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Abstract. This thesis is composed of two parts. In the �rst part, we study a generalization
of the variational problem of elastic-plastic torsion problem to manifolds. We show that in the
case of manifolds, the problem is not equivalent to an obstacle type problem, contrary to the
euclidean case, but we establish the equivalence when the parameter of the problem goes to
in�nity. We show, as in the euclidean case, that the non-contact set contains the cut locus of
the manifold, and converges to the latter in the Hausdor� sense. Furthermore, we show that
the minimizers of the problem are uniformly semiconcave. We deduce a stable approximation
of the cut locus, in the spirit of the lambda medial axis of Chazal and Lieutier. We then use
this result to compute numerically the cut locus of some surfaces of varied geometries.

In the second part, we study an extension of a nonlocal isoperimetric problem. More
precisely, we add a con�nement potential to Gamow's liquid drop model for the nucleus.
We then study large volume minimizers. We show that for certain sets of parameters, large
volume minimizers converge to the ball, or may even exactly be the ball. Moreover, we develop
a numerical method for this variational problem. Our results con�rm numerically a conjecture
of Choksi and Peletier, in dimension 2: it seems that minimizers of Gamow'sliquid drop model
are balls as long as they exist.

Résumé. Cette thèse comporte deux parties. Dans la première partie, nous étudions une
généralisation du problème variationnel de torsion élastique-plastique à des variétés. Nous
montrons que dans le cas des variétés, le problème n'est pas équivalent à un problème d'obstacle,
contrairement au cas euclidien, mais nous établissons l'équivalence lorsque le paramètre du
problème tend vers l'in�ni. Nous montrons, comme dans le cas euclidien, que l'ensemble de
non contact contient le cut locus de la variété, et converge vers ce dernier au sens de Hausfor�.
Nous montrons de plus que les miniseurs du problème sont uniformément semiconcaves. Nous
en déduisons une approximation stable de cut locus, dans l'esprit du lambda axe médian de
Chazal et Lieutier. Nous utilisons ensuite ce résultat pour calculer numériquement le cut locus
de surfaces de géométries variées.

Dans la seconde partie, nous étudions une extension d'un problème isopérimétrique non
local. Précisément, on adjoint un potentiel de con�nement au modèle de goutte liquide du
noyau de Gamow. Nous étudions alors les minimiseurs de grand volume. Nous montrons que
pour certains jeux de paramètres, les minimiseurs de grand volume convergent vers des boules,
voire sont exactement des boules. Nous développons ensuite une méthode numérique pour ce
problème variationnel. Cela permet de con�rmer numériquement une conjecture de Choksi et
Peletier en dimension 2 : dans ce cas les minimiseurs du modèle de Gamow semble être des
boules si ils existent.
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Introduction

In this thesis, we present some contributions to the �eld of calculus of variations. Our results
are both theoretical and numerical.

In Part I, we study an extension of the elastic-plastic torsion problem to manifolds and
its relation with the cut locus, and derive a numerical method to compute the cut locus of a
surface. Chapter 2 is based on the paper [41], to appear in the journal 'Nonlinearity'. The
work in Chapter 3 and Chapter 4 was conducted in collaboration with Édouard Oudet and
Bozhidar Velichkov, and are based on two papers to be submitted. For a synthetic view of
this part, see the Outline of Part I.

In Part II, we study an isoperimetric problem that is a variation of Gamow's liquid drop
model. It is based on the published paper [42]. The work in Chapter 2 was conducted in
collaboration with Edouard Oudet. For a synthetic view of this part, please see the Outline
of Part II.

We tried to make each Chapter relatively self-contained.

a Obstacle problems

In part I, our focus will be on a variation of the elastic-plastic torsion problem, which is
introduced in Section b. It is a particular example of an obstacle type variational problem.
The most classical obstacle problem is the following: given a smooth open set Ω ⊂ Rn and
some continuous functions φ : Ω→ R (the obstacle) and g : ∂Ω→ R (the boundary condition),
one wants to minimize the following:

inf

{
1

2

∫
Ω
|∇v|2 : v ∈ H1(Ω), v ≥ φ and v|∂Ω

= g

}
. (a.1)

With reasonable assumptions on g and φ (basically to guarantee that there is at least one
candidate to the variational problem), one can show that there is a minimizer u ∈ H1

0 (Ω) by
the direct method of calculus of variations, and that this minimizer is unique by the convexity
of the Dirichlet energy. The graph of u typically models the resting position of an elastic
membrane above Ω, attached at the height given by g on ∂Ω, and constrained to stay above
an obstacle given by the graph of φ. There are many generalizations or variants of this
famous problem, and many applications, such as �uid �ltration in a porous media, elastic-
plastic torsion, optimal control and �nancial mathematics, see for instance [71], [52], [37]. The
literature on the subject is vast, and it is still a major area of research in calculus of variations
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a. Obstacle problems

and PDEs. We will mention some generalizations later on. But let us �rst explain a few key
properties on this simple model.

For any positive test function ψ ∈ C∞c (Ω), writing the minimality of u against a competitor
u+ tψ and taking the limit as t ↓ 0, one gets, in the sense of distributions,

∆u ≤ 0.

Moreover, assuming that u is continuous, this last inequality becomes an equality (the Euler-
Lagrange equation of the Dirichlet energy) in the open set {u > φ} ∩ Ω. The set N := {u >
φ} ∩ Ω, is called the non-contact set, while the set C := {u = φ} ∩ Ω is called the contact set.
The set Γ := ∂C ∩Ω is the interface between the contact and non-contact sets. It is called the
free boundary.

Let us denote by C1,1(Ω) the space of C1 functions with Lipschitz gradients on Ω. With
the right regularity assumptions on Ω and g (for instance, smooth), if the obstacle φ is in
C1,1(Ω), then u is in C1,1(Ω) (see for instance [81]). This regularity is optimal. Indeed, in this
case, we have almost everywhere in Ω,

∆u = χC∆φ.

In particular, the Laplacian of u cannot be expected to be continuous, even if φ is smooth.
Even though we will not be interested in the question of the regularity of the free boundary

in this work, let us describe this important aspect brie�y. The development of the regularity
theory for free boundaries started in the 70's with the seminal paper of Ca�arelli [16], and has
been an active area of research since then. The free boundary Γ has �nite (n − 1)-Hausdor�
measure. It can be divided into a regular part and a singular part. The singular part is
relatively open in Γ, and is locally a smooth manifold of dimension n − 1. The singular part
is therefore closed, and is contained in a C1 manifold of dimension n − 1. The singular part
consists in points at which the density of the contact set C is null, see [17]. In a recent paper
[32], Figalli, Ros-Oton and Serra proved that in dimension 2 and 3, the free boundary of the
classical obstacle problem is 'generically regular', i.e for a 'generic' obstacle φ, the singular
part of Γ is empty, and so Γ is a smooth (n − 1)-manifold. For the elastic-plastic torsion
problem introduced below, the free boundary is always regular ([37]).

Let K := {v ∈ H1(Ω) : v ≥ φ and v|∂Ω
= g}. Note that K is a convex subset of H1(Ω).

Let v ∈ K. By writing the minimality of u against the competitor u + t(v − u) and taking
the limit as t ↓ 0, one can see that the classical obstacle problem (a.1) can be rephrased as
follows: �nd u ∈ K such that

∀v ∈ K, (Au− f, v − u) ≤ 0,

where A = ∆, f = 0 and ( · , ·, ) is the duality product on H−1(Ω) × H1
0 (Ω). A problem

of this form is usually referred to as a variational inequality. A direct generalization is to
consider more general elliptic operators A and functions f . This includes the case of the
elastic-plastic torsion problem, introduced in the next section. The optimal C1,1 regularity of
u and the regularity of the free boundary has been studied by many authors, including for
some non-linear and degenerate elliptic operator A, see for instance [34].

Let us end this section by mentioning two other famous obstacle type problems. In the thin
obstacle problem, one minimizes the Dirichlet energy with Dirichlet boundary conditions as in

2



Introduction

(a.1), but candidates are only constrained to stay above an obstacle φ on a (n−1)-hypersurface
S ⊂ Ω, see [37, Chapter 1, Section 11].

In parabolic obstacle problems, a time dependency is added. This is the case for instance
of the Stephan problem, which models the evolution of the temperature of some ice immersed
in water, see [71]. A typical formulation would be

u ≥ 0 in Ω,

∂t −∆u = −1 in {u > 0} ∩ Ω,

∂t −∆u ≥ −1 in Ω.

b Elastic-plastic torsion problem and medial axis

Let Ω be a smooth bounded open set of Rn. The elastic-plastic torsion problem is the following
variational problem, de�ned for any m > 0.

inf

{∫
Ω
|∇v|2 −mv : v ∈ H1

0 (Ω), |∇v| ≤ 1

}
(b.1)

One can show that this functional has a minimizer by the direct method of calculus of
variations. The minimizer is unique because we are minimizing a strictly convex functional
over a convex subset of H1

0 (Ω). Let vm be the unique minimizer of (b.1). Physically speaking,
vm represents the stress function of a long bar of cross section Ω, twisted with an angle m.

The elastic-plastic torsion problem and the properties of its minimizer vm have been inten-
sively studied in the 60s and 70s by various authors (such as Ting, Brézis, Sibony, Gerhardt,
Ca�arelli, Rivière, Friedman, Pozzi...), see for instance [78], [14], [13], [20], [79], [21], [38] and
[19].

An important tool in the study of this problem is the equivalence with an obstacle problem.
A consequence of the gradient constraint |∇vm| ≤ 1, is the following bound on vm:

vm ≤ d∂Ω,

where d∂Ω is the distance function to the boundary of Ω:

d∂Ω(x) = min
y∈∂Ω

|x− y| .

Indeed, as Ω is smooth and vm ∈ H1
0 (Ω), we may extend vm by 0 outside Ω, to get a function

ṽm ∈ H1(Rn), such that |∇ṽm| = 1Ω |∇vm| ≤ 1. So ṽm is 1-Lipschitz on Rn, and so vm is
1-Lipschitz on Ω for the euclidean metric. In particular, for any x ∈ Ω and y ∈ ∂Ω such that
d∂Ω(x) = |x− y|, we have

vm(x) ≤ vm(y) + |x− y| = |x− y| = d∂Ω(x).

So vm is also a competitor in the obstacle problem

inf

{∫
Ω
|∇v|2 −mv : v ∈ H1

0 (Ω), v ≤ d∂Ω

}
. (b.2)

Note that the above problem also admits a unique minimizer, by the convexity of the functional
and the constraint. Let us call it vdm ('d' is for the 'distance' obstacle). Brézis and Sibony
showed in [14] that vm is actually also the minimizer of this problem, i.e vdm = vm.
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b. Elastic-plastic torsion problem and medial axis

Theorem b.1. Let us de�ne

F(v) :=

∫
Ω
|∇v|2 −mv,

K1 := {v ∈ H1
0 (Ω) : |∇v| ≤ 1},

K2 := {v ∈ H1
0 (Ω) : v ≤ d∂Ω}.

Then, the minimizer vm of F under the constraint vm ∈ K1 is also a minimizer of F under
the constraint vm ∈ K2.

To prove this, one only needs to prove that
∣∣∇vdm∣∣ ≤ 1. Let us give a sketch of their proof.

For λ > 0 small, let vλ be the unique minimizer of

inf

{∫
Ω
|∇v|2 −mv − λv2 : v ∈ H1

0 (Ω), v ≤ d∂Ω

}
. (b.3)

The idea is to show that |∇vλ| ≤ 1, and take the limit as λ→ 0 to conclude. Let ṽ : Rn → R
be the extension of vλ by 0 outside Ω. For h ∈ Rn, de�ne

v+
h (x) = max{ṽ(x− h)− |h| , ṽ(x)}, E+

h = {x ∈ Rn : ṽ(x− h)− |h| > ṽ(x)},
v−h (x) = max{ṽ(x+ h) + |h| , ṽ(x)}, E−h = {x ∈ Rn : ṽ(x+ h) + |h| < ṽ(x)}.

Using the fact v+
h and v−h are also competitors in (b.3), one can write the minimality of vλ in

(b.3) against these competitors. After some computations, one gets

λ

∫
E+
h

(ṽ(x− h)− ṽ(x)− |h|)2 dx ≤ −
∫
E+
h

|h| (ṽ(x− h)− ṽ(x)− |h|) dx,

which implies that the measure of E+
h is null, and conclude the proof. Generalizing these

techniques, Treu, Mironescu, Mariconda and Sifdari generalized this result to a broader class of
variational problems with convex constraints on the gradient, see [80], [62] and [72]. However,
none of these will apply to our variant of the problem on manifolds, for which the equivalence
of constraints fail in general (see Proposition 3.3.1).

The optimal regularity vm ∈ C1,1(Ω) was �rst obtained in [21], using the equivalent for-
mulation (b.2). The elastic and plastic sets are de�ned as follows:

Em := {x ∈ Ω : |∇vm(x)| < 1},
Pm := {x ∈ Ω : |∇vm(x)| = 1},

It is then easy to prove that these are actually the non-contact and contact sets (see [18, �3]):

Em = {x ∈ Ω : vm(x) < d∂Ω(x)},
Pm = {x ∈ Ω : vm(x) = d∂Ω(x)}.

Ca�arelli and Rivière proved that the free boundary ∂Em ∩ Ω has no singular point, and is
therefore smooth, in [20].

The medial axis of Ω, denoted byM(Ω), is de�ned as the set of points of Ω that have at
least two closest points on the boundary ∂Ω of Ω:

M(Ω) :=
{
x ∈ Ω : ∃y, z ∈ ∂Ω, y 6= z and d∂Ω(x) = |x− y| = |x− z|

}
.
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Introduction

•

Figure 1: A circle with its medial axis, and a polygonal approximation of a circle, with its
medial axis.

Equivalently,M(Ω) is the set of points of Ω at which the distance function d∂Ω is not di�er-
entiable. In [18], Ca�arelli and Friedman used the notion of ridge of Ω introduced by Ting,
which is precisely the closure ofM(Ω). Equivalently, it is the complement of the largest open
set where the distance function is smooth.

They proved the following.

Theorem b.2 (Theorems 3.2 and 4.1 in [18].). For any m > 0, we have

M(Ω) ⊂ Em.

Furthermore, there exists a constant C > 0 depending on Ω only such that

∀m > 0, dH(M(Ω), Em) ≤ C

m
,

where dH denotes the Hausdor� distance.

The λ-medial axis. The medial axis, also called skeleton, is used in a wide variety of
applications in image processing and computer vision. Many researchers have proposed a
method to compute it, and are still trying to improve its computation. We refer to the book
[73] from 2017 for a review about the medial axis, its computation and applications.

One important geometric property of the medial axis M(Ω) is that it is unstable with
respect to small perturbations of the boundary of Ω - see Figure 1. This instability makes
computing numerically M(Ω) quite tricky. Indeed, any numerical approximation of Ω (for
instance, with polygons) might introduce an arti�cial (and large) medial set. In order to give
a theoretical framework to tackle the problem of stability, Chazal and Lieutier de�ned in [23]
the so called λ-medial axis of Ω, by setting for any λ > 0,

Mλ(Ω) := {x ∈ Ω : r(x) ≥ λ},

where r(x) is the radius of the smallest ball containing the set of all closest points to x on ∂Ω,
i.e. the set {z ∈ ∂Ω : |x− z| = d∂Ω(x)}. Note that the map λ 7→ Mλ(Ω) is non-increasing,
and we have

M(Ω) =
⋃
λ>0

Mλ(Ω).

It is further proved in [23, Section 3, Theorem 2] thatMλ(Ω) has the same homotopy type as
M(Ω), for λ small enough. These facts justify that, for �xed Ω,Mλ(Ω) is a good approxima-
tion ofM(Ω), for λ small enough. The crucial di�erence though is thatMλ(Ω) is stable with
respect to small variations of Ω, whereasM(Ω) is not. Indeed we have the following theorem.
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b. Elastic-plastic torsion problem and medial axis

Theorem b.3 (Consequence of Theorem 3 in [23]). For any 0 < λ′ < λ, there exists ε > 0
such that, if Ω and Ω̃ are two open bounded subset of Rn such that dH(Ωc, Ω̃c) < ε, then

sup
x∈Mλ(Ω̃)

d(x,Mλ′(Ω)) ≤ 2
√

diam(Ω)ε,

where diam(Ω) is the diameter of Ω.

This means that although it is di�cult to compute numerically M(Ω) directly, one can
computeMλ(Ω) instead. In the same paper [23], the authors use Voronoi diagrams to compute
an approximation ofMλ(Ω) from a noisy sample of points of the boundary of Ω.

We will need the following de�nition.

De�nition b.4. A function u : Ω → R is said to be C-semiconcave (or just semiconcave) if
the function x 7→ C |x|2 − u(x) is convex.

As Ω is smooth, we know that d∂Ω is semiconcave (see [22, (iii) in Proposition 2.2.2]). As
explained with more details in the Appendix A.1, this implies that, as concave functions, d∂Ω

has a well de�ned generalized gradient whose norm is given by the formula:

|∇d∂Ω| (x) = max(0, sup
v∈Sn−1

∂+
v d∂Ω(x)),

where ∂+
v d∂Ω(x) denotes the directional derivative of d∂Ω in the direction v. What is more, as

it can be seen from [23, Section 2.1], we have the following formula for the λ-medial axis.

Mλ(Ω) =

{
x ∈ Ω : |∇d∂Ω(x)|2 ≤ 1− λ2

d2
∂Ω(x)

}
.

Motivated by this formula, we will prove the following.

Theorem b.5 (Theorem 1.3.1). Let Ω be a smooth bounded open subset of Rn. For m > 0,
let vm be the (unique) solution of the variational problem:

inf

{∫
Ω
|∇v|2 −mv : v ∈ H1

0 (Ω), |∇v| ≤ 1

}
.

Let us de�ne the set Em,λ by:

Em,λ :=

{
x ∈ Ω : |∇vm(x)|2 ≤ 1− λ2

v2
m(x)

}
.

Then, for any λ > 0 and ε > 0, we have

sup
x∈Em,λ

d(x,Mλ(Ω)) −→
m→+∞

0 and sup
x∈Mλ+ε(Ω)

d(x,Em,λ) −→
m→+∞

0.

This theorem basically shows that the set Em,λ is a good approximation of the λ-medial
axis. More importantly, in Chapter 3 we will also use this strategy to approximate the cut
locus of a manifold, which is introduced below.

The most important step in the proof of Theorem b.5, is to show that functions (vm)m>0

are uniformly semiconcave.
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Theorem b.6 (Theorem 1.3.2). Let Cd > 0 be such that d∂Ω is Cd-semiconcave. There exists
m0 > 0 such that for any m > m0, the solution vm of the elasto-plastic torsion problem (b.1)
is Cd-semiconcave.

The proof of Theorem 1.3.2 relies on the two following facts:

• inside Em, vm has constant Laplacian,

• outside Em, vm is equal to d∂Ω, which is Cd-semiconcave, for some constant Cd > 0 that
depends only on Ω.

The main tool we use is Korevaar's convexity maximum principle [54, Theorem 1.3]. Let us
present this result. Let u : Ω→ R be a C2 function satisfying an equation of the form

P (x, u(x),∇u(x), D2u(x)) = 0

in Ω, where P is a certain elliptic operator, and D2u is the Hessian of u. The convexity
function of u is the function c de�ned for any [x, y] ⊂ Ω and λ ∈ [0, 1] by

c(x, y, λ) := (1− λ)u(x) + λu(y)− u((1− λ)x+ λy).

Under suitable conditions on the elliptic operator P , Korevaar's convexity maximum principle
states that the minimum of c is attained at a triple (x, y, λ) such that one of the points x, y
or (1 − λ)x + λy belongs to the boundary of Ω. In particular, this result applies to the case
where P is the euclidean Laplacian.

c Distance function and cut locus

Let M be a smooth Riemannian manifold without boundary of dimension n ≥ 2, b a point of
M , d the distance function of M and db := d(·, b) the distance function to the point b. We
will now introduce the notion of cut locus, which is closely related to the function db. Let us
�rst recall some notions of Riemannian geometry.

De�nition c.1. Let γ : [a, b]→ M be a geodesic, and J : [a, b]→ TM a vector �eld along γ.
Then, J is called a Jacobi �eld if there exists a variation of γ through geodesics whose J is
the variation �eld, i.e. a smooth map Γ : (−1, 1) × [a, b] → M such that Γ(0, ·) = γ and for
any s ∈ (−1, 1), Γ(s, ·) is a geodesic, and

∂1Γ(0, t) = J(t).

Furthermore, if there exists a Jacobi �eld J along γ such that J(a) = 0 and J(b) = 0, then
we say that γ(a) and γ(b) are conjugate points along γ.

De�nition c.2. Let T > 0 and γ : [0, T ] → M be a unit speed geodesic such that γ(0) = b,
t0 ∈ (0, T ) and p = γ(t0). We say that p is a cut point of b along γ if γ is length minimizing
between b and p, but not after p, i.e db(γ(t)) = t for t ≤ t0, and db(γ(t)) < t for t > t0. A
point q ∈M is said to be a cut point of b if there exists a geodesic γ such that q is a cut point
of b along γ.
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De�nition c.3. The cut locus of b in M , denoted by Cutb(M), is de�ned as the set of all cut
points of b.

We recall the following.

De�nition c.4. Let q ∈ M and V ∈ TqM be such that there exists a well de�ned geodesic
γ : [0, 1] → M such that γ(0) = q and γ̇(0) = V . Then, the (global) exponential map at V is
de�ned by Exp(V ) = γ(1). The restriction of the exponential map Exp on TqM is denoted by
expq and called the exponential map at q.

The following facts can all be found in [74, Chapter III, Section 4]:

Proposition c.5. Some well known facts related to the cut locus include:

• Cutb(M) is the set of points p in M , such that either there exist at least two minimizing
geodesics from b to p, or the points b and p are conjugate,

• Cutb(M) is the closure of the set of points p in M , such that there exist at least two
minimizing geodesics from b to p,

• the function db is smooth outside Cutb(M) ∪ {b}, and it is di�erentiable at a point p if
and only if there exists a unique minimizing geodesics between b and p,

• in particular, Cutb(M)∪ {b} is the closure of the set of points of non-di�erentiability of
db,

• the exponential map expb is a di�eomorphism from an open set of TbM onto M \
Cutb(M),

• Cutb(M) is a deformation retract of M \ {b}. In particular, these two sets have the
same homotopy type, and so Cutb(M) inherits much of the topology of M (like homology
groups, for instance). See [74, Chapter III, Section 4, proposition 4.5] for a precise
statement.

We know quite a bit about the structure of the cut locus. Let us give some of its properties,
to get an idea of what the cut locus looks like. First, it is the union of smooth hypersurfaces
consisting of points with exactly two minimizing geodesics, plus a set of Hausdor� dimension
at most n − 2. A reader-friendly reference for this is [49]. Furthermore, the cut locus has
locally �nite n − 1-dimensional Hausdor� measure, see for instance [50, Theorem B]. To our
knowledge, the most precise results in this direction are contained in [9], where points of the
cut locus are classi�ed, up to a set of Hausdor� dimension at most n − 3. We refer to [8,
Section 1.3] for additional structural properties of the cut locus.

An important property of the distance function is semiconcavity. Let us give a de�nition
of semiconcavity on manifolds.

De�nition c.6. Given a constant C > 0, a function u is said to be C-semiconcave on M
if and only if for any unit speed geodesic γ : [a, b] → M , the function t 7→ Ct2 − u(γ(t)) is
convex. We say that u is semiconcave if u is C-semiconcave for some constant C > 0. We say
that u is locally semiconcave if for any p ∈M , u is semiconcave in a neighborhood of p.
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Remark c.7. This de�nition is compatible with the previous de�ni�tion of semiconcavity for
functions on Rn.

In [60, Proposition 3.4], C.Mantegazza and A.Mennucci showed that the distance function
is a viscosity solution of the Hamilton-Jacobi equation |∇db| = 1. Using some regularity result
([25]) for Hamilton-Jacobi equations, they deduced that for any local chart ψ of M , the map
db ◦ ψ−1 is locally semiconcave as a function on Rn (see also [22] for a more reader-friendly
reference about semiconcave functions and Hamilton-Jacobi equations). In the Appendix A.1
about semiconcave functions, we show that it is equivalent to saying that db is locally semi-
concave. A di�erent proof of the local semiconcavity of distance functions can also be found
in [5]. In [61] (and in particular Theorem 2.10), C.Mantegazza, G.Mascellani and G.Uraltsev
used this fact along with geometric measure theory tools to give a complete description of the
distributional Hessian and Laplacian of db. They made use of the fact that the gradient of
semiconcave functions has bounded variations, in particular. They proved the following.

Theorem c.8. The distributional Hessian of db is given by:

D2db = D̃2dbVol− (ν ⊗ ν)
∣∣∇d+

b −∇d
−
b

∣∣Hn−1
Cutb(M),

where D̃2db is the classical Hessian of db wherever db is smooth (i.e. almost everywhere), Vol
is the Riemannian volume measure, ν is a unit normal vector to Cutb(M) wherever Cutb(M)
is smooth (i.e. Hn−1-almost everywhere), ∇d+

b and ∇d−b are limits of ∇db to either side of
Cutb(M), and Hn−1

Cutb(M) is the n − 1-dimensional Hausdor� measure restricted to Cutb(M).
The distributional Laplacian of db is given by:

∆db = ∆̃dbVol−
∣∣∇d+

b −∇d
−
b

∣∣Hn−1
Cutb(M),

where ∆̃db is the classical Laplacian of db, wherever db is smooth.

Our main result in Chapter 2 is a complement to the description of the non-smooth behavior
of the distance function on the cut locus. It deals with the Laplacian of db in the sense of
barriers.

De�nition c.9. Let ψ : M → R be a continuous function, and p ∈ M . We say that the
Laplacian of ψ at p is −∞ in the sense of barriers if for any A > 0, there exists a smooth
function φ : M → R de�ned on a neighborhood of p such that

φ ≥ ψ, φ(p) = ψ(p) and ∆φ(p) ≤ −A.

We will prove the following.

Theorem c.10 (Theorem 2.1.11). LetM be a smooth manifold without boundary of dimension
n ≥ 2, and b ∈ M . Let db be the distance function to the point b, and Cutb(M) the cut locus
with respect to b. The Laplacian of db is −∞ at every point of Cutb(M), in the sense of
barriers.

This result proves useful when one wants to apply the maximum principle to a function
involving the distance function db. It will be applied to the study of a variation of the elastic-
plastic torsion problem on manifolds, that we will now introduce.

9
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d A variation of the elastic-plastic torsion problem on manifolds

Let us now assume that the manifold M is compact. The cut locus is a fundamental object
in Riemannian geometry, and it is a natural problem to try and �nd ways to compute it
numerically. While the medial axis of Ω is unstable with respect to non-smooth variation of
the boundary of Ω, the cut locus is unstable with respect to non-smooth variations of the
metric ofM . Indeed, it is proved in [4] that the cut locus is unstable for some C1 variations of
the metric of M (but stable for C2 variations of the metric of M). In particular, the cut locus
of a surface S cannot simply be approximated with the cut locus of a triangulation of S. Our
strategy will be to extend the results presented above linking the λ-medial axis and the elastic-
plastic torsion problem to the case of the cut locus, and to derive a numerical approximation
of the cut locus of triangulated surfaces. We will study the following variational problem in
Chapter 3:

inf

{∫
M
|∇u|2 −mu : u ∈ H1(M), |∇u| ≤ 1, u(b) = 0

}
, (d.1)

where m > 0 is a given constant. We will extend the results for the elastic-plastic torsion
problem presented earlier in this introduction.

Remark d.1. We could have replaced the point b with a smooth hypersurface S ⊂ M in the
above problem. However, our interest here is in the instability of the cut locus with respect
to the metric of M , and this aspect is already present with a point b instead of S. So for
simplicity, we focus on the case of the cut locus of a point.

Note that by convexity of the functional, this problem has a unique minimizer um. One
may ask if an analog of Theorem b.1 is also true for um, with d∂Ω replaced with db and Ω with
M . Interestingly, it is not.

Theorem d.2 (Theorem 3.3.1). There exists a surface of revolutionM and a parameter m > 0
such that, if udm denotes the unique minimizer of the following problem:

inf

{∫
M
|∇u|2 −mu : u ∈ H1(M), u ≤ db

}
,

then we have um 6= udm.

However, we prove that the equality holds if m is large enough, depending on the Ricci
curvature of M .

Theorem d.3 (Theorem 3.3.2). Let K ≥ 0 be such that

Ric ≥ −K,

where Ric denotes the Ricci curvature tensor of the manifold M . If

m ≥ max(
√
nK(1 +Kdiam(M)2), nKdiam(M)),

then
∣∣∇udm∣∣ ≤ 1, or equivalently

udm = um.
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The technique of the proof is di�erent from the one in [14], which was speci�c to the �at case.

Our proof relies on the maximum principle, applied to a function involving
∣∣∇udm∣∣2, and the

Euler-Lagrange equation ∆udm = −2m.
For the elastic-plastic torsion problem, as mentioned earlier, we know that the elastic set

contains the medial axis, and the former converges to the latter in the Hausdor� sense. For
problem (d.1), we have the analogous result:

Theorem d.4 (Theorem 3.1.2). We have Cutb(M) ⊂ {|∇um| < 1}, and the following con-
vergence holds in the Hausdor� sense:

{|∇um| < 1} −→
m→+∞

Cutb(M).

Once we have the inclusion, the proof of the convergence is simple. It is based on the
maximum principle, applied to the right function. Note to this end that um veri�es on the
whole manifold M , ∆um ≥ −2m, in the sense of distributions. To prove the inclusion, we
will use the maximum principle and the Theorem c.10 about the Laplacian of the distance
function on the cut locus.

We will now state our analogous result to Theorem b.5 for problem (d.1). This result will
be used in Chapter 4 to compute a stable approximation of the cut locus. We recall that the
function db is locally semiconcave on M \ {b}. This implies that, as convex functions, db has
a well de�ned generalized gradient at every point � see Appendix A.1, Proposition A.1.6. At
a point p where db is not di�erentiable, the norm of its gradient is given by

|∇db| (p) := max(0, sup
v∈TxM,|v|=1

∂+
v db(p)).

As shown in Appendix A.1, Proposition A.1.10, if there exist two minimizing geodesics from
p to b, then |∇db(p)| < 1. In particular, we have

Cutb(M) = {|∇db| < 1}.

Following the analogous formula for the λ-medial axis, we de�ne a λ-cut locus by

Cutb(M)λ :=

{
x ∈M : |∇db(x)|2 ≤ 1− λ2

d2
b(x)

}
, for λ > 0.

It is clear that the map λ 7→ Cutb(M)λ is non-increasing, and we have

Cutb(M) =
⋃
λ>0

Cutb(M)λ.

Recall that um denotes the minimizer of (d.1). We set

Em :=

{
x ∈M : |∇um(x)| < 1

}
,

and Em,λ :=

{
x ∈M : |∇um(x)|2 ≤ 1− λ2

u2
m(x)

}
.

We will prove the following.
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Theorem d.5 (Theorem 3.1.2). There exists m0 > 0, depending only on the manifold M ,
such that for any ε > 0, there exists a constant C > 0 such that, for any m > m0,

um is C-semiconcave on M \B(b, ε).

What is more,

sup
x∈Em,λ

d(x,Cutb(M)λ) −→
m→+∞

0, and sup
x∈Cutb(M)λ+ε

d(x,Em,λ) −→
m→+∞

0.

Once the uniform semiconcavity is proved, the rest of the theorem is strictly similar to the
corresponding one for the classical elastic-plastic torsion problem. The proof of semiconcavity,
however, is di�erent. Indeed, in this case, we cannot apply Korevaar's maximum principle
to prove the semiconcavity in Em. It can be seen that proving the semiconcavity is equiv-
alent to �nding a constant C such that for any p ∈ Em and X ∈ TpM of norm 1, we have
D2um(X,X) ≤ C. Our strategy will be to assume that there exists p ∈ Em and X ∈ TpM
that maximizes the quantity D2um(X,X). Then, we extend X by a well chosen vector �eld X̃,
and �nd a suitable subharmonic function involving D2um(X̃, X̃). This technique is inspired
from the proof of second order estimate for hessian equations in Riemannian manifolds by
Guan in [45].
Numerical approximation. Now let us consider the case M = S, a compact real analytic
surface without boundary embedded in R3. In Chapter 4, we will use the above results to
compute a numerically stable approximation of the cut locus of S. A few authors have done
it before, with di�erent techniques. These techniques may be classi�ed into two categories.

Geodesic approximation on parametrized surfaces. This approach was used in [76] and [63].
In [76], on genus 1 parametrized surfaces, the authors computed a degree 4 polynomial approx-
imation of the exponential map using the geodesic equation, and deduced an approximation of
the cut locus from there. In [63], the authors used the deformable simplicial complexes (DSC)
method and �nite di�erences techniques for geodesic computations, to compute geodesic cir-
cles of increasing radius and their se�-intersection, i.e. the cut locus. They apply the method
to genus 1 surfaces. These papers contain no proof of convergence of the computed cut locus.

Exact geodesic computation on discretized surfaces. This approach was used in [48] and [28].
In [48], the authors computed the geodesics on a convex triangulated surface. They deduced
an approximation of the cut locus of the triangulated surface, and �ltered it according to the
angle formed by the geodesics meeting at a point of the approximated cut locus, to make their
approximation stable. They applied the method to ellipsoids. There is no proof of convergence.
In [28], the authors computed shortest curves on a graph obtained from a su�ciently dense
sample of points of a surface. From there they deduced an approximation of the cut locus, and
�ltered it according to the maximal distance (called spread) between the geodesics meeting at
a point of the approximated cut locus. They proved that the set they compute converges to
the cut locus (see [28, Theorem 4.1]).

We also mention [11], where the authors use some more geometric tools to compute (numer-
ically) the cut locus of an ellipsoid, or a sphere with some particular metric with singularities.

The strategy we use is quite di�erent. By the above results, for λ > 0 to be 'chosen small',

and m 'large enough', the set Em,λ :=
{
|∇um|2 ≤ 1− λ2

u2
m

}
can be used as an approximation

of Cutb(S)λ. In turn, we can see that Cutb(S)λ is a good approximation of Cutb(S). First,
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we have the following convergence in the Hausdor� sense:

Cutb(S)λ−→
λ→0

Cutb(S).

Furthermore, we will show (see Proposition 4.2.2) that for λ small enough, Cutb(S)λ has a
connected component that is homotopy equivalent to Cutb(S). On a triangulation Sh of the
surface S, the minimizer um can be approximated with a function uh by the �nite element
methods. We will prove the following convergence in measure (see Proposition 4.4.4):{

|∇uh|2 ≤ 1− λ2

u2
h

}
−→
h→0

Em,λ.

The e�ciency of the method is illustrated on complex geometries in Section 4.5.

e A non-local isoperimetric problem

In part II, our focus will be on a non-local isoperimetric problem.

The classical isoperimetric problem. Let n ∈ N∗ be an integer. For any measurable
set E ⊂ Rn, the perimeter of E is de�ned as the total variation of the indicator function of E:

P (E) :=

∫
Rn
|DχE | = sup

{∫
E

div f : f ∈ C1
c (Rn), |f |L∞ ≤ 1

}
.

The quantity P (E) may be in�nite, and when it is �nite, we say that E is a set of �nite
perimeter. If E is a C1 open set, then as one would expect, we have P (E) = Hn−1(∂E),
where Hn−1 is the (n−1)-dimensional Hausdor� measure. This de�nition is due to De Giorgi.
It allowed him, using Steiner symmetrization, to give a complete proof of the isoperimetric
inequality. The classical isoperimetric problem is the following variational problem:

min
E⊂Rn,|E|=m

P (E),

where |E| is the volume of E, and m > 0 is a constant. It is now well known that for any
m > 0, this problem has a unique minimizer up to translation, namely B[m], the ball of
volume m. Moreover, a sharp quantitative estimate was proved in [40] by Fusco, Maggi and
Pratelli. Before stating it, we need a de�nition. Given a set E of volume m, we call Fraenkel
asymmetry the quantity

λ(E) := min
x∈Rn

|E∆(x+B[m])|
|E|

,

where E∆F = (E ∪ F ) \ (E ∩ F ) is the symmetric di�erence of E and F . There exists a
constant C(n) depending only on the dimension of the ambient space such that for any set E
of volume m,

P (E)− P (B[m]) ≥ C(n)P (B[m])λ(E)2.

See also [39] for a re�nement of this inequality, where the di�erence P (E) − P (B[m]) also
controls the oscillation of the normal to the (reduced) boundary of E. The quantitative
isoperimetric inequality plays an instrumental role in the study of minimizers of small masses
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of Gamow's liquid drop model. Our book of reference for the perimeter is Giusti's book, [43].
Maggi's book [59] is probably more reader-friendly though (but does not include the study of
BV functions).
Gamow's liquid drop problem. Gamow's liquid drop model for the atomic nucleus consists
in:

inf
E⊂R3,|E|=m

P (E) +

∫
E×E

dxdy

|x− y|
,

where

• P (E) is the perimeter of E,

• m, called the mass, is a positive constant.

In this model, the nucleus is thought of as an incompressible charged liquid. The perimeter
term models the short-range attractive nuclear force, whereas the other term, similar to an
electrostatic energy, models the repulsive forces between the protons of the nucleus. Gamow
invented this model in the 1930's, in an attempt to predict the shape of nuclei, the nonexistence
of large nuclei, and the existence of a nucleus with the least energy per nucleon. These three
goals have only been attained relatively recently (in the 2010's, see below).
Some variations of the liquid drop model. The most studied variant of Gamow's model
is the following:

inf
E⊂R2,|E|=m

P (E) + Vα(E) (e.1)

where

• P (E) is the perimeter of E,

• Vα(E) :=
∫
E×E

dxdy

|x−y|n−α is the Riesz energy of E,

• n ≥ 2 (the dimension of the ambient space), m > 0 and α ∈ (0, n) are constants.

The physical case corresponds to n = 3 and α = 2. In this case, the Riesz energy boils down
to the electrostatic energy

∫
E×E

dxdy
|x−y| .

It was shown in [33] by Figalli, Fusco, Maggi, Millot, and Morini, that if the mass m is
small enough, then the problem (e.1) admits a unique minimizer (up to translation), namely
the ball of volume m. See also the papers of Knüpfer, Muratov, Julin, Bonacini and Cristoferi
[53], [64], [51] and [10], for anterior and slightly less general results.

On the other hand, for α ∈ (n− 2, n), it was shown in [64] that for m large enough there
is no minimizer of problem (e.1). This result was simultaneously proved in [58] by Lu and
Otto in the physical case. See also [35] for a short proof with a quantitative bound, by Frank,
Killip and Nam.

In [36], Frank showed in the physical case that there exists a set which minimizes the
quantity (P (E) + Vα(E))/ |E|, thus proving that in Gamow's model, there is a nucleus with
the least energy per nucleon.

In [33], the authors studied a generalization of problem (e.1), where the perimeter term is
replaced with a non-local perimeter.
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Another interesting variation consists in replacing the repulsive Riesz energy with a re-
pulsive energy involving another kernel. Let K ∈ L1(Rn). Problem (e.1) can be rephrased
as

inf
E⊂Rn,|E|=m

P (E) +

∫
E×E

K(x− y)dxdy,

with K(x) = |x|α−n. In [70], Rigot considered the above problem with K an L1 compactly
supported function, and proved that it has a minimizer for any mass m. The following papers
are posterior to the present work. In [67], Pegon proved the same result in the case of radially
symmetric non-increasing kernels K with some regularity and integrability conditions at in�n-
ity. He also showed that, under the same conditions, after rescaling, the problem Γ-converges
to the classical isoperimetric problem as the mass m goes to +∞. In [65], Muratov and Simon
considered the kernel |x|−3 in dimension 2, and also studied the minimizers of large mass.

In [3], Alama, Bronsard, Choksi, and Topaloglu studied problem (e.1) with the addition
of a con�ning background potential of the form −Z

|x|p . They proved that it admits a minimizer
for any mass m, and study the minimizers as Z → 0.

In [44], Goldman, Novaga and Roger studied the small mass minimizers of problem (e.1)
with the addition of the Willmore energy.

As shown in [24], Gamow's liquid drop model is also related to diblock copolymers, and
the Ohta�Kawasaki functional. This is also an active �eld of research, see for instance [2] and
[82].
Our problem. To restore the existence of a minimizer for large masses in (e.1), we will add
the energy associated to the potential A |x|β to our functional, as we expect it to counter the
spreading e�ect of the Vα term. Thus we will be interested in the following modi�cation of
the original problem (e.1):

inf
E⊂Rn,|E|=m

Eα,β,A(E) := P (E) + Vα(E) + Uβ,A(E), (e.2)

where

• Uβ,A(E) :=
∫
E A |x|

β dx,

• A ≥ 0 and β > 0 are constants.

Indeed, an elementary proof will show that this extra con�nement potential (no pun in-
tended) restores the compactness of a minimizing sequence for any mass m. Therefore, this
problem always has a minimizer. We will then be interested in the behavior of these minimiz-
ers when the mass m goes to +∞, with particular emphasis in the case β > α. We will prove
the following.

Theorem e.1 (Theorem 1.1.1). Given α ∈ (0, n), β > 0 and A > 0, assume α < β. Let
(Em)m>0 be a family of minimizers in (1.1.3), such that |Em| = m, and let E∗m be the rescaling

of Em of the same mass as the unit ball B centered at 0 (ie E∗m =
(
|B|
m

) 1
n
Em). Then, up to

modifying the sets (Em) by some sets of measure 0, the boundaries of the sets (E∗m) Hausdor�-
converge to the boundary of B as m→ +∞.

Using the techniques of [33], one can see that in this case, if β > 1 then balls of large
masses are locally minimizing. On the contrary if β < 1 then balls of large masses are not
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locally minimizing. By locally minimizing, we mean that a set E is a local minimizer if a small
L1 perturbation of E always has greater energy than E. With the additional assumption that
β > 1 we will actually prove that minimizers of large masses are exactly balls.

Theorem e.2 (Theorem 1.1.2). Given α ∈ (0, n), β > 0 and A > 0, assume 1 < α < β.
There exists a mass m1 = m1(n, α, β,A) > 0 such that for any m > m1 the ball of volume m
centered at 0 is the unique minimizer (1.1.3), up to a set of measure 0.

We conjecture that this last theorem holds also for any α ∈ (0, 1] as long as β > 1.
However, this seems to require di�erent techniques.

We started working on some aspects of this functional under the supervision of Vincent
Millot for our Master 2 thesis. In part II, the new results start with Section 1.4. In particular,
the results presented in this introduction are new.

Numerical minimization In Chapter 2, we will develop a method to compute numerically
the minimizers of (e.2). In particular, we will apply this method to the original problem (e.1).
Indeed, the theoretical knowledge we have so far on problem (e.1) raises two natural questions.
Is it always the case (i.e. for any value of α ∈ (0, n)) that there is no minimizer for m large
enough? Is there a set of parameters n, α and m, such that there exists a minimizer that
is di�erent from a ball? Our numerical results indicate that in dimension 2, the answers are
positive and negative respectively, as conjectured by Choksi and Peletier in [24, Conjecture
6.1]
Γ-convergence. To justify our numerical method, we will prove some Γ-convergence results.
This is the notion of convergence of functionals one generally wants to use when studying
variational problems.

De�nition e.3. Let X be a topological space, F a real functional on X, and (Fε)ε>0 a family
of real functionals on X. We say that Fε Γ-converges to F as ε goes to 0, and we write

Fε
Γ−−−→

ε→0
F , if the two following assertions hold:

• for any u ∈ X and any family (uε)ε>0 of X such that uε−→
ε→0

u, we have

lim inf
ε→0

Fε(uε) ≥ F(u),

• for any u ∈ X, there exists a family (uε)ε>0 of X such that uε−→
ε→0

u and

lim
ε→0
Fε(uε) = F(u).

Remark e.4. We also say that a sequence of functionals (FN ) Γ-converges to a function F if
the assertions above hold with ε and 0 replaced with N and +∞.

This de�nition guarantees that if, for any ε > 0, uε is a minimizer of Fε in X, and the family
(uε) converges to u ∈ X as ε → 0, then u is also a minimizer of F in X. To minimize
numerically a given functional F , the general strategy is the following:
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1. �nd a sequence of discrete functionals (FN )N≥0 that Γ-converges to F ,

2. �nd numerically a minimizer uN of FN for some N considered 'large',

3. extrapolate a limit point u of the sequence (uN )N≥0 from the results. This u should be
a minimizer of F .

For point 3 to even have a chance to work, we need the sequence (uN )N≥0 to be precompact:

Terminology e.5. Following [6], we say that a family of functionals (Fε)ε>0 de�ned on a metric
space X enjoys property (C) (for compactness) if for any family (uε)ε>0 of elements of X such
that (Fε(uε))ε>0 is bounded, there is a subsequence of (uε)ε>0 that converges in X.

If a family of functionals (Fε)ε>0 enjoys property (C) and Γ-converges to a limit functional
F when ε goes to 0, then we know that for ε small enough, minimizers of Fε are close to
minimizers of F . When discretizing our functional F , along with the Γ-convergence, we will
prove that the property (C) is veri�ed.

We refer to the book [12] for more details about Γ-convergence. The lecture [6] also contains
a brief introduction to Γ-convergence that is su�cient to our needs.
Modica-Mortola theorem. The numerical treatment of the perimeter is classical. To deal
with the perimeter term, we will use the well known Modica-Mortola theorem. This theorem
allows us to relax the perimeter functional on sets, i.e. charateristic functions, into a functional
on functions taking values in [0, 1]. Therefore we will be able to use the vector space structure of
functions and, after disctretization (step three below), usual optimization tools for functionals
on Rd.

Theorem e.6 (Modica-Mortola theorem.). Let Ω be a Lipschitz open bounded subset of Rn
and ε > 0. Let W be the double well potential de�ned on [0, 1] by W (x) = x(1− x). Let us set
σ := 2

∫ 1
0

√
W (u)du. We de�ne the set X, and the functionals Fε : X → R by

X :=

{
u ∈ L1(Ω, [0, 1]) :

∫
u = m

}
, endowed with the strong L1-topology,

and

Fε(u) =

{
σ−1

∫
Rn

(
ε |∇u|2 + ε−1W (u)

)
if u ∈ H1

0 (Ω, [0, 1]),

+∞ otherwise,
(e.3)

If (uε)ε>0 is a family of functions in H1
0 (Ω, [0, 1]) and E ⊂ Ω is any measurable subset of Ω,

such that uε−→
ε→0

1E in L1(Ω), then we have

P (E) ≤ lim inf
ε→0

Fε(uε).

Moreover, if E ⊂⊂ Ω is a compact subset of Ω of �nite perimeter, then there exists a family
of functions (uε)ε>0 in X, such that uε−→

ε→0
1E, and

P (E) = lim
ε→0
Fε(uε).

Finally, the family of functionals (Fε) enjoys property (C).
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e. A non-local isoperimetric problem

One can �nd a reader-friendly proof of these facts in [6]. Here, we will only give the
following heuristic. If ε > 0 is very small, then ε−1W (u) is very large, except if u is 0 or 1.
Therefore the minimizers of Fε are functions that are equal to 0 or 1 except on a set of small
measure.
Method of the numerical minimization. Here are the modi�cations of the variational
problem (1.1.3) that we will use in Chapter 2 to arrive at a �nite dimensional variational
problem that can be easily numerically solved. All steps will be justi�ed by a Γ-convergence
and compactness result.

Step one is standard when dealing with the perimeter. We use the classical Modica-
Mortola theorem to relax the functional on sets, i.e. charateristic functions, into a functional
on functions taking values in [0, 1]. This allows us to use the vector space structure of functions
and, after disctretization (step three), usual optimization tools for functionals on Rd.

Step two is the key step for dealing with the non-local term Vα. We will replace the ambient
space Rn with a large square with periodic boundary conditions, whose size is a new relaxation
parameter. Then, we can approximate the non-local term Vα by a simple expression in Fourier
variable.

In step three, we discretize the problem by considering only trigonometric functions with
frequencies lower than some integer N , and by computing the integral terms with riemann
sums.

The numerical results are presented in section 2.3.
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Part I

Elastic-plastic torsion problem,

distance function and cut locus
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Outline of part I

This part is independent of part II. We will try and give a global view of the content of
this part. Then, each Chapter will start with a more detailed speci�c introduction, giving also
more context about their respective topics.

We are interested in the approximation of the cut locus of a Riemannian manifold through
a variational problem. Given a smooth Riemannian manifold M and a point b in M , the cut
locus of b in M , denoted by Cutb(M), is the set of points at which geodesics starting from
b stop being minimizing. Alternatively, it is also the set of points around which the distance
function to b, denoted by db, is not smooth. Or the closure of the set of points p such that
there exist at least two minimizing geodesics from b to p. The cut locus is quite a fundamental
object in Riemannian geometry, and it has been studied by many mathematicians from varied
backgrounds. See Section 2.1 for more details. It is a di�cult object to compute numerically,
because it is unstable with respect to C1 variations of the metric of M . In particular, the cut
locus of the polyhedral approximation of a given surface S may be quite larger than the cut
locus of S itself.

In Chapter 1, we �rst study the elastic-plastic torsion problem, in relation with the medial
axis. Given a smooth bounded open set of Rn, the medial axis of Ω, denoted by M(Ω), is
the set of points x ∈ Ω that have at least two closest points on the boundary of Ω, ∂Ω.
Alternatively, it is the set of points at which the distance function to ∂Ω is not di�erentiable.
The elastic-plastic torsion problem is the following variational problem:

inf

{∫
Ω
|∇v|2 −mv : v ∈ H1

0 (Ω), |∇v| ≤ 1

}
. (0.1)

It has been intensively studied in the 60's and 70's by various mathematicians. See Section
1.1 for more details. Let vm be its unique minimizer. In [18], in particular, it was proved that
the set {|∇vm| < 1} contains the setM(Ω), and that the former converges in the Hausdor�
sense to the latter as m goes to +∞. Like the cut locus, the medial axis has some kind of
instability. Indeed,M(Ω) is unstable with respect to non-smooth variations of the boundary
of Ω (see Figure 1.1 in Chapter 1). It makes it non-trivial to compute numerically as well.
In 2005, Chazal and Lieutier introduced the notion of λ-medial axis to give a theoretical
framework to tackle the problem of instability. It is de�ned, for any λ > 0, as

Mλ(Ω) := {x ∈ Ω : r(x) ≥ λ},

where r(x) is the radius of the smallest ball containing the set of all closest points to x on
∂Ω, i.e. the set {z ∈ ∂Ω : |x− z| = d∂Ω(x)}. Basically, they showed that for λ small enough,
Mλ(Ω) is a good approximation of M(Ω) and it is stable with respect to variations of the
boundary of Ω. Therefore, one can try and compute Mλ(Ω) instead of M(Ω), and that is
what they did in their paper [23]. See [73] for many more ways of computing the medial axis,
and applications. Another useful formula for Mλ(Ω) can be derived using the generalized
gradient of d∂Ω. Indeed, d∂Ω is locally semiconcave. This means that, locally, there exists a
constant C > 0 such that the function x 7→ C |x|2− d∂Ω(x) is convex. In particular, as convex
functions, it has a well de�ned generalized gradient. See Appendix A.1 for more details. Now,
one can see that the λ-medial axis is also given by the formula

Mλ(Ω) =

{
x ∈ Ω : |∇d∂Ω(x)|2 ≤ 1− λ2

d2
∂Ω(x)

}
.



Motivated by these facts, we prove that the set Em,λ de�ned by

Em,λ :=

{
x ∈ Ω : |∇vm(x)|2 ≤ 1− λ2

v2
m(x)

}
is basically a good approximation ofMλ(Ω) if m is large enough.

Theorem (Theorem 1.3.1). Let vm be the unique solution of the elastic-plastic torsion problem
(0.1). Then, for any λ > 0 and ε > 0, we have

sup
x∈Em,λ

d(x,Mλ(Ω)) −→
m→+∞

0 and sup
x∈Mλ+ε(Ω)

d(x,Em,λ) −→
m→+∞

0.

This means that a stable version of the cut locus can be approximated from the minimizer of
a convex variational problem.

The strategy of the proof is to show that the minimizers (vm)m>0 of the elastic-plastic
torsion problem are uniformly semiconcave when m is large enough.

Theorem (Theorem 1.3.2). Let Cd > 0 be such that d∂Ω is Cd-semiconcave. There exists
m0 > 0 such that for any m > m0, the solution vm of the elasto-plastic torsion problem (0.1)
is Cd-semiconcave.

This is done by using Korevaar's convexity maximum principle [54].
The idea is then to apply the same strategy to the study of the cut locus and the problem

of instability with respect to the metric, and to derive a method for computing the cut locus
of a surface. In Chapter 3, we study the following variational problem:

inf

{∫
M
|∇u|2 −mu : u ∈ H1(M), |∇u| ≤ 1, u(b) = 0

}
. (0.2)

It is a kind of generalization of the elastic-torsion problem, where the ambient euclidean
space is replaced with a smooth compact Riemannian manifold without boundary M , and
the boundary of ∂Ω is replaced with the point b. In this framework, the analog of M(Ω)
is Cutb(M). We extend some results known for the elastic-plastic torsion problem to this
framework. Let Cutb(M)λ ⊂M be de�ned by

Cutb(M)λ :=

{
p ∈M : |∇db(x)|2 ≤ 1− λ2

d2
b(x)

}
,

where ∇db(x) is the generalized gradient of db (see Propositions A.1.9 and A.1.6). We will
prove the following theorem.

Theorem (Theorem 3.1.2). There exists m0 > 0, depending only on the manifold M , such
that for any m > m′ > m0, the minimizer um of (0.2) is locally C1,1 on M \ {b}, and

Cutb(M) ⊂ {|∇um| < 1} ⊂ {|∇um′ | < 1}.

Moreover,

Em −→
m→+∞

Cutb(M) in the Hausdor� sense.
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Given any ε > 0, there exists a constant C > 0 such that, for any m > m0,

um is C-semiconcave on M \B(b, ε).

Finally,

sup
x∈Em,λ

d(x,Cutb(M)λ) −→
m→+∞

0, and sup
x∈Cutb(M)λ+ε

d(x,Em,λ) −→
m→+∞

0.

This result will be used in chapter 4 to build a new method for the numerical approximation
of the cut locus of a surface.

In our study, we will need to establish that the gradient constraint |∇u| ≤ 1 in (0.2) can
be replaced with the obstacle constraint u ≤ db. Contrary to the case of the classical obstacle
problem (0.1), this is not true in general. However, it is true if m is large enough. Indeed, let
udm be the minimizer of the following variational problem:

inf

{∫
M
|∇u|2 −mu : u ∈ H1(M), u ≤ db

}
.

We will prove the following.

Theorem (Theorem 3.3.1). There exists a surface of revolution M and a parameter m > 0
such that um 6= udm.

Theorem (Theorem 3.3.2). Let K ≥ 0 be such that

Ric ≥ −K, (0.3)

where Ric denotes the Ricci curvature tensor of the manifold M . If

m ≥ max(
√
nK(1 +Kdiam(M)2), nKdiam(M)),

then
udm = um.

In Chapter 4, we address the question of the numerical approximation of the cut locus based
on previous modeling. We introduce a �nite element method based on triangulated surfaces,
prove the convergence of our scheme and illustrate its e�ciency on complex geometries.

In Chapter 2, after introducing the notion of cut locus, and some important properties of
db and Cutb(M), we prove a proposition about the behavior of db on Cutb(M), that is later
used in Chapter 3. More speci�cally, we prove:

Theorem (Theorem 2.1.11). Let M be a smooth manifold without boundary of dimension
n ≥ 2, and b ∈ M . Let db be the distance function to the point b, and Cutb(M) the cut locus
with respect to b. The Laplacian of db is −∞ at every point of Cutb(M), in the sense of
barriers. This means that for any p ∈ Cutb(M), for any A > 0, there exists a smooth function
φ de�ned in a neighborhood of p such that

φ ≥ db, φ(p) = db(p) and ∆φ(p) ≤ −A.

Remark 0.1. We could have replaced the point b with a smooth hypersurface S ⊂M in all our
considerations. However, our interest here is in the instability of the cut locus with respect
to the metric of M , and this aspect is already present with a point b instead of S. So for
simplicity, we focus on the case of the cut locus of a point.
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Chapter 1

Medial axis of a euclidean domain and

elastic-plastic torsion problem

1.1 The elastic-plastic torsion problem.

In this chapter, Ω is a smooth bounded open set of Rn. The elastic-plastic torsion problem is
the following variational problem, de�ned for any m > 0.

inf

{∫
Ω
|∇v|2 −mv : v ∈ H1

0 (Ω), |∇v| ≤ 1

}
. (1.1.1)

One can show that this functional has a minimizer by the direct method of calculus of
variations. The minimizer is unique because we are minimizing a strictly convex functional
over a convex subset of H1

0 (Ω). Let vm be the unique minimizer of (1.1.1). (See also [46] for
general existence and uniqueness results for more general functionals of that type.) Physically
speaking, vm represents the stress function of a long bar of cross section Ω, twisted with an
angle m. The elastic-plastic torsion problem and the properties of its minimizer vm have
been intensively studied in the 60s and 70s by various authors (such as Ting, Brézis, Sibony,
Gerhardt, Ca�arelli, Rivière, Friedman, Pozzi...), see for instance [78], [14], [13], [20], [79],
[21], [38] and [19].

In particular, we know from [21] that vm is locally C1,1 in Ω. What is more, we know from
[14] that the gradient constraint in (1.1.1) can be replaced with an obstacle type constraint
involving the distance function d∂Ω to the boundary of Ω. Indeed, we have

0 ≤ vm ≤ d∂Ω and vm = arg min

{∫
Ω
|∇v|2 −mv : v ∈ H1

0 (Ω), v ≤ d∂Ω

}
. (1.1.2)

where
d∂Ω(x) = min

y∈∂Ω
|x− y| .

Following [18], we de�ne the elastic and plastic sets as follows:

Em = {x ∈ Ω : |∇vm(x)| < 1},
Pm = {x ∈ Ω : |∇vm(x)| = 1},
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1.2. Mλ(Ω): the λ-medial axis

It is then easy to prove (see [18, �3]) that

Em = {x ∈ Ω : vm(x) < d∂Ω(x)},
Pm = {x ∈ Ω : vm(x) = d∂Ω(x)}. (1.1.3)

In the open set Em, we have the Euler-Lagrange equation of the variational problem:

∆vm = −2m in Em. (1.1.4)

At a point x ∈ Pm, we have vm(x) = d∂Ω(x) and vm ≤ d∂Ω around x, so

∇vm(x) = ∇d∂Ω(x). (1.1.5)

The medial axis of Ω, denoted byM(Ω), is de�ned as the set of points of Ω that have at
least two closest points on the boundary ∂Ω of Ω:

M(Ω) :=
{
x ∈ Ω : ∃y, z ∈ ∂Ω, y 6= z and d∂Ω(x) = |x− y| = |x− z|

}
.

Equivalently,M(Ω) is the set of points of Ω at which the distance function d∂Ω is not di�er-
entiable. In [18], Ca�arelli and Friedman used the notion of ridge of Ω, which is precisely the
closure of M(Ω). Equivalently, it is the set of points around which the distance function is
not smooth.

They proved the following.

Theorem 1.1.1 (Theorems 3.2 and 4.1 in [18].). For any m > 0, we have

M(Ω) ⊂ Em.

Furthermore, there exists a constant C > 0 depending on Ω only such that

∀m > 0, dH(M(Ω), Em) ≤ C

m
,

where dH denotes the Hausdor� distance.

We will also use the following fact. Equation (4.2) in [18] gives a constant C > 0 depending
only on Ω such that

∀x ∈ Ω, d(x, {vm = d∂Ω}) ≤
C

m
.

As d∂Ω and vm are both 1-Lipschitz, we get that for a (di�erent) constant C ′ > 0, we have

∀m > 0, ‖d∂Ω − vm‖L∞(Ω) ≤
C ′

m
. (1.1.6)

1.2 Mλ(Ω): the λ-medial axis

The medial axis, also called skeleton, is used in a wide variety of applications in image pro-
cessing and computer vision. Many researchers have proposed more or less e�cient methods
to compute it, and are still trying to improve its computation. We refer to the book [73] from
2017 for a review about the medial axis, its computation and applications. In this section,
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Chapter 1. Medial axis and torsion problem

•

Figure 1.1: A circle with its medial axis, and a polygonal approximation of a circle, with its
medial axis.

we introduce the notion of λ-medial axis that was invented in 2005 by Chazal and Lieutier to
give a theoretical framework to tackle the problem of stability.

Indeed, one important geometric property of the medial axis M(Ω) is that it is unstable
with respect to small perturbations of the boundary of Ω - see Figure 1.1. This instability
makes computing numericallyM(Ω) quite tricky. Indeed, any numerical approximation of Ω
(for instance, with polygons) might introduce an arti�cial (and large) medial set. In order to
deal with this problem, in [23], Chazal and Lieutier de�ned the so called λ-medial axis of Ω
by setting, for any λ > 0,

Mλ(Ω) := {x ∈ Ω : r(x) ≥ λ}, (1.2.1)

where r(x) is the radius of the smallest ball containing the set of all closest points to x on ∂Ω,
i.e. the set {z ∈ ∂Ω : |x− z| = d∂Ω(x)}. Note that the map λ 7→ Mλ(Ω) is non-increasing,
and we have

M(Ω) =
⋃
λ>0

Mλ(Ω).

It is further proved in [23, Section 3, Theorem 2] thatMλ(Ω) has the same homotopy type as
M(Ω), for λ small enough. These facts justify that, for �xed Ω,Mλ(Ω) is a good approxima-
tion ofM(Ω), for λ small enough. The crucial di�erence though is thatMλ(Ω) is stable with
respect to small variations of Ω, whereasM(Ω) is not. Indeed we have the following theorem.

Theorem 1.2.1 (Consequence of Theorem 3 in [23]). For any 0 < λ′ < λ, there exists ε > 0
such that, if Ω and Ω̃ are two open bounded subset of Rn such that dH(Ωc, Ω̃c) < ε, then

sup
x∈Mλ(Ω̃)

d(x,Mλ′(Ω)) ≤ 2
√

diam(Ω)ε,

where diam(Ω) is the diameter of Ω.

This means that although it is di�cult to compute numerically M(Ω) directly, one can
computeMλ(Ω) instead. In the same paper [23], the authors use voronoi diagrams to compute
an approximation ofMλ(Ω) from a noisy sample of points of the boundary of Ω.

We will need the following de�nition.

De�nition 1.2.2. A function u : Ω→ R is said to be C-semiconcave (or just semiconcave) if
the function x 7→ C |x|2 − u(x) is convex. This is equivalent to having, for any λ ∈ [0, 1] and
x, y ∈ Ω such that [x, y] ∈ Ω,

(1− λ)u(x) + λu(y)− u((1− λ)x+ λy) ≤ Cλ(1− λ) |y − x|2

Then, we have:
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1.3. Elastic-plastic torsion problem and λ-medial axis

Lemma 1.2.3. Let Ω be a C2 open bounded subset of Rn. There is a constant Cd > 0 such
that d∂Ω is Cd-semiconcave on Ω.

This lemma is proved in [22, (iii) of Proposition 2.2.2], under slightly more general assumptions.
Here we only give the idea of the proof.

Idea of the proof. As Ω is of class C2, you can write the complement of Ω as a union of balls of
radius r > 0 for some �xed r. Then, d∂Ω is the in�mum of the distance functions to these balls
of radius r. One can verify that the distance function to a ball is C-semiconcave for some C,
and the supremum of a family of convex functions is convex, so d∂Ω is also C-semiconcave.

As explained with more details in the Appendix A.1, this implies that, as concave functions,
d∂Ω has a well de�ned generalized gradient whose norm is given by the formula:

|∇d∂Ω| (x) = max(0, sup
v∈Sn−1

∂+
v d∂Ω(x)),

where ∂+
v d∂Ω(x) denotes the directional derivative of d∂Ω in the direction v. What is more, as

it can be seen from [23, Section 2.1], we have

|∇d∂Ω(x)|2 = 1− r(x)2

d∂Ω(x)2
,

and so the following formula for the λ-medial axis holds.

Mλ(Ω) =

{
x ∈ Ω : |∇d∂Ω(x)|2 ≤ 1− λ2

d2
∂Ω(x)

}
. (1.2.2)

In the next section, we will use this formula to approximateM(Ω) with the minimizer of the
elastic-torsion problem presented in Section 1.1.

1.3 Elastic-plastic torsion problem and λ-medial axis

In this section, motivated by the two preceding sections, we prove the following re�nement of
Theorem 1.1.1. It is the main result of this chapter.

Theorem 1.3.1. Let Ω be a smooth bounded open subset of Rn. For m > 0, let vm be the
unique solution of the variational problem:

inf

{∫
Ω
|∇v|2 −mv : v ∈ H1

0 (Ω), |∇v| ≤ 1

}
. (1.3.1)

Let us de�ne the set Em,λ by:

Em,λ :=

{
x ∈ Ω : |∇vm(x)|2 ≤ 1− λ2

v2
m(x)

}
. (1.3.2)

Then, for any λ > 0 and ε > 0, we have

sup
x∈Em,λ

d(x,Mλ(Ω)) −→
m→+∞

0 and sup
x∈Mλ+ε(Ω)

d(x,Em,λ) −→
m→+∞

0.
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Chapter 1. Medial axis and torsion problem

This theorem basically shows that the set Em,λ is a good approximation of the λ-medial axis.
In particular, it yields a new method for the numerical computation of the medial axis, based
on the solution of a convex variational problem. In Chapter 3, we will use this strategy to
approximate the cut locus of a manifold. The numerical results will be presented in Chapter
4.

The most important step in the proof of Theorem 1.3.1, is to show that the functions
(vm)m>0 are uniformly semiconcave.

Theorem 1.3.2. Let Cd > 0 be such that d∂Ω is Cd-semiconcave. There exists m0 > 0
such that for any m > m0, the solution vm of the elasto-plastic torsion problem (1.1.1) is
Cd-semiconcave.

With this uniform semiconcavity result, Theorem 1.3.1 follows from the uniform conver-
gence of vm to d∂Ω when m → +∞. The proof of 1.3.1 is almost identical to the proof of
Proposition 3.5.6. We still give it here in full details.

The proof of Theorem 1.3.2 relies on the following two facts:

• inside Em, vm has constant Laplacian,

• outside Em, vm is equal to d∂Ω, which is Cd-semiconcave, for some constant Cd > 0 the
depends only on Ω.

The main tool is Korevaar's convexity maximum principle [54, Theorem 1.3]. Let us present
this result. Let f : Ω→ R be a C2 function satisfying an equation of the form

P (x, f(x),∇f(x), Hf(x)) = 0

in Ω, for a certain elliptic operator P . The convexity function of f is the function c de�ned
for any [x, y] ⊂ Ω and λ ∈ [0, 1] by

c(x, y, λ) := (1− λ)f(x) + λf(y)− f((1− λ)x+ λy).

Under suitable conditions on the elliptic operator P , Korevaar's convexity maximum principle
states that the minimum of c is attained at a triple (x, y, λ) such that one of the points x, y
or (1 − λ)x + λy belongs to the boundary of Ω. In particular, this result applies to the case
where P is the euclidean Laplacian.

We are ready to prove Theorem 1.3.2. The �rst part of the proof is identical to the �rst
part of the proof of Proposition 3.5.5. We still give it in full detail, for the reader's convenience.

Proof of Theorem 1.3.2. Let Cd be such that the distance function d∂Ω is Cd-semiconcave.
As Ω is smooth, every point of Ω in a neighborhood of ∂Ω has a unique projection on ∂Ω.
Therefore the distance betweenM(Ω) and ∂Ω is positive. From Theorem 1.1.1, we know that
the elastic set Em converges toM(Ω) in the Hausdor� sense when m goes to +∞. So there
exists m0 such that, for any m > m0, Em ⊂ Ω. Let ε > 0. We will show that for any m > m0,
vm is (Cd + ε)-semiconcave, which is su�cient to conclude the proof. Let us introduce some
notations. For a, b ∈ R and λ ∈ (0, 1), we set

λab := (1− λ)a+ λb.

29



1.3. Elastic-plastic torsion problem and λ-medial axis
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Figure 1.2: Construction of γ̃ and ν.

For any x, y ∈ Ω such that [x, y] ∈ Ω, λ ∈ [0, 1] and v a function on Ω, let us de�ne

fv(z) := (Cd + ε) |z|2 − v(z),

c(x, y, λ, v) := λfv(x)fv(y) − fv(λxy). (1.3.3)

In order to prove that fvm is convex (i.e that vm is (Cd + ε) semiconcave), we need to show
the following:

inf
x,y,λ

c(x, y, λ, vm) ≥ 0 (1.3.4)

where the in�mum is taken over x, y ∈ Ω such that [x, y] ⊂ Ω and λ ∈ [0, 1]. Let us argue
by contradiction and assume that (1.3.4) does not hold. By continuity of c, the in�mum in
(1.3.4) is a minimum, attained at a triple (x, y, λ), that veri�es

c(x, y, λ, vm) < 0.

Now we show that
(x, y) ⊂ Em

(
= {vm < d∂Ω}

)
. (1.3.5)

If not, then there exists µ ∈ (0, 1) such that µxy /∈ Em, i.e vm(µxy) = d∂Ω(µxy). Recalling
that vm ≤ d∂Ω, we get

c(x, y, µ, vm) ≥ c(x, y, µ, d∂Ω) > 0, (1.3.6)

where the last inequality comes from the Cd-semiconcavity of d∂Ω. In particular, µ 6= λ. Let
us assume for instance that µ < λ (the case µ > λ being similar) and show that c(x, y, λ, vm)
is not minimal in (1.3.4). Figure 1.2 may help justify intuitively the following construction.
Let ν ∈ (0, 1) be such that

νµxyy = λxy. (1.3.7)

We have

c(µxy, y, ν, vm) = (1− ν)fvm(µxy) + νfvm(y)− fvm(νµxyy)

= (1− ν)fvm(µxy) + νfvm(y)− fvm(λxy)

= c(x, y, λ, vm)− (1− λ)fvm(x) + (ν − λ)fvm(y) + (1− ν)fvm(µxy). (1.3.8)

Now after some elementary calculations, (1.3.7) translates into{
1− λ = (1− ν)(1− µ),

ν − λ = −(1− ν)µ,
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so (1.3.8) becomes

c(µxy, y, ν, vm) = c(x, y, λ, vm)− (1− ν)((1− µ)fvm(x) + µfvm(y)− fvm(µxy))

= c(x, y, λ, vm)− (1− ν)c(x, y, µ, vm)

< c(x, y, λ, vm), (1.3.9)

where in the last inequality we used the fact that c(x, y, µ, vm) > 0 (equation (1.3.6)). This
contradicts the minimality of c(x, y, λ, vm). Thus (1.3.5) is true, and we are left to show that
vm is (Cd + ε)-semiconcave inside Em.

The function
fvm : z 7→ (Cd + ε) |z|2 − vm(z)

has constant Laplacian on Em. So we may apply Korevaar's convexity maximum principle (see
[54, Theorem 1.3]) to get that the minimum of the function c(·, ·, ·, vm) on Em × Em × [0, 1]
is attained at a triple (x, y, λ) such that x, y, or λxy is in ∂Em. As proved above, λxy ∈ ∂Em
is not an option, so x ∈ ∂Em or y ∈ ∂Em. Let us treat the case x ∈ ∂Em, for instance. We
have chosen m0 so that for m > m0, Em ⊂ Ω. In particular x ∈ Ω. We get that x ∈ Pm, and
in particular (recalling (1.1.3) and (1.1.5))

vm(x) = d∂Ω(x) and ∇vm(x) = d∂Ω(x). (1.3.10)

As d∂Ω is Cd-semiconcave, we have for any µ ∈ (0, 1),

(1− µ)(Cd |x|2 − d∂Ω(x)) + µ(Cd |y|2 − d∂Ω(y))

≥ Cd |(1− µ)x+ µy|2 − d∂Ω((1− µ)x+ µy).

With (1.3.10), it yields as µ→ 0,

(1− µ)(Cd |x|2 − d∂Ω(x)) + µ(Cd |y|2 − d∂Ω(y))

≥ Cd |(1− µ)x+ µy|2 − vm((1− µ)x+ µy) + o(µ).

Since vm ≤ d∂Ω,

(1− µ)(Cd |x|2 − vm(x)) + µ(Cd |y|2 − vm(y))

≥ Cd |(1− µ)x+ µy|2 − vm((1− µ)x+ µy) + o(µ). (1.3.11)

Multiplying the following equality by ε

(1− µ) |x|2 + µ |y|2 = |(1− µ)x+ µy|2 + µ(1− µ) |x− y|2 ,

and adding it to (1.3.11), we get

(1− µ)((Cd + ε) |x|2 − vm(x)) + µ((Cd + ε) |y|2 − vm(y))

≥ (Cd + ε) |(1− µ)x+ µy|2 − vm((1− µ)x+ µy) + εµ(1− µ) |x− y|2 + o(µ),

and so for µ small enough,

(1− µ)((Cd + ε) |x|2 − vm(x)) + µ((Cd + ε) |y|2 − vm(y))

> (Cd + ε) |(1− µ)x+ µy|2 − vm((1− µ)x+ µy),
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1.3. Elastic-plastic torsion problem and λ-medial axis

i.e. c(x, y, µ, vm) > 0. As before, we show that is implies

c(µxy, y, ν, vm) < c(x, y, λ, vm),

where ν is such that νµxyy = λxy. This contradicts the minimality of c(x, y, λ). Therefore
hypothesis (1.3.4) holds, which concludes the proof.

We can now prove Theorem 1.3.1.

Proof of Theorem 1.3.1. Let us argue by contradiction, and assume that the following conver-
gence does not hold.

sup
x∈Em,λ

d(x,Mλ(Ω)) −→
m→+∞

0 (1.3.12)

Let (mk)k≥0 and (xk)k≥0 be sequences in (0,∞) and Ω respectively, such that mk −→
k→+∞

+∞
and for some η > 0, for any k ≥ 0, xk ∈ Emk,λ and

d(xk,Mλ(Ω)) > η. (1.3.13)

Up to taking subsequences, we may assume that (xk) converges to a point x∞ ∈ Ω. As
xk ∈ Emk,λ for any k, we actually have x∞ ∈ Ω. As the functions (vm)m>0 are uniformly
semiconcave and converge to d∂Ω as m goes to ∞ (Theorem 1.3.2 and (1.1.6)), we get from
Proposition A.1.8:

lim inf
k→∞

|∇vmk(xk)| ≥ |∇d∂Ω(x∞)| .

Using the facts that xk ∈ Emk,λ and vmk converges uniformly to d∂Ω, this implies

|∇d∂Ω(x∞)|2 ≤ 1− λ2

d∂Ω(x∞)2
,

and so x∞ ∈Mλ(Ω). But this contradicts (1.3.13). Thus (1.3.12) is proved.
We are left to prove the following onvergence:

sup
x∈Mλ+ε(Ω)

d(x,Em,λ) −→
m→+∞

0. (1.3.14)

Once again, we argue by contradiction and assume that it does not hold. Let (mk)k≥0 and
(xk)k≥0 be sequences of (0,∞) and Ω respectively, such thatmk −→

k→+∞
+∞ and for some η > 0,

for any k ≥ 0, xk ∈Mλ+ε(Ω) and

d(xk, Emk,λ) > 2η. (1.3.15)

Up to taking subsequences, we can assume that (xk) converges to a point x∞ in Mλ+ε(Ω).
The last inequality implies that for any k large enough, we have

d(x∞, Emk,λ) > η.

According to (1.1.6), there exists a constant C1 > 0 such that for any y ∈ Ω and k ≥ 0,
vmk(y)2 ≥ d∂Ω(y)2 −C1/mk. As d∂Ω is 1-Lipschitz and bounded, we deduce that there exists
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a constant C2 > 0 such that for any y ∈ B(x∞, η) and k ≥ 0, vmk(y)2 ≥ d∂Ω(x∞)2 − C2η −
C1/mk. Let η0 > 0, k0 > 0 and δ0 > 0 be constants such that for any η ≤ η0 and k ≥ k0,

δ :=
(λ+ ε)2

d∂Ω(x∞)2
− λ2

d∂Ω(x∞)2 − C2η − C1/mk
≥ δ0 > 0.

For any y ∈ B(x∞, η), we have

1− λ2

vmk(y)2
≥
(

1− λ2

d∂Ω(x∞)2 − C2η − C1/mk

)
= 1− (λ+ ε)2

d∂Ω(x∞)2
+ δ. (1.3.16)

As x∞ ∈ Mλ+ε(Ω), we have
(

1− (λ+ε)2

d∂Ω(x∞)2

)
≥ 0, and so for any η ≤ η0, k ≥ k0 and

y ∈ B(x∞, η),

1− λ2

vmk(y)2
≥ δ ≥ δ0 > 0. (1.3.17)

Let (yt)t≥0 be the curve de�ned by

y0 = x∞ and
dyt
dt

= ∇vmk(yt).

Let T > 0 be such that for any t ∈ [0, T ], d(yt, x∞) ≤ η, and in particular yt /∈ Emk,λ. We
have

vmk(yT )− vmk(x∞) =

∫
(0,T )
|∇vmk(yt)|2 dt by de�nition of (yt),

≥
∫

(0,T )

(
1− λ2

vmk(yt)2

)
dt because yt /∈ Emk,λ,

≥ Tδ because of (1.3.17).

As vmk is bounded by the diameter of Ω, this estimate implies that there exists a �nite largest
time T > 0 such that for any t ∈ [0, T ], d(yt, x∞) ≤ η. In particular, d(x∞, yT ) = η. From
Lemma 1.2.3, we know that there exists a constant Cd > 0 such that d∂Ω is semiconcave. In
particular, we have (see Proposition A.1.7)

d∂Ω(yT )− d∂Ω(x∞) ≤ |∇d∂Ω(x∞)| d(x∞, yT ) + Cd(d(x∞, yT ))2

= |∇d∂Ω(x∞)| η + Cdη
2,

≤

(√
1− (λ+ ε)2

d∂Ω(x∞)2

)
η + Cdη

2 because x∞ ∈Mλ+ε(Ω). (1.3.18)

In addition,

vmk(yT )− vmk(x∞) =

∫
(0,T )
|∇vmk(yt)|

∣∣∣∣dytdt

∣∣∣∣ dt by de�nition of (yt),

≥
∫

(0,T )

√
1− λ2

vmk(yt)2

∣∣∣∣dytdt

∣∣∣∣dt because yt /∈ Emk,λ,

≥

(
inf

t∈(0,T )

√
1− λ2

vmk(yt)2

)
η. (1.3.19)
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Using lemma 3.4.1 again, we know that there exists a constant C3 > 0 such that d∂Ω(yT ) −
d∂Ω(x∞) ≥ vmk(yT )− vmk(x∞)− C3

mk
. Therefore, estimates (1.3.18) and (1.3.19) yield

Cdη
2 +

(√
1− (λ+ ε)2

d∂Ω(x∞)2
− inf
t∈(0,T )

√
1− λ2

vmk(yt)2

)
η +

C3

mk
≥ 0.

Using (1.3.16), we �nd that there exists a constant C4 > 0 such that for any η ≤ η0 and
k ≥ k0, (√

1− (λ+ ε)2

d∂Ω(x∞)2
− inf
t∈(0,T )

√
1− λ2

vmk(yt)2

)
≤ −C4.

In particular, for any η ≤ η0 and k ≥ k0,

Cdη
2 − C4η +

C3

mk
≥ 0.

This gives a contradiction if k is large enough. Thus, (1.3.14) is true. This concludes the
proof.
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Chapter 2

Distance function and cut locus

2.1 Introduction

Before stating and proving the result of this chapter, let us introduce and give some context
about the notions of distance function and cut locus.

In this chapter,M is a smooth Riemannian manifold without boundary of dimension n ≥ 2,
b a point of M , d the distance function of M and db := d(·, b) the distance function to the
point b. We are interested in the properties of the function db. Before giving an account of
these properties, let us recall some notions of Riemannian geometry.

De�nition 2.1.1. Let γ : [a, b] → M be a geodesic, and J : [a, b] → TM a vector �eld along
γ. Then, J is called a Jacobi �eld if there exists a variation of γ through geodesics whose J
is the variation �eld, i.e. a smooth map Γ : (−1, 1)× [a, b]→M such that Γ(0, ·) = γ and for
any s ∈ (−1, 1), Γ(s, ·) is a geodesic, and

∂1Γ(0, t) = J(t).

Moreover, if there exists a Jacobi �eld J along γ such that J(a) = 0 and J(b) = 0, then
we say that γ(a) and γ(b) are conjugate points along γ.

De�nition 2.1.2. Let T > 0 and γ : [0, T ]→M be a unit speed geodesic such that γ(0) = b,
t0 ∈ (0, T ) and p = γ(t0). We say that p is a cut point of b along γ if γ is length minimizing
between b and p, but not after p, i.e db(γ(t)) = t for t ≤ t0, and db(γ(t)) < t for t > t0.

De�nition 2.1.3. The cut locus of b in M , denoted by Cutb(M), is de�ned as the set of all
cut points of b.

We recall the following.

De�nition 2.1.4. Let q ∈ M and V ∈ TqM be such that there exists a well de�ned geodesic
γ : [0, 1] → M such that γ(0) = q and γ̇(0) = V . Then, the (global) exponential map at V is
de�ned by Exp(V ) = γ(1). The restriction of the exponential map Exp on TqM is denoted by
expq and called the exponential map at q.

The following facts can all be found in [74, Chapter III, Section 4]:
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Proposition 2.1.5. Some well known facts related to the cut locus include:

• Cutb(M) is the set of points p in M , such that either there exist at least two minimizing
geodesics from b to p, or the points b and p are conjugate,

• Cutb(M) is the closure of the set of points p in M , such that there exist at least two
minimizing geodesics from b to p,

• the function db is smooth outside Cutb(M) ∪ {b}, and it is di�erentiable at a point p if
and only if there exist a unique minimizing geodesics between b and p,

• in particular, Cutb(M)∪ {b} is the closure of the set of points of non-di�erentiability of
db,

• the exponential map expb is a di�eomorphism from an open set of TbM onto M \
Cutb(M),

• Cutb(M) is a deformation retract of M \ {b}. In particular, these two sets have the
same homotopy type, and so Cutb(M) inherits much of the topology of M (like homology
groups, for instance). See [74, Chapter III, Section 4, proposition 4.5] for a precise
statement.

Proposition 2.1.6. The function db is 1-Lipschitz. At every point p where db is di�erentiable,
∇db is given by the speed vector of the minimizing unit speed geodesic from b to p. In particular,
we have |∇db| = 1 at every point where db is di�erentiable.

We know quite a bit about the structure of the cut locus. Let us give some of its properties,
to get an idea of what the cut locus looks like. First, it is the union of smooth hypersurfaces
consisting of points with exactly two minimizing geodesics, plus a set of Hausdor� dimension
at most n− 2. A reader-friendly reference for this is [49]. Moreover, the cut locus has locally
�nite n−1-dimensional Hausdor� measure, see for instance [50, Theorem B]. To our knowledge,
the most precise results in this direction are contained in [9], where points of the cut locus are
classi�ed, up to a set of Hausdor� dimension at most n − 3. We refer to [8, Section 1.3] for
additional structural properties of the cut locus.

An important property of the distance function, which we will be using in the rest of the
thesis, is semiconcavity. Let us give a de�nition.

De�nition 2.1.7. Given a constant C > 0, a function u is said to be C-semiconcave on M
if and only if for any unit speed geodesic γ : [a, b] → M , the function t 7→ Ct2 − u(γ(t)) is
convex. We say that u is semiconcave if u is C-semiconcave for some constant C > 0. We say
that u is locally semiconcave if for any p ∈M , u is semiconcave in a neighborhood of p.

Remark 2.1.8. For a function u de�ned on an open set of Rn, u is C-semiconcave if and only
if the map x 7→ C |x|2 − u(x) is convex.

In [60, Proposition 3.4], C.Mantegazza and A.Mennucci showed that the distance function
is a viscosity solution of the Hamilton-Jacobi equation |∇db| = 1. Using some regularity result
([25]) for Hamilton-Jacobi equations, they deduced that for any local chart ψ ofM , the map db◦
ψ−1 is locally semiconcave as a function on Rn (see also [22] for a more reader-friendly reference
about semiconcave functions and Hamilton-Jacobi equations). In the Appendix A.1 about
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semiconcave functions, we show that it is equivalent to saying that db is locally semiconcave.
We realized afterwards that a di�erent proof of the local semiconcavity of distance functions
can also be found in [5]. In [61] (and in particular Theorem 2.10), C.Mantegazza, G.Mascellani
and G.Uraltsev used this fact along with geometric measure theory tools to give a complete
description of the distributional Hessian and Laplacian of db. They proved the following.

Theorem 2.1.9. The distributional Hessian of db is given by:

D2db = D̃2dbVol− (ν ⊗ ν)
∣∣∇d+

b −∇d
−
b

∣∣Hn−1
Cutb(M),

where D̃2db is the classical Hessian of db where db is smooth (i.e. almost everywhere), Vol
is the Riemannian volume measure, ν is a unit normal vector to Cutb(M) where Cutb(M)
is smooth (i.e. Hn−1-almost everywhere), ∇d+

b and ∇d−b are limits of ∇db to either side of
Cutb(M), and Hn−1

Cutb(M) is the n − 1-dimensional Hausdor� measure restricted to Cutb(M).
The distributional Laplacian of db is given by:

∆db = ∆̃dbVol−
∣∣∇d+

b −∇d
−
b

∣∣Hn−1
Cutb(M),

where ∆̃db is the classical Laplacian of db where db is smooth.

The main result of this Chapter is a complement to the description of the non-smooth
behavior of the distance function on the cut locus. We are interested in the Laplacian of db in
the sense of barriers.

De�nition 2.1.10. Let ψ : M → R be a continuous function, and p ∈ M . We say that the
Laplacian of ψ at p is −∞ in the sense of barriers if for any A > 0, there exists a smooth
function φ : M → R de�ned on a neighborhood of p such that

φ ≥ ψ, φ(p) = ψ(p) and ∆φ(p) ≤ −A.

We prove the following.

Theorem 2.1.11. Let M be a smooth manifold without boundary of dimension n ≥ 2, and
b ∈M . Let db be the distance function to the point b, and Cutb(M) the cut locus with respect
to b. The Laplacian of db is −∞ at every point of Cutb(M), in the sense of barriers.

This result proves useful when one wants to apply the maximum principle to a function
involving the distance function db. It will be applied to the study of a variational problem in
Chapter 3.

2.2 Proof of Theorem 2.1.11

Ideas of the proof. The proof might seem very technical if the reader is not used to the
elementary tools of Riemannian geometry used in the proof, such as normal coordinates, Jacobi
�elds and covariant derivatives. We will explain the idea of the proof in dimension 2. We will
refer to constructions that appear on Figure 2.1. Let p ∈ Cutb(M). The case where there
exist two minimizing geodesics between b and p is simple� see below. So let us assume that
there exists a unique minimizing geodesic between b and p, along which the two points are
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conjugate. Let r,R > 0 be such that db(p) = R + r. For technical reasons, r is to be chosen
small. Let pε a point that is just ε further away than p on the geodesic γ from b to p. Let
rε := r + ε. The barrier we will use is φε = R + d( · , ∂B(pε, rε)). Let q be the point of γ
such that db(q) = R, so that the circles ∂B(b, R), ∂B(p, r) and ∂B(pε, rε) are all tangent at
q. We �rst prove that the circles ∂B(b, R) and ∂B(p, r) have the same curvature at q. This is
where we use the fact that the points b and p are conjugate. Then, we show that the curvature
of ∂B(pε, rε) is larger than the curvature of ∂B(p, r) at q, from which we deduce that the
curvature of ∂B(pε, rε) is larger than the curvature of ∂B(b, R) at q. We use this fact to show
that we have φε ≥ db in a neighborhood of p. Finally, an easy computation will show that
∆φε(p)−→

ε→0
−∞, which will conclude the proof.

We will make heavy use of the notion of exponential map of a hypersurface in the proof.
Let us recall it and �x some notations.

De�nition 2.2.1. Let S be a smooth oriented hypersurface S of M . Let νS be the unit normal
vector to S. The exponential map of S is de�ned by

expS : S × [0,∞] → M
(θ, t) 7→ Exp(tνS(θ))

We will also make heavy use of the notion of normal coordinates. Let us recall this notion and
its fundamental properties.

Proposition and de�nition 2.2.2. For any point p ∈ M , the map expp : TpM → M is a
local di�eomorphism from a neighborhood of 0 ∈ TpM to a neighborhood of p ∈M . Therefore,
after identifying TpM with Rn by the choice of an orthonormal basis for the metric of M on
TpM , the map ψ = exp−1

p is a local chart of M around p, and so it de�nes some coordinates
(xi). These coordinates are called normal coordinates at p.

Proposition 2.2.3. In normal coordinates at p, the tangent vectors ∂i have vanishing co-
variant derivatives at p. Moreover, the metric of M is euclidean at p, up to order 1. More
precisely, the coordinates of the metric g of M verify

gij(p) = δij and ∂ig
ij(p) = 0.

In particular, recalling the following expression for the Laplacian in coordinates

∆u =
1√

det g
∂i(
√

det ggij∂j),

one can see that in normal coordinates at p we have ∆u(p) =
∑

i ∂
2
iiu(p). (Please note that

the equality holds at p only.)

We will use the following lemma in the proof of the theorem. It is a well known fact when
the hypersurface S considered is replaced with a point. We give a proof here, as we could not
�nd it in the literature.

Lemma 2.2.4. Let S be a smooth hypersurface ofM such that S is compact. Let µ : [0, r]→M
be a geodesic such that q := µ(0) ∈ S. We assume that µ is length minimizing between
p := µ(r) and S, and that p is not a cut point of q along µ. Then, the exponential map expS
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is a di�eomorphism from a neighborhood U(q, r) of (q, r) to a neighborhood U(p) of p, and on
U(p) we have

d(·, S) = π2 ◦ (expS|U(q,r)
)−1,

where π2 : S × R → R is the projection on the second coordinate. In particular, d(·, S) is
smooth around p.

Proof. As p is not a cut point of q along γ, it is not a focal point of S (see [74, Chapter
III, lemma 2.11]). In particular, expS is a local di�eomorphism from (q, r) to p. As q is
the unique closest point to p on the compact set S, for any neighborhood US(q) of q in S,
there exists a neighborhood U(p) of p such that for any point p′ ∈ U(p) the closest points
to p′ on S are inside US(q). We choose such U(p) and US(q) so that, for some ε > 0, expS
is a di�eomorphism from U(q, r) := US(q) × (r − ε, r + ε) to U(p). Let p′ ∈ U(p) and
r′ := d(p′, S). A closest point to p′ on S is a point q′ ∈ US(q) such that p′ = expS(q′, r′), and
so d(p′, S) = r′ = π2 ◦ (expS|U(q,r)

)−1(p′). This concludes the proof.

Proof of Theorem 2.1.11. Let p ∈ Cutb(M) and A > 0. We know that either there exist two
minimizing geodesics from b to p, or there exists a unique minimizing geodesic from b to p
along which the two points are conjugate.

Case one. There exist two minimizing geodesics from b to p. This implies that db is not
di�erentiable at p. Let δ > 0 be smaller than the distance between p and Cutp(M), and
ψ : B(p, δ) → Rn be a normal coordinate chart around p. According to [60, Proposition 3.4],
there exists C > 0 such that the function x 7→ C |x|2 − db ◦ ψ−1(x) is convex. As it is not
di�erentiable at 0, it has at least two subgradients v and w. We have

C |x|2 − db ◦ ψ−1(x) ≥ max(v · x,w · x)− db(p), (2.2.1)

with equality for x = 0. For B > 0 to be chosen large enough later, let us de�ne the function
f : Rn → R by

f(x) :=
1

2
(v · x+ w · x) +B(v · x− w · x)2 − db(p).

Then, for x in a neighborhood of 0 we have

f(x) = max(v · x,w · x)− 1

2
|v · x− w · x|+B(v · x− w · x)2 − db(p)

≤ max(v · x,w · x)− db(p) (2.2.2)

with equality at x = 0. Setting φ = C |ψ|2 − f ◦ ψ, we get from (2.2.1) and (2.2.2) that for q
in a neighborhood of p,

db(q) ≤ φ(q),

with equality at q = p. Moreover, as ψ is a normal coordinate chart, we have

∆φ(p) = ∆(φ ◦ ψ−1)(0) = 2nC − 2B |v − w|2 .

As B is independent of v, w and A, we may now chose it large enough to have ∆φ(p) ≤ −A,
which concludes case one.
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Figure 2.1: Construction of r, R, q, pε , rε, f , g, gε.

Case two. There exists a unique minimizing geodesic γ such that γ(0) = b and γ(1) = p.
Let r > 0, and let q be the intersection point of γ with the sphere ∂B(p, r), and R = db(q).
For ε > 0, let us de�ne

pε := γ(1 + ε),

rε := r + d(p, pε).

We may choose r and ε small enough so that p and pε are contained in the totally normal
geodesic ball B(q, δ) for some δ > 0 (see [29, Chapter 3, Remark 3.8]). This implies in
particular that for any points p′ and q′ in neighborhoods of p and q respectively, there exists
a unique minimizing geodesic µ(p′,q′) between p

′ and q′, and µ(p′,q′) depends continuously on
(p′, q′). Let us �x some normal coordinates at q on B(q, δ) such that the unit normal vector to
∂B(b, R) at q is ∂n. We will use these normal coordinates throughout the rest of the proof. In
these coordinates, around q, ∂B(b, R) is the graph of a smooth function f such that f(0) = 0
and ∇f(0) = 0. Likewise, ∂B(p, r) and ∂B(pε, rε) can be seen around q as the graphs of some
smooth functions g and gε respectively, such that g(0) = gε(0) = 0 and ∇g(0) = ∇gε(0) = 0.
Step one. We prove that

∃v ∈ Rn−1, v 6= 0, v ·Hf(0)v = v ·Hg(0)v, (2.2.3)

where Hf and Hg are the Hessian matrix of the functions f and g. As the points b and p are
conjugate, there exists a Jacobi �eld J along γ such that J(0) = 0, J(1) = 0 and J(t) 6= 0 for
t ∈ (0, 1). We may extend it to a global smooth �eld J̃ on M . Let (Φs

J̃
)s∈R be the �ow of this

vector �eld, de�ned by the following equations:

∀x ∈M, Φ0
J̃
(x) = x and ∀s ∈ R,

d

ds
Φs
J̃
(x) = J̃(Φs

J̃
(x)).

We de�ne a variation Γ of the curve γ as follows:

∀s ∈ R,∀t ∈ [0, 1], Γ(s, t) := Φs
J̃
(γ(t)).
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Chapter 2. Distance function and cut locus

For any s ∈ R, Γ(s, ·) is still a curve from b to p, as J̃(0) = 0 and J̃(1) = 0. Therefore Γ is a
�xed endpoints variation of γ. As γ is a geodesic, we have

d

ds
[length(Γ(s, ·))]s=0 = 0.

As the variation �eld J of Γ is a Jacobi �eld, we also have (see [56, Proposition 10.14] for
instance)

d2

ds2
[length(Γ(s, ·))]s=0 = 0. (2.2.4)

By the implicit function theorem, for any s close enough to 0, there exist some unique times
tR(s) and tr(s) such that

d(Γ(s, tR(s)), b) = R and d(Γ(s, tr(s)), p) = r.

Moreover, the functions s 7→ tR(s) and s 7→ tr(s) are smooth. Now we set

P (s) := Γ(s, tR(s)) and Q(s) := Γ(s, tr(s)).

We have

length(Γ(s, ·)) = length(Γ(s, ·)|[0,tR(s)]
) + length(Γ(s, ·)|[tR(s),tr(s)]

)

+ length(Γ(s, ·)|[tr(s),1]
)

≥ d(Γ(s, 0),Γ(s, tR(s))) + d(Γ(s, tR(s)),Γ(s, tr(s)))

+ d(Γ(s, tr(s)),Γ(s, 1))

= R+ d(P (s), Q(s)) + r.

Meanwhile, as s goes to 0, thanks to (2.2.4), we also have

length(Γ(s, ·)) = length(γ) + o(s2) = R+ r + o(s2),

so d(P (s), Q(s)) ≤ o(s2). In our normal coordinates around q, we have d(x, y) ≥ c |x− y|
where c > 0 is a constant and | · | is the euclidean norm. This comes from the fact that the
metric g ofM and the euclidean metric are locally equivalent in any coordinates system. With
this remark, we get

P (s) = Q(s) + o(s2), (2.2.5)

where the equality is to be understood in coordinates. For any s small, let xP (s), xQ(s) ∈ Rn−1

be such that
P (s) = (xP (s), f(xP (s))) and Q(s) = (xQ(s), g(xQ(s))).

The functions xP and xQ are smooth because P and Q are. Using the fact that ∇f(0) =
∇g(0) = 0, (2.2.5) gives

x′P (0) ·Hf(0)x′P (0) = x′Q(0) ·Hg(0)x′Q(0). (2.2.6)

Let us show that x′Q(0) = x′P (0). We have

P ′(0) = ∂sΓ(0, tR(0)) + ∂tΓ(0, tR(0))t′R(0)

= J(tR(0)) + γ̇(tR(0))t′R(0). (2.2.7)
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By de�nition the curve P is on the sphere ∂B(b, R), so P ′(0) is tangent to this sphere and
orthogonal to γ̇(tR(0)) by the Gauss lemma. Also, as J(0) = 0 and J(1) = 0, the Jacobi �eld
J is normal to γ (see [56, lemma 10.6]), so J(tR(0)) is orthogonal to γ̇(tR(0)). Combined with
these facts, (2.2.7) yields P ′(0) = J(tR(0)). Likewise, we have Q′(0) = J(tr(0)) = J(tR(0)).
So P ′(0) = Q′(0), and consequently x′P (0) = x′Q(0). Moreover, as J(t) 6= 0 for t ∈ (0, 1), we
have x′P (0) 6= 0. So setting v = x′P (0), with (2.2.6) we get (2.2.3).
Step two. Now we want to show that

v ·Hg(0)v > v ·Hgε(0)v. (2.2.8)

Let us �rst show that g ≥ gε in a neighborhood of 0. Let us argue by contradiction and assume
that for some x ∈ Rn−1, we have g(x) < gε(x). Let µ : [0, 1]→M be the shortest geodesic from
the point of coordinate (x, g(x)) to the point of coordinate (0, r), i.e. p. If x has been taken
close enough to 0, then for t ∈ [0, 1], µ(t) stays inside the normal neighborhood of q, B(q, δ),
on which our normal coordinates are de�ned. For t ∈ [0, 1], let x(t) ∈ Rn−1 and z(t) ∈ R
be such that in coordinates, µ(t) = (x(t), z(t)). We have z(0) = g(x) < gε(x) = gε(x(0)).
And z(1) = r > 0 = gε(0) = gε(x(1)). As µ is continuous, there exists t ∈ (0, 1) such that
z(t) = gε(x(t)), i.e. µ(t) ∈ ∂B(pε, rε). This implies

rε = d(µ(t), pε)

≤ d(µ(t), p) + d(p, pε)

< d(µ(0), p) + d(p, pε)

= r + d(p, pε)

= rε,

which gives a contradiction. We conclude that g ≥ gε. In particular, for any w ∈ Rn−1, we
have w ·Hg(0)w ≥ w ·Hgε(0)w. Thus, the matrix Hg(0)−Hgε(0) is symmetric non-negative.
To show that it is positive de�nite and conclude that (2.2.8) holds, we only need to show that

∀w ∈ Rn−1, Hg(0)w 6= Hgε(0)w. (2.2.9)

The geodesic γ is minimizing between pε and ∂B(pε, rε). In particular, the point p is not a cut
point of q along γ, so lemma 2.2.4 above shows that the di�erential of the map exp∂B(pε,rε) is
invertible at (q, r). On the contrary, the map exp∂B(p,r)(·, r) is constant and so its di�erential
is null at q. In particular, for any w ∈ Tq∂B(p, r), we have

Dwν∂B(pε,rε)(q) 6= Dwν∂B(p,r)(q), (2.2.10)

where Dw denotes the covariant derivative in the direction w. Let us de�ne the families
of vectors (ugi )1≤i≤n−1 and (ugεi )1≤i≤n−1 at the point of coordinates (x, z) ∈ Rn−1 × R, by
ugi (x, z) := ∂i + ∂ig(x)∂n and ugεi (x, z) := ∂i + ∂igε(x)∂n. These vectors form a basis of the
tangent spaces of ∂B(p, r) and ∂B(pε, rε) respectively, as we recall that these surfaces are the
graphs of the functions g and gε. Furthermore, the two basis are identical at (0, 0). Thus,
(2.2.10) is equivalent to

∃i ∈ {1, .., n− 1}, ugεi ·Dwν∂B(pε,rε)(q) 6= ugi ·Dwν∂B(p,r)(q).
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Note that if some vector �elds X and Y are orthogonal, then we have X · Y = 0, and so
DwX · Y +X ·DwY = 0. So we get

∃i ∈ {1, .., n− 1}, Dwu
gε
i · ν∂B(pε,rε)(q) 6= Dwu

g
i · ν∂B(p,r)(q),

i.e. ∃i ∈ {1, .., n− 1}, Dwu
gε
i · ∂n 6= Dwu

g
i · ∂n.

Recalling that in normal coordinates, the tangent vectors (∂j)1≤j≤n have vanishing covariant
derivatives at 0, we get

∃i ∈ {1, .., n− 1}, wj∂jigε(0) 6= wj∂jig(0),

which is (2.2.9). So (2.2.8) holds.
Step three. Putting steps one and two together, we get

∃v 6= 0, v · (Hgε(0)−Hf(0))v < 0.

In particular, there exists a basis (vi)1≤i≤n−1 of Rn−1 with v1 = v, that is orthogonal for the
quadratic form qε(w) = w · (Hgε(0)−Hf(0))w. Let kε be a quadratic form of Rn−1 such that
the (vi) are orthogonal for kε, kε(v) = 0 and for i ≥ 2, kε(vi) = max(0, qε(vi) + 1). This way
we have kε > qε, and kε ≥ 0. Now let us set hε = gε − kε. Note that in dimension 2, we
actually have hε = gε, and the rest of the proof is a bit less technical. By construction we
have

hε ≤ gε, (2.2.11)

hε = gε on Rv, (2.2.12)

hε ≤ f on B(0, ρε), for some ρε > 0, (2.2.13)

where (2.2.13) comes from the fact that the Hessian of hε at 0 veri�es Hhε(0) = Hgε(0)−kε <
Hgε(0) − qε = Hf(0), and hε(0) = f(0) = 0, ∇hε(0) = ∇f(0) = 0. It will be convenient, at
the end of the proof, to have a smooth function h : Rn−1 → R such that

h(0) = 0, ∇h(0) = 0, and for all ε > 0 su�ciently small, hε ≥ h. (2.2.14)

To see that such function exists, we note that for ε < ε′, we have gε ≥ gε′ . This can be proven
the same way we proved gε ≤ g at the beginning of step two. We then �x ε′ > 0. Therefore, for
any ε su�ciently small, we have gε′ ≤ gε ≤ g. This allows us to see that the quadratic forms
qε, and then kε, are bounded independently of ε, by a quadratic form k. In turn, this implies
that the function h = gε′ − k veri�es (2.2.14). Let Shε be the hypersurface of M de�ned in
our normal coordinates around q as the graph of the function hε on B(0, ρε). Let us set

φε = d(·, Shε) +R.

We will show that for ε su�ciently small, φε is the function φ we are looking for to prove the
theorem.

Let us �rst show that φε ≥ db in a neighborhood of p. Let p′ ∈ B(q, δ) be a point near
p. Let µ : [0, 1] → M be a length minimizing geodesic between Shε and p

′. For t ∈ [0, 1], let
(x(t), z(t)) ∈ Rn−1 × R be the coordinates of µ(t). As µ(0) ∈ Shε , we have z(0) = hε(x(0)) ≤
f(x(0)). Moreover, the coordinates (x, z) = (0, r) of p verify z > f(x). Therefore, provided
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p′ is close enough to p, we have z(1) ≥ f(x(1)). Thus, there exists t ∈ [0, 1] such that
z(t) = f(x(t)), i.e. µ(t) ∈ ∂B(b, R). This implies

d(·, Shε) ≥ d(·, ∂B(b, R)) on a neighborhood of p, (2.2.15)

and so φε ≥ db on a neighborhood of p.
As q ∈ Shε , we also have φε(p) ≤ d(p, q) +R = db(p). So we get φε(p) = db(p) as well.
We are left to show that φε is smooth around p, and that given A > 0, we have ∆φε(p) ≤

−A, provided ε has been taken small enough. Let us �rst show that φε is smooth around p.
Between pε and q, the geodesic γ is minimizing among all geodesics from pε to ∂B(pε, rε).
The same way we have shown that hε ≤ f implies d(·, Shε) ≥ d(·, ∂B(b, R)) , one can show
that hε ≤ gε implies

d(·, Shε) ≥ d(·, ∂B(pε, rε)) on a neighborhood of p. (2.2.16)

Therefore, between q and pε, γ is still minimizing among geodesics from pε to Shε . We may
apply lemma 2.2.4 to conclude that φε is smooth at p. Now for t in a neighborhood of 0, let
us de�ne c(t) := exp∂B(pε,rε)(r, expq(tv, gε(tv))). We have,

d(c(t), Shε) ≥ d(c(t), ∂B(pε, rε)) because of (2.2.16),

= d(c(t), expq(tv, gε(tv))) because of lemma 2.2.4,

= d(c(t), expq(tv, hε(tv))) because of (2.2.12),

≥ d(c(t), Shε).

Therefore, the �rst inequality is actually an equality:

d(c(t), Shε) = d(c(t), ∂B(pε, rε)).

As d(·, Shε) and d(·, ∂B(pε, rε)) have the same gradient at c(0) = p, we deduce that

D2
ċ(0),ċ(0)[d(·, Shε)]p = D2

ċ(0),ċ(0)[d(·, ∂B(pε, rε)]p.

We have ċ(0) 6= 0 because of lemma 2.2.4 again. Setting w1 := ċ(0)/ |ċ(0)|, we get

D2
w1,w1

[d(·, Shε)]p = D2
w1,w1

[d(·, ∂B(pε, rε)]p. (2.2.17)

Let us complete w1 into an orthonormal basis (w1, .., wn) of TpM . Let Sh be the hypersurface
of M de�ned in our normal coordinates at q as the graph of the function h from (2.2.14).
The same way we have proved (2.2.15), one can prove that d(·, Shε) ≤ d(·, Sh). As these two
functions are equal up to order 1 at p, we deduce that

D2
wi,wi [d(·, Shε)]p ≤ D2

wi,wi [d(·, Sh)]p.

Moreover, we know from [60, Proposition 3.4] that there exists a constant C > 0 such that for
all i, D2

wi,wi [d(·, Sh)]p ≤ C, so we get

∀i ≥ 2, D2
wi,wi [d(·, Shε)]p ≤ C,
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where C is independent of ε. Combining this inequality with (2.2.17), we get

∆φε(p) ≤ (n− 1)C +D2
w1,w1

[d(·, ∂B(pε, rε)]p. (2.2.18)

Let us pick some normal coordinates (xi)1≤i≤n at pε, such that we have ∂n = γ̇ on the curve
γ. By the Gauss lemma, the set of points that are equidistant to ∂B(pε, rε) are orthogonal to
the geodesics starting out orthogonally from ∂B(pε, rε). Therefore we have ċ(0) · γ̇(1) = 0, or
equivalently w1 ·∂n = 0. In particular, if (wi1) are the coordinates of w relatively to the normal
coordinates (xi) at pε, we have wn1 = 0. In these coordinates we have d(x, ∂B(pε, rε)) = rε−|x|,
so

D2
w1,w1

[d(·, ∂B(pε, rε)](x) = −D2
w1,w1

|x|

= −wi1w
j
1

(
∂ij |x| − Γkij∂k |x|

)
= −wi1w

j
1

(
−δij
|x|

+
xixj

|x|3
+ Γkij(x)

xk
|x|

)
,

where the (Γkij) are the Christo�el symbols. We apply this formula at the point p of coordinates
(0, .., 0,−d(p, pε)), and obtain

D2
w1,w1

[d(·, ∂B(pε, rε)](p) =
wi1w

j
1δij

d(p, pε)
− wi1w

j
1Γnij(p). (2.2.19)

As we are in normal coordinates, there exist a continuous function ρ : [0,+∞) → [0,+∞)
such that ρ(0) = 0 and∣∣∣Γkij(x)

∣∣∣ ≤ ρ(|x|) and
∣∣gij(x)− δij

∣∣ ≤ |x| ρ(|x|).

Moreover, note that we only consider coordinates centered at some points pε contained in
a bounded neighborhood of p, so the function ρ is independent of ε. With these remarks,
(2.2.19) yields ∣∣∣∣∣D2

w1,w1
[d(·, ∂B(pε, rε)](p)−

|w|2

d(p, pε)

∣∣∣∣∣ ≤ 2

(∑
i

wi1

)2

ρ(d(p, pε)).

As ε→ 0, the right hand side goes to 0, and |w|2
d(p,pε)

= 1
d((p,pε))

→ +∞, so

D2
w1,w1

[d(·, ∂B(pε, rε)](p)→ −∞,

which, together with (2.2.18), concludes the proof.

45





Chapter 3

Cut locus and variational problem

3.1 Introduction

In this chapter, we will use the same notations as in Chapter 2, but our ambient manifold M
is assumed to be compact. We recall that n ≥ 2 is an integer, M a smooth n-dimensional
compact Riemannian manifold without boundary, b ∈M any point ofM (that can be thought
of as a base point), and db the distance function to the point b in M .

De�nition 3.1.1. The cut locus of b in M can be de�ned as the closure of the set of points
p ∈M such that there exists at least two minimizing geodesics between p and b. We will denote
it by Cutb(M). Equivalently, it is also the set of points around which the distance function to
the point b - denoted by db - is not smooth.

We refer to the introduction of Chapter 2 for a more detailed introduction to the notion
of cut locus.

The goal of this Chapter is to study an extension of the elastic plastic torsion problem to
manifolds, and its relation with the cut locus of b in M . We are interested in the following
variational problem.

inf

{∫
M
|∇u|2 −mu : u ∈ H1(M), |∇u| ≤ 1, u(b) = 0

}
, (3.1.1)

where m > 0 is a given constant. We extend the results for the elastic-plastic torsion problem
presented in Chapter 1. Our main results are summed up in Theorem 3.1.2 below. For the
reader's convenience and in order to make this Chapter relatively self-contained, we will recall
some notions and results from the preceding chapters. The elastic-plastic torsion problem is
de�ned as follows:

inf

{∫
Ω
|∇v|2 −mv : v ∈ H1

0 (Ω), |∇v| ≤ 1

}
, (1.1.1)

where Ω is a smooth open subset of Rn.
Notice that both the functionals and the constraints in (3.1.1) and (1.1.1) are strictly

convex. As a consequence, the two problems (3.1.1) and (1.1.1) have a unique minimizer. Let
us call them um and vm respectively. The elastic-plastic torsion problem and the properties
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•

Figure 3.1: A circle with its medial axis, and a polygonal approximation of a circle, with its
medial axis.

of its minimizer vm have been intensively studied by various authors in the 60's and 70's (see
Chapter 1 for some references). In particular, it was proved in [21] that vm is locally C1,1.
What is more, it was proved in [14] that the gradient constraint in (1.1.1) can be replaced
with an obstacle-type constraint where the obstacle is the distance function to the boundary
of Ω, i.e. the function d∂Ω de�ned by

d∂Ω(x) := min
{
|x− y| : y ∈ ∂Ω

}
.

Indeed, we have

vm ≤ d∂Ω and vm = arg min

{∫
Ω
|∇v|2 −mv : v ∈ H1

0 (Ω), v ≤ d∂Ω

}
. (3.1.2)

One may ask if an analog of (3.1.2) is also true for um, with d∂Ω replaced with db. Interestingly,
it is not. We build a counterexample in Theorem 3.3.1. However, we prove that the equality
holds if m is large enough, depending on the Ricci curvature of M . This is Theorem 3.3.2.
The technique of the proof is di�erent from the one in [14], which was speci�c to the �at case.

The medial axis of Ω, denoted byM(Ω), is de�ned as the set of points of Ω that have at
least two closest points on the boundary ∂Ω of Ω:

M(Ω) :=
{
x ∈ Ω : ∃y, z ∈ ∂Ω, y 6= z and d∂Ω(x) = |x− y| = |x− z|

}
.

Equivalently, M(Ω) is the set of points of Ω at which the distance function d∂Ω is not dif-
ferentiable. In [18], the authors proved that for any m > 0, M(Ω) is contained in the set
{|∇vm| < 1}, and that the latter converges to the former in the Hausdor� sense as m goes to
+∞. We prove an analogous result for problem (3.1.1), where the cut locus plays the role of
M(Ω), see Theorem 3.1.2 below.

One important geometric property of the medial axis M(Ω) is that it is unstable with
respect to small perturbations of the boundary of Ω - see Figure 3.1. This instability makes
computing numerically M(Ω) quite tricky. Indeed, any numerical approximation of Ω (for
instance, with polygons) might introduce an arti�cial (and large) medial set. In order to deal
with this problem, in [23], Chazal and Lieutier de�ned the so called λ-medial axis of Ω, denoted
byMλ(Ω). The latter can be seen to verify

Mλ(Ω) =

{
x ∈ Ω : |∇d∂Ω(x)|2 ≤ 1− λ2

d2
∂Ω(x)

}
, (3.1.3)

where ∇d∂Ω denotes the generalized gradient wherever d∂Ω is not di�erentiable. We have the
formula

|∇d∂Ω| (x) = max(0, sup
v∈Sn−1

∂+
v d∂Ω(x)).
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It is proved in [23] that Mλ(Ω) is a good approximation of M(Ω), for λ > 0 small enough.
The crucial di�erence though is that Mλ(Ω) is stable with respect to small variations of
the boundary of Ω, whereas M(Ω) is not. We refer the reader to [23, Section 4] for precise
statements and proofs (see also Section 1.2 for more details). This means that although it is
di�cult to compute numericallyM(Ω) directly, one can computeMλ(Ω) instead.

Motivated by these facts, we proved the following in Chapter 1 � see Theorem 1.3.1. For
λ > 0, let us de�ne the set Em,λ by

Em,λ :=

{
x ∈ Ω : |∇vm(x)|2 ≤ 1− λ2

v2
m(x)

}
.

Then, we have

sup
x∈Em,λ

d(x,Mλ(Ω)) −→
m→+∞

0 and sup
x∈Mλ+ε(Ω)

d(x,Em,λ) −→
m→+∞

0, for any ε > 0.

While the medial axis of Ω is unstable with respect to non-smooth variation of the boundary
of Ω, the cut locus is unstable with respect to non-smooth variations of the metric of M .
Indeed, it is proved in [4] that the cut locus is unstable for some C1 variations of the metric
of M (but stable for C2 variations of the metric of M). So it is a natural question to try and
compute a stable approximation of Cutb(M). In the following, we prove an analogous result
to Theorem 1.3.1 for problem (3.1.1). This result will then be used in Chapter 4 to compute
a stable approximation of the cut locus. Before stating it, let us �rst de�ne semiconcavity for
functions on a manifold. A function u : M → R is said to be C-semiconcave if for any unit
speed geodesic γ, the function t 7→ Ct2−u(γ(t)) is convex. We know from [60, Proposition 3.4]
that the function db is locally semiconcave on M \ {b}. This implies that, as convex functions,
db has a well de�ned generalized gradient at every point � see Appendix A.1, Proposition
A.1.6. At a point p where db is not di�erentiable, the norm of its gradient is given by

|∇db| (p) := max(0, sup
v∈TxM,|v|=1

∂+
v db(p)). (3.1.4)

As shown in Appendix A.1, Proposition A.1.10, if there exist two minimizing geodesics from
p to b, then |∇db(p)| < 1. In particular, we have

Cutb(M) = {|∇db| < 1}. (3.1.5)

Following what has been done for the medial axis, we de�ne a λ-cut locus by

Cutb(M)λ :=

{
x ∈M : |∇db(x)|2 ≤ 1− λ2

d2
b(x)

}
, for λ > 0. (3.1.6)

Recall that um denotes the minimizer of (3.1.1). We set

Em := {x ∈M : |∇um(x)| < 1} ,

and Em,λ :=

{
x ∈M : |∇um(x)|2 ≤ 1− λ2

u2
m(x)

}
. (3.1.7)

Our main results are summed up in the following theorem.
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Theorem 3.1.2. There exists m0 > 0, depending only on the manifold M , such that for any
m > m′ > m0, the minimizer um of (3.1.1) is locally C1,1 on M \ {b}, and

Cutb(M) ⊂ {|∇um| < 1} ⊂ {|∇um′ | < 1}. (3.1.8)

Moreover,

Em −→
m→+∞

Cutb(M) in the Hausdor� sense. (3.1.9)

Given any ε > 0, there exists a constant C > 0 such that, for any m > m0,

um is C-semiconcave on M \B(b, ε). (3.1.10)

Finally,

sup
x∈Em,λ

d(x,Cutb(M)λ) −→
m→+∞

0, and sup
x∈Cutb(M)λ+ε

d(x,Em,λ) −→
m→+∞

0. (3.1.11)

In addition to its own theoretical interest, this theorem is used in Chapter 4 to compute
numerically a stable approximation of the cut locus of a closed surface.

Remark 3.1.3. We could have replaced the point b with a smooth hypersurface S ⊂M in the
above problem. However, our interest here is in the instability of the cut locus with respect
to the metric of M , and this aspect is already present with a point b instead of S. So for
simplicity, we focus on the case of the cut locus of a point.

The rest of the Chapter is organized as follows. In Section 3.2, we prove the C1,1 regularity
of um. In Section 3.3, we prove that the analogous identity to (3.1.2) does not hold in general
for problem (3.1.1), but it holds for m large enough. In Section 3.4, we prove the assertions
(3.1.8) and (3.1.9) of Theorem 3.1.2. In Section 3.5, we prove the assertions (3.1.10) and
(3.1.11) of Theorem 3.1.2.

3.2 Regularity

Let udm ('d' is for the 'distance' constraint) be the minimizer of the following strictly convex
variational problem:

inf

{∫
M
|∇u|2 −mu : u ∈ H1(M), u ≤ db

}
. (3.2.1)

It is the same problem as (3.1.1), where the constraint on the gradient has been replaced with
an obstacle-type constraint where the obstacle is the distance function db. In this section, we
prove the C1,1 regularity of udm. In the next section, we will prove that for m large enough we
have udm = um. Thanks to Theorem 2.1.11, we can prove the following.

Lemma 3.2.1. For any m > 0, there exists a function d̃b that is smooth on M \ {b}, such
that udm ≤ d̃b ≤ db on M and d̃b < db on Cutb(M). In particular, udm is also the solution of

inf

{∫
M
|∇u|2 −mu : u ∈ H1(M), u ≤ d̃b

}
. (3.2.2)
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Chapter 3. Cut locus and variational problem

Proof. It is a consequence of the minimality of um in (3.2.1) that we have in the sense of
distributions:

∆um ≥ −m.

This implies, from the theory of subharmonic distributions, that um has an upper semi-
continuous representative. It is proved in [47, section 9], in the present setting of manifolds.
For a reference about subharmonic functions in the euclidean space, see for instance [26].

Let x ∈ Cutb(M). According to Theorem 2.1.11 we can �nd a smooth function φ de�ned
on an open neighborhood N of x such that:

φ ≥ db, φ(x) = db(x) and ∆φ ≤ −m− 1.

Then the function um − φ is non-positive strictly subharmonic on N and so by the maximum
principle for subharmonic functions, we have

(um − φ)(x) < 0, i.e. um(x) < db(x).

Thus, the function um − db is upper semi-continuous and negative on the compact set
Cutb(M), so there exists ε > 0 such that the set {um < db − ε} is an open set containing
Cutb(M). Now, choose any smooth bump function ρ : M → [0, 1] that is compactly supported
in {um < db− ε} \ {b} and such that ρ = 1 on Cutb(M), and a smooth function db,ε : M → R
such that

db − ε ≤ db,ε < db. (3.2.3)

We set
d̃b := (1− ρ)db + ρdb,ε. (3.2.4)

This function is smooth on M \ b because db is smooth on the complement of Cutb(M)∪ {b}.
The condition d̃b ≤ db is a consequence of db,ε < db. The inequality d̃b < db on Cutb(M) is
also a consequence of db,ε < db, plus the fact that ρ = 1 on Cutb(M). We are left to show
that um ≤ d̃b. On the complement of the support of ρ, we have d̃b = db, so um ≤ d̃b. On the
support of ρ, (3.2.4) and (3.2.3) imply

um ≤ db − ε ≤ db,ε = (1− ρ)db,ε + ρdb,ε ≤ (1− ρ)db + ρdb,ε = d̃b,

This concludes the proof.

One could adapt to the manifold framework the regularity theorems for the classical ob-
stacle problem on a euclidean domain and, with the preceding lemma, deduce the regularity
of udm. Rather than doing that, we will use lemma 3.2.1 to reduce our problem to a classical
obstacle problem on a euclidean domain. Let us start with the following regularity lemma.

Lemma 3.2.2. For any m > 0, the function udm is continuous on M .

Proof. We will reduce our problem to a classical obstacle type variational problem on an open
subset of Rn, by a series of elementary modi�cations, and apply a classical W 2,p regularity
theorem.

From lemma 3.2.1, we know that there exists an open set U ⊂ M and ε > 0 such that
Cutb(M) ⊂ U and udm ≤ db − ε on U . On U , udm veri�es the Euler-Lagrange equation of
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3.2. Regularity

(3.2.1), i.e ∆udm = −2m. In particular, it is smooth on U . Let Ω ⊂M be a smooth open set
such that

U c ⊂ Ω, ∂Ω ⊂ U and Cutb(M) ∩ Ω = ∅.

As U c ⊂ Ω, it su�ces to show that udm is continuous on Ω. As ∂Ω ⊂ U , udm is smooth on ∂Ω,
so there exists a smooth function vm on Ω such that vm = udm on ∂Ω. Then, one can check
that udm is a solution of the following variational problem:

inf

{∫
Ω
|∇u|2 −mu : u ∈ H1(Ω), u ≤ db, u|∂Ω

= vm|∂Ω

}
.

As a consequence, udm − vm is a solution of the following variational problem:

inf

{∫
Ω
|∇v|2 − (m+ ∆vm)v : v ∈ H1

0 (Ω), v ≤ db − vm
}
. (3.2.5)

Because we have Cutb(M) ∩ Ω = ∅, the exponential map at b is a di�eomorphism onto Ω.
Let φ : Ω → Ω̃ ⊂ Rn be a normal coordinates chart centered at b. Let g = (gij) denotes the
metric of M in the coordinates de�ned by φ, and det g its determinant. We recall that the
Riemannian volume measure is given in coordinates by

√
det gdx. So we have∫

Ω

(
|∇v|2 − (m+ ∆vm)v

)
=

∫
Ω̃

(
gij∂i(v ◦ φ−1)∂j(v ◦ φ−1)

√
det g

− (m+ ∆vm) ◦ φ−1v ◦ φ−1
√

det g
)
,

so (udm − vm) ◦ φ−1 is a minimizer of

inf

{∫
Ω̃
gij
√

det g∂iw∂jw − Fw : w ∈ H1
0 (Ω̃), w ≤ ψ

}
, (3.2.6)

where we have set ψ := (db − vm) ◦ φ−1 and F := (m + ∆vm) ◦ φ−1
√

det g. We want to
apply [81, Theorem 4.32]. For this we need to write the above variational problem into a
variational inequality. Let w be a competitor in (3.2.6). Writing down the minimality of
wm := (udm − vm) ◦ φ−1 against the competitor wm + t(w − wm), for t ∈ (0, 1) small, we �nd
that

〈Awm, wm − w〉 ≥ 〈F,wm − w〉,

where A is the elliptic operator de�ned on H1
0 (Ω̃) by Aw := −∂j(gij

√
det g∂iw). From there,

we can apply [81, Theorem 4.32] to deduce that, for any p < n, if min(Aψ,F ) ∈ Lp(Ω̃), then
Awm ∈ Lp(Ω̃). To check that min(Aψ,F ) ∈ Lp(Ω̃), it is enough to check that A(db ◦ φ−1) ∈
Lp(Ω̃). As db is smooth except at b, it is enough to check that (A(db ◦ φ−1))p is integrable
at 0. But this is a consequence of the fact that −∆db ◦ φ−1 = 1√

det g
A(db ◦ φ−1), and lemma

3.2.5 below, from which we deduce that A(db ◦ φ−1)(x) is equivalent to n−1
|x| when x goes to

0. Therefore, for p < n, (A(db ◦ φ−1))p is integrable at 0, and so Awm ∈ Lp(Ω̃). By elliptic
regularity, this implies wm ∈W 2,p(Ω̃), for any p < n. By the Sobolev embeddings, wm is then
continuous on Ω̃, and so udm is continuous on Ω. This concludes the proof.
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Chapter 3. Cut locus and variational problem

We can now de�ne the set Edm := {udm < db}, for any m > 0. It is an open subset of M ,
on which udm veri�es the Euler-Lagrange equation of problem (3.1.1): ∆udm = −2m. We can
now prove the following lemma.

Lemma 3.2.3. For any m > 0, we have udm = db in a neighborhood of b.

Proof. Let us assume that we have constructed a C1 function v on B(b, R) for some R > 0,
such that


v ≤ db in B(b, R), (3.2.7)

v = db in B(b, ε) for some ε ∈ (0, R), (3.2.8)

v < 0 in ∂B(b, R), (3.2.9)

∆v ≥ −m in B(b, R) in the distributional sense. (3.2.10)

We will then show that we have udm ≥ v. The construction of v is postponed to the end of
the proof. From Lemma 3.2.2, we know that the function v − udm is continuous. Let us �rst
assume that v − udm attains a positive maximum at a point x ∈ B(b, R). We have

0 < v(x)− udm(x) ≤ db(x)− udm(x),

so x ∈ Edm. Moreover, we have udm ≥ 0 since max(udm, 0) is a better competitor than udm in
(3.2.1), so

v − udm ≤ v < 0 on ∂B(b, R),

and so x ∈ B(b, R). Hence the function v − udm attains a positive maximum inside the open
set Edm ∩B(b, R), but its Laplacian veri�es in the distributional sense:

∆(v − udm) = ∆v +m ≥ 0, (3.2.11)

which yields a contradiction by the maximum principle. Then, the maximum of v − udm on
B(b, R) is non-positive, and we get

udm ≥ v = db in B(b, ε),

which concludes the proof.
Let us now construct the function v that was used above. Let R > 0 be small enough so

that B(b, R) is contained in a normal neighborhood of b. In polar coordinates around b, we
de�ne v as a radial function. For ε > 0 to be chosen small enough later, let f : [0, R]→ [0,∞)
be the C1 function such that f(r) = r if ≤ ε,

f ′′(r) +
n− 1

r
f ′(r) = −m

2
if r > ε. (3.2.12)

If n = 2, the unique C1 solution to this system is given by:{
f(r) = r if r ≤ ε,

f(r) = ε+
m

8
(ε2 − r2) + (ε+

m

4
ε2) ln(

r

ε
) if r > ε. (3.2.13)
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If n = 3, then the solution is
f(r) = r if r ≤ ε,

f(r) = ε+
m

4n
(ε2 − r2)

+(εn−1 +
m

2n
εn)

1

n− 2
(

1

εn−2
− 1

rn−2
) if r > ε. (3.2.14)

Then, we set in standard polar coordinates v(x) = f(r) for x ∈ B(b, R). For r ≤ ε, the
constraint (3.2.8) is veri�ed by de�nition. (For r > ε, we chose f so that ∆v is small, but still
larger than −m.)

Let us show that (3.2.7) holds. Let us set g(r) := f(r) − r and prove that g ≤ 0. We
have g(r) = 0 for r ≤ ε so it is su�cient to prove that g′(r) ≤ 0 for r ≥ ε. But, as f veri�es
(3.2.12), g veri�es

g′′ +
n− 1

r
g′ = −m− n− 1

r
for r ≥ ε.

In particular, whenever g′(r) = 0, we have g′′(r) < 0. This implies g′(r) ≤ 0 for r ≥ ε, and so
(3.2.7) is veri�ed.

Now let us show that (3.2.10) holds if R has been taken small enough. We use the following
expression of the Laplacian in coordinates:

∆v =
1√

det g
∂i(
√

det ggij∂jv),

where g = (gij) is the metric of the manifold M , and det g its determinant. We apply this
formula to polar coordinates to �nd that, on B(b, R) \B(b, ε), we have in the classical sense

∆v =
1√

det g
∂r(
√

det gf ′(r))

= f ′′ +
∂r det g

2 det g
f ′

= f ′′ +
n− 1

r
f ′ + (

∂r det g

2 det g
− n− 1

r
)f ′

= −m
2

+ (
∂r det g

2 det g
− n− 1

r
)f ′. (3.2.15)

Note that by applying the Laplacian formula in polar coordinates to the distance function
db(x) = r, we �nd that

∆db =
∂r det g

2 det g
. (3.2.16)

Because of lemma 3.2.5, we also have

∆db(x) =
n− 1

r
+ o(1).

With (3.2.15) and (3.2.16), this last equation yields in the classical sense

∆v = −m
2

+ o(1)f ′(r) on B(b, R) \B(b, ε). (3.2.17)
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Furthermore, it is clear from the following expression that f ′ is bounded on [ε,R], by a constant
independent of R, as long as we choose R ≤ 1:

f ′(r) = −m
n
r + (εn−1 +

m

n
εn)

1

rn−1
for ε ≤ r ≤ R.

Hence from (3.2.17) we see that by taking R small enough (independently of ε), we can ensure
that

∆v ≥ −m on B(b, R) \B(b, ε).

But from (3.2.17), we see that the above is also true on B(b, ε) if ε is small enough. Thus
the function v is C1 on B(b, R) and veri�es ∆v(x) ≥ −m when x /∈ ∂B(b, ε), hence (3.2.10)
holds. It is also clear from (3.2.13) and (3.2.14) that the constraint (3.2.9) is veri�ed if ε is
taken small enough. This concludes the proof.

We can now prove a stronger regularity proposition.

Proposition 3.2.4. For any ε > 0, the function udm belongs to C1,1(M \B(b, ε)).

Proof. We reproduce the proof of lemma 3.2.2, but we replace the open set Ω with Ω̂ :=
Ω \ B(b, ε), and the function vm with a function v̂m that is smooth and such that wm = um
on ∂Ω̂. We know that such a function exists because um is smooth on ∂B(b, ε) for ε small
enough, as it can be seen from lemma 3.2.3. This way, we can apply the stronger W 2,∞

regularity result for the obstacle problem [81, Theorem 4.38], since db is smooth on Ω̂. We get
that udm belongs to W 2,∞ = C1,1(Ω̂). As udm is smooth on Edm and ∂Ω̂ ⊂ Edm, then udm is C1,1

on Ω̂ ∪ Em = M \B(b, ε).

We end this section with the following elementary computational lemma.

Lemma 3.2.5. We have

∆db(p) =
p→b

n− 1

db(p)
+ o(1).

Proof. We compute ∆db in normal coordinates centered at b. Let g = (gij) be the metric of
M in these coordinates. We have

∆db(x) =
1√

det g
∂i(
√

det ggij∂jdb)(x).

In normal coordinates, the metric is euclidean up to order 1 as x goes to 0. So we have

gij(x) = δij + o(x), ∂i(
√

det ggij)(x) = o(1) and
1√

det g
= 1 + o(x).

Furthermore, in normal coordinates, we have db(x) = |x|, and so

δij∂ijdb(x) =
n− 1

|x|
.

Putting all the above together, as x goes to 0, we get

∆db(x) =
n− 1

|x|
+ o(1),

which concludes the proof.
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3.3 Equivalence of the two constraints

The constraints |∇u| ≤ 1 and u(b) = 0, in problem (3.1.1), imply u ≤ db. However, contrary
to the case of the elastic-plastic torsion problem, these two constraints may not be replaced
with the constraint u ≤ db in general. Indeed, we have the following proposition. We remind
the reader that um and udm denotes the minimizer of problems (3.1.1) and (3.2.1) respectively.

Theorem 3.3.1. There exists a surface of revolution M and a parameter m > 0 such that
um 6= udm.

However, when m is large enough, we do have udm = um:

Theorem 3.3.2. Let K ≥ 0 be such that

Ric ≥ −K, (3.3.1)

where Ric denotes the Ricci curvature tensor of the manifold M . If

m ≥ 1

2
max(

√
nK(1 +Kdiam(M)2), nKdiam(M)),

then
∣∣∇udm∣∣ ≤ 1, or equivalently

udm = um.

Let us now prove these two theorems.

Proof of Theorem 3.3.1. Let rθ denote the rotation of R3 of angle θ ∈ [0, 2π) around the z-axis.
Let T := 1010 and r, h : [0, T ]→ R be two smooth functions such that

γ : t 7→ (r(t), 0, h(t)) is a unit speed curve.

M := {rθ(γ(t)) : (t, θ) ∈ [0, T ]× [0, 2π)]} is a smooth surface,

r(0) = 0,

r([1, 2]) ⊂ [1,+∞),

r([3, 4]) ⊂ (0, 10−10),

r([5, T − 1]) ⊂ [1,+∞).

This information is pictured in Figure 3.2. We chose b = (0, 0, 0) as the base point onM , and
m = 10−10. Let us assume that udm = um and build a better competitor in (3.2.1) to contradict
the minimality of udm. We will �rst reduce (3.2.1) to a one-dimensional problem. Note that
the functional we are minimizing is rotation-invariant. More precisely, for any θ ∈ (0, 2π) and
u ∈ H1(M), we have ∫

M
|∇(u ◦ rθ)|2 −m(u ◦ rθ) =

∫
M
|∇u|2 −mu. (3.3.2)

By uniqueness of the minimizer udm, we deduce that u
d
m is rotation-invariant, i.e. there exists

a function ρm : [0, T ] → R such that for any θ ∈ [0, 2π) and t ∈ [0, T ], udm(rθ(γ(t))) = ρm(t).
Thus udm is a minimizer of (3.2.1) among rotation-invariant functions. Let u : M → R
be any rotation-invariant function, and ρ : [0, T ] → R be such that for any θ ∈ [0, 2π),
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Figure 3.2: Curve γ generating M by rotating around the z-axis.

u(rθ(γ(t))) = ρ(t). We will translate the minimization problem (3.2.1) on u into a problem
on ρ.

First, becauseM is a surface of revolution, all the geodesics starting from b = (0, 0, 0) have
a constant angle θ (this is an exercise in Riemannian geometry). Thus, they are of the form
t 7→ rθ(γ(t)) for some θ ∈ [0, 2π). These are actually unit speed geodesics as γ is unit speed.
Hence, db(rθ(γ(t))) = t, and the constraint u ≤ db in (3.2.1) is equivalent to ρ(t) ≤ t.

Secondly, we translate the H1 constraint. To this end, let us de�ne some coordinates (t, θ)
on M via the map

φ : (0, T )× (0, 2π) → M
(t, θ) 7→ rθ(γ(t))

.

We have ∫
M
|∇u|2 =

∫
(0,T )×(0,2π)

(|∇u|2 ◦ φ)Jφdtdθ

=

∫
(0,T )×(0,2π)

|∇u|2 (rθ(γ(t)))r(t)dtdθ

= 2π

∫
(0,T )
|∇u|2 (γ(t))r(t)dt, (3.3.3)

because u is rotation-invariant. Furthermore, as u is rotation-invariant, its gradient at the
point γ(t) is parallel to γ′(t), and so∣∣ρ′(t)∣∣ =

∣∣∇u(γ(t)) · γ′(t)
∣∣ = |∇u(γ(t))|

∣∣γ′(t)∣∣ = |∇u(γ(t))| .

Hence (3.3.3) gives ∫
M
|∇u|2 = 2π

∫
(0,T )

ρ′(t)2r(t)dt.
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Thus, the constraint u ∈ H1(M) in (3.2.1) is equivalent to v ∈ H1((0, T ), r(t)dt).
Thirdly, we may compute the functional likewise:∫

M
|∇u|2 −mu = 2π

∫
(0,T )

(
ρ′(t)2 −mρ(t)

)
r(t)dt.

Putting these facts together, as udm is a minimizer in (3.2.1), we deduce that ρm is a minimizer
of :

inf

{∫
(0,T )

(
ρ′(t)2 −mρ(t)

)
r(t)dt : ρ ∈ H1((0, T ), r(t)dt), ρ(t) ≤ t

}
. (3.3.4)

The idea of the rest of the proof is the following. First, we recall the assumption udm = um,
which means that

∣∣∇udm∣∣ ≤ 1, and so |ρ′m| ≤ 1. Now, if ρm(4) is close to 4, then ρ′m(t) is
close to 1 for t ≤ 4, so a competitor v such that ρ′(t) is small for t ≤ 4 will contradict the
minimality of ρm in (3.3.4). If on the contrary ρm(4) is signi�cantly smaller than 4, then for
t ≥ 4, ρm(t) will be signi�cantly smaller than t, so a competitor ρ such that ρ(t) is closer to t
for t ≥ 4 will contradict the minimality of ρm in (3.3.4). Because we chose r very small on the
interval [3, 4] (see Figure 3.2), we can de�ne a competitor ρ independently on [0, 3] and [4, T ],
without paying much for the behavior of ρ on [3, 4].

Case one: ρm(4) ∈ [3.5, 4]. Let us de�ne a competitor ρ for (3.3.4):

ρ : [0, T ] → R

t 7→


0 if t ∈ [0, 3],

4(t− 3) if t ∈ [3, 4]

ρm(t) + 4− ρm(4) if t ≥ 4,

Let us call F(ρ) the functional appearing in (3.3.4). We have, from the de�nition of r and ρ,

F(ρ) =

∫
(3,4)

(16− 4m(t− 3)) r(t)dt+

∫
(4,T )

(
ρ′2m(t)−mρm(t)

)
r(t)dt

−m(4− ρm(4))

∫
(4,T )

r(t)dt

≤ (16− 0) · 10−10 +

∫
(4,T )

(
ρ′2m(t)−mρm(t)

)
r(t)dt− 0 (3.3.5)

so

F(ρ)−F(ρm) ≤ 16 · 10−10 −
∫

(0,4)

(
ρ′2m(t)−mρm(t)

)
r(t)dt

≤ 16 · 10−10 −
∫

(1,2)
ρ′2m(t)r(t)dt+m

∫
(0,4)

ρm(t)dt

≤ 16 · 10−10 −
∫

(1,2)
ρ′2m(t)r(t)dt+m

∫
(0,4)

tdt

= 16 · 10−10 −
∫

(1,2)
ρ′2m(t)r(t)dt+

16

2
m. (3.3.6)
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We are left to bound from below the integral term in (3.3.6). By the Hölder inequality we
have ∫

(1,2)
ρ′m ≤

(∫
(1,2)

1

r

) 1
2
(∫

(1,2)
ρ′2mr

) 1
2

,

and so ∫
(1,2)

ρ′2mr ≥
(ρm(2)− ρm(1))2∫

(1,2)
1
r

≥ (ρm(2)− ρm(1))2, (3.3.7)

by the construction of r. Now we use the fact udm = um, which means that
∣∣∇udm∣∣ ≤ 1, and so

|ρ′m| ≤ 1. With the running assumption ρm(4) ≥ 3.5, this implies ρm(2) ≥ 1.5. As ρm(1) ≤ 1,
we get ρm(2)− ρm(1) ≥ 0.5. Then, (3.3.7) and (3.3.6) yield

F(ρ)−F(ρm) ≤ 16 · 10−10 − 0.25 +
9

2
m. (3.3.8)

Recalling that we have chosen m = 10−10, it contradicts the minimality of ρm in (3.3.4).
Case two: ρm(4) ≤ 3.5. We use the same competitor ρ as in case one. We even per-

form similar estimates, the only di�erence being that we do not estimate the term −m(4 −
ρm(4))

∫
(4,T ) r(t)dt by 0 as in (3.3.5). Thus (3.3.6) becomes instead:

F(ρ)−F(ρm) ≤ 16 · 10−10 −
∫

(1,2)
ρ′2m(t)r(t)dt+

16

2
m

−m(4− ρm(4))

∫
(4,T )

r(t)dt.

≤ 16 · 10−10 +
16

2
m− 0.5m

∫
(4,T )

r(t)dt

≤ 16 · 10−10 +
16

2
m− 0.5m

∫
(5,T−1)

r(t)dt.

Recalling that we have chosen m = 10−10, T = 1010 and r ≥ 1 between 5 and T − 1, it
contradicts the minimality of ρm in (3.3.4). This concludes the proof.

Proof of Theorem 3.3.2. Recall that the function udm is C1 except at b, by Proposition 3.2.4.
Let x 6= b be in the contact set P dm := {udm = db}. By the lemma 3.2.1, we have x /∈ Cutb(M),
and so the distance function db is di�erentiable at x. It is a simple consequence of the constraint
udm ≤ db and the equality udm(x) = db(x) that we have ∇udm(x) = ∇db(x). The desired
inequality

∣∣∇udm(x)
∣∣ ≤ 1 follows.

In the non-contact set Edm = {udm < db}, the function udm veri�es the Euler-Lagrange
equation

∆udm = −2m. (3.3.9)

In particular it is smooth, and we may apply the Bochner-Weitzenböck formula:

∆
∣∣∣∇udm∣∣∣2 = 2Ric(∇udm,∇udm) + 2

∣∣∣D2udm

∣∣∣2 + 2(∇∆udm,∇udm), (3.3.10)
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where Ric denotes the Ricci curvature tensor on the manifold M and D2udm is the second
covariant derivative of udm. The last term is 0 because ∆udm = −2m ((3.3.9)). As for the
second term, we have: ∣∣∣D2udm

∣∣∣2 ≥ 1

n

(
Trace(D2udm)

)2

=
4m2

n
by (3.3.9).

As the manifold M is compact, there exists a constant K > 0 (depending on M only) such
that the Ricci curvature is bounded from below by −K. In the end, formula (3.3.10) yields

∆
∣∣∣∇udm∣∣∣2 + 2K

∣∣∣∇udm∣∣∣2 ≥ 8

n
m2. (3.3.11)

Now notice that by (3.3.9),

∆((udm)2) = 2udm∆udm + 2
∣∣∣∇udm∣∣∣2

= −4mudm + 2
∣∣∣∇udm∣∣∣2 ,

so (3.3.11) gives

∆(
∣∣∣∇udm∣∣∣2 +K(udm)2) =

8

n
m2 − 4Kmudm

≥ 8

n
m2 − 4Kmdb

≥ 8

n
m2 − 4Kmdiam(M)

Thus, if m ≥ n
2Kdiam(M), the function

∣∣∇udm∣∣2 +K(udm)2 is subharmonic in the non-contact

set Edm. From lemma 3.2.3, we have Edm ⊂ M \ {b}, and with Proposition 3.2.4, we get that

the function
∣∣∇udm∣∣2 +K(udm)2 is continuous on Edm ⊂M \ {b}. Therefore we may apply the

maximum principle to get ∣∣∣∇udm∣∣∣2 ≤ ∣∣∣∇udm∣∣∣2 +K(udm)2

≤ sup
∂Edm

(∣∣∣∇udm∣∣∣2 +K(udm)2

)
= 1 +K sup

∂Edm

(udm)2

≤ 1 +K sup
∂Edm

(db)
2

≤ 1 +Kdiam(M)2 (3.3.12)

With (3.3.11), this last inequality gives

∆
∣∣∣∇udm∣∣∣2 ≥ 8

n
m2 − 2K(1 +Kdiam(M)2)

Thus, whenever the right-hand side is non-negative, the maximum principle applied to the
function

∣∣∇udm∣∣2 on the open set Edm implies
∣∣∇udm∣∣2 ≤ 1. This concludes the proof.
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3.4 Convergence of the non-contact set

In this section we show that the non-contact set Edm = {udm < db} Hausdor�-converges to
Cutb(M).

Lemma 3.4.1. We have ‖db−udm‖L∞(M) ≤ C/m, for some positive constant C depending on
M only.

Proof. We only need to prove the proposition for m large enough. Therefore, thanks to
Theorem 3.3.2, we will assume that m is large enough so that

∣∣∇udm∣∣ ≤ 1. We only need to
show the estimate on Edm since outside this set, udm and db are the same. We will show that
for m large enough, we have

∀p ∈ Edm, ∃p ∈ (Edm)c such that d(p, p) < 5n/m. (3.4.1)

This will conclude the proof since by the 1-Lipschitzianity of udm and db, we then have∣∣∣db(p)− udm(p)
∣∣∣ ≤ ∣∣∣db(p)− udm(p)

∣∣∣+ 2d(p, p)

= 0 + 2d(p, p)

≤ 5n

m
,

which is what we need. In order to prove (3.4.1), we argue by contradiction and assume that
B5n/m(p) ⊂ Edm. We want to apply the maximum principle to the function v de�ned on
B5n/m(p) by the following formula

v(p) := udm(p)− inf
∂B 5n

m
(p)
udm +

m

2n

(
dp(p)

2 −
(

5n

m

)2
)
.

For any p ∈ B5n/m(p), we have ∆udm(p) = −2m because we have assumed B5n/m(p) ⊂ Edm.
To estimate the Laplacian of d2

p, we use some normal coordinates (xi) centered at p. In these
coordinates, the metric is euclidean up to order 1, uniformly in p since M is compact, and
dp(x) = |x|. This argument has been detailed in the proof of lemma 3.2.5, so we do not
reproduce it here. We get that for m large enough, independently of p,

∀p ∈ B5n/m(p), ∆d2
p(p) ≤ 2(2n).

Therefore, we obtain on B5n/m(p) ⊂ Edm,

∆v ≤ −2m+
m

2n
2(2n) = 0.

So we can apply the maximum principle to v to get

v(p) ≥ inf
∂B 5n

m
(p)
v,

i.e.

udm(p)− inf
∂B 5n

m
(p)
udm −

m

4n
(
5n

m
)2 ≥ 0. (3.4.2)
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3.4. Convergence of the non-contact set

As we have taken m large enough so that
∣∣∇udm∣∣ ≤ 1, we also have

udm(p)− inf
∂B 5n

m
(p)
udm ≤

5n

m
<
m

4n

(
5n

m

)2

,

which contradicts the estimate (3.4.2). This concludes the proof.

Theorem 3.4.2. For any m > m′ > 0, we have Cutb(M) ⊂ Edm ⊂ Edm′ , and

Edm −→m→∞
Cutb(M) in the Hausdor� sense.

Proof. The fact that, for any m > 0, Cutb(M) ⊂ Edm, is a direct consequence of lemma 3.2.1.
Let us prove the second inclusion. For m > m′ > 0, note that by the respective minimality of
udm and udm′ , we have∫

M

∣∣∣∇max(udm′ , u
d
m)
∣∣∣2 −m ∫

M
max(udm′ , u

d
m) ≥

∫
M

∣∣∣∇udm∣∣∣2 −m ∫
M
udm,

and
∫
M

∣∣∣∇min(udm′ , u
d
m)
∣∣∣2 −m′ ∫

M
min(udm′ , u

d
m) ≥

∫
M

∣∣∣∇udm′∣∣∣2 −m′ ∫
M
udm′ .

Using the formulas

∇max(udm′ , u
d
m) = ∇udm′1{ud

m′>u
d
m} +∇udm1{ud

m′≤u
d
m},

∇min(udm′ , u
d
m) = ∇udm1{ud

m′>u
d
m} +∇udm′1{ud

m′≤u
d
m},

we obtain ∫
{ud
m′>u

d
m}

(∣∣∣∇udm′∣∣∣2 − ∣∣∣∇udm∣∣∣2) ≥ −m∫
{ud
m′>u

d
m}

(
udm − udm′

)
,

and
∫
{ud
m′>u

d
m}

(∣∣∣∇udm∣∣∣2 − ∣∣∣∇udm′∣∣∣2) ≥ −m′ ∫
{ud
m′>u

d
m}

(
udm′ − udm

)
.

Summing these two inequalities, we get

0 ≥ (m−m′)
∫
{ud
m′>u

d
m}

(
udm′ − udm

)
,

and so udm ≥ udm′ . In particular, Edm ⊂ Edm′ .
We are left to show the Hausdor� convergence in Edm to Cutb(M). Given ε > 0, let us set

Ωε := {x ∈M : d(x,Cutb(M)) > ε}.

We will show that for m large enough we have Edm ⊂ (Ω2ε)
c, which will conclude the proof.

Let φ : M → R be a function such that φ ≤ db on M , φ = db on Ω2ε, φ < db on ∂Ωε, and φ is
smooth on M except at b. We want to apply the maximum principle to the function φ− udm
on Edm ∩ Ωε. We have

∆(φ− udm) = ∆φ+m on Edm ∩ Ωε,

so for m large enough the function φ − udm is subharmonic on Edm ∩ Ωε. On ∂Ωε, we have
φ < db and udm converges uniformly to db as m tends to +∞ (lemma 3.4.1) so φ − udm ≤ 0,
for m large enough. On ∂Edm, we have φ − udm = φ − db ≤ 0. Thus the maximum principle
implies that for m large enough, we have φ− udm ≤ 0 on Edm ∩ Ωε. As φ = db on Ω2ε, we get
udm ≥ db on Edm∩Ω2ε. Since by de�nition we have udm < db on Edm, we get E

d
m ⊂ (Ω2ε)

c, which
concludes the proof.
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Chapter 3. Cut locus and variational problem

3.5 Semiconcavity

In this section, we prove (3.1.10) and (3.1.11) of Theorem 3.1.2. We begin with a de�nition.
For a, b, λ ∈ R, we set λab = (1− λ)a− λb.

De�nition 3.5.1. Given a constant C > 0, a function u is said to be C-semiconcave on M
if and only if for any unit speed geodesic γ : [a, b] → M , the function t 7→ Ct2 − u(γ(t)) is
convex. This is equivalent to having, for any λ ∈ [0, 1],

(1− λ)u(γ(a)) + λu(γ(b))− u(γ(λab)) ≤ Cλ(1− λ)(b− a)2.

We say that u is semiconcave if u is C-semiconcave for some constant C > 0. We say that u
is locally semiconcave if for any p ∈M , u is semiconcave in a neighborhood of p.

Remark 3.5.2. On the compact manifold M , semiconcavity and local semiconcavity are the
same.

In [60, De�nition 2.5], the authors de�ne local semiconcavity using charts as follows: a
function u is said to be locally semiconcave if for any chart ψ, the function u ◦ ψ−1 is locally
semiconcave as a function on Rn. In the appendix, Proposition A.1.4, we show that this notion
of local semiconcavity is equivalent to the de�nition of local semiconcavity we gave.

In [60, Proposition 3.4], the authors proved that the distance function is locally semiconcave
on M \ {b}. As a consequence, recalling remark 3.5.2, we have the following proposition:

Proposition 3.5.3. Given ε > 0, the distance function db is C-semiconcave on M \ B(b, ε),
for some C > 0.

We also have the following obvious proposition, obtained from the caracterization of twice
di�erentiable convex functions on the real line:

Proposition 3.5.4. A C2 function u : M → R is C-semiconcave if and only if its second
order covariant di�erential veri�es D2u ≤ 2C.

We can now prove the following:

Proposition 3.5.5. Given ε > 0, there exists a constant C > 0 such that for any m large
enough, the function um is C-semiconcave on M \B(b, ε).

We start with a proof that is speci�c to the dimension 2. It uses the determinant of
symmetric matrices of size 2, to estimate their eigenvalues. We will give a proof that works in
any dimension afterwards. The �rst part of the proof is almost identical to the �rst part of
the proof of Theorem 1.3.2.

Proof of Proposition 3.5.5 in dimension 2. The reader may �nd the recalls of appendix A.1
useful to follow this proof. For m large enough, we recall that um = udm (Theorem 3.3.2).
This will be used throughout the proof. Let Cd be such that the distance function db is Cd-
semiconcave onM \B(b, ε). We will show that um is (Cd+1)-semiconcave for m large enough.
Let us introduce some notations. For a, b ∈ R and λ ∈ (0, 1),

λab := (1− λ)a+ λb.
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For any unit speed geodesic γ : [a, b]→M , λ ∈ (0, 1) and v a function on M , let us de�ne

c(γ, λ, v) := λ(1− λ)(Cd + 1)(b− a)2

− ((1− λ)v(γ(a)) + λv(γ(b))− v(γ(λab))) . (3.5.1)

We need to show the following:
inf
γ,λ

c(γ, λ, um) ≥ 0 (3.5.2)

where the in�mum is taken over unit speed geodesics de�ned over �nite intervals. Let us
argue by contradiction and assume that (3.5.2) does not hold. As um veri�es |∇um| ≤ 1, it is
1-Lipschitz. As any unit speed geodesic γ : [a, b]→M is also 1-Lipschitz, the function um ◦ γ
is 1-Lipschitz. By de�nition of c, this implies

c(γ, λ, um) ≥ λ(1− λ)(Cd + 1)(b− a)2 + 2λ(1− λ)(b− a).

In particular it is clear that if the geodesic γ is long enough (i.e (b − a) is large enough),
then we have c(γ, λ, um) ≥ 0. Hence we can assume that the in�mum in (3.5.2) is taken over
unit speed geodesics whose length is bounded by a given constant. By continuity of c for
the uniform convergence of curves, and compactness (for the uniform convergence of curves)
of geodesics with bounded length in the compact manifold M , the in�mum in (3.5.2) is a
minimum, attained at a point (γ, λ), with γ de�ned on a segment [a, b]. Now we show that

γ((a, b)) ⊂ Em = {um < db}. (3.5.3)

If not, then there exists µ ∈ (0, 1) such that γ(µab) /∈ Em, i.e um(γ(µab)) = db(γ(µab)).
Recalling that um ≤ db, we get

c(γ, µ, um) ≥ c(γ, µ, db) > 0, (3.5.4)

where the last inequality comes from the Cd-semiconcavity of db. In particular, µ 6= λ. Let us
assume for instance that µ < λ (the case µ > λ beeing similar) and show that c(γ, λ, um) is
not minimal in (3.5.2). Figure 3.3 may help justify intuitively the following construction. Let
ν ∈ (0, 1) be such that

νµabb = λab. (3.5.5)

Let γ̃ be the unit speed geodesic de�ned by γ̃ := γ|[µab,b]. Let us set f(t) := (Cd + 1)t2 −
um(γ(t)). Then, we have

c(γ̃, ν, um) = (1− ν)f(µab) + νf(b)− f(νµabb)

= (1− ν)f(µab) + νf(b)− f(λab)

= c(γ, λ, um)− (1− λ)f(a) + (ν − λ)f(b) + (1− ν)f(µab). (3.5.6)

Now after some elementary calculations, (3.5.5) translates into{
1− λ = (1− ν)(1− µ),

ν − λ = −(1− ν)µ,

so (3.5.6) becomes

c(γ̃, ν, um) = c(γ, λ, um)− (1− ν)((1− µ)f(a) + µf(b)− f(µab))

= c(γ, λ, um)− (1− ν)c(γ, µ, um). (3.5.7)

64



Chapter 3. Cut locus and variational problem

t

f(t)

•

•

•

•

a µab λab = νµabb b

Figure 3.3: Construction of γ̃ and ν.

With (3.5.4), this contradicts the minimality of c(γ, λ, um). Thus (3.5.3) is true, and we are
left to show that um is (Cd + 1)-semiconcave inside Em.

As um has constant Laplacian in Em, it is smooth, and by Proposition 3.5.4, its (Cd + 1)-
semiconcavity boils down to the pointwise condition

D2um ≤ (Cd + 1)Id. (3.5.8)

To prove (3.5.8), it is enough to show that

detD2um ≥ −2(Cd + 1)m. (3.5.9)

Indeed, let λm ≤ µm be the eigenvalues of D2um. Recalling that λm + µm = ∆um = −2m,
we have

detD2um ≥ −2(Cd + 1)m⇔ λmµm ≥ −2(Cd + 1)m

⇔ −µ2
m − 2mµm ≥ −2(Cd + 1)m

⇒ µm ≤ (Cd + 1)

⇔ D2um ≤ (Cd + 1),

and so (3.5.9) implies (3.5.8). Now to prove (3.5.9), the strategy is to show that it holds on the
boundary of Em, and to apply the maximum principle to a suitable superharmonic function.
If the surface M was �at, as we will see in the following, we could apply this strategy directly
to detD2um. Let us �rst compute its Laplacian. Given any local orthonormal basis (e1, e2)
of the tangent plane to M , we set D2

ijum := D2um(ei, ej). Then, we have

∆(detD2um) = ∆((D2
11um)(D2

22um)− (D2
12um)2)

= ∆(D2
11um)D2

22um + ∆(D2
22um)D2

11um

+ 2∇(D2
11um) · ∇(D2

22um))

−∆((D2
12um)2).
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Using the equation −2m = ∆um = D2
11um +D2

22um, we get

∆(detD2um) = −∆(D2
22um)D2

22um −∆(D2
11um)D2

11um

−∇(D2
22um) · ∇(D2

22um))−∇(D2
11um) · ∇(D2

11um))

−∆((D2
12um)2)

= −1

2
∆((D2

11um)2 + (D2
22um)2 + 2(D2

12um)2)

= −1

2
∆(
∣∣D2um

∣∣2). (3.5.10)

Now this right hand side can be conveniently computed in a coordinate-free way using classical
tensorial di�erential calculus on Riemannian manifolds with abstract index notation. We write
down the explicit computations here as it does not seem to be a classical identity. The metric
tensor of M is denoted by gab and the Riemann curvature tensor by Rabcd. We will denote by
|T | the norm of any tensor T . We have

∆(
∣∣D2um

∣∣2) = gabDaDb((DcDdum)(DcDdum))

= gab(2(DaDbDcDdum)(DcDdum) + 2(DaDcDdum)(DbD
cDdum))

= 2gab(DaDbDcDdum)(DcDdum) + 2(DaDcDdum)(DaDcDdum)

= 2gab(DaDbDcDdum)(DcDdum) + 2
∣∣D3um

∣∣2
≥ 2gab(DaDbDcDdum)(DcDdum), (3.5.11)

We will use the notation D[ab] := DaDb −DbDa. We have

DaDbDcDdum = DaD[bc]Ddum+D[ac]DbDdum+DcDaD[bd]um+DcD[ad]Dbum+DcDdDaDbum.

In the following, any constant that depends on M only will be denoted by CM . By de�nition
of the Riemann tensor we have

DaD[bc]Ddum = Da(RbcedD
eum) = (DaRbced)D

eum +RbcedDaD
eum,

and so ∣∣DaD[bc]Ddum
∣∣ ≥ −CM |∇um| − CM ∣∣D2um

∣∣ . (3.5.12)

Likewise, ∣∣DcD[ad]Dbum
∣∣ ≥ −CM |∇um| − CM ∣∣D2um

∣∣ . (3.5.13)

To compute the term D[ac]DbDdum, let us pick some coordinates (xi) and write DbDdum =

D2
ijumdxibdx

j
d. Then, we have

D[ac]DbDdum = D[ac](D
2
ijumdxibdx

j
d)

= (D[ac]D
2
ijum)dxibdx

j
d +D2

ijum(D[ac]dx
i
b)dx

j
d

+D2
ijumdxib(D[ac]dx

j
d)

= 0 +D2
ijumRaceb(dx

i)edxjd +D2
ijumdxibRaced(dx

j)e

= RacebD
eDdum +RacedDbD

eum,
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and so ∣∣D[ac]DbDdum
∣∣ ≥ −CM ∣∣D2um

∣∣ . (3.5.14)

By symmetry of the tensor D2um, we have

DcDaD[bd]um = 0. (3.5.15)

Putting (3.5.12), (3.5.13), (3.5.14) and (3.5.15) together, we �nd∣∣∣gabDaDbDcDdum

∣∣∣ ≥ −CM |∇um| − CM ∣∣D2um
∣∣− ∣∣∣gabDcDdDaDbum

∣∣∣ .
In Em, um has constant Laplacian, so

gabDcDdDaDbum = DcDdg
abDaDbum = DcDd∆um = 0.

So we get ∣∣∣gabDaDbDcDdum

∣∣∣ ≥ −CM |∇um| − CM ∣∣D2um
∣∣ . (3.5.16)

With this estimate, the estimate (3.5.11) yields

∆(
∣∣D2um

∣∣2) ≥
(
−CM |∇um| − CM

∣∣D2um
∣∣) ∣∣D2um

∣∣ ≥ −CM |∇um|2 − CM ∣∣D2um
∣∣2 .

Coming back to (3.5.10), we get:

∆(detD2um) ≤ CM |∇um|2 + CM
∣∣D2um

∣∣2 . (3.5.17)

To get a function with non-positive Laplacian, we need to add some terms to detD2um to
get a non-positive right hand side in (3.5.17). First we use the Bochner-Weitzenböck formula
(3.3.10) to get

∆(|∇um|2) ≥
∣∣D2um

∣∣2 − CM |∇um|2 . (3.5.18)

With (3.5.17), we obtain

∆(detD2um − CM |∇um|2) ≤ CM |∇um|2 . (3.5.19)

Secondly, we use the equality

∆(u2
m) = 2 |∇um|2 + 2um∆um = 2 |∇um|2 − 2mum,

to get
∆(u2

m) ≥ 2 |∇um|2 − CMm, (3.5.20)

where we have used that um is bounded by the diameter of M since um ≤ db. So we may
transform (3.5.19) into

∆(detD2um − CM |∇um|2 − CMu2
m) ≤ CMm,

Finally, we use the equation ∆um = −2m to get that for m large enough,

∆(detD2um − CM |∇um|2 − CMu2
m + CMum) ≤ 0. (3.5.21)
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Now that we have a superharmonic function on Em, we need to look at its boundary values
to apply the maximum principle. Thus we need to control the second order derivatives of um
near the boundary of Em. As um is not C2 across ∂Em, we cannot directly use the fact that
the hessian of db is bounded on ∂Em. We will use a theorem for obstacle problems on Rn. Let
us show that um is the solution of an obstacle problem on an open set of R2. Then, we will
apply [37, Theorem 3.8] to conclude that

∀x ∈ ∂Em, lim
y→x
y∈Em

D2um(y) ≤ CdId. (3.5.22)

The minimality of um in (3.2.1) implies

−∆um − 2m ≥ 0, um ≤ db and (−∆um − 2m)(um − db) = 0. (3.5.23)

Let Ω̃ be de�ned as in the proof of 3.2.4. Let φ : Ω̃ → Ũ be a normal coordinates chart.
Writing down (3.5.23) in these coordinates, we �nd

Aũm − 2m ≥ 0, ũm ≤ ψ and (Aũm − 2m)(ũm − ψ) = 0,

where A is the Laplacian ofM in the coordinates de�ned by φ, ũm = um◦φ−1 and ψ = db◦φ−1.
This is the form of [37, Chapter 2, equation (3.16)], so we can apply [37, Chapter 2, Theorem
3.8], to deduce that

∀p ∈ ∂Em, ∀X ∈ R2 lim
q→p
q∈Em

D2ũm(φ(q))(X,X) ≤ D2ψ(φ(p))(X,X). (3.5.24)

Moreover, we have

D2ũm = D2um ◦ (Dφ−1, Dφ−1) +Dum ◦D2φ−1,

D2ψ = D2db ◦ (Dφ−1, Dφ−1) +Ddb ◦D2φ−1,

and Dum = Ddb on ∂Em because um is C1. Thus, (3.5.24) yields:

∀p ∈ ∂Em,∀X ∈ R2 lim
q→p
q∈Em

D2um(q)(Xq, Xq) ≤ D2db(p)(Xp, Xp),

where we have set Xq := Dφ−1(φ(q))X. As db is Cd-semiconcave, with Proposition 3.5.4, we
get

∀p ∈ ∂Em,∀X ∈ R2 lim
q→p
q∈Em

D2um(q)(Xq, Xq) ≤ Cd |Xp|2 . (3.5.25)

From there, we deduce that for q ∈ Em close enough to ∂Em, we have

D2um(q) ≤ Cd + 1/4. (3.5.26)

Indeed, if not, there exist a sequence (qk) of points of Em whose distance to ∂Em goes to 0,
and a sequence (Xk) of unit vectors of R2 such that for any k ∈ N,

D2um(qk)((Xk)qk , (Xk)qk) > Cd +
1

4
. (3.5.27)
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As Em is precompact, up to extracting a subsequence, we can assume that (qk) converges to
a point p ∈ ∂Em, and (Xk) converges to a vector Y ∈ R2. Because of (3.5.25), we have

lim
k→∞

D2um(qk)(Yqk , Yqk) ≤ Cd. (3.5.28)

Furthermore, we know from proposition 3.2.4 that D2um is locally bounded. As (Xk)qk − Yqk
converges to 0 when k goes to ∞, this implies

lim
k→∞

D2um(qk)((Xk)qk , (Xk)qk)−D2um(qk)(Yqk , Yqk) = 0. (3.5.29)

Inequalities (3.5.27), (3.5.28) and (3.5.29) yield a contradiction. So (3.5.26) is true.
Let q be such that (3.5.26) holds. Let λ ≤ µ be the eigenvalues of D2um(q). The inequality

(3.5.26) translates into

µ ≤ Cd +
1

4
. (3.5.30)

Furthermore, inside Em we have ∆um = −2m, so

λ+ µ = −2m. (3.5.31)

For m large enough, we see that (3.5.30) and (3.5.31) imply

detD2um(q) = λµ = −µ2 − 2mµ ≥ −2(Cd +
1

2
)m.

Recalling that |∇um| ≤ 1 (Theorem 3.3.2) and that um is bounded by the diameter of M , we
deduce that for m large enough (depending on M only), at any point q ∈ Em su�ciently close
to ∂Em,

detD2um − CM |∇um|2 − CMu2
m + CMum ≥ −2(Cd +

1

2
)m− CM ≥ −2(Cd +

3

4
)m.

Recalling (3.5.21), by the maximum principle on Em, we get

detD2um − CM |∇um|2 − CMu2
m + CMum ≥ −(Cd +

3

4
)m.

Using the boundedness of the terms ∇um and um once more, we �nd that inside Em and for
m large enough, (3.5.9) is valid. This concludes the proof.

Now let us give a proof of Proposition 3.5.5 that works in any dimension. This technique is
inspired from the proof of second order estimate for hessian equations in Riemannian manifolds
by Guan in [45]. The reader may �nd the recalls of appendix A.2 useful to follow this proof.
We will use many arguments and estimates from the proof of the 2-dimensional case.

Proof of Proposition 3.5.5. As in the preceding proof, we show that it is enough to prove that
for m large enough, um is C-semiconcave in Em, where C is a constant that depends only on
M . Let C1, C2, C3 > 0 be some constants to be taken large enough later. For p ∈ Em and
X ∈ Sn−1(TpM), let us de�ne

f(p,X) := D2um(X,X) + C1 |∇um|2 (p) + C2u
2
m(p)− C3um(p). (3.5.32)
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We will show that for a good choice of constant Ci depending only on M , f is bounded by a
constant that depends only on M . This will conclude the proof since |∇um|2, u2

m and um are
also bounded by a constant depending only on M . Let us assume that there exist q ∈ Em and
Y ∈ Sn−1(TqM) such that

f(q, Y ) = sup
p∈Em

X∈Sn−1(TpM)

f(p,X), (3.5.33)

and show that it gives a contradiction. Let us pick some normal coordinates at q such that
∂1(q) = Y . We then extend the vector Y into a vector �eld (still denoted by Y ) in a neigh-
borhood of q, by setting Y := ∂1/ |∂1|. As D∂1(q) = 0, we also have DY (q) = 0. Moreover, as
the manifold is compact, D2Y (q) is bounded by a constant that depends on M only. In the
following, any constant that depends on M only will be denoted by CM . We have∣∣D2Y (q)

∣∣ ≤ CM . (3.5.34)

We will show that the Laplacian of p 7→ f(p, Y (p)) is positive at q, which contradicts the
maximality of (q, Y (q)) in (3.5.33). Let us estimate ∆(D2um(Y, Y )) at the point q.

∆(D2um(Y, Y )) = gabDaDb(D
2
cdumY

cY d)

= gab
(
D4
abcdumY

cY d +D3
acdumDb(Y

cY d)

+D3
bcdumDa(Y

cY d) +D2
cdumD

2
ab(Y

cY d)
)
.

The second term is null because it contains Db(Y
cY d) = (DbY

c)Y d + Y cDbY
d, and DY = 0.

The third term is also null. By our preceding remark (3.5.34) about D2Y , the fourth term
is bounded from below by −CM −

∣∣D2um
∣∣2. Finally, the �rst term is treated just like in the

preceding proof. Recall the estimate (3.5.16):∣∣∣gabDaDbDcDdum

∣∣∣ ≥ −CM |∇um| − CM ∣∣D2um
∣∣ .

From this and the fact Y has norm 1, we deduce∣∣∣gabDaDbDcDdumY
cY d

∣∣∣ ≥ −CM − |∇um|2 − ∣∣D2um
∣∣2 .

We obtain, at the point q,

∆(D2um(Y, Y )) ≥ −CM −
∣∣D2um

∣∣2 − |∇um|2 . (3.5.35)

We recall the following from the preceding proof:

∆ |∇um|2 ≥
∣∣D2um

∣∣2 − CM |∇um|2 , (estimate (3.5.18))

∆u2
m ≥ |∇um|

2 − CMm, (estimate (3.5.20))

∆um = −2m.

Using these three estimates and (3.5.35), we �nd some constants CM1 , CM2 , CM3 > 0 such that

∆(D2um(Y, Y ) + CM1 |∇um|
2 + CM2 u2

m − CM3 um) > 0.
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So, in the de�nition of f (3.5.32), if we take Ci = CMi for i = 1, 2, 3, we get

∆(f(p, Y (p)))p=q > 0,

which contradicts the maximality of (q, Y (q)). Therefore the supremum in (3.5.33) is not
attained in Em. We conclude as in the preceding proof by showing that, by the semiconcavity
of db, f(p,X) is bounded by a constant independent of m when p gets close to ∂Em and
X ∈ Sn−1(TpM).

Now, putting all sections together, only (3.1.11) remains to be proven in Theorem 3.1.2.
This is the object of the following proposition.

Proposition 3.5.6. Let λ > 0. Let Cutb(M)λ and Em,λ be de�ned as in (3.1.6) and (3.1.7).
We have

sup
p∈Em,λ

d(p, Cutb(M)λ) −→
m→+∞

0, (3.5.36)

and sup
p∈Cutb(M)λ+ε

d(p,Em,λ) −→
m→+∞

0. (3.5.37)

Proof. Let us assume by contradiction that (3.5.36) does not hold. Let (mk)k≥0 and (pk)k≥0

be sequences in (0,∞) and M respectively, such that mk −→
k→+∞

+∞ and for some η > 0, for

any k ≥ 0, pk ∈ Emk,λ and
d(pk, Cutb(M)λ) > η. (3.5.38)

Up to taking subsequences, we may assume that (pk) converges to a point p∞ in M . As the
functions (um)m>0 are uniformly semiconcave and converge to db as m goes to∞ (Proposition
3.5.5 and lemma 3.4.1), we get from Proposition A.1.8:

lim inf
k→∞

|∇umk(pk)| ≥ |∇db(p∞)| .

Using the facts that pk ∈ Emk,λ and umk converges uniformly to db, this implies

|∇db(p∞)|2 ≤ 1− λ2

db(p∞)2
,

and so p∞ ∈ Cutb(M)λ. But this contradicts (3.5.38). Thus (3.5.36) is proved.
For the proof of (3.5.37), once again we argue by contradiction and assume that it does

not hold. Let (mk)k≥0 and (pk)k≥0 be sequences of (0,∞) and M respectively, such that
mk −→

k→+∞
+∞ and for some η > 0, for any k ≥ 0, pk ∈ Cutb(M)λ+ε and

d(pk, Emk,λ) > 2η. (3.5.39)

Up to taking subsequences, we can assume that (pk) converges to a point p∞ in Cutb(M)λ+ε.
The last inequality implies that for any k large enough, we have

d(p∞, Emk,λ) > η.

According to lemma 3.4.1, there exists a constant C1 > 0 such that for any p ∈M and k ≥ 0,
umk(p)2 ≥ db(p)

2 − C1/mk. As db is 1-Lipschitz and bounded, we deduce that there exists a
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constant C2 > 0 such that for any p ∈ B(p∞, η) and k ≥ 0, umk(p)2 ≥ db(p∞)2−C2η−C1/mk.
Let η0 > 0, k0 > 0 and δ0 > 0 be constants such that for any η ≤ η0 and k ≥ k0,

δ :=
(λ+ ε)2

db(p∞)2
− λ2

db(p∞)2 − C2η − C1/mk
≥ δ0 > 0.

For any p ∈ B(p∞, η), we have

1− λ2

umk(p)2
≥
(

1− λ2

db(p∞)2 − C2η − C1/mk

)
= 1− (λ+ ε)2

db(p∞)2
+ δ. (3.5.40)

As p∞ ∈ Cutb(M)λ+ε, we have
(

1− (λ+ε)2

db(p∞)2

)
≥ 0, and so for any η ≤ η0, k ≥ k0 and

p ∈ B(p∞, η),

1− λ2

umk(p)2
≥ δ ≥ δ0 > 0. (3.5.41)

Let (qt)t≥0 be the curve de�ned by

q0 = p∞ and
dqt
dt

= ∇umk(qt).

Let T > 0 be such that for any t ∈ [0, T ], d(qt, p∞) ≤ η, and in particular qt /∈ Emk,λ. We
have

umk(qT )− umk(p∞) =

∫
(0,T )
|∇umk(qt)|2 dt by de�nition of (qt),

≥
∫

(0,T )

(
1− λ2

umk(qt)2

)
dt because qt /∈ Emk,λ,

≥ Tδ because of (3.5.41).

As umk is bounded by the diameter ofM , this estimate implies that there exists a �nite largest
time T > 0 such that for any t ∈ [0, T ], d(qt, p∞) ≤ η. In particular, d(p∞, qT ) = η. Let γ
be a unit speed minimizing geodesic between p∞ and qT . As db is semiconcave (Proposition
3.5.3), there exists a constant Cd > 0 such that the function f : t 7→ Cdt

2− db(γ(t)) is convex.
In particular, we have f(0)− f(d(p∞, qT )) ≤ −f ′(0)d(p∞, qT ), which yields

db(qT )− db(p∞) ≤ |∇db(p∞)| d(p∞, qT ) + Cd(d(p∞, qT ))2

= |∇db(p∞)| η + Cdη
2,

≤

(√
1− (λ+ ε)2

db(p∞)2

)
η + Cdη

2 because p∞ ∈ Cutb(M)λ+ε. (3.5.42)
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In addition,

umk(qT )− umk(p∞) =

∫
(0,T )
|∇umk(qt)|

∣∣∣∣dqtdt

∣∣∣∣ dt by de�nition of (qt),

≥
∫

(0,T )

√
1− λ2

umk(qt)2

∣∣∣∣dqtdt

∣∣∣∣dt because qt /∈ Emk,λ,

≥

(
inf

t∈(0,T )

√
1− λ2

umk(qt)2

)
η. (3.5.43)

Using lemma 3.4.1 again, we know that there exists a constant C3 > 0 such that db(qT ) −
db(p∞) ≥ umk(qT )− umk(p∞)− C3

mk
. Therefore, estimates (3.5.42) and (3.5.43) yield

Cdη
2 +

(√
1− (λ+ ε)2

db(p∞)2
− inf
t∈(0,T )

√
1− λ2

umk(qt)2

)
η +

C3

mk
≥ 0.

Using (3.5.40), we �nd that there exists a constant C4 > 0 such that for any η ≤ η0 and
k ≥ k0, (√

1− (λ+ ε)2

db(p∞)2
− inf
t∈(0,T )

√
1− λ2

umk(qt)2

)
≤ −C4.

In particular, for any η ≤ η0 and k ≥ k0,

Cdη
2 − C4η +

C3

mk
≥ 0.

This gives a contradiction if k is large enough. This concludes the proof.
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Chapter 4

Numerical computation of the cut locus

4.1 Introduction

Let S be a compact real analytic surface without boundary embedded in R3, and b ∈ S any
point of S (that can be thought of as a base point).

De�nition 4.1.1. The cut locus of b in S can be de�ned as the closure of the set of points
p ∈ S such that there exists at least two minimizing geodesics between p and b. We will denote
it by Cutb(S). Equivalently, it is also the set of points around which the distance function to
the point b - denoted by db - is not smooth.

We refer to Chapter 2 for a more detailed introduction to the notion of cut locus. The cut
locus is a fundamental object in Riemannian geometry, and it is a natural problem to try and
�nd ways to compute it numerically. In this chapter, we propose a numerical approximation
of Cutb(S), based on the convex variational problem on S (3.1.1), with proven convergence
� see Section 4.5 for some numerical results. It is not trivial to compute Cutb(S) because
it is not stable with respect to C1-small variations of S, see for instance [4, Example 2]. In
particular, one cannot approximate the cut locus of S with the cut locus of a piecewise linear
approximation of S.

Related works. Let us review the techniques used in the past by di�erent authors to
approximate the cut locus. We may divide them into two categories.

Geodesic approximation on parametrized surfaces. This approach was used in [76] and [63].
In [76], on genus 1 parametrized surfaces, the authors computed a degree 4 polynomial approx-
imation of the exponential map using the geodesic equation, and deduced an approximation of
the cut locus from there. In [63], the authors used the deformable simplicial complexes (DSC)
method and �nite di�erences techniques for geodesic computations, to compute geodesic cir-
cles of increasing radius and their se�-intersection, i.e. the cut locus. They apply the method
to genus 1 surfaces. These papers contain no proof of convergence of the computed cut locus.

Exact geodesic computation on discretized surfaces. This approach was used in [48] and [28].
In [48], the authors computed the geodesics on a convex triangulated surface. They deduced
an approximation of the cut locus of the triangulated surface, and �ltered it according to the
angle formed by the geodesics meeting at a point of the approximated cut locus, to make their
approximation stable. They applied the method to ellipsoids. There is no proof of convergence.
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In [28], the authors computed shortest curves on a graph obtained from a su�ciently dense
sample of points of a surface. From there they deduced an approximation of the cut locus, and
�ltered it according to the maximal distance (called spread) between the geodesics meeting at
a point of the approximated cut locus. They proved that the set they compute converges to
the cut locus (see [28, Theorem 4.1]).

We also mention [11], where the authors use some more geometric tools to compute (numer-
ically) the cut locus of an ellipsoid, or a sphere with some particular metric with singularities.

Our method. The strategy we use is quite di�erent. Given m > 0 a constant, let um be
the minimizer of the following variational problem

inf

{∫
S
|∇Su|

2 −mu : u ∈ H1(M), |∇Su| ≤ 1, u(b) = 0

}
, (4.1.1)

where ∇S denotes the gradient operator on the surface S. For λ > 0 to be chosen small, we will

use the set Em,λ :=
{
|∇Sum|

2 ≤ 1− λ2

u2
m

}
as an approximation of Cutb(S). This is justi�ed

by Section 4.2, plus the theoretical results regarding problem (4.1.1) obtained in Chapter 3,
which will be summarized in Section 4.3. Now the set Em,λ can be well approximated using
�nite elements on a triangulation of the surface S.

The rest of the Chapter is organized as follows. In Section 4.2, we recall the de�nition
of "λ-cut locus" Cutb(S)λ and show that it can be used as an approximation of the compute
cut locus. In Section 4.3, we recall the results from Chapter 3 which states that the set Em,λ
de�ned above is a good approximation of Cutb(S)λ if m is large enough. In Section 4.4, we
discretize problem (4.1.1) using �nite elements and prove that the "discrete Em,λ" converges
to Em,λ. In Section 4.5, we present the results of some numerical experiments.

4.2 λ-Cut locus

We recall that, according to [60, Proposition 3.4], the function db is locally semiconcave on
S \ {b}, so it has a generalized gradient everywhere on S \ {b}, whose norm is given by the
following formula (see propositions A.1.9 and A.1.6):

|∇Sdb| (x) = max(0, sup
v∈TxS,|v|=1

∂+
v db(x)).

We recall the identity (3.1.5):
Cutb(M) = {|∇db| < 1}.

In Section 3.1, following the de�nition of the λ-medial axis by Chazal and Lieutier, we de�ne
the λ-cut locus as

Cutb(S)λ :=

{
x ∈ S \ {b} : |∇Sdb(x)|2 ≤ 1− λ2

d2
b(x)

}
,

where∇db denotes the generalized gradient of db wherever it is not di�erentiable. The following
obvious proposition holds.

Proposition 4.2.1. The map λ 7→ Cutb(S)λ is non-increasing, and

Cutb(S) =
⋃
λ>0

Cutb(S)λ.
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In addition, we have the following proposition.

Proposition 4.2.2. If S is a real analytic surface, then for λ > 0 small enough, one of the
connected component of Cutb(S)λ has the same homotopy type as Cutb(S), while the other
connected components, if any, are contractible.

These two propositions justify that Cutb(S)λ is a good approximation of Cutb(S), for
λ > 0 small enough.

Using Proposition A.1.10, Proposition 4.2.2 will mainly be a consequence of [28, Propo-
sition 3.4] and the proof of [28, Proposition 3.5]. Following [28], we will use the following
terminology. A point x of a �nite graph G is called a tree point if G \ {x} has a connected
component whose closure is a tree. Otherwise, x is called a cycle point. It is a consequence of
the proof of [28, Proposition 3.5] that any closed connected subset of G that contains all cycle
points is a deformation retract of G.

Proof of Proposition 4.2.2. As S is real analytic, the cut locus Cutb(S) is a �nite graph (see
[66] in dimension 2, and [15] for the generalization to arbitrary dimensions). According to the
Proposition A.1.10, given any θ > 0, if λ has been taken small enough, then for any point
x ∈ Cutb(S) \Cutb(S)λ, the angle between the minimizing geodesics from b to x, at the point
x, is smaller than θ. Given two unit speed minimizing geodesics γ1 and γ2, following [28], the
spread between γ1 and γ2 is de�ned as

spd(γ1, γ2) = sup
t
d(γ1(t), γ2(t)).

The geodesics γ1 and γ2 verify the geodesic equation:

γ̈l + Γlij γ̇
iγ̇j = 0,

where the Γlij are the Christo�el symbols of the metric of S. In particular, by continuity of
the solution of a second order di�erential equation with respect to initial conditions, if the
angle between γ1 and γ2 at their common starting point is small, then their spread is also
small. Therefore, applying [28, Proposition 3.4], we deduce that if λ has been taken small
enough, then any point x ∈ Cutb(S) \ Cutb(S)λ is a tree point of Cutb(S). It remains to
show that Cutb(S)λ is closed to conclude that it is a deformation retract of Cutb(S) and
conclude the proof. But this is a consequence of the fact that db is semiconcave, and the upper
semicontinuity of the generalized gradient of convex functions (see also Proposition A.1.8 for
instance).

Therefore, we will use Cutb(S)λ as an approximation of Cutb(S) for λ small enough.

4.3 Approximation with a variational problem

For m > 0, recall that um is the minimizer in (4.1.1). For λ > 0, let us de�ne the set Em,λ by

Em,λ :=

{
x ∈ S \ {b} : |∇Sum(x)|2 ≤ 1− λ2

u2
m(x)

}
.

We recall the following theorem from Chapter 3.
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Theorem 4.3.1 (Theorem 3.1.2). There exists m0 > 0 such that for any m > m0, the function
um is locally C1,1 on S \ {b}. For any m > m′ > m0,

Cutb(S) ⊂ {|∇Sum| < 1} ⊂ {|∇Sum′ | < 1}. (4.3.1)

Moreover,
{|∇Sum| < 1} −→

m→+∞
Cutb(S) in the Hausdor� sense. (4.3.2)

Finally, for any ε > 0,

sup
x∈Em,λ

d(x,Cutb(S)λ) −→
m→+∞

0, and sup
x∈Cutb(S)λ+ε

d(x,Em,λ) −→
m→+∞

0. (4.3.3)

Therefore, we can use Em,λ as an approximation of Cutb(S)λ. In conclusion, we will use
Em,λ as an approximation of Cutb(S).

4.4 Discretization

4.4.1 Finite elements of order r on a surface approximation of order k

In this section we introduce a discretization framework adapted to the variational problem
(4.1.1) based on �nite elements. We follow the notations of [27, 31].

Let S be a compact oriented smooth two-dimensional surface embedded in R3. For x ∈ S,
we denote by ν(x) the oriented normal vector �eld on S. Let d : R3 → R be the signed distance
associated to S and Uη = {x ∈ R3, |d(x)| < η} the tubular neighborhood of S of width η > 0.
It is well known that if η is small enough (for instance 0 < η < mini=1,2

1
|κi|L∞(S)

where the

(κi) stand for the extremal sectional curvatures of S), then for every x ∈ Uη it exists a unique
a(x) ∈ S such that

x = a(x) + d(x)ν(a(x)) = a(x) + d(x)∇d(x). (4.4.1)

We consider S1
h a triangular approximation of S whose vertices lie on S and whose faces are

quasi-uniform and shape regular of diameter at most h > 0. Moreover, we will assume that
Th, the set of triangular faces of Sh, are contained in some tubular neighborhood Uη such that
the map a de�ned by (4.4.1) is unique.

For k ≥ 2 and for a triangle T ∈ Th, we consider the nk Lagrange basis functions Φk
1, . . .Φ

k
nk

of degree k and de�ne the discrete projection on Sh by:

ak(x) =

nk∑
j=1

a(xj)Φ
k
j (x) (4.4.2)

where x1, . . . , xnk are the nodal points associated to the basis functions. Now we can de�ne
Skh a polynomial approximation of order k of S associated to Th

Skh = {ak(x), x ∈ Sh}. (4.4.3)

Observe that by de�nition the image by a of the nodal points are both on S and on Skh. Let
us now introduce the �nite element spaces on Sh = S1

h and Skh for k ≥ 2. For every integer
r ≥ 1, let
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Chapter 4. Numerical computation of the cut locus

Lrh = {χ ∈ C0(Sh), χ|T ∈ Pr,∀T ∈ Th} (4.4.4)

where Pr is the family of polynomials of degree at most r. Analogously, for k ≥ 2 let

Lr,kh = {χ̂ ∈ C0(Skh), χ̂ = χ ◦ a−1
k , for some χ ∈ Lrh}. (4.4.5)

Analogously to (4.1.1), we de�ne
min
u∈Lr,kh∣∣∣∣∇Sk
h

u

∣∣∣∣≤1

u(b)=0

F kh (u) (4.4.6)

where F kh (u) =
∫
Skh

(∣∣∣∣∇Sk
h

u

∣∣∣∣2 −mu
)

and b some �xed nodal points of the mesh Th.

4.4.2 Convergence of the lifted minimizers

In order to prove the convergence of our numerical approach, let us �rst establish that our
discrete problem converges in values in the sense of Proposition 4.4.2. For a function u de�ned
on Skh, we introduce its lifted function ul onto S de�ned by the relation ul(b) = u(x) for b ∈ S
where x is the unique point of Skh which satis�es a(x) = b.

Below, we focus our analysis in the piecewise linear case r = k = 1 which contains all the
main ingredients of a proof for the general (r, k) case. For every h > 0, the convex optimization
problem (4.4.6) has a unique solution.

Lemma 4.4.1. The di�erential of the projection a onto S, when restricted to the tangent
space of Sh, is the identity, up to order 2 in h:

Da|TSh
= Id+O(h2).

The second di�erential of a, when restricted to the tangent space of Sh, is null, up to order 1
in h:

D2a|TSh
= O(h).

Proof. The identity estimate on Da is a direct consequence of [31, equations (4.12), (4.13)
and (4.11)], and the fact that, following the notations of [31, lemma 4.1], we have ν2

n+1 =
1−

∑
j≤n

ν2
j . The estimate on D2a follows from the same equations, plus the identity D2a(x) =

−2∇d(x)D2d(x).

De�ning F (u) =
∫
S

(
|∇Su|

2 −mu
)
, we have

Proposition 4.4.2. Let um,h be the solution of problem (4.4.6) for k = r = 1. Let Lulm,h :=
ulm,h

|∇
S
ulm,h|L∞(S)

be the 1-Lipschitz normalization of ulm,h. Then, Lu
l
m,h ∈ H1(S) and

F (Lulm,h) = min
u∈H1(S)

|∇Su|≤1

u(b)=0

F (u) +O(h
1
2 ).
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Proof. step 1. Let um be the solution of problem (4.1.1). For ε > 0, let um,ε : S → R be
de�ned by:

um,ε =

{
db(x)2

2ε if db(x) ≤ ε
um(x)− ε

2 if db(x) ≥ ε.

According to lemma 3.2.3, we have um = db in a neighborhood of b. Therefore, for ε > 0
small enough, we have um = db on B(b, 2ε). In particular, we deduce that um,ε is C1 on S.
As d2

b is smooth in a neighborhood of b, the gradient of d2
b/2ε is O(ε−1)-Lipschitz on B(b, ε).

Moreover, as um = db on B(b, 2ε), the gradient of um is O(ε−1)-Lipschitz on B(b, 2ε)\B(b, ε).
According to Proposition 3.2.4, um is also locally C1,1 on S \ {b}. Therefore its gradient is
O(ε−1)-Lipschitz on S \ B(b, ε). Putting ths facts together, we obtain that um,ε is C1,1 on
S, and the Lipschitz constant of its gradient is O(ε−1). Furthermore, as db and um are both
1-Lipschitz, we have |∇um,ε| ≤ 1. Now for ε > 0, consider

vh,ε :=
Ihum,ε

|∇Sh
Ihum,ε|L∞(Sh)

,

where Ihum,ε is the P1 Lagrange interpolation of um,ε on Sh. For x ∈ Sh, observe that we
have the relation Ihum,ε(x) = Ih(um,ε ◦ a)(x) which says that Ihum,ε is the standard (�at)
interpolation of the composed function um,ε ◦ a. From lemma 4.4.1, we know that on every
triangle, the di�erential of a is O(h)-Lipschitz, and a is O(1)-Lipschitz. As the gradient of
um,ε is O(ε−1)-Lipschitz, we deduce that on every triangle, the gradient of um ◦ a is O(ε−1)-
Lipschitz. By the quasi uniformity of the mesh, we obtain the uniform interpolation estimates
on Sh:

Ihum,ε(x) = (um,ε ◦ a)(x) +O(ε−1h2) (4.4.7)

and
∇Sh

Ihum,ε(x) = ∇Sh
(um,ε ◦ a)(x) +O(ε−1h).

With lemma 4.4.1, we deduce for all x ∈ Sh,

∇Sh
Ihum,ε(x) = ∇Sum,ε(a(x)) +O(ε−1h). (4.4.8)

Recall that we have |∇Sum,ε|L∞(S) = 1. Therefore the last identity yields

|∇Sh
Ihum,ε|L∞(Sh,ε) = 1 +O(ε−1h).

Thus, vh,ε = Ihum,ε(1 +O(ε−1h)), and so

Fh(vh,ε) = Fh(Ihum,ε) +O(ε−1h). (4.4.9)

Applying lemma 4.4.1 again, with a simple change of variable, we �nd that for any function
f : Sh → R, ∫

Sh

f ◦ a =

∫
S
f +O(h2).

Recalling (4.4.7) and (4.4.8), we obtain

Fh(Ihum,ε) = F (um,ε) +O(ε−1h). (4.4.10)
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Furthermore, we have∫
S
|um,ε − um| ≤ O(ε) and

∫
S
|∇um,ε −∇um|2 ≤ O(ε2),

so
F (um,ε) = F (um) +O(ε).

Combining this with (4.4.9) and (4.4.10), we �nd

Fh(vh,ε) = F (um) +O(ε−1h) +O(ε).

Choosing ε = h
1
2 , this yields

min
u∈H1(Sh)∣∣∣∇Sh u∣∣∣≤1

u(b)=0

Fh ≤ min
u∈H1(S)

|∇Su|≤1

u(b)=0

F +O(h
1
2 ). (4.4.11)

step 2. Symmetrically, let um,h the solution of the discrete problem (4.4.6), ulh := um,h ◦
(a|Sh

)−1 its lifted version on S, and Lulm,h :=
ulh

|∇
Sh
ulh|L∞(Sh)

. We show as before, using the

equation um,h = ulh ◦ a, that F (Lulm,h) = Fh(um,h) +O(h). With (4.4.11), this implies

min
u∈H1(S)

|∇Su|≤1

u(b)=0

F ≤ F (Lulm,h) ≤ min
u∈H1(S)

|∇Su|≤1

u(b)=0

F +O(h
1
2 ),

which concludes the proof of the proposition.

We can now establish the convergence of the minimizers:

Proposition 4.4.3.∣∣∣∇ulm,h −∇um∣∣∣2
L2(S)

= O(h
1
2 ) and

∣∣∣ulm,h − um∣∣∣
L1(S)

= O(h
1
2 ).

Proof. Consider v = 1
2(Lulm,h + um). Then, v is admissible for problem (4.1.1), so F (v) ≥

F (um). Moreover, the following algebraic identity holds

F (v) =
1

2
F (Lulm,h) +

1

2
F (um)− 1

4

∫
S
|∇Sum −∇SLu

l
m,h|2.

Therefore, we have

1

2
F (Lulm,h)− 1

2
F (um) ≥ 1

4

∫
S
|∇Sum −∇SLu

l
m,h|2,

which proves, with Proposition 4.4.2, that∣∣∣∇Lulm,h −∇um∣∣∣2
L2(S)

= O(h
1
2 ). (4.4.12)
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Furthermore, we have

F (Lulm,h)− F (um) =

∫
S

(∣∣∣∇Lulm,h∣∣∣2 − |∇um|2)−m∫
S

(
Lulm,h − um

)
.

The last two equations imply ∣∣∣Lulm,h − um∣∣∣
L1(S)

= O(h
1
2 ). (4.4.13)

As in the proof of Proposition 4.4.2, using the relation um,h = ulm,h ◦h, we show that Lulm,h =

ulm,h(1 +O(h2)). Together with (4.4.12) and (4.4.13), this concludes the proof.

We just proved that the sequence of the lifted minimizers converges with an order at least
1/2 to the minimizer of problem (4.1.1). By analogy with the more standard variational
context [27, 31], we expect a convergence of order O((hr +hk+1)

1
2 ) using an approximation of

orders (r, k).

4.4.3 Convergence in measure

Let us recall that the set Em,λ is de�ned by

Em,λ =

{
x ∈ S \ {b} : |∇Sum(x)|2 ≤ 1− λ2

u2
m(x)

}
.

Proposition 4.4.4. For any λ > 0 and ε > 0 with ε < λ/2, let us de�ne

Em,λ,h :=

{
x ∈ S \ {b} :

∣∣∣∇Su
l
m,h(x)

∣∣∣2 ≤ 1− λ2

(ulm,h)2(x)

}
.

Then, we have

|Em,λ+ε \ Em,λ,h| = O(h
1
2 ) and |Em,λ,h \ Em,λ−ε| = O(h

1
2 ).

Proof. By de�nition of Em,λ and Em,λ,h, we have

Em,λ+ε \ Em,λ,h ⊂

{∣∣∣∇ulm,h∣∣∣2 − |∇um|2 > (λ+ ε)2

u2
m

− λ2

(ulm,h)2

}
.

Therefore, on Em,λ+ε \ Em,λ,h, we have∣∣∣∇ulm,h∣∣∣2 − |∇um|2 > (λ+ ε)2 − λ2

u2
m

+ λ2(
1

u2
m

− 1

(ulm,h)2
)

≥ 2ελ+ ε2

u2
m

− λ2 2

min(um, ulm,h)3

∣∣∣um − ulm,h∣∣∣
=

2ελ+ ε2

(diamS)2
− λ2 2

(um +O(h
1
2 ))3

∣∣∣um − ulm,h∣∣∣ ,
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Chapter 4. Numerical computation of the cut locus

where diamS is the diameter of S. By de�nition of Em,λ, we also have Em,λ+ε ⊂ {um ≥
(λ+ ε)}, so on Em,λ+ε \ Em,λ,h,∣∣∣∇ulm,h∣∣∣2 − |∇um|2 > 2ελ+ ε2

(diamS)2
− λ2 2

(λ+ ε+O(h
1
2 ))3

∣∣∣um − ulm,h∣∣∣ .
So for h large enough, we have

Em,λ+ε \ Em,λ,h

⊂
{∣∣∣∇ulm,h∣∣∣2 − |∇um|2 + 2λ

∣∣∣um − ulm,h∣∣∣ > 2ελ+ ε2

(diamS)2

}
.

⊂
{∣∣∣∇ulm,h∣∣∣2 − |∇um|2 > 2ελ+ ε2

2(diamS)2

}
∪
{∣∣∣um − ulm,h∣∣∣ > 2ελ+ ε2

4λ(diamS)2

}
.

Now from Proposition 4.4.3, we know that for any η > 0, we have the following estimates

η

∣∣∣∣{∣∣∣∣∣∣∣∇ulm,h∣∣∣2 − |∇um|2∣∣∣∣ > η

}∣∣∣∣ ≤ ∫
S

∣∣∣∣∣∣∣∇ulm,h∣∣∣2 − |∇um|2∣∣∣∣ = O(h
1
2 ),

and

η
∣∣∣{∣∣∣um − ulm,h∣∣∣ > η

}∣∣∣ ≤ ∫
S

∣∣∣um − ulm,h∣∣∣ = O(h
1
2 ).

This gives the estimate |Em,λ+ε \ Em,λ,h| = O(h
1
2 ). The other estimate is proved by the same

method.

Remark 4.4.5. We expect a convergence of order O((hr + hk+1)
1
2 ) using an approximation of

orders (r, k).

All the preceding sections together justify that the set Em,λ,h is a good approximation of
the cut locus of b in M , if m is large enough, and λ and h are small enough.

4.5 Numerical illustrations

4.5.1 Cut locus approximation

We established the convergence of the minimizers of solutions of problems (4.1.1) when h
tends to 0. For a �xed h > 0, this convex discrete problems is of quadratic type with an
in�nite number of conic pointwise constraints. By the way, it is important to observe that for
k = r = 1, the gradient pointwise bounds for a function of P1 is equivalent to a single discrete
conic constraint on every triangle with respect to the degrees of freedom of P1(Th).

Nevertheless, we observed in our experiments that using P1 elements may lead to approx-
imated cut loci with some tiny arti�cial connected components. Motivated by this lack of
precision, we use in all following illustrations elements of order r > 1.

For the general case r > 1, the bound constraint on the gradient can not be easily reduced
to a �nite set of discrete constraints. In our experiments, we approximated the constraint
|∇

Sk
h

u|L∞(Skh) ≤ 1 by forcing this constraint only on a �nite number of points of the mesh.

In practice, we imposed these constraints on the Gauss quadrature points of order g on every
triangle of Th.
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4.5. Numerical illustrations

We illustrate in Figures 4.1, 4.2, 4.3 and 4.4 the approximation of the cut locus provided
by our approach. These computations have been carried out on meshes of approximated 105

triangles for k = 2 and r = 3 using high precision quadrature formula associated to 17 Gauss
points on every element of the mesh. Moreover, for r = 3, we imposed the conic gradient
constraints on the g = 9 Gauss points of every triangle. In order to solve the resulting linear
conic constrained quadratic optimization problem, we used the JuMP modeling language and
the �nite elements library Getfem++ [30, 69] combined with Mosek optimization solver [7].
For such a precision, the optimization solver identi�ed a solution in less than one hour on a
standard computer.

Figure 4.1: Three di�erent views of the approximation of a cut locus on a standard torus

Figure 4.2: Three di�erent views of the approximation of a cut locus on a standard torus,
without representing the surface

Figure 4.3: Three di�erent views of the approximation of a cut locus on a torus of genus 2
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Figure 4.4: Three di�erent views of the approximation of a cut locus on a torus of genus 2,
without representing the surface

4.5.2 Approximation of the boundary of Voronoi cells

All previous theoretical results still hold if we replace the source point b by any compact
subset of the surface S. For instance, if b is replaced by a set of points, the singular set of the
distance function can be decomposed as the union of the boundary of voronoi cells and the
cut loci of every point intersected with its voronoi cell. As a consequence, if the distribution of
source points is homogeneous enough, that is every voronoi cell is small enough, the singular
part of the distance function will be exactly equal to the boundary of the voronoi cells. We
illustrate this remark in the following experiments. We used exactly the same framework as in
previous sections and just replaced the pointwise condition at b with the analogous pointwise
Dirichlet conditions at every source point. Figure 4.5 and 4.6 represent the voronoi diagrams
obtained with 10, 30 and 100 points for surfaces of genus 2 and 3. The expected computational
complexity is exactly of the same order as with a single source point.

Figure 4.5: Approximation of the voronoi cells on a torus of genus 2 of 10, 30 and 100 points.
Every column represent two di�erent views

85



4.5. Numerical illustrations

Figure 4.6: Approximation of the voronoi cells on a torus of genus 3 of 10, 30 and 100 points.
Every column represent two di�erent views
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Appendix A

Appendices to part I

A.1 Semiconcavity

Some of the properties of semiconcave functions we need are given in [68], in the framework of
Alexandrov spaces, and sometimes without proof. A more detailed reference for semiconcave
functions in the framework of euclidean spaces is [22]. In this appendix, we give complete
proofs of the properties of semiconcave functions that we need in the framework of smooth
Riemannian manifolds. To our knowledge, Proposition A.1.4 is not proved (or even actually
stated) anywhere in the literature. We could not �nd a proof of the formula for the directional
derivatives of distance functions (Proposition A.1.10) in the Riemannian context either. Here,
M is any smooth Riemannian manifold without boundary, and g its metric.

For any a, b ∈ R and λ ∈ [0, 1], we de�ne λab := (1− λ)a+ λb. Let us recall the de�nition
of semiconcavity.

De�nition A.1.1. Given a constant C > 0, a function u : M → R is said to be C-semiconcave
on M if and only if for any unit speed geodesic γ : [a, b]→M , the function t 7→ Ct2 − u(γ(t))
is convex. This is equivalent to having, for any λ ∈ [0, 1],

λu(γ(a))u(γ(b)) − u(γ(λab)) ≤ Cλ(1− λ)(b− a)2.

We say that u is semiconcave if u is C-semiconcave for some constant C > 0. We say that u
is locally semiconcave if for any p ∈M , u is semiconcave in a neighborhood of p.

Remark A.1.2. On Rn, a function u is C-semiconcave if and only if the map x 7→ C |x|2−u(x)
is convex.

We will need the following lemma to estimate the di�erence between two geodesics linking
a pair of given points, for two di�erent metrics.

Lemma A.1.3. Let g be a metric on the unit ball B(0, 1) ⊂ Rn. There exists a constant
B > 0 such that for any unit speed geodesic γ : [a, b]→ (B(0, 1), g) and λ ∈ [0, 1], we have∣∣γ(λab)− λγ(a)γ(b)

∣∣ ≤ Bλ(1− λ)(b− a)2.
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Proof. It su�ces to prove that the estimate holds for λ ≤ 1
2 , as the case λ ≥

1
2 can be deduced

by considering γ̃ : t 7→ γ(b − t) instead of γ. A unit speed geodesic γ : [a, b] → (B(0, 1), g)
veri�es the geodesic equation

γ̈l + Γlij γ̇
iγ̇j = 0,

where the Γlij are the Christo�el symbols of the metric g. As γ is unit speed, the (γ̇i) are
bounded, uniformly in γ. Therefore, there exists a constant α > 0 independent of γ such
that |γ̈| ≤ α. By integration, we �nd |γ(t)− γ(a)− γ̇(a)(t− a)| ≤ α(t− a)2. Evaluating this
expression at b yields |γ(b)− γ(a)− γ̇(a)(b− a)| ≤ α(b − a)2. From these two estimates, we
deduce ∣∣∣∣γ(t)− γ(a)− γ(b)− γ(a)

b− a
(t− a)

∣∣∣∣ ≤ α(t− a)2 + α(b− a)(t− a).

Taking t = (1− λ)a+ λb in this estimate yields

|γ((1− λ)a+ λb)− ((1− λ)γ(a) + λγ(b))| ≤ αλ(1 + λ)(b− a)2

=
α(1 + λ)

1− λ
λ(1− λ)(b− a)2.

Taking B := α(1+1/2)
1−1/2 , this proves the desired estimate when λ ≤ 1

2 . This concludes the
proof.

We can now prove that de�ning local semiconcavity through charts (as in [60]), or through
geodesics, is the same.

Proposition A.1.4. Let u : M → R be a locally Lipschitz function. Then, u is locally
semiconcave if and only if for any chart ψ of M , u ◦ ψ−1 is locally semiconcave as a function
on Rn.

Proof. Let us assume that u is locally semiconcave. Let ψ : U → V be a chart from an open
set U of M to on open set V of Rn, and y ∈ V . Let f := u ◦ ψ−1. We want to show that f
is semiconcave in a neighborhood of y, as a function of Rn. We �rst observe that f is locally
semiconcave on the manifold (V, ψ?g). Let V ′ ⊂ V be a neighborhood of y that is geodesically
convex for the metric ψ?g, and such that there exists a constant C > 0 such that f is C-
semiconcave on (V ′, ψ?g). Let d denote the distance function on (V ′, ψ?g). Up to taking V ′

smaller, we may assume that the metric ψ?g is bounded on V ′, and so there exists a constant
β > 0 such that

∀x, y ∈ V ′, d(x, y) ≤ β |x− y| .
Let x, y ∈ V ′ be such that [x, y] ⊂ V ′, and λ ∈ [0, 1]. Let γ : [a, b] → V ′ be a unit speed
geodesic of (V ′, ψ?g) from x to y. By the C-semiconcavity of f on (V ′, ψ?g), we have

λf(x)f(y) − f(λxy) = λf(γ(a))f(γ(b)) − f(λγ(a)γ(b))

≤ Cλ(1− λ)(b− a)2 + f(γ(λab))− f(λγ(a)γ(b))

≤ Cλ(1− λ)(b− a)2 + Lip(f)
∣∣γ(λab)− λγ(a)γ(b)

∣∣ .
Applying lemma A.1.3 above, we get a constant B > 0 such that

λf(x)f(y) − f(λxy) ≤ (C + Lip(f)B)λ(1− λ)(b− a)2

= (C + Lip(f)B)λ(1− λ)(d(x, y))2

≤ (C + Lip(f)B)β2λ(1− λ) |x− y|2 ,
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and so f is semiconcave on V ′, as a function of Rn.
Reciprocally, let us assume that u ◦ψ−1 is locally semiconcave as a function of Rn for any

chart ψ. Then, we can show that u ◦ ψ−1 is locally semiconcave for the metric ψ?g, for any
chart ψ, by using the same technique. From there we deduce that u is locally semiconcave.
This concludes the proof.

Remark A.1.5. One can show that any semiconcave function on M is also Lipschitz, using the
analogous property for functions on the real line. Therefore, the Lipschitzianity assumption
is not actually needed.

By composition with charts, semiconcave functions inherits some properties of concave
functions. More precicely, let ψ : B(p, r) → B(0, r) ⊂ Rn be a normal coordinate chart at p,
for some r > 0. The function u ◦ ψ−1 is semiconcave as a function of Rn. Furthermore, the
di�erential of ψ at p is an isometry. The following proposition then follows from the properties
of concave functions on Rn.

Proposition and de�nition A.1.6. Let u : M → R be a locally Lipschitz and semiconcave
function. At every point p ∈ M , u admits a directional derivative ∂+

v u(p) in any direction
v ∈ TpM \ {0}, de�ned by

∂+
v u(p) =

d

dt
[u(γ(t))]t=0,

where γ : [0, 1]→M is any curve such that γ(0) = p and γ̇(0) = v.

Moreover, the map v 7→ ∂+
v u(p) is concave and positively homogeneous on TpM . In par-

ticular, if it attains a positive maximum in the closed unit ball of TpM , then this maximum is
attained at a unique vector vp. Otherwise, we set vp = 0. We de�ne the generalized gradient
of u at p by

∇u(p) := ∂+
vpu(p)vp.

The norm of ∇u(p) is given by the following formula:

|∇u(p)| = max(0, max
v∈TpM, |v|=1

∂+
v u(p)).

Proposition A.1.7. Let u : M → R be a locally Lipschitz and locally semiconcave function.
Let x, y ∈M be such that there exists a geodesic from x to y (which is always the case if M is
complete). Then,

u(y) ≤ u(x) + |∇u(x)| d(x, y) + Cd(x, y)2

Proof. Let γ : [0, d(x, y)]→M be a geodesic from x to y. As the function f : t 7→ Ct2−u◦γ(t)
is convex, we have

f(d(x, y)) ≥ f(0) + f ′(0)d(x, y).

The estimate follows.

Proposition A.1.8. Let C > 0. If (uk) is a sequence of locally Lipschitz C-semiconcave
functions that converges pointwise to a function u∞, then u∞ is also semiconcave, and for any
sequence of points (pk) that converges to a point p∞, we have

lim inf
k→∞

|∇umk(pk)| ≥ |∇u∞(p∞)| .
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Proof. Let ε > 0. Let q ∈M be such that

|∇u∞(p∞)| ≤ u∞(q)− u∞(p∞)

d(q, p∞)
− ε.

Then, we have

|∇u∞(p∞)| ≤ lim inf
k→∞

uk(q)− uk(pk)
d(q, pk)

− ε

≤ lim inf
k→∞

|∇uk(pk)|+ 2Cd(q, pk)− ε

= lim inf
k→∞

|∇uk(pk)| − ε,

where we have used the Proposition A.1.7 above in the second estimate. As it is valid for any
ε, this concludes the proof.

We recall the following proposition.

Proposition A.1.9 (Proposition 3.4 in [60].). For any compact subset K of a smooth manifold
without boundary M , the distance function to the set K is locally semiconcave on M \K.

We end this appendix with the following proposition about the generalized gradient of the
distance function to a general compact set K.

Proposition A.1.10. Let M be a smooth Riemannian manifold without boundary, K a com-
pact subset of M , and dK the distance function to K. Let p be a point of M such that there
exist several minimizing geodesics from p to K. We denote the set of unit speed geodesics from
p to K that are minimizing between p and K by geod(p,K). For any v ∈ TpM , we have

∂+
v dK(p) = min

γ∈geod(p,K)
−γ̇(0) · v.

In particular,
|∇dK | (p) = max{0, max

v∈TpM,|v|=1
min

γ∈geod(p,K)
−γ̇(0) · v}.

A similar result for the distance function to a point is proved in [1, Theorem 4.5.6], in the
more general framework of Alexandrov spaces, but with some additional restrictions on the
curvature of the ambient space. A similar result for the directional derivatives of the function
d(·, ·) is also stated in [1, Lemma 3.2], but the proof given there mainly consists in saying that
the proof in [1, Theorem 4.5.6] also works in the case of Riemannian manifolds without the
restriction on the curvature. For any reader that is not familiar with Alexandrov spaces, that
is not very satisfying. So here is a complete proof in the Riemannian context.

Proof. Let γ : [0, dK(p)] → M be a geodesic of geod(p,K). Let a = γ(dK(p)/2). As γ
is minimizing between p and γ(dK(p)), we have a /∈ Cutp(M), and so p /∈ Cuta(M). In
particular, the function da is di�erentiable at p, and ∇da(p) = −γ̇(0). Thus, we have

dK(expp(tv))− dK(p)

t
≤
da(expp(tv)) + dK(a)− dK(p)

t

=
da(expp(tv))− da(p)

t
→ −γ̇(0) · v as t→ 0.
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This proves
∂+
v dK(p) ≤ min

γ∈geod(p,K)
−γ̇(0) · v. (A.1.1)

Now, for every t > 0, let γt ∈ geod(expp(tv),K). For t small enough, the length of γt is
bounded by dK(p) + 1. By compactness of the set of geodesics of length bounded by a given
constant, there exists a sequence of positive numbers (tn)n≥0 that converges to 0, such that
γn := γtn converges to a unit speed geodesic γ as n → +∞. As K is closed, γ is a geodesic
from p to K. Moreover, we have

length(γ) = lim
n→∞

length(γn) = lim
n→∞

dK(expp(tnv)) = dK(p),

so γ ∈ geod(p,K). Let R = min{inj(M), dK(p)/2}, where inj(M) is the injectivity radius of
M . In particular for any (x, y) such that d(x, y) < R and x 6= y, the distance function d( · , · )
is smooth in a neighborhood of (x, y) in M ×M . For n ∈ N, let bn := γn(R), and b∞ = γ(R).
Let U, V ⊂ M be precompact neighborhoods of p and b∞ respectively such that d( · , · ) is
smooth on U × V . For n large enough, we have expp(tnv) ∈ U and bn ∈ V , and so

dK(p) ≤ dK(bn) + d(bn, p)

= dK(expp(tnv))− d(bn, expp(tnv)) + d(bn, p)

= dK(expp(tnv))−∇2d(bn, p) · v + o(tn), (A.1.2)

where ∇2 is the gradient with respect to the second coordinate. We have

∇2d(bn, p) −→
n→∞

∇2d(b∞, p) = −γ̇(0)

because d( · , · ) is smooth on U × V . So (A.1.2) yields

lim inf
n→∞

dK(expp(tnv))− dK(p)

tn
≥ −γ̇(0) · v.

In particular,
∂+
v dK(p) ≥ min

γ∈geod(p,K)
−γ̇(0) · v.

With (A.1.1), this concludes the proof.
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A.2 Tensor calculus and covariant derivatives

In this appendix, we recall some notions of tensor calculus and covariant derivation on Rie-
mannian manifolds. These notions are used in the proof of Proposition 3.5.5 in particular. If
the reader has studied these notions before, we hope that these reminders will be su�cient to
understand the computations of the proof of Proposition 3.5.5. We try and give a de�nition of
every notion needed, along with the computation rules we need. We give a list of formulae at
the end of the section. If the reader is totally unfamiliar with these notions, those reminders
might be too brief for an introduction.

Let us give some speci�c references for each notion. A brief introduction to the notions
of tensor, tensor product, trace of a tensor, tensor �eld over a manifold, can be found in [55,
Chapter 3]]. For the notions of raising and lowering indices, inner product on tensors, see [55,
Chapter 3]]). For covariant derivatives, see [55, Chapter 4]).

Tensors. Let V be a n-dimensional vector space (you may think of V as the tangent space
of a point p ∈ M , TpM). Let k, l ∈ N. For any i ∈ {1, ..., k + l}, let Vi denote either V or its
dual V ?. A (k, l)-tensor on V is a multilinear map

T : V1 × ...× Vk+l → R,

where V ? appears k times in the product V1 × .. × Vk+l and V appears l times. In this case
we say that T is a tensor of rank k + l.

In particular, a (0, 1) tensor is just a linear form on V , and a (1, 0) tensor is an element
of V ??, so it can be seen as a vector of V . Reciprocally, any vector X ∈ V will automat-
ically be seen as a (1, 0) tensor that will still be denoted by X. More generally a tensor
T : V ? × ...× V ?︸ ︷︷ ︸

k

×V × ...× V︸ ︷︷ ︸
l

→ R can be seen as an element of the tensorial product

V ⊗ ...⊗ V︸ ︷︷ ︸
k

⊗V ? ⊗ ...⊗ V ?︸ ︷︷ ︸
l

.

Let (ei)1≤i≤n be a basis of V , whose dual basis is (ei)1≤i≤n. The coordinates of a (k, l)
tensor T : V ? × ...× V ?︸ ︷︷ ︸

k

×V × ...× V︸ ︷︷ ︸
l

→ R in the basis (ei)1≤i≤n are de�ned by

T j
1...jk

i1...il
:= T (ei1 , ..., ejk , ei1 , ...eil).

Note that the indices to corresponding arguments in V are subscripts, while the indices corre-
sponding to arguments in V ? are superscripts. If T were to take arguments in V and V ? in a
di�erent order, then we would write the indices in the coordinates ot T in the corresponding
order, still writing subscripts for indices corresponding to arguments in V and superscripts for
indices corresponding to arguments in V ?. For instance, if S : V × V ? × V → R is a (1, 2)
tensor we will write

S j
i k := S(ei, e

j , ek).

Abstract index notation. We may call a tensor by its coordinates, i.e we may write 'the
tensor S b

a c' instead of 'the tensor S'. This way we can encode the type of a tensor directly
in its name. This will also prove useful for computations. However, when doing so, we will
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use letters a, b, c, d... while we keep the letters i, j, k, l... for actual coordinates in a basis.
Therefore, T b1...bk

a1...al
is non-other than the tensor T , while the T j1...jk

i1...il
are the coordinates

of the tensor T in the basis we have chosen. One may think of the ai and bi as mere labelling
of the slots of T . This convention is called abstract index notation.

Tensor product. Given two tensors S and T of rank p and q respectively, their tensor product
is a tensor of rank p+ q de�ned by

S ⊗ T (u1, ..., up, v1, ...vq) = S(u1, ...up)T (v1, ...vq).

The coordinates of S ⊗ T are the products of the coordinates of S and T . For instance, the
coordinates of the tensor product of S b

a c and T
d
e are

(S ⊗ T ) j li k m = S j
i kT

l
m.

Therefore, using the convention of abstract index notation, the tensor product of S b
a c and Tde

will be denoted by S b
a cTde.

Trace of a tensor. Let T b
a be a (1, 1) tensor. For any X ∈ V , T (X, ·) ∈ V ?? ' V , so T can

also be seen as an endomorphism of V . Its trace as a tensor, denoted by tr(T ) is de�ned as
the trace of the associated endomorphism of V . The trace of T is also called contraction of T .
In any basis (ei) of V , we have the formula

tr(T ) =
n∑
i=1

T i
i .

We will use the Einstein summation convention, where an index repeated twice means we are
summing over that index. Therefore, we have

tr(T ) = T i
i .

In abstract index notation, we will denote by T a
a the trace of T . We can extend this de�nition

to any (k + 1, l + 1) tensor T . All we need is a lower index and an upper index. The result is
then a (k, l) tensor. However, one must specify with respect to which indices the trace is taken.
This can be done when writing the coordinates of the tensor. For instance, we can take the
trace of the tensor S cd

ab with respect to the �rst and last indices, to get a (1, 1) tensor whose
coordinates are S ki

ij . We will denote this tensor by S ca
ab . The tensor S ba

ab would denote
the trace of the tensor S with respect to the �rst and fourth coordinates, and the second and
third coordinates, taken successively (the order does not matter.)

As mentioned before, any vector X of V can be seen as a (1, 0) tensor. We still denote by X
the associated (1, 0) tensor. Now let T a1...ak

b1...bl+1
be a (k, l+ 1) tensor. Then, T ( · , ..., · , X)

is a (k, l) tensor, and one can see (using coordinates) that it is the trace of the tensor product
of T and X, i.e

T ( · , ..., · , X)a1...ak
b1...bl

= T a1...ak
b1...blc

Xc.

The tensor T a1...ak
b1...blc

Xc is also called contraction of T and X. Therefore, the result of the
action of a tensor on a vector is the contraction of this tensor with the vector (seen as a (1, 0)
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tensor). Likewise, the result of the action of any tensor T a1...ak
b1...bl

on the arguments φ1,...,

φk, X1,...,Xl, is

T (φ1, ..., φk, X1, ...Xl) = T a1...ak
b1...bl

φ1
a1
...φkakX

b1
1 ...X

bl
l .

Raising and lowering indices. Now we assume that V is equipped with a scalar product
g. (If V is TpM , g can be the metric of the manifold M .) The scalar product induces an
isomorphism between V and its dual V ?. We will also denote this isomorphism by g. Its
inverse is denoted by g−1. By composition with this isomorphism, we can transform a (0, 1)
tensor T into a (1, 0) tensor T̃ and vice-versa by setting

T̃ (X) = T (g−1(X)).

We denote by gij and gij the components of the maps g and g−1 respectively. In coordinates,
we have the relations

T̃ i = gijTj and Tj = gij T̃
i

We will denote the tensor T̃ by T a. We have

T a = gabTb,

which means that T a is the contraction of gab and Tb, or equivalently the trace of the tensorial
product of gab and Tb. We call this operation 'raising' and index. We may also lower an index
thanks to the relation

Ta = gabT
a.

Likewise, we can transform any (k, l + 1) tensor into a (k + 1, l) tensor, and vice-versa,
by composition with the isomorphism g, or equivalently by taking the trace of the tensorial
product with g. We may also raise several indices successively. The order does not matter.
For instance, for a tensor Sab, we have Sab = gacgbdScd.

More about the trace. With the operation of raising and lowering indices, we can de�ne
the trace of a tensor with respect to any two indices, even if they are both low or both up:
if this two indices are low, raise one of them and take the trace, otherwise lower one of them
and take the trace. For instance, the trace of the tensor Sab is S a

a (= Sabg
ba = tr(Sabg

bc)).

Inner product of tensors. We can extend the scalar product g on V to a scalar product
on tensors of the same type, by requiring that if (ei) is an orthonomal basis and (ei) its dual,
then the family composed of tensor products of elements of (ei) and (ei) of a given type is
orthonormal. It can also be described in terms of raising and lowering indices and taking the
trace. Indeed, to take the scalar product of two tensors T and S of the same type, raise all the
lower indices and lower all the upper indices of T , and take the trace of the tensor product of
T and S with respect to all pair of corresponding indices. For instance, for some tensors Tab
and Sab, we have

g(T, S) = T abSab

(
= gacgbdTcdSab

)
.

We also de�ne the norm of a tensor T by

|T |2 = g(T, T ). (A.2.1)
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If T = Tab, we get
∣∣T 2
∣∣ = TabT

ab.

Tensor �elds. A tensor �eld T on M is the collection of tensors of TpM for every point
p ∈ M . A tensor �eld T is said to be smooth if its coordinates in a smooth basis of TM are
smooth.

Covariant derivative. Let X(M) denote the set of smooth vector �elds over M . The
covariant derivative D of M (or Levi-Civita connection) is the unique map

D : X(M)× X(M)→ X(M),

that is C∞(M)-linear in the �rst variable, R-linear in the second variable and such that for
any f ∈ C∞(M) and X,Y, Z ∈ X(M),

DY (fX) = DY (f)X + fDY (X), (product rule)

DY (g(X,Z)) = g(DYX,Z) + g(X,DY Z), (compatibility with the metric)

whereDY (f) is the di�erential of f at Y . Because of the C∞(M)-linearity, the map Y 7→ DYX
is a well de�ned endomorphism on every tangent space TpM , i.e a (1, 1) tensor �eld. Therefore
we can de�ne the (total) covariant derivative tensor DX of X by the relation

DX(φ, Y ) = DYX(φ).

In abstract index notation, the tensor DX will be denoted by DaX
b, so that DYX =

(DaX
b)Y a.

The covariant derivative can be extended to any kind of tensor, by requiring only that it
satis�es some product rules. Therefore, for any tensor (k, l) tensor T , there is a well de�ned
(k, l + 1) tensor DT . The second covariant derivative (or Hessian) of T is D2T = D(DT ).

In abstract index notation, the covariant derivative of a tensor �eld T a1...ak
b1...bl

is denoted
by DcT

a1...ak
b1...bl

. The second covariant derivative is denoted by DdDcT
a1...ak

b1...bl
, etc. We

may also use the notation Dk
a1...ak

in place of Da1 ...Dak .
The covariant derivative sati�es the following product rule :

D(S ⊗ T ) = DS ⊗ T + S ⊗DT

The covariant derivative commutes with the trace. In particular, an expression of the type
DaT

bc
bc makes sense, as we do not need to specify if it denotes the derivative of the trace of

the tensor T , or the trace of the derivative of the tensor T .
Let us give an example of computation with the covariant derivative on tensors. Using the

facts that the covariant derivatives commute with the trace and that it satis�es a product rule
on tensor products, we deduce for instance that for any tensor Hab,

Dc(|H|2) = Dc(HabH
ab) = (DcHab)H

ab +Hab(D
cHab).

By this example, we hope to show that computations with covariant derivatives in abstract
index notation are fairly intuitive.

Warning. Let T be any tensor �eld, andX and Y some vector �leds. The tensorDaDbTX
aY b

is not the same as DX(DY T ). Stated otherwise, evaluating the second covariant derivative of
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T on X and Y is not the same as derivating T in the directions Y and X successively. Indeed,
we have DY T = DbTY

b, so some derivatives of Y b will appear in DX(DY T ).

Laplacian. The Laplacian of a function u is the trace of the second covariant derivative of u,
i.e.

∆u := gabDaDbu.

Riemann curvature tensor. The Riemann curvature tensor is a (0, 4) tensor Rabcd de�ned
by

∀X,Y, Z,W ∈ X(M), R(X,Y, Z,W ) = g(D2Z(X,Y )−D2Z(Y,X),W ).

Though Z needs to be a vector �eld (and not just a vector) for this de�nition to make sense
a priori, it only depends on the pointwise values of Z, and so R is actually a tensor.

We will denote the commutator of Da and Db by D2
[ab]:

D2
[ab] := DaDb −DbDa.

With this notation, we have for any vector Z:

D2
[ab]Z

c = R c
abd Z

d.

Summary of useful formulae. Here we speci�cally recall the formulas we use in the proof
of Proposition 3.5.5, in abstract index notation.

• Trace: we recall that when two (abstract) indices are repeated, it means we are taking
the trace with respect to those indices.

• Tensor applied to vectors:
T (X,Y ) = TabX

aY b.

• Norm of a tensor: ∣∣∣T a1...ak
b1...bl

∣∣∣2 = T a1...ak
b1...bl

T b1...bla1...ak
.

• Laplacian:
∆v = gabDaDbv.

• Product rule:

Da(T
a1...ak

b1...bl
S c1...ci
b1...bj

) = (DaT
a1...ak

b1...bl
)S c1...ci
b1...bj

+T a1...ak
b1...bl

(DaS
c1...ci

b1...bj
).

• Compatibility with the metric: symbols D and g can be inverted.

Da(g
bcT a1...ak

b1...bl
) = gbcDaT

a1...ak
b1...bl

.

• Riemann curvature tensor:
D2

[ab]Z
c = R c

abd Z
d.
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A non-local isoperimetric problem
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Outline of part II

In this part, we study a non-local isoperimetric problem derived from Gamow's liquid drop
model for the nucleus. More precisely, we are interested in

min
E⊂Rn,|E|=m

P (E) + Vα(E) + Uβ,A(E), (1.1.3)

where

• P (E) is the perimeter of E,

• Vα(E) :=
∫
E×E

dxdy

|x−y|n−α ,

• Uβ,A(E) :=
∫
E A |x|

β dx,

• n ∈ N∗ (the dimension of the ambient space), m > 0 (called the mass), α ∈ (0, n) and
A ≥ 0 are constants.

If A = 0, we recover Gamow's liquid drop model, which does not admit any minimizer for m
su�ciently large. If A > 0, this problem admits a minimizer for any mass m.

In the �rst chapter, we study minimizers of large mass (i.e when m→ +∞). We show the
following.

Theorem (Theorem 1.1.1). Given α ∈ (0, n), β > 0 and A > 0, assume α < β. Let (Em)m>0

be a family of minimizers in (1.1.3), such that |Em| = m, and let E∗m be the rescaling of Em of

the same mass as the unit ball B centered at 0 (ie E∗m =
(
|B|
m

) 1
n
Em). Then, up to modifying

the sets (Em) by some sets of measure 0, the boundaries of the sets (E∗m) Hausdor�-converge
to the boundary of B as m→ +∞.

However, from Proposition 1.3.3 we know that if β < 1, then large volume minimizers are
not exactly balls. Indeed, in this case large balls are not even locally minimizing. On the
contrary, in the case β > 1, if we assume in addition that α > 1, then we have:

Theorem (Theorem 1.1.2). Given α ∈ (0, n), β > 0 and A > 0, assume 1 < α < β. There
exists a mass m1 = m1(n, α, β,A) > 0 such that for any m > m1 the ball of volume m centered
at 0 is the unique minimizer (1.1.3), up to a set of measure 0.

In the second chapter, we develop a numerical method to compute the minimizers. Our
results seem to con�rm that the following conjecture of R. Choksi and M. Peletier regarding
Gamow's model is true in dimension 2: for A = 0, if problem (1.1.3) admits a minimizer, then
it is a ball.

We started working on some aspects of the �rst Chapter under the supervision of Vincent
Millot for our Master 2 thesis. The new results start with Section 1.4. In particular, the
results presented in this introduction are new.





Chapter 1

Large volume minimizers

We started working on some aspects of this Chapter under the supervision of Vincent Millot
for our Master 2 thesis. The new results start with Section 1.4.

1.1 Introduction

1.1.1 The classical isoperimetric problem

Let n ∈ N∗ be an integer. For any measurable set E ⊂ Rn, the perimeter of E is de�ned as
the total variation of the indicator function of E:

P (E) :=

∫
Rn
|D1E | = sup

{∫
E

div f : f ∈ C1
c (Rn), |f |L∞ ≤ 1

}
.

Our book of reference for the perimeter is Giusti's book, [43]. Maggi's book [59] is probably
more reader-friendly though (but does not include the study of BV functions). The quantity
P (E) may be in�nite, and when it is �nite, we say that E is a set of �nite perimeter. If
E is a C1 open set, then as one would expect, we have P (E) = Hn−1(∂E), where Hn−1 is
the (n − 1)-dimensional Hausdor� measure. The properties of the perimeter we need will
be recalled along the way, when needed. The classical isoperimetric problem is the following
variational problem:

min
E⊂Rn,|E|=m

P (E),

where |E| is the volume of E, and m > 0 is a constant. It is well known that for any m > 0,
this problem has a unique minimizer up to translation, namely B[m], the ball of volume m.
Furthermore, a sharp quantitative estimate was proved in [40]. Before stating it, we need a
de�nition. Given a set E of volume m, we call Fraenkel asymmetry the quantity

λ(E) := min
x∈Rn

|E∆(x+B[m])|
|E|

,

where E∆F = (E ∪ F ) \ (E ∩ F ) is the symmetric di�erence of E and F . There exists a
constant C(n) depending only on the dimension of the ambient space such that for any set E
of volume m,

P (E)− P (B[m]) ≥ C(n)P (B[m])λ(E)2.

101



1.1. Introduction

See also [39] for a re�nement of this inequality, where the di�erence P (E) − P (B[m]) also
controls the oscillation of the normal to the (reduced) boundary of E.

1.1.2 Gamow's liquid drop problem

Gamow's liquid drop model for the atomic nucleus consists in:

inf
E⊂R2,|E|=m

P (E) +

∫
E×E

dxdy

|x− y|
(1.1.1)

where

• P (E) is the perimeter of E,

• m, called the mass, is a positive constant.

In this model, the nucleus is thought of as an incompressible charged liquid. The perimeter
term models the short-range attractive nuclear force, whereas the other term, similar to an
electrostatic energy, models the repulsive forces between the protons of the nucleus. Gamow
invented this model in the 1930's, in an attempt to predict the shape of nuclei, the nonexistence
of large nuclei, and the existence of a nucleus with the least energy per nucleon. These
three goals have only been attained relatively recently (in the 2010's, see next subsection).
Problem (1.1.2) has been studied by mathematicians as an interesting extension of the classical
isoperimetric problem. Indeed, two terms are competing: the perimeter tends to round things
up and is minimized by balls, whereas the non-local term tends to spread the mass, and is
maximized by balls. This last fact is a consequence of Riesz rearrangement inequalities (see
[57]).

1.1.3 Some variations of the liquid drop model

The most studied variant of Gamow's model is the following:

inf
E⊂R2,|E|=m

P (E) + Vα(E) (1.1.2)

where

• P (E) is the perimeter of E,

• Vα(E) :=
∫
E×E

dxdy

|x−y|n−α is the Riesz energy of E,

• n ≥ 2 (the dimension of the ambient space), m > 0 and α ∈ (0, n) are constants.

The physical case corresponds to n = 3 and α = 2. In this case, the Riesz energy boils down
to the electrostatic energy

∫
E×E

dxdy
|x−y| .

It was shown in [33] by Figalli, Fusco, Maggi, Millot, and Morini, that if the mass m is
small enough, then the problem (1.1.2) admits a unique minimizer (up to translation), namely
the ball of volume m. See also the papers of Knüpfer, Muratov, Julin, Bonacini and Cristoferi
[53], [64], [51] and [10], for anterior and slightly less general results.

On the other hand, for α ∈ (n− 2, n), it was shown in [64] that for m large enough there
is no minimizer of problem (1.1.2). This result was simultaneously proved in [58] by Lu and
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Chapter 1. Large volume minimizers

Otto in the physical case. See also [35] for a short proof with a quantitative bound, by Frank,
Killip and Nam.

In [36], Frank showed in the physical case that there exists a set which minimizes the
quantity (P (E) + Vα(E))/ |E|, thus proving that in Gamow's model, there is a nucleus with
the least energy per nucleon.

In [33], the authors studied a generalization of problem (1.1.2), where the perimeter term
is replaced with a non-local perimeter.

Another interesting variation consists in replacing the repulsive Riesz energy with a re-
pulsive energy involving another kernel. Let K ∈ L1(Rn). Problem (1.1.2) can be rephrased
as

inf
E⊂Rn,|E|=m

P (E) +

∫
E×E

K(x− y)dxdy,

with K(x) = |x|α−n. In [70], Rigot considered the above problem with K an L1 compactly
supported function, and proved that it has a minimizer for any mass m. The following papers
are posterior to the present work. In [67], Pegon proved the same result in the case of radially
symmetric non-increasing kernels K with some regularity and integrability conditions at in�n-
ity. He also showed that, under the same conditions, after rescaling, the problem Γ-converges
to the classical isoperimetric problem as the mass m goes to +∞. In [65], Muratov and Simon
considered the kernel |x|−3 in dimension 2, and also studied the minimizers of large mass.

In [3], Alama, Bronsard, Choksi, and Topaloglu studied problem (1.1.2) with the addition
of a con�ning background potential of the form −Z

|x|p . They proved that it admits a minimizer
for any mass m, and study the minimizers as Z → 0.

In [44], Goldman, Novaga and Roger studied the small mass minimizers of problem (1.1.2)
with the addition of the Willmore energy.

As shown in [24], Gamow's liquid drop model is also related to diblock copolymers, and
the Ohta�Kawasaki functional. This is also an active �eld of research, see for instance [2] and
[82].

1.1.4 Our problem

To restore the existence of a minimizer for large masses in (1.1.2), we add the energy associated
to the potential A |x|β to our functional, as we expect it to counter the spreading e�ect of the
Vα term. Thus we are interested in the following modi�cation of the original problem (1.1.2):

inf
E⊂Rn,|E|=m

Eα,β,A(E) := P (E) + Vα(E) + Uβ,A(E), (1.1.3)

where

• Uβ,A(E) :=
∫
E A |x|

β dx,

• A ≥ 0 and β > 0 are constants.

As easily proved in Section 1.2, we indeed have the existence of a minimizer in (1.1.3) for
any mass m.

In section 1.3, we extend some known results about minimality of small balls, and the
domain (of masses m) of local minimality of balls (depending on the parameters α and β). We
do not give complete proofs, but recall brie�y the techniques used in [33] to get these results.
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In section 1.4, we study large volume minimizers (i.e. when m is large) of (1.1.3) when
α < β. More precisely we prove the following theorems:

Theorem 1.1.1. Given α ∈ (0, n), β > 0 and A > 0, assume α < β. Let (Em)m>0 be a family
of minimizers in (1.1.3), such that |Em| = m, and let E∗m be the rescaling of Em of the same

mass as the unit ball centered at the origin, B (ie E∗m =
(
|B|
m

) 1
n
Em). Then, up to modifying

the sets (Em) by some sets of measure 0, the boundaries of the sets (E∗m) Hausdor�-converge
to the boundary of B as m→ +∞.

However, from Proposition 1.3.3 we know that if β < 1, then large volume minimizers are
not exactly balls. Indeed, in this case large balls are not even locally minimizing. On the
contrary, in the case β > 1, if we assume in addition that α > 1, then we have:

Theorem 1.1.2. Given α ∈ (0, n), β > 0 and A > 0, assume 1 < α < β. There exists a mass
m1 = m1(n, α, β,A) > 0 such that for any m > m1 the ball of volume m centered at 0 is the
unique minimizer (1.1.3), up to a set of measure 0.

We conjecture that this last theorem holds also for any α ∈ (0, 1] as long as β > 1.
However, this seems to require di�erent techniques.

1.2 Existence of a minimizer in (1.1.3)

In this section, we prove the following easy proposition:

Proposition 1.2.1. As long as A > 0, problem (1.1.3) admits a minimizer for any mass
m > 0.

Notation. We denote by B the unit ball of Rn, and by B[m] the ball of volume m centered at
0.

Proof. Let (Ek) be a minimizing sequence for the variational problem (1.1.3). By replacing
Ek with the ball B[m] if necessary, we can assume

Eα,β,A(Ek) ≤ Eα,β,A(B[m]), for all k ∈ N. (1.2.1)

Set g(x) = A |x|β . As g(x) −→
|x|→+∞

+∞, we can take a sequence of positive radius (Rk)k∈N and

a sequence of positive constants (Aj)j∈N such that Aj −→
j→∞

+∞ and for all x /∈ BRj , g(x) > Aj .

For any j ∈ N, the sequence (Ek∩BRj )k∈N is a sequence of uniformly bounded Borel sets, with
uniformly bounded perimeters. Indeed, the inequalities P (Ek ∩ BRj ) ≤ P (Ek), P ≤ Eα,β,A
and (1.2.1) together give P (Ek ∩BRj ) ≤ Eα,β,A(B[m]) for all k.

Therefore we can extract a L1-converging subsequence of (Ek∩BRj )k∈N. Doing that for all
j ∈ N and using a diagonal argument, we get a subsequence of (Ek)k∈N that converges locally
in L1 to a Borel set E ⊂ Rn. Using the lower semi-continuity of the perimeter and Fatou's
lemma in Vα(Ek) and Uβ,A(Ek), we get that

Eα,β,A(E) ≤ lim inf
k→∞

Eα,β,A(Ek). (1.2.2)
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Now we show that |E| = m. By Fatou's lemma, from |Ek| = m, we get |E| ≤ m. Also, for
any j ∈ N, from the inequalities Uβ,A(Ek \BRj ) ≤ Uβ,A(Ek), Uβ,A ≤ Eα,β,A and (1.2.1) we get

Uβ,A(Ek \BRj ) ≤ Eα,β,A(B[m]). (1.2.3)

But

Uβ,A(Ek \BRj ) =

∫
Ek\BRj

g(x)dx ≥ Aj
∣∣Ek \BRj ∣∣ . (1.2.4)

Thus (1.2.3) and (1.2.4) together give∣∣Ek ∩BRj ∣∣ = m−
∣∣Ek \BRj ∣∣ ≥ m− Eα,β,AB[m]

Aj
.

Taking the limit k →∞, then j →∞, we obtain∣∣E ∩BRj ∣∣ ≥ m− Eα,β,AB[m]

Aj
, then |E| ≥ m.

Thus |E| = m. With (1.2.2), it means that E is a minimizer of the variational problem
(1.1.3).

Remark 1.2.2. It is clear from the proof that Proposition 1.2.1 is true if we replace the potential
A |x|β by any L1

loc non-negative function g such that g(x) −→
|x|→+∞

+∞.

1.3 Extension of some known results

In this section we recall two known results about the variational problem (1.1.2), and extend it
to (1.1.3), recalling only the techniques used in [33]. The �rst result states that if the mass m
is small enough, then problem (1.1.2) admits a unique (up to translation) minimizer, namely
the ball of volume m. The same holds for problem (1.1.3):

Proposition 1.3.1. Given α ∈ (0, n), β > 0, A > 0, there exists a constant m0(n, α, β,A) > 0
such that for any m ∈ (0,m0), problem (1.1.3) admits the ball of volume m centered at 0 as
its unique minimizer.

It is a direct consequence of the same theorem for problem (1.1.2) (see [33, Theorem 1.3]),
as balls centered at 0 are also volume-constrained minimizers of Uβ,A. This last fact is a
consequence of Riesz inequality regarding symmetric decreasing rearrangements (see [57] for
rearrangement inequalities). Note that Proposition 1.3.1 is true if we replace the potential
A |x|β with a radially symmetric non-decreasing function g.

The second result deals with local minimality of balls.

Terminology 1.3.2. We say that a set E ⊂ Rn of volume m is a L1-local minimizer in (1.1.3)
if there exists ε > 0 such that for any set F ⊂ Rn such that |F | = |E| and |E∆F | < ε,
Eα,β,A(E) ≤ Eα,β,A(F ).

In the case of problem (1.1.2), we know from [33, Theorem 1.5] that there exists a m∗ > 0
such that if m < m∗, then B[m] is a L1-local minimizer in (1.1.2), and if m > m∗ then B[m]
is not a L1-local minimizer in (1.1.2). As stated in the next theorem, the addition of the Uβ,A
term may modify this situation, but we can still apply the techniques used in [33] to get a
similar result.
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Proposition 1.3.3. Given α ∈ (0, n), β > 0 and A > 0,

1. if α > β, then there exists a mass m∗(n, α, β,A) > 0 such that if m < m∗, then B[m] is
a L1-local minimizer in (1.1.3), and if m > m∗ then B[m] is not a L1-local minimizer
in (1.1.3),

2. if α = β, then either the same holds, or (if α > 1 and A is small enough) B[m] is a
L1-local minimizer in (1.1.3) for any m > 0,

3. if α < β and β > 1, then there exists a mass m∗(n, α, β,A) > 0 such that if m > m∗
then B[m] is a L1-local minimizer in (1.1.3),

4. if α < β and β < 1, then there exists a mass m∗(n, α, β,A) > 0 such that if m > m∗
then B[m] is not a L1-local minimizer in (1.1.3),

5. if α < β and β = 1, then the conclusion of either 3 or 4 holds (depending on the value
of A).

Remark 1.3.4. The conclusions in points 3, 4 and 5 are less precise than in points 1 and 2.

Ideas of the proof. The method used in [33] still applies to our functional Eα,β,A = P + Vα +
Uβ,A. Given m > 0, let us proceed to a rescaling of the functional and set

γ =

(
m

|B|

)1/n

and Eα,β,A,γ := P + γ1+αVα + γ1+βUβ,A,

so that for any set E of volume m, the set E∗ = 1
γE has volume |B| and

Eα,β,A(E) = γn−1Eα,β,A,γ(E∗).

Thus we are reduced to �nding the values of γ > 0 such that the unit ball B centered at 0 is
a local minimizer of Eα,β,A,γ .

Following [33, Section 6] we can compute the second variation of Eα,β,A,γ at B. The terms
P and Vα are treated in [33] and the term Uβ,A adds no further di�culty. We �nd that given
any smooth compactly supported vector �eld X, such that the volume of B is preserved under
the �ow (ΦX

t )t>0 of X, we have:

δ2Eα,β,A,γ(B)[X] =
∑
k≥2

(λk − λ1)

(
1− γ1+αµ

α
k − µα1
λk − λ1

+ γ1+β Aβ

λk − λ1

)
ak(X · νB)2

+ γ1+βAβa1(X · νB)2,

where

• δ2Eα,β,A,γ(B)[X] := d2

dt2
[Eα,β,A,γ(ΦX

t (B))]t=0,

• νB is the unit outer normal vector to ∂B,

• ak(X · νB) are the coe�cient of the function X · νB : ∂B → R with respect to an
orthonormal basis of spherical harmonics,
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• λk = k(n+ k − 2) is the k-th eigenvalue of the Laplacian on the sphere ∂B,

• µαk is the k-th eigenvalue of the operator Rα de�ned by

Rαu(x) := 2

∫
∂B

u(x)− u(y)

|x− y|n−α
dHn−1(y), ∀u ∈ C1(∂B).

From there we deduce that, de�ning

S∗ = {γ > 0 : 1− γ1+αµ
α
k − µα1
λk − λ1

+ γ1+β Aβ

λk − λ1
≥ 0, ∀k ≥ 2}, (1.3.1)

if γ /∈ S∗, then there exists a vector �eld X such that∣∣φXt (B)
∣∣ = |B| and Eα,β,A,γ(φXt (B)) < Eα,β,A,γ(B) for t small enough.

Thus B is not a L1-local minimizer of Eα,β,A,γ if γ /∈ S∗.
Now let us set

S̃∗ = {γ > 0 : 1− γ1+αµ
α
k − µα1
λk − λ1

+ γ1+β Aβ

λk − λ1
> 0, ∀k ≥ 2}. (1.3.2)

We assume γ ∈ S̃∗ and explain how to show that B is a L1-local minimizer of Eα,β,A,γ . First,
we note that it is true in a certain class of nearly spherical sets. More precisely, let E be a
nearly spherical set associated to a C1 function u : ∂B → R:

E := {s(1 + u(x))x, x ∈ ∂B, 0 ≤ s ≤ 1}.

Assume that |E| = |B| and
∫
E |x|

β−2 xdx = 0. Then, using some explicit computations
and Taylor expansions, we can show that there exist some constants ε(n, α, β,A, γ) > 0 and
C(n, α, β,A, γ) > 0 such that if ‖u‖C1(∂B) ≤ ε(n, α, β,A, γ), then

Eα,β,A,γ(E)− Eα,β,A,γ(B) ≥ C(n, α, β,A, γ)
(
‖u‖2L2(∂B) + ‖∇(u)‖2L2(∂B)

)
. (1.3.3)

Next we argue by contradiction and assume that we have a sequence of Borel sets (Ek) such
that for any k, |Ek| = |B|, Eα,β,A,γ(Ek) < Eα,β,A,γ(B[m]) and |Ek∆B| −→

k→∞
0. We consider a

set Fk solution of the penalized problem:

inf{Eα,β,A,γ(E) +M |E∆Ek| , E ⊂ Rn},

with M > 0 to be taken large enough. The role of the set Fk is to be "close to Ek", and to be
a Λ-minimizer in the sense that

P (Fk) ≤ P (E) + Λ |E∆Fk| , for any Borel set E.

Thus we show that Fk is a Λ-minmizer for some Λ uniform in k, and that |Fk∆B| −→
k→∞

0, which

implies by classical regularity theory that Fk is an almost spherical set. Up to translating and
rescaling Fk we can apply inequality (1.3.3). Only simple manipulations are left to get a
contradiction.
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At this stage we have two sets S∗ and S̃∗ de�ned by (1.3.1) and (1.3.2), such that if(
m
|B|

)1/n
∈ S̃∗ then B[m] is a L1-local minimizer in (1.1.3), and if

(
m
|B|

)1/n
/∈ S∗ then B[m] is

not a L1-local minimizer in (1.1.3). We are left to study the variations of the functions

γ 7→ 1− γ1+αµ
α
k − µα1
λk − λ1

+ γ1+β Aβ

λk − λ1
, k ≥ 2

to get the conclusions of the theorem. This is done in Appendix 1.A.

1.4 Large volume minimizers for α < β

1.4.1 Hausdor� convergence of large volume minimizers for α < β

Here we prove Theorem 1.1.1, i.e. that large volume minimizers of (1.1.3) are almost balls
if α < β. Note that if β < 1, we know that large volume minimizers are not exactly balls.
Indeed, in virtue of Proposition 1.3.3, balls are not even local minimizers in this case.

The idea behind the proof is that if α < β, then for a Borel set E ⊂ Rn of volume m > 0
with m large, the predominant term in Eα,β,A(E) is Uβ,A(E). This can be seen by rescaling:

Eα,β,A(E) = γn−1
(
P (E∗) + γ1+αVα(E∗) + γ1+βUβ,A(E∗)

)
, (1.4.1)

where we have set γ :=
(
m
|B|

) 1
n
and E∗ := 1

γE. As the unique volume constrained minimizer

of Uβ,A is the ball B[m], this implies that if E is a minimizer of Eα,β,A at mass m for m large,
Uβ,A(E) must be close to Uβ,A(B[m]). This in turn will imply that E is close to B[m]. Note
that according to the rescaling (1.4.1), proving Theorem 1.1.1 is equivalent to proving that if
(Eγ)γ>0 is a family of Borel sets such that |Eγ | = |B|, and each set Eγ is a volume-constrained
minimizer of the functional

Eα,β,A,γ := P + γ1+αVα + γ1+βUβ,A, (1.4.2)

then, up to modifying each set Eγ by a set of measure 0, the boundaries of the sets (Eγ)
Hausdor�-converge to the boundary of the unit ball B centered at 0 as γ → +∞. First we
will show the following convergence in measure:

Lemma 1.4.1. We have

|Eγ∆B| −→
γ→∞

0.

We will need the following stability lemma for the potential energy Uβ,A.

Lemma 1.4.2. For any Borel set E ⊂ Rn of volume |B|, we have

Uβ,A(E)− Uβ,A(B)) ≥ Aβ

8P (B)
|E∆B|2 .

Proof. Let E ⊂ Rn be a Borel set of volume |B|. De�ne r1 ≥ 0 and r2 > 0 to be such
that |{x ∈ Rn : r1 ≤ |x| ≤ 1}| = |{x ∈ Rn : 1 ≤ |x| ≤ r2}| = |E \B| = |B \ E|. Explicitely,
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r1 =
(

1− n |E\B|P (B)

) 1
n
and r2 =

(
1 + n |E\B|P (B)

) 1
n
. We then have

Uβ,A(E)− Uβ,A(B) =

∫
E\B

A |x|β dx−
∫
B\E

A |x|β dx

≥
∫
{x∈Rn : 1≤|x|≤r2}

A |x|β dx−
∫
{x∈Rn : r1≤|x|≤1}

A |x|β dx

(for x→ |x|β is radially symmetric non-decreasing),

= AP (B)

(∫ r2

1
rβrn−1dr −

∫ 1

r1

rβrn−1dr

)
=
AP (B)

n+ β

(
rn+β

2 − 1−
(

1− rn+β
1

))
=
AP (B)

n+ β

((
1 + n

|E \B|
P (B)

)n+β
n

− 1

−

(
1−

(
1− n |E \B|

P (B)

)n+β
n

))
. (1.4.3)

Now, setting λ := n+β
n and f(r) :=

(
(1 + r)λ − 1−

(
1− (1− r)λ

))
, we have

f ′′(r) = λ (λ− 1)
(

(1 + r)λ−2 + (1− r)λ−2
)
≥ λ (λ− 1)

As f ′(0) = f(0) = 0, we get f(r) ≥ λ(λ− 1) r
2

2 , which yields the result with (1.4.3).

Lemma 1.4.1 is then easily deduced from Lemma 1.4.2 :

Proof of Lemma 1.4.1. We have

γ1+βUβ,A(Eγ) ≤ Eα,β,A,γ(Eγ)

≤ Eα,β,A,γ(B)

= P (B) + γ1+αVα(B) + γ1+βUβ,A(B),

so

Uβ,A(Eγ)− Uβ,A(B) ≤ 1

γ1+β

(
P (B) + γ1+αVα(B)

)
.

This implies Uβ,A(Eγ)−Uβ,A(B) −→
γ→∞

0, which concludes the proof thanks to Lemma 1.4.2.

We are now in position to prove Theorem 1.1.1.

Proof of Theorem 1.1.1. Let (Eγ)γ>0 be a family of Borel sets such that |Eγ | = |B|, and each
set Eγ is a volume-constrained minimizer of the functional

Eα,β,A,γ := P + γ1+αVα + γ1+βUβ,A.

109



1.4. Large volume minimizers for α < β

We need to show that, up to modifying each set Eγ by a set of measure 0, the boundaries of
the sets (Eγ) Hausdor�-converge to the boundary of the unit ball B centered at 0 as γ → +∞.

Step one. We show that given R > 1, for γ large enough we have Eγ ⊂ BR, up to a set of
measure 0.

Given R > 1, set F = µ (Eγ ∩BR), with µ > 0 such that |F | = |B|, ie µ =
(
|Eγ |

|Eγ∩BR|

) 1
n

=(
1

1−u

) 1
n
, where u =

|Eγ\BR|
|Eγ | . We have

Eα,β,A,γ(F ) = µn−1P (Eγ ∩BR) + µn+αγ1+αVα(Eγ ∩BR)

+ µn+βγ1+βUβ,A(Eγ ∩BR)

≤ µn+βEα,β,A,γ(Eγ ∩BR). (1.4.4)

Take η > 0 to be chosen later, and then ε > 0 such that for all v ∈ [0, ε),
(

1
1−v

)n+β
n ≤

1 +
(
n+β
n + η

)
v. According to Lemma 1.4.1, if γ has been taken large enough, we can assume

that u ≤ ε, and so µn+β ≤ 1+
(
n+β
n + η

)
u. Then, using P (Eγ∩BR) ≤ P (Eγ), Vα(Eγ∩BR) ≤

Vα(Eγ) and
Uβ,A(Eγ)− Uβ,A(Eγ ∩BR) ≥ A |Eγ \BR|Rβ,

we �nd

Eα,β,A,γ(F ) ≤
(

1 +

(
n+ β

n
+ η

)
u

)
Eα,β,A,γ(Eγ ∩BR)

≤ Eα,β,A,γ(Eγ)− γ1+βA |Eγ \BR|Rβ +

(
n+ β

n
+ η

)
uEα,β,A,γ(Eγ)

= Eα,β,A,γ(Eγ) +

((
n+ β

n
+ η

)
Eα,β,A,γ(Eγ)− γ1+βARβ |B|

)
u

≤ Eα,β,A,γ(Eγ) +

((
n+ β

n
+ η

)
Eα,β,A,γ(B)− γ1+βARβ |B|

)
u. (1.4.5)

But as γ →∞,

Eα,β,A,γ(B) = γ1+βUβ,A(B) + o(γ1+β)

= γ1+βA
1

n+ β
P (B) + o(γ1+β)

= γ1+βA
n

n+ β
|B|+ o(γ1+β).

So with (1.4.5),

Eα,β,A,γ(F ) ≤ Eα,β,A,γ(Eγ) +

(
γ1+βA |B| (1 +

n

n+ β
η −Rβ) + o(γ1+β)

)
u.

Recall that R > 1, so that if η has been taken small enough, we get that for γ large enough,
Eα,β,A,γ(F ) ≤ Eα,β,A,γ(Eγ), with equality if and only if u=0, i.e. Eγ ⊂ BR up to a set of
measure 0.
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Step two. We show that given δ > 0, for γ large enough we have B1−δ ⊂ Eγ , up to a set
of measure 0. This is done by taking some mass of Eγ outside a certain ball BR and putting
it in Eγ ∩ Br for a well chosen r. In the proof we use Lemma 1.4.4 below to show that the
perimeter decreases under such a transformation for a well chosen r ∈ (1− δ, 1). On the other
hand, the increase of Vα is compensated by the decrease of Uβ,A if γ has been taken large
enough.

Let us set F = B \ Eγ and ε = δ/2. From lemma 1.4.1 we know that if γ has been taken
large enough we have |F | < |B|

(
ε
2

)n
. Thus we can apply lemma 1.4.4 below with r0 = 1− ε,

to get a r ∈ (1− δ, 1− ε) such that

P (F,Br) ≥ Hn−1(F ∩ ∂Br). (1.4.6)

As |Eγ | = |B|, we have |Eγ \B| = |B \ Eγ | ≥ |Br \ Eγ |, so there exists R ≥ 1 such that
|Eγ \BR| = |Br \ Eγ |. Now let us set

E′γ = (Eγ ∩BR) ∪Br,

and compare Eα,β,A,γ(E′γ) and Eα,β,A,γ(Eγ). Using classical formulae for the perimeter of the
union or the intersection of a set with a ball (see [43, remark 2.14]), we have

P (E′γ) = Hn−1(Eγ ∩ ∂BR) + P (Eγ , Br
c ∩BR) +Hn−1(Ecγ ∩ ∂Br),

P (Eγ) = P (Eγ , B
c
R) + P (Eγ , Br

c ∩BR) + P (Eγ , Br),

so that

P (E′γ)− P (Eγ) = Hn−1(Eγ ∩ ∂BR)− P (Eγ , B
c
R)

+Hn−1(Ecγ ∩ ∂Br)− P (Eγ , Br). (1.4.7)

From the classical inequality P (Eγ∩BR) ≤ P (Eγ), we get that Hn−1(Eγ∩∂BR) ≤ P (Eγ , B
c
R),

so (1.4.7) gives
P (E′γ)− P (Eγ) ≤ Hn−1(Ecγ ∩ ∂Br)− P (Eγ , Br).

But
Hn−1(Ecγ ∩ ∂Br) = Hn−1(Ecγ ∩B ∩ ∂Br) = Hn−1((B \ Eγ) ∩ ∂Br),

and
P (Eγ , Br) = P (Ecγ , Br) = P (Ecγ ∩B,Br) = P (B \ Eγ , Br),

So, recalling that F = B \ Eγ , we obtain

P (E′γ)− P (Eγ) ≤ Hn−1(F ∩ ∂Br)− P (F,Br)

≤ Hn−1(F ∩ ∂Br)− P (F,Br),

so by the choice of r,
P (E′γ) ≤ P (Eγ). (1.4.8)

Now we estimate the variation of Vα. Let us de�ne the non-local potential:

Φα
E(x) =

∫
E

dy

|x− y|n−α
.
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1.4. Large volume minimizers for α < β

With this notation, we have

Vα(E′γ)− Vα(Eγ) =

∫
E′γ

Φα
E′γ
−
∫
Eγ

Φα
Eγ

=

∫
E′γ

Φα
E′γ
−
∫
Eγ

Φα
E′γ

+

∫
E′γ

Φα
Eγ −

∫
Eγ

Φα
Eγ

=

∫
E′γ\Eγ

Φα
E′γ
−
∫
Eγ\E′γ

Φα
E′γ

+

∫
E′γ\Eγ

Φα
Eγ −

∫
Eγ\E′γ

Φα
Eγ

≤ 4 sup
|F |=|B|

‖Φα
F ‖∞

∣∣Eγ \ E′γ∣∣ . (1.4.9)

By the Hardy-Littlewood rearrangement inequality, we have, for any F ⊂ Rn such that |F | =
|B| and x ∈ Rn,

Φα
F (x) =

∫
F

dy

|x− y|n−α
=

∫
Rn

1{−x+F}

|y|n−α
dy ≤

∫
Rn

1B

|y|n−α
dy = C(n, α).

So (1.4.9) yields
Vα(E′γ)− Vα(Eγ) ≤ C(n, α) |Eγ \Br| . (1.4.10)

As for Uβ,A, we have

Uβ,A(E′γ)− Uβ,A(Eγ) =

∫
Br\Eγ

A |x|β dx−
∫
Eγ\BR

A |x|β dx

≤
∫
Br\Eγ

Arβdx−
∫
Eγ\BR

ARβdx

≤
∫
Br\Eγ

A(1− ε)βdx−
∫
Eγ\BR

Adx

= A
(

(1− ε)β |Br \ Eγ | − |Eγ \BR|
)

= A
(

(1− ε)β − 1
)
|Eγ \Br| .

This last estimate with (1.4.8) and (1.4.10) gives

Eα,β,A,γ(E′γ)− Eα,β,A,γ(Eγ) ≤
(
γ1+αC(n, α) + γ1+βA

(
(1− ε)β − 1

))
|Eγ \Br| .

As Eγ is a minimizer, we have Eα,β,A,γ(E′γ)−Eα,β,A,γ(Eγ) ≥ 0, so for α < β and γ large enough
(depending only of n, α, β, A, δ), this last inequality implies

|Br \ Eγ | = 0, i.e. Br ⊂ Eγ ,

up to a set of measure 0. This concludes Step two.
Step three. The �rst and second steps show that for any k ∈ N∗, there exists γk > 0 such

that for any γ > γk, there exist some sets Pγ,k ⊂ B and Qγ,k ⊂ Bc of measure 0, such that

B1−1/k ⊂ (Eγ ∪ Pγ,k) \Qγ,k ⊂ B1+1/k.
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For any γ > 0, let us de�ne the sets

Pγ :=
⋃

{k∈N∗:γ>γk}

Pγ,k and Qγ :=
⋃

{k∈N∗:γ>γk}

Qγ,k,

and
Ẽγ = (Eγ ∪ Pγ) \Qγ .

Then, for any γ > 0, Eγ and Ẽγ are equal up to a set of measure 0, and for any k ≥ 1, for any
γ > γk,

B1−1/k ⊂ Ẽγ ⊂ B1+1/k.

In particular, we have
sup
x∈∂Ẽγ

d(x, ∂B) −→
γ→+∞

0. (1.4.11)

Reciprocally, let y ∈ ∂B. For any k ≥ 1, for any γ > γk, we have

(1− 2/k)y ∈ Ẽγ and (1 + 1/k)y /∈ Ẽγ ,

so there exists t ∈ [1− 2/k, 1 + 1/k] such that ty ∈ ∂Ẽγ . In particular,

d(y, ∂Ẽγ) ≤ 2/k.

This shows that
sup
y∈∂B

d(y, ∂Ẽγ) −→
γ→+∞

0.

With (1.4.11), we get that that boundary of Ẽγ converges to the boundary ofB in the Hausdor�
sense when γ goes to +∞. This concludes the proof.

Remark 1.4.3. With this proof, we see that the result of Theorem 1.1.1 is also valid for any
α ∈ (0, n) and β > 0 if, instead of letting the mass m go to +∞, we let the quantity Aγβ−α

go to +∞ (with γ =
(
m
|B|

) 1
n
).

Lemma 1.4.4. Given F ⊂ Rn a set of �nite perimeter, r0 > 0, and ε > 0, assume that

|F | ≤ |B|
(ε

2

)n
. (1.4.12)

Then, there exists r ∈ (r0 − ε, r0) such that,

P (F,Br) ≥ Hn−1(F ∩ ∂Br). (1.4.13)

Proof. We argue by contradiction and assume that (1.4.12) holds, and

∀r ∈ (r0 − ε, r0), P (F,Br) < Hn−1(F ∩ ∂Br).

Adding Hn−1(F ∩ ∂Br) to both sides, this is equivalent to

P (F ∩Br) < 2Hn−1(F ∩ ∂Br).
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Using the isoperimetric inequality we get(
|F ∩Br|
|B|

)n−1
n

P (B) < 2Hn−1(F ∩ ∂Br). (1.4.14)

Now set for r ≥ 0, f(r) = |F ∩ Br|. We can assume f(r) 6= 0 for all r ∈ (r0− ε, r0) otherwise
the lemma is trivially true. We have for almost all r ∈ (0,∞),

f ′(r) = Hn−1(F ∩ ∂Br).

Thus (1.4.14) gives for almost all r ∈ (r0 − ε, r0),

1

n
f ′(r)f(r)

1
n
−1 >

P (B)

2n |B|
n−1
n

=
|B|

1
n

2
.

Integrating on the interval (r0 − ε, r0), we get

f(r0)
1
n − f(r0 − ε)

1
n >

ε |B|
1
n

2
,

so

f(r0)
1
n >

ε |B|
1
n

2
,

which contradicts (1.4.12).

1.4.2 Large volume minimizers = balls for α < β and β > 1

Here we prove Theorem 1.1.2, i.e. that if we assume in addition that α > 1, then large volume
minimizers are exactly balls. We conjecture that the theorem is also true when α ∈ (0, 1], as
long as β > 1. For β < 1, it cannot be true as we know from Proposition 1.3.3 that for m
large the ball B[m] is not even a local minimizer. Note that in dimension 1, using Theorem
1.1.1, one can perform some computations to show that the theorem is indeed true under the
more general assumption β > max(1, α).

The proof relies heavily on the following simple lemma:

Lemma 1.4.5. If α > 1, then there exists a constant C(n, α) > 0 such that for any set E ⊂ Rn
of volume |E| = |B|, we have

‖Φα
E‖C1(Rn) ≤ C(n, α), where Φα

E(x) =

∫
E

dx

|x− y|n−α
.

This lemma is not true as soon as α ≤ 1, where we just get α-Hölder continuity instead of
Lipschitz continuity. We refer to [10, Proposition 2.1] for a proof.

Proof of Theorem 1.1.2. Rescaling the functional as usual, we need to show that for γ large
enough, if E ⊂ Rn is such that |E| = |B|, and E is a volume-constrained minimizer of Eα,β,A,γ
(see (1.4.2)), then E=B. Let us show that for γ > 0 large enough, we have

γ1+αVα(E) + γ1+βUβ,A(E) ≥ γ1+αVα(B) + γ1+βUβ,A(B). (1.4.15)
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The theorem will then result from the isoperimetric inequality: P (E) > P (B) if E 6= B. We
divide the proof of (1.4.15) into two steps. In step one we compare E to the subgraph of a
function over the sphere, by concentrating the mass of E on each half line through the origin.
In step two, we show that (1.4.15) holds for subgraphs of su�ciently small functions over the
sphere.
Step one. For any x ∈ ∂B, de�ne u(x) ∈ R by the equation∫ 1+u(x)

0
rn−1dr =

∫
R+

1rx∈Er
n−1dr. (1.4.16)

Then, set
Eu = {t(1 + u(x)), t ∈ [0, 1), x ∈ ∂B}. (1.4.17)

We have

|Eu| =
∫
∂B

∫ 1+u(x)

0
rn−1drdHn−1(x) (1.4.18)

=

∫
∂B

∫
R+

1rx∈Er
n−1drdHn−1(x) (1.4.19)

= |E| , (1.4.20)

thus Eu satis�es the volume constraint. Now we estimate the variation of Uβ,A. From Theorem
1.1.1 we know that, taking γ large enough, we can assume B 1

2
⊂ E. Thus we have

Uβ,A(Eu)− Uβ,A(E) =

∫
Eu\B 1

2

A |x|β dx−
∫
E\B 1

2

A |x|β dx

=

∫
∂B

∫
( 1

2
,u(x))

Arβrn−1dHn−1(x)

−
∫
∂B

∫
( 1

2
,∞)

1rx∈EAr
βrn−1dHn−1(x)

=

∫
∂B

(∫
( 1

2
,u(x))

Arβrn−1dr −
∫
Ex

Arβrn−1dr

)
dHn−1(x), (1.4.21)

where we have set

Ex := {r ≥ 1

2
: rx ∈ E}.

Here we need a simple lemma from optimal transportation on the real line.

Lemma 1.4.6. Given a measurable set S ⊂ (1/2,∞) such that
∫
S r

n−1dr <∞, let u > 0 be
such that ∫

S
rn−1dr =

∫
( 1

2
,u)
rn−1dr.

Then, there exists a unique non-decreasing measurable map T : (1/2, u)→ (1/2,∞) such that

1Sr
n−1dr = T#(1(1/2,u)r

n−1dr),
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i.e. for any non-negative measurable function f ,∫
S
f(r)rn−1dr =

∫
(1/2,u)

f(T (r))rn−1dr. (1.4.22)

Moreover, we have

∀r ∈ (1/2, u), T (r) ≥ r.

Proof. The existence and uniqueness of the map T is given by the result [75, Theorem 2.5].
Only the fact that T (r) ≥ r needs to be checked. For r ∈ (1/2, u), taking f = 1(1/2,T (r)) in
(1.4.22) yields ∫

S∩(1/2,T (r))
tn−1dt =

∫
(1/2,u)

1T (t)≤T (r)t
n−1dt.

Let us argue by contradiction and assume that T (r) < r. As T is non-decreasing, the previous
equality yields ∫

S∩(1/2,T (r))
tn−1dt ≥

∫
(1/2,r)

tn−1dt

>

∫
(1/2,T (r))

tn−1dt

≥
∫
S∩(1/2,T (r))

tn−1dt,

which gives a contradiction. This concludes the proof.

For each x ∈ ∂B, we apply this lemma to S = Ex, to get a corresponding map Tx. Then,
(1.4.21) becomes

Uβ,A(Eu)− Uβ,A(E) =

∫
∂B

(∫
( 1

2
,u(x))

(
Arβ −ATx(r)β

)
rn−1dr

)
dHn−1(x). (1.4.23)

Now let us compute the variation of the Riesz energy Vα in a similar fashion :

Vα(Eu)− Vα(E) =

∫
Eu

Φα
Eu −

∫
E

Φα
E

=

∫
Eu

Φα
Eu +

∫
Eu

Φα
E −

∫
E

Φα
Eu −

∫
E

Φα
E

=

∫
Eu

(Φα
Eu + Φα

E)−
∫
E

(Φα
Eu + Φα

E)

=

∫
∂B

∫
(1/2,u(x))

[
(Φα

Eu + Φα
E)(rx)

− (Φα
Eu + Φα

E)(Tx(r)x)
]
rn−1drdHn−1(x). (1.4.24)

To estimate (1.4.23) and (1.4.24), we use the two following inequalities:

∀x ∈ ∂B,∀s ≥ r > 1

2
, rβ − sβ ≤ −C(β) |r − s| ,
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Chapter 1. Large volume minimizers

(Φα
Eu + Φα

E)(rx)− (Φα
Eu + Φα

E)(sx) ≤ C(n, α) |r − s| ,
where the second inequality comes from Lemma 1.4.5. With these and (1.4.23) and (1.4.24),
we get (

γ1+αVα(Eu) + γ1+βUβ,A(Eu)
)
−
(
γ1+αVα(E) + γ1+βUβ,A(E)

)
≤
∫
∂B

∫
(1/2,u(x))

(
γ1+αC(n, α)− γ1+βAC(β)

)
|r − Tx(r)| rn−1drdHn−1(x).

From this inequality we get that if γ is large enough (depending only on n, α, β, A), then

γ1+αVα(Eu) + γ1+βUβ,A(Eu) ≤ γ1+αVα(E) + γ1+βUβ,A(E). (1.4.25)

Step two. We show that there exists ε = ε(n, α, β,A) > 0, such that for any γ large enough,
if ‖u‖L∞(∂B) < ε, then

γ1+αVα(B) + γ1+βUβ,A(B) ≤ γ1+αVα(Eu) + γ1+βUβ,A(Eu). (1.4.26)

Remark that by Theorem 1.1.1, the condition ‖u‖L∞(∂B) < ε is satis�ed if γ has been taken
large enough. The inequality (1.4.26) will result from this computational lemma, whose proof
is postponed :

Lemma 1.4.7. Given a measurable function u : ∂B → R with ‖u‖L∞(∂B) < 1, set for t ≥ 0

Et := {s(1 + tu(x))x, x ∈ ∂B, s ∈ [0, 1)}.

Assume that |Et| = |B|. Then, for t small enough, depending only on the dimension n, we
have

Uβ,A(Et) ≥ Uβ,A(B) +Aβ
t2

2
‖u‖2L2(∂B) − C(n, β)t3‖u‖2L2(∂B), (1.4.27)

and

Vα(Et) ≥ Vα(B)− t2

2

(
[u]21−α

2

− α(n+ α)‖u‖2L2(∂B)

)
− C(n)t3

(
[u]21−α

2

+ αVα(B)‖u‖2L2(∂B)

)
, (1.4.28)

where

[u]21−α
2

=

∫
∂B×∂B

|u(x)− u(y)|2

|x− y|n−α
dHn−1(x)dHn−1(y).

Indeed for α > 1, we have

[u]21−α
2

≤
∫
∂B×∂B

2(|u(x)|2 + |u(y)|)2

|x− y|n−α
dHn−1(x)dHn−1(y)

= 4

∫
∂B×∂B

|u(x)|2

|x− y|n−α
dHn−1(x)dHn−1(y)

= 4

∫
∂B

(∫
∂B

dHn−1(y)

|x− y|n−α

)
|u(x)|2 dHn−1(x)

= C(n, α)

∫
∂B
|u(x)|2 dHn−1(x)

= C(n, α)‖u‖2L2(∂B),
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so that (1.4.28) gives

Vα(Et) ≥ Vα(B)− t2

2
C(n, α)‖u‖2L2(∂B) − C(n, α)t3‖u‖2L2(∂B).

This implies that for t small enough, depending only on n and α, we have

Vα(Et) ≥ Vα(B)− t2C(n, α)‖u‖2L2(∂B).

Likewise, we get from (1.4.27) that for t small enough, depending only on n, β and A, we have

Uβ,A(Et) ≥ Uβ,A(B) + t2C(n, β,A)‖u‖2L2(∂B).

These last two inequalities imply that there exists ε = ε(n, α, β,A) > 0, such that if ‖u‖L∞(∂B) <
ε, then

γ1+αVα(B) + γ1+βUβ,A(B) ≤ γ1+αVα(Eu) + γ1+βUβ,A(Eu)

+
(
γ1+αC(n, α, β,A)‖u‖2L2(∂B) − γ

1+βC(n, α, β,A)‖u‖2L2(∂B)

)
,

which in turn implies (1.4.26) for γ large enough.
The estimate (1.4.15) is now a consequence of (1.4.25) and (1.4.26). The theorem results

from (1.4.15) and the isoperimetric inequality.

Proof of Lemma 1.4.7. The proof of (1.4.28) is given in [33, equation (5.20)], under the hy-
pothesis ‖u‖C1(∂B) ≤ 1 instead of ‖u‖L∞(∂B) ≤ 1. However it is clear from the proof that it
holds also for ‖u‖L∞(∂B) ≤ 1 only. (The reason why it was stated with the stronger hypothesis
‖u‖C1(∂B) ≤ 1 is because it is needed to get the corresponding estimate for the perimeter.)

Let us prove (1.4.27). Using spherical coordinates, we can compute

Uβ,A(Et) =

∫
∂B

∫ 1+tu(x)

0
A |rx|β rn−1drdHn−1(x)

=

∫
∂B

∫ 1

0
A(1 + tu(x))n+βrn+β−1drdHn−1(x)

=

∫
∂B
A

(1 + tu)n+β

n+ β
dHn−1.

Setting h(t) :=
∫
∂B(1 + tu)n+βdHn−1, we then have Uβ,A(Et)− Uβ,A(B) = A

n+β (h(t)− h(0)).
The Taylor-Lagrange inequality gives

(1 + tu)n+β ≥ 1 + (n+ β)tu+ (n+ β)(n+ β − 1)
(tu)2

2
− C(n, β)

(tu)3

3
,

So

1

n+ β
(h(t)− h(0)) ≥

∫
∂B
tudHn−1 + (n+ β − 1)

∫
∂B

(tu)2

2
dHn−1 − C(n, β)t3

∫
∂B
u3dHn−1

≥
∫
∂B
tudHn−1 + (n+ β − 1)

∫
∂B

(tu)2

2
dHn−1 − C(n, β)t3‖u‖2L2(∂B).

(1.4.29)
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Now we use the volume constraint |Et| = |B| to estimate
∫
tu. The volume constraint can be

expressed as ∫
∂B

(1 + tu)ndHn−1 =

∫
∂B

1dHn−1,

and so ∫
∂B
tudHn−1 =

∫
∂B

(
tu− 1

n
((1 + tu)n − 1)

)
dHn−1

= −
n∑
k=2

1

n

(
n

k

)∫
∂B

(tu)kdHn−1

≥ −n− 1

2

∫
∂B

(tu)2dHn−1 − C(n)t3‖u‖2L2(∂B) (1.4.30)

This with (1.4.29) gives (1.4.27).

1.A Appendix: study of the sets S̃∗ and S∗ from the proof of

Proposition 1.3.3

In this appendix, we give explicit forms of the sets S̃∗ and S∗, needed in the proof of Proposition
1.3.3. Let us de�ne, for all k ≥ 2, a function fk : (0,∞)→ R by

fk(γ) = 1− γ1+αµ
α
k − µα1
λk − λ1

+ γ1+β Aβ

λk − λ1
.

Then, the sets S̃∗ and S∗ from the proof of Proposition 1.3.3 are de�ned by

S̃∗ = {∀k ≥ 2, fk > 0} and S∗ = {∀k ≥ 2, fk ≥ 0}.

As stated in [33, equations (7.4), (7.5) and (7.6)], we have

µαk =



21+απ
n−1

2

1−α
Γ( 1+α

2
)

Γ(n−α
2

)

(
Γ(k+n−α

2
)

Γ(k+n−2+α
2

)
− Γ(n−α

2
)

Γ(n−2+α
2

)

)
if α ∈ (0, 1),

2απ
n−1

2
Γ(α−1

2
)

Γ(n−α
2

)

(
Γ(n−α

2
)

Γ(n−2+α
2

)
− Γ(k+n−α

2
)

Γ(k+n−2+α
2

)

)
if α ∈ (1, n),

4π
n−1

2

Γ(n−1
2

)

(
Γ′(k+n−1

2
)

Γ(k+n−1
2

)
− Γ′(n−1

2
)

Γ(n−1
2

)

)
if α = 1.

(1.A.1)

Recall also that for any k ≥ 0, λk = k(n + k − 2). Now let us treat each case enumerated in
Proposition 1.3.3 separately.

Case 1: α > β. A simple study of the sign of f ′k shows that each fk is increasing from 0 to
a point γk, then decreasing from γk to +∞. Furthermore, fk(0) = 1 and lim+∞ fk = −∞, so
each fk has exactly one zero and is positive left of this zero and negative right of it. At last,
for any constant K > 0, fk(γ) −→

k→∞
1 uniformly in γ ≤ K. Putting these facts together shows

that the sets S̃∗ and S∗ have the forms:

S̃∗ = (0,m∗) and S∗ = (0,m∗],

119



1.A. Appendix: study of the sets S̃∗ and S∗ from the proof of Proposition 1.3.3

for some critical mass m∗ > 0 (depending on n, α, β and A).
Case 2: α = β. For any k, fk is either decreasing or increasing or constant (depending on

the size of A). If none of them is decreasing, then for any k, fk ≥ fk(0) = 1, so

S̃∗ = S∗ = (0,+∞).

Otherwise the same arguments as in case one shows again that

S̃∗ = (0,m∗) and S∗ = (0,m∗],

for some critical mass m∗ > 0 (depending on n, α, β and A).
Cases 3, 4 and 5: α < β. A simple study of the sign of f ′k shows that each fk is decreasing

from 0 to a point γk, then increasing from γk to +∞, and we have:

γk =

(
1 + α

Aβ(1 + β)
(µαk − µα1 )

) 1
β−α

. (1.A.2)

Another simple computation shows that

min fk = fk(γk) = 1−
(

1 + α

Aβ(1 + β)

) 1+α
β−α β − α

1 + β

(µαk − µα1 )
1+β
β−α

λk − λ1
. (1.A.3)

We must treat the subcases α > 1, α = 1 and α < 1 separately.
Subcase one: α > 1. We use the following classical Stirling formula:

Γ(x) ∼
x→+∞

√
2π

x

(x
e

)x
,

to �nd that
Γ(k + n−α

2 )

Γ(k + n−2+α
2 )

∼
k→∞

k1−α.

With (1.A.1), this means that the sequence (µαk ) is bounded. As λk −→
k→∞

∞, we get from

(1.A.3)
min fk −→

k→∞
1.

Thus there exists an index k0 such that

S̃∗ =

k0⋂
k=2

{fk > 0} and S∗ =

k0⋂
k=2

{fk ≥ 0}. (1.A.4)

As for any k, lim+∞ fk = +∞, we get that S̃∗ and S∗ both contain an unbounded interval,
which is what we wanted.
Subcase two: α = 1. We use the classical asymptotics of the digamma function Γ′

Γ :

Γ′

Γ
(x) ∼

x→+∞
ln(x),

to �nd that, according to (1.A.3),
min fk −→

k→+∞
1.
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We conclude as above.
Subcase three: α < 1. Once again we use the asymptotics

Γ(k + n−α
2 )

Γ(k + n−2+α
2 )

∼
k→∞

k1−α,

to �nd that
(µαk − µα1 )

1+β
β−α

λk − λ1
∼

k→∞

(k1−α)
1+β
β−α

k2
= k

(1−β)(1+α)
β−α . (1.A.5)

If β > 1, once again we have
min fk −→

k→+∞
1,

and we conclude as above. If β < 1, then we have

min fk −→
k→+∞

−∞ (1.A.6)

Also, by de�nition we have

fk+1(γk)− 1 = −γ1+α
k

µαk+1 − µα1
λk+1 − λ1

+ γ1+β
k

Aβ

λk+1 − λ1
.

As the sequence (µαk ) is increasing we get

fk+1(γk)− 1 ≤ −γ1+α
k

µαk − µα1
λk+1 − λ1

+ γ1+β
k

Aβ

λk+1 − λ1

= (fk(γk)− 1)
λk − λ1

λk+1 − λ1

−→
k→∞

−∞. (1.A.7)

With (1.A.6), this means that

[γk, γk+1] ⊂ (S̃∗)
c ∩ (S∗)

c.

Moreover, from (1.A.2), we have γk −→
k→+∞

+∞, so S̃∗ and S∗ are both bounded, which is what

we wanted. At last, if β = 1 we �nd using (1.A.5) that there exists a constant Cα such that

min fk −→
k→∞

1− Cα

A
1+α
β−α

.

For A
1+α
β−α > Cα, we conclude as in case one. For A

1+α
β−α < Cα, we conclude as above that S̃∗

and S∗ are both bounded. For A
1+α
β−α < Cα, we have to use the following more precise form of

Stirling's approximation:

Γ(x) ∼
x→+∞

√
2π

x

(x
e

)x
(1 +O(

1

x
)).

Proceeding to simple asymptotic expansions, we �nd that for k large enough we have

min fk > 0.

We conclude as in case one.
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Chapter 2

Numerical minimization

In this Chapter we present our method and results for the numerical minimization of the
variational problem (1.1.3). We apply this method to the original problem (1.1.2). Indeed,
the theoretical knowledge we have so far on problem (1.1.2) raises two natural questions. Is it
always the case (i.e. for any value of α ∈ (0, n)) that there is no minimizer for m large enough?
Is there a set of parameters n, α and m, such that there exists a minimizer that is di�erent
from a ball? Our numerical results indicate that in dimension 2, the answers are positive and
negative respectively.

2.1 Preliminaries

2.1.1 Γ-convergence

In this section, we introduce the notion of Γ-convergence, which we will be using to justify
our numerical method. This is the notion of convergence of functionals one generally wants
to use when studying variational problems. We refer to the book [12] for more details about
Γ-convergence. The lecture [6] also contains a brief introduction to Γ-convergence that is
su�cient to our needs.

De�nition 2.1.1. Let X be a topological space, F a real functional on X, and (Fε)ε>0 a
family of real functionals on X. We say that Fε Γ-converges to F as ε goes to 0, and we write

Fε
Γ−−−→

ε→0
F , if the two following assertions hold:

1. for any u ∈ X and any family (uε)ε>0 of X such that uε−→
ε→0

u, we have

lim inf
ε→0

Fε(uε) ≥ F(u),

2. for any u ∈ X, there exists a family (uε)ε>0 of X such that uε−→
ε→0

u and

lim
ε→0
Fε(uε) = F(u).

When dealing with the perimeter term, we will also use the following relaxation of the
Γ-convergence de�nition. This de�nition and notation is not standard.
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2.1. Preliminaries

De�nition 2.1.2. With the same notations as in the previous de�nition, we say that Fε
Γ̃-converges to F as ε goes to 0, and we write Fε

Γ̃−−−→
ε→0

F , if the assertion 1 of the previous

de�nition holds for any u ∈ X, and the assertion 2 holds for at least one u ∈ X that minimizes
the functional F .

Remark 2.1.3. We will actually use the following equivalent two assertions

• for any u ∈ X and any family (uε)ε>0 of X such that uε−→
ε→0

u, we have

lim inf
ε→0

Fε(uε) ≥ F(u),

• for any u ∈ X (respectively, in the case of Γ̃-convergence, there exists a minmizer u ∈ X
of F such that), there exists a family (uε)ε>0 of X such that uε−→

ε→0
u and

lim sup
ε→0

Fε(uε) ≤ F(u).

Remark 2.1.4. We also say that a sequence of functionals (FN ) Γ-converges to a function F
if the assertions above hold with ε and 0 replaced with N and +∞.

Both de�nitions guarantee that if, for any ε > 0, uε is a minimizer of Fε in X, and the
family (uε) converges to u ∈ X as ε→ 0, then u is also a minimizer of F in X. To minimize
numerically a given functional F , our strategy is the following:

1. �nd a sequence of discrete functionals (FN )N∈N that Γ̃-converges to F ,

2. �nd numerically a minimizer uN of FN for some N considered 'large',

3. extrapolate a limit point u of the sequence (uN )N∈N from the results. This u should be
a minimizer of F .

For point 3 to even have a chance to work, we need the sequence (uN )N∈N to be precompact:

Terminology 2.1.5. Following [6], we say that a family of functionals (Fε)ε>0 de�ned on a
metric space X enjoys property (C) (for compactness) if for any family (uε)ε>0 of elements of
X such that (Fε(uε))ε>0 is bounded, there is a subsequence of (uε)ε>0 that converges in X.

If a family of functionals (Fε)ε>0 enjoys property (C) and Γ̃-converges to a limit functional
F when ε goes to 0, then we know that for ε small enough, minimizers of Fε are close to
minimizers of F .

To conclude this section, we have the following elementary proposition.

Proposition 2.1.6. If G : X → R is continuous and Fε
Γ−−−→

ε→0
F on X, then Fε+G

Γ−−−→
ε→0

F+G
on X.
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Chapter 2. Numerical minimization

2.1.2 Modica-Mortola theorem

The numerical treatment of the perimeter is classical. To deal with the perimeter term, we will
use the well-known Modica-Mortola theorem. This theorem allows us to relax the perimeter
functional on sets, i.e. charateristic functions, into a functional on functions taking values
in [0, 1]. Therefore we will be able to use the vector space structure of functions and, after
disctretization (step three), usual optimization tools for functionals on Rd.

Theorem 2.1.7 (Modica-Mortola theorem.). Let Ω be a Lipschitz open bounded subset of Rn
and ε > 0. Let W be the double well potential de�ned on [0, 1] by W (x) = x(1− x). Let us set
σ := 2

∫ 1
0

√
W (u)du. We de�ne the set X, and the functionals Fε : X → R by

X :=

{
u ∈ L1(Ω, [0, 1]) :

∫
u = m

}
, endowed with the strong L1-topology,

and

Fε(u) =

{
σ−1

∫
Rn

(
ε |∇u|2 + ε−1W (u)

)
if u ∈ H1

0 (Ω, [0, 1]),

+∞ otherwise,
(2.1.1)

If (uε)ε>0 is a family of functions in H1
0 (Ω, [0, 1]) and E ⊂ Ω is any measurable subset of Ω,

such that uε−→
ε→0

1E in L1(Ω), then we have

P (E) ≤ lim inf
ε→0

Fε(uε).

Moreover, if E ⊂⊂ Ω is a compact subset of Ω of �nite perimeter, then there exists a family
of functions (uε)ε>0 in X, such that uε−→

ε→0
1E, and

P (E) = lim
ε→0
Fε(uε).

Finally, the family of functionals (Fε) enjoys property (C).

Reader-friendly proofs of these assertions can be found in [6]. Here, we will only give the
following heuristic. If ε > 0 is very small, then ε−1W (u) is very large, except if u is 0 or 1.
Therefore the minimizers of Fε are functions that are equal to 0 or 1 except on a set of small
measure.

2.2 Method of the numerical minimization

We present a series of three modi�cations of the variational problem (1.1.3) to arrive at a �nite
dimensional variational problem that can be easily numerically solved. All steps are justi�ed
by a Γ-convergence and compactness result.

Step one is standard when dealing with the perimeter. We use the classical Modica-
Mortola theorem to relax the functional on sets, i.e. charateristic functions, into a functional
on functions taking values in [0, 1]. This allows us to use the vector space structure of functions
and, after disctretization (step three), usual optimization tools for functionals on Rd.

Step two is the key step for dealing with the non-local term Vα. We replace the ambient
space Rn with a large square with periodic boundary conditions, whose size is a new relaxation
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2.2. Method of the numerical minimization

parameter. Then, we can approximate the non-local term Vα by a simple expression in Fourier
variable.

In step three, we discretize the problem by considering only trigonometric functions with
frequencies lower than some integer N , and by computing the integral terms with riemann
sums.

Let us now describe and justify each step precisely.
Step one. We use the classical Modica-Mortola theorem to replace this problem on subsets

of Rn, i.e. functions taking only values 0 or 1, with a problem on functions taking any value
between 0 and 1. Let m > 0. First, remember that we proved in the proof of Proposition 1.2.1
that minimizers of our problem (1.1.3) are uniformly bounded. Let Ω be a Lipschitz bounded
open set such that one minimizer of (1.1.3) is compactly included in Ω. Given a (small) ε > 0,
we de�ne the set X, and the functionals Fε : X → R and F : X → R by

X :=

{
u ∈ L1(Rn, [0, 1]) : u|Ωc = 0 and

∫
u = m

}
, endowed with the strong L1-topology,

and

Fε(u) =


σ−1

∫
Rn

(
ε |∇u|2 + ε−1W (u)

)
+ Vα(u) +A

∫
Rn u(x) |x|β dx

if u|Ω ∈ H
1
0 (Ω, [0, 1])

+∞
otherwise,

(2.2.1)

F(u) =


P (E) + Vα(E) +A

∫
E |x|

β dx

if u = 1E , with E ⊂ Ω,

+∞
otherwise,

(2.2.2)

where we have used the natural notation Vα(u) =
∫
Rn×Rn

u(x)u(y)

|x−y|n−αdxdy, andW is the following

double well potential on [0, 1]: W (x) = x(1 − x). Then, from the Modica-Mortola theorem
and the fact that the two last terms of the functionals Fε and F are continuous on X, we have
the following proposition.

Proposition 2.2.1. The following Γ̃-convergence holds on X, endowed with the strong L1(Rn)-
topology.

Fε
Γ̃−−−→

ε→0
F .

Moreover, (Fε) enjoys property (C).

Step two. For simplicity, we will �rst reduce the domain of de�nition of Fε, and use a
stronger topology in this step. Let us set

X ′ :=

{
u ∈ L1(Rn, [0, 1]) : u|Ω ∈ H

1
0 (Ω, [0, 1]), u|Ωc = 0 and

∫
u = m

}
,

endowed with the weakH1(Rn)-topology. The non-local repulsive term has a simple expression
in Fourier variable :

Vα(u) =
C(n, α)

(2π)n

∫
Rn
|ξ|−α |û(ξ)|2 dξ, (2.2.3)
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with û the Fourier transform of u and C(n, α) :=
2απ

n
2 Γ(α

2
)

Γ(n−α
2

)
, and Γ the usual gamma function.

This can be seen by noting that Vα(u) =
∫
uIα(u) with Iα(u) the Riesz potential of u, and

using the Fourier expression of the Riesz potential (see [77, Part V]). To exploit this formula,
we will replace the ambient space Rn with a large torus of size T > 0. Thus we will approximate
Vα(u) by

Vα,T (u) :=
C(n, α)

Tn

∑
k∈Zn\{0}

∣∣∣∣2kπT
∣∣∣∣−α |ck,T (u)|2 , (2.2.4)

where ck,T (u) :=
∫

(−T
2
,T

2
)n u(x)e

−2ikπx
T dx is the k-th Fourier coe�cient of u on [−T/2, T/2]n,

for some (large) T > 0. More precisely, let us de�ne the functional Fε,T : X ′ → R by

Fε,T (u) = σ−1

∫
Rn

(
ε |∇u|2 + ε−1W (u)

)
+ Vα,T (u) +A

∫
Rn
u(x) |x|β dx

Then, we have the following proposition.

Proposition 2.2.2. The following Γ-convergence holds on X ′, endowed with the weak H1(Rn)-
topology:

Fε,T
Γ−−−−→

T→∞
Fε. (2.2.5)

Moreover, (Fε,T )T>0 enjoys property (C).

We emphasize the following remark:

Remark 2.2.3. To prove property (C) in this step, the assumption that all functions are
supported in a given bounded set Ω is important. Numerically, we also observe that the
method fails without this assumption. See Section 2.3 for further comments.

Let us prove Proposition 2.2.2.

Proof of Proposition 2.2.2.
Proof of property (C). Let (uT )T>0 be a sequence ofX ′ such that (Fε,T (uT ))T>0 is bounded.

Then, (uT )T>0 is bounded in H1(Rn), so up to taking a subsequence, it converges weakly to
a function u ∈ H1(Rn). Up to taking another subsequence, we may also assume that the
convergence hold almost everywhere. So, u takes its values in [0, 1], and we have u|Ωc = 0. In
particular, we also have u|Ω ∈ H1

0 (Ω). The condition
∫
u = m is veri�ed as well by dominated

convergence. Hence property (C) is veri�ed.
Proof of the lim inf inequality for Γ-convergence. Here we assume that (uT )T>0 is a se-

quence of X ′ that converges to a limit u ∈ X ′ with respect to the weak H1(Rn)-topology. We
need to show that

lim inf
T→∞

Fε,T (uT ) ≥ Fε(u). (2.2.6)

Because of the weak H1(Rn)-convergence, we have

lim inf
T→∞

∫
Rn
|∇uT |2 ≥

∫
Rn
|∇u|2 . (2.2.7)

By Fatou's lemma, we also have

lim inf
T→∞

∫
Rn
W (uT ) ≥

∫
W (u) and lim inf

T→∞

∫
Rn
uT |x|β ≥

∫
u |x|β . (2.2.8)
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We are left to show that

lim inf
T→∞

Vα,T (uT ) ≥ Vα(u). (2.2.9)

Setting δT = (2π)n

C(n,α) (Vα,T (uT )− Vα(u)), (2.2.9) is equivalent to

lim inf
T→∞

δT ≥ 0.

Recalling equation (2.2.3) and de�nition (2.2.4), we have

δT =

(
2π

T

)n ∑
k∈Zn\0

∣∣∣∣2kπT
∣∣∣∣−α |ck,T (uT )|2 −

∫
|ξ|−α |û(ξ)|2 dξ

=

(
2π

T

)n ∑
k∈Zn\{0}

∣∣∣∣2kπT
∣∣∣∣−α ∣∣∣∣ûT (

2kπ

T
)

∣∣∣∣2 − ∫ |ξ|−α |û(ξ)|2 dξ

=

(
2π

T

)n ∑
k∈Zn\{0}
| 2kπT |≤R

(∣∣∣∣2kπT
∣∣∣∣−α ∣∣∣∣ûT (

2kπ

T
)

∣∣∣∣2 − ∣∣∣∣2kπT
∣∣∣∣−α ∣∣∣∣û(

2kπ

T
)

∣∣∣∣2
)

+

(
2π

T

)n ∑
k∈Zn\{0}
| 2kπT |>R

∣∣∣∣2kπT
∣∣∣∣−α ∣∣∣∣ûT (

2kπ

T
)

∣∣∣∣2

+

(
2π

T

)n ∑
k∈Zn\{0}
| 2kπT |≤R

∣∣∣∣2kπT
∣∣∣∣−α ∣∣∣∣û(

2kπ

T
)

∣∣∣∣2

−
∫
|ξ|≤R

|ξ|−α |û(ξ)|2 dξ −
∫
|ξ|>R

|ξ|−α |û(ξ)|2 dξ

=: S1(T,R) + S2(T,R) + S3(T,R)− I1(R)− I2(R),

with obvious notations. We have

S2 ≥ 0, (2.2.10)

and

I2 ≤ R−α
∫
|û(ξ)|2 dξ = (2π)nR−α

∫
u2 ≤ (2π)nR−α

∫
u = (2π)nR−αm, (2.2.11)

where we used the isometry property of the Fourier transform and the fact that u takes its
values in [0, 1]. From (2.2.10) and (2.2.11) we deduce

lim inf
T→∞

δT ≥ lim inf
T→∞

S1(T,R) + lim inf
T→∞

(S3(T,R)− I1(R))− (2π)nR−αm. (2.2.12)

As the Fourier transform is 1-Lipschitz from L1(Rn) to L∞(Rn), and uT → u in L1(Rn), we
have

∀ξ ∈ Rn,
∣∣∣|ûT (ξ)|2 − |û(ξ)|2

∣∣∣ ≤ ε(T ),
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with ε(T ) −→
T→∞

0. Thus,

0 ≤ S1(T,R) ≤
(

2π

T

)n ∑
k∈Zn\{0}
| 2kπT |≤R

∣∣∣∣2kπT
∣∣∣∣−α ε(T ). (2.2.13)

We are left to show that

lim sup
T→∞

(
2π

T

)n ∑
k∈Zn\{0}
| 2kπT |≤R

∣∣∣∣2kπT
∣∣∣∣−α <∞,

to conclude that S1(T,R) −→
T→∞

0. But this comes from the fact that

(
2π

T

)n ∑
k∈Zn\{0}
| 2kπT |≤R

∣∣∣∣2kπT
∣∣∣∣−α −→T→∞

∫
|ξ|≤R

|ξ|−α dξ. (2.2.14)

Indeed using the monotonicity of x 7→ x−α, we have in dimension 1,

2π

T

∑
0< 2kπ

T
≤R

(
2(k + 1)π

T

)−α
≤
∫

2π
T
<x≤R

x−αdx ≤ 2π

T

∑
0< 2kπ

T
≤R

(
2kπ

T

)−α
,

From this we deduce convergence (2.2.14) in dimension 1, and the convergence in any dimension
can be shown with the same idea. In conclusion, we have S1(T,R) −→

T→∞
0 and so (2.2.12)

becomes

lim inf
T→∞

δT ≥ lim inf
T→∞

(S3(T,R)− I1(R))− (2π)nR−αm. (2.2.15)

Given η > 0 small, we have

|S3(T,R)− I1(R)| ≤∣∣∣∣∣∣∣∣∣
(

2π

T

)n ∑
k∈Zn\{0}
η≤| 2kπT |≤R

∣∣∣∣2kπT
∣∣∣∣−α ∣∣∣∣û(

2kπ

T
)

∣∣∣∣2 − ∫
η≤|ξ|≤R

|ξ|−α |û(ξ)|2 dξ

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
(

2π

T

)n ∑
k∈Zn\{0}

0<| 2kπT |≤η

∣∣∣∣2kπT
∣∣∣∣−α ∣∣∣∣û(

2kπ

T
)

∣∣∣∣2
∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣
∫
|ξ|≤η

|ξ|−α |û(ξ)|2 dξ

∣∣∣∣∣ . (2.2.16)

In the right-hand side of this last inequality, the �rst term goes to 0 as T → ∞ by classical
convergence of Riemann sums for continuous functions on a nice domain. For the second term,
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we use the estimate ‖û‖L∞ ≤ ‖u‖L1 , and convergence (2.2.14), to get

lim sup
T→∞

|S3(T,R)− I1(R)| ≤

∣∣∣∣∣
∫
|ξ|≤η

|ξ|−α dξ

∣∣∣∣∣ ‖u‖2L1

+

∣∣∣∣∣
∫
|ξ|≤η

|ξ|−α |û(ξ)|2 dξ

∣∣∣∣∣ ‖u‖2L1 ,

and so letting η go to 0,
lim sup
T→∞

|S3(T,R)− I1(R)| = 0.

From this and (2.2.15) we deduce

lim inf
T→∞

δT ≥ (2π)nR−αm,

and so letting R go to ∞ we get lim inf
T→∞

δT = 0, and so (2.2.9) is proved. Putting (2.2.7),

(2.2.8) and (2.2.9) together concludes the proof of (2.2.6).
Proof of the lim sup inequality for Γ-convergence. Let u ∈ X ′. We need to �nd a sequence

(uT )T>0 of X ′ that converges to u weakly in H1(Rn), such that

lim sup
T→∞

Fε,T (uT ) ≤ Fε(u). (2.2.17)

We simply set uT := u, for every T > 0. We only need to verify that lim sup
T→∞

Vα,T (uT ) ≤ Vα(u).

We procede to the same computations as for the liminf inequality, using S1, S2, S3, I1 and I2

as above. We deal with the terms S3, I1 and I2 exactly as above. The term S1 is 0 here. For
S2, we use the isometry property of the Fourier transform to write

S2(T,R) =

(
2π

T

)n ∑
| 2kπT |>R

∣∣∣∣2kπT
∣∣∣∣−α ∣∣∣∣ûT (

2kπ

T
)

∣∣∣∣2

≤
(

2π

T

)n ∑
| 2kπT |>R

R−α
∣∣∣∣ûT (

2kπ

T
)

∣∣∣∣2

≤ (2π)n

Rα

∫
(−T

2
,T

2
)n
u2
T

=
(2π)n

Rα

∫
Rn
u2 for T large enough.

This is enough, with the previous estimates, to conclude that (2.2.17) holds. This concludes
the proof.

Step three. As the �nal step, we discretize the variational problem. In this step, we will
use the functional space

X ′′ :=

{
u ∈ H1((−T/2, T/2)n) :

∫
(−T

2
,T

2
)n
u = m

}
,

130



Chapter 2. Numerical minimization

endowed with the weak H1((−T/2, T/2)n)-topology. Let us assume that T is large enough
so that Ω ⊂⊂ (−T/2, T/2)n. If u ∈ X ′′ takes its values in [0, 1] and veri�es u ∈ H1

0 (Ω) and
u|Ωc = 0, we may extend it by 0 outside of (−T/2, T/2)n, to get a function ũ ∈ X ′, and de�ne
Fε,T (u) := Fε,T (ũ). Otherwise, we set Fε,T (u) = +∞. This way, the functional Fε,T is well
de�ned on X ′′. For N ∈ 2N∗ large, we consider the space

EN :=

{
u ∈ Vect(e

2iπ
T
k·x)k∈{−N

2
+1,...,N

2
}n : ∀j ∈ {−N

2
+ 1, . . . ,

N

2
}n, u(j

T

N
) ∈ [0, 1],

u(j
T

N
) = 0 if j

T

N
/∈ Ω, and

∫
(−T

2
,T

2
)n
u = m

}
.

For u ∈ EN , we set
WN (u) := (

T

N
)n

∑
j∈{−N

2
+1,...,N

2
}n
W (u(j

T

N
)),

and

Uβ,A,N (u) := A(
T

N
)n

∑
j∈{−N

2
+1,...,N

2
}n
u(j

T

N
))

∣∣∣∣j TN
∣∣∣∣β .

Then, we de�ne the functional Fε,T,N : X ′′ → R by

Fε,T,N (u) =

{
σ−1ε

∫
(−T

2
,T

2
)n |∇u|

2 + σ−1ε−1WN (u) + Vα,T (u) + Uβ,A,N if u ∈ EN ,
+∞ otherwise.

Then, we have the following proposition.

Proposition 2.2.4. The following Γ-convergence holds on X ′′, endowed with the weak H1((−T/2, T/2)n)-
topology:

Fε,T,N
Γ−−−−→

N→∞
Fε,T . (2.2.18)

Moreover, (Fε,T,N )N>0 enjoys property (C).

In the proof of 2.2.4, we will use the following technical lemma, which shows that a trio-
gonometric function whose frequencies are lower than N is well represented by its values on a
grid with step size 1/N .

Lemma 2.2.5. Let (uN ) be a converging sequence in L2([0, 1]n), such that for every N ∈ 2N∗,
uN ∈ Vect(e2iπk·x)k∈{−N

2
+1,...,N

2
}n. Then, for any bounded uniformly continuous functions

φ : R→ R and ψ : [0, 1]n → R, we have∣∣∣∣∣∣∣
1

Nn

∑
j∈ 1

N
Zn∩[0,1)n

ψ(j)φ(uN (j))−
∫

[0,1]n
ψ(x)φ(uN (x))dx

∣∣∣∣∣∣∣ −→N→∞
0.

Equivalently, for any T > 0, let (uN ) be a converging sequence in L2([−T/2, T/2]n), such

that for every N ∈ 2N∗, uN ∈ Vect(e
2iπ
T
k·x)k∈{−N

2
+1,...,N

2
}n. Then, for any bounded uniformly
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continuous functions φ : R→ R and ψ : [−T/2, T/2]n → R, we have∣∣∣∣∣∣∣(
T

N
)n

∑
j∈{−N

2
+1,...,N

2
}n
ψ(j

T

N
)φ(uN (j

T

N
))−

∫
(−T

2
,T

2
)n
ψ(x)φ(uN (x))dx

∣∣∣∣∣∣∣ −→N→∞
0.

Proof. We only need to prove the lemma in the case of functions on [0, 1]n. For N ∈ 2N∗,
k ∈ {−N

2 + 1, ..., N2 }
n, let us de�ne the function eNk : [0, 1)n → R by setting,

∀j ∈ 1

N
Zn ∩ [0, 1)n, ∀x ∈ j + [0, 1/N)n, eNk (x) = e2ikπ·j .

We also de�ne
ũN =

∑
k∈{−N

2
+1,...,N

2
}n
ck(uN )eNk ,

where the (ck(uN ))k∈{−N
2

+1,...,N
2
}n are the Fourier coe�cients of uN . Then, we can rewrite

(2.2.19) as ∣∣∣∣∣
∫

[0,1]n
φ(ũN )−

∫
[0,1]n

φ(uN )

∣∣∣∣∣ −→N→∞
0. (2.2.19)

Let (KN ) be a sequence of positive integers, diverging slowly enough (to be precised later) to
+∞. We de�ne some functions vN and ṽN by

vN =
∑

k∈{−KN
2

+1,...,
KN

2
}n

ck(uN )ek,

ṽN =
∑

k∈{−KN
2

+1,...,
KN

2
}n

ck(uN )eNk .

As (uN ) converges in L2([0, 1]n), we have

‖uN − vN‖L2([0,1]n) −→
N→∞

0.

Also, noting that the family (eNk )k∈{−N
2

+1,...,N
2
} is orthonormal in L2([0, 1]n), we have

‖ũN − ṽN‖L2([0,1]n) −→
N→∞

0.

The function φ being uniformly continuous and bounded, it is easy to show that (2.2.19) is
equivalent to ∣∣∣∣∣

∫
[0,1]n

φ(ṽN )−
∫

[0,1]n
φ(vN )

∣∣∣∣∣ −→N→∞
0,

which is in turn equivalent to∣∣∣∣∣∣∣
1

Nn

∑
j∈ 1

N
Zn∩[0,1)n

φ(vN (j))−
∫

[0,1]n
φ(vN )

∣∣∣∣∣∣∣ −→N→∞
0. (2.2.20)
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Now, we have

‖∇vN‖L∞ ≤
∑

k∈{−KN
2

+1,...,
KN

2
}n

|2πk| |ck(uN )|

≤ C(n)KN

∑
k∈{−KN

2
+1,...,

KN
2
}n

|ck(uN )|

≤ C(n)KN (KN )n/2

 ∑
k∈{−KN

2
+1,...,

KN
2
}n

|ck(uN )|2


1/2

(2.2.21)

= C(n)K
n/2+1
N ‖vN‖L2([0,1]n).

where we have used the Hölder inequality in (2.2.21), and C(n) denotes a constant depending
on n only. From this last estimate, we get

∀j ∈ 1

N
Zn ∩ [0, 1)n,∀x ∈ j + [0, 1/N)n,

|vN (j)− vN (x)| ≤ C(n)
K
n/2+1
N

N
‖vN‖L2([0,1]n).

Denoting by ωφ the modulus of continuity of φ, this yields∣∣∣∣∣∣∣
1

Nn

∑
j∈ 1

N
Zn∩[0,1)n

φ(vN (j))−
∫

[0,1]n
φ(vN )

∣∣∣∣∣∣∣
≤

∑
j∈ 1

N
Zn∩[0,1)n

∫
j+[0,1/N)n

|φ(vN (j))− φ(vN )|

≤
∑

j∈ 1
N
Zn∩[0,1)n

∫
j+[0,1/N)n

ωφ

(
C(n)

K
n/2+1
N

N
‖vN‖L2([0,1]n)

)

= ωφ

(
C(n)

K
n/2+1
N

N
‖vN‖L2([0,1]n)

)
.

Choosing (KN ) such that Kn/2+1
N /N −→

N→∞
0, and recalling that the sequence (vN ) is bounded

in L2([0, 1]n) (because (uN ) is), the last inequality concludes the proof.

Proof of Proposition 2.2.4.
Proof of property (C). Let (uN ) be a sequence of X ′′ such that for any N , uN ∈ EN ,

and (Fε,T,N (uN )) is bounded. Then, (uN ) is bounded in H1([−T/2, T/2]n) so, up to taking
a subsequence, it converges weakly in H1([−T/2, T/2]n), strongly in L2([−T/2, T/2]n), such
that

∫
u = m.

Proof of the lim inf inequality. Let (uN ) be a sequence of X ′′ that converges to a function
u ∈ X ′′, and such that for every N ∈ 2N∗, uN ∈ EN . We need to show that

lim inf
N→∞

Fε,T,N (uN ) ≥ Fε,T (u).
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We may assume that the left hand-side is �nite. Up to taking a subsequence, we may then
assume that (Fε,T,N (uN ))N∈2N∗ is bounded. Because of property (C), up to taking another
subsequence, we may assume that (uN ) converges strongly in L2((−T/2, T/2)n) and almost
everywhere to u.

Let us show that u takes its values in the interval [0, 1], and that u|Ωc = 0.
To prove that u takes its values in [0, 1], let us argue by contradiction and assume it is not

the case. Then, there exists a continuous function φ : R → R+ that is compactly supported
in the complement of [0, 1], and such that∫

(−T
2
,T

2
)n
φ(u) > 0.

Applying Lemma 2.2.5 with ψ = 1, we �nd∫
(−T

2
,T

2
)n
φ(uN ) −→

N→+∞
0.

By the dominated convergence theorem, this can be rewritten as∫
(−T

2
,T

2
)n
φ(u) = 0,

which gives a contradiction. So u takes its values in [0, 1].
To prove that u|Ωc = 0, we also argue by contradiction, and assume it is not the case.

Then, there exists a continuous function ψ : [−T/2, T/2]n → R that is supported in Ωc, and
such that ∫

(−T
2
,T

2
)n
ψu > 0.

Applying Lemma 2.2.5 with φ(x) = x, we �nd∫
(−T

2
,T

2
)n
ψuN −→

N→+∞
0.

By the dominated convergence theorem, this can be rewritten as∫
(−T

2
,T

2
)n
ψu = 0,

which gives a contradiction. So u|Ωc = 0.
By the weak H1((−T/2, T/2)n) convergence, we have

lim inf
N→∞

∫
(−T

2
,T

2
)n
|∇uN |2 ≥

∫
(−T

2
,T

2
)n
|∇u|2 .

By the strong L2((−T/2, T/2)n) convergence, we have

lim
N→∞

Vα,T (uN ) = Vα,T (u).
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Thus, the only problematic terms are WN and Uβ,A,N . Let us apply Lemma 2.2.5 to (uN ),

with ψ = 1 and φ = W̃ , where W̃ is any uniformly continuous bounded extension of W . We
get ∣∣∣∣∣WN (uN )−

∫
(−T

2
,T

2
)n
W̃ (uN )

∣∣∣∣∣ −→N→+∞
0. (2.2.22)

By the dominated convergence theorem, we have

lim
N→+∞

∫
(−T

2
,T

2
)n
W̃ (uN ) =

∫
(−T

2
,T

2
)n
W (u).

With (2.2.22), this implies

lim
N→+∞

WN (uN ) =

∫
(−T

2
,T

2
)n
W (u).

Using the same stretegy, we may also show that

lim
N→+∞

Uβ,A,N (uN ) = A

∫
(−T

2
,T

2
)n
u(x) |x|β dx.

Proof of the lim sup inequality. Let u ∈ X ′′. We need to �nd a recovery sequence (uN )
such that for any N ∈ 2N∗, uN ∈ EN , and

lim sup
N→∞

Fε,T,N (uN ) ≤ Fε,T (u)

The domain of �niteness of Fε,T is

DFε,T =
{
u ∈ X ′′ : u ∈ H1

0 (Ω, [0, 1]) and u|Ωc = 0
}

The set C∞ ∩ DFε,T of smooth functions of DFε,T is a dense subset of DFε,T for the strong
H1((−T/2, T/2)n)-topology. Moreover, the functional Fε,T is continuous over DFε,T for the
strong H1((−T/2, T/2)n)-topology. Therefore, we may assume that u ∈ C∞ ∩ DFε,T . Let
(ck)k∈Zn be the Fourier coe�cients of u, so that

u =
∑
k∈Zn

ckek,

where ek(x) = exp(2iπ
T k · x). For N ∈ 2N∗, we de�ne

vN =
∑

k∈{−N
2

+1,...,N
2
}n
ckek.

The sequence (vN ) cannot be used directly as a recovery sequence because it does not verify

∀j ∈ {−N
2

+ 1, . . . ,
N

2
}n, vN (j

T

N
) ∈ [0, 1], and vN (j

T

N
) = 0 if j

T

N
/∈ Ω. (2.2.23)

However, because u is smooth, by classical uniform estimates for the Fourier serie of a Cn+4

function, there exists a constant C > 0 such that for any N ∈ 2N∗,

|u− vN |L∞ ≤
C

Nn+3
. (2.2.24)
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We recall that the discrete Fourier transform is a bijection: for any two familys of complex
numbers (wj)j∈{−N

2
+1,...,N

2
}n and (dk)k∈{−N

2
+1,...,N

2
}n , we have(

∀k ∈ {−N
2

+ 1, . . . ,
N

2
}n, dk =

1

Nn

∑
j∈{−N

2
+1,...,N

2
}n
wjek(−

jT

N
)

)

⇐⇒

(
∀j ∈ {−N

2
+ 1, . . . ,

N

2
}n, wj =

∑
k∈{−N

2
+1,...,N

2
}n
dkek(

jT

N
)

)
(2.2.25)

Let p : R→ [0, 1] be the projection onto [0, 1]. Let us set

∀j ∈ {−N
2

+ 1, . . . ,
N

2
}n, wj =

{
p(vN ( jTN )) if j TN ∈ Ω,

0 if j TN /∈ Ω.

Note that, because of (2.2.24), we have the estimate∣∣∣∣wj − vN (j
T

N
)

∣∣∣∣ ≤ C

Nn+3
. (2.2.26)

Then we de�ne

cNk :=
1

Nn

∑
j∈{−N

2
+1,...,N

2
}n
wjek(−

jT

N
),

wN :=
∑

k∈{−N
2

+1,...,N
2
}n
cNk ek.

Then, by the bijectivity of the discrete Fourier transform, we have wN ( jTN ) = wj . Now, wN
veri�es the constraints (2.2.23), but it may not verify

∫
wN = m. However, we have∣∣∣∣∫ wN −m

∣∣∣∣ = Tn
∣∣cN0 − c0

∣∣
= Tn

∣∣∣∣∣∣∣
1

Nn

∑
j∈{−N

2
+1,...,N

2
}n

(
wN (

jT

N
)− vN (

jT

N
)

)∣∣∣∣∣∣∣
≤ Tn

Nn

∑
j∈{−N

2
+1,...,N

2
}n

∣∣∣∣wN (
jT

N
)− vN (

jT

N
)

∣∣∣∣
=
Tn

Nn

∑
j∈{−N

2
+1,...,N

2
}n

∣∣∣∣wj − vN (
jT

N
)

∣∣∣∣
≤ C

Nn+3
because of (2.2.26), (2.2.27)

We will modify the values wN ( jTN ) on a small subset of Ω, so that the new values still verify
(2.2.23), but the mean of the new function is m. Recall that u is continuous, null outside Ω,
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and not identically null. In particular, there exists η > 0 and x ∈ Ω such that η ≤ u ≤ 1− η
on B(x, η). Because of (2.2.24) and (2.2.26), we may also require, up to taking η smaller, that
for any N large enough,

∀j ∈ {−N
2

+ 1, . . . ,
N

2
}n, jT

N
∈ B(x, η) =⇒ η ≤ wN (

jT

N
) ≤ 1− η. (2.2.28)

Let K be the cardinal of the set{
j ∈ {−N

2
+ 1, . . . ,

N

2
}n :

jT

N
∈ B(x, η)

}
.

For N large enough, there exists j ∈ {−N
2 +1, . . . , N2 }

n such that jTN ∈ B(x, η), so that K 6= 0.
So we can set

δNj =

{
Nn

TnK

(
m−

∫
wN
)

if jTN ∈ B(x, η),

0 otherwise.

Note that, because of (2.2.27) and (2.2.28), for some constant C > 0, we have for any N large
enough,

∀j ∈ {−N
2

+ 1, . . . ,
N

2
}n,

∣∣δNj ∣∣ ≤ C

Nn+3
. (2.2.29)

Finally, let us de�ne

c̃Nk :=
1

Nn

∑
j∈{−N

2
+1,...,N

2
}n

(wN (
jT

N
) + δNj )ek(−

jT

N
),

uN :=
∑

k∈{−N
2

+1,...,N
2
}n
c̃Nk ek.

Then, by the bijectivity of the discrete Fourier transform, we have

∀j ∈ {−N
2

+ 1, . . . ,
N

2
}n, uN (

jT

N
) = wN (

jT

N
) + δNj .

and so by construction uN veri�es the constraints (2.2.23). Moreover, we have∫
uN = Tnc̃N0

=
Tn

Nn

∑
j∈{−N

2
+1,...,N

2
}n

(wN (
jT

N
) + δNj )

= TncN0 +
Tn

Nn

∑
j∈{−N

2
+1,...,N

2
}n
δNj

=

∫
wN +

(
m−

∫
wN

)
= m.
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Thus we have proved that uN ∈ EN . By construction, for any j ∈ {−N
2 + 1, . . . , N2 }

n, we have∣∣∣∣uN (
jT

N
)− u(

jT

N
)

∣∣∣∣ =

∣∣∣∣wN (
jT

N
) + δNj − u(

jT

N
)

∣∣∣∣
=

∣∣∣∣wj + δNj − u(
jT

N
)

∣∣∣∣
≤
∣∣∣∣wj − vN (

jT

N
)

∣∣∣∣+

∣∣∣∣vN (
jT

N
)− u(

jT

N
)

∣∣∣∣+
∣∣δNj ∣∣

≤ C

Nn+3
because of (2.2.26) (2.2.24) and (2.2.29),

for some constant C > 0 independent of N . This implies

∀k ∈ {−N
2

+ 1, . . . ,
N

2
}n,

∣∣c̃Nk − ck∣∣ ≤ C

Nn+3
.

From this estimate, we deduce

|u− uN |H1((−T/2,T/2)n) ≤ C
∑
k∈Zn

|k|2
∣∣c̃Nk − ck∣∣2

≤ C
∑

k∈{−N
2

+1,...,N
2
}n
|k|2 C

Nn+3
+

∑
k/∈{−N

2
+1,...,N

2
}n
|k|2 |ck|2

≤ C

N
+

∑
k/∈{−N

2
+1,...,N

2
}n
|k|2 |ck|2

−→
N→+∞

0.

So (uN ) converges strongly to u in H1((−T/2, T/2)n). We can now conclude, using Lemma
2.2.5 as in the proof of the lim inf inequality, that

lim
N→+∞

Fε,T,N (uN ) = Fε,T (u).

This concludes the proof.

2.3 Numerical results

In the physical case, i.e. in dimension n = 3 and for α = 2, R. Choksi and M. Peletier
conjectured the following (see [24, Conjecture 6.1]):

Conjecture 2.3.1. For n = 3 and α = 2, as long as there is a minimizer in Gamow's liquid
drop problem (1.1.2), it is a ball. Also, when there is no minimizer, the in�mum of the energy
is attained by a �nite number of balls of the same volume, in�nitely far away from each other.

As far as it is known, this conjecture may hold for any n and α. In any dimension n ≥ 2,
for α close enough to n, M. Bonacini and R. Cristoferi proved that as long as a minimizer
exists for problem (1.1.2), it is a ball. Moreover, when there is no minimizer, the showed that
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the in�mum of the energy is attained by a �nite number of balls (of possibly di�erent volumes)
in�nitely fare away from each other, see [10, Theorem 2.12]. Our numerical results suggest
that in dimension 2, the conjecture holds for any α ∈ (0, 2) (i.e. the whole admissible range).
Note that if the conjecture holds, we can compute explicitely the mass m1(n, α) > 0 such that
there is a minimizer in (1.1.2) if and only if m < m1. Indeed, given m > 0, let us set

f(m) = P (B[m]) + Vα(B[m]).

Then, de�ne mk as the unique solution of

kf(
m

k
) = (k + 1)f(

m

k + 1
).

Note that kf(mk ) is the energy of k balls of volume m/k, in�nitely far away from each other.
Using the homogeneity of P and Vα we �nd that

mk = |B|

(
(k + 1)

1
n − k

1
n

(k)−
α
n − (k + 1)−

α
n

P (B)

Vα(B)

) n
1+α

. (2.3.1)

We also set m0 = 0. The sequence (mk) is increasing. Then, an equivalent formulation of
conjecture 2.3.1, generalized to any dimension n and parameter α ∈ (0, n), is:

Conjecture 2.3.2. Ifm ∈ [0,m1], the ball of volumem is the unique minimizer of (1.1.2). For
m ∈ (m1,∞), there is no minimizer in (1.1.2). Moreover, for any k ∈ N∗ and m ∈ [mk−1,mk],
we have

inf
E⊂Rn,|E|=m

P (E) + Vα(E) = kf(
m

k
).

In particular, as long as there is a minimizer in (1.1.2), it is a ball. When there is no min-
imizer, the in�mum of the energy is attained by a �nite number of balls of the same volume,
in�nitely far away from each other.

To get minimizers of (1.1.2) for di�erent volume constraint, we set the volume constraint
to 1 and add a constant cm to the term Vα. Indeed, minimizing

inf
E⊂Rn,|E|=1

P (E) + cmVα(E)

is equivalent to minimizing (1.1.2) provided

cm = m
1+α
n . (2.3.2)

The choice of T is made so that, if 1NB[1] is the discretization of the ball of volume 1 with side

step T
N , we have

Vα,T (1NB[1])− Vα(B[1])

Vα(B[1])
≤ 1%.

Meanwhile, given the number of discretization points N = 211, we cannot increase T too much,
otherwise the discretization of candidate minimizers is less and less precise.

For instance, for α = 1 and n = 2, we have
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2.3. Numerical results

• for T = 5π:
Vα,T (1NB )−Vα(B[1])

Vα(B[1]) ' 0.08,

• for T = 10π:
Vα,T (1NB )−Vα(B[1])

Vα(B[1]) ' 0.04,

• for T = 20π:
Vα,T (1NB )−Vα(B[1])

Vα(B[1]) ' 0.01.

These numerical estimates lead us to chose T = 20π. See Appendix 2.A for the method used
to compute Vα(B[1]).

We display the results obtained for α = 1, and cm = 1.5, 1.6 in Figure 2.1.

(a) cm = 1.5 (b) cm = 1.6

Figure 2.1: α = 1, A = 0, Ω is a square.

Here the box Ω in which all functions are supported (see Section 2.2) has been chosen to be
a square of diagonal length π (and is represented by white lines). We emphasize that this box
is needed to get the right minimizers, both theoretically and numerically. Theoretically, the
condition that functions are supported in a �xed bounded set is needed for the compactness
property (C) (again see Section 2.2) to be satis�ed, both in step one and in step two, as we let
the size of the domain T go to in�nity. Numerically, without this box, for cm = 1.5, simulations
yield two balls (instead of one as shown on Figure 2.1a) that get further and further away
from each other as T increases. But this con�guration does not converge to an admissible
candidate, so it de�nitely does not converge to a minimizer.

We observe that for cm = 1.6, we get two balls in opposite corners of the square Ω: it is
consistent with the expected repulsive behaviour of the non-local term Vα. Moreover, using
(2.3.1) and (2.3.2), we �nd that, if conjecture 2.3.2 is true, there must be a minimizer up to
cm ' 1.67. Numerically, we �nd that there is a minimizer up to a constant cm ∈ (1.5, 1.6),
which is relatively close to 1.67. We also observe similar results for di�erent values of α,
including in the near �eld-dominated regime α < 1.

For Ω a disk of diameter π, if one increases further cm, we get three balls located near the
boundary of Ω, as shown in Figure 2.2a for cm = 3.0. This is consistent with the conjecture
that the energy is minimized by balls of the same volume. To illustrate the e�ect of the
con�ning potential, we display in Figure 2.2b the minimizer for cm = 3.0, A = 1 and β = 16.

Finally, let us mention that the number of discretization points isN = 211 in each direction.
Numerical minimization is made using the solver IPOPT [83]. The computation time on a
standard computer is about an hour.
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Chapter 2. Numerical minimization

(a) A = 0 (b) A = 1

Figure 2.2: α = 1, cm = 3.0, β = 16, Ω is a disk.

2.A Appendix: computation of Vα(B[1])

Here we explain how we compute Vα(B[1]) numerically, as needed in Section 2.3 to choose the
value of T . In order to compute numerically the improper integral

Vα(B[1]) =

∫
B[1]×B[1]

dxdy

|x− y|2−α
,

we add a small term ε > 0 to the denominator of the integrand. So we compute

Vα,ε(B[1]) =

∫
B[1]×B[1]

dxdy

|x− y|2−α + ε
.

To control the error introduced by the parameter ε, we need to estimate the di�erence ∆ε :=
Vα(B[1])− Vα,ε(B[1]). We have

∆ε =

∫
B[1]×B[1]

dxdy

|x− y|2−α
−
∫
B[1]×B[1]

dxdy

|x− y|2−α + ε

=

∫
B[1]×B[1]

εdxdy

|x− y|2−α (|x− y|2−α + ε)
.
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2.A. Appendix: computation of Vα(B[1])

So

∆ε ≤
∫
B[1]×B[1]

1|x−y|<r
dxdy

|x− y|2−α
+

∫
B[1]×B[1]

1|x−y|≥r
εdxdy

|x− y|2−α r2−α

≤
∫
B[1]×R2

1|x−y|<r
dxdy

|x− y|2−α
+

ε

r2−α

∫
B[1]×B[1]

dxdy

|x− y|2−α

≤
∫
B[1]×R2

1|y|<r
dxdy

|y|2−α
+

ε

r2−α

∫
B[1]

∫
B[1]

dxdy

|y|2−α

=

∫
|y|<r

dy

|y|2−α
+

ε

r2−α

∫
B[1]

dy

|y|2−α

= 2π

∫ r

0

ρ2−1dρ

ρ2−α +
ε

ρ2−α 2π

∫ 1√
π

0

ρ2−1dρ

ρ2−α

=
2π

α
(rα +

ε

r2−απ
α
2

),

for some r > 0. This last bound attains its minimum for r =
(

(2−α)ε

απ
α
2

) 1
2
. From there we

deduce

∆ε ≤
2π

α

2

2− α

(
2− α
α

)α
2
(
ε

π
α
2

)α
2

.

With α = 1, we get
∆ε ≤ 4π

3
4
√
ε.

Now the proper integral Vα,ε(B[1]) can be expressed in polar coordinates, and computed with
arbitrary precision in the Julia language, using the HCubature package.
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