfusion reveals a deficit in the
mean transit time (Figure 5b) as well as in the regional blood volume map (Figure 5c)
and on the regional cerebral blood flow map (Figure 5d). Furthermore, a digital
subtraction technique may be used to enhance the occlusion of an artery, as shown in

Figures 4e-f.

Figure 5 —a) A CT scan of a 63-year-old patient with a left-sided hemiparesis revealed no
abnormalities. (b) Perfusion-weighted CT showed a perfusion deficit in the mean transit time
parameter maps as well as on (c) the regional cerebral blood volume map and on (d) the regional
cerebral blood flow map. Digital subtraction angiography (e and f) on the right-hand side shows
occlusion of the internal carotid artery (Marincek and Dondelinger, 2007).
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Identifying which perfusion parameter should be used is essential to achieve the best
possible diagnosis. Similarly, raw diffusion-weighted acquisitions can be post-processed
to provide diffusion-weighted images, apparent diffusion coefficient (ADC) maps,
fractional anisotropy (FA) or the diffusion tensors (DT). CT perfusion main advantage in
relation to other diagnostic methods is to allow both qualitative and quantitative
evaluations. When compared to CT, it has essential disadvantages such as increased
radiation dose, longer time for image acquisition and processing, higher financial cost
and also a high dependence on qualified professionals for the diagnosis (Srinivasan et al.,

20063, Jauch et al., 2013).

2.3. Digital Image

An image can be represented by a two-dimensional function, f (x, y), where x and y are
spatial coordinates (plane), and the value of f in any pair of coordinates (x, y) is named
the gray level of the image. When x and y and the intensity values of f are finite and
discrete quantities, we have a digital image. In this case, each element of the image is
called a pixel (Gonzalez and Woods, 2008, Bovik, 2005). The digitization of the
coordinate values is named sampling, while the digitization of the amplitude values is

called quantization (Gonzalez and Woods, 2008, Bovik, 2005).

Digital image processing relates to the process of manipulation of an image by a
computer so that the output of the process is an image with different characteristics
according to the user's necessity (Gonzalez and Woods, 2008). Image processing
generally applies to methods that receive an image as input and generate a modified image
(enhancing characteristics), measures (analyzing regions of interest), or classifications

(aiding human visual perception) as output (Zarinbal and Zarandi, 2014).
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Image processing methods aim to improve the visualization of an image or to convert
them into a more suitable form for analysis of humans or computational systems. There
are various methods for image processing proposals. Usually, a combination of

techniques is combined to achieve the output image (Zarinbal and Zarandi, 2014).

Segmentation are essential in image processing (Lin et al., 2006), which comprises a
process of separation between objects and the background. The segmentation divides the
image into different regions so that each region is homogeneous in relation to some
property, such as the value of the pixel or texture (Roerdink and Meijster, 2000, Khokher

etal., 2012).

2.4. Thresholding

Due to its inherent properties, the simplicity of implementation and computational
speed, image thresholding has a central position in image processing applications,
especially in segmentation approaches. This process consists in separating the gray
intensities of an image in different ranges. A gray intensity value, called threshold, is
determined to separate parts of the image according to the pixels values. A pixel with a
value greater than the threshold is called the point of the object. Any pixel with a value
smaller than the threshold is called a background point. This can be exemplified in
Equation 5 (Gonzalez and Woods, 2008, Bovik, 2005):

s = (1

Where g(X, y) represents the pixels of the threshold image, and f(x, y) represents the
pixels of the original image. After the thresholding process, the final image has only two

possible pixel values.
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When the pixel intensity distributions from background and objects are sufficiently
different, it is possible to use a single threshold applicable to the whole image and is
called the overall threshold. However, in some specific cases, it is necessary to use a
variable threshold, where the threshold value changes throughout the image. The use of
these thresholds depends on the type of image to work on and the region to be segmented

(Gonzalez and Woods, 2008).

In this study, a thresholding technique was implemented in one of the first algorithm

steps in order to segment different regions of interest.

2.5. Histogram Stretching

The histogram of an image is composed by a set of numbers indicating the percentage
of pixels in a specific gray level. These values are generally represented by a graph bar
that provides for each level of gray, the number (or percentage) of corresponding pixels
in the image. Through the visualization of the histogram of an image, one can obtain an
indication of its quality as to the level of medium brightness (if the image is

predominantly light or dark) (MARQUES FILHO, 1999).

When analyzing one image histogram, the measure of its dynamic range it is named
contrast. The dynamic image range is defined as the entire range of intensity values
contained within an image, thus the maximum pixel value minus the minimum pixel
value. For example, an 8-bit image has a dynamic range of 256, and a 12-bit image has a

dynamic range of 4096 (Gonzalez and Woods, 2008).

Contrast stretching or histogram stretching is a technique that attempts to improve an
image by stretching the range of its intensity values. Contrast stretching is restricted to a

linear mapping of the input image before conversion to the output. The initial step
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determines the limits of the new image intensity extension. The original image histogram
iIs examined first. If the original range covers the full possible set of values,
straightforward contrast stretching will not change the contrast (Gonzalez and Woods,

2008).

This technique must be used when the restricted range of pixel intensities can be
stretched linearly, to the full limit of the extended output. Then for each pixel, the original

value is mapped to a new output value using Equation 6:

s:(r—c)(l;%z)+a (6)

Where s is the new value of the pixel, and r is the old value. These lower and upper
limits are called a and b, respectively (for standard 8-bit grayscale images, these limits
are usually 0 and 255). The limits value of the original histogram are determined by the

lower = ¢ and upper = d.

2.6. Variational Decomposition Model

Variational models have been used in a variety of image processing problems, usually
for image denoising and or texture identification (Bergounioux, 2016, Bergounioux et al.,
2016, Bergounioux and Piffet, 2010). The variational model (VM) provides a
decomposition of the image at different scales, in which noise and texture may be

modelled as oscillating components.

In this work, we used the mathematical formulation described in (Bergounioux, 2016).

One can assume that the image to recover belongs to the L. (Q2) space and that it can be
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decomposed. The image P was modeled as the sum of three terms, as can be seen in

Equation 7:
P=u+v+w @)

The components w, v and u belong to different functional spaces: v € BH(Q2) which
is the (smooth) second-order part, u is a BV(Q2) component, and w &€ L2(Q) is the
remainder term. We also consider that the space BV(Q) is the classical Banach space of
functions of bounded variation. The BV-part are related to the contours of the image, and
the BH-part is continuous (at least for d < 2) and it gives the image dynamic. We consider

the following cost function defined on BV(Q) x BH(Q) as shown in Equation 8:

Fpu(,v) = S IP = u=vl| + ATV (u) + pTV*(V) (8)

Where IP — u - vl is the fitting data term, TV(u) is the first order total variation of u,
TVZ(v) is the second order total variation of v, and /1 and p are two real numbers fixed
empirically for contours and homogeneity (4 > 0 and p > 0). More information on the
methods can be found elsewhere in the following papers (Bergounioux, 2016,
Bergounioux et al., 2016, Bergounioux and Piffet, 2010). In this study, the variational
decomposition model was used to enhance the contrast of the image; highlighting the

ischemic stroke region more clearly.

2.7. Expectation Maximization

Expectation Maximization (EM) is a popular iterative method for maximum likelihood
parameter estimation and image segmentation (Jong-Kae and Djuric, 1997). This

technique consists of the generalization of the maximum likelihood estimate from a given
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data set. First, we recall the definition of the maximum-likelihood estimation problem

(Bilmes, 1997).

One can assume a density function p(x|8) regulated by some parameters. If we
consider a set of Gaussians, those parameters are means and covariances. We also have a
data set of size N, from the distribution X = {x,, ..., x5 }. We must assume that these data
vectors are independent and identically distributed with distribution p. The resulting

density for the samples is achieved through Equation 9:

p(x]6) = [1iL, p(x;16) = L(8]X) (9)

This function L(6|X) is the likelihood of the parameters from the data. In maximum

likelihood problems, our goal is to find the value of 6 that maximizes L.

The EM algorithm can be applied to find the maximum-likelihood estimate of those
parameters. We assume that X is the observed data and therefore it is somehow
incomplete. We assume that a complete data set exist, named Z = (X,Y) with the

following joint density function in Equation 10:

p(z]60) = p(x,y10) = p(ylx, O)p(x|6) (10)

In this manner, one can assume a joint relationship between missing and observed data.
With a new density function, we define a new complete-data likelihood function as in

Equation 11:

L(81Z) = L(6IX,Y) = p(X,Y|0) (12)
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The EM algorithm finds the expected value of the complete-data log-likelihood of the
unknown data Y given the observed data X and the current parameter estimates. That is,

we define in Equation 12:

Q(6,0") = Eflogp(X,Y[0|X,6")] (12)

The evaluation of expectation is named the E-step of the algorithm. Notice the meaning
of the two arguments in the function Q(6,8"). The first argument 6 corresponds to the
parameters that ultimately will be optimized in an attempt to maximize the likelihood.
The second argument 6'corresponds to the parameters used to evaluate the expectation.
The second step (the M-step) of the EM algorithm is to maximize the expectation

computed in the first step. That is, we find in Equation 13:

Q(8') = argmaxg Q(6,6") (13)

These two steps are repeated as long as it is necessary. Each iteration increases the log-

likelihood, and the algorithm converges to a local maximum of the likelihood function.

2.8. K-means

The K-Means algorithm, as well as the EM algorithm, can both be used to find natural
clusters within given data based in input parameters (MacQueen, 1967). Clusters can be
found based on pixel intensity, color, texture, location, or some combination of these
features. In K-Means, the starting locations of the partitions used are critical to achieving
the optimal solution. K-Means is susceptible to termination when achieving a local

maximum as opposed to the global maximum.

K-Means relies the on the assignment of information to a given set of partitions. At

every pstep of the algorithm, each data value is assigned to the nearest partition based
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upon some similarity parameter such as Euclidean distance. The partitions are then
recalculated based on these assignments. With each successive step, a data value can
switch to another partition, thus altering the values of the partitions. K-Means algorithms
typically converge to a quick solution as opposed to other clustering algorithms (Hartigan,

1979, Yizong, 1995).

Unsupervised classification method such as K-means aims to minimize the sum of the
quadratic error on all groups. For this, it requires three specific parameters: the number
of groups, the initialization of the group and the metric of the distance. The quadratic

errors, J(Ck) between u;, and the points in a group C;, are defined in Equation 14:

J(C) = ineck”xi — pell? (14)

Wherei=1,.,C=ck k=1, .., Kis the set of K clusters and u is the average of Cx
clusters. As the goal is to minimize the sum of the square error on all clusters, the

Equation 6 is rewritten as Equation 15:

J(©) = ¥i= ineck“xi — e ll? (15)

One of the most complex parameters in cluster analysis is the definition of the number
of groups (k) to be found in the data set. K-means was one of the methods tested for the

final step of our approach, in the segmentation (Yizong, 1995, Hartigan, 1979).

2.9. Mean Shift

Mean Shift (MS) is a non-parametric feature-space analysis technique for locating the
maximum of a density function, initially presented in 1975 (Fukunaga and Hostetler,

1975). MS algorithm is an unsupervised clustering segmentation method, where the
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number and the shape of the data are unknown at start and it can be applied to
discontinuity preserving smoothing (Comaniciu and Meer, 2002). The segmentation
process is based on a region-merging technique applied to the filtered image, and the
number of regions after segmentation is determined by the minimum number of pixels in
a region, denoted by M (i.e., regions containing less than M pixels will be eliminated and
merged into its neighboring region). An appropriate value of M can be chosen to yield an

accurate region representation of segmented regions.

We present a brief summary of the MS method based on the results published by
(Comaniciu and Meer, 2002, Yizong, 1995, Comaniciu, 2003, Tao et al., 2007). Mean-
shift operates through finding the maximum of a density function given discrete data
sampled. It is an iterative method, which starts with an initial estimate. Consider a radially

symmetric kernel in Equation 16:
k(x) = crak(llx]?) (16)
Where constant ¢ 4 > 0, such that:
Jy K@dx = [ 7 cak(Ix]|?) dx = 1 (17)

k(x) is a monotonically decreasing function, and it is kernel profile. Given the function

g(x) = —k'(x) for profile, we define a new kernel G(x):
G(x) = cgagllxlI*) (18)

Where constant ¢, 4 > 0, for n data points xi, i=1, ..., n in the d-dimensional space RY,

MS is defined as:
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x=x;
R i
n X=Xi
(==

mp,(x) = (19)

Where X is the center of the kernel window, and h is the bandwidth. MS is obtained as
the difference between the weighted mean, obtained through the kernel G as the weights

and x as the center of the kernel.

MS image filtering algorithm can be estimated with the equations above. First, an
image represented by a 2-D lattice of p-dimensional vectors (pixels) is used, where p = 1
for gray-level intensities. The space of the lattice is known as the spatial domain, while
the graph level information are represented in the range domain. For both domains, we
assume Euclidean metrics. Let xi and zi, i = 1, . . ., n, respectively, be the d-dimensional

(d =p + 2) input image and the filtered pixels in the joint spatial-range domain.

The segmentation is achieved through a merging process performed on a region
produced by the MS filtering application. MS segmentation requires the selection of the
bandwidth parameter h = (hr, hs), which controls the size of the kernel and determines

the resolution of the mode detection.

2.10. Diagnosing Stroke

The diagnosis of ischemic stroke depends heavily on the radiologist's experience and
manner that images are viewed, such as the correct centering and width of the windowing
in CT scan images (Mainali et al., 2014). All these factors must be adjusted so that the
diagnostic evaluation of the stroke is done correctly and within the window of treatment
with the thrombolytic treatment (Jauch et al., 2013). Some score classification based on

visual assessment of image was introduced to facilitate the diagnosis of stroke and the
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establishment of the patient’s condition, such as the ASPECTS scoring system and the

NIHSS score.

2.10.1. ASPECTS

The diagnosis of ischemic stroke in CT improves with the use of a structured score
system such as the ASPECTS (Alberta Stroke Program Early CT Score). The ASPECTS
scale uses a scoring system to identify areas of the brain that indicate regions of ischemia.
Two axial CT slices obtained between the thalamus and at the upper margin of the
ganglion structures are used. The scale divides the region of the middle cerebral artery
(MCA) into 10 regions of interest. The neuroradiologist subtracts a single point of the
score for each area of ischemic change. Thus a score of 10 corresponds to a healthy brain,
and a score of 0 to a brain with ischemic stroke diffused to the entire region of the middle

cerebral artery (Huisa et al., 2010). Figure 6 identifies the positions to be evaluated during

ASPECTS used in clinical routine.

44



Figure 6- ASPECTS study form. A and B, Right hemisphere, observer variations: lower and
upper ASPECTS slices show as shaded areas the minimal and maximal variations in size of the
cortical areas of the MCA (M1-M6) chosen by six expert observers. Left hemisphere, ASPECTS

study form: A = anterior circulation; P = posterior circulation; C = caudate head; L =

lentiform nucleus; IC = internal capsule; | = insular ribbon; MCA = middle cerebral artery;
M1 = anterior MCA cortex; M2 = MCA cortex lateral to insular ribbon; M3 = posterior MCA
cortex; M4, M5, and M6 are anterior, lateral, and posterior MCA territories, respectively,
approximately 2 cm superior to M1, M2, and M3, respectively, rostral to basal ganglia. C and
D, Cortical MCA area variations with change of baseline (Pexman et al., 2001)
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Figure 7 - Another representation of the ASPECTS evaluation in CT scan slices for diagnosing
ischemic stroke in the MCA territory.

In this research, all our patients were evaluated with the ASPECTS scale. Those data
are essential to understanding our cohort of stroke patients. The complete data of

ASPECTS are available in Appendix 2.

2.10.2. NIHSS score

A standardized neurological examination ensures that the major components of a
neurological examination are performed in the correct form. Evaluation scores such as
National Institute of Stroke Scale (NIHSS) may be performed rapidly, since they
demonstrated its utility, and may be used by a broad spectrum of healthcare providers
(Jauch et al., 2013).
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Several institutions use NIHSS for the diagnosis and treatment of stroke in the first 24
hours after the event. This score evaluates the level of consciousness, degree of muscular
strength, language, facial paralysis, visual field, sensitivity, attention and presence of
ataxia. This scale presented significant evidence of reliability and applicability. It consists
of 11 domains being scored between 0 and 4. Table 2 exemplifies all the aspects evaluated

in NIHSS.

Table 2 - National Institute of Stroke Scale.

Tested Item Title Responses and Scores
0 — Alert
. 1 - Drowsy
1A Level of consciousness
2 — Obtuned

3 — Coma/unresponsive

0 — Answers both correctly
1B Orientation questions (2) 1 — Answers 1 correctly

2 — Answers neither correctly

0 — Performs both tasks correctly
1C Response do commands (2) 1 — Performs 1 task correctly

2 — Performs neither

0 — Normal
2 Gaze 1 — Partial gaze palsy

2 — Complete gaze palsy

0 — No visual field detect

1 — Partial hemianopia

3 Visual Fields ) )
2 — Complete hemianopia
3 — Bilateral hemianopia
0 — Normal

) 1 — Minor facial weakness

4 Facial movement ) )
2 — Partial facial weakness
3 — Complete unilateral palsy

. Motod function (arm) 0 — No drift

a. Left 1 — Drift before 5 seconds
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b. Right 2 — Falls before 10 seconds
3 — No effort against gravity
4 — No movement

0 — No drift
Motor function (leg) 1 — Drift before 5 seconds
6 a. Left 2 — Falls before 5 seconds
b. Right 3 — No effort against gravity

4 — No movement
0 — No movement
7 Limb ataxia 1 - Ataxiain 1limb
2 — Ataxia in 2 limbs
0 — No sensory loss
8 Sensory 1 — Mild sensory loss
2 — Severe sensory loss
0 — Normal
1 — Mild aphasia
9 Language .
2 — Severe aphasia
3 — Mute or global aphasia
0 — Normal
10 Acrticulation 1 — Mild dysarthria
2 — Severe dysarthria
0 — Absent

1 — Mild (loss 1 sensory modality
lost)

2 — Severe (loss 2 modalities lost)

11 Extinction or inattention

The higher the sum, the greater the level of neurological impairment. A slight impairment
is considered from 0 to 5 points; from 6 to 13, moderate impairment and above 14 points,
severe impairment (Caneda et al., 2006). NIHSS assessment helps to quantify the degree
of neurological deficits and facilitate communication. It is also possible to identify the
location of vessel occlusion, provide an early prognosis, and select patients for various

interventions, and identify those with potential for complications (Jauch et al., 2013). In
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this research, all our patients were evaluated with the NIHSS scale. Those data are
essential to understanding our cohort of stroke patients. The complete data of NIHSS are

available in Appendix 2.

2.11. Computational methods for detecting and enhancing ischemic stroke

Different computational methods were used to improve the visualization of areas
affected by stroke. Medical image analysis approaches and statistical tools were highly
explored in the last 20 years to identify different tissue states. Those approaches were
used to differentiate and spatially localize tissues affected by stroke. Also, to predict the
final ischemic tissue outcome, and understand factors that influence the dynamic
evolution of the infarct and the penumbra such as lesion swelling, collateral flow

pathways and spontaneous reperfusion (Rekik et al., 2012).

In almost all image-processing approaches, the detection of specific regions
necessarily involves the segmentation of the image in different regions of interest.
Loncaric et al.1999 contributed extensively to the segmentation of medical images using
the fuzzy c-means clustering (FCM) technique. The authors were interested in analyzing
the intracerebral brain hemorrhage. After segmentation of the brain images, different
tissues were identified with basic rule-based systems. The classification of tissues was
given the following denominations: background, brain tissue, bone tissue, hemorrhages

and calcifications (Loncaric et al., 1999).

Chan 2007 also evaluated stroke in High-Resolution CT (HRCT) images in which the

hemorrhagic region was extracted using the top-hat type transform and the comparison
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of symmetry between the two cerebral hemispheres (left and right) was applied, being

able to identify small hemorrhagic clots (Chan, 2007).

Bradera et al. 2009, proposed the semi-automatic segmentation for cerebral hematoma
and edema as well as the measurement of their volumes. The author's combined region-
growing techniques to segment the hematoma and also applied the segmentation of the

level set to extract the edema (Bradera et al., 2009).

Chawla et al. 2009 presented an automatic method for the detection and classification
of ischemic and hemorrhagic stroke in CT scans. This method relied on the observation
that stroke causes a disturbance in the contralateral symmetry of the cerebral hemispheres.
The areas of stroke were identified through tissue density and texture distribution when

compared to the opposite hemispheres (Chawla et al., 2009).

Liao et al. have developed computed aided-diagnosis (CAD) programs that detect
changes in brain symmetry, shape, and size of brain hematomas (Liao et al., 2006, Liao
et al., 2007). In their most recent work, the authors proposed the automatic detection of
intracranial hematomas. First, the regions of the skull are segmented into smaller sized
images by applying a maximum filter. Then the intracranial regions are found by
connectivity and the possible regions of hematomas through adaptive thresholds. This
information is used as input in a multi-resolution binary level set algorithm. This
procedure is repeated until the resolution of the original image is reached (Liao et al.,

2010).

In summary, a system for automatic stroke detection CT scan images should contain
some features that ensure its effectiveness and reproducibility. The pre-processing of the

image should be as minimal as possible; deformations of the cerebral anatomy cannot
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impair detection as well as movement artifacts. The system should be tested in a large

number of clinical cases to assess its adaptability (Liao et al., 2010).

In this research, we propose a methodology to enhance ischemic stroke using a
combination of different image processing techniques in CT scan images, producing
enhanced images. Those images were tested in a clinical environment with physicians of

different level of experience.

2.12. New Perspectives for Stroke Detection

Recent advances in machine learning and deep learning techniques have been used in
multiple medical problems. Many authors have explored with review papers the potential
use of these new advances in diagnosing and predicting the outcome of stroke lesions
(Feng et al., 2018, Liebeskind, 2018, Nielsen et al., 2018, Pinto et al., 2018). Artificial
intelligence tools could guide diagnosis of stroke with automated creation of features,

image segmentation, and multimodal prognostication (Feng et al., 2018).

Very recently, Tang et al. used an approach with machine learning applied to MRI
images of acute ischemic stroke to estimate the tissue outcome in penumbral regions.
Authors demonstrated through their artificial intelligence that the administration of
intravenous thrombolysis could be successfully applied even in periods greater than the
4,5 hours treatment window (Tang et al., 2018). Abedi et al. developed an artificial neural
network model to recognize acute cerebral ischemia and differentiate that from stroke

mimics in an emergency setting (Abedi et al., 2017).

The decision-making in stroke will always be a complex task since it involves far more
than imaging the lesion. The clinical decision of the human brain cannot be fully replaced

by a logical method. As the authors (Feng et al., 2018) said ‘Deep learning is not a
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replacement for existing analytical techniques, but rather a new set of powerful tools that
have opened up exciting opportunities for data-driven stroke management both for acute

intervention and for guiding prognosis.’

Ultimately, deep learning and machine learning tools will become more frequent in
the modern stroke specialist’s diagnosis, mostly because of their speed and powerful
results. We highly trust that those recent technologies will benefit the future clinical
scenario of stroke not only with more accurate treatment decisions but also with improved

patient outcome.

Chapitre 2 - Résumé

Le chapitre 2 décrit les fondements théoriques pour une meilleure compréhension des

chapitres suivants.

Le diagnostic précoce de I'Accident Vasculaire Cerébral (AVC) est essentiel car les
dommages morphologiques cérébraux augmentent quelques heures apres les premiers
symptomes. Ce diagnostic précoce se produit a travers différentes modalités d’imagerie,
les deux plus importantes sont la Tomodensitométrie (CT) et I’imagerie par résonance
magnétique (IRM). Le chapitre 2 décrit les principaux outils de traitement d'images

utilisés pour améliorer 1’identification de I’AVC ischémique dans les images CT.

Ces outils sont le seuillage, 1’étirement de I’histogramme et la décomposition par
modéle variationnel. Nous avons également testé trois méthodes de segmentation :

Expectation-Maximization (EM), K-means et Mean-Shift.

Le diagnostic d'accident ischémique cerébral dépend largement de I'expérience du
radiologue et de la maniére dont les images sont visualisées. Ainsi, nous avons définie
certains concepts fondamentaux du diagnostic de I'AVC dans un environnement clinique.
L’échelle ASPECTS (Alberta Stroke Program Early CT Score) utilise un systeéme de
notation pour identifier les zones du cerveau qui représentent les régions de I’ischémie.
Et aussi le score NIHSS (National Institute of Stroke Scale) qui évalue le niveau de
conscience, le degré de la force musculaire, la langue, la paralysie faciale, le champ
visuel, la sensibilité, I'attention et la présence d'ataxie. Le chapitre 2 se termine avec
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quelques méthodes de traitement d’images appliquées au cours des 20 derniéres années

pour améliorer la perception visuelle de 1’accident ischémique cérébral.

Dans le chapitre 2, nous avons également décrit les perspectives de futures études sur
la détection des AVC. Nous souhaitons appliquer notre approche en routine clinique dans
notre hopital a tous les nouveaux patients victimes d'un AVC. Dans ce contexte, les outils
développés dans le cadre de cette étude pourraient étre utilisés non seulement sur les
images CT non améliorés, mais également avec d'autres techniques d'imagerie telles que
I'IRM et la tomographie avec perfusion. De plus, nos outils pourraient étre testés en
association avec une technique d'apprentissage profond, notamment a des fins de
segmentation. Etant donné que I'AVC est d'abord identifié par ses symptomes cliniques,
le diagnostic assisté par ordinateur avec apprentissage profond pourrait constituer un outil

efficace pour un diagnostic rapide.

Par ailleurs, les outils d’apprentissage profond et d’apprentissage automatique
deviendront de plus en plus fréquents pour le diagnostic de I’AVC, principalement en
raison de leur rapidité et de leurs résultats puissants. Nous sommes convaincus que ces
technologies récentes bénéficieront au futur scénario clinique d'accident vasculaire
cérébral, non seulement grace a des décisions de traitement plus précises, mais également

grace a des résultats bénéfiques pour les patients.
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Chapter 3

3. Materials and Methods

This research was possible due to the Brazilian foundation, Fundacédo de Amparo a
Pesquisa do Estado de Sdo Paulo (FAPESP) that provided all the financial support
thorough the entire PhD and BEPE scholarship in France, with the following process

2014/22296-1 and 2016/05321-8.

In this research, a novel approach to enhance the visual perception of ischemic stroke
in CT scans was proposed. This enhancement aims to enable less experienced viewers,
such as radiologists, to reliably detect early signs of stroke in clinical routine. Our new
contribution consists in combining efficiently different image processing techniques to

enhance the visual insight of ischemic stroke in non-enhanced CT scans.

The image processing techniques were developed in Matlab® software R 2014a. All
computational analyzes were performed using the DICOM images (Digital Imaging and
Communications in Medicine). A computational algorithm was proposed to enhance the
ischemic stroke perception and assist the physicians in their diagnosis. Firstly, to reduce
noise and redundancies, a projection (summation) of the slices containing the ischemic
stroke was realized followed by band-pass filtering. Then, to enhance the contrast of the
obtained projection, a Variational Model (VM) decomposition was used. Finally, the
expectation maximization (EM) method was applied to the relevant component from the
VM decomposition to segment and emphasize the ischemic stroke. Furthermore, two
different methodologies to segment and emphasize ischemic stroke were applied and

compared (K-Means and Mean-Shift). The performance of observers, such as
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experienced radiologists and resident radiologists in diagnosing acute ischemic stroke
images was evaluated. We compared their sensitivity and accuracy performances for
stroke and control cases both with and without the aid of enhanced images. The proposed

approach steps are described in the flowchart in Figure 8

Image Averaging A{Band-pass Filtoring]
.

Y

Variational
Output Image Segmentation Model
N Decomposition

Figure 8 - Flowchart with the main image processing steps performed (Alves et al., 2018) .

Selection of Slices

3.1. Database

(CAAE: 52457315.3.0000.5411). A database was composed of retrospective CT
examinations obtained from sthe Diagnostic Imaging Department of Botucatu Medical
School (UNESP - Brazil). Images were acquired from two 16-channel Toshiba Activion
scanners and one GE Optima 64-channel tomography scanner from January 2012 to
November 2017, thus reaching the sample images foreseen in the preparation of this
research project. We evaluated approximately 78 retrospective CT exams previously

diagnosed by radiologists and neuroradiologists.

We collected retrospective CT scans of patients submitted to non-enhanced
examinations. Patients were selected with the following criteria of inclusion and

exclusion.
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- Inclusion criteria: patients with confirmed acute ischemic stroke lesions that
undergone CT scans examinations until 4,5 hours after the onset of first symptoms.
- Exclusion criteria: patients with previous stroke lesions, intracranial

malformations or a history of intracranial hemorrhage.

This study also did not considered cases of hemorrhagic stroke. Since all exams
were retrospective, the ground-truths of confirmed stroke cases were checked with the
follow up of the patients within the hospital, including clinical reports, histological and

pathological analysis, which were further validated by two experienced radiologists.

After this selection, only 25 cases from the initial 78 cases were used. The information
presented on patients clinical reports such as the ASPECTS scale evaluation and the
NIHSS were included in the final results. Furthermore, 16 normal cases of CT exams
were used as a control group. The control group was selected at random from Botucatu
Medical School as patients with no radiological findings who underwent CT exams due
to headache, known as migraine. This group was necessary to test the reliability of the
developed methodology since the control cases were submitted to the same computational
approach as the stroke cases. The mean age of patients was 68.89 + 10.41 years for stroke

group and 66.76 £ 9.36 for control. The database information is summarized in Table 3.
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Table 3 - Number of exams of the database of this project, and those included in the final study

design.
Number of patients that met
Number of evaluated ) ] )
_ ) inclusion and exclusion
Imaging patients o
: criteria
Modality
Ischemic Stroke  Control Ischemic Stroke  Control
Computed
78 26 25 16
Tomography

Using the t-student test, the age difference between the two groups was not significant
(p < 0.05). CT scans were performed on multislice CT scanners. Scanner acquisition
settings were: kVp = 120, automatic exposure control, exposure time = 1 second, matrix
size was 512 x 512 and slice thickness = 1 mm. All images were stored using the DICOM

format.

3.2.Selection of slices

As a prior step to image processing, it is necessary to select a sequence of CT images
in each patient with suspected ischemic stroke. The selection of tomographic slices was
performed in the same anatomical region used for the evaluation of the ASPECTS
protocol (Huisa et al., 2010). This protocol in the diagnosis of stroke is used in patients
submitted to computed tomography, according to international guidelines on the
management and treatment of stroke (Jauch et al., 2013, Amar, 2011). The processing

starts by opening one sequence of CT scan images of individual patients. A sequence of
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slices in the middle cerebral artery territory and basal ganglia is selected. These regions
are most commonly affected by stroke (Jauch et al., 2013). This selection of slices was
performed by an experienced neuroradiologist. Moreover, all observers analyzed the

same sequence of slices for each patient in this study.

Figure 9 represents an example of a sequence of slices from the complete CT scan
examination. All patients from our database had their slices selected in the same manner

in this step of the approach.

Figure 9 — Sequence of slices in the same patient representing the slices selected by the
physician. This patient CT scan sequence had a total of 94 slices, and 5slices were selected.

3.3. Image Averaging

After selecting slices with susceptible ischemic density changes, an image averaging
is performed by summing the values of the gray levels in each slice. As a result, a unique
image is obtained with the average of pixel intensities from the different selected slices
from the previous step. Image averaging is a processing technique often employed to
enhance images by reducing random noise. The algorithm operates by computing an
arithmetic mean of the intensity values for each pixel position in a set of captured images

from subsequent slices using Equation 20:

N P
P(i,j) = 22=nll) (20)
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Where P(i,j) is a resulting pixel of the averaging, Sn is the sequence of selected slices, (i,})
are pixel coordinates for each image slice, and N (4 to 9) is the number of slices used in
the sequence. Even though CT scans are performed with thin slices, the number of slices
used was carefully chosen to avoid averaging slices with many different anatomical
structures. This approach was performed to highlight the presence of stroke and also
lower the image noise level. All control group images were also averaged using a fixed

number of five slices extracted in the middle cerebral artery territory and basal ganglia.

3.4. Thresholding

After the image averaging step, the next step in the image processing algorithm was to
remove non-intracranial tissues from the projection image. Figure 10 shows the histogram
of the projected image. Intracranial tissues are within the range of 5 to 50 HU. The great
peak of pixels around -1000 Hounsfield Units correspond to the air outside of the patient’s
head. Moreover, all pixels above 50 Hounsfield Units might be considered non-
intracranial, such as bone tissues for example. Therefore, pixels out of the [5, 50] range
do not correspond to biological tissues and were removed from the image. This
thresholding step was performed to facilitate the subsequent step of enhancement and
segmentation methods. Thus, we applied a threshold with a lower limit and an upper limit
of 5 and 50 HU to remove all the pixels belonging to the bone tissue, to the background

and other undesirable structures in the image.
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Hounsfiled Units (HU)

Figure 10 - Original image’s histogram. Near the -1000 HU represents pixels from the air
around the patients head. Intracranial tissue is found between 5 and 50 HU. In addition, all
pixels above 200 HU are considered bone tissue.

After this stage, a histogram normalization was performed by redistributing the pixels
intensities. The histogram normalization enabled improving the contrast between adjacent
regions. Following the band-pass filtering, we made an operation on the histogram of the
image. The operation called histogram stretching changed our range from [5 to 50] and
distributed between 0 and 255 grayscale intensities. Therefore, we changed our levels of
gray intensity to 256 levels. As a result, all levels of intracranial gray intensity were

distributed throughout the histogram, as can be seen in Figure 11.
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Figure 11 - Histogram after the stretching and normalization process.

This operation allowed to improve the contrast between adjacent regions in the
image, slightly increasing the differentiation between the regions of the stroke and the
healthy brain tissue that surrounds it. As an example of the application of this step in a
stroke patient, we can observe the original image in Figure 12, and the image with the

improved contrast after the removal of undesirable pixels in Figure 13.
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Figure 12 — Original image from a stroke patient before the removal of undesirable pixels.

Figure 13 — Image contrast image after the application of the thresholding step.
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3.5.Variational Model Decomposition

To better enhance the contrast of the image, a Variational Model (VM)
decomposition was applied to decompose the image into different components
(Bergounioux, 2016, Bergounioux et al., 2016). We recall that the image P was modeled
as the sum of three terms: P = u + v + w. In this model, v is the smooth second order part,
u is related to contours and w is linked to fine textures. Our primary interest is in the v
component since it is related to the contrast and brightness of the image. Ischemic stroke
region was more clearly enhanced using the values of 2 and p equal to 1 and 10,

respectively.

3.6. Segmentation

The next step concerned the image segmentation, which was applied to the v
component after the VM decomposition. Different segmentation methods were tested to
enhance ischemic stroke for the whole database. Three different methods were compared:

Expectation Maximization, K-Means and Mean Shift.

3.6.1. Expectation Maximization Method

The Expectation Maximization (EM) is iterative and starts from some initial estimate
and then proceeds to an iteratively update until convergence is detected. Each iteration
consists of an Expectation (E-step) and a Maximization (M-step) step (Bilmes, 1997), as
it was described in Chapter 2. Each pair of E and M steps is considered one iteration.

Thus, in the final assignment, each pixel of the final image will belong to only one cluster.
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3.6.2. K-means

K-Means is a clustering segmentation method similar to EM. The goal is to choose
cluster centers that minimize the total squared distance between each point and its closest
center. Each data value is assigned to the nearest partition based upon a similarity
parameter, in this approach the Euclidean distance of intensity (Hartigan, 1979). At every
step of the algorithm, partitions are then recalculated based on these hard assignments.
The values of the partitions can alter at each successive step. K-Means algorithms are

typically faster when compared to other clustering algorithms (Spath, 1985).

3.6.3. Mean Shift

In the Mean Shift segmentation method each pixel was associated with a joint domain
located in its neighborhood. The algorithm delineates the cluster by grouping all pixels
that are closer than hs, which is the spacial domain bandwidth and hr, the range domain
bandwidth. After the application of this approach, each pixel element will be assigned to
a partition. The Mean Shift generates partitions characterized by a nonparametric model.
We used the approach described by Comaniciu et al. with a different selection of spatial
and range domains. The best results were achieved with (hs, hr) = (16, 4) (Comaniciu and

Meer, 2002).

3.7. Observers Evaluation
Previously selected stroke exams were subjectively evaluated by neuroradiology
specialists. Evaluations were performed in conjunction with the neurosurgeon Prof.

Carlos Clayton, a professor at Botucatu Medical School-UNESP. Another experienced
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radiologist and some radiology residents participated in the assessments. The evaluation
of CT images followed the recommendations of the “Guidelines for the Early
Management of Patients with Acute Ischemic Stroke” (Jauch et al., 2013).

This publication provides guidance on the evaluation of ischemic stroke areas through
ASPECTS scale, and regarding the correct choice of center and width of the windowing
of the images, search for changes in symmetry between the cerebral hemispheres and
assessment of the increase of density in the region of the middle cerebral artery

(Bhadauria and Dewal, 2014).

In this present research, a test was established to evaluate the performance of observers
in a clinical environment based on a scoring system used by Tang et al. (Tang et al.,
2011). We selected our set of examinations, being 16 normal cases and 25 confirmed
cases of acute ischemic stroke. Four resident radiologists from first, second and third year
of residence and two experienced radiologists with ten and twenty years of experience in
radiology, worked as observers in this study. All radiologists were from Botucatu Medical
School in Brazil. They had no previous knowledge regarding the history of the patients,

thus always blind if the patient had or not the presence of ischemic stroke.

First, the set of raw images (with no processing) was analyzed. Observers were
allowed to adjust contrast, brightness, and magnification of images according to their own
experience in diagnosing stroke in clinical routine. For each case, each observer was
required to give a score relating to the presence of acute stroke (definitely absent: 1,
absent: 2, uncertain: 3, present: 4 and definitely present: 5). Then a new set of enhanced
images was created resulting from our proposed approach, and observers repeated their
evaluation and scored all images, again. The change of the score in diagnosis was tracked

after the observation of enhanced images. Improvement changes were considered when
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the observer changed his evaluation to the desired score. These analyses permitted to test

the confidence of the diagnosis both before and after image enhancement.

We also measured both sensitivity and accuracy of the performance of the observers
before and after the enhanced images. Sensitivity is the true positive fraction, given that
the subject has the ischemic stroke. Accuracy is the probability that a diagnostic
evaluation is correctly performed. The Equations for both quantitative measures are given
in Equations 21 and 22. The scores 1, 2 and 3 were considered as negative evaluations,

and the scores 4 and 5 were considered as positive.

Sensitivity= TPF) (21)
_ (TP+TN)
Accuracy= (TP+FP+FN+TN) (22)

where TP are true positives, TN are true negatives, FP are false positives and FN are false
negatives. We also determined the confidence intervals for both sensitivity and accuracy

measurements through the Wilson score method (Newcombe, 1998).

We tracked the difference in scores that resulted from the analysis of the original
images compared to the enhanced images. For the difference scores, one can consider a
positive score when the observer changes his previous score from any given value to a
higher one. For example, the original score was 3 (uncertain), and the observer changed
after analyzing the enhanced image to a score of 4, which means that the stroke can now
be visualized. Moreover, changes of the score from 4 to 5 which means a higher certainty
in the location and determination of stroke. Additionally, negative scores represent false

negative cases when observing the enhanced images.
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Chapitre 3 - Résumé

Le chapitre 3 concerne le matériel et les méthodes. Le comité d'éthique institutionnel local
a approuvé le protocole de cette étude. Nous avons ainsi construit une base de donnees
composée d'examens CT rétrospectifs obtenus au département d'imagerie diagnostique
de I'école de médecine de Botucatu. Des critéres d'inclusion et d'exclusion ont permis de
sélectionner 25 cas sur 78 patients. Les informations présentées sur les rapports cliniques
des patients, telles que I'évaluation par les échelles ASPECTS et le NIHSS, ont été

incluses dans les résultats.

Un algorithme est proposé pour améliorer la perception visuelle des accidents
ischémiques. Apres sélection des coupes d’images, une étape de seuillage et une
projection sont appliquées pour réduire le bruit et les informations redondantes. Ensuite,
une décomposition par modele variationnel est utilisée sur la projection obtenue pour

conserver la composante pertinente pour notre analyse.

L'étape suivante concerne la segmentation de I'image. Différentes méthodes de
segmentation ont été testées pour améliorer les accidents vasculaires cérébraux
ischémiques pour I'ensemble de la base de données. Trois méthodes différentes ont été
comparées : Expectation maximisation (EM), K-means et le décalage moyen (Mean
shift).

La méthode d’EM est tres populaire en imagerie médicale. EM regroupe les pixels de
I’image en différents groupes en utilisant une distribution gaussienne probabiliste. Le
modeéle de mélange est composé d'une somme de K distributions gaussiennes, chaque
distribution ayant ses propres parameétres. L'algorithme commence a partir d'une
estimation initiale avant de procéder a une mise a jour itérative jusqu'a la convergence.
Chague itération comprend une évaluation (E-step) et une maximisation (M-step). Toutes

les étapes ont été effectuées a l'aide du logiciel Matlab R2014a.

Ensuite, un test d’évaluation est mis en place pour évaluer la performance des
observateurs dans un environnement clinique basé sur un systéme de notation. Quatre
radiologistes résidents de 1€, 2°™ et 3°™ années de résidence et deux radiologues

expérimentés avec dix et vingt ans d'expérience en radiologie en tant qu'observateurs.
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Aucune connaissance préalable concernant les antécédents des patients n’a été fournie

aux observateurs.

Tout d'abord, I'ensemble des images sans traitement a été analysé. Les observateurs ont
ajuste le contraste, la luminosité et le grossissement des images en fonction de leur propre
expérience. Pour chaque cas, chaque observateur devait donner un score relatif a la
présence d'un accident vasculaire cérébral aigu (définitivement absent: 1, absent: 2,
incertain: 3, présent: 4 et définitivement présent: 5). Ensuite, le méme processus
d’observation pour chaque radiologue a été répété sur un nouvel ensemble d’images
améliorées. Le changement du score dans le diagnostic a été observé apreés visualisation
des images améliorées par les radiologues. Les changements d'amélioration ont été pris
en compte lorsque I'observateur a modifié son évaluation pour obtenir le score souhaité.
Ces analyses ont permis de tester la confiance du diagnostic avant et apres I'amélioration
des images. Nous avons également mesuré la sensibilité et la précision des performances

des observateurs avant et apres les images améliorées.
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Chapter 4

4. Results and Discussion

In this thesis, we proposed an approach to enhance the visual perception of ischemic
stroke in Non-Enhanced CT scans. The selected stroke cases were imaged with four or
less hours after the symptom’s onset. Two experienced radiologists selected all ground
through stroke cases both clearly evident cases as well as complicated cases. However,

those two specialists did not participate in the observer’s evaluation section.

In this study, the mean age of patients was 68.89 = 10.41 years for stroke and
66.76 = 9.36 for control. No significant difference was found between stroke patients and
controls for age (p-value = 0.1735) using Student’s t-test. Stroke patients had a mean
NIHSS of 13 + 7 and mean ASPECTS of 7 + 2. The complete results of NIHSS and

ASPECTS are presented in Appendix 2.

Although 78 stroke patients were selected at the beginning of this study, only 23 were
included in the final analysis. This occurred because many of the patients had previous
brain lesions that could be confused with acute stroke regions. Another reason that led to
the non-inclusion of some cases was when computed tomography was performed outside
the therapeutic window of 4.5 hours after the first symptoms, which was one of our

exclusion criteria.

After the selection of the 23 stroke cases, as well as the 16 control cases, all sequence
of analyzed images passed through the image processing steps described in the flowchart

of Figure 8. Figure 14A-E illustrate the ischemic density changes in adjunct CT slices of
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the same patient. While Figure 14F presents the resulting image after computing the

projection using slices A to E.

Figure 14- A-E)- Adjunct slices sequence with the presence of the subtle density changes in
the same patient. F is the result of the projection involving slices A, B, C, D and E. Stroke is
present in the left frontal lobe of the brain, as indicated by the red arrow.

The image averaging technique was used to reduce noise and improve the perception
of stroke while using subsequent slices with slightly different anatomical structures

(Figure 14). This was considered an acceptable tradeoff by the physician’s analysis.

After this stage, the Variational Model decomposition helped to enhance the contrast
and the brightness of the images. Representative examples of enhanced final images from
different patients are presented in Figure 15. On the top, corresponding to letters A, B, C
and D are presented the images resulting from the image averaging step of three different
patients with stroke and one control case. On the second, third and fourth rows are
presented the enhanced images according to our proposed approach accounting the band-
pass filtering, followed by the VM decomposition and the segmentation methods. The
difference between second, third and fourth row are accounted from the segmentation

method used, being EM, K-Means, and Mean-Shift respectively. For the EM, images
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correspond to letters E, F, G and H. For K-Means, the images are I, J, K and L. For the

Mean-Shift method, images correspond to letters M, N, O, and P.

Original

EM

K-Means

Mean-Shift

M) N) ©) (P)

Figure 15 - Average images for three different patients with stroke (A, B, C) and one control
(D). Red arrows indicate the region of ischemic stroke in images A, B and C. Enhanced images
are shown in second, third and fourth rows. EM approach (E, F, G, H), followed by K-Means (I,

J, K, and L) and Mean-Shift (M, N, O, P). Six clusters are highlighted after the segmentation
process with the EM and K-Means methods. For Mean-Shift we used hs = 16 and ht = 4, in
which hs is the spacial domain bandwidth and hr is the range domain bandwidth.
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The purpose of the segmentation was to enhance the visual perception of ischemic
stroke for the physician’s subjective analysis. It was not the intention of the authors to
perform a complete automatic segmentation of the stroke region. A key question for the
EM and k-means approach is to choose the number of clusters that will segment the pixel

intensities.

In this case, our target was to achieve a number that would both benefit the visual
enhancement of the regions of interest with no additional cost in computational time. This
Is an important issue since the main goal is to apply this algorithm in a medical diagnosis
workstation since available workstations do not possess necessarily high-end computer
processors. If the number of clusters is too large, the model will increase the
computational cost vastly and highly comprise the diagnosis time, which is a crucial point

in detecting early signs of ischemic stroke.

For the EM and K-Means methods, a different number of clusters were tested to
achieve the best-enhanced image possible. This was determined in a previous evaluation
of those images with an experienced radiologist. Stroke was more clearly enhanced when

the number of clusters, K was equal to six in both methods.

The average elapsed time for each patient analysis is 141.6 + 1.5 seconds. Our
experiments were performed on machines running Intel® processors with 2.4GHz CPU
frequency and having 32 GB of memory. Table 4 shows the table of sensitivity and overall

specificity of the three targeting segmentation methods.
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Table 4 - Sensitivity and Accuracy using the three segmentation methods Maximization of
Expectation (EM), K-Means and Mean-shift. The values are in percentage followed by the
confidence interval.

Sensitivity (%0) Accuracy (%)
Method Original Enhanced Original Enhanced
EM 64,5 89,6 83,3 91,7
K-Mean 64,5 74,2 83,3 715
Mean-shift 64,5 69,5 83,3 72,3

When comparing the three segmentation methods, EM was superior to both K-Means
and Mean-Shift methods in the majority of evaluated cases for the observer’s
performance. Then, all following results considered the observer's evaluation in enhanced
images with the EM approach only. The complete assessment of all selected cases of
ischemic stroke and control cases by all observers are summarized in Table 5. The results
show the sensitivity and accuracy obtained for each observer both before and after

evaluating the enhanced images.
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Table 5 - Observer’s evaluation before and after the enhanced images. R1 to R4 are resident

physicians of radiology. E1 and E2 are the experienced radiologists. Parameters evaluated were

sensitivity and specificity. For both of them, we evaluated the mean values and the confidence

interval.
Sensitivity (%0) Accuracy (%)
Observers
Original Enhanced Original Enhanced
Mean Cl Mean Cl Mean Cl Mean Cl
R1 26.1 (12.5-46.7) 60.9 (40.8 - 77.8) 81.3 (57.0 - 93.4) 875 (63.9 - 96.5)
R2 52.2 (32.9-70.7) 78.3 (58.1-90.4) 93.7 (71.7 - 98.9) 93.7 (71.7 - 98.9)
R3 65.2 (44.9 -81.2) 82.6 (62.9 - 93.0) 93.7 (71,7 - 98.9) 93.7 (71,7 - 98.9)
R4 78.3 (58.1-90.4) 87.0 (67.9 - 95.5) 100 (80.7 - 100) 100 (80.7 - 100)
El 73.9 (53.3-87.5) 91.3 (73.2-97.6) 75.0 (50.5 - 89.8) 75.0 (50.5 - 89.8)
E2 91.3 (73.2-97.6) 100 (85.7 - 100) 93.7 (71.7 - 98.9) 100 (80.7 - 100)
Overall 64.5 (56.2 - 72.0) 89.6 (81.8-94.2) 83.3 (76.3 - 88.7) 91.7 (84.4-95.7)

The choice for the confidence interval to represent both sensitivity and accuracy was

made because this estimate is relatively close to the data itself, being on the same scale

of all the measurements. We also compared the difference scores for all observers

analyzing the original images and then the enhanced images for stroke cases. For a better

visualization of scores, the observers R1, R2 and R3 were joined in the graph of Figure

16 and observers R4, E1, and E2 in the graph of Figure 17. As can be seen, for the majority

of cases, enhanced images by our approach, enable better diagnosis of the presence of

stroke.
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Figure 16 - Difference scores for the observers R1, R2, and R3 are represented in the graphs
above from top to bottom respectively. The difference was obtained when the score given for the
enhanced images are compared to the score given for the original images. Positive values
indicate an enhancement in diagnosis. Negative changes indicate false negative cases.
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Figure 17- Difference scores for the observers R4, E1, and E2 are represented in the graphs
above from top to bottom respectively. The difference was obtained when the score given for the
enhanced images are compared to the score given for the original images. Positive values
indicate an enhancement in diagnosis. Negative changes indicate false negative cases. The
resident 4 was included in this analysis since its results were more similar to the experienced
radiologists.

With the observer’s evaluation, we examined the impact of enhanced images on the
score of diagnosis. The overall sensitivity of the observer’s analysis was 63.9% and
changed to 78.9% after the evaluation of the enhanced images. The overall accuracy was
of 67.4% and increased to 78.2%. Considering the three least experienced the
improvement was even more remarkable from 46.2% to 69.9% for sensitivity and from
57.6% to 71% for accuracy. This great improvement was also showed in the difference
score graphs. The maximum difference score was 2 (Figure 16 and Figure 17), since the
maximum changes occurred when observers first assigned the score 3 and then changed
to score 5 after analyzing the enhanced images. In general, all observers agreed that the

proposed approach helps to clarify difficult cases of acute ischemic stroke.
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One of the great advantages of our approach is that it can be easily implemented in any
workstation to aid clinical diagnosis since we have a low computational cost. This tool
can be a great help for inexperienced physicians. One limitation of our approach is that it
Is not entirely automatic since it depends on the physician selection of the slices before
the application of the algorithm. After this stage, all subsequent steps are entirely

automatic.

Chapitre 4 - Résumé

Le chapitre 4 présente tous les résultats de I’application de notre approche sur des images
CT. Les résultats de 1’évaluation des observateurs avant et apres rehaussement des images
sont aussi décrits. Notre technique a fourni des images améliorées qui ont permis aux
médecins d’établir un diagnostic plus fiable de I'AVC ischémique lors des examens de
tomodensitométrie. Des exemples représentatifs de ces images améliorées pour différents

patients sont aussi présentés.

La sensibilité globale de I'analyse de l'observateur est passée de 64,5% a 89,6% apres
évaluation des images améliorées. La spécificité globale était de 83,3% et a augmenté a
91,7%. En comparant les trois méthodes de segmentation, EM était supérieure aux
méthodes K-Means et Mean-Shift dans la majorité des cas évalués pour la performance
de l'observateur. Ainsi, pour la suite, I'évaluation des observateur s’est effectuée

uniquement avec les images améliorées par 1’algorithme EM.

Nous avons également comparé les scores de différence de tous les observateurs analysant
les images d'origine, puis les images améliorées pour les cas d'accident vasculaire
cérébral. De cette maniere, on pouvait tester si les images améliorées permettaient un
diagnostic plus fiable. L'amélioration de la sensibilité était plus remarquable pour les trois
médecins les moins expérimentés. Cette grande amélioration a également été montrée
dans les graphiques de score de différence. Pour ces cas, les images améliorées ont permis

une plus grande fiabilité dans le diagnostic de I'AVC ischémique.
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Néanmoins, au chapitre 4, nous avons comparé les résultats obtenus avec les résultats
précédents trouvés dans la littérature, ainsi qu'avec d'autres aspects pertinents pour la

discussion.

78



Chapter 5

5. Conclusion

In this research, a novel approach based on a Variational Model and the Expectation
Maximization method was used to enhance the ischemic stroke perception in non-
enhanced computed tomography examinations. All proposed objectives were achieved as

described below:

*  We constructed a database with retrospective CT examinations of patients with
confirmed ischemic stroke from Botucatu Medical School. Seventy-eight stroke
cases were pre-selected, and twenty five were included in the final approach after
inclusion and exclusion criteria assessment.

* We developed a computational algorithm in Matlab® environment to enhance
ischemic stroke areas in CT images to improve their visualization when compared to
the healthy brain tissue;

* We compared three different segmentation methods (Expectation Maximization, K-
means, and Mean-shift) to achieve the best enhancement in ischemic stroke cases;
our results indicated that the EM method resulted in the best enhancement of
ischemic stroke in our database.

 We performed a test to evaluate the performance of observers in a clinical
environment with a subjective evaluation of the stroke cases performed by
radiologists. They evaluated both original and enhanced images, and we showed
through sensitivity and accuracy scores that enhanced images provided a more
reliable stroke diagnosis. Thus, we demonstrated that enhanced images improved

physician’s performance to diagnose early signs of acute stroke.
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« All those results showed the importance of a computational tool to assist
neuroradiology decisions, especially in critical situations such as institutions that do
not have stroke specialists.

» As future perspectives for our work, the tools developed in our research could be
used not only in non-enhanced CT scanners but also with other imaging techniques
such as MRI and computed tomography with perfusion.

»  Our tools could be tested in association with a deep learning technique especially for
segmentation purposes. Computer-assisted diagnosis with deep learning could
provide an effective tool of rapidly diagnosing it.

* We proved that enhanced images with our approach might mainly increase the
potential candidates for thrombolysis treatment since they increase the chances of
finding early signs of ischemic stroke in patients submitted to CT scans.

* Our final paper of this thesis named “Ischemic Stroke Enhancement using a
Variational Model and the Expectation Maximization Method” was published in
April 2018 in European Radiology journal (Alves et al., 2018), and it can be found

in Appendix 4.

Chapitre 5 - Résumé

Dans cette étude, une nouvelle approche a été proposée pour améliorer la perception
de I'AVC ischémique lors d'examens de CT non améliorés. Tous les objectifs proposés

ont été atteints :

e Nous avons construit une base de données d’examens CT retrospectifs de

patients chez lesquels un AVC ischémique était confirmé,
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e Nous avons développé une approche sous l'environnement Matlab pour
améliorer les zones d’AVC ischémiques dans les images CT,

e Une étude comparative a été effectuée entre trois méthodes de segmentation
différentes (EM, K-means et Mean-shift) pour obtenir la meilleure
amélioration dans les cas d'accident ischémique cérébral,

e Un test a été proposé pour évaluer la performance des observateurs dans un
environnement clinique avec une évaluation subjective des cas d’AVC,

¢ Nous avons démontré que les images rehaussées amélioraient les performances

du médecin pour diagnostiquer les premiers signes d’un AVC aigu.

Tous ces résultats ont montré I’importance d’un outil informatique facilitant la prise

de décision en neuroradiologie.

Notre dernier article intitulé « Ischemic Stroke Enhancement using a Variational
Model and the Expectation Maximization Method » a été publié en avril 2018 dans la

revue European Radiology (Alves et al., 2018). Vous le trouverez a lI'annexe 4.
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Appendix 2

Table 6 - - presents the group of patient with stroke with their NIHSS score, ASPECTS
previous evaluation, and the subjective evaluation for all observers (1 — 6). Subjective evaluation
1 (E1) refers to the evaluation of original images, and the subjective evaluation 2 (E2) refers to
the evaluation of enhanced images. Difference scores (Dif) represents the score in E2 minus E.

O1 02 O3 04 05 06
Patient | NIHSS | ASPECTS
El1 |E2| Dif | E1 |E2|Dif | E1 | E2 | Dif | E1 | E2 | Dif | E1 | E2 | Dif | E1 | E2 | Dif
1 14 9 4 |41 0 4 14044101342 |5|5|0|5]5]0
2 16 6 3 |41 1 41511550 |5|5|]0|5|4|0|5]5]0
3 19 9 4 |41 0 4 14(0]4 14|04 |5]2|5|5|0|5]5]0
4 16 5 4 5| 1 5|5|0(5|5|0|5|5|0]5|5|0|5]5|0
5 13 9 4 |41 0 5|5|0(4]|4]0|5|5|0]5|5|]0|5|5|0
6 22 6 3 (4|1 414|10|5|5/0|5|5|]0|5|5[0]5]|5]60
7 4 8 3 (4|1 21412 |4(4]|]0(4(4]0(3|3]0|5|5]0
8 6 10 2 |3] 1 2 13|12 |4|2(4|4]0|5|5]0|3|5]2
9 21 9 3 (4|1 314|114 (4|]0(5|5]0(3|5]2|5|5]|0
10 3 9 2 |2] 0 5|4|-1]4|4|]0(5|5]0(5|5]0|5|5]|0
11 15 9 3 3|0 55|04 |4|]0(4|4]0(3|3]0|5|5]0
12 2 9 3 |41 1 4 1404|410 5|5]0|5|5|0|5]5]0
13 21 6 2 |31 3(4|1(3|4|1|4|4|0]5|5|]0|5]5|0
14 20 3 3 |41 1 41511550 |5|5|]0|5|5|0|5]5]0
15 24 9 3 |41 1 415114141012 |2]0|5|5|0|3]4]1
16 12 9 3 13| 0 415114 ,4|10|4|4]0|5|5|0|5]5]0
17 21 6 2 |2] 0 3113|0242 (3|3|]0(5|5]0|5|5]0
18 15 7 4 |4 0 314113 |3|0(4|5]1(5|5]0|5|5]|0
19 4 8 4 |5 1 21412242 (3|3|]0(4(4]0|5|5]0
20 3 9 3 4| 1 4 |5112|3|1|4|5|1|3|4|1]5]5]60
21 17 5 2 |11 (2|3|1|2|3|12|2|0|4|4|0]5]5]0
22 7 8 3 |2|-1}2|1(-1,2|2(0|3|4(1|3]|4|1|4]|5]|1
23 3 6 3 13| 0 313|0(3|4|1|4|4|0]3|4|1|5|5]|0
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Appendix 3

Table 7 - Group of control patient with the subjective evaluation for all observers (1 — 6).
Subjective evaluation 1 (E1) refers to the evaluation of original images, and the subjective
evaluation 2 (E2) refers to the evaluation of enhanced images. Difference scores (Dif) represents
the score in E2 minus E1.

o1 02 OB3 OoB4 OB5 OB6
Patient

E1|E2|Dif|E1|E2|Dif |E1|E2|Dif |E1|E2 | Dif |E1| E2 | Dif | OR | PR | Diff
1 220141202 y1y0}2|2(1{3{3|]011|1/0
2 2(3|-1|3|3|0|4]4]0|2|2|0|3|3|0|3]|3]0
3 2112|0211 |2|2}0}2|1(1(4|4|0|2|2|0Q0
4 212|032 }(1|1211j0}2|1(1(3|12|2|3|3]|O0
5 21|12 (1|1|2|1}(1}2|3|-1(2|3|-1|3]|1 2
6 3|4|-1|3(1}2|312(1}3|2(1(3|]3|]01|1|0
7 21|12 (1|1|12}{-1}2|2(0(3|4|-1,1 1|0
8 212102112120 }2|2(0(3|3|0 1|10
9 1(2|-1{23}-1}2|2|0(3|3|]0|3j2|1]1|1]O0
10 3|1|12|2(1|1|211}1}2|2(0(2|2|0|4 |13
11 41312202202 |2]0|3|3(0|1 10
12 4131422 |2(2|]0|3|3]0|5|5(03 (1] 2
13 4131312211 |3|3|]0|3|2(1(1]1]0
14 3|4|-1|2(4|-2|2|2}0}2|2|0(3|3|0| 1|10
15 2112|0312 |3|2(1}2|2(0(3|3|0|1|1/|0
16 2112111 }1|1|{0|3|3|0|3|3|]0|1]|1/|0
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Abstract

Objectives In order to enable less experienced physicians to reliably detect early signs of stroke, A novel approach was proposed
to enhance the visual perception of ischemic stroke in non-enhanced CT.

Methods A set of 39 retrospective CT scans were used, divided into 23 cases of acute ischemic stroke and 16 normal patients.
Stroke cases were obtained within 4.5 h of symptom onset and with a mean NIHSS of 12.9+7.4. After selection of adjunct slices
from the CT exam, image averaging was performed to reduce the noise and redundant information. This was followed by a
variational decomposition model to keep the relevant component of the image. The expectation maximization method was
applied to generate enhanced images.

Results We determined a test to evaluate the performance of observers in a clinical environment with and without the aid of
enhanced images. The overall sensitivity of the observer’s analysis was 64.5 % and increased to 89.6 % and specificity was 83.3
% and increased to 91.7 %.

Conclusion These results show the importance of a computational tool to assist neuroradiology decisions, especially in critical
situations such as the diagnosis of ischemic stroke.

Key Points

* Diagnosing patients with stroke requires high efficiency to avoid irreversible cerebral damage.

* A computational algorithm was proposed to enhance the visual perception of stroke.

 Observers’ performance was increased with the aid of enhanced images.
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El Evaluation 1

E2 Evaluation 2

FN False negative

FP False positive

HU Hounsfield units

MRI Magnetic resonance image

NECT Non-enhanced computed tomography
0l1-6 Observer 1-6

TN True Negative

TP True Positive

VM Variational Model

Introduction

Stroke is a cardiovascular disease that currently ranks in
the fifth position among all causes of death [1]. The eval-
uation and initial treatment of patients with stroke symp-
toms require a high efficiency to avoid irreversible cere-
bral damage [2, 3]. Multiple medical imaging modalities
appear as alternatives in the diagnosis of early signs of
stroke such as magnetic resonance image (MRI) and com-
puted tomography (CT) [4]. CT is more accessible, less
expensive and faster. Non-enhanced CT (NECT) is the
first radiological examination performed in emergency de-
cisions and it is sufficient in most cases for identifying
contraindications to fibrinolysis treatment [5]. The earliest
signs of ischemic stroke are quite subtle on NECT.
Usually, after 1-3 h of symptom onset, a slight hypodense
area of infarction in either the cortices or the basal ganglia
can become visible [6].

The image enhancement may aid physicians in diag-
nosing early signs of acute ischemic stroke. Previous
studies have demonstrated approaches for enhancing is-
chemic stroke. Przelaskowski et al. [7] used a wavelet-
based processing method for improving acute stroke de-
tection. Chawla et al. [8] proposed an algorithm based on
the contralateral symmetry to detect stroke in CT. Tang
et al. [9] presented a computer-aided detection scheme for
early detection of ischemic stroke using image feature
characteristics.

In this paper, a novel approach to enhance the visual
perception of ischemic stroke in NECT is proposed. This
enhancement aims to enable less experienced viewers to
reliably detect early signs of stroke. Our new contribution
consists of efficiently combining different image process-
ing techniques. Firstly, to reduce noise and redundancies,
a projection of the slices likely to contain the ischemic
stroke followed by a band-pass filtering is realized.
Then, to enhance the contrast of the projection obtained,
a variational model (VM) decomposition is used. Finally,
the expectation maximization method is applied to the
relevant component from VM decomposition to segment

and emphasize the ischemic stroke. The performance of
observers was evaluated. We compared their sensitivity
and specificity performances for stroke and control cases.

Materials and methods
Patients and image selection

The study was approved by the local institutional ethics
committee. We collected retrospective examinations of pa-
tients. Patients were selected using the following criteria for
inclusion and exclusion. Inclusion criteria: patients with con-
firmed acute ischemic stroke lesions who had undergone CT
scan examinations within less than 4.5 h of symptom onset
[10]. Exclusion criteria: patients with previous stroke le-
sions, intracranial malformations or haemorrhage. This study
also did not consider cases of stroke with haemorrhagic
transformation. Certified CT scans of stroke were checked
with the clinical reports including histological, pathological
and clinical results, and with the follow-up NECT examina-
tion acquired in the following days for each patient. Finally,
all cases were further validated by two radiologists, and only
cases approved by both of them were used. After this selec-
tion, a set of 39 CT examinations were used: 23 cases of
acute ischemic stroke, and 16 normal cases used as a control
group. Normal cases were obtained from the database of our
institution from migraine studies in which patients did not
have any anatomical or neurological alterations. CT scans
were performed on multislice CT scanners. Scanner acquisi-
tion settings were: kVp = 120, automatic exposure control,
exposure time = 1 s, matrix size = 512 % 512 and slice
thickness = 2.5 mm. All images were stored using the
DICOM format.

Methods

A computational algorithm was proposed to enhance the is-
chemic stroke visual perception. After selection of adjunct
slices, an average image (called projection) was performed
to reduce the noise and redundant information. Then, a VM
decomposition was applied on the obtained projection to keep
the relevant component for our analysis. Finally, the
Expectation Maximization (EM) method was applied to en-
hance the ischemic stroke. The proposed approach steps are
described in the flowchart (Fig. 1). All steps were performed
using Matlab software R 2014a.

Selection of slices
The processing starts by opening one sequence of CT scan

images of individual patients. The selection of slices was per-
formed in the same region as the ASPECTS score, involving

@ Springer
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Fig. 1 Flowchart showing the
main image processing steps
performed

Ouput Image

two slices, one at the level of the thalamus and basal ganglion
and one adjacent to the most superior margin of the ganglionic
structures, such that they were not seen [11]. These regions are
most commonly affected by stroke [2]. After selecting slices, a
projection is performed by summing the values of the grey
levels in each slice, yielding an average image. The algorithm
operates by computing an arithmetic mean of the intensity
values for each pixel position in a set of captured images from
subsequent slices. This approach was performed to highlight
the presence of stroke and lower the image noise level. All
control group images were also averaged using slices in the
same region evaluated for the stroke group.

Band-pass filtering and variational model decomposition

After the projection step, a band-pass filtering was applied
between 0 and 50 Hounsfield units (HU) to remove all pixels
of bone tissue, background and other unwanted structures. All
pixels out of this band were assigned a new value equal to zero
HU. After this stage, a histogram normalization was per-
formed by redistributing pixels intensities from [0, 50] to [0,
255] HU. The histogram normalization enabled improving the
contrast between adjacent regions.

To further enhance the contrast of the projection, a
Variational Model (VM) [12, 13] decomposition was applied
to decompose the image into different components. The image
p was modelled as the sum of three terms: p = u + v+ w. Here,
v is the smooth second order part,  is related to contours and
w is linked to fine textures. Our primary interest is in the v
component since it is related to contrast and brightness of the
image. More details of the VM decomposition are presented in
the Supplementary Material.

Segmentation

The next step concerned the image segmentation, which was
applied to the v component after the VM decomposition. The
Expectation Maximization (EM) method has been very pop-
ular in medical imaging and several variants of the algorithm
have been proposed [14, 15]. EM is a segmentation method
that assigns pixel intensities into different clusters using a
probabilistic Gaussian distribution. The mixture model is

@ Springer
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composed of a sum of K Gaussian distributions, each distri-
bution with its own parameters. The algorithm is iterative and
starts from some initial estimate and then proceeds to itera-
tively update until convergence. Each iteration consists of an
Expectation (E-step) and a Maximization (M-step) step [14].
Each pair of E and M steps are considered one iteration. This
EM cycle is repeated until some preset threshold. Thus, in the
final assignment each pixel of the final image will belong to
only one cluster. More details on the EM method are presented
in the supplementary material.

Observers’ evaluation

A test was established to evaluate the performance of
observers based on a scoring system used by Tang et al.
[9]. Four resident radiologists from the first (Observer 1 —
O1 and Observer 2 — 02), second (Observer 3 — 03) and
third (Observer 4 — O4) years of residence and two expe-
rienced radiologists (Observer 5 — O5 and Observer 6 —
06) with 10 and 20 years of experience in radiology,
worked as observers. All radiologists were from
Botucatu Medical School Hospital, Brazil. They had no
previous knowledge regarding the history of the patients.
First, the set of original images was analysed in a random
order combining stroke and control cases. Observers were
allowed to adjust contrast, brightness and magnification
of images according to their own experience. Each ob-
server was required to give a score relating to the pres-
ence of acute stroke (definitely absent: 1, absent: 2, un-
certain: 3, present: 4 and definitely present: 5). Then, as a
second step, the observers evaluated the enhanced images
that were created from our proposed approach. The
change of the score in diagnosis was tracked after the
observation of enhanced images. Improvement changes
were considered when the observer changed his evalua-
tion to the correct score. These analyses permitted testing
the confidence of the diagnosis both before and after the
image enhancement.

We also measured both sensitivity and specificity of the
performance of the observers before and after the enhanced
images. The formula for both quantitative measures is given in
Egs. 1 and 2. The scores 1, 2 and 3 were considered as
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negative evaluations and the scores 4 and 5 were considered as
positive.

P
Sensitivity = W (1)
ificity = ———— 2
Specificity (TN + FP) (2)

where TP are true positives, TN are true negatives, FP are false
positives and FN are false negatives.

We tracked the difference scores that resulted from the
analysis of both original and enhanced images. For the differ-
ence scores, one can consider a positive score when the ob-
server changes his previous score from any given value to a
higher one. For example, the original score was 3 and the
observer changed after analysing the enhanced image to a
score of 4, which means that the stroke can now be visualized.
Additionally, negative scores represent false-negative cases.

Results

In this study the mean age of patients was 68.45 + 9.56 years
for stroke and 65.12 + 9.22 for control. No significant differ-
ence was found between the stroke patients and controls for
age (p-value = 0.1735) using Student’s t-test. Stroke patients
had a mean NIHSS of 13+7 and mean ASPECTS of 7+2. The
complete results of NIHSS and ASPECTS are presented in the
Electronic Supplementary Material. All sequence of images
analysed passed through the image processing steps described
in the flowchart in Fig. 1. Figure 2 A-E illustrates the ischemic
density changes in adjunct CT slices of the same patient.
Figure 2 F presents the resulting image after computing the
projection using slices A-E.

Our approach provided enhanced images that helped physi-
cians to achieve a more reliable diagnosis of ischemic stroke in
CT examinations. Representative examples of those enhanced
images from different patients are presented in Fig. 3. On the
top, corresponding to letters A, B, C and D, are presented the
images resulting from the image averaging step of three differ-
ent patients with stroke and one control case (Fig. 3 D). In the
second row, corresponding to letters E, F, G and H, are

presented the enhanced images according to our proposed ap-
proach accounting the band-pass filtering, followed by the VM
decomposition and the EM segmentation method.

The overall sensitivity of the observer’s analysis was 64.5
% and changed to 89.6 % after the evaluation of the enhanced
images. The overall specificity was 83.3 % and increased to
91.7 %. The sensitivity and specificity obtained for each ob-
server both before and after evaluating the enhanced images
are summarized in Table 1. We also compared the difference
scores for all observers analysing the original images and then
the enhanced images for stroke cases. In this manner, one
could see each case in which enhanced images provided a
more reliable diagnosis. For a better visualization of scores,
the observers O1, O2 and O3 were joined in the graph of Fig.
4 and observers 04, OS5, and O6 in the graph of Fig. 5.

The improvement of sensitivity was more remarkable for
the three least experienced physicians. This great improve-
ment was also shown in the difference score graphs. The max-
imum difference score was 2 (Fig. 4 and Fig. 5), since the
maximum changes occurred when observers first assigned
the score 3 and then changed to score 5 after analysing the
enhanced images. For those cases, enhanced images provided
greater reliability in the diagnosis of ischemic stroke.

Discussion

In this paper, we proposed an approach to enhance the visual
perception of ischemic stroke to be used in clinical routine as a
support to the diagnosis of this disease. One limitation of our
approach is that it is not entirely automatic, since it depends on
the physician selection of the slices before the application of
the algorithm. Two experienced radiologists selected all
ground through stroke cases with the support of the follow-
up CT in the same patient to confirm the occurrence of stroke.
The image averaging technique was used to reduce noise and
improve the perception of stroke while using subsequent
slices with slightly different anatomical structures (Fig. 2).
This was considered an acceptable tradeoff by the physician’s
analysis. The VM decomposition helped to enhance the con-
trast and the brightness of the images.

Fig.2 (A-E) Adjunct slices sequence with the presence of the subtle density changes in the same patient. F is the result of the projection involving slices
A, B, C, D and E. Stroke is present in the left frontal lobe of the brain, as indicated by the red arrow
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Fig. 3 Average images for three different patients with strokes (A, B, C) and one control (D). Enhanced images are shown in second row with the

Expectation Maximization (EM) approach (E, F, G, H).

The purpose of the EM segmentation was to enhance the
visual perception of ischemic stroke. A key aspect for the EM
approach is to choose the number of clusters for segmentation.
Our target was to achieve a number that would both benefit the
visual enhancement and have no additional cost in computa-
tional time. This is an important issue since the main goal is to
apply this algorithm to a medical diagnosis workstation. The
best achieved results were found for six clusters. The average
elapsed time for each patient analysis is 141.6 + 1.5 s. Our
experiments were performed on machines running Intel® pro-
cessors with 2.4 GHz CPU frequency and having 32 GB of
memory.

Regarding previous studies, Przelaskowski et al. [7] proposed a
method to enhance the subtle signs of ischemic stroke in NECT.
They analysed a small cohort of 11 CT examinations and im-
proved the sensitivity of two observers from 12.5 % to 56.3 %.

Tang et al. [9] proposed a method with a Circular Adaptive Region
of Interest to analyse stroke in NECT scans. With a cohort of 40
examinations, they showed a significant improvement in sensitiv-
ity and specificity for three observers. They also demonstrated a
great correlation between the experience of physicians and its
performance. Our results corroborate that the ability of observers
to detect early signs of ischemic stroke highly depend on their
experience. With the aid of the enhanced images, inexperienced
physicians achieved the ability to diagnose stroke, very close to the
average or even higher when compared to other published papers.
Patel et al. [17] found 31 % sensitivity for these early infarct signs,
while von Kummer et al. [18] found that this rate increases to 82 %
6 h after symptoms onset. In general, the observers’ ability to
detect stroke in NECT without enhancement is less than 67 % in
cases imaged within 3 h [19]. Our results indicate an initial sensi-
tivity of 63.9 % with an improvement to 78.9 %.

Table 1 Observers’ sensitivity

and specificity before (evaluation Observers  Sensitivity Specificity

1- El) and after (evaluation 2 —

E2) of the enhanced images. El E2 El E2

Confidence intervals (Cls) for

sensitivity and specificity are Mean CI Mean CI Mean CI Mean CI

calculated with the Wilson score

method [16] 01 26.1 (12.5-46.7) 60.9  (40.8-77.8) 813  (57.0-93.4) 875  (63.9-96.5)
02 522 (32.9-70.7) 783  (58.1-90.4) 93.7  (71.7-98.9) 93.7 (71.7-98.9)
03 65.2 (44.9-81.2) 82.6  (62.9-93.0) 93.7  (71.7-98.9) 93.7  (71.7-98.9)
04 783 (58.1-90.4) 87.0  (67.9-95.5) 100 (80.7-100) 100 (80.7-100)
05 73.9 (53.3-87.5) 91.3  (73.2-97.6) 75.0  (50.5-89.8) 750  (50.5-89.8)
06 91.3 (73.2-97.6) 100 (85.7-100) 93.7 (71.7-98.9) 100 (80.7-100)
Overall 64.5 (56.2-72.0) 89.6 (81.8-942) 833  (76.3-88.7) 91.7  (84.4-95.7)

@ Springer

95



Eur Radiol (2018) 28:3936-3942 3941

Fig. 4 Difference scores for the ! ! L '
observers O1 (circle), O2 (square) 1r e o oo o0 o000 eo-e .
and O3 (fislensk). The difference ok e o @ PPy ‘®>-0- 6 ° ]
was obtained when the scores \ §
given for the enhanced images are -1+ e .
compared to the scores given for i i i i
the ongmz?l images. Positive ] 0 5 10 15 20 25
values indicate an enhancement in o
diagnosis. Negative changes ] 2 T ,.\ T T EaNE
indicate false-negative cases 8 L . / m-m o E-m w N ]
§ oF o mm-mu \om-a "] . om A
St W " 1
£ . L ) .
o -2
0 5 10 15 20 25
2 T * T T * * T
OF #-%k-k-%-%4 Jk-d* Rkt ¥ ¥ §
q+ .
) 1 1 1 1
0 5 10 15 20 25

Number of Patients

Chawla et al.’s [8] method used the dissimilarity between ~ symptoms are agitated and there is a high risk that their
the left and right hemispheres of the brain, which was usedit ~ heads were tilted during image acquisition, which compro-
to classify different types of stroke. According to the au-  mises hemisphere comparison. According to the opinion of
thors, this approach fails when the same type of stroke oc-  the observers who participated in this study, the enhanced
curs symmetrically in both hemispheres. The same applies ~ images were particularly useful when displayed together
for Tang et al. [9], whose proposed scheme is not applicable ~ with the original images. We strongly suggest that the en-
when the brain is asymmetrical. Our proposed approach  hanced images be displayed in association with the original
does not rely on brain symmetry. Most patients with stroke images instead of standalone.
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A novel approach based on a VM and EM method was
used to enhance the ischemic stroke perception in non-
enhanced CT examinations. We demonstrated that enhanced
images improved physicians’ performance to diagnose early
signs of acute ischemic stroke. These results show the impor-
tance of a computational tool to assist neuroradiology deci-
sions, especially in critical situations such as institutions that
do not have stroke specialists. Enhanced images may largely
increase the potential candidates for thrombolysis treatment.
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ARTICLE INFO ABSTRACT
Article history:

Received 26 September 2014
Received in revised form G April 2015
Accepted 8 May 2015

Objectives: To develop two pediatric patient-equivalent phantoms, the Pediatric Chest Equivalent Patient
(PCEP) and the Pediatric Skull Equivalent Patient (PSEP) for children aged 1 to 5 years. We also used both
phantoms for image quality evaluations in computed radiography systems to determine Gold Standard
(GS) techniques for pediatric patients.
Methods: To determine the simulator materials thickness (Lucite and aluminum), we quantified biological
tissues (lung, soft, and bone) using an automatic computational algorithm. To objectively establish image
quality levels, two physical quantities were used: effective detective quantum efficiency and contrast-
to-noise ratio. These quantities were associated to values obtained for standard patients from previous
studies.
Results: For chest radiographies, the GS technique applied was 81 kVp, associated to 2.0 mAs and 83.6 pGy
of entrance skin dose (ESD), while for skull radiographies, the GS technique was 70 kVp, associated to
5mAs and 339 uGy of ESD.
Conclusion: This procedure allowed us to choose optimized techniques for pediatric protocols, thus
improving quality of diagnosis for pediatric population and reducing diagnostic costs to our institution.
These results could also be easily applied to other services with different equipment technologies.

© 2015 Elsevier Ireland Ltd. All rights reserved.

Keywords:

Chest and skull

Pediatric homogenous phantom
Image quality

Dose optimization

1. Introduction the most commonly performed examinations in pediatric patients
aged 1 to 5 years because of head trauma [2,3| and pneumonia [4].
The optimization of radiographic techniques for pediatric

patients is especially important when using digital systems because

Because of increased mitotic activity and longer life expectancy,
children are more radiosensitive than middle-aged adults. Children

are two- to three-times more susceptible to radiation and the con-
sequent development of leukemia, and adults who are exposed to
radiation during childhood have an increased probability of devel-
oping breast or thyroid cancer | 1]. Chest and skull radiography are
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of an imperceptible increase in dose with time [5]. Homogeneous
phantoms are important tools to establish optimized techniques
|6-9], especially in medical departments with restricted resources,
which can easily simulate realistic anatomical regions [10]. Two
homogeneous phantoms are currently used: LucAl phantom (which
provides accurate simulation of primary and scatter transmission
through the lung field) [11] and patient equivalent phantom (PEP;
also known as the ANSI phantom [6,10,12] for the chest, skull, and
extremities). The PEP is lightweight and transportable. It is con-
structed of readily available materials and accurately simulates the
standard patient’s attenuation properties [13,14].

The present study presents a methodology for constructing
pediatric homogeneous phantoms, namely the Pediatric Chest
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ARTICLE INFO ABSTRACT

Article history:

Received 7 April 2015

Received in revised form 26 May 2015
Accepted 15 June 2015

Available online 3 July 2015

The objective of the present study was to optimize a radiographic technique for hand examinations using
a computed radiography (CR) system and demonstrate the potential for dose reductions compared with
clinically established technique. An exposure index was generated from the optimized technique to guide
operators when imaging hands. Homogeneous and anthropomorphic phantoms that simulated a patient’s
hand were imaged using a CR system at various tube voltages and current settings (40-55 kVp, 1.25-
2.8 mAs), including those used in clinical routines (50 kVp, 2.0 mAs) to obtain an optimized chart. The
homogeneous phantom was used to assess objective parameters that are associated with image quality,
including the signal difference-to-noise ratio (SANR), which is used to define a figure of merit (FOM) in
the optimization process. The anthropomorphic phantom was used to subjectively evaluate image quality
using Visual Grading Analysis (VGA) that was performed by three experienced radiologists. The tech-
nique that had the best VGA score and highest FOM was considered the gold standard (GS) in the present
study. Image quality, dose and the exposure index that are currently used in the clinical routine for hand
examinations in our institution were compared with the GS technique. The effective dose reduction was
67.0%. Good image quality was obtained for both techniques, although the exposure indices were 1.60
and 2.39 for the GS and clinical routine, respectively.

© 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

Keywords:

Phantom

Figure of merit

Visual Grading Analysis
Image optimization

Introduction protocols for clinical routines while ensuring maximal image quality

with as low as reasonably achievable (ALARA) doses [3,4]. Such phan-

Many disease processes are manifested in the small bones of the
hands, wrists, and associated soft tissues [1,2]. Several diagnostic
decisions depend on detecting the details and image contrast of in-
terfaces in the hand and wrist. The early detection, diagnosis, and
continuous evaluation of disease states are essential for success-
ful treatment [1,2]. Radiography is the first choice for the evaluation
of diseases of the hands, and other image techniques are rarely used
to establish diagnosis and treatment. Therefore, the image quality
of X-ray examinations is essential.

Homogeneous phantoms are widely used in image quality op-
timization to determine the optimal technique and establish
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toms are constructed of tissue-equivalent materials to simulate the
absorption and scatter of the X-ray beam in the body. These phan-
toms are generally made with polymethyl methacrylate (acrylic) and
aluminum. Numerous homogeneous phantoms have been con-
structed for different anatomical regions, such as the chest, abdomen,
lumbar spine, skull, and extremities [3-5].

With technical advances from analog to digital systems, tech-
niques that have been traditionally considered optimum for analog
systems may no longer be considered optimal for digital systems
[6,7]. Operators base their choice of technique on trial and error
because digital radiography can be manipulated in the display of
the image to obtain the desired contrast [8].

Ideally, the objective optimization of digital radiographs is based
on the signal difference-to-noise ratio (SANR) [6]. A digital image
with a high SANR may provide inherently superior image quality
compared with a lower SANR [6]. Measurements of the SANR are
usually performed in a test object, such as a homogeneous phantom,
in which the pixel value of a contrast object (signal) is compared
with its surrounding area (background). However, the SANR is of

1120-1797/© 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
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Quantification of Pulmonary Inflammatory Processes Using
Chest Radiography: Tuberculosis as the
Motivating Application
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Abstract: The purpose of this work was to develop a quantitative
method for evaluating the pulmonary inflammatory process (PIP) through
the computational analysis of chest radiography exams in posteroanterior
(PA) and lateral views. The quantification procedure was applied to
patients with tuberculosis (TB) as the motivating application.

A study of high-resolution computed tomography (HRCT) examin-
ations of patients with TB was developed to establish a relation between
the inflammatory process and the signal difference-to-noise ratio (SDNR)
measured in the PA projection. A phantom essay was used to validate this
relation, which was implemented using an algorithm that is able to
estimate the volume of the inflammatory region based solely on SDNR
values in the chest radiographs of patients.

The PIP volumes that were quantified for 30 patients with TB were
used for comparisons with direct HRCT analysis for the same patient.
The Bland—Altman statistical analyses showed no significant differences
between the 2 quantification methods. The linear regression line had a
correlation coefficient of R*=0.97 and P < 0.001, showing a strong
association between the volume that was determined by our evaluation
method and the results obtained by direct HRCT scan analysis.

Since the diagnosis and follow-up of patients with TB is commonly
performed using X-rays exams, the method developed herein can be
considered an adequate tool for quantifying the PIP with a lower patient
radiation dose and lower institutional cost. Although we used patients
with TB for the application of the method, this method may be used for
other pulmonary diseases characterized by a PIP.

(Medicine 94(26):¢1044)

Abbrevi CR = computed radiography, CT = computed
tomography, HRCT = high-resolution computed tomography,
MFLIP = mean fractional length of inflammatory processes, PA
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INTRODUCTION

P ulmonary diseases, including tuberculosis (TB) infection,

cause an unacceptably large number of deaths, even given
that most are preventable if peogle can access healthcare for
proper diagnosis and treatment.'> The launch of a new inter-
national strategy for TB care and control by the World Health
Organization (WHO) in the mid-1990s allowed the development
of new diagnostic and treatment methods.'> While new treat-
ments for TB are being developed, tools that are used to monitor
the efficacy of TB treatments and quantify the disease remain
limited and antiquated in both preclinical and clinical settings.®

Tuberculosis and others pulmonary diseases involve
inflammation of the lung parenchyma, resulting in ongoing
fibrotic scar formation of the pulmonary interstitium and
alveoli.* Chest radiography and sputum bacilloscopy are the
primary tools for medical examination and the routine diagnosis
of TB, even in well-equipped medical centers where skin testing
is available.®” Physicians generally make decisions on TB cases
mainly based on radiologic findings, combined with demo-
graphic and clinical data.®® High-resolution computed tom-
ography (HRCT) can be useful when chest radiographs are
inconclusive or complications of TB are suspected.” However,
this method results in higher radiation doses for the patients (ie,
2 orders of magnitude higher than radiographic examinations)
and is associated with extremely high costs to the institution
compared with chest radiography.'®"'> Moreover, in many
cases the chest radiography is the only imaging examination
in the diagnosis and follow-up of the patient.**

The quantification of TB by radiologists is commonly done
on visual and subjective examination. An objective quantifi-
cation tool is greatly important for the reliable and accurate
assessment of TB’s pulmonary inflammatory process (PIP).?
Reliable assessment helps physicians with follow-up of the
patient’s disease.® The preliminary TB diagnosis is normally
realized through chest radiography. However, the objective
quantification of pulmonary diseases has been developed with
HRCT scans>*'3~!5 because of its higher resolution.'®

The purpose of this work was to develop an objective
method for PIP quantification using chest radiography. The
viability of the quantification of PIP based on radiography is
demonstrated, with a lower radiation dose and cost, without the
loss of a secure medical diagnosis or treatment follow-up.
Furthermore, this method allows assess objectively patients
which have only X-rays exams.

www.md-journal.com 1
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ARTICLE INFO ABSTRACT
Article history: Purpose: The purpose of this study was to develop a methodology to optimize computed radiographic
Received 22 July 2015 techniques to image the skull, chest, and pelvis of a standard patient.

Received in revised form 28 October 2015
Accepted 30 October 2015
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Methods: Optimization was performed by varying exposure levels with different tube voltages to gen-
erate images of an anthropomorphic phantom. Image quality was evaluated using visual grading analysis
and measuring objective parameters such as the effective detective quantum efficiency and the contrast-
to-noise ratio. Objective and subjective evaluations were compared to obtain an optimized technique

gz;‘;:;gg for each anatomic region.
Computed radiography Results: Gold standard techniques provided a significant reduction in X-ray doses compared to the tech-
Image quality niques used in our radiology service, without compromising diagnostic accuracy. They were chosen as

Dose follows 102 kVp/1.6 mAs for skull; 81 kVp/4.5 mAs for pelvis and 90 kVp/3.2 mAs for chest.
Conclusion: There is a range of acceptable techniques that produce adequate images for diagnosis in com-
puted radiography systems. This aspect allows the optimization process to be focused on the patient dose
without compromising diagnostic capabilities. This process should be performed through association of
quantitative and qualitative parameters, such as effective detective quantum efficiency, contrast-to-
noise ratio, and visual grading analysis.
© 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

Introduction digital radiography systems. For example, some authors investi-

gated the association of signal-to-noise ratio (SNR) and clinical

Optimization of radiographic techniques aims to balance image
quality and exposure dose to the patient and is outlined in the As
Low As Reasonably Achievable (ALARA) principle [1-3]. Dose levels
are related to image quality, but it should not be minimized to a
degree that compromises diagnostic capabilities [1,2,4-6].

Image quality can be estimated subjectively using a Visual Grading
Analysis (VGA), which is a direct analysis of the image by radiolo-
gists and can be performed in anthropomorphic phantom radiographs
[7]. However, particularly with digital systems, sometimes VGA is
not sufficient to make distinctions between different techniques.

In this case, objective parameters are extremely useful to inves-
tigate image quality and numerous attempts were made to optimize

* Corresponding author. Prof. Montenegro Avenue, Rubido Junior District, Botucatu,
Sao Paulo, 18618-970, Brazil. Tel.: +55 14 38801281; fax: +55 14 38801674.
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observer evaluations to optimize images [8]. Additionally contrast-
to-noise ratio (CNR) was used to optimize beam quality for
regions of different attenuation such as the lung, heart, and abdomen
[9].

Other metrics such as the detective quantum efficiency (DQE)
and the effective DQE (eDQE) have been used to assess image quality
in digital radiography systems [10,11]. The eDQE seems adequate
to characterize system performance in a relevant clinical context,
although it lacks the incorporation of the risk to the patient, which
is evidenced by the effective dose measurement. The effective dose
efficiency (eDE) managed to incorporate the effective dose into the
eDQE metric and has been evaluated in chest radiographs [12].

However, in our understanding the incorporation of the effec-
tive dose value into the eDQE metric could influence the choice of
an optimal technique over another with better performance in ra-
diography systems. Therefore, in this present study we chose to
analyze the eDQE and the effective dose separately and balance those
two parameters to choose radiographic techniques with lower risk
for the patient.

1120-1797/© 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
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Purpose: To perform a complete evaluation on radiation doses, received by primary and assistant medical
staff, while performing different vascular interventional radiology procedures.
Materials and methods: We evaluated dose received in different body regions during three categories of
vascular procedures: lower limb angiography (Angiography), lower limb percutaneous transluminal
angioplasty (Angioplasty) and stent graft placement for abdominal aortic aneurysm treatment (A. A. A.
Treatment). We positioned the dosimeters near the eye lens, thyroid, chest, abdomen, hands, and feet
of the interventional physicians. Equi dose was compared with annual dose limits for workers in
order to determine the maximum number of procedures per year that each physician could perform.
We assessed 90 procedures.
Results: We found the highest equivalent doses in the A. A. A. Treatment, in which 90% of the evaluations
indicated at least one region receiving more than 1 mSv per procedure. Angioplasty was the only proce-
dural modality that provided statistically different doses for different professionals, which is an impor-
tant aspect on regards to radiological protection strategies. In comparison with the dose limits, the
most critical region in all procedures was the eye lens.
Conclusions: Since each body region of the interventionist is exposed to different radiation levels, dose
distribution measurements are essential for radiological protection strategies. These results indicate that
d s placed in abd instead of chest may represent more accurately the whole body doses
received by the medical staff. Additional dosimeters and a stationary shield for the eye lens are strongly
recommended.

© 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
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1. Introduction including the professional height, positioning in the room, the
X-ray tube position relatively to table and patient, the use of radi-
ological protection equipment, the total exposure time during the

procedure and the condition of fluoroscopy and image acquisition

Interventional radiology (IR) is an area of radiology that exposes
medical staff to the highest doses of radiation [1-3]. The scattered

radiation to which medical staff are usually exposed to comes
mainly from the patient, therefore professionals who remain close
to the patient receive highest levels of radiation [4]. Many other
factors can influence the levels of exposure for medical staff,
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[1-3].

Several studies have evaluated radiation exposure in IR to both
describe medical staff exposure and improve radiological protec-
tion strategies |1,4,5]. However, these studies concentrated on a
specific procedure or specific body region. Dosimetry is usually
acquired under artificial conditions or neglects important body
regions such as the abdomen [1,5,6].

The aim of our study was to investigate radiation exposure pro-
files in medical staff during different vascular IR procedures. We
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Purpose: The aim of the present study was to determine the efficiency of six methods for calculate the
effective dose (E) that is received by health professionals during vascular interventional procedures.
Methods: We evaluated the efficiency of six methods that are currently used to estimate professionals’ E,
based on national and international recommendations for interventional radiology. Equivalent doses on
the head, neck, chest, abdomen, feet, and hands of seven professionals were monitored during 50 vascular
interventional radiology procedures. Professionals’ E was calculated for each procedure according to six
methods that are commonly employed internationally. To determine the best method, a more efficient E
calculation method was used to determine the reference value (reference E) for comparison.
Results: The highest equivalent dose were found for the hands (0.34 + 0.93 mSv). The two methods that
are described by Brazilian regulations overestimated E by approximately 100% and 200%. The more effi-
cient method was the one that is recommended by the United States National Council on Radiological
Protection and Measurements (NCRP). The mean and median differences of this method relative to ref-
erence E were close to 0%, and its standard deviation was the lowest among the six methods.
Conclusions: The present study showed that the most precise method was the one that is recommended
by the NCRP, which uses two dosimeters (one over and one under protective aprons). The use of methods
that employ at least two dosimeters are more efficient and provide better information regarding esti-
mates of E and doses for shielded and unshielded regions.

© 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
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1. Introduction physicians are exposed to non-uniform radiation levels throughout

their bodies during interventional procedures [2-4].

Physicians who perform interventional X-ray procedures are
exposed to the highest radiation doses compared with all other
health professionals [1]. Several studies have shown that such
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The effective dose (E) is a physical quantity that is used to mea-
sure the detriment that is caused by radiation in the human body,
thus providing important information for radiological protection
purposes. The E value depends on equivalent doses that are mea-
sured in different organs and tissues of the body, which are usually
the most sensitive to stochastic effect induction [5). During each
procedure, professionals use a personal dosimeter on the chest or
abdomen to estimate the E that is received [5].

Different methods are used to estimate E during interventional
procedures [6]. In Europe, a single personal dosimeter that is
positioned on the anterior chest below the radiological protective
apron was previously considered a good estimate of E [5,6].
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Computed tomography (CT) has a high level of sensitivity and specificity for the diagnosis and follow-up of pathologies of the
abdomen—pelvis region. Some features, such as automatic tube current modulation (ATCM), permits the acquisition of quality
images with low radiation doses. This study evaluated the image quality and radiation dose of abd pelvis CT protocol

with ATCM technique. Were performed five CT protocols using 16-slice and 64-slice scanners, an anthropomorphic phantom
for dosimetric measurements, an analytical phantom and retrospective examinations for image quality analysis. Were found
significant reduction in effective dose. The highest absorbed doses were found in the stomach and spleen (56.1 and 47.2 mGy,
respectively). Objective parameters as noise, low contrast and spatial resolution did not significantly differ between the proto-
cols (p > 0.05). All protocols received the range of ‘Optimum/Acceptable’ in patient’s image quality analysis. This method-

ology can be reproduced in any clinical routine to optimize CT pr:

INTRODUCTION

Computed tomography (CT) has a high level of sen-
sitivity and specificity and is widely used for the
diagnosis and follow-up of pathologies of the abdo-
men-—pelvis region" 2. It is highly sensitive for the
diagnosis of ureteric calculus, appendicitis, bone
metastases, and bowel and mesenteric injuries, with
sensitivities of 92, 100, 71-100 and 82%, respect-
ively. In 2008 and 2014, respectively, the French
Speaking Society of Medical Emergencies and
European Association of Urology recommended CT
as the first-line imaging modality to investigate sus-
pected cases of renal colic'®. In the follow-up cases of
ovarian cancer and nearly all pancreatic diseases, CT
is considered the gold-standard imaging modality™ .

The possibility of acquiring a large number of
images in a short scanning time substantially has
increased the number of CT exams that are performed
in clinical routines. This has consequently increased
the radiation doses that are received by patient popula-
tions, which has become a public health concern® .,
Published data indicate that 70% of the radiation doses
that are received by patients who undergo medical

imaging is attributable to CT examinations": ©.

Furthermore, 31% of the annual radiation doses that
are received from different imaging modalities is attrib-
utable to abdomen-—pelvis CT exams. This creates a
concern about the high radiation doses that are
received by patients, especially pediatric patients, and
the well-known association between the risk of cancer
and radiation exposure®™ 7 ¥

Based on the ALARA principle (As Low As
Reasonably Achievable), radiology examinations must
achieve a balance between radiation doses and image
quality, with the continual % al of reducing the doses
that are received by patients™ ?. With advances in CT
scanners, some features (e.g. automatic tube current
modulation [ATCM]) permit the acquisition of high-
quality images with low radiation doses"”. ATCM
automatically adjusts the tube current (mA) during
each gantry rotation according to the patient’s size and
attenuation body area'" ¥ to achieve a specific degree
of image quality'", which reduces radiation exposure
compared with fixed tube current techniques '*.
Previous studies found that ~60% of the radiation
dose can be reduced with ATCM!+ % 1213,

© The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
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Background and objectives: Imaging exams play a key role in cochlear implants with regard to both planning
implantation before surgery and quality control after surgery. The ability to visualize the three-dimensional
location of implanted electrodes is useful in clinical routines for assessing patient outcome. The aim of this study
was to evaluate linear and angular insertion depth measurements of cochlear implants based on conventional
computed tomography.

Methods: Tools for linear and angular measurements of cochlear implants were used in computed tomography
exams. The tools realized the insenion measurements in an image reconstruction of the Cls, based on image
pro ing techni We ively ch ized two cochlear implant models while obviating possible
changes that can be caused by dlﬁerent cochlea sizes by using the same human temporal bones to evaluate the
implant models.

Results: The tools used herein were able to iate the insertion between two cochlear
implant models widely used in clinical practice. We observed significant differences between both insertion
measurements because of their different design and construction characteristics (p = 0.004 and 0.003 for linear
and angular measurements, respectively; t-test). The presented methodology showed to be a good tool to cal-
culate insertion depth measurements, since it is easy to perform, produces high-resolution images, and is able to
depict all the landmarks, thus enabling measurement of the angular and linear insertion depth of the most apical
electrode contacts.

Conclusion: The present study demonstrates practical and useful tools for evaluating cochlear implant electrodes
in clinical practice. Further studies should preoperative and postoperative benefits in terms of speech
recognition and evaluate the preservation of residual hearing in the implanted ear. Such studies can also de-
termine correlations between surgical factors, electrode positions, and performance. In addition to refined
surgical techniques, the precise evaluation of cochlear length and correct choice of cochlear implant char-
acteristics can play an important role in postoperative outcomes.

1. Introduction

Cochlear implants (CIs) functionally restore hearing in individuals
with profound hearing impairment [1-4]. An array of electrodes is in-
troduced into the cochlea, and electrical pulses are applied across the
array to stimulate residual popul of dendritic and spiral ganglion
nerve bodies. Most individuals are able to obtain 40-80% correct
postoperative word recognition with their CI compared with zero or
only modest scores preoperatively [5]. Although the implantation
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procedure is safe and reliable, complications occur in approximately
16% of patients [6]. Following cochlear implantation, there is the
possibility that residual hearing can be lost because of the surgical
procedure itself or progression of the underlying pathology [7,8]. A
greater focus has been placed on minimizing insertion trauma and
preserving preexisting hearing [9,10]. For electroacoustic stimulation
to be the most effective, the patient's residual hearing should be pre-
served during CI surgery [4,7,10-12]. Thus, selecting the optimal in-
sertion depth should be patient-specific and based on the corresponding
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KEYWORDS Abstract

Necrotizing Objectives: The objective of this study was to develop and validate a computational tool to
enterocolitis; assist radiological decisions on necrotizing enterocolitis.

Abdominal Methodology: Patients that exhibited clinical signs and radiographic evidence of Bell’s stage
radiography; 2 or higher were included in the study, resulting in 64 exams. The tool was used to classify

Image processing; localized bowel wall thickening and intestinal pneumatosis using full-width at half-maximum

Texture analyses, measurements and texture analyses based on wavelet energy decomposition. Radiological find-

wavelet ings of suspicious bowel wall thickening and intestinal pneumatosis loops were confirmed by
both patient surgery and histopathological analysis. Two experienced radiologists selected an
involved bowel and a normal bowel in the same radiography. The full-width at half-maximum
and wavelet-based texture feature were then calculated and compared using the Mann-Whitney
U test. Specificity, sensibility, positive and negative predictive values were calculated.
Results: The full-width at half-maximum results were significantly different between normal
and distended loops (median of 10.30 and 15.13, respectively). Horizontal, vertical, and diag-
onal wavelet energy measurements were evaluated at eight levels of decomposition. Levels
7 and 8 in the horizontal direction presented significant differences. For level 7, median was
0.034 and 0.088 for normal and intestinal pneumatosis groups, respectively, and for level 8
median was 0.19 and 0.34, respectively.

Please cite this article as: Fattori Alves AF, Menegatti Pavan AL, Giacomini G, Quini CC, Marrone Ribeiro S, Garcia Marquez R, et al.
Radiographic predictors determined with an objective assessment tool for neonatal patients with necrotizing enterocolitis. J Pediatr (Rio
J). 2018. https://doi.org/10.1016/j.jped.2018.05.017
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Traitement d’images pour le rehaussement de I'AVC ischémique sur des
examens de tomographie

Résumé : L’Accident Vasculaire Cérébral (AVC) est I'une des principales causes de décés dans
le monde. Le scanner et I'l'magerie par Résonance Magnétique (IRM) sont les deux principales
techniques d'imagerie utilisées pour détecter les AVC. L’examen par scanner reste donc la
principale méthode de diagnostic. Dans la plupart des cas, I'évaluation de la région cérébrale
compromise est effectuée de maniére subjective et peut entrainer des difficultés pour déterminer
la région atteinte. Ce travail de these propose une approche basée sur un algorithme permettant
de mettre en évidence les régions atteintes d’AVC ischémique dans les examens de scanner
rétrospectifs. Différentes méthodes de traitement des images ont été utilisées pour réhausser les
régions des tissus ischémiques. Afin de permettre aux médecins moins expérimentés de détecter
de maniére fiable les signes précoces AVC, une nouvelle approche est proposée pour améliorer
la perception visuelle de l'accident ischémique cérébral. Une série de 41 images scanner
rétrospectifs ont été utilisées, réparties en 25 cas d’AVC ischémiques et 16 patients normaux.
Les cas d'AVC ont été obtenus dans les 4,5 heures suivant I'apparition des symptémes. Aprés la
sélection des coupes importantes, une moyenne d'image est effectuée pour réduire le bruit.
Ensuite, un modele de décomposition variationnelle est appliqué afin de conserver la composante
pertinente de l'image. Enfin, un algorithme d’espérance-maximisation est appliqué. Un test est
proposé afin d’évaluer la performance des observateurs dans un environnement clinique avec et
sans l'aide d'images rehaussées. La sensibilité globale de l'analyse de l'observateur a été
améliorée de 64,5% a 89,6% et la spécificité de 83,3% a 91,7%. Ces résultats montrent
I'importance d'un outil informatique d'aide a la décision en neuroradiologie, notamment dans les
situations critiques telles que le diagnostic d'accident ischémique cérébral.

Mots clés: Accident vasculaire cérébral. Cerveau. Algorithmes. Scan tomographique. Diagnostic
précoce.

Image Processing for Enhancement of Ischemic Stroke in Computed
Tomography Examinations

Abstract : Stroke is one of the highest causes of death worldwide. Non-enhanced computed
tomography (CT) and nuclear magnetic resonance imaging (MRI) are the two main imaging
techniques used to detect stroke. CT has a lower cost and greater accessibility of the population,
so it is still the main method used. In most cases, the assessment of the compromised brain area
is performed subjectively and may lead to difficulties in diagnosis. This research proposes an
approach based on a computational algorithm, highlighting regions of ischemic stroke. Different
image processing methods were used to enhance ischemic tissues. A set of 41 retrospective CT
scans from Botucatu Medical School (Brazil) was used, divided into 25 cases of acute ischemic
stroke and 16 normal patients. Stroke cases were obtained within 4.5 h of symptom onset. After
selection of CT slices, image averaging was performed to reduce the noise. This was followed by
a variational decomposition model and the expectation maximization method was applied to
generate enhanced images. We determined a test to evaluate the performance of observers in a
clinical environment with and without the aid of enhanced images. The overall sensitivity of the
observer’s analysis was 64.5 % and increased to 89.6 % and specificity was 83.3 % and increased
to 91.7 %. These results show the importance of a computational tool to assist neuroradiology
decisions, especially in critical situations such as the diagnosis of ischemic stroke.

Keywords: Stroke. Brain. Algorithms. Computed Tomography. Early diagnosis.
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