
HAL Id: tel-02988031
https://theses.hal.science/tel-02988031v1

Submitted on 4 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decision procedures for vulnerability analysis
Benjamin Farinier

To cite this version:
Benjamin Farinier. Decision procedures for vulnerability analysis. Performance [cs.PF]. Université
Grenoble Alpes [2020-..], 2020. English. �NNT : 2020GRALM013�. �tel-02988031�

https://theses.hal.science/tel-02988031v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

Spécialité : Mathématiques et Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Benjamin FARINIER

Thèse dirigée par Marie-Laure POTET
et codirigée par Sébastien BARDIN

préparée au sein du Laboratoire VERIMAG
dans l'École Doctorale Mathématiques, Sciences et
Technologies de l'Information, Informatique

Procédures de décision pour l'analyse de
vulnérabilités

Decision Procedures for Vulnerability Analysis

Thèse soutenue publiquement le 24 juin 2020,
devant le jury composé de :

Madame Marie-Laure POTET
Professeure des universités, Grenoble INP, Directrice de thèse
Monsieur Sébastien BARDIN
Chercheur, CEA LIST, Codirecteur de thèse
Monsieur Thomas JENSEN
Directeur de recherche, INRIA, Rapporteur
Monsieur Sylvain CONCHON
Professeur des universités, Université Paris-Saclay, Rapporteur
Madame Mihaela SIGHIREANU
Maître de conférences, Université Paris Diderot, Examinatrice
Monsieur Jean GOUBAULT-LARRECQ
Professeur des universités, ENS Paris-Saclay, Examinateur
Monsieur Roland GROZ
Professeur des universités, Grenoble INP, Président du jury

Procédures de décision pour
l’analyse de vulnérabilités

Decision Procedures for Vulnerability Analysis

thèse présentée par Benjamin Farinier
en vue de l’obtention du grade de docteur de l’Université Grenoble Alpes

soutenue publiquement le 24 juin 2020

Remerciements

Je remercie tout d’abord Marie-Laure Potet et Sébastien Bardin pour avoir encadré
avec tant de patience mes travaux au fil de cette thèse. Je remercie les membres du jury,
Mihaela Sighireanu, Jean Goubault-Larrecq, Roland Groz, et en particulier Thomas
Jensen et Sylvain Conchon pour leur relecture attentive. Je remercie Claude Marché et
les membres de l’équipe VALS pour avoir accepté de m’héberger le temps d’un ATER.
Et je remercie tous les membres du LSL, passés, présents et futurs, que j’ai eu grand
plaisir à côtoyer, et tout spécialement mes compagnons de galère, les doctorants de
l’équipe Binsec.

Je remercie toute ma famille, mes parents, mon frère et mes grands-parents pour
leur indéfectible soutien. Je remercie Valentine, Aurélien et Armaël, tous mes amis de
Toulouse, de Clermont-Ferrand, de Lyon, de Paris ou d’ailleurs, tous ceux auxquels j’ai
pensé sans les nommer, mais qui m’ont accompagné de près ou de loin ces dernières
années. Je remercie tout particulièrement Félix et Pauline pour nos traditionnels cafés
place d’Aligre, Arnaud pour nos nombreux moments partagés de Lyon à Paris, et
Sophie pour nos merveilleuses après-midi thé et pâtisseries, et pour avoir relu tous mes
écrits, cette thèse y compris.

Enfin je remercie Claire pour avoir su être là au cours de toutes ces années, et dont
la présence m’a permis de mener à bien cette thèse.

i

ii

iii

Résumé

L’Exécution symbolique est une technique de vérification formelle qui consiste en
modéliser les exécutions d’un programme par des formules logiques pour montrer que
ces exécutions vérifient une propriété donnée. Très efficace, l’Exécution symbolique a
permis le développement d’outils d’analyse à l’origine de la découverte de nombreux
bogues. Il est question aujourd’hui de l’employer dans d’autres contextes que la
recherche de bogues, comme en analyse de vulnérabilités. L’application de l’Exécution
symbolique à l’analyse de vulnérabilités diffère de la recherche de bogues sur au moins
deux aspects :

• Premièrement, trouver un bogue n’implique pas avoir trouvé une vulnérabilité, et
faire la différence entre les deux requiert passer d’une analyse du code source
à une analyse du code binaire. Or les sémantiques utilisées en analyse de code
binaire sont non seulement moins structurées que celles utilisées en analyse de
code source, mais aussi bien plus verbeuses.

• Deuxièmement, les interactions avec l’environnement ne se modélisent pas de
la même manière en recherche de bogues qu’en analyse de vulnérabilités, pour
laquelle la modélisation de l’environnement va dépendre du modèle d’attaquant
choisi. En effet, pour conclure qu’une vulnérabilité en est une, il faut montrer
qu’elle se manifeste dans toutes les configurations que peuvent prendre les
composantes de l’environnement non contrôlées par l’attaquant.

Ces deux différences vont avoir un impact profond sur les formules logiques générées
par l’Exécution symbolique et leur résolution :

• Les formules logiques générées au cours de l’Exécution symbolique deviennent
rapidement gigantesques et de plus en plus difficiles à résoudre. Si ce problème
n’est pas spécifique à l’analyse de vulnérabilités, il se renforce dans ce contexte en
raison de la verbosité des sémantiques utilisées en analyse de code binaire.

• La modélisation de certaines propriétés de sécurité est susceptible de faire
intervenir des quantificateurs dont l’emploi rend les formules logiques générées
presque impossibles à résoudre. Il en va ainsi en analyse de vulnérabilités, selon
qu’un attaquant contrôle ou non un composant de l’environnement.

Cette thèse porte donc sur deux problématiques issues du domaine des procédures
de décision, à savoir la simplification de formules logiques afin de limiter l’explosion de
leur taille au cours de l’analyse, et l’extension au cas quantifié de la logique des solveurs
afin de permettre des modélisations plus fines, nécessaires à l’analyse de vulnérabilités.

iv

Abstract

Symbolic Execution is a formal verification technique which consists in modeling
program executions by logical formulas in order to prove that these executions verify a
given property. Very effective, Symbolic Execution led to the development of analysis
tools and to the discovery of many new bugs. The question is now how to use it in other
contexts than bug finding, for example in vulnerability analysis. Applying Symbolic
Execution to vulnerability analysis fundamentally differs from bug finding on at least
two aspects:

• First, finding a bug does not imply having found a vulnerability, and differentiating
between the two requires to move from source-level analysis to binary-level
analysis. But binary-level semantics are not only less structured than source-level
semantics, they are also far more verbose.

• Second, interactions with the environment are not modeled in the same way for
vulnerability analysis than for bug finding. Indeed in vulnerability analysis, the
environment model will depend on the attacker model we choose, as to conclude
that a vulnerability is a real one, we need to prove the vulnerability manifests
itself for all the configurations that components not controlled by the attacker can
take.

These two differences have a profound impact on logical formulas generated by
Symbolic Execution and their resolution:

• Logical formulas generated during an analysis quickly become gigantic, and
more and more difficult to solve. If this problem is not specific to vulnerability
analysis, it is reinforced in this context, because of the verbosity of semantics used
in binary-level analysis.

• Modeling some security properties is likely to involve quantifiers whose use
made generated logical formulas nearly impossible to solve. This is the case
in vulnerability analysis about interactions with the environment, according to
whether an attacker does or does not control a component.

Therefore this thesis focuses on two issues arising from the field of decision
procedures, namely the simplification of logical formulas to limit their size explosion
during the analysis, and the extension of solvers to quantified logic in order to allow
finer models, required for vulnerability analysis.

v

vi

Contents

I Introduction 1

1 Introduction 3

1.1 Automated Software Verification . 4
1.2 Symbolic Execution . 6
1.3 Decision Procedures . 7
1.4 Contributions and Organization of the Document 9

2 Motivation 15

2.1 The Back to 28 Vulnerability . 15
2.2 First Attempt: High-Level Semantics . 19
2.3 Second Attempt: Low-Level Semantics . 20
2.4 Conclusion . 23

II Background 25

3 Many-Sorted First-Order Logic 27

3.1 Syntax and Semantics . 27
3.1.1 Signatures, Terms and Formulas 28
3.1.2 Interpretations and Models . 30
3.1.3 Satisfiability Modulo Theories . 32

3.2 Deciding Many-Sorted First-Order Logic 32
3.2.1 Normal Forms . 33
3.2.2 Propositional Logic . 35
3.2.3 Quantifier-Free Formulas Modulo Theories 37
3.2.4 Quantified Formulas Modulo Theories 38

3.3 Some Many-Sorted First-Order Theories 40
3.3.1 Equality Logic with Uninterpreted Functions 40
3.3.2 Bit-Vectors . 42
3.3.3 Arrays . 44
3.3.4 Combination of Theories . 46

vii

viii CONTENTS

3.4 Conclusion . 48

4 Symbolic Execution 53

4.1 LOW, a Simple Low Level Language . 53
4.1.1 Syntax . 54
4.1.2 Semantics . 56

4.2 Symbolic Execution . 56
4.2.1 General Principle . 58
4.2.2 Advanced Techniques . 62

4.3 Limits and Solutions . 64
4.3.1 Path Explosion . 64
4.3.2 Constraint Solving . 65
4.3.3 Memory Model . 66
4.3.4 Interactions with the Environment 67

4.4 Application to Program Verification . 68
4.4.1 Trace Property Verification . 68
4.4.2 Correctness and Completeness . 69

4.5 Conclusion . 71

III Contributions 77

5 Model Generation for Quantified Formulas: A Taint-Based Approach 79

5.1 Introduction . 79
5.2 Motivation . 82
5.3 Musing with Independence . 83

5.3.1 Independent Interpretations, Terms and Formulas 84
5.3.2 Independence Conditions . 85

5.4 Generic Framework for SIC-Based Model Generation 86
5.4.1 SIC-Based Model Generation . 87
5.4.2 Taint-Based SIC Inference . 88
5.4.3 Complexity and Efficiency . 89
5.4.4 Discussions . 90

5.5 Theory-Dependent SIC Refinements . 90
5.5.1 Refinement on Theories . 91
5.5.2 R-Absorbing Functions . 92

5.6 Implementation and Experimental Evaluation 93
5.6.1 Implementation . 94
5.6.2 Evaluation . 95

5.7 Related Works . 98
5.8 Conclusion . 100

CONTENTS ix

6 Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing 105

6.1 Introduction . 105
6.2 Motivation . 108
6.3 Standard Simplifications for read-over-write 109
6.4 Efficient Simplification for read-over-write 111

6.4.1 Dedicated Data Structure: Arrays Represented as Lists of Maps . 111
6.4.2 Approximated Equality Check and Dedicated Rewriting 113
6.4.3 The fas Procedure . 114
6.4.4 Refinement: Adding Domain-Based Reasoning 115

6.5 Implementation and Experimental Evaluation 117
6.5.1 Implementation . 117
6.5.2 Experimental Setup . 119
6.5.3 Medium-Size Formulas from SE 119
6.5.4 Very Large Formulas . 123
6.5.5 SMT-LIB Formulas . 125
6.5.6 Conclusion . 126

6.6 Related Works . 126
6.7 Conclusion . 127

7 Get Rid of False Positives with Robust Symbolic Execution 133

7.1 Introduction . 133
7.2 Robust Symbolic Execution . 135

7.2.1 Robust Reachability . 135
7.2.2 Robust Symbolic Execution . 136
7.2.3 Controllable and Uncontrollable Inputs 136

7.3 Implementation and Experimental Evaluation 140
7.3.1 Implementation . 140
7.3.2 Experimental Evaluation . 140

7.4 Related Works and Conclusion . 142

IV Conclusion 145

8 Conclusion 147

8.1 Contributions . 147
8.2 Perspectives . 148

Bibliography 151

x

xi

Randall Munroe, Heartbleed Explanation, https://xkcd.com/1354/

https://xkcd.com/1354/

xii

Préface

Le 7 avril 2014, la vulnérabilité logicielle Heartbleed [hea14] est rendue publique.
Au moment de sa découverte, entre 24% et 55% des serveurs dits sécurisés seraient
touchés [DKA+14], soit environ un demi-million de serveurs, ce qui compromet une
part significative des échanges sur Internet. Cette faille de sécurité est due à un Bogue
introduit par erreur le 14 mars 2012 dans la bibliothèque de cryptographie open
source OpenSSL, une implémentation largement déployée des protocoles SSL/TLS de
sécurisation des échanges sur Internet. Elle permet à un attaquant de lire la mémoire
d’un serveur vulnérable, et donc sous certaines conditions de récupérer les clefs secrètes
de chiffrement, les identifiants et mots de passe des utilisateurs, ou les contenus
échangés. Heureusement, les conséquences de cette vulnérabilité resteront limitées
en dépit de sa gravité, principalement grâce à la promptitude de la communauté
informatique à déployer le correctif qui permit d’éviter une utilisation de grande
ampleur de Heartbleed.

Le plus surprenant avec Heartbleed est peut être le décalage entre la dangerosité
de la vulnérabilité et la simplicité de sa cause. En effet, cette faille venait du fait qu’un
utilisateur pouvait demander à lire un certain nombre de caractères dans une chaîne
de caractères, sans qu’il soit vérifié que la chaîne en question contienne suffisamment
de caractères. Dans le cas où le nombre demandé de caractères était plus grand que la
taille de la chaîne, les caractères excédants étaient lus dans les données consécutives à
la chaîne en mémoire, données normalement inaccessibles. Ce type de vulnérabilité, dit
par dépassement de tampon (buffer overflow en anglais), était déjà connue en 1972 [And72],
et faisait partie des failles exploitées par le ver informatique Morris pour se répandre en
1988. Le fait que des causes connues de longue date comme étant dangereuses soient
aujourd’hui encore à la source de failles de sécurité majeures démontre la nécessité et
la pertinence de la recherche en vérification formelle de programmes.

xiii

xiv PRÉFACE

Vérification formelle de programmes

La vérification formelle [CW96] vise à prouver ou réfuter la correction d’un système
vis-à-vis d’une spécification formelle. Cette spécification est exprimée comme un
ensemble de propriétés formalisées en logique mathématique dont on va prouver la
validité pour unmodèle donné du système. Dans le cas de la vérification de programme,
les systèmes étudiés sont des programmes dont les modèles sont obtenus par la
sémantique de leur code source. Les propriétés vérifiées sont, elles, d’un registre très
large qui va de la preuve d’absence d’erreurs à l’exécution, ou de l’intégrité mémoire du
programme, à la preuve de correspondance entre un algorithme et son implémentation.

comportements corrects
comportements incorrects

comportements de l’objet
comportements du modèle

Figure 1 – Illustration d’une sur-approximation, qui conclut à la correction de l’objet
vis-à-vis de sa spécification dans la figure de gauche, mais ne parvient à aucune
conclusion du fait de faux positifs dans la figure de droite.

Sur-approximation L’idée de vérifier formellement des composants cruciaux en
terme de sécurité n’est pas nouvelle, que ce soit au niveau des protocoles [BBK17] ou
de leurs implémentations [KKP+15, BFK16, BBD+17]. Malheureusement, l’usage de
bibliothèques logicielles formellement vérifiées reste peu répandu, leur développement
étant significativement plus complexes, tandis que celles existantes ne se prêtent que
difficilement à la vérification à posteriori. En effet, la plupart des outils de vérification
formelle travaille sur des modèles qui sur-approximent les comportements des objets
étudiés [Hoa69, CC77] : tous les comportements d’un l’objet sont capturés par son
modèle, mais un modèle considère des comportements qui ne sont pas réalisables par
son objet, comme illustré dans la Figure 1. Ainsi, lorsque l’outil conclut à la correction
du modèle vis-à-vis de la spécification, alors l’objet l’est aussi car l’ensemble de ses

PRÉFACE xv

comportements est inclus dans l’ensemble de ceux qui ont été vérifiés. Par contre, lorsque
l’outil conclut à l’incorrection du modèle vis-à-vis de la spécification, le comportement
coupable de l’incorrection peut être propre aumodèle et l’objet être, lui, correct vis-à-vis
de la spécification. On parle alors de faux positif. Or lorsqu’un programme n’a pas
été développé avec l’objectif d’être ensuite vérifié formellement, sa modélisation par
l’outil sera tellement sur-approximée qu’il sera dans presque tous les cas impossible de
conclure à la correction du programme. Et si le programme est réellement incorrect, les
véritables erreurs seront noyées dans le trop grand nombre de faux positifs.

comportements corrects
comportements incorrects

comportements de l’objet
comportements du modèle

Figure 2 – Illustration d’une sous-approximation, qui conclut à l’incorrection de l’objet
vis-à-vis de sa spécification dans la figure de gauche, mais ne parvient à aucune
conclusion du fait de faux négatifs dans la figure de droite.

Sous-approximation Cependant, bien qu’elles soient moins fréquentes, certaines
techniques de vérification formelle fonctionnent par sous-approximation [CKL04, CS13] :
tous les comportements du modèle sont des comportements de l’objet, mais certains
comportements de l’objet manquent au modèle, comme illustré dans la Figure 2. Ici,
toutes les incorrections relevées sur le modèle s’appliquent à l’objet, on est donc exempt
de faux positif. La contrepartie est que l’outil ne peut conclure à la correction de
l’objet, puisque même si le modèle est prouvé correct, certains comportements de l’objet
n’auront pas été vérifiés, comportements pouvant contenir des erreurs. Ce sont cette fois
des faux négatifs. L’intérêt de ces approches par sous-approximation est de permettre
d’éliminer a priori de nombreux bogues à bas coût. De plus, ces dernières peuvent
être appliquées à des programmes qui n’avaient pas été initialement pensés pour la
vérification, dans l’optique d’éliminer un maximum de comportements incorrects et de
rendre ces programmes plus aptes à un processus de vérification par sur-approximation.

xvi PRÉFACE

int main () {
int x = input();
int y = input();
int z = 2 * y;
if (z == x) {
if (x > y + 10)
printf("Success!\n");

}

printf("Failure...\n");
}

x = input()

y = input()

z = 2 * y

z == x

x > y + 10pc , > ∧ 2y0 , x0

pc , > ∧ 2y0 � x0 ∧ x0 > y0 + 10pc , > ∧ 2y0 � x0 ∧ x0 ≤ y0 + 10

pc , >, Γ , ∅

Γ ,
{
x � x0 , y � y0 , z � 2y0

}
pc , > ∧ 2y0 � x0

Figure 3 – Exécution symbolique d’un petit programme. Le prédicat de chemin pc
collecte les contraintes que les entrées doivent satisfaire pour que l’exécution concrète du
programme suive un chemin spécifique, tandis que l’état symbolique Γ suit l’évolution
de la représentation symbolique des variables du programme.

Exécution symbolique

L’Exécution symbolique fait partie de ces techniques de vérification formelle par sous-
approximation [BGM13, CS13]. Intuitivement, la vérification par Exécution symbolique
consiste en énumérer les exécutions possibles d’un programme, et déterminer pour
chacune d’entre elles une entrée sur laquelle le programme la réalise. La Figure 3 illustre
l’Exécution symbolique d’un petit programme. On vérifie ensuite que chacune de ces
exécutions satisfait bien la propriété que l’on cherche à vérifier. Si l’une des exécutions
énumérées invalide cette propriété, on peut conclure à l’incorrection du programme
vis-à-vis de sa spécification. Mais si l’on veut pouvoir conclure à la correction du
programme, on doit prouver que toutes ses exécutions possibles satisfont la propriété.
Or, dans bien des cas le nombre de ces exécutions est immense, voire infini dans certains
cas ; il est donc impossible de toutes les énumérer. L’Exécution symbolique est donc bel
et bien une technique de vérification formelle par sous-approximation.

L’Exécution symbolique a été tout d’abord introduite dans les années 1970, mais ce
n’est que récemment qu’elle a été redécouverte et rendue utilisable [GKS05, SMA05,
WMMR05, CGP+06]. Si l’idée derrière l’Exécution symbolique reste simple, elle s’est
révélée être en pratique très efficace pour la recherche de bogues, et a permis le
développement d’outils d’analyse de programmes à l’origine de la découverte de
nombreux bogues dans des logiciels très usités [CDE08]. Son efficacité est telle qu’il est

PRÉFACE xvii

aujourd’hui question d’essayer de l’employer dans d’autres contextes que la recherche de
bogues, par exemple l’analyse de vulnérabilités. Cependant, l’application de l’Exécution
symbolique à l’analyse de vulnérabilités diffère fondamentalement de la recherche de
bogues sur au moins deux aspects :

Sémantique de bas niveau vs. sémantique de haut niveau Trouver un bogue n’im-
plique pas avoir trouvé une vulnérabilité, et faire la différence entre les deux
requiert bien souvent de passer d’une analyse au niveau du code source à une
analyse au niveau du code binaire. Ainsi la recherche de bogues peut être assimi-
lée à la recherche de comportements indéterminés dans la sémantique du code
source du programme. Cependant, trouver une vulnérabilité demande en sus de
s’assurer que ces comportements indéterminés sont possiblement exploitables, ce
qui nécessite de modéliser leurs effets sur l’état global du programme, et donc de
passer à une sémantique du programme de niveau binaire. Or ces sémantiques
de niveau binaire sont non seulement moins structurées que celles utilisées au
niveau du code source, mais elles sont aussi bien plus verbeuses, ce qui les rend
significativement plus difficiles à analyser.

Analyse de sécurité vs. analyse de sûreté Les interactions avec l’environnement ne se
modélisent pasde lamêmemanière en analysedevulnérabilités qu’en recherchede
bogues. En effet, tout programme qui s’exécute le fait au sein d’un environnement
avec lequel il va interagir, et qui doit donc être lui aussi modélisé. En recherche
de bogues, il est raisonnable de conclure que le programme contient un bogue
s’il existe une configuration de l’environnement dans laquelle l’exécution du
programme produit ledit bogue.Mais en analyse de vulnérabilités, lamodélisation
de l’environnement va dépendre du modèle d’attaquant que l’on choisit. En
effet, il est peu raisonnable de supposer que l’attaquant contrôle entièrement
l’environnement dans lequel s’exécute le programme, auquel cas il pourrait
simplement remplacer le programme par un autre. C’est donc qu’il existe des
composantes de l’environnement que l’attaquant ne contrôle pas. Ainsi, pour
qu’une vulnérabilité en soit une, il faut qu’elle puisse se manifester pour toutes
les configurations que peuvent prendre ses composantes non contrôlées.

En plus de nécessiter le développement d’analyses spécifiques pour l’analyse de
vulnérabilités, ces deux différences vont avoir un impact profond sur un des composants
cruciaux pour ces techniques, les solveurs SMT.

xviii PRÉFACE

Procédures de décision

En effet, si nous avons déjà évoqué la modélisation du système à vérifier, nous
n’avons pas discuté de la preuve de la validité d’une propriété pour un modèle donné
du système. On parle de procédures de décision puisqu’il s’agit de décider de façon
procédurale si oui ou non la propriété est vérifiée [KS08]. Le plus souvent, le modèle du
système et la formalisation de la propriété à vérifier sont tous deux exprimés dans une
même logique mathématique, dans laquelle on va prouver que le premier implique
le second. C’est cette preuve qui, selon l’expressivité de la logique choisie, va faire
l’objet d’une automatisation plus ou moins importante. En effet, plus une logique est
expressive, et plus il est difficile d’en automatiser les raisonnements. Par exemple, dans
un assistant de preuve interactif, les logiques utilisées sont particulièrement expressives
[CH88] : il est impossible d’en automatiser le raisonnement ; c’est donc à l’utilisateur de
construire la preuve, l’assistant se chargeant alors de vérifier que la preuve est correcte.
Inversement, en Exécution symbolique, la propriété à vérifier doit l’être sur chaque
trace d’exécution, résultant en un nombre d’obligations de preuves bien trop grand
pour ne pas nécessiter une automatisation complète : les logiques utilisées seront donc
bien moins expressives.

La logique la plus fréquemment rencontrée en Exécution symbolique est la logique
du premier ordre sans quantificateurs, avec l’égalité et combinées à des théories dans
lesquelles sont exprimées certains symboles. Des exemples de théories incluent l’algèbre
des booléens, l’arithmétique linéaire pour les entiers et les réels, la théorie des tableaux
avec extensionnalité, ou celle des vecteurs de bits de taille fixe. Les solveurs pour cette
logique combinent des procédures de décisions pour les différentes théories afin de
savoir si pour une formule donnée il existe une solution qui la satisfasse. On parle
donc de solveurs pour le problème de décision de la Satisfiabilité Modulo Théorie
[BSST09, BST10], de solveurs SMT.

L’utilisation de solveurs SMT induit pour l’Exécution symbolique et son application
à l’analyse de vulnérabilités les problématiques suivantes :

Formules de grande taille Les formules logiques générées au cours d’une analyse
deviennent rapidement gigantesques. En effet, l’Exécution symbolique fonctionne
par déroulement du programme : le corps d’une fonction est copié dans la
trace d’exécution à chaque exécution de ladite fonction. Il en va de même de
la traduction logique de la fonction dans la formule finale, qui devient de plus
en plus difficile à résoudre pour le solveur. Ainsi, l’Exécution symbolique d’un
programme de très petite taille contenant une fonction s’exécutant en boucle
à l’infini engendrera une séquence de formules de taille croissant à l’infini. Et

PRÉFACE xix

si ce problème n’est pas spécifique à l’analyse de vulnérabilités, il se renforce
dans ce contexte, car confirmer qu’un bogue est une vulnérabilité nécessite de
passer à des sémantiques de niveau binaire extrêmement verbeuses, ce qui a pour
conséquence de produire des formules plus grandes encore. Par exemple dans
le Section 6.5.4 nous présentons le cas d’étude ASPack, dans lequel l’Exécution
symbolique produit d’immenses formules de 96 MB, qui contiennent plus de
363 000 opérations logiques, et dont la résolution par les solveurs prend plus de
24 heures.

Formules quantifiées La logique du premier ordre sans quantificateurs n’est pas suffi-
samment expressive pour permettre la modélisation de certaines propriétés de
sécurité. C’est particulièrement le cas en analyse de vulnérabilités à propos des
interactions du programme avec l’environnement. Leur modélisation est suscep-
tible de faire intervenir des quantificateurs, en fonction du modèle d’attaquant
choisi, selon par exemple qu’il en contrôle un composant ou non. Par exemple, le
fragment de code dans Figure 5.1 contient une variable non-déterministe dont
la valeur intervient dans une condition de garde. Comme cette variable est in-
contrôlable nous aimerions pouvoir dire que les attaquants doivent trouver un
moyen de contourner la condition de garde quelle que soit la valeur de la variable,
ce qui nécessite des quantificateurs. Ce manque dans la logique va amener des
imprécisions dans la modélisation qui pourront autoriser des comportements
qui ne sont pas possibles en réalité, et ainsi introduire des faux positifs, là où
pourtant l’Exécution symbolique en tant que technique de vérification par sous-
approximation ne devrait pas en avoir. Il est à noter que le problème dual se pose
avec les méthodes par sur-approximation lorsque l’environnement n’est pas assez
général, ne modélise pas certains comportements possibles, et induit donc des
faux négatifs.

Ce sont donc sur deux problématiques issues du domaine des procédures de
décision que les travaux de cette thèse portent, à savoir la simplification de formules
logiques afin de limiter l’explosion de leur taille au cours de l’analyse et de faciliter
leur résolution, et l’extension au cas quantifié de la logique des solveurs SMT afin de
permettre des modélisations plus fines évitant l’écueil de l’apparition de faux positifs,
le tout dans le but d’améliorer l’état de l’art en Exécution symbolique pour l’analyse de
vulnérabilités.

xx PRÉFACE

Part I

Introduction

1

Chapter 1

Introduction

On April 7, 2014, the Heartbleed [hea14] software vulnerability is made public. At the
time of its discovery, between 24% and 55% of so-called secure servers would have been
affected [DKA+14], or about half a million servers, compromising a significant share
of Internet exchanges. This security issue is due to a bug mistakenly introduced on
March 14, 2012 in the OpenSSL open source cryptography library, a widely deployed
implementation of secured Internet exchange protocols SSL/TLS. It allows an attacker
to read the memory of a vulnerable server, and therefore under certain conditions
to recover secret encryption keys, user IDs and passwords, or exchanged content.
Fortunately, despite the severity of this vulnerability, consequences were to be limited,
mainly thanks to the readiness of the IT community who quickly deployed the security
patch and prevented a large-scale use of Heartbleed.

Perhaps the most surprising thing about Heartbleed is the discrepancy between the
danger of the vulnerability and the simplicity of its cause. Indeed, this flaw stems from
the fact that a user could ask to read a certain number of characters in a string, without
verifying that the string in question contains enough characters. In the case where
the requested number of characters was larger than the size of the string, exceeding
characters were read in data consecutive to the string in memory, data which should
normally be inaccessible. This kind of vulnerability called buffer overflowwas already
known in 1972 [And72], and was one of those exploited by the Morris computer worm
to spread in 1988. The fact that long-standing causes known as dangerous are still
the source of major security breaches demonstrates the need for and the relevance of
research in formal verification.

3

4 CHAPTER 1. INTRODUCTION

1.1 Automated Software Verification

Formal verification [CW96] aims to prove or disprove the correctness of a system against
a formal specification. This specification is expressed as a set of properties formalized
in mathematical logic which will be proved to hold for a given model of the system.
In the case of automated software verification, studied systems are programs whose
models are obtained from the semantics of their source code. Verified properties are
of a large variety, ranging from the absence of runtime errors, or the integrity of the
program memory, to the proper realisation of an algorithm by its implementation.

correct behaviors
incorrect behaviors

object behaviors
model behaviors

Figure 1.1 – Illustration of an over-approximation, which correctly concludes to the
object correctness with regard to its specification in the figure on the left, but fails to
conclude because of false positives in the figure on the right.

Over-Approximation Formally verifying crucial security components is not a new
idea, either at protocols level [BBK17] or at implementation level [KKP+15, BFK16,
BBD+17]. Unfortunately, the use of formally verified software libraries remains limited,
because developing formally verified libraries is still tremendously complex, while
existing non formally verified libraries do not lend themselves easily to a posteriori
verification. Indeed, most formal verification tools work on models that over-approximate

the behavior of studied objects [Hoa69, CC77]: all the possible behaviors of an object
are captured by its model, but a model also considers behaviors that are not realizable
by the object, as pictured in Figure 1.1. Thus, when over-approximating tools conclude
to the model correctness with regard to a specification, then the object is also correct, as
all of its behaviors are included in those that have been verified. On the other hand,
when over-approximating tools conclude to the model incorrectness, the behavior

1.1. AUTOMATED SOFTWARE VERIFICATION 5

responsible for the error may be model specific and the object still be correct with
regard to the specification. We are in the presence of false positives. But when a program
was not developed with the intention of being formally verified, its model will be so
over-approximated that it will be almost always impossible to conclude to the program
correctness. And if the program is really incorrect, the real mistakes will be drowned
in too many false positives.

correct behaviors
incorrect behaviors

object behaviors
model behaviors

Figure 1.2 – Illustration of an under-approximation, which correctly concludes to the
object incorrectness with regard to its specification in the figure on the left, but fails to
conclude because of false negatives in the figure on the right.

Under-Approximation Although less frequent, some formal verification techniques
work by under-approximation [CKL04, CS13]: all behaviors of the model are realizable
by the object, but some behaviors of the object are missing from those of the model,
as pictured in Figure 1.2. Here, all the errors found on the model apply to the object,
we are free of false positives. The counterpart is that under-approximating tools
cannot conclude to the object correctness, since even if the model is proved to be
correct, some behaviors of the object will not have been verified, behaviors that may
contain errors. This time we are in the presence of false negatives. The interest of these
under-approximating approaches is to eliminate in advance lurking corner bugs in a
cost effective way. It is also possible to use them on programs not initially thought for
formal verification, in order to eliminate a maximum of incorrect behaviors, making
these programs more suitable for over-approximating formal verification techniques.

6 CHAPTER 1. INTRODUCTION

int main () {
int x = input();
int y = input();
int z = 2 * y;
if (z == x) {
if (x > y + 10)
printf("Success!\n");

}

printf("Failure...\n");
}

x = input()

y = input()

z = 2 * y

z == x

x > y + 10pc , > ∧ 2y0 , x0

pc , > ∧ 2y0 � x0 ∧ x0 > y0 + 10pc , > ∧ 2y0 � x0 ∧ x0 ≤ y0 + 10

pc , >, Γ , ∅

Γ ,
{
x � x0 , y � y0 , z � 2y0

}
pc , > ∧ 2y0 � x0

Figure 1.3 – Symbolic Execution of a small program. Path constraint pc gathers
constraints that inputs have to satisfy to ensure that the program concrete execution
follows a specific path, while symbolic state Γ keeps track of program variables symbolic
representations.

1.2 Symbolic Execution

One of these under-approximating formal verification techniques is Symbolic Execution
[BGM13, CS13]. Intuitively, Symbolic Execution consists in enumerating all the possible
execution paths of a given program and to determine for each path an input on which
the program realizes it. Figure 1.3 illustrates the Symbolic Execution of a small program.
Then for each one of these paths we check if this execution path satisfies the property we
aim to verify. If one of the enumerated execution paths invalidates this property, then
we conclude to the program incorrectness with regard to its specification. However if
we want to conclude to the program correctness, we must prove that all of its possible
execution paths satisfy the property. But in many cases the number of these paths is
huge, even sometimes infinite, therefore it is not possible to list them all. Symbolic
Execution is indeed an under-approximating formal verification technique.

Symbolic Execution was first introduced in the mid 1970s, but rediscovered and
made practical only recently [GKS05, SMA05, WMMR05, CGP+06]. While the idea
behind Symbolic Execution remains simple, it has proven to be very effective for bug
finding, and led to the development of several program analysis tools and to the
discovery of many new bugs in very used softwares [CDE08]. It is in fact so effective
that the question is now how to use it in other contexts than bug finding, for example
in vulnerabilities analysis. Applying Symbolic Execution to vulnerability analysis

1.3. DECISION PROCEDURES 7

fundamentally differs from bug finding on at least two aspects:

Low-Level Semantics vs. High-Level Semantics Finding a bug does not imply having
found a vulnerability, and to differentiate between the two often requires to move
from source-level analysis to binary-level analysis. Indeed, bug finding can be
seen as looking for undefined behaviors in the program source code semantics.
However finding a vulnerability requires in addition to ensure that these undefined
behaviors can be exploited, which requires modeling their effects on the global
program state, and thus to move on a binary-level semantic of the program. But
binary-level semantics are not only less structured than source-level semantics,
they are also far more verbose, making them significantly harder to analyze;

Security Analysis vs. Safety Analysis Interactions with the environment are not mod-
eled in the same way for vulnerability analysis and for bug finding. Indeed, any
program is executed within an environment with which it will interact, and which
must therefore be modeled as well. In bug finding, it is reasonable to conclude the
program contains a bug if there is a configuration of the environment for which
the program execution leads to that bug. However in vulnerability analysis, the
environment model will depend on the attacker model we choose. Indeed, it is
unreasonable to assume that the attacker completely controls the environment in
which the program runs, because in this case the attacker could basically replace
the program with another one. Thus there are environment components that the
attacker does not control. Therefore a vulnerability is a real one if it manifests
itself for all possible configurations adopted by uncontrolled components.

These two differences not only require the development of dedicated vulnerabilities
analysis strategies, they also have a profound impact on crucial components for
automated software verification techniques: SMT solvers.

1.3 Decision Procedures

Indeed, if we already mentioned models of the system to check, we did not discuss
about validity proofs of a property for a given model of the system. The question here is
to decide automatically whether a property holds or not, hence we talk about decision
procedures [KS08]. Most of the time, the model of the system and the formalization
of the property to be verified are both expressed in the same mathematical logic in
which we will prove that the first implies the second. This proof will be subject of
more or less automation depending on the expressiveness of the chosen logic. Indeed,

8 CHAPTER 1. INTRODUCTION

the more expressive a logic is, the more difficult it is to automate the reasoning. For
example, logics used in an interactive proof assistant are particularly expressive [CH88]:
it is impossible to automate the reasoning, therefore it comes to the user to build the
proof, the assistant only ensuring that the proof is correct. Conversely in Symbolic
Execution, the property is verified for each execution path, resulting in a number of
proof obligations far too great not to require complete automation: we have to use
much less expressive logics.

The most frequently encountered logic in Symbolic Execution is the quantifier-free
first-order logic with equality and combined with theories expressing certain symbols.
Theories of interest include boolean algebrea, real and integer arithmetic, arrays with
extensionality, or bit-vectors with arbitrary size. First-order solvers combine decision
procedures for the different theories in order to know if for a given formula there exists
a solution that satisfies it. We therefore speak of solvers for the decision problem of the
Satisfiability Modulo Theory [BSST09, BST10], or SMT solvers.

The use of SMT solvers induces for Symbolic Execution and its application to
vulnerability analysis the following challenges:

Large Size Formulas Logical formulas generated during an analysis quickly become
gigantic. Indeed, Symbolic Execution works by program unrolling: an execution
path contains a copy of a function body for each time the execution goes through
this function. The same goes for the logical translation of the execution path
into the final formula, which becomes more and more difficult to solve. Thus
symbolically executing a very small program containing a function running in
loop at infinity will generate a sequence of formulas of size increasing toward
infinity. And if this problem is not specific to vulnerability analysis, it is reinforced
in this context, because confirming a bug is a vulnerability requires to move
on overly verbose binary-level semantics, producing even bigger formulas. For
example in Section 6.5.4 we present the ASPack case study where Symbolic
Execution produces huge formulas of 96 MB, containing more than 363 000 logical
operations, and for which solvers spend more than 24 hours in resolution;

Quantified Formulas The quantifier-free first-order logic is not sufficiently expressive
to model some security properties. This is particularly the case in vulnerability
analysis about interactions with the environment. Modeling them is likely to
involve quantifiers, depending on the chosen attacker model according to for
example whether it controls a component or not. For example, the code snippet
in Figure 5.1 contains a non-deterministic variable whose value intervene in a
guard condition. As this variable is uncontrollable, we would like to say that

1.4. CONTRIBUTIONS AND ORGANIZATION OF THE DOCUMENT 9

attackers have to find a way to bypass the guard condition whatever the value
of the variable is, which requires quantifiers. This lack in the logic will lead
to imprecise models that may allow behaviors impossible in reality, and thus
introduce false positives where Symbolic Execution, as a under-approximating
verification technique, should not to have any. Note that the dual problem arises
with over-approximating verification techniques when the environment is not
general enough, does not model some possible behaviors, and thus induces false
negatives.

It is therefore on these two issues arising from the field of decision procedures that this
thesis focuses, namely the simplification of logical formulas to limit their size explosion
during the analysis and to facilitate their resolution, and the extension of SMT solvers to
quantified logic in order to allow finer models avoiding the pitfall of the appearance of
false positives, for the purpose of improving the state of the art in Symbolic Execution
and vulnerability analysis.

1.4 Contributions and Organization of the Document

Contributions This thesis makes the following contributions:

• Wehighlight with realistic case studies the false positives issue for classic Symbolic
Execution, and especially for Symbolic Execution applied to vulnerability analysis.
We show how this issue can be overcome by switching to a low-level semantics
and a better modeling of interactions with the environment, but at the price of
generating larger formulas involving quantifiers;

• We propose in [FBBP18] a novel and generic taint-based approach for model
generation of quantified formula and prove its correctness and its efficiency under
reasonable assumptions. We present a concrete implementation of our method
specialized on arrays and bit-vectors that we evaluate on SMT-LIB benchmarks
and formulas generated by the binary-level Symbolic Execution tool Binsec;

• We present in [FDBL18] a new preprocessing step for scalable and thorough
formulas simplification. We experimentally evaluate it in different settings and
we show that the technique is fast, scalable, and yields a significant reduction of
the formulas size with always a positive impact on resolution time. This impact is
even dramatic for formulas generated by Symbolic Execution;

10 CHAPTER 1. INTRODUCTION

• Finally, we formally define a revision of Symbolic Execution that we called Robust

Symbolic Execution, and which aims to eliminate the false positives issue. We
describe in detail a first implementation of Robust Symbolic Execution in the
binary-level Symbolic Execution tool Binsec, and report some encouraging initial
experimental results.

Organization of the Document The rest of this document is organized as follows:

Chapter 2 presents as a motivating example a realistic vulnerability analysis case study
which highlights the false positives issue for classic Symbolic Execution;

Chapter 3 introduces the many-sorted first-order logic, the formal system used by
Symbolic Execution and other automatic software verification techniques;

Chapter 4 explains what is Symbolic Execution, the automated software analysis
technique on which this thesis focuses, and how to adapt it to formal verification;

Chapter 5 describes and evaluates our taint-based approach to the model generation
problem for quantified formulas;

Chapter 6 describes and evaluates our preprocessing step for scalable and thorough
formulas simplification;

Chapter 7 defines Robust Symbolic Execution, a Symbolic Execution which is really
exempt of false positives.

Bibliography

[And72] James P. Anderson. Computer security technology planning study. Tech-
nical Report ESD-TR-73-51, Vol.II, Air Force Electronic Systems Division,
1972.

[BBD+17] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud,
Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub,
and Jean Karim Zinzindohoue. A messy state of the union: taming the
composite state machines of TLS. Commun. ACM, 60(2):99–107, 2017.

[BBK17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified
models and reference implementations for the TLS 1.3 standard candidate.

BIBLIOGRAPHY 11

In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA,

May 22-26, 2017, pages 483–502, 2017.

[BFK16] Karthikeyan Bhargavan, Cédric Fournet, and Markulf Kohlweiss. mitls:
Verifying protocol implementations against real-world attacks. IEEE

Security & Privacy, 14(6):18–25, 2016.

[BGM13] Ella Bounimova, Patrice Godefroid, and David A. Molnar. Billions and
billions of constraints: whitebox fuzz testing in production. In 35th

International Conference on Software Engineering, ICSE ’13, San Francisco, CA,

USA, May 18-26, 2013, pages 122–131, 2013.

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.
Satisfiability Modulo Theories. In Handbook of Satisfiability, pages 825–885.
2009.

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. In A. Gupta and D. Kroening, editors, Proceedings of the 8th
International Workshop on Satisfiability Modulo Theories (Edinburgh, UK),
2010.

[CC77] Patrick Cousot and Radia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In 4th ACM Symposium on Principles of Programming Languages

(POPL). ACM, 1977.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted
and automatic generation of high-coverage tests for complex systems
programs. In 8th USENIX Symposium on Operating Systems Design and

Implementation, OSDI 2008, December 8-10, 2008, San Diego, California, USA,

Proceedings, pages 209–224, 2008.

[CGP+06] Cristian Cadar, Vĳay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler. EXE: automatically generating inputs of death. In
Proceedings of the 13th ACM Conference on Computer and Communications

Security, CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006,
pages 322–335, 2006.

[CH88] Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf.
Comput., 76(2/3):95–120, 1988.

12 CHAPTER 1. INTRODUCTION

[CKL04] EdmundM. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In TACAS, Barcelona, Spain, March 29 - April 2, 2004,
pages 168–176, 2004.

[CS13] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:
three decades later. Commun. ACM, 56(2):82–90, 2013.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the
art and future directions. ACM Comput. Surv., 28(4):626–643, 1996.

[DKA+14] ZakirDurumeric, JamesKasten, DavidAdrian, J. AlexHalderman,Michael
Bailey, Frank Li, Nicholas Weaver, Johanna Amann, Jethro Beekman,
Mathias Payer, and Vern Paxson. The matter of heartbleed. In 2014 Internet

Measurement Conference, IMC 2014, Vancouver, Canada, November 5-7, 2014,
pages 475–488, 2014.

[FBBP18] Benjamin Farinier, Sébastien Bardin, Richard Bonichon, and Marie-Laure
Potet. Model generation for quantified formulas: A taint-based approach.
In Computer Aided Verification - 30th International Conference, CAV 2018, Held

as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,

2018, Proceedings, Part II, pages 294–313, 2018.

[FDBL18] Benjamin Farinier, Robin David, Sébastien Bardin, and Matthieu Lemerre.
Arrays made simpler: An efficient, scalable and thorough preprocessing.
In LPAR-22. 22nd International Conference on Logic for Programming, Artificial

Intelligence and Reasoning, Awassa, Ethiopia, 16-21 November 2018, pages
363–380, 2018.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed
automated random testing. In Proceedings of the ACM SIGPLAN 2005

Conference on Programming Language Design and Implementation, Chicago, IL,

USA, June 12-15, 2005, pages 213–223, 2005.

[hea14] The heartbleed bug. http://heartbleed.com/, 2014.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.

ACM, 12(10):576–580, 1969.

[KKP+15] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-c: A software analysis perspective. Formal Asp.

Comput., 27(3):573–609, 2015.

http://heartbleed.com/

BIBLIOGRAPHY 13

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic

Point of View. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2008.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit
testing engine for C. In Proceedings of the 10th European Software Engineering

Conference held jointly with 13th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, 2005, Lisbon, Portugal, September 5-9,

2005, pages 263–272, 2005.

[WMMR05] Nicky Williams, Bruno Marre, Patricia Mouy, and Muriel Roger.
Pathcrawler: Automatic generation of path tests by combining static
and dynamic analysis. In Dependable Computing - EDCC-5, 5th European

Dependable Computing Conference, Budapest, Hungary, April 20-22, 2005,

Proceedings, pages 281–292, 2005.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Motivation

Chapter 1 gave an intuition of the false positives issue for Symbolic Execution, especially
in the case of Symbolic Execution applied to vulnerability analysis. In this chapter we
highlight this issue with a case study inspired by a real vulnerability discovered in
2015 in the GRUB2 bootloader. We then explain how to overcome this issue by taking
into account the fact that some inputs are not controlled by the user, and by switching
from a C-level semantics to a binary-level semantics, but at the price of generating
larger constraints involving quantifiers. Because most solvers are not able to solve
these generated large quantified constraints, we finally use the taint-based quantifier
elimination presented in Chapter 5 and the simplification dedicated to array terms
presented in Chapter 6 to make the constraints simple enough to be handled by usual
solvers.

2.1 The Back to 28 Vulnerability

Let us consider as a motivating example the program given in Figure 2.1 and Figure 2.2,
a simplified version of a security vulnerability named Back to 28 [MR15]. In its original
version, it allowed to bypass the GRUB2 bootloader authentication procedure by
pressing 28 times the backspace key. For the purpose of this example, we will merely
corrupt in-memory data to bypass a password authentication. The program code is
composed as follows:

15

16 CHAPTER 2. MOTIVATION

char get_key (char buf[], int buf_size, int pos) {
if (pos < 0 || pos >= buf_size) return 0;
return buf[pos];

}

void sanitize (char buf[], int buf_size) {
for (int i = 0; i < buf_size; i++) {
buf[i] = 0;

}

return;
}

void read_input (char src[], int src_size, char dst[], int dst_size) {
unsigned cur_len = 0;
unsigned cur_pos = 0;
char cur_key;

while (cur_pos < src_size) {
cur_key = get_key(src, src_size, cur_pos++);

if (cur_key == 0 || cur_key == ’\n’ || cur_key == ’\r’) {
break;

}

if (cur_key == ’\b’) {
cur_len--;

continue;
}

if (cur_len < dst_size) {
dst[cur_len++] = cur_key;

}

}

sanitize(dst + cur_len, dst_size - cur_len);

return;
}

Figure 2.1

2.1. THE BACK TO 28 VULNERABILITY 17

#define SIZE

void get_secret (char buf[], int buf_size) {
// Retrieve the secret

}

int check_password (char secr[], char pass[]) {
int b = 1;
for (int i = 0; i < SIZE; i++) {
b &= secr[i] == pass[i];

}

return b;
}

int main (int argc, char *argv[]) {
char inpt[2 * SIZE];
char pass[SIZE];
char secr[SIZE];

if (argc != 2) return 0;

fgets(inpt, 2 * SIZE, stdin);

get_secret(secr, SIZE);

read_input(inpt, 2 * SIZE, pass, SIZE);

if (check_password(secr, pass)) {
printf("Success!\n");

}

else {
printf("Failure...\n");

}

return 0;
}

Figure 2.2

18 CHAPTER 2. MOTIVATION

Figure 2.1 provides code for functions get_key, sanitize and read_input. The
read_input function takes as parameter an input buffer and an output buffer, as
well as their respective size. It reads in the first buffer characters entered by the
user and writes in the second the result after having interpreted control characters:
it stops reading the input if the read character is a line break, and it moves the
write cursor back if the read character is a backspace. It calls the get_key function
to make sure there is no read buffer overflow, and checks bounds before writing
the output buffer in order to avoid write buffer overflows. Finally, it calls the
sanitize function to clean the output buffer of characters coming after the write
cursor.

Figure 2.2 provides code for functions get_secret, check_password and main. The
body of the get_secret function is not given, but it is supposed that it writes, in
the buffer passed as a parameter, a secret difficult to predict. The check_password
function simply checks that the password provided by the user is equal to the
secret. Finally, the main function retrieves the secret using the get_secret function
and the user password using the read_input function. Then it checks if they
match using the check_password function, and prints “Success!” if it is the case
or prints “Failure...” if it is not.

The vulnerability lies in the fact that, although the bounds are checked before each
write, the write cursor can still be moved out of the write buffer by repeatedly entering
the backspace character. But the write cursor is transmitted to the sanitize function,
which will clean the requested memory region by writing zeros, without checking
bounds. We are in the presence of a write buffer overflow, but restricted to the writing
of zeros.

Goal We aim to find an input for which the execution reaches the “Success!” branch.
We show first how classic Symbolic Execution at C-level produces a non-reproducible
solution, in other words produces a false positive. We also demonstrate how C-level
Symbolic Execution can be made robust in order to avoid this false positives pitfall, but
still without finding a “real” solution. We then consider a binary-level semantics of the
program. If binary-level classic Symbolic Execution produces again a false positive,
robust Symbolic Execution at binary-level reaches this time a “real” solution through
the buffer overflow in the sanitize function.

2.2. FIRST ATTEMPT: HIGH-LEVEL SEMANTICS 19

2.2 First Attempt: High-Level Semantics

So let us try with C-level classic Symbolic Execution to find an input for which the
execution reaches the "Success!" branch. Since the content of characters array impt
comes from a user input, it is modeled by a first symbolic variable i. Similarly, the
content of characters array secr is modeled by a second symbolic variable s, as it
comes from the execution of a code which is not part of the analysis (call to an external
cryptographic library, etc).

The content of characters array pass results from the execution of the read_input
function. Therefore Symbolic Execution starts exploring this function, entering the
while loop and then the body of the first if statement. To do so it has to satisfy the
if statement condition (cur_key == 0 || cur_key == ’\n’ || cur_key == ’\r’)
— the while condition is trivial here. cur_key is at that point in the execution equal to
the first character of the input inpt[0], whose symbolic counterpart is i[0]. Symbolic
Execution thus generates the constraint (i[0] � 0 ∨ i[0] � ’\n’ ∨ i[0] � ’\r’). Then
Symbolic Execution reaches the break statementwhich breaks the while loop andmakes
the execution jump to the sanitize function. Because cur_lenwas left unchanged and
is still equal to zero, the sanitize function writes zeros from &pass to &pass+ SIZE− 1,
i.e. fills array passwith zeros.

Once the read_input function executed, Symbolic Execution returns to the main
function. In order to be able to reach the “Success!” branch, Symbolic Execution has
to satisfy the check_password condition, which requires having secr equals to pass.
But the latter was just filled with zeros. Therefore Symbolic Execution generates the
constraint s[0, SIZE − 1] � 0, where s[0, SIZE − 1] stands for values in s at indices
ranging from 0 to SIZE − 1.

In the end, the full constraint that inputs have to satisfy is:

∃i.∃s .

(i[0] � 0 ∨ i[0] � ’\n’ ∨ i[0] � ’\r’)
∧ s[0, SIZE − 1] � 0

But this constraint has a trivial solution {i[0, SIZE − 1] � 0, s[0, SIZE − 1] � 0}, which
can be interpreted as “if the secret is empty, then let the input empty”. Which would be
correct, but will not happen in practice. Thus it is not a real solution to our problem, it is a

false positive.

This false positive comes from the fact that Symbolic Execution considers all entries
of the program in the same way, as if they were controlled by the user. This is reflected

20 CHAPTER 2. MOTIVATION

in the path constraint by the two existential quantifications over i and s. But here, since
the secret secr is not controlled by the user, an appropriate solution of the problem
should be valid for all values of secr, i.e. for all values of s. Therefore a better model

of the problem would universally quantify over values of s, which would result in the path
constraint:

∃i.∀s .

(i[0] � 0 ∨ i[0] � ’\n’ ∨ i[0] � ’\r’)
∧ s[0, SIZE − 1] � 0

This constraint has no solution anymore, but at least we are free of false positives.

2.3 Second Attempt: Low-Level Semantics

In this example the authentication bypass is achieved by a buffer overflow, which is
an undefined behavior and has no semantics at C-level. Therefore if we want to find a
solution to our problem, we must move to a binary-level semantics of our program and
go into more details on the Symbolic Execution machinery:

First we notice that the read_input function reads the user input until it encounters
an end-of-string character or reaches the end of the input buffer. On the Symbolic
Execution side, this is materialized by the introduction of a constant N implicitly
defined by the number of iterations spent in the reading loop and representing
the length of the user input.

Second we notice that local variables inpt, secr and pass are fixed-size character
arrays. According to our binary-level semantics, these arrays are directly allocated
into the program stack, successively. On the Symbolic Execution side, this is
materialized by the introduction of two fresh symbolic variables, m0 representing
the program memory at the beginning of its execution, and p0 a pointer to the
location in memory of the program stack. As for the secret, the initial program
memory and the initial stack pointer are not controlled by the user, and thus m0
and p0 as s have to be universally quantified.

Once again Symbolic Execution starts exploring the read_input function by enu-
merating its feasible paths. But because of universal quantifications, most of these paths
produce constraints with no solution and are quickly cut off. At some point, Symbolic
Execution will analyze the path passing N − 1 times through the second if statement,
before passing through the first one and leaving the read_input function. Denoting by

2.3. SECOND ATTEMPT: LOW-LEVEL SEMANTICS 21

, the definition of intermediate variables, Symbolic Execution will generate for this
path the following constraint:

∃i.∀s .∀m0.∀p0.

p1 , p0 − 2 · SIZE
p2 , p1 − SIZE

p3 , p2 − SIZE

m1 , m0
[
p1, p1 + 2 · SIZE − 1

]
← i

m2 , m1
[
p3, p3 + SIZE − 1

]
← s

m3 , m2
[
p2 − (N − 1) , p2 + SIZE − 1

]
← 0

(i[0] � ’\b’) ∧ · · · ∧ (i[N − 2] � ’\b’)
∧ (i[N − 1] � 0 ∨ i[N − 1] � ’\n’ ∨ i[N − 1] � ’\r’)
∧

(
m3

[
p2, p2 + SIZE − 1

]
� m3

[
p3, p3 + SIZE − 1

])
where:

• Variable i is existentially quantified while variables s, m0 and p0 are universally
quantified because the user has control over the input but not over the secret, the
initial memory nor the initial stack pointer: we look for a solution which is valid
for all of their values.

• p1 , p0 − 2 · SIZE is a pointer to the inpt array, p2 , p1 − SIZE is a pointer to the
secr array, and p3 , p2 − SIZE is a pointer to the pass array.

• m1 , m0
[
p1, p1 + 2 · SIZE − 1

]
← i denotes the memory after writing the

user input i into array inpt, m2 , m1
[
p3, p3 + SIZE − 1

]
← s denotes the

memory after retrieving and writing the secret s into array secr, and m3 ,
m2

[
p2 − (N − 1) , p2 + SIZE − 1

]
← 0 denotes the memory after executing the

read_input function. Indeed, because the second if statementwas executed N−1
times, variable cur_len is equal to 1 − N , and the sanitize function writes zeros
from &pass+ cur_len , p2 − (N − 1) to &pass+ cur_len+ SIZE− 1− cur_len ,
p2 + SIZE − 1.

• Finally, (i[0] � ’\b’)∧ · · · ∧ (i[N − 2] � ’\b’) expresses the constraint for passing
N − 1 times through the second if statement, i[N − 1] � 0 ∨ i[N − 1] � ’\n’ ∨
i[N − 1] � ’\r’ expresses the constraint for passing one time through the first
one, and m3

[
p2, p2 + SIZE − 1

]
� m3

[
p3, p3 + SIZE − 1

]
expresses the constraint

for having secr � pass and reaching the “Success!” branch.

22 CHAPTER 2. MOTIVATION

However, this constraint involves universal quantifiers, which significantly increase the

difficulty of finding a solution. In practice, most solvers fail to solve this constraint: we have
to eliminate these universal quantifications. To that extend we make use of the taint-based

approach [FBBP18] presented in Chapter 5which stipulates that, in our specific case, we
can replace universal quantifications over s and m0 by existential quantifications by
adding the constraint N − 1 ≥ SIZE:

∃i.∃s .∃m0.∀p0.

p1 , p0 − 2 · SIZE
p2 , p1 − SIZE

p3 , p2 − SIZE

m1 , m0
[
p1, p1 + 2 · SIZE − 1

]
← i

m2 , m1
[
p3, p3 + SIZE − 1

]
← s

m3 , m2
[
p2 − (N − 1) , p2 + SIZE − 1

]
← 0

(i[0] � ’\b’) ∧ · · · ∧ (i[N − 2] � ’\b’)
∧ (i[N − 1] � 0 ∨ i[N − 1] � ’\n’ ∨ i[N − 1] � ’\r’)
∧

(
m3

[
p2, p2 + SIZE − 1

]
� m3

[
p3, p3 + SIZE − 1

])
∧ (N − 1 ≥ SIZE)

The next step consists in simplifying this constraint. Indeed, for the sake of clarity
we give a simplified version of the constraint generated by Symbolic Execution. Due
to the binary-level semantics we had to use, the real constraint involves about ten
thousands of terms, with thousands of array reads and hundreds of array writes. These
array operations are known to be difficult to handle by solvers. Therefore we apply a

treatment dedicated to array terms [FDBL18] presented in Chapter 6 and obtain the following
constraint, where only remains the existentially quantified variable i:

∃i.

(i[0] � ’\b’) ∧ · · · ∧ (i[N − 2] � ’\b’)
∧ (i[N − 1] � 0 ∨ i[N − 1] � ’\n’ ∨ i[N − 1] � ’\r’)
∧ (N − 1 ≥ SIZE)

For example with SIZE � 8, {i[0, SIZE+1] � "\b\b\b\b\b\b\b\b\n"} is a possible
solution, which indeed leads to the “Success!” branch through the buffer overflow in sanitize

function. By pressing SIZE times the backspace key we have cur_len � −SIZE,
which forces the sanitize function writting zeros from &pass − SIZE � &secr to
&pass + SIZE − 1. Being both overwritten with zeros, array pass and array secr now
contain the same values, making the check_password condition true.

2.4. CONCLUSION 23

Table 2.1 – Summary table of the characteristics of the various Symbolic Execution
variations we presented in this chapter.

QF has false finds a is handled
constraints positives solution by solvers

classic C-level SE 3 3 3 3

robust C-level SE 7 7 7 3

robust binary-level SE 7 7 7 7

robust binary-level SE + elim. + simpl. 3 7 3 3

2.4 Conclusion

In this chapter we brought to light the false positives problem which appears when
applying Symbolic Execution to vulnerability analysis. We first show how on an
authentication bypass scenario a C-level classic Symbolic Execution answers with an
incorrect solution. The error stems from the fact that classic Symbolic Execution models
every external component in the sameway, with no distinction between those controlled
by the user and those uncontrolled. So we made Symbolic Execution robust to false
positives by distinguishing between the two, existentially quantifying variables which
model controlled components and universally quantifying variables which model
uncontrolled components. By doing so, C-level robust Symbolic Execution did not
answer with an incorrect solution anymore, but still failed to find a correct solution.

In order to find a solution to our scenario, we then switched to a binary-level robust
Symbolic Execution. Indeed, the authentication bypass is achieved by a buffer overflow,
which is an undefined behavior with regard to the C-level semantics of the program,
while being well-defined with regard to its binary-level semantics. But the problem
now is that quantifications we introduced to distinguish controlled and uncontrolled
variables, combined with the verbosity of the binary-level semantics of the program,
make constraints generated by Symbolic Execution almost impossible solve.

For this reason, we used first a taint-based quantifier elimination [FBBP18] to remove
universal quantifications over array variables, and second a simplification dedicated
to array terms [FDBL18] to drastically reduce the size of the formula. By this means
generated constraints became simple enough to be handled by usual SMT solvers.
A summary of the characteristics of these Symbolic Execution variations is given in
Table 2.1. Finally our robust Symbolic Execution was able to answer with a correct
solution, which indeed led to an authentication bypass through a buffer overflow.

24 CHAPTER 2. MOTIVATION

Bibliography

[FBBP18] Benjamin Farinier, Sébastien Bardin, Richard Bonichon, and Marie-Laure
Potet. Model generation for quantified formulas: A taint-based approach. In
Computer Aided Verification - 30th International Conference, CAV 2018, Held as

Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,

Proceedings, Part II, pages 294–313, 2018.

[FDBL18] Benjamin Farinier, Robin David, Sébastien Bardin, and Matthieu Lemerre.
Arrays made simpler: An efficient, scalable and thorough preprocessing.
In LPAR-22. 22nd International Conference on Logic for Programming, Artificial

Intelligence and Reasoning, Awassa, Ethiopia, 16-21 November 2018, pages
363–380, 2018.

[MR15] Hector Marco and Ismael Ripoll. Back to 28:
Grub2 authentication 0-day. http://hmarco.org/bugs/

CVE-2015-8370-Grub2-authentication-bypass.html, 2015.

http://hmarco.org/bugs/CVE-2015-8370-Grub2-authentication-bypass.html
http://hmarco.org/bugs/CVE-2015-8370-Grub2-authentication-bypass.html

Part II

Background

25

Chapter 3

Many-Sorted First-Order Logic

The many-sorted first-order logic is a formal system which describes many-sorted first-order

formulas and many-sorted first-order theories built upon. A formula is defined over terms

of some sorts, which are the objects we want to prove a property on. For example in
arithmetic, a term might represent an integer and therefore will belong to the integer
sort. In linear algebra, a term might represent a vector space and therefore will belong
to the vector space sort. A formula defines a property of the objects being discussed.
For example in algebra we can express a formula which states the existence of the
additive inverse. In arithmetic we can express a formula which states that the sum of
two positive integers is positive. Finally a theory is a finite or an infinite set of formulas
over the same sort of terms. For example Peano axioms define a theory of arithmetic,
and Zermelo-Fraenkel axioms define a set theory commonly used in mathematics.

Becausemost automatic software analyzers use it to formally reason about programs,
we give in this chapter a thorough description of the many-sorted first-order logic. In
particular, Symbolic Execution we present in Chapter 4 translates program execution
traces into formulas interpreted over the bit-vectors and arrays theory. We first define
the syntax and semantics of the many-sorted first-order logic Section 3.1. Then we
present a general decision procedure for many-sorted first-order formulas Section 3.2.
Finally we introduce three many-sorted first-order theories pervasive in software
analysis Section 3.3.

3.1 Syntax and Semantics

Formulas are symbol sequences following precise syntactic rules and defining a
language. Some symbols are common to all languages, like logical constants, connectors

27

28 CHAPTER 3. MANY-SORTED FIRST-ORDER LOGIC

and quantifiers. Others are characteristics and form the signature of a language. For
example in group theory we need a constant symbol to represent the neutral element
and a binary symbol to represent the group law. Formulas we consider are first-order,
which means that quantification is limited to elements belonging to some sort. This
restriction forbids us for example to quantify over sets of elements or over functions
over elements. The many-sorted aspect of our formulas mitigates this constraint. It
means that formulas may contain terms of different sorts, and therefore allows to have
a sort for sets of elements of some fixed sorts, or for functions over elements of some
fixed sorts.

In Section 3.1.1 we define many-sorted first-order formulas built from variables,
function symbols, predicate symbols, logical connectives andquantifiers. In Section 3.1.2
we define interpretations and models, and what it means to be valid or satisfiable.
Finally, in Section 3.1.3 we define what are theories and refine, modulo theory, the
meaning of validity and satisfiability.

3.1.1 Signatures, Terms and Formulas

The following first definition simply states that a language is characterized by the list of
symbols it uses.

Definition 3.1 (Signature). A (many-sorted first-order) signature is a triple Σ �

(SΣ, FΣ,PΣ) where:

• SΣ is a set of sort symbols,

• FΣ is a set of function symbols f : s1 × · · · × sn → s, with n the arity of f , with
s1 × · · · × sn ∈ S

n
Σ
the expected parameters sorts of f , and with s ∈ SΣ the result

sort of f ,

• PΣ is a set of predicate symbols p : s1 × · · · × sn , with n the arity of p, and with
s1 × · · · × sn ∈ S

n
Σ
the expected parameters sorts of p.

A symbol with a zero arity is called a constant symbol. Note that we intentionally
left missing the result sort for predicate symbols, as they all belong to the world of
predicates.

Terms are objects language is talking about.

3.1. SYNTAX AND SEMANTICS 29

Definition 3.2 (Term). Let Σ � (SΣ, FΣ,PΣ) be a signature, and let (Vs)s∈SΣ be a family
of countably infinite set of sorted variables. A (many-sorted first-order) Σ-term of sort
s ∈ SΣ is recursively defined as a variable, or a function symbol application:

t �

| x with x ∈ Vs

| f (t1, . . . , tn) with f : s1 × · · · × sn → s ∈ FΣ
and for all i ∈ [1, n], ti a term of sort si

We build formulas from atomic formulas using logical constants, connectors and
quantifiers. These usually include constants > (true) and ⊥ (false), connectors ¬
(negation), ∨ (disjunction), ∧ (conjunction) and ⇒ (implication), and quantifiers ∃
(existential) and ∀ (universal). But as they can all be defined from ⊥,⇒ and ∀, we only
consider the latter in following definitions.

Definition 3.3 (Formula). Let Σ � (SΣ, FΣ,PΣ) be a signature, and let (Vs)s∈SΣ be
a family of countably infinite set of sorted variables. A (many-sorted first-order) Σ-
formula is recursively defined as the false formula, a universal quantification, a logical
implication, or a predicate symbol application:

f �

| ⊥

| ∀x : s . f with s ∈ SΣ, x ∈ Vs and f a formula
| f1 ⇒ f2 with f1 and f2 two formulas
| p (t1, . . . , tn) with p : s1 × · · · × sn ∈ PΣ

and for all i ∈ [1, n], ti a term of sort si

A formula not containing quantifiers is said to be quantifier-free. Logical constants and
predicate symbol applications are called atoms or atomic formulas.

Example. Let us consider the Integer Difference Logic (IDL), defined over the signature
(SIDL, FIDL,PIDL) with SIDL � {Int}, FIDL � {−, 0, 1, . . .}, and PIDL � {>}. The set of
sort symbols SIDL contains a single sort symbol, the integer sort symbol Int. The set of
function symbols FIDL contains a binary function symbol− representing the subtraction,
and an infinity of constant function symbols 0, 1, . . . representing constant integer
values. Finally the set of predicate symbols PIDL contains a single binary predicate
symbol, the comparison symbol >.

The formula ∀x : Int. ∀y : Int.
(
x − y > 0

)
⇔

(
x > y

)
contains four terms: the

subtraction x − y, the constant 0, and two universally quantified integer variables x and
y. Two atoms are built upon these terms:

(
x − y > 0

)
and

(
x > y

)
, linked together by

an equivalence relation⇔. Note that φ ⇔ ψ is a shortand for
(
φ ⇒ ψ

)
∧

(
ψ ⇒ φ

)
.

30 CHAPTER 3. MANY-SORTED FIRST-ORDER LOGIC

Definition 3.4 (Bound and Free Variable). In the formula ∀x : s . f , f is called the scope
of the quantification ∀x : s. An occurrence of a variable is said to be bound if it lies
within the scope of a quantifier. Otherwise, the occurrence is said to be free. Formulas
without free variables are called closed formulas.

Quantifiers bring some problems about variable names. For example, formulas
∀x : s .∀y : s .x y � yx and ∀y : s .∀x : s .yx � x y are equal up to renaming. They are
said to be α-equivalent. But they are not α-equivalent to ∀x : s .∀x : s .xx � xx, where
the second ∀x : s shadows the first one. In the following we always work up to
α-equivalence and consider that variable names are non-conflicting.

3.1.2 Interpretations and Models

Now that we have defined the syntax of formulas, we have to give them a semantics
and to define what it means for a formula to be true. To this end, we have to interpret
every symbol in the formula. An interpretation for a sort symbol is a set of concrete
elements called domain, and an interpretation for a function or a predicate symbol will
be a concrete function or predicate.

Definition 3.5 (Interpretation). Let Σ � (SΣ, FΣ,PΣ) be a signature. A Σ-interpretation
is a triple I �

(
JSΣKI , JFΣKI , JPΣKI

)
with:

• JSΣKI �
{
JsK
I
| s ∈ SΣ

}
, where each JsK

I
is a set interpreting its associated sort

symbol s,

• JFΣKI �

{
J f K
I

: Js1KI × · · · × JsnKI → JsK
I
| f : s1 × · · · × sn → s ∈ FΣ

}
, where

each J f K
I
is a function interpreting its associated function symbol f ,

• JPΣKI �

{
JpK
I

: Js1KI × · · · × JsnKI | p : s1 × · · · × sn ∈ PΣ
}
, where each JpK

I
is a

predicate interpreting its associated predicate symbol p.

In order to determine the truth value of a formula involving variables, we have to
state which objects variables refer to. This relates to the notion of assignment.

Definition 3.6 (Assignment). Let Σ � (SΣ, FΣ,PΣ) be a signature, let I be a Σ-
interpretation, and let (Vs)s∈SΣ be a family of countably infinite set of sorted variables.
An assignment is a map family

(
αs :Vs → JsK

I

)
s∈SΣ from sorted variables to elements

of interpretation domains.
Let α be an assignment, x ∈ Vs and a ∈ JsK

I
for some s. Then α [x 7→ a] denotes

the assignment:

α [x 7→ a]
(
y
)
�

{
a if x � y
α

(
y
)

otherwise

3.1. SYNTAX AND SEMANTICS 31

Given a signature, an interpretation and an assignment, we can now define the
value of a term and the truth value of a formula.

Definition 3.7 (Term Value). Let Σ be a signature, I be a Σ-interpretation, and α be an
assignment. The value of a Σ-term is recursively defined as:

ValI (x , α) � α (x)
ValI

(
f (t1, . . . , tn) , α

)
� J f K

I
(ValI (t1, α) , . . . ,ValI (tn , α))

Definition 3.8 (Formula Truth Value). Let Σ be a signature, I be a Σ-interpretation,
and α be an assignment. The truth value of a Σ-formula is recursively defined as:

ValI (⊥, α) � ⊥

ValI
(
∀x : s . f , α

)
� ∀a ∈ JsK

I
.ValI

(
f , α [x 7→ a]

)
ValI

(
f1 ⇒ f2, α

)
� ValI

(
f1, α

)
⇒ ValI

(
f2, α

)
ValI

(
p (t1, . . . , tn) , α

)
� JpK

I
(ValI (t1, α) , . . . ,ValI (tn , α))

Note that for a closed formula the choice of the initial assignment does not matter
as quantifiers will override it systematically. Subsequently, we can always choose the
empty assignment ∅ to evaluate the truth value of a closed formula.

We end up with the definition of models, which are interpretations making a
formula true. A formula is said to be satisfiable if it admits a model, i.e. if there exists
an interpretation which makes the formula true. And a formula is said to be valid if
any interpretation is a model, i.e. the formula is true for all interpretations.

Definition 3.9 (Model, Satisfiability and Validity). Let Σ be a signature, and f be a
Σ-formula. A Σ-interpretation I is a model of f if there exists an assignment α such
that ValI

(
f , α

)
is true, denoted I , α |� f .

A Σ-formula f is said to be:

• satisfiable if there exists I and α such that I , α |� f ;

• unsatisfiable if for all I and α, I , α 6 |� f ;

• valid if for all I and α, I , α |� f ;

• invalid if there exists I and α such that I , α 6 |� f .

Because the truth value of a closed formula does not depend on chosen assignment, we
can omit it and simply denote a model of a closed formula by I |� f .

Note that satisfiability and validity are dual notions. A formula f is satisfiable
if and only if ¬ f is invalid, and f is valid if and only if ¬ f is unsatisfiable. For this
reason, it is common to reduce the question of truth for a formula to the question of its
(un)satisfiability.

32 CHAPTER 3. MANY-SORTED FIRST-ORDER LOGIC

3.1.3 Satisfiability Modulo Theories

As previously stated, a formula is satisfiable as soon as it admits a model. However
in practice, we do not want to consider arbitrary models, but rather prefer to consider
those where symbol interpretations respect the axioms of the theory we study. A
many-sorted first-order theory is a set of many-sorted first-order formulas— the axioms
of the theories —whose purpose is to restrict eligible models for formulas of this theory.
A formula is satisfiable with respect to a theory if it admits a model which also satisfies
all the axioms of the theory. Thus we speak of satisfiability modulo theory.

Definition 3.10 (Theory). Let Σ be a signature. A Σ-theory T is a countable set of
closed Σ-formula. A Σ-interpretation is a T -model if it is a model of all formulas in
T . T is said to be consistent (or non-contradictory) if it admits a model, inconsistent
(or contradictory) if it admits no model. A Σ-interpretation is a T -model of f if it is a
T -model and a model of f , denoted I |�T f .

A Σ-formula f is:

• satisfiable in T if there exists I such that I |�T f ;

• unsatisfiable in T if for all I, I 6|�T f ;

• valid in T if for all I, I |�T f ;

• invalid in T if there exists I such that I 6|�T f .

Example. The formula ∀x : Int. ∀y : Int.
(
x − y > 0

)
⇔

(
x > y

)
is satisfiable but not

valid. Indeed, the formula is true if we give to each symbol its usual interpretation,
but is false if, for example, we interpret the subtraction symbol − as the multiplication.
However the formula is IDL-valid as axioms of the Integer Difference Logic force to
interpret symbols with their usual meaning.

3.2 Deciding Many-Sorted First-Order Logic

We now look into the satisfiability modulo theories problem: given a formula in some

theory, does this formula admit a model or not? The difficulty of this decision problem
is tightly linked to the expressiveness of the chosen theory. In fact, the satisfiability
problem for first-order logic (without theories) is undecidable, and this undecidability
spreads to most of quantified theories — but not all of them. For example, the theory
of Presburger arithmetic defined by the signature {0, 1,+,�} is decidable, while the
theory of Peano arithmetic defined by the signature {0, 1,+,×,�} is undecidable. In

3.2. DECIDING MANY-SORTED FIRST-ORDER LOGIC 33

this case we can try to restrict ourselves to the quantifier-free fragment of the theory,
which is often easier to decide.

In this section we depict a general decision procedure for the satisfiability modulo
theories problem which is the basis of most modern SMT solvers. In Section 3.2.1 we
introduce some normal forms that we will use thereafter. In Section 3.2.2 we present
a general decision procedure for propositional logic. In Section 3.2.3 we explain how
this procedure can be extend to decidable quantifier-free theories, and finally extend to
quantified theories in Section 3.2.4.

3.2.1 Normal Forms

In this section we introduce normal forms that refer to certain syntactic properties of
the formula. Most of the decision procedures expect a formula in a specific normal
form. Therefore it is common to begin the process by turning the formula into the
form that procedure is designed to work with. This transformation has to preserve
satisfiability in order to keep the overall procedure correct.

Let us first define literals, a syntactic unit frequently used in definitions of normal
forms.

Definition 3.11 (Literal). Let Σ � (SΣ, FΣ,PΣ) be a signature. A Σ-literal is either a
predicate symbol application or its negation:

l �

| p (t1, . . . , tn) with p : s1 × · · · × sn ∈ PΣ

| ¬p (t1, . . . , tn) and for all i ∈ [1, n], ti a term of sort si

We now give four of the most recurrent normal forms: prenex, negative, disjunctive
and conjunctive normal form.

Definition 3.12 (Prenex Normal Form). A formula is said to be in prenex normal form

(PNF) if it is in the form Q1x0 : s0 . . .Qnxn : sn . f , with for all i ∈ [1, n] Qi ∈ {∃,∀} and
f a quantifier-free formula.

Definition 3.13 (Negative Normal Form). A quantifier-free formula is in negative normal

form (NNF) if negation ¬ occurs only in literals.
A quantified formula is in negative normal form if it is in prenex normal form and

its quantifier-free part is in negative normal form.

34 CHAPTER 3. MANY-SORTED FIRST-ORDER LOGIC

Definition 3.14 (Disjunctive Normal Form). A quantifier-free formula is in disjunctive

normal form (DNF) if it is a disjunction of conjunctions of literals, i.e. is in the form∨
i

(∧
j li , j

)
with li , j the jth literal in the ith conjunction.

A quantified formula is in disjunctive normal form if it is in prenex normal form
and if its quantifier-free part is in disjunctive normal form.

Definition 3.15 (Conjunctive Normal Form). A quantifier-free formula is in conjunctive

normal form (CNF) if it is a conjunction of disjunctions of literals, i.e. is in the form∧
i

(∨
j li , j

)
with li , j the jth literal in the ith disjunction. A literals disjunction in a CNF

formula is called a clause.
A quantified formula is in conjunctive normal form if it is in prenex normal form

and if its quantifier-free part is in conjunctive normal form.

As already stated, turning a formula into the normal form that the decision
procedure is designed to work with has to preserve satisfiability in order to keep
the overall procedure correct. Fortunately, for all formulas φ, for any of the four
normal forms just defined, there exists a formula ψ in that form such that φ and ψ are
equisatisfiable in the following meaning.

Definition 3.16 (Equisatisfiability, Equivalence). Let Φ andΨ two formulas.

• Φ andΨ are equisatisfiable if they are both satisfiable or they are both unsatisfiable:
there existsM |� Φ if and only if there existsN |� Ψ.

• Φ andΨ are equivalent if they always have the same models: for allM,M |� Φ if
and only ifM |� Ψ.

If there always exists an equisatisfiable formula in the desired normal form, this
formula might be exponentially larger than the original formula. Luckily there exist
several tactics to avoid this size explosion. For the conjunctive normal form, the most
famous of such tactics is the Tseitin’s encoding. It allows to turn any formula into an
equisatisfiable CNF formula of linear size, only at the price of introducing a linear
number of fresh symbols.

Finally let us define another normal form commonly encountered in general quantified
formulas resolution.

Definition 3.17 (Skolem Normal Form). A quantified formula is said to be in Skolem

Normal Form (SNF) if it is in prenex normal form and contains only universal quantifiers.

3.2. DECIDING MANY-SORTED FIRST-ORDER LOGIC 35

Every formula can be converted into an equisatisfiable formula in Skolem normal
form by repeatedly applying the following procedure called Skolemization. Let
∀x1 . . .∀xn .∃y.ϕ

(
x1, . . . , xn , y

)
be a formula, and fy a fresh function symbol. Then

remove the existential quantification ∃y and replace in ϕ all occurrences of y by
fy (x1, . . . , xn). In other words, Skolemization turns existentially quantified variables
into function symbols parameterized by universally quantified variables.

In the rest of this chapter we assume that formulas are turned into conjunctive normal
form, using if needed Tseitin’s encoding to avoid exponential size explosion.

3.2.2 Propositional Logic

We start by presenting a brief summary of the Conflict-Driven Clause Learning
(CDCL) algorithm [SS96, JS97, SS99], designed to solve the satisfiability problem for
propositional formulas, also known as the SAT problem. Propositional formulas are
special cases of first-order formulas, involving no term and only constant predicates,
called here propositional constants. As there are no terms, there are no variables, and
therefore quantifiers are useless.

Definition 3.18 (Propositional Logic). A formula in propositional logic is a quantifier-
free Σ-formula where Σ � (SΣ, FΣ,PΣ) with SΣ � ∅, FΣ � ∅ and for all p ∈ PΣ, p is a
constant predicate symbol.

CDCL was developed over time as a series of improvements to the Davis-Putnam-
Loveland-Logemann (DPLL) procedure [DP60, DLL62], presented in Algorithm 3.1
in its simplest form. Basically, it consists in a recursive enumeration of possible
interpretations, making at each step a decision about a variable and its value. If at
some point an interpretation satisfying all the clauses in the formula is found, then it
is a model and the algorithm returns it. But if an interpretation invalidating any of
the clauses in the formula is reached, then the algorithm backtracks to the previous
decision point.

Taking as the basis theDPLLprocedure, CDCL incorporates the following extensions.

Boolean Constraint Propagation When all literals but one in a still unsatisfied clause
are assigned, the remaining literal has to be assigned so that the clause is
satisfied. Such assignment may lead to other constrained assignments, enriching
the interpretation and potentially yielding to early conflict detection. This is
called Boolean Constraint Propagation, also known as Unit Propagation, and is
performed each time a decision for an assignment is made.

36 CHAPTER 3. MANY-SORTED FIRST-ORDER LOGIC

Algorithm 3.1: The Davis-Putnam-Logemann-Loveland procedure.
Function DPLL (Φ,M):

Input: Φ a CNF formula in propositional logic
Input: M the model under construction, initially empty
Output: sat (M) withM |� Φ or unsat
if for all clause φ in Φ,M |� φ then

return sat (M)
else if for some clause φ in Φ,M 6|� φ then

return unsat

else

Let l some unassigned literal in Φ
match DPLL (Φ,M ∪ {l � >})

with sat (M) return sat (M)
with unsat

return DPLL (Φ,M ∪ {l � ⊥})

Non-Chronological Backtrack When an assignment leads to a conflict, the DPLL
procedure backtracks to the previous decision point. A better strategy is to
backtrack to the second most recent decision in the invalidated clause, while
erasing all decisions made after, and immediately performs the assignment
opposite to the most recent decision. This is referred as Non-Chronological
Backtrack.

Conflict Clause Learning Let us assume a decision implies through constraint prop-
agation the variable x to be assigned to ⊥. Let us assume further that a later
dicision assigning y to > leads to a conflict. Then we can safely add to the
formula the clause

(
x ∨ ¬y

)
. As this clause is logically implied by the original

formula, this addition does not change the status of the formula. But assigning x
to ⊥ immediately leads through constraint propagation to the variable y being
assigned to ⊥. This process is known as conflict clause learning and plays an
essential role in modern solvers.

Literal Assignement Heuristic Probably the most important element is the decision
heuristic use to choose variables and their values. We do not intend to survey all
of known decisision strategies, as new heurisitics are published every year. But
common strategies consider the frequency of appearance of variables, the size of

3.2. DECIDING MANY-SORTED FIRST-ORDER LOGIC 37

the clause in which they appear, or how recently a variable was part of a conflict.

3.2.3 Quantifier-Free Formulas Modulo Theories

We now extend the CDCL algorithm from propositional formulas to quantifier-free
formulas modulo theories. This extension is known under the name of DPLLT
[Tin02, GHN+04], sometimes CDCLT , where T refers to the theory of formulas we
aim to solve. The main interest of DPLLT lay in splitting the decision problem into two
parts: solving propositional formulas on one side, and solving conjunction of atomic
T -formulas on the other side. More effective versions of DPLLT tightly intertwine
theory related mechanisms into propositional ones, but the general idea is the same.

Algorithm 3.2: A naive DPLLT .
Function Solver (Φ):

Input: Φ a CNF formula in propositional logic
Output: sat (M) withM |� Φ or unsat

Function Theory (Φ):
Input: Φ a conjunction of atomic formulas in QF-T
Output: sat (MT) or unsat (Ψ) with |�T Ψ contradicting Φ

Function DPLLT (Φ):
Input: Φ a CNF formula in QF-T
Output: sat (MT) withMT |�T Φ or unsat
match Solver

(
ρ (Φ)

)
with unsat return unsat

with sat (M)
match Theory (π (Φ,M))

with sat (MT) return sat (MT)
with unsat (Ψ)

return DPLLT (Φ ∧Ψ)

In this section we assume we are able to solve conjunctions of atomic T -formulas.
Some decision procedures for such formulas will be presented in Section 3.3. The
simplified DPLLT procedure we present in Algorithm 3.2 involves four auxiliary
functions: Solver, a propositional SAT solver; Theory, a solver dedicated to conjunctions
of atomic T -formulas; ρ, an encoder which associates to a T -formula a propositional

38 CHAPTER 3. MANY-SORTED FIRST-ORDER LOGIC

formula; and π, an encoder which turns a model into a conjunction of atomic T -
formulas.

As an example, let us solve using the DPLLT procedure the linear arithmetic formula(
(x < 0) ∨

(
x < y

))
∧

(
(x ≥ 0) ∨

(
x ≥ y

))
∧

(
y > 0

)
. The encoder ρ normalizes it into(

(x < 0) ∨
(
x < y

))
∧

(
¬ (x < 0) ∨ ¬

(
x < y

))
∧ ¬

(
y < 0

)
∧ ¬

(
y � 0

)
and returns the

propositional formula (A ∨ B) ∧ (¬A ∨ ¬B) ∧ ¬C ∧ ¬D, where A stands for (x < 0), B
for

(
x < y

)
, C for

(
y < 0

)
, and D for

(
y � 0

)
. This formula is send to a propositional

SAT solver which returns a first model, {A � >, B � ⊥, C � ⊥,D � ⊥} for example.
From this model, the π encoder produces the conjunction of atomic formulas (x < 0) ∧
¬

(
x < y

)
∧¬

(
y < 0

)
∧¬

(
y � 0

)
, which unfortunately isT -unsatisfiable. Consequently

its negation ¬ (x < 0) ∨
(
x < y

)
∨

(
y < 0

)
∨

(
y � 0

)
is a T -valid clause and can be

added to the original formula with no effect but forbidding the previous propositional
model. The propositional solver is called again on the ρ-encoding of this new formula,
returns this time a second model {A � ⊥, B � >, C � ⊥,D � ⊥}, which leads to the
π-encoded formula ¬ (x < 0) ∧

(
x < y

)
∧ ¬

(
y < 0

)
∧ ¬

(
y � 0

)
. This final formula is

satisfiable with model
{
x � 0, y � 1

}
, which indeed is a model of the original formula.

3.2.4 Quantified Formulas Modulo Theories

The last stage in our attempt to decide many-sorted first-order formulas consists
in extending the decision procedure for quantifier-free formulas we just defined in
Section 3.2.3 to quantified formulas. However the many-sorted first-order logic is
undecidable in general, and undecidability implies that there is no general algorithm
that solves all cases. Still, the problem is decidable for some classes of formulas,
for example when the domain of quantified variables is finite, or if there exist some
quantifier elimination algorithms, whereas general but incomplete algorithms which
solve many useful cases can be designed as a fallback.

In this section we consider only theories whose quantifier-free part is decidable.

Enumeration The simplest decidable class of quantified formulas is the class of
formulas where the domain of quantified variables is finite. In this case, we instantiate
the quantified variables with each element of the domain. Then, we replace existential
quantification by a disjunction of all of these instantiations, and universal quantification
by a conjunction of all of these instantiations.

For example, let us consider the quantified boolean formula ∀x : Bool.∃y : Bool.(
x ∨ ¬y

)
∧

(
¬x ∨ y

)
, where booleans are implicitly lifted into propositional constants.

This formula becomes ∀x : Bool. ((x ∨ ¬>) ∧ (¬x ∨ >)) ∨ ((x ∨ ¬⊥) ∧ (¬x ∨ ⊥)) after

3.2. DECIDING MANY-SORTED FIRST-ORDER LOGIC 39

the expansion of ∃y : Bool and is simplified into ∀x : Bool.x ∨ ¬x. Then the expansion
of ∀x : Bool results in (> ∨ ¬>) ∧ (⊥ ∨ ¬⊥) simplified into >which is trivially valid.

Note that enumerating over the domain of quantified variables, although always
theoretically possible for finite domains, might be impossible in practice for large
domains, as it is the case with bit-vectors for example.

Quantifier Elimination A quantifier elimination algorithm transforms a quantified
formula into an equivalent formula without quantifier. The enumeration mechanism
we presented for quantification over finite domains can be seen as such algorithm.
There also exist quantifier elimination algorithms for formulas with quantification over
infinite (or finite but too large) domains. For example, the Fourier-Motzkin projection
and its extensions [Bjø10] eliminate quantifications for disjunctive linear arithmetic
formulas.

Of course, not every theory admits a quantifier elimination algorithm, as its existence
implies the decidability of the theory.

Instantiation When enumeration and quantifier elimination are both impossible,
we have to fallback to some more general but incomplete algorithms. Many of these
algorithms rely on the concept of instantiation.

Let us consider CNF-formulas turned into Skolem Normal Form. As universal
quantifications and conjunctions commute, the resulting universally quantified con-
junction can be split in two parts: a set of universally quantified clauses and a set of
ground clauses. First note that if the conjunction of ground clauses is unsatisfiable,
then the formula as a whole is unsatisfiable. Instantiation techniques take their name
from the fact that for any term t, ∀x.ϕ (x) |� ϕ (t). Hence, we can instantiate any of the
universally quantified clauses with ground terms and add the resulting ground clause
without changing the satisfiability of the formula. And if, after several additions, the
set of ground terms becomes unsatisfiable, then the original formula is proved to be
unsatisfiable. However, it will never be possible to conclude to the satisfiability of the
formula.

The question is now which term to choose to instantiate universally quantified
terms. A simple strategy consists in identifying for each quantified term a set of triggers
as sub-terms containing all quantified variables. Then ground terms are explored in
order to find sub-terms that match a trigger. The corresponding quantified term is
instantiated so that it unifies the trigger and the matched sub-term. More advanced
instantiation strategies like E-matching [DNS05] do not only consider sub-terms when
matching a ground term, but also terms known to be equivalent to those sub-terms.

40 CHAPTER 3. MANY-SORTED FIRST-ORDER LOGIC

3.3 Some Many-Sorted First-Order Theories

We assumed in Section 3.2.3 we were able to solve conjunctions of atomic quantifier-free
T -formulas. To close the loop, we present in this section three theories pervasive in soft-
ware analysis, together with their syntax, their semantics and with dedicated decision
procedures for their quantifier-free fragment: the equality logic with uninterpreted
functions theory in Section 3.3.1, the bit-vectors theory in Section 3.3.2, and the arrays
theory in Section 3.3.3. Finally in Section 3.3.4, given some disjoined theories coming
with dedicated decision procedures, we explain how to decide the combination of these
theories.

3.3.1 Equality Logic with Uninterpreted Functions

In this section we introduce the theory of equality, also known as equality logic, together
with uninterpreted functions. Equality logic can be thought of as propositional logic
extended with equalities between terms of the same sort. Because they make it far
more useful, equality logic is usually combined with uninterpreted functions which
are, as their name suggests, function symbols which should not be interpreted as part
of a model of a formula. Uninterpreted functions are widely used for simplifying
or generalizing formulas. They let us reason about the formula while ignoring the
semantics of some functions. The only thing we need to satisfy is functional consistency,
which states that, given the same inputs, a function returns the same outputs. At the
same time, replacing functions with uninterpreted functions makes the formula weaker,
and consequently may make a valid formula invalid.

Definition 3.19 (Equality logic with Uninterpreted Functions). Let S be a given set of
sort symbols. UF denotes the equality logic and uninterpreted functions defined over
the signature UF � (SUF, FUF,PUF) with:

• SUF � S, the given set of sort symbols;

• FUF � FS a countably infinite set of fresh function symbols f : s1 × · · · × sn → s
with s1 × · · · × sn ∈ S

n and s ∈ S;

• PUF � PS
⋃
{�s | s ∈ S}, where PS is a countably infinite set of fresh predicate

symbols p : s1 × · · · × sn with s1 × · · · × sn ∈ S
n , and where {�s | s ∈ S} is a family

of equality symbols, one for each sort.

Moreover, UF axioms are those of the following axiom schemes:

3.3. SOME MANY-SORTED FIRST-ORDER THEORIES 41

• For all sort symbols s ∈ SΣ,

∀x : s . (x �s x) Symmetry

∀x : s .∀y : s .
(
x �s y

)
⇒

(
y �s x

)
Reflexivity

∀x : s .∀y : s .∀z : s .
(
x �s y ∧ y �s z

)
⇒ (x �s z) Transitivity

• For all sort symbols s1 ∈ SΣ, . . . , sn ∈ SΣ and s ∈ SΣ, for all function symbols
f : s1 × · · · × sn → s ∈ FSΣ ,

∀1≤i≤n xi : si .∀1≤i≤n yi : si . Functional consistency(∧
1≤i≤n xi �si yi

)
⇒ f (x1, . . . , xn) �s f

(
y1, . . . , yn

)
• For all sort symbols s1 ∈ SΣ, . . . , sn ∈ SΣ and s ∈ SΣ, for all predicate symbols

p : s1 × · · · × sn ∈ PSΣ ,

∀1≤i≤n xi : si .∀1≤i≤n yi : si . Predicative consistency(∧
1≤i≤n xi �si yi

)
⇒ p (x1, . . . , xn) ⇒ p

(
y1, . . . , yn

)
Deciding a Conjunction of Equalities and Uninterpreted Functions Shostak intro-
duced in 1978 [Sho78] a two-stages algorithm to decide conjunctions of equalities and
uninterpreted functions. Intuitively, first we build congruence-closed equivalence
classes of equal terms, and second we look for unequal terms which belong to the same
equivalence class. More precisely:

1) (a) Initially, put every term in its own equivalence class.

(b) Then, for every terms t1 and t2 such that t1 � t2, merge equivalence classes
to which t1 and t2 belong.

(c) Finally, compute the congruence closure: For every terms t1 and t2 belonging
to the same equivalence class, for every uninterpreted function f such that
f (t1) and f (t2) belong to distinct equivalence classes, merge f (t1) and
f (t2) equivalence classes; Repeat until there are no more such instances.

2) If there exists a disequality t1 , t2 with t1 and t2 belonging to the same equivalence
class, then the formula is unsatisfiable, else the formula is satisfiable.

Note that operations over equivalence classes can be implemented efficiently with a
union-find data-structure [NO05].

As an example, let us first consider the formula
(

f (x) � y
)
∧

(
x � f

(
y
))
∧(

f (x) , f
(
y
))
, involving two variables x and y, and one uninterpreted function

42 CHAPTER 3. MANY-SORTED FIRST-ORDER LOGIC

f . We start with an equivalence class for each term: {x} ,
{
y
}
,
{

f (x)
}
,
{

f
(
y
)}
. Be-

cause of f (x) � y and x � f
(
y
)
, we merge their respective equivalence classes:{

x , f
(
y
)}
,
{
y , f (x)

}
. As equivalence classes are already congruence-closed, we

jump to the final step. Because there is a single disequality f (x) , f
(
y
)
, and

because f (x) and f
(
y
)
belong to two different equivalence classes, we conclude the

formula is satisfiable. Given two distinct values a and b, an admissible model is{
x � a, y � b, f (x) � b, f

(
y
)
� a

}
.

Let us now consider the formula
(
x � y

)
∧

(
f (x) � y

)
∧

(
x , f

(
y
))
. From x � y

and f (x) � y, we obtain two equivalence classes:
{
x , y , f (x)

}
,
{

f
(
y
)}
. This time,

these two equivalence classes are not congruence-closed. Because x � y, f (x)
and f

(
y
)
equivalence classes have to be merged, and only a single one remains:{

x , y , f (x) , f
(
y
)}
. Finally, f (x) , f

(
y
)
, but f (x) and f

(
y
)
belong to the same

equivalence class, the formula is unsatisfiable.

3.3.2 Bit-Vectors

A computer system uses bit-vectors to encode information, in particular to encode
numbers. Owing to the finite domain of these bit-vectors, the semantics of arithmetic
operators no longer matches the one we are used to when reasoning with natural
numbers, but is instead defined by means of modular arithmetic. For example, the
formula

(
x − y > 0

)
⇔

(
x > y

)
holds when x and y are interpreted as natural numbers,

but no longer holds when x and y are interpreted as bit-vector, because of the possible
overflow of the subtraction. Over operators, like bitwise operators, just do not have
equivalent over natural numbers. For these reasons, we introduce in this section the
bit-vectors theory, which can be used to correctly reason about such systems.

Definition 3.20 (Bit-Vectors). The bit-vectors theory is defined over the signature
Σ � (SΣ, FΣ,PΣ) with:

• SΣ �
{
BitVec n | n ∈ N?

}
a sort symbols family for bit-vectors of size n ∈ N?;

• FΣ �
{
Cn

⋃
Un

⋃
Bn | n ∈ N?

}
where Cn is the finite set of constant bit-vectors of

size n, whereUn �

{
−n ,∼n ,

[
i , j

]
n

}
is the set of unary operators over bit-vectors

of size n, and where Bn � {+n ,×n ,÷n , |n ,&n ,�n ,�n , ·n } is the set of binary
operators over bit vectors of size n;

• PΣ �
{
<n | n ∈ N?

}
a comparison symbols family over bit-vectors of size n.

The sort BitVec n is the set of finite functions from [0, n[to {0, 1}. Thus, Cn is the set
of the 2n possible functions from [0, n[to {0, 1}. Let us give two conversion functions,

3.3. SOME MANY-SORTED FIRST-ORDER THEORIES 43

Jb : BitVec nKN �
∑

0≤i<n b (i) · 2i which interprets bit-vectors as natural numbers, and
Jm : NKBitVec n � λ i ∈ [0, n[7→

(
m ÷ 2i

)
mod 2 which interprets natural numbers as

bit-vectors. Then, assuming the usual interpretation of natural numbers, the bit-vector
theory introduces the following axiom schemes:

• For all n ∈ N?, for all i ∈ N, for all j ∈ N such that 0 ≤ i ≤ j < n,

∀b : BitVec n.
−n b � J2n

− JbKNKBitVec n Arithmetic negation

∼n b � λ k ∈ [0, n[7→ 1 − b (k) Logical negation

b
[
i , j

]
n � λ k ∈

[
0, j − i + 1

[
7→ b (k + i) Extraction

• For all n ∈ N?, for all i ∈ N?, for all j ∈ N? such that i + j � n,

∀b1 : BitVec n.∀b2 : BitVec n.
b1 +n b2 � JJb1KN + Jb2KNKBitVec n Addition

b1 ×n b2 � JJb1KN × Jb2KNKBitVec n Multiplication

Jb2KN , 0⇒ b1 ÷n b2 � JJb1KN ÷ Jb2KNKBitVec n Division

b1 |n b2 � λ k ∈ [0, n[7→ max b1(k) b2(k) Logical disjunction

b1 &n b2 � λ k ∈ [0, n[7→ min b1(k) b2(k) Logical conjunction

b1�n b2 �
q
Jb1KN × 2Jb2KN

y
BitVec n Logical shift left

b1�n b2 �
q
Jb1KN ÷ 2Jb2KN

y
BitVec n Logical shift right

∀b1 : BitVec i.∀b2 : BitVec j. Concatenation

b1 ·n b2 � λ k ∈ [0, n[7→
{

b1
(
k − j

)
when k ≥ j

b2 (k) when k < j

∀b1 : BitVec n.∀b2 : BitVec n. b1 <n b2 ⇒ Jb1KN < Jb2KN Comparison

Deciding Bit-Vector Arithmetic The most commonly used decision procedure for
bit-vector arithmetic is called flattening, or bit-blasting [WSK05]. Intuitively, it reduces a
bit-vector formula into a propositional formula bymeans of a circuit encodingwhere bits
are propositional variables. More precisely, for every bit-vector of size n we introduce
n fresh propositional variables, one for each bit. Hence, given a : BitVec n, b : BitVec n
and c : BitVec n, we introduce the propositional variables a0, . . . , an−1, b0 . . . bn−1 and
c0, . . . , cn−1. Then we replace bit-vector operations by logical circuits implementing
them, encoded as a set of propositional constraint. Most bitwise operations are
straightforward, as for example the bit-vector logical disjunction a � b |n c, which is

44 CHAPTER 3. MANY-SORTED FIRST-ORDER LOGIC

replaced by propositional constraints
∧

0≤i<n ai � bi ∨ ci modelling the disjunction at
the level of individual bits. Arithmetic operations are usually more complicated, as for
example the bit-vector addition a � b +n c implemented with a full-adder circuit, which
introduces n − 1 intermediate propositional variables ri to encode carry propagation:

a0 � (b0 ∨ c0) ∧ (¬b0 ∨ ¬c0)∧
1≤i<n

ai � (¬bi ∨ ¬ci ∨ ri) ∧ (¬bi ∨ ci ∨ ¬ri) ∧ (bi ∨ ¬ci ∨ ¬ri) ∧ (bi ∨ ci ∨ ri)
ri � (bi−1 ∨ ci−1) ∧ (bi−1 ∨ ri−1) ∧ (ci−1 ∨ ri−1)

For some operations like the bit-vector multiplication, circuit encodings may require
to introduce thousands of fresh variables in tens of thousands new clauses, which
makes the resulting propositional formula very hard to solve. For this reason, modern
solvers complement bit-blasting with efficient circuit conversion [BCF+07, MV07] on
one hand, and with word-level preprocessing [BDL98, GD07] and abstraction [BKO+07]
on the other hand.

3.3.3 Arrays

In this section we present the arrays theory, which is used for modeling memory or data
structures such as maps, vectors and hash tables. The array theory is parameterized
with an index sort and an element sort, both coming with an equality relation, whose
choice will affect the expressiveness of the resulting theory, and therefore its decidability.
Given an index sort I and a element sort E, the theory of arrays ArrayI E describes
arrays mapping indexes i ∈ I to elements e ∈ E. These arrays are defined by the two
operations read (·[·]) and write (·[·] ← ·), whose semantics is given by the so-called
read-over-write axioms (row-axioms).

Definition 3.21 (Arrays). Given a sort for indexes I admitting an equality relation
�I , and given a sort for elements E admitting an equality relation �E , the theory
AIE of arrays mapping indexes in I to elements in E is defined over the signature
AIE �

(
SAIE , FAIE ,PAIE

)
with:

• SAIE �
{
I , E ,ArrayI E

}
, where ArrayI E is the sort of arrays mapping indexes

in I to elements in E.

• FAIE � {·[·] , ·[·]← ·} where a[i] : ArrayI E × I → E denotes the read in array a
at index i, and where ·[·]← · : ArrayI E × I × E → ArrayI E denotes the write
of element e in array a at index i.

3.3. SOME MANY-SORTED FIRST-ORDER THEORIES 45

• PAIE �

{
�I ,�E ,�ArrayI E

}
, where �ArrayI E : ArrayI E ×ArrayI E denotes the

equality over arrays mapping indexes in I to elements in E.

Furthermore, the meaning of these new symbols is given by the following axioms:

• Read-over-Write

∀a : ArrayI E .∀i : I.∀j : I.∀e : E . (a[i]← e)
[
j
]
�

{
e when i �I j
a
[
j
]

otherwise

• Extensionality

∀a1 : ArrayI E .∀a2 : ArrayI E .
(
a1 �ArrayI E a2

)
⇔ (∀i : I. a1[i] �E a2[i])

Deciding the Array Theory The array theory can be reduced to a combination of
index terms and element terms extended with uninterpreted functions. Note that this
combination is not necessarily decidable as mentionned in Section 3.3.4. Hence the
array theory can be undecidable even if the combination of index terms and element
terms is decidable. However this combination is decidable for the pure arrays theory,
i.e. when index terms and element terms are restricted to equalities.

The idea is to replace every read-over-write in accordance with the axiom of the same
name by an if · then · else · construction [GD07]. We recall that f (if c then a else b)
stands for

(
c ∧ f (a)

)
∨

(
¬c ∧ f (b)

)
, or equivalently in conjunctive normal form to(

¬c ∨ f (a)
)
∧

(
c ∨ f (b)

)
, where f is any function or predicate symbol. More precisely,

we first turn every (a[i]← e)
[
j
]
into if

(
i � j

)
then e else a

[
j
]
. In order to avoid term

duplication and size explosion, sub-terms have to be shared as much as possible, and
read-over-write can be instantiated lazily [BB09]. Then for every remaining array symbol
a we introduce a fresh uninterpreted function fa , and we replace every read a[i] by the
function application fa (i).

Let us consider as an example the array formula
(
(a[i]← e)

[
j
]
�E e

)
∧

(
a
[
j
]
�E d

)
.

We first eliminate the write in array a by instantiating the read-over-write axiom:((
if

(
i �I j

)
then e else a

[
j
])

�E e
)
∧

(
a
[
j
]
�E d

)
. Then we unfold the if · then · else ·

definition:
(
i ,I j ∨ e �E e

)
∧

(
i �I j ∨ a

[
j
]
�E e

)
∧

(
a
[
j
]
�E d

)
. After removing the

trivial clause
(
i ,I j ∨ e �E e

)
, we finally turn every array symbol into uninterpreted

function and substitute every read by function application:
(
i �I j ∨ fa

(
j
)
�E e

)
∧(

fa
(
j
)
�E d

)
. We end up with a formula being a combination of index terms, element

terms, and uninterpreted functions.

46 CHAPTER 3. MANY-SORTED FIRST-ORDER LOGIC

3.3.4 Combination of Theories

The decision procedures we have studied so far focus on one specific theory. Howerer,
many-sorted first-order formulas may contain terms coming from several theories. For
example, the formula

(
f
(
(a[i]← e)

[
g (i)

])
< f (e)

)
∧

(
i � g (i)

)
involve an array a

and two uninterpreted functions f and g, and thus belong to the combination of the
arrays theory with the theory of uninterpreted functions. In this section we present
the Nelson-Oppen procedure [NO79, Opp80, TH96] which aims to solve the theory
combination problem, and thus to obtain a solver for such combined theories. The
Nelson–Oppen combination method uses equalities between variables to permit theory
dedicated decision procedures to communicate information. Combined theories have
to comply with several restrictions, but there are extensions to the basic Nelson–Oppen
procedure which overcome each of these restrictions.

Definition 3.22 (Nelson–Oppen Restrictions). In order to apply the Nelson–Oppen
procedure, theories T1, . . . ,Tn have to comply with the following restrictions:

• T1, . . . ,Tn are quantifier-free first-order theories with equality;

• There is a decision procedure for each of the theories T1, . . . ,Tn ;

• The signatures of T1, . . . ,Tn are disjoint, they only share equality �;

• T1, . . . ,Tn are theories interpreted over an infinite domain.

Combining Convex Theories We first present a version of the Nelson-Oppen pro-
cedure which solves the theory combination problem for convex theories. In a convex
theory, if a formula implies a disjunction of equalities, then it also implies at least one
of these equalities.

Definition 3.23 (Convex Theory). A Σ-theory T is convex if for every conjunctive
Σ-formula Φ

if
(
Φ⇒

∨
1≤i≤n xi � yi

)
is T -valid for some n > 1

then
(
Φ⇒ xi � yi

)
is T -valid for some i ∈ [1, n]

where xi and yi are variables of Φ.

If some theories like the conjunctive fragment of equality logic are convex, many
useful theories are nonconvex. For example, the integer linear arithmetic is noncon-
vex: (x0 � 0) ∧ (x1 � 1) ∧ (0 ≤ x2) ∧ (x2 ≤ 1) ⇒ (x0 � x2 ∨ x1 � x2) holds, but neither
(x0 � 0)∧ (x1 � 1)∧ (0 ≤ x2)∧ (x2 ≤ 1) ⇒ (x0 � x2) nor (x0 � 0)∧ (x1 � 1)∧ (0 ≤ x2)∧
(x2 ≤ 1) ⇒ (x1 � x2) holds.

3.3. SOME MANY-SORTED FIRST-ORDER THEORIES 47

Nelson-Oppen Procedure The Nelson-Oppen procedure is a two-stages procedure
which solves the combination problem for convex theories satisfying Nelson-Oppen
restrictions:

1) The first step of the Nelson-Oppen procedure is called purification.

Purification turns a formula with mixed terms into a formula where each term
belongs to a specific theory by replacing every sub-term from an alien theory with
a fresh variable. The formula

(
f
(
(a[i]← e)

[
g (i)

])
< f (e)

)
∧

(
i � g (i)

)
mixes

uninterpreted functions with arrays. Purificationwill turn it into
(

f (x) < f (e)
)
∧(

i � y
)
∧

(
x � (a[i]← e)

[
y
])
∧

(
y � g (i)

)
where f (x) < f (e) and y � g (i)

belong to the theory of uninterpreted functions, where x � (a[i]← e)
[
y
]
belongs

to the arrays theory, and where i � y belongs to both.

2) This new formula can thus be split into pure sub-formulas which can be solved
using a decision procedure dedicated to the theory they belong to.

(a) If one of these sub-formulas is unsatisfiable, then so is the whole formula.

(b) Else, if a pure sub-formula implies a not already known equality between
two variables, we add this equality to the formula. This process is repeated
until the formula become unsatisfiable or until there is no more equality to
introduce. In the latter case the formula is satisfiable.

In our example, both sub-formulas
(

f (x) < f (e)
)
∧

(
i � y

)
∧

(
y � g (i)

)
and(

i � y
)
∧

(
x � (a[i]← e)

[
y
])

are satisfiable. From the second sub-formula
we learn the equality x � e and propagate it to the first sub-formula. As(

f (x) < f (e)
)
∧

(
i � y

)
∧

(
y � g (i)

)
∧ (x � e) is unsatisfiable, we conclude that

the original formula is unsatisfiable.

Combining Nonconvex Theories Next, we consider the combination of nonconvex
theories. We recall that it means there exist in these theories some formulas Φ such
that Φ ⇒

∨
1≤i≤n xi � yi , but for all i, Φ ; xi � yi . The consequence is that after

propagating equalities between theories, we still have to propagate disjunctions of
equalities. If a pure sub-formula implies a disjunction of equalities without implying
any of these equalities, then we add the disjunction to the formula and call back the
underlying DPLL procedure to split upon this disjunction.

For example with the purified formula φ �
(

f (x) < f (e)
)
∧ (i � 0) ∧

(
0 ≤ y

)
∧(

y ≤ 1
)
∧

(
x � (a[i]← e)

[
y
])
∧

(
y � g (i)

)
mixing uninterpreted functions, arrays

and integer linear arithmetic,
(
0 ≤ y

)
∧

(
y ≤ 1

)
⇒

(
y � 0 ∨ y � 1

)
holds, but neither

48 CHAPTER 3. MANY-SORTED FIRST-ORDER LOGIC(
0 ≤ y

)
∧

(
y ≤ 1

)
⇒

(
y � 0

)
nor

(
0 ≤ y

)
∧

(
y ≤ 1

)
⇒

(
y � 1

)
holds. Therefore we add

the disjunction
(
y � 0 ∨ y � 1

)
to the formula and call back the DPLL procedure. It

results in trying to solve with the Nelson-Oppen procedure φ ∧
(
y � 0

)
or φ ∧

(
y � 1

)
.

As the second is satisfiable, we conclude to the satisfiability of the original formula.

Combining Theories Interpreted over a Finite Domain There is a rich literature on
combining decision procedures for first-order theories, in particular about optimisation
and extension of the Nelson-Oppen procedure. For example it is possible to extend
the Nelson-Oppen procedure to theories interpreted over a finite domain, like the
finite-width bit-vector theory, but in an incomplete manner. The idea is to compute a
lower bound on the size of the domain in which the formula must be satisfied, and an
upper bound on the number of distinct values required to satisfy the formula. For each
model of the formula, we compute an upper bound on the number of distinct values
it requires, and check this upper bound against the domain size lower bound. If we
cannot find a model which fits into the domain, nor prove the unsatisfiability, we have
to conclude we just do not know. But if we find a model fitting into the domain, then
we can conclude to the satisfiability of the formula.

Beyond Nelson-Oppen Restrictions Unfortunately, the theory combination problem
is undecidable for arbitrary theories. For example, the quantified Presburger arithmetic
becomes undecidable when extended with uninterpreted function. Therefore there
exists no general purpose combination procedure, and solver are reduced to the use
of incomplete decision procedures working on a best-effort basis when dealing with
undecidable theory combinations.

3.4 Conclusion

In this chapter we presented the many-sorted first-order logic, which is used by most
of automatic software analyzer to reason about programs. We gave its syntax with
definitions of signatures, terms and formulas, and its semantics with definitions of
interpretations and models. Then we stated the decision problem of the satisfiability
modulo theory, and presented a general decision procedure to solve this problem, based
on a decision procedure for the propositional logic, extended first to quantifier-free
formulas modulo theories, and then to quantified formulas modulo theories. As this
decision procedure assume being able to solve conjunctions of atomic quantifier-free
formulas in some specific theories, we finally present three theories pervasive in

BIBLIOGRAPHY 49

software verification, the equality logic with uninterpreted functions, the bit-vectors
theory and the arrays theory, together with decision procedure dedicated to their
conjunctive atomic quantifier-free fragment, and a way of combining them.

Bibliography

[BB09] Robert Brummayer andArminBiere. Lemmasondemand for the extensional
theory of arrays. JSAT, 6(1-3):165–201, 2009.

[BCF+07] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio,
Ziyad Hanna, Alexander Nadel, Amit Palti, and Roberto Sebastiani. A lazy
and layered SMT(BV) solver for hard industrial verification problems. In
Computer Aided Verification, 19th International Conference, CAV 2007, Berlin,

Germany, July 3-7, 2007, Proceedings, pages 547–560, 2007.

[BDL98] Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A decision procedure
for bit-vector arithmetic. In Proceedings of the 35th Conference on Design

Automation, Moscone center, San Francico, California, USA, June 15-19, 1998.,
pages 522–527, 1998.

[Bjø10] Nikolaj Bjørner. Linear quantifier elimination as an abstract decision
procedure. In Automated Reasoning, 5th International Joint Conference, ĲCAR

2010, Edinburgh, UK, July 16-19, 2010. Proceedings, pages 316–330, 2010.

[BKO+07] Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer
Strichman, and Bryan A. Brady. Deciding bit-vector arithmetic with ab-
straction. In Tools and Algorithms for the Construction and Analysis of Systems,

13th International Conference, TACAS 2007, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal,

March 24 - April 1, 2007, Proceedings, pages 358–372, 2007.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover
for program checking. J. ACM, 52(3):365–473, 2005.

[DP60] Martin Davis andHilary Putnam. A computing procedure for quantification
theory. J. ACM, 7(3):201–215, 1960.

50 CHAPTER 3. MANY-SORTED FIRST-ORDER LOGIC

[GD07] Vĳay Ganesh and David L. Dill. A decision procedure for bit-vectors and
arrays. In Computer Aided Verification, 19th International Conference, CAV 2007,

Berlin, Germany, July 3-7, 2007, Proceedings, pages 519–531, 2007.

[GHN+04] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras,
and Cesare Tinelli. DPLL(T): fast decision procedures. In Computer Aided

Verification, 16th International Conference, CAV 2004, Boston, MA, USA, July

13-17, 2004, Proceedings, pages 175–188, 2004.

[JS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques
to solve real-world SAT instances. In Proceedings of the Fourteenth National

Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial

Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode

Island, USA., pages 203–208, 1997.

[MV07] Panagiotis Manolios and Daron Vroon. Efficient circuit to CNF conversion.
In Theory and Applications of Satisfiability Testing - SAT 2007, 10th International

Conference, Lisbon, Portugal, May 28-31, 2007, Proceedings, pages 4–9, 2007.

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision
procedures. ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[NO05] Robert Nieuwenhuis and Albert Oliveras. Proof-producing congruence
closure. In Term Rewriting and Applications, 16th International Conference, RTA

2005, Nara, Japan, April 19-21, 2005, Proceedings, pages 453–468, 2005.

[Opp80] Derek C. Oppen. Complexity, convexity and combinations of theories. Theor.
Comput. Sci., 12:291–302, 1980.

[Sho78] Robert E. Shostak. An algorithm for reasoning about equality. Commun.

ACM, 21(7):583–585, 1978.

[SS96] João P. Marques Silva and Karem A. Sakallah. GRASP - a new search
algorithm for satisfiability. In ICCAD, pages 220–227, 1996.

[SS99] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm
for propositional satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.

[TH96] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the
nelson-oppen combination procedure. In Frontiers of Combining Systems,

First International Workshop FroCoS 1996, Munich, Germany, March 26-29, 1996,

Proceedings, pages 103–119, 1996.

BIBLIOGRAPHY 51

[Tin02] Cesare Tinelli. A DPLL-based calculus for ground satisfiability modulo
theories. In Logics in Artificial Intelligence, European Conference, JELIA 2002,

Cosenza, Italy, September, 23-26, Proceedings, pages 308–319, 2002.

[WSK05] Markus Wedler, Dominik Stoffel, and Wolfgang Kunz. Normalization at the
arithmetic bit level. In Proceedings of the 42nd Design Automation Conference,

DAC 2005, San Diego, CA, USA, June 13-17, 2005, pages 457–462, 2005.

52 CHAPTER 3. MANY-SORTED FIRST-ORDER LOGIC

Chapter 4

Symbolic Execution

Symbolic Execution is an automated software verification technique which had been
proved successful for generating high-coverage test suites and for finding deep errors in
complex software [BGM13, CS13]. If the idea of running a program symbolically was
introduced in the mid 1970s [Cla76, Kin76], it has only recently been made practical,
driven by significant advances in constraint solving and the development of more
scalable approaches [GKS05, SMA05, WMMR05, CGP+06]. Today Symbolic Execution
is integrated in industrial testing processes [GLM12] and has found several bugs inmany
widely used softwares [CDE08]. Also, when a tool built on Symbolic Execution won
the DARPA Cyber Grand Challenge [cgc16, CARB12, ARCB14], it have been brought to
the attention of a larger audience as a vulnerability detection technique.

In this chapter we formally define Symbolic Execution. Because it is about sym-
bolically executing program, we need a language to express programs. In Section 4.1
we present the syntax and the semantics of LOW, a low-level programming language
intended to mimic assembly language. Given a program in LOW, we explain in Sec-
tion 4.2 how to perform Symbolic Execution on this program. In Section 4.3 we point
several limits that Symbolic Execution suffers and present some solutions. Finally in
Section 4.4 we show how to adapt Symbolic Execution to software verification.

4.1 LOW, a Simple Low Level Language

This section presents the syntax and the semantics of LOW, a simple low-level program-
ming language. LOW is intended to mimic assembly like programming languages
while remaining reasonably concise.

53

54 CHAPTER 4. SYMBOLIC EXECUTION

4.1.1 Syntax

Let B be the set of binary digits, either > or ⊥, and letMn be the set of size n machine
integers, a finite range of mathematical integers. Machine integers of size n are
represented as a group of n binary digits using two’s complement for negative values
representation.

Definition 4.1 (Syntax of LOW). The LOW programming language is defined over the
three following syntactic sets:

• A the set of arithmetic expressions:

a :� m | get | @[a] | a + a | a − a | a × a | . . .

where m ∈ Mn denotes machine integer constants, where @[·] denotes in memory
reads, and where get denotes inputs gotten from the environment.

• B the set of boolean expressions:

b :� true | false | a � a | a < a | ¬b | b ∧ b | b ∨ b | . . .

• C the set of commands (or instructions):

c :� skip | @[a]← a | if b jump a | return a | abort

where @[·]← · denotes in memory writes, where if · jump · denotes conditional
jumps, where return · denotes outputs returned to the environment, and where
abort denotes program abortions on errors.

A LOWprogram is a sequence of C instructions indexed by an integer, the instruction
position in the program code, and evaluated with regard to a readable and writable
global memory. The execution of a LOW program starts on the instruction at index
0 with an initially empty memory. Instructions are executed sequentially until a
conditional jump is encountered. If the jump condition is satisfied, then the execution
is transferred to the instruction indicated by the jump instruction. Else the execution
continues sequentially.

Figure 4.1 gives two example of LOW programs, a GCD and an integer square root
computation. For example, the GCD program starts getting two integer inputs from
then environment (instruction 0 and 1), writes them in memory at indexes 0 and 1, and
(instruction 2) jumps to instruction 6. Then, until the value read in memory at index 1
is greater than zero (instruction 6), it will execute repeatedly instructions 3, 4 and 5. In
the end, the program reaches instruction 7 and returns to the environment the value in
memory at index 0.

4.1. LOW, A SIMPLE LOW LEVEL LANGUAGE 55

0 : @[0]← get 0 : @[0]← get

1 : @[1]← get 1 : @[1]← 0
2 : if true jump 6 2 : @[2]← 1
3 : @[2]← @[1] 3 : @[3]← 0
4 : @[1]← @[0] mod @[1] 4 : if true jump 8
5 : @[0]← @[2] 5 : @[3]← @[3] +@[2]
6 : if (0 < @[1]) jump 3 6 : @[2]← @[2] + 2
7 : return @[0] 7 : @[1]← @[1] + 1

8 : if (@[3] < @[0]) jump 5
9 : return @[1]

Figure 4.1 – Euclidian algorithm for GCD (left) and integer square root computation
(right) in LOW.

Language Extensions The LOW programming language we describe lacks several
features usually available inmost programming languages, like the presence of variables,
assertions checking, or a wider variety of control-flow instructions. However all of
these features can be encoded in LOW:

Variable Declarations The most blatant lack in LOW is the absence of variables, which
is a commodity provided by almost all programming languages. Given a set
of variable names, let us consider the language extension which adds variable
assignments to LOW instructions and variable evaluations to LOW arithmetic
expressions. This language extension can be reduced to LOW core syntax by
associating to each variable a fixed memory location, and by replacing variable
assignments by memory writes and variable evaluations by memory reads.

Assertions Many programming languages offer the possibility to check assertions at
runtime and to abort the program execution in case of infringement. A language
extension which adds assertions to LOW instructions can easily be encoded using
conditional jumps followed by abort instructions.

Control-Flow Instructions The LOW programming language only provides condi-
tional jump as control-flow instruction. But all other usual control-flow instruc-
tions like for example goto or switch can be implemented from this one, the
former simply with a if true jump ·, the latter using a jump table.

56 CHAPTER 4. SYMBOLIC EXECUTION

4.1.2 Semantics

We gave an intuitivemodel with which to understand the behaviors of programswritten
in LOW. In Figure 4.2 we now give a formal definition of the LOW semantics. The
operational semantics of LOW is defined against a global environment made of a map
from machine integers to instructions Σ :Mn → C, the code of a LOW program, and a
map from machine integers to machine integers Γ :Mn →Mn , the memory accessed
by a LOW program. The memory is initialised with non-deterministic values, and by
convention, every unspecified code location contains an abort instruction.

Evaluation rules for arithmetic (resp. boolean) expressions are given in Figure 4.2a
(resp. Figure 4.2b). They are expressed as relations between a memory state, an
expression and a result. For example with arithmetic expressions, if get evaluates
to m (get m), then within memory Γ, the arithmetic expression get evaluates to
m (

〈
Γ, get

〉
 Mn m). If within memory Γ, the arithmetic expression a evaluates to i

(〈Γ, a〉 Mn i), and if memory Γ contains value m at index i (Γ[i] � m), then within
memory Γ, the arithmetic expression @[a] evaluates to n (〈Γ,@[a]〉 Mn m). For
example with boolean expressions, if within memory Γ arithmetic expressions a0 and
a1 evaluate to m0 and m1 (〈Γ, a0〉 Mn m0 and 〈Γ, a1〉 Mn m1), then within memory Γ
boolean expression a0 < a1 evaluates to m0 < m1 (〈Γ, a0 < a1〉 B m0 < m1). Evaluation
rules for instructions are given in Figure 4.2c, and are expressed as transitions between
memory states, code pointers, and instructions, up to a final result. For example, if
within memory Γ arithmetic expressions a0 and a1 evaluate to i and m (〈Γ, a0〉 Mn i
and 〈Γ, a1〉 Mn m), then within memory Γ execution of instruction @[a0]← a1 at code
position ρ continues with execution within memory (Γ[i]← m) of instruction Σ

(
ρ + 1

)
at code position ρ + 1 (

〈
Γ, ρ,@[a0]← a1

〉

〈
(Γ[i]← m), ρ + 1,Σ

(
ρ + 1

)〉
). If within

memoryΓ boolean expression b evaluates to> (〈Γ, b〉 B >) and arithmetic expression a
evaluates to i (〈Γ, a〉 Mn i), then within memory Γ execution of instruction if b jump a
continues with execution within memory Γ of instruction Σ (i) at code position i
(
〈
Γ, ρ, if b jump a

〉
 〈Γ, i ,Σ (i)〉). Finally, if within memory Γ arithmetic expression a

evaluates to r (〈Γ, a〉 Mn r), then if within Γ execution reaches instruction return a,
then execution stops and returns r (

〈
Γ, ρ, return a

〉
 (Γ, r)). But if within Γ execution

reaches an instruction abort, then execution stops and fails (
〈
Γ, ρ, abort

〉
 (Γ,)).

4.2 Symbolic Execution

In this section we define Symbolic Execution over LOW programs. In Section 4.2.1 we
give the general principle behind Symbolic Execution, with the definition of symbolic

4.2. SYMBOLIC EXECUTION 57

〈Γ,m〉 Mn m

get m〈
Γ, get

〉
 Mn m

〈Γ, a〉 Mn i Γ[i] � m

〈Γ,@[a]〉 Mn m

〈Γ, a0〉 Mn m0 〈Γ, a1〉 Mn m1

〈Γ, a0 − a1〉 Mn m0 − m1

(a) Concrete semantics of arithmetic expressions

〈Γ, true〉 B > 〈Γ, false〉 B ⊥

〈Γ, a0〉 Mn m0 〈Γ, a1〉 Mn m1

〈Γ, a0 < a1〉 B m0 < m1

〈Γ, b〉 B t

〈Γ,¬b〉 B ¬t

〈Γ, b0〉 B t0 〈Γ, b1〉 B t1

〈Γ, b0 ∧ b1〉 B t0 ∧ t1

(b) Concrete semantics of boolean expressions

〈
Γ, ρ, skip

〉

〈
Γ, ρ + 1,Σ

(
ρ + 1

)〉
〈Γ, a0〉 Mn i 〈Γ, a1〉 Mn m〈

Γ, ρ,@[a0]← a1
〉

〈
(Γ[i]← m), ρ + 1,Σ

(
ρ + 1

)〉
〈Γ, b〉 B > 〈Γ, a〉 Mn i〈
Γ, ρ, if b jump a

〉
 〈Γ, i ,Σ (i)〉

〈Γ, b〉 B ⊥〈
Γ, ρ, if b jump a

〉

〈
Γ, ρ + 1,Σ

(
ρ + 1

)〉
〈Γ, a〉 Mn r〈

Γ, ρ, return a
〉
 (Γ, r)

〈
Γ, ρ, abort

〉
 (Γ,)

(c) Concrete semantics of instructions

Figure 4.2 – Concrete semantics of LOW.

58 CHAPTER 4. SYMBOLIC EXECUTION

expressions, symbolic states and path constraints. Then in Section 4.2.2 we explore
some advanced Symbolic Execution techniques used in modern tools in order to scale
over large programs.

4.2.1 General Principle

The main idea behind Symbolic Execution is to replace inputs with symbols that can
take any value, and, as the name of the technique suggests, to execute the program
over these symbols. Symbolic Execution explores the program by enumerating all the
possible execution paths in the program control-flow graph. All along each of these
paths, it maintains: 1) A symbolic state that maps variables to symbolic expressions
or values; 2) A path constraint, also known as path predicate, a usually quantifier-free
first-order formula over symbolic expressions, which describes the constraints that
symbolic inputs have to satisfy in order to follow the branches taken by a path. Branch
execution updates the path constraint, while assignments update the symbolic store.
When Symbolic Execution reaches the end of a path, a constraint solver — typically
a SMT solver — is used to solve the path constraint and to compute a set of inputs
making the execution to follow that path.

In other words, rather than taking concrete inputs values and exploring the path
followed by the execution on these inputs, Symbolic Execution abstractly represents
inputs as symbols, chooses a path to explore, and resorts to constraint solvers to
construct actual instances that follow that path.

Symbolic Expression and Symbolic State Symbolic Execution uses symbolic values
instead of concrete data values as input, and represents data values computed by
the program as symbolic expressions over these symbolic input values. As their
name suggests, symbolic values are logical symbols while symbolic expressions are
logical terms, both interpreted within the theory which was chosen to model program
values. For LOW programs, we choose the bit-vectors theory for arithmetic symbolic
values, denoted by BitVec n and presented in Section 3.3.2, and the boolean theory
for boolean symbolic values, denoted by Bool. Symbolic expressions are evaluated
against a symbolic state Γ, which maps program variables to symbolic expressions. As
there is no variable declaration in LOW, this symbolic state will, in our specific case,
only contain implicitly declared memory variables, which are mapped to symbolic
expressions interpreted within the arrays theory presented in Section 3.3.3.

LOW expressions are turned into first-order arrays bit-vectors symbolic expressions
according to the translation given in Figure 4.3a. Constant machine integers are

4.2. SYMBOLIC EXECUTION 59

〈Γ,m〉 �BitVec n m

v : BitVec n a fresh symbol〈
Γ, get

〉
�BitVec n v

〈Γ, a〉 �BitVec n i

〈Γ,@[a]〉 �BitVec n Γ[i]

〈Γ, a0〉 �BitVec n m0 〈Γ, a1〉 �BitVec n m1

〈Γ, a0 − a1〉 �BitVec n m0 −n m1

(a) Symbolic semantics of arithmetic expressions

〈Γ, true〉 �Bool > 〈Γ, false〉 �Bool ⊥

〈Γ, a0〉 �BitVec n m0 〈Γ, a1〉 �BitVec n m1

〈Γ, a0 < a1〉 �Bool m0 <n m1

〈Γ, b〉 �Bool t

〈Γ,¬b〉 �Bool ¬t

〈Γ, b0〉 �Bool t0 〈Γ, b1〉 �Bool t1

〈Γ, b0 ∧ b1〉 �Bool t0 ∧ t1

(b) Symbolic semantics of boolean expressions

〈
pc, Γ, ρ, skip

〉
�

〈
pc, Γ, ρ + 1,Σ

(
ρ + 1

)〉
〈Γ, a0〉 �BitVec n i 〈Γ, a1〉 �BitVec n m〈

pc, Γ, ρ,@[a0]← a1
〉
�

〈
pc, Γ[i]← m , ρ + 1,Σ

(
ρ + 1

)〉
〈Γ, b〉 �Bool t 〈Γ, a〉 �BitVec n i for all j : BitVec n〈

pc, Γ, ρ, if b jump a
〉
�

〈
pc ∧ t ∧ j � i , Γ, j,Σ

(
j
)〉

〈Γ, b〉 �Bool t〈
pc, Γ, ρ, if b jump a

〉
�

〈
pc ∧ ¬t , Γ, ρ + 1,Σ

(
ρ + 1

)〉
〈Γ, a〉 �BitVec n m for all r : BitVec n〈

pc, Γ, ρ, return a
〉
� {(M , r) | M |� pc ∧ r � m}

〈
pc, Γ, ρ, abort

〉
� {(M ,) | M |� pc}

(c) Symbolic semantics of instructions

Figure 4.3 – Symbolic semantics of LOW.

60 CHAPTER 4. SYMBOLIC EXECUTION

converted into bit-vectors constant values, and arithmetic machine operators are lifted
to their bit-vectors counterparts. Every get occurrence is replaced by a fresh bit-vector
symbol, and in memory reads @[·] are replaced by symbolic reads ·[·] over the symbolic
expression representing the current state of the memory. The translation of boolean
expression is straightforward, as all boolean machine values and all boolean machine
operators can be directly lifted to their counterparts in the boolean theory, following
rules given in Figure 4.3b.

Path Constraints Beside the symbolic state Γ, Symbolic Execution maintains a path
constraint pc, which is a quantifier-free first-order formula over symbolic expressions. pc
gathers constraints that symbolic inputs have to satisfy in order to ensure the execution
follows a specific path in the program control flow.

Symbolic Execution computes for each path a set of inputs for which the concrete
execution follows the same path. Figure 4.3c details how these sets of inputs can be
computed following transition rules between states

〈
pc, Γ, ρ,Σ

(
ρ
)〉
, where pc contains

path constraints and Γ is the symbolic state. Symbolic Execution starts in the initial state〈
>, γ, 0,Σ (0)

〉
, with γ a fresh array symbol. On a write instruction @[a0] ← a1, the

symbolic state is updated into Γ[i]← m, where 〈Γ, a0〉 �BitVec n i and 〈Γ, a1〉 �BitVec n m
are bit-vector symbolic translations of a0 and a1 according to Γ. Note that ·[·] ← ·
denotes the write of the arrays theory. Jump instruction if b jump a are more complex
to handle. On these instructions, Symbolic Execution forks on all possible instructions
reachable from this one, and returns the union of these forks results. More precisely,
assuming 〈Γ, b〉 �Bool t and 〈Γ, a〉 �BitVec n i, if the symbolic jump condition t can be
validated, then the Symbolic Execution forks on every instruction whose code pointer j
might be equal to i. If so, the path constraint becomes pc ∧ t ∧ i � j. Moreover, if the
symbolic jump condition can be contradicted, then the Symbolic Execution continue
on the next instruction, and the path constraint becomes pc ∧ ¬t. Symbolic Execution
stops when it reaches a return a or an abort instruction. On the former, assuming
〈Γ, a〉 �BitVec n m, it returns a set of couples (M , r), whereM is a model of pc ∧ r � m,
i.e. is an input on which the concrete execution follows the symbolic path and returns
the value r. On the latter, it returns a set of couples (M ,), whereM is a model of pc,
i.e. is an input on which the concrete execution follows the symbolic path and fails.

RunningExample For the sake of clarity, let us symbolically execute the LOWprogram
given in Figure 4.4. Basically, this program retrieves two integer inputs from the user,
computes which one is the greatest of the two, checks if this value is greater than at least
one of the two user inputs and returns it. However, the final check can be invalidated,

4.2. SYMBOLIC EXECUTION 61

0 : @[0]← get

1 : @[1]← get

2 : if (@[0] < @[1]) jump 5
3 : @[2]← @[0]
4 : if true jump 6
5 : @[2]← @[1]
6 : if (@[0] < @[2] ∨@[1] < @[2]) jump 8
7 : abort

8 : return @[2]

0 : @[0]← get

1 : @[1]← get

@[0] < @[1]

3 : @[2]← @[0] 5 : @[2]← @[1]

@[0] < @[2] ∨@[1] < @[2]

7 : abort 8 : return @[2]

〈
pc0 , >
Γ0 , γ

〉

〈
pc1 , pc0
Γ1 , (Γ0[0]← a)[1]← b

〉

〈
pc2 , pc1 ∧ (Γ1[0] ≥ Γ1[1])
Γ2 , Γ1

〉 〈
pc3 , pc1 ∧ (Γ1[0] < Γ1[1])
Γ3 , Γ1

〉

〈
pc4 , pc2
Γ4 , Γ2[2]← (Γ2[0])

〉 〈
pc5 , pc3
Γ5 , Γ2[2]← (Γ2[1])

〉

〈
pc6 , pc4 ∧ (Γ4[0] ≥ Γ4[2]) ∧ (Γ4[1] ≥ Γ4[2])
Γ6 , Γ4

〉
〈

pc8 , pc5 ∧ (Γ5[0] ≥ Γ5[2]) ∧ (Γ5[1] ≥ Γ5[2])
Γ8 , Γ5

〉
〈

pc7 , pc4 ∧ (Γ4[0] < Γ4[2] ∨ Γ4[1] < Γ4[2])
Γ7 , Γ4

〉
〈

pc9 , pc5 ∧ (Γ5[0] < Γ5[2] ∨ Γ5[1] < Γ5[2])
Γ9 , Γ5

〉

Figure 4.4 – Symbolic Execution of a LOW program.

62 CHAPTER 4. SYMBOLIC EXECUTION

as the Symbolic Execution will highlight it.
Symbolic Execution starts in the initial state pc0 , >, Γ0 , γ, where γ is a fresh

array symbol. Instructions 0 and 1 retrieve two user inputs and store them in memory
at indexes 0 and 1. Therefore the symbolic state becomes Γ1 , (Γ0[0]← a)[1] ← b,
where a and b are fresh bit-vector symbols representing symbolic inputs obtained from
get expressions. Instruction 3 is a jump instruction, consequently Symbolic Execution
forks depending on the symbolic evaluation of the jump condition @[0] < @[1].

On the branch where the jump condition is satisfied the path constraint becomes
pc3 , pc1∧(Γ1[0] < Γ1[1]) and the symbolic stateΓ5 , Γ2[2]← (Γ2[1]) after symbolically
executing instruction 5. Then the Symbolic Execution reaches the jump instruction 6.
Satisfying the symbolic translation of @[0] < @[2] ∨ @[1] < @[2] leads to instruction
8 with path constraint pc9 , pc5 ∧ (Γ5[0] < Γ5[2] ∨ Γ5[1] < Γ5[2]), where Symbolic
Execution stops and returns for example {a � 0, b � 1} However, invalidating the
symbolic condition would lead to instruction 7 with path constraint pc8 , pc5 ∧

(Γ5[0] ≥ Γ5[2]) ∧ (Γ5[1] ≥ Γ5[2]), which is unsatisfiable. Hence it is impossible to reach
the abort instruction from this branch.

On the branch where the jump condition is not satisfied the path constraint becomes
pc2 , pc1∧(Γ1[0] ≥ Γ1[1]) and the symbolic stateΓ4 , Γ2[2]← (Γ2[0]) after symbolically
executing instruction 3. Once again the Symbolic Execution reaches the jump instruction
6. Satisfying the symbolic condition leads to instruction 8 with path constraint
pc7 , pc4∧ (Γ4[0] < Γ4[2] ∨ Γ4[1] < Γ4[2]), where Symbolic Execution stops and returns
for example {a � 1, b � 0}. But on this branch, it is also possible to invalidate the jump
condition which leads to instruction 7 with path constraint pc6 , pc4∧ (Γ4[0] ≥ Γ4[2])∧
(Γ4[1] ≥ Γ4[2]). Hence the Symbolic Execution reaches the abort instruction, fails and
returns for example {a � 0, b � 0}. Indeed, providing two equal inputs systematically
leads to the abort instruction and make the concrete execution fail.

4.2.2 Advanced Techniques

Modern Symbolic Execution tools do not exactly implement the general Symbolic
Execution we presented so far, as it scales badly and has difficulties to manage
externalities, but variations instead. In this section we present two advanced techniques
widely used by Symbolic Execution tools, concretization and symbolization, and two
variations around this general Symbolic Execution, which reflect more accurately what
is implemented in modern tools [GKS05, SMA05, CKC12].

4.2. SYMBOLIC EXECUTION 63

Concretization and Symbolization Modern Symbolic Execution tools do not sym-
bolically evaluate entire execution traces, but only trace fragments in order to scale on
large program [GKS05]. Concretization and symbolization are two common strategies
allowing to properly achieve this goal [DBT+16]:

Concretization Concretization under-approximates the path constraint by instantiating
logical symbols with concrete values, allowing to simplify or even cut off some
trace fragments. These concrete values may come from run-time values of a
concrete execution of the program, or from a partial solution of the path constraint.
For example, we can concretize read and write indexes in order to reduce the
complexity of the path constraint. We can also execute system calls and concretize
corresponding trace fragments with values they return.

Symbolization Symbolization over-approximates the path constraint by abstracting
some trace fragments with fresh logical symbols. This is particularly interesting
when we cannot or do not want to execute the program. For example, as
concretization requires to execute system calls, wemay instead prefer to symbolize
them with fresh logical symbols. We can also simplify the path constraint by
symbolizing fragmentswhich are computationally too hard to solve, as for example
those coming from cryptographic libraries.

As concretization under-approximates and symbolization over-approximates the path
constraint, one has to be very careful when mixing these two strategies as an improper
combination would make the analysis unsound [DBF+16].

Static and Dynamic Symbolic Execution Instead of the general Symbolic Execution
we presented so far, Symbolic Execution tools implement variations which can roughly
be classified between the following two:

Static Symbolic Execution Static Symbolic Execution is the closest variant to our gen-
eral Symbolic Execution [WMMR05, CDE08]. It starts by symbolically executing
the program from its entry point. On a branching instruction, it solves the path
constraint in order to find all the possible instructions where the execution can
continue. Choosing where to continue between these destinations is a matter of
heuristics and greatly influence the overall efficiency. As its name suggests, the
program is never concretely executed, which make the use of run-time values
impossible for concretization. Even if it is still possible to use partial solution
values in order to concretize parts of the path constraint, this limitation tends to

64 CHAPTER 4. SYMBOLIC EXECUTION

make symbolization a more natural choice, especially when dealing with external
calls.

Dynamic Symbolic Execution By contrast, dynamic Symbolic Execution relies on the
ability to execute and to inspect run-time values of the program [GKS05, SMA05].
It starts by concretely executing the program on predetermined concrete initial
inputs. Then these concrete inputs are symbolized, and for each branching
instruction in the execution trace, it tries to find inputs for which the execution
takes the direction not followed by the initial trace. The process is repeated on
each of these new concrete inputs. As the exploration starts with a concrete trace,
concretization is a natural choice to deal with external calls or to simplify parts
of the path constraint. Symbolization can still be useful to generalize the path
constraint.

Of course, modern Symbolic Execution tools are not restricted to pure static or pure
dynamic Symbolic Execution, but implement something in between, depending on
their verification goals and the kind of program they target.

4.3 Limits and Solutions

Despite being a mature technology, Symbolic Execution is still an active research
area. The reason is that it still suffers from fundamental limitations, all of which
being challenging research topics. In this section we discuss some of these challenges,
path explosion in Section 4.3.1, constraint solving in Section 4.3.2, memory model
in Section 4.3.3, and interaction with the environment in Section 4.3.4, together with
interesting solutions developed in response to them.

4.3.1 Path Explosion

The main limitation to Symbolic Execution comes from the huge number of program
paths in all but the smallest programs. Indeed, the number of program paths is at
least exponential in the number of branching instructions, and can even be infinite
in the presence of unbounded loop iterations. Several approaches were developed to
overcome this issue:

Path Pruning Afirst natural strategy to reduce the path space is to invoke the constraint
solver at each branching instruction to prune unrealizable paths: if the branching
condition is unsatisfiable, then we can discard the path following this branch. This

4.3. LIMITS AND SOLUTIONS 65

approach is the default inmost Symbolic Execution tools. An orthogonal approach
consists in extracting an unsat core from each path proved to be unsatisfiable, and
to discard all paths sharing this minimal unsat core [SSJ+15, DBG10]. We can also
remove redundant paths during the exploration by discarding those reaching an
already visited program point with a more constrained symbolic state than before
[BCE08].

Path Merging Path merging is a powerful technique that merges different paths reach-
ing a common location into a single one [CDE08, ARCB14]. It merges symbolic
states by mapping variables to the disjunction of their symbolic representations in
the different symbolic states, whereas themerged path constraint is the disjunction
of the different incoming path constraints. However, path merging introduces
disjunctions, which increase the complexity of constraints and put a burden on
constraints solvers. Therefore there is a trade-off to be made between merging
and not merging, which is a matter of heuristics [KKBC12].

Function and Loop Summarization When a function or a loop is traversed several
times, we can try to build a summary of this code fragment for subsequent reuse
[God07, GL11, BBKK12]. However, computing function or loop summaries is
known to be hard, and is an active research topic. Summaries can still be computed
under some specific conditions, for example when the body of a loop or function
is restricted to linear arithmetic operation over static variables [dOBP16].

Program Analysis and Compiler Optimizations Various static analysis and compiler
optimizations can be adapted to Symbolic Execution in order to gain a better
understanding of the program behaviors and to ease its exploration [Cad15]. For
example we can use program slicing to extract a subset of the program whose
analysis is sufficient to reach a targeted program point [Wei81, Tip95, CKGJ11].
We can also use taint analysis to track dependencies between program variables
and remove the parts of the program that do not depend on some chosen inputs
[NS05, SAB10]. And many compiler optimizations can be applied on execution
traces in order to significantly reduce their size.

4.3.2 Constraint Solving

Despite significant advances which made Symbolic Execution possible in the first place,
constraint solving continues to be a bottleneck in Symbolic Execution. Indeed, without
proper optimization, Symbolic Execution ends up generating queries which blow the

66 CHAPTER 4. SYMBOLIC EXECUTION

solver up. In particular, Symbolic Execution engines have to be cautious about the
following aspects in order to prevent solver explosion:

Solution Reuse Reusing previously computed constraint results to speed up the
analysis can be particularly effective in the setting of a Symbolic Execution.
Indeed, because of the path based nature of Symbolic Execution, many constraints
will repeatedly be sent unchanged to the solver. Most reuse approaches for
constraint solving are currently based on semantic or syntactic equivalence of
the constraints [CGP+06, CDE08], which makes solution reuse especially efficient
when combined with other constraint simplification techniques.

Formula Size As it is the case in other unfolding-based verification techniques —
like bounded model checking, Symbolic Execution produces larger and larger
constraints as the path exploration progresses. Combine with extra complexity
due to disjunctions introduced explicitly by path merging or implicitly by terms
from the arrays theory, it results in constraints that exhaust all modern solvers. To
prevent this bottleneck, it is therefore crucial to simplify these constraints directly
into the Symbolic Execution engine using dedicated treatments [GD07, DBT+16].

Quantified Formulas Properly modeling program components, summarizing loop or
formalizing some properties to verify, might require the use of quantification
in constraints [SST13]. However, finding a model for a constraint involving
universally quantification is difficult, and even undecidable for most theories
handled by solvers. Despite recent advances in the resolution of quantified
constraints, most solvers will fail to solve such constraints, especially the large
ones produced by Symbolic Execution. Thus, quantifications have to be specifically
handled in order to not burden the underlying solver.

4.3.3 Memory Model

A crucial aspect of Symbolic Execution is how to model memory in order to correctly
handle pointers. One can choose a low-level memory model, like we do when we
define Symbolic Execution for LOW programs, or higher-level memory models when
dealing with higher level languages. Whatever the memory model we choose, we
have to take into consideration the fact that the program execution starts in a widely
undefined memory state. A memory model is an important design choice for Symbolic
Execution tools, as it significantly affects program behaviors coverage and constraint
solving scalability: too restricted memory model will induce weak program behaviors
coverage while too generic memory model will exhaust solvers.

4.3. LIMITS AND SOLUTIONS 67

Fully Symbolic Memory Fully symbolic memory is the memory model with the
highest level of generality [SBY+08, BJAS11]. Bothmemory addresses andmemory
contents are symbolic expressions, making possible to accurately describe all
possible memory manipulations. However, these symbolic expressions are likely
to grow quickly and to become complex to solve. Moreover, an unconstrained
symbolic address will reference any memory cell, leading to an explosion in the
number of program states.

Address Concretization Address concretization is a popular technique, which consists
in concretizing symbolic memory addresses into single concrete addresses by
replacing them with runtime values [GKS05, SMA05]. This reduces the number
of states and the complexity of constraints fed to the solver, although it causes the
Symbolic Execution to miss paths that depend on specific memory addresses.

4.3.4 Interactions with the Environment

As for others software verification techniques, environment interactions are sources
of troubles in Symbolic Execution. Because most programs are not self-contained,
Symbolic Execution has to take into account their interactions with the surrounding
environment. Typical examples of this are the underlying operating system, with its
file system, environment variables, and network access, and complex user interaction.

System Environment Early works dealt with the system environment by actually
executing external calls using concrete arguments [GKS05, SMA05, CGP+06]. In
addition to the risk of performing system calls on arbitrary values, it may also
break the analysis consistency. Indeed, as there is no mechanism for tracking the
external call side effects, it may result in having external calls from distinct paths
interfere with each other, leading to inconsistency in the analysis. The usual way
to overcome this problem is to create abstract models of system interactions; but
creating such a model for all system interactions is an endless and error prone
task.

User Interaction Dealing with user interaction is even worse. Indeed, concretization is
not possible as it would require to trigger the user each time the program needs
to interact with him. The only solution is therefore to define dedicated models,
which can be extremely convoluted, for example when dealing with graphical
interfaces.

68 CHAPTER 4. SYMBOLIC EXECUTION

4.4 Application to Program Verification

Finally we explain how to adapt Symbolic Execution to program verification. We focus
in Section 4.4.1 on the verification of a specific kind of properties called trace properties,
whose verification fits well with Symbolic Execution. Then in Section 4.4.2 we define the
notions of over-approximation and under-approximation, completeness and correctness
for Symbolic Execution, and express the link between these different notions.

4.4.1 Trace Property Verification

Trace properties are a specific kind of properties, stated over execution traces of the
program to be analyzed. Because it performs a trace-based exploration of the program
control-flow graph, Symbolic Execution happen to be well adapted for verifying such
properties.

Definition 4.2 (Execution Trace). An execution trace is a sequence of states that could
successively be taken by a program during one of its execution.

Hence for LOW programs, concrete execution traces are members of the family(〈
Γn , ρn ,Σ

(
ρn

)〉)
n∈N, where for all n ∈ N there exists a transition rule in Figure 4.2c

such that
〈
Γn , ρn ,Σ

(
ρn

)〉

〈
Γn+1, ρn+1,Σ

(
ρn+1

)〉
, while Symbolic Execution traces are

members of the family
(〈

pcn , Γn , ρn ,Σ
(
ρn

)〉)
n∈N, where for all n ∈ N there exists a tran-

sition rule in Figure 4.3c such that
〈
pcn , Γn , ρn ,Σ

(
ρn

)〉

〈
pcn+1, Γn+1, ρn+1,Σ

(
ρn+1

)〉
.

Definition 4.3 (Trace Property). Let T be the set of all execution traces. A property Φ is
a trace property if it can be expressed as a computable function fΦ : T 7→ Bmapping
execution traces to > or ⊥. We said that Φ holds on a trace T ∈ T if fΦ (T) � >, and we
said that Φ holds on a program P if Φ holds on all execution traces of P.

Despite the restriction of considering only trace properties, a rich number of
interesting properties can still be expressed in this way. For example, we can check
that no integer overflow occurs by implementing a function which checks for every
suspicious operator if it does not overflow on current operands. Or we can check that
no memory address is read before it was written by implementing a function which
keeps a record of every written address and verify that every read address belongs to
this record.

Verification by Symbolic Execution From these definitions, adapting Symbolic Exe-
cution to trace properties verification is straightforward. We first express the property

4.4. APPLICATION TO PROGRAM VERIFICATION 69

as a function over symbolic traces, then we run the Symbolic Execution engine in order
to retrieve a set of symbolic traces covering all the possible executions of the program,
and finally call the function on each of these symbolic traces. The property holds on the
program if it holds on each of the symbolic traces provided by the Symbolic Execution
engine. Note that the set of symbolic traces for a program might be infinite. In this case,
verification by Symbolic Execution will in general by incomplete, and the approach we
described provides a pseudo-algorithm that may not terminate.

An alternative approach relies on the fact that any trace property can be enforced
on a program by the mean of instrumentation [CF00]. The resulting instrumented
program behaves exactly as the original program, except it will fail and abort if the
enforced property is infringed. Having made this observation, the problem of verifying
if a property holds on the original program is reduced to a reachability problem in the
instrumented program. Indeed, we simply have to let the Symbolic Execution engine
enumerate all the possible execution paths of the instrumented program and check that
none of them leads to an abort instruction. For this reason, many notions like completeness

and correctness of an analysis by Symbolic Execution can be stated in terms of reachability.

4.4.2 Correctness and Completeness

Correctness (also known as soundness) and completeness are two dual meta-properties
of verifiers commonly used to measure their usefulness. A verifier is a program which
is capable of checking whether a given program satisfies a given assertion. Intuitively,
a verifier is correct if properties it can prove hold with respect to the semantics of the
system. Conversely, a verifier is complete if it can prove all the properties which hold
with respect to the semantics of the system.

Definition 4.4 (Correctness). A verifier is correct if, for every program P, for every
property Φ, if the verifier states that property Φ holds on program P, then Φ indeed
holds on P.

Definition 4.5 (Completeness). A verifier is complete if, for every program P, for every
property Φ, if property Φ indeed holds on program P, then the verifier will state that Φ
holds on P.

We do not consider analyzers which are incorrect and incomplete, as they are not
relevant in the context of formal verification. Conversely, it is in general impossible
for an analyzer to be both correct and complete, the choice of being one or the other
depending on the kind of performed analysis.

70 CHAPTER 4. SYMBOLIC EXECUTION

Under-Approximation and Over-Approximation Notions of correctness and com-
pleteness are tightly linked to notions of under-approximation and over-approximation.
If we speak in terms of program behavior, an analyzer aims to capture all the behaviors
of a program and to check that properties to verify hold on these behaviors. However,
capturing the exact set of behaviors for a given program is impossible. Hence, in order
to make verification possible, analyzers under-approximate or over-approximate this
set of behaviors. In the case of Symbolic Execution, program behaviors are materialized
by execution traces, which gives us the two following definitions.

Definition 4.6 (Under-Approximation). A Symbolic Execution under-approximates the
concrete execution of a program if, for every feasible execution path, for every input in
the set of inputs computed by the Symbolic Execution for that path, this input makes
the concrete execution follow that path.

Definition 4.7 (Over-Approximation). A Symbolic Execution over-approximates the
concrete execution of a program if, for every feasible execution path, for every input
making the concrete execution follow that path, this input belongs to the set of inputs
computed by the Symbolic Execution for that path.

In the case on an under-approximating Symbolic Execution, all symbolic traces are
contained in the set of concrete traces. Therefore if a property is valid on a symbolic
trace, this property will be valid on a concrete trace: under-approximating Symbolic
Executions are correct. Conversely, in the case of an over-approximating Symbolic
Execution, all concrete traces are contained in the set of symbolic traces. Therefore if a
property is valid on a concrete trace, this property will be valid on a symbolic trace:
over-approximating Symbolic Executions are complete.

Proposition 4.1 (Under-Approximations are Correct). If a Symbolic Execution under-

approximates the concrete execution of a program P, then for every trace property Φ, if Symbolic

Execution states that Φ holds on a trace of P, then Φ indeed holds on that trace.

Proposition 4.2 (Over-Approximations are Complete). If a Symbolic Execution over-

approximates the concrete execution of a program P, then for every trace property Φ, if Φ holds

on a trace of P, then Symbolic Execution will state that Φ holds on that trace.

Under-approximation and over-approximation are both possible to achieve in Sym-
bolic Execution, thanks, among other techniques, to concretization and symbolization,
as said in Section 4.2.2. However, under-approximation tends to be a more natural
choice. Indeed, in most programs, the number of distinct execution traces is huge,
even sometime infinite. Symbolic Execution has to consider only a fraction of them,

4.5. CONCLUSION 71

and therefore under-approximates the different behaviors realizable by a program.
A common workaround is to consider a weak form of completeness, a completeness
up to k, where only the k first execution steps are considered, which makes the set of
execution traces finite by bounding the size of execution traces to k.

4.5 Conclusion

In this chapter we presented Symbolic Execution, an automated software verification
technique which had been proved successful in bug finding. We first introduced
and gave the syntax and semantics of the LOW language, a low-level programming
language intended to mimic assembly language, before explaining the general principle
behind Symbolic Execution and formally defining the Symbolic Execution of LOW
programs. We also detailed two advanced techniques commonly encountered in
Symbolic Execution tools: concretization and symbolization; and two variations
around the general Symbolic Execution: Static Symbolic Execution and Dynamic
Symbolic Execution. Then we listed several limitations and challenges that Symbolic
Execution tools have to face, like path explosion, memory modelling, interaction with
the environment and constraint solving issues, together with approaches developed
to overcome these issues. Finally we explained how to adapt Symbolic Execution to
the verification of trace properties, defined the correctness and completeness meta-
properties and linked these notions to the concept of under-approximating and over-
approximating Symbolic Execution.

Bibliography

[ARCB14] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley.
Enhancing symbolic execution with veritesting. In 36th International

Conference on Software Engineering, ICSE ’14, Hyderabad, India - May 31 -

June 07, 2014, pages 1083–1094, 2014.

[BBKK12] Sebastian Biallas, Jörg Brauer, Andy King, and Stefan Kowalewski. Loop
leaping with closures. In Static Analysis - 19th International Symposium, SAS

2012, Deauville, France, September 11-13, 2012. Proceedings, pages 214–230,
2012.

[BCE08] Peter Boonstoppel, Cristian Cadar, and Dawson R. Engler. Rwset: At-
tacking path explosion in constraint-based test generation. In Tools and

72 CHAPTER 4. SYMBOLIC EXECUTION

Algorithms for the Construction and Analysis of Systems, 14th International

Conference, TACAS 2008, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March

29-April 6, 2008. Proceedings, pages 351–366, 2008.

[BGM13] Ella Bounimova, Patrice Godefroid, and David A. Molnar. Billions and
billions of constraints: whitebox fuzz testing in production. In 35th

International Conference on Software Engineering, ICSE ’13, San Francisco, CA,

USA, May 18-26, 2013, pages 122–131, 2013.

[BJAS11] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz.
BAP: A binary analysis platform. In Computer Aided Verification - 23rd

International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.

Proceedings, pages 463–469, 2011.

[Cad15] Cristian Cadar. Targeted program transformations for symbolic execution.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015,
pages 906–909, 2015.

[CARB12] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley.
Unleashing mayhem on binary code. In IEEE Symposium on Security and

Privacy, SP 2012, 21-23 May 2012, San Francisco, California, USA, pages
380–394, 2012.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted
and automatic generation of high-coverage tests for complex systems
programs. In 8th USENIX Symposium on Operating Systems Design and

Implementation, OSDI 2008, December 8-10, 2008, San Diego, California, USA,

Proceedings, pages 209–224, 2008.

[CF00] Thomas Colcombet and Pascal Fradet. Enforcing trace properties by
program transformation. In POPL 2000, Proceedings of the 27th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

Boston, Massachusetts, USA, January 19-21, 2000, pages 54–66, 2000.

[cgc16] Cyber grand challenge (cgc). https://www.darpa.mil/program/

cyber-grand-challenge, 2016.

https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge

BIBLIOGRAPHY 73

[CGP+06] Cristian Cadar, Vĳay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler. EXE: automatically generating inputs of death. In
Proceedings of the 13th ACM Conference on Computer and Communications

Security, CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006,
pages 322–335, 2006.

[CKC12] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. The S2E
platform: Design, implementation, and applications. ACM Trans. Comput.

Syst., 30(1):2:1–2:49, 2012.

[CKGJ11] Omar Chebaro, Nikolai Kosmatov, Alain Giorgetti, and Jacques Julliand.
The SANTE tool: Value analysis, program slicing and test generation for C
program debugging. In Tests and Proofs - 5th International Conference, TAP

2011, Zurich, Switzerland, June 30 - July 1, 2011. Proceedings, pages 78–83,
2011.

[Cla76] Lori A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Trans. Software Eng., 2(3):215–222, 1976.

[CS13] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:
three decades later. Commun. ACM, 56(2):82–90, 2013.

[DBF+16] Robin David, Sébastien Bardin, Josselin Feist, Laurent Mounier, Marie-
Laure Potet, Thanh Dinh Ta, and Jean-Yves Marion. Specification of
concretization and symbolization policies in symbolic execution. In ISSTA,

Saarbrücken, Germany, July 18-20, 2016, pages 36–46, 2016.

[DBG10] Mickaël Delahaye, Bernard Botella, and Arnaud Gotlieb. Explanation-
based generalization of infeasible path. In Third International Conference on

Software Testing, Verification and Validation, ICST 2010, Paris, France, April

7-9, 2010, pages 215–224, 2010.

[DBT+16] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin
Feist, Marie-Laure Potet, and Jean-Yves Marion. BINSEC/SE: A Dynamic
Symbolic Execution Toolkit for Binary-Level Analysis. In IEEE 23rd

International Conference on Software Analysis, Evolution, and Reengineering,

SANER 2016, Osaka, Japan, March 14-18, 2016 - Volume 1, pages 653–656,
2016.

74 CHAPTER 4. SYMBOLIC EXECUTION

[dOBP16] Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. Polynomial
invariants by linear algebra. In Automated Technology for Verification and

Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan, October

17-20, 2016, Proceedings, pages 479–494, 2016.

[GD07] Vĳay Ganesh and David L. Dill. A decision procedure for bit-vectors and
arrays. In Computer Aided Verification, 19th International Conference, CAV

2007, Berlin, Germany, July 3-7, 2007, Proceedings, pages 519–531, 2007.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed
automated random testing. In Proceedings of the ACM SIGPLAN 2005

Conference on Programming Language Design and Implementation, Chicago, IL,

USA, June 12-15, 2005, pages 213–223, 2005.

[GL11] Patrice Godefroid and Daniel Luchaup. Automatic partial loop summa-
rization in dynamic test generation. In Proceedings of the 20th International

Symposium on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada,

July 17-21, 2011, pages 23–33, 2011.

[GLM12] PatriceGodefroid,Michael Y. Levin, andDavidA.Molnar. SAGE:Whitebox
Fuzzing for Security Testing. ACM Queue, 10(1):20, 2012.

[God07] Patrice Godefroid. Compositional dynamic test generation. In Proceedings

of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2007, Nice, France, January 17-19, 2007, pages 47–54, 2007.

[Kin76] James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

[KKBC12] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea.
Efficient state merging in symbolic execution. InACMSIGPLANConference

on Programming Language Design and Implementation, PLDI ’12, Beĳing,

China - June 11 - 16, 2012, pages 193–204, 2012.

[NS05] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for
automatic detection, analysis, and signaturegeneration of exploits on
commodity software. In Proceedings of the Network and Distributed System

Security Symposium, NDSS 2005, San Diego, California, USA, 2005.

[SAB10] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you
ever wanted to know about dynamic taint analysis and forward symbolic

BIBLIOGRAPHY 75

execution (but might have been afraid to ask). In 31st IEEE Symposium on

Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California,

USA, pages 317–331, 2010.

[SBY+08] Dawn Xiaodong Song, David Brumley, Heng Yin, Juan Caballero, Ivan
Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, and Prateek Saxena. Bitblaze: A new approach to com-
puter security via binary analysis. In Information Systems Security, 4th

International Conference, ICISS 2008, Hyderabad, India, December 16-20, 2008.

Proceedings, pages 1–25, 2008.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit
testing engine for C. In Proceedings of the 10th European Software Engineering

Conference held jointly with 13th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, 2005, Lisbon, Portugal, September 5-9,

2005, pages 263–272, 2005.

[SSJ+15] Daniel Schwartz-Narbonne,Martin Schäf, Dejan Jovanovic, PhilippRmmer,
and Thomas Wies. Conflict-directed graph coverage. In NASA Formal

Methods - 7th International Symposium, NFM 2015, Pasadena, CA, USA, April

27-29, 2015, Proceedings, pages 327–342, 2015.

[SST13] Jiri Slaby, Jan Strejcek, and Marek Trtík. Compact symbolic execution.
In Automated Technology for Verification and Analysis - 11th International

Symposium, ATVA 2013, Hanoi, Vietnam, October 15-18, 2013. Proceedings,
pages 193–207, 2013.

[Tip95] Frank Tip. A survey of program slicing techniques. J. Prog. Lang., 3(3),
1995.

[Wei81] Mark Weiser. Program slicing. In Proceedings of the 5th International

Conference on Software Engineering, San Diego, California, USA, March 9-12,

1981., pages 439–449, 1981.

[WMMR05] Nicky Williams, Bruno Marre, Patricia Mouy, and Muriel Roger.
Pathcrawler: Automatic generation of path tests by combining static
and dynamic analysis. In Dependable Computing - EDCC-5, 5th European

Dependable Computing Conference, Budapest, Hungary, April 20-22, 2005,

Proceedings, pages 281–292, 2005.

76 CHAPTER 4. SYMBOLIC EXECUTION

Part III

Contributions

77

Chapter 5

Model Generation for Quantified

Formulas: A Taint-Based Approach

We focus in this chapter on generating models for quantified first-order formulas over
built-in theories as defined in Chapter 3, which is paramount in software verification
and bug finding. Chapter 2 expressed the need of quantified formulas to encode some
security properties or to model interactions with the environment. While standard
methods are either geared toward proving the absence of a solution rather than
finding some, or targeted to specific theories, we propose a correct approach for
model generation of quantified formulas modulo theories, based on a reduction to the
quantifier-free case through the inference of independence conditions. Our technique is
applicable to any theory with a decidable quantifier-free case, and thus allows to reuse
all the efficient machinery developed for that context. Experiments show a substantial
improvement over state-of-the-art methods. The content of this chapter was presented in
[RL18] and published in [FBBP18].

5.1 Introduction

Context As stated in Chapter 3, software verification methods have come to rely
increasingly on reasoning over logical formulas modulo theory. In particular, the
ability to generate models (i.e., find solutions) of a formula is of utmost importance,
typically in the context of bug finding or intensive testing — Symbolic Execution
[GLM12] or BoundedModel Checking [Bie09]. Since quantifier-free first-order formulas on
well-suited theories are sufficient to represent many reachability properties of interest,
the Satisfiability Modulo Theory (SMT) [BSST09, KS08] community has primarily

79

80 CHAPTER 5. MODEL GENERATION FOR QUANTIFIED FORMULAS

dedicated itself to designing solvers able to efficiently handle such problems.
Yet, universal quantifiers are sometimes needed, typically when considering pre-

conditions or code abstraction, or when modeling some complex system as shown in
Chapter 2. Unfortunately, most theories handled by SMT-solvers are undecidable in the
presence of universal quantifiers. There exist dedicated methods for a few decidable
quantified theories, such as Presburger arithmetic [BKRW11] or the array property
fragment [BMS06], but there is no general and effective enough approach for the model
generation problem over universally quantified formulas. Indeed, generic solutions
for quantified formulas involving heuristic instantiation and refutation are best geared
to prove the unsatisfiability of a formula (i.e., absence of solution) [dMB07, GdM09],
while recent proposals such as local theory extensions [BRK+15], finite instantiation
[RTGK13, RTG+13] or model-based instantiation [RDK+15, GdM09] either are too nar-
row in scope, or handle quantifiers on free sorts only, or restrict themselves to finite
models, or may get stuck in infinite refinement loops.

Goal and Challenge Our goal is to propose a generic and efficient approach to
the model generation problem over arbitrary quantified formulas with support for
theories commonly found in software verification. Due to the huge effort made by the
community to produce state-of-the-art solvers for quantifier-free theories (QF-solvers),
it is highly desirable for this solution to be compatible with current leading decision
procedures, namely SMT approaches.

Proposal Our approach turns a quantified formula into a quantifier-free formula
with the guarantee that any model of the latter contains a model of the former. The
benefits are threefold: the transformed formula is easier to solve, it can be sent to
standardQF-solvers, and amodel for the initial formula is deducible from amodel of the
transformed one. The idea is to ignore quantifiers but strengthen the quantifier-free part
of the formula with an independence condition constraining models to be independent
from the (initially) quantified variables.

Contributions This chapter makes the following contributions:

• We propose a novel and generic framework for model generation of quantified
formula (Section 5.4, Algorithm 5.1) relying on the inference of sufficient indepen-

dence condition (Section 5.3). We prove its correctness (Theorem 5.1, mechanized
in Coq) and its efficiency under reasonable assumptions (Proposition 5.4 and
Proposition 5.5). Especially our approach implies only a linear overhead in the

5.1. INTRODUCTION 81

formula size. We also briefly study its completeness, related to the notion of weakest
independence condition.

• We define a taint-based procedure for the inference of independence conditions
(Section 5.4.2), composed of a theory-independent core (Algorithm 5.2) together
with theory-dependent refinements. We propose such refinements for a large
class of operators (Section 5.5.2), encompassing notably arrays and bitvectors.

• Finally, we present a concrete implementation of our method specialized on
arrays and bitvectors (Section 5.6). Experiments on SMT-LIB benchmarks and
software verification problems notably demonstrate that we are able not only
to very effectively lift quantifier-free decision procedures to the quantified case,
but also to supplement recent advances, such as finite or model-based quantifier
instantiation [RTGK13, RTG+13, RDK+15, GdM09]. Indeed, we concretely supply
SMT solvers with the ability to efficiently address an extended set of software
verification questions.

Discussions In Section 5.7 we compare our approach to several quantified formulas
resolution techniques. Our approach supplements state-of-the-art model generation
on quantified formulas by providing a more generic handling of satisfiable problems.
We can deal with quantifiers on any sort and we are not restricted to finite models.
Moreover, this is a lightweight preprocessing approach requiring a single call to the
underlying quantifier-free solver. The method also extends to partial elimination of
universal quantifiers, or reduction to quantified-but-decidable formulas (Section 5.4.4).

While techniques a la E-matching allow to lift quantifier-free solvers to the unsatisfi-
ability checking of quantified formulas, this work provides a mechanism to lift them to
the satisfiability checking andmodel generation of quantified formulas, yielding a more
symmetric handling of quantified formulas in SMT. This new approach paves the way
to future developments such as the definition of more precise inference mechanisms of
independence conditions, the identification of interesting subclasses for which inferring
weakest independence conditions is feasible, and the combination with other quantifier
instantiation techniques.

Convention We consider the framework of many-sorted first-order logic with equality,
and we assume standard definitions of sorts, signatures and terms, as presented in
Chapter 3, Section 3.1. Letters a , b , c . . . denote uninterpreted symbols and variables.
Letters x , y , z . . . denote quantified variables. a , b , c denote sets of uninterpreted

82 CHAPTER 5. MODEL GENERATION FOR QUANTIFIED FORMULAS

symbols. x , y , z . . . denote sets of quantified variables. Finally, a, b, c . . . denote
valuations of associated (sets of) symbols.

In the rest of this chapter, we assume without loss of generality that all formulas are in Skolem

normal form. Recall that any formula φ in classical logic can be normalized into a formula

ψ in Skolem normal form such that any model of φ can be lifted into a model of ψ, and vice

versa. This strong relation, much closer to formula equivalence than to formula equisatisfiability,

ensures that our correctness and completeness results, all along the chapter, hold for arbitrarily

quantified formulas.

5.2 Motivation

In this sectionwe illustrate our approachona running example. Our general procedure is
detailed in Section 5.4, together with some theory-dependent refinements in Section 5.5.

Let us take the code sample in Figure 5.1 and suppose we want to reach function
analyze_me. For this purpose, we need a model (a.k.a., solution) of the reachability
condition φ , ax + b > 0, where a, b and x are symbolic variables associated to the
program variables a, b and x. However, while the values of a and b are user-controlled,
the value of x is not. Therefore if wewant to reach analyze_me in a reproduciblemanner,
we actually need a model of φ∀ , ∀x.ax + b > 0, which involves universal quantification.
While this specific formula is simple, model generation for quantified formulas is
notoriously difficult: PSPACE-complete for booleans, undecidable for uninterpreted
functions or arrays.

Reduction to theQuantifier-FreeCaseThrough Independence Wepropose to ignore
the universal quantification over x, but restrict models to those which do not depend on x.
For example, model {a � 1, x � 1, b � 0} does depend on x, as taking x � 0 invalidates
the formula, while model {a � 0, x � 1, b � 1} is independent of x. We call constraint
ψ , (a � 0) an independence condition: any interpretation of φ satisfying ψ will be
independent of x, and therefore a model of φ ∧ ψ will give us a model of φ∀.

Inference of Independence Conditions Through Tainting Figure 5.1 details in its
right part a way to infer such independence conditions. Given a quantified reachability
condition, here (1) ∀x.ax + b > 0, we associate to every variable v a (boolean) taint
variable v• indicating whether the solution may depend on v (value >) or not (value
⊥). Here (2), x• is set to ⊥, a• and b• are set to >. An independence condition (3) — a
formula modulo theory — is then constructed using both initial and taint variables.

5.3. MUSING WITH INDEPENDENCE 83

int main () {
int a = input ();
int b = input ();

int x = rand ();

if (a * x + b > 0) {
analyze_me();

}

else {
...;

}

}

Quantified reachability condition

(1) ∀x.ax + b > 0

Taint variable constraint

(2) a• ∧ b• ∧ ¬ (x•) (a•, b•, x• : fresh boolean)

Independence condition

(3) ((a• ∧ x•) ∨ (a• ∧ a � 0) ∨ (x• ∧ x � 0)) ∧ b•

(4) ((> ∧ ⊥) ∨ (> ∧ a � 0) ∨ (⊥ ∧ x � 0)) ∧ >
(5) a � 0

Quantifier-free approximation of (1)

(6) (ax + b > 0) ∧ (a � 0)

Figure 5.1 – Motivating example.

Condition (3) comes from the fact that in order to enforce ax + b > 0 to be independent
from x, we have to enforce that ax and b are independent from x. b is independent from
x if b• hold, while ax is independent from x if: either a• and x• hold; or a• holds and
a � 0 (absorbing the value of x); or the symmetric case. We see that taint constraints are
defined recursively and combines a systematic part (if t is independent from x then f (t)
also is, for any f) with a theory-dependent part (here, based on the absorption property
of ×). After simplifications (4), we obtain a � 0 as an independence condition (5) which
is adjoined to the reachability condition freed of its universal quantification (6). A
QF-solver provides a model of (6) (e.g., {a � 0, b � 1, x � 5}), lifted into a model of (1)
by discarding the valuation of x (e.g., {a � 0, b � 1}).

In this specific example the inferred independence condition (5) is the most generic
one and (1) and (6) are equisatisfiable. Yet, in general it may be an under-approximation,
constraining the variables more than needed and yielding a correct but incomplete
decision method: a model of (6) can still be turned into a model of (1), but (6) might not
have a model while (1) has.

5.3 Musing with Independence

In this section we introduce the notion of independence, the formal ground on which
ourmodel generation approach stands. We first define independence for interpretations,
terms and formulas. Then we explain what are independence conditions and how they

84 CHAPTER 5. MODEL GENERATION FOR QUANTIFIED FORMULAS

relate to model generation.

5.3.1 Independent Interpretations, Terms and Formulas

A solution (x, a) of Φ does not depend on x if Φ(x , a) is always true or always false,
for all possible valuations of x as long as a is set to a. More formally, we define the
independence of an interpretation of Φwith regard to x as follows:

Definition 5.1 (Independent Interpretation).

• Let Φ (x , a) a formula with free variables x and a. Then an interpretation I of
Φ (x , a) is independent of x if for all interpretations J equal to I except on x,
I |� Φ if and only if J |� Φ.

• Let ∆ (x , a) a term with free variables x and a. Then an interpretation I of
∆ (x , a) is independent of x if for all interpretations J equal to I except on x,
J∆ (x , a)KI � J∆ (x , a)KJ .

Regarding formula ax + b > 0 from Figure 5.1, {a � 0, b � 1, x � 1} is independent
of x while {a � 1, b � 0, x � 1} is not. Considering term (t [a ← b]) [c], with t an array
written at index a then read at index c, {a � 0, b � 42, c � 0, t � [. . .]} is independent
of t (evaluates to 42) while {a � 0, b � 1, c � 2, t � [. . .]} is not (evaluates to t [2]). We
now define independence for formulas and terms.

Definition 5.2 (Independent Formula and Term).

• Let Φ (x , a) a formula with free variables x and a. Then Φ (x , a) is independent
of x if ∀x.∀y.

(
Φ (x , a) ⇔ Φ

(
y , a

))
is true for any value of a.

• Let ∆ (x , a) a term with free variables x and a. Then ∆ (x , a) is independent of x
if ∀x.∀y.

(
∆ (x , a) � ∆

(
y , a

))
is true for any value of a.

Definition 5.2 of formula and term independence is far stronger than Definition 5.1 of
interpretation independence. Indeed, it can easily be checked that if a formula Φ (resp.
a term ∆) is independent of x, then any interpretation of Φ (resp. ∆) is independent of
x. However, the converse is false as formula ax + b > 0 is not independent of x, but has
an interpretation {a � 0, b � 1, x � 1} which is.

5.3. MUSING WITH INDEPENDENCE 85

5.3.2 Independence Conditions

Since it is rarely the case that a formula (resp. term) is independent from a set of
variables x, we are interested in Sufficient Independence Conditions. These conditions are
additional constraints that can be added to a formula (resp. term) in such a way that
they make the formula (resp. term) independent of x.

Definition 5.3 (Sufficient Independence Condition (SIC)).

• A Sufficient Independence Condition for a formula Φ (x , a) with regard to x is a
formulaΨ (a) such thatΨ (a) |� (∀x.∀y.Φ (x , a) ⇔ Φ

(
y , a

)
).

• A Sufficient Independence Condition for a term ∆ (x , a) with regard to x, is a
formulaΨ (a) such thatΨ (a) |� (∀x.∀y.∆ (x , a) � ∆

(
y , a

)
).

We denote by sicΦ,x (resp. sic∆,x) a Sufficient Independence Condition for a formula
Φ (x , a) (resp. for a term ∆ (x , a)) with regard to x. For example, a � 0 is a sicΦ,x for
formula Φ , ax + b > 0, and a � c is a sic∆,t for term ∆ , (t [a ← b]) [c]. Note that ⊥ is
always a sic, and that sic are closed under ∧ and ∨. Proposition 5.1 clarifies the interest
of sic for model generation.

Proposition 5.1 (Model Generalization). Let Φ (x , a) a formula and Ψ a sicΦ,x . If there

exists an interpretation {x, a} such that {x, a} |� Ψ (a) ∧Φ (x , a), then {a} |� ∀x.Φ (x , a).

Proof. Let (x, a) an interpretation of Φ (x , a), and let us assume that (x, a) |� Ψ (a) ∧
Φ (x , a). It comes immediately that (x, a) |� Ψ (a) (E1) and (x, a) |� Φ (x , a) (E2). From
(E1) we deduce that a |� Ψ (a), since x does not appear inΨ. Then,Ψ being a sicΦ,x ,
we get that ∀x.∀y.

(
Φ (x , a) ⇔ Φ

(
y , a

))
is true (E3). Combining (E3) with the fact that

Φ (x, a) is true (from E2), we conclude that Φ (x , a) is satisfied for any value of x, hence
a |� ∀x.Φ (x , a).

For the sake of completeness, we introduce now the notion of Weakest Independence

Condition for a formula Φ (x , a) with regard to x (resp. a term ∆ (x , a)). We will denote
such conditions wicΦ,x (resp. wic∆,x).

Definition 5.4 (Weakest Independence Condition (WIC)).

• AWeakest Independence Condition for a formula Φ (x , a) with regard to x is a
sicΦ,x Π such that, for any other sicΦ,x Ψ,Ψ |� Π.

• AWeakest Independence Condition for a term ∆ (x , a) with regard to x is a sic∆,x
Π such that, for any other sic∆,x Ψ,Ψ |� Π.

86 CHAPTER 5. MODEL GENERATION FOR QUANTIFIED FORMULAS

Note that Ω , ∀x.∀y.
(
Φ (x , a) ⇔ Φ

(
y , a

))
is always a wicΦ,x , and any formula

Π is a wicΦ,x if and only if Π ≡ Ω. Therefore all syntactically different wic have the
same semantics. As an example, both sic a � 0 and a � c presented earlier are wic.
Proposition 5.2 emphasizes the interest of wic for model generation.

Proposition 5.2 (Model Specialization). Let Φ (x , a) a formula and Π(a) a wicΦ,x . If there

exists an interpretation {a} such that {a} |� ∀x.Φ (x , a), then {x, a} |� Π (a) ∧ Φ (x , a) for
any valuation x of x.

Proof. Let a an interpretation such that {a} |� ∀x.Φ (x , a) (E1). Then by definition,
∀x.Φ (x , a) is true. Especially ∀x.∀y. (Φ (x , a) ⇔ Φ (x , a)) also is, and therefore {a} |�
Π(a) (E2). Let us now consider an arbitrary value x for x. By combining (E2) and (E1),
we obtain that (x, a) |� Π (a) ∧Φ (x , a).

From now on, our goal is to infer from a formula ∀x.Φ (x , a) a sicΦ,x Ψ (a), find a
model for Ψ (a) ∧ Φ (x , a) and generalize it. This sicΦ,x should be as weak — in the
sense “less coercive” — as possible, as otherwise ⊥ could always be used, which would
not be very interesting for our overall purpose.

For the sake of simplicity, previous definitions omit to mention the theory to which
the sic belongs. If the theory T of the quantified formula is decidable we can always
choose ∀x.∀y.

(
Φ (x , a) ⇔ Φ

(
y , a

))
as a sic, but it is simpler to directly use a T -solver.

The challenge is, for formulas in an undecidable theory T , to find a non-trivial sic in its

quantifier-free fragment QF-T .

Under this constraint, we cannot expect a systematic construction of wic, as it would
allow to decide the satisfiability of any quantified theorywith a decidable quantifier-free
fragment. Yet informally, the closer a sic is to be a wic, the closer our approach is to
completeness. Therefore this notion might be seen as a fair gauge of the quality of a sic.
Having said that, we leave a deeper study on the inference of wic as future work.

5.4 Generic Framework for SIC-BasedModelGeneration

We describe now our overall approach. Algorithm 5.1 presents our sic-based generic
framework for model generation (Section 5.4.1). Then, Algorithm 5.2 proposes a
taint-based approach for sic inference (Section 5.4.2). Finally, we discuss complexity
and efficiency issues (Section 5.4.3) and detail extensions (Section 5.4.4), such as partial
elimination.

From now on, we do not distinguish anymore between terms and formulas, their treatment

being symmetric, and we call targeted variables the variables we want to be independent of.

5.4. GENERIC FRAMEWORK FOR SIC-BASED MODEL GENERATION 87

5.4.1 SIC-Based Model Generation

Algorithm 5.1: SIC-based model generation for quantified formulas.
Parameter: solveQF

Input: Φ(v) a formula in QF-T
Output: sat (v) with v |� Φ, unsat or unknown

Parameter: inferSIC
Input: Φ a formula in QF-T , and x a set of targeted variables
Output: Ψ a sicΦ,x in QF-T

Function solveQ:
Input: ∀x.Φ (x , a) a universally quantified formula over theory T
Output: sat (a) with a |� ∀x.Φ (x , a), unsat or unknown
LetΨ (a) , inferSIC (Φ (x , a) , x)
match solveQF (Φ (x , a) ∧Ψ (a))

with sat (x, a) return sat (a)
with unsat

ifΨ is a wicΦ,x then return unsat

else return unknown

with unknown return unknown

Our model generation technique is described in Algorithm 5.1. Function solveQ
takes as input a formula ∀x.Φ (x , a) over a theory T . It first calculates a sicΦ,x Ψ (a) in
QF-T . Then it solves Φ (x , a) ∧Ψ (a). Finally, depending on the result and whether
Ψ (a) is a wicΦ,x or not, it answers sat, unsat or unknown. solveQ is parametrized by
two functions solveQF and inferSIC:

solveQF is a decision procedure (typically a SMT solver) for QF-T . solveQF is said to
be correct if each time it answers sat (resp. unsat) the formula is satisfiable (resp.
unsatisfiable); it is said to be complete if it always answers sat or unsat, never
unknown.

inferSIC takes as input a formula Φ in QF-T and a set of targeted variables x, and
produces a sicΦ,x in QF-T . It is said to be correct if it always returns a sic, and
complete if all the sic it returns are wic. A possible implementation of inferSIC is
described in Algorithm 5.2 (Section 5.4.2).

88 CHAPTER 5. MODEL GENERATION FOR QUANTIFIED FORMULAS

Function solveQ enjoys the two following properties, where correctness and complete-
ness are defined as for solveQF.

Theorem 5.1 (Correctness and Completeness).

• If solveQF and inferSIC are correct, then solveQ is correct.

• If solveQF and inferSIC are complete, then solveQ is complete.

Proof. Follow directly from Proposition 5.1 and Proposition 5.2, Section 5.3.2.

5.4.2 Taint-Based SIC Inference

Algorithm 5.2: Taint-based sic inference.
Parameter: theorySIC

Input: f a function symbol, its parameters φi , x a set of targeted variables and
ψi their associated sicφi ,x

Output: Ψ a sic f (φi) ,x
Default: Return ⊥

Function inferSIC(Φ,x):
Input: Φ a formula and x a set of targeted variables
Output: Ψ a sicΦ,x
either Φ is a constant return >

either Φ is a variable v return v < x
either Φ is a function f

(
φ1, . , φn

)
Let ψi , inferSIC

(
φi , x

)
for all i ∈ {1, . , n}

LetΨ , theorySIC
(

f ,
(
φ1,., φn

)
,
(
ψ1,., ψn

)
, x

)
returnΨ ∨

∧
i ψi

Algorithm 5.2 presents a taint-based implementation of function inferSIC. It
consists of a (syntactic) core calculus described here, refined by a (semantic) theory-
dependent calculus theorySIC described in Section 5.5. From formula Φ (x , a) and
targeted variables x, inferSIC is defined recursively as follows.

If Φ is a constant it returns > as constants are independent of any variable. If Φ
is a variable v, it returns > if we may depend on v (i.e., v < x), ⊥ otherwise. If Φ is
a function f

(
φ1, . , φn

)
, it first recursively computes for every sub-term φi a sicφi ,x

ψi . Then these results are sent with Φ to theorySIC which computes a sicΦ,x Ψ. The

5.4. GENERIC FRAMEWORK FOR SIC-BASED MODEL GENERATION 89

procedure returns the disjunction betweenΨ and the conjunction of the ψi’s. Note that
theorySIC default value ⊥ is absorbed by the disjunction.

The intuition is that if the φi’s are independent of x, then f
(
φ1, . , φn

)
is. Therefore

Algorithm 5.2 is said to be taint-based as, when theorySIC is left to its default value, it
acts as a form of taint tracking [DD77, Ørb95] inside the formula.

Proposition 5.3 (Correctness). Given a formula Φ (x , a) and assuming that theorySIC is

correct, then inferSIC (Φ, x) indeed computes a sicΦ,x .

Proof. This proof has been mechanized in Coq1.

Note that on the other hand, completeness does not hold: in general inferSIC does
not compute a wic, cf. discussion in Section 5.4.4.

5.4.3 Complexity and Efficiency

We now evaluate the overhead induced by Algorithm 5.1 in terms of formula size and
complexity of the resolution — the running time of Algorithm 5.1 itself being expected
to be negligible (preprocessing).

Definition 5.5 (Term Size). The size of a term is inductively defined as size (x) , 1 for x
a variable, and size

(
f (t1, . , tn)

)
, 1 + Σi size (ti) otherwise. We say that theorySIC is

bounded in size if there exists K such that, for all terms ∆, size (theorySIC (∆, ·)) ≤ K.

Proposition 5.4 (Size Bound). Let N be the maximal arity of symbols defined by theory T .

If theorySIC is bounded in size by K, then for all formula Φ in T , size (inferSIC (Φ, ·)) ≤
(K + N) · size (Φ).

Proof. Let Φ , f
(
φ1,., φn

)
be a formula, let ψi , inferSIC

(
φi

)
be results of recursive

calls, and letΨ , theorySIC
(

f ,
(
φ1,., φn

)
,
(
ψ1,., ψn

)
, x

)
.

size
(
inferSIC

(
f
(
φ1, . . . , φn

)))
� size

(
Ψ ∨

∧
i ψi

)
� size (Ψ) + 1 + (n − 1) + Σisize

(
ψi

)
≤ K + N + Σisize

(
ψi

)
Then by structural induction we have size (inferSIC (Φ, ·)) ≤ (K + N) · size (Φ).

Proposition 5.5 (Complexity Bound). Let us suppose theorySIC bounded in size, and let Φ

be a formula belonging to a theory T with polynomial-time checkable solutions. IfΨ is a sicΦ,·

produced by inferSIC, then a solution for Φ ∧Ψ is checkable in time polynomial in size of Φ.

1http://benjamin.farinier.org/cav2018/

http://benjamin.farinier.org/cav2018/

90 CHAPTER 5. MODEL GENERATION FOR QUANTIFIED FORMULAS

Proof. If theorySIC is bounded in size, then inferSIC is linear in size by Proposition 5.4.
So for any formula Φ in a theory T , ifΨ is the sic produced by inferSIC, then Φ∧Ψ is
linearly proportional to Φ. AsΨ lands in a sub-theory of T , Φ ∧Ψ belongs to T and
therefore is checkable in polynomial time with regard to the size of Φ.

These propositions demonstrate that, for formula landing in complex enough
theories, our method lifts QF-solvers to the quantified case (in an approximated way)
without any significant overhead, as long as theorySIC is bounded in size. This latter
constraint can be achieved by systematically let-binding sub-terms to (constant-size)
fresh names and having theorySICmanipulates these binders.

5.4.4 Discussions

Extension Let us remark that our framework encompasses partial quantifier elimina-
tion as long as the remaining quantifiers are handled by solveQF. For example, we may
want to remove quantifications over arrays but keep those on bitvectors. In this setting,
inferSIC can also allow some level of quantification, providing that solveQF handles
them.

About WIC As already stated, inferSIC does not propagate wic in general. For
example, considering formulas t1 , (x < 0) and t2 , (x ≥ 0), then wict1 ,x � ⊥ and
wict2 ,x � ⊥. Hence inferSIC returns ⊥ as sic for t1 ∨ t2, while actually wict1∨t2 ,x � >.

Nevertheless, we can already highlight a few cases where wic can be computed.
(1) inferSIC does propagate wic on one-to-one uninterpreted functions. (2) If no
variable of x appears in any sub-term of f (t , t′), then the associated wic is >. While
a priori naive, this case becomes interesting when combined with simplifications
(Section 5.6.1) that may eliminate x. (3) If a sub-term falls in a sub-theory admitting
quantifier elimination, then the associated wic is computed by eliminating quantifiers
in (∀.x.y.Φ(x , a) ⇔ Φ(y , a)). (4) We may also think of dedicated patterns: regarding
bitvectors, the wic for x ≤ a ⇒ x ≤ x + k is a ≤ Max− k. Identifying under which condition
wic propagation holds is a strong direction for future work.

5.5 Theory-Dependent SIC Refinements

We now present theory-dependent sic refinements for theories relevant to program
analysis: booleans, fixed-size bitvectors and arrays— recall that uninterpreted functions

5.5. THEORY-DEPENDENT SIC REFINEMENTS 91

are already handled by Algorithm 5.2. We then propose a generalization of these
refinements together with a correctness proof for a larger class of operators.

5.5.1 Refinement on Theories

We recall theorySIC takes four parameters: a function symbol f , its arguments (t1, . , tn),
their associated sic

(
t•1 , . , t

•
n

)
, and targeted variables x. theorySIC pattern-matches the

function symbol and returns the associated sic according to rules in Figure 5.2. If a
function symbol is not supported, we return the default value⊥. Constants and variables
are handled by inferSIC. For the sake of simplicity, rules in Figure 5.2 are defined
recursively, but can easily fit the interface required for theorySIC in Algorithm 5.2 by
turning recursive calls into parameters.

(a ⇒ b)• , (a• ∧ a � ⊥) ∨ (b• ∧ b � >)
(a ∧ b)• , (a• ∧ a � ⊥) ∨ (b• ∧ b � ⊥)
(a ∨ b)• , (a• ∧ a � >) ∨ (b• ∧ b � >)

(if c then a else b)• , (c• ∧ if c then a• else b•) ∨ (a• ∧ b• ∧ a � b)
(a) Booleans and if · then · else ·

(an ∧ bn)• ,
(
a•n ∧ an � 0n

)
∨

(
b•n ∧ bn � 0n

)
(an ∨ bn)• ,

(
a•n ∧ an � 1n

)
∨

(
b•n ∧ bn � 1n

)
(an × bn)• ,

(
a•n ∧ an � 0n

)
∨

(
b•n ∧ bn � 0n

)
(an � bn)• ,

(
b•n ∧ bn ≥ n

)
(b) Fixed-size bitvectors(

(a[i]← e)
[
j
])• , (

if

(
i � j

)
then e else

(
a
[
j
]))•

,
((

i � j
)•
∧

(
if

(
i � j

)
then e• else

(
a
[
j
])•))

∨
(
e• ∧

(
a
[
j
])•
∧

(
e � a

[
j
]))

,
(
i• ∧ j• ∧

(
if

(
i � j

)
then e• else

(
a
[
j
])•))

∨
(
e• ∧

(
a
[
j
])•
∧

(
e � a

[
j
]))

(c) Arrays

Figure 5.2 – Examples of refinements for theorySIC.

Booleans and if · then · else · Rules for the boolean theory (Figure 5.2a) handles⇒,
∧, ∨ and if · then · else ·.For binary operators, the sic is the conjunction of the sic
associated to one of the two sub-terms and a constraint on this sub-term that forces the

92 CHAPTER 5. MODEL GENERATION FOR QUANTIFIED FORMULAS

result of the operator to be constant — e.g., to be equal to ⊥ (resp. >) for the antecedent
(resp. consequent) of an implication. These equality constraints are based on absorbing
elements of operators.

Inference for the if · then · else · operator is more subtle. Intuitively, if its condition
is independent of some x, we use it to select the sicx of the sub-term that will be selected
by the if · then · else · operator. If the condition is dependent of x, then we cannot use
it anymore to select a sicx . In this case, we return the conjunction of the sicx of both
sub-terms and the constraint that the two sub-terms are equal.

Bitvectors and Arrays Rules for bitvectors (Figure 5.2b) follow similar ideas, with
constant > (resp. ⊥) substituted by 1n (resp. 0n), the bitvector of size n full of ones (resp.
zeros). Rules for arrays (Figure 5.2c) are derived from the theory axioms. The definition
is recursive: rules need be applied until reaching either a ·[·]← · at the position where
the ·[·] occurs, or the initial array variable.

As a rule of thumb, good sic can be derived from function axioms in the form of
rewriting rules, as done for arrays. Similar constructions can be obtained for example
for stacks or queues.

5.5.2 R-Absorbing Functions

We propose a generalization of the previous theory-dependent sic refinements to a
larger class of functions, and prove its correctness.

Intuitively, if a function has an absorbing element, constraining one of its operands
to be equal to this element will ensure that the result of the function is independent of
the other operands. However, it is not enough when a relation between some elements
is needed, such as with (t[a ← b]) [c] where constraint a � c ensures the independence
with regard to t. We thus generalize the notion of absorption to R-absorption, where R
is a relation between function arguments.

Definition 5.6 (R-Absorbing Function). Let f : τ1 × · · · × τn → τ a function. f is
R-absorbing if there exists IR ⊂ {1, · · · , n} and R a relation between αi : τi , i ∈ IR
such that, for all b , (b1, . . . , bn) and c , (c1, . . . , cn) ∈ τ1 × · · · × τn , if R(b |IR) and
b |IR � c |IR where ·|IR is the projection on IR , then f (b) � f (c).
IR is called the support of the relation of absorption R.

For example, (a , b) 7→ a ∨ b has two pairs 〈R , IR〉 coinciding with the usual
notion of absorption, 〈a�>, {1a }〉 and 〈b�>, {2b }〉. Function

(
x , y , z

)
7→ x y + z has

5.6. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 93

a ⇒ b : 〈a�⊥, {1a }〉 , 〈b�>, {2b }〉

a ∧ b : 〈a�⊥, {1a }〉 , 〈b�⊥, {2b }〉

a ∨ b : 〈a�>, {1a }〉 , 〈b�>, {2b }〉

(a) Booleans

an ∨ bn : 〈an �1n , {1a }〉 , 〈bn �1n , {2b }〉

an ∧ bn : 〈an �0n , {1a }〉 , 〈bn �0n , {2b }〉

an × bn : 〈an �0n , {1a }〉 , 〈bn �0n , {2b }〉

(b) Fixed-size bitvectors

if then c else a b : 〈c�>, {1c , 2a }〉 , 〈c�⊥, {1c , 3b }〉 , 〈a� b , {2a , 3b }〉

(c) if then else

Figure 5.3 – Relation of absorption for some ABV function symbols.

among others the pair 〈x�0, {1x , 3z }〉, while (a , b , c , t) 7→ (t[a ← b]) [c] has the pair
〈a� c , {1a , 3c }〉. We can now state the following proposition:

Proposition 5.6 (R-Absorbing Function are sic). Let f (t1, . . . , tn) be a R-absorbing

function of support IR , and let t•i be a sicti ,x for some x. Then R
(
ti∈IR

) ∧
i∈IR t•i is a sic f ,x .

Proof. Let x be a set of variables, and let R be a relation of absorption with support IR
for f . For every i ∈ IR let t•i be a sicti ,x . By definition t•i (a) |� ∀x.∀y.t (x , a) � t

(
y , a

)
,

and therefore
∧

i∈IR t•i (a) |�
∧

i∈IR ∀x.∀y.ti (x , a) � ti
(
y , a

)
. Finally, as R is a relation

of absorption for f , R (ti (a))
∧

i∈IR t•i (a) |� ∀x.∀y. f (ti (x , a)) � f
(
ti

(
y , a

))
, i.e.,

R

(
ti∈IR

) ∧
i∈IR t•i is a sic f ,x .

Previous examples (Section 5.5.1) can be recast in term of R-absorbing function, as
shown in Figure 5.3, proving their correctness. Note that regarding our end-goal, we
should accept only R-absorbing functions in QF-T .

5.6 Implementation and Experimental Evaluation

This section describes the implementation of our method (Section 5.6.1) for bitvectors
and arrays (ABV), together with experimental evaluation (Section 5.6.2). Our prototype
Tfml (Taint engine for ForMuLa) comprises 7 klocs of OCaml. Its code is open source and
available online2, together with all the benchmarks we use for experimental evaluation.

2http://benjamin.farinier.org/cav2018/

http://benjamin.farinier.org/cav2018/

94 CHAPTER 5. MODEL GENERATION FOR QUANTIFIED FORMULAS

5.6.1 Implementation

Given an input formula in the SMT-LIB format [BST10] (ABV theory), Tfml performs
several normalizations before adding taint information following Algorithm 5.1. The
process ends with simplifications as taint usually introduces many constant values, and
a new SMT-LIB formula is output. In order to make the whole procedure feasible in
practice, Tfml makes use in addition of the following technicalities:

Maximal Sharing This stage is crucial as it allows to avoid term duplication in
theorySIC (Algorithm 5.2, Section 5.4.3, Proposition 5.4). To this end, Tfml
uses hash-consing [FC06] to achieve in-memory maximal sharing for syntactically
equal terms. As a side effect, maximal sharing permits to check terms syntactic
equality in constant time, as it makes syntactic equality equivalent to physical
equality. When the final formulas is output, we introduce new names via let-

binding for relevant sub-terms in order to share their textual representation and
keep the formula as concise as possible.

Simplifications We perform constant propagation and rewriting (standard rules,
e.g. x − x 7→ 0 or x × 1 7→ x) on both initial and transformed formulas – equality
is soundly approximated by syntactic equality. These simplifications are studied
in detail in Chapter 6, Section 6.4.2.

Shadow Arrays We encode taint constraints over arrays through shadow arrays. For
each array declared in the formula, we declare a (taint) shadow array. The default
value for all cells of the shadow array is the taint of the original array, and for each
value stored (resp. read) in the original array, we store (resp. read) the taint of the
value in the shadow array. As logical arrays are infinite, we cannot constrain all
the values contained in the initial shadow array. Instead, we rely on a common
trick in array theory: we constrain only cells corresponding to a relevant read
index in the formula.

Iterative Skolemization While we have supposed along the chapter to work on skolem-
ized formulas, we have to be more careful in practice. Indeed, skolemization
introduce dependencies between a skolemized variable and all its preceding
universally quantified variables, blurring our analysis and likely resulting in
considering the whole formula as dependent. Instead, we follow an iterative
process: 1) Skolemize the first block of existentially quantified variables; 2) Com-
pute the independence condition for any targeted variable in the first block of
universal quantifiers and remove these quantifiers; 3) Repeat. This results in

5.6. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 95

full Skolemization together with the construction of an independence condition,
while avoiding many unnecessary dependencies.

5.6.2 Evaluation

We experimentally evaluate the following research questions: RQ1 How does our
approach perform with regard to state-of-the-art approaches for model generation
of quantified formulas? RQ2 How effective is it at lifting quantifier-free solvers into
(sat-only) quantified solvers? RQ3How efficient is it in terms of preprocessing time and
formula size overhead? We evaluate our method on a set of formulas combining arrays
and bitvectors (paramount in software verification), against state-of-the-art solvers for
these theories.

Protocol The experimental setup below runs on an Intel(R) Xeon(R) E5-2660 v3 @
2.60GHz, 4GB RAM per process, and a timeout of 1 000s per formula.

Metrics For RQ1we compare the number of sat and unknown answers between solvers
supporting quantification, with and without our approach. For RQ2, we compare
the number of sat and unknown answers between quantifier-free solvers enhanced
by our approach and solvers supporting quantification. For RQ3, we measure
preprocessing time and formulas size overhead.

Benchmarks We consider two sets of ABV formulas. First, a set of 1 421 formulas from
(a modified version of) the Symbolic Execution tool Binsec [DBT+16] representing
quantified reachability queries (cf. Section 5.2) over Binsec benchmark programs
(security challenges, e.g. crackme or vulnerability finding). The initial (array)
memory is quantified so that models depend only on user input. Second, a set of
1 269 ABV formulas generated from formulas of the QF-ABV category of SMT-
LIB [BST10] – sub-categories brummayerbiere, dwp formulas and klee selected.
The generation process consists in universally quantifying some of the initial array
variables, mimicking quantified reachability problems.

Competitors For RQ1, we compete against the two state-of-the-art SMT solvers for
quantified formulas CVC4 [BCD+11] (finite model instantiation [RTGK13]) and
Z3 [dMB08] (model-based instantiation [GdM09]). We also consider degraded
versions CVC4E and Z3E that roughly represent standard E-matching [DNS05].
For RQ2we use Boolector (Btor) [BB09], one of the very best QF-ABVsolvers.

96 CHAPTER 5. MODEL GENERATION FOR QUANTIFIED FORMULAS

Table 5.1 – Answers and resolution time (in seconds, include timeout).

Btor• CVC4 CVC4• CVC4E CVC4E• Z3 Z3• Z3E Z3E•

SM
T-

LI
B sat 399 84 242 84 242 261 366 87 366

unsat N/A 0 N/A 0 N/A 165 N/A 0 N/A
unknown 870 1 185 1 027 1 185 1 027 843 903 1 182 903
total time 349 165 194 667 165 196 934 270 150 36 480 192 41 935

Bi
ns

ec

sat 1 042 951 954 951 954 953 1 042 953 1 042

unsat N/A 62 N/A 62 N/A 319 N/A 62 N/A
unknown 379 408 467 408 467 149 379 406 379
total time 1 152 64 761 76 811 64 772 77 009 30 235 11 415 135 11 604

solver•: solver enhanced with our method Z3E, CVC4E: essentially E-matching

Table 5.2 – Complementarity of our approach with existing solvers (sat instances).

CVC4• Z3• Btor•

SMT-LIB CVC4 -10 +168 [252] -10 +325 [409]
Z3 -119 +224 [485] -86 +224 [485]

Binsec CVC4 -25 +28 [979] -25 +116 [1 067]
Z3 -25 +114 [1 067] -25 +114 [1 067]

102 103 104 105 106 107

103

104

105

106

107

108

Original file size (bits)

Ta
in
te
d
fil
e
si
ze

(b
its

) y � 9.33x

Maximal size ratio 12.48
Minimal size ratio 2.81
Average size ratio 8.73
Standard deviation 0.78

Figure 5.4 – Overhead in formula size.

Results Table 5.1, Table 5.2 and Figure 5.4 sum
up our experimental results, which have all been
cross-checked for consistency. Table 5.1 reports
the number of successes (sat or unsat) and fail-
ures (unknown), plus total solving times. The
• sign indicates formulas preprocessed with
our approach. In that case it is impossible to
correctly answer unsat (no wic checking), the
unsat line is thus N/A. Since Boolector does not
support quantified ABV formulas, we only give
results with our approach enabled. Table 5.1
reads as follows: of the 1 269 SMT-LIB formulas,
standalone Z3 solves 426 formulas (261 sat, 165
unsat), and 366 (all sat) if preprocessed. In-
terestingly, our approach always improves the
underlying solver in terms of solved (sat) in-

5.6. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 97

Table 5.3 – GRUB example.

Btor• Z3
sat 540 1

unsat N/A 42
unknown 355 852

total time 16 732 159 765

Table 5.4 – Best approaches.

former new
Z3 Btor• Btor• . Z3

SM
T-

LI
B sat 261 399 485

unsat 165 N/A 165
unknown 843 870 619

time 270 150 350 94 610

Bi
ns

ec

sat 953 1 042 1 067
unsat 319 N/A 319

unknown 149 379 35
time 64 761 1 152 1 169

stances, either in a significant way (SMT-LIB) or in a modest way (Binsec). Yet, recall
that in a software verification setting every win matters (possibly new bug found or
new assertion proved). For Z3•, it also strongly reduces computation time. Last but
not least, Boolector• (a pure QF-solver) turns out to have the best performance on
sat-instances, beating state-of-the-art approaches both in terms of solved instances and
computation time.

Table 5.2 substantiates the complementarity of the different methods, and reads as
follow: for SMT-LIB, Boolector• solves 224 (sat) formulas missed by Z3, while Z3 solves
86 (sat) formulas missed by Boolector•, and 485 (sat) formulas are solved by either one
of them.

Figure 5.4 shows formula size averaging a 9-fold increase (min 3, max 12): yet they
are easier to solve because they are more constrained. Regarding performance and
overhead of the tainting process, taint time is almost always less than 1s in our experiments
(not shown here), 4min for worst case, clearly dominated by resolution time. The
worst case is due to a pass of linearithmic complexity which can be optimized to be
logarithmic.

Pearls We show hereafter two particular applications of our method. Table 5.3
reports results of another Symbolic Execution experiment, on the grub example. On
this example, Boolector• completely outperforms existing approaches. As a second
application, while the main drawback of our method is that it precludes proving unsat,
this is easily mitigated by complementing the approach with another one geared (or
able) to proving unsat, yielding efficient solvers for quantified formulas, as shown in
Table 5.4.

98 CHAPTER 5. MODEL GENERATION FOR QUANTIFIED FORMULAS

Conclusion Experiments demonstrate the relevance of our taint-based technique
for model generation. (RQ1) Results in Table 5.1 shows that our approach greatly
facilitates the resolution process. On these examples, our method performs better than

state-of-the-art solvers but also strongly complements them (Table 5.2). (RQ2) Moreover,
Table 5.1 demonstrates that our technique is highly effective at lifting quantifier-free
solvers to quantified formulas, in both number of sat answers and computation time.
Indeed, once lifted, Boolector performs better (for sat-only) than Z3 or CVC4 with full quantifier

support. Finally (RQ3) our tainting method itself is very efficient both in time and space,
making it perfect either for a preprocessing step or for a deeper integration into a solver.
In our current prototype implementation, we consider the cost to be low.

5.7 Related Works

Traditional approaches for solving quantified formulas essentially involve either generic
methods geared to prove unsatisfiability and validity [DNS05], or complete but ded-
icated approaches for particular theories [BMS06, WHdM10]. Besides, some recent
methods [ĲS08, GdM09, RTGK13] aim to be correct and complete for larger classes of
theories.

Generic Method for Unsatisfiability Broadly speaking, these methods iteratively
instantiate axioms until a contradiction is found. They are generic with regard to the
underlying theory and allow to reuse standard theory solvers, but termination is not
guaranteed. Also, they are more suited to prove unsatisfiability than to find models.
In this family, E-matching [DNS05, dMB07] shows reasonable cost when combined
with conflict-based instantiation [RTdM14] or semantic triggers [DCKP12, DCKP16].
In pure first-order logic (without theories), quantifiers are mainly handled through
resolution and superposition [BG94, NR01] as done in Vampire [RV02, KV13] and E
[Sch02].

Complete Methods for Specific Theories Much work has been done on designing
complete decision procedures for quantified theories of interest, notably array properties
[BMS06], quantified theory of bitvectors [WHdM10, JS16], Presburger arithmetic or
Real Linear Arithmetic [BKRW11, FK16]. Yet, they usually come at a high cost.

Generic Methods for Model Generation Some recent works detail attempts at more
general approaches to model generation.

5.7. RELATED WORKS 99

Local theory extensions [ĲS08, BRK+15] provide means to extend some decidable
theories with free symbols and quantifications, retaining decidability. The approach
identifies specific forms of formulas and quantifications (bounded), such that these
theory extensions can be solved using finite instantiation of quantifiers together with a
decision procedure for the original theory. The main drawback is that the formula size
can increase a lot.

Model-based quantifier instantiation is an active area of research notably developed
in Z3 and CVC4. The basic line is to consider the partial model under construction in
order to find the right quantifier instantiations, typically in a try-and-refine manner.
Depending on the variants, these methods favor either satisfiability or unsatisfiability.
They build on the underlying quantifier-free solver and can be mixed with E-matching
techniques, yet each refinement yields a solver call and the refinement process may not
terminate. Ge and de Moura [GdM09] study decidable fragments of first-order logic
modulo theories for which model-based quantifier instantiation yields soundness and
refutational completeness. Reynolds et al. [RTdM14], Barbosa [Bar16] and Preiner et
al. [PNB17] use models to guide the instantiation process towards instances refuting
the current model. Finite model quantifier instantiation [RTGK13, RTG+13] reduces the
search to finite models, and is indeed geared toward model generation rather than
unsatisfiability. Similar techniques have been used in program synthesis [RDK+15].

We drop support for the unsatisfiable case but get more flexibility: we deal with
quantifiers on any sort, the approach terminates and is lightweight, in the sense that it
requires a single call to the underlying quantifier-free solver.

Other Our method can be seen as taking inspiration from program taint analysis
[DD77, Ørb95] developed for checking the non-interference [Smi07] of public and
secrete input in security-sensitive programs. As far as the analogy goes, our approach
should not be seen as checking non-interference, but rather as inferring preconditions
of non-interference. Moreover, our formula-tainting technique is closer to dynamic
program-tainting than to static program-tainting, in the sense that precise dependency
conditions are statically inserted at preprocess-time, then precisely explored at solving-
time.

Finally, Darvas et al. [DMR08] presents a bottom-up formula strengthening method.
Their goal differ from ours, as they are interested in formula well-definedness (rather
than independence) and validity (rather than model generation).

100 CHAPTER 5. MODEL GENERATION FOR QUANTIFIED FORMULAS

5.8 Conclusion

This chapter addressed the problem of generating models of quantified first-order
formulas over built-in theories. We proposed a correct and generic approach based on a
reduction to the quantifier-free case through the inference of independence conditions.
The technique is applicable to any theory with a decidable quantifier-free case and
allows to reuse all the work done on quantifier-free solvers. The method significantly
enhances the performances of state-of-the-art SMT solvers for the quantified case, and
supplements the latest advances in the field. Chapter 7 will put into practice our
taint-based elimination on quantified formulas generated by Symbolic Execution.

Future developments aim to tackle the definition of more precise inference mecha-
nisms of independence conditions, the identification of interesting subclasses for which
inferring weakest independence conditions is feasible, and the combination with other
quantifier instantiation techniques.

Bibliography

[Bar16] Haniel Barbosa. Efficient Instantiation Techniques in SMT (work in
progress). In Proceedings of the 5th Workshop on Practical Aspects of Au-

tomated Reasoning co-located with International Joint Conference on Automated

Reasoning (ĲCAR 2016), Coimbra, Portugal, July 2nd, 2016., pages 1–10, 2016.

[BB09] Robert Brummayer and Armin Biere. Boolector: An Efficient SMT Solver
for Bit-Vectors and Arrays. In Tools and Algorithms for the Construction and

Analysis of Systems, 15th International Conference, TACAS 2009, Held as Part

of the Joint European Conferences on Theory and Practice of Software, ETAPS

2009, York, UK, March 22-29, 2009. Proceedings, pages 174–177, 2009.

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4.
In Computer Aided Verification - 23rd International Conference, CAV 2011,

Snowbird, UT, USA, July 14-20, 2011. Proceedings, pages 171–177, 2011.

[BG94] Leo Bachmair and Harald Ganzinger. Rewrite-Based Equational Theorem
Proving with Selection and Simplification. J. Log. Comput., 4(3):217–247,
1994.

[Bie09] Armin Biere. Bounded Model Checking. In Handbook of Satisfiability, pages
457–481. 2009.

BIBLIOGRAPHY 101

[BKRW11] Angelo Brillout, Daniel Kroening, Philipp Rümmer, and Thomas Wahl. Be-
yond Quantifier-Free Interpolation in Extensions of Presburger Arithmetic.
In Verification, Model Checking, and Abstract Interpretation - 12th International

Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings,
pages 88–102, 2011.

[BMS06] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable
about arrays? In Verification, Model Checking, and Abstract Interpretation, 7th

International Conference, VMCAI 2006, Charleston, SC, USA, January 8-10,

2006, Proceedings, pages 427–442, 2006.

[BRK+15] Kshitĳ Bansal, Andrew Reynolds, Tim King, Clark W. Barrett, and Thomas
Wies. Deciding local theory extensions via e-matching. In Computer Aided

Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA,

July 18-24, 2015, Proceedings, Part II, pages 87–105, 2015.

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.
Satisfiability Modulo Theories. In Handbook of Satisfiability, pages 825–885.
2009.

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. In A. Gupta and D. Kroening, editors, Proceedings of the 8th
International Workshop on Satisfiability Modulo Theories (Edinburgh, UK), 2010.

[DBT+16] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin
Feist, Marie-Laure Potet, and Jean-Yves Marion. BINSEC/SE: A Dynamic
Symbolic Execution Toolkit for Binary-Level Analysis. In IEEE 23rd Interna-

tional Conference on Software Analysis, Evolution, and Reengineering, SANER

2016, Osaka, Japan, March 14-18, 2016 - Volume 1, pages 653–656, 2016.

[DCKP12] Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich.
Reasoning with Triggers. In 10th International Workshop on Satisfiability

Modulo Theories, SMT 2012, Manchester, UK, June 30 - July 1, 2012, pages
22–31, 2012.

[DCKP16] Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich.
Adding Decision Procedures to SMT Solvers Using Axioms with Triggers.
J. Autom. Reasoning, 56(4):387–457, 2016.

[DD77] Dorothy E. Denning and Peter J. Denning. Certification of Programs for
Secure Information Flow. Commun. ACM, 20(7):504–513, 1977.

102 CHAPTER 5. MODEL GENERATION FOR QUANTIFIED FORMULAS

[dMB07] Leonardo Mendonça de Moura and Nikolaj Bjørner. Efficient e-matching
for SMT solvers. In Automated Deduction - CADE-21, 21st International

Conference on Automated Deduction, Bremen, Germany, July 17-20, 2007,

Proceedings, pages 183–198, 2007.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of Systems,

14th International Conference, TACAS 2008, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,

March 29-April 6, 2008. Proceedings, pages 337–340, 2008.

[DMR08] Ádám Darvas, Farhad Mehta, and Arsenii Rudich. Efficient Well-
Definedness Checking. In Automated Reasoning, 4th International Joint

Conference, ĲCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings,
pages 100–115, 2008.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover
for program checking. J. ACM, 52(3):365–473, 2005.

[FBBP18] Benjamin Farinier, Sébastien Bardin, Richard Bonichon, and Marie-Laure
Potet. Model generation for quantified formulas: A taint-based approach.
In Computer Aided Verification - 30th International Conference, CAV 2018, Held

as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,

2018, Proceedings, Part II, pages 294–313, 2018.

[FC06] Jean-Christophe Filliâtre and Sylvain Conchon. Type-safe modular hash-
consing. In Proceedings of the ACM Workshop on ML, 2006, Portland, Oregon,

USA, September 16, 2006, pages 12–19, 2006.

[FK16] Azadeh Farzan and Zachary Kincaid. Linear Arithmetic Satisfiability via
Strategy Improvement. In Proceedings of the Twenty-Fifth International Joint

Conference on Artificial Intelligence, ĲCAI 2016, New York, NY, USA, 9-15 July

2016, pages 735–743, 2016.

[GdM09] Yeting Ge and Leonardo Mendonça de Moura. Complete instantiation for
quantified formulas in satisfiabiliby modulo theories. In Computer Aided

Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26

- July 2, 2009. Proceedings, pages 306–320, 2009.

[GLM12] Patrice Godefroid, Michael Y. Levin, andDavidA.Molnar. SAGE:Whitebox
Fuzzing for Security Testing. ACM Queue, 10(1):20, 2012.

BIBLIOGRAPHY 103

[ĲS08] Carsten Ihlemann, Swen Jacobs, and Viorica Sofronie-Stokkermans. On
local reasoning in verification. In Tools and Algorithms for the Construction

and Analysis of Systems, 14th International Conference, TACAS 2008, Held

as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, pages
265–281, 2008.

[JS16] Martin Jonás and Jan Strejcek. Solving Quantified Bit-Vector Formulas
Using Binary Decision Diagrams. In Theory and Applications of Satisfiability

Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8,

2016, Proceedings, pages 267–283, 2016.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic

Point of View. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2008.

[KV13] Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and
Vampire. In Computer Aided Verification - 25th International Conference, CAV

2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, pages 1–35, 2013.

[NR01] Robert Nieuwenhuis and Albert Rubio. Paramodulation-Based Theorem
Proving. In Handbook of Automated Reasoning (in 2 volumes), pages 371–443.
2001.

[Ørb95] Peter Ørbæk. Can you Trust your Data? In TAPSOFT’95: Theory and

Practice of SoftwareDevelopment, 6th International JointConferenceCAAP/FASE,

Aarhus, Denmark, May 22-26, 1995, Proceedings, pages 575–589, 1995.

[PNB17] Mathias Preiner, AinaNiemetz, andArmin Biere. Counterexample-Guided
Model Synthesis. In Tools and Algorithms for the Construction and Analysis

of Systems - 23rd International Conference, TACAS 2017, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2017,

Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, pages 264–280, 2017.

[RDK+15] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and
Clark W. Barrett. Counterexample-guided quantifier instantiation for syn-
thesis in SMT. In Computer Aided Verification - 27th International Conference,

CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II,
pages 198–216, 2015.

104 CHAPTER 5. MODEL GENERATION FOR QUANTIFIED FORMULAS

[RL18] Antoine Rollet and Arnaud Lanoix, editors. Approches Formelles dans

l’Assistance au Développement de Logiciels, AFADL 2018, Grenoble, France, June

13-15, 2018, 2018.

[RTdM14] Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura.
Finding conflicting instances of quantified formulas in SMT. In Formal

Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland,

October 21-24, 2014, pages 195–202, 2014.

[RTG+13] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstic, Morgan Deters,
and Clark Barrett. Quantifier instantiation techniques for finite model
finding in SMT. In Automated Deduction - CADE-24 - 24th International

Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013.

Proceedings, pages 377–391, 2013.

[RTGK13] Andrew Reynolds, Cesare Tinelli, Amit Goel, and Sava Krstic. Finite
model finding in SMT. In Computer Aided Verification - 25th International

Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings,
pages 640–655, 2013.

[RV02] AlexandreRiazanov andAndreiVoronkov. Thedesign and implementation
of VAMPIRE. AI Commun., 15(2-3):91–110, 2002.

[Sch02] Stephan Schulz. E - a brainiac theoremprover. AI Commun., 15(2-3):111–126,
2002.

[Smi07] Geoffrey Smith. Principles of Secure Information FlowAnalysis. InMalware

Detection, pages 291–307. 2007.

[WHdM10] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Mendonça
de Moura. Efficiently solving quantified bit-vector formulas. In Proceedings

of 10th International Conference on Formal Methods in Computer-Aided Design,

FMCAD 2010, Lugano, Switzerland, October 20-23, pages 239–246, 2010.

Chapter 6

Arrays Made Simpler: An Efficient,

Scalable and Thorough Preprocessing

The theory of arrays has a central place in software verification due to its ability to
model data structures or memory, as done in Chapter 4. Yet, this theory is known
to be hard to solve in both theory and practice, especially in the case of very long
formulas coming from unrolling-based verification methods, like those obtained in
Chapter 2 with binary-level Symbolic Execution. Standard simplification techniques
à la read-over-write suffer from two main drawbacks: they do not scale on very long
sequences of stores and they miss many simplification opportunities because of a crude
syntactic (dis-)equality reasoning. In this chapter we propose a new approach to array
formula simplification based on a new dedicated data structure together with original
simplifications and low-cost reasoning. The technique is efficient, scalable and it yields
significant simplification. The impact on formula resolution is always positive, and it
can be dramatic on some specific classes of problems of interest, e.g. very long formula
or binary-level Symbolic Execution. While currently implemented as a preprocessing,
the approach would benefit from a deeper integration in an array solver. The content of
this chapter was presented in [BM18] and published in [FDBL18].

6.1 Introduction

Context Automatic decision procedures for Satisfiability Modulo Theory [BT18] are at
the heart of almost all recent formal verification methods [CKL04, BM07, CS13, Rus05].
Especially, the theory of arrays we presented in Chapter 3, Section 3.3.3, enjoys a central
position in software verification as it allows tomodelmemory or essential data structures

105

106 CHAPTER 6. ARRAYS MADE SIMPLER

·[·] :ArrayI E → I → E
·[·]← · :ArrayI E → I → E → ArrayI E

∀a i e . (a[i]← e)[i] � e
∀a i j e .

(
i , j

)
⇒ (a[i]← e)

[
j
]
� a

[
j
]

Figure 6.1 – The theory of arrays (row-axioms).

such as maps, vectors and hash tables.
We recall that, given a set I of indexes and a set E of elements, the theory of arrays

describes the set ArrayI E of all arrays mapping each index i ∈ I to an element e ∈ E.
Actually, logical arrays can be seen as infinite updatable maps implicitly defined by a
succession of writes from an initial map. These arrays are defined by the two operations
read (·[·] ·) and write (·[·] ← ·), whose semantic is given in Figure 6.1 by so-called
read-over-write axioms (row-axioms).

Despite its simplicity, the satisfiability problem for the theory of arrays is NP-
complete1. Indeed, it implies deciding (dis-)equalities between read and written
indexes on read-over-write terms (row) of the form (a[i]← e)

[
j
]
, potentially yielding

nested case-splits. Standard decision procedures for arrays consist in eliminating
as much row as possible through a preprocessing step [GD07], using axioms from
Figure 6.1 as rewriting rules, and then enumerating all possible (dis-)equalities in
row, yielding a potentially huge search space — the remaining row-axioms can be
introduced lazily to mitigate this issue [BB09b].

Problem and Challenge Yet, this is not satisfactory when considering very long
chains of writes, as can be encountered in unfolding-based verification techniques
such as Symbolic Execution (SE) [CS13] or Bounded Model checking [CKL04] — the
case of Deductive Verification is different since user-defined invariants prevent the
unfolding. The theory of arrays can then quickly become a bottleneck of constraint
solving. Especially, the row-simplification step is often very limited, for two reasons.
First, exploring for every read in a backward manner the corresponding list of all writes
yields a quadratic time cost (in the number of array operations) and therefore it does not
scale to very long formulas. This is a major issue in practice as, for example, Symbolic
Execution over malware or obfuscated programs [SBP18, BDM17, YJWD15] may have
to consider execution traces of several millions of instructions, yielding formulas with
several hundreds of thousands of array operations. Note also that bounding the
backward exploration misses too many row-simplifications. Second, (dis)-equalities

1Reduction of the program equivalence problem in presence of arrays (sequential, boolean case) to
the equivalence case without arrays but with if · then · else · operators, to SAT [DS78].

6.1. INTRODUCTION 107

can be rarely decided during preprocessing as standard methods rely on efficient but crude
approximate equality checks (typically, syntactic term equality), limiting again the power
of these approaches. With such checks, index equality may be sometimes proven, but
disequality can never be — except in the very restricted case of constant-value indexes.

Proposal We present a novel approach to row-simplification named fas (Fast Ar-
ray Simplification), allowing to scale and to simplify much more row than previous
approaches. The technique is based on three key components:

• A re-encoding of write sequences (total order) as sequences of packs of indepen-
dent writes (partial order), together with a dedicated data structure (map list)
ensuring scalability;

• A new simple normalization step (base normalization) allowing to amplify the
efficiency of syntactic (dis-)equality checks;

• A lightweight integration of domain-based reasoning over packs yielding even more
successful (dis-)equality checks for only a slight overhead.

Experimental results demonstrate that fas scales over very large formulas (several
hundreds of thousands of row) typically coming from Symbolic Execution and can yield
very significant gains in terms of runtime — possibly passing from hours to seconds.

Contributions This chapter makes the following contributions:

• We present in detail the new fas preprocessing step for scalable and thorough
array constraint simplification (Section 6.4), along with its three key components:
dedicated data structure (Section 6.4.1), base normalization (Section 6.4.2) and
domain reasoning (Section 6.4.4);

• We experimentally evaluate fas in different settings for three leading SMT solvers
(Section 6.5). The technique is fast and scalable, it yields a significant reduction of
the number of row with always a positive impact on resolution time. This impact
is even dramatic for some key usage scenarios such as SE-like formulas with small
timeout or very large size.

Discussion In our view, fas reaches a sweet spot between efficiency and impact on
resolution. Experiments demonstrate that even major solvers benefit from it, with
gains ranging from slight to very high depending on the setting. While presented as a

108 CHAPTER 6. ARRAYS MADE SIMPLER

esp0 : BitVec 16
mem0 : ArrayBitVec 16BitVec 16

assert (esp0 > 61440)
mem1 , mem0[esp0 − 16]← 1415
esp1 , esp0 − 64
eax0 , mem1[esp1 + 48]
assert (mem1[eax0] � 9265)

esp0 : BitVec 16
mem0 : ArrayBitVec 16BitVec 16

assert (esp0 > 61440)
assert (mem0[1415] � 9265)

Figure 6.2 – A formula in the theory of arrays (left) and its simplification with fas (right).

preprocessing, fas would clearly benefit from a deeper integration inside an array solver,
in order to take advantage of more simplification opportunities along the resolution
process.

6.2 Motivation

Let us detail how the formula in the left part of Figure 6.2 can be simplified into the
formula in the right part using our new fas simplification procedure for arrays. We
focus on the last assertion which involves a read on mem1 , mem0[esp0 − 16]← 1415, i.e.
a read-over-write. Let us denote i , esp0 − 16. The read occurs at index eax0, which is
itself the result of a read on mem1 at index j , esp1 + 48. According to arrays semantics
(Figure 6.1), we must try to decide whether i and j (resp. eax0 and i) are equal or
different. The standard syntactic equality check is not conclusive here. But esp1 , esp0 − 64,
therefore j can be rewritten into esp0 − 16 (base normalization in fas), which is exactly
i. Hence i � j is proven. By applying array axioms, we deduce that eax0 , 1415,
and the last assertion becomes mem1[1415] � 9265. We now try to decide whether i
and 1415 are equal or different. Again, the standard syntactic equality check fails. Yet,
by the first assertion we deduce that i > 61424 (domain propagation in fas), leading to
i , 1415. Therefore mem1 is safely replaced by mem0 in the last assertion which becomes
mem0[1415] � 9265. Finally, as assertions in the formula now only refer to esp0 and mem0,
we erase all the intermediate definitions to obtain the simplified formula.

This littlemental gymnastic emphasises two important aspects of row-simplifications.
First, simplifications often require (dis-)equality reasoning beyond pure syntactic
equality. Second, simplifications involve a backward reasoning through the formula
which may become prohibitive on large formulas if not treated with care (not shown

6.3. STANDARD SIMPLIFICATIONS FOR READ-OVER-WRITE 109

@eax+38 46 @eax+26 43 @eax+38 32 @esp+79 50 . . .

Figure 6.3 – Arrays represented as sequences (lists) of writes.

here, up to 1h simplification time in Figure 6.10). Our proposal focuses especially on these

two aspects.

6.3 Standard Simplifications for read-over-write
The theory of arrays has been introduced in Chapter 3, Section 3.3.3, and in Figure 6.1.
As already stated, the main difficulty for reasoning over arrays comes from terms of
the form (a[i]← e)

[
j
]
, called read-over-write (row), since depending on whether i � j

holds or not, the term evaluates to e (select-hit) or to a
[
j
]
(select-miss). Array (formula)

simplification consists in removing as many row as possible before resolution by proving
(when possible) the validity of the (dis-) equality of such pairs of indexes (i , j) and
rewrite the term accordingly. Such simplification procedures critically depend on two
factors: 1) the equality check procedure, and 2) the underlying representation of an

array and its revisions arising from successive writes.
The equality check must be both efficient — simplifying a formula must be cheaper

than solving it, and correct— all proven (dis-)equalities must indeed hold. It can thus
only be approximated, i.e. it is incomplete and may miss some valid (dis-)equalities. The
standard solution is to rely on syntactic term equality checking. Obviously this is a crude

approximation: disequality can never be proven (but for constant-value indexes), and
as exemplified in Section 6.2, small syntactic variations of the same value can hinder
proving equalities.

We present now two (unsatisfactory) standard array representations, coming either
from the decision procedure community (the list representation: generic but slow) or
from the Symbolic Execution community (the map representation: efficient but restricted).

Arrays Represented as Lists The standard representation of an array and its subse-
quent revisions is basically a “store-chain”, the linked list of all successive writes in
the array. Hence a fresh array is simply an empty list, while the array obtained by
writing an element e at index i in array A is represented by a node containing (i , e) and
pointing to the list representing A. Figure 6.3 illustrates this encoding. This approach
is very generic — it can cope with symbolic indexes, and it is the one implicitly used

110 CHAPTER 6. ARRAYS MADE SIMPLER

inside array solvers. In order to simplify a read at index j on array A, one must decide
whether i � j is valid for the pair (i , e) inside the head of the list representing A. If we
succeed, then we can apply the row axiom and replace the read by value e. Otherwise,
we try to decide whether i , j is valid. If this is the case, then we use the second row
axiom and move backward along the linked list. If not, the simplification process stops.

An inherent problem with this representation is the increase in the simplification
cost as the number of writes rises. As mentioned in Section 6.2, this cost becomes
prohibitive when dealing with large formulas. Indeed, one might be forced for each
read to fully explore the write-list backward, yielding a quadratic worst case time cost.
This is especially unfortunate because this worst case arises in situations where the
simplification could perform the best, e.g. when all disequalities between indexes hold
so that all reads could be replaced with accesses to the initial array (no more row). A
workaround is to bound the backward exploration of the write-list, which reduces the
worst case time cost to linear, but at the expense of limited simplifications (Figure 6.10,
Section 6.5.4).

@28 84

@19 71

@69 39

@93 75

@10 58

@20 97

@49 44

. . .

Figure 6.4 – Ar-
rays represented as
maps of writes (con-
stant write indexes).

Arrays Represented as Maps In the restricted case where all
indexes of reads and writes are constant values, a persistent map
with logarithmic lookup and insertion can be used to simplify all
row occurrences — yielding fast and scalable simplification. This
representation is used in Symbolic Execution tools [CS13] with
strong concretization policy [GKS05, DBF+16] during the formula
generation step in order to limit the introduction of arrays, but
it is not suited to general purpose array solvers as it cannot cope
with symbolic indexes.

Here, a freshly declared array is represented by an empty
map where indexes and elements sorts correspond to those of
the array, and the array obtained after a write of element e at
index i is simply represented by the map of the written array in
which e is added at index i, as illustrated in Figure 6.4. Then
the simplification of a read at index j becomes its substitution
by the element mapped to j. In the case where no such element
is found, the read occurs on the initial array. Therefore, we can
either replace the array by the initial one or replace the read by a
fresh symbol. In the latter case, we have to ensure that two reads
are replaced by the same symbol if and only if they occur at the same index.

6.4. EFFICIENT SIMPLIFICATION FOR READ-OVER-WRITE 111

@eax+59 23

@eax+07 81

@eax+64 06

@eax+28 62

@esp+08 99

@esp+86 28

@esp+03 48

@esp+25 34

. . .

Figure 6.5 – Arrays represented as sequences of packs of independent writes (map list).

6.4 Efficient Simplification for read-over-write
We now present fas (Fast Array Simplification), an efficient approach to read-over-write

simplification. fas combines three key ingredients: a new representation for arrays as a
list of maps to ensure scalability, a dedicated rewriting step (base normalization) geared
at improving the conclusiveness of syntactic (dis-)equality checks between indexes, and
lightweight domain reasoning to go beyond purely syntactic checks.

6.4.1 DedicatedData Structure: Arrays Represented as Lists ofMaps

We look here for an array representation combining the advantages of the list represen-
tation (genericity) and the map representation (efficiency) presented in Section 6.3. As
a preliminary remark, we can note that the map representation can be extended from
the constant-indexes case to the case where all indexes of reads and writes are pairwise
comparable. By comparable we mean that a binary comparison operator ≺ is defined
and decidable for every pair of indexes in the formula. Yet, if such a hypothesis might
sometimes be satisfied, it is not necessary the case, for example when indexes contain
uninterpreted symbols.

The representation of arrays we propose, lists of maps (denoted map lists), aims
precisely at combining advantages of maps when all indexes are pairwise comparable
while being as general as lists in other situations. Our array representation can be
thought of as a list of packs of independent writes. The idea is that sets of comparable (and
proven different) indexes can be packed together into map-like data structures, allowing
efficient (i.e. logarithmic) search on these packs of indexes during the application of
row-like simplification rules. While the idea is presented here in general, we instantiate it in

Section 6.4.3, Figure 6.7, and in Section 6.4.4, Figure 6.8.

In this representation, nodes of the list are maps from pairwise-comparable indexes
to written elements, as illustrated in Figure 6.5. A fresh array is represented as an

112 CHAPTER 6. ARRAYS MADE SIMPLER

empty list (of maps). The array obtained after the write of element e at index i is
defined by:

• If i is comparable with all other indexes of elements already inserted in the map
at head position, then we add the element e at index i into this map (store-hit);

• Else we add to the list a fresh node containing the singleton map of index i to
element e (store-miss).

For a read at index j, the simplification of row is done as follows:

• If indexes in the head position map of the list representing the array are all
comparable with j, then if j belongs to this map we substitute the read by the
associated element (select-hit), else we re-iterate on the following node in the list
(select-miss);

• Else, we abort (select-abort).

A first version of the dedicated (dis-)equality checks we use is presented in Section 6.4.2. The

whole fas procedure, together with the associated notion of comparable, is formally described in

Section 6.4.3, and a refinement using more semantic checks is presented in Section 6.4.4.

Intuitively, the benefit of this representation is that its behavior varies between the
one of the list representation and the one of the map representation, depending on the
proportion of indexes pairwise comparable. Indeed, when all indexes are pairwise
comparable, the list only contains a single map of all indexes, which is equivalent to
the map representation. And when none of the index pairs are comparable, the list is
composed of singleton maps, which is equivalent to the list representation.

From a technical point of view, map lists enjoys several good properties:

Property 6.1 (Compactness). By construction, all indexes in any map of a map list are
pairwise comparable, while indexes from adjacent maps are never comparable.

Property 6.2 (Complexity). Assuming that 1) we can decide efficiently (constant or
logarithmic time) whether an index is comparable to all the other indexes of a given
map, 2) that ≺ between comparable terms can also be efficiently decided (constant or
logarithmic time), and 3) a decent implementation of maps (logarithmic time insertion
and lookup), then:

• Array writes are computed in logarithmic time (map insertion) — where the
standard list approach requires only constant time;

6.4. EFFICIENT SIMPLIFICATION FOR READ-OVER-WRITE 113

• Array reads are also computed in logarithmic time (map lookup) as select-miss
can only led to select-abort (Property 6.1) — where the standard list approach
requires linear time.

In the case where all indexes are pairwise comparable, our representation contains
a single map and simplification cost for r reads and w writes is bounded by r · ln(w),
while the list approach requires a quadratic r · w time.

Finally, map lists allow to easily take into account some cases of write-over-write (a
write masked by a later write at the same index can be ignored if no read happens
in-between), while it requires a dedicated and expensive (w2) treatment with lists.

6.4.2 Approximated Equality Check and Dedicated Rewriting

We consider as equality check a variation of syntactic term equality, namely syntactic

base/offset equality, which is regarding two terms t1 and t2 defined as follows:

• If t1 , β1 + ι1 and t2 , β2 + ι2 —where β1, β2 are arbitrary terms (bases) and ι1, ι2
are constant values (offsets), and β1 � β2 (syntactically) then return the result of
ι1 � ι2,

• Otherwise the check is not conclusive.

This equality check is correct and efficient, and it strictly extends syntactic term equality
— the result is more often conclusive. Actually, in practice it turns out that this extension
is significant. Indeed, a common pattern in array formulas coming from software
analysis is reads or writes at indexes defined as the sum of a base and an offset (think
of C or assembly programming idioms). Hence, dealing with such terms is particularly
interesting for verification-oriented formulas.

Dedicated Rewriting: Base Normalization Yet, this equality check still suffers from
the rigidity of syntactic approaches. Therefore it is worthwhile to normalizes indexes
as much as possible by applying a dedicated set of rewriting rules called base normal-

ization (rebase), cf. Figure 6.6. These rules are essentially based on limited inlining of
variables together with associativity and commutativity rules of +/− operators, the goal
being tominimize the number of possible bases in order to increase the “conclusiveness”
of our equality check, as done in example Section 6.2.

114 CHAPTER 6. ARRAYS MADE SIMPLER

if u , v then u + k v + k alias inlining
if u , v + l then u + k v + (k + l) base/offset inlining

− (x + k) (−k) − x constant negation
(x + k) + l x + (k + l) constant packing
(x + k) + y

(
x + y

)
+ k constant lifting

(x + k) +
(
y + l

)

(
x + y

)
+ (k + l) base/offset addition

(x + k) −
(
y + l

)

(
x − y

)
+ (k − l) base/offset subtraction

. . .

Figure 6.6 – Example of base normalization rules. u , v are variables, k , l are constant
values and x , y are terms. Non-inlining rules reduce either the number of operators or
the depth of constant values, ensuring termination. Note that (−k), (k + l), (k − l) are
constant values, not terms.

Optimization: Sub-Term Sharing Sharing of sub-terms consists in giving a common
name to two syntactically equal terms. This improvement is not new and was already
used in Chapter 5, Section 5.6.1, but has an original implication is this context. Besides
easing the decision of equality between terms, it remedies to an issue induced by
the simplification of row. Indeed, the simplification of row can be seen as a kind of
“inlining” stage, which may in some cases lead to terms size explosion. This problem
arises when after a write of element e at index i, several reads at index i are simplified.
It may result in numerous copies of term e, term which may contain itself other reads
to simplify. By naming and sharing terms read and written in arrays, the sub-term
sharing phase prevents this issue. Experiments in Section 6.5.4 demonstrate the practical

interest on very large formulas.

6.4.3 The fas Procedure
Using the generic algorithm of Section 6.4.1 with equality check and normalization
from Section 6.4.2, we formalize fas as the set of inference rules presented in Figure 6.7.
Two terms will be said comparable when they share the same base β. store-hit and
store-miss rules explain how to update the representation of an array on writes, and
select-hit and select-miss rules explain how to simplify reads. store rules are presented
as triples {Λ} a[i] ← e {Λ′} where Λ′ is the representation for a[i] ← e when Λ is the
representation for a. select rules are presented as triples {Λ} ` a[i] e meaning that
a[i] can be rewritten in e when Λ is the representation for a.

6.4. EFFICIENT SIMPLIFICATION FOR READ-OVER-WRITE 115

i � β + ι ι a constant{〈
Γ, β, b

〉
:: Λ

}
a[i]← e

{〈
Γ[ι]← e , β, b

〉
:: Λ

} store-hit

i � α + ι α , β{〈
Γ, β, b

〉
:: Λ

}
a[i]← e

{
〈∅[ι]← e , α, a〉 ::

〈
Γ, β, b

〉
:: Λ

} store-miss

Γ[ι] � e i � β + ι{〈
Γ, β, b

〉
:: Λ

}
` a[i] e

select-hit

{Λ} ` b[i] e Γ[ι] � ∅ i � β + ι{〈
Γ, β, b

〉
:: Λ

}
` a[i] e

select-miss

Figure 6.7 – Inference rules for ·[·] and ·[·]← · using the map list representation.

The representation
〈
Γ, β, b

〉
:: Λ we use is a specialized version of the map list

representation that we just defined, where Γ is a map, β is the common base of indexes
present in Γ, b the last revision of the array written at a different index than β, and
where Λ is the tail of the list. Assuming that all indexes have been normalized, if
the base of the write index is equal to β, then the store-hit rule applies and we add
the written element into Γ. If the base of the write index is not equal to β, then the
store-miss rule applies. We add as a new node of the list a singleton map containing
only the written element, the new base and the written array. For row-simplification,
the select-hit rule states that if the base of the read index is equal to β, and if there is an
element in Γmapped to this index, then we return this element. Finally the select-miss
rule states that if there is no such element, then we return the simplified read on b at
the same index, using Λ as the representation.

6.4.4 Refinement: Adding Domain-Based Reasoning

While our equality check performs well for deciding (dis-)equalities between indexes
with a same base, it behaves poorly with different bases. So we extend fas in Figure 6.8
with domain-based reasoning abilities. Basically, maps are now equipped with abstract
domains over-approximating their sets of (possible) concrete indexes, and the data
structure is now a list of sets of maps, all maps in a set having different bases but
disjoint sets of concrete indexes. When syntactic base/offset equality check is not

116 CHAPTER 6. ARRAYS MADE SIMPLER

i � β + ι ι a constant
Θ �

{〈
Σ, σ, c ,Σ]

〉
| σ , β ∧ Σ] u i] � ⊥

}

Ξ �

{〈
Σ, σ, c ,Σ]

〉
| σ , β ∧ Σ] u i] , ⊥

}

{(〈
Γ, β, b , Γ]

〉
⊕ Θ] Ξ

)
:: Λ

}
a[i]← e

{(〈
Γ[ι]← e , β, b , Γ] t i]

〉
⊕ Θ

)
:: Ξ :: Λ

} store-hit

i � α + ι ι a constant
Θ �

{〈
Σ, σ, c ,Σ]

〉
| σ , α ∧ Σ] u i] � ⊥

}

Ξ �

{〈
Σ, σ, c ,Σ]

〉
| σ , α ∧ Σ] u i] , ⊥

}

{(Θ] Ξ) :: Λ} a[i]← e
{(〈

∅[ι]← e , α, a , i]
〉
⊕ Θ

)
:: Ξ :: Λ

} store-miss

Γ[ι] � e i � β + ι
{(〈
Γ, β, b , Γ]

〉
⊕ Ξ

)
:: Λ

}
` a[i] e

select-hit

{Λ} ` b[i] e Γ[ι] � ∅ i � β + ι
{(〈
Γ, β, b , Γ]

〉
⊕ Ξ

)
:: Λ

}
` a[i] e

select-miss

{Λ} ` b[i] e i � β + ι Θ �

{〈
Σ, σ, c ,Σ]

〉
| σ , β ∧ Σ] u i] � ⊥

}

{Θ :: Λ} ` a[i] e
select-skip

Figure 6.8 – Inference rules for ·[·] and ·[·]← · using domains.

conclusive, domain intersection may be used to prove disequality.
We borrow ideas from Abstract Interpretation [CC77]. Given a concrete domain D,

an abstract domain is a complete lattice
〈
D] , v,t,u,>,⊥

〉
coming with a monotonic

concretization function γ : D]
7→ P (D) such that γ (>) � D and γ (⊥) � ∅. An

element of an abstract domain is called an abstract value. In the following the concrete
domain is the set of array indexes.

The representation is now a list of sets of tuples
〈
Γ, β, b , Γ]

〉
where Γ, β and b are a

map, a base and an array as previously described, and where Γ] is the joined abstract
value of indexes in Γ. Given a write at index i, the set at head position in the list is
split into: 1) Θ the set of tuples whose map abstract value does not overlap with i],
the abstract value of i, 2) Ξ the set of tuples whose map abstract value overlap with
i], and if it exists, 3) the tuple

〈
Γ, β, b , Γ]

〉
where β is after normalization the base of i.

If this tuple exists, then the store-hit rule applies. We update Γ as previously and its

6.5. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 117

associated abstract value becomes the join value of γ] and i]. We append first Ξ alone
onto the list, and then Θ together with the updated tuple. Else, the store-miss rule
applies. Again we first append Ξ alone, then Θ together with a new singleton map, the
new base, the written array and the write index abstract value. Finally, select-hit and
select-miss are similar to previous ones, but we add a new rule select-skip. This rule
states that, if the read index abstract value do not overlap with maps abstract values in
the set at head position, then we drop the head and reiterate on the tail of the list.

Note that if abstract values in these rules are set to>, thenΘ is always empty and we
get back to the previous inference rules. Also the complexity of reads becomes linear in
the list size, as domains can prove disequality at each node of the list. Yet, it is not a
problem in practice, as demonstrated by experimental evaluation in Section 6.5.

Domain Propagation So far, we did not explained how abstract values are computed.
The literature on abstract domains is plentiful [Sim08]. Nevertheless we present in
Figure 6.9 propagation rules for a specific abstract domain, the well-known domain of
(multi-)intervals — used in our implementation. Note that operations are performed
over bitvectors of a known size N , and that + denotes the wraparound addition. The
general difficulty is to find a sweet spot between the potential gain (more checks become
conclusive) and the overhead of propagation. As a rule of thumb, non-relational domains

should be tractable and useful. Especially, combining multi-intervals with congruence
(e.g. x ≡ 5 mod 8) or bit-level information (e.g. the second bit of x is 1) [BHP10] is a
good candidate for refining our method at an affordable cost.

6.5 Implementation and Experimental Evaluation

6.5.1 Implementation

In order to evaluate the efficiency of our approach, we implemented fas (with the
different representations presented so far and the abstract domain of multi-intervals) as
a preprocessor for SMT formulas belonging to the QF-ABV logic (quantifier-free formulas

over the theory of bitvectors and arrays, Chapter 3, Section 3.3.2, Section 3.3.3) — as typical
choice in software verification. In that setting, all bitvector values and expressions
have statically known sizes, arithmetic operations are performed modulo and values can
“wraparound”. For reproducibility purposes source code and benchmarks are available
online2.

2http://benjamin.farinier.org/lpar2018/

http://benjamin.farinier.org/lpar2018/

118 CHAPTER 6. ARRAYS MADE SIMPLER

Let i , j two bitvectors of size N, with i] � [mi ,Mi], j] � [m j ,M j] where 0 ≤ mi , j ≤

Mi , j ≤ 2N ,

c] � [c, c] for any constant c

v] � [mi ,M j] if i ≤ v ≤ j(
extractl ,h i

)]
� [0, 2h−l+1

− 1] if (Mi � l) − (mi � l) ≥ 2h−l+1

� [extractl ,h (mi) , extractl ,h (Mi)] if extractl ,h (Mi) ≥ extractl ,h (mi)
� [0, extractl ,h (Mi)] otherwise
t [extractl ,h (mi) , 2h−l+1

− 1](
i + j

)]
� [mi + m j ,Mi + M j] if Mi + M j < 2N

� [mi + m j − 2N ,Mi + M j − 2N] if mi + m j ≥ 2N

� [mi + m j − 2N , 2N
− 1] otherwise

t [0,Mi + M j − 2N]

Figure 6.9 – Examples of propagation for intervals. These propagations are extended to
multi-intervals by distribution for unary operators and pairwise distribution for binary
operators.

The implementation comprises 6 300 lines of OCaml integrated into the Tfml logical
formula preprocessing engine [FBBP18], part of the Binsec Symbolic Execution tool
[DBT+16]. It comprises all simplifications and optimizations described in Section 6.4,
including map lists, base normalization, sub-term sharing and domain propagation
(multi-intervals) over bit-vectors. Base normalization and sub-term sharing are applied
systematically, and at construction time, thanks to smart-constructors: trying to build
the term (esp0 − 64) + 48 will automatically result in building the term esp0 − 16,
the non-simplified version of the term just never exists. Note that our normalization
rules (Section 6.4.2) and domain propagators (Section 6.4.4) correctly handle possible
arithmetic wraparounds.

An advantage operating as a preprocessor is to be independent of the underlying solver used

for formula resolution, and therefore allow us to evaluate the impact of our approach with several

of them. A drawback is that we do not have access to various internal components of the solver,

like accessing the model under construction, and cannot use them to refine our approach. In the

long term, a deeper integration into a solver would be more suitable.

6.5. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 119

6.5.2 Experimental Setup

We evaluated fas performances under three criteria : 1) simplification thoroughness,
measured by the reduction of the number of row terms; 2) simplification impact, measured
by resolution time before and after simplification; 3) simplification cost, measured by the
total time of simplification.

We devise three sets of experiments corresponding to three different scenarios:
mid-sized formulas generated by the SE-tool Binsec [DBT+16] from real executables
programs — typical of test generation and vulnerability finding (Section 6.5.3), very
large formulas generated by Binsec from very long traces — typical of reverse and
malware analysis (Section 6.5.4), and formulas taken from the SMT-LIB benchmarks
(Section 6.5.5). Regarding experiments over SE-generated formulas, we also consider
three variants corresponding to standard concretization / symbolization policies
[DBF+16] (cf. Section 6.5.3), as well as different timeout values. Experiments are carried
out on an Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz. We consider three of the best
SMT solvers for the QF-ABVtheory, namely Boolector (Btor) [BB09a], Yices [Dut14] and
Z3 [dMB08].

Note that the impact of map lists (with regard to a list-based representation) and sub-term

sharing will be evaluated only in Section 6.5.4, as they are interesting only on large enough

formulas. Moreover, the map list representation impacts only preprocessing time, not its

thoroughness: assuming preprocessing does not time out (and rebase and domains are used),

fas and fas-list will carry out the same simplifications.

ANote on Problem Encoding As already stated, we consider quantifier-free formulas
over the theory of bitvectors and arrays coming from the encoding of low-level software
verification problems. Arithmetic operations are performed modulo and values can
“wraparound”. Also, since memory accesses in real hardware are performed at word-
level (reading 4 or 8 bytes at once), they are modelled here by successive byte-level reads
and writes — allowing to take properly into account misaligned or overlapping accesses.
Finally, memory is often modelled as a single logical array of bytes (i.e., bitvector values
of size 8), without any a priori distinction betweeen stack and heap (this is the case for
all examples from Binsec).

6.5.3 Medium-Size Formulas from SE

We consider here typical formulas coming from Symbolic Execution over executable
codes. While mid-sized (max. 3.42 MB, avg. 1.40 MB), these formulas comprise quite

120 CHAPTER 6. ARRAYS MADE SIMPLER

Table 6.1 – 6 590 x 3 medium-size formulas from SE, with timeout = 1 000 sec.: simplifi-
cation time (in seconds), number of row after simplification, number of timeout and
resolution time (in seconds, without timeout).

simpl. #timeout and resolution time #rowtime Btor Yices Z3

co
nc

re
te default 61 0 163 2 69 0 872 866 155

fas 85 0 94 2 68 0 244 1 318
fas-itv 111 0 94 2 68 0 224 1 318

in
te
rv
al default 65 0 2 584 2 465 31 155 992 866 155

fas 99 0 2 245 2 487 25 126 806 531 654
fas-itv 118 0 755 2 140 14 37 269 205 733

sy
m
bo

lic default 61 0 6 173 3 1 961 65 305 619 866 155
fas 91 0 6 117 3 1 965 66 158 635 531 654

fas-itv 111 0 4 767 2 1 108 43 80 569 295 333

to
ta
l default 187 0 8 922 7 2 495 96 462 484 2 598 465

fas 275 0 8 458 7 2 520 91 285 686 1 064 626
fas-itv 340 0 5 616 6 1 317 57 37 573 502 384

long sequences of nested row (max. 11 368 row, avg. 4 726 row) as there is only one
initial array (corresponding to the initial memory of the execution, i.e. a flat memory
model). More precisely, we consider 6 590 traces generated by Binsec [DBT+16] from
10 security challenges (e.g. crackme such as Manticore or Flare-On) and vulnerability
finding problems (e.g. GRUB vulnerability), and from these traces we generate 3 x
6 590 formulas depending on the concretization / symbolization policies used in Binsec
to generate them: concrete (all array indexes are set to constant values), symbolic

(symbolic array indexes), and interval (array indexes bound by intervals). We consider
two different timeout: 1 000 seconds (close to SMT-LIB benchmarks setting) and 1 second
(typical of program analysis involving a large number of solver calls, e.g. deductive
verification or Symbolic Execution).

The whole results are presented in Table 6.1 (timeout 1 000 sec.) and Table 6.2
(timeout 1 sec.). Note that resolution time does not include timeout. Columns fas and
fas-itv represents respectively our technique (map list, rebase and sharing) potentially
improved with domain reasoning based on intervals (fas-itv). The default column
represents aminimal preprocessing step consisting of constant propagation and formula
pruning, without any array simplification.

6.5. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 121

Table 6.2 – 6 590 x 3 medium-size formulas from SE, with timeout = 1 sec.

#timeout and resolution time
Btor Yices Z3

co
nc

re
te default 2 93 2 3.12 2 655

fas 2 24 2 2.54 2 39
fas-itv 2 23 2 2.51 2 40

in
te
rv
al default 1 230 730 57 184 480 751

fas 593 1 213 58 181 483 773
fas-itv 52 602 6 66 273 665

sy
m
bo

lic default 1 947 575 2 771 307 3 497 438
fas 1 888 618 2 723 310 3 470 442

fas-itv 1 597 647 1 473 528 2 895 504

to
ta
l default 3 179 1 399 2 830 494 3 979 1 845

fas 2 483 1 856 2 783 495 3 955 1 254
fas-itv 1 651 1 273 1 481 597 3 170 1 210

We can see that:

• Simplification time is always very low on these examples (340 sec. for 3 x 6 590
formulas, in avg. 0.017 sec. per formula). Moreover, it is also very low with regard
to resolution time (taking timeout into account: Boolector 6%, Yices 4% and
Z3 0.3%) and largely compensated by the gains in resolution, but for one case
where Boolector performs especially well (concrete formulas: cost of 118% — not
compensated by gains in resolution).

• Formula simplification is indeed thorough: as a whole, the number of row is
reduced by a factor 5 (2.5 without interval reasoning). The simplification performs
extremely well, as expected, on concrete formulas, where almost all row instances
are solved at preprocessing time. On interval formulas, the number of row is
sliced by a factor 4, and a factor 3 in the case of full symbolic formulas.

• The impact of the simplification over resolution time (for a 1 000 sec. timeout)
varies greatly from one solver to another, but it is always significant: factor 1.5 for
Boolector, factor 1.9 for Yices with one fewer timeout, up to a factor 3.8 and 32
fewer timeout for Z3. Especially, on interval formulas fas with domain reasoning
yields a 3.4 (resp. 3.3) speed factor for Boolector (resp. Yices), while Z3 on this
category enjoys a 4.1 speedup together with 14 fewer timeout. Interestingly,

122 CHAPTER 6. ARRAYS MADE SIMPLER

Table 6.3 – GRUB (interval), 753 formulas
— Number of timeout and resolution time
(in seconds, without timeout).

#timeout and resolution time
GRUB Btor Yices Z3
default 0 508 0 258 0 31 322

fas 0 505 0 257 1 26 809
fas-itv 0 123 0 54 0 4 481

Table 6.4 – UNGAR (symbolic), 139 formu-
las — Number of timeout and resolution
time (in seconds, without timeout).

#timeout and resolution time
UNGAR Btor Yices Z3
default 0 359 3 627 12 926

fas 0 373 3 624 12 1 130
fas-itv 0 19 2 13 0 569

domain reasoning is useful also in the case of fully symbolic formulas, i.e. with
no explicit introduction of domain-based constraints.

Results for a 1 sec. timeout follows the same trend but they are much more
significant (number of timeout: Boolector -48%, Yices -47% and Z3 -21%), and they
become especially dramatic on interval formulas (number of timeout: Boolector
-96%, Yices -90% and Z3 -44%).

Focus on Specific Cases We highlight now a few interesting scenarios where fas
performs very well, especially formulas generated from the GRUB vulnerability we
presented inChapter 2 (Table 6.3, 753 formulas), and formulas representing the inversion
of a crypto-like challenge called UNGAR (Table 6.4, 139 formulas). Regarding GRUB,
while basic fas does not really impact resolution time, adding domain-based reasoning
does allow a significant improvement — Boolector, Yices and Z3 becoming respectively
4.1x, 4.7x and 7x faster. Regarding UNGAR, again fas alone does not improve resolution
time (for Z3, we even see worse performance), but adding interval reasoning yields
dramatic improvement: Boolector becomes 18.8x faster, Yices becomes 48.2x faster (with
-1 timeout) and Z3 does not time out anymore (-12 timeout).

Conclusion On these middle-size formulas coming from typical SE problems, we can
draw the following conclusion:

Speed fas is extremely efficient and does not yield any noticeable overhead;

Thoroughness Formula simplification is significant— even on fully symbolic formulas,
and it becomes (as expected) dramatic on “concrete” formulas;

Impact The impact of fas varies across solvers and formulas categories, yet it is always
positive and it can be dramatic in some settings (low timeout, interval formulas).

6.5. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 123

Table 6.5 – 29 x 3 very large formulas from SE, with timeout = 1 000 sec.: simplification
time (in seconds), number of row after simplification, number of timeout and resolution
time (in seconds, without timeout).

simpl. #timeout and resolution time #rowtime Btor Yices Z3

co
nc

re
te default 44 10 159 4 1 098 26 3.33 1 120 798

fas-list 1 108 8 845 4 198 10 918 456 915
fas 196 8 820 4 196 10 922 456 915

fas-itv 210 4 654 1 12 4 1 120 0

in
te
rv
al

default 44 12 131 12 596 27 0.19 1 120 798
fas-list 222 12 129 12 595 26 236 657 594

fas 231 12 129 12 597 26 291 657 594
fas-itv 237 12 58 12 28 19 81 651 449

sy
m
bo

lic

default 40 12 1 522 12 1 961 27 0.13 1 120 798
fas-list 187 11 1 199 12 2 018 26 486 657 594

fas 194 11 1 212 12 2 081 26 481 657 594
fas-itv 200 11 1 205 12 2 063 26 416 657 594

6.5.4 Very Large Formulas

We now turn our attention to large formulas (max. 458 MB, avg. 45 MB) involving very
long sequences of nested row (max. 510 066 row, avg. 49 850 row), as can be found for
example in symbolic deobfuscation. We consider 29 benchmarks taken from a recent
article on the topic [SBP18] representing execution traces over (mostly non crypto-) hash
functions (e.g. MD5, City, Fast, Spooky, etc.) obfuscated by the Tigress tool [CMMN12].
We also consider a trace taken from the ASPack packing tool3.

Results are presented in Table 6.5, where fas-list represents our simplification
method where the map list is replaced by a normal list — getting an improved version
of the standard list-based row-simplification (the goal being to evaluate the gain of our
new data structure). Again, simplification is significant with a strong impact on the
number of time outs and on resolution time, especially in the concrete case and for Z3.
Impact in the symbolic case is more mixed but positive (-1 timeout for Boolector and Z3,
no impact for Yices). In term of size, fas reduces formulas to max. 86.49MB, avg. 6.98MB,
and fas-itv to max. 86.45MB, avg. 6.17MB. If sub-term sharing is disabled, formulas size
jumps to max. 591.99MB, avg. 14.95MB for fas and max. 591.71MB, avg. 16.35MB for

3http://www.aspack.com/

http://www.aspack.com/

124 CHAPTER 6. ARRAYS MADE SIMPLER

Table 6.6 – ASPack formula, without timeout.

simpl. resolution time #rowASPack time Btor Yices Z3
default 15 sec. ≈ 24h 69 sec. 2h36 360 991
fas-list 53 min. 9.7 sec. 3.4 sec. 183 sec. 0

fas 61 sec. 9.7 sec. 3.4 sec. 183 sec. 0
fas-itv 63 sec. 9.8 sec. 3.4 sec. 182 sec. 0

fas-itv. Regarding simplification time, fas-list suffers from scalability issues on these
formulas (5x slower than fas).

0 100 200 300 400
·1030

2

4

6 ·103

List lookup bound

Ti
m
e
in

se
co
nd

s
resolution
simplification

Figure 6.10 – Boolector on ASPack.

The ASPack Example We now turn our atten-
tion to the formula generated from a trace of a pro-
gram protected by ASPack (96MB and 363 594 row,
concrete mode). Solving the formula is highly chal-
lenging: while Yices succeeds in a decent amount
of time (69 seconds), Z3 terminates in 2h36min
while Boolector needs 24h. Table 6.6 presents our
results on this particular example. fas performs
extremely well (Table 6.6), turning resolution time
from hours to a few seconds (Boolector) or minutes
(Z3). Yices also benefits from it. Especially, all
row instances are simplified away. fas and fas-itv
reduce the ASPack formula size to 3.81MB, while
it jumps to 443.54MB when sub-term sharing is
disabled. Interestingly, this example clearly highlights the scalability of fas with regard
to a standard list-based approach, passing roughly from 1h (list) to 1 minute (fas).
Figure 6.10 proposes a detailed view of the performance and impact of the standard
list-based simplificationmethod (Boolector only), depending on the bound for backward
reasoning (the standard method has no bound). For comparison, the two horizontal
lines represent simplification and resolution time with fas. We can see that bounding
the list-based reasoning has no tangible effect here, as we need at least a 3 000 seconds
(50 minutes) simplification time to get a resolution time under 3 000 seconds.

Conclusion Once again fas appears to be fast and to have a significant impact on
resolution time, especially in the concrete case where the difference can be from several

6.5. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 125

Table 6.7 – 15 016 formulas from SMT-LIB benchmarks, with timeout = 1.000 sec.:
simplification time (in seconds), number of row after simplification, number of timeout
and resolution time (in seconds, without timeout).

simpl. #timeout and resolution time #rowSMT-LIB time Btor Yices Z3
default 87 59 20 126 151 28 156 158 41 925 548 176

fas 378 54 19 922 148 26 657 147 43 090 469 815
fas-itv 378 55 19 843 146 28 703 149 40 873 469 567

hours to a few seconds (total resolution + simplification: a few minutes). Moreover,
it appears clearly that on very long traces fas scales much better than the standard
list-based row-simplification method.

6.5.5 SMT-LIB Formulas

We consider now the impact of fas on formulas taken from the SMT-LIB benchmarks.
These formulas are notably different from the ones considered in the two previous
experiments: while most of them do come from verification problems, they may involve
complex Boolean structure (rather than “mostly conjunctive” formulas) and they do
not necessarily exhibit very deep chains of row. These kinds of formulas are not our
primary objective, yet we seek to evaluate how our technique performs on a “bad case”.
We evaluate fas on all the 15 016 SMT-LIB formulas from QF-ABVtheory. timeout is set
to 1 000 seconds. Results are reported in Table 6.7. Note that, again, resolution time
does not include timeout.

Conclusion fas is again very efficient on these formulas (avg. 0.025 sec. per formula),
and reduces the number of row by -14%. Yet the impact of simplifications, while
slight, is clearly positive on both timeout (Boolector -8%, Yices -2% and Z3 -7%) and
resolution time (for Yices, only when taking timeout time into account). Such gains are
not anecdotal as the best SMT solvers are highly tuned for SMT-LIB. Since the number
of timeout is the main metric for SMT-LIB, Boolector with fas would have won the last
edition for QF-ABVtheory. Finally, domain reasoning does not add anything here (but
for Yices) — either the benchmark formulas do not exhibit such interval constraints, or
our propagation mechanism is too crude to take advantage of it.

126 CHAPTER 6. ARRAYS MADE SIMPLER

6.5.6 Conclusion

Our experiments demonstrate that our approach is efficient (the cost is almost always
negligible with regard to resolution time) and scalable (compared to the list-based
method). The simplification is thorough, removing a large fraction of row. The impact is

always positive (both in resolution time and number of time outs), and it is dramatic for

some key usage scenarios such as SE-like formulas with small timeout or very large size.
Finally, we can note that domain reasoning is usually helpful (though, not on

SMT-LIB formulas) and that it shows a powerful synergy with the “interval C/S policy”
in SE — yielding a new interesting sweet spot between tractability and genericity of
reasoning.

6.6 Related Works

DecisionProcedures for theTheory ofArrays Surprisingly, there have been relatively
few works on the efficient handling of the (basic) theory of arrays. Standard symbolic
approaches for pure arrays complement symbolic read-over-write preprocessing [GD07,
BNO+08, BG12] with enumeration on (dis-)equalities, yielding a potentially huge
search space. New array lemmas can be added on-demand or incrementally discovered
through an abstraction-refinement scheme [BB09b]. Another possibility is to reduce
the theory of arrays to the theory of equality by systematic “inlining” of the array
axioms to remove all ·[·] ← · operators, at the price of introducing many case-splits
The encoding can be eager [KS08] or lazy [BB09b]. Our method generalizes previous
preprocessings [GD07, BG12] and is complementary to complete resolution methods
[BB09b, KS08]. Note also that our approach could benefit from being integrated directly
within such a complete resolution method, allowing incremental simplification all
along the resolution process.

Decision procedures have also been developed for expressive extensions of the array
theory, such as arrays with extensionality (i.e. equality over whole arrays) or the array
property fragment [BMS06], which enables limited forms of quantification over indexes
and arithmetic constraints. These extensions aim at increasing expressiveness and they
do not focus so much on practical efficiency. Our method can also be applied to these
settings (as row are still a crucial issue), even though it will not cover all difficulties of
these extensions.

OptimizedHandling ofArrays Inside Tools Many verification and program analysis
tools and techniques ultimately rely on solving logical formulas involving the theory of

6.7. CONCLUSION 127

arrays. Since the common practice is to re-use existing (SMT) solvers, these approaches
suffer from the limitations of the current solvers over arrays. As a mitigation, some
of these tools take into account knowledge from the application domain in order to
generate relevant (but usually not equivalent) and simpler formulas [PMZC17, FLP16]
— see also the specific case of SE over concrete indexes discussed in Section 6.3. Our
method is complementary to these approaches as it operates on arbitrary formulas and
the simplification keeps logical equivalence.

6.7 Conclusion

The theory of arrays has a central place in software verification due to its ability to
model memory or data structures. Yet, this theory is known to be hard to solve because
of read-over-write terms (row), especially in the case of very large formulas coming from
unrolling-based verification methods. We have presented fas, an original simplification
method for the theory of arrays geared at eliminating row, based on a new dedicated
data structure together with original simplifications and low-cost reasoning. The
technique is efficient, scalable and it yields significant simplification. The impact
on formula resolution is always positive, and it can be dramatic on some specific
classes of problems of interest, like very long formulas coming from a binary-level
Symbolic Execution as the one we present in Chapter 7. These advantages have been
experimentally proven both on realistic formulas coming from Symbolic Execution and
on SMT-LIB formulas.

Future work includes a deeper integration inside a dedicated array solver in order
to benefit from more simplification opportunities along the resolution process, as well
as exploring the interest of adding more expressive domain reasoning.

Bibliography

[BB09a] Robert Brummayer and Armin Biere. Boolector: An Efficient SMT Solver
for Bit-Vectors and Arrays. In Tools and Algorithms for the Construction and

Analysis of Systems, 15th International Conference, TACAS 2009, Held as Part

of the Joint European Conferences on Theory and Practice of Software, ETAPS

2009, York, UK, March 22-29, 2009. Proceedings, pages 174–177, 2009.

[BB09b] Robert Brummayer and Armin Biere. Lemmas on demand for the exten-
sional theory of arrays. JSAT, 6(1-3):165–201, 2009.

128 CHAPTER 6. ARRAYS MADE SIMPLER

[BDM17] Sébastien Bardin, Robin David, and Jean-Yves Marion. Backward-bounded
DSE: targeting infeasibility questions on obfuscated codes. In 2017 IEEE

Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26,

2017, pages 633–651. IEEE, 2017.

[BG12] Sébastien Bardin and Arnaud Gotlieb. FDCC: A combined approach for
solving constraints over finite domains and arrays. In Integration of AI

and OR Techniques in Contraint Programming for Combinatorial Optimzation

Problems - 9th International Conference, CPAIOR 2012, Nantes, France, May 28

- June1, 2012. Proceedings, pages 17–33, 2012.

[BHP10] Sébastien Bardin, Philippe Herrmann, and Florian Perroud. An alternative
to sat-based approaches for bit-vectors. In Tools and Algorithms for the

Construction and Analysis of Systems, 16th International Conference, TACAS

2010, Held as Part of the Joint European Conferences on Theory and Practice of

Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, pages
84–98, 2010.

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision

Procedures with Applications to Verification (Chapters 5, 6 and 12). Springer,
2007.

[BM18] Sylvie Boldo and Nicolas Magaud, editors. Journées Francophones des

Langages Applicatifs, JFLA 2018, Banyuls-sur-Mer, France, January 24-27, 2018,
2018.

[BMS06] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable
about arrays? In Verification, Model Checking, and Abstract Interpretation, 7th

International Conference, VMCAI 2006, Charleston, SC, USA, January 8-10,

2006, Proceedings, pages 427–442, 2006.

[BNO+08] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-
Carbonell, and Albert Rubio. A write-based solver for SAT modulo the
theory of arrays. In Formal Methods in Computer-Aided Design, FMCAD 2008,

Portland, Oregon, USA, 17-20 November 2008, pages 1–8, 2008.

[BT18] Clark W. Barrett and Cesare Tinelli. Satisfiability modulo theories. In
Handbook of Model Checking., pages 305–343. 2018.

BIBLIOGRAPHY 129

[CC77] Patrick Cousot and Radia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In 4th ACM Symposium on Principles of Programming Languages

(POPL). ACM, 1977.

[CKL04] EdmundM. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In TACAS, Barcelona, Spain, March 29 - April 2, 2004,
pages 168–176, 2004.

[CMMN12] Christian S. Collberg, Sam Martin, Jonathan Myers, and Jasvir Nagra.
Distributed application tamper detection via continuous software updates.
In 28th Annual Computer Security Applications Conference, ACSAC 2012,

Orlando, FL, USA, 3-7 December 2012, pages 319–328, 2012.

[CS13] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:
three decades later. Commun. ACM, 56(2):82–90, 2013.

[DBF+16] Robin David, Sébastien Bardin, Josselin Feist, Laurent Mounier, Marie-
Laure Potet, Thanh Dinh Ta, and Jean-Yves Marion. Specification of
concretization and symbolization policies in symbolic execution. In ISSTA,

Saarbrücken, Germany, July 18-20, 2016, pages 36–46, 2016.

[DBT+16] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin
Feist, Marie-Laure Potet, and Jean-Yves Marion. BINSEC/SE: A Dynamic
Symbolic Execution Toolkit for Binary-Level Analysis. In IEEE 23rd Interna-

tional Conference on Software Analysis, Evolution, and Reengineering, SANER

2016, Osaka, Japan, March 14-18, 2016 - Volume 1, pages 653–656, 2016.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient
SMT Solver. In Tools and Algorithms for the Construction and Analysis of

Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,

Hungary, March 29-April 6, 2008. Proceedings, pages 337–340, 2008.

[DS78] Peter J. Downey and Ravi Sethi. Assignment commands with array
references. J.ACM, 25(4):652–666, 1978.

[Dut14] Bruno Dutertre. Yices 2.2. In Computer Aided Verification - 26th International

Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,

Vienna, Austria, July 18-22, 2014. Proceedings, pages 737–744, 2014.

130 CHAPTER 6. ARRAYS MADE SIMPLER

[FBBP18] Benjamin Farinier, Sébastien Bardin, Richard Bonichon, and Marie-Laure
Potet. Model generation for quantified formulas: A taint-based approach.
In Computer Aided Verification - 30th International Conference, CAV 2018, Held

as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,

2018, Proceedings, Part II, pages 294–313, 2018.

[FDBL18] Benjamin Farinier, Robin David, Sébastien Bardin, and Matthieu Lemerre.
Arrays made simpler: An efficient, scalable and thorough preprocessing.
In LPAR-22. 22nd International Conference on Logic for Programming, Artificial

Intelligence and Reasoning, Awassa, Ethiopia, 16-21 November 2018, pages
363–380, 2018.

[FLP16] Aymeric Fromherz, Kasper Søe Luckow, andCorina S. Pasareanu. Symbolic
arrays in symbolic pathfinder. ACM SIGSOFT Software Engineering Notes,
41(6):1–5, 2016.

[GD07] Vĳay Ganesh and David L. Dill. A decision procedure for bit-vectors and
arrays. In Computer Aided Verification, 19th International Conference, CAV

2007, Berlin, Germany, July 3-7, 2007, Proceedings, pages 519–531, 2007.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed
automated random testing. In Proceedings of the ACM SIGPLAN 2005

Conference on Programming Language Design and Implementation, Chicago, IL,

USA, June 12-15, 2005, pages 213–223, 2005.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic

Point of View. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2008.

[PMZC17] David Mitchel Perry, Andrea Mattavelli, Xiangyu Zhang, and Cristian
Cadar. Accelerating array constraints in symbolic execution. In Proceedings

of the 26th ACM SIGSOFT International Symposium on Software Testing and

Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017, pages 68–78, 2017.

[Rus05] JohnM.Rushby. Automated test generation andverified software. InVerified
Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Conference,

VSTTE 2005, Zurich, Switzerland, October 10-13, 2005, Revised Selected Papers

and Discussions, pages 161–172, 2005.

BIBLIOGRAPHY 131

[SBP18] Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet. Symbolic
deobfuscation: From virtualized code back to the original. In Detection

of Intrusions and Malware, and Vulnerability Assessment - 15th International

Conference, DIMVA 2018, Saclay, France, June 28-29, 2018, Proceedings, pages
372–392. Springer, 2018.

[Sim08] Axel Simon. Value-Range Analysis of C Programs: Towards Proving the Absence

of Buffer Overflow Vulnerabilities. Springer, 2008.

[YJWD15] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray.
A generic approach to automatic deobfuscation of executable code. In 2015

IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May

17-21, 2015, pages 674–691. IEEE, 2015.

132 CHAPTER 6. ARRAYS MADE SIMPLER

Chapter 7

Get Rid of False Positives with

Robust Symbolic Execution

As explained in Chapter 1, Symbolic Execution is an under-approximating formal
verification technique which was proven successful in bug finding, particularly for its
absence of false positives: a reported bug is a real bug. However, if this property is
true when the user controls all the program inputs, things get more complicated when
some inputs are not controllable, typically the environment. In that situation, Symbolic
Execution becomes fragile in the sense that it can produce false positives. As shown in
Chapter 2, this is especially the case in vulnerabilities analysis, where exploits must be
reproducible. In this chapter, we show first results on how to move from the classic
reachability problem to the novel robust reachability problem by the use of quantifiers. In
order to minimize the impact on resolution time, these quantifiers are then eliminated
using the taint-based approach presented in Chapter 5, and obtained formulas are
simplified using the technique dedicated to array terms presented in Chapter 6. This
results in an efficient Symbolic Execution robustwith regard to the environment, and
correct as an under-approximating verification technique, for it is really free of false
positives. The content of this chapter is a preliminary work, and was presented in [MD19].

7.1 Introduction

Context Program verification is an undeniable success when applied to critical
software. Substantial works were devoted for several years to adapt it to non-critical
software. In particular, Symbolic Execution [CS13] we presented in Chapter 4 seems
well suited to this effort. Symbolic Execution aims to explore paths of a program in

133

134 CHAPTER 7. ROBUST SYMBOLIC EXECUTION

order to find bugs. Each path comes with an entry obtained by symbolic reasoning
and Satisfiability Modulo Theories (SMT) [BT18] which makes the execution follow
that path. This method has been a huge success in recent years [GKS05] for its ability
to handle complex codes and its absence of false positives: every reported bug is
real. Symbolic Execution is thus part of under-approximating software verification
techniques.

Problem However, as shown in Chapter 2, false positives exist in practice [CDE08,
CKC11]. They come from abstractions of certain pieces of code that are absent or too
complicated to handle, for example embedded assembly language in C-level analysis,
or for example imperfect models of the initial state or of the environment in binary-level
analysis. This problem is known in the Symbolic Execution community, but not really
studied nor quantified. It is rather seen as a fatality, not necessarily annoying provided
the analysis finds enough bugs. However, it is a serious problem for the user, who can
no longer trust calculated coverage rates in a test oriented scenario, or has to spend
time analyzing a bug which was reported, but unconfirmed by its associated entry
in a security oriented scenario. The problem is particularly salient for binary-level
analysis, because user inputs and interactions with the environment are not clearly
distinguishable, and therefore are not easy to specify a priori. In practice, ad hoc
solutions may reduce the number of false positives, but do not guarantee their absence,
and even sometimes introduce new ones or completely overload underlying constraint
solvers.

Proposal We aim to develop a Robust Symbolic Execution, which is really exempt of
false positives. To this end we define the robust reachability problem, a new framework
in which inputs are partitioned between those controllable by the user and those
uncontrollable, like the environment. A solution is said to be robust if it reaches the
desired goal regardless of uncontrollable values. This framework makes it possible to
correctly handle annoying cases mentioned above.

Contributions In Chapter 2, we shown intuitively the interest of Robust Symbolic
Execution. This chapter makes the following contributions:

• We formally define in Section 7.2 the framework of robust reachability, and
propose a revision of Symbolic Execution, called Robust Symbolic Execution,
which aims to solve the robust reachability problem and eliminate false positives.

7.2. ROBUST SYMBOLIC EXECUTION 135

• Then in Section 7.3 we describe a first implementation of Robust Symbolic
Execution in the binary-level Symbolic Execution tool Binsec [DB15, DBT+16],
and report some encouraging initial experimental results.

7.2 Robust Symbolic Execution

In this section we describe Robust Symbolic Execution, a Symbolic Execution which
is exempt of false positive. In order to achieve this goal, Robust Symbolic Execution
distinguish inputs according to their controllability. By “controllability” we designate
the ability of an external controller (theuser, or an attacker) to choose, or at least influence,
the value of a controllable program component (an input variable for example, or the
result of the execution of a function controlled by the user).

7.2.1 Robust Reachability

As stated in Chapter 4, Section 4.4.1, verifying if a property holds on a program can be
reduced to a reachability problem in an instrumented version of the program, which
makes the notion of reachability central for Symbolic Execution. Thus, after having
recalled the classic notion of reachability, we define the notion of robust reachability.

Definition 7.1 (Classic Reachability). Let P be a program taking (a , x) as inputs, and
let l be a location in the code of P. We said that l is reachable if there exists a0 and x0
such that the execution of P (a0, x0) reaches location l.

Note that all code locations are not necessarily reachable: there may exist code
locations which are not reachable by any entry. If having large portions of non-
reachable code is often considered improper — we talk about dead-code locations, it
may sometimes be desired, as for example for an abort instruction after an assertion
check.

Definition 7.2 (Robust Reachability). Let P be a program taking (a , x) as inputs, where
a is controllable by the user and where x is uncontrollable, and let l be a location in the
code of P. We said that l is robustly reachable if there exists a controllable input a0 such
that, for all uncontrollable input x0, the execution of P (a0, x0) reaches location l.

By taking user inputs for controllable inputs, and the environment for uncontrollable
inputs, a location is classically reachable if it is possible to find a user input for which
the execution reaches this location for a suitable environment configuration; while a
location is robustly reachable if it is possible to find a user input for which the execution
reaches this location regardless of the environment configuration.

136 CHAPTER 7. ROBUST SYMBOLIC EXECUTION

7.2.2 Robust Symbolic Execution

When classic Symbolic Execution aims to solve the classic reachability problem, Robust
Symbolic Execution aims to solve the robust reachability problem. The computed path
constraint must now ensure the robust reachability of the targeted path successive
locations, and not just their classic reachability. Computed such a robust path constraint
is easy: it suffices to compute the classic path constraint, and then to existentially
quantify controllable variables and universally quantify uncontrollable variables, as
shown in Algorithm 7.1. Doing so requires to distinguish between controllable and
uncontrollable inputs, which is discussed later.

Algorithm 7.1: Robust Symbolic Execution of a program P.
forall pc obtained by classic Symbolic Execution of P do

Let I∃ ,
{
u1, . . . , un∃

}
the set of controllable variables appearing in pc

Let I∀ ,
{
v1, . . . , vn∀

}
the set of uncontrollable variables appearing in pc

if

{
M |� ∃u1, . . . , un∃ .∀v1, . . . , vn∀ .pc

}
, ∅ then

return

{
M |� ∃u1, . . . , un∃ .∀v1, . . . , vn∀ .pc

}
else continue

Finally we obtained a path constraint in the following form: ∃a.∀x.pc (a , x). Note
that all existential quantifications appear before universal quantifications, regardless
the order in which variables are introduced during the Symbolic Execution. Indeed,
existential variables can be chosen in function of preceding universal variables, which
means from the program point of view being able to choose some controllable inputs
in function of some uncontrollable inputs. It may be possible in specific circumstances
when values of some uncontrollable inputs are leaked through program outputs, but it
is not possible in general.

The question is now how to solve such quantified path constraints, as quantifications
makemany theories undecidable— this is the case for the arrays theory. Fortunately, we
can reuse some recent extensions of SMT solvers like for example the one for quantified
bit vectors, or our taint-based quantifier elimination [FBBP18]we presented in Chapter 5,
but also our array terms simplification [FDBL18] we presented in Chapter 6.

7.2.3 Controllable and Uncontrollable Inputs

Compared to classic Symbolic Execution, robust Symbolic Execution requires the user
to distinguish between controllable and uncontrollable inputs. For LOW program, this

7.2. ROBUST SYMBOLIC EXECUTION 137

distinction is clear: the only uncontrollable component is the initial memory, inputs
retrieve from get instructions are all controllable by the user. But for most programs,
distinguishing between controllable and uncontrollable inputs is not so easy. For
example it requires for C programs a correct semantics of external calls, and a precise
knowledge of the initial memory layout for binary programs. Moreover this distinction
is crucial: If the user declares inputs which are uncontrollable in the real system as
controllable inputs, the robust reachability problem will be ill-posed and Symbolic
Execution will return false positives with regard to the initial “real” problem.

However we can notice that declaring too many entries as uncontrollable still result
in a Robust Symbolic Execution exempt of false positives, but at the price of a loss
in generality, i.e. at the price of a potential increase in the number of false negatives.
A robust way to distinguish controllable and uncontrollable inputs is therefore to
consider all inputs uncontrollable by default. An input is consider as controllable only
if explicitly specified as such by the user, which is exactly the opposite of that classic
Symbolic Execution do.

Semi-Automatic Incremental Specification Although we consider all inputs as un-
controllable by default, the user still has the tedious responsibility to explicitly specify
which inputs are controllable. In order to assist the user in this task, we propose in
Algorithm 7.2 a semi-automatic incremental specification procedure for inputs which
require the user to specify, only when necessary, if an input is controllable. This
specification procedure is semi-automatic in the sense that it is automatically driven
by Symbolic Execution but requests times to times the user’s intervention, and is
incremental in the sense that it requires to specify if an input is controllable only when
necessary, when the input is used, one input after the others.

Let T be a set of targets, i.e. a set of code program location we want to achieve, and
let I be the set of program inputs. T can be either provided by the user, or by default
be the set of all code program locations. We first split into three I , I∃

⋃
I∀

⋃
I? where

I∃ is the (potentially empty) set of inputs we already known to be controllable, where
I∀ is the (potentially empty) set of inputs we already known to be uncontrollable, and
where I? is the set of undetermined inputs considered as uncontrollable by default.
The idea is to perform Robust Symbolic Execution by existentially quantifying over
controllable variables, universally quantifying over uncontrollable and undetermined
variables, but to let the solver to consider some undetermined variables as controllable:

1) Let N be the number of undetermined variables the solver can choose to consider
as controllable.

138 CHAPTER 7. ROBUST SYMBOLIC EXECUTION

Algorithm 7.2: Semi-automatic incremental specification procedure for inputs.
Let T a set of targeted program locations
Let I∃ ,

{
u1, . . . , un∃

}
the set of known to be controllable program inputs

Let I∀ ,
{
v1, . . . , vn∀

}
the set of known to be uncontrollable program inputs

Let I? ,
{
w1, . . . ,wn?

}
the set of undetermined program inputs

Let N , 1 the number of undetermined inputs to consider
while I? , ∅ and there exists some unachieved targets in T do

Let ι1, . . . , ιN some fresh “index” symbols
Let υ1, . . . , υN some fresh “value” symbols
Run Symbolic Execution using the following premise:
∃u1, . . . , un∃ .∀v1, . . . , vn∀ .∀w1, . . . ,wn? .∧

1≤i≤N

(
∨1≤ j≤n?

(
ιi � j ∧ υi � w j

))
⇒(

0 < ι1 < · · · < ιn? ≤ n?
) ∧

pc
if a new target t ∈ T is achieved withM a solution of the preceding constraint then

Mark t as achieved
for 1 ≤ i ≤ N do

Let i be the valuation of ιi inM
Ask to the user if wi is controllable
if wi is controllable then I∃ , I∃

⋃
{wi}

else I∀ , I∀
⋃
{wi} and mark t as unachieved

I? , I? \ {wi}

else

if N < n? then N , N + 1
else abort

7.2. ROBUST SYMBOLIC EXECUTION 139

(a) In order to encode the fact that the solver can select N undetermined variables
and choose their values, we introduce N fresh “index” symbols ι1, . . . , ιN
and N fresh “value” symbols υ1, . . . , υN . The “index” symbol ιi models the
index of the ith undetermined variable chosen to be consider as controllable,
and the “value” symbol υi models the value given to this variable.

(b) Then the choice is encoded by the premise
∧

1≤i≤N

(
∨1≤ j≤n?

(
ιi � j ∧ υi � w j

))
of an implication whose conclusion is the path constraint pc. We also add the
constraint

(
0 < ι1 < · · · < ιn? ≤ n?

)
to force indexes to belong to the correct

range and to be pairwise distinct.

2) If by running Symbolic Execution with this premise we achieved a new target:

(a) We first mark the target as presumably achieved;

(b) Then we look into the solution provided by the solver for values of ι1, . . . , ιN ,
and for each valuation i of ιi , we ask to the user if input wi is controllable:

• If the user answers yes, wemove variable wi from the set of undetermined
inputs to the set of controllable inputs;

• If the user answers no, we move variable wi from the set of undeter-
mined inputs to the set of uncontrollable inputs. Moreover in this
case, the presumably achieved target was not and is marked back as
unachieved, as Symbolic Execution used as controllable a variable which
is uncontrollable.

3) If we fail to achieved a new target, we increase N the number of undetermined
variables to consider until it exceeds the number of undetermined variables.

Finally, note that it is possible to have even more fine-grained inputs specifications for
containers datatype like arrays or bit-vectors. Instead of marking the whole container
as controllable, we can choose to mark as controllable only portions of it. To this
end, we use the same technique as presented before, but this time the “index” symbol
models an index in the container, and the “value” symbol models the value stored in
the container at this index. The disjunction ∨1≤ j≤n?

(
ιi � j ∧ υi � w j

)
in the premise

can also be simplified using datatype specific operators, and becomes for example for b
a bit-vector b [ιi , ιi] � υi or for example for a an array a[ιi] � υi .

140 CHAPTER 7. ROBUST SYMBOLIC EXECUTION

7.3 Implementation and Experimental Evaluation

7.3.1 Implementation

The various steps required for Robust Symbolic Execution are implemented in the
Binsec Symbolic Execution tool [DB15, DBT+16]. By default, Binsec in robust mode
considers all inputs as uncontrollable. A configuration file is used to specify which
inputs are controllable by the user.

Tfml is the logical formulas preprocessing engine of Binsec. On the quantifier
elimination side, Tfml implements the generic taint-based procedure presented in
Chapter 5, in particular its specialization on the arrays theory. For each array in the
initial formula, Tfml introduces a shadow array which is used to follow initial array
cells which depend on universally quantified variables as explained in Section 5.6.1.
It avoids the introduction of a large number of if · then · else · and allows constraints
introduced by our taint-based quantifier elimination to benefit from our simplifications
dedicated to array terms. On the simplification side, Tfml systematically applies to
terms rewriting rules presented in Chapter 6, Section 6.4.2 at construction time, thanks
to smart constructors. Moreover, Tfml applies our treatment for read-over-write once
before quantifiers elimination in order to facilitate pointers reasoning, and once after to
simplify introduced constraints.

7.3.2 Experimental Evaluation

We evaluate the impact of our approach according to two criteria: 1) the number of
true positives, which must be degraded as little as possible; and 2) the number of false
positives, which must be reduced to zero. To this end, we consider a set of crackme
challenges coming from the Binsec test suit whose goal is to find an input for which the
program reveals its secret. This kind of program is interesting because it is possible to
validate a solution simply by replaying the challenge with. We compare our Robust
Symbolic Execution with quantifier elimination and array terms simplification to classic
Symbolic Executionwith array terms simplification, and to a Robust Symbolic Execution
with array terms simplification but without quantifier elimination.

Experiments are performed on an Intel Core i7-4712HQ @ 2.30GHz processor with
16GB of RAM, and results are presented in Table 7.1. Classic Symbolic Execution finds
up to 12 correct solutions for these challenges depending on the underlying solver.
However, it also produces 9 to 12 false positives which are indistinctly mixed with these
solutions and which do not solve corresponding challenges. Robust Symbolic Execution
without quantifier elimination is, as intended, free of false positives. Nevertheless the

7.3. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 141

Table 7.1 – Number of true and false positives for classic Symbolic Execution, Robust
Symbolic Execution without quantifier elimination, and Robust Symbolic Execution
with quantifier elimination. Robust Symbolic Execution without quantifier elimination
is not applicable with Boolector and Yices as they are quantifier-free solvers.

classic SE
true false unknownpositive positive

Btor 12 11 1
CVC4 7 9 8
Yices 7 11 6
Z3 12 12 0

robust SE
true false unknownpositive positive

Btor N/A N/A N/A
CVC4 5 0 19
Yices N/A N/A N/A
Z3 7 0 17

robust SE + elim.
true false unknownpositive positive

Btor 12 0 12
CVC4 7 0 17
Yices 7 0 17
Z3 12 0 12

number of true positives is strongly impacted, falling to 7 for the best solver. Finally
our Robust Symbolic Execution with quantifier elimination manages to find back all
the true positives that classic Symbolic Execution found while remaining free of false
positives.

Application to Vulnerability Analysis We also evaluate our Robust Symbolic Execu-
tion to the case study inspired by the security vulnerability Back to 28 we presented in
Chapter 2. Once again, classic Symbolic Execution returns a non reproducible solution,
while underlying solvers fail to solve formulas generated by Robust Symbolic Execution
without quantifier elimination. Our Robust Symbolic Execution with our quantifier
elimination finds a reproducible solution in 80 seconds, and even in 30 seconds when
adding our array terms simplifications.

142 CHAPTER 7. ROBUST SYMBOLIC EXECUTION

7.4 Related Works and Conclusion

Related Works As said before, there do not exist to the best of our knowledge other
systematic and correct approaches to the robust reachability problem. Current Symbolic
Execution tools only solve the non-robust classic reachability problem, and in practice
users have to face the false positives issue using ad hoc approaches. For example, for
the ill-defined initial state problem which is particularly crucial for bit-level analysis,
we find the following mitigations:

• Initializing the memory to an arbitrary value, for example 0: it removes some false
positives but also add others, for example in the case where 0 is a solution of the
path constraint but does not correspond to what the underlying OS / architecture
really is.

• Concretizing the memory with values observed at runtime: once again it removes
some false positives — some values are actually constant from one execution to
another, but also add others — other values are nonconstant from one execution
to another; moreover, the induced concretization constraint will often be too large
to be handled by solvers.

Conclusion The Robust Symbolic Execution framework makes it possible to remedy
definitively to the false positives problem, provided that: 1) solvers manage to handle
generated quantified formulas; and 2) the user correctly specify which inputs are
controllable andwhich inputs are not. Our recent work [FBBP18, FDBL18] we presented
in Chapter 5 and Chapter 6 shows how a preprocessing approach allow to reuse
quantifier-free solvers to deal with point 1), while we proposed in Algorithm 7.2 a
semi-automatic incremental specification procedure to ease point 1). A proof of concept
is implemented in the Symbolic Execution tool Binsec.

Bibliography

[BT18] Clark W. Barrett and Cesare Tinelli. Satisfiability modulo theories. In
Handbook of Model Checking., pages 305–343. 2018.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs.
In 8th USENIX Symposium on Operating Systems Design and Implementation,

BIBLIOGRAPHY 143

OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings, pages
209–224, 2008.

[CKC11] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: a
platform for in-vivo multi-path analysis of software systems. In Proceedings

of the 16th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS 2011, Newport Beach, CA, USA,

March 5-11, 2011, pages 265–278, 2011.

[CS13] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:
three decades later. Commun. ACM, 56(2):82–90, 2013.

[DB15] Adel Djoudi and Sébastien Bardin. BINSEC: binary code analysis with
low-level regions. In Tools and Algorithms for the Construction and Analysis of

Systems - 21st International Conference, TACAS 2015, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,

April 11-18, 2015. Proceedings, pages 212–217, 2015.

[DBT+16] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin
Feist, Marie-Laure Potet, and Jean-Yves Marion. BINSEC/SE: A Dynamic
Symbolic Execution Toolkit for Binary-Level Analysis. In IEEE 23rd Interna-

tional Conference on Software Analysis, Evolution, and Reengineering, SANER

2016, Osaka, Japan, March 14-18, 2016 - Volume 1, pages 653–656, 2016.

[FBBP18] Benjamin Farinier, Sébastien Bardin, Richard Bonichon, and Marie-Laure
Potet. Model generation for quantified formulas: A taint-based approach. In
Computer Aided Verification - 30th International Conference, CAV 2018, Held as

Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,

Proceedings, Part II, pages 294–313, 2018.

[FDBL18] Benjamin Farinier, Robin David, Sébastien Bardin, and Matthieu Lemerre.
Arrays made simpler: An efficient, scalable and thorough preprocessing.
In LPAR-22. 22nd International Conference on Logic for Programming, Artificial

Intelligence and Reasoning, Awassa, Ethiopia, 16-21 November 2018, pages 363–
380, 2018.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed auto-
mated random testing. In Proceedings of the ACM SIGPLAN 2005 Conference

on Programming Language Design and Implementation, Chicago, IL, USA, June

12-15, 2005, pages 213–223, 2005.

144 CHAPTER 7. ROBUST SYMBOLIC EXECUTION

[MD19] Nicolas Magaud and Zaynah Dargaye, editors. Journées Francophones des

Langages Applicatifs, JFLA 2019, Les Rousses, France, January 30-February 2,

2019, 2019.

Part IV

Conclusion

145

Chapter 8

Conclusion

Symbolic Execution is an automated software verification technique which has proven
to be very effective for bug finding. As an under-approximating verification technique,
Symbolic Execution should be exempt of false positives. Because of its success, the
question is now how to use Symbolic Execution in other contexts than bug finding, for
example in vulnerability analysis. But applying Symbolic Execution to vulnerability
analysis fundamentally differs from bug finding; and in this new context, false positives
appears. This thesis aims to solve this false positives issue, by the mean of several
works in the field of decision procedure and software analysis, and for the purpose of
improving the state of the art in software verification and vulnerability analysis.

8.1 Contributions

In Chapter 2 we brought to light the false positives problem which appears when
applying Symbolic Execution to vulnerability analysis. We first showed how on an
authentication bypass scenario a C-level classic Symbolic Execution answers with an
incorrect solution, due to the absence of distinction between controlled and uncontrolled
inputs. Then we demonstrated how this issue can be overcome by switching to a binary-
level semantics and a better modeling of interactions with the environment taking care
of controlled and uncontrolled inputs, but at the price of generating larger formulas
involving quantifiers.

After presenting the many-sorted first-order logic in Chapter 3 and Symbolic
Execution in Chapter 4, we addressed in Chapter 5 the problem of generating models
of quantified first-order formulas over built-in theories. We proposed a novel and
generic taint-based approach relying on a reduction to the quantifier-free case through

147

148 CHAPTER 8. CONCLUSION

the inference of independence conditions, and proved its correctness and its efficiency
under reasonable assumptions. This technique is applicable to any theory with a
decidable quantifier-free case and allows to reuse all the work done on quantifier-free
solvers. We presented a concrete implementation of our method specialized on arrays
and bit-vectors that we evaluate on SMT-LIB benchmarks and formulas generated by
the binary-level Symbolic Execution tool Binsec. The method significantly enhances the
performances of state-of-the-art SMT solvers for the quantified case, and supplements
the latest advances in the field.

Then we presented in Chapter 6 fas, an original simplification method dedicated
to the theory of arrays, a theory which has a central place in software verification
due to its ability to model memory or data structures. As this theory is known to be
hard to solve because of read-over-write terms, fasis geared at eliminating row, based
on a new dedicated data structure together with original simplifications and low-cost
reasoning. We experimentally evaluated it in different settings and we showed that
the technique is efficient, scalable and yields significant simplifications. The impact on
formula resolution is always positive, and it can be dramatic on formulas generated by
binary-level Symbolic Execution.

Finally in Chapter 7 we formally introduced Robust Symbolic Execution, a new
framework which makes possible to remedy definitively the false positives problem,
provided that solvers manage to handle large generated quantified formulas. This is
achieved thanks to our recentwork on taint-based quantifier elimination and array terms
simplification presented in the previous chapters. A proof of concept is implemented in
the binary analyzer Binsec, resulting in the first Robust Symbolic Execution tool really
exempt of false positives.

8.2 Perspectives

Some notable research prospects extend directly the work developed in this thesis,
amongst them the improvement of the following aspects:

Concerning model generation for quantified formulas, future work aims to tackle the
definition of more precise inference mechanisms of independence conditions, the
identification of interesting subclasses for which inferring weakest independence
conditions is feasible, and the combination with other quantifier instantiation
techniques;

Concerning simplification of array terms, future work includes a deeper integration
inside a dedicated array solver in order to benefit from more simplification

8.2. PERSPECTIVES 149

opportunities along the resolution process, as well as exploring the interest of
adding more expressive domain reasoning;

Finally, concerning Robust Symbolic Execution, future work comprises a precise
evaluation of our semi-automatic incremental specification procedure for inputs,
and a thorough comparison of Robust Symbolic Execution to other techniques.

Beyond these extensions, even more interesting research prospects can be found by
widening our problematic. We have seen in this thesis how formalizing some security
properties using first-order logic requires the use of quantifiers, for example when we
want to find an input which allows to bypass a guard condition whatever the value
of a non-deterministic uncontrollable variable is. However, to restrict oneself to the
usual “there exists” and “for all” quantifications is not nuanced enough if we want to
formalize a property which says that we can bypass a guard condition “almost always”,
or that an event “almost never” occurs. Such nuances can be formalized by introducing
notions of probabilities, or by using model counting.

The model counting problem consists in finding the number of models which satisfy
a given formula. But solving the model counting problem is even harder than solving
the satisfiability problem. Fortunately for many properties, finding an upper or lower
bound which approximates the solution to the model counting problem is sufficient
to conclude: we can find an input which bypasses a guard condition in more than
Ninf cases, or we can prove that an event only occurs in less than Nsup cases. Finding
non-trivial lower and upper bounds of the number of models for a given formula
remains a difficult problem, but is nevertheless more achievable than finding the exact
number of models, and therefore gives an interesting line of research which would
pave the way for new advances in formal verification.

150 CHAPTER 8. CONCLUSION

Bibliography

[And72] James P. Anderson. Computer security technology planning study. Tech-
nical Report ESD-TR-73-51, Vol.II, Air Force Electronic Systems Division,
1972.

[ARCB14] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley.
Enhancing symbolic execution with veritesting. In 36th International

Conference on Software Engineering, ICSE ’14, Hyderabad, India - May 31 -

June 07, 2014, pages 1083–1094, 2014.

[Bar16] Haniel Barbosa. Efficient Instantiation Techniques in SMT (work in
progress). In Proceedings of the 5th Workshop on Practical Aspects of Automated

Reasoning co-locatedwith International Joint Conference onAutomatedReasoning

(ĲCAR 2016), Coimbra, Portugal, July 2nd, 2016., pages 1–10, 2016.

[BB09a] Robert Brummayer and Armin Biere. Boolector: An Efficient SMT Solver
for Bit-Vectors and Arrays. In Tools and Algorithms for the Construction and

Analysis of Systems, 15th International Conference, TACAS 2009, Held as Part

of the Joint European Conferences on Theory and Practice of Software, ETAPS

2009, York, UK, March 22-29, 2009. Proceedings, pages 174–177, 2009.

[BB09b] Robert Brummayer and Armin Biere. Lemmas on demand for the exten-
sional theory of arrays. JSAT, 6(1-3):165–201, 2009.

[BBD+17] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud,
Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub,
and Jean Karim Zinzindohoue. A messy state of the union: taming the
composite state machines of TLS. Commun. ACM, 60(2):99–107, 2017.

[BBK17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified
models and reference implementations for the TLS 1.3 standard candidate.

151

152 BIBLIOGRAPHY

In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA,

May 22-26, 2017, pages 483–502, 2017.

[BBKK12] Sebastian Biallas, Jörg Brauer, Andy King, and Stefan Kowalewski. Loop
leaping with closures. In Static Analysis - 19th International Symposium, SAS

2012, Deauville, France, September 11-13, 2012. Proceedings, pages 214–230,
2012.

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4.
In Computer Aided Verification - 23rd International Conference, CAV 2011,

Snowbird, UT, USA, July 14-20, 2011. Proceedings, pages 171–177, 2011.

[BCE08] Peter Boonstoppel, Cristian Cadar, and Dawson R. Engler. Rwset: At-
tacking path explosion in constraint-based test generation. In Tools and

Algorithms for the Construction and Analysis of Systems, 14th International

Conference, TACAS 2008, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March

29-April 6, 2008. Proceedings, pages 351–366, 2008.

[BCF+07] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Grig-
gio, Ziyad Hanna, Alexander Nadel, Amit Palti, and Roberto Sebastiani. A
lazy and layered SMT(BV) solver for hard industrial verification problems.
InComputer Aided Verification, 19th International Conference, CAV 2007, Berlin,

Germany, July 3-7, 2007, Proceedings, pages 547–560, 2007.

[BDL98] ClarkW. Barrett, David L. Dill, and Jeremy R. Levitt. A decision procedure
for bit-vector arithmetic. In Proceedings of the 35th Conference on Design

Automation, Moscone center, San Francico, California, USA, June 15-19, 1998.,
pages 522–527, 1998.

[BDM17] Sébastien Bardin, Robin David, and Jean-YvesMarion. Backward-bounded
DSE: targeting infeasibility questions on obfuscated codes. In 2017 IEEE

Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26,

2017, pages 633–651. IEEE, 2017.

[BFK16] Karthikeyan Bhargavan, Cédric Fournet, and Markulf Kohlweiss. mitls:
Verifying protocol implementations against real-world attacks. IEEE

Security & Privacy, 14(6):18–25, 2016.

BIBLIOGRAPHY 153

[BG94] Leo Bachmair and Harald Ganzinger. Rewrite-Based Equational Theorem
Proving with Selection and Simplification. J. Log. Comput., 4(3):217–247,
1994.

[BG12] Sébastien Bardin and Arnaud Gotlieb. FDCC: A combined approach for
solving constraints over finite domains and arrays. In Integration of AI

and OR Techniques in Contraint Programming for Combinatorial Optimzation

Problems - 9th International Conference, CPAIOR 2012, Nantes, France, May 28

- June1, 2012. Proceedings, pages 17–33, 2012.

[BGM13] Ella Bounimova, Patrice Godefroid, and David A. Molnar. Billions and
billions of constraints: whitebox fuzz testing in production. In 35th

International Conference on Software Engineering, ICSE ’13, San Francisco, CA,

USA, May 18-26, 2013, pages 122–131, 2013.

[BHP10] Sébastien Bardin, Philippe Herrmann, and Florian Perroud. An alternative
to sat-based approaches for bit-vectors. In Tools and Algorithms for the

Construction and Analysis of Systems, 16th International Conference, TACAS

2010, Held as Part of the Joint European Conferences on Theory and Practice of

Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, pages
84–98, 2010.

[Bie09] Armin Biere. BoundedModel Checking. InHandbook of Satisfiability, pages
457–481. 2009.

[BJAS11] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz.
BAP: A binary analysis platform. In Computer Aided Verification - 23rd

International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.

Proceedings, pages 463–469, 2011.

[Bjø10] Nikolaj Bjørner. Linear quantifier elimination as an abstract decision
procedure. In Automated Reasoning, 5th International Joint Conference, ĲCAR

2010, Edinburgh, UK, July 16-19, 2010. Proceedings, pages 316–330, 2010.

[BKO+07] Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer
Strichman, and Bryan A. Brady. Deciding bit-vector arithmetic with
abstraction. In Tools and Algorithms for the Construction and Analysis of

Systems, 13th International Conference, TACAS 2007, Held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2007 Braga,

Portugal, March 24 - April 1, 2007, Proceedings, pages 358–372, 2007.

154 BIBLIOGRAPHY

[BKRW11] Angelo Brillout, Daniel Kroening, Philipp Rümmer, and ThomasWahl. Be-
yond Quantifier-Free Interpolation in Extensions of Presburger Arithmetic.
In Verification, Model Checking, and Abstract Interpretation - 12th International

Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings,
pages 88–102, 2011.

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision

Procedures with Applications to Verification (Chapters 5, 6 and 12). Springer,
2007.

[BM18] Sylvie Boldo and Nicolas Magaud, editors. Journées Francophones des

Langages Applicatifs, JFLA 2018, Banyuls-sur-Mer, France, January 24-27, 2018,
2018.

[BMS06] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable
about arrays? In Verification, Model Checking, and Abstract Interpretation, 7th

International Conference, VMCAI 2006, Charleston, SC, USA, January 8-10,

2006, Proceedings, pages 427–442, 2006.

[BNO+08] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-
Carbonell, and Albert Rubio. A write-based solver for SAT modulo the
theory of arrays. In Formal Methods in Computer-Aided Design, FMCAD

2008, Portland, Oregon, USA, 17-20 November 2008, pages 1–8, 2008.

[BRK+15] Kshitĳ Bansal, Andrew Reynolds, Tim King, Clark W. Barrett, and Thomas
Wies. Deciding local theory extensions via e-matching. In Computer Aided

Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA,

July 18-24, 2015, Proceedings, Part II, pages 87–105, 2015.

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.
Satisfiability Modulo Theories. In Handbook of Satisfiability, pages 825–885.
2009.

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. In A. Gupta and D. Kroening, editors, Proceedings of the 8th
International Workshop on Satisfiability Modulo Theories (Edinburgh, UK),
2010.

[BT18] Clark W. Barrett and Cesare Tinelli. Satisfiability modulo theories. In
Handbook of Model Checking., pages 305–343. 2018.

BIBLIOGRAPHY 155

[Cad15] Cristian Cadar. Targeted program transformations for symbolic execution.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015,
pages 906–909, 2015.

[CARB12] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley.
Unleashing mayhem on binary code. In IEEE Symposium on Security and

Privacy, SP 2012, 21-23 May 2012, San Francisco, California, USA, pages
380–394, 2012.

[CC77] Patrick Cousot and Radia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In 4th ACM Symposium on Principles of Programming Languages

(POPL). ACM, 1977.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted
and automatic generation of high-coverage tests for complex systems
programs. In 8th USENIX Symposium on Operating Systems Design and

Implementation, OSDI 2008, December 8-10, 2008, San Diego, California, USA,

Proceedings, pages 209–224, 2008.

[CF00] Thomas Colcombet and Pascal Fradet. Enforcing trace properties by
program transformation. In POPL 2000, Proceedings of the 27th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

Boston, Massachusetts, USA, January 19-21, 2000, pages 54–66, 2000.

[cgc16] Cyber grand challenge (cgc). https://www.darpa.mil/program/

cyber-grand-challenge, 2016.

[CGP+06] Cristian Cadar, Vĳay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler. EXE: automatically generating inputs of death. In
Proceedings of the 13th ACM Conference on Computer and Communications

Security, CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006,
pages 322–335, 2006.

[CH88] Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf.
Comput., 76(2/3):95–120, 1988.

[CKC11] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: a
platform for in-vivomulti-path analysis of software systems. In Proceedings

https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge

156 BIBLIOGRAPHY

of the 16th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS 2011, Newport Beach, CA, USA,

March 5-11, 2011, pages 265–278, 2011.

[CKC12] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. The S2E
platform: Design, implementation, and applications. ACM Trans. Comput.

Syst., 30(1):2:1–2:49, 2012.

[CKGJ11] Omar Chebaro, Nikolai Kosmatov, Alain Giorgetti, and Jacques Julliand.
The SANTE tool: Value analysis, program slicing and test generation for C
program debugging. In Tests and Proofs - 5th International Conference, TAP

2011, Zurich, Switzerland, June 30 - July 1, 2011. Proceedings, pages 78–83,
2011.

[CKL04] EdmundM. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In TACAS, Barcelona, Spain, March 29 - April 2, 2004,
pages 168–176, 2004.

[Cla76] Lori A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Trans. Software Eng., 2(3):215–222, 1976.

[CMMN12] Christian S. Collberg, Sam Martin, Jonathan Myers, and Jasvir Nagra.
Distributed application tamper detection via continuous software updates.
In 28th Annual Computer Security Applications Conference, ACSAC 2012,

Orlando, FL, USA, 3-7 December 2012, pages 319–328, 2012.

[CS13] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:
three decades later. Commun. ACM, 56(2):82–90, 2013.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the
art and future directions. ACM Comput. Surv., 28(4):626–643, 1996.

[DB15] Adel Djoudi and Sébastien Bardin. BINSEC: binary code analysis with
low-level regions. In Tools and Algorithms for the Construction and Analysis

of Systems - 21st International Conference, TACAS 2015, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2015,

London, UK, April 11-18, 2015. Proceedings, pages 212–217, 2015.

[DBF+16] Robin David, Sébastien Bardin, Josselin Feist, Laurent Mounier, Marie-
Laure Potet, Thanh Dinh Ta, and Jean-Yves Marion. Specification of

BIBLIOGRAPHY 157

concretization and symbolization policies in symbolic execution. In ISSTA,

Saarbrücken, Germany, July 18-20, 2016, pages 36–46, 2016.

[DBG10] Mickaël Delahaye, Bernard Botella, and Arnaud Gotlieb. Explanation-
based generalization of infeasible path. In Third International Conference on

Software Testing, Verification and Validation, ICST 2010, Paris, France, April

7-9, 2010, pages 215–224, 2010.

[DBT+16] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin
Feist, Marie-Laure Potet, and Jean-Yves Marion. BINSEC/SE: A Dynamic
Symbolic Execution Toolkit for Binary-Level Analysis. In IEEE 23rd

International Conference on Software Analysis, Evolution, and Reengineering,

SANER 2016, Osaka, Japan, March 14-18, 2016 - Volume 1, pages 653–656,
2016.

[DCKP12] Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich.
Reasoning with Triggers. In 10th International Workshop on Satisfiability

Modulo Theories, SMT 2012, Manchester, UK, June 30 - July 1, 2012, pages
22–31, 2012.

[DCKP16] Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich.
Adding Decision Procedures to SMT Solvers Using Axioms with Triggers.
J. Autom. Reasoning, 56(4):387–457, 2016.

[DD77] Dorothy E. Denning and Peter J. Denning. Certification of Programs for
Secure Information Flow. Commun. ACM, 20(7):504–513, 1977.

[DKA+14] ZakirDurumeric, JamesKasten, DavidAdrian, J. AlexHalderman,Michael
Bailey, Frank Li, Nicholas Weaver, Johanna Amann, Jethro Beekman,
Mathias Payer, and Vern Paxson. The matter of heartbleed. In 2014 Internet

Measurement Conference, IMC 2014, Vancouver, Canada, November 5-7, 2014,
pages 475–488, 2014.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[dMB07] Leonardo Mendonça de Moura and Nikolaj Bjørner. Efficient e-matching
for SMT solvers. In Automated Deduction - CADE-21, 21st International

Conference on Automated Deduction, Bremen, Germany, July 17-20, 2007,

Proceedings, pages 183–198, 2007.

158 BIBLIOGRAPHY

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient
SMT Solver. In Tools and Algorithms for the Construction and Analysis of

Systems, 14th International Conference, TACAS 2008, Held as Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS 2008,

Budapest, Hungary, March 29-April 6, 2008. Proceedings, pages 337–340, 2008.

[DMR08] Ádám Darvas, Farhad Mehta, and Arsenii Rudich. Efficient Well-
Definedness Checking. In Automated Reasoning, 4th International Joint

Conference, ĲCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings,
pages 100–115, 2008.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover
for program checking. J. ACM, 52(3):365–473, 2005.

[dOBP16] Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. Polynomial
invariants by linear algebra. In Automated Technology for Verification and

Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan, October

17-20, 2016, Proceedings, pages 479–494, 2016.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantifica-
tion theory. J. ACM, 7(3):201–215, 1960.

[DS78] Peter J. Downey and Ravi Sethi. Assignment commands with array
references. J.ACM, 25(4):652–666, 1978.

[Dut14] Bruno Dutertre. Yices 2.2. In Computer Aided Verification - 26th International

Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,

Vienna, Austria, July 18-22, 2014. Proceedings, pages 737–744, 2014.

[FBBP18] Benjamin Farinier, Sébastien Bardin, Richard Bonichon, and Marie-Laure
Potet. Model generation for quantified formulas: A taint-based approach.
In Computer Aided Verification - 30th International Conference, CAV 2018, Held

as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,

2018, Proceedings, Part II, pages 294–313, 2018.

[FC06] Jean-Christophe Filliâtre and Sylvain Conchon. Type-safe modular hash-
consing. In Proceedings of the ACM Workshop on ML, 2006, Portland, Oregon,

USA, September 16, 2006, pages 12–19, 2006.

[FDBL18] Benjamin Farinier, Robin David, Sébastien Bardin, and Matthieu Lemerre.
Arrays made simpler: An efficient, scalable and thorough preprocessing.

BIBLIOGRAPHY 159

In LPAR-22. 22nd International Conference on Logic for Programming, Artificial

Intelligence and Reasoning, Awassa, Ethiopia, 16-21 November 2018, pages
363–380, 2018.

[FK16] Azadeh Farzan and Zachary Kincaid. Linear Arithmetic Satisfiability via
Strategy Improvement. In Proceedings of the Twenty-Fifth International Joint

Conference on Artificial Intelligence, ĲCAI 2016, New York, NY, USA, 9-15 July

2016, pages 735–743, 2016.

[FLP16] Aymeric Fromherz, Kasper Søe Luckow, andCorina S. Pasareanu. Symbolic
arrays in symbolic pathfinder. ACM SIGSOFT Software Engineering Notes,
41(6):1–5, 2016.

[GD07] Vĳay Ganesh and David L. Dill. A decision procedure for bit-vectors and
arrays. In Computer Aided Verification, 19th International Conference, CAV

2007, Berlin, Germany, July 3-7, 2007, Proceedings, pages 519–531, 2007.

[GdM09] Yeting Ge and Leonardo Mendonça de Moura. Complete instantiation for
quantified formulas in satisfiabiliby modulo theories. In Computer Aided

Verification, 21st International Conference, CAV 2009, Grenoble, France, June

26 - July 2, 2009. Proceedings, pages 306–320, 2009.

[GHN+04] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras,
and Cesare Tinelli. DPLL(T): fast decision procedures. In Computer Aided

Verification, 16th International Conference, CAV 2004, Boston, MA, USA, July

13-17, 2004, Proceedings, pages 175–188, 2004.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed
automated random testing. In Proceedings of the ACM SIGPLAN 2005

Conference on Programming Language Design and Implementation, Chicago, IL,

USA, June 12-15, 2005, pages 213–223, 2005.

[GL11] Patrice Godefroid and Daniel Luchaup. Automatic partial loop summa-
rization in dynamic test generation. In Proceedings of the 20th International

Symposium on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada,

July 17-21, 2011, pages 23–33, 2011.

[GLM12] PatriceGodefroid,Michael Y. Levin, andDavidA.Molnar. SAGE:Whitebox
Fuzzing for Security Testing. ACM Queue, 10(1):20, 2012.

160 BIBLIOGRAPHY

[God07] Patrice Godefroid. Compositional dynamic test generation. In Proceedings

of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2007, Nice, France, January 17-19, 2007, pages 47–54, 2007.

[hea14] The heartbleed bug. http://heartbleed.com/, 2014.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.

ACM, 12(10):576–580, 1969.

[ĲS08] Carsten Ihlemann, Swen Jacobs, and Viorica Sofronie-Stokkermans. On
local reasoning in verification. In Tools and Algorithms for the Construction

and Analysis of Systems, 14th International Conference, TACAS 2008, Held

as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, pages
265–281, 2008.

[JS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques
to solve real-world SAT instances. In Proceedings of the Fourteenth National

Conference on Artificial Intelligence and Ninth Innovative Applications of Artifi-

cial Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence,

Rhode Island, USA., pages 203–208, 1997.

[JS16] Martin Jonás and Jan Strejcek. Solving Quantified Bit-Vector Formulas
Using Binary Decision Diagrams. In Theory and Applications of Satisfiability

Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8,

2016, Proceedings, pages 267–283, 2016.

[Kin76] James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

[KKBC12] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea.
Efficient state merging in symbolic execution. InACMSIGPLANConference

on Programming Language Design and Implementation, PLDI ’12, Beĳing,

China - June 11 - 16, 2012, pages 193–204, 2012.

[KKP+15] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-c: A software analysis perspective. Formal Asp.

Comput., 27(3):573–609, 2015.

http://heartbleed.com/

BIBLIOGRAPHY 161

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic

Point of View. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2008.

[KV13] Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and
Vampire. In Computer Aided Verification - 25th International Conference, CAV

2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, pages 1–35,
2013.

[MD19] Nicolas Magaud and Zaynah Dargaye, editors. Journées Francophones des
Langages Applicatifs, JFLA 2019, Les Rousses, France, January 30-February 2,

2019, 2019.

[MR15] Hector Marco and Ismael Ripoll. Back to 28:
Grub2 authentication 0-day. http://hmarco.org/bugs/

CVE-2015-8370-Grub2-authentication-bypass.html, 2015.

[MV07] Panagiotis Manolios and Daron Vroon. Efficient circuit to CNF conversion.
InTheory andApplications of Satisfiability Testing - SAT 2007, 10th International

Conference, Lisbon, Portugal, May 28-31, 2007, Proceedings, pages 4–9, 2007.

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision
procedures. ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[NO05] Robert Nieuwenhuis and Albert Oliveras. Proof-producing congruence
closure. In Term Rewriting and Applications, 16th International Conference,

RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings, pages 453–468, 2005.

[NR01] Robert Nieuwenhuis and Albert Rubio. Paramodulation-Based Theorem
Proving. In Handbook of Automated Reasoning (in 2 volumes), pages 371–443.
2001.

[NS05] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for
automatic detection, analysis, and signaturegeneration of exploits on
commodity software. In Proceedings of the Network and Distributed System

Security Symposium, NDSS 2005, San Diego, California, USA, 2005.

[Opp80] Derek C. Oppen. Complexity, convexity and combinations of theories.
Theor. Comput. Sci., 12:291–302, 1980.

http://hmarco.org/bugs/CVE-2015-8370-Grub2-authentication-bypass.html
http://hmarco.org/bugs/CVE-2015-8370-Grub2-authentication-bypass.html

162 BIBLIOGRAPHY

[Ørb95] PeterØrbæk. CanyouTrust yourData? InTAPSOFT’95: Theory andPractice

of Software Development, 6th International Joint Conference CAAP/FASE,

Aarhus, Denmark, May 22-26, 1995, Proceedings, pages 575–589, 1995.

[PMZC17] David Mitchel Perry, Andrea Mattavelli, Xiangyu Zhang, and Cristian
Cadar. Accelerating array constraints in symbolic execution. In Proceedings

of the 26th ACM SIGSOFT International Symposium on Software Testing and

Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017, pages 68–78, 2017.

[PNB17] Mathias Preiner, AinaNiemetz, andArminBiere. Counterexample-Guided
Model Synthesis. In Tools and Algorithms for the Construction and Analysis

of Systems - 23rd International Conference, TACAS 2017, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2017,

Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, pages 264–280, 2017.

[RDK+15] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and
Clark W. Barrett. Counterexample-guided quantifier instantiation for syn-
thesis in SMT. In Computer Aided Verification - 27th International Conference,

CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II,
pages 198–216, 2015.

[RL18] Antoine Rollet and Arnaud Lanoix, editors. Approches Formelles dans

l’Assistance au Développement de Logiciels, AFADL 2018, Grenoble, France,

June 13-15, 2018, 2018.

[RTdM14] Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura.
Finding conflicting instances of quantified formulas in SMT. In Formal

Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland,

October 21-24, 2014, pages 195–202, 2014.

[RTG+13] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstic, Morgan Deters,
and Clark Barrett. Quantifier instantiation techniques for finite model
finding in SMT. In Automated Deduction - CADE-24 - 24th International

Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013.

Proceedings, pages 377–391, 2013.

[RTGK13] Andrew Reynolds, Cesare Tinelli, Amit Goel, and Sava Krstic. Finite
model finding in SMT. In Computer Aided Verification - 25th International

Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings,
pages 640–655, 2013.

BIBLIOGRAPHY 163

[Rus05] John M. Rushby. Automated test generation and verified software. In Veri-

fied Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Conference,

VSTTE 2005, Zurich, Switzerland, October 10-13, 2005, Revised Selected Papers

and Discussions, pages 161–172, 2005.

[RV02] Alexandre Riazanov and Andrei Voronkov. The design and implementa-
tion of VAMPIRE. AI Commun., 15(2-3):91–110, 2002.

[SAB10] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you
ever wanted to know about dynamic taint analysis and forward symbolic
execution (but might have been afraid to ask). In 31st IEEE Symposium on

Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California,

USA, pages 317–331, 2010.

[SBP18] Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet. Symbolic
deobfuscation: From virtualized code back to the original. In Detection

of Intrusions and Malware, and Vulnerability Assessment - 15th International

Conference, DIMVA 2018, Saclay, France, June 28-29, 2018, Proceedings, pages
372–392. Springer, 2018.

[SBY+08] Dawn Xiaodong Song, David Brumley, Heng Yin, Juan Caballero, Ivan
Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, and Prateek Saxena. Bitblaze: A new approach to com-
puter security via binary analysis. In Information Systems Security, 4th

International Conference, ICISS 2008, Hyderabad, India, December 16-20, 2008.

Proceedings, pages 1–25, 2008.

[Sch02] Stephan Schulz. E - a brainiac theoremprover. AICommun., 15(2-3):111–126,
2002.

[Sho78] Robert E. Shostak. An algorithm for reasoning about equality. Commun.

ACM, 21(7):583–585, 1978.

[Sim08] Axel Simon. Value-Range Analysis of C Programs: Towards Proving the Absence

of Buffer Overflow Vulnerabilities. Springer, 2008.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit
testing engine for C. In Proceedings of the 10th European Software Engineering

Conference held jointly with 13th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, 2005, Lisbon, Portugal, September 5-9,

2005, pages 263–272, 2005.

164 BIBLIOGRAPHY

[Smi07] Geoffrey Smith. Principles of Secure Information Flow Analysis. In
Malware Detection, pages 291–307. 2007.

[SS96] João P. Marques Silva and Karem A. Sakallah. GRASP - a new search
algorithm for satisfiability. In ICCAD, pages 220–227, 1996.

[SS99] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm
for propositional satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.

[SSJ+15] Daniel Schwartz-Narbonne,Martin Schäf, Dejan Jovanovic, PhilippRmmer,
and Thomas Wies. Conflict-directed graph coverage. In NASA Formal

Methods - 7th International Symposium, NFM 2015, Pasadena, CA, USA, April

27-29, 2015, Proceedings, pages 327–342, 2015.

[SST13] Jiri Slaby, Jan Strejcek, and Marek Trtík. Compact symbolic execution.
In Automated Technology for Verification and Analysis - 11th International

Symposium, ATVA 2013, Hanoi, Vietnam, October 15-18, 2013. Proceedings,
pages 193–207, 2013.

[TH96] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the
nelson-oppen combination procedure. In Frontiers of Combining Systems,

First International Workshop FroCoS 1996, Munich, Germany, March 26-29,

1996, Proceedings, pages 103–119, 1996.

[Tin02] Cesare Tinelli. A DPLL-based calculus for ground satisfiability modulo
theories. In Logics in Artificial Intelligence, European Conference, JELIA 2002,

Cosenza, Italy, September, 23-26, Proceedings, pages 308–319, 2002.

[Tip95] Frank Tip. A survey of program slicing techniques. J. Prog. Lang., 3(3),
1995.

[Wei81] Mark Weiser. Program slicing. In Proceedings of the 5th International

Conference on Software Engineering, San Diego, California, USA, March 9-12,

1981., pages 439–449, 1981.

[WHdM10] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Mendonça
deMoura. Efficiently solving quantified bit-vector formulas. In Proceedings

of 10th International Conference on Formal Methods in Computer-Aided Design,

FMCAD 2010, Lugano, Switzerland, October 20-23, pages 239–246, 2010.

BIBLIOGRAPHY 165

[WMMR05] Nicky Williams, Bruno Marre, Patricia Mouy, and Muriel Roger.
Pathcrawler: Automatic generation of path tests by combining static
and dynamic analysis. In Dependable Computing - EDCC-5, 5th European

Dependable Computing Conference, Budapest, Hungary, April 20-22, 2005,

Proceedings, pages 281–292, 2005.

[WSK05] Markus Wedler, Dominik Stoffel, and Wolfgang Kunz. Normalization
at the arithmetic bit level. In Proceedings of the 42nd Design Automation

Conference, DAC 2005, San Diego, CA, USA, June 13-17, 2005, pages 457–462,
2005.

[YJWD15] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray.
A generic approach to automatic deobfuscation of executable code. In
2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,

May 17-21, 2015, pages 674–691. IEEE, 2015.

Résumé
L’Exécution symbolique est une technique de vérification
formelle qui consiste en modéliser les exécutions d’un
programme par des formules logiques pour montrer que ces
exécutions vérifient une propriété donnée. Très efficace pour
la recherche de bogues, il est question aujourd’hui de
l’employer dans d’autres contextes, comme en analyse de
vulnérabilités. L’application de l’Exécution symbolique à
l’analyse de vulnérabilités diffère de la recherche de bogues
sur au moins deux aspects :

• Les formules logiques générées au cours de
l’Exécution symbolique deviennent rapidement
gigantesques et de plus en plus difficiles à résoudre
pour les solveurs.

• La modélisation de certaines propriétés de sécurité
est susceptible de faire intervenir des quantificateurs
dont l’emploi rend les formules logiques générées
presque impossibles à résoudre.

Cette thèse porte donc sur ces deux problématiques issues
du domaine des procédures de décision, visant à permettre
des modélisations plus fines nécessaires à l’analyse de
vulnérabilités.

Abstract
Symbolic Execution is a formal verification technique which
consists in modeling program executions by logical formulas
in order to prove that these executions verify a given
property. Very effective for bug finding, the question is now
how to use it in other contexts, for example in vulnerability
analysis. Applying Symbolic Execution to vulnerability
analysis fundamentally differs from bug finding on at least
two aspects:

• Logical formulas generated during an analysis quickly
become gigantic, and more and more difficult to solve.

• Modeling some security properties is likely to involve
quantifiers whose use made generated logical
formulas nearly impossible to solve.

Therefore this thesis focuses on these two issues arising
from the field of decision procedures, in order to allow finer
models required for vulnerability analysis.

	I Introduction
	Introduction
	Automated Software Verification
	Symbolic Execution
	Decision Procedures
	Contributions and Organization of the Document

	Motivation
	The Back to 28 Vulnerability
	First Attempt: High-Level Semantics
	Second Attempt: Low-Level Semantics
	Conclusion

	II Background
	Many-Sorted First-Order Logic
	Syntax and Semantics
	Signatures, Terms and Formulas
	Interpretations and Models
	Satisfiability Modulo Theories

	Deciding Many-Sorted First-Order Logic
	Normal Forms
	Propositional Logic
	Quantifier-Free Formulas Modulo Theories
	Quantified Formulas Modulo Theories

	Some Many-Sorted First-Order Theories
	Equality Logic with Uninterpreted Functions
	Bit-Vectors
	Arrays
	Combination of Theories

	Conclusion

	Symbolic Execution
	LOW, a Simple Low Level Language
	Syntax
	Semantics

	Symbolic Execution
	General Principle
	Advanced Techniques

	Limits and Solutions
	Path Explosion
	Constraint Solving
	Memory Model
	Interactions with the Environment

	Application to Program Verification
	Trace Property Verification
	Correctness and Completeness

	Conclusion

	III Contributions
	Model Generation for Quantified Formulas: A Taint-Based Approach
	Introduction
	Motivation
	Musing with Independence
	Independent Interpretations, Terms and Formulas
	Independence Conditions

	Generic Framework for SIC-Based Model Generation
	SIC-Based Model Generation
	Taint-Based SIC Inference
	Complexity and Efficiency
	Discussions

	Theory-Dependent SIC Refinements
	Refinement on Theories
	R-Absorbing Functions

	Implementation and Experimental Evaluation
	Implementation
	Evaluation

	Related Works
	Conclusion

	Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing
	Introduction
	Motivation
	Standard Simplifications for read-over-write
	Efficient Simplification for read-over-write
	Dedicated Data Structure: Arrays Represented as Lists of Maps
	Approximated Equality Check and Dedicated Rewriting
	The fas Procedure
	Refinement: Adding Domain-Based Reasoning

	Implementation and Experimental Evaluation
	Implementation
	Experimental Setup
	Medium-Size Formulas from SE
	Very Large Formulas
	SMT-LIB Formulas
	Conclusion

	Related Works
	Conclusion

	Get Rid of False Positives with Robust Symbolic Execution
	Introduction
	Robust Symbolic Execution
	Robust Reachability
	Robust Symbolic Execution
	Controllable and Uncontrollable Inputs

	Implementation and Experimental Evaluation
	Implementation
	Experimental Evaluation

	Related Works and Conclusion

	IV Conclusion
	Conclusion
	Contributions
	Perspectives

	Bibliography

