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Abstract

The formation of the continental crust is a major consequence of Earth di�erentiation.
Understanding how the crust formed and evolved through time is paramount to locate
the vast mineral deposits hosted therein and address its in�uence on the global climate,
ultimately a�ecting the development of terrestrial life. Recent advances on the topic
of continental crust evolution bene�ted from improvements of analytical techniques en-
abling in situ measurements of U�Pb�Hf�O isotope compositions in zircon, a widespread
accessory mineral of continental igneous rocks. The time constrains derived from the U�
Pb chronometer coupled with the petrogenetic information retrieved from Hf�O isotope
signatures are currently used to unravel the diversity and succession of magmatic events
a�ecting the continental crust at the regional and global scales.

This study reconstructs the evolutionary path followed by the crust segment today ex-
posed in the eastern part of the French Massif Central (FMC), a portion of the Variscan
belt of Western Europe, with the aim to investigate the potential �aws of the zircon
record of crust evolution. In this scope, the origin and geodynamic signi�cance of the
constituent FMC lithological units are tackled by combining conventional petrological
observations with zircon U�Pb�Hf�O isotope data. The results obtained following this
integrated approach are then confronted to the conclusions that would have been drawn
solely from zircon isotopic signatures, taken out of their petrological context, as is com-
monly performed in studies investigating crust evolution.

The oldest rocks of the FMC correspond to Ediacaran (590�550 Ma) meta-sediments
deposited in back-arc basins along the northern Gondwana margin. Such basins were
fed by a mixed detritus originating from the adjacent Cadomian magmatic arc and a
distal Gondwana source, presumably the Sahara Metacraton. Partial melting of these
meta-sediments at the Ediacaran/Cambrian boundary led to voluminous S-type granitic
magmatism, pinpointing a �rst major crust reworking event in the FMC. The origin of
anatexis likely stems from the transient thickening of the hot, back-arc crust caused by
the �attening of the Cadomian subduction. Subordinate melting of the depleted back-
arc mantle at that time is also documented. During the Lower Paleozoic, rifting of the
northern Gondwana provoked coeval crust and (limited) mantle melting. Mantle-derived
igneous rocks show markedly diverse trace element and isotopic signatures, consistent
with a very heterogeneous mantle source pervasively modi�ed by the Cadomian sub-
duction. Finally, the Variscan collision resulted in crustal melting as evidenced by the
emplacement of S-type granites and the formation of migmatite domes, the spatial dis-
tribution of which being partly controlled by the crustal architecture inherited from
pre-orogenic events. Synchronous intrusion of ma�c mantle-derived magmas and their
di�erentiates testify for Variscan post-collisional new continental crust production in the
FMC.
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Two major inconsistencies exist between these results and the zircon record. First,
zircon Hf model ages would point to substantial Mesoproterozoic crust formation in the
FMC whereas more than 60% of the crust is actually Neoproterozoic in age. Second, new
additions to the continental crust volume during the Variscan orogeny are not recorded
even though 5 to 10% of the exposed crust formed at that time. The origin of both dis-
crepancies inherently lies in the mixed isotopic signature carried by many zircon grains.
Such equivocal information can only be detected when additional petrological constrains
on the zircon host rocks are available and provide guidance in interpreting the zircon
record of crust evolution.

Keywords: crust evolution, zircon U�Pb�Hf isotopes, Cadomian orogeny, Variscan
orogeny, collisional magmatism, French Massif Central.
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Chapter 1

Introduction

1.1 The continental crust

1.1.1 Structure and composition

By de�nition, the continental crust is the section of the continental lithosphere lying
above the Moho seismic discontinuity and laterally bounded by the continental slope,
at the transition zone with the low-lying oceanic crust (Davidson and Arculus, 2006;
Rudnick and Gao, 2003). The continental crust has an average thickness of ∼ 35�
40 km (Mooney et al., 1998) and multi-methods studies based on surface heat �ow
measurements, seismic pro�les and large-scale geochemical surveys concluded that it has
a bulk andesite/diorite composition (Christensen and Mooney, 1995; Gao et al., 1998;
Holbrook et al., 1992; Rudnick and Fountain, 1995; Rudnick and Gao, 2003; Wedepohl,
1995). A similar conclusion was drawn by Taylor (1977) and Taylor and McLennan (1985;
1995) but these authors' estimates relied on a partisan mode of new crust formation and
not uniquely on quanti�able geological observations.

Based on seismic data, the continental crust may be subdivided into three layers of
contrasted P-wave velocities and chemical compositions (see Fig. 1.1): the upper and
middle crusts (each corresponding to c. 30% of the bulk section, sometimes grouped
together) are granodioritic while the lower crust (the remaining 40%) has a gabbroic
composition (Christensen and Mooney, 1995; Gao et al., 1998; Rudnick and Fountain,
1995; Rudnick and Gao, 2003; Wedepohl, 1995). The boundary between these crustal
domains is sometimes underlined by the so-called Conrad seismic discontinuity (Fig. 1.1).
The upper crust typically features volcanic, plutonic and sedimentary lithologies which
metamorphosed equivalents (up to the amphibolite-facies) are common in the middle
crust. The lower crust is built up by granulite-facies meta-igneous (mostly gabbroic) and
metasedimentary rocks (Rudnick and Gao, 2003). Coupled to its lithospheric mantle root,
the silica-rich continental crust forms thick, buoyant and poorly subductable masses at
the surface of the Earth.

1.1.2 From mantle to continental crust...

The continental crust has been extracted from the Earth mantle for more than 4 billion
years (Bowring and Williams, 1999; Iizuka et al., 2006). Importantly, rocks of granodi-
orite compositions are not in equilibrium with the mantle, meaning that the upper and
middle crusts must originate from the di�erentiation of a basaltic precursor (the most
common magma type formed by mantle melting). Such process may occur through: (i)
fractionation of primary basaltic magmas, (ii) melting of pre-existing ma�c lithologies
or/and (iii) weathering and erosion of similar rocks (Anderson, 1982; Rudnick and Foun-
tain, 1995; Taylor and McLennan, 1995), even though the latter e�ect has proven less sig-
ni�cant than magmatic processes (Hawkesworth and Kemp, 2006a). In this manuscript,
the term crustal di�erentiation, generally taken as the whole set of phenomena that leads
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Figure 1.1: Sketch column diagram showing the structure, composition and seismic properties of
standard continental crust. Temperatures prevailing at di�erent crustal levels are those calculated
by Chapman (1986). The "Upper Crust" gathers both the upper and middle crusts described in
text. Figure from Wedepohl (1995).

to a strati�ed crust section, is strictly used in a crust evolution perspective and will re-
fer to the conversion of basaltic precursors into upper/middle crustal intermediate/felsic
lithologies via the above-mentioned processes.

Clearly, the basaltic �ux from the mantle contrasts with the bulk crust andesite com-
position and entails that formation of new crust necessarily requires a ma�c component to
return back to the mantle, most probably via the foundering of dense cumulates and/or
residues left after upper/middle crust extraction (Arndt and Goldstein, 1989; Davidson
and Arculus, 2006; Kay and Mahlburg-Kay, 1991; Rudnick, 1995; Rudnick and Gao,
2003; Taylor, 1977; Taylor and McLennan, 1985; Zandt et al., 2004). This would also
account for the fact that the lower crust composition is not complementary to that of
the upper/middle crust (Hawkesworth and Kemp, 2006a).

1.1.3 ...in a one- or two-stage process?

Production of new continental crust necessitates: (i) addition of mantle-derived mag-
mas to a pre-existing crustal volume; (ii) di�erentiation of the basaltic precursor; (iii)
foundering of ma�c residual materials in the mantle. These successive steps may occur
concurrently or be temporally decoupled leading to two contrasted views on how new
crust is formed.

A �rst model taken as "one-stage" or "island-arc" argues that accretionary orogens (in
the sense of Scholl and Von Huene, 2009) are the main locus of new crust production, at
least in Phanerozoic times (Arculus, 1999; Hawkesworth and Kemp, 2006a; Vogel et al.,
2004). There, melting of the mantle wedge supplies large volumes of basaltic magma
which evolve by fractional crystallization (and possible assimilation) in the arc crust
towards granodiorite compositions meanwhile the ma�c dense cumulates are delaminated
in the mantle (see Kelemen et al., 2003, and references therein). In other words, new,
di�erentiated crust forms in a short time span, in a single geodynamic setting. This model
is supported by the fact that some trace element ratios displayed the bulk continental
crust markedly resemble that of island arc basalts (IAB, see Arculus, 1999). Besides,
estimates of the magma volumes erupted in di�erent settings indicate that convergent
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margins host the largest input of mantle-derived magmas, thus most likely to generate
substantial amounts of new crust.

Alternatively, a "two-stage" model postulates that the processes at stake in the gen-
eration of new continental crust do not operate synchronously (at geological time scale).
A �rst mantle melting event would supply basaltic magmas to the continental crust
(Downes, 1993) or a transient reservoir such as oceanic plateaux (Albarede, 1998) and the
MOR oceanic crust (Niu et al., 2013). After a period of geological quiescence, changes
in the magmatic/tectonic regime e.g. continent�continent collision or oceanic plateau
accretion would provoke melting and associated di�erentiation of the basaltic precursor
(Niu et al., 2013), forming new continental crust. Delamination of dense ma�c residua
would take place synchronously (Arndt and Goldstein, 1989). This way, the model tem-
porally separates the mantle extraction stage from the di�erentiation stage (melting plus
foundering of the most ma�c components).

1.1.4 Crust recycling, growth and reworking

The inherent dynamics of subduction zones promote the foundering of upper-crustal,
intermediate to acid lithologies in the mantle by sediment subduction and subduction
erosion (Clift, 2004; Stern, 2011; Von Huene and Lallemand, 1990). Such phenomenon
clearly destroys continental crust materials and is referred to as crust recycling. The latter
do not encompass the loss in the mantle of ma�c cumulates/residues left after crustal
di�erentiation, independently necessary to account for the bulk crust composition.

The extent of crust recycling would be as high that the net gain to the crust volume
(the di�erence between crust formation and destruction) would currently be null (Clift
et al., 2009; Scholl and Von Huene, 2009; Stern and Scholl, 2010). In the following, crustal
growth will be regarded as the positive imbalance between new crust production and crust
destruction, after subtraction of the baseline ma�c cumulates/residues foundering.

Lastly, crust reworking is taken as the magmatic processes that re-shape pre-existing,
di�erentiated crustal lithologies, i.e. sediments and intermediate/felsic igneous rocks. Re-
working does not participate to crust di�erentiation from a crust evolution perspective
(see previous section). Nevertheless, the upwards transport of crust-derived magmas
certainly reinforces the continental crust chemical layering and contributes to its sta-
bilisation by concentrating the incompatible, heat-producing elements in its uppermost
part (Michaut and Jaupart, 2007). Weathering and sedimentation are not included in
this de�nition of crust reworking because erosion of basaltic rocks do participate to the
di�erentiation of the crust.

How to track crustal growth If the continental crust is not currently growing, the
present-day 7.2 × 109 km3 of crustal materials provide unambiguous evidence for past
crustal growth. Challenging questions are: when was the continental crust extracted
from the mantle and at which pace? Was crustal growth a continuous or discrete process?
Addressing them converts into estimating the crustal residence time of each fragment of
the present-day crust, i.e. when was it �rst incorporated to the crustal volume, before
being potentially reworked during subsequent geological events? If the very �rst seed
of newborn crust is a mantle-derived basaltic magma, new additions to the continental
crust are best pinpointed by the crystallization of intermediate to acid magmatic rocks
originating from such basaltic precursors (Hawkesworth and Kemp, 2006a;b), i.e. by the
crust di�erentiation stage. On these grounds, recent advances on the topic of crustal
growth bene�ted from the study of zircon ZrSiO4, primarily encountered as an accessory
mineral of intermediate to acid igneous rocks (Hoskin et al., 2000). Such advances are
summarized in the next section.
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1.2 The zircon record of crust evolution

The reader can found detailed discussions on this topic in the excellent reviews of
Hawkesworth et al. (2010); Cawood et al. (2013) and Roberts and Spencer (2014).

1.2.1 Zircon U�Pb�Hf�O isotope compositions

U�Pb geochronology

When zircon crystallizes, it incorporates U but virtually no Pb and thus can be dated
via the U�Pb geochronometer. This mineral is extremely resilient to weathering, erosion,
transport, and high-grade metamorphism (see discussion in Mezger and Krogstad, 1997)
so that it preserves the record of the earliest events on Earth (Amelin et al., 1999). In
the past 20 years, the improvement of laser ablation techniques enabled to routinely date
in situ portions of zircon crystals (Jackson et al., 2004; Hirata and Nesbitt, 1995). Such
strong spatial control coupled to high quality cathodoluminescence imaging of the grain
interiors allows to unravel complex zircon crystallization histories (e.g. Vavra et al.,
1999).

Hf�O isotopes

Zircon accommodates noticeable amounts of Hf in its lattice (up to the %) but few Lu
(Fujimaki, 1986), such that in situ measurements of the Yb�Lu�Hf isotope compositions
allows to retrieve the zircon 176Hf/177Hf ratio which is close to that of the melt/�uid from
which the zircon crystallized (Fisher et al., 2014; Gri�n et al., 2002; Hawkesworth and
Kemp, 2006a; Woodhead et al., 2004). As Lu/Hf ratios are fractionated during mantle
melting (Lu is more compatible than Hf), extracted crustal materials and mantle residues
develop contrasted time-integrated Hf isotope signatures (reported as εHf normalized to
the CHUR, Bouvier et al., 2008; Patchett et al., 1981) with the crust becoming less
radiogenic and the mantle more radiogenic than the CHUR. This way, the 176Hf/177Hf
ratio of a magmatic zircon grain recalculated at the time its crystallization is a �rst-order
indicator of the crust- vs. mantle-origin of the local magma batch surrounding the newly
formed mineral (Fig. 1.2).

Furthermore, the zircon oxygen isotope composition, notably the 18O/16O (expressed
as δ18O normalized to the SMOW, see Valley, 2003) can also be measured by laser
�uorination or ion microprobe and allows to retrieve the δ18O of the host magma (King
et al., 1998; Valley, 2003; Valley et al., 2005). The mantle is fairly homogeneous in terms
of O isotopes (Eiler, 2001) and shows a value of +5.3 ± 0.6 (2σ, Valley et al., 1998).
Materials that experienced low-T supra-crustal weathering show higher δ18O than the
mantle while interaction with high-T �uids yields lower δ18O (see Fig. 1.3).

A window onto the source of granitic magmas

Altogether, zircon Hf(�O) isotope compositions yielded new constraints on the petroge-
nesis of intermediate to acid igneous rocks, pinpointing the respective contributions of
the crust and the mantle in the evolution of several magma types (Appleby et al., 2009;
Belousova et al., 2006; Goodge and Vervoort, 2006; Gri�n et al., 2002; Hawkesworth and
Kemp, 2006a; Kemp et al., 2005; 2007; Murgulov et al., 2007; Pietranik et al., 2013).
These studies interpreted the spread of 176Hf/177Hf ratios displayed by magmatic zircons
at the time of crystallization as re�ecting the mixing, at source or during emplacement,
between crust- and mantle-derived materials, even though such views have been chal-
lenged (e.g. Farina et al., 2014; Villaros et al., 2012).

From there emerged the idea that zircon grains preserve the best record of the origins
of magmatic rocks as they allow to track processes otherwise undepictable by "tradi-
tional" whole-rock geochemical studies. On these grounds, many workers attempted to
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Figure 1.2: Zircon Hf isotope systematics and calculation of "depleted mantle model ages" for a
zircon grain crystallized at 1.5 Ga. Several values are used for the 176Lu/177Hf ratio of the host
material. A 176Lu/177Hf of 0.021 is rather typical of a ma�c igneous rock and 0.015 of upper
crustal lithologies. Inspired from Roberts and Spencer (2014).

decipher the evolution of the continental crust by considering the Hf(�O) systematics
of detrital and magmatic zircon grains out of their rock matrix (Belousova et al., 2009;
2010; Condie et al., 2005; 2011; Dhuime et al., 2012; Hawkesworth and Kemp, 2006;
Iizuka et al., 2010; Kemp et al., 2006; 2015; Kirkland et al., 2013; Naeraa et al., 2012;
Pietranik et al., 2008; Roberts, 2012; Spencer et al., 2013; Wang et al., 2011; Zeh and
Gerdes, 2010; Zeh et al., 2014). The methodology and main results are summarized
hereafter.

1.2.2 Timing of crustal growth from zircon U�Pb�Hf(�O) data

The present-day age distribution of crustal materials at the surface of the Earth (Fig.
1.4) re�ects the time-integrated end-product of the crustal growth process. That being
said, part of the today-exposed continental crust is built up from materials that have been
reworked, i.e. their geological age does not re�ect that of extraction from the mantle.
This is the case for (meta-)sediments, which encompass crustal materials formed before
erosion and deposition, and also for crust-derived granitoids that typically re-shape pre-
existing crustal lithologies.

U�Pb age distributions

The original idea behind this approach is that zircon being mostly encountered in inter-
mediate to felsic igneous rocks (Hoskin et al., 2000), the distribution of crystallization
ages would record periods of marked crustal di�erentiation and new additions to the
continental crust volume. Many workers built up databases of U�Pb crystallizations
ages for zircon grains extracted from both today-exposed magmatic rocks and detrital
(meta-)sediments in an attempt to be as representative as possible of the Earth geological
record. Detrital zircons are regarded as repositories of the pre-erosive magmatic history
of the detritus they are hosted by.

Rino et al. (2004) proposed to �lter the signal of crust recycling out by: (i) dis-
carding metamorphic zircon grains and, (ii) only focusing on the core of grains showing
evidence for multiple crystallization events. The age retrieved from the core is taken
as representative of that of the genuine crustal material before reworking. A �rst-order
criterion to discriminate between metamorphic and magmatic zircon grains is given by
the zircon Th/U ratios measured concomitantly on the same U�Pb spot (Rubatto et al.,
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Figure 1.3: Ranges of δ18O observed in di�erent crustal and mantle reservoirs. Figure from
Roberts and Spencer (2014).

2001; Rubatto, 2002).
The resulting distribution shows marked peaks at c. 0.3, 0.6, 1.0, 1.9 and 2.7 Ga

(Rino et al., 2004) and converts into a step-like crustal growth curve with periods of
signi�cant and short-lived additions to the crustal volume (Fig. 1.4). Importantly, sta-
tistical analyses of the U�Pb databases of Condie and Aster (2010) and Voice et al. (2011)
yielded identical results than Rino et al. (2004)'s, even though the formers did not apply
any �lter to minimize the impact of crust reworking ages. It comes from this that either
Rino et al. (2004)'s procedure is ine�cient or crust recycling is a second-order feature
within zircon U�Pb age databases. The latter possibility has not been fully investigated
but petrological evidence for voluminous silica-rich magmas originating from melting of
pre-existing, di�erentiated crustal lithologies (typically intermediate to acid igneous and
metasedimentary protoliths, e.g. Chappell and White, 1974; 2001) strongly suggests that
a substantial proportion of the U�Pb dates attests to crust reworking and not new crust
formation.

An alternative approach consisted in focusing only on grains extracted from today-
exposed igneous rocks as conclusions on the magma origin could be drawn from whole-
rock major, trace element and Sr�Nd-Hf isotope data. This way, Condie (1998) and
Condie and Aster (2010) showed that the age distributions of (putatively) mantle-derived
granitoids does feature the same peaks observed by Rino et al. (2004). Yet, limitations
of such method are of two types: (i) there is still an ongoing debate around the source of
some magma types (see for instance the case of I-type granites, Clemens et al., 2011 and
references therein); (ii) sampling of igneous rocks is in essence biased (Condie and Aster,
2010) and the contribution of rocks which have been eroded and their detritus mixed in
sedimentary basins cannot be accounted for, even though such detritus still takes part
of the continental crust.

Following the puzzling results of U�Pb database analyses, several studies relied on
another potential indicator of the genuine signal of new crust formation: the Hf model
ages.

Hf model ages

The 176Hf/177Hf(t) ratio of each zircon grain can be converted into a crustal residence
�model� age corresponding to the time at which the crustal source of the zircon-hosting
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Figure 1.4: Selected crustal growth curves obtained by step-wise integration of the volume of
new crust formed and preserved at each time period. Curves based on zircon U�Pb data from
Rino et al. (2004) and Condie and Aster (2010), on Hf model ages from Belousova et al. (2010)
and Dhuime et al. (2012), on the age of present-day continental areas from Hurley and Rand
(1969). Are also depicted the main periods of supercontinent amalgamation (from Campbell and
Allen, 2008). Figure inspired from Roberts and Spencer (2014).

magma would have been extracted from the mantle. Such calculations assume that a pre-
cursor crustal material was formed at time T with a given 176Lu/177Hf ratio. Radioactive
decay led to a time-dependent increase of its bulk 176Hf/177Hf. Reworking of the precur-
sor material at time t produced silica-rich melts that crystallized zircon, encapsulating
its 176Hf/177Hf(t). Provided an assumption on the value of the precursor 176Lu/177Hf
ratio, it becomes possible to retrieve the time T at which the precursor and a reference
mantle were at isotopic equilibrium, thus bracketing the timing of new crust formation
(Fig. 1.2). The reference mantle most often considered is the Depleted Mantle, for which
a range of compositions have been described (Gri�n et al., 2000; Naeraa et al., 2012).
Resulting model ages are accordingly termed "depleted mantle model ages" (TDM ).

However, petrogenetic studies conducted on several granite types and mentioned
above revealed that the zircon Hf�O systematics may record the sampling of reservoirs
with contrasted isotope compositions. When this is the case, the Hf model age retrieved
from each zircon grain is arguably of mixed origin and thus meaningless from a crust
evolution perspective (Arndt and Goldstein, 1987). Besides, mixing trends cannot be
identi�ed when looking at detrital zircon populations. Consequently, Hawkesworth and
Kemp (2006a) and Kemp et al. (2006) suggested to use the δ18O of the zircon domain
analysed for U�Pb�Hf isotopes as a tool to identify the presence of mixed components
in the magma from which the grain crystallized. This way, excluding analyses with δ18O
>6.5, presumably re�ecting the reworking of supra-crustal sedimentary materials in the
magma, retrieved model ages would selectively indicate the time at which new crust was
formed and hitherto preserved, thus contributing to crustal growth.

Many studies interrogated the ever-growing zircon U�Pb�Hf(�O) isotope databases
and observed that the distributions of Hf model ages (with or without screening out high
δ18O grains) di�er from that of U�Pb crystallization ages (Belousova et al., 2010; Dhuime
et al., 2012; 2017; Hawkesworth and Kemp, 2006; Iizuka et al., 2010; Kemp et al., 2006;
Wang et al., 2011). Clearly, crustal growth curves derived from Hf model ages rather
point to a continuous increase of the crust volume with a potential in�exion at 3 Ga
expressing a slowdown in the rate of crustal growth (Fig. 1.4).
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εHf -time relationships

An alternative approach to decipher the timing and mechanisms of crust evolution con-
sists in estimating the age and evolutionary path of a given crust segment. The associated
methodology relies on the regional temporal evolution of the εHf (t) displayed by detrital
and/or magmatic zircon grains from a set of crustal lithologies. For instance, episodic
oscillations of the εHf (t) has been linked to variations of the mantle-derived magma sup-
ply and new crust production, in line with the regional geodynamic evolution (Boekhout
et al., 2015; Kemp et al., 2009). A similar interpretation has been proposed at the global
scale by Roberts (2012).

Besides, identi�cation εHf -time arrays is regarded as re�ecting inner-crustal rework-
ing processes, the age of the original crustal precursor corresponding to the array intercept
with the evolutionary trend of the Depleted Mantle reservoir (Block et al., 2016; Eglinger
et al., 2017; Kemp et al., 2009; Marschall et al., 2010; Petersson et al., 2015; Zeh et al.,
2011). Furthermore, a spread in εHf (t) at a given age between the evolutionary trends
of two crustal reservoirs is taken as: (i) evidence for mixing between both end-members
(Linnemann et al., 2014; Orejana et al., 2015; Petersson et al., 2016; 2017); or, (ii) a
genuine record of continuous crust production with reworking at the given time t and
preservation of the original model age range (Lancaster et al., 2011).

1.2.3 Enhanced crust production or preservation bias

In the following, a controversial aspect of the zircon U�Pb�H(�O) record of crust evo-
lution is addressed through the prism of the Ying�Yang conceptualization developed by
Stern and Scholl (2010), i.e. net crustal growth occurs when there is a positive imbalance
between new crust formation and crust destruction.

Figure 1.5: Supercontinent ages compared to the distribution of U�Pb ages of c. 8,000 concordant
detrital zircon grains from 40 majors rivers, Australian dunes and Antarctic Paleozoic sediments.
Figure from Campbell and Allen (2008).

A �rst range of models consider that U�Pb age peaks re�ect periods of enhanced crust
production to such an extent that it substantially outweighed crustal losses (Condie, 1998;
2004; Iizuka et al., 2010; Rino et al., 2004). This view is supported by the coeval peak of
mantle-derived magma additions (Condie, 1998; Condie and Aster, 2010). As a matter
of fact, such periods of juvenile magmatic �are-ups would match those of supercontinent
amalgamation (Campbell and Allen, 2008), suggesting causality (Fig. 1.5).

At the other side of the spectrum, several studies consider that there was no sub-
stantial burst of crust production during supercontinent assembly (Condie and Aster,
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2010; Condie et al., 2011; Condie, 2014; Hawkesworth et al., 2009; Lancaster et al., 2011;
Spencer et al., 2015). These workers advocate that the age peaks rather re�ect the high
preservation potential of igneous rocks formed during continent collision episodes and
would thus be of little signi�cance in unravelling the timing of crustal growth. This
viewpoint relies on the examination of the relative magma productivity and preservation
potential of materials formed at each step of the supercontinent cycle (e.g. Hawkesworth
et al., 2009). From this, magmatic rocks generated at the end of the subduction stage
and during the main collision would be best preserved due to their location in the core
of newly formed continental masses (Hawkesworth et al., 2010).

Such conclusion has been challenged by Stern and Scholl (2010) who argued that
collisional episodes result in a marked loss of the continental crust volume, incompatible
with an over-representation of collisional events in the geological record. In support
to this interpretation would be the systematic negative excursion of the average εHf (t)
during periods of super-continent assembly (Gardiner et al., 2016; Roberts, 2012; Voice
et al., 2011).

The discussion on the relative balance between crust production and its recycling
back to the mantle throughout Earth history is extremely challenging to conduct, both
at the regional and global scale for several reasons summarized below.

1.2.4 Some complications

The detrital zircon age distribution is often taken as representative of the timing of
intermediate to acid magmatism, arguably related to crust production and di�erentiation.
Yet, eroded igneous rocks do not contribute evenly to the detrital record as they do not
have the same amount of zircon to deliver (Dickinson, 2008; Moecher and Samson, 2006)
clearly introducing a bias in the detrital record. Besides, results retrieved from the model
age approach are severely conditioned by (see discussion in Payne et al., 2016; Roberts
and Spencer, 2014): (i) the 176Lu/177Hf ratio considered for the zircon crustal host; (ii)
the reference model mantle composition retained; (iii) the premise that zircon Hf(�O)
isotope composition considered alone is a good repository of the petrogenesis of its host
magma (Fig. 1.6, see also Nebel et al., 2011; Roberts et al., 2013). The e�ect of such
uncertainties are very di�cult to monitor at the global scale even though Dhuime et al.
(2017) recently advocated that the two former are negligible.

Figure 1.6: Illustration of one caveat of the zircon Hf�O approach. Compilation of 2586 magmatic
rocks for which both zircon Hf�O isotopes and a petrogenetic model are available. Taken out of
their context, zircon Hf�O isotopes fail to unravel the mantle vs. crust (or mixed) origin of the
magma from which the zircon crystallized. Figure from Payne et al. (2016).
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1.3 Rationale

As demonstrated in the previous section, unravelling regional to global crust evolution
from zircon U�Pb�Hf�O isotope compositions is a promising approach. Yet, its design
is quite recent as most studies have been conducted in the past 10 years. Consequently,
some aspects of the methodology still require evaluation (see section 1.2.4). As a matter
of fact, the approach has proven most e�cient and the uncertainties best accounted for
when additional petrological constraints were available on the zircon host rocks (Block
et al., 2016; Eglinger et al., 2017; Kemp et al., 2009; Laurent and Zeh, 2015; Nebel et al.,
2011; Roberts et al., 2013; Zeh et al., 2007).

The work presented in this manuscript focuses on a c. 30,000 km2 area located
in the eastern part of the Massif Central (France), one of the largest exposure of the
Variscan belt in Europe. A critical feature of this geological region is that it would have
been sequentially shaped by both the Neoproterozoic Cadomian accretionary and the
Paleozoic Variscan collisional orogenies thus o�ering the opportunity to investigate the
relative extent of crust production/reworking in both geodynamic settings.

A new set of zircon U�Pb (N=2,715), Hf (N=347) and O (N=131) isotope compo-
sitions in close conjunction with geochemical, structural and monazite geochronological
data from regional magmatic et metamorphic lithologies is used to: (i) reconstruct the
history and evolution of this crust segment; (ii) address the nature and potential �aws
of the zircon record of crust evolution.

1.4 Geological background

1.4.1 The Variscan belt of Western Europe

General overview

The Variscan belt of Western Europe is part of the Paleozoic Peri-Atlantic collisional
orogenic system extending over 5000 km from the Ouachitas in the USA to the Caucasus
(Matte, 1986a;b; 1991). It developed as a result of the convergence between Gondwana
and Laurentia�Baltica (Franke, 1989; 2000; Kroner and Romer, 2013; Matte, 1986a) lead-
ing to the assembly of Pangea, the latest supercontinent on Earth (Rogers and Santosh,
2003).

N�S shortening would have been accommodated by the closure of at least two oceanic
domains (Fig. 1.7) (i) the Galicia�Massif Central, between Gondwana and the micro-
continent Armorica; and (ii) the Rheic ocean, between Armorica and Avalonia, another
continental ribbon docked to the Laurentia�Baltica landmass during the Caledonian
orogeny (Franke, 2000; Matte, 1991; 2001; Rey et al., 1997). Diachronic and assymetric
subductions (towards the North for the GMC, South for the Rheic, see Fig. 1.7) resulted
in the Variscan belt showing a "fan-like" shape (Fig. 1.8) with north-verging and south-
verging thrusts on each side of the sandwiched Armorica block (Matte, 2001). Large and
coeval lateral displacements are also evidenced by crustal-scale strike-slip dextral shear
zones (Arthaud and Matte, 1975; 1977; Kroner and Romer, 2013).

Since the 70's, the Variscan belt has been recognized as an ancient analogue of the
Himalayan orogen (Burg, 1983; Dewey and Burke, 1973; Girardeau, 1986; Mattauer et al.,
1988; Matte et al., 1990; Ménard and Molnar, 1988) with the Variscan high-grade rocks
being regarded as the eroded roots of an orogenic plateau, a structure not accessible for
sampling in Tibet where it can only be probed through geophysical methods. This way,
our knowledge on mountain belt dynamics clearly bene�ted from the inter-comparisons
between both orogens (see Maierová et al., 2016 and references therein).
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Figure 1.7: Simpli�ed plate tectonic sketch showing the absolute motions of continental and
oceanic plates (only the crustal parts are displayed) from the Ordovician to the Carboniferous.
The closure of the Iapetus ocean ended up in the Caledonian orogeny, that of the Rheic and
Galicia�Massif Central in the Variscan orogeny ("Variscides"). Abbreviations: ARMOR, Ar-
morica; AVALON, Avalonia; NFL, Newfoundland; GSB, Galicia�Massif Central ocean. Figure
from Matte (2001).

Main subdivisions and terrain a�liations

Figure 1.9 depicts the inferred crustal origin of the blocks involved in the Variscan
orogeny. Terrains exposed in the northern domain of the belt belonged to the Avalonia
micro-continent (Henderson et al., 2016; Linnemann et al., 2012). Sandwiched between
the Galicia�Massif Central and Rheic suture zones lies the Armorica micro-continent.
Both crustal blocks were originally part of the northern margin of Gondwana, from
which they presumably got rifted apart in the Cambrian�Ordovician (Ballèvre et al.,
2012; Nance and Murphy, 1994; Nance et al., 2010) forming the so-called peri-Gondwana
terranes. The southern domain is ascribed to be derived from the Gondwana mainland
or other smaller peri-Gondwana terranes (Ballèvre et al., 2014). Importantly, as the
constituents of the Variscan belt belonged to the northern margin of Gondwana, they
would have been a�ected, at varied extent, by the Cadomian accretionary orogen (see
Garfunkel, 2015 and references therein).

Within the crustal blocks, regional "zones" have been delineated based on both meta-
morphic grade and location with respect to the sutures (Franke, 1989). For instance, the
Moldanubian Zone of the Gondwana crustal block is regarded as an allochtonous unit
as it features ophiolites and high-pressure metamorphic rocks (see Lardeaux et al., 2014
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and references therein).

Figure 1.8: Simpli�ed cross-sections at crustal scale through the Variscan belt in France, without
granites. Grey, pre-Paleozoic (essentially Upper Proterozoic) low-grade basement; white, Lower
Paleozoic sediments; black, ophiolitic nappes and sutures; dots, Carboniferous foredeeps; Bray
SZ, NASZ and SASZ: Bray, North Armorican and South Armorican dextral shear zones; VF,
Variscan Front. Figure and legend from Matte (2001).

The Armorica dispute

It must be stressed that many debates still surround the number of micro-continents and
associated suture zones together with their respective locations (Ballèvre et al., 2009;
2014; Faryad et al., 2013; Faryad and Kachlík, 2013; Lardeaux et al., 2014; Linnemann
et al., 2004; Martínez Catalán et al., 2007; 2009; Schulmann et al., 2014; Sláma and
�ák, 2017). One of the most elusive aspect of the paleogeography and geodynamic
evolution of the Variscan belt lies in the existence/absence of true Galicia�Massif Central
oceanic domains (with a c. 4000 m deep oceanic �oor). Indeed, palaeoclimatic and
paleobiogeographical data argue against the existence of a wide oceanic domain and
rather support a close connection between Armorica and Gondwana (Paris and Robardet,
1990; Robardet, 2003). Similarly, examination of the detrital zircon record of Cambrian
to Devonian sediments indicate that the same sources were available throughout this
period, inconsistent with opening of a true oceanic domain (Linnemann et al., 2004;
Sláma and �ák, 2017). Even though recent models for the evolution of the belt (e.g.
Kroner and Romer, 2013) consider Armorica as the attenuated Gondwana continental
margin (referred to as "Armorican Spur" therein), there is still no consensus on this
topic.

1.4.2 The French Massif Central

The study area is part of the French Massif Central which best exposes the Moldanu-
bian Zone of the Variscan belt, i.e. a crustal domain where both allochtonous and
(para)authochonous units have been described. The �rst historical map emphasizing the
existence of metamorphic nappes is depicted Fig. 1.10 along with the regional names
attributed to each geological region (Ledru et al., 1989). The main contours of this map
remain valid almost 30 yrs after, for updated versions, the reader is referred to Chantraine
et al. (1996) and Faure et al. (2009).

The nappe stack

The French Massif Central displays a dominantly south-verging stack of metamorphic
nappes built up from the early Devonian to the early Carboniferous (Faure et al., 2009;
Ledru et al., 1989) and composed of (see Fig. 1.10 for the regional denominations, Fig.
1.11 and Fig. 1.12):

� amphibolite- to greenschist-facies upper allochthonous units (UAU), e.g. the Thiviers-
Payzac, Leyme, Gartempe, Génis, Brévenne formations (Leloix et al., 1999; Duguet
et al., 2007);

� the Upper Gneiss Unit (UGU) which comprises amphibolite- to granulite-facies
ortho- and paragneisses (Dufour, 1985; Forestier, 1961; 1969; Gardien et al., 1990;
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Figure 1.9: Simpli�ed map of the Variscan belt of Europe, are depicted the main lithotectonic
subdivisions (after Franke, 1989), the location of suture zones and origin of the crustal blocks
(after Ballèvre et al., 2014 and Henderson et al., 2016). Abbreviations: O.-M.Z.: Ossa-Morena
Zone; S.P.Z.: South-Portuguese Zone; GMC: Galicia�Massif Central suture. Adapted from Bal-
lèvre et al. (2014).

Lardeaux et al., 1989; 2001; Schulz, 2014) and typically shows at its base a bimodal
meta-igneous association referred to as Leptynite-Amphibolite Complex or LAC
(Briand et al., 1995; Downes et al., 1989; Forestier, 1961; Giraud et al., 1984;
Santallier et al., 1988) that contains relicts of eclogite-facies metamorphism (Bellot
and Roig, 2007; Berger et al., 2010a;b; Bouchardon, 1987; 1989; Delor et al., 1986;
1987; Gardien and Lardeaux, 1991; Gardien, 1993; Godard, 1990; Lardeaux et al.,
2001; Lasnier, 1968; Mercier et al., 1989);

� the Lower Gneiss Unit (LGU), an assemblage of amphibolite-facies micaschists,
ortho- and paragneisses together with scarce amphibolites (Briand et al., 1992;
Ledru et al., 2001);

� the lower-grade Parautochthonous Unit (PAU) made up largely of greenschist- to
amphibolite-facies metasediments, e.g. the Cévennes schists and the Montagne
Noire northern �ank (Burg et al., 1989; Duguet and Faure, 2004; Rakib, 1996);

� a Fold-and-Thrust Belt of very low metamorphic grade, e.g. the Montagne Noire
southern �ank and the Vigan schists (Alabouvette et al., 1988; Doublier et al.,
2006; 2015; Guérangé-Lozes and Burg, 1990; Wiederer et al., 2002)

The relationships between each unit may di�er from a domain to another (Fig. 1.12).

Tectonic�metamorphic�magmatic evolution

The evolution of the FMC has been deciphered through the examination of the tectonic
relationships between the di�erent nappes and their P�T conditions attained at peak
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Figure 1.11: Summary of main metamorphic (after Montel et al., 1992) and deformation phases
(after Faure et al., 2009) recognized in the French Massif Central. Further descriptions of the
inverted Barrowian sequence can be found in Burg et al. (1984; 1989) and Schulz et al. (1996;
2001); Schulz (2009). Figure courtesy of J.-F. Moyen.

metamorphism. Six main deformational phases have been retained (see Faure et al.,
1997; 2009 and references therein):

� an early stage D0 of oceanic and continental subduction took place at 420�400 Ma,
presumably related to the closure of the Galicia�Massif Central Ocean and recorded
by the eclogites of the Leptynite�Amphibolite Complex.

� exhumation of the HP rocks was associated with top-to-the S D1 thrusting of
the Upper Gneiss Unit over the Lower Gneiss Unit (and Parautochtonous Unit in
the Limousin and Sioule areas), developing an inverted Barrowian metamorphic
sequence (Fig. 1.11). Deformation and MP�M(H)T metamorphism have been
dated between 380�360 Ma. Following Montel et al. (1992), HP metamorphism and
subsequent decompression-related anatexis experienced by the Upper Gneiss Unit
during D0 and D1 are termed "M1" (see Fig. 1.11). The earliest dramatic magmatic
event observed in the Massif Central correspond to the c. 360 Ma "Tonalite Belt"
(Fig. 1.11) featuring gabbro-tonalite-granodiorite, amphibole-bearing calc-alkaline
plutons (Bernard-Gri�ths et al., 1985; Pei�er, 1985; Shaw et al., 1993). Coeval
volcanics are observed in the Brévenne (Pin and Paquette, 1997; 2002) and Somme
formations (Delfour, 1989).

� a pervasive top-to-the NW D2 deformation reworked the early nappe stack and
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transported the Upper Allochtonous Units and in some cases the Parautochtonous
Unit above the Upper Gneiss Unit, still under MP�MT metamorphic conditions
(Fig. 1.12 and 1.11). D2 would have occurred at 360�345 Ma.

� D3 is a dual event typi�ed by syn-orogenic crustal extension and acid volcanism in
the northern FMC (Binon and Pin, 1989) meanwhile top-to-the S thrusts developed
to the South in the Parautochtonous Units. D3 has been dated at 345�325 Ma and
marks the onset of voluminous granitic magmatism in the Massif Central (with
granites representing more than a third of the today-exposed lithologies).

� D4 and D5 events are characterized by general extension and localized transpres-
sion coeval to LP�HT metamorphism ("M3" of Montel et al., 1992) and granite
intrusions. Activation of strike-slip to normal shear zones controlled the exhuma-
tion of migmatite domes (Montagne Noire, Velay) representing extruded portions
of partially molten middle crust (Ledru et al., 2001; Whitney et al., 2015). The
evolution of the Velay dome is typi�ed by isobaric heating corresponding to the
low-pressure granulite-facies "M4" metamorphic event (Fig. 1.11).

Geodynamic interpretations

According to Faure et al. (2009), the D0 and D1 events would re�ect the closure of the
Galicia�Massif Central ocean and docking of the Armorica micro-continent to the Gond-
wana mainland, generating major top-to-the S thrusts. Such interpretation is supported
by the existence of an ophiolitic association in the Limousin area (Dubuisson et al., 1989)
and (U)HP metabasic eclogites throughout the Massif Central (Berger et al., 2010a;b;
Lardeaux et al., 2001; Matte, 2001; Mercier et al., 1989; Paquette et al., 1995). Yet,
Silurian magmatic rocks that would testify for the existence of a subduction arc are lack-
ing and the absence of Silurian zircon grains in the detrital record of the Devonian to
Permian sediments suggests a period of magmatic quiescence (Lin et al., 2016; Pfeifer
et al., 2016). Consequently, at our present state of knowledge, the signi�cance of D0 and
D1 remains elusive.

The D2 top-to-the NW shearing event is attributed to the collision between Laurentia�
Baltica�Avalonia (forming Laurussia) to the North and Gondwana�Armorica to the
South, in line with the closure of the Rheic ocean (Faure et al., 2009; 2017). The
"Tonalite Belt" and calc-alkaline volcanics in the Morvan would represent the remnants
of a magmatic arc developed on Gondwana�Armorica in response to the south-directed
subduction of the Rheic ocean (Faure et al., 2009; Lardeaux et al., 2014). A back-arc
setting is preferred for the coeval bimodal volcanics of the Brévenne formation (Pin and
Paquette, 1997; 2002).

D3 coeval extension and compression in the northern and southern FMC, respectively,
may be attributed to the growth and southwards lateral expansion of an orogenic plateau
(Vanderhaeghe, Gardien, Moyen, Gébelin, Laurent, Couzinié, Chelle-Michou, and Vil-
laros, Vanderhaeghe et al.) which existence is besides supported by paleontological and
sedimentological data (Becq-Giraudon et al., 1996). D4 and D5 events would correspond
to syn- to post-orogenic collapse of the belt in line with general extension and widespread
magmatism (Burg et al., 1994).
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Figure 1.12: Simpli�ed sketch showing the general metamorphic grade and structural relation-
ships between the mains nappes in three domains of the French Massif Central. A selection of
critical geochronological constraints are also depicted. NW FMC: Limousin, Sioule; SW FMC:
Truyère, Lot, Marvejols, Rouergue, Albigeois, Montagne Noire (M.N.); E FMC: Brévenne, Ly-
onnais, Haut Allier, Vivarais, Velay, Cévennes; names of the geological regions after Ledru et al.
(1989). UAU: Upper Allochtonous Units. UGU: the Upper Gneiss Unit. LGU: the Lower Gneiss
Unit. PAU: Parautochtonous Unit. References and techniques for ages, mineral abbreviations
from Whitney and Evans (2009): (a) Costa (1989), bt Ar�Ar; (b) Pin and Lancelot (1982),
zrc U�Pb ID�TIMS; (c) Paquette et al. (1995) whole-rock/minerals Sm�Nd; (d) Legendre et al.
(2009), mnz U�Th�Pb EPMA; (e) Caron (1994), bt�ms�amp Ar�Ar; (f) Bouilhol et al. (2006),
ms Ar�Ar (f1), mnz U�Th�Pb EPMA (f2); (g) Caen-Vachette et al. (1984), whole-rock Rb�Sr;
(h) Malavielle et al. (1990) bt Ar�Ar; (i) Costa (1990), ms Ar�Ar; (j) Doublier et al. (2006) ms
Ar�Ar; (k) Ducrot et al. (1983) zrc U�Pb ID�TIMS; (l) Duthou et al. (1994), whole-rock Rb�Sr;
(m) Maluski and Monié (1988), bt Ar�Ar; (n) Poilvet et al. (2011), zrc U�Pb LA�ICP�MS; (p)
Faure et al. (2010) recalculated by Roger et al. (2015), zrc U�Pb SIMS; (q) Berger et al. (2010a);
zrc U�Pb LA�ICP�MS; (r) Schulz (2009), mnz U�Th�Pb EPMA; (s) Schulz (2014), mnz U�Th�
Pb EPMA; (t) Couzinié et al. (2014), mnz U�Th�Pb EPMA; (u) Gébelin et al. (2009), mnz
U�Pb ID�TIMS.
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1.5 Some analytical considerations

1.5.1 Error estimation associated with U�Pb dating

An adequate estimation of the error associated to an U�Pb age is critical to correctly
address its geological signi�cance. Errors are of two types. First, the internal error
accounts for the intrinsic dispersion of the measured value during the analytical run.
It is solely based on counting statistics and often corresponds to a standard error, i.e.
the standard deviation of the measured value divided by the square root of the number
of measurements. Such internal errors a�ect each individual analysis and monitor the
precision of each of those.

Second, systematic errors refer to the uncertainties in a set of external parameters
considered in the U�Pb data processing that may generate a bias in the results (Paton
et al., 2010). Those are indicators of the accuracy of the analyses. They notably include
the uncertainties on (Gehrels et al., 2008): (i) the decay constants for 238U and 235U; (ii)
the isotope ratios of the primary standard (GJ�1 in all the analytical sessions conducted
in this thesis); (iii) the overall validity of the applied corrections (notably the monitoring
of the downhole U/Pb fractionation).

The uncertainties on the decay constants are 0.107% and 0.136% for 238U and 235U,
respectively (Ja�ey et al., 1971). Uncertainties on GJ�1 were set at 0.5% in the following.
The average uncertainty of the corrections was estimated based on the obtained isotope
ratios/ages for the secondary standards. For each of those, the average age obtained in
the course of our analyses departs from the recommended ID�TIMS value by less than
1% (< 0.6% for BB-16).

Systematic errors must be propagated to any U�Pb date calculation based on several
individual analyses (Concordia date, weighted average date, Concordia intercept), yield-
ing an estimate of both precision and accuracy and allowing to compare dates obtained
during di�erent analytical sessions. Error propagation has been conducted by quadratic
addition of the internal error and the systematic errors listed above.

The add-on Isoplot/Ex v.4.15 (Ludwig, 2008) for MS Excel® calculates an uncer-
tainty on dates based solely on the individual errors of the measurements, accordingly
retained as an estimate of the internal error. The uncertainties on the decay constants
can also be propagated automatically by Isoplot, which has been done in this work. Con-
sequently, the internal error displayed in the Wetherill and Tera-Wasserburg diagrams
does actually encompass a systematic error component. To calculate a Variscan date, the
uncertainty on the corrections was estimated based on Ple²ovice (1% uncertainty). For
Cadomian dates, the uncertainty on BB-16 was considered (0.6 %). Resulting systematic
errors range between 0.8 and 1.12 %. Such systematic error propagation has not been
conducted in the published articles (sections 2.1 and 6.3) but is followed in unpublished
data.

1.5.2 Inter-comparison of data from di�erent laboratories

The data presented in this thesis have been obtained in the course of several analytical ses-
sions, in di�erent laboratories using speci�c equipment (e.g. sector-�eld vs. quadrupole
ICP�MS) and contrasted data processing schemes. For instance, U�Pb data acquired
in Frankfürt-am-Main (GUF) and Stellenbosch (SUN) were processed using an in-house
Excel spreadsheet (Gerdes and Zeh, 2006). In contrast, data reduction in Rennes relies
on GLITTER® (Van Achterbergh et al., 2001). Finally, data obtained at ETH Zurich
were processed with the Igor Pro Iolite v2.5 software (Hellstrom et al., 2008), using
the VizualAge data reduction scheme (Petrus and Kamber, 2012). A similar situation
is encountered for Lu�Hf analyses, between GUF and Clermont-Ferrand (with speci�c
in-house spreadsheets). Despite the di�erent speci�cations and data reduction proce-
dures, the accuracy of each generated dataset can be monitored by examining the results
obtained on secondary reference materials (Fig. 1.13 and 1.14).
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Figure 1.13: U�Pb Concordia ages obtained for secondary reference materials in the course of
each analytical session. Plotted uncertainties are the quadratic additions of internal (at 2σ or 95%
con�dence, in which case the symbol is shaded) and systematic errors. The purple bars depict
the ID�TIMS ages and associated errors for Ple²ovice (Sláma et al., 2008a), Temora (Black et al.,
2003; 2004), BB-16 (Santos et al., in press) and 91500 (Wiedenbeck et al., 1995; 2004). Note the
age scale breaks.

U�Pb data First, all but one analyses yielded U�Pb ages identical within error to
the ID�TIMS value ± 1%. In each analytical session, at least one secondary standard
shows the expected U�Pb age, within uncertainties. Consequently, the 9 datasets are
considered as equivalent and inter-comparable. During the 2016 sessions conducted at
GUF, two statistically di�erent Concordia dates were calculated from the measurements
conducted on the Ple²ovice reference material, at c. 335 and 344 Ma. Standard BB-16
analysed in the same sessions yielded reproducible and accurate results meaning that the
two Ple²ovice dates are unlikely to be analytical artefacts. This may suggest the presence
of older domains in the Ple²ovice grains but has not been investigated further.

Figure 1.14: 176Hf/177Hf ratios obtained for secondary reference materials in the course of each
analytical session. The grey bands depict the reference values for Ple²ovice (Sláma et al., 2008a),
91500 (Blichert-Toft, 2008), Temora (Woodhead et al., 2004), Mud Tank (Woodhead and Hergt,
2005), BB-16 (Santos et al., in press) and GJ-1 (Morel et al., 2008).

29



Lu�Hf data Measurements performed on secondary standards at GUF yielded iden-
tical results throughout both sessions. Analyses from Clermont-Ferrand (LMV) are less
consistent as periodic oscillations in the measured ratios can be observed during the
run. Such dispersion has been taken into account while processing the sample data by
propagating the reproducibility of GJ-1, the least reproducible reference material, to the
internal errors of each individual measurement. At �rst glance, the GUF data would
seem more accurate but this is due to the instrumental o�set correction developed at
GUF but not at LMV. Overall, the observed o�set would result in an overestimation
of the εHf (t) by 0.7 to 1.3 ε-unit, depending on the reference material considered. I
believe that this o�set will not alter the validity of the reasoning developed in this thesis
because: (i) the associated error is of the same order of magnitude than the analytical
uncertainties for individual measurements; and (ii) analyses have been performed on a
large number of detrital zircon grains with the aim to draw general conclusions on the
origin and nature of the detritus, insensitive to such limited o�set.
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This manuscript is divided in three main parts.

Part I focuses on the pre-Variscan evolution of the French Massif

Central. Chapter 2 and 3 present comprehensive petrogenetic studies

of the constituent rocks from the Lower and Upper Gneiss Units, re-

spectively. Chapter 4 is a review of the pre-Variscan magmatic record

in the French Massif Central with a particular emphasis on the dis-

puted Cambrian�Ordovician geodynamic scenario.

Part II is a characterization of the timing, source and structural

framework of Variscan post-collisional magmatism in the Massif Cen-

tral. Chapter 5 describes the diversity of post-collisional magmas and

provides chronological and petrological constraints. Chapter 6 is a

structural and geochronological study conducted on a migmatite dome.

Part III has been written as a general discussion. Chapter 7 ad-

dresses the formation and di�erentiation of the continental crust in

the French Massif Central seen through the prism of the zircon record.
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Part I

Pre-Variscan evolution of the
eastern French Massif Central
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Chapter 2

Composition of the Lower Gneiss
Unit in the Velay Dome

2.1 Article #1: The Velay Orthogneiss Formation

This article published to Lithos focuses on a constituent lithology of the Lower Gneiss
Unit: the Velay Orthogneiss Formation. New whole-rock geochemical data together with
zircon U�Pb�Hf determinations constrain the petrogenesis of the orthogneiss protoliths
and their geodynamic signi�cance is discussed.

The work presented hereafter was conducted in collaboration with several researchers.
Part of it was undertaken during the 4th year internship of Michaël Mintrone, former
student of Clermont-Ferrand University, co-supervised by Jean-François Moyen and my-
self.

I sampled all rocks investigated in the course of this study during two �eld campaigns
(fall 2014 and spring 2015) with signi�cant help from Adrien Vézinet, Jean-François
Moyen and Michaël Mintrone. Adrien Vézinet and I conducted the sample preparation
procedure for whole-rock geochemical determinations (that were subsequently carried
out by the ALS �rm). Zircon extraction, preparation and imaging were performed by
Michaël Mintrone assisted by Adrien Vézinet and myself. U�Pb dating (data acquisition
and processing) was conducted by Michaël Mintrone, Marc Poujol and myself. Hf isotope
determinations were carried out by Oscar Laurent and Linda Marko. I wrote the whole
manuscript with input and pieces of advice from Oscar Laurent, Cyril Chelle-Michou,
Jean-François Moyen and Pierre Bouilhol.
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Central, France): Implications for the crustal evolution of the north
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From the Neoproterozoic to the early Paleozoic, the northern Gondwana margin was sequentially shaped by the
Cadomian accretionary and the Variscan collisional orogens which offers the opportunity to investigate the rela-
tive extent of crust production/reworking in both geodynamic settings. In the eastern part of the Variscan French
Massif Central (FMC), the Velay Orthogneiss Formation (VOF) represents a consistent lithological unit of the pre-
Variscan basement and comprises augen gneisses and leucogneisses. Such rocks constitute a unique record of the
pre-Variscan magmatic history and bear critical information on the crustal evolution of the northern Gondwana
margin.
Here, we present whole–rock major and trace element compositions indicating that: (i) the VOF shows a
remarkable geochemical homogeneity; (ii) the protolith of the augen gneisses corresponds to strongly
peraluminous, “S-type” porphyritic granites originating from partial melting of an Ediacaran sedimentary se-
quence; (iii) the leucogneisses are former leucogranites generated by fractionation of the magma at the origin
of the porphyritic granites; and (iv) the whole suite emplaced at shallow crustal levels (b7 km). U–Pb
LA–(MC–)ICP–MS analyses on zircon yielded similar emplacement ages of c. 542 Ma and a narrow range of
εHf(t) clustering around 0 for the protoliths of both augen and leucogneisses. This homogeneous Hf isotope sig-
nature, notably uncommon for S-type granites, would originate from a sequential process of: (i) inherited zircon
dissolution during melting and ascent in the crust due to Zr-undersaturated conditions, (ii) isotopic homogeni-
zation of themelt by advection and elemental/isotopic diffusion, followed by (iii) early saturation upon emplace-
ment owing to rapid cooling at shallow crustal levels.
We propose that partial melting of Ediacaran sediments occurred during inversion of a Cadomian back-arc basin
and was promoted by the high thermal gradient typical of thinned crust domains. Therefore, the VOF and other
Cadomian S-type granitoids from the northern Gondwana margin are indicative of substantial crust reworking
away from any proper continental collision zone.

© 2017 Elsevier B.V. All rights reserved.

Keywords:
North Gondwana margin
Cadomian orogeny
Variscan orogeny
S-type granites
Lu-Hf isotopes
French Massif Central

1. Introduction

Accretionary orogens develop along oceanic and continental active
margins, feature volumetrically abundant mantle-derived magmatism
and are accordingly considered as the main locus of continental crust
production (Cawood et al., 2009; Jagoutz and Kelemen, 2015; Reymer
and Schubert, 1984; Taylor andMcLennan, 1985). Conversely, collision-
al orogens juxtapose stable portions of continental lithospheric blocks
and are rather seen as domains of extensive crust reworking through
partial melting of pre-existing crustal rocks (Dewey et al., 1986; Harris
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et al., 1986; Hawkesworth et al., 2009, 2010). However, recent studies
have refined and nuanced these end-member scenarios by pointing
out that new crust may also be produced at the end of continental colli-
sion (Couzinié et al., 2016;Moyen et al., 2017; Niu et al., 2013) and like-
wise, that crust reworking also takes place in arc systems (Collins and
Richards, 2008; Zurbriggen, 2015). Therefore, assessing the relative im-
portance of each phenomenon in both geodynamic settings is para-
mount to understand the modes of continental crust formation and
evolution through time.

Terranes formerly belonging to the northern Gondwana margin
(Fig. 1, see review in Stampfli et al., 2013) are ideal targets to ad-
dress this issue because they have sequentially been affected by:
(i) the Cadomian Western Pacific-type marginal orogenic system,
of Cryogenian–Ediacaran age (Chelle-Michou et al., 2017; Garfunkel,
2015; Linnemann et al., 2014; Nance et al., 1991); followed by, (ii)
the Variscan orogeny, a major late Paleozoic continental collision ep-
isode resulting from the convergence between Laurussia and Gond-
wana (Kroner and Romer, 2013; Matte, 1986) and culminating with
the assembly of Pangea, the latest supercontinent of Earth's history
(Rogers and Santosh, 2003).

The FrenchMassif Central (FMC) shows one of the largest exposures
of the inner part of the Variscan orogen (Lardeaux et al., 2014) and iso-
topic evidence from the voluminous Variscan crust-derived granitoids
demonstrate that such magmatism extensively reworked a continental

crust of Neoproterozoic to early Paleozoic ancestry (Melleton et al.,
2010; Moyen et al., 2017; Pin and Duthou, 1990; Turpin et al., 1990).
However, the nature of this pre-Variscan crust as well as the
geodynamic setting in which it formed is still a matter of debate. For in-
stance, it remains unclear to what extent the crust segment today
exposed in the FMC was impacted by the Cadomian orogeny (see dis-
cussion in Garfunkel (2015)). From this perspective, a better knowledge
of the age, structure, lithological composition and configuration of the
pre-Variscan crust in the FMC would: (i) provide new constraints on
the late Ediacaran/early Paleozoic paleogeography and geodynamics of
the northern Gondwana margin; (ii) improve our understanding of
the rate and timing of crustal growth in Western Europe.

In the eastern part of the FMC, the Variscan nappes feature high-grade
gneisses and, in particular, large amounts of meta-igneous rocks, which
have likely witnessed one or several pre-Variscan magmatic episodes.
Somewhat outdated radiometric dating from these orthogneisses
(Caen-Vachette, 1979; R'Kha Chaham et al., 1990) as well as detrital and
inherited zircon data from metasedimentary rocks (Chelle-Michou et al.,
2017) and Variscan granitoids (Laurent et al., 2017) respectively, suggest
that they emplaced close to the Proterozoic-Paleozoic boundary at ca.
545 Ma. Yet, these meta-igneous rocks lack modern and/or direct geo-
chronological data, in contrast to the western FMC where such work
has been undertaken (Alexandre, 2007; Alexandrov et al., 2001;
Melleton et al., 2010). Similarly, the nature, petrogenesis and geodynamic
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significance of the FMC orthogneisses are poorly constrained. The aim of
this contribution is therefore to decipher the age and origin of the pre-
Variscan orthogneiss units in the Velay area using field observations,
whole–rock geochemistry, LA–ICP–MS zircon U–Pb dating and LA–MC–
ICP–MS zircon Lu–Hf isotope measurements. This new dataset demon-
strates that the pre-orogenic evolution of this part of the FMC is dominat-
ed by late Ediacaran events and features the emplacement at shallow
crustal levels of a large (~1800 km2) S-type granite batholith, most likely
formed by melting of an Ediacaran back-arc supracrustal sequence at the
end of the Cadomian orogeny. This pinpoints the importance of crust
reworking in accretionary orogens, even in domains lacking significant
volumes of ancient basement.

2. Geological setting

2.1. The French Massif Central and its pre-Variscan evolution

The French Massif Central displays a south-verging stack of meta-
morphic nappes built up from the early Devonian to the early Carbonif-
erous and composed from top to bottom of (Faure et al., 2009b, Ledru
et al., 1989, and references therein): (i) amphibolite- to greenschist-
facies upper allochthonous units (UAU: Thiviers-Payzac, Leyme,
Gartempe, St-Sernin-sur-Rance, Génis, Brévenne); (ii) the Upper Gneiss
Unit (UGU) which comprises amphibolite- to granulite-facies ortho-
and paragneisses and typically shows at its base a bimodal meta-
igneous association (“Leptynite-Amphibolite Complex” or LAC) that
contains relicts of eclogite-facies metamorphism; (iii) the Lower Gneiss
Unit (LGU), an assemblage of amphibolite-faciesmicaschists, ortho- and
paragneisses together with scarce amphibolites; (iv) the lower-grade
Parautochthonous Unit (PAU) made up largely of greenschist- to
amphibolite-facies meta-sediments (e.g. Cévennes schists); and (v) a
Fold-and-Thrust Belt of very low metamorphic grade (Montagne Noire
nappes, Vigan schists). The Variscan tectonic-metamorphic evolution
encompasses (Burg et al., 1994; Faure et al., 2009b): (i) an early (late Si-
lurian to early Devonian) event corresponding to the closure of several
oceanic domains and coeval HP metamorphism; (ii) late Devonian
nappe stacking and crustal thickening ending up in the growth and
lateral flow of an orogenic plateau during the early Carboniferous;
(iii) gravitational collapse via the activation of low-angle detachment
faults marked by the development of migmatite domes in the late
Carboniferous.

The pre-Variscan sedimentary materials that build up the low-grade
nappes (UAU, PAU and Fold-and-Thrust Belt) are mostly late Ediacaran
to early Ordovician in age as shown by paleontological data
(Fournier-Vinas and Debat, 1970; Guérangé-Lozes and Burg, 1990;
Reitz and Wickert, 1988) and dating of interlayered volcanics (Faure
et al., 2009a; Lescuyer and Cocherie, 1992). In higher-grade, gneissic
units (UGU and LGU), detrital zircon studies (Chelle-Michou et al.,
2017; Melleton et al., 2010) together with field relationships between
meta-sediments and adjacent dated orthogneisses suggest maximum
depositional ages ranging from the early Ediacaran to the Cambrian
(Ledru et al., 1994; Melleton et al., 2010). The conspicuous presence of
volcanic rocks (meta-tuffs, meta-lavas) throughout the stratigraphic
pile exposed in low-grade units (Alvaro et al., 2014; Marini, 1987;
Pouclet et al., 2017) and the existence of several orthogneiss massifs
of similar ages within the high-grade domains (Alexandre, 2007;
Duthou et al., 1984; Melleton et al., 2010; Roger et al., 2015) testify for
a protractedmagmatic activity from the late Ediacaran to the late Ordo-
vician. Petrogenetic studies attest to the tapping of two contrasting res-
ervoirs throughout this period: (i) the asthenospheric/lithospheric
mantle, source of the metabasites from the low-grade units and the
LAC (Briand et al., 1992; Marini, 1987; Pin and Marini, 1993; Pouclet
et al., 2017); (ii) preexisting crustal lithologies (Alexandre, 2007;
Melleton et al., 2010) as a source of felsic magmas. Coeval sedimenta-
tion, crust- and mantle-derived magmatism have been attributed
to long-lived continental extension ending up in the formation of a

hyperextended margin during the Ordovician (Lardeaux et al.,
2014). Collectively, these data suggest that the pre-Variscan crust
of the FMC is not older than Neoproterozoic in age (Chelle-Michou
et al., 2017).

2.2. The Velay dome

In the eastern Massif Central, the Variscan nappe stack (and notably
the LGU; Fig. 3) is reworked by the formation of a 120 × 80 km granite-
migmatite complex, referred to as the Velay dome. It corresponds to
partially molten middle crust which exhumation was controlled on its
northern edge by the Pilat low-angle detachment shear zone, typically
showing top-to-the-NE sense of shear dated at 313 ± 6 Ma by
39Ar/40Ar on syntectonic biotite (Gardien et al., 1997; Malavielle et al.,
1990). On its southern edge, the dome is overturned to the south
(Lagarde and Dallain, 1994) onto the PAU, from which it is separated
by a top-to-the south normal shear zone dated at 310 ± 5 Ma
(Bouilhol et al., 2006). The Velay Dome consists of several lithologies in-
cluding (Fig. 1): (i) ortho- and paragneisses ranging from unmolten to
diatexitic (Montel et al., 1992) together with very scarce amphibolites
(Briand et al., 1992); (ii) a set of peraluminous granitoids comprising
early laccoliths (Ledru et al., 2001) and the heterogeneous biotite-
cordierite-bearing “Velay” granite (Williamson et al., 1992). The
migmatites and associated granites result from several successive melt-
ing events (Montel et al., 1992) over a period of 35 Ma, from c. 335 to
300 Ma (Couzinié et al., 2014; Laurent et al., 2017).

Herewe define theVelayOrthogneiss Formation (VOF) as a consis-
tent lithological unit gathering all pre-Variscan meta-igneous felsic
rocks that crop out in the dome. The VOF can be divided into three
main geographic sub-domains (Fig. 2): (i) the Pilat orthogneisses, ex-
posed along the northeastern part of the dome; (ii) the Vivarais area,
where meta-igneous rocks and paragneisses represent the weakly mol-
ten roof of the dome (Lagarde and Dallain, 1994); (iii) the “Arc-de-Fix”
orthogneisses (R'Kha Chaham et al., 1990), which form a crescent
outlining the western and southern parts of the dome. Collectively,
the VOF covers an exposed area of ~1800 km2. Field observations
show that the VOF is intrusive within the adjacent paragneisses
(Ledru et al., 1994, Fig. 3).

Typical lithologies of the VOF are (based on our field survey and un-
published French PhD theses from the 70s–80s, referenced in Supple-
mentary text): (i) a volumetrically dominant biotite ± muscovite ±
sillimanite augen gneiss (Fig. 4a) featuring pluricentimetric K–feldspar
porphyroblasts and accessory garnet, allanite, ilmenite, apatite and
zircon; (ii) a muscovite ± biotite ± garnet fine-grained leucogneiss
(locally called “leptynite”) with similar accessory minerals; (iii) a volu-
metrically subordinate biotite ± cordierite/garnet medium-grained
banded orthogneiss. The leucogneisses occasionally occur as pluri-
metric enclaves or boudins within the augen gneiss (Fig. 4b), but most
often form concordant bodies embedded within it (Fig. 4c,d). The con-
tact between both lithologies can be sharp and locally underlined by a
thin biotite selvage (Fig. 4c), or gradational, in which case leucogneisses
appear as counterparts of the augen gneisses lacking biotite and K-
feldspar porphyroclasts. All rock types are deformed by the Variscan
tectonics, especially the augen gneiss that shows a well-developed foli-
ation locally up tomylonitic grade (Fig. 4d), and locally display evidence
for partial melting such as disruption of the foliation associated with
segregation of leucosomes (especially close to the margins and at the
roof of the Velay dome). The Vivarais gneisses tend to be more
migmatitic (metatexite to diatexite) than the Arc-de-Fix (typically
unmolten to metatexitic).

Studies on the VOF have concluded that augen gneisses in the Arc de
Fix, Vivarais and Pilat domains correspond to former porphyritic granit-
oids (Ledru et al., 2001). Previous geochronological investigations sug-
gest that those granitoids were emplaced in the early Cambrian as the
Arc-de-Fix gneisses yielded a zircon Pb evaporation age of 533 ±
23 Ma (Mougeot et al., 1997) and a whole–rock Rb–Sr age of 528 ±
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9 Ma (R'Kha Chaham et al., 1990). EPMA dating of inherited monazites
in a migmatitic augen gneiss yielded similar results (543 ± 25 Ma; Be
Mezeme et al. (2006)). The origin and age of leucogneisses are still
disputed. In the Arc-de-Fix domain, they are thought to be part of the
same magmatic suite of the augen gneiss protolith and would thus

correspond to early Cambrian meta-leucogranites (R'Kha Chaham
et al., 1990). In the Vivarais area, Chenevoy et al. (1986) also proposed
a leucogranite protolith. In the Pilat domains, leucogneisses are rather
regarded as former rhyolites or rhyolitic tuffs of late Ediacaran age
(545 ± 14 Ma; Caen-Vachette (1979)).
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3. Materials and methods

3.1. Whole–rock geochemistry

We collected 35 samples of unmolten augen gneisses, banded
gneisses and leucogneisses from the three domains mentioned above.
Location, GPS coordinates and description of investigated samples are
presented Table S1. Whole–rock major and trace element contents
were obtained from the ALS Global firm (details on the procedure and

accuracy/reproducibility in Supplementary text). A database of VOF
samples was compiled using this new dataset and analyses from the lit-
erature (see Table S2), carefully filtering out: (i) migmatitic samples,
based on petrographic descriptions; and (ii) samples that experienced
alteration and/or LILE (Large Ion Lithophile Elements) mobility during
Variscan metamorphism, by calculating the weathering index (W) of
Ohta and Arai (2007) and considering a cut-off value of W = 30% (see
Supplementary text and Fig. S1). A total of 270 major element analyses
were retained accordingly (including the newly obtained data).Wewill
further consider that the retained VOF samples experienced nearly
closed-system metamorphism during the Variscan orogeny, such that
their chemical compositions reflect those of their igneous protoliths.
This assumption is supported by (i) their position close to, or overlap-
ping with the “igneous trend” in the MFW diagram of Ohta and Arai
(2007), suggesting limited element mobility (Fig. S1); and (ii) the fact
that 22 samples from the VOF analyzed for Rb–Sr isotopes (Caen-
Vachette, 1979, and R'Kha Chahamet al., 1990) define awhole–rock iso-
chron clearly yielding a pre-Variscan (Cambrian) date (see Supplemen-
tary text and Fig. S2), specifically identical (within uncertainties) to our
zircon U–Pb dating results (see Section 4.2).

3.2. U–Pb geochronology

We selected four samples from the VOF for U–Pb dating, to constrain
the age(s) of the igneous protolith(s). In this perspective, we focused the
sampling in the Arc de Fix domain (Fig. 2) that is the least affected by the
Variscan anatexis. Dated samples correspond to two augen gneisses
(MM06 and MM11) and two leucogneisses (MM09 and MM10)
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Velay

Orthogneiss
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Pre-Variscan

igneous rocks
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Fig. 3. Schematic diagram showing thefield relationships and ages of themain lithological
components within the two high-grade units (Upper and Lower Gneiss Units) of the
eastern French Massif Central. See text for discussion.

Fig. 4.Outcrop photographs showing: (a) a typical biotite +muscovite augen gneiss (dated sample MM06), St Privat-d'Allier; (b) a leucogneiss boudin (dated sample MM09) elongated
within the augen gneiss facies, D906 Langogne; (c) sharp contact between the two facies underlined by a biotite-rich layer, D906 Langogne; (d) 10 cm-thick laminated layers ofmylonitic
augen gneiss embedded within strongly deformed leucogneiss, contact is intricate and gradational, Pont-du-Bon-Dieu, Labastide-Puylaurent.
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representative of the main facies observed in the VOF. Their textures
range from granoblastic to grano-lepidoblastic and porphyroclastic (for
the augen gneisses, see Fig. 4a and c). Mineralogical assemblages are de-
scribed Table 1 and representative annotated thin section photomicro-
graphs can be found in the Supplementary text (Fig. S3).

Rock sampleswere crushed using standard procedures (jawcrusher,
ringmill) and sieved to b500 μm. Zirconswere concentrated using con-
ventional techniques (panning, heavy liquids,magnetic separation) and
hand-picked under a binocularmicroscope. Selected grainswere subse-
quently cast in epoxy resin and polished to expose their interiors. The
internal structures were characterized by back-scattered electron
(BSE) and cathodoluminescence (CL) imaging using (i) a Jeol JSM-
6400 SEM at the Ecole des Mines de St-Etienne for BSE and (ii) a Jeol
JSM-5910 SEM at the Laboratoire Magmas et Volcans (Clermont-
Ferrand) for CL.

U–Pb geochronology was conducted by in-situ laser ablation induc-
tively coupled plasma mass spectrometry (LA–ICP–MS) at Géosciences
Rennes using a ESI NWR193UC Excimer laser coupled to a quadrupole
Agilent 7700x ICP-MS equipped with a dual pumping system to en-
hance sensitivity. The instrumental conditions are reported in Table S3.

The ablated material was carried into helium, and then admixed
with nitrogen (Paquette et al., 2014) and argon, before injection into
the plasma source. The alignment of the instrument and mass calibra-
tion was performed before each analytical session using the NIST SRM
612 reference glass, by inspecting the 238U signal and by minimizing
the ThO+/Th+ ratio (b0.5%). During the course of an analysis, the sig-
nals of 204(Pb + Hg), 206Pb, 207Pb, 208Pb and 238U masses are acquired.
The occurrence of common Pb in the sample can be monitored by the
evolution of the 204(Pb + Hg) signal intensity, but no common Pb cor-
rection was applied owing to the large isobaric interference with Hg.
The 235U signal is calculated from 238U on the basis of the ratio
238U/235U = 137.88. Single analyses consisted of 20s of background in-
tegration followed by 60s integration with the laser firing and then a
10 s wash-out delay. Ablation spot diameters of 20–35 μm with repeti-
tion rates of 3 Hz were used depending on the grain size. Data were
corrected for U–Pb and Th–Pb fractionation and for mass bias by stan-
dard bracketing with repeated measurements of the GJ-1 zircon stan-
dard (Jackson et al., 2004). Along with the unknowns, the zircon
standard Plešovice (337.13 ± 0.37 Ma, Sláma et al. (2008)) was mea-
sured to monitor accuracy of the analyses and produced a Concordia
age of 337.0 ± 1.8 Ma (N = 20, MSWDC + E = 0.21). Data reduction
was carried out with the GLITTER® software package developed by
the Macquarie Research Ltd. (Van Achterbergh et al., 2001). Concordia
ages and diagrams were generated using Isoplot/Ex (Ludwig, 2008).
Further information on the protocol can be found in Ballouard et al.
(2015). The full set of results is available as Supplementary material
(Tables S4 for standards and S5 for samples).

3.3. Zircon Lu–Hf isotope determination

Measurements were performed onmagmatic zircons previously an-
alyzed for U–Pb dating at GUF, using a Thermo-Finnigan Neptune

multicollector ICP-MS attached to a Resolution M-50193 nm Ar–F
excimer laser ablation system, equipped with a two-volume Laurin
Technic ablation cell. Laser spots with diameters of 40 or 60 μm were
drilled “on top” of the existing spots already analyzed for U–Pb dating
or in the same domain as identified on the basis of CL images (Fig. 5),
with repetition rates of 4 Hz and an energy density of 5 to 6 J·cm−2.
Hewas used as a carrier gas (~0.6 L·min−1) andmake-up gas consisting
of high-purity Ar (~0.75 L·min−1) and N2 (~0.07 L·min−1) was
admixed to the carrier gas to improve sensitivity. Post-ablation homog-
enization is performed by fluxing the gases through a Resolution Instru-
ments Squid® tubing. Data were acquired using multi-collector static
mode, during 58 s of measurement characterized by 1.052 s integration
time (55 baseline-corrected ratios). 172Yb, 173Yb and 175Lumasses were
monitored to allow the correction of isobaric interferences (176Yb and
176Lu on 176Hf). Instrumental mass bias for Yb isotopes (calculation of
βYb) was monitored for each measurement using an exponential law,
and corrected to the natural ratio 172Yb/173Yb=1.35351.Mass fraction-
ation of Lu isotopes was assumed identical to that of Yb isotopes (βLu=
βYb). The isobaric interferences were subsequently corrected to mass
bias-corrected 176Yb/173Yb = 0.79502 and 176Lu/175Lu = 0.02656 (see
Gerdes and Zeh, 2006). Mass bias for Hf isotopes (βHf) was determined
using an exponential law and normalized to 179Hf/177Hf = 0.7325. Ac-
curacy and external reproducibility of the method were controlled by
repeated analyses of reference zircon standards GJ-1 (Jackson et al.,
2004; Morel et al., 2008), Plešovice (Sláma et al., 2008), and Temora
(Woodhead et al., 2004) (see Table S6 for results on the standards).
The quoted uncertainties on 176Hf/177Hf ratios and εHf(t) are quadratic
additions of within-run precision of each measurement with the exter-
nal reproducibility (2 S.D.) of the reference zircon standard GJ-1
(~70 ppm). Data reduction was carried out using an in-house MS
Excel© spreadsheet (Gerdes and Zeh, 2006, 2009).

Calculation of initial 176Hf/177Hf ratioswas performed using the indi-
vidual 176Lu/177Hf ratio of each measurement, a decay constant of
λ176Lu = 1.867 × 10−11 (Scherer et al., 2001; Söderlund et al., 2004)
and the emplacement age obtained by U–Pb zircon dating. For the
calculation of the εHf(t), parameters of the chondritic uniform reservoir
(CHUR) recommendedbyBouvier et al. (2008)were used (176Lu/177Hf=
0.0336; 176Hf/177Hf = 0.282785). Two-step depleted mantle (DM) Hf
model ages (TDM2

C ) were calculated using a DMmodel considering linear
regression frompresent-day depletedmantle as recommended byGriffin
et al. (2002), i.e. 176Lu/177Hf=0.0384 and 176Hf/177Hf= 0.28325, and an
average 176Lu/177Hf of 0.0113 for the crustal reservoir.

4. Results

4.1. Geochemistry

Regardless of the rock type, samples from the VOF are all very silicic
(SiO2 N 68 wt%) and have a granitic (s.s.) composition (Fig. 6a). More
specifically, they show high A/CNK (1.05 to 1.4) and A/NK (1.1 to 1.6)
implying that their protoliths are peraluminous granites (Fig. 6b). The
very high values displayed by some samples (A/CNK in the range 1.4

Table 1
Nature, mineralogy and sampling localities of the investigated samples of the Velay Orthogneiss Formation together with results of zircon U–Pb dating performed in this study.

Sample Velay
domain

Locality Lat. N Long. E Type Mineralogya U-Pb
ageb

±2σ NU-Pb
c MSWDC+E

d εHf(t)e ±2σ NLu-Hf
f

MM06 Arc de Fix St Privat d'Allier 44.98811 3.68093 Augen gneiss Qz + Kfs + Pl + Bt + Ms 541.8 3.1 16 0.34 −0.2 2.9 13
MM09 Arc de Fix Langogne 44.69490 3.88376 Leucogneiss Qz + Kfs + Pl + Bt + Ms + Gt 545.9 4.3 9 1.05
MM10 Arc de Fix Labastide-Puylaurent 44.56838 3.87095 Leucogneiss Qz + Kfs + Pl + Ms 541.4 2.3 26 0.38
MM11 Arc de Fix Col de Meyrand 44.60534 4.07040 Augen gneiss Qz + Kfs + Pl + Bt + Ms 542.5 3.1 17 0.43 −0.2 1.2 14

a Main mineral phases.
b U–Pb Concordia age obtained in the course of this study, in Ma.
c Number of analyses used to calculate the Concordia age.
d MSWD of concordance + equivalence for the displayed Concordia age.
e εHf(t) measured on magmatic zircons, calculated at the emplacement age of the sample.
f Number of Lu-Hf analyses.
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Fig. 5. Representative cathodoluminescence images of zircon grains from samples of the Velay Orthogneiss Formation. The locations of laser spots (white and yellow circles for U–Pb
and Lu-Hf analyses respectively) are indicated along with the spot name (zXX). The corresponding 206Pb/238U dates are quoted with ±2σ uncertainty, in Ma. All displayed
analyses are concordant at N98% (except those in italic). Hf isotope data are reported using the εHf calculated at the emplacement age of the corresponding sample, quoted with ±2σ
uncertainty.
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to 1.8) probably reflect alkali losses during amphibolite-facies meta-
morphism (not identified by the abovementioned filtering procedure,
see Section 3.1).Mg# is highly scattered (2 to 60, Fig. 6c). Leucogneisses
are SiO2 richer (N74wt%) and have lower and variableMg# (b30) com-
pared to augen gneisses (SiO2 = 69–75 wt.%; Mg# = 30–55). Banded
gneisses span in composition between those two endmembers. As a
whole, VOF compositions remarkably mimic that of Variscan S-type
granites from the eastern Massif Central (Fig. 6a,b,c). We investigated
possible systematic differences between the three domains (Pilat, Arc-
de-Fix and Vivarais) of the VOF. We used linear discrimination analysis
(LDA) on major elements, a statistical tool calculating the linear combi-
nation of variables that maximizes the difference between three previ-
ously defined sets of data (Fig. 6d). LDA was computed using the
open-source R language (Ihaka and Gentleman, 1996) and the package
MASS (Venables and Ripley, 2002). We followed the method of
Aitchison (1986) and implemented the compositional variables X
(Al2O3, MgO, FeOt, TiO2, CaO, Na2O, K2O) as log(X/SiO2) ratios. No sys-
tematic difference is observed and samples from all three regions have
statistically similar major elements compositions.

Like for major oxides, trace element compositions of VOF samples
are very homogeneous between the three domains (Fig. 7). Augen
gneisses show a slight enrichment in Light Rare Earth Elements (La/
Yb: mostly 6–14), flat Heavy Rare Earth Elements patterns (Dy/Yb:
1.3–3) together with a negative Eu anomaly (Fig. 7a). Leucogneisses

are less enriched in LREE (La/Yb: mostly 2–6), have similar HREE pat-
terns and a more pronounced Eu anomaly (Fig. 7a). Banded gneisses
seem significantly depleted in HREE compared to the other lithologies
(La/Yb: 25 to 50), but this difference may not be statistically significant
given that trace elements are only available for two samples. All rock
types havemulti-element patterns characterized by significant negative
Ba–Sr, Nb–Ta and Ti anomalies and positive Pb and U anomalies
(Fig. 7b). As a whole leucogneisses are depleted in all incompatible
elements compared to augen gneisses with the exception of Nb–Ta
(constant) and Rb–U (enriched in the leucogneisses).

4.2. U–Pb dating

4.2.1. Zircon textures
Fig. 5 shows representative CL images of zircon crystals from the in-

vestigated VOF samples. Zircon grains are idiomorphic to sub-
idiomorphic, display aspect ratios between 1.5 and 3.5 and show well-
developed pyramidal tips (Fig. 5a,b). Grains range in size from 200 to
350 μm in augen gneisses and are notably smaller in leucogneisses
(150–250 μm). Core–rim relationships are commonly observed
(Fig. 5). They often consist of CL-dark or bright sub-idiomorphic to
rounded cores, mantled by a rim showing typical oscillatory zoning. A
careful examination of CL images reveals the existence of small textural
discontinuities in such oscillatory zoning, with truncations and irregular
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surfaces being common. Finally, few grains display very CL-bright nar-
row (b10 μm) rims (see Fig. 5d).

4.2.2. Sample MM06
This sample is a typical “Arc-de-Fix” augen gneiss collected from

the cliff along the RD40 road below the village of St-Privat-d'Allier
(Figs. 2 and 4a). Twenty-six analyses were performed on 24 zircon
grains. Three cores yield concordant Neoproterozoic 238U/206Pb dates
at 559.7 ± 13.4, 660.3 ± 15.2 and 721.4 ± 16.9 Ma respectively (errors
quoted at 2σ, Table S5). Plotted in the Tera-Wasserburg diagram, 21
analyses from rims or grains devoid of any core trend along a mixing
line between radiogenic and common Pb compositions. This trend has
a lower intercept at 540.5 ± 3.2 Ma (MSWD = 0.26) and an identical
Concordia date of 541.8 ± 3.1 Ma (MSWDC + E= 0.34, Fig. 8a) is calcu-
lated out of the 16 statistically equivalent concordant analyses. Two
spots (z10 and z20) have 206Pb/238U dates of c. 510Ma that are statisti-
cally different from those of the main population, and were therefore
not included in the calculation. There is no systematic relationship be-
tween 238U/206Pb dates and Th/U ratios which range between 0.02
and 0.64. This observation is also valid for the three other samples.

4.2.3. Sample MM11
Sample MM11 is an augen gneiss collected at the “Col de Meyrand”

(Fig. 4a).Out of 28 analyses, 7 correspond to zircon cores. Five yielded con-
cordant Neoproterozoic 206Pb/238U dates ranging from 580.7 ± 14.1 Ma
(z30) to 1077.1 ± 25.0 Ma (z33) and two discordant 207Pb/206Pb dates
of 860 Ma and 2100 Ma (Fig. 8b). In the Tera-Wasserburg diagram, a
total of 18 spots from zircon rims and core-free grains define a trend
with a lower intercept at 541.2 ± 3.6 Ma (MSWD = 0.34), which slope
is mostly controlled by discordant spot z38. Excluding the latter and the
slightly discordant spot z44, an identical Concordia date of 542.5 ±
3.1 Ma (MSWDC + E = 0.43, Fig. 8b) can be calculated out of 16 analyses.
Three spots yielded significantly younger 206Pb/238U dates (two are dis-
cordant and one concordant with a 206Pb/238U date of 502.6 ± 12.1 Ma)
that were thus not included in the calculations.

4.2.4. Sample MM10
MM10 is a leucogneiss collected at the "Pont-du-Bon-Dieu" along

theRD6 road south of Labastide-Puylaurent. It features an intricate asso-
ciation with mylonitic augen gneiss (see Fig. 4d). Sixty-five analyses
were performed, out of which 12 spots on zircon cores gave concordant
Neoproterozoic 206Pb/238U dates ranging from 560.3±13.2Ma (z88) to
657.8±14.5Ma (z136) and 805.8±17.5Ma (z137) to 921.7±20.6Ma
(z130, Table S5). Three discordant analyses, also from zircon cores,
yielded older Paleoproterozoic 207Pb/206Pb dates of 1600, 1900 and

2400 Ma. Twenty-eight spots from zircon rims or grains without cores
trend along a mixing line between radiogenic and common Pb with a
lower intercept at 540.7 ± 2.7 Ma (MSWD = 0.11). Considering the
concordant analyses only (n = 26), a Concordia date of 541.4 ±
2.3 Ma (MSWDC + E = 0.38, Fig. 8c) can be calculated. Thirteen concor-
dant spots have 206Pb/238U dates ranging between 523.4± 11.1Ma and
482.4±11.1Ma. Thosewere not included in the calculations because as
argued below (see Section 5.1), theywould correspond to radiogenic Pb
loss from the main population at c. 541 Ma.

4.2.5. Sample MM09
Sample MM09 is a leucogneiss boudin stretched within an augen

gneiss matrix and exposed along the D906 road south of Langogne
(Fig. 4b). Out of 25 analyses, 3 correspond to zircon cores: one displays
a concordant 206Pb/238U date of 686.7 ± 16.3 Ma and two show similar
discordant Paleoproterozoic 207Pb/206Pb dates of 1700 Ma (Table S5).
From the remaining data obtained on rims and core-free zircons, nine
concordant spots define a Concordia date of 545.9 ± 4.3 Ma
(MSWDC + E = 1.05, Fig. 8d); the rest of the data show younger
206Pb/238U dates and are notably discordant, with the exception of
two concordant spots having 206Pb/238U dates of 509.9 ± 12.2 Ma and
516.7 ± 12.4 Ma respectively.

4.3. Lu – Hf isotope data

Zircon Lu-Hf analyses obtained for augen gneissesMM06 andMM11
are displayed in Table S6. Only magmatic zircon grains and rims were
analyzed. Therefore, initial Hf isotope compositions were calculated
using the intrusion age determined for each sample (see Section 4.2).
The 176Hf/177Hf(t) ratios of magmatic zircons from augen gneiss
MM06 range from 0.282376 ± 0.000023 to 0.282487 ± 0.000036
(2 S.E. – standard error), corresponding to εHf(t) of –2.4 to 1.6 with a
chondritic average value of −0.2 ± 2.9 (2 S.D. – standard deviation;
Fig. 9a and Table 1). Augen gneiss sample MM11 shows a tighter range
of zircon 176Hf/177Hf(t), from 0.282407 ± 0.000027 to 0.282462 ±
0.000025 (2 S.E. – standard error) equivalent to εHf(t) of –1.3 to
0.7 (Fig. 9a) and yielding an identical average εHf(t) at −0.2 ± 1.2
(2 S.D. – standard deviation; Table 1).

5. Discussion

5.1. Interpretation of the U–Pb data and orthogneisses emplacement ages

All investigated samples are characterized by a largely dominant pop-
ulation of zircon grains having statistically equivalent and concordant
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206Pb/238U dates between 550–540 Ma, which we interpret as the crys-
tallization ages of the VOF granitic protoliths. This interpretation is sup-
ported by (i) the fact that these data were obtained on zircon rims or
grains devoid of any core; (ii) the typical magmatic oscillatory zoning
showed by the analyzed domains (Fig. 7); and (iii) the well-developed
{211} pyramids of these crystals, which are characteristic of zircon
grown in peraluminous granitic magmas (Belousova et al., 2006; Pupin,
1980), in linewithwhole–rock geochemistry of the investigated samples
(Fig. 5b).

From this perspective, we interpret the 28 analyses obtained from
zircon cores, showing notably older 238U/206Pb dates (from 560 Ma up
to 1100 Ma, 75% of which being N95% concordant), as reflecting zircon
inheritance from the source of these (meta)granites or xenocrysts sam-
pled from the country-rocks during magma ascent and emplacement.
The presence of these inherited cores and xenocrysts is significant be-
cause they occur in all of the four investigated samples (Fig. 8) and rep-
resent a non-negligible proportion of the dataset (ca. 19%). In addition,
CL images hint the presence of more small, strongly resorbed or irregu-
lar cores (see Fig. 7c close to z134 or 7d close to z78) that could not be
analyzed by LA-ICP-MS.

A significant amount of zircon analyses (including 17 concordant
ones) show 206Pb/238U dates younger than the 550–540 Ma crystalli-
zation age, in the range 523 to 482 Ma. These are well represented in
the leucogneiss samples (Fig. 8), particularly MM10 (Fig. 8c). We

argue that these dates do not correspond to any geological event
but rather result from recent radiogenic Pb loss affecting the main,
545–540 Ma-old zircon population. Firstly, these dates are often as-
sociated with incoherent core–rim relationships (cores having youn-
ger 238U/206Pb dates than their associated rims, see for instance
zircons 93, 103 and 106, Fig. 7c). Second, recent Pb loss is represent-
ed by horizontal lines in the Tera-Wasserburg diagram because it
does not affect 207Pb/206Pb ratios (Fig. 8c). The weak curvature of
the Concordia at Paleozoic times implies that the Discordia and
Concordia curves are nearly parallel so that any c. 540 Ma-old zircon
having experienced a limited Pb loss would still be sub-concordant
within uncertainty.

Following the abovementioned interpretations, the igneous
protoliths of all the investigated VOF samples show overlapping em-
placement ages of c. 542 Ma, at the Ediacaran/Cambrian boundary
(541 ± 1 Ma, Finney et al., 2013). This age is close to, yet significantly
older than the Cambrian Rb/Sr date of 528 ± 9 Ma obtained by R'Kha
Chaham et al. (1990) on Arc de Fix augen gneisses. It complies with
the zircon Pb evaporation age of 533 ± 22 Ma (Mougeot et al., 1997)
and the chemical U–Th–Pb monazite date of 543 ± 25 Ma (Be
Mezeme et al., 2006) both obtained on unmolten to anatectic Arc de
Fix augen gneisses. It is also identical to the whole-rock Rb–Sr age of
545 ± 14 Ma determined by Caen-Vachette (1979) for the Pilat
leucogneisses.
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5.2. Petrogenesis of the magmatic suite

The VOF samples display remarkable geochemical homogeneity, re-
gardless of their geographic provenance. Their composition is consistent
with the chemistry of peraluminous S-type granites (see Fig. 6). More-
over, zircon grains from augen- and leucogneisses have similar, low as-
pect ratioswhich complywith a plutonic origin for theprotoliths of both
rocks (Corfu et al., 2003), andmorphologies typical of crystals formed in
S-type granitic magmas (Belousova et al., 2006; Pupin, 1980) (Fig. 5).
Furthermore, the obtained emplacement ages for the four samples
(545–540 Ma) are overlapping within analytical uncertainties. All
these lines of evidence indicate that the VOF represents a former, large
S-type granitic batholith emplaced at the Ediacaran/Cambrian boundary
that was subsequently deformed and dismembered by Variscan tecton-
ics. The aim of this section is to characterize its petrogenesis.

Given the narrow range of silica contents (mostly 70–76 wt%) and
the apparent similar chemical composition of investigated samples,
we plotted the geochemical data using the principal component ap-
proach. This procedure helps pinpointing petrogenetic trends
(Buccianti and Peccerillo, 1999; Janoušek et al., 2004). Principal compo-
nents were calculated using the internal routine of the GCDkit software
(Janoušek et al., 2006) after recasting the chemical compositions to
100% in the system SiO2–Al2O3–MgO–FeO–TiO2–CaO–Na2O–K2O. The
first three principal components account for 86% of the cumulative var-
iance of the system. As principal component 1 (P.Comp1) mostly op-
poses silica vs. compatible elements contents (MgO, FeO, TiO2, CaO),
the most silicic rocks (i.e., the leucogneisses) feature high P.Comp1

values (Fig. 10). Similar to trends observed inmajor elements diagrams,
the banded gneisses' compositions spread between an augen gneiss and
a leucogneiss endmember.

5.2.1. Source of the magmatic suite
The complete absence of mafic or even intermediate meta-igneous

rocks in the VOF together with the observation of inherited zircon
cores in the dated samples precludes the formation of the magmatic
suite by fractionation of mantle-derived magmas. This absence rather
suggests that the granitic magmas originated from melting of pre-

existing crustal lithologies. The low CaO contents (0.2–1.5 wt%)
displayed by samples from the VOF discard amphibole-rich mafic
rocks as a potential source material (Coldwell et al., 2011; Sisson et al.,
2004), such that meta-sediments and meta-intermediate to felsic igne-
ous rocks are most adequate as potential sources.

Fig. 11 compares the composition of VOF samples to primary liquids
formed by melting of a range of meta-sedimentary and meta-igneous
crustal lithologies. Relevant melting conditions correspond to a range
of crustal pressures from 3 to 15 kbar and temperatures b900 °C in
agreement with (i) the absence of magmatic orthopyroxene in the in-
vestigated suite (Frost and Frost, 2008); (ii) first-order estimates
given by zircon saturation thermometry, the persistence of inherited
zircon cores in the dated samples indicatingmaximummagma temper-
atures of 780± 15 °C upon emplacement (calculated with the equation
of Boehnke et al. (2013)) and therefore, melting temperatures that
cannot have been in excess of 840–885 °C considering a maximum
melting pressure of 15 kbar and reasonable adiabats (i.e. between 4
and 7 °C/kbar; Annen et al., 2006; Clemens et al., 1997; Holtz and
Johannes, 1994). Experimental melt compositions are projected on the
principal component framework determined from statistical analysis
of the VOF samples (Fig. 10). The considered experimental studies to-
gether with respective starting materials and P–T conditions are sum-
marized in Table 2.

Clearly, tonalites and metaluminous granodiorites are inappropriate
source rocks because melts derived from those lithologies have respec-
tively lower Mg# (Fig. 11f) and/or lower K2O/Na2O (Fig. 11h) than nat-
ural samples. Peraluminous granodiorite melts display more adequate
compositions but can only account for a small part of the natural sam-
ples variability centered on P.Comp1 ~ 0 (Fig. 11). By contrast, melting
of quartz-rich to quartz-poor pelites, greywackes and volcanoclastic
rocks generates a range of primary melt compositions that fairly repro-
duce the compositional scatter of the augen- and part of the banded
gneisses, i.e. samples with −4 b P.Comp1 b 0.5. This is in line with the
VOF samples displaying a geochemical affinity to S-type granites (see
Fig. 6) that derive from melting of such lithologies (Chappell and
White, 2001). Therefore, it is reasonable to consider that the granitic
protoliths of augen- and banded gneisses from the VOF represent liq-
uids which originated from melting of a heterogeneous sedimentary
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sequence at 750 b T b 900 °C and 3 b P b 15 kbars. This is consistentwith
thewide range of inherited zircon ages, scattering from 560 to 1100Ma
(Fig. 8), which points to an Ediacaran depositional age for the source
sediments.

Importantly, leucogneiss samples (with P.Comp1 N 0.5) clearly dif-
fer from any investigated experimental melt composition. Two non-
exclusive scenarios may account for their origin: (i) leucogneisses
derive from source materials and/or at P–T conditions not represent-
ed in our database; or (ii) they result from fractionation of the
granitic magmas at the origin of augen- and banded gneisses with
P.Comp1 b 0.5. The first hypothesis is unlikely, since the range of in-
vestigated source materials (Table 2) is fairly representative of the
most common felsic sources in the crust, and the investigated tem-
perature range (680–900 °C) encompasses a wide domain of melting
conditions, from water-present melting (c. 650–700 °C) to muscovite
dehydration melting (c. 720–750 °C) and biotite dehydration melting
(c. 850–875 °C). The feasibility of the fractionation hypothesis is test-
ed hereafter.

5.2.2. Leucogneiss petrogenesis
In this section, we investigate whether leucogneisses could be de-

rived from fractionation of the magma at the origin of the augen
gneisses. Fig. 12a and b depicts the chemical evolution of a magma
fractionating minerals typically found in peraluminous S-type granites:
K-feldspar, oligoclase, biotite, muscovite, cordierite, garnet (Bea et al.,
1994; Tartèse and Boulvais, 2010). Fractionation vectors are calculated
usingmass balance for major elements, and Rayleigh-type fractionation
together with partition coefficients for traces (cordierite could not be
modeled for traces due to the lack of available partitioning data).
In terms of major elements, fractionation of an augen gneiss-like
liquid to a leucogneiss composition cannot be driven by muscovite,
nor K-feldspar, as both result in too high values for PComp.3
(Fig. 12b). Leucogneisses are better reproduced by concomitant frac-
tionation of plagioclase and a ferromagnesian phase (biotite, garnet
and/or cordierite, Fig. 12a,b). The low Ba-Sr contents displayed by
leucogneisses can result from fractionation of either a K-feldspar domi-
nated assemblage (however, this is ruled out by major elements), or a
polymineralic assemblage comprising 40% biotite and 60% plagioclase
(Fig. 12c). Fractionation of plagioclase is also in agreement with the
more pronounced Eu anomaly displayed by leucogneisses (Fig. 6). The
decrease in HREE and Y contents from augen gneisses to leucogneisses
could result from fractionation of a small amount of garnet, zircon or

xenotime (Bea, 1996). The same observation for LREE could originate
from minor fractionation of apatite and/or monazite (Bea, 1996). As a
result, fractionation of a Pl + Bt (+accessory phases) assemblage
from an augen gneiss-likemagma satisfactorily accounts for the compo-
sition of leucogneisses.

5.2.3. Emplacement depth
Leucogneisses are highly silicic (SiO2 generally ranging between 74

and 77 wt.%), mostly contain quartz + feldspar, and, as demonstrated
above, correspond to residual melts after fractionation of a Pl + Bt as-
semblage out of a magma similar to augen gneisses. Therefore, the
leucogneisses compositions should be very close to that of the
minimum or eutectic in the haplogranitic system. The position of this
minimum/eutectic in the ternary Qz-Ab-Or diagram is a function of
the water activity and the pressure of crystallization (Johannes
and Holtz, 1996). At a given pressure, decreasing water activity
(corresponding to H2O-undersaturated melts) shifts the position of
the minimum/eutectic towards the Qz-Or join keeping the normative
Qz proportion constant (Johannes and Holtz, 1996). The latter is there-
fore strictly pressure-dependent and is an indicator of the pressure of
magma crystallization. In this section, we aim at retrieving the depth
of emplacement/crystallization of the batholith by comparing the com-
positions of leucogneisses to that of the haplogranitic minimum/eutec-
tic as predicted by experimental data.

Experimental data on the Qz-Ab-Or-H2O system have been com-
piled by Blundy and Cashman (2001).We projected natural leucogneiss
compositions following the recommendations of the same authors by:
(i) calculating the CIPWnorm; (ii) correcting the effect of the normative
component on the position of the natural melt in the ternary diagram.
Only samples with measured Fe2O3/FeO ratios were retained (total of
66 analyses) to ensure calculation of accurate normative values.
Leucogneisses from the VOF cluster around the minimal melt composi-
tions expected at pressures of 0.5–2 kbars and water-saturated condi-
tions (aH2O = 1, Fig. 13). Few samples show higher Qz modal values
which could result from limited sub-solidus chemical modifications or
the presence of quartz veinlets.

Since leucogneisses and augen gneisses are intimately associated in
the field (see Section 2.2), a pressure of crystallization for the whole
batholith of 0.5–2 kbars can be inferred. This corresponds to depths of
~2 to 7 km and suggests that the VOF S-type granites emplaced at shal-
low crustal levels.
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5.3. Interpretation of Lu – Hf data

The εHf(t) variabilitywithin a given sample is small (b4 and even b2
εHf-units in MM11) and of the same order of magnitude than the ana-
lytical uncertainties (i.e. ±1.1εHf-units), indicating that zircons crystal-
lized from a magma with relatively homogeneous Hf isotope
composition. Both samples reveal identical average εHf(t) clustering
around the chondritic value, taken as representative of that of the
magma at the time of crystallization.

Clearly, a chondritic mantle source for the magmas at the origin of
the VOF must be discarded because geochemical data are rather in
line with a sedimentary source (see Section 5.2.1). Accordingly, the
chondritic value could originate from the melting of an isotopically ho-
mogeneous sedimentary reservoir that would itself rework continental
crust extracted from the Depleted Mantle (DM) at ~1.3 Ga (calculated
model age with a crustal 176Lu/177Hf of 0.0113, from Taylor and
McLennan (1985)). However, there is no crust of that specific age
in the north Gondwana margin, where crust production occurred

Table 2
Experimental melts database used in this study. List of starting materials, pressures and temperatures of melting and associated references (available as Supplementary text).

Source rock Reference P (kbar) T (°C)

Qz-rich pelite Pickering and Johnson (1998), Patino-Douce and Harris (1998) 6–10 750–900
Pelite Stevens (1995), Patino-Douce and Johnston (1991), Vielzeuf and Holloway (1988) 5–10 825–900
Greywacke Patino-Douce and Harris (1998), Stevens (1995), Patino-Douce and Beard (1996), Montel and Vielzeuf (1997) 3–10 800–900
Metaluminous granodiorite Bogaerts et al. (2006) 3.7–4.1 775–900
Peraluminous granodiorite Holtz and Johannes (1991) 3–5 700–800
Tonalite Watkins et al. (2007) 6–12 680–900
Metavolcanoclastic rock Skjerlie and Johnson (1996) 10–15 850–900
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in the Archean (2.5–3.3 Ga), Paleoproterozoic (1.8–2.2 Ga) and
Neoproterozoic (0.6–0.7 Ga) (Gerdes and Zeh, 2006; Linnemann et al.,
2014; Nance et al., 1991). As a result, the chondritic signature of the
VOF parental magmas most probably stems from the melting of a sedi-
mentary source composed of a mixture of the three above-mentioned
reservoirs, including at least 50% of Neoproterozoic juvenile crust (as
proposed for Variscan S-type granites from the same area (Moyen
et al., 2017; Turpin et al., 1990). Ediacaran metasediments throughout
the Variscan belt of Western Europe are characterized by a very large
spread of detrital zircon εHf(t), specifically ranging from c. +10 down
to c. –40 at 600 Ma (Fig. 9b), interpreted as reflecting the contribution
of terrigenous material from both juvenile Neoproterozoic crust (such
as the Arabian-Nubian Shield) and ancient, Paleoproterozoic to Archean
crust from Gondwana (Chelle-Michou et al., 2017; Linnemann et al.,
2014; Orejana et al., 2015). Therefore, the Ediacaran metasediments
represent adequate sources for the VOF granites. The U–Pb dates of
inherited zircons in the VOF samples strongly support this interpreta-
tion, since those are dominantly in the range 560–900 Ma (20 analyses
out of 28, i.e. 71%) that is typical for detrital zircons in Ediacarian
metasediments of the northern Gondwana margin (Chelle-Michou
et al., 2017; Linnemann et al., 2014; Orejana et al., 2015; Teixeira et al.,
2011; see also Fig. 8).

The Hf isotope homogeneity displayed by the parental magmas of
the VOF (Fig. 9b) is rather uncommon for S-type granites, which mag-
matic zircons commonly show larger variations of εHf(t), most often
of ~10 epsilon-units (Appleby et al., 2009; Farina et al., 2014; Teixeira
et al., 2011; Villaros et al., 2012). Based on the natural case of the Cape
Granite Suite in South Africa, Villaros et al. (2012) proposed that the
Hf isotope scatter observed in S-type granites results from the dissolu-
tion at emplacement level of inherited detrital zircons in the melt
phase. Such grains being isotopically disparate, their dissolution creates
small-scale Hf isotopic heterogeneities captured by newly formed zir-
con when the melt crystallizes. However, Farina et al. (2014) showed
that the cooling history of the magmatic body exerts a strong control
on this process, with fast cooling rates (≥0.0125 °C/yr) leading to
rapid zircon saturation. In that case, especially if somezirconhas already
been dissolved during melting and/or transport and the Hf isotopic
composition was homogenized thereby, igneous zircons crystallized
at the emplacement level would not show strong Hf isotope heteroge-
neities (i.e. about 1 εHf unit even though the initial inherited zircons
showed compositional variation in excess of 10 εHf units; Farina et al.,
2014). It is therefore likely that the parental magmas of the VOF

experienced such a process, i.e. (i) inherited zircon dissolution during
melting and/or ascent in the crust; (ii) coeval homogenization of Hf iso-
topic compositions in the melt; and (iii) limited further dissolution at
the emplacement level (if any).

Liquids formed by melting of sedimentary lithologies at 750–850 °C
can dissolve up to 115–390 ppm Zr (calculated using the equation of
Boehnke et al., 2013 and the composition of experimental melts from
the compilation presented in Table 2), which corresponds to 14 to 48%
dissolution of detrital zircons present in the sedimentary source litholo-
gy, assuming a source composition of ca. 200 ppm Zr (close to the aver-
age composition of the upper crust, Rudnick and Gao, 2003), that all Zr
is hosted in detrital zircons and an average melt fraction of ca. 25%
(derived from experimental data listed in Table 2). Consistently, Zr con-
centrations in augen and banded gneisses from the VOF range mostly
from ca. 50 to 180 ppm, indicating that they would have left the source
in a Zr-undersaturated state after dissolution of maximum 6–23% detri-
tal zircon (and probably much less, given the presence of inherited zir-
cons in the VOF samples) using the same parameters as above. Close to
their liquidus, the resulting melts would have readily undergone ho-
mogenization through advection and elemental/isotopic diffusion. Con-
versely, zircon saturation temperatures of the VOF samples are around
780 °C (see Section 5.2.1), meaning that they would have very rapidly
reached saturation upon emplacement and cooling, especially consider-
ing that they emplaced at relatively shallow crustal levels (≤7 km, see
Section 5.2.3). This would have indeed promoted fast cooling rates
and in turn, limited dissolution (if any) of the remaining inherited zir-
con cores (Farina et al., 2014). All lines of evidence therefore suggest
that the unusually homogeneous zircon Hf isotopic composition of the
S-type VOF granites result from a combination of Zr-undersaturated
conditions during melting and transport in the crust followed by early
saturation upon emplacement owing to rapid cooling at shallow crustal
levels.

5.4. Geodynamic setting of late Ediacaran magmatism in the French Massif
Central

A compilation of available geochronological data (n=74dated sam-
ples) shows that pre-Variscan magmatism in the French Massif Central
spanned over 150 Ma from the Ediacaran (c. 600 Ma) to the late
Ordovician (c. 450 Ma) and possibly the Early Silurian (Fig. 14). The
age pattern shows a bimodal distribution reflecting the existence
of two pulses of magmatic activity at c. 475 Ma (Ordovician) and
c. 540 Ma (Ediacaran/Cambrian boundary). As outlined before, Ordovi-
cian magmatic activity in the FMC is interpreted as reflecting long-
lived extension of the Northern Gondwana margin that culminated in
rifting and the opening of small-scale oceanic basins (Lardeaux et al.,
2014). However, at the scale of the Variscan belt, the significance of
this Ordovician event is much discussed and contrasted geodynamic
settings have been proposed such as an active margin environment
with a fore-arc accretionary complex (Zurbriggen, 2015) and continen-
tal subduction (Villaseca et al., 2016).

The existence of the Ediacaran/Cambrian peak together with its ori-
gin and significance has not been addressed in the FMC. By that time,
the crust segment today exposed in the FMC was located along the
northernmargin of Gondwana (Stampfli et al., 2013) andwas therefore
likely affected by the Cadomian orogeny, a Cryogenian–EdiacaranWest-
ern Pacific-type marginal orogenic system (Nance et al., 1991). Accord-
ingly, remnants of Cadomian granitoid rocks have been described in
several parts of the Variscan belt (see review in Garfunkel (2015)). In
the following, we compare the Cadomian magmatic record of the east-
ern FMC to that of the closest crustal block shaped by the Cadomian
orogeny but nearly devoid of Variscan imprint: the Mancellian Domain
of the North ArmoricanMassif (Fig. 1). Today located 500 kmNWof the
Velay Dome, it preserves an excellent record of the Cadomian orogenic
evolution (Ballèvre et al., 2001; Chantraine et al., 2001) and the
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developed comparison would better constrain the origin and
geodynamic setting of late Ediacaran magmatism in the FMC.

The Mancellian Domain comprises two main lithological units: (i) a
terrigenous sedimentary sequence of Ediacaran (“Brioverian”) age,
interpreted as a turbidite-type back-arc to retro-arc basin (Ballèvre
et al., 2001; Linnemann et al., 2014); (ii) a range of granitoids which in-
trude the sediments and develop thermal aureoles that suggest em-
placement depths lower than 6 km (Ballèvre et al., 2001). Available
ages on this magmatism range between 550 and 540 Ma (Egal et al.,
1996, 2011; Peucat, 1986). This configuration clearly resembles that ob-
served in the LGU of the eastern FMC (Ledru et al., 2001). As demon-
strated above, orthogneisses correspond to a late Ediacaran S-type
granitic suite emplaced at shallow crustal levels (2–7 km). Field obser-
vations clearly indicate that the VOF is intrusive within the regional
paragneisses (Ledru et al., 1994). Consequently, our dating results on
the VOF importantly constrain a minimum deposition age of 545 Ma
for the sedimentary protoliths of the paragneisses, besides consistent
with constraints based on the age of the youngest detrital zircons in
these rocks (Chelle-Michou et al., 2017). We thus propose that Velay
paragneisses are akin to the Brioverian sediments and that the VOF is
the counterpart of the Mancellian granitoids.

However, when compared to the VOF, Mancellian plutonic rocks
show a larger petrographic diversity as they includemafic to intermedi-
ate rocks which are not observed in the VOF. Accordingly, the
Mancellian suite displays a larger scatter in SiO2 contents (49–78 wt%)
than the VOF (69–79 wt%) (Fig. 15a). Moreover, the dominant phase
of the Mancellian suite is a granodiorite as opposed to a granite and
leucogranites only form subordinate massifs. The Mancellian granodio-
rites trend between two endmembers in the ternary CaO – K2O/Na2O –
Al2O3/(FeOt + MgO) diagram (Laurent et al., 2014) (Fig. 15b). This
observation suggests a dual origin by: (i) melting of sedimentary mate-
rials in agreement with petrographic (Brown, 1995) and isotopic data
(D'Lemos and Brown, 1993); (ii) involvement of K-rich mantle-derived
magmas (Fig. 15b), either as a component of the source (remelting of
underplated mafic rocks) and/or via magma mixing/mingling as sug-
gested by the occurrence of mafic microgranular enclaves (Jonin, 1981)
and the presence of mafic/intermediate calc-alkaline rocks as part of
the suite (Le Gall and Barrat, 1987). Leucogranites have been interpreted
as sediment-derived melts produced under high a(H2O) conditions and
are not genetically linked to the granodiorites (Brown, 1995). As a result,
the respective petrogenesis of Mancellian and VOF granitoid suites con-
trast by the extent of mantle contribution (respectively significant vs.
lacking) and the relative role played by fractionation in accounting for
the most felsic compositions.

The proposed geodynamic setting for Mancellianmagmatism corre-
sponds to the post-570 Ma inversion of a back-arc basin (the Brioverian
sequence) in a transpressional regime coevalwith collision between the
Cadomian arc and the Gondwana continent (Chantraine et al., 2001;
Dallmeyer et al., 1991; Linnemann et al., 2014). Given the evidence for
limited thickening (maximum crustal thickness of ~40 km according
to Ballèvre et al., 2001) and the presence of a mantle component in
the Mancellian suite, crustal melting is considered to have been trig-
gered by the underplating of mafic magmas (Ballèvre et al., 2001;
Dissler et al., 1988; Linnemann et al., 2014). In contrast, the lack of sub-
stantial evidence for mantle-derived magmatism in the VOF despite its
large surface (~1800 km2), especially the invariably (leuco)granitic
character and high SiO2 content (N68 wt.%) of the samples (see Fig. 6),
rules out mafic magma underplating as a potential heat source. The
Cadomian back-arc basin corresponded to stretched and thinned conti-
nental crust (Brown and D'Lemos, 1991; Chantraine et al., 2001;
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Fig. 14. Compilation of available intrusion ages for pre-Variscan volcanic and plutonic
rocks in the French Massif Central. (a) Age distribution represented as Kernel Density
Estimate, calculated using the DensityPlotter program of Vermeesch (2012); the
bandwidth considered is the average 2σ error on emplacement ages (12 Ma).
(b) Details on available intrusion ages. Abbreviations and references available in
Supplementary text.
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Linnemann et al., 2014) and by analogy with modern back-arc settings,
high mantle heat flow was expected in this crust segment (Currie and
Hyndman, 2006). As demonstrated by Clark et al. (2011), thermal relax-
ation following stacking of back-arc units generates temperatures in the
middle crust in excess of 750 °C, compatible with extensive melting of
sedimentary lithologies and with the conditions of formation inferred
for the VOF parental magmas based on experimental constraints and
zircon saturation (see above). Therefore, limited thickening of anoma-
louslywarmCadomian back-arc basinswould have triggered significant
crustalmelting (Brown andD'Lemos, 1991). As a result, we propose that
the VOF is a lateral equivalent of theMancellian batholith in an area un-
affected by mantle melting during the Cadomian back-arc basin inver-
sion. Several reasons can explain the apparent lack of coeval mantle-
derived magmatism including: (i) previous depletion of the underlying
mantle during back-arc spreading as evidenced by the 590–570Ma tho-
leiitic to calc-alkaline mafic magmatism observed in parts of the North-
ern Armorican Massif (Chantraine et al., 2001; Linnemann et al., 2014);
or (ii) lateral variations in the Cadomian subducting slab dynamicswith
localized break-off that strongly affected the thermal regime of the
back-arc mantle (Nance et al., 2010).

6. Conclusion

Remnants of a Cadomian basement are described in the Velay area
(eastern FrenchMassif Central) where an S-type granitic suite intruded
Ediacaran sediments at c. 542 Ma. The main phase of this large
(~1800 km2) batholith corresponded to a porphyritic granite
(transformed into an augen gneiss during the Variscan orogeny) while
somemagmas evolved by fractional crystallization towards leucogranitic
compositions (corresponding to the present-day leucogneisses). Such
voluminous magmatism was likely caused by the inversion of a back-
arc basin domain at the end of the Cadomian orogeny, leading to limited
stacking of supracrustal sequences in a high thermal regime that favored
significant melting. This is supported by the homogeneous εHf(t) of the
VOF zircons compared with their inferred protoliths (sediments derived
from various Gondwana-related reservoirs with extremely contrasted
isotopic signatures) which points to dissolution of detrital zircons in
the source and rapid cooling upon emplacement. From a crust evolution
perspective, the Cadomian magmatism in the Velay area was strictly
crust-derived and thus attests to substantial reworking of older crust
away from a proper continent-continent collision zone. Conversely,

there is currently no compelling evidence for Cadomian crust production
in the FMC.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.lithos.2017.06.001.
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2.2 Metasediments in and around the Velay dome

2.2.1 Introduction

The French Massif Central crust segment typically lacks any remnant of old Precambrian
rocks, neither at surface level (Melleton et al., 2010; Roques et al., 1995) nor in the lower
crustal xenoliths sampled by Cenozoic volcanoes (Féménias et al., 2003; Rossi et al.,
2006; Supply, 1981). Excluding geochronological results obtained by the multi-grain
zircon U�Pb ID�TIMS method, likely to yield mixed ages, the oldest igneous rocks from
the FMC correspond to the c. 540 Ma-old meta-granites from the Velay Orthogneiss
Formation (see above). In the Velay dome, metasediments constitute the country-rocks
within which the VOF (meta)granites emplaced (Ledru et al., 1994). The age pattern of
inherited grains/xenocrysts in the VOF and younger Variscan granitoids suggests that
the Velay metasediments were deposited in the Ediacaran (Couzinié et al., 2014; Chelle-
Michou et al., 2017; Laurent et al., 2017). Therefore, such lithologies would correspond
to the most ancient autochtonous rocks of the eastern FMC and would have recorded
the earliest events that formed the FMC crust.

This section provides a new set of U�Pb�Hf measurements performed on detrital
zircon grains extracted from four Velay metasediments. It aims at providing further
constraints on: (i) the maximum depositional ages of the protoliths; (ii) the origin and
nature of the detritus that fed the sedimentary basins and ultimately built up the �rst
continental crust of the FMC.

2.2.2 Investigated samples

The sampling strategy was designed to cover the most typical metasedimentary forma-
tions in and around the Velay dome. Data are already available for the eastern �ank
of the dome (Chelle-Michou et al., 2017) which has accordingly not been re-sampled.
Geochemical data for the investigated samples are available in the Appendix Table B1.

PIL-16-01 This sample was collected along the N82 road, at the southern exit of Saint�
Etienne (GPS coordinates: 45.40051, 4.4165). It belongs to a 40 cm-thick meta-sandstone
(quartzite) body interbedded within amphibolite-facies meta-pelites. The latter are gen-
erally referred to as "Pilat micaschists" (Chenevoy, 1971; Gardien, 1990) and form a
constituent lithology of the Lower Gneiss Unit in the northern part of the Velay dome.
PIL-16-01 is very silicic (SiO2 > 87%) and dominantly composed of quartz and muscovite
with subordinate amounts of feldspar, Fe�Ti oxides and zircon (Fig. 2.2a).

SEN-16-01 This specimen was sampled along the D51 road, between the villages
of Chavaniac�Lafayette and Jax (45.16402, 3.60390). It corresponds to a meter-thick
quartz-rich layer within the "Senouire" amphibolite-facies micaschists, a typical metased-
imentary unit of the western �ank of the dome (Ledru et al., 1994). The rock is mostly
composed of quartz and biotite with minor amounts of muscovite, garnet, plagioclase,
Fe�Ti oxides and zircon (Fig. 2.2b).

CHA-16-02 Collected in the southwestern part of the dome, near the village of Chas-
seradès, this sample arguably corresponds to a meta-arkose because of: (i) its moderate
SiO2/Al2O3 and Fe2O3/K2O ratios (< 6 and 0.7 respectively; Herron, 1988); (ii) the high
modal proportion of feldspar which, together with quartz, builds up most of the rock.
Other minerals include garnet, muscovite, Fe�Ti oxides and zircon (Fig. 2.2c). The
20 cm-thick meta-arkose layer is closely associated with amphibolite-facies micaschists
(Briand et al., 1993; Négron, 1979; Rakib, 1996).
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Figure 2.1: Geological map of the Velay dome area showing the location of analysed metasediment
and amphibolite samples. The extent of Variscan partial melting of the metamorphic lithologies
is not shown for sake of clarity. Redrawn after Ledru et al. (2001), Mintrone (2016) and regional
geological maps of France at scale 1/50,000.
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PdB-16-01 This sample was taken from a regionally famous outcrop known as "Pont-
de-Bayzan" in the bed of the Ardèche river, west of the Lalevade-d'Ardèche village (de-
scribed in Barraud et al., 2004; Be Mezeme et al., 2005a and Montel et al., 1992). PdB-
16-01 is an anatectic paragneiss similar to those encountered in the southern part of the
dome (Barbey et al., 2015). Only the melanocratic part of the sample, presumably corre-
sponding to paleosome or residuum in the sense of Sawyer (2008), was selected for detrital
zircon analysis. The mineral assemblage consists of quartz, plagioclase, alkali-felspar and
biotite with accessory zircon, monazite and apatite (Fig. 2.2d).

Figure 2.2: Cross- (a,b,d) and plane-polarized-light (c) photomicrographs of metasediments out of
which detrital zircon grains were extracted to determine their U�Pb�Hf isotope compositions. (a)
Pilat quartzite PIL-16-01; (b) Senouire quartzite SEN-16-01; (c) Cévennes meta-arkose CHA-16-
02; (d) Pont-de-Bayzan paragneiss PdB-16-01. Mineral abbreviations from Whitney and Evans
(2009).

2.2.3 Analytical techniques

Zircon grains were separated from the powdered rock samples at Saint-Etienne University
using conventional techniques described section 2.1, subsequently cast into epoxy mounts
and polished down to an equatorial grain section. CL-imaging was performed at the
Laboratoire Magmas et Volcans in Clermont-Ferrand (France) using a Jeol JSM-5910
SEM. Selected grains were dated by LA�ICP�MS at ETH Zürich (see Appendix B.3.3
for analytical notes and Tables B6 and B9 for standards and samples results). In situ Hf
isotope measurements were also performed at the Laboratoire Magmas et Volcans. The
analytical procedure is reported Appendix B.4.2 and Table B10. The full set of results
(standards and samples) is available Tables B13 and B14.

2.2.4 Zircon description

Zircon grains in the four investigated samples are mostly colorless, some being pink-
ish or yellowish. Their shapes vary from rounded (notably in sample PIL-16-01) to
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sub-idiomorphic (sample PdB-16-01) with aspect ratios between 1:1 (rounded) and 1:3.
Grains range in size from 50 to 160 µm, the shortest being encountered in SEN-16-01,
and are often broken (particularly in samples PIL-16-01 and SEN-16-01). Cathodolumi-
nescence images reveal very diverse internal structures (Fig. 2.3). Oscillatory or patchy,
broad zoning is common in many grains (see for instance in PdB-16-01, Fig. 2.3d) even
though some appear homogeneous (e.g. PIL-16-01, Fig. 2.3a). Importantly, core-rim
relationships are typically lacking, with very few crystals showing narrow CL-bright or
dark rims (< 10 µm-large, see zircon 2 and 3, Fig. 2.3a, or zircon 2, Fig. 2.3b). Sec-
ondary textures include healed cracks and fractures (e.g. zircon 3, Fig. 2.3a) and zones
of blurred oscillatory zoning (e.g. zircon 7, Fig. 2.3c). We did not speci�cally target
any zircon population in the course of the U�Pb dating sessions in an attempt to be
representative of the overall diversity. Apart from two exceptions, all analysed zircon
yielded Th/U ratios > 0.08 which supports a magmatic origin for those grains (Rubatto,
2002; Rubatto et al., 2001).

Figure 2.3: Representative cathodoluminescence images of zircon grains from Lower Gneiss Unit
metasediments. The locations of laser spots (white and yellow circles for U�Pb and Lu�Hf
analyses respectively) are indicated along with the spot name (zXX or #YY). The corresponding
206Pb/238U dates are quoted with ± 2σ uncertainty, in Ma. All displayed analyses are concordant
at > 95%. Hf isotope data are reported using the εHf calculated at the

206Pb/238U date obtained
on the same zircon domain, quoted with 2σ uncertainty.
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2.2.5 U�Pb geochronology

PIL-16-01, SEN-16-01 and CHA-16-02 These samples are grouped together be-
cause they show similar detrital zircon age distribution. Only 53% of the grains analysed
in sample PIL-16-01 yielded U�Pb results concordant at 95�105% (112/212 measure-
ments). This proportion increases to 67% in CHA-16-02 (137/204) and reaches 85% in
SEN-16-01 (53/62). The date spectra of all three samples reveal a dominant Ediacaran
to late Cryogenian population in the range 550�680 Ma (Fig. 2.5a,b,c) with a prominent
peak at c. 640 Ma (two sub peaks in SEN-16-01 at 620 and 660 Ma, probably in line
with the lower number of measurements). The remaining analyses are mostly distributed
over three main time periods: 760�1050 Ma (Tonian to late Stenian), 1.7�2.1 Ga (Paleo-
proterozoic) and 2.6�2.7 Ga (Neoarchean) in which they may cluster and form marginal
peaks.

PdB-16-01 Out of 200 analyses, 143 are concordant at 95�105% (representing 72%
of the dataset). The zircon U�Pb date spectrum markedly contrasts with that of the
three other samples. Almost all dates (97%) range between 590 and 1050 Ma with
Paleoproterozoic and Neoarchean dates being very scarce (only 3% of the record). The
Neoproterozoic date distribution features a clear continuum with subordinate peaks at
640, 700 and 750 Ma (Fig. 2.5d).

Figure 2.4: Tera�Wasserburg diagrams (238U/206Pb vs. 207Pb/206Pb) showing Neoproterozoic
zircon data for the Lower Gneiss Unit metasediments. Error ellipses/ages are quoted at 2σ level
of uncertainty. Yellowish ellipses are those included in age calculations.
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Figure 2.5: Zircon U�Pb date distribution of investigated metasediments from the Lower Gneiss
Unit represented as Kernel Density Estimates (KDE). Only 95�105% concordant 206Pb/238U (for
dates < 1.2 Ga) and 207Pb/206Pb dates (for dates > 1.2 Ga) were considered. Circles below the
x-axis are the central value of individual data points. Plotted with the DensityPlotter program
of Vermeesch (2012). The bandwidth was set to adaptative mode for the 400�3100 Ma diagram
and 12 Ma (the average 2σ error of individual analyses) for the 500�1100 Ma plot.
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2.2.6 Zircon Hf isotope compositions

The zircon grains analysed for Lu�Hf isotopes were selected based on the date distribu-
tion, trying to capture the diversity of each zircon population. The results are depicted
Fig 2.6.

PIL-16-01 Twenty-two 550�665 Ma zircon grains show very diverse εHf (t), from +8.7
(#3) down to -10.5 (#15). One late Tonian grain has a radiogenic εHf (t) of +4.6 (#8).
Early Tonian to late Stenian zircons have also variable Hf isotope signatures with 3 grains
displaying εHf (t) of -11.9, +1.6 and +10.8 ε-unit (#29, #20 and #22, respectively).
Five Paleoproterozoic zircons range between -7.4 (#11) and +4.0 (#19) ε-unit. Three
Neoarchean grains are chondritic to suprachondritic, with εHf (t) ranging from -0.4 (#2)
up to +4.1 (#17).

CHA-16-02 The Hf isotope signature of 32 Ediacaran�Cryogenian zircons (565�720
Ma) is highly scattered with εHf (t) ranging from -16.9 (#18) up to +12.7 (#24).
Seven Tonian�Stenian (n=6) and Paleoproterozoic grains (n=1) display chondritic to
supra-chondritic εHf (t) (between +0.5 and +12.3, #33 and #6, respectively). Three
Neoarchean zircons are nearly chondritic with εHf (t) ranging between -2.0 (#29) and
+1.2 (#21).

PdB-16-01 Zircon with U�Pb dates in the range 590�980 Ma have dominantly very
radiogenic Hf isotope signatures: 84% of the data yield εHf (t) > +4.4, 47% Depleted
Mantle-like values (up to +13.7, #41). Besides, 8% are nearly chondritic (between -
1.8 and 1.2, #21 and #19 respectively) and the remaining 8% subchondritic (between
-12.1 and -18.7, #8 and #31, respectively). Paleoproterozoic zircon grains show slightly
non-radiogenic signature (of c. -2 ε-unit). Two Neoarchean zircon yielded sub and supra-
chondritic values of -5.6 (#22) and +2.6 (#42).

General pattern The εHf (t) measured on Paleoproterozoic and Neoarchean zircon are
scattered and both sub and suprachondritic. Detrital zircon crystallized at the Tonian�
Stenian boundary have even more diverse signatures with εHf (t) ranging from -19 up to
+11 (in the �eld of composition expected for the Depleted Mantle reservoir). A large
majority of Cryogenian�Tonian zircons (mostly represented by sample Pdb-16-01) have
radiogenic Hf isotope signatures. Ediacaran zircon grains are typi�ed by their highly
variable εHf (t), from -16.9 to +12.2. This pattern di�ers from that observed by Chelle-
Michou et al. (2017) in LGU metasediments from the eastern Velay for two reasons: (i)
their measured Cryogenian�Tonian zircons tend to show subchondritic signatures, and
(ii) the Ediacaran�Cryogenian highly radiogenic record (εHf (t)>+6) documented in this
study is lacking in theirs.
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Figure 2.6: Combined U-Pb and Lu-Hf isotopic data for zircons from Ediacaran metasediments,
constituent rocks of the Lower Gneiss Unit in the Velay area. Additional data for the eastern
Velay are from Chelle-Michou et al. (2017). The yellow �eld depicts the composition of intruding
meta-granites from the Velay Orthogneiss Formation (see above). The εHf (t) range for the
Depleted Mantle reservoir is bracketed by the models of Naeraa et al. (2012) and Gri�n et al.
(2002). The dotted arrow represent the isotopic evolution of continental crust (calculated using
an average crustal 176Lu/177Hf ratio of 0.0113). Data for the northern Armorican Massif are
from D'Lemos and Brown (1993); Samson and D'Lemos (1998) and Samson et al. (2003).
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2.2.7 Depositional ages

Field relationships indicate that (meta)granites from the Velay Orthogneiss Formation
(VOF) are intrusive within the (meta)sediments (Ledru et al., 1994). The oldest em-
placement age determined for the VOF samples (545.9 ± 4.3 Ma, leucogneiss MM09)
entails that the minimum depositional age of the sediments is at least Ediacaran. As
a direct consequence of this, metasediment zircon grains with concordant 206Pb/238U
dates younger than 546 Ma likely experienced limited recent Pb loss. Those analyses
would have remained concordant because of the weak curvature of the Concordia at Neo-
proterozoic/Paleozoic times. This situation is observed in sample PIL-16-01 where spot
#116 shows a concordant 206Pb/238U date of 526 ± 5 Ma.

Excluding those grains, themaximum depositional age is given by that of the youngest
zircon population in each sample. The latter has been estimated via the following proce-
dure. First, the youngest (and older than c. 545 Ma) concordant analysis is identi�ed. A
Concordia date is then calculated out of it and the closest older analysis. If the MSWD of
concordance and equivalence is acceptable (close to 1, meaning that the two zircon grains
likely belong to a single population), the next older analysis is added to this pool and a
new Concordia date calculated. This procedure is repeated until the MSWD markedly
departs from 1, indicating that two di�erent populations are sampled. All investigated
metasediments yielded late Ediacaran ages (Fig. 2.4), ranging from 592.4 ± 5.5 Ma
for sample PdB-16-01 down to 553.2 ± 5.3 Ma for PIL-16-01. Samples SEN-16-01 and
CHA-16-02 show identical maximum sedimentation ages of 567.7 ± 6.0 and 567.0 ±
5.0 Ma respectively. These results are consistent with the presence of inherited zircon
grains/xenocrysts of that age in c. 540 Ma-old (meta)granites from the VOF.

2.2.8 Zircon sources

Comparison with other Cadomian terrains The zircon age distribution of all four
samples is consistent with the pattern displayed by other Ediacaran (meta)sediments
from the northern margin of Gondwana. Indeed, detrital zircon studies on the western
Massif Central (Chelle-Michou et al., 2017; Melleton et al., 2010) together with Iberian
(Díez Fernández et al., 2010; Fernández-Suárez et al., 2000; Fernandez-Suarez et al., 2002;
Henderson et al., 2016; Linnemann et al., 2008; Orejana et al., 2015; Pereira et al., 2012),
Northern Armorican (Ballouard, 2016; Fernandez-Suarez et al., 2002; Gougeon et al.,
2017; Miller et al., 2001; Samson et al., 2005) and Bohemian (Drost et al., 2011; Gerdes
and Zeh, 2006; Hajná et al., 2017; Linnemann et al., 2004; 2008; 2014; Sláma et al., 2008b;
Sláma and �ák, 2017) massifs documented the predominance of Ediacaran�Cryogenian
grains with additional populations of Tonian�Stenian (720�1100 Ma), Paleoproterozoic
(1.8�2.1 Ga) and Archean (2.4-2.7, sometimes up to 3.45 Ga) age. Typical is the absence
of Mesoproterozoic detrital record with a clear gap between 1.2 and 1.6 Ga.

Mixed origin of the detritus Multi-methods studies (encompassing geochemistry,
petrography, sedimentology, geochronology) have demonstrated that Ediacaran sedi-
ments deposited along the northern margin of Gondwana were of mixed origin: a fraction
of the detritus originated from the erosion of the Avalonian�Cadomian magmatic arc and
the rest was supplied by an old Gondwana-derived source (Dabard et al., 1996; Denis
and Dabard, 1988; Drost et al., 2011; Linnemann et al., 2000; 2008; 2014; Nance and
Murphy, 1994; Orejana et al., 2015; Pereira et al., 2012; Rabu et al., 1990).

The proximal source The inferred proximal source, the Avalonian�Cadomian mag-
matic arc, crops out in the northern Armorican Massif (France and British Channel
Islands, see Ballèvre et al., 2001; Brown, 1995; Chantraine et al., 2001; D'Lemos et al.,
1990; Dissler et al., 1988; Dupret et al., 1990 and Strachan et al., 1996). Even though
the rocks today exposed are unlikely to correspond to those eroded at Ediacaran times,
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they can still provide constraints on the nature, age pattern and isotopic signature of the
proximal detritus. In this crust segment, igneous rocks include: (i) late Cryogenian to
early Ediacaran calc-alkaline suites comprising basic, intermediate and acid components
with radiogenic Nd�Hf isotope signature, taken as evidence for arc�back-arc magmatism
(Auvray et al., 1992; Brown et al., 1990; D'Lemos and Brown, 1993; Dallmeyer et al.,
1991; Egal et al., 1996; Graviou and Auvray, 1990; Guerrot and Peucat, 1990; Miller
et al., 2001; Nagy et al., 2002; Power et al., 1990; Samson et al., 2003); (ii) late Edi-
acaran migmatites and peraluminous granitoids (the Mancellian batholith), thought to
have been generated during inversion of the back-arc and coeval arc�continent collision
(Brown et al., 1990; Brown and D'Lemos, 1991; D'Lemos and Brown, 1993; Egal et al.,
1996; 2011; Peucat, 1986). Paleoproterozoic and Tonian crustal rocks (Icartian and Port
Morvan gneisses, respectively) are also documented (Calvez and Vidal, 1978; Egal et al.,
1996; Inglis et al., 2004; Samson and D'Lemos, 1998; Samson et al., 2003). They are
regarded either as the constituent autochtonous crust on which the Cadomian arc�back-
arc was formed (Chantraine et al., 2001; Dissler et al., 1988) or as exotic blocks accreted
to the arc in the early Ediacaran (Linnemann et al., 2014; Samson et al., 2003).

The εHf (t) of various Cadomian intrusions are depicted Fig. 2.6 (from Hf isotope
studies or recalculated from Nd isotopes based on the relation εHf (t) = 1.36 εNd(t) + 3
determined by Vervoort et al., 1999). Magmas emplaced in the time period 750�625 Ma
have supra-chondritic, DM-like Hf isotope signatures. A clear shift towards less radiogenic
source compositions occurred in the Ediacaran as magmas younger than 625 Ma show a
broad range of inferred εHf (t) from +5 down to sub-chondritic values of -11. This pattern
is similar to that observed in the detrital zircon record of the Velay metasediments (Fig.
2.6). As a direct consequence of this, the 750�555 Ma zircon population encountered
in Ediacaran metasediments from the FMC could adequately originate from a proximal
Cadomian arc source akin to the northern Armorican Massif.

The case of early Tonian�Stenian and Archean zircons is more problematic. Indeed,
there is no rock of that age in the Armorican Massif. Besides, in this area, Paleopro-
terozoic granitoids have suprachondritic, DM-like, εHf (t) which are more elevated than
those observed in detrital zircons from the FMC Ediacaran (meta)sediments. These ob-
servations require the existence of a di�erent, more distal source i.e. the main Gondwana
land (Drost et al., 2011; Linnemann et al., 2008; 2014; Orejana et al., 2015; Pereira et al.,
2012).

The distal source In the following, we address the nature and origin of the distal
source based on the zircon age pattern and isotope signature of both Neoproterozoic
detritus (Abati et al., 2010; 2012; Avigad et al., 2015; Meinhold et al., 2011; Morag
et al., 2012) and today-exposed igneous rocks (Block et al., 2016; Eglinger et al., 2017;
Küster et al., 2008; Morag et al., 2011b; Stern et al., 2010) from several segments of the
Gondwana (West African Craton, Saharan Metacraton and Arabian Nubian Shield). We
selectively reason on the early Tonian�Stenian, Paleoproterozoic and Neoarchean zircon
populations (U�Pb date > 800 Ma) since those are the only ones for which a distal origin
is ensured. Importantly, there is no rock older than Tonian in the Arabian Nubian Shield
(Morag et al., 2011b; Stern, 2002) and older�than�800 Ma zircon grains are very scarce
(Avigad et al., 2015; Morag et al., 2012; Stern et al., 2010) which discards this area as a
potential source region. The West African craton (WAC) exposes Paleoproterozoic and
Neoarchean rocks which zircon U�Pb�Hf isotope compositions match that of detrital
grains from our samples ( Block et al., 2016; Eglinger et al., 2017 and unpublished data
from O. Laurent). However, there is no evidence for early Tonian�Stenian magmatic
activity in the WAC (Ennih and Liégeois, 2008). Similarly, Ediacaran metasediments
deposited in the vicinity of the WAC do feature Paleoproterozoic and Neoarchean zircon
populations of adequate Hf isotope signature but lack any early Tonian�Stenian grain
(Abati et al., 2010; 2012). This entails that the WAC alone cannot be the distal source
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of late Ediacaran sediments from the eastern FMC. Little is known about the Saharan
Metacraton. Early Tonian igneous rocks with both supra and subchondritic Nd isotope
signatures are documented by Küster et al. (2008). Meinhold et al. (2011) report the
existence of early Tonian�Stenian, Paleoproterozoic and Neoarchean zircon populations
in a Neoproterozoic metasediment indicating that this area could have contributed to
the detritus that fed the late Ediacaran basins of the FMC. Yet, the lack of Hf isotope
data hinders further conclusions. Finally, involvement of crustal materials transported
from very distant sources (central and southern Gondwana) may have been possible, as
advocated for Cambrian�Ordovician sediments from northern Gondwana (Avigad et al.,
2003; 2012; Altumi et al., 2013; Kolodner et al., 2006; Linnemann et al., 2011; Meinhold
et al., 2011; 2013; Morag et al., 2011a).

Relative proportions of proximal vs. distal sources A total of 31% of detrital
zircon U�Pb dates are older than 800 Ma (161/519 including the data of Chelle-Michou
et al., 2017). Assuming that each eroded rock had a similar zircon content (same "fertil-
ity" in the sense of Dickinson, 2008), this yields a minimum estimate of the proportion
of detritus derived from the Gondwana mainland, presumably the Saharan Metacraton.
The compilation of Abdelsalam et al. (2002) demonstrate that Cryogenian�Ediacaran
rocks with DM-like Nd isotope signatures today crop out in this crust segment. Yet, the
youngest igneous rock emplacement age obtained by modern dating techniques (U�Pb
on accessory minerals) are 578 ± 15 (Sultan et al., 1990) and even 591 ± 5 Ma when
measurements performed by dissolution of multi-grain fractions are excluded. There-
fore, metasediments zircon grains younger than 591 Ma most probably originate from
the proximal Cadomian arc source. Such grains represent 13% of the dataset (68/519
including the data of Chelle-Michou et al., 2017). As a result, the proportion of detritus
originating from distal Gondwana-land sources is bracketed between 31�87%. Re�ne-
ment of this �rst-order estimate is hampered by our current knowledge of the structure
and composition of both the Cadomian arc and the Saharan Metacraton.

Additional observations suggest that the actual value should be closer to 31 than 87%.
Indeed, sample PdB-16-01 displays markedly di�erent zircon U�Pb date pattern and Hf
isotope signatures compared to other metasediments from the Lower Gneiss Unit, even
though their protoliths were presumably deposited in the same basin and time period.
This is indicative of brutal changes in the nature of the detritus sources through time.
Such feature is consistent with a detritus originating from catchments submitted to high
denudations rates, as would be the case of a continental arc. Consequently, it is very
likely that the proximal Cadomian arc did supply an important fraction of the detritus
that fed the late Ediacaran basins of Lower Gneiss Unit in the FMC.

2.2.9 Geodynamic inferences

Evolution of the Ediacaran back-arc basin

Several authors argued that late Ediacaran sediments from the north Gondwana mar-
gin were deposited in back-arc basins located at the rear of the Cadomian subduction
(Fernández-Suárez et al., 2000; Linnemann et al., 2004; 2008; 2014; Orejana et al., 2015;
Pereira et al., 2012). This conclusion is based on reconstructed plate motions since the
Ediacaran (Stamp�i et al., 2013), the present-day location of the Cadomian magmatic
arc and the mixed nature of the detritus pinpointing the existence of both a nearby active
margin and an evolved mature source by that time (Fig. 2.7).

In the French Massif Central, the pre-Variscan history of the Lower Gneiss Unit fea-
tures the deposition of detrital sediments in the time period 550�590 Ma, i.e the late
Ediacaran. The actual thickness of the sedimentary pile is di�cult to estimate due to
Variscan tectonics but was likely pluri-kilometric. Sediments were intruded by S-type
granitic magmas at c. 540�545 Ma (see previous section). As a matter of fact, the oldest

63



Figure 2.7: Interpretative geodynamic sketches illustrating the Ediacaran evolution of the crust
segment to which the French Massif Central belongs. Inspired from Collins and Richards (2008).
See text for discussion. The Riverie meta-tonalites are introduced section 3.5.

emplacement age determined for the VOF meta-granites and the age of the youngest zir-
con population encountered in metasediments are identical within errors (545.9 ± 4.3 and
553.2 ± 5.3 Ma, respectively). This points to a very short time span between sedimenta-
tion and crust-derived magmatism. Such situation is typically observed in accretionary
orogenic settings where protracted periods of lithospheric extension and associated sed-
imentation (Fig. 2.7a) are punctuated by contractional events (Fig. 2.7b) leading to
crust thickening and followed by anatexis (Barker et al., 1992; Cawood et al., 2009;
Collins, 2002; Collins and Richards, 2008; Crook, 1980; Kemp et al., 2009; Zurbriggen,
2015). Therefore, geochronological constraints further support a late Ediacaran back-arc
location for the crust segment today exposed in the Lower Gneiss Unit of the FMC.

S-type granites from the VOF emplaced c. 30 Ma after a thickening episode that
a�ected the northern margin of Gondwana (see section 2.1), dated at 580�570 Ma in the
North Armorican massif (Ballèvre et al., 2001; Strachan et al., 1996). Contraction in the
upper plate would have been promoted by the shallowing of the Cadomian subduction
angle (Collins, 2002; Strachan et al., 1996). The inferred time span (30 Ma) between
thickening and magmatism is consistent with that predicted by numerical models (Clark
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et al., 2011). In this frame, metasediments would have been deposited during the post-
contraction relaxation period, between 570 and 550 Ma. Sample PdB-16-01 lacks any
detrital zircon younger than c. 590 Ma and its deposition may pre-date the thickening
event.

A glimpse of the Cadomian arc evolution?

Detrital zircon grains from the Velay metasediments record a marked change in their Hf
isotope composition at c. 640 Ma with a drift towards less radiogenic εHf (t). Assuming
that a signi�cant proportion of the Cryogenian�Ediacaran detritus originates from the
proximal Cadomian arc (see section 2.2.8), such drift could be explained by the sudden
incorporation of an isotopically evolved, old crustal component in younger�than�640 Ma
arc magmas. Mixing would have occurred in the source, by addition of crust-derived
material in the mantle (Nebel et al., 2011; Plank, 2005; Roberts et al., 2013), or during
magma ascent (Laumonier et al., 2014b;a).

A similar pattern has been described in the Kohistan-Ladakh Batholith of the Hi-
malayan belt by Bouilhol et al. (2013). In this oceanic arc developed above the Tethyan
ocean, early granitoids show suprachondritic Nd�Hf isotope signatures which abruptly
become subchondritic at 50�40 Ma. According to these authors, such change would re-
�ect the collision of the India plate with the arc and resulting tapping of a continental
crust-derived Indian source in addition to the mantle wedge. Following this, the c. 640
Ma drift observed in the detrital zircon record may be correlated to the accretion of
an outboard-sitting exotic crustal terrane to the early Cadomian arc. The c. 2.0 Ga
Icartian gneisses of the North Armorican Massif are good candidates because they are
today located in the fore-arc region (Linnemann et al., 2014). Besides, those gneisses ex-
perienced amphibolite-facies metamorphism and were intruded by a set of leucogranites
by 620�605 Ma (Samson and D'Lemos, 1998), consistent with an late Cryogenian�early
Ediacaran accretion to the arc.

2.3 Amphibolites

2.3.1 Introduction

Investigating the origin of meta-igneous rocks is of primary importance in order to de-
cipher the pre-orogenic history of the French Massif Central. In the Lower Gneiss Unit,
the presence of igneous metabasites clearly testi�es for the existence of mantle melting
episode(s) before the onset of the Variscan orogeny. Such rocks constitute very scarce
massifs with a maximal thickness of 60 m and lateral extension of 2�3 km (Chenevoy
et al., 1995). They are intercalated within meta-greywackes (see Weisbrod, 1970 and Né-
gron, 1979, for the Arc de Fix domain; Yousif, 1980, for the Vivarais and Pilat domains)
or enclaved within the Velay granites (e.g. Vitel, 1985).

The metabasites were deformed and equilibrated in the amphibolite- to granulite-
facies during the Variscan orogeny (Vitel, 1985). Most rocks are layered and relic gabbroic
textures have been described locally (Lochon, 1985; Yousif, 1980). That being said,
identifying the nature of the protolith has proven impossible in most cases. Previous
geochemical studies have concluded that the amphibolites have major and trace elements
compositions akin to alkali basalts (Briand et al., 1992; Chenevoy et al., 1986; Ouali, 1993;
Pin and Marini, 1993).

The age of the melting event is unknown and all authors considered the meta-
greywacke host as indicative of an intra-continental setting for basic magmatism (Briand
et al., 1992; Pin and Marini, 1993). They postulated that the LGU amphibolites are
Cambrian�Ordovician in age by analogy with the stratigraphically well-dated volcano-
sedimentary successions of the lower-grade Parautochtonous Unit and Fold-and-Thrust
Belt. There, metabasites transitional between enriched tholeiites and alkali basalts have
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been described in the Lower Paleozoic strata (Alsac et al., 1987; Lépine et al., 1988;
Marini, 1987; 1988; Pouclet et al., in press).

In order to put further constraints on the geochemical signature of the LGU metaba-
sites and ascertain the validity of the Cambrian�Ordovician age, additional samples have
been collected for whole-rock major and trace element determinations and zircon U�Pb
dating. One layered metabasite (MM01) was sampled near the village of Rochepaule and
three others (MM02 to 04) at the nearby Fromentoux farm (Fig. 2.1). The outcrops and
mineralogy of the metabasites are described in Yousif (1980).

2.3.2 Geochemistry and petrogenesis

The whole-rock major and trace element compositions of the four samples were obtained
from the ALS Global �rm. A geochemical database was built up from this new dataset
and the literature (Briand et al., 1992; Molina, 1973; Ouali, 1993; Pin and Marini, 1993;
Weisbrod, 1970; Yousif, 1980). After screening out altered samples (high LOI and high
W index of Ohta and Arai, 2007), a total of 113 analyses were retained (14 of which
include trace element compositions).

Figure 2.8: Composition of the Lower Gneiss Unit metabasites plotted in the R1�R2 diagram of
De La Roche et al. (1980). The fractionation trends for each series are from Debon and Lemmet
(1999).

In the R1�R2 diagram of De La Roche et al. (1980), metabasites plot in a variety
of �elds, mostly those of ultrama�c rocks, alkali gabbros, gabbros, monzogabbros and
syenogabbros (Fig. 2.8). They dominantly de�ne an alkalic trend and subordinately a
subalkaline trend (Debon and Lemmet, 1999). All rocks are enriched in Th, LREE, Zr
but depleted in HREE with respect to N�MORBs and lack any negative Nb anomaly
(Fig. 2.9). In the Th�Nb proxy diagram (Pearce, 2008), they accordingly plot in the
mantle array and dominantly cluster around the OIB endmember (Fig. 2.10a). In the
Ti�Nb proxy diagram (Fig. 2.10b), LGU metabasites plot within the OIB array and
de�ne a trend between a high Nb/Yb and Th/Yb endmember (Nb/Yb = 10; Th/Yb =
1) and a very high Nb/Yb and Th/Yb endmember (Nb/Yb = 30; Th/Yb = 2.5). The
two remaining samples have ratios akin to OIBs (Sun and McDonough, 1989).
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Figure 2.9: Incompatible, immobile element patterns normalized to the composition of N-MORBs
(Sun and McDonough, 1989) for the metabasites of the Lower Gneiss Unit. The grey �eld depicts
the composition of samples from the litterature.

These observations con�rm that the LGU metabasites mostly de�ne an alkaline series
as already advocated by Briand et al. (1992). The existence of the subalkaline series is
questionable. Indeed, in the R1�R2 diagram, alkali loss during metamorphism would dis-
place sample compositions towards higher R1 values at constant R2. Therefore, samples
from the main alkaline population experiencing limited alkali loss unidenti�ed by our
screening technique would create an artefactual subalkaline series. Such interpretation
is supported by the fact that one sample from the literature (THUE, south of the Velay
dome, reported by Pin and Marini, 1993) shows trace element compositions akin to alkali
basalts yet is part of the subalkaline trend in the R1�R2 diagram.

The enrichment in LREE and more generally HFSE compared to N�MORBs is in-
dicative of low melting degrees and/or an enriched mantle source (Pearce, 1996; 2014).
The depletion in HREE, evidenced by the high TiO2/Yb ratios, most likely originates
from melting of a mantle source containing residual garnet and hence melting depths in
excess of 50�70 km (Ziberna et al., 2013). The trend in the Nb�Ti proxy diagram could
attest to a range of melting degrees at constant pressure (Pearce, 2008). Altogether,
these geochemical proxies support an origin of the LGU metabasite protoliths by melting
of a deep asthenospheric source or, alternatively, a lithospheric mantle source that did
not previously interact with slab-derived �uids.

2.3.3 Zircon U�Pb dating

In order to constrain the emplacement age of the LGU metabasite protoliths, one sam-
ple (MM03) was selected for zircon U�Pb dating. Zircon grains were separated from
the powdered rock at Saint-Etienne University using conventional techniques described
section 2.1, subsequently cast into epoxy mounts and polished down to an equatorial
grain section. CL-imaging were performed at the Laboratoire Magmas et Volcans in
Clermont-Ferrand (France) using a Jeol JSM-5910 SEM. Selected grains were dated by
LA�ICP�MS at ETH Zürich (see Appendix B.3.3 for analytical notes and Tables B6 and
B9 for standards and samples results).

Zircon textures

Zircon grains from sample MM03 are xenomorphic with rounded to oval shapes and
low aspect ratios (between 1 and 2). The grain edges are almost always corroded and
irregular (Fig. 2.11). CL-dark cores (see zircon grains 3,5 and 6) are surrounded by poorly
luminescent rims displaying sector zoning. Such zoning is locally blurred in domains of
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Figure 2.10: Proxy element diagrams for metabasites from the Lower Gneiss Unit. (a) Th�Nb
proxy diagram of Pearce (2008). Oceanic basalts plot within the MORB�OIB array. Magmas
contaminated by the continental crust during ascent or which mantle source interacted with
slab-derived �uids plot in the volcanic arc array. (b) Ti�Nb proxy diagram of Pearce (2008).
The TiO2/Yb ratio strongly depends on the presence of residual garnet in the mantle source.
Magmas formed at great depth feature high TiO2/Yb ratio provided that garnet is not exhausted
in the residua. Such samples plot in the OIB array. If the magmas result from melting of spinel
peridotites, or if garnet has been exhausted in the residua, they plot in the MORB array. Same
legend as Fig. 2.8

higher luminescence (see bottom of zircon 6 for instance). Fractures propagating from
the grain cores have been subsequently healed and are thus visible on CL images (e.g.
zircon 4).

Figure 2.11: Representative cathodoluminescence images of zircon grains from amphibolite sam-
ple MM03. The locations of laser spots are indicated along with the spot name (aXX and cYY
for measurements performed in the �rst and third sequence, respectively). The corresponding
206Pb/238U dates are quoted with ± 2σ uncertainty, in Ma. All displayed analyses are concordant
(except those in italic). Spot diameters are 20 and 30 µm.

Results

Thirty-eight spots were drilled on 23 grains. Nine analyses are markedly discordant (con-
cordance: 14�55%) and will not be discussed further. Eleven measurements performed
on zircon domains displaying sector zoning and faint luminescence yielded 206Pb/238U
dates between 318 ± 3 and 304 ± 4 Ma (Fig. 2.12a). A Concordia date of 307.8 ± 3.7 Ma
(with a MSWDC+E of 1.5) can be calculated out of the seven youngest, equivalent and
concordant analyses. All eleven have markedly low Th/U ratios, always <0.1 and often
<0.06 (Fig. 2.12b). Fourteen spots drilled on CL-dark cores, on rims displaying sector
zoning and on mixed domains gave a range of discordant 206Pb/238U dates ranging from
475 ± 8 down to 347 ± 3 Ma (Fig. 2.12a). One analysis performed on a CL-dark core
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yielded a concordant 206Pb/238U date of 496 ± 13 Ma (Fig. 2.11 and 2.12a). Finally, one
measurement conducted on an other CL-dark core gave a discordant 206Pb/238U date of
538 ± 10 Ma. Analyses with 206Pb/238U dates older than 320 Ma show elevated Th/U
ratios (>0.48 and up to 2.5, see Fig. 2.12b).

Figure 2.12: (a): Tera�Wasserburg diagram (238U/206Pb vs. 207Pb/206Pb) for zircon from the
Vivarais amphibolite sample MM03. Error ellipses and ages are displayed at 2σ level of uncer-
tainty. Yellowish ellipses are those considered for Concordia age calculations. (b) 206Pb/238U
date as a function of zircon Th/U ratio for each measurement showing concordance >63%.

Interpretation

Zircon grains and rims showing U�Pb dates younger than 318 Ma are poorly lumines-
cent, display sector zoning and have low Th/U. Such features are typically observed in
metamorphic zircon (re)crystallized at subsolidus conditions (Corfu et al., 2003; Hoskin
and Black, 2000; Vavra et al., 1999). Therefore, I interpret the Concordia date of 307.8
± 3.7 Ma as the age of peak metamorphic conditions. At the regional scale, this age is
very well documented and corresponds to: (i) the anatexis of surrounding paragneisses
from the Lower Gneiss Unit, dated at 307.4 ± 2.3 Ma (Chelle-Michou et al., 2017); (ii)
intrusion of mantle mantle-derived magmas ("vaugnerites") at 307.8 ± 1.6 and 307.3 Ma
± 1.3 Ma (Laurent et al., 2017); (iii) emplacement of the Velay granite at 307.5 Ma ±
2.0 Ma (Chelle-Michou et al., 2017).

Figure 2.12b illustrates the existence of a trend between a set of spots with low
Th/U (<0.11) and late Carboniferous 206Pb/238U date (<318 Ma), corresponding to
(re)crystallized metamorphic zircon, and an endmember with high Th/U and Cambrian�
Ordovician 206Pb/238U dates. This observation suggests that the scattered 206Pb/238U
ranging from 475 ± 8 down to 347 ± 3 Ma re�ects the sampling of mixed zircon domains
comprising: (i) (re)crystallized metamorphic sectors and (ii) old zircon cores. From this
perspective, the discordance displayed by most analyses would be a direct consequence
of such mixing.

Yet, mixing trends in the Tera-Wasserburg diagram (Fig. 2.12a) or in the 206Pb/238U
date vs. Th/U plot (Fig. 2.12b) yield a non-unique solution. I interpret this feature as
a consequence of common Pb incorporation, which is independently supported by the
observation of healed micro-fractures in CL images. Consequently, the actual age of the
zircon cores is most probably given by the single concordant 206Pb/238U date of 496 ± 13
Ma. Younger discordant dates would re�ect both core/rim mixed analyses and common
Pb incorporation. The signi�cance of the discordant 206Pb/238U date of 538 ± 10 Ma
remains unclear.

The CL-dark cores can have two di�erent origins. First, they would have crystallized
during the emplacement of the igneous protolith. Alternatively, they could correspond
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to xenocrysts entrained within the basaltic parental magma during emplacement in the
continental crust and not fully dissolved. In the �rst case, 496 ± 13 Ma would represent
the intrusion age of the ma�c magmatic protolith. Such result is consistent with other
studies that reported the existence of similar tholeitic transitional to alkaline basic mag-
matic rocks of similar age in the low-grade units of the FMC (Alsac et al., 1987; Béziat
et al., 1992; Lépine et al., 1988; Marini, 1987; 1988; Pouclet et al., in press).

2.4 Conclusion

The pre-Variscan rocks of the Lower Gneiss Unit mostly record Neoproterozoic events.
Metasediments were deposited between 590 and 545 Ma in a back-arc basin supplied by
a detritus originating from both a (present-day)north-sitting magmatic arc and the main
Gondwana-land, presumably the Saharan Metacraton. Contractional events probably
related to the shallowing of the Cadomian subduction angle resulted in burial and thick-
ening of the thin, anomalously warm back-arc crust, itself dominated by sedimentary
lithologies. This resulted in a voluminous magmatic event marked by the c. 540 Ma
intrusion of a set of S-type porphyritic and leucogranites, protoliths of the Velay Or-
thogneiss Formation. Some amphibolite bodies from the LGU may represent Cambrian
gabbros/basalts but their scarcity strikingly contrasts with the voluminous Cambrian�
Ordovician magmatism observed in the LGU of the western FMC Melleton et al. (2010).
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Chapter 3

Meta-igneous rocks of the Upper
Gneiss Unit in the
Monts-du-Lyonnais area

3.1 Introduction

In the eastern Massif Central, one of the largest and best exposure of the Upper Gneiss
Unit is found in the Monts-du-Lyonnais area, North of the Velay dome. Such domain
was thus speci�cally targeted in order to: (i) better characterize the pre-Variscan history
of this metamorphic nappe, and ultimately (ii) get insights on the crustal evolution of
the terrains today exposed in the Variscan belt.

The Upper Gneiss Unit mostly equilibrated in the amphibolite-facies (Dufour, 1982;
Feybesse et al., 1995; Gardien et al., 1990). The volumetrically dominant lithological
component corresponds to a set of orthogneisses, referred to as Lyonnais Orthogneiss
Formation in the following, but garnet�biotite�sillimanite paragneisses are particularly
abundant in the southern and western parts of the Monts-du-Lyonnais (Fig. 3.1). Fol-
lowing the studies of Peterlongo (1958) and Forestier (1961), I recognize hereafter the
Leptynite�Amphibolite Complex (LAC) as its southern domain (i) comprising a large
variety of metamorphic lithologies including leucocratic �ne-grained orthogneisses of
the Lyonnais Orthogneiss Formation, paragneisses, metabasic rocks, amphibole-bearing
gneisses, marbles, garnet-bearing peridotites and (ii) featuring petrological relics of an
early high-pressure metamorphic event (Blanc, 1981; Dufour et al., 1985; Dufour, 1985;
Gardien et al., 1990; 1988; Lardeaux et al., 1989; Lasnier, 1968). Such de�nition is
also that retained by Lasnier (1968); Blanc (1981) and Briand et al. (1995). The LAC
would correspond to a Franciscan-type "subduction mélange" zone created during the
northwards subduction of the Galicia�Massif Central ocean (Lardeaux et al., 2014).

In this chapter are typi�ed the nature and origin of the meta-igneous rocks from
the Upper Gneiss Unit based on a literature review (mostly unpublished PhD theses
from the 80's) and a new set of samples on which were conducted geochemical (major
and trace element together with zircon Hf isotope compositions) and geochronological
investigations. A geochemical database for metamorphic lithologies was built up from the
literature (Blanc, 1981; Davoine, 1971; Dufour, 1982; Ouali, 1993), unpublished analyses
(courtesy of J.-F. Moyen, A.-C. Ganzhorn and V. Gardien) and a new dataset from rocks
I sampled during my �eld survey (n=7). The total number of analyses is 430.

First, the geochemical database was screened to discard metasedimentary lithologies
and altered samples. This has been done by a careful consideration of petrological de-
scriptions and by calculation of the W index of Ohta and Arai (2007). The MFW plot
of these authors clearly outlines the lithologies that experienced surface weathering (Fig.
3.2). They accordingly departs from the igneous trend de�ned by unaltered meta-igneous
rocks. A total of 393 analyses was thus retained for further interpretations.
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Figure 3.1: Geological map of the Monts-du-Lyonnais area. Redrawn after the maps of Chiron
and Kerrien (1979), Dufour (1982) and Feybesse et al. (1995).

Figure 3.2: MFW plot (Ohta and Arai, 2007) for the Monts-du-Lyonnais metamorphic rocks.
The distinction between metasedimentary and meta-igneous lithologies, based on petrological
descriptions, is con�rmed thereby. Overall, meta-igneous rocks experienced limited weathering.
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3.2 The Lyonnais Orthogneiss Formation

3.2.1 Petrography

The orthogneisses correspond to amphibolite-facies meta-felsic rocks with the mineralogy
Qz + Pg + Kf + Bt ± Grt ± Sill ± Ms + Ap + Ilm + Zrc ± All (mineral abbreviations
from Whitney and Evans, 2009). Besides, hornblende and titanite have been locally
described by Dufour (1982). Several facies coexist from a poorly deformed coarse-grained
augen gneiss with microcline porphyroblasts to a strongly deformed medium-grained
banded gneiss. A �ne-grained leucocratic facies (locally called leptynite) is particularly
abundant in the Leptynite�Amphibolite Complex. There, the orthogneisses feature meter
to decameter-scale boudins of ma�c to felsic granulite-facies meta-igneous rocks (Dufour,
1982; Duthou et al., 1981).

In some cases (especially for the felsic rocks), it has proven di�cult to classify the
analysed sample as amphibolite- or granulite-facies for lack of comprehensive petrological
description. When this problem occurred, the rock was arbitrarily attributed to the main
"orthogneiss" group. Therefore, our database for the main amphibolite-facies orthogneiss
unit may still contain a few mislabelled granulite-facies igneous rocks.

3.2.2 Volcanic vs. plutonic origin

Previous investigations on igneous textures and zircon typology have concluded that the
augen, banded and at least part of the leucogneisses are former plutonic rocks (Dufour,
1982). Based on faint chemical di�erences, Dufour (1982) regarded some leucogneisses
from the Leptynite�Amphibolite Complex (the "ortholeptynites") as former volcanites.
Given the petrographic continuity, similar chemistry and whole-rock Rb�Sr ages (see
below) of all orthogneisses in the UGU, we will further consider them as meta-plutonic
rocks.

The presence of few metasedimentary enclaves within the orthogneisses has been
reported by Dufour (1982). At the "Crêt de Py Froid" locality, melanocratic enclaves
with igneous textures that strongly recall ma�c microgranular enclaves (MME) can be
observed. Yet, they have never been studied or even mentioned in the literature.

3.2.3 Geochemistry

All orthogneisses (n=157) plot in or very close to the �eld of granites in the Na2O+K2O
vs. SiO2 classi�cation diagram (Middlemost, 1994, Fig. 3.3a). Consistently, most ana-
lyses plot in the �eld of rhyolite and dacite in the diagram of Winchester and Floyd (1977),
modi�ed by Pearce (1996) (Fig. 3.3b). The consistency between major and trace element-
based classi�cations, together with the low W index (<25) and the fact that orthogneisses
still de�ne pre-Variscan whole-rock Rb�Sr ages (see next section) collectively suggest that
the meta-igneous rocks experienced closed-system metamorphism with limited alkali loss.
As a result, they do correspond to meta-granites.

Apart from very few outliers, the meta-granites are potassic (K2O: 4�6 wt.%) and plot
in the high-K calc-alkaline to shoshonite �elds in the K2O vs. SiO2 diagram (Pecerillo and
Taylor, 1976, Fig. 3.3c). They are metaluminous (A/CNK: 0.9 to 1, 10% of the dataset)
to mildly peraluminous (A/CNK: 1 to 1.2). In the B�A diagram (Debon and Le Fort,
1983; Villaseca et al., 1998), a large number of samples plot in the felsic-peraluminous
�eld and de�ne a trend towards low�peraluminous compositions (Figure 3.3d). The
normative feldspar diagram (O'Connor, 1965) reassesses the meta-granitic nature of the
orthogneisses, highlighting their low normative anorthite contents.
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Figure 3.3: Geochemical diagrams outlining the main characteristics of the meta-igneous litholo-
gies from the Upper Gneiss Unit of the Monts-du-Lyonnais area. (a) Total Alkali vs. Silica
(TAS) classi�cation diagram (Middlemost, 1994); (b) Zr/Ti vs. Nb/Y classi�cation diagram of
Winchester and Floyd (1977) modi�ed by Pearce (1996); (c) K2O vs. SiO2 diagram of Pecerillo
and Taylor (1976); (d) B�A diagram of Debon and Le Fort (1983) modi�ed by Villaseca et al.
(1998); (e) normative feldspar classi�cation diagram of O'Connor (1965).
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3.2.4 Age

The Monts-du-Lyonnais orthogneisses have been the subject of several geochronological
investigations summarized Table 3.1. The three youngest dates are equivalent and yield
a weighted average emplacement age for the igneous protolith of 469.6 ± 5.7 Ma (2σ,
MSWD = 1.6). The signi�cance of the older date of c. 500 Ma remains uncertain.
The analysed rocks were sampled at the Yzeron quarry which features a great variety of
orthogneiss facies which could include older and non-cogenetic rocks.

Location Age Method Reference
Yzeron 502 ± 7 WR Rb�Sr isochron Duthou et al., 1984

Chaussan 478 ± 11 WR Rb�Sr isochron Dufour, 1982
Duerne 467 ± 10 Pb evaporation Feybesse et al., 1995
Maringes 466 ± 9 Pb evaporation Feybesse et al., 1995

Table 3.1: Summary of available geochronological data on the Monts-du-Lyonnais orthogneisses.

Moreover, a zircon extracted from the Duerne orthogneiss and analysed with the Pb
evaporation method by Feybesse et al. (1995) yielded an Ediacaran date of 567 ± 12 Ma
interpreted as an inherited age.

3.2.5 Isotope geochemistry

As evidenced above, the whole rock Rb�Sr isotope data from Dufour (1982) and the zir-
con Pb evaporation measurements of Feybesse et al. (1995) yield consistent and identical
emplacement ages for the protoliths of the orthogneisses. This is indicative of limited
disturbance of the Rb�Sr isotopic system by hydrothermal and/or weathering processes.
As a result, the initial 87Sr/86Sr (ISr) ratio of each sample was recalculated at the em-
placement age of 470 Ma.

Figure 3.4 shows the variability of ISr in the Monts du Lyonnais orthogneisses (data
from Dufour, 1982). Most of the data plot along a mixing line between a high-Sr, low
ISr (0.706) endmember and a low-Sr, high ISr (0.712) endmember.

Figure 3.4: Initial 87Sr/86Sr (ISr) as a function of 1/Sr (in ppm) for the Lyonnais Orthogneiss
Formation samples (in grey) and embedded felsic granulite boudins and massifs (in green). Data
from Dufour (1982) and Duthou et al. (1981). Fractionation of plagioclase decreases the Sr
content of the melt but keeps the ISr constant.
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3.2.6 Petrogenesis

In this section, I attempt to characterize the petrogenesis of the Lyonnais Orthogneiss
Formation (LOF) via a comparison with its well-characterized Lower Gneiss Unit coun-
terpart: the Velay Orthogneiss Formation (section 2.1).

Figure 3.3 highlights their overall similar chemical compositions. Both are dominantly
composed of K-rich granites including high-SiO2 (>75%) components. Some subtle dif-
ferences can be pinpointed. The LOF granites are statistically less peraluminous than
the VOF (average A/CNK of 1.07 against 1.18 for the VOF, Fig. 3.5a). Accordingly,
they feature rare amphibole-bearing facies and de�ne a low-peraluminous trend in the
B�A diagram while the VOF trends towards high-peraluminous compositions. Moreover,
the LOF granites tend to be poorer in P (average of 0.14 vs. 0.24 wt.%, Fig. 3.5b). In
the ternary CaO�K2O/Na2O�Al2O3/(FeOt+MgO) diagram (Laurent et al., 2014), the
compositions of 85% of the LOF samples overlap with the VOF's and spread within the
�elds of sediment- and tonalite-derived melts. The remaining 15% depart from the VOF
and trend towards the compositions of melts derived from high-K ma�c lithologies (Fig.
3.5c). Trace-elements data are available for only four leucogneisses from the LOF. In
Whalen's discrimination diagrams (Whalen et al., 1987), two samples clearly plot in the
�eld of fractionated I- & S-type granites, within the trend de�ned by the VOF samples,
while two others plot close to the �eld of A-type granites (Fig. 3.5d). Lastly, it must
be stressed that the LOF likely contains MME whereas such enclaves have never been
observed within the VOF.

Collectively, the above-mentioned observations suggest that the petrogenesis of LOF
and VOF igneous protoliths slightly di�ers. Of importance are the negative slope dis-
played by the LOF in the B�A diagram (Fig. 3.3d) together with its lower A/CNK
values and P2O5 contents, features generally observed in I-type granitic suites (Villaseca
et al., 1998). There is no clear consensus on the origin of such suites as they may
form by: (i) mixing between crust- and mantle-derived magmas (Metcalfe et al., 1995;
Zorpi et al., 1989); (ii) fractionation of mantle-derived magmas (Sisson et al., 2005); (iii)
melting of ma�c rocks (Ratajeski et al., 2005); (iv) melting of crustal lithologies such
as meta-volcanic rocks of intermediate composition (andesite to dacite) and immature
clastic sediments derived from them (Clemens et al., 2011).

The fact that the LOF granites share some characteristics with I-type granites can
be interpreted in the light of our current knowledge of the eastern FMC pre-Variscan
evolution. Following the conclusions drawn in Chapter 1, this crust segment originally
consisted in a Ediacaran back-arc basin fed by detritus originating from a distal mature
source (the Gondwana-land) and a proximal immature source (the Cadomian arc). I
therefore propose that the LOF magmas formed by melting of a heterogeneous sedimen-
tary sequence containing a signi�cant proportion of immature volcaniclastic sediments,
in contrast to the VOF which source would encompass more mature detritus. This model
accounts for all the di�erences between the LOF and VOF and is besides supported by
the spread in the LOF initial Sr isotope compositions which would attest to melting of
a variety of source materials, from clasts of mantle-derived intermediate igneous rocks
with low ISr and high Sr contents to isotopically evolved and Sr-depleted distal sediments
(Fig. 3.4).
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Figure 3.5: Geochemical comparison between the Lyonnais Orthogneiss Formation (grey circles)
and the Velay Orthogneiss Formation (VOF, red squares). (a) and (b): boxplots of the A/CNK
and P2O5 (in wt.%) values; (c) ternary CaO�K2O/Na2O�Al2O3/(FeOt+MgO) diagram (Laurent
et al., 2014), the �elds represent the composition of melts derived from a range of potential
sources; (d) discrimination diagrams of Whalen et al. (1987). A stands for A-type granites, OTG
for ordinary-type granites (I-, S- and M-types) and FG for fractionated granites. The red �eld
depicts the compositional range of >95% of the VOF samples.

3.3 The amphibolites/eclogites

3.3.1 Field occurrences

Metabasic igneous rocks in the Monts-du-Lyonnais UGU have been studied by Las-
nier (1968), Co�rant and Piboule (1971), Blanc (1981), Costa et al. (1993), Dufour
(1982), Briand et al. (1995) and Lardeaux et al. (2001). They crop out in the Leptynite�
Amphibolite Complex in two di�erent settings:

� intimately associated with amphibole-bearing gneisses in a 1.5x30 km consistent
massif referred to as the "Riverie band". There, metabasites bear amphibolite-
facies mineral assemblages and no eclogite-facies rock, even as relic, has ever been
described.

� as small massifs or boudins stretched within the foliation of garnet and sillimanite-
bearing paragneisses. Because of poor outcropping conditions, the contact between
metabasites and surrounding gneisses is seldom exposed. Zones where abundant
metabasite bodies crop out (often as loose blocks in the �elds) are labelled "bands"
in the literature (i.e. La Gachet, Saint-Joseph, Chagnon bands) even though their
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petrographic continuity is not ascertained. Unlike the Riverie band, those bodies
rather correspond to swarms of boudins than a single massif. There, amphibolite-
facies rocks often correspond to retrogressed eclogites.

3.3.2 Geochemical data

Most studies have dealt with the metamorphic evolution of the metabasites and only Cof-
frant and Piboule (1971), Blanc (1981), Ouali (1993) and Briand et al. (1995) investigated
their origin and geodynamic signi�cance. Among them, Briand et al. (1995) and Ouali
(1993) provided (a partial set of) trace element analyses. Here, we present a new dataset
including full trace element determinations. Five amphibolites were sampled by myself in
the Riverie band and thirteen analyses from small bodies were kindly provided by Anne-
Céline Ganzhorn, Jean�François Moyen and Véronique Gardien. Chemical analyses were
performed by the ALS �rm (see Appendix A.3).

In the TAS diagram (Middlemost, 1994), metabasic rocks show chemical compositions
akin to troctolites, gabbros and gabbroic diorites (Fig. 3.3). In the classi�cation diagram
of Winchester and Floyd (1977) modi�ed by Pearce (1996), originally designed to classify
rocks without relying on �uid mobile major elements, they plot within the �elds of basalts,
andesites/basaltic andesites and alkali basalts. K2O contents are variable and range from
0.05 to 1.2 wt.% and sometimes up to 2 wt% (Fig.). Therefore, they mainly plot in the
tholeite and calc-alkaline series �elds in Pecerillo's diagram (Pecerillo and Taylor, 1976).

3.3.3 Variability between and within the di�erent massifs

The aim of this section is to identify di�erent magmatic suites and their potential geo-
graphic repartition within the Monts-du-Lyonnais metabasites. We address this point us-
ing a set of 61 specimens for which the sampling location is known (from our new dataset
and literature data). In the following, all samples are assumed to be close to melt compo-
sitions as major and trace element contents are not consistent with a cumulative origin:
Al2O3 <18 wt.%, Sc <60 ppm, Mg# between 40 and 70, Ni <150 ppm, Eu/Eu* between
0.8 and 1.4 (see Pearce, 1996). We also considered that �uid immobile trace element
compositions were not substantially modi�ed by high-grade metamorphism. Overall, the
dataset can be divided into four subgroups based on the incompatible, immobile element
patterns.

Group I Metabasites from Group I are found in both the small bodies (N=7) and the
Riverie band (N=4). They are slightly to markedly enriched in LREE with respect to
N�MORBs and display a negative Nb anomaly (coupled with negative Zr�Ti anomalies
in some cases, Fig. 3.6a and c). Such metabasites are similar to the "LREE-enriched
tholeiites" of Briand et al. (1995) but the magnitude of the LREE enrichment can be
higher than observed by these authors (notably in the small bodies). In the Th�Nb proxy
diagram (Fig. 3.7a), Group I metabasites plot within the volcanic arc array. In the Ti�Nb
proxy diagram (Fig. 3.7b), they scatter in the MORB array between N� and E�MORBs
compositions. In the V�Ti proxy diagram of Shervais (1982), most samples feature high
Ti/V ratios (between 20 and 50) apart from two specimens bearing a strongly negative
Ti anomaly (LY01a and LY02).

Group II Samples from Group II are typi�ed by their �at to LREE-enriched patterns
devoid of negative Nb anomaly. Among them, sample CHG (from a small body) is
enriched in HREE, very enriched in LREE, displays a slight negative Ti anomaly and a
positive Zr anomaly (Fig. 3.6b). Sample (LY22) is close to Group I metabasites from
the Riverie band but has a weaker Nb anomaly. Group II specimens plot within the
MORB�OIB and MORB arrays in the Th�Nb and Ti�Nb proxy diagrams, respectively
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Figure 3.6: Incompatible, immobile element patterns normalized to the composition of N-MORBs
(Sun and McDonough, 1989) for the metabasites of the Upper Gneiss Unit in the Monts-du-

Lyonnais area. See text for a discussion on the di�erences between each group. The blue �elds
depict the compositional range of LREE-enriched tholeiites (in a) and "transitional" alkali basalts
(in c) identi�ed by Briand et al. (1995) and Ouali (1993) among the small bodies. The red �eld
shows the compositional range of LREE-enriched tholeiites from the Riverie band (Ouali, 1993;
Briand et al., 1995). Black line is the composition of the bulk continental crust (Rudnick and
Gao, 2003).

(Fig. 3.7a and b). As for Group I rocks, their trace element ratios span between those
of N� and E�MORBs.
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Group III Group III gathers specimens showing a steep pattern with enrichment in
LREE, depletion in HREE and no Nb anomaly (represented in our new dataset by sample
LY08). Rocks from Group III are akin to the "transitional basalts" of Briand et al. (1995).
In the Th�Nb proxy diagram (Fig. 3.7a), they plot close to the OIB endmember. In the
Ti�Nb proxy diagram (Fig. 3.7b), they de�ne a trend between the MORB array and an
OIB-like endmember with elevated TiO2/Yb ratio.

Group IV Two samples (MG1 and MG4) are markedly di�erent as they display �at
patterns, apart from a prominent Nb anomaly, and are strongly depleted in all incompat-
ible elements compared to N�MORBs. They plot in the volcanic arc array in the Th�Nb
diagram and in the MORB array in the Ti�Nb diagram (Fig. 3.7a and b). These two
samples typically show low Ti/V ratios, close to 10 (Fig. 3.7c).

Figure 3.7: Proxy element diagrams for metabasites from the Monts-du-Lyonnais area. (a)
Th�Nb proxy diagram of Pearce (2008). Oceanic basalts plot within the MORB�OIB array.
Magmas contaminated by the continental crust during ascent or which mantle source interacted
with slab-derived �uids plot in the volcanic arc array. (b) Ti�Nb proxy diagram of Pearce (2008).
The TiO2/Yb ratio strongly depends on the presence of residual garnet in the mantle source.
Magmas formed at great depth feature high TiO2/Yb ratio provided that garnet is not exhausted
in the residua. Such samples plot in the OIB array. If the magmas result from melting of spinel
peridotites, or if garnet has been exhausted in the residua, they plot in the MORB array. (c) V�
Ti proxy diagram of Shervais (1982) applied to samples plotting in the volcanic arc array of the
Th�Nb proxy diagram and assumed to have formed in an environment in�uenced by subduction.
This diagram is based on the change in V redox state when the mantle is �uxed by slab-derived
�uids. V becomes more incompatible and resulting magmas have characteristic high V/Ti ratios.
Lower V/Ti ratios would be symptomatic of a more distal position with respect to the slab. Bulk
continental crust from Rudnick and Gao (2003).
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Table 3.2 summarizes the characteristics of each group and the inferred number of
specimen in both the small bodies and the Riverie band. Overall, examination of our new
dataset together with available literature data indicates that: (i) the "LREE-tholeiite"
type of Briand et al. (1995) is the most abundant within the Leptynite�Amphibolite
Complex; (ii) the small bodies and Riverie band are typi�ed by the presence of Group
III and IV samples, respectively.

3.3.4 Interpretation and origin of the metabasites

Samples bearing a negative Nb anomaly: Group I and IV

Origin of Th�Nb decoupling Those samples plot within the volcanic arc array in
the Th-Nb proxy diagram (Fig. 3.7a). Nb being conservative and Th non conservative
during subduction, selective addition of Th and LREE to the source of the magmas can
account for their Th enrichment compared to MORB�OIB basalts (Pearce, 2008). This
would require that the mantle source interacted at some point of its history with slab-
derived �uids as those are selectively depleted in Nb and Zr (Ayers and Watson, 1991;
Hermann and Rubatto, 2009; Spandler et al., 2007; Tatsumi et al., 1986). Alternatively,
contamination of a MORB magma by incompatible element-rich materials bearing a
negative Nb anomaly would result in a similar selective Th enrichment. This way, the
samples would plot in the volcanic arc array even if they erupted far away from a active
margin. The continental crust would constitute an adequate contaminant (Taylor and
McLennan, 1985) especially for basalts erupted in attenuated continental settings such
as a continent-ocean transitions (Pearce, 1996; 2014).

Melting depth and signi�cance of varied Nb/Yb All samples with a negative Nb
anomaly bear low TiO2/Yb ratios (<0.6) and plot within the MORB array in the Ti�Nb
proxy diagram (Fig. 3.7b). This suggests shallow melting depths or high melting degrees
(so that garnet would have been exhausted if initially present in the source). The large
scatter in Nb/Yb and TiO2/Yb ratios can be interpreted in two contrasted ways. The
incompatible elements Nb, Zr, Ti and Yb being markedly conservative during subduction,
ratios of these elements would be diagnostic of the composition of the mantle source before
addition of the slab-derived component (Escuder Viruete et al., 2006; Pearce and Peate,
1995; Pearce, 1996; 2008). Accordingly, the large scatter observed would indicate that the
mantle was intrinsically heterogeneous before metasomatism and melting. Alternatively,
considering that the Nb anomaly results from magma contamination, the wide range of
Nb/Yb ratios would rather indicate the existence of a variety of contaminants and/or
diverse rates of contamination.

Group I The moderate V/Ti ratios (between 20 and 50) displayed by most Group I
samples bearing a Nb anomaly (Fig. 3.7c) do not provide self-consistent evidence for
�uid-assisted mantle melting. Indeed MORB magmas show an identical range of V/Ti
ratios (Shervais, 1982) that would keep una�ected by crustal contamination because the
continental crust has: (i) V/Ti ratios similar to that of the MORBs; (ii) lower V and Ti
contents than MORB magmas (Rudnick and Gao, 2003; Taylor and McLennan, 1985).
Consequently, discriminating (at least partly) between source enrichment (driven by slab-
derived �uids) and magma contamination is impossible from trace element compositions
alone and would require radiogenic isotope data (Sm�Nd and/or Lu�Hf).

Group IV Given the very low HFSE contents of Group IV samples (one order of mag-
nitude lower than N-MORBs for Nb), it is very unlikely that trace element compositions
were substantially modi�ed by assimilation of crustal rocks during ascent and emplace-
ment. This way, trace element ratios would correspond to those of the mantle source.
Elevated Th/Nb (Fig. 3.7a) point to the presence of a slab-derived component in the
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mantle source, consistent with high Ti/V ratios (Fig. 3.7c) symptomatic of oxidizing,
�uid-assisted melting conditions (Shervais, 1982). Importantly, samples from Group IV
show lower Nb/Yb than N-MORB which would attest to strong depletion of their mantle
source, probably due to high melting degrees, before re-enrichment by slab-derived �uids
(Berger et al., 2010a; Escuder Viruete et al., 2006; Marchesi et al., 2009). Such signature
is typically encountered in fore-arc and back-arc basalts (Pearce, 2014). An intrusion
age of 545 Ma is proposed based on the petrological study of the presumably a�liated
amphibole-bearing gneisses (see section 3.5).

Samples devoid of Nb anomaly: Group II and III

Group II and III samples plot in the MORB�OIB array of the Th�Nb proxy diagram and
lack evidence for interaction with a crustal component, either at source level (addition
of slab-derived �uids) or during ascent and emplacement (via contamination by crustal
country-rocks). Therefore, they can be interpreted as pristine mantle melts.

Group II specimens have low TiO2/Yb ratios (Fig. 3.7b) diagnostic of shallow melt-
ing (Pearce, 2008). Besides, they span in composition between the N� and E�MORBs
endmembers. MORB-like magmas are generally produced via melting of depleted to
enriched asthenospheric mantle domains in the spinel peridotite facies (Pearce, 2008).
Such situation is observed in oceanic ridges and continental rifts (provided that crustal
contamination during magma ascent is marginal). The age of this magmatism remains
unknown.

In contrast Group III rocks display elevated Nb/Yb and Th/Yb ratios and plot close
to the OIB reservoir. Such an observation attests to higher melting depths with garnet
being present in the residue (Briand et al., 1995; Pearce, 2008). Therefore, Group III
magmas probably originate from melting of a deeper, enriched mantle domain. It may
correspond to asthenosphere or lithosphere if the latter has not interacted at any time
with slab-derived �uids. Group III samples are chemically close to the alkali metabasites
of the Lower Gneiss Unit (see section 2.3). If both rocks are part of the same magmatic
suite, the geochronological constraints acquired in the Lower Gneiss Unit would suggest
a c. 500 Ma intrusion age.

Table 3.2 summarizes the conclusions of this study, specifying the typology, potential
source and age of the di�erent series.

A comment on the potential usefulness of radiogenic isotope data

Metasomatized mantle domains are particularly prone to melting due to their lower
solidus temperature than normal peridotites (Condamine and Médard, 2014; Gaetani and
Grove, 1998; Hirose and Kawamoto, 1995; Hirose, 1997; Hirschmann et al., 2009; Mallik
et al., 2015). Therefore, the time lapse between enrichment and melting is generally too
short to generate a substantial deviation in radiogenic isotope compositions in the mantle
source, despite the change in Sm/Nd and Lu/Hf ratios caused by the slab-derived �uids.

As a result, if the metasomatizing �uid dominantly originates from the igneous part
of the oceanic crust, the subduction-zone mantle-derived magmas would bear radiogenic
isotope compositions akin to that of the oceanic crust (namely εNd and εHf � 0). Highly
radiogenic Nd and Hf signatures of the metabasites bearing a negative Nb anomaly would
thus typify melting of a mantle domain that interacted with slab-derived �uids shortly
prior to melting.

Conversely, a non-radiogenic signature would be non-speci�c and could stem from
two contrasted scenarios: (i) melting of a mantle metasomatized by slab-derived �uids
including a substantial contribution from non-radiogenic subducted sediments (Hidalgo
et al., 2012; Nebel et al., 2011; Roberts et al., 2013); (ii) contamination of a primitive
highly radiogenic magma by non-radiogenic continental crust (see for instance Pin and
Marini, 1993).
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Typology
Small
bodies
N(lit.)

Riverie
N(lit.)

Source/processes Age

Group I: �at to
LREE-enriched patterns,

<0 Nb anomaly
8+(1) 4+(22)

enriched mantle source or
magma contaminated by

continental crust
unk.

Group II: �at to
LREE-enriched, no Nb

anomaly
1+(2) 1+(0) asthenospheric mantle unk.

Group III:
LREE-enriched, steep
HREE pattern, no Nb

anomaly

1+(19) 0+(0)
grt-bearing

asthenospheric mantle
496
Ma?

Group IV: depleted to
�at pattern, <0 Nb

anomaly
0+(0) 2+(0)

depleted mantle
subsequently enriched by

slab-derived �uids

545
Ma?

Table 3.2: Characteristics of the di�erent metabasite groups identi�ed in the Upper Gneiss Unit
from the Monts-du-Lyonnais area

3.4 The granulite-facies igneous rocks

Granulite-facies rocks crop out exclusively in the Leptynite�Amphibolite Complex as
meter-scale boudins or decameter-scale massifs stretched within the foliation of the LOF
leucogneisses (Dufour, 1982; Duthou et al., 1981). They bear typical granulite-facies
assemblages (Dufour, 1985; Lardeaux et al., 1989):

� Gt + Cpx + Opx + Pg + Rt + Qz for ma�c rocks.
� Qz + Pg + Gt + Kf ± Als ± Opx ± Krn for felsic rocks.

Thermobarometry estimates bracketed the P�T conditions of peak metamorphism at 830
± 30 °C for 9 ± 1 kbar (Dufour, 1985).

Whole-rock major element analyses were obtained by Blanc (1981), Dufour (1982)
and Downes and Duthou (1988). Granulites span over a wide range of compositions (Fig.
3.3a) from gabbro (N=13) to gabbroic/monzo-diorite (N=4), (qz-) monzonite (N=4) and
granite (N=4). Yet, they do not clearly de�ne a magmatic series in the K2O vs. SiO2

diagram as gabbros plot either in the calc-alkaline or the shoshonite �eld and interme-
diate rocks in the high-K calc-alkaline �eld (Fig. 3.3c). Granitic rocks are moderately
to very rich in K2O (3�4 or 6�7 wt.% respectively). In the B�A diagram of Debon and
Le Fort (1983) modi�ed by Villaseca et al. (1998), granitic rocks plot in the �eld of
felsic-peraluminous rocks while intermediate samples trend towards metaluminous com-
positions (Fig. 3.3d).

The felsic granulites have been dated by Duthou et al. (1981) and yielded a whole-rock
Rb�Sr isochron age of 497 ± 8 Ma. This age is close to that of the host amphibolite-
facies orthogneisses. Initial 87Sr/86Sr (ISr) ratios were accordingly recalculated at the
emplacement age of the LOF. With the exception of one sample with very high ISr, the
felsic granulites show a spread in ISr values similar to that of the host orthogneisses
(see Fig. 3.4). Nd isotope compositions were also obtained on two samples by Downes
and Duthou (1988). Recalculated εNd at 470 Ma yield non-radiogenic values of −2 and
−5.2, respectively. Altogether, isotopic data suggest that the granitic protoliths of the
felsic granulites originated from melting of pre-existing crustal lithologies. Since the
felsic granulites display similar age, chemical compositions and isotopic signatures than
their host orthogneisses, they probably represent a higher-grade equivalent of the LOF.
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As a result, this suggests that the bulk of the orthogneisses from the LAC experienced
an early granulite-facies metamorphic event and was subsequently re-equilibrated in the
amphibolite facies. Relics of the early metamorphic stage would have only been preserved
in low-strain or �uid-absent domains (Austrheim, 1986 1987; Barrientos and Selverstone,
1993).

Such reasoning holds true for the basic granulites as well. Their major element com-
positions are akin to the amphibolites/eclogites from the LAC. Dufour et al. (1985)
described relict Na-rich augite in equilibrium with garnet within a basic granulite. Ac-
cording to these authors, this would testify for early equilibration in the eclogite-facies.
Therefore, the P�T path of the basic rocks would feature an early eclogite-facies stage
followed by an increase of temperature leading to equilibration in the granulite-facies and
ultimately retromorphosis in the amphibolite-facies. Thus, the basic granulites embedded
in the LAC orthogneisses would share the same origin than the amphibolites/eclogites
but di�er by their equilibration at higher T during peak metamorphism.

The origin of intermediate granulite samples remains uncertain. They may repre-
sent metasedimentary residues or di�erentiates of the K-rich gabbros which is in better
agreement with their low W indexes (Ohta and Arai, 2007). Additional geochemical and
geochronological data are needed to constrain their origin and signi�cance.

3.5 The amphibole-bearing gneisses

3.5.1 Field description

The amphibole-bearing gneisses are mostly found within the "Riverie band" of the LAC
and are intimately associated with the above-mentioned amphibolites (Feybesse et al.,
1995). They are best exposed in the former Riverie quarry at the place known as "Les
Roches", today a climbing spot (Fig. 3.1). There, amphibole-bearing gneisses display
a conspicuous vertical foliation and embed several 20 cm to 3 m-large boudins of am-
phibolites (Fig. 3.8). Segregation of plagioclase�quartz�amphibole leucocratic layers or
patches with characteristic igneous textures is attributed to limited anatexis of both pro-
toliths. Deformation and partial melting are assumed to be Variscan in age and would
result from burial, metamorphism and subsequent exhumation of the LAC rocks. The
origin, age and signi�cance of amphibole-bearing gneisses from the Monts-du-Lyonnais

LAC have never been investigated.

3.5.2 Petrography

The amphibole-bearing gneisses feature a primary mineral assemblage consisting of Pg +
Qz + Amp ± Bt ± Kfs + Mag + Ap + Zrc + Fe sulphides (Fig. 3.10, abbreviations from
Whitney and Evans, 2009). Plagioclase is andesine or oligoclase (An25, representative
mineral analyses are presented Table 3.3, see also Appendix Table B2). Amphibole has
a magnesio-hornblende composition (Tab. 3.3, Fig. 3.9). Some amphibole grains are
altered and converted into a Chl + Cal + Rt assemblage (Fig. 3.10b). Biotite is also
frequently chloritized.
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Figure 3.8: Outcrop photograph from Riverie showing the meta-tonalites and their embedded
amphibolite boudins. Migmatitic neosomes appear as leucocratic patches (a) or a layered network
cutting across the local foliation (b). Hammer for scale.

Figure 3.9: Mineral chemistry classi�cation diagrams for (a) amphibole, with CaB ≥ 1.50, (Na
+ K)A < 0.50 and CaA < 0.50 (Leake et al., 1997), and (b) mica.

85



Spot RV1-8 RV2-1 RV2-6 RV1-9 RV1-16 RV1-2 RV1-8 RV2-5
Min. Amp Amp Amp Bt Bt Pg Pg Pg
SiO2 44.03 46.04 45.68 36.36 37.09 62.43 62.12 62.00
TiO2 1.10 0.76 0.70 3.06 3.09 � � �
Al2O3 9.68 9.49 9.48 14.47 14.62 23.75 23.71 24.25
FeO 15.64 16.35 16.47 18.18 17.26 0.00 0.14 0.16
MnO 0.49 0.50 0.39 0.13 0.00 � � �
MgO 12.23 12.04 12.22 13.37 12.96 � � �
CaO 11.10 11.39 11.68 0.13 0.00 5.38 5.18 5.96
Na2O 1.74 1.34 1.33 0.00 0.00 8.44 8.78 8.59
K2O 0.43 0.38 0.47 8.03 9.13 0.23 0.19 0.18
Sum 96.44 98.29 98.42 93.72 94.16 100.23 100.13 101.14

Si 6.51 6.66 6.62 5.58 5.66 2.76 2.75 2.73
Aliv 1.49 1.34 1.38 2.42 2.34 � � �
Alvi vi 0.19 0.28 0.24 0.19 0.29 � � �
Altot 1.69 1.62 1.62 2.62 2.63 1.24 1.24 1.26
Ti 0.12 0.08 0.08 0.35 0.35 � � �
Fe3+ 0.97 0.91 0.90 0.00 0.00 � � �
Fe2+ 0.97 1.06 1.10 2.33 2.20 0.00 0.01 0.01
Mn 0.06 0.06 0.05 0.02 0.00 � � �
Mg 2.69 2.60 2.64 3.06 2.95 � � �
Ca 1.76 1.77 1.81 0.02 0.00 0.25 0.25 0.28
Na 0.50 0.38 0.37 0.00 0.00 0.72 0.75 0.73
K 0.08 0.07 0.09 1.57 1.78 0.01 0.01 0.01
OH 2.00 2.00 2.00 2.00 2.00 � � �
Sum 17.34 17.21 17.28 19.55 19.56 4.99 5.01 5.01

An � � � � � 25.71 24.33 27.43
Ab � � � � � 72.99 74.61 71.59
Or � � � � � 1.29 1.06 0.97

Table 3.3: Representative mineral analyses of the main phases from samples RV-1 and RV-
2. Calculation of the structural formula for calcic amphiboles was based on 23 oxygens and
Fe2+/Fe3+ estimated assuming a total of 13 cations. Biotite formula were calculated on a 22
oxygen basis, assuming all iron is ferrous.

Figure 3.10: (a) Photomicrograph showing the Pg + Qz + Amp + Mag assemblage of the
amphibole-bearing gneiss RV-1. (b) SEM image highlighting the Ca + Chl + Rt products of
amphibole alteration (sample RV-2).
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3.5.3 Geochemistry

In the TAS diagram (Middlemost, 1994), amphibole-bearing gneisses range in compo-
sition between diorites and granites (Fig. 3.3a). Importantly, they tend to de�ne a
tholeiite series in the SiO2�K2O diagram (Pecerillo and Taylor, 1976) and are metalu-
minous to slightly peraluminous (Fig. 3.3c and d). In line with their low K2O contents,
the amphibole-bearing gneisses plot in the �eld of tonalites in the normative felsdpar di-
agram (O'Connor, 1965, Fig. 3.3e). Therefore, they will be referred to as meta-tonalites
in the following.

Immobile trace elements patterns normalized to N-MORB basalts shed light on the
overall low trace element contents of the meta-tonalites. They are depleted in HREE
and slightly enriched in Th, LREE and Zr with respect to N-MORBs (Fig. 3.14a). Of
importance are the strongly pronounced Nb an Ti negative anomalies. The sample with
the highest SiO2 content shows a stronger enrichment in the most incompatible elements
and features a steep HREE patterns that di�ers from the �at "MORB-like" pattern
displayed by the other meta-tonalites.

3.5.4 Analytical techniques

3.5.5 Zircon U�Pb dating

Two meta-tonalite samples were selected for zircon U�Pb�Hf determinations. Both were
collected at the Riverie quarry ("Les Roches" locality). Zircon grains were separated
from the powdered rock samples at Saint-Etienne University using conventional tech-
niques described section 2.1, subsequently cast into epoxy mounts and polished down to
an equatorial grain section. BSE and CL-imaging were performed at the Central Ana-
lytical Facility of Stellenbosch University (SUN, South Africa) using a Zeiss MERLIN
SEM. Selected grains were dated by LA�ICP�MS at Frankfurt-am-Main (Germany). In-
formation on the analytical methods are presented Appendix B.3.1. The full datasets
are reported in the Appendix Tables B4 (for standards) and B7 (for samples).

Zircon textures

Representative CL-images of zircon grains from both samples are displayed Fig. 3.11.
Zircon grains are idiomorphic to sub-idiomorphic, range in lengths between 70 and 200
µm and often show aspect ratios higher than 2 with well-developed pyramidal tips. Few
grains have lower aspect ratios (down to 1.1, see zircons 5 and 6, Fig. 3.11a, or zircon 1,
Fig. 3.11b). CL-images reveal regular and concentric oscillatory zoning locally grading to
sector zoning (see for instance zircons 1 and 2, Fig. 3.11a). Small textural discontinuities
in such zoning can be observed (zircon 1, Fig. 3.11b) but are not common in both samples,
most grains being devoid of core-rim relationships. Very narrow CL-bright rims (<5µm)
are also observed on some grains. There, oscillatory zoning is clearly cut by newly grown
mineral (zircons 1, 4 and 5, Fig. 3.11a; zircon 1, Fig. 3.11b).

U�Pb results

RV�1 Forty spots were drilled on 32 grains, all within zones displaying clear oscillatory
zoning. Seven spots show moderate common Pb contents (up to 3%) and are markedly
discordant (concordance <63%). They will not be discussed further. A total of 16
concordant spots are statistically equivalent and a Concordia date of 545.9 ± 4.7 Ma can
be calculated out of them (with a MSWD of concordance and equivalence equal to 1.07).
Besides, 6 analyses yielded similar 206Pb/238U dates but are discordant (concordance
<94%). Nine analyses show discordant 206Pb/238U dates ranging between 535 ± 6 and
509 ± 9 Ma. Two spots (a20 and a30) gave concordant 206Pb/238U dates of 536 ± 10
and 515 ± 6 Ma respectively.
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Figure 3.11: Representative cathodoluminescence images of zircon grains from samples of the
Riverie meta-tonalites. The locations of laser spots (white and yellow circles for U�Pb and
Lu�Hf analyses respectively) are indicated along with the spot name (aXX or YYa/b). The
corresponding 206Pb/238U dates are quoted with ± 2σ uncertainty, in Ma. All displayed anal-
yses are concordant at >98% (except those in italic). Hf isotope data are reported using the
εHf calculated at the 206Pb/238U date obtained on the same zircon domain, quoted with 2σ
uncertainty.

RV�2 Thirty-three analyses were performed on 25 grains. A Concordia date of 543.9
± 4.6 Ma can be calculated out of 19 statistically equivalent concordant analyses (with
a MSWD of concordance and equivalence equal to 1.4). Spot a58 yielded an identical
206Pb/238U date but is discordant (concordance of 87%). Nine measurements devoid
of common Pb yielded concordant to moderately discordant 206Pb/238U dates (concor-
dance>91%) ranging from 536 ± 6 down to 520 ± 6 Ma. Two analyses (a50 and a60)
with low to moderate common Pb contents (0.3�0.8%) show discordant (conc.: 58�67%)
and younger 206Pb/238U dates of 484 ± 5 and 438 ± 7 Ma respectively. Two measure-
ments performed on both tips of a single zircon yielded a concordant 206Pb/238U date of
361 ± 4 Ma and a discordant 206Pb/238U date of 354 ± 4 Ma (estimated common Pb
content: 0.4%), respectively. Both also feature markedly lower Th/U ratios (0.02 and
0.04 respectively) than grains yielding 206Pb/238U dates of c. 545 Ma (always >0.15).

3.5.6 Zircon Lu�Hf isotope signature

In situ zircon Lu-Hf isotope measurements were performed at Frankfurt-am-Main (Ger-
many) following the analytical procedure reported Appendix B.4.1. The full set of results
(standards and samples) is available in Tables B11 and B12.

Twenty-eight spots were drilled on grain domains that previously yielded concordant
206Pb/238U dates and three on undated grains texturally identical to the main zircon
population. Initial Hf isotope compositions were calculated using the intrusion age de-
termined for each sample except for spot 59a which features a younger 206Pb/238U date
of 361 Ma. The 176Hf/177Hf(t) ratios of RV-1 zircons range from 0.282709 ± 0.000042
to 0.282752 ± 0.000035 (2 S.E. � standard error), corresponding to εHf (t) of 9.5 to 11.0
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Figure 3.12: Tera-Wasserburg diagrams (238U/206Pb vs. 207Pb/206Pb) for zircon from the Riverie
meta-tonalite samples. Error ellipses and ages are displayed at 2σ level of uncertainty. Yellowish
ellipses are those considered for Concordia age calculations.

with an average value of 10.5 ± 0.9 (2 S.D. � standard deviation; Fig. 3.13). Zircons
from sample RV-2 (excluding analysis 59a) show a similar range of 176Hf/177Hf(t) ratios,
from 0.282717 ± 0.000033 to 0.282787 ± 0.000044 (2 S.E. � standard error) equivalent
to εHf (t) of 9.7 to 12.2 (Fig. 3.13) and yielding an identical average εHf (t) at 10.7 ± 1.2
(2 S.D. � standard deviation). Spot 59a was performed on a zircon rim with a younger
206Pb/238U date of 361 ± 4 Ma. A 176Hf/177Hf(t) ratio of 0.282744 ± 0.000034 (2 S.E. �
standard error) was accordingly recalculated at that date and corresponds to an εHf (t)
of 6.6 ± 1.2 (Fig. 3.13).

3.5.7 Interpretation of U-Pb-Hf data

Protolith emplacement ages Both samples show a largely dominant population of
grains having statistically equivalent and concordant 206Pb/238U dates of c. 545 Ma. As
these zircons feature typical magmatic oscillatory zoning (Corfu et al., 2003), we interpret
the Concordia dates of 545.9 ± 4.7 and 543.9 ± 4.6 Ma as the emplacement ages of the
tonalite protoliths of samples RV-1 and RV-2, respectively. The zircon cores identi�ed by
CL-imaging yielded 206Pb/238U dates of c. 545 Ma (see for instance zircon 1, Fig. 3.11b).
As a result, those cores likely re�ect stepwise mineral growth with periods of dissolution
followed by new zircon crystallization within the magma. This would generate textural
discontinuities as observed when new magmatic zircon crystallizes around older, source-
inherited grains. U�Pb evidence clearly suggests that the (meta)tonalite magma did not
contain inherited grain or, if so, that they were fully dissolved prior to new magmatic
zircon crystallization. Discordant zircons showing 206Pb/238U dates around 545 Ma are
texturally similar to the concordant ones and their discordance would stem from the
incorporation of common Pb as evidenced in some cases by the high signal on mass 204,
re�ecting elevated 204Pb content. Similarly, discordant zircons with 206Pb/238U dates
younger than 545 Ma likely experienced a combination of common Pb incorporation and
Pb loss, which respective contributions cannot be retrieved. Two spots show younger
concordant 206Pb/238U dates of 536 ± 10 and 515 ± 6 Ma respectively (a20 and a30). I
argue that these dates do not correspond to any geological event because the weak cur-
vature of the Concordia for the 600-400 Ma period entails that any c. 545 Ma-old zircon
having experienced limited Pb loss would still be sub-concordant within uncertainty.

Signi�cance of younger dates Of interest are analyses a65 and a66, both performed
on the tips of the same zircon grain. They show younger 238U/206Pb dates that cannot be
attributed to Pb loss from the main c. 545 Ma-old population. Indeed, a65 is concordant
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Figure 3.13: Measured εHf (t) on magmatic zircon grains from the two investigated meta-tonalite
samples of the Riverie band. The εHf (t) are recalculated and plotted at the 206Pb/238U age of
each analysed zircon domain (ensuring a better graphical representation). When such value was
not available, the intrusion age determined for the sample was used. The range for the Depleted
Mantle reservoir is bracketed by the models of Naeraa et al. (2012) for the lowermost value and
Gri�n et al. (2002) for the uppermost value. Data from the Velay Orthogneiss Formation (see
section 1.1) are also plotted for sake of comparison.

at c. 360 Ma and a66 yielded a 207Pb/206Pb date of 460 ± 22 Ma, regarded as the
maximal zircon crystallization age. CL images do not provide clear evidence for: (i)
the existence of textural discontinuities associated with new zircon growth; (ii) extensive
zircon recrystallization (zircon 4, Fig. 3.11b). Yet, both analyses show very low Th/U
ratios as typically observed in recrystallized metamorphic zircon (Hoskin and Black,
2000; Vavra et al., 1999). Moreover, the zircon rim on which analyses a65 and a66
were performed yielded a εHf at 361 Ma of 6.6 ± 1.2. This value connects with the
main zircon population at c. 545 Ma along an evolutionary trend characterized by a
176Lu/177Hf ratio of 0.002 (Fig. 3.13), characteristic of zircon grains. Such observation
is consistent with a closed-system evolution of the 176Hf/177Hf ratio. All these lines of
evidence support a resetting of the U�Pb chronometer at c. 360 Ma in this zircon domain,
leaving the Hf isotope signature una�ected because Hf is a constituent chemical element
in zircon (Hoskin and Black, 2000). Discordance of analysis a66 likely originates from
coeval common Pb incorporation and subsequent limited Pb loss. Resetting of the U�Pb
chronometer would have been provoked by the metamorphic event developed during the
thrusting of the UGU above the LGU, dated in the Lot area at c. 355 Ma (Ar�Ar on
biotite, see Costa, 1989).

Hf isotope composition of the parental magma The εHf (t) variability exhibited
by magmatic zircon within a given sample is small (<2 εHf -units) and of the same
order of magnitude than analytical uncertainties (i.e. ± 1.4 εHf -units). This indicate
that zircon crystallized from a magma with homogeneous Hf isotope composition. Both
samples reveal identical average εHf (t) of c. 10.6, taken as representative of that of the
magma at the time of crystallization, that falls in the range of expected values for the
Depleted Mantle reservoir (Gri�n et al., 2002; Naeraa et al., 2012).
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3.5.8 Petrogenesis

Source of the magmatic suite The low K2O (0.1�1.1 wt.%) and intermediate SiO2

(61�64 wt.%) contents displayed by the meta-tonalites (see Fig. 3.3) indicate that their
parental magmas cannot derive from melting of the continental crust which is notably en-
riched in both these incompatible elements. Similarly, the presence of magnetite suggests
that the parental magmas were relatively oxidized which is at odds with an origin by
melting of the continental crust as the latter generally produces melts evolving at low f O2

(Ishihara, 1977). The Depleted Mantle-like Hf isotope signature of the parental magma
entails that (meta)tonalites could represent: (i) di�erentiates of a basaltic magma; or
(ii) primary melts of a ma�c K-poor igneous source extracted from the DM shortly prior
to melting. Both hypotheses are in line with the lack of inherited zircon core within
both samples. In any case, the radiogenic Hf isotope signature together with the low
K2O and trace element contents demonstrate that crustal contamination during magma
ascent and emplacement was unsigni�cant.

The Riverie meta-tonalites show major element compositions akin to the Archean
TTG (tonalite-trondhjemite-granodiorite) suites for which an origin by melting of ma�c
rocks is proposed (Martin et al., 2005). Whatever the geodynamic setting in which it
takes place, melting basic rocks to produce tonalites requires very high temperatures
(>920°C, Beard and Lofgren, 1991; Rapp and Watson, 1995; Rushmer, 1991; Sen and
Dunn, 1994) or elevated H2O concentrations in the source (> 2 wt%, Sisson et al., 2005).
Such UHT conditions are unusual in the Phanerozoic and never reported elsewhere in
the basement rocks of the FMC. For instance, in the LGU, the voluminous VOF meta-
granites originated from melting of pre-existing crustal lithologies at T < 850°C. Besides,
�eld exposures of the LAC indicate that metabasic rocks are intimately associated with
the tonalites and, if genetically related, would more likely represent coeval magmatic
products than the source rocks of the tonalite suite. Therefore, the fractionation hypoth-
esis is preferred and further discussed hereafter.

A genetic link between metabasites and tonalites from the LAC? As men-
tioned above, meta-tonalites have similar LREE, Th and Nb contents than Group I and
II amphibolites and are even depleted in HREE (Fig. 3.14). It entails that the latter
cannot correspond to the parental basic magmas from which the tonalites were di�eren-
tiated because tonalites would have been way more enriched in incompatible trace ele-
ments if fractional crystallization had proceeded. Group IV metabasite (samples MG01
and MG04, see section 3.3) are markedly poorer in most incompatible elements than the
tonalites and may correspond to the parental magmas. Forward geochemical modelling
has been performed to evaluate the feasibility of this hypothesis. First, a set of crys-
tallization experiments for a primary melt which composition matches that of MG1 and
MG4 was selected. Was retained the study of Blatter et al. (2013) who investigated the
phase relationships and residual melt compositions of 01SB-872, a natural basalt from
the Cascades magmatic arc. This starting material features SiO2, Al2O3, K2O and MgO
contents identical to metabasites MG01 and 04 but is lower in CaO and higher in Na2O,
FeOt and TiO2 (Table 3.4).

Equilibration of a 01SB-872 magma at c. 950�1000°C and 9�4 kbar yields melts
which compositions adequately match that of the Riverie meta-tonalites even though the
experimental melts tend to have overall higher Al2O3 and K2O contents. At these P�T
conditions, melt fractions range from 0.12 to 0.2 (Blatter et al., 2013). The phase pro-
portions retrieved by Blatter et al. (2013) and a set of partition coe�cients were used to
calculate the trace element composition of the tonalite melts. Ti behaviour was not mod-
elled because fractionation of magnetite can easily account for the negative Ti anomaly
of the tonalites as is commonly observed during the di�erentiation of basaltic magmas
(Grove et al., 2003). We only considered clinopyroxene, orthopyroxene, amphibole and
plagioclase as trace element hosting phases. We used the minimal and maximal partition
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MG01 MG04 01SB-872
SiO2 49.30 48.60 49.90
Al2O3 17.30 17.10 17.00
FeOt 6.86 6.79 9.19
MnO 0.13 0.13 0.16
MgO 8.49 9.55 8.67
CaO 14.05 12.65 10.1
Na2O 2.19 2.06 3.02
K2O 0.30 0.62 0.50
TiO2 0.39 0.28 1.26
P2O5 0.02 0.02 0.19

Table 3.4: Major-element compositions of: (i) the two metabasite samples from the Riverie band
regarded as potential primary magmas from which the meta-tonalites di�erentiated; (ii) natural
starting material 01SB-872 used by Blatter et al. (2013) in their crystallization experiments.

coe�cients from Laurent et al. (2013) for clinopyroxene, orthopyroxene and plagioclase.
For amphibole, we chose the self-consistent dataset of Sisson (1994). Nb is from Adam
et al. (1993) and Th was set at 0.1. Gd and Tb were not modelled for lack of available
partitioning data in the relevant chemical system. Experiments 2364, 2381, 2370 and
2376 from Blatter et al. (2013) were selected and yield a range of potential trace element
compositions for the di�erentiates. The latter match the composition of the tonalites for
HREE but fail to reproduce the enrichment in LREE and Th relative to N-MORBs (Fig.
3.14b).

Nature of the parental melt Reverse modelling has been performed to estimate
the trace element composition of the parental basaltic magma which fractionation would
produce the Riverie meta-tonalites. In each of the four experiments of Blatter et al.
(2013), the trace element content of the tonalite melt is set to that of the average of the
natural samples. The composition of the parental basaltic magma is then retrieved by
least-square regression using the observed phase proportions and the above-mentioned
set of partition coe�cients. The four experiments and varied partitioning data yield a
range of possible trace element contents for the primary melt. Figure 3.14c shows that
the calculated primary basaltic melt would have been depleted relative to N-MORBs in
all incompatible elements except for Th. Its immobile trace element pattern normalized
to N-MORBS would have featured negative Nb and Zr negative anomalies and a slight
enrichment in LREE with respect to HREE. This pattern clearly resembles that of sam-
ples MG01 and MG04 but the mantle source of the parental melt would have been less
depleted with respect to N-MORBs.

Conclusion Given the uncertainties of the developed approach (values of partition
coe�cients, internal errors on trace element concentrations, melt proportions constrained
based on a starting material with slightly di�erent major element compositions than the
investigated samples), it is reasonable to consider that, at �rst order, the Riverie meta-
tonalites formed by fractionation of basaltic magmas akin to those at the origin of Group
IV metabasites.
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Figure 3.14: (a) Incompatible, immobile element patterns normalized to the composition of N-
MORBs (Sun and McDonough, 1989) for the Riverie meta-tonalites and associated amphibolites.
(b�c) Geochemical models questioning the genetic link between meta-tonalites and amphibolites:
(b) Results of forward batch crystallization models showing the virtual trace element composition
of a tonalite melt di�erentiated from a parental ma�c magma of MG01�04 composition; (c)
Results of reverse batch crystallization models yielding the trace element composition of the
parental melt from which the tonalites would have been di�erentiated.
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3.5.9 Geodynamic setting and other occurrences within the Variscan
belt

As discussed in section 3.3, Group IV metabasites show geochemical characteristics typ-
ically observed in fore-arc and back-arc basalts (Escuder Viruete et al., 2006; Marchesi
et al., 2009; Pearce, 2014). Reconstructed plate motions since the Ediacaran (Stamp�i
et al., 2013) and the today-location of the Cadomian magmatic arc (to the North of
the FMC) support a back-arc rather than a fore-arc setting for the FMC crust segment
in the late Ediacaran/early Cambrian (see discussion in Chapter 2). Therefore, both
Group IV metabasites and their a�liated meta-tonalites from the Monts-du-Lyonnais

Upper Gneiss Unit would testify for a c. 545 Ma mantle melting event in the Cadomian
back-arc (Fig. 2.7c).

This situation markedly contrasts with that observed in the Lower Gneiss Unit where
late Cadomian magmatism was strictly crust-derived and entails that the Upper and
Lower Gneiss Units had di�erent geographical locations by that time. The UGU may
have had an outboard position with respect to the LGU in which case the thermal regime
of its underlying mantle would have been more strongly a�ected by the Cadomian slab
break-o� (Nance et al., 2010), up to partial melting (Fig. 2.7c).

Low K2O, amphibole-bearing meta-granitoids such as the Riverie meta-tonalites are
very scarce within the Variscan belt. Seyler (1986) reports the existence of biotite- and
amphibole-bearing gneisses in the LAC of the Maures Massif, south-east of the FMC,
and referred to as "mixed formation". Their major and trace element contents (Innocent,
1993) clearly resemble that of Riverie meta-tonalites. Besides, isotope dilution U�Pb
dating of zircon fractions yielded an upper intercept date of 548 +15/−7 Ma interpreted
as the emplacement age of the igneous protolith (Innocent et al., 2003), identical to the
ones obtained for the Riverie meta-tonalites. However, the Maures tonalites feature non-
radiogenic whole-rock Nd isotope compositions which markedly contrasts with the highly
radiogenic Hf isotope signature of their Riverie counterparts. Such observation entails
that both rock groups did not derive from melting of a similar mantle source and hinders
any attempt to correlate the Maures massif with the eastern part of the FMC.

3.6 Conclusion

The geochemical investigations conducted on the meta-igneous units of the Monts-du-

Lyonnais UGU highlight the existence of three main magmatic suites: (i) basaltic mag-
mas and their tonalitic di�erentiates emplaced at c. 545 Ma in a back-arc setting; (ii)
basaltic magmas with very varied trace element compositions likely originated from melt-
ing of a heterogeneous mantle source, presumably between 500�475 Ma by analogy with
other domains of the FMC; (iii) metaluminous to mildly peraluminous granites were gen-
erated at c. 470 Ma through melting of an immature sedimentary sequence containing a
prominent volcaniclastic component.
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Chapter 4

Pre-Variscan magmatic record in
the Massif Central: a review

4.1 Lateral correlations within the Variscan nappe stack

Rationale In the French Massif Central, the main metamorphic nappes (the Upper
Gneiss Unit, the Lower Gneiss Unit and the Parautochtonous Unit, see section 2.1)
have originally been identi�ed based on their contrasted tectonic-metamorphic evolutions
during the Variscan orogeny (Ledru et al., 1989). These include the existence/absence
of an early high-pressure event (recorded by eclogite-facies rocks) and varied tempera-
tures/pressures reached at peak metamorphism. As outlined in the introductory section,
examination of the three largest and best studied exposures of the French Massif Central
(the Velay, Lot/Rouergue and Limousin areas) reveal that the structural relationships
between the UGU, LGU and PAU units di�er from a domain to another. In this sec-
tion, we review the lithological composition and pre-orogenic magmatic histories of each
nappe from the three domains in order to evaluate: (i) their lateral continuity in terms
of pre-Variscan history; (ii) the potential role played by inherited, pre-orogenic features
on the Variscan evolution.

Data compilation All metamorphic units from the FMC are typically composed of
both metasedimentary and meta-igneous lithologies. Figure 4.1 is a compilation of em-
placement ages obtained on meta-igneous rocks from the di�erent nappes. The UGU
and PAU from the Limousin are not considered because the available geochronological
dataset is very limited and hampers to draw any large-scale picture. The depositional
age of the (meta)sediments for each unit is estimated based on (i) paleontological data
(Fournier-Vinas and Debat, 1970; Guérangé-Lozes and Burg, 1990) ; (ii) �eld relation-
ships, when already dated (meta)plutonic bodies clearly feature intrusive contacts with
adjacent (meta)sediments; (iii) dating of interlayered volcanics (Faure et al., 2009; Les-
cuyer and Cocherie, 1992); (iv) detrital zircon studies (Melleton et al., 2010). Results of
this compilation are summarized on a structural sketch for each of the three investigated
domains (Fig. 4.2).

Upper vs. Lower Gneiss Units East of the Sillon Houiller fault, examination of
the pre-Variscan magmatic record (Fig. 4.1) reveals contrasting age patterns between
the UGU and the LGU. Indeed, the LGU was almost exclusively a�ected by Cadomian
magmatism and lacks any major Ordovician imprint (Fig. 4.3). The opposite situation
is displayed by the UGU which dominantly records the Ordovician magmatic event (Fig.
4.3). Therefore, in this part of the FMC, a direct linkage exists between the pre-Variscan
history of the crust segment and its evolution during the Variscan orogeny. Such con-
clusion might only been altered in the Rouergue area where most igneous rocks from
the LGU have been dated with the U�Pb isotope dilution method on zircon multi-grain

95



F
ig
u
re

4
.1
:
C
o
m
p
il
a
ti
o
n
o
f
av
a
il
a
b
le

in
tr
u
si
o
n
a
g
es

fo
r
p
re
-V
a
ri
sc
a
n
p
lu
to
n
ic

a
n
d
vo
lc
a
n
ic

ro
ck
s
in

th
e
F
re
n
ch

M
a
ss
if
C
en
tr
a
l.

In
th
is
co
m
p
il
a
ti
o
n
,
th
e
P
A
U

o
f
th
e

R
o
u
er
g
u
e,
L
o
t
a
n
d
V
el
ay

a
re
a
s
a
ls
o
in
cl
u
d
es

th
e
lo
w
-g
ra
d
e
"
F
o
ld
-a
n
d
-T
h
ru
st

B
el
t"

a
n
d
th
e
S
a
in
t-
S
er
n
in
-s
u
r-
R
a
n
ce

n
a
p
p
e
o
f
F
a
u
re

et
a
l.
(2
0
0
9
)
a
n
d
th
u
s
re
fe
rs

to
a
ll

lo
w
-g
ra
d
e
m
et
a
m
o
rp
h
ic
u
n
it
s
a
si
m
il
a
r
st
ru
ct
u
ra
l
p
o
si
ti
o
n
.
1
:
B
er
n
a
rd
-G
ri
�
th
s
(1
9
7
5
);
2
:
D
u
th
o
u
(1
9
7
7
);
3
:
G
eb
a
u
er

et
a
l.
(1
9
8
1
);
4
:
L
a
fo
n
(1
9
8
6
);
5:

M
el
le
to
n
et

a
l.

(2
0
1
0
);
6
:
A
le
x
a
n
d
re

(2
0
0
7
);
7
:
M
a
u
re
l
et

a
l.
(2
0
0
3
);
8
:
P
in

a
n
d
L
a
n
ce
lo
t
(1
9
8
2
);
9
:
P
in

(1
9
7
9
);
1
0
:
P
a
q
u
et
te

et
a
l.
(1
9
95
);
1
1
:
L
o
to
u
t
et

a
l.
(2
0
1
7
);
1
2
:
th
is
w
o
rk
;
1
3
:

D
u
th
o
u
et

a
l.
(1
9
8
4)
;
1
4
:
D
u
th
o
u
et

a
l.
(1
9
8
1
);
1
5
:
C
h
el
le
-M

ic
h
o
u
et

a
l.
(2
0
1
7
);
1
6
:
D
u
fo
u
r
(1
9
8
2
);
1
7
:
F
ey
b
es
se

et
a
l.
(1
9
9
5
);
1
8
:
L
év
êq
u
e
(1
9
8
5
);
1
9
:
A
la
b
o
u
v
et
te

et
a
l.
(1
9
8
9
);
2
0
:
D
ef
a
u
t
et

a
l.
(1
9
9
0
);
2
1
:
L
a
fo
n
(1
9
8
4
);
2
2
:
P
in

a
n
d
L
a
n
ce
lo
t
(1
9
7
8
);
2
3
:
th
is
st
u
d
y
;
2
4
:
C
a
en
-V
a
ch
et
te

(1
9
7
9
);
2
5
:
M
o
u
g
eo
t
et

a
l.
(1
9
9
7
);
2
6
:
L
a
u
re
n
t

O
.
p
er
so
n
n
a
l
co
m
m
u
n
ic
a
ti
o
n
;
2
7
:
P
a
d
el
et

a
l.
(2
0
1
7
);
2
8
:
D
u
cr
o
t
et

a
l.
(1
9
7
9
);
2
9
:
P
o
u
cl
et

et
a
l.
(i
n
p
re
ss
);
3
0
:
D
el
b
os

et
a
l.
(1
9
6
4
1
9
6
5
);
3
1
:
C
a
ro
n
(1
9
9
4
);
3
2
:
F
a
u
re

et
a
l.
(2
0
0
9
);
3
3
:
L
es
cu
ye
r
a
n
d
C
o
ch
er
ie
(1
9
9
2
);
3
4
:
C
o
ch
er
ie
et

a
l.
(2
0
0
5
);
3
5
:
T
ra
p
IJ
E
S
2
0
1
7
;
3
6
:
P
it
ra

et
a
l.
(2
0
1
2
);
3
7
:
R
o
g
er

et
a
l.
(2
0
1
5
).

A
b
,
A
lb
in
e;
A
C
,
A
ir
e

d
e
C
ô
te
;
A
F
,
A
rc

d
e
F
ix
;
A
p
,
A
p
ié
;
A
u
,
A
u
b
a
zi
n
e;
B
a
,
B
a
ss
u
re
ls
;
B
r,
S
a
in
t-
B
re
ss
o
n
;
C
h
,
C
h
a
te
a
u
n
eu
f;
C
p
,
C
a
p
lo
n
g
u
e;
E
n
,
E
n
si
èg
es
;
H
e,
H
ér
ic
;
L
a
,
L
a
n
n
ea
u
;
L
B
,
L
a

B
es
se
n
o
it
s;
L
v
,
L
év
éz
o
u
;
M
a
,
M
a
rv
ej
o
ls
;
M
e,
M
eu
za
c;
M
L
,
M
o
n
tr
ed
o
n
-L
ab
es
so
n
ié
;
M
t
M
,
M
o
n
t
M
a
rs
;
M
u
,
M
u
la
te
t;
P
a,

P
a
la
n
ge
s;
P
b
,
P
ey
re
b
ru
n
e;
P
e,
P
ey
ro
ll
es
;
P
i,

P
ic
a
d
es
;
P
s,
P
la
is
a
n
ce
:
P
L
,
P
o
n
t
d
e
L
a
rn
;
P
t,
P
il
a
t;
P
m
,
P
o
m
ay
ro
ls
;
R
d
,
R
o
d
ez
;
R
e,
R
éq
u
is
ta
;
R
o
,
R
o
u
er
g
u
e;
R
v
r,
R
iv
er
ie
;
S
e,
S
ér
iè
s;
S
tE
,
S
t
E
u
tr
o
p
e;
S
o
,
S
o
m
a
il
;

S
tA

,
S
t
A
n
d
ré
-l
a
-C
ô
te
;
S
tY

,
S
t
Y
ri
ei
x
;
T
h
,
T
h
a
u
ri
o
n
;
T
r,
T
o
u
rn
o
n
;
T
u
,
T
u
ll
e;
Y
z,
Y
ze
ro
n

96



Figure 4.2: Summary of the lithological composition of each tectono-metamorphic unit recog-
nized in the three largest and best studied exposures of the French Massif Central. Upper
Allochtonous Units are not considered. See text and Fig. 4.1 for data sources and methodology.
See introduction for a discussion on the overall architecture and the age of the contacts. The
PAU of the Rouergue, Lot and Velay areas also includes the low-grade "Fold-and-Thrust Belt"
and the Saint-Sernin-sur-Rance nappe of Faure et al. (2009) and thus refers to all low-grade
metamorphic units a similar structural position. The Limousin sketch is inspired from Melleton
et al. (2010).

fractions (Fig. 4.1). In this case, dissolution of grains with inherited cores may yield
erroneous older emplacement ages. That being said, based on the well-documented case
of the Velay dome, it is very likely that the contrasted age patterns of the UGU and
LGU re�ect their di�erent paleogeographical positions by the Ordovician. Accordingly,
both units experienced contrasted metamorphic evolutions at Variscan times. This also
supports an allochtonous origin for the UGU, independently postulated based on its
metamorphic record (Burg and Matte, 1978; Burg et al., 1984).

The Sillon Houiller East/West dichotomy The LGU in the Limousin area records
a protracted Cambrian�Ordovician magmatic event (Fig. 4.1) which age pattern does not
match that of its counterpart East of the Sillon Houiller but rather resembles the UGU
from the same area (Fig. 4.3). This entails that the LGUs experienced contrasted pre-
Variscan evolutions on both sides of the Sillon Houiller. Such structure is often described
as a transfer fault nucleated during Variscan orogenic collapse in response to variable
extension rates (Burg et al., 1994; Lapierre et al., 2008). Yet, it may also correspond to
a lithospheric-scale structure that demarcates two crust segments having contrasted pre-
Variscan histories. Alternatively, the discrepancy in the LGUs pre-Variscan magmatic
record may stem from the existence of a distinct stack of nappes on both sides of the
Sillon Houiller. Such hypothesis is backed up by the fact that the relics of eclogite-
facies metamorphism are observed in the LGU only West of the Sillon Houiller (see
introductory section). Dubuisson et al. (1988) and Berger et al. (2010b) provide further
constraints to this point by highlighting that the Limousin LGU features additional
lithological components including an ophiolitic unit, underlying micaschists and HP-
UHP metabasites. They even propose a di�erent nappe subdivision scheme, based on
that observed in the Armorican Massif (Ballèvre et al., 2009). As a result, the age
compilation presented in this study together with recent metamorphic investigations
suggest that the nappes cannot be correlated on both sides of the Sillon Houiller.
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Figure 4.3: Comparison between the available intrusion ages for pre-Variscan igneous rocks rep-
resented as Kernel Density Estimates, calculated using the DensityPlotter program of Vermeesch
(2012); optimal bandwidths were determined by the program (adaptive mode).

Signi�cance of the Parautochtonous Units In the easternmost part of the FMC
(Velay area), the PAU corresponds to the so-called "Cévennes" and "Vigan" schists, a
former Paleozoic sedimentary sequence (see for instance Faure et al., 2009, Fig. 4.1).
Consequently, the PAU (meta)sediments likely represent the (paleo)cover of the LGU
Precambrian lithologies (Velay Orthogneiss Formation and associated metasediments,
see Chapter 1) because of their: (i) structural position overlying the LGU (Bouilhol
et al., 2006; Faure et al., 2001), (ii) low metamorphic grade symptomatic of limited
burial and transport (Rakib, 1996).

A di�erent situation is observed in the PAU from the Rouergue area which does ex-
hibit Precambrian rocks below the Lower Paleozoic (meta)sedimentary sequence. Indeed,
the lower part of the "Albigeois" schists is intruded by a c. 545 Ma-old granite turned
into the Montredon-Labessonié orthogneiss at Variscan times (personal communications
from O. Laurent, D. Béziat and J.-L. Séverac). Besides, in the "Monts-de-Lacaune" area,
interlayered rhyolites and rhyolitic tu�s (locally called blaviérites) have recently yielded
zircon LA�ICP�MS U�Pb ages of c. 540 Ma demonstrating the existence of Ediacaran
(meta)sediments within the PAU (Padel et al., 2017). These observations suggest that
in the Rouergue domain, the PAU corresponds to a constituent basement unit with Neo-
proterozoic sediments intruded by late Ediacaran granites (as observed in the LGU) and
capped by Lower Paleozoic strata.

Lastly, in the Limousin domain, detrital zircon studies favour an Ediacaran deposi-
tional age for the (meta)sediments (Melleton et al., 2010). The latter would have been
intruded by: (i) the Cambrian Moulin du Chambon orthogneiss which yielded a zircon
U�Pb LA�ICP�MS emplacement age for the igneous protolith at 529 ± 4 Ma; (ii) the
Ordovician Xaintrie augen gneiss which emplaced at 467 ± 8 Ma (whole-rock Rb�Sr,
Monier, 1980). Consequently, there is no evidence for the presence of reworked Lower
Paleozoic strata in the Limousin PAU which strongly contrasts with its presumed lateral
equivalents East of the Sillon Houiller. Once again, it appears that, based on their pre-
Variscan hisotry, the main metamorphic nappes do not easily correlate on both sides of
the Sillon Houiller.

Origin of protoliths in the Montagne Noire dome The pre-Variscan lithologies of
the Montagne Noire dome consist in an intricate association of meta-plutonic and meta-
(volcano)sedimentary units (review in Demange, 2014). Recent geochronological inves-
tigations (see Fig. 4.1) con�rmed the interpretations of Bard and Loueyit (1978): the
meta-plutonic rocks do correspond to Ordovician granites which intruded an Ediacaran
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sedimentary sequence. Importantly, such lithological composition and pre-Variscan evo-
lution do not match with any other nappe identi�ed in the FMC. As a direct consequence
of this, the Montagne Noire dome cannot be regarded as a lateral equivalent of the LGU
nappe that would have been exhumed below the PAU (Fig. 4.2).

4.2 Geodynamic scenario for the Cambrian�Ordovician pe-
riod

4.2.1 State of the art

General overview

The geodynamic evolution of the North Gondwana margin at Cambrian�Ordovician times
has been very much debated in the past 20 years and contrasted scenarios have been
proposed:

� the pre-Mesozoic basement of the eastern Alps would feature relics of an Ordovician
accretionary orogen (Zurbriggen, 2015). Conversely, in the western Alps, the coeval
Chamrousse ophiolite (Ménot et al., 1988; Pin and Carme, 1987) would correspond
to an oceanic domain formed in a back-arc setting above the SE-directed subduction
of the Iapetus ocean (Guillot and Ménot, 2009).

� In the Iberian massif, a continental arc setting has been proposed by Valverde-
Vaquero and Dunning (2000) and would have been followed by back-arc rifting
(Abati et al., 2009; Díez Fernández et al., 2010). Similarly, Villaseca et al. (2016)
argue for a �at subduction and thickening on a still ongoing Cadomian belt followed
by passive margin development. On the other hand, Nance and Linnemann (2008),
Murphy et al. (2008) and Díez Montes et al. (2010) advocate a continental rifting
event away from any subduction zone in�uence.

� in the Armorican Massif, a similar opposition between continental arc (Jégouzo
et al., 1986) and subduction-unrelated continental rifting (Ballèvre et al., 2012) is
observed.

� in the Maures massif, rifting would have been provoked by a mantle plume (Briand
et al., 2002).

Geological information from the Massif Central

Sedimentology The Variscan low-grade metamorphic units (Parautochtonous Units
and Fold-and-Thrust Belt) preserve an excellent sedimentological record throughout the
Lower Paleozoic. In the northern and southern �anks of the Montagne Noire, the
carbonate-bearing early Cambrian to early Ordovician strata would correspond to in-
ner shelf sediments (Álvaro et al., 1998; 2003; 2014; Guérangé-Lozes and Burg, 1990;
Lescuyer and Giot, 1986). Of importance are the stratigraphic gap between the Lower
and Upper Ordovician and associated Sardic unconformity presumed to re�ect uplift
and subsequent erosion (Javier Álvaro et al., 2016). In�lling of the negative paleo-reliefs
would have started in the Upper Ordovician (Javier Álvaro et al., 2016). The sedimen-
tological record together with the lack of folding and limited uplift (<2 km) during the
Sardic event collectively point to an extensional setting in the Cambrian�Ordovician
period (Javier Álvaro et al., 2016; Guérangé-Lozes and Burg, 1990).

Magmatic activity Continuous magmatic activity is recorded throughout the Lower
Paleozoic as evidenced by: (i) volcanic complexes in the low-grade Variscan parautochton
units (Alsac et al., 1987; Álvaro et al., 2014; Béziat et al., 1992; 1993; Lépine et al.,
1988; Marini, 1987; 1988; Pouclet et al., in press); (ii) orthogneisses in the high-grade
Variscan units (see Alexandre, 2007, Melleton et al., 2010 and the previous chapters);
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(iii) magmatic zircon grains of that age present as detritus in younger Devonian to Per-
mian sedimentary formations (Lin et al., 2016; Pfeifer et al., 2016). Magmatic products
encompass basic to felsic rocks.

Geotectonic discrimination Metabasic rocks cropping out in high-grade metamor-
phic units of the French Massif Central have been the subject of numerous geochemical
investigations in order to (i) characterize their mantle source(s) and (ii) reconstruct the
geodynamic setting in which magmatism took place (Berger et al., 2010a; Bodinier, 1983;
Bodinier et al., 1988; Briand and Piboule, 1979; Briand et al., 1988; 1991; 1992; 1995;
Downes et al., 1989; Giraud et al., 1984; Piboule, 1977; 1979; Piboule and Briand, 1985;
Pin and Marini, 1993). Those studies yielded contrasting results and point to melting
of a range of sources from a deep/enriched to shallow/depleted asthenospheric mantle,
sometimes bearing a strong "subduction component" (Berger et al., 2010a; Briand et al.,
1995; Downes et al., 1989; Pin and Marini, 1993). Similarly, a varied set of Cambrian�
Ordovician geodynamic scenarios has been inferred from them and include:

� the existence of an intra-oceanic supra-subduction zone, the metabasites being
produced in a island-arc or back-arc setting (Berger et al., 2010a).

� a back-arc basin (Downes et al., 1989; Giraud et al., 1984), probably developed on
stretched continental crust (Briand and Piboule, 1979; Briand et al., 1991; 1995;
Piboule and Briand, 1985).

� a continental rift away from the in�uence of a subduction zone (Chèvremont et al.,
1996; Pin and Marini, 1993).

4.2.2 Inferences from the metabasite geochemistry

Rationale All geochemical studies of the metabasites cropping out in high-grade units
have been conducted at a regional scale, focusing on a speci�c domain or formation. In
this section, I put further constraints on their mantle source(s) and their geodynamic
signi�cance based on the examination of the metabasite geochemical record at a larger
scale, that of the whole FMC.

Material and methods In this scope, a geochemical database was built based on a
literature survey and the newly obtained results presented sections 2.3 and 3.3. It gathers
amphibolite-, eclogite- and granulite-facies basic rocks for which the full set of major and
trace element compositions is available. In order to discard fractionates, cumulates and
altered samples, the same procedure as explained section 2.3 and 3.3 was applied. We
retained 21 samples from the Haut-Allier area (Giraud et al., 1984), 41 from the Monts-

du-Lyonnais (data from Briand et al., 1995; Ouali, 1993 and this study), 36 from the
Lot area (Briand et al., 1991; Downes et al., 1989; Pin and Marini, 1993) and 16 from
the Velay dome (data from Briand et al., 1992; Pin and Marini, 1993 and this study).
We also selected 17 samples from several massifs of the Limousin domain, in the western
Massif Central (Berger et al., 2010a; Chèvremont et al., 1996), which yields a total of 131
metabasites. Isotopic data are available for 21 of them. A selected set of geochemical
diagrams based on immobile trace element ratios is used to discuss the petrogenesis of
the metabasic rocks, assumed to represent basaltic melt compositions. This diagrams
are those of Pearce (2008) and Shervais (1982) and have already been presented sections
2.3 and 3.3.

Summary of geochronological results Few geochronological investigations have
been performed on the metabasites from our database. In the Lot area, zircon frac-
tions extracted from a meta-gabbro yielded a TIMS U�Pb age of 484 ± 7 Ma (Pin and
Lancelot, 1982) interpreted as the emplacement age of the magmatic protolith. In the
Rouergue area, a norite and an eclogite (not represented in our database) have been
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dated by stepwise Pb-evaporation of single zircon grains and isotope dilution of zircon
fractions (Paquette et al., 1995). Both methods yielded identical results and an emplace-
ment age of c. 480 Ma is inferred for the protolith of both rocks. In the Limousin area,
Berger et al. (2010a) obtained an emplacement age of 473 ± 6 Ma for the protolith of
an eclogite by LA�ICP�MS dating of zircon cores. Identical ages obtained by the same
method are reported by Chelle-Michou et al. (2017) for amphibolite-facies metabasic to
intermediate rocks from the Doux massif (also not represented in our database). Finally,
few samples from the Monts-du-Lyonnais area are probably as old as 545 Ma (see discus-
sion section 3.5). All these lines of evidence suggest that the metabasites correspond to
magmatic rocks formed during a late Ediacaran to early Ordovician magmatic episode
(Berger et al., 2010a; Chelle-Michou et al., 2017; Paquette et al., 1995; Pin, 1979; Pin
and Lancelot, 1982).

Trace element geochemistry

Figure 4.4a shows that 1/4 of the data plot within the MORB�OIB array and the remain-
ing in the volcanic arc array. The compositions of samples from all massifs are evenly
scattered apart for amphibolites from the Velay dome and a selection of samples from the
Monts-du-Lyonnais area which characteristically plot in the MORB�OIB array close to
the OIB reservoir. As explained section 3.3, metabasites plotting in the volcanic arc �eld
were either contaminated by the continental crust during ascent/emplacement or origi-
nated from melting of a mantle that interacted with slab-derived �uids. Samples plotting
in the MORB�OIB array show a wide range of Nb/Yb, indicative of contrasted melt-
ing degrees and/or variously enriched mantle sources. For instance, samples with high
Nb/Yb would have formed by limited melting of a (potentially) enriched asthenospheric
to lithospheric mantle source (Pearce, 2008).

In the Ti�Nb proxy diagram (Fig. 4.4b), 1/4 of the samples show high TiO2 ratios
and consistently plot in the OIB array. They trend from N�/E�MORB towards OIB
compositions which attest to increasing amounts of residual garnet and hence melting of
a deeper mantle source (see discussion in Pearce, 2008).

Samples with high Th/Nb ratios and suspected to have originated from a mantle
source that interacted with slab-derived �uids are plotted in the V�Ti proxy diagram
(Fig. 4.4c). Some display low Ti/V ratios (close to 10) which are indicative of melting
under notably oxidizing conditions (Shervais, 1982). Such low ratios cannot originate
from contamination of the magmas by the continental crust during ascent because the
latter has higher Ti/V (between 20 and 50, see Taylor and McLennan, 1985). If the �uid-
enriched mantle source hypothesis is correct, then the wide range of Ti/V ratios (from 10
to 60) attests to melting under varied oxygen fugacities conditions. In supra-subduction
zone ophiolites, such range is interpreted in terms of distance to the subducting slab
(the main �uid source) with low Ti/V magmas being produced in the arc and those with
moderate to high Ti/V in a back-arc setting (Pearce, 2014).

Nd isotope data

Figure 4.4d highlights that samples plotting in the MORB�OIB array of �gure 4.4a show
radiogenic whole-rock εNd (recalculated at 480 Ma) clustering around the value of +6.
They will be referred to as subset A. Conversely, samples plotting in the volcanic arc array
show a larger range of εNd(t) from DM-like values of +9 down to slightly non-radiogenic
values of -2.5. Two groups of samples can be identi�ed. The �rst group (subset B)
displays εNd(t) similar to that of the DM and to samples plotting in the MORB�OIB
array. The second group (subset C) gathers samples with εNd(t) clustering around the
chondritic value (± 3 ε units).
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Figure 4.4: (a�c) Proxy element diagrams for metabasites from high-grade metamorphic units of
the French Massif Central: (a) Th�Nb proxy diagram of Pearce (2008); (b) Ti�Nb proxy diagram
of Pearce (2008); (c) V�Ti proxy diagram of Shervais (1982) applied to samples plotting in the
volcanic array in the Th�Nb proxy diagram and assumed to have formed in an environment
in�uenced by subduction. See caption of Fig. 3.7 for the interpretation of those proxies. (d)
Whole-rock εNd calculated at 480 Ma vs. Th/Nb ratio. The MORB�OIB and volcanic array
are bracketed by the values of Pearce (2008). The isotopic composition of metasomatizing �uids
derived from the oceanic igneous crust is assumed to be close to that of the Depleted Mantle (value
from Liew and Hofmann, 1988). Red curve: results of binary mixing model of a basaltic melt PB
(Nd, Th and Nb contents set as average of N� and E�MORBs, from Sun and McDonough, 1989;
εNd(t) of +7) assimilating upper and lower continental crust (UCC and LCC, Nd, Th and Nb
contents from Rudnick and Gao, 2003; εNd(t) of -5, average of the FMC crust, from Turpin et al.,
1990; Simien et al., 1999; Downes and Duthou, 1988; Pin and Duthou, 1990 and Williamson et al.,
1992). Blue curve: results of mass-balance, binary mixing models between the local mantle LM
(εNd(t)=+7, corresponding to that of the most radiogenic metabasite; Nd, Th and Nb contents
from Workman and Hart, 2005) and (i) the GLOSS (Global Subducting Sediment, Plank and
Langmuir, 1998), (ii) the LCC (Rudnick and Gao, 2003), both assumed to show an average εNd(t)
of -5 (see above). Percentages represent the proportion of UCC/LCC/GLOSS in the respective
mixtures.
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Samples from subset A have low Th/Nb ratios and originated from melting of a
mantle source that did not interact at any time with slab-derived �uids (Pearce, 2008).
As a result, the εNd(t) of c. +6 can be taken as representative of that of the regional
mantle devoid of slab-derived component. On the other hand, samples from subset B and
C display high Th/Nb ratios which would result from: (i) the presence of a slab-derived
component in the mantle source; or (ii) contamination by the continental crust during
ascent. In the case of subset B samples, the highly radiogenic (between +6 and +9) εNd(t)
discards the continental crust as a contaminant since this would have driven the εNd(t)
towards non-radiogenic values. Therefore, the mantle source of samples from subset B
did interact with slab-derived �uids shortly prior to melting. A similar conclusion was
drawn by Berger et al. (2010a) using the Limousin dataset.

Deciphering the case of subset C samples has proven more di�cult. Pin and Marini
(1993) interpreted their slightly radiogenic to non-radiogenic Nd isotope composition as
re�ecting crustal contamination during magma ascent/emplacement. Yet, binary mixing
models of continental crust assimilation indicate that incorporation of more than 20%
(and probably 40%) of crustal material is required to account for the non-radiogenic val-
ues of subset C metabasites (Fig. 4.4d). Such substantial contamination is hampered by
thermodynamic considerations (Glazner, 2007) and the fact that resulting contaminated
magmas would certainly not be ma�c anymore.

As samples from subset B provide unequivocal evidence for interaction of the mantle
with slab-derived �uids, an alternative to the model of Pin and Marini (1993) would be
to consider that rocks from subset C originated from melting of a mantle metasomatized
by sediment-derived �uids (or melts). Such situation is observed in arc settings where the
Nd isotope composition of subducting sediments is transferred to the overlying mantle
Hidalgo et al. (2012). Similar conclusions have been drawn for Hf isotopes (see Nebel
et al., 2011; Roberts et al., 2013 and section 5.3). In this case, binary mixing models show
that the signature of subset C samples could accordingly stem from the incorporation of
5% percent of crustal material in their mantle source (Fig. 4.4d).

Discussion

The set of geochemical proxies and isotopic data presented above unambiguously points
to markedly varied melting degrees, redox conditions, depths of melting (presence of
residual garnet) and source compositions (including the existence of mantle domains that
interacted with slab-derived �uids) for the magmatism at the origin of the metabasite
protoliths. Such diversity is observed at the scale of the whole Massif Central and to a
lesser extent within each massif (see Downes et al., 1989; Briand et al., 1991; 1995 and
section 2.3).

The variable trace element ratios and isotope compositions are best explained by
melting of a very heterogeneous mantle source that would readily correspond to the
subcontinental lithospheric mantle present beneath the FMC crust segment during the
Cambrian�Ordovician. Today inaccessible, the chemical properties of this reservoir can
only be inferred from the regional geological context and the study of mantle xenoliths
sampled by the Cenozoic volcanoes of the eastern FMC (Downes et al., 2003; Hutchison
et al., 1975; Lenoir et al., 2000). Such peridotites provide critical information on the origin
and evolution of the SCLM. First, clinopyroxene Nd isotope data show that the SCLM
do not record any geological event older than 0.6 Ma (Wittig et al., 2007). Second, sul�de
Re/Os geochronology demonstrates that the oldest melt depletion event experienced by
the SCLM would be c. 0.9 Ga-old (Harvey et al., 2010). Altogether, these results indicate
that the SCLM of the FMC likely formed during the Cadomian orogeny.

Given the back-arc setting retained for the FMC by the late Ediacaran (e.g. Chelle-
Michou et al., 2017 and Chapter 2), the newly formed SCLM would have featured a range
of chemical compositions re�ecting the variable extent of (i) mantle depletion through
melt extraction, and (ii) incorporation of a "subduction component" (corresponding to
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igneous oceanic crust- and/or sediment-derived �uids). Melting of such a "patchy" mantle
in the Cambrian�Ordovician adequately explains the wide range of Nb/Yb and Ti/V
ratios and the prevalence of samples with high Th/Nb. Variations of the TiO2/Yb ratios
would result from low melting degrees of the deeper parts of this source (at pressures >3
GPa). As rocks with the highest TiO2/Yb also display low MORB�OIB-like Th/Nb, the
base of this lithospheric mantle may have been less altered by Cadomian slab-derived
�uids. Alternatively the source of these rocks may correspond to the uppermost part of
the asthenosphere. Finally, the radiogenic Nd isotope compositions at 480 Ma displayed
by high Th/Nb samples (subset B) would stem from the short time span between mantle
enrichment and mantle melting (c. 100 Ma).

Chemical inheritance of the Cadomian subduction in the lithospheric mantle, yet
mentioned by Briand et al. (1995), has never been taken into account while interpreting
the chemistry of Cambrian�Ordovician metabasites. Such model provides an alternative
to the back-arc setting advocated by most studies (Berger et al., 2010a; Briand and
Piboule, 1979; Briand et al., 1991; Downes et al., 1989; Giraud et al., 1984; Piboule and
Briand, 1985). Importantly, it resolves the problem of the yet unlocated Cambrian�
Ordovician subduction zone, which existence is critical in the "back-arc" model. As a
result, a lithospheric thinning and associated melting event, coeval with the extensional
setting recorded in the overlying crust, would adequately explain the chemistry of the
Cambrian�Ordovician metabasites of the FMC. Therefore, such magmatic activity most
probably results from rifting of the North Gondwana margin away from a subduction
zone in�uence, as proposed by Pin and Marini (1993) and Chèvremont et al. (1996) in
the FMC and Ballèvre et al. (2012); Díez Montes et al. (2010); Murphy et al. (2008) and
Nance and Linnemann (2008) in western Europe.

4.2.3 Widespread crustal melting: the heat source problem

Origin of the Cambrian�Ordovician orthogneisses

Several lines of evidence strongly suggest that Cambrian-Ordovician orthogneisses from
the FMC are continental crust-derived magmatic rocks. First, their whole-rock geochem-
istry and Sr�Nd isotope compositions are in line with melting of pre-existing crustal
lithologies (see Demange, 2014; Downes and Duthou, 1988; Lotout et al., 2017; Turpin
et al., 1990, and section 3.2). Second, geochronological studies have highlighted the
systematic occurrence of inherited zircon grains in dated samples (Chelle-Michou et al.,
2017; Lotout et al., 2017; Melleton et al., 2010; Pitra et al., 2012; Roger et al., 2004; 2015;
Trap et al., 2017). Third, coeval basic enclaves or associated igneous rocks are scarce
in the orthogneiss massifs (Demange, 2014; Lotout et al., 2017) which again points to a
crustal source for the felsic magmas (Didier et al., 1982).

What triggered partial melting of the crust?

A striking feature of the Cambrian�Ordovician bimodal magmatism lies in the fact that
ma�c rocks are very subordinate in volume with respect to the felsic massifs. As a direct
consequence of this, melting of the continental crust by basaltic magma underplating and
associated heat advection must be disregarded. Indeed, numerical models indicate that
in such scenario the relative proportions of crust- vs. mantle-derived magmas should be
1:9 (Annen and Sparks, 2002; Annen et al., 2006; Petford and Gallagher, 2001). Similarly,
melting of a thickened continental crust has to be rejected because the sedimentological
record rather indicates an extensional, shallow marine environment and does not provide
any evidence for signi�cant crustal thickening (Javier Álvaro et al., 2016; Guérangé-Lozes
and Burg, 1990). Therefore, question is how to sustain high heat regimes in the crust
throughout the Cambrian�Ordovician. The solution to this issue might dwell in the
intrinsic nature of the Cambrian�Ordovician crust.

104



Thermal resilience The crust segment exposed in the FMC comprises a thick sedi-
mentary succession deposited during the late-Ediacaran (see section 2.2) in a back-arc
basin. High geothermal gradients are observed in such setting because of strong convec-
tion in the back-arc mantle (Currie and Hyndman, 2006). When subduction and thus
convection cease, the lithosphere cools down by conduction and the geotherm becomes
similar to that observed in inactive tectonic domains. Numerical models yield constraints
on the duration of the transient cooling state and demonstrate that the crust and litho-
spheric mantle are still notably warm c. 100 Ma after subduction has ceased and the slab
broke o� (Currie and Hyndman, 2006). As a result, the Cambrian�Ordovician crust of
the FMC would have still exhibited a thermal imprint of the Cadomian activity, meaning
that it likely displayed a steep thermal gradient by that time.

Radioactive heat production As illustrated section 2.2, the Ediacaran detritus orig-
inated from: (i) arc crust extracted from the mantle in the Cryogenian�Ediacaran; (ii)
Proterozoic to Archean continental rocks from the Gondwana mainland. Erosion of the
latter likely produced a detritus rich in K, Th and U, the main heat producing elements
in the continental crust (Birch, 1954). Accordingly, a compilation of whole-rock chemical
compositions (N=24) of low- to medium-grade Ediacaran metasediments from the eastern
Massif Central (data courtesy of J.-F. Moyen and D. Garcia) highlights that those rocks
have elevated average K2O (3.4 wt.%), U (5.9 ppm) and Th (14.4 ppm) contents. A heat
production of 3043 µW/m3 was calculated for such average crustal composition at 500
Ma based on these concentrations, the equation of Kramers et al. (2001), the constants
of Rybach (1976) and an average density of 2700 kg/m3. Such value is c. 40% higher
than those derived from average upper crustal compositions, calculated using the same
procedure, which yield 1789 µW/m3 (based on Rudnick and Gao, 2003), 1795 µW/m3

(based on Wedepohl, 1995) and 1888 µW/m3 (based on Taylor and McLennan, 1985).
Consequently, the Ediacaran sediments constituted layers or horizons of notably high
radioactive heat production.

Synergetic e�ects The Cambrian�Ordovician crust of the FMC would have thus fea-
tured: (i) a rather steep geotherm, vestige of the high thermal regime of the late Cado-
mian period; (ii) sedimentary layers with anomalously high radioactive heat production.
Therefore, thermal subsidence and burial of radioactive element-rich layers in such a
warm crust segment would have generated thermal anomalies and triggered local ana-
texis of metasediments at c. 480 Ma, some 50 Ma after the Cadomian subduction ceased.
Such model is adapted from that of Sandiford et al. (1998), initially designed to account
for high geothermal gradients observed in high-temperature, low-pressure metamorphic
terranes. It readily explains the scarcity of coeval mantle-derived magmas because the
thermal trigger of crustal melting lies in the crust itself.

4.2.4 Conclusion

Contrasted Cambrian�Ordovician geodynamic models have been proposed for the crust
segment today exposed in the FMC. Among them, the back-arc setting model has proven
very popular (Berger et al., 2010a; Briand et al., 1995; Downes et al., 1989; Pin and
Marini, 1993). Yet, a careful examination of the literature together with new geochemical
data on basic igneous rocks discards any Cambrian�Ordovician subduction zone in�uence
in the FMC for several reasons:

� there is no compelling evidence for the presence of an active subduction zone nearby
the FMC by the Ordovician;

� the "subduction component" present in the mantle source of basic rocks would have
been inherited from the pre-dating Cadomian subduction;
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� anatexis leading to voluminous crust-derived granitic magmas was neither triggered
by ma�c magmas underplating nor the consequence of a thickening episode, as
generally observed in back-arc basins (Collins and Richards, 2008).

In contrast, the extensional continental rift setting readily complies with a large set of
geological observations and is in notable agreement with the sedimentary, tectonic and
magmatic records which are summarized Figure 4.5.

Figure 4.5: Interpretative geodynamic sketch illustrating the Cambrian�Ordovician evolution of
the crust segment to which the French Massif Central belongs. See text for discussion.
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Part II

Timescale and sources of Variscan
post-collisional magmatism in the
eastern French Massif Central
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Chapter 5

Coeval crust and mantle melting
during orogenic collapse

5.1 Article #2: U�Pb geochronology and granite typology

This contribution has been published in the International Journal of Earth Sciences. In
the course of my M.Sc., I sampled 25 of the 33 investigated igneous rocks presented in
this study with the help of Jean-François Moyen and Adrien Vezinet and prepared them
for whole-rock geochemical determinations. I extracted the zircon grains and performed
the U�Pb dating session for the vaugnerite samples at GUF under the supervision of
Oscar Laurent and Armin Zeh. During my Ph.D., I processed the raw data with the help
of Oscar Laurent. I compiled geochronological and geochemical data available from the
literature (see Tab. 1 and Fig. 2 for instance), wrote part of the "Geological setting" and
the "Results" sections together with the Supplementary text, participated to the writing
of the rest of the manuscript and signi�cantly contributed to the ideas presented in this
article.
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mafic rocks emplaced together over a long period of ~40 
million years throughout the Carboniferous, as shown by 
intrusion ages between 337.4 ± 1.0 and 298.9 ± 1.8 Ma 
for the granitoids, and between 335.7 ± 2.1 and 
299.1 ± 1.3 Ma for the vaugnerites. Low zircon satura-
tion temperatures and abundant inherited zircons with pre-
dominant late Ediacaran to early Cambrian ages indicate 
that the CPG and MPG formed through muscovite or bio-
tite dehydration melting of ortho- and paragneisses from 
the Lower Gneiss Unit. The KCG and vaugnerites con-
tain very few inherited zircons, if any, suggesting higher 
magma temperatures and consistent with a metasomatized 
lithospheric mantle source for the vaugnerites. The KCG 
can be explained by interactions between the CPG/MPG 
and the vaugnerites, or extensive differentiation of the lat-
ter. The new dataset provides clear evidence that the east-
ern FMC was affected by a long-lived magmatic episode 
characterized by coeval melting of both crustal and man-
tle sources. This feature is suggested here to result from 

Abstract The late stages of the Variscan orogeny are char-
acterized by middle to lower crustal melting and intrusion 
of voluminous granitoids throughout the belt, which makes 
it akin to “hot” orogens. These processes resulted in the 
development of large granite–migmatite complexes, the 
largest of which being the 305–300-Ma-old Velay dome in 
the eastern French Massif Central (FMC). This area also 
hosts a wide range of late-Variscan plutonic rocks that can 
be subdivided into four groups: (i) cordierite-bearing per-
aluminous granites (CPG); (ii) muscovite-bearing peralu-
minous granites (MPG); (iii) K-feldspar porphyritic, calc-
alkaline granitoids (KCG) and (iv) Mg–K-rich (monzo)
diorites and lamprophyres (“vaugnerites”). New results of 
LA-SF-ICP-MS U–Pb zircon and monazite dating on 33 
samples from all groups indicate that both granites and 
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a lithospheric-scale thermal anomaly, triggered by the 
removal of the lithospheric mantle root. The spatial distri-
bution of the dated samples points to a progressive south-
ward delamination of the lithospheric mantle, perhaps in 
response to rollback following continental subduction, or to 
“retro-delamination” owing to the retreat of a south-verg-
ing subduction zone.

Keywords U–Pb dating · Zircon · French Massif Central · 
Granitoids · Vaugnerites · Variscan orogeny

Introduction

Following crustal thickening, the final stages of continental 
collision, associated with lateral extension or orogenic col-
lapse, are periods of intense magmatic activity character-
ized by emplacement of granitoids derived from both crus-
tal and mantle sources (Liégeois et al. 1998; Bonin 2004; 
Clemens et al. 2009; Vanderhaeghe 2012; Laurent et al. 
2014a). Granitoid magmas represent major heat and mass 
transfers from the lower to the upper crust, contributing to 
crustal differentiation, thermal maturation and ore deposits 
(Petford et al. 2000; Kemp and Hawkesworth 2003; Hou 
and Cook 2009). Voluminous layers of partially molten 
rocks at mid to lower crustal levels, as evidenced in mod-
ern orogens by geophysical investigations (Nelson et al. 
1996; Schilling and Partzsch 2001), influence the thermo-
mechanical behavior of the orogenic crust and its coupling 
to the lithospheric mantle (Brown 2001; Vanderhaeghe 
and Teyssier 2001; Schulmann et al. 2008; Vanderhaeghe 
2009; Barbey et al. 2015). In addition, the mafic magmas 
emplaced during these periods and their derivatives may 
represent significant additions to the preexisting continental 
volume (Laurent et al. 2013; Couzinié et al. 2016; Moyen 
et al. in press). Therefore, late- to post-collisional magma-
tism is of primary interest to understand (i) the mechanisms 
of heat and mass transfer in the lithosphere; (ii) the geo-
dynamic evolution at convergent plate boundaries; and (iii) 
continental crust formation and differentiation.

The Paleozoic Variscan belt of western Europe is often 
referred to as a “hot” orogen (Schulmann et al. 2008) char-
acterized by the emplacement of abundant and diverse 
granitoid magmas, especially at the end of the continental 
collision sensu stricto and throughout late-orogenic col-
lapse (Pin and Duthou 1990; Finger et al. 1997; Gardien 
et al. 1997; Fernández-Suárez et al. 2000; Janoušek et al. 
2000; Rossi and Pin 2008). In the French Massif Central 
(FMC), the late-Variscan collapse led to the formation of 
the 305–300 Ma Velay granite–migmatite complex (Montel 
et al. 1992; Mougeot et al. 1997; Couzinié et al. 2014), a 
roughly circular dome of >100 km diameter and >6000 km2 
(Fig. 1), consisting of migmatites cored by a heterogeneous 

cordierite-bearing granite (Ledru et al. 2001; Barbey et al. 
2015). It is suggested that the Velay dome was formed in 
response to a long-lived (>40 Ma) period of HT metamor-
phism and partial melting of the orogenic crust (Vander-
haeghe et al. 1999; Ledru et al. 2001; Vanderhaeghe and 
Teyssier 2001; Rossi and Pin 2008), first through limited 
low-temperature, possibly water-present melting between 
ca. 340 and 314 Ma; and second through high-temperature, 
extensive biotite breakdown melting at 310–300 Ma (Mon-
tel et al. 1992; Mougeot et al. 1997; Barbey et al. 1999, 
2015; Couzinié et al. 2014).

Field relationships indicate that voluminous granitoid 
plutons and batholiths were emplaced before, during and 
after its formation (Ledru et al. 2001; Faure et al. 2009). 
Indeed, available geochronological data hint that granite 
formation lasted for several tens of million years between 
the early Carboniferous (340 ± 20 Ma) and early Permian 
(295 ± 15 Ma) (Duthou et al. 1984; Montel et al. 1992; 
Briand et al. 2002; Bé Mézème et al. 2006; Table 1). More-
over, granitoids are associated with volumetrically minor, 
but spatially ubiquitous mafic magmas, i.e., potassic to 
ultrapotassic diorites, gabbros and/or lamprophyres, locally 
referred to as “vaugnerites” (Sabatier 1991; Solgadi et al. 
2007; Scarrow et al. 2008; von Raumer et al. 2013; Couz-
inié et al. 2014, 2016). Several questions arise from those 
observations. First, the genesis of large volumes of gran-
ite throughout the Carboniferous apparently contradicts the 
model proposed by some authors for the formation of the 
Velay dome, which implies that crustal anatexis was limited 
prior to 310 Ma and only produced significant amounts of 
granitic magmas at 310–300 Ma (Montel et al. 1992; Ledru 
et al. 2001). It has also been proposed that the formation 
of these granites and their ascent through the crust explains 
the temperature increase associated with the formation of 
the Velay dome at 310–300 Ma (Barbey et al. 2015), but 
then the problem translates to the origin of the heat source 
responsible for the genesis of the granites (Rossi and Pin 
2008). Second, the role played by mafic magmas in the 
late-orogenic evolution is poorly understood; in particular, 
it is not yet clear whether the mafic magmas are respon-
sible for crustal melting, or whether they represent a side 
effect of the processes at the origin of crustal anatexis.

To be addressed, those problems require a reliable geo-
chronological framework for both granitic and mafic mag-
matism. Such a dataset is still lacking in the eastern FMC, 
where most available ages are either imprecise and possibly 
inaccurate radiometric dates based on whole-rock isoch-
rons (Rb–Sr or Sm–Nd) or recent U–Pb dates but focused 
on small areas or specific plutons. This prevents a large-
scale and systematic understanding of the magmatic evo-
lution and questions the existence of long-lived granitic 
emplacement prior to the formation of the Velay complex, 
since this may only be an artifact of the large uncertainties 
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Fig. 1  a Sketch map showing the repartition of exposed Variscan 
domains in Western Europe, as well as the salient structural features 
of the Variscan belt (MZ moldanubian zone, RHZ Rheno-Hercynian 
zone, STZ Saxo-Thuringian zone). b Geological map of the eastern 

French Massif Central (after the 1:1000000e BRGM map of France) 
with particular emphasis on the late-Variscan plutonic rocks associ-
ated with the Velay Complex. Positions of the studied samples are 
also indicated
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on the existing ages. In fact, the most recent U–Pb ages 
obtained on igneous rocks in the eastern FMC are almost 
exclusively in the range 310–300 Ma (Brichau et al. 2008; 
François 2009; Gardien et al. 2011; Barbarin et al. 2012; 
Didier et al. 2013; Couzinié et al. 2014), i.e., coeval with 
the migmatites and granites of the Velay dome. Further-
more, only a handful of ages are available so far on the 
mafic rocks (Aït-Malek 1997; Couzinié et al. 2014).

The aim of this study is therefore to provide a self-con-
sistent geochronological dataset on both granites and mafic 
rocks in the eastern FMC. For this purpose, we sampled 
a total of 18 granitoids and 15 vaugnerites, representative 
of the lithological diversity observed at the regional scale, 
and performed U–Pb dating on individual zircons (and 
monazites for some samples) by laser ablation, sector field 
inductively coupled plasma mass spectrometry (LA-SF-
ICP-MS). The results are used to discuss (i) the petrogen-
esis of the magmas; (ii) the nature of the heat source at the 
origin of late-Variscan magmatism in the eastern FMC; and 
(iii) its significance for the geological and tectonic evolu-
tion of the orogen.

Geological setting

The French Massif Central (FMC)

The Variscan belt of Western Europe (Fig. 1a) belongs to 
a Paleozoic orogenic system that results from convergence 
between Laurussia, Gondwana and several intervening 
microcontinents (Matte 1986; Kroner and Romer 2013; 
Stampfli et al. 2013), which ended up with the assembly 
of Pangea. The FMC is part of the inner domain of this belt 
(Lardeaux et al. 2014), referred to as the “Moldanubian” 
zone, and represents a reworked crustal domain that was 
previously formed along the northern margin of Gondwana 
(Faure et al. 2009; Melleton et al. 2010).

The FMC hosts a south-verging Devonian to early Car-
boniferous nappe pile (Ledru et al. 1989; Faure et al. 2009) 
that became dismembered by late Carboniferous ductile 
and brittle strike-slip shear zones and detachments accom-
modating late-orogenic extension and collapse (Malavieille 
et al. 1990; Faure 1995; Gardien et al. 1997). In the east-
ern FMC (Fig. 1b), this pile is made up from top to bottom 
(north to south) by:

1. The Brévenne unit, a greenschist-facies volcano-sedi-
mentary basin (Feybesse et al. 1988) of late Devonian 
age (366 ± 5 Ma; Pin and Paquette 1997), presumably 
a back-arc system formed as a result of the southwards 
subduction of the Rheic Ocean (Lardeaux et al. 2014).

2. The Upper Gneiss Unit (UGU) consists of high-grade, 
migmatitic ortho- and paragneisses whose protoliths 

are early Ordovician in age (Duthou et al. 1984; Melle-
ton et al. 2010; Chelle-Michou et al. 2015; Lotout et al. 
in press). The base of the UGU is characterized by 
the presence of (i) the leptynite–amphibolite complex 
(LAC), a bimodal Ordovician (487–478 Ma) magmatic 
association (Pin and Lancelot 1982; Briand et al. 1991) 
proposed to represent an ocean–continent transition 
zone (Lardeaux et al. 2014); and (ii) relics of (U)HP 
metamorphic rocks (Gardien et al. 1990; Mercier et al. 
1991; Gardien 1993; Lardeaux et al. 2001).

3. The Lower Gneiss Unit (LGU) also made up of mig-
matitic ortho- and paragneisses with dominantly late 
Ediacaran to early Cambrian protolith age (Caen-
Vachette 1979; Duthou et al. 1984; R’Kha Chaham 
et al. 1990; Couzinié et al. 2014; Chelle-Michou et al. 
2015; Mintrone 2015) and minor amphibolites. The 
migmatites are cored by the heterogeneous Velay gran-
ite (Dupraz and Didier 1988; Ledru et al. 2001).

4. The Para-autochthonous Unit (PAU), dominantly made 
up of greenschist- to lower amphibolite-facies meta-
sediments (Cévennes schists; Faure et al. 1999) depos-
ited between the Neoproterozoic and the early Cam-
brian (Caron 1994; Melleton et al. 2010).

The tectono-metamorphic evolution of the eastern FMC 
can be summarized as follows. An early (D–M0) (U)HP 
metamorphic event attributed to northward subduction was 
dated between 432 and 408 Ma (Pin and Lancelot 1982; 
Ducrot et al. 1983; Paquette et al. 1995; Do Couto et al. 
2015) and recorded by the eclogitic relics (at the base of 
the UGU and in the LAC). The UGU experienced anatexis 
(M1) coeval with exhumation of the (U)HP units and top-
to-the-SW shearing (D1) (Faure et al. 2008, 2009) between 
384 ± 16 Ma (Duthou et al. 1994) and 360 ± 4 Ma (Gar-
dien et al. 2011). The UGU was subsequently juxtaposed to 
the north to the Brévenne unit during top-to-the-NW (D–
M2) thrusting (Leloix et al. 1999) at ~360–350 Ma (Faure 
et al. 2002). This episode is also recorded in the western 
part of the FMC (Limousin area) by 360 ± 4 Ma top-to-the-
NW thrusting (Melleton et al. 2009) and corresponds to the 
main event of nappe stacking (Faure et al. 2009). The early 
Carboniferous D3 event corresponds to the onset of syn-oro-
genic extension in the northern part of the FMC, as recorded 
by 340–330-Ma-old volcano-sedimentary sequences (Bru-
guier et al. 1998), while crustal thickening was still ongoing 
in the southern domain, especially the PAU which experi-
enced top-to-the-S thrusting (Arnaud and Burg 1993; Caron 
1994). Subsequently, the nappe pile, specifically the LGU, 
was extensively reworked by a pervasive Carboniferous LP–
HT event that culminated with the rise of the Velay dome 
(Ledru et al. 2001). This reworking process was proposed to 
happen in two steps (Montel et al. 1992; Barbey et al. 2015): 
(i) limited anatexis in the LGU with biotite remaining stable 
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(T < 750 °C), at ages between 329 ± 5 Ma (Bé Mézème 
et al. 2006) and 314 ± 5 Ma (Mougeot et al. 1997); and (ii) 
widespread biotite dehydration melting (760 < T < 850 °C) 
that affected the whole middle crust and gave rise to the for-
mation of the Velay dome proper at 301–305 Ma (Couzinié 
et al. 2014). Those late Carboniferous events are attributed 
to N(W)–S(E)-directed late-orogenic extension (D4–5) asso-
ciated with large-scale crustal detachments and formation of 

detrital coal-bearing basins (Malavieille et al. 1990; Faure 
et al. 2009).

Petrographic‑geochemical characteristics 
of late‑Variscan igneous rocks in the eastern FMC

Exposure in the eastern FMC is largely dominated by 
Carboniferous plutonic rocks intruding the metamorphic 
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Fig. 2  Some geochemical characteristics of late-Variscan plutonic 
rocks in the eastern French Massif Central. The larger symbols cor-
respond to samples investigated in the present study for which 
whole-rock geochemical data are available (unpublished data from 
S. Couzinié). a R1–R2 plot of De la Roche et al. (1980) (1 = sye-
nogabbro; 2 = monzogabbro; 3 = monzonite; 4 = monzodiorite; 

5 = quartz–monzonite; 6 = granite); b molar Al2O3/(Na2O + K2O) 
(A/NK) vs. Al2O3/(CaO + Na2O + K2O) (A/CNK) plot; c K2O vs. 
SiO2 plot (fields are from Peccerillo and Taylor 1976); and d ternary 
discrimination plot of Laurent et al. (2014a, b) proposed on the basis 
of late-Archean granitoid typology (FMSB = [FeOt + MgO]wt% ×  
[Sr + Ba]wt%)
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lithologies described earlier (Fig. 1b). Based on existing 
petrographic descriptions and classifications (Didier and 
Lameyre 1969; Didier et al. 1982; Barbarin 1983, 1992, 
1999; Stussi and De la Roche 1984; Rossi and Pin 2008; 
Moyen et al. in press), four types of plutonic rocks can be 
distinguished (Fig. 1b) (nomenclature after Barbarin 1999):

1. Peraluminous to slightly metaluminous, biotite- and 
sometimes cordierite-bearing granitoids (“CPG”) are 
the most abundant (Fig. 1b). They can be separated in 
two subgroups: (i) K-feldspar porphyritic, cordierite-
poor plutons and batholiths (Margeride, Chaise-Dieu, 
Tournon) characterized by the presence of microgranu-
lar mafic enclaves (MMEs; Didier et al. 1982) and (ii) 
the cordierite-rich, heterogeneous Velay granite, which 
is closely associated with LGU migmatites and fre-

quently contains large enclaves of the previous, cordier-
ite-poorer type (Barbey et al. 2015; Ledru et al. 2001; 
Williamson et al. 1997). CPG are granites and granodi-
orites (Fig. 2a) with a peraluminous character (Fig. 2b) 
and elevated contents in SiO2 (>65 wt%) and K2O (3–7 
wt%) (Fig. 2c). Those characteristics, together with Sr–
Nd isotopic data, reflect that the CPG result from partial 
melting of the local crust (Duthou et al. 1984; Pin and 
Duthou 1990; Downes et al. 1997; Williamson et al. 
1997).

2. Peraluminous, two-mica or muscovite-bearing (leuco-)
granites (“MPG”), generally occurring as dykes and 
small laccoliths intrusive in the Velay complex (Ledru 
et al. 2001; Didier et al. 2013) as well as rare plutons 
(L’Hermitage, Saint-Christophe-d’Allier). The MPG 
show a tighter compositional range than the CPG. They 

Fig. 3  Representative cathodoluminescence images of zircon grains 
from samples of late-Variscan plutonics rocks investigated in this 
study: a cordierite- and muscovite-bearing peraluminous granites 
(CPG and MPG); b K-feldspar porphyritic calc-alkaline granites and 
granodiorites (KCG) and vaugnerites (V). The position of the laser 
spots used for U–Pb dating (circles) is also indicated, along with the 
spot name (aXXX) and the corresponding 238U/206Pb age (with ±2σ 
uncertainty, in Ma). Each zircon grain is labeled with the sample it 

was extracted from and its number in this sample (zXX). Values with 
an asterisk indicate 207Pb/206Pb ages; labels in italics indicate >5% 
discordance. The yellow circles and font highlight analyses with large 
amounts of common 204Pb (>5%); the red circle and font indicate an 
analysis (a27) from which no reliable age could be obtained because 
of high discordance and common Pb contents, and that was therefore 
discarded. The scale bar is 100 µm
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are granites sensu stricto (Fig. 2a) with a clearer peralu-
minous character (Fig. 2b) and restricted to SiO2 con-
tents >70 wt% (Fig. 2b–c), pointing to a crustal source 
(Pin and Duthou 1990; Barbarin 1999) (Fig. 2d).

3. Weakly peraluminous to metaluminous, K-feldspar por-
phyritic, biotite- ± amphibole-bearing granites, grano-
diorites and quartz–diorites (“KCG”). They either form 
large plutons (Saint-Julien-la-Vêtre, Pont-de-Montvert, 
Aigoual) or enclaves within the Velay complex, of vari-
ous sizes (a few cm across to pluri-kilometric screens 
like the Gumières enclave; Barbarin et al. 2012). The 
composition of the KCG largely overlaps that of the 
CPG, yet they are on average slightly more “mafic” 
than the latter (average SiO2 and FeOt + MgO of KCG 
are ~69 and ~4.0 wt%, respectively, against ~72 and 
~2.5 wt% for CPG) (Fig. 2). This makes KCG chemi-
cally intermediate between vaugnerites and MPG–CPG 
(Fig. 2) and led several authors to propose that they 
result from magma mixing between vaugnerites and 
crustal melts (Downes et al. 1997; Solgadi et al. 2007).

4. A suite of metaluminous, biotite-, amphibole- ± clino-
pyroxene-bearing intermediate to mafic rocks locally 
called “vaugnerites”, which are akin to Mg–K mag-
matic rocks such as appinites, durbachites and lampro-
phyres (Sabatier 1991; Rossi and Pin 2008; Scarrow 
et al. 2008; von Raumer et al. 2013; Couzinié et al. 
2014, 2016). Although they do not form mappable bod-
ies at the scale of Fig. 1b, they are regionally ubiqui-
tous and occur as enclaves (0.1–100 m in size) in the 
granitoids (Didier et al. 1982; Ledru et al. 2001), kilo-
metric stocks and lamprophyric dykes. They form a 
compositionally heterogeneous group of gabbroic to 
dioritic rocks (Fig. 2a), yet all characterized by meta-
luminous affinities (Fig. 2b), lower SiO2 (45–65 wt%) 
and higher FeOt + MgO (up to 25 wt%) than coexisting 
granitoids, together with high-K to shoshonitic affini-
ties (K2O = 1.5–6.0 wt%) and richness in incompat-
ible trace elements (Sr + Ba, but also REE and HFSE) 
(Fig. 2c, d). This dual geochemical character clearly 
points to an enriched (metasomatized) lithospheric 
mantle source (Sabatier 1991; Solgadi et al. 2007; von 
Raumer et al. 2013; Couzinié et al. 2014, 2016).

Analytical methods

We selected 33 samples for U–Pb dating, collected through-
out the eastern MCF (Fig. 1b) and representative of the 
geochemical diversity reported earlier (Table 1; Fig. 1b). 
Samples weighing 5–10 kg were reduced using jaw and 
disk mills and sieved to <500 µm. Heavy minerals were 
extracted by using conventional concentration techniques 
(shaking table, magnetic separator, heavy liquids). Between 

50 and 100 zircon grains per sample, but also monazite 
wherever available, were handpicked, set in 1-inch epoxy 
mounts and polished to expose their interiors. The internal 
structures of these grains were characterized by cathodolu-
minescence (CL) and back-scattered electron (BSE) imag-
ing prior to LA-SF-ICP-MS dating using (i) a Jeol JSM-
6490 scanning electron microscope (SEM) equipped with 
a Gatan MiniCL at Goethe University Frankfurt (GUF) for 
the granite samples and (ii) a ZEISS EVO-150 SEM at Uni-
versity of Granada (Spain) for the vaugnerite samples.

U–Pb isotopic analyses were carried out at GUF by 
laser ablation using a Resolution M-50 (Resonetics) 
193-nm ArF excimer laser system attached to Thermo 
Finnigan Element 2 sector field ICP-MS. A detailed 
description of the analytical techniques is available in 
the Supplementary Material. The data were corrected 
offline for background signal, common Pb, instrumental 
mass discrimination and downhole Pb/U fractionation 
using an in-house MS Excel© spreadsheet (Gerdes and 
Zeh 2006, 2009). For both zircon and monazite analyses, 
the corrections and determination of U, Th and Pb com-
positions were performed using normalization to stand-
ard zircon GJ-1. Reference materials Plešovice, OG-1 
and BB (for zircon sessions) and Moacir, Manangoutry 
and in-house WM (for monazite sessions) were used as 
secondary standards to check the accuracy of the correc-
tions, and all provide ages in good agreement with the 
reference values (see supplementary material Table S1). 
Age calculations and data plotting were performed using 
the Isoplot toolkit (Ludwig 2008) v.4.15 for MS Excel©. 
The complete dataset is available as supplementary mate-
rial (Table S2).

Results

Zircon textures

Figure 3 shows representative CL and BSE images of zir-
cons from igneous plutonic rocks of the eastern FMC. Zir-
con characteristics depend on the rock type considered. The 
MPG and CPG show heterogeneous zircon populations, 
having a range of sizes (from 50 up to 500 µm) and shapes 
(aspect ratios between 1.5 and 8), some of them being 
obvious xenocrysts (broken or irregular edges crosscutting 
the internal zoning). Grains with clear core–rim relation-
ships are very common in both granitoid types: they show 
rounded or sub-idiomorphic CL-bright cores with oscil-
latory zoning, wrapped by CL-darker rims (Fig. 3a). The 
rims often show irregular or very fine oscillatory zoning, 
occasionally with porous textures and/or inclusions, and are 
generally wider (>50 µm) in CPG than in MPG (<50 µm) 
(Fig. 3a). The CPG and MPG also contain core-free, 
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idiomorphic to xenomorphic crystals (scarce in MPG but 
dominant in CPG). These are relatively CL-dark, and show 
irregular or banded zoning patterns (Fig. 3a). A notable 
exception among the CPG is sample OL-13-06 (Margeride 
granite), of which zircons are relatively CL-bright, and dis-
play a well-developed oscillatory zoning and distinct aspect 
ratios (Fig. 3a).

Zircon grains in the KCGs are less diverse than in the 
CPG and MPG, and seldom show core–rim relationships 
(if any). Resorbed cores occasionally occur in samples 
SDZ (Fig. 3b) and PMV, and a single xenocryst was found 
in sample SGC-12-49B (Fig. 3b). The crystals are usually 

100–350 µm long, form idiomorphic prisms with aspect 
ratios between 1.5 and 3, and reveal a concentric oscilla-
tory zoning. They are CL-brighter than the zircons from the 
CPG and MPG (Fig. 3b). Zircon populations in vaugnerites 
are very homogeneous within a given sample, without any 
core–rim relationships (except sample SC13-14; Fig. 3b). 
The crystals range in size from 70 to 500 µm and display 
various shapes, from short prismatic to needle-shaped 
(aspect ratios between 1.5 and 6). In most samples, the 
grains appear CL-dark and display striped or sector zoning, 
but in two SiO2-richer samples (quartz–syenites PRC-53 
and PRC-54), oscillatory zoning is predominant (Fig. 3b).
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Back-scattered electron (BSE) images of monazite 
grains from the four samples in which this mineral was 
investigated are reported in the Supplementary Material.

U–Pb dates

Zircon populations were dated in 33 samples and monazite 
grains in four of them (OL-13-08, OL-13-11, OL-13-14, 

PRC-57). A detailed description of the data, statistics, as 
well as the complete set of Concordia diagrams, is available 
in the Supplementary Material. The most important points 
arising from this description, together with representative 
Concordia diagrams, are reported hereafter.

Based on the combination of U–Pb dating results and 
zircon textures, the investigated samples can be subdivided 
into three major groups (Table 1):
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•	 Group 1 (Fig. 4) samples are characterized by (i) zir-
cons with the absence of any core–rim relationship; and 
(ii) zircon U–Pb analyses yielding a single generation 
of Carboniferous (to early Permian) U–Pb dates, the 
majority of which (>65% and commonly up to 85%) 
being identical within uncertainties and concordant. 
This includes most vaugnerite samples as well as two 
KCG (OL-13-24 and PRC-56).

•	 Group 2 (Fig. 5) includes samples containing very few 
or no zircon cores, and a dominant population of zircons 
showing scattered 206Pb/238U dates younger than 340 Ma, 
specifically defining trends with a Carboniferous upper 
intercept and a lower intercept at or around zero within 
uncertainty. This group comprises most KCG samples, a 
few vaugnerites and one single CPG sample (OL-13-06).

•	 Group 3 (Fig. 6) samples are characterized by two clear 
populations of zircon textures and dates, roughly equiv-
alent regarding the number of analyses: (i) abundant zir-
con cores with U–Pb dates ranging from early Carbon-
iferous (~340 Ma) to late-Archean (~2600 Ma) (those 
problems require a reliable geochronological 98; 42%) 
and (ii) zircon rims or grains devoid of any core, having 
U–Pb data repartition similar to that observed for group 
2 samples, i.e., scattered U–Pb dates defining a Carbon-
iferous upper intercept and a lower intercept close to 
zero (n = 134; 58%). This group encompasses all MPG 
and CPG samples, except sample OL-13-06.

Figure 7 compiles the data obtained from zircon cores 
in samples of groups 2 and 3. Out of 170 analyses, 106 
are >90% concordant, with only few of them having dates 
>800 Ma (n = 12). The others reveal a nearly continu-
ous date spectrum between 740 and 340 Ma, with a major 
peak at 540 ± 20 Ma (n = 45; 42% of all concordant data), 
and minor peaks at 475 ± 20 Ma (n = 12); 625 ± 10 Ma 
(n = 6); 375 ± 10 Ma (n = 8); and 340 ± 10 Ma (n = 5). 
There are additional minor peaks at 850 ± 15 Ma (n = 3) 
and ~955 Ma (n = 2), and a few grains reveal (mostly dis-
cordant) dates between ~1025 and ~2600 Ma.

Discussion

From date to age: interpretation of U–Pb data

In the following, the signification of zircon U–Pb dates 
obtained in each group of samples presented in the pre-
vious section is discussed, on the basis of zircon textures 
and U–Pb data. These interpretations are summarized in 
Table 1, where the deduced emplacement ages are reported.

•	 Samples from group 1 contain no zircon cores and are 
characterized by a population of concordant U–Pb dates 

that, with the exception of few outliers, are identical 
within uncertainties (Fig. 4). Therefore, the Concordia 
dates calculated from such data can be considered as 
representative of the emplacement age for samples of 
this group. This includes the KCG samples OL-13-24 
(321.2 ± 1.4 Ma) and PRC-56 (332.1 ± 0.7 Ma) as well 
as vaugnerite samples 533-1 (307.8 ± 1.6 Ma), LR-31 
(299.1 ± 1.3 Ma), LR-32 (301.5 ± 1.4 Ma), SC-13-02A 
(313.2 ± 2.5 Ma), SC-13-09 (309.7 ± 1.2 Ma), SC-13-
19 (333.9 ± 1.4 Ma), SGC-12-13 (306.6 ± 2.4 Ma), 
SGC12-26 (306.1 ± 1.3 Ma), SGC-12-39 
(306.6 ± 1.6 Ma) and SGC-12-42 (305.9 ± 1.7 Ma). 
Zircons from these samples can be considered as essen-
tially undisturbed by any post-magmatic event.

•	 Zircon analyses in samples from group 2 yield Car-
boniferous dates that are generally concordant within 
uncertainty, but cannot be combined into a single date, 
as they show a wide range in 206Pb/238U ratios (Fig. 5). 
Such zircons, or at least part of them, most probably 
underwent post-magmatic disturbance of the U–Pb iso-
topic system. This likely took place through diffusion, 
fluid-driven dissolution–recrystallization or diffusion–
reaction processes (Gerdes and Zeh 2009) such that the 
resulting scatter in 206Pb/238U dates can be explained 
by variable extent of radiogenic Pb loss (Fig. 5). This 
assumption is supported by (i) the fact that most sam-
ples have lower intercept ages at about zero within 
uncertainty; and (ii) the observation that the analyses 
with the youngest 206Pb/238U dates often correspond to 
U-rich, metamict domains and/or porous zones rich in 
common Pb (Figs. 3, 5; see also Supplementary Mate-
rial) that are particularly prone to Pb loss (Mezger and 
Krogstad 1997; Geisler et al. 2001). Following this 
interpretation, the upper intercepts of these “Discor-
dia” trends should represent the crystallization age of 
the samples. This upper intercept date is always identi-
cal within uncertainties to the (more precise) Concordia 
date calculated by using the equivalent analyses with 
the highest 206Pb/238U ratios (Figs. 5, 6). The latter is 
thus considered as the best estimate for the crystalliza-
tion age of the samples. This interpretation applies to 
the CPG sample OL-13-06 (312.9 ± 2.0 Ma), the KCG 
samples PMV (302.5 ± 0.9 Ma), SDZ (337.4 ± 1.0 Ma) 
and SGC-12-49B (298.9 ± 1.8 Ma) as well as the 
vaugnerite samples 533-2 (307.3 ± 1.3 Ma), PRC-53 
(318.9 ± 1.8 Ma), PRC-54 (320.5 ± 1.8 Ma), SC-13-05 
(309.4 ± 1.5 Ma) and SC-13-14 (335.7 ± 2.1 Ma).

•	 Finally, samples from group 3 clearly contain complex 
zircon populations, in which the grains were formed 
by several, distinct crystallization events. This is well 
illustrated by core–rim relationships, with cores and 
rims having significantly different ages (Figs. 3a, 6). 
The most straightforward interpretation is that (i) zircon 
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cores represent either xenocrysts or crystals inherited 
from a zircon-bearing source material; and (ii) zircon 
rims, or grains devoid of any core, crystallized from the 
magma. The latter generally show the same distribution 
of U–Pb dates as zircon from samples of group 2, i.e., a 
range of apparent 206Pb/238U dates from a Carboniferous 
upper intercept and a lower intercept around zero. We 
thus apply the same interpretation as for group 2 sam-
ples, i.e., that such trends reflect the crystallization of 
zircon during emplacement of the host granitic magma, 
followed by recent loss of radiogenic Pb. This group 
includes all the MPG samples: HER (325.7 ± 1.3 Ma), 
OL-13-08 (311.0 ± 1.1 Ma) and OL-13-09 
(312.7 ± 2.3 Ma); and most CPG samples: CHZ 
(332.0 ± 2.0 Ma), OL-13-11 (314.5 ± 1.7 Ma), OL-13-
14 (318.3 ± 2.6 Ma), OL-13-21 (336.9 ± 1.8 Ma), 
TN-10 (321.9 ± 1.3 Ma), TN-19 (321.1 ± 1.1 Ma) and 
TOU-01 (322.2 ± 1.5 Ma).

•	 In three out of four investigated samples, mona-
zite grains yielded Concordia dates that are identi-
cal within uncertainties to those deduced from zir-
con (sample OL-13-08: 309.3 ± 1.2 Ma; sample 
OL-13-11: 315.4 ± 0.9 Ma and sample OL-13-14: 
317.8 ± 1.3 Ma; see Supplementary Material), which 
put further constraints on crystallization ages for these 
samples and supports our interpretation of the zircon 
U–Pb data. However, a notable exception is sample 
PRC-57, for which the monazite Concordia date is sig-
nificantly younger (302.8 ± 1.3 Ma) than that of zircon 
(334.9 ± 1.5 Ma) (see Supplementary Material). This 
discrepancy might be explained by an inherited origin 
of all dated zircon grains, whereas monazite crystal-
lized from the magma, as observed by Mougeot et al. 
(1997) and Couzinié et al. (2014) for other samples of 
the Velay granite. This interpretation is supported by (i) 
the fact that the ~335-Ma-old zircons of sample PRC-
57 have identical ages, internal structures (bright CL 
luminescence, well-developed oscillatory zoning), and 
U–Th–Pb chemical compositions (150–500 ppm U, 

Th/U = 0.5–1.0, no common Pb) as zircons of sample 
PRC-56, which forms an amphibole-bearing granodior-
ite (KCG) enclave within the same granite (few meters 
away of sample PRC-57), representing a plausible, 
nearby source for those zircons in the Velay granite; 
(ii) existing geochronological data on the Velay gran-
ite, clustering around 305–300 Ma (Caen-Vachette et al. 
1982; Mougeot et al. 1997; Couzinié et al. 2014); and 
(iii) the fact that vaugnerite enclaves in the Velay granite 
at the same locality (PRC-53 and PRC-54) show signifi-
cantly younger and robust U–Pb zircon ages (~320 Ma) 
than that obtained from PRC-57 (~335 Ma), showing 
that the latter cannot reflect the age of the Velay granite. 
The monazite Concordia age of 302.8 ± 1.3 Ma is thus 
interpreted as reflecting the crystallization of sample 
PRC-57.

Emplacement ages: comparison with published data

1. CPG The age of 332 Ma obtained for the Chalmazel 
granite (sample CHZ) is identical within uncertain-
ties to that of the neighboring Bois-Noirs CPG pluton 
(341 ± 15 Ma, U–Pb ID-TIMS on zircon; Koszto-
lanyi 1971). In the same area, our age of 337 Ma for 
the Saint-Dier granite (sample OL-13-21) is consist-
ent with the existing, but imprecise Rb–Sr whole-rock 
isochron age of 330 ± 26 Ma for this pluton (Saint-
Joanis 1975).

 Further south, the ages of 315 and 318 Ma, respec-
tively, obtained for the (undated so far) Almance and 
Chaise-Dieu laccoliths (samples OL-13-11 and OL-13-
14) are within uncertainties of the ages obtained on 
intrusive pophyritic monzogranite and leucogranite in 
the nearby Livradois area (U–Pb LA-ICP-MS zircon 
ages of 315 ± 4 and 311 ± 18 Ma, respectively; Gar-
dien et al. 2011).

 The age of the Margeride granite (OL-13-06; ~313 Ma) 
is identical within uncertainties to existing monazite 
ID-TIMS ages for the same granite (314 ± 3 Ma; Pin 
Pin 1979b), the associated Chambon-le-Château pluton 
(311 ± 6 Ma; Isnard 1996) and a whole-rock Rb–Sr 
isochron age of 323 ± 12 Ma (Couturié and Caen-
Vachette 1979). It is, however, significantly younger 
than the U–Pb zircon age of 334 ± 9 Ma (ID-TIMS) 
obtained by Respaut (1984) on the Margeride granite.

 The ages of ~320 Ma obtained on laccoliths from the 
eastern flank of the Velay dome (Tournon granite and 
associated intrusions; samples TN-10, TN-19 and 
TOU-01) are slightly younger than the Rb–Sr whole-
rock isochron age of 337 ± 13 Ma obtained by Batias 
and Duthou (1979), but their data also include samples 
from the Vienne pluton further north, for which no zir-
con age is available.

Fig. 6  Representative U–Pb Concordia diagrams (206Pb/238U vs. 
207Pb/235U) showing examples of zircon analyses from samples of 
“group 3”, i.e., showing several generations of zircon crystalliza-
tion (core–rim relationships) and scattered 206Pb/238U dates with a 
Carboniferous upper intercept age, and a lower intercept at or close 
to zero within uncertainty. Insets in the bottom right represent the 
close-up to the analyses from zircon cores or xenocrysts (“Xen.”), 
reported as shaded ellipses. Green ellipses are the oldest, equivalent 
concordant analyses from zircon rims or crystals devoid of any core 
(excluding outliers), used for the calculation of the Concordia Age. 
The dashed ellipses represent analyses with >5% of common 204Pb. 
The dashed red lines are regressions through all the data from zircon 
rims or crystals devoid of any core; the arrow and numbers in italics 
point to the lower intercept of the Discordia. All ages are quoted to 2σ 
level of uncertainty

◂
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 Finally, the monazite age of 302.8 ± 1.3 Ma obtained 
from the Velay granite at the Pont-Rouge quarry (sam-
ple PRC-57) is in line with the existing data obtained 
by different methods, including whole-rock Rb–Sr 
(Caen-Vachette et al. 1982) and monazite U–Th–Pb 
dating by ID-TIMS (Mougeot et al. 1997) or LA-ICP-
MS (Couzinié et al. 2014), all pointing to crystalliza-
tion ages in the range 305–300 Ma.

2. MPG In the northern part of the study area, the age of 
327 Ma obtained for the Hermitage granite (sample 
HER) is identical to a whole-rock Rb–Sr isochron age 
of 329 ± 14 Ma (C. Pin, unpublished data mentioned 
in Didier et al. 1989). This age also complies with 
structural observations, since the Hermitage granite is a 
syn-kinematic intrusion emplaced along a WNW–ESE-
trending dextral, strike-slip shear zone attributed to the 
D3 deformation event (Barbarin 1983) that was most 
likely active at ~327 Ma, in agreement with a general 
NW–SW-directed stretching recorded throughout the 
FMC at that time (Faure et al. 2009).

 In the Margeride area, the U–Pb ages of 311–309 and 
313 Ma obtained for the Grandrieu leucogranite (sam-
ple OL-13-08) and Saint-Christophe-d’Allier pluton 
(sample OL-13-09), respectively, overlap with exist-
ing U–Pb ID-TIMS monazite ages of 305 ± 14 (Isnard 
1996) and 305 ± 9 Ma (Lafon and Respaut 1988) for 
those two intrusions. Our ages are also identical within 
uncertainties to that of the Margeride granite (Table 1), 
which is crosscut by the Grandrieu granite in the field. 
This means that the two magmatic events were close 
enough in time such that they cannot be distinguished 
with respect to analytical uncertainties.

3. KCG The age of 337.4 ± 1.0 Ma obtained for the Salt-
en-Donzy pluton (sample SDZ) is the first to docu-
ment the absolute age of this intrusion. It is identical 
to whole-rock Rb–Sr isochron ages of 339 ± 8 and 
322 ± 32 Ma obtained from granites flanking NE–SW-
trending dextral shear zones in the Lyonnais mountains 
(Gay et al. 1981) and close to the ages of vaugnerite 
samples obtained from the same area (336–334 Ma; 
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see below). For the Saint-Julien-la-Vêtre pluton (sam-
ple SJV), the obtained age of 330.1 ± 1.3 Ma is con-
sistent with an early Rb–Sr whole-rock isochron age 
of 340 ± 20 Ma (C. Pin, unpublished data quoted 
in Didier et al. 1989) and field relationships, since 
the pluton is intruded by the significantly younger 
(325.7 ± 1.3 Ma-old) Hermitage granite (Barbarin 
1983; Didier et al. 1989).

 The age of ~321 Ma obtained for the Gumières quartz–
diorite (sample OL-13-24) is notably older than that 
obtained by Cocherie (2007) using the same technique 
(313 ± 2 Ma; U–Pb LA-ICP-MS on zircon). Exclud-
ing dating problems, this discrepancy might result 
from sampling of different lithologies in the composite 
Gumières Massif, which consists of porphyritic grano-
diorite associated with minor quartz–diorite, equigran-
ular granite and dikes of the surrounding Velay granite 
(Barbarin et al. 2012). The sample dated by Cocherie 
(2007) may derive from the dominant biotite-bearing 
porphyritic granodiorite, whereas our sample is clearly 
more mafic (amphibole-bearing) and would thus derive 
from a dioritic enclave within this granodiorite, which 
are common yet not easy to identify given the scarcity 
of exposed contacts (Barbarin et al. 2012).

 Another enclave within the Velay granite, sample PRC-
56, yielded an age of 332.1 ± 0.7 Ma that is roughly 
equivalent to that of a suite of orthoclase-rich granites 
cropping out along the eastern margin of the Velay 
complex in the Vivarais area, dated at 353 ± 21 Ma 
(Rb–Sr whole-rock isochron) and 341 +8/–5 (U–Pb 
ID-TIMS on zircon, upper intercept age with two sub-
concordant spots at ~335 Ma) (Briand et al. 2002).

 To the south of the Velay complex, in the Cévennes 
area, the age of 299 Ma obtained on sample SGC-12-
49B from the Largentière granite is identical within 
uncertainties to that obtained by Couzinié et al. (2014) 
for the same granite (304.1 ± 6.3 Ma; U–Pb LA-ICP-
MS on zircon) and also close to that of sample PMV 
from the Pont-de-Montvert pluton (302.5 ± 0.9 Ma). 
Both ages are identical within uncertainties to ages of 
301 ± 4 and 307 ± 11 Ma (zircon and monazite U–
Pb ID-TIMS) in the Mont-Lozère and Aigoual granitic 
complexes (Brichau et al. 2008; François 2009). More-
over, they overlap with Ar–Ar ages of 306–301 Ma 
obtained from aplitic–pegmatitic dykes and Au-miner-
alized quartz veins in the vicinity of the Mont-Lozère 
complex (Chauvet et al. 2011).

4. Vaugnerites Our new age data suggest that the vaugner-
ites in the eastern FMC intruded over >35 Ma, between 
335.7 ± 2.1 Ma (SC-13-14) and 299.1 ± 1.3 Ma (LR-
31). This period is much longer than previously sug-
gested (Aït-Malek 1997; Couzinié et al. 2014). In 
the northern part of the study area, the new emplace-

ment ages of ~335 Ma for the syn-kinematic vaugn-
erite dikes/bodies in the Lyonnais area (SC-13-14 and 
SC-13-19) are consistent with existing Rb–Sr data of 
339 ± 8 and 322 ± 32 Ma obtained from nearby (and, 
as shown by magma mixing relationships, coeval) 
granites (Gay et al. 1981).

 In the western and central parts of the Velay complex, 
no absolute ages were available so far for vaugnerite 
intrusions. Our results from samples in this area show 
emplacement ages scattered over more than 20 Ma, 
and specifically clustered at 321–319 Ma (age of the 
two quartz–syenite enclaves within the Velay granite 
at Pont-Rouge (PRC-53 and PRC-54), 310 Ma (Pubel-
lier syenodiorite, SC-13-09) and 302–299 Ma (diorite 
enclaves in the Velay granite; LR-31 and LR-32).

 Two vaugnerite enclaves within the Margeride batho-
lith (SC-13-02a and SC-13-05) yielded ages (313–
309 Ma) that are identical within uncertainties to the 
emplacement age of the surrounding Margeride gran-
ite (312.9 ± 2.0 Ma; sample OL-13-06), supporting 
field observations indicating that the vaugnerites are 
coeval with the granite.

 Finally, to the south of the Velay complex, vaugn-
erite samples from Loubaresse (SGC-12-39) and 
Meyras (SGC-12-42) yield ages of 306.6 ± 1.6 and 
305.9 ± 1.7 Ma, respectively, which are identical to 
those of Couzinié et al. (2014) for the same vaugn-
erite bodies (307.4 ± 1.8 and −305.8 ± 2.3 Ma, 
respectively; U–Pb zircon by LA-ICP-MS). The age 
obtained on the Meyras vaugnerite is also identical to 
that of Aït Malek (1997) (308 ± 6 Ma; U–Pb zircon 
by ID-TIMS), but this author obtained a significantly 
older age for the Loubaresse vaugnerite (313 ± 3 Ma; 
see Couzinié et al. 2014 for discussion). The Pont-
de-Bayzan vaugnerite gave an emplacement age of 
306.1 ± 1.3 Ma (SGC-12-26). This age is significantly 
older than the age of 294.4 ± 3.9 Ma published by 
Couzinié et al. (2014) from the same outcrop, but from 
a different vaugnerite body. The latter, Permian age 
would not reflect the crystallization age, due to per-
turbation of the zircon U–Pb isotopic system by fluid–
rock interactions (Couzinié et al. 2014).

Significance of inherited zircon ages

Zircon xenocrysts from CPG and MPG reveal an age spec-
trum characterized by abundant early Paleozoic to Neo-
proterozoic ages between ~450 and ~740 Ma (with more 
prominent peaks at ~475, ~540 and ~625 Ma), together 
with very minor Grenville (955–1025 Ma) and Paleopro-
terozoic to early Archean ages (1800–2600 Ma) (Fig. 7). 
Such an age spectrum is similar to that of zircons from 
ortho- and paragneisses of the UGU and LGU in the FMC 
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(Melleton et al. 2010; Chelle-Michou et al. 2015), which 
are the country rocks and, most likely, the sources of CPG 
and MPG (Williamson et al. 1996, 1997; Downes et al. 
1997; Barbey et al. 1999, 2015). Thus, it is clear that these 
zircons were inherited from the regional nappe units, either 
during melting or emplacement.

The observed age spectrum is very similar to the age 
distribution of detrital zircons from many Paleozoic (Cam-
brian to Devonian) sedimentary rocks throughout western 
Europe (Zeh et al. 2001; Kober et al. 2004; Linnemann 
et al. 2004, 2007, 2014; Gerdes and Zeh 2006) and has 
also been reported in inherited zircons from Variscan gran-
ites of the Iberian Massif (Castiñeiras et al. 2008; Fernán-
dez-Suárez et al. 2011). This age distribution is generally 
interpreted to reflect zircon derived from the Avalonian-
Cadomian belt (and its cratonic hinterland), forming a ca. 
10,000-km-long cordillera at the northern margin of Gond-
wana during Neoproterozoic to Cambrian times (see Nance 
et al. 1991; Nance and Murphy 1994; Fernández-Suárez 
et al. 2000; Zeh et al. 2001; Linnemann et al. 2014; and 
references therein). During the early Ordovician (490–
470 Ma), this cordillera became dispersed, with individual 
microterranes (e.g., Avalonia, Amorica, Alpine terranes, 
etc.) drifting to the north and re-assembled subsequently 
during the Variscan orogeny at 360–320 Ma (Nance et al. 
2002; von Raumer et al. 2002; Linnemann et al. 2007; 
Faure et al. 2009; Stampfli et al. 2013). The age peaks of 
the inherited zircons from the eastern FMC granitoids can 
be ascribed to several well-known events throughout this 
evolution, notably the formation of an arc-back-arc system 
at ca. 660–560 Ma; its evolution into an Andean-type conti-
nental margin at 550–530 Ma and its subsequent breakup at 
530–480 Ma, resulting in the opening of the Rheic Ocean 
(see Ballèvre et al. 2001; Nance et al. 2002, 2010; Linne-
mann et al. 2004, 2007 and references therein). The two 
youngest peaks at middle Devonian (390–370 Ma) and 
early Carboniferous ages (360–340 Ma) correspond respec-
tively to subduction processes related to the closure of the 
Rheic Ocean (Zeh and Gerdes 2010) and to the Variscan 
collision (Faure et al. 2009). The latter period is character-
ized by important crustal melting, granulite-facies meta-
morphism (Duthou et al. 1994; Gardien et al. 2011) and 
emplacement of arc-like, calc-alkaline gabbros and grani-
toids in the Morvan and Limousin areas (Bernard-Griffiths 
et al. 1985; Pin and Paquette 2002).

Zircon constraints on granitoid petrogenesis

Zircon constraints on CPG and MPG petrogenesis

These granitoids contain abundant, rounded to subhedral 
zircon cores with pre-Variscan ages, commonly wrapped 
by rims formed during the Variscan magmatic episode 

(Figs. 3, 6 and 7). These characteristics are in good agree-
ment with previous interpretation that the MPG and CPG 
are of crustal origin (Williamson et al. 1996, 1997; Downes 
et al. 1997; Barbey et al. 1999) and formed at relatively low 
temperatures, specifically below magmatic Zr saturation. 
Considering that the pre-Variscan zircons in CPG and MPG 
were inherited from the source rock during melting, Zr sat-
uration temperatures would provide a first-order estimate 
of maximum magma temperatures. These temperatures, 
calculated using the Zr saturation thermometer of Watson 
and Harrison (1983), are in the range 720–787 °C for the 
MPG and 761–842 °C for CPG (Fig. 8). Such values are 
consistent with results of previous melting experiments 
carried on metasedimentary rocks at mid-crustal pressures 
(Vielzeuf and Holloway 1988; Patiño-Douce and Johnston 
1991; Gardien et al. 1995; Patiño-Douce and Harris 1998; 
Pickering and Johnston 1998), which produced granitic 
liquids that match the compositions of CPG and MPG at 
700–850 °C (Fig. 8). The generally lower Zr saturation 
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temperatures obtained for the MPG could be explained 
either by water-present melting (Williamson et al. 1996) 
or muscovite breakdown melting (720–770 °C at 7 kbar; 
Patiño-Douce and Harris 1998). In contrast, the higher tem-
peratures obtained for the CPG exceed that of muscovite 
dehydration melting and thus require biotite dehydration 
melting (800–870 °C; Vielzeuf and Montel 1994; Patiño-
Douce and Beard 1995, 1996), in good agreement with the 
previous interpretations of Barbey et al. (1999, 2015) and 
Moyen et al. (in press).

On the other hand, the respective contribution of pre-
Variscan ortho- and paragneisses of the FMC in the source 
of MPG and CPG is the matter of several discussions 
(Turpin et al. 1990; Williamson et al. 1996, 1997; Downes 
et al. 1997; Moyen et al. in press). It is worthwhile not-
ing that ortho- and paragneisses of the FMC reveal impor-
tant differences in their age spectra. Zircon grains from the 
orthogneisses show two prominent age peaks at ~475 Ma 
(early Ordovician) and ~540 Ma (early Cambrian) (Fig. 9a), 
corresponding to the magmatic ages of their respective 
protoliths (Caen-Vachette 1979; Pin and Lancelot 1982; 
Duthou et al. 1984; Lafon 1986; R’Kha Chaham et al. 1990; 
Alexandrov et al. 2001; Alexandre 2007; Melleton et al. 
2010; Chelle-Michou et al. 2015; Mintrone 2015), whereas 
detrital zircons from the paragneisses show the same peak 
at 475 Ma, in addition to a wide Neoproterozoic age clus-
ter between 560 and 650 Ma, with a distinctive “tail” until 
1000 Ma (Fig. 9b) (Melleton et al. 2010; Chelle-Michou 
et al. 2015). The inherited zircon age spectra of both CPG 
and MPG (Fig. 9c, d) are intermediate between those two 
end-members, with a prominent age peak at ~540 Ma like 
in orthogneisses together with a significant number of Neo-
proterozoic zircon grains (mostly at 560–650 and up to 
1000 Ma), typical of paragneisses (Fig. 9c, d).

A striking difference, though, is the limited number of 
Ordovician (~475 Ma) inherited zircons in the CPG and 
MPG, as already noted in the case of the Velay granite 
(Couzinié et al. 2014; Chelle-Michou et al. 2015). It must be 
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emphasized that the age spectra presented in Fig. 9 for the 
MCF ortho- and paragneisses result from the compilation of 
data from all lithostratigraphic units (PAU, UGU, LGU) and 
both the eastern and western parts of the FMC. In fact, there 
are clear differences in the zircon age distributions between 
the UGU and LGU in the eastern FMC, the most relevant 
one being that Ordovician ages are restricted to the UGU 
and LAC (Pin 1979a; Pin and Lancelot 1982; Chelle-Michou 
et al. 2015) whereas in the LGU, both the youngest detrital 
zircon grains in paragneisses and the magmatic protoliths of 
orthogneisses have Cambrian ages at 545–520 Ma (Caen-
Vachette 1979; Duthou et al. 1984; R’Kha Chaham et al. 
1990; Chelle-Michou et al. 2015; Mintrone 2015). We there-
fore interpret the limited number of Ordovician inherited zir-
cons from the CPG and MPG to reflect a source region rooted 
in the LGU, where zircons younger than 520 Ma are scarce.

All lines of evidence suggest that the source of both 
CPG and MPG consists of a mixed assemblage of para- and 
orthogneisses from the LGU. The CPG (including the Velay 
granite) formed by biotite dehydration melting at high tem-
perature (≥800 °C), whereas MPG formed at lower tem-
perature (<800 °C) through muscovite breakdown or water-
present melting.

Zircon constraints on KCG and vaugnerite petrogenesis

Xenocrysts in KCGs and vaugnerites are very scarce 
(n = 9, among 21 samples). The estimated Zr saturation 
temperatures for these rocks are ≤850 °C (Fig. 8), i.e., 
much lower than presumed magma temperature for vaugn-
erites (>1000 °C; Montel and Weisbrod 1986), which may 
indicate that potential zircon xenocrysts in the magma were 
dissolved because of Zr undersaturation. These potential 
xenocrysts were probably assimilated from the wallrock in 
which the mafic magma percolated (e.g., in sample SC-13-
14), rather than inherited from a crustal source. These mag-
mas indeed have “crust-like” trace element and Nd–Hf 
isotopic compositions, yet their very high FeOt + MgO 
(most often >10 wt%; Fig. 8) and low SiO2 contents pre-
clude either a crustal origin or crustal contamination of 
a basaltic melt (Turpin et al. 1988; Couzinié et al. 2016). 
Instead, vaugnerites are more likely to be derived from an 
“enriched” mantle source metasomatized by 10–25% of 
crust-derived materials (see Couzinié et al. 2016 for a more 
detailed discussion about the origin of these rocks).

A crust-dominated origin for the KCGs is precluded 
by their high FeOt + MgO contents (>6 wt%) that would 
require an igneous mafic source (amphibolites, which are 
scare in the LGU) and melting temperatures ≥950 °C 
(Fig. 8) that are unrealistically high (Moyen et al. in 
press). These observations could indicate that KCG derive 
from interactions (mixing, mingling) between Zr-satu-
rated crustal melts (similar to CPG and MPG) and a hot, 

mantle-derived, Zr-undersaturated vaugnerite magma 
(Downes et al. 1997; Solgadi et al. 2007), thereby trigger-
ing the partial to total dissolution of inherited zircons. Such 
mixing between vaugnerites and CPG/MPG is supported 
by the intermediate composition of KCG between the two 
end-members (Figs. 2, 8). Alternatively, the high SiO2 con-
tent of the KCG (~69 wt%) could be explained also by a 
high degree of fractionation of vaugnerite magma, in agree-
ment with the close spatial and petrographic relationships 
between these rocks (Barbarin 1988) and geochemical con-
straints (Moyen et al. in press). In either case, the involve-
ment of mantle-derived, vaugnerite magma is required to 
explain the composition of the KCG.

The Carboniferous thermal anomaly in the eastern 
FMC: evidence for lithospheric mantle delamination

Our new geochronological data indicate that the late-Vari-
scan plutonic rocks of the eastern FMC emplaced between 
~339 and ~298 Ma (when uncertainties are considered) 
(Fig. 10). This dataset thus represents the first, self-con-
sistent and unambiguous evidence that magmatic activity 
lasted throughout the entire late Carboniferous for ~40 Ma, 
as proposed by earlier studies (Vanderhaeghe et al. 1999; 
Vanderhaeghe and Teyssier 2001; Ledru et al. 2001; Rossi 
and Pin 2008; Faure et al. 2009). The estimated timescales 
for the magmatism in the FMC are much longer than 
those assessed for the evolution of magma from source to 
emplacement (production, segregation, ascent and crystal-
lization) that commonly lasts no more than 5 Ma (Harris 
et al. 2000; Petford et al. 2000; Annen et al. 2006; Walker 
et al. 2007; de Saint-Blanquat et al. 2011). Thus, the 
~40-Ma-long magmatism necessarily implies the existence 
of a long-lived thermal anomaly, to sustain a high heat flux 
and crustal anatexis throughout the Carboniferous (Rossi 
and Pin 2008; Vanderhaeghe 2012).

In fact, such a protracted Carboniferous thermal 
anomaly in the eastern FMC was already suggested 
on the basis of studies on metamorphic rocks, indicat-
ing an early, M3-metamorphic episode characterized by 
incipient partial melting of the metamorphic nappe pile 
at P–T conditions of 5–6 kbar and 720–750 °C between 
~330 and ~310 Ma (Montel et al. 1992; Mougeot et al. 
1997; Barbey et al. 1999, 2015; Cocherie et al. 2005; 
Bé Mézème et al. 2006; Bouilhol et al. 2006), followed 
by biotite dehydration melting at P–T conditions of 4–5 
kbar and 750–850 °C at 305–301 Ma (M4-metamoprhic 
episode; Caen-Vachette et al. 1982; Montel et al. 1992; 
Mougeot et al. 1997; Barbey et al. 1999, 2015; Couzinié 
et al. 2014). The M4 event required a higher apparent geo-
thermal gradient than the M3 episode and corresponds to 
the formation of the Velay granite–migmatite dome. In 
the past, limited partial melting during the M3 episode 
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has been attributed mainly to enhanced radioactive heat 
production, due to accumulation of radioactive elements 
in the over-thickened orogenic crust (e.g., Vanderhae-
ghe et al. 1999; Rossi and Pin 2008), possibly coupled 
to limited heat advection from the intrusion of vaugner-
ites. The higher, apparent geothermal gradient during the 

M4 episode was assumed to result from two factors: first, 
the transfer of magmas from lower/middle to upper crus-
tal levels during the formation of the Velay dome (Bar-
bey et al. 2015), and second, the emplacement of mantle-
derived (vaugnerite) melts (Williamson et al. 1992, 1997; 
Ledru et al. 2001; Rossi and Pin 2008).
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2015; Couzinié et al. 2014) and development of “Stephanian” (upper 
Pennsylvanian), intramontane coal-bearing basins (Malavieille et al. 
1990; Faure et al. 2009). Abbreviations are for the names of the 
dated intrusions: Ald L’Aldeyrès, Alm Almance, Bor Borne, Cha 
Chassagny, ChD Chaise-Dieu, Chz Chalmazel, Gdr Grandrieu, Gum 
Gumières, Her Hermitage, Lam Lamastre, LaR La Roche, Lou Lou-
baresse, Lrg Largentière, Mar Margeride, Mey Meyras, MLi Moulin 
de Linas, Mrc Marcenod, PtB Pont-de-Bayzan, PtM Pont-de-Mont-
vert, PtR Pont-Rouge quarry, Pub Pubellier, SDz Salt-en-Donzy, SJV 
Saint-Julien-la-Vêtre, StC Saint-Christophe-d’Allier, StD Saint-Dier-
d’Auvergne, Tou Tournon and associated intrusions
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Three problems, however, rise from these hypotheses:

1. As pointed out by Barbey et al. (2015), M3 melt-
ing was necessarily more intense in the lower crust 
than it is recorded at the present level of exposure, in 
order to explain the formation and emplacement of the 
widespread 337–312-Ma-old CPG plutons (Fig. 10) 
for the origin of which biotite dehydration melting 
(T > 800 °C) is required.

2. The geochronological data obtained in this study 
show that vaugnerites ± KCG (338–298 Ma) and 
CPG + MPG (339–302 Ma) emplaced synchronously 
throughout the Carboniferous (Fig. 10), rather than suc-
cessively, as would be expected if crustal melt produc-
tion was caused by mafic magmatic underplating (first 
vaugnerites ± KCG, second CPG + MPG ± KCG).

3. Thermal modeling indicates that crustal melt produc-
tivity induced by heat advection from the intrusion or 
underplating of mantle-derived basalt rarely exceeds 
10% of the whole volume of mafic magma (Petford 
and Gallagher 2001; Annen and Sparks 2002; Annen 
et al. 2006). This entails that the volume of basalt must 
have been nine times larger than the final volume of 
crust-derived granites. In the case of the eastern FMC, 
such a high ratio appears unrealistic because vaugner-
ites are largely subordinate in volume relative to the 
granites (Couzinié et al. 2016). There is evidence from 
lower crustal xenoliths brought up by Cenozoic volca-
noes that mafic igneous rocks are present in the lower 
crust of the eastern FMC (Dostal et al. 1980; Downes 
et al. 1990). However, available age constraints on 
these rocks suggest that they would represent a Per-
mian (300–250 Ma-old) underplating event (Supply 
1981; Costa and Rey 1995; Féménias et al. 2003) and 
could therefore not be responsible for the heat anomaly 
at the origin of Carboniferous magmatism.

Thus, mantle-derived magmas unlikely represent the 
main heat source for crustal melting and the genesis of the 
voluminous CPG and MPG, during neither M3, nor M4, and 
an alternative hypothesis must be sought. The close asso-
ciation in both space and time of crust-derived granites and 
vaugnerites in the eastern FMC suggests that they are all 
the “byproducts” of one-and-the-same, lithospheric-scale 
geodynamic process. This process would be ideally repre-
sented by lithospheric mantle delamination, accompanied 
by the ascent of hot (>1200 °C) asthenospheric mantle up 
to the crust–mantle boundary (Moho). Thermo-mechanical 
modeling (van Hunen and Allen 2011; Duretz and Gerya 
2013; Magni et al. 2013) and geological observations from 
other orogenic systems (Black and Liégeois 1993; Coulon 
et al. 2002; Guo et al. 2013; Laurent et al. 2014b) show that 
this process is common at the final stages of continental 

collision. Lithospheric mantle delamination was also sug-
gested to explain the Carboniferous record in other parts 
of the Variscan belt (Henk et al. 2000; von Raumer et al. 
2013; Denèle et al. 2014) and is backed by geophysical 
data, since the mantle underneath the eastern FMC is char-
acterized by low P-wave velocities interpreted as reflecting 
the removal of the Variscan orogenic roots (Averbuch and 
Piromallo 2012). Thermal modeling demonstrated that an 
anomalously high heat flux through the Moho (equivalent 
to that of the convective mantle) triggers widespread lower 
crustal melting and magma transfer to the middle crust, 
accounting for high geothermal gradients and granulite-
facies metamorphism (apparent geotherm of >50 °C km−1) 
within 25–35 Ma (Depine et al. 2008). The increase in tem-
perature is maximum in the case of conjunct crustal thick-
ening enhancing radioactive heating and thinning of the 
lithospheric mantle causing an increase of the heat flux at 
the base of the crust (Vanderhaeghe and Duchêne 2010). 
This scenario is very consistent with geological and geo-
chronological data from the eastern FMC showing the same 
incubation time between the intrusion of the first vaugner-
ites and granites at about 337 Ma and the rise of the Velay 
granite–migmatite dome at 310–300 Ma (Fig. 10) associ-
ated with the apparently higher-temperature “M4” episode.

Consequences for the Variscan tectonic evolution of the 
eastern FMC

The magmatic rocks in the eastern FMC reveal a clear 
temporal vs. spatial evolution (Fig. 11). All magma types 
(CPG, MPG, KCG and vaugnerites) can indeed be found 
throughout the entire FMC, but their emplacement ages 
decrease systematically from north to south between 340 
and 305 Ma (Fig. 11). The CPGs, KCGs and vaugnerites 
in the northernmost part of the FMC (Forez, Livradois 
and Lyonnais mountains) emplaced at 337 to 330 Ma; the 
youngest intrusion is represented by the Hermitage MPG 
pluton at ~326 Ma (Fig. 11). Further south, the CPG lac-
coliths that flank both the eastern (Tournon, Dunières) and 
western (Chaise-Dieu, Almance) sides of the Velay dome, 
as well as the large enclaves of CPG, KCG and vaugnerites 
in the latter, emplaced between 332 and 315 Ma, mostly at 
320 Ma (Fig. 11). The Margeride batholith at the SW end 
of the Velay dome (the Margeride granite itself plus associ-
ated MPG and vaugnerites) intruded at 313–309 Ma; and 
finally, emplacement of the KCG plutons and abundant 
vaugnerites in the southernmost Cévénnes domain took 
place at even younger ages of 307–298 Ma (Fig. 11).

We propose that the observed zonal pattern results from 
the progressive, southward migration of the thermal anom-
aly, which was responsible for coeval and protracted crust- 
and mantle-derived magmatism. This migrating thermal 
anomaly can be explained by asymmetric delamination of 
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the subcontinental lithospheric mantle beneath the FMC, 
starting to the north and propagating southwards. Heat 
conduction from the inflowing asthenosphere triggered 
the partial melting of the lithospheric mantle enriched in 
incompatible elements during previous subduction (Couz-
inié et al. 2016; von Raumer et al. 2013) and caused forma-
tion of modest volumes of vaugnerite magmas. Such lith-
ospheric mantle source could have either been part of the 
delaminating slab or represented by slivers that remained 
mechanically coupled to the lower crust during delamina-
tion. Concurrently, enhanced mantle heat flux through the 
Moho caused widespread lower crustal melting and the 
formation of granitic magmas (CPG + MPG). Interactions 
between those two magmatic end-members, and/or differ-
entiation of vaugnerite magmas, led to the formation of 
KCG.

On the other hand, the granites and migmatites form-
ing the core of the Velay complex span nearly the entire 
area covered by the other intrusions, but in contrast to the 

latter reveal no age zoning. These rocks rather crystal-
lized within a short period of time at 305–300 Ma, regard-
less the latitude (Fig. 11). Our new age of 302.8 ± 1.3 Ma 
from the Pont-Rouge quarry, in the central-northern part 
of the dome, is indeed within uncertainties of, or very 
close to, the monazite U–Pb ages of 301 ± 5 (Mougeot 
et al. 1997), 303.7 ± 3.1 and 305.9 ± 1.4 Ma (Couzinié 
et al. 2014) from its southern part; and the zircon U–Pb 
ages of 307.5 ± 2.0 Ma (Chelle-Michou et al. 2015) and 
304 ± 4 Ma (Cocherie 2007) obtained in the eastern and 
northern edges of the complex, respectively. The lack of 
“age zoning” in the Velay dome at the temporal resolu-
tion of existing data suggests that it represents a partially 
molten, middle to lower crustal layer rapidly exhumed dur-
ing the late Carboniferous (Vanderhaeghe et al. 1999). Pro-
longed lower to middle crust melting started above the wid-
ening “asthenospheric window,” which was formed during 
progressive southward lithospheric mantle delamination. 
This caused a rheologic weakening of the lower crust, 
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Fig. 11  Plot of the intrusion ages obtained for Variscan igneous 
rocks from the eastern FMC, as a function of the latitude (in deci-
mal degrees) at which the samples were collected. The colored boxes 
represent individual plutons or batholiths (including the Velay dome); 
their horizontal extension is constrained by the geographic limits 
of the pluton, and their vertical extension by the age uncertainties 
obtained on dated samples from this pluton. The dashed boxes rep-
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graphic domain. The light gray arrow qualitatively highlights that the 
age of the oldest pluton/magmatic body in a given geographic area 
decreases southward (see “Discussion”), excluding the Velay dome 
which shows a relatively homogeneous age record across its entire 
surface. References are as in Table 1 with additional data from Barba-
rin et al. (2012) and Chelle-Michou et al. (2015) for the Velay granite 
and associated bodies
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which eventually led to lateral crustal flow, thinning and 
collapse of the orogenic crust, and the exhumation of the 
partially molten crust in the core of domes like the Velay 
complex (Vanderhaeghe and Teyssier 2001; Vanderhae-
ghe 2012). In this perspective, the 305–300 Ma age clus-
ter obtained in the Velay granite and migmatites does not 
necessarily correspond to a “catastrophic” melting event 
(Couzinié et al. 2014). Instead, it simply reflects the final 
exhumation and cooling of these rocks below their solidus, 
as a natural outcome of the whole delamination process.

The occurrence of southward lithospheric mantle delami-
nation in the eastern FMC during the Carboniferous can be 
considered in the scope of existing geodynamic scenarios 
for this part of the Variscan belt. Faure et al. (2009) stressed 
out that there are two possible, competing models that may 
explain the present-day structure of the FMC:

1. A “monocyclic” model (e.g., Lardeaux et al. 2001) con-
sidering a single, northward-directed subduction from 
the Silurian to the late Devonian. In this context, the 
suggested southwards lithospheric delamination wit-

nessed by the Carboniferous magmatic evolution could 
simply reflect the rollback of the lithospheric mantle 
(Fig. 12a), in response to decoupling with the overly-
ing continental crust while convergence was still active 
(Vanderhaeghe and Duchêne 2010; Duretz and Gerya 
2013; Magni et al. 2013).

2. A “polycyclic” model (e.g., Faure et al. 2005) in which 
northward-directed subduction during the Ordovi-
cian and early Silurian (“Eo-Variscan” cycle, Armor-
ica–Gondwana collision) was followed by Devonian, 
southward-directed subduction that accommodated 
the closure of the Rheic Ocean (“Variscan” cycle, 
Laurussia-[Armorica + Gondwana] collision). In this 
case, thermo-mechanical models of mature continental 
collision suggest that if the lithospheric mantle of the 
lower (i.e., subducting) plate is retreating, it causes a 
“retro-delamination” of the lithosphere underneath the 
overriding plate and asthenospheric upwelling (Gray 
and Pysklywec 2012), equally accounting for south-
ward lithosphere delamination under the eastern FMC 
(Fig. 12b).

MorvanBrévenneVelayCévennes

Slab retreat

‘Retro-delamination’
of the lithospheric mantle

MorvanBrévenneVelayCévennes

Variscan suture
‘LAURUSSIA’ CRUST‘LAURUSSIA’ CRUST‘GONDWANA’ CRUST‘GONDWANA’ CRUST

Slab retreatSlab retreat

South North

c. 100 km

c. 100 km

c. 100 km

c. 100 km

Vaugnerites CPG KCG MPG Asthenosphere inflow

Asthenosphere Lithospheric mantle Oceanic crust Continental crust

(a)

(b)

UGULGU

Crust melting

Fig. 12  Two possible, schematic geodynamic models that may 
account for the spatial and temporal distribution of Variscan igne-
ous plutonic rocks in the eastern FMC during the Carboniferous (c. 
340–300 Ma): a southward retreat of a lithospheric mantle slab, after 
middle Devonian (>360 Ma-old) subduction of continental crust now 

exhumed at the UGU/LGU boundary (highlighted by the dashed 
line); or b “retro-delamination” of the lithospheric mantle in response 
to slab retreat of the lower plate (i.e., the “Laurussia” plate) following 
collision (redrawn after Fig. 2c of Gray and Pysklywec 2012)
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The two models have their strengths and weaknesses. 
The “monocyclic” model (Fig. 12a) is supported by the 
presence of (U)HP rocks at the base of the UGU (late 
Devonian migmatites with embedded eclogite boudins) that 
would represent remnants of the northward-subducted oce-
anic and continental crust (Lardeaux et al. 2001). Moreo-
ver, the rheological weakening and buoyancy of partially 
molten, subducted continental crust strongly enhances 
its decoupling with the lithospheric mantle and subse-
quent exhumation, as typically observed in numerical 
models (Duretz and Gerya 2013) and natural case studies 
(Labrousse et al. 2011). This would have readily triggered 
southward delamination of the lithospheric mantle in the 
context of ongoing convergence, which is supported by the 
fact that the orogenic front propagated southwards during 
the Carboniferous (Faure et al. 2009). However, the tim-
ing of exhumation of the (U)HP rocks at the base of the 
UGU is poorly constrained and could be as early as 360 Ma 
(Lardeaux et al. 2001). Thus, if this hypothesis was correct, 
there is a time lapse of ≥20 Ma between the end of conti-
nental subduction and the beginning of magmatism related 
to delamination (~340 Ma in the eastern FMC), which is 
difficult to explain since the response time between delami-
nation and melting of the crust through asthenospheric heat 
advection would be much shorter, i.e., ≤10 Ma (Arnold 
et al. 2001; Depine et al. 2008).

On the other hand, the “polycyclic” model involving 
southward subduction during the Devonian (Fig. 12b) is 
consistent with arc magmatism in the Morvan and Lim-
ousin areas at 360–350 Ma and the development of the 
Brévenne trough as a back-arc basin (Pin and Paquette 
1997; Faure et al. 2009; Lardeaux et al. 2014). It also avoids 
the problem of a too long time lapse between the onsets of 
delamination and magmatism: “retro-delamination” start-
ing at ~350 Ma (the youngest documented subduction-
related magmas being dated at 355 ± 2 Ma; Bernard-Grif-
fiths et al. 1985) more realistically accounts for the onset 
of widespread magmatism at ~340 Ma in the eastern FMC. 
Nevertheless, this scenario implies that the asthenosphere 
window underneath the crust would have been much larger 
than in the previous one, specifically extending further 
north beyond the Brévenne basin, up to the Morvan area 
(Fig. 12b). This is problematic because in these domains, 
there is so far no evidence for any sequential emplacement 
of igneous rocks like that documented here, or even for any 
magmatic event younger than ~330 Ma.

More detailed investigations are therefore required to 
decipher between these two scenarios; at present we con-
sider that both are equally likely to explain the observed 
southward lithosphere delamination and associated mag-
matism in the eastern FMC during the Carboniferous.

Conclusions

Variscan plutonic rocks from the eastern FMC were derived 
from two end-member sources: (i) a mixture of felsic lith-
ologies (ortho- and paragneisses) from the local nappe 
pile (especially the Lower Gneiss Unit, in line with the 
predominance of late Ediacaran to early Cambrian ages 
in inherited zircon patterns), resulting in the formation of 
cordierite- and muscovite-bearing peraluminous granites 
(CPG and MPG); and (ii) an enriched (metasomatized) lith-
ospheric mantle, source of the vaugnerites. The K-feldspar 
porphyritic, calc-alkaline granites and granodiorites (KCG) 
result from either interactions between these two end-mem-
bers or fractionation from vaugnerite magmas.

Zircon and monazite U–Pb ages from these rocks testify 
for a long-lasting (~40 Ma) period of crust- and mantle-
derived magmatism in the eastern FMC, as is reflected by 
the coeval emplacement of granites between 337.4 ± 1.0 
and 298.9 ± 1.8 Ma, and vaugnerites between 335.7 ± 2.1 
and 299.1 ± 1.3 Ma. Coeval and protracted crust- and man-
tle-derived magmatism points to the existence of a long-
lived lithospheric-scale thermal anomaly, which probably 
formed in response to the delamination of the lithospheric 
mantle and asthenosphere upwelling beneath the eastern 
FMC during the late Carboniferous. Moreover, the spatial 
distribution of the dated samples indicates that delamina-
tion started at about 340 Ma in the northern part of the area 
and propagated southwards until 300 Ma. This may be 
explained either by (i) the progressive “retreat” of a lith-
ospheric mantle slab following northward-directed subduc-
tion or (ii) “retro-delamination” of the lithosphere associ-
ated with southward-directed subduction.
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5.2 Additional data: zircon U�Pb dating of the Monts-du-
Lyonnais synkinematic granitoids

5.2.1 Regional context and investigated sample

In the southern part of the Monts�du�Lyonnais area (see Fig. 3.1), the metamorphic
lithologies of the Upper Gneiss Unit are intruded by the synkinematic Montagny, Saint-
Héand, Soucieu and Grand-Chemin (or Civrieux-d'Azergues) granitoids emplaced along
N45 dextral strike-slip shear zones (Feybesse et al., 1995; Gay et al., 1981). Those
granitoids are of primary interest as they mark the latest stage of regional polyphase
ductile deformation, thought to have occured at T < 600°C, and thus post-date eclogite-
, granulite- and amphibolite-facies metamorphism (Costa et al., 1993; Feybesse et al.,
1995; Gardien et al., 1990; Lardeaux et al., 1989; 2001).

Therefore, determination of their emplacement age would provide critical constrains
on the P-T-t paths experienced by the Upper Gneiss Unit in the Monts-du-Lyonnais
area. Ar�Ar dating of biotite and muscovite yielded cooling ages in the range 345�340
Ma (Costa et al., 1993) slightly older than the age obtained via the whole-rock Rb�Sr
geochronometer (332 ± 10 Ma, Gay et al., 1981). Section 5.1 presents new geochrono-
logical data from vaugnerites closely associated with the synkinematic granitoids and
regarded as coeval by Michon (1979) and Sabatier (1984). The inferred zircon U�Pb em-
placement ages of 335.7 ± 2.1 and 333.9 ± 1.4 are in better agreement with the Rb�Sr
results. To clarify the actual age of synkinematic magmatism, an additional granitoid
sample was collected for zircon U�Pb age determination. Sample RV-3 was taken from in
the former Riverie quarry at the place known as "Les Roches" (see Part I). It corresponds
to a 10-cm thick biotite-bearing granite vein concordant in the foliation of amphibole-
bearing gneisses. Constituent minerals are Qz, Pg (An25, see Appendix Table B3), Kfs
and Bt. Amphibole is typically lacking.

Polished 150 µm-thick sections were made and zircon identi�ed by making automated
Zr maps using a Merlin SEM at SUN. U�Pb dating was conducted in situ on the thick
sections after BSE�CL imaging of the previously located grains (using the same SEM).
Zircon grains are very small, often < 60 µm in length, and show a broad range of aspect
ratios, from 1:2 to 1:9. Inherited cores are extremely scarce and, when observed, CL-
brighter than the rims. The latter often display typical oscillatory zoning even though a
few grains appear homogeneous.

5.2.2 U�Pb results and emplacement age

LA�ICP�MS U�Pb dating was conducted at SUN with a spot diameter of 20 µm (26th of
October 2016, with the assistance of Riana Rossouw, see Appendix B.3.2 for analytical
procedures and Tables B5 and B8 for the comprehensive dataset). Out of 53 analyses,
only four are concordant with 206Pb/238U dates clustering between 334 ± 6 and 339 ± 6
Ma (spots b194 and b191, respectively, Fig. 5.1b). Thirteen analyses yielded discordant
206Pb/238U dates in the same range. These spots trend along a mixing line between
common and radiogenic (anchored by the concordant population) Pb compositions at
335 Ma (Fig. 5.1b). Four discordant measurements show older 206Pb/238U dates, up to
452 ± 7 Ma (b185). The 32 remaining analyses have younger 206Pb/238U dates, from
331 ± 6 (b179) down to 261 ± 5 Ma (b177).

Given the scarcity of inherited cores and the typical magmatic oscillatory zoning evi-
denced by CL-images, I interpret the concordant zircon population as having crystallized
from the melt phase. The best estimate of the crystallization age is given by the lower in-
tercept of the mixing trend: 335.8 ± 4.4 Ma (including systematic errors). Spots yielding
older 206Pb/238U dates would have sampled inherited zircon domains unidenti�ed during
CL imaging. Younger dates would result from a combination of Pb loss and common Pb
incorporation, which respective contributions cannot be retrieved.
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Figure 5.1: Tera�Wasserburg diagrams (238U/206Pb vs. 207Pb/206Pb) showing zircon data for
the RV-3 synkinematic granite from the Monts�du�Lyonnais area. Error ellipses/ages are quoted
at 2σ level of uncertainty. Yellowish ellipses are those included in age calculations.

5.2.3 Conclusion

This newly obtained emplacement age con�rms that: (i) vaugnerites and granites from
the southern Monts-du-Lyonnais area are coeval; (ii) the late increment of deformation,
probably at the origin of the N45-trending regional foliation, is as young as c. 335 Ma
and post-dates peak metamorphism which age has been independently estimated in this
same outcrop at c. 360 Ma (see Part I).

5.3 Article #3: The mantle source of "vaugnerites" and
other post-collisional ma�c magmas

This contribution has been published in Earth and Planetary Science Letters. In the
course of my M.Sc., I sampled all but two of the igneous rocks presented in this study with
the help of Jean-François Moyen, Arnaud Villaros and Adrien Vezinet and prepared them
for whole-rock geochemical determinations. I extracted the zircon grains and performed
the Lu�Hf isotope measurements at GUF under the supervision of Oscar Laurent and
Armin Zeh. Pilar Montero analysed the grains for O isotopes. During my Ph.D., I
compiled geochronological and geochemical data available from the literature and wrote
the manuscript with signi�cant help from Oscar Laurent, Jean-François Moyen and Pierre
Bouilhol.
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The combination of U–Pb, Lu–Hf and O isotopic analyses in global zircon databases has recently been 
used to constrain continental crustal growth and evolution. To identify crust-forming events, these 
studies rely on the assumption that new crust is formed from depleted mantle sources. In contrast, 
this work suggests that post-collisional mafic magmas and their derivatives represent a non-negligible 
contribution to crustal growth, despite having zircons with “crust-like” Hf–O isotopic characteristics. We 
address this paradox and its implications for crustal evolution on the basis of a case study from the 
Variscan French Massif Central (FMC). The late stages of continental collisions are systematically marked 
by the emplacement of peculiar mafic magmas, rich in both compatible (Fe, Mg, Ni, Cr) and incompatible 
elements (K2O, HFSE, LREE) and displaying crust-like trace element patterns. This dual signature is best 
explained by melting of phlogopite- (and/or amphibole-) bearing peridotite, formed by contamination 
of the mantle by limited amounts (10–20%) of crustal material during continental subduction shortly 
preceding collision. Mass balance constraints show that in melts derived from such a hybrid source, 
62–85% of the bulk mass is provided by the mantle component, whereas incompatible trace elements are 
dominantly crustal in origin. Thereby, post-collisional mafic magmas represent significant additions to 
the crust, whilst their zircons have “crustal” isotope signatures (e.g. −2 < εHft < −9 and +6.4 < δ18O <
+10� in the FMC). Because post-collisional mafic magmas are (i) ubiquitous since the late Archean; 
(ii) the parental magmas of voluminous granitoid suites; and (iii) selectively preserved in the geological 
record, zircons crystallized from such magmas (and any material derived from their differentiation or 
reworking) bias the crustal growth record of global zircon Hf–O isotopic datasets towards ancient crust 
formation and, specifically, may lead to an under-estimation of crustal growth rates since the late 
Archean.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The formation of the continental crust is a major consequence 
of planetary differentiation and played a key role in the evolu-

* Corresponding author at: Univ. Lyon, UJM-Saint-Etienne, UBP, CNRS, IRD, Labo-
ratoire Magmas et Volcans UMR 6524, F-42023 Saint Etienne, France.

E-mail addresses: simon.couzinie@univ-st-etienne.fr, 
simon.couzinie@ens-lyon.org (S. Couzinié).

tion of climate and life (Campbell and Allen, 2008; Lowe and 
Tice, 2004). The mechanisms and rates of continental formation 
are therefore fundamental parameters to be addressed and have 
long been a matter of controversy (Arndt, 2013; Hawkesworth et 
al., 2010). The formation of new continental crust requires two 
fundamental conditions to be fulfilled, regardless of the tectonic 
setting in which it takes place: (1) genesis (and differentiation) of 
mantle-derived igneous material; and (2) long-term incorporation 
and preservation of this material into the pre-existing continen-

http://dx.doi.org/10.1016/j.epsl.2016.09.033
0012-821X/© 2016 Elsevier B.V. All rights reserved.
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Table 1
Summary of the main documented occurrences of PCMM in the geological record.

Orogen Age of PCMM Specific nomenclature Differentiates Proposed references

Late Archean terranes 2950 to 2500 Ma Sanukitoid Sanukitoid suite Laurent et al. (2014a)
Svecofennian (Scandinavia) 1800 Ma Ladogite, Nevoite Post-kinematic granitoids Rutanen et al. (2011)
Pan-African 620–560 Ma Sanukitoid High-K calc-alkaline (HKCA) 

granitoids
Liégeois et al. (1998)

Ross (Antarctica) 515–500 Ma No specific name given No specific name given Hagen-Peter et al. (2015)
East Kunlun (China) c. 450 Ma Appinite Not described Xiong et al. (2015)
Caledonian 425–410 Ma Appinite High Ba–Sr granites Fowler and Rollinson (2012)
Central Asian Orogenic Belt 425 to 300 Ma 

(several pulses)
Sanukitoid Not described Yin et al. (2015)

Variscan 335–300 Ma Vaugnerite, Durbachite, 
Redwitzite, Appinite

Felsic durbachites; K-rich calc-alkaline 
granitoids (KCG)

Moyen et al. (in press); 
Holub (1997); von Raumer 
et al. (2014)

North China Block assembly 
(Dabie-Sulu orogen. . . )

320 to 115 Ma 
(several pulses)

Appinite Post-collisional granitoids Zhao et al. (2013)

Himalaya 20 to 3 Ma Post-collisional (ultra)potassic 
magmas

(Ultra)potassic silicic magmas Williams et al. (2004)

tal volume (Condie et al., 2011; Hawkesworth et al., 2009; Stern 
and Scholl, 2010). Radiogenic isotope systems like Rb/Sr, Sm/Nd 
and Lu/Hf are extensively used to track crust-forming events, and 
it is consensually assumed that the radiogenic isotope composition 
of newly-formed crust is identical to that of the depleted man-
tle (DM) (McCulloch and Wasserburg, 1978; Patchett et al., 1982;
Vervoort and Blichert-Toft, 1999).

In this respect, the study of continental growth recently ben-
efited from advances in analytical techniques enabling in situ iso-
topic measurements in zircon, a widespread accessory mineral of 
continental igneous rocks. Because zircon is able to survive sev-
eral metamorphic, igneous and sedimentary cycles and contains a 
wealth of isotopic information (U–Pb, Lu–Hf, O isotopes), it rep-
resents an outstanding archive of crust formation and evolution 
(Bouilhol et al., 2013; Bouilhol et al., 2011; Condie et al., 2011;
Roberts and Spencer, 2015). The analyses of U–Pb and Lu–Hf iso-
tope compositions within the same zircon give access to both 
the age and the Hf isotopic signature of the magma in which 
it crystallized (Griffin et al., 2002; Woodhead et al., 2004). The 
latter is converted into a crustal residence (“model”) age corre-
sponding to the time at which the crustal source of the zircon-
hosting magma would have been extracted from the DM (Kemp 
et al., 2006). The coupled analysis of O isotopes has been pro-
posed to discriminate between zircons crystallized from magmas 
having a sedimentary source (δ18O > 6.5�; Kemp et al., 2006;
Valley et al., 1998) and thus, meaningless “mixed” model ages 
(Arndt and Goldstein, 1987), from those having an ultimately 
mantle-derived source (δ18O ∼ 5.5 ± 1.0�) and supposed to yield 
reliable model ages (Hawkesworth and Kemp, 2006). Accordingly, 
statistical analyses of U–Pb–Hf(–O) isotopic databases from both 
igneous and detrital zircons were extensively used to quantify 
the timing, amount and mechanisms of continental crust forma-
tion through time (Belousova et al., 2010; Dhuime et al., 2012;
Hawkesworth and Kemp, 2006; Lancaster et al., 2011).

Nevertheless, the reliability of this approach has recently been 
questioned, especially because incorporation in the mantle of con-
tinental crust-derived materials (subducted supracrustal lithologies 
and/or any fluid/melt generated from them) may significantly blur 
the zircon Hf–O isotope signatures, a problem that has not been 
thoroughly taken into account in crustal evolution models (Payne 
et al., 2016; Roberts et al., 2012; Roberts and Spencer, 2015). 
Mafic magmas emplaced shortly after continental collision rep-
resent a typical, yet poorly considered case: although of unam-
biguous mantle origin (Bonin, 2004), they display “crustal” whole-
rock radiogenic isotopes compositions (Nelson, 1992; Turpin et al., 
1988) and zircon Hf isotopic signatures (e.g. Heilimo et al., 2013;
Laurent and Zeh, 2015; Liu et al., 2014; Siebel and Chen, 2009;
Zhao et al., 2013). Although such mafic magmas are ubiquitous 

amongst orogenic systems since the late Archean and may be the 
parent of volumetrically important granite suites (Fowler and Hen-
ney, 1996; Laurent et al., 2013), little attention has been paid so far 
to their role in the formation of new crust, as well as the impact of 
their ambiguous isotopic signatures on continental evolution mod-
els.

This study aims to review the characteristics and petrogenesis 
of post-collisional mafic magmas; propose a unified model to ex-
plain their origin; quantify to what extent they contribute to the 
formation of new crust; and address the potential biases intro-
duced by their zircon Hf–O isotopic signature in global, zircon-
based crustal evolution models. We address these issues using: 
(i) a new, comprehensive geochemical and zircon Hf–O isotopic 
dataset of post-collisional mafic magmas from the Variscan French 
Massif Central, and (ii) a global compilation of geochemical data 
from similar rocks over geological time.

2. Post-Collisional Mafic Magmas (PCMM)

2.1. Geological setting

Hereafter, the post-collisional period is referred to as the stage 
of the orogenic cycle immediately following the docking of two 
continental masses. Voluminous magmatism, often referred to as 
“syn- to post-collisional” (Bonin, 2004), takes place at that stage. 
The corresponding volcanic/plutonic rocks belong to two contrast-
ing suites: (i) a peraluminous silicic suite, originating from melting 
of the local crust; and (ii) a mafic-felsic high-K calc-alkaline asso-
ciation in which the felsic material is generally regarded as the re-
sult of differentiation of the mafic parental melt, with varying con-
tributions (assimilation/mixing) from the older crust (Bonin, 2004;
Küster and Harms, 1998; Laurent et al., 2013; Liégeois et al., 1998;
Moyen et al., in press). In this contribution, we focus on the gen-
esis of the mafic parents of the high-K calc-alkaline suite that will 
be referred to as Post-Collisional Mafic Magmas (PCMM) hereafter. 
PCMM have been recognized in most orogenic systems since the 
late Archean, especially those corresponding to the amalgamation 
of the main supercontinents in Earth history (Table 1; see also 
Murphy, 2013). Because of their peculiar characteristics, they are 
often mentioned using local, non-IUGS nomenclature (Table 1) that 
hampers a comprehensive view of their global significance.

2.2. Case study: the Variscan French Massif Central

The Variscan belt of western Europe (Fig. 1a) was formed dur-
ing the assembly of Pangea, as a result of the convergence be-
tween Laurussia and Gondwana from 420 to 295 Ma. In the east-
ern French Massif Central (FMC), continental collision took place 
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Fig. 1. (a) General location of the Variscan belt of Europe and inferred suture zones. Abbreviations: GMC Galicia-Massif Central, STZ Saxo-Thurigian Zone, RHZ Rhenohercynian 
Zone, MZ Moldanubian Zone. The yellow star highlights the location of the Velay Complex. (b) Geological map of the eastern French Massif Central (Velay area) redrawn after 
Chantraine et al. (1996). Post-collisional mafic magmas (triangles) and their derivatives (granite bodies in blue) are highlighted. The inset shows the location of the study 
area within the Massif Central. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

at c. 360–340 Ma and was followed by orogenic extension and 
collapse. The latter stage was associated with significant crustal 
melting resulting in widespread granite magmatism and the for-
mation of granite–migmatite domes (e.g. Velay Complex) (Ledru 
et al., 2001 and references therein). PCMM are present throughout 

the Variscan belt (von Raumer et al., 2014). In the eastern FMC, 
they intruded the crust from c. 335 to 300 Ma (Couzinié et al., 
2014; Laurent et al., 2015), forming meter- to hectometer-sized 
(monzo)diorite to monzonite bodies in granites/migmatites; and 
dykes at shallower crustal levels (Couzinié et al., 2014). These rocks 
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consist of an assemblage of plagioclase, amphibole, biotite and 
clinopyroxene; with orthopyroxene, K-feldspar and quartz in subor-
dinate and various proportions (Sabatier, 1991). Accessory minerals 
include apatite, allanite, titanite and zircon. Like in other PCMM 
occurrences worldwide (e.g. Laurent et al., 2014a; Murphy, 2013), 
the predominance of biotite and/or amphibole as main mafic min-
erals points to high H2O contents in the original magma. In the 
FMC, a suite of K-rich calc-alkaline granitoids demonstrably re-
sults from differentiation of PCCM with little or no input from the 
older crust (Moyen et al., in press). In this area, PCMM and their 
derivatives represent ≈10% of the exposed surface (Moyen et al., 
in press).

2.3. Samples, methods and data compilation

In this study, we present new whole-rock geochemical data and 
a new zircon Lu–Hf and O isotope dataset on PCMM from the 
eastern FMC (Fig. 1b). The whole-rock major and trace element 
compositions of 27 samples are reported in the Supplementary 
Material (Table S1). The Hf isotopic composition of zircons from 
12 samples was measured by laser ablation – multicollector – in-
ductively coupled plasma – mass spectrometry (LA-MC-ICP-MS) at 
Goethe Universität Frankfurt, Germany, after imaging of internal 
zircon structures (cathodoluminescence and back-scattered elec-
tron images) by scanning electron microscopy. The zircons were 
previously analyzed for U–Pb isotopes by LA-ICP-MS for age deter-
mination (Laurent et al., 2015). Out of the 12 samples investigated 
for Hf isotopes, zircons from 8 samples were also analyzed for O 
isotopes by SHRIMP at the University of Granada, Spain. The nature 
and ages of the investigated samples are detailed in Table 2; the 
Supplementary Material contains details about analytical methods, 
results of standard measurements (Table S2 for Hf and S4 for O) 
and the complete datasets (Table S3 for Hf, Table S5 for O).

We also present a compilation of data from PCMM world-
wide, available in the Supplementary Materials and including 
whole-rock geochemistry (Nsamples = 1647; Table S6) and zircon 
Hf (Nspots = 2425; Table S7) and O (Nspots = 633; Table S8) iso-
topes.

3. Whole-rock geochemistry and Hf–O isotope composition of 
PCMM

3.1. Whole-rock geochemistry

PCMM all share similar geochemical features (Fig. 2). They are 
mafic to intermediate (44 to 63 wt.% SiO2) and dominantly plot 
in the high-K calc-alkaline to shoshonite fields (Fig. 2a). PCMM 
typically show a dual geochemical signature characterized by rich-
ness in both compatible and incompatible elements (Fowler and 
Rollinson, 2012; Holub, 1997; Laurent et al., 2014b). In PCMM 
from the FMC, this is best illustrated by high contents in both 
K2O (1.0–7.5 wt.%) and FeOt + MgO (7–25 wt.%) (Fig. 2b). Likewise, 
both Ba + Sr (0.1–0.6 wt.%) and Ni + Cr contents (50–1000 ppm) 
are very high (Fig. 2c). Notably, there is no correlation whatsoever 
between compatible and incompatible elements (Fig. 2b, c). PCMM 
display high LREE and HFSE contents (Fig. 2d), together with crust-
like incompatible trace element patterns systematically character-
ized by negative Nb–Ta and Ti anomalies (Fig. 2e). Strikingly, these 
rocks are markedly enriched in most incompatible elements (LILE, 
LREE, HFSE) relative to the bulk continental crust (Fig. 2e).

3.2. Hf isotopes

A compilation of available zircon Hf isotopic data from PCMM 
in various orogenic systems is presented in Fig. 3a. Apart from a 
few exceptions, such zircons display (sub-)chondritic εHf(t), clearly Ta
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Fig. 2. Main geochemical features of post-collisional mafic magmatic rocks with special emphasis on the eastern FMC example (blue triangles). Each grey field illustrates the 
range of composition for similar rocks from other orogenic systems (data from Table S6). Plots of (a) K2O vs. SiO2 concentrations (the different series are after Peccerillo 
and Taylor, 1976); (b) K2O vs. MgO + FeOt concentrations; (c) Large Ion Lithophile Elements (Ba + Sr) vs. transition element (Ni + Cr) concentrations and (d) sum of LREE 
(La + Nd + Ce) vs. HFSE (Zr + Nb) normalized to Yb; (e) Multi-element diagram normalized to the Primitive mantle (McDonough and Sun, 1995); the fields correspond to the 
1st to 3rd quartile range of samples from the eastern FMC (in blue) and each other orogenic system (in grey), respectively. BCC stands for the Bulk Continental Crust (values 
from Rudnick and Gao, 2003), OIB for Ocean Island Basalts (values from Sun and McDonough, 1989), N-MORB for Normal-type Ocean Ridge Basalts (values from Sun and 
McDonough, 1989). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

differing from that of DM at the time of magma formation. This 
typical feature of PCMM is well reflected by rocks from the eastern 
FMC (Fig. 3b and Table 2). Zircon grains from such rocks show sim-
ple internal structures, without core–rim relationships and yield a 
single population of concordant U–Pb ages (Couzinié et al., 2014;
Laurent et al., 2015). This argues for a single event of zircon forma-

tion during magma crystallization and limited or no host-rock as-
similation. Hence, the initial Hf isotopic composition (176Hf/177Hft), 
can reliably be considered as representative of that of the magma 
at the time of zircon crystallization.

The newly-obtained zircon Hf dataset for PCMM from the FMC 
can be divided into two subsets (Table 1). Subset A comprises 
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Fig. 3. (a) Compilation of available in-situ Hf isotope data for zircons from PCMM worldwide as a function of their intrusion age (note that the time-scale is logarithmic). 
Total number of zircon Hf measurements = 2425. The Variscan zircons (box 3) are shown in detail Fig. 3b. The εHf(t) range for the depleted mantle reservoir is bracketed 
by the models of Naeraa et al. (2012) (lowermost value) and Griffin et al. (2002) (uppermost value). Data from Table S7. (b) Measured zircon εHf(t) in post-collisional mafic 
rocks from the Variscan belt of Europe as a function of intrusion age. Additional data from Siebel and Chen (2009) and Villaseca et al. (2010).

the four oldest samples of the investigated dataset (309–320 Ma). 
The zircon 176Hf/177Hft ratios of samples from subset A range 
from 0.282319 ± 0.000032 to 0.282480 ± 0.000028 (2 S.E. – stan-
dard error), corresponding to subchondritic εHf(t) of −3.7 to 
−9.4 (Fig. 3b). Subset B includes the younger samples, all hav-
ing ages in the range 299–310 Ma. Their zircons have 176Hf/177Hft

ranging between 0.282441 ± 0.000026 and 0.282562 ± 0.000026
(2 S.E.) corresponding to subchondritic εHft of −1.1 to −5.0 
(Fig. 3b). The εHft variability within a given sample is small (al-
ways <3 εHf-units) and in most cases close to the analytical 
uncertainties (i.e. ±1.1 εHf-units), indicating that zircons crystal-
lized from a magma with homogeneous Hf isotope composition. 
Although some overlap occurs between the two groups, zircons 
from samples of subset A have more variable (the scatter is always 
>4 εHf-units for a given sample) and generally less radiogenic 
176Hf/177Hft than samples from subset B, with most grains having 
εHft lower than −5 and down to −9.4 (Fig. 3b). Because of this 
large dispersion, the average εHft calculated for each sample of 
subset A is probably of little geological significance and the scatter 
may rather correspond to heterogeneous Hf isotope composition of 
the original magma.

3.3. Oxygen isotopes

Fig. 4a summarizes available in situ O isotopes measurements 
on PCMM zircons. The δ18OSMOW of zircons from PCMM are highly 
variable and range from +2.5 to +10�. They are often out of 
the range of δ18OSMOW expected for zircons crystallizing from 
mantle-derived magmas, especially in the most recent (Himalayan, 
Variscan and Caledonian) orogens (Fig. 4a).

All zircon data from PCMM of the eastern FMC show high 
δ18OSMOW values (Fig. 4b), mostly between 6.39 ± 0.32 and 8.92 ±
0.26� (2 S.E. – standard error) with a few spots with even higher 
δ18OSMOW up to 9.97 ± 0.24. The variability per sample is typically 
large, >0.6� (2 S.D.), i.e. well above the range of analytical un-
certainties (<0.3�; see Table S5). This argues for heterogeneous O 
isotope compositions of the magmas at the time of zircon crystal-
lization.

4. Discussion

4.1. Petrogenesis of PCMM in the FMC

4.1.1. Source vs. emplacement processes
The most mafic components of the PCMM suite in the FMC 

display low SiO2 (<53%), with high MgO + FeOt (>12%) and transi-
tion element (Cr > 250 ppm. Ni > 120 ppm) contents. This demon-
strates that the parental melt cannot be derived from crustal 
lithologies, but rather equilibrated with a(n) (ultra)mafic residue 
(i.e. peridotite/pyroxenite) (Holub, 1997; Sabatier, 1991). From that 
perspective, the high incompatible element contents and “crust-
like” Hf–O isotopic signatures of PCMM could result from two 
distinct processes: (i) evolution of an incompatible element-poor, 
mantle-derived basaltic melt by fractionation and/or assimilation 
of crustal lithologies (i.e. AFC processes); or (ii) partial melting of 
a mantle source already enriched in K2O, H2O and LILE.

Several lines of evidence indicate that AFC cannot explain the 
geochemical signature of PCMM:

(1) Even starting from an “enriched” basaltic composition (i.e. 
OIB-like), considerable amounts of crystallization (>50%) are 
required to drive the incompatible element contents to the el-
evated concentrations observed in PCMM, such that the final 
melt would certainly not be mafic any more (Fig. 5a).

(2) Assimilation of continental crust during magma emplacement 
is precluded by the lower incompatible element contents of 
the most widespread crustal lithologies compared with PCMM, 
which holds true for both the FMC case and the global per-
spective (inset Fig. 5a).

(3) Even assuming that a crustal contaminant with the ade-
quate trace element composition exists in the FMC and that 
only limited fractionation (≤20%) took place so that the final 
magma remained mafic, AFC calculations show that driving 
the Hf isotopic composition of a DM-derived basalt to that of 
the PCMM would require a crustal contaminant with εHf310 Ma
of −50 (Fig. 6a), corresponding to an early Archean crustal 
component (model age >3.6 Ga). This is extremely unlikely in 
the case of the FMC where the oldest crust is early Paleozoic 
to Neoproterozoic in age (Melleton et al., 2010).
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Fig. 4. (a) Compilation of in-situ O isotope data for zircons of post-collisional mafic rocks from worldwide occurrences. Total number of zircon measurements = 633. Data 
from Table S8. The δ18O for the mantle is from Valley et al. (1998). Arrows for supra-crustal weathered materials and ridge-altered materials according to Bindeman (2008). 
(b) Zircon oxygen isotope composition of PCMM from the eastern French Massif Central. For each sample are displayed the mean and 2 S.D. confidence level. Error bars are 
the analytical standard errors of each measurement plotted at 2σ .

In contrast, PCMM plausibly represent primary melts derived 
from an anomalously K2O-, LILE- and H2O-rich mantle. Indeed, ex-
perimental melting of phlogopite- and/or amphibole-bearing (i.e. 
K-rich) peridotites, particularly spinel-lherzolites, yields melts with 
major element compositions matching those of PCMM from the 
FMC (Fig. 5b) (Conceição and Green, 2004; Condamine and Mé-
dard, 2014; Green, 2015; Mengel and Green, 1989; Thibault et 
al., 1992). Importantly, experiments conducted with mixed peri-
dotite + felsic (granitoid) starting materials produce melts of sim-
ilar compositions (Mallik et al., 2015; Prouteau et al., 2001; Rapp 
et al., 2010). The two sets of experiments are equivalent from a 
petro-geochemical point of view because, in the second approach, 
the mixture yields a phlogopite- and/or amphibole-bearing peri-
dotite/pyroxenite in equilibrium with a mafic K-rich melt. There-
fore, experimental evidence unequivocally shows that hybridiza-
tion between peridotite and a felsic component is required to ex-
plain the major-element composition of PCMM (irrespective of the 
hybridization mechanism and the exact nature of the felsic com-
ponent, which are discussed in §4.1.2).

The same conclusion can be drawn for trace elements. We cal-
culated the REE contents of a melt generated from a hybrid source 
consisting of 75–90% DM and 10–25% of a LREE-rich component 
(having the composition of the bulk continental crust). Fig. 5c 
shows that the resulting melts (for 5 to 20% melting) match the 
composition of PCMM from the FMC, again with a better fit for a 
spinel-facies source.

Therefore, we propose that PCMM in the FMC result from par-
tial melting, at <2 GPa, of a phlogopite-/amphibole-bearing peri-

dotite (or pyroxenite) corresponding to mantle domains enriched 
in K2O, H2O and other incompatible elements.

4.1.2. Mechanism of mantle enrichment and nature of the metasomatic 
agent

Considering that they reflect the composition of the hybrid 
mantle source, the observed negative εHft signatures in PCMM zir-
cons can be explained by two distinct scenarios: (i) contamination 
of the mantle (with εHft >> 0) by crustal material with strongly 
negative Hf isotope composition (εHft << 0) shortly prior to PCMM 
formation; or (ii) a long time span between mantle contamination 
(by any material having low 176Lu/177Hf) and PCMM formation, 
whereby the initial decrease of the mantle 176Lu/177Hf ratio leads 
to a time-integrated, non-radiogenic Hf isotope composition.

Several lines of evidence clearly favor the first hypothesis. 
Firstly, the mantle beneath the FMC (sampled as xenoliths in 
Cenozoic volcanoes) do not show evidence for any geological 
event older than ca. 0.6 Ga (Wittig et al., 2007), which is also 
the age of the oldest autochtonous crust (Melleton et al., 2010). 
In contrast, the strongly negative εHft of PCMM zircons in the 
FMC would require the involvement of much older mantle, of 
at least Mesoproterozoic age (>1.1 Ga, considering an unlikely 
176Lu/177Hf = 0 for the source). Secondly, prior to the emplace-
ment of PCMM in the late Carboniferous (330–300 Ma), other 
mafic magmas were emplaced throughout the FMC during the late 
Devonian and early Carboniferous (380–360 Ma) and contrastingly 
show positive bulk-rock εNdt (+1 to +5, up to +8) (Pin and Pa-
quette, 1997, 2002), indicative of a depleted mantle origin. If any 
long-term enriched mantle could have survived underneath the 
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FMC, it is difficult to envisage that it would have been sampled 
by magmatism at ca. 330–300 Ma, but not at 380–360 Ma, es-
pecially since “enriched” upper mantle domains are particularly 
prone to melting (solidus temperatures as low as 1025–1075 ◦C 
at 1 GPa; Conceição and Green, 2004; Condamine and Médard, 
2014). Thirdly, PCMM of the FMC only post-date by 50–100 Ma 
an episode of Silurian–Devonian tectonic accretion and subduc-
tion of continental/oceanic units belonging to the northern mar-
gin of Gondwana (Faure et al., 2008; Melleton et al., 2010). Such 
units, now exposed as migmatitic ortho- and paragneisses contain-
ing eclogitic relics, were buried at depths >100 km and under-
went HP partial melting (Faure et al., 2008; Lardeaux et al., 2001;

Pin and Lancelot, 1982), thereby providing a straightforward way 
to metasomatize the mantle with crustal-derived K-, H2O- and 
LILE-rich material. The same model was proposed to explain the 
occurrence of PCMM in the Variscan Bohemian Massif (Janoušek 
and Holub, 2007), the Himalayas (Campbell et al., 2014; Guo et al., 
2014) and the Dabie-Sulu orogen (Zhao et al., 2013).

Importantly, mass balance calculations show that binary mix-
ing between (i) 80–90% DM and (ii) 10–20% of a crustal com-
ponent with εHft = −10 and δ18O = +20� readily explains the 
Hf–O isotopic composition of PCMM zircons in the FMC (Fig. 6b). 
High δ18O is typically observed in subducted continental sedimen-
tary materials having experienced a low-T weathering cycle, e.g. 
the East Indonesian (δ18O = +15 to +24; Vroon et al., 2001) or 
Lesser Antilles (δ18O = +19 to +21; Davidson, 1987) sediments. 
Moreover, the pre-Variscan crust of the FMC is dominated by 
paragneisses (and meta-granitoids derived from melting of the lat-
ter) corresponding to former sediments of the north Gondwana 
margin, which are characterized by Archean (2.5–3.3 Ga), Paleo-
proterozoic (1.8–2.2 Ga) and Neoproterozoic (0.5–0.7 Ga) detritus, 
as indicated by age patterns of detrital zircon grains (Albert et 
al., 2015; Linnemann et al., 2014). Fig. 7a shows that a mixture 
of these three crustal components, including at least 45–85% of 
Paleoproterozoic–Archean crust, would readily account for the in-
ferred Hf isotopic signature (εHf310 Ma = −10; T DM = 1.8 Ga) of 
the crustal material in the hybrid mantle source. In fact, the bulk 
Hf budget carried by detrital zircons in the pre-Variscan crust of 
the FMC is consistently characterized by an average εHf310Ma of 
ca. −10 (Fig. 7b). This observation clearly supports that the hy-
brid source of PCMM in the FMC results from interactions be-
tween mantle peridotite and subducted pre-Variscan continental 
shelf sediments of the former north Gondwana margin.

Further constraints on the nature of the crust-derived materials 
and how they were incorporated in the mantle can be placed by 
considering bulk rock Th/La ratios, which are not significantly frac-
tionated during mantle melting (Plank, 2005). Indeed, the source 
of PCMM samples with the highest Th/La and δ18O and lowest 
εHft (Subset A) was likely metasomatized by felsic melts derived 

Fig. 5. Plots of major and trace element characteristics of PCMM from the 
eastern French Massif Central (only samples with SiO2 < 63%) highlighting im-
portant features of their petrogenesis. (a) Plot of La concentrations vs. Mg# 
(100*MgO/(FeOt + MgO) [mol]) showing no particular correlation, precluding any 
significant role played by fractionation or crustal assimilation/contamination. The 
green arrow shows the evolution of a primary melt (La = 37 ppm, similar to OIB, 
Sun and McDonough (1989); Mg# = 70) for 50% fractional crystallization of a 25% 
clinopyroxene + 10% plagioclase + 60% biotite + 5% olivine assemblage (Mg# = 77), 
supposedly controlling the liquid line of descent of PCMM (mineral proportions 
and compositions from Parat et al., 2009). Partition coefficients are from Lee et al.
(2007) for olivine and clinopyroxene, from Grégoire et al. (2000) for phlogopite, 
from McKenzie and O’Nions (1991) for garnet and plagioclase. Inset: La contents 
of FMC samples compared with those of the local upper (Moyen et al., in press)
and lower (Downes et al., 1990) crust. (b) Major element ratios of PCMM and 
comparison with experimental liquids obtained by (i) melting of metasomatized, 
phlogopite- and/or amphibole-bearing peridotites (Conceição and Green, 2004;
Condamine and Médard, 2014; Green, 2015; Mengel and Green, 1989; Thibault 
et al., 1992); (ii) melting of phlogopite-free peridotites (Gaetani and Grove, 1998;
Tenner et al., 2012); and (iii) mixed peridotite + felsic granitoid sources (Mallik et 
al., 2015; Prouteau et al., 2001; Rapp et al., 2010). The temperatures (in ◦C) and 
melt fractions (in %) indicated in the field of spinel phlogopite peridotite correspond 
to the experimental conditions and results of Condamine and Médard (2014). The 
arrow shows the variation of elemental ratios for 20% fractional crystallization of 
the assemblage mentioned above. (c) La/Yb vs. La plot with batch melting models 
(curves) of spinel and garnet phlogopite peridotite. Source compositions correspond 
to the Depleted Mantle (Workman and Hart, 2005) mixed with 10% to 25% Bulk 
Continental Crust (Rudnick and Gao, 2003) (black and gray stars, respectively). Par-
tition coefficients for olivine, clinopyroxene and phlogopite as mentioned above, 
orthopyroxene from Lee et al. (2007). Modal proportions in the residue are re-
calculated from Condamine and Médard (2014) for spinel peridotite (olivine 0.69, 
orthopyroxene 0.15, clinopyroxene 0.08, phlogopite 0.07, spinel 0.01) and Thibault 
et al. (1992) for garnet peridotite (olivine 0.25, orthopyroxene 0.5, clinopyroxene 
0.15, phlogopite 0.03, garnet 0.07). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)
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from terrigenous sediments (Fig. 6c, d), which is consistent with 
the fact that subducted rocks in the FMC underwent melting at 
HP (Faure et al., 2008; Pin and Lancelot, 1982). The other sam-
ples (Subset B) are better explained by mixing between DM and 
a bulk continental crust composition (Fig. 6c, d), possibly resulting 
from mechanical mélanges during the subduction of the continen-
tal units. Importantly, compositions corresponding to average, bulk 
lower crust (low Th/La) cannot account for the observed compo-
sitions, even if we consider that such material had high δ18O and 
low εHft (Fig. 6c, d), showing that subduction of supracrustal ma-
terial is required.

4.2. A unified model for PCMM petrogenesis

As outlined earlier, PCMM worldwide share a common geo-
tectonic, petrographic identity and similar geochemical and Hf–O 
isotopic characteristics, which argues for a common origin. The fact 
that our samples from the FMC are chemically representative of 
the diversity of PCMM worldwide (Fig. 3) suggests that the general 
features of the petrogenetic model proposed above can be reason-
ably extended to all PCMM suites.

Consistently, many workers advocated that the particular geo-
chemistry of PCMM necessarily requires an enriched mantle source 
(Fowler and Rollinson, 2012; Guo et al., 2014; Laurent et al., 2011;
Laurent et al., 2014a; Laurent et al., 2014b; Liégeois et al., 1998;
Murphy, 2013; Prelevic et al., 2012; von Raumer et al., 2014;
Williams et al., 2004). Moreover, the presence of continental crust-
derived material in such a source has often been proposed to 
explain the non-DM and “crustal” isotopic signatures of these 
rocks (Guo et al., 2014; Laurent et al., 2014b; Nelson, 1992;
Prelevic et al., 2012). Given the generally higher δ18O of PCMM 
zircons compared with mantle material (Fig. 4a), it is likely that 
these crustal materials are most often represented by supracrustal 
rocks. Finally, mantle enrichment shortly prior to PCMM genesis 
seems to be the rule because, like in the FMC, PCMM emplacement 
systematically post-dates by <50 Ma an oceanic and/or continental 
subduction stage, for instance in the late Archean terranes (Laurent 
et al., 2014a) and in the Himalayan (Chung et al., 2005), Caledo-
nian (Atherton and Ghani, 2002) and Svecofennian (Andersson et 
al., 2006) orogens.

Therefore, we propose that PCMM are derived from: (i) in-
teractions between subducted continental material (most often 
of supracrustal origin), or melts/fluids generated from them, and 
mantle peridotite; and (ii) subsequent melting of the resulting 
hybrid source shortly thereafter. Mantle enrichment through the 
subduction of continental units at the onset of collision (Campbell 
et al., 2014; Guo et al., 2014; Janoušek and Holub, 2007; Zhao et 
al., 2013) would be the most appropriate scenario to account for 
the short time lapse between the two steps; the systematic occur-
rence of PCMM in collision belts; and the more evolved isotopic 
composition and greater incompatible element contents of PCMM 
compared with classical arc magmas (related to oceanic subduc-
tion).

4.3. Quantifying crust and mantle contributions in post-collisional 
mafic magmas

The aim of this section is to quantify the respective mass frac-
tion of mantle- vs. crust-derived elements in the “hybrid” mantle 
source of PCMM. This will be used in turn to determine the mass 

Fig. 6. (a) Results of assimilation/fractional crystallization (AFC) model of a basaltic 
melt (Hf content of 2.03 ppm, from Sun and McDonough, 1989; DM-like isotopic 
composition with εHf(t) = +11 calculated from Naeraa et al., 2012, and δ18O = +5.3 
from Valley et al., 1998) assimilating bulk continental crust (Hf content of 3.7 ppm, 
from Rudnick and Gao (2003); εHf(t) = −50 and δ18O = +25 adjusted to fit the data 
for a maximum fractionation rate of ca. 20%); grey dots indicate the fraction of 
remaining liquid and r the mass ratio between assimilated and crystallized mate-
rial. (b), (c) and (d) Results of mass-balance, binary mixing models between DM 
(εHf(t) = +11; δ18O = +5.3; Hf contents [0.2 ppm] and Th/La [0.04] from Workman 
and Hart (2005)) and three different crustal materials, all characterized by εHf(t) =
−10 and δ18O = +20 (adjusted to fit the data for a maximum mantle contamina-
tion rate of ca. 20%): (i) a melt derived from HP melting of terrigenous sediment (Hf 
contents [4.3 ppm] and Th/La [0.43] from Plank and Langmuir, 1998, corrected from 
HP melting using average partition coefficients of Hermann and Rubatto (2009)); 
(ii) Lower and (iii) Bulk Continental Crust (Rudnick and Gao, 2003). O contents are 
from Roberts et al. (2012). Light blue lines denote the percentage of crustal com-
ponent in the mixture. Errors bars for samples are 2 S.D. All εHft are calculated at 
310 Ma (average age of PCMM in the eastern FMC). (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)
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Fig. 7. (a) Triangular diagram showing the model age and εHf310 Ma (in brackets) of a virtual sedimentary crustal material as a function of the relative proportion of 
Archean, Eburnean (Paleoproterozoic) and Pan-African (Neoproterozoic–Early Paleozoic) crust in the latter, assuming identical Hf concentrations in the three end-members. 
The highlighted model age of 1.8 Ga corresponds to the composition of the crustal material required to explain the zircon Hf isotopic compositions of PCMM in the FMC 
(εHf310 Ma of ca. −10; see Fig. 6 and text for discussion). (b) Histogram showing the distribution of zircon εHf310 Ma for >360 Ma-old grains from all gneiss units in the 
eastern FMC, taken as representative of the isotopic distribution of Hf in the pre-Variscan crust at the time of PCMM formation. The εHf310 Ma are calculated using the 
measured 176Hf/177Hf and 176Lu/177Hf ratios of each zircon grain. Data from Chelle-Michou et al. (2015).

fraction of PCMM that derives from the mantle, which is a critical 
parameter to unravel their contribution to crustal growth.

As demonstrated above, the hybrid mantle source of PCMM is 
formed by interactions between mantle peridotite and crustal ma-
terials (fluid, melt or solid). These interactions may result in differ-
ent cases in nature, e.g. a mechanical mixture of peridotite and 
meta-sedimentary/meta-igneous crustal rocks; a peridotite con-
taining veins formed by reaction with percolating liquids; or a 
metasomatized rock where the added material is distributed in 
newly-crystallized phases (pyroxenes, amphibole, phlogopite). Irre-
spective of the nature of the metasomatic agent, the finite mass of 
each chemical element within any of these “hybrid” sources will 
be partitioned between the fraction that was already present in 
the original mantle prior to the interactions and that supplied by 
the added crust-derived material. The dual geochemistry of PCMM 
shows that they sampled both groups of elements, regardless the 
exact physical nature of the source and melting process. Therefore, 
for each chemical element, the mass fraction of “crust” vs. “mantle” 
atoms in the source of PCMM can be approximated using a simple 
binary mixing model based on mass-balance, assuming reasonable 
compositions for the two components (respectively Bulk Continen-
tal Crust and DM). Although simplistic, this calculation has the 
advantage of relying on few parameters, i.e. the mass fractions of 
the two end-members and their compositions, which in the case 
of crust–mantle mixing are not so critical given the huge concen-
tration contrast between the two for most elements.

For each chemical element, we define xcrust as the mass fraction 
of atoms that originates from crust-derived materials. Fig. 8 shows 
that in a hybrid mantle containing 10 to 25% crustal component, 
xcrust varies for each element, incompatible elements being domi-
nantly controlled by the crustal component (xcrust being as high as 
99% for Rb, Ba, Th, U as the initial mantle contains very little of 
these) whilst compatible elements mostly come from the mantle 
(e.g. 97% of the MgO, Cr and Ni is of mantle origin). Importantly, 
the five most abundant major oxides in the source (SiO2, Al2O3, 
MgO, FeO, CaO; ca. 95% of the bulk mass) are dominantly of mantle 
origin (xcrust is generally <30%) because of the limited concentra-
tion contrast (less than one order of magnitude) between mantle 
and crust and the low mass fraction of the crustal component in 

the hybrid source (Fig. 8). As a direct and critical consequence of 
this, assuming that the proportion of “crust” vs. “mantle” atoms for 
each element does not change during melting of the hybrid source, 
the bulk mass fraction of PCMM that derives from the crustal com-
ponent is low. Typically, for three representative PCMM samples 
(from a Late-Archean terrane and the Variscan and Himalayan oro-
gens), it lies between 15–21% and 31–38%, for respectively 10% and 
25% of crustal materials in the hybrid source (see Fig. 8), meaning 
that >62% of the bulk mass of these samples are of mantle origin 
and thus represent new additions to the crust.

This first-order calculation implicitly presumes that “crust” and 
“mantle” atoms of each element are equally distributed over min-
eral phases in the hybrid source so that xcrust keeps constant 
during melting. This is likely over-simplistic for trace elements, 
especially the dominantly crust-derived elements that would be 
preferentially partitioned into the phases formed via metasomatic 
reactions such as pyroxenes, amphibole and phlogopite (Prouteau 
et al., 2001; Rapp et al., 2010), which in turn preferentially con-
tribute to melting reactions (Condamine and Médard, 2014; Mallik 
et al., 2015). However, for major oxides, xcrust likely remains con-
stant throughout the process. Indeed, metasomatic reactions would 
randomly use both “crust” and “mantle” elements to form new 
minerals and, even if not, solid-state diffusion, phase recrystal-
lization and mixing enhanced by high-temperature deformation 
(Linckens et al., 2014) would smooth any significant difference of 
xcrust from a mineral to another. Moreover, even considering an ar-
tificial two-fold increase in the proportion of “crustal” SiO2 and 
Al2O3 between a highly-enriched mantle composition (25% crustal 
component) and the melt owing to their potential concentration in 
newly formed phlogopite, amphibole and pyroxene, the mass frac-
tion of crust-derived elements in the three PCMM samples used for 
calculation would not exceed 50–63%. These are definitely maxi-
mum values since this scenario is somewhat extreme. Therefore, it 
is reasonable to conclude that the proportion of reworked crustal 
materials in PCMM does not exceed 63% and is most often, as cal-
culated earlier, between 15 and 38%.

Paradoxically, most PCMM (especially the three specimens used 
in the calculations) display markedly negative zircon εHft. Then, 
from an Hf isotope perspective alone, those rocks apparently cor-
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Fig. 8. Plot of the “xcrust” parameter for major oxides (panel (a), sorted as a function of their abundance in PCMM) and trace elements (panel (b), reported by increasing 
compatibility). xcrust is defined as the mass fraction of any element i controlled by the crustal component in a hybrid mantle source consisting of Depleted Mantle (Workman 
and Hart, 2005) +10 (black line) to 25% (grey line) crustal material (Bulk Continental Crust, Rudnick and Gao, 2003), calculated as follows: xi

crust = fcrust[i]crust/(fcrust[i]crust +
(1 − fcrust)[i]DM) where [i] depicts the concentration of element i and fcrust the proportion of crustal component in the hybrid source. The blue field represents the bulk 
fraction of crust-derived elements (X crust) in mafic magmas derived from such a source, calculated for three representative samples of PCMM suites: 533-2 (this study); 
MAT-60 (Laurent et al., 2014b); and 08YR05 (Liu et al., 2014). The calculation has been performed by (i) weighting the concentrations of all elements in each sample by the 
corresponding values of xcrust , and (ii) summing up the resulting values. See text for discussion. Xcrust = ∑n

i=1

(
xi

crust · [i]PCMM
)
.

respond to pure reworking of former crustal lithologies. This dis-
crepancy simply results from the large dominance of the crustal 
component on the incompatible trace element budget (including 
the radiogenic tracers Sr, Nd, Hf, Pb) in the hybrid source (Fig. 8). 
Typically, the Hf budget in the source of PCMM consists of 72–89% 
non-radiogenic “crustal” Hf and only 11–28% radiogenic “mantle” 
Hf. Therefore, as long as incompatible element tracers are con-
sidered, PCMM would bear a “crustal” signature and the mantle 
contribution to their origin, although dominant in terms of mass, 
would be invisible.

4.4. Consequences for crustal growth

As demonstrated earlier (Table 1), PCMM have been emplaced 
during or at the end of continental collision since the late Archean 
(Bonin, 2004; Fowler and Rollinson, 2012; Laurent et al., 2014a), 
specifically at each stage of supercontinent amalgamation. They are 
therefore a systematic magmatic feature of the orogenic cycle, just 
as MORB, arc magmas or collisional granites are, and their signifi-
cance for global crustal evolution must be addressed.

Although the surface expression of PCMM is limited, it has 
been demonstrated in several settings that they would actually 
represent the parental magmas of much more voluminous grani-
toid suites via fractionation (Fowler and Henney, 1996; Küster and 
Harms, 1998; Laurent et al., 2013; Moyen et al., in press) and/or 
limited interaction with coeval crustal melts (Clemens et al., 2009;
Janoušek et al., 2004; Laurent et al., 2014a; Parat et al., 2009). 
In terms of mass balance, these two processes are antagonists: 
silicic liquids will represent only a fraction of the initial mass 
of mafic magma in the case of fractionation, whereas interaction 
with crustal material represents a mass addition to PCMM to form 
granitoids. Hence, it is reasonable to consider that in a given oro-
genic system, the initial volume of PCMM was roughly equivalent 
to that of their genetically related granitoids. According to Moyen 
et al. (in press), PCMM-derived granitoids represent ca. 10% of ex-
posed rocks in the Variscan belt; given that 62 to 85% of the bulk 
mass of PCMM consist of elements extracted from the mantle (see 
section 4.3), and assuming that surface exposure reflects the repar-
tition of lithologies at depth, then 6.2 to 8.5% of the bulk mass of 
the Variscan crust represents new additions from the mantle by 
PCMM.

At first glance, this estimate appears modest in comparison 
with arc settings, in which the large majority of the bulk crustal 

volume is derived from the differentiation of mantle-derived mafic 
magmas (Jagoutz and Kelemen, 2015). However, mantle-derived 
magmatic rocks only become long-term additions to the conti-
nental volume if they are subsequently preserved: while a small 
fraction of arc granitoids may be captured in collisional orogens 
(Condie et al., 2011), the majority of them are readily recycled into 
the mantle shortly after their formation owing to sediment sub-
duction and/or subduction erosion (Stern and Scholl, 2010). In con-
trast, PCMM and derivatives represent small volumes of only partly 
mantle-derived magmas, but because they are shielded in the core 
of newly formed continental masses, they have a much greater 
preservation potential in the geological record (Hawkesworth et al., 
2010). As a result, they may represent significant contributors to 
long-term crustal growth.

Recently, the problem of crustal growth through time has been 
extensively addressed via the statistical analysis of global zircon 
Hf (Belousova et al., 2010; Condie et al., 2011) or coupled Hf–O 
(Dhuime et al., 2012) isotopic databases: Hf model ages are used 
to determine the timing of crust formation, and O isotopes to dis-
tinguish zircons formed in granitoids reworking a “juvenile” source 
(δ18O = 5.5 ± 1.0�) or a “mixed” sedimentary source (δ18O >
6.5�) (e.g. Hawkesworth and Kemp, 2006). The reliability of this 
approach has been questioned recently, especially because Hf and 
O isotopes in zircon reflect in most cases the contribution of multi-
ple components in the origin of their host magma (magma mixing, 
heterogeneous sources, crustal contamination) (Payne et al., 2016; 
Roberts and Spencer, 2015). The case of PCMM raises an even 
more problematic issue, showing that igneous material represent-
ing a non-negligible contribution to long-term crustal growth may 
not have DM-like Hf isotope compositions and “pristine mantle” O 
isotope compositions because of the small proportions of crustal 
(possibly sedimentary) material in their hybrid mantle source.

Several lines of evidence suggest that, despite their limited 
volume, zircons from PCMM and derivatives represent a sizeable 
proportion of global detrital zircon databases. First, because of 
their selective preservation (Hawkesworth et al., 2010), zircons 
from collision-related igneous rocks dominate the detrital popu-
lations in sedimentary rocks wherever recent or ancient orogenic 
crust is present in the catchment area (Spencer et al., 2015). Sec-
ond, because of their high Zr contents (370 ppm in average in 
the eastern FMC), rocks from the PCMM suite have a higher zir-
con fertility factor (“ZFF” of Dickinson, 2008) than other collisional 
granites (150 ppm Zr in the eastern FMC; Moyen et al., in press). 
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Third, magmatic zircons from these rocks show a greater propor-
tion (∼80%) of concordant U–Pb ages compared to those of purely 
crust-derived (“S-type”) granites (∼50%) (Couzinié et al., 2014;
Laurent et al., 2015), such that in a detrital zircon population, 
the probability to discard zircons from PCMM and derivatives be-
cause of U–Pb discordance (Nemchin and Cawood, 2005) is smaller 
than for S-type granites. To illustrate the two latter issues, the ero-
sion of the Variscan crust, assuming that the latter consists of 10% 
PCMM-derived granitoids (ZFF = 2.5; 80% U–Pb concordance); 30% 
crust-derived granites (ZFF = 1; 50% U–Pb concordance); and 60% 
of metamorphic and sedimentary rocks (ZFF = 1; 67% U–Pb con-
cordance), would yield a detrital zircon population in which the 
final, U–Pb concordant dataset contains a minimum of 27% data 
from PCMM-derived material – notwithstanding the likely possibil-
ity that metamorphic and sedimentary rocks may contain zircons 
from reworked, earlier PCMM and related granites, exactly for the 
same reasons.

Therefore, zircons derived from PCMM, their differentiated 
products and any igneous and sedimentary material derived from 
them, would significantly bias the crustal growth signal of global 
detrital zircon databases, in two distinct ways:

(1) Zircons from any PCMM crystallized at time t would have been 
either discarded (non-mantle δ18O resulting from the involve-
ment of sedimentary components) or attributed to ancient 
events of crust formation because of non-radiogenic Hf isotope 
compositions (and old Hf model ages). Although the latter fea-
ture certainly reflects reworking of older crust to some extent, 
this reworking is over-estimated because the mantle contribu-
tion at time t cannot be resolved by Hf isotopes alone (see 
section 4.3).

(2) If PCMM-derived crustal material is reworked by later mag-
matic events, then the calculation of model ages based on DM 
for zircons formed in these younger magmas is inappropriate 
since their crustal source had a non-DM Hf isotopic composi-
tion.

Both would have the same global effect, i.e. skewing crustal 
growth models towards an over-estimation of ancient crustal 
growth with respect to younger crust formation. Specifically, be-
cause PCMM are present on Earth since the late Archean (Table 1), 
post-Archean crustal growth rates may be significantly under-
estimated.

5. Conclusions

1. PCMM are ubiquitous in all continental collision settings since 
the late Archean and are characterized by a dual geochemistry, 
with high contents in both compatible, “mantle-hosted” ele-
ments (FeOt + MgO, Ni, Cr) and incompatible, “crust-hosted” 
elements (LILE, REE, HFSE).

2. As illustrated by the case study from the eastern FMC, PCMM 
originated from low-degree partial melting of a phlogopite-
(and/or amphibole-) bearing peridotite/pyroxenite. In the FMC, 
the non-radiogenic εHf(t) (−2 to −9) and elevated δ18OSMOW
(+6 to +10�) of PCMM zircons suggest that this mantle 
source was contaminated by 10 to 25% of subducted conti-
nental shelf sediments derived from Precambrian crust, shortly 
prior to melting.

3. Mass balance calculations indicate that the incompatible trace 
element budget (including radiogenic isotope tracers Sr, Nd, 
Hf, Pb) of the PCMM source is mainly controlled by the crustal 
component. Therefore, resulting magmas display “crust-like” 
non-radiogenic isotope compositions even though 62 to 85% 
of their bulk mass originates from the mantle component and 
represents new addition to the crust.

4. PCMM have contributed to crustal growth since the late 
Archean because they are the parent of voluminous granitoid 
suites and have a high preservation potential in the geological 
record. Owing to their peculiar hybrid origin, this contribution 
cannot be resolved in global crustal growth models based only 
on zircon Hf and O isotopes, such that post-Archean crustal 
growth may be significantly under-estimated.
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5.4 Additional discussion on the source of crust-derived gran-
ites

5.4.1 Rationale

Moyen et al. (2017a) argued that the chemical di�erences between MPG and CPG gran-
ites result from both: (i) contrasted sources and (ii) di�erent T�XH2O melting conditions
and thus melting reactions. The MPG would have formed by water-present melting or
muscovite-dehydration melting of metasediments while the CPG would correspond to
higher-T magmas, generated by biotite-dehydration melting of a quartzo-feldspathic (or-
thogneiss) source. However, CPG and MPG share the same inherited zircon age pattern
(Laurent et al., 2017) which is inconsistent with di�erent magma sources. It rather sug-
gests that chemical variations arose solely from petrogenetic processes i.e. contrasted
melting temperatures/reactions, variable extent of peritectic assemblage entrainment,
restite unmixing (see Clemens and Stevens, 2012).

Laurent et al. (2017) attempt to identify the source material of MPG/CPG granites
by comparing their inherited zircon age distribution to the respective patterns of meta-
igneous and metasedimentary rocks from the FMC. At the time the paper was written,
such approach su�ered from the scarcity of available zircon ages on the eastern FMC
basement. This led the authors to use a (limited) dataset from the western FMC which
pre-Variscan evolution markedly contrasts with that inferred for the eastern FMC (see
Chapter 4). A better knowledge of the nature, zircon age distribution and Hf isotope
composition of the eastern FMC constituent lithologies has been gained over the past
two years and allows to put further constraints on the nature of the reworked materials
during the Variscan orogeny.

In the following, we consider that inherited zircon grains in MPG/CPG are domi-
nantly restitic and were incorporated in the magma at source level (Clemens, 2003) thus
providing a faithful record of the source age pattern.

5.4.2 Meta-igneous vs. metasedimentary source

Figure 5.2 compares the age distribution of inherited zircon grains in MPG/CPG with
that of the main lithologies of (a) the Lower Gneiss Unit (b) and the Upper Gneiss
Unit. Clearly, the dominant c. 545 Ma inherited population matches the emplacement
age of meta-granites from the Velay Orthogneiss Formation. Besides, the Hf isotope
composition of these inherited grains remarkably mimicks that of VOF zircons (Fig. 5.3a)
providing further evidence for extensive melting of the VOF meta-granites at Variscan
times. Involvement of meta-igneous rocks akin to the Riverie tonalites, also of adequate
age (Fig. 5.2b) is excluded by their highly radiogenic isotope signature (Fig. 5.3b) not
encountered in the c. 545 Ma-old inherited grains. The "tail" of inherited zircon ages
running from 560 to 1100 Ma (besides subordinate c. 2 Ga and 2.7 Ga components,
not shown) could be explained by the coeval subordinate melting of LGU metasediments
and incorporation of detrital zircon grains in the resulting magmas. Such detrital grains
do have suitable Hf isotope compositions as they show a similar scatter than the one
observed in inherited zircons (Fig. 5.3a). Finally, the age distribution of inherited zircons
also displays a peak at c. 470 Ma which does not correspond to any LGU lithology, in
our present state of knowledge (Fig. 5.2a). Alternatively, it could be explained by the
presence in the granite source region of UGU gneisses and amphibolites (Fig. 5.2b).
Apart for one grain, c. 470 Ma-old inherited zircons have Hf isotope compositions closer
to UGU gneisses than amphibolites favouring a gneissic source, in line with the chemistry
of MPG/CPG granites (Moyen et al., 2017a).

Overall, these comparisons suggest that the source of MPG/CPG is mixed and com-
posed of: (i) meta-granites of the VOF; (ii) metasediments of the LGU; (iii) a metamor-
phic lithology which zircon age pattern resembles that of UGU gneisses. It is unlikely
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Figure 5.2: Inherited zircon U�Pb date distribution for MPG/CPG granites from the eastern
French Massif Central. Only 95�105% concordant 206Pb/238U dates were considered. Data from
Couzinié et al. (2014); Laurent et al. (2017) and Chelle-Michou et al. (2017). Are shown for
comparison: (a) the distribution of U�Pb dates in metasediments from the Lower Gneiss Unit
represented as Kernel Density Estimate (KDE), together with the range of emplacement ages
of meta-granites from the Velay Orthogneiss Formation (data from Chelle-Michou et al., 2017;
Couzinié et al., 2017 and Chapter 6); (b) the distribution of U�Pb dates in gneisses from the
Upper Gneiss Unit represented as Kernel Density Estimate (KDE), together with the range of
emplacement ages of meta-basites and meta-tonalites from the Upper Gneiss Unit (data from
Chelle-Michou et al., 2017 and Chapter 3). Plotted with the DensityPlotter program of Ver-
meesch (2012). The bandwidth of the KDEs was set to 12 Ma (the average 2σ error of individual
analyses).

that the UGU itself is present in the source region of MPG/CPG. Indeed, metamor-
phic and structural investigations clearly support an allochtonous origin of the nappe
which would have been rooted further north with respect to the Velay dome (Burg et al.,
1984; 1989). An alternative would be to consider that early Variscan thrusting resulted
in the imbrication of crust slices with contrasted pre-Variscan histories so that a crust
segment having recorded Ordovician magmatic events would lie structurally below the
LGU. Such possibility is supported by U�Pb dating conducted on metasedimentary lower
crustal xenoliths scavenged by Cenozoic volcanoes (Rossi et al., 2006). In addition to
grains showing "Variscan" dates, these authors report the presence of older zircons with
concordant 206Pb/238U dates ranging from 629 ± 56 Ma down to 436 ± 12 Ma. Such ma-
terial would adequately correspond to the UGU-alike component. Yet, limited available
data do not allow to further test this hypothesis.

Rough estimates of the proportion of the three above-mentioned components may
be retrieved via the following procedure. The set of inherited zircon grains is divided
into three subsets: late Cambrian�Ordovician (445�530 Ma), Ediacaran�early Cambrian
(530�560) and older dates (> 560 Ma). Each subset is assumed to exclusively originate
from one of the three inferred source components, respectively the "UGU-alike" material,
the VOF meta-granites and the LGU metasediments. A zircon "fertility" factor (ZFF of
Dickinson, 2008) is attributed to each source based on their average Zr content, provided
that all Zr is hosted in zircon. Our chemical survey (see Chapter 2 and Appendix Ta-
ble B1) indicate that the VOF meta-granites and LGU metasediments have average Zr
concentrations of 104 and 260 ppm resulting in ZFF of 1 and 2.5, respectively. The ZFF
of the "UGU-alike" material was set free to vary between these two values. Resulting
proportions in the source of MPG/CPG are 10�22 % for the "UGU-alike" component,
55�65 % for the VOF and 22�26 % for the LGU metasediments. Such �rst-order calcula-
tion implicitly requires that all three sources melt synchronously and produce magmatic
liquids of similar compositions so that each zircon grain, no matter its origin, has the
same probability to survive dissolution. Of course, such assumption is highly simplistic
and entails that the results are only crude estimates.
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Figure 5.3: Combined U-Pb and Lu-Hf isotopic data for inherited zircons in Variscan crust-
derived granites (CPG/MPG) compared to the signature of constituent lithologies from the
Lower (a) and Upper (b) Gneiss Units. Data for the Velay Orthogneiss Formation from Couzinié
et al. (2017), for the Riverie meta-tonalites from this work, for LGU metasediments from Chelle-
Michou et al. (2017) and this work, for Variscan granites from Moyen et al. (2017a); Chelle-
Michou et al. (2017), for UGU gneisses from Chelle-Michou et al. (2017). The εHf (t) range for
the Depleted Mantle reservoir is bracketed by the models of Naeraa et al. (2012) and Gri�n
et al. (2002).
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5.4.3 Conclusion

Examination of the inherited zircon record in Variscan peraluminous granites suggests
that one of the constituent lithology of the FMC crust segment (the Velay Orthogneiss
Formation) was selectively reworked during the post-collisional magmatic episode. Sev-
eral hypotheses can be formulated to account for this. First, this may re�ect the mass
distribution of each crustal component at depth, the VOF being volumetrically dominant
as observed at present-day outcropping level. Alternatively, such apparent pattern may
arise from contrasted zircon behaviour in metasedimentary vs. meta-igneous derived
magma batches. These hypotheses can be tested by further examining the root zone of
granite magmas i.e. migmatite terrains. This is further discussed in the next Chapter
which provides a comprehensive case study of a migmatite dome from the southern part
of the Velay Complex.
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Chapter 6

Post-collisional exhumation of the
partially molten crust: a case study
from the Masméjean migmatite
dome

Partial melting of the continental crust generates incompatible element-rich, mobile and
buoyant melts that rise upwards to the surface and ultimately lead to the chemical
layering of the crust (Sawyer, 1994; Sawyer et al., 2011; Vielzeuf et al., 1990). Migmatites
are crustal rocks that preserve evidence for the concomitant presence of a melt and a
residual solid phase in their framework and are thus regarded as the source of crust-
derived magmas (Brown, 1994; Clemens, 1990). Such rocks are abundant in orogenic
domains where they often crop out in gneiss domes. Those are typically composed
of a core built up by high-grade, commonly anatectic, metamorphic lithologies (plus
granites) featuring a domal foliation and are mantled by rocks of lower metamorphic
grade (Teyssier and Whitney, 2002; Whitney et al., 2004a). The concurrence of dome
formation and anatexis has been interpreted as re�ecting the vertical �ow of partially
molten middle to lower crustal layers (Tirel et al., 2004; Whitney et al., 2004b) and
suggests that doming is intimately linked with the process of continental crust reworking.

Anatectic gneiss domes are generated in a range of regional strain conditions, from
extensional (in metamorphic core complexes, where dome formation is controlled by
localized extension in the upper crust, e.g. Brun and Van Den Driessche, 1994; Chen
et al., 1990; Escuder Viruete et al., 2000) to compressional (buckle folds, e.g. Burg et al.,
1997; 2004; �típská et al., 2000; Zeitler et al., 1993). In both cases, diapirism, which
refers to the buoyancy-driven ascending �ow that counteracts inverted density gradients
(Biot and Odé, 1965; Weinberg and Schmeling, 1992), would proceed during doming since
partially molten rocks are less dense than their overlying roof units (Bouhallier et al.,
1995; Burg and Vanderhaeghe, 1993; Calvert et al., 1999; Kruckenberg et al., 2011; Soula
et al., 2001; Weinberg and Podladchikov, 1994; Whitney et al., 2004b).

Diapirism may strongly shape migmatite domes as it generates a set of positive feed-
back scenarios (Whitney et al., 2004b). Vertical transfer of anatectic rocks during doming
provokes near-isothermal decompression which enhances melting (Rey et al., 2009; Whit-
ney et al., 2004a). At increasing melt fractions, the viscosity drop and rheological tran-
sitions towards a magma behavior (Vanderhaeghe and Teyssier, 2001; Vanderhaeghe,
2009; Vigneresse et al., 1996) would ease the en-masse vertical �ow of the partially
molten crust and establish it as a self-sustained process. Numerical models show that
buoyancy-driven �ow does control the structure of extensional domes submitted to slow
free-boundary extension (Rey et al., 2011), a setting observed in the collapse of orogenic
plateaux associated with divergence (Rey et al., 2001). Yet, such models do not investi-
gate the case where dome formation is related to collapse at �xed-boundary conditions.
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This situation features substantial potential energy transfer between adjacent crustal do-
mains (Rey et al., 2001) partly accommodated by strike-slip tectonics which role during
doming remains unclear (Lagarde and Dallain, 1994).

In this chapter, I attempt to: (i) evaluate the respective contributions of the regional
strain �eld vs. buoyancy-driven partially molten crust dynamics in determining the shape
of migmatite domes formed during orogenic collapse; (ii) identify the parameters that con-
trol their regional distribution; (iii) characterize the petrogenesis of exhumed migmatites
and associated granites; and (iv) investigate the behaviour of the zircon U�Pb chronome-
ter in anatectic settings. This study is based on a natural example from the Variscan
eastern French Massif Central: the Masméjean dome, on which new structural observa-
tions, Anisotropy of Magnetic Susceptibility (AMS) mapping and zircon/monazite U�Pb
geochronological investigations were performed.

Field work was conducted with Pierre Bouilhol (now at CRPG, Nancy) who signi�-
cantly contributed to all the ideas presented hereafter. The AMS study was performed in
collaboration with Jérôme Bascou (Saint-Etienne University). U�Pb data was acquired
with the assistance and under the supervision of Oscar Laurent (ETH Zürich, for zir-
con) and Jean-Louis Paquette (Laboratoire Magma et Volcans, Clermont�Ferrand, for
monazite).

6.1 Geological setting

The Masméjean dome is located at the intersection between three main Variscan litho-
tectonic units from the eastern French Massif Central (Fig. 6.1 and 6.2). To the North-
East, it �anks the southern part of the Velay Complex, a 120x80 km granite�migmatite
poly-diapiric dome that nucleated during orogenic collapse and is attributed to the Lower
Gneiss Unit of Ledru et al. (1989) (see review in Ledru et al., 2001). The Margeride
granite crops out to the West and corresponds to the largest intrusive batholith of the
French Massif Central (Chantraine et al., 1996). To the South, lies one of the peripheral
parautochton complexes (PAU) de�ned by Ledru et al. (1989).

6.1.1 The Velay Complex

General architecture The Velay Complex is an asymmetric granite�migmatite dome
bounded to the North by a ductile extensional shear zone showing top-to-the N sense of
shear (Malavielle et al., 1990) and referred hereafter as "Pilat Shear Zone" (Fig. 6.1).
The timing of its activity and associated dome exhumation is bracketed by the intrusion
of the syntectonic "Gou�re d'Enfer" granite (Vitel, 1988) dated at 322 ± 9 (Rb�Sr on
whole-rock, Caen-Vachette et al., 1984) and 301.8 ± 3.1 Ma (U�Pb on zircon, C. Chelle-
Michou, personal communication). To the East, �at-lying migmatites represent the dome
roof, which is seen intruding the overlying Upper Gneiss Unit (Anthonioz, 1987; Lagarde
et al., 1990; Lagarde and Dallain, 1994; Ledru et al., 2001). The western and southern
margins are steeply dipping with the dome being locally overturned to the South (Burg
and Vanderhaeghe, 1993; Lagarde and Dallain, 1994; Ledru et al., 2001). The strain
pattern in the dome core features: (i) concentric structures regarded as intrusive, diapiric
e�ects; (ii) vertical wrench ductile N�S sinistral and NE�SW dextral shear zones (Dupraz
and Didier, 1988; Lagarde et al., 1990; Lagarde and Dallain, 1994; Ledru et al., 2001).

Tectonic�metamorphic evolution of its southern margin Recent river incision
resulted in the southern margin being the best-exposed part of the dome (Fig. 6.2) and
this area has accordingly been the subject of numerous studies reviewed in Barbey et al.
(2015). The southernmost part of the Velay Complex, separated from the main granite�
migmatite mass by the La Souche fault, corresponds to an E�W trending sub-dome
referred to as "Tanargue" dome in the following (Fig. 6.2).
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Figure 6.1: (a) General location of the Variscan belt of Europe and inferred suture zones. Abbre-
viations: GMC Galicia-Massif Central, STZ Saxo-Thurigian Zone, RHZ Rhenohercynian Zone,
MZ Moldanubian Zone. The yellow star highlights the location of the Velay Complex. (b) Ge-
ological map of the eastern French Massif Central (Velay area) redrawn after Chantraine et al.
(1996).
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Constituent metamorphic rocks of the southern part of the Velay Complex include
(Weisbrod, 1970): Ediacaran paragneisses from the "Série Cévenole" and late-Ediacaran
orthogneisses from the "Série Ardéchoise" which are part of the "Velay Orthogneiss
Formation" (see section 2.1). Scarce amphibolites corresponding to meta-alkali basalts
are locally observed (Bambier et al., 1985b; Pin and Marini, 1993).

The main regional Sn foliation is reworked by prominent NW-SE to E-W trending
folds a�ecting all lithologies, with second-order asymmetric chevrons showing south-
dipping to vertical long limbs and horizontal short limbs (Anthonioz, 1985; Macaudière
et al., 1987; Marignac et al., 1980). Folding was synchronous with limited M3 anatexis
(Laumonier et al., 1991; Macaudière et al., 1992) at T ∼ 720°C and P = 0.5�0.6 GPa
(Ait Malek et al., 1995; Barbey et al., 2015; Montel et al., 1992). M3 migmatites are
generally metatexites (Fig. 6.2) and anatexis has been dated between 331 ± 4 (U�Th�Pb
EPMA age on monazite, Be Mezeme et al., 2005a, Fig. 6.3 and 6.4) and 315 ± 5 Ma
(U�Pb ID�TIMS on monazite, Mougeot et al., 1997, Fig. 6.3 and 6.4).

A more intense M4 melting event at T ≥ 800°C and P ∼ 0.4 GPa (Barbey et al.,
2015; Montel et al., 1992) developed coevally to the intrusion of the Velay granite (Dupraz
and Didier, 1988; Lagarde et al., 1990; Weisbrod, 1962), dated at 305.9 ± 1.7 Ma (LA�
ICP�MS U�Pb age on monazite, Couzinié et al., 2014, Fig. 6.3 and 6.4) and 301 ±
5 Ma (ID�TIMS U�Pb age on monazite, Mougeot et al., 1997, Fig. 6.3 and 6.4). M4

migmatites are mostly diatexites (Fig. 6.2).
The last increment of melting resulted in the intrusion of the so-called "late-migmatitic

granites" between 307 ± 2 Ma (LA�ICP�MS U�Th�Pb age on monazite, Didier et al.,
2013) and 304.6 ± 5.0 Ma (U�Pb zircon, recalculated from Couzinié et al., 2014, tak-
ing into account systematic errors) and thought to have been generated at T ∼850°C
and P = 0.4�0.6 GPa (Barbey et al., 2015; Montel et al., 1986). Given their overlap-
ping emplacement ages, undistinguishable within errors, the main Velay phase and the
"late-migmatitic granites" are grouped together in Fig. 6.2. Potassic diorites (locally
called "vaugnerites") originating from melting of the orogenic mantle (see section 5.3)
are commonly observed within the dome and yielded identical within error emplacement
ages between 307.4 ± 3.9 and 305.8 ± 4.1 Ma (U�Pb zircon, Couzinié et al., 2014, and
Laurent et al., 2017, taking into account systematic errors, Fig. 6.3 and 6.4).

Contact between the migmatite dome and the overlying Cévennes schists
The contact corresponds to a high-temperature mylonite (Fig. 6.2) referred to as "Meta-
morphic Mylonitic Vellave Zone� (MMVZ, Bouilhol et al., 2006). In the Bt�Sil zone,
the deformation features: (i) a non-negligible pure shear component and (ii) stretching
lineation perpendicular to the dome�schists contact with a top-to-the S sense of a shear
(Bouilhol et al., 2006). According to these authors, this pattern would re�ect the diapiric
ascent of the migmatite dome piercing through its metasedimentary cover and accounts
for the constriction of the And�Crd�Bt zone in the Cévennes schists (see below and Fig.
6.2). At the contact between migmatites and schists lies the Rocles syntectonic granite
(Weisbrod et al., 1980) showing a well-de�ned ENE�WSW trending magnetic lineation
(Be Mezeme et al., 2007) and for which a range of ages have been obtained, from 325 ±
5 Ma (U�Th�Pb EPMA dating of monazite, Be Mezeme et al., 2006) down to 302 ± 3
Ma (Rb�Sr whole-rock, Caen-Vachette et al., 1981).
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Figure 6.3: Summary of available geochronological constraints on tectonic, metamorphic and
magmatic events in the upper and the middle crust and at the interface between them (namely
the Mylonitic Metamorphic Vellave Zone of Bouilhol et al., 2006). Data from Be Mezeme et al.
(2005a); Be Mezeme (2005b); Be Mezeme et al. (2006; 2007); Bouilhol et al. (2006); Bouilhol
(2004); Brichau et al. (2007); Bruguier et al. (2003); Caron (1994); Cocherie et al. (2005); Chauvet
et al. (2011); Couzinié et al. (2014); Didier et al. (2013); François (2009); Isnard (1996); Laurent
et al. (2017); Mialhe (1980); Monié et al. (2000); Montel et al. (2002) and Mougeot et al. (1997).
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Timing of dome exhumation Top-to-the S shearing in the MMVZ has been dated
at 310.7 ± 2 Ma and cooling at 307.5 ± 3.4 Ma (monazite EPMA U�Th�Pb and biotite
Ar�Ar ages, respectively, Bouilhol et al., 2006, Fig. 6.3). Migmatites and granites are
unconformably overlain by the Prades�Jaujac detrital basin and found within its basal
conglomerate (Bouilhol et al., 2006). The zircon U�Pb age of 296 ± 6.8 Ma (SIMS,
Bruguier et al., 2003, Fig. 6.3 and 6.4) obtained from bentonites indicate that high-
grade rocks were already exposed at surface level by that time. This is consistent with
the migmatites and granite U�Pb apatite cooling ages ranging between 292 ± 6 and 286
± 5 Ma (Mougeot et al., 1997, Fig. 6.3 and 6.4).

6.1.2 The Cévennes schists

Lithologies The Cévennes schists are composed of two main litho-tectonic units. The
"Joyeuse/Cézarenque" series are built up by greenschist-facies metasediments and calc-
alkaline Bt-bearing augen gneisses (Crevola et al., 1983; Elmi et al., 1989) of unknown
age. The "Cévenole" series comprise greenschist- to amphibolite-facies micaschists and
quartzites corresponding to a metamorphosed Cambrian�Ordovician terrigenous sedi-
mentary sequence (Faure et al., 2009).

Intruding granitoids The Cévennes schists are intruded by a set of igneous rocks:
� the Signaux batholith (Brichau et al., 2007), itself composed of the Laubies adamel-
lite, the Finiels and Bougès granites. Those granitoids are peraluminous, show
magmatic muscovite and/or cordierite (Guérangé-Lozes and Pellet, 1990; Sabourdy
and Berthelay, 1977) and thus belong to the MPG/CPG types of Barbarin (1999),
hence their crustal origin.

� the Pont-de-Monvert, Rabeyrals, Borne and Largentière plutons. All these gran-
itoids are Kfs-porphyritic, contain ma�c amphibole-bearing enclaves (Guérangé-
Lozes and Pellet, 1990) and are intimately associated with vaugnerites (Couzinié
et al., 2014) suggesting that they belong to the KCG type of Barbarin (1999). They
would thus represent ma�c magma di�erentiates (Laurent et al., 2017; Moyen et al.,
2017a).

� plutonic to volcanic (lamprophyre and rhyolite) dykes. These rocks are locally
widespread, for instance east of the Borne granite or south of the Mont-Lozère plu-
ton (Alabouvette et al., 1988; Chauvet et al., 2011; Laurent et al., 2017; Weisbrod
et al., 1974).

Structures Polyphase deformation a�ected the Cévennes schists. Early top-to-the
W�NW thrusting (D1, Table 6.1) generated kilometer-scale folds with a N�S to NE�SW
axial planar foliation (Arthaud et al., 1969; Brouder, 1971). NW-SE trending stretching
lineations with a top-to-the-NW sense of shear are described in the eastern Cévennes
(Bouilhol et al., 2006). This event would have juxtaposed the "Joyeuse/Cézarenque" se-
ries over the "Cévenole" series (Barbey et al., 2015; Bouilhol et al., 2006). Both units were
subsequently a�ected by top-to-the S�SW shearing (D2) coeval with the development of
E�W trending folds overturned to the South (Arnaud et al., 2004; Arthaud et al., 1969;
Brouder, 1968; Faure et al., 1999; 2001; Lacassin and Van Den Driessche, 1982). Close to
the Tanargue dome, the micaschists display a NE�SW trending stretching lineation but
with a top-to-the NE sense of shear (Bouilhol et al., 2006; Faure et al., 2001) pinpointing
an apparent transport of the metasediments over the Velay dome (D2v). Intrusion of the
Rocles granite would be coeval to this deformation phase (Be Mezeme et al., 2007). Fi-
nally, a late ductile deformation increment (D3) featuring WNW�ESE trending lineations
would have developed in an extensional context (Faure, 1995; Faure et al., 1999; 2001).
Shear criteria indicate top-to-the-ESE and top-to-the WNW transport in the eastern and
western Cévennes, respectively (Faure et al., 1999; 2001).

167



Name Lineation direction Sense of shear Age
D1 NW�SE Top-to-the NW ≥ 340 Ma
D2 NE�SW to N�S Top-to-the S�SW 320 ≤ X ≤ 340 Ma
D2v NE�SW Top-to-the NE c. 320 Ma
D3 WNW�ESE Top-to-the-ESE and WNW ≤ 315 Ma

Table 6.1: Summary of available structural data in the Cévennes schists.

Structural studies were conducted on the Pont-de-Monvert and Borne plutons using
conventional (Faure et al., 1992; Faure, 1995) and magnetic (AMS) methods together
with gravimetry (Faure et al., 2001; Talbot et al., 2000; 2004). They identi�ed a magma
feeding zone west of the Pont-de-Montvert granite and showed that this pluton expanded
eastwards in a regional E�W extensional context. The Borne pluton would rather be
tabular and shows a ENE�WSW trending horizontal magmatic lineation (Fig. 6.2).

Because of their petrological similarities, the Borne and Pont-de-Montvert plutons
have often been regarded as formerly being part of single batholith subsequently dis-
membered by the N�S trending Villefort fault (Fig. 6.2, Arthaud and Matte, 1975;
Deroin et al., 1990; Lapadu-Hargues, 1947). Using both batholiths as passive markers, a
lateral displacement of 12 km has been proposed (Deroin and Prost, 1993a; Deroin et al.,
1993b; Lapadu-Hargues, 1947). Finally, E�W trending dextral to inverse faults (i.e. the
Goulet and Orcières faults) were active in the Cenozoic (Briand et al., 1993).

Metamorphism and chronological constraints Caron (1994) investigated the "Joy-
euse/Cézarenque" series and reported a set of biotite, muscovite and amphibole Ar�Ar
ages that cluster around 340 Ma (Fig. 6.3 and 6.4). In this area, deformation during both
the D1 and D2 events occurred under greenschist-facies conditions (Elmi et al., 1974).
Given the closure temperatures of the analysed minerals, the date of c. 340 Ma may
correspond either to the age of top-to-the NW shearing or top-to-the S�SW thrusting
(Table 6.1).

Largely disputed are the temporal relationships between top-to-the S�SW thrust-
ing and the regional metamorphism of the Cévennes schists. Arnaud and Burg (1993);
Arnaud et al. (2004) and Faure et al. (1999; 2001) argued that both were coeval and
regarded regional metamorphism as a prograde Barrowian sequence. In contrast, Rakib
(1996) showed that mineral isograds actually cut across the main thrusts and that meta-
morphism post-dates D2.

Figure 6.2 highlights that the And�Crd�Bt zones coalesce at the scale of the whole
northern Cévennes, outlining a single amphibolite-facies domain wrapping around the
Velay dome (Weisbrod, 1968) and intruding granites (Bouilhol et al., 2006). The latter
developed thermal aureoles marked by the restoration of And and Crd blasts, indicating
that intruded micaschists were part of the regional And�Crd�Bt zone (Briand et al.,
1993). As a direct consequence of this, granite magmatism was coeval or postdated
regional metamorphism. Available geochronological constraints on igneous rocks and
their metamorphic aureoles (Fig. 6.3) argue for a protracted magmatic activity with
emplacement of the Cévennes granitoids over a period of c. 15 Ma from 316 ± 4 (Ma
intrusion of the Bougès granite, ID�TIMS U�Pb monazite age of Isnard, 1996) to 298.9 ±
3.8 Ma (intrusion of the Largentière granite, LA�ICP�MS U�Pb zircon age, recalculated
from Laurent et al., 2017, Fig. 6.3 and 6.4).

In the vicinity of the Velay dome, top-to-the NE shearing (the D2v event) has been
dated in situ by Bouilhol et al. (2006) on syntectonic muscovite at c. 320 Ma (Fig. 6.3,
Table 6.1). Following Rakib's interpretation, the muscovite ages of c. 320 Ma probably
represent the age of the regional greenschist- to amphibolite-facies metamorphism, thus
implying that the D2 thrusting event is older than 320 Ma. The younger Ar�Ar biotite
ages of 310�307 Ma obtained by Bouilhol et al. (2006) close to the dome would correspond
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to cooling ages.
D3 extensional deformation would have been coeval to the intrusion of the Pont-de-

Montvert and Borne granites (Faure, 1995; Faure et al., 1999; 2001). Available ages for
the former are inconsistent with a biotite Ar�Ar cooling age of 310.8 ± 4 Ma (François,
2009), statistically di�erent and older than the zircon U�Pb date of 302.5 ± 3.5 Ma
(LA�ICP�MS, recalculated from Laurent et al., 2017). Similarly, emplacement of the
Borne granite is poorly constrained by a whole�rock Rb�Sr date of 315 ± 5 Ma Mialhe
(1980). According to Bouilhol et al. (2006), the D3 event postdated the intrusion of the
Borne granite and led to the formation of the Bessèges coal basin (Fig. 6.2). Zircon
U�Pb dating of bentonite in the latter yielded an age of 297.4 ± 4.4 Ma (Bruguier et al.,
2003, Fig. 6.3 and 6.4) bracketing the age of D3 between c. 315 and 300 Ma.

6.1.3 The Margeride pluton

The Margeride pluton is composed of several granitoid types (Couturié, 1977; Choubert
and Girod, 1974b; Couturié and Ge�roy, 1974; Lafon and Respaut, 1988):

� a largely dominant Bt-bearing, Kfs-porphyritic, peraluminous granite.
� potassic diorites ("vaugnerites") showing mingling and mixing textures with the
main phase.

� muscovite-bearing leucogranites (i.e. the Grandrieu massif) cutting across the main
phase.

� late microgranite, lamprophyre and rhyolite dykes.
Recent geochronological investigations (Laurent et al., 2017) yielded intrusion ages

identical within uncertainties for the porphyritic phase, the vaugnerites and the leucogran-
ites, between 313.2 ± 4.3 Ma and 309.4 ± 3.8 Ma (recalculated considering systematic
errors). This batholith has also been the subject of structural studies using conven-
tional and magnetic data together with gravimetric investigations (Feybesse et al., 1995;
Laboue, 1982; Talbot et al., 2005). The nearly �at-lying magmatic foliation displayed
by the porphyritic granites complies with an extensional setting while NW�SE trending
magmatic lineations with top-to-the SE sense of shear point to SE�directed expansion
during magma emplacement (Feybesse et al., 1995; Talbot et al., 2005).

6.1.4 The Masméjean dome

The Masméjean dome was �rst described by Lapadu-Hargues (1947) and subsequently
investigated by Anthonioz (1987); Be Mezeme et al. (2006); Briand et al. (1993); Faure
et al. (2001); Négron (1979) and Rakib (1996). The geological map presented Fig. 6.5
was drawn based on these works and our own �eld survey.

General overview and constituent lithologies The Masméjean dome is a triangu-
lar shaped antiform showing gently dipping southwestern and northwestern �anks that
contrast with the steep eastern �ank (Fig. 6.5). The dome is built up by an anatectic
orthogneiss core mantled by an association of unmolten amphibolite-facies orthogneisses
and metasediments. One orthogneiss sample has been dated section 2.1 and yielded a
zircon U�Pb emplacement age of 541.4 ± 4.9 Ma (taking into account systematic errors,
Fig. 6.3 and 6.4). Be Mezeme et al. (2006) obtained EPMA monazite ages of 323 ± 3
Ma and 543 ± 25 Ma from an anatectic orthogneiss which they interpret as re�ecting the
timing of partial melting and protolith emplacement, respectively. A single plurimetric
amphibolite body was observed near the place known as Les Orts (Briand et al., 1993).
Metasedimentary lithologies comprise paragneisses, micaschists and quartzites assumed
to derive from a range of protoliths including greywackes, pelites and sandstones (Briand
et al., 1993; Négron, 1979). The metasediments structurally overlay the orthogneisses or
constitute metric to kilometric rafts embedded into them.
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Our map di�ers from those of Briand et al. (1994) and Négron (1979) as it emphasizes
the existence of hectometer-scale granite sills outlining the contact between migmatites
and metasediments in the eastern �ank of the antiform (Fig. 6.5). Those correspond
to the "granulites de ségrégation" of Lapadu-Hargues (1947) and will be referred to
as "Villefort granites" hereafter. Post-tectonic leucogranite, microgranite to rhyolite
dykes are frequently observed in and out of the anatectic domain. Be Mezeme et al.
(2006) reported an EPMA monazite age of 333 ± 6 Ma for a granite dyke but did not
quote the exact GPS coordinates. Finally, Variscan igneous and metamorphic rocks
are unconformably overlain by Lower Jurassic shallow marine limestones (Briand et al.,
1993).

Relationships between the Masméjean dome and adjacent units Near Labasti-
de-Puylaurent, the steep N�S foliation of the eastern �ank of the Masméjean dome
gradually rotates to an NE�SW and then E�W trend matching that displayed by the
Tanargue migmatites (Briand et al., 1994; Lapadu-Hargues, 1947). The persistence of
anatexis indicates that a petrological continuity exists between the Masméjean dome and
the southern part of the Velay Complex (Be Mezeme et al., 2006).

To the South, the Masméjean dome is brought to contact with the Cévennes schists
by the Goulet strike-slip to inverse Pyrenean fault (Briand et al., 1993). To the east,
the contact is gradual yet locally dissected by the Villefort fault and notably features
the above-mentioned granite sills. SW of Prévenchères, anatectic orthogneisses similar
to those observed in the dome constitute the core of a kilometric antiform within the
Cévennes schists (Briand et al., 1994; Négron, 1979; Rakib, 1996). Altogether, these
observations suggest that the constitutive lithologies of the Masméjean dome were located
structurally below the Cévennes schists.

Finally, the Margeride batholith is intrusive within amphibolite-facies metasediments
from the northwestern �ank of the dome and developed a limited contact metamorphic
aureole (Briand et al., 1994).

6.2 Structural analysis and kinematic criteria

6.2.1 Observations from the dome mantle

This section summarizes the structural information gained in the course of two summer
�eld campaigns (2015 and 2016) and the examination of c. 80 thin sections (most of them
being spatially oriented). Fig. 6.6 presents interpretative cross-sections summarizing the
available structural data on the Masméjean dome.

The southwestern �ank of the dome

In this domain, the regional foliation Sn consistently trends ENE�SSW to NE�SW and
gently dips to the SW. It gradually rotates east of Belvezet towards a N�S direction
(Fig. 6.5). Intense deformation locally resulted in augen gneisses being converted into
S�mylonites (Fig. 6.7a). Preservation of transposed symmetrical folds indicates that Sn
reworks an older Sn−1 foliation (Fig. 6.7b). Stretching lineations within Sn are marked
by ellispoidal biotite aggegates and Kfs-blasts/clasts (in augen gneisses only) showing
a strong preferential orientation in the YZ plane. Lineations generally plunge towards
the SW�WSW with a maxima at N230 21◦ (Fig. 6.8a). Lineations in the orthogneisses
located South of the Chassezac river and West of the Puylaurent dam show a slightly
di�erent orientation as they plunge to the SSE (Fig. 6.8a). Sections in the XZ plane
consistently provide evidence for top-to-the NE�ENE shearing (Fig. 6.9). Shear criteria
include C to C' shear bands, asymmetric drag folds and sigmoid mica "�shs".

170



F
ig
u
re

6
.5
:
G
eo
lo
g
ic
a
l
m
a
p
a
t
sc
a
le
1
/
8
0
,0
0
0
o
f
th
e
M
a
sm

éj
ea
n
d
o
m
e.

D
ra
w
n
a
ft
er

o
u
r
su
rv
ey

a
n
d
th
e
w
o
rk
s
o
f
B
ri
a
n
d
et

a
l.
(1
9
9
4
);
N
ég
ro
n
(1
9
7
9
);
R
a
k
ib

(1
9
9
6
)
a
n
d

W
ei
sb
ro
d
et

a
l.
(1
9
7
4
).
A
,
B
a
n
d
C
re
fe
r
to

th
e
ed
g
es

o
f
th
e
cr
o
ss
-s
ec
ti
o
n
s
F
ig
.
6
.6
.

171



F
ig
u
re

6
.6
:
C
ro
ss
-s
ec
ti
o
n
s
o
f
th
e
M
a
sm

éj
ea
n
d
o
m
e.

S
a
m
e
le
g
en
d
th
a
n
F
ig
.
6
.5
.

172



Figure 6.7: Zones of very intense ductile deformation. (a) Very �ne-grained mylonitic orthogneiss
grading into augen gneiss out of the shear zone, Bois du Pendu near the hamlet of L'Hermet
(44.52625, 3.87397). (b) Symmetrical folds developed at the expense of an older Sn−1 folia-
tion and admitting Sn as axial plane, place known as Les Orts, shores of the Puylaurent dam
(44.52805, 3.88016).

Unmolten rocks from southwestern �ank have been intruded by several types of
granitic magmas, forming dykes cutting across the foliation or sills concordant within
it (Fig. 6.10d, e, f). Importantly, top-to-the NE�ENE shearing was coeval to post-dated
granitic magmatism as documented by folded granite veinlets within metasediments (see
Fig. 6.9c). Locally, Sn shows non-penetrative surface lineations associated with top-to-
the SE shearing at the brittle-ductile transition (Fig. 6.10e).

The northwestern �ank of the dome

In this domain, stretching lineations are very scarce and, when observed, gently plunge to
the NW. Locally, a top-to-the SE sense of shear has been determined (Fig. 6.11). Local
folds with vertical axial planes and gently NW-plunging hinges a�ected orthogneisses.

The eastern �ank of the dome

The Sn foliation is N�S trending and steeply dipping towards the E (on average at 55◦).
Migmatites are overlain by quartz-rich paragneisses intruded by numerous granite sills,
the "granulites de segregation" of Lapadu-Hargues (1947) (Fig. 6.10a,b,c). The And�
Crd�Bt zone is notably narrow and its constituent lithologies (including a pluri-metric
distinctive quartzite layer) pervasively a�ected by intense ductile deformation, locally
resulting in S� and L�mylonites (Fig. 6.12a and b, respectively). Stretching lineations are

Figure 6.8: Stretching lineations observed in the mantle of the Masméjean dome. Plotted on
Schmidt net (lower hemisphere) using the software OpenStereo (Grohmann and Campanha,
2010).
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dominantly N�S trending and horizontal while a subordinate population gently plunges
to the ESE (Fig. 6.8b). Left-lateral sense of shear is marked by asymmetric quartz
aggregates and shear bands (Fig. 6.12c,d,e,f).

Most lithologies are a�ected by brittle deformation along N�S steeply dipping frac-
ture and fault planes, related to the Villefort fault activity (Deroin et al., 1990; Deroin
and Prost, 1993a; Lapadu-Hargues, 1947). Horizontal non penetrative lineations (stri-
ations) have been described by Deroin et al. (1990) and probably represent the latest
increments of strike-slip deformation. The present-day di�erential altitude of the Trias-
sic unconformity on both sides of the fault (200-300 m higher to the west) suggests a
late normal movement where the footwall moved up to the west. This is supported by
results of apatite �ssion track thermochronology documenting an inverse elevation�age
pro�le across the fault (Barbarand et al., 2001).

Altogether, these observations indicate that the eastern �ank of the Masméjean dome
constitutes a wrench corridor marked by an early phase of ductile strike-slip deforma-
tion continued at brittle conditions during exhumation. Post-Variscan reactivation as a
normal fault, most likely related to Pyrenean events, uplifted the western compartment
including the Masméjean dome by c. 200 m. In the following, this structure will be
referred to as "Villefort Shear Zone" (VSZ). The magnetic fabrics of the granite sills
cartographically aligned along the VSZ are presented section 6.2.3.

6.2.2 Field observations and petrography of the core migmatites

The dome core typically features migmatites developed at the expense of orthogneisses
(most often augen). Best exposures are found at the Puylaurent dam (where samples
CHA-15-17 and 65 were collected, see Fig. 6.5). They dominantly consist in stromatic
metatexites featuring: (i) 10 mm large in-situ leucosomes of granitic texture and com-
position with an assemblage Qz+Pg+Kfs±Bt±Ms±Sil; and (ii) narrow 1 to 2 mm large
melanosomes consisting in Bt±Ms (Fig. 6.13a,b and 6.14). A second generation of mus-
covite formed during retrogression at the expense of sillimanite (when present, see Fig.
6.14a). Biotite was locally converted into chlorite at subsolidus conditions. Accessory
phases include rutile, ilmenite, apatite and zircon.

In-situ leucosome distribution within fold hinges (Fig. 6.13d) presumably re�ects the
collection of anatectic liquids in low-strain domains during syn-anatectic deformation.
The presence of larger, 10 cm thick concordant to discordant in-source leucosomes (in
the sense of Sawyer, 2008, see Fig. 6.13a,b) is taken as evidence for melt mobility and coa-
lescence, associated Bt- and Kfs-rich layers being regarded as residual domains. Granitic
veins showing intricate and gradual transitions with their host metatexites are common
(e.g. Fig. 6.13e,f) and would represent former melt percolation channels/pathways.
Rafts of quartz-rich paragneiss resisters have been observed in several parts of the dome
together with scarce intrusions of vaugnerites (Fig. 6.13d). The latter are intricately
associated with Qz+Pg+Bt pegmatites, presumably corresponding to: (i) fractionated
magmatic liquids derived from them (Montel and Weisbrod, 1986); or (ii) local melts
from surrounding lithologies formed as a result of ma�c magma intrusion.

Along the western and eastern limbs, the metatexite �eld foliation trajectories (when
they can be reasonably mapped) tend to mimick that of the dome mantle (Fig. 6.2)
and feature a similar asymmetry (steeply vs. gently dipping eastern/western �anks,
respectively). In the dome core, the migmatite foliation turns horizontal and cascading
folds admitting the foliation as axial plane have been observed. In contrast, linear fabrics
were not identi�ed.
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Figure 6.9: Evidence for regional top-to-the NE shearing. (a�b): Shear bands within mylonitic
augen gneisses, Mirandol railway bridge (a: 44.54905, 3.81606) and Chassezac gully (b: 44.53744,
3.85751). (c): Drag folds developed at the expense of Sil-bearing paragneisses and granitic
(presumably intrusive) layers indicating that top-to-the NE shearing was coeval or postdated
granitic magmatism, Les Orts, shores of the Puylaurent dam (44.52889, 3.88019). (d) Drag
folds a�ecting a leucogneiss pluri-metric layer within paragneisses, L'Hermet hamlet, shores of
the Puylaurent dam, (44.52263, 3.87803). (e) Drag folds within Sil-bearing paragneisses from
the Mylonitic Metamorphic Vellave Zone of Bouilhol et al. (2006), east of the Masméjean dome,
Notre-Dame des Neiges abbey (44.60092,3.93683). (f) Plane-polarized-light photomicrograph of
micaschists showing shear bands locally underlined by truncated garnet porphyroclasts, Mirandol
hamlet (44.54613,3.81520). (g) Plane-polarized-light photomicrograph of a quartz-rich paragneiss
a�ected by top-to-the NE shear bands, Chasseradès village, (44.55417, 3.82750). (h) Cross-
polarized-light photomicrograph of a syntectonic mica �sh in a leucogneiss, Mirandol hamlet
(44.54613, 3.81520).
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Figure 6.10: (a�c) Villefort granites, cropping out in the eastern �ank of the Masmejean dome.
(a) Set of steeply-deeping sills concordant in the foliation of Qz-rich paragneisses, Le Ranc
hamlet, AMS site 8, dated sample CHA-15-25 (44.53152, 3.90263). (b) Magmatic layering with
accumulation of macroscopically undeformed Kfs megacrysts, dated sample CHA-15-41, place
known as Les Clous (44.54657, 3.90506). (c) Grt-bearing leucogranite, AMS site 10, Le Thort
hamlet (44.55483, 3.90577). (d) Post-tectonic leucogranite dyke cutting across the foliation of
the augen gneiss, Chassezac gully (44.53543, 3.85397). (e) Granite sill intrusive within Sil-
bearing paragneisses and truncated by top-to-the S normal faults, dated sample CHA-15-19,
place known as Les Orts, shores of the Puylaurent dam (44.52806, 3.88017). (f) Fine-grained Kfs-
Bt-porphyritic granite sill concordant with the foliation of Sil-bearing paragneisses themselves
embedded as a decametric rafts in augen gneisses, Chassezac gully (44.53522, 3.85039). (g)
Grt-bearing facies of the Rocles syntectonic granite which magmatic foliation is underlined by
Bt �akes, dated sample ROC-16-01, Le Travers hamlet (44.55534, 4.12841). (h) Kfs-porphyritic
Borne granite, dated sample BOR-16-01, D51 road south of the Pied de Borne village (44.46468,
3.97477).
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Figure 6.11: Evidence for top-to-the SE shearing in the northwestern �ank of the Masméjean
dome. (a) "Bookshelf" fragmented K�feldspar porphyroclast, place known as Majousseires
(44.58474, 3.81716). (b) Shear bands within a quartz-rich biotite micaschist, place known as
Majousseires (44.57436, 3.82279).

Figure 6.12: Ductile deformation along the Villefort shear zone. (a�b) Distinctive quartzite layer
observed along the eastern limb of the Masméjean dome showing a nearly vertical foliation and
horizontal mineral lineation marked by scarce Bt aggregates, Le Ranc (a: 44.53489, 3.90404) and
La Molette (b: 44.54997, 3.90721) respectively. (c�d) Cross-polarized-light photomicrograph of
a quartzite showing sigma-shaped quartz porphyroclasts deformed by shear bands oblique to the
foliation and indicating sinistral displacement, Le Ranc hamlet (44.53500, 3.90415). (e�f) Plane-
polarized-light photomicrograph of sinistral shear bands a�ecting (e) sigmoidal Qz�Bt aggregates
in a quartzite, Le Ranc hamlet (44.52587, 3.90436) and (f) Qz-rich paragneisses, Prévenchères
(44.52235, 3.90554).
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Figure 6.13: Typical migmatites from the Masméjean dome core, all developed at the expense of
augen gneisses. (a) Metatexite with segregated neosome in the form of leucocratic quartzofelds-
pathic layers (leucosome), locally folded, and Bt�Kfs-rich melanocratic layers (melanosome). (b)
Metatexite with both in-situ and in-source granitic leucosomes. (c) Qz-rich paragneiss resister
within migmatites and rounded intrusion of K�rich diorite ("vaugnerite"). (d) Syn-anatectic
folding of metatexite as evidenced by the leucosome distribution within fold hinges, presumably
re�ecting the collection of anatectic liquids in low-strain domains. (e�f) Intricate and grad-
ual transitions between metatexites and granitic zones which contain rafts of anatectic augen
gneisses and large Kfs prophyroclasts probably inherited from the latter. Such granitic zones are
interpreted as melt percolation channels/pathways. Locations: (a�d) Puylaurent dam (44.53037,
3.88719); (e) Borne village (44.61738, 4.01109); (f) place known as Le Bouiol (44.51293, 3.88629).

Figure 6.14: Plane-polarized light photomicrographs showing the mineral assemblages of the
Masméjean dome migmatites. Mineral abbreviations after Whitney and Evans (2009).
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6.2.3 AMS study of the dome core

Why AMS?

For the past 15 years, the study of gneiss domes has bene�ted from the spatial analysis of
the anisotropy of magnetic susceptibility in migmatites (Bascou et al., 2013; Cavalcante
et al., 2013; Charles et al., 2009; Ferré, 2003; Ferré et al., 2004; Kruckenberg et al., 2010;
2011; Parsons et al., 2016; Teyssier et al., 2005; Viegas et al., 2013). One of the reason for
this lies in the fact that mineral and/or stretching lineations are very di�cult to observe
in migmatites. The ability to measure a magnetic lineation is thus highly informative as it
allows to retrieve the transport/�ow direction within the dome anatectic cores. Similarly,
AMS studies have proven very successful in deciphering the internal fabrics of granite
bodies, otherwise very challenging to image for lack of prominent tectonic markers.

Many studies since the 80's have shown that the magnetic fabrics of molten rocks
depend on both the regional strain pattern and the internal buoyancy-driven magma
dynamics (Benn et al., 1997; 2001; Bouchez and Gleizes, 1995; Gleizes et al., 1997; Guillet
and Bouchez, 1983). In order to better constrain the strain pattern of the inner, anatectic
part of the Masméjean dome, an AMS study has been conducted focusing on the core
migmatites and the granite bodies cartographically aligned along the eastern �ank of the
dome.

Sampling and analytical methods

One hundred and two rock cores of 2.5 cm in diameter were collected at 11 sites with
a gasoline-powered drill. Investigated rocks correspond to 6 metatexites and 5 Villefort
granites (out of which 3 have been analysed for zircon and monazite U�Pb isotopes).
Cores were oriented with a magnetic compass and subsequently cut in the lab to obtain
specimens of standard size (2.2 cm in length; Nspecimen = 145). Magnetic fabric measure-
ments were performed at Saint-Etienne University using a AGICO MFK1 Kappabridge
magnetic susceptometer (Agico, Brno). The revealed AMS ellipsoid is de�ned by the
three principal axes K1, K2 and K3 (K1 ≥ K2 ≥ K3) mutually orthogonal. The param-
eters P' and T (Jelínek, 1981) were calculated to describe respectively the anisotropy
and the shape of the fabric. Data retrieved from a group of specimen were processed
using normalized tensor variability statistics (Hext, 1963; Jelínek, 1978). The results of
all magnetic measurements are reported Table B18.

Magnetic mineralogy

Bulk magnetic susceptibilities (Km) are very low (mostly <150.10−6 SI in granites,
<100.10−6 SI in migmatites, see Fig. 6.15) and in the typical range of Al-rich crust-
derived granites (Bouchez, 2000). Besides, there is no correlation between the degree of
magnetic anisotropy P' and the bulk susceptibility (Fig. 6.16b). These features indicate
that the magnetic susceptibility is controlled by paramagnetic minerals (Borradaile and
Henry, 1997; Charles et al., 2009; Kruckenberg et al., 2010; Rochette et al., 1992). The
lack of magnetite in our specimens has been con�rmed by thermomagnetic K�T curves.
Amongst paramagnetic minerals characterized by a high magnetic susceptibility (Bor-
radaile and Henry, 1997), ilmenite was observed as (i) isolated grains in the specimen
matrices; and, (ii) exsolutions within biotite/chlorite cleavage planes. Biotite is ubiq-
uitously present in all specimens while garnet is particularly abundant in the Villefort
granite sampled at site 10.

Magnetic fabrics

AMS parameters Rocks sampled at each site show low degrees of anisotropy (Fig.
6.16a), between 1.05 (0.5%) and 1.18 (1.8%) with an AMS ellipsoid shape being triaxial
(T close to 0) in two Villefort granites (at site 5, dated sample CHA-15-41, and site 10)
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Figure 6.15: Histogram of bulk magnetic susceptibility for granite (a) and migmatite (b) speci-
mens collected in the Masméjean dome.

and two migmatites (sites 3 and 7). The seven remaining sites feature an oblate ellipsoid.
Strongest anisotropies (P' >1.13) are observed in two Villefort granites sampled near the
hamlet of Le Ranc (sites 1 and 8, dated samples CHA-15-24 and CHA-15-25, respectively)
and in two migmatites from the southwestern �ank of the dome, near the contact zone
with unmolten paragneisses (S3 and 4).

Structures in metatexites In metatexites, the magnetic foliation (which pole is de-
�ned by K3, Fig. 6.17) pattern is consistent with that retrieved from �eld observations:
(i) gently dipping towards the SW in the southwestern �ank (S4 and 9) and the E�NE
in the eastern �ank (S6); (ii) sub-horizontal in the inner core (S3 and 11). Metatexites
sampled along the western �ank display a vertical NNW�trending foliation (S7). When
clearly de�ned, magnetic lineations (direction of K1) are horizontal, NNW-trending in
the western �ank (S7) and plunge to the W�SW in both the SW �ank (S4 and 9) and
the southern part of the inner core (S3).

Structures in granites Granites cropping out along the Villefort shear zone feature
very contrasted AMS ellipsoids (Fig. 6.17). The three bodies sampled to the South
on a transect along the Chassezac river show marked variations of the K3 orientations
from one to another (S1, 2 and 8). The magnetic foliation of the westernmost meter-
scale body (S1) is N�S-trending and mimicks that of its host paragneiss, close to the
contact with the metatexites. In contrast, granite sills S2 and S3 (out of which samples
CHA-15-24 and CHA-15-25 were taken) show ENE�WSW to E�W-trending magnetic
foliations even though the sills are concordant within the steeply dipping N�S foliation of
the host paragneisses (see Fig. 6.10a). Granite body S5 (corresponding to dated sample
CHA-15-41), collected further North, features vertical magmatic layering underlined by
the accumulation of macroscopically undeformed Kfs megacrysts (see Fig. 6.10b). It
shows a well-de�ned vertical magnetic foliation and a N�S horizontal magnetic lineation.
Finally, the poorly anisotropic Grt-bearing granite S10 tends to show a vertical magnetic
foliation and an E�W magnetic lineation.

Origin of the observed fabrics

Magnetic foliation poles are well-de�ned in all but one investigated site (S10). A the min-
eral scale, the <001> direction of biotite crystals corresponds to that of K3 (Borradaile
and Alford, 1987; Kruckenberg et al., 2010; Martín-Hernández and Hirt, 2003; Viegas
et al., 2013; Zapletal, 1990). Therefore, since biotite is the most abundant paramagnetic
mineral, the magnetic foliation would re�ect the subparallel alignment of biotite crystals
and thus the sample �eld foliation.
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Figure 6.16: AMS scalar parameters for the Masméjean dome samples. Average values for each
site correspond to the dark squares (migmatites) and circles (granites). (a) Shape parameter T
(Jelínek, 1981) as a function of the total degree of magnetic anisotropy P'. (b) Shape parameter
T versus bulk magnetic susceptibility Km. (c) Total degree of magnetic anisotropy P' versus
bulk magnetic susceptibility Km.
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In the absence of magnetite, the magnetic lineation may originate from: (i) preferred
shape orientation of ilmenite grains (Bascou et al., 2002; Bolle et al., 2014; Borradaile
and Henry, 1997) or (ii) the zone axis distribution of biotite crystals (Kruckenberg et al.,
2010). To test the �rst hypothesis, thin sections were made in the K1�K2 plane of
cores showing a well-de�ned magnetic lineation. They did not provide evidence for any
preferred orientation of ilmenite crystals which are randomly oriented. Therefore, zone
axis orientation of biotite crystals is preferred. In this frame, the concurrence of well-
de�ned magnetic foliation and lineation, as observed in samples from sites 3, 4, 5, 7
and 9, would originate from the presence of an anastomosed network of biotite folia
(Kruckenberg et al., 2010).

The low anisotropy of the AMS ellipsoid displayed by the granite from site 10 most
likely originates from the local predominance of garnet over biotite. Indeed, garnet fea-
tures elevated bulk magnetic susceptibilities, of the same order of magnitude than biotite,
but characteristically low anisotropy degrees (Rochette et al., 1992). Consequently, the
presence of garnet would substantially smoothen the anisotropic signal carried by biotite.

Interpretation

Migmatites In metatexites, the magnetic foliation and lineation would record the
visco-plastic �ow planes and direction of �ow, respectively (Kruckenberg et al., 2010).
Following this, the set of gently dipping magnetic lineations observed in the SW part of
the dome (S4 and 9) may re�ect the NE�E-directed upward �ow of the migmatites, lead-
ing to dome exhumation. Horizontal lineation in the dome core (S3) possibly indicates
non-coaxial �attening or could alternatively be "inherited" from an early exhumation
stage along the SW �ank. Importantly, the magnetic pattern observed in the northern
part of the dome markedly di�ers from that of the southern and eastern parts as only
scarce evidence for horizontal NNW�SSE-directed �ow are preserved (S7). In the two
remaining sites (S6 and 11), no preferred �ow direction can be identi�ed which supports
a coaxial deformation regime. Consequently, the bulk of dome exhumation would have
taken place in its southern part.

Villefort granites The vertical magnetic foliation displayed by granite S5 is consis-
tent with the observed magmatic layering and suggests that the magnetic fabric re�ects
magmatic �ow structures (Bouchez, 2000). This way, the �at-lying magnetic lineation
would indicate syn-magmatic horizontal shearing and entail that S5 granite intrusion was
coeval to wrenching along the Villefort Shear Zone. The magnetic foliations of granites
S1, 2 and 8 are concordant to oblique with respect to that of the VSZ and these sam-
ples lack any magnetic lineation. It suggests that those bodies intruded and crystallized
during a period of tectonic quiescence or after the end of the VSZ activity.

6.2.4 Conclusion

The dome is asymmetric in several respects: (i) �eld and magnetic foliations are gently vs.
steeply dipping in its western and eastern parts, respectively; (ii) the And�Bt�Crd meta-
morphic zone is markedly narrower to the East, with the transition between migmatites
and greenschist-facies rocks occurring in 100m; (iii) granite bodies are dominantly ob-
served in its eastern �ank. Such asymmetry is governed by ductile left-lateral shearing
along the Villefort Shear Zone and entails that the latter controlled the dome shape and
acted as a drain for anatectic liquids produced in the dome core.

AMS measurements performed on the core migmatites suggest that bulk �ow and
associated exhumation was focused in the southwestern part of the dome and mostly
proceeded along shallow SW-dipping planes with a bulk transport towards the NE at an
angle of c. 30◦. In addition, foliation �attening and the presence of cascading folds attest
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to vertical expansion, i.e. in�ation of the dome core in line with buoyancy-driven �ow
(Brun and Van Den Driessche, 1994; Chen et al., 1990; Escuder Viruete et al., 2000).

Importantly, kinematic criteria indicate that the southwestern dome mantle was per-
vasively a�ected by top-to-the NE shearing resulting in the development of S�mylonites,
notably at the paragneiss/orthogneiss interface. Structural observations thus point to an
apparent thrusting of the mantle over the core. Similar relationships have been reported
in the adjacent Tanargue dome (Bouilhol et al., 2006) and, at a regional scale, top-to-the
NE shearing is attributed to the D2v tectonic-metamorphic event, presumably as old as
320 Ma (Be Mezeme et al., 2007; Bouilhol et al., 2006).

A geochronological survey was conducted to address the timing of: (i) top-to-the NE
shearing; (ii) wrenching along the Villefort Shear Zone; (iii) anatexis within the dome
core; (iv) exhumation and brittle�ductile top-to-the S deformation. We targeted a range
of igneous rocks, from orthogneisses to migmatites and granite dykes which relationships
with respect to the main deformation phases were previously ascertained. The GPS
coordinates of each sample can be found in Appendix Table B1.

6.3 U�Pb geochronology

6.3.1 Investigated samples

Orthogneisses

Two orthogneisses were selected in order to test whether they are a�liated to the late
Ediacaran meta-granites of the Velay Orthogneiss Formation (section 2.1) or represent
early Variscan pre-kinematic granitoids as proposed by Dupraz and Didier (1988). In any
case, they predate the main deformation event responsible for the foliation development.
CHA-15-35 was taken near the hamlet of Le Couste 40 m east of the bridge over the
Chassezac river (Fig. 6.5). It corresponds to the country-rock of granite dyke CHA-15-34
(see below). Sample CHA-15-52 was collected at the place known as Majousseires on
the path running along the left bank of the Allier river (Fig. 6.5).

Granites

Aligned along the Villefort Shear Zone Four granite bodies were sampled to
bracket the timing of the Villefort Shear Zone activity. Specimen CHA-15-24 was
collected along the cli� below the hamlet of Le Ranc on the left bank of the Chassezac
river (Fig. 6.5). It belongs to a large granite sill intruding the paragneisses and contain-
ing both paragneiss and orthogneiss enclaves (AMS site 2). CHA-15-25 was sampled
200 m east to CHA-15-24. It corresponds to a meter-thick granite sill injected within
quartz-rich paragneisses (AMS site 8, Fig. 6.10a). CHA-15-49 was sampled near the
village of Prévenchères at the place known as Le Mourio and was taken 800 m (at crow's
�ight) south of CHA-15-24 and 25, on the right bank of the Chassezac river. The gran-
ite is locally a�ected by brittle deformation related to the late activity of the Villefort
fault. Specimen CHA-15-41 was collected from a granite body at the place known as
Les Clous (AMS site 5). The granite displays a magmatic fabric with a vertical foliation
underlined by layers rich in centimetric K-feldspar crystals alternating with �ne-grained
leucocratic domains (Fig. 6.10b). Sub-solidus brittle deformation also a�ected the body
and generated millimeter-scale cataclastic bands showing marked grain-size reduction
and subsequent alteration.

A�ected by late brittle�ductile top-to-the S deformation Specimen CHA-15-
19 was sampled along the trail running from the hamlet of Puylaurent to the place
known as Les Orts abutting the shore of the Puylaurent dam (Fig. 6.5). It belongs
to a meter-sized zoned granite sill with a pegmatitic upper part and a layered lower
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part (from which the sample was taken). The whole sill experienced post-magmatic
non-coaxial deformation at the brittle�ductile transition. Deformation along N110 shear
planes shows an apparent top-to-the S displacement (Fig. 6.10e).

Post-tectonic dykes and sills Those were selected to bracket the end of the main
deformation episode and basement cooling. Specimen CHA-15-33 was sampled from
a �ne-grained porphyritic granite sill near the hamlet of Le Couste 20 m east of the
bridge over the Chassezac river (Fig. 6.5). This granite displays a magmatic fabric
de�ned by the planar orientation of millimetric K-feldspar and biotite �akes. CHA-
15-34 is a granite dyke collected 30 m east of sample CHA-15-33 (GPS coordinates:
3.84598, 44.53308). The dyke crosscuts the foliation of the surrounding orthogneisses
(sample CHA-15-35) and is itself undeformed. CHA-15-51 was taken from a granite
dyke cropping out on the left bank of the Allier river at a place known as Majousseires
(GPS coordinates: 3.83309, 44.57011). The granite is undeformed, cuts across augen
gneisses and is clearly post-tectonic.

The Borne pluton Sample BOR-16-01 is a Kfs-porphyritic, Bt-bearing granite rep-
resentative of the main phase of the Borne batholith (Fig. 6.2). It was selected to address
the temporal relationships between the Borne pluton and its presumed counterpart on
the other side of the Villefort Shear Zone: the Pont-de-Montvert batholith, for which a
zircon U�Pb emplacement age has recently been obtained by Laurent et al. (2017).

The Rocles pluton The current view of the Rocles granite being syntectonic with re-
spect to the D2v deformation (Fig. 6.2) partly relies on EPMAmonazite ages (Be Mezeme
et al., 2006; 2007). To ascertain the validity of those, sample ROC-16-01 was collected
at the hamlet of Le Travers. This specimen is a Grt- and Bt-bearing granite showing a
magmatic foliation (Fig. 6.10g).

Migmatites

Several migmatites developed at the expense of meta-igneous rocks were selected to con-
strain the age of partial melting in the Masméjean dome and the adjacent Tanargue
area (Fig. 6.5). Samples CHA-15-47 and CHA-15-48 were taken from the disused
quarry at the western exit of Saint-Laurent-les-Bains and respectively correspond to a
bulk metatexite and an in-source leucosome embedded within it. Specimen CHA-15-43
is an in-source leucosome within �at-lying metatexites from the dome core. It was sam-
pled on the cli� overhanging the railway at the Masméjean village. In-source leucosome
CHA-15-63 was collected at the place known as Charbonneire in the northern part of
the dome. Specimens CHA-15-17, CHA-15-65M and CHA-15-65L were all sam-
pled right below the Puylaurent dam and respectively correspond to a bulk metatexite,
a melanosome and in-source leucosome.

6.3.2 Analytical techniques

Zircon grains were separated from the powdered rock samples at Saint-Etienne Univer-
sity using conventional techniques described in section 2.1, subsequently cast into epoxy
mounts and polished down to an equatorial grain section. BSE and CL-imaging were per-
formed at the Central Analytical Facility of Stellenbosch University (SUN, South Africa)
using a Zeiss MERLIN SEM and at the Laboratoire Magmas et Volcans in Clermont-
Ferrand (France) using a Jeol JSM-5910 SEM. Selected grains were dated by LA�ICP�
MS in the course of two analytical sessions, one performed at GUF (2nd and 3rd of May,
2016) and the other one at ETH (12th to 14th of February, 2017). Information on the
analytical methods are presented Appendix B.3.1 and B.3.3 while the results of standards
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and samples measurements are provided in Tables B4�B6 and B7�B9, respectively. The
comprehensive description of the U�Pb results for each sample is presented section B.3.4.

Monazites from samples CHA-15-34, CHA-15-48, CHA-15-65M and CHA-15-65L
were extracted from the same powder fraction than zircon grains and similarly cast into
epoxy mounts while those from CHA-15-17 and CHA-15-25 were identi�ed on rock thin
sections using a Zeiss MERLIN SEM-EDX. All grains were BSE-imaged at SUN using
the same apparatus. Selected monazites were dated by the U�Pb LA�ICP�MS method
at the Laboratoire Magmas et Volcans in Clermont-Ferrand (France). Analytical details
are available sections B.5. The full set of data is provided Tables B15 and B16. All zircon
Concordia or Intercept dates were calculated considering systematic errors as explained
section 1.5.1.

6.3.3 Zircon textures, U�Pb dates and their interpretation

Orthogneisses

Zircon grains extracted from orthogneiss samples are euhedral to sub-euhedral, range in
size from 80 to 400 µm, display aspect ratios between 1.4 and 3 and show well-developed
pyramidal tips (Fig. 6.18a). Core�rims relationships are very common and typically
feature CL-dark cores (most often unzoned and sometimes recrystallized) surrounded
by rims showing magmatic oscillatory zoning. U�Pb dates retrieved from such rims and
homogeneous grains exhibiting a similar zoning pattern are clustered and yield Condordia
dates of 544.1 ± 4.9 Ma (MSWDC+E=0.79) and 544.4 ± 5.2 Ma (MSWDC+E=0.9) for
CHA-15-35 and CHA-15-52, respectively (Fig. 6.19). Measured Th/U ratios are low
(average value of 0.15). In both samples, few measurements yielded a range of younger,
nearly discordant, 206Pb/238U dates down to 514 ± 7 Ma. Finally, analyses performed on
zircon cores and additional core-free grains yielded concordant Paleo- and Neoproterozoic
dates.

Importantly, identical zircon textures, Th/U ratios and U�Pb dates have been re-
ported by Couzinié et al. (2017) on late Ediacaran meta-granites from the Velay Or-
thogneiss Formation. Following this, we interpret the Concordia dates obtained for each
sample as the emplacement ages of their igneous protoliths. The range of younger
206Pb/238U dates would represent a recent Pb loss trend. Zircon domains showing
older dates would correspond to source-inherited grains or xenocrysts incorporated from
country-rocks during magma ascent. Consequently, both samples will be regarded as
constituents of the Velay Orthogneiss Formation and not early Variscan granitic intru-
sions.

Villefort granites

Zircon grains show a broad range of sizes (60�350 µm) and aspect ratios (1.1�3.6). Core�
rims relationships are observed in c. 50% of the imaged grains and two zircon types can
be recognized. Most feature a CL-dark or bright occasionally zoned core, truncated by a
new growth zone with distinct magmatic oscillatory zoning, similar to zircons extracted
from orthogneisses. A second, scarce type correspond to zoned grains wrapped around by
a poorly luminescent and porous rim (see zircon 6, Fig. 6.18b). Concordant 206Pb/238U
dates obtained from cores and rims are exclusively pre-Variscan, dominantly Ediacaran.
CL-dark rims are rich in common Pb and no concordant date was retrieved.

Most zircons devoid of core�rim relationships also yielded pre-Variscan (mostly Edi-
acaran) dates. Very few gave concordant Variscan U�Pb dates, often after a common
Pb correction was performed (Fig. 6.18b). The Concordia dates of 305.8 ± 4.4 Ma
(MSWDC+E=1.5) and 304.0 ± 3.9 Ma (MSWDC+E=1.4) are thus retained as the em-
placement ages of the granites CHA-15-24 and CHA-15-41, respectively (Fig. 6.20a to
d). One single concordant Variscan grain was analysed in sample CHA-15-49 and yielded
an individual 206Pb/238U date of 305 ± 4 Ma, possibly corresponding to that of magma
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intrusion. No concordant Variscan date was obtained for CHA-15-25. All zircon domains
with pre-Variscan ages would correspond to xenocrysts or source-inherited grains.

Figure 6.18: Representative cathodoluminescence images of zircon grains from dated samples.
The locations of laser spots (white circles) are indicated along with the spot name (aXX, bXX,
cXX, dXX; a and b refer to the sessions performed the 2nd and 3rd of May 2016 at GUF,
respectively; c and d to the sessions performed the 12th and 14th of February 2017 at ETH,
respectively). The corresponding 206Pb/238U dates are quoted with ± 2σ uncertainty, in Ma.
All displayed analyses are concordant (except those in italic). Spot diameters are 20 and 30 µm.

The Rocles granite

Zircons from the Rocles granite are short (mostly <120 µm in length), show a large
range of aspect ratios (from 1.2 to 8) and are often broken. Core�rim relationships are
seldom observed. CL-images commonly reveal narrow to broad concentric zones and
more complex convoluted zoning patterns (e.g. zircon 1, Fig. 6.18c). Many grains are
CL-dark and metamictic. Most analyses trend along a mixing line between radiogenic
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and common Pb compositions. The Concordia date of 319.8 ± 3.8 Ma (MSWDC+E=1.5)
calculated out of the seven concordant spots that anchor the trend is regarded as the
best estimate of the emplacement age of the Rocles granite. The two younger 206Pb/238U
dates of 312 ± 2 and 304 ± 2 Ma (Fig. 6.20e) would not correspond to any geological
event and rather result from recent radiogenic Pb loss a�ecting the main, 320 Ma-old
zircon population. Because of the weak curvature of the Concordia at Paleozoic times in
the Tera-Wasserburg diagram, c. 320 Ma-old zircon having experienced limited Pb loss
would still be concordant within uncertainty. Again, older dates would correspond to
xenocrysts or source-inherited grains. The zircon U�Pb LA�ICP�MS emplacement age
obtained in the course of this study is identical within error to the monazite "chemical"
U�Th�Pb ages retrieved by Be Mezeme et al. (2007; 2006) which span between 325 ± 6
and 318 ± 4 Ma.

Figure 6.19: Tera-Wasserburg diagrams (238U/206Pb vs. 207Pb/206Pb) for zircon from the or-
thogneiss samples. Error ellipses and ages are displayed at 2σ level of uncertainty. Yellow ellipses
are those considered for Concordia age calculations.

Les Orts granite sill sheared at the brittle�ductile transition

Zircon grains from this sample range in size from 100 to 300 µm and show aspect ratios
between 2 and 6. They are generally euhedral even though some crystals are broken. Very
few zircon cores have been observed (Fig. 6.18d) and oscillatory magmatic zoning is well-
expressed in most grains. The emplacement age of the granite is given by the Concordia
date of 305.3 ± 3.9 Ma (MSWDC+E=0.6) calculated out of �ve concordant measurements
(Fig. 6.20f). The older concordant 206Pb/238U date of 316 ± 4 Ma obtained on a single
zircon core suggests that the latter represents a source-inherited crystal or a xenocryst.

Le Couste �ne-grained porphyritic granite

Zircon crystals extracted from this sample are small (<120 µm) and generally show low
aspect ratios (from 1.2 to 2.7). Many grains consist in a core wrapped around by a thin
(<15 µm-large) CL-dark rim displaying faint oscillatory zoning (Fig. 6.18e). Analyses of
the largest rims revealed high common Pb contents. The Pbc corrected rim data cluster
around the Concordia date of 302.2 ± 3.7 Ma (MSWDC+E=1.6), taken as representative
of that of magma intrusion (Fig. 6.21a). Older dates obtained on zircon cores and
core-free grains would again be inherited from the protolith or country-rocks.
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Figure 6.20: Tera-Wasserburg diagrams (238U/206Pb vs. 207Pb/206Pb) for zircon from: (a�d) the
Villefort syntectonic granites; (e) the Rocles syntectonic granite, emplaced during the top-to-the
NE shearing event; (f) the Les Orts granite, showing evidence for top-to-the S shearing at the
brittle/ductile transition. Error ellipses and ages are displayed at 2σ level of uncertainty. Yellow
ellipses are those considered for Concordia age calculations. Dotted ellipses are those for which
a common Pb correction was performed.
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The Borne batholith

Zircons from the Borne granite show a large range of sizes, from 80 to 350 µm and shapes
(aspect ratios: 1 to 4). They often feature large, CL-dark, heavily recrystallized cores
surrounded by rims commonly showing magmatic oscillatory zoning (Fig. 6.18f). Most
analyses performed on such rims and core-free grains de�ne a trend between radiogenic
and common Pb compositions (Fig. 6.21a). Concordant measurements on this trend yield
a Concordia date of 309.7 ± 3.6 Ma (MSWDC+E=1.09), retained as the emplacement
age of the Borne granite. It is within error identical to the whole-rock Rb�Sr age of
Mialhe (1980). Spotted zircon cores (avoiding the recrystallized ones) gave a range of
concordant 206Pb/238U dates from 549 ± 6 down to 316 ± 2 Ma regarded as inherited
ages. One measurement performed on a rim yielded a younger concordant 206Pb/238U
date of 297 ± 2 Ma that would result from limited Pb loss from the dominant population.

Post-tectonic granite dykes

Both dykes yielded very diverse zircon crystals with a range of shapes (aspect ratios
between 1.1 and 3), sizes (60�300 µm) and core�rim relationships (large cores surrounded
by thin CL-dark rims, core-free grains, cores surrounded by multiple growth zones). Not a
single concordant Variscan date was obtained and all analysed grains are thus interpreted
as being source-inherited or xenocrysts incorporated during magma ascent.

Figure 6.21: Tera-Wasserburg diagrams (238U/206Pb vs. 207Pb/206Pb) for zircon from samples
of: (a) the Le Couste porphyritic granite sill; (b) the Borne porphyritic granite batholith; (c�d)
post-tectonic granite dykes showing sharp intrusive contacts with their subsolidus country-rocks.
Error ellipses and ages are displayed at 2σ level of uncertainty. Yellow ellipses are those considered
for Concordia age calculations. Dotted ellipses are those for which a common Pb correction was
performed.

190



Figure 6.22: Tera-Wasserburg diagrams (238U/206Pb vs. 207Pb/206Pb) for zircon extracted from
migmatite samples. Error ellipses and ages are displayed at 2σ level of uncertainty.

Migmatites

Zircon crystals extracted from the metatexites, in-source leucosomes and melanosome
samples are very similar in sizes, shapes and internal textures to orthogneiss zircons.
Faint di�erences are observed in metatexite CHA-15-17 which zircon grains tend to be
more elongated (aspect ratios up to 5.5, see zircon 10, Fig. 6.18h) and commonly lack
inherited cores. Besides, zircons are notably smaller in leucosome CHA-15-63 (<90 µm
most often, see grain 5, Fig. 6.18h). Results of U�Pb dating are very consistent from a
sample to another. Concordant 206Pb/238U dates obtained on core-free grains and rims
cluster in the range 550�540 Ma (Fig. 6.22) and spotted zircon domains show low Th/U
ratios (average value of 0.12). Cores and some core-free crystals yielded older, domi-
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nantly Cryogenian�Ediacaran dates. The overall distribution of concordant 206Pb/238U
dates remarkably mimicks that of orthogneisses from the Velay Orthogneiss Formation
(Fig. 6.23). Altogether, this con�rms that the migmatite protolith corresponds to the
VOF orthogneisses. I did not attempt to calculate a multi-grain date for each sample
(Concordia or Intercept) because such rocks likely behaved as a open-system during par-
tial melting. This means that some zircon grains today retrieved in a migmatite sample
may have been conveyed by mobile anatectic magmas and would not originate from the
protolith.

Of striking importance is the lack of Variscan zircon record. Few grains extracted
from in-source leucosomes CHA-15-43 and CHA-15-47 feature CL-dark porous metam-
ictic rims wrapping around CL-bright zoned cores (zircon 1 to 3, Fig. 6.18h). The
cores show dates similar to the other dominant grain population (i.e. between 650�540
Ma). Unfortunately, U�Pb compositions were only obtained for very few rims due to
their complex matrix and the very high Pbc contents. When available, rim analyses are
highly discordant and show a scattered range of Permian to Jurassic 206Pb/238U dates,
probably re�ecting a combination of Pb loss and common Pb incorporation (Mezger and
Krogstad, 1997). Those rims may have originally crystallized during anatexis or younger
hydrothermal events but, in both cases, the age of the crystallization event(s) cannot be
ascertained from the present dataset.

Figure 6.23: Histogram showing the 206Pb/238U dates of zircon grains analysed in migmatites
from the southern part of the Velay Dome. Bin width is 15 Ma. Available zircon 206Pb/238U dates
(concordance: 95�105%) for the Velay Orthogneiss Formation (in red, data from this chapter and
Part 1, N=107) and regional metasediments (in blue, data from Chapter 2 and Chelle-Michou
et al., 2017, N=445) represented as Kernel Density Estimates. The latter were calculated using
the DensityPlotter program of Vermeesch (2012) with a bandwidth set at 15 Ma.

6.3.4 Monazite geochronology

Figure 6.24: Representative back-scattered electron (BSE) images of monazite grains from granite
dyke CHA-15-34. The locations of laser spots are indicated along with the spot name. The
corresponding 206Pb/238U dates are quoted with ± 2σ uncertainty, in Ma. Spot diameter: 9 µm.
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Textures and U�Pb results

Large (>60 µm) monazite grains were only observed in granite dyke CHA-15-34 and
representative BSE images are displayed Fig. 6.24. For other samples, analysed grains
were very small (often <20 µm) and no clear BSE zoning was identi�ed.

Puylaurent migmatites Samples from the Puylaurent migmatite yielded contrasted
results. Monazites from melanosome CHA-15-65M are all discordant and show scattered
206Pb/238U dates between 326 ± 9 and 294 ± 8 Ma (Fig. 6.25a). Several grains from
in-source leucosome CHA-15-65L are also discordant but trend along a mixing line be-
tween radiogenic and common Pb compositions, with a lower intercept at 271.6 ± 3.2
Ma (MSWDC+E=1.03). A similar 206Pb/238U weighted average date of 272.5 ± 2.4 Ma
can be calculated out of the ten analyses (Fig. 6.25). Conversely, monazites from meta-
texite CHA-15-17 de�ne an older 206Pb/238U weighted average date of 299.1 ± 2.7 Ma
(excluding two measurements, one being highly discordant, Fig. 6.25c).

Saint-Laurent-les-Bains migmatite Few grains from a single sample were dated.
Five analyses (one of them being concordant) de�ne a mixing trend between radiogenic
and common Pb compositions, which lower intercept yields a date of 291.8 ± 4.7 Ma.
Two analyses performed on a grain show older discordant 206Pb/238U dates between 544
± 15 and 518 ± 14 Ma (Fig. 6.25d).

Villefort granite CHA-15-25 Sixteen monazite grains have identical 206Pb/238U
dates with a weighted average of 282.8 ± 2.2 Ma. Those de�ne a mixing trend between
radiogenic and common Pb with a lower intercept at 282.4 ± 2.4 Ma. Two discordant
spots yielded older 206Pb/238U dates of 309 ± 10 and 359 ± 11 Ma (Fig. 6.25e).

Post-tectonic granite dyke CHA-15-34 BSE images of monazites from this sample
reveal sector zoning (and possibly oscillatory concentric zoning in monazite 1, Fig. 6.24).
All spotted domains show identical 206Pb/238U dates, even though 10 analyses out of 16
are discordant. A weighted average 206Pb/238U date of 275.7 ± 1.9 Ma can be calculated
(Fig. 6.25f).

Interpretation of monazite dates

Migmatites A striking feature of the Puylaurent migmatites lies in the fact that sam-
ples taken less than 20 m away from each other yielded very di�erent date patterns.
Clearly, the Permian dates of c. 272 Ma retrieved from the leucosome cannot be re-
garded as the crystallization age of the melt fraction in the migmatite. Indeed, U�Pb
apatite dating of Velay migmatites 20�30 km east of the study area yielded early Per-
mian c. 290 Ma cooling ages. Furthermore, migmatite pebbles are found in the basal
conglomerate of the Prades-Jaujac basin (Bouilhol et al., 2006), which in�lling has been
dated at 296.0 ± 6.8 Ma (zircon U�Pb SIMS on bentonite). Therefore, the date of 299.1
± 2.7 Ma obtained on the metatexite more likely correspond to the migmatite crystal-
lization age. Localized �uid circulation would have resulted in the resetting of leucosome
CHA-15-65L monazites. Scattered 206Pb/238U dates in the metatexite may indicate suc-
cessive monazite crystallization events, possibly in line with several melting episodes as
suggested by Montel et al. (1992). Yet, as those dates are discordant they will not be
further interpreted.
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Figure 6.25: Tera-Wasserburg diagrams (238U/206Pb vs. 207Pb/206Pb) for monazite extracted
from: (a�c) migmatites sampled at the Puylaurent dam; (d) a Saint-Laurent-les-Bains migmatite
(see Bouilhol et al., 2006); (d) Villefort granite CHA-15-25; (e) post-tectonic granite dyke CHA-
15-34. Zircon U�Pb dating did not yield any concordant Variscan date for all samples. Error
ellipses and ages are displayed at 2σ level of uncertainty. Dotted ellipses were not considered for
calculations.
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The date of 291.8 ± 4.7 Ma obtained on the Saint-Laurent-les-Bains migmatite is
di�cult to interpret. It would most probably represent the age of an hydrothermal
event, possibly related to the formation of the �uorite lodes and veins recognized nearby
Saint-Laurent-les-Bains (Elmi et al., 1974; Weisbrod et al., 1974). The older monazite
grain, showing late Ediacaran�early Cambrian 206Pb/238U dates, is regarded as inherited
from the migmatite protolith i.e. the Velay Orthogneiss Formation. Similar inherited
monazite grains in the Velay migmatites and granites have been described by Be Mezeme
et al. (2006) and Didier et al. (2013).

Importantly, LA�ICP�MS monazite ages obtained in the course of this study are
notably younger than the "chemical" U�Th�Pb ages reported by Bouilhol et al. (2006)
and Be Mezeme et al. (2006) for both the Puylaurent and Saint-Laurent migmatites,
spanning between 329 ± 5 and 310 ± 2 Ma. Those datasets were obtained following
the procedure of Cocherie et al. (2005) and the statistical scheme developed by Cocherie
and Albarede (2001) which e�ciency has recently been challenged (Poujol et al., 2016).
Besides, Poujol et al. (2016) and Trap et al. (2017) noticed that it tends to yield older
ages than those obtained by LA�ICP�MS monazite dating. In our case study, most
monazite analyses happened to be discordant, presumably as a result of common Pb
incorporation. Therefore, the presence of non-radiogenic Pb in the monazite matrices,
undetectable with a microprobe, would adequately explain the older ages retrieved by
Bouilhol et al. (2006) and Be Mezeme et al. (2006) in the migmatites.

Villefort granite CHA-15-25 The weighted average 206Pb/238U date of 282.8 ± 2.2
Ma may correspond either to the crystallization age of the granite sill or the age of post-
magmatic �uid circulation. The second possibility is supported by: (i) the location of the
sample within the Villefort Shear Zone which activity continued under brittle conditions,
likely to drain a range of deep to shallow crustal �uids; (ii) the very small size of monazite
grains (mostly <20 µm in length), making them prone to recrystallization/resetting; (iii)
the existence of crystals yielding older 206Pb/238U dates of 309 ± 10 and 359 ± 11 Ma,
respectively, which may have escaped the localized �uid in�ux; (iv) �eld observations
showing very intricate contacts between the granite and its host paragneiss (Fig. 6.10a),
inconsistent with the granitic magma intruding an already cooled-down basement (see
the U�Pb apatite cooling ages mentioned above). Therefore, the discordant date of 309
± 10 Ma is retained as the age of magma crystallization while that of 359 ± 11 Ma,
highly discordant, may be related to an early metamorphic event.

Granite dyke CHA-15-34 The 206Pb/238U date of 275.7 ± 1.9 Ma is regarded as
the crystallization age of the granite dyke because of the typical oscillatory concentric
zoning displayed by one monazite grain (see Fig. 6.24) and the lack of evidence for a
pervasive �uid in�ux able to reset 80 µm-large grains. Interestingly, Be Mezeme et al.
(2006) report crystallization ages between 333 ± 6 to 318 ± 5 Ma for several granite
dykes in and around the Masméjean dome. Unfortunately, these authors did not quote
the exact GPS coordinates so that the actual nature of the dated samples remains unclear
and cannot be directly compared to our results. The obtained Permian age is identical
to a whole-rock Rb�Sr age reported for the late Pont-de-Chervil granite, cropping out in
the eastern part of the Velay dome (274 ± 7 Ma, Caen-Vachette et al., 1982).

6.3.5 Summary

Fig. 6.26 presents a summary of the geochronological data gained in the course of this
study. The new age obtained on the Rocles granite con�rms that regional D2v top-to-
the NE shearing is as old as c. 320 Ma. Following the conclusion of the AMS study,
the c. 305 Ma emplacement ages of the Villefort granites indicate that the Villefort
Shear Zone was active by that time. An identical age was retrieved for the granite sill
CHA-15-19, pre-dating brittle-ductile top-to-the S shearing. The Borne granite yielded
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a statistically older intrusion age than its presumed counterpart on the western side of
the VSZ: the Pont-de-Montvert batholith (309.7 ± 3.6 vs. 302.5 ± 3.5 Ma, taking into
account systematic errors). Emplacement of the �ne-grained, porphyritic, granite sill
CHA-15-33 at 302.8 ± 3.7 Ma entails that the Sil-zone of the Masméjean dome mantle
had already signi�cantly cooled down by that time. Metatexites from the dome core
would have crystallized at c. 300 Ma, at the Carboniferous�Permian boundary. Permian
ages mostly attest to �uid circulations but also to emplacement of late granite dykes.

Figure 6.26: Summary of the zircon and monazite LA�ICP�MS U�Pb ages obtained in the course
of this study. Same legend as Fig. 6.3. The emplacement age of the Pont-de-Montvert pluton is
from Laurent et al. (2017).

6.4 Petrogenetic constraints on syn-doming crustal melting

The observation of in-source leucosomes and granite veins within the Masméjean migma-
tites attests to melt mobility and associated mass and heat transfer during doming. This
section addresses the modes of melt production in the Masméjean dome and notably
the linkage between migmatites and granites. For this purpose, a total of 25 new major
and trace element whole-rock compositions were obtained for samples from the Masmé-
jean dome and its close surroundings: 13 granites, 4 orthogneisses and 8 migmatites
(3 bulk metatexites and 5 in source-leucosomes). Additional measurements on regional
orthogneisses (N=20) from section 2.1 were added to the dataset (all analyses available
in Appendix Table B1).

6.4.1 P�T conditions of anatexis in the migmatites

First-order thermodynamic modelling was performed to investigate the P�T conditions
of melting in the dome core. Field observations (Fig. 6.13) and U�Pb zircon data (see
previous section) indicate that augen gneisses from the Velay Orthogneiss Formation
arguably constitute the protolith of the migmatites. Accordingly, a representative augen
gneiss composition was chosen out of our database (SC-14-33) and pseudosections were
calculated by Gibbs energy minimisation using PerpleX (Connolly, 2005) and the self-
consistent thermodynamic dataset of Holland and Powell (1998) (updated version of
2004). The chemical system retained is Na2O�CaO�K2O�FeO�MgO�Al2O3�SiO2�H2O�
TiO2 (NCKFMASHT) i.e. all iron is ferrous and Mn not considered.
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Figure 6.27: P�T pseudosection calculated using a representative augen gneiss composition.
White lines are melt isopleths (with numbers indicating melt wt.%). Initial water content was
adjusted to avoid subsolidus water oversaturation at 0.5 GPa. Mineral abbreviations after Whit-
ney and Evans (2009).

The range of P�T conditions investigated is 0.2�0.8 GPa for 600�850 ◦C. Solutions
models selected are: Bio(TCC) for biotite (Taj£manová et al., 2009), Pl(h) and San for
plagioclase and K-feldspar (Newton and Haselton, 1981), Mica(CHA1) for white mica
(Auzanneau et al., 2009; Coggon and Holland, 2002), melt(HP) for anatectic melt (White
et al., 2001), hCrd for cordierite and Opx(HP) for orthopyroxene (Powell and Holland,
1999), Gt(WPH) and Ilm(WPH) for garnet and ilmenite (White et al., 2000).

SC-14-33 composition was recast to anhydrous and the H2O concentration subse-
quently adjusted to obtain a fully hydrated subsolidus system (maximal water content
without subsolidus H2O oversaturation) at 0.5 GPa. A T�XH2O pseudosection at this
pressure (not shown) indicates that 0.53 wt.% H2O in the bulk is necessary to reach full
hydration. The retained chemical composition is displayed Table 6.2.

Sample SiO2 Al2O3 FeO MgO CaO Na2O K2O TiO2 H2O
SC 14 33 72.56 14.90 2.02 0.40 0.76 3.12 5.52 0.19 0.53

Table 6.2: Chemical composition of the representative augen gneiss sample used for modelling.

Following petrographic observations (see section 6.2.2), the paragenesis inferred at
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peak metamorphic conditions for the migmatites is: melt+Qz+Kfs+Pg+Bt±Sil±Ms
±Ilm±Ru+Ap+Zrc. The stability �eld of this mineral assemblage is bounded at low
temperature by the solidus and at high temperature (and/or low pressure) by biotite-
breakdown and associated appearance of garnet and/or cordierite (Fig. 6.27). As none
of these minerals have been observed, we conclude that partial melting in the Masméjean
dome took place at 0.75 < P < 0.3 GPa and 650 < T < 730 ◦C, consistent with the
estimates of Dallain et al. (1999) and Montel et al. (1992).

Melt production would have occurred through water-present and muscovite dehydra-
tion-melting, generating sillimanite and K-feldspar as by-products (Clemens and Vielzeuf,
1987; Dallain et al., 1999; Patiño Douce and Harris, 1998; Thompson, 1982). Importantly,
low melt productivity is expected at these P�T conditions with as little as 2�4 wt.% melt
being produced.

6.4.2 Granite petrogenesis

Geochemistry and typology

Granites from the Masméjean dome are peraluminous (Fig. 6.28a) and de�ne a trend be-
tween the felsic and highly peraluminous �elds in the B�A diagram (Debon and Le Fort,
1983; Villaseca et al., 1998), indicative of an a�nity to S�type granites (Clemens, 2003;
Chappell and White, 1974; Villaseca et al., 1998). If they share similar major element
compositions with meta-granites from the Velay Orthogneiss Formation, they distinc-
tively show higher Nb/Y ratios (Fig. 6.28b). Metatexites mostly overlap in composition
with unmolten orthogneisses apart for an enrichment in Nb, possibly related to biotite
accumulation (Fig. 6.28d). In-source leucosomes are felsic peraluminous, Nb depleted
and typically lack any Eu anomaly (Eu/Eu* close to 1).

Inherited zircon evidence for an orthogneiss source

Granites from the Masméjean dome and more generally from the southern border of the
Velay dome contain abundant inherited/xenocrystic zircon grains (see Couzinié et al.,
2014; Laurent et al., 2017, and this study). The distribution of 206Pb/238U dates mea-
sured on such grains is unimodal and features a marked peak at c. 545 Ma with few
older (mostly Ediacaran�Cryogenian) and younger (Ordovician to Carboniferous) dates
(Fig. 6.29).

Assuming that most xenocrysts were incorporated in the magma at source level, the
perfect match between the granite inherited date distribution and that of the Velay Or-
thogneiss Formation indicates that the latter constitutes the source of most granite mag-
mas emplaced in the Masméjean dome and its surroundings. Subordinate involvement of
regional metasediments is supported by the presence of 560�680 Ma-old xenocrysts, even
though c. 50% of those grains actually correspond to cores wrapped around by c. 545
Ma-old rims, suggesting they rather belonged to the source of the VOF meta-granites
(see section 2.1). The origin of the three Ordovician zircon dates remains unknown as
no rock of that age has been described in this region. Finally, Devonian�Carboniferous
grains would have recorded early Variscan metamorphic/magmatic events a�ecting the
local basement (Faure et al., 2009) before being incorporated in the magma at the origin
of the Masméjean granites.

Low orthogneiss fertility: the XH2O issue

The inherited zircon age pattern supports an orthogneiss source for regional granites.
As those are spatially associated to the Masméjean and southern Velay migmatites, the
genetic linkage between anatexites and granites must be addressed. Thermodynamic
modelling shows that at peak metamorphic conditions, the melt productivity of augen
gneisses at fully hydrated conditions is low (maximum of 4% wt.%). Such value is notably
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lower than the liquid percolation threshold (LPT, 8 vol.% melt, Vigneresse et al., 1996)
above which melt can escape its source and collect. Yet, �eld observations support the
existence of former melt-enriched (in-source leucosome) and melt-depleted (biotite-rich
melanosome) domains which clearly attest to e�cient melt transfer and mobility in the
Masméjean migmatites (Fig. 6.13a,b), potentially up to form Masméjean granite bodies.

Figure 6.28: Geochemical characteristics of granites, metatexites, in-source leucosomes and base-
ment orthogneisses from the Masméjean dome. (a) B�A diagram of Debon and Le Fort (1983)
modi�ed by Villaseca et al. (1998). (b) Eu/Eu* vs. Nb/Y plot. (c) Al2O3 vs. Ba + Sr plot,
the dark �eld correspond to the modelled melt compositions. (d) Nb vs. Ba + Sr plot, the text
right of each dark �eld indicates the speci�c T�XH2O conditions. Same legend as Fig. 6.5 with
additional symbols: blue diamonds and black asterisk, referring to in-source leucosomes and the
representative augen gneiss sample SC-14-33 considered for thermodynamic modelling, respec-
tively. Mixing trends are calculated between: (i) extremal model melt compositions and (ii) the
average composition of K-rich calc-alkaline granites ("KCG" of Barbarin, 1999) from the French
Massif Central, regarded as mantle-derived magma fractionates (Laurent et al., 2017; Moyen
et al., 2017a). Data for KCGs (65�72 wt.% SiO2) are from this study (sample BOR-16-01),
Delfour et al. (1989); François (2009); Mialhe (1980); Sabourdy (1975), and personnal commu-
nications from B. Barbarin, M. Cuney and J.-F. Moyen. Number of analyses is 146 for Al2O3,
143 for Ba+Sr and 8 for Nb. The grey �eld depicts the compositional variability of orthogneisses
from the Velay Orthogneiss Formation. XH2O are quoted in wt.%.

Such inconsistency between �eld observations and the model predictions may have
two origins. First, melt coalescence is a deformation-assisted process (Macaudière et al.,
1992; McLellan, 1988; Sawyer, 2008) meaning that pure/simple shearing may be su�cient
to expel liquids out of their solid matrix, even at (very) low melt fractions. An alter-
native view would be to consider that the "fully hydrated system" assumption is wrong
and that anatexis was aqueous �uid-assisted (see Weinberg and Hasalová, 2015 and refer-
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Figure 6.29: Histogram showing the 206Pb/238U dates of inherited zircon grains and xenocrysts
from granites sampled in the southern part of the Velay Dome. Data from Couzinié et al. (2014)
and this study. Bin width is 15 Ma. Available zircon 206Pb/238U dates (concordance: 95�105%)
for the Velay Orthogneiss Formation (in red, data from this chapter and Part 1, N=107) and
regional metasediments (in blue, data from Chapter 2 and Chelle-Michou et al., 2017, N=445)
represented as Kernel Density Estimates. The latter were calculated using the DensityPlotter
program of Vermeesch (2012) with a bandwidth set at 15 Ma.

ences therein). Elevated XH2O in the bulk composition does not substantially a�ect the
stability �eld of the main mineral assemblages but results in a dramatic increase of the
melt productivity (Fig. 6.30). This partly stems from the overall "eutectic" composition
of the orthogneiss source, with quartz and feldspars being dissolved in the melt phase via
the reaction Qz + Kfs + Pl + H2O = melt, only limited by water availability (Johannes
and Holtz, 1996; Holtz and Johannes, 1991).

Increasing the H2O content of the source orthogneiss may proceed via in�ux of: (i)
meteoric water, percolating down to the middle crust (Wickham and Taylor Jr., 1985); (ii)
metamorphic water, originating from the dehydration of deeper lithologies (Cartwright
et al., 1995; Sawyer, 2010), (iii) magmatic water conveyed by uprising, hydrous melts
(Weinberg and Hasalová, 2015). Evidence for case (i) are very scarce in the geological
record (see review in Weinberg and Hasalová, 2015). In case (ii), release of aqueous �uids
in the deep crust is likely to immediately promote partial melting so that H2O would be
transferred upsection dissolved in a melt phase (Sawyer, 2010) hence getting to case (iii).

Following Weinberg and Hasalová (2015), we envisage a situation where the intrusion
of a water-rich magma creates a local water activity gradient in the middle crust. This
promotes H2O transfer from the melt to its country-rocks which would in turn initiate or
enhance anatexis. Such model would adequately explain the apparent elevated melt vol-
umes in migmatites, higher than predicted for subsolidus full hydration, and the spatial
and temporal relationships between anatexis and granitic magmatism (see Fig. 6.13e,f).

Given the scarcity of ma�c igneous rocks in the Masméjean dome, the intruding hy-
drous magmas were most likely of granite composition. Their inferred elevated H2O
contents suggests that they derive from the fractionation of a water-rich parental magma
akin to vaugnerites (Parat et al., 2009). If our model is correct, granites from the Mas-
méjean dome would intrinsically be of mixed origin: a fraction of their mass corresponds
to collected, local anatectic liquids while the rest originates from fractionated mantle-
derived magmas.

In order to test this hypothesis, we performed forward modelling to estimate the
major and trace element compositions of anatectic liquids generated from orthogneiss
melting for a range of P�T�XH2O conditions and compared them to the natural granite
compositions.

200



Figure 6.30: T�XH2O pseudosection calculated using a representative augen gneiss composition.
White lines are melt isopleths (with numbers indicating melt wt.%). For sake of clarity, iso-
pleths were not drawn in the �eld Bt+Pl+Kfs+Ms+Qz+melt+H2O. Mineral abbreviations after
Whitney and Evans (2009).

Forward modelling of granite genesis

Phase proportions and melt compositions were calculated along three P-T paths con-
sisting in isobaric heating from 680 to 800 ◦C at 0.4, 0.5 and 0.6 GPa, using the same
representative augen gneiss composition as above (Table 6.2). Calculations were per-
formed in closed-system, i.e. with no melt extraction (the melt is always in equilibrium
with the solid residue). Three initial water contents were considered for the bulk starting
composition: 0.53, 1.6 and 2.6 wt.% H2O. Melt Ba, Sr and Nb contents were calculated
at each step along the P�T path using: (i) the phase proportions retrieved from each
step along the T�t path; and (ii) a set of partition coe�cients for felsic systems compiled
by Laurent (2012).

Results are depicted Fig. 6.28. First, four in-source leucosomes out of �ve show di�er-
ent chemical compositions than predicted by the model for anatectic melts. Their low Nb
contents and elevated Eu/Eu* collectively suggest that they correspond to plagioclase-
rich and biotite-poor cumulates. Five granite samples with low Ba + Sr would adequately
correspond to pristine anatectic melts generated at T <760◦C for a large range of XH2O

contents (from 0.53 to 2.6 wt.%) and T >760◦C but elevated XH2O (1.6 to 2.6 wt.%).
Importantly, melting at high temperature under fully hydrated conditions (XH2O = 0.53
wt.%) fails to reproduce natural composition has it generates melts with high Nb con-
centrations (Fig. 6.28d). In addition, the composition of 6 granites can be reasonably
modelled as a mixture between local anatectic melts and 20�80% KCG magmas (Fig.
6.28c,d). Two samples are richer in Ba+Sr, possibly related to local K-feldspar accumu-
lation.
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To conclude, geochemical modelling supports a mixed origin for the Masméjean gran-
ites with a fraction corresponding to local pristine anatectic melts formed at T <730�
760◦C and the remaining being akin to KCG magmas. This way, elevated melt contents
in metatexites most probably stem from the addition of external water, supplied by
intruding mantle-derived KCG magmas.

6.4.3 Di�erential response to water ingress: role of inherited struc-
tures in controlling doming

The previous section illustrates how water di�usion from hydrous mantle-derived mag-
mas would trigger substantial anatexis at moderate temperatures. In the case of the
Masméjean dome, the dramatic e�ects of water ingress inherently stems from the unlim-
ited availability of the cardinal minerals Qz+Pg+Kfs involved in the "eutectic" melting
reaction (Holtz and Johannes, 1991; Johannes and Holtz, 1996). In other words, melting
would have been markedly enhanced because of the granitic nature of the VOF protolith.
The control exerted by the source composition and mineralogy on this phenomenon can
be apprehended by comparing the melt productivities of ortho and paragneisses at 0.5
GPa when the water content increases due to interaction with KCG magmas.

Figure 6.31 shows that regional metagreywackes (reference material CEV, see Vielzeuf
and Montel, 1994 and Montel and Vielzeuf, 1997) produce very limited amounts of melts
below 720◦C and are always less fertile than the VOF orthogneiss (twice as less on av-
erage) at elevated XH2O. This feature simply re�ects the absence of Kfs at subsolidus
conditions (Montel and Vielzeuf, 1997; Vielzeuf and Montel, 1994), hampering substan-
tial melt production by the "eutectic" melting reaction. In metagreywackes, Kfs is the
limiting reactant and not H2O as in the orthogneiss.

Importantly, these �rst-order calculations suggest that enhanced anatexis by water
ingress is restricted to migmatites developed at the expense of meta-igneous lithologies,
such as the VOF. This would adequately explain why the Masméjean dome is cored by
orthogneisses. As anatexis and dome formation are intimately linked, both from a spatial
and temporal point of view (Rey et al., 2009; Tirel et al., 2004; Whitney et al., 2004b),
doming would only proceed in orthogneiss-dominated terrains.

Figure 6.31: Comparison of respective melt productivities (in wt.%) for the Velay Orthogneiss
Formation (augen gneiss sample SC-14-33) and a regional representative metagreywacke (CEV,
Vielzeuf and Montel, 1994) with increasing water contents at a pressure of 0.5 GPa. Melt isopleths
for the greywacke calculated using the same procedure as section 6.4.1.
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6.5 Zircon behaviour during orthogneiss melting

A striking feature of the U�Pb zircon dataset is the comprehensive lack of Variscan grain
in the migmatites. The same remark holds true for several granite bodies in and around
the dome. This section addresses the origin of such scant Variscan zircon record.

6.5.1 Maximum Zr uptake in the melt fraction

In this section, we will consider that new zircon growth during anatexis exclusively re-
sults from the dissolution of pre-existing protolith zircon grains and re-precipitation of
new grains (or overgrowths) from the melt phase (Watson, 1996). Zircon neoformation
by Ostwald ripening (Nemchin et al., 2001) was not investigated. Experimental studies
have determined the maximal amount of Zr that can be accommodated in a melt un-
til it reaches zircon saturation, which depends on the temperature and melt chemistry
(Boehnke et al., 2013; Watson and Harrison, 1983). Following this, it is possible to pre-
dict the maximal Zr content of felsic melts generated from the VOF orthogneisses in
a range of P�T�H2O conditions. Figures 6.32 and 6.33 depict the maximal Zr content
of melts produced from the same representative augen gneiss composition used in the
modelling section 6.4. Such value strongly depends on the temperature of melting but
little on the bulk water content of the protolith.

Assuming that all Zr in the orthogneiss is hosted in zircon, it becomes possible to
calculate the proportion of the orthogneiss zircon budget that has to be dissolved in order
to saturate the melt phase. The results are reported Fig. 6.34 and 6.35. Importantly,
low and high bulk H2O systems show contrasted behaviours. At low water content (Fig.
6.34), saturation of melt fractions >10 wt.% requires substantial zircon dissolution, up to
50 wt.% of the source zircon budget for only 20 wt.% melt in the migmatite. In contrast,
at high H2O content, saturation of elevated melt fractions can be reached through limited
zircon dissolution. For instance, incorporation of 10 wt.% of the orthogneiss zircon pool
can su�ce to saturate a 24 wt.% melt fraction at 690◦C.

Such di�erences arise from the fact that attaining substantial melt fractions at low
H2O content requires elevated temperature (Fig. 6.32) and is correlated to an increase
in the melt M parameter (Boehnke et al., 2013; Miller et al., 2003). Both aspects result
in higher maximal melt Zr content (Fig. 6.32) thus entailing extensive dissolution of the
source budget. In contrast, there is little change in the M parameter value at elevated
H2O content because melt chemistry is bu�ered by the reaction Qz+Kfs+Pg+H2O=melt
(Holtz and Johannes, 1991; Johannes and Holtz, 1996). The maximal melt Zr content
remains low (<90 ppm) and the melt phase can be saturated via limited dissolution of
the zircon pool in the source.

To conclude, these results suggest that the amount of new magmatic zircon in a
migmatite is a �rst-order estimate of the temperature of melting and the water content
of the system.
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Figure 6.32: Calculated maximal Zr concentration (in ppm) in the melt phase for a fully hydrated
(at 0.5 GPa) orthogneiss composition (SC-14-33). Based on the equation of Boehnke et al. (2013).
The Zr concentration of the stoechiometric zircon was set at 497644 ppm.

5

Figure 6.33: Calculated maximal Zr concentration (in ppm) in the melt phase, provided it is
zircon saturated. Starting composition: orthogneiss SC-14-33. Based on the equation of Boehnke
et al. (2013). The Zr concentration of the stoechiometric zircon was set at 497644 ppm. Pressure
is 0.5 GPa.
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Figure 6.34: Calculated proportion (white lines, in wt.%) of the orthogneiss zircon budget to be
dissolved in order to saturate the melt phase. The average Zr content of the protolith was set
to 115 ppm for. Dotted lines and bold numbers are melt isopleths and melt contents in wt.%,
respectively.

Figure 6.35: Calculated proportion (white lines, in wt.%) of the orthogneiss zircon budget to be
dissolved in order to saturate the melt phase. The average Zr content of the protolith was set
to 115 ppm for. Dotted lines and bold numbers are melt isopleths and melt contents in wt.%,
respectively. Pressure is 0.5 GPa.
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6.5.2 Additional complications

Calculations performed in the previous section considered an idealized and simpli�ed
case where the migmatite behaves as a closed-system, i.e. melt is retained within its
source. Yet, melt loss events deplete or enrich the restite in Zr (depending on the melt
Zr content vs. that of the protolith) which, in turn, a�ects further zircon dissolution in
the residual melts (e.g. Kelsey et al., 2008; Yakymchuk and Brown, 2014).

Another range of parameters not investigated in our model are the kinetics e�ects
as we assumed permanent melt�solid equilibrium. Importantly, the dissolution of zircon
grains is controlled by the di�usion of Zr in the melt fraction (Watson, 1996). Therefore,
rapid withdrawal of anatectic melts out of the source may result in a disequilibrium
between melt and the solid residual matrix (Harris et al., 2000; Sawyer, 1991; Watt
et al., 1996), hampering substantial zircon dissolution before melt extraction. However,
disequilibrium melting might not always be the rule (e.g. Rubatto et al., 2001).

Finally, it was assumed that all zircon (and hence all Zr) from the protolith was part of
the "reactive system", i.e. was not occluded in unreactive minerals during partial melting.
Yet, biotite hosts notable amounts of zircon grains in metamorphic rocks (Clemens, 2003)
meaning that, during melting at temperatures lower than that required for extensive
biotite breakdown, part of the protolith zircon budget cannot physically interact with
the melt and is in essence out of equilibrium (Bea and Montero, 1999; Skrzypek and
�típská, 2012).

6.5.3 Application to the Masméjean migmatites and granites

At melting conditions relevant for the Masméjean case study, i.e. T < 730◦C, saturation
of the migmatite melt fraction would be achieved through limited zircon dissolution
corresponding to c. 10 wt.% of the orthogneiss budget for a reasonable maximal melt
content of 20 wt.%. Therefore, if the melt fraction crystallized in situ, one could expect
c. 10 wt.% of the zircon grains (or grain domains) to have recorded the melting event.
Such value is clearly a maximum estimate as it presumes a closed-system behaviour with
full equilibration between melt and residue.

Following this, the lack of Variscan zircon in the Masméjean metatexites would result
from the conjunction of: (i) low zircon solubility in the melt phase at the inferred P�
T�XH2O conditions of melting (Fig. 6.32 and 6.33), entailing that a maximum of only
10 wt.% of the grains would be magmatic and record anatexis; (ii) selective retention of
zircon grains in biotite, as melting occurred at T < 780◦C (onset of biotite dehydration
melting, Vielzeuf and Montel, 1994); (iii) kinetics e�ects, with the potentially short-lived
evolution at elevated melt fractions preventing melt�residue equilibration; and, (iv) melt
loss events, further hindering the probability to retrieve newly grown Variscan grains,
critical for melanosome CHA-15-65M.

In the case of granitic magmas, the scarcity or even absence of Variscan zircon in some
specimen suggests that the Zr content of the melt phase was insu�cient to precipitate
substantial amounts of new zircon. In this frame, it is most likely that the melts left
their sources in a Zr-undersaturated state and did not further dissolve inherited grains
or xenocrysts at emplacement levels, possibly because of fast cooling rates (Bindeman
and Melnik, 2016; Watson, 1996).

Melt Zr-undersaturation would also adequately explain the absence of magmatic
grains in the in-source leucosomes. Indeed, as geochemical data support a cumulative
origin, crystallization of major minerals from the melt phase would have reduced the melt
volume and thus entailed precipitation of new zircon if the melt had been saturated.

Consequently, a combination of several factors probably accounts for the scant zir-
con record of Variscan crustal melting. Importantly, the apparent Zr-undersaturation
of crust-derived melts suggests that melt�residue equilibrium during anatexis was not
achieved.
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6.6 Formation of the Masméjean dome

6.6.1 Pre- to early-doming tectonic regime

Metamorphic rocks from the And�Crd�Bt and Grt�Chl zones record a regional pervasive
top-to-the NE shearing event (D2v) that is well documented in the southwestern �ank
of the Masméjean dome. New geochronological constraints on the Rocles syntectonic
granite (Fig. 6.26), in conjunction with literature data (Be Mezeme et al., 2006; 2007;
Bouilhol et al., 2006), indicate that top-to-the NE shearing probably lasted between
325�315 Ma. The end of this tectonic episode is bracketed by intrusion of the c. 315-310
Ma-old Margeride granite which occurred under NW�SE extension (Talbot et al., 2005).

At the regional scale, the N�S expansion of the main Velay granite would have caused
doming and tilting of the originally �at-lying P3 structures including the early Rocles
granite (Be Mezeme et al., 2007; Burg and Vanderhaeghe, 1993; Lagarde and Dallain,
1994; Laumonier et al., 1991; Ledru et al., 2001; Marignac et al., 1980). Restoring the pre-
doming geometry, top-to-the NE shearing would have a�ected a gently N-dipping foliation
(Fig. 6.36a). Such situation markedly resembles that of the Pilat Shear Zone, described
at the northern edge of the Velay Complex and presumably controlling its exhumation
(Malavielle et al., 1990). Consequently, as originally suggested by Bouilhol et al. (2006),
the pre-doming tectonic framework most probably consisted in extensional top-to-the NE
shear zones a�ecting orthogneisses and overlying metasediments. Concomitant crustal
melting is evidenced by the syntectonic emplacement of the Rocles peraluminous granite
and the U�Pb ID�TIMS monazite date of 314 ± 5 Ma obtained on M3 Velay migmatites
by Mougeot et al. (1997).

6.6.2 Signi�cance of the Villefort Shear Zone

Ductile vs. brittle activity

The existence of lateral displacement along the Villefort lineament has long been recog-
nized (Lapadu-Hargues, 1947) and a total o�set of 12 km estimated (Deroin and Prost,
1993a; Lapadu-Hargues, 1947; Talbot et al., 2004). According to Talbot et al. (2004),
wrenching was Permian in age and dominantly occurred under brittle conditions.

Yet, a range of geochronological, structural and petrological observations argue against
a substantial brittle o�set. First, zircon U�Pb dating of two samples from the Pont-de-
Montvert and Borne granites originally located c. 4 km away from each other (when the
presumed o�set is restored) yielded statistically di�erent emplacement ages, thus ques-
tioning the existence of a unique batholith having behaved as a passive marker during
wrenching. Second, foliation trajectories and the petrological continuity observed at the
boundary between the Masméjean and Tanargue domes (near Saint-Laurent-les-Bains,
Fig 6.2 and 6.5) cannot be reconciled with a 12 km, post-anatectic, brittle o�set. Third,
evidence for left-lateral ductile shearing (see section 6.2.1), syntectonic granite intrusion
and the overall asymmetric shape of the Masméjean dome collectively demonstrate that
the Villefort Shear Zone controlled the exhumation of the Masméjean migmatite dome
on its eastern �ank.

Consequently, we argue that left-lateral displacement dominantly took place under
ductile conditions and initiated before c. 305 Ma, the intrusion age of the syntectonic
Villefort granites (Fig. 6.36c). It is most likely that the Pont-de-Montvert and Borne
plutons corresponded to di�erent batholiths emplaced in a E�W to NE�SE extensional
regime (Faure et al., 1992; Talbot et al., 2000; 2004) and which eastern and western
terminations, respectively, were truncated by ductile and subsequent brittle (Deroin et al.,
1990) deformation along the Villefort Shear Zone (Fig. 6.36c,d). In addition, apparent
truncations may have been exacerbated by the subtractive e�ects of late normal faulting.
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Figure 6.36: Schematic maps illustrating the regional evolution of the study area between 325
and 275 Ma, with a particular emphasis on the formation of the Masméjean dome. To be related
to Fig. 6.2.
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Timing of initiation

The onset of the Villefort Shear Zone activity remains unclear. According to Prost and
Becq-Giraudon (1989) and Lagarde et al. (1990), the VSZ extends further North and
bounds the western part of the Velay Complex. In this area, Dupraz and Didier (1988)
documented a set of syntectonic granites (the so-called "Chaise-Dieu" granites) emplaced
during wrenching, presumably related to the VSZ activity. Laurent et al. (2017) obtained
zircon and monazite U�Pb intrusion ages ranging between 318.3 ± 4.4 Ma and 314.5 ±
3.9 Ma (taking into account systematic errors). Consequently, the Villefort Shear Zone
may have initiated as early as 320 Ma in the northern Velay and possibly propagated to
the South at 315�310 Ma (Fig. 6.36b,c).

Isolating the Masméjean and Tanargue domes

Owing to the geometry of its foliation pattern, the western part of the Masméjean dome
resembles the termination of a conical E�W trending antiform, akin to the Tanargue
dome. Such geometry suggests an original connection between the two domes, besides
supported by their petrological continuity. This way, both were most probably part of
a single E�W trending antiformal structure in the core of which partially molten crust
started being extruded at 315�310 Ma (Fig. 6.36b, Bouilhol et al., 2006). Left-lateral
movements along the Villefort Shear Zone would have o�set the western termination
from the main part of the antiform (Fig. 6.36c) which evolved as the Masméjean and
Tanargue domes, respectively.

Vertical strain partitioning in the crust?

In the time period 310�300 Ma, the middle crust was a�ected by strike-slip ductile
shearing along the Villefort Shear Zone. In contrast, the internal structure of granitic
plutons (Pont-de-Montvert and Borne, Fig. 6.36c) coevally emplaced at higher crustal
levels rather recorded an E�W extensional context (Faure et al., 1992; Faure, 1995; Faure
et al., 2001; Talbot et al., 2000; 2004). N�S wrenching is di�cult to reconcile with
synchronous E�W extension and points to a vertical strain partitioning within the crust
section.

At mid-crustal level, the Villefort Shear Zone possibly acted as a transfer structure
accommodating di�erential movements between the Velay Complex to the East, and
the Margeride domain to the West. Such displacements would have taken place due
to contrasted rheological behaviours of both crust segments. Experimental studies have
demonstrated that the strength of a solid rock decreases by at least two orders of mag-
nitude as soon as a small volume of melt is present in the matrix (Paquet et al., 1981;
Rosenberg and Handy, 2005; Rushmer, 1996). As a matter of fact, by 310�300 Ma, the
Margeride batholith was likely fully crystallized and its extraction left behind a sti�,
dry residue. In contrast, anatexis was still ongoing in the Velay Complex by that time.
Consequently, the Villefort Shear Zone possibly delineated the boundary between melt-
rich and melt-depleted mid-crustal domains by the late Carboniferous. In this frame,
the shear zone would have originally remained con�ned in the middle crust and lately
propagated to the upper crust (Fig. 6.36d), probably at Permian times (Arthaud and
Matte, 1975; Prost and Becq-Giraudon, 1989; Talbot et al., 2004).

6.6.3 Post-exhumation evolution

Timing of the Masméjean dome cooling is constrained by the respective ages of migmatite
crystallization and �ne-grained porphyritic granite intrusion, both occurring at c. 300
Ma (see section 6.3). The Permian evolution is marked by localized �uid circulations
pinpointed by the recrystallization/resetting of monazite in the dome core and along
the Villefort Shear Zone. Last increments of brittle deformation along the latter possibly
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acted as a drain for a range of crustal �uids. Their origin is not ascertained but they may
have been released by the crystallization of migmatites or deep magmas. Sedimentation
in the Prades�Jaujac and Alès basins started in the early Permian (Bruguier et al., 2003)
and the presence of migmatites in the basal conglomerates argues for fast denudation
rates by the late Carboniferous/early Permian. Finally, the c. 275 Ma intrusion age
of a granite dyke from the Masméjean dome suggests that high-temperature conditions
and anatexis in the deep crust may have lasted until the middle Permian, as observed
in other late-Variscan domains such as the Ivrea�Verbano zone (Klötzli et al., 2014 and
references therein) or the Pyrénées (Denèle et al., 2012).

6.7 Conclusion

6.7.1 Middle-upper crust mechanical uncoupling during doming

Vertical extrusion of partially molten crust in the Masméjean dome is documented by
the presence of cascading folds, the foliation �attening in the dome core and AMS mea-
surements imaging a bulk �ow along the southwestern dome �ank towards the NE at an
angle of c. 30◦ (see section 6.2.3). In this frame, normal top-to-the SW displacement
of the dome mantle with respect to the core would be expected. Of critical importance
is the comprehensive lack of tectonic evidence for such di�erential transport in the un-
molten mantle. There, ductile meso- and micro-structures strictly relate to the early c.

320 M-old top-to-the NE shearing event. Only discrete top-to-the S brittle-ductile shear
bands (see Fig. 6.10e) would record dome exhumation.

The observed situation demands a mechanical decoupling between the anatectic do-
main and the overlying unmolten lithologies. Here again the origin of such probably lies
in the contrasted rheological properties of both materials, with the migmatites showing
markedly lower strengths than subsolidus ortho/paragneisses. This way, the strain related
to dome exhumation would have been localized within metatexites from the core�mantle
interface, overlying unmolten lithologies acting as rigid passive blocks and remaining un-
a�ected by the extrusion of the partially molten middle crust. Overall, such decoupling
inherently stems from the presence of melt in the middle crust, which, as demonstrated
above, partly results from a water in�ux from uprising deep magmas.

The picture drawn in the Masméjean area contrasts with that observed east of the
Villefort Shear Zone, in the Tanargue dome. There, the Sil-Bt zone of the mantle is
pervasively a�ected by top-to-the S shearing related to migmatites vertical extrusion
(Bouilhol et al., 2006). Such di�erent mechanical behaviour of the core�mantle interface
compared to the Masméjean dome possibly stems from higher strain rates. Indeed,
the steep migmatite foliation in the Tanargue area would testify for substantial vertical
transport, larger than inferred for the Masméjean dome.

6.7.2 Respective roles of the regional strain �eld and the buoyancy-
driven �ow during doming

D2v NE-SW extension, marked by the activation of top-to-the NE shear zones, pre-dated
the formation of the Masméjean and Velay domes. This 325�315 Ma crustal thinning
event was accompanied by early anatexis. A marked dynamic change took place at c.
315 Ma with the onset of partially molten crust vertical extrusion in the core of E�W
trending antiforms. At that very same time, granite bodies emplaced in the upper crust
record a general D3 NW�SE to E�W extension, i.e. perpendicular to the migmatites �ow
direction. It comes from this that the regional D2v event likely triggered the exhumation
of the partially molten crust, but as soon as this process had been launched, the �ow
of the middle crust would have been mostly controlled by buoyancy and overall little
a�ected by the upper crustal strain �eld. This is well evidenced in the Masméjean dome
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where the migmatite core is mechanically decoupled with its overlying unmolten dome
mantle.

The only external control on the Masméjean dome formation would correspond to the
wrench corridor along its eastern �ank, clearly acting as a boundary with the adjacent
crustal domain, channelling dome exhumation and collecting anatectic liquids. Yet, the
signi�cance of this Villefort Shear Zone remains unclear as its late Carboniferous activity
does not easily �t with a general E�W extensional context. This shear zone may have
nucleated as a transfer fault, accommodating contrasted rheological behaviours on its
western and eastern side. Indeed, to the West, intrusion of the Margeride granite, the
largest batholith in France (Chantraine et al., 1996), likely drained large volumes of melt
out of the middle crust, leaving behind a sti� residue. On the other hand, to the East,
melt remained con�ned in the middle crust and ultimately led to doming.

In any case, the Masméjean dome and the southern part of the Velay Complex illus-
trate the dramatic rheological and tectonic e�ects of continental crust partial melting.

6.7.3 What controls the locus of doming during post-collisional exten-
sion

Following the conclusions of section 6.4, anatexis in the Masméjean dome would have
occurred at moderate temperature (mostly <730�760◦C) but still generated substantial
amounts of melt due to water ingress from intruding mantle-derived granitic magmas
(of KCG type). This viewpoint is corroborated by geochemical data indicating a mixed
origin for the Masméjean granites with a fraction corresponding to local pristine anatectic
melts and the remaining being akin to KCG magmas.

Figure 6.37: Conceptual sketch illustrating the role of mantle-derived magmas in ultimately
controlling anatexis at mid-crustal levels. Lower crustal melting and associated peraluminous
granite suites are not depicted.

Petrological constraints gained on the Masméjean dome formation hint a twofold
control on the doming process (Fig. 6.37). The spatial distribution of hydrous magmas
intrusions (originating from a metasomatized mantle source) delineates crustal zones with
increased water contents. Such H2O ingress promotes catastrophic melting in areas fea-
turing substantial volumes of orthogneisses while leaving paragneiss-dominated domains
una�ected. As partial melting and dome formation are intimately linked (Whitney et al.,
2004a), the locus of doming during post-collisional evolution would depend on: (i) the
pathways followed by mantle-derived magmas en route to the surface; and (ii) the pre-
orogenic magmatic history of the crust segment, i.e. inherited structures and lithological
heterogeneities.
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This model is consistent with the geological record of doming worlwide. Indeed, gneiss
domes are generally cored by anatectic meta-igneous rocks. For instance, the Dassu-
Askole or Gurla Mandhata domes of the Himalayan Karakorum Metamorphic complex
all feature anatectic orthogneiss cores and evidence for coeval mantle-derived magmatism
(Murphy et al., 2002; Rolland et al., 2001). Other iconic cases include the Shuswap
Metamorphic Complex in the Canadian Cordillera (Norlander et al., 2002; Parkinson,
1991), the Kesebir�Kardamos dome in Rhodope (Bonev et al., 2005) or the Aston�
Bossost�Hospitalet domes in the Variscan Pyrénées (Denèle et al., 2014) to cite only a
few.
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Part III

General discussion
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Chapter 7

The zircon U�Pb�Hf(�O) record of
crust formation and reworking in
the French Massif Central

7.1 Classical approaches to decipher crust evolution

Figure 7.1: Summary of the coupled petrological and zircon U�Pb�Hf constraints obtained on
the French Massif Central. Data from this work, Couzinié et al. (2014), Moyen et al. (2017a) and
Chelle-Michou et al. (2017). The relative extent of the U�Pb date peaks has to be moderated with
the uneven data sources. U�Pb date distribution is represented as a Kernel Density Estimate
(KDE). Only 95�105% concordant 206Pb/238U (for dates < 1.2 Ga) and 207Pb/206Pb dates (for
dates > 1.2 Ga) were considered. Plotted with the DensityPlotter program of Vermeesch (2012).
The bandwidth was set to 12 Ma (the average 2σ error of individual analyses). The black dotted
lines depicts the time-integrated εHf (t) evolution of an upper crustal with a 176Lu/177Hf of
0.0113. The range for the Depleted Mantle reservoir is bracketed by the models of Naeraa et al.
(2012) and Gri�n et al. (2002).
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Figure 7.2: Summary of the coupled petrological and zircon U�Pb�Hf constraints obtained on
the French Massif Central with en emphasis on the period 200�1100 Ma. Same legend as Fig. 7.1.
The red dotted line highlights the linear εHf (t)�time array connecting the Velay Orthogneiss For-
mation and the post-collisional Variscan granitoids with a slope corresponding to a 176Lu/177Hf
of 0.01.

In this section, the evolution of the French Massif Central crust segment is recon-
structed based on conventional zircon U�Pb�Hf methodologies. Our dataset is interro-
gated considering zircon data out of their petrological context, as if the grains were all
detrital in origin. The limitations of such approach will be later discussed by confronting
the results to the geological record of the French Massif Central.

7.1.1 Available dataset

Figures 7.1 and 7.2 present a summary of the zircon U�Pb�Hf data obtained by our group
in the past 4 years. Importantly, a large range of rock types were targeted, covering at
�rst-order all lithological components recognized so far in the French Massif Central.

7.1.2 U�Pb date distribution

The distribution of zircon U�Pb dates re�ects the temporal succession of geological events
that resulted in the formation of zircon grains. The most common situation is the
crystallization of an intermediate to acid magma (Hoskin et al., 2000). Therefore, the
U�Pb date distribution dominantly re�ects the timing of magmatic episodes that a�ected
a given crust segment.

Figure 7.3 shows that no matter the dataset considered (comprehensive set of data
or only spots with available Hf isotope compositions) the same distribution is observed.
Most dates range between 0.7 and 0.3 Ga de�ning two peaks at 0.3 and 0.6 Ga. This
indicates that the FMC experienced substantial magmatic activity in the Neoproterozoic
and Paleozoic. That being said, it is not possible to establish whether these magmatic

215



events built up the FMC crust or alternatively reworked pre-existing crustal lithologies.
As a matter of fact, Paleoproterozoic and Archean zircon populations suggest the presence
of older crustal components in the French Massif Central.

Figure 7.3: Histogram showing the distribution of zircon U�Pb dates in the French Massif Cen-
tral. Are shown in (a) the full dataset and in (b) only the spots for which Hf isotope composition
have also been measured. In both cases, only 95�105% concordant 206Pb/238U (for dates < 1.2
Ga) and 207Pb/206Pb dates (for dates > 1.2 Ga) were considered.

7.1.3 Hf model ages

A second approach to unravel the evolution of a crust segment relies on the calculation of
Hf model ages (see Chapter 1 and references therein). Such procedure has been carried
out using the available FMC dataset and the results are depicted Fig. 7.4. Clearly,
model ages de�ne an unimodal distribution with a major peak centred around 1.2 to
1.4 Ga depending on the composition of the Depleted Mantle reservoir retained for the
calculations. A subordinate peak at 0.6 to 0.8 Ga may be identi�ed. Finally, it must be
stressed that a continuous range of model ages exists between 3.7 down to 0.4 Ga.

Zircon Hf model ages considered alone would indicate that the FMC crust is domi-
nantly Mesoproterozoic in age with some components being as old as Paleoarchean.

Figure 7.4: Histogram showing the distribution of zircon TDM model ages in the French Massif
Central. Calculated with a 176Lu/177Hf of 0.0113 and two Depleted Mantle reservoir compositions
(a: Naeraa et al., 2012 and b: Gri�n et al., 2002).

7.1.4 Integral growth curves

Integration of the above-mentioned age distributions yields crustal growth curves, i.e.
the volume of the present-day crust that had already been extracted at a given time
period. Such approach presumes incremental assembly of the crust and does not take
into account the e�ects of crust destruction and recycling in the mantle.

Growth curves retrieved from zircon U�Pb data are very similar and indicate that 45
to 60% of the FMC crust formed between 0.8 and 0.5 Ga, that is, during the Cadomian
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orogeny. Signi�cant growth would have also taken place at Variscan times (25 to 45% of
the crust being extracted between 0.4 to 0.2 Ga). Less than 5% of the crust would be
Paleoproterozoic to Archean in age.

In contrast, TDM -based curves point to a slow, continuous formation of the FMC
crust since c. 3.3 Ga with a �are-up at 1.2�1.4 to 1.3�1.5 Ga (depending on the Depleted
Mantle composition retained). New crust extraction continued till 0.6 Ga at a slower pace.
Overall, more than 60% of the local crust would have formed during the Mesoproterozoic.

Figure 7.5: Integral growth curves of the French Massif Central crust obtained from the zircon
U�Pb and TDM date distributions.

7.1.5 Proportion of crust extracted from the Depleted Mantle at a
given time

The Hf isotope dataset can be represented in a way that emphasizes the relative extent of
new crust formation vs. crust reworking at a given time period. Following the approach
of Belousova et al. (2010), Fig. 7.6 highlights that from a zircon Hf isotope perspective,
extraction of new crust predominated over reworking between 3.7 and 0.7 Ga (with
the exception of a major reworking event at 2.7�2.8 Ga). In contrast, the Cadomian
and Variscan orogenies would have little contributed to the formation of new crust and
magmas dominantly reworked pre-existing crustal lithologies.

7.1.6 εHf(t)�time array

Figure 7.2 reveals the existence of a linear εHf (t)�time array connecting late-Cadomian
(c. 550 Ma-old) and Variscan zircon populations. The slope of this array corresponds
to a 176Lu/177Hf of 0.01, typical of upper crustal lithologies (Taylor and McLennan,
1985). It suggests that magmas generated during the Variscan orogeny reworked a late
Neoproterozoic crustal reservoir having a chondritic signature at c. 550 Ma.

7.2 Confrontation to the geological record and limitations
of the methods

7.2.1 Inconsistencies with the geological record

U�Pb data support the formation of the French Massif Central crust in the Archean and
Paleoproterozoic. However, there is no evidence for the existence of a pre-Neoproterozoic
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Figure 7.6: Relative extent of crust reworking vs. addition of materials extracted from the
Depleted Mantle as a function of time. Calculated using the "juvenile proportion" algorithm
proposed by Belousova et al. (2010) and TDM calculated with the Depleted Mantle parameters of
Gri�n et al. (2002). Are superimposed periods of crust formation deduced from the examination
of the geological record (see previous Chapters).

basement (Chelle-Michou et al., 2017; Roques et al., 1995), the oldest rocks so far iden-
ti�ed corresponding to Ediacaran (meta)sediments.

Moreover, the information retrieved from zircon Hf isotopes would point to substantial
crust formation during the Mesoproterozoic (see Fig. 7.4 and 7.5). This possibility must
be discarded as a wealth of studies documented the extreme scarcity of Mesoproterozoic
zircon grains in Cadomian terrains (including the French Massif Central, see review in
Henderson et al., 2016), clearly arguing against any major crust forming episode of that
age.

Besides, zircon Hf data processed conventionally would suggest that the Variscan
orogeny is a period of strict crust reworking (see Fig. 7.6). Such result is at odds
with the intrusion of mantle-derived magmas at the post-collisional stage (section 5.3),
testifying for new additions to the crust volume. In fact, 5 to 10% of the FMC crust did
formed at Variscan times (Moyen et al., 2017a).

To conclude, zircon U�Pb�Hf data considered alone erroneously point to substantial
Mesoproterozoic FMC crust formation and do not account for Variscan crust production.
The origin of these discrepancies can be addressed by examining the petrological context
of the analysed grains.

7.2.2 Origin of the discrepancies

Misleading zircon U�Pb�Hf information simply result from a range of mixing processes,
having taken place in a variety of environments.

Sedimentary mixing

Paleoproterozoic and Archean zircon grains (Fig. 7.3) are found as (i) detritus in Edi-
acaran (meta)sediments; and (ii) inherited crystals and xenocrysts in late Cadomian to
Variscan crust-derived granites, most probably sourced in the former. Consequently, it
is ambiguous to assess the origin of such grains. Indeed, they may originate from dis-
tal sources (see section 2.2) and this way should not be regarded as repositories of the
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pre-Ediacaran history of the FMC crust segment.
In other words, the presence of pre-Neoproterozoic zircon grains in the FMC would

originate from the mixing of a variety of detritus in the Ediacaran sedimentary basins
and would not re�ect the existence of an in-situ Paleoproterozoic to Archean crust in the
FMC.

Mesoproterozoic model ages as a result of magma mixing

Ediacaran metasediments from the French Massif Central are typi�ed by their very scat-
tered detrital zircon Hf isotope compositions (up to 45 ε-unit, Fig. 7.1) observed within
individual specimen (section 2.2). Such pattern is consistent with eroded Neoproterozoic
magmatic rocks originating from melting of two sources: (i) the Depleted Mantle or ma-
terials extracted from this reservoir shortly prior to melting, as evidenced by zircon with
highly radiogenic Hf isotope signature; (ii) old crustal remnants, most probably of Pa-
leoproterozoic/Archean age, for grains with strongly non-radiogenic compositions. The
whole range in between these endmembers, and notably the cluster between +5 and -5
ε-unit, most likely stem from mixing between magmas sourced in (i) and (ii) and thus of
contrasted isotope compositions (Janou²ek et al., 2004; Laumonier et al., 2014a;b; Wang
et al., 2016).

This way, the Mesoproterozoic model ages displayed by detrital Neoproterozoic zircon
do not re�ect reworking of a Mesoproterozoic crustal reservoir but are instead mixed
ages. Again, the involvement of an old, non-radiogenic Hf reservoir in the mixing model
does not require the existence of a Paleoproterozoic/Archean crust in the French Massif
Central as the mixing could have occurred in an adjacent terrain and the zircon grains
subsequently transported to the FMC Ediacaran basins.

Mesoproterozoic model ages as a result of source mixing

A somewhat similar reasoning can be followed for crust-derived peraluminous gran-
ites from both the late Cadomian Velay Orthogneiss Formation and the Variscan post-
collisional MPG/CPG suites. As they reworked the Ediacaran sediments, their source
material was intrinsically heterogeneous in terms of zircon Hf isotope signature. Yet, both
display tighter ranges of 3 and 7 ε-unit, respectively (Moyen et al., 2017a; Chelle-Michou
et al., 2017; Couzinié et al., 2017).

The small-scale petrological processes at the origin of the zircon εHf (t) homogeniza-
tion have been detailed section 2.1 and encompass: (i) inherited zircon dissolution during
melting and ascent due to Zr-undersaturated conditions, (ii) isotopic homogenization of
the melt phase by advection and elemental/isotopic di�usion, followed by (iii) early sat-
uration upon emplacement, preventing further dissolution of inherited grains. Those
would have proceeded during both Cadomian and Variscan reworking events. In this
case, the Mesoproterozoic Hf model ages displayed by magmatic zircon grains result
from an averaging of the Hf isotope composition of the source material and are mixed in
essence.

The consequences of crust recycling

Zircon grains crystallized in Variscan post-collisional ma�c magmas (PCMM) and other
granitoids from the KCG suite show subchondritic εHf (t) despite the magma matter is
dominantly of mantle origin (section 5.3). The reason for it lies in the the incorporation of
10�25% crustal crustal materials in the mantle source. Similar cases have been described
in arc magmatic suites (Nebel et al., 2011; Roberts et al., 2013) further suggesting that
the εHf (t) is not a reliable repository of the proportion of crust- vs. mantle-derived
components in a given magma.

In hybrid crust/mantle sources, the Hf budget is dominated by the recycled crustal
component and the resulting magmas inherit a mixed, non-radiogenic Hf isotope signa-
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ture (most of the Hf is provided by the crustal materials and the rest by the mantle).
This feature explains why there is no Hf record of crust production at Variscan times
(see Fig. 7.6). Besides, Mesoproterozoic Hf model ages displayed by magmatic zircons
are here again the result of a mixing process and meaningless from a crust evolution
perspective (section 5.3).

Signi�cance of the linear εHf(t)�time array

Inherited zircon grains in Variscan peraluminous granites (MPG/CPG) provide evidence
for substantial reworking of the Velay Orthogneiss Formation (see sections 5.4 and 6.4).
This way, the εHf (t)�time array would simply re�ect the remelting of the VOF crustal
reservoir provided it had an average 176Lu/177Hf of 0.01 (further whole-rock isotopic
measurements would clarify this point).

However, post-collisional ma�c magmas (PCMM) and other granitoids from the KCG
suite also plot within εHf (t)�time array even though these rocks originate from melting
of the mantle. Consequently, them matching the εHf (t)�time array does not re�ect
inner crust reworking processes. Instead, it would result from: (i) the dominance of the
crustal component over the Hf elemental budget in the hybrid mantle source; and (ii)
the bulk Hf isotope signature of the inferred recycled crustal component being close to
that of Ediacaran metasediments (section 5.3). Consequently, the PCMM/KCG case
reassesses that care must be taken when interpreting εHf (t)�time array solely in terms
of closed-system crust reworking (Laurent and Zeh, 2015; Payne et al., 2016).

7.2.3 Additional methodological issues

On top of the �aws presented above, it must be stressed that a set of methodological
issues create a range of biases in the zircon record, the importance of which must be kept
in mind while reasoning on grains taken out of their petrological context.

A �rst problem inherently lies in the origin of the data considered. Large compila-
tions as those commonly used to investigate crust evolution gather the results of studies
originally conducted with a speci�c design. For instance, in the French Massif Central,
around a half of the compiled data (Fig. 7.1) originate from studies that questioned the
petrogenesis of Variscan post-collisional magmas (Couzinié et al., 2016; Laurent et al.,
2017; Moyen et al., 2017a). This way, the human operator speci�cally targeted zircon
rims, sometimes very narrow, with the aim to assess the timing of magma emplacement.
Therefore, databases containing signi�cant amounts of igneous zircon grains (in the sense
that the analyses were performed with the aim to constrain the petrology of an igneous
rock) are likely to be biased towards an over-representation of the most recent magmatic
events.

When looking at detrital zircon data (from modern rivers or ancient sediments), the
record of crust evolution is blurred by the inherently variable zircon fertility factor of
each crustal lithology (Moecher and Samson, 2006; Dickinson, 2008). According to these
authors, erosion of arc-related magmatic rocks will deliver 3.5 times less zircon grains
than collisional igneous suites. It comes from this that the observed zircon proportions in
the detrital record cannot be directly translated in terms of crust volumes. For instance
the ratio between radiogenic vs. non-radiogenic grains has no potential to unravel the
actual extent of new crust production vs. crust reworking at a given time period.

Finally, are only considered in the crust evolution models zircon grains yielding con-
cordant U�Pb dates. Though, discordant grains do take part of the detrital zircon budget
and originate as well from igneous precursors. Rejecting those entails that estimates are
only retrieved from a partial set of data (Nemchin and Cawood, 2005) and bias the record
towards an over-representation of mantle-derived rocks, more likely to yield concordant
results than crust-derived collisional suites (sections 5.1 and 5.3).
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7.3 Alternative formulations and ways forward

In the following, are address some questions surrounding the evolution of the French
Massif Central crust segment. The underlying approach is to emphasize the e�ciency
of combining petrological information with zircon U�Pb�Hf data to unravel complex
geological processes. Some of the discussed points are seen as future �elds of investigation.

7.3.1 What is the proportion of young Neoproterozoic crust in the
Ediacaran sedimentary basins of the Massif Central?

The Ediacaran (590�545 Ma) deposition of metasediments from the Lower Gneiss Unit
stamps the formation of the earliest crustal rocks in the French Massif Central. Ex-
amination of the detrital zircon U�Pb�Hf signature indicates that the Ediacaran basins
collected detritus from the adjacent Cadomian magmatic arc and a distal source, possi-
bly the Saharan Metacraton (see section 2.2). From a crust evolution perspective, it is
critical to establish the actual amount of young Neoproterozoic arc crust in the detritus
that fed the Ediacaran basins. In other words, how much of the FMC earliest crust is
Neoproterozoic in age?

As explained in the previous section, assessing the amount of young crust based
on the proportion of Cadomian zircon grains showing radiogenic Hf isotope signatures
is not relevant due to sampling biases (low zircon fertility of arc rocks, tendency to
show concordant U�Pb dates). Besides, such approach would not take into account
zircon grains having non DM-like, mixed Hf isotope signatures, even though part of their
parental magma mass do represent new Neoproterozoic additions to the crust volume.

As an alternative, the (meta)granites from the Velay Orthogneiss Formation may
provide another probe of the actual amount of Neoproterozoic detritus in the Ediacaran
basins. Following the conclusions of section 2.1, the (meta)granites originate from melting
of the Ediacaran metasediments and their chondritic Hf isotope signature would result
from dissolution of detrital zircon grains during melting and Hf isotope homogenization
during ascent. If true, this model hints that the VOF averages the Hf isotope composition
of its Ediacaran sedimentary source.

Figure 7.7: Triangular diagram showing εHf (545 Ma) of a virtual sedimentary material as a
function of the relative proportion of Archean, Eburnean (Paleoproterozoic) and Cadomian crust
in the latter, assuming identical Hf concentrations in the three end-members. The highlighted
value of zero corresponds to the composition of the crustal material required to explain the zircon
Hf isotope signature of the Velay Orthogneiss Formation.
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As highlighted section 7.2.2, the Ediacaran detritus can be seen as a mixture between
a young Neoproterozoic crust and old crustal materials (Paleoproterozoic and older).
Given the paleo-location of the FMC along the northern Gondwana margin, it is reason-
able to consider that such materials consist in Eburnean (c. 2.0 Ga-old) and Neoarchean
(c. 3.3 Ga-old) crusts (see Altumi et al., 2013; Nance and Murphy, 1994 and references
therein). In this frame, the proportions of each component in the source of the VOF
(meta)granites may be retrieved from their chondritic signature. The latter demands
that 60�80 % of the Ediacaran detritus in the FMC corresponds to young Neoprotero-
zoic crust (Fig. 7.7). Consequently, even though the genuine mantle-derived Cadomian
igneous rocks have not been fully preserved, their erosion products substantially fed the
late Ediacaran back-arc basins of the FMC and became de facto long-term additions to
the continental crust volume.

The main limitation of this approach lies in the extent to which the source of the
VOF is representative of the whole Ediacaran sedimentary sequence. By analogy with
the shale geochemical model of Taylor and McLennan (1985), it has been proposed that
peraluminous granites overall yield a bulk estimate of the continental crust composition
(Allègre and Ben Othman, 1980), even though such view has been challenged in the early
90's (e.g. Turpin et al., 1990).

Lastly, several studies considered that a scatter in the zircon εHf (t) at a given time
period, as observed in the Ediacaran�Cryogenian record of the FMC, re�ects the dom-
inance of crust reworking processes (Dhuime et al., 2017; Kemp et al., 2006; Vervoort
and Kemp, 2016). In contrast, this study shows that such situation may aswell attest
to voluminous new crust production. Based on this Cadomian case, I suggest that the
concomitant presence in the record of juvenile and isotopically evolved zircon grains may
be taken as evidence for new crust production in an active margin developed at the edge
of an old cratonic crust segment (the Gondwana in the present case).

7.3.2 Crust�mantle interactions during the Variscan collisional orogeny

Recent studies consider that the amount of continental crust being destroyed and recycled
back in the mantle markedly increases during collisional events related to supercontinent
assembly (Roberts, 2012; Stern and Scholl, 2010). One of the reason for it would be
the subduction of continental crust units operating at the onset of collision (see Fig.
7.8a; Chopin, 2003; Guillot et al., 1997; Roecker, 1982). On the other hand, combined
petrological and zircon U�Pb�Hf�O data suggest that a total of 5 to 10% of the FMC crust
would have been newly formed by Variscan post-collisional magmatism (section 5.3). As
a result, collisional orogens constitute sites of crust recycling and crust formation (see
Fig. 7.8a). This section examines some underlying consequences of both phenomena
taking place nearly coevally (at the scale of a collisional orogenic event).

There and back, the continental crust journey in the mantle

Post-collisional crust production is intimately associated with the remobilization of crustal
lithologies that have been previously recycled, i.e. rendered back to the mantle (Camp-
bell et al., 2014; Guo et al., 2014; Janou²ek and Holub, 2007; Zhao et al., 2007; 2013). As
post-collisional magmas systematically post-date by <50 Ma a subduction stage (section
5.3), they most probably re-incorporate to the crustal volume part of the matter that
had been destroyed by continental subduction, shortly prior to collision (Fig. 7.8b).

A total of 15-38 wt.% of post-collisional magmas would actually correspond to atoms
that were originally hosted in the continental crust (section 5.3). This way, the path-
way followed by these atoms during continent�continent collision de�nes a short-lived
crust/mantle geochemical cycle: crustal elements lost in the waning stages of subduction
are stored in the mantle for <50 Ma and part of them return to the continental crust
encapsulated within post-collisional magmas (PCMM/KCG). Such cycle is somehow sim-
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Figure 7.8: Summary of the observations and outcomes related to the evolution of the continental
crust during collisional orogenic episodes. Delamination of the lower continental crust is not
considered.

ilar in a shorter space and time scale with the well-documented case of long-term storage
of oceanic to continental crust in the deep mantle and their subsequent re-mobilization
in OIB basalts with EM �avour (Chauvel et al., 1992; Hofmann, 1997; Stracke et al.,
2005; Stracke, 2012; Weaver, 1991; Willbold and Stracke, 2010).

It comes from this that since the onset of modern plate tectonics, presumably in the
late Archean (Laurent et al., 2014), part of the continental crust volume would have been
processed through this orogenic crust/mantle cycle and resided for a short time period
in the mantle.

Consequences on the continental crust chemical composition

The materials recycled in the mantle during the pre- to early-collisional stage should
have, on average, a composition akin to the Bulk Continental Crust because the whole
crust section is presumably dragged down by subduction dynamics. On the other hand,
new additions to the crust volume are mediated by post-collisional ma�c magmas of pe-
culiar chemical composition (section 5.3). Here is compared the incoming and outcoming
chemical �uxes within the orogenic mantle in an attempt to qualitatively evaluate the
crust/mantle mass transfers and address the impact of orogenies on the long-term chem-
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ical evolution of the continental crust. The extent and consequences of orogenic lower
crust delamination (Arndt and Goldstein, 1989; Lustrino, 2005) have not been considered
in this discussion because this process remains poorly documented in the French Massif
Central and can only be tackled in ancient orogenic systems via indirect arguments.

Figure 7.9: "Box-and-whiskers" plots for post-collisional ma�c magmas from the French Massif
Central, regarded as primary mantle melts (N=359 for majors, N=59 for traces). Data from
Couzinié et al. (2016). The thick black line is the median, the sides of the rectangles 1st and 3rd

quartiles, the horizontal lines the max/min values and the circles outliers. Red line denotes the
composition of the Bulk Continental Crust (BCC) reservoir after Rudnick and Gao (2003). The
multi-element diagram is normalized to this composition.

Based on the example of the French Massif Central, Fig. 7.9 shows that post-
collisional ma�c magmas (regarded as primary mantle melts) have lower median SiO2,
CaO and Na2O contents than the bulk continental crust but higher TiO2, FeOt, MgO
and K2O. Therefore, the new orogenic additions to the crust volume are more basic,
ma�c and K-rich than the material lost and recycled in the mantle during continental
subduction. From a trace element perspective, newly added materials are on average 2�3
times richer in incompatible elements than the bulk crust but overall display a similar
pattern. This re�ects the predominance of recycled crustal materials in the trace ele-
ment budget of the enriched mantle source (section 5.3). All in all, collisional orogenic
episodes would recycle in the mantle materials of (roughly) bulk crust composition and
partly replace them by a more basic, ma�c and K-rich component (Fig. 7.8c).

7.3.3 An overall limited record of crust reworking?

In the French Massif Central, examination of the zircon U�Pb date distribution of granites
belonging to crust-derived peraluminous suites (MPG/CPG of Barbarin, 1999) reveals
that as little as 32.6% (N=154/472) of the grains showing concordance between 95�
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105% yielded Variscan dates and thus pinpointed the timing of magma emplacement (see
Chapter 5 and 6, additional data from Couzinié et al., 2014, and Chelle-Michou et al.,
2017). Such value is a maximum estimate because of the human operator tendency to
target narrow zircon rims while analysing grains extracted from granites, in an attempt
to better constrain the emplacement age (see section 7.2.3).

Interestingly, 30.1% (N=142/472) of the peraluminous granite zircon dates falls in
the range 530�560 Ma and thus attests to reworking of meta-granites from the Velay
Orthogneiss Formation. This proportion is even higher in the southern part of the Velay
Complex and the Masméjean dome where some granites lack any grain of Variscan age.
Similarly, migmatites developed at the expense of the VOF orthogneisses did not yield
a single concordant Variscan date. The reasons for this have been discussed section
6.5 and lie in the low solubility of Zr in peraluminous melts and a range of kinetic
factors. As a direct consequence, zircon extracted from Variscan crust-derived igneous
rocks dominantly document pre-Variscan magmatic episodes.

From a crust evolution perspective, the Variscan case study suggests that igneous
suites formed by pure crust reworking have a low potential to crystallize substantial
amounts of magmatic zircon grains. This connects with the zircon fertility issue ex-
tensively discussed in Moecher and Samson (2006) and Dickinson (2008): peraluminous
suites have low Zr contents, hence contain little zircon and on top of that only a third
of them (in the Variscan case) are magmatic in origin. Consequently, the overall ex-
tent of the crust reworking record in large detrital zircon databases may be lower than
currently thought. Nevertheless, it must be mentioned that in areas having experienced
multiple reworking episodes (as the French Massif Central), the �rst reworking event (the
late-Ediacaran VOF meta-granites) may still be substantially documented because a�li-
ated zircon grains would also be encountered in igneous rocks formed during subsequent,
younger crust reworking episodes (the Variscan peraluminous granites).

7.3.4 Further directions

The discussion conducted in this chapter outlines the extent to which the zircon U�Pb�
Hf(�O) record of crust evolution may be ambiguous and challenging to interpret. The
main reason for it lies in the fact that a given pattern may originate from a non-unique
set of geological scenarios. Most accurate results are likely to be obtained when the
petrological context of investigated zircon grains is fully assessed and provide guidance
in interpreting the zircon record of crust evolution.

One possible way to fully explore the potential of zircon U�Pb�Hf data would be to in-
dependently document the detrital (modern or ancient) and igneous zircon records. This
way, coupled petrological/age/isotopic information retrieved from igneous rocks could
provide acute guidance to interpret the detrital zircon data, in essence more represen-
tative of the history of a given crust segment (see Dhuime et al., 2017, and references
therein).

Therefore, a promising approach to constrain crust evolution on a global scale would
be to: (i) reconstruct the evolutionary path of individual crust segments following the
above-mentioned methodology; (ii) assemble all these pieces of information into a global
model of continental crust evolution, pinpointing periods of major new crust production
and documenting the associated mechanisms.
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Appendix A

Supplementary materials of
published articles

A.1 Laurent et al., 2017

Are presented in the following:

� the Supplementary Text which includes additional �gures;

� Supplementary Table S1: Results of LA�SF�ICPMS U�Pb analyses of standard
zircons GJ-1, Ple²ovice, OG-1 and BB;

� Supplementary Table S2: Results of LA�SF�ICPMS U�Pb analyses of zircons from
granitoids and vaugnerites of the Eastern French Massif Central.
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1. Analytical techniques 
 
U–Pb isotopic analyses were carried out at Goethe Universität Frankfrut (GUF) by laser ablation using a 

Resolution M-50 (Resonetics) 193 nm ArF excimer laser system attached to ThermoFinnigan Element 2 sector 
field ICPMS. We applied the same methods as in Zeh and Gerdes (2012); a detailed description of these 
analytical techniques is available as Supplementary Mate 

For zircon analyses we used a repetition rate of 5.5 Hz, and laser spot-sizes of 28, 33, 40 and 50 µm for 
measurements of unknowns, and 40 µm for zircon reference materials GJ-1, Plešovice, OG-1 and BB. 
Unknown monazite grains were analyzed with a repetition rate of 4 Hz, a spot size of 12 µm and reference 
monazite (Moacir, Manangoutry and an in-house standard WM) with a spot size of 33 µm. Resulting fluence 
was ~2.5 to 3 J·cm–2. Sample surface was cleaned directly before each analysis by three pre-ablation pulses. 
Ablation was performed in a two-volume ablation cell (Laurin Technic, Australia) characterized by a very 
quick response time (<1 s until maximum signal strength is reached) and wash-out delay (<3 s to get <1% of 
maximum signal strength). It was fluxed during ablation with carrier gas consisting of a ~0.6 L min−1 He 
stream, mixed directly after the ablation cell with make-up gas consisting of ~0.07 L min−1 N2 and 0.68 L min−1 
Ar prior introduction into the plasma of the SF-ICP-MS. All gases had a purity of 99.999% and no homogenizer 
was used while mixing the gases, to prevent smoothing of the signal and thus be able to detect significant 
variations of the 207Pb/206Pb and 238U/206Pb ratios during measurements, possibly revealing the sequential 
sampling of different age domains within single zircon grains. Signal was tuned for maximum sensitivity for 
Pb and U while keeping low the production of oxides (254UO/238U ≤ 0.5%). The obtained sensitivity on zircon 
standard GJ-1 for 238U and a 33 µm spot size varies from ~5000 cps·ppm−1 (session #1) to ~8000 cps·ppm−1 
(session #2), at 5.5 Hz and ~3 J·cm−2.  

Data were acquired using time resolved-peak jumping, the detector being set to analogue mode for 232Th 
and 238U and counting mode for 204(Hg+Pb), 206Pb, 207Pb and 208Pb. A total of 356 mass scans were acquired 
over ~41 s measurement (20 s of background measurement followed by 21 s of sample ablation) and integrated 
to 89 ratios (4 mass scans per integration, time resolution = 0.46 s). Those ratios were subsequently corrected 
offline for background signal, common Pb, instrumental mass discrimination and Pb/U fractionation (both 
laser-induced during individual measurements, and over the day) using an in-house MS Excel© spreadsheet 
(Gerdes and Zeh, 2006, 2009).  

A common-Pb correction was carried out when necessary: for each ratio of an individual measurement, 
204Pb was estimated by subtracting the average background signal on mass 204, which mostly results from 
204Hg in the carrier gas (~500 cps), to the measured intensity. Composition of common Pb (i.e. 206Pb/204Pb and 
207Pb/204Pb ratios) was determined using a model Pb composition (Stacey and Kramers, 1975) at the age of the 
sample, independently estimated using analyses devoid of common Pb. The inter-elemental fractionation 
(206Pb/238U) during the 21 s of sample ablation was corrected for each analysis by applying a linear regression 
through all measured ratios, excluding the outliers (±2σ), and considering that the intercept with the y-axis 
represents the ‘true’ ratio. Elemental fractionation over the analytical session, as well as instrumental mass 
discrimination, were corrected by normalization to the 206Pb/238U (0.0982) and 207Pb/206Pb (0.061) ratios of 
reference zircon GJ-1 (Jackson et al., 2004), using standard bracketing. Elemental concentrations in U and Pb 
were calculated using raw signal (in cps) of 238U and 206Pb for each spot, corrected from the analytical drift 
over the session (monitored using GJ-1), normalized to the recommended values of the GJ-1 zircon standard 
(U = 280.1 ppm; Pb = 25.5 ppm) and applying a spot size-dependent correction. Th/U ratio was determined 
for each spot using the mass fractionation-corrected 232Th/238U ratio, normalized to the recommended value of 
the GJ-1 zircon standard (Th/U = 0.0296). 
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Data from secondary standards were processed as unknowns to check the accuracy of the corrections. Our 
results (see Table S1, supplementary material) are all within error of the recommended TIMS values of the 
standard zircons Plešovice (weighted mean 206Pb/238U age = 337.13 ± 0.37 Ma;  Sláma et al., 2008), OG-1 
(weighted mean 206Pb/206Pb age = 3465.4 ± 0.6 Ma; Stern et al., 2009), and  BB (DEGO: weighted mean 
206Pb/238U age =  560 ± 0.8 Ma; Santos et al., in press), and the standard monazites Moacir (mean 207Pb/235U 
age = 504.3 ± 0.2 Ma, Gasquet et al., 2010), Manangoutry (mean 206Pb/238U age = 554.8 ± 3.8 Ma; Horstwood 
et al., 2003), and the in-house standard WM (mean 206Pb/238U age = 1027 ± 2 Ma; Axel Gerdes, GUF, personal 
communication). 

The quoted uncertainties for each individual analysis are (i) for the 206Pb/238U ratio, the quadratic addition 
of the within-run precision (2σ) with the external reproducibility of standard zircon GJ-1 during the 
corresponding analytical session (0.5 to 1.5%, 2 sigma; see Table S1, supplementary material); and (ii) for the 
207Pb/206Pb ratio, a 207Pb signal-dependent uncertainty propagation, as described by Gerdes and Zeh (2009). 
The 207Pb/235U ratio was calculated using the corrected 206Pb/238U and 207Pb/206Pb ratios and assuming a natural 
238U/235U of 137.88, and its uncertainty was obtained by quadratic addition of propagated errors on both ratios. 
Age calculations and data plotting were performed using the Isoplot toolkit (Ludwig, 2008) v.4.15 for MS 
Excel©. The complete dataset is available as supplementary material (Table S2). 

 
2. Detailed results of zircon and monazite U-Pb analyses 

 

2.1. CPG  
 

 Sample CHZ (Fig. S1) 
CHZ is from the Chalmazel granite, a plurikilometric screen of porphyritic biotite granite enclosed within the 
Velay granite at its northernmost margin. Four concordant spots from zircon cores yielded Ordovician to 
Neoproterozoic dates (410–625 Ma) and a highly discordant one (a99) has a Paleoproterozoic 207Pb/206Pb date 
of 2387 ± 7 Ma. The main population of analyses (n = 17), obtained from zircon rims or grains devoid of any 
core, define a Discordia with 206Pb/238U dates ranging between 275 and 332 Ma; the seven equivalent analyses 
with the highest 206Pb/238U ratios yield a Concordia date of 332.0 ± 2.0 Ma. 

 
 Sample OL-13-06 (Fig. S1) 
OL-13-06 is a porphyritic biotite granite, representing the dominant phase of the large (>3000 km2) Margeride 
batholith. The 33 analyses define a Discordia with an upper intercept at 321 ± 11 Ma (Fig. 4b); many spots 
have 206Pb/238U dates lower than 300 Ma (down to 31 Ma) and are generally characterized by large amounts of 
common Pb (between 1 and 10% and up to 40–60%). The eight analyses with the highest 206Pb/238U ratios 
define a Concordia date of 312.9 ± 2.0 Ma. 
 
 Sample OL-13-11 (Fig. S1) 
OL-13-11 is from the Almance granite, a small laccolith flanking the western margin of the Velay dome 
(Feybesse et al., 1995). It contains zircon cores and xenocrysts from which 15 analyses yield early 
Carboniferous to Paleoproterozoic dates; 7 of them are >90% concordant and have early Carboniferous (~345 
Ma; n = 3), Ordovician (a140 at ~475 Ma), late Neoproterozoic (550–580 Ma; n = 2) and Paleoproterozoic 
(a151 at ~2060 Ma) dates. Zircon rims and core-free grains are characterized by huge amounts of common Pb 
(between 2 and 52%) and highly variable 206Pb/238U dates dates ranging from 33 to 325 Ma (Figs. 4c and 
4e) and highly variable 206Pb/238U dates dates ranging from 85 to 317 Ma. They define a Discordia with an 
upper intercept of 315 ± 48 Ma (n = 15) and the five analyses with the highest 206Pb/238U ratios, including two 
spots with <5% of common Pb, yield a Concordia date of 314.5 ± 1.7 Ma. Eight monazite grains showing 
typically magmatic, oscillatory zoning (Fig. S8) were also analyzed and yield a Concordia date of 315.4 ± 0.9 
Ma. 
 
 Sample OL-13-14 (Fig. S1) 
OL-13-14 is a sample of the Chaise-Dieu intrusion, which consists of biotite-bearing, porphyritic to even-
grained granites and granodiorites (Feybesse et al., 1995) at the western margin of the Velay dome. This 
samples contains many xenocrysts and zircons with cores, representing more than half of the dataset. Most of 
them are >90% concordant (n = 21 out of 28 analyses). The main populations are represented by zircons having 
Cambrian (535–545 Ma; n = 9), late Neoproterozoic (550–590 Ma; n = 8), middle Neoproterozoic (660–780 
Ma; n = 4), Ordovician (450 – 480Ma; n = 3) and discordant Neoarchean dates (207Pb/206Pb dates ~2430 Ma; 
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point to the lower intercept of the Discordia. All ages are quoted to 2σ level of uncertainty.
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n = 3). The zircon rims and core-free grains are characterized by extremely high common Pb contents, most 
often between 20 and 78%) and highly variable 206Pb/238U dates ranging from 33 to 325 Ma. They define a 
Discordia with an upper intercept of 321 ± 28 Ma (n = 18) and the four analyses with the highest 206Pb/238U 
ratios, including one with only ~1% common Pb and concordant at 318 Ma, yield a Concordia date of 318.3 ± 
2.6 Ma. This date is identical to that obtained from 5 monazite grains (317.8 ± 1.3 Ma) from this sample, which 
are characterized by either well-developed, concentric oscillatory zoning or sector zoning (Fig. S8). 
 
 Sample OL-13-21 (Fig. S2) 
OL-13-21 represents an equigranular variety of the Saint-Dier granite pluton, in the northwest of the study area 
(Livradois domain). Among the 26 analyses carried out on zircons from this sample, 7 are from zircon cores 
or xenocrysts and provide dates ranging from Devonian (~365 Ma; n = 1), Cambrian-Neoproterozoic (515–
565 Ma; n = 3) to Mesoproterozoic (1000–1500 Ma; n = 3, including concordant analyze a227 at 1444 ± 22 
Ma). Analyses from rims or crystals without cores (n = 19) have Carboniferous 206Pb/238U dates between 300 
and 343 Ma and lie along a Discordia with an upper intercept at 336 ± 11 Ma, identical to the Concordia date 
of 336.9 ± 1.8 Ma calculated using the eleven equivalent spots with the highest 206Pb/238U ratios. 
 
  Sample TN-10 (Fig. S2) 
TN-10 is from from a plurimetric enclave of K-feldspar porphyritic, biotite-bearing granite within the Velay 
granite at the eastern margin of the latter, close to Colombier-le-Vieux. This sample contains a limited amount 
of zircon cores, that with the exception of two concordant spots having respectively Cambrian (a191, 206Pb/238U 
date = 539 ± 4 Ma) and Mesoproterozoic (a172, 207Pb/206U date = 1025 ± 16 Ma) dates, are dominantly 
Neoproterozoic (645–970 Ma; n = 4). A total of 27 spots from zircon-free cores are scattered along a Discordia 
with an upper intercept at 320 ± 12 Ma, the five analyses with the highest 206Pb/238U ratios providing an 
identical Concordia date of 321.9 ± 1.3 Ma. 
 
 Sample TN-19 (Fig. S2) 
TN-19 is the most representative facies of the porphyritic, biotite-bearing Tournon laccolith and was collected 
at the type locality in Tournon-sur-Rhône. It contains abundant zircon cores and xenocrysts, from which the 
analyses yield Ordovician to Neoproterozoic dates (470–770 Ma; n = 17). The main populations are Ordovician 
(~480 Ma; n = 5) and late Neoproterozoic (580 – 670 Ma; n = 7). Analyses from zircon rims or devoid of any 
core yield 206Pb/238U dates ranging between 261 and 325 Ma (n = 14), corresponding to a well-defined 
Discordia (MSWD = 0.15) with an upper intercept of 321 ± 6 Ma. The latter is identical to the Concordia date 
of 321.1 ± 1.1 Ma calculated using the six equivalent analyses with the highest 206Pb/238U ratios. 
 
 Sample TOU-01 (Fig. S2) 
TOU-01 is a sample of K-felspar porphyritic, biotite-bearing granite from the Dunières laccolith that flanks 
the Velay granite at its easternmost margin. It contains only a few zircon cores having generally discordant U-
Pb dates, only one (a54) showing a concordant Cambrian date (206Pb/238U date = 541 ± 10 Ma). The others 
show a range of 207Pb/206Pb dates from late Cambrian to Neoarchean (490–2550 Ma; n = 7). Core-free zircons 
and rims show 206Pb/238U dates ranging from 270 to 327 Ma (n = 22), defining a Discordia trend with an upper 
intercept at 326 ± 11 Ma. The eleven spots with the highest, equivalent 206Pb/238U ratios define a Concordia 
date of 322.2 ± 1.5 Ma. 
 
 Sample PRC-57 (Fig. S2) 
PRC-57 is representative of the main facies of the Velay cordierite- and biotite-bearing granite. It was collected 
in the central part of the dome, at the Pont-Rouge quarry. The zircon population from this sample is very 
heterogeneous; most grains have core-rim relationships or are obvious xenocrysts (broken edges cross-cutting 
the exiting zonation). A total of 21 analyses from those zircons yielded Devonian to Neoproterozoic dates, 
with several clusters at ~370 Ma (n = 4), ~470 Ma (n = 2), 530–580 Ma (n = 9) and 600–670 Ma (n = 3). Older 
dates (n = 3) include early Neoproterozoic to nearly Archean ages (concordant analyses a77 at ~840 Ma and 
a76 at ~2450 Ma). From zircon rims or devoid of any cores, 11 spots were obtained and have Permian to 
Carboniferous 206Pb/238U dates in the range 289–339 Ma, defining a Discordia with an upper intercept at 344 
± 19 Ma. Besides 4 analyses with high common Pb (4–10%) and one discordant spot (a80), those analyses 
define a Concordia date of 335.2 ± 1.2 Ma. On the other hand, 10 analyses of monazites from the same sample, 
showing either patchy or concentring zoning in BSE images (Fig. SX), yield a Concordia date of 302.8 ± 1.3 
Ma.  
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Figure S2: U-Pb Concordia diagrams (206Pb/238U vs. 207Pb/235U) for zircon (a–e) and monazite (f – in blue) analyses from samples of CPG from the 
eastern FMC. Insets in the bottom right of some diagrams represent close-ups to the analyses from zircon cores or xenocrysts (“Xen.”), reported as 

shaded ellipses. Green ellipses are the oldest, equivalent concordant analyses from zircon rims or crystals devoid of any core (excluding outliers), used for 
the calculation of the Concordia Age. The dashed ellipses represent analyses with >5% of common 204Pb (though used for age calculation). The dashed 

red lines are regressions through all the data from zircon rims or crystals devoid of any core; the arrow and numbers in italics point to the lower intercept of 
the Discordia. All ages are quoted to 2σ level of uncertainty.
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2.2. MPG  
 

 Sample HER (Fig. S3) 
HER is a coarse-grained muscovite-bearing and slightly deformed leucogranite collected from the Hermitage 
pluton, at the northwestern limit of the Velay complex. This granite displays C–S structures related to syn-
tectonic emplacement along a crustal-scale D3 shear zone (Barbarin, 1983). Seven analyses from zircon cores 
and xenocrysts yielded Silurian to Neoproterozoic dates between 400 and 850 Ma (n = 6) and one Archean 
date (concordant spot a245 at 2591 ± 17 Ma). For zircons rims and core-free crystals, the 206Pb/238U dates are 
scattered between 206 and 327 Ma, defining a Discordia with an upper intercept of 323 ± 7 Ma (n = 20) which 
is identical to the Concordia date of 325.7 ± 1.3 Ma calculated using the five analyses with the highest, 
equivalent 206Pb/238U ratios. 

 
 Sample OL-13-08 (Fig. S3) 
OL-13-08 is an equigranular muscovite-bearing leucogranite collected from the Grandrieu granite body, 
associated with the Margeride CPG batholith. According to field relationships, the Grandrieu granite is 
younger than the latter (Lafon and Respaut, 1988; Ledru et al., 2001). A large majority of zircon analyses from 
this sample are from xenocrysts and zircon cores (n = 25 out of 38). Those yielded several dates clusters: 
Devonian (360–380 Ma; n = 2), Ordovician (~480 Ma; n = 2), early Cambrian to late Neoproterozoic (530–
580 Ma, most being concordant at 550–560 Ma; n = 13) and early Neoproterozoic to Neoarchean (840–2560 
Ma; n = 6), including concordant spots at ~840 Ma (a121), ~955 Ma (a116), ~1850 Ma (a118) and ~2560 Ma 
(a117). Regarding zircon rims and grains without cores, 13 analyses have 206Pb/238U dates between 158 and 
313 Ma, defining a Discordia with an upper intercept of 314 ± 10 Ma. An identical Concordia date of 311.0 ± 
1.1 Ma was calculated from the six analyses with the highest and identical 206Pb/238U ratios, excluding two 
older outliers from the same grain (a108 and a109) having 206Pb/238U dates of 321–324 Ma and perhaps 
representing a xenocryst. The Concordia date from zircon is slightly older, yet overlaps with a Concordia date 
of 309.3 ± 1.2 Ma obtained from six monazite analyses in this sample, showing weak to sector zoning (Fig. 
SX). 
 
 Sample OL-13-09 (Fig. S3) 
OL-13-09 is a medium-grained biotite- and muscovite-bearing granite from the Saint-Christophe d’Allier 
pluton, intrusive at the southwestern margin of the Velay dome and supposedly associated to the Margeride 
batholith (Feybesse et al., 1995). Most zircon analyses from those samples are from xenocrysts and zircon 
cores (n = 19 out of 25). Those yielded dates ranging from Devonian (a38, 206Pb/238U date of 391 ± 7 Ma), 
Ordovician (~490 Ma; n = 2), Cambrian (n = 10, including 9 analyses yielding a Concordia date of 534.8 ± 3.9 
Ma) to late Neoproterozoic (550–570 Ma; n = 5), plus one middle Neoproterozoic spot (a32, 206Pb/238U date 
of 664 ± 12 Ma). Zircon grains devoid of any cores, or that are not xenocryrsts, are scarce: only 6 analyses 
were obtained from them. In spite of significant amounts of common Pb (0.25–21%), all are concordant, 
equivalent and define a Concordia date of 312.7 ± 2.3 Ma.  

 
2.3. KCG  

 
 Sample OL-13-24 (Fig. S4) 
OL-13-24 is a dark amphibole- and biotite-bearing quartz-diorite from the Gumières massif, a pluri-kilometric 
enclave in the Velay granite (Barbarin et al., 2012). Among the 32 analyses performed on zircons from this 
sample, 27 are within-error equivalent and define a Concordia date at 321.2 ± 1.2 Ma, while only 5 spots 
display slightly younger, significantly different 206Pb/238U dates (300–315 Ma).  
 
 Sample PRC-56 (Fig. S4) 
PRC-56 represents an enclave of porphyritic, biotite- and amphibole-bearing granodiorite of KCG affinity 
within the Velay granite (sample PRC-57; see § 2.1) at the Pont-Rouge quarry. With the exception of 5 outliers 
having either significantly younger (n= 3) or older (n = 2) 206Pb/238U dates, all zircon spots from this sample 
are equivalent and define a Concordia date at 332.1 ± 0.7 Ma (n = 26).  
 
 Sample SJV (Fig. S4) 
SJV is a porphyritic biotite- and amphibole-bearing granodiorite that represents the main facies of the Saint-
Julien-la-Vêtre pluton, at the northernmost edge of the Velay complex (Forez Mountains). Out of 28 analyses 
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Figure S3: U-Pb Concordia diagrams (206Pb/238U vs. 207Pb/235U) for zircon (a, b, d) and monazite (c – in blue) analyses from samples of MPG from 
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Figure S4: U-Pb Concordia diagrams (206Pb/238U vs. 207Pb/235U) for zircon analyses from samples of KCG from the eastern FMC. Insets in the bottom 
right of some diagrams represent close-ups to the analyses from zircon cores or xenocrysts (“Xen.”), reported as shaded ellipses. Green ellipses are the 
oldest, equivalent concordant analyses from zircon rims or crystals devoid of any core (excluding outliers), used for the calculation of the Concordia Age.  

The dashed ellipses represent analyses with >5% of common 204Pb (though used for age calculation). The dashed red lines are regressions through all the 
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level of uncertainty.
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performed on zircons from this sample, one spot (a167) yielded a sub-concordant, Devonian date at ~375 Ma, 
whereas the rest show Carboniferous 206Pb/238U dates between 305 and 337 Ma (n = 27), defining a Discordia 
with an upper intercept of 331 ± 5 Ma. Among those, the analyses with the highest, within-error equivalent 
206Pb/238U ratios yield a Concordia date of 330.1 ± 1.3 Ma (n = 14). 
 
 Sample SGC-12-49B (Fig. S4) 
 SGC-12-49B is a sample of K-feldspar porphyritic, biotite-bearing granite from the Largentière massif, in the 
Cévennes area, at an outcrop characterized by extensive magma mingling between the granite and vaugnerites. 
This sampl was already dated by Couzinié et al. (2014) but with limited confidence, owing to large 
uncertainties (304.1 ± 6.3 Ma). Apart from one spot from a single zircon core (a248) recording a highly 
discordant Neoarchean date (207Pb/206Pb date of 2622 ± 18 Ma) and two outliers with 206Pb/238U dates of ~325 
Ma, the main population of analyses (n = 16) is characterized by moderate to high proportions of common Pb 
(1–10%, and up to 15–18%) and shows Triassic to late Carboniferous 206Pb/238U dates (230–303 Ma). These 
analyses define a Discordia with an upper intercept of 303 ± 18 Ma. Among those, a Concordia date of 298.9 
± 1.8 Ma was calculated from the ten analyses with the highest, equivalent 206Pb/238U ratios. 
 
  Sample PMV (Fig. S4) 
PMV was collected from the southern edge of the Pont-de-Montvert pluton (W of Vialas), a large intrusion 
belonging to the Mont-Lozère complex, which also includes several MPG plutons (Bougès, Finiels and 
Laubies granites) and intrusive in the PAU (Cévennes schists) south of the Velay complex. Analyses from two 
zircon cores yielded two concordant (a466) to strongly discordant (a472) Neoproterozoic dates of ~680 Ma. 
Besides those, most zircon analyses are from grains devoid of any core (n = 24) and show a tight range of 
Permian to late Carboniferous 206Pb/238U dates (280–306 Ma). This dominant population plots along a 
Discordia with an upper intercept of 303 ± 3 Ma, identical to the Concordia date of 302.5 ± 0.9 Ma calculated 
using the 13 analyses with the highest, identical 206Pb/238U ratios. 
 
 Sample SDZ (Fig. S4) 
 SDZ represents the KCG intrusions in the Lyonnais moutains, at the northwest of the study area. This sample 
was specifically collected from an equigranular, medim-grained biotite granite variety of the Salt-en-Donzy 
pluton near Cottance. Two zircon analyses from this sample are from small, rounded cores and yielded nearly 
concordant, Cambrian (a513; 207Pb/206Pb date = 532 ± 21 Ma) to Neoproterozoic (a504, 207Pb/206Pb date = 580 
± 6 Ma) dates. Apart from those, the main population of core-free zircons show scattered 206Pb/238U dates 
between 260 and 340 Ma, defining a Discordia with an upper intercept of 337 ± 2 Ma (n = 29). Nonetheless, 
most analyses are sub-concordant and clustered around 330–340 Ma, and among those, the 16 equivalent 
analyses with the highest 206Pb/238U provide a Concordia date of 337.4 ± 1.0 Ma. 

 
2.4. Vaugnerites 

 
 Sample 533-1 (Fig. S5) 
533-1 was collected from hectometric-scale vaugnerite intrusions in migmatitic orthogneisses belonging to the 
LGU, a few kilometers SE of Lamastre (eastern part of the Velay dome). Zircons from this samples show a 
tight range of 206Pb/238U dates between 296 and 308 Ma, defining a Discordia trend with an upper intercept of  
321 ± 33 Ma (n = 16). Out of them, only 4 show significantly lower 206Pb/238U dates than a main population of 
identical spots from which a Concordia date of 307.8 ± 1.6 Ma (n = 12) was obtained. 
 
 Sample 533-2 (Fig. S5) 
533-2 was sampled from a similar vaugnerite intrusion as 533-1. The zircon analyses from this sample show 
206Pb/238U dates scattered between 288 and 311 Ma, plotting along a Discordia line with an upper intercept of 
310 ± 6 Ma (n = 27). A Concordia date of 307.3 ± 1.3 Ma was calculated using the spots with the highest, 
identical 206Pb/238U ratios (n = 18).  
 
 Sample LR-31 (Fig. S5) 
LR-31 belongs to a suite of gabbros and amphibole-bearing quartz diorites described by Vitel et al. (2000) in 
the inner part of the Velay granite, which show conspicuous mingling features with the latter (lobate contacts, 
intricate shapes) pointing to co-magmatism. Besides three outliers with 206Pb/238U dates below 292 Ma, all 
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zircon analyses from this sample are identical within error and yield a Concordia date of 299.1 ± 1.3 Ma (n = 
17). 
 
 Sample LR-32 (Fig. S5) 
LR-32 belongs to the same suite as LR-31. Apart from three zircon analyses with discordant, Jurassic to 
Permian 206Pb/238U dates (164–291 Ma), all analyses from this sample show very homogeneous and identical 
206Pb/238U ratios corresponding to a Concordia date of 301.5 ± 1.4 Ma (n = 17). 
 
 Sample PRC-53 (Fig. S5) 
PRC-53 was sampled at the Pont-Rouge quarry, roughly in the center of the Velay dome and ~10 km to the 
North of the site where LR-31 and LR-32 were collected. Together with PRC-54, these are quartz-syenites 
with distinctive richness in SiO2 (60–62 wt.%) combined with very high K2O contents (>6 wt.%) that make 
them unique among other vaugnerite occurrences throughout the Massif Central (unpublished data from S. 
Couzinié). They crop out as decametric-scale enclaves in the Velay granite (represented by sample PRC-56, 
see section 4.2) suggesting they represent dismembered fragments of earlier intrusions. Zircon analyses from 
sample PRC-53 are characterized by Permian to Carboniferous 206Pb/238U dates ranging from 249 to 323 Ma. 
Those analyses define a Discordia trend with an upper intercepts of 330 ± 12 Ma (n = 22). Among them, the 
analyses the highest, equivalent 206Pb/238U ratios correspond to a Concordia date of 318.9 ± 1.8 Ma (n = 11). 
 
 Sample PRC-54 (Fig. S5) 
Like PRC-53, PRC-54 was sampled from a quartz-syenite enclave within the Velay granite at the Pont-Rouge 
quarry. Zircon analyses from this sample are also characterized by Permian to Carboniferous 206Pb/238U dates 
comprised between 265 and 321 Ma (n = 17) and a Discordia trend with an upper intercepts at 326 ± 9 Ma. 
Nonetheless, most analyses show within-error equivalent 206Pb/238U ratios that correspond to a Concordia date 
of 320.5 ± 1.8 Ma (n = 11). 
 
 Sample SC-13-02A (Fig. S6) 
In the composite Margeride granitic batholith (represented by sample OL-13-06, see § 2.1), vaugnerites occur 
as swarms of meter- to hectometer-sized enclaves. They outline a 20-km long NE-SW axis that extends out of 
the pluton in its easternmost part (Couturié, 1977). Although locally sharp, the contacts between vaugnerite 
and granite are most often intricate, rounded and irregular with lobate interfaces. Moreover, large K-feldspar 
xenocrysts of granitic origin are commonly observed in vaugnerites (Sabatier, 1991). Both lines of evidence 
support that mingling between both magmas took place. SC-13-02A is a SiO2-rich vaugnerite from the 
Margeride batholith, from which only few zircons were extracted. They show a restricted range of 
Carboniferous 206Pb/238U dates (300–317 Ma), and a Concordia date of 313.2 ± 2.5 Ma (n = 5) was calculated 
excluding the two outliers with the lowest 206Pb/238U ratios (a124 and a128).  
 
 Sample SC-13-05 (Fig. S6) 
SC-13-05 was also collected in a vaugnerite enclave within the Margeride batholith. In contrast with SC-13-
02A, it has high MgO and low SiO2 contents. Zircon analyses from this sample show 206Pb/238U dates ranging 
from 279 to 313 Ma and define a Discordia with an upper intercept at 311 ± 3 Ma (n = 18). A Concordia date 
of 309.4 ± 1.5 Ma was obtained from the analyses with the highest, identical 206Pb/238U ratios (n = 12).  
 
 Sample SC-13-09 (Fig. S6) 
SC-13-09 was sampled near Pubellier, at the western edge of the Velay dome, and belongs to a small stock of 
pyroxene- and amphibole-bearing syenodiorite (Ledru et al., 1994) intrusive in the LGU orthogneisses. With 
the exception of few analyses with relatively high common Pb contents (1–8%) and showing 206Pb/238U dates 
of 294 to 303 Ma (n = 5), as well as one outlier (spot a271) displaying a 206Pb/238U date of 336 Ma (Fig. 9c), 
all zircon analyses are concordant and identical within error, corresponding to a Concordia date of 309.7 ± 1.2 
Ma (n = 21).  
 
 Sample SC-13-14 (Fig. S6) 
SC-13-14 is a very SiO2-poor (<45 wt.%) vaugnerite collected from the Lyonnais area, close to Marcenod at 
the SW edge of the Soucieu granite. It is typical of vaugnerite occurrences North of the Velay dome, which 
intruded the UGU gneisses as small bodies along dextral NE-SW shear zones (Lardeaux and Dufour, 1987) 
and are coeval with a suite of syn-kinematic granites. From this sample, four analyses were obtained from 
zircon cores: analyses a22 and a32 display concordant, Devonian 206Pb/238U dates at 381 ± 10 Ma and 397 ± 8 
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Ma respectively, whereas another concordant spot (a28) shows an Ordovician 206Pb/238U date of 488 ± 8 Ma. 
Analysis a38 is largely discordant and is characterized by an enormous amount of common Pb (~33%) such 
that its (poorly constrained) 207Pb/206Pb date of 1172 ± 216 Ma is probably meaningless. The analyses from 
zircons devoid of cores show 206Pb/238U dates scattered between 234 and 338 Ma, defining a Discordia with an 
upper intercept of 347 ± 18 Ma (n = 18). The analyses with the highest, within-error identical 206Pb/238U ratios 
yield a Concordia date of 335.7 ± 2.1 Ma (n = 9).  
 
 Sample SC-13-19 (Fig. S6) 
SC-13-19 was collected in the Chassagny quarry in the Lyonnais area, where interactions between mafic and 
felsic magmas (corresponding to the associated granites) are well-exposed. Zircon analyses from this sample 
all show Carboniferous 206Pb/238U dates ranging from 302 to 337 Ma, plotting along a Discordia with an upper 
intercept of 334 ± 3 Ma (n = 26). A Concordia date of 333.9 ± 1.4 Ma was obtained using the equivalent 
analyses with the highest 206Pb/238U ratios (n = 17). 
 
 Sample SGC-12-13 (Fig. S7) 
SGC-12-13 is a coarse-grained lamprophyre dyke crosscutting the low-grade Cevennes schists of the PAU, 
south of the Velay dome. It was collected close to Saint-Jean-de-Pourcharesse, 10 km to the East of the contact 
between the latter and the Borne KCG pluton. Out of nine zircon analyses, six have 206Pb/238U ratios that are 
identical within error and define a Concordia date of 306.6 ± 2.4 Ma. One spot (a12) displays a slightly older 
206Pb/238U date of 322 ± 6 Ma, and may correspond to a xenocryst (darker CL luminescence). Two other outliers 
show significantly younger (Permian) 206Pb/238U dates.  

 
 Sample SGC-12-26 (Fig. S7) 
SGC-12-26 was sampled from a decameter-sized, rounded vaugnerite enclave in migmatitic paragneisses at 
the southern edge of the Velay complex, along the Pont-de-Bayzan road cut (see Fig. 2b in Couzinié et al. 
2014). Out of 24 zircon analyses from this sample, most have 206Pb/238U ratios that are identical within error 
and define a Concordia date of 306.1 ± 1.3 Ma (n = 20), whereas the other spots display slightly younger 
206Pb/238U dates down to 290 Ma.  
 
 Sample SGC-12-39 (Fig. S7) 
SGC-12-39 was collected in a vaugnerite sill intrusive in migmatitic paragneisses East of Loubaresse, at the 
southermost edge of the Velay dome. Apart from two outliers with Permian 206Pb/238U dates (a254 and a255), 
all zircon analyses from this sample are identical within error and define a late Carboniferous, Concordia date 
of 306.6 ± 1.6 Ma (n = 12).  
 
 Sample SGC-12-42 (Fig. S7) 
SGC-12-42 represents a rounded, meter-sized vaugnerite enclave within migmatitic paragneisses near Meyras, 
at the southern limit of the Velay dome. Zircon analyses show a restricted range of 206Pb/238U dates between 
293 and 310 Ma (n = 16). The equivalent analyses with the highest 206Pb/238U ratios yield a Concordia date of 
305.9 ± 1.7 Ma (n = 11). 
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Laurent et al., 2017. Supplementary Table S1: 
Results of LA-SF-ICPMS U–Pb analyses of standard zircons GJ-1, Plesoviče, OG-1 and BB.

207
Pb

a
U

b
Pb

b
Th

b 206
Pbc

c 206
Pb

d ±2σ 207
Pb

e ±2σ 207
Pb

d ±2σ ρ
f 206

Pb ±2σ 207
Pb ±2σ 207

Pb ±2σ conc.
g

(cps) (ppm) (ppm) U (%) 238
U (%) 235

U (%) 206
Pb (%) 238

U (Ma) 235
U (Ma) 206

Pb (Ma) (%)

GJ-1

Session #1 (April 9
th

, 2014)

GJ1-01 8230 268 24.2 0.02 b.d. 0.0973 1.6 0.8131 3.2 0.06059 2.7 0.50 599 9 604 15 625 59 99

GJ1-02 8997 273 24.7 0.02 b.d. 0.0972 1.6 0.8267 3.2 0.06168 2.8 0.49 598 9 612 15 663 59 98

GJ1-03 9044 283 26.0 0.02 b.d. 0.0989 1.5 0.8227 3.0 0.06033 2.6 0.50 608 9 610 14 615 56 100

GJ1-04 9650 300 27.5 0.02 b.d. 0.0987 1.5 0.8394 3.1 0.06167 2.7 0.47 607 8 619 14 663 58 98

GJ1-05 9245 289 26.4 0.02 b.d. 0.0983 1.4 0.8241 3.1 0.06080 2.7 0.46 604 8 610 14 632 58 99

GJ1-06 8693 270 24.7 0.02 b.d. 0.0982 1.6 0.8322 3.1 0.06145 2.7 0.50 604 9 615 15 655 58 98

GJ1-07 8352 270 24.9 0.02 b.d. 0.0995 1.5 0.8368 3.1 0.06100 2.7 0.50 611 9 617 14 639 57 99

GJ1-08 8452 287 26.2 0.02 b.d. 0.0984 1.6 0.8196 3.1 0.06039 2.6 0.51 605 9 608 14 617 57 100

GJ1-09 8714 290 26.3 0.02 b.d. 0.0977 1.6 0.8152 3.2 0.06052 2.8 0.49 601 9 605 15 622 60 99

GJ1-10 8664 290 26.5 0.02 b.d. 0.0984 1.5 0.8327 3.2 0.06136 2.8 0.48 605 9 615 15 652 60 98

GJ1-11 8128 280 25.7 0.02 b.d. 0.0988 1.5 0.8414 3.2 0.06175 2.8 0.48 607 9 620 15 666 60 98

GJ1-12 7735 261 23.8 0.02 b.d. 0.0985 1.5 0.8303 3.0 0.06116 2.7 0.49 605 9 614 14 645 57 99

GJ1-13 7855 276 24.9 0.02 b.d. 0.0972 1.5 0.8052 3.0 0.06007 2.6 0.49 598 9 600 14 606 57 100

GJ1-14 8197 290 26.3 0.02 b.d. 0.0977 1.4 0.8155 3.1 0.06051 2.7 0.47 601 8 606 14 622 58 99

GJ1-15 7727 287 26.1 0.02 b.d. 0.0978 1.5 0.8149 3.1 0.06043 2.7 0.50 602 9 605 14 619 58 99

GJ1-16 7259 266 24.3 0.02 b.d. 0.0985 1.5 0.8354 3.2 0.06152 2.8 0.46 605 8 617 15 658 61 98

GJ1-17 6822 263 23.8 0.02 b.d. 0.0974 1.5 0.8059 3.2 0.06000 2.9 0.46 599 8 600 15 604 62 100

GJ1-18 7564 281 25.6 0.02 b.d. 0.0979 1.5 0.8382 3.1 0.06207 2.7 0.49 602 9 618 15 676 58 97

GJ1-19 8020 292 26.9 0.02 b.d. 0.0988 1.4 0.8329 3.1 0.06114 2.8 0.46 607 8 615 15 644 60 99

GJ1-20 8022 294 26.7 0.02 b.d. 0.0977 1.4 0.8327 3.0 0.06180 2.7 0.47 601 8 615 14 667 57 98

GJ1-21 7762 281 25.8 0.02 b.d. 0.0983 1.4 0.8290 3.0 0.06117 2.7 0.47 604 8 613 14 645 58 99

GJ1-22 7196 270 24.9 0.02 b.d. 0.0990 1.3 0.8377 2.9 0.06138 2.6 0.46 608 8 618 14 653 55 98

Average (n=22) 280 25.6 0.022 0.0982 0.8264 0.0610 604 612 640

2 S.D. ext. (abs.) 22 2.1 0.001 0.0013 0.0219 0.0012 7 12 43

2 S.D. ext. (%) 1.3 2.6 2.0 Conc. Age = 604.9 ± 2.2 Ma 

(MSWDC+E = 1.3 ; PC+E = 0.11)

Session #2 (August 13
th

, 2014)

GJ1-01 20230 283 25.8 0.02 b.d. 0.0979 0.8 0.812 1.8 0.06016 1.6 0.45 602 5 604 8 609 34 100

GJ1-02 19635 280 25.5 0.02 b.d. 0.0983 0.8 0.8160 1.7 0.06018 1.5 0.46 605 5 606 8 610 33 100

GJ1-03 19229 275 25.1 0.02 b.d. 0.0984 0.7 0.8148 1.8 0.06006 1.6 0.40 605 4 605 8 606 36 100

GJ1-04 19139 283 25.8 0.02 b.d. 0.0984 0.7 0.8143 1.6 0.06005 1.5 0.46 605 4 605 7 605 32 100

GJ1-05 19237 279 25.3 0.02 b.d. 0.0977 0.8 0.8087 1.7 0.06002 1.5 0.48 601 5 602 8 604 33 100

GJ1-06 18660 282 25.7 0.02 b.d. 0.0983 0.7 0.8153 1.6 0.06013 1.5 0.42 605 4 605 7 608 32 100

GJ1-07 18249 279 25.4 0.02 b.d. 0.0986 0.8 0.8174 1.6 0.06010 1.4 0.52 606 5 607 7 607 30 100

GJ1-08 18556 278 25.2 0.02 b.d. 0.0978 0.9 0.8099 1.7 0.06008 1.5 0.50 601 5 602 8 606 33 100

GJ1-09 18499 281 25.5 0.02 b.d. 0.0981 0.8 0.8119 1.7 0.06000 1.5 0.47 603 4 603 8 603 32 100

GJ1-10 18006 279 25.3 0.02 b.d. 0.0980 0.8 0.8113 1.8 0.06006 1.6 0.43 603 4 603 8 606 34 100

GJ1-11 18939 280 25.6 0.02 b.d. 0.0985 0.7 0.8157 1.7 0.06005 1.5 0.43 606 4 606 8 605 33 100

GJ1-12 18781 276 25.1 0.02 b.d. 0.0982 0.8 0.8125 1.7 0.05999 1.5 0.49 604 5 604 8 603 33 100

GJ1-13 18858 281 25.6 0.02 b.d. 0.0983 0.9 0.8151 1.7 0.06012 1.5 0.50 605 5 605 8 608 32 100

GJ1-14 18207 278 25.3 0.02 b.d. 0.0983 0.8 0.8135 1.7 0.06005 1.5 0.45 604 4 604 8 605 33 100

GJ1-15 19458 283 25.7 0.02 b.d. 0.0980 0.8 0.8107 1.6 0.06003 1.4 0.48 602 5 603 8 605 31 100

GJ1-16 18889 280 25.5 0.02 b.d. 0.0982 0.7 0.8132 1.6 0.06006 1.5 0.44 604 4 604 8 606 32 100

GJ1-17 18570 282 25.7 0.02 b.d. 0.0983 0.8 0.8144 1.7 0.06008 1.5 0.47 605 5 605 8 606 33 100

GJ1-18 19087 279 25.4 0.02 b.d. 0.0983 0.9 0.8111 1.7 0.05986 1.4 0.51 604 5 603 8 598 31 100

GJ1-19 18609 282 25.6 0.02 b.d. 0.0981 0.8 0.8115 1.9 0.06000 1.7 0.41 603 4 603 8 604 37 100

GJ1-20 18754 277 25.1 0.02 b.d. 0.0980 0.8 0.8116 1.7 0.06009 1.5 0.47 602 5 603 8 607 33 100

Average (n=20) 280 25.4 0.024 0.0982 0.8131 0.0601 604 604 606

2 S.D. ext. (abs.) 5 0.5 0.001 0.0005 0.0046 0.0001 3 3 5

2 S.D. ext. (%) 0.5 0.6 0.2 Conc. Age = 603.9 ± 2.2 Ma 

(MSWDC+E = 0.2 ; PC+E = 0.99)

Plesoviče

Session #1 (April 9
th

, 2014)

Pleso-01 10145 639 32.4 0.09 0.08 0.0538 1.8 0.3948 3.6 0.05318 3.1 0.51 338 6 338 10 336 71 100

Pleso-02 10120 644 33.0 0.09 0.31 0.0542 1.6 0.3982 2.5 0.05324 2.0 0.62 341 5 340 7 339 45 100

Pleso-03 8649 545 29.4 0.09 0.09 0.0551 1.7 0.4033 3.0 0.05312 2.5 0.55 346 6 344 9 334 58 103

Pleso-04 8488 573 29.2 0.09 0.20 0.0541 1.7 0.3962 3.0 0.05316 2.5 0.55 339 6 339 9 335 57 101

Pleso-05 7991 532 26.8 0.09 0.26 0.0532 1.9 0.3893 3.9 0.05308 3.4 0.49 334 6 334 11 332 77 101

Pleso-06 8023 529 30.2 0.09 0.30 0.0543 1.8 0.3984 4.1 0.05318 3.7 0.43 341 6 341 12 336 85 101

Pleso-07 7443 526 26.6 0.09 0.15 0.0535 1.5 0.3920 3.5 0.05316 3.2 0.42 336 5 336 10 336 73 100

Pleso-08 7827 564 28.5 0.09 0.36 0.0535 1.6 0.3929 4.1 0.05326 3.8 0.39 336 5 336 12 340 86 99

Pleso-09 7838 556 28.4 0.10 0.23 0.0535 1.5 0.3911 3.2 0.05302 2.8 0.48 336 5 335 9 330 64 102

Pleso-10 8936 645 33.2 0.10 0.22 0.0543 1.7 0.3975 3.2 0.05310 2.7 0.52 341 6 340 9 333 62 102

Pleso-11 9987 619 32.5 0.09 1.57 0.0538 1.7 0.3942 5.2 0.05312 4.9 0.33 338 6 337 15 334 110 101
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Laurent et al., 2017. Supplementary Table S1 (continued): 
Results of LA-SF-ICPMS U–Pb analyses of standard zircons GJ-1, Plesoviče, OG-1 and BB.

207
Pb

a
U

b
Pb

b
Th

b 206
Pbc

c 206
Pb

d ±2σ 207
Pb

e ±2σ 207
Pb

d ±2σ ρ
f 206

Pb ±2σ 207
Pb ±2σ 207

Pb ±2σ conc.
g

(cps) (ppm) (ppm) U (%) 238
U (%) 235

U (%) 206
Pb (%) 238

U (Ma) 235
U (Ma) 206

Pb (Ma) (%)

Average (n=11) 579 30.0 0.094 0.0539 0.3953 0.0531 408 408 407

2 S.D. ext. (abs.) 97 4.9 0.006 0.0011 0.0080 0.0001 324 325 326

2 S.D. ext. (%) 2.0 2.0 0.3 Conc. Age = 338.6 ± 1.7 Ma

(MSWDC+E = 0.66 ; PC+E = 0.87)

Session #2 (August 13th, 2014)

Plešo01 22823 660 33.8 0.13 0.03 0.0542 0.8 0.3984 1.2 0.05328 0.8 0.71 340 3 341 3 341 19 100

Plešo02 22637 671 34.1 0.12 0.04 0.0540 1.0 0.3957 1.2 0.05316 0.7 0.79 339 3 338 3 336 17 101

Plešo03 22698 680 34.7 0.13 0.12 0.0541 0.9 0.3967 1.2 0.05323 0.7 0.78 339 3 339 3 338 17 100

Plešo04 22042 682 35.0 0.12 0.03 0.0544 0.9 0.3993 1.2 0.05321 0.7 0.82 342 3 341 3 338 15 101

Plešo05 22378 710 36.1 0.12 0.06 0.0539 1.0 0.3956 1.2 0.05321 0.7 0.81 339 3 338 3 338 16 100

Plešo06 23064 706 36.3 0.13 0.01 0.0546 0.9 0.4012 1.2 0.05326 0.8 0.74 343 3 343 3 340 18 101

Plešo07 23103 726 37.2 0.12 0.08 0.0543 1.0 0.3993 1.3 0.05334 0.9 0.74 341 3 341 4 343 19 99

Plešo09 22936 709 36.3 0.13 0.02 0.0543 0.8 0.3981 1.2 0.05322 0.8 0.69 341 3 340 3 338 19 101

Plešo10 22603 736 37.4 0.12 0.05 0.0540 0.8 0.3963 1.1 0.05320 0.8 0.73 339 3 339 3 337 17 101

Plešo11 23206 693 35.2 0.13 0.03 0.0539 0.9 0.3964 1.1 0.05329 0.6 0.85 339 3 339 3 341 13 99

Plešo12 23312 686 35.1 0.13 0.05 0.0544 0.8 0.3998 1.2 0.05333 0.8 0.73 341 3 341 3 343 18 100

Plešo13 22770 683 34.7 0.12 0.03 0.0540 0.9 0.3962 1.2 0.05323 0.7 0.78 339 3 339 3 339 16 100

Plešo14 22501 676 34.6 0.12 0.05 0.0544 0.8 0.3988 1.1 0.05322 0.8 0.67 341 3 341 3 338 19 101

Plešo15 22758 675 34.3 0.13 0.04 0.0539 1.0 0.3955 1.3 0.05322 0.8 0.76 338 3 338 4 338 19 100

Plešo16 22291 674 34.5 0.12 0.06 0.0543 1.0 0.3990 1.3 0.05330 0.8 0.80 341 3 341 4 341 17 100

Plešo17 29486 839 43.7 0.19 0.10 0.0543 0.9 0.3992 1.2 0.05328 0.8 0.73 341 3 341 4 341 19 100

Plešo18 26278 774 40.1 0.18 0.04 0.0543 0.9 0.3988 1.2 0.05328 0.7 0.77 341 3 341 3 341 17 100

Average (n=17) 705 36.1 0.132 0.0542 0.3979 0.0533 339 339 339

2 S.D. ext. (abs.) 89 5.0 0.040 0.0004 0.0035 0.0001 8 8 7

2 S.D. ext. (%) 0.8 0.9 0.2 Conc. Age = 340.2 ± 0.8 Ma 

(MSWDC+E = 0.39 ; PC+E = 0.99)

OG-1

Session #1 (April 9
th

, 2014)

OG1-01 221594 164 162.6 0.66 0.70 0.7127 2.1 29.130 2.3 0.29640 1.0 0.89 3469 56 3458 23 3452 16 100

OG1-02 144020 150 147.1 0.93 0.70 0.7115 1.8 29.270 1.8 0.29830 0.4 0.97 3464 48 3462 18 3462 7 100

OG1-03 128196 143 132.4 0.65 1.08 0.7105 2.2 28.910 2.3 0.29510 0.7 0.96 3460 59 3450 23 3445 10 100

OG1-04 123805 134 119.6 0.48 b.d. 0.7121 1.8 29.250 1.8 0.29790 0.5 0.97 3466 48 3462 18 3459 7 100

OG1-05 194964 180 180.5 0.94 0.87 0.7109 2.0 28.965 2.0 0.29551 0.4 0.98 3462 53 3452 20 3447 7 100

OG1-07 83721 93 85.3 0.72 2.41 0.7102 1.8 29.150 1.8 0.29760 0.5 0.96 3459 48 3458 18 3458 8 100

OG1-08 72584 82 77.0 0.82 0.08 0.7075 1.8 29.120 1.8 0.29840 0.5 0.96 3449 47 3457 18 3462 7 100

OG1-09 135953 155 140.1 0.59 0.25 0.7127 1.8 29.290 1.8 0.29800 0.4 0.98 3469 48 3463 18 3460 6 100

OG1-10 132368 129 129.5 0.92 0.05 0.7125 1.8 29.210 2.0 0.29730 0.8 0.91 3468 49 3460 20 3456 13 100

Average (n=9) 137 130.5 0.746 0.7112 29.144 0.2972 3463 3458 3456

2 S.D. ext. (abs.) 64 66.8 0.332 0.0033 0.2650 0.0024 13 9 13

2 S.D. ext. (%) 0.5 0.9 0.8 Conc. Age = 3458 ± 7 Ma 

(MSWDC+E = 1.3 ; PC+E = 0.17)

Session #2 (August 13
th

, 2014)

OG1-01 294755 109 110.1 1.20 1.65 0.7105 1.0 29.267 1.2 0.29876 0.7 0.83 3463 12 3460 27 3464 10 100

OG1-02 526578 195 197.2 1.39 0.59 0.7105 0.7 29.212 0.9 0.29819 0.5 0.85 3461 9 3460 20 3461 7 100

OG1-03 288100 108 117.4 1.62 1.33 0.7114 1.4 29.347 1.5 0.29917 0.6 0.91 3465 15 3464 37 3466 10 100

OG1-04 89588.9 41 36.9 0.59 0.14 0.7174 1.3 29.502 1.4 0.29827 0.6 0.91 3470 14 3486 35 3461 9 101

OG1-06 151415 65 62.3 1.11 b.d. 0.7085 1.2 29.184 1.3 0.29875 0.4 0.95 3460 13 3453 33 3464 6 100

OG1-07 185387 65 67.3 1.26 1.58 0.7120 1.4 29.130 1.5 0.29674 0.7 0.89 3458 15 3466 36 3453 11 100

OG1-08 111215 37 37.4 1.34 1.30 0.7079 1.3 29.217 1.5 0.29933 0.6 0.91 3461 14 3451 36 3467 9 100

OG1-09 129496 52 52.1 1.07 1.56 0.7136 1.9 29.433 2.0 0.29915 0.8 0.92 3468 20 3472 51 3466 13 100

OG1-10 112791 47 41.9 0.63 0.35 0.7087 1.5 29.210 1.6 0.29894 0.5 0.95 3461 16 3453 40 3465 8 100

OG1-11 209092 107 102.2 0.96 1.31 0.7119 1.5 29.343 1.6 0.29893 0.6 0.94 3465 16 3466 41 3465 9 100

Average (n=10) 82 82.5 1.116 0.7112 29.285 0.2986 3463 3463 3463

2 S.D. ext. (abs.) 97 100.7 0.646 0.0056 0.2369 0.0015 8 21 8

2 S.D. ext. (%) 0.8 0.8 0.5 Conc. Age = 3463 ± 6 Ma 

(MSWDC+E = 0.44 ; PC+E = 0.98)

BB

Session #1 (April 9
th

, 2014)

Degeo-01 18079 601 53.3 0.16 b.d. 0.0917 1.7 0.7447 2.1 0.05889 1.3 0.80 565 9 566 9 563 27 100

Degeo-02 18031 609 54.6 0.16 b.d. 0.0928 1.6 0.7568 2.4 0.05913 1.8 0.67 572 10 572 9 572 38 100

Degeo-03 17521 596 53.9 0.16 0.06 0.0937 1.7 0.7647 2.2 0.05920 1.5 0.75 577 10 577 9 575 32 100

Degeo-04 16787 596 53.0 0.16 b.d. 0.0922 1.5 0.7512 1.7 0.05911 0.8 0.89 569 7 568 8 571 17 99

Degeo-05 15704 570 50.6 0.16 0.05 0.0921 1.6 0.7494 2.1 0.05903 1.5 0.73 568 9 568 9 568 32 100

Degeo-06 15051 577 51.5 0.15 b.d. 0.0926 1.6 0.7541 1.9 0.05909 0.9 0.87 571 8 571 9 570 20 100

Degeo-07 14959 570 50.4 0.16 0.02 0.0916 1.5 0.7448 2.3 0.05897 1.7 0.67 565 10 565 8 566 37 100

Degeo-08 14648 566 50.0 0.17 b.d. 0.0915 1.5 0.7448 1.8 0.05903 1.0 0.85 565 8 564 8 568 21 99

Degeo-09 14207 563 50.1 0.16 b.d. 0.0922 1.5 0.7507 1.7 0.05908 0.9 0.86 569 7 568 8 570 19 100
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Laurent et al., 2017. Supplementary Table S1 (continued): 
Results of LA-SF-ICPMS U–Pb analyses of standard zircons GJ-1, Plesoviče, OG-1 and BB.

207
Pb

a
U

b
Pb

b
Th

b 206
Pbc

c 206
Pb

d ±2σ 207
Pb

e ±2σ 207
Pb

d ±2σ ρ
f 206

Pb ±2σ 207
Pb ±2σ 207

Pb ±2σ conc.
g

(cps) (ppm) (ppm) U (%) 238
U (%) 235

U (%) 206
Pb (%) 238

U (Ma) 235
U (Ma) 206

Pb (Ma) (%)

Degeo-10 14377 552 49.6 0.16 0.01 0.0928 1.5 0.7570 2.1 0.05916 1.4 0.72 572 9 572 8 573 31 100

Degeo-11 14544 573 51.3 0.16 b.d. 0.0927 1.6 0.7555 2.5 0.05912 2.0 0.62 571 11 571 9 571 43 100

Average (n=11) 579 51.7 0.159 0.0923 0.7522 0.0591 569 569 570

2 S.D. ext. (abs.) 36 3.5 0.007 0.0013 0.0125 0.0002 7 8 7

2 S.D. ext. (%) 1.4 1.7 0.3 Conc. Age = 569.3 ± 2.5 Ma 

(MSWDC+E = 0.39 ; PC+E = 0.99)

206
Pb/

238
U error is the quadratic addition of the within run precision (2σ) and the external reproducibility (2σ ext.) of the reference zircon GJ-1

207
Pb/

206
Pb uncertainty is calculated using 

207
Pb signal dependent error propagation following Gerdes & Zeh (2009)

207
Pb/

235
U error is the quadratic addition of the 

207
Pb/

206
Pb and 

206
Pb/

238
U uncertainties

(a) Within-run background-corrected mean 
207

Pb signal in cps (counts per second). 

(b) U and Pb contents (in ppm) and Th/U ratios were calculated relative to GJ-1 reference zircon (U = 280 ppm; Pb = 25.5 ppm).

(c) Percentage of the common Pb on the 
206

Pb (b.d. = below dectection limit) calculated using the interference- and background-corrected 
204

Pb signal

and common Pb model composition of Stacey & Kramers (1975).

(d) Corrected for background, within-run Pb/U fractionation (in case of 
206

Pb/
238

U) and common Pb, and subsequently

normalized to GJ-1 (ID-TIMS value/measured value).

(e) 
207

Pb/
235

U = 
207

Pb/
206

Pb/(
238

U/
206

Pb*1/137.88) 

(f) ρ (rho) is the correlation coefficient between errors of 
206

Pb/
238

U and 
207

Pb/
235

U.

(g) Degree of concordance =  (
206

Pb/
238

U age / 
207

Pb/
206

Pb age) × 100
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Laurent et al., 2016. Supplementary Table S2:

Results of LA-SF-ICPMS U–Pb analyses of zircons from granitoids and vaugnerites of the Eastern French Massif Central.

207
Pb

a
U

b
Pb

b
Th

b 206
Pbc

c 206
Pb

d ±2σ 207
Pb

e ±2σ 207
Pb

d ±2σ ρ
f 206

Pb ±2σ 207
Pb ±2σ 207

Pb ±2σ conc.
g

(cps) (ppm) (ppm) U (%) 238
U (%) 235

U (%) 206
Pb (%) 238

U (Ma) 235
U (Ma) 206

Pb (Ma) (%)

Granitoids

CHZ

Session #1 (April 9
th

, 2014)

a78 21589 1375 289.4 0.91 0.18 0.0528 1.8 0.3856 2.1 0.05293 1.1 0.85 332 6 331 6 326 25 102

a79 35429 2350 569.9 1.58 b.d. 0.0523 1.7 0.3827 1.9 0.05305 0.8 0.90 329 5 329 5 331 18 99

a80 67049 3232 709.8 1.39 1.30 0.0532 1.4 0.3889 2.8 0.05297 2.4 0.49 334 4 334 8 327 55 102

a82 11302 708 161.7 1.48 0.43 0.0532 1.5 0.3945 2.9 0.05381 2.5 0.51 334 5 338 8 363 56 92

a83 88527 4154 880.0 0.74 3.64 0.0532 1.6 0.3840 5.0 0.05240 4.7 0.32 334 5 330 14 303 106 110

a84 39364 2805 475.8 0.44 0.73 0.0479 1.5 0.3459 2.2 0.05239 1.6 0.67 302 4 302 6 303 37 100

a85 32384 911 200.8 0.58 8.34 0.0528 2.0 0.3845 6.5 0.05285 6.2 0.31 331 7 330 19 322 142 103

a86 23058 1543 252.4 0.28 0.92 0.0482 1.6 0.3483 2.4 0.05245 1.8 0.65 303 5 303 6 305 41 99

a87 40005 556 208.2 0.21 4.81 0.1014 2.9 0.8484 5.2 0.06066 4.4 0.55 623 17 624 25 627 94 99

a88 15521 1108 267.5 1.86 b.d. 0.0492 1.6 0.3615 2.2 0.05324 1.5 0.73 310 5 313 6 339 34 91

a89 8910 689 27.0 0.93 0.04 0.0500 1.4 0.3661 2.4 0.05315 1.9 0.61 314 4 317 6 335 42 94

a91 247927 8905 421.2 0.43 3.95 0.0652 1.6 0.4938 4.4 0.05495 4.1 0.35 407 6 407 15 410 91 99

a92 10515 745 62.9 1.07 0.53 0.0486 1.7 0.3601 3.2 0.05371 2.7 0.53 306 5 312 9 359 61 85

a93 26595 1853 167.2 1.43 0.30 0.0487 1.6 0.3573 1.9 0.05321 1.0 0.85 307 5 310 5 338 23 91

a94 38005 1569 59.6 0.31 3.03 0.0523 1.6 0.3838 4.0 0.05325 3.7 0.39 328 5 330 11 339 83 97

a95 20519 555 160.7 0.11 2.09 0.0868 1.6 0.6992 3.0 0.05844 2.6 0.53 536 8 538 13 546 56 98

a96 32949 2216 403.4 0.56 0.27 0.0502 1.8 0.3664 2.1 0.05298 1.2 0.83 315 5 317 6 328 27 96

a97 67341 3270 711.4 1.45 1.39 0.0462 1.6 0.3368 2.3 0.05291 1.7 0.70 291 5 295 6 325 38 90

a98 31208 1691 259.5 0.36 3.35 0.0478 2.0 0.3506 4.2 0.05325 3.7 0.47 301 6 305 11 339 83 89

a99 217754 1286 866.0 0.30 0.14 0.1809 2.4 3.8324 2.4 0.15366 0.4 0.98 1072 23 1600 20 2387 7 45

a100 75903 4345 644.2 0.15 2.33 0.0436 1.6 0.3197 3.6 0.05323 3.2 0.45 275 4 282 9 339 73 81

a101 15899 741 178.6 0.29 0.06 0.0729 1.5 0.5615 1.8 0.05583 1.0 0.83 454 6 452 6 446 22 102

HER

Session #2 (August 13
th

, 2014)

a245 101734 102 58.9 0.75 b.d. 0.4947 0.8 11.999 1.0 0.17593 0.6 0.79 2591 17 2604 9 2615 10 99

a246 20973 620 50.2 2.84 0.64 0.0508 0.8 0.3626 2.6 0.05182 2.5 0.30 319 2 314 7 277 58 115

a247 15138 472 28.5 1.59 0.61 0.0447 1.1 0.3211 3.2 0.05215 2.9 0.36 282 3 283 8 292 67 96

a248 13916 445 26.6 1.23 b.d. 0.0491 0.9 0.3605 1.3 0.05320 0.9 0.71 309 3 313 3 337 20 92

a249 83250 2323 113.6 0.06 0.72 0.0520 0.8 0.3796 1.4 0.05295 1.1 0.58 327 3 327 4 327 26 100

a250 5720 190 9.4 0.42 b.d. 0.0491 0.8 0.3574 1.5 0.05283 1.3 0.55 309 3 310 4 322 29 96

a251 17363 609 29.2 0.55 0.51 0.0451 1.4 0.3368 4.7 0.05411 4.5 0.30 285 4 295 12 376 102 76

a253 24601 539 25.9 0.23 2.78 0.0467 0.8 0.3392 3.6 0.05271 3.5 0.22 294 2 297 9 316 80 93

a254 7860 244 12.5 0.63 0.00 0.0475 0.8 0.3953 1.8 0.06036 1.6 0.43 299 2 338 5 617 35 49

a255 43239 1746 65.8 0.64 0.81 0.0324 1.4 0.2382 2.2 0.05329 1.8 0.61 206 3 217 4 341 40 60

a256 36135 851 53.5 1.27 1.76 0.0501 0.7 0.3655 2.8 0.05288 2.7 0.24 315 2 316 8 324 61 97

a257 30756 544 36.2 0.41 0.65 0.0636 0.9 0.4915 2.0 0.05609 1.7 0.47 397 4 406 7 456 38 87

a258 102320 3233 155.8 0.02 0.40 0.0521 1.0 0.3777 1.3 0.05263 0.8 0.76 327 3 325 4 313 19 105

a259 33620 608 35.5 0.71 3.87 0.0515 0.8 0.3776 4.3 0.05313 4.2 0.18 324 2 325 12 334 96 97

a260 11192 365 18.9 0.66 0.50 0.0471 1.4 0.3849 2.5 0.05932 2.1 0.55 296 4 331 7 579 45 51

a261 57890 1336 59.6 0.18 1.85 0.0443 1.0 0.3239 2.7 0.05301 2.5 0.37 280 3 285 7 329 57 85

a262 207029 7292 260.0 0.05 1.22 0.0374 0.8 0.2729 1.9 0.05294 1.8 0.42 237 2 245 4 326 40 73

a263 16903 519 25.6 0.22 0.14 0.0510 0.7 0.3731 1.2 0.05310 1.0 0.58 320 2 322 3 333 23 96

a264 12380 304 17.2 1.26 3.00 0.0428 1.1 0.3335 6.2 0.05651 6.1 0.18 270 3 292 16 473 134 57

a265 23899 286 28.6 0.36 1.78 0.0959 0.8 0.8105 3.4 0.06131 3.3 0.24 590 5 603 16 650 71 91

a267 198243 6273 273.8 0.13 0.55 0.0457 0.9 0.3335 1.3 0.05290 1.0 0.65 288 2 292 3 324 23 89

a268 122957 3735 179.6 0.39 0.24 0.0487 0.9 0.3544 1.1 0.05282 0.7 0.81 306 3 308 3 321 15 95

a269 7107 214 13.6 1.47 b.d. 0.0494 0.8 0.4020 1.6 0.05903 1.4 0.51 311 3 343 5 568 31 55

a270 22163 658 34.4 0.40 0.16 0.0518 1.0 0.3787 1.9 0.05306 1.7 0.52 325 3 326 5 331 38 98

a271 69886 1405 78.2 0.80 3.76 0.0475 1.0 0.3453 4.4 0.05277 4.3 0.22 299 3 301 11 319 97 94

a272 51563 397 57.2 0.28 0.74 0.1429 1.0 1.3354 1.9 0.06777 1.7 0.51 861 8 861 11 862 34 100

a273 11701 314 16.3 0.93 1.65 0.0432 1.2 0.3122 5.8 0.05240 5.6 0.21 273 3 276 14 303 129 90

a274 15460 436 23.4 0.44 0.63 0.0519 0.9 0.3791 1.9 0.05296 1.7 0.48 326 3 326 5 327 38 100

OL-13-06

Session #1 (April 9
th

, 2014)

a234 8476 682 30.4 0.39 0.29 0.0428 1.6 0.3114 2.1 0.05274 1.4 0.77 270 4 275 5 318 31 85

a235 33179 2312 120.3 0.56 1.28 0.0469 1.7 0.3391 2.8 0.05240 2.3 0.59 296 5 297 7 303 52 98

a236 8943 471 24.6 0.24 3.10 0.0500 1.6 0.3671 4.0 0.05324 3.7 0.39 315 5 318 11 339 84 93

a237 116707 2866 104.1 0.22 37.11 0.0183 6.0 0.1314 13.9 0.05213 12.6 0.43 117 7 125 17 291 287 40

a243 10925 704 32.0 0.41 2.55 0.0416 1.6 0.3025 3.6 0.05271 3.3 0.43 263 4 268 9 316 74 83

a244 411736 9091 369.8 0.25 41.96 0.0202 4.7 0.1458 12.9 0.05225 12.0 0.37 129 6 138 17 297 273 44

a245 30134 1475 63.5 0.28 4.11 0.0383 1.7 0.2793 5.1 0.05289 4.9 0.32 242 4 250 11 324 111 75

a246 15226 381 23.9 0.89 12.88 0.0418 3.1 0.3017 9.4 0.05231 8.9 0.33 264 8 268 22 299 203 88
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Results of LA-SF-ICPMS U–Pb analyses of zircons from granitoids and vaugnerites of the Eastern French Massif Central.
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c 206
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Pb (Ma) (%)

a247 19192 1277 67.0 0.38 1.38 0.0499 2.7 0.3626 3.7 0.05270 2.5 0.73 314 8 314 10 316 58 99

a248 37600 2095 92.8 0.47 3.22 0.0377 1.8 0.2799 4.2 0.05380 3.8 0.42 239 4 251 9 363 85 66

a249 41753 1531 66.9 0.08 13.34 0.0361 2.1 0.2610 7.8 0.05241 7.5 0.27 229 5 235 17 303 172 75

a250 9648 805 38.8 0.38 0.58 0.0462 1.8 0.3399 2.8 0.05333 2.1 0.64 291 5 297 7 343 48 85

a251 6595 541 25.9 0.23 0.14 0.0491 1.9 0.3567 2.2 0.05272 1.1 0.86 309 6 310 6 317 25 98

a252 12622 694 35.2 0.50 3.53 0.0447 1.7 0.3275 4.6 0.05311 4.3 0.36 282 5 288 12 333 98 85

a253 15146 540 29.0 0.37 8.03 0.0443 1.7 0.3162 6.6 0.05179 6.3 0.26 279 5 279 16 276 145 101

a254 34792 1364 71.8 0.32 6.02 0.0445 1.8 0.3259 4.9 0.05314 4.5 0.37 281 5 286 12 335 103 84

a255 4164 305 14.9 0.52 0.41 0.0446 1.8 0.3360 5.6 0.05459 5.3 0.31 282 5 294 14 395 119 71

a256 15171 933 45.9 0.58 2.16 0.0435 1.8 0.3101 3.7 0.05176 3.2 0.49 274 5 274 9 275 74 100

a257 8421 483 28.2 0.42 2.99 0.0496 1.7 0.3532 6.5 0.05170 6.2 0.26 312 5 307 17 272 142 115

a258 6600 500 26.1 0.40 0.72 0.0448 1.4 0.3307 2.4 0.05349 1.9 0.60 283 4 290 6 350 43 81

a259 13672 796 41.0 0.19 3.29 0.0499 2.0 0.3639 4.5 0.05285 4.1 0.44 314 6 315 12 322 92 98

a260 13360 564 29.6 0.37 6.25 0.0452 1.7 0.3263 6.0 0.05230 5.8 0.29 285 5 287 15 299 131 96

a261 307437 8298 190.6 0.05 61.23 0.0049 9.1 0.0332 14.5 0.04938 11.3 0.63 31 3 33 5 166 263 19

a262 7184 355 19.4 1.00 1.60 0.0405 2.3 0.2954 4.7 0.05296 4.1 0.48 256 6 263 11 327 94 78

a263 39557 1660 79.1 0.33 8.55 0.0393 1.8 0.2860 8.0 0.05278 7.8 0.22 249 4 255 18 319 177 78

a264 26277 1993 103.6 0.51 0.18 0.0480 1.4 0.3502 1.8 0.05287 1.2 0.76 302 4 305 5 323 26 94

a265 6709 285 15.3 0.47 4.93 0.0453 1.6 0.3263 5.4 0.05228 5.1 0.30 285 5 287 13 298 117 96

a266 27205 864 51.3 0.19 8.52 0.0501 2.5 0.3760 8.9 0.05443 8.5 0.28 315 8 324 25 389 191 81

a267 25426 1861 96.1 0.41 0.80 0.0495 1.5 0.3586 2.3 0.05253 1.7 0.66 311 5 311 6 309 39 101

a268 5821 443 23.0 0.50 0.79 0.0500 1.6 0.3644 2.5 0.05283 1.9 0.64 315 5 316 7 321 43 98

a269 8086 649 28.6 0.16 0.13 0.0460 1.5 0.3346 1.9 0.05279 1.2 0.78 290 4 293 5 320 27 91

a270 9080 577 30.6 0.78 2.28 0.0435 2.3 0.3003 4.8 0.05004 4.2 0.49 275 6 267 11 197 97 140

a271 14648 797 37.1 0.44 3.64 0.0398 2.1 0.2915 5.5 0.05317 5.1 0.38 251 5 260 13 336 116 75

OL-13-08

Session #2 (August 13
th

, 2014)

a86 132723 2706 168.1 0.06 0.42 0.0664 0.9 0.5301 1.2 0.05791 0.8 0.78 414 4 432 4 526 17 79

a87 24139 756 21.9 0.28 4.53 0.0248 3.6 0.1793 6.3 0.05250 5.1 0.58 158 6 167 10 307 117 51

a88 9127 223 15.6 0.30 b.d. 0.0702 1.1 0.5640 1.6 0.05824 1.2 0.67 438 4 454 6 539 25 81

a89 8012 173 13.1 0.33 0.02 0.0766 0.9 0.6001 1.6 0.05681 1.4 0.52 476 4 477 6 484 31 98

a90 17051 290 26.2 0.37 b.d. 0.0901 0.8 0.7290 1.1 0.05869 0.8 0.67 556 4 556 5 556 18 100

a91 20271 259 21.8 0.20 2.70 0.0836 1.0 0.6793 3.9 0.05896 3.7 0.25 517 5 526 16 566 81 91

a92 75314 1854 87.8 0.04 2.05 0.0491 0.6 0.3559 2.7 0.05261 2.6 0.23 309 2 309 7 312 60 99

a93 17613 352 19.0 0.59 5.42 0.0461 1.5 0.3796 6.6 0.05970 6.4 0.23 291 4 327 18 593 138 49

a94 12135 156 13.9 0.35 0.73 0.0871 0.9 0.6894 3.4 0.05743 3.3 0.27 538 5 532 14 508 71 106

a95 32420 1223 55.9 0.05 0.02 0.0495 1.1 0.3592 1.3 0.05262 0.6 0.88 312 3 312 3 313 14 100

a96 9751 195 13.4 0.33 1.22 0.0677 0.8 0.5423 2.6 0.05812 2.4 0.32 422 3 440 9 534 53 79

a97 14311 540 26.2 0.26 0.00 0.0498 0.9 0.3617 1.6 0.05265 1.3 0.60 313 3 313 4 314 29 100

a98 109557 2565 119.4 0.04 2.94 0.0472 0.9 0.3416 3.6 0.05254 3.5 0.24 297 2 298 9 309 80 96

a99 83214 1626 95.9 0.90 1.21 0.0493 0.9 0.3580 2.3 0.05271 2.1 0.40 310 3 311 6 316 47 98

a100 12600 208 18.4 0.32 0.08 0.0891 0.9 0.7217 1.4 0.05877 1.1 0.65 550 5 552 6 559 23 98

a106 68329 271 66.2 0.62 0.38 0.2194 1.4 3.1122 1.7 0.10289 1.0 0.83 1279 17 1436 13 1677 18 76

a107 122168 1381 113.9 0.04 3.95 0.0817 1.1 0.6578 4.2 0.05837 4.1 0.26 506 5 513 17 544 89 93

a108 8780 297 15.2 0.34 0.03 0.0516 0.9 0.3760 1.8 0.05289 1.6 0.48 324 3 324 5 324 36 100

a109 120114 2561 145.4 0.51 5.11 0.0511 0.9 0.3726 5.6 0.05290 5.6 0.16 321 3 322 16 325 126 99

a110 61608 1225 51.9 0.39 5.28 0.0379 2.0 0.2740 6.2 0.05245 5.9 0.32 240 5 246 14 305 135 79

a111 57111 1297 44.7 0.14 16.71 0.0305 2.4 0.2238 12.0 0.05322 11.7 0.20 194 5 205 22 338 266 57

a112 14039 241 20.8 0.25 0.02 0.0882 0.9 0.7140 1.3 0.05870 0.9 0.70 545 5 547 6 556 20 98

a113 71625 196 60.9 0.76 0.08 0.2581 0.8 4.2217 1.1 0.11864 0.7 0.76 1480 11 1678 9 1936 13 76

a114 17360 490 33.1 1.04 0.11 0.0579 0.8 0.4283 1.3 0.05367 1.1 0.57 363 3 362 4 357 25 102

a115 18221 304 25.9 0.10 0.07 0.0902 0.9 0.7314 1.2 0.05880 0.8 0.75 557 5 557 5 560 17 100

a116 68943 542 92.4 0.61 0.07 0.1594 0.7 1.5596 1.0 0.07098 0.7 0.69 953 6 954 6 957 15 100

a117 731345 880 437.1 0.48 b.d. 0.4569 0.6 10.724 0.7 0.17022 0.3 0.92 2426 12 2499 6 2560 4 95

a118 16700 41 17.8 1.66 0.05 0.3322 1.0 5.1603 1.3 0.11265 0.8 0.77 1849 16 1846 11 1843 15 100

a119 19706 424 31.2 0.19 0.01 0.0768 0.9 0.6006 1.3 0.05671 1.0 0.69 477 4 478 5 480 22 99

a120 55645 1741 91.8 0.41 b.d. 0.0525 0.6 0.3914 1.0 0.05411 0.7 0.67 330 2 335 3 376 16 88

a121 70588 674 91.4 0.22 0.03 0.1387 1.0 1.2871 1.1 0.06729 0.5 0.89 837 8 840 6 847 11 99

a122 31090 984 46.1 0.08 0.44 0.0498 0.9 0.3621 1.6 0.05276 1.3 0.57 313 3 314 4 318 30 98

a123 11769 181 18.7 0.75 0.05 0.0936 0.9 0.7703 1.5 0.05966 1.1 0.64 577 5 580 6 591 24 98

a124 85846 2625 120.9 0.04 0.57 0.0496 0.7 0.3588 1.3 0.05250 1.1 0.55 312 2 311 4 307 26 101

a125 52574 501 30.7 0.07 10.68 0.0507 2.5 0.3963 7.7 0.05671 7.2 0.33 319 8 339 22 480 160 66

a126 22164 337 27.9 0.08 1.33 0.0860 0.8 0.7021 2.1 0.05919 2.0 0.37 532 4 540 9 574 43 93

a127 36726 583 33.3 0.75 7.65 0.0486 1.3 0.3570 6.9 0.05331 6.8 0.19 306 4 310 19 342 154 89

a128 160789 2602 216.2 0.02 1.48 0.0879 1.0 0.7054 2.1 0.05822 1.9 0.47 543 5 542 9 538 41 101
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Results of LA-SF-ICPMS U–Pb analyses of zircons from granitoids and vaugnerites of the Eastern French Massif Central.
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OL-13-09

Session #1 (April 9
th

, 2014)

a06 6229 424 15.2 0.31 0.25 0.0496 1.6 0.3601 3.9 0.05260 3.6 0.41 312 5 312 11 312 82 100

a07 5941 215 62.8 0.16 0.16 0.0868 1.8 0.7001 3.6 0.05847 3.1 0.50 537 9 539 15 547 68 98

a08 11689 387 134.5 0.54 0.17 0.0915 1.6 0.7462 2.8 0.05915 2.3 0.56 564 8 566 12 572 50 99

a09 32399 864 261.3 0.16 2.01 0.0869 1.8 0.6958 3.5 0.05809 3.0 0.50 537 9 536 15 533 66 101

a10 75497 2225 651.4 0.04 1.35 0.0880 1.5 0.7056 2.3 0.05816 1.8 0.64 544 8 542 10 536 39 101

a11 125517 3193 967.4 0.04 2.58 0.0888 1.4 0.7165 3.3 0.05854 2.9 0.44 548 7 549 14 550 64 100

a12 17135 583 163.5 0.09 0.50 0.0846 1.6 0.6773 2.0 0.05808 1.2 0.80 523 8 525 8 533 27 98

a13 94422 3157 862.5 0.02 0.30 0.0848 1.5 0.6789 1.7 0.05807 0.8 0.90 525 8 526 7 532 16 99

a15 29835 738 222.2 0.73 5.00 0.0661 1.6 0.5178 6.5 0.05680 6.3 0.25 413 6 424 23 484 140 85

a16 34535 1245 239.1 0.21 6.54 0.0496 1.8 0.3634 6.0 0.05319 5.7 0.31 312 6 315 16 337 130 93

a17 58537 1167 298.6 0.76 10.93 0.0500 1.8 0.3625 6.9 0.05263 6.6 0.26 314 6 314 19 313 150 100

a18 87595 4274 771.3 0.23 3.76 0.0490 1.5 0.3567 4.5 0.05276 4.3 0.34 309 5 310 12 319 97 97

a19 8290 307 91.4 0.16 0.15 0.0888 1.8 0.7204 2.2 0.05884 1.3 0.80 548 9 551 10 561 29 98

a20 79090 2095 649.0 0.23 1.98 0.0862 1.6 0.6912 3.1 0.05817 2.7 0.51 533 8 533 13 536 58 99

a21 51266 1846 516.4 0.04 0.19 0.0870 1.4 0.6946 1.5 0.05790 0.6 0.92 538 7 536 6 526 13 102

a22 28606 873 254.0 0.08 1.32 0.0867 1.7 0.6994 2.5 0.05851 1.8 0.68 536 9 538 10 549 39 98

a24 207338 784 437.6 0.17 20.91 0.0504 2.7 0.3642 5.8 0.05240 5.2 0.46 317 8 315 16 303 118 105

a26 19363 772 198.3 0.09 0.31 0.0785 1.6 0.6259 1.9 0.05781 1.1 0.82 487 7 494 8 523 25 93

a28 31144 1104 322.5 0.14 1.26 0.0864 1.5 0.6997 2.5 0.05875 2.0 0.59 534 8 539 11 558 44 96

a30 64226 1806 484.1 0.08 3.51 0.0779 1.7 0.6117 4.3 0.05693 3.9 0.40 484 8 485 17 489 87 99

a31 99800 3444 988.6 0.05 0.31 0.0892 1.5 0.7222 1.6 0.05870 0.6 0.94 551 8 552 7 556 12 99

a32 15163 378 151.6 0.43 0.74 0.1084 1.9 0.9392 2.7 0.06283 1.9 0.71 664 12 672 14 702 41 94

a38 19889 599 143.1 0.32 4.94 0.0625 1.8 0.4545 5.6 0.05275 5.3 0.32 391 7 380 18 318 121 123

a39 9761 280 89.2 0.36 0.83 0.0889 1.9 0.7166 2.8 0.05844 2.0 0.69 549 10 549 12 546 44 101

a40 60484 1221 308.9 0.75 10.91 0.0504 1.9 0.3650 8.3 0.05257 8.1 0.23 317 6 316 23 310 184 102

OL-13-11

Session #2 (August 13
th

, 2014)

a129 58162 1001 53.0 0.19 5.38 0.0498 1.0 0.3634 5.5 0.05290 5.4 0.19 313 3 315 15 325 122 97

a130 128489 1147 76.8 0.59 14.45 0.0483 2.0 0.3581 8.6 0.05376 8.4 0.23 304 6 311 23 361 189 84

a131 8341 165 13.6 0.64 b.d. 0.0742 1.8 0.8263 4.3 0.08073 3.9 0.42 462 8 612 20 1215 77 38

a132 303874 6040 153.2 0.23 18.82 0.0182 2.5 0.1316 8.6 0.05247 8.2 0.30 116 3 126 10 306 186 38

a133 21177 582 32.8 0.45 0.69 0.0543 0.6 0.4287 1.6 0.05724 1.5 0.39 341 2 362 5 501 33 68

a134 144076 529 101.4 0.13 0.70 0.1898 0.9 2.9639 1.1 0.11328 0.7 0.80 1120 9 1398 9 1853 12 60

a135 15341 391 22.8 0.62 1.04 0.0536 0.7 0.3985 2.3 0.05397 2.2 0.32 336 2 341 7 370 49 91

a136 207569 1868 90.1 0.50 31.73 0.0281 3.7 0.2158 11.7 0.05570 11.1 0.32 179 7 198 21 441 247 41

a137 16868 396 21.9 0.51 1.81 0.0509 0.9 0.4120 4.3 0.05867 4.2 0.21 320 3 350 13 555 93 58

a138 120401 1459 68.9 0.37 20.48 0.0334 2.8 0.2429 9.8 0.05269 9.3 0.29 212 6 221 20 316 213 67

a139 28659 313 22.7 0.24 5.87 0.0653 1.4 0.5742 6.1 0.06374 5.9 0.23 408 6 461 23 733 126 56

a140 65007 870 75.2 0.57 3.83 0.0765 1.1 0.5975 4.6 0.05664 4.4 0.24 475 5 476 18 477 98 100

a141 56605 1188 88.0 0.44 b.d. 0.0720 0.6 0.5852 0.8 0.05892 0.5 0.81 448 3 468 3 564 10 79

a142 19207 133 11.4 1.36 15.93 0.0502 1.8 0.3652 7.7 0.05276 7.5 0.24 316 6 316 21 318 170 99

a143 13265 290 20.9 0.17 0.00 0.0755 0.6 0.6100 1.1 0.05856 0.9 0.57 469 3 484 4 551 19 85

a144 12741 283 15.3 0.61 2.81 0.0500 0.9 0.3674 5.3 0.05331 5.3 0.17 314 3 318 15 342 119 92

a150 24602 486 27.0 0.20 3.15 0.0541 0.8 0.4022 3.7 0.05396 3.6 0.23 339 3 343 11 370 82 92

a151 86435 181 78.6 0.84 b.d. 0.3732 1.1 6.5956 1.3 0.12819 0.8 0.82 2044 19 2059 12 2073 13 99

a152 15728 243 20.4 0.12 0.88 0.0871 0.8 0.7039 1.8 0.05863 1.6 0.43 538 4 541 7 553 35 97

a153 162191 1134 71.0 0.88 23.10 0.0329 2.9 0.2362 10.5 0.05208 10.1 0.28 209 6 215 21 289 230 72

a154 5163 80 9.9 1.66 0.11 0.0951 0.8 0.7774 1.8 0.05930 1.6 0.45 586 4 584 8 578 35 101

a155 92870 1618 68.5 0.41 7.54 0.0330 1.3 0.2426 6.4 0.05337 6.2 0.21 209 3 221 13 345 141 61

a156 217355 3843 83.5 0.26 19.72 0.0132 2.4 0.0964 8.7 0.05280 8.3 0.27 85 2 93 8 320 190 26

a157 102226 875 65.6 0.54 16.74 0.0548 2.2 0.4092 8.4 0.05412 8.1 0.27 344 7 348 25 376 182 92

a158 51654 853 53.1 0.96 8.00 0.0500 1.3 0.3575 7.2 0.05186 7.1 0.19 315 4 310 19 279 162 113

a159 479324 2660 135.0 0.24 51.78 0.0160 5.4 0.1198 15.7 0.05441 14.7 0.35 102 6 115 17 388 330 26

a160 21952 637 22.9 0.22 2.70 0.0350 1.0 0.2511 3.6 0.05205 3.5 0.28 222 2 227 7 288 80 77

a161 25211 305 18.9 0.43 13.23 0.0505 1.8 0.3643 9.4 0.05236 9.2 0.19 317 6 315 26 301 209 105

a162 21734 641 35.5 0.62 0.42 0.0516 0.9 0.4126 1.5 0.05801 1.2 0.59 324 3 351 4 530 26 61

a163 51125 380 17.6 0.07 26.35 0.0240 3.2 0.1763 9.9 0.05326 9.4 0.32 153 5 165 15 340 212 45

OL-13-14

Session #1 (April 9
th

, 2014)

a108 60112.4 1436 331.7 0.08 7.18 0.0607 1.9 0.4739 4.6 0.05665 4.2 0.42 380 7 394 15 478 92 79

a109 312949 4032 904.3 0.06 31.34 0.0461 3.4 0.3405 9.8 0.05361 9.1 0.35 290 10 298 25 355 206 82

a110 13263 509 134.8 0.50 b.d. 0.0743 1.5 0.6000 2.1 0.05853 1.5 0.71 462 7 477 8 550 33 84

a111 30021 1149 304.9 0.07 0.05 0.0857 1.4 0.6902 1.7 0.05840 0.9 0.85 530 7 533 7 545 20 97

a112 19306 1554 216.1 0.22 1.55 0.0471 1.5 0.3444 3.8 0.05303 3.5 0.39 297 4 300 10 330 80 90
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Results of LA-SF-ICPMS U–Pb analyses of zircons from granitoids and vaugnerites of the Eastern French Massif Central.
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a113 32467 631 172.9 0.08 11.52 0.0722 1.9 0.5526 7.9 0.05553 7.7 0.23 449 8 447 29 433 172 104

a114 124530 1860 359.2 0.22 31.10 0.0509 5.1 0.3680 12.5 0.05243 11.4 0.41 320 16 318 35 304 261 105

a115 150794 2768 419.4 0.04 36.94 0.0239 4.3 0.1749 10.6 0.05319 9.6 0.41 152 7 164 16 337 218 45

a116 118973 396 527.5 0.64 0.10 0.3410 1.9 7.4500 1.9 0.15846 0.3 0.98 1891 31 2167 17 2439 6 78

a117 9819 334 108.7 0.34 0.13 0.0965 1.5 0.7957 2.0 0.05978 1.3 0.75 594 8 594 9 596 29 100

a118 70216 1544 241.0 0.23 45.11 0.0259 5.1 0.4517 10.7 0.12630 9.4 0.48 165 8 378 34 2047 166 8

a120 8122 300 82.1 0.11 0.35 0.0870 1.7 0.6980 2.2 0.05820 1.4 0.78 538 9 538 9 537 30 100

a121 15993 660 160.0 0.20 1.25 0.0757 1.7 0.5842 3.0 0.05594 2.5 0.57 471 8 467 11 450 55 105

a122 6839 242 67.0 0.13 0.13 0.0878 1.5 0.7061 1.9 0.05831 1.2 0.77 543 8 542 8 541 26 100

a123 31758 709 176.6 0.13 7.59 0.0682 1.9 0.5213 7.5 0.05545 7.2 0.26 425 8 426 26 431 161 99

a124 14377 519 150.8 0.29 0.29 0.0872 1.6 0.7012 1.9 0.05835 1.0 0.84 539 8 540 8 543 22 99

a125 444834 3784 954.6 0.06 52.28 0.0252 5.6 0.1851 13.3 0.05334 12.1 0.42 160 9 172 21 343 274 47

a126 618828 10120 1133.4 0.10 78.46 0.0051 8.1 0.0430 14.7 0.06078 12.2 0.55 33 3 43 6 631 263 5

a127 27372 1005 265.2 0.08 0.23 0.0850 1.5 0.6815 1.7 0.05817 0.8 0.88 526 8 528 7 536 17 98

a128 28546 737 240.5 0.39 1.97 0.0899 1.6 0.7407 3.4 0.05972 3.0 0.46 555 8 563 15 594 66 94

a129 272602 2283 692.7 0.26 48.48 0.0352 5.2 0.3027 13.8 0.06230 12.7 0.38 223 11 269 33 685 272 33

a130 1007391 8985 1799.9 0.10 75.45 0.0080 8.0 0.0643 14.1 0.05853 11.6 0.57 51 4 63 9 550 254 9

a131 41003 1429 374.0 0.05 0.98 0.0839 1.8 0.6726 2.3 0.05817 1.4 0.79 519 9 522 9 536 31 97

a132 877003 8624 1610.4 0.10 77.18 0.0087 7.9 0.0706 13.6 0.05877 11.1 0.58 56 4 69 9 559 242 10

a133 21784 899 221.3 0.12 0.70 0.0770 1.6 0.6336 2.3 0.05969 1.6 0.72 478 8 498 9 592 34 81

a134 45603 1265 194.2 0.17 11.95 0.0350 2.9 0.2787 7.8 0.05782 7.2 0.38 222 6 250 17 523 158 42

a135 1009967 10394 1779.8 0.09 77.97 0.0059 8.5 0.0475 14.5 0.05821 11.7 0.59 38 3 47 7 538 255 7

a136 10475 420 112.0 0.07 0.28 0.0863 1.8 0.6940 2.3 0.05831 1.4 0.80 534 9 535 9 542 30 99

a137 23120 619 262.5 0.64 0.93 0.1136 1.5 0.9714 2.7 0.06204 2.3 0.55 693 10 689 14 675 49 103

Session #2 (August 13
th

, 2014)

a275 11205 194 17.4 0.76 0.75 0.0822 0.9 0.6684 2.5 0.05899 2.4 0.35 509 4 520 10 567 52 90

a276 42242 380 33.9 0.24 6.04 0.0833 1.0 0.6751 6.2 0.05877 6.1 0.16 516 5 524 26 559 133 92

a278 14296 156 21.7 1.04 0.04 0.1172 0.8 1.0538 1.2 0.06520 1.0 0.63 715 5 731 7 781 20 92

a279 29020 40 18.3 0.94 b.d. 0.3720 1.1 8.0851 1.3 0.15762 0.8 0.81 2039 19 2241 12 2430 13 84

a280 55475 103 44.9 1.51 b.d. 0.3298 1.1 7.1295 1.3 0.15679 0.8 0.81 1837 17 2128 12 2421 13 76

a281 20192 313 31.2 0.84 0.74 0.0885 0.8 0.7098 2.5 0.05817 2.4 0.32 547 4 545 11 536 53 102

a287 23328 369 32.9 0.09 0.04 0.0949 0.6 0.7854 0.9 0.06002 0.7 0.70 584 4 589 4 604 14 97

a288 177320 839 66.7 0.55 28.18 0.0411 3.1 0.3043 10.6 0.05365 10.1 0.29 260 8 270 25 356 229 73

a291 176216 1276 81.8 0.25 19.07 0.0431 2.2 0.3119 8.5 0.05249 8.2 0.25 272 6 276 21 307 188 89

a292 77660 1030 49.1 0.30 12.00 0.0371 1.5 0.2736 7.3 0.05344 7.2 0.21 235 4 246 16 347 163 68

a293 288541 1761 87.3 0.06 31.77 0.0225 3.6 0.1651 9.7 0.05320 9.1 0.36 143 5 155 14 337 206 43

a294 48717 705 40.5 0.28 9.32 0.0505 1.3 0.3712 7.2 0.05334 7.1 0.18 317 4 321 20 343 161 92

a295 257214 3406 174.6 0.08 12.30 0.0438 1.5 0.3208 7.6 0.05317 7.4 0.20 276 4 283 19 336 168 82

a296 149611 1180 74.2 0.32 18.92 0.0426 2.2 0.3096 8.4 0.05267 8.1 0.26 269 6 274 20 314 185 86

a297 49681 744 62.6 0.06 0.59 0.0895 0.8 0.7231 1.5 0.05857 1.3 0.55 553 4 553 7 551 28 100

a300 194946 1072 80.6 0.04 15.25 0.0518 2.8 0.3750 9.1 0.05252 8.7 0.30 325 9 323 26 308 198 106

a301 52899 857 71.0 0.04 0.13 0.0893 0.8 0.7191 1.3 0.05840 0.9 0.66 551 4 550 5 545 21 101

a302 4731 53 6.7 0.59 0.04 0.1211 0.8 1.0704 1.8 0.06413 1.7 0.44 737 6 739 10 746 35 99

a303 105046 2357 132.1 0.60 1.24 0.0505 1.2 0.3675 2.3 0.05276 1.9 0.53 318 4 318 6 318 44 100

a304 186366 1295 124.6 0.37 8.89 0.0774 1.5 0.6583 6.2 0.06168 6.0 0.24 481 7 514 25 663 129 72

OL-13-21

Session #1 (April 9
th

, 2014)

a208 25973 1258 73.1 0.08 1.55 0.0588 1.8 0.4366 3.5 0.05386 3.0 0.52 368 7 368 11 365 67 101

a209 94826 745 109.5 0.25 20.64 0.0905 2.7 0.9251 9.0 0.07414 8.5 0.30 558 14 665 45 1045 172 53

a210 50150 2276 115.8 0.06 6.29 0.0499 1.6 0.3661 7.1 0.05316 7.0 0.22 314 5 317 20 336 158 94

a211 35328 2918 133.3 0.06 1.78 0.0477 1.7 0.3499 3.7 0.05319 3.3 0.46 300 5 305 10 337 75 89

a212 141261 8848 468.9 0.12 1.72 0.0540 2.0 0.3922 3.6 0.05268 2.9 0.56 339 7 336 10 315 67 108

a213 55960 3598 192.2 0.17 0.62 0.0544 1.6 0.3996 2.1 0.05328 1.3 0.77 341 5 341 6 341 30 100

a214 48793 3065 161.1 0.17 0.99 0.0531 1.8 0.3889 2.6 0.05310 1.9 0.69 334 6 334 7 333 42 100

a215 14902 728 50.0 0.26 0.25 0.0690 1.8 0.5480 2.2 0.05763 1.2 0.83 430 8 444 8 516 27 83

a216 84786 4802 262.8 0.23 1.44 0.0541 1.5 0.4008 2.5 0.05370 2.0 0.61 340 5 342 7 359 45 95

a217 204546 14729 715.8 0.08 0.65 0.0512 1.8 0.3734 2.0 0.05287 1.0 0.86 322 6 322 6 323 24 100

a218 52703 2819 168.6 0.65 1.83 0.0531 1.5 0.3870 3.1 0.05291 2.7 0.48 333 5 332 9 325 61 103

a219 28541 284 56.3 0.44 2.18 0.1773 1.9 2.1854 2.7 0.08939 2.0 0.69 1052 18 1176 19 1412 38 75

a220 13100 510 43.3 0.36 0.77 0.0802 2.0 0.6511 3.5 0.05888 2.8 0.59 497 10 509 14 563 61 88

a221 53089 1556 93.9 0.15 9.07 0.0520 1.9 0.3817 6.7 0.05321 6.4 0.28 327 6 328 19 338 145 97

a222 22163 1335 63.6 0.18 1.04 0.0481 1.6 0.3534 2.6 0.05327 2.0 0.63 303 5 307 7 340 45 89

a223 162839 2242 195.2 0.49 19.72 0.0547 2.7 0.3937 8.8 0.05218 8.4 0.31 343 9 337 26 293 192 117

a224 72533 3603 190.4 0.06 2.48 0.0537 1.7 0.3901 3.5 0.05272 3.1 0.49 337 6 334 10 317 70 106

a225 110208 6097 377.8 0.71 1.94 0.0531 1.6 0.3910 3.1 0.05337 2.7 0.52 334 5 335 9 345 60 97

a226 8202 592 30.9 0.36 0.13 0.0513 1.4 0.3772 1.7 0.05336 0.9 0.84 322 4 325 5 344 21 94

a227 35106 254 75.8 0.76 2.40 0.2510 1.7 3.2149 2.7 0.09290 2.2 0.61 1444 22 1461 21 1486 41 97
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Results of LA-SF-ICPMS U–Pb analyses of zircons from granitoids and vaugnerites of the Eastern French Massif Central.
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a228 25716 1417 82.0 0.28 1.02 0.0546 1.9 0.4028 3.0 0.05347 2.4 0.62 343 6 344 9 349 53 98

a229 18194 755 43.3 0.52 4.57 0.0484 1.9 0.3596 5.6 0.05386 5.2 0.33 305 6 312 15 365 118 83

a230 59460 3876 212.4 0.36 0.73 0.0530 1.7 0.3867 2.3 0.05288 1.5 0.75 333 5 332 6 324 34 103

a231 49350 1543 141.5 0.36 2.00 0.0860 1.7 0.6922 3.3 0.05839 2.8 0.52 532 9 534 14 544 61 98

a232 81630 5253 259.5 0.23 0.62 0.0500 1.6 0.3705 2.2 0.05372 1.5 0.73 315 5 320 6 359 34 88

a233 158821 3338 225.2 0.05 14.04 0.0532 2.4 0.3887 8.1 0.05297 7.7 0.30 334 8 333 23 327 175 102

OL-13-24

Session #1 (April 9
th

, 2014)

a171 13614 819 142.8 0.42 0.76 0.0502 1.7 0.3690 2.9 0.05330 2.3 0.58 316 5 319 8 341 53 93

a172 25806 1557 270.5 0.31 1.21 0.0511 1.8 0.3724 3.5 0.05285 3.0 0.53 321 6 321 10 323 67 100

a173 31595 1754 336.1 0.75 1.62 0.0507 1.6 0.3695 3.4 0.05284 3.0 0.47 319 5 319 9 322 68 99

a174 11370 705 114.4 0.26 0.64 0.0497 1.9 0.3644 3.2 0.05320 2.5 0.61 313 6 315 9 337 57 93

a175 65424 2242 487.4 0.82 6.22 0.0504 2.0 0.3691 6.4 0.05317 6.1 0.31 317 6 319 18 336 137 94

a176 45346 1968 347.0 0.19 4.53 0.0507 1.5 0.3699 5.2 0.05290 5.0 0.28 319 5 320 14 324 114 98

a177 29214 1758 326.8 0.78 0.83 0.0495 1.4 0.3618 2.7 0.05300 2.3 0.52 312 4 314 7 329 53 95

a178 12217 827 155.8 0.72 0.63 0.0513 1.5 0.3739 3.0 0.05291 2.5 0.52 322 5 323 8 325 57 99

a179 72217 3509 637.1 0.31 3.08 0.0518 1.5 0.3770 3.9 0.05282 3.6 0.39 325 5 325 11 321 82 101

a180 39183 1526 289.8 0.35 6.50 0.0509 1.9 0.3710 6.1 0.05284 5.8 0.32 320 6 320 17 322 131 99

a181 37278 2656 591.0 1.43 b.d. 0.0510 1.5 0.3725 2.0 0.05294 1.4 0.74 321 5 322 6 326 31 98

a182 13284 881 150.7 0.42 0.49 0.0507 1.7 0.3699 3.0 0.05295 2.4 0.58 319 5 320 8 327 55 98

a183 90814 3715 680.4 0.21 6.74 0.0516 1.5 0.3765 5.9 0.05296 5.7 0.26 324 5 324 17 327 129 99

a184 28452 1491 285.0 0.58 3.03 0.0508 1.8 0.3711 4.9 0.05296 4.5 0.36 320 6 320 14 327 103 98

a185 34271 2703 469.7 0.47 0.03 0.0503 1.5 0.3720 1.8 0.05365 1.0 0.84 316 5 321 5 356 23 89

a186 17569 1187 225.9 0.78 0.39 0.0503 1.5 0.3677 2.2 0.05306 1.7 0.66 316 5 318 6 331 38 95

a187 10532 682 124.1 0.68 0.50 0.0507 1.7 0.3708 4.2 0.05302 3.8 0.40 319 5 320 12 330 87 97

a188 33495 2399 424.6 0.43 1.05 0.0517 1.7 0.3767 2.6 0.05290 1.9 0.67 325 5 325 7 324 44 100

a189 6618 485 91.3 0.65 b.d. 0.0521 1.5 0.3805 3.0 0.05295 2.6 0.50 327 5 327 8 327 59 100

a190 6809 529 101.2 0.78 b.d. 0.0505 1.8 0.3684 3.9 0.05290 3.5 0.46 318 6 318 11 325 79 98

a191 69652 4627 784.0 0.24 0.99 0.0515 1.4 0.3744 2.2 0.05274 1.7 0.64 324 4 323 6 318 38 102

a192 5898 420 85.5 0.94 0.37 0.0511 1.5 0.3728 3.7 0.05288 3.4 0.39 321 5 322 10 324 78 99

a193 13057 778 141.3 0.72 1.10 0.0493 1.5 0.3575 3.6 0.05254 3.2 0.43 310 5 310 10 309 74 100

a199 41316 2818 101.9 0.45 0.63 0.0519 1.5 0.3786 2.2 0.05289 1.6 0.68 326 5 326 6 324 37 101

a200 6303 286 21.1 0.63 2.16 0.0482 1.6 0.3481 4.1 0.05241 3.8 0.39 303 5 303 11 303 87 100

a201 23402 1536 110.0 0.35 0.94 0.0510 1.4 0.3711 2.7 0.05279 2.3 0.53 321 4 320 7 320 52 100

a202 4417 315 10.4 0.23 0.52 0.0506 1.6 0.3683 2.4 0.05277 1.8 0.66 318 5 318 6 319 40 100

a203 4364 295 54.3 0.49 b.d. 0.0519 2.2 0.3811 6.4 0.05326 6.0 0.34 326 7 328 18 340 136 96

a204 13133 978 167.9 0.53 0.49 0.0478 1.6 0.3491 2.4 0.05292 1.9 0.65 301 5 304 6 325 42 93

a205 14768 545 116.6 0.71 5.31 0.0513 1.7 0.3740 6.6 0.05288 6.4 0.26 322 5 323 18 324 144 100

a206 6976 477 86.6 0.46 0.26 0.0526 1.7 0.3837 3.6 0.05292 3.2 0.46 330 5 330 10 325 73 102

a207 19169 1093 107.4 0.26 1.13 0.0498 1.4 0.3629 2.6 0.05288 2.2 0.54 313 4 314 7 324 50 97

PMV

Session #2 (August 13
th

, 2014)

a433 42475 888 41.9 0.16 1.59 0.0479 1.2 0.3509 4.7 0.05316 4.5 0.26 301 4 305 12 336 102 90

a436 5232 134 7.0 0.89 b.d. 0.0475 1.6 0.3434 3.0 0.05249 2.5 0.55 299 5 300 8 307 57 97

a437 59939 1566 71.9 0.17 0.20 0.0481 1.1 0.3478 1.3 0.05239 0.7 0.85 303 3 303 3 303 15 100

a444 23304 809 35.8 0.26 0.30 0.0451 1.1 0.3295 5.0 0.05305 4.9 0.22 284 3 289 13 331 111 86

a445 5288 144 7.7 0.97 0.52 0.0461 1.3 0.3433 2.0 0.05396 1.6 0.62 291 4 300 5 369 36 79

a446 6115 182 8.8 0.59 b.d. 0.0456 1.1 0.3260 2.5 0.05190 2.3 0.44 287 3 286 6 281 52 102

a448 67709 941 48.8 0.21 6.00 0.0463 1.3 0.3314 7.5 0.05190 7.4 0.18 292 4 291 19 281 169 104

a451 13888 608 27.5 0.13 0.30 0.0479 1.0 0.3492 1.6 0.05291 1.2 0.65 301 3 304 4 325 28 93

a452 46511 837 45.4 0.77 3.33 0.0459 1.5 0.3255 5.4 0.05146 5.2 0.28 289 4 286 13 261 118 111

a453 53220 1394 65.7 0.27 0.47 0.0471 1.1 0.3389 2.3 0.05218 2.0 0.49 297 3 296 6 293 47 101

a454 4732 140 7.0 0.53 b.d. 0.0477 1.0 0.3462 1.9 0.05261 1.6 0.55 301 3 302 5 312 36 96

a456 6616 189 9.7 1.10 b.d. 0.0444 1.8 0.3194 3.8 0.05223 3.4 0.46 280 5 281 9 296 77 95

a458 26439 749 33.5 0.12 b.d. 0.0475 1.2 0.3441 1.5 0.05253 1.0 0.77 299 3 300 4 309 22 97

a459 38406 1281 73.2 1.18 b.d. 0.0485 1.0 0.3490 1.2 0.05223 0.7 0.85 305 3 304 3 296 15 103

a460 7034 192 10.0 0.94 4.41 0.0454 1.3 0.3347 7.5 0.05348 7.4 0.18 286 4 293 19 349 166 82

a462 6169 198 9.9 0.67 b.d. 0.0462 1.4 0.3388 2.4 0.05320 1.9 0.60 291 4 296 6 337 43 86

a465 4446 131 6.5 0.55 2.40 0.0477 1.0 0.3500 4.4 0.05316 4.3 0.24 301 3 305 12 336 97 90

a466 53714 564 63.3 0.33 0.42 0.1130 1.0 0.9703 1.3 0.06225 0.8 0.80 690 7 689 7 683 17 101

a467 19181 580 26.5 0.13 0.11 0.0484 0.9 0.3497 1.4 0.05237 1.0 0.70 305 3 304 4 302 22 101

a468 18149 487 25.0 1.04 0.36 0.0445 1.7 0.3280 2.9 0.05349 2.3 0.59 280 5 288 7 350 52 80

a470 5435 151 8.6 1.23 1.53 0.0472 1.1 0.3424 3.0 0.05257 2.9 0.35 298 3 299 8 310 65 96

a471 6291 163 9.8 1.45 b.d. 0.0483 1.1 0.3472 1.8 0.05217 1.4 0.61 304 3 303 5 293 32 104

a472 16094 205 20.6 1.21 1.31 0.0810 1.4 0.6943 2.7 0.06215 2.3 0.51 502 7 535 11 679 50 74

a473 11748 372 19.3 0.75 b.d. 0.0479 1.0 0.3474 1.4 0.05263 1.0 0.72 302 3 303 4 313 23 96
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Results of LA-SF-ICPMS U–Pb analyses of zircons from granitoids and vaugnerites of the Eastern French Massif Central.
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a474 6427 169 9.9 1.25 0.49 0.0482 1.2 0.3473 1.9 0.05230 1.5 0.63 303 4 303 5 299 34 101

a475 4990 142 8.1 1.16 0.25 0.0486 1.2 0.3487 1.9 0.05209 1.5 0.62 306 4 304 5 289 34 106

PRC-56

Session #2 (August 13
th

, 2014)

a08 26600 451 27.0 0.52 4.57 0.0527 0.8 0.3836 4.7 0.05283 4.7 0.18 331 3 330 13 322 106 103

a09 8022 160 10.1 0.93 2.90 0.0526 0.9 0.3863 3.9 0.05329 3.8 0.22 330 3 332 11 341 87 97

a10 12516 356 19.1 0.41 0.39 0.0529 0.9 0.3849 2.2 0.05280 2.0 0.42 332 3 331 6 320 46 104

a11 21855 667 35.7 0.37 b.d. 0.0534 0.7 0.3918 1.1 0.05317 0.8 0.66 336 2 336 3 336 18 100

a12 5817 160 8.9 0.56 0.24 0.0524 0.9 0.3842 1.6 0.05323 1.3 0.59 329 3 330 4 339 29 97

a13 5581 162 9.1 0.58 0.30 0.0532 0.9 0.3874 2.0 0.05282 1.8 0.43 334 3 332 6 321 42 104

a14 30098 688 40.4 0.65 1.90 0.0531 0.8 0.3895 3.0 0.05322 2.9 0.28 333 3 334 9 338 66 99

a15 5448 165 9.1 0.53 0.19 0.0530 0.8 0.3947 1.5 0.05399 1.3 0.55 333 3 338 4 371 29 90

a16 9910 292 17.3 0.89 0.02 0.0529 0.8 0.3891 1.5 0.05334 1.2 0.55 332 3 334 4 343 28 97

a17 7127 205 11.1 0.56 0.24 0.0512 0.7 0.3756 2.1 0.05321 2.0 0.31 322 2 324 6 338 45 95

a18 19935 612 37.8 1.47 0.32 0.0483 1.8 0.3611 4.1 0.05420 3.7 0.44 304 5 313 11 380 83 80

a19 9964 282 16.4 0.74 0.37 0.0525 0.8 0.3827 1.6 0.05283 1.5 0.47 330 2 329 5 322 33 103

a20 9369 263 15.1 0.66 0.81 0.0531 0.8 0.3881 1.9 0.05303 1.7 0.43 333 3 333 5 330 39 101

a21 15143 358 19.6 0.30 2.41 0.0529 0.7 0.3882 3.3 0.05327 3.2 0.22 332 2 333 9 340 73 98

a22 5459 168 9.2 0.50 0.17 0.0529 1.0 0.3900 1.8 0.05347 1.5 0.55 332 3 334 5 349 33 95

a23 6079 188 10.0 0.37 b.d. 0.0528 0.8 0.3863 1.4 0.05308 1.2 0.59 332 3 332 4 332 26 100

a24 10640 283 15.9 0.60 0.40 0.0526 0.7 0.3887 1.5 0.05358 1.3 0.48 331 2 333 4 353 29 94

a25 7371 228 13.1 0.74 0.13 0.0528 0.8 0.3851 1.7 0.05294 1.5 0.48 331 3 331 5 326 33 102

a26 16718 430 23.7 0.47 1.15 0.0526 0.9 0.3812 2.6 0.05258 2.5 0.33 330 3 328 7 311 57 106

a27 12522 364 21.8 0.95 0.03 0.0526 0.8 0.3830 1.3 0.05280 1.1 0.60 331 3 329 4 320 24 103

a28 21116 475 30.1 0.94 2.26 0.0538 0.8 0.4039 3.8 0.05448 3.7 0.21 338 3 345 11 391 84 86

a29 22705 436 26.9 0.76 5.53 0.0514 1.3 0.3809 6.3 0.05370 6.2 0.20 323 4 328 18 359 140 90

a30 6035 186 10.5 0.65 b.d. 0.0526 0.8 0.3842 1.5 0.05303 1.3 0.51 330 2 330 4 330 30 100

a31 14016 216 12.9 0.35 5.79 0.0530 1.1 0.3859 5.6 0.05276 5.5 0.20 333 4 331 16 318 125 105

a32 12117 348 20.7 0.72 0.20 0.0546 0.9 0.4065 1.5 0.05402 1.3 0.58 343 3 346 5 372 28 92

a38 10023 301 16.2 0.41 0.06 0.0533 0.8 0.3904 1.4 0.05312 1.2 0.55 335 3 335 4 334 27 100

a39 6148 188 11.8 1.21 0.07 0.0523 0.8 0.3835 1.7 0.05313 1.6 0.44 329 2 330 5 335 35 98

a40 8054 248 13.7 0.57 0.03 0.0525 0.7 0.3832 1.5 0.05291 1.3 0.46 330 2 329 4 325 30 102

a41 5875 179 10.7 0.85 0.16 0.0532 0.7 0.3910 1.9 0.05332 1.8 0.37 334 2 335 5 342 40 98

a42 14621 431 24.5 0.63 0.05 0.0535 0.9 0.3910 1.3 0.05297 1.0 0.69 336 3 335 4 328 22 103

a43 5560 180 10.3 0.68 0.07 0.0531 0.9 0.3897 1.6 0.05320 1.3 0.55 334 3 334 5 337 30 99

PRC-57

Session #2 (August 13
th

, 2014)

a44 11228 355 19.9 0.60 b.d. 0.0531 0.7 0.3887 1.3 0.05308 1.1 0.52 334 2 333 4 332 25 100

a45 12384 205 17.0 0.08 0.06 0.0887 0.8 0.7176 1.4 0.05868 1.2 0.57 548 4 549 6 555 25 99

a46 12189 341 22.3 1.03 b.d. 0.0567 0.9 0.4571 2.7 0.05844 2.5 0.34 356 3 382 9 546 55 65

a47 51183 552 41.2 0.88 9.13 0.0549 1.4 0.4161 6.9 0.05502 6.7 0.20 344 5 353 21 413 151 83

a48 20442 566 39.2 1.10 b.d. 0.0592 0.8 0.4406 1.1 0.05400 0.8 0.71 371 3 371 3 371 17 100

a49 11886 201 17.6 0.30 b.d. 0.0896 1.5 0.7291 1.9 0.05900 1.2 0.79 553 8 556 8 567 25 98

a50 32899 491 43.9 0.45 0.93 0.0859 1.0 0.7024 2.3 0.05932 2.1 0.44 531 5 540 10 579 45 92

a52 18096 499 34.9 1.16 b.d. 0.0586 0.7 0.4360 1.1 0.05392 0.8 0.68 367 3 367 3 368 18 100

a53 16455 430 29.0 1.00 0.05 0.0583 0.7 0.4659 1.2 0.05800 0.9 0.60 365 3 388 4 530 21 69

a55 10493 239 18.1 0.32 b.d. 0.0756 1.1 0.6087 1.7 0.05837 1.3 0.62 470 5 483 6 544 29 86

a56 92436 1079 58.3 0.04 9.88 0.0458 1.5 0.3441 7.6 0.05448 7.4 0.20 289 4 300 20 391 167 74

a57 6708 128 8.3 1.03 4.31 0.0515 0.8 0.3812 5.2 0.05367 5.1 0.15 324 3 328 15 357 115 91

a58 9176 158 10.0 0.74 5.05 0.0530 1.0 0.3887 5.2 0.05320 5.1 0.18 333 3 333 15 337 115 99

a59 12964 405 23.3 0.71 0.05 0.0532 0.9 0.3917 1.5 0.05336 1.1 0.64 334 3 336 4 344 26 97

a60 18839 439 30.4 0.97 0.94 0.0597 0.9 0.4513 2.7 0.05484 2.5 0.34 374 3 378 8 406 56 92

a61 21341 271 31.4 0.77 0.49 0.1040 0.8 0.8883 2.0 0.06195 1.9 0.37 638 5 645 10 672 40 95

a62 12273 202 19.4 0.53 b.d. 0.0921 0.8 0.7521 1.2 0.05921 0.8 0.71 568 5 569 5 575 18 99

a63 13489 286 17.0 0.55 1.47 0.0540 1.0 0.4186 4.5 0.05619 4.4 0.21 339 3 355 14 460 98 74

a64 42521 632 46.9 1.17 4.96 0.0570 0.9 0.4589 4.8 0.05836 4.7 0.19 358 3 383 16 543 103 66

a65 6434 209 12.0 0.70 0.01 0.0528 0.9 0.3899 1.8 0.05355 1.5 0.53 332 3 334 5 352 34 94

a66 25432 160 14.8 0.48 11.83 0.0662 1.8 0.5543 9.2 0.06070 9.0 0.20 413 7 448 34 629 194 66

a72 19959 341 29.0 0.11 b.d. 0.0902 0.9 0.7276 1.2 0.05847 0.8 0.73 557 5 555 5 547 18 102

a73 15840 391 24.6 0.79 0.62 0.0557 0.8 0.4994 1.9 0.06503 1.7 0.45 349 3 411 6 775 35 45

a74 21309 498 34.7 1.09 1.00 0.0577 0.7 0.4488 2.0 0.05639 1.8 0.36 362 2 376 6 468 41 77

a75 40444 687 36.3 0.15 6.05 0.0488 1.0 0.3542 5.5 0.05266 5.4 0.18 307 3 308 15 314 122 98

a76 88853 112 69.4 1.70 0.06 0.4606 0.8 10.221 1.0 0.16093 0.6 0.81 2442 16 2455 9 2465 10 99

a77 11654 115 18.4 0.98 0.05 0.1386 0.7 1.2897 1.1 0.06751 0.8 0.65 837 6 841 6 853 17 98

a78 17212 524 30.2 0.67 b.d. 0.0536 0.9 0.3946 1.3 0.05343 0.9 0.70 336 3 338 4 347 20 97

a80 8335 280 19.4 1.96 b.d. 0.0499 0.9 0.3660 1.5 0.05322 1.2 0.58 314 3 317 4 338 28 93
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Laurent et al., 2016. Supplementary Table S2 (continued):

Results of LA-SF-ICPMS U–Pb analyses of zircons from granitoids and vaugnerites of the Eastern French Massif Central.

207
Pb

a
U

b
Pb

b
Th

b 206
Pbc

c 206
Pb

d ±2σ 207
Pb

e ±2σ 207
Pb

d ±2σ ρ
f 206

Pb ±2σ 207
Pb ±2σ 207

Pb ±2σ conc.
g

(cps) (ppm) (ppm) U (%) 238
U (%) 235

U (%) 206
Pb (%) 238

U (Ma) 235
U (Ma) 206

Pb (Ma) (%)

a81 6690 199 11.4 0.65 0.13 0.0535 0.8 0.3953 1.7 0.05354 1.5 0.48 336 3 338 5 352 34 96

a83 24097 660 35.3 0.24 1.03 0.0539 0.9 0.3935 2.2 0.05292 2.0 0.41 339 3 337 6 325 45 104

a84 18834 298 21.6 0.10 1.41 0.0729 1.4 0.6030 3.6 0.05998 3.4 0.37 454 6 479 14 603 73 75

SDZ

Session #2 (August 13
th

, 2014)

a476 57616 1440 77.7 0.33 0.15 0.0544 1.1 0.4008 1.2 0.05345 0.6 0.89 341 4 342 4 348 13 98

a477 118329 3130 171.6 0.45 b.d. 0.0540 0.9 0.3947 1.0 0.05303 0.4 0.93 339 3 338 3 330 9 103

a478 38084 1016 51.1 0.11 b.d. 0.0536 1.0 0.3921 1.2 0.05308 0.5 0.89 336 3 336 3 332 12 101

a480 40714 916 46.8 0.18 b.d. 0.0534 0.9 0.3933 1.1 0.05341 0.6 0.83 335 3 337 3 346 14 97

a481 69828 1848 115.3 1.18 0.81 0.0518 1.5 0.3832 3.2 0.05368 2.8 0.47 325 5 329 9 358 63 91

a482 114057 3032 166.0 0.47 b.d. 0.0537 1.3 0.3940 1.4 0.05316 0.5 0.93 337 4 337 4 336 12 100

a483 68928 1734 91.7 0.37 0.74 0.0515 1.6 0.3772 2.4 0.05315 1.8 0.67 324 5 325 7 335 41 97

a484 60861 1433 68.9 0.14 1.19 0.0493 1.1 0.3660 3.5 0.05390 3.4 0.31 310 3 317 10 367 76 85

a485 108644 1630 96.4 1.85 8.76 0.0451 2.1 0.3271 8.5 0.05258 8.3 0.24 284 6 287 22 311 189 92

a486 23288 552 29.4 0.32 b.d. 0.0538 1.2 0.3966 1.4 0.05346 0.7 0.87 338 4 339 4 348 15 97

a487 81501 2095 106.7 0.15 b.d. 0.0537 1.5 0.3940 1.5 0.05319 0.4 0.96 337 5 337 4 337 9 100

a488 48936 1268 64.6 0.20 0.30 0.0524 1.3 0.3806 2.1 0.05265 1.7 0.62 329 4 327 6 314 38 105

a490 9819 235 13.0 0.51 b.d. 0.0536 1.1 0.3945 1.6 0.05336 1.1 0.72 337 4 338 5 344 24 98

a491 60722 1537 79.3 0.22 b.d. 0.0529 1.4 0.3913 1.8 0.05369 1.1 0.77 332 5 335 5 358 26 93

a492 39230 950 49.2 0.18 b.d. 0.0543 0.9 0.3968 1.2 0.05300 0.7 0.79 341 3 339 3 329 17 104

a493 33496 806 37.1 0.23 0.49 0.0472 1.3 0.3539 2.2 0.05437 1.8 0.57 297 4 308 6 386 41 77

a499 88067 1423 66.1 0.33 6.15 0.0415 1.3 0.3019 6.1 0.05271 6.0 0.22 262 3 268 15 316 136 83

a500 18632 452 26.2 0.68 b.d. 0.0540 1.7 0.3936 1.8 0.05290 0.7 0.92 339 6 337 5 324 16 104

a501 16480 446 24.4 0.41 0.50 0.0540 1.2 0.3971 1.8 0.05330 1.3 0.66 339 4 340 5 341 30 99

a502 31157 810 40.2 0.13 1.05 0.0522 1.3 0.3868 2.7 0.05374 2.4 0.48 328 4 332 8 360 53 91

a503 44836 1138 56.3 0.29 0.83 0.0496 1.6 0.3613 2.9 0.05280 2.4 0.56 312 5 313 8 320 54 98

a504 5661 73 7.6 0.85 b.d. 0.0941 1.1 0.7719 1.9 0.05951 1.6 0.57 580 6 581 8 586 34 99

a505 65233 1427 74.0 0.13 2.48 0.0525 1.3 0.3863 4.5 0.05340 4.3 0.29 330 4 332 13 346 97 95

a506 65980 1773 89.8 0.23 0.11 0.0518 1.0 0.3799 1.7 0.05321 1.3 0.58 325 3 327 5 338 31 96

a507 35760 861 43.7 0.16 b.d. 0.0534 0.9 0.3899 1.1 0.05298 0.6 0.86 335 3 334 3 328 13 102

a508 62642 1553 83.9 0.46 b.d. 0.0533 1.1 0.3912 1.4 0.05323 0.8 0.83 335 4 335 4 338 17 99

a509 83198 1691 92.8 0.72 1.92 0.0496 1.3 0.3700 3.9 0.05405 3.7 0.32 312 4 320 11 373 83 84

a510 27667 617 29.7 0.49 0.46 0.0448 2.0 0.3328 2.3 0.05389 1.2 0.87 282 6 292 6 367 26 77

a512 90754 1951 115.5 0.72 0.52 0.0541 1.0 0.4009 2.0 0.05378 1.7 0.53 339 3 342 6 362 38 94

a513 14773 218 18.8 0.62 b.d. 0.0821 1.1 0.6572 1.4 0.05805 0.9 0.75 509 5 513 6 532 21 96

a514 26533 745 38.0 0.18 0.16 0.0531 1.9 0.3901 2.2 0.05332 0.9 0.90 333 6 334 6 342 21 97

SGC-12-49B

Session #1 (April 9
th

, 2014)

a228 4173 353 18.2 0.49 2.25 0.0481 1.9 0.3482 6.8 0.05248 6.5 0.29 303 6 303 18 306 149 99

a229 2620 231 12.2 0.58 2.27 0.0479 1.8 0.3461 2.5 0.05243 1.8 0.71 302 5 302 7 304 41 99

a230 7585 664 36.0 0.77 0.08 0.0477 1.8 0.3449 4.4 0.05249 4.1 0.41 300 5 301 12 307 93 98

a231 12131 813 42.6 0.67 15.46 0.0478 1.9 0.3447 7.4 0.05236 7.1 0.26 301 6 301 19 317 163 95

a232 5720 449 24.7 0.83 9.46 0.0474 1.8 0.3419 6.1 0.05230 5.8 0.30 299 5 299 16 299 132 100

a233 1854 172 9.2 0.70 4.26 0.0477 1.9 0.3449 3.1 0.05244 2.4 0.62 300 6 301 8 305 55 99

a234 28288 954 59.0 1.30 0.42 0.0363 2.6 0.2710 12.5 0.05408 12.3 0.21 230 6 243 28 375 276 61

a235 9405 320 17.2 0.48 1.17 0.0400 2.4 0.3004 10.3 0.05445 10.0 0.23 253 6 267 24 390 225 65

a236 3788 266 15.1 0.71 6.76 0.0476 2.6 0.3431 11.9 0.05228 11.6 0.22 300 8 300 31 314 265 96

a237 6840 589 30.2 0.57 17.72 0.0464 1.9 0.3358 3.0 0.05248 2.3 0.63 292 5 294 8 306 53 95

a243 8867 720 34.1 0.22 4.88 0.0471 1.8 0.3413 4.5 0.05251 4.1 0.41 297 5 298 12 308 94 97

a244 9228 568 28.1 0.34 1.84 0.0441 2.0 0.3173 7.5 0.05223 7.2 0.26 278 5 280 18 296 164 94

a245 46792 1221 71.3 0.56 1.36 0.0380 2.9 0.2741 10.2 0.05225 9.8 0.28 241 7 246 23 312 224 77

a246 7499 491 24.7 0.42 b.d. 0.0455 2.0 0.3288 6.4 0.05239 6.1 0.31 287 6 289 16 303 138 95

a247 10574 848 41.2 0.47 1.70 0.0447 1.9 0.3235 4.2 0.05249 3.8 0.44 282 5 285 10 307 86 92

a248 236076 864 254.2 0.12 0.37 0.2482 3.0 6.0460 3.2 0.17660 1.1 0.94 1429 39 1982 28 2622 18 55

a249 4007 354 20.0 0.66 1.26 0.0522 1.9 0.3828 3.5 0.05315 3.0 0.54 328 6 329 10 335 67 98

a251 3096 270 15.2 0.54 1.06 0.0517 1.7 0.3765 2.6 0.05287 2.0 0.65 325 5 324 7 323 45 101

a252 5076 377 19.2 0.41 1.34 0.0470 2.0 0.3401 7.8 0.05249 7.5 0.26 296 6 297 20 323 171 92

SJV

Session #1 (April 9
th

, 2014)

a138 6988 504 86.8 0.45 0.02 0.0497 1.5 0.3700 3.6 0.05401 3.3 0.42 313 5 320 10 371 74 84

a139 6792 457 77.9 0.55 0.20 0.0484 1.5 0.3566 2.3 0.05344 1.8 0.63 305 4 310 6 348 41 88

a140 101299 3787 805.1 0.85 5.61 0.0498 1.6 0.3632 5.5 0.05285 5.3 0.29 314 5 315 15 322 119 97

a141 7282 479 16.7 0.21 0.39 0.0524 1.6 0.3858 2.1 0.05340 1.4 0.75 329 5 331 6 346 31 95

a142 4270 303 11.2 0.55 0.24 0.0519 1.6 0.3782 2.2 0.05284 1.5 0.75 326 5 326 6 322 33 101

a143 24833 495 47.2 0.35 12.77 0.0514 2.6 0.3760 7.0 0.05300 6.5 0.37 323 8 324 20 329 148 98
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Results of LA-SF-ICPMS U–Pb analyses of zircons from granitoids and vaugnerites of the Eastern French Massif Central.
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Pb
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Pb
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Pb ±2σ conc.
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U (%) 235
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Pb (%) 238

U (Ma) 235
U (Ma) 206

Pb (Ma) (%)

a144 6194 405 28.3 0.31 0.69 0.0508 1.9 0.3724 3.0 0.05318 2.3 0.64 319 6 321 8 336 52 95

a145 21591 1533 58.8 0.68 0.03 0.0517 1.4 0.3776 1.9 0.05294 1.2 0.75 325 4 325 5 326 28 100

a151 90436 6912 1175.0 0.23 0.52 0.0531 1.4 0.3866 1.8 0.05284 1.1 0.80 333 5 332 5 322 24 103

a152 10488 753 141.0 0.52 0.10 0.0537 1.5 0.3932 1.9 0.05312 1.1 0.80 337 5 337 5 334 25 101

a153 4472 306 52.8 0.42 0.17 0.0511 1.7 0.3786 2.7 0.05372 2.1 0.63 321 5 326 8 359 48 89

a154 4429 318 55.4 0.44 0.22 0.0510 1.7 0.3786 2.1 0.05383 1.3 0.78 321 5 326 6 364 30 88

a155 31918 1988 369.7 0.63 0.80 0.0509 1.8 0.3738 2.5 0.05330 1.8 0.69 320 5 322 7 342 42 94

a156 7507 508 87.0 0.44 0.35 0.0503 1.5 0.3663 2.1 0.05279 1.5 0.73 317 5 317 6 320 33 99

a157 17208 1174 220.1 0.63 0.06 0.0513 1.7 0.3771 2.2 0.05326 1.5 0.75 323 5 325 6 340 34 95

a158 28423 1743 340.3 0.71 0.77 0.0527 1.5 0.3864 2.2 0.05318 1.6 0.69 331 5 332 6 337 37 98

a159 11799 878 171.8 0.87 0.06 0.0522 1.5 0.3842 2.8 0.05335 2.3 0.55 328 5 330 8 344 53 95

a160 6155 434 76.8 0.34 0.43 0.0529 1.5 0.3889 2.3 0.05331 1.7 0.66 332 5 334 7 342 39 97

a161 10603 729 123.9 0.37 0.27 0.0503 1.6 0.3678 2.6 0.05306 2.0 0.61 316 5 318 7 331 46 95

a162 5645 440 78.3 0.45 0.13 0.0523 1.5 0.3835 2.1 0.05320 1.5 0.70 329 5 330 6 337 33 97

a163 13671 931 166.3 0.44 0.78 0.0515 1.4 0.3756 3.1 0.05288 2.8 0.44 324 4 324 9 324 63 100

a164 5417 378 67.0 0.43 0.21 0.0520 1.7 0.3810 2.3 0.05309 1.5 0.73 327 5 328 6 333 35 98

a165 40817 1877 351.6 0.36 3.25 0.0526 1.5 0.3853 4.0 0.05308 3.7 0.37 331 5 331 11 332 83 100

a166 5180 389 67.4 0.42 0.20 0.0522 1.8 0.3823 2.4 0.05307 1.6 0.75 328 6 329 7 332 36 99

a167 17651 1002 198.9 0.33 0.05 0.0595 1.7 0.4516 2.1 0.05503 1.3 0.78 373 6 378 7 414 30 90

a168 22417 1570 279.6 0.41 0.19 0.0535 1.5 0.3885 1.9 0.05272 1.1 0.81 336 5 333 5 317 25 106

a169 22252 1442 258.4 0.44 0.66 0.0523 1.5 0.3801 2.4 0.05268 1.8 0.64 329 5 327 7 315 42 104

a170 9067 631 109.7 0.40 b.d. 0.0513 1.5 0.3806 2.8 0.05385 2.4 0.52 322 5 327 8 365 54 88

TN-10

Session #2 (August 13
th

, 2014)

a164 26473 812 44.8 0.78 0.19 0.0500 0.8 0.3666 1.2 0.05322 0.9 0.66 314 3 317 3 338 21 93

a165 15973 337 19.9 0.70 3.08 0.0519 1.1 0.3862 5.4 0.05393 5.3 0.20 326 4 332 15 368 119 89

a166 35824 840 50.5 1.09 1.16 0.0500 1.1 0.3648 2.4 0.05295 2.1 0.44 314 3 316 7 326 49 96

a167 269546 1280 116.4 1.24 24.35 0.0488 2.7 0.3500 8.9 0.05199 8.4 0.31 307 8 305 24 285 193 108

a168 51367 1635 72.4 0.10 0.16 0.0470 0.8 0.3432 1.1 0.05295 0.8 0.71 296 2 300 3 327 17 91

a169 59832 645 47.9 1.19 10.13 0.0517 1.5 0.3756 7.3 0.05265 7.1 0.21 325 5 324 20 314 162 104

a171 45683 1387 68.5 0.30 0.57 0.0495 0.7 0.3563 1.3 0.05223 1.1 0.56 311 2 309 3 296 25 105

a172 25752 179 32.2 0.52 b.d. 0.1716 0.8 1.7364 1.2 0.07341 0.8 0.72 1021 8 1022 7 1025 16 100

a173 51443 1217 66.8 0.66 0.94 0.0492 1.1 0.3538 2.2 0.05215 1.9 0.49 310 3 308 6 292 45 106

a174 70965 843 54.0 0.76 12.45 0.0492 1.5 0.3602 8.3 0.05309 8.1 0.18 310 4 312 22 332 184 93

a175 43034 1276 65.3 0.34 0.48 0.0512 0.8 0.3730 1.5 0.05280 1.2 0.58 322 3 322 4 320 27 101

a176 49571 974 48.5 0.13 4.06 0.0482 1.1 0.3508 4.4 0.05278 4.2 0.24 303 3 305 12 319 96 95

a177 21899 627 39.3 1.40 1.01 0.0494 0.9 0.3603 2.2 0.05287 2.0 0.40 311 3 312 6 323 46 96

a179 38572 540 54.9 0.20 b.d. 0.1051 0.9 0.8860 1.1 0.06112 0.7 0.79 644 5 644 5 643 15 100

a180 39112 1085 63.4 1.08 1.27 0.0492 0.8 0.3587 2.4 0.05282 2.2 0.33 310 2 311 6 321 51 96

a182 11107 99 11.4 0.65 0.01 0.0952 2.0 1.0450 2.8 0.07961 2.0 0.71 586 11 726 15 1187 39 49

a183 200007 1768 99.1 0.42 16.52 0.0394 1.9 0.2903 8.4 0.05345 8.1 0.23 249 5 259 19 348 184 72

a184 7099 135 13.9 0.49 1.42 0.1002 1.3 0.8545 4.5 0.06184 4.3 0.29 616 8 627 21 668 91 92

a185 9431 309 17.2 0.76 b.d. 0.0512 0.8 0.3715 1.7 0.05259 1.5 0.46 322 3 321 5 311 35 104

a186 46738 1551 74.8 0.37 0.82 0.0471 0.7 0.3305 2.3 0.05087 2.1 0.31 297 2 290 6 235 50 126

a187 20865 630 36.3 0.97 0.52 0.0503 0.7 0.3747 2.4 0.05403 2.2 0.30 316 2 323 7 372 50 85

a188 21172 163 25.9 0.29 0.05 0.1591 0.8 1.5658 1.3 0.07138 1.0 0.64 952 7 957 8 968 20 98

a189 31269 1126 54.7 0.86 4.21 0.0399 1.0 0.2868 6.1 0.05218 6.0 0.16 252 2 256 14 293 138 86

a190 40365 1218 79.0 1.58 0.60 0.0508 0.7 0.3683 1.8 0.05254 1.6 0.38 320 2 318 5 309 37 103

a191 47060 753 66.0 0.34 0.95 0.0871 0.8 0.6990 1.8 0.05817 1.6 0.47 539 4 538 7 536 34 100

a192 25219 439 26.3 1.15 5.17 0.0486 1.1 0.3597 5.9 0.05364 5.8 0.19 306 3 312 16 356 130 86

a198 50121 801 42.9 0.16 5.85 0.0498 1.0 0.3611 5.5 0.05255 5.4 0.19 314 3 313 15 309 122 101

a199 72018 1186 52.6 0.19 9.07 0.0388 1.4 0.2848 7.1 0.05319 7.0 0.20 246 3 254 16 337 158 73

a200 14991 120 13.9 0.49 4.77 0.1012 0.9 0.8584 4.5 0.06149 4.4 0.20 622 5 629 21 656 94 95

a201 88638 2305 110.7 0.37 1.91 0.0460 0.7 0.3348 2.7 0.05278 2.6 0.27 290 2 293 7 319 59 91

a202 72125 1088 62.3 0.64 4.40 0.0467 1.3 0.3393 4.5 0.05266 4.4 0.28 294 4 297 12 314 99 94

a204 41410 412 23.9 0.61 13.71 0.0403 1.8 0.2983 10.4 0.05368 10.3 0.18 255 5 265 25 357 232 71

a205 45452 1033 59.0 0.85 2.71 0.0489 0.8 0.3573 3.7 0.05305 3.6 0.22 307 2 310 10 331 81 93

a206 70961 740 44.1 0.60 12.95 0.0418 1.6 0.3118 8.5 0.05405 8.3 0.19 264 4 276 21 373 187 71

TN-19

Session #2 (August 13
th

, 2014)

a207 20807 283 30.8 0.69 0.21 0.1004 0.9 0.8351 1.4 0.06033 1.1 0.62 617 5 616 7 615 24 100

a208 24428 827 45.0 1.02 0.07 0.0473 0.9 0.3455 1.2 0.05303 0.8 0.73 298 2 301 3 330 18 90

a209 37542 1097 56.4 0.40 0.15 0.0509 0.6 0.3720 1.4 0.05297 1.2 0.44 320 2 321 4 327 28 98

a210 12716 258 18.8 0.38 b.d. 0.0726 0.9 0.5768 1.4 0.05766 1.0 0.67 452 4 462 5 517 22 87

a211 66323 1757 78.3 0.12 5.37 0.0432 1.4 0.3177 6.1 0.05333 6.0 0.23 273 4 280 15 343 135 79

a212 20485 464 30.5 0.38 b.d. 0.0669 0.9 0.5415 1.2 0.05867 0.8 0.73 418 4 439 4 555 18 75
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Results of LA-SF-ICPMS U–Pb analyses of zircons from granitoids and vaugnerites of the Eastern French Massif Central.

207
Pb

a
U

b
Pb

b
Th

b 206
Pbc

c 206
Pb

d ±2σ 207
Pb

e ±2σ 207
Pb

d ±2σ ρ
f 206

Pb ±2σ 207
Pb ±2σ 207

Pb ±2σ conc.
g

(cps) (ppm) (ppm) U (%) 238
U (%) 235

U (%) 206
Pb (%) 238

U (Ma) 235
U (Ma) 206

Pb (Ma) (%)

a213 69311 2396 95.9 0.20 0.25 0.0413 1.0 0.3007 1.5 0.05285 1.1 0.65 261 3 267 4 322 26 81

a214 51486 820 69.9 0.87 0.85 0.0776 1.1 0.6060 2.1 0.05666 1.8 0.51 482 5 481 8 478 40 101

a215 76036 850 92.0 0.30 0.80 0.1092 0.9 0.9321 1.6 0.06192 1.3 0.56 668 6 669 8 671 28 100

a216 53742 1748 86.8 1.21 b.d. 0.0514 1.0 0.3743 1.4 0.05283 1.0 0.71 323 3 323 4 322 22 100

a217 33318 613 37.2 0.72 3.00 0.0512 0.8 0.3705 3.8 0.05252 3.7 0.20 322 2 320 10 308 85 104

a218 3419 47 5.3 1.02 b.d. 0.0960 1.0 0.8254 1.9 0.06238 1.6 0.52 591 6 611 9 687 35 86

a219 6143 127 9.4 0.47 b.d. 0.0721 1.2 0.5743 1.8 0.05778 1.4 0.63 449 5 461 7 522 32 86

a220 17657 211 15.7 0.21 5.04 0.0694 1.0 0.5397 4.8 0.05643 4.7 0.21 432 4 438 17 469 104 92

a221 11186 235 17.0 0.35 0.26 0.0721 0.8 0.5637 1.7 0.05667 1.5 0.47 449 4 454 6 479 33 94

a222 34145 518 47.7 0.49 0.04 0.0923 0.7 0.7704 1.0 0.06051 0.7 0.72 569 4 580 5 622 16 92

a223 3880 128 7.3 1.03 0.19 0.0491 1.0 0.3576 2.3 0.05277 2.0 0.45 309 3 310 6 319 46 97

a224 16561 251 21.6 0.25 0.29 0.0882 0.8 0.7083 2.1 0.05823 2.0 0.37 545 4 544 9 538 44 101

a225 19582 639 32.0 0.59 0.19 0.0473 0.8 0.3453 1.3 0.05294 1.1 0.58 298 2 301 3 326 24 91

a226 31171 534 33.1 0.96 3.96 0.0518 1.6 0.3756 5.6 0.05263 5.4 0.28 325 5 324 16 313 123 104

a227 21932 350 36.3 1.02 0.15 0.0899 0.8 0.7369 1.9 0.05942 1.7 0.44 555 4 561 8 583 37 95

a228 30417 710 41.9 0.93 2.78 0.0497 0.8 0.3603 4.1 0.05257 4.0 0.20 313 3 312 11 310 91 101

a229 3970 64 6.6 1.22 b.d. 0.0821 1.8 0.6994 2.8 0.06177 2.2 0.63 509 9 538 12 666 47 76

a230 18386 457 26.9 0.09 b.d. 0.0623 0.9 0.4886 1.3 0.05686 1.0 0.70 390 3 404 4 486 21 80

a231 48973 1108 55.0 0.17 1.80 0.0496 0.7 0.3608 2.8 0.05280 2.8 0.24 312 2 313 8 320 63 97

a232 28938 920 49.9 0.70 0.05 0.0505 0.8 0.3685 1.0 0.05291 0.7 0.75 318 2 319 3 325 16 98

a233 17393 357 25.2 0.13 0.10 0.0746 0.9 0.5847 1.4 0.05688 1.1 0.62 464 4 467 5 487 25 95

a234 11443 182 11.5 0.36 0.77 0.0600 1.6 0.5366 3.6 0.06481 3.3 0.43 376 6 436 13 768 68 49

a242 30216 398 41.5 0.46 b.d. 0.1015 0.9 0.8670 1.2 0.06195 0.9 0.71 623 5 634 6 672 18 93

a243 54234 1739 86.6 0.24 b.d. 0.0515 0.9 0.3748 1.0 0.05274 0.5 0.90 324 3 323 3 318 10 102

a244 27490 928 48.3 0.69 b.d. 0.0484 0.8 0.3528 1.0 0.05285 0.6 0.82 305 2 307 3 322 13 95

TOU-01

Session #1 (April 9
th

, 2014)

a41 21817 1309 223.6 0.16 1.19 0.0514 1.6 0.3744 2.4 0.05286 1.9 0.65 323 5 323 7 323 42 100

a42 26422 1148 238.9 0.63 3.70 0.0513 1.6 0.3740 4.2 0.05287 3.9 0.38 323 5 323 12 323 89 100

a43 27851 1691 296.3 0.29 0.82 0.0509 1.5 0.3712 2.2 0.05292 1.7 0.66 320 5 321 6 325 38 98

a44 23042 1401 245.3 0.42 1.29 0.0481 1.4 0.3504 2.5 0.05286 2.0 0.58 303 4 305 7 323 46 94

a45 41263 1859 333.9 0.23 3.53 0.0475 1.9 0.3441 4.8 0.05249 4.4 0.40 299 6 300 13 307 101 98

a47 33889 2057 80.1 0.67 0.63 0.0502 1.7 0.3656 3.1 0.05283 2.5 0.57 316 5 316 8 321 58 98

a48 139822 1593 163.6 0.22 1.87 0.1407 1.4 1.6673 2.5 0.08595 2.1 0.55 849 11 996 16 1337 41 63

a49 18111 1066 79.4 0.37 1.30 0.0502 1.7 0.3653 2.9 0.05278 2.3 0.59 316 5 316 8 319 53 99

a50 12398 856 60.2 0.21 0.03 0.0512 1.4 0.3736 2.0 0.05291 1.5 0.69 322 4 322 6 325 33 99

a51 32661 2014 70.0 0.19 1.51 0.0507 1.5 0.3702 3.2 0.05290 2.9 0.46 319 5 320 9 325 66 98

a52 30438 1939 320.3 0.11 1.18 0.0502 1.4 0.3656 2.4 0.05278 2.0 0.58 316 4 316 7 319 45 99

a53 134778 396 628.5 0.74 0.36 0.3762 1.9 8.7952 2.0 0.16958 0.6 0.96 2058 34 2317 19 2553 10 81

a54 33192 961 415.0 1.57 1.48 0.0876 1.9 0.7033 3.4 0.05825 2.8 0.57 541 10 541 14 539 61 100

a55 57948 1123 400.2 0.16 0.00 0.1027 1.9 1.4049 2.4 0.09925 1.6 0.77 630 11 891 15 1610 29 39

a56 57029 1704 330.0 0.12 7.16 0.0517 1.7 0.3760 5.5 0.05278 5.2 0.31 325 5 324 15 319 118 102

a57 25528 679 230.7 0.46 0.75 0.0883 1.6 0.7585 2.8 0.06233 2.3 0.57 545 8 573 12 685 49 80

a58 27240 1861 304.2 0.12 0.16 0.0510 1.5 0.3725 1.6 0.05294 0.7 0.90 321 5 321 4 326 16 98

a59 20652 1222 243.3 0.89 1.72 0.0492 1.5 0.3587 3.2 0.05285 2.8 0.46 310 4 311 9 322 64 96

a60 83678 1992 571.8 0.41 6.28 0.0709 1.8 0.5734 5.4 0.05869 5.1 0.33 441 8 460 20 556 112 79

a61 32902 1707 359.0 0.20 0.24 0.0632 1.7 0.4968 2.1 0.05699 1.2 0.82 395 6 410 7 491 26 80

a62 19741 1455 209.4 0.15 0.32 0.0438 1.8 0.3207 2.2 0.05310 1.2 0.82 276 5 282 5 333 28 83

a63 38800 3142 512.5 0.60 0.98 0.0427 1.6 0.3053 2.5 0.05185 1.9 0.63 270 4 270 6 279 44 97

a65 12794 828 153.0 0.57 0.46 0.0500 1.6 0.3663 2.7 0.05313 2.2 0.58 315 5 317 7 334 49 94

a66 23889 1470 271.4 0.65 0.88 0.0483 1.6 0.3533 2.9 0.05309 2.4 0.56 304 5 307 8 332 55 91

a72 27846 1580 294.8 0.52 1.07 0.0510 1.5 0.3736 2.6 0.05311 2.1 0.57 321 5 322 7 334 48 96

a73 126298 2014 650.6 0.24 2.27 0.0907 2.2 1.1530 3.1 0.09222 2.1 0.72 560 12 779 17 1472 40 38

a74 22408 1557 247.0 0.05 0.03 0.0516 1.6 0.3755 1.8 0.05280 0.8 0.89 324 5 324 5 320 18 101

a75 15261 728 141.2 0.40 3.58 0.0520 1.8 0.3796 4.5 0.05290 4.1 0.39 327 6 327 13 325 94 101

a76 18896 1275 228.0 0.49 0.34 0.0500 1.5 0.3657 2.0 0.05305 1.3 0.76 314 5 316 5 331 29 95

a77 24980 1284 225.3 0.28 3.04 0.0491 1.9 0.3576 4.1 0.05287 3.7 0.45 309 6 310 11 323 83 96

Vaugnerites

533-1

Session #1 (April 9
th

, 2014)

a107 57895 1559 103.7 0.55 12.48 0.0488 2.2 0.3501 9.0 0.05203 8.7 0.25 307 7 305 24 287 199 107

a108 14077 1195 61.2 0.48 b.d. 0.0484 1.8 0.3511 2.0 0.05260 1.0 0.88 305 5 306 5 312 22 98

a109 29037 2440 128.0 0.54 b.d. 0.0490 1.8 0.3575 1.9 0.05291 0.8 0.92 308 5 310 5 325 18 95

a110 17155 1386 69.7 0.40 0.26 0.0484 1.7 0.3521 2.1 0.05282 1.1 0.84 304 5 306 5 321 25 95

a111 30618 1880 103.0 0.79 3.37 0.0488 1.9 0.3506 4.7 0.05214 4.3 0.41 307 6 305 13 291 98 105
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Results of LA-SF-ICPMS U–Pb analyses of zircons from granitoids and vaugnerites of the Eastern French Massif Central.

207
Pb

a
U

b
Pb

b
Th

b 206
Pbc

c 206
Pb

d ±2σ 207
Pb

e ±2σ 207
Pb

d ±2σ ρ
f 206

Pb ±2σ 207
Pb ±2σ 207

Pb ±2σ conc.
g

(cps) (ppm) (ppm) U (%) 238
U (%) 235

U (%) 206
Pb (%) 238

U (Ma) 235
U (Ma) 206

Pb (Ma) (%)

a112 24922 1782 96.2 0.73 1.38 0.0470 1.7 0.3442 3.4 0.05313 3.0 0.50 296 5 300 9 334 68 89

a113 22275 1739 90.9 0.52 0.79 0.0486 1.7 0.3478 2.7 0.05193 2.0 0.64 306 5 303 7 282 47 108

a114 16182 1392 75.7 0.73 b.d. 0.0477 1.7 0.3454 2.3 0.05256 1.4 0.77 300 5 301 6 310 33 97

a115 16363 1320 62.6 0.23 0.28 0.0480 1.7 0.3509 2.2 0.05303 1.4 0.77 302 5 305 6 330 32 92

a116 38754 3302 166.9 0.38 b.d. 0.0494 1.8 0.3587 1.9 0.05266 0.6 0.94 311 5 311 5 314 14 99

a117 12164 1071 49.8 0.21 b.d. 0.0475 1.8 0.3457 2.0 0.05276 1.0 0.86 299 5 301 5 319 24 94

a118 27160 2002 104.1 0.45 0.65 0.0495 1.8 0.3569 2.4 0.05231 1.6 0.74 311 5 310 7 299 38 104

a119 30644 2656 138.7 0.48 b.d. 0.0491 1.7 0.3582 1.9 0.05289 0.8 0.90 309 5 311 5 324 19 95

a120 28415 2123 113.6 0.53 1.05 0.0490 1.8 0.3539 2.8 0.05238 2.2 0.63 308 5 308 7 302 50 102

a121 32750 2474 130.2 0.44 0.98 0.0494 1.9 0.3597 2.8 0.05284 2.1 0.66 311 6 312 8 322 48 96

a122 29394 2628 138.8 0.59 0.28 0.0473 1.8 0.3405 2.2 0.05226 1.3 0.82 298 5 298 6 297 29 100

533-2

Session #1 (April 9
th

, 2014)

a345 7401 707 38.4 0.86 0.04 0.0463 1.8 0.3368 2.2 0.05272 1.3 0.82 292 5 295 6 317 29 92

a346 5693 534 31.3 0.99 b.d. 0.0490 1.8 0.3552 2.2 0.05261 1.2 0.84 308 5 309 6 312 27 99

a347 10212 491 25.7 0.56 0.72 0.0457 2.0 0.3347 3.2 0.05306 2.4 0.63 288 6 293 8 331 55 87

a348 13589 1232 63.2 0.52 0.25 0.0481 1.7 0.3489 2.2 0.05256 1.3 0.81 303 5 304 6 310 29 98

a349 3555 321 17.4 0.69 0.03 0.0488 1.8 0.3537 2.6 0.05256 1.8 0.71 307 5 307 7 310 41 99

a350 2750 260 13.3 0.41 b.d. 0.0494 1.9 0.3562 2.9 0.05225 2.2 0.66 311 6 309 8 296 50 105

a351 3854 374 20.3 0.83 b.d. 0.0464 1.9 0.3358 2.4 0.05251 1.5 0.80 292 5 294 6 308 33 95

a352 11578 976 53.9 0.69 0.67 0.0491 1.8 0.3574 3.3 0.05276 2.7 0.56 309 6 310 9 319 62 97

a353 10307 989 55.4 0.93 b.d. 0.0475 1.8 0.3428 2.0 0.05231 0.9 0.89 299 5 299 5 299 21 100

a354 5745 534 30.5 0.94 b.d. 0.0480 1.8 0.3517 2.1 0.05316 1.2 0.82 302 5 306 6 335 27 90

a355 2821 264 14.4 0.79 0.03 0.0489 1.9 0.3549 2.6 0.05262 1.7 0.75 308 6 308 7 312 39 99

a356 4679 446 22.3 0.42 0.28 0.0477 1.8 0.3476 2.4 0.05281 1.6 0.75 301 5 303 6 321 37 94

a357 1738 165 8.4 0.48 b.d. 0.0491 2.1 0.3521 3.3 0.05198 2.5 0.65 309 6 306 9 284 58 109

a358 7302 661 38.3 1.06 0.32 0.0472 1.7 0.3450 2.1 0.05295 1.3 0.79 298 5 301 6 327 30 91

a359 3229 306 17.0 0.83 b.d. 0.0482 1.8 0.3490 2.4 0.05255 1.5 0.75 303 5 304 6 309 35 98

a360 7018 556 32.2 0.96 0.72 0.0484 1.8 0.3562 4.4 0.05337 4.0 0.40 305 5 309 12 344 91 88

a361 10410 917 53.8 0.97 0.06 0.0487 1.7 0.3541 2.3 0.05274 1.5 0.76 307 5 308 6 317 33 97

a362 8926 825 48.7 1.04 b.d. 0.0486 1.7 0.3529 2.0 0.05262 1.0 0.86 306 5 307 5 312 23 98

a363 5634 534 30.5 0.90 b.d. 0.0487 1.8 0.3505 2.4 0.05220 1.5 0.78 307 5 305 6 294 34 104

a364 5709 478 27.0 0.86 0.19 0.0473 1.8 0.3523 3.0 0.05401 2.4 0.61 298 5 306 8 371 54 80

a365 6966 646 34.4 0.58 b.d. 0.0491 1.8 0.3545 2.2 0.05239 1.3 0.81 309 5 308 6 303 30 102

a366 2327 218 10.8 0.29 0.19 0.0494 1.9 0.3583 2.5 0.05265 1.7 0.75 311 6 311 7 314 38 99

a367 4251 410 22.4 0.74 0.20 0.0491 1.9 0.3574 2.6 0.05283 1.8 0.72 309 6 310 7 321 41 96

a368 1802 169 8.7 0.58 1.56 0.0459 2.3 0.3329 3.3 0.05256 2.3 0.71 290 7 292 8 310 53 93

a369 2696 247 13.1 0.61 b.d. 0.0494 1.8 0.3582 2.5 0.05257 1.7 0.72 311 5 311 7 310 39 100

a370 3523 334 18.1 0.80 1.30 0.0475 1.9 0.3486 2.6 0.05327 1.7 0.76 299 6 304 7 340 37 88

a371 9369 879 52.6 1.16 0.61 0.0478 1.8 0.3513 2.0 0.05331 1.0 0.86 301 5 306 5 342 23 88

LR-31

Session #1 (April 9
th

, 2014)

a318 7363 698 41.7 1.18 b.d. 0.0475 1.8 0.3436 2.1 0.05248 1.1 0.85 299 5 300 5 306 25 98

a319 9823 992 55.6 0.96 b.d. 0.0472 1.8 0.3445 2.1 0.05289 1.1 0.84 298 5 301 6 324 26 92

a321 4544 452 25.6 0.98 b.d. 0.0471 1.8 0.3402 2.3 0.05234 1.3 0.81 297 5 297 6 300 31 99

a322 3256 324 15.7 0.37 b.d. 0.0475 2.0 0.3401 2.8 0.05192 2.0 0.71 299 6 297 7 282 45 106

a323 4645 448 26.1 1.05 b.d. 0.0479 1.8 0.3462 2.2 0.05243 1.3 0.81 302 5 302 6 304 29 99

a324 3220 314 18.6 0.93 b.d. 0.0481 2.3 0.3473 2.8 0.05240 1.6 0.82 303 7 303 7 303 36 100

a325 4429 423 24.5 0.83 0.63 0.0475 1.8 0.3436 3.6 0.05242 3.1 0.51 299 5 300 9 304 71 99

a326 4695 457 25.3 0.95 0.09 0.0475 1.9 0.3480 2.5 0.05311 1.7 0.75 299 6 303 7 334 38 90

a327 5569 539 30.9 1.08 0.50 0.0466 1.9 0.3390 2.5 0.05282 1.6 0.75 293 5 296 6 321 37 91

a333 1978 210 10.1 0.45 b.d. 0.0478 2.5 0.3427 3.7 0.05204 2.7 0.68 301 7 299 10 287 62 105

a334 2259 211 11.4 0.87 b.d. 0.0450 2.2 0.3262 4.0 0.05262 3.3 0.56 283 6 287 10 312 75 91

a335 5230 499 29.2 1.09 0.53 0.0474 1.8 0.3418 2.9 0.05228 2.3 0.61 299 5 299 8 298 53 100

a336 5820 568 33.2 1.11 b.d. 0.0473 1.7 0.3426 2.3 0.05254 1.5 0.75 298 5 299 6 309 35 96

a337 4036 390 21.6 0.93 0.03 0.0470 1.8 0.3440 2.6 0.05308 1.9 0.70 296 5 300 7 332 42 89

a338 5340 505 29.1 1.17 b.d. 0.0462 1.8 0.3338 3.4 0.05239 2.9 0.52 291 5 292 9 303 66 96

a340 4412 427 24.4 1.02 b.d. 0.0474 1.7 0.3419 2.3 0.05232 1.5 0.76 299 5 299 6 299 34 100

a341 5052 453 25.4 0.88 0.18 0.0474 1.9 0.3424 4.2 0.05236 3.8 0.44 299 5 299 11 301 87 99

a342 4243 384 23.0 1.07 0.19 0.0479 1.8 0.3483 3.2 0.05274 2.6 0.57 302 5 303 8 318 60 95

a343 3853 378 30.9 3.26 b.d. 0.0455 2.1 0.3399 4.6 0.05421 4.1 0.46 287 6 297 12 380 92 75

a344 3384 329 19.0 1.03 b.d. 0.0480 1.9 0.3502 2.7 0.05290 2.0 0.69 302 5 305 7 325 45 93

LR-32

Session #1 (April 9
th

, 2014)

a207 6189 587 33.3 1.19 b.d. 0.0370 2.0 0.2690 2.4 0.05274 1.3 0.83 234 5 242 5 318 31 74
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Results of LA-SF-ICPMS U–Pb analyses of zircons from granitoids and vaugnerites of the Eastern French Massif Central.

207
Pb

a
U

b
Pb

b
Th

b 206
Pbc

c 206
Pb

d ±2σ 207
Pb

e ±2σ 207
Pb

d ±2σ ρ
f 206

Pb ±2σ 207
Pb ±2σ 207

Pb ±2σ conc.
g

(cps) (ppm) (ppm) U (%) 238
U (%) 235

U (%) 206
Pb (%) 238

U (Ma) 235
U (Ma) 206

Pb (Ma) (%)

a208 6868 628 35.7 0.84 b.d. 0.0462 1.7 0.3332 2.2 0.05235 1.4 0.77 291 5 292 6 301 32 97

a209 8516 778 54.5 1.81 0.32 0.0481 1.8 0.3473 3.0 0.05239 2.4 0.61 303 5 303 8 303 55 100

a210 7624 730 32.9 0.14 b.d. 0.0481 1.8 0.3506 2.1 0.05285 1.1 0.86 303 5 305 6 322 25 94

a211 3108 299 17.0 0.97 b.d. 0.0482 1.9 0.3468 2.7 0.05212 1.9 0.71 304 6 302 7 291 44 104

a212 5063 492 28.4 1.03 0.22 0.0473 1.9 0.3413 3.8 0.05234 3.3 0.49 298 5 298 10 300 76 99

a213 7330 686 41.8 1.15 0.39 0.0482 1.8 0.3506 2.3 0.05281 1.5 0.76 303 5 305 6 321 34 95

a214 8596 820 50.6 1.26 b.d. 0.0481 1.7 0.3460 2.2 0.05217 1.4 0.79 303 5 302 6 293 31 103

a215 6604 634 34.6 0.77 b.d. 0.0480 1.8 0.3492 2.2 0.05271 1.3 0.82 302 5 304 6 317 29 96

a216 2999 289 16.1 0.86 b.d. 0.0477 1.8 0.3451 2.5 0.05244 1.7 0.73 301 5 301 6 305 38 99

a217 8849 858 53.4 1.30 b.d. 0.0481 1.7 0.3483 2.4 0.05254 1.6 0.73 303 5 303 6 309 37 98

a218 2600 240 13.8 0.97 0.04 0.0478 1.8 0.3454 2.5 0.05243 1.7 0.74 301 5 301 7 304 39 99

a219 6605 614 36.1 1.10 0.71 0.0470 1.8 0.3453 2.5 0.05327 1.7 0.72 296 5 301 6 340 39 87

a220 4126 400 23.5 1.11 b.d. 0.0477 1.9 0.3440 2.4 0.05233 1.6 0.76 300 5 300 6 300 36 100

a221 8711 826 40.4 0.41 0.02 0.0477 1.7 0.3448 2.1 0.05244 1.3 0.80 300 5 301 6 305 29 99

a222 11994 1115 57.8 0.58 b.d. 0.0481 1.7 0.3463 2.0 0.05221 1.0 0.88 303 5 302 5 295 22 103

a224 17123 1950 56.0 0.89 2.02 0.0258 1.9 0.1830 4.2 0.05148 3.8 0.45 164 3 171 7 262 87 63

a225 3398 318 18.3 0.98 b.d. 0.0477 1.9 0.3493 2.6 0.05311 1.7 0.74 300 6 304 7 333 39 90

a226 2595 243 13.4 0.78 0.13 0.0479 2.1 0.3483 3.0 0.05274 2.1 0.71 302 6 303 8 317 47 95

PRC-53

Session #1 (April 9
th

, 2014)

a78 5675 443 25.6 0.77 0.76 0.0511 2.4 0.3747 3.3 0.05317 2.2 0.75 321 8 323 9 336 49 96

a79 11609 950 39.0 0.39 1.13 0.0394 1.8 0.2819 3.9 0.05194 3.4 0.46 249 4 252 9 283 78 88

a80 3856 311 17.3 0.61 b.d. 0.0509 1.8 0.3715 2.3 0.05297 1.4 0.79 320 6 321 6 328 32 98

a81 5966 477 26.9 0.69 0.14 0.0506 2.0 0.3663 3.1 0.05249 2.4 0.63 318 6 317 8 307 55 104

a82 4533 353 18.7 0.63 0.01 0.0485 1.9 0.3544 2.4 0.05297 1.5 0.79 305 6 308 6 327 34 93

a84 8829 624 30.5 0.63 1.68 0.0435 1.9 0.3271 5.8 0.05454 5.5 0.33 274 5 287 15 394 122 70

a85 4791 352 21.1 0.93 0.09 0.0500 1.9 0.3641 2.7 0.05277 1.9 0.72 315 6 315 7 319 42 99

a86 3599 301 15.8 0.58 0.14 0.0475 2.0 0.3568 2.6 0.05446 1.7 0.77 299 6 310 7 390 37 77

a87 6051 547 28.0 0.97 b.d. 0.0428 1.9 0.3155 2.5 0.05347 1.6 0.76 270 5 278 6 349 36 77

a88 3543 303 16.1 0.60 0.01 0.0490 1.8 0.3566 2.3 0.05275 1.5 0.78 309 5 310 6 318 33 97

a89 4503 376 19.0 0.75 0.34 0.0441 1.8 0.3207 2.7 0.05272 2.1 0.64 278 5 282 7 317 47 88

a90 7515 654 30.7 0.18 0.61 0.0508 2.0 0.3737 2.5 0.05334 1.6 0.78 319 6 322 7 343 36 93

a91 6556 518 28.8 0.63 0.49 0.0487 1.9 0.3507 4.6 0.05225 4.1 0.43 306 6 305 12 296 94 103

a92 3173 268 15.5 0.73 b.d. 0.0507 2.0 0.3668 2.6 0.05248 1.6 0.77 319 6 317 7 306 37 104

a93 3535 296 16.2 0.52 b.d. 0.0509 1.8 0.3760 3.5 0.05356 2.9 0.53 320 6 324 10 353 66 91

a94 7462 953 42.6 0.52 0.85 0.0440 2.1 0.3205 4.4 0.05286 3.9 0.47 277 6 282 11 323 88 86

a96 4928 402 23.7 0.80 b.d. 0.0513 1.8 0.3739 5.3 0.05283 5.0 0.35 323 6 323 15 322 112 100

a97 2851 226 12.1 0.47 0.04 0.0504 1.9 0.3679 2.4 0.05291 1.5 0.79 317 6 318 7 325 33 98

a98 6141 489 28.5 0.82 b.d. 0.0505 1.8 0.3674 2.1 0.05272 1.1 0.85 318 5 318 6 317 25 100

a99 5441 476 27.6 0.68 0.08 0.0495 2.3 0.3696 2.6 0.05416 1.3 0.87 311 7 319 7 378 29 82

a100 4783 397 23.2 0.82 0.45 0.0504 1.8 0.3688 2.6 0.05308 1.9 0.70 317 6 319 7 332 43 95

a101 5287 458 26.4 0.87 0.62 0.0487 1.8 0.3567 2.6 0.05313 1.8 0.71 307 5 310 7 334 41 92

PRC-54

Session #1 (April 9
th

, 2014)

a153 4884 411 22.6 0.57 b.d. 0.0507 1.8 0.3723 2.8 0.05328 2.1 0.66 319 6 321 8 341 47 94

a154 3328 274 15.1 0.58 1.67 0.0483 2.0 0.3574 4.5 0.05367 4.1 0.45 304 6 310 12 357 92 85

a157 3596 315 17.7 0.52 0.54 0.0512 2.1 0.3710 2.9 0.05256 2.0 0.72 322 6 320 8 310 45 104

a158 4619 397 22.9 0.75 0.60 0.0507 1.9 0.3708 3.0 0.05304 2.4 0.62 319 6 320 8 330 54 96

a159 3791 304 18.0 0.83 0.06 0.0511 1.8 0.3724 2.4 0.05281 1.6 0.75 321 6 321 7 321 36 100

a162 5057 444 21.1 0.17 b.d. 0.0489 1.9 0.3613 2.5 0.05363 1.6 0.76 307 6 313 7 356 37 86

a164 5449 467 27.3 0.82 0.32 0.0508 1.8 0.3739 2.3 0.05335 1.3 0.81 320 6 323 6 344 30 93

a165 7208 598 35.4 0.79 b.d. 0.0511 1.9 0.3723 3.3 0.05282 2.8 0.56 321 6 321 9 321 63 100

a166 4973 398 21.3 0.29 0.85 0.0510 2.3 0.3830 4.0 0.05442 3.2 0.58 321 7 329 11 389 72 83

a167 4541 365 19.7 0.42 0.40 0.0480 2.2 0.3373 6.5 0.05100 6.2 0.33 302 6 295 17 241 142 125

a168 2897 278 16.5 0.62 b.d. 0.0510 2.0 0.3734 3.9 0.05311 3.3 0.51 321 6 322 11 333 76 96

a169 3747 298 17.0 0.55 0.94 0.0511 1.9 0.3691 3.4 0.05235 2.8 0.57 321 6 319 9 301 64 107

a170 8110 469 28.9 0.86 1.21 0.0420 3.0 0.3150 6.7 0.05441 6.0 0.45 265 8 278 17 388 135 68

a171 4704 380 22.4 0.84 b.d. 0.0494 1.7 0.3649 2.3 0.05354 1.4 0.77 311 5 316 6 352 32 88

a173 6004 465 27.4 0.81 0.15 0.0509 1.9 0.3706 3.5 0.05286 3.0 0.54 320 6 320 10 323 67 99

a174 6642 425 24.9 0.72 1.55 0.0508 1.9 0.3695 4.7 0.05280 4.3 0.42 319 6 319 13 320 97 100

a175 3776 331 17.9 0.66 0.80 0.0484 1.9 0.3559 2.9 0.05329 2.2 0.67 305 6 309 8 341 49 89

SC-13-02A

Session #1 (April 9
th

, 2014)

a123 16281 1162 55.4 0.11 1.15 0.0497 1.8 0.3556 2.9 0.05193 2.2 0.63 312 5 309 8 283 51 111

a124 10583 580 33.9 0.40 1.52 0.0481 2.9 0.3438 4.7 0.05185 3.6 0.63 303 9 300 12 279 83 109
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Laurent et al., 2016. Supplementary Table S2 (continued):

Results of LA-SF-ICPMS U–Pb analyses of zircons from granitoids and vaugnerites of the Eastern French Massif Central.

207
Pb

a
U

b
Pb

b
Th

b 206
Pbc

c 206
Pb

d ±2σ 207
Pb

e ±2σ 207
Pb

d ±2σ ρ
f 206

Pb ±2σ 207
Pb ±2σ 207

Pb ±2σ conc.
g

(cps) (ppm) (ppm) U (%) 238
U (%) 235

U (%) 206
Pb (%) 238

U (Ma) 235
U (Ma) 206

Pb (Ma) (%)

a125 4151 348 16.9 0.29 0.83 0.0494 2.0 0.3579 4.2 0.05253 3.8 0.46 311 6 311 11 309 86 101

a126 37697 2917 138.1 0.08 0.64 0.0499 1.9 0.3624 2.2 0.05262 1.2 0.84 314 6 314 6 312 28 101

a127 28741 2367 112.3 0.15 b.d. 0.0496 1.8 0.3619 2.1 0.05288 1.2 0.84 312 5 314 6 324 26 96

a128 23592 1639 80.6 0.23 1.06 0.0476 1.8 0.3408 2.8 0.05188 2.2 0.63 300 5 298 7 280 50 107

a129 3761 293 16.7 0.28 b.d. 0.0504 1.9 0.3642 2.4 0.05245 1.4 0.80 317 6 315 6 305 32 104

SC-13-05

Session #1 (April 9
th

, 2014)

a130 22671 1914 90.0 0.10 0.06 0.0491 1.7 0.3542 1.9 0.05231 0.7 0.93 309 5 308 5 299 16 103

a131 18683 1681 76.2 0.72 b.d. 0.0494 1.7 0.3584 1.9 0.05267 0.7 0.93 311 5 311 5 314 16 99

a132 28199 2219 109.9 0.45 0.87 0.0491 1.7 0.3573 2.5 0.05281 1.8 0.69 309 5 310 7 321 41 96

a133 22021 1874 91.7 0.15 0.21 0.0495 1.7 0.3588 2.0 0.05257 1.0 0.87 311 5 311 5 310 22 100

a134 26155 2259 106.7 0.19 0.11 0.0485 1.7 0.3541 2.1 0.05297 1.1 0.84 305 5 308 6 327 25 93

a135 22772 1959 101.0 0.44 0.15 0.0498 1.8 0.3598 2.2 0.05242 1.2 0.84 313 6 312 6 304 27 103

a136 21383 1842 82.6 0.23 b.d. 0.0488 1.7 0.3564 2.2 0.05297 1.3 0.78 307 5 310 6 327 30 94

a137 27083 2416 119.1 0.34 0.05 0.0485 1.7 0.3523 1.9 0.05265 0.8 0.91 305 5 306 5 314 18 97

a138 47211 3167 165.9 0.39 4.32 0.0458 2.2 0.3282 5.3 0.05198 4.8 0.41 289 6 288 13 285 111 101

a139 31903 2622 127.3 0.27 0.78 0.0482 1.7 0.3516 2.4 0.05293 1.7 0.72 303 5 306 6 326 38 93

a140 19685 1685 78.3 0.08 b.d. 0.0498 1.7 0.3623 1.9 0.05274 0.8 0.91 313 5 314 5 318 18 99

a141 8310 752 45.7 1.19 b.d. 0.0480 1.8 0.3483 2.1 0.05258 1.2 0.83 303 5 303 6 311 27 97

a142 3600 356 18.9 1.04 b.d. 0.0442 1.8 0.3265 2.4 0.05359 1.5 0.77 279 5 287 6 354 34 79

a143 22951 1928 89.5 0.14 b.d. 0.0483 1.7 0.3533 1.8 0.05308 0.7 0.92 304 5 307 5 332 16 92

a144 18048 1610 73.4 0.42 b.d. 0.0496 1.7 0.3583 2.0 0.05235 1.0 0.87 312 5 311 5 301 22 104

a145 34254 2651 135.1 0.45 1.22 0.0480 1.7 0.3478 2.6 0.05256 2.0 0.65 302 5 303 7 310 46 98

a151 26236 2054 97.4 0.22 1.22 0.0474 1.8 0.3450 2.9 0.05285 2.2 0.63 298 5 301 8 322 51 93

a152 42315 2190 113.4 0.28 4.27 0.0494 1.8 0.3655 5.0 0.05369 4.7 0.36 311 6 316 14 358 105 87

SC-13-09

Session #1 (April 9
th

, 2014)

a269 11009 517 30.4 0.58 5.03 0.0491 2.1 0.3618 6.9 0.05340 6.6 0.31 309 6 314 19 346 149 89

a270 8640 800 44.0 0.75 b.d. 0.0484 1.7 0.3500 2.0 0.05245 1.1 0.86 305 5 305 5 305 24 100

a271 25541 2206 139.3 0.92 b.d. 0.0535 1.8 0.3937 1.9 0.05337 0.8 0.91 336 6 337 6 344 18 98

a272 20722 1925 110.6 0.89 0.51 0.0489 1.8 0.3577 2.5 0.05302 1.7 0.72 308 5 311 7 329 39 93

a273 13647 963 54.7 0.75 1.84 0.0497 1.8 0.3573 3.8 0.05215 3.3 0.47 313 5 310 10 292 76 107

a274 13872 1252 63.8 0.37 b.d. 0.0500 1.8 0.3655 2.1 0.05299 0.9 0.90 315 6 316 6 328 21 96

a275 6187 594 32.2 0.73 b.d. 0.0491 1.7 0.3535 2.1 0.05221 1.2 0.81 309 5 307 6 295 28 105

a276 19657 1832 104.8 0.84 b.d. 0.0494 1.7 0.3599 1.9 0.05284 0.9 0.89 311 5 312 5 322 19 97

a277 5741 473 27.3 0.62 1.06 0.0500 1.9 0.3579 4.2 0.05194 3.7 0.46 314 6 311 11 283 85 111

a278 18506 1014 58.3 0.70 4.83 0.0467 1.8 0.3400 6.4 0.05284 6.1 0.29 294 5 297 17 322 138 91

a279 8961 670 37.2 0.61 1.76 0.0493 1.8 0.3517 4.0 0.05177 3.6 0.45 310 5 306 11 275 83 113

a280 23926 1965 110.2 0.80 1.24 0.0475 1.8 0.3427 3.0 0.05228 2.4 0.59 299 5 299 8 298 56 101

a281 12209 1077 56.7 0.51 0.35 0.0494 1.7 0.3606 2.3 0.05291 1.5 0.75 311 5 313 6 325 34 96

a282 30891 1245 69.3 0.20 7.69 0.0480 1.9 0.3466 7.8 0.05241 7.5 0.25 302 6 302 21 303 172 99

a288 27883 1287 70.5 0.28 5.73 0.0481 1.8 0.3507 6.1 0.05290 5.9 0.30 303 5 305 16 325 133 93

a289 14414 1113 61.4 0.73 1.32 0.0473 1.8 0.3379 3.5 0.05183 3.0 0.51 298 5 296 9 278 69 107

a290 18639 1734 95.5 0.72 b.d. 0.0489 1.7 0.3553 1.9 0.05267 0.9 0.89 308 5 309 5 315 19 98

a291 12801 1201 69.5 0.95 b.d. 0.0485 1.7 0.3523 2.0 0.05273 1.0 0.87 305 5 306 5 317 22 96

a292 13709 1197 66.2 0.74 0.39 0.0487 1.7 0.3491 2.4 0.05199 1.6 0.74 307 5 304 6 285 36 108

a293 29892 2138 121.6 0.72 2.01 0.0495 1.7 0.3592 3.5 0.05258 3.1 0.49 312 5 312 9 311 70 100

a294 14567 1366 75.9 0.74 0.02 0.0487 1.7 0.3561 2.0 0.05301 0.9 0.88 307 5 309 5 329 21 93

a295 16905 1557 86.9 0.74 b.d. 0.0497 1.7 0.3634 2.0 0.05301 1.0 0.88 313 5 315 5 329 22 95

a296 23928 2103 133.4 1.25 0.81 0.0494 1.7 0.3612 2.7 0.05307 2.0 0.65 311 5 313 7 332 46 94

a297 38073 3563 189.2 0.58 b.d. 0.0495 1.7 0.3605 1.8 0.05277 0.6 0.94 312 5 313 5 319 14 98

a298 20911 1861 109.8 0.93 0.58 0.0488 1.7 0.3566 2.5 0.05304 1.9 0.68 307 5 310 7 331 42 93

a299 26664 2440 147.8 1.08 0.10 0.0493 1.7 0.3609 2.1 0.05310 1.2 0.82 310 5 313 6 333 27 93

a300 18573 1551 90.9 0.94 0.55 0.0483 1.7 0.3486 2.3 0.05231 1.6 0.73 304 5 304 6 299 36 102

SC-13-14

Session #1 (April 9
th

, 2014)

a15 29463 1321 63.2 0.96 5.61 0.0369 2.4 0.2711 6.3 0.05330 5.8 0.39 234 6 244 14 341 132 68

a16 14880 727 49.2 0.62 1.89 0.0538 1.8 0.3940 4.6 0.05316 4.2 0.40 338 6 337 13 335 96 101

a17 10208 641 33.3 0.58 1.25 0.0462 1.9 0.3386 3.5 0.05313 3.0 0.53 291 5 296 9 334 67 87

a18 21318 884 50.5 0.43 5.92 0.0499 2.0 0.3642 6.5 0.05295 6.2 0.31 314 6 315 18 327 141 96

a19 21296 774 48.4 0.92 6.83 0.0478 2.1 0.3546 8.1 0.05377 7.8 0.26 301 6 308 22 377 176 80

a20 6659 415 22.9 0.25 0.57 0.0531 1.8 0.3918 4.1 0.05350 3.7 0.45 334 6 336 12 350 83 95

a21 40077 2456 137.2 0.43 1.47 0.0529 1.8 0.3878 3.1 0.05316 2.5 0.59 332 6 333 9 336 57 99

a22 20803 1167 70.4 0.13 0.21 0.0608 2.6 0.4556 3.0 0.05430 1.6 0.85 381 10 381 10 383 37 99

a23 11046 571 29.5 0.66 2.30 0.0420 1.9 0.3046 5.3 0.05257 5.0 0.35 265 5 270 13 310 114 85
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Laurent et al., 2016. Supplementary Table S2 (continued):

Results of LA-SF-ICPMS U–Pb analyses of zircons from granitoids and vaugnerites of the Eastern French Massif Central.
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a24 18836 858 46.3 0.72 5.58 0.0434 2.1 0.3182 6.8 0.05320 6.5 0.31 274 6 281 17 337 147 81

a25 16733 1178 61.7 0.17 0.24 0.0537 1.7 0.3968 2.2 0.05364 1.4 0.79 337 6 339 6 356 30 95

a26 12879 652 40.8 0.73 2.32 0.0532 1.9 0.3880 3.9 0.05292 3.4 0.48 334 6 333 11 325 78 103

a27 27562 984 66.4 0.80 7.43 0.0534 2.2 0.3942 6.6 0.05358 6.2 0.34 335 7 337 19 353 140 95

a28 8975 410 33.4 0.38 0.01 0.0786 1.8 0.6178 2.0 0.05698 1.0 0.86 488 8 488 8 491 23 99

a29 10672 661 35.2 0.18 0.18 0.0536 2.0 0.3931 3.1 0.05319 2.4 0.63 337 6 337 9 337 55 100

a30 4659 310 15.9 0.12 0.51 0.0535 1.9 0.3926 2.5 0.05317 1.5 0.78 336 6 336 7 336 35 100

a31 20997 1488 80.7 0.24 0.10 0.0537 1.8 0.3956 2.1 0.05342 1.1 0.86 337 6 338 6 347 24 97

a32 16355 974 62.0 0.23 0.03 0.0635 2.0 0.4793 2.5 0.05472 1.4 0.81 397 8 398 8 401 32 99

a38 52115 533 47.5 0.27 32.68 0.0418 4.1 0.4556 11.6 0.07900 10.9 0.35 264 11 381 38 1172 216 23

a39 61518 687 60.6 0.95 29.92 0.0454 4.2 0.3576 13.1 0.05715 12.4 0.32 286 12 310 36 497 273 58

a40 10117 617 32.0 0.34 1.02 0.0487 1.8 0.3641 4.1 0.05418 3.7 0.44 307 5 315 11 379 83 81

a41 8258 486 26.1 0.46 2.10 0.0522 1.8 0.4023 7.1 0.05589 6.8 0.26 328 6 343 21 448 152 73

SC-13-19

Session #1 (April 9
th

, 2014)

a176 5309 453 24.5 0.67 1.36 0.0479 1.9 0.3579 3.1 0.05415 2.5 0.60 302 6 311 8 377 56 80

a177 35612 2634 171.8 0.99 0.59 0.0533 1.7 0.3947 2.2 0.05369 1.4 0.78 335 6 338 6 358 32 93

a178 37941 2126 141.8 0.95 2.83 0.0535 1.8 0.3887 3.9 0.05272 3.4 0.46 336 6 333 11 317 78 106

a179 31432 2599 168.4 1.02 b.d. 0.0533 1.7 0.3906 1.9 0.05313 0.8 0.91 335 6 335 5 335 18 100

a180 16104 1161 67.4 0.68 1.02 0.0509 1.8 0.3688 3.0 0.05255 2.5 0.58 320 5 319 8 310 56 103

a181 19954 1602 97.1 0.74 b.d. 0.0533 1.8 0.3912 2.2 0.05320 1.3 0.80 335 6 335 6 337 30 99

a182 30264 2291 141.0 0.87 0.66 0.0516 1.7 0.3803 2.3 0.05342 1.5 0.76 325 5 327 6 347 34 94

a183 11566 943 53.9 0.61 b.d. 0.0520 1.7 0.3815 2.1 0.05322 1.1 0.84 327 6 328 6 338 26 97

a184 31644 2455 145.3 0.75 0.28 0.0525 1.8 0.3888 2.4 0.05374 1.7 0.73 330 6 333 7 360 37 91

a185 27725 2229 124.0 0.65 b.d. 0.0487 1.9 0.3603 2.1 0.05365 1.1 0.87 307 6 312 6 356 24 86

a186 16884 1314 80.6 0.69 0.42 0.0535 1.9 0.3925 2.8 0.05325 2.1 0.68 336 6 336 8 339 47 99

a187 23450 1955 121.2 0.83 b.d. 0.0532 1.7 0.3878 1.8 0.05292 0.7 0.93 334 6 333 5 325 15 103

a188 25727 2143 142.7 1.14 0.14 0.0532 1.7 0.3914 1.9 0.05334 0.7 0.92 334 6 335 5 343 16 97

a189 16040 1100 63.5 0.75 0.69 0.0496 1.8 0.3647 2.8 0.05336 2.1 0.64 312 5 316 8 344 48 91

a190 20338 1556 95.8 0.77 0.24 0.0533 1.7 0.3903 2.0 0.05307 1.0 0.85 335 6 335 6 332 24 101

a191 9495 806 40.2 0.16 b.d. 0.0514 1.7 0.3793 2.3 0.05352 1.5 0.76 323 5 326 6 351 33 92

a192 16904 1431 85.7 0.74 b.d. 0.0527 1.7 0.3828 1.9 0.05273 0.8 0.90 331 6 329 5 317 19 104

a193 34950 2920 197.7 1.21 b.d. 0.0532 1.7 0.3901 1.8 0.05316 0.6 0.95 334 6 334 5 336 13 100

a199 23191 1840 104.8 0.55 0.30 0.0531 1.7 0.3901 2.7 0.05326 2.1 0.63 334 6 334 8 340 48 98

a200 35658 1971 129.8 0.81 3.24 0.0537 1.8 0.3883 4.5 0.05248 4.1 0.40 337 6 333 13 306 94 110

a201 17406 1401 84.6 0.69 0.08 0.0536 1.7 0.3937 2.0 0.05326 0.9 0.89 337 6 337 6 340 20 99

a202 20551 1764 105.5 0.76 0.08 0.0522 1.7 0.3832 2.0 0.05323 0.9 0.88 328 5 329 6 339 21 97

a203 24667 1575 92.0 0.59 2.21 0.0513 1.7 0.3756 3.5 0.05312 3.0 0.49 322 5 324 10 334 69 96

a204 25955 2104 130.1 0.86 0.08 0.0525 1.7 0.3893 2.1 0.05383 1.2 0.82 330 5 334 6 364 26 91

a205 50789 4586 257.7 0.53 0.23 0.0525 1.7 0.3829 1.9 0.05292 0.7 0.92 330 6 329 5 326 16 101

a206 22131 1707 99.5 0.57 0.18 0.0534 1.7 0.3942 2.4 0.05351 1.6 0.72 336 6 337 7 350 37 96

SGC-12-13

Session #1 (April 9
th

, 2014)

a06 2173 157 8.5 0.61 b.d. 0.0486 2.0 0.3510 3.1 0.05241 2.4 0.63 306 6 305 8 303 55 101

a07 7516 433 27.6 0.90 1.46 0.0495 2.2 0.3611 5.7 0.05287 5.2 0.38 312 7 313 15 323 119 96

a08 4627 300 14.1 0.49 2.35 0.0411 2.2 0.3047 6.9 0.05374 6.6 0.32 260 6 270 17 360 148 72

a09 7449 615 34.0 0.73 0.28 0.0486 1.8 0.3506 3.5 0.05233 3.1 0.51 306 5 305 9 300 70 102

a10 6330 704 36.4 0.67 0.85 0.0462 2.6 0.3331 6.2 0.05233 5.6 0.43 291 8 292 16 300 128 97

a11 3988 265 15.3 0.62 0.63 0.0487 2.1 0.3540 6.1 0.05268 5.7 0.34 307 6 308 16 315 131 97

a12 16544 1078 62.9 0.66 0.83 0.0513 1.7 0.3744 2.9 0.05296 2.3 0.61 322 6 323 8 327 52 99

a13 21730 1540 79.7 0.47 0.76 0.0484 1.8 0.3501 2.9 0.05245 2.2 0.63 305 5 305 8 305 51 100

a14 4422 328 19.8 0.83 b.d. 0.0485 2.0 0.3561 2.6 0.05326 1.6 0.77 305 6 309 7 340 37 90

SGC-12-26

Session #1 (April 9
th

, 2014)

a372 7438 728 43.8 1.17 b.d. 0.0480 1.7 0.3497 2.0 0.05280 1.1 0.84 302 5 304 5 320 25 94

a373 2778 263 14.7 0.89 0.54 0.0460 2.0 0.3342 3.2 0.05267 2.5 0.63 290 6 293 8 315 57 92

a374 2177 201 10.7 0.59 b.d. 0.0489 2.2 0.3525 3.1 0.05223 2.2 0.71 308 7 307 8 296 50 104

a375 1368 129 7.2 0.80 b.d. 0.0485 2.5 0.3530 4.0 0.05275 3.1 0.62 306 7 307 11 318 71 96

a376 3408 322 17.0 0.55 0.07 0.0491 1.9 0.3537 2.4 0.05222 1.5 0.77 309 6 307 6 295 35 105

a378 6613 618 34.4 0.79 0.20 0.0488 1.8 0.3558 2.1 0.05285 1.1 0.85 307 5 309 6 322 26 95

a379 1657 148 7.5 0.32 0.21 0.0495 1.9 0.3585 3.0 0.05255 2.2 0.65 311 6 311 8 309 51 101

a380 4414 425 23.3 0.82 0.44 0.0477 1.8 0.3488 2.6 0.05304 1.9 0.69 300 5 304 7 331 43 91

a381 1050 90 4.3 0.36 b.d. 0.0461 2.6 0.3294 4.3 0.05183 3.5 0.59 290 7 289 11 278 80 104

a382 4158 336 18.4 0.72 b.d. 0.0486 1.8 0.3544 2.4 0.05294 1.6 0.75 306 5 308 6 326 36 94

a388 6784 533 29.1 0.74 b.d. 0.0485 1.8 0.3515 2.2 0.05256 1.2 0.82 305 5 306 6 310 28 98
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Results of LA-SF-ICPMS U–Pb analyses of zircons from granitoids and vaugnerites of the Eastern French Massif Central.
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a389 3718 266 14.5 0.72 0.07 0.0485 1.8 0.3515 2.5 0.05259 1.7 0.73 305 5 306 7 311 40 98

a390 4714 335 19.7 1.13 0.04 0.0474 1.7 0.3449 2.2 0.05281 1.4 0.79 298 5 301 6 321 31 93

a391 12266 814 51.3 1.29 b.d. 0.0490 1.7 0.3552 1.9 0.05261 0.9 0.89 308 5 309 5 312 20 99

a392 4088 251 13.1 0.60 0.38 0.0485 1.8 0.3557 2.5 0.05315 1.7 0.73 306 5 309 7 335 38 91

a393 3231 192 10.2 0.73 b.d. 0.0467 1.8 0.3427 2.7 0.05319 1.9 0.68 294 5 299 7 337 44 87

a394 1687 93 4.9 0.51 b.d. 0.0493 1.9 0.3573 2.9 0.05256 2.2 0.66 310 6 310 8 310 49 100

a395 6898 375 21.7 1.05 b.d. 0.0484 1.7 0.3520 2.1 0.05277 1.3 0.81 305 5 306 6 319 28 96

a396 1975 101 4.7 0.19 0.07 0.0482 2.1 0.3449 3.3 0.05185 2.6 0.62 304 6 301 9 279 60 109

a397 5103 249 14.1 0.88 0.04 0.0482 1.8 0.3492 2.3 0.05255 1.4 0.78 303 5 304 6 309 32 98

a398 2501 116 5.9 0.50 0.01 0.0490 1.9 0.3563 2.6 0.05277 1.8 0.73 308 6 309 7 319 40 97

a399 4639 211 11.5 0.65 0.38 0.0494 1.8 0.3580 2.4 0.05256 1.6 0.74 311 5 311 6 310 37 100

a400 1869 78 4.0 0.49 b.d. 0.0472 2.4 0.3484 3.3 0.05352 2.2 0.74 297 7 304 9 351 50 85

a401 3006 127 7.0 0.78 0.17 0.0488 1.8 0.3520 2.6 0.05233 1.8 0.72 307 6 306 7 300 40 102

SGC-12-39

Session #1 (April 9
th

, 2014)

a254 5399 432 30.6 1.82 b.d. 0.0463 1.9 0.3347 5.3 0.05245 5.0 0.35 292 5 293 14 305 113 96

a255 3499 311 21.0 1.52 0.88 0.0447 2.0 0.3298 2.9 0.05348 2.1 0.70 282 6 289 7 349 47 81

a256 3132 331 21.2 1.36 0.07 0.0485 1.8 0.3452 3.6 0.05166 3.1 0.50 305 5 301 9 270 71 113

a257 3526 336 20.2 1.08 b.d. 0.0491 1.8 0.3524 2.5 0.05209 1.7 0.73 309 5 306 7 289 39 107

a258 4042 363 19.4 0.58 0.02 0.0490 1.8 0.3545 2.8 0.05249 2.1 0.64 308 5 308 7 307 48 100

a259 5015 481 32.9 1.67 0.03 0.0488 1.9 0.3540 2.6 0.05261 1.7 0.75 307 6 308 7 312 39 98

a260 9069 814 43.6 0.63 0.32 0.0485 1.7 0.3568 3.3 0.05335 2.8 0.52 305 5 310 9 344 63 89

a261 3638 346 22.9 1.34 0.07 0.0491 1.7 0.3542 2.6 0.05236 2.0 0.65 309 5 308 7 301 46 103

a262 4199 396 21.0 0.62 0.02 0.0485 1.8 0.3500 2.5 0.05231 1.8 0.71 305 5 305 7 299 41 102

a263 6428 499 36.8 1.81 b.d. 0.0493 1.8 0.3617 3.5 0.05322 3.0 0.52 310 6 313 9 338 67 92

a264 4575 433 25.7 0.99 b.d. 0.0488 1.9 0.3568 2.4 0.05301 1.5 0.78 307 6 310 6 329 34 93

a265 3325 237 15.1 1.32 3.96 0.0479 2.1 0.3463 5.5 0.05249 5.1 0.39 301 6 302 14 314 115 96

a266 7339 432 24.5 0.56 3.39 0.0481 1.9 0.3430 5.8 0.05171 5.4 0.33 303 6 299 15 273 125 111

a267 4846 430 26.2 1.11 b.d. 0.0489 1.8 0.3546 2.9 0.05265 2.2 0.64 307 6 308 8 314 51 98

SGC-12-42

Session #1 (April 9
th

, 2014)

a302 2768 271 13.5 0.42 b.d. 0.0472 1.8 0.3403 2.5 0.05230 1.7 0.74 297 5 297 6 298 38 100

a303 9186 261 17.2 0.47 12.57 0.0491 2.2 0.3553 7.9 0.05247 7.6 0.28 309 7 309 21 306 172 101

a304 2881 269 14.3 0.57 0.07 0.0485 1.9 0.3506 2.5 0.05240 1.7 0.74 305 6 305 7 303 39 101

a305 3768 362 18.2 0.41 0.01 0.0487 1.8 0.3524 2.3 0.05248 1.4 0.78 307 5 307 6 306 32 100

a306 10865 1062 66.4 1.28 b.d. 0.0488 1.7 0.3548 2.1 0.05273 1.1 0.84 307 5 308 6 317 26 97

a307 2810 269 13.1 0.45 b.d. 0.0465 1.8 0.3410 2.6 0.05320 1.9 0.69 293 5 298 7 337 43 87

a308 7511 718 39.0 0.72 b.d. 0.0485 1.8 0.3536 2.1 0.05290 1.2 0.82 305 5 307 6 324 28 94

a309 4457 421 21.1 0.49 b.d. 0.0471 1.7 0.3419 2.1 0.05265 1.2 0.83 297 5 299 5 314 27 95

a310 2707 250 12.3 0.40 b.d. 0.0474 1.9 0.3411 2.7 0.05215 1.9 0.72 299 6 298 7 292 42 102

a311 3064 300 15.5 0.54 b.d. 0.0485 1.8 0.3547 2.7 0.05302 2.0 0.67 305 6 308 7 330 46 93

a312 3476 322 16.9 0.60 0.01 0.0481 1.8 0.3486 2.9 0.05255 2.3 0.62 303 5 304 8 309 52 98

a313 2893 271 12.6 0.16 0.06 0.0484 1.8 0.3509 2.6 0.05262 1.9 0.68 304 5 305 7 312 43 97

a314 2794 271 12.6 0.16 b.d. 0.0485 1.8 0.3456 3.3 0.05169 2.7 0.56 305 6 301 9 272 63 112

a315 3557 355 15.5 0.09 0.99 0.0464 1.9 0.3343 3.0 0.05224 2.3 0.64 292 5 293 8 296 52 99

a316 4969 486 26.2 0.63 b.d. 0.0492 1.8 0.3577 2.5 0.05269 1.7 0.73 310 5 310 7 315 38 98

a317 2963 280 12.6 0.08 0.08 0.0480 1.9 0.3472 2.8 0.05243 2.0 0.68 302 6 303 7 304 46 99

206
Pb/

238
U error is the quadratic addition of the within run precision (2σ) and the external reproducibility (2σ ext.) of the reference zircon GJ-1

207
Pb/

206
Pb uncertainty is calculated using 

207
Pb signal dependent error propagation following Gerdes & Zeh (2009)

207
Pb/

235
U error is the quadratic addition of the 

207
Pb/

206
Pb and 

206
Pb/

238
U uncertainties

(a) Within-run background-corrected mean 
207

Pb signal in cps (counts per second). 

(b) U and Pb contents (in ppm) and Th/U ratios were calculated relative to GJ-1 reference zircon (U = 280 ppm; Pb = 25.5 ppm).

(c) Percentage of the common Pb on the 
206

Pb (b.d. = below dectection limit) calculated using the interference- and background-corrected 
204

Pb signal

and common Pb model composition of Stacey & Kramers (1975).

(d) Corrected for background, within-run Pb/U fractionation (in case of 
206

Pb/
238

U) and common Pb, and subsequently

normalized to GJ-1 (ID-TIMS value/measured value).

(e) 
207

Pb/
235

U = 
207

Pb/
206

Pb/(
238

U/
206

Pb*1/137.88) 

(f) ρ (rho) is the correlation coefficient between errors of 
206

Pb/
238

U and 
207

Pb/
235

U.

(g) Degree of concordance =  (
206

Pb/
238

U age / 
207

Pb/
206

Pb age) × 100
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A.2 Couzinié et al., 2016

Are reported:

� the Supplementary Text with additional references;

� Supplementary Table 1: Whole-rock geochemical data for samples newly analyzed
in the scope of this study;

� Supplementary Table 2: In situ LA�MC�ICP�MS Lu�Hf isotope data for zircon
standards analyzed in this study;

� Supplementary Table 3: In situ LA�MC�ICP�MS Lu�Hf isotope data for zircon in
PCMM samples from the eastern FMC;

� Supplementary Table 4: Zircon in situ SHRIMP O isotope data for standards
during the analytical runs;

� Supplementary Table 5: Zircon in situ SHRIMP O isotope data for samples.

Compilations of whole-rock geochemical data and zircon Hf�O isotope compositions for
other PCMM suites (Supplementary Tables 6 to 8) can be found online at https://doi.org/10.1016/j.epsl.2016.09.033.
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Whole-rock geochemistry 

Samples were sawed at Saint-Etienne University and a c. 500 g fragment of each sample was sent 

to ALS Global for whole-rock chemical composition measurements. We chose the "Complete 

Characterization Package" which combines ICP-AES and ICP-MS analyses for major and trace 

elements, respectively. More information about analytical routines used by this company can be 

found at http://www.alsglobal.com/. Repeated analyses of standards MRGeo08, OGGeo08, 

NCSZC73007, SY-4, GBM908-10, GBM908-5 and GEOMS-03 were obtained during the 

analytical session. 

Analyses on the standards were reproducible to < 1.6% for major elements, < 5.8% for trace 

elements (except Cr, V and Zr) and consistent within uncertainty with the expected values for these 

standards. Duplicate measurements of ten samples show external reproducibility better than 1.8% 

(RSD) for major elements (except CaO at 3.3%) and generally better than 9% (RSD) for trace 

elements, except for Sn, Ta, W, Se, Te, Lu and Cr. Thirty-two blanks display measured values 

typically under detection limits for all major and trace elements.  

Results for the investigated samples are presented in Table S1. 
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These new measurements were added to a database gathering analyses of post-collisional mafic 

magmas from the Eastern French Massif Central (Agranier, 2001; Aït Malek, 1997; Ait Malek et 

al., 1995; Barbarin et al., 2012; Batias, 1979; Bellanger, 1980; Couturié, 1977; Downes et al., 1997; 

El Mouraouah, 1986; Ledru et al., 1994; Michon, 1979; Montel, 1988; Négron, 1979; Sabatier, 

1978, 1984, 1991; Vitel et al., 2000; Williamson, 1991).  

 

Zircon extraction and imaging 

Samples weighing 5–10 kg were reduced using jaw and disc mills and sieved to <500 µm. Zircons 

were concentrated using conventional methods (Wilfley table, heavy liquids). After being hand-

picked under a binocular microscope, 20 to 40 zircons per sample (only 13 for SC13-02A) were 

cast in epoxy mounts and subsequently polished to expose their interiors. Internal structures of 

zircon grains were documented in four steps: (i) transmitted light optical imaging; (ii) reflected 

light optical imaging; (iii) cathodoluminescence imaging (Fig. A6); (iv) low magnification SE-

SEM imaging to assemble a navigation map. The last two steps were performed on a ZEISS EVO-

150 SEM at the University of Granada (Spain).  

 

Zircon U-Pb dating procedures 

U–Pb isotopic analyses were carried out at Goethe Universität Frankfrut (GUF) by laser ablation 

using a Resolution M-50 (Resonetics) 193 nm ArF excimer laser system attached to a 

ThermoFinnigan Element 2 sector field ICPMS. We used a repetition rate of 5.5 Hz, laser spot-

sizes of 28 or 33μm for measurements of unknowns, and 40 μm for zircon reference materials GJ-

1, Plešovice, OG-1 and BB. Resulting fluence was ~2.5 to 3 J·cm–2. The sample surface was 

cleaned directly before each analysis by three pre-ablation pulses. Ablation was performed in a 

two-volume ablation cell (Laurin Technic, Australia) characterized by a very quick response time 
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(<1 s until maximum signal strength is reached) and wash-out delay (<3 s to get <1% of maximum 

signal strength). It was fluxed during ablation with a carrier gas consisting of a ~0.6 L min−1 He 

stream, mixed directly after the ablation cell with make-up gas consisting of ~0.07 L min−1 N2 and 

0.68 L min−1 Ar prior to introduction into the plasma of the SF-ICP-MS. All gases had a purity of 

99.999% and no homogenizer was used while mixing the gases, to prevent smoothing of the signal 

and thus be able to detect significant variations of the 207Pb/206Pb and 238U/206Pb ratios during 

measurements, possibly revealing the sequential sampling of different age domains within single 

zircon grains. The signal was tuned for maximum sensitivity for Pb and U while keeping low the 

production of oxides (254UO/238U ≤ 0.5%). The obtained sensitivity on zircon standard GJ-1 for 

238U and a 33 μm spot size was about ~5000 cps·ppm−1 at 5.5 Hz and ~3 J·cm−2. 

Data were acquired using time resolved-peak jumping, the detector being set to analogue mode for 

232Th and 238U and counting mode for 204(Hg+Pb), 206Pb, 207Pb and 208Pb. A total of 356 mass scans 

were acquired over ~41 s measurement (20 s of background measurement followed by 21 s of 

sample ablation) and integrated to 89 ratios (4 mass scans per integration, time resolution = 0.46 

s). These ratios were subsequently corrected offline for background signal, common Pb, 

instrumental mass discrimination and Pb/U fractionation (both laser-induced during individual 

measurements, and over the day) using an in-house MS Excel© spreadsheet (Gerdes and Zeh, 2006, 

2009). 

A common-Pb correction was carried out when necessary: for each ratio of an individual 

measurement, 204Pb was estimated by subtracting the average background signal on mass 204, 

which mostly results from 204Hg in the carrier gas (~500 cps), to the measured intensity. 

Composition of common Pb (i.e. 206Pb/204Pb and 207Pb/204Pb ratios) was determined using a model 

Pb composition (Stacey and Kramers, 1975) at the age of the sample, independently estimated 

using analyses devoid of common Pb. The inter-elemental fractionation (206Pb/238U) during the 21 
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s of sample ablation was corrected for each analysis by applying a linear regression through all 

measured ratios, excluding the outliers (±2σ), and considering that the intercept with the y-axis 

represents the ‘true’ ratio. Elemental fractionation over the analytical session, as well as 

instrumental mass discrimination, were corrected by normalization to the 206Pb/238U (0.0982) and 

207Pb/206Pb (0.061) ratios of reference zircon GJ-1 (Jackson et al., 2004), using standard bracketing. 

Elemental concentrations in U and Pb were calculated using raw signal (in cps) of 238U and 206Pb 

for each spot, corrected from the analytical drift over the session (monitored using GJ-1), 

normalized to the recommended values of the GJ-1 zircon standard (U = 280.1 ppm; Pb = 25.5 

ppm) and applying a spot size-dependent correction. Th/U ratio was determined for each spot using 

the mass fractionation-corrected 232Th/238U ratio, normalized to the recommended value of the GJ-

1 zircon standard (Th/U = 0.0296). Data from secondary standards were processed as unknowns to 

check the accuracy of the corrections. Our results are all within error of the recommended TIMS 

values of the standard zircons Plešovice (weighted mean 206Pb/238U age = 337.13 ± 0.37 Ma; Sláma 

et al. (2008), OG-1 (weighted mean 207Pb/206Pb age = 3465.4 ± 0.6 Ma; Stern et al. (2009)), and 

BB (DEGO: weighted mean 206Pb/238U age = 560 ± 0.8 Ma; Santos et al. (submitted)). 

The quoted uncertainties for each individual analysis are (i) for the 206Pb/238U ratio, the quadratic 

addition of the within-run precision (2σ) with the external reproducibility of standard zircon GJ-1 

during the corresponding analytical session (0.5 to 1.5%, 2 sigma); and (ii) for the 207Pb/206Pb ratio, 

a 207Pb signal-dependent uncertainty propagation, as described by Gerdes and Zeh (2009). 

The 207Pb/235U ratio was calculated using the corrected 206Pb/238U and 207Pb/206Pb ratios and 

assuming a natural 238U/235U of 137.88, and its uncertainty was obtained by quadratic addition of 

propagated errors on both ratios. Age calculations and data plotting were performed using the 

Isoplot toolkit (Ludwig, 2008) v.4.15 for MS Excel©.  
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Zircon Lu–Hf isotopes 

Zircon Lu-Hf analyses for standards and samples are displayed Tables S2 and S3 respectively. 

Measurements were performed on magmatic zircons at GUF, using a Thermo-Finnigan Neptune 

multicollector ICP-MS attached to a Resolution M-50 193 nm Ar–F excimer laser ablation system, 

equipped with a two-volume Laurin Technic ablation cell. The latter is fluxed by high-purity, He 

carrier gas (~0.6 L·min–1) and is characterized by rapid response time (< 3 s to get maximum signal 

strength) and wash-out delay (<5 s to get <1% of maximum signal strength). Laser spots with 

diameters of 33 µm were drilled (Fig. 5) with repetition rates of 5.5 Hz and an energy density of 

~6 J·cm–2. Make-up gas consisting of high-purity Ar (~0.75 L·min–1) and N2 (~0.07 L·min–1) was 

admixed to the carrier gas to improve sensitivity. Post-ablation homogenization is performed by 

fluxing the gases through a Resolution Instruments Squid® tubing. Data were acquired using multi-

collector static mode, during 58 s of measurement characterized by 1.052 s integration time (55 

baseline-corrected ratios). 172Yb, 173Yb and 175Lu masses were monitored to allow the correction 

of isobaric interferences (176Yb and 176Lu on 176Hf). Instrumental mass bias for Yb isotopes 

(calculation of βYb) was monitored for each measurement using an exponential law, and corrected 

to the natural ratio 172Yb/173Yb = 1.35351. Mass fractionation of Lu isotopes was assumed identical 

to that of Yb isotopes (βLu = βYb). The isobaric interferences were subsequently corrected to mass 

bias-corrected 176Yb/173Yb = 0.79502 and 176Lu/175Lu = 0.02656 (see Gerdes and Zeh (2006)). 

Mass bias for Hf isotopes (βHf) was determined using an exponential law and normalized to 

179Hf/177Hf = 0.7325. Accuracy and external reproducibility of the method were controlled by 

repeated analyses of reference zircon standards GJ-1 (Jackson et al., 2004; Morel et al., 2008), 

Plešovice (Sláma et al., 2008), Degeo (in-house) and 91500 (Wiedenbeck et al., 2004). The quoted 

uncertainties on 176Hf/177Hf ratios and εHf(t) are quadratic additions of within-run precision of each 
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measurement with the external reproducibility (2 S.D.) of the reference zircon standard GJ-1 (~70 

ppm, see data table). Data reduction was carried out using an in-house MS Excel© spreadsheet 

(Gerdes and Zeh, 2006, 2009). 

Calculations of initial 176Hf/177Hf ratios were performed using the individual 176Lu/177Hf ratio of 

each measurement, a decay constant of λ176Lu = 1.867 × 10–11 (Scherer et al., 2001; Söderlund et 

al., 2004) and the emplacement age obtained by U-Pb zircon dating. For the calculation of the 

εHf(t), parameters of the chondritic uniform reservoir (CHUR) recommended by Bouvier et al. 

(2008) were used (176Lu/177Hf = 0.0336; 176Hf/177Hf = 0.282785). Two-step depleted mantle (DM) 

Hf model ages (TDM2
C) were calculated using a DM model considering linear regression from 

present-day depleted mantle as recommended by Griffin et al. (2002), i.e. 176Lu/177Hf = 0.0384 and 

176Hf/177Hf = 0.28325, and an average 176Lu/177Hf of 0.0113 for the crustal reservoir. 

 

 

Zircon O isotopes 

Oxygen isotopes were analyzed with the IBERSIMS SHRIMP IIe/mc ion microprobe using multi 

collector mode following the method described by Ickert et al. (2008). Zircons were cast in 

“megamounts”, i.e., 35 mm epoxy discs fixed in front of the mount holder so that no metallic parts 

or surface discontinuities faced the secondary ions extraction plate. The mount was coated with a 

12 nm thick gold layer. The primary beam consisted of a 15 kV and 3 to 3.5 nA Cs ion beam 

focused to produce a 17x20 µm elliptical spot on the sample. The electric charge of the non-

conductive zircons caused by the primary beam was neutralised with an electron beam that 

impacted the sample in a ≈200 µm diameter spot concentric with the Cs beam. The source slit was 

fixed at 150 µm and the secondary 18O and 16O were simultaneous measured in static mode using 

two Faraday cups with entry slits of 300 µm. The sample was pre-sputtered for 180 s prior to 

analyses. During the last 90 s of the pre-sputtering time the secondary beam and the electron beam 
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were steered to obtain the maximum signal on the Faraday cups. The measurement consisted in 

two sets of six scans, each scan was 10 s.  The mass fractionation caused by Earth’s magnetic field 

was compensated with Hemholtz coils operated at -309 mA. This eliminated the mass fractionation 

related to the horizontal steering of the secondary beam. Electron-induced secondary-ion emission 

(EISI) was measured for 10 s at the beginning of each scan and at the end of the measurement and 

subtracted accordingly. Data reduction was done using the POXI software developed by Peter Lanc 

and Peter Holden at the ANU. The zircon standard TEMORA-2 (δ18O = 8.2 ± 0.3 ‰, Black et al., 

2004|) was measured several times at the beginning of the session and after every four unknowns, 

and crosschecked against the 91500 zircon standard (δ18O = 9.86 ± 0.11 ‰, Wiedenbeck et al., 

2004); ten to fifteen replicates of which were measured as unknowns interspersed with these. 
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Couzinié et al., 2016. Supp. Table 1: Whole-rock geochemical data for samples newly analyzed in the scope of this study

Sample LR33a LR33b LR34 D2-1 PRC51 PRC55 SC-13-10 SGC 12 015B SGC 12 015D

Ref ALS LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482

Long 4.113827 4.113827 4.113827 4.34499 4.101357 4.101357 3.65903 4.22173 4.22173

Lat 45.28477 45.28477 45.28477 44.58553 45.32981 45.32981 45.22445 44.75042 44.75042

Locality La Roche La Roche La Roche Lamastre
Pont-Rouge 

quarry

Pont-Rouge 

quarry
Pubellier Peyron Peyron

Type vaugnerite vaugnerite vaugnerite vaugnerite syenite syenite vaugnerite vaugnerite vaugnerite

Details
fine-grained, 

HAS

coarse-

grained, HAS
HAS

sample 

courtesy of V. 

Gardien

fine-grained, 

LAS
LAS light facies

fine-grained, 

loose

fine-grained 

vgn. + 

equigranular 

gr., loose

SiO2 55.40 55.50 61.70 47.70 61.40 62.10 60.20 52.50 52.40

Al2O3 19.55 18.10 17.55 10.95 14.30 16.20 16.10 17.05 17.05

Fe2O3 6.82 7.17 5.93 10.40 5.03 5.55 5.51 9.30 9.29

CaO 4.21 4.06 3.83 8.98 2.59 1.76 4.75 5.80 5.80

MgO 3.08 4.01 2.16 12.95 5.25 2.87 4.54 5.56 5.58

Na2O 3.53 3.30 3.96 1.16 2.10 3.35 2.70 2.58 2.56

K2O 2.54 3.12 2.58 4.68 5.15 4.47 4.86 2.57 2.53

Cr2O3 0.01 0.01 <0.01 0.12 0.03 0.01 0.02 0.01 0.01

TiO2 1.32 0.99 1.18 1.96 1.32 1.33 0.93 1.80 1.78

MnO 0.06 0.08 0.05 0.13 0.07 0.07 0.08 0.12 0.13

P2O5 0.34 0.43 0.34 0.51 1.14 0.69 0.47 0.55 0.54

SrO 0.12 0.07 0.07 0.04 0.08 0.05 0.08 0.06 0.06

BaO 0.11 0.10 0.13 0.40 0.33 0.18 0.21 0.11 0.10

C 0.15 0.12 0.02 0.07 0.03 0.02 <0.01 0.03 0.03

S 0.07 0.10 0.01 0.39 0.02 0.02 0.02 0.09 0.09

Ba 1135 975 1200 3820 3060 1815 1915 1075 993

Ce 74.7 66.3 114.5 50.6 218.0 266.0 164.0 91.9 91.7

Cr 50 110 10 930 240 80 120 140 140

Cs 8.72 11.75 7.21 4.34 16.40 8.29 13.40 7.91 8.24

Dy 4.41 2.76 5.23 4.29 4.83 5.71 3.96 7.63 6.61

Er 2.11 2.05 2.51 1.81 2.02 2.51 1.86 3.99 4.29

Eu 2.05 1.84 1.51 1.61 2.67 2.27 2.55 2.10 1.93

Ga 27.2 23.7 25.5 14.4 25.4 28.2 21.0 20.6 22.5

Gd 5.26 5.06 6.72 5.13 9.87 9.47 7.71 8.98 9.33

Hf 5.9 5.3 11.0 2.8 22.7 15.8 7.7 7.7 7.5

Ho 0.81 0.71 0.87 0.78 0.72 0.92 0.71 1.35 1.43

La 36.8 32.5 60.6 23.2 96.5 126.5 88.6 43.3 47.6

Lu 0.23 0.17 0.24 0.33 0.17 0.20 0.29 0.54 0.53

Nb 12.1 10.6 15.8 9.7 60.5 32.3 17.1 23.6 22.6

Nd 35.4 33.3 44.4 27.5 100.5 111.5 68.7 46.2 43.9

Pr 8.68 7.88 12.55 6.26 26.30 31.20 18.50 11.20 10.50

Rb 147.0 185.5 171.5 210.0 284.0 227.0 200.0 97.5 95.6

Sm 7.26 6.04 8.75 6.15 18.85 18.65 10.50 9.27 9.65

Sn 4 3 3 2 8 2 9 2 3

Sr 775.0 648.0 582.0 306.0 681.0 419.0 680.0 479.0 473.0

Ta 0.7 1.0 1.2 0.7 3.5 1.5 2.1 1.4 1.6

Tb 0.71 0.64 1.00 0.74 1.21 1.19 0.95 1.33 1.11

Th 5.04 5.24 13.75 5.98 45.90 42.40 28.70 8.70 8.48

Tl 0.7 0.7 1.1 0.6 1.4 0.9 1.0 0.6 <0.5

Tm 0.31 0.25 0.31 0.26 0.24 0.29 0.22 0.63 0.56

U 1.39 1.16 2.59 1.26 10.20 7.25 13.60 1.97 1.54

V 133 125 85 360 62 85 106 146 141

W <1 <1 <1 3 <1 1 1 2 15

Y 17.9 15.5 24.1 21 21.7 23.4 20.2 36.2 35.9

Yb 1.50 1.33 2.17 1.83 1.44 1.58 1.86 3.43 3.39

Zr 260 189 412 99 875 577 295 310 308

As 0.2 0.2 1.8 0.6 1.1 1.4 <0.1 3.4 2.2

Bi 0.04 0.04 0.03 0.04 0.14 0.04 0.16 0.11 0.09

Hg <0.005 <0.005 0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005

Sb <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.05 <0.05

Se 0.6 0.4 0.8 0.7 0.9 0.6 0.3 0.4 0.7

Te <0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

LOI 2.62 1.99 1.11 1.88 1.15 1.74 1.12 2.23 2.14

Total 99.71 98.93 100.59 101.86 99.94 100.37 101.57 100.24 99.97

Ag <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Cd <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Co 20 23 12 49 16 14 19 30 30

Cu 16 26 10 44 10 8 50 24 19

Li 30 30 20 40 30 60 50 50 50

Mo <1 <1 <1 1 <1 2 1 1 1

Ni 26 54 8 193 130 16 59 48 45

Pb 14 12 17 6 47 41 39 11 10

Sc 21 13 15 38 11 13 12 19 20

Zn 78 85 112 77 84 111 61 106 91

Ge

In

Re
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Couzinié et al., 2016. Supp. Table 1 (cont.): Whole-rock geochemical data for samples newly analyzed in the scope of this study

Sample SGC 12 017 SGC 12 019 SGC 12 035A SGC 12 035B SGC 12 038A SGC 12 041B SGC 12 046 SGC 12 054B SGC 12 060

Ref ALS LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482

Long 4.22375 4.23872 4.30583 4.30583 4.0701 4.27347 4.28713 4.34852 4.07357

Lat 44.74817 44.74693 44.65670 44.65670 44.60028 44.67322 44.55378 44.69622 44.67992

Locality Peyron Burzet
Pont-de-

Bayzan

Pont-de-

Bayzan
Loubaresse Meyras Largentiere Chadenet Pei Plot

Type vaugnerite vaugnerite vaugnerite vaugnerite vaugnerite vaugnerite vaugnerite vaugnerite vaugnerite

Details
coarse-

grained vgn.

enclave within 

Velay granite

intermediate 

rim of the sill
core of the sill

intermediate 

facies

intermediate 

facies

medium-

grained, 

darkest facies, 

Kfs blasts

at the contact 

with the "late-

migmatitic" 

granite

medium-

grained, 

spotted-

facies, folded

SiO2 50.50 55.40 56.80 55.70 59.60 53.40 56.40 60.60 58.70

Al2O3 16.50 17.75 18.05 18.10 16.75 17.95 15.45 16.05 16.90

Fe2O3 9.17 8.12 7.85 8.04 5.31 8.80 7.00 8.45 6.40

CaO 6.13 3.39 4.09 4.06 3.00 4.80 4.25 3.78 4.18

MgO 5.55 4.62 3.18 3.50 3.08 4.95 4.60 2.60 4.18

Na2O 3.31 1.76 1.94 1.46 3.65 2.39 2.16 3.56 2.24

K2O 2.69 3.66 3.70 4.32 3.27 3.66 4.20 2.42 3.61

Cr2O3 0.02 0.01 <0.01 <0.01 0.01 0.01 0.01 <0.01 0.02

TiO2 1.60 1.96 1.48 1.45 1.55 1.94 0.92 1.78 1.44

MnO 0.12 0.11 0.09 0.10 0.07 0.10 0.10 0.12 0.10

P2O5 0.46 0.59 0.54 0.52 0.59 0.51 0.53 0.49 0.73

SrO 0.07 0.05 0.06 0.08 0.08 0.05 0.07 0.03 0.05

BaO 0.09 0.08 0.16 0.19 0.12 0.13 0.14 0.06 0.16

C <0.01 <0.01 0.07 0.10 <0.01 <0.01 0.02 <0.01 <0.01

S 0.06 0.01 0.07 0.05 0.02 0.02 0.07 0.04 0.03

Ba 877 817 1560 1935 1155 1320 1405 548 1580

Ce 88.5 93.9 100.5 96.1 177.0 153.0 71.7 86.5 145.0

Cr 150 100 10 10 70 110 140 30 140

Cs 3.26 14.40 10.95 13.50 10.70 12.70 15.25 5.67 22.60

Dy 6.67 5.61 6.16 6.57 5.93 6.90 4.68 8.38 6.27

Er 3.71 2.56 3.87 3.12 2.40 3.01 2.72 5.04 2.66

Eu 1.76 2.60 2.00 1.97 2.51 2.43 1.36 1.79 2.23

Ga 20.2 22.0 23.5 28.3 27.2 28.5 18.0 23.2 22.1

Gd 7.74 9.36 9.43 7.53 9.37 9.94 5.88 9.23 8.94

Hf 6.1 7.3 8.0 8.3 13.2 11.7 5.1 6.8 14.2

Ho 1.20 1.05 1.13 1.12 0.98 1.21 0.87 1.61 0.86

La 42.5 46.3 49.5 48.1 86.8 73.9 35.1 42.1 76.6

Lu 0.54 0.32 0.39 0.46 0.30 0.31 0.45 0.59 0.28

Nb 23.2 29.2 18.4 18.5 32.8 24.7 13.2 19.7 28.6

Nd 42.7 50.1 48.6 48.6 78.8 82.1 35.0 42.9 75.2

Pr 9.95 12.15 11.80 12.35 20.20 19.95 9.04 10.40 19.20

Rb 81.2 164.0 181.0 219.0 218.0 175.0 148.5 159.0 300.0

Sm 9.17 10.40 9.11 9.24 12.85 12.65 7.29 9.49 12.30

Sn 3 4 5 5 4 5 4 3 12

Sr 526.0 381.0 451.0 486.0 515.0 395.0 522.0 268.0 435.0

Ta 1.1 1.1 1.5 1.2 1.9 2.1 1.1 1.4 1.9

Tb 1.05 1.20 1.01 1.07 1.15 1.26 0.91 1.36 1.19

Th 8.48 8.40 13.90 12.45 20.00 16.15 14.35 12.55 23.60

Tl <0.5 0.8 0.8 0.8 1.0 0.6 0.9 0.6 1.6

Tm 0.57 0.35 0.50 0.54 0.41 0.42 0.39 0.70 0.41

U 1.28 2.14 3.52 2.80 2.99 3.15 4.09 4.00 5.45

V 139 91 121 128 62 121 155 142 142

W 2 6 1 2 1 1 1 4 2

Y 31.7 26.8 29.6 31.7 26 32.3 27.4 42.4 24.8

Yb 3.06 2.13 3.04 2.52 2.18 2.64 2.32 3.80 2.27

Zr 282 284 313 312 543 427 212 281 537

As 6.5 6.7 1.3 1.7 2.3 1.4 2.2 2.3 1.8

Bi 0.05 0.22 0.16 0.14 0.15 0.2 0.07 0.09 0.32

Hg <0.005 <0.005 <0.005 0.005 0.006 0.006 <0.005 <0.005 <0.005

Sb <0.05 <0.05 0.13 0.08 0.05 0.05 0.09 0.07 0.05

Se 0.7 1.3 1.4 1.3 0.8 0.6 0.6 1.1 1.1

Te 0.01 <0.01 <0.01 0.01 0.01 <0.01 <0.01 0.01 <0.01

LOI 1.8 3.66 2.31 2.53 1.65 2.08 2.2 1.63 1.44

Total 98.01 101.16 100.25 100.05 98.73 100.77 98.03 101.57 100.15

Ag <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Cd <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Co 29 26 19 18 16 27 20 18 17

Cu 15 15 8 6 8 9 13 15 38

Li 40 100 100 100 90 60 80 70 110

Mo 1 1 1 <1 <1 <1 1 <1 <1

Ni 48 57 2 3 37 17 19 4 17

Pb 8 13 15 22 16 10 22 14 2

Sc 20 13 13 13 9 20 21 22 18

Zn 95 97 93 93 77 95 84 95 76

Ge

In

Re
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Couzinié et al., 2016. Supp. Table 1 (cont.): Whole-rock geochemical data for samples newly analyzed in the scope of this study

Sample SGC 12 061 SGC 12 010A SGC 12 010B SGC 12 011A SGC 12 011B SGC 12 012 SC-13-02b SC-13-06 SC-13-07

Ref ALS LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482

Long 4.07418 4.05583 4.05583 4.08857 4.08857 4.08857 3.47373 3.79974 3.79974

Lat 44.68115 44.50997 44.50997 44.49843 44.49843 44.49818 44.68734 44.82754 44.82754

Locality Pei Plot La Borne La Borne La Borne La Borne La Borne
Moulin de 

Linas
Jagonzac Jagonzac 

Type vaugnerite lamprophyre lamprophyre lamprophyre lamprophyre lamprophyre vaugnerite vaugnerite vaugnerite

Details equigranular dyke dyke dyke dyke dyke fine-grained
coarse-

grained

dark, fine-

grained

SiO2 57.80 55.70 53.50 54.70 55.10 56.50 62.00 52.30 55.50

Al2O3 17.30 12.90 14.15 14.45 12.90 16.00 12.45 15.30 18.00

Fe2O3 6.09 6.75 8.65 6.79 6.36 7.45 7.42 7.30 7.53

CaO 4.47 5.77 5.37 5.49 4.27 3.37 3.27 7.32 6.47

MgO 2.54 7.01 8.47 6.28 9.04 5.34 8.00 6.42 3.79

Na2O 2.59 2.17 1.16 2.16 1.66 2.46 1.50 2.57 3.75

K2O 5.41 5.31 4.87 5.79 6.32 3.93 4.00 4.48 3.43

Cr2O3 <0.01 0.06 0.07 0.05 0.06 0.02 0.06 0.03 <0.01

TiO2 1.14 1.05 1.20 1.40 1.25 1.06 0.98 1.37 1.06

MnO 0.08 0.22 0.14 0.10 0.08 0.10 0.13 0.11 0.11

P2O5 0.56 0.78 0.91 1.01 0.97 0.66 0.32 0.90 0.51

SrO 0.07 0.08 0.07 0.09 0.08 0.10 0.01 0.10 0.12

BaO 0.17 0.34 0.29 0.31 0.37 0.29 0.07 0.38 0.22

C 0.01 0.02 0.02 0.03 0.02 0.02 0.03 <0.01 0.02

S 0.02 0.01 0.02 0.15 0.02 0.15 0.02 0.03 0.09

Ba 1710 3240 2510 3000 3570 2740 573 3420 2020

Ce 125.5 185.0 219.0 145.5 202.0 146.5 37.0 136.0 165.0

Cr 30 520 590 390 500 220 430 220 <10

Cs 7.01 2.97 61.60 15.80 19.45 47.60 28.00 10.80 12.60

Dy 6.21 8.38 8.14 7.14 7.66 7.50 4.39 6.15 5.84

Er 3.12 2.80 3.29 2.89 3.32 3.62 2.30 3.26 2.89

Eu 2.09 3.94 3.99 3.18 3.55 2.95 0.63 3.46 2.93

Ga 24.9 17.1 21.0 18.5 18.9 22.0 23.1 21.2 22.9

Gd 9.00 15.15 15.75 11.25 14.15 10.30 5.23 10.20 9.65

Hf 12.6 16.1 17.4 14.3 12.9 13.7 1.6 5.2 6.9

Ho 1.10 1.37 1.22 1.17 1.39 1.10 0.94 1.02 1.08

La 63.1 94.1 88.6 70.8 104.0 69.8 16.5 64.8 88.6

Lu 0.47 0.36 0.36 0.49 0.37 0.45 0.31 0.37 0.34

Nb 20.5 23.4 24.9 37.7 28.6 30.3 10.3 20.3 15.4

Nd 63.8 133.0 122.5 78.5 130.0 74.4 25.8 73.7 74.9

Pr 16.35 29.20 28.40 18.50 30.40 18.35 5.35 18.70 19.85

Rb 211.0 136.5 312.0 179.5 235.0 253.0 319.0 205.0 148.5

Sm 10.65 24.10 22.70 14.75 24.70 15.30 6.82 13.80 14.80

Sn 5 30 66 74 50 75 9 12 6

Sr 590.0 654.0 543.0 756.0 682.0 802.0 168.5 961.0 1045.0

Ta 1.6 1.3 1.1 1.1 1.2 1.2 1.0 1.5 1.4

Tb 1.25 1.88 1.72 1.31 1.68 1.36 0.71 1.40 1.20

Th 22.90 76.50 82.90 31.40 59.40 51.60 3.66 27.70 32.60

Tl 0.6 0.7 1.8 0.9 0.9 1.9 1.6 1.7 1.0

Tm 0.30 0.44 0.35 0.46 0.39 0.49 0.26 0.41 0.44

U 4.63 9.72 10.15 7.10 11.60 10.60 3.78 7.39 6.91

V 73 136 140 158 116 103 127 182 172

W 1 12 346 5 2 34 8 5 1

Y 28.4 39.1 31.8 33.6 40.3 33.5 22 31.2 29.1

Yb 2.67 1.93 2.13 2.38 2.02 2.63 2.11 2.63 2.55

Zr 459 532 528 577 498 509 49 231 275

As 0.2 202 >250 204 222 >250 7.9 <0.1 0.7

Bi 0.12 1.3 1.46 0.63 0.6 0.16 0.81 0.13 0.25

Hg <0.005 0.007 0.06 0.011 0.006 0.014 <0.005 <0.005 <0.005

Sb <0.05 0.39 0.27 0.8 1.02 1.03 <0.05 <0.05 <0.05

Se 0.7 0.7 1 0.9 1.1 1.1 0.8 0.4 0.3

Te <0.01 0.02 0.04 0.02 0.01 0.01 <0.01 <0.01 <0.01

LOI 1.68 2.2 2.73 1.51 2.52 1.84 1.71 1.33 1.27

Total 99.9 100.34 101.58 100.13 100.98 99.12 101.92 99.91 101.76

Ag <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Cd <0.5 0.8 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Co 12 26 32 25 28 23 30 24 17

Cu 3 1 1 9 2 47 15 13 15

Li 50 40 110 50 40 50 140 70 70

Mo <1 <1 <1 1 <1 2 <1 <1 <1

Ni 3 151 154 35 212 85 130 49 2

Pb 24 42 24 65 61 26 7 40 37

Sc 14 20 23 22 16 18 18 20 14

Zn 83 190 205 126 83 194 99 79 75

Ge

In

Re
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Couzinié et al., 2016. Supp. Table 1 (cont.): Whole-rock geochemical data for samples newly analyzed in the scope of this study

Sample 533-1 533-2 LR31 LR32 PRC53 PRC54 SC-13-09 SGC 12 026 SGC 12 039

Ref ALS LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482 LR13221482

Long 4.37411 4.37411 4.113827 4.113827 4.101357 4.101357 3.65911 4.30658 4.07053

Lat 44.58249 44.58249 45.28477 45.28477 45.32981 45.32981 45.22474 44.65778 44.60045

Locality Lamastre Lamastre La Roche La Roche
Pont-Rouge 

quarry

Pont-Rouge 

quarry
Pubellier

Pont-de-

Bayzan
Loubaresse

Type vaugnerite vaugnerite vaugnerite vaugnerite syenite syenite vaugnerite vaugnerite vaugnerite

Details

sample 

courtesy of V. 

Gardien

sample 

courtesy of V. 

Gardien

Bt-clusters, 

HAS

Bt-clusters, 

HAS
LAS LAS dark facies

rounded 

enclave

coarse-

granied, dark 

facies

SiO2 56.40 50.50 52.80 49.90 60.00 61.80 57.70 50.60 57.60

Al2O3 11.45 9.25 15.05 14.75 15.95 15.90 13.25 13.45 14.70

Fe2O3 5.96 9.27 6.65 7.95 5.60 5.32 6.80 8.27 6.13

CaO 6.12 9.83 6.26 5.36 2.09 2.29 3.46 6.81 4.11

MgO 7.80 13.25 9.51 9.10 3.14 2.81 8.38 7.73 5.74

Na2O 2.00 1.45 2.41 2.24 2.06 2.27 2.30 1.51 2.96

K2O 4.16 2.93 1.77 2.44 6.69 6.38 4.21 5.71 3.42

Cr2O3 0.07 0.13 0.08 0.08 0.01 0.01 0.06 0.04 0.03

TiO2 1.06 0.92 0.70 1.13 1.46 1.30 0.72 1.51 1.36

MnO 0.08 0.14 0.10 0.11 0.07 0.07 0.10 0.11 0.09

P2O5 0.60 0.60 0.35 0.37 0.75 0.65 0.32 1.22 0.68

SrO 0.03 0.04 0.08 0.07 0.06 0.06 0.08 0.06 0.10

BaO 0.18 0.18 0.06 0.08 0.23 0.20 0.15 0.46 0.19

C 0.02 0.06 0.26 0.29 0.02 0.02 0.01 0.26 0.02

S 0.12 0.23 0.06 0.07 0.04 0.04 0.08 0.05 0.04

Ba 1780 1580 597 746 2250 1890 1475 4490 1430

Ce 36.4 53.3 64.7 81.6 223.0 252.0 123.0 77.2 177.5

Cr 560 910 640 570 90 90 460 310 180

Cs 8.43 2.36 20.40 16.35 18.90 16.65 15.70 13.30 5.94

Dy 3.48 4.18 4.07 5.47 5.22 6.02 3.41 7.40 4.20

Er 1.56 2.08 2.01 3.43 2.50 2.24 1.49 3.89 1.75

Eu 1.35 1.49 1.24 1.76 3.07 2.77 1.75 2.04 2.31

Ga 16.5 12.2 18.1 17.5 27.9 27.3 18.9 17.8 20.4

Gd 4.23 5.94 4.77 6.11 8.64 9.66 6.28 8.25 8.52

Hf 1.9 4.0 2.9 4.3 15.6 15.0 6.3 5.0 10.2

Ho 0.64 0.85 0.67 1.05 0.86 0.96 0.48 1.23 0.62

La 14.5 24.5 34.7 41.3 103.0 122.0 61.7 33.8 91.5

Lu 0.15 0.23 0.28 0.42 0.27 0.32 0.27 0.49 0.24

Nb 14.3 9.0 9.6 14.1 36.8 36.6 15.2 14.0 23.4

Nd 20.2 27.8 26.6 38.7 105.0 106.0 51.4 41.9 77.5

Pr 4.84 6.57 7.69 10.20 27.00 28.70 14.10 9.71 20.80

Rb 232.0 95.7 89.7 105.0 305.0 303.0 180.0 173.0 138.5

Sm 6.07 6.16 5.45 7.51 17.95 16.65 8.83 8.22 12.95

Sn 19 3 2 2 10 8 6 4 6

Sr 250.0 345.0 641.0 570.0 503.0 522.0 485.0 490.0 577.0

Ta 2.0 0.7 0.6 1.1 2.3 2.3 1.4 1.1 1.0

Tb 0.62 0.81 0.69 1.11 1.14 1.09 0.72 1.13 0.92

Th 4.25 6.19 8.18 8.06 40.10 50.90 25.40 6.24 23.00

Tl 0.9 0.5 <0.5 0.7 1.7 1.4 1.4 0.8 0.5

Tm 0.13 0.19 0.23 0.45 0.30 0.28 0.17 0.53 0.27

U 4.06 1.37 4.41 4.09 7.56 7.53 5.80 2.64 3.01

V 212 175 139 192 90 75 122 237 73

W 6 <1 2 <1 <1 1 6 7 1

Y 16.7 18.7 17.7 24.4 21.8 25.1 17.1 33.1 18.6

Yb 1.07 1.64 1.40 2.80 1.63 1.83 1.72 3.57 1.18

Zr 76 156 98 149 641 559 259 187 437

As 0.8 0.4 2.1 2.4 2.7 0.6 0.3 3.8 3.2

Bi 0.15 0.08 0.06 0.05 0.15 0.21 0.19 0.21 0.12

Hg <0.005 <0.005 <0.005 <0.005 <0.005 0.008 <0.005 <0.005 <0.005

Sb <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.15 <0.05

Se 0.4 0.2 <0.2 0.4 0.9 0.9 0.6 0.6 0.6

Te <0.01 <0.01 0.01 0.01 <0.01 0.01 <0.01 <0.01 <0.01

LOI 1.12 1.88 4.45 4.41 1.46 1.28 1.45 2.41 0.99

Total 97.03 100.37 100.27 97.99 99.57 100.34 98.98 99.89 98.1

Ag <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Cd 1.5 <0.5 <0.5 0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Co 27 46 46 44 16 14 31 25 21

Cu 41 36 34 34 16 17 30 11 10

Li 60 30 40 50 30 30 50 50 50

Mo <1 1 <1 1 <1 <1 1 1 1

Ni 23 61 232 200 17 16 207 6 136

Pb 10 13 9 9 42 45 43 20 8

Sc 26 36 25 29 13 13 15 31 13

Zn 82 76 82 93 94 100 73 83 84

Ge

In

Re
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Couzinié et al., 2016. Supp. Table 1 (cont.): Whole-rock geochemical data for samples newly analyzed in the scope of this study

Sample SGC 12 042 SGC 12 013 SC-13-02a SC-13-05

Ref ALS LR13221482 LR13221482 LR13221482 LR13221482

Long 4.27383 4.08863 3.47373 3.63152

Lat 44.67262 44.49668 44.68734 44.76482

Locality Meyras La Borne
Moulin de 

Linas
L'Aldeyres

Type vaugnerite lamprophyre vaugnerite vaugnerite

Details rounded body
medium-

grained dyke

coarse-

grained

coarse-

grained

SiO2 51.00 50.20 58.90 50.80

Al2O3 17.80 13.00 13.15 12.70

Fe2O3 8.96 8.22 6.75 10.20

CaO 5.26 4.95 4.90 6.54

MgO 5.20 11.45 6.88 12.60

Na2O 1.41 1.41 2.33 2.14

K2O 4.88 4.51 3.00 3.19

Cr2O3 0.01 0.08 0.05 0.08

TiO2 1.94 1.10 0.90 0.97

MnO 0.10 0.12 0.09 0.14

P2O5 0.56 0.67 0.28 0.36

SrO 0.06 0.05 0.02 0.04

BaO 0.14 0.20 0.07 0.16

C 0.14 0.32 0.02 0.01

S 0.08 0.02 0.05 0.12

Ba 1365 1915 631 1375

Ce 152.0 97.4 72.7 75.0

Cr 100 730 360 590

Cs 14.65 30.60 15.45 9.20

Dy 7.30 4.92 4.39 4.03

Er 3.36 2.60 2.41 1.84

Eu 2.56 2.24 1.67 1.87

Ga 29.0 18.1 17.5 16.1

Gd 10.00 7.71 5.71 6.79

Hf 13.7 8.1 6.4 5.4

Ho 1.17 0.94 0.73 0.65

La 67.6 43.6 33.6 35.8

Lu 0.42 0.37 0.36 0.25

Nb 28.6 17.4 11.5 13.2

Nd 80.7 55.1 37.2 39.7

Pr 19.60 13.15 9.11 9.71

Rb 210.0 199.5 194.0 139.5

Sm 12.85 10.30 8.00 8.40

Sn 4 6 9 4

Sr 421.0 406.0 302.0 413.0

Ta 2.1 1.0 1.4 1.1

Tb 1.40 0.92 0.85 0.81

Th 17.95 24.60 16.75 16.15

Tl 0.7 1.2 0.8 1.7

Tm 0.56 0.36 0.26 0.19

U 2.77 5.61 6.18 4.93

V 117 150 102 135

W 1 2 4 3

Y 31.4 23.8 23.7 19.8

Yb 2.68 2.30 2.14 1.55

Zr 529 330 222 185

As 0.8 57.6 4.3 2.6

Bi 0.12 0.17 0.09 0.25

Hg <0.005 0.007 <0.005 0.009

Sb 0.05 2.1 0.06 <0.05

Se 0.5 0.6 0.6 0.3

Te <0.01 0.01 <0.01 <0.01

LOI 2.46 3.65 1.26 1.82

Total 99.78 99.61 98.58 101.74

Ag <0.5 <0.5 <0.5 <0.5

Cd <0.5 <0.5 <0.5 0.6

Co 27 40 28 52

Cu 19 17 32 43

Li 90 70 90 30

Mo 1 1 <1 1

Ni 16 254 110 152

Pb 9 23 12 22

Sc 19 21 14 20

Zn 105 92 69 91

Ge

In

Re
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Couzinié et al., 2016. Supp. Table 2: In situ  LA-MC-ICPMS Lu-Hf isotope data for zircon standards analyzed in this study

176
Yb/

177
Hf 

a ±2s 176
Lu/

177
Hf 

a ±2s 178
Hf/

177
Hf

180
Hf/

177
Hf SigHf 

b 176
Hf/

177
Hf ±2s 176

Hf/
177

Hf(t) eHf(t) 
c ±2s TDM2 

d

(V) (Ga)

GJ1-1 0.0089 1 0.00029 0 1.46714 1.88665 9 0.282006 24 0.282003 -14.2 0.8 2.25

GJ1-2 0.0088 1 0.00029 0 1.46718 1.88677 9 0.281989 27 0.281986 -14.8 1.0 2.28

GJ1-3 0.0101 1 0.00033 0 1.46713 1.88660 9 0.282007 29 0.282004 -14.1 1.0 2.25

GJ1-4 0.0081 0 0.00028 0 1.46711 1.88673 9 0.281992 29 0.281989 -14.7 1.0 2.27

GJ1-5 0.0077 0 0.00026 0 1.46714 1.88662 13 0.282016 24 0.282013 -13.8 0.9 2.23

GJ1-6 0.0071 0 0.00025 0 1.46715 1.88682 12 0.281994 25 0.281991 -14.6 0.9 2.27

GJ1-7 0.0077 0 0.00026 0 1.46713 1.88678 13 0.281996 25 0.281993 -14.5 0.9 2.27

GJ1-8 0.0080 0 0.00026 0 1.46716 1.88671 13 0.281995 24 0.281992 -14.5 0.9 2.27

GJ1-9 0.0082 1 0.00026 0 1.46714 1.88665 14 0.282006 24 0.282003 -14.2 0.8 2.25

GJ1-10 0.0080 1 0.00026 0 1.46718 1.88664 13 0.282010 25 0.282007 -14.0 0.9 2.24

GJ1-11 0.0072 0 0.00024 0 1.46716 1.88687 12 0.281982 24 0.281980 -15.0 0.8 2.29

GJ1-12 0.0079 0 0.00025 0 1.46714 1.88679 12 0.281996 25 0.281993 -14.5 0.9 2.27

GJ1-13 0.0081 1 0.00026 0 1.46714 1.88679 11 0.281988 25 0.281985 -14.8 0.9 2.28

GJ1-14 0.0078 0 0.00025 0 1.46714 1.88673 11 0.282000 27 0.281997 -14.4 1.0 2.26

GJ1-15 0.0075 1 0.00024 0 1.46711 1.88679 10 0.282002 26 0.282000 -14.3 0.9 2.25

GJ1-16 0.0074 0 0.00024 0 1.46720 1.88675 10 0.281997 28 0.281994 -14.5 1.0 2.26

GJ1-17 0.0082 1 0.00026 0 1.46715 1.88661 15 0.282002 23 0.281999 -14.3 0.8 2.25

GJ1-18 0.0082 1 0.00026 0 1.46715 1.88676 15 0.282002 24 0.281999 -14.3 0.9 2.25

GJ1-19 0.0074 0 0.00025 0 1.46710 1.88678 13 0.282014 24 0.282011 -13.9 0.9 2.23

GJ1-20 0.0074 1 0.00024 0 1.46712 1.88668 14 0.282006 25 0.282003 -14.1 0.9 2.25

GJ1-21 0.0076 1 0.00024 0 1.46713 1.88669 14 0.282015 24 0.282012 -13.8 0.9 2.23

GJ1-22 0.0078 0 0.00025 0 1.46709 1.88670 14 0.281983 25 0.281980 -15.0 0.9 2.29

Average (n=22) 0.0080 0.00026 1.46714 1.88672 0.282000 -14.4

2 S.D. ext. 0.0013 0.00004 0.00005 0.00015 0.000020 0.7

91500-1 0.0100 0 0.00034 0 1.46722 1.88678 7 0.282292 26 0.282285 6.2 0.9 1.50

91500-2 0.0108 0 0.00036 0 1.46720 1.88673 7 0.282319 31 0.282312 7.1 1.1 1.44

91500-3 0.0115 1 0.00038 0 1.46712 1.88653 7 0.282301 29 0.282293 6.5 1.0 1.48

91500-4 0.0098 1 0.00032 0 1.46716 1.88670 12 0.282300 25 0.282294 6.5 0.9 1.48

91500-5 0.0103 1 0.00033 0 1.46715 1.88672 12 0.282272 24 0.282266 5.5 0.9 1.53

91500-6 0.0047 1 0.00016 0 1.46716 1.88674 10 0.282291 27 0.282288 6.3 0.9 1.49

91500-7 0.0098 1 0.00032 0 1.46715 1.88668 10 0.282286 27 0.282279 6.0 1.0 1.51

91500-8 0.0085 0 0.00028 0 1.46713 1.88680 9 0.282287 27 0.282281 6.1 1.0 1.50

91500-9 0.0093 1 0.00031 0 1.46711 1.88670 9 0.282287 26 0.282281 6.0 0.9 1.51

91500-10 0.0046 0 0.00015 0 1.46715 1.88664 13 0.282287 26 0.282283 6.1 0.9 1.50

91500-11 0.0046 0 0.00015 0 1.46710 1.88653 12 0.282293 27 0.282290 6.4 0.9 1.49

91500-12 0.0081 0 0.00027 0 1.46713 1.88665 13 0.282301 25 0.282296 6.6 0.9 1.48

91500-13 0.0082 1 0.00026 0 1.46712 1.88660 13 0.282320 26 0.282314 7.2 0.9 1.44

Average (n=13) 0.0085 0.00028 1.46715 1.88668 0.282295 6.4

2 S.D. ext. 0.0048 0.00015 0.00007 0.00017 0.000027 0.9

Pleso1 0.0048 1 0.00013 0 1.46715 1.88681 12 0.282480 27 0.282480 -3.3 1.0 1.44

Pleso2 0.0060 1 0.00014 0 1.46714 1.88674 12 0.282474 25 0.282473 -3.5 0.9 1.46

Pleso3 0.0074 0 0.00017 0 1.46720 1.88674 13 0.282466 25 0.282465 -3.8 0.9 1.47

Pleso4 0.0067 1 0.00015 0 1.46715 1.88679 21 0.282465 24 0.282464 -3.9 0.9 1.47

Pleso5 0.0051 1 0.00012 0 1.46715 1.88667 22 0.282468 23 0.282468 -3.7 0.8 1.47

Pleso7 0.0037 1 0.00009 0 1.46712 1.88669 17 0.282475 23 0.282475 -3.5 0.8 1.45

Pleso8 0.0046 2 0.00010 0 1.46715 1.88684 16 0.282464 25 0.282464 -3.9 0.9 1.48

Pleso9 0.0061 2 0.00014 0 1.46715 1.88667 15 0.282466 23 0.282466 -3.8 0.8 1.47

Pleso10 0.0066 2 0.00014 0 1.46713 1.88670 23 0.282466 22 0.282466 -3.8 0.8 1.47

Pleso11 0.0048 1 0.00012 0 1.46711 1.88666 23 0.282480 23 0.282479 -3.3 0.8 1.44

Pleso12 0.0044 0 0.00011 0 1.46711 1.88672 22 0.282474 25 0.282473 -3.5 0.9 1.46

Pleso13 0.0043 0 0.00009 0 1.46714 1.88670 21 0.282482 23 0.282482 -3.2 0.8 1.44

Pleso14 0.0044 0 0.00009 0 1.46715 1.88678 22 0.282477 24 0.282476 -3.4 0.8 1.45

Average (n=13) 0.0053 0.00012 1.46714 1.88673 0.282472 -3.6

2 S.D. ext. 0.0022 0.00005 0.00005 0.00012 0.000013 0.5

DEGEO1 0.0063 0 0.00018 0 1.46722 1.88670 7 0.281739 31 0.281737 -24.4 1.1 2.77

DEGEO2 0.0064 0 0.00018 0 1.46720 1.88685 7 0.281724 28 0.281722 -24.9 1.0 2.80

DEGEO3 0.0065 0 0.00018 0 1.46715 1.88679 8 0.281722 29 0.281720 -25.0 1.0 2.80

DEGEO4 0.0065 1 0.00017 0 1.46716 1.88670 12 0.281732 25 0.281730 -24.7 0.9 2.78

DEGEO5 0.0062 1 0.00017 0 1.46718 1.88668 12 0.281727 28 0.281725 -24.8 1.0 2.79

DEGEO6 0.0062 1 0.00017 0 1.46716 1.88676 10 0.281707 31 0.281706 -25.5 1.1 2.83

DEGEO7 0.0063 1 0.00017 0 1.46712 1.88665 10 0.281735 27 0.281734 -24.5 1.0 2.78

DEGEO8 0.0063 1 0.00017 0 1.46716 1.88677 9 0.281706 30 0.281705 -25.6 1.1 2.83

DEGEO9 0.0062 1 0.00017 0 1.46712 1.88664 9 0.281702 26 0.281700 -25.7 0.9 2.84

DEGEO12 0.0064 1 0.00017 0 1.46712 1.88668 13 0.281710 26 0.281708 -25.5 0.9 2.83

DEGEO13 0.0061 1 0.00017 0 1.46713 1.88673 13 0.281728 25 0.281726 -24.8 0.9 2.79

Average (n=11) 0.0063 0.00017 1.46716 1.88672 0.281721 -25.1

2 S.D. ext. 0.0003 0.00001 0.00007 0.00013 0.000026 0.9
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Couzinié et al., 2016. Supp. Tab. 2 (cont.): In situ  LA-MC-ICPMS Lu-Hf isotope data for zircon standards analyzed in this study

(a) 
176

Yb/
177

Hf = (
176

Yb/
173

Yb)true x (
173

Yb/
177

Hf)meas x (M173(Yb)/M177(Hf))
b(Hf)

, b(Hf) = ln(
179

Hf/
177

Hf true / 
179

Hf/
177

Hfmeasured )/ ln (M179(Hf)/M177(Hf) ),

M=mass of respective isotope. The 
176

Lu/
177

Hf were calculated in a similar way by using the 
175

Lu/
177

Hf and b(Yb).  

(b) Mean Hf signal in volt. 

(c) Initial 
176

Hf/
177

Hf and eHf calculated using the apparent Pb-Pb age determined by LA-ICP-MS dating (see column f), and the CHUR parameters: 

176
Lu/

177
Hf = 0.0336, and 

176
Hf/

177
Hf = 0.282785 (Bouvier et al ., 2008).

(d) two stage model age in billion years using the measured 
176

Lu/
177

Lu of each spot (first stage = age of zircon), 

a value of 0.0113 for the average continental crust (second stage), 

and a juvenile crust (NC) 
176

Lu/
177

Lu and 
176

Hf/
177

Hf of 0.0384 and 0.28314, respectively.
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Couzinié et al., 2016. Supp. Tab. 3: In  situ  LA-MC-ICPMS Lu-Hf isotope data for zircon in PCMM samples from the eastern FMC

176
Yb/

177
Hf 

a
±2s

176
Lu/

177
Hf 

a
±2s

178
Hf/

177
Hf

180
Hf/

177
Hf SigHf 

b 176
Hf/

177
Hf ±2s 176

Hf/
177

Hf(t) eHf(t) 
c

±2s TDM2 
d

(V) (Ga)

Monzodiorite SC-13-05

a131 0.0282 45 0.00086 13 1.46714 1.88661 13 0.282454 34 0.282449 -4.9 1.2 1.51

a133 0.0228 50 0.00075 15 1.46709 1.88622 7 0.282362 32 0.282358 -8.2 1.1 1.69

a134 0.0264 55 0.00081 15 1.46699 1.88612 7 0.282414 37 0.282409 -6.4 1.3 1.59

a135 0.0267 57 0.00081 17 1.46704 1.88599 8 0.282389 41 0.282384 -7.2 1.5 1.64

a136 0.0266 64 0.00085 18 1.46702 1.88556 8 0.282372 41 0.282367 -7.9 1.5 1.67

a140 0.0248 29 0.00077 9 1.46704 1.88626 7 0.282430 34 0.282426 -5.8 1.2 1.56

a143 0.0171 43 0.00059 12 1.46708 1.88641 7 0.282430 34 0.282426 -5.8 1.2 1.56

a144 0.0356 62 0.00107 18 1.46713 1.88669 13 0.282491 32 0.282485 -3.7 1.1 1.45

a138 0.0095 13 0.00032 4 1.46710 1.88610 8 0.282397 36 0.282395 -6.9 1.3 1.62

a130 0.0252 49 0.00078 13 1.46699 1.88570 7 0.282427 37 0.282422 -5.9 1.3 1.57

a130-SC1305-NoUPb-1 0.0220 59 0.00067 16 1.46700 1.88550 8 0.282341 63 0.282338 -8.9 2.2 1.73

a130-SC1305-NoUPb-2 0.0247 24 0.00082 7 1.46704 1.88636 7 0.282421 32 0.282416 -6.1 1.1 1.58

a130-SC1305-NoUPb-3 0.0383 45 0.00115 13 1.46699 1.88636 7 0.282436 37 0.282429 -5.6 1.3 1.55

a130-SC1305-NoUPb-4 0.0270 68 0.00083 20 1.46713 1.88652 8 0.282438 31 0.282433 -5.5 1.1 1.54

Mean (n=14) 0.0254 0.00079 1.46706 1.88617 0.282410 -6.3 1.59

±2σ (ext.) 0.0139 0.00039 0.00011 0.00075 0.000077 2.7

Qz Monzodiorite SC-13-02A

a123 0.0358 9 0.00113 2 1.46710 1.88653 10 0.282391 32 0.282384 -7.3 1.1 1.64

a125 0.0376 18 0.00120 5 1.46707 1.88656 9 0.282352 36 0.282345 -8.7 1.3 1.72

a126 0.0712 52 0.00212 15 1.46719 1.88697 10 0.282483 36 0.282471 -4.2 1.3 1.47

a127 0.0584 27 0.00183 7 1.46712 1.88671 16 0.282439 28 0.282429 -5.7 1.0 1.55

a127-SC1302A-NoUPb-1 0.0222 24 0.00058 6 1.46711 1.88667 21 0.282439 49 0.282436 -5.4 1.7 1.54

a127-SC1302A-NoUPb-2 0.0265 7 0.00079 2 1.46711 1.88652 15 0.282426 29 0.282421 -5.9 1.0 1.57

Mean (n=6) 0.0420 0.00128 1.46712 1.88666 0.282414 -6.2 1.58

±2σ (ext.) 0.0380 0.00119 0.00008 0.00034 0.000088 3.1

Qz Syenite PRC-53

a79 0.0243 22 0.00072 6 1.46721 1.88665 11 0.282471 39 0.282467 -4.2 1.4 1.48

a84 0.0147 10 0.00044 2 1.46707 1.88615 14 0.282394 31 0.282391 -6.8 1.1 1.62

a84-prc53-NoUPb-1 0.0189 12 0.00056 4 1.46712 1.88644 12 0.282452 27 0.282448 -4.8 1.0 1.51

a84-prc53-NoUPb-2 0.0150 11 0.00044 3 1.46713 1.88655 14 0.282462 33 0.282459 -4.4 1.2 1.49

a84-prc53-NoUPb-3 0.0157 9 0.00049 3 1.46710 1.88636 15 0.282404 32 0.282402 -6.5 1.1 1.60

a84-prc53-NoUPb-4 0.0220 13 0.00064 4 1.46712 1.88645 14 0.282443 28 0.282439 -5.1 1.0 1.53

a84-prc53-NoUPb-5 0.0159 7 0.00048 2 1.46714 1.88650 11 0.282410 24 0.282407 -6.3 0.8 1.59

a84-prc53-NoUPb-6 0.0172 16 0.00045 4 1.46708 1.88648 14 0.282483 28 0.282480 -3.7 1.0 1.45

a85 0.0126 20 0.00038 6 1.46704 1.88612 6 0.282355 35 0.282353 -8.2 1.3 1.70

a86 0.0170 8 0.00052 3 1.46706 1.88606 6 0.282377 37 0.282374 -7.4 1.3 1.66

a87 0.0149 14 0.00042 3 1.46696 1.88565 9 0.282322 32 0.282319 -9.4 1.1 1.76

a90 0.0111 16 0.00035 5 1.46703 1.88598 15 0.282339 32 0.282337 -8.7 1.1 1.73

a92 0.0118 9 0.00037 3 1.46713 1.88664 13 0.282419 28 0.282417 -5.9 1.0 1.57

a94 0.0220 10 0.00064 4 1.46703 1.88601 13 0.282442 32 0.282438 -5.2 1.1 1.53

a96 0.0142 7 0.00045 2 1.46708 1.88648 11 0.282425 27 0.282422 -5.7 1.0 1.56

a97 0.0132 7 0.00039 2 1.46713 1.88654 12 0.282439 31 0.282436 -5.2 1.1 1.54

a100 0.0145 16 0.00045 5 1.46709 1.88630 14 0.282385 32 0.282382 -7.2 1.1 1.64

a101 0.0193 19 0.00058 5 1.46718 1.88668 10 0.282469 30 0.282466 -4.2 1.1 1.48
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Mean (n=18) 0.0163 0.00049 1.46709 1.88634 0.282413 -6.1 1.58

±2σ (ext.) 0.0074 0.00021 0.00012 0.00056 0.000093 3.3

Qz Monzonite PRC-54

a153 0.0228 15 0.00069 4 1.46705 1.88626 6 0.282433 37 0.282429 -5.5 1.3 1.55

a155 0.0206 11 0.00061 3 1.46698 1.88620 6 0.282394 41 0.282390 -6.9 1.4 1.63

a156 0.0127 12 0.00039 4 1.46711 1.88630 11 0.282411 35 0.282408 -6.2 1.2 1.59

a158 0.0223 18 0.00068 5 1.46717 1.88661 11 0.282469 35 0.282465 -4.2 1.2 1.48

a159 0.0144 16 0.00045 5 1.46715 1.88663 10 0.282411 25 0.282409 -6.2 0.9 1.59

a161 0.0131 19 0.00040 6 1.46700 1.88601 6 0.282379 30 0.282377 -7.3 1.0 1.65

a162 0.0137 15 0.00043 4 1.46703 1.88581 6 0.282371 38 0.282368 -7.6 1.3 1.67

a167 0.0167 13 0.00052 4 1.46706 1.88625 10 0.282413 29 0.282410 -6.2 1.0 1.59

a168 0.0198 14 0.00059 4 1.46710 1.88650 11 0.282421 32 0.282417 -5.9 1.1 1.57

a169 0.0150 14 0.00046 4 1.46705 1.88613 12 0.282382 30 0.282380 -7.2 1.0 1.64

a172 0.0169 6 0.00052 2 1.46703 1.88599 7 0.282344 37 0.282341 -8.6 1.3 1.72

a174 0.0160 21 0.00049 6 1.46713 1.88648 7 0.282423 41 0.282420 -5.8 1.4 1.57

a174-PRC54-NoUPb-1 0.0161 17 0.00048 5 1.46710 1.88623 13 0.282381 35 0.282378 -7.3 1.2 1.65

a174-PRC54-NoUPb-3 0.0207 15 0.00061 4 1.46698 1.88574 12 0.282329 30 0.282325 -9.2 1.1 1.75

a174-PRC54-NoUPb-4 0.0180 13 0.00053 4 1.46710 1.88636 11 0.282408 26 0.282405 -6.3 0.9 1.60

Mean (n=15) 0.0173 0.00052 1.46707 1.88623 0.282395 -6.7 1.62

±2σ (ext.) 0.0066 0.00019 0.00012 0.00053 0.000070 2.5

Diorite LR-32

a208 0.0562 99 0.00189 32 1.46715 1.88678 7 0.282533 29 0.282523 -2.6 1.0 1.38

a210 0.0096 11 0.00041 4 1.46714 1.88663 7 0.282507 29 0.282505 -3.2 1.0 1.41

a211 0.0874 27 0.00299 9 1.46707 1.88668 7 0.282576 28 0.282559 -1.3 1.0 1.31

a212 0.0583 58 0.00198 20 1.46710 1.88632 10 0.282494 28 0.282483 -4.0 1.0 1.45

a214 0.0746 17 0.00247 5 1.46702 1.88619 9 0.282492 35 0.282478 -4.2 1.2 1.46

a215 0.0769 18 0.00230 9 1.46717 1.88673 8 0.282549 27 0.282536 -2.1 1.0 1.35

a217 0.0272 52 0.00095 17 1.46709 1.88637 9 0.282501 30 0.282495 -3.5 1.0 1.43

a218 0.0234 39 0.00080 12 1.46707 1.88642 9 0.282485 28 0.282481 -4.1 1.0 1.46

a219 0.0788 18 0.00271 6 1.46716 1.88669 7 0.282555 29 0.282539 -2.0 1.0 1.34

a220 0.0458 35 0.00158 11 1.46701 1.88629 4 0.282487 33 0.282478 -4.2 1.2 1.46

a221 0.0258 24 0.00096 9 1.46707 1.88631 4 0.282512 44 0.282507 -3.1 1.6 1.41

a223 0.1707 242 0.00401 51 1.46698 1.88634 9 0.282539 52 0.282516 -2.8 1.8 1.39

a226 0.0199 33 0.00076 11 1.46713 1.88644 8 0.282510 30 0.282506 -3.2 1.1 1.41

a227 0.0757 36 0.00256 13 1.46701 1.88603 5 0.282524 43 0.282509 -3.0 1.5 1.40

a227-LR32-NoUPb-1 0.0992 23 0.00323 9 1.46703 1.88596 5 0.282491 44 0.282473 -4.3 1.6 1.47

Mean (n=15) 0.0620 0.00197 1.46708 1.88641 0.282506 -3.2 1.41

±2σ (ext.) 0.0820 0.00211 0.00012 0.00050 0.000051 1.8

Qz Diorite LR-31

a318 0.0261 61 0.00089 19 1.46715 1.88662 13 0.282512 32 0.282507 -3.2 1.1 1.41

a319 0.0882 144 0.00270 40 1.46713 1.88652 12 0.282557 30 0.282541 -2.0 1.1 1.34

a319-LR31-NoUPb-1 0.0230 31 0.00067 8 1.46710 1.88651 16 0.282507 29 0.282503 -3.3 1.0 1.42

a321 0.0626 49 0.00207 14 1.46709 1.88672 10 0.282532 30 0.282521 -2.7 1.1 1.38

a322 0.0190 5 0.00076 2 1.46716 1.88680 6 0.282529 30 0.282524 -2.6 1.0 1.37

a323 0.0573 37 0.00194 12 1.46710 1.88657 12 0.282542 25 0.282531 -2.3 0.9 1.36
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a325 0.0500 58 0.00172 18 1.46713 1.88668 13 0.282543 27 0.282533 -2.3 1.0 1.36

a326 0.0301 49 0.00105 16 1.46710 1.88650 13 0.282518 25 0.282512 -3.0 0.9 1.40

a334 0.0263 7 0.00093 3 1.46715 1.88670 11 0.282538 26 0.282533 -2.3 0.9 1.36

a335 0.0412 45 0.00142 14 1.46717 1.88678 11 0.282551 24 0.282543 -1.9 0.9 1.34

a337 0.0448 26 0.00152 9 1.46713 1.88646 14 0.282520 25 0.282511 -3.0 0.9 1.40

a338 0.0422 66 0.00140 21 1.46709 1.88642 14 0.282516 30 0.282508 -3.1 1.1 1.41

a339 0.0180 14 0.00063 4 1.46717 1.88680 12 0.282539 30 0.282535 -2.2 1.1 1.35

a339-LR31-NoUPb-1 0.0430 25 0.00141 8 1.46716 1.88673 13 0.282537 27 0.282529 -2.4 0.9 1.36

a339-LR31-NoUPb-2 0.0472 55 0.00154 14 1.46708 1.88646 13 0.282471 32 0.282462 -4.8 1.1 1.49

a343 0.0469 54 0.00145 12 1.46716 1.88672 11 0.282546 32 0.282538 -2.1 1.1 1.35

Mean (n=16) 0.0416 0.00138 1.46713 1.88662 0.282521 -2.7 1.38

±2σ (ext.) 0.0366 0.00112 0.00006 0.00026 0.000041 1.4

Qz Monzodiorite SC-13-09

a270 0.0383 48 0.00118 13 1.46712 1.88693 16 0.282497 25 0.282490 -3.5 0.9 1.44

a271 0.0529 72 0.00161 20 1.46719 1.88692 14 0.282492 32 0.282482 -3.2 1.1 1.44

a273 0.0403 32 0.00121 9 1.46714 1.88691 15 0.282510 27 0.282503 -3.1 0.9 1.41

a277 0.0331 24 0.00099 7 1.46711 1.88679 14 0.282505 26 0.282499 -3.2 0.9 1.42

a278 0.0256 22 0.00075 6 1.46719 1.88697 17 0.282473 27 0.282468 -4.3 1.0 1.48

a279 0.0358 24 0.00107 7 1.46711 1.88652 14 0.282467 24 0.282461 -4.6 0.9 1.49

a281 0.0393 27 0.00113 8 1.46716 1.88687 20 0.282488 24 0.282482 -3.8 0.9 1.45

a281-sc13-09-NoUPb-1 0.0609 74 0.00178 21 1.46720 1.88669 14 0.282512 26 0.282502 -3.1 0.9 1.41

a288 0.0418 37 0.00126 10 1.46713 1.88658 18 0.282483 28 0.282475 -4.1 1.0 1.46

a290 0.0389 21 0.00113 6 1.46709 1.88652 18 0.282474 24 0.282467 -4.4 0.9 1.48

a292 0.0249 22 0.00075 6 1.46715 1.88693 21 0.282507 23 0.282503 -3.1 0.8 1.41

a294 0.0448 38 0.00131 10 1.46710 1.88661 16 0.282466 26 0.282458 -4.7 0.9 1.50

a295 0.0571 18 0.00165 5 1.46713 1.88674 18 0.282502 25 0.282493 -3.4 0.9 1.43

a298 0.0529 27 0.00155 7 1.46717 1.88662 14 0.282515 25 0.282506 -3.0 0.9 1.41

a299 0.0323 73 0.00096 20 1.46718 1.88672 24 0.282464 30 0.282459 -4.6 1.1 1.50

a300 0.0549 16 0.00160 4 1.46712 1.88670 15 0.282488 24 0.282478 -3.9 0.8 1.46

Mean (n=16) 0.0421 0.00124 1.46714 1.88675 0.282483 -3.8 1.45

±2σ (ext.) 0.0219 0.00063 0.00007 0.00031 0.000034 1.2

Qz Monzodiorite SGC-12-39

a255 0.0323 28 0.00096 8 1.46715 1.88678 14 0.282493 27 0.282488 -3.7 0.9 1.44

a255-sgc12-39-NoUPb-1 0.0361 26 0.00106 8 1.46721 1.88698 14 0.282526 27 0.282520 -2.6 1.0 1.38

a255-sgc12-39-NoUPb-2 0.0098 9 0.00034 2 1.46714 1.88671 15 0.282473 27 0.282471 -4.3 0.9 1.47

a255-sgc12-39-NoUPb-3 0.0206 30 0.00063 9 1.46715 1.88674 15 0.282478 27 0.282474 -4.2 0.9 1.47

a255-sgc12-39-NoUPb-4 0.0136 10 0.00043 3 1.46715 1.88667 17 0.282461 26 0.282459 -4.7 0.9 1.50

a255-sgc12-39-NoUPb-5 0.0158 24 0.00047 6 1.46714 1.88677 16 0.282481 25 0.282478 -4.0 0.9 1.46

a256 0.0153 26 0.00052 8 1.46711 1.88636 6 0.282437 39 0.282434 -5.6 1.4 1.55

a257 0.0217 18 0.00067 5 1.46715 1.88680 14 0.282501 26 0.282498 -3.3 0.9 1.42

a259 0.0286 13 0.00087 4 1.46711 1.88675 13 0.282515 24 0.282510 -2.9 0.8 1.40

a260 0.0358 58 0.00106 16 1.46712 1.88674 16 0.282474 30 0.282468 -4.4 1.1 1.48

a261 0.0210 34 0.00060 10 1.46713 1.88677 21 0.282494 27 0.282491 -3.6 1.0 1.44

a262 0.0117 10 0.00039 3 1.46716 1.88678 16 0.282485 26 0.282483 -3.8 0.9 1.45

a263 0.0432 24 0.00126 7 1.46717 1.88669 15 0.282504 25 0.282497 -3.4 0.9 1.42

a265 0.0227 45 0.00069 12 1.46714 1.88672 15 0.282499 25 0.282496 -3.4 0.9 1.43
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a266 0.0148 36 0.00048 10 1.46716 1.88674 16 0.282496 23 0.282493 -3.5 0.8 1.43

a267 0.0460 56 0.00131 15 1.46715 1.88685 16 0.282514 28 0.282507 -3.0 1.0 1.40

Mean (n=16) 0.0243 0.00073 1.46715 1.88674 0.282485 -3.8 1.45

±2σ (ext.) 0.0228 0.00063 0.00005 0.00025 0.000042 1.5

Monzodiorite SGC-12-42

a301 0.0562 12 0.00172 3 1.46716 1.88669 13 0.282511 26 0.282501 -3.2 0.9 1.42

a303 0.0382 40 0.00118 12 1.46716 1.88683 14 0.282486 31 0.282479 -4.0 1.1 1.46

a304 0.0245 18 0.00075 6 1.46715 1.88670 16 0.282455 23 0.282451 -5.0 0.8 1.51

a305 0.0137 18 0.00042 5 1.46714 1.88668 20 0.282445 27 0.282443 -5.3 1.0 1.53

a306 0.0583 85 0.00176 23 1.46713 1.88670 13 0.282490 25 0.282480 -4.0 0.9 1.46

a309 0.0205 29 0.00063 8 1.46714 1.88663 18 0.282458 26 0.282454 -4.9 0.9 1.51

a311 0.0318 16 0.00097 5 1.46714 1.88679 14 0.282462 24 0.282456 -4.8 0.8 1.50

a313 0.0176 18 0.00057 5 1.46710 1.88674 15 0.282452 24 0.282448 -5.1 0.9 1.52

a313-sgc12-42-NoUPb-1 0.0085 12 0.00029 4 1.46715 1.88679 17 0.282451 26 0.282450 -5.1 0.9 1.52

a313-sgc12-42-NoUPb-3 0.0154 5 0.00049 2 1.46714 1.88664 13 0.282474 25 0.282472 -4.3 0.9 1.47

a313-sgc12-42-NoUPb-4 0.0123 29 0.00041 8 1.46713 1.88679 17 0.282459 23 0.282457 -4.8 0.8 1.50

a313-sgc12-42-NoUPb-5 0.0297 17 0.00090 5 1.46713 1.88667 16 0.282446 26 0.282441 -5.4 0.9 1.53

a315 0.0211 41 0.00068 13 1.46715 1.88661 14 0.282455 24 0.282451 -5.0 0.9 1.51

a317 0.0150 16 0.00049 5 1.46718 1.88679 18 0.282474 25 0.282471 -4.3 0.9 1.47

Mean (n=14) 0.0259 0.00080 1.46714 1.88672 0.282461 -4.7 1.49

±2σ (ext.) 0.0312 0.00093 0.00004 0.00014 0.000034 1.2

Monzodiorite SGC-12-26

a373 0.0432 58 0.00150 19 1.46716 1.88661 12 0.282505 26 0.282496 -3.4 0.9 1.43

a375 0.0222 39 0.00079 12 1.46718 1.88674 12 0.282487 27 0.282483 -3.9 0.9 1.45

a377 0.0359 79 0.00121 25 1.46715 1.88669 13 0.282500 28 0.282493 -3.5 1.0 1.43

a378 0.1035 58 0.00339 19 1.46716 1.88676 12 0.282541 26 0.282522 -2.5 0.9 1.38

a379 0.0227 35 0.00077 11 1.46712 1.88680 12 0.282516 27 0.282512 -2.9 1.0 1.40

a380 0.0709 17 0.00235 5 1.46715 1.88667 12 0.282538 27 0.282525 -2.4 0.9 1.37

a381 0.0179 15 0.00074 4 1.46708 1.88678 11 0.282489 26 0.282485 -3.8 0.9 1.45

a388 0.0591 44 0.00201 15 1.46709 1.88663 13 0.282518 26 0.282507 -3.0 0.9 1.41

a390 0.0346 61 0.00119 18 1.46715 1.88657 13 0.282503 25 0.282496 -3.4 0.9 1.43

a392 0.0340 27 0.00123 9 1.46714 1.88668 12 0.282488 25 0.282481 -3.9 0.9 1.45

a395 0.0475 16 0.00161 4 1.46714 1.88681 11 0.282516 27 0.282507 -3.0 1.0 1.40

a396 0.0111 12 0.00048 4 1.46713 1.88673 12 0.282511 26 0.282509 -3.0 0.9 1.40

a397 0.0850 47 0.00281 14 1.46716 1.88680 11 0.282554 31 0.282538 -1.9 1.1 1.34

a398 0.0451 59 0.00154 20 1.46713 1.88677 13 0.282507 25 0.282498 -3.4 0.9 1.42

a400 0.0418 48 0.00144 16 1.46714 1.88662 13 0.282494 27 0.282485 -3.8 1.0 1.45

Mean (n=15) 0.0450 0.00154 1.46714 1.88671 0.282502 -3.2 1.41

±2σ (ext.) 0.0511 0.00162 0.00005 0.00015 0.000034 1.2

Diorite 533 - 2

a345 0.0438 22 0.00142 7 1.46709 1.88645 14 0.282509 31 0.282501 -3.2 1.1 1.42

a346 0.0461 34 0.00154 9 1.46717 1.88673 11 0.282546 27 0.282537 -1.9 1.0 1.35

a347 0.0214 9 0.00074 3 1.46717 1.88681 13 0.282511 28 0.282507 -3.0 1.0 1.40

a348 0.0294 16 0.00107 5 1.46715 1.88678 13 0.282513 26 0.282506 -3.0 0.9 1.41

a351 0.0292 34 0.00095 11 1.46717 1.88670 11 0.282522 26 0.282516 -2.7 0.9 1.39

282



Couzinié et al., 2016. Supp. Tab. 3 (cont.): In  situ  LA-MC-ICPMS Lu-Hf isotope data for zircon in PCMM samples from the eastern FMC

176
Yb/

177
Hf 

a
±2s

176
Lu/

177
Hf 

a
±2s

178
Hf/

177
Hf

180
Hf/

177
Hf SigHf 

b 176
Hf/

177
Hf ±2s 176

Hf/
177

Hf(t) eHf(t) 
c

±2s TDM2 
d

(V) (Ga)

a353 0.0411 18 0.00138 5 1.46719 1.88665 12 0.282519 27 0.282511 -2.9 0.9 1.40

a354 0.0522 36 0.00169 11 1.46718 1.88676 11 0.282571 26 0.282562 -1.1 0.9 1.30

a358 0.0494 28 0.00162 7 1.46712 1.88657 13 0.282504 27 0.282494 -3.5 0.9 1.43

a360 0.0570 49 0.00184 14 1.46717 1.88687 10 0.282550 28 0.282540 -1.8 1.0 1.34

a361 0.0325 45 0.00107 14 1.46711 1.88670 13 0.282524 24 0.282518 -2.6 0.8 1.38

a363 0.0357 15 0.00119 3 1.46710 1.88655 14 0.282523 25 0.282516 -2.7 0.9 1.39

a364 0.0380 33 0.00121 9 1.46710 1.88677 14 0.282529 27 0.282522 -2.5 0.9 1.38

a365 0.0269 25 0.00090 8 1.46710 1.88665 11 0.282485 26 0.282480 -4.0 0.9 1.46

a366 0.0136 12 0.00053 3 1.46716 1.88679 11 0.282504 27 0.282501 -3.2 1.0 1.42

a367 0.0514 30 0.00166 10 1.46712 1.88665 11 0.282543 27 0.282533 -2.1 1.0 1.35

Mean (n=15) 0.0379 0.00125 1.46714 1.88670 0.282516 -2.7 1.39

±2σ (ext.) 0.0248 0.00076 0.00007 0.00022 0.000041 1.4

Qz Monzodiorite 533 - 1

a107 0.0597 65 0.00191 20 1.46709 1.88650 12 0.282521 28 0.282510 -2.9 1.0 1.40

a110 0.0325 66 0.00105 21 1.46717 1.88662 13 0.282501 36 0.282495 -3.4 1.3 1.43

a112 0.0535 75 0.00165 22 1.46712 1.88649 14 0.282507 34 0.282497 -3.3 1.2 1.42

a113 0.0673 60 0.00215 18 1.46705 1.88649 10 0.282496 29 0.282483 -3.8 1.0 1.45

a115 0.0366 25 0.00127 9 1.46708 1.88632 12 0.282467 28 0.282459 -4.7 1.0 1.50

a116 0.0888 96 0.00272 28 1.46698 1.88586 10 0.282490 35 0.282474 -4.2 1.2 1.47

a117 0.0391 71 0.00125 22 1.46715 1.88635 12 0.282458 27 0.282451 -5.0 0.9 1.51

a118 0.0339 36 0.00109 11 1.46711 1.88637 12 0.282471 30 0.282465 -4.5 1.0 1.49

a119 0.0528 189 0.00158 55 1.46717 1.88687 11 0.282507 26 0.282498 -3.3 0.9 1.42

a119b 0.0846 143 0.00258 44 1.46710 1.88633 13 0.282482 31 0.282467 -4.4 1.1 1.48

a122 0.0492 64 0.00156 18 1.46704 1.88639 12 0.282446 30 0.282437 -5.4 1.1 1.54

Mean (n=11) 0.0544 0.00171 1.46710 1.88642 0.282476 -4.1 1.46

±2σ (ext.) 0.0389 0.00114 0.00011 0.00049 0.000045 1.6

(b) Mean Hf signal in volt. 

(c) Initial 
176

Hf/
177

Hf and eHf calculated using an emplacement age of 311 Ma and the CHUR parameters: 

176
Lu/

177
Hf = 0.0336, and 

176
Hf/

177
Hf = 0.282785 (Bouvier et al ., 2008).

(a) 
176

Yb/
177

Hf = (
176

Yb/
173

Yb)true x (
173

Yb/
177

Hf)meas x (M173(Yb)/M177(Hf))
b(Hf)

, b(Hf) = ln(
179

Hf/
177

Hf true / 
179

Hf/
177

Hfmeasured )/ ln (M179(Hf)/M177(Hf) ), M=mass of 

respective isotope. The 
176

Lu/
177

Hf were calculated in a similar way by using the 
175

Lu/
177

Hf and b(Yb).  

(d) two stage model age in billion years using the measured 
176

Lu/
177

Lu of each spot (first stage = age of zircon), a value of 0.0113 for the average continental 

crust (second stage), and a juvenile crust (NC) 
176

Lu/
177

Lu and 
176

Hf/
177

Hf of 0.0384 and 0.28325, respectively.
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Couzinié et al., 2016. Supplementary Table 4: 

Zircon in situ SHRIMP O isotope data for standards during the analytical runs

Session 1

spot ID δ
18

O ‰ error (1σ) 18
O/

16
O error (1σ)

91500-1 9.92 0.12 0.00202508 0.00002460

91500-2 9.57 0.06 0.00202438 0.00001239

91500-3 9.76 0.08 0.00202478 0.00001714

91500-4 9.85 0.09 0.00202494 0.00001892

91500-5 9.77 0.07 0.00202479 0.00001534

91500-6 9.81 0.06 0.00202487 0.00001323

91500-7 10.09 0.10 0.00202542 0.00002094

91500-8 9.54 0.09 0.00202432 0.00001994

91500-9 9.81 0.07 0.00202487 0.00001515

91500-10 9.99 0.07 0.00202523 0.00001499

91500-11 10.30 0.07 0.00202585 0.00001388

91500-12 9.42 0.13 0.00202410 0.00002860

statistics on 91500 mean= 9.82 std dev= 0.24

Session 2

spot ID δ18O ‰ error (1σ) 18
O/

16
O error (1σ)

91500-1 9.73 0.10 0.00202471 0.00002158

91500-2 9.94 0.15 0.00202512 0.00002979

91500-3 9.75 0.11 0.00202475 0.00002369

91500-4 9.60 0.13 0.00202445 0.00002709

91500-5 9.93 0.15 0.00202511 0.00002969

91500-6 10.17 0.12 0.00202559 0.00002473

91500-7 9.71 0.15 0.00202468 0.00003178

91500-8 9.72 0.13 0.00202470 0.00002723

91500-9 10.46 0.15 0.00202618 0.00002850

91500-10 10.01 0.09 0.00202527 0.00001820

91500-11 9.78 0.11 0.00202482 0.00002271

91500-12 9.69 0.10 0.00202462 0.00002105

91500-13 9.90 0.10 0.00202505 0.00002051

91500-14 9.95 0.08 0.00202514 0.00001713

statistics on 91500 mean= 9.84 std dev= 0.23

Session 3

spot ID δ18O ‰ error (1σ) 18
O/

16
O error (1σ)

91500-1 9.91 0.11 0.00202507 0.00002206

91500-2 9.60 0.12 0.00202445 0.00002435

91500-3 9.96 0.13 0.00202517 0.00002568

91500-4 10.02 0.08 0.00202529 0.00001540

91500-5 10.06 0.07 0.00202538 0.00001396

91500-6 10.16 0.10 0.00202558 0.00002009

91500-7 9.19 0.11 0.00202363 0.00002359

91500-8 9.86 0.07 0.00202497 0.00001410

91500-9 9.73 0.08 0.00202471 0.00001756

91500-10 9.72 0.09 0.00202469 0.00001957

statistics on 91500 mean= 9.89 std dev= 0.28

Calibration standard TEMORA 2, measured every 4 unknowns; calibration value delta 

18O = 8.2 ‰, standard deviation = 0.39; measured on 42 spots in 23 grains

Calibration standard TEMORA 2, measured every 4 unknowns; calibration value delta 

18O = 8.2 ‰, standard deviation = 0.38; measured on 28 spots in 20 grains

Cross-checking standard, Zircon 91500, delta 18O = 9.86 ± 0.11 ‰ Wiedenbeck et al., 

2004

Calibration standard TEMORA 2, measured every 4 unknowns; calibration value delta 

18O = 8.2 ‰, standard deviation = 0.41; measured on 20 spots in 20 grains
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Couzinié et al., 2016. Supplementary Table 5: 

Zircon in situ SHRIMP O isotope data for samples

δ18O ‰ error (1σ) 18
O/

16
O error (1σ) δ18O ‰ error (1σ) 18

O/
16

O error (1σ)

Session 1 Monzodiorite SGC-12-42

Qz Monzodiorite 533 - 2 12.1 8.24 0.11 0.00202172 0.00002673

1.1 6.95 0.10 0.00201913 0.00002953 13.1 8.13 0.09 0.00202151 0.00002179

3.1 7.31 0.12 0.00201985 0.00003337 14.1 7.67 0.10 0.00202058 0.00002528

4.1 7.45 0.10 0.00202014 0.00002690 15.1 6.69 0.13 0.00201862 0.00003877

5.1 7.46 0.11 0.00202015 0.00002993 16.1 7.59 0.08 0.00202041 0.00002124

6.1 7.62 0.11 0.00202048 0.00002847 Mean (n=16) 7.43

7.1 7.30 0.10 0.00201983 0.00002793 ±2σ (ext.) 1.15

9.1 8.37 0.10 0.00202199 0.00002327

10.1 8.51 0.11 0.00202227 0.00002573 Session 2

10.2 8.42 0.08 0.00202208 0.00002031 Qz Syenite PRC-53

11.1 8.23 0.11 0.00202171 0.00002780 1.1 8.02 0.16 0.00202128 0.00003925

14.1 8.38 0.12 0.00202200 0.00002793 2.1 8.58 0.14 0.00202241 0.00003258

15.1 7.76 0.10 0.00202076 0.00002732 3.1 7.82 0.15 0.00202088 0.00003899

16.1 8.50 0.11 0.00202224 0.00002610 4.1 8.13 0.18 0.00202149 0.00004497

17.1 7.81 0.10 0.00202085 0.00002502 5.1 7.92 0.13 0.00202108 0.00003339

18.1 7.64 0.12 0.00202053 0.00003199 6.1 8.04 0.14 0.00202132 0.00003405

19.1 7.95 0.09 0.00202113 0.00002377 7.1 7.98 0.15 0.00202121 0.00003769

Mean (n=16) 7.85 8.1 7.83 0.14 0.00202089 0.00003641

±2σ (ext.) 1.00 9.1 7.76 0.16 0.00202076 0.00004097

10.1 8.80 0.13 0.00202284 0.00002944

Qz Diorite LR-31 11.1 7.69 0.14 0.00202063 0.00003761

3.1 7.73 0.09 0.00202070 0.00002391 12.1 8.30 0.13 0.00202184 0.00003149

4.1 7.75 0.10 0.00202074 0.00002629 13.1 8.08 0.13 0.00202141 0.00003306

5.1 7.57 0.12 0.00202039 0.00003092 14.1 8.92 0.13 0.00202309 0.00002984

7.1 8.69 0.11 0.00202262 0.00002449 16.1 9.23 0.15 0.00202370 0.00003288

9.1 8.01 0.10 0.00202126 0.00002436 17.1 7.94 0.12 0.00202111 0.00002942

10.1 8.07 0.11 0.00202139 0.00002769 18.1 8.13 0.13 0.00202149 0.00003239

11.1 7.92 0.10 0.00202107 0.00002568 19.1 8.80 0.14 0.00202285 0.00003183

12.1 8.08 0.09 0.00202140 0.00002353 20.1 8.34 0.14 0.00202192 0.00003450

13.1 7.45 0.10 0.00202015 0.00002598 21.1 7.92 0.13 0.00202107 0.00003229

14.1 7.39 0.11 0.00202001 0.00002988 Mean (n=20) 8.21

15.1 7.31 0.09 0.00201985 0.00002518 ±2σ (ext.) 0.87

Mean (n=11) 7.81

±2σ (ext.) 0.80 Qz Monzonite PRC-54

1.1 9.59 0.10 0.00202444 0.00002205

Qz Monzodiorite SC-13-09 2.1 9.39 0.14 0.00202404 0.00003012

1.1 7.81 0.13 0.00202087 0.00003430 3.1 8.41 0.13 0.00202206 0.00003211

2.1 7.81 0.10 0.00202086 0.00002698 3.2 7.99 0.14 0.00202121 0.00003653

3.1 8.39 0.12 0.00202203 0.00002935 4.1 7.73 0.12 0.00202071 0.00003092

4.1 8.91 0.08 0.00202307 0.00001867 5.1 7.78 0.15 0.00202080 0.00004019

6.1 8.32 0.11 0.00202189 0.00002662 6.1 7.37 0.14 0.00201997 0.00003842

7.1 8.05 0.09 0.00202135 0.00002191 7.1 6.86 0.13 0.00201896 0.00003736

8.1 8.11 0.09 0.00202147 0.00002171 8.1 8.25 0.13 0.00202175 0.00003146

9.1 8.25 0.09 0.00202173 0.00002174 9.1 8.54 0.14 0.00202232 0.00003348

10.1 7.75 0.10 0.00202074 0.00002642 10.1 7.28 0.12 0.00201979 0.00003417

12.1 8.08 0.11 0.00202141 0.00002674 11.1 7.41 0.10 0.00202006 0.00002702

13.1 8.00 0.12 0.00202124 0.00002977 13.1 8.44 0.09 0.00202212 0.00002040

14.1 7.92 0.10 0.00202107 0.00002549 14.1 8.21 0.11 0.00202166 0.00002765

15.1 8.09 0.11 0.00202142 0.00002765 15.1 9.28 0.12 0.00202381 0.00002610

16.1 8.01 0.09 0.00202125 0.00002199 16.1 7.97 0.12 0.00202119 0.00003013

18.1 8.03 0.11 0.00202129 0.00002743 17.1 9.97 0.12 0.00202520 0.00002535

Mean (n=15) 8.10 Mean (n=17) 8.26

±2σ (ext.) 0.58 ±2σ (ext.) 1.75

Monzodiorite SGC-12-42 Qz Monzodiorite 533 - 1

1.1 7.67 0.11 0.00202057 0.00002796 1.1 8.11 0.14 0.00202146 0.00003541

2.1 8.22 0.11 0.00202168 0.00002695 2.1 8.80 0.13 0.00202285 0.00002888

3.1 6.41 0.09 0.00201806 0.00002971 3.1 8.43 0.18 0.00202211 0.00004311

4.1 6.87 0.10 0.00201898 0.00003041 4.1 7.75 0.14 0.00202075 0.00003696

5.1 7.15 0.10 0.00201953 0.00002862 5.1 7.72 0.15 0.00202067 0.00003997

5.2 7.02 0.09 0.00201928 0.00002585 7.1 8.21 0.09 0.00202166 0.00002231

7.1 8.04 0.11 0.00202131 0.00002669 8.1 7.94 0.11 0.00202112 0.00002892

8.1 7.80 0.11 0.00202085 0.00002768 9.1 7.62 0.12 0.00202048 0.00003208

9.1 7.18 0.11 0.00201960 0.00003039 11.1 8.37 0.16 0.00202197 0.00003809

10.1 6.89 0.12 0.00201901 0.00003500 12.1 7.68 0.16 0.00202061 0.00004301

11.1 7.27 0.10 0.00201978 0.00002823 13.1 7.81 0.14 0.00202086 0.00003732
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Couzinié et al., 2016. Supplementary Table 5 (continued): 

Zircon in situ SHRIMP O isotope data for samples

δ18O ‰ error (1σ) 18
O/

16
O error (1σ)

Qz Monzodiorite 533 - 1

14.1 6.87 0.14 0.00201898 0.00003987

15.1 6.62 0.11 0.00201848 0.00003355

Mean (n=13) 7.84

±2σ (ext.) 1.19

Session 3

Monzodiorite SGC-12-26

1.1 6.46 0.10 0.00201815 0.00003044

2.1 6.85 0.12 0.00201893 0.00003444

3.1 6.92 0.11 0.00201908 0.00003203

4.1 6.93 0.11 0.00201909 0.00003322

5.1 7.05 0.11 0.00201933 0.00003269

6.1 8.01 0.10 0.00202126 0.00002625

7.1 7.20 0.10 0.00201965 0.00002933

8.1 7.68 0.10 0.00202060 0.00002640

9.1 7.84 0.10 0.00202092 0.00002566

10.1 7.72 0.10 0.00202068 0.00002695

11.1 7.57 0.16 0.00202037 0.00004284

12.1 7.46 0.12 0.00202017 0.00003296

13.1 7.25 0.09 0.00201973 0.00002540

14.1 6.39 0.16 0.00201801 0.00005138

15.1 7.57 0.07 0.00202039 0.00001931

16.1 7.37 0.08 0.00201997 0.00002172

17.1 7.86 0.07 0.00202097 0.00001714

18.1 7.62 0.09 0.00202048 0.00002295

19.1 8.02 0.11 0.00202128 0.00002712

20.1 7.04 0.08 0.00201931 0.00002311

21.1 7.54 0.08 0.00202031 0.00002116

22.1 6.84 0.09 0.00201891 0.00002669

23.1 7.20 0.09 0.00201964 0.00002491

Mean (n=23) 7.32

±2σ (ext.) 0.92
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A.3 Couzinié et al., 2017

Are presented:

� the Supplementary Text;

� the Supplementary Figures;

� Supplementary Table 1: New whole-rock major and trace elements data obtained
on the Velay Orthogneiss Formation;

� Supplementary Table 3: Operating conditions for the LA�ICP�MS equipment;

� Supplementary Table 4: Results of LA�ICP�MS U�Pb analyses of the Ple²ovice
zircon standard;

� Supplementary Table 5: Results of LA�ICP�MS U�Pb analyses of zircons from the
Velay Orthogneiss Formation;

� Supplementary Table 6: In situ LA�MC�ICP�MS Lu�Hf isotope data for zircon
standards analyzed in this study;

� Supplementary Table 7: In situ LA�MC�ICP�MS Lu�Hf isotope data for zircon
grains from augen gneisses

� Supplementary Table 8: Set of partition coe�cients retained in the modelling sec-
tion 5.2.2.

Available whole-rock major and trace elements data on the Velay Orthogneiss Formation
from the litterature (Supplementary Table 2) are not presented here but can be found
online at https://doi.org/10.1016/j.lithos.2017.06.001.
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Whole-rock geochemistry procedures 

Samples were sawed at Saint-Etienne University and a c. 500 g (for leucogneisses) to 2000 g (for 

augen gneisses) fragment of each sample was sent to ALS Global firm for whole-rock chemical 

composition measurements. We chose the "Complete Characterization Package" which combines 

ICP-AES and ICP-MS analyses for major and trace elements, respectively. More information about 

analytical routines used by this company can be found at http://www.alsglobal.com/. Repeated 

analyses of standards SY-4, GRE-3, OREAS-121 and AMIS0304 were realized during the 

analytical session. 

Analyses of the standards were reproducible to < 1.7% for most major elements (except K2O 2.4%, 

MgO 6.4% and P2O5 4.6%), < 7.9% for trace elements (except Cr 25%, V 12.5%, and Ba 10.9%) 

and consistent within uncertainty with the expected values. Duplicate measurements of four 

samples show external reproducibility better than 1.1% (RSD) for major elements (except P2O5 at 

4.6%) and generally better than 5.4% (RSD) for trace elements except for Tl, Tm, Lu, Hf and V. 

Fifteen blanks display measured values typically under detection limits for all major and trace 

elements.  

Results for the investigated samples are presented in Table S1. 
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References quoted in the field description of the VOF (section 2.2) 

Lochon, P., 1985. Les métaleucogranites du Haut Vivarais et leur environnement : évolution et 

implications géodynamiques. Lyon, p. 236. 

Mergoil-Daniel, J., 1970. Les feldspaths potassiques dans les roches métamorphiques du Massif 

Central français. Clermont-Ferrand, p. 304. 

Négron, J., 1979. Pétrologie et géochimie des formations quartzofeldspathiques de la série 

mésozonale du Chassezac (Lozère, Massif Central français). Lyon, p. 175. 

R'Kha Chaham, K., 1989. Etude pétrologique et structurale de l'ensemble orthogneissique de l'arc 

de Fix (Massif Central français). Clermont-Ferrand, p. 162. 

Serrano, J.-J., 1979. Gisement et pétrologie des faciès anatectiques et granitiques du substratum de 

la série métamorphique du Pilat (Haute-Loire, Massif Central français). Lyon, p. 254. 

Tardy de Montravel, C., 1971. Les gneiss oeillés du Massif du Pilat et leurs feldspaths alcalins. 

Lyon, p. 73. 

Weisbrod, A., 1970. Pétrologie du socle métamorphique des Cévennes médianes (Massif Central 

français) : reconstitution sédimentologique et approche thermodynamique du métamorphisme. 

Nancy, p. 381. 

References of experimental studies listed in Table 2 

Bogaerts, M., Scaillet, B., Auwera, J.V., 2006. Phase Equilibria of the Lyngdal Granodiorite 

(Norway): Implications for the Origin of Metaluminous Ferroan Granitoids. Journal of Petrology 

47, 2405-2431. 

Holtz, F., Johannes, W., 1991. Genesis of peraluminous granites I. Experimental investigation of 

melt compositions at 3 and 5 kb and various H2O activities. Journal of Petrology 32, 935-958. 

Montel, J.M., Vielzeuf, D., 1997. Partial melting of metagreywackes, Part II. Compositions of 

minerals and melts. Contributions to Mineralogy and Petrology 128, 176-196. 
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Patiño Douce, A.E., Beard, A.D., 1995. Dehydration-melting of biotite gneiss and quartz 

amphibolite from 3 to 15 kbar. Journal of Petrology 36, 707-738. 

Patiño Douce, A.E., Harris, N., 1998. Experimental constraints on Himalayan anatexis. Journal of 

Petrology 39, 690-710. 

Patiño Douce, A.E., Johnston, A.D., 1991. Phase equilibria and melt productivity in the pelitic 

system: implications for the origin of peraluminous granitoids and aluminous granulites. 

Contributions to Mineralogy and Petrology 107, 202-218. 

Pickering, J.M., Johnston, A.D., 1998. Fluid-absent melting behavior of a two-mica metapelite: 

experimental constraints on the origin of the Black Hills granite. Journal of Petrology 29, 1787-

1804. 

Skjerlie, K.P., Johnston, A.D., 1996. Vapour-absent melting from 10 to 20 kbar of crustal rocks 

that contain multiple hydrous phases: implications for anatexis in the deep to very deep continental 

crust and active continental margins. Journal of Petrology 37, 661-691. 

Stevens, G., 1995. Compositional controls on partial melting in high-grade metapelites, 

Department of Earth Sciences. Manchester, p. 243. 

Vielzeuf, D., Holloway, J.R., 1988. Experimental determination of the fluid-absent melting 

relations in the pelitic system. Contributions to Mineralogy and Petrology 98, 257-276. 

Watkins, J.M., Clemens, J.D., Treloar, P.J., 2007. Archaean TTGs as sources of younger granitic 

magmas: melting of sodic metatonalites at 0.6-1.2 GPa. Contributions to Mineralogy and Petrology 

154, 91-110. 

 

Supporting information for the geochronological data compilation (Figure 14) 

Abbreviations: AC, Aire de Côte; AF, Arc de Fix; Ap, Apié; Au, Aubazine; Ba, Bassurels; Ce, 

Ceaulmont; Ch, Chateauneuf; Cp, Caplongue; CV, Clair-Vive; Di, Dinan; He, Héric; La, Lanneau; 
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LB, La Bessenoits; Lv, Lévézou; Ma, Marvejols; MC, Moulin du Chambon; Me, Meuzac; MtM, 

Mont Mars; Mr, Merle; Mu, Mulatet; Pa, Palanges; Pe; Peyrolles; Pi, Picades; Ps, Plaisance: PL, 

Pont de Larn; Pt, Pilat; Po, Plouer; Pm, Pomayrols; PV, Port de Vaurs; RA, Roche L’Abeille; Rd, 

Rodez; Re, Réquista; Ro, Rouergue; Ru, Ruynes; Sa, Sauviat; SS, Saut-du-Saumont; Se, Sériès; 

StE, St Eutrope; So, Somail; StA, St André-la-Côte; StAy, St Alyre, St Malo; StY, St Yrieix; Th, 

Thaurion; Tr, Tournon; Tu, Tulle; Vr, Veronzac; Yz, Yzeron. 

References: (1) Lévêque (1985); (2) Alabouvette et al. (1989); (3) Defaut et al. (1991); (4) Lasserre 

et al. (1980); (5) Lafon (1984); (6) This study; (7) Lescuyer and Cocherie (1992); (8) Caen-

Vachette (1979); (9) Be Mezeme et al. (2006); (10) Padel et al. (this volume); (11) Pin and Lancelot 

(1978); (12) Bernard-Griffiths (1975); (13) Mathonnat (1983); (14) Mougeot et al. (1997); (15) 

Ducrot et al. (1979); (16) Melleton et al. (2010); (17) Alexandrov et al. (2001); (18) Maurel et al. 

(2003); (19) Delbos et al. (1964-1965); (20) Duthou et al. (1984); (21) Duthou (1977); (22) Caron 

(1994); (23) Duthou et al. (1981); (24) Gebauer et al. (1981); (25) Lafon (1986); (26) Faure et al. 

(2009a); (27) Pin and Lancelot (1982); (28) Chelle-Michou et al. (2017); (29) Paquette et al. (1995); 

(30) Marchand and Lancelot in Forestier et al. (1979); (31) Dufour (1982); (32) Berger et al. (2010);  

(33) Cocherie et al. (2005); (34) Lotout et al. (2016); (35) Feybesse et al. (1995); (36) Monier et 

al. (1980); (37) Alexandre (2007); (38) Pitra et al. (2012); (39) Roger et al. (2015).  
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621. 

291



Alexandrov, P., Floc'h, J.-P., Cuney, M., Cheilletz, A., 2001. Ion microprobe dating of zircons 

from the Upper Gneiss Unit (South Limousin, Massif Central, France). Comptes Rendus de 

l'Académie des Sciences, Paris 332, 625-632. 

Be Mezeme, E., Cocherie, A., Faure, M., Legendre, O., Rossi, P., 2006. Electron microprobe 

monazite geochronology of magmatic events: Examples from Variscan migmatites and granitoids, 
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Supplementary figures 

to the article : “Cadomian S-type granites as basement rocks of the Variscan belt 

(Massif Central, France): implications for the crustal evolution of the north 

Gondwana margin” 
 

 
Figure S1: MFW plot (Ohta and Arai, 2007) for the VOF samples retained for geochemical 

interpretations. Meta-igneous rocks experienced limited LILE mobility. Large symbols 

represent newly obtained geochemical data. Same legend as Fig. 6.  

 

 

 
Figure S2: Rb-Sr isochron for samples of augen gneisses and leucogneisses from the VOF. Data 

from the literature (Caen-Vachette, 1979; R'Kha Chaham et al., 1990). The isochron age of 541 

± 14 Ma (N=22, calculated with the Isoplot program using the robust regression mode) argues 

for limited mobility of LILE (here Rb and Sr) during amphibolite-facies metamorphism.  
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Figure S3: Photomicrographs showing the mineral assemblages of the dated samples:  (a-b) 

augen gneisses MM06 and MM11, respectively; (c-d) leucogneisses MM09 and MM10, 

respectively.  
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Couzinié et al., 2017. Supplementary Table 3: Operating conditions for the LA-ICP-MS equipment

Laboratory & Sample Preparation

Laboratory name Géosciences Rennes, UMR CNRS 6118, Rennes, France

Sample type/mineral zircon 

Sample preparation Conventional mineral separation, 1 inch resin mount, 1mm polish to finish

(BSE) imaging using a Jeol JSM-6400 SEM at the Ecole des Mines de St Etienne (France)

(CL) imaging using a Jeol JSM-5910 SEM at the Laboratoire Magmas et Volcans (Clermont-

Ferrand, France)

Laser ablation system

Make, Model & type ESI NWR193UC, Excimer

Ablation cell ESI NWR TwoVol2

Laser wavelength 193 nm

Pulse width < 5 ns

Fluence 8.8 J/cm
-2

Repetition rate 3 Hz

Spot size 20 - 35 μm 

Sampling mode / pattern Single spot

Carrier gas 100% He, Ar make-up gas and N2 (3 ml/mn) combined using in-house smoothing device

Background collection 20 seconds

Ablation duration 60 seconds

Wash-out delay 15 seconds

Cell carrier gas flow (He) 0.75 l/min 

ICP-MS Instrument

Make, Model & type Agilent 7700x, Q-ICP-MS

Sample introduction Via conventional tubing 

RF power 1350W

Sampler, skimmer cones Ni

Extraction lenses X type

Make-up gas flow (Ar) 0.85 l/min

Detection system Single collector secondary electron multiplier

Data acquisition protocol Time-resolved analysis

Scanning mode Peak hopping, one point per peak

Detector mode
Pulse counting, dead time correction applied, and analog mode when signal intensity > ≈ 

10
6
 cps

Masses measured
204

(Hg + Pb), 
206

Pb, 
207

Pb, 
208

Pb, 
232

Th, 
238

U

Integration time per peak 10-30 ms 

Sensitivity / Efficiency 20000 cps/ppm Pb (50µm, 10Hz)

Data Processing

Gas blank 20 seconds on-peak 

Calibration strategy
GJ1 zircon standard used as primary reference material, 91500 used as secondary 

reference material (quality control)

GJ1 (Jackson et al., 2004)

Plešovice (Slama et al., 2008)
Data processing package used GLITTER ® (van Achterbergh et al., 2001)

Quality control / Validation Plešovice: concordia age = 337.0 ± 1.0 Ma  (N=20; MSWDC+E=0.21)  

Imaging

Reference Material info
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Couzinié et al., 2017. Supplementary Table 8: Set of partition coefficients retained in the modelling section 5.2.2.

Element Mineral Kd Reference

Ba Biotite 10.15 Ewart & Griffin 1994 

K-Feldspar 6.65 -

Plagioclase 0.76 -

Nb Biotite 1.30 Montel 1996

ilmenite 51.8 Ewart & Griffin 1994

K-Feldspar 0.06 -

Plagioclase 0.07 -

Sr Biotite 0.45 Nash et Crecraft 1985 

K-Feldspar 4.18 Ewart & Griffin 1994 

Plagioclase 7.96 -

References

Ewart, A., and Griffin, W. L., 1994, Application of proton-microprobe data 

to trace-element partitioning in volcanic rocks: Chemical Geology, v. 117, p. 251-284.

Montel, J. M., 1996, Géochimie de la fusion de la croûte continentale:

Thèse d'état, Nancy, 105 p.

Nash, W. P., and Crecraft, H. R., 1985, Partition coefficients for trace elements in

silicic magmas: Geochimica et Cosmochimica Acta, v. 49, p. 2309-2322.
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Appendix B

Full dataset

B.1 Whole-rock geochemical data

In this section are reported the whole-rock geochemical analyses conducted on:

� amphibolite samples from the Lower Gneiss Unit (see section 2.3)

� amphibolite samples from the Upper Gneiss Unit (see section 3.3)

� amphibole-bearing gneisses sampled at the Riverie quarry (see section 3.5)

� metasediments investigated for detrital zircon U�Pb�Hf isotope compositions

� a range of crustal lithologies (metasediments, orthogneisses, granites) from the
Masméjean dome and surrounding areas.

The dataset is available as Table B1. Analytical details on the sample preparation
procedure together with an estimate of the accuracy and reproducibility of the analyses
are given in the supplementary materials of Couzinié et al. (2016) and Couzinié et al.
(2017), see section A.3 and A.2.
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Table B1:  Whole-rock major and trace element compositions obtained on lithologies from the UGU/LGU

Sample MG01 MG02 MG04 MG05 MG06 RV-1 RV-2 MM01 MM02

Ref ALS LR17005608 LR17005608 LR17005608 LR17005608 LR17005608 LR16016981 LR16016981 LR15096747 LR15096747

Long 4.57860 4.57769 4.57820 4.58819 4.58827 4.58827 4.58827 4.43565 4.51147

Lat 45.59175 45.59077 45.59086 45.59650 45.59646 45.59646 45.59646 45.08400 45.07050

Locality Riverie Riverie Riverie Riverie Riverie Riverie Riverie Rochepaule Fromentoux

Type amphibolite amphibolite amphibolite amphibolite amphibolite tonalite tonalite amphibolite amphibolite

Details layered

SiO2 49.30 52.90 48.60 51.90 51.40 68.40 65.50 45.90 43.80

Al2O3 17.30 15.55 17.10 15.65 14.95 15.20 15.55 15.40 13.40

Fe2O3 7.62 10.85 7.55 8.86 12.20 4.33 5.47 13.45 12.70

CaO 14.05 8.10 12.65 8.64 7.39 4.50 3.77 10.95 14.45

MgO 8.49 4.17 9.55 7.50 4.97 2.13 2.84 3.60 7.62

Na2O 2.19 4.11 2.06 4.04 4.32 5.08 4.96 3.46 1.77

K2O 0.30 0.59 0.62 0.87 0.81 0.40 0.57 1.01 0.61

Cr2O3 0.04 0.01 0.07 0.04 <0,01 0.01 <0,01 0.02 0.07

TiO2 0.39 1.82 0.28 1.30 2.36 0.37 0.40 2.72 2.56

MnO 0.13 0.14 0.13 0.17 0.21 0.08 0.07 0.15 0.17

P2O5 0.02 0.26 0.02 0.13 0.28 0.04 0.06 0.90 0.52

SrO 0.03 0.02 0.02 0.01 0.02 0.02 0.03 0.12 0.15

BaO <0,01 0.01 0.02 0.04 0.02 0.02 0.03 0.05 0.01

C 0.02 0.02 0.06 0.01 0.05 0.02 0.12 0.01 0.02

S 0.16 0.06 0.02 <0,01 0.07 0.11 <0,01 0.10 0.55

Ba 42 87.7 159 323 198 222 244 415 48.6

Ce 1.8 27.5 1.6 14.7 23.9 19.9 16.8 98.7 84.7

Cr 330 70 550 270 30 20 10 120 490

Cs 5.50 0.35 23.20 0.76 1.12 0.26 1.18 1.27 0.64

Dy 1.38 6.00 0.95 4.30 7.04 2.33 1.62 6.45 5.49

Er 1.06 3.99 0.69 2.94 4.17 1.53 1.10 2.90 2.55

Eu 0.45 1.58 0.33 1.16 1.80 0.66 0.57 3.19 2.43

Ga 15.3 25.2 14.8 17.1 23.6 14.5 15.9 23.4 23.9

Gd 1.23 6.40 0.90 4.47 7.14 2.44 1.69 9.26 7.06

Hf 0.4 4.4 0.3 2.6 4.0 3.5 3.5 7.5 5.9

Ho 0.31 1.36 0.28 0.97 1.41 0.50 0.33 1.09 0.88

La 0.9 11.3 1.2 6.4 9.8 8.3 8.0 43.0 40.9

Lu 0.10 0.55 0.08 0.37 0.59 0.27 0.20 0.31 0.26

Nb 0.2 6.3 0.2 3.8 4.4 2.3 1.9 58.2 48.4

Nd 2.0 19.3 1.4 10.6 19.1 10.8 9.2 55.6 42.4

Pr 0.28 4.02 0.30 2.23 3.85 2.41 2.06 12.65 9.57

Rb 7.7 7.9 20.1 16.4 17.6 7.9 13.9 13.8 8.2

Sm 0.88 5.38 0.54 3.40 5.28 2.71 1.99 11.10 8.33

Sn <1 1 2 1 1 2 1 4 29

Sr 277.0 293.0 208.0 192.0 249.0 250.0 287.0 968.0 1450.0

Ta <0,1 0.4 <0,1 0.2 0.1 0.3 0.4 3.8 3.5

Tb 0.25 1.07 0.16 0.74 1.11 0.36 0.23 1.15 1.01

Th 0.18 1.03 0.05 0.84 1.21 0.74 1.14 5.28 5.68

Tl <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5

Tm 0.15 0.58 0.10 0.39 0.63 0.24 0.16 0.37 0.33

U 0.07 0.74 0.06 0.56 0.65 0.38 0.55 1.64 1.49

V 215 234 177 227 362 78 113 105 226

W <1 <1 <1 1 1 <1 <1 1 1

Y 8.3 37.8 6.6 24.2 40.6 14.9 9.9 28.7 25.6

Yb 0.94 3.35 0.70 2.51 4.37 1.66 1.18 2.12 1.94

Zr 12 189 12 99 193 134 107 327 255

As 5.2 0.2 3.1 <0,1 0.3 0.3 <0,1 1.5 67.2

Bi 0.08 0.02 0.06 0.02 0.01 0.02 0.01 0.14 5.62

Hg <0,005 <0,005 0.006 <0,005 <0,005 <0,005 <0,005 0.007 <0,005

Sb 0.18 0.07 0.15 0.13 0.15 <0,05 0.73 0.07 0.06

Se 0.3 0.2 0.2 0.2 0.7 0.2 0.4 0.6 1.2

Te 0.01 0.01 0.01 0.01 0.01 <0,01 <0,01 <0,01 0.04

LOI 1.07 0.47 1.39 1.01 1.23 0.51 2.25 0.41 1.42

Total 100.93 99 100.06 100.16 100.16 101.09 101.5 98.14 99.25

Ag <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 0.9 1

Cd <0,5 0.6 <0,5 0.7 0.6 <0,5 <0,5 <0,5 0.8

Co 36 29 45 36 35 13 14 36 68

Cu 53 29 10 1 20 25 2 33 144

Li <10 <10 10 <10 <10 10 30 10 <10

Mo <1 1 <1 <1 <1 <1 <1 <1 <1

Ni 63 16 119 53 5 13 10 69 286

Pb 3 2 9 <2 <2 2 <2 2 6

Sc 44 25 39 35 31 10 14 12 21

Zn 36 103 50 81 73 33 46 144 123

Ge <5 <5 <5 <5 <5 <5 <5 <5 <5

In 0.007 0.024 0.009 0.013 0.018 0.007 0.019 0.049 0.111

Re <0,001 0.001 <0,001 <0,001 0.001 <0,001 <0,001 0.001 0.001
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Table B1 (continued):  Whole-rock major and trace element compositions obtained on lithologies from the LGU

Sample MM03 MM04 PIL-16-01 SEN-16-01 PdB-16-01a PdB-16-01b ROC-16-01 CHA-16-02 BOR-16-01

Ref ALS LR15096747 LR15096747 LR17005608 LR17005608 LR17005608 LR17005608 LR17005608 LR17005608 LR17005608

Long 4.51147 4.51147 4.41651 3.60390 4.30584 4.30584 4.07712 3.79093 3.58485

Lat 45.07050 45.07050 45.40051 45.16402 44.65707 44.65707 44.33320 44.54597 44.27880

Locality Fromentoux Fromentoux Saint-Etienne Jax
Pont-de-

Bayzan

Pont-de-

Bayzan
Le Travers Chasseradès Pied de Borne

Type amphibolite amphibolite metasediment metasediment paragneiss paragneiss granite metasediment granite

Details

Ms-Bt-Gt 

syntectonic 

granite 

Porphyroid 

granite

SiO2 45.10 46.60 87.50 77.70 67.00 59.60 75.30 72.70 69.50

Al2O3 13.25 13.40 7.20 12.75 14.30 17.45 14.80 13.70 13.80

Fe2O3 12.90 13.85 1.63 2.46 6.63 8.22 1.37 3.54 2.89

CaO 16.95 9.97 0.45 1.35 2.18 1.35 0.47 0.31 1.70

MgO 4.93 5.73 0.58 0.81 2.56 3.41 0.11 1.44 1.47

Na2O 2.43 3.63 2.06 2.53 2.79 2.41 4.64 0.02 2.66

K2O 0.36 0.55 0.87 1.75 2.62 4.35 3.77 5.37 5.01

Cr2O3 0.06 0.02 <0,01 0.01 0.02 0.01 <0,01 0.01 0.01

TiO2 1.75 3.36 0.37 0.54 1.14 0.95 0.04 0.54 0.38

MnO 0.20 0.15 0.01 0.06 0.09 0.07 0.06 0.05 0.06

P2O5 0.19 0.33 0.06 0.14 0.27 0.26 0.27 0.14 0.22

SrO 0.10 0.06 0.01 0.02 0.03 0.02 <0,01 <0,01 0.03

BaO 0.01 0.01 0.02 0.04 0.06 0.09 <0,01 0.10 0.07

C 0.04 0.01 0.02 0.03 0.01 <0,01 0.01 0.04 0.01

S 0.16 0.32 <0,01 <0,01 0.08 0.01 <0,01 <0,01 <0,01

Ba 53 127 205 341 525 885 26.1 922 629

Ce 24.7 43.2 73.6 81.4 66.3 77.8 7.0 53.7 61.7

Cr 390 120 20 40 110 110 10 60 60

Cs 1.62 0.31 1.28 1.58 10.05 16.45 9.25 12.55 16.55

Dy 3.39 5.85 3.43 5.56 5.39 6.15 0.84 3.87 3.43

Er 1.92 2.83 2.00 3.11 3.28 3.84 0.48 2.15 2.12

Eu 1.22 2.00 0.92 1.41 1.49 1.21 0.09 0.38 0.83

Ga 17.9 20.3 7.6 14.5 18.8 27.8 25.7 15.8 18.3

Gd 4.18 6.30 4.16 6.43 5.79 6.90 0.64 4.31 4.21

Hf 2.7 4.5 7.9 7.5 8.4 5.5 1.6 6.1 4.8

Ho 0.63 0.97 0.62 1.08 1.17 1.30 0.13 0.80 0.72

La 11.1 19.6 35.4 39.8 33.7 38.3 3.8 28.0 32.2

Lu 0.20 0.26 0.28 0.42 0.47 0.49 0.07 0.34 0.30

Nb 13.9 26.6 8.4 10.2 13.2 14.4 16.2 9.0 17.2

Nd 14.7 25.8 27.5 33.5 31.7 37.3 2.7 24.9 25.7

Pr 3.19 5.70 8.08 9.42 8.32 10.10 0.74 6.51 7.28

Rb 9.9 5.7 30.9 56.3 105.5 205.0 395.0 200.0 266.0

Sm 3.96 7.01 5.20 6.77 6.81 8.43 0.82 5.10 5.58

Sn 38 2 1 2 3 4 17 1 14

Sr 817.0 548.0 88.6 212.0 277.0 244.0 15.9 27.4 297.0

Ta 1.0 1.8 0.7 0.8 0.8 0.9 2.5 0.6 2.4

Tb 0.63 0.93 0.62 0.92 0.95 1.05 0.15 0.64 0.64

Th 1.60 2.63 15.45 12.80 8.98 9.38 2.85 9.01 25.20

Tl <0,5 <0,5 <0,5 <0,5 0.6 0.9 2.2 0.9 1.1

Tm 0.25 0.35 0.29 0.45 0.47 0.53 0.09 0.33 0.30

U 0.59 0.66 3.47 2.57 2.51 2.69 8.57 3.21 8.26

V 201 326 21 45 131 163 <5 97 42

W 2 <1 2 1 1 2 1 3 1

Y 16.9 25.7 17.8 27.9 29.7 38.2 4.8 21.4 21

Yb 1.44 2.04 1.71 2.82 2.96 3.39 0.58 2.12 2.16

Zr 104 179 320 288 314 241 30 232 190

As 11.6 2.3 0.7 17 <0,1 0.9 3.5 0.4 1.3

Bi 6.5 0.26 0.12 0.19 0.27 0.25 2.97 0.22 1.01

Hg 0.008 0.009 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005

Sb 0.09 0.06 <0,05 <0,05 0.08 0.13 0.06 0.08 <0,05

Se 0.2 1 0.6 0.3 0.5 0.9 <0,2 0.6 0.6

Te 0.02 <0,01 <0,01 0.03 0.06 0.04 0.02 0.03 0.01

LOI 1.41 0.74 0.7 1.46 1.15 2.51 0.47 3.01 0.67

Total 99.64 98.4 101.46 101.62 100.84 100.7 101.3 100.93 98.47

Ag 0.8 0.9 <0,5 <0,5 <0,5 <0,5 <0,5 0.7 <0,5

Cd 0.9 0.5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5

Co 56 55 2 4 14 17 <1 7 5

Cu 145 126 5 9 30 32 2 56 2

Li 10 <10 10 10 60 90 50 210 100

Mo <1 <1 <1 <1 <1 <1 <1 <1 <1

Ni 240 54 9 7 29 53 <1 19 9

Pb 9 <2 12 75 15 21 33 6 37

Sc 20 28 3 5 14 18 2 8 7

Zn 183 134 24 127 83 180 63 43 46

Ge <5 <5 <5 <5 <5 <5 <5 <5 <5

In 0.045 0.035 0.009 0.013 0.069 0.082 0.011 0.026 0.042

Re 0.001 0.002 0.001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001
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Table B1 (continued):  Whole-rock major and trace element compositions obtained on the Masméjean dome area

Sample CHA-15-05 CHA-15-07 CHA-15-17 CHA-15-19 CHA-15-24 CHA-15-29 CHA-15-33 CHA-15-34 CHA-15-25

Ref ALS LR16016981 LR16016981 LR16016981 LR16016981 LR16016981 LR16016981 LR16016981 LR16016981 LR16016981

Long 3.88036 3.86111 3.88742 3.88017 3.90175 3.87859 3.84491 3.84598 3.90264

Lat 44.52902 44.53889 44.53103 44.52806 44.53318 44.51265 44.53368 44.53308 44.53148

Locality Les Orts L'Adrech
Barrage de 

Puylaurent
Les Orts Le Ranc Piéchelapie Le Couste Le Couste Le Ranc

Type granite granite augen gneiss granite granite granite granite granite granite

Details "4-Vios type" metatexite "4-Vios type"

SiO2 71.30 66.00 69.60 73.00 74.30 73.60 71.40 75.00 72.60

Al2O3 14.20 14.95 15.70 14.45 14.35 14.05 14.65 14.25 14.45

Fe2O3 2.41 3.75 2.47 1.59 0.92 0.90 1.83 1.01 1.49

CaO 0.29 1.40 0.99 0.43 0.45 0.45 0.78 0.44 0.62

MgO 0.53 2.37 0.56 0.38 0.13 0.10 0.53 0.07 0.27

Na2O 2.85 1.78 4.05 2.81 3.68 4.15 2.99 4.22 3.49

K2O 6.22 6.08 4.78 5.87 4.96 4.10 5.83 4.37 5.22

Cr2O3 0.01 0.02 <0,01 <0,01 <0,01 <0,01 0.01 <0,01 <0,01

TiO2 0.30 0.64 0.26 0.15 0.05 0.03 0.19 0.05 0.12

MnO 0.02 0.06 0.03 0.02 0.01 0.02 0.03 0.02 0.02

P2O5 0.20 0.56 0.27 0.30 0.19 0.26 0.30 0.22 0.33

SrO <0,01 0.03 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01

BaO 0.09 0.14 0.08 0.08 0.02 0.02 0.04 0.02 0.02

C 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.02

S 0.01 <0,01 0.01 0.01 0.02 0.02 0.01 <0,01 0.01

Ba 773 1310 668 733 167.5 161 390 158.5 167.5

Ce 78.9 55.1 51.4 32.9 7.0 9.3 37.8 9.6 18.3

Cr 20 100 10 <10 <10 10 20 <10 <10

Cs 3.83 14.65 9.21 5.94 5.10 7.19 12.15 9.28 5.14

Dy 3.74 3.37 5.84 2.88 0.23 1.00 2.33 1.27 2.97

Er 1.96 1.59 3.45 1.41 0.08 0.57 1.02 0.50 1.30

Eu 0.86 1.11 0.93 0.61 0.15 0.09 0.47 0.20 0.25

Ga 15.2 17.8 19.4 16.3 18.3 19.3 22.7 19.3 22.5

Gd 4.46 4.23 5.00 2.61 0.38 0.76 2.73 1.00 2.26

Hf 5.9 4.8 4.6 3.2 0.8 1.6 3.1 1.0 1.5

Ho 0.67 0.56 1.19 0.51 0.04 0.20 0.42 0.21 0.50

La 37.9 30.0 24.6 16.7 4.5 5.2 20.2 5.1 8.7

Lu 0.23 0.18 0.37 0.16 0.02 0.07 0.12 0.06 0.13

Nb 13.9 17.4 11.2 13.6 6.8 11.2 11.2 11.0 13.0

Nd 32.6 26.9 23.7 13.6 2.6 3.8 17.0 3.9 8.3

Pr 8.73 6.39 5.84 3.43 0.72 1.05 4.47 1.01 2.15

Rb 171.5 221.0 186.5 174.0 190.0 202.0 284.0 235.0 203.0

Sm 5.68 5.07 5.48 2.91 0.42 0.72 3.46 1.18 2.23

Sn 10 12 6 4 5 13 15 13 7

Sr 112.0 279.0 96.2 135.5 60.2 36.6 103.0 37.0 61.3

Ta 1.1 4.2 1.0 1.2 0.6 3.0 1.5 4.3 1.0

Tb 0.69 0.57 0.86 0.47 0.03 0.12 0.43 0.21 0.43

Th 18.35 13.50 10.10 8.06 2.99 2.52 9.41 3.04 3.66

Tl 1.1 1.2 0.8 1.0 0.8 0.9 1.2 1.3 0.8

Tm 0.25 0.22 0.46 0.20 0.03 0.08 0.12 0.07 0.18

U 8.28 7.62 2.82 6.06 18.75 2.64 6.60 2.91 9.96

V 12 62 19 11 <5 6 16 <5 <5

W 1 1 2 1 <1 3 5 3 3

Y 18.9 17.8 32.8 16.2 1.3 6.4 11.9 7 15.4

Yb 1.41 1.25 2.87 1.25 0.11 0.63 0.91 0.48 1.03

Zr 194 152 145 81 14 30 89 20 34

As 10.6 7.3 2.4 1.2 0.9 0.5 1.7 0.4 0.8

Bi 0.11 0.4 0.04 2.94 6.59 1.66 0.65 1 2.61

Hg <0,005 <0,005 <0,005 0.006 <0,005 <0,005 <0,005 <0,005 <0,005

Sb 0.11 0.1 0.13 <0,05 <0,05 0.06 <0,05 <0,05 <0,05

Se 0.5 0.7 0.8 0.4 <0,2 0.2 0.2 0.3 0.4

Te <0,01 <0,01 <0,01 0.04 <0,01 0.02 <0,01 <0,01 0.02

LOI 0.96 1.92 0.91 1.01 0.61 0.69 0.71 0.61 0.7

Total 99.38 99.7 99.7 100.09 99.67 98.37 99.29 100.28 99.33

Ag <0,5 <0,5 <0,5 0.5 <0,5 <0,5 <0,5 <0,5 <0,5

Cd <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5

Co 2 8 3 1 <1 <1 3 <1 1

Cu 15 7 2 7 6 6 2 1 3

Li 30 110 60 40 30 20 70 30 40

Mo <1 <1 <1 <1 <1 <1 <1 <1 <1

Ni 4 19 4 1 <1 1 4 1 <1

Pb 29 40 22 23 30 10 29 16 19

Sc 4 10 3 3 1 2 4 2 6

Zn 34 121 49 15 19 8 45 12 23

Ge <5 <5 <5 <5 <5 <5 <5 <5 <5

In 0.032 0.045 0.035 0.012 0.011 0.006 0.023 0.009 0.017

Re <0,001 <0,001 0.001 0.001 <0,001 <0,001 <0,001 <0,001 <0,001
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Table B1 (continued):  Whole-rock major and trace element compositions obtained on the Masméjean dome area

Sample CHA-15-35 CHA-15-36 CHA-15-41 CHA-15-43 CHA-15-44 CHA-15-47 CHA-15-48 CHA-15-49 CHA-15-51

Ref ALS LR16016981 LR16016981 LR16016981 LR16016981 LR16016981 LR16016981 LR16016981 LR16016981 LR16016981

Long 3.84598 3.84611 3.90506 3.87934 3.80854 3.96989 3.96989 3.90300 3.83309

Lat 44.53308 44.53295 44.54657 44.56799 44.54674 44.60493 44.60493 44.52644 44.57011

Locality Le Couste Le Couste
les Clous-

Maurines
Masmejean Mirandol

St-Laurent-les-

Bains

St-Laurent-les-

Bains
Le Mourio Majousseires

Type leucogneiss leucogneiss granite migmatite leucogneiss migmatite augen gneiss granite granite

Details
in source 

leucosome

in source 

leucosome
metatexite

SiO2 75.20 77.30 69.30 75.10 78.60 76.30 70.60 71.90 73.80

Al2O3 12.45 13.25 15.35 13.25 12.40 13.15 14.25 14.60 14.85

Fe2O3 1.37 1.35 2.67 1.02 1.23 1.19 2.57 2.11 1.30

CaO 0.40 0.46 0.55 0.31 0.36 0.45 0.74 0.41 0.45

MgO 0.10 0.09 0.96 0.14 0.09 0.19 0.64 0.67 0.14

Na2O 2.91 3.06 2.75 2.61 3.08 2.57 2.72 2.93 3.60

K2O 4.52 4.77 5.93 6.27 4.29 5.96 5.40 5.41 5.07

Cr2O3 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 0.01 0.01 <0,01

TiO2 0.09 0.09 0.47 0.06 0.06 0.09 0.29 0.27 0.07

MnO 0.02 0.02 0.03 0.01 0.02 0.01 0.03 0.02 0.03

P2O5 0.29 0.35 0.29 0.26 0.36 0.13 0.28 0.27 0.34

SrO <0,01 <0,01 0.02 <0,01 <0,01 <0,01 <0,01 0.01 <0,01

BaO 0.01 0.02 0.10 0.02 0.01 0.06 0.07 0.08 0.01

C 0.01 0.01 <0,01 0.01 0.01 0.01 <0,01 0.01 0.01

S 0.01 <0,01 <0,01 <0,01 0.01 0.01 0.02 <0,01 <0,01

Ba 102 181.5 945 147 64.5 526 604 798 128

Ce 11.9 13.3 68.3 10.3 6.9 16.0 58.1 64.4 8.0

Cr <10 <10 20 <10 <10 <10 20 20 <10

Cs 8.76 19.05 6.59 6.58 12.30 5.92 15.05 6.59 6.73

Dy 2.41 2.72 2.69 2.59 1.91 3.27 5.49 2.92 1.98

Er 0.92 1.08 1.32 1.48 0.82 2.48 3.30 1.56 0.93

Eu 0.14 0.20 1.03 0.17 0.10 0.60 0.85 0.73 0.20

Ga 17.9 20.9 21.2 15.8 21.0 12.8 19.4 18.8 22.3

Gd 1.54 1.80 4.08 1.68 1.05 1.77 5.11 3.44 1.44

Hf 1.9 2.3 6.3 2.4 2.5 1.9 5.0 4.1 0.8

Ho 0.41 0.46 0.49 0.46 0.32 0.71 1.13 0.51 0.30

La 5.3 5.7 39.7 4.9 3.1 7.8 27.2 32.4 3.9

Lu 0.07 0.12 0.16 0.19 0.08 0.31 0.37 0.18 0.10

Nb 12.2 15.4 14.3 7.5 16.7 4.2 13.2 14.4 16.3

Nd 5.1 5.8 33.5 4.9 3.5 6.7 26.1 27.7 3.7

Pr 1.37 1.52 8.51 1.25 0.80 1.67 6.56 7.16 1.07

Rb 261.0 331.0 222.0 216.0 362.0 179.5 229.0 207.0 255.0

Sm 1.50 1.73 6.02 1.29 0.89 1.76 5.84 4.74 1.27

Sn 8 11 6 6 14 5 6 7 18

Sr 20.2 30.0 264.0 54.2 11.5 85.8 88.8 214.0 34.4

Ta 14.5 2.5 1.7 0.6 3.5 0.6 1.0 2.8 2.9

Tb 0.33 0.42 0.53 0.34 0.23 0.34 0.90 0.49 0.26

Th 4.80 5.41 26.90 4.12 3.61 3.74 11.00 22.60 1.80

Tl 1.0 1.7 1.1 1.1 1.4 0.8 1.2 1.0 0.8

Tm 0.13 0.14 0.16 0.20 0.11 0.33 0.44 0.20 0.12

U 8.91 6.17 5.92 6.37 23.20 3.87 4.54 4.15 3.85

V <5 6 33 5 <5 5 23 24 <5

W 4 5 2 1 12 1 2 3 5

Y 12.2 15.5 14.4 14.7 11.1 21.6 32.9 15.6 10.5

Yb 0.69 0.86 1.13 1.37 0.64 2.16 2.78 1.47 0.89

Zr 37 43 228 42 39 42 162 146 17

As 1.3 1.4 7.8 13.4 1.2 1 2.3 1.4 2

Bi 0.8 0.1 0.14 0.31 3.24 0.1 0.21 0.05 4.78

Hg 0.01 <0,005 <0,005 <0,005 0.005 <0,005 <0,005 <0,005 <0,005

Sb 0.05 0.19 0.11 0.14 0.12 <0,05 0.12 <0,05 <0,05

Se 0.6 0.7 0.6 0.4 0.4 <0,2 0.7 0.5 0.4

Te <0,01 <0,01 <0,01 <0,01 0.01 <0,01 <0,01 <0,01 <0,01

LOI 0.65 0.67 1.61 0.7 0.76 0.46 0.97 1.54 0.84

Total 98.01 101.43 100.03 99.75 101.26 100.56 98.57 100.23 100.5

Ag <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5

Cd <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5

Co <1 <1 2 <1 <1 1 2 3 <1

Cu 3 12 3 3 3 1 9 5 2

Li 60 70 60 20 50 40 70 30 30

Mo <1 <1 <1 <1 <1 <1 <1 <1 <1

Ni <1 1 6 <1 <1 1 5 6 <1

Pb 15 118 33 35 6 25 23 23 20

Sc 2 2 5 2 2 1 4 4 3

Zn 25 33 39 10 30 16 62 21 18

Ge <5 <5 <5 <5 <5 <5 <5 <5 <5

In 0.024 0.023 0.02 0.016 0.013 0.018 0.055 0.007 0.012

Re <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 0.001 <0,001
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Table B1 (continued):  Whole-rock major and trace element compositions obtained on the Masméjean dome area

Sample CHA-15-52 CHA-15-59 CHA-15-63 CHA-15-65L CHA-15-65M SC14 40 SC14 46

Ref ALS LR16016981 LR16016981 LR16016981 LR16016981 LR16016981 LR15096747 LR15096747

Long 3.82921 3.87213 3.88324 3.88742 3.88742 3.90157 4.01186

Lat 44.57224 44.60196 44.59365 44.53103 44.53103 44.53354 44.61692

Locality Majousseires la Soucheire Charbonneire
Barrage de 

Puylaurent

Barrage de 

Puylaurent

Chassezac 

valley
Borne

Type leucogneiss granite migmatite migmatite augen gneiss granite leucosome

Details
in source 

leucosome

in source 

leucosome
metatexite

concordant 

vein within 

paragneiss

in situ 

leucosome in 

orthogneiss
SiO2 76.00 72.60 72.60 73.70 71.00 74.00 74.00

Al2O3 12.90 15.10 14.85 14.65 13.70 14.25 14.50

Fe2O3 1.91 1.90 0.70 1.03 4.12 1.79 1.39

CaO 0.42 0.64 0.52 0.44 0.43 0.53 1.72

MgO 0.13 0.37 0.07 0.18 1.38 0.34 0.45

Na2O 3.01 3.07 3.25 3.59 2.60 2.78 3.38

K2O 4.88 5.10 7.27 5.99 5.14 5.90 4.23

Cr2O3 <0,01 <0,01 <0,01 <0,01 0.01 <0,01 <0,01

TiO2 0.12 0.23 0.03 0.07 0.41 0.17 0.11

MnO 0.03 0.03 0.02 0.02 0.05 0.02 0.03

P2O5 0.29 0.26 0.49 0.21 0.18 0.18 0.17

SrO <0,01 0.01 <0,01 <0,01 <0,01 0.01 0.03

BaO 0.01 0.05 0.04 0.04 0.04 0.07 0.09

C 0.01 0.01 0.01 0.01 0.01 0.03 <0,01

S <0,01 <0,01 <0,01 <0,01 <0,01 0.01 <0,01

Ba 62.1 467 352 361 375 674 857

Ce 15.9 77.8 7.0 10.4 55.7 31.9 31.4

Cr <10 <10 <10 <10 20 10 10

Cs 4.14 7.62 5.15 5.38 14.75 7.32 4.79

Dy 4.51 2.46 2.03 1.42 4.55 3.18 2.26

Er 2.83 1.00 1.22 0.75 2.54 1.54 1.04

Eu 0.10 0.67 0.40 0.44 0.66 0.63 0.97

Ga 19.6 20.5 14.5 14.2 19.1 21.6 17.9

Gd 2.63 4.26 1.73 1.22 4.48 3.45 2.60

Hf 3.4 4.2 1.4 1.2 4.3 3.0 2.2

Ho 0.99 0.47 0.43 0.25 0.86 0.63 0.34

La 7.3 41.8 3.0 5.3 26.3 17.4 19.7

Lu 0.29 0.14 0.17 0.09 0.29 0.24 0.12

Nb 15.3 13.1 1.8 4.7 14.9 11.0 3.7

Nd 7.8 31.0 4.1 5.2 24.7 15.4 15.8

Pr 1.95 8.13 0.86 1.22 6.04 4.83 4.36

Rb 229.0 212.0 263.0 207.0 265.0 193.0 111.5

Sm 2.42 5.73 1.38 1.13 5.23 2.95 2.76

Sn 7 11 8 5 11 6 4

Sr 21.6 126.0 63.4 78.7 66.6 119.5 286.0

Ta 2.4 1.6 1.5 0.9 1.4 1.3 0.4

Tb 0.63 0.53 0.31 0.23 0.72 0.45 0.33

Th 8.40 21.20 0.87 2.42 10.65 8.16 8.01

Tl 1.1 0.9 1.0 0.8 1.1 0.7 <0,5

Tm 0.38 0.14 0.20 0.11 0.36 0.23 0.15

U 3.01 5.93 5.70 2.57 4.80 6.44 2.46

V 5 10 <5 6 38 <5 9

W 5 3 <1 1 2 1 1

Y 29.5 13.2 13.9 7.9 24.5 18.9 11.5

Yb 2.49 0.97 1.19 0.67 2.01 1.33 1.07

Zr 78 140 18 19 140 96 60

As 2.6 1.9 11.8 0.5 1.9 0.4 1.7

Bi 0.8 1.08 2.07 0.2 0.13 0.76 0.11

Hg <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 0.005

Sb <0,05 <0,05 0.36 <0,05 <0,05 <0,05 <0,05

Se 0.8 0.4 0.6 <0,2 0.3 <0,2 <0,2

Te <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 0.03

LOI 0.68 1.21 0.3 0.63 1.01 0.85 0.53

Total 100.38 100.57 100.14 100.55 100.07 100.89 100.63

Ag <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5

Cd <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5

Co 1 1 <1 1 5 1 3

Cu 5 1 12 1 1 4 4

Li 30 60 20 20 130 20 30

Mo <1 <1 <1 <1 <1 <1 <1

Ni <1 1 <1 <1 12 <1 6

Pb 21 24 52 35 28 39 31

Sc 2 3 1 1 7 3 2

Zn 21 47 29 19 107 37 14

Ge <5 <5 <5 <5 <5 <5 <5

In 0.041 0.018 0.049 0.014 0.07 0.031 0.024

Re <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001
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B.2 Mineral chemistry

B.2.1 Analytical details

Mineral major element compositions were obtained using a Zeiss EVO MA15 Scanning
Electron Microscope at the Central Analytical Facility (CAF) of Stellenbosch University,
South Africa. Mineral compositions were quanti�ed by EDX (Energy Dispersive X-ray)
analysis using an Oxford Instruments® X-Max 20 mm2 detector and the Oxford INCA
software. Beam conditions were 20 kV accelerating voltage, 1.5 nA probe current, a
working distance of 8.5 mm and a specimen beam current of 20 nA. Analyses were
quanti�ed using natural mineral standards.

B.2.2 Data tables

Mineral compositions obtained in the course of this study are reported in the following
tables:

� Table B2: Mineral compositions of the RV-1 and RV-2 amphibole-bearing gneisses
from the Upper Gneiss Unit, Riverie quarry, see section 3.5.

� Table B3: Mineral compositions of the biotite-bearing granite RV-3, Riverie quarry,
see section 5.2.
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Table B2: Mineral compositions of Riverie meta-tonalite samples RV-1 and RV-2

RV1 - Amphiboles

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13

SiO2 46.43 46.12 45.61 47.48 44.43 46.62 46.41 44.03 43.83 47.46 47.82 44.98 46.33

TiO2 0.86 0.94 1.04 0.97 1.09 0.85 0.86 1.10 1.21 0.88 0.80 1.02 0.85

Al2O3 8.51 8.67 9.53 7.58 10.06 8.79 8.39 9.68 9.83 7.81 7.69 9.53 7.97

FeO 15.15 14.76 15.05 13.85 15.73 14.71 14.81 15.64 15.33 14.58 14.95 15.95 14.00

MnO 0.55 0.58 0.46 0.53 0.56 0.53 0.58 0.49 0.46 0.59 0.60 0.49 0.44

MgO 13.33 13.44 13.04 13.71 12.23 13.09 13.32 12.23 11.84 13.61 13.66 12.47 13.17

CaO 10.80 11.30 11.42 11.55 11.39 10.94 11.22 11.10 11.45 11.47 11.34 11.12 11.87

Na2O 1.58 1.39 1.52 1.24 1.64 1.58 1.46 1.74 1.48 1.29 1.43 1.80 1.04

K2O 0.38 0.28 0.43 0.34 0.45 0.31 0.33 0.43 0.45 0.28 0.36 0.38 0.28

Total 97.59 97.50 98.10 97.24 97.58 97.41 97.37 96.44 95.89 97.97 98.65 97.74 95.94

No. Ox 23 23 23 23 23 23 23 23 23 23 23 23 23

Si 6.70 6.67 6.59 6.89 6.49 6.74 6.73 6.51 6.53 6.83 6.84 6.55 6.84

Al iv 1.30 1.33 1.41 1.11 1.51 1.26 1.27 1.49 1.47 1.17 1.16 1.45 1.16

Al vi 0.14 0.14 0.21 0.18 0.23 0.24 0.16 0.19 0.26 0.16 0.14 0.18 0.22

Ti 0.09 0.10 0.11 0.11 0.12 0.09 0.09 0.12 0.14 0.10 0.09 0.11 0.09

Fe3+ 1.12 1.04 0.94 0.71 0.93 0.94 0.96 0.97 0.76 0.87 0.91 1.00 0.64

Fe2+ 0.71 0.75 0.87 0.97 0.99 0.84 0.83 0.97 1.15 0.88 0.88 0.94 1.08

Mn 0.07 0.07 0.06 0.06 0.07 0.06 0.07 0.06 0.06 0.07 0.07 0.06 0.06

Mg 2.87 2.90 2.81 2.96 2.66 2.82 2.88 2.69 2.63 2.92 2.91 2.71 2.90

Ca 1.67 1.75 1.77 1.80 1.78 1.70 1.74 1.76 1.83 1.77 1.74 1.73 1.88

Na 0.44 0.39 0.43 0.35 0.46 0.44 0.41 0.50 0.43 0.36 0.40 0.51 0.30

K 0.07 0.05 0.08 0.06 0.08 0.06 0.06 0.08 0.09 0.05 0.06 0.07 0.05

OH* 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Total 17.18 17.19 17.27 17.21 17.33 17.20 17.22 17.34 17.34 17.18 17.20 17.31 17.23

RV2 - Amphiboles

S 14 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 13 S 14

SiO2 46.62 46.04 47.27 47.57 46.23 47.51 45.68 49.02 46.78 46.54 47.22 49.23 46.74

TiO2 0.90 0.76 0.72 0.57 0.81 0.53 0.70 0.56 0.71 0.72 0.66 0.55 0.76

Al2O3 8.23 9.49 8.22 8.40 9.75 8.28 9.48 6.96 8.79 9.19 8.61 6.95 9.04

FeO 15.31 16.35 15.98 15.42 16.76 15.97 16.47 15.17 16.51 16.50 16.38 15.51 16.98

MnO 0.56 0.50 0.57 0.38 0.48 0.42 0.39 0.47 0.63 0.42 0.46 0.48 0.47

MgO 13.77 12.04 13.08 13.00 11.96 12.88 12.22 13.91 12.50 12.30 12.72 13.96 12.17

CaO 10.35 11.39 11.10 11.72 11.54 11.90 11.68 11.47 11.01 11.45 11.06 11.29 11.25

Na2O 1.35 1.34 1.44 1.03 1.47 1.04 1.33 0.89 1.54 1.45 1.54 1.10 1.37

K2O 0.37 0.38 0.36 0.42 0.56 0.41 0.47 0.30 0.41 0.42 0.45 0.26 0.46

Total 97.44 98.29 98.74 98.51 99.57 98.93 98.42 98.74 98.88 99.00 99.10 99.34 99.24

No. Ox 23 23 23 23 23 23 23 23 23 23 23 23 23

Si 6.67 6.66 6.76 6.83 6.63 6.82 6.62 6.97 6.71 6.69 6.75 6.95 6.70

Al iv 1.33 1.34 1.24 1.17 1.37 1.18 1.38 1.03 1.29 1.31 1.25 1.05 1.30

Al vi 0.06 0.28 0.15 0.26 0.28 0.22 0.24 0.13 0.19 0.25 0.20 0.11 0.23

Ti 0.10 0.08 0.08 0.06 0.09 0.06 0.08 0.06 0.08 0.08 0.07 0.06 0.08

Fe3+ 1.45 0.91 1.06 0.81 0.85 0.82 0.90 0.99 1.06 0.89 1.01 1.05 0.99

Fe2+ 0.38 1.06 0.85 1.04 1.16 1.09 1.10 0.81 0.92 1.09 0.95 0.78 1.05

Mn 0.07 0.06 0.07 0.05 0.06 0.05 0.05 0.06 0.08 0.05 0.06 0.06 0.06

Mg 2.94 2.60 2.79 2.78 2.56 2.76 2.64 2.95 2.67 2.64 2.71 2.94 2.60

Ca 1.59 1.77 1.70 1.80 1.77 1.83 1.81 1.75 1.69 1.76 1.69 1.71 1.73

Na 0.37 0.38 0.40 0.29 0.41 0.29 0.37 0.24 0.43 0.40 0.43 0.30 0.38

K 0.07 0.07 0.07 0.08 0.10 0.07 0.09 0.05 0.07 0.08 0.08 0.05 0.08

OH* 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Total 17.03 17.21 17.17 17.17 17.28 17.19 17.28 17.04 17.19 17.25 17.20 17.06 17.19
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Table B2 (cont.): Mineral compositions of Riverie meta-tonalite samples RV-1 and RV-2

RV1 - Biotites

S 3 S 4 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 S 14 S 15 S 16 S 17 S 18 S 19

SiO2 35.58 35.46 36.00 35.51 35.05 36.36 37.67 36.75 37.17 36.91 37.06 37.47 37.09 37.20 37.21 35.53

TiO2 2.80 2.59 2.90 2.94 2.88 3.06 2.99 2.92 3.64 3.27 3.42 3.33 3.09 3.48 3.41 2.43

Al2O3 14.16 14.40 14.01 14.33 14.34 14.47 14.54 14.79 14.25 14.52 14.18 14.49 14.62 14.46 14.74 15.03

FeO 19.79 19.62 17.39 17.47 18.64 18.18 17.38 17.52 17.42 17.50 17.96 17.64 17.26 17.52 17.51 19.25

MnO 0.17 0.24 0.15 0.18 0.16 0.13 0.23 0.21 0.14 0.15 0.20 0.00 0.00 0.00 0.23 0.24

MgO 11.83 11.92 12.73 13.03 13.56 13.37 13.32 13.60 12.63 12.84 12.99 12.94 12.96 12.79 12.94 13.23

CaO 0.21 0.13 0.00 0.00 0.16 0.13 0.13 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Na2O 0.00 0.19 0.19 0.22 0.00 0.00 0.19 0.23 0.00 0.24 0.27 0.00 0.00 0.00 0.29 0.00

K2O 7.87 7.67 8.71 7.91 6.61 8.03 9.14 8.30 9.29 9.30 9.16 9.27 9.13 9.25 8.99 7.08

Total 92.40 92.21 92.07 91.60 91.39 93.72 95.61 94.43 94.54 94.74 95.25 95.14 94.16 94.70 95.32 92.79

No. Ox 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22

Si 5.59 5.58 5.64 5.57 5.50 5.58 5.67 5.58 5.66 5.62 5.62 5.66 5.66 5.65 5.62 5.51

Al iv 2.41 2.42 2.36 2.43 2.50 2.42 2.33 2.42 2.34 2.38 2.38 2.34 2.34 2.35 2.38 2.49

Al vi 0.21 0.25 0.22 0.22 0.16 0.19 0.24 0.23 0.22 0.23 0.16 0.25 0.29 0.24 0.24 0.26

Ti 0.33 0.31 0.34 0.35 0.34 0.35 0.34 0.33 0.42 0.37 0.39 0.38 0.35 0.40 0.39 0.28

Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe2+ 2.60 2.58 2.28 2.29 2.45 2.33 2.19 2.23 2.22 2.23 2.28 2.23 2.20 2.23 2.21 2.50

Mn 0.02 0.03 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.02 0.03 0.00 0.00 0.00 0.03 0.03

Mg 2.77 2.80 2.97 3.05 3.18 3.06 2.99 3.08 2.87 2.92 2.94 2.92 2.95 2.90 2.91 3.06

Ca 0.04 0.02 0.00 0.00 0.03 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.00 0.06 0.06 0.07 0.00 0.00 0.06 0.07 0.00 0.07 0.08 0.00 0.00 0.00 0.08 0.00

K 1.58 1.54 1.74 1.58 1.32 1.57 1.75 1.61 1.81 1.81 1.77 1.79 1.78 1.79 1.73 1.40

OH* 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Total 19.55 19.58 19.63 19.58 19.49 19.55 19.61 19.59 19.55 19.64 19.64 19.56 19.56 19.55 19.59 19.53
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Table B3: Mineral compositions of Riverie granite sample RV-3

Biotite

S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 S 14 S 15 S 16 S 17 S 18

SiO2 36.50 36.53 36.55 36.72 36.70 36.33 35.81 36.37 34.73 35.31 35.81 36.21 36.24 36.13 36.57 35.77 36.34

TiO2 3.60 3.32 3.22 3.10 3.61 3.15 2.90 2.95 2.94 3.19 3.69 3.14 3.43 3.06 3.18 3.29 3.89

Al2O3 14.08 14.25 14.55 14.29 14.18 14.18 14.13 14.53 14.17 13.94 14.51 14.14 14.49 14.26 14.49 14.36 14.27

FeO 17.93 18.73 17.24 18.10 17.63 17.68 19.75 18.59 18.83 18.35 19.37 19.46 19.35 19.43 18.43 18.52 17.90

MnO 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.14

MgO 11.94 12.00 12.24 12.35 12.29 12.14 11.38 12.32 10.96 11.63 10.79 11.07 10.91 11.23 11.66 11.80 11.44

CaO 0.18 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.17 0.00 0.00 0.12 0.00 0.13 0.12 0.00

Na2O 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.20 0.21 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00

K2O 8.87 8.76 8.95 8.64 8.85 8.83 8.31 8.43 8.79 8.40 8.63 8.85 8.84 8.71 8.86 8.29 9.10

Total 93.11 93.58 92.75 93.42 93.25 92.32 92.54 93.40 90.65 91.00 92.99 92.87 93.38 92.82 93.32 92.34 93.09

Ox. 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00

Si 5.66 5.64 5.66 5.66 5.66 5.67 5.63 5.62 5.58 5.62 5.60 5.67 5.64 5.65 5.66 5.60 5.64

Al iv 2.34 2.36 2.34 2.34 2.34 2.33 2.37 2.38 2.42 2.38 2.40 2.33 2.36 2.35 2.34 2.40 2.36

Al vi 0.23 0.24 0.32 0.26 0.24 0.28 0.25 0.27 0.27 0.23 0.27 0.28 0.29 0.28 0.30 0.25 0.25

Ti 0.42 0.39 0.37 0.36 0.42 0.37 0.34 0.34 0.36 0.38 0.43 0.37 0.40 0.36 0.37 0.39 0.45

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe 2.32 2.42 2.23 2.33 2.28 2.31 2.60 2.40 2.53 2.44 2.53 2.55 2.52 2.54 2.39 2.42 2.32

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02

Mg 2.76 2.76 2.83 2.84 2.83 2.82 2.67 2.84 2.63 2.76 2.51 2.58 2.53 2.62 2.69 2.75 2.65

Ca 0.03 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.03 0.00 0.00 0.02 0.00 0.02 0.02 0.00

Na 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.06 0.07 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00

K 1.75 1.73 1.77 1.70 1.74 1.76 1.67 1.66 1.80 1.71 1.72 1.77 1.75 1.74 1.75 1.66 1.80

OH* 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Total 19.51 19.54 19.52 19.56 19.50 19.54 19.55 19.57 19.65 19.55 19.53 19.54 19.51 19.54 19.52 19.52 19.50

Plagioclase

S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12

SiO2 62.62 62.59 62.79 62.39 62.41 62.62 62.57 62.71 62.41 62.67 62.59

TiO2 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Al2O3 23.92 24.05 24.20 23.65 23.94 23.77 24.03 23.88 23.80 23.91 23.70

FeO 0.14 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00

CaO 5.34 5.40 5.23 5.39 5.23 5.20 5.32 5.29 5.21 5.22 5.19

Na2O 8.64 8.48 8.38 8.42 8.52 8.39 8.45 8.72 8.75 8.66 8.84

K2O 0.28 0.17 0.28 0.21 0.24 0.26 0.20 0.26 0.23 0.16 0.19

Total 100.93 100.69 100.87 100.17 100.34 100.24 100.73 100.85 100.40 100.63 100.51

Si 2.75 2.75 2.76 2.76 2.76 2.77 2.75 2.76 2.76 2.76 2.76

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Al 1.24 1.25 1.25 1.23 1.25 1.24 1.25 1.24 1.24 1.24 1.23

Fe(ii) 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Ca 0.25 0.25 0.25 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Na 0.74 0.72 0.71 0.72 0.73 0.72 0.72 0.74 0.75 0.74 0.76

K 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Total 5.00 4.99 4.98 4.99 4.99 4.98 4.99 5.00 5.00 4.99 5.01

An 25.06 25.76 25.23 25.81 25.00 25.14 25.50 24.73 24.43 24.78 24.22

Ab 73.36 73.29 73.19 73.02 73.64 73.38 73.35 73.82 74.30 74.33 74.73

Or 1.58 0.96 1.58 1.17 1.36 1.48 1.14 1.45 1.27 0.89 1.05
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B.3 Zircon U�Pb isotope measurements

This section presents the analytical procedures and results of U�Pb dating sessions which
have not been the subject of publication. The reader can �nd the analytical notes and
comprehensive dataset of published results in the Supplementary materials of the articles
(see section A).

B.3.1 Analytical details on the GUF session

Zircon U�Pb isotopic analyses were carried out at Goethe Universität Frankfrut (GUF)
by laser ablation using a Resolution M-50 (Resonetics) 193 nm ArF excimer laser sys-
tem attached to ThermoFinnigan Element 2 sector �eld ICP�MS. We applied the same
methods as in Zeh and Gerdes (2012).

We used a repetition rate of 5.5 Hz, and laser spot-sizes of 20 and 30 µm for measure-
ments of unknowns, and zircon reference materials GJ-1, Ple²ovice and BB-16. Resulting
�uence was ∼2.5 to 3 J.cm−2. Sample surface was cleaned directly before each analysis by
three pre-ablation pulses. Ablation was performed in a two-volume ablation cell (Laurin
Technic, Australia) characterized by a very quick response time (<1 s until maximum
signal strength is reached) and wash-out delay (<3 s to get <1% of maximum signal
strength). It was �uxed during ablation with carrier gas consisting of a ∼0.6 L.min−1

He stream, mixed directly after the ablation cell with make-up gas consisting of ∼0.07
L.min−1 N2 and 0.68 L.min−1 Ar prior introduction into the plasma of the SF�ICP�
MS. All gases had a purity of 99.999% and no homogenizer was used while mixing the
gases, to prevent smoothing of the signal and thus be able to detect signi�cant varia-
tions of the 207Pb/206Pb and 238U/206Pb ratios during measurements, possibly revealing
the sequential sampling of di�erent age domains within single zircon grains. Signal was
tuned for maximum sensitivity for Pb and U while keeping low the production of oxides
(254UO/238U ≤ 0.5%). The obtained sensitivity on zircon standard GJ-1 for 238U and a
30 µm spot size is close to 10000 cps.ppm−1 at 5.5 Hz and 3 J.cm−2.

Data were acquired using time resolved-peak jumping, the detector being set to ana-
logue mode for 232Th and 238U and counting mode for 204(Hg+Pb), 206Pb, 207Pb and
208Pb. A total of 356 mass scans were acquired over ≈41 s measurement (20 s of back-
ground measurement followed by 21 s of sample ablation) and integrated to 89 ratios (4
mass scans per integration, time resolution = 0.46 s). Those ratios were subsequently
corrected o�ine for background signal, common Pb, instrumental mass discrimination
and Pb/U fractionation (both laser-induced during individual measurements, and over
the day) using an in-house MS Excel® spreadsheet (Gerdes and Zeh, 2006; 2009).

A large number of analyses in our dataset shows moderate to high common Pb (Pbc)
contents. Correcting isotopic compositions from Pbc is not straightforward for three
main reasons. First, there is a clear uncertainty on the age at which Pbc was incorpo-
rated in the zircon structure. This is particularly true for inherited zircon grains (zircon
cores, xenocrysts). Indeed, their Pbc might be as old as the grain itself (incorporated
during crystallization) or subsequently added, for instance via interaction with meta-
morphic �uids. Moreover, considering that the age of Pbc incorporation is given by the
206Pb/238U date does not account for the potential e�ect of Pb loss and resulting discor-
dance which are likely to occur in polymetamorphic environments such as the Variscan
FMC. Such a guestimate is not satisfactory as it might result in arti�cially young con-
cordant 206Pb/238U dates. Finally, the Pbc correction itself reduces the precision of the
analytical data because of: (i) the use of a model Pbc composition (Stacey and Kramers,
1975); (ii) the interference at mass 204 between 204Hg (originating from the gas carrier)
and 204Pb leading to a larger uncertainty on the Pbc-corrected 207Pb/206Pb ratios. As
a consequence of this, inherently discordant Pbc-corrected analyses would be labelled
concordant because of their large error ellipse that would overlap with the Concordia
curve.
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Aware of all the above-mentioned caveats and in an attempt to hamper the yield
of meaningless, Pbc-corrected concordant dates, we decided to restrict the use of a Pbc
correction to zircons grains: (i) extracted from granite samples, for which a late Car-
boniferous to early Permian intrusion age can be expected given the regional geological
context (see Laurent et al., 2017 and references therein), (ii) showing 206Pb/238U dates
close to that of concordant, Pbc-free zircon from the same sample. The methodology
applied is as follows.

For each ratio of an individual measurement, 204Pb was estimated by subtracting the
average background signal on mass 204, which mostly results from 204Hg in the carrier gas
(≈500 cps), to the measured intensity. Composition of common Pb (i.e. 206Pb/204Pb
and 207Pb/204Pb ratios) was determined using a model Pb composition (Stacey and
Kramers, 1975) at the age of 305 Ma. The inter-elemental fractionation 206Pb/238U
during the 21 s of sample ablation was corrected for each analysis by applying a linear
regression through all measured ratios, excluding the outliers (±2σ), and considering
that the intercept with the y-axis represents the "true" ratio. Elemental fractionation
over the analytical session, as well as instrumental mass discrimination, were corrected
by normalization to the 206Pb/238U (0.0982) and 207Pb/206Pb (0.061) ratios of reference
zircon GJ-1 (Jackson et al., 2004), using standard bracketing. Elemental concentrations
in U and Pb were calculated using raw signal (in cps) of 238U and 206Pb for each spot,
corrected from the analytical drift over the session (monitored using GJ-1), normalized
to the recommended values of the GJ-1 zircon standard (U = 280.1 ppm; Pb = 25.5 ppm)
and applying a spot size-dependent correction. Th/U ratio was determined for each spot
using the mass fractionation-corrected 232Th/238U ratio, normalized to the recommended
value of the GJ-1 zircon standard (Th/U = 0.0296).

Data from secondary standards were processed as unknowns to check the accuracy
of the corrections (Fig. B.1). Our results are within error of the recommended TIMS
values for the standard zircon BB-16 (weighted mean 206Pb/238U = 560 ± 0.8 Ma; Santos
et al., in press). For Ple²ovice, our in-situ measurements outline two statistically distinct
Concordia ages of c. 343 and c. 336 Ma (see Fig. B.1), the latter being identical within
error to the TIMS weighted mean 206Pb/238U age of 337.13 ± 0.37 Ma reported by Sláma
et al. (2008a). The c. 343 Ma-old population may re�ect the presence of older, inherited
zircon domains within the Ple²ovice grains.

The quoted uncertainties for each individual analysis are (i) for the 206Pb/238U ratio,
the quadratic addition of the within-run precision (2σ) with the external reproducibility
of standard zircon GJ-1 during the corresponding analytical session (0.5 to 1.5%, 2σ);
and (ii) for the 207Pb/206Pb ratio, a 207Pb signal-dependent uncertainty propagation,
as described by Gerdes and Zeh (2009). The 207Pb/235U ratio was calculated using the
206Pb/238U and 207Pb/206Pb ratios and assuming a natural 238U/235U of 137.88, and
its uncertainty was obtained by quadratic addition of propagated errors on both ratios.
Age calculations and data plotting were performed using the Isoplot/Ex v.4.15 (Ludwig,
2008) for MS Excel®.
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Figure B.1: Wetherill diagrams (206Pb/238U vs. 207Pb/235U) for secondary zircon standards
Ple²ovice and BB-16 analysed during the two analytical sessions conducted at GUF. Error ellipses
and ages are displayed at 2σ level of uncertainty. Yellow and blue ellipses are those considered
for Concordia age calculations.

B.3.2 Analytical details on the SUN session

U-Pb data were obtained at the Central Analytical Facility, Stellenbosch University, and
were acquired by laser ablation � single collector � magnetic sector �eld � inductively
coupled plasma�mass spectrometry (LA�SF�ICP�MS) employing a Thermo Finnigan
Element 2 mass spectrometer coupled to a Resonetics Resolution S155 excimer laser
ablation system. The methods employed for analysis are described in detail by Frei and
Gerdes (2009). Data processing was performed using an in-house MS Excel® spreadsheet
(Gerdes and Zeh, 2006). The GJ-1 zircon reference material (Jackson et al., 2004) was
used as primary standard. For quality control, the 91500 (Wiedenbeck et al., 1995; 2004),
Temora (Black et al., 2003; 2004) and Ple²ovice (Sláma et al., 2008a) zircon reference
materials were analysed, and the results were in agreement with the published ID�TIMS
ages (Fig. B.2). The calculation of dates, as well as plotting of Tera-Wasserburg diagram
were performed using Isoplot/Ex v.4.15 (Ludwig, 2008) for MS Excel®.

B.3.3 Analytical details on the ETH session

Zircon U�Pb isotopic analyses were carried out at ETH Zürich, Switzerland by laser
ablation � inductively coupled plasma � sector �eld � mass spectrometry (LA�ICP�
SF�MS) using a RESOlution M-50 (Resonetics/ASI) 193 nm ArF excimer laser system
attached to a ThermoFinnigan Element XR mass spectrometer.

We used a laser repetition rate of 5 Hz, a spot size of 20 or 30 µm and a laser output
energy of 80 to 100 mJ, corresponding to an energy density on sample of c. 2.0 to 2.5
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Figure B.2: Wetherill diagrams (206Pb/238U vs. 207Pb/235U) for secondary zircon standards
Ple²ovice, Temora and 91500 analysed during the analytical sessions conducted at SUN. Error
ellipses and ages are displayed at 2σ level of uncertainty. Yellow ellipses are those considered for
Concordia age calculations.

J.cm−2. The sample surface was cleaned immediately before each analysis by three pre-
ablation pulses. Ablation was performed in a Laurin Technic S-155 dual-volume ablation
cell �uxed with carrier gas consisting of c. 0.7 L.min−1 He (5.0 grade), mixed directly
after the ablation cell with sample gas consisting of c. 1 L.min−1 Ar (6.0 grade) prior
to introduction into the plasma of the ICP�SF�MS. We used Ni X-cones speci�cally
dedicated to zircon U�Pb geochronology. The signal was tuned for maximum sensitivity
for Th and U while keeping low the production of oxides (the resulting 248ThO+/232Th+

ratio was ≤0.25%). The obtained sensitivities on zircon reference material GJ-1 for 238U
and 232Th were 7000 to 9000 cps.ppm−1 at 30 µm spot size, 5 Hz and c. 2 J.cm−2. The
intensities for the following isotopes were acquired using time resolved-peak jumping
(between brackets are the dwell times in ms) and triple detector mode: 202Hg (10),
204(Hg+Pb) (20), 206Pb (100), 207Pb (100), 208Pb (10), 232Th (10), 235U (10), 238U (20)
(total sweep time of 0.29 s). A total of 165 mass scans were acquired over c. 50 s
measurement (20 s of background measurement followed by 30 s of sample ablation).

The resulting intensities were subsequently processed o�ine with the Igor Pro Io-
lite v2.5 software (Hellstrom et al., 2008), using the VizualAge data reduction scheme
(Petrus and Kamber, 2012). Background-subtracted intensities were used to calculate
isotope ratios, which were corrected for downhole Pb/U and Pb/Th fractionation (after
Paton et al., 2010), instrumental mass discrimination and drift through the analytical
session by standard bracketing against zircon reference material GJ-1 (using isotope ra-
tios recommended by Horstwood et al., 2016). No common Pb correction was carried
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out. Elemental concentrations in U, Th and Pb were calculated using average intensities
(in cps) of 238U, 232Th and 208Pb for each spot and sensitivities calculated from the
GJ-1 zircon standard, after correction of sensitivity drift over the session. The quoted
uncertainties for each individual analysis correspond to the internal (2 S.E.) statistical
error and propagated uncertainty based on the scatter of the primary reference material
(see Paton et al., 2010).

Data from secondary zircon reference materials were processed as unknowns to check
the accuracy of the corrections (Fig. B.3 and B.4. The obtained U-Pb dates are close to
the reference ages determined by TIMS for the zircon reference materials Ple²ovice (Sláma
et al., 2008a), 91500 (Wiedenbeck et al., 1995; 2004) and Temora (Black et al., 2003).
Age calculations and data plotting were performed using the Isoplot toolkit (Ludwig,
2008) v.4.15 for MS Excel®.
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Figure B.3: Wetherill diagrams (206Pb/238U vs. 207Pb/235U) for secondary zircon standards
Ple²ovice and Temora analysed during the three analytical sessions at ETH Zuerich. Error
ellipses and ages are displayed at 2σ level of uncertainty. Yellow ellipses are those considered for
Concordia age calculations.
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Figure B.4: Wetherill diagrams (206Pb/238U vs. 207Pb/235U) for secondary zircon standard
91500 analysed during the three analytical sessions at ETH Zuerich. Error ellipses and ages
are displayed at 2σ level of uncertainty. Yellow ellipses are those considered for Concordia age
calculations.

331



B.3.4 Zircon U�Pb results of Chapter 6

Orthogneisses

CHA-15-35 Forty-two measurements were conducted on 30 zircon grains. Eight anal-
yses revealed high estimated common Pb contents (>1.2%) and will not be examined
further because the calculated discordant dates can be interpreted as a combination of
Pb loss and incorporation of Pbc without any possibility to discriminate between both.
Seventeen zircon spots are discordant (concordance <93%) with 206Pb/238U dates rang-
ing from 469 ± 7 Ma (a163) to 589 ± 8 Ma and 207Pb/206Pb dates from 547 ± 20 Ma
(a192) to 736 ± 38 Ma (a144). Estimated common Pb concentrations in the spotted
zircon domains are low to moderate (up to 0.9%). Seventeen measurements performed
on zircon rims and core-free grains yielded concordant 206Pb/238U dates out of which
eleven are statistically equivalent and allow calculation of a Concordia date of 544.1 ±
4.9 Ma (MSWD of concordance+equivalence=0.79). Three analyses conducted on two
zircon cores and one zircon rim yielded older 206Pb/238U dates of 559 ± 8 (a161 and
a166) and 570 ± 8 Ma (a190), respectively. Three spots drilled on zircon rims and core-
free grains gave younger206Pb/238U dates than the main population ranging from 532 ±
8 Ma (a178) to 528 ± 7 Ma (a184) but all three are nearly discordant.

CHA-15-52 Twenty-eight spots were drilled on 23 grains. Five analyses showed sub-
stantial amounts of Pbc (>1.2%) and were not considered further. Two analyses of
zircon cores yielded slightly discordant (concordance: c. 92%) 207Pb/206Pb dates of 2481
± 8 Ma (a73) and 2486 ± 7 Ma (a83). Two measurements yielded identical concordant
206Pb/238U dates of 702 ± 12 Ma (a79, homogeneous grain) and 701 ± 10 Ma (a60,
core). One measurement performed on a zircon rim (a72) has a moderate Pbc content
(c. 0.8%) and a discordant (concordance: 69%) 207Pb/206Pb date of 787 ± 32 Ma. The
18 remaining analyses displayed negligible to low estimated Pbc concentrations (<0.4%).
Ten spots drilled on a core and a rim gave concordant 206Pb/238U dates of 573 ± 9 Ma
(a82) and 572 ± 10 Ma (a58). Eight measurements performed on cores, rims and homo-
geneous grains yielded statistically equivalent 206Pb/238U dates out of which a Concordia
date of 544.4 ± 5.2 Ma (MSWDC+E=0.9) can be calculated. The eight last spots are all
discordant with 207Pb/206Pb dates ranging from 585 ± 22 Ma (a85) down to 547 ± 23
Ma (a87).

Granites

CHA-15-24 Thirty spots were drilled on 26 zircons grains which often appear homoge-
neous in CL-images and seldom show core-rim relationships. Sixteen spots are markedly
discordant and have large amounts of common Pb (often >3%). Two spots with negligi-
ble amounts of Pbc yielded discordant 207Pb/206Pb dates of 753 ± 30 (a346, homogenous
zircon) and 772 ± 20 (a345, zircon core) Ma respectively. Two more discordant (concor-
dance: c. 40%) analyses performed on homogeneous zircons showed moderate amounts
of Pbc (from 0.6 to 1.2%) and yielded 207Pb/206Pb dates of 615 ± 32 (a317) and 579
± 30 Ma (a355). Five measurements conducted on a zircon core, three rims and an
homogeneous zircon yielded similar 206Pb/238U dates ranging from 560 ± 8 Ma (a359)
down to 537 ± 10 Ma (a326). Two analyses conducted on homogeneous zircon grains
show concordant 206Pb/238U dates of 515 ± 8 (a322) and 332 ± 5 Ma (a336) respectively.
Finally, a zircon rim and a homogeneous zircon, both devoid of Pbc produced equivalent
206Pb/238U dates of 308 ± 5 (a335) and 305 ± 5 (a343) Ma respectively. Common-lead
corrected (see introductory section for the method) rim analysis a344 shows a similar
206Pb/238U date of 304 ± 5 Ma. A Concordia date of 305.8 ± 4.4 Ma can be calculated
out of these 3 measurements with a MSWD of concordance+equivalence equal to 1.5.
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CHA-15-49 Eleven analyses were performed on 9 grains. Zircon from this sample
are almost always homogeneous and very few cores can be observed. The proportion of
grains with high aspect ratios (>5) is higher than in other samples. Three measurements
display very high estimated Pbc contents (>7%) and are markedly discordant. They will
not be considered further. Four analyses gave concordant 206Pb/238U dates: 776 ± 10
Ma (core, a453), 815 ± 9 Ma (homogeneous grain, a457), 360 ± 5 Ma (homogeneous
grain, a444) and 305 ± 4 Ma (homogeneous grain, a434). The four remaining spots
yielded discordant results. Two rims have 206Pb/238U dates of c. 600 Ma, one core a
206Pb/238U date of c. 500 Ma and a homogeneous grain a 207Pb/206Pb date of 1934 ± 8
Ma.

CHA-15-41 Forty-two spots were drilled on 34 zircon grains. Most grains are core-free
and display narrow oscillatory zoning patterns in CL but some have broader alternating
bands (up to 10 µm large). Few grains with clear core-rim relationships are also present
in the investigated collection. Five analyses have high Pbc contents (>1.4%) and will
not be considered further. One measurement performed on a core-free zircon yielded a
concordant 206Pb/238U date of 1008 ± 13 Ma (a48). Seventeen spots drilled on zircon
rims, cores and core-free crystals show low to moderate amounts of Pbc (mostly <0.6%
but sometimes up to 1.1%) and are discordant (concordance <94%). Their 207Pb/206Pb
dates range from 484 ± 76 Ma (a29) to 850 ± 37 Ma (a17). Thirteen measurements on
zircon rims and core-free grains display concordant 206Pb/238U dates between 542 ± 7 Ma
(a45) and 652 ± 10 Ma (a40). One spot on a homogeneous grain (a25) gives a younger
concordant 206Pb/238U date of 429 ± 7 Ma. Five analyses yielded 206Pb/238U dates of
c. 300 Ma and a Pbc correction was applied to 4 of them. The �ve are statistically
equivalent and a Concordia date of 304.0 ± 3.9 Ma can be calculated (MSWDC+E=1.4).

CHA-15-25 Twenty analyses were conducted on 17 grains, all but one from the �rst
population at GUF. Forty-two spots were drilled at ETH on 32 grains. Both datasets
will be described concomitantly (see discussion on their equivalence in the introductory
section). Spot names will be referred to as faXX and zaYY for those performed at GUF
and ETH, respectively. Twenty-nine measurements are highly discordant (concordance
<58%) and will not be discussed further. Fourteen spots yielded concordant 206Pb/238U
dates ranging from 592 ± 5 Ma (za27) down to 520 ± 6 Ma (fa412). Seventeen analyses
gave similar yet discordant 206Pb/238U dates, from 563 ± 3 Ma (za42) down to 514 ±
4 Ma (za36). Finally, one measurement performed on a zircon core yielded an older
concordant 206Pb/238U date of 910 ± 10 Ma (fa422).

CHA-15-19 Twenty-two analyses were performed on 22 grains. They all display char-
acteristic oscillatory zoning on CL images and are almost always devoid of inherited
cores. Nine spots revealed substantial amounts of Pbc (>1%) in the zircon structure and
will not be described and interpreted further. Seven analyses performed on homogeneous
zircon and zircon rims with low Pbc contents (<0.7%) are discordant (concordance: 54�
93%). Five have 206Pb/238U dates ranging from 321 ± 5 (a406) down to 256 ± 5 Ma
(a408) and 207Pb/206Pb dates ranging from 540 ± 65 (a412) down to 365 ± 33 Ma (a421).
One spot drilled on zircon rim (a411) yielded a 207Pb/206Pb date of 559 ± 15 Ma and
another one (a415) an older 207Pb/206Pb date of 598 ± 23 Ma. Amongst the concordant
spots, analysis a403 show a 206Pb/238U date of 316 ± 4 Ma. The �ve remaining are
statistically equivalent and allow the calculation of a Concordia date of 305.3 ± 3.9 Ma
(MSWDC+E=0.6).

CHA-15-33 Fifty-three analyses were conducted on 44 grains. Zircon are notably
small in this sample (often <100 µm in length). Oscillatory zoning was almost always
observed together with frequent core�rim relationships. Twelve analyses are markedly

333



discordant, show elevated Pbc contents (often >3%) and will not be discussed further.
Twelve measurements performed on homogeneous grains, rims and cores gave concordant
206Pb/238U dates ranging from 621 ± 7 (a317) down to 476 ± 5 Ma (a351) with a cluster
at c. 540 Ma. One spot yielded an older concordant 206Pb/238U date of 968 ± 11
Ma. Twenty analyses are discordant (concordance: 52�93%) and show a wide range of
206Pb/238U dates between 733 ± 8 (a366) and 345 ± 4 Ma (a393). Six common lead
corrected analyses, performed on 5 zircon rims and a homogeneous grain are statistically
equivalent and a Concordia date of 302.2 ± 3.7 Ma (MSWDC+E=1.6) can be calculated
out of them. Two spots also performed on zircon rims yielded younger 206Pb/238U dates
of 293 ± 4 (a327) and 276 ± 4 Ma (a382) but are both discordant, even after the Pcc
correction applied to spot a327.

CHA-15-34 Thirty-eight spots were drilled on 28 grains. Spot a110 (core-free grain)
revealed very high Pbc contents (>3.1%) and will not be considered further. Seven
analyses show moderate to elevated concentrations in Pbc (from 0.7 to 1.4%) and are
all discordant with 207Pb/206Pb dates ranging from 961 ± 48 Ma (a91) to 578 ± 37
Ma (a127) and 206Pb/238U dates from 392 ± 6 Ma (a109) to 531 ± 7 Ma (a98). One
analysis of a zircon rim (a130) is slightly discordant (concordance = 93%) and has a
207Pb/206Pb date of 1948 ± 7 Ma. Measurements performed on zircon core a100 yielded
a subconcordant 206Pb/238U date of 778 ± 11 Ma. Spot a120 is discordant (concordance
= 84%) and has a 207Pb/206Pb date of 964 ± 18 Ma.

CHA-15-51 Thirty-four spots were drilled on 26 grains. All zircon grains display
oscillatory zoning and some core�rim relationships have been observed. Fifteen measure-
ments yielded discordant 206Pb/238U dates (concordance: 7�73%), feature moderate to
very high common Pb contents (from 0.3 up to 20%) and will not be discussed further.
Eight analyses performed on homogeneous grains, a core and a rim are concordant and
show 206Pb/238U dates ranging from 570 ± 6 (a273) down to 524 ± 7 Ma (a275). Seven
measurements gave discordant (concordance: 77�92%) 206Pb/238U dates in the same
range from 550 ± 7 Ma (a302) down to 508 ± 6 Ma (a308). One spot performed on a
zircon core (a296) is discordant, shows an older 206Pb/238U date of 651 ± 7 Ma and a
207Pb/206Pb date of 791 ± 26 Ma.

BOR-16-01 Forty-six spots were drilled on cores, rims and homogeneous grains. Ten
analyses are markedly discordant (concordance < 44%) and will not be considered further.
Twelve concordant measurements yielded 206Pb/238U dates identical within error and
a statistically acceptable Concordia date of 309.7 ± 3.6 Ma can be calculated out of
them (MSWDC+E=1.09). Nine additional measurements show similar yet discordant
206Pb/238U dates and de�ne a trend between common and radiogenic Pb compositions.
This trend intercepts the Concordia curve at 309.5 ± 3.6 Ma. Seven analyses yielded
older concordant 206Pb/238U dates ranging from 549 ± 6 Ma down to 316 ± 2 Ma. One
spot gave a younger concordant 206Pb/238U date of 297 ± 2 Ma. The rest of the data is
discordant.

ROC-16-01 Thirty-eight measurements are notably discordant (concordance < 37%)
and will not be further commented on. Three concordant spots performed on cores
show Proterozoic 206Pb/238U dates ranging from 877 ± 6 Ma to 643 ± 9 Ma. One grain
domain has a discordant 207Pb/206Pb date of 3437 ± 90 Ma. Twenty-three measurements
trend along a mixing line between radiogenic and common Pb composition, with a lower
intercept at 320.3 ± 3.7 Ma. Considering only the concordant analyses belonging to the
trend, a Concordia date of 319.8 ± 3.8 Ma (MSWDC+E=1.5) can be calculated. Two
measurements yielded younger 206Pb/238U dates of 312 ± 2 (a8) and 304 ± 2 Ma (a71),
respectively. The rest of the data is discordant.
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Migmatites

CHA-15-43 (in-source leucosome) Out of the 27 analyses, 3 are highly discordant
(concordance <20%) and will not be examined further. Eleven measurements performed
on core-free grains and zircon rims yielded discordant 206Pb/238U dates ranging from
555 ± 8 (a259) down to 406 ± 4 Ma (a232). The 13 remaining spots showed concordant
results.

CHA-15-63 A total of 30 analyses were conducted on 28 zircons. Most of the zircons
do not show core-rim relationships. Thirteen spots have elevated Pbc contents (from 1.5
to 11.2%) and notably discordant dates (mostly between 15 and 60% concordance), they
won't be considered further. So will the overconcordant spot a279 be. Eight analyses
performed on zircon rims and core-free grains showed low to moderate Pbc contents
(<0.7%) and yielded discordant 207Pb/206Pb dates (concordance <94%) ranging from
768 ± 70 Ma (a309) to 567 ± 15 Ma (a310). One spot has a younger 207Pb/206Pb date
of 538 ± 32 Ma. Core-free grains, cores and rims all gave 206Pb/238U dates between 590
± 7 (a266) and 535 ± 6 Ma (a243) with a clear cluster in the period 550�540 Ma.

CHA-15-47 Twenty-�ve spots were drilled on 23 zircons grains. Zircons usually show
core-rim relationships (most often dark cores surrounded by righter rims) buts some
grains are core-free. Nine analyzed zircon domains contained substantial amount of Pbc
(>1.2%, up to 24%) and won't be described further. Six analyses of zircon rims and
core-free zircons are discordant (60% < concordance < 92%) and have low Pbc contents
(below detection limit to 0.4%). 207Pb/206Pb dates show two clusters: (i) between 572
± 16 Ma (a457) and 599 ± 23 Ma (a483); (ii) between 759 ± 41 Ma (a479) and 769 ±
42 Ma (a470). Two spots yielded concordant 206Pb/238U dates of 561 ± 8 Ma (rim a461)
and 575 ± 8 Ma (spot a475, core-free zircon). Ten Concordant spots yielded 206Pb/238U
dates clustering between 575 ± 8 (a475) and 540 ± 8 Ma (a458).

CHA-15-48 Sixty-six analyses were performed on 56 zircon grains. Twenty-four mea-
surements performed on zircons with our without core-rim relationships yielded 206Pb/238U
dates between 589 ± 8 Ma and 415 ± 8 Ma but revealed signi�cant amounts of com-
mon Pb (> 0.6%) resulting in a marked discordance (concordance < 68%). Only the 13
analyses with less than 2% Pbc will be further considered together with the 42 ones with
Pbc < 0.6%. Two zircon cores have discordant late Archean to early Paleoproterozoic
207Pb/206Pb dates of respectively 2519± 6 Ma (a248) and 2437± 29 Ma (a223). One spot
(a219) yielded a discordant 207Pb/206Pb date of 1973 ± 16 Ma. Four spots performed
on zircon cores devoid of common Pb yielded concordant to sub-concordant 206Pb/238U
dates between 623 ± 9 Ma (a227) and 575 ± 9 Ma (a274). Five analyses conducted on
core-free zircons and zircon rims yielded concordant 238U/206Pb dates ranging from 559
± 9 Ma (a214) to 574 ± 8 Ma (a218). Twenty-�ve measurements performed on cores,
rims or core-free grains are discordant (concordance <93%). Among them, 12 have low
Pbc contents (<0.5%), show concordance between 75% and 93% and 207Pb/206Pb dates
between 559 ± 18 Ma (a265) and 657 ± 27 Ma (a235). The 13 remaining have Pbc
>0.5% with concordance mostly between 55% and 68% and older 207Pb/206Pb dates.
Eighteen analyses yielded concordant 206Pb/238U dates ranging from 551 ± 7 Ma (a276)
to 518 ± 8 Ma (a224).

CHA-15-17 Twenty-one spots were drilled on 21 grains, only on zircon rims and core-
free crystals apart from spot a423 which corresponds to a core. Five analyses bear
substantial amounts of Pbc (>1.1%) and will not be further discussed. Eleven analyses
are discordant (concordance: 76 to 93%), show subordinate to moderate amounts of
Pbc (below detection limit to 0.9%) out of which 10 206Pb/238U dates between 548 ± 8
Ma (a429) and 510 ± 7 Ma (a432) and 207Pb/206Pb dates ranging from 569 ± 20 Ma
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(a424) to 693 ± 19 Ma (a450). Spot a452 has younger 206Pb/238U and 207Pb/206Pb
dates of respectively 332 ± 5 Ma and 432 ± 31 Ma. Four core-free crystals have identical
concordant 206Pb/238U dates of 539�538 ± 7�8 Ma. One zircon core yielded an older
date of 562 ± 9 Ma (a423).

CHA-15-65L Twenty-�rst spots were drilled on 18 zircons grains. Not a single con-
cordant measurement was obtained for this sample. All zircon domains showed very
high common Pb content and are highly discordant (concordance <23%). The 3 least
discordant analyses (conc.: 67�93%) have 206Pb/238U dates between 547 ± 8 (a388) and
511 ± 9 Ma (a374).

CHA-15-65M A total of 85 measurements were performed, out of which 33 were
markedly discordant and not considered further. Two zircon cores have discordant
207Pb/206Pb dates of 1557 ± 21 Ma (conc.: 95%, a525) and 1773 ± 12 Ma (conc.:
82%, a509). Nineteen other spots were discordant. Those performed on zircon cores
show a range of 206Pb/238U dates spanning between 853 ± 12 (a529) and 566 ± 10 Ma
(a584). Discordant rims and core-free grains have younger 206Pb/238U dates, from 565
± 8 (a513) down to 505 ± 8 Ma (a484). A range of cores, rims and core-free grains
yielded concordant 206Pb/238U dates between 974 ± 14 (a490) and 542 ± 8 Ma (a493)
once again clustering around 555�545 Ma.

B.3.5 Data tables

In the following are reported the measurements of zircon standards for each session:

� Table B4: Results of LA�ICP�MS U�Pb analyses of zircon standards performed
during the sessions at GUF, 2nd and 3rd of May, 2016;

� Table B5: Results of LA�ICP�MS U�Pb analyses of zircon standards performed
during the session at SUN, 26th of October, 2016;

� Table B6: Results of LA�ICP�MS U�Pb analyses of zircon standards performed
during the sessions at ETH Zürich, 12 to 14th of February, 2017.

Analyses of zircon grains from investigated samples can be found in the following
tables:

� Table B7: Results of LA�ICP�MS zircon U�Pb analyses performed during the
sessions at GUF, 2nd and 3rd of May, 2016;

� Table B8: Results of LA�ICP�MS zircon U�Pb analyses performed during the
session at SUN, 26th of October, 2016;

� Table B9: Results of LA�ICP�MS zircon U�Pb analyses performed during the
sessions at ETH Zürich, 12 to 14th of February, 2017.
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B.4 Zircon Hf isotope compositions

B.4.1 Analytical details on the GUF session

The analytical procedure is exactly the same as followed by Couzinié et al. (2017) and
the reader is referred to section A.3.

B.4.2 Analytical details on the LMV session

The procedure followed in the course of this analytical session has been published in
Moyen et al. (2017b). Hafnium isotope measurements were performed with a Thermo
Scienti�c Neptune Plus multi-collector ICP�MS coupled to the Resonetics M50E 193nm
laser excimer system. The MC�ICP�MS is equipped with 9 Faraday cups and ampli�ers
with 1011 Ω. Data were collected in static mode (171Yb, 173Yb, 174Hf, 175Lu, 176Hf-Yb-
Lu, 177Hf , 178Hf , 179Hf ). The overall operating conditions and instrument settings are
reported in Table B12. Each LA�MC�ICP�MS analysis consisted of 20 s of gas back-
ground data followed by 40 s of ablation. With an integration time of 1 s, each analysis
typically produced 36-40 isotopic ratios. Mass bias e�ects on Hf were corrected using
an exponential law and a true value for 179Hf/177Hf of 0.7325 (Patchett and Tatsumoto,
1980; Patchett et al., 1981). Data were reduced in the following order and based upon
user-selected background and sample integration intervals. Firstly, the mean signal inten-
sity of the 20-second gas background was subtracted from the signal acquired during the
laser �ring onto the sample. These corrected signal intensities were taken further during
data reduction. βY b was determined using the 173Yb/171Yb measured during each zircon
analysis and the ref 173Yb/171Yb of 1.132685 (Chu et al., 2002; Fischer et al., 2011),
following the equation :

βY b =

ln
173Y b/171Y bref
173Y b/171Y bmeas

ln
M176

M171

(B.1)

The 176Yb isobaric interference on 176Hf was then determined using 176Yb/173Yb of
0.79618 and the 176Lu isobaric interference on 176Hf was determined using the measured
interference-free 175Lu mass assuming that βLu = βY b, and using the ref 176Lu/175Lu of
0.02655 (Vervoort et al., 2004).

176Y bcalculated =173 Y bmeasured ×
(

176Y b
173Y b

)
ref

×
(
M173

M176

)β(Y b)
(B.2)

176Lucalculated =175 Lumeasured ×
(

176Lu
175Lu

)
ref

×
(
M175

M176

)β(Y b)
(B.3)

Both determined 176Lu and 176Yb signals were subtracted from the total 176 signal
intensity and the calculated 176Hf signal were used to determine the mass biais using the
true 179Hf/177Hf ratio of 0.7325 (Patchett and Tatsumoto, 1980), following the equation
:

βHf =

ln
179Hf/177Hfref
179Hf/177Hfmeas

ln
M179

M177

(B.4)

Finally the interference corrected 176Hf/177Hf is evaluated according to the following
equation:
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(
176Hf
177Hf

)
corrected

=

(
176(Hf + Y b+ Lu)meas −176 Y bcalc −176 Lucalc

177Hfmeas

)
×
(
M176

M177

)β(Hf)
(B.5)

The 176Hf/177Hf for all samples were corrected for mass bias using βHf . Outlier re-
jection of the Hf isotopic ratio for each analysis were performed using a two-standard
deviation criterion.

Table B10: Operating conditions and instrument settings for Hf analyses

B.4.3 Data tables

This section provides the results of zircon LA�MC�ICP�MS Lu�Hf isotope measure-
ments. The data are reported in the following tables:

� Table B11: In situ LA-MC-ICP-MS Lu-Hf isotope data for zircon standards an-
alyzed at GUF, 1st of August, 2016;

� Table B12: results for amphibole-bearing gneisses sampled at the Riverie quarry,
see section 3.5.

� Table B13: results of analyses conducted on zircon standards during the analytical
session performed at LMV.

� Table B14: results of analyses conducted on zircon grains from investigated sam-
ples during the analytical session performed at LMV.
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B.5 Monazite U�Pb isotope measurements

B.5.1 Analytical details on the LMV session

U�Pb isotopic data were obtained using the laser ablation inductively coupled plasma
mass spectrometry (LA�ICP�MS) unit maintained at the Laboratoire Magmas and Vol-
cans, Clermont-Ferrand, France, from monazite grains separated from rock powders as
well as grains identi�ed in standard petrographic thin sections. The analyses involved
ablation with a Resonetics M-50 Excimer laser system operating at a wavelength of 193
nm (Müller et al., 2009). Spot diameter of 9 µm was associated with repetition rates
of 3 Hz and a �uence of 2.9 J/cm−2. The ablated material was carried into helium and
then mixed with nitrogen and argon before injection into the plasma source of a Thermo
Element XR Sector Field high-resolution ICP�MS. The analytical method for isotope
dating with LA-ICPMS is similar to that reported in Paquette and Tiepolo (2007), Hu-
rai et al. (2010) and Paquette et al. (2014). Data are corrected for the U�Pb fractionation
occurring during laser sampling and for instrumental mass bias by standard bracketing
with repeated measurements of the Trebilcock monazite (Tomascak et al., 1996; Kohn
and Vervoort, 2008). Reproducibility and age uncertainty of reference material are prop-
agated by quadratic addition (Horstwood et al., 2003). Repeated analyses of the Itambé
monazite treated as unknowns independently controlled the reproducibility and accuracy
of corrections. Data reduction was carried out using the GLITTER® software package
from Macquarie Research Ltd. (Van Achterbergh et al., 2001; Jackson et al., 2004).
Calculated ratios were exported and concordia ages and diagrams were generated using
Isoplot/Ex v. 4.15 software package for MS Excel® (Ludwig, 2008). U�Th�Pb concen-
trations were calibrated relative to the certi�ed contents of these elements in the Itambé
monazite (Gasquet et al., 2010). The methodology is summarized Table B15.

Results of LA�ICP�MS U�Pb dating of the Itambé monazite reference material are
displayed Table B16. The obtained weighted average 207Pb/235U age of 507.8 ± 3.8 Ma
(Fig. B.5), overlapping within error with the ID�TIMS literature value (Gasquet et al.,
2010).
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Figure B.5: Wetherill diagram (206Pb/238U vs. 207Pb/235U) for secondary monazite standards
Itambé analysed during the analytical sessions conducted at LMV. Error ellipses and ages are
displayed at 2σ level of uncertainty.

B.5.2 Data tables

This section provides the analytical conditions and results of monazite LA�ICP�MS U�
Pb isotope measurements reported in the following tables:

� Table B15: Summary of experimental conditions for LA�ICP�MS analyses con-
ducted at LMV;

� Table B16: Results of LA�ICP�MS U�Pb analyses of monazite standard Itambé,
performed at LMV, 15th of November, 2016;

� Table B17: Results of LA�ICP�MS U�Pb analyses of monazite from investigated
samples, performed at LMV, 15th of November, 2016;

B.6 AMS measurements

Table B18 presents the results of AMS measurements performed at Saint-Etienne Uni-
versity (see section 6.2.3 for analytical details).
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Table B15. Summary of experimental conditions for LA-ICPMS analyses conducted at LMV 
Laboratory & Sample 
Preparation 

 

Laboratory name Laboratoire Magmas & Volcans, Clermont-Ferrand, France 
Sample type/mineral Monazite 

Sample preparation Polished thin sections, polished 1-inch resin mounts, 0.25µm polish to 
finish 

Imaging BSE with a Zeiss MERLIN SEM at Stellenbosch university 
Laser ablation system  
Model & type Resonetics/M-50E, ATL AtlexExcimer 
Ablation cell & volume Laurin Cell ® two volumes cell, Laurin Technic Ltd., volume ca. 1-2 cm3 
Laser wavelength  193 nm 
Pulse width  <4 ns 
Fluence  2.9 J.cm-2  
Repetition rate  3 Hz  
Spot size  9 µm 
Sampling mode / pattern Single spot 
Carrier gas 100% He, Ar make-up gas and N2 combined using the Squid® device from 

RESOlution Instruments. 
Background collection  30 secs 
Ablation duration 60 secs 
Wash-out delay 30 secs 
Cell carrier gas flow  0.7 l/min 
ICP-MS Instrument  
Make, Model & type Thermo Element XR single collector sector field ICP-MS 
Sample introduction Via conventional tubing  
RF power  1300W 
Make-up gas flow  0.95 l/min Ar 
Detection system Single collector secondary electron multiplier 
Masses measured 204, 206, 207, 208, 232, 238 
Integration time per peak  10 ms  
Total integration time per 
reading  

130 ms 
(should represent the time resolution of the data) 

Sensitivity / Efficiency  150 000 cps/ppm U and Th (3µm.s line, 47µm, 10 Hz, 9 J.cm-2 on NIST 
612 reference material) 

Dead time  35 ns 
Data Processing  
Gas blank 30 second on-peak  
Calibration strategy Monazite: Trebilcock as primary reference material and Itambé as 

secondary reference material. 
Reference Material info Itambé monazite (Gasquet et al. 2010) 

Trebilcock monazite (Tomascak et al. 1996, Kohn and Vervoort 2008) 

Data processing package 
/ Correction for LIEF 

GLITTER ® (van Achterbergh et al. 2001) 
 

Mass discrimination Monazite: standard-sample bracketing with 207Pb/206Pb and 206Pb/238U 
normalized to Trebilcock 

Common-Pb correction, 
composition and 
uncertainty 

No common-Pb correction.  
 

Uncertainty level & 
propagation 

Ages are quoted at 2σ  absolute, propagation is by quadratic addition 
according to Horstwood et al. (2003). Reproducibility and age uncertainty 
of reference material are propagated. 

Quality control Itambé: weighted average  207Pb/235U age = 507.8±3.8 (2σ) 

 

395



T
a

b
le

 B
1

6
: 

R
e

s
u

lt
s
 o

f 
L

A
-I

C
P

-M
S

 U
–

P
b

 a
n

a
ly

s
e

s
 o

f 
m

o
n
a

z
it
e

 s
ta

n
d

a
rd

 I
ta

m
b

é
, 

p
e

rf
o

rm
e

d
 a

t 
L

M
V

, 
1
5

th
 o

f 
N

o
v
e

m
b

e
r,

 2
0

1
6

g
ra

in
2

0
7
P

b
d

±
2
s

2
0

6
P

b
d

±
2
s

rh
o

e
2

0
6
P

b
±
2
s

2
0

7
P

b
±
2
s

2
3

5
U

(a
b
s
.)

2
3

8
U

(a
b
s
.)

2
3

8
U

(M
a
)

2
3

5
U

(M
a
)

z
5
 1

5
1
1
1
6
a

0
.6

4
6
9

0
.0

2
2
1

0
.0

7
9
5
4

0
.0

0
2
2
5

0
.8

3
4
9
3

1
3

5
0
7

1
4

z
6
 1

5
1
1
1
6
a

0
.6

4
8
0

0
.0

2
1
9

0
.0

7
8
6
0

0
.0

0
2
2
2

0
.8

4
4
8
8

1
3

5
0
7

1
4

z
2
7
 1

5
1
1
1
6
a

0
.6

4
7
7

0
.0

2
4
7

0
.0

7
7
7
5

0
.0

0
2
2
5

0
.7

6
4
8
3

1
3

5
0
7

1
5

z
2
8
 1

5
1
1
1
6
a

0
.6

4
6
1

0
.0

2
3
7

0
.0

8
0
7
0

0
.0

0
2
3
1

0
.7

8
5
0
0

1
4

5
0
6

1
5

z
5
 1

5
1
1
1
6
b

0
.6

4
8
7

0
.0

2
1
1

0
.0

7
8
7
9

0
.0

0
2
2
2

0
.8

7
4
8
9

1
3

5
0
8

1
3

z
6
 1

5
1
1
1
6
b

0
.6

4
7
2

0
.0

2
1
7

0
.0

8
2
8
7

0
.0

0
2
3
1

0
.8

3
5
1
3

1
4

5
0
7

1
3

z
4
1
 1

5
1
1
1
6
b

0
.6

5
3
2

0
.0

2
2
3

0
.0

8
0
3
1

0
.0

0
2
2
5

0
.8

2
4
9
8

1
3

5
1
0

1
4

z
4
2
 1

5
1
1
1
6
b

0
.6

4
6
0

0
.0

2
2
1

0
.0

8
0
3
8

0
.0

0
2
2
5

0
.8

2
4
9
8

1
3

5
0
6

1
4

z
5
1
 1

5
1
1
1
6
b

0
.6

4
9
8

0
.0

2
3
2

0
.0

7
9
3
3

0
.0

0
2
2
5

0
.7

9
4
9
2

1
3

5
0
8

1
4

z
5
2
 1

5
1
1
1
6
b

0
.6

4
5
7

0
.0

2
3
0

0
.0

7
8
8
9

0
.0

0
2
2
2

0
.7

9
4
8
9

1
3

5
0
6

1
4

z
5
 1

5
1
1
1
6
c

0
.6

4
5
0

0
.0

3
2
4

0
.0

7
8
3
0

0
.0

0
2
4
9

0
.6

3
4
8
6

1
5

5
0
5

2
0

z
6
 1

5
1
1
1
6
c

0
.6

5
4
1

0
.0

2
8
3

0
.0

7
9
6
9

0
.0

0
2
4
9

0
.7

2
4
9
4

1
5

5
1
1

1
7

z
3
3
 1

5
1
1
1
6
c

0
.6

5
4
1

0
.0

3
1
4

0
.0

8
4
2
1

0
.0

0
2
6
7

0
.6

6
5
2
1

1
6

5
1
1

1
9

z
3
4
 1

5
1
1
1
6
c

0
.6

5
1
9

0
.0

3
1
2

0
.0

8
0
9
0

0
.0

0
2
5
8

0
.6

7
5
0
1

1
5

5
1
0

1
9

z
5
 1

5
1
1
1
6
d

0
.6

5
2
4

0
.0

2
9
2

0
.0

8
1
2
5

0
.0

0
2
6
1

0
.7

2
5
0
4

1
6

5
1
0

1
8

z
6
 1

5
1
1
1
6
d

0
.6

5
0
3

0
.0

3
4
5

0
.0

8
3
0
7

0
.0

0
2
7
3

0
.6

2
5
1
4

1
6

5
0
9

2
1

z
3
2
 1

5
1
1
1
6
d

0
.6

4
8
9

0
.0

3
0
1

0
.0

8
4
6
0

0
.0

0
2
7
9

0
.7

1
5
2
4

1
7

5
0
8

1
9

A
v
g

.
5
0
8

2
 S

.D
4

396



Table B17: Results of LA-ICP-MS U–Pb analyses of monazite samples, performed at LMV, 15
th

 of Nov. 2016

An.# Pb Th U Th
207

Pb
d

±2s
206

Pb
d

±2s rho
e 206

Pb ±2s

(ppm) (ppm) (ppm) U
235

U (abs.)
238

U (abs.)
238

U (Ma)

CHA-15-17 Puylaurent migmatite (thin section)

z8 1110 47578 11818 4.0 0.40053 0.01320 0.04638 0.00141 0.92 292 9

z9 959 60887 2719 22.4 0.95350 0.03255 0.05049 0.00156 0.91 318 10

z10 1076 68441 5933 11.5 0.35149 0.01515 0.04607 0.00144 0.73 290 9

z11 387 2263 8446 0.3 0.34548 0.01290 0.04668 0.00144 0.83 294 9

z19 828 37713 7463 5.1 0.50057 0.01683 0.04822 0.00147 0.91 304 9

z20 975 61573 4522 13.6 0.36589 0.01311 0.04732 0.00144 0.85 298 9

z21 551 30686 3586 8.6 0.35848 0.01467 0.04839 0.00150 0.76 305 9

z22 1479 96715 5389 17.9 0.39610 0.01542 0.04755 0.00147 0.79 300 9

z27 355 20131 2416 8.3 0.37407 0.01911 0.04849 0.00156 0.63 305 10

z28 311 17611 1885 9.3 0.38977 0.01575 0.05031 0.00156 0.77 316 10

z29 1192 70517 6411 11.0 0.34752 0.01233 0.04723 0.00144 0.86 298 9

z31 544 26498 4447 6.0 0.35296 0.01365 0.04856 0.00150 0.80 306 9

z32 1174 78400 3355 23.4 0.40076 0.01701 0.04794 0.00150 0.74 302 9

CHA-15-65M Puylaurent migmatite (melanosome; mount)

z7 790 39380 5660 7.0 0.35221 0.01248 0.04671 0.00132 0.80 294 8

z8 752 40458 4092 9.9 0.43788 0.01803 0.04928 0.00144 0.71 310 9

z9 858 36991 6232 5.9 0.39953 0.01389 0.0519 0.00147 0.81 326 9

z10 2969 183749 11883 15.5 0.54676 0.01869 0.04915 0.00141 0.84 309 9

z11 2068 86578 18230 4.7 0.70091 0.02265 0.04882 0.00138 0.87 307 9

z13 2064 103432 13876 7.5 0.39153 0.01299 0.05043 0.00144 0.86 317 9

CHA-15-65L Puylaurent migmatite (leucosome; mount)

z29 5217 157142 82307 1.9 0.31930 0.00972 0.04343 0.00120 0.91 274 7

z31 4996 155471 77270 2.0 0.31362 0.00960 0.04333 0.00120 0.90 274 7

z35 2869 171846 18554 9.3 0.30971 0.01008 0.04283 0.00120 0.86 270 7

z37 6326 214940 89458 2.4 0.32625 0.01011 0.04348 0.00120 0.89 274 8

z38 6428 184560 106368 1.7 0.30934 0.01002 0.04303 0.00120 0.86 272 7

z40 2956 168017 24118 7.0 0.30500 0.00981 0.0418 0.00117 0.87 264 7

z45 2341 135593 17266 7.9 0.32016 0.01266 0.04323 0.00123 0.72 273 8

z46 3686 130991 49283 2.7 0.36763 0.01185 0.04391 0.00123 0.87 277 8

z47 4406 150764 61713 2.4 0.32221 0.01032 0.04392 0.00123 0.87 277 8

z49 5289 162277 85236 1.9 0.35405 0.01137 0.04301 0.00120 0.87 271 7

CHA15-48 St Laurent-les-Bains migmatite (mount)

z16 2149 112215 16847 6.7 0.33645 0.01128 0.04651 0.00132 0.85 293 8

z17 2597 116652 27169 4.3 0.36486 0.01203 0.04652 0.00132 0.86 293 8

z18 3503 110801 49928 2.2 0.34956 0.01143 0.04665 0.00132 0.87 294 8

z21 2202 79052 26030 3.0 0.49296 0.01647 0.0468 0.00132 0.84 295 8

z22 1179 55436 8443 6.6 0.71224 0.02475 0.04945 0.00141 0.82 311 9

z23 2030 78773 3081 25.6 0.69964 0.02580 0.08362 0.00240 0.78 518 14

z24 2034 76324 2857 26.7 0.73418 0.02745 0.08796 0.00252 0.77 544 15

CHA-15-34 Le Couste post-tectonic granite dyke (mount)

z7 1970 88799 22118 4.0 0.31710 0.00957 0.04343 0.00120 0.92 274 7

z8 3491 146268 41607 3.5 0.31453 0.00954 0.04437 0.00123 0.91 280 8

z9 1762 86566 16666 5.2 0.32446 0.00987 0.04409 0.00123 0.92 278 8

z10 2604 110055 31064 3.5 0.31828 0.00954 0.04451 0.00123 0.92 281 8

z11 2247 139908 12568 11.1 0.33500 0.01053 0.04429 0.00123 0.88 279 8

z12 2421 132827 20303 6.5 0.31603 0.00972 0.04391 0.00123 0.91 277 8

z15 1199 71231 8350 8.5 0.32212 0.01128 0.04433 0.00126 0.81 280 8

z16 2188 135902 13345 10.2 0.31888 0.01083 0.04334 0.00123 0.84 274 8

z17 2177 130765 15244 8.6 0.31312 0.00993 0.04314 0.00120 0.88 272 7

z18 1930 108366 15448 7.0 0.31405 0.00984 0.04294 0.00120 0.89 271 7

z19 2665 119409 30918 3.9 0.31548 0.00957 0.04338 0.00120 0.91 274 7

z20 3421 176094 43661 4.0 0.36106 0.01083 0.04336 0.00120 0.92 274 7

z21 3760 100697 63548 1.6 0.31741 0.00957 0.0435 0.00120 0.91 275 7

z22 3939 120085 61747 1.9 0.31324 0.00942 0.04369 0.00123 0.94 276 8

z25 4909 142513 79359 1.8 0.32084 0.00969 0.0437 0.00123 0.93 276 8

z26 2883 139622 28965 4.8 0.32237 0.00996 0.04343 0.00120 0.89 274 7

CHA-15-25 Le Ranc granite sill (thin section)

z7 2550 61771 44490 1.4 0.32003 0.01032 0.04484 0.00141 0.98 283 9

z8 3195 88029 52047 1.7 0.32360 0.01044 0.04489 0.00141 0.97 283 9

z10 2055 91963 8262 11.1 0.32714 0.01056 0.04542 0.00141 0.96 286 9

z11 656 65435 2032 32.2 0.40401 0.01338 0.04554 0.00144 0.95 287 9

z15 1129 194609 818 238.0 0.31092 0.01128 0.04422 0.00141 0.88 279 9

z16 1146 195348 810 241.2 0.31634 0.01152 0.04494 0.00141 0.86 283 9

z17 107 8327 222 37.6 0.59525 0.02280 0.05732 0.00183 0.83 359 11

z18 1968 115713 7416 15.6 0.32014 0.01041 0.0448 0.00141 0.97 283 9

z19 1154 72337 4199 17.2 0.33938 0.01122 0.04472 0.00141 0.95 282 9
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Table B17 (cont.): Results of LA-ICP-MS U–Pb analyses of monazite samples, LMV, 15
th

 of Nov. 2016

An.# Pb Th U Th
207

Pb
d

±2s
206

Pb
d

±2s rho
e 206

Pb ±2s

(ppm) (ppm) (ppm) U
235

U (abs.)
238

U (abs.)
238

U (Ma)

CHA-15-25 Le Ranc granite sill (thin section)

z20 652 46193 2013 22.9 0.39773 0.01416 0.04566 0.00144 0.89 288 9

z21 914 177045 1255 141.1 0.37184 0.01341 0.04433 0.00141 0.88 280 9

z22 1709 137860 5423 25.4 0.33027 0.01089 0.04455 0.00141 0.96 281 9

z25 1049 244978 630 389.1 0.31421 0.01131 0.04459 0.00141 0.88 281 9

z26 1041 242900 623 389.7 0.31518 0.01155 0.0449 0.00144 0.88 283 9

z27 1097 80477 3105 25.9 0.36824 0.01224 0.04917 0.00156 0.95 309 10

z28 2450 217215 7276 29.9 0.31298 0.01041 0.04486 0.00144 0.97 283 9

z29 1642 143151 4921 29.1 0.33113 0.01107 0.04456 0.00141 0.95 281 9

z30 3540 101452 56474 1.8 0.32177 0.01071 0.04488 0.00144 0.96 283 9

398



Table B18: Results of AMS measurements performed at Saint-Etienne University

Specimen Km (.10
-6

 SI) L F P P' T U K1dec K1inc K2dec K2inc K3dec K3inc

Site 1 Le Ranc (44.533778, 3,900976)

15CVE04A 112.1 1.013 1.266 1.282 1.323 0.898 0.885 111.5 39.8 4.2 19.7 254.2 43.7

15CVE05A 29.8 1.05 1.033 1.085 1.085 -0.209 -0.229 88.5 50.6 308.8 32 205.4 20.3

15CVE06A 171.3 1.213 1.092 1.325 1.333 -0.373 -0.433 126 25.9 307.7 64.1 216.3 0.7

15CVE07A 22.0 1.04 1.077 1.12 1.122 0.313 0.287 129.1 50.8 355.7 29.3 251.5 23.6

15CVE08A 247.7 1.079 1.245 1.343 1.358 0.486 0.429 72.5 28.7 338.2 7.9 234.4 60.1

15CVE08B 43.2 1.014 1.124 1.139 1.154 0.788 0.775 343.4 5.3 77.4 37.1 246.4 52.4

15CVE09A 42.0 1.012 1.095 1.108 1.119 0.771 0.76 125.2 32.9 352.7 46.3 233 25.3

15CVE10A 27.3 1.011 1.159 1.172 1.194 0.86 0.849 26.7 61.5 162.3 21.2 259.6 18.1

15CVE11A 192.4 1.037 1.435 1.488 1.552 0.817 0.782 168.7 26.8 357 62.9 260.4 3.3

15CVE12A 61.1 1.023 1.174 1.201 1.221 0.754 0.734 130.9 10.9 34.4 30.7 238.3 57

15CVE13A 105.6 1.014 1.228 1.244 1.278 0.877 0.864 350.6 17.3 105.4 53.4 249.8 31.1

15CVE13B 110.8 1.02 1.198 1.221 1.246 0.806 0.789 124.6 41.2 10.6 24.9 258.8 38.6

Site 2 Le Ranc (44.53317, 3.901795)

15CVE14A 59.0 1.033 1.052 1.086 1.087 0.219 0.199 276.6 16.7 170.3 43 22.4 42.3

15CVE15A 83.6 1.022 1.12 1.145 1.156 0.679 0.661 219.6 9.1 124.8 27.9 326.1 60.4

15CVE16A 54.1 1.011 1.06 1.072 1.077 0.672 0.662 99.8 5.9 199.9 59.7 6.5 29.6

15CVE17A 70.0 1.01 1.129 1.14 1.158 0.853 0.844 86.7 44.5 194 16.8 299.1 40.7

15VCE18A 93.7 1.018 1.035 1.054 1.055 0.329 0.317 148.7 56.1 55.2 2.4 323.5 33.8

15CVE19A 84.6 1.008 1.05 1.059 1.063 0.712 0.705 234.7 54.3 102 26 0.2 22.7

15CVE20A 68.5 1.016 1.029 1.046 1.046 0.273 0.262 189.9 40.6 71.8 28.8 318.3 35.9

15CVE21A 41.4 1.021 1.009 1.03 1.031 -0.41 -0.416 181.8 23.7 280.2 18.5 44.4 59.2

15CVE21B 66.8 1.05 1.006 1.056 1.061 -0.786 -0.791 222.9 31.2 344.5 40.8 109.3 33.5

15CVE22A 54.9 1.018 1.046 1.065 1.067 0.442 0.429 245.9 10.9 131.8 64.7 340.4 22.5

15CVE22B 72.7 1.006 1.059 1.065 1.072 0.797 0.791 217.3 19 107.2 45 323.4 38.9

15CVE23A 86.0 1.004 1.044 1.049 1.054 0.817 0.813 85.1 24.7 198 40.2 332.6 39.7

15CVE24A 60.1 1.007 1.015 1.022 1.023 0.391 0.386 173.7 38.2 80.8 3.7 346.1 51.6

Site 3 Combe Serre (44.535566, 3.891003)

15CVE25A 8.9 1.067 1.149 1.226 1.231 0.366 0.321 26.2 1 295.9 16.3 119.8 73.7

15CVE26A 28.2 1.053 1.081 1.138 1.139 0.209 0.178 257.9 19.2 163.3 13 41.3 66.5

15CVE27A 28.6 1.05 1.024 1.075 1.077 -0.349 -0.365 245.6 17.7 351.1 40 137.2 44.7

15CVE27B 13.0 1.063 1.11 1.18 1.182 0.259 0.22 54 4.8 322.6 16.2 160 73.1

15CVE28A 24.3 1.021 1.029 1.051 1.051 0.141 0.129 248 7 339 8.7 119.7 78.8

15CVE29A 68.2 1.035 1.078 1.115 1.118 0.374 0.351 229.2 0.5 319.2 7.9 135.3 82.1

15CVE30A 108.9 1.045 1.069 1.117 1.118 0.202 0.175 223.2 13.1 122.9 37.6 329 49.4

15CVE30B 126.9 1.023 1.115 1.141 1.151 0.655 0.636 242.8 3.5 335.2 33.8 147.6 55.9

15CVE31B 65.8 1.056 1.054 1.113 1.113 -0.013 -0.04 230.2 6.6 104.9 78.7 321.3 9.1

15CVE31A 86.1 1.032 1.115 1.15 1.159 0.555 0.53 232.4 17.3 114.3 56.4 331.8 27.8

15CVE32A 64.2 1.07 1.049 1.122 1.123 -0.173 -0.201 233 16 323.1 0.4 54.5 73.9

15CVE33A 95.0 1.024 1.162 1.191 1.208 0.725 0.704 226.1 8.4 317 6.1 82.5 79.6

15CVE33B 93.9 1.035 1.087 1.125 1.129 0.411 0.386 237.3 8.4 329.2 12.5 114.3 74.8

Site 4 Puylaurent (44.533841, 3.885268)

15CVE34B 69.4 1.01 1.099 1.111 1.123 0.804 0.795 165.7 19.8 268.2 31.1 48.4 51.9

15CVE34A 71.4 1.001 1.121 1.122 1.142 0.982 0.981 173.3 22 274.5 25.6 47.9 55.1

15CVE35A 13.6 1.042 1.071 1.117 1.118 0.249 0.223 263.1 19.7 357.1 11.1 114.9 67.2

15CVE36A 10.7 1.041 1.116 1.162 1.168 0.459 0.429 153 7.9 245.8 19.2 41.6 69.1

15CVE37A 93.3 1.013 1.131 1.146 1.162 0.806 0.794 254.8 64.2 122.6 18 26.6 17.8

15CVE38B 16.5 1.041 1.1 1.145 1.15 0.41 0.382 276.1 43.8 182 4.2 87.7 45.9

15CVE38A 18.3 1.025 1.099 1.126 1.134 0.592 0.572 250.4 46.5 152.7 7.2 56 42.6

15CVE39A 5.2 1.07 1.34 1.433 1.467 0.626 0.57 261.8 25.4 161.9 20 38.2 56.7

15CVE40A 85.2 1.003 1.125 1.128 1.148 0.958 0.956 232.8 50.8 134.7 6.5 39.5 38.4

15CVE41A 85.1 1.009 1.119 1.129 1.145 0.847 0.839 216.8 45.9 120.3 6.2 24.4 43.4

15CVE42A 67.5 1.015 1.096 1.112 1.122 0.725 0.712 256.6 56.9 127.8 22.2 27.7 23.2

Site 5 Les Clous (44.546591, 3.905026)

15CVE43A 154.5 1.041 1.046 1.088 1.088 0.057 0.036 161 7.2 39.1 76.6 252.5 11.2

15CVE43B 137.3 1.049 1.029 1.08 1.081 -0.248 -0.266 165.6 6.7 12.9 82.5 256 3.4

15CVE44A 148.1 1.036 1.038 1.076 1.076 0.028 0.01 174.9 11.5 34.4 75.2 266.8 9.1

15CVE45A 152.1 1.045 1.052 1.1 1.1 0.07 0.047 172.8 15.6 18.1 72.8 264.8 7

15CVE46A 147.5 1.05 1.05 1.103 1.103 -0.004 -0.028 170.6 16.1 38.4 66.8 265.4 16.3

15CVE46B 139.3 1.045 1.044 1.091 1.091 -0.006 -0.028 168.7 13.9 44.8 66 263.6 19.1

15CVE47A 97.3 1.037 1.035 1.074 1.074 -0.027 -0.044 189.2 22.4 345.2 65.7 95.5 8.9

15CVE47B 98.3 1.038 1.025 1.064 1.064 -0.198 -0.212 181 27.4 346.6 61.9 87.9 6

15CVE48A 96.3 1.037 1.051 1.09 1.09 0.157 0.136 191.2 24 355.4 65.2 98.5 6

15CVE48B 93.9 1.047 1.054 1.103 1.103 0.063 0.039 188.1 28 355.2 61.4 95.2 5.4

15CVE48C 84.5 1.038 1.047 1.086 1.087 0.104 0.084 192.7 25.7 349.3 62.3 98.1 9.6

15CVE49A 90.5 1.04 1.037 1.078 1.078 -0.046 -0.064 180.7 23.1 334 64.5 86.3 10.2

15CVE49B 89.2 1.049 1.041 1.093 1.093 -0.086 -0.108 180.3 19.1 331.9 68.5 87 9.5

15CVE50B 87.4 1.033 1.035 1.07 1.07 0.027 0.01 184.9 15 318.4 68.8 90.8 14.7
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Table B18 (cont.): Results of AMS measurements performed at Saint-Etienne University

Specimen Km (.10
-6

 SI) L F P P' T U K1dec K1inc K2dec K2inc K3dec K3inc

15CVE50A 92.1 1.037 1.035 1.073 1.073 -0.029 -0.047 189.8 15.5 331.1 70.4 96.5 11.7

15CVE51B 78.9 1.04 1.033 1.074 1.074 -0.099 -0.117 195 11.8 35.9 77.4 285.9 4.4

15CVE51A 84.6 1.036 1.029 1.066 1.066 -0.116 -0.132 193.3 21.1 21.1 68.7 284.3 2.7

15CVE52B 129.0 1.053 1.036 1.091 1.091 -0.19 -0.211 157.2 11 354 78.5 247.9 3.2

15CVE52A 129.3 1.048 1.039 1.088 1.088 -0.105 -0.125 161.5 9.5 10.4 79.1 252.4 5.1

15CVE55A 137.8 1.049 1.036 1.087 1.087 -0.152 -0.172 151.5 23.1 5.5 62.8 247.4 13.6

15CVE55B 121.6 1.054 1.034 1.09 1.091 -0.215 -0.235 153.5 18.7 14.9 65.8 248.6 14.9

15CVE56A 133.9 1.06 1.035 1.098 1.099 -0.257 -0.279 161 12 15.1 75.6 252.7 7.8

15CVE56B 134.3 1.059 1.036 1.096 1.097 -0.24 -0.262 159.4 14.4 28.4 68.6 253.5 15.4

Site 6 Puech Redon (44.577817, 3.895382)

15CVE57A 45.4 1.017 1.113 1.133 1.144 0.725 0.71 322.7 26.8 81.4 43.5 212.3 34.6

15CVE58A 85.2 1.022 1.118 1.143 1.154 0.672 0.653 20.4 46 289.2 1.1 198.2 44

15CVE59A 45.7 1.007 1.128 1.136 1.154 0.886 0.879 26.1 26.5 120.6 9 227.8 61.7

15CVE60B 51.6 1.013 1.145 1.16 1.179 0.829 0.817 99.7 24.9 356.8 25.7 227.4 52.8

15CVE60A 53.1 1.019 1.106 1.127 1.138 0.68 0.663 19.3 28.5 118.1 15.8 233.7 56.7

15CVE60B 51.4 1.007 1.156 1.164 1.187 0.905 0.898 102.8 23.1 2.3 23.2 232.4 56.3

15CVE61A 56.1 1.005 1.113 1.119 1.136 0.906 0.9 96.7 46.4 343.9 20.3 237.9 36.6

15CVE62A 36.3 1.004 1.102 1.106 1.121 0.929 0.926 16.5 36.6 125.1 23.3 240 44.3

15CVE62B 36.9 1.022 1.104 1.128 1.137 0.646 0.628 104.5 44.6 352.9 20.5 245.7 38.4

15CVE63A 46.8 1.004 1.071 1.075 1.085 0.883 0.879 104.7 16.7 356.2 46.6 208.6 38.6

15CVE64A 47.2 1.011 1.164 1.177 1.2 0.862 0.851 358.9 41.2 98.4 10.7 200.1 46.8

15CVE65A 78.5 1.015 1.123 1.14 1.154 0.766 0.753 95.5 27.8 333.3 45.3 204.5 31.8

15CVE66A 57.2 1.028 1.018 1.047 1.047 -0.223 -0.234 111 9 19.8 7.5 250.6 78.2

15CVE67A 80.5 1.011 1.065 1.076 1.082 0.709 0.7 101.6 13.4 193.2 6.5 308.7 75

Site 7 Masméjean (44.568143, 3.878975)

15CVE69A 39.1 1.034 1.055 1.091 1.092 0.234 0.213 329.6 0.7 223.3 87.6 59.6 2.3

15CVE70A 21.9 1.015 1.008 1.023 1.023 -0.312 -0.317 84.3 44.4 336.2 17.6 230.6 40.3

15CVE71B 34.1 1.023 1.065 1.089 1.093 0.479 0.462 333.5 25.9 111.4 56.8 233.7 19.2

15CVE71A 35.8 1.027 1.022 1.05 1.05 -0.099 -0.111 334.6 12.8 85.6 57.6 237.3 29.2

15CVE72A 27.0 1.013 1.009 1.021 1.021 -0.18 -0.185 331.1 1.5 239.1 53.8 62.2 36.2

15CVE73A 22.0 1.026 1.014 1.041 1.041 -0.281 -0.29 144.9 15.8 305.6 73.3 53.4 5.2

Site 8 Le Ranc (44.531518, 3.90263)

17CVE01A 14.3 1.024 1.203 1.232 1.256 0.77 0.748 52.7 49.7 270.4 33.9 166.9 19.2

17CVE02A 14.0 1.021 1.291 1.319 1.361 0.848 0.827 33.6 37.2 293.4 13.2 187.3 49.8

17CVE03A 14.9 1.071 1.208 1.293 1.305 0.467 0.416 58.8 38.8 311.5 20.3 200.4 44.2

17CVE04A 85.4 1.009 1.159 1.169 1.192 0.889 0.88 357.9 39.8 107.1 21.5 218.2 42.4

17CVE05A 25.5 1.002 1.175 1.178 1.206 0.972 0.97 281.9 9.7 20 39.6 180.7 48.7

17CVE05B 29.1 1.025 1.136 1.165 1.178 0.674 0.652 71.9 23.9 325.1 33.2 190.4 47.1

17CVE06C 22.1 1.064 1.115 1.186 1.188 0.273 0.233 317.4 13.3 57.3 35.9 210.4 50.9

17CVE06B 21.3 1.045 1.1 1.15 1.154 0.368 0.337 323.8 7.4 58 29.4 221.1 59.5

17CVE06A 24.1 1.049 1.072 1.124 1.125 0.188 0.16 336.5 23.4 71.7 11.7 186.2 63.5

17CVE07A 26.8 1.014 1.071 1.086 1.092 0.658 0.647 354.1 48.6 99.3 13 199.9 38.5

17CVE07B 17.3 1.015 1.132 1.15 1.165 0.781 0.768 334.1 30.5 79.4 24.1 200.9 49.4

17CVE08A 38.9 1.028 1.107 1.138 1.145 0.568 0.546 349.5 33.1 94.8 22 212 48.5

Site 9 Les Gouttes (44.548959, 3.868486)

17CVE10A 54.2 1.016 1.204 1.223 1.251 0.843 0.828 199.1 31.5 290.2 1.9 23.4 58.4

17CVE10B 72.8 1.007 1.187 1.196 1.225 0.918 0.911 202.5 27.6 109.1 6.5 6.9 61.5

17CVE10C 77.1 1.016 1.179 1.198 1.222 0.825 0.811 181.6 32.1 274.6 4.7 12 57.5

17CVE11B 17.4 1.058 1.016 1.075 1.079 -0.567 -0.579 224.8 28.1 322.5 14.1 76.1 58

17CVE11A 15.5 1.036 1.051 1.089 1.089 0.169 0.149 210 21.3 300.4 0.9 32.7 68.7

17CVE12B 44.2 1.014 1.161 1.178 1.199 0.829 0.816 187.7 24.7 278.1 1 10.4 65.3

17CVE12A 50.3 1.017 1.171 1.191 1.213 0.805 0.789 155.5 17.8 248.2 8.3 2.2 70.2

17CVE13A 24.3 1.051 1.078 1.133 1.134 0.207 0.177 240.5 28.7 145.1 9.8 38.1 59.3

17CVE13B 22.9 1.015 1.125 1.143 1.157 0.769 0.756 236.6 26.8 145.6 2 51.7 63.1

17CVE13C 21.3 1.026 1.11 1.138 1.147 0.61 0.589 168.1 42.6 264.7 7.1 2.3 46.6

17CVE14A 71.8 1.005 1.123 1.128 1.146 0.915 0.909 313.7 15.6 220.3 11.8 94.8 70.3

17CVE15B 60.0 1.005 1.133 1.138 1.158 0.926 0.921 326.8 1.1 236.5 11.7 61.9 78.2

17CVE15A 50.3 1.01 1.159 1.17 1.192 0.879 0.87 151.7 9.7 245.6 21.6 39 66.1

17CVE16A 58.8 1.017 1.154 1.174 1.192 0.789 0.774 250.7 20.6 151.3 23.5 17.5 57.9

17CVE16B 55.0 1.008 1.17 1.179 1.204 0.907 0.9 287.7 1.7 197.1 21.3 22.2 68.7

17CVE17A 51.7 1.02 1.222 1.246 1.276 0.822 0.804 169.7 43.5 261.2 1.5 352.7 46.4

17CVE17B 64.7 1.01 1.16 1.171 1.194 0.879 0.87 141.4 37.4 242.8 14.5 350 48.9
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Table B18 (cont.): Results of AMS measurements performed at Saint-Etienne University

Specimen Km (.10
-6

 SI) L F P P' T U K1dec K1inc K2dec K2inc K3dec K3inc

Site 10 Le Thort (44.555368, 3.905332)

17CVE18A 4.2 1.133 1.033 1.171 1.181 -0.585 -0.61 67.7 25 218.4 61.9 332 12.1

17CVE18B 15.1 1.041 1.062 1.105 1.106 0.201 0.177 53.5 4.2 145.4 23.5 314.1 66.1

17CVE20B 2.9 1.121 1.216 1.363 1.368 0.263 0.19 297.6 18.4 34 18.5 165.8 63.4

17CVE21B 19.5 1.055 1.051 1.109 1.109 -0.032 -0.058 145.6 35.8 50 7.6 309.8 53.2

17CVE22A 16.9 1.042 1.079 1.124 1.126 0.302 0.275 130.1 30.4 36.5 6.2 296.2 58.8

17CVE23A 33.2 1.007 1.019 1.026 1.027 0.443 0.438 157.4 26.5 270.8 38.7 42.8 39.9

17CVE24A 10.4 1.03 1.078 1.11 1.113 0.439 0.418 92.1 20 1.8 0.9 269.4 70

17CVE25B 11.3 1.065 1.025 1.091 1.094 -0.445 -0.462 75.3 8.2 332.1 57.9 170.2 30.8

17CVE25C 12.9 1.057 1.018 1.075 1.079 -0.518 -0.531 58.7 38.9 324.6 5 228.6 50.6

17CVE25A 16.5 1.014 1.026 1.041 1.041 0.303 0.294 26 14.3 126.7 36.1 278.1 50.3

17CVE26A 11.1 1.057 1.031 1.09 1.091 -0.288 -0.308 165.8 12 45.9 66.9 260.1 19.4

Site 11 Masméjean railway (44.565239, 3.887277)

17CVE27A 87.7 1.011 1.059 1.07 1.076 0.674 0.665 191 5.5 283.5 24.1 88.9 65.2

17CVE28A 42.1 1.025 1.05 1.076 1.077 0.332 0.315 250.4 4.7 342 18 146.2 71.3

17CVE29A 107.7 1.021 1.072 1.095 1.1 0.537 0.52 279.4 6.5 9.8 3.6 128.7 82.6

17CVE30A 70.0 1.008 1.065 1.073 1.08 0.784 0.778 283.4 23.2 19.6 14.2 138.4 62.4

17CVE30B 97.5 1.006 1.073 1.079 1.088 0.844 0.839 283 10.1 16.5 18.8 166.1 68.4

17CVE31A 108.6 1.009 1.128 1.138 1.156 0.868 0.86 251.7 3.3 342.5 14.4 148.9 75.2

17CVE32B 45.4 1.004 1.074 1.078 1.089 0.887 0.883 40.3 0.4 310.2 21.6 131.4 68.4

17CVE32C 62.2 1.003 1.081 1.084 1.096 0.928 0.925 269.2 26.9 6.2 13.5 120.1 59.4

17CVE32A 63.2 1.016 1.053 1.07 1.073 0.524 0.512 242 21.7 340.4 20.2 109.3 59.6

17CVE33A 23.4 1.02 1.027 1.047 1.048 0.161 0.15 75.5 1.4 165.5 0.9 286.2 88.3

17CVE33B 16.3 1.036 1.046 1.083 1.083 0.125 0.105 27.4 11.8 119.8 11.4 252.7 73.4

17CVE34B 97.8 1.007 1.013 1.02 1.021 0.266 0.262 314.7 7 223.7 8.5 83.7 79

17CVE34A 48.8 1.017 1.023 1.041 1.041 0.139 0.129 239.8 0.9 149.7 4.8 340.9 85.1
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