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Thèse présentée et soutenue à Palaiseau, le 4 Juin 2020, par

SOUMAYA AZZI

Composition du Jury :

Jean-Marc Bourinet
Institut Pascal, SIGMA Clermont Rapporteur

Philippe De Doncker
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Abstract

This thesis is a contribution to the surrogate modeling and the sensitivity analysis

on stochastic simulators. Stochastic simulators are a particular type of computa-

tional models, they inherently contain some sources of randomness and are generally

computationally prohibitive. To overcome this limitation, this manuscript proposes a

method to build a surrogate model for stochastic simulators based on Karhunen-Loève

expansion.

This thesis also aims to perform sensitivity analysis on such computational models.

This analysis consists on quantifying the influence of the input variables onto the

output of the model. In this thesis, the stochastic simulator is represented by a

stochastic process, and the sensitivity analysis is then performed on the differential

entropy of this process.

The proposed methods are applied to a stochastic simulator assessing the pop-

ulation’s exposure to radio frequency waves in a city. Randomness is an intrinsic

characteristic of the stochastic city generator. Meaning that, for a set of city parame-

ters (e.g. street width, building height and anisotropy) does not define a unique city.

The context of the electromagnetic dosimetry case study is presented, and a surrogate

model is built. The sensitivity analysis is then performed using the proposed method.





Résumé

Cette thèse propose des outils statistiques pour étudier l’impact qu’a la morphologie

d’une ville sur l’exposition des populations induite par un champ électromagnétique

provenant d’une station de base. Pour cela l’exposition a été évaluée numériquement

en propageant (via des techniques de lancer de rayons) les champs émis dans une

antenne dans des villes aléatoires. Ces villes aléatoires ont les mêmes caractéristiques

macroscopiques (e.g. hauteur moyenne des immeubles, largeur moyenne des rues et

anisotropie) mais sont distinctes les unes des autres. Pour les mêmes caractéristiques

de nombreuses villes aléatoires ont été générées et l’exposition induite a été cal-

culée pour chacune. Par conséquent, chaque combinaison de variables correspond

à plusieurs valeurs d’exposition. L’exposition est décrite par une distribution statis-

tique non nécessairement gaussienne. Ce comportement stochastique est présent en

plusieurs problèmes industriels et souvent les nombreuses simulations menées ont un

cout de calcul important.

Les travaux de cette thèse étudient la modélisation de substitution des fonctions

aléatoires. Le simulateur stochastique est considéré comme un processus stochastique.

On propose une approche non paramétrique basée sur la décomposition de Karhunen-

Loève du processus stochastique. La fonction de substitution a l’avantage d’être très

peu coûteuse à exécuter et à fournir des prédictions précises.

En effet, l’objective de la thèse consiste à évaluer la sensibilité de l’exposition aux

caractéristiques morphologiques d’une ville. On propose une approche d’analyse de

sensibilité tenant compte de l’aspect stochastique du modèle. L’entropie différentielle

du processus stochastique est évaluée et la sensibilité est estimée en calculant les

indices de Sobol de l’entropie. La variance de l’entropie est exprimée en fonction de

la variabilité de chacune des variables d’entrée.





Contents

1 Introduction 15

1.1 Context of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Surrogate modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Objectives and outline of the thesis . . . . . . . . . . . . . . . . . . . 20

2 Uncertainty quantification on deterministic models 23

2.1 Statistical learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Regression methods for deterministic models . . . . . . . . . . . . . . 26

2.2.1 Linear methods . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Polynomial methods . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Kernel methods . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.4 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . 31

2.3 (Global) sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Variance-based methods . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Entropy-based methods . . . . . . . . . . . . . . . . . . . . . 33

2.3.3 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Surrogate modeling of stochastic simulators 37

3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Surrogate modeling of stochastic simulators based on KL decomposition 42

3.3.1 Karhunen-Loève decomposition . . . . . . . . . . . . . . . . . 43

3.3.2 The proposed method for stochastic emulators . . . . . . . . . 44

3.3.3 Surrogate model of the underlying covariance function . . . . 45

3.3.4 Surrogate model of the eigenvectors . . . . . . . . . . . . . . . 45

3.3.5 Conclusion on the two approaches and outlook . . . . . . . . . 46

9



3.3.6 Random variable evaluation . . . . . . . . . . . . . . . . . . . 47

3.3.7 Error evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.7.1 Probabilistic metrics comparing the PDFs . . . . . . 47

3.3.7.2 Hellinger distance . . . . . . . . . . . . . . . . . . . . 48

3.3.7.3 Jensen-Shannon divergence . . . . . . . . . . . . . . 49

3.3.7.4 Cross validation . . . . . . . . . . . . . . . . . . . . 49

3.3.8 Application on an analytical 3-dimensional example . . . . . . 50

3.3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Global sensitivity analysis on stochastic simulators 57

4.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 The method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Differential entropy . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Surrogating the entropy . . . . . . . . . . . . . . . . . . . . . 62

4.3.3 Sensitivity analysis of the entropy . . . . . . . . . . . . . . . . 63

4.3.4 4-dimensional analytic example . . . . . . . . . . . . . . . . . 64

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Application to computational electromagnetic dosimetry 67

5.1 The human exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Computational dosimetry . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Exposure induced by base stations . . . . . . . . . . . . . . . . . . . 70

5.4 Path loss exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Stochastic city generator . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Ray tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Statistical analysis of PLE in urban environment . . . . . . . . . . . . 76

5.7.1 Generating the design of experiments . . . . . . . . . . . . . . 78

5.7.2 PLE distribution using stochastic cities . . . . . . . . . . . . . 79

5.7.3 Uncertainty quantification . . . . . . . . . . . . . . . . . . . . 79

5.7.3.1 Metamodel of PLE . . . . . . . . . . . . . . . . . . . 80

5.7.3.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . 82

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Conclusion 85

Publications 97

10



List of Figures

1.1 Examples of 3D stochastic city models with identical values of mor-

phological features (street width = 13 m, building height=16 m and

anisotropy =0.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 The output PDF for three points, a = 0.1. . . . . . . . . . . . . . . . 39

3.2 Visualization of histograms intersection. . . . . . . . . . . . . . . . . 49

3.3 Visualization of the k-fold cross validation. Figure from wikipedia.org. 50

3.4 Surrogated and true CDFs plotted in the three approaches. . . . . . . 52

3.5 Flowchart summarizing the method and the two possible options (sur-

rogate modeling the covariance -right, surrogate modeling the eigen-

vectors -left) for building up a surrogate model of H. . . . . . . . . . 54

4.1 Flowchart summarizing the SA method for stochastic simulators. . . 61

5.1 Day-to-day exposure of a population [1]. . . . . . . . . . . . . . . . . 69

5.2 The virtual family model: Duke, Ella, Billie and Thelonious (from left

to right) [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Cell phone base station antennas on a roof (left) - A small cellular

network of uniform cell size (right). . . . . . . . . . . . . . . . . . . . 71

5.4 Deviation of the whole-body SAR versus frequency for different nu-

merical human models [24]. . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Whole-body SAR versus frequencies for different ages [24]. . . . . . . 73

5.6 Realisation of tessellations on a virtual city. . . . . . . . . . . . . . . 75

5.7 Steps to generate a virtual city: left to right: (1) a tessellation (2)

an erosion is applied to each polygon (3) in each new cell, the dilated

polygon with respect to its center of mass is computed (4) a Poisson

point process is drawn on the edge of the polygon (5) those points are

projected to create buildings footprints (6) the final result [25]. . . . . 76

11



5.8 Footprint of three virtual cities with different anisotropy: from left to

right, anisotropy values are: 0, 0.5 and 1 also called a Manhattan-like

city. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.9 3D view of ray tracing in a virtual city. . . . . . . . . . . . . . . . . . 77

5.10 Projection onto the three dimensions of the 30 DOE points selected

using LHS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.11 Surrogated and simulated CDFs plotted in the three approaches, α is

centred. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

12



List of Tables

2.1 Random variables and corresponding polynomial basis functions. . . . 28

3.1 Mean error over 3,000 test points. . . . . . . . . . . . . . . . . . . . 51

3.2 Parametric study of the histogram intersection error by varying the

size M of the DoE and the number of realizations N . . . . . . . . . 53

4.1 Total and first order Sobol’ indices for the mean, variance and entropy

of H(x, ω) from the analytic example. . . . . . . . . . . . . . . . . . . 64

5.1 Values for some morphological features of a typical urban city. . . . . 74

5.2 Some parameters governing ray launching in a typical urban city. . . 75

5.3 Input variables for the stochastic city generator. . . . . . . . . . . . 77

5.4 Mean error estimators over 3,000 test points. . . . . . . . . . . . . . . 80

5.5 Total and first order Sobol’ indices for the mean, variance and entropy

for the exposure example. . . . . . . . . . . . . . . . . . . . . . . . . 82

13



14



Chapter 1

Introduction

Contents

1.1 Context of the thesis . . . . . . . . . . . . . . . . . . . . . 16

1.2 Surrogate modeling . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Objectives and outline of the thesis . . . . . . . . . . . . 20

15



1.1 Context of the thesis

The wireless technology brought people in a much closer world in the last three

decades. Communication through mobile phones for example is quite simple, there-

fore attracting more and more users, wherever they may be. The number of phone

users in France in 2019 is estimated to more than 51 millions [2]. This number

keeps increasing, especially with the emergence of more connected devices and smart

environments.

In parallel with the widespread use of wireless systems, an increased risk per-

ception related to radio-frequency electromagnetic fields (RF-EMF) has been ob-

served [63], and the assessment of the human exposure to RF-EMF has aroused

social attention. To respond to such concerns, large efforts have been carried out

to establish methods to verify compliance with exposure limits. The human EMF

exposure is quantified in terms of Specific Absorption Rate (SAR) expressed in W/kg

and representing the RF power absorbed per unit of mass of biological tissues.

As a matter of fact, the RF-EMF sources are the combination of uplink and down-

link radiations coming from, respectively, personal wireless devices (e.g. smartphones

or tablets) and cellular base stations or access points. In this respect, advanced com-

putational propagation tools were used in many studies [40, 94, 39] to characterize

the signal attenuation between a transmitter and a receiver. Such tools can provide

accurate path loss results, however they are strongly dependent on detailed building

and terrain data.

Stochastic geometry has proven its ability to describe the complex structures of a

city [25] via a limited number of parameters, such as building density, street width,

number of intersections, etc. Based on statistical distributions of the city features,

i.e., building height, street width, anisotropy1, the stochastic geometry simulator

developed in [25] was used to generate various random 3D cities. Figure 1.1 illustrates

various city samples generated with the same morphological features.

The objective is to explore the link between the exposure and the city parameters.

To this aim a 3-D ray launching technique [93] based on propagation mechanisms such

as reflections and diffractions, commonly used to propagate EMF in urban areas, is

implemented in the virtual city generated using stochastic geometry. This so-called

ray tracing technique depends on the digital geographical map extracted from the real

environment, allowing for an accurate estimation of the path loss between the base

1The anisotropy defines the street system (street angle). This parameter goes continuously from
0 to 1 (1 for a Manhattan-like city).
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Figure 1.1: Examples of 3D stochastic city models with identical values of morpho-
logical features (street width = 13 m, building height=16 m and anisotropy =0.6).

station antenna and the wireless device. The emitted and received power can then

be estimated and used to evaluate the EMF exposure. A limit of such a technique is

the very high computational cost due to the use of complex deterministic propagation

models.

When evaluating the exposure, the focus is on the path loss exponent (PLE) that

represents the attenuation of the energy between the transmitter and the receiver. It

depends on the transmitter characteristics and the propagation environment and can

be evaluated following the ray tracing step.

The main goal of this thesis is to evaluate the link existing between the city

parameters and the PLE. With the presented context, two obstacles have to be dealt

with:

• The relationship between a set of city parameters and a virtual city is not

deterministic (e.g. Figure 1.1). The model inherently contains some sources

of randomness, mainly because generating the stochastic city, for example the

streets architecture makes use of random processes. Consequently, having fixed

a set of city parameters: the exposure is not unique, the value is different for each

realization of the city. The model is thus referred to as a stochastic simulator,

and the assessment of PLE over a city can be seen as a random function of the

morphological features of this city.

• The stochastic model is computationally prohibitive. Once a virtual city is

generated, an antenna is located in the city and millions of rays are launched.

The signal attenuation map can thus be obtained by assessing the received power

in the ’measurement’ plane (1.5 m above the ground to represent the human

17



exposure). This computation takes more than one hour2. The computational

burden escalates when multiple runs are needed to evaluate the possible values

of exposure in a fixed city.

To overcome the second limitation, a mathematical function called metamodel or

surrogate model is built. It mimics the behaviour of the simulator and runs in a

reasonable cost. This surrogate model shall be adapted here to the characteristics of

the original model, namely the stochastic nature of the city generator used to evaluate

the path loss exponent.

This PhD thesis thesis addresses the problematic as follow:

• A non-parametric method to build a stochastic metamodel for the city generator

is built. The original model is considered as a random process, and the method

developed builds a surrogate random process emulating at best the original

model. This step enables the prediction of the path loss exponent for different

cities. It also gets rid of the computational burden limiting the use of the

original stochastic model.

• The impact of the city characteristics onto the path loss exponent is evaluated

using sensitivity analysis. A method is proposed to spot the most impact-

ful variables among the three considered (street width, building height and

anisotropy).

To this aim, a computer experiment on the stochastic city generator was planned.

Numerous calls to the simulator were performed and the domain of definition was

reasonably explored. For each point in the domain, repetitions were made such that

the randomness is also reasonably explored. The design of the experiments has to be

planned wisely to cope with the huge global computational costs (several months).

1.2 Surrogate modeling

Building a surrogate model for a deterministic model is quite documented in the

literature. The most popular are Gaussian process modeling (a.k.a Kriging) [79],

generalized polynomial chaos expansion GPCE [32, 97] and low rank tensor ap-

proximations [18, 48, 19]. Metamodeling of stochastic functions is a less mature

2by means of a computer type Intel Xeon E5-2620V3 2.4GHz 6Core 15Mo and NVIDIA TESLA
K80
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field. Assuming that the model output is a Gaussian field trajectory, recent stud-

ies [14, 56, 4, 15, 44] build two independent or joint deterministic metamodels to fit

the mean and the covariance of the assumed Gaussian process. Also based on the joint

metamodeling approach, [44] simultaneously surrogates the mean and the dispersion

using two interlinked generalized additive models. Alternatively, the study carried

out in [61] focused on projecting the output density on a basis of chosen probability

density functions. With this approach, the coefficients are computed by solving con-

straint optimization problems for the purpose of building a local metamodel. This

method is not ideal for assessing certain quantities of interest (e.g., quantiles). The

goal is to overcome these limitations, and propose a non-parametric method, based

on the Karhunen-Loève expansion, to build a surrogate model of random functions.

1.3 Sensitivity analysis

The path loss exponent to some extent, depends on the features governing the city

structure, such as the organization of buildings into blocks, the street intersections

and the street network anisotropy. Its variability will be explored by performing

sensitivity analysis, which measures how the uncertainty in the output of a model is

related to the input variables. In our case, we will investigate how the variability of

the PLE is related to the variability of the city parameters.

The most commonly used approach for sensitivity analysis is the variance-based

approach where the variance of the output is expanded as a sum of contributions

of each input variable, or their combinations [82]. Regression-based measures (like

Pearson correlation coefficient) are also used for models with linear behavior. Alter-

native global SA methods are available such as the Morris method [60] as well as the

moment-independent indicators [13]. Concerning stochastic models, the literature is

once more less mature. Sensitivity analysis was applied on the mean and the dis-

persion of the random output [56]. In this case the sensitivity analysis results does

not take into account the influence of higher moments of the random variable output.

In this thesis, the stochastic simulator is represented as a stochastic process and the

sensitivity analysis is performed on the differential entropy of the stochastic process.

The performance of the method is also evaluated.
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1.4 Objectives and outline of the thesis

Methods developed in this thesis arise from a practical need to build a surrogate

model to the heavy stochastic city generator, and also to characterize the impact

the city morphological variables have on the exposure. Both issues were addressed

by introducing tools from different disciplines namely electromagnetic, dosimetry,

stochastic geometry, statistical learning and information theory, to name a few.

Chapter 2 introduces the general idea of statistical learning. The main methods to

build metamodels are presented as well as possible post processing steps such as the

error evaluation, the cost function and the model validation. Sensitivity analysis is

presented next. The main methods used in deterministic contexts are briefly viewed.

This chapter summarizes the tools used or mentioned in the rest of the thesis.

Chapter 3 is dedicated to the surrogate modeling of this particular type of com-

putational models called stochastic simulators, which inherently contain some source

of randomness. In this particular case the output of the simulator in a given point is

a probability density function. The stochastic simulator is represented as a stochastic

process and the surrogate model is build using the Karhunen-Loève expansion. In a

first approach, the stochastic process covariance is surrogated using polynomial chaos

expansion, meanwhile in a second approach the eigenvectors are interpolated. The

performance of the method is illustrated on a toy example. Means to measure the

accuracy of the surrogate are also provided.

In Chapter 4, the interest is to quantify the sensitivity of the random output to

the model input variables. This is achieved by reducing the output random variable

to its differential entropy. Thus instead of considering the sensitivity of the stochastic

model, the sensitivity of the differential entropy of the stochastic model is considered.

In practice, following the sampling of the stochastic model on a predefined design

of experiments, differential entropy is evaluated on each DoE point. The next step

consists of building a surrogate model of the differential entropy of the stochastic

process to then apply standard methods of sensitivity analysis (SA), in this case, via

evaluating Sobol’ indices [82].

Chapter 5 describes in details the case study at hand i.e. the human exposure

in cities, the evaluation of the exposure using ray-tracing as well as the experiences

planned and realized to sample the stochastic simulator. Samples from the stochastic

city generator are drawn and the exposure is evaluated. Based on the data collected, a

metamodel of the path loss exponent is built and the sensitivity analysis is performed
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following methods introduced in chapters 3 and 4. The results are described and

interpreted.

At the end, a conclusion sums up the main contributions of the thesis and enu-

merates the main prospects to state from this work.
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2.1 Statistical learning

Parallel to the advances in fields ranging from biology to finance to electrodynamics

to astrophysics, vast and complex data sets have emerged. Statistical learning refers

to tools and methods for modeling, prediction and classification techniques. For ex-

ample, let us consider the relation between the wages and age groups of males from

somewhere in the world via a data set; we might foresee that the wage increases with

age but then decreases again after approximately age 60. The mathematical function

describing this relation is unknown, and the statistical learning in this case consists

of predicting properties of the unknown function. Consider now a second example

from the field of mechanical engineering. The governing equations consist of a set of

partial differential equations (PDEs) whose solutions are numerically approximated

by finite element methods or finite-difference time-domain methods and solved by

computer codes. These codes have reached a high level of sophistication allowing a

high accuracy for the PDE solutions at the expense of the computational cost. The

unitary computational time typically ranges from minutes to hours or even days for

complex systems and high-fidelity models. However, running a costly code thousands

to millions of times is not feasible even with high performance computational infras-

tructures. In this case statistical learning consists of substituting the computational

model solving the PDE with a mathematical function that mimics the behavior of

the original model, at much cheaper cost. Therefore, by gathering knowledge from

experience (data sets, computer codes, etc.), the aim is to allow computers to learn,

predict, and infer in the following ways:

• Build a surrogate model (also known as learners, metamodels, interpolators or

response surfaces) that accurately mimics the knowledge at hand.

• Use the surrogate model to predict the output for new values of the input

parameters. In the event of heavy computational codes, the surrogate model is

supposed to have short execution time.

• Perform a sensitivity analysis and identify the most contributing inputs (or set

of inputs) that explain, at best, the variability of the output.

• Estimate other aspects of statistical learning including quantities of interest

such as confidence intervals, credible intervals, quantiles, failure probabilities,

etc.
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Suppose we observe a quantitative response (target) t and p different input vari-

ables (features), x1, x2, . . . , xp. We assume that there is a relationship between t and

x1, x2, . . . , xp, which can be written in the particularly general form

t = y(x) + ε, (2.1)

where y is an unknown function representing the systematic information that x1, x2, . . . , xp

provides about t, and ε is a zero-mean random error term which is independent from

the input variables. Eq. (2.1) captures a property of several real data sets, namely

that they possess an underlying regularity, which we wish to learn, but that individ-

ual observations are corrupted by random noise. Usually, the only available infor-

mation about the relationship between t and x1, x2, . . . , xp are n observations. For

i = 1, . . . , n, we observe

X =


xT1
...

xTn

 =


x1,1 . . . x1,p

...
...

xn,1 . . . xn,p

 ∈ Rn,p, t =


t1
...

tn

 ∈ Rn. (2.2)

The context presented here (fitting a model that relates the response to the inputs

where the aim is to accurately predict the response for future samples) is called

supervised learning. For each ith measurement {xi, i = 1, . . . , n} there is an associ-

ated response measurement ti. It is worth mentioning that some statistical learning

problems can be unsupervised, meaning that no response ti is associated to the mea-

surements to supervise the statistical analysis, for example, clustering problems.

The setting handled in this chapter, that each ith measurement {xi, i = 1, . . . , n}
is associated to a response measurement ti, is called deterministic. The model yields

a unique output ti for each set of inputs x; In the second chapter we introduce a

particular type of model called stochastic simulators which, due to additional sources

of randomness, run with the same input vector and provide different outputs.

Experimental Design When possible, and within the budget allocated, a sample

is drawn and represents the only available information about the model. That sample

set is called a design of experiments set (DoE) DoE = {(x1, t1), . . . , (xn, tn)}. In

order to make the most of the budget, the DoE requires careful planning [68]. Once

the DoE is set, the calls to the simulators can be launched. Among the strategies

implemented for computer experiments, examples include Monte Carlo Sampling [17],

Latin hypercube sampling (LHS) [59], Sobol’ sequences [84], Halton sequences [34],

factorial design [30], etc.
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Cost functions What is at stake is proposing an estimate y(x) of the value of

t for each input x. A cost (or loss) is attributed to each estimate candidate y(x),

J(t, y(x)). The average cost is given by

E[J ] =

∫ ∫
J(t, y(x))p(x, t)dxdt. (2.3)

A common choice of cost function is the squared error loss function J(t, y(x)) =

(y(x)− t)2; the average cost is then given by

E[J ] =

∫ ∫
(y(x)− t)2p(x, t)dxdt. (2.4)

Over-fitting The over-fitting occurs when a surrogate model fits too closely or

exactly with a particular set of data. In other words, the surrogate model learns

the details and the noise of the training data, therefore, it fails to reliably predict

the output for new inputs. In this respect, we rely on measures of goodness-of-fit to

detect over-fitting and under-fitting phenomenons.

Model validation Most machine learning algorithms have hyperparameters that

shall be estimated. The data set available enables to set those hyperparameters to an

adequate value adapted to the data. To avoid the over-fitting problem, a validation

set is needed. Specifically, the data is partitioned into k subsets of equal size. At

each step a single subsample is retained as the validation set for testing the model

(test set), and the remaining data are used to build the surrogate model (training

set). This approach is called k-fold cross-validation procedure. The k-fold validation

is repeated for several partitions of the data. The error is evaluated using the cost

function of choice. When k = n, it is called the leave-one-out cross-validation, where

only one observation is used to test the goodness of fit at each trial. This technique

is mainly used when the dataset is too small (typically when a large data collection

is not affordable).

2.2 Regression methods for deterministic models

The goal of regression is to predict the value of a set of target variables t given the

value of a p dimensional vector x of input variables based on n ≥ 1 observations. For

i = 1, . . . , n, we observe xi = (xi,1, . . . , xi,p) ∈ Rp and ti ∈ R the output.
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2.2.1 Linear methods

Linear regression is a very simple approach for supervised learning. It has been around

for a long time and is the topic of countless textbooks. It may seem somewhat dull to

use linear regression compared to other modern statistical learning approaches, but

after all, many of the fancy statistical learning approaches can be seen as generaliza-

tions or extensions of linear regression.

Consider the same framework of n observed input variables x and target values t

as in Eq. (2.2). To include the bias in the scalar product, a slight change of notation

is made:

X =


x1,0 . . . x1,p

...
...

xn,0 . . . xn,p

 ∈ Rn,p+1 with xi,0 = 1 ∀i ∈ {1, . . . , n}. (2.5)

The Ordinary least-squares (OLS) estimator is the vector of coefficients θ̂n = (θ̂n,0 . . . θ̂n,p)
T ∈

Rp+1 such that

θ̂n ∈ argmin
θ∈Rp+1

n∑
i=1

(ti − xTi θ)2, (2.6)

or in matrix notation

θ̂n ∈ argmin
θ∈Rp+1

||(t− xθ)||2. (2.7)

In this case y(x) in Eq .(2.1) is the linear combination xθ. The vector θ̂n is such

that

XTXθ̂n = XT t. (2.8)

The solution is uniquely defined if and only if the Gram matrix XTX is invertible, in

which case

θ̂n = (XTX)−1XT t, (2.9)

otherwise Eq. (2.8) has an infinite number of solutions. Often some constraints are

added to the minimization problem: ||θ||q ≤ s [38, 91] where some of the θi,j are

shrunk to exactly zero, resulting in a regression model that’s easier to interpret. The

tuning hyperparameter, s controls the strength of the q-norm penalty.
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2.2.2 Polynomial methods

Polynomial regression fits a non-linear relationship between x and t. Various choices

of the polynomial basis are available. Here we present the Wiener-Hermite polynomial

chaos expansion (PCE) which is an infinite series expansion of a square-integrable

random variable involving orthogonal polynomials basis {Ψj, j ∈ N}.
Consider a model with independent input variables gathered in a random vector

X with a joint probability density function pX . Suppose the corresponding response

T is a second-order random variable E[T 2] = 0, then T can be expressed as follows:

T ' y(X) =
P−1∑
j=0

ajΨj(X). (2.10)

In practice, the PCE is truncated after P terms. aj are unknown deterministic

coefficients for multi-index j; Ψj are multivariate polynomials of the PC basis which

are orthogonal with respect to the joint PDF pX of the input random vector X.

For instance, if the components of the input random vector X follow a uniform

distribution over [−1, 1], the orthogonal polynomials of the PC basis are the Legendre

polynomials. Table 2.1 above shows the suitable orthogonal polynomials for three

examples of input random variables.

Table 2.1: Random variables and corresponding polynomial basis functions.

Distribution Polynomial basis

Uniform U(a, b) Legendre

Gaussian N (a, b) Hermite

Gamma Γ Laguerre

To determine the coefficients aj there are two main-stream methods, either using

projection methods where the expansion is projected onto the polynomial space, or

by casting a least-squares minimization problem.

• Projection methods: Multiplying Eq. (2.10) by Ψj(X) and by taking the

expectation, one gets:

E [y(X)Ψj(X)] =
∑
i

ajE [Ψi(X)Ψj(X)] , (2.11)
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where E [Ψi(X)Ψj(X)] = 1{i=j}. As a consequence of the orthogonormality of

the polynomial basis, each coefficient is the projection of the response onto the

j-th Ψj.

aj = E [y(X)Ψj(X)] . (2.12)

The calculation of the coefficients is therefore reduced to the calculation of the

expectation value i.e. solving the integration problem via quadrature schemes [96].

• Regression methods: Assessing the coefficients of the truncated expansion

can be cast as a regression problem then solved as a least square minimization

problem:

{âj}p−1
j=0 = argmin

aj

||y(X)−
∑
j

ajΨj(X)||2. (2.13)

As in Section 2.2.1 we recover a solution similar to Eq. (2.9).

Sparce PCE A full PCE model is a model where all polynomials with all multi-

index j ≤ P are considered in the expansion. As the number of input variables

increases, the number of configurations of interest grow exponentially. This phe-

nomenon is known as the curse of dimensionality. In sparce PCE approaches [92, 28],

only the polynomials among possible candidates Ψj(X) that have the greatest impact

on the model response y(X) are selected.

Model validation Using a cross validation procedure, the error can be evaluated

using the cost function as in Eq. (2.4) on each validation set. Denoting the test set

(input vector and response) as xtest and ttest, respectively, the mean square error of

data discrepancy is given as:

εtest =
1

n

n∑
1

(y(xtest)− ttest)2, (2.14)

for which we associated a coefficient of determination R2:

R2
test = 1− εtest

Var [ttest]
; (2.15)

A value of R2
test of 1 indicates that the predictions perfectly fit the data. With a

large test set, R2
test can be obtained by Monte Carlo simulations. Otherwise the cross

validation procedure enables to reuse the same data for training and for validation.

Leave-one-out cross validation (LOOCV) consists of leaving the i-th observation out

for validation. With the remaining data points, a surrogate model is built y−i, and
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LOO error is evaluated by repeating the described process for each point in the DoE

set:

εLOO =
1

n

n∑
i=1

(y−i(xi)− ti)2. (2.16)

In the general case, the input variables X can be dependent. Using an isoprob-

abilistic transform G which is a diffeomorphism from supp(X) into Rn [51, 75], the

dependent input X can be mapped into an independent input U = G(X).

2.2.3 Kernel methods

A kernel is a symmetric function: k : (x,x
′
) ∈ X × X → R which represents a set

of n data points xi ∈ X , i = 1, . . . , n by the comparison function k(xi,xj). Kernel

methods are algorithms that take k(xi,xj) as input instead of the original data set.

Consequently, kernel methods have the power to handle atypical types of data sets

(vectors, strings, graphs, images, etc.). In the next sections we focus on Gaussian

processes modeling (Kriging).

Kriging starts with a prior distribution over the covariance of the output y(x). It

treats the deterministic response of y(x) as a particular realisation F(x, ω), ω ∈ Ω of

a Gaussian stochastic process F(x) such as:

F(x) = µ(x) + Z(x), (2.17)

where µ(x) is the global model mean. Z(x) is assumed to be a zero-mean Gaussian

random process with the following properties:

E [Z(x)] = 0, Cov[Z(x), Z(x′)] = σ2k(x,x′), (2.18)

where σ2 is the process variance and k(x,x′) is the correlation function between

any two locations x and x′ (a kernel). k(x,x′) is often defined as a function of the

Euclidean distance h = ‖x − x′‖2 with a set of so-called hyperparameters θ. The

kernel k(x,x′) maybe represented for instance as a product of univariate correlation

functions for each variable as follows:

k(x,x′) =

p∏
i=1

k(xi, x
′
i) or as: k(x,x′) = R(h), h =

√√√√ p∑
i=1

(
xi − x

′
i

θi

)2

. (2.19)

Standard correlation functions (kernels) are the Gaussian, exponential, and Matern

kernels [79].

Depending on the stochastic properties of the Gaussian process and the various de-

grees of stationarity assumed, different methods for calculating the hyperparameters

of k can be deduced [79].
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2.2.4 Artificial neural networks

Another widely used class of metamodels is artificial neural networks (ANN) where

the main idea is to mimic the way a brain processes information to learn complex

models and predict when new situations occur. They are called network because

they are typically represented by composing several different functions. We might

have, for example, three functions y(1), y(2) and y(3) connected in a chain to form

y(x) = y(3)(y(2)(y(1)(x))). y(1) is called the first layer of the network; y(2) is the second

layer, and so on. In addition to these layers, a neural network also involves some

coefficients w, biases between the layers and differentiable non-linear functions called

activation functions between the layers and denoted by h(·). A two-layer neural net

can be trained as follows:

• a linear combination of the input is first conducted a
(1)
j = w

(1)
j · x

• aj are transformed using an appropriate activation function h(·) to give z
(1)
j =

h(a
(1)
j )

• zj are again linearly combined to give a
(2)
j = w

(2)
j · z(1)

• finally, the activations a
(2)
j are the network’s output.

The network here is said to be a two-layer network because it is the number of

layers of adaptive coefficients needed to determine the network properties (w
(1)
j and

w
(2)
j ). h(·) are generally chosen to be sigmoidal functions such as logistic sigmoid or

the tanh function. Other reasonably common activation functions include radial basis

function (RBF) [67], Softplus [27], and hard tanh [22]. The superscript appearing on

w
(1)
j and z

(1)
j refers to the layer in question.

To determine the set of parameters governing the neural net model, a cost function

J(w) is at first defined then minimized. p(t|x;w) is the distribution of the network

output. By maximum the likelihood function, one can recover the hyperparameter w.

In practice, p(t|x;w) is assumed to be N (t|y(x,w, β−1)) where β is the inverse of the

variance of the Gaussian distribution. Given that the data x is a set of independent,

identically distributed observations, the likelihood function corresponds to

p(t|x;w) =
n∏
i=1

p(ti|xi;w, β). (2.20)
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Taking the negative logarithm and discarding terms that do not depend on w, we

recover the mean squared error:

J(w) =
1

2

n∑
i=1

||y(xi;w)− ti||2. (2.21)

The cost function J(w) is typically a highly non-linear dependence on the weights

w and bias parameters. Finding global minima of J(w) usually involves numerically

evaluating the gradient ∇J . The back-propagation algorithm [76] uses a simple and

inexpensive procedure to computing the gradient.

Finally one has to determine the architecture of the network, which refers to the

depth of the network, the width of each layer, and how the units of each layer should

be connected to each other [33].

2.3 (Global) sensitivity analysis

Generally speaking, sensitivity analysis (SA) aims at studying how the uncertainty

in the output of a model is related to the input variables. The sensitivity analysis

is said to be global when the behavior of the input variables is considered all over

the domain of definition, unlike local sensitivity analysis where only the local behav-

ior around a reference point is investigated. Different approaches in the literature

address sensitivity analysis of a model, namely variance-based methods presented in

Section 2.3.1 and entropy-based methods presented in Section 2.3.2.

2.3.1 Variance-based methods

Sobol’ indices is a well-known global SA approach, in which the variance of the output

is decomposed into contributions related to each input parameters and combinations

thereof.

Let f ∈ L2([0, 1]p), where d is the input x dimension. f(x) can be decomposed in

the following way [37]:

f(x) = f0 +
d∑
i=1

fi(xi) +
d∑
i<j

fi,j(xi, xj) + · · ·+ f1 2...d(x), (2.22)

where f0 is a constant and fi is a function of xi, fi,j a function of xi and xj and

so on such as:∫ 1

0

fi1,i2,...,is(xi1 , . . . , xis)dxik = 0, 1 ≤ k ≤ s, {i1, . . . , is} ⊆ {1, . . . , d}. (2.23)
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This expansion is unique and all the terms in the functional decomposition are

orthogonal to each other [82]:∫
[0,1]d

fi1,i2,...,is(xi1 , . . . , xis)fj1,j2,...,jt(xj1 , . . . , xjt)dx = 0, {i1, . . . , is} 6= {j1, . . . , jt}.

(2.24)

Applying the functional decomposition (Eq. (2.22)), the variance is written as

follows:

D = Var[f(x)] =

∫
[0,1]d

f(x)2dx− f 2
0 =

d∑
i=1

Di +
d∑
i<j

Dij + · · ·+D1,...,d, (2.25)

where

Di1,i2,...,is =

∫
[0,1]s

f 2
i1,i2,...,is

(xi1 , . . . , xis)dxi1 . . . dxis , 1 ≤ i1 < · · · < is ≤ d, s ∈ {1, . . . , d}.

(2.26)

The main effect Sobol’ index is defined as follows: Si =
Di

D
. The total Sobol’ index

of the ith input variable is denoted as SToti and quantifies the total effect of Xi on the

variance of f(x).

To evaluate the importance of each input variable, usually only the main effect and

the total effect Sobol’ indices are evaluated. Both should provide reliable information

about the sensitivities of the computational model.

These indices are computed by means of Monte Carlo sampling methods, though

these methods remain quite time consuming. Disposing of a surrogate model to the

computational model is much more efficient in this case. Sobol’ indices are analytically

computed from the PCE coefficients. The PCE surrogate model thus offers a practical

shortcut to compute the Sobol’ indices [89].

2.3.2 Entropy-based methods

Since Shannon introduced entropy in 1948 [81] as a measure of uncertainty of a random

variable, it did not stop from being wildly present in many engineering algorithms,

including sensitivity analysis [5]. The main idea is to evaluate the conditional entropy

of the output given the input of interest. Intuitively when the value of the conditional

entropy is important it infers that the output does not depend on the input considered,

and vice versa.

let H denote the Shannon entropy (also discrete entropy), and let us consider a

model where X is the input and Y the response of the model as it was consistently

denoted throughout this chapter. X and Y are two random variables with pX(x)
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and pY (y) respectively the corresponding probability density functions. The Shannon

entropy of a random vector writes as follows:

H(X) = −
∫
x∈X

pX(x) log pX(x)dx. (2.27)

The entropy only depends on the probability distribution of the random variable, and

not on the values. It achieves its maximum value if the random variable is uniform

(highlighting the fact that the uniform variable is the ”most uncertain” one, in the

sense that all values have the same probability of appearance) and is at it minimum

for the Dirac distribution. The conditional entropy writes as follows:

H(Y |X) = −
∫
x∈X

∫
y∈Y

p(Y,X)(y,x) log pY (y|X = x)dydx. (2.28)

The mutual entropy between two random variables represents the information

explained by X in Y and vise versa, and is as follows:

I(X, Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (2.29)

Finally, the Krzykacz-Hausmann [49] sensitivity indices can be defined as:

µi =
I(Xi, Y )

H(Y )
= 1− H(Y |Xi)

H(Y )
. (2.30)

2.3.3 Other methods

In addition to the methods briefly introduced in Section 2.3.1 and 2.3.2, the sensitivity

analysis of models behaving like linear models can be performed using regression-

based indices or using Pearson correlation coefficients. Unfortunately, when the model

is non-linear these indices fail to capture the sensitivity of the output to the input

variables.

Another class of sensitivity indices based on dependence measures is the δ sen-

sitivity measure of [13]. δ compares the distribution of the output pY (y) and the

conditional one pY |Xi
(y). The shift between the two PDFs is measured as follows:

δi =
1

2
EXi

[∫
|pY (y)− pY |Xi

(y)|dy
]
. (2.31)

Finally, graphical methods can end up being useful in situations where the input

dimension is small. A cobweb plot, for example, enables the user to capture trends

of dependence easily.
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2.4 Conclusions

In this first chapter we merged concepts from both fields of statistical learning as well

as uncertainty quantification basics. First, we introduced some of the most well-known

machine learning algorithms to perform a statistical analysis and make predictions

based on a dataset or a DoE from running a heavy numerical code. Section 2.3

addressed the sensitivity analysis of a model and introduced the reader to the most

common methods for sensitivity analysis.

There is of course much more to statistical learning and uncertainty quantification

than what is addressed here; other aspects such as reliability assessment, robustness

of the models, sampling methods are either omitted or barely mentioned here to keep

the manuscript concise.

Subject to a deterministic context, several books are dedicated to machine learning

algorithms and to statistical learning in general [36, 10, 33]. Surrogate modeling in a

stochastic context is a much less frequently explored field of research.
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Surrogate modeling of stochastic
simulators
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3.1 Context

Simulators (also called computational models) are mathematical models that mimic

the behaviour of physical phenomena. Finite element models, for instance, simu-

late fluid dynamics equations in different applications ranging from blood flow to

aerodynamics. Those simulators allow for solving the governing equations of the sys-

tems components and predict the changes of performance of the system when some

parameters vary.

Some simulators may contain internal sources of randomness on top of uncertain

input variables. Carrying out deterministic numerical operations without considering

uncertainties leads to unreliable designs.

Simulators that describe uncertain model outputs, for a given input vector, are

called stochastic simulators. In contrast to the deterministic ones which yield a unique

output for each set of input parameters, stochastic simulators inherently contain some

source of randomness, more precisely, the output at a given input is a random variable

with a probability density function to be characterized. The mathematical object

suitable to represent stochastic models is stochastic processes.

A stochastic process is a family of random variables indexed by a mathematical

set. Let’s consider D ∈ Rn the space of the input parameters, x the input variable

such as x ∈ D. Consider a probability space (Ω,F ,P) where Ω is a sample space, F
is a σ-algebra and P the probability measure.

H(x, ω), ω ∈ Ω denotes a stochastic process defined on the probability space

(Ω,F ,P) and indexed by x ∈ D. At a fixed x, H(x, ω) is a random variable, for

a fixed ω, H(x, ω) is a deterministic function of x and is called a trajectory. The

covariance function of the process reads as follow:

C(x,y) = E[H(x, ω)H(y, ω)], (3.1)

where x and y are in D, and E is the mean function of H.

Gaussian processes are a particular kind of stochastic process; every finite linear

combination of random variables from this stochastic process is normally distributed,

i.e H(x, ω) is Gaussian if and only if for every finite set of indices {x1, . . . ,xk} in the

index set D, (H(x1, ω), . . . , H(xk, ω)) is a multivariate Gaussian random variable. A

nice feature of Gaussian processes is the fact that they are fully characterized given

their mean and covariance functions.

Eq. (3.2) is an example of a dummy stochastic simulator, where x ∈ [−π, π]

w ∼ U([−π, π]). The output on three different points is plotted in Figure 3.1. The
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probability density function (PDF) for each point form the DoE set do not necessarily

have nice properties such as unimodality or being symmetrical. Eq. (3.2) presents an

example where the output PDF can be unimodal, bimodal and multimodal, depending

on the input points.

H(x, ω) = ax cos(w)2 + w2 cos(wx). (3.2)
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Figure 3.1: The output PDF for three points, a = 0.1.

The simulators are often times computationally prohibitive due to the use of high-

fidelity computations. This is where surrogate modeling becomes handy for the user.

By substituting the heavy simulator by a mathematical function, quantities of interest

and in general simulations can be affordably evaluated.

We aim at building a stochastic process H(x, ω) as a surrogate for the original

stochastic simulator. The conventional first step is to design a sampling set DoE =

{x(1), . . . ,x(M)}, run the simulator on the sampling set to then gather a training
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data set {(x(1), t(1)), . . . , (x(M), t(M))}, where t(k) is the target random vector for each

k ∈ {1, . . . ,M}.
In the literature, the two types of simulators (deterministic and stochastic) are

dealt with differently. Whereas the literature is abundant and very diverse for deter-

ministic models metamodeling (Chapter 2), stochastic simulators metamodeling is a

less mature field. Section 3.2 introduces the existing methods applied to surrogate

model stochastic simulators.

3.2 State of the art

This section briefly summarizes the existing methods in the literature. Most of the

methods dealing with predictions in a stochastic context focus on a quantity of in-

terest (QoI) (or a set of QoI). Among the different QoI appearing frequently in the

applications are, in the first place, the mean and the variance.

In [4] the quantities of interest considered were the mean and the variance, the

proposed approach is an extension to Gaussian process modeling in the sense that the

target is supposed to be a realization of a Gaussian process with a heteroscedastic

variance. In other words instead of assuming that the function emulating the model

y(x) (same notation as Eq. (2.1)) is such as

y(x) ∼ N (µ(x), σ2k(x,x)), (3.3)

it is rather supposed that

y(x) ∼ N (µ(x), σ2(δ(x) + k(x,x))). (3.4)

The term δ(x) is estimated at each point xi using replications. The design of experi-

ment considered in [4] is (xi, Ni). The number of replications allocated to each point

xi depends on the current point. The approach is based on two steps: a random

replication number is first used for all the DoE, and likelihood equations are solved

to estimate the parameters. The second step consists in using Eq. (29) from [4] to

update the number of replications for each xi ∈ DoE.

This parametric approach has been used successfully in game theory simulations [66]

and in measuring portfolio risk in finance [53].

Also based on select statistical indicators (here quantiles Qα of level α), authors

in [65] emulated the quantile function of the stochastic simulator. Qα(x) is considered

unknown, but M replicates can be drawn (Q̃α(x(1)), Q̃α(x(2)), . . . , Q̃α(x(M))), where

Q̃α corresponds to the estimate quantile of Qα on the M points of the DoE. A prior
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distribution of Qα is a Gaussian process and a Kriging metamodel with a nugget

parameter is used to get Q̃α(xi). (The nugget parameter in the Kriging is used to

avoid numerical instability in the computation of the inverse of the covariance matrix

and to include noisy data [64].) Practically, the following empirical estimator has

been used in [65]:

Q̃α(x) = inf{s;
M∑
i=1

1(ti ≤ s) ≤Mα}, (3.5)

where M is the size of DoE. The metamodel of Qα is the same as in Eq. (3.4) except

that the term δ is here constant and independent of x. It represents the variation of

Qα(x)− Q̃α(x).

Generalized additive models (GAM) [35] were used to predict the mean of the

stochastic simulator. GAM is a generalized approach to linear models, where a linear

predictor is replaced by an additive predictor, which allows more flexibility. The mean

predictor for example can be written

µ =
∑
j

ρj(xj), (3.6)

whereas a linear predictor would be
∑

j βjxj. The functions ρ(.) are obtained by

fitting a smoother to the data (e.g splines). They are here univariate but can be

multivariate.

In [44] the mean and the variance were simultaneously fitted based on two interlinked

GAM. Meanwhile in [56, 47] the joint model for the mean and the variance is built

based on Gaussian process.

Other methods share the same outlook as [4], [65] and [44], usually the interest

is focused on the same summary statistics (mean, variance and quantiles) but the

surrogating techniques may differ; in [73] GAM models were used to predict the

mean and the variance of the conditional distribution. In [72] the mean function was

predicted by assuming that the output is a mixture of normal distributions. Some

works approached the problem from a different angle; the PDF is assumed to belong

to a certain family fully determined by some coefficients. For instance in [61], the

PDF f ∗ to be predicted at a new point x∗ ∈ D such as x∗ 6∈ DoE is approximated

by:

f̂ ∗(x) =

q∑
i=1

φi(x
∗)ρi(x), (3.7)

where φi are functions from D to R, called coefficient functions such as for x ∈ D{
φi(x) ≥ 0∑q

i=1 φi(x) = 1
, (3.8)
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and ρi are a set of basis PDF. To choose the basis, the author used three different

approaches: an adaptation to functional principal component analysis [69], magic

points method [54] and through minimizing the approximation error [61]. The three

approaches can be written as optimization problems.

All the estimated PDF functions in [61] (φi and f̂i, the PDF function from the sampled

random variable ti) have the extra constraint to be a PDF .i.e. to be non-negative and

of integral equal to 1 (Eq. (3.8)), which is difficult to achieve in practice, especially

in high dimension.

In the same line of reasoning, authors in [99] assumed that the PDF belongs to the

generalized lambda distribution (GLD) .i.e.

H(x, ω) ∼ GLD(λ1(x), λ2(x), λ3(x), λ4(x)). (3.9)

For all x ∈ DoE, λ = (λ1, λ2, λ3, λ4) are estimated from the replications using the

method of moments [50] or the maximum likelihood estimation [86]. A PCE is then

used to surrogate the distribution parameters λ(x).

To illustrate the different schools when it comes to surrogate modeling stochas-

tic simulators, a couple of papers from each school were briefly detailed. Namely

the approaches based on selected statistics like the mean and the variance, and the

approaches based on a functional decomposition of the PDF. Both approaches can

be considered as parametric, in the sense that the PDF is reduced to its first mo-

ments, quantiles, or to its representation in a basis with predetermined number of

coefficients.

The next section 3.3.1 introduces the approach developed in this thesis which was

published in [6]. The approach is based on a non-parametric representation of the

stochastic process H(x, ω) using Karhunen-Loève (KL) expansion. First the KL theo-

rem is recalled and the proposed method that makes use of the KL spectral expansion

is then presented. The method has two different approaches. Each one is detailed

in Sections 3.3.3 and 3.3.4, and they are compared in Section 3.3.5. The evaluation

of the method is presented in Section 3.3.7. Finally discussions and conclusions are

provided in the last Section 3.3.9.

3.3 Surrogate modeling of stochastic simulators based

on KL decomposition

As a start, the general framework is briefly reminded. The first step is to design

a sampling set DoE = {x(1), . . . ,x(M)}, run the simulator on the sampling set to
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then gather a training data set {(x(1), t(1)), . . . , (x(M), t(M))}, where t(k) is the target

random vector for each k ∈ {1, . . . ,M}. The target t(k) is a vector with N replications

t(k) = {t(k,1), . . . , t(k,N)}. The objective is to fit a stochastic process to the training

data set using KL theorem recalled in Section 3.3.1. Traditionally KL decomposition

is used to simulate and represent a stochastic process analogous to a Fourier series

representation of a function. In this work we use the KL expansion as a surrogate

model of the stochastic simulator.

3.3.1 Karhunen-Loève decomposition

Also known as proper orthogonal decomposition, the KL decomposition essentially

involves the representation of a stochastic process according to a spectral decompo-

sition of its correlation operator.

Let {H(x, ω), x ∈ D} be a zero mean second order stochastic process. Its covari-

ance function is continuous in the mean square sense and denoted as C(x,y). The

eigenvalue problem related to the covariance function reads:∫
D

C(x,y)φi(y)dy = λiφi(x), (3.10)

where {φi, i ∈ N} and {λi, i ∈ N} are the eigenvectors and the eigenvalues respec-

tively. Furthermore, choose

ξi(ω) =
1√
λi

∫
D

H(x, ω)φi(x)dx. (3.11)

Then the KL expansion reads:

H(x, ω) =
+∞∑
i=1

√
λiξi(ω)φi(x). (3.12)

The random variables ξi have zero mean, unit variance, and are mutually uncorrelated,

i.e. orthogonal with respect to the underlying probability measure. They are generally

not independent, except for the case of Gaussian processes.

E[ξi] = 0, E[ξiξj] = δij. (3.13)

The KL expansion is optimal in the mean square sense; when truncated after a

finite number p of terms, the resulting approximation minimizes the mean square

error.
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3.3.2 The proposed method for stochastic emulators

For the sake of simplicity, it is assumed in this chapter, that the random processes are

of zero-mean. It is also assumed that it is possible to freeze the randomness ω and

hence simulate trajectories by sampling, for a frozen ω, the model response at different

values of x. In other words, we are able to generate H(x(1), wk) and H(x(2), wk) with

the same wk, where wk is an internal source of stochasticity in the simulation tool.

This assumption enables to compute the empirical covariance function of the model

output, and thus apply the KL expansion that can be used to model the random

process. The design of the experiments consists of DoE =
{
x(1), . . . ,x(M)

}
⊂ D and

the corresponding response. The process is simulated in each x ∈ DoE with the same

random seed. For each point of DoE (M points), simulations have been carried out

using N different random seeds, which corresponds to generate N trajectories of the

random process at M discrete points. Using KL expansion, the random process can

be modeled as [32]:

H(x, ω) '
M∑
i=1

√
λiξi(ω)φi(x), (3.14)

where φi and λi are respectively the eigenvectors and the eigenvalues of C(x,y).

ξi are uncorrelated random variables with unit variance (detailed in Section 3.3.6)

and are given by,

ξi(ω) =
1√
λi

∫
D

H(x, ω)φi(x)dx. (3.15)

Eq. (3.14) provides a potential surrogate to the stochastic simulator. let x∗ be

a new point such as x∗ ∈ D and x∗ /∈ DoE, the aim is to predict the random

response. Eq. (3.14) requires the knowledge of ξi(ω) and φi(x) for x∗ ∈ D. However

the eigenvectors φi(x) are only known at the sampled points of the DoE after solving

the discrete KL problem. In order to get the value of the eigenvectors over the domain

of interest, we proceed in two different ways, either by:

• metamodeling the eigenvectors via usual surrogate modeling methods;

• or surrogating the empirical covariance, then find the new eigenvectors on the

domain of interest.

As far as the random variables ξi(ω) are concerned, they can be obtained as the

discrete projection of the random process over the φi(x) (see Section 3.3.6).
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The following sections describe the two approaches as well as the way the random

variables ξi(ω) are characterized. For an overview of the multiple steps conducted in

this method, the flowchart in Figure 4.1 describes the sequence of steps.

3.3.3 Surrogate model of the underlying covariance function

As mentioned above, the values of the eigenvectors on x∗ are not available since

x∗ /∈ DoE. In this subsection a surrogate model of the covariance is used to predict

the covariance not only over the DoE points but also over the whole domain of interest

D (in particular for other points like x∗). For the sake of simplicity we assume that

the DoE and the points where predictions are to be made add up to M∗ points hence

M ≤ M∗. Let Ĉ be the metamodel of the empirical covariance function C, built

using a polynomial chaos expansion for instance. Ĉ allows one to have a predicted

covariance for the M∗ new points of interest as follows.

Ĉ(x,y) =
P∑
j=0

ajψj(x,y), ∀(x,y) ∈ D2. (3.16)

The surrogate modeling technique is not the focus of this section, all the ap-

proaches presented in Chapter 2 can be applied as long as they provide a surrogate

to the covariance function of H. Either way, the surrogated covariance matrix is now

a M∗ × M∗ matrix, hence the number of eigenvectors φ̂i of Ĉ is M∗. Note that

when metamodeling the covariance, the input dimension is doubled (the covariance is

defined on the product set D×D). For instance, for an input dimension of three, the

covariance function has an input dimension of six, and so does its surrogate. Learners

that tend to perform poorly in higher dimensions are to be avoided in this step.

3.3.4 Surrogate model of the eigenvectors

A more straight forward approach to get the eigenvectors all over D would be to

interpolate the eigenvectors φi. Let φ̂i be a surrogate function of the true eigenvector

φi(.), i = {1, · · · ,M} based on the DoE. The KL expansion (Eq. (3.14)) will then

read as follow:

H(x∗, w) =
M∑
i=1

√
λiξi(ω)φ̂i(x

∗). (3.17)

The interpolation of φi(x) can be done with any surrogating technique that inter-

polates the data, i.e techniques where the predicted value is identical to the simulated

value at the points of the DoE. As an example, cubic spline interpolation can be
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used for one or two dimensional models. When considering higher dimension we can

use Kriging, linear interpolation or decompose onto radial basis functions.

Starting from eigenvectors known over the DoE, a surrogate model of φi(x) en-

ables us to build φ̂i(x) ∀x ∈ D, hence evaluate φi over all D. This approach is

intuitive: following the eigendecomposition, we predict the new point’s coordinates

with the adequate exact interpolator and as shown in Eq. (3.17) deduce the stochastic

process response.

3.3.5 Conclusion on the two approaches and outlook

This section discusses the properties of the covariance surrogate. When the second ap-

proach is considered (the eigenvectors are surrogated one-by-one as in Section 3.3.4),

there is actually no guarantee that the new eigenvectors form an orthogonal base in

the new set. Meanwhile when applying the first approach (surrogate modeling the

covariance as in Section 3.3.3), to perform next the eigendecomposition of the covari-

ance surrogate, the eigenvectors form an orthogonal base of the covariance surrogate.

To overcome this lack of rigour, Gram-Schmidt orthogonalizing process can be applied

in future related works.

A covariance operator is symmetrical and positive definite, in particular the sur-

rogated covariance from the first approach (Section 3.3.3). The covariance surrogate

Ĉ has been symmetrized, meaning that if the obtained metamodel of the covariance

is denoted C∗ (which is not necessarily a symmetric function of its inputs (x,y)) then

we consider Ĉ =
C∗ + Cᵀ

∗
2

. However the surrogated covariance is not systematically a

positive definite matrix. To overcome this limitation one can think of imposing a con-

straint on the learning method. A clever choice of the parameters of the metamodel

can guarantee that the surrogate covariance is a positive definite matrix. In such case

the method will no more be agnostic to the choice of the learners, but rather depend

on the flexibility of the learning method. This idea was not applied in this work and

is only mentioned for the sake of future exploration.

Both problems can be seen in a slightly different way. The aim here is to mimic

a function (either the eigenbase or the covariance operator), based on a test set;

somehow the surrogate model is supposed to reproduce the properties of the function

(either orthogonal base or covariance operator) as accurately as possible.
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3.3.6 Random variable evaluation

First the trivial case is considered, in the case where H(x, ω) is a Gaussian process,

the ξi appearing in the KL expansion in Eq. (3.14) are zero-mean, unit-variance,

independent Gaussian random variables [32], so no computation is needed.

When dealing with more general random processes, ξi are the projection of H onto

the base of the eigenvectors φ̂i and given by Eq. (3.15). The integral in Eq. (3.15)

cannot be calculated since H is only known over the M points of the DoE and over

the N trajectories. To overcome this limitation, the integral is approximated with a

sum involving the M known values of H:

ξ̂i(ωk) =
1√
λi

M∑
j=1

νjH(x(j), ωk)φ̂i(x
(j)), (3.18)

where νj is the volume of the ith partition of D, k ∈ {1, . . . , N} is the trajectory

index and j ∈ {1, . . . ,M} indicates the M points where H was simulated. If the

covariance is surrogated and the base is expended then k ∈ {1, . . . ,M∗}, otherwise if

only the M eigenvectors were surrogated then k ∈ {1, . . . ,M}.
There are as many random variables ξ̂i as basis vectors φ̂i. When the eigenvectors

are interpolated, the cardinality of φ̂i and ξ̂i is M . In the second option (when the

covariance matrix is interpolated) the cardinality of φ̂i and ξ̂i is M∗. Either way, the

projection is only computed using the M points simulated because H is known only

on the M points of the DoE. Therefore, even when the base is extended and M∗

eigenvectors are available, ξ̂i(ωk) only depends on the M points of the DoE.

3.3.7 Error evaluation

Once the surrogate model is built, it is of interest to evaluate the accuracy of the

prediction. Because the comparison here is between two random variables (true PDF

response and the predicted PDF in x∗), metrics from the probabilistic framework

take over.

3.3.7.1 Probabilistic metrics comparing the PDFs

When dealing with Gaussian processes, and since we only consider centred processes

in this work, the error estimation will boil down to comparing the variance of the

original stochastic simulator with that of the emulator. For a new point x∗ where

the surrogate is to be evaluated, one gets:
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Ĥ(x∗, ω) =
M∑
i=1

√
λiξi(ω)φi(x

∗), (3.19)

where (ξi, i = 1, · · · , p) are independent standard normal variables in this case. Then,

the associated variance reads:

σ2(x∗) =

p∑
i=1

λiφi(x
∗)2. (3.20)

For non-Gaussian processes, statistical tests can be applied to quantify the error

of the metamodel. The Kolmogorov Smirnov (KS) test has been used to test if two

drawn samples are from the same distribution (null hypothesis). The null hypothesis

is rejected at level α if

KSn,m = sup
x
|F1,n(x)− F2,m(x)| > c(α)

√
n+m

nm
, (3.21)

where n, F1 and m,F2 are respectively the size of the samples and their empirical

distribution functions.

A more intuitive and graphical approach to compare two distributions is using

histogram intersection: when it is equal to 0, no overlap exists between the two of

them, and when it is equal to 1, they are identical (Figure 3.2). The drawback of this

approach is the influence of the selection of the bins, especially for long tailed distri-

butions. In practice, a bin number is defined for both PDFs, the space is decomposed

into the defined number of bins, and discrete probabilities are evaluated for each PDF

on each bin. The histogram intersection error is defined as the minimum probability

of the PDFs in question summed on all the bins.

In addition to the KS test and the histogram intersection, we introduce two more

metrics, namely the Hellinger distance [9] and the Jensen-Shannon divergence [29].

3.3.7.2 Hellinger distance

Let p and q be two discrete probability measures. The Hellinger distance reads as

follows:

H(p, q) =
1√
2
||√p−√q||2. (3.22)

Hellinger distance forms a bounded (∈ [0, 1]) metric on the space of probability dis-

tribution.
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Figure 3.2: Visualization of histograms intersection.

3.3.7.3 Jensen-Shannon divergence

Based on the Kullback-Leibler divergence, the Jensen-Shannon (JS) divergence is

a statistical method of measuring the behaviour of two different distributions. A

Jensen-Shannon divergence equal to 1 indicates that the two distributions are totally

different. If the Jensen-Shannon divergence is equal to 0, the two distributions are

the same almost everywhere. We first introduce the Kullback-Leibler divergence. Let

p and q be two discrete probability measures. Then:

DKL(p||q) = −
∑
i

p(i) log
q(i)

p(i)
. (3.23)

Let r = (p+ q)/2 then the Jensen-Shannon divergence reads as follow

JSD(p, q) =
DKL(p||r) +DKL(q||r)

2
. (3.24)

The Jensen-Shannon divergence is symmetric, finite and 0 ≤ JSD(p, q) ≤ 1.

The different error metrics stated above provide a different information on how the

real and the surrogated PDFs are similar. The histogram intersection metric does

not provide information about the shape-similarity of two PDFs. To cover up this

limitation, JS divergence provides an idea on how much the compared PDFs belong

to a same probability family but tends to be non-discriminant.

3.3.7.4 Cross validation

To estimate the accuracy of the surrogate prediction, we perform a k-fold cross-

validation: the data is partitioned onto k subsets of equal size. At each step a single
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subsample is retained as the validation set for testing the model, and the remaining

data are used to build the surrogate model. The k-fold validation is repeated for

several partitions of the data (Figure 3.3). The error is evaluated using the error

metrics defined above, namely the KS test, the histogram intersection, the Hellinger

distance and the JS divergence.

Figure 3.3: Visualization of the k-fold cross validation. Figure from wikipedia.org.

3.3.8 Application on an analytical 3-dimensional example

For demonstration purposes, the method described in the previous sections have been

tested on a dummy stochastic simulator consisting of an analytical, 3-dimensional

function. We remind that we are considering only centered processes in this chapter.

When considering the simulated data, this is achieved by removing the empirical

mean prior to any treatment. The surrogate models (PCE and Kriging) are obtained

with the Matlab package UQLab [55].

The stochasticity is introduced to the process through known distributions. By means

of simulations on different points of the design of the experiments and numerous

replications, the empirical covariance of the process is assessed. Let H be a random

process on D = [0, 2]3 × Ω:

H(x, ω) = 100 ω1(
1

10
exp(x1ω2) + x2x3ω3),

x = (x1,x2, x3) ∈ [0, 2]3 and ω1 ∼ N (0, 1), ω2 ∼ U([1, 2]), ω3 ∼ U([0, 1]).
(3.25)
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Based on a Latin hypercube sampling (LHS), the design of experiments (DoE) is

30 points in [0, 2]3, and 50 realizations on each point, which makes a total computa-

tional cost of 1, 500 calls to the random function. These numbers are selected as if

it was a real costly simulator. The trajectories are the same for all 30 points of the

DoE. The empirical covariance is C(x,y) = E [H(x, ω)H(y, ω)].

Following the simulations and the covariance computation, two options are tested

(Figure 4.1). In the first approach we interpolate the basis vectors independently

using linear interpolation at first, then using Kriging. The aim is to test the impact

of the interpolation technique on the process surrogate, hence the choice of linear

metamodel (’basic’ interpolator) and Kriging metamodel (’advanced’ interpolator).

For the second approach a PCE surrogate model Ĉ is built to surrogate the co-

variance function:

(x1, x2, x3, y1, y2, y3) ∈ [0, 2]6 → Ĉ(x1, x2, x3, y1, y2, y3) ∈ R. (3.26)

The covariance metamodel has 2 × 3 = 6 inputs, and has a training set of size

up to 29 × 29, depending on the size of the test set. Results from both approaches

are presented in Table 3.1. The mean value of the three error metrics evaluated over

3, 000 test points shows that surrogating the eigenvectors using Kriging performs best

for this toy example. Three examples are plotted in Figure 3.4, the surrogated density

is computed respectively by interpolating the eigenvectors using linear model, inter-

polating the eigenvectors using Kriging and finally interpolating the covariance using

PCE (Figure 4.1). The histogram intersection error in the three cases is respectively

0.89, 0.96 and 0.55 (equal to the mean error (Table 3.1)).

Table 3.1: Mean error over 3,000 test points.

Method Histogram intersection Hellinger distance JS divergence

Linear interpolation of eigenvectors 0.89 0.06 0.004

Kriging surrogate of eigenvectors 0.96 0.025 0.001

PCE covariance surrogate 0.55 0.27 0.03

To characterize the dependence of the method on the surrogate model used, the

size of input data M and the number of realizations, the histogram intersection error

is estimated, and results are presented in Table 3.2. For this comparison, only the

histogram intersection metric is used. Hellinger distance varies in the same way

as the histogram intersection and JS divergence did not seem to be discriminant.
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(a) Linear interpolation of eigenvectors (mean his-
togram intersection is equal to 0.89).
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(b) Kriging surrogate of the eigenvectors (mean
histogram intersection is equal to 0.96).
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(c) PCE surrogate of the covariance (mean his-
togram intersection is equal to 0.55).

Figure 3.4: Surrogated and true CDFs plotted in the three approaches.
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Table 3.2: Parametric study of the histogram intersection error by varying the size
M of the DoE and the number of realizations N .

M the size of DoE

30 60 100 200

lin Krig PCE lin Krig PCE lin Krig PCE lin Krig PCE

N = 50 0.89 0.96 0.55 0.92 0.97 0.56 0.95 0.99 0.65 0.96 0.99 0.63

N = 100 0.9 0.96 0.63 0.94 0.98 0.62 0.95 0.99 0.66 0.96 0.99 0.59

N = 1000 0.96 0.98 0.7 0.96 0.99 0.77 0.97 0.99 0.72 0.98 0.99 0.71

Table 3.2 shows that the performance increases when M and/or N increases. That

said, increasing N seems to grant a better accuracy compared with increasing M .

The poor performance of the PCE surrogate points out to the dependence of the

overall method on the eigenvectors and their computation and is probably due to the

following reasons:

• For a data set of size M = 30, there is 30× 30 = 900 covariance terms. Hence

the surrogate model of the covariance will have 900 inputs (as in Eq. (3.26)),

the PCE model might get noisy and over-fitted.

• The covariance surrogate Ĉ has been symmetrized, meaning that if the obtained

metamodel of the covariance is denoted C∗ (which is not necessarily a symmetric

function of its inputs (x,y)) then the following surrogate is considered Ĉ =
C∗ + Cᵀ

∗
2

. This step may contribute to the noisy results. Surrogate modeling C

only on a triangular domain has been tested, yet the performance on the same

test points did not improve.

The error is always evaluated between the simulated and the surrogated PDF

(using one of the three options), mainly because in case studies the real PDF is usu-

ally unknown, hence comparing the surrogate and the original simulator is impossible.

3.3.9 Conclusions

The flowchart in Figure 4.1 is a reminder of the multiple steps conducted in the pro-

posed methods, namely the two possible approaches: either surrogating the covariance

or the eigenvectors.
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D = {x(1), . . . ,x(M), . . . ,x(M∗)}
H(x(i), ωk) is simulated for 1 ≤ i ≤ M

and for 1 ≤ k ≤ N seeds. C (M ×
M) is the empirical covariance matrix

Apply an eigendecom-
position to C to get
the M eigenvectors

φi(x
(j)), 1 ≤ i, j ≤ M

Compute Ĉ, the
surogate model of the
covariance operator

(Section 3.3.3)

For every 1 ≤ i ≤ M
build a metamodel
φ̂i of φi to predict

φ̂i(x
(j)) 1 ≤ i ≤ M, 1 ≤

j ≤ M∗ (Section 3.3.4)

Apply an eigendecomposi-
tion to Ĉ to get M∗ eigen-
vectors φ̂i, 1 ≤ i ≤ M∗

Compute the random vari-
ables ξ (Section 3.3.6)

ξ̂i(ωk) =
1√
λi

M∑
j=1

νjH(x(j), ωk)φ̂i(x
(j))

Finaly, the KL surro-
gate model reads as

Ĥ(x, ω) =
M∑
i

√
λiξ̂i(ω)φ̂i(x)

for all x ∈ D

Figure 3.5: Flowchart summarizing the method and the two possible options (sur-
rogate modeling the covariance -right, surrogate modeling the eigenvectors -left) for
building up a surrogate model of H.

This study describes a non-parametric surrogate model of stochastic simulators

based on Karhunen-Loève (KL) expansion. The approach has been tested first on

closed-form processes in order to validate the method, and after that applied to a

full scale problem linked to the assessment of a population exposure induced by base
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station antennas (Chapter 5).

When dealing with Gaussian processes, the surrogate can be built in a simple way;

the random variables computation is reduced to generating independent Gaussian

random variables. The evaluation of the model accuracy is also simplified, it is reduced

to comparing two deterministic quantities of interest; mean and variance. In the non-

Gaussian case, there is much more to discuss.

The eigenvectors of the KL expansion in the domain of interest has been predicted

in two different ways : at first a surrogate model of the process covariance operator us-

ing polynomial chaos expansions (PCE) has been used. The second approach consists

in directly surrogating the eigenvector. In terms of performance, the error evaluation

on the toy example shows better results when the eigenvectors are surrogated using

the Kriging.

In this work, the KL expansion was not truncated. The M eigenvectors are all

summed in Eq. (3.14) and no truncation is made. A perspective of improvement

would be to explore the effect of a truncation scheme, for example, based on the most

important eigenvalues.

For the demonstration example, and when the eigenvectors are interpolated using

either Kriging or a linear interpolator, the tests performed do not show a significant

difference in the overall performance. This is mainly due to the multiple steps gov-

erning the stochastic metamodeling procedure. Hence the eigenvector interpolation

error fades away into the global error. Nonetheless the empirical covariance and its

eigenvectors play a crucial role in the precision of the expansion (the PCE surrogate

performed poorly).

Considering the error, the size of the DoE M , and the number of realizations

N , impact the accuracy of the covariance matrix and the precision of its surrogate

but also the accuracy of the random variables appearing in the KL expansion. The

central limit theorem can be used to evaluate the error of the covariance matrix, but

once the covariance or its eigenvectors are surrogated, we lose track of the analytical

error, since errors from the surrogate model of the covariance, its parameters and the

sampling over M points were added.

The fact that the randomness in the case study was ’controllable’ (through freezing

the same seed ωk for different points of the DoE) is a key characteristic, since it

enabled us to compute all the terms of the expansion.
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4.1 General introduction

An important aspect when analysing computational models is the sensitivity analysis

(SA), which consists on quantifying the influence of the input variables onto the

output of the model. SA is usually performed directly on the computational model,

or on its surrogate, and is a highly useful tool mainly to identify the most contributing

inputs (or combination of inputs) that explain at best the variability of the output,

but also to spot non-influential inputs in order to fix them to nominal values, hence

reduce the dimension of the problem. Therefore, SA is essential to understand and

explore the complex behaviour of the modeled system.

In a deterministic context, SA is performed most commonly using the variance-

based approach where the variance of the output is expanded as a sum of contributions

of each input variable, or their combinations [82]. Regression-based measures (like

Pearson correlation coefficient) are also used for models with linear behavior. Alter-

native global SA methods are available such as the Morris method [60] as well as the

moment independent indicators [13]. Some of those methods are presented in more

details in Chapter 2.

In a more complex context, i.e., for stochastic simulators, where the output of

the simulator in a given point is a random variable, sensitivity measures have been

developed lately and are briefly presented in Section 4.2. In Section 4.3, our approach

to perform sensitivity analysis on stochastic simulators is detailed; the stochastic sim-

ulator is represented as a stochastic process and the sensitivity analysis is performed

on the differential entropy of this stochastic process. The approach is published and

will be appearing soon [7]. The performance of the method is illustrated on a toy

example (Section 4.3.4).

4.2 Literature review

When the computational model is more complex, other approaches are considered.

For a computational model with functional outputs, for example, the objective is to

detect input variables that impact the curve of the functional output; in [16], the

SA is conducted on the coefficients of the expansion of the functional output in an

appropriate set of basis functions. The basis functions can be either predefined like

Legendre polynomials or a data-adaptative functions (e.g. principal components or

partial least squares).
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For an output that is a random variable, sensitivity analysis was applied on the

mean and the dispersion of the random output [56]. In this case the sensitivity analy-

sis results does not take into account the influence of the input on higher moments of

the random variable output. Sobol’ indices were evaluated for the mean and variance

functions by performing two independent ANOVA (analysis of variance) decompo-

sitions on the two functions. As mentioned by the authors, it is not possible to

combine both functional ANOVA decompositions of the mean and variance functions

and forming merged SA indices remains an open problem. Authors from [56], through

an example, concluded that the SA on the mean and the variance functions does not

bring enough information to quantitatively estimate all the Sobol’ indices. A similar

approach was used in [44, 45].

Sobol’ indices applied on stochastic models are not defined in a unique way.

Mazo [58] introduces two kinds of Sobol’ indices for stochastic simulators namely

a first and a second kind. At first, Sobol’ indices formula from Section 2.3 is re-

minded. Let f ∈ L2([0, 1]p), where p is the input x dimension. Sobol’ indices are

defined as

Sj =
Var E [f(x)|xj)]

Var [f(x)]
, j = 1, . . . , p. (4.1)

For a stochastic simulatorH(X, ω), ω ∈ Ω andX = {X1,X2 . . . ,Xd} ∈ D ⊂ Rd,

first kind Sobol’ indices [58] are defined as

S ′j =
Var E [H(X, ω)|Xj]

Var [H(X, ω)]
, j = 1, . . . , p. (4.2)

By supposing that ω in H(x, ω) is just another input of the stochastic simulator,

S ′j in Eq. (4.2) is a direct application of Eq. (4.1) for H(x, ω). The second kind Sobol’

indices defined in [58] arises from the definition of Sobol’ indices (Eq. (4.1)) applied

to the mean function of H(x, ω): x → E[H(x, ω)|X = x]. The second kind Sobol’

indices are defined as

S ′′j =
Var E [E[H(X, ω)|X]|Xj]

VarE[H(X, ω)|X]
, j = 1, . . . , p. (4.3)

In [58], the indices are estimated using Monte Carlo simulations, and an optimal

number of realization N and exportation M is introduced.

The lack of approaches that address the sensitivity of the output as a random

variable to the model inputs, is obvious. In the following sections, a parametric

method is proposed to evaluate the sensitivity of the stochastic model output to the

inputs as detailed in Section 4.3. The performance of the method is evaluated in

Section 4.3.4 through a toy example. Finally Section 4.4 concludes and discusses the

approach and its results .
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4.3 The method

The interest is to quantify the sensitivity of the random output to the model input

variables. This is achieved by reducing the output random variable to its differential

entropy. Thus instead of considering the sensitivity of the stochastic model, the

sensitivity of the differential entropy of the stochastic model is considered. In practice,

following the sampling of the stochastic model on a predefined design of experiments

set (DoE), differential entropy is evaluated on each DoE point. The next step consists

of building a surrogate model of the differential entropy of the stochastic process to

then apply standard methods of sensitivity analysis (SA), in this case, via evaluating

Sobol’ indices. Subsections 4.3.1, 4.3.2 and 4.3.3 give detailed explanations of the

techniques used and provide further insight on the choice of differential entropy. The

method is summarized on the flowchart (Figure 4.1), where DoE is the design of

experiments set with M points, H(x, ω) is the stochastic model and ω is the random

seed. To be able to compare with state-of-the-art methods [56], mean and variance

of the stochastic model are also evaluated, on which SA is performed.

Monte Carlo simulations are often used to evaluate the Sobol’ indices [83] using

direct calls to the simulator. However, in the context of this thesis, for the following

reasons, it was preferable to lean toward using a surrogate model:

• Surrogates offer a much cheaper option to the expensive calls to the true models.

The mathematical function mimics the model, and predicts behaviours of inputs

of interest with good accuracy.

• Often times, such surrogates offer the possibility to compute the Sobol’ indices

with a mere post processing step (e.g. Sobol’ indices can be computed analyti-

cally from polynomial chaos expansions [87]).

4.3.1 Differential entropy

Consider a probability space (Ω,F ,P), where Ω is the event space, F its σ-algebra and

P its probability measure. Let Y be a random variable, p(y) its probability density

function (PDF) and S its support set i.e a set where p(y) > 0. Differential entropy

h(Y ) of a continuous random variable Y (if it exists) is:

h(Y ) = −
∫
S

p(y) log p(y)dy. (4.4)
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DoE = {x(1), . . . ,x(M)}
H(x(i), ωk) is simulated for 1 ≤ i ≤ M

and repeated for 1 ≤ k ≤ N random seeds

Evaluate the empirical
differential entropy

function over the M points
of DoE (Section 4.3.1)Evaluate the empirical

variance function over
the M points of DoE

Evaluate the em-
pirical mean

function over the
M points of DoE

Build a PCE metamodel
of the differential entropy
function based on the M

evaluations (Section 4.3.2)
Build a PCE metamodel

of the variance func-
tion based on the M

evaluations (Section 4.3.2)

Deduct Sobol’ indices and
evaluate the sensitivity of
the variance to the inputs
variability (Section 4.3.3)

Build a PCE metamodel
of the mean function
based on the M eval-
uations (Section 4.3.2)

Deduct Sobol’ indices and
evaluate the sensitivity
of the entropy of the
output to the inputs

variability (Section 4.3.3)

Deduct Sobol’ indices and
evaluate the sensitivity of the
mean of the output to the in-
puts variability (Section 4.3.3)

Figure 4.1: Flowchart summarizing the SA method for stochastic simulators.

Differential entropy can be negative, is translation invariant, but is, in general, variant

to any transformation from a random variable to another [26], for example:

h(aY ) = h(Y ) + log |a|. (4.5)

The Gaussian distribution maximizes h over all distributions with the same mean and

variance as proven in [10] by maximizing the Lagrange function under constraints of

mean and variance. Similarly, the maximum entropy of a continuous random variable

having values in a finite-length interval [a, b] is attained for a uniform distribution on

[a, b] [74].

Entropy is wildly used in statistics, with the maximum entropy principle being one

of the well known applications. It states that the PDF that best represents a given set
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of data is the one with maximum entropy among all those that satisfy the constraints

of prior knowledge. In [68], entropy was also used as a space filling technique where the

entropy of the drawn sample is estimated then maximized. Finally, in [5], entropy was

used to evaluate the global SA of a deterministic model, in [49] the indices were based

on conditional entropy whereas in [52] they were based on Kullback-Leibler entropy.

All in all, other research areas highlighted interest in this measure mainly due to the

meaning that entropy contained. Originally, Shannon called it ’uncertainty’, before

changing the name to entropy [74]. In our case differential entropy infers how confined

or spread the random variable is. Hence low entropy implies that the random variable

is confined to a small effective volume and high entropy indicates that the random

variable is widely dispersed.

In practice, differential entropy is evaluated by dividing the range of the sampled

random variable Y = (y1, . . . , yN) into bins of length ∆, then assuming that the

density is continuous within the bins, the mean value theorem tells us that, for each

bin, there must exist a value yi such that:

p(yi) =
1

∆

∫ (i+1)∆

i∆

p(y)dy. (4.6)

The quantized random variable Y ∆ is defined as Y ∆ = yi. If i∆ ≤ Y ≤ (i + 1)∆,

then

P(Y ∆ = yi) =

∫ (i+1)∆

i∆

p(y)dy = p(yi)∆. (4.7)

If p(y) log p(y) is Riemann integrable, then as ∆→ 0, −
∑

∆p(yi) log p(yi) approaches

h(Y ).

In practice, there are many rules that can be used to decide the bin number (e.g.

Sturges rule [85], Scotts rule [80]). With Sturges rule dlog2(N)e+ 1 bins are advised.

For a data set where N = 50, 7 bins are recommended with this rule.

4.3.2 Surrogating the entropy

Following the computation of entropy over the DoE set, a surrogate model is built to

emulate the entropy of the stochastic output. Here, the PCE metamodel is used (see

Section 2.2.2 for more details). For completeness sake, polynomial chaos expansion

is briefly reviewed.
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Polynomial chaos expansion

Polynomial chaos expansion (PCE) approximates the dependence of the model out-

puts on the model inputs by expansion in an orthogonal polynomial basis {Ψβ,β ∈
Nd} with respect to the joint PDF of the input parameters [32] [88].

Consider a deterministic numerical model g with independent inputs gathered in

a random vector X ∈ D ⊂ Rd with a joint probability density function pX . Suppose

that the model response g(X) has a finite variance, i.e. E [g(X)]2 <∞, g(X) can be

expressed as follows :

g(X) =
∑
β∈Nd

aβΨβ(X), (4.8)

where aβ are unknown deterministic coefficients and Ψβ are multivariate polynomials

obtained as tensor products of univariate polynomials of degree (β1, . . . , βd).

Several methods exist to calculate the coefficients aβ of the PCE for a given ba-

sis, namely using projection methods [96] where the expansion is projected onto the

polynomial space, or by casting a least-squares minimization problem [8, 11]. A nice

feature of PCE is the simplicity with which one obtains the most commonly used

statistics of the quantities of interest: mean, variance as well as Sobol’ sensitivity in-

dices [82, 78], which can be computed analytically from the estimated coefficients [89].

4.3.3 Sensitivity analysis of the entropy

Following the construction of the surrogate model of differential entropy, the next step

consists of evaluating the SA of the input to the entropy of the output by estimating

the Sobol’ indices, a well-known global SA approach, in which proportional values of

the variance of the inputs to the output are evaluated.

Sobol’ indices are based of the ANOVA decomposition of the variance function [37]

and defined as in Eq. (4.1). Sobol’ indices are described in details in Section 2.3.

Remark. The function f from Section 2.3 is a function describing the stochastic pro-

cess, it can be either the mean, variance or entropy of the stochastic process H(x, ω).

Remark. The use of differential entropy in this chapter can be seen as a parametric

representation of the random process; instead of considering the random output, its

entropy is rather considered. Not to be confused with entropy-based sensitivity analysis

introduced in Section 2.3.2.
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4.3.4 4-dimensional analytic example

For demonstration purposes, sensitivity analysis is evaluated on a four-dimensional

analytic example based on the rotated hyper ellipsoid function,

H(x, ω) = x2
1 + ω1(x2

1 + x2
2) + ω2(x2

1 + x2
2 + x2

3) + ω3(x2
1 + x2

2 + x2
3 + x2

4), (4.9)

where ω1 ∼ Γ(10, 1), ω2 ∼ Γ(7.5, 1), ω3 ∼ Γ(2, 2). Γ(α, β) refers to the gamma dis-

tribution with shape parameter α and rate parameter β. A DoE ⊂ [−65, 65]4 of size

M = 50 is generated using Latin hypercube sampling. The simulations were repeated

N = 105 times for each point of DoE. Differential entropy is empirically evaluated

over the 50 points. For each point from DoE, 10 bins were used to evaluate differen-

tial entropy based on the 105 samples. A PCE metamodel of the mean, variance and

entropy is then built and the respective leave-one-out errors are 4.2 ·10−28, 1.8 ·10−28

and 0.012 (LARS was used to evaluate the PCE coefficients [28, 12]).

The Sobol’ indices were evaluated using the PCE surrogate model.

Variable Sobol’ indices Mean Variance Entropy

X1

total

first order

0.4534

0.4534

0.4784

0.4307

0.4003

0.3371

X2

total

first order

0.4139

0.4139

0.4381

0.3915

0.3617

0.2819

X3

total

first order

0.1184

0.1184

0.1262

0.1058

0.2455

0.1962

X4

total

first order

0.0143

0.0143

0.0162

0.0132

0.1087

0.0783

Table 4.1: Total and first order Sobol’ indices for the mean, variance and entropy of
H(x, ω) from the analytic example.

Since differential entropy is translation invariant, the sensitivity of the model to

the mean of the stochastic process needs to be explored as well. Sobol’ indices are

also evaluated for the variance function, the objective being to compare the SA from

(mean, variance) to (mean, entropy). As detailed in Table 4.1, the three approaches

rank the variables similarly. The main difference is that the interactions between

variables are more pronounced in entropy case, namely 8% of the variance of entropy

is due to interactions between X2 and other variables. Unlike the mean and variance-

based SA, variables such as X3 and X4 are not negligible for entropy-based SA.
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As demonstrated through this example, the use of the entropy as a measure of

interest complements the state of the art approaches, mainly based on evaluating the

sensitivity on mean and variance.

4.4 Conclusions

This chapter presents a novel approach to assess the sensibility of a stochastic sim-

ulator by considering differential entropy as a measure of uncertainty on the output

distribution given a set of inputs. When dealing with simulators with random outputs,

and when the interest is focused on the probability density function of the output

rather than on one of its moments (mean, variance . . . ), considering the entropy of

the random output is useful. Any significant fluctuation of the value of entropy can

be recognized as a sensitivity to the input variable causing it, but as any numerical

approximation, entropy is sensitive to the choice of the metamodel and to the bin

number.

The method proposed is agnostic as to the machine learning technique used, it is

up to the user to choose metamodels that are adequate to the dimension of the inputs,

the size of the design of experiments and to the properties of the models response.

Relying on selected moments such as variance to describe the random output

can be restrictive since two different probability density functions can have the same

value for a specific moment. It is though less likely for two different probability

density functions to have the same mean, variance, and differential entropy at the

same time, that’s why more than one indicator is used.

Since entropy is translation invariant, the SA performed on entropy is paired with

the one performed on the mean. The method is particularly efficient since differential

entropy is more general than the variance. Not only does it enclose the variance, but

it also demonstrates how the random variable scatters randomness in its support.
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The scope of the thesis was briefly introduced in Chapter 1. This chapter now

describes in more details the context and the tools used to address the problematic of

the thesis, namely the study of the impact the morphological features of a city have

on the resulting human exposure induced by a base station antenna. The first sections

summarize the basic and advanced notions of electromagnetic dosimetry, introduced

in a simplified way so that a non-experimented reader can follow the developments.

5.1 The human exposure

Wireless communication means were revolutionary, to say the least, to the telecom-

munications industry. The use of electromagnetic waves for wireless communication

is not new; Guglielmo Marconi first began developing a wireless telegraph system

using radio waves in 1894. His contributions to wireless communication led him to

be awarded the Nobel prize in 1909 (shared with Karl Ferdinand Braun). For a long

time, firefighters, hospitals and police used radio waves to communicate but it took

until the 1990’s for wireless telephone networks to proliferate and induce a social

revolution.

Now wireless communications play a significant role in people everyday lives, and

the extremely rapid technological evolution results in phenomenal changes in the us-

age of wireless devices, enabling voice traffic, digital data exchange, etc. (Figure 5.1).

Along with this sweeping success, concerns about possible health side effects related

to the exposure to the radio frequency (RF) electromagnetic radiations hve emerged,

giving birth to electromagnetic dosimetry.

To protect people from overexposure induced by electromagnetic field (EMF) ra-

diations, compliance tests and safety standards were defined by European and inter-

national bodies such as ICNIRP1 [41], FCC2, the European Council [71] and IEEE

SCCs3 [3]. The guidelines provided by such organizations define exposure levels above

which the exposure becomes detrimental. For example, standards defined in [42] aim

at putting ’safe’ devices onto the market, in other words devices that satisfy the re-

quirements imposed. Here the focus is rather on the actual exposure. Epidemiological

studies emphasize the actual exposure assessment typically by computing the specific

absorption rate (SAR) that is derived from the electric and magnetic fields induced

by the wireless system.

1International commission on non-ionizing radiation protection
2Federal communication commission
3Standards coordinating committees
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The vast array of wireless technologies and the different generations of cellular

networks (GSM4, UMTS5, LTE6), stress the importance of monitoring and managing

EMF exposure.

Figure 5.1: Day-to-day exposure of a population [1].

In order to further characterize the real exposure, the next Section 5.2 introduces a

measure to evaluate the exposure to EMF, namely the specific absorption rate (SAR).

5.2 Computational dosimetry

The human exposure to RF EMF represents the power absorbed by the tissues of

the human body and is characterized by the SAR value in watt per kilogram. SAR

measures the rate at which the power is absorbed in a human body exposed to RF

EMF. The whole-body SAR can be evaluated by assessing the power absorbed per

unit mass of the body tissue.

SARwhole−body =
Pabs(body)

m(body)
(W/kg). (5.1)

4Global system for mobile communications (2G)
5Universal mobile telecommunications system (3G)
6Long term evolution (4G)
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SAR can be assessed locally, for a fetus [46] for instance, or for an organ like the

brain.

The most popular formula of SAR directly links SAR to the magnitude of the

incident electric field E(V/m), to the conductivity σ(S/m) and to the density of the

tissue ρ(kg/m3)

SAR =
σE2

2ρ
(W/kg). (5.2)

Eq. (5.2) is a consequence of Maxwell equations [57], a mathematical model describing

how electric and magnetic fields are generated by charges, currents, and changes of

the fields. The set of equations is described here for the sake of completeness.

Let E denote the electric field, B the magnetic field, J the electric current density,

ε the permittivity and µ the permeability. The ∇· symbol denotes the divergence

operator meanwhile ∇× denotes the curl operator. Maxwell’s differential equations

read:

∇ ·E =
ρ

ε
,

∇ ·B = 0,

∇×E = −∂B
∂t

,

∇×B = µ(J + ε
∂E

∂t
).

(5.3)

The reader can consult [95] for further details on how the SAR formula is derived

from Maxwell equations.

SAR can be assessed using measurements. In this case the electric field is mea-

sured and the SAR can be deduced by Eq. (5.2). However performing measurements

is not always possible in particular it is impossible to measure inside the human body

for invasive concerns. To overcome this limitation, and based on realistic hetero-

geneous body models (e.g. Figure 5.2), EMF is assessed using numerical methods,

mainly finite-difference in the time-domain (FDTD [90]). The main drawback of such

numerical method is the prohibitive computational cost.

5.3 Exposure induced by base stations

The sources of electromagnetic field are various, and can be located in a near field like

WiFi boxes or cell phones, very close to the human body. They can also be located

in far locations like a radio base station on a building roof. The exposure is modelled

differently depending on the location of the source, its characteristics and usage.
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Figure 5.2: The virtual family model: Duke, Ella, Billie and Thelonious (from left to
right) [21].

In this work, base station antennas are considered. During the last two decades

base stations antennas have blown up in numbers in rural, urban, and sub-urban

areas. They are typically 1 to 2 meter-long arrays of antennas with gains between

15 and 21 dBi placed in towers between 25 and 75 meters above ground. They have

high aperture efficiencies and are able to handle a very high power (Figure 5.3).

Figure 5.3: Cell phone base station antennas on a roof (left) - A small cellular network
of uniform cell size (right).

Macrocell base stations are used in cellular networks to provide radio coverage over

very large areas (several hundreds of meters in urban areas to several kilometres in

rural areas). A large number of antennas each covering limited areas of land (called
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cells) make a cellular network (Figure 5.3). When a mobile phone is within these

cells it is possible to make voice calls and transfer data through these base stations.

These base stations emit power at all time. The emitted power depends on different

parameters such as technology, user traffic and cell capacity.

Since SAR assessment is a complex and time consuming matter, studies were con-

ducted to define functions assessing the absorbed power by the human body from

the incident field. These functions are called transfer functions. Many studies were

carried in order to characterize these transfer functions in terms of variabilities of

SAR through advanced numerical methods. The relationship between the incident

field and the absorbed power depends on a few parameters [23, 95], namely the wave

frequency (Figure 5.4) and the intensity of the incident field. In addition, the body

posture, the body morphology and the conductivity of the organs impact the ab-

sorbed power. As a matter of fact the absorbed power varies (up to 40%) in terms

of morphological parameters (Figure 5.4). When adults and children are exposed to

the same incident field, the latter will have a higher absorbed power due to their

body size (see Figure 5.5). The angle of incidence of the EM wave also impacts the

absorbed power: more power is absorbed if the field directly hits the front or the back

of the human body [23].

Figure 5.4: Deviation of the whole-body SAR versus frequency for different numerical
human models [24].
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Figure 5.5: Whole-body SAR versus frequencies for different ages [24].

5.4 Path loss exponent

This section introduces tools to evaluate the exposure in a real context, i.e. the

day-to-day exposure of a population to RF-EMF in a typical urban environment.

The SAR formulation in Eq. (5.1) requires the evaluation of the power absorbed,

which is equal to the power emitted by the RF-EMF source minus any losses. The

losses are modelled using propagation models. Propagation models should take into

consideration the influence of building, field data and RF waves propagation. In

this respect, advanced computational tools were used in many studies [40, 94, 39] to

characterize the signal attenuation between the transmitter and the receiver. The

propagation model can be approximated using a path loss model [70]:

P (d) = β − 10α log10(d) +N (0, σ2). (5.4)

In this equation P is the received power, d the distance between the transmitter

and the receiver, α is the path loss exponent (PLE), β a constant and N (0, σ2) is

a Gaussian noise with zero mean and variance σ2. α and β can be computed by

linear regression for a minimum mean-squared estimate (see Section 2.2.1). The path

loss exponent represents the attenuation of energy between the transmitter and the

receiver, and depends on the frequency, antennas height, and propagation environ-

ments. In free space, i.e. a region free of all objects that might affect RF propagation

by absorption, reflection, or refraction, it is shown that α = 2. In the presence of

a very strong guide wave phenomenon (tunnel effect) α can get lower that 2. In
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general, when obstacles are present α is larger. Hence the PLE widely varies across

propagation terrains. The aim of this chapter is to further study this variability.

5.5 Stochastic city generator

The path loss exponent presented in Section 5.4 is typically evaluated using mea-

surements. Lately, and without any need for in-situ measurements, a statistical

model [98, 40] based on virtual cities, generated using stochastic geometry is used

to evaluate the PLE. Authors of [98] developed a framework implemented in C++

called GeoStat. Other features were added to GeoStat in [31].

To generate a city, some parameters are fixed in the first place. Table 5.1 represents

some of the parameters that the user can select. To see the full list of city parameters

the reader can refer to [31, 98].

Parameters Definition domain

Street width (mean value) R+

Building height (mean value) R+
0

Building facade length (mean value) R+
0

Anisotropy [0, 1]

Edges of the simulation window N \ {0, 1, 2}

Table 5.1: Values for some morphological features of a typical urban city.

The skeleton of the city is represented by a polygon to which a tessellation is

applied. A tessellation is a countable family of convex polygons partitioning R2

and whose interiors do not intersect. The most used tessellations in modeling street

systems are Poisson Line [20] and Crack STIT [62] tessellations. This partitioning step

is repeated in a recursive way (Figure 5.6). The following step consists on applying

an erosion and dilatation to the edges of each polygon. The building footprints are

then created by dividing the inner surface between the two polygons (between erosion

and dilatation). A random height is then associated to each building. The value of

the height of each building is drawn from a distribution, the mean value of which

is picked by the user (Table 5.1). Figure 5.7 from [25] reviews the different steps to

build a virtual city.

Figure 5.8 shows the final results for different values of anisotropy. The morphol-

ogy depends on the choice of the parameters governing the city. However, due to

the random processes involved in the construction of such virtual cities, even for two
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Figure 5.6: Realisation of tessellations on a virtual city.

cities governed by the same parameters, the morphology and the buildings in the city

are not similar.

5.6 Ray tracing

Once the virtual city is finalized, the assessment of the exposure is performed using

ray tracing techniques used to propagate EMF in urban areas. In a given stochastic

city model, an antenna has been placed somewhere in the city (position fixed by

the user) operating at a fixed frequency. N rays are then launched from the source

(Figure 5.9). The launched rays produce reflections and diffractions and a portion

of their power is also absorbed by the surface. The signal attenuation map can be

obtained by assessing the received power in the measurement plane, 1.5 m above the

ground to represent the human exposure.

GeoStat enables the user to choose parameters related to the ray tracing step,

some of which are listed in Table 5.2. The full list can be found in [25] and the

updated list in [31].

Parameters Definition domain

Number of antennas N∗

Power gain after reflection R−

Wavelength of the antenna R+

Maximum reflections per ray N∗

Number of rays N∗

Table 5.2: Some parameters governing ray launching in a typical urban city.
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Figure 5.7: Steps to generate a virtual city: left to right: (1) a tessellation (2) an
erosion is applied to each polygon (3) in each new cell, the dilated polygon with
respect to its center of mass is computed (4) a Poisson point process is drawn on the
edge of the polygon (5) those points are projected to create buildings footprints (6)
the final result [25].

5.7 Statistical analysis of PLE in urban environ-

ment

Based on the tools presented above, i.e., the virtual city generator and the ray tracing

technique, the power absorbed can be computed and the PLE can be fitted using

Eq. (5.4). This process of computations (from a virtual city to the PLE evaluation)

is what we call here a stochastic city simulator.

The aim is to further study the variability of the PLE. For a given city, deter-

mined by few parameters, the PLE α is evaluated with the help of the stochastic city

simulator. By running the simulator for the same city, PLE will be different due to

the stochasticity involved while building a city and launching rays. Hence, by running

the simulator for the same city, multiple times, a distribution of α can be attributed

to the city parameters.

The objective is to further explore the impact that the city characteristics has onto

the exposure (or onto the PLE). This can be done by evaluating the sensitivity of the

simulator to the variation of its inputs. First of all, the stochastic simulator input
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Figure 5.8: Footprint of three virtual cities with different anisotropy: from left to
right, anisotropy values are: 0, 0.5 and 1 also called a Manhattan-like city.

Figure 5.9: 3D view of ray tracing in a virtual city.

variables are selected among all the variables governing the stochastic city simulator,

while the irrelevant ones are set to nominal values. Table 5.3 represents the considered

variables. Since the aim here is to explore only the impact the geometry of a city can

have onto exposure, the variables describing the EMF are set to nominal values.

Input variables Range

Street width X1 [10 m, 20 m]

Building height X2 [9 m, 18 m]

Anisotropy X3 [0, 1]

Table 5.3: Input variables for the stochastic city generator.

Let H(x, ω) be the stochastic city generator, x is the set of variables governing

the city (Table 5.3), and ω the randomness arising from building a city and launching

rays. To generate data from the simulator, a design of experiments (DOE) is at first

built using Latin hypercube sampling (LHS). This technique is briefly presented in
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the next section.

5.7.1 Generating the design of experiments

LHS is a pseudo-random sampling method used to design a more efficient sample

set than Monte Carlo methods. A Latin square is a square grid containing sample

positions where there is only one sample in each row and each column. A Latin

hypercube is the generalisation of this concept to an arbitrary number of dimensions,

whereby exactly one sample is drawn in each axis-aligned hyperplane containing it.

This strategy does not prevent possible bad space filling. To offset this limitation,

the maximin criteria is advised. A number of LHS designs are sampled, and the one

that maximises the minimum distance between the points is selected.

Figure 5.10 represents the LHS of the input variable X = {X1, X2, X3} for the

experiment. M = 30 points were selected, mainly because of the high computational

cost of the stochastic simulator. Indeed one run takes more than one hour (by means

of a computer of type Intel Xeon E5-2620v3 2.4 GHz 6 Core 15 Mo and Nvidia Tesla

K80). In such situations building a surrogate model enable the use and exploration

of the characteristics of the stochastic model. Section 5.7.3.1 tackles the building of

a metamodel to the stochastic process using the method introduced in Chapter 3.
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Figure 5.10: Projection onto the three dimensions of the 30 DOE points selected
using LHS.
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5.7.2 PLE distribution using stochastic cities

Following the sampling on the deterministic variables of the stochastic process, it

is now time to run the stochastic simulator. As mentioned previously, the output

(PLE) will not be the same if the call to the simulator is repeated for the same

input x, unless the random seed in the code is fixed, which is something feasible with

GeoStat. In this case, it is possible to freeze the randomness (say ωk) and regenerate

H(x, ωk), it is also possible to run twice the simulator for two different points x(1) and

x(2) with the same random seed ωk. The seed is used to initialize a pseudo-random

number generator in the stochastic city generator. By freezing the trajectory of the

process, two cities with the same seed number and the same parameters are exactly

the same, and accordingly their path loss exponents are identical. The random seeds

are still unkown, and not controllable by the user. They can only be frozen. In this

experiment 50 seeds were considered.

Using the stochastic city simulator, 8×105 rays have been generated and launched

from an 30 m high antenna located in the center of a city measuring 360000 m2 and

fully determined by a seed number and three input variables detailed in Table 5.3

(other parameters such as ground and building properties were not addressed in this

case study).

Following the ray tracing, the received power and the corresponding distances

for each ray hitting the city are collected. They are then used to predict α for this

city by casting a least-squares minimization problem on Eq. (5.4). So in total 1500

minimization problems were solved to get the values of α on different cities, and for

different seeds.

The DoE is a LHS of 30 cities for the 50 seeds, meaning in total 30× 50 = 1, 500

simulations. The simulations lasted over three months.

5.7.3 Uncertainty quantification

Admittedly, the objective of the thesis was to explore the impact a city has on the

exposure of the population, which is done by performing sensitivity analysis on the

stochastic simulator. Yet for all the reasons mentioned before (the code is costly and

stochastic), a user could not get hold of any kind of data or statistical characteristics

of the model easily. In addition to the 1.5 hour per run, preparing input files, the use

of adequate computational tools, and the post processing of the data (computation

of PLE after the ray tracing) is just not practical to perform any kind of inferential

statistics, let alone predictions.
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The need to build a metamodel came from the stated reason, but also to establish

a direct link between any city parameters and the corresponding PLE probability

density function (PDF).

5.7.3.1 Metamodel of PLE

The non-parametric surrogate model based on Karhunen-Loève (KL) expansion was

used here. The eigenvectors of the KL expansion in the domain of interest have been

predicted in two different ways: at first a surrogate model of the covariance opera-

tor has been used using polynomial chaos expansions (PCE). The second approach,

consists in directly surrogating the eigenvector.

Among the 30×50 runs, 10% of the data are for testing. A k-fold cross-validation

was carried out by dividing the data onto k = 10 subsets. At each step a surrogate

model of the stochastic simulator (Chapter 3) is built using nine out of the ten subsets.

The remaining subset is used to evaluate the performance of the model (Figure 5.11).

This procedure is then repeated for 100 different partitions of the data set. To evaluate

the performance of the metamodel on the test points, metrics from Section 3.3.7 are

used. The results are presented in Table 5.4.

Method
Histogram
intersection

Hellinger
distance

JS divergence

Linear interpolator of eigenvectors 0.74 0.15 0.02

Kriging surrogate of eigenvectors 0.71 0.17 0.03

PCE covariance surrogate 0.76 0.14 0.02

Table 5.4: Mean error estimators over 3,000 test points.

In this case, and for M = 30, N = 50, the PCE performs slightly better than

the other options. The ranking of the three approaches depends on the process. For

instance, for the toy example in Section 3.3.8, the ranking was the other way around

and the performance of PCE was the worst among the tested interpolators.

For this example, the dependence of the method on M and N could not be eval-

uated since only 30 points were simulated (due to the high computational cost).

The KS test is used to test the null hypothesis: the predicted and the sampled

PDFs come from the same distribution. Results are 4.8%, 12.6%, 1.46% of rejection

of the null hypothesis (at level 5%) for the respectively linear surrogate of φi, the

Kriging surrogate of φi, and the PCE surrogate of the covariance C.
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histogram intersection is equal to 0.74), X =
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

α

C
u

m
u

la
ti
v

e
 P

ro
b

a
b

il
it
y

 

 

(b) Kriging surrogate of the eigenvectors (mean
histogram intersection is equal to 0.71), X =
(19, 15, 0.6).
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(c) PCE surrogate of the covariance (mean his-
togram intersection is equal to 0.76), X =
(12, 16, 0.14)

Figure 5.11: Surrogated and simulated CDFs plotted in the three approaches, α is
centred.
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The KS test allows to rank these three approaches, something that none of the

three error metrics could provide, since they all showed that the performance of the

three approaches is more or less the same. Considering the fact that the size of the

training set was small because of the high computational cost of the original stochastic

simulator, the error has been considered acceptable.

5.7.3.2 Sensitivity analysis

In this section we apply the method presented in Chapter 4 to the stochastic city

generator. Following the generation of the DOE, differential entropy is then evaluated

on each of the 30 random variables α(X
(i)
1 , X

(i)
2 , X

(i)
3 ), 1 ≤ i ≤ 30 (the bin number is 7

in this example). A PCE surrogate model of differential entropy is built, from which

Sobol’ indices are drawn (Table 5.5). They are compared to Sobol’ indices of the

mean and the variance computed from the PCE surrogate models of the stochastic

process, both based on the M = 30 points of the DoE. The respective leave one

out error of the mean, variance and entropy metamodel is 0.1, 0.076 and 0.08. The

respective Sobol’ indices are drawn in Table 5.5.

Input variables X1 X2 X3

PCE Sobol total
first
order

total
first
order

total
first
order

Mean of α 0.5086 0.4902 0.5098 0.4914 0.0184 0

Variance of α 0.5000 0.4485 0.5367 0.5000 0.0148 0

Entropy of α 0.2083 0.1939 0.6112 0.5969 0.195 0.195

Table 5.5: Total and first order Sobol’ indices for the mean, variance and entropy for
the exposure example.

Sobol’ indices on the mean, variance and entropy do not lead to the same conclu-

sions. The variance of (the mean, variance, and entropy of) α is mostly sensitive to

the variance of the building height. Depending on the building height in a given city,

rays generated by the antenna can be propagated in a wider or more confined space.

For both, the mean and the variance, the variable X3 (i.e the streets anisotropy)

does not seem to impact the variance of the output. Meanwhile, in recent studies,

anisotropy has proved to impact the propagation. In fact, the higher the anisotropy,

the larger α [77, 43], which is more consistent with the case where the SA is performed

on entropy.

The total indices are the summation of the first order Sobol’ indices and any

interactions. In this study total and first order Sobol’ indices are rather close. Thus
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second and third order Sobol’ indices do not seem to have significant impact on the

mean, variance and entropy. In this respect we can deduce that the relationship seems

linear between the city parameters and (the mean, variance and entropy) of the PLE.

5.8 Conclusions

In this chapter, the methods developed in the thesis were applied to a full scale

problem dealing with the impact the morphological characteristics of a city have onto

the exposure of the population to RF-EMF.

The case study was at first described in a simplified way. A non-expert reader can

easily follow the drive to perform such a study, the computational obstacles and the

use of the surrogate model as well as the sensitivity analysis to overcome them.

The main tools to tackle the case study, i.e. concepts such as human exposure,

the path loss exponent, GeoStat and the ray tracing method were introduced. The

stochastic simulator is a model combining all the stated concepts to evaluate the

human exposure in a city. It takes the city morphological characteristics as an input,

and computes the path loss exponent (the reduction of power density from a source

to a receiver). The simulator is called stochastic since each input parameters set is

not tied to a unique output, but rather to a probability density function (PDF).

The planning of the experiments was an important task. With a limited budget,

the challenge was not only to efficiently explore the domain, but also to ensure a

sufficient number of repetitions per point for a good grasp of the PDF.

The approach presented in Chapter 3 was successfully applied to build a learner

to the stochastic city generator. Using the metamodel, the PDF of the path loss

exponent can be evaluated for each city ’type’, with a computational cost reduced to

a few seconds.

The original question about which of the city morphological characteristics im-

pacts the most the exposure has been addressed using the sensitivity analysis method

presented in Chapter 4. Methods from the literature were also implemented. The

comparison showed that the proposed approach brought the most accurate ranking.

The height of buildings impacted the most the exposure. The proposed method

revealed that the variance of the anisotropy considerably impacted the exposure,

whereas methods from the literature judged the anisotropy as insignificant.

83



84



Chapter 6

Conclusion

The methods presented in this thesis arise from a full scale problem. It is about

exploring the human exposure and its possible links to the urban characterization of

a city. The principal objective is to identify the most influencing parameters that

could serve as levers to control the population levels of EMF exposure in urban

cities (building height, street width, anisotropy). To this end, dosimetric tools and

statistical methods were practical. However the code used to evaluate the exposure

in such cities was expensive to run and inherently stochastic.

Towards this objective, a first method was proposed in this thesis to build a surro-

gate model to the original model to alleviate the computational burden. The literature

was not that diverse when it comes to surrogate modeling stochastic simulators such

as the one we had at hand. To this end the method proposed filled a void. The

method is based on Karhunen-Loève expansion and two approaches were considered.

The eigenvectors of the KL expansion in the domain of interest have been predicted in

two different ways: at first a surrogate model of the process covariance operator using

polynomial chaos expansions (PCE) has been used. The second approach consists in

directly surrogating the eigenvectors. The method is non-parametric: the output is

considered as a probability density function, and not reduced to its first moments.

To gather data and apply the mentioned method, a computer experiment was

planned. 1, 500 runs of the simulator were performed, split between exploration and

repetitions. Three months were needed to gather the necessary data to build the

surrogate model. The method involved multiple steps. At each one, options were

available and the performance of the surrogate depended on the selected options, on

the data set and its size.

To evaluate how sensitive the exposure is to the city characteristics, a method was

proposed to evaluate the impact the variability of the city has onto the entropy of

the exposure. Evaluating the sensitivity via variations of differential entropy offered
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a new perspective to assess uncertainty. Results of the proposed method brought

out interesting conclusions about the impact city parameters (building height, street

width, anisotropy) have on the exposure.

The two proposed methods from Chapters 3 and 4 are independent from each

other. Both chapters are presented in a general context and can be applied to a

wide range of industrial problems entailing stochastic simulators. The methods are

agnostic to the tools used, and often many possibilities are available. The objective

here is to stay as generic as possible and allow the user to adapt the methods to the

problem at hand.

Some perspectives are detailed in 3.3.5 concerning the surrogate modeling of the

stochastic simulator. For the sensitivity analysis on stochastic simulators, few options

can be explored in future works. Instead of choosing the differential entropy as

a measure of uncertainty, f-divergence functions can be explored, by fixing a usual

probability density function (PDF) as a reference (e.g. uniform PDF), and computing

the f-divergence between the output PDF and the reference PDF.

This work raised the well-known dilemma of exploration versus repetition. For

budgetary reasons, M and N were heuristically chosen. A perspective lies in providing

a criteria enabling the update and the optimality of M and N .

To conclude, the objectives achieved in this thesis aim at featuring a particular,

yet very compelling type of computational models called stochastic simulators. The

urge to study such simulators is pressing, now more than never, mainly due to their

adequacy to model complex problems. No doubt that upcoming advances will shed

more light onto related subjects.
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Titre : Emulateurs de simulateurs stochastiques
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électromagnétiques

Résumé : Cette thèse propose des outils statistiques
pour étudier l’impact qu’a la morphologie d’une ville
sur l’exposition des populations induite par un champ
électromagnétique provenant d’une station de base.
Pour cela l’exposition a été évaluée numériquement
en propageant (via des techniques de lancer de
rayons) les champs émis dans une antenne dans
des villes aléatoires. Ces villes aléatoires ont les
mêmes caractéristiques macroscopiques (e.g. hau-
teur moyenne des immeubles, largeur moyenne des
rues et anisotropie) mais sont distinctes les unes
des autres. Pour les mêmes caractéristiques de nom-
breuses villes aléatoires ont été générées et l’ex-
position induite a été calculée pour chacune. Par
conséquent, chaque combinaison de variables cor-
respond à plusieurs valeurs d’exposition. L’exposi-
tion est décrite par une distribution statistique non
nécessairement gaussienne. Ce comportement sto-
chastique est présent en plusieurs problèmes indus-

triels et souvent les nombreuses simulations menées
ont un cout de calcul important.
Les travaux de cette thèse étudient la modélisation
de substitution des fonctions aléatoires. Le simu-
lateur stochastic est considéré comme un proces-
sus stochastique. On propose une approche non pa-
ramétrique basée sur la décomposition de Karhunen-
Loève du processus stochastique. La fonction de
substitution a l’avantage d’être très peu coûteuse à
exécuter et à fournir des prédictions précises.
En effet, l’objective de la thèse consiste à évaluer la
sensibilité de l’exposition aux caractéristique morpho-
logiques d’une ville. On propose une approche d’ana-
lyse de sensibilité tenant compte de l’aspect stochas-
tique du modèle. L’entropie différentielle du processus
stochastique est évaluée et la sensibilité est estimée
en calculant les indices de Sobol de l’entropie. La va-
riance de l’entropie est exprimée en fonction de la va-
riabilité de chacune des variables d’entrée.

Title : Surrogate modeling of stochastic simulators

Keywords : Stochastic processes, Statistical learning, Surrogate modeling, Electromagnetic dosimetry

Abstract : This thesis is a contribution to the sur-
rogate modeling and the sensitivity analysis on sto-
chastic simulators. Stochastic simulators are a par-
ticular type of computational models, they inherently
contain some sources of randomness and are gene-
rally computationally prohibitive. To overcome this li-
mitation, this manuscript proposes a method to build
a surrogate model for stochastic simulators based on
Karhunen-Loève expansion.
This thesis also aims to perform sensitivity analysis
on such computational models. This analysis consists
on quantifying the influence of the input variables onto
the output of the model. In this thesis, the stochastic

simulator is represented by a stochastic process, and
the sensitivity analysis is then performed on the diffe-
rential entropy of this process.
The proposed methods are applied to a stochastic
simulator assessing the population’s exposure to ra-
dio frequency waves in a city. Randomness is an in-
trinsic characteristic of the stochastic city generator.
Meaning that, for a set of city parameters (e.g. street
width, building height and anisotropy) does not define
a unique city. The context of the electromagnetic do-
simetry case study is presented, and a surrogate mo-
del is built. The sensitivity analysis is then performed
using the proposed method.
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