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Abstract 
 

Stroke is one of the highest causes of death worldwide. In Brazil, stroke is the leading 

cause of death, and in 2009, it was responsible for 10.2% of deaths recorded. Non-

enhanced computed tomography (CT) and nuclear magnetic resonance imaging (MRI) 

are the two main imaging techniques used to detect stroke. CT has a lower cost and greater 

accessibility of the population, so it is still the main method used. In most cases, the 

assessment of the compromised brain area is performed subjectively and may lead to 

difficulties in diagnosis. This research work proposes an approach based on a 

computational algorithm, highlighting regions of ischemic stroke. Different image 

processing methods were used to enhance ischemic tissues.  A set of 41 retrospective CT 

scans from Botucatu Medical School (Brazil) was used, divided into 25 cases of acute 

ischemic stroke and 16 normal patients. Stroke cases were obtained within 4.5 h of 

symptom onset. After selection of CT slices, image averaging was performed to reduce 

the noise. This was followed by a variational decomposition model and the expectation 

maximization method was applied to generate enhanced images. We determined a test to 

evaluate the performance of observers in a clinical environment with and without the aid 

of enhanced images. The overall sensitivity of the observer’s analysis was 64.5 % and 

increased to 89.6 % and specificity was 83.3 % and increased to 91.7 %. These results 

show the importance of a computational tool to assist neuroradiology decisions, 

especially in critical situations such as the diagnosis of ischemic stroke.  

 

Key words: Stroke . Brain . Algorithms . Computed Tomography . Early diagnosis 



4 

 

Resumo 
O acidente vascular cerebral (AVC) é uma das maiores causas de morte em todo o 

mundo. No Brasil, o AVC é a principal, sendo que em 2009, foi responsável por 10,2% 

das mortes registradas. A tomografia computadorizada (TC) e a ressonância magnética 

nuclear (RMN) são as duas principais técnicas de imagem usadas para detectar o AVC. 

A TC tem um custo menor e maior acessibilidade da população, por isso ainda é o 

principal método de avaliação do acidente vascular cerebral. A avaliação do cérebro 

comprometido é realizada de forma subjetiva e pode levar à dificuldades no diagnóstico. 

Esta pesquisa propõe a implementação de um algoritmo computacional, destacando 

regiões de AVC isquêmico. Diferentes métodos de processamento de imagem foram 

utilizados para melhorar a visualização do tecido isquêmico. Um conjunto de 41 

tomografias retrospectivas obtidas na Faculdade Medicina de Botucatu foram utilizadas, 

divididas em 25 casos de AVC isquêmico e 16 pacientes controle. Os casos de AVC 

foram obtidos dentro de 4,5 horas após os primeiros sintomas. Após a seleção dos slices 

com a possível presença de AVC, tais slices foram somados resultando em um único slice 

com valores médios de forma a reduzir o ruído. Isto foi seguido por um modelo de 

decomposição variacional onde se mantiveram componentes de interesse da imagem. O 

método de maximização de expectativas foi aplicado para gerar imagens melhoradas. 

Determinamos um teste de desempenho de observadores em um ambiente clínico. A 

sensibilidade geral da análise observacional foi de 64,5% e aumentou para 89,6% e 

especificidade foi de 83,3% e aumentou para 91,7% quando usadas imagens originais e 

realçadas, respectivamente. Estes resultados mostram a importância de uma ferramenta 

computacional para auxiliar as decisões de neuroradiologia, especialmente em situações 

críticas, como o diagnóstico de AVC isquêmico. 

Palavras-chave: acidente vascular cerebral, processamento de imagens, tomografia 

computadorizada, diagnóstico precoce 
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Résumé 
Traitement d’images pour le rehaussement de l'AVC ischémique sur des 

examens de tomographie 

L’Accident Vasculaire Cérébral (AVC) est l'une des principales causes de décès dans 

le monde. Au Brésil, les AVC sont la cause principale de décès. En 2009, ils étaient 

responsables de 10,2% des décès enregistrés. Le scanner et l'Imagerie par Résonance 

Magnétique (IRM) sont les deux principales techniques d'imagerie utilisées pour détecter 

les AVC. L’examen par scanner a un coût inférieur et une plus grande accessibilité à la 

population, il reste donc la principale méthode de diagnostic. Dans la plupart des cas, 

l'évaluation de la région cérébrale compromise est effectuée de manière subjective et peut 

entraîner des difficultés pour déterminer la région atteinte. Ce travail de thèse propose 

une approche basée sur un algorithme permettant de mettre en évidence les régions 

atteintes d’AVC ischémique dans les examens de scanner rétrospectifs. Différentes 

méthodes de traitement des images ont été utilisées pour réhausser les régions des tissus 

ischémiques. Afin de permettre aux médecins moins expérimentés de détecter de manière 

fiable les signes précoces AVC, une nouvelle approche est proposée pour améliorer la 

perception visuelle de l’accident ischémique cérébral sur des images scanner. Une série 

de 41 images scanner rétrospectifs ont été utilisées, réparties en 25 cas d’AVC 

ischémiques et 16 patients normaux. Les cas d'AVC ont été obtenus dans les 4,5 heures 

suivant l'apparition des symptômes. Après la sélection des coupes importantes, une 

moyenne d'image est effectuée pour réduire le bruit. Ensuite, un modèle de décomposition 

variationnelle est appliqué afin de conserver la composante pertinente de l'image. Enfin, 

un algorithme d’espérance-maximisation est appliqué afin de générer des images 

rehaussées. Un test est proposé afin d’évaluer la performance des observateurs dans un 

environnement clinique avec et sans l'aide d'images rehaussées. La sensibilité globale de 

l'analyse de l'observateur a été améliorée de 64,5% à 89,6% et la spécificité de 83,3% à 
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91,7%. Ces résultats montrent l'importance d'un outil informatique d'aide à la décision en 

neuroradiologie, notamment dans les situations critiques telles que le diagnostic 

d'accident ischémique cérébral. 

Mots clés: Accident vasculaire cérébral. Cerveau. Algorithmes. Scan 

tomographique. Diagnostic précoce. 
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Chapter 1 

1. Introduction 

This thesis is the result of a joint supervision agreement between São Paulo State 

University (UNESP) in Brazil and the University of Orleans in France. The research was 

developed at Botucatu Medical School (HCFMB-UNESP) under the guidance of 

Associated Professor Diana Rodrigues de Pina, and at the I3MTO Laboratory of the 

University of Orleans, France, under the guidance of Professor Rachid Jennane. 

 Prof. Diana Pina is a Professor in medical imaging and coordinator of the Laboratory 

of Applied Physics in Radiodiagnosis (LAFAR) of Botucatu Medical School (Brazil). 

Botucatu Medical School has a service coverage that includes the Regional Health 

Department (DRS VI) with a population of approximately 1,623,027 inhabitants. The 

Diagnostic Imaging Section of Botucatu Medical School has a vast infrastructure of 

diagnostic imaging equipment such as computed tomography (CT) scanners, which 

generated images for this research. The HCFMB-UNESP has two Toshiba Activion 16-

channel CT scanners and one General Electric 64-channel CT scanner. All retrospective 

examinations of CT in this study were obtained from the Diagnostic Imaging Department 

of Botucatu Medical School (UNESP).  

Prof. Rachid Jennane is a full Professor of image processing at the University of 

Orleans (France) where he is affiliated to the I3MTO (Imagerie Multimodale Multiéchelle 

et Modélisation du Tissu Osseux et Articulaire) Laboratory.  



18 

 

This research also counted on the clinical and scientific support of Prof. Carlos Clayton 

Macedo de Freitas (neurosurgeon HCFMB-UNESP), from Prof. Nitamar Abdala, Head 

of the Diagnostic Imaging Department of the Paulista School of Medicine (UNIFESP) 

and President of the Institute of Diagnostic Imaging Foundation, and Dr. João Altemani, 

radiologist of the Department of Radiology of UNICAMP. All those Brazilian physicians 

participated actively in the study design as well as in the image evaluation, discussion of 

cases, and in the writing of the scientific paper related to the results presented in this 

thesis. 

This research proposes the implementation of an image segmentation system, 

highlighting areas of ischemic stroke in CT scans. A computational tool has been 

developed that can assist radiologists and neuroradiologists to make a safer and more 

accurate decisions in the detection of stroke. Computational algorithms were developed 

to improve image contrast, to reduce noise, and to highlight the regions affected by 

ischemic stroke. There was a comparison analysis between original images and those 

highlighted by the computational algorithm, named enhanced images, which resulted in 

a better visualization of stroke signs when analyzed by different radiologists.  

The great differential of this proposal is to associate different methods of image 

processing and to optimize them to improve the visualization and to perform the 

enhancement of stroke. In this sense, we still propose a comparison between the objective 

analysis of the radiologists with and without the use of enhanced images of stroke cases. 

All these factors will contribute to a more accurate and safe diagnosis of stroke. This 

research was possible due to the interdisciplinary team composed of neurologists, 

neurosurgeons, radiologists, and medical physicists. The following is a summary of the 

chapters of this PhD thesis.  
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Chapter 1 is composed of the introduction to the thesis and describes the primary and 

specific objectives addressed in this research.  

Chapter 2 depicts the theoretical foundations for a better understanding of the 

subsequent chapters. Some concepts that will be addressed in Chapter 2 are stroke 

characteristic’s and diagnostic modalities used for diagnosing it; digital imaging concepts 

and some computational methods applied in the last 20 years to enhance the visual 

perception of ischemic stroke in different imaging methods.  

Chapter 3 brings the material and methods since it describes all image-processing 

methods used in this research, and presents the database and image selection criteria that 

resulted in the cohort of patients. Each step of our proposed approach is also detailed, and 

a section is dedicated to experiments with observers that analyzed enhanced images and 

compared them with raw images of stroke and control cases. 

Chapter 4 brings all detailed results from the application of the computational 

algorithm in CT scan images, as well as the results from the observer’s evaluation both 

before and after the use of enhanced images to diagnose stroke and control cases. Still, in 

Chapter 4 we compared the results achieved with previous results found in literature, 

together with other aspects relevant to the discussion.  

In addition, in Chapter 5 brings the major and minor conclusion to this research, 

responding to all the steps proposed in the objectives section. And also the perspectives 

for future studies concerning stroke detection. 

Chapter 6 is dedicated to the bibliography used in this research.  

Furthermore, there are five appendices in this thesis.  
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Appendix 1 brings the document from the approval of the Brazilian Ethics Committee. 

Appendix 2 and 3 summarize the tables with the complete results from the subjective 

evaluations for all observers both before and after the analysis of enhanced images.  

Appendix 4 shows the final paper of this research published in April of 2018 in 

European Radiology, named “Ischemic Stroke Enhancement using a Variational Model 

and the Expectation Maximization Method.” 

Appendix 5 brings all the other papers published by the author during the period of the 

PhD. 

1.1 Objectives 

 

This research aims to contribute to the detection of stroke in CT scans through image 

processing techniques to improve image quality, to objectively highlight and enhance 

areas affected by ischemic stroke. 

This primary objective is divided into specific objects cited below: 

• Construction of a database with retrospective CT examinations of patients with 

confirmed ischemic stroke. The database was obtained in the Computed Tomography 

Department of Botucatu Medical School. 

• Development of computational algorithms in Matlab® environment to enhance brain 

areas of interest (normal brain, ischemic stroke) and improve their visualization in 

the previously selected CT exams; 

• Comparison of three different segmentation methods (Expectation Maximization, K-

means, and Mean-shift) to achieve the best enhancement in ischemic stroke cases; 



21 

 

• Comparison of the results obtained between the developed computational algorithm 

and the subjective diagnostic evaluation of the stroke performed by radiologists both 

with and without the aid of enhanced images.   

 

Chapitre 1 - Résumé 

Le chapitre 1 introduit et décrit les chapitres suivants ainsi que les objectifs principaux 

de la thèse. 

Ce travail de recherche vise à contribuer à la détection des accidents vasculaires 

cérébraux dans les scans tomographiques (CT: Computed Tomography) en utilisant des 

techniques de traitement d'images. Pour ce faire, quatre objectifs principaux ont été fixés : 

 Construction d'une base de données avec examens CT rétrospectifs ; 

 Développement d'algorithmes sous l'environnement Matlab® pour améliorer les 

zones d'intérêt du cerveau et améliorer leur visualisation ; 

 Etude comparative entre trois méthodes de segmentation différentes ; 

 Comparaison entre les résultats obtenus à l’aide de l’algorithme proposé et de 

l'évaluation diagnostique subjective effectuée par les radiologues. 
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Chapter 2 

2. Context and Theoretical Fundaments 

 

The subjects dealt with in this section will be briefly reviewed in order to introduce 

necessary theoretical foundations for understanding objectives and methodology 

developed in this research.  

 

2.1. Stroke 

The human brain has a limited supply of nutrients such as oxygen and glucose. The 

average brain function relies mostly on adequate perfusion by the cerebral circulation. It 

is for this reason that cerebral vascular tone is intensely regulated, and alterations in 

mechanisms that modulate cerebral vessel function can predispose to cerebrovascular 

disease and stroke (James C. Grotta, 2016).  

Stroke occurs with an abrupt onset of focal or global neurologic symptoms caused by 

ischemia or hemorrhage. The terminology ‘stroke’ comprises several cerebrovascular 

diseases from thromboembolic events and aneurysmal subarachnoid hemorrhage to 

sinovenous occlusions (Osborn, 1999). 

Stroke mainly affects individuals over 60 years of age. It is considered the most 

significant cause of death worldwide (Health, 2007, Garritano et al., 2012). Between 

November 2011 and October 2012, approximately 170 thousand individuals were 

admitted in Brazilian hospitals with stroke symptoms. In Brazil, stroke is the leading 
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cause of death, and it was responsible for 10.2% of all deaths registered (Abreu et al., 

2010, Garritano et al., 2012, Lavados et al., 2007).  

The global impact of stroke on the years of life free of functional disability is 

significant, occupying the sixth place among all diseases, and is expected to occupy the 

fourth place in 2020 (Yusuf et al.al., 2001). Studies estimate that 70% of stroke patients 

do not return to their work and that 30% will require help even to walk afterward, which 

represents a high socioeconomic impact in society. The high degree of disability is 

directly related to the poor quality of life in individuals that survived stroke (Cerniauskaite 

et al., 2012). 

There are four major types of stroke mostly caused by acute occlusion of a cerebral 

artery. Table 1 depicts the most common types of stroke with its corresponding frequency.  

Table 1 - Etiology of stroke with its frequency of occurrence. 

Type Percentage (%) 

Cerebral ischemia 80-85 

Primary intracranial hemorrhage 15 

Nontraumatic subarachnoid 

hemorrhage (aneurysm) 
5 

Cerebral venous thrombosis 

(sinovenous occlusion) 
1 

 

Ischemia describes the condition where blood flow decreases with the temporary or 

permanent loss of organ functions. Cerebral ischemia occurs with diminished blood flow 
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to all brain parts or selected regions (regional or focal). Ischemic stroke, which 

corresponds to more than 80% of all cases, is a result of blockage or obstruction of vessels 

that supply blood to the brain (Association, 2014, Tajiri et al., 2012).  

Figure 1 illustrates the main arteries that supply blood to the brain, and a foreign mass 

traveling through the bloodstream until it stops in a small artery causing an ischemic 

stroke. This occurrence deprives the brain of oxygen and nutrients and initiates a dynamic 

sequence of pathophysiological events. When the interruption of blood flow occurs, it 

causes cell death and an irreversibly injured infarct core (Powers William et al., 2015).  

 

Figure 1 - Ischemic stroke illustration (Powers William et al., 2015). 

 

If the blood supply is not that severe or it lasts for a short period, then the brain tissue 

may be recovered. Brain tissue may survive when blood flow restores quickly enough. 

Ischemic penumbra accounts for this potentially reversibly damaged brain tissue that 

surrounds the ischemic lesion core (TD, 1980). When blood flow is not restored the 

penumbral tissue will proceed to infarction, and the original core lesion will grow. When 
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a more substantial portion of the brain is affected, functional disability might appear and 

be permanently damaged (Powers William et al., 2015). 

Cerebral ischemia manifestations include some predictors including the duration of 

the event, its location, tissue volume affected and how much the flow decreases Due to 

an ischemic event, an area of coagulation necrosis can occur, which is called infarct. The 

process by which an infarct develops is the infarction. There are two different areas in 

acute infarcts: the central ischemic core, and the ischemic penumbra, lying in the 

peripheral zone (Osborn, 1999).  

The region of low perfusion (core) in which cells have lost their membrane potential 

is surrounded by the penumbra where intermediate perfusion prevails, and cells 

depolarize intermittently (“peri-infarct depolarization”), as can be seen in Figure 2.  

 

Figure 2 – Representation of the core and penumbra of ischemic stroke accompanied by 

pathophysiological events occurring in both regions (James C. Grotta, 2016, Longa et al., 1989).  

Hemorrhagic stroke, which occurs in 13% of cases, is caused by the rupture of a vessel 

followed by the diffusion of the blood through brain tissues. This type of stroke accounts 
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for 37% of all deaths reported by this disease. Even when it does not lead to death, stroke 

can cause sequelae that compromise life quality in most patients (Association, 2014). 

Early diagnosis of stroke is essential as brain morphological damage increases within 

a few hours of symptom’s onset (Amar, 2011). When the Cerebral Blood Flow (CBF) is 

reduced to 30-35% of normal, it causes functional suppression, mostly because of the lack 

of energy-requiring ion pump mechanisms in brain cells (Osborn, 1999). Blood flow 

obstructions of 5 to 10 minutes to areas of the brain can cause irreversible damage (Astrup 

et al., 1981).  

Most damage occurs in the infarcted core and spreads into the ischemic penumbra. 

The penumbra is metabolically unstable with CBF of approximately 20-40% of normal.  

If perfusion returns in a suitable period, it is still possible to recover the penumbra (Astrup 

et al., 1981, Osman et al., 2011). There are some cases where more extended periods of 

poor perfusion can recover without permanent injury. Those cases depend mainly on the 

collateral circulation surrounding the stroke core (Ginsberg, 1997). 

Effective stroke treatments are considered a difficult challenge since penumbral tissues 

are only salvageable within few hours after its start (Wardlaw,2010). Therefore, the 

primary therapeutic decisions are to quickly reestablish the main blocked artery to prevent 

the infarct expansion. This was made possible with the advent of the thrombolytic agent 

(alteplase, rt-PA, Tissue Plasminogen Activator) for the treatment of ischemic stroke.  

When the early signs of ischemic areas with the potential to be preserved are detected 

it increases the chances of using rt-PA. The treatment window for venous thrombolysis 

with rt-PA is approximately 3 hours after the first symptoms (Jauch et al., 2013). Some 

authors even reinforce that this treatment window can be expanded to 4,5 hours with good 
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results (Tekle et al., 2012). The choice for rt-PA or other treatments depends on factors 

such as size, location, vascular distribution of the infarcted region and presence or absence 

of bleeding. This stage of diagnosis is fundamental because the detection of hemorrhagic 

points in the middle of ischemic areas leads to entirely different choices of treatment. 

Also, after thrombolytic therapy, the hemorrhagic transformation is a frequent 

complication of ischemic stroke (Zhang et al., 2014).  

In summary, the interactions between plasminogen activators and ischemic cerebral 

tissue are not completely konwn. However, it is clear that thrombus dissolution in the 

central nervous system can be achieved with the use of Pas and there are increased 

intracerebral hemorrhage risks with its use (James C. Grotta, 2016). 

In this research thesis, the greatest motivation was to develop a computational tool to 

aid physicians in the early detection of ischemic stroke in CT examinations. This tool 

could be possibly used within the thrombolytic treatment window and increase the 

chances of tissue recovery. We aimed to contribute with a computational tool that could 

provide more clearly the signs of ischemic stroke especially to those physicians with less 

experience or that are not specialists in neuroradiology. 

 

2.2. Diagnostic Modalities 

This early stage diagnosis of stroke occurs through different imaging modalities. 

Because time is critical to establish the diagnosis, a limited number of essential diagnostic 

tests are recommended (Jauch et al., 2013). Stroke protocols and pathways must be clearly 

defined before acute treatment decisions. Magnetic Resonance Imaging (MRI), Non-

enhanced computed tomography (CT), and computed tomography with perfusion are the 
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main choices for diagnosing stroke (Amar, 2011). Since this research computed 

tomography was the only modality used for image processing, it will be discussed in more 

details. Other modalities such as MRI and computed tomography with perfusion will be 

briefly explained below with their main advantages and disadvantages for the stroke 

diagnosis.  

2.2.1. Computed Tomography 

After its introduction in 1971, CT has developed from an X-ray modality limited to 

the generation of axial images of the brain in neuroradiology in a versatile 3D image 

mode, allowing the generation of images of the whole human body. It currently covers a 

wide range of applications, including oncology, vascular radiology, cardiology, 

traumatology and interventional radiology (Dance et al., 2014, Hendee and Ritenour, 

2002). The TC concept refers to the creation of cross-section images of an object from 

the transmission of data collected in various directions (Bushberg, 2002). The CT image 

acquisition process involves the measurement of the X-ray transmission profile through 

the patient, from a large number of projections. These projections are obtained by rotating 

the X-ray tube and the detectors around the patient, as shown in Figure 3. The 

transmission profiles are used to reconstruct the CT image, composed of an array of pixels 

(Dance et al., 2014, Bushberg, 2002, Hendee and Ritenour, 2002).  
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Figure 3 - An example of the method of computed tomography imaging where the whole X-

ray and the detectors rotate around the patient (Dance et al., 2014). 

 

The assigned values to the pixels in a CT image are associated with the attenuation of 

the corresponding tissue, or, more specifically, the linear attenuation coefficient (μ). The 

linear attenuation coefficient depends on the composition and density of the tissue, as 

well as the energy of the photon. The attenuation of the X-ray beam is described by 

Equation 1 (Dance et al., 2014). 

 

𝐼(𝑥) =  𝐼0𝑒−𝜇𝑥      (1) 

 

Where I(x) is the intensity of the attenuated X-ray beam, I0 is the original beam intensity, 

and x is the thickness of the material. When an X-ray beam transmitts through a patient, 

different tissues have different linear attenuation coefficients. If the path through the 

patient ranges from 0 to d, then the intensity of the attenuated X-ray beam, transmitted at 

distance d, can be expressed by Equation 2 (Dance et al., 2014, Bushberg, 2002, Hendee 

and Ritenour, 2002). 

𝐼(𝑑) =  𝐼0𝑒− ∫ 𝜇(𝑥)𝑑𝑥
𝑑

0       (2) 
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Since a CT image is composed of an array of pixels, the scanned patient are represented 

by an array of different linear attenuation coefficient volume elements (voxels). Figure 4 

shows a 4x4 matrix representing the measured transmission across a line. For such 

discretization, the attenuation is expressed in Equation 3 (Dance et al., 2014, Bushberg, 

2002, Hendee and Ritenour, 2002).    

𝐼(𝑑) =  𝐼0𝑒− ∑ 𝜇𝑖∆𝑥𝑖=𝑛
𝑖=1      (3) 

where n represents the size of the matrix in the sense of the analysis.  

 

Figure 4 - The principle of an X-ray beam attenuation in a simplified 4 × 4 matrix. Each 

element of the matrix may have an associated linear attenuation coefficient (Dance et al., 2014). 

 

Therefore, the underlying data necessary to generate a CT image are the intensities of 

attenuated and non-attenuated X-ray beams, respectively I(d) and I0. The image 

reconstruction techniques can then be applied to derive the matrix of linear attenuation 

coefficients, which is the basis of the CT image (Dance et al., 2014). 



31 

 

In a CT image, the reconstructed linear attenuation coefficient matrix (μmaterial) is 

transformed into a corresponding matrix of Hounsfield Units (HU), where the HU scale 

express the relation to the linear water attenuation coefficient (μwater), as shows Equation 

4 (Dance et al., 2014, Bushberg, 2002).:  

𝐻𝑈𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 =  
𝜇𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙−𝜇á𝑔𝑢𝑎

𝜇á𝑔𝑢𝑎
𝑥 1000      (4) 

 

It can be seen that HUwater = 0 (µmaterial = µágua), HUair = -1000 (µmaterial = 0) e HU = 1  

is associated with 0.1% of the linear attenuation coefficient of water. From the definition 

of HU, for all substances other than air and water, variations in HU values occur when 

different voltages are used in the X-ray tube. The reason is that, as a function of photon 

energy, different substances have a non-linear relationship of its linear attenuation 

coefficients relative to that of water. This effect is most notable for substances that have 

relatively higher effective atomic numbers, such as contrasting blood and bones (Dance 

et al., 2014).  

CT has excellent sensitivity to detect intracranial hemorrhage and to distinguish non-

vascular problems caused by neurological symptoms. Non-enhanced CT definitively 

excludes parenchymal hemorrhage (The European Stroke Organisation Executive and 

the, 2008). Its capacity is limited to the detection of ischemic areas due to the small 

difference between ischemic tissue density and healthy tissue. However, CT continues to 

be the primary modality for the rapid evaluation and diagnosis of patients with potentially 

ischemic lesions (Jauch et al., 2013). The option for CT is due to its lower cost compared 

to other methods, greater accessibility of the population, shorter execution time and 

compatibility with prostheses, implants and metallic equipment (Amar, 2011, Adams et 

al., 2007, Srinivasan et al., 2006b).  
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Due to its significant advantages, CT exams are still the first option for emergency 

decisions concerning acute ischemic stroke. Therefore, in this research, we aim to 

contribute to the early diagnosis of stroke in retrospective examinations of CT. All 

techniques developed here and all results presented in the next sections were entirely 

applied in CT examinations.  

 

2.2.2. Magnetic Resonance Imaging 

MRI is a technique that has excellent detection of ischemic tissues in the brain (van 

Everdingen et al., 1998). This method of diagnosis in relation to CT better detects regions 

with cytotoxic edema, better distinguishes acute ischemic regions from chronic ones, has 

better spatial resolution and does not use ionizing radiation. However, MRI has 

disadvantages such as the long examination time and the high sensitivity to movement 

artifacts, which often makes it difficult to perform in patients with stroke. Its high 

financial cost limits its use to the general population, making it difficult to use on a large 

scale, especially in countries such as Brazil. In addition, another disadvantage is its 

incompatibility with patients who have dentures and metal implants (Jauch et al., 2013). 

 

2.2.3. Computed Tomography with perfusion 

Perfusion computed tomography also has good sensitivity for ischemic stroke 

detection. This method consists of the sequential acquisition of images in a specific CT 

scan slice during contrast injection (Allmendinger et al., 2012). CT perfusion can be used 

to generate functional perfusion maps, the most used being: cerebral blood volume, blood 

flow, mean transit time (the difference between arterial and venous contrast passage), and 
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time to peak contrast enhancement. Each of these produces a different-sized lesion, with 

the processing algorithm also influencing the lesion size, even when the same parameter 

is estimated. Figure 5 shows an example of a CT scan with perfusion. In Figure 5a, no 

abnormalities are seen. However, the use of CT with perfusion reveals a deficit in the 

mean transit time (Figure 5b) as well as in the regional blood volume map (Figure 5c) 

and on the regional cerebral blood flow map (Figure 5d). Furthermore, a digital 

subtraction technique may be used to enhance the occlusion of an artery, as shown in 

Figures 4e-f. 

 

Figure 5 – a) A CT scan of a 63-year-old patient with a left-sided hemiparesis revealed no 

abnormalities. (b) Perfusion-weighted CT showed a perfusion deficit in the mean transit time 

parameter maps as well as on (c) the regional cerebral blood volume map and on (d) the regional 

cerebral blood flow map. Digital subtraction angiography (e and f) on the right-hand side shows 

occlusion of the internal carotid artery (Marincek and Dondelinger, 2007). 
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Identifying which perfusion parameter should be used is essential to achieve the best 

possible diagnosis. Similarly, raw diffusion-weighted acquisitions can be post-processed 

to provide diffusion-weighted images, apparent diffusion coefficient (ADC) maps, 

fractional anisotropy (FA) or the diffusion tensors (DT). CT perfusion main advantage in 

relation to other diagnostic methods is to allow both qualitative and quantitative 

evaluations. When compared to CT, it has essential disadvantages such as increased 

radiation dose, longer time for image acquisition and processing, higher financial cost 

and also a high dependence on qualified professionals for the diagnosis (Srinivasan et al., 

2006a, Jauch et al., 2013).  

2.3. Digital Image 

An image can be represented by a two-dimensional function, f (x, y), where x and y are 

spatial coordinates (plane), and the value of f in any pair of coordinates (x, y) is named 

the gray level of the image. When x and y and the intensity values of f are finite and 

discrete quantities, we have a digital image. In this case, each element of the image is 

called a pixel (Gonzalez and Woods, 2008, Bovik, 2005). The digitization of the 

coordinate values is named sampling, while the digitization of the amplitude values is 

called quantization (Gonzalez and Woods, 2008, Bovik, 2005). 

Digital image processing relates to the process of manipulation of an image by a 

computer so that the output of the process is an image with different characteristics 

according to the user's necessity (Gonzalez and Woods, 2008). Image processing 

generally applies to methods that receive an image as input and generate a modified image 

(enhancing characteristics), measures (analyzing regions of interest), or classifications 

(aiding human visual perception) as output (Zarinbal and Zarandi, 2014). 
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Image processing methods aim to improve the visualization of an image or to convert 

them into a more suitable form for analysis of humans or computational systems. There 

are various methods for image processing proposals. Usually, a combination of 

techniques is combined to achieve the output image (Zarinbal and Zarandi, 2014). 

Segmentation are essential in image processing (Lin et al., 2006), which comprises a 

process of separation between objects and the background. The segmentation divides the 

image into different regions so that each region is homogeneous in relation to some 

property, such as the value of the pixel or texture (Roerdink and Meijster, 2000, Khokher 

et al., 2012). 

2.4. Thresholding 

Due to its inherent properties, the simplicity of implementation and computational 

speed, image thresholding has a central position in image processing applications, 

especially in segmentation approaches. This process consists in separating the gray 

intensities of an image in different ranges. A gray intensity value, called threshold, is 

determined to separate parts of the image according to the pixels values. A pixel with a 

value greater than the threshold is called the point of the object. Any pixel with a value 

smaller than the threshold is called a background point. This can be exemplified in 

Equation 5 (Gonzalez and Woods, 2008, Bovik, 2005): 

𝑔(𝑥, 𝑦) =  {
1 𝑖𝑓 𝑓(𝑥, 𝑦) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0 𝑖𝑓 𝑓(𝑥, 𝑦) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
    (5) 

Where g(x, y) represents the pixels of the threshold image, and f(x, y) represents the 

pixels of the original image. After the thresholding process, the final image has only two 

possible pixel values.  
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When the pixel intensity distributions from background and objects are sufficiently 

different, it is possible to use a single threshold applicable to the whole image and is 

called the overall threshold. However, in some specific cases, it is necessary to use a 

variable threshold, where the threshold value changes throughout the image. The use of 

these thresholds depends on the type of image to work on and the region to be segmented 

(Gonzalez and Woods, 2008). 

In this study, a thresholding technique was implemented in one of the first algorithm 

steps in order to segment different regions of interest.  

2.5. Histogram Stretching 

The histogram of an image is composed by a set of numbers indicating the percentage 

of pixels in a specific gray level. These values are generally represented by a graph bar 

that provides for each level of gray, the number (or percentage) of corresponding pixels 

in the image. Through the visualization of the histogram of an image, one can obtain an 

indication of its quality as to the level of medium brightness (if the image is 

predominantly light or dark) (MARQUES FILHO, 1999). 

When analyzing one image histogram, the measure of its dynamic range it is named 

contrast. The dynamic image range is defined as the entire range of intensity values 

contained within an image, thus the maximum pixel value minus the minimum pixel 

value. For example, an 8-bit image has a dynamic range of 256, and a 12-bit image has a 

dynamic range of 4096 (Gonzalez and Woods, 2008).  

Contrast stretching or histogram stretching is a technique that attempts to improve an 

image by stretching the range of its intensity values. Contrast stretching is restricted to a 

linear mapping of the input image before conversion to the output. The initial step 
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determines the limits of the new image intensity extension. The original image histogram 

is examined first. If the original range covers the full possible set of values, 

straightforward contrast stretching will not change the contrast (Gonzalez and Woods, 

2008).  

This technique must be used when the restricted range of pixel intensities can be 

stretched linearly, to the full limit of the extended output. Then for each pixel, the original 

value is mapped to a new output value using Equation 6: 

𝑠 = (𝑟 − 𝑐) (
𝑏−𝑎

𝑑−𝑐
) + 𝑎      (6) 

Where s is the new value of the pixel, and r is the old value. These lower and upper 

limits are called a and b, respectively (for standard 8-bit grayscale images, these limits 

are usually 0 and 255). The limits value of the original histogram are determined by the 

lower = c and upper = d. 

 

2.6. Variational Decomposition Model 

Variational models have been used in a variety of image processing problems, usually 

for image denoising and or texture identification (Bergounioux, 2016, Bergounioux et al., 

2016, Bergounioux and Piffet, 2010). The variational model (VM) provides a 

decomposition of the image at different scales, in which noise and texture may be 

modelled as oscillating components. 

In this work, we used the mathematical formulation described in (Bergounioux, 2016). 

One can assume that the image to recover belongs to the L2 (Ω) space and that it can be 
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decomposed. The image P was modeled as the sum of three terms, as can be seen in 

Equation 7: 

𝑃 =  𝑢 +  𝑣 +  𝑤      (7) 

The components w, v and u belong to different functional spaces: v ∈ BH(Ω) which 

is the (smooth) second-order part, u is a BV(Ω) component, and w ∈ L2(Ω) is the 

remainder term. We also consider that the space BV(Ω) is the classical Banach space of 

functions of bounded variation. The BV-part are related to the contours of the image, and 

the BH-part is continuous (at least for d ≤ 2) and it gives the image dynamic. We consider 

the following cost function defined on BV(Ω) × BH(Ω) as shown in Equation 8: 

𝐹𝜆,𝜇(𝑢, 𝑣) =
1

2
‖𝑃 − 𝑢−𝑣‖ + 𝜆𝑇𝑉(𝑢) + 𝜇𝑇𝑉²(v)                                     (8) 

Where ‖P – u - v‖ is the fitting data term, TV(u) is the first order total variation of u, 

TV2(v) is the second order total variation of v, and λ and µ are two real numbers fixed 

empirically for contours and homogeneity (λ > 0 and µ > 0). More information on the 

methods can be found elsewhere in the following papers (Bergounioux, 2016, 

Bergounioux et al., 2016, Bergounioux and Piffet, 2010). In this study, the variational 

decomposition model was used to enhance the contrast of the image; highlighting the 

ischemic stroke region more clearly. 

 

2.7. Expectation Maximization 

Expectation Maximization (EM) is a popular iterative method for maximum likelihood 

parameter estimation and image segmentation (Jong-Kae and Djuric, 1997). This 

technique consists of the generalization of the maximum likelihood estimate from a given 



39 

 

data set. First, we recall the definition of the maximum-likelihood estimation problem 

(Bilmes, 1997). 

One can assume a density function 𝑝(𝑥|𝜃) regulated by some parameters. If we 

consider a set of Gaussians, those parameters are means and covariances. We also have a 

data set of size N, from the distribution 𝑋 = {𝑥1, … , 𝑥𝑁}. We must assume that these data 

vectors are independent and identically distributed with distribution p. The resulting 

density for the samples is achieved through Equation 9: 

𝑝(𝑥|𝜃) = ∏ 𝑝(𝑥𝑖|𝜃)𝑁
𝑖=1 = 𝐿(𝜃|𝑋)     (9) 

This function 𝐿(𝜃|𝑋) is the likelihood of the parameters from the data. In maximum 

likelihood problems, our goal is to find the value of 𝜃 that maximizes 𝐿.  

The EM algorithm can be applied to find the maximum-likelihood estimate of those 

parameters. We assume that X is the observed data and therefore it is somehow 

incomplete. We assume that a complete data set exist, named 𝑍 = (𝑋, 𝑌) with the 

following joint density function in Equation 10: 

𝑝(𝑧|𝜃) = 𝑝(𝑥, 𝑦|𝜃) = 𝑝(𝑦|𝑥, 𝜃)𝑝(𝑥|𝜃)     (10) 

In this manner, one can assume a joint relationship between missing and observed data. 

With a new density function, we define a new complete-data likelihood function as in 

Equation 11: 

𝐿(𝜃|𝑍) = 𝐿(𝜃|𝑋, 𝑌) = 𝑝(𝑋, 𝑌|𝜃)    (11) 
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The EM algorithm finds the expected value of the complete-data log-likelihood  of the 

unknown data Y given the observed data X and the current parameter estimates. That is, 

we define in Equation 12: 

𝑄(𝜃, 𝜃′) = 𝐸[log 𝑝(𝑋, 𝑌|𝜃|𝑋, 𝜃′)]    (12) 

The evaluation of expectation is named the E-step of the algorithm. Notice the meaning 

of the two arguments in the function 𝑄(𝜃, 𝜃′). The first argument 𝜃 corresponds to the 

parameters that ultimately will be optimized in an attempt to maximize the likelihood. 

The second argument 𝜃′corresponds to the parameters used to evaluate the expectation. 

The second step (the M-step) of the EM algorithm is to maximize the expectation 

computed in the first step. That is, we find in Equation 13: 

𝑄(𝜃′) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝑄(𝜃, 𝜃′)     (13) 

These two steps are repeated as long as it is necessary. Each iteration increases the log-

likelihood, and the algorithm converges to a local maximum of the likelihood function. 

2.8. K-means 

The K-Means algorithm, as well as the EM algorithm, can both be used to find natural 

clusters within given data based in  input parameters (MacQueen, 1967). Clusters can be 

found based on pixel intensity, color, texture, location, or some combination of these 

features.  In K-Means, the starting locations of the partitions used are critical to achieving 

the optimal solution. K-Means is susceptible to termination when achieving a local 

maximum as opposed to the global maximum. 

K-Means relies the on the assignment of information to a given set of partitions. At 

every pstep of the algorithm, each data value is assigned to the nearest partition based 
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upon some similarity parameter such as Euclidean distance. The partitions are then 

recalculated based on these assignments. With each successive step, a data value can 

switch to another partition, thus altering the values of the partitions. K-Means algorithms 

typically converge to a quick solution as opposed to other clustering algorithms (Hartigan, 

1979, Yizong, 1995). 

Unsupervised classification method such as K-means aims to minimize the sum of the 

quadratic error on all groups. For this, it requires three specific parameters: the number 

of groups, the initialization of the group and the metric of the distance. The quadratic 

errors, J(Ck) between 𝜇𝑘 and the points in a group 𝐶𝑘 are defined in Equation 14: 

𝐽(𝐶𝑘) = ∑ ‖𝑥𝑖 − 𝜇𝑘‖2
𝑥𝑖∈𝐶𝑘

                                               (14) 

Where i = 1, .., C = ck, k = 1, ..., K is the set of K clusters and μk is the average of Ck 

clusters. As the goal is to minimize the sum of the square error on all clusters, the 

Equation 6 is rewritten as Equation 15: 

𝐽(𝐶) = ∑ ∑ ‖𝑥𝑖 − 𝜇𝑘‖2
𝑥𝑖∈𝐶𝑘

𝐾
𝑘=1                                          (15) 

One of the most complex parameters in cluster analysis is the definition of the number 

of groups (k) to be found in the data set. K-means was one of the methods tested for the 

final step of our approach, in the segmentation (Yizong, 1995, Hartigan, 1979). 

 

2.9. Mean Shift  

Mean Shift (MS) is a non-parametric feature-space analysis technique for locating the 

maximum of a density function, initially presented in 1975 (Fukunaga and Hostetler, 

1975). MS algorithm is an unsupervised clustering segmentation method, where the 
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number and the shape of the data are unknown at start and it can be applied to 

discontinuity preserving smoothing (Comaniciu and Meer, 2002). The segmentation 

process is based on a region-merging technique applied to the filtered image, and the 

number of regions after segmentation is determined by the minimum number of pixels in 

a region, denoted by M (i.e., regions containing less than M pixels will be eliminated and 

merged into its neighboring region). An appropriate value of M can be chosen to yield an 

accurate region representation of segmented regions.  

We present a brief summary of the MS method based on the results published by 

(Comaniciu and Meer, 2002, Yizong, 1995, Comaniciu, 2003, Tao et al., 2007). Mean-

shift operates through finding the maximum of a density function given discrete data 

sampled. It is an iterative method, which starts with an initial estimate. Consider a radially 

symmetric kernel in Equation 16: 

𝑘(𝑥) = 𝑐𝑘,𝑑𝑘(‖𝑥‖2)      (16) 

Where constant  𝑐𝑘,𝑑 > 0, such that: 

∫ 𝐾(𝑥)𝑑𝑥 =
∞

0
∫ 𝑐𝑘,𝑑𝑘(‖𝑥‖2)

∞

0
𝑑𝑥 = 1    (17) 

k(x) is a monotonically decreasing function, and it is kernel profile. Given the function 

𝑔(𝑥) = −𝑘′(𝑥) for profile, we define a new kernel G(x): 

𝐺(𝑥) = 𝑐𝑔,𝑑𝑔(‖𝑥‖2)     (18) 

Where constant  𝑐𝑔,𝑑 > 0, for n data points xi, i=1, …, n in the d-dimensional space Rd, 

MS is defined as: 
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2

)𝑛
𝑖=1

∑ 𝑔(‖
𝑥−𝑥𝑖

ℎ
‖

2
)𝑛

𝑖=1

− 𝑥     (19) 

Where x is the center of the kernel window, and h is the bandwidth. MS is obtained as 

the difference between the weighted mean, obtained through the kernel G as the weights 

and x as the center of the kernel.  

MS image filtering algorithm can be estimated with the equations above. First, an 

image represented by a 2-D lattice of p-dimensional vectors (pixels) is used, where p = 1 

for gray-level intensities. The space of the lattice is known as the spatial domain, while 

the graph level information are represented in the range domain. For both domains, we 

assume Euclidean metrics. Let xi and zi, i = 1, . . . , n, respectively, be the d-dimensional 

(d = p + 2) input image and the filtered pixels in the joint spatial-range domain. 

The segmentation is achieved through a merging process performed on a region 

produced by the MS filtering application. MS segmentation requires the selection of the 

bandwidth parameter h = (hr, hs), which controls the size of the kernel and determines 

the resolution of the mode detection. 

2.10. Diagnosing Stroke 

The diagnosis of ischemic stroke depends heavily on the radiologist's experience and 

manner that images are viewed, such as the correct centering and width of the windowing 

in CT scan images (Mainali et al., 2014). All these factors must be adjusted so that the 

diagnostic evaluation of the stroke is done correctly and within the window of treatment 

with the thrombolytic treatment (Jauch et al., 2013). Some score classification based on 

visual assessment of image was introduced to facilitate the diagnosis of stroke and the 
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establishment of the patient’s condition, such as the ASPECTS scoring system and the 

NIHSS score. 

 

2.10.1. ASPECTS 

The diagnosis of ischemic stroke in CT improves with the use of a structured score 

system such as the ASPECTS (Alberta Stroke Program Early CT Score). The ASPECTS 

scale uses a scoring system to identify areas of the brain that indicate regions of ischemia. 

Two axial CT slices obtained between the thalamus and at the upper margin of the 

ganglion structures are used. The scale divides the region of the middle cerebral artery 

(MCA) into 10 regions of interest. The neuroradiologist subtracts a single point of the 

score for each area of ischemic change. Thus a score of 10 corresponds to a healthy brain, 

and a score of 0 to a brain with ischemic stroke diffused to the entire region of the middle 

cerebral artery (Huisa et al., 2010). Figure 6 identifies the positions to be evaluated during 

ASPECTS used in clinical routine. 
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Figure 6- ASPECTS study form. A and B, Right hemisphere, observer variations: lower and 

upper ASPECTS slices show as shaded areas the minimal and maximal variations in size of the 

cortical areas of the MCA (M1–M6) chosen by six expert observers. Left hemisphere, ASPECTS 

study form: A = anterior circulation; P = posterior circulation; C = caudate head; L = 

lentiform nucleus; IC = internal capsule; I = insular ribbon; MCA = middle cerebral artery; 

M1 = anterior MCA cortex; M2 = MCA cortex lateral to insular ribbon; M3 = posterior MCA 

cortex; M4, M5, and M6 are anterior, lateral, and posterior MCA territories, respectively, 

approximately 2 cm superior to M1, M2, and M3, respectively, rostral to basal ganglia. C and 

D, Cortical MCA area variations with change of baseline (Pexman et al., 2001) 
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Figure 7 - Another representation of the ASPECTS evaluation in CT scan slices for diagnosing 

ischemic stroke in the MCA territory. 

 

In this research, all our patients were evaluated with the ASPECTS scale. Those data 

are essential to understanding our cohort of stroke patients. The complete data of 

ASPECTS are available in Appendix 2. 

 

2.10.2.  NIHSS score 

A standardized neurological examination ensures that the major components of a 

neurological examination are performed in the correct form. Evaluation scores such as 

National Institute of Stroke Scale (NIHSS) may be performed rapidly, since they 

demonstrated its utility, and may be used by a broad spectrum of healthcare providers 

(Jauch et al., 2013). 
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Several institutions use NIHSS for the diagnosis and treatment of stroke in the first 24 

hours after the event. This score evaluates the level of consciousness, degree of muscular 

strength, language, facial paralysis, visual field, sensitivity, attention and presence of 

ataxia. This scale presented significant evidence of reliability and applicability. It consists 

of 11 domains being scored between 0 and 4. Table 2 exemplifies all the aspects evaluated 

in NIHSS. 

Table 2 - National Institute of Stroke Scale. 

Tested Item Title Responses and Scores 

1A Level of consciousness 

0 – Alert 

1 – Drowsy 

2 – Obtuned 

3 – Coma/unresponsive 

1B Orientation questions (2) 

0 – Answers both correctly 

1 – Answers 1 correctly 

2 – Answers neither correctly 

1C Response do commands (2) 

0 – Performs both tasks correctly 

1 – Performs 1 task correctly 

2 – Performs neither 

2 Gaze 

0 – Normal 

1 – Partial gaze palsy 

2 – Complete gaze palsy 

3 Visual Fields 

0 – No visual field detect 

1 – Partial hemianopia 

2 – Complete hemianopia 

3 – Bilateral hemianopia 

4 Facial movement 

0 – Normal 

1 – Minor facial weakness 

2 – Partial facial weakness 

3 – Complete unilateral palsy 

5 
Motod function (arm) 

a. Left 

0 – No drift 

1 – Drift before 5 seconds 
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b. Right 2 – Falls before 10 seconds 

3 – No effort against gravity 

4 – No movement 

6 

Motor function (leg) 

a. Left 

b. Right 

0 – No drift 

1 – Drift before 5 seconds 

2 – Falls before 5 seconds 

3 – No effort against gravity 

4 – No movement 

7 Limb ataxia 

0 – No movement 

1 – Ataxia in 1 limb 

2 – Ataxia in 2 limbs 

8 Sensory 

0 – No sensory loss 

1 – Mild sensory loss 

2 – Severe sensory loss 

9 Language 

0 – Normal 

1 – Mild aphasia 

2 – Severe aphasia 

3 – Mute or global aphasia 

10 Articulation 

0 – Normal 

1 – Mild dysarthria 

2 – Severe dysarthria 

11 Extinction or inattention 

0 – Absent 

1 – Mild (loss 1 sensory modality 

lost) 

2 – Severe (loss 2 modalities lost) 

 

The higher the sum, the greater the level of neurological impairment. A slight impairment 

is considered from 0 to 5 points; from 6 to 13, moderate impairment and above 14 points, 

severe impairment (Caneda et al., 2006). NIHSS assessment helps to quantify the degree 

of neurological deficits and facilitate communication. It is also possible to identify the 

location of vessel occlusion, provide an early prognosis, and select patients for various 

interventions, and identify those with potential for complications (Jauch et al., 2013). In 
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this research, all our patients were evaluated with the NIHSS scale. Those data are 

essential to understanding our cohort of stroke patients. The complete data of NIHSS are 

available in Appendix 2. 

 

2.11.  Computational methods for detecting and enhancing ischemic stroke 

 

Different computational methods were used to improve the visualization of areas 

affected by stroke. Medical image analysis approaches and statistical tools were highly 

explored in the last 20 years to identify different tissue states. Those approaches were 

used to differentiate and spatially localize tissues affected by stroke. Also, to predict the 

final ischemic tissue outcome, and understand factors that influence the dynamic 

evolution of the infarct and the penumbra such as lesion swelling, collateral flow 

pathways and spontaneous reperfusion (Rekik et al., 2012). 

In almost all image-processing approaches, the detection of specific regions 

necessarily involves the segmentation of the image in different regions of interest. 

Loncaric et al.1999 contributed extensively to the segmentation of medical images using 

the fuzzy c-means clustering (FCM) technique. The authors were interested in analyzing 

the intracerebral brain hemorrhage. After segmentation of the brain images, different 

tissues were identified with basic rule-based systems. The classification of tissues was 

given the following denominations: background, brain tissue, bone tissue, hemorrhages 

and calcifications (Loncaric et al., 1999).  

Chan 2007 also evaluated stroke in High-Resolution CT (HRCT) images in which the 

hemorrhagic region was extracted using the top-hat type transform and the comparison 
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of symmetry between the two cerebral hemispheres (left and right) was applied, being 

able to identify small hemorrhagic clots (Chan, 2007).  

Bradera et al. 2009, proposed the semi-automatic segmentation for cerebral hematoma 

and edema as well as the measurement of their volumes. The author's combined region-

growing techniques to segment the hematoma and also applied the segmentation of the 

level set to extract the edema (Bradera et al., 2009).  

Chawla et al. 2009 presented an automatic method for the detection and classification 

of ischemic and hemorrhagic stroke in CT scans. This method relied on the observation 

that stroke causes a disturbance in the contralateral symmetry of the cerebral hemispheres. 

The areas of stroke were identified through tissue density and texture distribution when 

compared to the opposite hemispheres (Chawla et al., 2009). 

Liao et al. have developed computed aided-diagnosis (CAD) programs that detect 

changes in brain symmetry, shape, and size of brain hematomas (Liao et al., 2006, Liao 

et al., 2007). In their most recent work, the authors proposed the automatic detection of 

intracranial hematomas. First, the regions of the skull are segmented into smaller sized 

images by applying a maximum filter. Then the intracranial regions are found by 

connectivity and the possible regions of hematomas through adaptive thresholds. This 

information is used as input in a multi-resolution binary level set algorithm. This 

procedure is repeated until the resolution of the original image is reached (Liao et al., 

2010). 

In summary, a system for automatic stroke detection CT scan images should contain 

some features that ensure its effectiveness and reproducibility. The pre-processing of the 

image should be as minimal as possible; deformations of the cerebral anatomy cannot 
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impair detection as well as movement artifacts. The system should be tested in a large 

number of clinical cases to assess its adaptability (Liao et al., 2010). 

In this research, we propose a methodology to enhance ischemic stroke using a 

combination of different image processing techniques in CT scan images, producing 

enhanced images. Those images were tested in a clinical environment with physicians of 

different level of experience.  

2.12. New Perspectives for Stroke Detection 

Recent advances in machine learning and deep learning techniques have been used in 

multiple medical problems. Many authors have explored with review papers the potential 

use of these new advances in diagnosing and predicting the outcome of stroke lesions 

(Feng et al., 2018, Liebeskind, 2018, Nielsen et al., 2018, Pinto et al., 2018). Artificial 

intelligence tools could guide diagnosis of stroke with automated creation of features, 

image segmentation, and multimodal prognostication (Feng et al., 2018). 

Very recently, Tang et al. used an approach with machine learning applied to MRI 

images of acute ischemic stroke to estimate the tissue outcome in penumbral regions. 

Authors demonstrated through their artificial intelligence that the administration of 

intravenous thrombolysis could be successfully applied even in periods greater than the 

4,5 hours treatment window (Tang et al., 2018). Abedi et al. developed an artificial neural 

network model to recognize acute cerebral ischemia and differentiate that from stroke 

mimics in an emergency setting (Abedi et al., 2017). 

The decision-making in stroke will always be a complex task since it involves far more 

than imaging the lesion. The clinical decision of the human brain cannot be fully replaced 

by a logical method. As the authors (Feng et al., 2018) said ‘Deep learning is not a 
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replacement for existing analytical techniques, but rather a new set of powerful tools that 

have opened up exciting opportunities for data-driven stroke management both for acute 

intervention and for guiding prognosis.’  

Ultimately, deep learning and machine learning tools will become more frequent in 

the modern stroke specialist’s diagnosis, mostly because of their speed and powerful 

results. We highly trust that those recent technologies will benefit the future clinical 

scenario of stroke not only with more accurate treatment decisions but also with improved 

patient outcome. 

Chapitre 2 - Résumé 

Le chapitre 2 décrit les fondements théoriques pour une meilleure compréhension des 

chapitres suivants. 

Le diagnostic précoce de l'Accident Vasculaire Cérébral (AVC) est essentiel car les 

dommages morphologiques cérébraux augmentent quelques heures après les premiers 

symptômes. Ce diagnostic précoce se produit à travers différentes modalités d’imagerie, 

les deux plus importantes sont la Tomodensitométrie (CT) et l’imagerie par résonance 

magnétique (IRM). Le chapitre 2 décrit les principaux outils de traitement d'images 

utilisés pour améliorer l’identification de l’AVC ischémique dans les images CT. 

Ces outils sont le seuillage, l’étirement de l’histogramme et la décomposition par 

modèle variationnel. Nous avons également testé trois méthodes de segmentation : 

Expectation-Maximization (EM), K-means et Mean-Shift. 

Le diagnostic d'accident ischémique cérébral dépend largement de l'expérience du 

radiologue et de la manière dont les images sont visualisées. Ainsi, nous avons définie 

certains concepts fondamentaux du diagnostic de l'AVC dans un environnement clinique. 

L’échelle ASPECTS (Alberta Stroke Program Early CT Score) utilise un système de 

notation pour identifier les zones du cerveau qui représentent les régions de l’ischémie. 

Et aussi le score NIHSS (National Institute of Stroke Scale) qui évalue le niveau de 

conscience, le degré de la force musculaire, la langue, la paralysie faciale, le champ 

visuel, la sensibilité, l'attention et la présence d'ataxie. Le chapitre 2 se termine avec 
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quelques méthodes de traitement d’images appliquées au cours des 20 dernières années 

pour améliorer la perception visuelle de l’accident ischémique cérébral. 

Dans le chapitre 2, nous avons également décrit les perspectives de futures études sur 

la détection des AVC. Nous souhaitons appliquer notre approche en routine clinique dans 

notre hôpital à tous les nouveaux patients victimes d'un AVC. Dans ce contexte, les outils 

développés dans le cadre de cette étude pourraient être utilisés non seulement sur les 

images CT non améliorés, mais également avec d'autres techniques d'imagerie telles que 

l'IRM et la tomographie avec perfusion. De plus, nos outils pourraient être testés en 

association avec une technique d'apprentissage profond, notamment à des fins de 

segmentation. Étant donné que l'AVC est d'abord identifié par ses symptômes cliniques, 

le diagnostic assisté par ordinateur avec apprentissage profond pourrait constituer un outil 

efficace pour un diagnostic rapide. 

Par ailleurs, les outils d’apprentissage profond et d’apprentissage automatique 

deviendront de plus en plus fréquents pour le diagnostic de l’AVC, principalement en 

raison de leur rapidité et de leurs résultats puissants. Nous sommes convaincus que ces 

technologies récentes bénéficieront au futur scénario clinique d'accident vasculaire 

cérébral, non seulement grâce à des décisions de traitement plus précises, mais également 

grâce à des résultats bénéfiques pour les patients. 
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Chapter 3 

3. Materials and Methods 

This research was possible due to the Brazilian foundation, Fundação de Amparo à 

Pesquisa do Estado de São Paulo (FAPESP) that provided all the financial support 

thorough the entire PhD and BEPE scholarship in France, with the following process 

2014/22296-1 and 2016/05321-8. 

In this research, a novel approach to enhance the visual perception of ischemic stroke 

in CT scans was proposed. This enhancement aims to enable less experienced viewers, 

such as radiologists, to reliably detect early signs of stroke in clinical routine. Our new 

contribution consists in combining efficiently different image processing techniques to 

enhance the visual insight of ischemic stroke in non-enhanced CT scans. 

The image processing techniques were developed in Matlab® software R 2014a. All 

computational analyzes were performed using the DICOM images (Digital Imaging and 

Communications in Medicine). A computational algorithm was proposed to enhance the 

ischemic stroke perception and assist the physicians in their diagnosis. Firstly, to reduce 

noise and redundancies, a projection (summation) of the slices containing the ischemic 

stroke was realized followed by band-pass filtering. Then, to enhance the contrast of the 

obtained projection, a Variational Model (VM) decomposition was used. Finally, the 

expectation maximization (EM) method was applied to the relevant component from the 

VM decomposition to segment and emphasize the ischemic stroke. Furthermore, two 

different methodologies to segment and emphasize ischemic stroke were applied and 

compared (K-Means and Mean-Shift). The performance of observers, such as 



55 

 

experienced radiologists and resident radiologists in diagnosing acute ischemic stroke 

images was evaluated. We compared their sensitivity and accuracy performances for 

stroke and control cases both with and without the aid of enhanced images. The proposed 

approach steps are described in the flowchart in Figure 8 

 

Figure 8 - Flowchart with the main image processing steps performed (Alves et al., 2018) . 

 

3.1. Database 

 (CAAE: 52457315.3.0000.5411). A database was composed of retrospective CT 

examinations obtained from sthe Diagnostic Imaging Department of Botucatu Medical 

School (UNESP - Brazil). Images were acquired from two 16-channel Toshiba Activion 

scanners and one GE Optima 64-channel tomography scanner from January 2012 to 

November 2017, thus reaching the sample images foreseen in the preparation of this 

research project. We evaluated approximately 78 retrospective CT exams previously 

diagnosed by radiologists and neuroradiologists.  

We collected retrospective CT scans of patients submitted to non-enhanced  

examinations. Patients were selected with the following criteria of inclusion and 

exclusion.  
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- Inclusion criteria: patients with confirmed acute ischemic stroke lesions that 

undergone CT scans examinations until 4,5 hours after the onset of first symptoms.  

- Exclusion criteria: patients with previous stroke lesions, intracranial 

malformations or a history of intracranial hemorrhage.  

This study also did not considered cases of hemorrhagic stroke. Since all exams 

were retrospective, the ground-truths of confirmed stroke cases were checked with the 

follow up of the patients within the hospital, including clinical reports, histological and 

pathological analysis, which were further validated by two experienced radiologists.  

After this selection, only 25 cases from the initial 78 cases were used. The information 

presented on patients clinical reports such as the ASPECTS scale evaluation and the 

NIHSS were included in the final results. Furthermore, 16 normal cases of CT exams 

were used as a control group. The control group was selected at random from Botucatu 

Medical School as patients with no radiological findings who underwent CT exams due 

to headache, known as migraine. This group was necessary to test the reliability of the 

developed methodology since the control cases were submitted to the same computational 

approach as the stroke cases. The mean age of patients was 68.89 ± 10.41 years for stroke 

group and 66.76 ± 9.36 for control. The database information is summarized in Table 3. 
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Table 3 - Number of exams of the database of this project, and those included in the final study 

design. 

Imaging 

Modality 

Number of evaluated 

patients 

Number of patients that met 

inclusion and exclusion 

criteria 

Ischemic Stroke Control Ischemic Stroke Control 

Computed 

Tomography 
78 26 25 16 

 

 Using the t-student test, the age difference between the two groups was not significant 

(p < 0.05). CT scans were performed on multislice CT scanners. Scanner acquisition 

settings were: kVp = 120, automatic exposure control, exposure time = 1 second, matrix 

size was 512 x 512 and slice thickness = 1 mm. All images were stored using the DICOM 

format.  

 

3.2.Selection of slices 

As a prior step to image processing, it is necessary to select a sequence of CT images 

in each patient with suspected ischemic stroke. The selection of tomographic slices was 

performed in the same anatomical region used for the evaluation of the ASPECTS 

protocol (Huisa et al., 2010). This protocol in the diagnosis of stroke is used in patients 

submitted to computed tomography, according to international guidelines on the 

management and treatment of stroke (Jauch et al., 2013, Amar, 2011). The processing 

starts by opening one sequence of CT scan images of individual patients. A sequence of 
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slices in the middle cerebral artery territory and basal ganglia is selected. These regions 

are most commonly affected by stroke (Jauch et al., 2013). This selection of slices was 

performed by an experienced neuroradiologist. Moreover, all observers analyzed the 

same sequence of slices for each patient in this study. 

Figure 9 represents an example of a sequence of slices from the complete CT scan 

examination. All patients from our database had their slices selected in the same manner 

in this step of the approach.  

 

Figure 9 – Sequence of slices in the same patient representing the slices selected by the 

physician. This patient CT scan sequence had a total of 94 slices, and 5slices were selected. 

 

3.3. Image Averaging 

After selecting slices with susceptible ischemic density changes, an image averaging 

is performed by summing the values of the gray levels in each slice. As a result, a unique 

image is obtained with the average of pixel intensities from the different selected slices 

from the previous step. Image averaging is a processing technique often employed to 

enhance images by reducing random noise. The algorithm operates by computing an 

arithmetic mean of the intensity values for each pixel position in a set of captured images 

from subsequent slices using Equation 20: 

𝑃(𝑖, 𝑗) =
∑ 𝑆𝑛(𝑖,𝑗)𝑁

𝑛=1

𝑁
                                                           (20) 
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Where P(i,j) is a resulting pixel of the averaging, Sn is the sequence of selected slices, (i,j) 

are pixel coordinates for each image slice, and N (4 to 9) is the number of slices used in 

the sequence. Even though CT scans are performed with thin slices, the number of slices 

used was carefully chosen to avoid averaging slices with many different anatomical 

structures. This approach was performed to highlight the presence of stroke and also 

lower the image noise level. All control group images were also averaged using a fixed 

number of five slices extracted in the middle cerebral artery territory and basal ganglia. 

 

3.4. Thresholding 

 

After the image averaging step, the next step in the image processing algorithm was to 

remove non-intracranial tissues from the projection image. Figure 10 shows the histogram 

of the projected image. Intracranial tissues are within the range of 5 to 50 HU. The great 

peak of pixels around -1000 Hounsfield Units correspond to the air outside of the patient’s 

head. Moreover, all pixels above 50 Hounsfield Units might be considered non-

intracranial, such as bone tissues for example. Therefore, pixels out of the [5, 50] range 

do not correspond to biological tissues and were removed from the image. This 

thresholding step was performed to facilitate the subsequent step of enhancement and 

segmentation methods. Thus, we applied a threshold with a lower limit and an upper limit 

of 5 and 50 HU to remove all the pixels belonging to the bone tissue, to the background 

and other undesirable structures in the image.  
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Figure 10 - Original image’s histogram. Near the -1000 HU represents pixels from the air 

around the patients head. Intracranial tissue is found between 5 and 50 HU. In addition, all 

pixels above 200 HU are considered bone tissue. 

 

After this stage, a histogram normalization was performed by redistributing the pixels 

intensities. The histogram normalization enabled improving the contrast between adjacent 

regions. Following the band-pass filtering, we made an operation on the histogram of the 

image. The operation called histogram stretching changed our range from [5 to 50] and 

distributed between 0 and 255 grayscale intensities. Therefore, we changed our levels of 

gray intensity to 256 levels. As a result, all levels of intracranial gray intensity were 

distributed throughout the histogram, as can be seen in Figure 11.  
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Figure 11 - Histogram after the stretching and normalization process. 

 

This operation allowed to improve the contrast between adjacent regions in the 

image, slightly increasing the differentiation between the regions of the stroke and the 

healthy brain tissue that surrounds it. As an example of the application of this step in a 

stroke patient, we can observe the original image in Figure 12, and the image with the 

improved contrast after the removal of undesirable pixels in Figure 13. 
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Figure 12 – Original image from a stroke patient before the removal of undesirable pixels. 

 

 

Figure 13 – Image contrast image after the application of the thresholding step. 
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3.5.Variational Model Decomposition 

To better enhance the contrast of the image, a Variational Model (VM) 

decomposition was applied to decompose the image into different components 

(Bergounioux, 2016, Bergounioux et al., 2016). We recall that the image P was modeled 

as the sum of three terms: P = u + v + w. In this model, v is the smooth second order part, 

u is related to contours and w is linked to fine textures. Our primary interest is in the v 

component since it is related to the contrast and brightness of the image. Ischemic stroke 

region was more clearly enhanced using the values of λ and µ equal to 1 and 10, 

respectively. 

 

3.6. Segmentation 

The next step concerned the image segmentation, which was applied to the v 

component after the VM decomposition. Different segmentation methods were tested to 

enhance ischemic stroke for the whole database. Three different methods were compared: 

Expectation Maximization, K-Means and Mean Shift. 

 

3.6.1. Expectation Maximization Method 

The Expectation Maximization (EM) is iterative and starts from some initial estimate 

and then proceeds to an iteratively update until convergence is detected. Each iteration 

consists of an Expectation (E-step) and a Maximization (M-step) step (Bilmes, 1997), as 

it was described in Chapter 2. Each pair of E and M steps is considered one iteration. 

Thus, in the final assignment, each pixel of the final image will belong to only one cluster.  
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3.6.2. K-means 

K-Means is a clustering segmentation method similar to EM. The goal is to choose 

cluster centers that minimize the total squared distance between each point and its closest 

center. Each data value is assigned to the nearest partition based upon a similarity 

parameter, in this approach the Euclidean distance of intensity (Hartigan, 1979). At every 

step of the algorithm, partitions are then recalculated based on these hard assignments. 

The values of the partitions can alter at each successive step.  K-Means algorithms are 

typically faster when compared to other clustering algorithms (Spath, 1985). 

 

3.6.3. Mean Shift 

In the Mean Shift segmentation method each pixel was associated with a joint domain 

located in its neighborhood. The algorithm delineates the cluster by grouping all pixels 

that are closer than hs, which is the spacial domain bandwidth and hr, the range domain 

bandwidth. After the application of this approach, each pixel element will be assigned to 

a partition. The Mean Shift generates partitions characterized by a nonparametric model. 

We used the approach described by Comaniciu et al. with a different selection of spatial 

and range domains. The best results were achieved with (hs, hr) = (16, 4) (Comaniciu and 

Meer, 2002). 

 

3.7. Observers Evaluation 

Previously selected stroke exams were subjectively evaluated by neuroradiology 

specialists. Evaluations were performed in conjunction with the neurosurgeon Prof. 

Carlos Clayton, a professor at Botucatu Medical School-UNESP. Another experienced 
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radiologist and some radiology residents participated in the assessments. The evaluation 

of CT images followed the recommendations of the “Guidelines for the Early 

Management of Patients with Acute Ischemic Stroke” (Jauch et al., 2013).  

This publication provides guidance on the evaluation of ischemic stroke areas through 

ASPECTS scale, and regarding the correct choice of center and width of the windowing 

of the images, search for changes in symmetry between the cerebral hemispheres and 

assessment of the increase of density in the region of the middle cerebral artery 

(Bhadauria and Dewal, 2014).  

In this present research, a test was established to evaluate the performance of observers 

in a clinical environment based on a scoring system used by Tang et al. (Tang et al., 

2011). We selected our set of examinations, being 16 normal cases and 25 confirmed 

cases of acute ischemic stroke. Four resident radiologists from first, second and third year 

of residence and two experienced radiologists with ten and twenty years of experience in 

radiology, worked as observers in this study. All radiologists were from Botucatu Medical 

School in Brazil. They had no previous knowledge regarding the history of the patients, 

thus always blind if the patient had or not the presence of ischemic stroke.  

First, the set of raw images (with no processing) was analyzed. Observers were 

allowed to adjust contrast, brightness, and magnification of images according to their own 

experience in diagnosing stroke in clinical routine. For each case, each observer was 

required to give a score relating to the presence of acute stroke (definitely absent: 1, 

absent: 2, uncertain: 3, present: 4 and definitely present: 5). Then a new set of enhanced 

images was created resulting from our proposed approach, and observers repeated their 

evaluation and scored all images, again. The change of the score in diagnosis was tracked 

after the observation of enhanced images. Improvement changes were considered when 
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the observer changed his evaluation to the desired score. These analyses permitted to test 

the confidence of the diagnosis both before and after image enhancement. 

We also measured both sensitivity and accuracy of the performance of the observers 

before and after the enhanced images. Sensitivity is the true positive fraction, given that 

the subject has the ischemic stroke. Accuracy is the probability that a diagnostic 

evaluation is correctly performed. The Equations for both quantitative measures are given 

in Equations 21 and 22. The scores 1, 2 and 3 were considered as negative evaluations, 

and the scores 4 and 5 were considered as positive. 

Sensitivity=
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
      (21) 

Accuracy=
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)
      (22) 

where TP are true positives, TN are true negatives, FP are false positives and FN are false 

negatives. We also determined the confidence intervals for both sensitivity and accuracy 

measurements through the Wilson score method (Newcombe, 1998). 

We tracked the difference in scores that resulted from the analysis of the original 

images compared to the enhanced images. For the difference scores, one can consider a 

positive score when the observer changes his previous score from any given value to a 

higher one. For example, the original score was 3 (uncertain), and the observer changed 

after analyzing the enhanced image to a score of 4, which means that the stroke can now 

be visualized. Moreover, changes of the score from 4 to 5 which means a higher certainty 

in the location and determination of stroke. Additionally, negative scores represent false 

negative cases when observing the enhanced images. 
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Chapitre 3 - Résumé 

Le chapitre 3 concerne le matériel et les méthodes. Le comité d'éthique institutionnel local 

a approuvé le protocole de cette étude. Nous avons ainsi construit une base de données 

composée d'examens CT rétrospectifs obtenus au département d'imagerie diagnostique 

de l'école de médecine de Botucatu. Des critères d'inclusion et d'exclusion ont permis de 

sélectionner 25 cas sur 78 patients. Les informations présentées sur les rapports cliniques 

des patients, telles que l'évaluation par les échelles ASPECTS et le NIHSS, ont été 

incluses dans les résultats. 

Un algorithme est proposé pour améliorer la perception visuelle des accidents 

ischémiques. Après sélection des coupes d’images, une étape de seuillage et une 

projection sont appliquées pour réduire le bruit et les informations redondantes. Ensuite, 

une décomposition par modèle variationnel est utilisée sur la projection obtenue pour 

conserver la composante pertinente pour notre analyse. 

L'étape suivante concerne la segmentation de l'image. Différentes méthodes de 

segmentation ont été testées pour améliorer les accidents vasculaires cérébraux 

ischémiques pour l'ensemble de la base de données. Trois méthodes différentes ont été 

comparées : Expectation maximisation (EM), K-means et le décalage moyen (Mean 

shift). 

La méthode d’EM est très populaire en imagerie médicale. EM regroupe les pixels de 

l’image en différents groupes en utilisant une distribution gaussienne probabiliste. Le 

modèle de mélange est composé d'une somme de K distributions gaussiennes, chaque 

distribution ayant ses propres paramètres. L'algorithme commence à partir d'une 

estimation initiale avant de procéder à une mise à jour itérative jusqu'à la convergence. 

Chaque itération comprend une évaluation (E-step) et une maximisation (M-step). Toutes 

les étapes ont été effectuées à l'aide du logiciel Matlab R2014a. 

Ensuite, un test d’évaluation est mis en place pour évaluer la performance des 

observateurs dans un environnement clinique basé sur un système de notation. Quatre 

radiologistes résidents de 1ère, 2ème et 3ème années de résidence et deux radiologues 

expérimentés avec dix et vingt ans d'expérience en radiologie en tant qu'observateurs. 
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Aucune connaissance préalable concernant les antécédents des patients n’a été fournie 

aux observateurs. 

Tout d'abord, l'ensemble des images sans traitement a été analysé. Les observateurs ont 

ajusté le contraste, la luminosité et le grossissement des images en fonction de leur propre 

expérience. Pour chaque cas, chaque observateur devait donner un score relatif à la 

présence d'un accident vasculaire cérébral aigu (définitivement absent: 1, absent: 2, 

incertain: 3, présent: 4 et définitivement présent: 5). Ensuite, le même processus 

d’observation pour chaque radiologue a été répété sur un nouvel ensemble d’images 

améliorées. Le changement du score dans le diagnostic a été observé après visualisation 

des images améliorées par les radiologues. Les changements d'amélioration ont été pris 

en compte lorsque l'observateur a modifié son évaluation pour obtenir le score souhaité. 

Ces analyses ont permis de tester la confiance du diagnostic avant et après l'amélioration 

des images. Nous avons également mesuré la sensibilité et la précision des performances 

des observateurs avant et après les images améliorées. 
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Chapter 4 

4. Results and Discussion 

In this thesis, we proposed an approach to enhance the visual perception of ischemic 

stroke in Non-Enhanced CT scans. The selected stroke cases were imaged with four or 

less hours after the symptom’s onset. Two experienced radiologists selected all ground 

through stroke cases both clearly evident cases as well as complicated cases. However, 

those two specialists did not participate in the observer’s evaluation section. 

 In this study, the mean age of patients was 68.89 ± 10.41 years for stroke and 

66.76 ± 9.36 for control. No significant difference was found between stroke patients and 

controls for age (p-value = 0.1735) using Student’s t-test. Stroke patients had a mean 

NIHSS of 13 ± 7 and mean ASPECTS of 7 ± 2. The complete results of NIHSS and 

ASPECTS are presented in Appendix 2. 

Although 78 stroke patients were selected at the beginning of this study, only 23 were 

included in the final analysis. This occurred because many of the patients had previous 

brain lesions that could be confused with acute stroke regions. Another reason that led to 

the non-inclusion of some cases was when computed tomography was performed outside 

the therapeutic window of 4.5 hours after the first symptoms, which was one of our 

exclusion criteria. 

After the selection of the 23 stroke cases, as well as the 16 control cases, all sequence 

of analyzed images passed through the image processing steps described in the flowchart 

of Figure 8. Figure 14A-E illustrate the ischemic density changes in adjunct CT slices of 
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the same patient. While Figure 14F presents the resulting image after computing the 

projection using slices A to E.  

 

 
Figure 14- A-E)- Adjunct slices sequence with the presence of the subtle density changes in 

the same patient. F is the result of the projection involving slices A, B, C, D and E. Stroke is 

present in the left frontal lobe of the brain, as indicated by the red arrow. 

 

The image averaging technique was used to reduce noise and improve the perception 

of stroke while using subsequent slices with slightly different anatomical structures 

(Figure 14). This was considered an acceptable tradeoff by the physician’s analysis.  

After this stage, the Variational Model decomposition helped to enhance the contrast 

and the brightness of the images. Representative examples of enhanced final images from 

different patients are presented in Figure 15. On the top, corresponding to letters A, B, C 

and D are presented the images resulting from the image averaging step of three different 

patients with stroke and one control case. On the second, third and fourth rows are 

presented the enhanced images according to our proposed approach accounting the band-

pass filtering, followed by the VM decomposition and the segmentation methods. The 

difference between second, third and fourth row are accounted from the segmentation 

method used, being EM, K-Means, and Mean-Shift respectively. For the EM, images 
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correspond to letters E, F, G and H. For K-Means, the images are I, J, K and L. For the 

Mean-Shift method, images correspond to letters M, N, O, and P.  

 

Figure 15 - Average images for three different patients with stroke (A, B, C) and one control 

(D). Red arrows indicate the region of ischemic stroke in images A, B and C. Enhanced images 

are shown in second, third and fourth rows. EM approach (E, F, G, H), followed by K-Means (I, 

J, K, and L) and Mean-Shift (M, N, O, P). Six clusters are highlighted after the segmentation 

process with the EM and K-Means methods. For Mean-Shift we used hs = 16 and ht = 4, in 

which hs is the spacial domain bandwidth and hr is the range domain bandwidth. 
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The purpose of the segmentation was to enhance the visual perception of ischemic 

stroke for the physician’s subjective analysis. It was not the intention of the authors to 

perform a complete automatic segmentation of the stroke region. A key question for the 

EM and k-means approach is to choose the number of clusters that will segment the pixel 

intensities.  

In this case, our target was to achieve a number that would both benefit the visual 

enhancement of the regions of interest with no additional cost in computational time. This 

is an important issue since the main goal is to apply this algorithm in a medical diagnosis 

workstation since available workstations do not possess necessarily high-end computer 

processors. If the number of clusters is too large, the model will increase the 

computational cost vastly and highly comprise the diagnosis time, which is a crucial point 

in detecting early signs of ischemic stroke.  

For the EM and K-Means methods, a different number of clusters were tested to 

achieve the best-enhanced image possible. This was determined in a previous evaluation 

of those images with an experienced radiologist. Stroke was more clearly enhanced when 

the number of clusters, K was equal to six in both methods.  

The average elapsed time for each patient analysis is 141.6 ± 1.5 seconds. Our 

experiments were performed on machines running Intel® processors with 2.4GHz CPU 

frequency and having 32 GB of memory. Table 4 shows the table of sensitivity and overall 

specificity of the three targeting segmentation methods. 
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Table 4 - Sensitivity and Accuracy using the three segmentation methods Maximization of 

Expectation (EM), K-Means and Mean-shift. The values are in percentage followed by the 

confidence interval. 

 Sensitivity (%) Accuracy (%) 

Method Original Enhanced Original Enhanced 

EM 64,5 89,6 83,3 91,7 

K-Mean 64,5 74,2 83,3 71,5 

Mean-shift 64,5 69,5 83,3 72,3 

 

When comparing the three segmentation methods, EM was superior to both K-Means 

and Mean-Shift methods in the majority of evaluated cases for the observer’s 

performance. Then, all following results considered the observer's evaluation in enhanced 

images with the EM approach only. The complete assessment of all selected cases of 

ischemic stroke and control cases by all observers are summarized in Table 5.  The results 

show the sensitivity and accuracy obtained for each observer both before and after 

evaluating the enhanced images.  
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Table 5 - Observer’s evaluation before and after the enhanced images. R1 to R4 are resident 

physicians of radiology. E1 and E2 are the experienced radiologists. Parameters evaluated were 

sensitivity and specificity. For both of them, we evaluated the mean values and the confidence 

interval. 

  Sensitivity (%) Accuracy (%) 

Observers 

 

Original Enhanced Original Enhanced 

  Mean CI Mean CI Mean CI Mean CI 

R1 26.1 (12.5 - 46.7) 60.9 (40.8 - 77.8) 81.3 (57.0 - 93.4) 87.5 (63.9 - 96.5) 

R2 52.2 (32.9 - 70.7) 78.3 (58.1 - 90.4) 93.7 (71.7 - 98.9) 93.7 (71.7 - 98.9) 

R3 65.2 (44.9 - 81.2) 82.6 (62.9 - 93.0) 93.7 (71,7 - 98.9) 93.7 (71,7 - 98.9) 

R4 78.3 (58.1 - 90.4) 87.0 (67.9 - 95.5) 100 (80.7 - 100) 100 (80.7 - 100) 

E1 73.9 (53.3 - 87.5) 91.3 (73.2 - 97.6) 75.0 (50.5 - 89.8) 75.0 (50.5 - 89.8) 

E2 91.3 (73.2 - 97.6) 100 (85.7 - 100) 93.7 (71.7 - 98.9) 100 (80.7 - 100) 

Overall 64.5 (56.2 - 72.0) 89.6 (81.8 - 94.2) 83.3 (76.3 - 88.7) 91.7 (84.4 - 95.7) 

 

The choice for the confidence interval to represent both sensitivity and accuracy was 

made because this estimate is relatively close to the data itself, being on the same scale 

of all the measurements. We also compared the difference scores for all observers 

analyzing the original images and then the enhanced images for stroke cases. For a better 

visualization of scores, the observers R1, R2 and R3 were joined in the graph of Figure 

16 and observers R4, E1, and E2 in the graph of Figure 17. As can be seen, for the majority 

of cases, enhanced images by our approach, enable better diagnosis of the presence of 

stroke. 
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Figure 16 - Difference scores for the observers R1, R2, and R3 are represented in the graphs 

above from top to bottom respectively. The difference was obtained when the score given for the 

enhanced images are compared to the score given for the original images. Positive values 

indicate an enhancement in diagnosis. Negative changes indicate false negative cases. 
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Figure 17-  Difference scores for the observers R4, E1, and E2 are represented in the graphs 

above from top to bottom respectively. The difference was obtained when the score given for the 

enhanced images are compared to the score given for the original images. Positive values 

indicate an enhancement in diagnosis. Negative changes indicate false negative cases. The 

resident 4 was included in this analysis since its results were more similar to the experienced 

radiologists. 

 

With the observer’s evaluation, we examined the impact of enhanced images on the 

score of diagnosis. The overall sensitivity of the observer’s analysis was 63.9% and 

changed to 78.9% after the evaluation of the enhanced images. The overall accuracy was 

of 67.4% and increased to 78.2%. Considering the three least experienced the 

improvement was even more remarkable from 46.2% to 69.9% for sensitivity and from 

57.6% to 71% for accuracy. This great improvement was also showed in the difference 

score graphs. The maximum difference score was 2 (Figure 16 and Figure 17), since the 

maximum changes occurred when observers first assigned the score 3 and then changed 

to score 5 after analyzing the enhanced images. In general, all observers agreed that the 

proposed approach helps to clarify difficult cases of acute ischemic stroke. 
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One of the great advantages of our approach is that it can be easily implemented in any 

workstation to aid clinical diagnosis since we have a low computational cost. This tool 

can be a great help for inexperienced physicians. One limitation of our approach is that it 

is not entirely automatic since it depends on the physician selection of the slices before 

the application of the algorithm. After this stage, all subsequent steps are entirely 

automatic.  

 

Chapitre 4 - Résumé 

Le chapitre 4 présente tous les résultats de l’application de notre approche sur des images 

CT. Les résultats de l’évaluation des observateurs avant et après rehaussement des images 

sont aussi décrits. Notre technique a fourni des images améliorées qui ont permis aux 

médecins d’établir un diagnostic plus fiable de l'AVC ischémique lors des examens de 

tomodensitométrie. Des exemples représentatifs de ces images améliorées pour différents 

patients sont aussi présentés. 

La sensibilité globale de l'analyse de l'observateur est passée de 64,5% à 89,6% après 

évaluation des images améliorées. La spécificité globale était de 83,3% et a augmenté à 

91,7%. En comparant les trois méthodes de segmentation, EM était supérieure aux 

méthodes K-Means et Mean-Shift dans la majorité des cas évalués pour la performance 

de l'observateur. Ainsi, pour la suite, l'évaluation des observateur s’est effectuée 

uniquement avec les images améliorées par l’algorithme EM.  

Nous avons également comparé les scores de différence de tous les observateurs analysant 

les images d'origine, puis les images améliorées pour les cas d'accident vasculaire 

cérébral. De cette manière, on pouvait tester si les images améliorées permettaient un 

diagnostic plus fiable. L'amélioration de la sensibilité était plus remarquable pour les trois 

médecins les moins expérimentés. Cette grande amélioration a également été montrée 

dans les graphiques de score de différence. Pour ces cas, les images améliorées ont permis 

une plus grande fiabilité dans le diagnostic de l'AVC ischémique. 
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Néanmoins, au chapitre 4, nous avons comparé les résultats obtenus avec les résultats 

précédents trouvés dans la littérature, ainsi qu'avec d'autres aspects pertinents pour la 

discussion. 
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Chapter 5 

5. Conclusion  

In this research, a novel approach based on a Variational Model and the Expectation 

Maximization method was used to enhance the ischemic stroke perception in non-

enhanced computed tomography examinations. All proposed objectives were achieved as 

described below: 

• We constructed a database with retrospective CT examinations of patients with 

confirmed ischemic stroke from Botucatu Medical School. Seventy-eight stroke 

cases were pre-selected, and twenty five were included in the final approach after 

inclusion and exclusion criteria assessment.  

• We developed a computational algorithm in Matlab® environment to enhance 

ischemic stroke areas in CT images to improve their visualization when compared to 

the healthy brain tissue; 

• We compared three different segmentation methods (Expectation Maximization, K-

means, and Mean-shift) to achieve the best enhancement in ischemic stroke cases; 

our results indicated that the EM method resulted in the best enhancement of 

ischemic stroke in our database. 

• We performed a test to evaluate the performance of observers in a clinical 

environment with a subjective evaluation of the stroke cases performed by 

radiologists. They evaluated both original and enhanced images, and we showed 

through sensitivity and accuracy scores that enhanced images provided a more 

reliable stroke diagnosis. Thus, we demonstrated that enhanced images improved 

physician’s performance to diagnose early signs of acute stroke. 
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• All those results showed the importance of a computational tool to assist 

neuroradiology decisions, especially in critical situations such as institutions that do 

not have stroke specialists.  

• As future perspectives for our work, the tools developed in our research could be 

used not only in non-enhanced CT scanners but also with other imaging techniques 

such as MRI and computed tomography with perfusion.  

• Our tools could be tested in association with a deep learning technique especially for 

segmentation purposes. Computer-assisted diagnosis with deep learning could 

provide an effective tool of rapidly diagnosing it.  

• We proved that enhanced images with our approach might mainly increase the 

potential candidates for thrombolysis treatment since they increase the chances of 

finding early signs of ischemic stroke in patients submitted to CT scans. 

• Our final paper of this thesis named “Ischemic Stroke Enhancement using a 

Variational Model and the Expectation Maximization Method” was published in 

April 2018 in European Radiology journal (Alves et al., 2018), and it can be found 

in Appendix 4. 

 

 

Chapitre 5 - Résumé 

Dans cette étude, une nouvelle approche a été proposée pour améliorer la perception 

de l'AVC ischémique lors d'examens de CT non améliorés. Tous les objectifs proposés 

ont été atteints : 

 Nous avons construit une base de données d’examens CT rétrospectifs de 

patients chez lesquels un AVC ischémique était confirmé, 
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 Nous avons développé une approche sous l'environnement Matlab pour 

améliorer les zones d’AVC ischémiques dans les images CT, 

 Une étude comparative a été effectuée entre trois méthodes de segmentation 

différentes (EM, K-means et Mean-shift) pour obtenir la meilleure 

amélioration dans les cas d'accident ischémique cérébral, 

 Un test a été proposé pour évaluer la performance des observateurs dans un 

environnement clinique avec une évaluation subjective des cas d’AVC, 

 Nous avons démontré que les images rehaussées amélioraient les performances 

du médecin pour diagnostiquer les premiers signes d’un AVC aigu. 

Tous ces résultats ont montré l’importance d’un outil informatique facilitant la prise 

de décision en neuroradiologie. 

Notre dernier article intitulé « Ischemic Stroke Enhancement using a Variational 

Model and the Expectation Maximization Method » a été publié en avril 2018 dans la 

revue European Radiology (Alves et al., 2018). Vous le trouverez à l'annexe 4.  
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Appendix 1  

The document below refers to the approval of this research with accordance to The 

Research Ethics Committee according to Brazilian regulations (CAAE: 

52457315.3.0000.5411). This document approved the use of all images and patient 

information in this research obtained from Botucatu medical School (Brazil). 
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Appendix 2 

Table 6 - - presents the group of patient with stroke with their NIHSS score, ASPECTS 

previous evaluation, and the subjective evaluation for all observers (1 – 6). Subjective evaluation 

1 (E1) refers to the evaluation of original images, and the subjective evaluation 2 (E2) refers to 

the evaluation of enhanced images. Difference scores (Dif) represents the score in E2 minus E. 

Patient NIHSS ASPECTS 

O1 O2 O3 O4 O5 O6 

E1 E2 Dif E1 E2 Dif E1 E2 Dif E1 E2 Dif E1 E2 Dif E1 E2 Dif 

1 14 9 4 4 0 4 4 0 4 4 0 3 4 1 5 5 0 5 5 0 

2 16 6 3 4 1 4 5 1 5 5 0 5 5 0 5 4 0 5 5 0 

3 19 9 4 4 0 4 4 0 4 4 0 4 5 1 5 5 0 5 5 0 

4 16 5 4 5 1 5 5 0 5 5 0 5 5 0 5 5 0 5 5 0 

5 13 9 4 4 0 5 5 0 4 4 0 5 5 0 5 5 0 5 5 0 

6 22 6 3 4 1 4 4 0 5 5 0 5 5 0 5 5 0 5 5 0 

7 4 8 3 4 1 2 4 2 4 4 0 4 4 0 3 3 0 5 5 0 

8 6 10 2 3 1 2 3 1 2 4 2 4 4 0 5 5 0 3 5 2 

9 21 9 3 4 1 3 4 1 4 4 0 5 5 0 3 5 2 5 5 0 

10 3 9 2 2 0 5 4 -1 4 4 0 5 5 0 5 5 0 5 5 0 

11 15 9 3 3 0 5 5 0 4 4 0 4 4 0 3 3 0 5 5 0 

12 2 9 3 4 1 4 4 0 4 4 0 5 5 0 5 5 0 5 5 0 

13 21 6 2 3 1 3 4 1 3 4 1 4 4 0 5 5 0 5 5 0 

14 20 3 3 4 1 4 5 1 5 5 0 5 5 0 5 5 0 5 5 0 

15 24 9 3 4 1 4 5 1 4 4 0 2 2 0 5 5 0 3 4 1 

16 12 9 3 3 0 4 5 1 4 4 0 4 4 0 5 5 0 5 5 0 

17 21 6 2 2 0 3 3 0 2 4 2 3 3 0 5 5 0 5 5 0 

18 15 7 4 4 0 3 4 1 3 3 0 4 5 1 5 5 0 5 5 0 

19 4 8 4 5 1 2 4 2 2 4 2 3 3 0 4 4 0 5 5 0 

20 3 9 3 4 1 4 5 1 2 3 1 4 5 1 3 4 1 5 5 0 

21 17 5 2 1 -1 2 3 1 2 3 1 2 2 0 4 4 0 5 5 0 

22 7 8 3 2 -1 2 1 -1 2 2 0 3 4 1 3 4 1 4 5 1 

23 3 6 3 3 0 3 3 0 3 4 1 4 4 0 3 4 1 5 5 0 
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Appendix 3 

Table 7 - Group of control patient with the subjective evaluation for all observers (1 – 6). 

Subjective evaluation 1 (E1) refers to the evaluation of original images, and the subjective 

evaluation 2 (E2) refers to the evaluation of enhanced images. Difference scores (Dif) represents 

the score in E2 minus E1. 

Patient 

O1 O2 OB3 OB4 OB5 OB6 

E1 E2 Dif E1 E2 Dif E1 E2 Dif E1 E2 Dif E1 E2 Dif OR PR Diff 

1 2 2 0 1 1 0 1 1 0 2 1 1 3 3 0 1 1 0 

2 2 3 -1 3 3 0 4 4 0 2 2 0 3 3 0 3 3 0 

3 2 2 0 2 1 1 2 2 0 2 1 1 4 4 0 2 2 0 

4 2 2 0 3 2 1 1 1 0 2 1 1 3 1 2 3 3 0 

5 2 1 1 2 1 1 2 1 1 2 3 -1 2 3 -1 3 1 2 

6 3 4 -1 3 1 2 3 2 1 3 2 1 3 3 0 1 1 0 

7 2 1 1 2 1 1 1 2 -1 2 2 0 3 4 -1 1 1 0 

8 2 2 0 2 1 1 2 2 0 2 2 0 3 3 0 1 1 0 

9 1 2 -1 2 3 -1 2 2 0 3 3 0 3 2 1 1 1 0 

10 3 1 2 2 1 1 2 1 1 2 2 0 2 2 0 4 1 3 

11 4 3 1 2 2 0 2 2 0 2 2 0 3 3 0 1 1 0 

12 4 3 1 4 2 2 2 2 0 3 3 0 5 5 0 3 1 2 

13 4 3 1 3 1 2 2 1 1 3 3 0 3 2 1 1 1 0 

14 3 4 -1 2 4 -2 2 2 0 2 2 0 3 3 0 1 1 0 

15 2 2 0 3 1 2 3 2 1 2 2 0 3 3 0 1 1 0 

16 2 1 1 2 1 1 1 1 0 3 3 0 3 3 0 1 1 0 
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Appendix 5 

The author, Allan Felipe Fattori Alves, published the following papers during the 

period of his PhD. We present the first page of those papers in the sequence below. 
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Allan Felipe FATTORI ALVES 

 
Traitement d’images pour le rehaussement de l'AVC ischémique sur des 

examens de tomographie 

Résumé : L’Accident Vasculaire Cérébral (AVC) est l'une des principales causes de décès dans 
le monde. Le scanner et l'Imagerie par Résonance Magnétique (IRM) sont les deux principales 
techniques d'imagerie utilisées pour détecter les AVC. L’examen par scanner reste donc la 
principale méthode de diagnostic. Dans la plupart des cas, l'évaluation de la région cérébrale 
compromise est effectuée de manière subjective et peut entraîner des difficultés pour déterminer 
la région atteinte. Ce travail de thèse propose une approche basée sur un algorithme permettant 
de mettre en évidence les régions atteintes d’AVC ischémique dans les examens de scanner 
rétrospectifs. Différentes méthodes de traitement des images ont été utilisées pour réhausser les 
régions des tissus ischémiques. Afin de permettre aux médecins moins expérimentés de détecter 
de manière fiable les signes précoces AVC, une nouvelle approche est proposée pour améliorer 
la perception visuelle de l’accident ischémique cérébral. Une série de 41 images scanner 
rétrospectifs ont été utilisées, réparties en 25 cas d’AVC ischémiques et 16 patients normaux. 
Les cas d'AVC ont été obtenus dans les 4,5 heures suivant l'apparition des symptômes. Après la 
sélection des coupes importantes, une moyenne d'image est effectuée pour réduire le bruit. 
Ensuite, un modèle de décomposition variationnelle est appliqué afin de conserver la composante 
pertinente de l'image. Enfin, un algorithme d’espérance-maximisation est appliqué. Un test est 
proposé afin d’évaluer la performance des observateurs dans un environnement clinique avec et 
sans l'aide d'images rehaussées. La sensibilité globale de l'analyse de l'observateur a été 
améliorée de 64,5% à 89,6% et la spécificité de 83,3% à 91,7%. Ces résultats montrent 
l'importance d'un outil informatique d'aide à la décision en neuroradiologie, notamment dans les 
situations critiques telles que le diagnostic d'accident ischémique cérébral. 

Mots clés: Accident vasculaire cérébral. Cerveau. Algorithmes. Scan tomographique. Diagnostic 
précoce. 

 Image Processing for Enhancement of Ischemic Stroke in Computed 
Tomography Examinations 

 

Abstract : Stroke is one of the highest causes of death worldwide. Non-enhanced computed 
tomography (CT) and nuclear magnetic resonance imaging (MRI) are the two main imaging 
techniques used to detect stroke. CT has a lower cost and greater accessibility of the population, 
so it is still the main method used. In most cases, the assessment of the compromised brain area 
is performed subjectively and may lead to difficulties in diagnosis. This research proposes an 
approach based on a computational algorithm, highlighting regions of ischemic stroke. Different 
image processing methods were used to enhance ischemic tissues.  A set of 41 retrospective CT 
scans from Botucatu Medical School (Brazil) was used, divided into 25 cases of acute ischemic 
stroke and 16 normal patients. Stroke cases were obtained within 4.5 h of symptom onset. After 
selection of CT slices, image averaging was performed to reduce the noise. This was followed by 
a variational decomposition model and the expectation maximization method was applied to 
generate enhanced images. We determined a test to evaluate the performance of observers in a 
clinical environment with and without the aid of enhanced images. The overall sensitivity of the 
observer’s analysis was 64.5 % and increased to 89.6 % and specificity was 83.3 % and increased 
to 91.7 %. These results show the importance of a computational tool to assist neuroradiology 
decisions, especially in critical situations such as the diagnosis of ischemic stroke.  

Keywords: Stroke. Brain. Algorithms. Computed Tomography. Early diagnosis. 
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