
HAL Id: tel-02988169
https://theses.hal.science/tel-02988169v1

Submitted on 4 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward auto-configuration in software networks
Wassim Sellil Atoui

To cite this version:
Wassim Sellil Atoui. Toward auto-configuration in software networks. Networking and Internet Archi-
tecture [cs.NI]. Institut Polytechnique de Paris, 2020. English. �NNT : 2020IPPAS015�. �tel-02988169�

https://theses.hal.science/tel-02988169v1
https://hal.archives-ouvertes.fr

ED 626

N
N

T
:2

02
0I

P
PA

S
01

5

Toward Auto-configuration in Software
networks

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à TELECOM SudParis

École doctorale n◦ED 626 Ecole Doctorale de l’Institut Polytechnique de Paris (ED
IP Paris)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Chatillon, le 21 septembre 2020, par

WASSIM SELLIL ATOUI

Composition du Jury :

Walid Gaaloul
Professeur, TELECOM SudParis, France Directeur de thèse

Imen Grida Ben Yahia
Ph.D., Orange Labs, Chatillon, France Encadrante de thèse

Filip De Turck
Professeur,Université de Ghent, Ghent, Belgique Rapporteur

Panagiotis Demesticha
Professeur, Université du Pirée, Pirée, Grèce Rapporteur

Laura Galluccio
Professeur, Université de Catane, Catane, Italie Examinatrice

Noel Crespi
Professeur, TELECOM SudParis, France Président du jury

Nour Assy
Ph.D., Université internationale libanaise, Beirut,Liban Examinatrice

1

To my mother,
to my father,
to my loving family
for their unconditional
love and support.
To Nyzark...

2

Acknowledgment
G

Foremost, I would like to express my sincere gratitude to both of my thesis supervi-
sors, Dr. Imen Grida BenYahia and Pr. Walid Gaaloul for giving me this opportunity
to pursue a Ph.D. at both Orange labs and Institut Polytechnique de Paris. Their
guidance and devotion helped me achieve this work. It was a great honor and a
pleasure to have them both as supervisors.

I would like to thank Dr. Nour Assy for collaborating with me on various aspects
of this work.

A special thanks to Pr. Panagiotis Demestichas and Pr. Philip De Turck who
evaluated and reviewed my manuscript.

I thank also Dr. Bertrand Decocq, the manager of team BRAINS at Orange Labs,
for his guidance, kindness, and time. He was always available at times of need. It
was an honor to work with him.

I am grateful to all my co-workers at Orange Labs and Telecom SudParis who
helped me to integrate and made this experience memorable. Thanks also to all of
my friends in France and Algeria for their support.

Last but not least, I am extremely grateful to my father, L’hadi, my mother,
Moufida, my sister, Randa, and my brother, Amine, for their unconditional love and
support throughout the last 29 years.

3

4

Résumé

Les réseaux logiciels ont le potentiel de porter l’infrastructure réseau à un niveau
plus avancé, un niveau qui peut rendre la configuration autonome. Cette capacité
peut surmonter la complexité croissante des réseaux actuels et permettre aux entités
de gestion d’activer un comportement efficace dans le réseau pour une amélioration
globale des performances sans aucune intervention humaine. Les paramètres de con-
figuration peuvent être sélectionnés automatiquement pour les ressources réseau afin
de faire face à diverses situations que les réseaux rencontrent, comme les erreurs et la
dégradation des performances. Malheureusement, certains défis doivent être relevés
pour atteindre ce niveau avancé de réseaux. Actuellement, la configuration est encore
souvent générée manuellement par des experts du domaine dans d’énormes fichiers
semi-structurés écrits en XML, JSON et YAML. C’est une tâche complexe, sujette
aux erreurs et fastidieuse à accomplir par les humains. De plus, il n’y a pas de
stratégie formelle, à part l’expérience et les meilleures pratiques des experts du do-
maine pour concevoir les fichiers de configuration. Différents experts peuvent choisir
une configuration différente pour le même objectif de performances. Cette situa-
tion rend plus difficile l’extraction des fonctionnalités des fichiers de configuration et
l’apprentissage des modèles susceptibles de générer ou de recommander automatique-
ment la configuration. De plus, il n’y a toujours pas de consensus sur un modèle
de données de configuration commun dans les réseaux logiciels, qui a abouti à des
solutions hétérogènes, telles que: TOSCA, YANG, Hot, etc. qui rendent la gestion de
réseau de bout en bout difficile. Dans cette thèse, nous présentons nos contributions
qui abordent les défis susmentionnés liés à l’automatisation de la configuration dans
les réseaux logiciels. Pour aborder le problème de l’hétérogénéité entre les fichiers de
configuration, nous proposons un cadre sémantique basé sur des ontologies qui peuvent
fédérer des éléments communs à partir de différents fichiers de configuration. Pour
le défi de génération automatique de la configuration, nous proposons deux contribu-
tions, une contribution qui considère les réseaux de neurones profonds pour apprendre
des modèles de fichiers de configuration pour recommander la configuration et une
autre contribution basée sur une approche basée sur un modèle configurable pour
aider automatiquement la conception de la configuration des fichiers de description.

5

6

Abstract

Software networks have the potential to move the network management to a more
advanced level, a level where the network can automatically configure itself. This
ability can overcome the rapidly growing complexity of current networks, and allow
management entities to enable an effective behavior in the network for overall per-
formance improvement, with less human intervention Configuration parameters can
be automatically selected for network resources to cope with various situations that
networks encounter like errors and performance degradation. Unfortunately, some
challenges need to be tackled to reach that advanced level of networks. Currently,
the configuration is still often generated manually by domain experts in huge semi-
structured files written in XML, JSON, and YAML. This is certainly a complex,
error-prone, and tedious task to do by humans. Also, there is no formal strategy
except experience and best practices of domain experts to design the configuration
files. Different experts may choose the different configurations for the same perfor-
mance goal. This situation makes it harder to extract features from the configuration
files and learn models that could automatically generate and recommend configura-
tions. Moreover, there is still no consensus on a common configuration data model
in software networks, which resulted in heterogeneous solutions, such as TOSCA,
YANG, Hot, etc. that making the end-to-end network management difficult. In this
thesis, we address the problem of automating the configuration in software networks.
We propose two main contributions for tackling the aforementioned challenges. To
address the problem of heterogeneity between the configuration files we propose a
semantic-based framework that automatically maps configuration elements from het-
erogeneous data models. The framework extracts ontologies from the configuration
files and builds a common configuration view by mapping similar elements from the
ontologies using our proposed algorithms. Regarding the problem of configuration
generation, we propose two contributions to assist the service providers to design
the configuration files and automate their generation. We propose a contribution
that is based on deep neural networks and another one that is model-driven. The
deep neural network contribution is an approach that learns from previously made
configuration file models that recommend and complete the files with configurations.
The model-driven approach assists service providers to design and generate config-
uration files. The approach is a configurable model that merges similar component
elements from different configuration files into a single model. This model captures
and learns configuration variabilities from the files. The model is a tree-structured
graph that represents the component elements that appear in the descriptors along
with configurable connectors that capture variable structures of configurations

7

8

Table of contents

1 General Introduction 17

1.1 Research context: Software Networks 17

1.2 Research problem: automatic configuration 18

1.2.1 Heterogeneity between configuration data models 19

1.2.2 Configuration generation . 20

1.2.3 Configuration propagation . 20

1.3 Research contributions . 20

1.4 Research publications . 23

1.5 Thesis outline . 24

2 Background on Software Networks 25

2.1 Introduction . 25

2.2 Software Defined Networks (SDN) . 26

2.2.1 SDN Architecure . 26

2.2.1.1 Infrastructure layer 26

2.2.1.2 Control layer . 26

2.2.1.3 Application layer . 27

2.2.2 Communication between SDN layers 28

2.2.3 SDN controller abstractions . 30

2.2.4 Benefits of the SDN paradigm 30

2.2.5 SDN issues and challenges . 31

2.3 Network Function Virtualization (NFV) 32

2.3.1 NFV Architecture . 32

2.3.2 Communication between the NFV components 34

2.3.3 Benefits of the NFV paradigm 35

2.3.4 NFV challenges . 36

2.4 Conclusion . 37

3 State of The Art 39

3.1 Introduction . 39

3.2 Heterogeneity between the configuration data models 40

3.2.1 Multiple SDN controllers Architecture 40

3.2.2 Semantic approaches in SDN 43

3.2.3 Handling the heterogeneity between information structures in
the literature . 43

3.2.3.1 Similarity measures 44

3.2.3.2 Information fusion . 45

3.2.3.3 information clustering 46

3.2.3.4 Information classification 48

9

10 Table of contents

3.2.3.5 Link prediction . 49

3.2.3.6 Ranking . 49

3.3 Automating the configuration generation 49

3.3.1 Deployment descriptors generation in NFV 50

3.3.2 Automatic configuration in software engineering 53

3.3.2.1 Configuration prediction 53

3.3.2.2 Interpretability of configurable systems 54

3.3.2.3 Configuration optimization 54

3.3.2.4 Dynamic Configuration 55

3.3.2.5 Configuration constraints mining 55

3.4 Conclusion . 56

4 Handling the heterogeneity between configuration data models 59

4.1 Introduction . 60

4.2 Use case: Multi-controllers SDN architecture 61

4.2.0.1 Distributed vs Centralized control plane 62

4.2.0.2 Flat Architecture vs Hierarchical Architecture 63

4.2.0.3 Dynamic Architecture versus Static Architecture . . . 63

4.2.0.4 Existing SDN platforms 64

4.2.0.5 Platform architectures 64

4.3 Semantic-based framework for global network view construction 65

4.3.1 Exemplified Problem Statement 66

4.3.2 Centralized global network view construction 66

4.3.2.1 Global ontology model 69

4.3.2.2 Extracting local ontologies form the controllers 70

4.3.2.3 Mapping the local ontologies with the global ontology 71

4.3.2.4 Interacting with the global network view 73

4.3.3 Distributed global network view construction 73

4.3.3.1 Mapping local ontologies 74

4.4 Evaluation . 76

4.4.1 Evaluation environment . 76

4.4.2 ontology extraction from JSON files 76

4.4.3 Ontology mapping . 78

4.4.4 Interaction with the global network view 79

4.5 Conclusion . 79

5 Deep Learning for automatic configuration generation 81

5.1 Introduction . 82

5.2 Background information on Deep learning approaches 83

5.2.1 Convolutional Neural Networks (CNN) 85

5.2.2 Long short-term memory (LSTM) 86

5.3 use case: Learning from deployment descriptor in NFV 88

Table of contents 11

5.4 Deep learning framework for configuration recommendation and com-
pletion . 90

5.4.1 Overview . 90

5.4.2 Preparation phase . 94

5.4.3 Tokenization step . 95

5.4.4 Vectorization step . 95

5.4.4.1 Appearance-based vectorization 95

5.4.4.2 Token embedding . 96

5.4.5 Training phase . 99

5.4.5.1 Recommendation model for VNFDs 99

5.4.6 Completion model for VNFDs 102

5.4.7 Execution phase . 102

5.5 Evaluation and Results . 104

5.5.1 Data set and experimental Setup 105

5.5.2 CNN for VNFD recommendation 105

5.5.3 LSTM for VNFD completion 108

5.6 Conclusion . 110

6 Model-driven approach for configuration generation 113

6.1 Introduction . 114

6.2 VNFD representation . 115

6.2.1 Formal Definition of a VNFD 118

6.3 Configurable Deployment Descriptor Model 119

6.3.1 Configurable component instances 119

6.3.2 Configurable gateways . 121

6.3.3 Formal definition of a configurable VNFD 122

6.4 Learning the configurable model . 123

6.4.1 Transforming the VNFD files into a tree-like structure 123

6.4.2 Federating common nodes in the set of VNFD instances 123

6.4.2.1 Similarity metrics between the nodes 123

6.4.2.2 Nodes clustering algorithm 126

6.4.3 Constructing the configurable VNFD model 127

6.5 Application of the configurable model: Configuration Guidance Model 128

6.5.1 Configuration guidance model 128

6.5.2 Dynamic guidance model extraction 132

6.5.2.1 Step 1: Configuration choices extraction 132

6.5.2.2 Step 2: Guidelines derivation 133

6.5.2.3 Step 3: Tree-like structure extraction 134

6.5.2.4 Step 4: Guidelines dependencies formalization 134

6.6 Other applications of the VNFD Configurable model 135

6.6.1 Deployment descriptor variant generation 135

6.6.2 Dependency mining . 136

12 Table of contents

6.6.3 Uniform representation of the deployment descriptors 139
6.7 Evaluation and results . 140

6.7.1 Environment settings . 140
6.7.2 Complexity of the configurable deployment description model . 140
6.7.3 Learning the configurable model 142
6.7.4 Configuration guidance model 145

6.7.4.1 Quality of configuration guidelines 145
6.7.4.2 Accuracy of configuration guidelines 146

6.8 Conclusion . 147

7 Conclusion 149
References . 152

List of Tables

3.1 Comparison between multiple SDN controllers solutions 42
3.2 Categories of approaches that handled the heterogeneity between in-

formation structures . 44
3.3 Performance factors for information fusion approaches 47
3.4 Illustration of the contributions made for automating the generation

of deployment descriptors . 51
3.5 Categories of contributions related to the configuration automation in

software engineering . 53

4.1 Execution time of ontology extraction 77
4.2 Interaction with the RDF triplestore 79

5.1 Parameters of the CNN model . 105
5.2 Evaluation of the CNN recommendation model for VNFD files with

respect to the CNN input size . 106
5.3 Evaluation of the CNN recommendation model for VNFD files with

respect to the CNN number of filters 106
5.4 Evaluation of the CNN recommendation model for VNFD categories

with respect to the CNN input size . 107
5.5 Evaluation of the CNN recommendation categories for VNFD files with

respect to the CNN number of filters 107
5.6 Parameters of the LSTM model . 108
5.7 Experiments on the LSTM model using different input sequence length 109
5.8 Experiments on the LSTM model using different output length 109
5.9 Experiments on the CNN model combined with LSTM using different

input sizes . 109

6.1 Configurable elements and their possible configurations 121
6.2 A sample of guidelines extracted from the configurable deployment

descriptor model presented in Figure6.4 129
6.3 Definition of the variation factors . 136
6.4 Structural Complexity metrics for the two considered representation . 141

13

14 List of Tables

List of Figures

2.1 Overview of a typical SDN architecture [4] 27

2.2 OpenFlow Flow table fields [5] . 29

2.3 Overview of a typical NFV architecture [6] 33

4.1 Multi-Controllers SDN architecture 62

4.2 The heterogeneity of network data representation between ODL con-
troller and ONOS controller . 67

4.3 Different contexts for constructing the global network view 67

4.4 Mediation for the central global view scenario 68

4.5 Brief representation of the global ontology 69

4.6 Extracting the local ontology from a JSON file 70

4.7 Exmaple of a scope of two areas around the entity ”networkElment” . 72

4.8 Mediation for the distributed global view scenario 74

4.9 Average execution time of the mapping algorithms in distributed and
centralized scenarios . 77

4.10 Average matching accuracy of the mapping algorithm in the centralized
scenario . 77

4.11 Average matching accuracy of the mapping algorithm in the distributed
scenario . 78

5.1 A basic multi-layer artificial neural network 83

5.2 Activation function of neural cell . 84

5.3 General overview of a CNN architecture 85

5.4 Convolution operation between the input and the filter 85

5.5 Architecture of recurrent networks . 86

5.6 Long short-term memory cell architecture 87

5.7 Example of a deployment descriptor onboarded by a service provider
with a VNF . 90

5.8 A high-level representation of a VNFD structure [38] 91

5.9 Composition of Virtual deployment unit in a VNFD [38] 92

5.10 Overview of a NSD architecture . 92

5.11 Overview of the deep neural network framework 93

5.12 DNN-based framework for VNF deployment descriptors mining 94

5.13 Example of tokenization using a deployment descriptor file 95

5.14 Projection of VNFD token embedings in a 3D vector space 97

5.15 Convolutional Neural Network Architecture for learning a VNFDs rec-
ommendation model . 100

5.16 Using the LSTM method for deployment description completion . . . 103

5.17 Using the CNN method for deployment description recommendation . 104

15

16 List of Figures

6.1 (a) graphical representation of the elements used in a VNFD model
and (b) graphical representation of the configurable elements in a con-
figurable VNFD model . 116

6.2 An example of a vFireWall VNFD represented graphically as a tree-like
structure . 117

6.3 An example of a graphical representation of a vCPE VNFD that is
described briefly in Figure5.7 . 117

6.4 An example of a configurable deployment descriptor model that com-
bines the VNFDs in Figs. 6.2 and 6.3 120

6.5 A VNFD model that shows the different relational levels between node
v1 and the other nodes . 125

6.6 Representation of a configuration guidance model that is derived from
the configurable deployment descriptor model in Figure6.4 130

6.7 A Petri net example that illustrates the dependencies between the con-
figuration guidelines in 6.2 . 131

6.8 An example of a variable VNFD generated from the vFirewall VNFD
that is defined in Fig.6.2 . 137

6.9 An excerpt of the configurable descriptor model that annotate the com-
ponent instances with their corresponding VNFDs 138

6.10 Inter-cluster and Intra-cluster mean similarity distance in terms of dif-
ferent cluster numbers, VDU nodes . 142

6.11 Intra-cluster mean similarity distance per iteration, VDU nodes, k=200 143
6.12 Intra-cluster mean similarity distance in terms of different relation

weights . 144
6.13 Number of guidelines, number of configurations per guideline and per

element for different minimum support thresholds and a minimum con-
fidence threshold C = 0:8 . 145

6.14 Accuracy of the generated guidelines for different support and confi-
dence thresholds . 146

Chapter 1

General Introduction

1.1 Research context: Software Networks

Software networks (or Software-driven networks) emerged as the next level in the
evolution of computer networks. The evolution was necessary to cope with the chal-
lenges related to the new technology ecosystem, e.g. cloud computing and internet of
things, in which traditional networks have struggled to keep up with the transition.

Traditional networks (legacy networks) are an impediment to today’s technology
era for many reasons. One of the main reasons is that the infrastructure of traditional
networks is rigid. Any new changes added to the network would take time to be
applied, requires human interventions, and in a lot of cases needs a physical hardware
installation. Another reason is that traditional networks are dependent on closed and
proprietary hardware that inhibits network users from exploiting alternative best-of-
breed technologies. Moreover, the hardware in traditional networks is designed with
a combined integration of the control plane and the data plane. The configuration of
the hardware in this case is usually done manually in a box-by-box fashion.

Software networks provide answers to the traditional network limitations [58].
The network design is redefined by new paradigms that build the networks at a
lower cost and with a greater scope for innovation in network services. Software
networks offer new opportunities to transform the economics of business network
while at the same time accelerating the ability to design and deploy new service
capabilities independently of the operated network (fixed, mobile, long-distance, etc.)
and the offered service (data, voice, content delivery, etc.) [66].

The main paradigms in software networks are Software-defined network (SDN)
and [63] and Network function virtualization (NFV) [77]. On one hand, SDN enables
network programmability by offering the capacity to initialize, control, change, and
manage network behavior dynamically via open interfaces. On the other hand, NFV
decouples network functions from proprietary hardware appliances and run them as
software in virtual machines (VMs). The emergence these new paradigms in has
created new hopes for the progress of network management. With software networks,
networks will likely be upgraded with self-management capabilities that allow them to
be autonomic. Autonomic networks could overcome the rapidly growing complexity of
current networks, and adopt an optimal management behavior for overall performance

17

18 General Introduction

improvement in a fully autonomous way, without any human intervention [118]. Other
benefits of autonomic networks are the following:

• Operation and maintenance costs will be reduced significantly, and human re-
sources could be deployed to handle higher-value activities.

• Quality and efficiency will be improved given that human errors are reduced.
Configuration parameters will be automatically selected for network resources
that need to be configured.

• The parameters are adapted to new or unexpected situations like errors, failures,
security threats, performance degradation, etc. [79].

Autonomic networks need to ensure self-configuration. A capability allows the
network to adapt with less human interventions to new changes in the network by
configuring new components seamlessly or modifying the parameters in the network
according to the overall global state. In this thesis, we aim to investigate new ap-
proaches that contribute toward enabling auto-configuration in software networks.

1.2 Research problem: automatic configuration

In this section, we present the main challenges related to automatic configuration
in software networks. Before that, we explain briefly how the configuration is cur-
rently made to motivate the direction of our contributions toward enabling automatic
configuratio (auto-configuration) in software networks.

The key feature of software networks is their ability to be completely programmable.
This means that theoretically, it is possible to write a piece of software that could
manage automatically the entire network. The main enablers for programmability
are application programming interfaces (APIs). They allow network components to
expose their functionalities and be managed by other entities in the network. The
APIs simplify the configuration of network components and enhance their agility. A
set of complicated configuration operations, for example enforcing policies, could be
specified in a single file and transmitted to the network device. The APIs in the SDN
paradigm is situated between the abstraction planes (described in chapter 2). While in
NFV, the programming interfaces are located between the management components
(described in chapter 2).

The configuration in software networks is model-driven. It is specified in semi-
structured files like JSON and YAML, following a predefined data model such as
YANG, TOSCA, etc. The data model that is used has to be also the same used by
the network components that are configured. Otherwise, the APIs would not be able
to execute the operations that are expected.

automatic configuration in software networks will take advantage of the pro-
grammability of the network to automate the configuration. New network compo-
nents could be configured using their APIs seamlessly without human intervention,

Research problem: automatic configuration 19

in a plug and play fashion. Likewise, the behavior of the network could be adapted to
unexpected situations while maintaining the required performance by doing adequate
configuration in the network.

To ensure automatic configuration in software networks, it is necessary to account
for the APIs used by network components. Any generated configuration should be
interpretable by the APIs of network components. We have identified three challenges
that are important to be tackled to move toward automatic configuration. The chal-
lenges are namely, (i) the heterogeneity between configuration data models, (ii) the
configuration generation, and (iii) the configuration propagation. We describe next
each of these three challenges.

1.2.1 Heterogeneity between configuration data models

There are constantly new proposals and solutions that are emerging in software net-
works from different vendors, providers, open-source organizations, etc.. The network
is a heterogeneous environment where components from different vendors cooperate
and share information. It is important therefore to account for the data model that
is used by the components when making the configuration, otherwise, it cannot be
interpreted and processed correctly.

Unfortunately, there is still no consensus on a common data model used to make
the configuration by network components from all the competition. There is cur-
rently a plethora of data models based on languages like TOSCA (Topology and
Orchestration Specification for Cloud Application) [2] or YANG (Yet Another Next
Generation).

To enable automatic configuration, it is important to automate the interpretation
of configuration that is issued from heterogeneous data models and also to generate
configurations with adequate data models. The reason is that, in the absence of a
common data model, it is not possible to construct a global network view, to which
the automatic configuration module can reason on or analyze to trigger configuration
actions. It is also necessary that the generated configurations follow the same data
model as the configured network components.

This situation raises two research questions:

• RQ1: How to automatically interpret configurations from heterogeneous sources?

• RQ2: How to automatically generate configurations to a targeted data model?

Note that a solution that is based on a static translation between heterogeneous
data models is not viable in an environment that is constantly evolving. Keeping the
translation updated to all the data models is a tedious task. We investigate in this
thesis approaches that provide some insights on penitential solutions to overcome this
challenge.

20 General Introduction

1.2.2 Configuration generation

To automatically configure network components without human intervention, auto-
configuration should help generate and recommend configurations that are adequate
with the expectation of network users. The problem is that there is no formal strategy
on how to choose the best configuration for each given situation. The configuration
files in software networks are often designed and created manually. Which is a highly
complex, time-consuming, and tedious task.

This challenge raises the following research question:

• RQ3: How to automatically generate coherent configurations in software net-
works?

We investigate in thesis model-driven approaches that ease the generation of con-
figurations by assisting service providers in designing configuration files. Also, we
investigate approaches based on deep learning that automate the generation of con-
figuration in an unsupervised manner.

1.2.3 Configuration propagation

automatic configuration could generate a configuration that triggers a chain reaction
of other changes in network components so that the system remains in a coherent
state. For example, changing the network interfaces of virtual functions in NFV will
impact the network service in which this virtual function is implemented, and also
the virtual functions that are linked to it. It is therefore important to identify the
configuration relations between network components and also the order of changes.
Formalizing the dependencies between configurations helps to create constraints that
ensure that the system remains coherent. The relations could be used for root cause
analysis to ensure the recoverability of the system by undoing previous changes, in
case of failures.

The problem is that software networks are an environment where multiple network
components cooperate. It is a complex task for a human to identify the dependencies
between the configuration. This situation raises the following research question:

• RQ4 : How to identify automatically the dependencies between configurations
in software networks?

1.3 Research contributions

In this thesis, we investigate solutions that are in the scope of answering the ques-
tions made in the previous section. We propose approaches that contribute toward
enabling automatic configuration in software networks. To study new solutions to the
aforementioned challenges, we have to focus our attention to specific uses cases. For

Research contributions 21

that reason, we choose two use cases, one in SDN and another one in NFV, as they
are the main paradigms in software networks Our contributions could be generalized
and adapted to software networks.

Our first contribution is related to the problem of heterogeneity between config-
uration data models. To investigate a solution, we focus our attention on an SDN
architecture where multiple controllers are deployed. SDN controllers have to cooper-
ate to share a global network view that allows them to localize network devices. The
problem is that the SDN controllers may expose their functionalities (via APIs) using
different data models. The difference could be in the structure of the data, the syn-
tactical representation of the data, or the semantics of the data. The cooperation, in
this case, becomes not possible as the SDN controllers could not process each other’s
data.

To address this problem, we propose a semantic-based framework that automati-
cally maps configuration elements from heterogeneous data models. This contribution
is in the scope of answering the RQ1 and RQ2. The framework builds an ontology
from configurations of the SDN controller, referred to as local ontology, to represent
the SDN controller concepts and the relation between them. The local ontologies are
automatically extracted from the configuration files using our method. The global
network view is constructed by mapping similar elements from the ontologies using
our proposed algorithms. More concretely, our contributions can be summarized as
follows:

• We propose a semantic-based framework that encompasses an approach that
extracts a local ontology from each controller and incorporates algorithms that
map the ontologies together to form the overall network view.

• We define a central global ontology model that represents the domain knowledge
of SDN with OWL. The global ontology describes the concepts that constitute
an SDN architecture.

• We adapt our framework to two scenarios:

– A centralized scenario where the SDN controllers expose their network
views to a centralized entity that builds the network view

– A distributed scenario, where SDN controllers exchange in peer to peer
their local network views and build locally the global view.

• We establish two ontology mapping algorithms. One for the centralized scenario,
to map the controller’s local ontologies to the global ontology and one for the
distributed scenario to map the local ontologies of the SDN controllers.

• We propose an ontology extraction method from the SDN controller configura-
tion files that are described in JSON format.

22 General Introduction

• We evaluate the performance of our framework, in both distributed and central-
ized scenarios, in terms of the matching accuracy of our mapping algorithms and
the execution time. We test the performance over different network topologies
in a heterogenous multi-controller SDN architecture composed by controllers
like ODL and ONOS.

Regarding the problem of configuration generation, we propose two contributions
to assist the service providers to design the configuration files and automate their
generation. The first contribution is based on deep neural networks and the second
one is a model-driven approach. These contributions are in the scope of anwsering
the RQ3.

We consider an NFV architecture to implement and test our proposed solutions.
In NFV, service providers have to associate with their virtual network functionalities
description files before the onboarding of the VNFs. The description files indicate
the deployment and operational behavior of the functionalities in terms of connectiv-
ity and resource requirements. The descriptor files are large files that are designed
manually by the service providers, which is complex, tedious, and error-prone. More-
over, the descriptor files contain the configuration of numerous components that are
dependent on each other, and there is no formal strategy to select the best configura-
tion. This scenario is therefore adequate for our investigating solution to assist and
automate the generation of configurations.

We propose at one hand approaches based on deep neural networks that learn from
previously made descriptor file models that recommend and complete configurations.
These contributions are briefly summarized as follows:

• We propose a learning framework based on neural network architectures that
is divided into three phases: the preparation phase, learning phase, and model
tuning phase.

• In the preparation phase, we process the descriptors files into a format that is
suited for the neural network architectures. We use a word embedding approach
to representing the data that is extracted from the descriptor files based on its
semantics.

• In the learning phase: we propose two neural network architectures:

– Convolutional neural network architecture to learn a recommendation model
for the descriptors

– Long short term memory architecture to learn a completion model for the
descriptors

• We evaluate afterward the generated models (recommendation and completion)
in terms of their accuracy of prediction.

Research publications 23

On the other hand, we propose a model-driven approach that assists service
providers to design and generate descriptor files. We propose a configurable model
that merges similar component elements from different descriptor files into a single
model. This model captures and learns all the configuration variabilities from the
descriptors. The model is a tree-structured graph that represents the component ele-
ments that appear in the descriptors along with configurable connectors that capture
variable structures of configurations. This approach is also in the scope of answering
the RQ3. The model-driven contributions can be briefly summarized as follows:

• We formalize a configurable deployment descriptor model that capitalizes on a
catalog of descriptors

• We propose an algorithm based on machine learning (K-medoids) to search and
cluster similar elements from different descriptors and construct the configurable
model.

• We propose an approach that extracts useful and implicit knowledge from the
configurable model. The approach derives configuration guidelines by mining
the configurable deployment descriptor model and a repository of VNFD mod-
els. The guidelines capture the dependencies and the relations between the
configuration of VNFD elements.

1.4 Research publications

We have published our contributions in several scientific venues:

• J2: Wassim Sellil Atoui, Nour Assy, Walid Gaaloul, Imen Grida Ben Yahia: As-
sisting deployment descriptor design in NFV. International Journal of Network
Management, 2020 (invited to submit an extended version from a conference
paper)

• J1: Wassim Sellil Atoui, Nour Assy, Walid Gaaloul, Imen Grida Ben Yahia:
Configurable Deployment Descriptor Model in NFV. Journal of Network and
Systems Management 28, 693–718, 2020

• C5: Wassim Sellil Atoui, Imen Grida Ben Yahia, Walid Gaaloul: Token em-
bedding for deployment descriptors in NFV. IFIP Networking, 2020

• C4: Wassim Sellil Atoui, Nour Assy, Walid Gaaloul, Imen Grida Ben Yahia:
Learning a Configurable Deployment Descriptors Model in NFV. IEEE/IFIP
Network Operations and Management Symposium, 2020

• C3: Wassim Sellil Atoui, Imen Grida Ben Yahia, Walid Gaaloul: Virtual Net-
work Function Descriptors Mining Embeddings and Deep Neural Networks.
IFIP/IEEE International Symposium on Integrated Network Management, 2019:
515-520

24 General Introduction

• C2: Wassim Sellil Atoui, Imen Grida Ben Yahia, Walid Gaaloul: Using Deep
Learning for Recommending and Completing Deployment Descriptors in NFV.
IEEE Conference on Network Softwarization, 2019: 233-2352

• C1: Wassim Sellil Atoui, Imen Grida Ben Yahia, Walid Gaaloul: Semantic-
Based Global Network View Construction in Software-Defined Networks with
Multiple Controllers. IEEE Conference on Network Softwarization, 2018: 252-
256

1.5 Thesis outline

This doctoral thesis is organized in seven chapters:

• Chapter 2: Background Information on Software Networks introduces
the basic concepts related to our research and needed to understand the rest of
the work. In this chapter, we present two of the main paradigms in software
networks. The first paradigm is Software-defined networks and the second one
in network function virtualization. We present their architecture, their benefits,
and the challenges that they need to overcome.

• Chapter 3: State of The Art provides an exploration and a thorough analy-
sis of the state of the art around the two challenges that we are tackling in this
thesis. Mainly we discuss the contributions related to : (i) handling automati-
cally the heterogeneity between configurations and (ii) Generating automatically
configurations.

• Chapter 4: Handling the heterogeneity between configuration data
models presents our approach to handle the heterogeneity in software networks.
More precisely, we focus on a use case in SDN and propose a framework that
enables heterogeneous multi-controllers SDN platforms to construct a global
network view.

• Chapter 5: Deep Learning for automatic configuration generation
introduces our approach based on deep neural networks that learns from a set
of configurations a model that could recommend or complete the additional
configuration.

• Chapter 6: Model-driven automatic configuration generation intro-
duces our model-driven approach that assists service providers in designing and
generating deployment descriptors in NFV.

• Chapter 7: Conclusion and Future Work summarizes the proposed con-
tributions and presents an outlook on the potential perspectives that we intend
to tackle in the short-medium term.

Chapter 2

Background on Software
Networks

Contents

2.1 Introduction . 25

2.2 Software Defined Networks (SDN) 26

2.2.1 SDN Architecure . 26

2.2.1.1 Infrastructure layer . 26

2.2.1.2 Control layer . 26

2.2.1.3 Application layer . 27

2.2.2 Communication between SDN layers 28

2.2.3 SDN controller abstractions . 30

2.2.4 Benefits of the SDN paradigm . 30

2.2.5 SDN issues and challenges . 31

2.3 Network Function Virtualization (NFV) 32

2.3.1 NFV Architecture . 32

2.3.2 Communication between the NFV components 34

2.3.3 Benefits of the NFV paradigm . 35

2.3.4 NFV challenges . 36

2.4 Conclusion . 37

2.1 Introduction

Software networks are new paradigms that enable the network programmability
through a set of tools used to deploy, manage, and troubleshoot network devices.
Compared to traditional networks, software networks accelerate service deployment
and delivery, reduce the IT costs, increase resource flexibility, and provide greater
cloud integration.

The term software in software networks refers to the possibility that intelligent
software can be designed to manage and deal with a single node in the network or the

25

26 Background on Software Networks

entire network as a unified single element. This is possible with the help of APIs that
are used by the software to gather data or to run configurations and management
operations. In this chapter, we present an overview of the two main paradigms of
software networks, SDN, and NFV.

2.2 Software Defined Networks (SDN)

SDN is a paradigm inspired by cloud computing that overcomes the shortcomings of
traditional network management and improves its performance [63]. In traditional
networks, switches are manually set up by domain experts following a specific vendor
CLI language. This becomes a very complicated and error-prone task for companies
running strongly virtualized environments along with large networks. SDN decouples
the vertical integration by separating the control plane from the data plane. The
switches in the infrastructure are just forwarding devices freed from any vendor lock-
down and the control logic of the devices is centralized in a single entity in the network
called the controller. The controller is responsible for policy enforcement, network
configuration, topology management, link discovery, flow table, etc..

2.2.1 SDN Architecure

The architecture of this paradigm is typically divided into three layers: infrastructure
layer, control layer and application layer, and two interfaces: southbound interface
and northbound interface. Figure 2.1 shows a simplified SDN architecture.

2.2.1.1 Infrastructure layer

This layer contains physical and virtual forwarding devices. The infrastructure layer
support basic operations that are exposed to the SDN controller like packet for-
warding, caching, transcoding, and monitoring [63]. The SDN controller dynamically
installs packet processing rules onto the devices.

2.2.1.2 Control layer

The control layer is responsible for managing the infrastructure devices and making
decisions on how packets should be forwarded by the devices. This layer could be
composed of one or multiple controllers. Each controller is responsible for a set of
network devices in the network infrastructure and communicates with these devices
using the southbound APIs to get the state of the traffic or to push decisions about the
traffic flow. Essentially it is a centralized set of software-based SDN controllers that
combined together have an abstract view of the whole network infrastructure, enabling
the management entities to customize policies across the infrastructure devices.

The control layer provides a set of functionalities to the application layer using
the northbound APIs. These functionalities could be of the following [63]:

Software Defined Networks (SDN) 27

Figure 2.1: Overview of a typical SDN architecture [4]

• Topology discovery and maintenance

• Packet route selection and instantiation

• Path failover mechanisms

• Install of the forwarding rules on the forwarding tables based on the requested
performance from the applications and the network security policy

• collect status information about the infrastructure layer.

2.2.1.3 Application layer

The application layer contains application and services that dictates the network
behavior. The applications interact with the controller to achieve a specific network
performance and fulfill the requirements of service providers. For this purpose, the
SDN controller provides an abstracted view of the network and a set of functionalities
via the northbound APIs that applications use in order to specify the desired network
behavior.

28 Background on Software Networks

2.2.2 Communication between SDN layers

The communication between the SDN layers is achieved through a set of APIs. There
are typically two types: the northbound APIs and the southbound APIs.

Southbound APIs are communication interfaces used to connect the infrastruc-
ture layer to the control layer. Their main goal is to provide functionalities that
enable communication between the SDN controllers and the infrastructure devices,
in order to discover the network topology, push the flow table, and implement the
control policies. The OpenFlow protocol [40] is one of the popular southbound API
for SDN.

Northbound APIs are communication interfaces that connect the control layer
to the application layer. Their goal is to enable applications to easily manage network
resources and capabilities. Compared to the southbound APIs, northbound APIs do
not have a standard specification. This situation created a plethora of solutions,
each with diverse features that make it difficult to federate multiple SDN controllers
together in the network.

Additionally to these two interfaces East-West interface could exist when mul-
tiple SDN controllers are employed in the network [119]. They ensure communication
between the controller in a horizontal manner. The cooperation, in this case, is direct
between the controllers, as opposed to the cooperation via a mediation entity in the
application layer.

OpenFlow: communication protocol between the controller and network
devices

OpenFlow [40]is a communication protocol that is used to connect the SDN controller
to the infrastructure devices via the southbound interface. This protocol exposes a
set of basic functionalities used for handling the forwarding flow between the infras-
tructure devices and managing them. The controllers send the forwarding plane in
a flow table to the devices and the devices keep the controller updated about the
network state, i.e. if the links are down or when receiving a packet for which there
is no forwarding instruction. The OpenFlow communication can be either on a se-
cure connection like the Transport Layer Security (TLS) or on an unprotected TCP
connection.

The Forwarding tables in OpenFlow are defined by the controller to instruct in-
frastructure devices on how packets are forwarded. The devices, called OpenFlow
switches could have one or more flow tables and a group table. The devices check
the flow tables to make a decision on how to forward the packets. These Flow tables
contain a list of flow entries, each of which determines how packets belonging to a
flow will be forwarded. Flow entries consist of: a rule, an action, and a statistic, as
shown in Figure 2.2:

Rule: is a header used to match incoming packets. There are several supported
Ethernet headers that are specified in OpenFlow specification, custom headers can

Software Defined Networks (SDN) 29

Figure 2.2: OpenFlow Flow table fields [5]

be additionally defined. The header contains either a specific value against which the
corresponding parameter is compared or a value indicating that the entry that is not
included.

Action: Define an action to take when a rule is matched with the packet traffic.
There are several actions already defined in OpenFlow specifications. Examples of
actions could be: forward to one or more ports, forward to the controller, drop the
frame, and modify frame fields.

Statistics: This is a counter that is updated each time when a flow rule is matched
with the packet traffic. It is to indicate the popularity of a specific flow. There are
counters for every table, each flow, all the ports, and every queue. Also, a timer of
the last activity and an initial set of the flow is maintained.

In OpenFlow , an OpenFlow Controller is a software server that interacts with
the OpenFlow switch using the OpenFlow protocol. The protocol connects controller
software to network devices so that controllers can configure network devices and
inform where to forward packets. The interface to which the OpenFlow controller and
the infrastructure switches communicate is called the OpenFlow channel. Through
this interface, the controllers configure and manage the switches, receive events from
the switches, and send packets out the switches (to add, update, and delete flow
entries in flow tables). The OpenFlow channel is usually instantiated as a single
network connection (using TCP or Encrypted connection).

30 Background on Software Networks

2.2.3 SDN controller abstractions

The SDN controller enables three types of abstractions in the network, which consti-
tute its major feature.

• Network state abstraction: SDN controllers provide a global network view to
applications and services.

• Forwarding abstraction: The forwarding of packets in the network is handled
indirectly by the controller. The network devices are executing instructions
from the controller on how to forward the packets. This way, the infrastructure
hardware is abstracted by the controller.

• Network operation abstraction: The controller allows a network application
to express the desired behavior of the network without been responsible for
implementing it.

2.2.4 Benefits of the SDN paradigm

SDN has improved a lot of aspects from traditional networks. For example:

• Centralized network management: The centralized view of the entire network
eases the management and provisioning of new service in large networks.

• Control and data planes abstraction: This abstraction accelerates service deliv-
ery and provides more agility in provisioning both virtual and physical network
devices from a central location.

• Holistic management: The management for physical and virtual devices can be
elaborated in SDN through a single set of APIs, which is more accommodable
for domain experts.

• Lower operating costs: SDN brings more efficiency in administrating the net-
work. Network routines can be centralized and automated, which solves many
administration issues and saves a lot of time.

• Reduced capital expenditures: in SDN, the infrastructure devices could easily
be optimized and commoditized. They are repurposed easily by the controller.
Therefore less expensive devices can be deployed for broader utilization since
all the intelligence is centered at the controller.

• Easier content delivery: SDN provides the ability to shape and control data
traffic is and makes it easier to implement quality of services (QoS) and ensure
flawless user experience.

Software Defined Networks (SDN) 31

2.2.5 SDN issues and challenges

There are still open challenges regarding SDN that are actively tackled by the scientific
community. Here are some of the considered topics:

• Reliability and fault tolerance: It is important that SDN stays available
even in case failures in the controller [94]. An automatic solution should be
triggered in that case to ensure the reliability of the system and the users should
be informed about the coherent network state at any moment.

• Scalability: SDN have to handle the growing amount of traffic load and have
to support new applications without impacting the level of service delivered
to the users [82]. This capability needs to account for performance degrada-
tion caused by resource constraints, processing demands, and communication
overhead.

• Flexibility: SDN should be designed in such a way that it could adapt its
behavior to new changes and dynamic variations occurring in the network [52].
The network must be flexible enough to adapt and accommodate future devel-
opments and the needs of the network designers.

• Elasticity: SDN needs to be capable of ensuring the availability of its resources
at every moment independently of the network load [52]. It needs to dynamically
adapt to the workload changes inside the network. During higher demands, the
maximum resources could be allocated to ensure a quality of service, while
during lower demand, SDN should be able to reduce the resources to preserve
the energy and lower the maintenance cost

• Data model heterogeneity: There are a plethora of data models used to
define the northbound APIs like TOSCA, YANG, etc That makes it difficult to
operate and federate different SDN controllers in the same architecture. This is
could be the case for example when different controllers are dedicated to different
specific domains. The controller has to cooperate to provide a coherent global
view of the users and maintain a centralized abstraction of the network. Our
first contribution is in the scope of this challenge. We study approaches that
handle the heterogeneity between data models of SDN controllers.

• Control abstraction: SDN should be able to translate effectively the inten-
tion of the user or application to program the network. The programming inter-
face of the framework of the SDN must coordinate the multiple asynchronous
events at the switches to perform even simple tasks.

• Performance and Security: Security treats exists also in SDN. Network
attacks could reduce the performance of the SDN. For example, a simple D-
DOS attack may down the working of networks [29]. SDN should ensure the

32 Background on Software Networks

integrity and the coherency of the managed resources and prevent the attacker
from taking control in the network.

We listed here all the important challenges but we are addressing in this thesis
scope only the heterogeneity.

2.3 Network Function Virtualization (NFV)

NFV is a software network paradigm that aims to transform the way that network
operators manage networks. It is based on virtualization technologies that virtualize
network functionalities and consolidate different network equipment into industry-
standard high-volume servers and data center or at end-customer premises. NFV
replaces custom-designed network equipment (vendor locked in) that dominated tra-
ditional network to off the shelf hardware that is used to deliver virtualized network
functionalities. For example, what was in traditional networks router equipment can
be in NFV virtual routing functionality that could be deployed on any hardware. The
network functionalities in NFV can be chained together to form a network service,
like an Intrusion detection system.

2.3.1 NFV Architecture

The architecture of NFV aims to add more agility and automation methods to deploy
and manage widely distributed network infrastructure and resources. It includes three
major components: the virtualized network functions (VNFs), NFV Infrastructure
(NFVI) and NFV management and orchestration (MANO), as depicted in Figure
2.3.

Network Functions Virtualization Infrastructure

The NVFI includes at the bottom a physical layer that contains the computing hard-
ware. This layer delivers the physical resources like the compute, storage, and network
and software on which the VNFs are deployed and managed. Just above the physical
layer sits a virtual layer that abstracts the hardware resources. It contains hypervisors
and virtual machines and enables them to logically partition and provision the hard-
ware resources in order to support VNFs. The virtualization of the resources has also
the advantage of abstracting the type and localization of the hardware. The network
resources could be therefore distributed across different locations in a transparent way
to the user.

Virtual Network Functions

VNFs are virtual software that could run in one or multiple virtual machines on top of
VNFI component. VNFs could be vRouters, vSwitches, vLoad Balancers, vFirewalls,

Network Function Virtualization (NFV) 33

Figure 2.3: Overview of a typical NFV architecture [6]

34 Background on Software Networks

etc. That could be chained together to form NSs like for example a virtual intrusion
detection system or a virtual voice over IP. NFV enables the VNFs to be deployed
on-demand without any delays. Preventing the need or on-site technical skills like in
traditional networks. This component provides therefore the agility needed to respond
and anticipate dynamic network performance or growing demands.

NFV Management and Network Orchestration

MANO is a framework developed and proposed by the ETSI working group [39].
The NFV MANO coordinates all resources of NFV (i.e the NFVI and the VNFs)
running in a virtualized platform like a data center. It also defines the template to
which service providers are using to describe the appropriate NFVI resources need
for deploying the VNFs. The NFV MANO framework is mainly comprised of three
functional areas:

• NFV Orchestrator handles VNF onboarding, lifecycle management, global re-
source management, and validation and authorization of NFVI resource re-
quests.

• VNF Manager controls the VNF lifecycle management of instances, providing a
coordination and adaptation role for NFVI and Element/Network Management
Systems configuration and event reporting.

• Virtual Infrastructure Manager controls and manages the NFVI compute, stor-
age, and network resources.

2.3.2 Communication between the NFV components

In NFV, the programming interfaces are located between the components of the NFV
architecture, as illustrated in Figure 2.3. They are called reference points in the ETSI
terminology. The reference points expose different functionalities that allow the NFV
components to collaborate with each other. We summarize briefly in following the
functionalities of the main reference points [39].

• Or-Vnfm: Defines the communication between the orchestrator and the VNFM.
It specifies functionalities to configure VNFs and pass specific service data.

• Or-Vi : Defines the communication between the orchestrator and the VIM. It
specifies functionalities to configure the NFVI.

• Vi-Vnfm: Defines the communication between the VNFM and the VIM. It also
specifies functionalities that allow the VNFM to configure the NFVI.

• Ve-Vnfm: Defines the communication between the VNFM and the NFV. Spec-
ifies functionalities to onboard, deploy, and configure the VNFs, and also to
manage their operational life cycle.

Network Function Virtualization (NFV) 35

• Nf-Vi: Defines the communication between the VIM and the NFVI. Specifies
functionalities to configure the physical hardware.

2.3.3 Benefits of the NFV paradigm

Like SDN, NFV also improves many aspects of traditional networks [58]. We describe
in the following the main benefits of this paradigm.

• Cost effective: In NFV, lower-cost off the shelf hardware can be used to
implement network functionalities. This one of the most important advantages
in NFV.

• Flexibility: In NFV, the network operator can utilize off the shelf hardware
instead of vendor-centric hardware. This adds flexibility in choosing the most
efficient solution that suits the needs of the operator and its requirement. Also,
the virtualization technology in NFV allows to allocate and remove dynam-
ically resources on demand in the network. This improves dramatically the
network management form traditional networks, where any improvement in the
resources leads to the implementation of dedicated vendor locked-in hardware.
This is very costly, time-consuming, and needs special skills from network ad-
ministrators.

• Rapid Network service deployment: NFV allows the rapid deployment
of network function and services compared to traditional networks. In tradi-
tional networks, the network functionalities are dependent on the hardware on
which they are installed. Adding or deleting the functionalities will require a
physical on-site intervention from network administrators, which is costly and
time-consuming. NFV overcome this problem by virtualizing the functionali-
ties. VNFs and NSs could be created and removed from the network on the
fly and on-demand. Dedicated software can automate their deployment in the
network and remove them when they are not utilized to free up resources. The
deployment of VNFs and NSs can, therefore, be elaborated as fast as pushing
a button and in a transparent way to the users.

• Scalability and Elasticity: NFV allow the dynamic change of resources ca-
pabilities. It can automatically augment and reduce the resources used by the
VNFs in the network. For instance, if VNFs require additional CPU or storage
resources, it can be requested from the VIM and allocated to the VNF. This was
very costly in traditional networks where any changes in the resources require
an upgrade of the physical hardware.

• Rich Eco System: NFV can integrate a wide variety of eco-systems and
encouraging openness. It opens the virtual appliance to small players, nonprofit
organizations, and academia. This encourages more innovation to bring new
services and new revenue streams quickly at a much lower risk.

36 Background on Software Networks

• Operational Efficiency and Agility: In NFV, the physical infrastructure
could be shared by various VNFs. This centralized the tasks and eases their
management. It centralizes the tasks associated with running the same man-
agement domain like for example the inventory and core business activity. This
reduces operational overhead and maintenance costs.

2.3.4 NFV challenges

The challenges that the NFV paradigm faces is mainly related to the requirements that
NFV is aiming to satisfy. We describe in the following some of the main requirements
[77]:

• Deployment descriptor design and automation: deployment descriptors have
to be defined for the network functionalities before onboarding them in the
NFV platforms. They are designed by service providers manually and without
any formal strategy, which is cumbersome and time consuming. Moreover,
these descriptors have to be adapted for each NFV platform. In this thesis, we
focus on this challenge and propose approaches that automate the design and
generation of the deployment descriptors.

• Interoperability and Compatibility: One of the main goals of NFV is to provide
an environment in which various solutions from different vendors could co-exist.
It is therefore important to ensure that these solutions could communicate with
each other. The design of standard interfaces is important to only ensure the
communication between virtual appliances but also between the virtualized im-
plementations and the legacy equipment.

• Reliability and Stability: Similar to SDN, reliability is also an important re-
quirement for NFV. Network operators should guaranty the services that they
are offering services and maintain the performance that they are promoting
(e.g., voice call and video on demand).

• Security Resilience: NFV should ensure that the network functionalities are not
affected by treats and architectural vulnerabilities. Also, NFV is expected to im-
prove network resilience and availability by allowing NVFs to be re-instantiated
to the coherent state after a failure.

• Manageability: NFV needs to dynamically instantiate VNFs in the right lo-
cations at the right time, allocate and scale hardware resources for them and
interconnect them to achieve service chaining.

Conclusion 37

2.4 Conclusion

We presented in this chapter two of the main paradigms in software networks.
The first paradigm is SDN, a paradigm inspired by cloud computing that decou-
ples the control plane of infrastructure devices from the data plane. The devices
in SDN are just forwarding devices freed from any vendor lock-down and the
control logic of the devices is centralized in a single entity in the network called
the controller. We showed that SDN has improved the performance form tradi-
tional networks and can lower operating costs and reduce capital expenditures.

The second paradigm in software networks showed in this chapter is network
function virtualization. It is a paradigm that aims to transform the way that
network operators manage networks. It is based on virtualization technolo-
gies that virtualize network functionalities and consolidates different network
equipment into industry-standard high-volume servers and data center or at
end-customer premises. We described the architecture of this paradigm and
showed that it has many benefits like the rapid deployment of network service,
the cost-effectiveness of operation, flexibility, the scalability, and the elasticity
of management.

In the next chapter, we will present the related work made in the literature to
position our contributions and shed light on what has already been done.

38 Background on Software Networks

Chapter 3

State of The Art

Contents

3.1 Introduction . 39

3.2 Heterogeneity between the configuration data models 40

3.2.1 Multiple SDN controllers Architecture 40

3.2.2 Semantic approaches in SDN . 43

3.2.3 Handling the heterogeneity between information structures in the
literature . 43

3.2.3.1 Similarity measures . 44

3.2.3.2 Information fusion . 45

3.2.3.3 information clustering . 46

3.2.3.4 Information classification 48

3.2.3.5 Link prediction . 49

3.2.3.6 Ranking . 49

3.3 Automating the configuration generation 49

3.3.1 Deployment descriptors generation in NFV 50

3.3.2 Automatic configuration in software engineering 53

3.3.2.1 Configuration prediction 53

3.3.2.2 Interpretability of configurable systems 54

3.3.2.3 Configuration optimization 54

3.3.2.4 Dynamic Configuration 55

3.3.2.5 Configuration constraints mining 55

3.4 Conclusion . 56

3.1 Introduction

In this chapter, we review the works related to the context of our study. We highlight
both the broader picture of the studied problem as well as a more focused picture
on the use cases that are considered in this thesis. We start by examining the works
related to the problem of heterogeneity between the configuration data models and

39

40 State of The Art

focus our attention on the use case of the cooperation between SDN controllers in a
multi-controller architecture. Afterward, we analyze the works related to the problem
of automating the configuration generation with a special focus on the use case of
automating the design and generation of deployment descriptors in NFV.

3.2 Heterogeneity between the configuration data mod-
els

There are a plethora of data models in software networks that are used to define the
configuration structure, syntax, and semantics. The diversity of data models creates a
heterogeneity problem that prevents the end-to-end management of network compo-
nents. We focus in this thesis on an SDN use case of a multi-controller architecture to
study solutions for the heterogeneity problem. SDN controllers have to communicate
to share information. It is therefore important to handle the heterogeneity between
the controller’s data models to enable them to interpret each other messages. We
start in section 3.2.1 by examining the efforts made in SDN to enable multiple SDN
controllers architecture. We aim at understanding the current situation in SDN on
how the controllers cooperate and if heterogeneous controllers are considered in this
architecture. Afterward, we investigate in section 3.2.3 the contributions in SDN that
considered the use of semantic-based approaches. Finally, in section 3.2.3, we discuss
the category of works related to handling the heterogeneity between data structures
crosses multiple research areas. This gives us a better understanding of how this
problem is treated in the literature and allows us to understand this problem and to
position our contribution to the literature.

3.2.1 Multiple SDN controllers Architecture

SDN controllers must cooperate and share their local network views to construct a
global network view. The global network view abstracts the underneath network
infrastructure and offers a coherent view to the users. When the controllers in the
network have heterogeneous data models, the cooperation becomes difficult in that
case as the controllers could not interpret each other data. Despite some efforts
to standardize the communication between the SDN controllers, to the best of our
knowledge, there is no accepted standard to this date for the communication between
the SDN controllers. The Internet engineering task force (IETF) proposed a draft on
an SDN protocol, called SDNi, used for exchanging information between SDN con-
trollers [114]. The protocol is proposed for the east/west interfaces of the controllers.
It is responsible for coordinating behaviors between SDN controllers and exchange
control and application information across multiple SDN domains. This work has
not yet been finalized and implemented. It is therefore difficult to assess its benefits.
The authors in [67], proposed an east/west interface, called EWBridge that allows
heterogeneous SDN controllers to exchange their views in the network. EWBridge

Heterogeneity between the configuration data models 41

abstracts the views of the controller in a “key-value” database. The controllers can
access the global network view in a centralized fashion using a publish/subscribe
mechanism. For this approach to work, all the controllers have to implement the
EWBridge interface, which is not obvious.

The authors in [119] proposed Zebra, a framework that enables the communication
between heterogeneous SDN domains. The framework has two modules: Heteroge-
neous Controller Management (HCM) module and Domain Relationships Manage-
ment (DRM) module. HCM collects network information from a group of controllers
with no interconnection and generates a domain-wide network view, while DRM col-
lects network information from other domains to generate a global-wide network view.
The framework adds a layer between the application and SDN controller layer to make
the heterogeneous controller cooperate. Multiple heterogeneous controllers could be
supported by the framework using a server-end component that collects informa-
tion from each controller. It is unclear however in this work how the information
is extracted from the controllers and integrated into a global view. The framework
was extended in [92] and a system is built on top of the control plane, which can
encapsulate the whole plane and provide a uniform interface for users to control it
independently of the controller’s type.

The authors in [49] proposed an east/west interface, called INT manager, to en-
sure the communication between SDN controllers. The INT manager interprets the
network topology - data plane routers and their links managed of the SDN controllers
into a virtual router. This virtual router presents all networks in the controller do-
main and networks reachable by it, with various path metrics for all of them. It is
expected in this study that the controllers use the same data model of the interface
INT manager.

The authors in [15] also proposed an East-West interface for multi-controller ar-
chitecture in SDN, called Communication Interface for Distributed Control plane
(CIDC). It is used for exchanging messages between controllers and for customizing
the behavior of each controller in the network. The CIDC interface is composed
of four modules, Consumer, Producer, Data Updater, and Data Collector that are
used to communicate with the core elements of the controller. In this design, each
controller plays the role of a Consumer for external events and a Producer for local
events. Similarly to EWBridge, for this interface to work, the controllers have to be
aware of the interface logic and adapt their communication to it.

The authors in [71] proposed an application interface for multi-controller architec-
ture in SDN, called Data Distribution Services (DDS). The interface provides a global
data store in which the SDN controllers publishes and subscribes to respectively write
and read data from the datastore. It is unclear however how the datastore is modeled
and if heterogeneous controllers can use it for communication.

Other contributors proposed SDN platforms to allow multiple SDN controllers to
be deployed in the network. ONIX [62] and HyperFlow [112] are among the first
physically distributed platforms of SDN controllers. ONIX uses a central network

42 State of The Art

Table 3.1: Comparison between multiple SDN controllers solutions

Multi-Controller SDN architectures Approach Heterogenous controllers Automatic integration
SDNi [114] East/West Interface Yes No
EWBridge [67] East/West Interface Yes No
Zebra [119] East/West Interface Yes No
INT manager [49] East/West Interface Yes No
CIDC [15] East/West Interface Yes No
DDS [71] Application Interface Yes No
ONIX [62] SDN Platform No No
HyperFlow [112] SDN Platform No No
DISCO [90] SDN Platform No No
Kandoo [47] SDN Platform No No
Elasticon [31] SDN Platform No No
ODL [111] SDN Platform No No
ONOS [16] SDN Platform No No

information base (NIB) that maintains a global view of the network, network appli-
cations can read and write into this base to manage the network elements. Hyperflow
is an event-based architecture that supports OpenFlow, it implements NOX [43] con-
trollers. DISCO [90], is a platform that can cope with wide area networks and overlay
networks, it can be divided into two parts, an intra-domain part, that is responsible
for monitoring the network and dynamically managing the network to maintain a
satisfiable performance, it uses a central database for storing the controller’s infor-
mation, and an inter-domain part, that provides communication between domains.
Kandoo [47] is a hierarchical platform for distributed controllers where root controllers
take the responsibility of managing the network. Elasticon [31], is an elastic platform
architecture, where a controller is added or removed dynamically depending on the
network traffic load. OpenDayLight (ODL) [111] is an open-source platform, where
a set of controllers collaborate as a cluster to achieve some performance criteria such
as availability and scalability. ONOS [16], is also an open-source platform suited for
high availability and scalability applications. It uses a central graph database to store
network information.

We summarize in Table 3.1 the efforts made to enable multiple SDN controllers
architecture. Unfortunately, none of the works proposed an approach to handle au-
tomatically the integration of heterogenous SDN controllers. The contributions that
proposed interfaces to enable the communication between SDN controllers could al-
low different SDN controllers from different vendors to cooperate. The only matter
with these kinds of approaches is that the controllers have to employ the predefined
data model of the interface in order to use its functionalities and send/receive infor-
mation from/to other controllers. The other contributions consist of SDN platforms
that enable homogeneous SDN controllers to cooperate with each other. To the best
of our knowledge, enabling the integration of heterogenous SDN controllers has not
yet been considered. Given the importance of that matter for auto-configuration, we
address this challenge in this thesis.

There are only a few contributions that considered semantic approaches in SDN.

Heterogeneity between the configuration data models 43

Most of these contributions aim at providing solutions for data integration in SDN
when the data is issued from diverse sources. Nevertheless, these works have shown
the efficiency of semantic approaches, which is a good motivator for our choice to
follow their lead into considering semantic approaches as a potential solution for
handling the problem of heterogeneity in SDN.

3.2.2 Semantic approaches in SDN

In our work, we investigate a solution inspired by semantic data integration. Seman-
tic data integration is an active research field that aims to harmonize heterogeneous
data [24]. There are several contributions based on semantic data integration that
have been investigated in SDN. The authors in [75] proposed a semantic-based ap-
proach for complementing the capabilities of OF-CONFIG and NETCONF for the
remote configuration of network devices in SDN. They defined an Ontology-Based In-
formation Extraction (OBIE) System from the CLI of network devices and proposed
a learning algorithm that enables automated and highly precise interpretation of CLI
configuration capabilities in heterogeneous (multi-vendor) network scenarios. They
aim to exploit the knowledge already available in CLIs, to automatically reconcile the
semantic and syntactic differences between heterogeneous configuration environments.

The authors in [27] studied wireless SDN, they proposed a cognitive radio ontol-
ogy that abstracts the description of the communication scenario, RF devices, and
policies. The proposed ontology provides awareness and supports reasoning by the
controller and applies to any RF device. The authors [96] proposed a novel architec-
ture of software-defined semantic routing networks that can provide semantic routing
networks with high efficiency, fine-grained control, as well as the flexibility to support
future advanced network technologies. The proposed solution normalizes various data
resources into a high-dimensional semantic space and correlates the data semantics
with their distance information, which can realize the intelligent discovery of internet
data.

There are only a few contributions that considered semantic approaches in SDN.
Most of these contributions aim at providing solutions for data integration in SDN
when the data is issued from diverse sources. Nevertheless, these works have shown
the efficiency of semantic approaches, which constitutes a good reason for our choice
to follow their lead into considering semantic approaches as a potential solution for
handling the problem of heterogeneity in SDN.

3.2.3 Handling the heterogeneity between information structures in
the literature

We analyze in this section some contributions related to analyzing the heterogene-
ity between information structures. We group these contributions into six categories
based on [103]: Similarity measures, Information fusion, information clustering, infor-
mation classification, link prediction, and information ranking. Table 3.2, summarizes

44 State of The Art

Table 3.2: Categories of approaches that handled the heterogeneity between informa-
tion structures

Category Description

Similarity measures Approaches that measure the similarity between
the elements of heterogenous information struc-
tures. [103], [101], [110], [48], [50]

Information fusion Approaches that merge and fuse heterogeneous
information structures. [32], [88], [87], [36], [84],
[81], [35], [37]

Information clustering Approaches that group similar elements from
heterogeneous information structures. [117],
[108], [18], [116], [73]

Information classification Approaches aim at learning a models using ma-
chine learning and other techniques that predict
the label of the information elements. [56], [72],
[53]

Link prediction Approaches that analyze heterogeneous infor-
mation structures to estimate the likelihood of
the existence of a connection between two in-
formation elements. [91], [20], [107], [120], [25],
[109]

Information ranking Approaches that help to identify the relevant
and important elements in heterogeneous infor-
mation structures. [109], [86], [60], [113]

these categories.

3.2.3.1 Similarity measures

Measuring the similarity between the elements of different information structures is
the basic operation in analyzing the heterogeneity. There are two types of similarity
approaches to analyze an information structure. Feature-based approaches and link-
based approaches [103].

Feature-based similarity approaches measure the similarity between elements of
information structures relative to their characteristics. The characteristics are in
most cases the attribute values of the elements. For example, a compute element in a
configuration file could be characterized by the number of CPUs, the type of CPUs,
the frequency of the CPUs, etc. The famous feature-based similarity measures are
the cosine similarity, the Jaccard coefficient, and the Euclidean distance.

The link-based similarity approaches measure the similarity by taking into consid-
eration the relationship between the elements in the information structure and also
the meta path connecting these elements. A meta path contains different connec-

Heterogeneity between the configuration data models 45

tions with different semantics. This situation leads to different similarities. In that
regard, [101] introduced a framework that derives various similarity semantics based
on the relation between different elements. The proposed framework includes a sim-
ilarity measure called PathSim [110] that can be used to find similar peer elements.
This measure can be useful in many scenarios compared with random-walk based
similarity measures. This work was later extended in [48] and [50], where the au-
thors augmented the framework with additional information like transitive similarity,
temporal dynamics, and supportive attributes.

Another meta path-based similarity, called HeteSim, was proposed in [102]. This
measure can be used to evaluate the relevance between heterogeneous elements in an
information structure under an arbitrary path (connection path between two elements
through following a sequence of element types). The measure was used in [65] for the
identification of interactions between drugs and targets in drug research. They used
this measure in an optimization algorithm called LSH-HeteSim. The algorithm is
employed to mine the drug-target interaction in heterogeneous biological networks,
where the relationship between drugs and targets is various. [76] proposed a similarity
measure, called AvgSim, as an effort to reduce the high computation and memory
demand in which other similarity suffered from. AvgSim can measure the similarity
of the same or different-typed element pairs in a uniform framework.

3.2.3.2 Information fusion

Merging and fusing information from heterogeneous sources is useful for understand-
ing scattered data and obtaining common knowledge about a domain. Fusion is the
process of aligning and matching common elements from different information struc-
tures. This process plays a key role in many disciplines, such as data warehousing,
e-business, or even biochemical applications. Our contribution to handling the het-
erogeneity between configuration data models matches this mining task.

In our work, we use ontologies as an information structure to represent the knowl-
edge in the SDN domain. Ontologies are considered as an essential component for
sharing knowledge and defining the concepts associated with a domain, in our case
it is SDN. In our work, we aim to establish semantic correspondences between the
concerned heterogeneous ontologies to construct a coherent federated view. The lit-
erature counts works in the same range from various disciplines, such as information
retrieval, databases, learning, knowledge engineering, and natural language process-
ing.

The authors in [32] proposed GLUE, a system that employs machine learning tech-
niques to find mappings between two ontologies. For each concept in one ontology,
GLUE finds the most similar concept in the other ontology. It uses multiple learning
strategies, each of which exploits a different type of information, either in the data
instances or in the taxonomic structure of the ontologies. In [88], the authors tackled
the problem of the absence of links at the concept level and proposed an approach that

46 State of The Art

searches for alignments between concepts from ontologies. In their work. they hy-
pothesized new composite concepts defined as disjunctions of conjunctions of (RDF)
types and value restrictions that are used to generate alignments between these com-
posite concepts. In [87], the authors proposed an extensional approach to generate
alignments between ontologies. It is an algorithm that produces equivalence and sub-
sumption relationships between classes from heterogeneous ontologies by exploring
the space of hypotheses supported by the existing equivalence statements.

In [36] the authors proposed a matching system that aims to discover automat-
ically the correspondence links between two intrinsically heterogeneous ontologies,
through different calculations of similarity between their concepts. In [84], the au-
thors adopted two alignment methods based on the ontology structure. The first,
called Method of Similarity of Inheritance (MSI), applies the initial similarity method
based on the concepts and integrates the inheritance relation (father/son) into the
calculation of similarity. The second, called Method of Sibling Similarity (MSS), in-
volves sibling relationships to enrich the similarity score between two concepts. In
another work [81], the authors defined a method for the combination of three differ-
ent types of similarity measures: lexical techniques, structure-based techniques, and
semantic-based techniques. Also, authors in [35] defined a measure that focuses on
matching ontologies based on the structure and aggregation of similarities calculated
by different matches. In [37], the authors presented a measure of similarity based on
the structure for ontology matching by the terminological, structural, and semantic
levels.

LikeLike illustrated in this section, there are plenty of proposed approaches for
merging different information structures and aligning their elements. Though, these
approaches differ from each other mainly on their performance. The authors in [64]
described multiple performance factors that merging approaches face in the context
of sensor networks. We describe some of the performance factors in Table 3.3 and
assign the works that measured those factors in their evaluation. Each approach is
suited therefore for a particular task where a corresponding performance factors is
important to be satisfied. In our case, we want at this stage to construct a global
network view in SDN by merging different configuration elements. Our main focus is
to enhance the matching accuracy. We take inspiration therefore from the approaches
that also stratified this performance factor.

3.2.3.3 information clustering

Clustering approaches aim at grouping similar elements from different information
structures together based on diverse parameters like their type, their connection, or
their syntactic representation. The aim of clustering elements together can provide
useful insights into many applications. For example, in topic modeling, a field that
aims to automatically discover the main themes that pervade a large and unstructured
collection of documents, the authors in [117] proposed a unified Topic Model cluTM

Heterogeneity between the configuration data models 47

Table 3.3: Performance factors for information fusion approaches

Performance factor Description Contributions

Alignment accuracy The correctness of alignment be-
tween elements.

[32], [36], [35],
[37]

Confidence Effective integration of elments from
the same context (same informa-
tion) increases improves the perfor-
mance.

[88], [84]

Reliability It quality of the results. When data
is redundant it improves the relia-
bility of the system and enhance the
understanding of the data.

[88] [81]

Complexity When there is too much data to be
alligned, the complexity of fusion in-
creases

[87]

Uncertainty The uncertainty increases when bad
data is fusing with good data based
on estimation.

[81]

Unbelief When the data is resulted form the
merging of multi-modal data, there
is a risque that results losses the se-
mantic of the orginal data.

48 State of The Art

by incorporating both the document content and various links in the text related
to heterogeneous structures. cluTM combines the textual documents and the link
structures by the proposed joint matrix factorization on both the text matrix and
link matrices. Their approach derives a common latent semantic space shared by
multi-typed objects. They proved that this approach enhanced semantic information.

Another application could be to identify the label or the type of elements from
different information structures when the value of the attributes is incomplete or when
the elements carry only partial attributes or even no attributes. The clustering in this
case is challenging as the connection of different types may carry different kinds of
semantic meanings, and it is a difficult task to determine their nature. The authors
in [108] proposed a model-based clustering algorithm. It is a probabilistic model that
clusters the objects of different types into a commonly hidden space, by using a user-
specified set of attributes, as well as the connection from different relations. In [18],
the authors proposed a density-based clustering model TCSC for the detection of
clusters in heterogeneous information structures in which the elements are are densely
connected as well as in the attribute space. TCSC enables the detection of clusters
that show similarity only in a subset of the attributes. This could be more effective
in the presence of a large number of attributes.

In [116], the authors provide an example of using world knowledge for domain-
dependent document clustering. They indicate ways to specify the knowledge to
domains by resolving the ambiguity of the entities and their types and represent
the data with knowledge as a heterogeneous information structure. They proposed
a clustering algorithm that can cluster multiple types and incorporate the sub-type
information as constraints. Also in [73], the authors proposed a semi-supervised
learning approach, called SemiRPClus, that clusters entities based their relation-path.

3.2.3.4 Information classification

Classification tasks aim at learning models using machine learning and other tech-
niques to predict the label the information elements. As the information infrastructure
contains elements with different types, the classification has to be of multiple types of
elements simultaneously. The authors in [56], proposed GetMine, an algorithm that
solves a transductive classification problem on heterogeneous information infrastruc-
tures that share a common topic and have only some elements in the structure that
are labeled. The algorithm’s goal is to predict labels for all types of the remaining
elements. The authors in [72] proposed PathMine, an algorithm that clusters small
labeled data on heterogeneous information infrastructures through a novel meta path
selection model, and the authors in [53] proposed a method to label elements of dif-
ferent types by computing a latent representation of nodes in a space where two
connected elements tend to have close latent representations.

Automating the configuration generation 49

3.2.3.5 Link prediction

Link prediction is an analysis made on heterogeneous information structures to es-
timate the likelihood of the existence of a connection between two elements. This
task also received a lot of attention in the literature. The authors in [91] introduced a
structured logistic regression model that can make use of relational features to predict
the existence of connections. In [20], the authors considered the problem of collective
prediction of multiple types of links in heterogeneous information structures. They
introduced a relatedness measure, called RM, between different types of objects that
they used to compute the existence probability of a connection between the elements.
Other works in [107], [120], [25], [20] and [109], have considered to solve the link pre-
diction problem in two steps. The first step consists of extracting meta path-based
feature vectors and the second step is to train a regression or classification model to
compute the existence probability of connections between elements.

3.2.3.6 Ranking

Ranking helps to identify the relevant and important elements in heterogeneous in-
formation structures. These approaches use raking functions to evaluate the elements
and determine their importance. Many contributions were conducted for this task like
PageRank [109] that evaluates the importance of elements through a random walk
process, and HITS [86] that ranks elements using the authority and hub scores.

Ranking heterogeneous elements were heavily investigated for social networks,
like the work in [60] and [113]. The authors in [60] propose SocialRank which uses
social hints for image search and ranking in social networks. In [113], the authors
proposed an approach that ranks the tweets. Their approach integrates both formal
genres and inferred social networks with tweet networks to rank tweets. Ranking
approaches are also investigated in QA systems to identify high-quality elements
such as questions, answers, and users. The author in [51] devised an unsupervised
heterogeneous information structure to co-rank multiple elements in QA sites. In
[121], the authors proposed a framework for the heterogeneous cross-domain ranking
problem. The framework discovers a latent space for two domains and minimizes two
weighted ranking functions simultaneously in the latent space.

It is clear from the review of the state of the art regarding the categories of
approaches that handled the heterogeneity between information structures that our
task of handling the heterogeneity between SDN controllers to construct a global
network view is under the category of information fusion. We, therefore, focus our
attention on the related approaches and take inspiration from these works.

3.3 Automating the configuration generation

We consider the problem of automating the generation of deployment descriptors in
NFV as a step toward automating the configuration in software networks. We review

50 State of The Art

first the existing works in NFV that considered also the problem of automating the
generation of descriptors in section3.3.1. Afterward, in section3.3.2 we briefly discuss
the efforts made in software engineering to automate the configuration generation.

3.3.1 Deployment descriptors generation in NFV

In NFV, service providers have to define manually the deployment descriptors in
order to onboard the VNFs and NSs. This is certainly a cumbersome and error-prone
task. Recent surveys on the current challenges in NFV orchestration indicated that
the generation of deployment descriptors is a problem that needs to be tackled in
order to enable full automation of network configuration and allow more agility in the
orchestration [58] [104].

Unfortunately, the problem of automating the generation and design of deploy-
ment descriptors in NFV has received only a few attention in the literature. The
authors in [74] proposed a tool, called VNF Onboarding Automation Tool (VOAT),
and a methodology to aid the VNF designer to rapidly design and onboard new ser-
vices and applications. VOAT takes as input the deployment descriptors files and
translate them to metadata format and generates an appropriate service catalog for
future deployment of the VNF packages in the production or test environments. The
metadata inputs from the VNF vendor are provided in JSON files. These inputs
are then translated to a data model based on the ETSI VNFD. A VNFD Parser then
parses the VNFD and generates a HOT template associated with the VNF or network
service package. The VOAT backend engine performs the onboarding procedure and
places the artifacts in the appropriate deployment environment and catalog. This
approach assists the creation of an appropriate deployment descriptor that follows
the required data model, hot templates in their case study. However, this approach
relies heavily on human intervention for the definition of the required artifacts needed
for the deployment and does not automate the generation or recommendation of in-
formation related to the deployment.

The authors in [97] proposed a framework based on machine learning to identify
the appropriate types of resources to be allocated to a VNF at deployment time. Their
work helps identify the performance characteristics and affinity between physical re-
sources in order to maximize performance and to optimize the number of allocated
resources. The framework automatically generates different deployment configura-
tions for given VNF characteristics in the form of heat templates. It has two distinct
functions: the first one is the characterization of VNF workload performance using
different resource allocations in a quantitative manner; the second one is modeling
the relationships between VNF performance and resource allocations. The templates
represent possible configurations for selected parameters (e.g. vNIC configuration,
number of virtual CPUs, amount of RAM, etc.) within a given range of values. The
framework interacts with an OpenStack cloud environment and generates different
configurations in the form of Heat templates, which are deployment scripts based

Automating the configuration generation 51

Table 3.4: Illustration of the contributions made for automating the generation of
deployment descriptors

Description automation approach Proposed solution

VOAT [74] Generation and design of deployment descriptors

Ressource allocation Framwork [97] Automatic generation of deployment resources configuration

CPU consumption model [57] Prediction of the CPU perofrmance

VNFD generator web application [80] Generation and design of deployment descriptors

on the Heat Orchestration Template format. This work focus only on automating
the configuration of the physical resources, which is an important step toward auto-
configuration.

The authors in [57] investigated an approach based on machine learning to esti-
mate the VNFs need in terms of resource requirements from descriptors. The aim of
this work is to model the VNF requirement. That is because the behavior of VNFs
is dynamic, complex, and depends on different factors, which makes developing accu-
rate models a challenging task. They proposed a model that takes as input incoming
traffic entering the VNF and output the amount of CPU required by the VNF to
process that traffic. Once the prediction of the model is performed, the CPU’s es-
timated value can be used by resource allocation algorithms to automatically adapt
the amount of provisioned resources.

The authors in [80] proposed a VNFD generator web application to automatically
create a VNFD template that the operators and VNF vendors can quickly validate
and deploy. The VNFD generation process takes as input the VNFD properties like
the name of the VNFD; the number of deployment units (VDUs). The attributes of
the VNFD are then selected and their value determined. Overall, this approach helps
to automate the creation of the file and need human intervention to determine all the
component expected to be founded in the VNFD.

Table3.4 summarizes the efforts made for automating the generation and design
of deployment descriptors in NFV.

Following the ETSI NFV recommendations [38], the VNFD descriptors define the
VNF properties, such as resources needed (amount and type of Virtual Compute,
Storage, Networking), software metadata (External and internal Connection Points,
Virtual Links,etc.), lifecycle management behavior (scaling, instantiation,etc.), lifecy-
cle management operations, and their configuration. The absence of a common data
model to describe the deployment descriptors have led different template models to
emerge. The most used modeling languages for that matter are YANG and TOSCA.
In TOSCA, there are two profiles that are standardized by OASIS: the simple profile
in YAML v1.0 for managing the life cycle of cloud applications and services, and the
Simple Profile for NFV [2] that is based on ETSI NFV.

From the analysis of the existing works related to automating the deployment
descriptors generation, we can notice that the proposed solutions offer only static au-
tomation, meaning that service provider has to define the template of the descriptors,

52 State of The Art

the structure of the files, the input of the model, the data set, etc., for the solution
to predict configuration values or an estimation. In our work, we aim at minimiz-
ing service providers intervention by learning directly from deployment descriptors.
We investigate in this thesis two approaches. The first one is based on deep neural
networks that learn in an unsupervised manner from deployment descriptors mod-
els that could recommend and complete automatically configurations without human
intervention. The second approach is model-driven. It aims at capturing the config-
uration variabilities into a single configurable model that could assist the automatic
generation of deployment description.

The deep neural network techniques are powerful to generalize the prediction
from a set of limited examples and to eliminate the errors caused by data noises. To
the best of our knowledge, our contribution to learning from deployment descriptors
using deep neural networks has not been yet investigated in the context of automating
the deployment descriptor generation. Deep neural have been already showed to be
successful in many tasks such as processing natural language and computer vision
[59], [42]. In the next section, we show examples of works that considered deep neural
networks in automating the configuration generation in software engineering.

The configurable model of our second contribution is inspired by the configurable
process models in Business Process Management (BPM) [21]. Indeed, designing high-
quality process models, similarly to deployment descriptors, is time-consuming, error-
prone, and costly. The tasks in BPM need to be ordered as well as their execution plan,
i.e. whether the tasks are executed in parallel or are alternatives to each. Configurable
process models significantly reduce process modeling costs by allowing the reuse of
existing process models and enabling their adaptation for different needs. [105]. To
the best of our knowledge, our approach to learning from deployment descriptors
using a configurable deployment descriptor model has not been yet investigated in
the context of NFV.

Our proposed configurable model is closely related to the work introduced by the
work in [93, 99]. The authors proposed a Configurable Event-driven Process Chain
(C-EPC) to improve the configurability of Enterprise systems and reference models
such as SAP R/3 reference model. Basically, the EPC notation consists of three
main control-flow elements: event, function and gateway. An event can be seen as a
pre- and/or post-condition that triggers a function. A function describes the kind of
work which must be done. Three types of connectors, OR, exclusive OR (XOR), and
AND are used to model the splits and joins. C-EPC adds two constructs to the EPC
language: configurable functions and configurable gateways. A configurable function
has two configuration alternatives: ON and OFF. A configuration ON means that
the function is included in the process variant while a configuration OFF means that
it is excluded. A configurable connector has configuration alternatives that are of
equal or less restrictive behavior. For example, a configurable OR has the configu-
ration alternatives: OR (no restriction is applied), XOR, and AND with possibly
restricted outgoing/incoming branches. We propose a graphical representation of a

Automating the configuration generation 53

Table 3.5: Categories of contributions related to the configuration automation in
software engineering

Categories of auotmating the config-
uraiton in software engineering

Description

Configuration prediction Approaches used to identify and predict mea-
sured and observed configuration attributes.
[26], [44], [3], [55]

Interpretability of configurable sys-
tems

Approaches used to model the impact of the
configuration choices on the system quality. [33],
[54], [61]

Configuration optimization Approaches used to find configuration features
that suit the expected performance require-
ments. [10], [14], [30], [7]

Dynamic Configuration Approaches that adapt the configuration of the
software with unexpected environmental and
contextual changes. [12], [13], [98]

Configuration constraints mining Approaches that identify the configuration con-
straints that ensure the coherency of the sys-
tem. [13], [22], [69], [95]

VNFD model that consists of component instances, relations, and gateways. Our pro-
posed composition, allocation, and connection gateways are different than those in the
BPM domain (i.e. OR, XOR and AND gateways). The behavior of these operators
is similar to that of BPM gateways. However, their configuration is different.

3.3.2 Automatic configuration in software engineering

In this section, we discuss a broader picture of the contributions related to automating
the configuration of systems. More particularity, we emphasis on software engineering
as software configuration automation is a very active field of study and also because
NFV can be considered as a special software dedicated to managing networks. As
illustrated in table 3.5, auto-configuration contributions can be grouped into five cat-
egories [89]: configuration prediction, interpretability of configurable systems, config-
uration optimization, dynamic Configuration, and configuration constraints mining.

3.3.2.1 Configuration prediction

Configuration prediction aims to identify and predict measured and observed configu-
ration attributes. The measured attributes are quantitative values like the execution
time, the latency, delay, etc., while the observed attributes are qualitative like the er-

54 State of The Art

rors, the quality of service, the type of resources, etc. Authors in [26] investigated an
approach that anticipates the performance of an eventual application solution before
been built. They proposed an empirical approach that determines the performance
characteristics of component-based applications by benchmarking and profiling. The
authors in [44] studied the correlation between feature selections of configuration
and performance in configurable software systems. They proposed a variability-aware
approach to performance prediction via statistical learning. The authors in [3] also in-
vestigated the same problem and proposed a data-efficient learning approach, called
DECART, that combines several techniques of machine learning and statistics for
performance prediction.

The authors [55] considered a strategy that transfers knowledge across environ-
ments to predict the performance using transfer-learning strategies. Their approach,
called Learning to Sample, takes into consideration empirical insights about common
relationships regarding influential options, their interactions, and their performance
distributions. The approach selects the best samples in the target environment based
on information from the source environment.

3.3.2.2 Interpretability of configurable systems

The interpretability of configurable systems aims to provide insights on how the con-
figuration choices could impact the system quality. They focus on learning models
that could accurately explain the performance behavior of a configurable system as
a whole. In [34] the authors proposed a method that learns human-readable mod-
els that capture non-deterministic impacts explicitly of actions on the system. This
model could be to revise the system model in offline. The authors in [33] presented
an approach to analyzing the correlation between the selection of features embedding
uncertain parameters and system performance. In [54], the authors investigated the
benefits of using transfer learning into constructing performance models. They con-
ducted an empirical study on four software systems, varying software configurations
and environmental conditions, such as hardware, workload, and software versions, to
identify the key knowledge pieces that can be exploited for transfer learning. In [61],
the authors studied the tradeoffs between prediction error and model size and between
prediction error and computation time. They identified several patterns across sub-
ject systems, such as dominant configuration options and data pipelines, that explain
the influences of highly influential configuration choices and interactions.

3.3.2.3 Configuration optimization

Configuration optimization contains approaches that aim to find configuration fea-
tures that best suit the expected requirements. In [10], the authors proposed, Cher-
ryPick, a system that leverages Bayesian Optimization to build performance models
for distinguishing the best or close-to-the-best configuration from the set of config-
uration. In [14], the authors proposed an automatic configuration system that can

Automating the configuration generation 55

optimize producer-side throughput on Distributed message system. In [30], the au-
thors proposed a learning algorithm to tackle the input sensitivity problem in program
performance autotuning. The algorithm is a clustering method that automatically re-
fines input grouping, feature selection, and classifier construction. In [11], the authors,
the authors proposed a machine learning approach for predicting the performance of
each configuration of optimization algorithms. Their contribution finds the most suit-
able configuration on a per-instance analysis based on a supervised machine learning
model.

3.3.2.4 Dynamic Configuration

Dynamic configuration is related to systems that need run-time adaptations of soft-
ware in order to react with unexpected environmental and contextual changes. In [12],
the authors proposed to utilized the Markov decision process theory to present a re-
inforcement learning strategy that discovers the complex relationship between the
system workload and the corresponding optimal configuration. In [13], the authors
investigated an approach based on machine learning that finds Pareto-optimal con-
figurations without needing to explore every configuration. This approach restricts
the search space to such configurations to make the planning tractable. In [98], the
authors proposed a transfer learning approach for Improving model predictions in
highly configurable software.

3.3.2.5 Configuration constraints mining

Mining constraints are approaches that identify the configuration constraints that
ensure the coherency of the system. For example, there are some configuration choices
that are mutually exclusive. In this category, the contributions analyze and mine the
constraints related to the configuration choices. Variability models are proposed to
precisely define the space of valid configurations. Our second contribution to auto-
configuration could be considered in this category. This is because our contribution
can be used to mine the configuration constraints and help service providers to choose
the best options. In [13], the authors described an approach that automatically mines
constraints for runtime monitoring from event logs recorded in software-intensive
systems of systems. In [22], the authors proposed a search-based technique that is
able to repair a model composed of a set of constraints among the various software
system’s parameters. In [69], the authors proposed an approach that combines multi-
objective search with machine learning to mine rules to automate the configuration
in Product Line Engineering. In [95], the authors proposed an approach based on the
combination of a kernel density estimation and a genetic algorithm to rescale a given
configuration attribute-value profile to a given variability model.

After the review of the categories of existing works related to the configuration
automation in software engineering, we can position our contributions vis-a-vis to the
literature. Our deep neural network approaches can fit the categories of configuration

56 State of The Art

prediction and dynamic configuration. That is because our approach can not only
predict configuration values in the deployment descriptors but also can be used to
generate new configurations to adapt to changing network situations. For example,
an NFV orchestrator can use our approach to recommend an existing deployment de-
scriptor in its catalog in cases when an onboarded deployment descriptor is damaged,
or when the resources described in the deployment descriptor cannot be satisfied by
the orchestrator.

Our model-driven approach can be categorized in configuration prediction, config-
uration optimization, and configuration constraints mining. Indeed, the configurable
model can be used to design the deployment descriptors, to select the best configura-
tion values based on the catalog of deployment descriptors, and also can be used to
mine the dependencies between the configuration choices to derive constraints that
should be respected by service providers.

3.4 Conclusion

In this chapter, we explored relevant existing works to our objectives. We considered
two challenges related to the auto-configuration: (i) handling automatically the het-
erogeneity between configurations and (ii) Generating automatically configurations.

Regarding the first challenge, we discussed the efforts made in SDN to overcome
the heterogeneity problem in multi-controller architecture. We showed that there is
a lack of approaches for the automatic integration of controllers. The efforts already
made are either including only homogenous controllers in the architecture or using
predefined APIs between controllers. Afterward, we described the contributions re-
lated to analyzing the heterogeneity between information structures. We grouped
these contributions into six categories based on [103]: Similarity Measure, Informa-
tion fusion, Clustering, Ranking, Link prediction, and Classification. Each category
focuses on a particular mining task. We indicated that the challenge that we are
tackling in this thesis is part of the information fusion categories as it aims at group-
ing multiple SDN controllers’ views into a single coherent one. Regarding the second
challenge, we focused on the efforts made in the context NFV to automate the genera-
tion of deployment descriptors. We showed that are only a few works that considered
automating the generation of deployment descriptors and that these works only static
automation, meaning that the service provider has to define the template of the de-
scriptors, the structure of the files, the input of the model, the data set, etc., for the
solution to predict configuration values or an estimation. Additionally, we reviewed
the existing works that were made toward auto configuration by grouping them into
five categories: Prediction, Interpretability, Optimization, Mining Constraints, and
Dynamic Configuration.

We start presenting in detail our approaches in the next chapters. In chapter 4,
we elaborate on our approach to handling the heterogeneity in SDN. In chapter 5,
we introduce our deep learning techniques to recommend and complete deployment

Conclusion 57

descriptors in NFV, and in chapter 6, we present our model-driven approach to assist
the design of deployment descriptors in NFV.

58 State of The Art

Chapter 4

Handling the heterogeneity
between configuration data

models

Contents

4.1 Introduction . 60

4.2 Use case: Multi-controllers SDN architecture 61

4.2.0.1 Distributed vs Centralized control plane 62

4.2.0.2 Flat Architecture vs Hierarchical Architecture 63

4.2.0.3 Dynamic Architecture versus Static Architecture 63

4.2.0.4 Existing SDN platforms 64

4.2.0.5 Platform architectures . 64

4.3 Semantic-based framework for global network view construction 65

4.3.1 Exemplified Problem Statement . 66

4.3.2 Centralized global network view construction 66

4.3.2.1 Global ontology model 69

4.3.2.2 Extracting local ontologies form the controllers 70

4.3.2.3 Mapping the local ontologies with the global ontology . 71

4.3.2.4 Interacting with the global network view 73

4.3.3 Distributed global network view construction 73

4.3.3.1 Mapping local ontologies 74

4.4 Evaluation . 76

4.4.1 Evaluation environment . 76

4.4.2 ontology extraction from JSON files 76

4.4.3 Ontology mapping . 78

4.4.4 Interaction with the global network view 79

4.5 Conclusion . 79

59

60 Handling the heterogeneity between configuration data models

4.1 Introduction

Software networks are built and operated on various solutions from different sources.
These solutions could offer different functionalities that satisfy different performance
goals or compete with each other on the market on supplementary aspects like the
service price or the usefulness of the service. Federating these heterogeneous solu-
tions together is one of the main challenges for end-to-end network management and
consequently for also an auto-configuration solution in the network.

The SDN paradigm addresses part of such challenges by separating the data plane
(hardware) from the control plane (network functionalities). The control plane man-
ages different network devices independently from any vendor. This way the network
is not locked-in to a specific vendor and can hide the heterogeneity from network
users. SDN uniforms and unifies network management. The underlying devices can
be easily changed without any exceeding time or integration effort.

The problem of heterogeneity can prevent the management entity from collaborat-
ing with network components if the latter are not sharing a common understanding
of how the information is defined. The information exchanged and the configuration
requested could not be understood by both parties, they are not sharing the same
syntactic and semantics of the data.

Currently, there are a plethora of data model languages used in software networks.
Certainly, the common ones are TOSCA (Topology and Orchestration Specification
for Cloud Application) and YANG (Yet Another Next Generation). TOSCA is a
standard proposed by the Organization for the Advancement of Structured Informa-
tion Standards (OASIS). it is used for defining portable deployment and automated
management of services on a wide variety of infrastructure platforms. It describes
services, platforms, infrastructure, and data components, along with their relation-
ships, requirements, capabilities, and operational policies. YANG on the other hand
is defined by the IETF. It is used to model the operations and content layers of
NETCONF and also in the configuration of devices and services in NFV and SDN.

A potential solution for this heterogeneity problem is to find a consensus between
network vendors and organizations on a common representation of network domain
knowledge. This solution may be improbable in the short term. Network vendors
diverge on their vision of software networks. This resulted in inventing different
architectures, platforms, and software with different characteristics that make it very
difficult for them to converge on the same understanding. Moreover, also a solution
that manually does the translation between heterogeneous network components is not
feasible in software networks. It is hard to keep up the translation updated for each
heterogeneous solution and with the constant evolution and upgrade of this type of
network.

To overcome the heterogeneity problem in software networks, we investigate in this
chapter a semantic-based approach that searches for elements with similar meaning
or semantics between heterogenous configuration files and maps them together. The

Use case: Multi-controllers SDN architecture 61

outcome of this approach is a common representation of the configuration files.
We focus our attention more particularly on SDN. Operating heterogeneous SDN

controllers is a challenging task. The problem is the integration of the controller’s
local views into a global coherent view that encompasses the entire network. Each
SDN controller may expose different functionalities using different models to describe
its data. The difference could be in the structure of the data, the syntactical spec-
ifications of the data, or the semantics of the data. This makes a controller’s local
view uninterpretable by the others. To address this problem, we propose a semantic-
based approach that handles the incompatibility of the information that is exchanged
between controllers. The approach models the controller’s network views as ontolo-
gies. The common elements of controllers ontologies are then matched together via
semantic mapping techniques, which federates the controller’s knowledge and exposes
a global view of the network. The approach is a framework that could be imple-
mented as a module in the SDN controller. The contribution of this chapter could be
summarized as follows:

• We consider two scenarios: 1) the controllers share their local views to a central
entity that collect them and integrates them into a single view. 2) the controllers
share their local views, each controller construct locally the global view.

• We use a global ontology in the centralized global view that defines the SDN
elements and their relations.

• We propose an extraction method from network data that are described in JSON
format to an ontology.

• We suggest two mapping techniques. One for the centralized global view, to
map the controller’s local ontologies to the global ontology and one for the
distributed global view that map controller’s ontologies together.

This chapter is organized as follows: we start by discussing the use case of het-
erogeneous multiple SDN controllers in section 4.2. We then present our semantic
approach for constructing the global network view in this use case in section 4.3. we
evaluate this approach and analyze the results in section 4.4, and we conclude the
chapter in section4.5.

4.2 Use case: Multi-controllers SDN architecture

The control plane of SDN is centralized when a single controller is operated in the
network. Although this architecture is sufficient for many medium-sized networks,
the performance requirements could not be met in large networks. Single controller
architecture may not be adequate for scenarios where multiple network devices com-
municate in large distances. It is important in that case to ensure the availability of
the network and decrease the latency of communication.

62 Handling the heterogeneity between configuration data models

Figure 4.1: Multi-Controllers SDN architecture

Operating multi-SDN controllers in the networks can enhance the performance in
terms of efficiency, scalability, and availability of the networks. The communication
latency can be reduced when multiple controllers are distributed along with the net-
work. Load balancers are used to make sure that the controllers are not overloaded
and that the load is dispatched efficiently. Controllers can be provisioned dynami-
cally to achieve higher performance and meet the needs of the networks. Moreover,
multiple controllers can also be used as a backup to ensures the availability of the
network. The redundancy of controllers prevents a single point of failure and improve
the security of the control plane.

Concretely, an SDN multi-controller architecture is a set of controllers operating
together to achieve some level of performance. Figure 4.1 shows an example of this
architecture. There are different ways of designing the multi SDN controller architec-
ture depending on various aspects that we are going to describe in the following.

4.2.0.1 Distributed vs Centralized control plane

A physically distributed SDN controllers could be used either as a single entity that
controls the network or as the cooperation of multiple entities (controllers).

The management and control of multi-controllers could be logically centralized to
preserve the original idea of the concept of SDN and also take advantage of multi
controllers. In this architecture, there is a single layer above the controller that is
responsible for distributing the load among the controllers. The layer gives the im-
pression that there only a controller in the network. It abstracts the multi controller’s
architecture to the users.

On the other hand, in a distributed plane of multi-controller architectures, all
the controllers have the same responsibilities and may divide the load among them.
The controllers in that case need to be always aware of every change in the network
and need to constantly cooperate to share the same information. instantly, thanks to
network synchronization. In a logically distributed architecture, the controllers are
physically and logically distributed. Additionally, every controller has just a view

Use case: Multi-controllers SDN architecture 63

of the domain it is responsible for, and it can take decisions for it, unlike a logically
centralized design, where each controller makes a decision based on the global network
view.

4.2.0.2 Flat Architecture vs Hierarchical Architecture

In a flat multi-controller architecture, controllers are positioned horizontally on one
single level. There is only a single layer in the controller plane and each controller
has the same responsibilities and has only a partial view of the network.

In other words, the entire network is divided into several domains, each domain
is managed by a controller. The cooperation between the controllers is possible by
west-east interfaces. They could communicate relevant information to contract the
global network view.

In a hierarchical multi-controller architecture, SDN controllers are positioned ver-
tically on multiple levels. The control plane in this case is divided into several layers,
where each layer has a specific role. The controllers have in each layer have different
responsibilities, and they can take decisions based on a partial view of the network.
The cooperation between the controllers could be only with the controller from dif-
ferent layers. For example, a root controller could be used to controller and manage
controllers from a different domain and maintain a global network view. The root
controller can communicate with the domain controllers, while the domain controllers
do not contact each other.

4.2.0.3 Dynamic Architecture versus Static Architecture

In a dynamic multi-controller architecture, the links and the positions between the
controllers, as well as the switches, are changeable, which makes the network flexible.

In a static architecture, the links and the positions between the controllers and
also the switches are unchangeable, which gives more stability and less overhead to the
network in comparison to a dynamic architecture. In the other hand, when the design
of multi-controllers is determined, the connections between switches and controllers
also fixed and the static connection mapping cannot adapt the dynamic change of
network traffic, and the presence of overloaded controllers or underloaded controllers
will severely degrade the overall performance of the control plane.

The cooperation between controllers enables them to share information about
their network state and construct a global view of the network. This view is used
by different controllers for decision making and exposed to network management
applications. Unfortunately, the communication between SDN controllers is not yet
normalized and most of the current solutions rely on self-developed interfaces that
handle the message exchange. Moreover, the diversity of SDN controllers adds more
challenges to federate heterogeneous controllers for integrated end-to-end control and
management.

64 Handling the heterogeneity between configuration data models

The main challenge that arises when operating heterogeneous SDN controllers
is the integration of the controller’s local views into a global coherent view that
encompasses the overall network. The problem is that each controller may expose
different information using different conceptual models. The difference could be in
the structure of the data, the syntactical specifications of the data, or the semantics
of the data. This makes a controller network view uninterpretable by the others.

4.2.0.4 Existing SDN platforms

Several SDN platforms have already been deployed to manage a set of controllers.
The platformers may differ in their design; they could be suited for a certain type
of applications such as large scale networks, fault tolerance, end-to-end flow man-
agement, etc. They could also be implemented following different architectures and
different data models. The authors in [17] and [123] have surveyed the use of multi-
controller SDN in the literature, they confirmed that there is a lack of standardization
for the communication between the SDN controllers and that, till to this date, there
is no SDN platform that takes into account the heterogeneity of the controllers. In
the following, we present some of the proposed platforms, their architectures, and the
communication between their controllers.

ONIX [62] and HyperFlow [112] are among the first physically distributed plat-
forms of SDN controllers. ONIX uses a central network information base (NIB) that
maintains a global view of the network, network applications can read and write into
this base to manage the network elements. Hyperflow is an event-based architecture
that supports OpenFlow, it implements NOX [43] controllers. DISCO [90], is a plat-
form that can cope with wide area networks and overlay networks, it can be divided
into two parts, an intra-domain part, that is responsible for monitoring the network
and dynamically managing the network to maintain a satisfiable performance, it uses
a central database for storing the controller’s information, and an inter-domain part,
that provides communication between domains. Kandoo [47] is a hierarchical platform
for distributed controllers where root controllers take the responsibility of managing
the network. Elasticon [31], is an elastic platform architecture, where a controller
is added or removed dynamically depending on the network traffic load. OpenDay-
Light (ODL) [111] is an open-source platform, where a set of controllers collaborate
as a cluster to achieve some performance criteria such as availability and scalability.
ONOS [16], is also an open-source platform suited for high availability and scalability
applications. It uses a central graph database to store network information.

4.2.0.5 Platform architectures

The architecture in terms of co-operations between SDN controllers can be either be
logically distributed or centralized. In the distributed architecture, the controllers
have just a local view of their control domain and base their decisions on it without
sharing any state of the network with the other controllers. Whereas in the logically

Semantic-based framework for global network view construction 65

centralized architecture, the controllers cooperate to share a global view, this coop-
eration can be either established directly between the controllers or via a centralized
entity.

In a direct SDN controllers communication, each controller exchanges its local
view to its neighbors to synchronize the view in the network. This architecture can
be cumbersome in traffic load because of the number of exchanged synchronization
messages and may present a major challenge in keeping the controller’s network views
consistent. In indirect cooperation, each controller exposes its local view about the
network in a central entity. A global view of the network is constructed by consolidat-
ing all of the controller’s information. This allows the controllers to make decisions
based on a global network view that exposes a coherent current state of the network.
The global view is periodically updated by the central entity.

The architecture of the controllers can also be viewed in terms of the interconnec-
tion between them. There is two types of interconnection, a horizontal (flat) inter-
connection, in which the controllers are positioned at the same level in the network
and have the same level of responsibility, and a vertical (hierarchical) interconnection
in which the controller is set into several layers, each controller has the responsibility
of its local domain and the domain that is underlying its layers.

The controllers have to cooperate to build a global view of the network that
contains an up-to-date state of the data plane e.g. topology, traffic load, etc. This
view appears to applications and policy engines as a single, logical network domain.
Each multi-controller platform implements differently the global view construction.
For example, Elasiticon, uses a distributed data store to gather the information about
the network, Hyperflow propagate the network state among the controller using a
publish/subscribe system, ONOS maintains the network state at each controller using
a graph database and propagate it by a publish/subscribe system and ODL elect a
head controller to collect the network states from the controllers in its cluster and
update the global view.

4.3 Semantic-based framework for global network view
construction

We describe in this section a semantic-based framework that enables a multi-controller
SDN platform to construct a global network view from heterogeneous controllers. The
framework enables the platform to interpret controllers of local network views when
they are represented with different data structures and models. To do that, the
framework extracts an ontology from each controller network view to represent its
data and the relation between them. Then, it constructs a global view by matching
similar ontologies elements together. We propose this framework for two scenarios of
constructing the global network view.

Scenario 1: Centralized global network view construction. the construction of

66 Handling the heterogeneity between configuration data models

the view is centralized (Figure 5.12 a). Each controller exposes its local network view
to a central entity that contains the semantic-based mediation layer. The framework
integrates all the local views into a coherent global one.

Scenario 2: Distributed global network view construction. (Figure 5.12 b),
the construction of the global view is distributed. Each controller disseminates its
local view to the others and implements the semantic-based mediation layer locally to
construct the global view, by merging and integrating the other collected local views.

4.3.1 Exemplified Problem Statement

Building a global network view of heterogeneous local views of SDN controllers require
that the exchanged information have to be understood across the different controllers.
The problems are the heterogeneity in the structure and the semantic of the data.
The structure heterogeneity is the difference in the way that the data is defined. A
given SDN controller has its local understanding of the SDN domain and therefore
structure the data accordingly. For example, the current two leading open source
SDN controller platforms, Open Network Operating System (ONOS) [16] and Open
Day Light (ODL) [111], expose differently the network state of their management
domain. ONOS internally represents the infrastructure (topology, installed flows,
etc.) in a protocol-agnostic model called object model, while ODL employs a model-
driven approach to describe the network, the functions to be performed on it, and
the resulting state. The ODL model-driven infrastructure uses YANG as a modeling
language for interface and data definition that allows applications and plugins to be
developed from a single model. Figure 4.2 shows an example of a network topology
that is exposed by the ONOS controller in (a) and ODL controller in (b), using JSON
format. This topology consists of two switches and a link that interconnects them. We
notice from Figure 4.2 that the network data is expressed using the different structures
and different syntax. The semantic heterogeneity on the other hand relates to the
intending meaning behind the syntactical expression. The exchanged information
could be interpreted differently across SDN platforms depending on the way that the
data is defined. It is important therefore that the heterogeneous controllers use a
common understanding of the data of the domain to establish cooperation or to build
a consistent global network view.

4.3.2 Centralized global network view construction

In the centralized scenario, the global network view is constructed by consolidating
the controller’s local network views into a single representation. The framework of
building this global view could be endorsed by an independent entity or by one of
the controllers. The central entity requests periodically the local views from all the
controllers in the network and constructs consequently a global view by harmonizing
the local views into a single, formal, and coherent representation. This representation

Semantic-based framework for global network view construction 67

[{"id":"of:0000000000000001",
"type":"SWITCH",
"available":true,
"mfr":"Nicira, Inc.",

"hw":"Open vSwitch",
"sw":"2.3.1",},

{"id":"of:0000000000000002",
"type":"SWITCH",
"available":true,
"mfr":"Nicira, Inc.",

"hw":"Open vSwitch",
"sw":"2.3.1",}]

[{"src":
{"port":"1",
"device":"of:0000000000000001"},
"dst":
{"port":”1",
"device":"of:0000000000000002"},
"type":"DIRECT",
"state":"ACTIVE"}]

{"network-topology":
"topology":

[{ "topology-id": "flow:1",
"node":

[{"node-id": "openflow:11",,
"termination-point": [
{"tp-id": "openflow:1:1"},
{"tp-id": "openflow:1:2“}],

{"node-id": "openflow:2",
"termination-point": [

{"tp-id": "openflow:2:1"},
{"tp-id": "openflow:2:2“}],],

"link":
[{"link-id": "openflow:1:1",
"destination":

{"dest-tp": "openflow:2:1",
"dest-node": "openflow:2"},
"source":
{"source-node": "openflow:1",
"source-tp": "openflow:1:1" }}]]}

(a- ONOS) (b-ODL)

Figure 4.2: The heterogeneity of network data representation between ODL controller
and ONOS controller

1

Heterogeneous
SDN Controllers

Network
Topologies

Network Data
Collection and

Integration

C
o

n
tr

o
l

Network
Topologies

C
o

n
tr

o
l

Heterogeneous
SDN Controllers

Network local view

Network Data
Collection and

Integration

a- Centralized global view construction b- Distributed global view construction

Mediation layer

Network Global
View

Network Global
View

Mediation
layer

Mediation
layer

Figure 4.3: Different contexts for constructing the global network view

68 Handling the heterogeneity between configuration data models

Centralized Semantic Framework

Topology
description

file

Controller
platform

JSON

Controller local
ontologies

(2)

Mapping with
the global
ontology

(4) Network global view

(3)

SDN Global
ontology

Local view

Local ontology
Extraction from
description files

(1)

(5) RDF
triplestore

Figure 4.4: Mediation for the central global view scenario

could be afterward exposed to network applications for end-to-end network manage-
ment or queried by the SDN controller for decision making. An advantage of this
approach is that it provides a coherent and consistent single global view, shared by
all the controllers. Constructing the global view require that the central entity ex-
tract information from the controller’s local views and integrate them into a unified
formal representation. Information extraction from the controller’s local views could
be a difficult task given the heterogeneity of their representation. We propose to use
an ontology to describe a common understanding of the SDN domain. The ontology
formally describes the different entities and the relation between them. We use this
ontology with its global representation of the network to identify entities from the
controller’s local views and match them to their semantic meaning, irrespective of
their syntactic representation. To do so, we build for each heterogeneous controller a
local ontology from its description file of the exposed local view. This local ontology
is used to describe the controller conceptual data model and the different entities
that are represented in it. We map afterward this local ontology to the global one
using semantic techniques. Mapping the local ontologies together with the global
one clarifies the meaning of the controller’s entities with the commonly defined ones.
The semantic approach for the centralized global view construction is summarized in
Figure 4.4, we discuss in the following the process of building the global ontology,
extracting the local ontology from the controller’s local view and mapping them with
the global ontology.

Semantic-basedframeworkforglobalnetworkviewconstruction 69

hasController

MultipleSD
NController

EndPoint

LogicalTer
minalPoint

FcRoute

ForwardingCon
struct

FcSwitch

SDN
Controller

Network
ControlDom
ain

NetworkEl
ment

Forwarding
Domain

Link

LinkEnd

hasNetworkCon
trollerDomain

hasNeworkElem
ent

hasLinkEnd

connect_to

includ

Figure4.5: Briefrepresentationoftheglobalontology

4.3.2.1 Globalontology model

Webuildaglobalontology modelthatrepresentsthedomainknowledgeofSDN
withOWL.TheontologydescribestheentitiesthatconstituteSDNandtherelations
betweenthem. Thisontologyisusedasamediatorforintegratingthedataand
hidingtheheterogeneitybetweencontrollersnetworkviews.Ithastobesufficiently
comprehensivetobeeffectiveandthatrelevantinformationcouldbeextractedfrom
thecontroller’slocalviewfiles.

Tobuildourontology,wereliedonthecommoninformationmodel(IM)that
wasproposedbytheOpenNetworkingFoundation(ONF)[1]. ThisIMdescribes
theobjectsoftheSDNdomain,theirproperties,andtherelationbetweenthem.
TheIMobjectsareresources. Anetworkviewcouldonlybeexpressedintermsof
theseobjects.Figure4.5showsabriefviewoftheglobalontologyforthemulti-SDN
topology.Theglobalontologytakesintoaccounttheelementsthataredefinedinthe
ONFIM,therelations,andtheassociationsbetweenthemaswellastheintegrity
constraintsintheformofSWRL(Semantic WebRuleLanguage).

70 Handling the heterogeneity between configuration data models

{"network-topology":
{"topology": [
 {"topology-id": "flow:1",
 "node":[
 {"node-id":"openflow:1",
 "termination-point":
 [{"tp-id": "openflow:1:1",},
 {"tp-id": "openflow:1:2",},}]},
 "node-id": "openflow:2",
 "termination-point": [
 {"tp-id": "openflow:2:1",},
 {"tp-id": "openflow:2:2",},]},]
 "link": [
 {"link-id": "openflow:2:1",
 "destination": {
 "dest-tp": "openflow:1:1",
 "dest-node": "openflow:1"},
 "source": {
 "source-node": "openflow:2",
 "source-tp": "openflow:2:1"}}],}}

flow:1

has_topology

topology

termination
point

node Link

topology-id

dest-tp
dest-
node

source-
node

source-
tp

link-id node-id

tp-id

has_node has_link

has_termination
point

has_destinat
ion

has_source

openflow:2:1

openflow:1:1

openflow:1

Network-topology

topology topology-id

node
link

node-id

termination-point
tp-id

openflow:1:1

tp-id

openflow:1:2

node-id

termination-point
tp-id

openflow:1:1

tp-id

openflow:1:2

link-id

openflow:2:1

destination

dest-tp

dest-node

source

source-tp

source-node

openflow:2

F

source destination

network
topology

JSON file JSON tree structure JSON ontology

Figure 4.6: Extracting the local ontology from a JSON file

4.3.2.2 Extracting local ontologies form the controllers

We construct for each heterogeneous controller a local ontology that describes the
conceptual model of its data. The ontology is generated from the description files
of the controller’s network view. We assume that the SDN controllers expose their
service functionalities via an API that allows network hosts and applications to request
the network topology. The topology can be subsequently returned in semi-structured
data files e.g. JSON, XML, etc. These files are afterward parsed into a local ontology
that identifies the elements which are described into the controller’s network view and
the relation between them.

The generation of the local ontology is performed by transforming the structure
of the description file into a set of entities along with their properties and the interre-
lationships between them. We focus our attention on JSON format as it is commonly
used by the controllers to expose their services and also because there is a lack of
attention in the literature to ontologies extraction from JSON formatted data. Con-
version methods from XML to OWL could be found in [19] and [45].

The data in JSON is stored in the form of key-value pairs and array data types
that are grouped into objects. Typically, the description file consists of nested object
structures, starting from a root object. Each object may contain other objects and/or
attributes. The transformation to a local ontology is enabled by translating, starting
from the root, the object name into an ontology entity (owl:Class), and the names of
the attributes of the object into ontology relations between this entity and the type
of the attribute. If the type of the corresponding attribute is a literal (e.g. integer,

Semantic-based framework for global network view construction 71

string, boolean, etc.), the entity is matched with its corresponding ontology literal
(rdf:datatype). Otherwise, if the value of the attribute is another object, the name
of this object is translated to an ontology entity and linked to the first type with
a property type (rdf:property). We apply this process recursively when the object
attributes values are other JSON objects. The attribute value may also be in some
cases an array (list) of elements (key/value pairs or only values). In this case, if
the array is a set of key/value pairs, we consider that each element is an instance
of the object. Therefore, the structure of one of the instances can define the object.
Otherwise, if the array contains a set of values, then we consider the elements as a
complex type and we associate this type to an RDF sequence in the ontology. We
show an example in Figure4.6 of translating the structure of JSON into an ontology
representation.

4.3.2.3 Mapping the local ontologies with the global ontology

The SDN global network view is constructed by mapping the controller’s local views
of the network with the global ontology. We use the global ontology to describe
entities of the SDN domain along with their properties and their instances. Also,
each entity in the ontology is augmented with a set of synonyms terms that helps to
correspond it with other entities that have similar semantic but syntactical modeling.
After extracting local ontologies from the heterogeneous controllers, we semantically
map them to the global ontology.

The mapping phase aims to find similar entities between the controller’s local
ontologies and the SDN global ontology to correspond them together. We propose for
that matter an approach inspired from [46] that maps entities based on their semantic
similarity. The approach compares each entity in each controller’s local ontology with
all the global ontology entities and their synonyms terms. It takes into consideration
the neighbors of the compared entities to enhance the matching accuracy. The most
similar entity in the SDN global ontology is afterward mapped with the controller
entity. The similarity between ontologies entities is calculated using the well-known
Jaro–Winkler similarity metric. We note the similarity function sim(e, e′) ∈ [0, 1],
where e is an entity of a controller local ontology Ol and e′ is an entity in the SDN
global ontology a global ontology Og. The mapping approach can be summarized in
algorithm 1.

For each entity in the controller local ontology (line 1), the mapping approach
searches for a corresponding entity in the SDN global ontology that maximizes the
semantic similarity (line 2-29). The process is executed in 4 steps:

• Step 1: (line 2-6) The algorithm searches for an entity in the SDN global on-
tology that has a similarity metric above a certain threshold. To do that, we
compare all the entity’s name and their synonyms with the controller entity
name. We construct afterward a similarity table that contains the matched
pairs, with a similarity above the threshold. The result is a set of candidate

72 Handling the heterogeneity between configuration data models

Algorithm 1 Mapping between local and global ontology

Input: Local ontology Ol, threshold, scope
Output: Mapping between similar entities of local and global ontology

1 for each e ∈ Ol do
2 for each e’ ∈ Og do
3 for each (e’(name) and e’(synonyms)) do
4 if sim(e(name),e’(namex)) ≥ threshold then
5 add (e,e’) to similarity table

6 for each (e,e’) ∈ thesimilaritytable do
7 weight(e,e’)= sim parents(e,e’,scope)

8 for each (e(attribute) and e’(attribute)) do
9 if sim(e(attribute),e’(attributex)) ≥ threshold then

10 weight(e,e’)++

11 for each e ∈ similarity table do
12 Select e′max s.t. weight(e,e′max)= max(weight(e,e’)) ∀ e’

Mapping(e)= e′max

Figure 4.7: Exmaple of a scope of two areas around the entity ”networkElment”

Semantic-based framework for global network view construction 73

entities that could be mapped with the controller entity.

• Step2: (line 7-9) The algorithm compares the parents of the entities in the
similarity table with the controller entity to further enhance the accuracy of
the matching. For that, we define the scope of the search as a round area
that encompasses the entities that are either directly connected or indirectly
connected via other entities. Figure 4.7 shows an example of ontology, for which
the entities around the entity switch with a scope = 2 are within a red circle.
The similarity is calculated for each pair of parents of the two entities within
the same area (same distance to the entity), the average value of the aggregated
similarities is assigned as a weight of the entries in the similarity table.

• Step3: (lines 10-17) After comparing the parents of the entities in the similarity
table, we compare in this phase their attributes. For each global entity in the
similarity, we compare the similarity of its attributes and relations with the
local entity.

• Step 4: (lines 18-21) We map the entity of the local ontology with the most
similar entity in the similarity table. For that, the entity with the highest
weight in the similarity table is selected and corresponded with the local entity.

• Step5: (line22-28) this step is considered when the similarity table in step 2
is empty (there is no similarity match with the global entities). A description
model mismatches could be a reason for this case. Hence, We search for similar
attributes and relations in the global ontology that could be corresponded to
the local entity.

4.3.2.4 Interacting with the global network view

After mapping local ontologies with the global ontology, the data instances are af-
terward stored into an RDF triplestore as a triplet (subject, object, predicate). This
allows network applications or controllers to interact with the global network view via
a semantic query language like SPARQL. The query could be formulated in high level
by using the terms defined in the global ontology. But they could also be reformulated
into a controller specific terminology using a dedicated rewriting algorithm.

4.3.3 Distributed global network view construction

In this scenario, we build the global view of the network by matching local views
of controllers. This is done in a distributed manner, where each controller gathers
the other local views and build the global view locally. The distributed approach
is more fault tolerant, the global network view is still available to the other. Also,
it alleviates the load of accessing a single entity. Every node is responsible of the
construction of the global view. This enhances the performance of the network in

74 Handling the heterogeneity between configuration data models

Distributed Semantic Framework

Controller
platform

Local ontology
Extraction from
description files

(1)

Controller local
ontologies

(2)

(4) Network Global
view

Mapping
between the

local ontologies
(3)

JSON

Local
view

Local
view

(5) RDF
triplestore

Figure 4.8: Mediation for the distributed global view scenario

terms of request latency. In the other hand, this approach adds more complexity
of handling synchronization between controllers in order to keep a consistent global
view. The consistency has a major impact on the SDN application performance.

Similar to the centralized global view construction, we use a framework that maps
controllers local views together to form a global view. However, we do not rely on
a shared common ontology to describe the SDN domain and link the local network
views to it. It is improbable that SDN vendors agree on a common understanding
of the SDN domain. Instead, we extract at the controller a local ontology from its
topology description file that conceptualize the data model, and we do the same
with the gathered local network views of the other controllers. We then map the
local ontologies together to constitute a global knowledge of the network. Figure 4.8
depicts the framework for the distributed scenario. The extraction of the ontologies
from the description file and the interaction with the global view are comparable
to the centralized global view construction. We discuss next the mapping of local
ontologies together at the controller.

4.3.3.1 Mapping local ontologies

After extracting a local ontology from controllers topology description files. A con-
troller matches between these ontologies by searching for semantic mappings between
their After extracting local ontologies from controllers topology description files. The
controller matches between them by searching for semantic mapping between their

Semantic-based framework for global network view construction 75

entities. It is a matching problem, where for each local entity in the controller on-
tology, we search for a corresponding entity in the other controller’s local ontologies.
The matching process is effectuated between two ontologies at a time. We propose an
approach based on a lexicon that searchers for semantic similarities between entities.
The lexicon is used to disambiguate the situation in which homonyms may occur.

The idea is to compare ontologies elements based on their semantics taking into
account their local context. For that, we use the lexicon to identify the synonym sets
of the compared entity. Then for each synset, we determine its accuracy by computing
its similarity with the neighboring entities. We use the Wu-Palmer similarity metric
that calculates the similarity between two entities based on their distance to a common
closest hyperonym (ancestor). After determining the sense of an entity, it is compared
with other ontology elements using the same similarity metric. Let Oc and Od, the
controller’s local ontology, and a local ontology extracted from the collected topology
description file. The approach could be summarized in algorithm 2.

Algorithm 2 Mapping between local ontologies

Input: Oc, Ol, scope
Output: Mapping of similar entities of local ontologies

13 for each entity e ∈ Oc do
14 entity similarity = 0

matched entity = ∅ for each entity e′ ∈ Od do
15 synset similarity = 0

accurate synset = ∅
S=Get synsets of e′ from the Lexicon for each synset s ∈ S do

16 TotalSim = 0 for each parent p of e′ in its scope r do
17 TotalSim = TotalSim+ sim(s,p)

18 TotalSim= TotalSim / ‖p‖ if TotalSim > synset similarity then
19 synset similarity = TotalSim

accurate synset = s

20 if sim(e,accurate synset) > entity similarity then
21 entity similarity = sim(e,accurate synset)

matched entity = e′

22 map(e,matched entity)

The controller launches the mapping algorithm to possibly match the entities in its
local ontology (Oc) with one of the other controllers ontologies (Od). For each entity
in Oc, the algorithm searches for a most similar entity in Od. Let e be an element
in Oc that we want to map to Od. To that purpose, for each e′ ∈ Od, the algorithm
determines first the best semantic of the term that is used in Od to describe e’ (line
7-15). It uses the lexicon to show the different synset that could be corresponded to
this term (line 7). Then the algorithm determines the best synset by computing it

76 Handling the heterogeneity between configuration data models

similarity with the neighbors of the e′ using the Wu-Palmer similarity metric. The
algorithm considers only the neighbors that are within the scope r (see 4.3.2.3 for
further clarification about the scope r). The best synset is then compared with the
element e using the Wu-Palmer similarity metric (13-16). After comparing all the
entities in Od, the algorithm chooses the most similar entity to e and correspond
them together (line 16-18).

4.4 Evaluation

4.4.1 Evaluation environment

To evaluate the performance of our framework, we have carried out some tests over
different network topologies in a multi-controller SDN architecture. We considered
mainly two controller platforms, ODL and ONOS. They are currently the most de-
ployed open controller platforms [17]. The topologies of network elements are gener-
ated for each controller using a Mininet emulator.

The proposed framework is developed using protégé for defining the global ontol-
ogy (centralized scenario) based on the ONF-CIM TR-512 [1]. Note that we restrict
our attention in this evaluation only on an ontology that describes the topology el-
ements of the network and it is out of the scope of this work to propose a generic
ontology that incorporates all of the SDN elements. The local ontology extraction
method form JSON files and the mapping algorithms between ontologies are devel-
oped using a self-defined program in JAVA.

To test the framework in the distributed and centralized scenarios, we request the
local network view of the controllers in a JSON format using their REST APIs and
add them afterward as input in the two frameworks. The output is a global network
view stored in an RDF base.

We evaluate the proposed frameworks in terms of execution time as it has a big
impact on the performance of the SDN. We measure for that the execution time of the
local ontology extraction, the mapping algorithms, and the interaction with the global
view. We also evaluate the accuracy of the global view by measuring the success rate
of the mapping algorithms between the ontologies.

4.4.2 ontology extraction from JSON files

We test the local ontology extraction process using local network views files. Each
file describes different network topology instance from a different controller. Table
4.1 highlights the settings of the evaluation and the process execution time to create
the local ontology. We notice that the extraction process has a low execution time
and can escalate relatively good to the topology files.

Evaluation 77

Table 4.1: Execution time of ontology extraction

Controller Switches/Links File-size lines Execution time

ONOS 15/14 35Ko 421 0,013s

ODL 15/14 47Ko 614 0,018s

ONOS 99/98 290Ko 2921 0,192s

ODL 99/98 324Ko 4109 0,2s

ONOS 399/398 490Ko 11230 0,312s

ODL 399/398 530Ko 19230 0,401s

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

ODL ONOS

A
ve

ra
ge

 E
xe

cu
tio

n
tim

e
(s

)

Distrubted Scenario Centralized Scenario

Figure 4.9: Average execution time of the mapping algorithms in distributed and
centralized scenarios

0
10
20
30
40
50
60
70
80
90

0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9

Av
er
ag
e	
m
at
ch
in
g	
ac
cu
ra
cy
	(%

)

Similarity	threshold

scope=1
scope=2
scope=3

Figure 4.10: Average matching accuracy of the mapping algorithm in the centralized
scenario

78 Handling the heterogeneity between configuration data models

68,5

69

69,5

70

70,5

71

71,5

72

72,5

73

73,5

scope=1 scope=2 scope=3

Av
er
ag
e	
m
at
ch
in
g	a

cc
ur
ac
y	
(%

)

Figure 4.11: Average matching accuracy of the mapping algorithm in the distributed
scenario

4.4.3 Ontology mapping

We run the ontology mapping algorithms in two scenarios (centralized and distributed
global view construction) using different controller’s topologies. We have developed
for that purpose a basic lexicon that incorporates terms that are potentially used in
the topology description files, along with their synonyms. The results are shown in
Figure 4.9,4.10 and 4.11.

The algorithms have a relatively low computational time (as shown in Figure4.9)
that makes them a potential solution for the SDN global network view construction.
This time can be considerably reduced if the mapping results are stored for future
use. That avoids the recomputation of the mapping for similar controllers. We can
notice also that the mapping algorithms in the distributed scenarios are faster than
the centralized ones. That makes sense, given that the algorithm in the centralized
scenarios searches through all the concepts in the global ontology iteratively to find
a good similarity match with the controller ontology.

Figure4.10 and 4.11 show the average accuracy matching of the mapping algo-
rithms when are operating over different topologies. The centralized scenario is shown
to be more accurate than the distributed scenario. This is because the global ontol-
ogy offers a more generalized structure that can help to ease the matching process.
Also, we can notice that the matching accuracy can be enhanced when the algorithms
consider a high scope in the mapping process. Moreover, Figure4.10 show that the
similarity threshold in the centralized is a linear function with accuracy. When the
threshold increase, the accuracy also increases until it reaches a certain point where
the results stabilize or even diminish. This could be explained by the fact that a
high threshold makes the matching process more laborious which may result in no
matching at the end.

Conclusion 79

Table 4.2: Interaction with the RDF triplestore

E2E topology (Switches/Links) Average processing time

30/28 0,127s

198/196 0,18s

439/437 0,214s

4.4.4 Interaction with the global network view

We evaluate here the average time for an RDF triplestore to return an end-to-end
topology of the network. The time is the duration that it is needed to send a request
to the data store and receive an answer from it. We also use in this test several
topologies, as shown in table 4.2, to test scalability in terms of processing time.
The results in table 4.2 show that the interaction does not incur high processing time
despite the high data to be returned and can, therefore, be suited for dynamic network
operations.

4.5 Conclusion

We considered in this chapter the problem of heterogeneity between network com-
ponents. This problem can prevent the management entity from collaborating with
network components if the latter are not sharing a common understanding of how
the information is defined. This is the first research question that we have speci-
fied in chapter 1: How to automatically interpret configurations from heterogeneous
sources?. To address this research question, we focused our attention on a use case
in SDN, heterogenous multi-controller SDN architecture.

The Operating heterogeneous controllers in software-defined networks (SDN) is a
challenging task. Controllers have to cooperate to build a global view of the network.
This view can be shared with network applications for end-to-end management or to
other controllers for decision making. We proposed a framework that enables het-
erogeneous multi-controllers SDN platforms to construct a global network view. The
framework can be used in two scenarios. In a centralized manner, where a central
entity collects local network views from controllers and build afterward centrally a
global view, or in a distributed manner, where controllers share with each their net-
work views and construct locally the global view. The idea behind the framework
is to use an ontology to represent the conceptual data each heterogeneous controller
and afterward map the similar semantic data together to form a coherent and global
knowledge of the network. The evaluation of the framework shows that it can be
considered accurate and can have a low computational execution time. However, the
framework is dependent on a lexicon (and on a global ontology in the centralized sce-
nario) that needs to be defined manually and adapted constantly with the evolution
of the SDN. This limitation is left for future works.

80 Handling the heterogeneity between configuration data models

The work in this chapter is published in C1 (see chapter 1, section 1.4).

Chapter 5

Deep Learning for automatic
configuration generation

Contents

5.1 Introduction . 82

5.2 Background information on Deep learning approaches 83

5.2.1 Convolutional Neural Networks (CNN) 85

5.2.2 Long short-term memory (LSTM) 86

5.3 use case: Learning from deployment descriptor in NFV 88

5.4 Deep learning framework for configuration recommendation
and completion . 90

5.4.1 Overview . 90

5.4.2 Preparation phase . 94

5.4.3 Tokenization step . 95

5.4.4 Vectorization step . 95

5.4.4.1 Appearance-based vectorization 95

5.4.4.2 Token embedding . 96

5.4.5 Training phase . 99

5.4.5.1 Recommendation model for VNFDs 99

5.4.6 Completion model for VNFDs . 102

5.4.7 Execution phase . 102

5.5 Evaluation and Results . 104

5.5.1 Data set and experimental Setup 105

5.5.2 CNN for VNFD recommendation 105

5.5.3 LSTM for VNFD completion . 108

5.6 Conclusion . 110

81

82 Deep Learning for automatic configuration generation

5.1 Introduction

Auto-configuration in software networks are expected to enable management en-
tities and network components to automatically adapt their configuration to unex-
pected situations to preserve the required network performance. Network elements
are therefore required to generate automatically adequate configuration parameters
with the current network state.

Automatic configuration generation could be done via predefined policies made by
domain experts. The policies will indicate the behavior that should be considered in
terms of configuration, given every possible situation that could occur in the network.
This is a cumbersome task that possibly could not be efficient as covering all situations
occurring in the network is very improbable.

Another alternative solution, which proven itself efficient in different scientific do-
mains, is pattern recognition. It is the process of recognizing patterns from a given
data set by using Machine Learning or deep learning algorithms. Pattern recogni-
tion is unsupervised and does not require human assistance, it can be defined as the
classification of data based on knowledge already gained or on statistical information
extracted from patterns and/or their representation. A Pattern is a special arrange-
ment of data that can characterize a system. Learning patterns can afterward be
used by predictive analytics methods to envisage what probable income these pat-
terns present.

In our case, pattern recognition can be used to learn from the past made con-
figuration to help network components predict new configurations and adapt to the
current network state, without human intervention. Learning automatically patterns
from configuration could also be beneficial for other applications. For example, the
configuration patterns can be helpful to categorize the configurations based on their
utilization and to assist the design of configuration files. Domain experts are still
defining the configuration files for software networks manually and without any for-
mal strategy expect their experience. Categorizing the configuration can help the
extraction of insights regarding the impact of configuration on different contexts. It
can also assist the configuration file design by recommending configuration parameters
for the domain experts.

In this chapter, we investigate deep learning approaches to learn from configura-
tion file models that can recommend and complete configurations. The recommenda-
tion model in one hand aims to learn patterns from a set of configuration files that
helps the selection of appropriate configuration files described configuration as input.
The completion model, on the other hand, learns from the sequence of terms in the
configuration files a pattern that helps to predict what is needed to be added in a
particular configuration file.

Both of these approaches could be used by management entities like an orchestra-
tor to augment their abilities with the capability to select, recommend, and complete
configuration files. In the case of an NFV orchestrator, we argue that it is important

Background information on Deep learning approaches 83

Figure 5.1: A basic multi-layer artificial neural network

to adapt the requirement related to deploying VNFs based on the network condi-
tion. This is because the ultimate goal of service providers is to satisfy a certain
performance. It is therefore up to the orchestrator to readjust the resources and align
them with what is available in the network, while satisfying the performance required,
instead of relying solely on what was predefined by the service provider.

This chapter is organized as follows: we start by discussing the use case of on-
boarding the VNFs in NFV 5.2. We then present background information on deep
neural networks in 5.3 and afterward present our deep neural network framework for
recommending and completing configuration files 5.4. we evaluate this approach and
analyze the results in section 5.5, and we conclude the chapter in section 5.6.

5.2 Background information on Deep learning approaches

Deep learning techniques have gained recently a lot of attention in the scientific com-
munity, they proved their efficiency in multiple fields such as computer vision [100],
natural language processing [83], audio recognition [23], machine translation [28], etc.
Deep learning is a subfield of machine learning methods that are based on artificial
neural networks. The artificial neural networks are inspired by our understanding of
the biology of our brains and the interconnections between the neurons.

Basically, deep learning architectures use multiple layers of artificial neural net-
works to progressively extract higher-level features from the raw data. Given a large
data set, deep learning algorithms will learn a model that can generalize the predic-
tion of the output by learning the weights of the connection between the neurons.
Figure 5.1, shows a basic multi-layer neural network structure, composed of input,
hidden, and output layers. Each layer is composed of neural cells that are connected
to other cells in different layers. Each connection i has a weight (wi) associated with
it, it indicates the intensity of the link between the cells.

84 Deep Learning for automatic configuration generation

Figure 5.2: Activation function of neural cell

The neural networks are trained using the dataset to minimize the difference be-
tween its prediction and the expected output. In the learning phase, all the weights
of the neural interconnections are firstly initialized. The initialization could be ran-
dom or following a predefined strategy. Then, the input layer takes in a numerical
representation of the data for the dataset and passes it through the hidden layers to
the output layer, which outputs later the prediction. The neuron cells in each layer
determine when to pass the information to the next layer. The cell output is a func-
tion of the predecessor neurons and their connections as a weighted sum. A bias term
b can be added to the result. This function is called an activation function. Figure
5.2 depicts the activation function, xi is the information of the predecessor neuron
cells.

The neural networks adjust all the weights of the network to improve the accu-
racy of its result. This is done by taking pairs from the dataset of the input data and
the expected output to minimize the difference between the prediction and expected
output. A loss function like the mean squared error is used to calculate the predic-
tion error. The weights are afterward readjusted to compensate effectively the error
among the connections. This can be done by calculating the gradient (the deriva-
tive) of the cost function associated with each cell with respect to the weights. This
approach is called backpropagation. By doing this, the neural network learns the
association/pattern between given inputs and outputs and allows the deep learning
model to generalize to other data that are not included in the data set.

There are various architectures of deep learning each is dedicated to a special kind
of task. In our chapter, we are considering Convolutional Neural Networks (CNN)
that was originally used for computer vision given its ability to extract automatically
features from the data and Long Short Term Memory (LSTM) that were used in
Natural language processing and time series data to learn patterns in data sequences.

Background information on Deep learning approaches 85

Figure 5.3: General overview of a CNN architecture

Figure 5.4: Convolution operation between the input and the filter

In the following, we describe briefly these two architectures.

5.2.1 Convolutional Neural Networks (CNN)

The CNN architecture is mainly characterized by three types of layers: convolution
layer, pooling layer, and fully-connected layer. These layers could be stacked to-
gether multiple times to achieve the feature learning process. Figure 5.3 illustrates a
simplified architecture. We briefly describe next the function of each layer.

The Input layer: like the other neural network architectures, holds a numerical
representation of the data. This could be for example pixels of an image or words of
a text.

The Convolutional layer is the most important and vital part of CNN. It is re-
sponsible for the feature extraction from the dataset. It applies a series of filters, also
known as convolutional kernels to each data in the dataset. The filters are numerical
matrices that are used on a subset (which is also a matrix) of the input values. The
size of the subset is similar to the size of the filters. These filters are in most cases
small in spatial dimensionality and spread along with the entire depth of the input

86 Deep Learning for automatic configuration generation

Figure 5.5: Architecture of recurrent networks

data. Each filter is multiplied to the subset by a dot product called convolution. It
is that operation that can extract high-level features such as edges, or word contexts
from the data. The convolutions are all summed up to have a single number, for a
filter at a given time.

Each filter constitutes afterward a feature map, a vector containing the convolution
results of the filter. The feature map is filled by moving the filter position in the input
data with a certain stride value until it parses the complete length of the input data.
Moving on, the vector is added with the result of the convolution operation at each
position.

Every filter will have a corresponding feature map, which will be stacked along the
depth dimension to form the full output volume from the convolutional layer. Figure
5.4, illustrates a single convolution operation between the input and the filter to fill
the feature map.

The pooling layer aims to gradually reduce the dimensionality of the input repre-
sentation and further reduce the computational complexity of the model. It operates
over each feature map in the input, generated by each filter. It scales the dimension-
ality of the feature map by using a function that selects the appropriate value in the
feature map. In most cases, this comes up to max-pooling, the maximum value in
each feature map is selected.

The fully connected layer is a layer that is fully connected to all possible outputs.
This is analogous to the way that neurons are arranged in traditional neural networks.
It is the last block of the CNN architecture and it is used to make the classification.

CNN has been used extensively for many applications like facial recognition [100],
natural language processing [83], anomaly Detection [106], recommender engines [122],
etc. In this chapter, we are using CNN to learn from a model that can recommend
configuration files given an input specification.

5.2.2 Long short-term memory (LSTM)

LSTMs are a special type of recurrent neural networks. Recurrent neural networks
are a traditional neural cell in which the neural connection is a loop. The network is

Background information on Deep learning approaches 87

Figure 5.6: Long short-term memory cell architecture

therefore formed by cycles and it takes as input the current information and also the
previous time step to influence predictions at the current time step. By doing this,
recurrent networks have the ability to store information for an arbitrary duration
and resist noise. They are trained to predict what could be the next data to output
given the current context. Figure 5.5 illustrates the basic architecture of recurrent
networks. There are three main components, the input data, the hidden layer, and
your output layer, denoted as x, A and h above. At each transition, the network takes
in the new data and the hidden layer from the previous time step, thus continuing to
learn from past data points as it moves through the entire dataset.

LSTMs have basically emerged primarily to overcome the main problem of re-
current networks, the vanishing gradient problem. It is a problem that occurs when
learning from large datasets. The readjusting of the weights of the neural network
layers in this becomes not efficient. Each of the neural network’s weights receives an
update proportional to the partial derivative of the error function with respect to the
current weight. The problem is that this gradient could become extremely small, and
thus not stopping the weights from readjustment.

LSTMs have the ability to memorize long-term dependencies and overcome the
vanishing/exploding gradient problem. It contains an internal state variable that is
passed from one cell to the other and modified by operation gates. A simple LSTM
cell contain generally three gates, as illustrated in Fig 5.12:
• Forget gate (ft): this operation helps to remove irrelevant information from the

input and thus keeping only what is important to remember. It takes the output of
the previous state, h(t-1), and performs on it a sigmoid function (σ). W and b are
respectively the weight matrix and bias term of ft

ft = σ(Wf .[ht−1,xt + bf]) (5.1)

• Input gate(it): this operation decides which element from the present input to
be updated and creates a vector for new candidates to add to the cell state (Ĉt).

it = σ(Wi.[ht−1,xt + bi]) (5.2)

88 Deep Learning for automatic configuration generation

Ĉt = tanh(WC .[ht−1,xt + bC]) (5.3)

• Output gate(ot): this operation decides what to output from the current state.

ot = σ(Wo.[ht−1,xt + bo]) (5.4)

The current state of the cell Ct is updated based on the previous gate operations
and a filtered version of this state ht is passed out as output to the next cell:

Ct = ft ∗ Ct−1 + it ∗ Ĉt (5.5)

ht = ot ∗ tanh(Ct) (5.6)

LSTM has been used successfully for various application like language modeling
[83], machine translation [23], Image captioning [100] Hand writing generation [83]
Image generation [85] Question answering [70], Video to text [115], etc.

We use LSTM in our work to learn from the configuration files a model that can
be used to complete the files with additional information.

5.3 use case: Learning from deployment descriptor in
NFV

We consider in this chapter a use case of VNF onboarding in NFV frameworks to test
our proposed deep learning approach for recommending and completing configuration
files.

NFV enables service providers to have an ability to bring quickly new services to
the market to grow and to reduce the cost of network services from both CAPEX and
OPEX perspective. It also allows them to deploy their services on industry-standard
high volume servers, switches, and storage located in data centers, network nodes,
and end-user premises.

Service providers have to associate with VNFs and NSs the descriptions related
to their deployment. The descriptions are written in semi-structured files like XML,
JSON, and YAML. They are called deployment descriptors. They describe for a
network service [1], the virtual network function(VNFs) that compose it, the topology
of interconnecting the VNFs, and the data flow direction between them. For VNFs,
the deployments descriptors indicate the deployment and operational behavior in
terms of connectivity, interface, and virtualized resource requirements [2]. Figure 5.7
shows an example of a deployment descriptor that is onboarded with a VNF by a
service provider.

The ETSI NFV has released a specification that defines the requirements for the
structure and format of a VNF deployment descriptor (VNFD) and network ser-
vices(NSD). Figure 5.8 illustrates the high-level structure of a VNFD. The VNFD

use case: Learning from deployment descriptor in NFV 89

is composed of one or many virtual deployment units (VDUs) that describe the de-
ployment resources and operation behavior of a VNF component (VNFC). VDUs are
virtual machines that host the VNF or parts of it. Each part of the VNF is a VNFC
and can be deployed on one or more VDUs. Each VDU is characterized by, among
others, the software image loaded on it and the resources needed to deploy it. Figure
5.9 illustrates a VDU deployment view. A VDU describes mainly the virtual compute
(VC), virtual storage (VS) and virtual memory (VM) resources that are necessary for
deploying a VNFC and it could be linked via connection points (CPD) to other VDUs
or to external VDUs that belong to other VNFs via external CPD. Virtual links in
the VNFD indicate how the VDUs are connected and via which CPD.

The NSD in the other hand contains multiple VNFDs for each VNF that com-
pose the service and multiple Physical Network Function Descriptors(PNFD) for each
legacy network function. The VNFs and PNFs are interconnected via Virtual links
that are described in a virtual link descriptor (VLD). A VNF Forwarding Graph
Descriptor (VNFFGD) can be defined to describe the topology of interconnection
between VNFs and PNFs and how they can exchange information with each other.
Figure 5.10 illustrated an overview of an NSD.

The onboarding of new functionalities in the NFV frameworks is a very challenging
task. According to the SDxCentral report, it is one of the top two major problems
for VNFs, along with monitoring. The reason is that the deployment descriptors
are complex and tedious to design manually or with static automation, they contain
numerous components that are dependent on each other. Also, there is no formal
strategy to assist the creation of the deployment descriptors except the experience
and best practices of the domain experts. This leads to a plethora of strategies
for deployments. Different domain experts may choose different configurations for
deploying the same network service/function, which makes it even harder to learn
from past deployment strategies and identify deployment characteristics related to a
network service/function. Moreover, despite some efforts to find a consensus on a
common information model to use for modeling the deployment descriptors like the
ETSI NFV initiative [1], there is still an absence of a common data model for the
deployment descriptors, which resulted on a diversity of solutions, such as: TOSCA,
YANG, Hot, etc. This diversity obliges service designers to constantly adapt the
descriptors to the heterogeneous NFV platforms in order to enable the integration
of the network services/functions. Therefore, designing the deployment descriptors
for the network services/functions in such a highly dynamic environment becomes a
highly complex, time-consuming, and tedious task.

It is therefore beneficial to capitalize on past VNFDs to help design or generate
new VNFDs. To illustrate this observation, we give an example of two VNFDs.

90 Deep Learning for automatic configuration generation

Figure 5.7: Example of a deployment descriptor onboarded by a service provider with
a VNF

5.4 Deep learning framework for configuration recom-
mendation and completion

5.4.1 Overview

In this section, we propose an approach based on deep neural networks to learn from
deployment descriptors a model that could complete and recommend a description for
deploying network functionalities in NFV platforms. We focus particularly our atten-
tion on learning from VNFDs as they are fundamental for VNF and NS onboarding
and deployment. Nevertheless, this approach is agnostic to a data model or a given
type of file. It could be applied therefore for also the NSDs or other configuration
files.

Our approach could be used as a solution that could enable network orchestrators
to complement a given network deployment descriptor with appropriate data, select
and recommend descriptors to ease the design and automate the onboarding and
deployment phase of VNFs.

Deep learning framework for configuration recommendation and completion 91

Figure 5.8: A high-level representation of a VNFD structure [38]

We assume that there is a catalog of multiple VNFDs following the same data
model and the same format on which we are learning a model to recommend and
complete the descriptors. Our approach is a framework that encompasses three dif-
ferent phases. Figure 5.11 shows an overview of the proposed framework.

The first phase of the framework is the data preparation phase, the goal of this
phase is to pre-process the VNFDs into a format that can accurately be analyzed
by deep neural network techniques. The output of this phase is to set a numerical
representation of the fundamental data units that compose the set of VNFDs. To do
that, we use a word embedding approach called word2Vec [78] to learn a representation
that reflects the semantic of each data unit in the set of VNFDs. Doing so, this phase
helps to learn patterns that can characterize not only the VNFDs but also the language
on which they are defined.

The second phase of the framework is the learning phase. It takes as input the
pre-processed data. This phase is based on two deep neural networks architectures,
that is CNN and LSTM (see section 5.2 for their description).

CNN is employed for learning a model that could recommend an existing VNFD
from the catalog. CNN is best suited for this task as it can learn features, without
supervision or a liberalization step, that could characterize the deployment descrip-
tors. Thus helps the selection of the appropriate VNFD given a partial description
as input.

There are a lot of application scenarios for recommending deployment descriptors.
For example, a service provider could use this framework to learn from a database

92 Deep Learning for automatic configuration generation

Figure 5.9: Composition of Virtual deployment unit in a VNFD [38]

Figure 5.10: Overview of a NSD architecture

Deep learning framework for configuration recommendation and completion 93

Figure 5.11: Overview of the deep neural network framework

of previously made VNFDs and use the generated model to help him design and
adapt new VNFDs. The framework can help him select fragments of VNFDs that are
adequate to a given description and assemble them at the end to form a new VNFD.
Another scenario could be to help an orchestrator adapt to unexpected situations.
For example, it could be a situation where the network requirement of an already
onboarded VNFD could not be satisfied due to: overloading of resources utilization
in the network, oversizing of requirements by the domain experts, or to the technical
problem in the VNFD. The orchestrator could, therefore, overcome these situations
by selecting another existing VNFD in its repository that is closely similar to the
initial VNFD in terms of performance expectation and deploy the VNF with the
new descriptor. Thus the performance can still be satisfied with different acceptable
configurations.

LSTM is on the other hand utilized to learn a model that completes the VNFDs
with additional data. The choice of using LSTM for this task is more than appropriate,
given that LSTM proved its efficiency over different similar tasks in Natural language
processing. Its ability to learn arbitrary long-term dependencies in an entire sequence
of data allows it to be a powerful approach to be used to learn from a sequence of
descriptions in the VNFD files a model that could generate entirely new plausible
sequences of the description given an initial input.

The LSTM technique could be used by an orchestrator to adapt the VNFDs to
new situations by adding additional descriptions, or changing unfeasible description
like for example a policy that satisfies the expected performance and allow the VNF
to be deployed in the current network state. Another important use case for applying
the completion model is to ease the VNFD generation by service providers. The
model can help to complete the description with a coherent description that can be
tailored afterward by the service provider.

During the third phase of the framework, the generated LSTM and CNN models
are executed and tested. Their hyperparameters are tuned over multiple training
phases to enhance the accuracy and performance of the models. The final result is
afterward used in the design time of the VNFD or in the deployment time.

In the following, we describe each of the aforementioned phase of the deep neural
network framework.

94 Deep Learning for automatic configuration generation

��

Tokenized deployment
description filesTokenization

Indexed Vocabulary
building

Network descriptors
catalogue, e.g.
(VNFD, NSD)
Formatted in

YAML,XML, JSON,etc.

��

��

.

.

.

	����������

LSTM
Training

CNN
Training

Lookup table

Description
Completion

Description
Classification

Generated
LSTM model

Generated
CNN model

Descriptor parsing

Token generation

Preparation Phase Training Phase DNN scenarios
execution

Indexed Vocabulary
building

Word2Vec

Figure 5.12: DNN-based framework for VNF deployment descriptors mining

5.4.2 Preparation phase

The objective of this phase is to transform the VNFD files in the catalog into an
understandable and processable format by the deep neural network techniques to
enable them to learn and capture structural patterns from the files.

Like we mentioned previously, the deployment descriptors including the VNFDs
could be stored with different formats such as YAML, XML, JSON, and modeled with
different data models such as TOSCA, YANG. It this important in the preparation
phase to process the data to not only capture the language used to describe the
VNFDs but also the format in which those VNFDs are written. This helps the neural
networks to learn a model that could generate an output with a coherent syntax and
format. To simplify the learning at this stage, we assume that the catalog of VNFDs
includes only files with a similar format and similar data model.

In the preparation phase, all the elements that constitute the VNFD files are
converted to vectors and projected to a vector space, such that the vector space could
include all the possible vectors extracted from the VNFDs. An element of the VNFD
is a vector with a numerical value. The deep learning techniques takes as input the set
of vectors that constitute the VNFDs to extract relevant patterns from the VNFDs.
In this phase there two steps. In the first step, called tokenization, we show how we
extract the elements from the VNFDs, and in the second step, called vectorization,
we propose two approaches to convert the elements into vectors and project them into
a vector space. The first approach is based on the appearance of the VNFD elements
and the second one is based on word embeddings. We describe next the two steps of
the data preparation phase.

Deep learning framework for configuration recommendation and completion 95

Building the
vocabulary

Tokenization

��	capabilites
��	:
��\cr
��	\sp
��	Nfv_compte
��	 :
�� \cr
��	 \sp \sp
��	disk_space
���	:
���1
���	GB
���	\cr
…

Deployment
Description

e.g. YAML files

capabilities:
nfv_compute:

properties:
disk_size: 1GB

mem_size: 512MB
…

Figure 5.13: Example of tokenization using a deployment descriptor file

5.4.3 Tokenization step

The tokenization step aims at extracting the relevant elements from the VNFDs. This
task breaks down each VNFD into a set of independent elements, called tokens. The
goal is to do the decomposition in a way that captures characteristics of the VNFDs
in terms of lexical characteristics and also the file format characteristics. To do so,
we consider as a token each term in the VNFDs that have a strong significance in
the corpus, to define the files format or the data model of the VNFD. All special
characters that define the structure of the files are also considered as tokens.

For example in the case of YAML files, the whitespace indentation is considered
as a token, given that it has a logical role in the descriptor file, it denotes the data
structure adopted within the descriptor. For JSON files, the brackets are also con-
sidered token as they define the structure of the file. The same thing is with tag
characters in XML files. In Fig.5.13, as an example, we show a partial VNFD YAML
file that is tokenized.

5.4.4 Vectorization step

The vectorization step aims to project to a vector space the tokens that were extracted
in the previous step. The output of this step is a look-up table that contains all the
tokens and their corresponding vector representation. We propose two methods, the
first one called appearance-based vectorization and the second one is a method of
word embedding adapted to deployment descriptors, we called it token embedding.

5.4.4.1 Appearance-based vectorization

Appearance-based vectorization is a basic method that consists of indexing the ele-
ments/tokens based on their appearance in the code corpus. Each index is a vector

96 Deep Learning for automatic configuration generation

that is encoded in binary format with a size that could fit the indexation of all the
elements of the corpus. We assume that similar elements across different VNFDs have
the same index. The output of this method could be seen as a list of indexed vocab-
ulary, where vectors are ordered based on the appearance of tokens in the VNFDs.

5.4.4.2 Token embedding

Word embeddings are methods used for language modeling and feature learning. They
are essentially used to vectorize words or phrases from the vocabulary with real num-
bers. Conceptually it involves a mathematical embedding from a space with many
dimensions per word to a continuous vector space with a much lower dimension [78].

The token embedding approach is a word embedding approach that learns a rep-
resentation for each unique token extracted from the set of VNFDs. The goal is to
learn a representation in a vector space such that the tokens that share common con-
text in the corpus are located near one another in the space. Figure 5.14 illustrates
a projection of the token embeddings extracted from the VNFD after reducing their
dimensions to a 3D space. The black condensed area in the figure are tokens that have
close embeddings, meaning that they appear frequently together inside the VNFDs.

The learning approach of the token embedding is a generalization of the SkipGram
approach that is implemented in the word2vec software [78]. SkipGram performs a
proxy task to learn the word embeddings, which is finding the probability distribution
of tokens in the vocabulary to their context (other tokens within a given distance).
It uses a simple neural network model with one hidden layer. The actual goal is to
learn the weights of the hidden layer. These weights represent the embedding of the
token.

The neural network is trained on a large set of VNFDs. It takes as input a target
token in the middle of a window of tokens and predicts the probability for every
token in the vocabulary of being the context token. The context token is a word in
the proximity of the target token. The context size is parametrized to indicate to
which distance from the target token (in both directions) is considered as a context
token. The output probabilities relate to how likely each vocabulary token nearby
the target token.

In the training phase, the neural network is fed with pairs of tokens (target token,
context token). For example as an analogy to natural language, given the sentence
“Paris is the capital of France”, for a target word “capital” and a context size 3, the
training pairs of words are : (capital, of), (capital, France), (capital, the), (capital, is),
(capital, Paris). After training the neural model. For example, it will likely output
“France” when Paris” is given as input than the word “Sahara”.

More formally, given a repository of VNFDs with a token vocabulary size L. The
input of the neural network is a one-hot encoded vector wi of size L. The weights
between the input layer and the hidden layer are represented by L×E matrix, denoted
U , where E is the vector embedding size and wi ∗ ui is the embedding of the token

Deep learning framework for configuration recommendation and completion 97

Figure 5.14: Projection of VNFD token embedings in a 3D vector space

98 Deep Learning for automatic configuration generation

wi. From the hidden layer to the output layer there is a different weight matrix, that
represents the context, denoted, V , which is also a L× E matrix.

The conditional probability of observing the target token wi given a context token
wj is

p(wj |wi;U, V) =
1

1 + e−ui>vj

The sigmoid function is strictly increasing, the larger the scalar product of the rep-
resentations of two tokens (which means that the two vectors are similar), the higher
the conditional probability.

where wi and wj are the model parameters to be learned. The goal is to maxi-
mize the log-probability of the observed pairs belonging to the data, the objective is
therefore:

The maximization of the likelihood of the data set D (set of pairs target and
context tokens) is:

argmax(U,V)

∏
(wi,wj)∈D

σ(u>i vj)

where σ(u>i vj) = p(wj |wi;U, V)

Since logarithm is a strictly monotonic increasing function, maximizing the likeli-
hood function is equivalent to maximizing the log of this function

argmax(U,V)log(
∏

(wi,wj)∈D σ(u>i vj)) = argmax(U,V)

∑
(wi,wj)∈D log(σ(u>i vj))

Negative sampling is proposed to avoid the situation when the problem admits a
trial solution like choosing U and V as two matrices whose coefficients are all fixed
to a constant to obtain for every pair of tokens a high scalar product and therefore a
conditional probability close to 1 The negative sampling term is:

argmax(U,V)

∑
(wi,wj)∈D

(
log(σ(u>i vj)) +

∑
k Ewj′∼q(wj′)

[
log(σ(−u>i vj′))

])
It is thus a question of maximizing p(wj |wi;U, V) for the pairs of tokens taken

from the corpus (the ”positive” pairs), and to maximize 1− p(wj |wi;U, V) for ”neg-
ative” pairs of tokens, where the context token is drawn randomly according to
q(wj′)αf(wj′)

3
4 (that is, the frequency of occurrence in C, smoothed). The value

of k, a hyper-parameter, controls the ratio between the number of positive pairs and
the number of negative pairs. In practice, we choose k between 1 and 15.

The problem can be formulated as a problem of binary supervised classification,
where it is a question of distinguishing pairs of positive tokens from pairs of negative
tokens. Let the data set be labeled D′, composed of triplets (wi, wj , γij), where
γij ∈ {−1,+1} indicates whether the token pair is positive or negative. We build D′

according to the following procedure. For each pair (wi, wj) ∈ D, we add to D′ the

Deep learning framework for configuration recommendation and completion 99

triplet (wi, wj , 1) and we add k triples (wi, wj′ ,−1), the wj′ being drawn randomly
according to q. Finally, the log-likelihood of this dataset is expressed as :

argmax(U,V)

∑
(wi,wj)∈D′

log(σ(γiju
>
i vj))

Since the function to be maximized is defined by a sum, the stochastic gradient
method is applied.

5.4.5 Training phase

In the learning phase, the deep neural networks are trained on tokens that were
generated from the previous phase. The goal of this phase is to learn two models, one
to recommend deployment descriptors given an initial description, the second one to
complete an initial description with addiction information. We use CNN to learn the
recommendation model and LSTM to learn the completion model (CNN and LSTM
are described in ..)

5.4.5.1 Recommendation model for VNFDs

CNN is trained on a set of tokens extracted in the preprocessing phase. The learned
model takes as input a partial deployment description, a partial VNFD in this case,
and outputs an entire description file. The aim is to recommend a file that is close
to the context of the initial description. We chose CNN for this task because of its
ability to learn in an unsupervised manner the features of VNFDs.

The recommendation can be considered as a classification problem. This is be-
cause of the recommendation model chooses one outcome from a set of possible solu-
tions. We choose to investigate two applications. In one application, the CNN model
recommends a VNFD file directly as output. The VNFDs, in this case, could be
segmented beforehand, such that the model learns to suggest a block of description
that could be tuned or combined with other blocks by the service providers. In this
application, the CNN classifies the input (set of tokens) to one of the files already
existing in the VNFD catalog. Each VNFD is considered as a class. This application
can be useful to identify which file is closely similar to an initial VNFD description
independently of the performance goal or the type of the VNFD. On the other hand,
the main shortcoming of this application is that the recommendation model needs to
constantly relearn from the beginning at each time a VNFD is added or deleted from
the repository.

In the second application, the recommendation model outputs a category of VNFDs.
For example, this could the type of the VNFD, the performance goal that the VNFDs
are satisfying, a VNFD of a NS, etc. It is up to the service provider or the domain
expert to choose the criteria to which the VNFDs are grouped. This way, this ap-
plication can help the orchestrator or the service provider to get an already existing

100 Deep Learning for automatic configuration generation

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.1 0.7

0.4 0.2

0.1 0.7

0.4 0.2

0.1 0.7

0.4 0.2

0.1 0.7 0.2 0.8

0.4 0.2 0.8 0.5

0.5 0.3 0.1 0.8

0.3 0.2 0.4 0.6

0.1 0.1 0.5 0.2

Capabilities

Memory

15Gb

CPU

4Ghz

0.1 0.7

0.4 0.2

0.7

0.2

0.1

Description
1

Class2

Class3

Input tokens Convolution Pooling
Feature

map

0.5

0.7

0.9

0.2

Fully
connected
layer

Description
2

Description
3

Figure 5.15: Convolutional Neural Network Architecture for learning a VNFDs rec-
ommendation model

category of VNFD to which an initial description is satisfying. The shortcoming of
this application is that the VNFDs are usually defined without a formal strategy, it is,
therefore, probable that the VNFDs of a category are very different from each other.
It is challenging in that way to a good recommendation.

The two recommendation applications are following the same approach of learn-
ing. An overview of the CNN architecture for learning a recommendation model from
VNFDs is depicted in Figure 5.15. The tokens are converted to their vector repre-
sentation based on the look-up table, following one of the two vectorization methods:
Appearance-based vectorization or token embeddings.

The vectors of the preparation phase are passed to the convolution layer to learn
features from the descriptor files using multiple filter sizes. The most obvious features
are selected in the pooling layer and concatenated into one neural vector. This neural
vector is used in the fully connected layer to perform classification. We can summarize
the CNN method into three processes: Token representation, feature extraction, and
recommendation.

Token Representation

The input of the model is a fixed size vector of tokens w = {w1, w2, ..., wD}, Where D
is the input size. The tokens are initially converted to their numerical representation
using the generated look-up table in the network data preparation phase. Thus, the
original input is x = {x1, x2, ..., xD}, where xi is a vector representation of wi. The
model is iteratively trained with D sequence of tokens from the tokenized files. If a
sequence is less than D, then it will be completed with empty characters.

Deep learning framework for configuration recommendation and completion 101

Feature Extraction

This process aims to learn features from the descriptors and merge the best found into
a single vector. This vector is passed afterward to the classification process. Features
learning and extraction are accomplished by filters in the convolutional layer.

The input x is convoluted (dot multiplication operation) with multiple filters with
different sizes to produce a feature score si. A filter is a matrix W ×R, such as W is
the filter window size and R is the size of the token vector. R = 1 in the case of the
highest appearance method. Each filter fi is applied to multiple regions of the input
and generates a list of feature scores. Each feature score sj in the filter list is defined
as:

sj = ReLu(xj:j+W−1 · fi + bs) (5.7)

where xj:j+W−1 is the region of the input to which the filter is applied, bs is a
bias, the operator ”·” denotes the convolution operation and ReLU is a non linear
function, ReLu(x) = max(0, x). The training of filters is equivalent to learning a
feature for the task of classifying the descriptor files.

The features that are extracted with each filter are assembled to form a feature
map. After generating the feature maps for all the filters, a max-pooling operation is
applied over each feature map to highlight the best resultant feature that is captured
by each filter. This operation pf consists of selecting a feature with maximum value
from the features map.

pf = max(s) = max(s1, s2, s3, ..sk) (5.8)

The best features of each feature map are merged into a penultimate layer and
are passed to a fully connected layer whose output is the probability distribution over
all the classes (i.e.deployment descriptor files).

Recommendation

The fully connected layer takes the vector that contains all the max pooled features
from all the filters to perform classification. We use that a Softmax function to
make the classification. The output is y ∈ {D1, D2, ..., DY }, it could be pointer to
description files, i.e. VNFDs or a category of VNFD, depending on the application
type. Y could the number of files that are in the catalog or the maximum categories
to be used for classification.

y = softmax(γi) ==
e(γi)∑Y
i′=1 e(γi′)

(5.9)

where γi = p(i|x, θ) , i is the number of the class i ∈ {1, 2, 3..Y } and θ is the
parameters of the model, including the weights and bias of the fully connected layer.
The output is the class with the highest probability.

102 Deep Learning for automatic configuration generation

The parameters of the model are afterward updated using the random gradient
descent method to maximize the optimization objective function J(θ)

J(θ) =
Y∑
i′=1

log p(γ(i)|x(i)), θ) (5.10)

5.4.6 Completion model for VNFDs

LSTM is used to learn a language model from the descriptor files so that it can be able
to predict a sequence of tokens given an input description. As described previously
(see section 5.2), LSTM is a recurrent neural network with a special type of memory
cell that stores the context of the information. It can be seen as multiple copies of
the same network, where each cell passes the information to its successor enabling
the persistence of the information.

The model learns from a vectorized tokens of the preparation phase using multiple
sequences extracted from the VNFDs. Similarly, to CNN, the first step of the model
is to convert the tokens into their numerical representation using the lookup table in
the first phase of the framework. LSTM is trained by considering at each iteration a
fixed size sequence of tokens. The parameters are tuned during the learning to enable
the model to predict with high accuracy the next token given a same sequence size of
tokens. The model can be expressed as the following:

x(t+ 1) = F (x(t), x(t− 1), ..., x(t− s)) (5.11)

where t is the position of the token, x(t+ 1) is the predicted token given a s sequence
of tokens. The prediction is effectuated using :

y = softmax(wi) =
e(wi)∑V
i′=1 e(wi′)

(5.12)

where wi is a token from the vocabulary and V is the vocabulary size The learning
is done by minimizing the log-loss function J(θ) using a simple Stochastic Gradient
Descent (SGD), with respect to the parameters of the LSTM model (θ):

J(θ)) = −log p(x1)−
k∑
t=2

log p(xt|x1:t−1) (5.13)

5.4.7 Execution phase

During this phase, the DNN models are used. To illustrate their usage, we consider
example scenarios during design time and run time of an orchestrator. The design
time is where the network and service descriptors are to be set and defined towards
their deployment by the orchestrator. The Run time is where services and Network
functions are already deployed and a change is needed to be done by the orchestrator

Deep learning framework for configuration recommendation and completion 103

INPUT OUTPUT

LSTM

Prediction of the next 25
tokens from the input

Figure 5.16: Using the LSTM method for deployment description completion

in response to faulty situations (Noisy VNFs, overloaded VNFs, etc.). We describe
here below one scenario for the Design Time and one Scenario for the Run time:

Design Time: VNFD verification and Completion

In this scenario, the resource orchestrator needs to complete a given VNFD with
additional information, like policy constraints, forwarding graph, etc. In this case,
the DNN modules receive the incomplete VNFDs, compute the missing part with
LSTM as illustrated in Fig. 5. The resource orchestrator then stores the newly
completed VNFD in the catalog. In this scenario, the LSTM was used to complete
the VNFD. Another variation would be to consider the case where there is a need to
change completely several parts of the VNFD, here the LSTM is not enough as the
sequential aspect is not sufficient to complete the whole VNFD. Hence here, CNN is
invoked to compute the context of the remaining part within the VNFD and propose
similar VNFD to complete it as shown in Fig.6.

Run time scenario: VNFD genration

The orchestrator is invoked to change the parameters within the Descriptors to
handle faulty situations like resource conflict between virtual machines (e.g. Over-
loaded VNF). In this case, the orchestrator needs to change the VNFD and adapt it to
a state of no conflict. To solve the problem, the orchestrator could specify a descriptor
for the VNFs with resources and requirements that could potentially end the conflict.
The proposed framework could be used to recommend deployment descriptors that
satisfy the orchestrator demand.

104 Deep Learning for automatic configuration generation

INPUT OUTPUT

CNN

Recommendation of
description deployment

file

Virtual
firewall
VNFD

Figure 5.17: Using the CNN method for deployment description recommendation

5.5 Evaluation and Results

In this section, we evaluate the performance of our proposed deep learning framework.
We focus more particularly our attention on the effectiveness of the two models: the
recommendation model and the completion model. The recommendation model is
evaluated based on the accuracy, precision, and recall of the recommendation. We
evaluate two applications of the recommendation: recommendation of a VNFD file
and the recommendation of a category of VNFD file.

In the case of the recommendation of VNFD files, CNN is trained on a set of VNFD
blocks from the same VNFD file. The blocks are constructed randomly from different
parts of the file to avoid having only a sequence of data in the same block. This way,
CNN is trained to recognize patterns from the VNFD instead of only segments. The
blocks are afterward divided into three sets, training, validation, and test sets. The
last two sets are completely independent of the training set.

The recommendation of VNFD files model is initially trained on the training set
to fit its parameters (e.g. weights of the CNN). The validation set is then used to tune
the parameters of the model and to stop the training phase when for example there
is an overfitting i.e. the classification error keeps increasing. Finally, the testing set
is used to provide an unbiased evaluation of a final model fit on the training dataset.

In the case of recommendation on VNFD categories model, the evaluation is also
carried on the three sets of training, validation, and testing. Nevertheless, the sets,
in this case, are constituted by VNFDs grouped by categories.

The completion model is evaluated based on the accuracy of completing a given
initial description. The LSTM is trained on sequences of tokens with the goal of

Evaluation and Results 105

Table 5.1: Parameters of the CNN model

Parameters Value

Train/Test % 80/20 %

Learning rate 0.001

Filter number 150

Batch size (tokens) 500

predicting the next token.

To test the effectiveness of the preparation phase methods, we compare the two
methods, the appearance-based indexation method and token embeddings methods
in two different scenarios. In the first scenario, the methods are applied to all the
sets (training, validation, and testing), and in the second scenario, the methods are
applied in the learning phase. This way, we can evaluate the impact of the preparation
phase on the performance results.

We start by describing the data set and the experimental setup that we used to
train the deep neural network models and then discuss the results of the experiments
for each model.

5.5.1 Data set and experimental Setup

The experiments are performed on a data set constituted of a catalog of different
VNFDs containing up to 500 VNFDs, defined in YAML files, and following the
TOSCA for NFV template [2]. The resulting code corpus includes more than 1,500,000
tokens that generate a vocabulary of 95,000 unique tokens. We use %80 of the data
set for training and 10% for validation and 10% for testing.

The skip-gram model is used to learn the token embedding the embedding in the
preparation to learn vector representation for the tokens. The vector dimension is set
to 128.

All the models are implemented in python using Tensorflow, a widely used open-
source library for numerical computation and large-scale machine learning. The ex-
periments are tested in a machine equipped with an Intel i7 CPU and 8 GB of RAM.

5.5.2 CNN for VNFD recommendation

We evaluate the performance of the CNN model based on the accuracy and the F
measure. The latter is a harmonic mean of precision and recall. The evaluation is
measured by varying two parameters, the input size of CNN and the number of filters.
The input size indicates how much information CNN needs to take into considera-
tion in order to be effective for making recommendations. The number of filters is
important for CNN for learning the features.

106 Deep Learning for automatic configuration generation

Table 5.2: Evaluation of the CNN recommendation model for VNFD files with respect
to the CNN input size

Vecotrization Input size (Tokens) Training acc Testing acc F measure

TE 20 0.20 0.24 0.54

TE 50 0.26 0.31 0.57

TE 100 0.42 0.44 0.51

TE 200 0.56 0.6 0.58

TE 500 0.78 0.84 0.67

ABI 20 0.24 0.21 0.39

ABI 50 0.25 0.29 0.41

ABI 100 0.29 0.39 0.44

ABI 200 0.38 0.52 0.43

ABI 500 0.41 0.69 0.48

Table 5.3: Evaluation of the CNN recommendation model for VNFD files with respect
to the CNN number of filters

Vecotrization Number of filters Training acc Testing acc F measure

TE 50 0.51 0.6 0.51

TE 75 0.6 0.68 0.56

TE 100 0.65 0.71 0.59

TE 125 0.82 0.79 0.61

TE 150 0.7 0.84 0.67

ABI 50 0.45 0.54 0.34

ABI 75 0.51 0.59 0.31

ABI 100 0.55 0.62 0.39

ABI 125 0.52 0.65 0.4

ABI 150 0.53 0.69 0.48

Evaluation and Results 107

Table 5.4: Evaluation of the CNN recommendation model for VNFD categories with
respect to the CNN input size

Vecotrization Input size (Tokens) Training acc Testing acc F measure

TE 20 0.26 0.23 0.48

TE 50 0.32 0.46 0.54

TE 100 0.41 0.51 0.55

TE 200 0.57 0.62 0.61

TE 500 0.63 0.69 0.61

ABI 20 0.23 0.16 0.39

ABI 50 0.21 0.22 0.38

ABI 100 0.29 0.31 0.39

ABI 200 0.33 0.39 0.41

ABI 500 0.42 0.43 0.41

Table 5.5: Evaluation of the CNN recommendation categories for VNFD files with
respect to the CNN number of filters

Vecotrization Number of filters Training acc Testing acc F measure

TE 50 0.48 0.5 0.44

TE 75 0.54 0.62 0.59

TE 100 0.55 0.65 0.61

TE 125 0.58 0.66 0.61

TE 150 0.63 0.69 0.61

ABI 50 0.31 0.34 0.31

ABI 75 0.33 0.36 0.32

ABI 100 0.39 0.40 0.39

ABI 125 0.41 0.40 0.39

ABI 150 0.42 0.43 0.41

108 Deep Learning for automatic configuration generation

Table 5.6: Parameters of the LSTM model

Parameters Value

Train/Test % 80/20 %

Learning rate 0.001

sequence length 150

Batch size (tokens) 500

As mentioned previously, we consider in the evaluation of the two recommenda-
tion applications, recommendation model for VNFD files and recommendation model
for VNFD categories. We also take into consideration the two methods of the prepa-
ration phase, token embedding (TS) and appearance-based indexation (ABI). The
parameters that we considered for training the model are illustrated in Table 5.1.
The performance results are indicated in Table 5.2, 5.3, 5.4 and 5.5.

From Table 5.2 and 5.4, we can notice that the input size of the description has an
impact on the classification. That makes sense, because the more we add information
about the description, the more the CNN can extract features and be able to classify
it to the best descriptor file. We can also notice that the token embedding method
gives a more accurate classification than the appearance-based indexation. This is
due to the fact that embeddings enable CNN to choose the nearest possible descriptor
given an input because of the vector representation that encodes the semantic of the
tokens.

The performance results of CNN in the function of the number of filters for both
recommendation applications are illustrated in Table 5.3 and 5.5. Each filter has
a window size that is generated randomly following a uniform distribution between
[50, 500]. We can notice that filters with multiple window sizes can capture the code
features and achieve better classification results.

Overall, the performance of the recommendation model for VNFD files is bet-
ter in our experiments than the recommendation model for VNFD categories. We
can explain this observation by the fact that VNFDs are designed without a formal
strategy and that different VNFD could be designed for the same performance goal.
Therefore, the VNFDs that compose a given VNFD category could be very different
and makes the extraction of features that could characterize it difficult.

5.5.3 LSTM for VNFD completion

The LSTM model settings are shown in Table 5.6 We evaluate here the accuracy of
the model in function of the sequence length. The results in Table 5 show that LSTM
performs better when it is trained on a longer sequence of data. That is actually
one of the abilities of LSTM, to handle a long sequence of data and capture more
information of the context to predict more accurately the next token.

We measure also the performance of LSTM for generating a sequence of tokens by

Evaluation and Results 109

Table 5.7: Experiments on the LSTM model using different input sequence length

Sequence length TE ABI

20 0.4 0.39

35 0.46 0.41

50 0.51 0.49

65 0.71 0.61

80 0.79 0.68

Table 5.8: Experiments on the LSTM model using different output length

Output length TE ABI

5 0.87 0.79

10 0.82 0.71

30 0.78 0.68

70 0.6 0.42

180 0.43 0.21

Table 5.9: Experiments on the CNN model combined with LSTM using different
input sizes

input size TE ABI

20 0.62 0.56

50 0.67 0.6

100 0.67 0.64

200 0.75 0.64

500 0.84 0.69

110 Deep Learning for automatic configuration generation

variating the length of the output. We fix here the input description to 500 tokens.
Table 5.8 shows that the model is able to predict with high accuracy the sequence of
tokens at the beginning of the prediction, then the performance decreases with the
sequence size.

Combining LSTM with CNN can actually enhance the classification accuracy by
completing the input size of CNN using the LSTM model. The results in Table 5.9
can demonstrate this performance.

5.6 Conclusion

To enable auto-configuration in software networks, network components are expected
to automatically adapt their own configuration to unexpected situations to preserve
the required network performance. For that matter, the configuration is expected
to be generated automatically by management entities in software networks. We
tackled in this chapter the second and third research question specified in chapter
1: How to automatically generate configurations to a targeted data model? How to
automatically generate configurations to a targeted data model?

To address these challenges, we focused our attention on a use case in NFV.
Service providers in NFV have to associate with VNFs deployment descriptors. The
deployment descriptors are complex and tedious to design manually or with static
automation, they contain numerous components that are dependent on each other.
Also, there is no formal strategy to assist the creation of the deployment descriptors
except the experience and best practices of the domain experts. This leads to a
plethora of strategies for deployments.

We proposed in this chapter a framework based on deep neural networks that
learn from a set of deployment descriptors (VNFDs), two models. A model that
can recommend a VNFD given an initial description and a model that can complete
VNFDs with additional information given an initial description. This could be used
to augment an orchestrator with an ability to select, recommend, and complete NFV
descriptors from an initial description. The promising results from our experiments
suggest that the framework is a solution that could be used in practical scenarios
to enhance the dynamicity of deploying VNFs. Our next step involves developing a
descriptor generation engine that could be used to suggest a new description that fits
the most initial requirements.

The performance of the recommendation shows also that it is hard to learn from
VNFDs when they do not share common characteristics, this is the case for the
recommendation of VNFD categories. To overcome this problem, we propose in the
next chapter an alternative solution for learning from configuration files. This solution
is model-driven, it aims at capturing all the configuration variations into a single
representation that could be used for example to mine the dependency between the
configuration elements and extract more implicitly the features from the configuration
files.

Conclusion 111

The work in this chapter is published in C2, C3 and C5 (see chapter 1, section
1.4).

112 Deep Learning for automatic configuration generation

Chapter 6

Model-driven approach for
configuration generation

Contents

6.1 Introduction . 114

6.2 VNFD representation . 115

6.2.1 Formal Definition of a VNFD . 118

6.3 Configurable Deployment Descriptor Model 119

6.3.1 Configurable component instances 119

6.3.2 Configurable gateways . 121

6.3.3 Formal definition of a configurable VNFD 122

6.4 Learning the configurable model 123

6.4.1 Transforming the VNFD files into a tree-like structure 123

6.4.2 Federating common nodes in the set of VNFD instances 123

6.4.2.1 Similarity metrics between the nodes 123

6.4.2.2 Nodes clustering algorithm 126

6.4.3 Constructing the configurable VNFD model 127

6.5 Application of the configurable model: Configuration Guid-
ance Model . 128

6.5.1 Configuration guidance model . 128

6.5.2 Dynamic guidance model extraction 132

6.5.2.1 Step 1: Configuration choices extraction 132

6.5.2.2 Step 2: Guidelines derivation 133

6.5.2.3 Step 3: Tree-like structure extraction 134

6.5.2.4 Step 4: Guidelines dependencies formalization 134

6.6 Other applications of the VNFD Configurable model 135

6.6.1 Deployment descriptor variant generation 135

6.6.2 Dependency mining . 136

6.6.3 Uniform representation of the deployment descriptors 139

6.7 Evaluation and results . 140

113

114 Model-driven approach for configuration generation

6.7.1 Environment settings . 140

6.7.2 Complexity of the configurable deployment description model . . . 140

6.7.3 Learning the configurable model 142

6.7.4 Configuration guidance model . 145

6.7.4.1 Quality of configuration guidelines 145

6.7.4.2 Accuracy of configuration guidelines 146

6.8 Conclusion . 147

6.1 Introduction

The design of configuration files in software networks usually follows a traditional
process design where a service provider starts the design and continuously adds el-
ements. This is known as a bottom-up design approach. Differently, in a top-down
design approach, instead of starting from scratch, the design process starts with the
“big picture” which is then reduced to the relevant parts in order to obtain the re-
quired solution. Such a big picture represents a reference configuration model which
can be considered as an off-the-shelf solution that requires configuration before it can
be used in a specific context. Following a top-down approach for creating configu-
ration models allows to accelerate the design process by providing “plug and play”
models that can be easily configured by service providers. It also improves the under-
standability of services’ and functions’ configuration by providing a generic solution
that captures best practices in creating deployment descriptors in a specific domain.

In order to enable a top-down design approach, a language that supports the
creation of customizable and adaptable configuration models is required. This chap-
ter contributes to this area by focusing on VNFDs and proposing a configurable
deployment descriptor model that allows to represent multiple existing deployment
descriptor models into one customizable model. We focus our attention on the virtual
network function deployment descriptor models (VNFDs) as they are the main com-
ponent of NFV that compose each network service. Using configurable elements, the
proposed configurable model allows representing the commonalities and differences
between the consolidated VNFDs. The configurable elements need to be configured
by the service provider in order to derive a VNFD. In this way, a configurable VNFD
model allows to represent multiple alternatives in designing VNFDs for a specific net-
work service. The configurable elements allow to explicitly show the commonalities
and differences among different design decisions. It is noteworthy that the scope of
the present contribution is to introduce a configurable modeling language of a VNFD.
The construction of a configurable VNFD out of a collection of VNFDs is out of scope
and is left for future work.

Concretely, we propose a graph-based representation of a VNFD model which is
based on the ETSI NFV specification [38]. Therefore, our graph representation is
generic and abstracts from the specific details of existing modeling languages (e.g.

VNFD representation 115

TOSCA [2]). We then extend the proposed graph model with configurable elements
and define their configuration constraints. The configuration constraints ensure a
structurally correct configuration of the model.

Learning the configurable VNFD model is a challenging task. That is to find and
group together similar elements in the set of VNFD files. It is challenging because
the VNFDs could be designed by different service providers or domain experts and
therefore, similar VNFD elements with similar functionalities could be labeled or
structured differently. The configuration could also differ between the elements. To
overcome this problem, we propose an algorithm based on machine learning to search
and cluster similar VNFD elements based on the distance between the features of the
elements. We define what are the features that characterize the elements and also the
metrics that that measure the similarity between the elements.

The remainder of this chapter is organized as follows: Section 6.2 defines a rep-
resentation for the VNF deployment descriptors (VNFDs). Section 6.3 presents our
proposed configurable descriptor model. Section 6.4 describe our machine learning
based approach to learn automatically the configurable model. Section 6.5 presents
how can the configurable model be used to assist the desgin of VNFDs. Section 6.6
describes other applications of the configurable model. Section 6.6 presents the results
of our experiments on our proposed solutions and section 6.8 concludes the chapter.

6.2 VNFD representation

As the structure of a VNFD can be mapped to a graph, we choose graph theory to
represent a VNFD model as a tree-like structure. For sake of simplicity, we restrict
our definition to the general elements that compose a VNFD regardless of any data
model. We consider for that matter the ETSI NFV specification on the VNFD in-
formation model [38] (see chapter 5, section 5.3). We are considering the flowing
VNFD elements under this specification: VNF Component (VNFC), Virtual deploy-
ment unit (VDU), Virtual storage resource (VS), Virtual memory resources(VM),
Virtual Compute resources (VC), and connection point descriptors (CPD).

Figures. 6.2 and 6.3 illustrate two basic examples of a VNFD representation of a
firewall and CPE respectively. Figure 6.1(a) shows the basic elements that compose
the VNFD model representation. The nodes in the VNFD model represent the dif-
ferent component instances that compose the VNFD. Each component instance has
one of the following types: VNFC, VDU, VM, VS, VC, or CPD and may have one
or more attributes. The root node represents an instance of the type VNFD. In the
example in Figure 6.2, the root node v1 is an instance of type VNFD and has the
attribute “name” which has the value “vFirewall”. Graphically, we use “:” in the
node label to indicate the component from which the instance is derived. For sake of
simplicity, in our example, we define one attribute for each node and we indicate it
between two parentheses“()” in the node.

The relations between the nodes can be one of the following three types: compo-

116 Model-driven approach for configuration generation

C

A

Composition gateway

Allocation gateway

Connection edge

Composition edge

Allocation edge

Component instance node

Elements in the VNFD model

N Connection gateway

(a)

X

Configurable component instance
node

Configurable elements in the configurable VNFD model

O

X O

X

Configurable composition gateways

Configurable allocation gateways

Configurable connection gateways
XOR

OR

(b)

ORXOR

XOR

CC

AA

N

Figure 6.1: (a) graphical representation of the elements used in a VNFD model and
(b) graphical representation of the configurable elements in a configurable VNFD
model

sition, allocation or connection. A composition relation between two nodes v1 and v2

indicates that the instance v1 is composed by the instance v2. That means that v2

is part of v1 and cannot exist without it. The composition relation exists typically
between (i) VNFDs and VNFs, (ii) VNFCs and VDUs, and (iii) VDUs and CPDs.
Graphically, a 1:1 composition relation is represented by a solid line. For example, in
Figure 6.2, instance v4 has a single composition relation, to v7. In case a 1:n composi-
tion relation exists between multiple nodes, we use a composition gateway to connect
the nodes. Graphically, the composition gateway is represented by a grey diamond
with the label “C”. In our example, the instance of VNFC v2 is composed of two
instances: VDU v3 and VDU v4.

An allocation relation between two nodes v1 and v2 indicates that v2 is a resource
that needs to be allocated to v1. The allocation relation can only exist between
VDUs on the one hand and VS, VC, and VM on the other hand, i.e. only the virtual
storage, virtual memory, and virtual component resources can be allocated to the
VDUs. Graphically, the allocation relation is represented by a dashed line. As an
example, in Figure 6.2, the VS v5 is allocated to the VDU v3. In case multiple
resources are allocated to a VDU (i.e. 1:n relation), we use an allocation gateway to
connect the nodes. Graphically, the gateway is represented by a blue diamond with
the label “A”. In our example, the VC v8 and the VM v9 are allocated to the VDU
v4.

VNFD representation 117

v2 : VNFC
(name:vFirewall)

v3 : VDU
(name:Docker VFW)

v9: VM
(Size: 100 MB)

v1: VNFD
(name: vFirewall)

v4 : VDU
(name: Docker TC)

v6: CPD
(name: vNIC)

v7: CPD
(name:SR-IOV)

v8: VC
(nCPU: 4)

v5: VS
(Size:5Gb)

e6

e3 e4

e7

e10e9

e5

e1

C

A

e2

e8

e11

g1

g2

Figure 6.2: An example of a vFireWall VNFD represented graphically as a tree-like
structure

v1: VNFD
(name: vCPE)

v3 : VNFC
(name: vLB)

v2 : VNFC
(name: vFirewall)

v4 : VNFC
(name: vCPE)

v7 : VDU
(name: Docker vCPE)

v5 : VDU
(name: Docker vFW)

v6 : VDU
(name: Docker vLB)

v8 : VDU
(name: Docker vNas)

v9: CPD
(name:vNIC)

v10: CPD
(name: SR-IOV)

v11: CPD
(name:vNIC)

v12: CPD
(name: vNIC)

v13: CPD
(name: SR-IOV)

v14: VC
(nCPU:8)

v15: VS
(Size: 9 Gb)

v16: VM
(Size: 512 MB)

v17: VC
(nCPU: 4)

v18:VS
(Size: 2 Gb)

v6 : VDU
(name: Docker vProxy)

v9: CPD
(name: vNIC)v14: VC

(nCPU:8)

C
e1

CC

C

A

e2 e4

e3

e5 e8
e9

e6 e7

e20 e21

e10 e11

e12

e15
e18

e19 e22 e23 e24
e25

e13 e14

e16 e17

e26

e27

e28

g1

g2

g4

g3

g5

Figure 6.3: An example of a graphical representation of a vCPE VNFD that is de-
scribed briefly in Figure5.7

A connection relation can exist between the component instances of type CPD

118 Model-driven approach for configuration generation

and is a bidirectional relation. It represents the virtual links that connect the CPDs
of the internal VDUs together or to external VDUs of external VNFs. Graphically,
a connection relation is represented by a solid green line. As an example, in Fig-
ure 6.2, the relation between the CPD v6 and the CPD v7 indicates that a virtual
link connects the two connection points. We also introduce the connection gateway
(as shown in Figure 6.1) that allows to connect multiple connection points together.
The connection gateway is graphically represented by a green diamond with the la-
bel “N”. Currently, the VNFD connection points can have only 1:1 relation. It is
therefore improbable to have such a gateway. However, we will keep this gateway
in our formal definition as it will be used later in the configurable descriptor model.
Moreover, according to the ETSI NFV specification, a virtual link can have different
attributes such as add some examples. Therefore, in our definition, we allow relations
to have attributes, although this is not graphically shown in our example.

6.2.1 Formal Definition of a VNFD

In this section, we formalize the definition of a VNFD model as explained in the
previous section. Let UA be the universe of attributes’ names and UV be the universe
of attributes’ values. The definition of a VNFD model is given in Definition 6.2.1.

Definition 6.2.1 (VNFD model). A VNFD model is a tuple D = (V, V̂ , G, Ĝ, E, Ê, λ)
where:

• V = {v1, v2, . . . , vn} is the set of nodes;

• V̂ : V → {VNFD,VNFC,VDU,VS,VM,VC,CPD} is a function that assigns a
component type to a node v ∈ V ;

• G is the set of gateways;

• Ĝ : G → {C,A,N} is a function that assigns a type to a gateway g ∈ G such
that:

– Ĝ(g) = C indicates a composition gateway,

– Ĝ(g) = A indicates an allocation gateway and

– Ĝ(g) = N indicates a connection gateway.

• E ⊂ (V ∪G)× (V ∪G) is the set of edges;

• Ê : E → {composition, allocation, connection} is a function that assigns a type
to an edge e ∈ E;

• λ : V ∪ E → P(UA × UV) is a function that assigns for either a node v ∈ V
or an edge e ∈ E a set of attributes and their corresponding values, i.e. for an
element m ∈ V ∪E, λ(m) = {(attri, valuei) | i ≥ 1} ∈ P(UV ×UA). We use the
shorthand λattr(m) = value to refer to the pair (attr, value) ∈ λ(m).

Configurable Deployment Descriptor Model 119

In our example in Figure 6.2, the definition of the VNFD model is as following:
V = {v1, . . . , v9}; V̂ (v1) = VNFD, V̂ (v2) = VNFC and so on; G = {g1, g2}; Ĝ(g1) =
C, Ĝ(g2) = A; E = {e1, . . . , e11}; Ê(e1) = composition, Ê(e5) = allocation and so on;
λname(v1) = vFirewall, λSize(v5) = 5GB and so on.

6.3 Configurable Deployment Descriptor Model

This section introduces the notion of a configurable VNFD model. The configurable
representation of a VNFD aims to capture different predefined VNFD models into
one customizable model. It is often the case that the VNFD components are repeat-
edly used with similar settings to deploy different VNFs with different aims. As an
example, the VNFDs in Figure 6.2 and 6.3 both have a vFirewall VNFC, which are
deployed on a VDU Docker vFirewall. However, the VDU in Figure 6.2 requires a
VS of size 5GB while the VDU in Figure 6.3 requires a VS of size 9GB. In addi-
tion, this latter VDU requires a VC with 8 CPUs while the former does not. This
example clearly shows that different VNFDs may share many commonalities while at
the same time have some differences. Therefore, a configurable VNFD does not only
allow to represent the commonalities and the differences into one model but can also
explicitly depict the variations using configurable elements. These elements can be
easily configured by a service provider to derive a VNFD model, referred to as VNFD
variant.

In a configurable VNFD, the component instances and gateways can be config-
urable. A configurable element is graphically represented with a thick line. In addition
to the elements shown in Figure 6.1(a), Figure 6.1(b) shows the configurable elements
that can exist in a configurable VNFD. Figure 6.4 illustrates an example of a con-
figurable VNFD that represents a consolidation of the VNFDs in Figure6.2 and 6.3.
In the following, we explain in more details the configurable component instances
(Section 6.3.1) and the configurable gateways (Section 6.3.2). Afterward, we formally
define a configurable VNFD model (Section 6.3.3).

6.3.1 Configurable component instances

A configurable component instance can be configured in two ways. First, it can be
configured to ON (i.e. the component instance is included in the VNFD variant
that is derived from the configurable model) or OFF (i.e. the component instance is
excluded from the VNFD variant). A component instance configured to OFF results
in the deactivation of all the component instances that are linked to it. For example,
in Figure 6.4, the component instances v3 and v4 are configurable. In case v3 is
configured to OFF, all the component instances v3, v8, v11 and v18 will be deactivated
and later removed from the resulting VNFD variant.

Second, a configurable component instance can have configurable attributes. A
configurable attribute is an attribute whose value can be adapted. Configurable

120 Model-driven approach for configuration generation

v3 : VNFC
(name: vLB)

v2 : VNFC
(name: vFirewall)

v4 : VNFC
(name: vCPE)

v5 : VDU
(name: Docker vFW)

v13:CPD
(name: vNIC)

v14: CPD
(name: SR-IOV)

v12: VS
(Size: [5-9] Gb)

v7 : VDU
(name: Docker vProxy)

C

O

CA

v1 : VNFD

v6 : VDU
(name: Docker TC)

v18: VC
(nCPU:8)

v16: VM
(Size: 100 MB)

v17: CPD
(name:SR-IOV)

A

v19: CPD
(name: vNIC)

v8 : VDU
(name: Docker vLB)

v20: CPD
(name:vNIC)

v21: VM
(Size: 512 MB)

v9 : VDU
(name: Docker vCPE)

v10 : VDU
(name: Docker vNas)

v22: CPD
(name: vNIC)

v24: CPD
(name: SR-IOV)

v23: VC
(nCPU: 4)

v25:VS
(Size: 2 Gb)

C

v11:VC
(nCPU:8)

X

v15: VC
(nCPU: 4)

e1

e2

e3

e4

e5

e6 e7

e8

e9

e10

e11 e12

e13

e14

e15

e16

e17

e18

e19

e20
e21

e22

e23 e24

e25 e26
e27

e28

e29

e30

e31

e32

e33

g1

g2

g3

g4

g5

g6

g7

Figure 6.4: An example of a configurable deployment descriptor model that combines
the VNFDs in Figs. 6.2 and 6.3

attributes are graphically represented in red color. In our example in Figure 6.4, the
VS v16 has a configurable attribute “size” whose value is in the range [5 − 9]GB.
This means that, during configuration, the size of the VS can be set to any number
between 5GB and 9GB. However, not all attributes can be configurable. In fact,
some attributes such as the identifier of a component instance are considered as a
characteristic that describes the component and therefore cannot be configurable.
In our proposed model, we consider the attribute “name” as a characteristic of a
component instance.

Table 6.1 shows the configurable elements and their possible configurations. As
mentioned in the table, a configurable attribute value can be either expressed as a
range (for numerical values) or as a discrete set (for numerical or textual values). A
range describes the possible values that the configurable attribute could have. It is
an interval of the minimal and maximal values that are recommended to be set. It
can be configured to a single numerical value that exists in it. A discrete set is used
mainly with textual values to describe the possible finite set of values an attribute can
have. It can be configured to a single value that is picked from the set. For example,
in Figure 6.4, the range is used for the configurable attribute “size” of the VS v12.
The discrete set can be used for instance if multiple images could be used to deploy
a VDU. In this case, the attribute “image” of the VDU is configurable and its value
can be defined as a discrete set that includes the different images.

Configurable Deployment Descriptor Model 121

Table 6.1: Configurable elements and their possible configurations

Configurable element Configuration

Component instance
ON/OFF

attributes’ values
range numerical value
discrete set numerical or textual value

Composition gateway
XOR composition edge
OR omposition edge/gateway

Allocation gateway
XOR allocation edge
OR allocation edge/gateway

Connection gateway XOR connection edge

6.3.2 Configurable gateways

The composition, allocation, and connection gateways in the VNFD model allow to
model 1:n relations between the component instances. In a configurable model, a
configurable gateway allows modeling a variable number of relations. That is, some
of the gateway’s relations can be deactivated and therefore excluded from the derived
VNFD variant. In order to guide the configuration of a gateway, we introduce two
operators, OR and XOR, that define the behavior of a configurable gateway and
constrain its possible configurations. Table 6.1 shows the configurable gateways and
their possible configurations.

A configurable OR composition gateway that connects a component instance v1

to a set of component instances v2, . . . , vn indicates that v1 can be composed of
any combination of the component instances in the set {v2, . . . , vn}. In case a 1:1
composition relation is selected, we say that the OR composition gateway is configured
to a composition edge. In case a 1:n composition relation is selected, we say that
the OR composition gateway is configured to a composition gateway. Graphically,
a configurable OR composition gateway is represented with a thick grey diamond
and a circle inside. For example, in Figure 6.4, g1 is a configurable OR composition
gateway. Therefore, the VNFC vFirewall can be composed of any combination of the
three VDUs: Docker vFW, Docker TC and Docker vProxy. In case Docker vFW and
Docker TC are selected, Docker vProxy with its allocated resources and CPDs are
excluded and the configuration of the gateway becomes a composition gateway that
connects vFirewall to Docker vFW and Docker TC.

A configurable XOR composition gateway indicates that at configuration time,
a component instance can be composed of one and only one of the connected com-
ponent instances. Therefore, the configuration of an XOR composition gateway is
always a composition edge. Graphically, a configurable XOR composition gateway is
represented with a thick grey diamond and a cross inside.

The behavior of the configurable allocation and connection gateways is similar
to that of the composition gateway. Exceptionally, a configurable connection gate-

122 Model-driven approach for configuration generation

way does not have an OR operator since the connection relation is always a 1:1
relation. Graphically, the configurable allocation and connection gateways are rep-
resented similarly to the configurable composition gateway but with blue and green
colors respectively.

In terms of behavior, the behavior of the XOR operator is included in that of the
OR operator since an OR operator can be also configured to a 1:1 relation. However,
we included the XOR operator to add more expressiveness to our configurable model.
For example, the XOR operator in Figure6.3 can be replaced with an OR operator
without changing the correctness of the representation.

6.3.3 Formal definition of a configurable VNFD

In this section, we provide a formal definition of a configurable VNFD. let UA and UV
be the universes of attributes’ names and values; UcV is the universe of configurable
attributes’ values which are defined in terms of range and discrete set as shown in
Table 6.1.

Definition 6.3.1 (Configurable VNFD). A configurable VNFD is a tuple Dc =
(V, V̂ , G, Ĝ, E, Ê, λ, V c, V c

a , G
c, Ĝc, λc) where:

• V, V̂ , G,E, Ê, λ are as specified in Definition 6.2.1;

• Ĝ : G\Gc → {C,A,N} is a function that assigns for a non-configurable gateway
g ∈ G \Gc a type as specified in Definition 6.2.1;

• V c
a ⊆ V c ⊆ V is the set of configurable nodes; V c

a is the set of nodes whose
attributes are configurable;

• Gc ⊂ G is the set of configurable gateways;

• Ĝc : Gc → ({C,A} × {OR,XOR}) ∪ {(N,XOR)} is a function that assigns a
type for a configurable gateway gc ∈ Gc such that “C” indicates composition,
“A” indicates allocation and “N” indicates connection; e.g. Ĝc(gc) = (C,OR)
indicates a configurable OR composition gateway.

• λc : V c
a → P(UA×UcV) is a function that assigns for a configurable node vc ∈ V c

a

a set of attributes whose corresponding values are configurable, i.e. λc(vc) =
{(attri, valueci) | i ≥ 1, attr ∈ UA ∧ valuec ∈ UcV }. We use the shorthand
λcattr(v

c) = valuec to refer to the pair (attr, valuec) ∈ λc(vc)

In our example in Figure 6.4, the definition of the configurable VNFD is as fol-
lowing: V = {v1, . . . , v24}; V̂ (v1) = V NFD, V̂ (v3) = V NFC and so on; G =
{g1, . . . , g7}; Ĝ(g1) = C and so on; E = {e1, . . . , e31}; Ê(e1) = composition, Ê(e14) =
allocation and so on; λname(v2) = vFirewall, λnCPU(v11) = 8 and so on; V c =
{v3, v4, v11, v12, v14}; V c

a = {v12}; Gc = {g2, g6}; Ĝc(g2) = (C,OR), Ĝc(g6) = (C,XOR);
λcsize(v12) = [5− 9]Gb.

Learning the configurable model 123

6.4 Learning the configurable model

In this section, we propose an approach based on machine learning that constructs
automatically the configurable VNFD model. The approach is divided into three
phases. In the first phase, each VNFD file in the data set is represented in a tree-like
structure following the model defined in section 6.2. In the second phase, common
nodes from the set of VNFD models are federated together, and in the last phase, the
configurable VNFD model is constructed by adding the relation between all the nodes
from all the VNFD models using the federated nodes and the configurable elements.
We detail afterward each phase of the algorithm.

6.4.1 Transforming the VNFD files into a tree-like structure

The transformation of the VNFD files is a straightforward task as the VNFD is defined
following a predefined data model. Once the data model of the VNFDs is identified,
the VNFD model is constructed by representing each component instance in the file to
a VNFD node, with respect to the type of the component. The relations between the
component instances as represented as arcs between the nodes in the VNFD model.
The gateways are added afterward when there are 1 to n relations between the nodes,
with respect to the relation type. At the end of this phase, the set of VNFD files is
transformed into a set of VNFD instances.

6.4.2 Federating common nodes in the set of VNFD instances

In the second phase, we propose an algorithm that searches automatically for common
nodes in the set of VNFDs models that could be federated together. It is not obvious
to recognize similar nodes in different VNFD models, where each VNFD could be
designed by different domain experts or service providers. Therefore, nodes with
similar functionality meaning could have different labels, different attributes, different
configurations, and different relations to the other nodes.

Our algorithm cluster together similar nodes in the set of VNFD models based
on four characteristics that define each node: label, type, attributes, and relations.
Clearly, only nodes with similar type could be compared together. Thus, the node
label, attributes, and relations are the node main features that will be used to measure
the similarity between nodes.

Before discussing the algorithm, we define first the metrics that will be used by
the algorithm.

6.4.2.1 Similarity metrics between the nodes

The similarity between the nodes is measured in terms of their features. Let V̈ =
{v̈1, v̈2, . . . , v̈N̈}, be the set that contains all the nodes that are extracted from the

124 Model-driven approach for configuration generation

VNFD data models, is the number of all the nodes. The features of each node x ∈ V̈
are formally defined as follows:

A node x has a type denoted x.type, a label denoted x.label and a set of attributes
denoted x.attributes. The node type is a predefined notation that is specified in the
data model of the VNFD. The label of the node is a string that is set arbitrary by
the service provider. The attributes are a set of key/value pairs that characterize the
configuration of the node (component instance). To represent the node’s attributes,
we define attx = {a1, a2, ·, aA}, x.attributes = attx as the attributes vector of a node
x ∈ V̈ . attx contains all the possible attributes that occur in the set of nodes V̈ . The
index i of ai ∈ Attx represents a particular attribute key and its content is the value
of that key. If an attribute ai ∈ Attx does not exist in the node x, its value is then
equal to 0. The qualitative attributes of the nodes are considered as categories. Each
possible category is added as an individual attribute in attx. It is equal to 1 if its
value occurs in the node and equals 0 otherwise. The quantitative attributes are on
the other hand normalized so that their values are restricted between [0, 1]. We use
for that the basic normalization formula:

axi =
axi −minV̈ (ai)

maxV̈ (ai)−minV̈ (ai)
(6.1)

where axi = ai ∈ Attx, maxV̈ (ai) and minV̈ (ai) are respectively the maximum and

minimum values of ai across all nodes attributes in V̈ .

The distance between nodes

We define dist(x, y), x, y ∈ V̈ , as the distance that measures how similar two nodes x
and y are to each other. It is defined as follows:

dist(x, y) = (ω1 ∗ siml) + (ω2 ∗ sima) + (ω3 ∗ simr) (6.2)

where :

• siml = siml(x.label, y.label) is the similarity between the labels of x and y

• sima = sima(x.attributes, y.attributes) is the similarity between the attributes
of x and y

• simr is a similarity that measures how much relations x and y have in common.

• ω1, ω2, ω3 are weights between the similarities, such that
∑3

i=1 ωi = 1

The label similarity, siml, is a string metric that measures the syntactical sim-
ilarity. We propose to use the Levenshtein distance [10] to compute the matching
between two nodes labels. siml, is defined as follows :

siml(x.label, y.label) =
LevenshteinDistance(x.label, y.label)

max(|x.label|, |y.label|)
(6.3)

Learning the configurable model 125

Figure 6.5: A VNFD model that shows the different relational levels between node
v1 and the other nodes

The similarity between the nodes attributes is the distance between their corre-
sponding attribute vector. we propose to use for that the euclidean distance, sima is
defined as follows :

sima(x.attributes, y.attributes) =

√√√√ A∑
k=1

(x.ak − y.ak)2 (6.4)

The relational similarity, simr, between two nodes, measures the common ele-
ments that both nodes are in relation with. There are different levels of relations that
could occur between the nodes in the same VNFD model. We divide this relation
levels based on the reachability of the nodes. For example, the first level relation of
node v1 in Figure 6.5 are the nodes that are directly related to it i.e. v2. The second
level relation are the nodes v5 and v6. It is important in the relational similarity
nodes to account for the level of the nodes when comparing the relations. Nodes that
are in lower relation levels are more relevant to account for their similarity than the
farthest relation levels. Therefore, we define the relational similarity as following:

Simr(x, y) =

Z∑
z=1

∑
γ∈Γ(x,y)z

Z+1−z
Z × distr(γ)

|Γ(x, y)z|
(6.5)

where :

126 Model-driven approach for configuration generation

• Z is the number of relational levels to be considered in the similarity.

• Γ(x, y)z is the set of all combination of nodes (x′, y′) in the relational level z,
such that x′ is a node related to x and y′ is a node related to y′

• distr(γ) is the distance between the nodes in the relational set that measures
the similarity interms of the label and the attributes. It is defined in eq. 6.6

distr(x, y) = (ω′1 ∗ siml) + (ω′2 ∗ sima) (6.6)

where ω′1, ω′2 are weights. ω′i = ωi + ω3
2 , i ∈ {1, 2}

6.4.2.2 Nodes clustering algorithm

The clustering algorithm groups the nodes with similar types together in clusters.
Each cluster contains the nodes that are likely to be similar. The resulted set of
clusters is afterward added in the configurable VNFD model, each cluster is a single
node in the configurable VNFD model.

Given a set of nodes with similar types, we propose to use the k-medoids machine
learning method to find k clusters that groups similar nodes together. Initially, the
k-medoids method selects arbitrary k nodes from the nodes set as the center of k
independent clusters. At each iteration, the method minimizes the distance between
all nodes and the center of clusters by assigning each node to the closest cluster. The
center of clusters is afterward reselected at as the closest node in the cluster to all the
other nodes in the same cluster. Algorithm 3 summarizes the clustering algorithm.

Algorithm 3 Clustering algorithm

Input: V̈ T (set of nodes of type T), K (number of clusters), MaxI (maximum number
of iterations)

Output: Cl1, Cl1, . . . , ClK clusters of nodes
// Initialization

23 I=0 (Initial iteration)

Centerk = Select(x ∈ V̈ T) (choosing K unique nodes as cluster centroids)
while (Nochangesinall Centerk) do
// Constructing the K clusters

24 For each x ∈ V̈ T , Add (x, Clj) such that dist(x, centerj) =
Min(dist(x, centerk)),∀k ∈ [1,K]
// Updating the clusters centroids

25 For each Clk, k ∈ [1,K], Centerk := x, x ∈ Clk such that
∑

y′∈CLk
dist(x, y′) <=

min(
∑

y′∈CLk
dist(x′, y′)), ∀x′ ∈ CLk

26 I++

27 end

Learning the configurable model 127

6.4.3 Constructing the configurable VNFD model

The configurable model is constructed starting from the root node. The root is
by default named (V NFDc), which is the grouping of all the root nodes in the
VNFD models set. Each node is linked to other nodes for which it has relations
with. If the node is created in the second phase (federation of other similar nodes)
then different relations could exists depending on which configuration is selected.
Configurable operators are added to account for this variability. Given the resulted
clusters Cl = cl1, cl2, . . . , clK from the second phase. We define for each cluster
cli ∈ Cl three sets for each relation type that this cluster could to other clusters
of nodes. N−i,r, N

+
i,r, N

∗
i,r , where i is the cluster index and r is the relation type

(composition, allocation or connection). The three sets contain the nodes or clusters
of nodes that the cluster cli is in relation with (relation type = r).

Given that cluster cli contains nodes that are likely to be similar. We use the three
sets for each relation type to define the configurable operators that we will assign to
the cluster in the configurable model.

• The set N+
i,r, contains nodes from other clusters that are in relation with more

than one node in cli but not with all the nodes.

• N−i,r, contains nodes from other clusters that are in relation with only one node
in cli

• N∗i,r, contains nodes from other clusters that are in relation with all the nodes
in cli.

The configurable gateways are added to the cluster cli relations depending on the
sets N−i,r, N

+
i,r, N

∗
i,r.

• A configurable XOR gateway is added between the cluster relations with the
nodes in N−i,r, with respect to the relation type r.

• A configurable OR gateway is added between the cluster relations with the
nodes in N+

i,r.

• The relation with the nodes in N∗i,r are linked using a simple gateway or with a
direct edge if this are only one node in N∗i,r.

For example, suppose that our cluster contains the elements cli = {a, b, c}. and
that N+

i,r = {d, e}, N−i,r = {f, g} and N∗i,r = {h}. Then, the configurable model
will have a node cli that have relations with type r to nodes d, e, f, g, and h. An OR
configurable operator will be added before the relation with d, e. An XOR configurable
operator will be added before the relation with f, g.

128 Model-driven approach for configuration generation

6.5 Application of the configurable model: Configura-
tion Guidance Model

In this section, we propose an approach for supporting the deployment descriptor
design and generation. As stated previously, the deployment descriptors are usually
created manually or with static automation. That is certainly a cumbersome, time-
consuming, and error-prone approach. The design of deployment descriptors is based
only on the knowledge of the domain expert. There is no formal strategy to assist
the design except experience and best practices. Moreover, NFV is a faster-growing
area where the specifications are constantly improved to boost progress and ensure
an agile response to the evolving industry needs. The deployment descriptors are
consequently continuously evolving, which constrains the domain expert to always
account for new updates to make the configurations. There is therefore a need for
easing this labor-intensive task of designing the deployment descriptors.

Our approach for supporting deployment descriptors design helps domain experts
to make correct configuration based on previous service deployments. The approach
learns automatically from the experience of service deployment to extract useful and
implicit knowledge for configuring deployment descriptors. It is certainly more ef-
ficient to capitalize on past deployment descriptors as many network functions and
services share common configurations and are often reused and adapted by different
entities for different contexts. For example, a VNF could be used to compose different
services or used as a component for other VNFs. For example, as illustrated in Figure
6.2 and Fig6.3, the vFirewall VDU is used in both VNFDs. The approach advises
domain experts on how to configure the deployment descriptors given their needs and
enables them to customize the configurations and adapt them to their context.

The approach derives configuration guidelines from a guidance model. The guide-
lines capture the dependencies and the relations between the configuration choices of
VNFD elements and can be used to generate automatically the deployment descrip-
tors. They are extracted by mining the configurable deployment descriptor model
and a repository of VNFD models.

We start by defining the configuration guidance model. The model recommends
guidelines for the domain expert on the best configuration choices given the current
context. Afterward, we show how our approach can extract the set of configuration
guidelines and use them to assist the creation of deployment descriptors.

6.5.1 Configuration guidance model

Configuration guidelines are instructions that indicate which configuration to choose
given a configuration context. The context is a set of already made configurations
in the deployment descriptor. The guidelines could be modeled basically by if-then
rules that describe a configuration for each possible context. Each rule, therefore,
indicates a decision that should be made for a VNFD component instance given an

Application of the configurable model: Configuration Guidance Model 129

Table 6.2: A sample of guidelines extracted from the configurable deployment de-
scriptor model presented in Figure6.4

g1 if (v1 = ”vFirewall”) then (c1 = ∅)
g2 if (v1 = ”vFirewall”) then (c2 = v6)

g3 if (v1 = ”vCPE”) then (c1 = v3, v4)

g4 if (v1 = ”vCPE”) then (c2 = v7)

g5 if (c2 = v6) then (c3 = v11)

g6 if (c2 = v7) then (c3 = v12, v11)

g7 if (c2 = v7) then (c5 = v19)

g8 if (c2 = v7) then (c4 = e22)

already made configuration decision.
For example, we can extract the guidelines described in tab 6.2 from the config-

urable descriptor model in Figure 6.4 based on the VNFD examples in Figure6.2 and
Figure6.3. The guideline g8 for instance indicate that the connection point v11 should
be connected to v13 when the VDU v6 is selected in the VNFD.

The problem that arises from such representation of guidelines is that manually
identifying all guidelines from a repository of deployment descriptors is a complex
task, especially when there are large interdependencies between the VNFD configu-
ration choices. A large number of interdependencies could result in a high number of
guidelines, which may be confusing for the VNFD designer, given that the guidelines
are interconnected and need to be ordered when used.

To overcome these challenges, we propose a guidance model that can be used
to derive the guidelines. It is a tree-like structure that is inspired by the work in
[12]. This structure representation allows representing the hierarchical ordering of
the configurable operators in a parent-child fashion, where the parent configurable
operator needs to be configured before its child element. Figure6.6 depicts an example
of our proposed guidance model.

The configurable operators are graphically represented by circles. The configura-
tion choices for each configurable operator are included in the representation, they are
graphically represented with a rectangle and attached to the configurable operators
with dotted lines. Each configuration choice has a probability of selection, that is
labeled on the dotted line in the graphical representation. The probability has an
impact on the decision making of VNFD designers. In Figure6.6 for example, the
configurable operator c1 has two configuration choices; either to choose two VNFCs,
v3 and v4, or to choose no VNFC, with a probability of 0.5 and 0.5, respectively. This
means that there is 50% chance for selecting either one of the two choices.

Configuration guidelines are modeled directly in the guidance model with cross-
tree relations. A cross tree relation between two configurations indicates their de-
pendency. Guidelines are represented graphically with a directed arrow between the
configuration choices. The direction of the arrow indicates the configuration choice

130 Model-driven approach for configuration generation

Figure 6.6: Representation of a configuration guidance model that is derived from
the configurable deployment descriptor model in Figure6.4

that is a resulted consequence from the origin configuration choice. Each guideline
is labeled with a probability of certainty that expresses the validity of the guideline.
Once the guidelines are extracted, their validity could be used to determine which of
the guidelines are more relevant. Hence, the VNFD designer could define a threshold
of validity to simplify the usage of the guidance model. The guidelines in Tab.6.2
are illustrated in the configuration guidance model (Figure6.6). For example, the
guideline g6 indicates that if the VDU v7 is selected, then the connection point v11 is
likely to be connected to the connection point v13 with a probability of 0.45.

The dependency between the configuration guidelines is an important aspect to
be considered. There could be three types of dependency relations between the guide-
lines: causality, concurrency, and exclusiveness. The causality relation indicates that
a guideline is applied only after previous guidelines. For example, in the configu-
ration guidance model in Figure 6.6, the guideline G5 can only be executed after
the guideline G2. The concurrency indicates that the guidelines could be applied
simultaneously, like for example in Figure 6.6, the guidelines G6 and G2 could be
executed simultaneously. The exclusiveness indicates that only one of the guidelines
could be applied. For example, G6 and G8 in Figure 6.6. To capture and represent
the dependency relations into the guidance model, we use a Petri Net model where
each transition represents a configuration guideline and the flow relation between the
guidelines relates to their dependencies. A Petri net representation of the configura-
tion guidelines in Tab. 6.2 are illustrated in Figure6.7. Each trace in the Petri net

Application of the configurable model: Configuration Guidance Model 131

Figure 6.7: A Petri net example that illustrates the dependencies between the con-
figuration guidelines in 6.2

is a possible application sequence of the configuration guidelines. For example, the
guidelines g4 and g6, need to be applied sequentially.

The formal definition of the guidance model is given in definition 6.5.1

Definition 6.5.1 (Guidance model). A Guidance model is defined as GM = (T , C,FC ,G,PC ,PG ,O)
where:

• T = (C ′, E′), is a directed graph, where C ′ ⊆ C is the set of the configurable
operators in the configurable descriptor model. E′ = C ′ × C ′ is the set of the
edges

• C, is the set of the configuration choices that a configurable operators can have.

• FC : N → P (C), is a function that maps a configurable operators to its valid
configuration choices.

• G, is the set of the configuration guidelines that could be derived from the con-
figurable descriptor model.

• PC : C → D , is a function that assigns for each configuration choice in C a
probability of occurrence.

• PG : G → D , is a function that assigns for each configuration guideline in G a
probability of validity

132 Model-driven approach for configuration generation

• O = (P ,G,R), is the Petri net model that formalize the dependencies between
the guidelines, where: P, is the set of the set of places. G is the set of guidelines
and R is the set of guidelines relations.

6.5.2 Dynamic guidance model extraction

We present here an approach that automatically extracts a guidance model from a
repository of deployment descriptors (VNFDs in our case). This repository may con-
tain deployment descriptors that were used to construct the configurable deployment
descriptor, variants of deployment descriptors that were extracted from the config-
urable model or newly added deployment descriptors.

The approach takes as input a configurable model (Dc) and a set of deployment
descriptor models (Di ∈ D), and outputs a guidance model. The approach is divided
into four steps: In the first step, the configuration choices for each configurable op-
erator in Dc are extracted from the repository of deployment descriptors D. In the
second step, the configuration guidelines are derived from the extracted configura-
tion choices using association rule mining techniques. In the third step, the tree-like
structure is extracted and in the last step, the dependencies relations between the
configuration guidelines are formalized.

6.5.2.1 Step 1: Configuration choices extraction

In this step, we identify the set of VNFD configurable elements from the repository
of deployment descriptors D and then construct a configuration matrix. The con-
figuration matrix denoted M c, contains the configuration choices that are present in
each deployment descriptor, and for each configurable element in Dc. It is a p × q
matrix, where p is the number of deployment descriptors in D and q is the number of
configurable VNFD elements in Dc.

To identify the configuration choices at each deployment descriptor i ∈ D, we first
map the VNFD elements to their most similar elements in the configurable model.
This is done by measuring their structural similarity. We consider here also the
similarity metrics used in the learning of the configurable model.

Given V̇i a set of VNFD elements in a VNFD model i ∈ D and V̇ g, the set of
configurable elements in the configurable model. We measure the similarity between
nodes in V̇i and V̇ g that have a similar type. Given two elements x and y that
have similar type and are included in V̇i and V̇ g, respectively, we use the similarity
distance (dist(x, y)) that is defined in equation (2) for that purpose, except that the
relational similarity Simr in dist(x, y) is replaced by a different relational metric.
In this situation, instead of measuring the common elements that both nodes are in
relation with, we are more interested in only measuring if the elements that in relation
with the node x are also in relation with the node y. The goal is only to measure if
the structure of x is similar to y. Let Ṙx and Ṙy. the set of nodes that x and y in
relation with, respectively. We define therefore Sims as follows:

Application of the configurable model: Configuration Guidance Model 133

Sims =

∑
x′∈Ṙx

max∀y′∈Ṙy
(Siml(x

′,y′)+Sima(x′,y′))

|Ṙx|
(6.7)

The new similarity distance (dist(x, y)′) is therefore :

dist(x,y)’= (ω1 ∗ Siml) + (ω2 ∗ Sima) + (ω3 ∗ Sims) (6.8)

Note that the weight ((ω3) of the relational similarity (Sims) needs to be small
relative to the label similarity (Siml) and the attribute similarity (Sima). That is
because the nodes in the deployment descriptors don’t need to have similar relation
with other nodes as within the configurable model. The deployment descriptor could
implement different variants of configuration choices.

6.5.2.2 Step 2: Guidelines derivation

So far, we extracted for each configurable element in Dc, the set of its configurations
from each descriptor variant Di ∈ D. The extracted configurations are used as input
to derive the configuration guidelines using association rule mining techniques. As-
sociation rule mining [8] is one of the most important techniques of data mining. It
aims to find rules for predicting the occurrence of an item based on the occurrences of
other items in a transactional database or other repositories. It has been first applied
to the marketing domain for predicting the items that are frequently purchased to-
gether. Thereafter, it manifested its power and usefulness in other areas such as web
mining [41] and recommender systems [68]. The Apriori algorithm [9] is one of the
earliest and relevant proposed algorithms for extracting association rules. We also
use the Apriori algorithm in our approach to derive the configuration guidelines.

Taking the configuration matrix as input, the Apriori algorithm proceeds in two
phases. In the first phase, the set of frequent correlated configurations (i.e. con-
figurations that often appear together in the same row in the configuration matrix)
are discovered according to a frequency threshold. The Apriori algorithm uses the
monotonicity property that all subsets of a frequent correlated set are also frequent.
Therefore, Apriori starts by selecting the frequent single configurations, then gener-
ates the candidate pairs of configurations (i.e. correlated sets of two configurations)
from the frequent singles and so on, until it finds all possible correlated configurations
according to the frequency metric. It uses Support, a well-known metric to compute
the frequency of a set of correlated configurations. The support is defined as the
fraction of VNFD models in which the correlated configurations appear together. Let
C = {Confi : 1 ≤ i ≤ k} be a set of k-correlated configurations. The support is
computed as:

Sup =
|DC |
|D|

(6.9)

where |DC | is the number of VNFD models in D that contain the configurations
in C and |D| is the number of descriptor variants in D. Support is equal 1 if all the

134 Model-driven approach for configuration generation

VNFD models in the repository contain the correlated configurations. Support is
equal 0 if none of the VNF models contain the corresponding configurations together.
A set of correlated configurations is frequent if its support is above a given threshold
of minSupp.

In the second step of the algorithm, the set of relevant configuration guidelines
in the form of Left Hand Side (LHS) → Right Hand Side (RHS) is derived from the
frequently correlated configurations. To keep only relevant guidelines, the confidence
metric is computed to evaluate the probability of occurrence of a guideline. The
confidence of a configuration guideline G : LHS → RHS is defined as the proba-
bility of occurrence of the configurations in the right-hand side RHS given that the
configurations in the left-hand side LHS are selected. It is computed as:

C =
Sup(RHS ∪LHS)

SupRHS
(6.10)

where Sup(RHS ∪LHS) is the support of the configurations in the right-hand and left-
hand sides of G and SupRHS is the support of the configurations in the right-hand
side. Confidence is equal to 1 if whenever the configurations in the right-hand side
are selected, then the configurations on the left-hand side are also selected. A config-
uration guideline is relevant if its confidence is above a given confidence threshold of
minConf .

6.5.2.3 Step 3: Tree-like structure extraction

The tree hierarchy T c of the configuration guidance model GM consists of parent-
child relations between the configurable elements. An element nc1 is a candidate
parent of a child element nc2 if the configuration of nc2 highly depends on that of nc1.
The dependencies relations between the configurable elements can be derived from
their configuration choices. It is very straight forward to derive the hierarchy of the
deployment descriptors. This is because a deployment descriptor follows a predefined
data model that indicates the structure of the VNFD elements. Therefore, in our
case, tree hierarchy is derived following the ETSI NFV specification.

6.5.2.4 Step 4: Guidelines dependencies formalization

We aim here to formalize the dependencies relations between the configuration guide-
lines to assist the service providers incrementally applying them consistently and
validly. Let G = {Gi : i ≥ 1} be the set of the extracted configuration guidelines for a
configurable VNFD mode Dc = (V, V̂ , G, Ĝ, E, Ê, λ, V c, V c

a , G
c, Ĝc, λc). We propose

an approach based on the Theory of Regions to derive the configuration system. To
do so, we first generate a transition system from the configuration guidelines in G.
Then, we use the Theory of Regions to synthesize a Petri-net. The transition system
explicitly shows the deployment descriptor configuration states resulting from the ap-
plication of the configuration guidelines and all possible transitions between them. It

Other applications of the VNFD Configurable model 135

contains the configuration states, i.e. the states in which a deployment descriptor file
can be as a result of applying the configuration guidelines and the transitions between
the states labelled with the configuration guidelines index.

A descriptor configuration state represents the set of selected elements’ configura-
tion at an instant t. It is defined as a m-dimensional vector, where m is the number
of configurable elements in Dc and each entry in the vector represents a selected con-
figuration of one configurable element. An entry is set to “-” if no configuration is
selected for the corresponding configurable element. A configuration guideline G. :
LHS RHS can be triggered if there exists a state, called pre-configuration state, in
which the configurations in the LHS part are selected. If triggered, a new configura-
tion state, called post-configuration state, in which the configurations in the RHS are
added to the already selected configurations is resulted. Having the transition system
as input, we use the Theory of Regions [64] in order to derive a configuration system
represented as a Petri net.

6.6 Other applications of the VNFD Configurable model

In this section, we give some future perspectives on other application cases of the
configurable model. As an illustration, we show the applicability of the configurable
model to (i) generate automatically variant of deployment descriptors in section6.6.1,
(ii) mine the dependencies between the configuration elements in section6.6.2 and (iii)
uniformize the representation of deployment descriptors in section6.6.3.

6.6.1 Deployment descriptor variant generation

In the research area, there is a need for a large catalog of deployment descriptors to
conduct research projects related to mining and learning from the configuration files.
Unfortunately, there is no standard public data set of VNFDs or NSDs. Most of the
available public repositories of the descriptors contain demo templates that indicate
how to define the descriptors via examples. There are also different data models to
define descriptors, such as Tosca and Yang. This makes it difficult to collect the
scattered small data sets of descriptors into a unique repository. Moreover, many
NFV organizations are reluctant to publish their own data, which accentuates the
problem of collecting the descriptors.

The configurable deployment descriptor model could be used in this case as a
tool for generating deployment descriptor variants and extend the catalog with more
VNFDs. The configurable descriptor model exploits the variability captured from a
valid data set to be able to generate more valid VNFDs. We illustrate this ability
with an approach that uses the configurable operators to generate a new alternative
of configuring a VNFD. We consider in this case the previous configurable descriptors
model that annotates the VNFD components instances with their VNFD (see section

136 Model-driven approach for configuration generation

Table 6.3: Definition of the variation factors

Groupe Function Description

Composition Factors
addcomp(c, d) adds one or more component instances from the available configuration choices.

delcomp(c, d)
deletes one or more component instances.
All the component instances that are related to the deleted component instances are also deleted.

altcomp(c, d) Changes one of the component instances attached to the operator with one in the available configuration choices.

Allocation Factors
addal(c, d) add one or more ressources from the available from the available configuration choices.
delal(c, d) Changes one of the ressources attached to the operator with one in the available configuration choices.

altal(c, d)
Changes the attributs of a ressources with an other one from the available configuration choices.
Change a ressource with an other one from the available configuration choices.

Connection Factors
addcon(c, d)

adds one or more connection points from the available configuration choices.
Requirement: The new connection point needs to be connected a valid connection point.

delcon(c, d) deletes a connection point and its associated connection (virtual link)

altcon(c, d)
changes a connection point with an other one from the available configuration choices.
Requirement: The new connection point needs to be connected a valid connection point.

6.2). The generation of the VNFD variants is performed through variating existing
VNFDs. This helps the generation of a valid VNFD structure.

Given a configurable deployment descriptor model annotated with the VNFDs for
each component instance G = (V,E,C, V̂ , Ê, Ĉ,D, fD). We introduce the variation
factors that we use to create new VNFDs. It is a set A of factors, each factor a ∈ A
is a function responsible for altering the VNFD in a specific way. We define the set of
factors in tab.6.3. The factors are classified in three categories similarly to operator
categories in the configurable model: composition, allocation and connection. For
example, the composition factor, addcomp(c, d) takes as input a configurable operator
c and adds one or more component instances in the available configuration choices to
the VNFD d.

One approach for the generation of multiple variations of VNFDs from a given
VNFD is through employing randomly the variability factors that are defined in
Tab.6.3 at each configurable operator in the configurable deployment descriptor model.
We first select the VNFD from D. Each configurable operator in the structure of the
VNFD can be potentially used by one of the variability factors to create an alter-
native configuration. The category of the variability factor needs to be compatible
with the category of the configurable operator. To avoid a large deviation from the
original VNFD, we use a variation rate parameter that can regulate the use of the
variability factors. This parameter is defined manually by the user. It indicates
how much changes could be permitted in the new version of the VNFD. As an ex-
ample, Fig.6.8 illustrates a variable version of the vFirewall VNFD that is defined
in Fig. 6.2. To generate this variable version of the VNFD, the variability factor
addcomp(c2, vF irewall) is used in configurable operator c2 to include the VDU v7.
The resulted VNFD is a vFirewall VNFD with an additional VDU (Tocker TC).

6.6.2 Dependency mining

Mining the deployment descriptors to learn their characteristics is an important aspect
that is unfortunately yet neglected. Deployment descriptors are designed based solely
on the domain expert judgment. The expert chooses based on his expertise a good

Other applications of the VNFD Configurable model 137

Figure 6.8: An example of a variable VNFD generated from the vFirewall VNFD that
is defined in Fig.6.2

configuration for deploying a network function. It is therefore hard to tell what
can be the best deployment configuration for a given network function as different
domain experts can have different views on that matter. Other than that, learning
the characteristics of the descriptors can be beneficial in many use cases. It can
be helpful to extract features from the descriptors to enable artificial intelligence
algorithms such as deep learning techniques to learn from the descriptors. Deep
learning techniques could then be used to learn to classify deployment descriptors to
their network function, to detect abnormal configurations, to cluster the deployment
descriptor to a given network requirement, etc. We propose a basic approach inspired
by process mining integration [13] that illustrates how the configurable descriptor
model can be used to extract characteristics from the deployment descriptors. It
is an approach that captures the dependencies between VNFDs and measures their
similarity.

The configurable deployment model in this case is customized to account for the
relation between the VNFDs and the components that compose them in the rep-
resentation. Each VNFD component instance is annotated with the corresponding
VNFDs that include it. The configurable deployment model is therefore defined as :
G = (V,E,C, V̂ , Ê, Ĉ,D, fD), where D, fDE are additional elements in the graph. DE
represents the set of VNFDs that are used in the configurable deployment model and
fD : V → D, is a function that returns the VNFDs related to a component instance in
V . Fig. 6.9 illustrates an excerpt of the configurable model with component instances

138 Model-driven approach for configuration generation

Figure 6.9: An excerpt of the configurable descriptor model that annotate the com-
ponent instances with their corresponding VNFDs

annotated with their VNFDs. Notice that it could be other notations in the graph to
account for different characteristics like the VNFD vendor, the version of the VNFD,
the requirement that the VNFD is satisfying, etc. The goal in this example is to mea-
sure the similarity between the VNFDs in order to extract the common elements that
can characterize them. We construct the set of VNFDs D = {d1, d2, . . . , dD} from
the configurable descriptor model, where each element of D correspond to a VNFD
and contains a set component instances that compose it.

We define a comparability measure (δ-comparability) that measures the ratio of
common elements between VNFDs. We use the comparability measure to select the
VNFDs that have a high comparable ratio above a predefined threshold. This measure
allows us to preselect VNFDs that are potentially closer to each other in terms of
common elements. Two VNFDs (d1 and d2) are δ-comparable for a threshold δ = 0.5

if : |d1∩d2|
|d1∪d2| ≥ 0.5.

After pre-selecting the set of VNFDs, we measure their similarity by taking into
consideration also the relation between the VNFD component instances. We extract a
numerical representation for each VNFD in order to compare and rank the similarity
in a Euclidian distance metric space. We represent each VNFD in a matrix that
captures the precedence dependencies between the VNFD component instances. It is
a n-by-n matrix where n is the number of components that compose the VNFD. The
value of the matrix cell is either 1, if there is a precedence dependency between the
VNFD component instances. The dependency can be any type of relation between

Other applications of the VNFD Configurable model 139

the component instances (composition, allocation or connection) and the relation
could be direct or indirect (via configurable operators). For example, L, Let M be
the matrix of the VNFD that is defined in Fig. 6.2 and included in the configurable
descriptor model in Fig.6.4. The size of the matrix is |M | = 9.

M =

v1 v2 v3 v4 v5 v6 v7 v8 v9

v2 1 0 0 0 0 0 0 0 0

v3 0 1 0 0 0 0 0 0 1

v4 0 1 0 0 0 0 1 1 0

v5 0 0 1 0 0 1 0 0 0

v6 0 0 0 1 1 0 0 0 0

v7 0 0 0 1 0 0 0 0 0

v8 0 0 0 1 0 0 0 0 0

v9 0 0 1 0 0 0 0 0 0

The matrix cell M(v1, v2) = 1 indicates that there is a precedence relation between

v1 and v2.

Once the matrices of the pre-selected VNFDs are constructed, we normalize all
the matrices by also including in each VNFD matrix the missing component instances
that belong to the rest of the VNFD matrices. The added elements matrix cells are
obviously set to 0. At the end, all the matrices of VNFDs have the same size (the
number of all the component instances of the VNFDs). We then measure the similarity
between two matrices in the set using the dependency difference metric.

The dependency difference metric S as defined in 15 counts the number of discrep-
ancies between two matrices. It is the trace of the difference between two matrices.
Let M1 and M2 two normalized matrices. S(M1,M2) = tr[(M1−M2)× (M1−M2)T]
where tr[.] is the trace (sum of the diagonal elements)of a matrix.

Using the dependency difference metric and the δ-comparability on the config-
urable deployment descriptor model can help to analyze the characteristics of the
VNFDs and identify the relation between the VNFDs.

6.6.3 Uniform representation of the deployment descriptors

With the advent of NFV, new network services and functions are continuously emerg-
ing. Despite some efforts to find a consensus on a common information model to use
for modeling the deployment descriptors like the ETSI NFV initiative, there is still
an absence of a common data model for the deployment descriptors, which resulted
on a diversity of solutions, such as: TOSCA, YANG,Hot, etc. This diversity obliges
service designers to constantly adapt the descriptors to the heterogeneous NFV plat-
forms in order to enable the integration of the network services/functions. Therefore,
designing deployment descriptors for the network services/functions in such a highly

140 Model-driven approach for configuration generation

dynamic environment becomes a highly complex, time-consuming, and tedious task.
The configurable deployment descriptor mode could be used as a common representa-
tion of the VNF component instances. It federates heterogeneous VNFDs into a single
representation. It encompasses the knowledge and expertise from different sources.
Moreover, the descriptor designer can, therefore, use this presentation to define the
VNFD in various data models by mapping each VNFD component instance in the
configurable to its desired model. This is enabled through predefined APIs that allow
the translation between the different data models via the configurable model.

6.7 Evaluation and results

In this section, we conduct some experiments to evaluate our approach of using the
VNFD configurable model to generate the configuration guidance model. We first
start by defining the environment settings of our experiments. Then, we assess the
complexity of our configurable VNFD model to show its effectiveness. The complexity
is an important measure for the VNFD representation. A complex representation
impacts the understandability of the VNFD and consequently increases the chances
of errors. Afterward, we evaluate the performance of our proposed approach to learn
the configurable VNFD model. More precisely, we focus on evaluating the efficiency of
the clustering algorithm. Finally, we evaluate the configuration guidance model that
is extracted from both the configurable model and the set of deployment descriptors.
We conduct two experiments. In the first experiment, we evaluate the quality of
the recommended configuration guidelines in terms of completeness and complexity.
In the second experiment, we evaluate the accuracy of the extracted configuration
guidance models by computing the Precision and Recall values.

6.7.1 Environment settings

In our experiment, we consider approximately 100 VNFDs collected from various
organizations and private telco vendors. The data set include several variations of
VNFDs for different VNFs such as Mobility Management Entity (MME), virtual
Customer Premises Equipment (vCPE), virtualized Subscriber Data Management
(vSDM), etc. The VNFDs are YAML files that follow the TOSCA data model.

We implemented a python program to construct the VNFD models from the data
set. The number of nodes extracted, with respect to their type, are : 65 VNFC, 453
VDUs , 453 VCs, 421 VMs, 357 VSs, 520 CPs.

6.7.2 Complexity of the configurable deployment description model

To evaluate the complexity of our proposed solution, we consider a scenario in which
a service provider wants to design a new vCPE VNF. The only information that he
can rely on to have insights about the deployment configuration of the VNF is the

Evaluation and results 141

Table 6.4: Structural Complexity metrics for the two considered representation

Complexity metric Multiple VNFD representations Configurable deployment description model

CFC 13 19

ACD 2.3 3.1

CNC 0.7 0.56

Density 0.15 0.04

repository of the 30 VNFDs. This repository contains some VNFDs designed by the
same service provider but for different VNFs and variation of VNFDs for the same
vCPE VNF but designed by different service providers. In order to capitalize on
the knowledge provided by the 30 VNFDs, we evaluate the complexity of using a
representation given by the configurable descriptor model, against the complexity of
using 30 VNFD models.

We assess the structural complexity of the two representations by computing the
well-known complexity metrics: CFC (Control Flow Complexity), ACD (Average
Connector Degree), CNC (Coefficient of Network Connectivity) and density. CFC
metric [98] evaluates the complexity of the representation with respect of the con-
figurable elements (OR, XOR, AND). It computes for each operator the number of
states (VNFD component instances) that can be reached from one of the three split
constructs. The measure is based on the relationships between mental discriminations
needed to understand a split construct and its effects. ACD metric [22] calculate the
number of nodes that gateways have as average. CNC metric [69] gives the ratio of
edges to nodes and the density metric [95] relates the number of edges to the num-
ber of maximum edges that can exist among nodes. The obtained values for two
representation are summarized in Table6.4.

The metrics of the multiple VNFD representations are obtained by summing all
the metrics resulted from each VNFD representation individually. By comparing the
metrics’ values of the two representations (see Table6.4), we notice that the CFC of
our configurable model is very high compared to the multiple VNFD representations.
This can be explained by the fact that when similar VNFD elements are merged in
the configurable model, more possibilities of relations with other VNFD elements are
generated, especially in the case when the configurable operator “OR” is used. Thus,
augmenting the structure of the configurable model with more relations. Also, we
notice that density in the case of the configurable model is very low compared to the
multiple VNFD representations. This is because when the VNFDs are less similar
or similar VNFD elements have different relations to other VNFD elements results
into more configurable operators injected in the configurable model. This leads to the
increase of the number of relations that may exist in the configurable model while
the number of available relations remain slightly the same as the multiple VNFD
representations. Consequently, the density of the configurable model decreases signif-
icantly compared the multiple VNFD representations. The CNC of the configurable

142 Model-driven approach for configuration generation

Figure 6.10: Inter-cluster and Intra-cluster mean similarity distance in terms of dif-
ferent cluster numbers, VDU nodes

model is slightly lower than the multiple VNFD representations. An increase in the
CNC means that there exists a high number of relations between a relatively smaller
number of nodes. The lower density value of the configurable model show that it
has a reasonable complexity. This can be explained by the fact that the configurable
descriptor model contains less duplication of the components instances and is more
expressive.

6.7.3 Learning the configurable model

We evaluate the performance of the clustering algorithm by measuring the efficiency
of the clusters into grouping similar nodes. We compute for that the mean similar-
ity distance between the nodes inside the clusters (intra-clusters similarity) and the
distance between the clusters (inter-clusters similarity) . The intra-cluster similarity
measures how good the clusters group similar nodes and the inter-cluster similarity
measures how isolated the clusters are from each other.

The clustering algorithm is applied separately for each node type in the VNFD
model. The number of clusters to use is determined empirically. In Figure6.10, we
measure the performance of the algorithm in terms of different numbers of clusters.
We considered in that experiment the clustering of the VDU nodes. We notice that the

Evaluation and results 143

Figure 6.11: Intra-cluster mean similarity distance per iteration, VDU nodes, k=200

distance intra-clusters decrease when more clusters are considered and the distance
inter-cluster increases with the number of clusters. This is because the algorithm
isolates better the similar nodes in a large data set (450 nodes) when more clusters
are used. However, the similarity distance is relatively stable after a while (when 130
clusters are used). This happens when an efficient number of clusters is reached. An
additional number of clusters will not improve significantly the performance in this
case.

The algorithm converges relatively faster to a minimal mean intra-cluster similar-
ity. Figure6.11, shows the performance of the algorithm after a number of iterations.
The experiment is also conducted on the VDU nodes. The number of clusters is fixed
to 200. Initially, the performance increases significantly until it stabilizes after 10
iterations. This is due to the random initialization of the clusters’ centroids.

The similarity distance between the nodes is impacted by the weights ω1,ω2 and
ω3 of siml, sima and simr respectively. In Figure 6.12 shows the performance of the
algorithm in terms of different relational weight values (ω3). The other weights (ω1

and (ω2) are fixed to (1 − ω3)/2). We considered in this experiment the clustering
of the VDU nodes and the VNFC nodes. We notice that the performance decreases
when the relational weight is small and increases otherwise. This is because the VDU
and the VNFDC nodes have few attributes and many relations to the other nodes.
Thus the relational weight is very important to be considered. We evaluated also the

144 Model-driven approach for configuration generation

Figure 6.12: Intra-cluster mean similarity distance in terms of different relation
weights

Evaluation and results 145

0

5

10

15

20

25

30

35

40

45

S=0,01 S=0,06 S=0,2 S=0,3 S=0,4 S=0,5A
vg

 n
b

 o
f

co
n

fi
gu

ra
ti

o
n

 p
er

 g
u

id
el

in
e

Support threshold values

Avg Configration per Element Nb of guidelines

Figure 6.13: Number of guidelines, number of configurations per guideline and per el-
ement for different minimum support thresholds and a minimum confidence threshold
C = 0:8

impact of the zone Z parameter. It indicates the level of the relations to be considered.
We notice that this parameter can also enhance considerably the performance of the
algorithm

6.7.4 Configuration guidance model

In this experiment, we evaluate the quality and accuracy of the configuration guide-
lines that are recommended from the configuration guidance model. The quality of
the configuration guidelines is evaluated in terms of completeness and complexity,
whereas the accuracy is evaluated in terms of the obtained and the expected config-
uration guidelines. The expected configuration guidelines are constructed manually
with the help of several domain experts of service deployments. We asked them to
provide us with the most relevant configurations from the VNFD model repository,
we considered the configuration guidelines that are mostly agreed on by the experts.

6.7.4.1 Quality of configuration guidelines

The completeness and complexity of the extracted configuration guidelines are com-
puted based on (1) the number of extracted configuration guidelines, (2) the number
of configuration choices per guideline and (3) the percentage of extracted configura-
tions per configurable element with different support threshold values and a confidence
threshold C = 0:8. The complexity is expressed in terms of the number of extracted
guidelines. The higher the number of extracted guidelines, the more the complexity
increases. The completeness on the other hand is expressed in terms of the num-
ber of configurations per guideline and the percentage of extracted configurations
per configurable element. A high number of configurations per guideline means that
the guidelines cover more association between the configurations of all configurable

146 Model-driven approach for configuration generation

Figure 6.14: Accuracy of the generated guidelines for different support and confidence
thresholds

elements in the deployment descriptors model. Also, a high percentage of retrieved
configurations per element means that the guidelines cover most of the configuration
choices.

The results are shown in Figure 6.13. , the average number of configurations per
guideline and the percentage of extracted configurations per configurable element is
depicted. The results show that, low support values (S = 0:01 and S = 0:06) record a
high number of extracted guidelines and a high percentage of retrieved configurations
per configurable element. This leads to the conclusion that a compromise needs to be
found between the complexity and completeness. This is because the complexity of
the configuration guidelines is positively correlated with their completeness (i.e. when
the complexity increases the completeness increases) while both the completeness and
complexity are negatively correlated with the support threshold value.

6.7.4.2 Accuracy of configuration guidelines

In this last experiment, we calculate the accuracy of the configuration guidance model
for different support and confidence threshold values. For that, we use the set of
relevant guidelines generated from the guidance model and compare them to the set
of guidelines that are recommended manually by domain experts.

The results are depicted in Figure 6.14. We notice that the guidance model
match almost perfectly the guidelines recommended by the domain experts. We
also notice that accuracy depends more on the minimal support threshold rather
than the minimum confidence threshold. This can be explained by the fact that the
support threshold value determines the number of retrieved configurations choices
and therefore the generated guidelines.

Conclusion 147

6.8 Conclusion

In this chapter, we proposed an alternative approach to the deep neural network
approach that was proposed in the previous chapter. The approach proposed in this
chapter is model-driven and it aims also at addressing the third research question
(see chapter 1) on how to automatically generate coherent configurations in software
networks. The model-driven approach aims at assisting service providers in NFV
on designing the deployment descriptors with fewer efforts. Indeed, the design of
deployment descriptors in NFV usually follows a traditional process design where a
service provider starts the design and continuously adds elements in a bottom-up
design fashion.

The model-driven approach is a configurable deployment descriptor model that
allows to represent multiple existing deployment descriptor models into one customiz-
able model. We focus our attention on the virtual network function deployment de-
scriptor models as they are the main component of NFV that compose each network
service. The configurable model helps the deployment descriptor design process by of-
fering a model that captures various variabilities on the VNFD element configurations
that can be used by service providers in an interactive way. The service providers
could use the configurable model to select relevant parts of configuration in order to
obtain the required solution.

The proposed configurable model is a graph-based representation of a VNFD
model extended with configurable elements and configuration constraints. The con-
figuration constraints ensure a structurally correct configuration of the model. The
configurable elements help service providers to select the suited configuration from
a set of possibilities, in an interactive way, to derive VNFDs. We proposed also in
this chapter an algorithm based on machine learning to learn the configurable model
from a set of deployment descriptors. The algorithm automatically clusters simi-
lar elements from the deployment descriptors based on a defined similarity distance
metric.

We showed how can the configurable model be used to assist the design and
generation of deployment descriptors. We proposed for that matter an approach that
derives configuration guidelines from a guidance model. The guidelines capture the
dependencies and the relations between the configuration choices of VNFD elements
and can be used to generate automatically the deployment descriptors. They are
extracted by mining the configurable deployment descriptor model and a repository
of VNFD models

The experiments that we conducted showed that the configurable model has better
complexity than using directly the descriptors from the catalog with separate repre-
sentations. Our learning algorithm showed also a good performance for clustering
similar descriptor elements. These results motivate us further to implement a tool
that can be used by service providers to generate deployment descriptors.

The work in this chapter is published in C4,J1 and J2 (see chapter 1, section 1.4).

148 Model-driven approach for configuration generation

Chapter 7

Conclusion
In this thesis, we investigated the problem of auto-configuration in software networks.
Auto-configuration is an essential capability that allows the networks to adapt and
with less human intervention to new changes in the network by configuring new com-
ponents seamlessly or modifying the parameters in the network according to the
overall global state.

We identified three challenges that are important to be overcome to enable the
auto-configuration capability. The first challenge is the heterogeneity between the
configuration data models. The problem is that there is yet no consensus between
network vendors and organizations on a common data model to define the configura-
tions, which resulted in a plethora of solutions used by different network components.
The cooperation between the network components is therefore not possible.

We investigated for this challenge a solution that handles automatically the het-
erogeneity between configuration data models. We focused on the use case of an
SDN architecture where multiple heterogenous controllers are deployed. The SDN
controllers in that case have to cooperate to share a global network view that allows
them to localize network devices. The problem is that the SDN controllers may ex-
pose their functionalities (via APIs) using different data models. As a solution, we
propose a semantic-based framework that automatically maps configuration elements
from heterogeneous data models

The semantic framework is used as a mediation layer between the heterogeneous
controllers. It builds an ontology from the configuration files of SDN controllers. Each
ontology represents its concepts and the relation between them. The global network
view is built by mapping similar concepts from the ontologies using our proposed
algorithms. The semantic framework is adapted to two scenarios: (i) A centralized
scenario where the SDN controllers expose their network views to a centralized entity
that builds the network view, and (ii) a distributed scenario, where SDN controllers
exchange in peer to peer their local network views and build locally the global view.

In the centralized scenario, we built a global ontology model that represents the
domain knowledge of SDN with OWL. This global ontology describes the concepts
that constitute an SDN architecture and it is used to map similar concepts of the
controller’s local ontologies. Whereas in the distributed scenario, the controller’s
ontologies are directly mapped to each other.

149

150 Conclusion

We evaluated the performance of our framework in both distributed and central-
ized scenarios, in terms of the matching accuracy of our mapping algorithms and in
terms of the execution time. We tested the performance over different network topolo-
gies in a heterogenous multi-controller SDN architecture composed by controllers like
ODL and ONOS. The evaluation shows that our framework is accurate and has a
low computational execution time. However, the shortcomings of this framework are
that it is dependent heavily on a predefined ontology in the centralized scenario and
dependent on a predefined lexicon in the distributed scenario.

The second challenge that we identified for enabling auto-configuration is the au-
tomatic generation of configurations. The network has to automatically configure
network components without human intervention to adapt to unexpected situations.
The problem is that there is no formal strategy on how to choose the best con-
figuration for each given situation. We could find different configurations made by
network administrators for the same network performance goal. This situation makes
it difficult to learn automatically patterns of the best configurations to take at each
situation. Moreover, the configuration files in software networks are often designed
and created manually. Which is a highly complex, time-consuming, and tedious task.

We investigated two approaches to overcome this problem and we have chosen an
NFV architecture to implement and test our proposed approaches. In NFV, service
providers have to associate with their virtual network functionalities description files
before the onboarding of the VNFs. The description files indicate the deployment
and operational behavior of the functionalities in terms of connectivity and resource
requirements. The descriptor files are large files that are designed manually by the
service providers, which is complex, tedious, and error-prone

Our first approach to the challenge of automatic configuration generation is based
on deep neural networks. This approach learns from previously made VNF descriptor
file models that could recommend and complete configurations. The approach is con-
cretely a learning framework based on neural network architectures that is divided
into three phases: the preparation phase, learning phase, and model tuning phase.
In the preparation phase, we process the descriptors files into a format that is suited
for the neural network architectures. We used a word embedding approach to repre-
senting the data that is extracted from the descriptor files based on its semantics. In
the learning phase: we proposed two neural network architectures: A Convolutional
neural network architecture to learn a recommendation model for the descriptors and
Long short term memory architecture to learn a completion model for the descriptors.
We evaluated afterward the generated models (recommendation and completion) in
terms of their accuracy of prediction. The results are promising and suggest that the
framework is a solution that could be used in practical scenarios to enhance the dy-
namicity of deploying VNFs. The shortcoming of this approach is that it is dependent
on a large catalog of VNFD descriptors in order to learn an accurate model.

Our Second approach is a model-driven approach that assists service providers to
design and generate descriptor files. The approach is a configurable model that merges

151

similar component elements from different descriptor files into a single model. This
model captures and learns all the configuration variabilities from the descriptors. The
model is a tree-structured graph that represents the component elements that appear
in the descriptors along with configurable connectors that capture variable structures
of configurations. We formalized a configurable deployment descriptor model that
capitalizes on a catalog of descriptors and proposed an algorithm based on machine
learning (K-medoids) to search and cluster similar elements from different descriptors
and construct the configurable model. We also proposed an approach that extracts
useful and implicit knowledge from the configurable model. The approach derives
configuration guidelines by mining the configurable deployment descriptor model and
a repository of VNFD models. The guidelines capture the dependencies and the
relations between the configuration of VNFD elements. The experiments showed
that the configurable model has better complexity than using directly the descriptors
from the catalog with separate representations. Our learning algorithm also showed
also good performance for clustering similar descriptor elements.

The third challenge that we identified for enabling auto-configuration in software
networks is the propagation of configuration. It is important to identify the relations
between configurations of network components. A single configuration could require
a chain reaction of other changes in network components to keep the network state
coherent. As future works, we intend to overcome this challenge and investigate
approaches that model automatically the dependencies between the configurations in
software network.

We also intend as future works to enhance the contributions made in this thesis.
Regarding our semantic framework for handling the heterogeneity between configura-
tion data models, we highlighted that using the ontologies as a way to represent and
merge the knowledge is an efficient solution. However, relying solely on predefined
sources of information like a global ontology or a lexicon to map the heterogeneous
data models is not a viable solution. The efficiency of the mapping in this case relies
heavily on the predefined sources of information. We need therefore to investigate
other ways to map the ontologies together without the need of relying on predefined
sources of information. We intend for this matter to investigate solutions based on
machine learning and deep learning to map the ontologies together. That is because
these types of solutions have proven to be efficient in the literature to learn various
tasks in an unsupervised manner.

Regarding our learning framework for automating the configuration generation,
we have identified several aspects that need to be improved. The first improvement
that has to be made is to consider the behavioral aspect in the VNF descriptors
and generalize this approach to all the configuration files in software networks. We
considered in this work only the structural aspect of the VNF descriptors. The
behavior aspect includes the scripts of the VNF descriptors that are used by the
service providers to define the policies of the VNF descriptors and the operations
related to handling their life cycle. This aspect adds more complexity to the learning

152 Conclusion

framework. This is because the scripts are written in a different language than the
data model used to define the VNF descriptors and will require the leaning framework
to be trained on different aspects at the same time in order for it to generate a coherent
VNF descriptor. We also intend to develop a descriptor engine that could be used
in real life by service providers or NFV platforms to generate and recommend VNF
descriptors.

Finally, regarding our model-driven approach for assisting the deployment descrip-
tor generation. We are working on developing a tool that learns from a set of VNF
descriptors the configurable model. The tool could be interactively used by service
providers to generate the VNF descriptors. We also aim to incorporate in this tool
methods that can use the configurable model to learn the dependencies between the
elements of the VNF descriptors, generate different variations of the VNF descriptors,
learn and detect errors in the VNF descriptors and automatically generate the VNF
descriptors. Similarly the learning framework, we also aim to generalize this approach
to all the configuration files in software networks and also take into consideration the
behavioral aspect in the configuration files in the configurable model.

Bibliography
[1] common information model onf cim. https://www.opennetworking.org/

news-and-events/blog/common-information-model, accessed: 2017-12-05

[2] Topology and orchestration specification for cloud applications version
1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.

html (January 2013)

[3] Data-efficient performance learning for configurable systems (2017)

[4] (April 2020), https://qmonnet.github.io/whirl-offload/2016/07/08/

introduction-to-sdn/

[5] (April 2020), http://yuba.stanford.edu//

[6] (April 2020), https://qmonnet.github.io/whirl-offload/2016/07/08/

introduction-to-sdn/

[7] Afia, A.E., Sarhani, M.: Performance prediction using support vector machine
for the configuration of optimization algorithms. In: 2017 3rd International
Conference of Cloud Computing Technologies and Applications (CloudTech).
pp. 1–7 (2017)

[8] Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets
of items in large databases. In: ACM SIGMOD’93. pp. 207–216

[9] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, pp. 487–499. VLDB ’94 (1994)

[10] Alipourfard, O., Liu, H.H., Chen, J., Venkataraman, S., Yu, M., Zhang,
M.: Cherrypick: Adaptively unearthing the best cloud configurations for
big data analytics. In: 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). pp. 469–482. USENIX Association,
Boston, MA (Mar 2017), https://www.usenix.org/conference/nsdi17/

technical-sessions/presentation/alipourfard

[11] Assy, N.: Automated support of the variability in configurable process models.
Ph.D. thesis, Université Paris-Saclay (Sep 2015)

[12] Assy, N., Chan, N.N., Gaaloul, W.: An automated approach for assisting the
design of configurable process models. IEEE Trans. Services Computing 8(6),
874–888 (2015)

153

154 Bibliography

[13] Bae, J., Liu, L., Caverlee, J., Rouse, W.B.: Process mining, discovery, and
integration using distance measures. In: 2006 IEEE Int. Conf. on Web Services
(ICWS’06). pp. 479–488 (Sep 2006)

[14] Bao, L., Liu, X., Xu, Z., Fang, B.: Autoconfig: Automatic configuration tun-
ing for distributed message systems. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. p. 29–40. ASE
2018, Association for Computing Machinery, New York, NY, USA (2018),
https://doi.org/10.1145/3238147.3238175

[15] Benamrane, F., mamoun], M.B., Benaini, R.: An east-west interface for dis-
tributed sdn control plane: Implementation and evaluation. Computers Elec-
trical Engineering 57, 162 – 175 (2017), http://www.sciencedirect.com/

science/article/pii/S0045790616302798

[16] Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz,
B., O’Connor, B., Radoslavov, P., Snow, W., Parulkar, G.: Onos: Towards an
open, distributed sdn os. In: Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking. pp. 1–6. HotSDN ’14, ACM, New York, NY,
USA (2014), http://doi.acm.org/10.1145/2620728.2620744

[17] Blial, O., Mamoun, M.B., Benaini, R.: An overview on sdn architectures with
multiple controllers. In: Journal of Computer Networks and Communications
(2016)

[18] Boden, B., Ester, M., Seidl, T.: Density-based subspace clustering in het-
erogeneous networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R.
(eds.) Machine Learning and Knowledge Discovery in Databases. pp. 149–164.
Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

[19] Bohring, H., Auer, S.: Mapping xml to owl ontologies. In: Leipziger Informatik-
Tage, volume 72 of LNI. pp. 147–156. GI (2005)

[20] Cao, B., Kong, X., Yu, P.S.: Collective prediction of multiple types of links in
heterogeneous information networks. In: 2014 IEEE International Conference
on Data Mining. pp. 50–59 (2014)

[21] Cao, B., Kong, X., Yu, P.S.: Collective prediction of multiple types of links in
heterogeneous information networks. In: 2014 IEEE International Conference
on Data Mining. pp. 50–59 (2014)

[22] Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse on com-
plexity of process models. In: Proc. Int. Conf. on Business Process Management
Workshops. pp. 117–128. BPM’06, Springer (2006)

Bibliography 155

[23] Chachada, S., Kuo, C..J.: Environmental sound recognition: A survey. In: 2013
Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference. pp. 1–9 (2013)

[24] Cheatham, M., Pesquita, C.: Semantic Data Integration, pp. 263–305.
Springer International Publishing, Cham (2017), https://doi.org/10.1007/
978-3-319-49340-4_8

[25] Chen, J., Gao, H., Wu, Z., Li, D.: Tag co-occurrence relationship prediction
in heterogeneous information networks. In: 2013 International Conference on
Parallel and Distributed Systems. pp. 528–533 (2013)

[26] Chen, S., Liu, Y., Gorton, I., Liu, A.: Performance prediction of
component-based applications. Journal of Systems and Software 74(1),
35 – 43 (2005), http://www.sciencedirect.com/science/article/pii/

S0164121203003200, automated Component-Based Software Engineering

[27] Cooklev, T.: Making software-defined networks semantic. In: 2015 12th In-
ternational Joint Conference on e-Business and Telecommunications (ICETE).
vol. 06, pp. 48–52 (July 2015)

[28] Dabre, R., Chu, C., Kunchukuttan, A.: A comprehensive survey of multilingual
neural machine translation (2020)

[29] Dargahi, T., Caponi, A., Ambrosin, M., Bianchi, G., Conti, M.: A survey on the
security of stateful sdn data planes. IEEE Communications Surveys Tutorials
19(3), 1701–1725 (2017)

[30] Ding, Y., Ansel, J., Veeramachaneni, K., Shen, X., O’Reilly, U.M., Amaras-
inghe, S.: Autotuning algorithmic choice for input sensitivity. In: Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation. p. 379–390. PLDI ’15, Association for Computing Machinery,
New York, NY, USA (2015), https://doi.org/10.1145/2737924.2737969

[31] Dixit, A., Hao, F., Mukherjee, S., Lakshman, T., Kompella, R.: Towards an
elastic distributed sdn controller. SIGCOMM Comput. Commun. Rev. 43(4),
7–12 (Aug 2013), http://doi.acm.org/10.1145/2534169.2491193

[32] Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between
ontologies on the semantic web. In: Proceedings of the 11th International Con-
ference on World Wide Web. p. 662–673. WWW ’02, Association for Computing
Machinery, New York, NY, USA (2002), https://doi.org/10.1145/511446.
511532

156 Bibliography

[33] Duarte, F., Gil, R., Romano, P., Lopes, A., Rodrigues, L.: Learning non-
deterministic impact models for adaptation. In: 2018 IEEE/ACM 13th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). pp. 196–205 (2018)

[34] Duarte, F., Gil, R., Romano, P., Lopes, A., Rodrigues, L.: Learning non-
deterministic impact models for adaptation. In: 2018 IEEE/ACM 13th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). pp. 196–205 (2018)

[35] Esposito, F., Fanizzi, N., d’Amato, C.: Recovering uncertain mappings through
structural validation and aggregation with the moto system. In: Proceedings
of the 2010 ACM Symposium on Applied Computing. p. 1428–1432. SAC ’10,
Association for Computing Machinery, New York, NY, USA (2010), https:

//doi.org/10.1145/1774088.1774390

[36] Essayeh, A., Abed, M.: Towards ontology matching based system through
terminological, structural and semantic level. Procedia Computer Science 60,
403 – 412 (2015), http://www.sciencedirect.com/science/article/pii/

S1877050915022814, knowledge-Based and Intelligent Information Engineer-
ing Systems 19th Annual Conference, KES-2015, Singapore, September 2015
Proceedings

[37] Essayeh, A., Abed, M.: Towards ontology matching based system through
terminological, structural and semantic level. Procedia Computer Science 60,
403 – 412 (2015), http://www.sciencedirect.com/science/article/pii/

S1877050915022814, knowledge-Based and Intelligent Information Engineer-
ing Systems 19th Annual Conference, KES-2015, Singapore, September 2015
Proceedings

[38] ETSI: Gs nfv-ifa 011. https://standards.globalspec.com/std/13271186/

gs-nfv-ifa-011 (2019)

[39] ETSI: Gs nfv-man 001 (apr 2020), https://www.etsi.org/deliver/etsi_gs/
NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf

[40] Foundation, O.N.: (April 2020), https://www.opennetworking.org/

software-defined-standards/specifications/

[41] Fu, X., Budzik, J., Hammond, K.J.: Mining Navigation History for Recommen-
dation. In: IUI ’00, pp. 106–112 (2000)

[42] Ghosh, S., Kristensson, P.O.: Neural networks for text correction and comple-
tion in keyboard decoding. CoRR abs/1709.06429 (2017), http://arxiv.org/
abs/1709.06429

Bibliography 157

[43] Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., Shenker,
S.: Nox: Towards an operating system for networks. SIGCOMM Comput. Com-
mun. Rev. 38(3), 105–110 (Jul 2008), http://doi.acm.org/10.1145/1384609.
1384625

[44] Guo, J., Czarnecki, K., Apely, S., Siegmundy, N., Wasowski, A.: Variability-
aware performance prediction: A statistical learning approach. In: Proceedings
of the 28th IEEE/ACM International Conference on Automated Software Engi-
neering. p. 301–311. ASE’13, IEEE Press (2013), https://doi.org/10.1109/
ASE.2013.6693089

[45] Hacherouf, M., Bahloul, S.N., Cruz, C.: Transforming xml documents to owl
ontologies: A survey. J. Inf. Sci. 41(2), 242–259 (Apr 2015), http://dx.doi.
org/10.1177/0165551514565972

[46] Hajmoosaei, A., Abdul-Kareem, S.: An approach for mapping of domain-based
local ontologies. In: 2008 International Conference on Complex, Intelligent and
Software Intensive Systems. pp. 865–870 (March 2008)

[47] Hassas Yeganeh, S., Ganjali, Y.: Kandoo: A framework for efficient and scalable
offloading of control applications. In: Proceedings of the First Workshop on Hot
Topics in Software Defined Networks. pp. 19–24. HotSDN ’12, ACM, New York,
NY, USA (2012), http://doi.acm.org/10.1145/2342441.2342446

[48] He, J., Bailey, J., Zhang, R.: Exploiting transitive similarity and tempo-
ral dynamics for similarity search in heterogeneous information networks. In:
Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thal-
heim, B. (eds.) Database Systems for Advanced Applications. pp. 141–155.
Springer International Publishing, Cham (2014)

[49] Helebrandt, P., Kotuliak, I.: Novel sdn multi-domain architecture. In: 2014
IEEE 12th IEEE International Conference on Emerging eLearning Technologies
and Applications (ICETA). pp. 139–143 (Dec 2014)

[50] Hou U., L., Yao, K., Mak, H.F.: Pathsimext: Revisiting pathsim in heteroge-
neous information networks. In: Li, F., Li, G., Hwang, S.w., Yao, B., Zhang,
Z. (eds.) Web-Age Information Management. pp. 38–42. Springer International
Publishing, Cham (2014)

[51] Huang, H., Zubiaga, A., Ji, H., Deng, H., Wang, D., Le, H., Abdelzaher,
T., Han, J., Leung, A., Hancock, J., Voss, C.: Tweet ranking based on het-
erogeneous networks. In: Proceedings of COLING 2012. pp. 1239–1256. The
COLING 2012 Organizing Committee, Mumbai, India (Dec 2012), https:

//www.aclweb.org/anthology/C12-1076

158 Bibliography

[52] Iovanna, P., Ubaldi, F.: Sdn solutions for 5g transport networks. In: 2015
International Conference on Photonics in Switching (PS). pp. 297–299 (2015)

[53] Jacob, Y., Denoyer, L., Gallinari, P.: Learning latent representations of nodes
for classifying in heterogeneous social networks. In: Proceedings of the 7th
ACM International Conference on Web Search and Data Mining. p. 373–382.
WSDM ’14, Association for Computing Machinery, New York, NY, USA (2014),
https://doi.org/10.1145/2556195.2556225

[54] Jamshidi, P., Siegmund, N., Velez, M., Kästner, C., Patel, A., Agarwal, Y.:
Transfer learning for performance modeling of configurable systems: An ex-
ploratory analysis (2017)

[55] Jamshidi, P., Velez, M., Kästner, C., Siegmund, N.: Learning to sample: Ex-
ploiting similarities across environments to learn performance models for con-
figurable systems. In: Proceedings of the 2018 26th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering. p. 71–82. ESEC/FSE 2018, Association for Computing
Machinery, New York, NY, USA (2018), https://doi.org/10.1145/3236024.
3236074

[56] Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transduc-
tive classification on heterogeneous information networks. In: Balcázar, J.L.,
Bonchi, F., Gionis, A., Sebag, M. (eds.) Machine Learning and Knowledge
Discovery in Databases. pp. 570–586. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2010)

[57] Jmila, H., Khedher, M.I., El Yacoubi, M.A.: Estimating vnf resource require-
ments using machine learning techniques. In: Neural Information Processing.
pp. 883–892. Springer, Cham (2017)

[58] Katsalis, K., Nikaein, N., Edmonds, A.: Multi-domain orchestration for nfv:
Challenges and research directions. In: 15th Inter. Conf. on Ubiquitous Comp.
and Commun. pp. 189–195 (Dec 2016)

[59] Kim, Y.: Convolutional neural networks for sentence classification. CoRR
abs/1408.5882 (2014), http://arxiv.org/abs/1408.5882

[60] Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM
46(5), 604–632 (Sep 1999), https://doi.org/10.1145/324133.324140

[61] Kolesnikov, S., Siegmund, N., Kästner, C., Grebhahn, A., Apel, S.: Tradeoffs
in modeling performance of highly configurable software systems. Software &
Systems Modeling 18(3), 2265–2283 (Jun 2019), https://doi.org/10.1007/
s10270-018-0662-9

Bibliography 159

[62] Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M.,
Ramanathan, R., Iwata, Y., Inoue, H., Hama, T., Shenker, S.: Onix: A dis-
tributed control platform for large-scale production networks. In: Proceedings
of the 9th USENIX Conference on Operating Systems Design and Implementa-
tion. pp. 351–364. OSDI’10, USENIX Association, Berkeley, CA, USA (2010),
http://dl.acm.org/citation.cfm?id=1924943.1924968

[63] Kreutz, D., Ramos, F.M.V., Veŕıssimo, P.E., Rothenberg, C.E., Azodolmolky,
S., Uhlig, S.: Software-defined networking: A comprehensive survey. Proceed-
ings of the IEEE 103(1), 14–76 (2015)

[64] Lee, H., Lee, B., Park, K., Elmasri, R.: Fusion techniques for reliable informa-
tion: A survey

[65] Li, C., Sun, J., Xiong, Y., Zheng, G.: An efficient drug-target interaction mining
algorithm in heterogeneous biological networks. In: Peng, W.C., Wang, H.,
Bailey, J., Tseng, V.S., Ho, T.B., Zhou, Z.H., Chen, A.L. (eds.) Trends and
Applications in Knowledge Discovery and Data Mining. pp. 65–76. Springer
International Publishing, Cham (2014)

[66] Li, Y., Chen, M.: Software-defined network function virtualization: A survey.
IEEE Access 3, 2542–2553 (2015)

[67] Lin, P., Bi, J., Wang, Y.: East-west bridge for sdn network peering. In: Su,
J., Zhao, B., Sun, Z., Wang, X., Wang, F., Xu, K. (eds.) Frontiers in Inter-
net Technologies. pp. 170–181. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013)

[68] Lin, W., Alvarez, S.A., Ruiz, C.: Collaborative recommendation via adaptive
association rule mining. In: Data Mining and Knowledge Discovery (2000)

[69] List, B., Korherr, B.: An evaluation of conceptual business process modelling
languages. In: Proc. ACM Symp. on Applied Computing. pp. 1532–1539. SAC
’06, ACM (2006)

[70] Liu, H.: Conditioning lstm decoder and bi-directional attention based question
answering system (2019)

[71] Llorens-Carrodeguas, A., Cervelló-Pastor, C., Leyva-Pupo, I.: A data distribu-
tion service in a hierarchical sdn architecture: Implementation and evaluation.
2019 28th International Conference on Computer Communication and Networks
(ICCCN) pp. 1–9 (2019)

[72] Luo, C., Guan, R., Wang, Z., Lin, C.: Hetpathmine: A novel transductive
classification algorithm on heterogeneous information networks. In: de Rijke,
M., Kenter, T., de Vries, A.P., Zhai, C., de Jong, F., Radinsky, K., Hofmann, K.

160 Bibliography

(eds.) Advances in Information Retrieval. pp. 210–221. Springer International
Publishing, Cham (2014)

[73] Luo, C., Pang, W., Wang, Z.: Semi-supervised clustering on heterogeneous
information networks. In: Tseng, V.S., Ho, T.B., Zhou, Z.H., Chen, A.L.P.,
Kao, H.Y. (eds.) Advances in Knowledge Discovery and Data Mining. pp. 548–
559. Springer International Publishing, Cham (2014)

[74] Makaya, C., Freimuth, D.: Automated virtual network functions onboarding.
In: IEEE Conf. on Network Function Virtualization and Software Defined Net-
works. pp. 206–211 (Nov 2016)

[75] Martinez, A., Yannuzzi, M., de Vergara, J.E.L., Serral-Gracià, R., Ramı́rez, W.:
An ontology-based information extraction system for bridging the configuration
gap in hybrid sdn environments. In: 2015 IFIP/IEEE International Symposium
on Integrated Network Management (IM). pp. 441–449 (May 2015)

[76] Meng, X., Shi, C., Li, Y., Zhang, L., Wu, B.: Relevance measure in large-scale
heterogeneous networks. In: Chen, L., Jia, Y., Sellis, T., Liu, G. (eds.) Web
Technologies and Applications. pp. 636–643. Springer International Publishing,
Cham (2014)

[77] Mijumbi, R., Serrat, J., Gorricho, J., Bouten, N., De Turck, F., Boutaba, R.:
Network function virtualization: State-of-the-art and research challenges. IEEE
Communications Surveys Tutorials 18(1), 236–262 (2016)

[78] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Proceedings of
the 26th International Conference on Neural Information Processing Systems -
Volume 2. p. 3111–3119. NIPS’13, Curran Associates Inc., Red Hook, NY, USA
(2013)

[79] Movahedi, Z., Ayari, M., Langar, R., Pujolle, G.: A survey of autonomic net-
work architectures and evaluation criteria. IEEE Communications Surveys Tu-
torials 14(2), 464–490 (2012)

[80] Nguyen, T., Yoo, M.: A vnf descriptor generator for tacker-based nfv manage-
ment and orchestration. In: In Proc. Int. Conf. on Information and Communi-
cation Technology Convergence (ICTC). pp. 260–262 (Oct 2018)

[81] Nguyen, T.T.A., Conrad, S.: Ontology matching using multiple similarity mea-
sures. In: Proceedings of the International Joint Conference on Knowledge Dis-
covery, Knowledge Engineering and Knowledge Management. p. 603–611. IC3K
2015, SCITEPRESS - Science and Technology Publications, Lda, Setubal, PRT
(2015), https://doi.org/10.5220/0005615606030611

Bibliography 161

[82] Odarchenko, R., Tkalich, O., Konakhovych, G., Abakumova, A.: Evaluation
of sdn network scalability with different management level structure. In: 2016
Third International Scientific-Practical Conference Problems of Infocommuni-
cations Science and Technology (PIC S T). pp. 128–131 (2016)

[83] Otter, D.W., Medina, J.R., Kalita, J.K.: A survey of the usages of deep learning
in natural language processing. CoRR abs/1807.10854 (2018), http://arxiv.
org/abs/1807.10854

[84] Ouali, I., Ghozzi, F., Taktak, R., Sassi], M.S.H.: Ontology alignment using sta-
ble matching. Procedia Computer Science 159, 746 – 755 (2019), http://www.
sciencedirect.com/science/article/pii/S1877050919314164, knowledge-
Based and Intelligent Information Engineering Systems: Proceedings of the
23rd International Conference KES2019

[85] Ouyang, X., Zhang, X., Ma, D., Agam, G.: Generating image sequence from
description with lstm conditional gan (2018)

[86] Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation rank-
ing: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab
(November 1999), http://ilpubs.stanford.edu:8090/422/, previous num-
ber = SIDL-WP-1999-0120

[87] Parundekar, R., Knoblock, C.A., Ambite, J.L.: Linking and building ontologies
of linked data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang,
L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) The Semantic Web – ISWC 2010.
pp. 598–614. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

[88] Parundekar, R., Knoblock, C.A., Ambite, J.L.: Discovering concept coverings
in ontologies of linked data sources. In: Cudré-Mauroux, P., Heflin, J., Sirin,
E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J.,
Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) The Semantic Web – ISWC
2012. pp. 427–443. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

[89] Pereira, J.A., Martin, H., Acher, M., Jézéquel, J.M., Botterweck, G., Ven-
tresque, A.: Learning software configuration spaces: A systematic literature
review (2019)

[90] Phemius, K., Bouet, M., Leguay, J.: Disco: Distributed multi-domain sdn
controllers. In: 2014 IEEE Network Operations and Management Symposium
(NOMS). pp. 1–4 (May 2014)

[91] Popescul, A., Popescul, R., Ungar, L.H.: Statistical relational learning for link
prediction (2003)

162 Bibliography

[92] Qi, H., Li, K.: Management System of Heterogeneous Software-Defined
Networking Controllers, pp. 57–65. Springer International Publishing, Cham
(2016), https://doi.org/10.1007/978-3-319-33135-5_4

[93] Recker, J., Rosemann, M., van der Aalst, W.M.P., Mendling, J.: On the syntax
of reference model configuration - transforming the C-EPC into lawful EPC
models. In: Business Process Management Workshops, BPM 2005 Interna-
tional Workshops, BPI, BPD, ENEI, BPRM, WSCOBPM, BPS, Nancy, France,
September 5, 2005, Revised Selected Papers. pp. 497–511 (2005)

[94] Rehman, A.U., Aguiar, R.L., Barraca, J.P.: Fault-tolerance in the scope of
software-defined networking (sdn). IEEE Access 7, 124474–124490 (2019)

[95] Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and coupling metrics for work-
flow process design. In: Business Process Management. pp. 290–305. Springer
(2004)

[96] Ren, P., Wang, X., Zhao, B., Wu, C., Sun, H.: Opensrn: A software-defined
semantic routing network architecture. In: 2015 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). pp. 101–102 (April 2015)

[97] Riccobene, V., McGrath, M.J., Kourtis, M., Xilouris, G., Koumaras, H.: Auto-
mated generation of vnf deployment rules using infrastructure affinity charac-
terization. In: IEEE NetSoft Conf. and Workshops. pp. 226–233 (June 2016)

[98] Rolón, E., Cardoso, J., Garćıa, F., Ruiz, F., Piattini, M.: Analysis and valida-
tion of control-flow complexity measures with bpmn process models. In: Halpin,
T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.)
Enterprise, Business-Process and Information Systems Modeling. pp. 58–70.
Springer (2009)

[99] Rosemann, M., van der Aalst, W.M.P.: A configurable reference modelling
language. Inf. Syst. 32(1), 1–23 (2007)

[100] Santra, B., Mukherjee, D.P.: A comprehensive survey on computer vision
based approaches for automatic identification of products in retail store. Im-
age and Vision Computing 86, 45 – 63 (2019), http://www.sciencedirect.
com/science/article/pii/S0262885619300277

[101] Shi, C., Kong, X., Huang, Y., S. Yu, P., Wu, B.: Hetesim: A general frame-
work for relevance measure in heterogeneous networks. IEEE Transactions on
Knowledge and Data Engineering 26(10), 2479–2492 (2014)

[102] Shi, C., Kong, X., Huang, Y., Yu, P.S., Wu, B.: Hetesim: A general framework
for relevance measure in heterogeneous networks (2013)

Bibliography 163

[103] Shi, C., Li, Y., Zhang, J., Sun, Y., Yu, P.S.: A survey of heterogeneous infor-
mation network analysis (2015)

[104] de Sousa, N.F.S., Perez, D.A.L., Rosa, R.V., Santos, M.A.S., Rothenberg, C.E.:
Network service orchestration: A survey. arXiv:1803.06596 (2018)

[105] de Sousa, N.F.S., Perez, D.A.L., Rosa, R.V., Santos, M.A.S., Rothenberg, C.E.:
Network service orchestration: A survey. CoRR abs/1803.06596 (2018)

[106] Staar, B., Lütjen, M., Freitag, M.: Anomaly detection with convolu-
tional neural networks for industrial surface inspection. Procedia CIRP 79,
484 – 489 (2019), http://www.sciencedirect.com/science/article/pii/

S2212827119302409, 12th CIRP Conference on Intelligent Computation in
Manufacturing Engineering, 18-20 July 2018, Gulf of Naples, Italy

[107] Sun, Y., Barber, R., Gupta, M., Aggarwal, C.C., Han, J.: Co-author relation-
ship prediction in heterogeneous bibliographic networks. In: 2011 International
Conference on Advances in Social Networks Analysis and Mining. pp. 121–128
(2011)

[108] Sun, Y., Aggarwal, C.C., Han, J.: Relation strength-aware clustering of hetero-
geneous information networks with incomplete attributes. Proc. VLDB Endow.
5(5), 394–405 (Jan 2012), https://doi.org/10.14778/2140436.2140437

[109] Sun, Y., Han, J., Aggarwal, C.C., Chawla, N.V.: When will it happen? rela-
tionship prediction in heterogeneous information networks. In: Proceedings of
the Fifth ACM International Conference on Web Search and Data Mining. p.
663–672. WSDM ’12, Association for Computing Machinery, New York, NY,
USA (2012), https://doi.org/10.1145/2124295.2124373

[110] Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: Meta path-based top-k
similarity search in heterogeneous information networks. Proc. VLDB Endow.
4, 992–1003 (2011)

[111] The OpenDaylight Project, Inc.: OpenDaylight - Technical Overview (2013),
http://www.opendaylight.org/project/technical-overview

[112] Tootoonchian, A., Ganjali, Y.: Hyperflow: A distributed control plane for open-
flow. In: Proceedings of the 2010 Internet Network Management Conference on
Research on Enterprise Networking. pp. 3–3. INM/WREN’10, USENIX As-
sociation, Berkeley, CA, USA (2010), http://dl.acm.org/citation.cfm?id=
1863133.1863136

[113] Tsai, M.H., Aggarwal, C., Huang, T.: Ranking in heterogeneous social media.
In: Proceedings of the 7th ACM International Conference on Web Search and
Data Mining. p. 613–622. WSDM ’14, Association for Computing Machinery,
New York, NY, USA (2014), https://doi.org/10.1145/2556195.2556254

164 Bibliography

[114] Tsou, T., Aranda, P.A., Xie, H., Sidi, R., Yin, H., López, D.: Sdni: A message
exchange protocol for software defined networks (sdns) across multiple domains
(2012)

[115] Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R.J., Darrell, T., Saenko,
K.: Sequence to sequence - video to text. CoRR abs/1505.00487 (2015), http:
//arxiv.org/abs/1505.00487

[116] Wang, C., Song, Y., El-Kishky, A., Roth, D., Zhang, M., Han, J.: Incor-
porating world knowledge to document clustering via heterogeneous informa-
tion networks. In: Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. p. 1215–1224. KDD ’15,
Association for Computing Machinery, New York, NY, USA (2015), https:

//doi.org/10.1145/2783258.2783374

[117] Wang, Q., Peng, Z., Wang, S., Yu, P.S., Li, Q., Hong, X.: clutm: Content and
link integrated topic model on heterogeneous information networks. In: Dong,
X.L., Yu, X., Li, J., Sun, Y. (eds.) Web-Age Information Management. pp.
207–218. Springer International Publishing, Cham (2015)

[118] Wang, W., Qi, Q., Gong, X., Hu, Y., Que, X.: Autonomic qos management
mechanism in software defined network. China Communications 11(7), 13–23
(2014)

[119] Yu, H., Li, K., Qi, H., Li, W., Tao, X.: Zebra: An east-west control frame-
work for sdn controllers. In: 2015 44th International Conference on Parallel
Processing. pp. 610–618 (Sept 2015)

[120] Yu, X., Gu, Q., Zhou, M., Han, J.: Citation Prediction in Heterogeneous Bib-
liographic Networks, pp. 1119–1130. https://locus.siam.org/doi/abs/10.
1137/1.9781611972825.96

[121] Zhang, J., Kong, X., Luo, R.J., Chang, Y., Yu, P.S.: Ncr: A scalable network-
based approach to co-ranking in question-and-answer sites. In: Proceedings
of the 23rd ACM International Conference on Conference on Information and
Knowledge Management. p. 709–718. CIKM ’14, Association for Computing
Machinery, New York, NY, USA (2014), https://doi.org/10.1145/2661829.
2661978

[122] Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system.
ACM Computing Surveys 52(1), 1–38 (Feb 2019), http://dx.doi.org/10.

1145/3285029

[123] Zhang, Y., Cui, L., Wang, W., Zhang, Y.: A survey on software defined network-
ing with multiple controllers. Journal of Network and Computer Applications
103, 101 – 118 (2018)

Bibliography 165

