
HAL Id: tel-02988296
https://theses.hal.science/tel-02988296v1

Submitted on 4 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anomaly-based network intrusion detection using
machine learning

Maxime Labonne

To cite this version:
Maxime Labonne. Anomaly-based network intrusion detection using machine learning. Cryptography
and Security [cs.CR]. Institut Polytechnique de Paris, 2020. English. �NNT : 2020IPPAS011�. �tel-
02988296�

https://theses.hal.science/tel-02988296v1
https://hal.archives-ouvertes.fr

580

N
N

T
:2

02
0I

P
PA

S
01

1

Anomaly-Based Network Intrusion
Detection Using Machine Learning

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom SudParis

École doctorale n◦580 Sciences et Technologies de l’Information et de la
Communication (STIC)

Spécialité de doctorat : sécurité informatique et intelligence artificielle

Thèse présentée et soutenue à Palaiseau, le 05/10/2020, par

MAXIME LABONNE

Composition du Jury :

Joaquin Garcia-Alfaro
Professeur, Télécom SudParis Président

Steven Martin
Professeur, Université Paris-Sud (LRI) Rapporteur

Bruno Volckaert
Professeur, Ghent University (IBCN) Rapporteur

Jean-Philippe Fauvelle
Ingénieur de recherche, Airbus Defense & Space Examinateur

Djamal Zeghlache
Professeur, Télécom SudParis Directeur de thèse

Alexis Olivereau
Ingénieur de recherche, CEA LIST (LSC) Co-directeur de thèse

Acknowledgments

First of all, I would like to thank my thesis co-supervisor Alexis Olivereau, who gave me
the chance to do this PhD. His constant good humour and sharp witty traits brightened
up our long and numerous thesis meetings. His expertise in the field has guided me
throughout these three years, and his sustained confidence has been a real source of
motivation for me in my work.

I would like to thank my thesis supervisor Djamal Zeghlache for his sound advice,
both academically and professionally. He has helped me to gain insight into my own work
and provided new perspectives that have led me to be more creative in my approaches.
His unfailing support has pushed me to do my best to live up to his expectations.

I would like to thank the members of my thesis committee. Many thanks to Prof.
Bruno Volckaert from Ghent University and Prof. Steven Martin from Université Paris-
Sud for their valuable time in reviewing this manuscript as evaluators. I am grateful for
their comments and questions that helped me improve this document. I would also like
to thank Prof. Joaquin Garcia-Alfaro from Télécom SudParis and Mr. Jean-Philippe
Fauvelle from Airbus Defence Space for their precious work as examiners.

I would like to thank all my colleagues in the LSC team for their friendship and
discussions. I will remember our technical conversations and our less technical debates
over a cup of coffee. I feel lucky and honored to have been able to work in such a good
environment.

Last but not least, I would like to thank my parents, my sister Pauline, and my
brother Alix for their support throughout this journey.

i

ii

Contents

Acknowledgments i

Table of contents iii

List of Figures vii

List of Tables ix

List of Abbreviations xi

1 Introduction 1
1.1 The Security Background . 1
1.2 Contributions . 2
1.3 Thesis Organization . 3

2 Concepts and background 5
2.1 Intrusion Detection System (IDS) . 5

2.1.1 Definition . 5
2.1.2 Types of IDSs . 7

2.2 Machine learning . 9
2.2.1 Machine learning tasks . 9
2.2.2 Datasets . 10
2.2.3 Performance metrics . 15

3 State of the art 17
3.1 Multilayer Perceptron . 17
3.2 Autoencoder . 20
3.3 Deep Belief Network . 22
3.4 Recurrent Neural Network . 23
3.5 Self-Organizing Maps . 25
3.6 Radial Basis Function Network . 28
3.7 Adaptive Resonance Theory . 29
3.8 Comparison of different intrusion detection systems 31
3.9 Open issues and challenges . 32

iii

iv CONTENTS

4 Supervised Intrusion Detection 35
4.1 Cascade-structured neural networks . 35

4.1.1 Introduction . 35
4.1.2 Preprocessing and data augmentation 35
4.1.3 Hyperparameters optimization . 39
4.1.4 Ensemble learning . 40
4.1.5 Conclusion . 45

4.2 Ensemble of machine learning techniques 46
4.2.1 Introduction . 46
4.2.2 Dataset et preprocessing . 46
4.2.3 Training . 47
4.2.4 Ensemble learning . 49
4.2.5 Conclusion . 50

5 Supervised Techniques to Improve Intrusion Detection 53
5.1 Anomaly to signature . 53
5.2 Transfer learning . 58

5.2.1 Datasets and preprocessing . 59
5.2.2 Comparison of different machine learning models 60

6 Unsupervised Intrusion Detection 67
6.1 Protocol-based intrusion detection . 67

6.1.1 Introduction . 67
6.1.2 Data processing . 68
6.1.3 Framework . 69
6.1.4 The problem with metrics . 71

6.2 Ensemble Learning . 72
6.2.1 Introduction . 72
6.2.2 Dataset . 72
6.2.3 Neural network architectures . 73
6.2.4 Experiments . 74
6.2.5 Conclusions . 77

7 Predicting Bandwidth Utilization 79
7.1 Introduction . 79
7.2 Related Work . 80
7.3 Data Generation Using A Simulated Network 81
7.4 Preprocessing Stage . 82

7.4.1 Data Collection . 82
7.4.2 Feature Engineering . 83
7.4.3 Creation of a Dataset . 83

7.5 Experiments . 84
7.5.1 Machine learning algorithms . 84
7.5.2 Model Validation and Results . 85

CONTENTS v

7.5.3 Real-Time Prediction . 87
7.6 Conclusions and Future Work . 88

8 Conclusions and future work 91
8.1 Summary and Conclusions . 91
8.2 Future Research Proposals . 92

Bibliography 95

List of Figures

2.1 CIA triad. 5
2.2 Intrusion Detection System function. 7
2.3 Classification of IDSs by analyzed activities. 8
2.4 Classification of IDSs by detection method. 8
2.5 Network topology of CSE-CIC-IDS2018. 14
2.6 ROC curve example. 16

3.1 Multilayer perceptron with one hidden layer. 17
3.2 Autoencoder with one hidden layer - card(L1) = card(L2). 21
3.3 Deep Belief Network with two hidden layers. 22
3.4 Basic Recurrent Neural Network with one hidden layer. 24
3.5 Self-Organizing Map with a two dimensional input vector and a 4x4 nodes

network. 26
3.6 Radial Basis Function Network. 29
3.7 Adaptive Resonance Theory. 30

4.1 Comparison of results obtained with random search and TPE. 40
4.2 Cascade-structured meta-specialists architecture for NSL-KDD. 44

5.1 Sample Snort rule. 54
5.2 Snort rules syntax. 54
5.3 Three first levels of the decision tree. 55
5.4 Generated Snort rules. 58
5.5 Compressed Snort rule. 58
5.6 AUROC scores for MLP on CICIDS2017 63
5.7 AUROC scores for MLP transfer learning with re-training 64

6.1 Graph of attacks according to their effects on the network or system. . . . 68
6.2 IPv4 Header Feature Extraction. 69
6.3 Protocol-based Ensemble Learning. 70
6.4 Autoencoders Predictions of Attacks on Tuesday. 75
6.5 BiLSTMs Predictions of Attacks on Wednesday. 76
6.6 BiLSTMs Predictions of Attacks on Thursday. 76

7.1 Topography of the Simulated Network. 81

vii

viii LIST OF FIGURES

7.2 Feature Engineering Workflow. 83
7.3 LSTM predictions vs. actual values for one interface. 85
7.4 LSTM difference between predicted and actual values for one interface. . . 86
7.5 MLP predictions vs. actual values for one interface. 86
7.6 MLP difference between predicted and actual values for one interface. . . 86
7.7 Leveraging SDN for Proactive Management of the Network. 88

List of Tables

2.1 Examples of KDD CUP 99 features. 11
2.2 Distribution of KDD Cup 99 classes. 11
2.3 Distribution of NSL-KDD classes. 12
2.4 Examples of CICIDS2017 features. 13
2.5 Confusion Matrix . 15

4.1 Comparison of data augmentation methods for NSL-KDD 38
4.2 Classification accuracies for optimized neural networks on KDD Cup 99

and NSL-KDD. 41
4.3 Comparison of different combination rules for ensemble learning on NSL-

KDD test set. 42
4.4 Comparison of different combination rules with meta-specialists for en-

semble learning on NSL-KDD test set. 43
4.5 Classification accuracies for cascade-structured meta-specialists architec-

ture on KDD Cup 99 and NSL-KDD. 45
4.6 Summary of test results for cascade-structured meta-specialists architec-

tures for KDD Cup 99 (classification accuracy = 94.44%). 45
4.7 Summary of test results for cascade-structured meta-specialists architec-

tures for NSL-KDD (classification accuracy = 88.39%). 45
4.8 Comparison study on NSL-KDD. 46
4.9 Comparison of data augmentation methods for each class of NSL-KDD . . 48
4.10 Summary of test results on NSL-KDD test set 50

5.1 Feature importances for DDoS detection on CSE-CIC-IDS2018 (impor-
tance > 10−5) . 57

5.2 Transfer learning results for logistic regression. 60
5.3 Transfer learning results for decision tree. 61
5.4 Transfer learning results for random forest. 61
5.5 Transfer learning results for extra tree. 61
5.6 Transfer learning results for Gaussian Naive Bayes. 62
5.7 Transfer learning results for KNN. 62
5.8 Transfer learning results for MLP. 62
5.9 Frequency of attacks within each attack category dataset for CICIDS2017 63
5.10 Frequency of attacks within each attack category dataset for CIC-IDS-2018 64

ix

6.1 Attack schedule of CICIDS2017. 73
6.2 Time Before Detection for CICIDS2017 Attacks 77

7.1 Randomized Flow Parameters . 82
7.2 Averaged k-fold cross-validation scores . 85

x

List of Acronyms and Abbreviations

AE: AutoEncoder
AIS: Artificial Immune System
ANN: Artificial Neural Network
API: Application Programming Interface
ARIMA: AutoRegressive Integrated Moving Average
ARP: Address Resolution Protocol
ART: Adaptive Resonance Theory
AUC: Area Under the Curve
AUROC: Area Under the Curve of the Receiver Operating Characteristic
AWS: Amazon Web Service
BiLSTM: Bidirectional Long Short-Term Memory
CIA: Confidentiality Integrity Availability
CIC: Canadian Institute for Cybersecurity
CNN: Convolutional Neural Network
CPU: Central Processing Unit
CSE: Communications Security Establishment
DBN: Deep Belief Network
DNS: Domain Name System
DoS: Denial of Service
DDoS: Distributed Denial of Service
ENN: Edited Nearest Neighbours
FN: False Negative
FP: False Positive
FPR: False Positive Rate
FTP: File Transfer Protocol
GAN: Generative Adversarial Network
GHSOM: Growing Hierarchical Self-Organizing Map
GPU: Graphics Processing Unit
HIDS: Host-based Intrusion Detection System
HTTP: Hypertext Transfer Protocol
ICA: Independent Component Analysis
ICMP: Internet Control Message Protocol
IDS: Intrusion Detection System

xi

IDES: Intrusion Detection Expert System
IP: Internet Protocol
IPS: Intrusion Prevention System
ISO: International Organization for Standardization
ISP: Internet Service Provider
KDD: Knowledge Discovery and Data mining
KNN: K-Nearest Neighbors
LAN: Local Area Network
LSTM: Long Short-Term Memory
MAC: Media Access Control
MAE: Mean Absolute Error
MLP: MultiLayer Perceptron
MSE: Mean Squared Error
NIDS: Intrusion Detection System
NLP: Natural Language Processing
NS: Network Simulator
OS: Operating System
OVS: Open vSwitch
PCA: Principal Component Analysis
PSD: Power Spectral Density
QoS: Quality of Service
R2L: Remote To Local
RAID: Redundant Array of Independent Disks
RAM: Random-Access Memory
RBF: Radial Basis Function
RBFN: Radial Basis Function Network
RBM: Restricted Boltzmann Machine
ReLU: Rectifier Linear Unit
RFC: Request For Comments
RMSE: Root Mean Squared Error
RNN: Reccurent Neural Network
ROC: Receiver Operating Characteristic
SDN: Software-Defined Networking
SIEM: Security Information and Event Management
SMBO: Sequential Model-Based Optimization
SMO: Sequential Minimal Optimization
SMOTE: Synthetic Minority Over-sampling Technique
SNMP: Simple Network Management Protocol
SOM: Self-Organizing Map
SQL: Structured Query Language
SSH: Secure Shell
SVM: Support Vector Machine
TCP: Transmission Control Protocol

xii

TN: True Negative
TP: True Positive
TPE: Tree-structured Parzen Estimator
TPR: True Positive Rate
U2R: User To Root
UDP: User Datagram Protocol
USAF: United States Air Forces
VLAN: Virtual Local Area Network
VM: Virtual Machine
XSS: Cross-Site Scripting

xiii

xiv

Chapter 1

Introduction

1.1 The Security Background

With the constant growth of the Internet, computer attacks are increasing not only in
numbers but also in diversity: ransomware are on the rise like never before, and zero-
day exploits become so critical that they are gaining media coverage. Antiviruses and
firewalls are no longer sufficient to ensure the protection of a company network, which
should be based on multiple layers of security. One of the most important layers, designed
to protect its target against any potential attack through a continuous monitoring of the
system, is provided by an Intrusion Detection System (IDS).

Current IDSs fall into two major categories: signature-based detection (or “misuse
detection”) and anomaly detection. For signature-based detection, the data monitored
by the IDS is compared to known patterns of attacks. This method is very effective
and reliable, widely popularized by tools like Snort [1] or Suricata [2], but has a major
drawback: it can only detect known attacks that have already been described in a
database. On the other hand, anomaly detection builds a model of normal behavior of
the system and then looks for deviations in the monitored data. This approach can thus
detect unknown attacks but often generates an overwhelming number of false alarms.
During the past two decades, much research has been focused on anomaly-based IDSs.
Indeed, their ability to detect unknown attacks is significant in a context where attacks
are becoming more numerous and diverse.

Many machine learning techniques have been proposed for misuse and anomaly de-
tection. These techniques rely on algorithms with the ability to learn directly from the
data, without being explicitly programmed. This is particularly convenient considering
the great diversity of the traffic. However, despite these advantages, anomaly detection
algorithms are rarely deployed in the real world and misuse detection still prevails. The
problem of the high false positive rate is often cited as the main reason for the lack of
adoption of anomaly-based IDS [3]. Indeed, even a false positive rate of 1% can cre-
ate so many false alarms on a high traffic network that they become impossible for an
administrator to process.

The objective of this thesis is to propose solutions to improve the quality of detec-

1

CHAPTER 1. INTRODUCTION

tion of anomaly-based IDS using machine learning techniques for deployment on real
networks. Improving the accuracy of detection on known datasets is not enough to
achieve this goal, because the results obtained are not transferable to real networks.
Indeed, machine learning models learn the traffic of a dataset and not the traffic to
be monitored. They need to be re-trained on the monitored network, which is hardly
possible as it requires labeled datasets containing attacks on a real network. The second
objective of the thesis is therefore to develop IDSs that can be deployed on unknown
networks without labeled datasets.

1.2 Contributions
The main contributions of this thesis are as follows:

• We conducted a survey on the state of the art of neural network classifiers for
intrusion detection on KDD Cup 99 and NSL-KDD [4]. We surveyed more than
70 papers on this topic from 2009 to 2017 to identify areas where improvements
can be made and which neural network architectures are the most efficient.

• We proposed an efficient architecture for intrusion detection on KDD Cup 99 and
NSL-KDD using machine learning models [5] [6]. This architecure is based on a
three-step optimization method: 1/ data augmentation; 2/ parameters optimiza-
tion; and 3/ ensemble learning. This approach achieved a very high classification
accuracy (94.44% on KDD Cup 99 test set and 88.39% on NSL-KDD test set) with
a low false positive rate (0.33% and 1.94% respectively).

• We introduced a Snort signature generator from anomalies, which automates the
signature creation process and thus speeds up the update of misuse-based IDS
databases. It can also be used within a hybrid IDS to self-populate its own signa-
ture database.

• We studied the capacities of transfer learning to solve the problem of the lack of
labelled datasets on real networks. We show that transfer learning is relevant for
certain types of attacks (brute-force).

• We patented a method and system for detecting anomalies in a telecommunications
network based on the individual analysis of protocol headers [7]. This anomaly de-
tection method uses ensemble learning to assign each monitored packet an anomaly
score. This unsupervised learning method is our solution to solve the problem of
lack of datasets on real networks.

• We applied this method to a recent and realistic dataset (CICIDS2017) over a
4-day period to prove its effectiveness [8]. This approach successfully detects 7 out
of 11 attacks not seen during the training phase, without any false positives.

• We proposed a solution to predict the bandwidth utilization between different
network links with a very high accuracy [9]. A simulated network is created to

Maxime LABONNE 2

1.3. THESIS ORGANIZATION

collect data related to the performance of the network links on every interface.
Our model’s predictions of bandwidth usage in 15 seconds rarely exceed an error
rate of 3%.

1.3 Thesis Organization
The remainder of the thesis is organized as follows:

Chapter 2 introduces concepts essential to intrusion detection. It defines what a
computer attack is, what an intrusion detection system is, and provides a historical
perspective of the field. Different types of IDSs are detailed, with their strengths and
weaknesses. The contributions of machine learning in this field are explained and the
different specific datasets discussed in this dissertation are presented. Finally, the most
commonly used metrics are defined.

Chapter 3 presents existing work related to intrusion detection using machine learn-
ing algorithms. The different models are detailed with a short presentation of how they
work. Approaches and results are successively presented, then compared in a common
section to determine the best techniques. Finally, the problems identified are listed
along with ideas on how to improve these different points. The insights gathered in this
chapter are used in the design of the IDSs in the following chapters.

Chapter 4 presents two solutions using learning machine models to classify attacks
on the two most popular datasets in intrusion detection. Data augmentation is used to
rebalance these datasets and to improve detection of the rarest attacks. Different models
are then trained and optimized to obtain the best quality of detection. Finally, they are
combined using a specific rule to improve their accuracy.

Chapter 5 describes two methods to improve two aspects of intrusion detection.
Firstly, it is possible to improve the update of signature databases of misuse-based IDS
by generating these signatures from anomalies. A hybrid IDS could then self-populate
its own signature database. Secondly, networks where IDSs are deployed rarely provide
labeled datasets containing attacks. Transfer learning is studied to train models on
labeled datasets and then transfer these models to real-life networks that do not contain
attacks.

Chapter 6 presents a method of intrusion detection without the need for a labelled
dataset (unsupervised learning). This technique performs anomaly detection by learning
the behavior of the protocol headers of the monitored network. The scores obtained by
the different protocols in a single packet are aggregated to produce the packet anomaly
score. A succession of abnormal packets is considered as an indicator of an attack.

Chapter 7 focuses on denial of service attacks, and more generally on network con-
gestion problems. Models are trained to predict the bandwidth consumption between
different links in a simulated network. This method works in real time in combination
with Software-Defined Networking (SDN), allowing congestion problems to be corrected
before they occur.

Chapter 8 concludes the thesis by summarizing the main points of the dissertation.
The relevance of machine learning for intrusion detection and future work are discussed.

Maxime LABONNE 3

CHAPTER 1. INTRODUCTION

Maxime LABONNE 4

Chapter 2

Concepts and background

2.1 Intrusion Detection System (IDS)

2.1.1 Definition

Confidentiality, integrity, and availability (also known as the CIA triad) are three fun-
damental concepts of information security. A cyber attack (or an intrusion) is defined as
all unauthorized activities that compromise one, two, or all of these three components
of an information system.

Figure 2.1: CIA triad.

• Confidentiality is defined by the ISO 27000 standard as the “property that infor-
mation is not made available or disclosed to unauthorized individuals, entities, or
processes” [10]. This information may include personal data, credit card numbers,
or more generally any information considered private. The challenge of confi-
dentiality is to allow legitimate users to access this information while preventing

5

CHAPTER 2. CONCEPTS AND BACKGROUND

others from doing so. A failure of confidentiality results in a data breach that
cannot be remedied, but can be managed in a way that minimizes its impact on
users. Confidentiality is implemented using different security mechanisms like en-
cryption, passwords, two-factor authentication, security tokens, etc. The level of
confidentiality of the information is correlated with the strength of the associated
security measures. The same information can thus be protected by several layers
of protection, combining authentication mechanisms and cryptography.

• Integrity is defined by the ISO 27000 standard as the “property of accuracy and
completeness” [10]. Integrity ensures that information is protected from being
modified by unauthorized parties, or accidentally by authorized parties. An in-
tegrity problem can, for example, allow the amount of online transactions to be
modified. A malicious attacker can also insert himself into a conversation be-
tween two parties to impersonate one of them. Then, the attacker can gain access
to information that the two parties were trying to send to each other (man-in-
the-middle attack). Integrity is commonly implemented using encryption, version
control, checksums, and hashing. The received data is hashed and compared to the
hash of the original data. Moreover, information can be changed by non-human-
caused events such as server crash or electromagnetic pulse. Redundant systems
and backup procedures are important security mechanisms to ensure data integrity.

• Availability is defined by the ISO 27000 standard as the “property of being accessi-
ble and usable on demand by an authorized entity” [10]. Unavailability of informa-
tion can have serious consequences. Denial of Service (DoS) attacks are common
attacks against availability. For example, attackers may bring down servers and
make services unavailable to legitimate users by flooding the targeted machines
with superfluous requests. This illegitimate traffic is often detected and blocked
by security mechanisms such as firewalls and Intrusion Detection Systems (IDSs).
Power outages and natural disasters like flood or fire can also lead to lack of
availability. A disaster recovery plan is required to minimize the impact of these
disasters, including redundancy, failover, RAID and off-site backups.

Monitoring network traffic and computer events to detect malicious or unauthorized
activities is a process called “intrusion detection”. Every device or software application
whose goal is to conduct an intrusion detection is considered as an Intrusion Detection
System (IDS). Figure 2.2 shows how an IDS transforms monitored activities into alerts
using its knowledge (database, statistics, artificial intelligence, etc.). These alarms are
then reported either to an administrator or collected centrally using a Security Infor-
mation and Event Management (SIEM) system. A SIEM system provides real-time
analysis of the outputs of multiple sources to correlate the different alerts and show a
comprehensive view of IT security.

IDSs are sometimes confused with two other security tools: firewalls and Intrusion
Prevention Systems (IPSs). These three security mechanisms are designed to protect
systems within a network but use different means. For instance, firewalls look outwardly

Maxime LABONNE 6

2.1. INTRUSION DETECTION SYSTEM (IDS)

Analysis

Knowledge

Activities Alerts

Figure 2.2: Intrusion Detection System function.

for intrusions in order to stop them before they enter the protected network. They
analyze packet headers to filter incoming and outgoing traffic based on predetermined
rules (protocol, IP address, port number...). On the other hand, IDSs are able to monitor
activities within the protected network and not just at its perimeter. Unlike a firewall,
IDSs only have a monitoring role: they cannot take action to block suspicious activities
and therefore need an administrator to process their alerts. This is not the case with
IPSs, which function as an IDS but are able to proactively block a detected threat.
This automation adds a layer of complexity since an inappropriate response can cause
additional problems on the network.

During the 1970s, the growth of computer networks created new problems related
to the monitoring of user activities and access. In October 1972, the United States Air
Forces (USAF) published a paper written by James P. Anderson, outlining the fact that
the USAF “become increasingly aware of computer security problems. This problem
was felt virtually in every aspect of USAF operations and administration.” [11] The
particular challenge of USAF was due to the fact that users with different levels of
security clearance shared the same computer systems.

The same author published another paper in 1980, detailing several methods to
improve computer security threat monitoring and surveillance [12]. James P. Anderson
introduces the idea of automating the detection of intrusion within a network in order
to detect “clandestine” users. The goal of this IDS was to help administrators to review
system event logs, file access logs, and user access logs. The concept of an intrusion
detection system is credited to this author for this paper.

Dorothy E. Denning published a model for real-time intrusion detection in 1986 [13].
This work was based on a prototype called Intrusion Detection Expert System (IDES),
developed between 1984 and 1986. IDES uses a rule-based expert system to detect
known attacks and statistical anomaly detection on user and network data. This system
outputs several types of alerts, using a specific format in order to be system-independent.

2.1.2 Types of IDSs

IDSs can be classified into three categories according to the type of activities that are
analyzed: network-based IDSs, host-based IDSs, and application-based IDSs.

• A Host-based IDS (HIDS) is an agent installed on individual hosts, which analyzes
their activity: files, processes, system logs, etc. HIDSs have multiple resources at
their disposal. Snapshots of the system can be compared to check for the presence

Maxime LABONNE 7

CHAPTER 2. CONCEPTS AND BACKGROUND

Figure 2.3: Classification of IDSs by analyzed activities.

of unauthorized or suspicious activity. Multiple failed login attempts, unusual high
CPU usage for a long period of time are clues of potential attacks. Some HIDSs
can also perform kernel-based detection by analyzing system calls and changes to
system binaries. They also could be used to spy on the users by monitoring their
activities.

• A Network-based IDS (NIDS) typically uses sensors at various points on the net-
work. The analysis of the traffic is either accomplished by the sensor itself or
remotely by a central controller. NIDSs are more scalable and cross-platform than
HIDSs, this is why they are more widespread to protect a company’s IT equipment.
However, these solutions can be employed simultaneously to ensure a higher level
of security. In this thesis, the term “IDS” always refers to NIDSs.

• An Application-based IDS is a special type of HIDS designed to monitor a spe-
cific application. Application-based IDSs analyze the interactions between users
and applications: file executions or modifications, logs, authorizations, and any
other potential abnormal activities. They can profile specific users to identify sus-
picious events. Some application-based IDSs can also access data before they are
encrypted, acting as a middleware between the application and the encrypted data
for storage.

IDSs can also be classified according to the detection method they use. They fall
into three categories: signature-based detection, anomaly-based detection, and hybrid
detection.

Figure 2.4: Classification of IDSs by detection method.

Maxime LABONNE 8

2.2. MACHINE LEARNING

• Signature-based detection (also known as “misuse detection”) comes with a
database of known attack signatures. It compares monitored data with the signa-
ture database. A misuse detection IDS checks the input stream for the presence
of an attack pattern like a classic antivirus. This signature can take the form of a
sequence of bytes or characters, but more complex patterns are often represented
as a branching tree diagram. To be efficient, the database of this kind of IDSs
must be updated regularly. However, even with the latest updates, only known
attacks can be detected using this method.

• Anomaly detection tries to learn a “normal” or “expected” behavior of the system.
Any deviation from this behavior is considered as a potential attack and will gen-
erate an alarm. This method does not require updates or even the presence of a
database. It can identify unknown attacks but also creates a lot of false positives
that are difficult to process. It is also more difficult to collect information about
the attack since it is not clearly identified by a signature.

• Hybrid detection combines the two solutions to mitigate weaknesses of each cat-
egory: anomaly detection then misuse detection, misuse detection then anomaly
detection, or both at the same time. The goal is to detect known attacks with
their signatures, and to use anomaly detection to identify unknown intrusions.

2.2 Machine learning

2.2.1 Machine learning tasks

Developing a machine learning algorithm involves two specific steps: training and testing.
Each model has its own training techniques. This process and the design of machine
learning model is usually managed by a framework such as scikit-learn [14], Tensorflow
[15], PyTorch [16], Matlab or Weka [17]. The framework has a strong impact on the
optimization of the algorithm or the number of available parameters.

Machine learning models can perform many tasks, three of which are particularly
interesting for intrusion detection: classification, regression, and reconstruction. Clas-
sification categorizes entries into several classes, such as “normal” or “attack”, or even
different families of attacks. Regression (also called “prediction”) is used to determine
continuous values, including a probability that an input is an attack. Finally, recon-
struction is specific to a certain type of neural network. This task tries to reconstruct
the input data by compressing and decompressing them to force the network to learn
the features (representation learning).

Machine learning algorithms are trained in two different ways: in a supervised or un-
supervised manner. Some models can be trained in both ways, such as neural networks.
Most models use supervised training, where the dataset includes both inputs and the
correct results associated with them. The algorithm learns to model the mathematical
function that associates these results with the corresponding inputs. Classification and
regression are two classic supervised training tasks. On the other hand, unsupervised

Maxime LABONNE 9

CHAPTER 2. CONCEPTS AND BACKGROUND

training does not use any results in its training dataset. Its purpose is to understand
interesting structures within the input data. Reconstruction is an example of an unsu-
pervised task.

Once the training is over, machine learning models need to be tested to assess their
performance. This evaluation must involve new data, which were not a part of the
training set. Otherwise, the evaluation would be biased because the model has already
seen this data, and the correct results in case of supervised learning.

A validation set can also be used to compare different values of a parameter (for
example, a learning rate or a number of neurons). After training, the value with the
best results on the validation set is used. Then the whole network is tested on the test
set. A validation set must also be composed of new data, often a small partition of the
training set is reserved to this task.

2.2.2 Datasets

Large amount of data are required in order to train machine learning algorithms. The
quality and quantity of data is crucial in any machine learning problem. Indeed, these
problems are very data-dependent: more high-quality data can often beat better al-
gorithms, which is why they are so important. Unfortunately, such datasets are also
expensive and difficult to produce. In the intrusion detection field, two datasets are
particularly popular despite some deficiencies: KDD Cup 99 and NSL-KDD. Two other
more recent datasets were also used to address some of the shortcomings of the previous
sets: CICIDS2017 and CSE-CIC-IDS2018.

Many other datasets exist for intrusion detection, as shown in this survey [18]. We
have chosen to consider two old but popular datasets, and two recent datasets with
many realistic attacks. Other datasets could have been chosen, such as Kyoto2006+
[19], Utwente [20], or UNSW-NB15 [21]. Datasets focused on a single type of attack
(DoS, botnet...) were not considered.

2.2.2.1 KDD Cup 99

KDD CUP 99 has been one of the most popular dataset since its release in 1999. De-
veloped by MIT Lincoln Labs, the objective was to advance a standard set of data with
a wide variety of attacks to survey and evaluate research in intrusion detection. The
dataset uses nine weeks of raw TCP dump data from a simulated U.S. Air Force net-
work, with the addition of numerous attacks. Packets belonging to the same connection
are merged into connection records. More specifically, the training data was processed
into about five million connection records, collected in seven weeks, while the test data is
composed of around two million connection records, collected in two weeks [22]. Training
data is supposed to be used during the learning process of a machine learning technique,
and test data on a fully trained solution to evaluate its performance.

Each connection is either labeled as normal or as one of four categories of attacks:
Denial of Service (DoS), network probe (Probe), Remote to Local (R2L) and User to
Root (U2R). A DoS attack is an attempt to make a machine or a service unavailable

Maxime LABONNE 10

2.2. MACHINE LEARNING

Table 2.1: Examples of KDD CUP 99 features.

Feature name Type Description

duration continuous length (number of seconds) of the con-
nection

protocol_type discrete type of the protocol, e.g. tcp, udp, etc.

service discrete network service on the destination, e.g.,
http, telnet, etc.

src_bytes continuous number of data bytes from source to
destination

dst_bytes continuous number of data bytes from destination
to source

flag discrete normal or error status of the connection

land discrete 1 if connection is from/to the same
host/port; 0 otherwise

wrong_fragment continuous number of “wrong” fragments
urgent continuous number of urgent packets
hot continuous number of “hot” indicator
num_failed_logins continuous number of failed login attempts
logged_in discrete 1 if successfully logged in; 0 otherwise

for the users. A probe attack is a malignant network activity, such as port scanning,
to learn about the architecture of the network. A R2L attack occurs when an attacker
gains local access to a system via the network. A U2R attack exploits vulnerabilities in
the system to gain super user privileges. Table 2.2 shows that this dataset is strongly
imbalanced, with a lot more DoS attacks than U2R attacks for example. Test data and
training data do not share the same probability distribution either.

Table 2.2: Distribution of KDD Cup 99 classes.

Normal DoS Probe R2L U2R

Training 97278
(19.69%)

391458
(79.24%)

4107
(0.83%)

1126
(0.23%)

52
(0.01%)

Test 60593
(19.48%)

229855
(73.90%)

4166
(1.34%)

16345
(5.26%)

70
(0.02%)

These four attack categories can be further divided into 38 test attack types, and 24
training attack types. Each connection also possesses 41 derived features, as shown in
Table 2.1. These features, numerical or symbolic, are analyzed by the classifier to dis-
tinguish normal connections from attacks. KDD Cup 99, although popular, suffers from
several deficiencies as pointed out in analyses [23]. The dataset contains a huge number
of redundant and duplicated records, and other mistakes that affect the performance
of classifiers. They become biased towards more frequent records, whose numbers have
been inflated.

Maxime LABONNE 11

CHAPTER 2. CONCEPTS AND BACKGROUND

2.2.2.2 NSL-KDD

A solution to most of these problems can be found in the NSL-KDD dataset [24]. This
improved version of KDD Cup 99 removes redundant and duplicate records (about 78%
and 75% of the records). It also reduces the number of connections in the train and
test sets: from 805 050 total connections in KDD Cup 99 to 148 517 in NSL-KDD.
Connections are also divided in different difficulty level groups. This categorization can
help classifiers during their training phase to recognize the attacks that are the most
difficult to detect. Nonetheless, NSL-KDD is not perfect and keeps certain inherent
problems of KDD Cup 99. For example, attacks in this dataset are very old and do
not represent what can be found in a modern network. There is also the issue of their
synthetic origin, which cannot be corrected without redoing a dataset from scratch.

Table 2.3: Distribution of NSL-KDD classes.

Normal DoS Probe R2L U2R

Training 67343
(53.46%)

45927
(36.46%)

11656
(9.25%)

995
(0.79%)

52
(0.04%)

Test 9711
(43.08%)

7460
(33.09%)

2421
(10.74%)

2885
(12.80%)

67
(0.30%)

However, these flaws are shared between the two datasets, which is why the use of
NSL-KDD should be encouraged over KDD Cup 99.

2.2.2.3 CICIDS2017

CICIDS2017 is a dataset designed for IDSs and IPSs by the Canadian Institute for
Cybersecurity. Unlike NSL-KDD, this dataset contains original data, unrelated to KDD
Cup 99. The goal of the authors is to propose a reliable, publicly available IDS evaluation
dataset on a realistic network, with a diverse set of modern attack scenarios. It was
designed to solve the problem of lack of a up-to-date and credible dataset for intrusion
detection.

CICIDS2017 provides 5 days of traffic, from Monday, July 3, 2017 to Friday July 7,
2017. The first day contains only normal traffic, while the 4 next days include normal
traffic and 14 types of attacks: brute-force (FTP-Patator and SSH-Patator), Denial of
Service (slowloris, SlowHTTPTest, Hulk, GoldenEye), Heartbleed, web attacks (brute-
force, SQL injection, XSS), infiltration of the network from inside, botnet, Distributed
Denial of Service (ARES), and port scanning. CICIDS2017 consists of 3 119 345 labeled
network flows (83 features) and 56 329 679 network packets, captured with CICFlowMe-
ter [25]. This dataset is also highly imbalanced, with 83.34% normal flows against
0.00039% flows labelled as “Heartbleed” [26].

Data are extracted from a simulation much closer to the behavior of a modern com-
puter network. The attacks were created using real tools available online and credible
strategies. Its large amount of data also helps to train deep neural networks, which

Maxime LABONNE 12

2.2. MACHINE LEARNING

Table 2.4: Examples of CICIDS2017 features.

Feature name Type Description
Flow duration continuous duration of the flow in microsecond
total Fwd Packet continuous total packets in the forward direction
total Bwd packets continuous total packets in the backward direction
total Length of Fwd Packet continuous total size of packet in forward direction

total Length of Bwd Packet continuous total size of packet in backward direc-
tion

Fwd Packet Length Min continuous minimum size of packet in forward di-
rection

Fwd Packet Length Max continuous maximum size of packet in forward di-
rection

Fwd Packet Length Mean continuous mean size of packet in forward direction

Fwd Packet Length Std continuous standard deviation size of packet in for-
ward direction

Bwd Packet Length Min continuous minimum size of packet in backward di-
rection

Bwd Packet Length Max continuous maximum size of packet in backward
direction

Bwd Packet Length Mean continuous mean size of packet in backward direc-
tion

Maxime LABONNE 13

CHAPTER 2. CONCEPTS AND BACKGROUND

require more information to be efficient . CICIDS2017 is a more reliable dataset than
KDD Cup 99 and NSL-KDD for measuring the performance of an IDS.

2.2.2.4 CSE-CIC-IDS2018

CSE-CIC-IDS2018 is a collaborative project between the Communications Security Es-
tablishment and the Canadian Institute for Cybersecurity. It provides 10 days of traffic,
from Wednesday, February 14, 2018 to Friday, March 2, 2018 with a focus on Amazon
Web Services (AWS). This includes seven different attack scenarios that are similar to
CICIDS2017: brute-force (FTP-Patator and SSH-Patator), Denial of Service (slowloris,
SlowHTTPTest, Hulk, GoldenEye), Heartbleed, web attacks (Damn Vulnerable Web
App, XSS, brute-force), infiltration of the network from inside, botnet, and Distributed
Denial of Service with port scanning (Low Orbit Ion Canon).

Figure 2.5: Network topology of CSE-CIC-IDS2018.

However, the attacking and the victim networks have a completely different architec-
ture, as shown in Figure 2.5. The attacker uses an infrastructure of 50 machines, while
the victim organization has 5 departments and includes 420 machines and 30 servers.
The dataset includes the network traffic and system logs of each machine, along with
80 features extracted from the captured traffic using CICFlowMeter-V3 [27]. CSE-CIC-
IDS2018 is a more complete dataset than CICIDS2017, with more data and a different
network topology.

Maxime LABONNE 14

2.2. MACHINE LEARNING

2.2.3 Performance metrics

Several metrics are used to describe the performance of a classifier. Table 2.5 summarizes
the four possible outcomes of a detection.

Table 2.5: Confusion Matrix

Predicted
Normal Attacks

Actual Normal True Negative False Positive
Attacks False Negative True Positive

• Detection rate (or “true positive rate”, “recall”, “sensitivity”) is the proportion of
attacks that are correctly detected.

Detection rate =
TP

TP + FN
(2.1)

• False positive rate (or “false alarm rate”) is the proportion of normal traffic incor-
rectly flagged as attack.

False positive rate =
FP

TN + FP
(2.2)

• Accuracy is the fraction of correctly identified results (attack and normal traffic).
In multiclass classification, accuracy is equal to the Jaccard index, which is the
size of the intersection divided by the size the union of the label sets.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.3)

• Precision (also called positive predictive value) is the proportion of identified at-
tacks that are indeed attacks.

Precision =
TP

TP + FP
(2.4)

• F1-score is the harmonic mean of precision and recall (previously called “detection
rate”).

F1-score =
precision× recall

precision+ recall
(2.5)

Maxime LABONNE 15

CHAPTER 2. CONCEPTS AND BACKGROUND

• The ROC curve is the plot of the true positive rate against the false positive rate
(see Fig. 2.6). The area under the ROC curve is the probability that a randomly
chosen positive is ranked before a randomly chosen negative.

Figure 2.6: ROC curve example.

Maxime LABONNE 16

sigmoid tanh

CHAPTER 3. STATE OF THE ART

a popular algorithm to train a MLP. This technique calculates an error function by
comparing the output values of the network to the already known correct answer and is
thus supervised learning. It then updates the weight of each connection and the bias of
each hidden neuron according to the amount that they contributed to the error. This
part of the training is famously known as the “backpropagation algorithm”. The value
of the loss function converges to a global (or local) minimum after a certain number of
iterations. When this is the case, the output values of the network are very close to the
correct answers, and the MLP can be considered as trained. However, if this process is
repeated too many times, there is a risk of overfitting – when a model is too closely fit
to a dataset. The trained neural network is then too rigid and becomes useless when
applied to a real problem with data never seen before.

Stochastic gradient descent is a well-known variation of this technique, where the er-
ror function is only computed for a subset of the entire dataset [28]. This approximation
of the error function leads to a faster convergence, hence the popularity of this method.
It is also particularly suitable for deep neural networks, which require larger datasets
than shallow networks. However, other optimization algorithms have been proposed
recently like Adagrad (2011) [29], Adadelta (2012) [30], Adam (2015) [31], etc. These
techniques are more flexible, with adaptive learning rates, and show impressive results
when applied to deep neural networks. These deep neural networks were traditionally
pre-trained with a greedy layer-wise training, as introduced by [32]. The goal was to
initialize weights more efficiently than random values, to attain a faster convergence.
Nonetheless, nowadays, pre-training is only performed for datasets where most of the
data is unlabeled. Moreover, the activation function “Rectifier Linear Unit” (ReLU)
[33], in addition to dropout, a regularization technique that randomly deletes neurons
and their connections [34], proved to get better results without pre-training in other
scenarios.

MLPs were widely used for pattern detection and handwriting recognition in the
1980s, before being replaced by other machine learning algorithms such as support vector
machines in the 1990s. Like every type of neural networks, they were partially abandoned
during this period, before regaining popularity with the rise of deep learning (an alias
for neural networks with several hidden layers) that began in 2006. Being one of the
easiest type of neural networks to implement, MLPs are commonly used for intrusion
detection.

Palenzuela et al. (2016) [35] show how they designed their neural network by choos-
ing a configuration among several options. They used a binary classifier: their goal is
not to classify the attack (DoS, Probe, R2L, U2R), but to determine if a packet corre-
sponds to a malicious activity or a benign one. Their preprocessing stage reduces the
number of parameters in the KDD Cup 99 dataset from 41 to 38. They then use this
dataset with seven different MLP configurations: from zero to three hidden layers, with
different numbers of neurons. This comparison can be used to measure the impact of
each topology on the results. Finally, they compare the accuracy of every configuration
to conclude that the MLP with a single hidden layer of 10 neurons gives them the best
results: a 39-10-2 structure (each number represents here the number of neurons per

Maxime LABONNE 18

3.1. MULTILAYER PERCEPTRON

layer), yielding a 99.85% accuracy and 0.17% false positive rate. The authors used part
of the training dataset here to evaluate their performance instead of using the test set
provided for this purpose. To improve even further the accuracy of this topology, the
authors made a strong trade-off by adding a bias of 0.9999 to the output for attacks.
This trick increases the accuracy to 99.99%, but also the false positive rate to 9.83%.

Mowla et al. (2017) [36] designed an IDS for Medical Cyber Physical Systems. Their
classifier can be easily transposed to a regular network since it is trained and tested
with KDD Cup 99. The neural network is a deep MLP for binary classification with
two hidden layers. The idea of transforming a 5-class problem into a combination of
2-class problems is particularly interesting. The neural network starts to classify the
monitored data as an attack or not. If this is an attack, it tries to classify it as a DoS
attack or another undetermined attack. If the attack is undetermined, it tries to classify
it as a probe attack or another unknown kind of attack. Finally, this process is repeated
one last time to classify the data as a R2L attack or a U2R attack. These different
kinds of traffic seem to be sorted in order of probability, with the most probable traffic
tested first. Note that only 1200 attacks are used during the evaluation process along
normal traffic. Even among these attacks, only 16 subtypes are represented among the
38 included in the KDD Cup 99 dataset. Mowla et al. also explain the choice of this
“evolved 2-class” approach by comparing the training time and the number of correctly
classified instances of their solution with a regular 5-class classifier. The “evolved 2-
class” approach appears to more efficient, with a training time of 12.14 seconds and a
detection rate of about 98.7%, compared to the 264.19 seconds and 98.0% of the 5-class
classifier (hardware used to perform these computations was not specified).

Potluri and Diedrich (2016) [37] propose a deep MLP architecture, with a 41-20-
10-5-5 structure. They start with a usual two-step preprocessing stage of the NSL-
KDD dataset: first, a conversion of non-numerical features, and then their normalization
between 0 and 1. The 41 features of the NSL-KDD dataset are sent into the input layer of
the deep MLP. The authors use a greedy layer-wise pre-training stage with autoencoders
(see next section), as described by [38]. The goal of this stage is to initialize the weights
of the network in a more efficient way than random values. While this technique was
widely popular in the early stages of deep learning, it is now very often outperformed by
recent initializers such as the He initializer [39]. The first hidden layer is pre-trained as
an autoencoder, which selects 20 features out of the 41 of the input layer. The second
hidden layer, which is also pre-trained as an autoencoder, selects then 10 features out
of the previous 20 ones. Finally, the third hidden layer selects 5 features out of the
previous 10 ones and applies a softmax function for a proper classification. This layer is
the only one that is pre-trained in a supervised way (DoS, Probe, R2L, U2R or normal).
After this pre-training, the whole network is trained by performing backpropagation –
and apparently using a stochastic gradient descent. The accuracy of the neural network
is evaluated on the NSL-KDD test set where it obtains 97.5% with 2 classes. Finally,
the authors evaluate the computing performance of their network, by comparing its
training time on different hardware (CPU in serial or parallel mode, GPU, CPU+GPU).
Surprisingly, the best training time is achieved by a CPU (Intel Core i7 4790 in parallel

Maxime LABONNE 19

CHAPTER 3. STATE OF THE ART

mode) with 108.85 seconds. This could be explained by the fact that the GPU (132.51
seconds) used in this experiment is a mid-end laptop GPU (Nvidia GeForce GTX 960M)
not fitted for deep learning. Interestingly, combining a CPU (Intel Core i7 4270 HQ)
and the previous GPU does not improve performance (145.59 seconds) over the GPU
alone. One CPU core is dedicated to data transfer and the other three are dedicated
to intrusion detection. The GPU probably finishes its share faster than the other three
cores, hence the extra training time.

Kim et al. (2017) [40] introduce another deep neural network solution. They first
preprocess the entries of their dataset (KDD Cup 99 in this case) with conversion and
normalization like the previous IDS. Their architecture has 4 hidden layers and a total of
100 hidden neurons, built and tested using TensorFlow. The authors chose the Rectified
Linear Unit (ReLU) function as the activation function of the hidden layers. This
choice greatly improves the learning speed of the network, ReLUs being several times
faster than tanh or sigmoid functions according to [41]. They also added a more recent
optimization method, the Adam optimizer (2015), which aims to combine the advantages
of Adagrad and RMSProp methods [31]. Evaluation is conducted for several training
sets with different proportions of attacks (from 10% to 90%). The test set remains the
same (the entirety of KDD Cup 99), and the results are very similar for each training
set. On average, they obtain a 99% accuracy, a 99% detection rate with a 0.08% false
alarm rate. The authors used an Intel i5 3.2 GHz CPU, 16 GB of RAM, and an Nvidia
GeForce GTX 1070 GPU.

3.2 Autoencoder

An autoencoder (Fig. 3.2) is an artificial neural network, which learns an encoded (com-
pressed) representation of the input data. These networks have a distinctive hourglass
shape, with a first layer that has the same size as the last layer, but fewer neurons in
their hidden layers.

The goal of a basic autoencoder is to reconstruct the input data, so that x′i is as close
as possible to xi. In other words, an autoencoder learns an approximation of the identity
function. The trick is that the limited number of hidden neurons forces the network to
find patterns, structures in the input data to be able to encode it (hidden layer), and
then to decode it (output layer). The backpropagation and gradient descent techniques
are the standard methods to train an autoencoder. After measuring the deviation of x′i
from xi, the error is backpropagated to update the weights of the network. But contrary
to MLPs, an autoencoder does not need labeled input data: it uses the input as a model
for correcting its output. This training process is thus unsupervised.

Besides, hidden neurons in the middle layer of regular autoencoders tend to be acti-
vated too frequently during the training process. A variation called “sparse autoencoder”
introduces a sparsity parameter to lower the activation rate of these neurons [42]. This
sparsity has the same effect than limiting the number of neurons in the hidden layers: it
is a constraint to discover interesting structures in the input data. In a sparse autoen-
coder, the number of hidden neurons can be even greater than the number of neurons

Maxime LABONNE 20

card(L1) = card(L2)

sigmoid

sigmoid

sigmoid

3.4. RECURRENT NEURAL NETWORK

DBN, instead of RBMs, with the same learning process. Famous between 2006 and the
early 2010’s, DBNs have since lost popularity [46]. This is probably due to the efficiency
of ReLUs and dropout, to tackle the vanishing gradient problem, which was the main
advantage of DBNs [47].

Alrawashdeh and Purdy (2016) [48] describe an attempt toward a real-time classifier
with a RBM-based DBN. The authors start with the usual pre-processing stage, where
non-numerical data of KDD Cup 99 are converted and, in this case, are expanded from 41
to 122 features. This expansion is due to the one hot encoding, a conversion method we
will discuss in section IV. The numerical features are then normalized between 0 and 1. A
DBN is trained with a greedy layer-wise training, using Gibbs sampling and contrastive
divergence to reduce the number of features. The authors test several topologies: a RBM
alone, a DBN, and a DBN with logistic regression (a softmax layer for classification).
They use a laptop with 4 GB of RAM and a 2.1 GHz CPU running Visual Studio 2013.
The best results are obtained by the latter topology, with a 122-72-52-40-5 structure
(97.9% accuracy, 0.51% false positive rate). However, this classifier is too slow to be
used in real-time detection. The authors propose a simplified DBN, with a 122-72-
5 structure, combined with a training of only 10 epochs (the number of full training
cycles on the training set) to reduce the testing time (0.70 second for each batch of 1000
records).

Liu and Zhang (2016) [49] combine RBM-based DBN with extreme learning machine.
The authors preprocess data from the NSL-KDD dataset with the conversion of non-
numerical entries. The 41 initial features are expanded into 122 attributes (one hot
encoding [50]), which are normalized between 0 and 1. The DBN has four hidden layers
of respectively 110, 90, 50 and 25 units. It is trained in a greedy manner, one layer
at a time, with Gibbs sampling and contrastive divergence. The neural network was
developed with the Deep Neural Network module [51] and the Deep Learning Toolbox
[52] with Matlab 2012b, running on a 3.30 GHz Intel CPU and 16 GB of RAM. Once the
weights are initialized, the DBN is fine-tuned with the use of extreme learning machine.
Extreme learning machines are single hidden-layer feedforward neural networks that
makes the training process equivalent to solving a linear system. According to the
authors, this technique halves training time (22.7s) compared to a DBN without extreme
learning machine (47.2s), though the detection rate decreases from 92.4% to 91.8%.

3.4 Recurrent Neural Network

A Recurrent Neural Network (RNN) is an artificial neural network whose nodes send
feedback signals to each other (Fig. 3.4). This term covers numerous architectures using
this idea: hierarchical RNN, continuous-time RNN, bi-directional RNN, the popular
Long Short-Term Memory (LSTM) network, etc. RNNs possess an internal memory
that allows them to have a natural notion of order in time.

These networks cannot be trained with a regular backpropagation technique, which
requires the connections between the neurons to be feedforward only. The most com-
mon method is a generalization of this technique, called “backpropagation through time”.

Maxime LABONNE 23

sigmoid tanh

service

3.5. SELF-ORGANIZING MAPS

src_bytes, ds_host_diff_srv_rate, and dst_host_rerror_rate. The minimal set of
8 features adds dst_bytes, hot, num_failed_logins, and dst_host_srv_count to this
list. The LSTM classifier obtains nonetheless a very similar accuracy (93.72% with only
4 features) compared with the full 41 features KDD Cup 99 dataset (93.82%).

Kim et al. (2016) [55] introduce another IDS using a LSTM. They set the values of
time step size, batch size and number of epochs (100, 50, and 500 respectively) to find
optimized values for two hyperparameters: learning rate and number of hidden neurons.
The authors increment the learning rate between 0.0001 and 0.1 to set it at 0.01 (a
commonly accepted value). They then progressively change the number of neurons in
the hidden layer from 10 to 90 to finally keep the value of 80 neurons. Stochastic gradient
descent is used to train the network with mean square error as the loss function. This
training runs on an Nvidia GeForce GTX Titan X, an Intel Core i7-4790 3.60 GHz, with
8 GB of RAM on Ubuntu 14.04. In 2017, a similar team with Le et al. [56] continues
the previous work on LSTM classifiers, focusing on gradient descent optimization. They
compare six different solutions (Adagrad, Adadelta, RMSProp, Adam, Adamax, Nadam)
using KDD Cup 99 for the experimental results of their IDSs. Their conclusion shows
that Nadam is not only the best overall optimizer (97.54% accuracy, 98.95% detection
rate), but also the best one to classify each type of attack individually. However, with
a very high false positive rate of 9.98%, this classifier is not suitable for a real-world
deployment.

3.5 Self-Organizing Maps

A Self-Organizing Map (SOM), also known as Kohonen network, is an artificial neural
network trained with competitive learning – unlike the previous neural networks and
their error-correction learning. Competitive learning means that neurons compete with
each other to represent the input as accurately as possible. SOMs have a simple architec-
ture, with an input vector connected to a grid of output neurons (Fig. 3.5). Each neuron
is associated with a position in the map space and a weight vector of the same dimension
as the input vector. SOMs do not possess activation functions like the previous types of
networks.

After an input vector is selected, the algorithm computes its weighted distance with
every neuron (usually using Euclidean distance). The neuron whose weight vector is the
closest to the input vector becomes the best matching unit. This weight vector and the
weight vectors of its neighbors are then updated to reduce their Euclidian distance with
the input vector. This distance is defined by a learning rate, which decreases with each
iteration. Likewise, the radius of neighbors around the best matching unit also decreases
after each iteration. These steps are repeated for each input vector for a predetermined
number of iterations. The SOM thus converges gradually towards its trained form. This
learning process is unsupervised, but there are supervised variants of SOMs with an
output layer. During the test process (or mapping in this case), the node with the
closest weight vector determines the class of the input vector.

Unfortunately, SOMs have two downsides: their architecture is static, and they lack

Maxime LABONNE 25

3.5. SELF-ORGANIZING MAPS

processed data (see section V for more details). The other model is a combination of
four neural networks without feature extraction. Surprisingly enough, the latter model
outperformed the first one. Normal records are supposed to be eliminated by this binary
filtering process, which could be considered as a first classifier. The outcome is then sent
to a SOM that categorizes the records into 26 clusters. Experiments show that the two
layers of preprocessing (discretization and deduplication, and binary filtering) highly
reduce the number of records (an overall reduction of 97.6% and 99.5% of the inputs
respectively). The reduction of inputs also leads to a faster build time for the SOM: this
time goes from 194 minutes without binary filtering and PCA to 16 minutes with these
two techniques (hardware was not specified). The quality of clustering is also improved,
with a direct impact on the overall quality of the SOM according to the authors. While
the SOM is the real classifier of this paper, we will use the metrics given for binary
filtering in the summary in section V. This whole study was conducted on Weka 3.7.13
Java API.

Cheng and Wen (2010) [62] designed an hybrid and real-time IDS with PCA and
a SOM. Unlike the two previous papers, PCA is not used here primarily to reduce the
dimensionality of the dataset, or to improve the amount of data treated per second.
The authors employ PCA as an anomaly detection algorithm, capable of multi-class
classification. However, anomaly detection, and PCA in particular, produces a high
false positive rate. The goal of the hybrid approach is to reduce the false positive
rate by adding a misuse detection algorithm: a SOM in this case. This particular
topology (anomaly then misuse detection) is selected considering the IDS performance.
Indeed, the SOM only re-checks connections tagged as “attack” by the anomaly detection
algorithm. The authors only use the 34 numerical features of the KDD Cup 99 dataset
(no symbolic feature). They randomly select 7000 connections for training, and 90277 for
testing. Several square of Euclidean distance values are tested for PCA, and the detected
attacks are sent to the SOM (a 5*5 map, trained on 2000 epochs with a learning rate of
0.1). In the end, they obtain approximately a detection rate of 98.70% while lowering
the false positive rate with the misuse detection step. The test set is processed in 236.7
seconds with anomaly detection and in 274.9 seconds with misuse detection on an Athlon
3000+ CPU with 1.5 GB of RAM.

Ippoliti and Zhou (2010) [63] describe an improved version of GHSOM, called A-
GHSOM, for intrusion detection. GHSOMs solve several recurrent problems with SOMs,
such as expensive computation and static architecture. This enhanced version aims to
fix weaknesses with the GHSOM model itself by adding four new features. First, i)
the training process uses a threshold error value instead of Euclidean distance between
vectors or mean quantization error. According to the authors, this threshold allow them
to capture accurately anomalies that would have vanished with mean quantization error
for instance. The input data is also ii) dynamically normalized between 0 and 1, with
a continuous monitoring to detect new minimum or maximum values. A feedback-
based quantization error threshold adaptation iii) adjusts threshold error values for each
existing node and adds new nodes if needed. Neurons are also iv) monitored in order to
attribute them a confidence rating. Traffic of neurons with low confidence is rejected by

Maxime LABONNE 27

CHAPTER 3. STATE OF THE ART

the rest of the map. This classifier is trained and tested with KDD Cup 99. During the
training process, the GHSOM dynamically grows to fit the training dataset. This means
that this architecture can adapt to changes in the input data over time. However, the
authors indicate that this model is not suitable for online learning with live data (no
test time was specified). The A-GHSOM achieves a 99.63% accuracy (94.04% accuracy
on unknown attacks) with a 1.8% false positive rate.

Salem and Buehler (2013) [64] designed their own enhanced GHSOM, knowing the
previous work of Ippoliti and Zhou. They also introduce four improvements to the
GHSOM model. The first one is a meaningful initialization (not a random one) of the
weight vectors on a new map, based on minimum and maximum boundaries of the
input dataset. They also add a new heterogeneity threshold to provide a more stable
growth and robust hierarchical topology. The third feature is the fusion of similar best
matching units, whether they are weak or coherent, in order to reduce their number
and speed up classification. Finally, they introduce a confidence threshold to detect new
or unknown connections. The authors carry out several evaluations to compare their
model and specific features to other GHSOMs. Their enhanced GHSOM achieves better
results on NSL-KDD than the A-GHSOM on KDD Cup 99, with 99.9% accuracy, 99.9%
detection rate, and 0.123% false positive rate. Training and testing are also conducted
not only with NSL-KDD, but also interestingly with the real-time dataset SecMonet
(data acquired from live university traffic). However, no test time is specified in this
paper either.

3.6 Radial Basis Function Network

A Radial Basis Function Network (RBFN) is an artificial neural network that uses radial
basis functions as the activation function. It is composed of an input layer, one single
hidden layer (contrary to MLPs), and an output layer (Fig. 3.6). Radial basis functions
are a popular way to approximate functions with multiple variables by a combination of
simpler functions. Their output depends on the distance between the input and a stored
vector. A RBFN measures the similarity between the input data and “prototypes”
(stored examples from a dataset) to perform classification.

Each hidden neuron computes the Euclidean distance between the input and its
stored prototype. The output of this neuron is 1 if they are equal, and falls off rapidly
towards 0 otherwise. These hidden neurons typically use a Gaussian function, with a
specific beta coefficient to adjust the width of the curve. Each output neuron then
computes a weighted sum of the output of the hidden nodes. In the end, input data are
classified in the category of the output neuron with the highest score.

In a RBFN, the training process covers the selection of the prototypes, beta coef-
ficients for each hidden neuron, and weights for each connection between hidden and
output neurons. The selection can be random or use clustering algorithms like k-means.
Usually, the k-means algorithm finds the right beta coefficient. The weight values are
then fine-tuned with a variation of backpropagation dedicated to RBFNs. RBFNs are
mostly used in combination with other techniques like support vector machines.

Maxime LABONNE 28

ρ 0 < ρ ≤ 1

1/n + 1 n

ρ

3.8. COMPARISON OF DIFFERENT INTRUSION DETECTION SYSTEMS

Han (2019) [69] employs a variant of ART 2-A to deal with the categorical data of
KDD Cup 99. Here, data is simply normalized but without the usual conversion of non-
numerical features. The improved ART 2-A consists of three layers: F0, F1, and F2. F0
receives the input data, F1 acts as a comparison layer, normalizing numerical attributes,
and F2 contains the long-term memory weight vectors. The difference between this
version and the original ART-2A is the concept of mode, which allows the management
of similarity between categorical values. After the training process, output neurons in
the F2 layer are labelled depending on the most frequent type of data they contain.
This ability is promising to detect and classify correctly completely unknown categories
of attacks. For instance, an output neuron with a majority of DoS attacks would be
labelled as “DoS”. The author tries 10 different values of vigilance, combined with a
classic learning rate of 0.1. The best results are achieved with a vigilance value of
0.9991. The ART-2A classifier is trained with these parameters during 10 epochs and
obtains a detection rate of 99.57%.

Ngamwitthayanon and Wattanapongsakorn (2011) [70] exploit the capabilities of
Fuzzy ART for their binary classifier. This technique combines fuzzy logic with ART and
is used, in this context, as a clustering algorithm. The authors make three assumptions
about where normal data should be found after clustering: 1) they belong to a cluster
in the data; 2) they lie close to their closest cluster centroid, whereas anomalies can be
found far away; and 3) their clusters are large and dense, unlike anomalies. The main
hypothesis is that all data that do not respect these three assumptions are considered to
be anomalies. The training process of this Fuzzy ART classifier is close to a regular ART
training. A final step is added to this process: one shot fast learning. This technique’s
idea is to nullify choice parameter and maximize learning rate to 1, so that every input
instance is presented to the classifier only once. The number of clusters is also restricted
to 1 (only normal data), which reflects the first assumption. The authors perform three
experiments, with different attack rates: 1%, 10%, and 20%. These experiments are
conducted on a 2 GHz Intel Core 2 CPU with 2 GB of RAM on Matlab R2009b. On
average, the Fuzzy ART classifier obtains a detection rate of 99.16%, 99.05%, and 99.06%
respectively, with a false positive rate slightly above 1% (1.25%, 1.55%, and 1.46%).

3.8 Comparison of different intrusion detection systems

Neural networks are a popular choice among other machine learning techniques – with
support vector machines and clustering algorithms. Nowadays, it is the most employed
technique for anomaly-based IDSs. It must be emphasized that computer vision, speech
recognition, and natural language processing are by far the main research topic in neural
networks. A very successful type of neural networks in image and video recognition is the
Convolutional Neural Network (CNN). However, if CNN is a widespread solution for this
topic, it is not the case for intrusion detection. Indeed, CNNs are very rare in this field
and do not yield the same performance with IDSs than with image recognition. This
is the case with other types of neural networks (Neural Turing Machine, Deep Residual
Network, Echo State Network, etc.) that are, in the intrusion detection field, either

Maxime LABONNE 31

CHAPTER 3. STATE OF THE ART

completely absent or underrepresented. The most popular types for IDSs are SOMs and
MLPs. It is harder to differentiate between the others: RBFs are uncommon, RNNs and
ARTs are rarer, but not as much as DBNs. Autoencoders were often used in deep neural
networks for pre-training purpose, but hardly on their own.

A word of warning must be added to the results present in Table 3. Detection rate,
accuracy and false positive rate have been carefully compiled, sometimes with personal
figures calculated with the statistics given in the article. However, it is legitimate to be
doubtful of some results since they cannot be verified. In some instances, it is difficult
to precisely identify figures written in the articles: they could either be detection rate
or accuracy. Moreover, authors do not carry out tests in the same way: they can re-use
another part of the training data, instead of exploiting the test data planned by their
datasets. Sometimes, they use a specific percentage of attacks in the test traffic, or ignore
certain subtypes of attacks. The disparity between these datasets is also problematic.
As pointed out in its description, KDD Cup 99 has several flaws that have been widely
documented over the past years. In most cases, authors try to mitigate the errors of the
dataset (for example, by duplicating data in the preprocessing phase). However, this
mainly leads to the creation of a new personal dataset for each solution. These problems
prevent a rigorous comparison of the detection rate, accuracy and false positive rate
between the different IDSs, but provide a general idea about their performance. The
results obtained on these datasets, though, are unrelated to what these models could
obtain on real data. The comparison of these architectures is therefore only valid for
KDD Cup 99 and/or NSL-KDD.

High detection rate or accuracy values prove the viability of these solutions in their
ability to find malicious data. Unfortunately, the main criticism about anomaly-based
IDSs is not poor accuracy but high false positive rate. It is impossible for a system
administrator to use an IDS whose several percent of the alerts are false alarms: loss
of time would simply be too massive. Nonetheless, certain authors do not value the
significance of a low false positive rate. This is why they sometimes prefer to generate a
large quantity of false alarms to gain a minimal increase in detection rate or accuracy.
Our advice and goal here is to minimize as much as possible false positive rate (ideally
under one percent) while keeping a high accuracy in a balanced compromise.

3.9 Open issues and challenges

It should be noted that numerous IDSs presented here are not fully suited for a real-world
setting. Indeed, in order to achieve the best possible accuracy, a majority of these IDSs
is designed to work in an optimal environment that is not a good representation of real-
world networks. An actual deployment of one of these IDSs would cause many problems
that are rarely discussed, even though they could provide interesting perspectives and
modify certain design choices [71].

First, this deployment could either be centralized or distributed, with a particular
number of monitored machines per sensor to be defined. While a centralized solution
can benefit from the full power of a computer, distributed instances often run on system

Maxime LABONNE 32

3.9. OPEN ISSUES AND CHALLENGES

on a chip, which are a lot more computationally constrained. If the probes monitor the
same network, one probe could train a new neural network model and propagate it to the
others to continuously adapt to the evolutions of the network. Conversely, a centralized
IDS means a single point of failure, whereas a distributed IDS is much more resilient.
This architecture choice depends on multiple factors, including the goal of the IDS in a
global network security plan, or the topology of the monitored network. A combination
of these two solutions could translate into a centralized neural network with a high-level
view of the network, capable of detecting threats that would go unnoticed by the probes.
For a centralized solution, it is still possible to use the probes by having them preprocess
the data they send to the server. This reduces both the load on the network and the
amount of work assigned to the central server. However, IDSs presented in this section
are, when this information is available, always trained and tested on a single computer.

But even in this case, their analyses are often performed offline, with only a small
number capable of real-time detection for high-bandwidth networks. While this is also
the case with certain commercial cybersecurity solutions, this outcome is not fully satis-
fying. This would be an important problem in a real-world setting: if the IDS takes too
much time to analyze incoming traffic, malicious data could harm the network before
being detected. Or, even worse, the saturated IDS could drop packets containing the
attack, making its detection impossible. Beyond a certain threshold, the IDS indeed
simply ceases to function [72] – a flooding attack that is particularly cheap and effective.

This is why the security of the IDS itself is extremely important. This issue is hardly
or not covered at all in the reviewed papers, but it remains a major concern for any
IDS. In a context where attackers expect to be confronted to such a protection, an
IDS becomes itself an excellent target to neutralize. This security problem is related
to the choice of a centralized or a distributed architecture: a centralized IDS would
mean a single point of failure, but protecting probes with little computational power
could be difficult without interfering with their monitoring. IDS security can be divided
in three parts: Operating System (OS) security, hardware virtualization, and network
surveillance [73]. Any IDS runs on an OS, which is a new source of potential attacks. A
secured configuration of the OS is required, with the removal of every application that
is not used by the IDS for example. Hardening the OS is a second step, with many
operations depending on the OS to improve kernel security (grsecurity for the Linux
kernel) or to reduce user permissions. Virtualization is a good idea to isolate crucial
processes from the rest of the OS, with a tradeoff between hardware virtualization (entire
OSs) and containers (like LinuX Containers, OpenVZ). While hardware virtualization
gives a better isolation, containers are more computationally efficient. Any IDS, whether
it is centralized or distributed, should have its own network for data acquisition, alerts
feedbacks, and administration (preferably several VLANs).

The information obtained from the analysis of the state of the art in this chapter is
used for the design of our own IDS in the following chapter. The optimization of the
parameters of the machine learning model is a particularly important topic, where the
quality of detection can be improved. The quality of the pre-processing is another point
that can be improved. Corrections to the training dataset can help to better identify

Maxime LABONNE 33

CHAPTER 3. STATE OF THE ART

classes, especially the rarer attacks such as R2L and U2R.

Maxime LABONNE 34

Chapter 4

Supervised Intrusion Detection

This chapter introduces an ensemble learning approach for classification in intrusion
detection. Its application to the KDD Cup 99 and NSL-KDD datasets consistently
increases the classification accuracy compared to previous techniques. Section 1 describes
a version using only neural networks in a cascade-structured architecture. Section 2 adds
many machine learning models for classification and changes the combination rule of the
different models.

4.1 Cascade-structured neural networks

4.1.1 Introduction

In this section, we present an ensemble learning approach with neural networks to ob-
tain the best possible performance for a 5-class classification on two datasets: KDD Cup
99 and NSL-KDD. The cascade-structured meta-specialists architecture is based on a
three-step optimization method: 1/ data augmentation to rebalance the datasets; 2/
hyperparameters optimization to improve the performance of neural networks and 3/
ensemble learning to maximize the quality of detection. In order to show that our opti-
mization method consistently gives better results than the state of the art, we compare
it to other algorithms proposed in the literature.

4.1.2 Preprocessing and data augmentation

4.1.2.1 Datasets and preprocessing

For this work, we selected the two most popular datasets in intrusion detection: KDD
Cup 99 and NSL-KDD. As stated previously, KDD Cup 99 has been repeatedly criticized
by the scientific community for its deficiencies. While NSL-KDD corrects the redundancy
and duplicating problem, it is based on the same 1998 DARPA Intrusion Detection
Evaluation datasets. The connections and attacks in these datasets are therefore not
a good representation of the activity and threats of a modern network. Moreover, the
number of elements in the different classes of the two datasets is strongly imbalanced,

35

CHAPTER 4. SUPERVISED INTRUSION DETECTION

which favors the recognition of the most frequent classes. In addition, the distribution
probabilities of classes vary significantly between the training set and the test set.

Nevertheless, we chose to study these datasets despite their shortcomings because
they remain very popular within the field of intrusion detection research. They are
important to us to better understand the intrusion detection field and how to improve
them. Their popularity also facilitates the comparison between our results and those
of other proposed solutions. However, the detection rates obtained on these datasets
cannot be generalized to real networks, which present significantly different data from
those of KDD Cup 99 and NSL-KDD. On the other hand, the proposed architecture is
applicable to real computer networks. Comparing its results with those of the state of
the art shows the viability of our solution.

In this work, the same preprocessing steps were applied for both datasets. First,
the attack label of each malicious connection was transformed to one of the four attack
classes. The values of the numerical features were then normalized between 0 and 1.
Categorical features were finally one-hot encoded to be readable by the neural network
[74].

4.1.2.2 Data augmentation

Learning from imbalanced data is a classical machine learning problem. The first step
in our optimization process is to rebalance the training data, in order to obtain better
results on the validation set. There are two ways to rebalance classes: under-sampling
and over-sampling. As the names suggest, under-sampling reduces the populations of
the most represented classes, while over-sampling increases those of the least represented
classes. In our case, we want to decrease the number of connections in the normal and
DoS classes, and increase those in the probe, R2L and U2R classes.

Indeed, the classifier must not overlearn the most represented classes to the disad-
vantage of the least represented classes. For instance, it would be easier for a classifier
to completely ignore U2R attacks because of their very small proportion in the data
set. Learning this class can reduce the detection rate of other classes, by adding a
new possibility of misclassification for 99.99% of the KDD Cup 99 training set. On the
other hand, ignoring U2R attacks would only cost 0.01% of the detection rate and avoid
many errors. However, the purpose of this dataset is to correctly classify each class: the
data augmentation process ensures that U2R attacks will not be ignored by the neural
network.

16 data augmentation algorithms were used for this work. The following list provides
a brief summary of each of them:

• Cluster centroids replaces a cluster from the majority class by the cluster centroid
of a k-means model

• Random Under Sampler naively under samples the majority class by randomly
removing data

Maxime LABONNE 36

4.1. CASCADE-STRUCTURED NEURAL NETWORKS

• NearMiss [75] only keeps data from the majority class for which the average dis-
tance of the k nearest samples of the minority class is the smallest

• Edited Nearest Neighbours (ENN) [76] removes data whose class label differs from
the class of at least half of its k-nearest neighbors

• Repeated Edited Nearest Neighbours [77] applies the ENN algorithm successively
until it can remove no further points

• AllKNN [77] applies ENN several times and varies the number of nearest neigh-
bours

• Instance Hardness Threshold [78] removes majority class samples that overlap the
minority class sample space

• Random Over Sampling over samples the minority class by randomly duplicating
data

• SMOTE (Synthetic Minority Over-Sampling TEchnique) [79] generates new sam-
ples by combining the data of the minority class with those of their close neigh-
bours. It does not take into account neighboring examples that may come from
other classes. Borderline 1 and 2 SMOTE and SVM SMOTE allow to find examples
that may be hazardous.

• ADASYN [80] generates samples for minority classes examples that are the most
difficult to learn using k-NN.

• SMOTEENN over samples the data using SMOTE and then cleans the result using
ENN

• SMOTE Tomek over samples the data using SMOTE and then cleans the result
using Tomek links [81]

We compared these data augmentation methods on the two datasets to determine
which ones give the highest Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC) or AUROC. Our classifier is a deep Multi-Layer Perceptron (MLP)
with 3 hidden layers, each composed of 128 units with a Rectified Linear Unit (ReLU)
activation function. It is trained on 20 epochs with a batch size of 256 with the Adam
optimizer. The training is carried out on 80% of the training set, and the validation on
the remaining 20% of the training set. The AUROC score presented in Table 4.1 is an
average value obtained by repeating this process 10 times per method. We developed
our code using Python 3 with the imbalanced-learn package [82] for data augmentation,
and Tensorflow [83] with Keras [84] for the neural network.

We manually combined the best under-sampling method (Random Under Sampler)
with the best over-sampling method (SVM SMOTE). This combination gave the best
results for the two datasets, with a AUROC score of 1.0000 for normal class on NSL-
KDD validation set (processed in 37 minutes and 22 seconds). The RUS + SVM SMOTE
combination is used in the rest of the paper for both datasets.

Maxime LABONNE 37

CHAPTER 4. SUPERVISED INTRUSION DETECTION

Table 4.1: Comparison of data augmentation methods for NSL-KDD

Method Normal class
AUROC score

No sampling 0.9453
Under-sampling methods

Cluster Centroids 0.9416
Random Under Sampler 0.9624
NearMiss 0.9375
Edited Nearest Neighbours 0.9607
Repeated Edited Nearest Neighbours 0.9609
Condensed Nearest Neigbour 0.8818
AllKNN 0.9618
Instance Hardness Threshold 0.7254

Over-sampling methods
Random Over Sampling 0.9595
SMOTE 0.9533
Borderline 1 SMOTE 0.9524
Borderline 2 SMOTE 0.9559
SVM SMOTE 0.9693
ADASYN 0.9493
SMOTEENN 0.9561
SMOTE Tomek 0.9602

Maxime LABONNE 38

4.1. CASCADE-STRUCTURED NEURAL NETWORKS

4.1.3 Hyperparameters optimization

Hyperparameters are the variables of a neural network set before training. This includes
the number of neurons, batch size, optimizer, learning rate, activation functions, etc.
Hyperparameters are often tuned manually, or by testing all possible combinations of
a set of values. This technique, called grid search, has the advantage of necessarily
finding the global optimum, i.e. the combination of parameters that offers the best
classification results. However, it is difficult to use it in practice, due to the large number
of parameters defined over extensive research groups. We chose two faster automated
techniques: random search and Tree-structured Parzen Estimator (TPE) [85].

Random search randomly tests combinations of a range of values, with a fixed number
of iterations. According to Bergstra and Bengio [86], random search can find better
parameters than grid search in less computational time. The time allocated to this
task is also easier to foresee, since the number of iterations is defined in advance. TPE
is a Sequential Model-Based Optimization (SMBO) algorithm. Unlike random search,
it chooses which parameters to test and converges to an optimal set of parameters.
The choice of the optimization algorithm is data-dependent, that is why two different
algorithms are tested.

This automated search is possible within short periods of time (a few minutes for
each iteration) thanks to the size of the processed datasets: 743 MB for the entire KDD
Cup 99 dataset, and 21.48 MB for NSL-KDD. These methods would be difficult to use
with datasets of several GB. Optimization is a long process that is more reliable with few
parameters. We manually defined as many parameters as possible that do not need to be
optimized. For example, we know that the ReLU activation function [41] or the Adam
optimizer outperforms the others. We also realized that any attempt at regularization,
however slight, would lead to a decrease in accuracy. With this knowledge, the following
hyperparameters have been optimized:

• Number of hidden layers: between 1 and 5 (step = 1);

• Number of units in each hidden layer: between 1 and 512 (step = 1);

• Number of epochs: between 1 and 200 (step = 1);

• Batch size = [16, 32, 64, 128, 256, 512, 1024, 2048];

• Adam’s parameters: learning rate (between 10−5 and 0.2), beta 1 (between 0 and
1), beta 2 (between 0 and 1) and epsilon (between 10−9 and 10−5).

We used the hyperopt library for its implementation of TPE [87]. Models have been
trained on two GTX 1080 Ti GPUs.

Random search was quickly abandoned in favor of TPE, which consistently obtains
better and faster results. Figure 4.1 shows the distribution of the best models (i.e.,
the top 20% of models in terms of accuracy) with the two methods. The search space
corresponds to the set of values covered by the optimization algorithm (minimum and

Maxime LABONNE 39

CHAPTER 4. SUPERVISED INTRUSION DETECTION

Figure 4.1: Comparison of results obtained with random search and TPE.

maximum values of neurons for instance). We started with large search spaces, which
were gradually reduced manually by observing the best results to speed up the process.

Some hyperparameters clearly converged to an optimal value for both datasets. For
example, a batch size of 256 obtained much better results than other values. Similarly,
the number of layers quickly converged to a value of 1. KDD Cup 99 and NSL-KDD only
have 41 features, far from the thousands of features found in image recognition. This
may explain a lower need for generalization, and therefore a low number of layers. On
the other hand, the numbers of units and epochs never clearly converged to a specific
value. On average, they obtain better accuracy for values between 10 and 150, and
between 5 and 60 for NSL-KDD respectively. Indeed, even after data augmentation, the
distributions of classes in the training and test sets remain different: keeping a small
number of epochs prevents overfitting. Likewise, the search of Adam’s parameters values
has been narrowed manually.

Several models have been built for each configuration of each dataset. In the first
configuration, the model is trained with 80% of the training test, validated on 20% of the
training test, and tested on the whole test set. In the second configuration, the model
is trained on 60% of the training set, validated on 20% of the training set, and tested
on the remaining 20% of the training set. This latter configuration gives better results,
because the test set adds new attacks as well as a very different class distribution. It is
used to compare our results with other solutions, but does not use the dataset as it was
originally designed. The best models in each category are presented in Table 4.2.

4.1.4 Ensemble learning

4.1.4.1 Naive ensemble learning

Ensemble learning is a process combining several models to improve the overall predictive
performance. This approach has been successful in many machine learning competitions,

Maxime LABONNE 40

4.1. CASCADE-STRUCTURED NEURAL NETWORKS

Table 4.2: Classification accuracies for optimized neural networks on KDD Cup 99 and
NSL-KDD.

Train set Test set Number of
nodes

Number of
epochs Adam Accuracy

NSL-KDD
train (80%)

NSL-KDD
test 81 15

lr: 0.075
beta1: 0.213
beta2: 0.850
ε: 9.50× 10−6

84.70%

NSL-KDD
train (60%)

NSL-KDD
train (20%) 125 35

lr: 0.128
beta1: 0.125
beta2: 0.958
ε: 2.42× 10−6

99.29%

KDD Cup 99
train (80%)

KDD Cup 99
test 68 32

lr: 0.001
beta1: 0.9
beta2: 0.999
ε: 10−8

93.77%

KDD Cup 99
train (60%)

KDD Cup 99
train (20%) 130 24

lr: 0.001
beta1: 0.9
beta2: 0.999
ε: 10−8

99.95%

such as KDD Cup 2009. The general idea is that a combination of weak learners is
more effective than a single strong learner, thus increasing the accuracy of the model.
Ensemble helps to reduce variance and bias, which are the main causes of difference
between predicted and real values.

We tested the performance of this approach by naively combining our two best models
from the previous step. There are several combination rules to create an ensemble
classifier: averaging their predictions, keeping only the maximum value, adding them
up, multiplying them, etc. [88] We tested in Table 4.3 different algebraic combiners to
create the final prediction p from p1 (model 1 with 84.70% classification accuracy on
NSL-KDD test set) and p2 (model 2 with 84.17% classification accuracy on NSL-KDD
test set).

All combination rules work better than the best model of the previous section, espe-
cially the mean and sum rules with a +0.18% increase in accuracy. This increase can be
explained by the way classifiers make their predictions. On average, a classifier has less
confidence in its predictions when they turn out to be false than when they are true.
Combining a false prediction with a true prediction thus favors the latter, as long as the
classifiers do not make too many mistakes.

Maxime LABONNE 41

CHAPTER 4. SUPERVISED INTRUSION DETECTION

Table 4.3: Comparison of different combination rules for ensemble learning on NSL-KDD
test set.

Combination rule Prediction p for N models Accuracy

Mean rule p = 1
N

∑N
i=1 pi 84.88%

Maximum rule p = maxi=1,...,N{pi} 84.82%

Sum rule p =
∑N

i=1 pi 84.88%

Product rule p =
∏N

i=1 pi 84.78%

4.1.4.2 Meta-specialists for ensemble learning

This statement led us to create classifiers specialized in the detection of a single class.
There are five types of specialists, one for each class of the dataset. These specialists
can be 5-class (normal, DoS, probe, R2L, U2R) or 2-class (their class or not) classifiers.
We tested both approaches and obtained better results for 5-class specialists on normal
classes, DoS, R2L and U2R (but not probe), that is why we continue to use 5-class
classifiers in the following.

We applied the same method as in the first and second sections for the training
of these specialists. The preprocessing of the training set depends on the classifier’s
specialty. Indeed, the class in which the classifier is specialized is over-represented (1:5
to 1:30) compared to the others. First, all other classes are under-sampled with the
Random Under Sampler. If the specialty of the classifier is probe, R2L or U2R, this
class is then over-sampled around 20,000 connections. The specialist’s neural network
is optimized with the TPE using the process described previously. In addition to the
hyperparameters, the class ratio is also optimized by the TPE on a validation set.

We then applied the ensemble learning method to each of the 5 sets of specialists.
However, models have different accuracies: some perform better than the others on a
dataset. Increasing the contribution of the best models in the final prediction would
naturally lead to better results. But poor models should not be systematically excluded
from the ensemble. They can indeed be specialized in rare forms of connections that the
best models do not recognize. This way of favoring the best models can be implemented
by adding weights λi to the prediction pi of each model i in the previous combination
rules. These weights are then optimized with the TPE on a validation set to maximize
the AUROC score of the meta-specialist. In addition to the previous combination rules,
we added majority voting, which selects the class that receives the largest total votes.
We thus defined a meta-specialist as the composition of several specialists from the same
class, as a group that only participates in the classification of its specialty. Results with
meta-specialists for NSL-KDD are shown in Table 4.4. Mean rule achieved the same

Maxime LABONNE 42

4.1. CASCADE-STRUCTURED NEURAL NETWORKS

accuracy than sum and product rules but is faster to compute (approximately 1 hour
and 20 minutes, depending largely on models). This is why mean rule is used for both
datasets in the following.

Table 4.4: Comparison of different combination rules with meta-specialists for ensemble
learning on NSL-KDD test set.

Combination rule Prediction p of a meta-specialist for N models Accuracy

Mean rule p = 1
N

∑N
i=1 λipi 86.33%

Maximum rule p = maxi=1,...,N{λipi} 86.01%

Sum rule p =
∑N

i=1 λipi 86.33%

Product rule p =
∏N

i=1 λipi 86.33%

Majority voting p = maxi=1,...,N
∑N

i=1 λipi 86.17%

4.1.4.3 Cascade-structured meta-specialists architecture

A bias can be easily detected by looking at the results of each meta-specialist inde-
pendently. Indeed, meta-specialists tend to over-recognize their own specialty in the
connections presented to them. This is a side effect of their training where they have
seen their own class more than others. This bias is a problem for rare and therefore un-
reliable attacks like R2L and U2R, which can produce many false positives. A solution
to mitigate it is to create a specific architecture, where the non-classified connections
are successively presented to the different meta-specialists, as shown in Figure 4.2.

In this architecture, the entire NSL-KDD dataset is first presented to the normal
meta-specialist. This classifier only classifies normal connections. Connections flagged
as “normal” are subtracted to the dataset, which is then presented to the probe meta-
specialist. This process is repeated for R2L, DoS and U2R meta-specialists. The order
of meta-specialists was determined by selecting the one that gave the best AUROC score
on the validation set. All remaining connections, those that have not been recognized
by any meta-specialist, are then classified. The class of each of these connections is
determined by the specialist who gives them the highest probability.

Unlike naive ensemble learning models, specialists have never been trained or vali-
dated on the test set, in order to avoid data leakage. Their performance was measured
on a validation set (20% of the training set), despite its important differences with the
test set. Indeed, validating the weight optimization of specialists on the test set would
greatly improve the results. Under these conditions, this architecture achieves 92.66%
classification accuracy on the NSL-KDD test set. Table 4.5 presents the final perfor-

Maxime LABONNE 43

CHAPTER 4. SUPERVISED INTRUSION DETECTION

Figure 4.2: Cascade-structured meta-specialists architecture for NSL-KDD.

Maxime LABONNE 44

4.1. CASCADE-STRUCTURED NEURAL NETWORKS

mance for our architecture on KDD Cup 99 (with max rule combination) and NSL-KDD
(with sum rule combination).

Table 4.5: Classification accuracies for cascade-structured meta-specialists architecture
on KDD Cup 99 and NSL-KDD.

Train set Test set Accuracy
NSL-KDD train (80%) NSL-KDD test 88.39%
NSL-KDD train (60%) NSL-KDD train (20%) 99.91%
KDD Cup 99 train (80%) KDD Cup 99 test 94.44%
KDD Cup 99 train (60%) KDD Cup 99 train (20%) 99.95%

The classification performance of each class within the architecture is detailed in
Tables 4.6 and 4.7.

Table 4.6: Summary of test results for cascade-structured meta-specialists architectures
for KDD Cup 99 (classification accuracy = 94.44%).

Normal DoS Probe R2L U2R
Accuracy 98.10% 94.77% 99.73% 96.32% 99.97%
TPR 97.54% 98.74% 90.06% 36.28% 28.57%
FPR 0.33% 6.19% 0.14% 0.35% 0.01%
F1 score 0.9870 0.8803 0.8986 0.5089 0.2985
AUROC 0.9861 0.9628 0.9496 0.6797 0.6428

Table 4.7: Summary of test results for cascade-structured meta-specialists architectures
for NSL-KDD (classification accuracy = 88.39%).

Normal DoS Probe R2L U2R
Accuracy 95.02% 92.37% 96.86% 93.40% 99.12%
TPR 88.87% 96.10% 85.38% 64.92% 35.82%
FPR 1.94% 10.46% 1.75% 2.42% 0.69%
F1 score 0.9220 0.9156 0.8540 0.7158 0.1943
AUROC 0.9347 0.9282 0.9181 0.8125 0.6756

Finally, Table 4.8 shows a comparison study on NSL-KDD between our model and
previous results in terms of classification accuracy and FPR. Our solution performs
better than the best 2-class classifiers in the literature in both metrics.

4.1.5 Conclusion

We presented a three-step methodology for optimizing intrusion detection with neural
networks. The cascade-structured meta-specialists architecture is based on the creation
of specialized classifiers in a single class. Specialists are first trained on a modified

Maxime LABONNE 45

CHAPTER 4. SUPERVISED INTRUSION DETECTION

Table 4.8: Comparison study on NSL-KDD.

Study Accuracy FPR
Our solution 88.39% 1.94%
Two-level classifier ensemble [89] 85.016% 12.6%
Bagging (J48) + feature selection [90] 84.25% 2.79%
GAR-forest + feature selection [91] 85.05% 12.2%
SVM + feature selection [92] 82.37% 15%

training set to over-represent their class. The hyperparameters of these classifiers are
then optimized to maximize their accuracy on a validation set. Specialists of the same
class are combined into a meta-specialist. Non-flagged connections in the dataset are
successively tested by all meta-specialists. This system has proven to greatly improve the
quality of detection on KDD Cup 99 and particularly on NSL-KDD, with a classification
accuracy of 88.39% and 1.94% FPR. It could be applied to any other labeled dataset for
intrusion detection, with a similar performance increase compared to a naive classifier.

This approach could be improved by combining neural networks with other machine
learning algorithms (e.g., Random Forest or SVM). These algorithms are more deter-
ministic than neural networks, and could thus compensate for certain deficiencies of the
latter. Besides, preprocessing is done on the entire training dataset, but selecting a com-
bination of data augmentation algorithms class by class would make more sense. This
would help to extend the classification system to the attacks themselves rather than the
categories.

4.2 Ensemble of machine learning techniques

4.2.1 Introduction

Previous work used only one machine learning model: the neural network (MLP). It
is possible to better exploit the contribution of the ensemble learning by adding other
types of models, with different bias-variance tradeoffs. The data augmentation process
is also being redesigned, by selecting one algorithm per class and no longer one for
the entire dataset. This method better represents the differences between very sparsely
populated (U2R) and slightly under-represented (probe) classes. A new architecture
without cascading meta-specialists is also proposed. Finally, the entire training and
optimization process (selection of algorithms and coefficients) is fully automated.

4.2.2 Dataset et preprocessing

The KDD Cup 99 dataset has been abandoned compared to the latest work to speed up
the training process. KDD Cup 99 is larger than NSL-KDD, which makes it longer
to process. Its data is also less relevant because of the high number of redundant

Maxime LABONNE 46

4.2. ENSEMBLE OF MACHINE LEARNING TECHNIQUES

connections and several incorrect records. This work is therefore entirely based on NSL-
KDD, but the same architecture can be applied to KDD Cup 99.

NSL-KDD suffers from the problem of unbalanced classes, which requires a step of
data augmentation. This step is modified here to take into account the specificities of
each class. Indeed, even two poorly represented attacks do not contain the same data. It
is therefore likely that the best over-sampling algorithm differs between these two classes.
We want to create 5 training datasets: one specialized in each class. The specialized class
is over-sampled, while the others are under-sampled with a ratio of 1:10. This specific
ratio was determined using the results of previous work (it was defined between 1:5 and
1:30). The classifier who learns on these specialized datasets will become a specialist of
the most represented class.

Two algorithms are therefore needed for each class: one for under-sampling and
one for over-sampling. The best under-sampling algorithm is combined with the best
over-sampling algorithm to form a specialized dataset for a class with a 1:10 ratio. A
naive classifier is used to determine the performance of each algorithm for each class.
A MLP composed of a single hidden layer of 128 neurons was chosen for this purpose.
It uses ReLU as the activation function, and the Adam optimizer. The AUROC of the
specialized class is used as a metric to measure the performance of our classifier. This
neural network is trained on 80% of the training set, and the area under the ROC curve
is measured on the remaining 20%.

Table 4.9 shows the results of this data augmentation step, including the best under-
sampling and over-sampling methods for each class: AllKNN + SVM SMOTE for nor-
mal, Repeated Edited Nearest Neighbours + ADASYN for DoS, One Sided Selection
+ SMOTEENN for probe, Random Under Sample + Borderline 1 SMOTE for R2L,
and Cluster Centroids + SMOTE Tomek for U2R. These two methods are combined as
described above to form the a training set for each class.

4.2.3 Training

Different machine learning algorithms for classification are used: decision tree, random
forest, extra tree, extra trees, k-Nearest Neighbors (KNN), SVM, logistic regression,
Naive Bayes, gradient boosting and multilayer perceptron (MLP). These classifiers are
from the sklearn library [14], except for the MLP created with Keras [84] and Tensorflow
[15].

Each algorithm has a set of parameters whose values influence the classification per-
formance. Optimizing these parameters is therefore an important step in improving
detection accuracy. Several optimization methods are commonly used in machine learn-
ing. The most common one involves an expert who chooses the most relevant parameters
for the problem being studied. This method requires a good knowledge of the algorithm
to be optimized as well as the impact of the different parameters. It would be possi-
ble to set the best parameters for the dataset studied (NSL-KDD) here. But in order
to propose a method that can be transposed to other data, we want to automate the
parameter search.

We continue to use the TPE as a parameter optimization algorithm here. The

Maxime LABONNE 47

CHAPTER 4. SUPERVISED INTRUSION DETECTION

Table 4.9: Comparison of data augmentation methods for each class of NSL-KDD

Method AUROC
Normal DoS Probe R2L U2R

No sampling 0.9488 0.8930 0.9158 0.7429 0.9605
Under-sampling methods

Cluster Centroids 0.9378 0.8915 0.9181 0.8548 0.9739
Random Under Sampler 0.9616 0.9000 0.9338 0.8674 0.9715
NearMiss 0.9377 0.7491 0.8691 0.5929 0.2762
Edited Nearest Neighbours 0.9382 0.9071 0.9234 0.7932 0.9575
Repeated ENN 0.9614 0.9162 0.9081 0.7773 0.9626
Condensed Nearest Neigbour 0.9022 0.6521 0.8518 0.6224 0.9174
One Sided Selection 0.9415 0.6498 0.9543 0.6986 0.9435
AllKNN 0.9659 0.9019 0.9138 0.8012 0.9701
Instance Hardness Threshold 0.6944 0.9079 0.8753 0.8104 0.9458

Over-sampling methods
Random Over Sampling 0.9611 0.9083 0.9364 0.7838 0.9714
SMOTE 0.9423 0.8965 0.8918 0.8025 0.9511
Borderline 1 SMOTE 0.9597 0.9133 0.9173 0.8535 0.9675
Borderline 2 SMOTE 0.9542 0.9146 0.9125 0.7659 0.9601
SVM SMOTE 0.9644 0.8924 0.9273 0.7990 0.9696
ADASYN 0.9485 0.9188 0.9324 0.7855 0.9717
SMOTEENN 0.9500 0.8742 0.9457 0.7365 0.9560
SMOTE Tomek 0.9627 0.8784 0.9178 0.7420 0.9799

Maxime LABONNE 48

4.2. ENSEMBLE OF MACHINE LEARNING TECHNIQUES

AUROC is also used to evaluate the classification performance. Each machine learning
algorithm is trained on 80% of the training set of each class, obtained in the previous
section. Its performance is then evaluated on the remaining 20% from the original NSL-
KDD training set (i.e. without the class specific sampling). The goal of TPE is to find,
for each classifier, the parameters that maximize the area under the curve calculated on
this 20%. These parameters are saved for each algorithm applied to the training set of
each class, and will be reused in the following.

4.2.4 Ensemble learning

Ensemble learning is used in a different way than previously. We want to create a set
for each class, combining the best classifiers of this class into one ensemble. Indeed,
trained models have different detection performance, some being more accurate than
others. Adding inaccurate models leads to an accumulation of errors. A selection of the
best models is used to prevent this deterioration in the quality of detection.

Some algorithms are more effective on certain classes by design, which is why this
selection process is important to choose the best models for every class. One way to
approach this issue is to see it as a tradeoff between bias and variance. Some classifiers
are more effective on data with high bias and low variance (e. g. Naive Bayes), while
others are more effective on data with low bias and high variance (e. g. KNN). For small
datasets, algorithms in the first category are generally preferred, while others are more
suitable for large datasets.

The selection of classifiers is often done manually, or by correlating the results of
each algorithm to select only the least correlated ones. An innovative automatic method
is adopted here, allowing a flexible weighting coefficient to be assigned to the predictions
of each algorithm in the set. The models are first ranked from best to worst, based on
their area under the ROC curve of their class on the validation set. The predictions p1 of
the worst model and p2 of the second worst model are combined by a weighted average
(equation 4.1). The TPE then tries to optimize the ratios λ1 and λ2 of the average in
order to obtain the best possible accuracy on this set. These ratios are kept and the
process is repeated between the formed set, and the new algorithm that we are trying
to add. If there is no ratio to improve the accuracy of the set, the new algorithm is
ignored and the next one is tested instead. The choice to start with the worst models is
explained by the gradual decrease in the ratio of the first models as new ones are added.

p =
N∑
i=1

λipi (4.1)

This method results in the creation of 5 ensembles, each specialized in a class of
NSL-KDD. Each ensemble produces a prediction p, which is the weighted sum of the pi
predictions of each algorithm i by a ratio λi. Overfitting is mitigated by adding the worst
models at the beginning of the process, which however contribute to the classification.

These ensembles are then combined to obtain the final classification on the test set.
We choose the ensemble that assigns the highest probability to its class to determine

Maxime LABONNE 49

CHAPTER 4. SUPERVISED INTRUSION DETECTION

the final class of each connection. This combination rule is based on the idea that
an erroneous prediction will most of the time have a lower probability than a correct
prediction. With this method we obtain a global accuracy (Jaccard index) on the 5
classes of the NSL-KDD test set of 86.59%. The rate of false positives (normal traffic
classified as an attack) also remains low, at 1.66%. The overall results obtained for each
class are detailed in Table 4.10.

Table 4.10: Summary of test results on NSL-KDD test set

Normal DoS Probe R2L U2R
Accuracy 95.20% 90.91% 95.87% 91.73% 99.48%
TVP 88.85% 95.99% 86.70% 50.02% 43.28%
TFP 1.66% 12.94% 3.03% 2.15% 0.36%
F1 score 0.9245 0.9009 0.8185 0.6076 0.3295
AUROC 0.9359 0.9153 0.9184 0.7394 0.7146

4.2.5 Conclusion

We presented a method for automatically optimizing a set of machine learning algorithms
for intrusion detection. First, the training set is preprocessed in order to generate a
specialized dataset for each class. A collection of machine learning algorithms are trained
(and, in some cases, optimized) for each of these datasets. Finally, the predictions of the
best algorithms are combined by optimizing their weights to improve detection accuracy.

This method offers a high accuracy of 86.59% on NSL-KDD with a low FPR (1.66%).
These scores are relatively similar to those obtained with the method detailed in the pre-
vious section (88.39% accuracy and 1.94% FPR). Added machine learning algorithms
generally perform worse than neural networks. Indeed, neural networks have been se-
lected among the best performing models for each of the 5 classes. Moreover, our new
data augmentation method does not significantly improve the detection of rare attacks.
The R2L attacks’ AUROC score drops from 0.8125 to 0.7394 and the U2R attacks’ AU-
ROC score increases from 0.6756 to 0.7146. Adding weights to increase the cost of errors
on the rarest attacks would be another approach to improve their detection.

This method allows to consider an automatic deployment of an IDS solution based
on machine learning. However, NSL-KDD is not a good representation of a real network
traffic. This method is based on supervised learning, and therefore requires a labelled
training set. For a real deployment, it should be based on a pre-established dataset, or an
automatic labelling method. Our process could also be improved by selecting the best
features for each algorithm. This would remove the least important parameters from
the dataset to reduce its dimensionality. This reduction would shorten the computation
time, and increase the accuracy of detection, especially for machine learning algorithms
that are highly subject to the curse of dimensionality.

The next chapter will consider more realistic network traffic. Techniques from super-
vised learning are explored to overcome the shortcomings of this type of training, while

Maxime LABONNE 50

4.2. ENSEMBLE OF MACHINE LEARNING TECHNIQUES

maintaining its advantages in terms of detection quality.

Maxime LABONNE 51

CHAPTER 4. SUPERVISED INTRUSION DETECTION

Maxime LABONNE 52

Chapter 5

Supervised Techniques to Improve
Intrusion Detection

This chapter presents techniques to improve intrusion detection. These techniques are
based on IDSs but are not themselves IDSs. Section 1 introduces the generation of sig-
natures from anomalies for misuse detection. Section 2 presents applications of transfer
learning in order to solve certain problems with supervised learning models for intrusion
detection.

5.1 Anomaly to signature
The ability of anomaly-based IDSs to detect unknown attacks is their greatest asset.
However, an attack identified by an anomaly-based IDS cannot be reliably detected
every time: subtle changes in the header parameters can completely modify its predic-
tion. Signature-based IDS are much more reliable in attack detection, since each attack
corresponds to one or more well-defined signatures. This correspondence can be used
to explain why a packet is considered as an intrusion, since the signature specifies the
parameters that led to this classification. It is also possible to trace the name or the
type of the attack, which can be useful for reaction mechanisms (IPS) after detection.

The ability to transform an anomaly into a signature that can be interpreted by
a signature-based IDS is therefore very valuable in several situations. First, a hybrid
system composed of both solutions can self-reinforce using this principle, feeding its own
signature database with the anomaly detection component. Moreover, signature-based
IDSs generally require less computational power than anomaly-based IDSs using ma-
chine learning models. Implementing signature-based IDSs in constrained environment
like embedded systems is therefore a good solution that can be improved with anomaly
detection. Finally, signature-based IDSs represent a large majority of the already de-
ployed IDSs worldwide. Feeding their signature databases with anomaly detection would
improve this detection method (quick updates), without completely changing software.

There are three popular open-sourced signature-based IDSs: Snort, Suricata, and
Zeek. Snort was released in 1998 and is the most used of the three. It can be configured

53

CHAPTER 5. SUPERVISED TECHNIQUES TO IMPROVE INTRUSION
DETECTION

in three different modes: packet sniffer (displays them on the console), packet logger
(writes logs to the disk), and network intrusion detection system. In this last mode,
the network traffic is compared to a rule set defined by the administrator. These rules
also contain Snort’s reactions in case of successful detection. Suricata’s architecture is
different than Snort, but they can be used in the same way, with the same signatures.
Suricata was released in 2009 and compensates for its relative youth with multi-threading
capabilities. Finally, Zeek (formerly Bro) can also be used as an anomaly-based IDS.
The analysis engine converts network traffic into a series of events. Zeek does not use the
same signatures, but has its own script language. These scripts are then applied to the
network events for intrusion detection or other various tasks (notifications, additional
analysis, etc.).

We chose to work with Snort signatures because of their portability to Suricata, their
relatively simple semantics, and Snort’s popularity. Figure 5.1 shows an example with
a Snort rule to detect SYN packets on a local network.

alert tcp any any -> 192.168.0.1/24 any (flags: S; msg: “SYN packet”;)

Figure 5.1: Sample Snort rule.

Figure 5.2 summarizes the semantics of Snort signatures.

<action> <protocol> <source> <direction> <destination> (<options>)

Figure 5.2: Snort rules syntax.

The first field in a rule is the action Snort will take if a packet with all the attributes
indicated in the rule is detected. There are 6 different rule actions:

• alert – generate an alert using the selected alert method, and then log the packet;

• log – log the packet;

• pass – ignore the packet;

• drop – block and log the packet;

• reject – block the packet, log it, and then send a TCP reset if the protocol is TCP
or an ICMP port unreachable message if the protocol is UDP;

• sdrop – block the packet but do not log it.

Snort is capable of analyzing five network protocols: IP, TCP, UDP, ICMP, HTTP (or
any). “Source” and “destination” describe respectively the IP and the port from which
traffic is coming, and the IP and port on which traffic is coming for establishing the
connection. The direction (“->” or “<>”) indicates the direction of the traffic between
sender and receiver networks. Several rule options can be set to refine the detection
process:

Maxime LABONNE 54

5.1. ANOMALY TO SIGNATURE

• msg: prints the content of the message with the packet dump or alert;

• reference: includes references to external attack identification systems;

• gid: identifies what part of the IDS generates the event when a specific rule is
activated;

• sid: uniquely identifies the IDS rules;

• rev: uniquely identifies revisions of the IDS rules;

• classtype: categorizes a rule as detecting a subtype of a more general attack class;

• priority: assigns a severity level to rules;

• metadata: embeds additional information about the rule.

It is necessary to correctly detect the attack for which we want to obtain a signature.
Several machine learning algorithms are evaluated to achieve the most accurate classi-
fication of different attacks. These algorithms predict an anomaly score between 0 and
1 rather than a direct classification. This method allows us to modulate the number of
false positives using a threshold. The dataset CSE-CIC-IDS2018 is used for this work.
It has a large number of connections and very high classification rate for all machine
learning models. The decision tree is selected for its excellent performance (100% TPR,
0% FPR) and its low training time (11.4s on the DDoS set).

The decision tree has a particular architecture that allows to understand the choices
made by the algorithm for its classification. Each node corresponds to an if...else condi-
tion on a parameter of the dataset. Figure 5.3 shows a plot of the conditions at the top
of the decision tree:

Flow IAT Min ≤ 1033077.5
samples ̄ 7948748

Bwd Pkt Len Std ≤ 481.998
samples ̄ 7395057

Fwd Act Data Pkts ≤ 1529.0
samples ̄ 6452178

Bwd Pkt Len Std ≤ 482.0
samples ̄ 942879

Flow Duration ≤ 49717384.0
samples ̄ 553691

Dst Port ≤ 80.5
samples ̄ 317842

Src Port ≤ 54646.0
samples ̄ 235849

Figure 5.3: Three first levels of the decision tree.

The total DDoS attack classification tree of CSE-CIC-IDS2018 has a depth of 18
and 333 leaves. It is possible to convert these rules into a succession of hard-coded
conditions. This solution could replace an IDS entirely, and instead call a function to

Maxime LABONNE 55

CHAPTER 5. SUPERVISED TECHNIQUES TO IMPROVE INTRUSION
DETECTION

Algorithm 1: Rules extracted from the decision tree.
Result: anomaly scores
initialization;
if Flow Pkts/s ≤ 1033077.5 then

if Bwd Pkt Len Std ≤ 481.998 then
if Subflow Bwd Pkts ≤ 1529.0 then...
else...
end

else
if Bwd Pkt Len Std ≤ 482.0 then...
else...
end

end
else

if Flow Duration ≤ 49717384.0 then
if Dst Port ≤ 80.5 then...
else...
end

else
if Src Port ≤ 54646.0 then...
else...
end

end
end

Maxime LABONNE 56

5.1. ANOMALY TO SIGNATURE

analyze each packet and determine its threat level. The algorithm 1 shows an example
of the conversion of the decision tree above into Python code.

The decision tree allows us to find the features that contributed most to the classi-
fication. Knowing the contribution of each feature allows to retrieve information on the
interest to create (feature engineering) or to collect more parameters if it is possible. It
also helps to remove the features that are the least useful for classification, thus reducing
the size of the dataset and shortening the training time of the model. The importance
of a feature is computed as the (normalized) total reduction of the criterion brought by
that feature. It is also known as the Gini importance [93]. Table 5.1 shows the most
important features to determine that a flow is an attack for this decision tree (impor-
tance > 10−5). 51 features among the 76 of the CSE-CIC-IDS2018 dataset have a null
importance and 7 of them have an importance less than 10−5.

Table 5.1: Feature importances for DDoS detection on CSE-CIC-IDS2018 (importance
> 10−5)

Feature Importance
1 Bwd Pkt Len Mean 5.19e-01
2 Flow IAT Mean 2.08e-01
3 Timestamp 1.71e-01
4 Protocol 6.43e-02
5 Subflow Fwd Byts 9.01e-03
6 SYN Flag Cnt 8.59e-03
7 Idle Mean 7.63e-03
8 Bwd URG Flags 2.18e-03
9 Subflow Bwd Byts 1.47e-03
10 Active Std 1.08e-03
11 Bwd Pkt Len Std 1.93e-04
12 RST Flag Cnt 1.42e-04
13 Flow IAT Std 5.70e-05
14 Bwd PSH Flags 1.97e-05
15 Fwd Pkts/s 1.75e-05
16 ECE Flag Cnt 1.59e-05
17 Bwd Blk Rate Avg 1.58e-05

Snort signature generation does not require as much information, nor a model as ex-
plainable as a decision tree. In fact, it can be done with any machine learning algorithm,
since all the information needed for generation are included in the dataset features. The
generation thus requires to detect a flow as an attack, then to retroactively search the
different features that constitute this flow to generate a signature. Twelve features are
used among the 76 of the CSE-CIC-IDS2018 dataset: : Protocol, Src IP, Src Port, Dst
IP, Dst Port, ACK Flag Cnt, SYN Flag Cnt, PSH Flag Cnt, RST Flag Cnt, FIN Flag
Cnt, URG Flag Cnt, et Label. Figure 5.4 shows examples of Snort signatures generated

Maxime LABONNE 57

CHAPTER 5. SUPERVISED TECHNIQUES TO IMPROVE INTRUSION
DETECTION

with this method.

alert tcp 52.14.136.135 50819 -> 172.31.69.25 80 (msg:“DDoS attacks-LOIC-HTTP”;
flags:PR; classtype: denial-of-service;)

alert tcp 52.14.136.135 50820 -> 172.31.69.25 80 (msg:“DDoS attacks-LOIC-HTTP”;
flags:PR; classtype: denial-of-service;)

alert tcp 52.14.136.135 50821 -> 172.31.69.25 80 (msg:“DDoS attacks-LOIC-HTTP”;
flags:PR; classtype: denial-of-service;)

alert tcp 52.14.136.135 50822 -> 172.31.69.25 80 (msg:“DDoS attacks-LOIC-HTTP”;
flags:PR; classtype: denial-of-service;)

Figure 5.4: Generated Snort rules.

The output of this algorithm is verbose, since it generates a signature for each flow
detected as an attack. It is possible to compress this output using Snort’s ability to
handle ranges of address and port numbers. This compression can be performed on
four parameters: source address, source port, destination address, and destination port.
Figure 5.5 shows the same example as above, but with the source ports aggregated to
give the following signature:

alert tcp 52.14.136.135 50819-50822 -> 172.31.69.25 80 (msg:“DDoS
attacks-LOIC-HTTP”; flags:PR; classtype: denial-of-service;)

Figure 5.5: Compressed Snort rule.

These signatures can be incorporated directly into the Snort database via updates.
They can also be easily generated by the anomaly detection component of a hybrid
system. We did not implement these rules in Snort because it would have been necessary
to replay the entire traffic to test them. Since the correspondence between the flows and
the packets in the CSE-CIC-IDS2018 dataset was not direct (flows are an aggregation of
packets and lose some information), this work was considered too costly for the results
it would have provided.

Indeed, the semantics of Snort rules is too simple to fully exploit the possibilities
offered by the conversion of anomalies into signatures. Future work could focus on code
generation using Zeek’s language, which would allow more accurate simulation of the
detected anomaly. This conversion method is easily implemented in real use cases, but
requires a low false positive rate from the anomaly-based IDS to be really useful.

5.2 Transfer learning
The main problem with algorithms trained in a supervised manner is the need for a very
specific kind of dataset. These datasets must be labeled, contain both normal and attack
traffic, and be located on the target network that the IDS must protect. The process of
creating such a dataset is a complex task, which requires a lot of planning work on many
aspects: choice of attacks and schedules, automatic labeling, traffic representativeness,

Maxime LABONNE 58

5.2. TRANSFER LEARNING

etc. The Canadian Institute for Cybersecurity points out that such a dataset is very
rare to obtain in reality [26].

Transfer learning is a machine learning method focused on re-using a model devel-
oped for a task A as the starting point for a model on a related task B. For instance,
a convolutional neural network designed to detect cats can be re-used to detect dogs
instead. In our use case, tasks A and B correspond to two different computer networks.
The main benefits of transfer learning are that it can speed up the training process and
obtains better performance than a model simply developed for task B [94].

The use of transfer learning allows the training to be based on a set of data that is
not exactly representative of the monitored traffic. The ability of the model to adapt
to a new context is not only useful for its deployment. This characteristic remains
important so that it can continue to adapt to the changes that will inevitably occur in
network traffic (addition or removal of systems, new protocols, etc.). This generability
is therefore useful both for training the model and throughout its use.

The CICIDS2017 and CSE-CIC-IDS2018 datasets are good candidates for testing the
transfer learning capabilities of detection algorithms. Indeed, both datasets are based
on flows retrieved with CICFlowMeter and share common attacks: DoS, web attacks,
botnet, brute-force. However, the topology of the monitored network is very different,
which represents a typical scenario where the IDS is trained on a dataset that does not
correspond to the network on which it is deployed.

The gain in generability of these models is accompanied by a minimization of the
importance of the network topology for intrusion detection. Network-agnostic IDSs are
useful for their ability to be deployed on any network, but their performance would
be inferior to IDSs specifically trained to understand the behavior of a particular net-
work. This approach is therefore a trade-off towards ease of deployment, in exchange for
probable loss of detection performance.

5.2.1 Datasets and preprocessing

The objective is to train a machine learning model on one dataset, then test it on the
second one. Good performance on the test set would indicate a good ability of the
model to ignore the network topology for attack detection. Since CSE-CIC-IDS2018 has
a much higher number of flows than CICIDS2017, it was chosen as a training set. This
is consistent with the fact that the training set is usually larger than the test set, with
typical ratios such as 80/20 or 64/33. 20% of CSE-CIC-IDS2018 is used as a validation
set to test the performance of machine learning algorithms on their original network
topology.

Although both datasets are provided by the Canadian Institute for Cybersecurity
using the same tools, the two datasets have some differences that need to be corrected
in order to be used together.

First of all, the categories of attacks are not organized in the same way. CICIDS2017
counts 8 categories: benign, brute-force, DoS, web attacks, infiltration, botnet, port
scan, and DDoS. CIC-CSE-2018 has only 6: brute-force, DoS, web attacks, infiltration,
botnet, and DDoS. This difference can be explained by the absence of a day without

Maxime LABONNE 59

CHAPTER 5. SUPERVISED TECHNIQUES TO IMPROVE INTRUSION
DETECTION

any attacks for CIC-CSE-2018 and the merging of port scans with DDoS attacks. These
two types of attacks are therefore not considered in the rest of this study, as they are
deemed too different in their implementation. Similarly, the infiltration attack exploits
the downloading of a file on Dropbox in both cases, but with a process too different to
consider that it is the same attack. The four categories of intrusions retained are DoS,
web attacks, botnet, and brute-force.

Both datasets also require the same features. The feature ‘Fwd Header Length.1’ has
therefore been removed from CICIDS2017, and the features ‘Protocol’ and ‘Timestamp’
have been removed from CSE-CIC-2018. Format problems despite data conversion also
led us to remove the features ‘Flow Bytes/s’ and ‘Flow Packets/s’ from both datasets
(named ‘Flow Byts/s’ and ‘Flow Pkts/s’ in CSE-CIC-IDS2018). After this harmoniza-
tion step, both datasets have 75 features + 1 label. These features are normalized
between 0 and 1 with a min-max scaler.

5.2.2 Comparison of different machine learning models

Seven machine learning algorithms have been selected to test their performance in trans-
fer learning: logistic regression, decision tree (Table 5.3), random forest, extra tree,
Gaussian Naive Bayes, KNN, and MLP.

Table 5.2: Transfer learning results for logistic regression.

Dataset Metrics Accuracy TPR FPR AUROC F1score

CSE-CIC-IDS2018
(training)

DoS 99.93% 99.94% 0.07% 0.999 0.999
Web atk. 99.97% 27.98% 0.00% 0.640 0.437
Brute-force 99.95% 100.00% 0.08% 1.000 0.014
Botnet 96.16% 99.91% 5.25% 0.973 0.934

Dataset Metrics Accuracy TPR FPR AUROC F1score

CICIDS2017
(test)

DoS 71.89% 68.54% 26.19% 0.712 0.640
Web atk. 91.16% 4.95% 7.72% 0.486 0.014
Brute-force 3.08% 100.00% 100.00% 0.500 0.060
Botnet 93.58% 0.88% 5.46% 0.477 0.003

The results of these different learning machine models vary greatly. The classification
of some models on the test set is barely better than random (Gaussian Naive Bayes,
KNN, MLP), while others perform well on some classes (decision tree, random forest).
The attack categories are themselves more or less difficult to classify correctly: DoS
and brute-force attacks are the easiest to detect, while web attacks are difficult for all
classifiers (the best AUROC is 0.519, barely better than random).

The best classifier of all the models tested is the decision tree, with excellent per-
formance on brute-force attacks (AUROC = 0.996). Only about half of the denial of
service attacks are detected (TPR = 46.08%), with a high false positive rate (1.30%).
Web attacks and botnets do not get sufficient results to be considered detected.

Maxime LABONNE 60

5.2. TRANSFER LEARNING

Table 5.3: Transfer learning results for decision tree.

Dataset Metrics Accuracy TPR FPR AUROC F1score

CSE-CIC-IDS2018
(training)

DoS 100.00% 100.00% 0.00% 1.000 1.000
Web atk. 99.99% 87.50% 0.00% 0.937 0.926
Brute-force 100.00% 100.00% 0.00% 1.000 1.000
Botnet 100.00% 99.99% 0.00% 1.000 1.000

Dataset Metrics Accuracy TPR FPR AUROC F1score

CICIDS2017
(test)

DoS 79.51% 46.08% 1.30% 0.724 0.621
Web atk. 98.42% 4.22% 0.33% 0.519 0.066
Brute-force 99.29% 99.99% 0.73% 0.996 0.898
Botnet 99.22% 25.02% 0.01% 0.625 0.396

Table 5.4: Transfer learning results for random forest.

Dataset Metrics Accuracy TPR FPR AUROC F1score

CSE-CIC-IDS2018
(training)

DoS 91.09% 90.68% 8.72% 0.910 0.864
Web atk. 99.97% 29.18% 0.00% 0.646 0.452
Brute-force 99.96% 100.00% 0.07% 1.000 0.999
Botnet 85.91% 48.71% 0.02% 0.743 0.655

Dataset Metrics Accuracy TPR FPR AUROC F1score

CICIDS2017
(test)

DoS 68.11% 26.06% 7.72% 0.592 0.374
Web atk. 98.70% 0.00% 0.01% 0.500 0.000
Brute-force 97.68% 89.31% 2.06% 0.936 0.705
Botnet 98.92% 0.00% 0.04% 0.500 0.000

Table 5.5: Transfer learning results for extra tree.

Dataset Metrics Accuracy TPR FPR AUROC F1score

CSE-CIC-IDS2018
(training)

DoS 100.00% 100.00% 0.00% 1.000 1.000
Web atk. 99.99% 83.61% 0.00% 0.918 0.899
Brute-force 100.00% 100.00% 0.00% 1.000 1.000
Botnet 100.00% 99.99% 0.00% 1.000 1.000

Dataset Metrics Accuracy TPR FPR AUROC F1score

CICIDS2017
(test)

DoS 78.55% 43.12% 1.09% 0.710 0.595
Web atk. 98.48% 0.00% 0.24% 0.499 0.000
Brute-force 96.56% 0.14% 0.35% 0.499 0.003
Botnet 98.96% 0.00% 0.02% 0.500 0.000

Maxime LABONNE 61

CHAPTER 5. SUPERVISED TECHNIQUES TO IMPROVE INTRUSION
DETECTION

Table 5.6: Transfer learning results for Gaussian Naive Bayes.

Dataset Metrics Accuracy TPR FPR AUROC F1score

CSE-CIC-IDS2018
(training)

DoS 93.07% 97.54% 8.96% 0.943 0.898
Web atk. 54.18% 100.00% 45.84% 0.771 0.002
Brute-force 99.72% 100.00% 0.44% 0.998 0.998
Botnet 93.32% 99.81% 9.11% 0.954 0.890

Dataset Metrics Accuracy TPR FPR AUROC F1score

CICIDS2017
(test)

DoS 72.57% 28.30% 2.02% 0.631 0.429
Web atk. 98.69% 0.00% 100.00% 0.500 0.000
Brute-force 96.90% 0.00% 100.00% 0.500 0.000
Botnet 94.78% 34.83% 4.58% 0.651 0.122

Table 5.7: Transfer learning results for KNN.

Dataset Metrics Accuracy TPR FPR AUROC F1score

CSE-CIC-IDS2018
(training)

DoS 100.00% 100.00% 0.00% 1.000 1.000
Web atk. 99.99% 82.40% 2.10% 0.731 0.636
Brute-force 100.00% 100.00% 0.00% 1.000 1.000
Botnet 100.00% 100.00% 0.00% 1.000 1.000

Dataset Metrics Accuracy TPR FPR AUROC F1score

CICIDS2017
(test)

DoS 79.82% 48.35% 2.10% 0.731 0.636
Web atk. 98.71% 0.00% 0.01% 0.500 0.000
Brute-force 95.50% 21.06% 2.12% 0.595 0.225
Botnet 98.95% 0.34% 0.02% 0.502 0.007

Table 5.8: Transfer learning results for MLP.

Dataset Metrics Accuracy TPR FPR AUROC F1score

CSE-CIC-IDS2018
(training)

DoS 100.00% 100.00% 0.00% 1.000 1.000
Web atk. 99.99% 78.99% 0.00% 0.895 0.862
Brute-force 100.00% 100.00% 0.00% 1.000 1.000
Botnet 99.97% 99.91% 0.01% 1.000 0.999

Dataset Metrics Accuracy TPR FPR AUROC F1score

CICIDS2017
(test)

DoS 71.68% 29.84% 4.26% 0.628 0.435
Web atk. 98.74% 0.00% 100.00% 0.500 0.000
Brute-force 96.59% 0.01% 0.34% 0.498 0.000
Botnet 98.97% 0.00% 100.00% 0.500 0.000

Maxime LABONNE 62

5.2. TRANSFER LEARNING

The neural network does not achieve good classification scores, contrary to its perfor-
mance on KDD Cup 99 and NSL-KDD datasets. We deduced that it might be possible
to fine-tune the MLP on CICIDS2017 to improve its performance. The neural network
would be re-trained on normal traffic corresponding to the network to be monitored
(CICIDS2017 in this example) in order to improve its performance. We first want to
evaluate the performance of the MLP on CICIDS2017 in classic supervised learning, and
then to compare these results with the transfer learning technique.

The MLP has a 75-256-128-64-32-16-1 architecture and uses ReLU as the activation.
It is trained on CICIDS2017 on 20 epochs with the Adam optimizer. Figure 5.6 shows
the evolution of the AUROC score for each training and for each category of attacks.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Number of trainings

A
U
R
O
C

sc
or
e

DoS
Web

Brute-force
Botnet

Figure 5.6: AUROC scores for MLP on CICIDS2017

The brute-force attacks are never correctly detected by the neural network, which
confirms the results obtained previously with other learning machine models. Web and
botnet attacks obtain an AUROC score higher than 0.8, but the quality of their detection
deteriorates after 5 and 2 epochs respectively. This phenomenon is probably due to the
overfitting caused by the small amount of available training instances. Table 5.9 shows
the number of flows labeled as attacks for each category and their ratio within the
dataset.

DoS Web attacks Brute-force Botnet
Number of benign flows 440,031 168,186 432,074 189,067
Number of attacks flows 252,672 2,180 13,835 1,966
Attack ratio 57.42% 1.30% 3.20% 1.04%

Table 5.9: Frequency of attacks within each attack category dataset for CICIDS2017

These ratios correspond to the results obtained in Figure 5.6. The DoS attacks are

Maxime LABONNE 63

CHAPTER 5. SUPERVISED TECHNIQUES TO IMPROVE INTRUSION
DETECTION

very well recognized and have a large number of instances. On the other hand, the three
other attacks are poorly detected and have a small number of examples. Ideally, transfer
learning should improve the detection of these types of attacks by increasing the amount
of data in these categories.

The MLP for transfer learning has the same structure than the previous one. It
is first trained on CSE-CIC-IDS2018 on 20 epochs, and then re-trained 20 epochs on
CICIDS2017. Figure 5.7 shows the evolution of the AUROC score for each re-training
and for each category of attacks.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Number of re-trainings

A
U
R
O
C

sc
or
e

DoS
Web

Brute-force
Botnet

Figure 5.7: AUROC scores for MLP transfer learning with re-training

The results are very different from those shown in Figure 5.6. Web and botnet
attacks are correctly detected by the model (AUROC = 0.5). DoS attacks have a slightly
higher AUROC score (ranging from 0.5 to 0.58) but still largely insufficient for a reliable
detection. Brute-force attacks, which were not detected correctly in classic supervised
training, obtain an AUROC higher than 0.8. However, the quality of detection decreases
after 8 re-training sessions. This decrease in performance can be explained by the fact
that the re-trainings are carried out on benign traffic. This transfer learning technique is
a compromise between learning the network to monitor (but without attack) and knowing
about the attacks (but on the wrong network). The relative detection performance of
each family of attacks can be interpreted using 5.10.

DoS Web attacks Brute-force Botnet
Number of benign flows 1,442,849 2,096,222 667,626 762,384
Number of attacks flows 654,300 928 380,949 286,191
Attack ratio 45.35% 0.04% 57.06% 37.54%

Table 5.10: Frequency of attacks within each attack category dataset for CIC-IDS-2018

Maxime LABONNE 64

5.2. TRANSFER LEARNING

Brute-force attacks are both the best detected and those with the highest attack
ratio. DoS and botnet attacks are not correctly detected despite a large amount of
attack data. The detection may be too network dependent to be correctly transferred to
the target dataset. Finally, the very low number of web attacks (928 samples) explains
the misclassification of this category.

This transfer learning technique does not improve the classification of all categories of
attack, but achieves good performance for brute-force. Despite the fine-tuning performed
on the neural network, the decision tree remains the best model for transfer learning from
CSE-CIC-IDS2018 to CICIDS2017. This result can be explained by the low number of
data in certain classes, which limits the contribution of more complex algorithms such as
neural networks that require more samples. Transfer learning is a promising technique
that could achieve very good results with a lot of data and deep neural networks.

Chapters 4 and 5 were dedicated to different supervised training techniques for in-
trusion detection. It should be noted that all these techniques are therefore based on
the learning of a data set, which is contrary to the principle of anomaly detection. It
is difficult for this kind of systems to detect attacks never seen before, since they are
trained on a database of known attacks. The only attacks they can detect are those
that are close enough to other known attacks. Supervised learning on a labeled dataset
must therefore be discarded in order to perform real anomaly detection. This method is
explored in the next chapter on unsupervised detection.

Maxime LABONNE 65

CHAPTER 5. SUPERVISED TECHNIQUES TO IMPROVE INTRUSION
DETECTION

Maxime LABONNE 66

Chapter 6

Unsupervised Intrusion Detection

This chapter presents an unsupervised anomaly-based intrusion detection solution fo-
cused on protocol headers analysis. This approach is tested on a recent and realistic
dataset (CICIDS2017) over a 4-day period. Each protocol is converted to a set of nor-
malized numeric features, which are processed by 5 neural network architectures. The
output of these algorithms is an anomaly score, which is normalized and combined with
the anomaly scores of other protocols.

6.1 Protocol-based intrusion detection

6.1.1 Introduction

Anomaly detection is most often based on machine learning algorithms with supervised
learning. This is a problem as anomaly detection specifically learns the behavior of a
given network: it is therefore not directly transferable to another computer network. The
IDS must be re-trained on the network where it is deployed with a dataset containing
labelled attack data. Unfortunately, it is difficult in practice to set up such a dataset,
which requires a dedicated traffic generator [95]. Furthermore, such an IDS is mainly
trained to detect attacks that are already known, which limits its value compared to a
signature-based IDS.

On the other hand, unsupervised learning does not require any attacks in its training
data. It is therefore much easier to deploy in reality and not biased by a selection of
known attacks [96]. However, unsupervised learning has lower detection rates compared
to supervised learning. It is easier to train a machine leaning model to recognize a
pattern than to detect an anomalous element in a dataset. The advantages of this type
of training therefore come at the cost of the accuracy of the IDS.

Anomaly detection raises a semantic problem on the very definition of an intrusion.
In chapter 2, we defined an intrusion as all unauthorized activities that compromise
the confidentiality, integrity, or availability of an information system. This definition,
however, is too general in the context of intrusion detection on a computer network.
Network-based IDSs cannot detect an attack on the hardware for instance, since they

67

6.1. PROTOCOL-BASED INTRUSION DETECTION

packets. The lost information might not necessarily be useful for intrusion detection,
and this compression speeds up processing compared to packet analysis.

However, network protocols are a form of artificial language, while flows are only an
aggregation of them. Recent work in Natural Language Processing (NLP) has shown
excellent results in language modeling with machine learning algorithms [98]. Although
network protocols have many differences with natural languages, their low variance
makes them easier to predict than flows. Modeling the language of the protocols would
make it possible to recognize headers belonging to this language. Headers not belonging
to the language can therefore be considered as anomalies. For these reasons, we chose
to train machine learning algorithms to model the behavior of protocol headers.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

V IHL DSCP E Length

Identification Flags Fragment Offset

Time To Live Protocol Header Checksum

Source IP Address

Destination IP Address
Options (up to 320 bits)

w�
IPsource1 IPsource2 IPsource3 IPsource4

IPdest1 IPdest2 IPdest3 IPdest4

Length Protocol Time To Live FlagReserved

FlagDF FlagMF

Figure 6.2: IPv4 Header Feature Extraction.

Received packets are decapsulated and the protocols are processed independently.
For each protocol, the relevant features are extracted as shown in Figure 6.2. These
features are automatically normalized between 0 and 1 using the limit values given in
their documentation. The standardised and error-cleaned data are then stored in a
database.

6.1.3 Framework

Fig. 6.3 illustrates the ensemble learning process that is used to infer a packet anomaly
from the analysis of multiple protocols. First, features are extracted from protocol
headers as described previously. These features are analyzed by a machine learning
model to output an anomaly score. Finally, these anomaly scores are normalized and

Maxime LABONNE 69

CHAPTER 6. UNSUPERVISED INTRUSION DETECTION

combined to obtain an anomaly score for the entire packet.

Protocol	1 Protocol	n...

Model	1 Model	n

Anomaly
Protocol	1

Anomaly
Protocol	n

Packet
anomaly

...

...

Network	Packet

Figure 6.3: Protocol-based Ensemble Learning.

The purpose of protocol-based ensemble learning is to detect attacks related to one
protocol (e.g., SYN flooding) and to increase confidence in the predictions when attacks
are detected on multiple protocols. Moreover, it also allows to dynamically add or remove
protocols according to the monitored network. The anomaly score reflects the fact that
the analyzed protocol header is unexpected by the machine learning model. Different
combination rules can be used to obtain the packet’s anomaly score. For example, it
is possible to keep only the highest anomaly score among the headers, but this method
produces many false positives. On the other hand, keeping only the lowest anomaly
score may decrease the attack detection rate. We chose to average the anomaly scores
of the different protocol headers. This method could be weighted to better represent
the importance of each protocol in attack detection. However, in an anomaly detection
process, these weights would have been determined by already known attacks. It could
therefore have biased the model towards a poorer recognition of unknown attacks.

All packets detected as anomalies cannot be considered as attacks. A second process-
ing step is therefore necessary to analyze the relevance of these anomalies. We make the
hypothesis that a computer attack is composed of a succession of anomalies. The goal
of the IDS is not to detect all the packets that constitute an attack, but to detect the
attack itself. Packet anomalies must therefore be combined to erase isolated events and
highlight nearby anomalies. We choose a moving average as a combination rule, using
only the packet anomalies in the past to be able to do real-time intrusion detection. The
IDS considers an attack is ongoing when this final anomaly score exceeds a predefined
threshold.

Maxime LABONNE 70

6.1. PROTOCOL-BASED INTRUSION DETECTION

Algorithm 2: Packet Anomaly Prediction
input : Network packet
output: Packet anomaly (number between 0 and 1)

extract protocol headers from network packet;
foreach protocol header do

select list of features;
convert categorical features into numerical features;
normalize features between 0 and 1;
if protocol header has a trained neural network then

predict anomaly score;
else

train neural network;

average anomaly scores;

6.1.4 The problem with metrics

Anomaly-based intrusion detection usually relies on machine learning. Different metrics
are used to measure the performance of these machine learning algorithms: TPR, FPR,
F1-score, AUROC, etc. [99] The very choice of these metrics is problematic, as none
of them can perfectly represent the quality of the algorithm’s detection alone. For
instance, F1-score completely ignores true negatives. However, the main problem is that
these metrics do not reflect the problem that the algorithm is trying to solve.

Correctly classifying flows or packets and detecting attacks are two distinct prob-
lems. Nevertheless, the metrics inherited from machine learning are only relevant to the
first one. Indeed, intrusions are most often composed of several flows or packets [100].
However, detecting all the flows or packets of an unknown attacks is unrealistic without
producing a lot of false positives. Fortunately, anomaly scores can be correlated to bet-
ter estimate the probability of a given sequence being an attack. Therefore, detecting a
small portion of the flows or packets of an attack is enough to deduce that an intrusion
is ongoing. This is why metrics in intrusion detection should measure the performance
of the attack classification.

From the perspective of network administrators, we identified 3 expected outputs:

1. Correct alerts. An IDS must be able to detect attacks with a low false positive
rate. TPR, FPR, F1-score, AUROC, etc. are relevant metrics to measure the
performance of attack classification.

2. Low-latency alerts. Intrusion detection is often followed by an intrusion reaction
stage. This reaction can be manual or automatic with an IPS. Reactions are all
the more effective if the attack is detected early enough. This is why we propose a
new metric: the time between the beginning of the attack and its detection (called
Time Before Detection).

Maxime LABONNE 71

CHAPTER 6. UNSUPERVISED INTRUSION DETECTION

3. Information gathering. Collecting as much information as possible about the attack
is also a very important feature for an IDS. This information can then be used to
stop or to block the ongoing attack. However, this thesis does not cover intrusion
reaction, so we will not collect information on detected attacks to illustrate this
point.

6.2 Ensemble Learning

6.2.1 Introduction

In this section, we test 5 different architectures of neural networks trained in a unsu-
pervised way on protocol headers. The best models are then combined to obtain the
most accurate detection possible. Finally, a post-processing step refines the results and
eliminates most false alarms. We argue that the metrics usually used to evaluate the
quality of an IDS (TPR, FPR, F1-score...) are not appropriate to effectively measure
its performance in a real situation. A new metric is proposed, focusing on the detection
speed of attacks, and not on a correct classification rate. This metric is defined as the
time between the beginning of the attack and its actual detection.

Network intrusion detection has been extensively studied in the past decades. Clus-
tering is one of the most popular unsupervised method to find anomalies in a dataset.
Leung and Leckie [101] show an application of this technique with a clustering algorithm
on KDD Cup 99, specifically designed for intrusion detection.

More recently, autoencoders and deep autoencoders have been used for their ability to
reconstruct their input. However, like other methods, they are prone to generate many
false positives. Kotani and Sekiya [102] developed a flow-based method with robust
autoencoders to reduce the false positive rate on a real-world traffic dataset. Mirza and
Cosan [103] tested different RNN units for autoencoders to find the best architecture
for packet payload reconstruction. This technique is complementary to ours since we do
not analyze protocol payload data in this study.

6.2.2 Dataset

This work requires data that is representative of a real network, including both malicious
and normal traffic. This dataset needs to be labelled in order to measure the performance
of the IDS. We chose the CICIDS2017 dataset for its realistic network and credible
attacks [104].

CICIDS2017 consists of 3 119 345 labeled network flows (83 features) and 56 329 679
network packets. This dataset is also highly imbalanced, with 83.34% normal flows
against 0.00039% flows labelled as “Heartbleed” [26]. In a supervised learning task, data
augmentation would be a good solution to rebalance the 15 classes of CICIDS2017. How-
ever, in our unsupervised learning task, data augmentation cannot be used: Heartbleed
attacks will simply be more difficult to detect compared to more prevalent classes.

To the best of our knowledge, we found an undocumented shortcoming of CI-
CIDS2017. The attacker’s private IP address (172.16.0.1) remains the same for most

Maxime LABONNE 72

6.2. ENSEMBLE LEARNING

Monday Tuesday Wednesday Thursday Friday
9:00

Benign
traffic

FTP-Patator DoS Slowloris Brute-force Benign traffic
10:00

Benign
traffic

Slowhttptest Hulk Injections Botnet ARES
11:00 DoS GoldenEye Benign

traffic

Benign
traffic12:00 Benign

traffic13:00
Port scan14:00 SSH-Patator Infiltration

Dropbox15:00 Benign
traffic

Heartbleed
16:00 Benign traffic Benign traffic DDoS LOIT

Table 6.1: Attack schedule of CICIDS2017.

attacks (Tuesday, Wednesday, Thursday morning and Friday afternoon), contrary to the
authors’ indications. Furthermore, this IP address is used almost exclusively for intru-
sions, which makes it very easy to detect. We could not identify other attacking IP
addresses from the network packets. We ensured that the neural networks used in this
study did not simply learn to detect the IP address 172.16.0.1. However, this feature
was considered too important to be simply removed from the dataset.

In this work, we focus on the 8 protocols most represented in CICIDS2017: Frame,
Ethernet, ARP, IP, TCP, UDP, DNS, and HTTP. Other protocols could be added if
necessary. First, these protocols headers need to be extracted from the packets contained
in the dataset. Then, a set of features is selected from the variables contained in these
headers. Categorical features are converted into numerical features by one-hot encoding
or label encoding. All these features are then normalized between 0 and 1 (min-max
scaler).

Finally, each packet must be labelled as an attack or a benign packet. Note that
only flows are labelled by the authors of CICIDS2017. Fortunately, they detailed their
labelling process in the original paper [104] with IP addresses and timestamps. Although
these details are probably not exhaustive enough to properly label each packet during an
intrusion, they are sufficient to detect continous attacks. This preprocessing framework
creates 8 datasets for each day that are stored in SQL databases.

This process has been applied on Monday (11 701 690 packets – 11GB), Tuesday
(11 543 109 packets – 11GB), Wednesday (13 781 563 packets – 13GB), and Thursday
(9 314 199 packets – 7.8GB). Friday (9 989 118 packets – 8.3GB) has been excluded to
reduce computing time and because of the difficulty of labelling numerous very short
attacks.

6.2.3 Neural network architectures

The objective of the neural networks is to learn the behavior of each protocol header. Dif-
ferent neural network architectures can be used to solve this problem. Five architectures
are studied: deep autoencoders, deep MLPs, LSTMs, Bidirectional LSTMs (BiLSTMs),
and Generative Adversarial Networks (GANs). Each architecture and its specific use is

Maxime LABONNE 73

CHAPTER 6. UNSUPERVISED INTRUSION DETECTION

briefly described in the following.

• Autoencoder is a feedforward neural network with a bottleneck to force the network
to learn a compressed representation of the original input. We use a wide topology
with a len(input)-256-128-64-32-64-128-256-len(input) structure and ReLU as the
activation function. Autoencoders learn to minimize the distance between the
output x and the input x. The Mean Squared Error (MSE) is employed to evaluate
performance during training, and as an anomaly score during test. This approach
assumes that an attack will be more difficult to reconstruct for the network than
a normal protocol header.

• MLP is another feedforward neural network, with a len(input)-512-256-128-
64-len(input) structure and ReLU as the activation function. This MLP receives
the 50 previous protocol headers as input and tries to predict the next protocol
header. This input window provides context to the network compared to the previ-
ous approach. The distances between each prediction and the actual next protocol
header are used to evaluate performance during training, and as an anomaly score
during test.

• LSTM is a recurrent neural network that can learn long-term dependencies. Its
input is similar to the previous architecture, with a window of 40 protocol headers.
Its purpose is not to rebuild part of the input, but to predict the next protocol
header. On the other hand, BiLSTMs run input data once from beginning to
the end, and once from end to beginning to understand context better. Their
input is comprised of the 20 previous protocol headers and the 20 next protocol
headers. BiLSTMs try to predict the protocol header in the middle of this input
window. Both architectures have len(input) input units, 400 LSTM or BiLSTM
units, 2× len(input) ReLU units, and len(input) sigmoid units.

• GAN is a deep neural network architecture composed of two networks: a generator
(1000-128-256-512-len(input) with LeakyReLU and dropout) and a discriminator
(len(input)-256-128-64-1 with LeakyReLU and dropout). The first net generates
new data, while the other classifies each example as real (i.e., from the training
set) or fake (i.e., generated). GANs are trained on Monday with benign traffic.
Only discriminators are then used as classifiers for the next days. This approach
assumes that an attack will not be recognized by the discriminator as part of the
training set.

6.2.4 Experiments

The proposed framework was implemented on two GTX 1080 Ti GPUs and an In-
tel i5-7500 CPU with 64GB of RAM. 8 models of each neural network architecture
were trained on Monday’s traffic on each protocol: Frame (11 701 690 instances), Eth-
ernet (11 701 690 instances), ARP (46 971 instances), IP (11 618 823 instances), TCP

Maxime LABONNE 74

6.2. ENSEMBLE LEARNING

Table 6.2: Time Before Detection for CICIDS2017 Attacks

Time Before Detection (s)
FTP-Patator 28.72
SSH-Patator Not detected
DoS slowloris Not detected
DoS Slowhttptest 550.10
DoS Hulk 23.60
DoS GoldenEye 170.07
Heartbleed 175.78
Web Brute-force 2293.03
XSS Not detected
SQL injection Not detected
Infiltration 874.92

of 3 stages: Meta exploit Win Vista (14:19, 14:20-14:21, and 14:33-14:35), Infiltration –
Cool disk – MAC (14:53-15:00) and Infiltration – Dropbox download Win Vista (15:04-
15:45). The intrusion is first detected between 14:33 and 14:35, and then between 15:10
and 15:31. Five attacks are detected in less than 5 minutes, allowing for a quick response.
Some attacks are more difficult to identify because of a slowly increasing anomaly score
(SSH-Patator, DoS slowloris, Web Brute-force, Infiltration). Finally, XSS attacks and
SQL injections have given signals that are too weak to be detected by the IDS.

6.2.5 Conclusions

Our proposed detection framework offers a high detection rate while solving the main
problem of anomaly detection (high FPR). Its deployment in a real network does not
require a traffic generator or transfer learning like supervised learning methods would.
The protocol-based detection is highly customizable, with the ability to add or remove
protocols depending on the monitored network. The main drawback of this method is a
high training time (up to 14 hours for a single protocol) compared to other unsupervised
techniques. Feature selection and a reduced input window for BiLSTMs could help speed
up the training.

Attack recognition is also an important information for intrusion reaction. Indeed,
for example, mitigation methods for DDoS attacks and targeted infiltrations are very
different [105]. A multi-class classifier could analyze protocol anomalies to identify pat-
terns specific to certain attacks. This classifier would be independent of the network
and could be reused in all implementations. This system could not precisely classify
unknown attacks but output a family of attacks (DoS, probe, etc.).

Maxime LABONNE 77

CHAPTER 6. UNSUPERVISED INTRUSION DETECTION

Maxime LABONNE 78

Chapter 7

Predicting Bandwidth Utilization

Predicting the bandwidth utilization on network links can be extremely useful for de-
tecting congestion in order to correct it before it occurs. In this chapter, we present a
solution to predict the bandwidth utilization between different network links with a very
high accuracy. Section 1 introduces the concepts of bandwidth utilization prediction.
Section 2 discusses related work about congestion detection. Section 3 introduces the
data generation process using a simulated network. Section 4 describes the preprocess-
ing stage, from data collection to the creation of the dataset. Section 5 presents the
machine learning models used to predict the bandwidth utilization on network links and
our experimental results. Finally, section 6 discusses areas of future work and concludes
this chapter.

7.1 Introduction

All companies that offer network services (ISPs, server hosting services etc.) use mech-
anisms to monitor link utilization. These mechanisms usually involve network interface
monitoring and collection of performance statistics (e.g. with SNMP [106]), monitoring
of flows (e.g. with NetFlow [107], sFlow [108], etc.) or capturing packets and further
analyzing them with a specific tool [109]. Detection of high network utilization is a prob-
lem that needs to be addressed efficiently since it usually causes packet loss, increased
latency due to buffering of packets, and interference with TCP’s congestion-avoidance
algorithms. The result is a degradation of the Quality of Service (QoS) of the network.

There are numerous ways to circumvent the problem like allocating more bandwidth
to accommodate for the increased traffic, prioritizing important traffic through QoS,
blocking undesirable traffic, or load balancing the traffic across multiple paths [110].
However, all of these solutions come after the bandwidth problem has been detected.
Predicting the future bandwidth consumption would allow to proactively correct this
problem.

One of the most important metrics for network performance evaluation is the network
link utilization at any given time. Link utilization is usually expressed as a percentage
of the total capacity of a network link. For example an 100 Mbps Ethernet link that

79

CHAPTER 7. PREDICTING BANDWIDTH UTILIZATION

carries 20 Mbps of traffic exhibits 20% utilization. The higher the percentage of usage,
the lower the quality of the link, resulting in packet loss and increased latency.

Our solution predicts network utilization using machine learning algorithms. A sim-
ulated network is created to collect data from network and system resource statistics.
They are processed with feature engineering and merged to create a dataset, which is
fed to the machine learning algorithms. Three models are tested: ARIMA, MLP and
LSTM. Our goal is to identify weak signals among the features of the dataset to predict
the bandwidth utilization.

7.2 Related Work

Congestion detection is a useful tool to improve the performance of any type of network.
Many solutions have been proposed at the network protocol level or at the application
level. The use of machine learning algorithms has gained prominence over the last two
decades in the literature.

Devare and Kumar [111] applied time series analysis to congestion control using
clustering and classification techniques. They generated traffic patterns for a number
of clients, selected relevant data and preprocessed them to build a database. Differ-
ent machine learning classification algorithms are trained with these data and used to
predict the future traffic intensity. Countermeasures are then applied to improve the
performance of the network.

Singhal and Yadav [112] used neural networks to detect congestion in wireless sensor
networks. The authors created their own dataset using NS-2 [113] to generate a random
traffic. Three features are used as inputs for the machine learning algorithm: the number
of participants, the traffic rate, and the buffer occupancy. This neural network has a
3-10-10-1 structure and predicts a level of congestion (low, medium, or high).

Madalgi and Kumar [114] explored a similar idea with two congestion detection
classifiers. Their dataset is also generated with NS-2 and machine learning algorithms
are used to predict the same three levels of congestion. The authors compared the
performance of a MLP and a decision tree (M5 model tree). They show that the decision
tree is trained faster (0.53 second against 8.25 seconds) and outperforms the MLP in
terms of accuracy, true positive rate, and false positive rate.

The same authors [115] proposed another work using Support Vector Machines
(SVMs). They specifically used LibSVM and Sequential Minimal Optimization (SMO),
with Radial Basis Function (RBF) as kernel. Different parameters were tweaked to find
the best values to improve the classification accuracy. The best model is trained in 18.81
seconds and achieves slightly lower results than the previous M5 decision tree.

Zhang et al. [116] worked on a specific type of network congestion: low-rate denial of
service attacks. This type of attacks exploits the TCP congestion-control mechanism to
deplete the resources of the target. The authors used the Power Spectral Density (PSD)
entropy function to reduce the number of calculations: a flow is classified as normal
below a certain threshold, and as an attack above a second threshold. A SVM classifies
uncertain connections between these two thresholds, using 8 features. The experimental

Maxime LABONNE 80

7.3. DATA GENERATION USING A SIMULATED NETWORK

results show that this solution can detect 99.19% of the low-rate denial of service attacks
in the dataset.

7.3 Data Generation Using A Simulated Network

A testbed network was created in order to collect data for the machine learning algo-
rithms. Regular TCP and UDP traffic was generated which occasionally caused heavily
loaded links in order to simulate real-world scenarios. The network topology is illustrated
in Figure 7.1.

Figure 7.1: Topography of the Simulated Network.

Virtualbox was used to simulate the network with each end host and router being
a separate virtual machine. Network links were configured with a maximum capacity
of 100 Mbps and with 2 ms of latency. Finally, a separate VM called Orchestrator was
created to orchestrate the simulation phase on the network.

iPerf3 was used to simulate traffic in the network [117]. iPerf3 is primarily used
for bandwidth measurements of network links by generating TCP and UDP flows with
certain parameters. Using iPerf3 as a traffic generator has its limitations as it cannot
always generate realistic network traffic. For example, it mainly generates packets with
fixed inter-departure times and cannot create bursty traffic. It is, however, easily script-
able and allowed us to quickly generate training data for our models. Moreover, we have
randomized some of the flow parameters to introduce some diversity into the network
traffic. The random flow parameters are summarized in Table 7.1.

The bitrate, flow duration, and flow inter-arrival time intervals were chosen to ensure
that maximum capacity would be reached on certain or all links, even for a short period
of time. In other words, we had to make sure that we had data ranging from zero traffic
to maximum capacity while keeping simulation times relatively short.

During the simulation phase, a script running on the Orchestrator was in charge

Maxime LABONNE 81

CHAPTER 7. PREDICTING BANDWIDTH UTILIZATION

Table 7.1: Randomized Flow Parameters

Parameter Values Distribution
Protocol TCP, UDP Uniform

Bitrate Average: 2 Mbps
Std: 500Kbps Normal

Flow Duration [30,500] seconds Uniform
Packet Length [200,1472] bytes Uniform

Flow Inter-arrival Time [20,2000] seconds Uniform
Source/Destination couple IP of the end hosts Uniform

iPerf3 Server Port [5001,5500] Uniform

of starting the data collection mechanism on each one of the routers. It started every
[20, 2000] seconds an iPerf3 server on a destination machine and an iPerf3 client on a
source machine, thus creating a new data flow with certain characteristics. The results
presented later in this paper come from a three-day simulation, where all the interfaces
of each one of the routers were monitored. The data were collected in the form of text
files with a predetermined frequency (every 3 seconds). The simulation generated around
85 000 files per interface for a total of 2 million files (12 GB) for all the 22 monitored
interfaces.

7.4 Preprocessing Stage

7.4.1 Data Collection

Machine learning algorithms for supervised learning require labelled data as input. The
prediction quality is directly related to the relevance of these data. Two tools were used
in order to obtain a maximum of information on the bandwidth of the network links:
Netmate and Dstat.

Netmate (Network Measuring and Accounting Meter) [118] is a network measurement
tool that can collect a number of network statistics, such as packet volumes and sizes,
packet inter-arrival times, and flow duration. There are 46 features collected by Netmate
for every active flow at the time of the capture. A separate instance of Netmate was
run for every interface on a router. This tool was configured to export its output as a
.csv file every 3 seconds for every interface. Every .csv file was timestamped with the
seconds since epoch format.

Dstat [119] is a versatile Linux tool for generating system resource statistics from
numerous system components like CPU, RAM, input/output devices, networks connec-
tions and interfaces, and others. This tool is highly configurable and can output the
collected data into a .csv file for further processing. Dstat collected 29 statistics with
our configuration.

Maxime LABONNE 82

7.4. PREPROCESSING STAGE

7.4.2 Feature Engineering

Data from Netmate and Dstat require a preprocessing phase in order to create datasets
in a format suitable for machine learning algorithms. Given the fact that Netmate gen-
erates its statistics for every active flow, a feature engineering procedure is necessary
to create new features that would describe the status of the link collectively. Mathe-
matical functions like min(), max(), mean(), sum() and count() were applied to the
Netmate data to obtain 86 new features. For instance, the total number of packets
can be calculated with the sum of the number of packets for each of the active flows:
total_pkt_vol = sum(pkt_volume_of_each_flow). These 86 features are then con-
catenated with the 29 features coming from Dstat using the timestamp value to syn-
chronize the output of the two tools. After this feature engineering step, 116 features
are collected from every interface of each router in our network every 3 seconds.

The feature engineering process is illustrated in Figure 7.2.

Figure 7.2: Feature Engineering Workflow.

7.4.3 Creation of a Dataset

A dataset for supervised learning needs to be labeled for the training process. The
two most important features to predict the link usage are the download_bitrate and
upload_bitrate provided by Dstat. A new feature called max_bitrate is created by
choosing the maximum of the two values and dividing it by the nominal maximum
capacity of the link (100 Mbps). In other words, the new column gives the link usage
ratio, either in the uplink or the downlink direction. The max_bitrate column is then
duplicated to create the future_bitrate column, which is shifted forward by an offset
value. Machine learning algorithms are trained to predict this future_bitrate feature,
namely the future max_bitrate of the link.

The offset value along with the frequency of the data collection give the time depth of
the future predictions. Different values were tested between 1 and 40. The quality of the
prediction decreases significantly for an offset greater than 20. The value of 5 constitutes

Maxime LABONNE 83

CHAPTER 7. PREDICTING BANDWIDTH UTILIZATION

an optimal comprise between time and accuracy, without being too resource-intensive or
time consuming. A frequency of 3 seconds with an offset of 5 means that our model will
predict the future_bitrate value 15 seconds in the future. 15 seconds is enough time
for a reaction mechanism to correct future congestion. Finally, the dataset is normalized
between 0 and 1 using a min-max scaler. This normalization step is important for the
training process, since the difference in the features scales can cause problems during
the training.

7.5 Experiments

7.5.1 Machine learning algorithms

Three types of machine learning algorithms are tested and evaluated in this paper: the
Autoregressive Integrated Moving Average (ARIMA), the Multilayer Perceptron (MLP)
and the Long Short-Term Memory network (LSTM). These algorithms are trained in a
supervised way and try to predict the future bandwidth utilization based on 1 feature for
ARIMA (future_bitrate), and 115 features for the two neural networks. The dataset
was randomly divided into k subsets of equal size. The first subset was used for validation
and the models were trained on k-1 subsets (k-fold cross-validation). This technique
gives a more accurate estimate of the models’ performance by reducing bias and sample
variability between training and test data [120].

ARIMA is a widely used approach for analyzing and forecasting time series data. If
necessary, time series are made stationary by differencing or applying nonlinear trans-
formations. A stationary time series has the property that the mean, variance, and
autocorrelation are constant over time. This type of data is easier to predict since its
statistical properties will be the same in the future. The ARIMA model is fitted on a
single feature: the future bandwidth utilization future_bitrate.

MLPs are a classical feedforward neural network architecture. For this work, a 116-
256-128-64-1 topology is used, with ReLU as the activation function. MLPs are fast to
train and suitable for regression prediction problems, particularly with tabular datasets.
Hyperparameters were tuned manually, with a batch size of 128 during 10 epochs, using
the Adam optimizer.

LSTMs are a special kind of recurrent neural networks, capable of learning long-
term dependencies [121]. They are designed to recognize patterns in sequence of data,
with an additional temporal dimension. This feature is particularly relevant to our
problem, which requires learning new network behaviors while remembering past events.
Hyperparameters were tuned manually, for a batch size of 128 during 10 epochs, using
the Adam optimizer. The final architecture consists of 300 LSTM units and 116 ReLu
units.

These three models were chosen to assess the complexity of the problem being mod-
elled. ARIMA is able to model periodic phenomena such as seasonal sales with good
accuracy. If it proves to be effective, this will mean that the prediction of network link
usage can be summarized in one feature. MLP and LSTM are two models that use

Maxime LABONNE 84

k k

k k

k

7.5. EXPERIMENTS

It is immediately apparent from the results that ARIMA’s predictions have a high
bias and a poor accuracy compared to the other models. The errors produced by ARIMA
are too significant for this model to be used in a real context. These poor results can
be attributed to the fact that the model is fitted on a single feature. The other features
could contribute greatly to the quality of the algorithm’s prediction.

LSTM models perform better than MLPs. For all interfaces the difference between
the actual value and the predicted one rarely exceeded 3%, which means that the future
bandwidth consumption is predicted with an error of +/- 300 Kbps on 100 Mbps links.
On the other hand, the difference for the MLP sometimes exceeded 20%, which might
cause significant underestimation or overestimation of the future link capacity. The
ability of LSTM models to recall past variations in bandwidth usage may explain the
high quality of their predictions.

In addition, the results for some interfaces were significantly better than for others.
The results were worse when the interface had higher variance of the traffic carried
during the simulation phase. In other words, the predictions were much closer to the
real values for interfaces that were less utilized during simulation than for interfaces that
had seen the whole spectrum from 0 to 100 Mbps.

7.5.3 Real-Time Prediction

After having trained and evaluated the LSTM model, experiments with real-time band-
width usage prediction were conducted. The objective was to integrate the real-time
prediction mechanism with a Software-Defined Networking (SDN) platform in order to
be able to detect future bottlenecks and react proactively to avoid them. SDN is a cen-
trally managed network architecture, where a controller maintains a global view of the
network and is able to dynamically reconfigure network devices to meet certain needs.

In this case, the SDN controller was running in the Orchestrator virtual machine
and was also in charge of receiving collected data from the routers and using the
trained LSTM model to predict future bandwidth consumption on their interfaces. Open
vSwitch (OVS) [122] was installed on the router virtual machines. Open vSwitch is a
virtual network switch, which uses the OpenFlow protocol to connect to the controller
and receive reconfiguration commands. Rsync was used in order to provide the controller
with the necessary data for the prediction. Rsync is a Linux tool that can copy files from
a remote location to a local one in real time. It transferred to the controller the data
collected by the router every 3 seconds. The controller then feeds them to the LSTM
model and obtain a future value of the bandwidth usage ratio.

In this test, we only monitored one router (namely router2) whose interfaces were
bridged to the OVS switch so that the controller could have a view of the traffic passed
through them. For the prediction data, as well as the OpenFlow signaling messages, we
opted for an out-of-band approach. In other words, the switch-controller communication
and the prediction data used a different dedicated channel and not the bridged interfaces
used for application data.

A separate instance of the prediction mechanism was running for each one of router2’s
interfaces. With this setup, the controller received prediction data every 3 seconds

Maxime LABONNE 87

CHAPTER 7. PREDICTING BANDWIDTH UTILIZATION

Figure 7.7: Leveraging SDN for Proactive Management of the Network.

and was able to predict each interface’s bandwidth 15 seconds ahead. As a prevention
measure we experimented with two solutions. A radical one was to block traffic if the
bandwidth prediction exceeded a certain threshold. For example, if the prediction for
an interface exceeded 0.8 (80% of the link’s capacity), the controller instructed the
switch to drop new incoming packets from this interface to avoid link overload. A more
sophisticated approach was load-balancing the traffic upon reaching a certain threshold.
For instance, if the outgoing bandwidth reached 50% of the capacity of a certain link,
the controller installed flow rules on the switch that spread traffic across other available
links.

7.6 Conclusions and Future Work

Three machine learning algorithms (ARIMA, MLP, and LSTM) were tested to predict
bandwith usage ratios 15 seconds ahead. LSTM models have shown their ability to
predict network link usage with high accuracy (errors below 3%). These models can
be deployed in real time and synchronized with a SDN platform to prevent congestion
before it occurs. This type of architecture allows the use of load balancing mechanisms
to avoid packet loss by maximizing network throughput.

It is possible that we could get similar results (or even improve them) by removing
some features, especially those collected by Dstat that do not pertain to network traffic.
To that end, it would be interesting to explore dimensionality reduction methods or
simply try smaller feature sets and evaluate their performance. Less features would
mean less resources required for prediction, as well as less bandwidth needed to upload
the prediction data to the controller.

Investigating the predictability of other parameters might indicate congestion or
other network problems. An example would be prediction of future RAM and CPU
usage on the router. Resource depletion of network equipment would mean lost packets

Maxime LABONNE 88

7.6. CONCLUSIONS AND FUTURE WORK

and high latency which in turn would cause congestion and degradation of the network
performance in general.

Finally, we also plan to migrate to a different testbed network possibly with real
hardware in order to re-evaluate the performance and make sure that our solution was not
somehow topology dependent. For the same reasons, we also plan to use real applications
to generate traffic like FTP, HTTP, and RTP or a real traffic generator.

Maxime LABONNE 89

CHAPTER 7. PREDICTING BANDWIDTH UTILIZATION

Maxime LABONNE 90

Chapter 8

Conclusions and future work

8.1 Summary and Conclusions

In this thesis, we proposed efficient techniques to deploy anomaly-based IDSs on real
networks. We started by conducting a comprehensive state of the art on neural networks
classifiers for KDD Cup 99 and NSL-KDD. This survey determined that the two types
of neural networks that perform best on this problem are MLPs and SOMs. It also
highlighted several areas for improvement in terms of parameter optimization and data
processing.

These findings were used to design two solutions on the same datasets. The first
solution uses only neural networks and is based on a three-step process: 1/ data aug-
mentation to rebalance the datasets; 2/ hyperparameters optimization to improve the
performance of neural networks and 3/ ensemble learning to maximize the quality of de-
tection. A cascade-structured architecture is adopted to decrease the FPR and increase
the TPR by creating a succession of meta-specialists (88.39% accuracy and 1.94% FPR
on NSL-KDD). Moreover, the second solution adds other machine learning models that
are also optimized and combined to produce meta-specialists. This solution doesn’t use
a cascade-structured architecture but classifies the connections according to the surest
meta-specialist in its prediction (86.59% accuracy and 1.66% FPR on NSL-KDD).

Nonetheless, the development of IDSs with supervised learning did not fulfil the
initial objective of the thesis. Indeed, the architectures described previously must be
trained on labelled datasets that correspond to the monitored network. We wanted
to maintain their good results while being able to adapt them to new networks. A
solution using transfer learning was proposed in order to re-train on new networks models
previously trained on the CSE-CIC-IDS2018 dataset. This technique requires more
data to be correctly tested and detect all categories of attack. We have developed a
way to diversify the contribution of anomaly-based IDS, by generating signatures from
the detected anomalies. This system can populate signature databases for widely used
misuse-based IDSs such as Snort and Suricata. It can also be used as part of a hybrid
IDS, combining signature-based and anomaly-based detection.

In order to solve the problem of deploying IDSs on unknown networks, we have

91

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

developed an IDS with unsupervised learning. This model uses an innovative protocol
analysis architecture to output an anomaly score for the entire packet. Anomaly scores
are then averaged to monitor the evolution of abnormal behaviour on the network. An
attack is detected when this averaged score exceeds a certain threshold, which allows for
true intrusion detection and not packet or flow classification. This system identifies 7 of
the 11 unknown attacks on the CICIDS2017 dataset without any false positives.

The last work carried out during this thesis focuses on the prediction of denial of
service attacks and, by extension, the prediction of network congestion. We generated
our own dataset using a simulated network with periods of high network usage. This
dataset was then fed to 3 machine learning models (ARIMA, MLP, LSTM) to evaluate
their performance. The LSTM model outperforms ARIMA and MLP with very accurate
predictions, rarely exceeding a 3% error (40% for ARIMA and 20% for the MLP). Finally,
we showed that the proposed solution can be used in real time with a reaction managed
by a SDN platform.

8.2 Future Research Proposals

Different research proposals can be identified for future work in network intrusion de-
tection. Several strategies were proposed during this thesis depending on the type of
learning used. Each of these strategies can be improved by proposing solutions to address
their weaknesses.

First, the contribution of supervised learning appears to be limited for intrusion
detection due to the lack of labelled data. Machine learning techniques like VAEs or
GANS could be used to generate labeled traffic containing fake attacks. These models
would input normal traffic from the network to be monitored, and output traffic with
realistically added attacks. These machine learning algorithms would then be trained on
a series of labeled datasets, in order to learn how to insert the same attacks into normal
traffic. Ideally, a model would be trained per attack or per type of attack to ensure
proper learning and the ability to modify attack ratios in the generated traffic.

The problem with this solution is that the IDS would still not be trained to detect
unknown attacks. It would learn attacks from the artificially generated traffic, and thus
indirectly from the datasets that were used to train the generative model. However, this
technique remains important for validating the performance of a deployed IDS, regardless
of the type of learning. This is indeed a problem that can also occur with unsupervised
detection: since the IDS has never seen any attacks on the monitored network, we cannot
be sure that it detects them correctly. A generative model would allow us to test the
performance of the IDS and identify malfunctions before actual deployment.

Another problem that this generative model should solve is the consistency in the
sequence of events of the simulated attacks. For example, data extraction traffic cannot
occur before the system from which the data is extracted has been compromised. A
realistic sequence of events within an attack is particularly important for context-based
anomaly detection techniques. This is also an important point to motivate work focused
on attack detection, not packet or flow classification. The performance of unsupervised

Maxime LABONNE 92

8.2. FUTURE RESEARCH PROPOSALS

detection can be improved, especially through a more intelligent aggregation of the
different anomaly scores.

Maxime LABONNE 93

BIBLIOGRAPHY

Maxime LABONNE 94

Bibliography

[1] M. Roesch, “Snort - lightweight intrusion detection for networks,” in Proceedings
of the 13th USENIX Conference on System Administration, LISA ’99, (USA),
p. 229–238, USENIX Association, 1999.

[2] “Suricata | open source ids / ips / nsm engine,” Dec. 2009. [Online; accessed
2019-12-16].

[3] S. Axelsson, “The base-rate fallacy and the difficulty of intrusion detection,” ACM
Trans. Inf. Syst. Secur., vol. 3, p. 186–205, Aug. 2000.

[4] M. Labonne, A. Olivereau, and D. Zeghlache, “A survey of neural network classi-
fiers for intrusion detection (submitted),” 2020.

[5] M. Labonne, A. Olivereau, and D. Zeghlache, “Automatisation du processus d’en-
traînement d’un ensemble d’algorithmes de machine learning optimisés pour la dé-
tection d’intrusion,” in Proceedings of Journées C&ESAR 2018, pp. 1–10, Journées
C&ESAR, 11 2018.

[6] M. Labonne, A. Olivereau, B. Polvé, and D. Zeghlache, “A cascade-structured
meta-specialists approach for neural network-based intrusion detection,” in 16th
IEEE Annual Consumer Communications & Networking Conference, CCNC 2019,
Las Vegas, NV, USA, January 11-14, 2019, pp. 1–6, 2019.

[7] M. Labonne, B. Polvé, and A. Olivereau, “Procédé et système de détection
d’anomalie dans un réseau de télécommunications,” 2019.

[8] M. Labonne, A. Olivereau, B. Polve, and D. Zeghlache, “Unsupervised protocol-
based intrusion detection for real-world networks,” in ICNC 2020: International
Conference on Computing, Networking and Communications, 2020 International
Conference on Computing, Networking and Communications (ICNC), (Big Island,
United States), pp. 299–303, IEEE, Feb. 2020.

[9] M. Labonne, C. Chatzinakis, and A. Olivereau 2020.

[10] “Isms family of standards,” standard, International Organization for Standardiza-
tion, Geneva, CH, 2018.

95

BIBLIOGRAPHY

[11] J. P. Anderson, “Computer security technology planning study,” Oct. 1972. [On-
line; accessed 2019-10-18].

[12] J. P. Anderson, “Computer security threat monitoring and surveillance,” Feb. 1980.
[Online; accessed 2019-10-18].

[13] D. E. Denning, “An intrusion-detection model,” IEEE Trans. Softw. Eng., vol. 13,
pp. 222–232, Feb. 1987.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine Learning in Python ,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[15] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-
sorflow: Large-scale machine learning on heterogeneous distributed systems,”
arXiv:1603.04467 [cs], 3 2016. arXiv: 1603.04467.

[16] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, and Z. Lin,
“Automatic differentiation in pytorch,” p. 4.

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten, “The weka data mining software: an update,” ACM SIGKDD Explorations
Newsletter, vol. 11, p. 10, 11 2009.

[18] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A survey of
network-based intrusion detection data sets,” CoRR, vol. abs/1903.02460, 2019.

[19] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, and K. Nakao, “Statistical
analysis of honeypot data and building of kyoto 2006+ dataset for nids evaluation,”
in Proceedings of the First Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security, BADGERS ’11, (New York, NY, USA), p. 29–36,
Association for Computing Machinery, 2011.

[20] A. Sperotto, R. Sadre, F. van Vliet, and A. Pras, “A labeled data set for flow-based
intrusion detection,” in IP Operations and Management (G. Nunzi, C. Scoglio, and
X. Li, eds.), (Berlin, Heidelberg), pp. 39–50, Springer Berlin Heidelberg, 2009.

[21] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for network in-
trusion detection systems (unsw-nb15 network data set),” 11 2015.

[22] “Kdd-cup-99 task description.” [Online; accessed 2017-06-18].

Maxime LABONNE 96

BIBLIOGRAPHY

[23] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the
kdd cup 99 data set,” IEEE, 2009. [Online; accessed 2017-06-24].

[24] “Canadian institute for cybersecurity | research | datasets | unb.” [Online; accessed
2017-07-17].

[25] A. Habibi Lashkari, G. Draper Gil, M. Mamun, and A. Ghorbani, “Characteriza-
tion of tor traffic using time based features,” pp. 253–262, 01 2017.

[26] R. Panigrahi and S. Borah, “A detailed analysis of cicids2017 dataset for designing
intrusion detection systems,” vol. 7, pp. 479–482, 01 2018.

[27] I. Sharafaldin, A. Habibi Lashkari, and A. Ghorbani, “Toward generating a new
intrusion detection dataset and intrusion traffic characterization,” pp. 108–116, 01
2018.

[28] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in
Proceedings of COMPSTAT’2010, p. 177–186, Springer, 2010. [Online; accessed
2017-07-21].

[29] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learn-
ing and stochastic optimization,” Journal of Machine Learning Research, vol. 12,
no. Jul, p. 2121–2159, 2011.

[30] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” arXiv:1212.5701 [cs],
12 2012. arXiv: 1212.5701.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980 [cs], 12 2014. arXiv: 1412.6980.

[32] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep
belief nets,” Neural computation, vol. 18, no. 7, p. 1527–1554, 2006.

[33] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th International Conference on International
Conference on Machine Learning, ICML’10, (USA), pp. 807–814, Omnipress, 2010.

[34] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting.,” Journal of
Machine Learning Research, vol. 15, no. 1, p. 1929–1958, 2014.

[35] F. Palenzuela, M. Shaffer, M. Ennis, J. Gorski, D. McGrew, D. Yowler, D. White,
L. Holbrook, C. Yakopcic, and T. M. Taha, “Multilayer perceptron algorithms for
cyberattack detection,” pp. 248–252, 2016 IEEE National Aerospace and Electron-
ics Conference (NAECON) and Ohio Innovation Summit (OIS), 7 2016.

[36] N. Mowla, I. Doh, and K. Chae, “Evolving neural network intrusion detection
system for mcps,” pp. 183–187, 2017 19th International Conference on Advanced
Communication Technology (ICACT), 2 2017.

Maxime LABONNE 97

BIBLIOGRAPHY

[37] S. Potluri and C. Diedrich, “Accelerated deep neural networks for enhanced in-
trusion detection system,” pp. 1–8, 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA), 9 2016.

[38] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training
of deep networks,” p. 153–160, 2007. [Online; accessed 2017-07-21].

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification,” arXiv:1502.01852 [cs], 2
2015. arXiv: 1502.01852.

[40] J. Kim, N. Shin, S. Y. Jo, and S. H. Kim, “Method of intrusion detection using
deep neural network,” pp. 313–316, 2017 IEEE International Conference on Big
Data and Smart Computing (BigComp), 2 2017.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” p. 1097–1105, 2012. [Online; accessed 2017-05-29].

[42] A. Ng, “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no. 2011, p. 1–19,
2011.

[43] Q. Niyaz, A. Javaid, W. Sun, and M. Alam, “A deep learning approach for network
intrusion detection system,” vol. 15, p. 21–26, 2016. [Online; accessed 2017-04-04].

[44] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught learning:
transfer learning from unlabeled data,” p. 759–766, ACM, 2007. [Online; accessed
2017-04-07].

[45] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula, “Autoencoder-
based feature learning for cyber security applications,” pp. 3854–3861, 2017 Inter-
national Joint Conference on Neural Networks (IJCNN), 5 2017.

[46] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[47] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio,
“Why does unsupervised pre-training help deep learning?,” Journal of Machine
Learning Research, vol. 11, no. Feb, p. 625–660, 2010.

[48] K. Alrawashdeh and C. Purdy, “Toward an online anomaly intrusion detection
system based on deep learning,” pp. 195–200, 2016 15th IEEE International Con-
ference on Machine Learning and Applications (ICMLA), 12 2016.

[49] Y. Liu and X. Zhang, “Intrusion detection based on idbm,” pp. 173–177, 2016 IEEE
14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf
on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence
and Computing and Cyber Science and Technology Congress(DASC/PiCom/Dat-
aCom/CyberSciTech), 8 2016.

Maxime LABONNE 98

BIBLIOGRAPHY

[50] M. Z. Alaya, S. Bussy, S. Gaïffas, and A. Guilloux, “Binarsity: a penalization for
one-hot encoded features,” arXiv:1703.08619 [stat], 3 2017. arXiv: 1703.08619.

[51] “Deep neural network - file exchange - matlab central.” [Online; accessed 2018-07-
31].

[52] “Deep learning toolbox - file exchange - matlab central.” [Online; accessed 2018-
07-31].

[53] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE Transactions on Neural Networks, vol. 5,
pp. 157–166, 3 1994.

[54] R. C. Staudemeyer, “Applying long short-term memory recurrent neural networks
to intrusion detection,” South African Computer Journal, vol. 56, no. 1, p. 136–154,
2015.

[55] J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long short term memory recur-
rent neural network classifier for intrusion detection,” pp. 1–5, 2016 International
Conference on Platform Technology and Service (PlatCon), 2 2016.

[56] T. T. H. Le, J. Kim, and H. Kim, “An effective intrusion detection classifier us-
ing long short-term memory with gradient descent optimization,” pp. 1–6, 2017
International Conference on Platform Technology and Service (PlatCon), 2 2017.

[57] “Ghsom - the growing hierarchical self-organizing map.” [Online; accessed 2017-
07-21].

[58] A. Rauber, D. Merkl, and M. Dittenbach, “The growing hierarchical self-organizing
map: exploratory analysis of high-dimensional data,” IEEE Transactions on Neural
Networks, vol. 13, pp. 1331–1341, 11 2002.

[59] T. Kiziloren and E. Germen, “Anomaly detection with self-organizing maps and
effects of principal component analysis on feature vectors,” vol. 2, pp. 509–513,
2009 Fifth International Conference on Natural Computation, 8 2009.

[60] S. McElwee and J. Cannady, “Improving the performance of self-organizing maps
for intrusion detection,” pp. 1–6, SoutheastCon 2016, 3 2016.

[61] V. Almendra and D. Enachescu, “Using self-organizing maps for binary classifica-
tion with highly imbalanced datasets,” International Journal of Numerical Analysis
and Modeling, series b, vol. 5, no. 3, p. 238–254, 2014.

[62] X. Cheng and S. Wen, “A real-time hybrid intrusion detection system based on
principle component analysis and self organizing maps,” vol. 3, pp. 1182–1185,
2010 Sixth International Conference on Natural Computation, 8 2010.

Maxime LABONNE 99

BIBLIOGRAPHY

[63] D. Ippoliti and X. Zhou, “An adaptive growing hierarchical self organizing map
for network intrusion detection,” pp. 1–7, 2010 Proceedings of 19th International
Conference on Computer Communications and Networks, 8 2010.

[64] M. Salem and U. Buehler, “An enhanced ghsom for ids,” pp. 1138–1143, 2013
IEEE International Conference on Systems, Man, and Cybernetics, 10 2013.

[65] P. Yichun, N. Yi, and H. Qiwei, “Research on intrusion detection system based
on irbf,” pp. 544–548, 2012 Eighth International Conference on Computational
Intelligence and Security, 11 2012.

[66] M. Dorigo and M. Birattari, “Ant colony optimization,” in Encyclopedia of ma-
chine learning, p. 36–39, Springer, 2011.

[67] G. A. Carpenter, “Art 2-a: An adaptive resonance algorithm for rapid category
learning and recognition,” Neural networks, 1991. [Online; accessed 2017-07-26].

[68] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Fuzzy art: Fast stable learning
and categorization of analog patterns by an adaptive resonance system,” Neural
networks, vol. 4, no. 6, p. 759–771, 1991.

[69] X. Han, “An improved intrusion detection system based on neural network,” vol. 1,
pp. 887–890, 2009 IEEE International Conference on Intelligent Computing and
Intelligent Systems, 11 2009.

[70] N. Ngamwitthayanon and N. Wattanapongsakorn, “Fuzzy-art in network anomaly
detection with feature-reduction dataset,” pp. 116–121, 7th International Confer-
ence on Networked Computing, 9 2011.

[71] P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman, An overview of issues
in testing intrusion detection systems. 2003. [Online; accessed 2017-07-25].

[72] R. Werlinger, K. Hawkey, K. Muldner, P. Jaferian, and K. Beznosov, “The chal-
lenges of using an intrusion detection system: is it worth the effort?,” p. 107–118,
ACM, 2008. [Online; accessed 2017-07-25].

[73] P. Chifflier and A. Fontaine, “Architecture système sécurisée de sonde ids réseau,”
(Rennes, France), pp. 97–109, Journées C&ESAR 2014 : Détection et réaction face
aux attaques informatiques, 2014. [Online; accessed 2017-02-24].

[74] M. Z. Alaya, S. Bussy, S. Gaïffas, and A. Guilloux, “Binarsity: a penalization
for one-hot encoded features in linear supervised learning,” Journal of Machine
Learning Research, vol. 20, no. 118, pp. 1–34, 2019.

[75] J. Zhang and I. Mani, “KNN Approach to Unbalanced Data Distributions: A
Case Study Involving Information Extraction,” in Proceedings of the ICML’2003
Workshop on Learning from Imbalanced Datasets, 2003.

Maxime LABONNE 100

BIBLIOGRAPHY

[76] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using edited data,”
IEEE Trans. Syst. Man Cybern., vol. 2, pp. 408–421, 1972.

[77] I. Tomek, “An experiment with the edited nearest-neighbor rule,” IEEE Transac-
tions on Systems and Man and Cybernetics, vol. 6, no. 6, pp. 448–452, 1976.

[78] M. R. Smith, T. R. Martinez, and C. G. Giraud-Carrier, “An instance level analysis
of data complexity,” Mach. Learn., vol. 95, no. 2, pp. 225–256, 2014.

[79] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: Syn-
thetic minority over-sampling technique,” Journal of Artificial Intelligence Re-
search, vol. 16, pp. 321–357, 2002.

[80] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic sampling
approach for imbalanced learning,” in IN: IEEE INTERNATIONAL JOINT CON-
FERENCE ON NEURAL NETWORKS (IEEE WORLD CONGRESS ON COM-
PUTATIONAL INTELLIGENCE), IJCNN 2008, pp. 1322–1328, 2008.

[81] I. Tomek, “Two Modifications of CNN,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 7(2), pp. 679–772, 1976.

[82] G. Lemaître, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A python toolbox
to tackle the curse of imbalanced datasets in machine learning,” J. Mach. Learn.
Res., vol. 18, pp. 559–563, Jan. 2017.

[83] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensor-
flow: Large-scale machine learning on heterogeneous distributed systems,” CoRR,
vol. abs/1603.04467, 2016.

[84] F. Chollet et al., “Keras.” https://keras.io, 2015.

[85] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter
optimization,” in Proceedings of the 24th International Conference on Neural In-
formation Processing Systems, NIPS’11, (USA), pp. 2546–2554, Curran Associates
Inc., 2011.

[86] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” J.
Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012.

[87] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library for optimizing
the hyperparameters of machine learning algorithms.”

Maxime LABONNE 101

https://keras.io

BIBLIOGRAPHY

[88] T. G. Dietterich, “Ensemble methods in machine learning,” in Proceedings of the
First International Workshop on Multiple Classifier Systems, MCS ’00, (London,
UK, UK), pp. 1–15, Springer-Verlag, 2000.

[89] B. Adhi Tama, A. Patil, and K. H. Rhee, “An improved model of anomaly detection
using two-level classifier ensemble,” 08 2017.

[90] T. Pham, E. Foo, S. Suriadi, H. Jeffrey, and H. Lahza, “Improving performance of
intrusion detection system using ensemble methods and feature selection,” pp. 1–6,
01 2018.

[91] N. Kanakarajan and K. Muniasamy, Improving the Accuracy of Intrusion Detec-
tion Using GAR-Forest with Feature Selection, pp. 539–547. 10 2016.

[92] M. S. Pervez and D. Farid, “Feature selection and intrusion classification in nsl-
kdd cup 99 dataset employing svms,” SKIMA 2014 - 8th International Conference
on Software, Knowledge, Information Management and Applications, 04 2015.

[93] S. Nembrini, I. König, and M. Wright, “The revival of the gini importance?,”
Bioinformatics (Oxford, England), vol. 34, 05 2018.

[94] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep
transfer learning,” CoRR, vol. abs/1808.01974, 2018.

[95] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A survey of
network-based intrusion detection data sets,” CoRR, vol. abs/1903.02460, 2019.

[96] S. Zanero and S. M. Savaresi, “Unsupervised learning techniques for an intru-
sion detection system,” in Proceedings of the 2004 ACM Symposium on Applied
Computing, SAC ’04, (New York, NY, USA), pp. 412–419, ACM, 2004.

[97] S. Amante, J. Rajahalme, B. E. Carpenter, and S. Jiang, “IPv6 Flow Label Spec-
ification,” Tech. Rep. 6437, Nov. 2011.

[98] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” 2019.

[99] G. Gu, P. Fogla, D. Dagon, W. Lee, and B. Skorić, “Measuring intrusion detection
capability: An information-theoretic approach,” in Proceedings of the 2006 ACM
Symposium on Information, Computer and Communications Security, ASIACCS
’06, (New York, NY, USA), pp. 90–101, ACM, 2006.

[100] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the
kdd cup 99 data set,” in 2009 IEEE Symposium on Computational Intelligence for
Security and Defense Applications, pp. 1–6, July 2009.

[101] K. Leung and C. Leckie, “Unsupervised anomaly detection in network intrusion
detection using clusters.,” pp. 333–342, 01 2005.

Maxime LABONNE 102

BIBLIOGRAPHY

[102] G. Kotani and Y. Sekiya, “Unsupervised scanning behavior detection based on
distribution of network traffic features using robust autoencoders,” in 2018 IEEE
International Conference on Data Mining Workshops (ICDMW), pp. 35–38, Nov
2018.

[103] A. H. Mirza and S. Cosan, “Computer network intrusion detection using sequential
lstm neural networks autoencoders,” in 2018 26th Signal Processing and Commu-
nications Applications Conference (SIU), pp. 1–4, May 2018.

[104] I. Sharafaldin, A. Habibi Lashkari, and A. Ghorbani, “Toward generating a new
intrusion detection dataset and intrusion traffic characterization,” pp. 108–116, 01
2018.

[105] N. Z. Bawany, J. A. Shamsi, and K. Salah, “Ddos attack detection and mitigation
using sdn: Methods, practices, and solutions,” Arabian Journal for Science and
Engineering, vol. 42, pp. 425–441, Feb 2017.

[106] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin, “Simple network management
protocol (snmp),” RFC 1157, RFC Editor, United States, 05 1990.

[107] R. Sommer and A. Feldmann, “Netflow: Information loss or win?,” in Proceedings
of the 2Nd ACM SIGCOMM Workshop on Internet Measurment, IMW ’02, (New
York, NY, USA), pp. 173–174, ACM, 2002.

[108] P. Phaal, S. Panchen, and N. McKee, “Inmon corporation’s sflow: A method
for monitoring traffic in switched and routed networks,” RFC 3176, RFC Editor,
United States, 09 2001.

[109] C. So-In, “A survey of network traffic monitoring and analysis tools,” p. 24, 01
2006.

[110] M. Welzl, Congestion control principles, ch. 2, pp. 7–53. John Wiley and Sons,
Ltd, 2006.

[111] M. Devare and A. Kumar, “Clustering and classification (time series analysis)
based congestion control algorithm: Data mining approach,” in IJCSNS Interna-
tional Journal of Computer Science and Network Security, vol. 7, pp. 241–246,
September 2007.

[112] P. Singhal and A. Yadav, “Congestion detection in wireless sensor network using
neural network,” in International Conference for Convergence for Technology-2014,
pp. 1–4, April 2014.

[113] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2. Springer
Publishing Company, Incorporated, 1st ed., 2010.

Maxime LABONNE 103

BIBLIOGRAPHY

[114] J. B. Madalgi and S. A. Kumar, “Congestion detection in wireless sensor networks
using mlp and classification by regression,” in 2017 3rd International Conference on
Applied and Theoretical Computing and Communication Technology (iCATccT),
pp. 226–231, Dec 2017.

[115] J. B. Madalgi and S. Anupama Kumar, “Development of wireless sensor network
congestion detection classifier using support vector machine,” in 2018 3rd Inter-
national Conference on Computational Systems and Information Technology for
Sustainable Solutions (CSITSS), pp. 187–192, Dec 2018.

[116] N. Zhang, F. Jaafar, and Y. Malik, “Low-rate dos attack detection using psd
based entropy and machine learning,” in 2019 6th IEEE International Conference
on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International
Conference on Edge Computing and Scalable Cloud (EdgeCom), pp. 59–62, June
2019.

[117] “iPerf - iPerf3 and iPerf2 user documentation.”

[118] C. Schmoll and S. Zander, “Netmate-user and developer manual,” 01 2004.

[119] “dstat(1) - Linux man page.”

[120] Y. Bengio and Y. Grandvalet, “No unbiased estimator of the variance of k-fold
cross-validation,” J. Mach. Learn. Res., vol. 5, pp. 1089–1105, Dec. 2004.

[121] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput.,
vol. 9, pp. 1735–1780, Nov. 1997.

[122] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme, J. Gross,
A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado, “The design and im-
plementation of open vswitch,” in Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation, NSDI’15, (Berkeley, CA, USA),
pp. 117–130, USENIX Association, 2015.

Maxime LABONNE 104

Titre : Détection d’intrusion réseau par anomalies avec apprentissage automatique

Mots clés : Détection d’intrusion, apprentissage automatique, réseaux de neurones, cybersécurité, en-
traı̂nement non-supervisé

Résumé : Ces dernières années, le piratage est
devenu une industrie à part entière, augmentant le
nombre et la diversité des cyberattaques. Les me-
naces qui pèsent sur les réseaux informatiques vont
des logiciels malveillants aux attaques par déni de
service, en passant par le phishing et l’ingénierie so-
ciale. Un plan de cybersécurité efficace ne peut plus
reposer uniquement sur des antivirus et des pare-feux
pour contrer ces menaces : il doit inclure plusieurs
niveaux de défense. Les systèmes de détection d’in-
trusion (IDS) réseaux sont un moyen complémentaire
de renforcer la sécurité, avec la possibilité de sur-
veiller les paquets de la couche 2 (liaison) à la couche
7 (application) du modèle OSI. Les techniques de
détection d’intrusion sont traditionnellement divisées
en deux catégories : la détection par signatures et la
détection par anomalies. La plupart des IDS utilisés
aujourd’hui reposent sur la détection par signatures ;
ils ne peuvent cependant détecter que des attaques
connues. Les IDS utilisant la détection par anoma-
lies sont capables de détecter des attaques incon-
nues, mais sont malheureusement moins précis, ce
qui génère un grand nombre de fausses alertes. Dans
ce contexte, la création d’IDS précis par anomalies
est d’un intérêt majeur pour pouvoir identifier des at-
taques encore inconnues.
Dans cette thèse, les modèles d’apprentissage auto-
matique sont étudiés pour créer des IDS qui peuvent
être déployés dans de véritables réseaux informa-
tiques. Tout d’abord, une méthode d’optimisation en

trois étapes est proposée pour améliorer la qua-
lité de la détection : 1/ augmentation des données
pour rééquilibrer les jeux de données, 2/ optimisation
des paramètres pour améliorer les performances du
modèle et 3/ apprentissage ensembliste pour com-
biner les résultats des meilleurs modèles. Les flux
détectés comme des attaques peuvent être ana-
lysés pour générer des signatures afin d’alimenter les
bases de données d’IDS basées par signatures. Tou-
tefois, cette méthode présente l’inconvénient d’exiger
des jeux de données étiquetés, qui sont rarement
disponibles dans des situations réelles. L’apprentis-
sage par transfert est donc étudié afin d’entraı̂ner des
modèles d’apprentissage automatique sur de grands
ensembles de données étiquetés, puis de les affi-
ner sur le trafic normal du réseau à surveiller. Cette
méthode présente également des défauts puisque les
modèles apprennent à partir d’attaques déjà connues,
et n’effectuent donc pas réellement de détection
d’anomalies. C’est pourquoi une nouvelle solution
basée sur l’apprentissage non supervisé est pro-
posée. Elle utilise l’analyse de l’en-tête des proto-
coles réseau pour modéliser le comportement nor-
mal du trafic. Les anomalies détectées sont ensuite
regroupées en attaques ou ignorées lorsqu’elles sont
isolées. Enfin, la détection la congestion réseau est
étudiée. Le taux d’utilisation de la bande passante
entre les différents liens est prédit afin de corriger les
problèmes avant qu’ils ne se produisent.

Title : Anomaly-Based Network Intrusion Detection Using Machine Learning

Keywords : Intrusion detection, machine learning, neural networks, cyber security, unsupervised learning

Abstract : In recent years, hacking has become an
industry unto itself, increasing the number and diver-
sity of cyber attacks. Threats on computer networks
range from malware to denial of service attacks, phi-
shing and social engineering. An effective cyber secu-
rity plan can no longer rely solely on antiviruses and
firewalls to counter these threats: it must include se-
veral layers of defence. Network-based Intrusion De-
tection Systems (IDSs) are a complementary means
of enhancing security, with the ability to monitor pa-
ckets from OSI layer 2 (Data link) to layer 7 (Applica-
tion). Intrusion detection techniques are traditionally
divided into two categories: signatured-based (or mi-
suse) detection and anomaly detection. Most IDSs in
use today rely on signature-based detection; however,
they can only detect known attacks. IDSs using ano-
maly detection are able of detecting unknown attacks,
but are unfortunately less accurate, which generates
a large number of false alarms. In this context, the
creation of precise anomaly-based IDS is of great va-
lue in order to be able to identify attacks that are still
unknown.
In this thesis, machine learning models are studied
to create IDSs that can be deployed in real computer

networks. Firstly, a three-step optimization method is
proposed to improve the quality of detection: 1/ data
augmentation to rebalance the dataset, 2/ parameters
optimization to improve the model performance and
3/ ensemble learning to combine the results of the
best models. Flows detected as attacks can be ana-
lyzed to generate signatures to feed signature-based
IDS databases. However, this method has the disad-
vantage of requiring labelled datasets, which are ra-
rely available in real-life situations. Transfer learning
is therefore studied in order to train machine learning
models on large labeled datasets, then finetune them
on benign traffic of the network to be monitored. This
method also has flaws since the models learn from
already known attacks, and therefore do not actually
perform anomaly detection. Thus, a new solution ba-
sed on unsupervised learning is proposed. It uses net-
work protocol header analysis to model normal traf-
fic behavior. Anomalies detected are then aggregated
into attacks or ignored when isolated. Finally, the de-
tection of network congestion is studied. The band-
width utilization between different links is predicted in
order to correct issues before they occur.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Acknowledgments
	Table of contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	The Security Background
	Contributions
	Thesis Organization

	Concepts and background
	Intrusion Detection System (IDS)
	Definition
	Types of IDSs

	Machine learning
	Machine learning tasks
	Datasets
	Performance metrics

	State of the art
	Multilayer Perceptron
	Autoencoder
	Deep Belief Network
	Recurrent Neural Network
	Self-Organizing Maps
	Radial Basis Function Network
	Adaptive Resonance Theory
	Comparison of different intrusion detection systems
	Open issues and challenges

	Supervised Intrusion Detection
	Cascade-structured neural networks
	Introduction
	Preprocessing and data augmentation
	Hyperparameters optimization
	Ensemble learning
	Conclusion

	Ensemble of machine learning techniques
	Introduction
	Dataset et preprocessing
	Training
	Ensemble learning
	Conclusion

	Supervised Techniques to Improve Intrusion Detection
	Anomaly to signature
	Transfer learning
	Datasets and preprocessing
	Comparison of different machine learning models

	Unsupervised Intrusion Detection
	Protocol-based intrusion detection
	Introduction
	Data processing
	Framework
	The problem with metrics

	Ensemble Learning
	Introduction
	Dataset
	Neural network architectures
	Experiments
	Conclusions

	Predicting Bandwidth Utilization
	Introduction
	Related Work
	Data Generation Using A Simulated Network
	Preprocessing Stage
	Data Collection
	Feature Engineering
	Creation of a Dataset

	Experiments
	Machine learning algorithms
	Model Validation and Results
	Real-Time Prediction

	Conclusions and Future Work

	Conclusions and future work
	Summary and Conclusions
	Future Research Proposals

	Bibliography

