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Abstract

Natural killer (NK) cells are innate lymphoid cells widely recognized as important

effectors during antiviral and anti-tumor responses. T-bet and Eomes are two

transcription factors from the T-box family that are homologous with each other for

protein sequence and DNA binding preferences. Both factors were previously shown

to regulate NK cell development, but how they work together remains unclear. In this

study, we identified complementary roles of Eomes and T-bet in the control of gene

expression during NK cell maturation and found that T-bet and Eomes regulate mostly

different gene sets and at different maturation stages. Analysis of genomic binding

revealed a significant overlap between Eomes and T-bet. In addition, in silico analysis

of DNA binding suggests that Eomes and T-bet rely on other co-factors to allow

TF-specific activity. Moreover, T-bet or Eomes also regulate chromatin accessibility

resulting in the control of NK cell development.

Invariant natural killer T (iNKT) cells are unconventional T cells bearing an invariant T

cell receptor and are distinct from conventional CD4 or CD8 single positive T cells.

Previous analyses suggested a role for Zeb1 in T cell development. We demonstrated

that Zeb1 was essential for the development of NK1.1+ T cell especially iNKT cells.

The truncated form of Zeb1 in the Cellophane mutant mouse abrogated iNKT cell

development mainly through the deregulation of TCR signaling and survival and the

repression of proliferation in T cell progenitors including DN2 and DP stages. A

transcriptomic analysis on WT and Cellophane DP revealed that Zeb1 regulated the

expression of multiple genes involved in cell cycle and TCR signaling, which was

consistent with the phenotypes that we observed in mice. Finally, multiple lines of

evidence suggest that Zeb1 acts in coordination with E-proteins such as TCF1 and

HEB during T cell development.



Résumé

Les cellules tueuses naturelles (NK) sont des cellules lymphoïdes innées largement

reconnues comme des effecteurs importants lors des réponses antivirales et

anti-tumorales. T-bet et Eomes sont deux facteurs de transcription de la famille des

T-box dont le domaine de liaison à l ‘ADN est très homologue. Il a été précédemment

démontré que ces deux facteurs régulent le développement des cellules NK, mais la

façon dont ils se coordonnent demeure mal connue. Dans cette étude, nous avons

identifié des rôles complémentaires d’Eomes et de T-bet dans le contrôle de

l’expression des gènes pendant la maturation des cellules NK et avons constaté que

T-bet et Eomes régulent principalement différents groupes de gènes et à différents

stades de maturation. L’analyse de la liaison génomique a révélé un chevauchement

significatif entre Eomes et T-bet. De plus, l’analyse in silico de la liaison à l’ADN

suggère qu’ Eomes et T-bet dépendent d’autres co-facteurs pour exercer leur activité

spécifique. De plus, T-bet et Eomes régulent l’accessibilité à la chromatine, ce qui

entraîne le contrôle de la différenciation des cellules NK.

Les cellules T tueuses naturelles invariantes (iNKT) sont des cellules T non

conventionnelles portant un récepteur de cellules T (TCR) invariant et sont distinctes

des cellules T CD4 et CD8 conventionnelles. Des analyses précédentes ont suggéré

un rôle pour Zeb1 dans le développement des cellules T. Nous avons démontré que

Zeb1 était essentiel pour le développement des cellules T NK1.1+ en particulier les

cellules iNKT. Dans les souris mutantes Cellophane une forme de Zeb1 tronquée est

exprimée, ce qui entraine un défaut de développement des cellules iNKT

principalement par dérégulation de la signalisation du TCR et par une répression de

la prolifération et de la survie dans les progéniteurs des lymphocytes T aux stades

DN2 et DP. Une analyse transcriptomique sur WT et Cellophane DP a révélé que

Zeb1 régulait l’expression de plusieurs gènes impliqués dans le cycle cellulaire et la

signalisation TCR, ce qui était cohérent avec les phénotypes que nous avons

observés chez la souris. Enfin, plusieurs éléments de preuve suggèrent que Zeb1

agit en coordination avec les protéines E telles que TCF1 et HEB pendant le

développement des lymphocytes T.
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1 Natural Killer Cells

1 Natural Killer Cells

The immune system is classified into two categories: innate immunity and adaptive

immunity. Innate immunity refers to rapid effector functions exerted by a variety of

myeloid and lymphoid cells through a limited repertoire of germline-encoded receptors.

In contrast, adaptive immune cells, including T and B cells, express a diverse repertoire

of antigen receptors (TCRs and BCRs) that are produced by somatic recombination.

Compared to innate immunity, adaptive immunity requires more time to develop, as

T and B lymphocytes need to undergo division and maturation before they can exert

their effector functions upon recognition of antigen ligands.

Natural killer (NK) cells are innate lymphocytes that differ from B and T cells in that

they use numerous receptors, none of which is encoded by genes that undergo

rearrangement (Murphy et al., 1987). NK cells were first discovered in 1975 and were

originally characterized by their ability to lyse certain tumors without previous

stimulation (Kiessling et al., 1975; Herberman et al., 1975) (Figure 1). Moreover, the

"missing-self hypothesis" was proposed by Klas Kärre afterwards declaring that NK

cells used a different strategy than T cells to fight against pathogens and tumors

(Kärre, 1985). NK cells principally participate in innate immunity but also contribute to

regulating the outcome of adaptive immune responses. In contrast to the response of

the adaptive immune system, the response of innate immune cells is immediate and

creates the first line of protection during the first few days of infection with pathogens.

NK cells are involved in the defense against viruses, intracellular bacteria and

parasites, as well as in the elimination of tumors (Biron et al., 1989, 1999; Laskay

et al., 1993; Yu et al., 1992).

1.1 Development

Lymphocytes originally derive from hematopoietic stem cells (HSCs) which can be

found in many different sites during life, including yolk sac and liver in fetus, and bone

marrow (BM), thymus, spleen, omentum and liver in adults. The BM

microenvironment is a special niche providing cytokines, growth factors and

1



1 Natural Killer Cells 1.1 Development

Figure 1. The timeline of NK cell discovery and research. NK cells were first discovered in
1975 by Kiessling et al. and the last two decades saw great advances in clarifying the identity
and function of NK cells along with the arrival of new technologies including flow cytometry,
Crispr-casp9 and high-throughput sequencing. The literature cited in the figure is listed in the
Reference section.

extracellular matrix that support NK cell development and maturation. Of note, the

acquisition of the CD122 (IL-15Rβ chain) is a critical point in NK cell differentiation as

IL-15, constitutively produced by BM stroma cells, promotes NK cell differentitation,

maturation and survival (Colpitts et al., 2013; Cui et al., 2014). Neither the thymus nor

the spleen seem to be indispensable for the generation of NK cells as mice and

humans deprived of thymus or spleen have normal NK cells in the peripheral blood in

terms of numbers and functions (Sihvola and Hurme, 1984; Ramos et al., 1996;

Schwarz and Hiserodt, 1990; Passlick et al., 1991). Both the fetal thymus and liver

were traditionally recognized to contain hematopoietic precursors that can potentially

differentiate into NK cells. However, NK cells from liver are reported to contain two

populations, conventional NK cells, and tissue-resident NK cells which are described

as a separate lineage that is dependent on T-bet but not Eomes (Peng et al., 2013;

Daussy et al., 2014). The distribution of NK cell stages between early-life and

adulthood is quite different (Collins et al., 2017). Further studies are still required to

understand the biological importance of fetal NK cell development and the difference

between fetal- and adult-derived NK cells in terms of lifespan and functions.

Several processes occur in the BM including generation of NK precursors (NKPs) via

common innate lymphoid progenitors (CILPs) that are derived from common lymphoid

progenitors (CLPs) (Yang et al., 2015b), acquisition of NK-cell inhibitory and activation

receptors, NK cell education and functional competence. However, the BM is not the
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only organ that contains NKPs and immature NK cells, as these cells can also be

found in thymus, spleen, liver and lymph nodes (Vosshenrich et al., 2005; Freud et al.,

2005; Takeda et al., 2005). This indicates that multiple sites might support NK cell

differentiation.

In general, NK cell development can be divided into three stages (Colucci et al.,

2003): an initial phase which involves hematopoietic stem cells that differentiate to

the lymphoid lineage and then to the NKPs; a second phase involving the

commitment of NKPs towards NK cells of phenotypic and functional characteristics; a

final phase, which involves circulation and migration of NK cells to the peripheral

organs (Figure 2).

Figure 2. NK cell development and maturation. Mouse and human NK cells both
derive from CLPs followed by CILPs which give rise to NK cells and ILCs. CD122
expression begins at the NKP stage. Commitment to the NK lineage is followed by NK1.1
or NKp46 expression. However, mouse and human NK cells express different surface
markers during maturation. In mice, NK cell maturation can be defined by CD11b and
CD27 (i.e. CD11b−CD27+, CD11b+CD27+, CD11b+CD27−), while surface markers CD56
and CD16 allow the discrimination of two subsets of human NK cells, CD16+CD56dim and
CD16−CD56bright. However, maturation is not a clear concept in human, although CD27low

NK cell subset s likely at a more mature stage in human NK cell differentiation based on the
expression profile of NKR, other differentiation markers and functional maturity (Silva et al.,
2008). Adapted from Crinier et al. (2020).

1.1.1 Commitment to becoming a killer

Within the hematopoietic system, multipotent, self-renewing hematopoietic stem cells

(HSCs) provide the cellular substrate for the generation of different hematopoietic

lineage precursors (e.g. erythroid, megakaryocytoid, myeloid and lymphoid cells).

Hematopoiesis is a continuous process that is characterized by the progressive loss

of cell-fate potentials. Firstly, HSCs differentiate into two major lineages: common
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myeloid progenitors (CMPs (Akashi et al., 2000) and common lymphoid progenitors

(CLPs) (Kondo et al., 1997). During lymphopoiesis, erythroid, megakaryocytoid and

myeloid potentials are lost, resulting in the generation of CLPs that are restricted to

the lymphoid fate. Dynamic regulation of transcriptional programs is involved in this

commitment, with Ikaros, E2A, PU.1 and GFI1 (growth factor independent 1) strongly

promoting lymphoid-specific program and repressing the myeloid-restricted program

(Ng et al., 2009). Once generated, CLPs are immediately committed to the earliest

lymphoid progenitors (ELPs) (Igarashi et al., 2002), and then further dedicated to give

rise to B- and T-cell restricted precursors that are equipped with transcriptional

programs leading to B cell or T cell fates (Rothenberg, 2014).

Two decades ago, researchers identified the earliest murine NK cell committed

precursor residing within fetal thymus and adult bone marrow, that is Lin− population

(CD3− CD19− Gr1− Ter119−) expressing IL-2Rβ (also known as CD122) (Rosmaraki

et al., 2001; Ikawa et al., 1999). These cells were later recognized as NK precursors

(NKPs) and have the potential to generate NK cells but neither B/T cells, nor myeloid

cells. In 2011, two different groups (Carotta et al., 2011; Fathman et al., 2011) studied

the potential of different progenitor populations to develop into NK cells. They

identified several NK cell progenitor subsets including CD135+ CLP as expected and

also two other populations that lacked CD135 expression and expressed variable

levels of CD122. The CD122− population was designated as pre-NKP, while the

CD122+ subset probably corresponded to the previously defined NKP subset. The

refined NKPs are lineage-negative, express variable CD122, CD127 and lack the

expression of specific surface markers of NK cells such as NK1.1 in mouse and CD56

in human and inhibitory receptors (Fathman et al., 2011). Compared to well-equipped

NK cells, NKPs are non-lytic and do not produce cytokines (e.g. interferon-γ). In

general, CD122 expression can be defined as a characterized marker for NKPs

denoting NK lineage-committed cells.
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1.1.2 Making a mature killer

The transition from NKPs to NK cells is driven by several TFs (e.g. Nfil3/E4bp4)

(Gascoyne et al., 2009) and cytokines (e.g. IL-15) (Kennedy et al., 2000; Barton

et al., 1998), and during this process, NK cells acquire a characteristic cell-surface

phenotype and the capacity to exert effector functions. The traditional way to identify

NK cells by flow cytometry is to use CD3 to exclude T cells and to gate on cells

positive for an NK cell-specific marker (NK1.1 epitope for C57BL/6 and C57BL/10

mice, CD49b or NKp46 for all mouse strains and CD56 for humans). Immature NK

cells generated from NKPs start to express the C-type lectin NK-cell receptor protein

1 (NKR-P1) which is encoded by the Nkrp1c gene and recognized by the anti-NK1.1

antibody but only in certain mouse strains (Bennett et al., 1996; Rosmaraki et al.,

2001). Although NK1.1 is widely used as a marker for NK cells in mice, it is not

exclusive for NK cells as iNKT cells and some αβ and γδ T cell subsets also express

NK1.1. In human, the NK cell definition is based on the expression of CD16 and

CD56 while CD56 is also expressed by human IL-22-producing ILCs (Cella et al.,

2009; Crellin et al., 2010). One of the natural cytotoxicity receptors, NKp46, seems to

be a more specific and conserved NK cell marker in all mammalian species to detect

NK cells. However, a small sub-population of T cells and IL-22-producing ILCs also

express it (Walzer et al., 2007a). Moreover, our lab identified Serine/threonine/

tyrosine kinase 1 (Styk1) as a marker of NK cells, but Styk1 is also expressed to

some extent by other NK1.1 expressing cells such as liver type 1 innate lymphoid

cells (ILC1s) and NK1.1+ γδ T cells (Fauteux-Daniel et al., 2019). Collectively, the

search for a specific pan-NK-cell marker might not be over, but a "perfect" marker

might not exist.

NK cell maturation is a dynamic and continuous process in both mouse and human.

In mouse, NK cells go through several stages of maturation. After acquisition of NK

cell-specific markers NK1.1 and NKp46, NK cells acquire a full capacity of

proliferation and start to sequentially express CD94/NKG2 receptors and Ly49

receptors and then further upregulate CD11b, CD43 and killer cell lectin-like receptor

G1 (KLRG1). This process is associated with reduced proliferation and acquisition of

effector functions (Kim et al., 2002). Distinct NK cell subsets can be identified via the
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combination of costimulatory receptor CD27 and the integrin αM (CD11b) (Chiossone

et al., 2009). Adoptive transfer assay in vivo demonstrated that mouse NK cells went

through four sequential development stages CD11blowCD27low (DN) →

CD11blowCD27high (CD27low) → CD11bhighCD27high (DP) → CD11bhighCD27low

(CD27low) (Chiossone et al., 2009; Hayakawa and Smyth, 2006). CD11blowCD27low

(DN) cells were initially described as the most immature NK cells, but they were later

found to be innate lymphoid cells group 1 cells (ILC1s) (Daussy et al., 2014).

CD11blow cells are likely to proliferate at high rate while DP cells (rather than CD27low

cells) are the most potent effector cells (Hayakawa and Smyth, 2006). CD27low cells

express the highest level of Ly49 receptors among the three different populations and

express the chemokine receptor CX3CR1 (Grégoire et al., 2007) and the

sphingosine-1 phosphate receptor S1PR5 (Walzer et al., 2007b; Mayol et al., 2011)

important for homing to peripheral organs.

In human, the development of NK cells can be stratified into five stages using a

combination of antibodies against CD34, CD117, CD94, and CD16 among Lin− cells

(Figure 3) (Freud et al., 2014). Further study on human NK cell development in

secondary lymphoid tissues divided stage 4 into two sub-populations according to the

expression of C-type lectin-like surface-activating receptor, NKp80: NKp80− (stage

4a) and NKp80+ (stage 4b). Transplantation assay into immunodeficient mice

demonstrated that cells from stage 4a could give rise to stage 4b, and stage 5 cells

sequentially (Freud et al., 2016). Interestingly, some CD57 and KIRs expression,

which are associated with terminal differentiation among human PB NK cells

(Lopez-Vergès et al., 2010; Björkström et al., 2010), were detected within stage 5, but

not within stage 3–stage 4b populations. NK cells can be classified into 2 subsets

considering the levels of CD56 and CD16 expression: CD56brightCD16lo/−

(CD56bright) and CD56dimCD16+ (CD56dim) cells. CD56bright cells are mostly found in

lymphoid organs and express few inhibitory receptors (e.g. KIRs) but display robust

proliferation and rapid production of immunomodulatory cytokines and chemokines in

response to cytokine stimulation. By contrast, CD56dim cells are dominant in the

peripheral blood and express high levels of activating and inhibitory receptors (e.g.

CD94, KIRs), and develop potent cytotoxic functions (Yu et al., 1998; Sivori et al.,

2002; Caligiuri, 2008). However, whether CD56bright cells are the immature
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Figure 3. The stages of human NK cell maturation in secondary lymphoid tissues.
NK cell developmental intermediates were viably purified from a pediatric tonsil followed by
centrifugation of the cells onto glass slides and subsequent staining with Wright-Giemsa stain.
Orginal magnification = 1000x. Adapted from Freud et al. (2014).

precursors of the CD56dim is not definitely established (Michel et al., 2016).

In general, immature NK cells highly proliferate but fail to exert powerful response

to target cells or produce interferon-γ (IFN-γ), while mature NK cells are less potent

in proliferation but are equipped with the full repertoire of inhibitory receptors (Ly49

or KIR) which endows them with robust functions including cytotoxicity and cytokine

secretion. In exceptional cases, mature NK cells can enter an expansion phase upon

pathogen stimulation (Kim et al., 2002).

1.1.3 Dispatching killers to the frontline

It has been appreciated that NK cells are widely distributed in mammals both in

lymphoid and non-lymphoid organs. In mouse, NK cell frequencies appear to be the

highest in non-lymphoid organs such as liver and lung. The following organs are

listed in order according to the frequencies of NK cells in lymphocytes: lung > liver >

periphery blood mononuclear cells (PBMCs) > spleen > BM > lymph node (LN) >

thymus, where NK cells are almost undetectable (Grégoire et al., 2007). The

frequencies of NK cells in human tissues are somewhat different from those of mice:

BM > Lung > Spleen > blood > gut > LN > tonsil (Dogra et al., 2020). The ratio

between NK cell subsets defined by CD11b and CD27 in mice and CD56 in human

also varies within tissues which is illustrated in details in Figure 4 (Crinier et al.,
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2020).

Figure 4. NK cell distribution. NK cells are localized in multiple sites including lymphoid
and non-lymphoid organs (BM, liver, lung, spleen, LN, blood). The composition of NK cells
from certain organs are individually shown in pie charts. In addition, NK cells are also present
in other organs such as intestine, skin, tonsils, thymus, kidney, adipose tissue and pancreas.
Adapted from Crinier et al. (2020).

Immature CD11blow NK cells predominate in the BM and LN, while DP and mature

CD27low NK cells are present at higher frequencies in the blood, liver, spleen and lung.

In humans, CD56dim NK cells show stronger migration in response to chemkine CXCL8

(also known as IL-8) and soluble fractalkine (CX3CL1), whereas CD56bright NK cells

better respond through CC-chemokine receptor 7 (CCR7) which is associated with

homing to lymph nodes. This results in 10 times more CD56bright NK cells found in LNs

than in the blood (Frey et al., 1998). CD56dim cells comprises 5-20% of lymphocytes

in blood and are essential for effector functions. Besides, NK cells can also be found

in skin (Ebert et al., 2006) and placenta during pregnancy (Moffett-King, 2002; Freud

et al., 2017).

Taken together, NK cells patrol both lymphoid and non-lymphoid organs in the

circulation and are ready to extravasate inflammatory tissues to offer protection, and

the phenotype of NK cell subsets is not fixed but can evolve depending on the cellular

context (signals from cytokines, chemokines, adhesion molecules...).

1.2 NK Cell Surface Receptors

NK cell activation is controlled via a dynamic balance between stimulatory and

inhibitory receptors (Vivier et al., 2008; Gasser and Raulet, 2006; Long, 1999). Most
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inhibitory receptors of NK cells are specific for MHC class I molecules that are

expressed by normal cells but are often lost in infected cells or tumors to escape the

attack from adaptive immunity (e.g. T and B cell response).

Ligands for activating receptors are usually poorly expressed by healthy cells but are

upregulated by "unhealthy" cells, such as transformed, infected, or stressed cells

(Gasser and Raulet, 2006). "Healthy" cells fail to be killed by NK cells as the inhibitory

signaling counteracts with the activating signaling. In the context of "unhealthy" cells,

increased expression of stimulatory ligands can overcome inhibitory signaling thus

resulting in target cell lysis by NK cells (Long, 1999). Importantly, each NK cell

receptor is often expressed only by a fraction of NK cells, independently of other

receptors, so that the NK cell population is of great diversity due to the combinatorial

expression of those receptors (Raulet et al., 1997; Valiante et al., 1997; Kubota et al.,

1999). For examples, 10-15% of NK cells in C57BL/6 mice were shown to lack

self-engaged inhibitory receptor (i.e. Ly49C, Ly49I and CD94-NKG2A) (Fernandez

et al., 2005).

Engagement of activating receptor initiates either protein tyrosine kinase

(PTK)-dependent pathways that rely on intracytoplasmic ITAMs (immunoreceptor

tyrosine-based activation motifs), or the DAP10 transmembrane-dependent signaling

adaptor-dependent pathway. On the contrary, inhibitory receptors can antagonize

activating pathways through protein tyrosine phosphatases (PTPs) that are recruited

via intracytoplasmic ITIMs (immunoreceptor tyrosine-based inhibition motifs) (Vivier

et al., 2004). In addition to activating receptors and inhibitory receptors, NK cells also

express many other surface receptors, such as cytokine, chemotactic and adhesion

receptors (Figure 5).

1.2.1 Inhibitory receptors

"Missing-self"

The "missing-self" hypothesis was first put up forward by Klas Kärre in 1981 (Kärre,

1981) and officially published at the 1985 International Workshop on NK cells (Kärre,
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Figure 5. NK cell receptors. NK cells express a variety of receptors that can be classified into
five groups: inhibitory receptors (purple), activating receptors (red), cytokine receptors (grey),
chemotactic receptors (blue) and adhesion receptors (yellow). Only part of the receptors are
listed here.

1985; Kärre et al., 1986) on the basis of results obtained in the field of F1 hybrid

resistance and related allorecognition phenomena (Cudkowicz and Stimpfling,

1964b,a; Snell et al., 1967). By comparing NK and T cell reactivity, he found that in

several situations (e.g. tumor versus healthy, virus infected versus uninfected), target

cells sensitive to killing by NK cells would be resistant to killing by T cells, and vice

versa. For example, some metastatic cells had lost MHC (major histocompatibility

complex) expression presumably to escape T cell immunity, however, NK cells were

shown to eliminate them in the circulation. Moreover, NK cell-resistant targets usually

express more MHC class I molecules than their sensitive counterparts. This led him

to propose the "missing-self" hypothesis that NK cells attack cells lacking self-MHC,

which could be a "backup" surveillance system to eliminate target cells without MHC

(Kärre, 2008).

The working model was formally demonstrated later when Kärre showed in mouse

experiments that tumors developed only in mice inoculated with MHC-I+ tumors but
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not with MHC I-deficient ones (Kärre et al., 1986). Upon NK cell depletion with the

monoclonal anti-NK1.1 antibody, MHC I negative tumors also grew in recipient animals,

thus demonstrating that NK cells were the critical effector cells in this model (Ljunggren

and Kärre, 1985). Similar results were observed in nude mice further excluding the

possibility that NKT cells were involved in this process. Thus, one of the most important

NK cell functions is to detect and eliminate cells that fail to express normal self markers,

resulting in a completely opposite action of NK and T cells. However, both NK and T

cells are strongly influenced by the target MHC molecules.

NK cells have a variety of MHC class I-specific inhibitory receptors including killer cell

immunogloblin-like receptors (KIRs) in human, lectin-like Ly49 molecules in mice, and

CD94/NKG2A heterodimers in both species (Figure 6) (Karlhofer et al., 1992). These

Figure 6. Inhibitory NK cell receptors in mouse and human. Human and mouse NK
cell Intracytoplasmic ITIM-bearing receptors are depicted. KIRs have a long cytoplasmic tail
containing ITIM and two or three extracellular Ig-like domains, conferring their specificity for
HLA ligands. CD94/NKG2A are shared between human and mouse, while Ly49R is exclusively
expressed by mouse NK cells.

inhibitory receptors contain cytoplasmic ITIMs (Colonna, 1997; Lanier, 1998; Moretta

et al., 2000; Raulet et al., 2001). Upon ligand binding and subsequent tyrosine

phosphorylation, ITIMs recruit SRC homology 2 (SH2)-domain-containing protein

tyrosine phosphatases such as SHP1 and SHP2 or SH2-domain-containing

inositol-5-phosphatase (SHIP) to inhibit NK cell effector responses mediated through

their activating receptors (Olcese et al., 1996). Apart from the MHC class I specific
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receptors, some inhibitory receptors are described to bind to MHC-I-like molecules

(e.g. NKG2A binds HLA-E in human or Qa1 in mice) or non-MHC-class-I molecules,

among which are NKR-P1B and NKR-P1D (Iizuka et al., 2003; Carlyle et al., 2004),

KLRG1 (Carlyle et al., 2004), carcinoembryonic-antigen-related cell-adhesion

molecule 1 (CEACAM1) (Markel et al., 2004) in humans, and some of the Ly49 family

members in mice.

The ability of NK cells to control MHC I negative cells has at least two benefits. In one

hand, NK cells spare healthy cells that express self-MHC class I molecules and low

amount of agonist and, on the other hand, NK cells are engaged in surveillance of

virus-infected cells or tumors that downregulate MHC class I expression so as to

avoid recognition by CD8+ cytotoxic T lymphocytes (Anfossi et al., 2006; Cooley

et al., 2007). Inhibitory receptors also confer NK cells the ability to maintain a state of

responsiveness to subsequent activation events, a process named as education, as

detailed later (Kim et al., 2005). In addition, co-inhibitory receptors including PD-1,

Lag3, Tim-3 and TIGIT are proven to have important role in the maintenance of

immune homeostasis and in regulating autoimmune diseases. More recently, the

function of co-inhibitory receptors in NK cells has been manipulated to control the

process of cancer highlighting the potential therapeutic approaches of targeting NK

cells in the treatment of cancer (Zhang et al., 2018b; André et al., 2018; Morvan and

Lanier, 2016).

1.2.2 Activating receptors

The "missing-self" model shows the existence and importance of inhibitory receptors

on NK cells, but does not provide any explanation on how NK cells become activated

when they encounter tumor or virus-infected cells, or "unhealthy" cells that lack MHC

class I molecules.

Unlike T and B cells which possess a single dominant antigen receptor, NK cell

activation relies on a vast combination of receptors to initiate effector functions. Long

and colleagues argued that none of the receptors alone, exception of CD16, were

able to trigger cytolytic activity or cytokine secretion upon cross-linking with agonistic
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antibodies in freshly isolated primary NK cells (Bryceson et al., 2006). Rather than

forming a hierarchy or dominance, activating receptors can cooperate to mediate

cytokine secretion and natural cytotoxicity. CD16 is an exception, as it is sufficient to

initiate degranulation by itself (Lanier et al., 1989, 1991). Redundancy may occur

within and among synergistic combinations of receptors, allowing NK cells to gain a

greater flexibility in sensing and responding quickly to changes in the environment

(Long et al., 2013).

Numerous activating receptors are expressed in NK cells. Biochemically, they can

be classified into three different categories based on signaling pathways: the ITAM-

bearing NK receptor complexes (e.g. NKp46. CD94/NKG2C, CD16), the DAP10-

associated NKG2D receptor complexes and the SAP/EAT-2 pathway (e.g. SLAM family

receptor 2B4)(Lanier, 2008). However, there are other activating receptors associated

with tyrosine signaling for which only limited studies about the downstream signaling

have been conducted.

Receptors associated with ITAM-bearing molecules

The ITAM motif has been studied in great details as it supports the major signaling

pathway downstream of most immunoreceptors, such as the T cell receptors

(Smith-Garvin et al., 2009). Three ITAM-bearing molecules — FcRγ, CD3ζ and

DAP12 — are constitutively expressed in NK cells and contribute to signaling by

engaging different activation receptors as either disulfide-bonded homodimers or, in

the case of FcRγ and CD3-ζ, as disulfide-bonded heterodimers. All three

ITAM-bearing molecules have minimal extracellular regions comprising only a few

amino acids (principally the cysteine residues) through which they dimerize. FcRγ

and DAP12 have a single ITAM, while CD3-ζ has three ITAMs per chain (Lanier et al.,

1998). The ITAM-bearing proteins contain an aspartate charged residue, locating

centrally within the transmembrane of DAP12 and closer to the extracellular region in

FcR-γ and CD3-ζ. The aspartate charged residue is required for stable association

with the activating receptors, which typically contain an oppositely charged amino

acid (lysine or arginine) (Lanier, 2008). Once these activating receptors bind to

specific ligands, it will induce the phosphorylation of the ITAM tyrosines, presumably

by Src family kinases, including Lck, Fyn, Yes, Lyn and Fgr. ITAM phosphorylation will
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provide a docking site for Src homology (SH2) domains of tyrosine kinases Syk and

ZAP70 (Smith-Garvin et al., 2009; McVicar et al., 1998; Colucci et al., 2002; Chiesa

et al., 2006).

NKG2D (CD314)

NKG2D is a lectin-like type II transmembrane homodimer (Houchins et al., 1991) and

is expressed on virtually all NK cells and various T cells subsets, including CD8+ T

cells, γδ T cells and NKT cells (Bauer et al., 1999; Jamieson et al., 2004). In humans,

CD4+ T cells rapidly upregulated the expression of NKG2D after activation (Sáez-

Borderías et al., 2006). However, NKG2D is not present in murine CD4+ T cells even

after activation in vitro (Groh et al., 2006). The ligands for NKG2D are of great diversity,

all of which are related self proteins that are similar to MHC class I molecules (Raulet

and Guerra, 2009).

NKG2D signals through its association with the short transmembrane molecule

DAP10, which contains the cysteine residues required for dimer formation and carries

a tyrosine-based motif (YxxM) different from the ITAM. It is well documented that

NKG2D signaling also participates in the elimination of tumor cells that express

NKG2D ligands both in vitro (Bauer et al., 1999; Jamieson et al., 2004; Pende et al.,

2001; Bryceson et al., 2006) and in vivo in tumor transplant experiments (Diefenbach

et al., 2001; Cerwenka et al., 2001). In humans, specific genetic polymorphisms of

NKG2D have been reported to be associated with susceptibility to cancer (Hayashi

et al., 2006). Besides, infection with cytomegalovirus (CMV) leads to the upregulation

of NKG2D ligand expression in mouse which indicates that NKG2D is also involved in

protection from virus infections (Welte et al., 2003). However, enhanced resistance of

NKG2D-deficent mice to MCMV infection was observed which might be a

consequence of NK cell dysregulation resulting in higher frequency of NK cells

capable and more sensitive to respond (Zafirova et al., 2009).

Receptors of the SLAM family

2B4 (also named CD244) is a member of the SLAM (signaling lymphocyte activation

molecules)-related family, which mediates cell-cell interactions through homophilic

binding and is expressed by all NK cells, γδ T cells and memory CD8+ (αβ) T cells

(Veillette, 2006). The SLAM family receptors transmit activation signals through
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interaction between SH2 domain-containing adaptor proteins and the tyrosine-based

motif TIYXX (V/I) (as an immunoreceptor tyrosine-based switch motif, ITSM) in the

cytoplasmic domain of CD244. Three adaptor protein — SAP (SLAM-associated

protein), EAT-2 and ERT — can recognize this motif (Veillette, 2006; Veillette et al.,

2007).

Interestingly, both human and mouse 2B4 have been reported to be as either

activating or inhibitory receptor, largely depending on the expression level of 2B4 and

the degree of association with certain adaptor molecules (Schatzle et al., 1999; Lee

et al., 2004; Chlewicki et al., 2008). Veillette and colleagues proposed that

CD244-SAP-Fyn receptor complex activates NK cells, whereas CD244-EAT2 and

CD244-ERT receptor complexes inhibit NK cell activation (Veillette, 2006; Veillette

et al., 2007). The mechanism of the balance between activating and inhibitory

functions of 2B4 remains not well understood.

DNAM1

DNAX accessory molecule-1 (DNAM-1, CD226) is an adhesion and costimulatory

molecule that is constitutively expressed by most NK cells, T cells, macrophages and

dendritic cells. DNAM-1 is known to promote NK cells cytotoxic activity and IFN-γ

production upon binding to its ligands (Chan et al., 2010; Carlsten et al., 2007).

DNAM-1 binds to two major ligands including the poliovirus receptor CD155 (also

known as PVR) and the nectin adhesion molecule CD112 (known as PVRL2), both of

which are upregulated on tumor cells (Soriani et al., 2009; Bottino et al., 2003).

Herein, these ligands can activate or enhance tumor cells lysis, reject certain tumor

cells and limit the formation of tumors in vivo (Gilfillan et al., 2008). Of note, DNAM-1

shares its ligands with the inhibitory molecules TIGIT and CD96. As a consequence,

TIGIT reportedly counterbalanced CD226, whereas CD96 competed with DNAM-1 for

CD155 binding and limited NK cell function by direct inhibition (Chan et al., 2014).

Upon engagement, DNAM-1 Ser329 is phosphorylated by protein kinase C. Leucocyte

function-associated antigen-1 (LFA-1) then cross-links with DNAM-1, resulting in the

tyrosine phosphorylation of DNAM-1 which is induced by Fyn protein tyrosine kinase

(Shibuya et al., 1999, 2003; Enqvist et al., 2015).

NCRs

15



1 Natural Killer Cells 1.2 NK Cell Surface Receptors

A number of natural cytotoxicity receptors (NCRs) are also expressed on NK cells

such as NKp46/NCR1, NKp30/NCR3 and NKp44/NCR2, among which only NKp46 is

expressed in mouse. NKp46 and NKp30 combine with FcRγ and/or CD3-ζ, whereas

NKp44 associates with the signaling adaptor DAP12 (Moretta and Moretta, 2004).

NKp46 is one of the NCRs expressed on all NK cells (Pessino et al., 1998), which

was recently shown to control TRAIL protein expression in both NK cells and ILCs

(Sheppard et al., 2018). Numerous different NCR ligands have been identified,

including heparan sulphate proteoglycans (for NKp30 and NKp46 (Bloushtain et al.,

2004), viral hemagglutinins derived from influenza and parainfluenza (for NKp44 and

NKp46) (Mandelboim et al., 2001), and the nuclear factor HLA-B-associated

transcript 3 and B7-H6 (for NKp30) (von Strandmann et al., 2007; Brandt et al., 2009).

It is demonstrated by a series of studies that the different DAP12-, FcRγ- and CD3ζ-

associated NK receptor complexes could use different adapters or kinases in NK cells

depending on different stages of maturation or activation (Chiesa et al., 2006).

1.2.3 Cytokine receptors

The local environment has a great influence on NK cell homeostasis, differentiation

and functions. NK cells express a series of cytokine receptors (Marçais et al., 2013)

including γc family receptors which share a common gamma chain (e.g. IL-15R, IL-

2R, IL-21R, IL-7R, IL-9R and IL-4R) and IL-12 family receptors (e.g. IL-12R), IL-18R,

TGFβ receptor, IFNAR (Figure 7). Most cytokines transduce signals via Janus kinase /

signal transducer and activator of transcription (JAK/STAT) pathways that contribute to

the regulation of differentiation, proliferation, migration or functions (Stabile et al., 2018;

Villarino et al., 2017). The JAK/STAT pathway is highly conserved among species, and

includes four members of the JAK family (JAK1-3 and TYK2) and seven STAT proteins

(STAT1-4, STAT5A, STAT5B, STAT6) (Gotthardt et al., 2019).

IL-15R is composed of three subunits: IL-15Rα chain, β and γ chain. IL-15R and

IL-2R share IL-2/15Rβ chain (CD122) and the common gamma chain (γc, CD132),

which is also a part of other receptors for IL-7, IL-4, IL21. The only difference

between IL-2R and IL-15R lies in their α chain, IL-2Rα (CD25) for IL-2R and IL-15Rα
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Figure 7. Schematic of essential cytokines in NK cell biology. IL-15R, IL-2R, IL-21R
belong to the γc receptor family. Engagement of related interleukin results in recruitment of
associated JAK-STAT proteins. STAT proteins predominantly activated by relative cytokines
are indicated. IL-18R is an exception as it employs MyD88 and leads to the activation of
NK-κB and MAPK pathway.

for IL-15R (Giri et al., 1995). Interestingly, IL-15 and IL-15Rα are co-expressed by the

same cells (e.g. dendritic cells and macrophages) and form a complex which can be

trans-presented to neighboring cells expressing IL-15Rβ/γc (Dubois et al., 2002).

IL-15 signaling is shown to be a rate-limiting factor for both NK cell development and

survival, and is also necessary for IFN-γ expression when coupled with IL-12. The

absolute number of NK cells is reduced by roughly half in IL-15+/− mice. Moreover,

mice with transgenic overexpression of IL-15 showed early expansion of NK cells

(Fehniger et al., 2001). Deletion of genes encoding Stat5b or both Stat5a and Stat5b,

which are crucial mediators of IL-15 receptor signaling, recapitulates the phenotype

found in IL-15 deficient mice in terms of NK cell development (Imada et al., 1998;

Moriggl et al., 1999). ChIP-seq data revealed that STAT5 can directly bind to

numerous genes that are required for cell proliferation, cell cycle and viability, which

partly explains the need for IL-15 during NK cell development (Lin et al., 2012).

Moreover, resting NK cells need to be primed before gaining their full effector

capacity, and this process is also controlled by IL-15 produced by dendritic cells

(DCs), or monocytes (Lucas et al., 2007; Mortier et al., 2009). A recent study from

our team also demonstrated that high doses of IL-15 were required to activate the

metabolic checkpoint kinase mTOR while exposure to low dose of IL-15 only resulted
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in sustained phosphorylation of Stat5 without involvement of mTOR signaling

(Marçais et al., 2014). Surprisingly, the few NK cells found in IL-15-deficient mice

appeared relatively mature and expanded after one week of mouse CMV infection,

and were capable of cytokine secretion and cytolytic function proposing a

IL-15-independent NK cell response to infection (Vosshenrich et al., 2005; Sun et al.,

2009b).

IL-2R signaling pathway is similar to that of IL-15R. IL-2 recapitulates most IL-15

functions in NK cells. However, unlike IL-15, IL-2 is not indispensable for NK cell

homeostasis but is fundamental for NK cell priming against inflammatory stimulation

(Vosshenrich et al., 2005). The presence of IL-2Rα makes NK cells more sensitive to

IL-15 and several studies showed that IL-2 is non-redundant during priming (Ring

et al., 2012).

IL-21R is homolog to IL-2Rβ and its ligand IL-21 shows great similarity with IL-15. IL-

21 binds to the common γ chain like IL-15R and IL-2R and signals through JAK1 and

STAT5. IL-21 treatment can induce the expression of perforin and IFN-γ in NK cells

thereby increasing their cytotoxicity and cytokine production(Brady et al., 2004). IL-21

was reported to inhibit NK cell proliferation mediated by IL-15 but to promote NK cell

effector functions against viral infection. However, mice lacking IL-21R do not display

any defect on NK cells in terms of numbers or maturation arguing against an essential

role of IL-21 in NK cell biology under homeostatic conditions (Kasaian et al., 2002).

IL-12R binds to the heterodimeric cytokine IL-12 which is composed of two subunits

IL-12p40 and p35. IL-12 is mainly produced by DCs and macrophages early after

pathogen infection and detection through innate sensors (Goldszmid et al., 2012).

The crosstalk between NK cells and DCs usually involves IL-12 delivery toward NK

cells. The major role of IL-12 in vivo is to induce IFN-γ production as in

IL-12p35-deficient mice, IFN-γ production was dramatically decreased while

cytotoxicity remained unchanged during virus infection (Nguyen et al., 2002). IL-12

can synergize with several cytokines especially IL-18 to promote the IFN-γ secretion

by NK cells. IL-12 activates STAT4 through combination of JAK2 and TYK2 (Figure 7)

and to a lesser degree activates STAT1, STAT3 and STAT5 (Strobl et al., 2011).

Moreover, it was shown that in T cells STAT4 could cooperate with NF-κB at multiple
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cis elements to promote IFN-γ expression (Balasubramani et al., 2010).

IL-18R belongs to the IL-1R family, which comprises 11 members. Upon IL-18 binding,

IL-18R1 dimerizes with IL-18R accessory protein (IL-18RAP), which recruits myeloid

differentiation primary response protein 88 (MyD88) and leads to the activation of NF-

κB and MAPK pathway. The main effect of IL-18 on NK cells is to couple with IL-12 to

induce IFN-γ. Engagement of IL-12 signaling leads to STAT4 phosphorylation which

transactivates IFN-γ transcription. The binding of IL-18 to its receptors stabilizes the

IFN-γ mRNA and enhances IFN-γ production through activation of the MAPK pathway

(Marçais et al., 2013).

1.2.4 Chemotactic receptors

NK cells are widely distributed throughout the body with a relatively high frequency

in both lymphoid and non-lymphoid organs, such as BM, spleen, liver, lung, thymus,

LN and uterus. Notably, the distribution of NK cells is dynamic and is governed by

a network of chemokine receptors and other adhesion molecules (e.g. integrins and

selectins) (Figure 8).

At steady state, S1PR5 and CXCR4 are of great importance for NK cells to egress

from BM to reach the blood. CXCR4 retains NK cells in the BM whereas S1PR5

promotes their trafficking to the blood. S1PR5 expression increases during NK cell

differentiation, while CXCR4 displays an opposite expression profile, with highest

expression in immature NK cells but a moderate level in mature NK cells (Walzer

et al., 2007b; Broxmeyer et al., 2005). NK cell-expressed S1PR5 acts as a

chemotactic receptor for S1P of which natural gradient promotes NK cells circulatng

in the blood, and homing to the spleen and lung. On the contrary, the high level of

CXCR4 ligand CXCL12 found in local environments desensitizes CXCR4 in the BM.

In vivo administration of CXCR4 antagonist releases NK cells from the BM showing

that CXCR4 is essential for the retention of NK cells in the BM (Mayol et al., 2011;

Broxmeyer et al., 2005). By taking advantage of two transgenic mice, our team

demonstrated that NK cell trafficking requires both CXCR4 desensitization and

S1PR5 engagement while the two signals are independent of each other (Mayol
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Figure 8. NK cell trafficking at steady state and inflammatory condition. NK cells mainly
develop in the BM and are widely distributed in peripheral organs including spleen, liver, lung
and uterus. The migration from BM to the periphery is governed by a series of chemotactic
receptors and other adhesion receptors as indicated in this figure. Upon maturation, NK cells
acquire expression of S1PR5 and exit the BM through a S1PR5-dependent way. This process
can be also promoted by other chemokines like CXCR3, and CCR5 in inflammatory condition.
CXCR4 and CD62L expression favor NK cells homing to the BM. The balance of chemokine
receptor expression is important for the homeostasis of NK cells.

et al., 2011).

In the context of tumors, CXCR3−/− mice had a dramatic reduction in

tumor-infiltrating NK cells (especially DP population) indicating the importance of

CXCR3 in NK cell recruitment under inflammatory conditions (Wendel et al., 2008).

CXCR3 is expressed at higher level in murine DP subset and human CD56bright NK

cells while CX3CR1 is upregulated in murine CD27low, and human CD56bright cells. In

the absence of CX3CR1, mature NK cells accumulated in the BM parenchyma due to

abrogation of the early trafficking from BM (Ponzetta et al., 2013), but CX3CR1

deficient mice have normal peripheral NK cell numbers (TW, unpublished). Under

stress or danger, NK cells are rapidly recruited to sites of inflammation as they

express multiple inflammatory chemokine receptors (CCR5, CXCR3 and CX3CR1).

A massive recruitment of NK cells is observed in the draining LN when stimulated by
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TLR7/8 ligands or LPS-activated DCs in a CXCR3-dependent manner in mouse

(Martín-Fontecha et al., 2004).

CD62L is essential for NK cells homing and recruitment to LN from spleen through

interaction with glycosylated L-selectin ligands on high endothelial sinus (HEVs) (Chen

et al., 2005). Moreover, expression of integrins enables NK cells to interact firmly with

the vascular endothelium, like LFA1 (leukocyte function-associated antigen-1) (Bianchi

et al., 1993). In human, it was also shown that CCR7 is upregulated on CD56dim

cells by IL-18 in vitro indicating that under inflammatory conditions, NK cells can also

migrate to LN by modulating the level of CCR7 (Mailliard et al., 2005).

1.2.5 Adhesion receptors

Upon activation through NK cell activating receptors, NK cells first adhere to target

cells through adhesion receptors followed by polarization of the actin cytoskeleton.

Subsequently, cytolysis is completed when the content of cytotoxic granules is

released towards target cells.

LFA-1 has been shown to be essential for NK cells binding to target cells. Deletion of

LFA-1 on NK cells abrogates binding to its ligand intercellular adhesion molecule-1

(ICAM-1) and impairs cytotoxicity by preventing the formation of immunological

synapse between NK cells and targets (Matsumoto et al., 1998; Barber et al., 2004).

In addition, NK cells also express a variety of other integrins, including β2 integrin

family such as Mac-1 (also known as αMβ2 or CD11b-CD18) and DX5 (also known as

α2β1) (Lanier et al., 1986; Kim et al., 2002).

1.3 NK Cell Education

NK cells develop a sophisticated mechanism known as NK cell education to ensure

functional competence and adaptation to the host cells. This process occurs through

the recognition of self-MHC molecules by inhibitory receptors (Kim et al., 2005;

Raulet and Vance, 2006; Anfossi et al., 2006; Elliott and Yokoyama, 2011). Instead of
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being autoreactive, a subset of NK cells lacking inhibitory MHC I-specific receptors

acquires a state of "hyporesponsiveness" to MHC-I-deficient targets or

antibody-mediated engagement of activating signals (Fernandez et al., 2005). It is

also worth noting that NK cells from either self-ligand deficient mice (e.g. β2m−/−

mice, TAP−/− mice and H2-KbDb KO mice) or inhibitory receptor-deficient mice (e.g.

NKCKD mice) fail to reject non-self cells and poorly respond to stress (Bélanger et al.,

2012), further proving that only NK cells that receive inhibitory signals during

development can acquire full functional competence. Yokoyama and colleagues refer

to this education process as "licensing" (Yokoyama and Kim, 2006), whereas Raulet

and his colleagues avoid the licensing terminology but favor a "disarming" model

arguing that the term licensing usually denotes an active mechanism in which

functionality is conferred to a subject (Raulet and Vance, 2006). Both theories favor

the education system developed by NK cells to maintain cell homeostasis in resting

situation and to prepare them to be armed upon stimulation.

Several studies showed that NK cells need intact ITIMs signaling to be educated or

respond to stimuli. Blocking ITIM signaling by deletion of SHP1 alters the expression

of Ly49 receptors and impairs NK cell effector functions (Viant et al., 2014;

Lowin-Kropf et al., 2000), which provides strong evidence to support the "arming"

model (Kim et al., 2005). This "arming" model (Figure 9) proposed by Raulet and his

colleagues postulates that self-MHC I-specific receptors provide all the signals

required for licensing to occur (Raulet and Vance, 2006). To become functional, NK

cells require the engagement of particular inhibitory receptor with self-MHC. When

their activation receptors are crosslinked, they readily produce cytokines.

As is widely recognized, NK cell activation is regulated by both inhibitory and

activating receptors. In general, engagement of activating receptors will allow NK

cells to detect and kill transformed host cells or tumors. However, several studies

performed in vitro or with tumor ligands in vivo showed that sustained engagement of

activating ligands induce hyporesponsiveness in NK cells as well. Coupled with

experiment on transgenic mice (e.g. constitutive Rae-1 expression), it clearly

demonstrated that the sustained engagement of activating receptors exerts negative

effects on NK cells (Oppenheim et al., 2005; Tripathy et al., 2008; Fauriat et al.,
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2010a). Herein, NK cells experiencing continuous activation in the absence of

inhibitory signals, become hyporesponsive or “disarmed”, which is known as the

”disarming“ model (Figure 9) (Raulet and Vance, 2006).

Figure 9. Arming versus disarming models. Depicted upper side is the situation in a mouse
expressing only H2Dd, which, for the sake of simplicity in this diagram, can only be recognized
by Ly49A and not by Ly49C. Only cells expressing Ly49A engage H2Dd as self-MHC, which
results in licensed NK cells. When their activation receptors are crosslinked, they readily
produce cytokines. Depicted lower side are the two major mechanisms, arming and disarming,
that have been proposed to explain how the self-MHC-specific receptor confers licensing upon
contact with self-MHC. NK cells require the engagement of self-MHC receptor signaling that
is necessary for licensed phenotype. However, chronic engagement of self-specific activation
receptor results in "anergy", a situation that can be reversed by inhibitory signals. Adapted
from Elliott and Yokoyama (2011).

However, uneducated NK cells can be reset to be responsive under tumor and virus

infection (Fernandez et al., 2005; Orr and Lanier, 2011). In the context of murine

cytomegalovirus (MCMV) infection, it is the uneducated NK cells rather than the

educated ones that dominate the effector function. Following NKG2D ligation,

non-educated Ly49-deficient NK cells were able to lyse RMA-S-Rae-1 tumor cells as

efficiently as educated NK cells (Bélanger et al., 2012). Therefore, NK cell reactivity is

a plastic process and not only depends on education but also on other signals such

as cytokines produced during infections.
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1.4 NK Cell Function

NK cells principally participate in innate immunity but also modulate adaptive immune

responses. NK cells were first reported to be essential against early tumor

development, as demonstrated by deleting NK cells using anti-NK1.1. They possibly

collaborate with invariant NKT cells in the control of tumors (Smyth et al., 2001; Street

et al., 2001). Over the years, studies showed that NK cells also participate in host

response to pathogens and virus through cytokine and chemokine secretion. They

are also important for maternal tolerance of the fetus as NK cells are also found in

maternal-fetal interface (Moffett-King, 2002). All in all, two main functional activities

can be associated with NK cells: (1) cytotoxicity and (2) capacity to immediately

produce cytokines (e.g. tumor-necrosis factor (TNF) and IFN-γ) (Trinchieri, 1989)

(Figure 10).

Figure 10. NK cell functions: cytolysis and cytokine secretion. NK cells are equipped
with two weapons. Cytolysis is completed through three pathways: 1. production of lytic
granules containing an arsenal of molecules including perforin, granzymes and granulysin in
human (Clayberger and Krensky, 2003); 2. engagement of several TNF superfamily members,
such as FASL and TRAIL which can induce apoptosis of target cells; 3. Antigen-dependent
cellular cytotoxicity (ADCC) through Fc receptor CD16 by target cells coated with antibodies.
Besides, NK cells can also secrete numerous cytokines especially IFN-γ, chemokines (CCL3.
CCL4, CCL5) and GM-SCF shaping the response of immune responses by interacting with
DCs, macrophages and T cells. Adapted from Crinier et al. (2020).
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1.4.1 Killer’s weapon: cytolysis

Mature NK cells are morphologically characterized as large granular lymphocytes

similar to cytotoxic T lymphocytes (CTLs). Once the NK cell encounters a target cell,

an immunological synapse will form and NK cell granules containing both perforin (a

pore-forming protein) and granzymes (a family of proteolytic enzymes) will be

released to mediate target cell death (Voskoboinik et al., 2015). Perforin can form

pores in target cell membranes with an internal diameter of 16-22nm, which enable

granzymes to diffuse across the plasma membrane into the cytosol of target cells and

initiate apoptosis.

Perforin plays an essential role in immune surveillance of cancer as demonstrated by

deletion of the gene encoding perforin in C57Bl/6 (B6) and BALB/c mice (Smyth

et al., 2000; Street et al., 2002, 2004). Granzymes, that are proapoptotic serine

proteases, not only induce indiscriminate protein digestion but also activate

caspase-driven cell death pathways (Baran et al., 2009). Among these, granzyme B

is the most powerful pro-apoptosis granzyme with its robust capacity to cleave target

cell proteins at sites after aspartate residues as target cells can be killed within few

minutes by apoptosis when exposed to small amount of granzyme B and perforin

(Sutton et al., 2000). Granzyme A cleaves proteins at sites after basic amino acids

but in a slower rate than granzyme B. Other mechanisms of target-cell killing have

been described, involving FASL (CD178) and tumor necrosis factor-related

apoptosis-inducing ligand (TRAIL, also known as TNFRSF10)-dependent receptors

(Smyth et al., 2002). TRAIL has also been implicated in responses against cancer

(Finnberg et al., 2007; Cretney et al., 2002).

1.4.2 Killer’s weapon: cytokine secretion

NK cells are potent producers of cytokines, especially Th1-type cytokines (including

IFN-γ and TNF), in response to target cell interaction or to cytokine stimulation in the

microenvironment. These cytokines are important for the control of infections by

intracellular bacteria, and contribute to shaping the innate and adaptive immune
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response. Apart from IFN-γ and TNF, NK cells can also secrete granulocyte

macrophage-colony stimulating factor (GM-CSF), IL-10 and chemokines (e.g. CCL3,

CCL4, CCL5). In human, CD56dim and CD56bright NK cells have usually been

described as two distinct subsets, cytolytic and cytokine producing, respectively

(Cooper et al., 2001). However, several observations claimed that there is no clear

separation between the two populations regarding the functions. Upon target cell

recognition, CD56dim NK cells are highly cytotoxic but can produce cytokines as well

(Fauriat et al., 2010b; De Maria et al., 2011). In contrast, CD56bright NK cells can

acquire cytotoxic activity and produce cytokines as well (Fauriat et al., 2010b;

Takahashi et al., 2007).

Cytokines mainly function to recruit other immune cells, like DCs, macrophages and T

cells, to the inflammation site and induce activation and proliferation of these cells

(Vivier et al., 2011). IFN-γ, which is an early and potent factor produced by NK cells,

has many effects on the immune response, including induction of MHC class II

molecules on antigen presenting cells, activation of macrophage bactericidal activities

and induction of T helper 1 (Th1) cells, as well as effects on angiogenesis.

Macrophage activation by NK cell-derived IFN-γ has been shown to be essential for

resistance to chemical carcinogenesis in a mouse model of primary tumorigenesis

(Morvan and Lanier, 2016).

IFN-γ and perforin together provided optimal protection in 3 separate tumor model

emphasizing the important role of IFN-γ (Street et al., 2001) in cancer development.

Herein, both perforin and IFN-γ play critical and independent roles in protecting the

host, but IFN-γ appears to play an early role in protection from metastasis (Street

et al., 2001). These studies suggest that cytokines from NK cells mediate both innate

and adaptive immune responses to control spontaneous tumors.

1.5 NK Cell Memory

NK cells have historically been considered as short-lived cytolytic cells that rapidly

respond against pathogens and tumors and then undergo cell death. In recent years,
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however, NK cells have been shown to develop immunological memory in response

to previously encountered pathogens and in non-infectious settings (O’Sullivan et al.,

2015). BrdU incorporation assay found that much lower number of memory NK cells

incorporated BrdU that that of naive NK cells suggesting memory NK cells undergo

basal turnover at a lower rate and a far greater lifespan than NK cells in naive mice

(Sun et al., 2010).

During the acute phase of MCMV (mouse cytomegalovirus) infection in C57BL/6

mice, Ly49H receptors can specifically bind to the MCMV-encoded glycoprotein m157

expressed on infected target cells, driving the expansion of virus-specific NK cells

(Arase et al., 2002). Moreover, when adoptively transferred into Ly49H deficient mice,

these Ly49H+ NK cells undergo robust antigen-driven expansion against MCMV

infection. This first "expansion" phase is followed by a second "contraction" phase

where the vast majority of effector NK cells undergo apoptosis while the long-lived

and self-renewing antigen-specific memory cells maintain and are ready for the third

"memory" phase (Figure 11). The pool of memory NK cells can be recovered several

months after infection in a variety of peripheral tissues (Sun et al., 2009a). In addition

to the evidence showing the memory response takes place during MCMV infection,

several studies supported that NK cells also participate in secondary response

against other viruses, like herpes virus 2 (HSV-2 (Abdul-Careem et al., 2012) and

influenza (van Helden et al., 2012).

Analogous to their T cell counterparts, three signals are also required for the

antigen-specific NK cell proliferation during viral infection, that is: recognition of

antigen by antigen-specific receptors (signal 1; e.g. Ly49H-m157), signaling through

co-stimulatory receptors (signal 2; DNAM-1), and pro-inflammatory cytokine signaling

(signal 3; IL-12, IL-18) (O’Sullivan et al., 2015). During the contraction phase, Bcl-2

and Bim were reported to co-deliver signals to repress NK cell survival thus limiting

the size of the memory NK cell pool. Modulation of IL-15 signaling mediated by

microRNA-155 also regulates the effector and memory NK cell maintenance. There is

also evidence demonstrating that NK cell memory can be induced by cytokine

stimulation alone during influenza infection (van Helden et al., 2012). NK cells

pre-activated with pro-inflammatory cytokines (e.g. IL-12, IL-18, IL-15) display
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Figure 11. Three phases of NK and T cell upon virus infection. Upon exposure to cognate
antigens, both CD8+ T cells and NK cells undergo three similar phases: expansion, contraction
and memory. During the "expansion" phase, CD8+ T cells and Ly49+ NK cells clonally expand
and differentiate into effector cells followed by a rapid "contraction" phase when the infection
is under control and a majority of cells undergo apoptosis to form a small but stable pool of
surviving cells that enter the third "memory" phase. Compared to CD8+ T cells, NK cells
undergo a slower and sustained contraction phase before establishing a pool of memory NK
cells. Adapted from O’Sullivan et al. (2015).

enhanced anti-tumor efficacy when adoptively transferred into mice. Interestingly, this

memory-effect can persist in the host for up to 3 months suggesting that NK cells

might provide long-lasting protection against tumors in therapeutic settings (Ni et al.,

2012).

Human NK cells also display adaptive properties similar to what has been shown in

mice. NK cells expressing the CD94-NKG2C activating receptor are present at a

higher frequency in human cytomegalovirus (HCMV)-seropositive healthy individuals

compared to the negative ones, and NKG2C positive NK cells increased in numbers

in patients undergoing acute HCMV infection suggests a prolific expansion of this

subset, a process resemblance to the clonal expansion of adaptive immune cells

(Gumá et al., 2006; Lopez-Vergès et al., 2011). However, Blockade of CD94/NKG2C

on NK cells or silencing of their ligand HLA-E in infected fibroblasts greatly impaired

expansion of NKG2C+ NK cells, suggesting an essential role of CD94/NKG2C/HLA-E

axis in the expansion of NKG2C+ NK cells in response to HCMV infection (Rölle
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et al., 2014). Notably, a recent study found that adaptive NKG2C+ NK cells

recognized many HCMV strains encoding variable UL40 peptides. These peptides

could control the population expansion and differentiation of adaptive NKG2C+ NK

cells in combination with pro-inflammatory signals (Hammer et al., 2018).
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2 Transcription Factors Important for NK cell

Development and Function

2.1 Generalities on Transcription Factors

The term transcription factor (TF) first referred to proteins involved in transcription

and/or capable of altering gene-expression level. However, the term has been

recently reserved for proteins capable of (1) binding DNA in a sequence-specific

manner and (2) regulating transcription, guiding gene expression through recruiting

other co-factors (Figure 12) (Lambert et al., 2018). Binding of a TF can change the

shape of the DNA in a manner that either blocks or promotes the binding of another

TF. For example, binding of CTCF (CCCTC-binding factor) to DNA is known to impact

the 3D structure of chromatin thus affecting gene transcription (Fu et al., 2008; Kim

et al., 2007). Other than binding to DNA loci directly, TFs can also impact

transcription through the recruitment of either activating or repressive co-factors

(Reiter et al., 2017).

Figure 12. Schematic of a prototypical TF. TFs mainly function in two ways. (A) On one
hand, they contain at least one domain that can bind to a specific DNA motif which can be
shared among different TFs, for example, T-box family proteins recognize a similar T-box motif.
(B) On another hand, TFs can work as interacting proteins which recruit co-factors further
promoting specific phases of transcription.

The transcriptional regulatory system plays an essential role in controlling all
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biological processes, ranging from cell cycle progression, maintenance of intracellular

metabolic and physiological balance (Simon et al., 2001; Dynlacht, 1997), to cellular

differentiation and development (Accili and Arden, 2004; Bain et al., 1994).

Breakdown of transcription regulatory networks results in numerous diseases

including cancer (Furney et al., 2006), autoimmune diseases (Hu et al., 2011) and

developmental disorders (Boyadjiev and Jabs, 2000). Moreover, the involvement of

TFs is a principal requirement for varied phenotypes and evolutionary adaptation

(Bustamante et al., 2005; Levine and Tjian, 2003).

TFs can have 1,000-fold or even greater affinities for specific binding sequences

compared to other random sequences (Damante et al., 1994; Geertz et al., 2012).

The ability of TFs to bind specific DNA sequences is often taken as an indicator of

their ability to regulate particular downstream transcription and alter the protein

expression pattern. The short and related sequences that can specifically bind to a

certain TF are termed as "motifs", which can be used to identify potential binding

sites. Motifs are typically displayed as a sequence logo where each of the four bases

at each position has a score (Schneider and Stephens, 1990), and multiplying these

scores for each base of a sequence yields the predicted relative affinity of the TF to

that sequence. The sequence preferences and binding sites of TFs can be assessed

by a wide variety of techniques both in vitro and in vivo (Jolma and Taipale, 2011);

Table 1 summarizes the most prevalent methods and their advantages and

weaknesses. Mutation of TFs in the DNA-binding domain (DBD) can inhibit their

binding to specific “motifs”, interfering with gene expression and even resulting in

deleterious diseases. It also explains why genomic loci-encoding TFs are enriched for

ultra-conserved elements (Bejerano et al., 2004) and are depleted of common

variation within their DBDs (Barrera et al., 2016), a backup employed for pivotal TFs

to avoid potential damage.

Hematopoietic lineages are highly dependent on TFs largely shared between different

populations. The development and effector functions of NK cells are governed by

a series of TFs. E proteins, IRF-2, Ets1 and Nfil3 are among TFs known to drive

the commitment to early stage of NK cells, while T-bet, Eomes, Runx3 are critical for

the later differentiation and maturation. The proteins involved in NK cell development
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Table 1. Experimental methods for determining and validating TF-binding specificities.
In vivo and in vitro methods currently used to experimentally derive and confirm TF-binding
sites and motifs. Adapted from Lambert et al. (2018).

can also participate in regulating NK cell function, including T-bet, GATA3, Runx3,

and E protein. Additional TFs including STAT1, STAT4, Zbtb32 and AhR play specific

roles in effector functions of mature NK cells in the periphery (Sun, 2015; Hesslein

and Lanier, 2011). The TFs that are involved in NK cell developmental stages and
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functional responses are summarized in Figure 13.

2.2 Ets-family: Ets-1, PU.1, and Mef

The Ets (E26 transformation specific) family of TFs is mainly characterized by the

common DNA-binding domain (Ets-domain), and can be further sub-classified based

on the DNA-binding domain (Sharrocks, 2001). Ets-family factors are universally found

in a variety of cell types, and are involved in various biological processes including

cellular activation, differentiation and oncogenesis. Ets-1 (Barton et al., 1998), PU.1

(Colucci et al., 2001) and Mef (Lacorazza et al., 2002) are three Ets-family factors that

are implicated in NK cell development and functions.

Ets-1 is a proto-oncogene that is expressed in many cell types including lymphoid

cells. Deletion of Ets-1 results in strong defects in NK cell development with very low

numbers of total NK cells in the spleen, lymph nodes and almost undetectable NK

cells in BM, indicating an essential role of Ets-1 in early NK cell development,

especially in the transition from CLPs to NKP (Barton et al., 1998; Ramirez et al.,

2012). Ets-1 can promote the expression of critical TFs like T-bet and Id2, and NK

activating receptors including NKp46, Ly49H and Ly49D at the earliest stages of NK

cell development (Ramirez et al., 2012). Further investigation of NK cell effector

functions showed that Ets-1 deficient NK cells (CD3−DX5+) in the spleen were

unable to kill the NK target cells YAC-1 or RMA-S, and exhibited reduced in vivo

production of IFN-γ (Barton et al., 1998). Paradoxically, NK cells from Ets-1−/− mice

are hyper-responsive to cytokines and have increased expression of inhibitory Ly49

receptors including Ly49E and Ly49G2 (Ramirez et al., 2012). Thus, Ets-1 regulates

a broad gene expression program in NK cells that relates to target cell recognition

while abating cytokine-driven activation.

PU.1 (purine rich box-1) is a member of the Ets-family transcription factors widely

expressed in immune cells, including myeloid lineages, B cells, and Th2 CD4+ T

cells. Ets-1 and PU.1 share 35% similarity in DNA-binding region and Ets-1 is

upregulated in PU.1 deficient NK cells, but PU.1 and Ets-1 seem to have
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non-redundant roles (Garrett-Sinha et al., 2001). Given the fact that PU.1−/− mice are

embryonic lethal or immediately die after birth, PU.1 deficient fetal liver cells — a

source of HSCs — were transferred into Rag2/γc−/− mice in order to study the role of

PU.1 in NK cells. These transferred HSCs from PU.1−/− fetal liver could generate

functional NK cells, but low numbers of NKPs and iNK cells compared to controls.

PU.1−/− NK cells also showed defective expression of Ly49 family (e.g. Ly49D and

Ly49A) and failed to proliferate in response to IL-2 and IL-12, but were normal in

terms of reactivity against YAC-1 cells (Colucci et al., 2001). Mechanistically,

CD45-deficient NK cells phenocopy PU.1 deficient ones, and CD45 was proven to be

a direct target of PU.1 (Anderson et al., 2001), suggesting that PU.1 could regulate

NK cells through modulating CD45 expression. Thus, PU.1 is not absolutely required

for NK cell development but regulates NK cell differentiation and homeostasis.

Mef, encoded by Elf4 gene, is also expressed in multiple immune cells including both

the myeloid and lymphoid lineages. Mef was shown to be involved in NK cell

development by using Mef−/− mice. Mef deficient mice had lower but still detectable

NK cells in the periphery. Mef−/− NK cells have defects in IFN-γ production and

cytotoxicity upon stimulation with Poly I:C. However, Mef is not essential in CD8+ T

cells for the ability to kill target cells. Mef can directly target the promoter region of the

Prf1 gene encoding perforin, which is essential to transactivate the promoter and thus

promote perforin expression (Lacorazza et al., 2002).

2.3 Nfil3

Nfil3 (also named as E4bp4) contains a basic leucine zipper (bZIP) motif that binds

DNA and is widely expressed by hematopoietic lineages including NK cells, NKT

cells, macrophages and DCs (Gascoyne et al., 2009). Nfil3 is a critical regulator of

the common helper-liker innate lymphoid cell progenitor (CHILP) prior to ILC subset

commitment. Accordingly, mice knockout for the Nfil3 gene showed a severe block in

ID2+ CHILP and PLZF+ ILC progenitors leading to impaired development of fetal and

adult ILC subsets including both ILC1 and NK cells (Xu et al., 2015). The

developmental defect in the BM occurs between NKP and iNK cell stages with E4bp4
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Figure 13. TFs in NK cells development and functions. On the upper part, TFs are listed
under the transition stages in which they play a role. On the lower part, TFs are listed next to
the functions divided into two parts: cytolysis and cytokine secretion. CLP, common lymphoid
progenitor; CILP, common innate lymphoid progenitor; NKP, NK precursor; iNK, immature NK
cell; mNK, mature NK cell. Adapted from Hesslein and Lanier (2011).

expression level gradually increasing after iNK stage. Almost no NK cells were

detected in the periphery of Nfil3 deficient-mice (Gascoyne et al., 2009; Kamizono

et al., 2009).

Overexpression of Nfil3 in BM progenitor cells rescued the defect brought by IL-15

receptor deficiency suggesting that Nfil3 is a key factor downstream of IL-15 signaling

through IL-15-PI3K-AKT-mTOR pathway (Yang et al., 2015a). In addition, retroviral

overexpression of Id2 or Eomes in Nfil3-deficient NK cells largely restored NK cell

development suggesting that E4bp4 might act via Id2 or Eomes (Gascoyne et al.,

2009; Male et al., 2014). However, the exact mechanism of the IL-15-Nfil3-Id2-Eomes

axis remains unclear. Recently, Notch was also identified as a downstream target of

Nfil3 as the total lack of NK cell development from Nfil3−/− progenitors was completely

rescued by exposure to Notch peptide ligands (Kostrzewski et al., 2018). Regarding

their function, the few NK cells detected in the spleen and BM of Nfil3−/− mice were

unable to kill YAC-1 targets or produce IFN-γ upon stimulation indicating the important

role of Nfil3 on NK cell cytotoxicity (Gascoyne et al., 2009; Kamizono et al., 2009).
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2.4 Id2 and E-box proteins

Inhibitor of DNA-binding (Id) protein family consists of 4 members, Id1-Id4. These

proteins contain an HLH dimerization domain but lack a basic DNA binding domain

resulting in their incapacity to bind DNA themselves. Alternatively, they need to

heterodimerize with other DNA-binding proteins, such as E-box proteins (E12, E47,

HEB, and E2-2), to prevent them from binding to DNA (Benezra et al., 1990). Both

Id2 and Id3 are highly expressed in lymphocytes including NK cells (Kee et al., 2000).

In Id2−/− mice, NK cells are dramatically decreased but NKp numbers are normal in

the BM suggesting that Id2 participates in NK cell development after the NKP stage

(Yokota et al., 1999; Boos et al., 2007). Interestingly, deletion of the TF Tox, which is

upstream of Id2, results in a similar phenotype as Id2−/− on NK cells. However,

ectopic expression of Id2 was not able to restore NK cell development in the absence

of Tox indicating the role of Tox in NK cell development is not solely dependent on Id2

(Aliahmad et al., 2010). Id2 partly functions through heterodimerizing with E2A

protein, blocking its binding to DNA sites essential for T/B cell development thus

favoring the NK cell development (Boos et al., 2007). Id2 expression is upregulated

during NK cell maturation to tune E-protein activity. Additionally, Id2 is also required to

regulate IL-15 receptor signaling and homeostasis of NK cells by repressing multiple

E-protein target genes including Socs3 (Delconte et al., 2016). However, E2A is not

the only TF that binds to Id2 as deletion of E2A in Id2−/− mice was not sufficient to

restore the NK cell maturation in the periphery (Boos et al., 2007). Other E-protein

like HEB might be involved as well. Moreover, NK cells from Id2−/− mice are defective

in producing IFN-γ in response to cytokine stimulation (Yokota et al., 1999).

2.5 T-box Family: T-bet and Eomes

2.5.1 The T-box family of transcription factors

T-box genes were first identified in 1927 (Dobeovolskaia-Zavadskaia, 1927) with the

discovery of a mutation in the Brachyury (or T, for short-tail) gene, which caused

embryonic lethality in homozygotes and truncated tail in heterozygotes (Papaioannou,

36



2 Transcription Factors 2.5 T-box Family: T-bet and Eomes

2001). A family of related proteins was then uncovered characterized by

transcriptional activity and a conserved DNA-binding motif which was first defined as

a common sequence having high affinity for Brachyury (Bollag et al., 1994). Based on

the T-box binding domain that spans 180-200 amino acid residues and binds specific

loci, the T-box family can be divided into five subfamilies: the T, Tbx1, Tbx2, Tbx6 and

Tbr1 (Figure 14). T-box proteins are reportedly expressed in a highly specific manner

Figure 14. Phylogenetic tree of the T-box gene family in vertebrates. Colored circles on
the right indicate involvement of particular genes in different areas including early embryo,
cardiogenesis, limb development and stem/progenitor cell development. All of the genes are
represented in human and mouse with the exception of Danio rerio (Dr) tbx16, which is present
in birds and frogs (VegT) but not mammals, and Drtbx6. The T-box family is composed of five
subfamilies: T, Tbx1, Tbx2, Tbx6 and Tbr1. Adapted from Papaioannou (2014).

and exhibit widespread involvement throughout development in vertebrates, including

brain development (Tbr1, Eomes), craniofacial development (Tbx1, Tbx10, Tbx15,

Tbx22), thymus (Tbx1), liver (Tbx3), Lung (Tbx2, Tbx4, Tbx5), mammary gland

(Tbx2, Tbx3) and immune system (Tbx21, Eomes). In addition, increasing evidence

show that they also participate in certain cancers. Interestingly, the function of T-box

genes is supposed to be dose-dependent as heterozygotes display a milder
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phenotype compared to the corresponding homozygotes (Papaioannou, 2014).

T-bet, encoded by the gene Tbx21, was first described in the immune system in 2000

and is exclusively expressed in cells of hematopoietic origin. It was defined as a key

regulator of the Th1 lineage commitment (Szabo et al., 2000). T-bet promotes in

IFN-γ production by directly binding to the promoter of the Ifng gene (Townsend et al.,

2004), and orchestrates Th1 cell differentiation while preventing that of other T helper

cells (e.g. Th2, Th17) through interaction with other key factors (Villarino et al., 2010;

Lazarevic et al., 2011; Zhu et al., 2012). Diminished IFN-γ secretion is also observed

in T-bet-deficient CD8+ T cells (Sullivan et al., 2003). However, the expression of

T-bet is not restricted to T cells unlike its name "T-box expressed in T cells" suggests.

Indeed, DCs also require T-bet expression to prime the antigen-specific CD4+ T cells

(Wang et al., 2006). In the absence of T-bet, B cells also show defects in class

switching to immunoglobulin G2a/c (IgG2a/c), and T-bet is also a key TF associated

with "age-associated B cells" and development of autoimmunity (Myles et al., 2017).

T-bet deficiency negatively affects the terminal maturation and homeostasis of NK

and iNKT cells (Townsend et al., 2004). Collectively, T-bet has broad actions in

multiple cell types including innate and adaptive lymphocytes and also participates in

mediating resistance to infection (Kallies and Good-Jacobson, 2017; Pritchard et al.,

2019).

Eomesodermin (Eomes), another T-box transcription factor, is encoded by the Tbr2

gene and shares great similarities (e.g. structure, expression pattern and functions)

with T-bet. Eomes was originally recognized as a key factor for mesoderm formation

during vertebrate embryogenesis (Ryan et al., 1996). Homozygous deletion of

Eomes results in embryonic lethality in mouse (Russ et al., 2000). Reiner and

colleagues showed that ectopic expression of Eomes could compensate the

deficiency of T-bet expression and restore functions of effector CD8+ T cells,

including cytotoxicity and production of IFN-γ, perforin and granzyme B (Pearce et al.,

2003). Further study of mice with compound mutations of T-bet and Eomes

(Tbx21−/− Eomes+/−) suggested that Eomes could cooperate with T-bet to induce

the expression of CD122, the β chain of IL-15 receptor, which is indispensable for

development of CTLs (cytotoxic T lymphocytes) and mature NK cells (Intlekofer et al.,
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2005). Similarly, most effects of Eomes exerted on CD4+ T cells appear to be shared

with T-bet as both factors play direct roles in IFN-γ production and Th1 development

(Yang et al., 2008; Suto et al., 2006). Recently, Eomes was reported to be sufficient

to drive the acquisition of memory-associated phenotypical, transcriptional, and

epigenetic profiles in developing CD8 SP cells by interacting with Runx3 and BRG1

(Istaces et al., 2019). However, increasing evidence suggests that T-bet and Eomes

have different functions and even antagonistic activities as they probably compete for

the same DNA-binding sites (Figure 15).

Figure 15. T-box domain and DNA-binding motif of human T-BET and EOMES. (A)
Alignment of human T-BET and EOMES sequences via Uniprot website. The red box
corresponds to the T-box DNA-binding domain. Light gray shows amino-acid similarity and dark
gray shows amino-acid identity. The overall identity between T-BET and EOMES is 32% with
74% identity in the T-box domains (Zhang et al., 2018a). (B-C) DNA-binding motifs for EOMES
(B) and T-BET (C) respectively from JASPER. (D) Schematic overview of protein structures for
T-BET and EOMES.

2.5.2 T-bet and Eomes in NK cells

Development
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T-bet and Eomes are absent in common ILC precursors (Klose et al., 2014; Hoyler

et al., 2012; Lim et al., 2017), and they are weakly expressed in NKP cells in the BM

regulated by several TFs (e.g. Nfil3 for Eomes, Runx3 and Ets-1 for T-bet) (Levanon

et al., 2014; Male et al., 2014; Ramirez et al., 2012). T-bet expression is kept at a low

level in the BM compartment compared to the periphery and, interestingly, the

expression of T-bet rapidly decreases when mature NK cells recirculate from the

periphery to the BM. By contrast, Eomes is already expressed at a high level in BM

NK cells (Daussy et al., 2014). T-bet−/− NK cells express a higher level of Eomes

whereas ectopic expression of T-bet results in lower Eomes level (Daussy et al.,

2014). It was also found an aberrant expression pattern of T-bet and Eomes in the

absence of Tsc (a repressor of mTOR), as in Tsc−/− mice T-bet was up-regulated

while Eomes and CD122 level decreased (Yang et al., 2016). In human, the levels of

T-bet and Eomes also correlate with advancing stages of human NK cell maturation,

with Eomes expression decreasing and T-bet expression increasing as NK cells

acquire their functional maturity (Luetke-Eversloh et al., 2014; Collins et al., 2017).

The role of T-bet in NK cells was first demonstrated using T-bet deficient mice (T-

bet−/−) which have slightly higher NK cells numbers in the BM but reduced numbers

in the spleen, liver and peripheral blood compared to the WT mice (Townsend et al.,

2004). In T-bet deficient mice, NK cell proliferation is increased but their survival is

compromised. T-bet−/− mice show a more immature phenotype dominated by the

CD27+CD11b− population, suggesting a role of T-bet in the later maturation rather

than early stages of development (Townsend et al., 2004). Interestingly, the mTORC2-

Akt-Foxo1 axis has been shown to repress the expression of T-bet to regulate NK cell

maturation and functions as well (Deng et al., 2015; Yang et al., 2018).

The study of Vav1Cre/+ X Eomesfl/fl mice that are deficient for Eomes in the

hematopoietic lineage showed a major role of NK cell development in spleen and

blood and less importantly in liver, lymph node and bone marrow. Moreover, NK cells

were completely absent in T-bet−/−Vav1Cre/+Eomesfl/fl mice that lack both Eomes

and T-bet, suggesting distinct and complementary role of T-bet and Eomes in NK cell

development (Gordon et al., 2012). Deregulated expression of CD11b and other

maturation markers like Ly49 receptor in Eomes-deficient mice suggests that Eomes
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is also involved in NK cell maturation but in a different manner compared to T-bet

(Gordon et al., 2012).

Function

ChIP (chromatin immunoprecipitation) assays in the YT NK cell line showed that

IFN-γ was a direct T-bet target (Beima et al., 2006). IFN-γ production also positively

correlates with T-bet and Eomes protein levels (Gill et al., 2012), but either deficiency

of T-bet or Eomes does not affect IFN-γ secretion in NK cells (Way and Wilson, 2004;

Gordon et al., 2012) which is quite different from what is observed in T cells (Pearce

et al., 2003). Thus, T-bet and Eomes may compensate each other in NK cells.

Another possible explanation is that other TFs may compensate the effect of T-bet

and Eomes to induce or maintain IFN-γ secretion upon stimulation with IL-12 and

IL-18. T-bet has a redundant role in NK cell cytotoxic activity, however, Eomes seems

to be indispensable in regulating several NK cell inhibitory receptors such as Ly49R

(Gordon et al., 2012). Eomes can also promote the secretion of GzmB and Prf1 by

facilitating histone acetylation at the gene locus (Intlekofer et al., 2005; Araki et al.,

2008). Moreover, T-bet and Eomes are both necessary for the expansion of

virus-specific NK cells during mouse CMV infection through an inducible deletion

system (Madera et al., 2018). T-bet can be upregulated by IL-12 through STAT4

binding to enhancer region of Tbx21 gene (Madera et al., 2018).

As discussed above, S1PR5 is an essential player in NK cell trafficking from BM and

LN to the periphery. It was reported that T-bet could directly bind to the 3’ of the

gene S1pr5 thus regulating NK cell migration by modulating the expression of S1PR5

(Jenne et al., 2009). CXCR3, involved in NK cell entry into inflamed LNs, is another

potential T-bet target gene as suggested by early study in a human NK cell line (Beima

et al., 2006). Whether Eomes behaves the same way in regulating migration as T-bet

in NK cell needs further investigation.
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2.6 Zeb family transcription factors: Zeb1, Zeb2

The zinc-finger E homeobox-binding (Zeb) family of transcription factors consists of

two members: Zeb1 and Zeb2. Zeb proteins are composed of several domains

including two zinc-finger domains at both ends of the protein (NZF and CZF), a

centrally located homeodomain (HD), a SMAD-binding domain (SBD) and a

repressor CtBP (C-terminal binding protein) interactive domain (CID) (Figure 16)

(Vandewalle et al., 2009; Scott and Omilusik, 2019). Two zinc-finger domains act as

DNA-binding regions and have high affinity to the consensus motif E-box, CANNTG.

Zeb proteins mainly function as transcriptional repressors and are involved in driving

epithelial to mesenchymal transition (EMT) through repression of genes essential for

epithelial cell-cell junction (Vandewalle et al., 2005), a process required for

embryogenesis and tumor metastasis (De Craene and Berx, 2013; Brabletz and

Brabletz, 2010; Goossens et al., 2011). Both Zeb1- and Zeb2-knockout mice are

embryonic lethal emphasizing the importance of Zeb proteins in development. Zeb

proteins have universal roles across immune lineages including DCs, macrophages,

monocytes, B, T and NK cells (reviewed in (Scott and Omilusik, 2019)).

Figure 16. The ZEB family of transcription factors. Schematic representation of the
two ZEB family members ZEB1 and ZEB2 in human. ZEB1 consists of 1124 amino acids
(AA) whereas ZEB2 has 1214. These two proteins are highly homologous and both are
characterized by two zinc-finger domains allocated at each side of the proteins. In addition,
they share a Homeo domain, a SMAD-binding domain and a C-terminal binding protein (CtBP)
interaction domain. The percentages indicated in each domain denote the extent of amino acid
homology. Adapted from Scott and Omilusik (2019).

Zeb1 has been previously involved in NK cell development through a forward genetic

screen (Arnold et al., 2012), but the underlying mechanisms require further
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investigation. Zeb2 is highly expressed in NK cells (Figure 17) and its expression

gradually increases upon maturation in both human and mouse NK cells (van Helden

et al., 2015). Zeb2-deficient NK cells are very similar in phenotype to T-bet−/− NK

cells, in terms of impaired NK cell maturation, survival, and migration from the bone

marrow. Furthermore, transgenic expression of Zeb2 in T-bet−/− mice partially

restored a normal NK maturation pattern suggesting that Zeb2 is an essential

transcriptional effector downstream of T-bet (van Helden et al., 2015). In the absence

of Zeb2, mice were more susceptible to melanoma outgrowth with decreased

numbers of NK cells especially mature NK cells in the lung (van Helden et al., 2015).

However, the responsiveness to chemokines, cytotoxicity potential and cytokine

secretion remained normal or even increased in Zeb2-deficient NK cells (van Helden

et al., 2015). T-bet also plays a role in inhibiting cancer metastasis by regulating the

longevity and function of NK cells (Werneck et al., 2008). Moreover, Zeb2 is essential

for the generation of both memory CD8+ T cells and memory NK cells during MCMV

infection (Lau et al., 2018).

2.7 Runx proteins: Runx3

The Runx proteins contains a conserved Runt motif essential for DNA-binding and

can heterodimerize with the protein CBFβ facilitating the binding efficiency. The Runx

family consists of three highly homologous proteins in mammalian cells: Runx1,

Runx2 and Runx3 (Ito et al., 2015). Both Runx1 and Runx3 are expressed in NK

cells, while Runx2 is expressed at very low levels in the hematopoietic system. Runx3

is a dominant factor in NK cells as it is abundantly expressed in both immature and

mature NK cells (Ohno et al., 2008; Otto et al., 2003). Conditional knockout of Runx

proteins in NK cells revealed an important role of these TF in NK cell maturation with

a decreased expression of the maturation marker CD11b but normal NK cell

numbers. However, the NK cell functions of cytokine secretion and cytotoxicity

remained unchanged or elevated (Ohno et al., 2008). Similarly, in Runx3−/− mice,

there was no difference in total NK cell number compared to normal mice, but the NK

cells were more immature with higher number of NK cells found at immature stage

(CD27+CD11b−) (Levanon et al., 2014). The modest impact of Runx3 knockout on
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Figure 17. Zeb1/2 expression in murine immune system. Three heatmaps show the relative
transcript levels of Zeb1 and Zeb2 across mouse immune cells including both myeloid cells
and lymphoid cells. Data are collected and compiled from microarray and bulk RNA-seq data.
Zeb1 and Zeb2 do not display the same profile regarding the expression level. In general,
Zeb2 is highly expressed across myeloid cells. On the contrary, Zeb1 has higher expression in
lymphoid lineages than myeloid ones. Adapted from Scott and Omilusik (2019)

NK cell development could be due to partial redundancy with Runx1. Further

investigation demonstrated that Runx3 was also essential for normal development of

ILC1 cells by controlling their survival especially in the intestine as a dramatic

decrease in ILC1 numbers was observed in Runx3-deficient mice (Ebihara et al.,

2015).

Chromatin immunoprecipitation of Runx3 in mouse NK cells showed that CD122 is a

direct target of Runx3 in the promoter region, which explains the fact that

Runx3-deficient NK cells had decreased proliferative response to IL-15 stimulation

(Ohno et al., 2008). 90% of peaks found in the Runx3 ChIP-seq have a Runx binding

motif suggesting that Runx3 directly bind to target genes rather than through indirect
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effects (Levanon et al., 2014). Enrichment of T-box and Ets motif in Runx3 binding

sequences and differential gene expression analysis of wild-type versus

Runx3-deficient NK cells suggests that Runx3 can recruit both TFs during NK cell

activation (Levanon et al., 2014). Recently, Eomes was discovered to interact with

Runx3 to promote T cell memory formation through epigenetic modulation (Istaces

et al., 2019). Except for CD122, Runx3 also binds to the promoter region of other

NK-related genes, including Ly49 receptors and NKp46 (Ohno et al., 2008; Lai and

Mager, 2012).

2.8 Gata proteins: Gata3

Gata family TFs are zinc finger DNA binding proteins that are broadly necessary for the

regulation of proliferation, cell survival and differentiation of diverse tissues. The Gata

family can be divided into two categories: hematopoietic GATA factors (i.e. Gata1,

Gata2 and Gata3) and endodermal Gata factors (i.e. Gata4, Gata5, Gata6) (Zheng

and Blobel, 2010).

Gata3 is the most studied Gata factor in NK cells. Gata3 was originally described to

participate in the regulation of thymic T cell development and Th2 differentiation

(reviewed in Tindemans et al. (2014)). Gata3−/− mice are embryonic lethal; using

fetal liver chimera mice, Gata3 was found to be essential for both NK cell

development and functions. In the absence of Gata3, NK cells in the bone marrow

have an incomplete repertoire of Ly49 receptors and lower expression of CD11b.

Although Gata3-deficient mice display normal number of NK cells in the spleen, most

of the cells found there are immature. Gata3−/− NK cells have defects in IFN-γ

production during pathogen infection (e.g. Listeria monocytogenes), and

nevertheless retained normal cytotoxicity when co-cultured with YAC-1 target cells

(Samson et al., 2003). T-bet that is important for IFN-γ production and Hlx, a

downstream target for T-bet, were reduced in Gata3 deficient NK cells although the

relationship between Gata3 and T-bet still remains unclear (Samson et al., 2003;

Mullen et al., 2002). Gata3 is also involved in migration from bone marrow to liver as

less NK cells were found in the liver in the absence of Gata3 (Samson et al., 2003), of
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which the phenotype could be revisited in light of the complexity of liver ILC

populations, as now established. Gata3 expression is particularly enriched in NK cells

derived from thymus, and the lack of Gata3 protein impairs thymic NK cell

development in mice (Vosshenrich et al., 2006), although thymic NK cells may now be

classified as ILC1s because they express CD127 which is normally present in ILC1s

rather than NK cells (Vosshenrich et al., 2006).

2.9 Blimp1

Blimp1, encoded by the gene Prdm1, is a repressive transcription factor that plays a

crucial role in the differentiation of plasma B cells and CD8+ effector T cells (Crotty

et al., 2010). It is expressed by NK cells throughout their development and is required

for NK cell maturation and homeostasis by controlling proliferation and granzyme B

production (Kallies et al., 2011). Cytokine stimulation could induce the expression of

Blimp1 in NK cells including IL-15 and pro-inflammatory cytokines IL-12 or IL-21

(Kallies et al., 2011). Unlike T cell or B cells, Blimp1 is not regulated by Bcl6 or IRF4

in NK cells, but is reduced by loss of T-bet. Another TF, Zbtb32 can antagonize

Blimp1 thus permitting NK cells to proliferate in response to viral infection (Beaulieu

et al., 2014). Mutations in Blimp1 have been found in many NK cell-associated

cancers indicating that Blimp-1 may be an important regulator for development of NK

cell leukemia and lymphoma (Karube et al., 2011). In addition, Blimp1 was identified

to cooperate with Hobit to instruct tissue retention in diverse tissue-resident

lymphocytes including liver-resident NK cells (Mackay et al., 2016; Kallies et al.,

2011).

2.10 Other TFs

Apart from the essential factors discussed above, there are a number of other TFs

involved in NK cell development and functions as well, but for which few details are

known regarding the mechanism of actions e.g. Ikaros, IRF-2, MITF. Ikaros-deficient

mice lack several lymphoid lineages including NK cells, T cells and B cells (Wang
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et al., 1996). Loss of functional NK precursors in Ikaros−/− mice indicates the role of

Ikaros in early NK cell differentiation (Boggs et al., 1998). Aiolos, another member of

Ikaros family, is identified as a regulator of NK cell maturation that could cooperate

with T-bet or Blimp1 (Holmes et al., 2014). Bone marrow and peripheral NK cells were

strongly reduced in IRF-2−/− mice with almost normal proliferation but accelerated

apoptosis that was distinct from the early IL-15-dependent expansion, while the

capacity of cytotoxicity was normal compared to the wild-type cells although the IFN-γ

was mildly blocked (Taki et al., 2005). MITF (microphthalmia transcriptional factor) is

essential for NK cell-mediated cytotoxicity, IFN-γ production and response to cytokine

stimulation (Kataoka et al., 2005). However, the mutation in the binding domain of

MITF did not perturb the NK cell development in terms of numbers (Ito et al., 2001).
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3 NK-like Immune Cells or NK Paralogues

3.1 CD8+ Cytotoxic T cells

NK cells and CD8+ cells are both generated via CLP precursors (Kondo et al., 1997)

and require cytokine signals especially through γ-chain receptors for survival and

homeostasis. CD8+ cells undergo positive and negative selection through interaction

with TCR and peptide-MHC class I complex expressed on thymic epithelial cells or

DCs (Adachi et al., 1998). Similarly, NK cell are selected or educated through

engagement of various MHC class I ligands, a process called "missing-self"

recognition (Kiessling et al., 1975). However, if T cells do not go through TCR

selection they will die by neglect while NK cells do not die and are exported to the

periphery as anergic cells (Johansson et al., 2005). Over the past years, the role of

many TFs such as Runx factors and Notch has been described in T cell development

(Collins et al., 2009; Maillard et al., 2005). CD4+ and CD8+ T cell development are

driven by GATA4, THPOK and RUNX1, RUNX4, respectively (Collins et al., 2009;

Bosselut, 2004).

In terms of function, NK cells mirror the functions of CD8+ cytotoxic T cells. During

infection, CD8+ cells can produce potent pro-inflammatory cytokines IFN-γ and

perforin, granzymes similar to NK cells, which ensures the host to effectively defend

against pathogens. Together with NK cells, CD8+ T cells can directly target infected

cells during virus infection (Sun et al., 2011). Specific sub-population of NK cells will

undergo dramatic proliferation upon reactivation with the same stimulus, for example

Ly49H+ NK cells during MCMV infection (Sun et al., 2009a; Robbins et al., 2004).

Similarly, a subset of memory T cells that expressed NKRs was also found in both

mice and humans against tumor (Ugolini et al., 2001; Anfossi et al., 2001). Thus, both

CD8+ cytotoxic T cells and NK cells harbor the capacity of immune memory and

longevity (Sun et al., 2010). However, the longevity is not clear in NK cells as NK cells

treated by IL-15 in macaques are short-lived and do not persist for long term (Lugli

et al., 2010).
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3.2 Innate Lymphoid Cells (ILCs)

The prototypical ILC (innate lymphoid cell) populations are NK cells and lymphoid

tissue-inducer (LTi) cells (Mebius et al., 1997) discovered in 1975 and 1997

respectively. LTi cells can induce the development of secondary lymphoid organs

through instructing mesenchymal stromal cells to produce factors essential for

hematopoietic cell migration to occupy developing lymphoid organs. Recently, several

ILC populations i.e. ILC1, ILC2, ILC3 have been identified which are developmentally

related to NK cells and LTi cells. They also depend on common cytokine receptor

γ-chain (γc) and Id2 (?Seillet et al., 2016; Xu et al., 2019). These ILC subsets rely on

signals through IL-7 receptor subunit-α (IL-7Rα) for their development and

maintenance.

ILCs are categorized into three groups based on the cytokine secretion pattern and

distinct TF involvement (Spits et al., 2013; Serafini et al., 2015) with ILC1, ILC2, ILC3

mirroring CD4+ T helper (Th)1, Th2 and Th17 respectively (Koyasu and Moro, 2012).

Group 1 ILCs comprise NK cells and ILC1 cells as they both require T-bet for

development and produce great amount of IFN-γ upon activation. Group 2 contains

only one subset, ILC2s that respond to large extracellular parasites and allergens

(Moro et al., 2010; Hoyler et al., 2012; Mjösberg et al., 2012). Group 3 ILC cells

include NCR− ILC3s, NCR+ ILC3s, and LTi cells which can produce IL-17 and/or

IL-22. In 2018, a new nomenclature for ILCs was proposed to classify ILCs into five

subsets — NK cells, ILC1s, ILC2s, ILC3s and LTi cells — based on their

development, effector functions and phenotypes that mirror adaptive CD8+ and CD4+

T cells (Vivier et al., 2018). Although both conventional NK cells and ILC1s express

T-bet and are capable of producing IFN-γ and TNF, NK cells also express Eomes and

Eomes-dependent perforin and granzymes (Figure 18).

3.2.1 ILC1 cells

Development

CILPs are derived from CLPs and can give rise to both NK cells and ILCs (Yang et al.,
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Figure 18. Immune functions of ILCs. The best-known stimuli, mediators and immune
functions of each ILC subset are shown. NK cells and ILC1s react to intracellular pathogens
and tumors through similar mediators including IFN-γ, granzymes and perforin. ILC2s respond
to large extracellular parasites and allergens via Th2-type cytokines (e.g. IL4, IL-5, IIL-13).
ILC3s combat extracellular microbes like bacteria and fungi armed with IL-22 and IL-17. LTi
cells are involved in the formation of secondary lymphoid structures. Adapted from Vivier
et al. (2018).

2015b). Id2 is essential for both CHILP and NKP development, which acts as an

inhibitory factor reducing the activity of E-box TFs (E2A, E2-2, and HEB) thus blocking

the potential of early progenitors to develop into T or B cells. An Id2+ CHILP can

differentiate into ILCP (innate Lymphoid cells precursor), which can further develop

into all ILC subsets, but not NK cells (Klose et al., 2014) (Figure 19). However, what

are the key factors that make the final decision to develop into CHILP or NKP is still

unknown. Other than Id2, Nfil3 and Gata3 have been shown to be critical at the ILCP

stage (Seillet et al., 2014; Yagi et al., 2014). Gata3 can repress B cell fate by blocking

EBF1 and facilitate the differentiation of T and ILC cells, however, Nfil3, like Id2, plays

a broader effect in driving ILCs differentiation (García-Ojeda et al., 2013).

In mice, ILC1s are first detected before birth, whereas NK cells emerge two to three

weeks after birth (Diefenbach et al., 2014; Daussy et al., 2014). Early stages of ILC1
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Figure 19. Development of ILCs. Schematic overview of innate immune cell development.
The five sub-populations of ILCs are originally derived from CLP which give rise to all lymphoid
lineages. With the regulation of TFs, CLPs differentiate into CILPs and further branch into
two pathways either NKP cells or CHILPs that give rise to LTiPs (lymphoid tissue inducer
progenitors) and ILCP (innate lymphoid cell precursors). LTiPs can differentiate into LTi and
ILCPs into ILC1, ILC2 or ILC3 dependent on the different transcriptional programs. Adapted
from Vivier et al. (2018).

lineage development requires the transcription factor PLZF as evidence shows that

they arise from CHILPs that express PLZF although ILC1 cells themselves do not

express PLZF (Constantinides et al., 2015). By contrast, fate-mapping reporter mice

showed that NK cells could be derived from both PLZF− and PLZF+ progenitors

(Constantinides et al., 2015). Interestingly, intestinal CD127+ ILC1s are dependent

on IL-15 instead of IL-7 which is essential for other ILCs, suggesting that ILC1s are

more similar to NK cells (Klose et al., 2014). In mice, ILC1 cells are highly dependent

on T-bet, whereas NK cells are still present in T-bet-deficient mice suggesting that NK

cells are not strictly dependent on T-bet for their development (Townsend et al., 2004;

Daussy et al., 2014). Eomes is expressed in NK cells and is essential for NK cell

maturation as discussed above but is not necessary for ILC1 cells (Daussy et al.,

2014; Gordon et al., 2012).
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NK cells and ILC1 cells have different developmental pathways and functions. A

comprehensive analysis of gene expression profiles of mouse ILCs and NK cells has

been reported and PCA plot from RNA-seq showed that ILC1s are much closer to NK

cells than to ILC2s or ILC3s, and the transcriptional profiles of NK cells and ILC1s are

largely overlapping (Robinette et al., 2015). ILC1 cells preferentially express CD49a

and TRAIL in both humans and mice, but the specificity of these markers is often lost

upon stimulation and varies a lot under different tissue environment (Eberl et al.,

2015; Vivier et al., 2018). Initial studies demonstrated that there existed two types of

NK cells on top of TRAIL expression in the liver (Takeda et al., 2001), however, they

were later categorized into two distinct subsets (Daussy et al., 2014). At steady state,

CD49a+CD49b−Eomes− ILC1s and Eomes+ NK cells are definitely two different

sub-populations as ILC1s cannot develop into Eomes+ NK cells by adoptive transfer

of Eomes− ILC1s into the recipient mice (Daussy et al., 2014). However, CD49a

expression can be induced on conventional NK cells during virus (Bezman et al.,

2012) and parasite infection (Park et al., 2019), and in the tumor microenvironment

(Cortez et al., 2017), which makes the discrimination between cNK cells and ILC1

cells complicated. For example, ILC1s in the liver selectively express TRAIL and

VLA1 but there are no distinctive surface markers expressed in ILC1s from the spleen

or small intestine, although the expression of Cxcr6 on ILC1s and of the Ly49R and

KIRs on NK cells can be partially informative (Robinette et al., 2015).

Function

NK cells express high levels of perforin and are highly cytotoxic, whereas ILC1 cells are

weakly cytotoxic in general and function as the first line of defense against infections

by producing IFN-γ (Spits et al., 2016), as shown in the case of T. gondii (Klose et al.,

2014) and C. difficile (Abt et al., 2015). Thus, NK cells may be termed as "cytotoxic

ILC1s". In the context of T.gondii and C. difficile infection, T-bet-dependent ILC1s are

critically involved although the role of NK cells in the control of infection cannot be

excluded (Abt et al., 2015; Klose et al., 2014). Moreover, RORγ+ ILC3s-derived T-bet+

ILC1 cells can also provide protection against Salmonella enterica (Klose et al., 2013).

In the context of Helocobacter hepaticus-induced colitis, ILC1s reportedly exerted an

important role either protective or detrimental (Buonocore et al., 2010; Powell et al.,
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2012).

NK cells are widely recognized to be essential for antitumor responses, however,

whether ILC1s are also critical in cancer remains elusive as NK cells and ILC1s are

difficult to discriminate from each other. NKp46+ ILC3s have a protective role against

B16 melanoma cells in an IL-12-dependent manner and ILC3-to-ILC1 conversion

requires IL-12. Thus, it is possible that ILC1s mediate immune response against

tumor development (Eisenring et al., 2010). The conversion of NK cells into ILC1-like

cells was also described during Toxoplasma gondii infection, although the ILC1-like

cells are distinct from both steady-state NK cells and ILC1s in uninfected mice (Park

et al., 2019). With respect to the heterogeneity of ILC1 population in different tissues

and plasticity of ILC populations, the role of ILC1 cells in infection and cancer should

be revisited.

3.2.2 ILC2 cells

ILC2 cells are defined by their capacity to produce Th2-associated cytokines

including IL-4, IL-5, IL-13 in response to stimulation with IL-25, IL-33 and thymic

stromal lymphopoietin (TSLP) (Moro et al., 2010; Neill et al., 2010). Unlike ILC1s and

ILC3s that are tissue-resident cells, ILC2s are recently reported to circulate upon

inflammation or infection probably with an alteration in their sensitivity to

S1P-mediated chemotaxis, leading to lymphatic entry, blood circulation, and

accumulation in many non-gut sites (Huang et al., 2017; Lombardi et al., 2016). ST2,

a component of IL-33 receptor, is a conventional marker for tissue-resident ILC2s in

mice, but in some tissues like the skin ILC2s do not express ST2, indicating the

varied phenotype of ILC2s (Bal et al., 2016). The development of ILC2s sequentially

requires Id2, IL-7 and the cyokine receptor common γ chain in early progenitors

(Yokota et al., 1999; Cao et al., 1995; Moro et al., 2010), while the differentiation

requires transcription factor GATA3, RORα, TCF1, and Notch signaling as well

(Furusawa et al., 2013; Hoyler et al., 2012; Wong et al., 2012; Mielke et al., 2013;

Gentek et al., 2013). Gata3 has a general role in all helper-like ILC subsets

development of multiple stages. Deletion of Gata3 at a later time point in mice results
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in the impairment of ILC2 differentiation (Hoyler et al., 2012), while overexpression of

Gata3 rescues ILC2 number (Wolterink et al., 2013). Gata3 is also required for

human ILC2 cell development (Mjösberg et al., 2012). RORα is highly expressed in

ILC2s and is required for ILC2 cell differentiation (Moro et al., 2010; Wong et al.,

2012), but RORα mutation does not abrogate the cytokine production (e.g. IL-5,

IL-13) in response to IL-13 (Furusawa et al., 2013). Apart from BM, ILC2 cells can

also differentiate from committed T cell precursors in the thymus. This pathway is

suppressed by E-proteins including E2A and Heb (Qian et al., 2019). However,

thymus-derived lung ILC2s of E-protein-deficient mice showed different

transcriptomes, proliferative properties and cytokine responses from wild-type

counterparts (Qian et al., 2019). Other factors like vitamin A and its metabolites

derived from food control the balance of ILC2s and ILC3s (Spencer et al., 2014).

Beyond IL-4, IL-5 and IL-13, ILC2s also produce IL-6 and IL-9 and are important in

host resistance against parasitic worm infection (Neill et al., 2010; Price et al., 2010;

Monticelli et al., 2011) and viral infections (Monticelli et al., 2011). ILC2s accumulate

in the lung after acute infection with influenza virus to repair damaged tissue by

secreting epidermal growth factor family member amphiregulin (Monticelli et al.,

2011). However, ILC2s participate in lung immunopathology during allergic asthma

(Chang et al., 2011). Furthermore, in collaboration with eosinophil-derived cytokines,

ILC2s can promote the differentiation of adipocytes progenitors into white fat or beige

fat thereby affecting thermal homeostasis (Lee et al., 2015). TFs like Bcl11b and Gfi1

regulate the responsiveness of ILC2 cells to "alarmins" like IL-22 within inflamed

tissues and enhance type 2 cytokine secretion (Califano et al., 2015; Spooner et al.,

2013).

3.2.3 ILC3 cells

ILC3s are defined by their dependency on the transcription factor RORγt and their

robust production of IL-22 and IL-17A that play important roles in innate immune

response against extracellular bacterial and fungal infection (Diefenbach, 2013;

Vonarbourg et al., 2010). Indeed, RORγt acts as a dominant TF in ILC3s, by
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regulating multiple downstream genes encoding the signature cytokines like IL-17A

and IL-22 and also aryl hydorcarbon receptor (AHR) that is required for the survival

and function of ILC3 cells (Qiu and Zhou, 2013). Id2 is not only important for

selection of ILCP lineage as indicated before, but is also required for ILC3 cell

development in the gut after RORγt expression (Satoh-Takayama et al., 2010).

Substantial reduction of IL-22-producing-ILC3s found in RorcCre X Id2fl/fl mice

resulted in higher susceptibility to Citrobacte rodentium compared to wild-type

littermates (Guo et al., 2015). The generation of both ILC3s and ILC1s requires

Runx3 that can directly bind to Rorc and affect the optimal expression of RORγt

(Ebihara et al., 2015). Beyond ILC2s, Gata3 also regulates the development of ILC3s

as Gata3-deficient chimeric mice lack all intestinal RORγt+ ILC3 cells and show

impaired survival and defective capacity to produce IL-22 during early infection

(Serafini et al., 2014). In addition, Gata3 positively regulates the balance between the

transcription factors T-bet and RORγt thus serving as a critical factor in the

development of NKp46+ ILC3 cells (Zhong et al., 2016)

ILC3s are abundantly found at mucosal sites, and IL-22 predominately secreted by

ILC3s maintains intestinal homeostasis and promotes the proliferation of intestinal

stem cells (Rankin et al., 2016; Aparicio-Domingo et al., 2015). IL-22 produced by

ILC3s could induce epithelial cells to express anti-bacterial peptides such as Reg3γ

and Reg3β and antiviral proteins thus protecting tissues from damage (Hernández

et al., 2015). IL-22 is important to sustain the progression of colon cancer and

colorectal cancer (Huber et al., 2012; Hernandez et al., 2018; Kirchberger et al.,

2013). A sub-population of ILC3s found in the intestine express cell surface markers

similar to NK cells, like NKp46, NKG2D, NKp44, or CD56. Fate-mapping studies have

shown that NKp46+ ILC3s developed independently of NK cells and were

differentiated from NKp46− ILC3s (Crellin et al., 2010; Satoh-Takayama et al., 2010;

Sawa et al., 2010). NKp46− ILC3s can also produce the cytokine GM-CSF and are

involved in colitis development (Pearson et al., 2016). In mice, NKp46+ ILC3 cells can

produce IFN-γ like ILC1s and are dependent of T-bet for generation, however, human

ILC3s do not produce IFN-γ (Sciumé et al., 2012; Klose et al., 2013).
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3.2.4 LTi cells

LTi cells are very similar to ILC3 cells in terms of transcriptional regulation and

cytokine production, particularly the dependency on RORγt for development and

capacity to produce IL-22 and IL-17A following stimulation. They were first identified

as innate lymphocytes in LN and Peyer’s patch of E13.5-E15.5 mice (Mebius et al.,

1997; Adachi et al., 1998), and they are crucial for the formation of secondary organs

during embryogenesis. These cells do not express surface markers of NK cells (e.g.

NKp46) but express c-Kit and CCR6 instead. And LTi cells and ILC3 cells are

supposed to differentiate along different developmental pathways (Figure 19).

3.3 iNKT

Natural killer T (NKT) cells are unconventional T cells that bridge innate and adaptive

immune responses. NKT cells were first described as CD3+ T cells co-expressing

NK1.1, a classic marker used to identify mouse NK cells. A more precise definition

has been proposed for NKT cell afterwards: a subset of T cells that expresses a

semi-invariant T cell receptor (TCR) (Lantz and Bendelac, 1994; Dellabona et al.,

1994) and specifically recognizes lipid antigens presented by CD1d molecule, a

non-polymorphic MHC class I-like antigen-presenting molecule (Godfrey et al., 2004,

2015). CD1d-restricted NKT cells can be further subdivided into two broad

categories: type I NKT cells, referred to as "invariant NKT cells" or "iNKT cells", which

express an invariant TCRα chain (TCRα-chain variable region 11 (TRAV11) and

joining region 18 (TRAJ18) in mouse, and TRAV10 and TRAV18 in human), and a

limited repertoire of TCRβ chains (Vβ8.2, Vβ7, or Vβ2 in mouse, Vβ11 in human)

(Lantz and Bendelac, 1994; Rossjohn et al., 2012); Type II NKT cells also recognize

lipids presented by CD1d but express more diverse TCR chains compared to the type

I NKT. Type II NKT cells are also named as "diverse NKT cells" (Rhost et al., 2012).

iNKT cells can be sensitively detected using α-Galcer-loaded CD1d tetramers

(Kawano et al., 1997) and numerous studies have used this reagents to study them.

By contrast, the lack of sensitive reagents to identify type II NKT cells hampers the

research on this cell type. In this introduction I will only focus on type I invariant NKT
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cells.

3.3.1 Development of iNKT cells

iNKT cells are found in both lymphoid and non-lymphoid organs, including thymus,

spleen, liver, BM, lung, adipose tissue and intestine (Figure 20) (Crosby and

Kronenberg, 2018). iNKT cells are abundant in the liver accounting for up to 30-40%

of the lymphocytes, while less than 1% in other tissues (Hammond et al., 2001).

However, in human iNKT cells only represent 0.1% of T cells in PBMC and the

numbers are shown to be of great variety between individuals (Chan et al., 2013).

iNKT cells are tissue resident cells that contribute to both protective effects against

pathogens and tissue homeostasis (Crosby and Kronenberg, 2018).

Figure 20. Tissue distribution of iNKT cell subsets in mice. Schematic overview of the
distribution of iNKT subsets in lymphoid or non-lymphoid organs in C57BL/6 mice. NKT1,
NKT2, NKT17, NKT 10 cells are indicated in blue, green, red and orange, respectively. The
figure depicts the relative frequencies of each iNKT subsets in different tissue sites, including
liver, lungs, intestine, and adipose tissue. NKT10 cells are exclusively found in adipose tissue
(Wingender et al., 2015). Adapted from Crosby and Kronenberg (2018).

Mouse iNKT cells originally derive from CD4+CD8+ (DP) cortical thymocytes that

branch away from the conventional T cell lineage in response to different TCR display

and signal strength. iNKT cells undergo positive and negative selection similarly as

CD4 or CD8 SP T cells. However, they also experience agonist selection in the

thymus, which requires the engagement of agonist ligands stimulating higher TCR
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signals (Stritesky et al., 2012). iNKT cell development mainly requires two types of

signals from surface receptors, that is, TCR and SLAM family (Nunez-Cruz et al.,

2008). Engagement of SLAM family recruits SAP and the Src family tyrosine kinase

Fyn thus promoting signals critical for iNKT lineage commitment (Das et al., 2010).

Once positively selected, iNKT cells go through several developmental intermediates

defined by marker CD24 (the heat stable antigen, HSA), CD44 and NK1.1 (Figure

21). Transcription factor PLZF expression is induced after selection of NKT

Figure 21. Differentiation of iNKT cell development. The well-recognized model for iNKT
cell development requires two critical signals from double positive cells: recognition of TCR and
lipid-CD1d complex and engagement of SLAM family that is essential for cell survival. Once
positively selected, they are differentiated into iNKT cells undergoing four stages. Stage 0-3
iNKT cells can be discriminated by surface markers CD24, CD44 and NK1.1. And the specific
cytokines produced by each subsets are denoted besides. Both stage 2 and stage 3 iNKT cells
can produce IL-4 and IFN-γ, but iNKT cells from stage 2 mainly secrete IL-4 but stage 3 cells
principally produce IFN-γ.

precursors (Savage et al., 2008) which is then controlled by another TF, Egr2 (Seiler

et al., 2012). CD24high iNKT cells do not undergo proliferation and are considered as

stage 0, followed by three sequential stages that lose expression of CD24. Stage 1

cells are defined as CD24−CD44−NK1.1− and proliferate robustly (Benlagha et al.,

2002; Pellicci et al., 2002). The acquisition of the activation marker CD44 signifies the

progress to stage 2, namely, CD44+NK1.1−. Finally, upon acquisition of NK1.1, iNKT
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cells become fully mature and are recognized as stage 3 that stop proliferating and

rapidly express other NK lineage markers such as NKG2D, Ly49A, Ly49C/I and

Ly49G2 (Benlagha et al., 2002; Pellicci et al., 2002). NK1.1 expression is acquired

either in the thymus or in the periphery, and stage 3 iNKT cells produce Th1-type

cytokines controlled by T-bet and IL-15 (Townsend et al., 2004; Matsuda et al., 2006).

During the transition from stage 0 to stage 1, a proportion of iNKT cells downregulate

CD4, giving rise to a subset of NKT cells that are CD4−CD8−. However, CD8+ iNKT

cells also exist in human and are highly cytolytic (Takahashi et al., 2002)

An alternative subdivision of NKT cells also exists. Indeed, iNKT cells can be

distinguished as iNKT1, iNKT2, iNKT17 subsets (Figure 22) based on the expression

pattern of TFs such as T-bet, Gata3, PLZF and RORγt (Lee et al., 2013). iNKT1 cells

produce IFN-γ and are defined as T-bet+PLZFlow. iNKT2 cells produce IL-4 and are

defined as GATA3highPLZFhighRORγt− cells. iNKT17 cells mainly produce IL-17 and

are defined as RORγt+PLZFint cells (Lee et al., 2013).

Figure 22. iNKT cell subsets. The figure compares three proposed major subsets of invariant
natural killer T (iNKT) cells. Crucial transcription factors and surface markers associated with
each subset are shown. These subsets are associated with the constitutive expression of
cytokine receptors for interleukin-12 (IL-12), IL-23 and/or IL-25. The major cytokines produced
by each subset and the tissues in which they are enriched are indicated. Adapted from
Brennan et al. (2013).

3.3.2 Function of iNKT cells

Upon antigen encounter and TCR engagement or cytokine signaling, iNKT cells rapidly

become effector cells and produce a broad range of cytokines including IL-12, IFN-γ,
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IL-4, and IL-13 within minutes to hours (Crowe et al., 2003; Wilson et al., 2003). The

pattern of cytokine secretion varies between different developmental stages. Stage 1

NKT cells produce IL-4 while NKT cells in stage 2 produce both IL-4 and IFN-γ, and

mature NKT cells from stage 3 are capable to secrete more IFN-γ than IL-4 (Gadue

and Stein, 2002). Besides, cytolysis and chemokine production are dominant in stage

3 NKT cells as well (Matsuda et al., 2006).

iNKT cells are supposed to act as adjuvant cells (Cerundolo et al., 2009) that potently

activate DCs through CD40 ligand and cytokines, thus enhancing antigen

presentation of DCs to MHC-restricted T cells (Fujii et al., 2004), promoting B cell

response (Galli et al., 2003) and NK cell activation as well (Eberl and MacDonald,

2000). As CD1d is non-polymorphic between individuals, adoptive transfer of iNKT

cells does not cause graft-versus-host disease. Therefore, a series of studies have

been launched to investigate the therapeutic role of stimulated iNKT against CD1d+

tumor targets in vivo (Heczey et al., 2014; Wolf et al., 2018; Wingender et al., 2010).

3.3.3 Transcriptional regulation of iNKT cell development and function

PLZF

PLZF is encoded by the gene Zbtb16 and is highly expressed by iNKT cells

especially in the immature stage 0/1 population (Kovalovsky et al., 2008; Savage

et al., 2008). Mice deficient for PLZF exhibit approximately 90% reduction in the iNKT

cells numbers in the thymus, but have normal development of conventional αβ T cells.

The defect in iNKT cells could be due to a proliferative defect and an increased

apoptosis (Kovalovsky et al., 2008; Savage et al., 2008). Cytokine production of iNKT

cells was also impaired in Plzf-/- mice (Kovalovsky et al., 2008; Savage et al., 2008).

However, the mechanism of PLZF in regulating iNKT cell development and functions

remains unclear.

Egr2

The Egr family of transcription factors consists of three members Egr1, Egr2, and

Egr3 that are known targets of NFAT (nuclear factor of activated T-cells). TCR
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engagement induces numerous signaling events, including release of calcium from

intracellular stores and activation of the phosphatase calcineurin, which results in the

dephosphorylation and subsequent nuclear translocation of NFAT family member and

the subsequent regulation of NFAT target genes (Macian, 2005). In fact, deletion of

Cnb1, the gene encoding the regulatory component of calcineurin, resulted in a

dramatic reduction in thymic and peripheral iNKT cell numbers (Lazarevic et al.,

2009). Further analysis on Egr1−/−, Egr2−/−, Egr3−/− mice showed that the absence

of Egr2, but not Egr1 or Egr3, led to significant reductions in iNKT cells, but did not

affect development of CD4+ or CD8+ cells. Moreover, Egr2−/− mice had normal

numbers and percentages of CD24+ cells (Stage 0) but had a block at the transition

from Stage 0 to Stage 1 of iNKT cells (Lazarevic et al., 2009). Collectively, the

calcineurin-NFAT-Egr2 pathway is important in the development of the iNKT

lymphocyte lineage.

Notch

Notch signaling, originally characterized to be major in cell-to-cell interactions during

development (Radtke et al., 2013), is important for T cell lineage commitment and

early thymic development, up to the double-negative 3 stage and also affects T cell

effector functions as well as Treg expansion (Amsen et al., 2004; Kared et al., 2006;

Maekawa et al., 2008). Thus, Notch regulates the development and functions of

various T cell subsets in vivo. Analysis of the importance of Notch signaling in iNKT

cells showed that Notch 1 and Notch 2 affected the development of iNKT cells in the

thymus as well. Ablation of Notch 1 and Notch 2 (N1N2−/−) in mice resulted in lower

cytokine production by iNKT cells and increased apoptosis (Oh et al., 2015). iNKT

cell populations are affected in N1N2−/− mice with increased numbers of stage 2 and

3 iNKT cells, increased proportion of iNKT17 and altered expression of PLZF in

stage1 iNKT cells (Oh et al., 2015).

c-Myb

The proto-oncogene c-Myb encodes a nuclear DNA-binding protein that is expressed

primarily in hematopoietic tissues and acts as an activator and repressor of

transcription. Deletion of Myb in the germline is embryonic lethal and thymocytes
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lacking c-Myb have a profound developmental defect at the CD4−CD8− DN stages

(Allen et al., 1999). Abrogation of c-Myb expression at distinct stages of T-cell

development reveals additional roles for c-Myb activity in early T cell development,

including transition through the double-negative 3 stage, DP survival and

differentiation into CD4 SP cells (Bender et al., 2004). Conditional knockout of c-Myb

at the DP stage revealed an additional role for c-Myb in the generation of iNKT cells

that was associated with impaired TCRα gene rearrangements (Hu et al., 2010).

Additionally, c-Myb is essential for the expression of SLAM, Ly108, and SAP at the

DP stage, these proteins being required for iNKT cell lineage commitment (Hu et al.,

2010).

E protein and Id

The E protein family of basic-helix-loop-helix TFs includes HEB, E12, E47 (E2A), and

E2-2, which bind as homo- or hetero-dimers to DNA at E-box sites and control the

expression of genes essential for lineage development. Deletion of HEB or E2A

specifically in DP thymocytes results in a major block in iNKT cell development at the

CD24hiCD44−NK1.1− stage; iNKT cells fail to progress through stage 2 and 3.

However, these deletions have minimal effects on the development of CD4+ or CD8+

T cells (D’cruz et al., 2010; D’Cruz et al., 2014). E2A and HEB were shown to directly

bind the promoter of PLZF and control its expression in stage 1 iNKT cells (D’Cruz

et al., 2014). Furthermore, their negative regulators, the Id proteins (Id2 and Id3) also

regulate iNKT cell development. A loss of Id3 led to an increased number of iNKT2,

while both Id2 and Id3 were required for the formation of iNKT1 cells (Hu et al., 2013;

Verykokakis et al., 2013).

T-box family

T-bet also plays an indispensable role in the final maturation stages of iNKT cells

(Matsuda et al., 2006; Townsend et al., 2004). In the absence of T-bet, iNKT cell

numbers are reduced and are blocked at stage 2. As thymic T-bet−/− iNKT cells do

not express CD122, a component of the IL-15 receptor, iNKT cells fail to proliferate in

response to IL-15. In addition, T-bet is also required for effector functions of iNKT,

such as cytokine production as IFN-γ is supposed to be a direct target of T-bet
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(Matsuda et al., 2006; Townsend et al., 2004). In addition, Eomes is expressed at

higher level in stage 0 than the other iNKT cell stages, and has recently been

identified to regulate NKT cell ontogeny particularly the iNKT1 cell differentiation

(Shimizu et al., 2019). However, mature iNKT cells do not express Eomes.

3.4 NK1.1+ γδ T cells

γδ T cells are the first T cells to appear in the thymus during fetal thymic ontogeny. In

human peripheral blood, there are approximately 4% of γδ T cells with a wide range

between 0.5% and 16% (Groh et al., 1989). In adult mouse, 1-4% of total T cells

are found to be γδ T cells in the thymus and the secondary lymphoid organs. Besides

lymphoid organs, γδ T cells are present in non-lymphoid tissues including skin (O’Brien

and Born, 2015), lung (Sim et al., 1994), intestine (Takagaki et al., 1989), liver (Gerber

et al., 1999) and reproductive tract (Itohara et al., 1990). Several distinct subsets of γδ

T cells are observed in mouse and human, and they notably have different TCR uses

and different patterns of tissue homing (Godfrey et al., 2015).

αβ and γδ T cells both originate from the CD4−CD8− (DN) T cell. DN cells consist of

4 stages defined by c-kit, CD24 and CD44. Early T-cell-lineage progenitor (ETP) and

DN2 cells proliferate robustly and acquire their first T cell characteristics (Allman

et al., 2003). As the cells develop into DN3 T cells, they start to initiate TCR gene

rearrangement and generate in-frame TCR gene rearrangements (Taghon et al.,

2006). Successful TCRβ selection endows the following expression of CD4 and CD8

to become DP cells, which then undergo positive and negative selection to generate

CD4+ or CD8+ TCR αβ T cells and NKT cells as well. Alternatively, DN3 T cells that

succeed in making TCR γ and TCR δ chains directly develop into γδ T cells without

expression of CD4 or CD8 co-receptors (Rothenberg et al., 2008). It is widely

recognized that the T cell fate largely depends on the strength of signals delivered by

TCR, namely, DN3 cells receiving stronger TCR signal favoring γδ T cells

development and vice versa (Haks et al., 2005; Hayes et al., 2005). However, a

recent study demonstrated that a specific subset CD5−NK1.1+ γδ T cells could

develop directly from DN2 stage in a Bcl11b-independent manner and was involved in
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early defense against bacterial infection in the periphery (Hatano et al., 2017).

Figure 23. Stages in early T cell development. Cross-section of an adult thymic lobule
showing the migration path of T-cell precursors. The early T cell precursors (ETPs) initially
enter the thymus through blood vessels near the cortico-medullary junction, and differentiate
from DN to DP to SP stages or unconventional T cells like NKT cells through the distinct
microenvironments of the thymus. β-selection occurs during the accumulation of DN3 T cells
in the extreme outer portion of the thymus. ETP, early T-cell precursors; DN, double negative;
DP, double positive; SP, single positive (CD4+ or CD8+ cells). Adapted from Rothenberg
et al. (2008).

After positive selection, γδ T cells can either leave the thymus and populate

secondary lymphoid organs and blood, or further differentiate into dendritic epidermal

γδ cells (DETCs) (Asarnow et al., 1988), IL-17A-producing γδ cells (γδ 17 cells) (Haas

et al., 2009) or NK1.1+ γδ cells (γδ NKT cells) in the thymus (Arase et al., 1995). The

use of PLZF and NK1.1 enables to discriminate two distinct γδ T cells in the thymus:

PLZFlowNK1.1+ and PLZFbrightNK1.1−γδ T cells (Pereira and Boucontet, 2012). The

TF T-helper inducing POZ-kruppel liker factor (ThPOK) is required for the

development of NK1.1+ γδ T cells along with PLZF (Alonzo et al., 2010) and the

negative regulator Tec family tyrosine kinase Itk (Felices et al., 2009). Interestingly,

Styk1 is exclusively expressed in lymphocytes that are NK1.1-positive including NK
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cells, αβ iNKT cells, and γδ NKT cells, but is dispensable for their development and

function (Wilharm et al., 2019; Fauteux-Daniel et al., 2019).

Upon activation, NK1.1+ γδ T cells produce more IFN-γ than IL-4, whereas NK1.1− γδ

T cells secrete more IL-4 than IFN-γ, which is reminiscent of the previously described

NK1.1+ and NK1.1− NKT cells (Pereira and Boucontet, 2012). And the capacity of γδ

T cells to produce cytokines occurs earlier than αβ T cells (Ferrick et al., 1995). In

fact, αβ and γδ T cells share great similarities regarding the development and

functions, and compete for the same thymic niches (Pereira and Boucontet, 2012;

Felices et al., 2009). NK1.1+ γδ T cells were reportedly involved in

immunosurveillance as this population expands dramatically in early tumors in an

IL-15-dependent way, with higher expression of CD49a and CD103 (Dadi et al.,

2016). This protective effect could be attributed to their ability to sense

tumor-associated signals via NKG2D which is constitutively expressed by NK1.1+ γδ

T cells (Dadi et al., 2016).
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4.1 Scientific context and objectives

TFs orchestrate cell fate and lineage development by controlling gene expression in

time and space. During my thesis, I studied the role of several of them in the

transcriptional control of either NK cell or iNKT cell fate. This report is divided into two

parts, accordingly.

Project 1 aimed at understanding the role of T-bet and Eomes in NK cell

development and maturation. While a growing number of key TFs are identified in the

field of cytotoxic cells, the molecular mechanisms establishing their functions are

poorly understood, and this remains the case for T-bet and Eomes that have been

identified in this field for decades. T-bet and Eomes belong to T-box transcription

factor family and are both expressed in conventional NK cells, albeit at different

kinetics. The T-box DNA binding domains of T-bet and Eomes present a strong

degree of identity, suggesting that they bind to the same DNA sequences. By

contrast, the sequence homology of other portions of both proteins is quite low,

suggesting that their interacting partners are distinct. Whether T-bet and Eomes have

redundant, complementary or antagonistic activities on gene transcription remains an

unanswered question, of central importance for the understanding of NK cell

differentiation. To address this issue, we wanted to:

1) Measure the expression levels and define the subcellular localization of T-bet and

Eomes during NK cell maturation in BM and spleen;

2) Analyze the role of T-bet and Eomes in NK cell development and maturation in a

careful way by excluding ILC1 cells using additional markers CD49a and CD49b;

3) Identify genes regulated by either T-bet or Eomes by conducting transcriptomic

analysis;

4) Map T-bet and Eomes binding sites in the genome in order to identify their target

genes in NK cells;
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5) Analyze the difference of chromatin accessibility in the absence of either T-bet or

Eomes using ATAC-seq and understand the role of T-bet and Eomes in the regulation

of chromatin accessibility during NK cell maturation.

Project 2 intended to clarify the cellular and molecular mechanism of Zeb1 in iNKT

cell development. Zeb1 belongs to the Zeb family of TFs and is best known for its

role in epithelial-to-mesenchymal transition (EMT). My team had previously shown an

important role of Zeb2 in NK cell development. Moreover, Bruce Butler’s group showed

that Cellophane mutant mice that express a truncated form of Zeb1 have a decreased

number of spleen NK cells. Based on this observation, my team started working on NK

cell development in these mice, but found that the role of Zeb1 in NK cell development

was likely cell extrinsic (Dylan Cherrier, Cécile Daussy and coworkers, unpublished

observations). In the course of these studies, preliminary observations suggested a

role of Zeb1 in iNKT cell development. In addition, previous descriptive studies have

reported developmental defects of T cells in Zeb1−/− and Zeb1 mutant mice with a

deletion of C-teminal zinc finger region (Takagi et al., 1998; Higashi et al., 1997). We

therefore set the following objectives:

1) Perform general phenotyping of immune subsets in Cellophane mice with particular

focus on unconventional T cell subsets including iNKT cells, NK1.1+ γδ T cells and

Ly49 expressing CD8 T cells;

2) Understand the potential mechanisms that result in a shrinked thymus in Cellophane

mice (e.g. proliferation and survival);

3) Test if Zeb1 is involved in TCR signaling which is essential for T cell development

and selection;

4) Conduct transcriptomic analysis on CD4+CD8+ DP cells to shed light on the

underlying mechanism.
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4.2.1 Article 1

Sequential actions of Eomes and T-bet promote stepwise
maturation of Natural Killer cells

Jiang Zhang, Fabrice Faure, Raphaël Schneider, Quentin Marliac, Mathieu Jung, Aurore

Berton, Anne-Laure Mathieu, Simon Hayek, Pierre-Olivier Vidalain, Antoine Marçais, Garvin

Dodard, Anne Dejean, Laurent Brossay, Yad Ghavi-Helm, and Thierry Walzer
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Abstract 

Eomes and T-bet are T-box transcription factors (TFs) co-expressed in NK cells, which 

regulate their development. The specific actions of each factor remain poorly understood. 

Here, we demonstrate that Eomes and T-bet have complementary roles in NK cells and 

regulate largely distinct gene sets. Eomes is dominantly expressed in immature NK cells and 

drives early lineage specification by inducing hallmark genes and functions. By contrast, T-

bet is dominant in mature NK cells and represses genes associated with cell cycle or with 

other lineages, indirectly through the induction of transcriptional repressors. Moreover, 

Eomes and T-bet have antagonistic effects on NK cell maturation, and their mutual 

repression equilibrates this process. Yet, many effector genes are also co-regulated by 

Eomes and T-bet, confirming their redundancy in certain aspects. Using novel transgenic 

mice facilitating T-bet and Eomes chromatin immunoprecipitation, we uncovered a strong 

overlap in DNA binding between Eomes and T-bet in NK cells and pointed to Runx3 as a 

cofactor of transcriptional regulation. A few sites preferentially bound by Eomes and T-bet 

may endow NK cells with specific function, ie cytotoxicity for Eomes and responsiveness to 

IL-12 for T-bet. However, in many cases, Eomes and T-bet likely bind the same regulatory 

elements in a sequential manner during maturation, and T-bet binding may either reinforce 

 or suppress the effects of Eomes. 
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Introduction 

Natural Killer (NK) cells are group 1 innate lymphoid cells (ILC) with an important role in 

antiviral1 and anti-tumor responses2. NK cells share many features with tissue-resident ILC1s, 

such as the responsiveness to IL-15, IL-12 and IL-18 cytokines, and the capacity to rapidly 

produce IFN-g upon stimulation 3. However, they differ from ILC1s by their capacity to 

circulate in the blood, by their expression of multiple receptors of the Ly49 family, and by 

their higher cytotoxic potential and by their expression of integrin subunits.  In particular, 

CD49b and CD49a are expressed in a mutually exclusive manner by NK cells and ILC1s, 

respectively4,5. Moreover, NK cells and ILC1s are developmentally distinct. Indeed, even 

though all ILCs share a common progenitor, NK cells rapidly branch out from the main ILC 

developmental pathway6, and the factors that promote this route remain unclear. NK cells 

then operate a process of maturation that starts in the bone marrow and continues in the 

periphery. This process includes at least three discrete stages that can be discriminated by 

surface expression levels of CD11b and CD277,8. CD11b- CD27+ (hereafter referred as CD11b- 

or stage 1) are the most immature NK cells, and give rise to CD11b+CD27+ (double positive, 

DP, stage 2) which then differentiate into CD11b+CD27- (hereafter referred as CD27- or stage 

3). Mature NK cells (either DP or CD27-) are more cytotoxic than immature ones against 

tumor targets8 and express a distinct set of trafficking molecules that allow them to circulate 

in the blood. In particular, they express the sphingosine-1 phosphate receptor S1PR5, which 

promotes exit from lymphoid organs both in mouse and human9,10.  

The specification of immune lineages depends on a network of lineage-determining TFs that 

induce hallmark genes and repress the expression of other lineages, thereby restricting 

pluripotency as cells differentiate11. NK cell development and maturation are orchestrated 

by a network of TFs including the related T-box TF T-bet and Eomes both in mouse and 

human12,13. Eomes and T-bet are thought to have similar DNA binding properties, owing to 

their highly homologous T-box DNA binding domains, which are 74% identical. Large scale 

chromatin accessibility analysis across immune subtypes14–17 predicted a major role of T-box 

TFs in the regulation of NK-cell specific enhancers. However, they failed to discriminate 

between T-bet and Eomes in this role.  

T-bet was cloned in 2000 and immediately recognized as an essential driver of Th1 

differentiation and IFN-g production in CD4 T cells18. A few years later, the analysis of T-bet 

deficient mice revealed an essential role for T-bet in NK cell homeostasis and function19. In 

4 Research projects 4.2 Project 1: T-bet and Eomes in NK cell development

71



 

 
 

4 

the absence of T-bet, NK cells display a higher turnover associated with higher apoptosis 

rate19,  and an immature phenotype c-Kithigh CD43low 19, KLRG1- 20 and CD27+ 21. A more 

recent study suggested that T-bet stabilizes immature NK cell attributes, which somewhat 

contradicted previous findings22. As recognized later, however, this conclusion was reached 

after using an incorrect NK cell gating strategy that also included ILC1s4. T-bet is indeed 

essential for the development of ILC1s, whose phenotype is highly similar to that of 

immature NK cells4. Moreover, a recent single cell RNA-seq analysis that clearly 

discriminated between NK cells and other ILC subsets showed that T-bet suppresses the 

immature NK cell transcriptional signature, and proposed that it does so in an indirect way23.  

Functionally, T-bet is important to promote NK cell responsiveness to IL-1219 and to support 

their blood circulation through the upregulation of S1pr524, which could be important for 

their capacity to control lung metastases in the B16 model25,26. Additionally, T-bet promotes 

the survival of mouse cytomegalovirus-specific memory NK cells 27. 

The function of Eomes was first studied in CD8+ T cells, where it was shown to promote the 

expression of the IL-15 receptor subunit Il2rb (or CD122), together with T-bet28. Therefore, 

Eomes and T-bet were proposed to redundantly regulate the differentiation of CD8+ effector 

T cells. Later in vitro studies showed a strong correlation between Eomes and Perforin 

expression in CD8+ T cells activated with antigen and cytokines29,30. This led to the concept 

that Eomes rather than T-bet, drives the cytotoxic phenotype.  Generation of floxed Eomes 

alleles allowed conditional deletion of Eomes in immune cells, circumventing the issue of 

lethality of Eomes knockout mice. Deletion of Eomes in Vav1+ immune cells22 or in NKp46+ 

cells31 leads to a substantial decrease in the number of NK1.1+ CD3- cells, thus demonstrating 

the essentiality of Eomes for NK cell development. However, as discussed above, this subset 

includes not only NK cells but also the related ILC1s, thus, the precise phenotype of Eomes-

deficient NK cells remained to be analyzed. A recent paper confirmed the essential role of 

Eomes in the development of the NK cell lineage using a Tamoxifen-inducible Eomes 

deletion system.  They found that Eomes was required to preserve NK cell viability, 

especially at the CD27+CD11b+ stage, and that it was essential for cytotoxicity but not for 

IFN-g secretion32. How Eomes promotes NK cell development ie what genes are specifically 

regulated by this TF remains however unclear.  

The nature of Eomes and T-bet cooperation is another unresolved question. Do they play 

redundant and additive roles or do they have specific and complementary functions or even 
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antagonistic ones at some loci? Overexpression of Eomes rescues IFN-γ production by T-bet 

deficient CD4+ T cells33,34 and promotes cytotoxicity in CD4+ T cells. Similar to T-bet, Eomes 

can also repress IL-5 production in memory Th2 cells35. Therefore, most of the defined roles 

for Eomes in CD4+ T cells seem to be redundant with T-bet when they are overexpressed in 

vitro. Moreover, the combined deletion of T-bet and Eomes leads to a complete deficiency in 

NK cells while single mutations of either gene leads to a partial defect22. Together with the 

similarity in Eomes and T-bet DNA binding domains, this observation argues for a 

redundancy between both factors during NK cell development. Yet, the direct and indirect 

Eomes targets in NK cells are mostly unknown, as only a few studies have assessed their DNA 

binding properties (for a review see reference 36), but not in resting NK cells, and not in a 

comparative manner with T-bet. ChIP-seq analyses would represent a significant advance. 

However, such analyses remain undeniably complicated in primary cells and the paucity of 

appropriate tools and reagents to assess T-bet and Eomes binding at the genomic level are a 

further technical challenge. Thus, the cellular and molecular roles of T-bet and Eomes during 

NK cell development and maturation remain to be clarified.  

Here we present a comprehensive analysis of the role of Eomes and T-bet during NK cell 

development. We showed a dominant expression and a dominant role of Eomes in 

immature NK cells and reciprocally of T-bet in mature ones. Eomes was required to specify 

the NK cell lineage and promote the survival of immature NK cells while T-bet was required 

for terminal differentiation but was not involved in early development. This division of labor 

was also visible when we compared the gene expression profile of immature and mature NK 

cells in the presence or absence of Eomes or T-bet. Eomes acted more often as an activator 

of transcription inducing the expression of many NK cell signature genes such as NK cell 

receptors at the immature stage, while T-bet acted more frequently as a repressor 

decreasing the expression of many T cell or progenitor genes at the mature stage. The latter 

activity was associated with T-bet-specific ability to induce transcriptional repressors such as 

Zeb2 and Blimp1. Using newly generated mouse models expressing endogenously tagged T-

bet and Eomes, we performed genome-wide analysis of T-bet and Eomes binding. This 

comprehensive analysis showed that Eomes and T-bet binding sites are largely overlapping, 

suggesting a switch between Eomes and T-bet in the regulation of many NK cell genes during 

maturation.  
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Results 

 

Eomes and T-bet balance each other during NK cell maturation and activation 

To explore the roles of T-bet and Eomes in NK cell maturation, we first measured the 

expression of both TFs during maturation. To unambiguously analyze NK cells and exclude 

ILC1s we defined NK cells as CD49b+CD49a-NK1.1+CD3- (Figure S1A) and analyzed maturation 

based on the CD11b/CD27 classification. Flow cytometry measurements indicated that 

Eomes expression in spleen WT NK cells was rather similar in stages 1-2 and then decreased 

in stage 3 NK cells, while T-bet had the reciprocal expression pattern (Figure 1A). In the BM, 

Eomes levels showed the same pattern as in the spleen while T-bet levels were much 

decreased compared to spleen NK cells (Figure S1B), as we previously observed4. In T-bet 

deficient NK cells (ie from Tbx21-/- mice), a higher expression of Eomes was noted in all 

subsets, while Eomes-deficient NK cells (ie from NCR1-iCre+/- Eomes fl/fl mice, referred to as 

NK-Eomes-/- thereafter) displayed higher T-bet expression (Figure 1A), showing that Eomes 

and T-bet repress each other in NK cells. The analysis of mice with a single copy of T-bet or 

Eomes suggested a dose-dependent effect of both TF on the repression of each other. Upon 

stimulation with cytokines ex vivo, IL-15 maintained T-bet and Eomes levels while a 

combination of IL-12 and IL-18 (together or not with IL-15) resulted in a strong up regulation 

of T-bet and a decrease of Eomes, further supporting the concept that Eomes and T-bet 

balance each other during NK cell maturation or activation (Figure 1B).  

A previous article reported that T-bet and Eomes were localized both in the nucleus and in 

the cytoplasm of memory CD8+ T cells36, which adds another layer of regulation for both TF. 

To analyze the nuclear expression of Eomes and T-bet, we used Image cytometry (Image-

Stream) and confocal microscopy. Image-Stream analysis allowed us to quantify the nuclear 

fraction of Eomes and T-bet, delimited by the DAPI staining (Figure 1C). Using this method, 

we found that NK cell maturation was associated with a progressive shift in the ratio 

between Eomes and T-bet, with nuclear Eomes being dominant in immature NK cells and 

nuclear T-bet prevailing in mature NK cells (Figure 1D). A confocal microscopy analysis then 

showed that Eomes and T-bet are predominantly nuclear in NK cells, and indicated that they 

are localized in the same nuclear areas, rather excluded from DAPI-dense regions 

corresponding to heterochromatin, and this both in immature (Figure 1E) and mature NK 

cells (Figure S1B). Thus, Eomes and T-bet nuclear levels change in opposite ways during NK 
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cell maturation but the nuclear distribution of both TFs remains comparable during this 

process.  

 

Eomes is essential for early NK cell development and restrains T-bet-induced terminal 

maturation 

A previous analysis of the role of T-bet and Eomes in NK cell development was hampered by 

a gating analysis that did not discriminate between NK cells and ILC122. We therefore 

revisited the role of both TFs in NK cell development and maturation using Tbx21-/-, NK-

Eomes-/- and appropriate control mice by carefully gating NK cells and excluding ILC1 from 

the analysis (see Figure S1). Both T-bet and Eomes were important for NK cell homeostasis. 

However, Eomes had a more important role than T-bet in terms of NK cell numbers, ie the 

lack of Eomes caused the number of NK cells to drop by 5-10 fold both in BM and spleen, 

while the lack of T-bet rather increased the number of BM NK cells, and decreased that of 

spleen NK cells two to threefold (Figure 2A-B). When examining maturation stages, Eomes 

was essential for the accumulation of all NK cell subsets, especially DP that were the only 

ones to decrease in percentage among total NK cells in both BM and spleen compared to 

controls (Figure 2C). The strong decrease in the number of immature CD11b- NK cells in the 

BM in the absence of Eomes indicated an essential role of this TF in early NK cell 

development, unlike T-bet. Of note, the paucity of NK cells in NK-Eomes-/- mice was not 

compensated by an accumulation of CD49a+ ILC1 either CD49b+ or CD49b- (Figure S2A). 

T-bet deficiency resulted in an accumulation of DP both in terms of percentage and number 

in the BM and a near lack of CD27- cells in both organs analyzed (Figure 2C), as previously 

shown4,21, confirming the essential role of this TF in terminal NK cell maturation. We also 

observed an inverse pattern of KLRG1 expression in NK cell subsets in the absence of Eomes 

and T-bet, ie an increased percentage of KLRG1+ NK cells and a decreased percentage of 

these cells among NK cell subsets when compared to controls respectively, suggesting that 

terminal maturation is promoted by T-bet and rather prevented by Eomes (Figure S2B). To 

further test this point we sorted NK cells at maturation stages 1 and 2 from Tbx21-/-, NK-

Eomes-/- and control mice and adoptively transferred them into un-irradiated Ly5a X B6 

(CD45.1/2) mice (Figure 2D). Transferred NK cells were allowed to acclimate for two weeks 

before analysis of their maturation status in the spleen. As shown in Figure 2D, NK-Eomes-/- 

NK cells from either stage 1 or stage 2 had an accelerated maturation towards the CD27-
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CD11b+ stage 3 compared to controls, while Tbx21-/- NK cells had the opposite behavior, thus 

confirming the antagonistic effect of both TF on NK cell maturation rate. Collectively, these 

results show that Eomes is essential to promote early NK cell development and to mitigate 

the pro-maturation effect of T-bet. 

 

Eomes and T-bet limit proliferation and promote NK cell survival at different maturation 

stages 

To further document the role of Eomes and T-bet in NK cell development and homeostasis, 

we next assessed proliferation and survival of NK cell subsets developing in the absence of 

either factor. We evaluated NK cell proliferation using EdU incorporation or Ki67 staining. 

The main proliferative burst in NK cells normally occurs before the acquisition of the CD11b 

integrin, in the bone marrow37. Surprisingly, Eomes deletion did not change the level of 

proliferation of immature CD11b- NK cells in the BM, but rather increased that of DP in this 

compartment. In the spleen, all NK-Eomes-/- NK cell subsets had an increased proliferation 

rate, especially CD11b- and DP (Figure 3A-B). T-bet deletion increased the proliferation rate 

of mature CD27- NK cells and to a lesser extent that of DP, both in the BM and spleen, while 

CD11b- NK cells were hardly affected. Thus, Eomes and T-bet have complementary roles in 

limiting proliferation of NK cell subsets at immature and mature stages respectively. As this 

increased turnover did not explain the reduction in NK cells upon deletion of either factor, 

we hypothesized that both TFs could regulate their survival. Indeed, the percentage of 

apoptotic Annexin-V+ CD11b- and DP cells was increased in the absence of Eomes in the BM. 

Similarly, the percentage of apoptotic Annexin-V+ CD27- NK cells was increased in the 

absence of T-bet in both BM and spleen (Figure 3C). As IL-15 is a major mediator of NK cell 

survival38, we next assessed how Eomes and T-bet regulated the response to this cytokine. 

Upon co-culture with IL-15 for 48h, both Eomes and T-bet deficient NK cells showed a 

decreased viability compared to controls (Figure 3D) suggesting that a balanced expression 

of Eomes and T-bet is necessary for optimal response to IL-15.  

Altogether, these data demonstrate that Eomes and T-bet have complementary roles in NK 

cell homeostasis by repressing proliferation and promoting survival at immature vs mature 

stages respectively, which could involve fine tuning of IL-15 responsiveness.  

 

Complementary roles of Eomes and T-bet in instructing the NK cell maturation program 
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Next, to gain molecular insight on the mechanisms of T-bet and Eomes action during NK cell 

development and maturation, we performed RNA-seq in immature CD11b- and mature 

CD27- NK cells from Tbx21-/-, NK-Eomes-/- and control mice. In accordance with the dominant 

expression of Eomes in immature cells (Figure 1), we found that the loss of Eomes but not 

that of T-bet had a strong impact on gene expression in immature NK cells (Figure 4A-B, and 

table S1). Inversely, in mature NK cells, T-bet had a much more prominent role than Eomes 

on gene transcription (Figure 4A-B). When examining differentially expressed genes (DEGs), 

Eomes was more often a transactivator of gene expression (84% of DEG in immature NK cells 

and 52% in mature ones) while T-bet was more often a repressor of gene expression (63% of 

DEG in mature NK cells, Figure 4B). We queried the Immgen database39 to visualize the 

expression pattern of Eomes and T-bet-regulated genes across the whole immune system. 

Eomes-induced genes were found to be rather NK-specific while T-bet activated genes had a 

broader expression pattern (Figure S3A). The expression pattern of Eomes-repressed and T-

bet-repressed genes was more comparable, but T-bet appeared more specialized in the 

repression of genes expressed in hematopoietic progenitors, or in B and T cell progenitors 

(Figure S3B). Of note, Eomes-dependent genes in immature NK cells include 23/91 of genes 

defining the NK cell signature as previously defined by the Immgen consortium39,40, while 

only four genes were also regulated by T-bet in this list (Figure 4C). Inversely, in mature NK 

cells, 25 and 6 of these genes were regulated by T-bet and Eomes respectively, suggesting 

that both Eomes and T-bet contribute to define NK cell identity, but in a sequential manner.  

Overall, there was a limited overlap between T-bet and Eomes dependent genes both in 

immature and mature NK cells (Figure 4D, Table S1), with 114/166 (68%) Eomes dependent 

genes not regulated by T-bet and 691/744 (92%) T-bet dependent genes not regulated by 

Eomes, thus showing that both TFs regulate transcription in a way that is to a large extent 

independent of each other. Finally, 82/166 Eomes-dependent (52%) and 250/744 T-bet-

dependent (35%) genes were regulated during NK cell maturation (Figure 4E-F). Reciprocally, 

294/699 genes normally regulated during NK cell maturation were dependent on either 

Eomes or T-bet (42%) (Figure 4F), confirming that both factors are major drivers of NK cell 

maturation, acting in a complementary manner.  

 

Specific and shared actions of T-bet and Eomes on NK cell transcriptome 
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To define which properties were commonly or specifically conferred to NK cells by Eomes 

and T-bet, we then performed functional annotations of the gene modules described in 

Figure 4.  

T-bet/Eomes co-regulated genes (53) 

Only one gene was regulated together by T-bet and Eomes in both immature and mature NK 

cells: Cym, which encodes a mast cell enzyme of unknown function in NK cells (Figure 4D). 

Fifty-two other genes were regulated both by T-bet and Eomes in at least one comparison 

(Figure 4D). This gene module is presented in details in Figure 5 and includes three subsets: 

genes repressed by both TF (Figure 5A-B), genes induced by both T-bet and Eomes (Figure 

5C-E) or genes induced by Eomes but repressed by T-bet (Figure 5G-I).  

T-bet/Eomes-co-repressed genes (Figure 5A) notably include a cluster of genes involved in 

cell cycle (Top2a, CCna2 etc), and IL7R, a hallmark gene of lymphoid progenitors and ILCs. 

IL7R expression was also higher at the protein level in both Tbx21-/- and NK-Eomes-/- NK cells 

compared to controls (Figure 5B), and both Tbx21-/- and NK-Eomes-/- NK cells proliferated 

more than their WT counterparts in the spleen (Figure 3A-B). 

T-bet/Eomes co-induced genes (Figure 5C) include many genes induced by Eomes in 

immature NK cells and by T-bet in mature ones, suggesting that a switch occurs between 

both factors at regulatory genomic sites during maturation. This group comprises crucial 

mediators of granule-dependent cytotoxicity such as Prf1, Gzma and Serpinb9b, and “cell 

killing” was one of the significant terms in a functional annotation of this geneset (Figure 5E) 

using Metascape41.  At the protein level, we confirmed that Gzma was strongly reduced in 

both T-bet and Eomes deficient NK cells (Figure 5D). Cma1 is another mast cell-protease 

present in granules that could also be involved in cytotoxicity. We assessed the cytotoxic 

potential of Eomes and T-bet deficient mature NK cells using a new technique adapted to 

low cell numbers42. T-bet deficient NK cells had a normal cytotoxicity, while Eomes deficient 

NK cells were poorly cytotoxic compared to controls (Figure 5F). The T-bet/Eomes co-

induced gene set also included S1pr5 that is essential for NK cells egress from the bone 

marrow10,43. To examine how T-bet and Eomes contributed to this egress, we injected T-bet 

and Eomes deficient mice with anti-CD45.2 and sacrificed them 5 min later, thus brightly 

staining only cells that were in blood sinusoids. A reduced sinusoidal fraction was observed 

in T-bet but not in Eomes deficient mice (Figure S4), showing that even though both TFs 

regulate S1pr5, T-bet is the major factor promoting blood circulation of NK cells.  
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Several genes showed however opposite regulation by T-bet and Eomes (Figure 5G), for 

example CD27 and CD69 were induced by Eomes but repressed by T-bet in NK cells, which 

we could also confirm at the protein level (Figure 5H-I). These genes are normally expressed 

at high levels in immature NK cells and repressed in mature NK cells26  suggesting that when 

T-bet is up regulated upon terminal maturation, it substitutes Eomes on the promoter of 

these genes and represses their expression. Other genes may be regulated in a reciprocal 

manner, ie repression by Eomes and induction by T-bet. This is the case of Cd226 encoding 

for DNAM1, which expression was not statistically different between control and KOs at the 

mRNA level (data not shown), but was clearly different at the protein level (Figure 5J).  

 

Eomes-specific genes (113) 

Eomes specific genes (ie regulated either in immature or in mature NK cells by Eomes and 

not T-bet) include mainly Eomes-inducible ones (Figure 6A). A functional annotation of 

Eomes-activated genes suggested a link with NK cell activation, cytotoxicity and IFNg 

production (Figure 6B). Indeed, this module contains a large cluster of NK cell receptors 

(KLRA8, KLRE1, KLRA4, KLRC2, KLRG1) and the signaling adaptor SAP (encoded by Sh2d1a), 

suggesting that Eomes is specifically involved in the induction of NK cell receptors and 

associated signaling and functions. Indeed, when looking at the expression of a battery of NK 

cell receptors at the protein level, we observed a defect in the expression of several Ly49 or 

SLAM receptors in immature NK cells deficient for Eomes (Figure 6C). This defect was usually 

not seen in more mature cells (data not shown), suggesting that other factors, such as T-bet 

could compensate for the lack of Eomes after maturation.  

Eomes also activated the expression of the CD11b integrin (encoded by Itgam, Figure 6D), 

and genes involved in the cytotoxic function such as FasL and GzmK or in trafficking such as 

CD62L (encoded by Sell, Figure 6E) or the granule-contained CCL5 chemokine. Finally, Eomes 

induced the expression of many genes of unknown function such as the Kelch domain 

containing proteins KHDC1A and KHDC1B and several lncRNA (Mirt1, Gm12596 etc, see table 

S1).  

To identify putative downstream mediators of Eomes transcriptional activity, we also 

examined TFs whose expression was dependent on Eomes. We found that Kcnip3, Lzts1 and 

Bhlhe40 were down regulated in the absence of Eomes, either in immature or in mature NK 

cells (Figure 6F). Bhlhe40 is known to promote mitochondrial metabolism in resident 
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memory T cells44 and could therefore also regulate NK cell development. Eomes also 

behaved as a specific repressor of a subset of TFs including Cebpg, Cbx2, Zfp689 and Zfp683. 

The latter, also known as Hobit, was previously defined as a master regulator of tissue 

residency45. This suggested a contribution of Eomes to blood circulation by repressing Hobit 

at immature stages. However, data in Figure S4 show that T-bet is much more important 

than Eomes to promote the blood circulation phenotype in NK cells.  

 

T-bet specific genes (692) 

T-bet specific genes represent a large cluster of genes, with two thirds of them being 

repressed by T-bet and the other ones being induced by this TF (Figure 7A for the top 100 

genes, and Table S1 for the complete list). A functional annotation of T-bet repressed genes 

retrieved “cell cycle” and related terms as the most significant ones (Figure 7B). “adaptive 

immunity”, “hematopoietic cell lineage”, “T cell activation” and “myeloid cell differentiation” 

were other significant terms, which reflects the ability of T-bet to repress 

progenitor/pluripotency genes or genes expressed in other immune lineages. For example, 

T-bet strongly repressed the expression of TCF7 or that of CD3 subunits. Csf2, encoding for 

GM-CSF was also specifically repressed by T-bet and not changed by Eomes.  

Gene repression could be direct or indirect via other TFs induced by T-bet. Indeed, the most 

significant functional term associated with T-bet induced genes was “negative regulation of 

gene expression, epigenetic”. Indeed, T-bet induced the expression of a large cluster of 

histone subunits (Hist1h1c, Hist1h1e, Hist1h3a) or histone methylation enzymes (Phf1, 

Hdac5, Ezh1, Epc1, Figure 7C). Moreover, T-bet specifically induced the expression of many 

transcriptional repressors (Figure 7C), some of which already known to regulate NK cell 

maturation such as Zeb226 and Blimp (encoded by Prdm1)46, and some other like Pogk or 

Sertad1 with no described role in NK cells.  

The functional analysis of T-bet-induced genes (Figure 7B) also retrieved “IL-12 pathway” 

and “signaling by interleukins”, which reflects the ability of T-bet to endow NK cells with 

specific response to cytokines. In particular, T-bet induced the expression of IL-12 and IL-21 

receptors. As a consequence, Tbx21-/- NK cells had a defective ability to respond to IL-12 as 

measured by STAT4 phosphorylation (Figure 7D) and by IFNg secretion (Figure 7E). Of note, 

IFNg secretion by Tbx21-/- NK cells was normal in response to tumor targets (data not shown).  

“Macroautophagy” was also associated with T-bet-induced genes (Figure 7B) while several 
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terms related to anabolic pathways were associated with T-bet-repressed genes. This 

correlates with the known role of autophagy in NK cell development and survival47, and with 

the increased apoptosis observed in the absence of T-bet19 (Figure 3).   

 

Eomes and T-bet share most of their DNA binding sites 

To complement the RNA-seq analysis, we sought to identify T-bet and Eomes binding sites in 

NK cells. In an effort to decrease experimental variability and avoid a bias linked to the use 

of different antibodies, we generated two mouse models allowing ChIP-seq analysis of T-bet 

and Eomes using the same antibody. In these models, an HA-V5 encoding tag was inserted at 

the 3’ end of T-bet and Eomes coding sequences (Figure 8A, see methods). Flow cytometry 

and WB analyses validated the expression of tagged T-bet and Eomes in NK cells even 

though HA-V5 tags decreased the expression of both Eomes and T-bet to some extent 

(Figure S5A-B). We then performed ChIP-seq of Eomes and T-bet using an HA antibody in 

freshly isolated NK cells.  

We found similar numbers of binding sites for T-bet and Eomes (about 12000), and two 

thirds of these peaks were shared between T-bet and Eomes (Figure 8B) according to the 

ChIP-seq peak calling algorithm. The same proportions were kept when assigning genes to 

each peak (Figure 8C). This suggested that T-bet and Eomes compete for many of their 

binding sites. The overlap between T-bet and Eomes ChIP-seq was probably underestimated 

by the algorithm as judged by the visualization of selected “specific” Eomes and T-bet peaks. 

These peaks appear indeed in both ChIP-seq but with differential intensities (Figures S6 and 

S7). Both T-bet and Eomes were mainly bound to proximal (<1kb) regions relative to 

transcriptional start sites (TSS) (Figure 8D).  

We then combined the ChIP-seq analysis with our RNA-seq results to identify direct T-bet 

and Eomes target genes. Genes associated with T-bet or Eomes binding were in general 

much more expressed than those without binding (Figure 8E), and co-binding did not 

influence further this expression. Eomes binding sites were discovered near 2944 genes 

expressed by NK cells (Figure 8F). Among these genes, 43 were differentially expressed 

between WT and NK-Eomes-/- NK cells (Figure 8F), which included DEGs in both immature 

and mature NK cells (Figure S8, complete gene list in Table S2). This group of functional 

Eomes targets was in most cases induced by Eomes, and notably contains many genes 
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involved in cytotoxicity (GzmA, Prf1), NK cell receptors (Klrc2, Klrb1b), NK cell trafficking 

(S1pr5), chemo-attraction (Ccl5) and transcription (Bhlhe40).  

T-bet binding sites were discovered near 2978 genes expressed by NK cells including 201 of 

the 734 genes differentially expressed between WT and Tbx21-/- mature NK cells (Figure 8G, 

Figure S8 and Table S2). 181 of these peaks were also specifically bound by T-bet and 

notably include chemokines (Ccl4, Xcl1), TF (Zeb2), cytokines (Csf2), chemokine receptors 

(Ccr5, Ccr7) etc.  

We also ranked genes based on the number of T-bet and Eomes peaks retrieved in the ChIP-

seq analysis. Top genes in this list (Table S3) comprise many TFs, including known regulators 

of lymphocyte development Fli1, Runx3 and T-bet/Eomes themselves. They also include 

genes of unknown functions in NK cells such as Chsy1 or Pik3ap1. Corresponding ChIP-seq 

tracks are shown in Figure S9 and highlight the high degree of cross-regulation of T-bet and 

Eomes.  

To identify putative T-bet and Eomes partners, we compared TF-binding motifs under T-bet 

and Eomes ChIP-seq peaks using the RSAT motif discovery tool48. As expected the canonical 

T-box motif was enriched under Eomes peaks (Figure 8H), but surprisingly not under T-bet 

ones (Figure 8I). With this exception, the motif analysis yielded very similar results for T-bet 

and Eomes with a strong enrichment for Runx, Ets and Zinc-finger (ZF) motifs, in this order 

based on statistics. Since Runx3 was previously shown to physically interact with Eomes49, 

and T-box and Runx3 were shown to cooperate in CTL development29,  it is possible that 

binding of T-bet and Eomes to DNA occurs very often in an indirect way through interaction 

with Runx3 and possibly other TFs identified here.  

Collectively, our ChIP-seq analysis uncovers a strong overlap in genomic DNA binding 

between Eomes and T-bet and highlights functional targets for both TFs as well as potential 

partners in regulatory complexes.  
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Discussion 
 
Here, we provide molecular insight on how Eomes and T-bet control NK cell development 

and maturation. Using a variety of methods, we show that Eomes is dominantly expressed in 

immature NK cells and that deficiency in Eomes but not T-bet strongly affects the 

transcriptome of immature NK cells. In addition, we found that T-bet deficiency does not 

affect the number of immature NK cells, while Eomes deficiency resulted in a severe 

decrease of this subset and of other consecutive stages. Mechanistically, our data 

demonstrate that Eomes is essential to specify the NK cell lineage by inducing the expression 

of many hallmark genes important to provide survival signals (such as NK cell receptors50) 

and by promoting optimal responsiveness to IL-15. In the absence of Eomes, immature NK 

cells were more apoptotic in the BM, confirming recent findings32. By contrast T-bet is 

dominantly expressed in mature NK cells, and is critical for terminal NK cell maturation, 

which confirms previous observations19–21,26. We also found that Eomes and T-bet balance 

each other’s expression, which is important to mitigate the maturation rate. Indeed, in the 

absence of Eomes, residual NK cells tend to differentiate much more quickly than control NK 

cells. Reciprocally, the absence of T-bet resulted in the accumulation of DP NK cells. Thus, 

the Eomes to T-bet ratio is a crucial rheostat of NK cell maturation. Subtle changes in this 

equilibrium could have important consequences on the representation of maturation 

subsets.  

T-bet acted more often as a repressor in NK cells, suppressing the transcriptional program of 

immature NK cells. This could be linked to its ability to induce the expression of known 

repressors such as Zeb226 and Blimp146, and of many enzymes, histones subunits and 

complexes involved in epigenetic reprogramming, as shown in the present study. We 

previously described that Zeb2-deficient and T-bet-deficient NK cells were phenocopies, and 

that Zeb2 overexpression partly compensated for T-bet deficiency in NK cells26. Altogether, 

this suggests that T-bet induction of transcriptional repressors such as Zeb2 is essential to 

suppress the expression of genes expressed at previous developmental stages ie 

pluripotency, progenitors or immature NK cells.  Our study points to many potentially novel 

transcriptional regulators downstream of T-bet such as Pogk that contains a Krüppel-

associated box domain (KRAB) repressor domain51, or Sertad1, a member of the Trip-Br 

famiy of TF, known to control cell proliferation52. The indirect effect of T-bet via 
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transcriptional repressors may also explain why there is overall a limited overlap between 

genes regulated by T-bet and Eomes, despite the fact that T-bet and Eomes DNA binding 

largely intersects. Interestingly, a previous analysis of Eomes and Brachyury actions in 

embryonic stem cells also showed that Eomes was rather involved in the induction of 

hallmark mesoderm genes, while Brachyury rather repressed neuroectoderm genes53. Thus, 

division of labor between different T-box TFs may operate to favor differentiation in 

different tissues.  

Eomes regulated the expression of very few TFs, with the notable exception of Bhlhe40 and 

Hobit. Bhlhe40 could be especially important for NK cell metabolism downstream of Eomes, 

as suggested by a recent study in memory CD8+ T cells44. In this study, Bhlhe40-/- memory T 

cells had a diminished expression of genes encoding the components of the mitochondrial 

membrane or genes involved in mitochondrial metabolism and/or OXPHOS, and a decreased 

oxygen consumption rate44. Hobit has been previously reported to control tissue residency 

in lymphocytes, in cooperation with Blimp145. As NK cells are the only ILCs capable of 

circulating in the blood vasculature and the only ILCs to express Eomes, we hypothesized 

that Eomes promoted blood circulation by repressing Hobit. However, we found little impact 

of Eomes deficiency on the ability of residual NK cells to exit the BM or LN, as opposed to the 

effect of T-bet that was much pronounced, especially in mature NK cells. This effect could be 

mediated by S1pr5, which indubitably contributes to NK cell trafficking, as we previously 

showed10,43. Why ILC1s are tissue resident and S1pr5 negative despite high levels of T-bet 

remains to be determined. Additional factors, such as Zeb2 that is induced at late stages of 

NK cell differentiation may be important to open the S1pr5 locus.  

T-bet was also necessary for the survival of mature CD27- NK cells, which correlated with the 

T-bet dependent induction of the “macroautophagy” pathway as captured by the functional 

annotation of the T-bet dependent geneset. Autophagy is known to be absolutely essential 

for NK cells54 and more generally for all ILC types47. Glycolysis and oxidative phosphorylation 

are known to operate at very low intensity in NK cells and these pathways are even down 

regulated at the transcriptional level during NK cell differentiation55. In this context, 

autophagy could be especially important to preserve NK cell integrity in quiescent mature 

NK cells. Autophagy is negatively regulated by the mTOR pathway, and we showed that 

activity of both mTORC1 and mTORC2 complexes was indeed progressively decreased during 

NK cell maturation55. More recent studies have shown an interesting link between mTOR 
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complexes and T-box factors. Indeed, deletion of Raptor, the essential subunit of mTORC1 

resulted in a specific decrease of Eomes expression while deletion of Rictor had the 

reciprocal effect on T-bet56. The latter effect could be through the posttranscriptional 

regulation of Foxo1 that is known to negatively regulate T-bet expression in NK cells57. How 

mTORC1 specifically regulates Eomes and how the mTORC1/mTORC2 equilibrium is 

controlled during maturation remain open questions.  

We generated novel T-bet and Eomes knock-in mice with the same HA-V5 insertion at the C-

terminus of each factor. We anticipate that such tools will be extremely useful to study the 

role of both TFs in different contexts. The study of epigenetic regulation is indeed hampered 

by the limited availability of antibodies against TFs, and by the low expression of many of 

them. Using these clean tools, we identified more than 12,000 peaks for both T-bet and 

Eomes in the resting NK cell genome, which exceeds previous attempts using T-bet 

antibodies15,58. A very strong overlap between Eomes and T-bet binding was observed, which 

confirms a previous study in activated CD8+ T cells59. However, the latter study used 

different antibodies for T-bet and Eomes, and in vivo activated CD8+ T cells vs in vitro 

activated CD8+ T cells as material for T-bet and Eomes ChIP-seq respectively, which could 

arguably lead to technical artifacts.  Our study is thus the first comparison of genome-wide 

DNA binding by T-bet and Eomes using untouched primary lymphocytes. As the ChIP-seq 

signals are usually weak when working with endogenous levels of TFs, the “specificities” in T-

bet or Eomes binding should be taken with caution, and more studies should be performed 

to formally prove that small differences in peak height really correspond to differential 

binding by T-bet and Eomes at selected sites. 

Most T-bet and Eomes peaks are not associated with differential expression of the 

corresponding genes in T-bet or Eomes deficient NK cells, suggesting that other factors may 

compensate for the lack of T-bet or Eomes binding in most cases. This point is not specific of 

T-box TFs as similar conclusions have been reached for many other TFs, as previously 

reviewed60. Thus, binding is not necessarily equal to regulation, and it is probable that only a 

small fraction of all binding events have an important impact on gene expression.  

As the Eomes/T-bet balance switches during maturation from dominance of Eomes in 

immature NK cells to dominance of T-bet in mature NK cells, we propose that in many 

occurrences and for direct T-box targets, Eomes comes first and binds T-box motifs to 

initiate transcription of NK cell genes. Then, when the level of T-bet increases and that of 
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Eomes is repressed, T-bet would come and replace Eomes. While this model is technically 

challenging to demonstrate, it would explain why many genes such as Prf1 or GzmA are 

apparently co-induced by Eomes and T-bet. T-bet binding could either have the same effect 

as Eomes on gene expression (cases of Prf1, GzmA, S1pr5, IL7R, etc), or alternatively have an 

opposed effect (cases of CD27, CXCR3, CD69, DNAM1 etc). Opposed effects of T-bet and 

Eomes may involve secondary effectors as discussed above, or alternatively, different 

cofactors. Yet, our analysis of motifs associated with T-bet and Eomes peaks did not show 

important differences. In fact, several lines of evidence point to Runx3 as a major cofactor of 

both T-bet and Eomes. This confirms previous observations of physical interactions between 

Eomes and Runx349 and of a cooperation between both T-bet and Eomes and Runx3 during 

CD8+ T cell differentiation29. Other cofactors may include members of the Ets family such as 

Ets1, which was previously shown to regulate NK cell development61 and Egr family 

members. Runx3 and other factors may act as pioneer factors to activate enhancers in NK 

cell progenitors, as suggested by the observation that Eomes binds at sites previously bound 

by Runx3 in memory CD8+ T cells49. Binding of Eomes or T-bet at these Runx3 sites may 

stabilize chromatin states, as previously suggested29,59.  

 In conclusion, our study reveals major roles for Eomes in NK cell lineage specification 

and induction of NK cell hallmark genes such as NK cell receptors and genes associated with 

cytotoxicity. Reciprocally, we found that T-bet promotes terminal NK cell maturation and 

survival via the repression of lineage and pluripotency genes indirectly via the induction of 

different repressors and the induction of specific properties such as responsiveness to IL-12. 

T-bet and Eomes binding was largely overlapping, suggesting different modes of cooperation 

or antagonism between these factors, which likely depends on cofactors. Finally, different 

lines of evidence suggest that they are major regulators of chromatin accessibility, stabilizing 

the effect of other TFs such as Runx3 during NK cell maturation.  
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Figure legends 

Figure 1. Eomes and T-bet balance each other during NK cell maturation. (A) Flow 

cytometry measurement of T-bet and Eomes in gated NK cells from WT, Tbx21+/-, Tbx21-/-, 

Ncr1Cre/+ (Eomes+/+), Ncr1Cre/+ X Eomeslox/+ (Eomes+/-) and Ncr1Cre/+ X Eomeslox/lox (Eomes-/-) 

mice, as indicated. Bar graphs show the mean +/-SD fluorescence intensity (MFI) of Eomes 

and T-bet staining in gated NK cell subsets from spleen. Data are representative of 3 

experiments and 3 mice are shown for each group. (B) WT spleen cells were stimulated O/N 

in the indicated conditions and T-bet and Eomes expression were measured by flow 

cytometry. Data are representative of 2 experiments and 3 mice are shown for each group. 

(C) Image stream X (ISX) analysis of T-bet and Eomes expression in gated NK cells. 

Representative images are shown for the three NK cell subsets. CD122 staining was used to 

visualize the membrane. (D) Quantification of nuclear T-bet and Eomes in gated NK cell 

subsets analyzed with IDEAS software. Dots correspond to nuclear MFI of T-bet and Eomes 

for the indicated subsets. N=3 (E) NK cells were sorted from WT mice in immature or mature 

subsets and subsequently stained for nucleus (DAPI), T-bet, Eomes and CD122 for confocal 

microscopy analysis. Shown are representative images of each staining and combinations for 

immature NK cells. Paired t-tests were used for statistical analysis of data presented in this 

figure.  

 

Figure 2. Eomes and T-bet promote NK cell survival and differentiation at different cellular 

transitions. (A) Flow cytometry analysis of NK cell percentage in BM or spleen lymphocytes 

of the indicated mice. Each dot corresponds to a single mouse (n=5-6, pooled from 2 

experiments), and graphs show the mean percentage +/-SD. (B) Number of NK cells 

calculated from data in (A) combined with numeration of corresponding organs.  (C) 

Proportion and numbers of NK cell subsets for the mice and organs analyzed in (A-B). (D) NK 

cells of the indicated subsets (CD11b- or DP) and genotypes were FACS-sorted and then 

adoptively transferred into congenic unirradiated Ly5a X B6 mice (CD45.1/2). Two weeks 

later, spleen NK cells were purified from these mice and the CD11b/CD27 phenotype of 

transferred NK cells (identified by their CD45.2 expression) was analyzed by flow cytometry. 

Paired t-tests were used for statistical analysis of data presented in this figure. 
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Figure 3: Eomes and T-bet regulate NK cell proliferation and survival at different stages. (A) 

Mice were injected twice with EdU within a two-day-period, and EdU incorporation was 

measured in NK cells from the indicated organs by flow cytometry one day after the last 

injection. Each dot corresponds to a single mouse (n=6, pooled from 2 experiments), and 

graphs show the mean percentage +/-SD. (B) Flow cytometry analysis of Ki67 expression in 

BM and spleen NK cells. Each dot corresponds to a single mouse (n=6, pooled from 2 

experiments), and graphs show the mean percentage +/-SD. (C) Ex vivo apoptosis of BM and 

spleen NK cell subsets as assessed by flow cytometry analysis of Annexin-V staining. Bar 

graphs show the mean percentage +/-SD of Annexin-V+ cells within each subset, dots 

correspond to individual mice analyzed. (D) Total NK cell viability (% Annexin-V negative 

cells) after culture of splenocytes with IL-15 for 48h at the indicated concentrations. Data are 

from 3 mice representative of 2 independent experiments. Paired t-tests were used for 

statistical analysis of data presented in this figure.  

 
Figure 4. Eomes and T-bet have mostly distinct roles on NK cell transcription during 

maturation. RNA-seq analysis of sorted Tbx21-/-, Eomes-/- and appropriate control CD11b- 

and CD27- NK cells (n=3 per group with three sorts in total). DEG were selected based on 

adjusted p-value<0.05. (A) Volcano plots of gene expression in immature CD11b- or mature 

CD27- NK cells comparing T-bet or Eomes deficient cells with appropriate controls. Selected 

genes are highlighted with their names. (B) Bar histograms showing the number of genes 

induced or repressed by T-bet or Eomes in immature and mature NK cells. (C) Venn diagram 

showing the overlap between the Immgen-defined NK cell signature and the Eomes-

activated and T-bet-activated genes in immature and mature NK cells. (D) Venn diagram 

showing the overlap between T-bet regulated and Eomes-regulated genes in immature and 

mature NK cells. (E) Volcano plots comparing the expression of T-bet or Eomes dependent 

genes between WT immature and mature NK cells. Selected genes are highlighted with their 

names. (F) Venn diagram showing the overlap between T-bet-dependent, Eomes-dependent 

and maturation-regulated genes. 
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Figure 5. Shared transcriptional activities of T-bet and Eomes in NK cells. RNA-seq analysis 

of sorted Tbx21-/-, Eomes-/- and appropriate control CD11b- and CD27- NK cells (n=3 per 

group with three sorts in total). DEGs were selected based on adjusted p-value<0.05. (A) T-

bet/Eomes co-repressed genes in immature or mature NK cells. Bar graphs show the log2 

transformed fold change of genes between controls and T-bet or Eomes deficient mice, as 

indicated. (B) Bar graph showing the mean+/-SD of IL7R expression in NK cells of the 

indicated genotype as measured by flow cytometry. The different controls for each genotype 

are pooled and annotated as “WT” in the graph which is same for the following graphs in (D, 

H-J). N=3. (C) T-bet/Eomes co-induced genes in immature or mature NK cells, Bar graphs 

show the log2 transformed fold change of genes between controls and T-bet or Eomes 

deficient mice, as indicated. (D) Bar graph showing the mean+/-SD of GzmA expression in NK 

cells of the indicated genotype as measured by flow cytometry. N=3 (E) Functional 

annotation of the T-bet/Eomes induced gene set using Metascape. Bar graphs show selected 

terms among the most significant ones. (F) Cytotoxicity assay using sorted Tbx21-/-, Eomes-/- 

and appropriate control CD27- NK cells as effectors and RMA-KR-Nano-luc cells as targets. 

(G) Bar graph showing the log2 transformed fold change of genes regulated in opposite ways 

by T-bet and Eomes, between controls and T-bet or Eomes deficient mice, as indicated. (H-J) 

Bar graphs showing the mean+/-SD of CD27 (H), CD69 (I) and DNAM-1 (J) expression in NK 

cells of the indicated genotype as measured by flow cytometry. N=3. Paired t-tests were 

used for statistical analysis of data presented in this figure. 

 

Figure 6. Eomes-specific role in the induction of hallmark NK cell genes. RNA-seq analysis of 

sorted Tbx21-/-, Eomes-/- and appropriate control CD11b- and CD27- NK cells (N=3 per group 

with three sorts in total). DEGs were selected based on adjusted p-value<0.05. (A) Genes 

specifically regulated by Eomes in immature or mature NK cells. Bar graph show the log2 

transformed fold change between controls and Eomes deficient NK cells, as indicated. A few 

selected gene names are shown. (B) Functional annotation of the Eomes induced gene set 

using Metascape. Bar graphs show selected terms among the most significant ones. (C-E) 

Overlayed FACS histograms showing the expression of the indicated surface molecules in 

Eomes deficient vs control NK cells, as indicated. Grey histograms show control staining. (F) 
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Heatmaps showing the log2 transformed fold change in the expression of the indicated TF 

between control and Eomes deficient NK cells.  

 

Figure 7. T-bet-specific role in the repression of pluripotency and cell proliferation. RNA-

seq analysis of sorted Tbx21-/-, Eomes-/- and appropriate control CD11b- and CD27- NK cells 

(n=3 per group with three sorts in total). DEGs were selected based on adjusted p-

value<0.05. (A) Genes specifically regulated by T-bet in mature CD27- NK cells. Bar graphs 

show the log2 transformed fold change between controls and T-bet deficient mice, as 

indicated. A few selected gene names are shown. (B) Functional annotation of the T-bet-

repressed and T-bet-induced genesets using Metascape. Bar graphs show selected terms 

among the most significant ones. (C) Transcription factors, histone subunits or histone 

modifying enzymes whose expression are dependent on T-bet. The heatmap shows the log2 

transformed fold change in expression between control and T-bet deficient mature NK cells. 

(D) Flow cytometry analysis of STAT4 phosphorylation in WT vs T-bet deficient NK cells of the 

indicated subset in response to stimulation with IL-12 for 1h. N=3. (E) Flow cytometry 

analysis of intracellular IFNg expression in gated spleen NK cells of the indicated genotype 

following culture in medium supplemented or not with IL-12 and IL-18. N=6 mice in 2 

experiments. Paired t-tests were used for statistical analysis of data presented in this figure. 

 

Figure 8. Identification of direct T-bet and Eomes targets using novel KI mice. (A) Scheme 

of knock-in Eomes and T-bet HAV5 constructs. (B) Venn diagram showing the overlap 

between Eomes and T-bet ChIP-seq peaks. (C) Venn diagram showing the overlap between 

genes near Eomes and T-bet peaks. (D) Plot showing the distribution of T-bet and Eomes 

peaks in the mouse genome based on the distance to TSS. (E) Histogram of mean transcript 

expression with respect to T-bet and/or Eomes binding according to RNA-seq data. (F) Venn 

diagram showing the overlap between Eomes-bound (ChIP-seq) and Eomes-regulated genes 

(RNA-seq). (G) Venn diagram showing the overlap between T-bet-bound (ChIP-seq) and T-

bet-regulated genes (RNA-seq). (H-I) Motifs associated with (H) Eomes or (I) T-bet peaks and 

corresponding TFs ranked by significance.  
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Supplementary figures and tables 

Table S1. Genes differentially expressed in Tbx21-/-, or NK-Eomes-/- immature or mature NK 

cells compared to controls. The list is ranked from top to bottom based on the number of 

comparisons for which differential expression was measured. Log2 fold changes and 

adjusted p-value for the comparisons are shown. 

Table S2. List of validated T-bet and Eomes target genes, ie genes for which DNA binding was 

measured for T-bet or Eomes, and for which differential expression was measured in Tbx21-/-, 

or NK-Eomes-/- immature or mature NK cells compared to controls, respectively.  

Table S3. List of 30 top genes ranked on the basis of the number of T-bet and Eomes ChIP-

seq peaks associated to each gene. Genes encoding for TFs are highlighted in yellow. 

Table S4. List of genes overlapped between Eomes- or T-bet-bound (ChIP-seq) and Eomes- 

or T-bet-regulated genes (RNA-seq). 

 

Figure S1. Extended data for Figure 1. (A) Gating strategy of NK cells in this study. NK cells 

were defined as NK1.1+CD3-CD49b+CD49a-. NK cell subsets CD11b-, DP and CD27- were 

gated as shown in the right panel. (B) Flow cytometry measurement of T-bet and Eomes in 

gated NK cells from WT, Tbx21+/-, Tbx21-/-, Ncr1Cre/+ (Eomes+/+), Ncr1Cre/+ X Eomeslox/+ 

(Eomes+/-) and Ncr1Cre/+ X Eomeslox/lox (Eomes-/-) mice, as indicated. Bar graphs show the 

mean +/-SD fluorescence intensity (MFI) of Eomes and T-bet staining in gated NK cell subsets 

from the BM. Data are representative of 3 experiments and 3 mice are shown for each group.  

(C) NK cells were sorted from WT mice in immature or mature subsets and subsequently 

stained for nucleus (DAPI), T-bet, Eomes and CD122 for confocal microscopy analysis. Shown 

are representative photographs of each staining and combinations for mature NK cells. Data 

are representative of 2 experiments. 

Figure S2. Extended data for Figure 2.  

(A) Number of NK1.1+CD3- ILCs of the CD49a+ CD49b-, CD49a+CD49b+, CD49a-CD49b+ and 

CD49a-CD49b- phenotype in the indicated organs of WT, NK-Eomes-/- and Tbx21-/- mice. (B) 

FACS measurement of KLRG1 expression in gated spleen NK cells from mice of the indicated 

genotype. Bar graphs show the mean and dots corresponding to individual mice. Data are 
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polled from 2 experiments with n=4-6 mice in total. Paired t-tests were used for statistical 

analysis of data presented in this figure. 

Figure S3. Expression pattern of NK cell genes regulated by T-bet or Eomes across the 

immune system. (A) Expression profile of NK cell genes activated by Eomes or T-bet across 

immune subsets (Immgen data39). (B) Expression profile of NK cell genes repressed by Eomes 

or T-bet across immune subsets (Immgen data39). 

Figure S4. T-bet promotes NK cell blood circulation. Mice of the indicated genotypes were 

injected with CD45 MAb intravenously 5 minutes before sacrifice. The percentages of CD45+ 

NK cells among different subsets of different organs were analyzed by flow cytometry. 

Results were pooled from N=2 experiments with N=4-6 mice in total. Paired t-tests were 

used for statistical analysis of data presented in this figure. 

Figure S5. Validation of HA-V5 expression in knock-in mice. (A) Flow cytometry analysis of 

T-bet, Eomes, and HA expression in gated NK cells from the indicated mouse strains. (B) WB 

analysis of HA and V5 expression in splenocytes from the indicated mouse strains. 

Figure S6.  Selected examples of Eomes ChIP-seq tracks for validated functional Eomes 

targets. Shaded areas correspond to “specific” Eomes peaks. 

Figure S7. Selected examples of T-bet ChIP-seq tracks for validated functional T-bet targets. 

Shaded areas correspond to “specific” T-bet peaks. 

Figure S8. Overlap between ChIP-seq and DEGs in immature and mature NK cells. (A) Venn 

diagram showing the overlap between Eomes binding (ChIP-seq) and genes significantly 

regulated by Eomes in immature or mature NK cells (RNA-seq, p-value<0.05). (B) Venn 

diagram showing the overlap between T-bet binding (ChIP-seq) and genes significantly 

regulated by T-bet in immature or mature NK cells (RNA-seq, p-value<0.05).  

Figure S9. ChIP-seq tracks for genes with a high number of T-bet and Eomes peaks. 
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Material and Methods 

Mice 

Wild-type C57BL/6 mice were purchased from Charles River Laboratories (L’Arbresle). NCR1-

iCre 62, Eomeslox/lox 63and Tbx21-/- 18 mice were previously described. This study was carried 

out in accordance with the French recommendations in the Guide for the ethical evaluation 

of experiments using laboratory animals and the European guidelines 86/609/CEE. The 

bioethic local committee CECCAPP approved all experimental studies. Mice were bred in the 

Plateau de Biologie Expérimentale de la Souris, our animal facility.  

 

Flow cytometry  

Single-cell suspensions of mouse spleen, liver and bone marrow were obtained and stained. 

Intracellular stainings for TFs were performed using Foxp3 kit (ebioscience). Cell viability was 

measured using Annexin-V (BD Biosciences)/live-dead fixable (eBiosciences) staining. 

Lyse/Fix and PermIII buffers (BD Biosciences) were used for intracellular staining of 

phosphorylated proteins. Flow cytometry was carried out on a FACS LSR II, or a FACS 

Fortessa (Becton-Dickinson). Data were analysed using FlowJo (Treestar). Antibodies were 

purchased from eBioscience, BD biosciences, R&D Systems, Abcam, Beckman-Coulter, 

Miltenyi or Biolegend. We used the following antibodies: anti-CD3 (clone 145-2C11), anti-

CD19 (clone 1D3), anti-NK1.1 (clone PK136), anti-NKp46 (clone 29A1.4), anti-CD11b (clone 

M1/70), anti-CD27 (clone LG.7F9), anti-CD49a (clone HA31/8), anti-CD49b (clone DX5), anti-

CD122 (clone SH4), anti-CD127 (clone A7R34), anti-CD62L (clone MEL-14), anti-Ly49A (clone 

YE1/48.10.6), anti-Ly49D (clone 4E5) , anti-Ly49E/F (clone REA218), anti-Ly49G2 (clone 

4D11), anti-CD226 (clone 10E5), anti-CCR7 (clone 4B12), anti-Tbet (clone 4B10), anti-Eomes 

(clone Dan11mag), anti-Granzyme A (clone 3G8.5), anti-Ki67 (clone SolA15), anti-KLRG1 

(clone 2F1), anti-STAT4 (clone 38/p-Stat4), anti-HA (clone 6 E2). 

 

Cell sorting  

Murine NK cells were isolated from the spleen by magnetic cell sorting incubating for 20 

minutes at 4°C with a cocktail of biotin-conjugated mAb: anti-CD3ε, CD5 (53-7.3), CD19, 

Ly6G, F4/80, CD24, CD4, CD8, CD14 and Ter-119. The Anti-Biotin MicroBeads (20 min) were 

applied in addition with the DEPLETE program on the autoMACS® Separator (Miltenyi, Biotec 

4 Research projects 4.2 Project 1: T-bet and Eomes in NK cell development

97



 

 
 

30 

Inc., CA, USA). A total of 50-90% pure NK cells were obtained using this procedure. Cells 

were then subsequently sorted into different subsets using a FACSAria Cell Sorter (Becton-

Dickinson, San Jose, USA). Purity of sorted cell populations was over 98% as checked by flow 

cytometry.  

 

Immunostaining for Confocal Analysis 

Freshly sorted NK cells were seeded in a 96-Well Optical-Bottom Plate pre-coated with 

100μg/mL poly-L-lysin for 1h incubation at 37°C. After 4% PFA fixation for 15 min and three 

PBS washes, blocking step (PBS 3% BSA) for 30min at RT was followed. Immunostainings 

were performed after a permeabilization step with 0.05% Triton X-100 for 7min. Primary 

antibody antibodies were diluted in 3% BSA-PBS and added to the cell for one-hour 

incubation at room temperature. Primary antibodies used in this study include rat anti-

CD122 (Bio X Cell, 4 μg/mL); rabbit anti-Eomes (Abcam, 4 μg/mL); FITC-conjugated mouse 

anti-T-bet (Biolegend, 1/50). After three washes with PBS, cells were incubated with the 

appropriate Alexa 555 conjugated anti-rat, AF647 conjugated anti-rabbit secondary antibody 

at 2 μg/mL in 3% BSA-PBS and add to the cells along with DAPI (4 μg/mL) for one-hour 

incubation at room temperature. After three gentle washes with PBS, cells were observed 

with a Zeiss LSM 800 laser scanning confocal microscope. The images and relative 

quantification were processed using Image J software. 

 

Imaging combined with flow cytometry analysis 

Sorted NK cells were prepared as described and stained with appropriate antibodies as 

described in “Flow cytometry”. The well-stained cells were then analyzed by Image Stream X 

technology (Amnis) at magnification x40 using IDEAS software. Mean fluorescence intensity 

(MFI) of T-bet and Eomes were analysed by applying masks (IDEAS software) to discriminate 

nuclear and cytoplasmic area based on the DAPI staining.  

 

Measurement of in vivo cell proliferation  

Mice were given two continuous intraperitoneal injection of 0.5 mg EdU (BD Bioscience). 12 

hours after the last EdU injection, mice were killed and organs harvested. Cells derived from 

BM and spleen were stained with mAb as described in “Flow cytometry”. After fixation and 

permeabilization, cells were stained with FITC anti-EdU antibody, according to manufacturer 
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instructions. EdU incorporation for different cell populations was measured by flow 

cytometry.  

 

Cell culture and stimulation with cytokines 

T-bet and Eomes expression upon cytokine stimulation 

2 x 106 splenocytes from C57BL/6 mice were prepared and then were cultured for 24 h 

with/without following cytokines IL-12 (25 ng/ml), IL-18 (5ng/ml) and IL-15 (100ng/ml). Cells 

were collected and were stained with anti-NK1.1, anti-CD3, followed by intracellular staining 

with anti-T-bet and anti-Eomes before analysis by flow cytometry. 

IFN-γ production and degranulation upon cytokine stimulation 

1.5 x 106 splenocytes were cultured with Golgi-stop (BD Biosciences) in the presence of anti-

CD107a for 4 h. Cytokines were used at the following concentrations: IL-12 (25 ng/ml), IL-18 

(5ng/ml). Surface and intracellular stainings were then performed and IFN-γ production as 

well as CD107a exposure was measured by flow cytometry. 

 

Adoptive transfer 

NK cells were sorted into two populations CD11b- (CD11b-CD27+) and DP (CD11b+CD27+) as 

previously described. Purity of sorted cell populations was more than 98% as checked by 

flow cytometry. For cell transfer, 2 x 104 to 4 x 105 sorted cells were injected intravenously 

into unirradiated Ly5a X B6 (CD45.1/2) mice. The presence of transferred cells was analyzed 

at days 14 after transfer by cytofluorimetric analysis of NK cell–enriched splenocytes. The 

expression of CD27 and CD11b was analyzed on CD19- CD3- NK1.1+ CD49a-CD49b+ cells. 

 

Cell cytotoxicity assay 

Sorted NK cell subsets were plated in 96-well, V-bottom plates and co-cultured for 4h with 

RMA-KR target cells (MHC I deficient and Rae1b positive) expressing the Nanoluciferase 

(lentivirus-mediated expression) at a concentration of 100 cells/well. Different ratio of NK to 

target cells were used: 30:1, 10:1, 3:1, 1:1, 0:1. After NK cell killing RMA-KR-derived NanoLuc 

was released in the culture supernatant. NanoLuc activity in the culture supernatant thus 

reflects target cell lysis. The total volume in culture wells was 200 µL, and plates were 

centrifuged briefly for 4 min at 2000 rpm. 50 µL of culture supernatants was collected, and 
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NanoLuc activity was determined by adding 50 µL of NanoLuc reagent in black, flat-bottom, 

96-well plates. Bioluminescence was measured for 0.1 s with a luminometer (TECAN). 

 

RNA-seq 

NK cells were first purified by AutoMACS to get higher purity. And then cells were stained in 

combination with anti-Cd3, anti-NK1.1, anti-Cd49a, anti-Cd49b, DAPI and subsequently 

sorted into different subsets (CD11b-, DP, CD27-) using a FACSAria Cell Sorter (Becton-

Dickinson, San Jose, USA). Purity of sorted cell populations was over 98% as measured by 

flow cytometry. RNA libraries were prepared as previously described 64. Briefly, total RNA 

was purified using the Direct-Zol RNA microprep kit (Zymo Research) according to 

manufacturer instructions and was quantified using QuantiFluor RNA system (Promega). 1µl 

of 10µM Oligo-dT primer and 1µl of 10mM dNTPs mix were added to 0.15ng of total RNA in 

a final volume of 2.3µl. Oligo-dT were hybridized 3min at 72°C and reverse transcription (11 

cycles) was performed. PCR pre-amplification was then conducted using 16 cycles. cDNA 

were purified on AmpureXP beads (Beckman Coulter) and cDNA quality was checked on 

D5000 screen tape and analysed on Tape station 4200 (Agilent). 3ng of cDNA were 

tagmented using Nextera XT DNA sample preparation kit (Illumina). Tagged fragments were 

further amplified and purified on AmpureXP beads (Beckman Coulter). Tagged library quality 

was checked on D1000 screen tape and analyzed on Tape station 4200 (Agilent). Sequencing 

was performed by the GenomEast platform, a member of the “France Génomique” 

consortium (ANR-10-INBS- 0009), on an Illumina HiSeq 4000 sequencing machine (read 

length 1x50nt).  

 

Generation of Eomes-HAV5/Knockin mice 

A homologous recombination plasmid was designed to target mouse Eomes gene. A 

targeting vector containing Homology sequences to the Eomes locus and an ires-GFP-loxP-

tACE-Cre-PGK-gb2-neo-loxP cassette was made previously4. Using Red/ET cloning (Gene 

Bridges), we replaced the IRES-GFP and upstream STOP codon by a 2xHAV5 tag 

(Hemagglutinin and Parainfluenza virus 5 V/P tag) and terminal STOP codon. The rest of the 

cassette allows selection with neomycin in both bacteria and eukaryotic cells and is auto-

excisable in male mice thanks to Cre expression under the control of the testis-specific Tace 

promoter and the loxP sites. JM8.A3 ES cells (C57BL/6N) were transfected with this construct 
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and G418‐ resistant clones were obtained. We checked for correct homologous 

recombination by PCR followed by southern blot using different probes. Chimeric mice were 

obtained following microinjection of ES cells into C57BL/6 blastocysts and germline 

transmission was monitored by PCR using different sets of primers encompassing different 

parts of the targeted locus. The following primer sequences were used for genotyping the 

animals: Ex6 ‐ F (ACTACCATGGACATCCAGAATGAGC) and Ex6 ‐ R 

(CAAAGAACACAACAAAACACCACCA). The knock‐in fragment size is 520bp and the WT 

fragment size is 359bp. 

 

Generation of Tbet-HAV5/Knockin mice 

A homologous recombination plasmid was designed to target the mouse Tbet gene. Using 

Red/ET cloning (Gene Bridges), we first replaced Tbet stop codon in a bacterial artificial 

chromosome containing Tbet genomic sequence (clone number RP24-161-F21; CHORI) by a 

2xHAV5-STOP-loxP-tACE-Cre-PGK-gb2-neo-loxP cassette. We then retrieved the cassette 

with flanking Tbet genomic sequence spanning 3.5kb upstream and 3kb downstream of 

original stop codon. Standard procedure was used to generate genetically modified JMA8.A3 

ES cells and mice (refer to Eomes-HAV5 KI mice procedure). The following primer sequences 

were used for genotyping the animals: Ex6‐F (GCGAAGGAGACACTAAGAGGAGGAG) and 

Ex6‐R (AGCACCAGGTTCGTGACTGTAGTTC). The knock‐in fragment size is 509bp and the 

WT fragment size is 356bp. 

 

ChIP-seq  

For sample preparation, 10 million NK cells from pooled spleens of HAV5-tagged T-bet and 

Eomes mice were isolated and crosslinked with 1% formaldehyde for 10 min at 37°C. 

Crosslinking was stopped with 0.125 M glycine on a roller for 5min. Cells were then washed 

twice with ice-cold Wash Buffer including detergent (Active motif, 53042). Flash freeze the 

cell pellet by immersing tubes into dry ice for 10 min. Resuspend each pellet in 5ml ice-cold 

Swelling Buffer (Active motif, 53042) supplemented with protease inhibitor cocktail (PIC) and 

PMSF for 30 min on ice. Pellets were then suspended in 300ul SDS buffer (0.5% SDS, 10mM 

EDTA, 50mM Tris-HCl pH8) supplemented with PIC and PMSF and incubated on ice for 10min. 

Chromatin were then sheared using a Probe Sonicator device (Active motif) to obtain a 
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fragments size range between 200 and 1000 bp. After clearance by centrifugation at 4°C, 

sheared chromatin was used for immunoprecipitation of HA (4µg, CST, catalog number 

3724), or normal rabbit IgG control (4 µg, Diagenode, catalog number C15410206) incubated 

overnight at 4 °C. Protein G magnetic-activated beads (Active Motif, catalog number 53034) 

were added to each immunoprecipitation reaction and incubate for 3h at 4 °C. Each IP were 

washed five times with Wash buffer (Active motif, 53042) and chromatin-antibody 

complexes were eluted with Elution Buffer AM4. Chromatin was then reverse cross-linked 

and DNA was purified according to the manufacturer’s instructions (Active motif). Before 

sequencing, we pooled three ChIPs for the same mice. Paired-end sequencing was 

performed on HiSeq 4000 (Illumina) at the GenomEast platform.  

 

 

Bio-informatic analysis (RNA-seq, ChIP-seq) 

RNA-seq: Reads were processed using an in-house RNA-seq pipeline of GenomEast facility. 

Briefly: raw data were preprocessed using cutadapt 1.10 65 in order to remove adaptor and 

low-quality sequences (Phred quality score below 20). Reads shorter than 40 bp were 

removed for further analysis. Remaining reads were mapped to mouse rRNA sequences 

using bowtie 2.2.8 66 and reads mapped to rRNA sequences were discarded for further 

analysis. Remaining reads were aligned to mm10 assembly of the mouse genome with STAR 

2.5.3a 67. Gene quantification was performed with htseq-count 0.6.1p1 68 using “union” 

mode and Ensembl 96 annotations. Differential gene expression analysis between groups of 

samples was performed using method implemented in the Bioconductor R package DESeq2 

1.16.1 69, with the following non-default options: betaPrior=TRUE, alpha=0.05. P-values were 

adjusted for multiple testing using the Benjamini and Hochberg method. 

ChIP-seq; Fastq files were controlled for %duplication and %GC. Fastq files were aligned to 

MM10 genome using the Bowtie tool on R software. Peak-calling was done with MACS2. 

Peak-calling was purified by IDR analysis (100 times peak-calling). Peaks were annotated by 

the nearest gene method using the ChIPseeker tool on R software. ChIP-seq datas were used 

for consensus motif research using the Peak-motifs tool on RSAT software with 1 to 2 

mismatchs allowed in substitution parameter48. TSS distance calculus and clustering were 

obtained with motif-clustering tool on RSAT software. Consensus motifs obtained for each 
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cluster were associated with a list of transcription factors expressed in NK cells, as evaluated 

using the Immgen Database70.  

The used software version is R version 3.6.1 (2019-07-05) -- "Action of the Toes" Copyright 

(C) 2019 The R Foundation for Statistical Computing. Platform: x86_64-w64-mingw32/x64 

(64-bit). Used libraries are « gplots », « ggplot2 », « pheatmap », « RColorBrewer » 

 

Statistical analysis  

Statistical analyses were performed using Prism 5 (Graph-Pad Software). Two tailed unpaired 

t-test, paired t-test, and ANOVA tests with Bonferroni correction were used as indicated in 

the figure legends.  
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Figure 1. Eomes and T-bet balance each other during NK cell maturation. (A) Flow cytometry measurement of 
T-bet and Eomes in gated NK cells from WT (Tbx21+/+), Tbx21+/-, Tbx21-/-, Ncr1iCre/+ (Eomes+/+), Ncr1iCre/+ X 
Eomeslox/+ (Eomes+/-) and Ncr1iCre/+ X Eomeslox/lox (Eomes-/-) mice, as indicated. Bar graphs show the mean +/-SD 
fluorescence intensity (MFI) of Eomes and T-bet staining in gated NK cell subsets from spleen. Data are representa-
tive of 3 experiments and 3 mice are shown for each group. (B) WT spleen cells were stimulated O/N in the indicated 
conditions and T-bet and Eomes expression were measured by flow cytometry. Data are representative of 2 experi-
ments and 3 mice are shown for each group. (C) Image stream X (ISX) analysis of T-bet and Eomes expression in 
gated NK cells. Representative images are shown for the three NK cell subsets. CD122 staining was used to visualize 
the membrane. (D) Quantification of nuclear T-bet and Eomes in gated NK cell subsets analyzed with IDEAS software. 
Dots correspond to nuclear MFI of T-bet and Eomes for the indicated subsets. N=3. (E) Immature NK cells (CD11b-) 
were sorted from spleen of WT mice and subsequently stained for nucleus (DAPI), T-bet, Eomes and CD122 for 
confocal microscopy analysis. Shown are representative images of each staining and combinations for immature NK 
cells. Paired t-tests were used for statistical analysis of data presented in this figure. 
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Figure 2. Eomes and T-bet promote NK cell survival and differentiation at different cellular transi-
tions. (A) Flow cytometry analysis of NK cell percentage in BM or spleen lymphocytes of the indicated 
mice. Each dot corresponds to a single mouse (n=5-6, pooled from 2 experiments), and graphs show the 
mean percentage +/-SD. (B) Number of NK cells calculated from data in (A) combined with numeration 
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Figure 3. Eomes and T-bet regulate NK cell proliferation and survival at different stages. (A) Mice were 
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experiments). (D) Total NK cell viability (% Annexin-V negative cells) after culture of splenocytes with IL-15 for 48h 
at the indicated concentrations. Data are from 3 mice representative of 2 independent experiments. Paired t-tests 
were used for statistical analysis of data presented in this figure. 

0

20

40

60

80

0

20

40

60

p=0.0041

p<0.0001

CD11b- DP CD27- CD11b- DP CD27-

0

20

40

60

0

20

40

60 p=0.0614

4 Research projects 4.2 Project 1: T-bet and Eomes in NK cell development

107



Figure 4

B

A

E

C

F

-lo
g1

0 
(a

dj
us

te
d 

p-
va

lu
e)

MatureImmature MatureImmature

Eomes
immature

T-bet
immature

Immgen NK signature

Eomes
mature

T-bet
mature

Immgen NK signature

T-betEomes

WT NK cell maturation 

Cma1
S1pr5
Cym Kcnj8

Mcam Prf1 Gm10522
Gzma St5 Klra9

Serpinb9b Samd3 
Abcg2 Eomes Klre1
 Klra8 Klhl30 Khdc1a
Car5b Itgam Klrb1b

 Klrc2 Klrg1 Adamts14 

 Klra9 Klrb1b Klrb1c 
 Serpinb9 Serpinb9b

S1pr5 Prf1Gzma Gzmb
Pogk Kcnj8 Dapk2

Samd3 Il12rb2 Cma1
Mcam Cdc20b Sytl3

  Gm10522 Camk2n1
Car2 Klra6 Klrc3

St5
CymCcl5

Eomes
Khdc1a

Arsb

Eomes T-bet
-20

0

20

40

60

80

N
um

be
r o

f g
en

es

Immature 

Eomes T-bet
-600

-400

-200

0

200

400

N
um

be
r o

f g
en

es

Mature 

73

14

14 3

48

49

274

460

Log2 FC (Eomes WT vs KO CD27-)

up
down

-6 -4 -2 0 2 4 6
1

10

100

Cxcr3

Cma1
Klrg1

Itgam

CymS1pr5
Prf1

GzmaFasl

Cd69

Ccr2

Cd27
Tnf

Il7r

-6 -4 -2 0 2 4 6
1

10

100

Il7r
Tcf7

Tnf
Cd3gH2-Oa

Slamf6
Tnfsf8

Cd160

Cxcr3 Gzmm
Cd27Cd28

Ccr2
Gzma

Prdm1Prf1

S1pr5
Cym
Zeb2

Gzmb
Cma1

Eomes
immature

T-bet
immature

Eomes
mature

T-bet
mature

D

-4 -2 0 2 4
0

2

4

6

8

10

Cebpg
Dusp22

Cd69

Ctla2b

Cd72

Slc37a2

Cd27

St5

Eomes

Tigit
Cxcr3

Tnfsf14
Ctla2a

Cym

Spin2c

Khdc1b
Khdc1a

Arl5c

Ighg2b

Fcrl6
Ighg2c

Ccl9
Plk1

Zfp683 Tnf

Nrp1

Pbk

Klra5

Crybg2
Il7r

Serinc5

Top2a

Capg

Ccl5

Racgap1

Lgals3

-4 -2 0 2 4 6
0

5

10

15

20

25

Pik3ca
Cym

Gramd3

Cma1

S1pr5

Kcnj8

Tbx21

Gzmc

Ms4a4c

Pdia6

Log2 FC (T-bet WT vs KO CD11b-)
-10 -5 0 5 10

0

10

20

30

40

Prf1
Il21r

Hist1h1e

Klra9

Ccl3
Ly6c2

St5

Prdm1
Zeb2

S1pr5

Cym

Cma1

Tbx21

Kcnj8

Ifngas1

Ly6a

Slfn1

Ccnb2

Emb

Tnf

Tcf7

Cd3g

Ms4a4c

Slamf6
Tnfsf8

H2-Oa

Tnfrsf26

Thy1

Il7r

Kif4

Cd160

Uhrf1

Ccr7

Cd69

Log2 FC (T-bet WT vs KO CD27-)Log2 FC (Eomes WT vs KO CD11b-)
-4 -2 0 2 4 6

0

5

10

15

20

Samd3

Sell

Ccr5
Bhlhe40

Klrc2

Klra4

Klre1

Fasl

Ccr2

Klra9

Klra8
Prf1

Itgam

Eomes

S1pr5

Klrg1

Cym

Gzmk

Ugt1a7c

Khdc1b

Serpinb9b

Mcam

Gzma

Cma1
Khdc1a

S100a4

Gzmc
Crybg2

Lgals3

Il7rSlfn1Zfp689

Klrb1b-lo
g1

0 
(a

dj
us

te
d 

p-
va

lu
e)

Immature NK cells
(Eomes)

Immature NK cells
(T-bet)

Mature NK cells
(Eomes)

Mature NK cells
(T-bet)

 Eomes-dependent genes T-bet-dependent genes

Figure 4. Eomes and T-bet have mostly distinct roles on NK cell transcription during maturation. 
RNA-seq analysis of sorted Tbx21-/-, Eomes-/- and appropriate control CD11b- and CD27- NK cells (n=3 per 
group with three sorts in total). DEGs were selected based on adjusted p-value<0.05. (A) Volcano plots of 
gene expression in immature CD11b- or mature CD27- NK cells comparing T-bet or Eomes deficient cells 
with appropriate controls. Selected genes are highlighted with their names. (B) Bar histograms showing the 
number of genes induced or repressed by T-bet or Eomes in immature and mature NK cells. (C) Venn 
diagrams showing the overlap between the Immgen-defined NK cell signature and the Eomes-activated and 
T-bet-activated genes in immature and mature NK cells. (D) Venn diagram showing the overlap between 
T-bet regulated and Eomes-regulated genes in immature and mature NK cells. (E) Volcano plots comparing 
the expression of T-bet or Eomes dependent genes between WT immature and mature NK cells. Selected 
genes are highlighted with their names. (F) Venn diagram showing the overlap between T-bet-dependent, 
Eomes-dependent and maturation-regulated genes.

4 Research projects 4.2 Project 1: T-bet and Eomes in NK cell development

108



Figure 5
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Figure 5. Shared transcriptional activities of T-bet and Eomes in NK cells. RNA-seq analysis of sorted 
Tbx21-/-, Eomes-/- and appropriate control CD11b- and CD27- NK cells (n=3 per group with three sorts in total). 
DEGs were selected based on adjusted p-value<0.05. (A) T-bet/Eomes co-repressed genes in immature or 
mature NK cells. Bar graph showing the log2 transformed fold change of genes between controls and T-bet or 
Eomes deficient mice, as indicated. (B) Bar graph showing the mean+/-SD of IL7R expression in NK cells of the 
indicated genotype as measured by flow cytometry. The different controls for each genotype are pooled and anno-
tated as “WT” in the graph which is same for the following graphs in (D, H-J). N=3. (C) T-bet/Eomes co-induced 
genes in immature or mature NK cells. Bar graph showing the log2 transformed fold change of genes between 
controls and T-bet or Eomes deficient mice, as indicated. (D) Bar graph showing the mean+/-SD of GzmA expres-
sion in NK cells of the indicated genotype as measured by flow cytometry. N=3. (E) Functional annotation of the 
T-bet/Eomes induced gene set using Metascape. Bar graphs show selected terms among the most significant 
ones. (F) Cytotoxicity assay using sorted Tbx21-/-, Eomes-/- and appropriate control CD27- NK cells as effectors 
and YAC1-Nano-luc cells as targets.The YAC-1 lysis of control group 30:1 (E:T) was set as 100%. (G) Bar graph 
showing the log2 transformed fold change of genes regulated in opposite ways by T-bet and Eomes, between 
controls and T-bet or Eomes deficient mice, as indicated. (H-J) Bar graphs showing the mean+/-SD of (H) CD27, 
(I) CD69 and (J) DNAM-1 expression in NK cells of the indicated genotype as measured by flow cytometry. N=3. 
Paired t-tests were used for statistical analysis of data presented in this figure.
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Figure 6
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Figure 6. Eomes-specific role in the induction of hallmark NK cell genes. RNA-seq analysis of sorted Tbx21-/-, 
Eomes-/- and appropriate control CD11b- and CD27- NK cells (N=3 per group with three sorts in total). DEGs were 
selected based on adjusted p-value<0.05. (A) Genes specifically regulated by Eomes in immature or mature NK 
cells. Bar graph showing the log2 transformed fold change between controls and Eomes deficient NK cells, as 
indicated. A few selected gene names are shown. (B) Functional annotation of the Eomes induced gene set using 
Metascape. Bar graph showing selected terms among the most significant ones. (C-E) Overlayed FACS histograms 
showing the expression of the indicated surface molecules in Eomes deficient vs control NK cells, as indicated. 
Grey histograms show control staining. (F) Heatmaps showing the log2 transformed fold change in the expression 
of the indicated TFs between control and Eomes-deficient NK cells. 
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Figure 7
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Figure 7. T-bet-specific role in the repression of pluripotency and cell proliferation. RNA-seq analysis of 
sorted Tbx21-/-, Eomes-/- and appropriate control CD11b- and CD27- NK cells (n=3 per group with three sorts 
in total). DEGs were selected based on adjusted p-value<0.05. (A) Genes specifically regulated by T-bet in 
mature CD27- NK cells. Bar graph shows the log2 transformed fold change between controls and T-bet 
deficient mice, as indicated. A few selected gene names are shown. (B) Functional annotation of the T-bet-re-
pressed and T-bet-induced genesets using Metascape. Bar graphs show selected terms among the most 
significant ones. (C) Transcription factors, histone subunits or histone modifying enzymes whose expression 
are dependent on T-bet. The heatmap shows the log2 transformed fold change in expression between control 
and T-bet deficient mature NK cells. (D) Flow cytometry analysis of STAT4 phosphorylation in WT vs T-bet 
deficient NK cells of the indicated subsets in response to stimulation with IL-12 for 1h. N=3. (E) Flow cytometry 
analysis of intracellular IFNγ expression in gated spleen NK cells of the indicated genotype following culture in 
medium supplemented with or without IL-12 and IL-18. N=6 mice pooled from 2 experiments. Paired t-tests 
were used for statistical analysis of data presented in this figure.
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Figure 8. Identification of direct T-bet and Eomes targets using novel KI mice. (A) Scheme of 
knock-in Eomes and T-bet HAV5 constructs. (B) Venn diagram showing the overlap between Eomes and 
T-bet ChIP-seq peaks. (C) Venn diagram showing the overlap between genes near Eomes and T-bet 
peaks. (D) Plot showing the distribution of T-bet and Eomes peaks in the mouse genome based on the 
distance to TSS. (E) Histogram of mean transcript expression with respect to T-bet and/or Eomes binding 
according to RNA-seq data. (F) Venn diagram showing the overlap between Eomes-bound (ChIP-seq) 
and Eomes-regulated genes (RNA-seq). (G) Venn diagram showing the overlap between T-bet-bound 
(ChIP-seq) and T-bet-regulated genes (RNA-seq). (H-I) Motifs associated with (H) Eomes or (I) T-bet 
peaks and corresponding TFs ranked by significance.
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Figure S1. Extended data for Figure 1. (A) Gating strategy of NK cells in this study. NK cells were defined 
as NK1.1+CD3-CD49b+CD49a-. NK cell subsets CD11b-, DP and CD27- were gated as shown in the right 
panel. (B) Flow cytometry measurement of T-bet and Eomes in gated NK cells from WT (Tbx21+/+), 
Tbx21+/-, Tbx21-/-, Ncr1Cre/+ (Eomes+/+), Ncr1Cre/+ X Eomeslox/+ (Eomes+/-) and Ncr1Cre/+ X Eomeslox/lox 
(Eomes-/-) mice, as indicated. Bar graphs show the mean +/-SD fluorescence intensity (MFI) of Eomes and 
T-bet staining in gated NK cell subsets from the BM. Data are representative of 3 experiments and 3 mice 
are shown for each group.  (C) Mature NK cells (CD27-) were sorted from WT mice and subsequently 
stained for nucleus (DAPI), T-bet, Eomes and CD122 for confocal microscopy analysis. Shown are repre-
sentative images of each staining and combinations for mature NK cells. 
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Figure S2 related to Figure 2 
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Figure S2. Extended data for Figure 2. (A) Numbers of NK1.1+CD3- ILCs of the CD49a+CD49b-, 
CD49a+CD49b+, CD49a-CD49b+ and CD49a-CD49b- phenotype in the indicated organs of WT, NK-Eomes-/- and 
Tbx21-/- mice. (B) FACS measurement of KLRG1 expression in gated spleen NK cells from mice of the indicated 
genotype. Bar graphs showing the mean percentage +/-SD and dots corresponding to individual mice. Data are 
polled from 2 experiments with n=4-6 mice in total. Paired t-tests were used for statistical analysis of data presented 
in this figure.
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Figure S3 related to Figure 4
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Figure S3. Expression pattern of NK cell genes regulated by T-bet or Eomes across the immune 
system. (A) Expression profiles of NK cell genes activated by Eomes or T-bet across immune subsets 
(Immgen data39). (B) Expression profiles of NK cell genes repressed by Eomes or T-bet across immune 
subsets (Immgen data39).
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Figure S4. T-bet promotes NK cell blood circulation. Mice of the indicated genotypes were injected with 
CD45 MAb intravenously 5 minutes before sacrifice. The percentages of CD45+ NK cells among different 
subsets of different organs were analyzed by flow cytometry. Results were pooled from 2 experiments with 
N=5-6 mice in total. Paired t-tests were used for statistical analysis of data presented in this figure.

4 Research projects 4.2 Project 1: T-bet and Eomes in NK cell development

116



HA T-bet Eomes

A

GAPDH

HA

V5

Tb
x2

1H
AV

5/
HA

V5
W

T

Eo
m

es
HA

V5
/H

AV
5

HA T-bet Eomes

EomesWT/WT

EomesHAV5/WT

EomesHAV5/HAV5

Tbx21WT/WT

Tbx21HAV5/WT

Tbx21HAV5/HAV5

B

Figure S5 related to Figure 8

Figure S5. Validation of HA-V5 expression in knock-in mice. (A) Flow cytometry analysis of 
T-bet, Eomes, and HA expression in gated NK cells from the indicated mouse strains. (B) WB 
analysis of HA and V5 expression in NK cells enriched from the spleen of the indicated mouse 
strains.
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Figure S6

Figure S7
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Figure S6.  Selected examples of Eomes ChIP-seq tracks for validated functional Eomes targets. Shaded areas 
correspond to “specific” Eomes peaks.

Figure S7. Selected examples of T-bet ChIP-seq tracks for validated functional T-bet targets. Shaded areas 
correspond to “specific” T-bet peaks.
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Figure S8

B

A

Figure S8. Overlap between ChIP-seq and DEGs in immature and mature NK cells. (A) Venn diagrams 
showing the overlap between Eomes binding (ChIP-seq) and genes significantly regulated by Eomes in imma-
ture or mature NK cells (RNA-seq, p-value<0.05). (B) Venn diagrams showing the overlap between T-bet bind-
ing (ChIP-seq) and genes significantly regulated by T-bet in immature or mature NK cells (RNA-seq, p-val-
ue<0.05). 
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Figure S9
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Figure S9. ChIP-seq tracks for genes with a high number of T-bet and Eomes peaks.
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4 Research projects 4.3 Project 2: Zeb1 in iNKT cell development

4.3 Project 2: Zeb1 in iNKT cell development
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Zeb1 represses TCR signaling, promotes the proliferation of T cell
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ARTICLE

Zeb1 represses TCR signaling, promotes the proliferation of T
cell progenitors and is essential for NK1.1+ T cell development
Jiang Zhang1,2, Mélanie Wencker1, Quentin Marliac1, Aurore Berton1, Uzma Hasan1, Raphaël Schneider3, Daphné Laubreton 1,
Dylan E. Cherrier 1, Anne-Laure Mathieu1, Amaury Rey1, Wenzheng Jiang2, Julie Caramel4, Laurent Genestier4, Antoine Marçais1,
Jacqueline Marvel1, Yad Ghavi-Helm 3 and Thierry Walzer 1

T cell development proceeds under the influence of a network of transcription factors (TFs). The precise role of Zeb1, a member of
this network, remains unclear. Here, we report that Zeb1 expression is induced early during T cell development in CD4−CD8−

double-negative (DN) stage 2 (DN2). Zeb1 expression was further increased in the CD4+CD8+ double-positive (DP) stage before
decreasing in more mature T cell subsets. We performed an exhaustive characterization of T cells in Cellophane mice that bear Zeb1
hypomorphic mutations. The Zeb1 mutation profoundly affected all thymic subsets, especially DN2 and DP cells. Zeb1 promoted
the survival and proliferation of both cell populations in a cell-intrinsic manner. In the periphery of Cellophane mice, the number of
conventional T cells was near normal, but invariant NKT cells, NK1.1+ γδ T cells and Ly49+ CD8 T cells were virtually absent. This
suggested that Zeb1 regulates the development of unconventional T cell types from DP progenitors. A transcriptomic analysis of
WT and Cellophane DP cells revealed that Zeb1 regulated the expression of multiple genes involved in the cell cycle and TCR
signaling, which possibly occurred in cooperation with Tcf1 and Heb. Indeed, Cellophane DP cells displayed stronger signaling than
WT DP cells upon TCR engagement in terms of the calcium response, phosphorylation events, and expression of early genes. Thus,
Zeb1 is a key regulator of the cell cycle and TCR signaling during thymic T cell development. We propose that thymocyte selection
is perturbed in Zeb1-mutated mice in a way that does not allow the survival of unconventional T cell subsets.
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INTRODUCTION
T cell development occurs in the thymus and begins in immature
thymocytes that are double negative (DN) for CD4 and CD8
expression. The DN population can be subdivided into four
subsets, DN1–DN4, depending on the expression of the cell
surface molecules CD44 and CD25 (for a review, see1). DN1 cells
(CD44+CD25−) are the most immature progenitors and retain the
ability to differentiate into non-T cell lineages. In DN2 cells
(CD44+CD25+), the expression of RAG1/2 is induced, which
promotes the rearrangement of gene segments encoding the
TCR-β, TCR-γ, and TCR-δ subunits. In DN3 cells (CD44−CD25+), the
T cell antigen receptor (TCR) β-chain associates with the pre-TCR
α-chain and CD3 subunits to form the pre-TCR complex; the pre-
TCR complex allows β-selection to occur. During β-selection, DN3
cells with productive TCRβ rearrangements receive survival and
proliferative signals and mature into the DN4 (CD44−CD25−)
stage. DN4 thymocytes then develop into CD4+CD8+ double-
positive (DP) cells.2

At the DP stage, a series of events takes place that determines
the fate of developing T cells, including rearrangement of the TCR
alpha locus, association of the αβ T cell receptor, and subsequent

thymic selection. In general, high-affinity interactions between the
αβTCR and self-peptide-MHC complexes presented by different
thymic cells lead to negative selection and elimination of self-
reactive thymocytes, while low-affinity interactions result in
positive selection and development of CD4 or CD8 single-
positive (SP) T cells.3–5 Despite this general rule, regulatory
T cells and invariant NKT cells (iNKT) receive stronger TCR signals
than conventional T cells during their development6 as a result of
selection by agonist self-antigens. iNKT cells are a subset of innate-
like T cells with a single invariant TCRα chain (Vα14-Jα18 in mice)
and a limited repertoire of TCRβ chains (Vβ8.2, Vβ7, or Vβ2) that
recognize glycolipid antigens bound to CD1d, a nonpolymorphic
MHC molecule.7 iNKT cell development includes discrete stages
(stages 0–3) that can be discriminated according to CD44 and
NK1.1 expression.8 Three functionally distinct iNKT cell subsets
have also been identified: iNKT1 cells, which express T-bet and
mainly secrete IFN-γ; iNKT2 cells, which express Gata3 and Plzf and
secrete IL-4 and IL-13; and iNKT17 cells, which express Rorγt and
secrete IL-17. The TCR signal strength during selection governs the
development of iNKT cell subsets, with strong signals promoting
iNKT2 and iNKT17 development.9,10 A large number of molecules
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regulate the strength of TCR-derived signaling. TCR signaling
strength can also be modulated at the transcriptional level by
transcription factors (TFs) such as Sox411 or at the posttranscrip-
tional level by miR-181.12,13 The loss of either Sox4 or miR-181
blocks iNKT cell development. Mechanistically, miR-181a regulates
the expression of multiple phosphatases and other proteins to
boost TCR signaling as well as cell metabolism.12,13 Interestingly,
mice expressing a hypomorphic form of Zap70, a major TCR-
proximal kinase, also show impaired developmental maturation of
γδ T cells, suggesting that innate-like T cell subsets are particularly
dependent on the tight regulation of the strength of TCR signaling
for their development.14

A dense network of TFs has been shown to regulate T cell
development.15 Early commitment is dependent on Notch
signaling,16 which induces the expression of many TFs and
maintains their expression throughout T cell development. Among
these TFs, the E-protein family factors E2a, Tcf1 (encoded by Tcf7)
and Heb (encoded by Tcf12)17 induce the expression of TCR
components and balance the survival and proliferation of
thymocytes.18 Many other TFs, such as Gata3, Myb, Runx1, and
Bcl11b, also cooperate with E proteins at different developmental
stages and further establish T cell identity.15,18

The Zeb family of TFs consists of Zeb1 and Zeb2, which are best
known for their role in epithelial-to-mesenchymal transition (EMT).
EMT programs operate at different stages of embryonic develop-
ment and are downstream of Wnt, TGF-β, Bmp, Notch, and other
signaling pathways.19 Zeb1−/− mice exhibit multiple develop-
mental defects and die at birth.20 Under pathological conditions,
activation of EMT programs contributes to fibrosis and cancer
metastasis.21 Zeb1 and Zeb2 are highly homologous and are
characterized by two clusters of zinc finger domains at the protein
extremities. They also contain a homeodomain and a Smad-
binding domain and can interact with many other TFs.22 Zeb1 and
Zeb2 are also expressed in a tightly regulated manner in the
immune system and regulate cell differentiation.23 We and others
have previously shown that Zeb2 regulates terminal NK cell24 and
effector CD8 T cell differentiation.25,26 Mutated mice expressing a
truncated form of Zeb1 without the C-terminal zinc finger clusters
at C727 have a small and hypocellular thymus, which is the result
of a reduction in early T cell precursors.27 In Cellophane mutant
mice, a T→ A mutation in the seventh exon of Zeb1 replaces the
tyrosine at position 902 with a premature stop codon.28 The
resulting mRNA encodes a truncated protein lacking the C-
terminal zinc finger domain, which is predicted to be hypo-
morphic. Cellophane homozygous mice have small, hypocellular
thymi with decreased DP thymocytes. However, the mechanism of
Zeb1 action during T cell development and its role in the
maturation of T cell subsets remain unclear. Here, we show that
Cellophane homozygous mice lack several peripheral T cell
subsets, including iNKT cells, NK1.1+ γδ T cells, and Ly49-
expressing CD8 T cells. This specific defect involving innate-like
T cells is caused by the cell-intrinsic role of Zeb1 in T cell

development. We show that Zeb1 expression is maximal in the
DN2 and DP stages of T cell development. Furthermore, Zeb1
regulates the transition to the SP stage by promoting cell
proliferation and survival and repressing the expression of various
molecules that modulate the strength of TCR signaling. Therefore,
we propose that Zeb1 is a key regulator of thymocyte selection
that is essential for the development and survival of innate-like T
cell subsets undergoing agonist-type selection.

RESULTS
Zeb1 is highly expressed in the DN2 and DP stages of T cell
development
To study the role of Zeb1 in T cell development, we sorted
thymocyte subsets and measured Zeb1 transcript levels by
semiquantitative (Q) RT-PCR (reverse transcription-polymerase
chain reaction). As shown in Fig. 1a, Zeb1 transcript levels were
low in DN1, began to increase in the DN2 stage and were maximal
in DP thymocytes. Zeb1 expression then decreased as T cells
underwent selection and matured into either conventional T cells
or iNKT cells. Interestingly, the expression of Zeb2 was somewhat
similar to that of Zeb1; high expression of Zeb2 was observed in
early thymic progenitors (DN1–DN4), and the lowest expression of
Zeb2 was observed in DP cells (Fig. 1b). This pattern of expression
was corroborated by data from the ImmGen consortium29

(Fig. S1A). Thus, as was observed in memory T cells,30 Zeb1 and
Zeb2 show similar patterns of expression in thymocytes. We used
the ImmGen web browser to search for coregulated genes across
different immune subsets. The E-protein Heb (encoded by Tcf12)
was among the top 3 genes found to be coregulated with Zeb1
(Fig. S1B).29 Heb is well known for its important roles throughout T
cell development,31 especially in the DP stage,32 which further
indicates that Zeb1 is a potential regulator of the DP develop-
mental stage. We also analyzed the expression of Zeb1 protein in
total thymocytes (80% of which consist of DPs). Zeb1 was strongly
expressed in WT thymocytes but not in Cellophane thymocytes.
Mutant mice expressed only reduced quantities of a truncated
form of Zeb1 (Fig. 1c).

Impaired development of both conventional and unconventional
T cells in Cellophane mice
To define the impact of the Cellophane mutation on T cell
development, we analyzed the T cell composition in the thymus,
spleen, and lymph nodes (LNs) of Cellophane mice. The T cell
numbers in the spleen and liver were normal, while the number of
lymphocytes was reduced in LNs (Fig. 2a). As shown by previous
findings,28 we also observed a strong decrease in the cell numbers
in the thymus in Zeb1-mutated mice (Fig. 2a). This decrease in the
cell number affected all subsets defined by CD4, CD8, CD44, and
CD25 expression (Fig. 2b, c). The CD4+CD8+ DP thymocytes and
DN2 populations also decreased in number within Cellophane
thymocytes (Fig. 2b, c). In the LN and spleen, the percentages of
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Fig. 1 Zeb1 expression in WT and Cellophane thymocytes. a, b RT-PCR analysis of RNA from sorted thymocyte subsets isolated from C57BL/6
mice, as indicated. The results are presented relative to the expression of the control gene Gapdh. c WB analysis of Zeb1 expression in total
thymocytes from WT and Cellophanemice, as indicated. Data are representative of three independent experiments with three to six mice (a, b)
or three independent experiments with three mice (c)
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CD4 T cells and CD8 T cells were reduced (Fig. 2d, e), and the
proportion of memory-phenotype CD44+ T cells among total CD8
T cells was decreased by nearly 30% (Fig. 2f).
We then investigated the development of unconventional T cell

subsets. We observed a drastic decrease in the proportion and in
the number of iNKT cells as well as NK1.1+ γδ T cells in Cellophane
mice compared with those in littermate controls (Fig. 3a–d). This
decrease affected all organs in Cellophane mice (Fig. 3a–d).
iNKT cells were mainly affected at stage 3 (Fig. 3e). To complete
our analysis, we also studied memory-phenotype Ly49+ CD8
T cells, which are thought to arise “naturally” in the thymus
without antigenic exposure.33 All Ly49+ CD8 T cell populations
were dramatically reduced in LN and spleen from Cellophane mice
in terms of both proportions and numbers, irrespective of the
inhibitory Ly49 receptor type that was analyzed (Ly49A, Ly49F, or
Ly49G2) (Fig. 3f, g).
Altogether, these data confirm the important role of Zeb1 in

early T cell development. We also demonstrated the essential and
specific role of Zeb1 in the development of peripheral T cell
subsets expressing NK cell markers, such as iNKT cells, NK1.1+ γδ
T cells and Ly49+ CD8 T cells.

Intrinsic role of Zeb1 in thymic progenitors and T cell development
Zeb1 is also required for the development and expression of
nonhematopoietic tissues and cell types.20 To test whether Zeb1
played an intrinsic role in T cell development, we generated

chimeric mice by transplanting sublethally irradiated Ly5a
(CD45.1) mice with BM from Cellophane (CD45.2) or “WT” Ly5a x
C57BL/6 (CD45.1/2) mice. In the thymus of chimeric mice, the
proportions of DN2 and DP cells were dramatically decreased in
Cellophane BM-transplanted mice compared with those in WT BM-
transplanted mice, while the proportions of other cell populations
defined by CD4 and CD8 were increased (Fig. 4a). The iNKT and
Ly49+ T cell subsets were also dramatically decreased in the
peripheral organs of Cellophane→ Ly5a BM chimeric mice
compared with those of WT→ Ly5a chimeric mice, indicating
that Zeb1 intrinsically regulated T cell development (Fig. 4b, c). The
number of cells in all thymic T cell subsets and the numbers of
peripheral iNKT cells and Ly49+ T cells were decreased in
Cellophane→ Ly5a BM chimeric mice compared with those in
WT→ Ly5a chimera mice (Fig. S2). NK1.1+ γδ T cells were not
analyzed because many of them are derived from fetal
precursors34 and were not reconstituted in BM chimera mice. To
further test the role of Zeb1 in the environment of developing
T cells, we also generated different BM chimeric mice using WT
and Cellophane mice as both BM recipients and donors (WT→WT,
WT→ Cellophane, Cellophane→WT, and Cellophane→ Cello-
phane). As shown in Fig. S3A, B, the proportions and numbers of
the DN and DP cells subsets were determined by the genotype of
the BM donor rather than that of the recipient. Similar conclusions
could be reached upon examination of the proportion and
number of iNKT cells in the thymus and the liver (Fig. S3C).
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We then generated mixed BM chimeras by transplanting
lethally irradiated Ly5a mice with a 1:1 mixture of BM from
Cellophane and Ly5a x C57BL/6 (WT) mice.
Cellophane T cell progenitors showed poor competitive fitness

in BM chimeric mice (Fig. 4d). Indeed, the percentage of cells
originating from the Cellophane BM progenitors was already low in
the DN stage and further decreased during the transition between
the DN and DP stages (Fig. 4d). In the periphery of mixed BM
chimeric mice, we found that the proportions of iNKT and Ly49+

CD8 T cells were greatly reduced among Cellophane T cells
compared with those among WT lymphocytes (Fig. 4e, f), thus
revealing that the role of Zeb1 in T cell development is cell-
intrinsic and is not due to a defective stromal environment. Of

note, we also analyzed the reconstitution of myeloid cells as a
control. In the spleen, on average, 20% of macrophages, 25% of
dendritic cells, and 28% of neutrophils originated from Cellophane
mice (Fig. S3D), suggesting that Zeb1 regulated the development
of all hematopoietic subsets, perhaps by regulating multipotent
progenitors. However, the most important effects were observed
for thymocytes and peripheral T cell subsets expressing NK cell
markers.

Reduced survival and proliferation of Cellophane DN2 and DP cells
The decreased cellularity of the Cellophane thymi could be due to
the reduced proliferation or increased apoptosis of thymocytes. To
address this point, we first compared the survival of WT and
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Cellophane thymocytes during ex vivo culture. We found that
Cellophane thymocytes in DN2, DN3, and DN4 showed reduced
ex vivo viability compared with their WT counterparts (Fig. 5a).
Moreover, after 24 or 48 h in culture, Cellophane DN2, DN3, DN4,
and DP cells also showed reduced viability compared with control
cells (Fig. 5a).
Next, we compared the in vivo proliferation of WT and

Cellophane thymocytes, as measured by EdU incorporation.
Cellophane DN2 and DP cells showed less proliferation than their
WT counterparts, while Cellophane cells proliferated more than WT
DN3 cells (Fig. 5b). Ki67 staining corroborated the data we
obtained by using EdU incorporation (Fig. 5c, d). As all DP cells
were Ki67 positive, we only reported the changes in the mean
fluorescence intensity (MFI) (Fig. 5d).
Thus, the Cellophane mutation affects both the survival and

proliferation of developing DN2 and DP thymocytes, which could
account for the decreased number of such cells in the
Cellophane thymi.

Zeb1 modulates TCR signaling strength
To gain insight into the mechanism of Zeb1 function, we focused
on DP cells, as they expressed the highest level of Zeb1 among
thymocytes (Fig. 1a). We first compared the expression of
membrane proteins involved in thymocyte selection in Cellophane
versus WT DP cells by flow cytometry. Cellophane DP cells
expressed higher levels of Cd69, Cd25, and Cd5 than WT
thymocytes (Fig. 6a). Nur77 is an early response gene expressed
in T cells within hours after TCR stimulation. We observed an
increase in the intracellular expression of Nur77, which was more
highly correlated with Tcrβ levels in Cellophane cells than in WT DP
thymocytes (Fig. 6a). Notably, similar levels of Cd4 and Cd8 were
detected (Fig. 6a).
Next, we focused our attention on thymic iNKT cell subsets. The

mouse thymi is known to contain at least three iNKT subsets,
iNKT1, iNKT2, and iNKT17, which are thought to play distinct roles
in the immune response.35 iNKT1 cells comprise mainly stage 3
iNKT cells. TCR signaling strength governs the development of
iNKT cell subsets in the thymus, in which high signaling strength is
necessary for iNKT2 and iNKT17 development.9,10 We examined
iNKT cell subsets by staining for Plzf and Rorγt36 in Cellophanemice
and WT mice. The results in Fig. 6b show a significant increase in

the proportions of iNKT2 and iNKT17 cells and a decrease in the
proportion of iNKT1 cells in Cellophane mice compared with those
in control mice. These data indicated an increase in the TCR
signaling from DP progenitors of iNKT cells in Cellophanemice. The
change in iNKT subsets was associated with subtle changes in the
TCR repertoire, as assessed by measuring the frequencies of Vβ8-,
Vβ7-, and Vβ2-positive cells among iNKT cells of each genotype.
We observed a twofold increase in Vβ7 in Cellophanemice (Fig. 6c).
This could reflect the increase in iNKT2 cells, as a previous study
showed that Vβ7 was more often associated with iNKT2 cells.9

Thymic Cellophane iNKT cells expressed normal levels of the TFs T-
bet and Egr2 but strongly reduced levels of Cd4 (Fig. 6d). Since
CD4 is known to sustain TCR signaling strength,5 the selection of
CD4 low iNKT cells in Cellophane mice could reflect the adaptation
to overt TCR signaling in Cellophane DP cells.
We then specifically analyzed TCR signaling in developing

thymocytes. We started by measuring the phosphorylation (p)
levels of a series of signaling proteins involved in TCR-mediated
activation, either at the steady-state in freshly isolated thymocytes
or following TCR engagement by cross-linking with anti-CD3
antibodies. To minimize the experimental variation, we used a
barcoding strategy that allowed stimulation and then staining of
WT and Cellophane thymocytes simultaneously (see “Materials and
methods”). The results in Fig. 6e, f show increases in pAkt (Ser473),
ribosomal protein pS6, and, to a lesser extent, pErk either at the
steady-state or following TCR engagement in Cellophane DP cells
compared with WT DP cells. Thus, the MAPK and PI3K/Akt
pathways are more active in thymocytes undergoing selection in
Cellophane mice compared with those in control mice. To
complement this analysis, we also assessed the calcium response
of DP cells of both genotypes in response to TCR engagement. As
shown in Fig. 6g, h, this response was stronger for Cellophane DP
cells than control DP cells in terms of both intensity (peak) and
duration (area under the curve, AUC). Thus, Zeb1 modulates the
signaling strength downstream of the engaged TCR at the DP
stage, and Cellophane DP cells show increased TCR signaling,
which may increase negative selection and therefore account for
defective T cell development in Cellophane mice. We also
measured pre-TCR signaling in DN cells following stimulation
with anti-CD3 antibodies. This analysis did not reveal any
difference between WT and Cellophane DN cells (data not shown).
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Zeb1 broadly shapes transcription during the DP→ SP transition
to promote proliferation and repress TCR signaling
To further uncover the mechanisms of Zeb1 function during T cell
development, we performed RNA-seq to compare the WT and
Cellophane DP transcriptomes. We found 538 differentially
expressed genes (DEGs, p value < 0.05, log2-fold change > 1). A
total of 204 genes were increased, and 334 were downregulated
in Cellophane DP cells compared with WT DP cells. These data
reveal that Zeb1 broadly shapes the genetic program of
developing thymocytes (Fig. 7a and Table S1). For some of the
DEGs identified, antibodies were available, and we were thus able
to confirm the higher expression of Foxo1, Ms4a4b, Itgb7, Ccr7,
and Ccr4 in Cellophane cells compared with that in control DP
cells; in contrast, we observed lower Cd81 expression in
Cellophane DP cells than in WT cells (Fig. 7b).
Next, we queried the ImmGen database to retrieve the

expression profile of the Zeb1-regulated gene set (induced or
repressed) across all thymocyte subsets. Interestingly, genes
downregulated in Cellophane DP cells (i.e., normally induced by
Zeb1) correspond to genes that are normally expressed at high
levels in early T cell progenitors and at low levels in mature T cells
(Fig. 7c). Their expression level normally drops during the DP to SP
transition, which is when Zeb1 is highly expressed. Genes
upregulated in Cellophane DP cells correspond to genes that show
a reciprocal pattern of expression (Fig. 7c). This pattern of
expression also correlates with cell proliferation and TCR respon-
siveness in thymocytes. Indeed, irrespective of the mouse
genotype, SP T cells are much more responsive to TCR signaling-
mediated calcium responses than DP cells but also do not cycle as
much as DP cells (data not shown). This suggests that Zeb1
promotes cell proliferation and represses TCR signaling specifically
at the DP stage, presumably to ensure proper selection.
A functional annotation analysis of DEGs identified by our RNA-

seq analysis using “Metascape”37 highlighted the cell cycle as the
most downregulated biological process in Cellophane DP cells
compared with control DP cells (Fig. 7d and Table S2), confirming
the findings in Fig. 3. Pathways linked to Ifnγ (and also type I-Ifn;
Table S2), antigen presentation, leukocyte differentiation, and
apoptosis were significantly associated with genes upregulated in
Cellophane DP cells compared with those in WT cells (Fig. 7d). Of
note, a modest but significant enrichment of genes involved in the
calcium response was also associated with these upregulated
genes, corroborating the data shown in Fig. 6. To further annotate
this dataset, we performed individual PubMed searches to look for
connections between genes upregulated in Cellophane DP cells
compared with control DP cells and “T cell activation”, “TCR
signaling”, or “T cell development”. Interestingly, this analysis
showed that more than 25% of the genes in the list played a
known role in T cell activation or TCR signaling, and 10% played a
role in T cell development, as defined using loss-of-function
mouse strains (Table S3). Moreover, we used the STRING database
of physical and functional protein interactions38 to further
annotate genes that were up- or downregulated in Cellophane
DP cells compared with control DP cells. In particular, we used the
PubMed module that searches for the enrichment of gene lists in
articles in PubMed. This unbiased analysis showed that genes
upregulated in Cellophane DP cells were significantly enriched for
genes involved in negative selection39 or T cell maturation
regulated by Bcl11b40 (Table S4), which corroborated our manual
PubMed searches.

Chromatin regions remodeled at the DP stage contain Zeb1
binding motifs
Next, we wanted to determine whether Zeb1 could regulate
chromatin remodeling at the DP stage of T cell development. For
this, we took advantage of a recently published large-scale
analysis of chromatin accessibility and gene expression across 86
immune cell subsets, including subsets representing T cell

developmental stages in the thymus.41 In this study, in silico
predictions identified Zeb1 as one of the few TFs whose
expression was correlated with modifications of chromatin
accessibility during thymic T cell development and for which the
corresponding chromatin regions contained sites predicted to be
bound by Zeb1. Other TFs in this category included Gata3, Tcf7,
Lef1, Tcf12, and Zfp740 (Fig. S4A), especially Tcf7 and Tcf12, whose
roles in T cell development have been well established.32 We
retrieved the open chromatin regions (OCRs) for which Zeb1
motifs were discovered in this study and whose accessibility
changed during T cell development (see the corresponding
clusters in Fig. S4B) and compared the list of corresponding genes
with the DEGs between Cellophane and WT DP cells identified in
our own study. We found an important overlap between both lists
that included many of the genes previously highlighted in our
analysis (Fig. 7e, p value= 1.839413e−46). Altogether, these data
suggest that Zeb1 is a direct transcriptional regulator of T cell
development that is especially involved in the DP to SP transition
that promotes cell proliferation and ensures proper selection.

DISCUSSION
Here, we demonstrated that Zeb1 is essential for the transition
through the DN2 and DP stages of T cell development as well as
for the differentiation of iNKT cells, NK1.1+ γδ T cells and Ly49+

CD8 T cells. Mechanistically, Zeb1 regulates the expression of a
number of genes that are notably involved in cell proliferation or
in TCR signaling at the DP stage. In Cellophane mice, these events
may perturb thymic development and selection in a way that does
not allow the production of the NK1.1+ and Ly49+ T cell subsets.
Zeb1 expression was found to increase at the DN2 stage and to

be maximal at the DP stage of T cell development. Accordingly,
we found decreases in the frequencies of DN2 and DP thymocytes
in Cellophane mice. This could be due to the cell-intrinsic role of
Zeb1 in DN2 and DP proliferation. A number of genes involved in
the cell cycle were differentially expressed between WT and
Cellophane DP cells, as revealed by our RNA-seq analysis. There is
also a strong link in the literature between Zeb1 and cell
proliferation in cancer. In particular, Zeb1 interacts with many TFs
involved in the regulation of cell growth, such as Smad TFs, which
are downstream of several growth factor pathways.22 Moreover,
Zeb1 is known to repress cyclin-dependent kinases during EMT.21

However, the levels of CDkn2c and CDkn3 were decreased by
Zeb1 in DP thymocytes, suggesting the different roles of Zeb1 in
epithelial versus lymphoid cells. The decreased proliferation of
DN2 and DP cells is expected to have important consequences for
overall thymic output. Indeed, we found decreased numbers of
peripheral T cells in Cellophane mice. However, this defect was
much more pronounced for iNKT cells, NK1.1+ γδ T cells, and
Ly49+ CD8 T cells. In particular, iNKT cells were virtually absent
from the periphery. The altered development of T cells was
associated with increased TCR signaling at the DP stage, which
was verified by increased basal levels of Cd5 and Nur77 and
increased mTOR activity and calcium flux upon CD3 engagement.
iNKT cells are known to receive stronger TCR signals than
conventional T cells during their development.6 Thus, increased
TCR signaling in Cellophane DP cells could trigger cell death via
negative selection of iNKT precursors. The increased negative
selection of iNKT cells has already been shown to occur in mice in
which transgenic TCR-β chains confer high affinity for self-lipid/
CD1d complexes when they are randomly paired with Vα14-Jα18
rearrangements.42 Thus, increased negative selection could impair
the development of iNKT cells in Cellophane mice and perhaps
that of other T cell subsets expressing NK cell markers. Indeed,
strong TCR-mediated signals are also important for γδ T cell
development.43,44 In particular, NK1.1+ γδ T cells have an
oligoclonal TCR repertoire and accumulate in mouse models of
decreased TCR signaling,45 suggesting that this subset of γδ cells
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can also be negatively selected. The ontogeny of Ly49+ CD8
T cells is not very well known, but our data suggest that their
development and selection could share common mechanisms
with those of NK1.1+ T cells. How does Zeb1 regulate TCR
signaling strength? Cellophane DP thymocytes expressed higher
levels of Tcrβ than control DP thymocytes, and this could certainly
lead to increased TCR signaling. Moreover, the RNA-seq analysis
we performed suggested that there were multiple connections
between Zeb1 and signaling transduction through the TCR. For
example, multiple members of the GTPases of the IMmunity-
Associated Proteins (GIMAP) family (GIMAP5 and GIMAP8) were
upregulated in Cellophane DP cells. Interestingly, Gimap5
enhances calcium influx following TCR stimulation.46 Several
members of the Ms4a family of receptors, which have four
transmembrane domains, are also upregulated in Cellophane DP
cells and could reinforce TCR signaling. Indeed, the transduction
of signaling by Ms4a4b in naive T cells can heighten their
sensitivity to antigens through a process that could involve
association with costimulatory molecules.47 Several phosphatases
and kinases are also deregulated in Cellophane DP cells and could
perhaps alter TCR signaling. In particular, the expression of Pyk2
(encoded by Ptk2b), Rasgrp4, Rasl1, or Rasa3 could all contribute
to increased TCR signaling via calcium flux or the MAPK pathway.
A series of TFs were also deregulated in Cellophane DP cells,

which showed notable upregulation of JunB, Jun, Atf6, Foxo1,
Stat4, or Irf7/9. JunB and Jun are essential components of AP-1 TFs
and are typically activated downstream of TCR stimulation. Similar
to Nur77, they could represent surrogate markers of increased TCR
signaling in Cellophane DP. The derepression of Foxo1 could in part
account for altered T cell development, as it regulates Ccr7, CD62L,
and S1pr1 via Klf2.48 The lack of control by Klf2 could perturb and
perhaps even accelerate the normal migration of developing
thymocytes in the medullary region where negative selection
occurs. Foxo1 deletion in thymocytes was reported to decrease the
number of DP thymocytes, and Foxo1-deficient peripheral T cells
seem to be refractory to TCR stimulation through unknown
mechanisms.49 Moreover, upregulation of Foxo1 in Cellophane DP
cells could in part explain the inverse changes in cell proliferation
observed in these cells compared with those in control DP cells,
since Foxo TFs are known to promote stem cell quiescence50 and
clearly contribute to the regulation of cell division, survival, and
metabolism in T cells.51 A recent study showed that the
transcriptional repressor Gfi1 is important in maintaining Foxo1
expression at low levels in DP thymocytes.52 In the absence of Gfi1,
premature expression of genes normally expressed in mature
T cells and accelerated maturation of DP cells into SP thymocytes
occurred, which was largely attributable to Foxo1 derepression.
Zeb1 and Gfi1 could therefore cooperate to repress Foxo1.
There are many similarities in the phenotypes of Tcf12-

deficient53 and Cellophane mutant mice, particularly in terms of
the susceptibility of DP cells to cell death and the impaired
development of iNKT cells. Moreover, microarray data from the
ImmGen consortium suggest that Tcf12 and Zeb1 are strongly
coregulated, and ATAC-seq data predict that they control
chromatin accessibility during thymic T cell development together
with Gata3, Tcf1, Lef1, and Zfp740 (Fig. S4 and ref. 41). Altogether,
these data suggest a strong functional link between Zeb1, Heb
(encoded by Tcf12), and perhaps Tcf1, which acts in coordination
with Heb.32 The fact that Zeb1 is known to bind tandem E-box
motifs suggests that there is possibly competition between Zeb
members and E proteins for binding of those genes regulated by
tandem E-boxes. Such competition has been previously estab-
lished in the context of the CD4 enhancer, which is repressed by
Zeb1, through competition with Heb for E-box binding.54 More-
over, Zfh-1 and Daughterless, the Drosophila homologs of Zeb1
and Tcf12, are also known to compete for the same genomic
sites.55 The deletion of Tcf12 and Tcf1 in thymocytes results in the
opposite phenotype as the Cellophane Zeb1 mutation in terms of

DP proliferation.32 This suggests that Heb and Zeb1 could have
partially antagonistic activities in the regulation of genes bearing
tandem E-box elements. Competition between Zeb1 and E
proteins has already been suggested to play a role in the control
of GATA3 expression in human CD4 T cells.56 Cellophane mice
express a truncated form of Zeb1 that is expressed at lower levels
than WT Zeb1. As the phenotype of these mice is milder than that
of Zeb1−/− mice, we assumed that the Cellophane mutation was
hypomorphic. However, we cannot rule out that Cellophane Zeb1
may retain some DNA-binding capability and therefore act as a
dominant negative molecule by preventing the binding of E-box
proteins. Further work will be needed to precisely map the
interactions between Zeb TFs and E proteins. The regulatory
network may also include inhibitors of the differentiation genes
Id2 and Id3, which are TFs that bind and inactivate E proteins,
thereby regulating their function. Moreover, a deficiency in Id3 has
the same impact on NK1.1+ γδ T cells as a deficiency in TCR
signaling,45 which indicates a links between both factors.
The Zeb1 genomic region is frequently deleted in cutaneous T

cell lymphomas (CTCLs).57 Such deletions are often associated
with genetic mutations in components of the TCR signaling
machinery (recurrent alterations in Card11, Plcg1, Lat, Rac2, Prkcq,
CD28, and genes that encode calcium channel subunits). This
observation, together with our own data showing the role of Zeb1
in repressing TCR signaling, suggests that Zeb1 deletion could
promote lymphomagenesis by releasing the normal constraints on
TCR signaling. Of note, a previous study proposed the essential
role of IL-15 in CTCL development and showed that IL-15
expression was suppressed in patients with CTCL due to promoter
hypermethylation and the failure of Zeb1 to gain access to and
repress the IL-15 regulatory region.58 However, IL-15 expression
was not detected in developing thymocytes in our RNA-seq
analysis, excluding the possibility that the IL-15 pathway could
play a role in the mechanism of action of Zeb1 in T cell
development. However, we found that the transcriptional
responses to different cytokines, such as interferons or IL-6, were
increased in Cellophane DP cells (Table S2). Zeb1 may therefore
normally repress the responses to these cytokines, which
presumably occurs to ensure proper selection. TGF-β is a known
regulator of iNKT cell development59 that promotes early
differentiation and prevents the apoptosis of developing
iNKT cells. A recent study showed that Zeb1 expression was
induced by TGF-β in conventional CD8 T cells stimulated through
the TCR and was essential for memory T cell survival and
function.30 Although we failed to detect any effect of recombinant
TGF-β on Zeb1 expression in thymocytes (data not shown), it
would be interesting to address this question in vivo using
appropriate genetic models.
In summary, Zeb1 is an essential member of the TF network that

regulates T cell development and selection in the DN2 and DP
stages. Furthermore, we have also shown that Zeb1 facilitates the
development of iNKT cells and other T cell subsets expressing NK
cell markers by regulating the cell cycle and TCR signaling in
developing thymocytes.

MATERIALS AND METHODS
Mice
Mice that were 8–24 weeks old were used. Wild-type C57BL/6
mice were purchased from Charles River Laboratories (L’Arbresle).
Cellophane mice were previously described,28 and their littermates
were used as controls. This study was carried out in accordance
with the French recommendations in the Guide for the Ethical
Evaluation of Experiments Using Laboratory Animals and the
European guidelines 86/609/CEE. All experimental studies were
approved by the local bioethics committee CECCAPP. Mice were
bred at the Plateau de Biologie Expérimentale de la Souris
(ENS, Lyon).
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Bone marrow chimeric mice
8- to 10-week-old Ly5a mice or Ly5a x C57BL/6 mice were
anesthetized with ketamine/xylazine before irradiation at a dose
of 9 Gray with an X-ray irradiator XRAD-320. After irradiation, they
were intravenously injected with 2–5 × 106 cells collected from
either wild-type or mutant murine bone marrow or a mix of both
(as indicated in the figures). Immune cell reconstitution was
analyzed 8 weeks post BM injection.

Flow cytometry
Single-cell suspensions of thymus, spleen, and liver were used for
flow cytometry. Cell viability was measured using annexin-V (BD
Biosciences)/live-dead fixable (eBiosciences) stain. Intracellular
staining for TFs was performed using a Foxp3 kit (eBioscience).
Lyse/Fix and PermIII buffers (BD Biosciences) were used for
intracellular staining of phosphorylated proteins. Flow cytometry
was carried out on a FACS Canto, a FACS LSRII, or a FACS Fortessa
(Becton-Dickinson). Data were analyzed using FlowJo (Treestar).
Antibodies were purchased from eBioscience, BD Biosciences, R&D
Systems, Beckman Coulter, Miltenyi, or Biolegend. We used the
following antibodies: anti-mouse CD3 (clone 145-2C11), anti-
mouse CD4 (clone GK1.5), anti-mouse CD8 (clone 53-6.7), anti-
mouse TCRβ (clone H57-597), anti-mouse CD69 (clone H1.2F3),
anti-mouse TCRγδ (clone GL3), anti-mouse NK1.1 (clone PK136),
anti-mouse CD24 (clone M1/69), anti-mouse CD44 (clone IM7),
anti-mouse CD27 (clone LG.7F9), anti-mouse TCRVβ2 (clone B20.6),
anti-mouse TCRVβ7 (clone TR310), anti-mouse TCRVβ8.1/8.2 (clone
KJ16-133), anti-mouse Ly49A (clone A1), anti-mouse Ly49E/F
(clone REA218), anti-mouse Ly49G2 (clone 4D11), anti-mouse
CD45.1 (clone A20), anti-mouse CD45.2 (clone 104), anti-mouse
Nur77 (clone 12.14), anti-mouse Ccr7 (clone 4B12), anti-mouse
CD5 (clone 53-7.3), anti-mouse CD81 (clone Eat-2), anti-mouse
CD53 (clone OX79), anti-mouse Lpam-1 (clone DATK-32), anti-
mouse Foxo1 (clone C29H4), anti-mouse Ms4a4b (clone 444008),
anti-mouse CD74 (clone In1/CD74), anti-mouse T-bet (clone 4B10),
anti-mouse Egr2 (clone erongr2), anti-mouse Plzf (clone
Mags.21F7), anti-mouse Rorγt (clone AFKJS-9), anti-mouse pErk
(clone 20A), anti-mouse pAkt (Ser473) (clone M89-61), and anti-
mouse pS6 (clone D57.2.2E). For the staining of iNKT cells,
phycoerythrin (PE)-conjugated PBS-57 loaded on mouse CD1d
tetramers (mCD1d/PBS-57) was obtained from the Tetramer Core
Facility of the National Institute of Health.

Measurement of in vivo cell proliferation and ex vivo survival
Mice were given one intraperitoneal injection of 0.2 mg EdU (BD
Bioscience). Twelve hours after EdU injection, the mice were
sacrificed, and the organs were harvested. Cells derived from the
thymus were stained with the antibodies specific for the cell
surface antigens described above. After fixation and permeabiliza-
tion, cells were stained with FITC anti-EdU antibody and 7-AAD
(BD Pharmingen) according to the manufacturer’s instructions.
EdU incorporation into different cell populations was measured by
flow cytometry.
For the measurement of cell viability, we stained the thymocyte

suspensions with 7-AAD and antibodies against annexin-V (BD
Biosciences) and other surface markers, such as CD4, CD8, CD69,
TCRβ, CD25, and CD44, either ex vivo or 24, 48, or 72 h after
in vitro culture in complete medium.

Cell sorting and RNA preparation
Lymphocytes were obtained from the thymus. Immune cell
populations, including DN1-4, DP, SP CD4+ and CD8+, and
iNKT cells, were stained in combination with antibodies against
the cell-specific markers CD4, CD8, CD69, TCRβ, CD25, CD44, and
mCD1d/PBS-57 and were subsequently sorted into different
subsets using a FACSAria Cell Sorter (Becton-Dickinson, San Jose,
USA). The purity of the sorted cell populations was over 98%, as
validated by flow cytometry. The sorted cells were lysed using

TRIzol reagent (Invitrogen) or RLT buffer from the RNeasy Micro kit
(Qiagen), and RNA was extracted according to the manufacturer’s
instructions.

Quantitative RT-PCR
We used a high capacity RNA-to-cDNA kit (Applied Biosystems,
Carlsbad, USA) or iScript cDNA synthesis kit (Bio-Rad) to generate
cDNA for RT-PCR. PCR was carried out with a SYBR Green-based kit
(FastStart Universal SYBR Green Master, Roche, Basel, Switzerland)
or SensiFast SYBR No-ROX kit (Bioline) on a StepOne plus
instrument (Applied Biosystems, Carlsbad, USA) or a LightCycler
480 system (Roche). Primers were designed using software from
Roche. We used the following primers for mouse QPCR: Zeb1
forward primer, 5′-GCCAGCAGTCATGATGAAAA-3′; Zeb1 reverse
primer, 5′-TATCACAATACGGGCAGGTG-3′; Zeb2 forward primer,
5′-CCAGAGGAAACAAGGATTTCAG-3′; Zeb2 reverse primer, 5′-AGG
CCTGACATG
TAGTCTTGTG-3′; Gapdh forward primer, 5′-GCATGGCCTTCCGTG

TTC-3′; Gapdh reverse primer, 5′- TGTCATCATACTTGGCAGGTTTC
T-3′. The relative expression of Zeb1 and Zeb2 were normalized to
Gapdh expression.

Western blotting
Cells were lysed in NP40 lysis buffer (20 mM Tris, HCl pH 7.4;
150mM NaCl; 2 mM EDTA; 1% NP40) containing protease
inhibitors for 30 min on ice. The supernatant was collected
following 10min of centrifugation at 12,000 g at 4 °C, and the
protein concentration was quantified by a μBCA quantification kit
(Thermo Fisher Scientific). Fifty micrograms of total cellular protein
from the thymus was incubated for 5 min at 95 °C. Protein samples
were separated by electrophoresis using Novex 4–12% Tris-
Glycine gels (Life Technologies) for 1 h at 120 V. The proteins were
then transferred to a PVDF membrane (Bio-Rad). After blocking
with PBS containing 0.1% Tween and 5% milk for 1 h, the
membranes were probed with the following primary antibodies:
anti-Gapdh (Cell Signaling Technology, 2118) and anti-Zeb1 (Cell
Signaling Technology, 3396; the antibody was raised against a
peptide with Asp846, the Cellophane mutation truncating the
protein after Tyr902) overnight at 4 °C. Membranes were washed
three times with PBS containing 0.1% Tween, and secondary
antibodies were added for incubation for one hour at RT. Anti-
rabbit and anti-mouse HRP conjugate secondary antibodies were
provided by Jackson ImmunoResearch. Proteins were revealed
with a Chemiluminescence Western Lightening Plus kit (Perkin-
Elmer).

RNA-seq analysis
Thymic suspensions were stained in combination with anti-CD3,
anti-CD4, anti-CD8, anti-CD69, and anti-TCRβ and subsequently
sorted into different subsets using a FACSAria Cell Sorter (Becton-
Dickinson, San Jose, USA). The purity of the sorted cell populations
was over 98%, as measured by flow cytometry. RNA libraries were
prepared as previously described.60 Briefly, total RNA was purified
from 5 × 104 sorted thymocytes using the Direct-Zol RNA
microprep kit (Zymo Research) according to the manufacturer’s
instructions and was quantified using the QuantiFluor RNA system
(Promega). One microliter of 10 µM oligo-dT primer and 1 µl of
10mM dNTP mix were added to 0.15 ng of total RNA in a final
volume of 2.3 µl. Oligo-dT cells were hybridized for 3 min at 72 °C,
and reverse transcription (11 cycles) was performed. PCR
preamplification was then conducted using 16 cycles. The cDNA
was purified with Ampure XP beads (Beckman Coulter), and the
cDNA quality was checked with D5000 screen tape and analyzed
on a Tape Station 4200 (Agilent). Three nanograms of cDNA was
tagmented using a NextEra XT DNA sample preparation kit
(Illumina). The tagged fragments were further amplified and
purified with Ampure XP beads (Beckman Coulter). The tagged
library quality was checked with D1000 screen tape and analyzed
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on a Tape Station 4200 (Agilent). Sequencing was performed with
the GenomEast platform by a member of the “France Génomique”
consortium (ANR-10-INBS- 0009) on an Illumina HiSeq
4000 sequencing instrument (read length of 1×50 nt).

Measurements of TCR signaling
Calcium response. WT and Cellophane thymocytes were first
barcoded with anti-CD45 coupled with different fluorochromes
and then stained at RT with fluorescent anti-CD4, anti-CD8, anti-
CD69, anti-TCRβ, anti-CD25, and anti-CD44 antibodies, followed by
staining with Indo-1 (1 µM, Life Technologies) at a concentration
of 1 × 107 cells/ml for 30 min at 37 °C. Following two washes at
4 °C, the cells were resuspended in RPMI medium (0.2% BSA and
25mM HEPES) and were incubated at 37 °C for 5–10min prior to
acquisition. The samples were acquired on an LSRII (BD) as follows:
15 s of baseline acquisition, addition of anti-CD3 biotin (2C11,
10 µg/ml), acquisition for 1 min 30 s, addition of streptavidin (Life
Technologies, 10 µg/ml), and acquisition for another 3–5min.

Phosphorylation events. Different samples corresponding to
different mice were barcoded by labeling them with a series of
anti-CD45 antibodies coupled with different fluorochromes. For
phospho-flow staining, 3 × 106 mixed thymocytes were stained
using biotinylated CD3 (2C11, 5 µg/ml) and other surface markers
for 15 min, followed by streptavidin (Life Technologies, 10 µg/ml)
stimulation and fixation by the addition of 10 volumes of Lyse/Fix
at the indicated time points. The levels of pErk, pS6, or pAkt were
normalized according to the MFI, which was detected in the
nonstimulated condition (regarded as 100%) for each mouse.

In silico analyses
The functional annotations of DEGs were performed using
Metascape37 or STRING38 using the default parameters. In
addition, we used several functionalities of the ImmGen database
browser29 to generate some of the figures included in the supple-
mentary information.

Statistical analysis
Statistical analyses were performed using Prism 5 (GraphPad
Software). Two-tailed unpaired t-tests, paired t-tests, and ANOVA
with Bonferroni correction were used as indicated. We used the
hypergeometric test and the Benjamini–Hochberg p value
correction algorithm to calculate if the enrichment of the overlap
between the gene lists was statistically significant.

ACKNOWLEDGEMENTS
The authors acknowledge the contribution of the SFR Biosciences facilities
(UMS3444/CNRS, ENSL, UCBL, and US8/INSERM), particularly the Plateau de Biologie
Expérimentale de la Souris and the flow cytometry facility. We thank Bruce Beutler for
sharing the Cellophane mutant mice. We also thank Andrew Griffiths and Kiyoto
Kurima for discussions regarding Twirler mutant mice and Fotini Gounari and
Christophe Benoist for providing RNA-seq/ChIP-seq data on T cell development. The
TW lab is supported by the Agence Nationale de la Recherche (ANR GAMBLER to TW
and ANR JC BaNK to AM) and the Institut National du Cancer and receives
institutional grants from the Institut National de la Santé et de la Recherche Médicale
(INSERM), Centre National de la Recherche Scientifique (CNRS), Université Claude
Bernard Lyon and ENS de Lyon, and the Joint Research Institute for Science and
Society (JORISS). JZ is the recipient of a fellowship from the China Scholarship Council
(CSC). RS and YGH were funded by an FRM grant (AJE20161236686) to YGH.

AUTHOR CONTRIBUTIONS
JZ, AB, MW, DL, DEC, ALM, AR, and AM performed the experiments. RS and QM
performed the in silico analyses. JC, LG, and YGH provided reagents and conceptual
insight and helped write the paper. TW wrote the paper and supervised the work.

ADDITIONAL INFORMATION
The online version of this article (https://doi.org/10.1038/s41423-020-0459-y)
contains supplementary material.

Competing interests: The authors declare no competing interests.

REFERENCES
1. Shah, D. K. & Zúñiga-Pflücker, J. C. An overview of the intrathymic intricacies of T

cell development. J. Immunol. 192, 4017–4023 (2014).
2. Rothenberg, E. V., Moore, J. E. & Yui, M. A. Launching the T-cell-lineage devel-

opmental programme. Nat. Rev. Immunol. 8, 9–21 (2008).
3. Kurd, N. & Robey, E. A. T-cell selection in the thymus: a spatial and temporal

perspective. Immunol. Rev. 271, 114–126 (2016).
4. Hogquist, K. A. & Jameson, S. C. The self-obsession of T cells: how TCR signaling

thresholds affect fate “decisions” and effector function. Nat. Immunol. 15,
815–823 (2014).

5. Gascoigne, N. R. J., Rybakin, V., Acuto, O. & Brzostek, J. TCR signal strength and T
cell development. Annu. Rev. Cell Dev. Biol. 32, 327–348 (2016).

6. Moran, A. E. et al. T cell receptor signal strength in Treg and iNKT cell develop-
ment demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208,
1279–1289 (2011).

7. Godfrey, D. I., Uldrich, A. P., McCluskey, J., Rossjohn, J. & Moody, D. B. The bur-
geoning family of unconventional T cells. Nat. Immunol. 16, 1114–1123 (2015).

8. Kronenberg, M. & Kinjo, Y. Innate-like recognition of microbes by invariant natural
killer T cells. Curr. Opin. Immunol. 21, 6 (2009).

9. Tuttle, K. D. et al. TCR signal strength controls thymic differentiation of iNKT cell
subsets. Nat. Commun. 9, 2650 (2018).

10. Zhao, M. et al. Altered thymic differentiation and modulation of arthritis by
invariant NKT cells expressing mutant ZAP70. Nat. Commun. 9, 2627 (2018).

11. Malhotra, N. et al. SOX4 controls invariant NKT cell differentiation by tuning TCR
signaling. J. Exp. Med 215, 2887–2900 (2018).

12. Ziętara, N. et al. Critical role for miR-181a/b-1 in agonist selection of invariant
natural killer T cells. Proc. Natl Acad. Sci. USA 110, 7407–7412 (2013).

13. Henao-Mejia, J. et al. The microRNA miR-181 is a critical cellular metabolic
rheostat essential for NKT cell ontogenesis and lymphocyte development and
homeostasis. Immunity 38, 984–997 (2013).

14. Wencker, M. et al. Innate-like T cells straddle innate and adaptive immunity by
altering antigen-receptor responsiveness. Nat. Immunol. 15, 80–87 (2014).

15. Seo, W. & Taniuchi, I. Transcriptional regulation of early T-cell development in the
thymus. Eur. J. Immunol. 46, 531–538 (2016).

16. Maillard, I., Fang, T. & Pear, W. S. Regulation of lymphoid development, differ-
entiation, and function by the Notch pathway. Annu Rev. Immunol. 23, 945–974
(2005).

17. Murre, C. Helix-loop-helix proteins and lymphocyte development. Nat. Immunol.
6, 1079–1086 (2005).

18. Hosokawa, H. & Rothenberg, E. V. Cytokines, transcription factors, and the
initiation of T-cell development. Cold Spring Harb. Perspect. Biol. 10, a028621
(2018).

19. Gheldof, A., Hulpiau, P., van Roy, F., De Craene, B. & Berx, G. Evolutionary func-
tional analysis and molecular regulation of the ZEB transcription factors. Cell Mol.
Life Sci. CMLS 69, 2527–2541 (2012).

20. Takagi, T., Moribe, H. & Kondoh, H. Higashi Y. DeltaEF1, a zinc finger and
homeodomain transcription factor, is required for skeleton patterning in multiple
lineages. Dev. Camb. Engl. 125, 21–31 (1998).

21. Caramel, J., Ligier, M. & Puisieux, A. Pleiotropic roles for ZEB1 in cancer. Cancer
Res. 78, 30–35 (2018).

22. Conidi, A. et al. Few Smad proteins and many Smad-interacting proteins yield
multiple functions and action modes in TGFβ/BMP signaling in vivo. Cytokine
Growth Factor Rev. 22, 287–300 (2011).

23. Scott, C. L. & Omilusik, K. D. ZEBs: novel players in immune cell development and
function. Trends Immunol. 40, 431–446 (2019).

24. van Helden, M. J. et al. Terminal NK cell maturation is controlled by concerted
actions of T-bet and Zeb2 and is essential for melanoma rejection. J. Exp. Med.
212, 2015–2025 (2015).

25. Dominguez, C. X. et al. The transcription factors ZEB2 and T-bet cooperate to
program cytotoxic T cell terminal differentiation in response to LCMV viral
infection. J. Exp. Med. 212, 2041–2056 (2015).

26. Omilusik, K. D. et al. Transcriptional repressor ZEB2 promotes terminal differ-
entiation of CD8+ effector and memory T cell populations during infection. J.
Exp. Med. 212, 2027–2039 (2015).

27. Higashi, Y. et al. Impairment of T cell development in deltaEF1 mutant mice. J.
Exp. Med. 185, 1467–1479 (1997).

Zeb1 represses TCR signaling, promotes the proliferation of T cell. . .
J Zhang et al.

12

Cellular & Molecular Immunology _#####################_

4 Research projects 4.3 Project 2: Zeb1 in iNKT cell development

133



28. Arnold, C. N. et al. A forward genetic screen reveals roles for Nfkbid, Zeb1, and
Ruvbl2 in humoral immunity. Proc. Natl Acad. Sci. 109, 12286–12293 (2012).

29. Heng, T. S. P. & Painter, M. W., Immunological Genome Project Consortium. The
Immunological Genome Project: networks of gene expression in immune cells.
Nat. Immunol. 9, 1091–1094 (2008).

30. Guan, T. et al. ZEB1, ZEB2, and the miR-200 family form a counterregulatory
network to regulate CD8+ T cell fates. J. Exp. Med. 215, 1153–1168 (2018).

31. Jones, M. E. & Zhuang, Y. Stage-specific functions of E-proteins at the β-selection
and T-cell receptor checkpoints during thymocyte development. Immunol. Res.
49, 202–215 (2011).

32. Emmanuel, A. O. et al. TCF-1 and HEB cooperate to establish the epigenetic and
transcription profiles of CD4+CD8+ thymocytes. Nat. Immunol. 19, 1366–1378
(2018).

33. Rahim, M. M. A. et al. Ly49 receptors: innate and adaptive immune paradigms.
Front. Immunol. 5, 145 (2014).

34. Grigoriadou, K., Boucontet, L. & Pereira, P. Most IL-4-producing gamma delta
thymocytes of adult mice originate from fetal precursors. J. Immunol. 171,
2413–2420 (2003).

35. Gapin, L. iNKT cell autoreactivity: what is “self” and how is it recognized? Nat. Rev.
Immunol. 10, 272–277 (2010).

36. Tuttle, K. D. & Gapin, L. Characterization of thymic development of natural killer T
cell subsets by multiparameter flow cytometry. Methods Mol. Biol. Clifton NJ 1799,
121–133 (2018).

37. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis
of systems-level datasets. Nat. Commun. 10, 1523 (2019).

38. Szklarczyk, D. et al. STRING v10: protein-protein interaction networks, integrated
over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

39. Liston, A. et al. Impairment of organ-specific T cell negative selection by diabetes
susceptibility genes: genomic analysis by mRNA profiling. Genome Biol. 8, R12
(2007).

40. Kastner, P. et al. Bcl11b represses a mature T-cell gene expression program in
immature CD4(+)CD8(+) thymocytes. Eur. J. Immunol. 40, 2143–2154 (2010).

41. Yoshida, H. et al. The cis-regulatory atlas of the mouse immune system. Cell 176,
897–912.e20 (2019).

42. Bedel, R. et al. Effective functional maturation of invariant natural killer T cells is
constrained by negative selection and T-cell antigen receptor affinity. Proc. Natl
Acad. Sci. 111, E119–E128 (2014).

43. Hayes, S. M. & Love, P. E. Strength of signal: a fundamental mechanism for cell
fate specification. Immunol. Rev. 209, 170–175 (2006).

44. Haks, M. C. et al. Attenuation of gammadeltaTCR signaling efficiently diverts
thymocytes to the alphabeta lineage. Immunity 22, 595–606 (2005).

45. Alonzo, E. S. et al. Development of promyelocytic zinc finger and ThPOK-
expressing innate gamma delta T cells is controlled by strength of TCR signaling
and Id3. J. Immunol. 184, 1268–1279 (2010).

46. Ilangumaran, S. et al. Loss of GIMAP5 (GTPase of immunity-associated nucleotide
binding protein 5) impairs calcium signaling in rat T lymphocytes. Mol. Immunol.
46, 1256–1259 (2009).

47. Howie, D. et al. MS4A4B is a GITR-associated membrane adapter, expressed by
regulatory T cells, which modulates T cell activation. J. Immunol. 183, 4197–4204
(2009).

48. Carlson, C. M. et al. Kruppel-like factor 2 regulates thymocyte and T-cell migra-
tion. Nature 442, 299–302 (2006).

49. Gubbels Bupp, M. R. et al. T cells require Foxo1 to populate the peripheral
lymphoid organs. Eur. J. Immunol. 39, 2991–2999 (2009).

50. Li, L. & Bhatia, R. Molecular pathways: stem cell quiescence. Clin. Cancer Res J. Am.
Assoc. Cancer Res. 17, 4936–4941 (2011).

51. Hedrick, S. M., Michelini, R. H., Doedens, A. L., Goldrath, A. W. & Stone, E. L. FOXO
transcription factors throughout T cell biology. Nat. Publ. Group 12, 649–662.
(2012).

52. Shi, L. Z. et al. Gfi1-Foxo1 axis controls the fidelity of effector gene expression and
developmental maturation of thymocytes. Proc. Natl Acad. Sci. USA 114, E67–E74.
(2017).

53. D’Cruz, L. M., Knell, J., Fujimoto, J. K. & Goldrath, A. W. An essential role for the
transcription factor HEB in thymocyte survival, Tcra rearrangement and the
development of natural killer T cells. Nat. Immunol. 11, 240–249 (2010).

54. Brabletz, T. et al. Negative regulation of CD4 expression in T cells by the tran-
scriptional repressor ZEB. Int. Immunol. 11, 1701–1708 (1999).

55. Postigo, A. A., Ward, E., Skeath, J. B. & Dean, D. C. zfh-1, the Drosophila homologue
of ZEB, is a transcriptional repressor that regulates somatic myogenesis. Mol. Cell
Biol. 19, 7255–7263 (1999).

56. Grégoire, J. M. & Roméo, P. H. T-cell expression of the human GATA-3 gene
is regulated by a non-lineage-specific silencer. J. Biol. Chem. 274, 6567–6578
(1999).

57. Wang, L. et al. Genomic profiling of Sézary syndrome identifies alterations of key
T cell signaling and differentiation genes. Nat. Genet. 47, 1426–1434 (2015).

58. Mishra, A. et al. Mechanism, consequences, and therapeutic targeting of abnor-
mal IL15 signaling in cutaneous T-cell lymphoma. Cancer Discov. 6, 986–1005
(2016).

59. Doisne, J.-M. et al. iNKT cell development is orchestrated by different branches of
TGF- signaling. J. Exp. Med. 206, 1365–1378 (2009).

60. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc.
9, 171–181 (2014).

Zeb1 represses TCR signaling, promotes the proliferation of T cell. . .
J Zhang et al.

13

Cellular & Molecular Immunology _#####################_

4 Research projects 4.3 Project 2: Zeb1 in iNKT cell development

134



Figure S1

A

B

Usp
7

Zfp2
80

d

TCF12
Mier

1

Rps
6k

b1
Mag

i3

Rad
21

C1g
alt

1
Uev

ld
Zfp3

9
Cno

t2Atl2

Ppp
6r3Iw

s1
Arid

2
Ano

6
Helz

Zfp8
46
Dgk

e

Osb
pl1

1

58
30

41
8K

08
Rik
Mye

f2

Mad
1l1Cbl

0.0

0.5

1.0

1.5

2.0

C
or

re
la

tio
n 

co
ef

fic
ie

nc
y

(n
or

m
al

iz
ed

 to
 C

bl
) TCF12

Zeb1

Zeb2

DN1 DN2a DN2b DN3 DN4 DP CD4 CD8

4 Research projects 4.3 Project 2: Zeb1 in iNKT cell development

135



DN1 DN2 DN3 DN4
0

20

40

60

80
WT
Cello

Liver iNKT

0

5

10

15

20

spleen iNKT

0

10

20

30

40

C
el

l n
um

be
r (

X1
04 )

DN DP CD4+ CD8+
0

2

4

6

8

10
40
50
60
70
80

C
el

l n
um

be
r (

X1
04 )

C
el

l n
um

be
r (

X1
06 )

p=0.0063

p=0.0005
p=0.0003

p=0.0435

p<0.0001

p=0.0005

p=0.0003

p<0.0001

p=0.0007

p=0.0018

Spleen CD8+Ly49+

WT Cello
0.0

0.5

1.0

1.5

2.0

C
el

l n
um

be
r (

X1
04 )

p=0.2922

WT CelloWT Cello

Figure S2

C
el

l n
um

be
r (

X1
04 )

4 Research projects 4.3 Project 2: Zeb1 in iNKT cell development

136



DN1 DN2 DN3 DN4
0

20

40

60

fre
qu

en
cy

 in
 th

ym
oc

yt
es

DN1 DN2 DN3 DN4
0

20

40

60

80

donor WT donor Cello
0

20

40

60

80

100

DN1 DN2 DN3 DN4
0

20

40

60

DN1 DN2 DN3 DN4
0

5

10

15

20

donor WT donor Cello
0

2000

4000

6000

8000

0

2

4

6

Thymus NKT

0.0

0.2

0.4

0.6

0.8

0

5

10

15

20

25

0

5

10

15

20

25

A

C

host WT host Cello

Figure S3

ce
ll 

nu
m

be
r x

 1
04

ce
ll 

nu
m

be
r x

 1
04

fre
qu

en
cy

 in
 th

ym
oc

yt
es

BM donor = WT BM donor = WT

BM donor = Cello BM donor = Cello

fre
qu

en
cy

 in
 th

ym
oc

yt
es

ce
ll 

nu
m

be
r x

 1
04

DN subsets

B DP cells

NKT cells

host WT host Cello

fre
qu

en
cy

 i(
%

)
fre

qu
en

cy
 i(

%
)

ce
ll 

nu
m

be
r x

 1
04

ce
ll 

nu
m

be
r x

 1
04

Thymus NKT

Liver NKT Liver NKT

Macrophage DC Neutrophil B
0

20

40

60

80

100

P
er

ce
nt

t o
f s

ub
se

t

WT
Cello

20.4 24.8 26.1

8.92

D Mixed chimera WT:Cello    WT

Cello    WTWT    WT
WT    Cello Cello    Cello

4 Research projects 4.3 Project 2: Zeb1 in iNKT cell development

137



Gata3 
Tcf7 
Lef1 
Tcf12 
Zfp740 
Zeb1

Thymus development

DP

Figure S4

DN1 DN2a DN2b DN3 DN4 DP SP CD4 SP CD8

R
el
at
iv
e 
ex
pr
es
sio
n

-2

-1

0

1

2

Cluster 2 Cluster 10

-2

-1

0

1

2

DN1 DN2a DN2b DN3 DN4 DP SP CD4 SP CD8

-1

0

1

2

Cluster 11

DN1 DN2a DN2b DN3 DN4 DP SP CD4 SP CD8

-1

0

1

2

R
el
at
iv
e 
ex
pr
es
sio
n

Cluster 12

DN1 DN2a DN2b DN3 DN4 DP SP CD4 SP CD8

-2

-1

0

1

2

Cluster 14

DN1 DN2a DN2b DN3 DN4 DP SP CD4 SP CD8

A

B

4 Research projects 4.3 Project 2: Zeb1 in iNKT cell development

138



4 Research projects 4.3 Project 2: Zeb1 in iNKT cell development

Supplementary figure legends

Figure S1: Zeb1 is highly expressed in DP and co-regulated with Tcf12. (A) Expression profile

of Zeb1 and Zeb2 mRNA level in thymic αβ T cell subsets. The image is adapted from Immgen

(http://www.immgen.org/). The red color indicates higher expression. (B) Genes for which the

expression pattern in αβ T cell subsets is highly correlated with that of Zeb1. The figure is

adapted from data on the Immgen browser (http://www.immgen.org/).

Figure S2: Decreased numbers of thymocyte subsets and peripheral NKT cells in Cellophane

X Ly5a BM chimeric mice. Cell numbers calculated for the panels A-C in Figure 4, as indicated.

Figure S3: The role of Zeb1 in T cell development is cell-intrinsic. (A-C) Flow cytometry

analysis of indicated thymocyte subsets or thymus/liver iNKT cells from BM chimeras.

Recipients were C57BL/6 (WT) mice or Cellophane, as indicated, and donor BM was either

Ly5a x C57BL/6 (WT) or Cellophane, as indicated. Graphs show the mean+/-SD frequency or

number of 3-4 mice in 2 experiments. (D) Mixed BM chimeric mice described in Figure 4D

were analyzed by flow cytometry for the indicated subsets. Results show the BM donor origin

983 in percentage for each gated subset. Mean +/-SD of 6 mice.

Figure S4: Zeb1 regulates epigenetic remodeling during T cell development. (A) Snapshot of

Figure 5 in Yoshida et al [41], highlighting the cluster of TFs predicted to regulate chromatin

accessibility during T cell development. (B) Boxplot graphs showing the mean accessibility

of different open chromatin regions (OCRs), as determined by ATAC-seq by Yoshida et al., in

developing T cell subsets, as indicated. All OCRs contain Zeb1 binding sites.
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4.3.2 Extended results

De-repression of Zeb1 alters T cell development and decreases TCR signaling

A previous article reported that Myb was a repressor of Zeb1 and that this repression

was important for inner ear development. This observation was based on the analysis

of a mutant mouse called Twirler in which a heterozygous noncoding point mutation

in the first Zeb1 intron abrogated a Myb binding site and resulted in increased Zeb1

expression (Kurima et al., 2011). The name "Twirler" relates to the mice propensity to

revolve in the cage (because of the inner ear problem). Since Twirler mice appeared

somewhat complementary to Cellophane mice for the study of Zeb1, and since Myb

is a known regulator of iNKT cell development (Hu et al., 2010), we wanted to analyze

T cell development in Twirler mice. However, these mice were no longer available,

which led us to generate a novel mutant mouse strain in which we deleted 13

nucleotides in the same Zeb1 intronic region using Crispr/Cas9 genome edition. In

these heterozygous mice, called Zeb1∆13/+, the analysis of thymus composition

showed a profound decrease in DN and DP thymocytes, which accounted for the

decreased cellularity of this organ (Figure E2A). A Q-RTPCR analysis showed an

increased Zeb1 expression in DP of Zeb1∆13/+ mice (Figure E2B), confirming the role

of Myb as a repressor of Zeb1 expression. Zeb1∆13/+ DP displayed accelerated cell

death compared to their WT counterpart upon in vitro culture (Figure E2C). Moreover,

Zeb1∆13/+ DP thymocytes showed increased proliferation compared to control DP, as

assessed by EdU incorporation or Ki67 measurement (Figure E2D-E), which is the

opposite phenotype of Cellophane DP. A flow cytometry analysis of DP thymocytes

showed a decreased Nur77 and CD5 expression in Zeb1∆13/+ DP compared to

control DP, suggesting a decreased TCR signaling in mutant DP (Figure E2F). We

assessed TCR signaling by stimulating DP through the TCR and measuring calcium

flux. We failed to detect reproducible differences between Zeb1∆13/+ and control DP,

but we noted that Zeb1∆13/+ CD4 SP had a decreased calcium response compared

to control SP CD4 (Figure E2G-H).

We then analyzed the composition of the peripheral T cell compartment. iNKT cells

tended to increase in percentages in the thymus but not in the spleen or liver, and
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they were reduced in numbers in all organs analyzed (Figure E2I). NK1.1+ γδ T cells

tended to increase in frequency in spleen and LN but their overall numbers were either

not changed or even decreased (Figure E2J). Ly49+ CD8 T cells were also reduced in

number and their frequency was decreased in peripheral organs (Figure E2K). When

analyzing iNKT subsets, we observed the opposite phenotype as that in Cellophane

mice: i.e. an increase of the iNKT2 and iNKT17 subsets at the expense of iNKT1

(Figure E2L), similar to the phenotype of SKG mice, which supported a decreased

TCR signaling in Zeb1∆13/+ thymocytes.

Collectively, these data show that the gain-of-expression Zeb1∆13/+ heterozygous

mutation has profound consequences on T cell development associated with hints of

decreased TCR signaling and increased cell proliferation in DP thymocytes, as

opposed to increased TCR signaling and decreased cell proliferation in Cellophane

mutant mice.

Cellophane mice show macroscopic organ defects

As described before, Cellophane mice have much smaller thymi than C57BL/6 control

mice. Interestingly, the contrary was observed for Cellophane spleen, which was

usually bigger than that of WT mice (Figure E3A). In order to better understand the

causes of splenomegaly, spleen sections were prepared and stained either with

hematoxylin phloxine saffron (HPS) or with antibodies directed against CD3 or B220

(Figure E3B). Spleens from Cellophane had a defective anatomical structure. First,

no red pulp could be easily delineated, and the white pulp was completely

disorganized. Only few T cells were observable and were disseminated along the

organ instead of being organized in clusters, while B cells were observable in

important proportion and not assembled in follicles. This defect might be due to

"hypersplenism", a condition that can have multiple causes and associated with

exaggerated scavenger function resulting in both red blood and white blood cell

cytopenia.

Moreover, we found that the spleen from Cellophane was difficult to mash indicating

splenic fibrosis. Several studies have found a correlation between fibrosis and ILC2

with an involvement of cytokines e.g. IL-25, IL-33 (Hams et al., 2014; Mchedlidze
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et al., 2014). A flow cytometry analysis of spleen cell suspensions showed that ILC1,

ILC2, ILC3 cell were all increased in Cellophane in terms of cell numbers and

percentages while NK cells were oppositely decreased (Figure E3C). To test if Zeb1

had an intrinsic role in ILC2 cell development, we generated bone marrow (BM)

chimeric mice by reconstituting sublethally-irradiated Ly5a (CD45.1) with BM from

Cellophane (CD45.2) and WT Ly5a x C57BL/6 (CD45.1/2) mice. In the spleen of

chimeric mice, the frequency of ILC2 cells was mildly lower for Cellophane-derived

compared to WT (Figure E3D) indicating that Zeb1 might not regulate ILC2 cell

development intrinsically.

Zeb1 expression is associated with lymphoma

Zeb1 is best known for its role in EMT through repression of epithelial genes during

embryonic development (Vandewalle et al., 2005). Zeb1 also influences tumor

progression and metastasis as depletion of Zeb1 suppresses stemness, colonization

capacity (Krebs et al., 2017; Spaderna et al., 2008). We sought to detect ZEB1

expression level by western blotting in several T cell lymphoma lines. Results showed

that 5 out of 8 cell lines had low levels of ZEB1 expression (Figure E4), suggesting a

universal downregulation of ZEB1 in lymphoma. This attracted our attention to further

investigate the role of ZEB1 in lymphoma development.

Extended Methods

Generation of Zeb1∆13/+ mice

We used CRISPR/Cas9 genome editing in mice, as previously reported (Teixeira

et al., 2018). Briefly, we electroporated intact mouse zygotes (B6D1F1xFVB

background) with ribonucleoprotein complexes prepared in vitro from recombinant

Cas9 nuclease and synthetic dual guide RNA. We designed a guide RNA using the

online CRISPOR freeware (http://crispor.tefor.n-et/) (Haeussler et al., 2016) optimized

to maximize cutting specificity and efficiency. The guide was selected to induce a cut

in the region of the Myb binding site of Zeb1, as previously defined (Kurima et al.,

2011). The sequence of the guide we used is 5’-TGCCGCTGCCGCCGCCGCTG-

CCGCCGCCGCCGCGGCTGCTGGACTGGACCATTATGTCTTACCTGCCTCTGCGC-
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CTAGCGGCTCCGGCGGCCGCCGGGG-3’. Founder mice were genotyped by PCR

and sequencing, using primers flanking the target sequence of the guide RNA.

Founder mice with the Zeb1∆13/+ mutation were backcrossed 3 to 6 times on the

C57BL/6 background before use. All control mice were littermates.

Histology and histoimmunochmeistry

Spleens were carefully dissected and kept in a 4% paraformaldehyde solution, before

paraffine embedding and microtome slicing. Organs slices were further stained with

hematoxilin phloxine saffron (HPS) or using antibodies directed against CD3 (1:100)

or B220 (1:100). Slides were observed and pictures were taken using an upright Zeiss

AxioImager Z1 microscope. Images were analyzed using the ImageJ software.

Flow cytometry

Detailed methods were described in the Article 2. Here are the lists of additional

antibodies used for ILC subsets gating: anti-mouse Rorγt (clone AFKJ S-9),

anti-mouse Gata3 (clone TWAJ), anti-mouse CD127 (clone AFR34), anti-mouse

CD90.2 (clone 53-2.1).
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Figure E2: Zeb1∆13/+ mutant mice have increased Zeb1 expression and display signs

of decreased TCR signaling. (A) Percentage and absolute numbers of thymocyte subsets

(CD4 SP, CD8 SP, DN, and DP) in the thymus of wild-type and Zeb1∆13/+ mice. N=9 mice in

four individual experiments. (B) Q-RTPCR measurement of Zeb1 mRNA expression in sorted

DP thymocytes from wild-type and Zeb1∆13/+ mice. N=5 for each genotype. (C) Annexin V

expression by wild-type or Zeb1∆13/+ thymocytes cultured for 0-72h. N=3 mice in each group

in 2 independent experiments. (D) EdU incorporation of wild-type and Zeb1∆13/+ DP

thymocytes after a 12-hour in vivo pulse of EdU. N=3 for each genotype. (E) Flow cytometry

analysis of Ki67 expression in DP thymocytes from WT and Zeb1∆13/+ mice. N=3 for each

genotype. (F) Flow cytometry analysis of Nur77, CD5 expression in DP thymocytes of

wild-type and Zeb1∆13/+ mice. Data are shown as mean fluorescence intensity. N=5-8 for

each genotype. (G) Thymocytes were activated following incubation with biotinylated

anti-CD3 followed by cross-linking with streptavidin. Dot plots showing the AUC (Area under

curve) and Ca2+ peak for N=12 mice in four individual experiments. (H) Frequency and

number of CD1d-tet+ iNKT cells from thymus, spleen, and liver in WT and Zeb1∆13/+ mice.

N=3-4 in 2 experiments. (I-J) Absolute number and frequency of NK1.1− or NK1.1+ γδ T cells

within total γδ T cells (I) and Ly49+ cells within CD8+CD44+ T cells (J) for LN and spleen of

WT and Zeb1∆13/+ mice. N=5-6 mice in 2 experiments. Statistical analysis was performed

using unpaired Student t test.
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A

Figure E3. Cellophane mice show macroscopic organs defects. (A) Spleen of both 
cellophane and WT mice. The scale represents 1 cm. (B) Microscopic observations of 
spleens of both old WT and cellophane mice. Haematoxylin phloxine saffron stain was 
performed, as well as immunohistochemistry with antibodies directed against either CD3 ou 
B220. Scale bars represent 500 μm for the x50 magnification and 100 μm for the x200 
magnification. (C) Frequencies and numbers of cells in the thymus. Error bars represent 
standard error to the mean. (D) Frequencies of cell in chimera mice with a mix of BM cells 
from WT and Cellophane mice. 
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Figure E4. Most of lymphoma cell lines show decreased expression of ZEB1. WB 
analysis of ZEB1 expression in total lysat of different lymphoma cell lines .
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5 Discussion

5 Discussion

5.1 Project 1: T-bet and Eomes in NK cell development

In our study, we carefully analyzed the role of T-bet and Eomes in NK cell

development at both epigenetic and transcriptomic level. We show that Eomes and

T-bet play complementary roles in the control of the NK cell maturation program.

Eomes was dominantly expressed in immature NK cells and strongly affected the

transcriptome of immature NK cells. Oppositely, T-bet was dominantly expressed in

mature NK cells, and was absolutely essential for terminal NK cell maturation. Eomes

and T-bet were essential for the CD11b−→DP and DP→CD27− transition,

respectively. Although genome-wide analysis of T-bet and Eomes binding indicated

strong overlap in DNA-binding properties, Eomes and T-bet have different impact in

chromatin accessibility at different stages further demonstrating a labor-division role

of T-bet and Eomes during NK cell maturation. Our work raised several important

questions, as detailed in the following section.

5.1.1 Eomes and tissue-residency

Among the few transcription factors regulated by Eomes, Hobit turns out to be

negatively regulated by Eomes based on the transcriptomic data. Hobit was

previously reported to control tissue residency in lymphocytes, in cooperation with

Blimp1 (Mackay et al., 2016). In the liver, mutually exclusive expression of CD49a

and CD49b can divide liver NK cells into two distinct cell populations:

CD49a+CD49b− and CD49a−CD49b+, considered as tissue-resident NK (trNK) cells

(or ILC1s) and conventional NK (cNK) cells (Peng and Tian, 2017). trNK cells have

much higher level of Hobit than cNK cells at the mRNA level (Mackay et al., 2016).

Hobit was also shown to be expressed by a subset of human liver-resident CD56bright

NK cells (Lunemann et al., 2017). Moreover, two receptors CD62L and S1PR5 that

are essential for blood circulation are also induced by Eomes. We also found that

there is an increased proportion of CD49a+CD49b− cells in Eomes-deficient liver
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compared to the control mice (Figure 24). Collectively, we propose that Eomes may

promote blood circulation by inducing CD62L and S1PR5 and by repressing Hobit in

NK cells, which is well supported by the different distributions of NK cells and ILC1s,

the latter being Eomes negative and tissue-resident (Daussy et al., 2014).

Figure 24. cNK and trNK in the liver. FACS plots of CD49a and CD49b on liver
CD3−NK1.1+ cells are shown within Ncr1Cre/+ and Ncr1Cre/+ x Eomesfl/fl mice. cNK cells
(CD49a−CD49b+) decreased in Eomes KO mice while trNK cells (CD49a+CD49b−) increased
almost 3 times compared to the control.

Our data show that Blimp1 and S1PR5 expression are attenuated by T-bet deficiency.

In terms of circulation, Blimp1 is a positive regulator of tissue-residency (Mackay

et al., 2016) while S1PR5 positively promotes NK cells egressing from BM (Mayol

et al., 2011). We found that there were overall more NK cells in the BM of Tbx21−/−

mice compared to controls and less NK cells in other organs, suggesting that T-bet is

essential for the egress of NK cells from BM through S1PR5 although T-bet is lowly

expressed in the BM. T-bet is indispensable for ILC1 cell development as almost no

ILC1 cells were detected in T-bet KO mice (Sojka et al., 2014; Daussy et al., 2014).

And T-bet is important to promote NK cell responsiveness to IL-12 and to support

their blood circulation from LN through the upregulation of S1PR5, which could be

important for their capacity to control lung metastases in the B16 model (Werneck

et al., 2008; van Helden et al., 2015). Besides, Blimp1 is also required for NK cell

maturation and homeostasis through IRF4-Blimp1-Bcl6 regulatory axis (Kallies et al.,

2011). Therefore, T-bet seems to mainly regulate genes like Blimp1 and S1PR5
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mediating both migration and functions.

5.1.2 Eomes, T-bet and CD11b, CD27

Here, we demonstrated that Eomes and T-bet have complementary role during NK cell

maturation based on CD11b and CD27 expression (Chiossone et al., 2009). However,

the FACS plot shows that the maturation program of NK cells is continuous (Figure 25)

and the border between stages is not clear. It makes the sorting of different populations

Figure 25. FACS plot on NK cell maturation. Gated on CD3−NK1.1+CD49a−CD49b+ cells,
NK cells are further divided into three different maturation stages based on CD11b and CD27.
The cloud in blue represents the most immature NK cells (CD11b−CD27+); the cloud in green
is the DP intermediate stage (CD11b+CD27+) and then further mature into stage 3 CD27−

(CD27−CD11b+) (in orange).

tricky and the exclusion of cells inbetween is difficult. Moreover, deficiency of T-bet

promotes the expression of CD27 and deletion of Eomes impairs CD11b (encoded

by gene Itgam) expression. Since we define the maturation of NK cells in terms of

CD11b and CD27 level, it might bias the final conclusion. In Tbx21−/− mice, there are

barely CD27− cells detected suggesting a role of T-bet in the DP→CD27− transition.

Since T-bet regulates CD27 itself, it is not valid to make that conclusion simply based

on the CD11b and CD27 markers. However, we found that many other molecules

(KLRG1, inhibitory receptors) associated with maturation were regulated by T-bet and

Eomes indicating an important role of T-bet and Eomes during NK cell maturation.

Taken together, in order to get full images of NK cells and to exclude the potential bias
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brought by different maturation definitions, transcriptomic and epigenetic modification

at the single-cell level or even spacial profiling would be an interesting way to tackle

the problems.

5.1.3 T-box family and proliferation

NK cells mirror adaptive CD8+ T cells in terms of transcriptional regulation and

cytotoxic functions. Particularly, T-bet and Eomes are highly expressed in effector

CD8+ T cells where the two members of T-box family have been widely investigated.

The differentiation of antigen-specific effector CD8+ T cells occurs along a continuum

as it is in NK cells (Kaech and Cui, 2012). The acquisition of T-bet endows the CD8+

T cells with more terminally differentiated phenotypes (KLRG1hiIL-7Rαlow) and a

reduction in proliferative capacity and longevity (Joshi et al., 2007), while Eomes

counter-regulates and also interacts with T-bet thus preventing terminal differentiation

of effector T cells and helps to maintain memory cell properties (Intlekofer et al.,

2005; Banerjee et al., 2010). In memory CD8+ T cells, T-bet and Eomes are reported

to cooperatively regulate IL-2Rβ (also known as CD122) expression which enables

IL-15-mediated signaling and homeostatic proliferation (Intlekofer et al., 2005).

CD122 expression was decreased upon deletion of Eomes but increased in the

absence of T-bet in NK cells. As CD122 is the rate-limiting factor for the use of IL-15,

this could explain why there are so few NK cells in Eomes-KO mice. Our ChIP-seq

analysis showed that both T-bet and Eomes can bind to CD122 in the promoter

region indicating a competitive role of DNA binding of T-bet and Eomes. Whether the

binding is activating or repressive requires further information like additional histone

modification. However, we show that deletion of either T-bet or Eomes promotes in

vivo NK cell proliferation but decreases survival under stimulation of IL-15 in vitro.

Furthermore, Bhlhe40 is another transcription factor positively regulated by Eomes

based on the RNA-seq analysis. A recent study suggested that Bhlhe40 could be

especially important for memory CD8 T cells through the control of bioenergetic

metabolism and critical for T cell responsiveness following anti-PD-L1 blockade (Li

et al., 2019). Therefore, Eomes may interfere the metabolism of NK cell through
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regulating Bhlhe40, as a strong defect of survival in Eomes-deficient NK cells was

also detected. How T-bet and Eomes are driving the clonal proliferation of NK cells

remains to be elucidated.

5.1.4 T-box family and cytokine signaling

In our study, we demonstrated that upon a 24h-stimulation of IL-12 and IL-18, T-bet

levels increased while Eomes levels tended to decrease, opening the possibility that

cytokine signals in the microenvironment might determine the balance between

Eomes and T-bet. The effect of IL-12 in inducing T-bet expression and repressing

Eomes was also reported for effector CD8 T cells in part through inhibition of the

transcriptional activator forkhead box O1 (FOXO1) (Takemoto et al., 2006; Joshi

et al., 2007). IL-2 stimulation induced Eomes expression but not T-bet in CD8 T cell in

vitro (Pipkin et al., 2010). Moreover, TGFβ signaling resulted in T-bet and Eomes

downregulation specifically in tissue-resident memory T cells and, reciprocally, T-box

proteins controlled TGFβ cytokine signaling (Mackay et al., 2015). Taken together,

T-bet and Eomes can be regulated by different cytokines although few studies were

performed in NK cells. As different combinations of cytokines might exist in different

niches (homeostatic or inflammatory, lymphoid tissue or non-lymphoid tissue), it could

explain how distinct patterns of T-bet and Eomes expression may occur. By

modulating the balance between Eomes and T-bet, cytokines could therefore change

NK cell maturation states, even though this point deserves further investigation.

5.1.5 Working model of T-bet and Eomes actions

T-bet and Eomes are the only T-box TF members expressed in the immune system

and belong to the same Tbr1 subfamily based on the conservation of the T-box

binding domain. The high identity between T-bet and Eomes in the T-box region

results in great similarities in DNA-binding sites as previously reported in activated

CD8 T cells (van der Veeken et al., 2019) and which we confirmed through our

ChIP-seq analysis on NK cells here. Yet, about one-third of T-bet or
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Eomes-associated peaks were specific, according to the statistical analysis that was

used during the peak calling bioinformatics procedure. However, upon visual

inspection of these specific peaks, the difference in peak height between ChIP-seq

tracks was not always obvious. This could be due to the low expression of

endogeneous TFs and thus more experiments would be needed to formally

demonstrate the specificity of T-bet and Eomes binding.

Comparisons between TF binding events and expression profiling data in NK cells,

revealed a relatively small overlap between TF occupancy and the expression of

neighboring genes, with around 27% for both T-bet and Eomes. Previous studies

have demonstrated that this overlap was 50% of TF binding events in yeast (Gao

et al., 2004) and 10-25% in mouse (Vokes et al., 2008). This suggests that not all TF

binding events are indeed functional and the vast majority of individual binding events

may merely reflect chromatin accessibility (Li et al., 2011). Therefore, although some

TF binding events do not lead to an immediate response in terms of gene expression,

they may have a functional role in chromatin remodeling.

Moreover, our study suggested that T-bet and Eomes binding sites are mostly regarded

to be indirect as Runt and Ets motifs are enriched under TF binding peaks. Several

lines of evidence have already demonstrated the cooperation between both T-bet and

Eomes and Runx3 during CD8 T cell differentiation (Istaces et al., 2019; Cruz-Guilloty

et al., 2009). In NK cells, two studies revealed the potential binding between Runx3

and T-box family based on Runx3 ChIP-seq assay on NK cells (Lotem et al., 2013;

Levanon et al., 2014) suggesting a similar cooperation of T-box proteins and Runx3 in

NK cells.

Surprisingly, we found an anti-correlation between T-bet and Eomes protein levels in

NK cells. On one hand, Eomes expression dropped during maturation while T-bet

rose, and vice versa. On the other hand, the level of each factor decreased in the

absence of the other one. Moreover, ectopic expression of T-bet results in a lower

Eomes level in NK cells (Daussy et al., 2014) demonstrating that T-bet and Eomes

repress each other’s expression. Taken together, these data suggest that both TFs act

in a complementary manner as one factor might compensate for the absence of the

other during maturation. Another explanation for the "antagonized" effect might be due
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to a dose-dependent effect which means that NK cells need to keep at a stable level

of total T-box family proteins.

In the context of embryonic development and cell differentiation, many pioneer TFs,

which were first identified in yeast (Almer et al., 1986), initiate the assembly of

transcriptional complexes or nucleosome repositioning so as to increase accessibility

for other factors. Pioneer factors can bind to DNA that is inaccessible to other factors

(presumably motifs that are within nucleosomal DNA or where the DNA exits the

nucleosome) and can recruit chromatin remodeling complexes that lead to

nucleosome repositioning (Spitz and Furlong, 2012).

Figure 26. Working model for Eomes and T-bet. Eomes may act as a pioneer factor that
opens the chromatin region at early maturation stages. After chromatin remodeling, T-bet either
(A) competes with the same binding site as Eomes or (B) binds to a different motif.

In our case, we found that Eomes regulates genes mainly associated with immature

signature while T-bet participates in regulating mature signature genes of NK cells

both transcriptionally and epigenetically. Eomes is expressed at a high level at

immature stage while T-bet expression gradually increases upon terminal maturation.

Moreover, more OCRs are detected in mature NK cells (1315) than immature ones

(714). Collectively, we propose that Eomes, as a pioneer factor, directly or indirectly

(e.g. via Runx3) binds to some inaccessible loci at the immature stage, opens the

chromatin region, and facilitates the loading of T-bet either through competition or

through co-bound regions (Figure 26). T-bet would then stabilize gene expression —
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as is the case for Prf1, GzmA or S1pr5- or in other cases recruit a repressing

transcriptional complex (Zeb2, Blimp1, NCOR1 etc) that would switch off transcription

— this would be the case for CD27, CXCR3, CD69 and others.
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5.2 Project 2: Zeb1 in iNKT cell development

Here, thanks to the use of different transgenic models, we demonstrated an essential

role of Zeb1 in regulating T cell development and selection at the DN2 and DP

stages. In vivo EdU incorporation and in vitro survival assay in Cellophane mice

indicated that Zeb1 is involved in regulating cell proliferation and survival especially at

DN2 and DP stages. In addition, Zeb1 dampens TCR signal strength at the DP stage

in Cellophane mice. Further transcriptomic analysis on DP cells from WT and

Cellophane mice uncovered a broad array of regulated genes related to TCR signal

and cell proliferation. In addition, there are several intriguing points that are worth

discussing here.

5.2.1 Cellophane and Zeb1∆13/+ mice

Zeb1∆13/+ mice have a decreased number of DP cells with increased proliferation,

and lower TCR signaling. We failed to detect differences in calcium flux or Akt/S6

phosphorylation between Zeb1∆13/+ and control DP upon stimulation. However, we

reproducibly found a reduced expression of Nur77 in Zeb1∆13/+ DP compared to

control DP, evocative of decreased TCR signal strength. This effect could decrease

positive selection in T cell development in Zeb1∆13/+ mice, which would explain the

reduction in DP numbers. We also observed a slight increase in thymic iNKT cells

that could be due to the overall decrease in TCR signaling. Yet, we did not observe

increased numbers of peripheral iNKT or NK1.1+ γδT cells or Ly49+ CD8 T cells, as

could have been expected from the decreased TCR signaling. Increased Zeb1

expression in mature T cells and in particular innate-like T cells in Zeb1∆13/+ mice

could therefore also negatively impact their survival. The most robust phenotype in

Zeb1∆13/+ mice appeared to be the increased proliferation of DP. This demonstrates

that a major function of Zeb1 is to sustain proliferation of DP thymocytes. Interfering

with this function is obviously expected to have important consequences on the

thymic general output. However, we did note a decreased calcium response of

Zeb1∆13/+ CD4+ SP thymocytes compared to control SP, and the distribution of

thymic iNKT subsets from Zeb1∆13/+ mice was consistent with decreased TCR
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signaling. Thus, several lines of evidence indicated a decreased TCR signaling in

developing T cells from Zeb1∆13/+ mice as a consequence of increased Zeb1

expression.

Overall, the two Zeb1 mutant mouse models advanced our understanding on the

function of Zeb1. In terms of expression, Zeb1 is decreased in Cellophane and

increased in Zeb1∆13/+ mice indicating an opposite effect on these two transgenic

mice. However, we should keep in mind that the Zeb1 mutation sites in Cellophane

and Zeb1∆13/+ mice are different. The point-mutation in the C-terminal zinc finger

domain of Zeb1 gene in Cellophane creates a pre-stop codon resulting in a truncated

form of Zeb1 lack of C-teminal zinc finger, while Zeb1∆13/+ mice harbor a

13bp-deletion in the first intron which is supposed to be a Myb binding site. What was

observed in Cellophane mice is likely the consequence of the truncation of the

C-terminal ZF domain, while the defects shown in Zeb1∆13/+ mice might be more

related to disturbed transcriptional regulation. c-Myb is expressed throughout T cell

development in the thymus and Myb mRNA expression is upregulated as thymocytes

differentiate from the double-negative into the metabolically quiescent, small,

preselection DP stage during T cell development (Yuan et al., 2010). Using a

conditional knockout model, Myb was demonstrated to be essential for T cell

differentiation including 1) transition through the double-negative 3 stage, 2) survival

of preselection CD4+CD8+ thymocytes, and 3) differentiation of CD4 thymocytes

(Bender et al., 2004). Another study showed that Myb was also involved in priming

CD4+CD8+ DP cells for selection into the iNKT lineage (Hu et al., 2010). Intriguingly,

Myb-deficient DP thymocytes undergo premature apoptosis in an αβ

TCR-independent manner with decreased Bcl-xL expression (Yuan et al., 2010).

Therefore, it would be interesting to analyze if the decrease of DP population found in

Zeb1∆13/+ mice is also related to increased apoptosis through Bcl-xL.

However, Myb-KO mice do not phenocopy Zeb1∆13/+ mice. In Myb KO mice, a strong

decrease of NKT cells was reported both in terms of frequency and number (Hu

et al., 2010). In Zeb1∆13/+ mice the number of iNKT cells was decreased but their

frequency rather increased in the thymus. Therefore, the association between Zeb1

and Myb deserves further investigation and Myb likely has Zeb1-independent effects
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that contribute to T cell development. Additionally, the Zeb1∆13/+ mice that were used

here were all heterozygotes as no homozygous offspring was obtained suggesting a

stronger effect in Zeb1∆13/+ mice than in Cellophane mice. Moreover, since we only

backcrossed 3-6 times on the C57BL/6 background before use, the difference

between mouse strains might complicate the interpretation. More experiments are

thus required using Zeb1∆13/+ mice with a cleaner background.

5.2.2 Splenomegaly, fibrosis and ILCs

Despite their defect in T cell development, Cellophane mice have an enlarged spleen

with disordered red pulp and white pulp compared to the control which might be due

to "hypersplenism". "Hypersplenism" is a common disorder characterized by an

enlarged spleen, which causes rapid and premature destruction of blood cells (Lv

et al., 2016). Although the physiopathology of hypersplenism is still poorly

understood, several mechanisms might be involved such as enhanced macrophage

phagocytosis, upregulation of cytokines or autoimmunity (Lv et al., 2016). Malfunction

of B cells due to dysregulation of cytokine profiles is also associated with

"hypersplenism" (Charrier et al., 2013). Cellophane mice were first reported to have

humoral defects via both T-dependent and T-independent pathways. B-cell

development in the bone marrow of Cellophane was normal in that the frequencies of

pro-/pre-, immature, and mature B cells were equivalent between age- and

sex-matched WT and mutant mice. However, Cellophane mice lacked discrete

populations of MZ B cells in the spleen and had severely reduced frequencies of

peritoneal B1 B cells (Arnold et al., 2012). And in our microscopic examination, B

cells were found disorganized in spleen as well. Whether B cells are essential for the

splenomegaly requires formal demonstration.

Spleen stiffness — supposed to be due to fibrosis — is another intriguing

phenomenon. Although the pulmonary fibrosis has been wildly investigated, the

mechanism of splenic fibrosis remains largely unknown. Emerging evidence showed

that ILCs and unconventional T cells contribute to a variety of chronic lung diseases

including pulmonary fibrosis, allergic airway inflammation, and chronic obstructive
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pulmonary disease (COPD) (Borger et al., 2019; Ardain et al., 2019). Epithelial

cell-derived mediators are critical in the regulation of ILC responses. For example,

IL-33 has been shown overexpressed in lungs of patients with pulmonary fibrosis and

was supposed to be a main driver for ILC2 expansion (Lee et al., 2017). Moreover,

ILC2-deficient mice had increased IL-33 expression providing evidence of an

essential role for ILC2s in airway fibrosis and lung remodeling processes (Donovan

et al., 2019). ILC3s can secrete fibroblast activating cytokines like IL-17 and elevated

levels of IL-17 have been observed in patients with cystic and pulmonary fibrosis

(Saleh et al., 2009; Brodlie et al., 2011). Therefore, the mechanisms underlying

fibrosis could be a combination of multiple immune defects. In our study, we initially

found that Cellophane mice have an increased number of ILC subsets in the spleen,

which might be the cause of fibrosis which could in turn promotes the ILC2

expansion. However, in BM chimera mice we did not observe the same effect in

terms of ILC2 frequency in the spleen suggesting a cell-extrinsic effect of the

Cellophane mutation. Together, more studies are required to understand if the

truncated form of Zeb1 also abrogates the cytokine profiles of epithelial cells or other

immune cells like myeloid cells that could contribute to fibrosis.

Similarly, loss of ZEB2 specifically in the murine adult hematopoietic system also

results in BM fibrosis and splenomegaly with enlarged spleens containing a

significant infiltration of hematopoietic stem cells and megakaryocyte/erythroid

progenitor cells, indicative of extramedullary hematopoiesis that resemble human

myeloproliferative disorders and some other models of myeloproliferation disordersm

particularly GATA1low mice (Wu et al., 2016; Li et al., 2017). Global gene expression

and intracellular signal transduction analysis revealed perturbations in specific

cytokine and cytokine receptor–related signaling pathways following Zeb2 loss,

especially the JAK-STAT and extracellular signal-regulated kinase pathways (Li et al.,

2017). Based on this, it would be interesting to study cytokine secretion and

progenitor cells in Zeb1 transgenic mice.

Moreover, as a regulator of proliferation, differentiation, apoptosis in various cells,

transforming growth factor-β1 (TGF-β1) is considered as a crucial mediator of

fibrogenesis involved in renal fibrosis, hepatic fibrosis and pulmonary fibrosis (Chen
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et al., 2018; Eser and Jänne, 2018; Katz et al., 2016). TGF-β1 also induces tissue

scarring largely by activating its downstream Smad signaling (Figure 27) (Meng et al.,

2016; Hu et al., 2018). Smads mostly exert their functions through post-translational

modifications such as phosphorylation, acetylation, sumoylation, ubiquitination and

protein-protein interactions (Hu et al., 2018). The transcription factor Zeb1 also

contains a SMAD-binding domain (SBD) which might contribute to fibrogenesis.

Figure 27. TGF-β/Smad pathway involved in fibrogenesis. Many studies have
demonstrated that dysregulation of TGF-β1/Smad pathway was an important pathogenic
mechanism in tissue fibrosis. Smad2 and Smad3 are the two major downstream regulator
that promote TGF-β1-mediated tissue fibrosis, while Smad7 serves as a negative feedback
regulator of TGF-β1/Smad pathway thereby protects against TGF-β1-mediated fibrosis.
Adapted from Hu et al. (2018).

5.2.3 Zeb1 and lymphoma

Zeb1 is best known for its role in epithelial-to-mesenchymal transition (EMT) through

the repression of epithelial genes during embryonic development (Vandewalle et al.,

2005). Zeb1 also influences tumor progression and metastasis as depletion of Zeb1

suppresses stemness, colonization capacity (Krebs et al., 2017; Spaderna et al.,

2008). The Zeb1 genomic region was frequently deleted in cutaneous T cell

lymphomas (CTCLs) in a cohort of 43 patients and the survival analysis shows a
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worse clinical course for patients with ZEB1 biallelic inactivation, indicating that ZEB1

germline variants might contribute to the risk of developing this disease (Caprini et al.,

2018). By further comparing the gene expression patterns of Zeb1-deficient and

Zeb1-expressing patients, Zeb1 absence was reported to be associated with the

dysregulation of multiple pathways including the reactive oxygen species production

and cell viability and apoptosis (Caprini et al., 2018). Moreover, dysregulation of

ZEB1 expression was frequently found in adult T-cell leukemia/lymphoma (ATLL)

patients compared to healthy people (Figure 28) (Hidaka et al., 2008). Interestingly, a

transgenic mouse model lacking Zeb1 COOH-proximal zinc finger clusters (δEF1),

mice were found to develop lymphoma with a median onset of disease of 30 weeks

after birth and an earliest onset at 95 days after birth (Hidaka et al., 2008). Half of the

mice died within a year, and 84% of them developed fetal T-cell lymphomas. Two

types of lymphoma were observed in these mice: (1) periphery lymphomas with or

without ascites, and (2) thymic tumors (Hidaka et al., 2008).

In the Cellophane colony, we sometimes observed mice with a highly enlarged

abdomen due to ascites at old age. It would be interesting to determine if these

ascites are caused by an underlying lymphoma. However, not all the phenotypes are

consistent between Cellophane and δEF1 mice, e.g. the size of thymus in the

Cellophane is always smaller than the control while δEF1 mice had large thymic

tumors with a diameter of 1 to 3cm (Hidaka et al., 2008). A recent study showed that

Zeb1 expression was induced by TGF-β in conventional CD8 T cells stimulated

through the TCR and was essential for memory T cell survival and function (Guan

et al., 2018). TGF-β1 deficient mice showed a defect in the selection and maturation

of thymocytes with a reduction in DP and an increase in DN and CD4+ in older

knock-out mice (Licona-Limon and Soldevila, 2007). ATLL cells were resistant to

growth inhibition by TGF-β1 even when treated with high levels of TGF-β1 (Kim et al.,

1990; Arnulf et al., 2002). Although we failed to detect any effect of recombinant

TGF-β on Zeb1 expression in thymocytes (data not shown), it would be interesting to

further investigate the link between Zeb1, TGF-β and tumorigenesis.
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Figure 28. Down-regulated expression of Zeb1 (TCF8) in ATLL cells. (A) The expression
profiles of Zeb1 mapped within the deletion region at 10p11. Semiquantitative reverse-
transcription PCR (RT-PCR) was performed to measure the expression of Zeb1 mapped
within the deletion region. (B) Quantitative RT-PCR analysis of ZEB1 mRNA in 4 samples
of CD4+ T lymphocytes from healthy volunteers and 8 samples of ATLL cells from patients.
(C) Quantitative RT-PCR analysis of ZEB1 mRNA in various types of T lymphoblastic leukemia
cell lines. MOLT4, MKB1, KAWAI, and Jurkat are T-lymphoid leukemia cell lines; MT2 and
HUT102 are HTLV-1–infected cell lines; and ED, KOB, KK1, SO4, S1T, and Su9T are ATLL cell
lines. Three ATLL cell lines (indicated by ∗) showed the deletion of chromosome 10p11.2 with
ZEB1. Adapted from Hidaka et al. (2008).

5.2.4 Zeb1 and E-proteins

The E-protein Heb (encoded by Tcf12) was among the top 3 genes best coregulated

with Zeb1 (refer to Article 2 Figure S1B) (Heng et al., 2008). Heb is well known for its

important roles throughout T cell development (Jones and Zhuang, 2011), especially

at the DP stage (Emmanuel et al., 2018), which further supports a role for Zeb1 at the

DP developmental stage. Many similarities were observed in the phenotypes of

Tcf12-deficient (D’cruz et al., 2010) and Cellophane mutant mice, particularly the

susceptibility of DP cells to cell death and the impaired development of iNKT cells.

Moreover, microarray data from the ImmGen consortium suggest that Tcf12 and Zeb1

are strongly coregulated (Figure 29), and ATAC-seq data predict that they control

chromatin accessibility during thymic T cell development together with Gata3, Tcf1,
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Lef1, and Zfp740 (Figure S4) (Yoshida et al., 2019). Altogether, these data suggest a

Figure 29. mRNA expression of Tcf7, Tcf17 and Zeb1. Microarray data extracted from
Immgen consortium (http://www.immgen.org) on Tcf7, Tcf1 and Zeb1 expression during T cell
development. Results show that the expression patterns of these three factors are similar,
especially highest at DP stage.

strong functional link between Zeb1, Heb, and perhaps Tcf1 (also called Tcf7), which

acts in coordination with Heb (Emmanuel et al., 2018). Similar to Tcf1 and Heb, Zeb1

is also known to bind tandem E-box motifs. A competition between Zeb1 and E

proteins for the same binding sites has already been suggested to play a role in the

control of GATA3 expression in human CD4 T cells (Grégoire and Roméo, 1999).

Such a competition has also been established in the context of the CD4 enhancer,

which is repressed by Zeb1, through competition with Heb for E-box binding (Brabletz

et al., 1999). Moreover, Zfh-1 and Daughterless, the Drosophila homologs of mouse

Zeb1 and Tcf12, are also known to compete for the same genomic sites (Postigo

et al., 1999). These observations support a model whereby Zeb members and E

proteins compete for DNA binding at dedicated motifs.

Moreover, by using a conditional knock-in mouse model expressing ET2 (a fusion

protein between the transactivation domains of E-protein E47 and the bHLH domain

of SCL/Tal1), it was demonstrated that E proteins could control a novel checkpoint

that regulates the number of iNKT precursors resulting a block in the development of

iNKT1 cells and a parallel increase in the iNKT2 and iNKT17 cells, which

recapitulates the phenotype in Cellophane mutant mice (Hu et al., 2013). Further

work will be needed to precisely map the interactions between Zeb1 and E proteins.

The regulatory network may also include inhibitors of the differentiation genes Id2 and
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Id3, which are TFs that bind and inactivate E proteins, thereby regulating their

function. Id2 deficiency impairs hepatic iNKT cell survival (Monticelli et al., 2009).

Moreover, a deficiency in Id3 has the same impact on NK1.1+γδ T cells as a

deficiency in TCR signaling (Alonzo et al., 2010), which indicates a links between

both factors.

5.2.5 Zeb1 and iNKT cells

iNKT cell development includes discrete stages (stages 0–3) that can be

discriminated according to CD44 and NK1.1 expression (Benlagha et al., 2002;

Pellicci et al., 2002). Three functionally distinct iNKT cell subsets have also been

identified: iNKT1 cells, which express T-bet and mainly secrete IFN-γ; iNKT2 cells,

which express Gata3 and Plzf and secrete IL-4 and IL-13; and iNKT17 cells, which

express Rorγt and secrete IL-17 (Lee et al., 2013). iNKT1 cells more or less

correspond to stage 3 iNKT cells (Figure 30) and in Cellophane mice there are less

Figure 30. Constitution of different stages in iNKT subsets. iNKT cells were first divided
into three populations based on different transcription factor expression (T-bet, Rorγ, Plzf,
Gata3). In different subset, maturation marker CD44 and NK1.1 were utilized to gate different
stage2 or iNKT cells. iNKT cells were dominately occupied by cells at stage 3, while others
consist of cells from all the four stages.

mature iNKT cells at stage 3 and less iNKT1 cells. Several other iNKT subsets have

been defined such as IL-10-producing iNKT10 cells (Sag et al., 2014), and

IL-21-producing Bcl-6+ NKT-FH (follicular helper) cells (Chang et al., 2012). The TCR

signal strength during selection governs the development of iNKT cell subsets, with

stronger signals required for iNKT2 and iNKT17 development (Zhao et al., 2018).
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Different thymic iNKT subsets are thought to play distinct roles in the immune

response on the basis of their cytokines. The diverse cytokines expressed by iNKT

cells profoundly influence many other cell types including NK cells, DCs, B cells and T

cells (Brennan et al., 2013). According to our study, we came to the conclusion that

the disturbed TCR signaling in T cell progenitor would contribute to the

disproportional iNKT cell subsets in both Cellophane and Zeb1∆13/+ mice. However,

whether cytokine expression is also dysregulated in Cellophane iNKT cells and

further interferes with other cell functions both in homeostatic and inflammatory

conditions remains an open question.
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6 Conclusion and perspectives

6.1 Conclusion

Project 1: T-bet and Eomes in NK cell development

In this research project, we wanted to understand the relationship between T-bet and

Eomes during NK cell development and maturation using transcriptomic and

epigenetic approaches. Even though Eomes and T-bet are co-expressed in NK cells,

the ratio between both factors changes during maturation from a dominance of

Eomes in immature cells towards a dominance of T-bet in mature ones. Eomes was

required for the first transition from CD11b− to DP, while T-bet was required for the

second transition DP to CD27−. Deletion of either factor induced expression of the

other one, which indicates compensation between T-bet and Eomes (Figure 31). Both

Figure 31. Eomes and T-bet are sequentially required for NK cell maturation. Eomes and
T-bet controls different transitions during NK cell maturation. They also have complementary
roles in the control of gene expression upon maturation as T-bet and Eomes regulate mostly
distinct gene sets and at different maturation stages both transcriptionally and epigenetically.
Whether T-bet and Eomes antagonize each other requires further investigation.

factors regulated cell proliferation and promoted survival sequentially. Eomes acts

more often as an activator of transcription inducing the expression of many NK cell

signature genes such as NK cell receptors at the immature stage, while T-bet acts

more frequently as a repressor decreasing the expression of many T cell or
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progenitor genes at the mature stage. The latter activity is associated with

T-bet-specific ability to induce a series of transcriptional repressors such as Zeb2 and

Blimp1. Using newly generated mouse models expressing endogenously-tagged

T-bet and Eomes, we performed genome-wide analysis of T-bet and Eomes binding,

and combined it with analysis of chromatin accessibility using ATAC-seq. This

comprehensive analysis showed that Eomes and T-bet binding sites are largely

overlapping, and motif analysis on peaks found by T-bet and Eomes suggested that

both factors require binding to co-factors (e.g. Runx and Ets family) allowing

TF-specific activity. Moreover, analysis of chromatin accessibility revealed that certain

NK cell signature genes and maturation-acquired properties are largely dependent on

Eomes and T-bet modulation. All in all, this study reveals a complementary role of

Eomes and T-bet in NK cell maturation program.
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Project 2: Zeb1 in iNKT cell development

In this project, we revealed the role and mechanism of Zeb1 in unconventional T cell

development. In Cellophane mutant mice harboring a truncated form of Zeb1, we

discovered a general decrease of unconventional T cells (i.e. iNKT cells, NK1.1+ γδ T

cells and Ly49+ CD8 T cells) in terms of numbers and percentages in Cellophane

mice while the number of conventional T cells was nearly normal at the periphery.

These defects are associated with a major decrease in CD4−CD8− DN stage 2 and

Figure 32. Zeb1 is essential for NK1.1+ T cell development. Cellophane homozygous mice
virtually lack iNKT cells, NK1.1+ γδ T cells and Ly49 expressing CD8 T cells. This specific
defect in innate-like T cells is caused by a cell-intrinsic role of Zeb1 in T cell development. We
show that Zeb1 regulates the transition to the SP stage by promoting cell proliferation, survival
and repressing the expression of various molecules involved in modulating the strength of
TCR signaling. Therefore, we propose that Zeb1 is a key regulator of thymocyte selection,
essential for the development and survival of innate-like T cell subsets undergoing agonist-
type selection.

CD4+CD8+ DP thymocytes as Zeb1 expression is induced in DN2 stage and is

highest at DP stage among T cell subsets. Mechanistically, Zeb1 promoted survival

and proliferation in both populations in a cell-intrinsic manner. Indeed, Cellophane DP

displayed stronger signaling than WT DP upon TCR engagement in terms of calcium

response, phosphorylation events and expression of early genes. A transcriptomic

analysis of WT and Cellophane DP revealed that Zeb1 regulated the expression of
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multiple genes involved in cell cycle and TCR signaling, possibly in cooperation with

Tcf1 and Heb. Thus, Zeb1 is a key regulator of cell cycle and TCR signaling during

thymic T cell development. We propose that thymocyte selection is perturbed in

Zeb1-mutated mice, in a way that does not allow the survival of unconventional T cell

subsets.

169



6 Conclusion and perspectives 6.2 Perspectives

6.2 Perspectives

Project 1: T-bet and Eomes in NK cell development

1) Will the DNA binding profiles of T-bet and Eomes change upon NK cell

maturation? By performing ChIP-seq analysis on bulk NK cells from T-bet-HAV5 and

Eomes-HAV5 mice, we identified many interesting DNA loci that are associated with

the two T-box factors. And many genes detected from ChIP-seq are transcriptionally

deregulated as well according to the RNA-seq data. However, the data from bulk NK

cells might create some bias as spleen NK cells are mostly mature NK cells.

Comparing DNA binding sites in both mature and immature NK subsets would allow a

better understanding of the relationship between T-bet and Eomes in NK cells.

2) Will there be any difference between T-bet and Eomes in terms of interacting

partners? In our study, we demonstrated that T-bet and Eomes share lots of

similarities and differences in terms of DNA-binding and transcriptional regulation.

Therefore, we speculate that T-bet and Eomes might also have preferences in

interacting with different co-factors (e.g. Runx3). And whether T-bet and Eomes can

bind to each other would be an interesting point to clarify. With the advance of

technology, the limited cell number would not be a problem anymore to address this

point using mass spectrometry-based proteomic analysis.

3) Is there any difference in chromatin accessibility between the promoter and

enhancer region in NK cells? Combining the ChIP-seq and ATAC-seq, we found

that Eomes and T-bet separately regulate the epigenetic landscape of NK cells in

different maturation stages. In-depth analysis is now required to study the promoter

vs enhancer regions to get more information. Moreover, different histone hallmarks

(e.g. H3K27ac3, H3K4me1) could be used to annotate the open chromatin loci as

either activating or repressive to generate a more sophisticated map.

4) How does Eomes regulate NK cell circulation? We identified that Hobit, a master

regulator of tissue residency, is negatively regulated by Eomes at the mRNA level.

In conditional Eomes-knockout mice model, NK cell distribution in different tissues is

dramatically disturbed. An in-vivo tracing system using anti-CD45 would probably be
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ideal to determine whether the circulation of NK cells is perturbed in Eomes KO mice.

Whether Hobit act downstream of Eomes to regulate NK cell circulation remains also

an open question.

5) How does T-bet regulate NK cell effector functions? A functional annotation

of T-bet regulated genes highlight cytokine responsiveness (e.g. IL-12). And it was

confirmed that in the absence of T-bet, NK cells had the a defective ability to respond

to IL-12 in terms of pSTAT4 induction and IFN-γ expression. RNA-seq data showed

that IL-12R expression is dependent on T-bet, but we failed to detect the same effect at

the protein level by flow cytometry (data now shown). Would T-bet deficiency dampen

the responsiveness of NK cells to other cytokines (e.g. IL-21 and other)? A more

comprehensive in vivo and in vitro analysis is needed to address this point.

6) How do T-bet and Eomes localize in NK cells? With our preliminary microscopic

images, we realized that T-bet and Eomes largely colocalized in NK cells which raised

questions about whether T-bet and Eomes localization determines the fate of NK cell

development and maturation. It would be of great interest to track the T-bet and

Eomes localization (i.e. cytoplasmic, nuclear, subnuclear) in NK cell subsets as T-bet

and Eomes regulate different gene patterns. More information would be gained if

histone markers were added in our analysis to discriminate the activating and

repressive sites between NK subsets. Moreover, 3D images would definitely help

elucidating the colocalization between T-bet and Eomes. A live imaging could also be

interesting.

7) What is the respective roles of T-bet and Eomes in NK cell effector functions

and polarization in disease models (e.g. MCMV)? So far, our study only focused

on the role of T-bet and Eomes in NK cell in the naive situation. We are curious

about how these two factors would work in disease models like virus infection and

tumors. Would they display similar mechanisms of action in terms of DNA-binding,

chromatin regulation and interaction with co-factors? All these points deserves further

investigation.
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Project 2: Zeb1 in iNKT cell development

1) Is there a role for Zeb1 in early T cell precursors? Zeb1 is an essential factor

involved in EMT which is related to stemness and embryonic development. In

addition, the fact that Zeb1−/− mice die after birth raised the question of the

relationship between Zeb1 and early T cell progenitor like common lymphoid

progenitors (CLPs), and the possibility that the defect of T cell development in Zeb1

mutant mice might also involve early defects in BM progenitors.

2) Does Myb regulate Zeb1 expression and function? As discussed above, Zeb1

deletion in Zeb1∆13/+ mice is reported to encompass a Myb binding site. To further

document this, we could design specific oligos to perform oligo pull-down or EMSA

assay to test the binding between Myb and the first intron of Zeb1 gene. Whether

Zeb1 expression is disturbed in Myb knockout mice would be another point to study

carefully at both mRNA and protein levels.

3) Are Cellophane and Zeb1∆13/+ mutation loss-of-function and gain-of-function

respectively? Zeb1 expression is increased in Zeb1∆13/+ mice, while it is decreased

in Cellophane mice. Our study found that Cellophane and Zeb1∆13/+ mice have

opposite phenotypes in terms of TCR signaling in DP, iNKT cell percentages in

thymus. To obtain Cellophane+/− X Zeb1∆13/+ mice might be a way to better

understand the two different mutations. Would the expression of Zeb1 and defect in T

cells development be restored to normal?

4) Does Zeb1 regulate the T cell development at the epigenetic level? To

understand if Zeb1 could directly regulate gene transcription, we retrieved the data

from Immgen of all the OCRs that are predicted to have a binding site for Zeb1. By

comparing with our transcriptomic data on DP cells, a strong overlap was found

between the two lists indicating that Zeb1 could regulate gene expression through

direct binding. However, a confirmation is needed using Zeb1 ChIP-seq or ATAC-seq

of Zeb1 mutant cells to better map which genes are directly regulated, positively or

negatively by Zeb1.

5) Are ILCs associated with splenic fibrosis in Cellophane mice? Several studies
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have demonstrated that ILC cells participate in tissue fibrosis, and we found that ILC2

and ILC3 were increased in Cellophane spleen. But it remains to be clarified whether

ILCs are the direct cause of the fibrosis and how ILCs affect fibrosis. Are cytokines

secreted by epithelial cells or other immune cells like myeloid cells involved in fibrosis?

Moreover, the decrease of ILCs in spleen was not observed in chimera mice. There

might be two explanations for this. First, the survival rates of WT and Cellophane BM

cells are uneven, which biases the results. Thus, the chimera assay with single donor

from either WT or Cellophane BM is needed. Secondly, the dysregulation of ILCs are

partly due to cell-extrinsic effect suggesting that epithelial cells can also contribute to

ILC increase in Cellophane spleen.

6) Zeb1 and lymphoma? Deletion of Zeb1 is frequently found in lymphoma including

CTCL and ATLL. In addition, we did observe few old Cellophane mice with enlargement

of abdomen due to ascites, which could be due to lymphoma. It would be interesting to

collect these ascites and measure the percentages of CD4+ T cells or other cell types.

Additionally, we could also set up a lymphoma animal model using WT and Cellophane

to test if Zeb1 mutated environment is more permissive for lymphoma progression.

7) Is Zeb1 important for iNKT cell function? In both Cellophane and Zeb1∆13/+

mice, iNKT subsets were affected suggesting that the cytokines they express might

be regulated by Zeb1. Different iNKT subsets have the capacity to produce different

cytokines and further mediate immune functions of other immune cells. Therefore, it

would be interesting to analyze the production of different cytokines by iNKT cells in

the different mutant mice in different conditions.
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T-bet and Eomes are T-box transcription factors that drive the differentiation and function
of cytotoxic lymphocytes such as NK cells. Their DNA-binding domains are highly similar,
suggesting redundant transcriptional activity. However, while these transcription factors
have different patterns of expression, the phenotype of loss-of-function mouse models
suggests that they play distinct roles in the development of NK cells and other innate
lymphoid cells (ILCs). Recent technological advances using reporter mice and conditional
knockouts were fundamental in defining the regulation and function of these factors
at steady state and during pathological conditions such as various types of cancer or
infection. Here, we review these recent developments, focusing on NK cells as prototypical
cytotoxic lymphocytes and their development, and also discuss parallels between NK cells
and T cells. We also examine the role of T-bet and Eomes in human NK cells and ILC1s.
Considering divergent findings on mouse and human ILC1s, we propose that NK cells
are defined by coexpression of T-bet and Eomes, while ILC1s express only one of these
factors, either T-bet or Eomes, depending on the tissue or the species.

Keywords: Eomes � ILCs � NK cell differentiation � T-bet � T-box transcription factors

Introduction

The T-box family of transcription factor (TFs) has been named
after the discovery and cloning of the founding member Brachyury
(short-tail in Greek) in a mouse line showing an altered tail devel-
opment [1]. T-box proteins harbor a similar sequence-specific
DNA-binding motif, or T-box domain, which spans 180–200 amino
acid residues. The T-box family of TFs is subdivided in five fam-

Correspondence: Dr. Thierry Walzer
e-mail: thierry.walzer@inserm.fr

ilies classified on the basis of overall homology. Most T-box TFs
have important roles during embryogenesis and development and
are evolutionarily conserved. T-box proteins function as transcrip-
tional repressors or activators and some T-box TFs have both acti-
vation and repression domains that can function in different cel-
lular or promoter contexts [2].

Loss-of-function mutations in the genes encoding for T-box TFs
have been identified in many human syndromes associated with
developmental defects [2]. T-bet and Eomesodermin (Eomes),
encoded by Tbx21 and Eomes, respectively, are the only T-box
proteins expressed in the immune system. Their T-box DNA-
binding domains present a strong degree of identity (Fig. 1A),

C© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji-journal.eu
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Figure 1. T-box domains of Tbet and Eomes and consensus DNA-
binding site. (A) Alignment of human EOMES and T-BET sequences.
The alignment was made using the CLUSTALO program on the Uniprot
website. The red box corresponds to the T-box DNA-binding domain.
Light gray shows amino-acid similarity and dark gray shows amino-
acid identity. The overall identity between EOMES and TBET is 32%.
Both T-box domains show 74% identity while the rest of the proteins
is very different with about 16% identity. (B) Consensus DNA-binding
site of Xenopus Eomes, as determined by sequencing oligonucleotides
binding to in vitro translated proteins [135]. Letter size refers to Eomes-
binding preference.

which suggests that they bind to the same DNA motifs (see Fig. 1B
that shows for example Eomes consensus motif). By contrast, the
sequence identity of other portions is quite divergent, suggesting
that their interacting partners are distinct. Putative partners of
T-bet and Eomes identified by high-throughput techniques support
this hypothesis, as indicated in the reference database Biogrid [3].

T-bet and Eomes: Discovery and their role in mouse
T-cell development

T-bet and Eomes have been first studied in T cells, in which
their expression is inducible upon activation and differentiation.
T-bet is the Th1-lineage-specifying transcription factor. It plays
an important role in regulating IFN-γ production [4]. T-bet not

only promotes Th1 cell differentiation but also prevents the devel-
opment of other T-helper cell lineages. Indeed, in the absence
of T-bet, T-helper cells adopt the functional features of Th2 or
Th17 cells because they fail to repress their genetic programs.
T-bet expression is tightly controlled; IL-12 induces T-bet in a
STAT4-dependent manner [5], while IFN-γ sustains T-bet expres-
sion, which results in a positive feedback loop during Th1 cell
differentiation (see review [6]).

Eomes has first been studied in CTLs, where it was suggested
that Eomes cooperated with T-bet to induce the expression of
CD122, the beta chain of the IL-15 receptor, and to repress Th17-
type cytokine expression [7]. CD122 is expressed by all cyto-
toxic lymphocytes and is essential for their development and
survival [8]. Eomes is expressed at lower levels in CD4 T cells
than CD8 T cells, and its role in CD4 T-cell functions remains ill-
defined. Eomes overexpression rescues IFN-γ production by T-bet
deficient T cells and promotes IFN-γ production [9–11] and cyto-
toxicity [12] in CD4 T cells. Like T-bet, Eomes can also inhibit IL-5
production in memory Th2 cells [13] and repression of Eomes
is necessary for Th17 cell induction [14]. Therefore, most of the
described roles for Eomes in CD4 T cells appear to be redundant
with T-bet. Although it is generally assumed that T-bet and Eomes
play comparable roles in T cells and NK cells, previous studies
have clearly proved context-dependent function of these TFs in
epigenetic regulation [15]. The following sections discuss more
specifically the role of T-bet and Eomes in NK cells and Innate
Lymphoid Cells (ILCs) development and function.

Murine NK cell development and maturation

NK cells are innate lymphocytes that contribute to the early
defense against intracellular pathogens and to the immunosurveil-
lance of tumors. They have been recently reclassified as members
of group 1 ILCs and presented as the innate counterpart of cyto-
toxic CD8 T cells [16]. Indeed, they are endowed with perforin-
dependent cytotoxic properties that can be enhanced upon activa-
tion by IL-15 [17]. NK cells also produce large amounts of IFN-γ
rapidly after pathogen infection, as well as other cytokines and
chemokines that have important roles during the early steps of
the immune response [18]. This property is shared with other
innate lymphocytes such as NKT cells, ILC1, and adaptive lym-
phocytes such as memory CD8 T cells that behave like innate
lymphocytes during the first phases of infections [19]. NK cell
activation is controlled by inhibitory and activating NK cell recep-
tors expressed on the cell surface. Most inhibitory receptors bind
to MHC class I molecules. Hence, MHC-I deficient cells are recog-
nized and killed by NK cells. Three families of NK cell receptors
recognize MHC class I: the primate KIR, the murine Ly49 recep-
tors, and the CD94-NKG2 receptors shared by both rodents and
primates. All three families encode both inhibitory and activating
family members [20].

NK cells develop in the BM from NK cell precursors deriving
from common innate lymphoid precursors [21]. Acquisition of
the NK1.1 epitope marks their commitment to the NK cell lineage.
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Next, they undergo a sequential maturation program that includes
three discrete steps marked by surface levels of CD27 and CD11b.
Immature CD11b− CD27+ NK cells express high levels of NKG2A
and low levels of Ly49 receptors. They are mostly represented
in BM and LN. Upon acquisition of CD11b, NK cells massively
proliferate in the BM [22]. CD11b+ CD27+ and CD11b+ CD27−

NK cells correspond to mature NK cells mainly found in the
periphery, displaying the full repertoire of Ly49 receptors, and
having the highest cytotoxic potential [23, 24]. At the CD11b+

CD27+ stage, NK cells acquire high expression of S1P5, which
binds sphingosine-1 phosphate (S1P) that is carried by albumin
and different blood and lymph lipoproteins, and induces their exit
from the BM to the periphery [25]. In parallel, they also acquire
the expression of CX3CR1 [26] whose ligand, fractalkine, is
expressed on endothelial cells, and progressively lose the expres-
sion of CXCR3 and CXCR4 [27]; while the former is important for
the entry into inflamed LN, the latter retains NK cells in the BM.
This coordinated switch in chemotactic receptors impacts homing,
and as a consequence mature NK cells are mostly circulating in
blood, while immature NK cells are preferentially found within
LN, BM, or nonlymphoid tissues such as the liver. Terminal matu-
ration is also marked by the acquisition of other receptors such as
KLRG1 [28] and CD146 [29], whose function in NK cells is not well
defined.

Regulation and role of T-bet and Eomes during mouse
NK cell development

Early NK cell development

Common ILC precursors lack T-bet and Eomes but express Id2,
as shown using Id2 reporter mice [30]. Upon commitment to the
NK cell lineage, the beta chain of the IL-2/15 receptor (CD122) is
induced. This event occurs before the induction of NK cell recep-
tors, and defines the NK cell precursor (NKp) [31] stage. Runx3
regulates Eomes expression in CD8 T cells and is also expressed
in NKp stage as demonstrated using a Runx3-reporter mouse
model [32]. Other factors such as NFIL3 [33, 34] Ets-1 [35], and
TOX [36] may favor induction of T-bet and Eomes expression
as both TFs are expressed when cells progress to the immature
CD11b− CD27+ stage. However, T-bet expression remains low
until NK cells are released from the BM to the periphery. Interest-
ingly, T-bet expression is actively repressed in the BM, and mature
NK cells recirculating to this compartment rapidly decrease their
T-bet expression [37]. This repression may be important to pro-
mote NK cell turnover as T-bet deficient NK cells display a high
proliferation rate [38].

Regulation of CD122 and NK cell proliferation

At the NKp stage, T-bet and Eomes are weakly expressed in the
BM, suggesting that CD122 induction is not firmly dependent on

T-bet and Eomes during commitment to the NK cell lineage, as
it is the case of CD8 T cells [7]. Consistently, CD122hi NKp and
a few NK cells are present in mice deficient for both Eomes and
T-bet [45]. However, T-bet and Eomes are essential for correct
regulation of CD122 in mature NK cells in which CD122 expression
is higher in T-bet deficient NK cells, along with Eomes [39]. Since
CD122 expression is a rate-limiting factor for the use of IL-15,
it seems that Eomes might be particularly important to promote
NK cell proliferation via the induction of CD122, which would
explain why there are so few peripheral NK cells in the absence of
Eomes. These data may also suggest that T-bet represses CD122
expression in NK cells. However, CD122 is also expressed on
NKT cells or ILC1s that express T-bet but not Eomes. To reconcile
these seemingly contradictory observations, we propose a refined
model for the control of CD122 expression in which both Eomes
and T-bet would be capable to induce CD122, the former being
more potent than the latter to transactivate CD122 expression,
however, in this model, both TFs would be competing for the same
binding sites. As T-bet represses Eomes expression, this model
might explain why T-bet deficiency leads to high expression of
both Eomes and CD122 [37] and high NK cell proliferation [38]
(Fig. 2A).

Eomes promotes NK cell development and maturation

The role of Eomes in NK cell development has been recently
addressed, when Eomes floxed mice became available. In these
Vav1-Cre x Eomesfl/fl mice, NK cell development is severely
impaired, as evaluated by the absence of NK1.1 or NKp46 pos-
itive cells [40]. In the absence of Eomes, residual NK cells were
originally considered as immature, but probably include many
ILC1s. Since the conventional NK cell lineage is classically defined
by Eomes expression, the discrimination between conventional
but immature NK cells and ILC1s remains problematic in Eomes
deficient mice. Despite this fact, most NK1.1+ cells in Eomes defi-
cient mice express low amounts of CD11b and other maturation
markers, suggesting that Eomes is required not only for NK cell
development but also for NK cell maturation. Besides, transgenic
expression of Eomes in ILC1s is sufficient to induce some attributes
of conventional NK cells such as CD49b expression [41]. In the
absence of Eomes expression (ILC1s or Eomes deficient NK cells),
Ly49 receptors are weakly expressed, implying an important role
of Eomes in either inducing the expression of these receptors or
in opening the chromatin conformation at the Ly49 locus (leuko-
cyte receptor complex). During MCMV infection, Eomes deficient
Ly49H+ NK cells can expand to some extent, suggesting that
inflammatory conditions may partially compensate for the lack
of Eomes in NK cell expansion [40]. This proliferation may be
promoted by IL-12 [42] as this cytokine is a potent inducer of
T-bet. In turn, T-bet may induce CD25 (IL-2Rα) expression on NK
cells [43]. CD25 expression allows NK cells to use CD4 T cell-
derived IL-2 [44] to sustain their proliferation upon infection, a
process limited by regulatory T cells [45], which express high
levels of CD25.
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Figure 2. T-bet and Eomes regulatory mechanisms. (A). Regulation of CD122/IL2Rβ by T-bet and Eomes. In this model, both T-BET and EOMES
would be able to bind to Il2rb promoter and promote transcription, but EOMES would be more potent than T-BET. As both TFs would compete
for the same site, the relative amount of each TF would determine the level of CD122 expression. Moreover, CD122 expression would positively
feedback on its own expression by inducing Eomes expression. (B) Regulation of IFNγ and S1P5 expression by T-bet in NK cells and CD8+ T cells.
IFNγ and S1P5 are both regulated by T-bet. In T cells, it has been shown that IFNγ expression is turned on by promoting chromatin remodeling
involving JMJD3, RbBp5 and CTCF co-factors. Given similarities between CD8 T cells and NK cells at many levels, IFNγ regulation is assumed to
be similar in NK cells. S1P5 expression is induced through a positive feedback loop involving Zeb2: T-bet induces Zeb2 and Zeb2 binding on S1P5
promoter enhances T-bet binding and favors transcription.

T-bet promotes terminal NK cell maturation by cooperating
with Zeb2

T-bet is known to be required for terminal NK cell maturation; in
the absence of T-bet, NK cells express lower levels of CD11b and
the sialoglycoprotein CD43, and have higher expression of the
stem cell factor receptor c-Kit [38]. They also fail to downregulate
CD27 [46] and to upregulate KLRG1 expression [47]. As discussed
above, T-bet is essential for inhibiting NK cell proliferation, likely
through the control of CD122 expression. T-bet also promotes via-
bility through unknown mechanisms. Moreover, T-bet controls NK
cell trafficking; in the absence of T-bet, NK cells accumulate in the
BM and within LN. This may be caused by a decreased expression
of S1P5 [48], which is involved in NK cell exit from the BM and
LN in both mouse [25] and human [49]. Increased expression of
chemokine receptors CXCR3 and CCR2 in the absence of T-bet
may also contribute to this phenomenon [39]. Reduced numbers
of NK cells in the spleen and lung of T-bet deficient animals may
account for the reduced regional control of B16 melanoma [50]
or Toxoplasma gondii [51] upon challenge.

In an effort to identify other TFs involved in NK cell matura-
tion, we recently showed that the Zinc finger containing protein
Zeb2 was also essential for NK cell maturation [39]. Zeb1 and
Zeb2 are TFs that can induce epithelial-to-mesenchymal transi-
tion, an important process for embryonic development and for
tumor metastasis [52]. Zeb1 has been previously shown to be
involved in NK cell development [53] whereas Zeb2 expression
is strongly induced during NK cell maturation. The phenotype of
T-bet and Zeb2-deficient NK cells is very similar, suggesting a
cooperation between these factors in NK cell maturation. T-bet was
found to induce Zeb2, and Zeb2 was important to sustain T-bet

transcriptional activity, in a classical feed-forward loop (Fig. 2B).
Overexpression of Zeb2 in T-bet deficient mice partially restored
NK cell maturation, suggesting that some of the roles attributed to
T-bet may be indirectly mediated via Zeb2 [39]. Blimp1 may also
be part of the T-bet network, as a previous study identified that this
TF is downstream of T-bet [54]. In addition, T-bet deficiency leads
to attenuated IL-15-dependent Blimp-1 expression, hence control-
ling the peripheral maturation and proliferation of NK cells [54].
Blimp1 [55] and Zeb2 [56, 57] are also essential players in the
control of CD8 T-cell differentiation, which highlights the simi-
larity in the transcriptional mechanisms controlling NK and CD8
T cells. In effector CD8 T cells, in the absence of Zeb2, T-bet bind-
ing is altered on many promoters, suggesting that T-bet and Zeb2
act together and co-regulate the expression of several target genes.
In few cases, Zeb2 promotes T-bet binding that results in promoter
transactivation, while in most cases Zeb2 prevents T-bet binding,
thereby repressing the expression of the target gene [56, 57].

Control of T-bet to Eomes balance

In the periphery, Eomes expression progressively decreases during
NK cell differentiation, while T-bet expression steadily increases.
This is reminiscent of effector CD8 T-cell differentiation [58] and
indicates that high T-bet to Eomes ratios may favor differentiation
over proliferation. Whether T-bet and Eomes levels are controlled
by extrinsic signals in NK cells at steady state is unknown. Many
cytokines and other signals regulate their expression upon acti-
vation. For example, IL-12 is a well-described inducer of T-bet in
NK cells [38], while Eomes expression is induced by strong IL-2
signaling in T cells [59]. IL-4 and type I IFN have also been shown
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to induce Eomes expression in innate memory T cells [60, 61],
even though they have limited effect on Eomes expression in NK
cells (TW, unpublished data).

The immunosuppressive cytokine TGF-β inhibits NK cells
bioenergetics metabolism and negatively regulates both T-bet
and Eomes, with a more pronounced effect on T-bet [62]. This
effect could be mimicked by rapamycin, a specific inhibitor of the
mTORC1 complex, which highlights the role of mTOR complex in
T-bet and Eomes regulation. In CTLs, IL-12 induces a strong mTOR
activation, which is required to induce T-bet, while mTOR inhibi-
tion decreases T-bet and leads to high Eomes expression [63].
At late stages of MCMV infection, i.e. during the virus clear-
ance phase, inhibition of mTOR or activation of AMPK increased
autophagic activity in NK cells and enhanced memory NK cell
numbers through an Atg3-dependent mechanism [64]. Similarly,
deficiency in Rictor, a key component of the mTORC2 com-
plex, leads to enhanced memory T cell formation upon infection
and higher Eomes expression, suggesting that mTORC2 induces
T-bet and represses Eomes [65]. mTORC2 may act via Foxo1 and
Foxo3, which are known regulators of T-bet in T cells [66] and
NK cells [67]. The precise interplay between cytokines, mTOR
and T-box factors in NK cells remains however to be fully eluci-
dated. Subtle variations in T-bet/Eomes ratios may also implicate
microRNAs that have a strong impact on NK cell maturation [68].

Genome wide analyses of T-bet and Eomes binding

Our understanding of the role of T-bet and Eomes in NK cell tran-
scription and development, is mainly based on the comparison of
gene expression between control and T-bet deficient NK cells [39],
and between Eomes negative ILC1s and conventional Eomes posi-
tive NK cells [37, 69], respectively. ChIP and sequencing (ChIPseq)
experiments have been performed for T-bet in mouse [56, 70, 71]
and human [72–74] T cells and for Eomes in human embryonic
stem cells [75], however, only one study reported the results of a
T-bet ChIPseq experiment in NK cells [76], with limited analysis of
the results. The context-dependent binding characteristics of these
TFs doesn’t allow a certain assumption that T-bet and Eomes oper-
ate the same way in T and NK cells. Moreover, T-bet and Eomes
likely influence each other’s binding to DNA, and a clear picture
of their respective transcriptional activities should consider the
expression levels of each of these TFs during NK cell differenti-
ation or activation. Genome wide analyses in different NK cell
subsets will be important to identify the mechanisms of T-bet and
Eomes activities in NK cells, and, in particular, if they compete for
the same motifs during development, maturation, and activation.

T-bet and Eomes in mouse NK cell effector functions

Cytokine secretion

In T cells, IFNγ, the hallmark Th1 cytokine, is directly induced
by T-bet as shown by ChIP followed by microarray or luciferase

reporter assay [4, 15]. Cooperating physically with both the his-
tone H3K27-demethylase and the histone H3K4-methyltransferase
[77], T-bet promotes IFNγ transcription through its interaction
with RbBp5 and JMJD3 [78, 79]. T-bet facilitates CTCF binding
and chromatin looping respectively at +1kb and +66kb loci [80].
While the former have been shown in T cells, the corresponding
mechanisms are likely similar in NK cells, given the overall sim-
ilarity between NK and T cells in terms of IFNγ regulation (Fig.
2B). Yet, in NK cells, IFNγ expression is surprisingly normal in
the absence of T-bet [81], except for a somewhat reduced abil-
ity to produce this cytokine in response to IL-12 and IL-18 [38].
Reciprocally, Eomes deficient NK cells expressed IFNγ at near-
normal levels upon stimulation with IL-12 and IL-18 [40]. Thus,
although T-bet and Eomes might have important roles in driv-
ing IFNγ expression in specific contexts, the current data suggest
that other TFs may be sufficient to promote IFNγ expression in NK
cells in response to cytokines and to remodel the IFNγ locus during
their differentiation. The recent identification of Eomes negative
ILC1s (see below) has prompted their functional comparison with
Eomes positive NK cells. The finding that, in addition to IFNγ,
ILC1s can produce larger amounts of TNF, IL-2, and GM-CSF [37]
than NK cells implied that Eomes may be important to further
specify the NK cell lineage and restrict the range of cytokines they
can produce.

Cytotoxicity

While T-bet is dispensable for NK cell cytotoxic activity in vivo
[36], Eomes by contrast seems important to acquire full cytolytic
machinery. Indeed, Eomes may regulate the expression of several
NK cell receptors such as the Ly49 receptors in mouse [40] and also
activates transcription of Gzmb and Prf1 [7, 82, 83]. As previously
shown for memory CD8 T cells, Eomes could facilitate histone
acetylation at the GZMB and PRF1 locus in NK cells [84]. Accord-
ingly, Eomes negative ILC1s express lower levels of granzymes
and perforin compared to conventional NK cells [37]. This obser-
vation has led to the proposal that NK cells constitute the cyto-
toxic arm of the ILC family, while all other subsets are rather
“helper” cells [16]. Yet, mice in which Eomes is deleted in NK
cells seem to normally eliminate adoptively transferred MHC-I
deficient cells [40], suggesting that ILC1s may retain in vivo cyto-
toxic activity.

Migration/trafficking

As discussed above, S1P5 is the dominant S1P receptor in NK
cells and promotes egress from LN and BM [25]. In CD4 and CD8
T cells, T-bet acts directly on S1P5 expression by binding a con-
served element 3’ of S1P5 gene [48] and also by binding an addi-
tional upstream region [56]. Whether T-bet behaves the same way
in NK cells needs to be further illustrated. The promoter region of
another chemokine receptor CXCR3, which is involved in NK cell
entry to inflamed LNs [85], was recognized as a direct-binding
site for T-bet in NK cells [15, 86].
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T-bet and Eomes in the development of mouse ILC1s

The existence of a peculiar NK cell population in the mouse liver
has been recognized for many years. These cells were originally
defined on the basis of their high expression of Trail, their low
expression of CD49b (the target of the DX5 antibody) and their
abundance in newborn mice [87]. Although they were initially
described as precursors of classical Trail−DX5+ NK cells [40, 87],
they are now defined as a separate ILC1 lineage, dependent on
T-bet but not Eomes, the latter not being expressed in mouse
ILC1s [37, 69]. Hepatic ILC1s are tissue-resident cells and do not
depend on NFIL3 for their development. Given the plasticity of
ILC populations, hepatic ILC1s might differentiate into NK cells
under inflammatory conditions, even though this would require
a strong induction of Eomes, whose expression is inhibited by
T-bet [37]. Multiple other ILC1s populations have been described
in the gut, in the salivary gland, in the uterine tissue or in fat pads
that resemble hepatic ILC1s, with some tissue-specific character-
istics [88]. By analogy with hepatic ILC1s, these cells may dif-
ferentiate in situ and reside within tissues. Tissue-resident ILC1s
all express T-bet at high levels and are presumably dependent on
this factor for their development. As discussed above, transgenic
expression of Eomes in ILC1s converts them at least in part into
conventional NK cells [41]. Reciprocally, transgenic expression of
T-bet promotes the development of ILC1s at the expense of NK
cells [37] in organs such as the BM, in which they normally do not
develop. This highlights the importance of T-bet to Eomes ratio in
the early commitment of progenitors to the ILC1 versus NK cell
lineage. Tissue-specific factors may favor one TF over the other
to promote either lineage development. While the global absence
of ILCs may not lead to overt immune deficiencies [89], recent
studies have highlighted a possible role of ILC1s in the defense
against pathogens and in anti-tumor responses [90, 91].

T-bet and Eomes in human NK cells and ILC1s

Human ILC1s have been first identified in mucosal tissues as
T-bet+ Eomes− ILCs capable of producing Th1 cytokines but
devoid of cytotoxic properties [92]. However, a series of stud-
ies described that the human liver contains a large ILC popu-
lation that resembles in many aspects the mouse hepatic ILC1
population [93–96] but expresses high levels of Eomes and not
T-bet. These cells also express high levels of CXCR6 and CD69,
express lower levels of KIR receptors and appear to be less cyto-
toxic than conventional NK cells. Interestingly a recent study
showed that NK cells with a similar CXCR6+EomeshiTbetlo phe-
notype were present in several human fetal organs including the
BM, the lung and the spleen [97]. The authors further showed
that Eomeshi Tbetlo NK cells are differentiated before Eomeslo

Tbethi NK cells during in vitro cultures of hematopoietic stem
cells. Moreover, when analyzing NK cell maturation stages on
the basis of CD34/CD117/CD94/CD16 expression as previously
described [98], immature NK cells were found to have high Eomes
expression, which was decreasing with a progression of matu-

Figure 3. NK cells and ILC1 developmental pathways in mouse and
human, with relation to T-bet and Eomes. In mouse, NK cells and
ILC1 are independent lineages. NK cells are defined by Eomes expres-
sion, which is induced at the immature stage. Upon maturation,
T-bet expression is enhanced and represses Eomes. Moreover, in tumor
microenvironments or in the salivary glands, TGF-β may promote the
conversion of NK cells into ILC1 by suppressing Eomes expression. In
human, immature NK cells defined as Eomeshi T-betlo express many of
the attributes of “classical” epithelial Eomes−Tbethi ILC1s. Both subsets
may therefore be considered as ILC1s, from a functional point of view.
In this model, mature NK cells would be defined by coexpression of
high levels of both T-bet and Eomes, while ILC1s would express only
one of them, either T-bet or Eomes. CILP: common innate lymphocytes
precursor; ILCP: innate lymphoid cell precursor; NKp: NK cell precursor.

ration. Altogether, the authors proposed that CXCR6+ EOMEShi

TBETlo NK cells correspond to immature NK cells, and that, like
in the mouse, NK cell maturation is coupled with a decrease in
Eomes and an increase in T-bet expression [97]. In this model,
ILC1s would be precursors of mature NK cells, and this differen-
tiation would be restricted by tissue-specific factors in organs like
the liver. Such a differentiation would also change homing and
trafficking properties, since NK cells are blood-circulating cells,
while ILC1s are tissue resident. To reconcile divergent findings,
we propose that coexpression of high levels of T-bet and Eomes
defines mature NK cells, that are mainly found in the blood circu-
lation and the spleen, while ILC1s are defined by single expression
of T-bet or Eomes, depending on the tissue (Fig. 3). Further work
will be required to precise the relationships between NK cells and
ILC1s in all tissues.

The relationship between hepatic NK/ILC1s and mem-
ory/adaptive NK cells [99] that are known to home to the liver
in mouse [100, 101], is another question that remains to be
addressed. The precise phenotype of mouse adaptive NK cells
remains unclear. In human, a recent study reported the identi-
fication of a population of CD49a+ EOMES− TBET+ NK cells with
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clonal-like properties in the liver that might correspond to liver-
homing adaptive NK cells [102].

Regulation of T-bet and Eomes expression and their
role during infection

T-bet and acute infections

Interest in the role of T-bet during infection started after it had
been initially described that this TF regulated Th1 polarization and
IFN-γ production by both T cells and NK cells [4]. In turn, IFN-γ
upregulates T-bet in a positive feedback loop. One could argue
that the concomitant skewing of Th1 commitment and dampened
T-cell effector functions observed in Tbx21−/− mice, contribute
to the differential susceptibility to several pathogens that was
observed in numerous studies. Indeed, T-bet is required for
the control of Mycobacterium tuberculosis [103], Salmonella
typhimurium [104], Vaccinia virus [105], and Toxoplasma gondii
[51]. During the acute phase of infection with Toxoplasma gondii,
T-bet is strongly induced in both T cells and mature NK cells
[51]. Whereas MCMV infection also leads to T-bet induction in
NK cells [106], Tbx21−/− mice show no alteration of viral con-
trol. MCMV resolution being NK dependent, this implies that NK
cells harbor sufficient residual anti-viral activity in the absence of
T-bet. The increased susceptibility to other pathogens observed in
Tbx21−/− mice may not be only due to impaired cytotoxic lym-
phocyte responses. Indeed, T-bet was also shown to be induced in
B cells and dendritic cells after IFN-γ stimulation [107] promoting
respectively Ig class switch and Th1 priming.

Eomes and acute infections

Little knowledge regarding the role of Eomes was acquired in the
context of infections, since Eomes floxed mice were only recently
obtained [108] and because Eomes-deficient mice are not viable
[109]. Reiner and colleagues showed that in the absence of Eomes
expression in hematopoietic cells, Ly49H positive NK cells are still
capable to expand to some extent upon infection with MCMV [38].
These Ly49H positive cells also upregulate CD11b and KLRG1
expression, albeit at lower levels than control NK cells. These
data suggest that in the context of acute infections, other TFs
may partially compensate for the loss of T-box factors in NK cells,
likewise to T cells [58]. However, further studies are required to
address this point in more details.

Chronic infections

NK cell effector functions have been shown to be impaired dur-
ing several chronic infections, leading to the concept of NK cell
“exhaustion,” as recently reviewed [110]. The regulation and role
of T-box TFs have not been addressed in this context. By contrast,

an abundant literature is available on the transcriptional land-
scape associated with T-cell dysfunction during chronic infections
(reviewed in [111–114]) and is discussed here considering the
similarities between CD8 T cells and NK cells. T-bet is downregu-
lated in virus-specific CD8 T cells [115] during chronic infection,
resulting in severe exhaustion, a state of T-cell dysfunction. Using
the mouse LCMV chronic infection model, it has been demon-
strated that low expression of T-bet leads to a high expression
of the inhibitory receptor PD-1, since T-bet directly suppresses
PD-1 transcription. By contrast, the expression of Eomes is ele-
vated in exhausted CD8 T cells [116]. Two subsets of exhausted
CD8 T cells can thus be identified in chronically infected mice
based on the expression of T-bet and Eomes: Tbethigh Eomeslow

T cells that give rise to Tbetlow Eomeshigh T cells. The T-bethigh

subset is also characterized by an intermediate expression of PD-1
whereas the Eomeshigh subgroup displays a higher expression of
this immune checkpoint. In human, during HIV chronic infection,
the balance between T-bet and Eomes also regulates the CD8
T-cell exhaustion process and the majority of HIV-specific CD8
T cells display a TBETdim EOMEShigh expression profile [117]. As
shown in the LCMV model, high EOMES expression is associated
with poorly functional T-cell phenotype. Interestingly, this ele-
vated expression is not driven by stimulation with HIV antigens
but rather by the level of inflammation [118, 119]. T-bet defi-
ciency is also observed in virus-specific CD8 T cells from patients
with chronic HBV or HCV infection [120] compared to those with
acute infection. This indicates that T-bet is required and essen-
tial for a successful and appropriate T-cell response and to avoid
the evolution into chronicity. T-bet has been shown to repress
many type-I-IFN stimulated genes in T cells [71] and persistent
production of type-I IFN has been implicated in promoting T-cell
exhaustion, as recently reviewed [121]. It is therefore tempting to
speculate that high TBET expression is important to counter the
negative effects of type-I IFN on T-cell function. Further studies
will be needed to test if this also applies to exhausted NK cells
in the context of chronic infection. A recent paper described that
exhausted NK cells in HBV individuals express lower levels of
T-BET mRNA than NK cells from healthy donors [122], which is
a first hint that similar exhaustion mechanisms may be at play in
NK and T cells during chronic infections.

T-bet and Eomes regulation and role in anti-tumor
responses

Tumor immune-surveillance is severely impaired in Tbx21−/−

mice, as firstly shown in the transgenic adenocarcinoma mouse
prostate model [123]. Although the absence of T-bet did not
impact the response against the primary tumor, T-bet was
required to suppress metastasis development. This indicates
that T-bet regulates the immune response against late steps of
cancer development. These results were confirmed in a metastatic
melanoma model [50]. Adoptive transfer of T-bet sufficient NK
cells in Tbx21−/− animals restored the anti-tumor response and
conferred protection against melanoma. Moreover, as discussed
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Figure 4. Regulation of T-bet and Eomes in the tumor microenviron-
ment. Within the tumor microenvironment, several mechanisms may
cooperate to suppress T-bet and Eomes expression by NK cells. Firstly,
Mir29b is induced and targets the expression of both TFs. Secondly,
TGF-b inhibits T-bet and Eomes expression via Smad3 binding. Eomes
expression is important to repress CD49a and induce CD49b, which are
often used as markers of ILC1s and NK cells, respectively.

above, T-bet and Zeb2 coregulate multiple target genes, and
Zeb2 in NK cells has been shown to be essential for the control of
metastatic melanoma [39]. Animals lacking T-bet and Eomes in
T cells show several alterations in anti-tumor responses that
indicate a critical role for these TFs in promoting CD8 T cells
migration to the tumor tissue [124]. Upon adoptive transfer in
tumor-bearing mice, NK cells progressively decrease the expres-
sion of both T-bet and Eomes. This correlates with a rapid loss of
their effector functions. However, forced expression of Eomes, but
not T-bet, in adoptively transferred NK cells led to a reduction in
tumor burden and enhanced survival compared with mice treated
with control NK cells [125]. The mechanisms used by tumor cells
to inhibit T-bet and Eomes expressions are discussed below.

Role of TGF-β

It was suggested that TGF-β produced in the tumor microen-
vironment can diminish CD16 mediated IFN-γ production in a
T-bet-dependent manner. Indeed, TGF-β can repress T-bet expres-
sion through phosphorylation of SMAD3 that binds T-bet pro-
moter [126] (Fig. 4). Moreover, constitutive TGF-β signaling in
transgenic mice blocks NK cell maturation at early stages, sug-
gesting that both T-bet and Eomes are influenced by TGF-β sig-
naling [62]. Furthermore, a very recent study also revealed that
tumors may escape the NK cell immune-surveillance by a TGF-β
dependent conversion of NK cells (CD49a−CD49b+Eomes+) into
ILC1 (CD49a+CD49b+Eomesint) that fail to control tumor pro-
gression [127]. SMAD4 could oppose this pathway in tumoral
contexts as this TF was recently shown to restrain noncanonical
TGF-β signaling mediated by the cytokine receptor TGF-βR1 in NK
cells [128]. Zeb2, which is also essential for proper NK cell mat-
uration might also contribute to this network. Indeed, Zeb2, also

known as SIP1 for Smad Interacting protein 1, contains a Smad-
interacting domain that can potentially interact with all Smad
members [129]. Under homeostatic conditions, TGF-β is dispens-
able for the differentiation of peripheral NK cell populations as
revealed by NK-specific deletion of Tgfbr2 in mouse NK cells [62].
There is however one exception to this rule regarding salivary
gland ILC1s, which express Trail, CD49a and others as a result of
TGF-β mediated suppression of Eomes expression [130].

Other pathways

Micro-RNA29b, a negative regulator of both T-bet and Eomes (Fig.
4) was found to be upregulated in NK cells from leukemic mice and
patients, which could contribute to this phenomenon [131]. The
GSK3 kinase may also control T-bet expression in NK cells. Indeed,
pharmacological inhibition of GS3K induces an increase in T-bet,
Zeb2, and Blimp1 expression in NK cells and greatly enhances
their effector functions and anti-tumor potential [132]. A similar
effect was observed in CD8 T cells upon combined blockade of
CTLA-4, PD-1, and Lag-3 [133]. This highlights the important role
of T-bet in coordinating different anti-tumor functions of cyto-
toxic lymphocytes and suggests that therapies aimed at restoring
T-bet and/or Eomes expression in NK or T cells should prevent
exhaustion of these cells.

Conclusions and outstanding questions

After more than 15 years of research on T-bet and Eomes, it has
become clear that these related TFs have nonredundant activi-
ties despite their similarities, and that the balance between these
two TFs determines the capacity of NK cells to proliferate, dif-
ferentiate and affects a range of their effector functions. A wide
array of cytokines and upstream TFs regulate their expression dur-
ing NK cell development and in inflammatory conditions. In turn,
T-bet and Eomes cooperate to promote NK cell maturation and
homeostasis. Deregulation of either of these factors is associated
with impaired immune responses during cancer or chronic infec-
tions. Despite recent advances, much remains to be learned on the
spatio-temporal action of these TFs that are often coexpressed.
Future studies will need to identify their respective target pro-
moters and enhancers upon individual or combined expression.
Proteomic analysis of interacting partners may also help to under-
stand how they regulate transcription. In addition, since posttran-
scriptional regulation of these factors also occurs, it should be
added to the picture in order to fully understand their mode of
action. These modifications could affect the subcellular localiza-
tion of T-bet and Eomes, which is known to be regulated upon
T-cell activation [134]. New tools and reagents need to be gen-
erated to address these questions. Similar efforts should also be
directed toward understanding other pairs of related TFs, which
are also coexpressed in cytotoxic lymphocytes such as Foxo1 and
Foxo3, Id2 and Id3, Runx1 and Runx3 or Zeb1 and Zeb2.
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80 Sekimata, M., Pérez-Melgosa, M., Miller, S. A., Weinmann, A. S., Sabo, P.

J., Sandstrom, R., Dorschner, M. O. et al., CCCTC-binding factor and the

transcription factor T-bet orchestrate T helper 1 cell-specific structure

and function at the interferon-gamma locus. Immunity 2009. 31: 551–564.

81 Way, S. S. and Wilson, C. B., Cutting edge: immunity and IFN-gamma

production during Listeria monocytogenes infection in the absence of T-

bet. J. Immunol. 2004. 173: 5918–5922.

82 Cruz-Guilloty, F., Pipkin, M. E., Djuretic, I. M., Levanon, D., Lotem, J.,

Lichtenheld, M. G., Groner, Y. et al., Runx3 and T-box proteins cooperate

to establish the transcriptional program of effector CTLs. J. Exp. Med.

2009. 206: 9.

83 Pearce, E. L., Mullen, A. C., Martins, G. A., Krawczyk, C. M., Hutchins,

A. S., Zediak, V. P., Banica, M. et al., Control of effector CD8+ T cell

function by the transcription factor Eomesodermin. Science 2003. 302:

1041–1043.

84 Araki, Y., Fann, M., Wersto, R. and Weng, N.-P., Histone acetylation

facilitates rapid and robust memory CD8 T cell response through differ-

ential expression of effector molecules (eomesodermin and its targets:

perforin and granzyme B). J. Immunol. 2008. 180: 8102–8108.

85 Martı́n-Fontecha, A., Thomsen, L. L., Brett, S., Gerard, C., Lipp, M., Lan-

zavecchia, A. and Sallusto, F., Induced recruitment of NK cells to lymph

nodes provides IFN-gamma for T(H)1 priming. Nat. Immunol. 2004. 5:

1260–1265.

86 Matsuda, J. L., George, T. C., Hagman, J. and Gapin, L., Temporal dis-

section of T-bet functions. J. Immunol. 2007. 178: 3457–3465.

87 Takeda, K., Cretney, E., Hayakawa, Y., Ota, T., Akiba, H., Ogasawara,

K., Yagita, H. et al., TRAIL identifies immature natural killer cells in

newborn mice and adult mouse liver. Blood 2005. 105: 2082–2089.

88 Klose, C. S. N. and Artis, D., Innate lymphoid cells as regulators of

immunity, inflammation and tissue homeostasis. Nat. Immunol. 2016.

17: 765–774.
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