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Objectives and Plan of the Thesis

Introduction

This thesis tackles the ambitious aim of developing a mathematical theory of living systems focusing in various applications. The concept of system theory of modeling living entities is introduced with the main objective of deriving a general mathematical structure, consistent with the complexity features of living systems. This structure offers the conceptual background for the derivation of specific models corresponding to well-defined classes of systems and substitutes the field theories, which classically offers the natural support in the sciences of the inert matter that cannot be applied in the case of living systems.

The need of such theory is strongly motivated by the fact that one of the great scientific targets of this century is the attempt to link the rigorous approach of mathematics, and of the methods of hard sciences in general, to the study of living systems [START_REF] Bellomo | A Quest Towards a Mathematical Theory of Living Systems[END_REF]. It is not an easy task due to the difficulty generated by the particular features of living matter and to the lack of invariance principles that are typical of the inert matter systems as it has been put in evidence by several authors. Indeed, living systems are a relevant example of complex systems, namely a system of several individuals interacting in a non-linear manner whose collective behaviors cannot be straightforwardly related to those of a few entities but rather it is determined by complex grouped interactions, which differs from the sum of individual dynamics [START_REF] Anderson | More is different[END_REF]. As a consequence, these systems show collective emerging behaviors generated by a kind of swarming intelligence which involves all the interacting entities [START_REF] Bellomo | On the mathematical theory of the dynamics of swarms viewed as complex systems[END_REF][START_REF] Bonabeau | Swarm Intelligence: From Natural to Artificial Systems[END_REF][START_REF] Couzin | Collective minds[END_REF]. In some conditions these collective emerging dynamics can lead to highly unpredictable events with dramatic consequences. One of such events, which is of paramount interest in modeling living system in general, and in economics in particular, is the so-called Black Swan [START_REF] Taleb | The Black Swan: The Impact of the Highly Improbable, Random House[END_REF], namely a rare and an 8 CHAPTER 1. OBJECTIVES AND PLAN OF THE THESIS extreme event, largely unpredictable at a collective level, originated from apparently rational and controlled individual behaviors.

The idea of modeling the complex dynamics of systems has a long story which is traced by a sequence of approaches. Let us mention in particular agent-based models, the population dynamics with internal state, the approach of statistical dynamics and the kinetic theory methods. Let us briefly describe the main features of each of them in order to understand in which cases they can contribute to the visionary idea of designing a mathematics for soft sciences.

Agent methods are computational models which combine elements of game theory, multi agent systems and Monte Carlo methods in order to simulate the actions and interactions of autonomous agents (both individual or collective entities such as organizations or groups) with the aim to understand their collective emerging behavior. These models have been shown to be a useful reference applications in a variety fields in life sciences such as racial segregation [START_REF] Zhang | A dynamic model of residential segregation[END_REF], personal well-being, wealth and social status/education, and many others [START_REF] Axelrod | The Complexity of Cooperation: Agent-based Models of Competition and Collaboration[END_REF][START_REF] Epstein | Growing Artificial Societies: Social Science from The Bottom Up[END_REF].

Models of population dynamics provide a description of the dynamics of living systems by defining the time evolution of the number of individuals for each of interacting population. Since the original Lotka-Volterra approach, a plethora of models has been developed, which have taken into account several features such as delay terms and many others. An useful bibliography can be obtained in the books by Bürger [START_REF] Bürger | The Mathematical Theory of Selection: Recombination and Mutation[END_REF], by Diekmann et al. [START_REF] Diekmann | Mathematical Epidemiology of Infectious Diseases[END_REF][START_REF] Diekmann | Mathematical Tools for Understanding Infectious Disease Dynamics[END_REF], and by Thieme [START_REF] Thieme | Mathematics in Population Biology[END_REF]. Particularly important is the population dynamics with internal variable [START_REF] Perthame | Transport Equations in Biology[END_REF] where an additional variable can be introduced to model specific characteristics of the system under consideration, for instance the age of the individuals, their fitness for the outer environment, and their social status. This variable describes an inner feature of the population and it is supposed to play a role in the emergence of collective behaviors.

The (classical) kinetic theory consists in representing the overall system by a probability distribution over the individual state of the interacting entities and in looking for an equation suitable to describe the dynamics in time and space of the said distribution. Larger quantities corresponding to the mass, linear momentum, and kinetic energy are derived from the aforementioned probability function. The literature on this topic is documented in various books. For instance, see [START_REF] Cercignani | The Mathematical Theory of Diluted Gas[END_REF][START_REF] Kogan | Rarefied Gas Dynamics[END_REF], which report about the methods of the kinetic theory of diluted gases. In particular, the book [START_REF] Cercignani | The Mathematical Theory of Diluted Gas[END_REF] reports about the derivation of the celebrated Boltzmann equation while the classical reference by Kogan [83] is addressed to the reader who is more interested in fluid dynamics. However, the mathematical developments of the kinetic theory have generated a variety of models which are related to the Boltz-1.1. INTRODUCTION 9 mann equation. This models are motivated by the need of reducing the complexity of the original equation, and aim to taking into account physical effects that are not included in the original model. Let us mention in particular the discrete velocity Boltzmann equation developed in the lecture notes by Gatignol [START_REF] Gatignol | Théorie Cinétique des Gaz a Repartition Discréte de Vitesses[END_REF], the so-called BGK model reviewed in [START_REF] Bellomo | A Quest Towards a Mathematical Theory of Living Systems[END_REF]. The Enskog equation reviewed in the book [START_REF] Bellomo | Mathematical Topics in Nonlinear Kinetic Theory II: The Enskog Equation[END_REF] accounts for the dimension of the interacting particles.

Applications of kinetic type equations in the modeling of living systems have been initialized in the celebrated book by Prigogine and Hermann [START_REF] Prigogine | Kinetic Theory of Vehicular Traffic[END_REF] on the modeling of vehicular traffic. The book [START_REF] Prigogine | Kinetic Theory of Vehicular Traffic[END_REF] is a key contribution on the modeling of living systems as it is explained by the following statements quoting from [START_REF] Bellomo | On the difficult interplay between life "complexity", and mathematical sciences[END_REF]:

The interpretation that Prigogine's model is a technical modification of the Boltzmann equation is definitely unfair, as it contains new general ideas on the modeling of interactions by tools of probability theory and on the modeling of heterogeneous behaviors. In fact, this book anticipates issues that are now used in various fields of applications such as crowd's and swarm's dynamics.

Methods of classical kinetic theory also have been applied to model various social systems starting from the pioneer papers [START_REF] Bertotti | From discrete kinetic and stochastic game theory to modeling complex systems in applied sciences[END_REF][START_REF] Bertotti | Conservation laws and asymptotic behavior of a model of social dynamics[END_REF]. The book by Pareschi and Toscani [START_REF] Pareschi | Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods[END_REF] provides a nice presentation of this subject providing an exhaustive overview covering the whole path from modeling, numerical methods to mathematical tools and applications, such as opinion formation and wealth dynamics, as well as various aspects of the social and economical dynamics of our society.

It is worth mentioned that each approach is designed at various observation and representation scales, namely microscopic (individual based), macroscopic (hydrodynamic), and mesoscopic (kinetic) scales. The microscopic scale aims at describing the state of each single entity in the system by means of a large system of coupled ordinary differential equations, while the macroscopic scale corresponds to modeling in terms of partial differential equations the evolution of locally averaged quantities, called macroscopic variables, suitable to describe the collective state of the overall system. The mesoscopic scale is intermediate between the small microscopic and the large macroscopic scale. In general, the mathematical models designed in this scale are stated in terms of coupled integro-differential equations.

However, as it is stressed in [START_REF] Bellomo | On the difficult interplay between life "complexity", and mathematical sciences[END_REF], none of the aforesaid scaling, and hence none of the aforesaid modeling approaches, is fully satisfactory. In fact, accounting for multiple interactions that are typical of living matter systems, is not immediate in the case of various known models at the microscopic CHAPTER 1. OBJECTIVES AND PLAN OF THE THESIS scale, while the averaging process needed in the macroscopic approaches kill the heterogeneity which is a commune feature between all living systems. Accordingly, mesoscopic scales appear to be more flexible as they can tackle the previously mentioned drawbacks. Moreover, as it is pointed by various authors [START_REF] Ajmone Marsan | Towards a mathematical theory of complex socio-economical systems by functional subsystems representation[END_REF][START_REF] Ajmone Marsan | Stochastic evolutionary differential games toward a system theory of behavioral social dynamics[END_REF][START_REF] Bellomo | On the difficult interplay between life "complexity", and mathematical sciences[END_REF][START_REF] Knopoff | On the modeling of migration phenomena on small networks[END_REF][START_REF] Knopoff | On a mathematical theory of complex systems on networks with application to opinion formation[END_REF]. the micro-scale affects the larger scale corresponding to a collective dynamic, which in turn has a direct influence on the individual based interactions, therefore the dynamic of living systems can not be effectively described using only a single representation, and hence a multiscale approach is needed.

By multiscale approach to modeling we mean selecting and modeling the microscopic dynamics which is necessary to implement the derivation of mesoscopic models. In addition, we also consider the derivation of models at the macroscopic scale by suitable limits of kinetic models by letting to zero the distance between individuals.

This program is pursued by suitable development of the so called Kinetic Theory of Active Particles [START_REF] Arlotti | Generalized kinetic (Boltzmann) models: mathematical structures and applications[END_REF][START_REF] Bellomo | Modelling Complex Living Systems -A Kinetic Theory and Stochastic Game Approach Birkhäuser[END_REF], KTAP theory for short. The latter combines methods of classical kinetic theory and theoretical tools of game theory [START_REF] Gintis | Game Theory Evolving: A Problem-Centered Introduction to Modeling Strategic Interaction[END_REF][START_REF] Hofbauer | Evolutionary game dynamics[END_REF][START_REF] Nowak | Evolutionary Dynamics -Exploring the Equations of Life[END_REF][START_REF] Nowak | Evolutionary dynamics of biological games[END_REF] and it has been developed to model the dynamics of systems composed of many living interacting entities, viewed as particles, interacting in a non-linear manner and in which every living entity is capable to develop specific strategy called activity while the living entity is called active particle. Generally the active ability developed by each particle depends on that expressed by the other entities, and in some cases depends on the internal environment as well as to the external environment viewed as external forces. The overall state of the system is described by a probability distribution over the microstate of the particles, while a balance of the number of particles within the elementary volume of the space of the microstates provides the time and space dynamics of the said distribution, viewed as a dependent variable, while macroscale quantities can be obtained from averaged moments of the dependent variable. Description of interactions at the microscopic scale is offered by theoretical tools of the evolutionary game theory [START_REF] Hofbauer | Evolutionary game dynamics[END_REF] and of collective learning theory [START_REF] Burini | Collective learning dynamics modeling based on the kinetic theory of active particles[END_REF].

The mathematical framework of the kinetic theory for active particles has been initially formalized in the book [START_REF] Bellomo | Modelling Complex Living Systems -A Kinetic Theory and Stochastic Game Approach Birkhäuser[END_REF] and subsequently developed in a sequel of papers focusing in various fields of soft sciences. As example applications, we can refer to social dynamics [START_REF] Ajmone Marsan | Stochastic evolutionary differential games toward a system theory of behavioral social dynamics[END_REF], vehicular traffic [START_REF] Bellouquid | From kinetic models of multicellular growing systems to macroscopic biological tissue models[END_REF], behavioral and social crowd dynamics [START_REF] Bellomo | Toward a behavioral-social dynamics of pedestrian crowds[END_REF][START_REF] Bellomo | Behavioral crowds: modeling and Monte Carlo simulations toward validation[END_REF], immune competition at the cellular scale, psychological interactions [START_REF] Carbonaro | A second step towards mathematical models in psychology: a stochastic description of human feelings[END_REF], and various others. These applications have generated challenging analytical and computational problems which have needed new ideas to be properly tackled. One of such challenging problems, which is of paramount interest in the multiscale strategy, in general, and in biology in particular, is the derivation of models at the 1.2. OBJECTIVES OF THE THESIS 11 macroscopic scale from the underlying description at the microscopic scale [START_REF] Bellomo | On the asymptotic theory from microscopic to macroscopic growing tissue models: an overview with perspectives[END_REF].

The above statements have motivated the contents of this thesis, whose main objective is to develop a mathematical theory of living, and hence, complex systems focusing on various applications, such as social dynamics, collective learning theory, behavioral-social crowd dynamics and multicellular systems including the derivation of macroscopic tissue equations from the underlying description at the microscopic cellular scale. The next section describes the main subjects to pursue the aforesaid objective which constitutes the essential objective of the thesis. Section 1.3 selects the main behavioral features shared by living systems and which have a role in the complex dynamics of active entities. A detailed plan of the thesis is reported to the Section 1.4 of this introductory chapter.

Objectives of the Thesis

The objective of developing a rigorous mathematical theory of complex living systems is a difficult problem due the need of including the specific features of living matter. Moreover, as it is pointed in the introduction of this chapter such objective can be partially achieved by suitable development of the kinetic theory for active particles. This thesis pursues this aim and looks at applications to confirm the validity of the approach to model living, hence complex, systems. More precisely we focus in the following subjects, which have been introduced here in a introductory level in order to understand in which sense they distinguish from our scientific achievements presented in Appendix A.

Game theory: Game theory represents an important reference background in the development of kinetic methods for active particles. Indeed, living entities, at each interaction, play a game with an output that technically depends on the strategy they express. However, unlike to the classical Nash theory [START_REF] Neumann | Theory of Games and Economic Behavior[END_REF], where the players are two rational individuals who choose the next step among several ones on the basis of a well defined payoff, here we deal with players which are not always rational and rationality is not constant, while interactions are multiple and the output of the games is not deterministic. A substantial improvement is obtained by evolutionary game theory where the focus is on large populations of individuals which are assumed to employ adaptive rules rather than being perfectly rational. These rules change in time depending on how much players take into consideration the earlier history of the game, and are often related to surviving and adaptation ability, namely to an individual or collective search of fitness.
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The survey paper by [START_REF] Hofbauer | Evolutionary game dynamics[END_REF] provides a nice presentation of the mathematics of evolutionary game theory focusing on a broad type dynamics starting from ordinary differential equations and differential inclusions to difference equations and reaction-diffusion systems. Differential stochastic games have been introduced by Bellomo and co-workers [START_REF] Ajmone Marsan | Stochastic evolutionary differential games toward a system theory of behavioral social dynamics[END_REF][START_REF] Bellomo | Toward a behavioral-social dynamics of pedestrian crowds[END_REF][START_REF] Bellomo | Behavioral crowds: modeling and Monte Carlo simulations toward validation[END_REF][START_REF] Bellomo | On the mathematical theory of the dynamics of swarms viewed as complex systems[END_REF] focusing on a broad fields of applications including social, crowd and swarm dynamics. In addition, these pioneering works have shown that the output of interactions can depend not only in the state of the interacting entities, but also on there distribution functions and this future have an important influence on the overall dynamics, which highlight the nonlinearity nature of games. Additional useful reference is the recently published book [START_REF] Karlin | Game Theory, Alive[END_REF] which provides a broad fields of applications and offer a variety of possible games such as cooperative games, combinatorial games and sum games including zero-sum games, zero-sum games on graphs and extensive-form games.

Behavioral features: By behavioral features we mean the study of the role of psychological/social interactions on the dynamics of living entities and how to include this features in the modeling approach. This aim has been highlighted in several interesting fields. An important example is offered by the pioneering paper [START_REF] Ajmone Marsan | Stochastic evolutionary differential games toward a system theory of behavioral social dynamics[END_REF] focusing on behavioral social dynamics. In more detail we quote from [START_REF] Ajmone Marsan | Stochastic evolutionary differential games toward a system theory of behavioral social dynamics[END_REF] the following statement Motivations stems from a radical philosophical change that is unfolding in social and economic disciplines. Roughly speaking, this emerging point of view is characterized by an interplay between economics, psychology, and sociology, which is no longer grounded on the traditional assumption of rational socio-economic behaviors. The rationale for that approach, namely that Economics can be highly affected by individual (rational or irrational) behaviors, reactions, and interactions is widely accepted.

An important hallmark in the modeling of socio-economic systems, therefore, consists in understanding the complexity features of living systems and of social interactions in particular. Subsequently, mathematical methods need to be developed to capture, as far as it is possible, such features.

However, the interest to study the behavioral dynamics of complex system is not limited to socio-economic as complexity occurs almost everywhere in societies whose dynamics receives important inputs from human behaviors. A broad variety of examples where behavioral dynamics appears, is reported in the collection of papers [START_REF] Ball | Why Society is a Complex Matter[END_REF]. Therein, it is also well documented how specific studies can be addressed to contribute to the well-being of our society.

On a systems approach to complex systems: By a systems approach to modeling living matter we mean the mathematical description, by means of differential equations, the dynamics in time and space of the dependent variables deemed to describe the state of a general system constituted by different interconnected areas, each of them presenting different features both mechanical and qualitative with respect to the active ability of the entities. The derivation of specific models can be developed by adapting the aforementioned general mathematical structure to the specific case under consideration and, subsequently, by deriving models after a detailed modeling of individual based interaction at the microscopic scale, which can take advantage of the theoretical tools of evolutionary game theory.

Various papers have recently developed this topic focusing more particularly to social dynamics, for instance see [START_REF] Bird | Molecular Gas Dynamics and the Direct Simulation of Gas Flows[END_REF]. However, the first contribution was given in [START_REF] Ajmone Marsan | Towards a mathematical theory of complex socio-economical systems by functional subsystems representation[END_REF] where the concept of scaling and functional subsystems was proposed referring to a variety of systems enlightening the need for modeling the interactions of different types of dynamics. An other important reference is given by the already cited paper [START_REF] Ajmone Marsan | Stochastic evolutionary differential games toward a system theory of behavioral social dynamics[END_REF] which introduces a unified approach to modeling the behavioral socio-economic dynamics according to the kinetic theory for active particles. This paper presents also an application to the onset and development of criminality in a society, where their dynamics are contrasted by intelligence and police forces.

From microscopic to macroscopic: This problem can be viewed as a possible generalization of the celebrated sixth Hilbert problem [START_REF]Hilbert Mathematical problems[END_REF] which has been object of several interesting contributions in the classical kinetic theory. The literature in the field is documented in the review papers by Perthame [START_REF] Perthame | Mathematical tools for kinetic equations[END_REF] and Saint Raymond [START_REF] Saint-Raymond | Hydrodynamic limits of the Boltzmann equation[END_REF], where it is explained how different macroscopic models are obtained corresponding to different scaling assumptions according to the dispersive or non-dispersive nature of the system under consideration. In fact, the time-space scaling can be referred to the so called parabolic and hyperbolic limits or equivalently low and high field limits. The parabolic limit leads to a drift-diffusion type system (or reaction-diffusion system) in which the diffusion processes dominate the behavior of the solutions. The hyperbolic limit leads to models where the influence of the diffusion terms is of lower (or equal) order of magnitude in comparison with other convective or interaction terms. Different combinations of parabolic and hyperbolic scales also are used.

Computational methods: The mathematical structure derived from the KTAP theory have the form of system of nonlinear integro-differential coupled equations where the dependent variables are probability distributions depending on activity, position, velocity and time. The complexity beyond this structure limited the use of analytical solutions, and hence only computational methods can be developed in cases of practical interest.
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Simulations for kinetic models can be obtained by a suitable developments of the so-called Monte Carlo particle methods. In fact, particle methods originate from the Direct Simulation Monte Carlo (DSMC) scheme which have been introduced by Bird [START_REF] Bird | Molecular Gas Dynamics and the Direct Simulation of Gas Flows[END_REF] and subsequently developed by various authors. This method has been applied to classical kinetic equations and their possible simplification, where interactions follow deterministic rules corresponding to conservation of mass, momentum, and energy. The most recent treatise is the book by Pareschi and Toscani [START_REF] Pareschi | Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods[END_REF]. Latter, Gibelli has further developed this method to include stochastic interactions and applied to a variety of models such as learning in a classroom [START_REF] Burini | Collective learning dynamics modeling based on the kinetic theory of active particles[END_REF], criminality onset and development [START_REF] Ajmone Marsan | Stochastic evolutionary differential games toward a system theory of behavioral social dynamics[END_REF], and crowd dynamics [START_REF] Bellomo | Behavioral crowds: modeling and Monte Carlo simulations toward validation[END_REF].

Numerical methods have been also developed towards simulations of hyperbolic macroscopic models, technically, using classical numerical methods including finite differences, finite elements, and finite volume methods for hyperbolic conservative laws equations [START_REF]LeVeque Numerical Methods for Conservation Laws[END_REF]. An other important numerical problem discussed in this thesis is the design of asymptotic preserving schemes, namely a numerical solution which is asymptotically equivalent to the solution of the macroscopic model. In this direction, a new scheme has been introduced by Lemou in [START_REF] Lemou | A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit[END_REF] for the kinetic model which have been used later by several authors to approximate a class of chemotaxis models.

Complexity Features of Living Systems

Let us first focus on a qualitative analysis of the systems under consideration related to the selection of the main commune complexity features of living matter, with the aim of understanding the main features that characterize the living systems. So as possibly reduce complexity and cast the said features into mathematical equations without, however, losing their descriptive ability. In fact this is a preliminary stage toward the aforesaid system theory to modeling living, hence, complex systems.

Each feature is mainly referred to biological systems, where all of them are generally present. However, as we will see in the following chapters, the recent applications show that the said features appear, in a minor or greater extent, in different fields too, such as social, economical, and engineering sciences. Certainly, additional features can be identified in real systems, but this selection is already retains the essential elements toward the modeling approach and focus on those aspects that effectively have a role in the dynamics of each specific system under consideration:

Ability to express a strategy and heterogeneity: Each individual entity has the ability to express a specific strategy depending on its state as well as on the state of the entities in the surrounding environment. This strat-1.4. PLAN OF THE THESIS egy can be defined rational when it is properly finalized to a individual or collective well-being, while it is irrational when, even if motivated by a wellbeing purpose, it can even leads to disaster. Individuals can aggregate into groups of interest which follow a common strategy and might develop a collective intelligence. The said strategy is heterogeneously distributed within each group of interest.

Nonlinear interactions: Interactions are nonlinearly additive and involve immediate neighbors as well as distant entities due to the ability of living systems to communicate. Generally interactions are nonlocal in space, and follow rules that evolve over time and include a continuous adaptation to the changing-in-time environmental conditions being followed by a continuous modification of the interaction rules. As a consequence, the global action exerted on an entity by a group of others does not consist merely in the linear superposition of the actions exerted individually by them.

Learning and adaptation: Individual entities have the ability to learn from past experience. Therefore, their strategic ability and the features of their mutual interactions evolve in time. Learning dynamics can occur between individual entities, individuals and groups and between groups. In fact living entity can learn not only by pair interactions, but also by interactions with a whole population, and then, the individual can transfer the knowledge to her/his population.

Selection and evolution: Evolutionary processes can generate new individuals which can aggregate to different groups of interest. Some of them are more suited to the mutating environments and can increase there presence to be more dominated, while others are less suited and can disappear in the course of time. This feature has been highlighted first in biology, for instante see [START_REF] Bellouquid | From the modeling of the immune hallmarks of cancer to a black swan in biology[END_REF][START_REF] Angelis | On the mathematical theory of post-Darwinian mutations, selection, and evolution[END_REF], where in each birth process mutation might appear and bring new genetic variants into populations. Natural selection then screens them: by reducing the frequency of relatively unfit variants and increasing the frequency of relatively fit ones. However, the recent applications show that this feature also appears in the study of social systems and that can have an important influence on the overall dynamics.

Plan of the Thesis

After the previous preliminary introduction, the contents of this thesis, which is organized into three more chapters and an Appendix, can be given.

Chapter 2 deals with the derivation of a general mathematical structure suitable to capture the complexity features of living, hence complex systems, focusing on networks constituted by interconnected nodes, where CHAPTER 1. OBJECTIVES AND PLAN OF THE THESIS individuals are supposed to be homogeneously distributed in the territory of each node. These structures offer the conceptual background toward the derivation of specific models presented in the next chapter.

Chapter 3 shows how the modeling approach can be applied to model the dynamics over space of multicellular systems and how macroscopic tissue equations can be obtained from the underlaying description at the microscopic scale derived by the kinetic equations. This chapter deals also with the modeling of complex systems where the dynamics are developed over the space variable and focus on specific applications related to behavioral crowds dynamics.

Chapter 4 presents some results on analytical problems generated by the convergence of the Hilbert approach to the derivation of macroscopic equations from the kinetic theory approach. This chapter reports also about the qualitative analysis of the solutions of the initial value problems of the kinetic systems and ends up with a local, in time, existence result while the possible extension for large times is critically analyzed.

Appendix A proposes a summary of our scientific achievements, namely four papers [START_REF] Bellomo | On the interplay between behavioral dynamics and social interactions in human crowds[END_REF][START_REF] Dolfin | Modeling human behavior in economics and social science[END_REF][START_REF] Dolfin | A critical analysis towards research perspectives: Reply to comments on "Modeling human behavior in economics and social science[END_REF][START_REF] Outada | from kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF], two comments papers [START_REF] Bellomo | On the complex interaction between mathematics and the sciences of living systems: Comment on "Move me, astonish me ... neurophysiological correlates[END_REF][START_REF] Outada | Hyperbolic scaling and computing in social crowds: Comment on "Human behaviours in evacuation crowd dynamics: From modeling to "big data" toward crisis management[END_REF], book chapter [START_REF] Burini | A kinetic theory approach to the modeling of complex living systems[END_REF] and a monograph [START_REF] Bellomo | A Quest Towards a Mathematical Theory of Living Systems[END_REF]. Arguably, this achievements can contributes to the challenging objective of this thesis namely exploiting the kinetic methods for active particles. Applications refer to specific cases study in biology as well as in a variety fields in life sciences.

We close this thesis with a brief conclusion which provides a critical analysis of the content of this work looking ahead to the research activity and presents an overview of open problems concerning both modeling and analytical issues.

Chapter 2

Mathematical Theory

Introduction

This chapter presents some achievements of the so called kinetic theory of active particles in view of the various applications which will be proposed in the next chapter. The contents are motivated by the search of mathematical tools suitable to model living, hence complex systems. These structures are deemed to capture the main features of living systems. Indeed, it is the first step of a strategy towards modeling of complex system, where the said first step consists in designing a general mathematical framework (structure) suitable to capture, within a differential system, the key complexity features presented in Section 1.3. of Chapter 1. This general framework offers the conceptual basis for the derivation of specific models and substitutes the field theories that cannot be applied in the case of living systems.

Mathematical models are derived by implementing the said equations with a detailed interpretation, and modeling, of interactions at the microscopic scale, namely at the individual based level. The rules that guide these interactions can differ from system to system, while the aforesaid mathematical structure transfers the dynamics at the scale of individuals into that of collective behaviors.

Bearing all above in mind, the approach leads to a general mathematical theory that can generate specific models in different fields of life and social sciences. The modeling of individual based interactions are developed by theoretical tools of game theory that are typical of the science field, where each model refers to. The overall approach is known as the kinetic theory of active particles, (KTAP theory), where the interacting entities are called active particles due to their ability of expressing a certain strategy which called activity.

These reasonings address our mind to the methods of statistical mechanics and, in particular, of the kinetic theory, although substantial conceptual differences rapidly appear. In fact, a common feature shared by the classical and the new approach is that the state of the overall system is described by a probability distribution over the microscopic state of the interacting entities. However, interactions are not reversible and involve multiple entities in the case of living systems. In addition, the rationale followed in the modeling of interactions appears in our approach totally different, as conservation of mass, momentum and energy, is applied in the classical theory, while a different approaches have to be taken into account in the modeling of interactions amongst living entities. In fact, these are driven by individual rational behaviors which aim at pursuing the individual wellbeing of the interacting entities. However, this search is occasionally contrasted by irrational behaviors which might occasionally lead to negative effects although generated by a different wish.

Before giving a detailed description of the contents of the present chap-
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ter, let us first focus on the concept of the system theory of modeling living systems. As discussed by many authors, this system theory can be summarized as follows:

• Interpretation of the phenomenology of the class of systems object of the modeling approach focusing on its complexity features to understand how these features can influence the dynamics;

• Derivation of a general mathematical structure suitable to capture the said complexity features;

• Revisiting the aforesaid general structure by adjusting it to the specific modeling objective. This specialization aims at offering the conceptual framework toward the derivation of specific models;

• Analysis of specific models and related simulations with special focus on enlightening the predictive ability of the models, and there validation based not only on their ability to reproduce available empirical data at a quantitative level, but also qualitative observed emerging behaviors;

• Critical analysis of the selection of the complexity features and the modeling of entities interactions and generalizations of the modeling approach to a variety of applications.

These general steps are visualized in Figure (2.1), where in this chapter we focus more particularly in the second item. After these preliminaries, details of the content of this chapter can now be given: Section 2.2 reports about the derivation of the mathematical structure in the case of space homogeneity and shows how interactions can be modeled by theoretical tools of game theory. Section 2.3 develops an analogous study for models where space is a continuous variable. Interactions take into account specific features related to space continuity, namely the definition of the visibility and sensitivity zones and their influence on the general structure, which is derived in this section.

Section 2.4 presents a critical analysis focused on the consistency of the aforesaid mathematical structures, derived in the preceding sections, with the complexity features reported in Chapter 1.

We wish mentioning that the mathematical structures presented in this chapter are those effectively used in the various applications proposed in the next chapter and in the appendix. Of course, various technical generalizations are possible as shown in Chapter 3 of [START_REF] Bellomo | A Quest Towards a Mathematical Theory of Living Systems[END_REF].

Mathematical Structures for Space Vanishing Systems

This section deals with the derivation of a general mathematical structures suitable to describes the dynamic in time of complex living systems, focusing on space vanishing systems, namely systems constituted by a large number of living entities interacting in a territory where the distribution within this territory is homogeneous in space. Such a structure is suitable to capture the main complexities reported on Section 1.3 of a complex system, and provides a general background for the derivation of specific mathematical models in different fields of life and social sciences.

The derivation of the said mathematical structure refers to the methods of kinetic theory for active particles, where the living entities are viewed as active particles due to their ability to express a certain strategy which is called activity, while the modeling of individual-based interactions is developed by theoretical tools of game theory.

The contents of the rest of the section are structured as follows: Subsection 2.2.1 deals with the representation of a large system of living entities, viewed as active particles, by a probability distributions over the microscopic state of the interacting entities. This probability functions define the dependent variables of the differential mathematical model derived in the next subsection; Subsection 2.2.2 presents the derivation of the general mathematical structure suitable to describe, by a integro-differential system, the time dynamics of the aforesaid probability distribution which represents the overall state of the system; Subsection 2.2.3 focuses on the mathematical modeling of interactions, more precisely it shows how the descriptions of the individual-based interactions can be developed by a suitable developments of theoretical tools of game theory as well as how it can take advantages of quantities medeling what is called "distance between interacting particles".

However, it is worth mentioned that this framework presented in this section is the core of a systems approach to social dynamics which was initiated in [START_REF] Ajmone Marsan | Towards a mathematical theory of complex socio-economical systems by functional subsystems representation[END_REF] and subsequently developed through various papers [START_REF] Ajmone Marsan | Stochastic evolutionary differential games toward a system theory of behavioral social dynamics[END_REF][START_REF] Bellomo | On the dynamics of social conflicts looking for the black swan[END_REF][START_REF] Burini | A kinetic theory approach to the modeling of complex living systems[END_REF][START_REF] Gibelli | Heterogeneous population dynamics of active particles: progression, mutations and selection dynamics[END_REF] and more recently our published book [START_REF] Bellomo | A Quest Towards a Mathematical Theory of Living Systems[END_REF] which is a constant reference for this present chapter.

A Representation of Large Living Systems

Let us consider a large system of interacting entities where there number is constant in time. Following the ideas of [START_REF] Ajmone Marsan | Towards a mathematical theory of complex socio-economical systems by functional subsystems representation[END_REF][START_REF] Ajmone Marsan | Stochastic evolutionary differential games toward a system theory of behavioral social dynamics[END_REF][START_REF] Bellomo | A Quest Towards a Mathematical Theory of Living Systems[END_REF][START_REF] Burini | Collective learning dynamics modeling based on the kinetic theory of active particles[END_REF][START_REF] Burini | A kinetic theory approach to the modeling of complex living systems[END_REF][START_REF] Dolfin | Modeling human behavior in economics and social science[END_REF], the representation is proposed as follows:
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• The entities that comprise the system are referred to as active particles and are aggregated into different groups of interest called functional subsystems (FS), labeled by the subscript i = 1, • • • , n. Active particles within the same FS share a common strategy called activity which define their microscopic state.

• The activity u is a scalar with values in a domain D u supposed to be the same for all functional subsystems. Typical values, depending on each system, are [0, 1], [-1, 1], R + , and R. Generally, the ability to express a certain activity increases with increasing values of u, while negative values correspond to an expression opposite to the said activity.

• The overall microscopic state is derived by a probability distribution over the activity variable linked to each functional subsystem:

f i (t, u) : R + × D u -→ R + , ( 2.1) 
such that, under local integrability condition, f i (t, u) du denotes the infinitesimal number of active particles that at time t have an activity u in the elementary domain [u, u + du] of the space of the microscopic states, D u , of the i-th functional subsystem.

If the distribution functions f i are known, the macroscopic quantities are provided by standard moment calculations. In more details the zeroorder moment is defined, for each probability function f i such that uf i (t, •) ∈ L 1 (D u ), by

n i [f i ] (t) = D u f i (t, u) du, ( 2.2) 
it defines the number of particles that at time t belong to the i-th functional subsystem. The total number of particles is obtained by summing over all functional subsystems

N [f] (t) = n i=1 n i [f i ] (t), (2.3) 
where f is the set of all distribution functions f i , namely f = {f i ; i = 1, . . . , n}.

Higher order moments at time t are computed, for each function f i such that u q f i (t, •) ∈ L 1 (D u ) (q ∈ N * ), as follows:

E q [f i ] (t) = 1 n i [f i ] (t) D u u q f i (t, u) du, ( 2.4) 
CHAPTER 2. MATHEMATICAL THEORY which corresponds to additional macroscopic variables. In particular, the first-order moment (q = 1) identifies activation density:

A[f i ](t) = 1 n[f i ](t) D u u f i (t, u) du, (2.5)
while the activation is given by

A[f i ](t) = D u u f i (t, u) du, ( 2.6) 
which defines the average activity of the i-th functional subsystem. Second-order moments (q = 2) represent the activation energy density and the energy activation, respectively

E[f i ](t) = 1 n[f i ](t) D u u 2 f i (t, u) du, ( 2.7) 
and

E[f i ](t) = D u u 2 f i (t, u) du. ( 2.8) 
Third-order moments (q = 3) estimate the distortion, i.e the deviation of the probability distribution from the symmetry of a Gaussian distribution.

It is worth stressing that the splitting into functional subsystems is not universal and depends upon the specific investigation under consideration. Hence, the modeler should develop, by taking advantage of her/his experience and bias, the subdivision which is more effective toward the mathematical description of the system, depending also on the specific analysis under consideration. Therefore, different modeling perspectives correspond to different strategies to decompose the system. Remark 1. A simple case is when only conservative interaction are considered without transitions across functional subsystems, namely if the number of particles in each functional subsystem n i [f i ](t) = n 0 i is constant, then each f i can be divided by n 0 i and regarded as a probability density. However, in the relatively general case of dynamics with transition across functional subsystems the depend variables f i are viewed just as distribution functions.

Remark 2. Various applications in different fields, such as the modeling of social systems [START_REF] Bellomo | On the dynamics of social conflicts looking for the black swan[END_REF] or of the immune competition [START_REF] Bellouquid | From the modeling of the immune hallmarks of cancer to a black swan in biology[END_REF], suggest the use of discrete activity variables. So the activity domain is a discrete space, say D u = {u 1 , u 2 , . . . , u m }, and the microscopic representation of the system is derived by a discrete probability distributions that for each functional subsystem writes

f j i (t) = f i (t; u j ) : [0, T ] -→ R + , j = 1, . . . , m,
(2.9)
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such that f i (t; u j ) is the number, in probability, of active particles of the i-th functional subsystem that at time t have an activity u j . Macroscopic quantities are computed by the same calculations presented above, where integrals are substituted by sums:

E q [f i ] (t) = 1 n i [f i ] (t) m j=1 u q j f j i (t),
(2.10)

with n i [f i ] (t) = m j=1 f j i (t).
(2.11)

Remark 3. In this thesis we deal only with models with scalar activity variables, this hypothesis simplifies the mathematical structure of the mathematical equations. However, it cannot always be put in practice, and vector activity variables might be needed.

Interactions and Mathematical Structures

The mathematical kinetic theory of active particles leads to differential structure which describes the evolution of the afore-defined probability functions, and it is obtained by a balance between the inflow and outflow of particles within the elementary volumes of the space of microscopic states which is related to interactions. The description of interactions at the microscopic scale requires to distinguish between three types of active particles, namely:

• The test particle is the representative entity of the system. It is assumed that the test particle belong to the i-th functional subsystem with microscopic state, at time t, delivered by the activity variable u, hence its microscopic state is described by the distribution function

f i = f i (t, u);
• The candidate particle is a particle which can gain, in probability, the state u of the test particle as a consequence of interactions. The candidate particle belongs, at time t, to the i-th functional subsystem with an activity variable u * while its microscopic state is delivered by the distribution function

f i = f i (t, u * );
• Field particles is the particle which triggers the interactions of candidate particles. The field particle belongs, at time t, to the k-th functional subsystem with activity variable u * and it is assumed that its microscopic state is delivered by the distribution function Active particles interact within the same functional subsystem as well as with there groups viewed as a whole. Thus the derivation of the mathematical structure refers to two type of interactions:

f k = f k (t, u * ).
• Micro-micro scale interactions: These include individual-based interactions between active particles belonging to the same or to different functional subsystems;

• Micro-macro scale interactions: Interactions between particles and their group viewed as a whole being represented by the mean activity E 1 [f] of the functional subsystem.

Micro-micro scale interactions are visualized in Figure (2.2), while a similar illustration can be used in the case of micro-macro interactions. Moreover, as summarized in this figure, for both classification of interactions we distinguish between two types:

• Inlet interactions: Refer to the interactions in which the candidate particle loses its state and adopts the state of the test particle;

• Outlet interactions: Interactions by which the test particle loses its state after an interaction with field particles or a whole functional subsystem.

Bearing all above types of interactions in mind, evolution of the distribution functions can be obtained by a balance of particles within elementary volumes of the space of microscopic states, the inflow and outflow of
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particles being related to the inlet and outlet interactions respectively. In more detail, the balance of particles reads as follows:

Variation rate of the number of active particles = Inlet flux rate caused by micro-micro interactions -Outlet flux rate caused by micro-micro interactions +Inlet flux rate caused by micro-macro interactions -Outlet flux rate caused by micro-macro interactions -Natural trend toward an equilibrium distribution.

Technical calculations yield:

∂ t f i (t, u) = A i [f](t, u) + B i [f](t, u) -λ i [f i ](f i -f ie )(t, u), ( 2.12) 
where

A i [f](t, u) = n k=1 D u ×D u η ik [f](u * , u * ) A i ik [f](u * → u|u * , u * ) f i (t, u * ) f k (t, u * ) du * du * -f i (t, u) n k=1 D u η ik [f](u, u * ) f k (t, u * ) du * , ( 2.13) 
B i [f](t, u) = n k=1 D u ν ik [f](u * , E 1 k [f]) B i ik [f](u * → u|u * , E 1 k [f]) f i (t, u * ) E 1 k [f] du * -f i (t, u) n k=1 ν ik [f](u, E 1 k [f]) E 1 k [f], (2.14) 
and f ie denotes the equilibrium distribution. The other quantities appearing in equations (2.12)-(2.14) which model interactions are, where the term i-particle is used to denote an active particle in the i-th functional subsystem, Natural decay:

• The term λ i [f i ] is a positive definite quantity denotes the rate of a natural trend toward equilibrium.

Interaction rates:

• The interaction rate η ik [f](u * , u * ) ≥ 0 models the frequency of interactions between a candidate i-particle with state u * and a field k-particle with state u * ;

• The encounter rate ν ik [f](u * , E 1 k ) ≥ 0 models the frequency of interactions between a candidate i-particle with state u * and a k-th functional subsystem viewed as a whole being represented by its mean activity E 1 k .

Probability transitions:

• A i ik [f](u * → u|u * , u *
) models the probability transition density that a candidate i-particle, with state u * , ends up into a i-particle with state u after the interaction with a field k-particle with state u * , such that the states of the candidate and field particles are, respectively, u * and u * ;

• B i ik [f](u * → u|u * , E 1 k [f]
) models the probability transition density that a candidate i-particle, with state u * , ends up into a i-particle with state u after the interaction with the k-th functional subsystem, such that the state of the candidate particle is u * while the mean activity value of the functional subsystem is

E 1 k [f].
It is assumed that the terms

A i ik [f](u * → u|u * , u * ) and B i ik [f](u * → u|u * , E 1 k [f]
) are positive quantities which satisfy for all inputs the probability density property, i.e., normalization with respect to the output:

n i=1 D u A i ik [f](u * → u|u * , u * ) du = n i=1 D u B i ik [f](u * → u|u * , E 1 k [f]) du = 1.
Remark 4. The mathematical structure presented in this section includes only interactions which preserve the number of particles without transitions across functional subsystems. This structure provides the framework for the derivation of the class of models presented in the next chapter. As it is shown in [START_REF] Bellomo | A Quest Towards a Mathematical Theory of Living Systems[END_REF], a technical generalization can include also proliferative/destructive interactions and a Darwinian type dynamics.

Remark 5. In equations (2.12)-(2.14) the square brackets have been used to denote the dependence on the distribution functions which highlight the fact that the interaction terms can depend not only on the state of the interacting pairs, but also on their distribution functions. This feature introduces a nonlinearity of parameters in addition to the structural nonlinearity generated by the product of dependent variables. This delicate issue deserves a deep analysis related to modeling issues. Some hints are proposed in [START_REF] Dolfin | Modeling altruism and selfishness in welfare dynamics: the role of nonlinear interactions[END_REF].
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Modeling Interactions by Tools of Game Theory

Let us now consider the problem of modeling interactions at the microscopic scale to be inserted into equations (2.12)-(2.14) to obtain specific models. Various recent papers have contributed to this topic. For instance, [START_REF] Bellomo | On the dynamics of social conflicts looking for the black swan[END_REF][START_REF] Dolfin | Modeling altruism and selfishness in welfare dynamics: the role of nonlinear interactions[END_REF] have shown how interactions can be modeled by games, where the output of the interactions is conditioned not only by the state of the interacting entities, but also by the probability distribution over such states. Models which account for micro-macro interactions have been also proposed for the modeling of migration phenomena in [START_REF] Knopoff | On the modeling of migration phenomena on small networks[END_REF] and opinion formation in small networks in [START_REF] Knopoff | On a mathematical theory of complex systems on networks with application to opinion formation[END_REF]. Bearing all above in mind, let us consider, separately, the modeling of the interaction rates and the transition probability densities.

Interaction rates: The following different concepts of distance between interacting entities can be used on the modeling of encounter rates:

(i) Micro-micro state distance: which simply depends on the distance |u *u * | between the microscopic states u * and u * of the interacting candidate and field particles;

(ii) Micro-macro state distance: involves the microscopic state u * of the candidate particle and mean value of the activity E 1 k [f] of a functional subsystem and can be defined as u * -E 1 k [f] ; (iii) Hierarchic distance: which appears when a conceivable numbering criterion is applied in selecting the first subsystem by a certain selection rule (for instance, in the animal world, the "dominant") and in numbering the others by increasing numbers depending on the decreasing rate, namely it weights the relative influence of a specific functional subsystem on the others. This distance can be formally denoted as follows |i -k|;

(iv) Affinity distance: this distance is introduced according to the general idea that two systems with close distributions are affine and it refers to the interaction between active particles characterized by different distribution functions. In this case, the distance defined by f if k , where • is a suitable norm to be chosen depending on the physics of the system under consideration, for instance the uniform L ∞ (D u ) or the mean L 1 (D u ) approximations can be used.

The overall distance, which one can refer to as social metrics, is a weighted sum of all these distances. In general, interactions decay with the distance, where heuristic assumptions lead to a decay described by exponential terms: where

η ik [f](u * , u * ) = η 0 e -d ik [f](u * ,u * ) , ( 2 
d ik [f] = η 1 |u * -u * | + η 2 u * -E 1 k [f] + η 3 |i -k| + η 4 f i -f k . ( 2.16) 
A similar formula can be used in the case of micro-macro interaction terms

ν ik [f](u * , E 1 k ) with different constants η j (j = 0, 1 , 2, 3, 4) 
. Remark 6. More sophisticated concepts of distances can be used. For example, the so called Wasserstein metrics [START_REF] Wasserstein | Markov processes over denumerable products of spaces describing large systems of automata[END_REF] should be properly investigated in the case where the distance involves probability distributions.

Transition probability density: The modeling of transition probability densities requires to introduce some ideas borrowed from game theory [START_REF] Bastolla | The architecture of mutualistic networks minimizes competition and increases biodiversity[END_REF][START_REF] Camerer | Behavioral Game Theory: Experiments in Strategic Interaction[END_REF][START_REF] Gintis | Game Theory Evolving: A Problem-Centered Introduction to Modeling Strategic Interaction[END_REF][START_REF] Nowak | Evolutionary Dynamics -Exploring the Equations of Life[END_REF][START_REF] Nowak | Evolutionary dynamics of biological games[END_REF][START_REF] Santos | Evolutionary dynamics of social dilemmas in structured heterogeneous populations[END_REF][START_REF] Santos | Evolutionary dynamics of climate change under collective-risk dilemmas[END_REF][START_REF] Scheffer | Earlywarning signals for critical transitions[END_REF]. In detail, the following types of games are often used:

(i) Competitive (dissent) games: The interacting particle with higher state increases its status by taking advantage of the other with lower status, which is obliged to decrease it. Therefore, the competition is advantageous for only one of the two players involved in the game, namely one gains, while the other looses. This type of interaction has the effect of increasing the difference between the states of interacting particles;

(ii) Cooperative (consensus) games: The interacting particle with higher state decreases its status with advantage of the other with lower status, which increases it. Therefore, the cooperation is advantageous for both two players involving in the game. This type of games leads to a decrease in the difference between the states of the interacting particles;
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(iii) Hiding-chasing games: One of the two particles attempts to increase the overall distance from the state of the other one, i.e hiding, which conversely attempts to reduce it, i.e chasing. This type of dynamics can leads either to increase or decrease the distance between the interacting particles;

(iv) Learning games: One of the two particles modifies, independently of the other, its microscopic state, by taking benefit of process of transfer of knowledge to improve its statue. This type of interactions leads to reduce the distance between the state of the particles involving in the game.

The different type of games (i)-(iv) are visualized in Figure (2.3).

Competitive and cooperative interactions can be used to model some aspects of social dynamics, where the microscopic state is the wealth, while the cooperation is imposed by a taxation dynamics that impose to higher wealths to share part of their profits. Hiding-chasing interactions can be used in social systems such as the fight to reduce criminality, where detectives chase criminals approaching them, who try to escape. Learning dynamics are a feature of all types of interactions.

In some cases, all aforesaid types of dynamics can occur simultaneously. Their occurrence, namely the prevalence of one type with respect to the other, is ruled by a threshold on the distance between the states of the interacting particles. Such a threshold, in the simplest case, is assumed to be a constant value. However, recent papers, for instance see [START_REF] Bellomo | On the dynamics of social conflicts looking for the black swan[END_REF][START_REF] Dolfin | Modeling altruism and selfishness in welfare dynamics: the role of nonlinear interactions[END_REF], have shown that the threshold can depend on the overall state of the system viewed as a whole and that can have an important influence on the dynamics.

It should be warned that the description is here proposed simply at a qualitative level leaving to the next chapter devoted to application the analytic formalization.

Remark 7. Nonlinearity at the microscopic scale introduces an important influence on the predictive ability of models, therefore, a detailed overview of the source of nonlinearity can be useful toward a deep understanding of the dynamics. In our structure nonlinearity of interactions refers to the output of interactions which depend not only on the microscopic state of the interacting entities, but also on the probability distribution functions of the functional subsystems

to which they belong. Nonlinear dynamics refers also to the non-locality of interactions. In fact, according to the conjecture proposed in [START_REF] Ballerini | Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study[END_REF] and formalized in [START_REF] Bellomo | On the mathematical theory of the dynamics of swarms viewed as complex systems[END_REF], a dependence of D u on the distribution function should be taken into account, namely interactions occur in a topological domain D u,s ⊆ D u (see [START_REF] Ballerini | Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study[END_REF]). The latter is defined as the domain in which each particle has the ability

CHAPTER 2. MATHEMATICAL THEORY to perceive a sufficient amount of signals and develop consequently a strategy as a consequence of interactions with a fixed critical number n c of field particles. Integration of the distribution function over the activity variable yields the topological domain of interaction

D u,s = [u -s m [f; n c ] , u + s M [f; n c ]]
where s m , s M > 0. However, the solution is unique only in some special cases. For instance, when u is a scalar defined over the whole real axis, the sensitivity is symmetric with respect to u.

Structures with Continuous Space Variable

This section is devoted to the derivation of a general structure for systems with a space variable. Derivation of such a structure follows the same rationale presented in the case of vanishing-space dynamics.

Accordingly, the presentation is proposed along the same steps treated in the preceding sections, namely, the first subsection, Subsection 2.3.1, deals with the representation a large system of interacting functional subsystems in a domain Σ ⊆ R 3 ; Then the mathematical structures are derived in Subsection 2.3.2 after a description of interactions; The last subsection, Subsection 2.3.3, shows how theoretical tools of game theory can be used to model interactions also in case of systems with space structure.

However, it is worth mentioned that even if the modeling strategy follows the same rationale of the spatially homogeneous case, some important modifications have to be considered to model the role of space both on the transport term on the left-hand side of the equality sign of equation (2.12) and on the interaction operator on the right-hand side. Accordingly, the elaboration, with respect to the contents of the preceding section, mainly refers to the additional technical problems induced by the space variable.

Representation

Let us consider a large system of interacting particles within a domain Σ ⊆ R 3 . The active particles are modeled as points with a microscopic state identified by the microscopic variable

w := (x, v, u), ( 2.17) 
where • x = (x, y, z) is the position of each particle, which reefers to a suitable reference length l to be chosen depending on the physics and geometry of the system under consideration. For instance, if the space domain is bounded, then l can reefers to the largest distance between two points in Σ;

• v ∈ D v is the velocity, whose modulus v = v is referred to the maximal velocity v M which can be reached by a fast entity in free flow conditions;

• u ∈ D u is the activity variable, which models the emotional state of particles.

Particles are subdivided into a number n of functional subsystems corresponding to groups of particles that express the same activity. The activity is heterogeneously distributed over D u , while the overall state of the system is delivered by the probability distribution function

f i (t, u) : R + × Σ × D v × D u -→ R + , ( 2.18) 
for each i-th functional subsystem. Under suitable local integrability assumptions, it provides via f i (t, x, v, u)dxdvdu, the infinitesimal number of active particles of the i-th functional subsystem that are, at time t, in the elementary volume

[x, x + dx] × [v, v + dv] × [u, u + du] (2.19)
of the space of the microscopic states

Σ × D v × D u .
Macroscopic quantities can be computed as weighted moments. For instance, the local densities for each functional subsystem are computed as follows:

ρ i [f i ](t, x) = D v ×D u f i (t, x, v, u) dv du, ( 2.20) 
while the local mean velocity is given by

ξ i [f i ](t, x) = 1 ρ i [f i ](t, x) D v ×D u v f i (t, x, v, u) dv du. (2.21)
First order moments define the flow

q i [f i ](t, x) = D v ×D u v f i (t, x, v, u) dv du, ( 2.22) 
and it can be interpreted somehow as a linear momentum. The local energy is defined as

ξ i [f i ](t, x) = D v ×D u 1 2 mv 2 f i (t, x, v, u) dv du. (2.

23)

Social quantities correspond to moments weighted by the activity variable.

In particular, the local activation is given by

a i [f i ](t, x) = D v ×D u uf i (t, x, v, u) dv du, ( 2.24) 
CHAPTER 2. MATHEMATICAL THEORY while the local activation density is computed as follows

α i [f i ](t, x) = a i [f i ](t, x) ρ i [f i ](t, x) = 1 ρ i [f i ](t, x) D v ×D u uf i (t, x, v, u) dv du. (2.25)
In some cases, it might be useful looking at marginal densities, which correspond either to social quantities, after integration over the mechanical variables x and v,

f i (t, x, u) = D v f i (t, x, v, u) dv,
(2.26)

f i (t, v, u) = D x f i (t, x, v, u) dx, ( 2.27 
)

f i (t, u) = D x ×D v f i (t, x, v, u) dx dv, ( 2.28) 
or to mechanical quantities after averaging over the activity variable:

f i (t, x, v) = D u f i (t, x, v, u) du, (2.29) 
while global quantities are obtained by integration over the space and/or velocity variables.

Remark 8. A simple case is when only the space variable appears in the mechanical variable and takes only discrete values, say

Σ = {x 1 , x 2 , . . . , x m }.
So that the representation is simply delivered by the semi-discrete probability distribution

f ij = f ij (t, x j , u) : [0, T ] × D u → R + , j = 1, . . . , m, (2.30) 
while macroscopic quantities, for q = 1, 2, . . ., are computed as follows

E q [f ij ](t) = 1 n[f ij ](t) D u u q f ij (t, u) du, (2.31)
where

n[f ij ](t) = D u f ij (t, u) du. (2.32)
In fact, this case it can be seen as a generalization of the previous one developed in the preceding section to a network of interacting nodes, where space variable simply acts for the localization of the nodes.

Description of Interactions and Mathematical Structures

Following the same hallmarks of the preceding section, in the microscopic scale interactions, active particles can be distinguished according to their different roles. More specifically, a candidate particle of the i-th functional subsystem with microscopic state (x, v * , u * ) can gain, in probability, the state (x, v, u) of the test particle of the i-th functional subsystem as a consequence of the interaction with the field particle of k-th functional subsystem with micro-state (x, v * , u * ).

The mathematical framework describing different kinds of interactions will be specified, for each type of interactions, by means of two terms:

• The interaction rate η ik [f](x, v * , v * , u * , u *
) which provides the frequency of interactions between a candidate i-particle with state (x, v * , u * ) and a field k-particle with state (x, v * , u * ). The interaction rates η ik are positive definite quantities;

• The transition probability density

A i ik [f](v * → v, u * → u|x, v * , v * , u * , u *
) which describes the probability density that a candidate i-particle falls into the state of the test particle after the interaction with a field k-particle, such that the state of the candidate particle is (x, v * , u * ) while the state of the filed particle is (x, v * , u * ).

The evolution of the probability distribution is obtained by a balance of particles within elementary volumes of the space of microscopic states, the inflow and outflow of particles being related to the aforementioned interactions. The resulting structure reads as follows:

(∂ t + v • ∂ x ) f i (t, x, v, u) = A i [f](t, x, v, u) = n k=1 D 2 v ×D 2 u η ik [f](x, v * , v * , u * , u * ) A i ik [f](v * → v, u * → u|x, v * , v * , u * , u * ) × f i (t, x, v * , u * )f k (t, x, v * , u * ) dv * dv * du * du * -f i (t, x, v, u) n k=1 D v ×D u η ik [f](x, v, v * , u, u * ) f k (t, x, v * , u * ) dv * du * .
Remark 9. The derivation is not developed in the most general case, compared with the structures derived in the case of space-vanishing dynamics developed in the previous section, as one should also consider the case of micro-macro interactions. However, this structure provides the framework for the derivation of the class of models presented in the next chapter. 

Modeling Interactions

The modeling of the encounter rate can take advantage of suitable elaboration of distance between particles, for instance, a possible model is as follows:

η ik [f](x, v * , v * , u * , u * ) = η 0 (x) exp (-d ik [f](v * , v * , u * , u * )) (2.33)
where

d ik [f](v * , v * , u * , u * ) = η 1 (v * , u * ) -(v * , u * ) R 4 + η 2 |i -k| + η 3 f i -f k , (2.34)
and • is a suitable norm to be choosing according the specific characteristics of the system under considerations, while the transition probability density can be modeled by theoretical tools provided by learning theory [START_REF] Burini | Collective learning dynamics modeling based on the kinetic theory of active particles[END_REF] and game theory where the most used games are competition, cooperation, hiding/chasing and learning games (see Section 2.2.3 for more details). However, although the modeling of interactions follow the same rationale of the spatially homogeneous case, when we deal with specific concrete situations (as we will see in the next chapter), some important modifications are required to account for the role of space and velocity variable. In particular, interactions can take account of the so called the influence, sensitivity and effective interaction domains [START_REF] Bellomo | On the mathematical theory of the dynamics of swarms viewed as complex systems[END_REF].
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In fact, a candidate particle interacts with a fixed number of field particles by means of a communication ability that is effective only within a certain domain of influence Ω I [f] of the space variable which depends on the maximal density ρ c of active particles which can be captured in the communication. This domain is effective only if it is included in the sensitivity domain Ω s [f], within which active particles have the potential ability to feel the presence of another particles. The latter, corresponds to a visibility zone that might be reduced by obstacles (geometry) or environmental (lack of visibility) reasons, but the sensitivity domain could also depend on many different other signals or waves such us sounds or other type of perceptions. Therefore Ω s [f] = Ω s [f](x) depends on the localization of the particle, see Figure (2.4).

Detailed calculations can be developed when the geometry of the sensitivity domain is known. For instance, it can be a circle or an arc of circle centered in the candidate particle. In this case, the domain of influence is simply identified by the radius of the geometry and by the visibility angle

Ω I [f] = Ω I [f, R, θ].
Then, the conjecture on the critical density [START_REF] Ballerini | Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study[END_REF] can be transferred into the following invertible convolution relation (see [START_REF] Bellomo | On the mathematical theory of the dynamics of swarms viewed as complex systems[END_REF] for more details)

ρ c = Ω I [f]×D v ×D u f (t, x, v, u) dx dv du = Ω I [f,R,θ]×D v ×D u f (t, x, v, u) dx dv du. If Ω I [f] ⊆ Ω S [
f] the particle receive sufficient information to fully develop the standard strategy without restrictions. On the other hand, when

Ω S [f] ⊂ Ω I [f],
interactions are not sufficient to fully develop their strategy. We adopt the notation Ω

[f, x] = Ω I [f] ∩ Ω S [f](x)
to denote the effective interaction domain. In some special case this domain might be equal to zero so that particles do not modify their trajectory. The role of the interaction domains is shown, related to the aforesaid concepts, in Figure (2.4), where in cases of particles A, B and C the needed information is missing, while it is not missing in case of particle D. We emphasize that the dependence on f makes the domain dynamic, not static.

Critical Analysis

This chapter has shown how methods of the mathematical kinetic theory and theoretical tools of game theory can be developed to derive a mathematical structure to model real systems in the field of the so-called soft sciences. This is the first step of the modeling approach, while the second step should develop a detailed modeling of interactions which provides features to be introduced into the general mathematical structure in order to obtain specific models.

The chapter can now be closed by examining how far the said structures retain the complexity features of living systems presented in Section 1.3.

Ability to express a strategy and heterogeneity: The microscopic state includes the activity variable, which is deemed to model the strategy expressed by each active entity, while the heterogeneous behavior is accounted for by the heterogeneity of the activity variable within the active particles and by the description of the system by means of a probability distribution linked to each functional subsystem rather than by deterministic variables. The heterogeneous behaviors refer also to the stochastic games which model interactions based not only on rational behaviors but also on irrational dynamics;

Nonlinear interactions: The mathematical structure of Section 2.2 as well as Section 2.3, includes nonlinearly additive interactions, where nonlinearity refers to the structural nonlinearity due to the products of the distribution functions, as well as to the output of the interactions which could depend not only on the microscopic state of the interacting entities, but also on the probability distribution functions of the functional subsystems to which they belong. The non-linearity refers also to the non-locality of interactions, as in some cases living entities interact, in certain physical conditions, with a fixed number of entities within their visibility domain which depends on the localization of the candidate particle involved in the interactions;

Learning and adaptation: The ability of living systems of learning from past experiences is accounted for in the modeling of interactions based on stochastic rules which allowed to evolve over time, and to include a continuous adaptation to the changing-in-time environmental conditions due to learning ability. It is worth stressing that learning dynamics can involve the whole population and not only individuals;

Selection and evolution: The onset of functional subsystems induced by aggregation and/or fragmentation dynamics is modeled by the transition probability density, where interactions include the probability of formation of groups of interest, which in turn can generate new groups more suited to an evolving social and economic environment.

In addition, the functional systems approach selects those parts of the overall system, which play effectively the role. Therefore, the selection of the dependent variables related to each functional subsystem accounts also of the need to reduce complexity induced by the generally large number of components. This avoids dealing with a number of equations necessary that might be too large to be practically treated.

Chapter 3

Modeling, Simulations and Validation

Aims and Plan of the Chapter

The mathematical theory presented in Chapter 2 has reported about the derivation of a general framework which offers the conceptual basis for the derivation of specific models. This general mathematical structure is a substitute of the field theories which are classical in the case of the inert matter that, however, cannot be applied in the case of living systems. Mathematical models are derived by implementing the said equations with a detailed interpretation, and modeling, of interactions at the microscopic scale, namely at the individual based level. The rules that guide these interactions can differ from system to system, while the aforesaid mathematical structure transfers the dynamics at the scale of individuals into that of collective behaviors.

The approach has generated a number of papers already published or in press in selective journals that have been already rapidly presented in Appendix A. Here we provide, in the next section, the main achievements of the results of the research activity which has been focused mainly on modeling, numerical simulations and analytical problems. The following sections present the said achievements for each specific topic. After these preliminaries, details of the content of this chapter can now be given: Section 3.2 reports, referring to paper [START_REF] Outada | from kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF], about the modeling and simulations of multicellular systems. The class of models treated in this section present a complex dynamics over space of cells that have the same activity variable. This section also considers the derivation of macroscopic (hydrodynamical) equations from the underlying description at the microscopic scale.
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CHAPTER 3. MODELING, SIMULATIONS AND VALIDATION Section 3.3 focuses on behavioral crowd dynamics in critical situations where walkers exchange emotional states and modify their walking strategy accordingly. Therefore these models join two specific features of the preceding chapter, namely social dynamics and mechanics over space.

On the Dynamics of Multicellular Systems

This section presents an application of the KTAP approach to modeling and simulations of multicellular systems. The general idea consists in modeling the dynamics as a perturbation of the spatially homogeneous behavior. This approach, although it is less general than that which will be used for crowd modeling, see the next section, presents the advantage of leading to the derivation of macroscopic type models which can be solved by classical deterministic methods of numerical analysis.

In more detail, we refer to [START_REF] Outada | from kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF], where this approach has been applied to the modeling of multicellular systems in which the asymptotic analysis refers to the hyperbolic limit for a dynamics somewhat related to chemotaxis and cross diffusion phenomena [START_REF] Bellomo | Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues[END_REF] which are generally modeled by parabolic equations. However, the hyperbolic scaling appears to be more appropriate to model biological phenomena where propagation occurs with finite speed.

The presentation is in two steps treated in the next subsections. Namely, the first subsection presents the kinetic model from which the macroscopic model is derived, while some numerical methods are presented in the second subsection.

From Kinetic Theory to a Macroscopic Model

Let us consider a physical system constituted by a large number of cells interacting in a biological environment. The microscopic state is defined by the mechanical variable

{x, v} ∈ Ω × V ⊂ R d × R d , d = 1, 2, 3.
The statistical collective description of the system is encoded in the distribution function

f = f (t, x, v) : [0, T ] × Ω × V → R + .
The system treated in [START_REF] Outada | from kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF] consists of different species in response to multiple chemotactic cues in which the density (concentration) of each chemotactic cue is denoted by

g i = g i (t, x, v) : [0, T ] × Ω × V → R + for i = 1, . . . , m
and m present the total number of the chemotactic cues. The evolution of the distribution functions f and g i can be modeled as follows:

         ∂ t f + v • ∇ x f = L(g, f ) + H(f , g), τ i ∂ t g i + v • ∇ x g i = l i (g i ) + G i (f , g), (3.1)
where g = (g 1 , . . . , g m ) T and τ i ∈ R + is a dimensionless time factor which indicates that the spatial spread of f and g i are on different time scales. The operators L and l i model the dynamics of biological organisms by velocityjump process while H and G i describe proliferation/destruction interactions.

The above model describes the evolution of a large system of interacting cells in response to multiple chemotactic cues. Interactions occur within the microscopic domain Ω × V of the test cell. V is assumed to be bounded and radially symmetric.

The information at the macroscopic scale can be obtained by moment calculations, more precisely the zero order moments are computed as follows:

n(t, x) = V f (t, x, v) dv and N i (t, x) = V g i (t, x, v) dv, ( 3.2) 
while the first order moments are given by:

ξ(t, x) = 1 n(t, x) V v f (t, x, v) dv, ( 3.3) 
x and

U i (t, x) = 1 N i (t, x) V vg i (t, x, v) dv. (3.4)
Equations for the moments (3.2)-(3.4) can be obtained as a hydrodynamic limit after an appropriate scaling of time and space, different timespace scalings lead to equations characterized by different parabolic or hyperbolic structures, different combinations of parabolic and hyperbolic scales also are used, according to the dispersive or non-dispersive nature of the biological system under consideration. However, a more recent tendency been the use of hyperbolic equations to describe intermediate regimes at the macroscopic level rather than parabolic equations, for example [START_REF] Bellomo | Multicellular growing systems: hyperbolic limits towards macroscopic description[END_REF][START_REF] Outada | from kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF]. In the next paragraph it is shown how the hyperbolic models may derived as a hydrodynamic limit of the kinetic equation (3.1).

Let us now consider the derivation of models at the macroscopic scale according to a hyperbolic scaling: t → εt and x → εx, applied to the first equation of system (3.1), where ε is a small parameter which will be allowed to tend to zero [START_REF] Bellomo | Multicellular growing systems: hyperbolic limits towards macroscopic description[END_REF]. In addition, a smallness assumption is made on interactions H(f , g) = εH(f , g).

CHAPTER 3. MODELING, SIMULATIONS AND VALIDATION

The derivation is based on the assumption that L admits the following decomposition:

L(g, f ) = L 0 (f ) + εL 1 (g, f ), (3.5) 
with L 1 in the form

L 1 (g, f ) = m i=1 L 1 i [g i ](f ). (3.6)
The operator L 0 represents the dominant part of the turning kernel modeling the tumble process in the absence of chemical substance and L 1 i is the perturbation due to chemical cues. With this considerations, the Eq. (3.1) becomes:

             ∂ t f + v • ∇ x f = 1 ε L 0 (f ) + m i=1 L 1 i [g i ](f ) + H(f , g), τ i ∂ t g i + v • ∇ x g i = l i (g i ) + G i (f , g). (3.7) 
Let us now consider the asymptotic limit of (3.7) as ε goes to zero. Some assumptions on the turning operators L 0 , L 1 i and l i are necessary to develop this asymptotic analysis: Assumption H0. (Conservation of the local mass) The turning operators L 0 , L 1 i and l i conserve the local mass:

V L 0 (f ) dv = V L 1 i [g i ](f ) dv = V l i (f ) dv = 0.
Assumption H1. (Conservation of the population flux) The turning operator L 0 conserve the population flux:

V v L 0 (f ) dv = 0. Assumption H2. (Kernel of L 0 ) For all n ∈ [0, +∞[ and ξ ∈ R d , there exists a unique function F n,ξ ∈ L 1 (V , (1 + |v|)dv) such that L 0 (F n,ξ ) = 0, V F n,ξ dv = n and V v F n,ξ dv = n ξ.
Multiplying each equation of system (3.7) by 1 and v and integrating over V yields:

                                               ∂ t n + div x (n ξ) = V H(f , g) dv, ∂ t (nξ) + div x V v ⊗ vf (t, x, v) dv = m i=1 V vL 1 i [g i ](f ) dv + V v H(f , g) dv, τ i ∂ t N i + div x (N i U i ) = V G i (f , g) dv, τ i ∂ t (N i U i ) + div x V v ⊗ vg i (t, x, v) dv = V v l i (g i ) dv + V vG i (f , g) dv.
(3.8)

Let us consider a small perturbation of the solution f (t, x, v) near the equilibrium to close system (3.8)

f (t, x, v) = F n(t,x),ξ(t,x) (v) + εf 1 (t, x, v), (3.9) 
where the equilibrium distribution F n,ξ is given by Assumption H2. In addition, let us consider the following asymptotic expansion in order 1 in ε:

H(φ + εψ, θ) = H(φ, θ) + O(ε) and G i (φ + εψ, θ) = G i (φ, θ) + O(ε). (3.10)
Replacing now f by its expansion (3.9) in (3.8) yields:

                                                                 ∂ t n + div x (n ξ) = V H(F n,ξ , g) dv + O(ε), ∂ t (nξ) + div x (P + nξ ⊗ ξ) = m i=1 V (v -ξ)L 1 i [g i ](F n,ξ )dv + V vH(F n,ξ , g) dv + O(ε), τ i ∂ t N i + div x (N i U i ) = V G i (F n,ξ , g)dv + O(ε), τ i ∂ t (N i U i ) + div x V v ⊗ vg i (t, x, v) dv = V vl i (g i )dv + V vG i (F n,ξ , g) dv + O(ε), (3.11) 
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where the pressure tensor P is given by

P (t, x) = V (v -ξ(t, x)) ⊗ (v -ξ(t, x))F n(t,x),ξ(t,x) (v) dv. (3.12)
The closure can be obtained by looking for an approximate expression of the second order moment

V v ⊗ vg i (t, x, v) dv.
The approach consists in deriving a function a i (t, x, v) which minimizers the L 2 (V )-norm under the constraints that it has the same first moments, N i and N i U i , as g i . Once a i this function has been found, we replace g i by a i in Eq. (3.11).

This minimization problem can be solved explicitly in the case where the set of velocity is the sphere of radius ϑ > 0, V = ϑS d-1 , using the Lagrangian multipliers and one finds:

a i (t, x, v) = 1 |V | N i (t, x) + d ϑ 2 N i (t, x)U i (t, x) • v . ( 3.13) 
Thus, the following nonlinear coupled hyperbolic model, at first order with respect to ε, is derived

                                                         ∂ t n + div x (nξ) = V H(F n,ξ , a) dv + O(ε), ∂ t (nξ) + div x (P + nξ ⊗ ξ) = m i=1 V (v -ξ)L 1 i [a i ](F n,ξ ) dv + V vH(F n,ξ , a)dv + O(ε), τ i ∂ t N i + div x (N i U i ) = V G i (F n,ξ , a) dv + O(ε), τ i ∂ t (N i U i ) + ϑ 2 d ∇ x N i = V vl i (a i ) dv + V vG i (F n,ξ , a) dv + O(ε), (3.14) 
with a = (a 1 , • • • , a m ). Specific models can be obtained by an appropriate specialization of the various terms in (3.14). In more detail, we consider the equilibrium function F n,ξ as follows:

F n,ξ (v) = 1 |V | n + d ϑ 2 ξ • v . (3.15)
The perturbation operators L 0 , L 1 i and l i are supposed to be integral operators as follows:

L 0 (f ) = V T 0 (v, v )f (t, x, v ) -T 0 (v , v)f (t, x, v) dv , ( 3.16 
)

L 1 i [g i ](f ) = V T 1 i (g i , v, v )f (t, x, v ) -T 1 i (g i , v , v)f (t, x, v) dv , ( 3.17) 
and

l i (f ) = V (K i (v, v )f (t, x, v ) -K i (v , v)f (t, x, v)) dv . (3.18)
The turning kernels T 0 (v, v ), T 1 i (g i , v, v ) and K i (v, v ) describe the reorientation of cells, i.e. the random velocity changes from the previous velocity v to the new v, and are defined as follows:

T 0 (v, v ) = ϑ 0 |V | 1 + d ν 2 v • v , ( 3.19 
)

T 1 i [g i ](v, v ) = µ 1 |V | - µ 2 d |V |ϑ 2 v • α i , ( 3.20) 
and

K i (v, v ) = σ i |V | (3.21) 
where µ 0 , µ 1 , µ 2 and σ i are real constants, α i is a mapping R -→ R d which can depends on the first moment < g i > as well as on its derivative, and < • > stands for the (v)-mean of a function, i.e < h >:

= V h(t, x, v) dv for h ∈ L 2 (V ).
Thus, the hyperbolic system (3.14) becomes

                                       ∂ t n + div x (nξ) = V H(F n,ξ , a) dv, ∂ t (nξ) + ϑ 2 d ∇ x n = -µ 1 m nξ + µ 2 m i=1 nα i + V vH(F n,ξ , a) dv, τ i ∂ t N i + div x (N i U i ) = V G i (F n,ξ , a) dv, τ i ∂ t (N i U i ) + ϑ 2 d ∇ x N i = -σ i N i U i + V vG i (F n,ξ , a) dv. (3.22)
The derivation of a chemotaxis model can be deduced from the hyperbolic structure (3.22) in the case when m = 1. Indeed, let us assume the following scaling: 

σ 1 → ∞, ϑ → ∞, µ 1 = µ 2 , s.t ϑ 2 dσ 1 → D N
i = α i (N i ) • ∇ x N i and H(F n,u , a 1 ) = H n |V | , N 1 |V | + O( 1 ν 2 ), G 1 (F n,ξ , a 1 ) = G 1 n |V | , N 1 |V | + O( 1 ν 2 ).
Now, dividing the second and fourth equations in (3.22) by µ 1 and σ 1 respectively and taking last limits, the following model is obtained:

         ∂ t n = div x (D n ∇ x n -nα 1 (N 1 )∇ x N 1 ) + H(n, N 1 )
,

τ 1 ∂ t N 1 = D N 1 ∆ x N 1 + G 1 (n, N 1 ), (3.24) 
where,

H(n, N 1 ) = |V |H n |V | , N 1 |V | and G 1 (n, N 1 ) = |V |G 1 n |V | , N 1 |V | .
System (3.24) consists of two coupled parabolic reaction-diffusion equations. This model is correspond to one of the simplest approach to describe the aggregation of cells by chemotaxis [START_REF] Bellomo | Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues[END_REF].

Numerical Methods

Now, we present some numerical tests in the hyperbolic model (3.22) with the choice m = 1,

H = 0, G 1 = n |V | , τ 1 = 1, and α 1 = α 1 (N 1 ) ∇ x N 1 , where α 1 is a reel mapping R -→ R:                              ∂ t n + div x (nξ) = 0, ∂ t (nξ) + ϑ 2 d ∇ x n = -µ 1 nξ + µ 2 nα 1 (N 1 )∇ x N 1 , ∂ t N 1 + div x (N 1 U 1 ) = n, ∂ t (N 1 U 1 ) + ϑ 2 d ∇ x N 1 = -σ 1 N 1 U 1 . (3.25)
To compute numerical solutions of (3.25) in one space dimension we use a well-balanced scheme [START_REF] Gosse | Computing Qualitatively Correct Approximations of Balance Laws: Exponential-Fit, Well-Balanced and Asymptotic-Preserving[END_REF][START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF], and we show that the resulting scheme is asymptotic preserving for the limit in (3.23), in the sense that it is asymptotically equivalent to the well-balanced Scharfetter-Gummel scheme for the Keller-Segel model [START_REF] Scharfetter | Large signal analysis of a silicon read diode oscillator[END_REF]. The two-dimensional case is based on time splitting scheme between the conservative part and the source term of system (3.25) where the conservative equation is approximated by the Lax-Friedrichs flux [START_REF]LeVeque Numerical Methods for Conservation Laws[END_REF][START_REF] Vázquez-Cendón | Solving Hyperbolic Equations with Finite Volume Methods[END_REF].

One dimensional well-balanced scheme

In this subsection we present a well-balanced discretization of system (3.25) in one-dimensional setting subject to the scaling (3.23). The scheme obtained is asymptotic equivalent to the well-known Scharfetter-Gummel scheme for the Keller-Segel equations (3.24).

For this purpose, we write system (3.25) as follows

                                               ∂ t v + 1 ε ∂ x w = 1 2ε a - 1 εD n )v + (a + 1 εD n w , ∂ t w - 1 ε ∂ x v = - 1 2ε a - 1 εD n v + a + 1 εD n w , ∂ t V + 1 ε ∂ x W = - 1 2ε 2 D N 1 (V -W ) + n 2 , ∂ t W - 1 ε ∂ x V = 1 2ε 2 D N 1 (V -W ) + n 2 , ( 3.26) 
where

v = 1 2 (n + ε(nu)) , V = 1 2 (N 1 + ε (N 1 U 1 )) , (3.27) w = 1 2 (n -ε(nu)), W = 1 2 (N 1 -ε (N 1 U 1 )) (3.28) and ε = 1 ϑ , a = α 1 D n ∂ x N 1 .
We now introduce the numerical discretization of system (3.25) based in the representation (3.26). In order to do this, let us consider N x ∈ N, a steps ∆x = 2L N x , ∆t ∈ R + , and a uniform division of the space R + × [-L, L], L > 0:

-L = x 0 < . . . < x i < . . . < x N x = L, 0 = t 0 < . . . t k < . . . < . . .
with x i = -L + i∆x, i = 0, . . . , N x , and t k = k∆t, k ∈ N.

We introduce the following discretization of (3.25), see [START_REF] Outada | from kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF] for more

CHAPTER 3. MODELING, SIMULATIONS AND VALIDATION details,                                            v k+1 i = v k i - ∆t ε∆x v k+1 i -v k+ 1 2 i-1 2 , w k+1 i-1 = w k i-1 - ∆t ε∆x w k+1 i-1 -w k+ 1 2 i-1 2 , V k+1 i = V k i - ∆t ε∆x V k+1 i -V k+ 1 2 i-1 2 + ∆t 2 n k+1 i , W k+1 i-1 = W k i-1 - ∆t ε∆x W k+1 i-1 -W k+ 1 2 i-1 2 + ∆t 2 n k+1 i , (3.29) 
Here v k i , w k i , V k i and W k i are an approximations of the solution v(x, t), w(x, t), V (x, t), W (x, t) in the mesh point t k , x i . In order to update the values v k i ,

w k i-1 , V k i , W k i-1 , we need expressions for the numerical flux v i-1 2 , w i-1 2 , V i-1 2 and W i-1 2
.

For that purpose we solve in [x i-1 , x i ], the stationary problem composed of the four equations of (3.26)

                                               ∂ x v = 1 2 a i-1 2 - 1 εD n v + a i-1 2 + 1 εD n w , ∂ x w = 1 2 a i-1 2 - 1 εD n v + a i-1 2 + 1 εD n w , ∂ x V = - 1 2εD N 1 V -W , ∂ x W = - 1 2εD N 1 V -W ,
where, a i-

1 2 = α 1 D n N 1,i -N 1,i-1 ∆x , i = 0, • • • , N x .
We complete this system with the incoming boundary conditions

v(x i-1 ) = v i-1 , V (x i-1 ) = V i-1 , w(x i ) = w i , W (x i ) = W i ,
and we look for the unknowns:

v i-1 2 = v(x i ), V i-1 2 = V (x i ), w i-1 2 = w(x i-1 ), W i-1 2 = W (x i-1 ).
After straightforward computations one finds

v i-1 2 = w i + f i-1 2 , V i-1 2 = W i + F i-1 2 , i = 0, • • • , N x (3.30) w i-1 2 = v i-1 -f i-1 2 , W i-1 2 = W i-1 -F i-1 2 , i = 0, • • • , N x , ( 3.31) 
where

f i-1 2 = 2εa i-1 2 D n v i-1 -e -a i-1 2 ∆x w i εa i-1 2 1 + e -a i-1 2 ∆x -e -a i-1 2 ∆x - 1 
,

and F i-1 2 = 2εD N 1 2εD N 1 + ∆x (V i-1 -W i ) .
Now the approximations of the numerical fluxes v

k+ 1 2 i-1 2 , w k+ 1 2 i-1 2 , V k+ i- and W k+ 1 2 i-1 2
are computed from (3.30), (3.31) as

v k+ 1 2 i-1 2 = w k+1 i + f k i-1 2 , V k+ 1 2 i-1 2 = W k+1 i + F k+1 i-1 2 , i = 0, • • • , N x (3.32) w k+ 1 2 i-1 2 = v k+1 i-1 -f k i-1 2 , W k+ 1 2 i-1 2 = V k+1 i-1 -F k+1 i-1 2 , i = 0, • • • , N x , ( 3.33) 
with

f k i-1 2 = 2εa k i-1 2 D n v k i-1 -e -a k i-1 2 ∆x w k i εa k i-1 2 1 + e -a k i-1 2 ∆x -e -a k i-1 2 ∆x - 1 
, ( 3.34) 
F k+1 i-1 2 = 2εD N 1 2εD N 1 + ∆x V k+1 i-1 -W k+1 i
, and a k i-

1 2 = α 1 D n N k 1,i -N k 1,i-1 ∆x . (3.35)
Accordingly, from (3.29), (3.30), (3.31), (3.32) and (3.33) we obtain, for i = 0, • • • , N x , the following well-balanced scheme of system (3.26)

                                                 1 + ∆t ε∆x v k+1 i - ∆t ε∆x w k+1 i = v k i + ∆t ε∆x f k i-1 2 , 1 + ∆t ε∆x w k+1 i - ∆t ε∆x v k+1 i = w k i - ∆t ε∆x f k i+ 1 2 , 1 + ∆t ε∆x V k+1 i - ∆t ε∆x W k+1 i = V k i + ∆t ε∆x F k+1 i-1 2 + ∆t 2 n k+1 i , 1 + ∆t ε∆x W k+1 i - ∆t ε∆x V k+1 i = W k i - ∆t ε∆x F k+1 i+ 1 2 + ∆t 2 n k+1 i , (3.36) 
where f k i- 

n k i = v k i + w k i , (nξ) k i = 1 ε v k i -w k i , N 1 k i = V k i + W k i , (N 1 U 1 ) k i = 1 ε V k i -W k i .
The limit-points with index i = -1 or i = N x + 1, are computed from the boundary conditions where we impose Neumann boundary conditions for the density n and for the concentration N 1 , while a Dirichlet type conditions are used for the flux q := nξ:

n k -1 = n k 1 , n k N x +1 = n k N x -1 , (3.37) q k -1 = q k 1 , q k N x +1 = q k N x -1 . (3.38)
We now introduce briefly the Scharfetter-Gummel scheme reported in [START_REF] Outada | from kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF], (see also [START_REF] Scharfetter | Large signal analysis of a silicon read diode oscillator[END_REF]), for the Keller-Segel type model.

It has been shown in Subsection 3.2.1 that problem (3.25) is "asymptotically" equivalent to the following Keller-Segel type system

         ∂ t n + ∂ x J = 0, ∂ t S = D S ∂ xx S, (3.39) with S = N 1 , χ(S) = α 1 (S) and J = -D n ∂ x n + n χ ∂ x S.
We discretise Eq. (3.39) using the following well-balanced scheme

n k+1 i -n k i ∆t + J k i+ 1 2 -J k i-1 2 ∆x = 0, (3.40) the flux J k i+ 1 2
is given by

J k i+ 1 2 = α 1 ∂ (c) x S k i n k i -exp -α 1 ∆x D n ∂ (c) x S k i n k i+1 1 -exp -α 1 ∆x D n ∂ (c) x S k i , ( 3.41) 
with

∂ (c) x S k i = S k i+1 -S k i ∆x , i = 0, . . . , N x .
The second equation of system (3.39) is approximated by the classical second order finite difference scheme [85]

S k+1 i -S k i ∆t = D S S k+1 i-1 -2S k+1 i + S k+1 i+1 (∆x) 2 + n k+1 i , (3.42) 
with i = 0, • • • , N x . On the boundaries, we again use (3.37).

The next proposition show that the well-balanced scheme (3.36) is asymptotic preserving scheme. Proof. By summing the first and second equations of (3.36) and the third and fourth equations, one can drive, for every i = 0, . . . , N x , the two following equations

n k+1 i = n k i + ∆t ∆x          f k i-1 2 ε - f k i+ 1 2 ε          , ( 3.43) 
S k+1 i = S k i + ∆t ∆x          F k+1 i-1 2 ε - F k+1 i+ 1 2 ε          + ∆tn k+1 i . ( 3.44) 
A simple calculations yield

f k i-1 2 ε = 2a k i-1 2 D n εa k i-1 2 1 + exp -a k i-1 2 ∆x --a k i-1 2 ∆x -1 ×            1 2 n k i-1 + ε(nu) k i-1 - exp a k i-1 2 ∆x 2 n k i -ε(nu) k i           
and

F k+1 i-1 2 ε = D S 2εD S + ∆x S k+1 i-1 + ε(SU 1 ) k+1 i-1 -S k i + ε(SU 1 ) k+1 i .
It follows that for every i = 0, . . . , N x lim

ε→0 + f k i-1 2 ε = α 1 ∂ (c) x S k i-1 1 -exp -α 1 ∆x D n ∂ (c) x S k i-1 n k i-1 -exp - α 1 ∆x D n ∂ (c) x S k i-1 n k i , (3.45)
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ε→0 + F k+1 i-1 2 = D S ∆x S k+1 i-1 -S k+1 i . ( 3 

Two dimensional numerical method

In this subsection we present a discretization of system (3.25) in the two dimensional setting. The numerical method is based on time splitting scheme between the conservative part and the source term where the conservative part of the equation is approximated by the Lax-Friedrichs scheme.

For this purpose, we write (3.25) in the following form

F 1 (U ) =                              nu 1 s 2 n 2 0 N 1 U 1 1 s 2 N 1 2 0                              , F 2 (U ) =                              nu 2 0 s 2 n 2 N 1 U 2 1 0 s 2 N 1 2                              , ( 3.47) 
and

R(U ) =              0 -µ 1 nu + µ 2 nα 1 (N 1 )∇N 1 n -σ 1 N 1 U 1              , ( 3.48) 
with

u = (u 1 , u 2 ), U 1 = (U 1 1 , U 2 1 ) and U =              n nu N 1 N 1 U 1              . (3.49) We discretize [0, T ] × [-L x , L x ] × [-L y , L y ],
T , L x , L y > 0, by a uniform computational grid determined by ∆t, ∆ x and ∆ y . The nodes of the mesh are denoted t k , x i , y j with t k = k∆t k ∈ N, x i = -L x + i∆x i = 0, . . . , N x , and y j = -L y + j∆y j = 1, . . . , N y .

In standard notation, the discretization of the equation (3.47) writes

             U k+ 1 2 i,j = U k i,j - ∆t ∆x F k+ 1 2 1,i+ 1 2 ,j -F k+ 1 2 1,i-1 2 ,j - ∆t ∆y F k+ 1 2 2,i,j+ 1 2 -F k+ 1 2 2,i,j-1 2 U k+1 i,j = U k+ 1 2 i,j + ∆t R d U k+1 i,j , (3.50) 
where the numerical flux 

F k+ 1 2 1,i+ 1 2 ,j , F k+ 1 2 1,i-1 2 ,j , F
F k+ 1 2 1,i+ 1 2 ,j = 1 2 F 1 U k+ 1 2 i,j + F 1 U k+ 1 2 i+1,j - α x 2 U k+ 1 2 i+1,j -U k+ 1 2 i,j , F k+ 1 2 1,i-1 2 ,j = 1 2 F 1 U k+ 1 2 i-1,j + F 1 U k+ 1 2 i,j - α x 2 U k+ 1 2 i,j -U k+ 1 2 i-1,j , F k+ 1 2 2,i,j+ 1 2 = 1 2 F 2 U k+ 1 2 i,j + F 2 U k+ 1 2 i,j+1 - α y 2 U k+ 1 2 i,j+1 -U k+ 1 2 i,j , F k+ 1 2 2,i,j-1 2 = 1 2 F 2 U k+ 1 2 i,j-1 + F 2 U k+ 1 2 i,j - α y 2 U k+ 1 2 i,j -U k+ 1 2 i,j-1 .
Here the constants α x and α y are defined by

α x = max k=1,••• ,6 λ 1 k , and α y = max k=1,••• ,6 λ 2 k ,
where λ 1 k (respectively λ 2 k ) is the eigenvalue of the Jacobian matrix F 1 (U ) (respectively F 2 (U )).

The matrix is defined by

R d (U k+1 i,j ) =                                                0 -µ 1 (nu 1 ) k+1 i,j + µ 2 n k+1 i,j α 1 N k+1 1,i+1,j -N k+1 1,i-1,j 2∆x -µ 1 (nu 2 ) k+1 i,j + µ 2 n k+1 i,j α 1 N k+1 1,i,+1j -N k+1 1,i,-1j 2∆y 
n k+1 i,j -σ 1 (N 1 U 1 ) k+1 i,j                                                . (3.51)
Analogously to the one dimensional case we complete the system with Neumann boundary conditions for the density n and for the concentration N 1 and we impose Dirichlet boundary conditions for the flux nξ and N 1 U 1 .

Numerical tests

This subsection presents some numerical simulations to enlighten some properties of the hyperbolic model (3.25). For all numerical tests carried out we take α 1 (N 1 ) = 0.33, D n = 1, and D N 1 = 0.001. For the chemical concentration and population flux we consider initial data which are at rest N 1 (0) = 0, and (nξ)(0) = 0, while the following specific initial condition 

n(0, x) = n 0 2πσ 2 exp - (x -x 0 ) 2 2σ 2 + exp - (x + x 0 ) 2 2σ 2 ,
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is considered for the density of cells in one space dimension, where n 0 = 5, x 0 = 0.5 and σ = 3.10 -1 . In two space dimension we take

n(0, x, y) = n 0 2πσ 2 exp - (x -x 0 ) 2 + (y -y 0 ) 2 2σ 2 + exp - (x + x 0 ) 2 + (y + y 0 ) 2 2σ 2 ,
where n 0 = 0.25, (x 0 , y 0 ) = (3σ , 3σ ) and σ = 3.10 -2 .

In the following, we denote by

• WB: the well-balanced asymptotic preserving scheme (3.36);

• KS: the scheme (3.40), (3.42) for the Keller-Segel system;

• LF: the Lax-Friedrichs scheme (3.50).

We illustrate in Figure 3.1 at successive times (t = 0.03, 0.04, 0.05, 0.07) the density of cells obtained from the WB scheme for different values of ε (ε = 5 -k , k = 0, 1, 2, 3, 7, 9). We also compare with the numerical result obtained with the KS scheme. It can be seen that with the evolution of time we observe the union of the two initial high density regions of n. In addition the WB scheme converge as ε -→ 0 to the KS limit. It illustrate the result of Proposition 10.

The behavior of the model (3.25) in the two-dimensional case is illustrated in Figure 3.2 and Figure 3.3, where we plot the density of cells at different times (t = 0.001, 0.003, 0.005, 0.007, 0.012, 0.015). Clearly, as in the one-dimensional case, we observe the union of the two initial high density regions of n.

This simple numerical experiment enlightens an approach which is conceptually different from Monte Carlo particle methods, used in the next section, where simulations are directly applied to the kinetic type mathematical model. As we have seen, simulations are here obtained for a macroscopic model derived from the underlying description at the microscopic scale. Technically, the result has been obtained by finite volume methods for hyperbolic conservation laws equations. This approach allows also to identify the blow up of solutions which is a typical feature of chemotaxis models [START_REF] Bellomo | Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues[END_REF].

Behavioral Crowd Dynamics

This section provides an analysis on the modeling and applications of the dynamics of human crowds viewed as a living, hence complex, system where CHAPTER 3. MODELING, SIMULATIONS AND VALIDATION social interactions can have an important influence on the behavioral dynamics of the crowd. The analysis looks at real physical situations where safety problems might arise in some specific circumstances.

The literature on crowd modeling is reported in some survey papers. For instance, the paper [START_REF] Helbing | Traffic and related self-driven many-particle systems[END_REF] introduces the main complexity features of a crowd system and focuses on the modeling at the macroscopic scale for pedestrians undergoing individual based interactions. The modeling at the microscopic scale, by methods analogous to those of hydrodynamics, is treated in the survey by Hughes [START_REF] Hughes | The flow of human crowds[END_REF] and in the book [START_REF] Cristiani | Multiscale Modeling of Pedestrian Dynamics[END_REF], where the most challenging conceptual difficulties consists in understanding how the crowd, viewed as a continuum, selects the local speed and velocity direction. The papers [START_REF] Bellomo | From the micro-scale to collective crowd dynamics[END_REF][START_REF] Bellomo | Toward a behavioral-social dynamics of pedestrian crowds[END_REF][START_REF] Bellomo | Modeling crowd dynamics from a complex system viewpoint[END_REF] introduce the concept of the crowd as a behavioral living system, namely a crowd whose dynamics depends on the strategy and behaviors that pedestrians develop based on mechanical and social interactions with the other pedestrians. The support of modeling to crisis management during evacuation is critically analyzed in the survey [START_REF] Bellomo | Human behaviors in evacuation crowd dynamics: from modeling to "big data" toward crisis management[END_REF]. Another useful reference is paper [START_REF] Bellomo | On the interplay between behavioral dynamics and social interactions in human crowds[END_REF] which is a constant reference for this present section.

The rest of the section is organized as follows: Subsection 3.3.1 provides an interpretation of the phenomenology of the class of systems object of the modeling approach; Subsection 3.3.2 takes advantage of the general framework presented in Section 2.3 of Chapter 2 to derive models which include also the dynamics of individuals which change the rules of their participation to the dynamics; Subsection 3.3.3 presents some sample simulations with a special focus on evacuation dynamics from venues with complex geometry as well as the role of the leaders on driving the crowd out of a venue in conditions where panic propagates.

Phenomenological Description-Representation

Let us consider a large system of interacting pedestrians on a complex venue, the density of people is assumed to be high enough to cause continuous interactions, or reactions, with other individuals. The system is viewed as a living, hence a complex, system where the behavioral features of crowds are taken into account. The most important feature is the ability to express a strategy which is heterogeneously distributed among walkers and depends on their own state and on that of the entities in their surrounding walkers and environment. Heterogeneity can include a possible presence of leaders, who aim at driving the crowd to their own strategy. As an example, leaders can contribute, in evacuation dynamics, to drive walkers toward appropriate strategies including the selection of optimal routes among the available ones. However, interactions are nonlinearly additive and involve immediate neighbors, but also distant individuals. Interactions occur both between pedestrians and between a pedestrian and the environment where he moves. The latter are affected by different geometrical and environmental features, such as abrupt changes of directions, luminosity conditions, and many others.

Pedestrians, namely the microscopic system, are viewed as active particles, that have the ability of expressing their own strategy, called activity. The active particles are heterogeneously distributed in the crowd which is subdivided into groups labeled by the subscript i = 1, . . . , n corresponding to different groups called functional subsystems; The mechanical state of the active particles is defined by position x, velocity v, while their social state modeled by a variable at the microscopic scale, namely the activity variable, which takes value in the domain [0, 1] such that u = 0 denotes the lowest expression, while u = 1 the highest one; Interactions lead not only to modification of mechanical variables, but also of the activity which, in turn, modifies the rules of mechanical interactions.

Accordingly, the microscopic state of the system is delivered by the variable

w = (x, v, u) ∈ Σ ⊆ R 2 × D v × [0, 1]. (3.52) 
However, we suppose that the dynamics are in two space dimensions, polar coordinates are used for the velocity variable, namely v = (v, θ), where v is the speed and θ denotes the velocity direction. Dimensionless quantities are used by referring the components of x to a characteristic length L, while the velocity modulus is divided by the limit velocity, V M , which can be reached by a fast pedestrian in free flow conditions. The limit velocity depends on the quality of the environment, such as presence of positive or negative slopes; t is the dimensionless time variable obtained by referring the real time to a suitable critical time T c identified by the ratio between L and V M .

The kinetic representation of the overall state of the system at the microscopic scale is delivered by the probability distribution at time t, over the pedestrians individual state:

f i = f i (t, x, v, θ, u), x ∈ Σ, v ∈ [0, 1], θ ∈ [0, 2π[, u ∈ [0, 1], (3.53) 
for each functional subsystem labeled by subscript i. The probability distributions f i are divided by n M , which defines the maximal full packing density of pedestrians and it is assumed to be approximately seven walkers per square meter. If f i is locally integrable then f i (t, x, v, u) dx dv du is the expected number of pedestrians of the i-th FS whose microscopic state, at time t, is contained in the elementary volume Calculations of macroscopic quantities can be developed, as we have already seen in chapter 2, by weighted moments of the distribution functions. Technical calculations should, however, account for the use of polar coordinates that are useful, as we shall see, in the modeling approach. In particular, the local density and mean velocity for each i-FS reads

[x + dx] × [v, v + dv] × [θ, θ + dθ] × [u, u + du] ( 3 
ρ i (t, x) = 1 0 2π 0 1 0 f i (t, x, v, θ, u) vdv dθ du, ( 3.55) 
and

ξ i (t, x) = 1 ρ i (t, x) 1 0 2π 0 1 0 v f i (t, x, v, θ, u) vdv dθ du, ( 3.56) 
whereas global expressions are obtained by summing over all i indexes

ρ(t, x) = n i=1 ρ i (t, x), and ξ(t, x) = 1 ρ(t, x) n i=1 ρ i (t, x)ξ i (t, x).
(3.57) Specific applications might require computation of marginal densities such as the local mechanical distribution and the local activity distribution in each FS:

f M i (t, x, v) = 1 0 f i (t, x, v, θ, u) du, ( 3.58) 
and

f A i (t, x, u) = 1 0 2π 0 f i (t, x, v, θ, u) vdv dθ.
(3.59)

Derivation of a Mathematical Structure

This subsection shows how the mathematical tools derived in Chapter 2 can be further specialized toward the modeling of crowd dynamics. The structure presented in this subsection offers a quite general framework which, however, can be further generalized as suggested by possible applications. The derivation of a general mathematical structure requires the description of interactions at the microscopic scale. In fact, interactions correspond to a decision process by which each pedestrian modifies its activity and decides its mechanical dynamics depending on the state of the neighboring particles in its interaction domain. This process modifies velocity direction and speed. Each interaction involves three types of active particles namely the test particle, the candidate particle, and the field particle. The test particle is representative of the whole system and is described by its statistical distribution f i (t, x, v, θ, u). The candidate particle can acquire, in probability,
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the micro-state of the test particle after interaction with the field particles and is identified by its probability distribution f i (t, x, v * , θ * , u * ) while the distribution function of the field particle is givens by f k (t, x, v * , θ * , u * ). The test particle can lose its status as a consequence of the interaction with the field particle. It is supposed that an active particle may interact only with those particles which are contained in its interaction domain Ω (short range interactions). The latter is related to the influence domain, namely a circular sector, with radius R, symmetric with respect to the velocity direction being defined by the visibility angles θ and -θ, see Section 2.3.3 of Chapter 2.

Interactions can be modeled using the following quantities:

• Perceived density: Particles moving along the direction θ perceive a density ρ p θ different from the local density ρ. Models should account that ρ p θ > ρ when the density increases along θ, while ρ p θ < ρ, when the density decreases. According to [START_REF] Bellomo | On multiscale models of pedestrian crowds from mesoscopic to macroscopic[END_REF], this quantity is defined as follows:

ρ θ [ρ] = ρ + ∂ θ 1 + (∂ θ ρ) 2 [(1 -ρ)H(∂ θ ρ) + ρH(-∂ θ ρ)] , (3.60) 
where ∂ θ denotes the derivative along the direction θ, while H(•) is the Heaviside function, H(• ≥ 0) = 1, and H(• ≤ 0) = 0. In particular we have

∂ θ ρ → ∞ ⇒ ρ θ → 1, ∂ θ ρ = 0 ⇒ ρ θ = ρ, ∂ θ ρ → -∞ ⇒ ρ θ → 0,
which show that a positive gradients increase the perceived density up to the limit ρ θ = 1, while negative gradients decrease it down to the limit ρ θ = 0.

• Quality of the venue is a local quantity modeled by the parameter α = α(x) ∈ [0, 1], where α = 0 corresponds the worse conditions which prevent motion, while α = 1 corresponds to the best ones, which allows a rapid motion.

• Interaction rate η models the frequency by which a candidate (or test) i-particle in x develops contacts, in Ω, with a field k-particle. The following notation is used η ik [f](x, v * , v * , u * , u * ; α).

• Transition probability density:

A i ik [f](v * → v, u * → u|v * , v * ,
u * , u * ; α) models the probability density that a candidate i-particle in x with state (v * , u * ) shifts to the state of the i-test particle due to the interaction with a field k-particle in Ω with state (v * , u * ).
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These quantities are depend on the micro-state and on the distribution function of the interacting particles, as well as on the quality of the venueenvironment where the crowd moves.

According to the mathematical approach proposed in Chapter 2, the mathematical structure which gives the time dynamics of the distribution functions f i can be obtained by a balance of particles in the elementary volume of the space of the microscopic states:

Variation rate of the number of active particles = Inlet flux rate -Outlet flux rate, where the inlet and outlet fluxes are caused by interactions. In particular we consider two structures

• One component crowd: In the case of only one FS, namely n = 1, the subscripts can be dropped. Hence, the balance of particles yields:

(∂ t + v • ∇ x ) f (t, x, v, u) = A[f ](t, x, v, u) = D×D η[f ](x, v * , v * , u * , u * ; α) A[f ](v * → v, u * → u|v * , v * , u * , u * ; α) × f (t, x, v * , u * )f (t, x, v * , u * ) dv * dv * du * du * -f (t, x, v, u) D η[f ](x, v, v * , u, u * ; α) f (t, x, v * , u * ) dv * du * , (3.61) where D = [0, 1] × [0, 2π) × [0, 1].
• Multicomponent crowd without FS-crossing: Corresponding to the case of multiple FSs while the dynamic across them is not included. The mathematical structure in this case, using the simplified notation A ik := A i ik , reads: (3.62) This structures provide the conceptual framework for the derivation of models presented in the next subsection.

(∂ t + v • ∇ x ) f i (t, x, v, u) = P i [f](t, x, v, u) = n k=1 D 2 η ik [f](x, v * , v * , u * , u * ; α) A ik [f](v * → v, u * → u|v * , v * , u * , u * ; α) × f i (t, x, v * , u * )f k (t, x, v * , u * ) dv * dv * du * du * -f i (t, x, v, u) n k=1 D η ik [f](x, v, v * , u, u * ; α) f k (t, x, v * , u * ) dv * du * .

Mathematical Models

This section shows how certain models of interest for the applications, selected among various possible ones, can be derived by selecting the functional subsystems relevant to the specific study to be developed and by modeling interactions related to the strategies developed by active particles within each subsystem. In more detail, we look for models suitable to understand how the stress propagates in the crowd and how the flow patterns are subsequently modified with respect to the initial flow conditions. An additional topic consists in understanding how the flow patterns can be modified by the presence of leaders.

The derivation of models is proposed in the next two subsections, the first of the two deals with the modeling of the crowd in absence of leaders, while the second subsection shows how the modeling approach can account for the presence of leaders. A final subsection takes advantage of some developments of Monte Carlo particle methods, starting from [START_REF] Aristov | Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows[END_REF][START_REF] Barbante | A kinetic theory description of liquid menisci at the microscale[END_REF][START_REF] Bird | Molecular Gas Dynamics and the Direct Simulation of Gas Flows[END_REF][START_REF] Pareschi | Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods[END_REF] to presents some simulations which provide a pictorial description of the dynamics. Simulations enlighten specific features of the patterns of the flow focusing specifically on the evacuation time.

Dynamics with stress propagation

Let us consider a crowd in a venue Σ. Only one FS is considered, therefore the mathematical structure used towards the modeling is given by equation (3.61) for a system whose state is described by the distribution function f = f (t, x, v, u). Let us consider the modeling of the various terms of the said structure.

The encounter rate: A simple assumption consists in supposing that it grows with the activity variable and with the perceived density starting from a minimal value η 0 , namely

η = η[f ] = η 0 (1 + β u ρ θ [ρ]) , (3.63)
where β is a positive constant and the perceived density ρ θ is difined by equation (3.60). A minimal model is obtained with η η 0 .

Transition probability: Following the rationale of [START_REF] Bellomo | Toward a behavioral-social dynamics of pedestrian crowds[END_REF], each walker develops a strategy obtained by the following sequence of decisions: (1) Exchange of the emotional state; (2) Selection of the walking direction; (3) Selection of the walking speed. Decisions are supposed to be sequentially dependent and to occur with an encounter rate related to the local flow conditions. Hence, the process corresponds to the following factorization:

A(v * → v, u * → u) = A u (u * → u) × A θ (θ * → θ) × A v (v * → v).
(3.64)

CHAPTER 3. MODELING, SIMULATIONS AND VALIDATION

Starting from this assumption, a simple model can be obtained for each of the three types of dynamics under the additional assumption that the output of the interaction is a delta function over the most probable state:

(1) Dynamics of the emotional state: The dynamics by which the stress initially in Σ diffuse among all walkers is driven by the highest value, namely:

u * > u * : A u (u * → u|u * , u * ) = δ u -ε(u * -u * )(1 -u * ) , (3.65) u * ≤ u * : A u (u * → u|u * , u * ) = δ u -u * . (3.66)
(2) Dynamics of the velocity direction: It is expected that at high density, walkers try to drift apart from the more congested area moving in the direction of ν V (direction of the less congested area), while at low density, walkers head for the target identified ν T (the exit door) unless their level of anxiety is high in which case they tend to follow the mean stream as given by ν S (direction of the stream). Walkers select the velocity direction θ by an individual estimate of the local flow conditions and consequently develop a decision process which leads to the said directions. The sequential steps of the process are:

1. Perception of the density ρ which has an influence on the attraction to ν T , as it increases by decreasing density.

2. Selection of a walking direction between the attraction to ν S and the search of less congested areas is identified by the direction given by the unit vector ν V , where this selection is based on the assumption that increasing β increases the attraction to ν S and decreased that to ν T increases.

3. Accounting for the presence of walls which is modified by the distance from the wall d w supposing that the search of less congested areas decreases with decreasing distance which induces an attraction toward ν T .

The selection of the preferred walking direction θ is in two steps: first the walker in a point P selects a direction θ 1 , then if the new direction effectively moves toward the exit area, then θ 1 is not modified. On the other hand, if it is directed toward a point P w of the boundary then the direction is modified by a weighted choice between θ 1 and the direction from the position θ T from P to T , where the weight is given by the distance d w = |P -P w |.

Accordingly, the transition probability density for the angles is thus defined as follows:

A θ [ρ, x](θ * → θ) = δ (θ -θ * ) , with θ = (1 -d w )θ T + d w θ 1 , (3.67)
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where d w is assumed to be equal to one d w = 1 if θ 1 is directed toward T , and where θ 1 is given by:

θ 1 [ρ, x, u] = ρν V + (1 -ρ) uν S + (1 -u)ν T uν S + (1 -u)ν T ρν V + (1 -ρ) uν S + (1 -u)ν T uν S + (1 -u)ν T , ( 3.68) 
where

ν V = - ∇ x ρ ∇ x ρ , ν S = ξ ξ . (3.69)
(3) Dynamics of the speed: Once the direction of motion has been selected, the walker adjusts the speed to the local density and mean speed conditions. A specific model, in agreement with [START_REF] Bellomo | Behavioral crowds: modeling and Monte Carlo simulations toward validation[END_REF] can be used:

If ξ ≥ v * : A v (v * → v) = p a (α, u, ρ) δ(v -ξ a (α, u, ρ)) + (1 -p a (α, u, ρ)) δ(v -v * ), (3.70) and, if ξ > v * : A v (v * → v) = p d (α, u, ρ)δ(v -ξ d (ξ, ρ 1 )) + (1 -p d (α, u, ρ)) δ(v -v * ) (3.71)
where

p a (α, u, ρ) = α u(1 -ρ p ), ξ a (α, u, ρ) = ξ + α u(1 -ρ p )(αu -ξ), p d (α, u, ρ) = (1 -α u)ρ p , ξ d (u, ρ) = ξ(1 -ρ p ),
where ρ p denotes the perceived density along the preferred walking direction θ. This model corresponds to the following dynamics: If the walker's speed is lower than the mean speed, then the model describes a trend of the walker increase the speed by a decision process which is enhanced by low values of the perceived density and by the goodness are the quality of the venue. The opposite trend is modeled when the walker's speed is lower than the mean speed.

Modeling the presence of leaders

This section develops a model where a number of leaders are mixed within the crowd. The aim of the modeling consists in understanding how their presence modifies the dynamics. Two FSs are needed to represents the overall systems, while additional work on modeling interactions has to be developed. In consonance with the modeling approach proposed in the preceding section, the following subdivision is proposed: i = 1 walkers , i = 2 CHAPTER 3. MODELING, SIMULATIONS AND VALIDATION leaders . The main features of the interactions that a candidate (or test) particle can undergo is sketched in the following:

• Within the same FS                (i)
Interactions between a walker and the field walkers (I-WW).

(ii) Interactions between a leader and the field leaders (I-LL).

• Within different FSs

              
(iii) Interactions between a walker and the field leaders (I-WL).

(iv) Interactions between a leader and the field walkers (I-LW).

The representation of the system is delivered by the normalized probability distributions (3.73)

f 1 , f 2 : [0, T [×Σ × [0, 1] × [0, 2π) × [0, 1], ( 3 
In addition, we introduce the following parameter

σ (x) = N 20 (x) N 10 (x) , (3.74)
which measures the presence of leaders over the walkers. In general, it is supposed that σ is a small number with respect to one. The mathematical structure is obtained within the general framework given by Eq. (3.62), for a system whose state is described by the distribution functions (3.75) where

f i = f i (t, x, v, u), i = 1, 2,          (∂ t + v • ∇ x ) f 1 (t, x, v, u) = P 1 [f, f 1 ](t, x, v, u), (∂ t + v • ∇ x ) f 2 (t, x, v, u) = P 2 [f, f 2 ](t, x, v, u),
P 1 [f, f 1 ] = 2 k=1 η 0 D 2 A 1k [f](v * → v, u * → u|v * , v * , u * , u * ; Σ) × f 1 (t, x, v * , u * )f k (t, x, v * , u * ) dv * dv * du * du * , -η 0 f 1 (t, x, v, u) 2 k=1 D f k (t, x, v * , u * ) dv * du * , ( 3.76) 
and

P 2 [f, f 2 ] = η 0 2 k=1 D 2 A 2k [f](v * → v, u * → u|v * , v * , u * , u * ; Σ) × f 2 (t, x, v * , u * )f k (t, x, v * , u * ) dv * dv * du * du * , -η 0 f 2 (t, x, v, u) 2 k=1 D f k (t, x, v * , u * ) dv * du * , (3.77)
where η 0 is a parameter which describes the frequency of interactions.

The derivation of the mathematical model is obtained by particularizing the interaction terms A. More precisely the transition probability density, as in Eq. (3.64), is factorized as follows:

A ik (v * → v, u * → u) = A u ik (u * → u) × A θ ik (θ * → θ) × A v ik (v * → v), (3.78)
where the terms A u ik , A θ ik and A v ik correspond, respectively, to the dynamics of the emotional state, of the selection of the walking direction and of the walking speed. The table below, where only the dependence on u has been indicated, summarizes their expressions.
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Interaction

Probability transition

A 11 (v * → v, u * → u|x, v * , v * , u * , u * ) (I-WW) = δ u -ε(u * -u * )(1 -u * ) × δ (θ[u, •] -θ * ) × δ (v[u, •] -v * ) A 12 (v * → v, u * → u|x, v * , v * , u * , u * ) (I-WL) = δ(u -u * + ε(u * -u 0 )) × δ (θ[u, •] -θ * ) × δ (v[u, •] -v * ) A 21 (v * → v, u * → u|x, v * , v * , u * , u * ) (I-LW) = δ(u -u * + ε(u * -u 0 )) × δ (θ[u, •] -θ * ) × δ (v[u, •] -v * ) (I-LL) A 22 (v * → v, u 0 → u|x, v * , v * , u 0 , u * ) = δ(u * -u 0 ) × δ (θ[u 0 , •] -θ * ) × δ (v[u 0 , •] -v * )
This modeling result has been obtained under the following assumptions:

1. The activity, at t = 0, is homogeneously distributed with value u 0 both for leaders and walkers;

Walker-walker interactions:

The activity is not modified by the presence of leaders, so that the probability density A u 11 is still given by Eqs. (3.65), (3.66);

Walker-leader interactions:

The activity of walkers has a trend toward the activity of the leaders:

A u 12 (u * → u|u * , u * ) = δ(u -u * + ε(u * -u 0 )), (3.79)
subsequently the dynamics of θ and v follows the same rules as in the preceding item;

Leader-walker-leader and leader-leader interactions:

The activity is not modified by both these interactions:

A u 21 (u 0 → u|u 0 ) = δ(u -u 0 ), and A u 22 (u 0 → u|u 0 ) = δ(u -u 0 ), (3.80)
therefore the dynamics of θ and v follows the same rules of the walker, but with u = u 0 . 

A case study and simulations

This section presents some simulations developed to test the predictive ability of the models proposed in Subsection 3.3.3.1. The main features of the case study are the following:

• The crowd is constituted by two groups of people move in opposite directions in a rectangular venue of 20 m × 5 m;

• The group on the left is composed of 40 people uniformly distributed in a rectangular area 4 m×4 m with the initial emotional state set to u 0.4 while the group on the right is composed of 20 people uniformly distributed in a rectangular area of 4 m × 2 m with an higher level of stressful condition, namely u 0.8;

• The speed ξ is also homogeneously distributed over all walkers at a value ξ 0 u 0 ;

• When the two groups physically interact, a mixing of stress conditions appears, which modifies the walking dynamics which would occur in absence of social interaction. The Boltzmann-like structure of the equation requires boundary conditions analogous to those used by the fundamental model of the classical kinetic theory. In more detail, the statement of boundary conditions can be given as follows:

f r (t, x, θ r , u) = |v i • n| |v r • n| R(θ i → θ r ) f i (t, x, θ i , u) dθ i , ( 3.81) 
where f r and f i denote, respectively, the distribution function after and before interactions with the wall, while θ i and θ r denote the velocity directions before and after the interaction. These directions are, respectively such that v • n ≤ 0 and v • n ≥ 0, where n is the unit vector orthogonal do the wall and directed inside the domain.

The objective of simulations consists in understanding how social interactions modify the patterns of the flow and how high density patterns localize. A quantity which worth to be computed is the mean density of the emotional state 

ū(t, x) = 1 ρ(t, x) f (t, x, v, u)u dv du. ( 3 

Chapter 4

Analytical Problems

Introduction

Chapters 1-3 have presented the scientific activity developed within the PhD program which has been mainly devoted to the modeling, some qualitative analysis, and simulations of large systems constituted by interaction living, hence complex, entities. These have been called active particles, while the modeling approach has been developed by suitable developments of the so called "mathematical theory of active particles" which has been presented in the book [START_REF] Bellomo | A Quest Towards a Mathematical Theory of Living Systems[END_REF]. This book, as well as the papers published during the program [START_REF] Bellomo | On the interplay between behavioral dynamics and social interactions in human crowds[END_REF][START_REF] Burini | A kinetic theory approach to the modeling of complex living systems[END_REF][START_REF] Dolfin | Modeling human behavior in economics and social science[END_REF][START_REF] Dolfin | A critical analysis towards research perspectives: Reply to comments on "Modeling human behavior in economics and social science[END_REF][START_REF] Outada | from kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF] have enlightened an interesting variety of challenging problems which I aim to be engaged in my future activity.

Examples of possible research perspectives have been given by the forum which followed the publication of [START_REF] Dolfin | Modeling human behavior in economics and social science[END_REF]. In fact, a team composed by 14 mathematicians and economists have participated to this forum by 2-3 pages comments which developed a critical analysis and posed various open problems such as the modeling of turbulence in financial markets, development of the mathematical theory of swarms toward the modeling of systems of behavioral economy, and space pattern formation after derivation of macroscopic equations from the underlying description at the microscopic scale.

I have been fascinated by these perspectives also accounting for the impact which mathematics, applied to the study of the aforementioned systems, can have on our society and ultimately to its wellbeing. In addition, I have been interested to some challenging analytic problems posed by the qualitative analysis related to the study of these problems.

A specific problem refers to the multicellular systems treated in [START_REF] Outada | from kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF]. It consist in the proof of convergence of the Hilbert approach to the derivation of macroscopic equations from the kinetic theory approach, which appears to be an open, however highly difficult, problem. The proof of convergence 72 CHAPTER 4. ANALYTICAL PROBLEMS implies the study of the properties of the solutions to initial value problem for the kinetic model. A hard difficulty is posed by the approach by hyperbolic scaling.

I have started to study these problems and I have some results. I wish presenting some very preliminary achievements without claiming that I have solved the problems under consideration. I would like to develop, in my future activity, these achievements in parallel to the modeling and simulations of living systems by the kinetic theory of active particles.

The contents of this section in two parts. In more details, Section 4.2 focuses on the convergence of the Hilbert expansion for a system of two interaction cell populations having in mind models such as the celebrated Keller-Segel model. The proof is obtained providing that the solution of the kinetic equations exists, within a certain time interval, in L 2 spaces. This achievement leaves, however, some problems open, namely improving the choice of the functional space and the effective proof of existence. The contents of Section 4.3 tackles the said existence problem and shows how a local existence result can be obtained for the mild solution in L ∞ spaces, while the possible extension for large times is critically analyzed. Also this preliminary achievement leaves some problem open for instance transferring the proof of the two subsection in to a common appropriate space.

I present here some preliminary results for a problem somehow inspired by the sixth Hilbert problem. However, as mentioned, without having naively claiming that the problem has been fully solved. I hope to show some progresses in a near future.

On the Micro-Macro Derivation

The aim of this section is to purpose a rigorous proof of the formal derivation of the hyperbolic limit considered in Section 3.2 of Chapter 3. More precisely, we work in the conditions of the derivation of the hyperbolic model (3.22) and we consider the one dimensional case (d = 1) and we suppose that the number of the chemotactic cues m = 1. Then our system becomes, in this section we drop the use of the subscripts 1,

                     ∂ t f ε + v∂ x f ε = µ 0 ε F n ε ,J ε -f ε + µ 1 n ε |V | -f ε - µ 2 ϑ 2 J |V | -vf ε α(S ε ) ∂ t g ε + v∂ x g ε = σ S ε |V | -g ε + a |V | n ε - b |V | S ε , (4.1) 
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with

S ε = N ε , J ε = V vf ε dv and F n ε ,J ε (v) = 1 |V | n ε + 1 ϑ 2 J ε v . (4.2)
Here, we have supposed that: the function α = α(S ε ) is independents of the derivative of S ε , namely ∇ x S ε ; the proliferation/destruction interactions functions are given by H = 0 and

G 1 (f ε , g ε ) = a |V | n ε - b |V | S ε (a > 0, b > 0)
; the dimensionless factor τ = 0; and that the set of velocities V is a sphere of radius ϑ > 0. Moreover, in this chapter we suppose that the parameters µ 0 , µ 1 , µ 2 and σ are positives defined quantities This model is completed with the following initial condition

f ε (0, x, v) = f 0 (x, v), and g ε (0, x, v) = g 0 (x, v). ( 4.3) 
In the following, for a fixed time T > 0, L 2 t,x,v denotes the space of squareintegrable functions in (0, T ) × R × V , with norm given by

f L 2 t,x,v = T 0 R V |f (t, x, v)| 2 dvdxdt 1 2 , f ∈ L 2 t,x,v (4.4) 
and we have analogous definitions for L 2 t,x , L 2 x,v and L 2

x . The main result can be stated as follows.

Theorem 11. Let T > 0, (f 0 , g 0 ) ∈ L 2

x,v × L 2 x,v be nonnegative and assume that α is bounded and has a bounded derivative. In addition, we suppose that the scaled Cauchy problem (4.1)-(4.3) has, in a bounded time interval [0, T ], a unique nonnegative global weak solution

(f ε , g ε ), with (f ε , g ε ) ∈ L ∞ 0, T ; L 2 x,v × L ∞ 0, T ; L 2
x,v . Then there exists a subsequence, denoted in the same way, and a couple (f , g) such that

f ε f , g ε g in L 2 t,x,v . (4.5) 
In addition, the moments

n = V f (v) dv, S = V g(v) dv, J = V vf (v) dv, q = V vg(v) dv, (4.6)
satisfies the following macroscopic system

                       ∂ t n + ∂ x J = 0 ∂ t J + ϑ 2 ∂ x n = -µ 1 J + µ 2 n α(S) ∂ t S + ∂ x q = an -bS ∂ t q + ∂ x Q(g) = -σ q, ( 4.7) 
where the second order moment Q is defined by

Q(g) = V v 2 g(v)dv.
However, the asymptotic limit f satisfies

f = 1 |V | n + 1 ϑ 2 Jv . ( 4.8) 
We start with the following a priori estimate.

Lemma 12 (A-priori estimate in L 2 x,v ). We suppose that we are in the conditions of theorem 11. Then the following estimate

f ε (t) 2 L 2 x,v + g ε (t) 2 L 2 x,v ≤ C(T ) f 0 2 L 2 x,v + g 0 2 L 2 x,v , (4.9) 
holds true for a.e t ∈ (0, T ), where the constants C(T ) is independents of ε.

Proof. We multiply the first equation of system (4.1) by f ε

1 2 ∂ t f 2 ε + v∂ x f 2 ε = µ 0 ε 1 |V | n ε f ε + J ε ϑ 2 vf ε -f 2 ε + µ 1 n ε |V | f ε -f 2 ε - µ 2 ϑ 2 J ε f ε |V | -vf 2 ε α(S ε ),
and integrate over V to obtain

1 2 ∂ t V f 2 ε dv + ∂ x V vf 2 ε dv = µ 0 ε 1 |V | n 2 ε + J 2 ε ϑ 2 - V f 2 ε dv + µ 1 n 2 ε |V | - V f 2 ε dv - µ 2 ϑ 2 J ε n ε |V | - V vf 2 ε dv α(S ε ). (4.10) 
Let us introduce the symmetric and the anti-symmetric part of f ε as follow

f S ε (v) = 1 2 (f ε (v) + f ε (-v)) , v ∈ V f A ε (v) = 1 2 (f ε (v) -f ε (-v)) , v ∈ V .
Since V is symmetric, it follows that

f ε = f S ε + f A ε , n ε = V f S ε dv, J ε = V vf A ε dv, ( 4.11) 
and 

V f 2 ε dv = V f S ε 2 dv + V f A ε 2 dv. ( 4 
      ∂ t V f 2 ε dv + ∂ x V vf 2 ε dv       = µ 0 ε       1 |V | V f S ε dv 2 - V f S ε 2 dv + 1 ϑ 2 |V | V vf A ε dv 2 - V f A ε 2 dv       + µ 1 n 2 ε |V | - V f 2 ε dv - µ 2 ϑ 2 J ε n ε |V | - V vf 2 ε dv α(S ε ), (4.13) 
and according to Cauchy-Schwartz inequality we have

V f S ε dv 2 ≤ |V | V f S ε 2 dv, V vf A ε dv 2 ≤ ϑ 2 |V | V f A ε 2 dv. (4.14)
By Combining equations (4.13), (4.14) we get

1 2 ∂ t V f 2 ε dv + ∂ x V vf 2 ε dv ≤ - µ 2 ϑ 2 J ε n ε |V | - V vf 2 ε dv α(S ε ). (4.15) 
In the other hand, we have

- µ 2 ϑ 2 J ε n ε |V | - V vf 2 ε dv α(S ε ) = µ 2 ϑ 2 α(S ε ) V vf 2 ε dv - J ε n ε |V | ≤ µ 2 ϑ 2 |α(S ε )| V |v|f 2 ε dv + n ε |V | V |v|f ε dv ≤ µ 2 ϑ ||α|| ∞ V f 2 ε dv + n 2 ε |V | ,
and using (4.14), we obtain

- µ 2 ϑ 2 J ε n ε |V | - V vf 2 ε dv α(S ε ) ≤ 2µ 2 ||α|| ∞ ϑ V f 2 ε dv = C V f 2 ε dv. (4.16)
Hence, from (4.15) and (4.16) we have

∂ t V f 2 ε dv + ∂ x V vf 2 ε dv ≤ C V f 2 ε dv,
and integration over x ∈ R yields

∂ t ||f ε (t)|| 2 L 2 x,v ≤ C||f ε (t)|| 2 L 2 x,v . ( 4.17) 
To obtain a similar estimate for g ε we multiply the second equation of system (4.1) by g ε and we integrate over V to obtain

1 2 ∂ t V g 2 ε dv + ∂ x V vg 2 ε dv = σ S 2 ε |V | - V g 2 ε dv + a |V | n ε S ε -b S 2 ε |V | .
However, using Cauchy-Schwartz inequality we can write

1 2 ∂ t V g 2 ε dv + ∂ x V vg 2 ε dv ≤ a 2 V f 2 ε dv + a 2 + b V g 2 ε dv,
and integration over the space variable x ∈ R gives

∂ t ||g ε (t)|| 2 L 2 x,v ≤ a||f ε (t)|| 2 L 2 x,v + (a + 2b)||g ε (t)|| 2 L 2 x,v . ( 4.18) 
Let us now combine equations (4.17) and (4.18) to get

∂ t ||f ε (t)|| 2 L 2 x,v + ||g ε (t)|| 2 L 2 x,v ≤ C ||f ε (t)|| 2 L 2 x,v + ||g ε (t)|| 2 L 2 x,v , (4.19) 
and Gronwall's inequality yields

||f ε (t)|| 2 L 2 x,v + ||g ε (t)|| 2 L 2 x,v ≤ e T C ||f 0 || 2 L 2 x,v + ||g 0 || 2 L 2 x,v . (4.20) 
This completes the proof of the lemma.

According to Lemma 12, the sequences f ε , g ε are bounded in L ∞ 0, T ; L 2 x,v , hence there are bounded in L 2 t,x,v . Accordingly, it follows that there exist two subsequences, denoted in the same way, and f , g ∈ L 2 t,x,v such that

f ε f , g ε g in L 2 t,x,v . (4.21) 
Remark 13. For each compact, K ⊂ R the sequence S ε converges strongly towards S. Indeed, we have

∂ t g ε + v∂ x g ε = σ S ε |V | -g ε + a |V | n ε - b |V | S ε ∈ L 2 x,v . (4.22)
Hence, according to averaging lemma, see for instance [START_REF] Saint-Raymond | Hydrodynamic limits of the Boltzmann equation[END_REF] Proposition 3.3.1, we have

V g ε (v) ϕ(v) dv ∈ L 2 0, T ; H 1 2 (R) (4.23)
for each test function ϕ ∈ D(V ). In particular for ϕ = 1 we get

S ε ∈ L 2 0, T ; H 1 2 (R) . (4.24)
Integrating equation (4.22) with respect to v, we deduce clearly that ∂ t S ε ∈ L 2 0, T ; W -1,1 (R) . Moreover, for each compact K ⊂ R, we have, (see e.g. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF])

H 1 2 (K) ------→ compact L 2 (K) ------→ ------ W -1,1 (K). (4.25)
From Aubin-Lions compactness Lemma (see [START_REF] Simon | Compact Sets in the space L p (0, T ; B)[END_REF]), we deduce that the sequence (S ε ) ε is relatively compact in L 2 0, T ; L 2 (K) . Hence we can extract a subsequence, still denoted (S ε ) ε , which converges strongly towards S in L 2 ((0, T ) × K).

By uniqueness of the weak limit, we have that S = V g(v)dv.

However the convergence is global:

S ε → S in L 2 t,x . (4.26)
In fact, for any compact [-R; R] we may extract a subsequence (S ε ) ε such that

S ε → S strongly in L 2 ([0, T ]×[-R, R]
), and we know that S ε = V g ε (v) dv where (see end of page 75 and page 76)

∂ t V (f 2 ε + g 2 ε )dv + ∂ x V v(f 2 ε + g 2 ε )dv ≤ C V (f 2 ε + g 2 ε )dv.
Multiplying by a test function φ(x) and integrating, we deduce

d dt R V (f 2 ε +g 2 ε )φ dxdv ≤ C R V (f 2 ε +g 2 ε )φ dxdv+ R V v(f 2 ε +g 2 ε )φ (x) dxdv. ( 4 

.27)

In order to pass from local to global convergence, we need to prove that we have a bound on the tail at infinity. Let us show that (S ε ) ε is a Cauchy sequence in L 2 t,x . We compute

T 0 R |S ε -S ε | 2 dxdt = T 0 R -R |S ε -S ε | 2 dxdt + T 0 R\[-R,R] |S ε -S ε | 2 dxdt.
From the above result, we know that the first term of the right hand side goes to 0 as ε, ε → 0. For the second term, let us consider

φ ∈ C ∞ (R) such that 0 ≤ φ ≤ 1, φ(x) = 0 for |x| ≤ 1/2 and φ(x) = 1 for |x| ≥ 1. We define φ R (x) = φ(x/R). Then, we have T 0 R\[-R,R] |S ε -S ε | 2 dxdt ≤ T 0 R\[-R,R] |S ε -S ε | 2 φ R dxdt ≤ 2 T 0 R (|S ε | 2 + |S ε | 2 )φ R dxdt. CHAPTER 4. ANALYTICAL PROBLEMS Let us now use estimate (4.27) with φ R , since φ R (x) = 1 R φ (x/R), we have d dt R V (f 2 ε + g 2 ε )φ R dxdv ≤ C R V (f 2 ε + g 2 ε )φ R dxdv + 1 R R V v(f 2 ε + g 2 ε )φ (x/R) dxdv. (4.28)
Applying a Gronwall Lemma, we deduce that

R V (f 2 ε + g 2 ε )φ R dxdv ≤ e CT R V ((f 0 ) 2 + (g 0 ) 2 )φ R dxdv + C φ R .
Since the initial data f 0 and g 0 are given in L 2

x,v and φ R (x) = 0 on [-R/2, R/2], we deduce that the left hand side goes to 0 as R → +∞, uniformly with respect to ε. Thus,

T 0 R (|S ε | 2 + |S ε | 2 )φ R dxdt ≤ |V | T 0 R V (f 2 ε + f 2 ε )φ R dxdvdt
goes uniformly to 0 as R → +∞. We conclude that the sequence

(S ε ) ε is a Cauchy sequence in L 2 ([0, T ] × R).
Now we have all the ingredients needed to prove theorem 11.

Proof of Theorem 11. Multiply the first and second equations of system (4.1) by 1 and v respectively, and integrate over V to obtain the following system

                             ∂ t n ε + ∂ x J ε = 0 ∂ t J ε + ∂ x V v 2 f ε dv = -µ 1 J ε + µ 2 ϑ 2 V v 2 f ε dv α(S ε ) ∂ t S ε + ∂ x q ε = an ε -bS ε ∂ t q ε + ∂ x V v 2 g ε dv = -σ q ε , (4.29) 
with

q ε = V vg ε (v) dv. ( 4.30) 
We have

f ε (t, x, v) f (t, x, v) and g ε (t, x, v) g(t, x, v) in L 2 t,x,v . (4.31)
Therefore, since the set of velocities V is bounded, we deduce

n ε (t, x) n(t, x), J ε (t, x) J(t, x) in L 2 t,x , (4.32) 
S ε (t, x) → S(t, x), q ε (t, x) → q(t, x) in L 2 t,x , (4.33) V v 2 f ε (t, x, v)dv V v 2 f (t, x, v)dv in L 2 t,x , (4.34) V v 2 g ε (t, x, v)dv V v 2 g(t, x, v)dv in L 2 t,x , (4.35) 
when ε tends to zero. For the remaining term V v 2 f ε dv α(S ε ) we have the following result:

Lemma 14. V v 2 f ε dv α(S ε (t, x)) -→ V v 2 f dv α(S(t, x)) in D ((0, T ) × R) . (4.36) Proof. Let ϕ ∈ D((0, T ) × R) and K ⊆ R a compact set such that supp(ϕ) ⊆ [0, T ] × K. It follows that A(ε) := R V v 2 f ε dv α(S ε ) ϕ dx - R V v 2 f dv α(S) ϕdx ≤ R V v 2 f ε dv ϕ (α(S ε ) -α(S)) dx + R V v 2 f ε dv - V v 2 f dv α(S)ϕdx ≤ ϑ 2 ||ϕ|| ∞ ||α || ∞ K n ε |S ε -S| dx + R V v 2 f ε dv - V v 2 f dv α(S)ϕdx I(ε) ≤ ϑ 2 ||ϕ|| ∞ ||α || ∞ ||n ε || L 2 t,x
||S ε -S|| L 2 (0,T ;L 2 (K)) + I(ε).

We have n ε n in L 2 t,x , hence ||n ε || L 2 t,x
is bounded and therefore

A(ε) ≤ C||S ε -S|| L 2 (0,T ;L 2 (K)) + I(ε). ( 4.37) 
However, according to Remark 13, we have

||S ε -S|| L 2 (0,T ;L 2 (K)) -→ 0 (4.38)
when ε tends to zero. In the other hand we have

V v 2 f ε dv V v 2 f dv in L 2 t,x and α(S) ϕ ∈ L 2 t,x . (4.39) 
Hence I(ε) -→ 0, as ε → 0, (

and therefore A(ε) -→ 0, as ε → 0. (

Which complete the proof of the lemma. 

                       ∂ t n + ∂ x J = 0 ∂ t J + ∂ x V v 2 f dv = -µ 1 J + µ 2 ϑ 2 V v 2 f dv α(S) ∂ t S + ∂ x g = an -bS ∂ t q + ∂ x V v 2 gdv = -σ q. (4.42)
To identify the term

V v 2 f (t, x, v
)dv, we multiply the fist equation of system (4.1) by ε to get

ε∂ t f ε (t, x, v) + εv • ∂ x f ε (t, x, v) = µ 0 (F n ε ,J ε (t, x, v) -f ε (t, x, v)) + εµ 1 n ε (t, x) |V | -f ε (t, x, v) -ε µ 2 ϑ 2 J ε (t, x) |V | -vf ε (t, x, v) α (S ε (t, x)) . (4.43)
Then, letting ε go to zero yields

f = F n,J (t, x, v) = 1 |V | n + 1 ϑ 2 Jv (4.44)
and a simple calculations show that

V v 2 f (t, x, v)dv = V v 2 F n,J (t, x, v)dv = ϑ 2 n(t, x). ( 4.45) 
Using this last equation in system (4.42), we obtain the following macroscopic model

                           ∂ t n + ∂ x J = 0 ∂ t J + ϑ 2 ∂ x n = -µ 1 J + µ 2 n α(S) ∂ t S + ∂ x q = an -bS ∂ t q + ∂ x V v 2 g(v)dv = -σ q. (4.46)
This finishes the proof. 

On the Qualitative Analysis of the Initial Value Problem

The existence of solutions to kinetic models of chemotaxis has been studied in several papers (see for instance [START_REF] Chalub | Kinetic models for chemotaxis and their drift-diffusion limits[END_REF][START_REF] Erban | Global existence results for complex hyperbolic models of bacterial chemotaxis[END_REF][START_REF] Hwang | Global solutions of nonlinear transport equations for chemosensitive movement[END_REF][START_REF] James | Chemotaxis : from kinetic equations to aggregate dynamics[END_REF][START_REF] Vauchelet | Diffusion limit of a kinetic system of partially quantized particles in one dimension[END_REF][START_REF] Vauchelet | Numerical simulation of a kinetic model for chemotaxis[END_REF]). However, the study of coupled kinetic systems like Eq. (3.1) is less common. The aim of this section is to study the existence of solutions to the initial value problem (4.1)-(4.3) in the multi-dimensional case, namely when (

x, v) ∈ R d × V ⊆ R d × R d , d = 1, 2, 3
, and V is the set of velocity supposed to be a sphere of radius ϑ > 0. We now introduce some notations which will be used throughout this section: X T := L ∞ ((0, T )×R d ×V ) stands for the Lebesgue space of essentially bounded measurable functions, with norm given by

f L ∞ t,x,v = inf C ≥ 0; |f (t, x, v)| ≤ C for almost every (t, x, v) ∈ (0, T ) × R d × V ,
and we have analogous definitions for L ∞

x , L ∞ t,x and L ∞ x,v . Moreover, the following subspace of X T is introduced:

X + T = {f ∈ X T ; such that f ≥ 0} . ( 4.47) 
Here, we give the assumption on α under which we shall show the existence of solution of problem (4.1). We assume that there exists L α > 0 such that the following inequality

α (S 1 ) -α (S 2 ) ∞ ≤ L α S 1 -S 2 ∞ (4.48)
holds true for all real-valued functions S 1 , S 2 ∈ L ∞ t,x .

Définition 15. We say that f , in this section we drop the use of the subscripts ε, is a weak solution of (4.1) on X T for T > 0, if f ∈ X T and satisfies

                                                 (0,T )×R d ×V (∂ t ϕ + v • ∇ x ϕ) f dx dv dt = - µ 0 ε (0,T )×R d ×V F J -f ϕ dx dv dt -µ 1 (0,T )×R d ×V n |V | ϕ dx dv dt + R d ×V f 0 (x, v) ϕ(0, x, v) dx dv + µ 2 d ϑ 2 J |V | -vf • α(S) , ϕ D ([0,T )×R d ×V ),D([0,T )×R d ×V ) , (0,T )×R d ×V (∂ t ϕ + v • ∇ x ϕ) g dx dv dt = -σ (0,T )×R d ×V n |V | -g ϕdx dv dt + (0,T )×R d ×V a |V | n - b |V | S ϕdx dv dt + R d ×V f 0 (x, v) ϕ(0, x, v) dx dv, for any test function ϕ ∈ D([0, T ) × R d × V ). Where D ((0, T ) × R d × V
) is the set of distributions (generalized functions).

We now state the main results of this subsection.

Theorem 16 (Existence of weak solutions to (4.1)). Let (f 0 , g 0 ) ∈ L ∞ x,v ×L ∞ x,v be nonnegative and assume that α satisfies assumption (4.48). Then there exists a time T > 0 such that the Cauchy problem (4.1)-( 4.3) has a unique weak solution

(f , g), with (f , g) ∈ X + T × X + T . Moreover, if (f 0 , g 0 ) ∈ L 1 x,v × L 1 x,v , then for any t ∈ [0, T ], f (t, •, •) L 1 x,v = f 0 L 1 x,v and g(t, •, •) L 1 x,v = g 0 L 1 x,v .
The main tool in the proof of Theorem 16 is the Banach fixed point theorem which allows to show a local-in-time existence.

We start with the following a priori estimates.

Lemma 17 (A-priori estimates in L ∞ x,v ). Let T > 0 sufficiently small and suppose that α satisfies the assumption (4.48). Let (f 0 , g 0 ) be given in L ∞

x,v × L ∞ x,v . Let (f , g) be a weak solution of (4.1)-( 4.3) such that (f , g) ∈ X + T ×X + T . Then (f , g) satisfies the following estimates:

||n|| L ∞ t,x + ||f || X T ≤ C 1 ||f 0 || L ∞ x,v , (4.49) 
||S|| L ∞ t,x + ||g|| X T ≤ C 2 ||f 0 || L ∞ x,v + ||g 0 || L ∞ x,v . (4.50)
Moreover, if the initial data are given in W 1,∞ x,v ×W 1,∞ x,v and assuming that (∇ x f , ∇ x g) ∈ X d T × X d T and that α has a bounded derivative, then

||∇ x n|| (L ∞ x,v ) d + ||∇ x f || X d T ≤ C 3 ||∇ x f 0 || (L ∞ x,v ) d + ||∇ x g 0 || (L ∞ x,x ) d , (4.51) ||∇ x S|| (L ∞ x,x ) d + ||∇ x g|| X d T ≤ C 4 ||∇ x f 0 || (L ∞ x,v ) d + ||∇ x g 0 || (L ∞ x,v ) d , (4.52)
where the constants C i , i = 1, 2, 3, 4, are independents of time T > 0.

Proof. 1. First we begin with the prove of Eq. (4.49). For this purpose we write the first equation of system (4.1) in the following way

∂ t f + v • ∇ x f + K 1 f = R 1 , ( 4.53) 
where the functions K and R 1 are given by 

K 1 = µ 0 ε + µ 1 - µ 2 d ϑ 2 v • α(S), and R 1 = µ 0 ε F n,J + µ 1 n |V | - µ 2 d ϑ 2 |V | J • α(S)
(τ, x + (τ -t)v, v)dτ f (s, x + (s -t)v, v) = exp s t K 1 (τ, x + (τ -t)v, v)dτ R 1 (s, x + (s -t)v, v). (4.55) 
We set x τ = x + (τt)v (this notation will be used throughout this section). Hence integration of Eq (4.55) over s ∈ [0, t] yields

f (t, x, v) = exp 0 t K 1 (τ, x τ , v)dτ f 0 (x -tv, v) + t 0 exp s t K 1 (τ, x τ , v)dτ R 1 (s, x s , v)ds. (4.56) 
However, for each 0 ≤ s ≤ τ ≤ t ≤ T , we have

|K 1 (τ, x τ , v)| ≤ µ 0 ε + µ 1 + µ 2 d|α(S)| ϑ , ( 4.57) 
and using assumption (4.48) it follows that

exp s t K 1 (τ, x τ , v)dτ ≤ e C 1 T ≤ C 2 , ( 4.58) 
where in the last inequality we have used the fact that T is sufficiently small. According to Eqs. (4.56) and (4.58) we can write

f (t, x, v) ≤ C 2 f 0 (x -tv, v) + C 2 t 0 |R 1 (s, x s , v)|ds. (4.59)
We estimate the right hand side of the later inequality as follows:

t 0 |R 1 (s, x s , v)|ds ≤ µ 0 ε|V | + µ 1 |V | t 0 n(s, x s )ds + µ 0 d ε|V |ϑ + dµ 2 |α(S)| ϑ 2 |V | t 0 |J(s, x s )|ds ≤ µ 0 ε|V | + µ 1 |V | + µ 0 d ε|V | + dµ 2 |α(S)| ϑ|V | t 0 n(s, x s )ds ≤C 3 t 0 ||n(s, .)|| L ∞ x ds.
Using this last estimate in (4.59), we obtain

f (t, x, v) ≤ C 2 ||f 0 || L ∞ x,v + C 4 t 0 n(s, •) L ∞ x ds, ( 4.60) 
while integration with respect to v provides

||n(t, •)|| L ∞ x ≤ C 2 |V | ||f 0 || L ∞ x,v + C 4 |V | t 0 ||n(s, •)|| L ∞ x ds. (4.61)
Therefore, applying Gronwall's inequality we get

||n(t, •)|| L ∞ x ≤ C 5 ||f 0 || L ∞ x,v , (4.62) 
and we obtain a similar estimate for f using Eq. (4.60) together with (4.62). This complete the proof of the first assertion (4.49).

2. The proof of (4.50) is straightforward and follow the same steps as of estimate (4.49). Indeed, we have

∂ t g + v • ∇ x g + σ g = R 2 , where R 2 = σ -b |V | S + a |V | n. (4.63)
Therefore we get

g(t, x, v) = e -σ t g 0 (x -tv, v) + t 0 e (s-t)σ R 2 (s, x s )ds, (4.64) 
while easy computations yield g(t, x, v) ≤ g 0 (xtv, v)

+ t 0 |R 2 (s, x s )|ds ≤ ||g 0 || L ∞ x,v + σ + b |V | t 0 |S(s, x s )|ds + a |V | t 0 |n(s, x s )|ds ≤ ||g 0 || L ∞ x,v + σ + b |V | t 0 ||S(s, •)|| L ∞ x ds + a |V | t 0 ||n(s, •)|| L ∞ x ds.(4.65)
According to (4.49) we can write

||n(s, .)|| L ∞ x ≤ C 1 ||f 0 || L ∞ x,v ,
hence, from (4.65) it follows that

g(t, x, v) ≤ ||g 0 || L ∞ x,v + C 2 ||f 0 || L ∞ x,v + C 3 t 0 ||S(s, •)|| L ∞ x ds. (4.66)
By integration of (4.66) over V , we obtain and we estimate S thanks to Gronwall's inequality and we conclude the proof of (4.50) with (4.66).

S(t, x) ≤ |V | ||g 0 || L ∞ x,v + C 2 |V | ||f 0 || L ∞ x,v + C 3 |V | t 0 ||S(s, •)|| L ∞ x ds, ( 4 
3. We now prove (4.51) and (4.52). To begin with, we rewrite (4.1) in the following way

       ∂ t f + v • ∇ x f + K 1 f = R 1 ∂ t g + v • ∇ x g + σ g = R 2 (4.68)
where the functions K and R 1 are defined by

K = µ 0 ε + µ 1 , and R 1 = µ 0 ε F n,J + µ 1 n |V | - µ 2 d ϑ 2 |V | J • α(S) + µ 2 d ϑ 2 v • α(S)f , (4.69)
while R 2 is still given by (4.63). Therefore, we obtain 

f (t, x, v) = e -t K 1 f 0 (x -tv, v) + t 0 e (s-t) K 1 R 1 (s, x s , v)ds, (4.70) 
f i (t, x, v) = e -t K 1 f 0 i (x -tv, v) + t 0 e (s-t) K 1 ∂ x i R 1 (s, x s , v) ds, ( 4.72) 
and

g i (t, x, v) = e -tσ g 0 i (x -tv, v) + t 0 e (s-t)σ ∂ x i (R 2 (s, x s )) ds. (4.73)
We now estimate separately f i and g i . From (4.72) it follows that

|f i (t, x, v)| ≤ ||f 0 i || L ∞ x,v + t 0 ∂ x i R 1 (s, x s , v) ds, ( 4.74 
)

||g i (s, •, v)|| L ∞ x dv. ( 4.76) 
In this way we have n i (s, x s ) ≤ n i (s), |J i (s, x s )| ≤ ϑ n i (s), and S i (s, x s ) ≤ S i (s). (4.77)

Then from (4.75) we immediately obtain

∂ x i R 1 (s, x s , v) ≤ C 3 n i (s) + C 4 S i (s)||n(s, •)|| L ∞ x + C 5 ||f i (s, •, •)|| L ∞ x,v + C 6 S i (s)||f (s, •, •)|| L ∞ x,v . (4.78) 
According to (4.49) we have

||n(s, •)|| L ∞ x ≤ C 1 ||f 0 || L ∞ x,v , and ||f (s, •, •)|| L ∞ x,v ≤ C 2 ||f 0 || L ∞ x,v . (4.79)
Therefore, using (4.78) we deduce that

∂ x i R 1 (s, x s , v) ≤ C 1 n i (s) + C 7 S i (s) + C 5 ||f i (s, •, •)|| L ∞ x,v . (4.80)
This last estimate together with (4.74) allow to write The estimate on g i can be done similarly to assertion (4.81). Indeed from Eq. (4.73) it follows that

||f i (t, •, v)|| L ∞ x ≤ ||f 0 i || L ∞ x,
|g i (t, x, v)| ≤ ||g 0 i || L ∞ x,v + t 0 ∂ x i (R 2 (s, x s )) ds, ( 4.82) 
and we compute the first partial derivative of R 2 as follows 

∂ x i (R 2 (s, x s )) = σ -b |V | S i + n i . ( 4 
n i (t) + S i (t) ≤ C 10 ||f 0 i || L ∞ x,v + ||g 0 i || L ∞ x,v + C 11 t 0 n i (s) + S i (s) ds. ( 4.86) 
Therefore, in view of Gronwall's inequality, equation (4.86) yields

|n i (s, x)| + |S i (s, x)| ≤ n i (s) + S i (s) ≤ C 12 ||f 0 i || L ∞ x,v + ||g 0 i || L ∞ x,x , (4.87) 
and a similar estimate is obtained for f i and g i using (4.81), (4.85) and (4.87). This complete the a-priori estimates.

We are now in position to prove the existence result in Theorem 16.

Proof of Theorem 16. The idea of the proof follows standard techniques where the existence of solutions is proved by a fixed point procedure.

For this purpose, let T > 0, we introduce the map

F : X T -→ X T , f -→ F (f ) := F 1 (F 2 (f ))
where G = F 1 (f ) is a weak solution of the following problem:

           ∂ t G + v • ∇ x G = σ -b |V | V Gdv + a |V | n -σ G G(0, x, v) = g 0 (x, v) ∈ L ∞ x,v ,
with the notation n(t, x) = V f (t, x, v)dv, while the functional F 2 is defined by: F = F 2 (g) is a weak solution of

                     ∂ t F + v • ∇ x F = µ 0 ε 1 |V | V Fdv + d ϑ 2 V vFdv • v -F + µ 1 1 |V | V Fdv -F - µ 2 d ϑ 2 1 |V | V vFdv -vF • α(S) F(0, x, v) = f 0 (x, v) ∈ L ∞ x,v , with S(t, x) = V g(t, x, v)dv.
It is clear, adapting the techniques of Lemma 17 that F 1 and F 2 map X T into itself. Our objective is to show that F defines a contraction on X T for T small enough. Let f 1 and f 2 be given in X T , then we have the following result:

Lemma 18. For T > 0 small enough, there exists a constant C 1 (T ) < 1 such that

||F 1 (f 1 ) -F 1 (f 2 )| | X T ≤ C 1 (T )||f 1 -f 2 || X T . (4.88)
Proof. We set G 12 = F 1 (f 1 ) -F 1 (f 2 ), then we have

∂ t G 12 + v • ∇ x G 12 = σ -b |V | V G 12 dv -σ G 12 + a |V | (n 1 -n 2 ), (4.89) 
with the notations n j (t, x) = V f j (t, x, v)d v, j = 1, 2. Analogously to the proof of Lemma 17, we write identity (4.89) in the following way

∂ t G 12 + v • ∇ x G 12 + σ G 12 = R 3 , ( 4.90) 
where Now, let us introduce g 1 = F 1 (f 1 ) and g 2 = F 1 (f 2 ). Then we claim that:

R 3 = σ -b |V | V G 12 dv + a |V | (n 1 -n 2 ). ( 4 
Lemma 19. For T > 0 small enough, there exists a constant C 2 (T ) < 1 such that

||F 2 (g 1 ) -F 2 (g 2 )| | X T ≤ C 2 (T )||g 1 -g 2 || X T . (4.97)
Proof. The proof of lemma 19 follow the same techniques as in the proof of lemma 18, but with much more technical difficulties. To begin with we set F 12 = F 2 (g 1 ) -F 2 (g 2 ), then we have

∂ t F 12 + v • ∇ x F 12 = µ 0 + εµ 1 ε|V | V F 12 dv + µ 0 d ε|V |ϑ 2 V vF 12 dv • v - µ 2 d ϑ 2 |V | V vF 12 dv • α(S 1 ) - µ 2 d ϑ 2 |V | V F 2 (g 2 )dv • (α(S 1 ) -α(S 2 )) (4.98) - µ 0 ε + µ 1 F 12 + µ 2 d ϑ 2 vF 12 • α(S 1 ) + µ 2 d ϑ 2 vF 2 (g 2 ) • (α(S 1 ) -α(S 2 )) ,
with S j (t, x) = V g j (t, x, v)dv, j = 1, 2. We introduce the following notations

K 2 = µ 0 ε + µ 1 - µ 2 d ϑ 2 v • α(S 1 ),
and

R 4 = µ 0 + εµ 1 ε|V | V F 12 dv + µ 0 d ε|V |ϑ 2 V vF 12 dv • v - µ 2 d ϑ 2 |V | V vF 12 dv • α(S 1 ) - µ 2 d ϑ 2 |V | V F 2 (g 2 )dv • (α(S 1 ) -α(S 2 )) + µ 2 d ϑ 2 vF 2 (g 2 ) • (α(S 1 ) -α(S 2 )) .
In this way we can write identity (4.98) as Moreover, it is easy to see that

∂ t F 12 + v • ∇ x F 12 + K 2 F 12 = R 4 . ( 4 
|R 4 (s, x s , v)| ≤ C 2 F 12 (s, •, •) L ∞ x,v + C 3 n 2 (s, x s ) |α(S 1 (s, x s )) -α(S 2 (s, x s ))| + C 4 F 2 (g 2 )(s, x s , v) |α(S 1 (s, x s )) -α(S 2 (s, x s ))| ,
with the notation n 2 (t, x) = V F 2 (g 2 )(t, x, v)dv. Using Lemma 17 together with the assumption (4.48), we get

|R 4 (s, x s , v)| ≤ C 2 F 12 (s, •, •) L ∞ x,v + C 5 ||f 0 || L ∞ x,v L α S 1 -S 2 L ∞ t,x (4.102) 
We remark that 

S 1 -S 2 L ∞ t,x ≤ |V |||g 1 -g 2 || X T . ( 4 
||F 12 (t, •, •)|| L ∞ x,v ≤ C 6 T e C 1 T ||g 1 -g 2 || X T + C 2 e C 1 T t 0 ||F 12 (s, •, •)|| L ∞ x,v ds, (4.104)
and we conclude the proof of lemma 19 using Gronwall inequality.

The existence result in Theorem 16 follows from a direct application of the Banach fixed point theorem since F , according Lemmas 18 and 19, is a contraction on X T for T small enough, which concludes the proof of Theorem 16.

Theorem 16 has shown existence of mild solution in an interval [0, T 0 ], with 0 < T 0 < ∞. In principles, the solution can be extended in successive intervals [T 0 , T 1 ], . . . , [T n-1 , T n ]. This achievement requires the proof that, for growing n ↑, T n does not tend to zero, which can happen if T 0 is inversely proportional to the norm of the solution and if the norm of the solution is allowed to grow. An additional difficulty is that if interacting particles have a volume dimension then the solution has a physical meaning if the the density remains below the maximal packing density. Section A.3 witnesses the ongoing scientific activity documented in two "Commentaries" [START_REF] Bellomo | On the complex interaction between mathematics and the sciences of living systems: Comment on "Move me, astonish me ... neurophysiological correlates[END_REF][START_REF] Outada | Hyperbolic scaling and computing in social crowds: Comment on "Human behaviours in evacuation crowd dynamics: From modeling to "big data" toward crisis management[END_REF], which provide a comment to papers of other authors. The first one refers to a paper on crowd dynamics, while the second one to a paper on learning dynamics. Both comments do not provide original research results, but simply show how I have developed a constructive dialogue with other scientists at international level. Subsequently, one work in progress is presented, the latter deals with behavioral crowd dynamics [START_REF] Bellomo | On the interplay between behavioral dynamics and social interactions in human crowds[END_REF].

Section A.4 reports about the main research achievement of my research activity, namely the book [START_REF] Bellomo | A Quest Towards a Mathematical Theory of Living Systems[END_REF], which was initiated with professor Abdelghani Bellouquid and subsequently developed in collaboration with one of my supervisors and Livio Gibelli PhD of Warwick University in U.K. Details on the contents of this books will be given in the sequel. Here I simply mention that the book is not simply a surveys of results known in the literature, but contains new results which look ahead to research perspectives. Some of them are describe in the next chapters.

A.2 Summary of Published Papers

A.2.1 From Kinetic Theory of Multicellular Systems to Hyperbolic Tissue Equations: Asymptotic Limits and Computing

The first paper [START_REF] Outada | from kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF], published in the World Scientific journal Mathematical Models and Methods in Applied Sciences (see page 98), presents an application of the KTAP approach to modeling and simulations of multicellular systems, focused on the derivation of macroscopic type models which are solved by classical deterministic methods of numerical analysis. The general idea consists in modeling the dynamics as a perturbation of the spatially homogeneous behavior [START_REF] Alt | Biased random walk models for chemotaxis and related diffusion approximations[END_REF][START_REF] Othmer | Alt Models of dispersal in biological systems[END_REF]. More precisely, the work [START_REF] Outada | from kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF] deals with a physical system constituted by a large number of cells interacting in a biological environment where the statistical collective description of the system is encoded in the distribution function:

f (t, x, v) : [0, T ] × Ω × V -→ R + , (A.1) whith Ω × V ⊆ R d × R d , d = 1, 2, 3.
The system consists of different species in response to multiple chemotactic cues in which the concentration of each chemotactic cue is denoted by

g i = g i (t, x, v) : [0, T ] × Ω × V -→ R + for i = 1, .
. . , m and m is the total number of the chemotactic cues. The analytic details of the model have been reported in Section 3.2 of chapter 2.

After the modeling topics, our analysis has been addressed to the derivation of macroscopic tissue equations by perturbation techniques by letting to zero a parameter corresponding to the inter cellular distances. In addition the derivation has been focused on Cattaneo type system for chemosensitive movement [START_REF] Filbet | Derivation of hyperbolic models for chemosensitive movement[END_REF] as well as Patlak [START_REF] Patlak | Random walk with persistence and external bias Bull[END_REF] and Keller-Segel [START_REF] Keller | Traveling bands of chemotactic bacteria: A theoretical analysis[END_REF] type models is presented in our paper [START_REF] Outada | from kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF]. The Cattaneo model is a system of four coupled hyperbolic equations while Patlak-Keller-Segel model is consists of two reaction-diffusion equations and is one of the simplest models to describe the aggregation of cells by chemotaxis [START_REF] Bellomo | Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues[END_REF].

Finaly this paper focuses on the numerical analysis of the hyperbolic macroscopic model, developing a well balanced scheme adapting the method developed by Gosse and Toscani [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF]. The resulting scheme is asymptoticpreserving in the sense that it is asymptotically equivalent to the wellbalanced numerical scheme of Scharfetter-Gummel [START_REF] Scharfetter | Large signal analysis of a silicon read diode oscillator[END_REF] for the Keller-Segel model. The two-dimensional case referring to [START_REF] Filbet | Derivation of hyperbolic models for chemosensitive movement[END_REF] where the numerical method is based on time-splitting scheme between the conservative part and the source term of the hydrodinamical system where the conservative equation is approximated by the Lax-Friedrichs scheme [START_REF]LeVeque Numerical Methods for Conservation Laws[END_REF][START_REF] Vázquez-Cendón | Solving Hyperbolic Equations with Finite Volume Methods[END_REF]. Simulations are obtained in both cases: in the one-space dimension and in the two-space dimension, and allows to identify the blow up of solutions which is a typical feature of chemotaxis models [START_REF] Bellomo | Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues[END_REF].

A.2.2 Modeling Human Behavior in Economics and Social Science

Paper [START_REF] Dolfin | Modeling human behavior in economics and social science[END_REF], published in the Elsevier journal Physics of Life Reviews (see page 100), provides a critical analysis of the research activity and perspectives as well as a personal insight into the complex interactions between human behaviors and social economic, in particular, and between hard sciences, such as mathematics and physics, and all sciences where human behavior plays the important role of determining complex emerging dynamics. It presents also a variety of possible applications of mathematical modeling as an attainable interdisciplinary approach to understand and simulate the aforementioned dynamics. The quest is developed along three steps: Firstly an overall analysis of social and economic sciences indicates the main requirements that a contribution of mathematical modeling should bring to these sciences. And hence, it provides a description of some basic features of social and, in particular, economic systems related to the general framework of the theory of living, hence complex, systems and select the main complex features of heterogeneous behaviors that the modeling approach should account for. In particular the following features : rationality vs. bounded rationality, homogeneity vs. heterogeneity, equilibrium vs. out-of-equilibrium and linearity vs. non-linearity are critically analyzed. Subsequently the focus moves to the mathematical description of behavioral living system. The basic idea consists in modeling economic and social phenomena by a suitable developments of the kinetic theory for active particles where the living entities are refereed as active particles. These particles can be grouped into different aggregations, for instance groups of interest, whilst their specific features are heterogeneously distributed within each group. The mathematical structure is related to the interactions and it is obtained by a balance between the inflow and outflow of particles within the elementary volumes of the space of microscopic states. These equations act as a conceptual background for the derivation of specific models treated in the next step. The modeling of interactions between functional subsystems and active particles takes advantages of tools of evolutionary stochastic game theory.

Finally, a survey of applications is presented looking ahead to research perspectives. In detail it focuses in two case studies: Wealth redistribution and Political competition and democracy. In the first case the mathematical model aims to understands the role of altruism and selfishness in welfare dynamics and shows in particular two important emerging dynamics namely the increasing of the mean wealth on "Altruistic" society and the decreasing of mean wealth on a "Selfish" society. The second case deals with the modeling of the interplay between the political competition, democracy and the "trap of blocking", the latter term refers to the Acemoglu and Robinson [START_REF] Acemoglu | Economic backwardness in political perspectives[END_REF], associated to the idea that if rulers decide to block innovation, there cannot be a transition to a different equilibrium without blocking.

This model allows to identify some important emerging behaviors in particular it shows that in healthy democracy, namely society with strong rulers and strong political competing group, the society escapes the "trap of blocking".

A.2.3 A Critical Analysis Towards Research Perspectives Reply to Comments on "Modeling Human Behavior in Economics and Social Science"

Paper [START_REF] Dolfin | A critical analysis towards research perspectives: Reply to comments on "Modeling human behavior in economics and social science[END_REF], published on the Elsevier journal Physics of Life Reviews (see page 101), takes advantage of various comments to our paper [START_REF] Dolfin | Modeling human behavior in economics and social science[END_REF] to elaborate additional technical developments toward the modeling and simulation of the human behaviors in a complex social-economical system. In details it focuses on the following topics

• Analytic and computational problems generated by the qualitative analysis of the solutions of the initial value problems treated in our

Plan of the paper

This paper presents a critical analysis and a survey of the research activity and perspectives coming from the actual and potential interaction between hard sciences, such as mathematics and physics, and social sciences, such as economics, politics and more generally all sciences where human behavior plays the important role of determining complex emerging dynamics. Our proposal is motivated by recent radical changes in the modeling of social and economical sciences, leading to interesting cultural developments in the social sciences. This new trend suggests, and from the researcher's viewpoint somehow imposes, the necessity to include the complexity of behavioral features of these systems in the research activity, see [START_REF] Arias | Cross-diffusion and traveling waves in porous-media flux-saturated Keller-Segel models[END_REF][START_REF] Hwang | Global solutions of nonlinear transport equations for chemosensitive movement[END_REF][START_REF] Simon | Compact Sets in the space L p (0, T ; B)[END_REF][START_REF] Wasserstein | Markov processes over denumerable products of spaces describing large systems of automata[END_REF]. A wide interesting literature stems from this radical change, and a variety of interesting dynamics have been explored, including the role of ethical and unethical behaviors [START_REF] Dolfin | A critical analysis towards research perspectives: Reply to comments on "Modeling human behavior in economics and social science[END_REF][START_REF] Perthame | Mathematical tools for kinetic equations[END_REF][START_REF] Prigogine | Kinetic Theory of Vehicular Traffic[END_REF][START_REF] Santos | Evolutionary dynamics of climate change under collective-risk dilemmas[END_REF], or the interplay of alternative social dynamics [START_REF] Cucker | On the critical exponent for flocks under hierarchical leadership[END_REF][START_REF] Angelis | On the mathematical theory of post-Darwinian mutations, selection, and evolution[END_REF][START_REF] Othmer | Alt Models of dispersal in biological systems[END_REF]. Moreover, various authors have remarked that

Introduction

We take advantage of the various comments to our paper [START_REF] Bellouquid | Kinetic models of chemotaxis towards the diffusive limit: asymptotic analysis[END_REF] to elaborate further upon technicalities, and to present an additional critical analysis, and finally to look ahead of potential interesting research perspectives coming from somewhat straightforward applications of the methodology we have proposed.

paper [START_REF] Dolfin | Modeling human behavior in economics and social science[END_REF] . Existence of such solutions can be obtained by the fixedpoint analysis [START_REF] Pucci | On an initial value problem modeling evolution and selection in living systems[END_REF], while there numerical approximation is obtained by a suitable development of the Monte Carlo methods [START_REF] Pareschi | Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods[END_REF] toward including more complex structures.

• The problem of the derivation of macro equations from the underlying description at the micro scale, which is a classical problem in biological applications (see for instance our first paper [START_REF] Outada | from kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF]), focusing more precisely on how far the micro-macro derivation is of interest also in social and economics sciences.

• Modeling perspectives towards the derivation of more general models where different dynamics simultaneously occur and where the social dynamics can be conditioning a mechanical dynamics. This aim can take advantages of the mathematical theory of swarms [START_REF] Bellomo | On the mathematical theory of the dynamics of swarms viewed as complex systems[END_REF], hybrid systems [START_REF] Gibelli | Heterogeneous population dynamics of active particles: progression, mutations and selection dynamics[END_REF] as well as technical developments of models related to crowd dynamics [START_REF] Bellomo | Human behaviors in evacuation crowd dynamics: from modeling to "big data" toward crisis management[END_REF].

• Potential applications including application of kinetic theory to Corporate Finance; the analyze of behavioral reactions of banks as individual entities interacting in a regulatory landscape; and the modeling of the aggregation and secession of countries.

• Validation problems and the design of databases that allow the research to test models against real dynamics, which have been actually experienced.

The last part of this work focuses on research perspectives and motivates the need of a new mathematical tools toward the invention of a theory for the modeling of social economical behaviors.

A.2.4 A kinetic Theory Approach to the Modeling of Complex Living Systems

The survey paper [START_REF] Burini | A kinetic theory approach to the modeling of complex living systems[END_REF] has been published as a chapter in Springer's Edited Book "Active Particles, Volume 1" [START_REF]Active Particles, Volume 1: Advances in Theory, Models, and Applications Birkhäuser[END_REF] (see the next page). The aim of this chapter is to provides a critical analysis towards a system approach for the modeling of living systems focusing on space-homogeneous dynamics where individuals are supposed to be distributed on a network of interconnected nodes. The role of the space variable is simply consists in assessing the localization of the nodes and it is not a continuous variable. This is not an easy task according to the paradigms reported in the first chapter. Therefore in order to overcome this difficulty, a proper strategy needs to be

Introduction

Living systems are relevant example of complex systems, namely systems composed of many interacting entities whose collective dynamics is more, and different, than the sum of individual behaviors [START_REF] Anderson | More is different[END_REF]. Indeed, such systems show collective emerging behaviors generated by a kind of swarming intelligence which involves all the interacting entities [START_REF] Baley | Sociology and New Systems Theory -Toward a Theoretical Syntesis[END_REF][START_REF]Active Particles, Volume 1: Advances in Theory, Models, and Applications Birkhäuser[END_REF][START_REF] Bellomo | On the difficult interplay between life "complexity", and mathematical sciences[END_REF]. It is worth noticing that at a qualitative level, emerging behaviors are often reproduced under suitable input conditions, though quantitative matches with the observations are rarely obtained. In fact, small changes in the input conditions often generate large deviations. In some cases, these break out the macroscopic (qualitative) features of the collective emerging dynamics and lead to highly unpredictable events with dramatic consequences. One of such events, which is of 104 APPENDIX A. SCIENTIFIC PUBLISHED ACHIEVEMENTS adopted, this strategy is proposed in our chapter [START_REF] Burini | A kinetic theory approach to the modeling of complex living systems[END_REF] and can be summarized as follows:

-Selection of the main complexity features of living systems under consideration.

-Derivation of a general mathematical structure suitable to capture the said complexity features.

-Derivation of mathematical models of specific systems from the general mathematical structure.

-Validation of models based not only on their ability to reproduce available empirical data at a quantitative level, but also qualitative observed emerging behaviors.

-Critical analysis of the selection of the complexity features and the modeling of entities interactions.

According to the analysis presented in [START_REF] Burini | A kinetic theory approach to the modeling of complex living systems[END_REF] the main complexity features of living systems refers to the four features reported in subsection 1.3, while the general mathematical is derived according the kinetic theory for active particles. The mathematical structures refers to a system of integrodifferential equations where the dependents variables are probability distributions. Derivation of specific models can be obtained by the modeling of the interactions at the scale of individuals using stochastic evolutive game theory and individual/collective learning theory. The aforementioned structure is adapted to the study of two specific dynamics, namely learning in a classroom and the dynamics of the criminality. The aim of this applications is to illustrate how the general modeling strategy operates in well-defined real world systems, and to provides a critical analysis toward the validation of system approach. In fact, this applications have already shown the predictability of our models in depicting a various emerging observed behaviors. However, the critical analysis presented in the last part of the chapter show the need of feature developments of our strategy toward including more complex dynamics with a special attentions to the non-linear and Post-Darwinian dynamics.

A.3 Summary of Comments and Submitted Papers A.3.1 Two Paper Comments

Commentary's papers [START_REF] Outada | Hyperbolic scaling and computing in social crowds: Comment on "Human behaviours in evacuation crowd dynamics: From modeling to "big data" toward crisis management[END_REF] and [START_REF] Bellomo | On the complex interaction between mathematics and the sciences of living systems: Comment on "Move me, astonish me ... neurophysiological correlates[END_REF] (see pages 106 and 107), publishing on the Elsevier journal Physics of Life Reviews, provide a comment to papers of other authors. In details, the first paper [START_REF] Outada | Hyperbolic scaling and computing in social crowds: Comment on "Human behaviours in evacuation crowd dynamics: From modeling to "big data" toward crisis management[END_REF] afford a comment to the article [START_REF] Bellomo | Human behaviors in evacuation crowd dynamics: from modeling to "big data" toward crisis management[END_REF] focusing on the derivation of macroscopic equations from the underlaying mesoscopic description provided by the model developed on [START_REF] Bellomo | Human behaviors in evacuation crowd dynamics: from modeling to "big data" toward crisis management[END_REF] and argue on how far this macroscopic structures can be of interest in crowd dynamics. This comment also highlights the role of behavioral dynamics and wander on how social interactions related to the interactions between pedestrians should be taken in account in the modeling strategy. The second comment [START_REF] Bellomo | On the complex interaction between mathematics and the sciences of living systems: Comment on "Move me, astonish me ... neurophysiological correlates[END_REF] refers to [START_REF] Pelowski | me . . . delight my eyes and brain: the Vienna Integrated Model of top-down and bottom-up processes in Art Perception (VIMAP) and corresponding affective, evaluative, and neurophysiological correlates[END_REF] and provides a general speculations on how the framework presented on [START_REF] Pelowski | me . . . delight my eyes and brain: the Vienna Integrated Model of top-down and bottom-up processes in Art Perception (VIMAP) and corresponding affective, evaluative, and neurophysiological correlates[END_REF] can contributes to the challenging objective of exploiting the theoretical tools of mathematics, physics and computer sciences towards the design of rigorous theory for soft science. In fact, according to our opinion, this paper is a gift for applied mathematicians regarding the aforementioned objective.

A.3.2 On the Interplay Between Behavioral Dynamics and Social Interactions in Human Crowds

Paper [START_REF] Bellomo | On the interplay between behavioral dynamics and social interactions in human crowds[END_REF], submitting to the AIM's journal Kinetic and Related Models (see page [START_REF] Vázquez-Cendón | Solving Hyperbolic Equations with Finite Volume Methods[END_REF], provides an analysis on the modeling of crowds dynamics viewed as a living, and hence complex, systems. The followed general modeling strategy is a technical modification of the one proposed in [START_REF] Burini | A kinetic theory approach to the modeling of complex living systems[END_REF] to deals with the mechanical dynamics which are developed over the space variable which appears both in the microscopic state of the interacting individual entities as well as an independent variable of the models. The overall dynamics are quite complex due to the presence of walls and internal obstacles.

In more details, after the selection of the main features of social crowds, the focus moves to the derivation of the general mathematical structure for the modeling of behavioral crowds. More precisely, four differential equations, which progressively account for dynamics that include a reacher and reacher dynamics, have been obtained. All of them are derived by a balance of number of particles in the elementary volume of the space of microscopic states.

The mathematical modeling of interactions is developed by a suitable improvement of the theoretical tools of evolutionary stochastic games the-Cultural framework: Our comment looks at the general framework given by the interactions between the so-called "soft" and "hard" sciences. Specifically, it looks at the development of a mathematics for living systems. Our comment aims at showing how the interesting survey [START_REF] Baley | Sociology and New Systems Theory -Toward a Theoretical Syntesis[END_REF] can contribute to the aforementioned challenging task.

Let us start by observing that a dispute has divided, for many years, scientists by the presence of a negativism stream where it was argued that "soft sciences", such as social sciences, could not even be classified as sciences due to the common idea that hard sciences should generate theories founded on rigorous assumptions supported by experiments, while this approach cannot be applied to soft sciences, where heuristic conjectures are generally needed.

According to this drastic division Physics and Chemistry can be viewed as hard sciences, while sociology or psychology are soft sciences. Doubts are often raised about Biology, where the analysis of empirical data is not always followed by a theory, but simply by heuristic interpretation. However, the scientific community is expecting that this century will witness the design of generalized biological theories as we have seen, in the past, for physics and chemistry. The invention of a theory needs the interaction of different disciplines including mathematical sciences.

Nowadays mathematicians appear to be able to look with positivism, rather than negativism, to soft sciences and show the courage of quantifying soft variables [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] and even the effort of developing a mathematical theory of social sciences [START_REF] Acemoglu | Economic backwardness in political perspectives[END_REF]. The positivist stream shares the idea by Jaret Diamond [START_REF] Aristov | Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows[END_REF]. When interactions between mathematics and other sciences effectively occur, mathematics is not any more simply a formalized architecture based on a number of axioms within the framework of a totally abstract speculative science, but it contributes to provide a formal interpretation of reality.

-ory. However, in this stage it is worth mentioned that some important modifications have been considered to model the role of space and velocity variable. In particular an additional technical problem, with respect to the relatively sampler case of space-homogeneously case, related to the sensitivity and space interaction domains is properly analyzed; The latter is defined as the domain within which active particles have the potential ability to feel the presence of another particles. It corresponds to a visibility zone that might be reduced by obstacles and wares.

Simple models regarding the onset and propagation of panic in a crowd starting from a localized onset of stress conditions and the role of the leaders on driving the crowds out a venue in conditions where panic propagates, are presented. This applications enlighten the role of human behaviors, and illustrate how our general modeling strategy can lead to simulation tools to support crisis managers to handle emergency situations regarding sudden and rapid evacuations through complex venues.

The last part of the paper focus on overview of research perspectives which are mainly focused on multiscale problems.

A.4 A Quest Towards a Mathematical Theory of Living Systems

This subsection reports about my last contribution, namely the book [START_REF] Bellomo | A Quest Towards a Mathematical Theory of Living Systems[END_REF], which has been published in the Springer-Birkhäuser serie Modeling and Simulation in Science, Engineering and Technology (see page 111). This book aims to reports about the main research achievement of my research activity, namely the design of a unified mathematical approach to the modeling and analysis of large, complex systems composed of interacting living things. It explores how mathematical kinetic theory and stochastic evolutionary game theory can be used to understand the complex interplay between mathematical sciences and the dynamics of living systems. It is worth stressing that this book is not simply a surveys of results knowing in the literature, but contains new results which look to contribute to the development of new tools and strategies for understanding the complex dynamics of living matter. The First Chapter initiated the research program related to the attempt of mathematical sciences to model large living systems by a five key questions. This questions, quoted from [START_REF] Bellomo | A Quest Towards a Mathematical Theory of Living Systems[END_REF], are the following:

1. Introduction. The modeling, qualitative and computational analysis of human crowds is an interdisciplinary research field which involves a variety of challenging analytic and numerical problems, generated by the derivation of models as well as by their application to real world dynamics.

The growing interest for this research field is motivated by the potential benefits for the society. As an example, the realistic modeling of human crowds can lead to simulation tools to support crisis managers to handle emergency situations, as sudden and rapid evacuation through complex venues, where stress induced by overcrowding, or even social conflicts may affect safety of the people [START_REF] Bellomo | Multicellular growing systems: hyperbolic limits towards macroscopic description[END_REF][START_REF] Bellomo | Behavioral crowds: modeling and Monte Carlo simulations toward validation[END_REF][START_REF] Bellomo | On the dynamics of social conflicts looking for the black swan[END_REF][START_REF] Bellouquid | From the modeling of the immune hallmarks of cancer to a black swan in biology[END_REF][START_REF] Bertotti | Conservation laws and asymptotic behavior of a model of social dynamics[END_REF].

The existing literature on general topics of mathematical modeling of human crowds is reported in some survey papers, which offer to applied mathematicians different view points and modeling strategies in a field, where a unified, commonly shared, approach does not exists yet. More in detail, the review by Helbing [START_REF] Bellomo | Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues[END_REF] presents and critically analyzes the main features of the physics of crowd viewed as a multi particle system and focuses on the modeling at the microscopic scale for pedestrians undergoing individual based interactions. The survey by Huges [START_REF] Bellomo | Toward a behavioral-social dynamics of pedestrian crowds[END_REF] Closure I conclude this thesis by presenting some reasonings on future research perspectives. In fact, the thesis has introduced me to a variety of interesting and challenging problems covering the whole research path, namely modeling, analytical problems and computational analysis. Particularly interesting and challenging has been my participation to the book [START_REF] Bellomo | A Quest Towards a Mathematical Theory of Living Systems[END_REF] which covers various aspects of the aforementioned computational path. On some of the problems which appeared as interesting research perspectives, I have already started to think about and I have seriously in mind to work on these problems.

According to the statements given above, I indicate three specific research perspectives, selected amongst several possible ones, which correspond to preliminary approaches which I have developed.

• Multiscale problems for systems of interacting agents: As we have seen in Chapter 3, the derivation of models at the macroscopic scale can be developed from the underlying description at the microscopic scale which might be delivered by kinetic type models. Some preliminary results have been achieved and proposed in Section 4.2. This analysis can be completed by developing an existence analysis in the function space used for the convergence theorem. This topic poses also interesting objectives in the modeling which should be related to a detailed analysis of the dynamics at the cellular scale as, for example shown in the book [START_REF] Bellouquid | Mathematical Modeling of Complex Biological Systems[END_REF] as well as in [START_REF] Bellouquid | From the modeling of the immune hallmarks of cancer to a black swan in biology[END_REF], where Darwinist mutations and selection are included. My intention consists in addressing the derivation technique also to models, where anomalous diffusion appear, see for example [START_REF] Arias | Cross-diffusion and traveling waves in porous-media flux-saturated Keller-Segel models[END_REF][START_REF] Bellouquid | About the kinetic description of fractional diffusion equations modeling chemotaxis[END_REF][START_REF] Calvo | Fluxsaturated porous media equation and applications[END_REF][START_REF] Calvo | Pattern Formation in a flux limited reaction-diffusion equation of porous media type[END_REF].

• Behavioral crowd dynamics: Some aspects of the modeling of behavioral crowd dynamics have been introduced in [START_REF] Bellomo | On the interplay between behavioral dynamics and social interactions in human crowds[END_REF], submitted for publication. Specifically, I refer to the role of social dynamics in crowds related to safety problems. The main problem consists in driving walkers towards safe (rational) behaviors rather than unsafe (irrational behaviors). This research perspective definitely deserves to be developed in an appropriate research program.

• A systems approach to social and economical sciences: A forum followed the publication of [START_REF] Dolfin | Modeling human behavior in economics and social science[END_REF]. A number of applied mathematicians and economists have participated to it. I have been particularly interested to the suggestion to use swarm theory [START_REF] Bellomo | On the mathematical theory of the dynamics of swarms viewed as complex systems[END_REF][START_REF] Caponigro | Sparse stabilization and control of alignment models[END_REF][START_REF] Caponigro | Sparse stabilization and optimal control of the Cucker-Smale model[END_REF][START_REF] Wongkaew | On the control through leadership of the Hegselmann-Krause opinion formation model[END_REF] to model social and economical systems. The advantage is that a finite dynamical system is used to develop the modeling approach for a system which has, effectively, a finite number of degrees of freedom. This perspective is entirely new and appears to be a challenging research program.

Finally, I wish to stress that I do not naively have in mind that the three objectives which I have indicated above can be rapidly tackled. All of them pose challenging analytic and computational problems which need new ideas and mathematical tools to be properly treated. By computational problems I mention the development of Monte Carlo Particle methods in parallel to classical methods for PDEs. Nevertheless, despite these difficulties, I have well in mid the will to devote all possible energies to tackle them within a research program where appropriate milestones will arguably take several months for each of them. Résumé: Cette thèse a pour objectif de développer une approche mathématique pour la modélisation des systèmes vivants en mettant l'accent sur les équations hyperboliques et cinétiques décrivant les systèmes multicellulaires en biologie, la dynamique de foule, et les comportements collectifs des individus en sciences sociales et économiques considérées comme des sciences comportementales, appelées parfois "sciences douces". Plus précisément, les points traités dans cette thèse ont été les suivants :

• Le développement de ce qu'on appelle la théorie cinétique des particules actives pour la dérivation d'une structure mathématique pour la modélisation des systèmes vivants, qui tient compte des caractéristiques et complexités de ces systèmes complexes, où la dynamique des entitées est développée aussi sur la variable d'espace. Cette structure mathématique générale offre un cadre conceptuel pour la dérivation des modèles spécifiques correspondant à des classes de systèmes bien définies et remplace les approches classiques utilisées pour modéliser les systèmes inertes qui s'avèrent inappropriés pour la modélisation des systèmes vivants.

• Le développement de méthodes mathématiques pour la dérivation de modèles à l'échelle macroscopique de type Keller-Segel et de type Cattaneo à partir d'une description cinétique basée sur la théorie des particules actives, ainsi que le développement et l'implémentation des schémas numériques préservant la limite asymptotique, en particulier des méthodes de volumes finis pour les systèmes de lois de conservations sont utilisées pour l'approximation des modèles macroscopiques.

• L'application à la modélisation, l'analyse qualitative et les simulations des systèmes sociaux. Plus précisément les applications ont été adressées aux systèmes sociaux-économiques et à la dynamique comportementale de la foule en mettant en oeuvre l'évacuation d'un espace dangereux où la géométrie est complexe et en tenant compte de la propagation du stress. Des simulations numériques ont été obtenues par un développement approprié des méthodes de Monte Carlo.

• L'étude de la convergence de développement de Hilbert pour la dérivation d'équations macroscopiques à partir de la description mésoscopique basée sur la théorie cinétique des particules actives, et l'analyse qualitative liée à l'existence et l'unicité des solutions des systèmes cinétiques. Abstract: This thesis tackles the challenging aim of developing a mathematical theory of living systems with focus on hyperbolic and kinetic equations, to multicellular systems in biology, crowd dynamics, and social sciences and economy viewed as behavioral sciences, occasionally called soft sciences. In more details, the following topics have been tackled:

• Development of the theory and application of the kinetic theory of the socalled active particles, with the main objective of deriving a general mathematical structure, consistent with the complexity features of living systems, where the dynamics are developed over the space variable. This structure offers the conceptual background for the derivation of specific models corresponding to well-defined classes of systems and substitutes the field theories, which classically offers the natural support in the sciences of the inert matter that cannot be applied in the case of living systems. Applications have also motivated development of simulation tools.

• Mathematical methods to derive macroscopic tissue equations, of Keller-Segel and Cattaneo type, from the underlying description at the microscopic scale delivered by kinetic type models and development of computational schemes towards simulations both of kinetic transport models and hyperbolic macroscopic models. In more details, finite volume methods for hyperbolic conservative laws equations have been developed for the simulations of macroscopic models.

• Applications to modeling, qualitative analysis, and simulations of social systems. Applications have been addressed to social systems and behavioral crowd dynamics with a special focus on evacuation dynamics from venues with complex geometry with special focus to a dynamics, where panic propagates. Simulations have been obtained by a suitable developments of the so-called Monte Carlo particle methods.

• Analytical problems generated by the convergence of the Hilbert approach to the derivation of macroscopic equations from the kinetic theory approach, and a qualitative analysis related to existence and uniqueness of the solutions of the initial value problems of the kinetic systems. Keywords: Living systems; Kinetic models; Active particles; Multicellular systems; Hyperbolic limits; Chemotaxis; Asymptotic-preserving scheme; Human behaviors; Stress propagation; Socio-economic systems.
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  .4 and 3.5 which show, respectively, the contour plots of the mean density of the emotional state with (right panels) and without (left panels) social interactions for different times. These figures put in evidence how the exchange of emotional states modifies the aforementioned patterns and, specifically, induces zones with high density concentration which, as it is known, can generate loss of safety conditions.
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	Simulations related to the case study under consideration are reported

  |R 1 (s, x s )| ≤ (σ + b) ||G 12 (s, •, •)|| L ∞ x,v + a||f 1f 2 || X T .

	4.3. ON THE QUALITATIVE ANALYSIS OF THE INITIAL VALUE PROBLEM89
	However, we have				
						(4.95)
	Using this last inequality in Eq. (4.94) we get
					t
	|G 12 (t, x, v)| ≤ aT ||f 1 -f 2 || X T + (σ + b)	0	||G 12 (s, •, •)|| L ∞ x,v ds,	(4.96)
	and the Gronwall lemma gives the desired estimate (4.88), which completes
	the proof of Lemma 18.			
						.91)
	Moreover, from equation			
	d ds	e (s-t)σ G 12 (s, x s , v) = e (s-t)σ R 3 (s, x s ),	(4.92)
	it follows that	G 12 (t, x, v) =	t	e (s-t)σ R 3 (s, x s )ds.	(4.93)
			0		
	We recall the notation x s = x + (s -t)v . Since e (s-t)σ < 1, for all 0 ≤ s ≤ t ≤ T
	we deduce from (4.93) the following estimate
				t	
		|G 12 (t, x, v)| ≤	|R 3 (s, x s )|ds.	(4.94)
				0	
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But we have

We introduce the following notations

x dv, and S i (s) = These requirements generate highly challenging problems which require additional study to be scheduled in a next research program on which I wish to engage myself. A next preliminary step consists in proving existence in the function space required by the convergence theorem presented in Section 4.2 so that convergence is proved in the interval [0, T 0 ].

Appendices Appendix A Scientific Published Achievements

A.1 Introduction

The PhD program described in this thesis has been constantly supported by papers published in journals or at the stage of submitted or "in progress" and books.

This appendix provides a concise account of the published research works, so that the reader can have a detailed description of the development of the research activity that has supported the research program. The contents is proposed in three subsections that follow this brief introduction. Each of them reports the first page of the research work and a concise description of the main achievements. In more detail: Section A.2 reports about papers [START_REF] Dolfin | Modeling human behavior in economics and social science[END_REF][START_REF] Dolfin | A critical analysis towards research perspectives: Reply to comments on "Modeling human behavior in economics and social science[END_REF][START_REF] Outada | from kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF] and [START_REF] Burini | A kinetic theory approach to the modeling of complex living systems[END_REF]. Paper [START_REF] Outada | from kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF] deals with the derivation of the dynamics of multicellular systems from the underlying description delivered by kinetic theory methods. Subsequently some simulations are proposed to visualize the complex dynamics of the system under consideration.

Papers [START_REF] Dolfin | Modeling human behavior in economics and social science[END_REF][START_REF] Dolfin | A critical analysis towards research perspectives: Reply to comments on "Modeling human behavior in economics and social science[END_REF] show how the kinetic theory approach can be applied to the modeling of social systems and behavioral economy. This topic has been developed in collaboration with economists in view of the important contribution to modern developments of behavioral economy. The first paper [START_REF] Dolfin | Modeling human behavior in economics and social science[END_REF] deals with the modeling approach and simulations, while the second paper [START_REF] Dolfin | A critical analysis towards research perspectives: Reply to comments on "Modeling human behavior in economics and social science[END_REF] is a reply to a large forum where 15 experts have commented the contents of the third paper.

The survey paper [START_REF] Burini | A kinetic theory approach to the modeling of complex living systems[END_REF] has been published as a chapter in an Edited Book devoted to mathematical tools of active particles. The specific chapter [START_REF] Burini | A kinetic theory approach to the modeling of complex living systems[END_REF] is devoted to the modeling of collective learning dynamics and to the modeling of the onset and growth of criminality contrasted by security forces. I have read with great interest the paper [START_REF] Anderson | More is different[END_REF] where the authors present an overview and critical analysis of the literature on the modeling of the crowd dynamics with special attention to evacuation dynamics. The approach developed is based on suitable development of methods of the kinetic theory. Interactions, which lead to the decision choice, are modeled by theoretical tools of stochastic evolutionary game theory [START_REF] Baley | Sociology and New Systems Theory -Toward a Theoretical Syntesis[END_REF][START_REF] Ball | Why Society is a Complex Matter[END_REF]. However, the paper [START_REF] Anderson | More is different[END_REF] provides not only a survey focused on topics of great interest for our society, but also it looks ahead to a variety of interesting and challenging mathematical problems. Specifically, I am interested in the derivation of macroscopic (hydrodynamic) models from the underlying description given from the kinetic theory approach, more specifically by the kinetic theory for active particles [START_REF] Arlotti | Generalized kinetic (Boltzmann) models: mathematical structures and applications[END_REF]. A general reference on crowd modeling is the recently published book [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF].
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This topic has been treated in paper [START_REF] Alt | Biased random walk models for chemotaxis and related diffusion approximations[END_REF] following the approach introduced in [4] for vehicular traffic. I argue that this approach should lead to hyperbolic type models, such as [START_REF] Arias | Cross-diffusion and traveling waves in porous-media flux-saturated Keller-Segel models[END_REF], namely to models characterized by finite propagation speed. However, one can observe that the model proposed in [START_REF] Arias | Cross-diffusion and traveling waves in porous-media flux-saturated Keller-Segel models[END_REF] assumes that pedestrians always chose the direction toward the exit, which is not realistic in stress conditions where behavioral features heterogeneously appear [START_REF] Aristov | Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows[END_REF]. Social dynamics [START_REF] Acemoglu | Economic backwardness in political perspectives[END_REF] related to the interactions between pedestrians should definitely be taken in account in modelling the decision process that leads to chose the direction of the motion and adjust the speed by taking into account the flow conditions of the crowd.

Further, paper [START_REF] Anderson | More is different[END_REF] suggests the use of stochastic computational methods, [START_REF] Axelrod | The Complexity of Cooperation: Agent-based Models of Competition and Collaboration[END_REF][START_REF] Ballerini | Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study[END_REF], against deterministic methods, which, however, have been used in [START_REF] Ajmone Marsan | Towards a mathematical theory of complex socio-economical systems by functional subsystems representation[END_REF].

These simple reasonings have brought to my mind the following questions:

What do hydrodynamic models loose with respect to kinetic model as far as their descriptive ability is concerned?

How far can modeling social dynamics be taken into account? Nicola Bellomo (1) , Livio Gibelli (2) , and Nisrine Outada (3,4) (1) Department of Mathematics, Faculty of Sciences King Abdulaziz University Jeddah, Saudi Arabia (2) School of Engineering University of Warwick United Kingdom (3) Mathematics and Population Dynamics Laboratory-UMMISCO Faculty of Sciences of Semlalia of Marrakech, Cadi Ayyad University Morocco (4) Jacques Louis-Lions Laboratory Pierre et Marie Curie University, Paris 6 France
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Abstract. This paper provides an overview and critical analysis on the modeling and applications of the dynamics of human crowds, where social interactions can have an important influence on the behavioral dynamics of the crowd viewed as a living, hence complex, system. The analysis looks at real physical situations where safety problems might arise in some specific circumstances.

The approach is based on the methods of the kinetic theory of active particles. Computational applications enlighten the role of human behaviors.

Which are the most relevant common complexity features of living systems?

2. Can appropriate mathematical structures be derived to capture the main features of living systems?

3. How can mathematical models be referred to the mathematical structures deemed to depict complexity features of living systems?

Models offer a predictive ability, but how can they be validated?

In addition, can rare events, namely the so-called Black Swans [START_REF] Taleb | The Black Swan: The Impact of the Highly Improbable, Random House[END_REF], be predicted by them?

Which are the conceptual paths which might lead to a mathematical theory of living systems?

These questions motivate the contents of the whole book and answer to each of them have been givens in the sequel of the chapters of the book. In particular, the first chapter provides an answer to the first question. More precisely, ten key features are selected to be regarded as a first step toward the development of a modeling approach. It is worth stressing that not all of this complexity features apply to all systems, but the study of each of them should put in evidence the specific ones which need to be properly retained by models related to well defined case study.

Chapter Two provides a brief introduction to the mathematical kinetic theory of diluted gases and, specifically, of the celebrated Boltzmann equation. The content of this chapter is motivated according the idea that understanding the important conceptual differences between the classical kinetic theory and the kinetic theory for active particles can contribute to a deeper insight over the new approach. This chapter also presents some generalized models which are of interest to the specific contents of the book, namely the so-called discrete velocity Boltzmann equation, the Enskog equation, and mean field models. The last part of this chapter devoted to a brief introduction to Monte Carlo methods.

The contents of Chapter Three are motivated by the second key question, namely the search of mathematical tools suitable to model living systems. The strategy to pursue this objective consists in deriving, according the kinetic theory for active particles, a general mathematical structure suitable to capture the ten key complexity features presented in first chapter of the book. Accordingly, the first part of this chapter deals with spacehomogeneous systems where space is a vanishing variable and it shows how the representation can be given by probability distributions over the microscopic state of the interacting entities called active particles. Then the focus moves to the modeling of interaction within the framework offered by the
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A Quest Towards a Mathematical Theory of Living Systems theoretical tools of game theory. In the case where the activity is a continuous variable the mathematical structure refers to a system of integrodifferential equations, while a system of large coupled differential equations is used for structures with discrete activity variables. In both cases, the dependent variables are the probability distributions over the microscopic states of the interacting entities. The second part of this chapter develops an analogous study for models where space is a continuous variable. The modeling strategy follows the same rationale presented in spacehomogeneous case. However, some important modifications have been considered to model the role of space and velocity. In particular some additional problems such as the influence of visibility and sensitivity zones on the general structure, have been properly analyzed. The last part of the chapter develops a critical analyzes of the consistency of the aforesaid mathematical structures with the complexity features reported in chapter 1 of the book.

Chapter Four is a bridge between the first part of the book devoted to theoretical tools and the second part devoted to applications. It focus on the third and fourth key questions, and accordingly it proposes a general approach to derive specific models referring to the aforementioned mathematical structures as well as a preliminary rationale on the validation of models. The general approach for the derivation of specific models can be summarized as follows: phenomenological observation and interpretation of the system under consideration; specialization of the mathematical structure by keeping only the interactions relevant to the dynamics of each system; modeling interactions, including microscopic interactions between individuals, micro-macro interactions between individuals and there groups, and macroscopic interactions between groups; derivation of models by implementing the aforementioned description of interactions into the adapted structure; analysis of parameter's sensitivity and identifying the parameters which have an effective influence on the overall dynamics; validation of models by a detailed analysis on there predictive ability; and finally a critical analysis toward improvements. However, these speculations can be viewed as a preliminary answer to be made practical and complete in the next chapters of the book focusing on specific applications.

The first application is presented on Chapter Five focusing on the modeling and analysis of social systems. The case study refers to the dynamics of criminality in urban areas, where simulations highlight some interesting emerging dynamics. This chapter also introduce the modeling of Darwinian dynamics in the competition between cancer and immune cells as well as on analysis of the existing literature and some specific contributions such as the modeling welfare policies and progress or recession of nations.

Chapter Six presents an overview of modeling topics of crowd dynamics

A.4. A QUEST TOWARDS A MATHEMATICAL THEORY OF LIVING SYSTEMS113

where dynamics is developed also over the space variable. This chapter follows the same style of presentation of the previous one, and accordingly is initiated by a critical analysis of the existing literature, and then followed by the presentation of a specific model. An additional topics, proposed in this chapter are: the modeling of multicellular systems and the modeling of swarms with special attention to the well knowing Cucker and Smale model [START_REF] Cucker | On the critical exponent for flocks under hierarchical leadership[END_REF][START_REF] Cucker | Emergent behavior in flocks[END_REF]. The last part of the chapter focuses on open problems which are not yet found a satisfactory answer, such as the role of leaders, collective intelligence in reaction to the presence of an external action.

The last chapter of the book, namely Chapter Seven, deals with open problems focusing on both modeling and analytical issues, an important problem brought to the attention of the reader is the derivation of microscopic equations from the underlaying description provided by kinetic equations developed in our book. Finally, the attention goes back to the fifth question posed on the first chapter focusing on the design of mathematics for living systems. The answer to this question starts from a possible definition of mathematical theory of living systems and subsequently proposes some speculations toward a quest to invent such a theory. It is worth mentioned that the answer proposed does not naively claim to be exhaustive, but it can be considered simply as a first step toward the ambitious aim of the book and of my thesis.