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Abstract

The energy consumption is a crucial issue for real-time systems, that's why optimizing it online,
i.e. while the processor is running, has become essential and will be the goal of this thesis. This
optimization is done by adapting the processor speed during the job execution. This thesis
addresses several situations with different knowledge on past, active and future job characteristics.
Firstly, we consider that all job characteristics are known (the of�ine case), and we propose a linear
time algorithm to determine the speed schedule to executen jobs on a single processor. Secondly,
using Markov decision processes, we solve the case where past and active job characteristics are
entirely known, and for future jobs only the probability distribution of the jobs characteristics
(arrival times, execution times and deadlines) are known. Thirdly we study a more general case:
the execution is only discovered when the job is completed. In addition we also consider the case
where we have no statistical knowledge on jobs, so we have to use learning methods to determine
the optimal processor speeds online. Finally, we propose a feasibility analysis (the processor ability
to execute all jobs before its deadline when it works always at maximal speed) of several classical
online policies, and we show that our dynamic programming algorithm is also the best in terms of
feasibility.
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Résumé
La consommation d'énergie est un enjeu crucial pour les systèmes temps réel, c'est pourquoi
l'optimisation en ligne, c'est-à-dire pendant l'exécution du processeur, est devenue essentielle et
sera le but de cette thèse. Cette optimisation se fait en adaptant la vitesse du processeur lors de
l'exécution des tâches. Cette thèse aborde plusieurs situations avec des connaissances différentes
sur les caractéristiques des tâches passées, actuelles et futures. Tout d'abord, nous considérons
que toutes les caractéristiques des tâches sont connues (le cas hors ligne), et nous proposons un
algorithme linéaire en temps pour déterminer les choix de vitesses pour exécutern tâches sur un
seul processeur. Deuxièmement, en utilisant les processus de décision de Markov, nous résolvons
le cas où les caractéristiques des tâches passées et actuelles sont entièrement connues, et pour les
futures tâches, seule la distribution de probabilité des caractéristiques des tâches (heures d'arrivée,
temps d'exécution et délais) est connue. Troisièmement, nous étudions un cas plus général : le
temps d'exécution n'est découvert que lorsque la tâche est terminée. En outre, nous considérons
également le cas où nous n'avons aucune connaissance statistique des tâches, nous devons donc
utiliser des méthodes d'apprentissage pour déterminer les vitesses optimales du processeur en
ligne. En�n, nous proposons une analyse de faisabilité (la capacité du processeur à exécuter
toutes les tâches avant leurs échéances quand il fonctionne toujours à vitesse maximale) de
plusieurs politiques en ligne classiques, et nous montrons que notre algorithme de programmation
dynamique est également le meilleur en terme de faisabilité.
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Introduction 1
1.1 Context

Minimizing the energy consumption of embedded system is becoming more and more important.
This is due to the fact that more functionalities and better performances are expected from such
systems, together with a need to limit the energy consumption, mainly because batteries are
becoming the standard power supplies. In particular, we focus on hard real-time system (HRTS),
that consists of a generally in�nite sequence of independent jobs that must be executed onto some
hardware platform before some strict deadline. Such systems are found everywhere today: in
energy production, in transport (automotive, avionics, ...), in embedded systems, to name only a
few application domains.

Among numerous hardware and software techniques used to reduce energy consumption of a
processor, supply voltage reduction, and hence reduction of CPU speed, is particularly effective.
This is because the energy consumption of the processor is a function at least quadratic in the
speed of the processor in most models of CMOS circuits. Nowadays, variable voltage processors
are readily available and a lot of research has been conducted in the �eld of Dynamic Voltage
and Frequency Scaling (DVFS). Under real-time constraints, the extent to which the system can
reduce the CPU frequency (or speed in the following) depends on the jobs' features (execution
time, arrival date, deadline) and on the underlying scheduling policy. Several algorithms have
been proposed in the literature to adapt processor speed dynamically by using DVFS technique.

1.2 Problematic

We address in this thesis thesingle processor hard real-time energy minimization problem. It consists
in choosing, for each real-time job released in the system, a processor speed to execute this job,
such that all jobs meet their deadline and such that the total energy consumed by the processor is
minimized.

Hard real time constraints and energy minimization are dif�cult to combine because the former
require to be very conservative by only considering the worst cases, while the latter would bene�t
greatly from relaxing strict deadlines for job completion. Nevertheless, several approaches have
been proposed to tackle the hard real-time energy minimization problem under several assumptions
on the processor and the jobs to be executed.

In this thesis, different solutions are proposed to reduce the energy consumption. Each of them is
classi�ed according to the context, in which it is placed.
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One context is theof�ine case, where we know all jobs and their features. It means that at each
instant t, one knows past jobs (all completed jobs att), active jobs (all jobs released before or att
and not �nished), and also jobs that arrive in the future (all jobs of release time strictly greater
than t). It is presented in Chapter 3, and solves the classical problem of minimizing of�ine the total
energy consumption required to execute a set ofn real-time jobs on a single processor with varying
speed. The goal is to �nd a sequence of processor speeds, chosen from a �nite set of available
speeds, so that no job misses its deadline and the energy consumption is minimal. Such a sequence
is called an optimal speed schedule. In Chapter 3, we present the �rst linear time algorithm that
solves this problem. The time complexity of our algorithm is in O(n), where n is the number of
jobs, to be compared with O(n log(n)) for the best known solutions from the literature. Besides
the complexity gain, the main interest of our algorithm is that it is based on a completely different
idea: instead of computing the critical intervals, it sweeps the set of jobs and uses adynamic
programming approach to compute an optimal speed schedule. Our linear time algorithm is still
valid (with some changes) with an arbitrary power function (not necessarily convex) and with
arbitrary switching times.

Another context is the online case, which represents the core of this thesis (Chapters 4 to 7). In
this situation, we discover progressively, when time goes by, the new jobs that arrive. In other
terms, at each time t, the past jobs and their features are known. However, active jobs or future
jobs are only partially known. The knowledge available on the active jobs depends on the situation
we focus on, while the knowledge available on the future jobs is astatistical. In practice, such
statistical knowledge can be obtained by observing and pro�ling the system.

1.3 Summary of the Contributions

Different information structures are used in this thesis, which represent practically many applicative
situations in HRTSs. The differences between these structures lie in the information knowledge
we consider for active jobs and future jobs, knowing always all feature about past jobs.

One situation is the case where the HRTS being considered is composed of several periodic tasks,
but where each task has some randomly missing jobs. The uncertainty on the missing jobs may
be due, for example, to faulty sensors and/or electromagnetic interference causing transmission
losses. This is frequent in embedded systems.

Another situation is the case, where periodic tasks have an unknown jitter. By knowing a proba-
bilistic distribution on the jitter values, the energy consumption can be improved by determining
more quickly all the jitters of each task.

A last situation is the sporadic tasks case,i.e. the case where tasks can arrive at any time. In this
case, the job features are observed over a certain period to estimate the statistical properties of the
jobs. This happens, for example, when jobs are dependent on external parameters. For example, a
job in can be triggered by the external environment (e.g.a pedestrian crossing in the case of an
autonomous car).

2 Chapter 1 Introduction



In this thesis, we will study three different online cases. All the proposed solutions are based on
Markov Decision Processes (MDP). One of the dif�cult aspects of this thesis is to precisely de�ne
the MDP, along with its state space. Indeed, an HRTS is subject to strict timing constraints on jobs
execution: no job can miss its deadline! Therefore this requires having constraints on our MDP.
The strategy we use in this thesis is to incorporate these constraints in the structure of the state of
the MDP. We have also to keep a close look on the state space size of the MDP, which is a crucial
issue because if can become very large.

The �rst two online cases, solved with a MDP, require statistical knowledge of the system. Chapter 4
studies the Clairvoyant case,i.e. the case where the execution times of jobs and their deadlines
are known when the jobs are released. In this chapter, the features of active jobs (deadlines
and execution times) are entirely known, and one has a statistical knowledge on future jobs.
With this knowledge, we compute the optimal online speed scaling policy to minimize the energy
consumption of a single processor executing a �nite or in�nite set of jobs with real-time constraints.
Several qualitative properties of the optimal policy are proved: monotonicity with respect to
the jobs parameters, comparison with online deterministic algorithms. Numerical experiments
in several scenarios show that our solution performs well when compared with of�ine optimal
solutions, and out-performs online solutions oblivious to statistical information on the jobs.

Then Chapter 5 tackles a more general case, theNon-clairvoyant case,i.e., the case where the
actual execution time of the jobs is unknown when they are released. The knowledge of active
jobs consists in the job deadlines and the distribution of the job execution times, therefore we
have less information than Chapter 4. As a consequence, theactual execution time of jobs are
only discovered when they �nish. Regarding future jobs, the known information is identical as in
Chapter 4: a statistical knowledge. When the probability distribution of the actual execution time is
known, it is possible to exploit this knowledge to choose a lower processor speed so as to minimize
the expected energy consumption (while still guaranteeing that all jobs meet their deadline). Our
solution solves this problem optimally, in the discrete case. Compared with approaches from the
literature, the gain offered by our speed policy ranges from a few percent when the variability of
job characteristics is small, to more than100%when the job characteristics distributions are far
from their worst case.

The third case presented in Chapter 6 and 7, is the case where we have the less information
available about future jobs. Indeed, in these two chapters we assume that there is no knowledge
on jobs: thanks to learning technique, we compute the optimal speed schedule that executes
the jobs while minimizing the energy consumption. Regarding active jobs, we assume in these
two chapters that we are in the clairvoyant case: all features (execution time and deadline) are
known at release time. In Chapter 6, we present how to learn one key parameter of the MDP –
the transition probability matrix – and then we can determine by a value iteration algorithm the
optimal speed schedule. Then, Chapter 7 investigates how to learn directly the average optimal
energy consumption. Once this energy is determined, we can deduce the optimal speed schedule.
These two chapters show that the convergence towards the desired transition probability matrix
(resp. towards the optimal energy consumption) is very long to reach.

Still, our simulations show that, in practice, the optimal speed policy is reached reasonably quickly,
and much faster in the case where the learning is done for the transition probability matrix (see
Chapter 6).
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The last chapter addresses the offeasibility of online speed policies. Feasibility is the ability
for a processor to execute any sequence of jobs while meeting the two main constraints: the
processor speed is always below its maximal speed and no job misses its deadline. In this chapter,
we analyze the feasibility of different speed policies for single-processor HRTSs, both the one
presented in this thesis (in Chapter 4), based on dynamic programming, but also those from the
literature. We compute the feasibility region of four existing online speed policies in function of
the maximum job size and of the maximum relative deadline. We do so for the following online
speed policies: Optimal Available(OA) [YDS95], Average Rate(AVR) [YDS95], (BKP) [BKP07],
and the Markovian Policy based on dynamic programming(MP) from Chapter 4. Our theoretical
results show that (MP) achieves the better feasibility. This reinforces the interest of(MP) our
policy that is not only optimal for energy consumption (on average) but is also optimal regarding
feasibility.

1.4 Thesis Structure

This manuscript is composed of 8 different chapters, that are organized as follows. Chapter 2
introduces the general model used during all the manuscript. In each subsequent chapter, the
precise model will be recalled to help the reader. Chapter 3 details our of�ine algorithm to minimize
the energy consumption by adapting the speed processor. The four following chapters (4 to 7)
address the online case. As the chapters progress, the information on future jobs decreases.

• Chapter 4 : Active jobs are entirely known at t (deadlines and execution times) while only
some probability knowledge on job features is known for future jobs.

• Chapter 5 : At time t, the deadline of active jobs are known, while only a probability
distribution of their execution time is known. As in Chapter 4, future jobs are known only
statistically.

• Chapter 6 : For active jobs, deadlines and execution times are known (as in the clairvoyant
case). For future jobs, there are no information and the goal is to discover the jobs and their
features by learning the transition probability matrix.

• Chapter 7 : For active jobs, it is also the clairvoyant case. No informations are available for
future jobs, and the goal is to learn the energy cost.

Our �nal contribution is reported in Chapter 8, where we study the feasibility of our method,
based on dynamic programming, by comparing it with the feasibility of existing methods in the
literature.

1.5 Reading Order

Each chapter is based on a different paper, therefore the state of the art can be recalled at the
beginning of some chapters.
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Some chapters are independent from the others. For this reason we make explicit in Fig 1.1 the
“reading dependency order”. It is a partial order, meaning that this manuscript does not necessarily
need to be read in a linear way.

Chapter 2: Model

Chapter 3: Of�ine

Chapter 4: Clairvoyant Chapter 8: Feasibility

Chapter 6: Learning the transition matrix

Chapter 7: Learning the energy value

Chapter 5: Non-Clairvoyant

Figure 1.1.: Manuscript structure and reading order: Each black arrow is a reading dependency.

All chapters require reading Chapter 2 that focuses on model presentation and problem statement.
Then reading Chapter 3 gives to the reader some intuitions on the model we use in Chapter 4, be-
cause the models are very close and they have the same goal: minimizing the energy consumption
by adapting the processor speed during the time. The difference is that, in Chapter 3, we consider
that all jobs are known at any time, whereas in Chapter 4 we have a statistical knowledge with
clairvoyant jobs. The algorithm presented in Chapter 4 is compared to those one of the literature
in term of feasibility in Chapter 8. Chapter 8 requires the reading of Chapter 4, hence the black
arrow between the two. Then, two other studies are done and require the reading of Chapter 4:
one that analyses the energy minimization with statistical knowledge with non-clairvoyant jobs
(Chapter 5), and another that corresponds to Chapter 6 and 7, where nothing is known about jobs.
It is better to read Chapter 6 before Chapter 7 because it presents some de�nitions and structures
that are used in Chapter 7.

Recall that, as we “travel down” along this graph, the amount of knowledge available on the active
jobs decreases, from a complete knowledge in Chapter 3 to no knowledge at all in Chapter 7.
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Model Presentation and

Problem Statement
2

In this chapter, all the parameters that are needed to de�ne a real-time system are presented.
These parameters consist of job characteristics (arrival time, size and deadline) and processor
characteristics (for example speed and power). We then present the main issue of this thesis: the
energy minimization problem.

We consider ahard real-time system(HRTS) where one uni-core processor that executes a setS
of real-time tasks. An HRTS is a system where the functionality (“what” the system does) is as
important as the timing (“when” the system does something). The reason is that HRTSs operate
in safety critical context where a failure can cause huge damage, including human lives (e.g.in
avionics). It follows that tasks' deadlines canneverbe missed.

In our case, an HRTS is de�ned by:

• A set of tasks, where each task is composed ofjobs. Tasks are either periodic (task composed
of jobs that arrive periodically), or sporadic (task composed of jobs that arrive at any time).
In this thesis, we will not consider the tasks but directly the set of all jobs submitted to the
processor.

• A uni-core processor.

• A scheduling policy, that �xes for a time instant the job to execute and the processor speed at
which the processor runs.

The following section will present in detail each parameters and resulting properties.

2.1 Job Description

A job J i , i 2 N, is characterized by the triplet (� i ; ci ; di ), where:

• � i is the inter-arrival time of job J i , i.e. the time that elapsed between the arrival of job J i � 1

and J i , with � 1 = 1 by convention.

• ci is the Worst Case Execution Time(WCET) of job J i when the processor is running at speed1.
This de�nition of the WCET corresponds to the number of operations to executeJ i on the
processor. Strictly speaking, it will be not considered as a time in the following but rather as
a work quantity to be executed, which we will also call a size.

• di is the relative deadlineof job J i , i.e. the amount of time given to the processor to executeJ i .
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From the � i values, we can reconstruct the release timer i of each job J i as:

r i =
iX

k=1

� k 8i � 1 (2.1)

During all this thesis, we will only use the notation of release times of jobs for the sake of simplicity,
therefore the job set J can be rewritten as follows:

J = f J i (r i ; ci ; di ); i 2 Ng

In some chapters, the absolute deadlineD i = r i + di will also be used.

Throughout the document, we will study different cases, which differ on the amount of information
on the jobs' characteristics that is available at design time, ranging from everything (Chapter 3) to
nothing (Chapters 7 and 6).

2.2 Processor Description

2.2.1 Processor Features

The processor considered is a uni-core mono-processor, which is equipped with several integer
speeds. There are at least two speeds: the speed0, that corresponds to the idle state of the
processor, and the maximal speed of the processorsmax 2 N. S � N is the �nite set of the available
processor speeds. Switching from one speed to another usually implies some cost in time and in
energy. We will come back to these costs at the end of this section.

The processor allowspreemption. Preemption means that the scheduler may interrupt a job in
progress at any time to allow another job to execute. Such decision is usually based on thepriority
of the jobs, with lower priority jobs being preempted by higher priority ones. Priorities can be
assigned eitherstatically or dynamically. In our context, we use the dynamic scheduling policy
Earliest Deadline First (EDF) [LL73], which orders the active jobs by decreasing relative deadline,
and assigns the highest priority to the job with the shortest relative deadline, i.e. the earliest
deadline.

Preemption implies some switching context cost, which must be taken into consideration. For the
sake of simplicity, we will consider that both the context switching cost and the speed switching
costs are null. However, our results also hold when these costs are non null, and in each relevant
chapter we will present how to enhance the model to take them into account.
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2.2.2 Power Description

In these hard real time systems (HRTS), the central processing unit (CPU) power consumption
is crucial. It is composed of three parts: the dynamic power consumption, the static power
consumption, which is composed of the short-circuit power consumption, and the power loss due
to transistor leakage:

PCP U = PDyn + PSc + PLeak

The �rst power PDyn depends on the activity of logic gates in a CPU, and is due to the fact that
transistors change their states. This power is nearly proportional to the CPU frequency and as a
consequence to the processor speed, and is:

PDyn = �CV 2
dds; (2.2)

where C is the load capacitance,Vdd is the average voltage, ands is the processor speed. When we
decrease the frequency of a circuit, we can also decrease its supply voltageVdd . By Eq(2.2) , the
dynamic part depends directly linearly on the frequency, but also squarely on the supply voltage
Vdd , which also depends on the frequency.

This is the purpose of Dynamic Voltage and Frequency Scaling (DVFS), a technique used in most
modern processors. DVFS allows both the frequency of the processor and its supply voltage to be
decreased. In this case, the dynamic power follows is such thatPdyn � � 0s� , with � 0; � 2 R and
2 � � � 3.

In other words, among the numerous hardware and software techniques used to reduce energy
consumption of a processor, DVFS is particularly effective. As we explained before, the energy
consumption of the processor is a function at least quadratic in the speed of the processor.

Throughout this thesis, we will use the function Power(�), which is de�ned as follows:

Power : s ! Power(s):

This function represents the power consumption of the processor when it runs at a speeds. No
assumption is made on the power function, however in some chapters, for example in Chapter 4,
we will study the impact of the Power function characteristics on our problem. In particular, we will
look at the impact of a convexity hypothesis of the power function on the considered model.

The question that arises from this power function de�nition is how to take advantage of DVFS to
decrease the energy consumption in HRTSs. The general idea is to adapt dynamical the processor
speed during the execution of the system.

2.3 Policy Description
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2.3.1 Policy De�nition

The notion of policy is a central notion in this document, it determines the job executed at any
time t and also at which speed it will be executed.

De�nition 2.1 (policy) . A policy � is a function that assigns, at timet with the history H t , a speeds
to the processor, and also determines the jobJ that is executed at timet:

� (H t ; t) = f s; Jg: (2.3)

whereH t is thehistory at time t, as the setH(t) of all the jobs arrived at or beforet, along with all
the speeds used at or beforet:

H (t) = f (� i ; ci ; di ) j r i � tg [ f s(u); Ju ju � tg: (2.4)

2.3.2 Feasibility and Schedulability

At any time t 2 R, several jobs may be active (i.e. released and not yet �nished). In this case we
must choose which job to execute �rst on the single-core processor. This ordering is known as a
scheduleand the policy for making this choice is known as the scheduling policy.

Let us de�ne the notion of feasibility, which is an important issue in HRTS. Informally, a policy is
feasible if it can execute all jobs before their respective deadline.

De�nition 2.2 (policy's feasibility) . A policy � is feasible for a set of jobsJ = f (r i ; ci ; di )gi 2 N if,
when the processor uses the policy� (t) at each timet, then each job(r i ; ci ; di ) is executed before its
deadline:

� is feasible()
�

sup
t 2T

� (t) � smax

�
^ no missed deadline: (2.5)

De�nition 2.3 (schedulability) . A set of jobJ = f (r i ; ci ; di )g is schedulable if there exists a policy�
that is feasible overJ .

2.3.3 Speed Changes

Two different notions have to be de�ned:

• The notion of speeddecisioninstant: It is the time instant when the policy decides the speed
that the processor will use in the future.

• The notion of speedchanginginstant: It is the moment when the processor can change its
speed.

The number of speed changing instants is always larger than the number of speed decision instants,
because it is possible that at one speed decision instant, the speed policy decides several speed
changing instants.
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For this document, we consider that speed decision instants and speed changing instants are
integers. Throughout the thesis, we will study the relevance of this assumption and will discuss of
the impact, or not, on the solution of our problem.

In particular, in Theorem 4.1 of Appendix 4.7 of Chapter 4, we prove that if the processor speeds
are consecutive and integer, if the power function is convex, and if the job features are integers,
then restraining to integer speed changing instant does not lead to a loss of optimality.

2.4 Problem Statement

Different cases are studied in this thesis, which depend on the information known about the jobs
during the evolution of the HRTS. As presented in Chapter 1, we classify the type of available
information at any time t according to the knowledge we have on three subsets of jobs: past
jobs (i.e. jobs completed at t), active jobs (i.e. jobs released at of beforet and not yet completed),
and future jobs (i.e. jobs that will be released after t). All the cases presented from Chapter 4 to
Chapter 7 assume that, at timet, all the past jobs and their features are known. The difference
will lie in the information of active and future jobs.

Two different situations are considered:

• The of�ine case: The system is entirely known,i.e. all the characteristics (release times,
deadlines, and sizes) for all the jobs are known. In this particular case, the number of jobs is
�nite , and all the history H(t), 8t 2 N is known at the outset. Each job is also assumed to
take exactly its size to complete. In this context, the processor speeds are chosenbeforethe
system execution, that is, of�ine.

• The online case: At time t, only the release times of past and active jobs are known. Here the
number of jobs can be �nite or in�nite. Three cases are studied, which make more or less
strong assumptions about active and future job features.

– The clairvoyant case: The active jobs are entirely known, meaning thatH(t) in Eq. 2.4
is known at time t. In contrast, the future jobs are only known statistically; it means
that we assume that the triplets (r i ; ci ; di ) i 2J are random variables, de�ned on a
common probability space, whose joint distribution is known (for example by using
past observations of the system):P(r i = t; ci = c; di = d) is supposed to be known for
all t; c; d.

– The non-clairvoyant case: Only the deadlines of the active jobs are known, henceH(t)
in Eq. 2.4 is partially known at time t: for each active job J i , the deadline di is known,
the maximal work quantity ci is known, but the actual work quantity required by the job
will only be “discovered” when the job completes (of course, it is less thanci ). Also, and
the portion J i that already has been executed. Concerning the actual execution time,
only its distribution is known. Finally, the future jobs are known as in the clairvoyant
case,i.e. statistically.
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– The learning case: The past and active jobs are known as in the clairvoyant case. Eq. 2.4
is satis�ed with ci and di known. However for future jobs, we have no information at
all.

Regarding the processor speeds, ship manufacturers actually propose processors that have only a
�nite number of frequency, and so a �nite number of speed. This is why we will consider in most
chapters that processor speeds are discrete and bounded by a maximal speedsmax . This speed
model choice is due to physics reality on processors.

In this thesis, we present not only the case where the number of jobs is in�nite but also the case
where we have a �nite set of jobs. This distinction between the �nite and in�nite cases is useful
because it will lead to different algorithms.

The energy consumption depends on the power dissipated by the processor. As we explained
before, we focus on the dynamic energy consumed by the processor, denotedE, also called thecost
function. In the �nite case, where T is the time horizon of the system execution, it is de�ned as:

E =
Z T

0
Power(s(t))d t (2.6)

In the in�nite case, the average energy is de�ned as follows:

E = lim
T �!1

1
T

Z T

0
Power(s(t))d t (2.7)

Since our goal in this thesis is to minimize the energy consumption of a processor with varying
speed, while satisfying the condition that jobs are executed before their deadlines, then two
questions arise:

• Question 1: What is the job scheduling policy to choose to be sure that all jobs are executed
before their deadline?

• Question 2: What is the optimal speed choice at each instant?

Question 1 will be answered directly in this chapter, in Section 2.4.1, and Question 2 will be the
central subject of this thesis.

2.4.1 EDF Optimality

When the processor speed remains constant, theEarliest Deadline First(EDF) preemptive scheduling
policy is optimal, meaning that if a set of jobs is schedulable with any policy � , then it is also
schedulable by EDF. Recall that a set of jobs is schedulable by a policy� if and only if, when the
processor executes� , all the jobs complete before their respective deadlines (see Def. 2.3). To the
best of our knowledge, the optimality of (EDF) has been proved by [Hor74] in the case where the
processor speed remains constant.

It follows that (EDF) could be a good candidate to solve Question 2. However in this thesis, the
processor can change at each time instant, and, to the best of our knowledge, there is no similar
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proof of optimality of (EDF) in this case. This is why we propose in Appendix A.1 a proof of the
optimality of (EDF) with a varying speed processor. Our proof is based on the proof done by
Horn [Hor74] and generalizes it.

Proposition 2.1. When the processor speed can change at each time instant, (EDF) minimizes the
maximum lateness of any set of jobs, as described in Section 2.1.

Optimal schedulability is equivalent to having a maximum of lateness equal to0, hence Property 2.1
is equivalent to stating that (EDF) is optimal.

From now, we will choose the scheduling policy (EDF), therefore Question 1 from Section 2.4 is
solved. It remains to determine the speed used by the processor at each instant (Question 2). As a
consequence, the function� (H t ; t) can be simpli�ed: it will assign only the speed s to use at time
t under history H t , i.e. � (H t ; t) = s.

In the document, we will often use � (t) to simplify the notation, but one should keep in mind the
fact that, in full generality, the speed selected at time t may depend on t, the jobs that arrived
before t, and the speeds selected beforet.

Since the maximal speed of the processor issmax , with this simpli�ed notation, any speed policy �
must satisfy the following constraint:

8t; 8J; 0 � � (H t ; t) � smax : (2.8)

2.4.2 Speed Policy

We have claimed in Section 2.4.1 that (EDF) is optimal, therefore now we can only focus on the
speed policy problem, which is de�ned as follows:

Find online speedss(t) ( i.e., s(t) can only depend on the historyH(t)) in order to minimize
the cost function under the constraint that no job misses its deadline.

Jobs arrive at integer time stepst, because all the job features are integers. At �rst, we will
investigate the case where the processor can change speed only at integer time steps. However, we
will prove in Appendix 4.7 of Chapter 4 that this restriction does not impact optimality, because
there always exists an optimal speed schedule where speed changes occur at integer time steps.

As said in Section 2.4, the system historyH(t) depends on the available information on active
jobs. In Chapter 3, it consists of all the jobs and their characteristics: release time, deadline and
execution time. Past, active, and future job features are entirely known. In Chapter 4,H (t) consists
of all jobs released beforet with deadline and execution time data. Past and active job features are
known. Future job characteristics are only known statistically. In Chapter 5, H(t) consists of all
jobs released beforet with their deadline value, the distribution of the execution time and also the
job part that has been already executed for jobs not �nished at time t. Past job features are known.
For active job, we know the deadline, but only the distribution of the execution time. In addition,
the work already executed on job is known. Future job features are also known statistically. In
Chapter 6 and 7, H(t) consists only of the jobs that are �nished. In these two chapters, past job
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features are known, but no statistical information about future and active job features are provided.
For active job, only the deadline and the work already executed on these jobs are known.
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2.5 Notations Summary

J i Job number i
r i ; ci ; di 2 N Release time, size, and relative deadline of jobi
D i Absolute deadline of job i
� Bound on all relative deadlines
C Bound on the work amount arriving at any time t
J C; � Set of all sequences of jobs with boundsC and �
S Set of processor speeds
smax Maximal speed of the processor
A(x) Set of possible speeds in statex
T Time horizon
� (t); � t Speed used by the processor at timet under policy �
w�

t Remaining work under speed policy � at time t
W State space of remaining work
` i Remaining amount of work to complete J i at time t
(OA) Optimal Available policy
(MDP) Markov Decision Process
x State of the (MDP)
X State space of the(MDP)
A(t), a Work arriving at t
Power(�) Power function

 Discount factor
E Energy consumption of the processor
s(OA) (w) speed chosen under(OA) policy for the state w

Table 2.1.: Notations used throughout the thesis (part 1).
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P̂n Estimated transition probability matrix by (PL) after n learning steps
P Real transition probability matrix
v̂n Average estimated energy cost aftern samples of(PL)
v� Optimal average energy cost
V̂ 


n Discounted estimated energy cost aftern samples of(PL)
V � ;
 Optimal discounted energy cost
Rmax Energy cost of the maximal speed
� t Proportion of time spend in state w under speed policyst

� � The stationary policy under the optimal policy for the exact distribution
� N (0 ;1) (�) Cumulative distribution function of the standard normal distribution
� Standard deviation
q� (w; s) Minimal discounted energy consumption

starting in state w, using speeds at the �rst time step
q̂(w; s) Estimated discounted energy consumption

starting in state w, using speeds at the �rst time step
(PL) Synchronous learning of the probability matrix algorithm
(SQL) Synchronous Qlearning Algorithm
(AQL) Asynchronous Qlearning Algorithm
hn The n-th harmonic number:

hn =
P n

i =1 1=i = log( n) + 
 + o(1=n) with 
 the euler constant

Table 2.2.: Notations used throughout the thesis in particular in Chapter 6 and 7 (part 2).
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Of�ine Minimization 3
Before analyzing the online case in the next chapters, we focus in a �rst time on the of�ine case.
In this situation, the processor knows at each instant all the features (i.e. arrival times, execution
times and deadlines) for past, active and future jobs. The goal is to minimize off-line the total
energy consumption required to execute a set ofn real-time jobs on a single processor with varying
speed. We propose in this chapter a solution based on dynamic programming, that improves the
time complexity of this problem. Let's start �rst with Section 3.1, where we present algorithms
that has been done in the literature to address this problem, and their respective complexity.

This chapter is based on the paper published in the conference [GGP19b] and also on [GGP20a].

3.1 State of the Art

Several algorithms have been proposed in the literature to adapt processor speed dynamically
by using DVFS techniques when the number of available speeds is �nite, the algorithm with the
best arithmetic complexity has been designed by Yao et al. [LYY17] and is inO(n log(n)) , where n
is the number of real-time jobs to schedule1. Based on statistical data on the job characteristics
(arrival time, WCET, and deadline), Gaujal et al. [GGP17] have proposed a new approach based on
a Markov Decision Process, that computes the optimalon-line speed scaling policy that minimizes
the energy consumption on a single processor. In this chapter, we show that their algorithm can
be adapted to the off-line case where the characteristics of the jobs are given as inputs to the
algorithm. The analysis of this off-line version shows that its complexity is in O(n).

The problem of computing off-line DVFS schedules to minimize the energy consumption has been
well studied in the literature, starting from the seminal paper of Yao et al. in 1995 [YDS95]. All the
previous algorithms proposed in the literature compute the critical interval of the set of jobs2, using
more and more re�ned techniques to do so. This started in 1995 with [YDS95] and [Sta+98] where
it was independently shown that one can compute the optimal speed schedule with complexity
O(n3), where n is the number of real-time jobs to schedule3. Later, [GN07] showed in 2007 that
the complexity can be reduced toO(n2L), where L is the nesting level of the set of jobs. Finally
the complexity has been reduced toO(n2) in the most recent work in 2017 [LYY17].

1The arithmetic complexity of an algorithm is the number of elementary operations it requires, regardless of the size of
their arguments.

2The critical interval is the time interval with the highest load per time unit.
3The arithmetic complexity of an algorithm is the number of elementary operations it requires, regardless of the size of

their arguments.
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When the number of available speeds is�nite , equal to m, [MCZ07] gave in 2007 a O(n2) algorithm,
while [LY05] proposed in 2005 a O(mn logn) algorithm. In their most recent work, the same au-
thors showed in 2017 that the complexity can be further reduced to O(n log(maxf m; ng)) [LYY17].

In this chapter, we present a dynamic programmingsolution that sweeps the set of jobs and
computes the best speed at each time step while checking feasibility. The complexity islinear in
the number of jobs, equal to Kn , where the constant K depends on the maximal speed and on a
bound on the maximal relative deadlines of the jobs.

We recall brie�y in Section 3.2 the system model, presented in Chapter 2. Then we detail in
Section 3.3 the state space. Our dynamic programming solution is detailed in Section 3.4. We then
study two extensions of our algorithm. First we show in Section 3.5.1 that the power of dynamic
programming allows us to generalize this approach to the case where switching from one speed to
another is not free, but instead takes some time� and may also have an energy costhe, which
is a more realistic model. Second we show in Section 3.5.2 that our model allows for arbitrary
power functions, not necessarily convex in the speed. Finally we provide concluding remarks in
Section 3.6.

3.2 System Model

The model we consider is based on this one presented in Chapter 2. The particularity of this
chapter is that as the job sequence is �nite and all job features are known: arrival time, execution
time and relative deadline for each jobs are known. As a consequence, thetime horizon of the
system is known and �nite. As in Chapter 2, this time horizon is denoted by T and is the last
deadline among all jobs of the system. It is de�ned as:

T =
n

max
i =1

f D i g: (3.1)

The single core processor is equipped withm processing speeds also assumed to be inN, and
smax denotes the maximal speed. The set of available speeds is denotedS. The speeds are not
necessarily consecutive integers. In the �rst part of the chapter, we assume the cost of speed
switching to be null. This will be generalized in Section 3.5 for a non-null speed switching.

As explained in Chapter 2, we use theEarliest Deadline First(EDF) preemptive scheduling policy.

We recall that the power dissipated at any time t by the processor running at speeds(t) is denoted
Power(s(t)) . For the time being, we assume that thePower function is convex(this assumption will be
relaxed in Section 3.5.2). According to the notations of Chapter 2, the total energy consumption
E is:

E =
Z T

1
Power(s(t))d t: (3.2)

To sum up, given a set ofn jobs f J i gi =1 ::n , the goal is to �nd an optimal speed schedulef s(t); t 2
[1; T]g that will allow the processor to execute all the jobs before their deadlines while minimizing
the total energy consumption E.
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3.3 State Space

3.3.1 State Description

The central idea of this chapter is to de�ne the stateof the system at time t. We denoteW the set
of all states of the system.

A natural state of the system at timet is the set of all jobs present at timet, i.e., f J i = ( r i ; ci ; di )jr i �
t � r i + di g. Yet, in order to compute the speed of the processor, one does not need to know the
set of actual jobs but only the cumulative remaining workpresent at time t, corresponding to these
jobs. Therefore, a more compact state will be theremaining work function wt (:) at time t: for
any u 2 R+ , wt (u) is the amount of work that must be executed before time u + t, taking into
account all the jobs J i present at time t (i.e. with a release time r i � t and deadline r i + di > t ).
By de�nition, the remaining work wt (:) is a staircase function.

To derive a formula for wt (:), let us introduce the work quantity that arrives at any time t: to
achieve this, we de�ne in Def. 3.1 a function at (:). For any u 2 R+ , the quantity at (u) is the
amount of work that arrives at time t and must be executed before timet + u.

De�nition 3.1. The amount of work that arrived at timet and must be executed before timet + u is

at (u) =
X

i j r i = t

ci H r i + di (t + u); (3.3)

whereHdi (:) is the discontinuous step function de�ned8x 2 R as follows:

H r i + di (x) =

(
0 if x < r i + di ,
1 if x � r i + di .

(3.4)

To illustrate the de�nition of at (:), let us consider an example with 3 jobs J1; J2; J3 with respective
release timesr 1 = r 2 = r 3 = t, sizesc1 = 1 , c2 = 2 , c3 = 1 and relative deadlines d1 = 2 , d2 = 3 ,
d3 = 5 . In this case, the function at (:) is displayed in the middle graph of Fig. 3.1.

Def. (3.1) allows us to describe the state change formula when moving from timet � 1 to time t,
using speeds(u) in the while interval [t � 1; t].

Lemma 3.1. At time t 2 N the remaining work function is given by:

wt (:) = T

" �
wt � 1(:) �

Z t

t � 1
s(u)du

� +
#

+ at (:); (3.5)

with Tf the shift on the time axis of functionf , de�ned as: Tf (t) = f (t + 1) for all t 2 R, and
f + = max( f; 0), the positive part of a functionf .

Proof. Eq. (3.5) de�nes the evolution of the remaining work over time (see Fig. 3.1 for an
illustration). The remaining work at time t is the remaining work at t � 1 minus the amount
of work executed by the processor fromt � 1 to t (which is exactly

Rt
t � 1 s(u)du) plus the work
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Figure 3.1.: Left : State of the system att � 1. The green line depicts the remaining work function wt � 1(:).
The constant speed chosen between timest � 1 and t is s(t � 1) = 1 ; u1 stands for wt � 1(2)
and u2 stands for wt � 1(5) � wt � 1(2). Middle : Arrival of three new jobs (r i ; ci ; di ) at t : J1 =
(t; 1; 2), J2 = ( t; 2; 3), and J3 = ( t; 1; 5). The red line depicts the corresponding arrival work
function at (:). Right : The blue line depicts the resulting state at t, wt (:), obtained by shifting
the time from t � 1 to t, by executing 1 unit of work (because s(t � 1) = 1 ), and by incorporating
the jobs arrived at t . Above the blue line are shown in green the “parts” of wt (:) that come from
wt � 1(:) and in red those from at (:).

arriving at t. The “max” with 0 makes sure that the remaining work is always positive and theT
operation performs a shift of the reference time from t � 1 to t.

3.3.2 Size of the State Space

As said in Section 3.3.1,W is the set of all states of the system.W is therefore the set of all possible
remaining work functions that can be reached by any feasibleset of jobs, when the processor only
changes its speed at integer times, and when no job has missed its deadline before timet. The size
of the state spaceW is denoted by Q.

As explained in Appendix A.2, the sizeQ of the state spaceW can be computed using a generaliza-
tion of the Catalan numbers. The number of Catalan paths from(0; 0) to (� + 1) ; smax (� + 1)) ,
hence the number of all possible remaining work functions for any set of schedulable jobs, is:

Q =
1

1 + smax (� + 1)

�
(smax + 1)(� + 1)

� + 1

�
�

e
p

2�

1
(� + 1) 3=2

(e smax ) � : (3.6)

3.4 Dynamic Programming Solution

The goal of this section is to describe a dynamic program that computes an optimal speed schedule
s� (t); t 2 [1; T], such that s� (t) minimizes the energy consumption among all schedules where the
speed may only change at integer times (the speed is therefore a piece-wise constant function).
We distinguish the case where the speeds form a consecutive set (that is,S = f 0; 1; : : : ; m � 1g)
and the case where they do not.
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3.4.1 Consecutive Speeds

Algorithm 1 computes the optimal speed schedule. Before presenting its pseudo-code, let us
provide an informal description of the behavior of the system. Under a given piece-wise constant
speed schedules(1); s(2); : : : ; s(T � 1), the state of the system evolves as follows:

• At time 0, no jobs are present in the system so the initial state functionw0 is the null function,
which we represent by the null vector of size � : w0 = (0 ; : : : ; 0) (see Line 4).

• The �rst job J1 is released at time1, maybe simultaneously with other jobs, so the new state
function becomes w1 = w0 + a1 according to Eq. (3.5) . The case where several jobs are
released at time1 is taken care by the sum operator in Eq. (3.3) used to computea1.

• At time 1, the speed of the processor is set tos(1). The processor uses this speed up to time2,
incurring an energy consumption equal to Power(s(1)) .

• At time 2, the state function becomesw2 = T(w1 � s(1))+ + a2 according to Eqs.(3.5)
and (3.3) , and so on and so forth up to time T � 1, resulting in the sequence of state
functions w1; w2; : : : ; wT � 1.

Now, let us denote by E �
t (w) the minimal energy consumption from time t to time T, if the state

at time t is w, and if the optimal speed schedule iss� (t); s� (t + 1) ; : : : ; s� (T � 1). Of course, this
partial optimal schedule is not known. But let us assume (using a backward induction) that the
optimal speed schedule is actually knownfor all possible statesw 2 W at time t. It then becomes
possible to compute the optimal speed schedule for all possible states between timet � 1 and T
using the maximum principle:

E �
t � 1(w) = min

s2S

�
Power(s) + E �

t (T(w � s)+ + at )
�

(3.7)

s� (t � 1)(w) = argmin
s2S

�
Power(s) + E �

t (T(w � s)+ + at )
�

; (3.8)

where s� (t)(w) denotes the optimal speed at timet if the current state is w.

When time 0 is reached, the optimal speed schedule has been computed between0 and T for all
possible initial states. To obtain an optimal speed schedule for the sequence of statesw1; : : : ; wT � 1,
we just have to return the speedss� (1)(w1); : : : ; s� (T � 1)(wT � 1) (see Line 26). Note that, because
of the “argmin” operator in Eq. (3.8), the optimal speed schedule is not necessarily unique.

This is what Algorithm 1 below does. E � is computed using the backward induction described
previously, which is a special case of the �nite horizon policy evaluation algorithm provided
in [Put05] (p. 80).

The cases where the set of jobs is not schedulable are taken into account by setting the energy
function E �

t (w0) to in�nity if the state w0 is not schedulable, that is, if w0 =2 W (see lines 12 and
13) since W is the set of feasible states by de�nition.
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Algorithm 1: Dynamic programming algorithm computing the optimal speed schedule.
1: input: f J i = ( � i ; ci ; di ); i = 1 ::ng % Set of jobs to schedule

% Initializations
2: for all i = 1 to n do r i  

P i
k=0 � k end for % Release times

3: T  maxi (r i + di ) % Time horizon
4: w0  (0; : : : ; 0)
5: for all x 2 W do E �

T (x)  0 end for % Energy at the horizon
% Main loop

6: t  T % Start at the horizon
7: while t � 1 do
8: for all x 2 W do
9: E �

t � 1(x)  + 1
10: for all s 2 (MP)( x) do
11: y  T [(x � s)+ ] + at % Computation of the next state
12: if y =2 W then
13: E �

t (y)  + 1 % The next state is unfeasible
14: end if
15: if E �

t � 1(x) > P ower(s) + E �
t (y) then

16: E �
t � 1(x)  Power(s) + E �

t (y) % Update the energy in statex at t � 1
17: s� (t � 1)(x)  s % Update the optimal speed in statex at t � 1
18: end if
19: end for
20: end for
21: t  t � 1 % Backward computation
22: end while
23: if E �

1 (x1) = + 1 then % Return the result
24: return “not feasible”
25: else
26: return f s� (t)(xt )gt =1 :::T

27: end if
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If s(t)(x) is the speed that the processor has to use at timet in state x, then the deadline constraint
on the jobs imposes thats(t)(x) must be large enough to execute the remaining work at the next
time step, and cannot exceed the total work present at timet. This means:

8t; 8x; w(�) � s(t)(x) � x(1): (3.9)

This set of admissiblespeeds in statex will be denoted by (MP)( x) and formally de�ned as:

(MP)( x) =
�

s 2 S s.t. w(�) � s � w(1)
	

: (3.10)

Our �rst result is Theorem 3.1, which states that Algorithm 1 computes the optimal speed
schedule.

Theorem 3.1. Assume that the speeds form a consecutive set,i.e. S = f 0; 1; : : : ; m � 1g. If the set of
jobs is not schedulable, then Algorithm 1 outputs “not schedulable”. Otherwise it outputs an optimal
speed schedule that minimizes the total energy consumption.

Proof. Case A: The set of jobs is not schedulable. Then, at some timet, the state xt will get out
of the set of schedulable states, for all possible choices of speeds. Hence its valueE �

t (xt ) will be
set to in�nity (see Line 13) and this will propagate back to time 1. In conclusion, E �

1 (x1) will be
in�nite and Algorithm 1 will return “not schedulable” (see Line 24).

Case B: The set of jobs is schedulable. The proof proceeds in two stages. In the �rst stage we
show that there exists an optimal solution where speed changes only occur at integer times. In the
second stage, we show that Algorithm 1 �nds an optimal speed schedule among all solutions that
only allow speed changes at integer times.

Case B – �rst stage. To prove that there exists an optimal solution where speed changes only
occur at integer times, let us �rst present the algorithm that computes the optimal speed schedule
described in [YDS95]. The core principle of this algorithm is to compute the critical interval,
denoted I c and de�ned as the time interval with the highest average amount of work. In general,
there can be several such intervals, in which case we pick anyone.

To formally de�ne of the critical interval, we rely on the release time r i of job J i (de�ned in
Eq. (2.1) ) and on its absolute deadline D i (de�ned in Section 2.1). We say that a job J i belongsto
an interval I = [ u; v], denoted J i 2 [u; v], if and only if r i � u and D i � v. Using this notation, the
critical interval I c is:

I c = [ uc; vc] = argmax
I =[ u;v ]

P
J i 2 I ci

v � u
: (3.11)

Let ` be the length of I c: ` = vc � uc. Furthermore, let ! be the total amount of work in I c:
! =

P
J i 2 I c ci . Since the power is a convex function of the speed, the optimal speedsc over I c is

constantand equal to sc = !
` .
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When the setS of available speeds is �nite, the optimal solution is inferred from the unconstrained
case as follows: Pick the twoneighboringavailable speedss1 and s2 in S such that sc belongs to
[s1; s2). As a consequence,sc is equal to a linear combination of s1 and s2:

sc = �s 1 + (1 � � )s2; with � =
s2 � sc

s2 � s1
: (3.12)

An optimal speed schedule over the critical interval I c is therefore obtained by selecting speeds1,
possibly over several sub-intervals, for a cumulative time equal to�` , and speeds2 for a total time
equal to (1 � � )` (the rest of the interval).

The �rst critical interval I c is computed over the working interval [1; T] and the initial set of jobs
f J i gi =1 ::n . Then, I c is collapsed, meaning that:

• the new working interval [1; T] becomes the union[1; uc] [ [vc; T ], called the contracted
interval;

• and all the jobs included in I c are removed from the set of jobs to be scheduled.

The new critical interval is then constructed over the contracted interval and over the remaining
jobs, and so on and so forth.

This ends the description of the optimal solution and we are now ready for the proof that there
exists an optimal solution whose speed changes occur at integer times.

Since the release times and deadlines are integers, the critical intervalI c has integer bounds:
I c = [ uc; uc + `] with uc; ` 2 N. Since the sizes of the jobs are also integer, the total amount of
work over I c is also integer: ! 2 N.

When the set of available speeds is consecutive,S = f 0; 1; : : : ; m � 1g, the two neighboring
available speeds ofsc = !

` satisfy s1 � sc < s 2 = s1 + 1 . In this case,

sc =
!
`

= �s 1 + (1 � � )(s1 + 1) = s1 + 1 � �: (3.13)

This implies that �` = `(s1 + 1) � ! . Since`; !; s 1 2 N, then �` 2 N. This means that the speeds
s1 and s2 will both be used during an integer amount of time. One optimal speed schedule can
be constructed by using speeds1 over �` intervals of length one, and speeds1 + 1 over (1 � � )`
intervals of size one, constructed in the following manner: The speeds� (k) 2 f s1; s1 + 1g used in
interval [uc + k � 1; uc + k], for k = 1 ::`, is:

s� (k) = bkscc � b (k � 1)scc: (3.14)

This choice of speeds makes sure that speeds1 is used during �` unit intervals and speed s2 during
(1 � � )` unit intervals over the critical interval. In addition, under speeds s� (k), the jobs in the
critical interval are all executed within their deadlines because of the following two reasons:
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Figure 3.2.: Construction of the optimal solution over a critical interval made of 4 jobs f J i gi =1 :: 4 whose
features (r i ; ci ; D i ) i =1 :: 4 are (1; 1; 3), (1; 1; 4), (2; 5; 6), and (3; 3; 8). The corresponding cumu-
lative deadlines form the black staircase while the cumulative arrivals form the brown staircase.
The critical interval is I c = [1 ; 8], the total amount of work over I c is ! = 10 , the optimal speed
is sc = 10=7, and its neighboring speeds ares1 = 1 and s2 = s1 + 1 = 2 . The optimal speed
schedule only uses speeds1 and 2 and only changes speeds at integer times. The sequence of
optimal speeds given by Eq. (3.14) is(1; 1; 2; 1; 2; 1; 2).
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1. On the one hand, for any k strictly less than vc, the sizes of the jobs in the critical interval
with deadlines smaller than k + uc must sum up to a valueVk not larger than ksc by non-
criticality of the sub-interval [uc; uc + k]. Since the sizes of the jobs are integers, one further
getsVk � b kscc.

2. On the other hand, Eq. (3.14) implies that s� (1) + s� (2) + ::: + s� (k) = bkscc.

As a consequence,Vk � s� (1) + s� (2) + ::: + s� (k), meaning that the sum of the sizes of the jobs
belonging to the interval [uc; uc + k] is less than the total amount of the work executed by the
processor during the interval [uc; uc + k].

Under this optimal solution, all the speed changes occur at integer points. The construction of this
optimal solution is illustrated in Fig. 3.2: The integer cumulative deadlines (black staircase) are
below the straight line whose slope issc (blue line) if and only they are also below the broken line
with slopes s� (k) (red broken line).

Case B – second stage.In the second stage of the proof, we show that Algorithm 1 �nds an optimal
speed selection among all solutions that only allow speed changes at integer times. Together with
the �rst stage, this will end the proof. Proving the optimality of Algorithm 1 is classical in dynamic
programming. This is done by a backward induction on the time t. Let us show that E �

t (x), as
computed by the algorithm, is the optimal energy consumption from time t to time T under any
possible statex at time t.

Initial step: t = T. We setE �
T (x) = 0 for all w. Indeed no jobs are present after timeT, so that

the state reached at timet must be wT = (0 ; 0; : : : ; 0) because no work is left at time T and the
value E �

T (xT ) = 0 is therefore correct. No speed has to be chosen at timeT.

Induction: Assume that the property is true at time t +1 . At time t, Algorithm 1 computes 8x 2 W ,
E �

t (x). In particular, if the set of jobs is schedulable, then the actual state at timet, wt , must be
in W. Therefore, according to Lines 15 and 16, we have:

E �
t (xt ) = min

s2 (MP)( x)

�
Power(s) + E �

t +1 (T(xt � s)+ + at )
�

:

All possible speeds at timet are tested with their optimal continuation (by induction hypothesis).
Therefore, the best choice of speed att, which minimizes the total energy from t to T, is selected
by Algorithm 1.

Finally, when all the speed changes occur at integer times, the total energy consumption computed
by Eq. (3.2) is equal to the value E �

1 (x1) computed by Algorithm 1.

Our second result is Theorem 3.2, which states that the time complexity of Algorithm 1 is linear in
the number of jobs n.

Theorem 3.2. The time complexity of Algorithm 1 isKn , wheren is the number of jobs and the
constantK depends on the maximal speedsmax and the maximal relative deadline� .
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Proof. The proof proceeds by inspecting Algorithm 1 line by line. The number of operations in
Line 11 is equal to the number of jobs whose release time is at timet, denoted nt :

nt = jf J i = ( r i ; ci ; di ) s.t. r i = tgj; (3.15)

and the sum of all nt is equal to the total number of jobs, n:

TX

t =1

nt = n: (3.16)

Furthermore, the number of operations in Line 12 is � (to check if w0(i ) � i smax for i = 1 ::� ).
Therefore the total number O of arithmetic operations (copies, comparisons and additions of
integers) is:

O =
TX

t =1

X

x2W

X

s2 (MP)( x)

(nt + � + K 0); (3.17)

where K 0 is a constant.

The size of(MP)( x) is bounded by smax
4. HenceO is bounded by a linear function of n and T:

O � nQsmax + TQsmax (� + K 0): (3.18)

We have seen previously thatQ is bounded by a function of smax and � (see Appendix A.2). Now,
T = max n

i =1 (r i + di ) = max n
i =1 (di +

P i
j =1 � j ). If there exists j such that � j > � , then there exists

an interval of time when the processor must be idle, between the end of the execution of the �rst
j � 1 jobs and the release time of thej th job. In this case the problem can be split into two: all
jobs from 1 to j � 1 and all jobs from j to n.

This means that one can assume with no loss of generality that all inter-arrival times are smaller
than � , henceT � n� .

It follows, the total number of arithmetic operations O is bounded:

O � nK with K = Qsmax (� 2 + � K 0+ 1) : (3.19)

Finally, by replacing in Eq. (3.19) Q by its value from Eq. (3.6) , we conclude that exists a constant
K 0 such that

O � n � K 0

p
�( e smax ) �+1 : (3.20)

4To be more precise,j(MP)( x)j is bounded by jSj , and sinceS = f 0; 1; : : : m � 1g, we have jSj = smax + 1 .
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3.4.2 Reducing the Complexity

The main term in Eq. (3.19) is Q, the size of the state spaceW. The dynamic programming
algorithm 1 computes the optimal energy for all states in Q at each time t, regardless of the fact
that these states are reachable at timet.

We present in this section an improved algorithm that constructs the set of reachable states
on the �y at each time stept, resulting in a dramatic reduction of the complexity, from O(n �
smax

p
�( e smax ) �+1 ) to O(n � (smax C� 2)) .

First, let us consider the cumulative evolution up to time t. Let e(t) be the work executed up to
time t:

e(t) =
tX

i =0

s(i ); (3.21)

where s(i ) denotes the speed used at timei . The executed work e(t) must be smaller than the
cumulative work A(t) arrived before time t, and larger than the cumulative deadlines D(t) at t:

D (t) � e(t) � A(t);

with
A(t) =

X

i :r i � t

ci and D(t) =
X

i :D i � t

ci : (3.22)

At time 0, A(0) = e(0) = D(0) = 0 and at time T, A(T) = e(T) = D(T) =
P n

i =1 ci .

As discussed earlier, feasibility implies that at the backlog cannot become greater thansmax � .
Therefore, under a schedulable set of jobs, we haveA(t) � D (t) =

P
i :r t � t<D i

ci � smax � , hence
for any t the number of different values for e(t) is smaller than smax � .

To re�ne the bounds on e(t), we de�ne M (t) as the maximal amount of executed work:

M (t) = min
�
A(t); M (t � 1) + smax

�
with M (0) = 0 : (3.23)

At time t, the maximal amount of executed work M (t) can be bounded byA(t) as discussed above,
but also by M (t � 1) + smax . This means that at any time t we have

D(t) � e(t) � M (t):

Second, the state at timet is a function of e(t). If we denote by we( t )
t (:) the work remaining

function at time t when a quantity e(t) of work has been executed up to timet, then, for all u � 0,
we have:

we( t )
t (u) =

 
X

i :r i <t

ci H r i + di (t + u) � e(t)

! +

+
X

i :r i = t

ci H r i + di (t + u): (3.24)

In other words, we( t )
t (:) is a function of e(t). Since there aresmax � different values of e(t), the

same holds forwt (:). As a result, the number of reachable states at timet is smaller than smax � .
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Finally, to make the construction of all reachable states more ef�cient, the dynamic programming
should be done in a forward mode, instead of backward as it is done in Algorithm 1, because this
allows us to construct the state associated toe(t) incrementally and iteratively, by using the states
at time t � 1. The resulting forward algorithm is shown in Algorithm 2.

Theorem 3.3. Algorithm 2 computes the optimal speed schedule using less thann � Ks 2
max � 3

operations, whereK is a constant.

Proof. Let us decompose the analysis of the complexity step by step:

• To compute the cumulative functions A(t) and D(t) in Lines 8 and 9, the complexity is
P T

t =1 (nt + nt + K 1) � 2n + K 1T, where nt is the number of tasks released at timet and K 1

is a constant.

• In the main temporal loop, from line (20) to (33), there are three parts:

1. At Line 21, the complexity of the energy initialization is bounded by K 2smax � , where
K 2 is a constant.

2. From line 22 to 33, there are 2 nested loops, one one0, bounded by smax � and one
another on speeds, bounded by smax . In this part, we use the minimum principle to
determine the minimal energy. All these computations are done in constant time except
for line 30. Therefore, the time complexity of the rest is bounded by K 3s2

max � , where
K 3 is a constant.

3. In line 30, the state associated toe at time t is constructed. It takes at most� operations
to subtract s and take the positive part. Moreover nt additions are needed to add the
sizes of the new jobs arrived att. As a result, the time complexity here is bounded by
K 4s2

max �(� + nt ), where K 4 is a constant.

The whole loop has a complexityK 5(s2
max � T + s2

max � 2T + s2
max � nt ), where K 5 is a constant.

Moreover, the result output (line 38) uses K 5T operations.

Finally, T � n� (see the proof of Theorem 3.2).

Putting everything together yields a number of elementary operations (copies of an integer,
comparisons, additions) bounded byn � Ks 2

max � 3, where K is a constant that does not depend
on the problem instance..

Figure 3.3 displays all states visited by Algorithm 2 with the set of jobs given at the left of the �gure
and with the set of available speedsf 0; 1; 2g. The speeds considered in each state for optimizing
the energy are shown as black arrows. Note that speed0 is not considered between times5 and 6.
This is because for any pointe at time 5, we have we

5(1) = 1 . This value comes from JobJ3 that
arrives at time 5 with a relative deadline of 1. Also note that the point e = 5 at time 5 (the blue
cross in Fig. 3.3) is not visited because it is belowM (5) = 4 .

The two following corollaries are the main result of this chapter.

Corollary 1. Algorithm 2 can be improved in order to compute the optimal speed schedule and use
less thann � Ks 2

max � 2 operations, whereK is a constant.
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Algorithm 2: Optimized dynamic programming algorithm computing the optimal speeds.
1: input: f J i = ( � i ; ci ; di ); i = 1 ::ng % Set of jobs to schedule

% Initializations
2: for all i = 1 to n do r i  

P i
k=0 � k end for % Release times

3: T  maxi (r i + di ) % Time horizon
4: w0

0  (0; : : : ; 0)
5: A(0)  0; D (0)  0; M (0)  0
6: for all t = 1 to T do
7: for all i s.t. r i = t do
8: A(t)  A(t) + ci % arrivals at t
9: D(t + di )  D (t + di ) + ci % Deadlines

10: end for
11: end for
12: for all t = 1 to T do
13: A(t)  A(t � 1) + A(t) % Cumulative arrival staircase
14: D(t)  D (t � 1) + D(t) % Cumulative deadline staircase
15: M (t)  min(A(t); M (t � 1) + smax ) % Maximal executed work
16: if A(t) � D (t) > s max � then
17: return “not feasible”
18: end if
19: end for

% Main loop
20: for all t = 1 to T do % Forward computation
21: for all e 2 [D (t); M (t)] do E �

t (e)  + 1 end for % Energy at each reachable state
22: for all e0 2 [D(t � 1); M (t � 1)] do
23: for all s 2 [we0

t � 1(1); min(smax ; M (t) � e0)] do % Sweep admissible speeds fromt� 1 to t
24: e  e0+ s % Amount of executed work at time t
25: if E �

t (e) > P ower(s) + E �
t � 1(e0) then

26: E �
t (e)  Power(s) + E �

t � 1(e0) % Forward optimality equation
27: s�

t (e)  s
28: prev�

t (e)  e0 % Store the optimal solution backwards
29: end if
30: we

t  T(we0

t � 1 � s)+ + at % Build the state associated toe at t
31: end for
32: end for
33: end for

% Return the result
34: if E �

T (eT ) = + 1 then
35: return “not feasible”
36: else
37: for all t from T to 1 do % Output the optimal solution backward
38: return s�

t (e�
t )

39: e�
t � 1  prev�

t (e�
t )

40: end for
41: end if
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Figure 3.3.: Execution of Algorithm 2 with 4 jobs f J i g1=1 :: 4 . The cumulative deadlines form the black
staircaseD (t), while the cumulative arrivals form the brown staircase A(t). All the states visited
by the algorithm are depicted as dots, and all the speeds evaluated in these states are depicted
as arrows. The optimal speed schedule computed by Algorithm 2 is shown as the bold red
arrows: (1; 1; 0; 1; 1; 1; 1; 1; 0; 0).

Proof. The reduction from � 3 to � 2 can be achieved by replacing the state construction in line 30
in Algorithm 2 by the following code:

1: if e � M (t � 1) and s = 0 then
2: we

t  �
in � place

T(we0

t � 1) + at

3: else if M (t � 1) < e � M (t) and s = smax then
4: we

t  T(we0

t � 1 � s)+ + at

5: end if

Indeed, line 2 in the above code changes the vectorwe0

t � 1 in place (symbol “  �
in � place

”), i.e. we only

move a pointer position for the time shift operation T(this can be done in constant time) and add
at with cost K 1nt . Therefore, this line costsK 6nt and will be visited smax � times at most.

As for line 4 in the above code, the copy of� values and the computation of the max costK 7� .
However, this line will be visited only smax times and not for all states. So the complexity of the
state construction is reduced toK 8smax (� + nt ).

Therefore the complexity of this replacement of line 30 in Algorithm 2 becomes: K 9(smax � nt +
smax (� + nt )) .

By adding the other terms computed in the proof of Theorem 3.3 and the temporal loop, we obtain
a complexity of K 10(2n + T + s2

max � T + smax � n + smax � T + smax � n).

Corollary 2. If the work arriving at any instant t is bounded byC (i.e. 8t;
P

i :r i = t ci � C), then
Algorithm 2 computes the optimal speed schedule using less thann � Ks max C� 2 operations.
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Proof. The complexity change from s2
max to smax C comes from the fact that A(t) � D (t) � C� if

the work arriving at t is bounded by C.

3.4.3 Non Consecutive Speeds

When the available speeds do not form a consecutive set, Algorithm 2 may not �nd an optimal
schedule because it is possible that all the optimal speed schedules change speed at non integer
times. Such solutions will not be found by Algorithm 2. In this section we show that it is possible
to go back to the consecutive case by interpolating the power function.

Let S be the set of available speeds. First, we assign to each non available speed a power
consumption by using a linear interpolation. Let s 2 N such that s < s max and s =2 S. Let
s1; s2 2 S be the two neighboring available speeds such thats1 < s < s 2. It follows that s is a
linear combination of s1 and s2:

s = �s 1 + (1 � � )s2; with � =
s2 � s
s2 � s1

: (3.25)

We therefore set:
Power(s) = �P ower(s1) + (1 � � )Power(s2): (3.26)

Once this is done for each non available speed, we use Algorithm 2 to solve the problem with all
consecutive speeds between0 and smax , the unavailable speeds being seen as available with the
power cost de�ned in Eq. (3.26).

Once the optimal speeds have been computed, the following transformation is done at each time
step. In the time interval [t; t + 1) , if the optimal speed s� (t) was not originally available, then
it is replaced by its two neighboring available speedss1 and s2 over time intervals [t; t + � ) and
[t + �; t + 1) respectively. This transformation is illustrated in Fig. 3.4. Since the deadlines are
integers, no job will miss its deadline during the interval (t; t + 1) .

executed work

time
t t+1t+ �

s1

s2s� (t)

� 1� �

Figure 3.4.: Amount of work executed with speed s� (t) (in red), and amount of work executed by the two
neighboring available speedss1 and s2 (in blue).

Theorem 3.4 is the main result of this chapter.
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Theorem 3.4. When the set of available speeds is arbitrary, the improved Algorithm 2 together with
the interpolation transformation displayed in Fig. 3.4 computes an optimal speed schedule to execute
n jobs in time less thann � Ks 2

max � 2 (or n � Ks max C� 2 if the work arriving at any instant t is
bounded byC), where K is a constant.

Proof. Since the power costPower(s� (t)) is a linear interpolation of the power cost of the neigh-
boring available speedss1 and s2, the energy consumption over the interval [t; t + 1) is the same
using speeds�

t and using the neighboring speedss1 and s2 over the two sub intervals [t; t + � ]
and [t + �; t + 1] . This means that the total energy consumption is the same before and after the
transformation of Figure 3.4.

On the one hand, Theorem 3.1 states that, with consecutive speeds, the output of Algorithm 2
minimizes the total energy consumption.

We have just shown that the transformation of each speed into a convex combination between two
neighboring speeds provides a solution that only uses the available speeds and has the same total
energy consumption as with consecutive speeds.

On the other hand, the optimal solution only using the subset composed by the available speeds
must use at least as much energy as when all the intermediate speeds are available. This implies
that Algorithm 2, used with the interpolated power function where unavailable speeds are replaced
by their neighboring available speeds, gives an optimal solution that minimizes the total energy
consumption.

Finally, this transformation takes a constant amount of time for each time interval [t; t + 1) ,
therefore, the complexity remains linear, with possibly a new constant.

3.4.4 Comparison with Previous Work

If we want to compare our algorithm with the best algorithm presented in [LYY17] whose
complexity is K 00n log(maxf n; mg), obviously, we only gain when the number of jobs n is large
and the number of available speedsm small. Also, our constant factor K can be larger than K 00.

Under a more detailed inspection, our algorithm is based on the fact that the input is made of
O(n) bounded integers, or equivalently, of O(n) rational numbers with bounded numerators and
denominators. This can be considered as a valid assumption because elementary operations needed
in Algorithm 1 (it only uses additions and comparisons between inputs) only take a constant time
under this assumption. The analysis of the arithmetic complexity in [LYY17] does not require
that the job features are bounded integers. By taking into account the size of the input, the time
complexity in [LYY17] will be of the form K 00n log(maxf n; mg) log2(B ), where B is the maximal
input size. Their algorithm is oblivious to the integrity of the input and both algorithms are
oblivious to B . Obviously, our algorithm is only competitive over a restricted set of inputs (integer
inputs with n large and B small).

We believe that the main contribution of our solution is twofold, on the one hand to show that
computing the optimal speed schedule is not necessarily based on the critical interval, and on the
other hand to show that this computation can be linear in the number of jobs to be scheduled.
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As a side remark reinforcing this fact, there exist instances of jobs where Algorithm 2 cannot be
used to �nd the critical interval. More precisely, by tuning the order in which the speeds are
examined in line 23 of Algorithm 2, all the optimal speed schedules with integer switching times
can be found by Algorithm 2 when the available speeds are consecutive. The following three facts
are then true.

• One can �nd two sets of jobs with different critical intervals and different corresponding
critical speeds for which there exists a common optimal speed schedule. This common
solution can be the output of Algorithm 2 in both cases with a convenient choice of the order
of the speeds in Line 23 of Algorithm 2. Consider the following example with a processor
having two available speeds:f 0; 1g. The �rst set is made of a single job J1 = ( r 1; c1; D1) =
(1; 3; 6). The second set is made of two jobsJ2 = (1 ; 1; 6) and J3 = (2 ; 2; 5). The critical
interval for the set f J1g is I c

1 = [1 ; 6] with critical speed sc
1 = 3=5. In contrast, the critical

interval for the set f J2; J3g is I c
2 = [2 ; 5] with critical speed sc

1 = 2=3. In both cases, if
Algorithm 2 sweeps the speeds in increasing order in line 23, its solution is(0; 0; 1; 1; 1).

• For any two sets of jobs with different critical intervals, I c
1 � I c

2 (or/and different critical
speedssc

1 < s c
2), there exists an optimal speed schedule for the �rst set that is not valid

for the second set. Informally, this is true because the second set is more constrained and
some “extreme” solution for the �rst set will not satisfy the more stringent constraints of the
second set. In the previous example, the schedule(1; 1; 0; 0; 1) is optimal for the set f J1g but
it is not valid for the set f J2; J3g because jobJ3 is not completed before its deadline (the
processor only executes one unit of work in the time interval [2; 5] while job J3 is of size2
on the same interval).

• There exist examples wheresomeoptimal speed schedules cannot be found by an approach
based on critical intervals. For example, using again the setf J2; J3g with J2 = (1 ; 1; 6) and
J3 = (2 ; 2; 5), the critical interval is I c

3 = [2 ; 5] with critical speed sc
3 = 2=3. Once this critical

interval is collapsed and the job J3 that is included in I c
3 is removed, there remain the two

intervals [1; 2] and [5; 6] and the job J2. As a result, the new critical interval after collapsing
becomesI c

4 = [1 ; 3], with a critical speed sc
4 = 1=2. In this case, the optimal schedule

(0; 1; 1; 1; 0) can be found by Algorithm 2 but will never be discovered by approaches based
on the critical interval, because all of them will use speed 0 exactly once in the critical
interval I c

3 . This is illustrated in Fig.3.5.

3.5 Extensions

In this section, we show that Algorithm 2 can be adapted to compute an optimal solution in linear
time even when switching from one speed to another has a time and/or energy cost, and when the
power function is not convex.
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Figure 3.5.: A system made of two jobsJ2 = ( r 2 ; c2 ; D 2) = (1 ; 1; 6) and J3 = (2 ; 2; 5) (left). The �rst critical
interval is I c

3 = [2 ; 5] (middle), which is materialized by the dotted rectangle in the left �gure.
OnceI c

3 is collapsed, the second critical interval isI c
4 = [1 ; 3] (right). The critical speed is sc = 2

3
on I c

3 and sc = 1
2 on I c

4 . All the optimal speed schedules obtained by critical interval methods
are depicted as dashed red lines in the middle and right �gures. The optimal speed schedule
(0; 1; 1; 1; 0) (red line in the left �gure) cannot be found by algorithms based on critical intervals,
but will be found by Algorithm 2.

3.5.1 Switching Time

So far, we have assumed that the time needed by the processor to change speeds is null. However,
in all synchronous CMOS circuits, changing speeds does consume time and energy. The energy cost
comes from the voltage regulator when switching the voltage of the circuit, while the time cost
comes from the relocking of the Phase-Locked Loop when switching the frequency [Wu+05]. Burd
and Brodersen have provided in [BB00] the equations to compute these two costs. In contrast
with many DVFS studies (e.g., [BB00; BSA14; Li16; WRG16]), our formulation can accommodate
arbitrary energy cost to switch from speed s to s0. In the sequel, we denote this energy cost
by he(s; s0).

As for the time cost, we denote by � the time needed by the processor to change speeds. For
the sake of simplicity we assume that the delay� is the same for each pair of speeds, but our
formalization can accommodate different values of � , as computed in [BB00].

Consecutive Speeds

When there is a time delay, the executed work by the processor hastwo slope changes, at times
� 1 and � 2, with � 2 � � 1 = � (the red solid line in Fig. 3.6). We assume in this subsection that the
speeds are consecutive. To take into account interpolations as in Section 3.4.3 with switching
times inside integer intervals, we only have to modify the Power function with a penalty cost. We
come back to this case in the end of the section to give a precise expression for this penalty cost.

Since � 62N, we cannot have both � 1 2 N and � 2 2 N. As a consequence, one of the remaining
work functions w� 1 (:) or w� 2 (:) will not be integer valued. This is not allowed by our approach.

The solution we propose is illustrated in Fig. 3.6. It consists in shifting the time � 1 when the speed
change is initiated so that the global behavior can be simulated by a single speed change that
occurs at an integer time (t in Fig. 3.6). The actual behavior of the processor is represented by
the red solid line, while the simulatedbehavior, which is equivalent in terms of the amount of
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Figure 3.6.: Transformation of the time delay into an energy additional cost by shifting the switching point.
The left �gure corresponds to the s1 < s 2 case and the right �gure to the s1 > s 2 case. The red
line represents the actual behavior of the processor with a� time delay. The blue dashed line
represents an equivalent behavior in terms of executed work, with no time delay.

work performed, is represented by the blue dashed line. The total amount of work done by the
processor is identical in both cases at all integer timest � 1, t, and t + 1 .

When s1 < s 2, the speed change must be anticipated and occurs at� 1 < t (Fig. 3.6-left). When
s1 > s 2, the speed change has to be delayed and occurs at� 1 > t (Fig. 3.6-right). The exact
computation of t1 is similar in both cases and is straightforward.

One issue remains however, due to the fact that the consumed energy will not be identical between
the real behavior and the simulated behavior. Indeed, it will be higher for the actual behavior for
convexity reasons. This additional energy cost of the real processor behavior must therefore be
added to the energy cost of the equivalent simulated behavior.

The value of " and � 1;2 as de�ned in Fig. 3.6, and the additional energy cost h� (s1; s2) incurred by
this speed change are computed as follows. In the cases2 > s 1, we have:

s1" = s2� 1;2 = s2(" � � ) () " = � + � 1;2 =
�s 2

s2 � s1
: (3.27)

During the time delay � , the energy is consumed by the processor as if the speed wass1. The
additional energy cost incurred in the actual behavior (the red solid line) compared with the
simulated behavior (the blue dashed line), denoted h� (s1; s2), is therefore:

h� (s1; s2) = � 1;2(Power(s2) � Power(s1)) : (3.28)

Using the value of � 1;2 from Eq. (3.27), this yields:

h� (s1; s2) = �s 1

�
Power(s2) � Power(s1)

s2 � s1

�
: (3.29)
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When s1 > s 2, the additional cost becomes:

h� (s1; s2) = �s 2

�
Power(s1) � Power(s2)

s1 � s2

�
: (3.30)

This additional energy due to speed changes can be taken into account in our model in the cost
function by modifying the state space W: the new state at time t becomes thepair (wt ; st ): the
remaining work at time t (i.e. wt ) and the speed that is used betweent to t + 1 (i.e. st ).

We now wish to take into account both the energy and the time costs in Algorithm 2, which
requires to modify the optimality equation of lines 25–26. At time t, recall that e is the executed
work at time t, s is the speed used in the interval[t � 1; t] so that e0 = e � s was the state at time
t � 1, and s0 is any previous speed used before timet � 1. The new optimality equation must be
changed to include the speed into the current con�guration:

E �
t (e; s) = min

s02S

�
Power(s) + h(s0; s) + E �

t � 1(e � s; s0)
�

; (3.31)

with the global switching cost h(s0; s) = he(s0; s) + h� (s0; s), where h� (s0; s) is given by Eq.(3.30)
if s0 < s and by Eq. (3.29) if s < s 0. When s0 = s, h(s0; s) = 0 .

The rest of the algorithm is unchanged and the complexity remains linear.

Finally, if the speeds are not consecutive, we showed in Section 3.4.3 that speed changes can
also happen inside an integer interval [t; t + 1] to emulate a non-available speeds by its two
neighboring available speedss1 and s2 by using interpolation. Taking these switching costs into
account here is easier (no time shift is needed). One only needs to modify the optimality equation
again. In Algorithm 2. This can be done at no additional complexity cost (each value for the speed
smaller than smax is still examined at most once for each pointe) as follows.

Let s 2 S be any available speed, and lets and s denote the closest available speeds inS from
below and above respectively. The intermediate non-available speedsu strictly between s and s
(resp. between s and s) are such that u = � u s + (1 � � u )s (resp. u = � u s + (1 � � u )s).

Again, the optimal energy in the con�guration (e; s) at time t, E �
t (e; s), is the minimal energy

consumption between time 0 and t if the current executed work is e and if the speed used just
before time t is s. This can come from VDD-hoping emulating any speedu strictly between s and s
as long asu is admissible (that is, u � we0

t � 1(1) and u � M (t) � e0). In this case, two speed changes
occur: one between the previous speeds0 and the �rst neighbor speed of u and one between the
neighbor speed ands.

In this case, lines 25–26 in Algorithm 2 must be replaced by the following computation. The
minimal principle applied to this new quantity says that E �

t (e; s) is the minimum between the two
following terms:

min
f s02S ;u 2f s+1 :::s gg

�
� u Power(s) + (1 � � u )Power(s) + h(s0; s) + h(s; s) + E �

t � 1(e � u; s0)
�

; (3.32)
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and

min
f s02S ;u 2f s::: s� 1gg

�
� u Power(s) + (1 � � u )Power(s) + h(s0; s) + h(s; s) + E �

t � 1(e � u; s0)
�

: (3.33)

In the consecutive as well as the non-consecutive case, it is still true that there exists an optimal
solution that only uses integer speeds (maybe through VDD-hoping in the non-consecutive case) in
each time interval [t; t + 1] , as long as the switching costh satis�es a sub-additive inequality (For
any s1; s2; s3 in S, h(s1; s2) + h(s2; s3) � h(s1; s3)), and are all negligible with respect to Power (s)
for all s 2 S.

It is direct to check that if Power is convex, then this sub-additivity is true for the delay cost h� .
As for he (not detailed in this paper), the formulas provided in [BB00] also comply with the
sub-additive inequality above.

Under sub-additivity and negligibility of h, each speed change will count, but will never compensate
using the wrong speed: under these two assumptions, the optimal policy with switching costs
will use each speed inS during the same total duration as the optimal policy without switching
costs.

3.5.2 Non-Convex Power Function

In most real processors, measurements of the power function show that it is not a convex function
of the speed. In most cases, a more realistic approximation isPower(s) = Pstat + Pdyn (s), where
Pdyn (s) is convex. An even more accurate model isPower(s) = Pstat (s) + Pdyn (s), where Pdyn (s) is
convex but the leakage powerPstat (s) depends ons and is not convex.

If the power function is not convex, then it is well known that replacing Power(:) by its convex hull
[Power(:), and solving the speed selection problem with [Power(:) instead of Power(:) also provides the
optimal solution with Power(:), by using speed replacements as described in Section 3.4.3.

Now we will present how to convexify the Power function. Let us consider a processor, whose speeds
belong to the set S = f s0; s1; s2; smax g and the power function of the processor Power(:) : S ! R.

If the power function is not convex, some speeds are not relevant, because using these speeds is
more expensive in term of energy than using a combination of other speeds. Figure 3.7 depicts
a non-convex power function Power in black, and its convex hull g in red. In terms of energy
consumption, it is better to choose speedss0 and s2 (actually a linear combination of s0 and s2),
rather than speed s1. In fact, all points of the power function curve, that are above the convex
hull, should never be taken into consideration. It is always better to only select the speeds whose
power consumption belongs to the convex hull of the power function. Indeed if g(s1) < P ower(s1)
(see Figure 3.7), instead of selecting speeds1 during any time interval [t; t + 1) , the processor can
select speeds2 during a fraction of time � 2, and then speeds0 during a fraction of time � 0, such
that � 0s0 + � 2s2 = s1. The total quantity of work executed during the time interval [t; t + 1) will
be the same as withs1, but the energy consumption will instead be g(s1) = � 0j (s0) + � 2j (s2),
which is less than Power(s1) because of the convexity of functionPower. This approach uses the
Vdd -hoppingtechnique.
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Figure 3.7.: Convexi�cation of the power consumption function.

As a result, we can always consider that the power function is convex. This is very useful in practice.
Indeed, the actual power consumption of a CMOS circuit working at speeds is non-convex function
of the form Power(s) = Cs� + L(s), where the constant C depends on the activation of the logical
gates,� is between2 and 3, and L(s) is the leakage, with L(0) = 0 and L(s) 6= 0 if s > 0. In this
case, convexi�cation removes the small values ofs from the set of useful speeds.

Remark: This idea of replacing one speed by a linear combination of two speeds (i.e., Vdd -hopping
) can also be used to simulate any speed between0 and smax . Indeed, if a speed doesn't exist in
the set S, a solution is to simulate it by combining two neighboring speeds. This technique allows
the processor to have more speeds to choose from, so that the optimal speed computed by the
(DP) algorithm will use less energy with Vdd -hoppingthan without it.

3.6 Conclusion

We have addressed the problem of minimizing off-line the total energy consumption required to
execute a set ofn real-time jobs on a single processor with varying speed. The goal is to �nd
a sequence of processor speeds, chosen among a �nite set of available speeds, such that no job
misses its deadline and the energy consumption is minimal. Such a sequence is called anoptimal
speed schedule.

Our main result is that computing an optimal speed schedule can be done with a linear time
complexity: Kn where n is the number of real-time jobs and K is a constant. This result holds for
an arbitrary power function and may also take into account speed switching costs.

After the of�ine case studied in this chapter, that focuses on the situation where we know at any
time all job features: arrival time, execution time and deadline, we examine the online case in
the next chapter, i.e. the case where the processor discovers jobs while the processor is running.
To begin we focus on the speci�c case of clairvoyant jobs. It means that at a certain time, all
features of past and active jobs are known and future job features are only known statistically.
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The following chapter will tackle the same problem, i.e. energy consumption minimization, and
provides a solution that gives at each instant with these informations the optimal speed that the
processor has to choose to minimize the expected energy consumption.
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Online Minimization: Statistical

Knowledge with Clairvoyant

Jobs

4

After analysing the of�ine case, we use the same idea,i.e. dynamic programming, to solve the
online case. Unlike the of�ine case, in the online case, we discover job characteristics, and
especially the job arrival time only when they arrive. The �rst case of online situation on which
we focus on in this thesis is theClairvoyant case. As de�ned in Chapter 1,Clairvoyant Jobs means
that at job arrivals, we know precisely its execution time, denoted c in the following, and also its
relative deadline d. In other words, it means that at time t, one knows the past jobs,i.e. the jobs
that are completed at t, and also entirely the active jobs, jobs that are in progress (by entirely it is
job deadline and job execution time). Furthermore, there is a partial knowledge on the future jobs,
i.e. jobs that arrive strictly after t: there is a statistical information. Thanks to these informations,
an algorithm is build to minimize the energy consumption. Let us begin with the following section,
Section 4.1, to present the existing literature on that topic, and also the previous algorithms, that
have been designed in the past.

This chapter is based on [GGP19a], submitted to an international journal.

4.1 State of the Art

The starting point of this work is the seminal paper of Yao et al. [YDS95] followed by the paper of
Bansal et al. [BKP07], both of which solve the following problem.

As presented in Chapter 2, let us consider(r i ; ci ; di ) i 2 N be a set of jobs, wherer i is the release date
(or arrival time) of job i , ci is its size (or WCET, or workload) i.e., the number of processor cycles
needed to complete the job, anddi is its relative deadline, i.e., the amount of time given to the
processor to execute jobi . The problem is to choose the speeds(t) of the processor1 as a function
of the time t, such that the processor can execute all the jobs before their deadlines, and such that
the total energy consumption E is minimized. In this problem, E is the dynamicenergy consumed
by the processor:E =

RT
0 Power(s(t))dt, where T is the time horizon of the problem (in the �nite

horizon case) andPower(s) is the power consumption when the speed iss.

This problem has been solved in Yao et al. [YDS95] when the power functionPower is a convex
function of the speed, in the of�ine case, i.e., when all jobs are known in advance. Many

1Different communities use the term “speed” or “frequency”, which are equivalent for a processor. In this chapter, we use
the term “speed”.
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variants have been proposed to this of�ine solution, for different job and energy models (see
e.g., [Ayd+01]). However, in practice the exact characteristicsof all the upcoming jobs cannot be
known in advance, so the of�ine case is unrealistic.

Several solutions have been investigated by Bansal et al. in [BKP07] in theonline case,i.e., when
only the jobs released at or before time t can be used to select the speeds(t). Bansal et al.
prove that an online algorithm introduced in [YDS95], called Optimal Available (OA) , has a
competitive ratio of � � when the power dissipated by the processor working at speeds is of the
form Power(s) = s� . In CMOS circuits, the value of � is typically 3. In such a case,(OA) may spend
27 times more energy than an optimal schedule in the worst case. The principle of(OA) is to
choose, at each timet, the smallestprocessor speed such that all jobs released at or before timet
meet their deadlines, under the assumption that no more jobs will arrive after time t.

However, this assumption made by(OA) is questionable. Indeed, the speed selected by(OA) at
time t will certainly need to be compensated (i.e., increased) in the future due to jobs released
after t. This leads to an energetic inef�ciency when the Power function is convex. In contrast, our
intuition is that the best choice is to select a speedabovethe one used by(OA) to anticipate on
those future job arrivals.

The goal of this chapter is to give a precise solution to this intuition by using statistical knowledge
of the job arrivals (which could be provided by the user) in order to select the processor speed
that optimizes the expectedenergy consumption.

Other constructions also based on statistical knowledge have been reported in [Gru01; LS01;
BS09] with a simpler framework, namely for a singlejob whose execution time is uncertain but
whose release time and deadline are given, or in [PS01] by using heuristic schemes. Furthermore,
[MCZ07] solves also an online problem, but with a task set of a �xed size; jobs have known execu-
tion times and deadlines, and their arrival times have known bounds. Moreover the scheduling
policy of [MCZ07] is limited to the non-preemptive case. In contrast, we address the case of a �nite
or in�nite number of jobs with uncertain release times, but with a known execution time at release
time. This is a constrained optimization problem that we are able to model as an unconstrained
Markov Decision Process (MDP) by choosing a proper state space that also encodes the constraints
of the problem. This is achieved at the expense of the size of the state space (see § 4.2.4). In
particular, this implies that the optimal speed at each time can be computed using adynamic
programming algorithm and that the optimal speed at any time t will be a deterministic function
of the current state at time t.

In the �rst part of this chapter (§ 4.2), we present our job model and the problem addressed in the
chapter. We de�ne the state space of our problem (§ 4.2.3) and analyze its complexity (§ 4.2.4).
In a second part (§ 4.3), we construct a Markov Decision Process model of this problem. We
propose an explicit dynamic programming algorithm to solve it when the number of jobs is
�nite (§ 4.3.1), and a Value Iteration algorithm [Put05] for the in�nite case (§ 4.3.2). Finally,
we compute numerically the optimal policy in the �nite and in�nite horizon cases, and compare
its performance with of�ine policies and “myopic” policies like (OA) , oblivious to the arrival of
future jobs (§ 4.4). Moreover we present several useful generalizations: how to account for the
cost of processor speed changes, for the cost of task context switches, and for non-convex power
functions (§ 4.5). In appendix of this chapter, Appendix 4.7, we provide a proof that discrete speed
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changing and decision instants are optimal in this framework even when Vdd -hopping makes a
continuous speed range available.

4.2 Presentation of the Problem

4.2.1 Job features, Processor Speed, and Power

The job model is the same as this one described in Chapter 2. Therefore all jobJ i can be de�ned
as a triplet (r i ; ci ; di ).

Jobs in J are ordered by their release timesr i , and jobs with the same arrival time are ordered
arbitrarily.

In Chapter 3 we consider that we know all job features at any time, however in this chapter we do
not know future job features, but we assume that the triplets (� i ; ci ; di ) i 2J are random variables,
de�ned on a common probability space, whose joint distribution is known (for example by using
past observations of the system):P(� i = t; ci = c; di = d) is supposed to be known for all t; c; d.
We recall that the link between � i and r i is done in Eq. (2.1).

In addition, we assume that the relative deadlines of the jobs are bounded by a maximal value,
denoted � :

� = max
i 2J

� i (4.1)

where � i is the maximal value in the support of the distribution of the relative deadline di of
job J i , which is assumed to be �nite. The assumption that the deadlines are bounded is classical in
real-time systems.

Finally, we assume that the distribution of inter-arrival times has a �nite memory bounded by L :
For all i 2 J and all t; c; d,

8G � L;

P(� i = t; ci = c; di = dj� i � G) = P(� i = t; ci = c; di = dj� i � L ): (4.2)

We further de�ne ` t as the time elapsed between the last job arrival andt. As presented in
Chapter 2, we assume the single processor can run at any timet at a speeds(t) belonging to a
�nite set of integer speeds S:

8t; s(t) 2 S = f 0; s1; : : : ; sk � 1; smax g:

The processor speeds are usually given as fractional numbers,e.g., f 0; 1=4; 1=2; 3=4; 1g, 1 being
the maximal speed by convention. Without loss of generality, we scale the speeds such that
s1; : : : ; sk ; smax are all integer numbers. For instance, the setf 0; 1=4; 1=2; 3=4; 1g will be scaled to
f 0; 1; 2; 3; 4g. This same scaling factor is also applied to the WCETs,e.g., a job of size1 becomes a
job of size 4.
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We consider that the power dissipated by the processor working at speeds(t) at time t is Power(s(t)) ,
so that the energy consumption of the processor from time0 to time T is computed asE =
RT

0 Power(s(t))dt. Usually, the power consumption Power is a convex increasing function of the
speed (see [YDS95; BKP07]). This classical case is based on models of the power dissipation of
CMOS circuits. Finer models use star-shaped functions [GNW05] to further take into account
static leakage. In the present chapter, the functionPower is arbitrary . However several structural
properties of the optimal speed selection will only hold when the function Power is convex. In the
numerical experiments (§ 4.4), several choices ofPower are used, to take into account different
models of power consumption.

For the sake of simplicity, at �rst we only consider the following simple case: context switching
time is null, speed changes are instantaneous and the power consumption functionPower is convex.
However, preemption times, time lags for speed changes, as well as non-convex energy costs can
be taken into account with minimal adaptation to the current model. A detailed description of all
these generalizations is provided in § 4.5.

4.2.2 Problem Statement

The objective is to choose at each timet the speeds(t) 2 S in order to minimize the total energy
consumption over the time horizon T, while satisfying the real-time constraints of all the jobs.
Furthermore, the choice must be made online, i.e., it can only be based on past and current
information. In other words, only the jobs released at or before time t are known, while only
statistical information is available for all future jobs.

As explained previously, thestatistical information about the jobs is the distribution of the features:
P(� i = t; ci = c; di = d) is supposed to be known for all t; c; d. Notice that in this model, unlike
in [Gru01; LS01], the workload ci and the deadline di are known at the release time of job i 2.

We now rede�ne the online energy minimization problem (MP) as:

Find online speedss(t) ( i.e., s(t) can only depend on the historyH(t)) and a scheduling
policy R(t) in order to minimize the expected energy consumption under the constraint
that no job misses its deadline.

Since all release times and job sizes are integer numbers, the information available to the processor
only changes at integer point.

In the following, we will focus on the case where the speed changing instants (instants when the
processor can change its speed) are also integers. We show in Appendix 4.7 that this can be done
without any loss in optimality. Now, if we consider that the speed s(t) can only change at integer
points too, we can focus on integer times: t 2 N in the following.

Let (s� ; R� ) be an optimal solution to problem (MP) . Since the energy consumption does not
depend on the schedule (preemption is assumed to be energy-free) and since theEarliest Deadline
First (EDF) scheduling policy is optimal for feasibility even when the speed of the processor changes

2When the actual workload can be smaller than WCET, our approach still applies by modifying the state evolution
Eq. (4.4), to take into account early termination of jobs.
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arbitrarily as proved in Appendix A.1, then (s� ; EDF ) is also an optimal solution to problem (MP) .
In the following, we will always assume with no loss of optimality that the processor uses EDF to
schedule its jobs. This implies that the only useful information to compute the optimal speed at
time t, out of the whole history H(t), is simply the remaining work.

De�nition 4.1. The remaining work at timet is an increasing functionwt (:) de�ned as follows:
wt (u) is the amount of work arrived beforet that must be completed before timet + u.

Since all available speeds, job sizes and deadlines are integer numbers, the remaining workwt (u)
is an integer valued càdlàg3 staircase function.

t
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Figure 4.1.: Construction of the remaining work function wt (:) at t = 5 , for jobs J1 = (1 ; 2; 4), J2 = (2 ; 1; 5),
J3 = (3 ; 2; 6), J4 = (4 ; 2; 4), J5 = (5 ; 0; 0), and processor speedss0 = 1 ; s1 = 0 ; s2 = 2 ; s3 = 1 .
A(t) is the amount of work that has arrived before time t. D (t) is the amount of work that must
be executed before timet. e(t) is the amount of work already executed by the processor at
time t.

The de�nition of wt is essential for the rest of the chapter. Let us illustrate it in Figure 4.1, which
shows the set of jobs released just beforet = 5 , namelyJ1 = (1 ; 2; 4), J2 = (2 ; 1; 5), J3 = (3 ; 2; 6),
J4 =(4 ; 2; 4), J5 =(5 ; 0; 0), as well as the speeds chosen by the processor up to timet =4 : s0 =1 ,
s1 = 0 , s2 = 2 , s3 = 1 . Function A(t) is the amount of work that has arrived before time t.
Function D(t) is the amount of work that must be executed before time t. This requires a detailed
explanation: the �rst step of D(t) is the deadline of J1 at t =1+4=5 ; the second step is forJ2 at
t =2+5=7 ; the third step is for J4 at t =4+4=8 ; the fourth step is for J3 at t =3+6=9 . Hence the
step for J4 occursbeforethe step for J3. This is because Figure 4.1 depicts the situation att =5 . At
t =4 we would only have seen the step forJ3. Finally, function e(t) is the amount of work already
executed by the processor at timet; in Figure 4.1, the depicted function e(t) has been obtained
with an arbitrary policy ( i.e., non optimal). Finally, the remaining work function wt (u) is exactly
the portion of D(t) that remains “above” e(t). In Fig. 4.1, we have depicted in red the staircase
function wt (u) for t =5 .

Remark 4.1. The online algorithm Optimal Available(OA) mentioned in the introduction is also
based on the remaining work function: The speed of the processor at timet is the smallest slope of all
linear functions abovewt . This is illustrated in Figure 4.1: the speed that(OA) would choose at time
t = 5 is the slope of the orange dotted line marked(OA) ; in the discrete speeds case (�nite number of
speeds), the chosen speed would be the smallest available speed just above the orange dotted line.

3càdlàg = continue à droite, limite à gauche = right continuous with left limits.
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Out of the whole history H(t), the remaining work function wt together with the elapsed time
since the latest arrival, ` t , are the only relevant information at time t needed by the processor to
choose its next speed. For this reason we call(wt ; ` t ) the stateof the system at time t.

4.2.3 Description of the State Space

To formally describe the spaceW of all the possible remaining work functions and their evolution
over time, we introduce the set of the jobs released att, denoted Et , as follows:

De�nition 4.2. The setEt of the newly arrived jobs, released exactly at timet, is de�ned as:

Et = f J i = ( � i ; ci ; di ); i 2 N j r i = tg: (4.3)

wherer i is the release time of jobJ i , de�ned in Eq. (2.1) .

Furthermore, to take into account the deadlines of the new jobs, we de�ne in Def. 4.3 the function
at (u) that represents the work quantity arriving exactly at time t and that must be executed before
time t + u. Formerly,

De�nition 4.3. The new work arriving att with absolute deadline beforet + u is given by the function
at (u) =

P
i 2E t

ci H r i + di (t + u).

Lemma 4.1. Letst � 1 be the processor speed at timet � 1. Then at timet the remaining work function
becomes:

wt (:) = T
�
(wt � 1(:) � st � 1)+ �

+ at (:) (4.4)

and the relationship betweeǹ t and ` t � 1 is as follows:

` t =

(
0 if Et � 1 6= ;
(` t � 1 + 1) ^ L otherwise.

(4.5)

Proof. Between t � 1 and t, the processor working at speedst � 1 executesst � 1 amount of work,
so the remaining work decreases byst � 1. The remaining work cannot be negative by de�nition,
hence the term (wt � 1(:) � st � 1)+ . After a time shift by one unit, new jobs (belong to the set Et )
are released at timet, bringing additional work, hence the additional term at (:).

Concerning ` t , the time between the last job arrival and t, either there are some jobs that have
arrived at t � 1, i.e., Et � 1 6= ; , and in this case the last job arrival is at t � 1, which implies ` t = 1 ,
or no jobs have arrived at t � 1, i.e., Et � 1 = ; , and in this case the time delay increases, hence
` t = ` t � 1 + 1 until ` t reachesL , at which point, the exact value of ` t becomes irrelevant. The
only important information to assess the probability of future arrivals is the fact that ` t is larger
than L .

We illustrate in Fig. 4.2 the state change over an example, in the particular case where a single job
arrives. The red line depicts the previous remaining work function wr n � 1 at time r n � 1, while the
blue line depicts the new remaining work function wr n following the arrival of the job (1; cn ; dn )
at time r n . The quantity of work executed by the processor issn � 1.
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Figure 4.2.: State change following a job arrival at time r n . The red line corresponds to the previous
remaining work function. The blue line corresponds to the new remaining work function.

4.2.4 Size of W

Feasible Policies

The processor can execute at mosttsmax amount of work during a sliding time interval of size t.
Since � is the maximal job deadline, all work arrived between t and t + � must be �nished before
t + 2� . The schedulability of the set of jobs therefore requires that2smax � be an upper bound on
the work quantity that can arrive between t and t + � .

Let M be the maximal work quantity that can arrive during any sliding time interval of size � .
According to the discussion above, the feasibility requirement implies that M must satisfy the
following inequality:

M � 2smax � (4.6)

Therefore, feasibility implies that the size of the state space (equivalently, the number of remaining
work functions) is �nite. We compute precisely this state space in the next section.

Bound on the Size of W

Proposition 4.1. Let � be the maximal deadline of a job andsmax be the maximal speed. The size
Q(�) of the set of remaining work functionsW is bounded by:

Q(�) �
�

� smax + � � 1
� � 1

�
(4.7)

where the notation
� n

k

�
is the binomial coef�cient.

Proof. A state is an increasing integer functionswt (:). As discussed before, in the worst case, the
total remaining work at time t cannot exceed� smax , and this remaining work is due before t + � .
Therefore, each remaining work function can be seen, in the two-dimension integer grid, as an
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increasing path that connects the point (0; 0) to a point (� ; K ); K � � smax . Hence the size of
the spaceW is smaller than the total number of increasing paths from (0; 0) to (� ; � smax ) (by
extending paths ending in (� ; K ), with K � � smax ), that is:

Q(�) �
�

� smax + � � 1
� � 1

�

Jobs with Bounded Sizes

Here we consider the particular case where the amount of work arriving at any time t is bounded
(the bound is denoted by C). This leads to a smaller state space size, which is given in Prop. 4.2.

Proposition 4.2. Let C be the maximal amount of work that can arrive at each timet. Then the size
Q(� ; C) of the spaceW is bounded by:

Q(� ; C) =
CX

y 1 =0

2CX

y 2 = y 1

3CX

y 3 = y 2

:::
� CX

y � = y � � 1

1 (4.8)

It can be computed in closed form as:

Q(� ; C) =
1

1 + C(� + 1)

�
(C + 1)(� + 1)

� + 1

�
(4.9)

�
e

p
2�

1
(� + 1) 3=2

(e C) � (4.10)

Proof. The proof is postponed to Appendix A.2.

The size ofW will play a major role in the complexity of our dynamic programming algorithm to
compute the optimal speeds.

4.3 Markov Decision Process (MDP) Solution

We denote byx = ( w(:); `) a stateof the MDP, de�ned below. It is composed by a remaining work
function denoted w(:), and the time elapsed since the latest job arrival denoted`. One has to
remark that the state is different as in Chapter 3. We denote byX the state space (the set of all
possible states).

As explained in § 4.2.4, the spaceW is �nite and ` is bounded by L, so the setX is also �nite.
As a consequence, one can effectively compute the optimal speed in each possible statex using
dynamic programming over X .

In this section, we provide algorithms to compute the optimal speed selection in two cases: when
the time horizon is �nite and when it is in�nite. In the �nite case, we minimize the total energy
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consumption, while in in�nite case we minimize the long term averageenergy consumed per time
unit.

In both cases, we compute of�ine the optimal policy � �
t that gives the speed the processor should

use at time t in all its possible states. At runtime, the processor chooses at timet the speeds(t)
that corresponds to its current statext = ( wt ; ` t ), that is s(t) := � �

t (xt ).

The algorithms to compute the policy � � are based on aMarkovian evolution of the jobs. From the
distribution of jobs (� i ; ci ; di ), one can build, under state x and at time t, the distribution (� x)x2X

of the work that arrives at t. For any (c1; : : : ; c� ):

� x(t; c1; : : : ; c� ) = P

 

at =
�X

k=1

ck H k+ t j xt = x

!

(4.11)

Once � is given, the transition matrix
Pt (x; s; x0) from state x = ( w; `) to x0 = ( w0; `0) when the speed chosen by the processor iss is:

Pt (x; s; x0)=

8
>>>>>><

>>>>>>:

� x(t; c1; : : : ; c� )
if w0 = T [(w � s)+ ] +

P
k ck H k+ t

and `0=

(
0 if (c1:::c� ) 6= (0 :::0)
(` + 1) ^ L otherwise

0 otherwise

This shows that the transition probability can be expressed as a function of the probability
distributions of the jobs, through the distribution � . If jobs are independent, then � can be
computed using a convolution of the job distributions.

4.3.1 Finite Case: Dynamic Programming

We suppose in this section that the time horizon is �nite and equal to T. This implies that we only
consider a �nite number of jobs. The goal is to minimize the total expected energy consumption
J � over the time interval [0; T]. If the initial state is x0, then

E � (x0) = min
�

 

E

 
TX

t =0

Power(� t (xt ))

!!

(4.12)

where the expectation is taken over all possible job arriving sequences following the probability
distribution of the features and where � is taken over all possiblepoliciesof the processor: � t (x) is
the speed used at timet if the state is x. The only constraint on � t (x) is that it must belong to the
set of available speeds,i.e., � t (x) 2 S, and it must be large enough to execute the remaining work
at the next time step:

8t; � t (x) � w(1) (4.13)
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The set ofadmissible speedsin state x is denoted A(x) and is therefore de�ned as:

A (x) =
�

s 2 S s.t. s � w(1)
	

(4.14)

E � can be computed using a backward induction. LetE �
t (x) be the minimal expected energy

consumption from time t to T, if the state at time t is x (xt = x). We present in the next section an
algorithm to compute E � .

Dynamic Programming Algorithm (DP)

We use a backward induction (Dynamic Programming) to recursively compute the expected energy
consumption E � and the optimal speed policy � � . We use the Backward Induction Algorithm
from [Put05] (p. 92). We obtain an optimal policy that gives the processor speed that one must
apply in order to minimize the energy consumption (Algorithm 3).

Algorithm 3: Dynamic Programming Algorithm (DP) to compute the optimal speed for each state
and each time.

t  T % time horizon
for all x 2 X do E �

t (x)  0 end for
while t � 1 do

for all x 2 X do

E �
t � 1(x)  min

s2A (x)

�
Power(s) +

X

x02W

Pt (x; s; x0)E �
t (x0)

�

� �
t � 1[x]  argmin

s2A (x)

�
Power(s) +

X

x02W

Pt (x; s; x0)E �
t (x0)

�

end for
t  t � 1 % backward computation

end while
return all tables � �

t [:] 8t = 0 : : : T � 1:

The complexity to compute the optimal policy � �
t (x) for all possible states and time steps is

O(TjSjQ(�) 2). The combinatorial explosion of the state space makes it very large when the
maximum deadline is large. Note however that this computation is done of�ine . At runtime, the
processor simply considers the current statext at time t and uses the pre-computed speed� �

t (xt )
to execute the job with the earliest deadline.

Runtime Process: Table Look-UP (TLU DP )

At runtime, the processor computes the current statext and simply uses a Table Look-Up algorithm
(TLU) to obtain its optimal speed � �

t [xt ], the speed tables having been computed of�ine by(DP) .
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This algorithm, called (TLU DP ), is shown in Algorithm 4. The size of the table is T � Q(�) and
the runtime cost for (TLU DP ) is O(1).

Algorithm 4: Runtime process(TLU DP ) used by the processor to apply the optimal speed

For Each t = 0 : : : T � 1
Update xt using Eq. (4.4)
Set s := � �

t [xt ]
Execute the job(s) with earliest deadline at speeds for one time unit

End

4.3.2 In�nite Case: Value Iteration

When the time horizon is in�nite, the total energy consumption is also in�nite whatever the speed
policy. Instead of minimizing the total energy consumption, we minimize the long term average
energy consumption per time-unit, denoted g. We therefore look for the optimal policy � � that
minimizes g. In mathematical terms, we want to solve the following problem. Compute

g� = min
�

E

 

lim
T !1

1
T

TX

t =1

Power(� (xt ))

!

(4.15)

under the constraint that no job misses its deadline.

Stationary Assumptions

In the following we will make the following additional assumption on the jobs: The size and the
deadline of the next job have stationary distributions (i.e., they do not depend on time). We further
assume that the probability that no job arrives in the next time slot is strictly positive.

Under these two assumptions, the state space transition matrix isunichain (see [Put05] for a
precise de�nition). Basically, the unichain property is true because, starting from an empty system
(state w0 = (0 ; : : : ; 0)), it is possible to go back to statew0 no matter what speed choices have
been made and what jobs have occurred. This is possible indeed because, with positive probability,
no job will arrive for long enough a time so that all past deadlines have been met and the state
goes back tow0.

When the state space is unichain, the limit in Eq.(4.15) always exists (see [Put05]) and can be
computed with an arbitrary precision using a value iteration algorithm (VI) , presented in the next
section.

Value Iteration Algorithm (VI)

The goal of Algorithm (VI) is to �nd a stationary policy � (i.e., � will not depend on t), which is
optimal, and to provide an approximation of the gain ( i.e., the average reward valueg� ) with an
arbitrary precision " .
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Algorithm 5: Value Iteration Algorithm (VI) to compute the optimal speeds in each state and the
average energy cost per time unit.

u0  (0; 0; : : : ; 0), u1  (1; 0; : : : ; 0)
n  1
" > 0 % stopping criterion
while span(un � un � 1) � " do

for all x 2 W do

un +1 (x)  min
s2A (x)

�
Power(s) +

X

x02W

P(x; s; x0)un (x0)
�

end for
n  n + 1

end while
Choose anyx 2 W and let g�  un (x) � un � 1(x)
for all x 2 W do

� � [x]  argmin
s2A (x)

�
Power(s) +

X

x02W

P(x; s; x0)un (x0)
�

end for
return � �

In Algorithm 5, the quantity un can be seen as the total energy up to iterationn. Moreover, the
spanof a vector z is the difference between its maximal value and its minimal value: span(z) =
maxi (zi ) � min i (zi ). A vector with a span equal to 0 has all its coordinates equal.

Algorithm 5 computes both the optimal average energy consumption per time unit (g� ) with a
precision " as well as an"-optimal speed to be selected in each state (� � [x]).

The time complexity to compute the optimal policy depends exponentially on the precision 1
" . The

numerical experiments show that convergence is reasonably fast (see § 4.4).

Runtime Process: Table Look-Up (TLU VI )

As for (TLU DP ), at each integer time t 2 N, the processor computes its current statext and
retrieves its optimal speeds := � � [x] by looking-up in the table � � that was pre-computed by (VI) .
This algorithm is identical to Algorithm 4, except for the the size of the table, which is Q(�) .

4.3.3 Feasibility Issues

Let us recall that, according to De�nition 2.2, a policy is feasibleif using the maximal speed smax

all the time, no job misses its deadline.

Notice that this is a condition on the jobs, unrelated to the speed policy of the processor.

The proof of the feasibility of (DP) and (VI) when the speed decision times are integer numbers has
been done in Section 8.8 of Chapter 8, a speci�c chapter entirely devoted to feasibility analysis.

As a �nal remark, not all online policies will execute all jobs in a feasible set without missing
deadlines when using speeds smaller thansmax . For example, optimal available (OA) , presented
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in § 4.3.5, requires additional constraints on a schedulable set of jobs to guarantee feasibility (see
Section 8.5 in Chapter 8).

4.3.4 Bounded Job Sizes

As in § 4.2.4, let us assume that the amount of work that can arrive at any timet is bounded by C.
In this case, one can assess more explicitly the feasibility condition of a set of jobs.

The necessary and suf�cient feasibility condition of a set of jobs is:

smax � C (4.16)

Indeed, if smax < C , then no speed policy can guarantee schedulability: a single job of sizeC and
relative deadline 1 cannot be executed before its deadline. The case wheresmax = C is borderline
because there exists a unique speed policy guaranteeing that no job will miss its deadline: at any
time t, chooses(t) = at (�) � C, where at (:) is the work quantity arrived at time t (see Def. 4.3).

If smax > C , then the previous policy never misses its deadline, hence using the discussion in the
previous section, the optimal policy � �

t will also schedule all jobs before their deadline. This yields
the following property.

Proposition 4.3. Starting from an empty system, if the amount of work arriving at any time step is
bounded byC, then schedulability with(DP) or (VI) is guaranteed if and only ifsmax � C.

4.3.5 Properties of the Optimal Policy

In this section, we show several structural properties of the optimal policy � � , which are true for
both the �nite and in�nite horizons.

Comparison with Optimal Available (OA)

Optimal Available (OA) is an online speed policy introduced in [YDS95], which chooses the
speeds(OA) (xt ) at time t and in state xt to be the minimal speed in order to execute the current
remaining work at time t, should no further jobs arrive in the system. More precisely, at time t and
in state xt , the (OA) policy uses the speed

s(OA) (xt ) = max
u

wt (u)
u

(4.17)

where wt (:) is the remaining work function computed by Eq. (4.4).

We �rst show that, under any state x 2 X , the optimal speed� � (x) is always higher than s(OA) (x).
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Proposition 4.4. Both in the �nite or in�nite case, the optimal speed policy� � satis�es

� � (x) � s(OA) (x) (4.18)

for all state x 2 X , if the power consumptionj is a convex function of the speed.

Proof. The proof is based on the observation that(OA) uses the optimal speed assuming that no
new job will come in the future. Should some job arrive later, then the optimal speed will have
to increase. We �rst prove the result when the set of speedsS is the whole real interval [0; smax ]
(continuous speeds).

Two cases must be considered. Ifs(OA) (xt ) = max u
w t (u )

u is reached for u = 1 (i.e., s(OA) (xt ) =
wt (1)), then � � (xt ) � s(OA) (xt ) by de�nition because the set of admissible speedsA(xt ) only
contains speeds higher thanwt (1) (see Eq. (4.17)).

If the maximum is reached for u > 1, then A(xt ) may enable the use of speeds belowwt (1).

Between time t and t + u, some new jobs may arrive. Therefore, the optimal policy should satisfy
P u� 1

i =0 � � (xt + i ) � wt (u).

The convexity of the power function j implies4 that all the speeds in the optimal sequence
� � (xt ); : : : ; � � (xt + u � 1) must all be above the average valuewt (u)=u = s(OA) (xt ). In particular, for
the �rst term, � � (xt ) � s(OA) (xt ).

Now, if the set of speeds is �nite, then the optimal value of � � (xt ) must be one of the two available
speeds inS surrounding � (OA) (xt ). Let s1 and s2 in S be these two speeds,i.e., s1 < � (OA) (xt ) � s2,
and assume again that the max in Eq.(4.17) is not reached for t = 1 . If the smallest speeds1 is
chosen as the optimal speed, this implies that further choices for� � (xt + i ) will have to be greater
or equal to s2, to compensate for the work surplus resulting from choosing a speed below� � (xt ).
This implies that it is never sub-optimal to chooses2 in the �rst place (by convexity of the Power

function).

This trajectory based argument is true almost surely, so that the inequality� � (xt ) � s(OA) (xt ) will
also hold for the expectedenergy over both a �nite or in�nite time horizon.

Monotonicity Properties

Let us consider two sets of jobsT1 and T2 for which we want to apply our speed scaling procedure.
We wonder which of the two sets uses more energy than the other when optimal speed scaling is
used for both.

Of course, since jobs have random features, we cannot compare them directly, but instead we can
compare their distributions. We assume in the following that the sizes and deadlines of the jobs
in T1 (resp. T2) follow a distribution � 1 (resp. � 2) independent of the current state x.

4Actually, we use the fact that the sum
P u � 1

i =0
j (s) is Schur-convex whenj is convex (see [MO79]).
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De�nition 4.4. Let us de�ne a stochastic order (denoted� s) between the two sets of jobsT1 and T2

as follows.T2 � s T1 if the respective distributions� 1 and � 2 are comparable. Formally, for any job
(� 1; c1; d1) with distribution � 1 and any job(� 2; c2; d2) with distribution � 2, we must have:

8 
; �; P(c2 � 
; d 2 � � ) � P(c1 � 
; d 1 � � )

8 t 2 N; P(� 1 = t) = P(� 2 = t): (4.19)

Moreover, by denoting(i 1
1; : : : ; i 1

� ) the work quantity that arrives at time t for (MP) 1, and (i 2
1; : : : ; i 2

� )
the work quantity that arrives at time t for (MP) 2, we have:

8t; i 1
1; : : : i 1

� ; i 2
1; : : : i 2

� ;

P(t; w t +1 � i 1
1; : : : ; wt +� � i �

� ) � P(t; w t +1 � i 2
1; : : : ; wt +� � i 2

� )

Proposition 4.5. If T2 � s T1, then:

1. over a �nite time horizon T, the total energy consumption satis�esE (2) � E (1) (computed with
Eq. (4.12));

2. in the in�nite time horizon case, the average energy consumption per time unit satis�es
g(2) � g(1) (computed with Eq. (4.15)).

Proof.
Case 1 (�nite horizon): The de�nition of T2 � s T1 implies that we can couple the set of jobs
T1 with the set of jobs T2, such that at each time t � T, J (1)

t = ( � 1
t ; c1

t ; d1
t ) and J (2)

t = ( � 2
t ; c2

t ; d2
t )

with t = � 1
t = � 2

t , c2
t � c1

t and d2
t � d1

t (see [MS02]). It follows that the optimal sequence of
speeds selected forT1 is admissible for T2, hence the optimal sequence forT2 should have a better
performance. Since this is true for any set of jobs generated using� 1, it is also true in expectation,
henceE (2) � E (1) .

Case 2 (in�nite horizon): We just use the fact that the optimal sequence forT2 is better than the
optimal sequence forT1 over any �nite horizon T. Letting T go to in�nity shows that the average
energy cost per time unit will also be better for T2.

4.4 Numerical Experiments

4.4.1 Application Scenarios

Our approach is usable in several applicative contexts.

The �rst one concerns real-time systems whose tasks aresporadic, with no a priori structure on the
job release times, sizes, and deadlines. In such a case, a long observation of the job features can
be used to estimate the statistical properties of the jobs: distribution of the inter-release times,
distribution of the job sizes, and deadlines.
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Another case where our approach is ef�cient is for real-time systems consisting of severalperiodic
tasks, each one with some randomly missing jobs. The uncertainty on the missing jobs may be due,
for example, to faulty sensors and/or electromagnetic interference causing transmission losses in
embedded systems.

A third situation is the case where jobs come from a high number ofperiodic tasks and each of
them has an unknown jitter. If we suppose that we have a probabilistic knowledge of the jitter
values, then we can use our model to improve the energy consumption by determining more
quickly all the jitters of each task.

The last example is the case where jobs are produced by event-triggered sensors: This case is also a
superimposition of sporadictasks, where the job probabilities represents the occurrence probability
of events.

These examples are explored in this experimental section where our solution is compared with
other online solutions. Our numerical simulations report a 5% improvement over (OA) in the
sporadic tasks case, and30%to 50%improvement in the periodic tasks case.

The numerical experiments are divided in two cases: In § 4.4.3 and § 4.4.3, we consider a real-time
system with a single periodic task of period 1 with jobs that have randomness on their sizes5.

The second set of experiments deals with another type of real-time systems made of several
periodic tasks. Each task is characterized by its offset, period, size, and deadline. There is a
randomness on the job size, that is due to sensor perturbation.

All the experiments reported below are based on these two scenarios.

4.4.2 Implementation Issues

The state spaceX has a rather complex structure and is very large. Therefore, the data structure
used in the implementations of Algorithms 3 and 5 must be very ef�cient to traverse the state
space as well as to address each particular state when state changes occur. This is done by using
a hashing table to retrieve states according to a multi-dimensionalkey that represents the state,
that is, the vector [w(1); w(2) � w(1); : : : ; w(�) �

P � � 1
k=1 w(k)], and a recursive procedure based

on Eq. (4.8) to traverse the state space.

The implementation of Algorithms 3 and 5 has been done inR to take advantage of the possibility
to manipulate linear algebraic operation easily, and in C when the state space was too large to be
ef�ciently handled in R.

5An estimation of the distribution of their size can be obtained through the measurement of many traces of the real-time
system.
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4.4.3 Experimental Set-up, Finite Case

Our experiments are done in two steps:

• Firstly, we compute the optimal speeds for each possible statex 2 X . For this, we use
Algorithm 3 (DP) or 5 (VI) , and we store in the � � table the optimal speed for each possible
state of the system.

• Secondly, to compare different speed policies, we simulate a sequence of jobs (produced by
our real-time tasks, see § 4.4.1) over which we use our(TLU DP ) solution or other solutions
(e.g., of�ine or (OA) ) and we compute the corresponding energy consumption.

In a nutshell, the experiments show that our MDP solution performs very well in practice, almost
as well as the optimal of�ine solution (see § 4.4.3). Regarding the comparison with (OA) , in most
of our experiments, (TLU DP ) outperforms (OA) by 5% on average in the sporadic case when job
inter-arrival times are i.i.d. 6 (see § 4.4.3). In the periodic case, where jobs are more predictable,
the gap with (OA) grows to about 50%(see § 4.4.3).

Comparison with the O�ine Solution

To evaluate our online algorithm, we compare it with the of�ine solution computed on a simulated
set of jobs, characteristics of which are described in Example 4.1. We draw the aggregated work
done by the processor (the respective speeds are the slopes) in two cases:

• The optimal of�ine solution that only uses speeds in the �nite set S.

• The (TLU DP ) solution.

Example 4.1. One periodic taskT 1 of period1 with jobs of variable sizec1 = f 0; 2g with respective
probabilities (w.r.p.) f 0:4; 0:6g and deadlined1 = 5 . The processor can use 4 speedsS = f 0; 1; 2; 5g
and its energy consumption per time unit is given by the functionPower(s) = s3.

A job of size 0 at some time instant t is the same as no job at all at timet. In Example 4.1, the
variable sizec1 = f 0; 2g actually models a sporadictask: with probability 0:4 no job arrives, while
with probability 0:6 a job of sizec1 = 2 arrives.

In Example 4.1, the maximal speed is large enough so that schedulability is not an issue:5 =
smax > C = 2 (§4.3.3). Note that, in contrast with (TLU DP ), some jobs created by taskT 1 might
not be schedulable under(OA) .

The result over one typical simulation of run for Example 4.1 is displayed in Figure 4.3. As
expected,(TLU DP ) consumes more energy than the of�ine case. The differences in the chosen
speeds are the following: (i) speed 0 is used once by(TLU DP ) but is never used by the of�ine
solution; (ii) speed 2 is used 5 times by(TLU DP ) and only 4 times in the of�ine case. The energy
consumption gap between the two is23 + 0 3 � 13 � 13 = 6 J . The total energy consumption under
the of�ine solution is 46 J , while the total energy consumption under the (TLU DP ) solution is
52 J , the difference being 13%of the total energy consumption.

6i.i.d. = independent and identically distributed random variables.
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Comparison with (OA) , Sporadic Tasks

Recall that, under (OA) , the processor speed at timet in state xt is set to maxu
w t (u )

u . How-
ever, when the number of speeds is �nite, the speed computed by(OA) might not be available.
Hence, the speeds(OA) (xt ) chosen by(OA) must be set to the smallest speed inS greater than
maxu

w t (u )
u .

As a consequence, to compare(OA) and (DP) , the number of possible speeds must be large
enough to get a chance to see a difference between the two. We do so with Example 4.2, which
consists of two sporadic tasks, using the same modelling technique as in Example 4.1 by �xing
c2 = f 0; 3; 6g.

Example 4.2. One periodic taskT 2 of period1, variable job sizec2 = f 0; 3; 6g w.r.p. f 0:2; 0:6; 0:2g,
and �xed deadlined2 = 3 . The processor can use 5 processor speedsS = f 0; 1; 2; 3; 4g and its energy
consumption per time unit follows the functionPower(s) = s3.

We ran an exhaustive experiment consisting of10; 000simulations of sequences of jobs generated
by this periodic task, over which we computed the relative energy gain of (TLU DP ) over (OA) in
percentage. The gain percentage of(TLU DP ) was in the range [5:17; 5:39] with a 95%con�dence
interval and an average value of5:28%.

Even if this gain is not very high, one should keep in mind that it comes for free once the(DP)
solution has been computed. Indeed, using(TLU DP ) online takes a constant time to select the
speed (table look-up) while using (OA) online takes O(�) to compute the value maxu

w t (u )
u .

Figure 4.4 shows a comparison between(OA) and (TLU DP ). The total work executed by the
(TLU DP ) solution is always above the total work executed by(OA) , as stated in Proposition 4.4.
Moreover, the consumed energy is more important at the beginning with (TLU DP ) than with
(OA) , because we anticipate the work that will arrive in the future. The processor executes more
work so it consumes more energy with (TLU DP ) before time t = 11; but after this time, it's the
opposite, the energy consumed by(TLU DP ) is lower than the energy consumed by(OA) . Over
the whole period, (TLU DP ) outperforms (OA) : The total energy consumption for (OA) is 711J
(dashed brown curve) while that for (TLU DP ) is 639J (dashed black curve). As a result,(TLU DP )
outperforms (OA) by a margin of around 10%. Even if this gain is not very high, one should keep
in mind that, again, it comes for free once the (DP) solution has been computed of�ine.

Comparison with (OA) , Periodic Tasks

We now consider several examples consisting of two or more periodic tasks. The fact that the
probability matrix, which represents the state change, depends on the time is important in this
section. Indeed, at each time step, the probability of the job arrival depends on the time and in
particular on the modulo of the number of the considered task. For instance in Example 4.3 (see
below), we have a probability that depends of the time instant modulo 2: at even time steps (t = 0
mod 2), we have some probability p1 that the job J1 produced by taskT 1 arrives and the job J2

produced by taskT 2 arrives with a probability equal to zero. In contrast, at odd time steps (t = 1
mod 2), we have some probability p2 that the job J2 arrives and the job J1 arrive with a probability
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equal to zero. On the other examples (Examples 4.4 and 4.5), we can perform the same analysis
as above to show that the probability matrix depends on the time.

This Section displays three examples, Examples 4.3, 4.4, and 4.5, which consider different cases
where we have several periodic tasks that have not necessarily the same offset and the same
periodicity.

Example 4.3. Two periodic tasksT 1 and T 2. For taskT 1, the period is2, the offset is0, with jobs of
variable sizec1 = f 0; 2g w.r.p. f 0:2; 0:8g, and the deadline isd1 = 2 . For taskT 2, the period is2, the
offset is0, with jobs of variable sizec1 = f 0; 4g w.r.p. f 0:25; 0:75g, and the deadline isd1 = 1 .

The total energy consumption over the 20 units of time is of 513J for (TLU DP ), and 825J for (OA) ,
so more than 60% bigger. Here(TLU DP ) has a clear advantage because the job characteristics are
highly predictable.

Example 4.4. Four periodic tasksT 1; T 2; T 3; T 4 with the same period equal to4 and respective
offsets0; 1; 2; 3. For each taskT i , the job size is variable and deadline is �xed, withc1 = f 0; 2g w.r.p.
f 0:2; 0:8g, and d1 = 2 ; c2 = f 0; 1g w.r.p. f 0:2; 0:8g, and d2 = 3 ; c3 = f 0; 4g w.r.p. f 0:2; 0:8g, and
d3 = 2 ; c4 = f 0; 2g w.r.p. f 0:2; 0:8g, and d4 = 1 .

With Example 4.4, the energy consumed by(TLU DP ) is on average30%lower than the energy
consumed by(OA) . We performed 10; 000 simulations over 40 time steps: the average gain is
29:04%with the following con�dence interval at 95%: [28:84; 29:24].

Example 4.5. Seven periodic tasksT 1 to T 7. Task T 4 has period4, offset 3, and variable job
sizec4 = f 0; 4g w.r.p. f 0:2; 0:8g, and d4 = 2 . All the other tasksT 1; : : : ; T 3 and T 5; : : : ; T 7 have
period8, respective offsets0; 1; 2; 4; 5; 6; 7 (8 being for the second job ofT 4), and respective parameters
c1 = f 0; 2g w.r.p. f 0:2; 0:8g, and d1 = 1 ; c2 = f 0; 1g w.r.p. f 0:2; 0:8g, and d2 = 2 ; c3 = f 0; 1g w.r.p.
f 0:2; 0:8g, and d3 = 3 ; c5 = f 0; 4g w.r.p. f 0:2; 0:8g, and d5 = 1 ; c6 = f 0; 2g w.r.p. f 0:2; 0:8g, and
d6 = 2 ; c7 = f 0; 4g w.r.p. f 0:2; 0:8g, and d7 = 3 .

With Example 4.5, the energy consumed by(TLU DP ) is on average47%lower than the energy
consumed by(OA) . We performed 10; 000simulations over 80 time steps, the average gain was
46:88%with the following con�dence interval at 95%: [46:71; 47:04].

The other simulation parameters for Examples 4.3 to 4.5 areT = 20, S = f 0; 1; 2; 3; 4; 5g and
Power(s) = s3.

Table 4.1 summarizes these results.

Table 4.1.: Comparisons between(OA) and (TLU DP ).

example gain over (OA) 95% con�dence interval

Ex. 4.3 (2 tasks) 56:44% [56:21; 56:68]

Ex. 4.4 (4 tasks) 29:04% [28:84; 29:24]

Ex. 4.5 (7 tasks) 46:88% [46:71; 47:04]
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In all these cases,(TLU DP ) outperforms (OA) by a greater margin than with sporadic tasks.
The reason is that the job sequence is more predictable, so the statistical knowledge over which
(TLU DP ) is based is more useful here than in the sporadic case.

4.4.4 Numerical Experiments, In�nite Case

In this section, we run algorithm (VI) (Algorithm 5) to compute the optimal speed to be used at
each time step over an in�nite horizon. We �x the stopping criterion in Algorithm 5 to " = 1 :0� 10� 5,
so our computation of the average energy consumption is precise by at least 5 digits. We ran the
program in the following two cases:

Example 4.6. One periodic task of period1 with jobs of variable sizec6 = f 0; 2g w.r.p. f 1 � p; pg,
and �xed deadlined6 = 3 , with p varying from 0 to 1.

Example 4.7. One periodic task of period1 with jobs of variable sizec7 = f 0; 2g w.r.p. f 1 � p; pg,
and �xed deadlined7 = 5 , with p varying from 0 to 1.

In both examples, the available processor speeds are in the setS = f 0; 1; 2g and the energy
consumption function is Power(s) = s2. The only difference between Examples 4.6 and 4.7 are the
deadlines.

The results of our computations are displayed in Figure 4.5. The three curves depict respectively
the average energy consumption per time unit as a function of the probability p (which varies
from 0 to 1) for Examples 4.6 and 4.7, together with the theoretical lower bound.
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Figure 4.5.: Average energy consumption per time unit for (TLU VI ): theoretical lower bound (red curve),
deadlines equal to3 (black curve, Example 4.6), and deadline equal to5 (blue curve, Exam-
ple 4.7).

The different curves in Figure 4.5 have the following meaning:
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• The black and blue curves correspond to the(VI) solution with three processor speeds
S = f 0; 1; 2g. These curves displayg� (computed by Algorithm 5) as a function of p, the
probability that a job of size c = 2 and deadline d = 3 (black curve) or deadline d = 5 (blue
curve) arrives in the next instant.

• The red curve is the theoretical lower bound on g� , oblivious of the jobs distribution and
deadlines, only based on the average amount of work arriving at each time slot.

As expected according to Proposition 4.5, the higher the arrival rate, the higher the average energy
consumption: both curves are increasing.

Proposition 4.5 also implies that larger deadlines improve the energy consumption. This is in
accordance with the fact that the black curve (deadline 5) is below the blue curve (deadline 3).

What is more surprising here is how well our solution behaves when the deadline is5. Its
performance is almost indistinguishable from the theoretical lower bound (valid for all deadlines)
over a large range of the ratep. More precisely, the gap between our solution with deadline equal
to 5 and the theoretical lower bound is less than 10� 3 for p 2 [0; 0:20] [ [0:80; 1].

Lower Bound

The theoretical lower bound has been obtained by solving the optimization problem without taking
into account the distribution of the jobs features nor the constraint on the deadlines. Without
constraints, and since the power is a convex function of the speed (herePower(s) = s2), the best
choice is to keep the speed constant. The ideal constant speed needed to execute the jobs over
a �nite interval [0; T] is A(T)=T, where A(T) is the workload arrived before T. When T goes to
in�nity, the quantity A(T)=T converges to2p by the strong law of large numbers. Therefore, the
optimal constant speed iss1 = 2p.

Now, if we consider the fact that only 3 processor speeds, namelyf 0; 1; 2g, are available, then the
ideal constant speeds1 = 2p cannot be used. In this case, the computation of the lower bound is
based on the following construction.

On the one hand, if 0 � p � 1
2 , then the ideal constant processor speed,s1 = 2p, belongs to the

interval [0; 1]. In that case, only speedsf 0; 1g will be used. To obtain an average speed equal to2p,
the processor must use speed1 during a fraction 2p of the time and the speed0 the rest of the
time. The corresponding average energy per time unit has therefore the following form:

g1 = 2p � 12 + (1 � 2p) � 02 = 2p (4.20)

On the other hand, if p � 1
2 , then the ideal constant processor speed,s1 = 2p, belongs to the

interval [1; 2]. In that case, the processor only uses speeds1 or 2. To get an average speed of2p,
the processor must use the speed2 during a fraction 2p � 1 of the time and the speed1 the rest of
the time. The corresponding average energy per time unit in this case is:

g1 = (2 p � 1) � 22 + (2 � 2p) � 12 = 6p � 2 (4.21)
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By combining Eqs. (4.20) and (4.21), we obtain the lower bound on g:

g1 (p) =

(
2p if p � 1=2
6p � 2 if p � 1=2

(4.22)

This is the red curve in Figure 4.5.

Comparison of (TLU DP ) and (TLU VI )

We performed a comparison between the two algorithms(TLU DP ) and (TLU VI ) over different
time horizons T in order to study the impact of this parameter. The gain in energy of (TLU DP ) vs
(TLU VI ), represented in blue in Figure 4.6, is computed as follows:

Energy(VI) � Energy(DP)

Energy(DP)
(4.23)

This fraction computes the relative difference between the in�nite horizon case algorithm (Algo-
rithm 5) and the the �nite horizon case algorithm (Algorithm 3). Besides, the cost of (OA) versus
(TLU DP ), also represented in Figure 4.6 as a dashed red curve, is de�ned as follows:

Energy(OA) � Energy(DP)

Energy(DP)
(4.24)

Computations were done on Example2 with 10; 000 simulations. They are summarized in Ta-
ble 4.2.

Table 4.2.: In�uence of the time horizon T on (TLU DP ) in comparison with (TLU VI ).

T 10 15 20 25

(VI) vs (DP) 4.3% 1.7% 0.95% 0.62%

(OA) vs (DP) 4.8% 5.3% 5.3% 5.2%

T 30 40 100 150

(VI) vs (DP) 0.45% 0.29% 0.099% 0.064%

(OA) vs (DP) 5.0% 4.9% 4.6% 4.5%

T 200 250 1000

(VI) vs (DP) 0.046% 0.031% 6.19:10� 5%

(OA) vs (DP) 4.3% 4.3% 4.2%

One can notice in Table 4.2 as well as on the blue curve in Figure 4.6 that, as soon as the time
horizon is greater than 20 time units, the energy difference between (TLU DP ) and (TLU VI ) is
smaller than 1%, and is negligible in comparison with the energy difference between (TLU DP )
and (OA) . We conclude that using(VI) instead of (DP) is a good approximation even over rather
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short time horizons, because the results are almost as good, and computing the optimal processor
speeds is faster for(VI) than for (DP) . This result is rather intuitive because the only important
difference between (DP) and (VI) concerns the last steps. Indeed, during these last steps,(VI)
behaves as if jobs will continue to arrive in the future (after T � � ), whereas (DP) considers that
there is no job arrival after T � � . (DP) can therefore adapt the chosen speeds in the last steps,
whereas(VI) cannot. Thanks to this, the energy consumption of(DP) during the last steps is, on
average, better than that of (VI) .

Finally, the red curve shows that the energy difference between(OA) and (DP) is almost constant,
whatever the value of the horizon time T. The horizon time has a limited impact on the energy
difference: As for (VI) , (OA) does not take into account the �nite time horizon (except on the last
� steps). This is why the red curve is also decreasing with the time horizon, but very slightly. Data
in Table 4.6 con�rm the results obtained in Example 4.2 before, because whatever the considered
time horizon, the gain of (DP) in comparison with (OA) ranges between4% and 5: 5%.

T

Energy ratio (%)

� Energy ratio of (OA) vs (DP) (%)

� Energy ratio of (VI) vs (DP) (%)
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Figure 4.6.: In�uence of the time horizon T on the energy difference between(OA) and (DP) , and between
(VI) and (DP) , with Example 4.2.

4.5 Generalization of the Model

In the next three parts, we develop several extensions to make our model more realistic. To achieve
this, we assume that the processor can change speeds at any time. This assumption is not very
strong because there is no technical reason to change processor speed only at task arrival. These
generalizations are the following:

1. Convexi�cation of the power consumption function: Any non-convex power function can be
advantageously replaced by its convex hull.
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2. Taking into account the time penalty required to change the processor speed: This time
penalty can be replaced by an additional cost on the energy consumption.

3. Taking into account the context switching time between one task to another: This switching
time can also be included in the cost function.

4.5.1 Convexi�cation of the Power Consumption Function

Our general approach does not make any assumption on the power functionPower(:). Our algo-
rithms (DP) and (VI) will compute the optimal speed selection for any function Power(:). However
structural properties (including the comparison with (OA) and the monotonicity) require the
convexity assumption. It is therefore desirable to convexify the power function. This can be done
as presented in Section 3.5.2 of Chapter 3. We replacePower(:) by its convex hull [Power(:), and
solve the speed selection problem with [Power(:) instead of Power(:). It also provides the optimal
solution with Power(:), by using speed replacements as described in Section 3.4.3.

4.5.2 Taking into Account the Cost of Speed Changes

In our initial model, we have assumed that the time needed by the processor to change speeds
is null. However, as explained and presented in Chapter 3, in all synchronous CMOS circuits,
changing speeds does consume time and energy. One advantage of our formulation is that it can
accommodate to arbitrary energy cost to switch from speeds to s0. As in Chapter 3, in the sequel,
we denote this energy cost byhe(s; s0).

We recall that the time needed by the processor to change speeds is noted� . For the sake of
simplicity we assume that the delay� is the same for each pair of frequencies, but our formalization
can accommodate different values of� , as computed in [BB00]. During this time, the circuit logical
functions are altered so no computation can take place.

With time delays for speed changes, the executed work by the processor hastwo slope changes,
at times � 1 and � 2, with � 2 � � 1 = � (see the red solid line in Figure 3.6). The problem is that,
since in general � 62N, we cannot have both � 1 2 N and � 2 2 N. As a consequence, one of the
remaining work functions w� 1 or w� 2 of the state statesx� 1 or x� 2 will not be integer valued. This
is not allowed by our MDP approach.

We propose an original solution that replaces the actual behavior of the processor (represented by
the red solid line in Figure 3.6) by a simulatedbehavior, equivalent in terms of the amount of work
performed (represented by the blue dashed line in Figure 3.6). This simulated behavior exhibits a
singlespeed change and is such that the total amount of work done by the processor is identical
in both cases at all integer times (i.e., at t � 1, t, and t + 1 in Figure 3.6). The advantage is that,
since there is only one state change, it can be chosen to occur at an integer time. In other words,
we choose� 1 such that t 2 N.
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When s1 < s 2, the speed change must be anticipated and occurs at� 1 < t (left �gure). When
s1 > s 2, the speed change has to be delayed and occurs at� 1 > t (right �gure). The exact
computation of � 1 is similar in both cases and is straightforward.

One issue remains, due to the fact that the consumed energy will not be identical with the real
behavior and the simulated behavior; it will actually be higher for the real behavior for convexity
reason. This additional energy cost of the real processor behavior must therefore be added to the
energy cost of the equivalent simulated behavior.

Finally, in order to trigger the speed change at time � 1, the processor needs to be “clairvoyant”,i.e.,
it needs to know in advance (before � 1) the characteristics of the job arriving at time t. This will
allow the processor to compute the new speeds2 and the length " of the required interval to make
sure that the work done by the processor att in the two cases (real and simulated) is identical.

In Chapter 3, the two additional costs (cases0 < s and s0 > s ) link to the time delay, h� (s0; s) and
h� (s0; s), are computed.

This additional energy due to speed changes will be taken in consideration in our model in the
cost function, by modifying the state spaceX and adding the current speed to the state att � 1.
Therefore the new state at time t becomes(xt ; st � 1).

Taking into account both the energy cost and the time cost, the new main step of the(DP)
Algorithm 3 becomes:

E �
t � 1(x; s)  min

s02A (x)

�
Power(s) + h� (s; s0) + he(s; s0)

+
X

x02W

Pt (x; s0; x0)E �
t (x0; s0)

�
(4.25)

with h� (s; s0) = 0 when s = s0, and otherwise given by Eq.(3.30) if s0 < s and Eq. (3.29) if s < s 0.
The rest of the analysis is unchanged.

4.5.3 Taking into Account the Cost of Context Switches

In the core of this chapter, we have neglected the context switch delay in EDF incurred by a
preemption. This cost is orders of magnitude less than the cost of executing a job [BBA10; Bra11;
BG16]. Nevertheless, in the following, we present a solution where we take into account this
context switch delay.

Without Processor Sharing

When the processor can only execute one job at a time, one can consider that switching from the
execution of one job to another one takes some time delay, denoted
 . This is essentially the time
needed to upload or download the content of the execution stack. During this context switch, no
useful work is being executed. This time delay is assumed to be identical for the beginning of a
new job or the resuming of a job after preemption.
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Figure 4.7.: Impact of a context switch on the execution time.

Figure 4.7 illustrates an example made of2 jobs with the following characteristics: J 1(r 1 = 0 ; c1 =
3; d1 = 7 ; 5) and J 2(r 2 = 3 ; c2 = 2 ; d2 = 3) . The switching time 
 is marked with the barred
area.
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Figure 4.8.: Compensation of the impact of the context switches on the executed work by using a higher
speed. The released jobs areJ i = ( r i ; ci ; di ), for 1 � i � 5, with r 5 + d5 = � , r 4 + d4 =
r 3 + d3 = r 2 + d2 = � � 1, and r 1 + d1 = � � 2.

Figure 4.8 illustrates the fact that, during one time step, several context switches can occur. In this
example, during the time interval [t; t + 1) , the processor completes two jobs,J 1 and J 2, and starts
the execution of J 3 (see the red curve). This involves two context switches, both of which occur
during one time unit. This leads to a total delay of 2
 . As in Section 4.5.2, we transform this time
delay into an energy cost: In one time unit, the evolution of the executed work under speed s1,
with K context switches (see the green curve), is the same as the evolution of the executed work
under speeds = s1(1 � K
 ), with no switching delay (red curve).

The state space of the system must be modi�ed to be able to computeK , the number of context
switches in each time interval. We must keep in memory the sizes of the jobs instead of only
the total remaining work. Indeed, with the current state space X , we do not know the number
of actual different jobs composing a given amount w(i ); i 2 f 0; :::; � g, so we cannot know the
number of context switches. We denote byX the new state space and byxt 2 X the new current
state at time t:

xt = ( wt ; ` t ) (4.26)
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where wt has the following form:

wt =
�
(� 1

1; :::; � k1
1 ); :::; (� 1

i ; :::; � k i
i )

| {z }
remaining work quantity of jobs

with absolute deadline t + i

; :::; (� 1
� ; :::; � k �

� )
�

(4.27)

where ki is the number of jobs whose relative deadline isi time units away (hence their absolute
deadline is t + i ), and � j

i is the work quantity of the j -st such such job.

For the sake of simplicity, we will consider that there is only one new job at t (instead of a set
of jobs). The general case with multiple arrival will be identical, up to an increase of the state
space.

To simplify we consider a single new arrival (� n ; cn ; dn ) at time t = r n (recall that r n is computed
from the � k values with Eq. (2.1) ). The case with several arrivals is a direct adaptation of the
following formula.

If the processor speed at timet � 1 is st � 1, then at time t the next state xt +1 becomes(wt +1 ; ` t +1 ),
where wt +1 is:

wt +1 =
��

(� 1
2 � f (1; 1))+ ; :::; (� k1

2 � f (1; k � 1))+

�
; :::;

�
(� 1

dn
� f (dn ; 1))+ ; :::; (� kd n

dn
� f (dn ; kdn ))+ ; cn

�
; :::;

�
(� 1

� � f (� ; 1))+ ; :::; (� k �
� � f (� ; k� ))+

�
;

�
(� 1

� � f (� ; 1))+ ; :::; (� k �
� � f (� ; k� ))+

��
(4.28)

where

f (d; k) =

0

@st � 1 �
d� 1X

i =1

k iX

j =1

� j
i �

kX

j =1

� j
d

1

A

+

The idea of the state change is to set all the� j
i values to 0 when s �

P
i;j � j

i . One job is executed
partially and the others remain unchanged.

We further assume that the energy consumption during a context switch is the same as when some
work is executed. The new main step of the Algorithm 3 for (DP) now has the following form:

E �
t � 1(x)  min

s2A (x)

�
Power

�
s

1 � K s 


�
+

X

x02 X

Pt (x; s; x0)E �
t (x0)

�
(4.29)

Note that the speed s
1� K s 
 may not be directly available, but using the remark made in Sec-

tion 4.5.1, one can easily simulate this speed with the neighboring available speeds.

Let K s be the number of job executed if we use the speeds. We have:

K s =
� � 1X

i =1

ki + � (4.30)
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where � = argmin �;k �

�
s <

P �;k �
i;j � j

i

�
. The rest of the analysis is unchanged.

With Processor Sharing

If processor sharing is enabled, which is often the case nowadays, the switching time is replaced
by the additional delay per time unit caused by the permanent context switch. This additional
delay is also denoted
 in this section.

In this case, the state space can be simpli�ed. One only needs to keep in memory the number of
jobs that are executed in a speci�c wt (i ) from state xt , instead of all their sizes. Therefore, the
state becomes

x0
t = [ wt (1); : : : ; wt (�) ; kt (1); : : : ; kt (�) ; ` t ]

where kt (i ) is the number of jobs with relative deadlines i . We have also to modify the change
state function accordingly. Again we consider a single arrival(r n ; cn ; dn ) at time t + 1 = r n (the
general case is a direct extension). If the processor speed at timet is st , then at time t + 1 the next
state x0

t +1 = ( wt +1 ; kt +1 ; ` t +1 ) is such that:

wt +1 (:) = T
�
(wt (:) � st )+ �

+ cn Hdn

as before,` t +1 also follows the same evolution as in the original case, and for alli = 1 : : : � ,

kt +1 (i ) =

(
1f i = dn g if st > w t (i + 1)
kt (i + 1) + 1f i = dn g otherwise,

In the processor sharing case, the additional time due to switching is
 per time unit. The Bellman
equation is the same as Eq. (4.29) but replacingK s by:

K 0
s =

X

i

1f k i > 1g

s
(s � w(i � 1))+ + 1f k1 > 1g

w(1)
s

(4.31)

4.6 Conclusion

In this chapter, we showed how to select online speeds to execute real-time jobs while minimizing
the energy consumption by taking into account statistic information on job features. This informa-
tion may be collected by using past experiments or simulations, as well as deductions from the
structure of job sources. Our solution provides performances that are close to the optimal of�ine
solutions on average, and outperforms classical online solutions in cases where the job features
have distributions with large variances.

While the goal of this study is to propose a better processor speed policy, several points are still
open and will be the topic of future investigations.

The �rst one concerns the scheduling model: In this chapter jobs are executed under theEarliest
Deadline Firstpolicy, but this is not always possible in practice. What would be the consequence of
using another scheduling policy?
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The second one concerns the time and space complexity of our algorithms. These complexities
are exponential in the deadlines of the jobs. Although our algorithms (DP) and (VI) are used
of�ine and can be run on powerful computers, our approach remains limited to a small range
of parameters. One potential solution is to simplify the state space and to aim for a sub-optimal
solution (but with proven guarantees), using approximate dynamic programming.

Finally, the statistical information gathered on the job features is crucial. Most of the time this
information is not available when jobs arrive: For example the exact job execution time (c) is only
known after the job execution, and not at release time. That's why, in the next chapter, Chapter 5,
we study a similar problem where the deadline of each job (d) is also revealed to the processor
when it is released, however theactual execution timeof each job is not known at release time but
only when it �nishes executing. Nevertheless we consider, in the next chapter, that we have some
knowledge at release time on the execution time distribution and so on the worst case execution
time (denoted Wcet). We take advantage of this information to improve the energy consumption in
a more general case than in this chapter.
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4.7 Appendix: Speed Decision and Changing Instants

under the Optimal Policy

This appendix presents an analysis of the impact of the speed change discretization on the
optimality of the solution. It is proved in Section 4.7.1 and 4.7.2 that without loss of optimality
one can consider only integer speed decision and changing instants.

4.7.1 Speed Decision Instants

The energy consumed by the optimal policy when the speed decision instants can occur at each
instant is:

E
Z T

0
Power(s� (t))dt = E

T � 1X

t =0

Z t +1

t
Power(s� (t))dt

� E
T � 1X

t =0

Power

� Z t +1

t
s� (t)dt

�
(4.32)

= E
T � 1X

t =0

Power (smean (t)) (4.33)

= E
T � 1X

t =0

�P ower(s�
1(t)) + (1 � � )Power(s�

2(t)) (4.34)

where smean is the average speed used betweent and t + 1 . Equation (4.32) comes from Jensen
inequality for the convex function Power. s�

1(t); s�
2(t) in (4.34) are the neighboring speeds inS of

the average speedsmean (t).

Ineq. (4.33) implies that the policy � mean that chooses constant speedsmean (t) during each time
interval t to t + 1 , for all t 2 N, is better or equal in energy consumption than this one that can
change decision instants at any timet 2 R.

Furthermore, as deadlines and release times are integers, there is no random innovation between
t and t + 1 , and so no new constraints on the system.smean (t) is not necessarily available, that's
why the power consumption of this speed is �xed to Power(s�

1(t)) + (1 � � )Power(s�
2(t)) . With these

two remarks, the policy that uses speedss�
1 and s�

2 is feasible, and by Ineq. 4.32 consumes less
energy than the optimal policy s� . As policy that usess� is optimal, then Ineq. (4.32) is in reality
an equality.

Without loss of optimality, we can so consider that speed decision changes occur only at integer
instants. Even if all parameters are integers (except the speed changing instants), this does not
prevent the remaining work function of having some non integer values, and to have a bounded
state space for the MDP. To satis�es that conditions, we have to prove that we can reduce to the
case where speed changing instants are integers, and it is the subject of the next section.
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4.7.2 Speed Changing Instants

After analysing the speed decision instants and showing that they can be consider as integer
without loss of generality, now we will focus on the speed changing instants. It may seem natural
to consider as speed decision instants, that speed changing instants are integer, because all job
arrivals occur at integer times. However, this overlooks the fact that allowing the processor to
change its speed at any timet in R gives to the processor a new degree of freedom that could be
bene�cial in terms of energy consumption.

Here is a simple example illustrating this fact: If the processor can use speeds = 0 over the
sub-interval [t; t + 1=2] and speeds0 = 1 over the sub-interval [t + 1=2; t + 1] , then, in total over the
interval [t; t +1] , this can be seen as a processor using speeds" = 1 =2, with an energy consumption
Power(s)=2+ Power(s0)=2. This combination is not possible if the processor can only change its speed
at integer times and this new possibility may help to decrease the energy consumption. In this
appendix, we will show that this is not the case.

To do so, let us consider a processor using the �nite set of speedsS with respective powers
f Power(s); s 2 Sg that may change its speed at any time inR. Its minimal expected energy
consumption when starting in state x is denoted E � ;S;R(x).

A priori such a processor is more capable than a processor using the same �nite set of speedsS
that may only change its speed at times inN, whose minimal expected energy loss when starting
in state x is now denoted E � ;S;N(x) (in the chapter, this was simply denoted E � (x)). For all x,

E � ;S;R(x) � E � ;S;N(x):

We will show in the following that equality always holds when the set of speeds is consecutive.

Theorem 4.1. If the setS is made of consecutive speeds (i.e., S = f 0; 1; 2; : : : ; smax g), then there is
no energy gain for the processor to use non-integer speed changing instants: for allx, E � ;S;R(x) =
E � ;S;N(x).

Proof. The proof is done with a simpli�ed case where job arrivals have the same independent
distribution at each time step, so that we can considerw as the state instead of the more general
state x = ( `; w) used in the chapter. The proof is essentially the same, as explained at the end of
the proof. To keep notations simple, we also skip the indicesS; N in E � ;S;N in the proof up to the
last part of the proof.

Let us consider that the setS of processor speeds is consecutive and that the processor can change
its speed at timest 2 N as well as at timest + 1=2. We will show that this does not bring any
energy gain.
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The time horizon is T and the minimal energy at time t under state w can be decomposed into
two actions (taken at times t and t + 1=2):

E �
t + 1

2
(w) = min

v2A 2 (w )

 
Power(v)

2
+

X

a

Pt (a)E �
t +1

�
T2

�
w �

v
2

� +
+ a

� !

(4.35)

E �
t (w) = min

u2A 1 (w )

�
Power(u)

2
+ E �

t + 1
2

�
T2

�
w �

u
2

� +
��

(4.36)

where A 2(w) = f s 2 S : s � 2w(1)g, A 1(w) = S, Pt (a) = P(at (:) = a) and the operator T2(f )
only shifts the function f by 1=2: T2(f (x)) = f (x + 1=2).

This is a similar dynamic programming equation as used in Algorithm 3, where we take into
account the fact that there are no arrival at time t + 1=2, and a modi�ed admissibility condition
on the speeds: to meet all deadlines, the speed at timet + 1=2 must execute all the work with
deadline t + 1 , hence the speedu must be larger than 2w(1) while the speed chosen at timet does
not have any constraint: no job has a deadline at timet + 1=2. These two equations show that the
new state space should also include the step functions with step sizes inN=2.

By replacing the value of E �
t +1 =2 in the second equation, one getsE �

t as a function of E �
t +1 :

E �
t (w) = min

u2A 1 (w )

�
Power(u)

2

+ min
v2A 2 (w )

 
Power(v)

2

X

a

Pt (a)E �
t +1

 

T2

�
T2

�
w �

u
2

� +
�

v
2

� +

+ a

!!!

= min
u2A 1 (w ) ;v 2A 2 (w )

�
Power(u)

2
+

Power(v)
2

+
X

a

Pt (a)E �
t +1

 

T
�

w �
u + v

2

� +

+ a

!!

where we have used the distributivity of + over max to get the second line.

This says precisely what was asserted without proof at the beginning: changing speed at half times
is equivalent to choosing half speeds at integer times.

The �rst property that one can get from the last equation is the following: The speeds u; v achieving
the min are such that ju � vj � 1. Indeed, if ju � vj > 1, then one can chooseu0; v0 2 A 1(w); A 2(w)
such that ju0 � v0j � 1 and u + v = u0 + v0. By convexity of Power, Power(v)=2 + Power(u)=2 �
Power(v0)=2 + Power(u0)=2 so that the choiceu0; v0 is better than the choice u; v.

With no loss of generality, we will assume in the following that either u = v (in which case we are
back to an integer speed) orv = u + 1 .

A second property is that both optimal speedsu and u + 1 are admissible in statew: If u + 1 2
A 2(T2(w � u=2)+ ), then u + 1 + u � 2w(1). This implies u � w(1) � 1=2, so that u � w(1) because
both u and w(1) are integers (and of courseu + 1 � w(1)).

We are now ready for the proof, that holds by backward induction on t. Let us prove the two
following properties simultaneously:

74 Chapter 4 Online Minimization: Statistical Knowledge with Clairvoyant Jobs



(P1) For all w with integer steps sizes,E �
t (w) is obtained by using integer speeds only.

(P2) For all w; a and all u 2 A (w), then using v = u + 1 ,

E �
t

 �
w �

u + v
2

� +

+ a

!

=
1
2

E �
t

�
(w � u)+ + a

�
+

1
2

E �
t

�
(w � v)+ + a

�
:

Both properties are obviously true at time T where there is nothing to prove. Now, let us prove
(P1) at time t:
Under state w with integer steps, let us consider the randomized policy that chooses at timet,
speedu 2 A (w) with probability 1=2 and speedu + 1 with probability 1=2 and is optimal from
time t + 1 on.

The energy of this policy is

E r
t (w) =

1
2

 

Power(u) +
X

a

Pt (a)E �
t +1

�
T(w � u)+ + a

�
!

+
1
2

 

Power(u + 1) +
X

a
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�
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=
Power(u)

2
+

Power(u + 1)
2

+
X

a

Pt (a)E �
t +1

 

T
�

w �
u + u + 1

2

� +

+ a

!

where (P2) at time t + 1 is used for states (T(w � u)+ + a; T(w � u � 1)+ + a; T(w � u+ u+1
2 )+ + a)

to get the second inequality.

This says that this randomized policy has the same energy cost as the policy that uses speed
(u + u + 1) =2 at time t. The theory of Markov decision processes says that there exists an optimal
policy that does not randomize. Here, this implies that there exists an optimal policy at time t that
uses an integer speed. This is exactly (P1).

As for (P2), we �rst notice that the arrival of jobs a can be included in the statew for simplicity.
Therefore, let us consider two states with integer step sizes,w2 := ( w � u +1) + and w1 := ( w � u)+

at time t. Using (P1), the optimal speed used in both states are integers. Let us denote by� 1 the
optimal speed used in statew1.

Sincew2 � w1 point-wise, then by monotony of the total energy with respect to the state, by using
the same reasoning as in Proposition 4.5 and an induction ont, the optimal speed � 2 in state w2

is higher than � 1: � 2 � � 1. We further claim that � 2 � � 1 + 1 . We show this by contradiction:
assume that� 2 = � 1 + k, with k � 2. Convexity of the power implies

Power(� 1 + k) � Power(� 1 + 1) � Power(� 1 + k � 1) � Power(� 1):

Since � 2 = � 1 + k is optimal for w2, we get

Power(� 1 + k) +
X

a

Pt (a)E �
t +1

�
T (w � u + 1 � � 1 � k)+ + a

�

< P ower(� 1 + 1) +
X

a

Pt (a)E �
t +1

�
T (w � u + 1 � � 1 � 1)+ + a

�
:
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Together with the previous inequality this implies

Power(� 1 + k � 1) +
X

a

Pt (a)E �
t +1

�
T (w � u � � 1 � k + 1) + + a

�
(4.37)

< P ower(� 1) +
X

a

Pt (a)E �
t +1

�
T (w � u � � 1)+ + a

�
: (4.38)

The �rst term is the energy cost of using speed� 1 + k � 1 in state w1. The second term is the energy
cost of using speed� 1 in state w1. This inequality contradicts the optimality of � 1. Therefore,
� 2 � � 1 + 1 .

Now, let us compute the optimal speed� 3 in the “middle” state w3 = ( w � u+ u� 1
2 )+ . By mono-

tonicity, � 1 � � 3 � � 2. Therefore, there only exists two possibilities:

• If � 1 = � 2 then � 3 = � 1 and
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where the third equality comes from (P2) at time t + 1 .

• If � 2 = � 1 + 1 then by using the same argument to prove that� 1 � � 2 � � 1 + 1 , then the
optimal speed in statew3 is � 3 = ( � 1 + � 2)=2. In this case,

E �
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2
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This shows that changing speeds at half times does not help. A straightforward generalization says
that changing speeds at timest 2 N=2i will not help either for any i . By continuity of the total
energy with respect to the speed function, this shows that changing speeds at timest 2 R will not
help either: E � ;S;R(w) = E � ;S;N(w).
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Finally, as announced at the beginning of the proof, one can take into account the more detailed
state x = ( `; w) instead of w. The proof is the same up to one harmless modi�cation: Replace
everywhere w by (`; w) and X

a

Pt (a)E �
t +1

�
T(w � v)+ + a

�

by
Pt (0)E �

t +1

�
` + 1 ; T(w � v)+ �

+
X

a6=0

Pt (a)E �
t +1

�
1; T(w � v)+ + a

�
:

When the available speeds do not form a consecutive set, it is possible that all the optimal speed
schedules change speed at non integer times. Here is a simple example. Consider the degenerated
case where there is a single arrival at timet = 0 with probability one, of a job of size 4 with
deadline 3: w0 = 0 , P0((0; 4; 3)) = 1 and Pt (a) = 0 for all t > 0 and all a 6= 0 .

If S = f 0; 1; 3g (non-consecutive), then all optimal speed schedules must use speeds = 3 during
1=2 a unit of time before time 3, speed1 during 5=2 units of time before time 3, and then speed0
from time 3 on. So at least one speed change must occur at a non-integer time.

As a side note, if the set of speeds were consecutive:S = f 0; 1; 2; 3g, then all optimal speed
schedules would use speed2 during one time unit, speed 1 during 2 time units and speed0 from
time 3 on. This is achievable with speed changes occurring at integer times.

In the following, we show that if S is not consecutive, it is always possible to go back to the
consecutive case with integer speed changing instants by interpolating the power function.

Theorem 4.2. If the setS is not consecutive, the optimal speed policy can be constructed using integer
speed changing instants under an augmented consecutive set of speeds and then usingVdd -hopping
(de�ned in the proof).

Proof. Let S be the extended set of speeds to all integer speeds belowsmax : S = f 0; 1; 2; : : : ; smax g.
To do this extension, we use the same strategy as in Section 3.4.3 in Chapter 3.

First, we assign to each non available integer speed a power consumption by using a linear
interpolation. More precisely, for each s < s max and s =2 S, let s1; s2 2 S be the two neighboring
available speeds such thats1 < s < s 2. Therefore, s can be seen as a convex combination ofs1

and s2:
s = �s 1 + (1 � � )s2; with � =

s2 � s
s2 � s1

: (4.39)

We de�ne the power consumption of s as:

Power(s) = �P ower(s1) + (1 � � )Power(s2): (4.40)

Once this is done for each non available speed, we can solve the problem overS with integer
speed changing instants (the unavailable speeds being seen as available with the power cost
de�ned in Eq. (4.40) ). According to our notation, the optimal energy when starting in x is
E � ;S;N(x). The optimal speed policy with integer speed changing instants are denotedf s� (t)gt 2 N 2
f 0; 1; 2; : : : ; smax g.
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The following transformation is done at each integer time step t 2 N (this is called Vdd -hopping in
the following). In the time interval [t; t + 1) , if the optimal speed s� (t) was not originally available
(s� (t) 62 S), then it is replaced by its two neighboring available speedss1 and s2 over sub-intervals
[t; t + � ) and [t + �; t +1) respectively. Since the deadlines are integers, no job will miss its deadline
during the interval (t; t + 1) . Fig. 3.4 in Section 3.4.3 in Chapter 3 illustrates this decomposition.

This new policy only uses speeds inS but contains speed changes at non-integer times. We denote
by E VDD;S;R(x) its energy consumption.

Since the power costPower(s� (t)) is a linear interpolation of the power cost of the neighboring
available speedss1 and s2, the energy consumption over the interval [t; t + 1) is the same using
speeds� (t) on [t; t + 1] and using the neighboring speedss1 and s2 over the two sub-intervals
[t; t + � ] and [t + �; t + 1] . This also means that the total energy consumption is the same before
and after using Vdd -hopping:

E VDD;S;R(x) = E � ;S;N(x):

On the one hand, Theorem 4.1 states that, with consecutive speeds, integer speed changing
instants minimize the total energy consumption. In other words, this can be written

E � ;S;R(x) = E � ;S;N(x):

On the other hand, the optimal solution only using the subset composed by the available speeds
must use at least as much energy as when all the intermediate speeds are available. This implies

E � ;S;R(x) � E � ;S;R(x):

Putting everything together yields the following sequence of inequalities:

E VDD;S;R(x) � E � ;S;R(x) � E � ;S;R(x) = E � ;S;N(x) = E VDD;S;R(x):

This shows that E VDD;S;R(x) = E � ;S;R(x). This equality says that theVdd -hoppingpolicy is optimal.
This optimal policy is an easy patch over the optimal policy with integer decision time, using the
extended set of speed.

Corollary 3. The optimal policy with integer speed changing instants and using speeds in the
consecutive setS = f 0; 1; : : : ; smax g is dominant over all policies with continuous decisions times,
continuous speeds in the interval[0; smax ] and interpolated powers. Using our previous notation, this
can be written: For all statex, E � ;f 0:::s max g;N(x) = E � ;[0;smax ];R(x).

Proof. Recall that the interpolated power of any speeds 2 [0; smax ] is Power(s) = �P ower(s1) + (1 �
� )Power(s2), where s1 and s2 are the two neighboring speeds ofs in S, as in Eq.(4.40) . Under this
power function, E � ;f 0:::s max g;N(x) � E � ;[0;smax ];R(x) by de�nition.
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Let s� (t) be the optimal policy in continuous time with continuous speeds in [0; smax ]. Then,
starting in x,

E � ;[0;smax ];R(x) = E
Z T

0
Power(s� (t))dt

= E
T � 1X

t =0

Z t +1

t
Power(s� (t))dt

� E
T � 1X

t =0

Power

� Z t +1

t
s� (t)dt

�
(4.41)

= E
T � 1X

t =0

�P ower(s�
1(t)) + (1 � � )Power(s�

2(t)) (4.42)

� E � ;f 0:::s max g;R(x) (4.43)

= E � ;f 0:::s max g;N(x); (4.44)

where Eq. (4.41) comes from Jensen inequality for the convex functionPower and the fact that
there is no random innovation between times t and t + 1 ; where s�

1(t); s�
2(t) in Eq. (4.42) are the

neighboring speeds inS of the average speed
Rt +1

t s� (t)dt; and Theorem 4.1 is used to �nish the
proof in Eq. 4.44.

Theorems 4.1 and 4.2 are valid whatever the horizon time T, as a consequence there are still
satis�ed in the in�nite case problem.
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Online Minimization: Statistical

Knowledge with

Non-Clairvoyant Jobs

5

After studying the Clairvoyant case situation in Chapter 4, in this chapter, we focus on theNon-
Clairvoyant situation. The difference with the previous chapter is the information we have on the
active jobs. In Non-Clairvoyantcase, the active jobs have known deadlines at release time, but
job actual execution timesare only known at completion time. By considering that we know the
distribution of the execution time at release time, we can deploy some algorithms that lead to
energy minimization. Studying Non-Clairvoyant jobs has been already done in the literature, that's
why in the �rst section, Section 5.1, we present the state of the art of the energy minimization on
non-clairvoyant jobs.

This chapter is based on [GGP19c], currently submitted to an international conference.

5.1 State of the Art

As explained in the introduction to the chapter, single processor hard real-time energy minimization
problemconsists in choosing, for each job released in the system, a processor speed to execute
this job, such that all jobs meet their deadline and such that the total energy consumed by the
processor is minimized.

In the following we recall the difference between the of�ine and the online case, and then we
explore in detail the existing work on the main point of this chapter: the non-clairvoyant case.

In the online case, only the jobs released beforet or at t are known at t. We further distinguish the
clairvoyant online case, where the characteristics of each job (deadline and execution time) are
revealed at release time. This case has been �rst investigated by Yao et al. who proposed the Opti-
mal Available (OA) — a greedy speed policy — and the Average Rate(AVR) — a proportional fair
speed policy [YDS95]. These speed policies have been compared with the optimal of�ine solution
by Bansal et al. in [BKP07], who also computed their competitive ratio. Further improvements
have been proposed in [LY05] and [BKP07], and in Chapter 4.

In the non-clairvoyant online case, the deadline of each job is revealed to the processor when it
is released, but theactual execution timeof each job is only known when it �nishes executing;
only a worst case execution time (denotedWcet) is known at release time. This case has been
�rst investigated by Lorch and Smith in [LS01; LS04] for a singlejob: they have proposed the
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Processor Acceleration to Conserve Energy approach(PACE) , which provides an analytic formula
that allows to compute the continuous evolutionof the processor speed during the life time of the
job. Lorch and Smith demonstrate that the optimal speed policy, resulting in the minimal expected
energy consumption, is the one thatprocrastinates. This means that the processor speed increases
gradually as the job progresses, until it terminates its execution. A continuous evolution of the
speed being unrealistic, a heuristics is also provided, which approximates the optimal solution
with a piece-wise linear function having a limited number of speed changes.

To the best of our knowledge, (PACE) has been extended in three directions. First, Xu et al. have
studied the practical case with discrete speeds, no assumption on the power function, non-null
processor idle power, and non-null speed switching overhead [Xu+04]. The authors have proposed
Practical PACE (PPACE), a fully polynomial time approximation scheme"-optimal algorithm in
the single job case, which performs a time discretization of the speed selection. Second, Bini
and Scordino have proposed an optimal solution to the particular case where the processor uses
only two speeds to execute the job, taking into account the speed switching overhead [BS09].
Third, Zhang et al. have proposed the Optimal Procrastinating Dynamic Voltage Scaling algorithm
(OPDVS) under the form of a constrained optimization problem [Zha+05].

Another series of papers have relaxed the single job assumption of(PACE) . Considering several
jobs instead of a single job gives rise to the distinction betweensporadicand periodic jobs. In
the periodic case, several work have focused on the constrained framework of aframe based
multi-task model [RMM02; GK03], where all the tasks are periodic, with their deadline equal to
their period, and share the same period. In this context, Zhang et al. have proposed the Global
Optimal Procrastinating Dynamic Voltage Scaling algorithm (OPDVS) [Zha+05], while Xu et al.
have proposed a Hybrid Dynamic Voltage Scaling algorithm (HDVS), hybrid in the sense that it
addresses both intra-task DVS and inter-task DVS [XMM07]. The (HDVS) algorithm is a fully
polynomial time approximation scheme "-optimal algorithm.

The drawback is that the frame based model can be restrictive. Indeed, modern real-time systems
exhibit a combination of sporadictasks and of periodic tasks with signi�cantly different periods
(typically ranging between 1ms and 1; 000ms). The former cannot be captured at all in a frame
based model, and for the latter a decomposition of the hyper-period schedule into frames would
result in too many frames to be practical, and more importantly would be sub-optimal in terms of
energy consumption.

In the online sporadic case, Gaujal et al. have tackled uniprocessor real-time systems where each
job is modelled by three random variables, its release time, its exact execution time, and its
deadline. Using the knowledge of the probability distribution of the job features (release times,
execution times, and deadlines), an optimal online speed policy is computed [GGP17], based on a
Markov Decision Process [Put05].

Because Gaujal et al. assume that the execution times are exact,(PACE) is more general. However,
(PACE) is only valid for a single job, while Gaujal et al. consider a �nite or an in�nite set of jobs,
where several jobs can be active at the same time. Actually, Lorch and Smith also proposed a
multi-job extension of their speed policy [LS04], but by considering each job independentlyand
simply adding the speeds obtained for each job in isolation, resulting in a sub-optimal speed
selection.
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The goal of this chapter is to extend the non-clairvoyant online caseto a general set of jobs,
possibly in�nite. Each job is de�ned by its release time, execution time, and deadline. The job
characteristics are only known as probability distributions, and several jobs can be active at the
same time. In this respect we generalize both(PACE) and the work of Gaujal et al [GGP17].

We build a Markov Decision Process(MDP) that computes the optimal speed of the processor, in
order to minimize the expected energy consumption while guaranteeing the completion of all jobs
before their deadline. To achieve this, we design a �nite state space for the evolution of the system
and compute the transition probabilities from one state to another, based on the distributions
of the job characteristics. The combinatorial cost of this construction is signi�cant, but since
the computations of the transition probabilities and of the optimal speed policy is done of�ine,
we claim it does not hamper the online usability of the resulting speed policy for an embedded
system.

We also run several numerical experiment to assess the gain over sub-optimal solutions, such as
the superposition proposed in [LS04].

The chapter is organized as follows. Related work having already been covered in the introduction,
we formalize the problem in Section 5.2. Then we build our (MDP) solution in Section 5.3. We
compare our solutions with previous work in Section 5.4. We perform numerical experimentation
on synthetic and real-life benchmarks in Section 5.5. Finally we give concluding remarks in
Section 5.6.

5.2 Formalization

5.2.1 System Model

Each jobJ i is de�ned by the triplet (� i ; ci ; di ), where � i is the inter-arrival time between J i and J i � 1,
with � 1 = 0 by convention. The inter-arrival time is bounded by L. From the � i values, we can
reconstruct the release timer i of each job J i . The two others parameters are theexecution timeci ,
bounded by Wcet, and the relative deadlinedi , bounded by � . We assume that all these quantities
are in N. If the actual values are rational numbers, a multiplicative rescaling is used to make them
all integer.

The single processor is equipped with DVFS capability and is characterized by a �nite set of
available speeds, also inN: S = f s1 = 0 ; s2; : : : ; sk = smax g. For any job J i , the execution time ci

is the execution time at the nominal speed1 (the slowest possible speed). In our formalization,
we therefore interpret this nominal execution time as the sizeof J i , i.e., the total work quantity
that the processor must achieve to �nish J i : at speed1, it will take ci time units to complete the
job. At any time t, the remaining work necessary to completeJ i is its size ci minus the work
quantity already spent by the processor onJ i . If at t this remaining work is c0

i and if the processor
is executing J i at speeds(t), then at t + 1 the new remaining work for J i will be c0

i � s(t) (or 0 if
s(t) � c0

i ). Processor speed changes may occur only at integer times. The cost of speed switching
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is assumed to be null. Our model can be generalized with a non-null speed switching thanks to
the technique introduced in [GGP17].

The dynamic evolution of the system is as follows. It starts a time0 with an empty state. The
�rst job J1 arrives at time r 1 > 0. The processor uses one of its available speedss 2 S to start
executing J1. The next job arrives, and so on and so forth until reaching the time horizon T
(or forever in the case of an in�nite number of jobs). As EDF is optimal for feasibility (see
Appendix A.1), this scheduling policy will be used as explained in Chapter 2.

In Section 5.4 we will compare our speed policy with (OA) and (PACE) . (OA) also is a global
policy, so we will use EDF too when several jobs are active at the same time. In contrast,(PACE)
is a “local” policy (in the sense that the speed of the processor is computed individually for each
job, and then summed up for all the jobs active at time t), so in this case we will use a processor
sharing policy.

The power dissipated at any timet by the processor running at speeds(t) is denoted Power(s(t)) .
No assumption is made on thePower function (unlike (OA) and (PACE) which both assume that it
is convex). As de�ned in Chapter 2, the total energy consumption is:

E =
TX

t =0

Power(s(t)) (5.1)

while the long run energy consumption averageis:

g = lim
T !1

1
T

TX

t =0

Power(s(t)) (5.2)

The goal is to execute all the jobs before their deadline while minimizing the total or average
energy consumption. In the following, we solve this constraint optimization problem online. At
any time t, the processor does not know the future releases, nor the exact duration of currently
executed jobs. Instead of investigating an adversarial model (worst possible future arrivals as
well as job duration), we focus on a statistical model. The variables� i ; ci ; di are viewed asrandom
variables, for which we have probability distributions (because, for example, they have been
estimated by numerous executions of the system).

5.2.2 State Space

In this section, the state w will be described, and as the information we have on jobs are different,
we have to adapt the state de�nition. In this chapter the information we don't have, in comparison
with Chapter 4, is the execution time of jobs, but we know at each instant the work quantity
already executed of each speci�c jobs. The solution is so to replace in the state described in
Chapter 4, di by the work quantity already executed. Let us described in detail the state and state
space description.

The information available to the processor to choose its speed can be split in two parts. The static
part consists of the distributions of the sizes, release times, and deadlines of the jobs. The dynamic
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part changes over time, it will be called the system stateof the system in the following. At any time
t 2 N, the system state is made of:

• The set of active jobs (jobs released beforet, whose execution is not yet �nished at t).

• The relative deadline of each active job.

• The amount of work already done by the processor on each of the active jobs.

Formally, the state space of the system is de�ned as:

De�nition 5.1 (System state). The system state at timet, denotedw(t) 2 W , is composed of two
elements:

• `: the time elapsed since the latest job arrival.

• x: the list of active jobs, sorted by their deadlines (ties are sorted by job release times). Each job
J i is characterized by a pair(ei ; di ) where:

– ei is the work quantity already executed by the processor on jobJ i ;

– di is the relative deadline of jobJ i .

In the following we denote by W the state space and byX the space of all possible lists of jobsx.
So W = f 1; : : : ; Lg � X , where L is the maximal inter-arrival time between any two jobs.

5.2.3 State Space Evolution

To analyze the evolution of the system state over time, from timet to t + 1 , we only focus on the
spaceX (i.e., all the possible lists of jobs) and its evolution over time, because the evolution of` is
trivial.

In the following we simply put into formula the two possible changes in the state space: Either
some jobs will be completed during the current time interval (t; t + 1] by the processor, running at
its current speeds(t). This will remove the �rst jobs in the list x(t) since the processor is assumed
to execute jobs in the EDF order (EDF being optimal for feasibility). Or some new jobs will arrive
at time t + 1 , which must be inserted in the list x(t + 1) .

We introduce two operators that will be used to formalize the effect of jobs arrivals and comple-
tions.

De�nition 5.2. Let x = [( ex
1; dx

1); :::; (ex
n ; dx

n )] and y = [( ey
1; dy

1); :::; (ey
n ; dy

n )] be two job lists. We
de�ne two binary operators:

• x � y returns the sorted union of the two job listsx and y (sorted by the jobs' deadlines).

• x 	 y returns the sorted list of jobs ofx that are not present iny (sorted by the jobs' deadlines).
By de�nition, x � y ) x 	 y = ; .
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Let us suppose that, at timet, the list of jobs is xt and the speed used by the processor iss(t). The
job list xt is:

xt = [( et
1; dt

1); :::; (et
n ; dt

n )] (5.3)

Furthermore, let us suppose that the processor speed leads to the completion ofu jobs and a
partial execution of the (u + 1) th job. Then the remaining job list xt +1 contains the (n � u) jobs
that have not been totally executed by the processor before timet + 1 . So the next job list, xt +1 , is
composed of at least the following jobs:

[(et +1
u+1 ; dt +1

u+1 ); :::; (et +1
n ; dt +1

n )] (5.4)

where 8k 2 f u + 1 ; : : : ; ng; dt +1
k = dt

i � 1 for all the jobs present at t and not �nished at t + 1
(their deadlines get closer), et +1

u+1 is the new total work quantity executed over job Ju+1 so far, and
et +1

i = et
i for all i > u + 1 .

In the sequel, we introduce the operator Shift that implements all theses modi�cations on the job
list xt , before the new job arrivals, where u is the number of jobs that are completed during the
current time step and r is the work quantity executed on the not �nished (u + 1) th job:

Shiftu (xt ; r ) = ( et
u+1 + r; d t

u+1 � 1) � (et
i ; dt

i � 1)f i>u +1 g

Next, we have to consider the jobs released at timet + 1 . The list of jobs released at timet + 1 ,
ordered by their deadlines, is denoteda(t + 1) . Finally, the next job list xt +1 is such as:

xt +1 = Shiftu (xt ; r ) � a(t + 1)

In summary, to compute the next job list xt +1 from the job list xt and the processor speedst , we
perform the following steps:

1. We compute the number of jobs executedu and the work executed on the un�nished job r ,
under the processor speedst on xt .

2. Then as the time goes on and the processor runs, the present jobs and their relative deadlines
evolve, hence theShift operator, which performs the following modi�cations:

• Due to the processor execution, we remove from the ordered listxt the u executed jobs,
and we add the executed work quantity r to the (u + 1) th job of xt .

• Due to the time progress, we shift by one unit the relative deadline of the remaining
jobs at t + 1 .

3. The last point is to merge the new list of jobs a(t + 1) with the remaining jobs at t + 1 , such
as they are ordered by deadline (EDF policy) and then by jobs arrival date. We therefore
obtain the next job list xt +1 .
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5.2.4 Construction of the Transition Probability Matrix

This is the most important part to construct a Markov Decision Process and build the optimal speed
policy. In this part we construct the transition matrix P t ((x; `1); s; (y; `2)) that gives the probability
to go from state (x; `1) to state (y; `2) over time step (t; t + 1] , when the processor uses speeds.

In the following, we give an explicit construction of P t ((x; `1); s; (y; `2)) as a function of the
distributions of the inter-arrival times, the sizes, and the deadlines of jobs, when jobs arei.i.d. 1

Before unveiling the probability formula, we introduce in the following some notations for the
distributions of the job features:

• The i.i.d. inter-arrival times have a common distribution denoted � :

80 � t � L; � (t) = P(� i = t) for any job J i

• The i.i.d. sizes' distribution is denoted � :

81 � c � Wcet ; � (c) = P(ci = c) for any job J i

• The i.i.d. deadlines' distribution is denoted � :

81 � d � � ; � (d) = P(di = d) for any job J i

When all jobs are i.i.d. , the transition probability P t ((x; `1); s; (y; `2)) does not depend ont and
can be decomposed in several parts, depending on the number of completed jobs. If we denote by
Q((x; `1); u; s; (y; `2)) the probability to go from state (x; `1) to (y; `2) under speeds while u jobs
are completed during a time step, then:

P t ((x; `1); s; (y; `2)) =
min( s;nb(x))X

u= b s
W cetc

Q((x; `1); u; s; (y; `2)) : (5.5)

where nb_job(x) is the number of jobs in the list x, and u the number of jobs in x, completed
during (t; t + 1] .

The probability Q to go from state (x; `1) to state (y; `2) with u jobs completed during a time step
can be further decomposed into the probability Pexec(k ; x; u; r ) that u jobs are completed under
speeds with a partial execution of r units of work on the next job, and the probability Parrival that
a seta(t) of jobs arrives in interval (t; t + 1] (independent of Pexec). Let us introduce the random
variable ki , the remaining size of job J i and k = ( k1; : : : ; ku ).

• If u = nb(x) (all jobs are completed), then

Q((x; `1); u; s; (y; `2)) =
X

k1 + ��� + ku � s

Pexec(k ; x; u; 0) � Parrival ((x; `1); u; (y; `2)) (5.6)

1i.i.d. = independent and identically distributed.
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• Else if u < nb_job(x), then 8i 2 [1; u]; 1 � ki � Wcet :

Q((x; `1); u; s; (y; `2)) =
X

k1 + ��� + ku = s� (ey
� � ex

u +1 )

Pexec(k ; x; u; ey
� ) � Parrival ((x; `1); u; (y; `2)) ; (5.7)

where � is the index of the �rst job in the list y with the same deadline as the �rst job in the list
Shiftu (x; ey

� � ex
u+1 ). By de�nition, we have:

0 � ex
u+1 � ey

� � Wcet � 1

From now on, we compute each termPexecand Parrival :

I Pexecis the probability that the u �rst jobs of x are completed. It depends on (i) the probability
of ki , the remaining work executed during (t; t + 1] , on job i 2 [1; u], and on (ii) the probability
that the job u + 1 has been partially executed, given the work quantity already executed in the
past (i.e., before t). We distinguish two cases,u 6= 0 and u = 0 .

The �rst case is u 6= 0 , with ci the random variable that represents the size of jobi :

Pexec(k ; x; u; ey
� ) =

 
uY

i =1

P(ci = ki + ex
i j ci > ex

i )

!

P(cu+1 > ey
� j cu+1 > ex

u+1 )

=

0

@
uY

i =1

� (ki + ex
i )=

W cetX

k= ex
i

� (k)

1

A

0

@
W cetX

k= ey
�

� (k)=
W cetX

k= ex
u +1

� (k)

1

A ; (5.8)

And the second case isu = 0 :

Pexec(k ; x; 0; ey
� ) =

0

@
W cetX

k= ey
�

� (k)=
W cetX

k= ex
u +1

� (k)

1

A : (5.9)

I Parrival (x; u; y) is the probability related to the new jobs arrivals.

The computation of Pa depends on the new jobs arrivala(t), which is formally de�ned as:

a(t) = y 	 Shiftu (x; ey
� � ex

u+1 ) (5.10)

Eq. (5.10) returns a list of new jobs present in the new list of jobs y and not present in the previous
list x, so they must be fresh arrivals. Under the form of a list,a(t) = f (0; di )gi =1 ::n .

To compute the probability Parrival , we introduce the following variables:

• n is the number of jobs that arrive at time t + 1 ;

• k is the number of different job deadlines that arrive at time t + 1 ;

• nj is the number of jobs of deadline dj . It satis�es n = n1 + ::: + nk ;
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• M (x) is the maximal number of jobs that can arrive at a time t + 1 . We assume that our
real-time system includes alimited capacity bufferB that stores the jobs (B must be smaller
than smax � =Wcet to guarantee feasibility), the maximal number of job arrivals depends on
the previous statex. This is why M (x) = B � nb_job(Shiftu (x; ey

� � ex
u+1 )) is the maximal

number of jobs that can arrive at time t + 1 .

We note Sx, the set of possible successor ofx.

The function Parrival satis�es different properties that are stated below. Two cases must be
considered: (1) y =2 Sx; in this case we haveParrival = 0; (2) y 2 Sx; we distinguish several
sub-cases, depending on the set of the new jobsa(t) = y 	 Shiftu (x; r � ).

If a(t) = ; , then we have:

• If `2 6= `1 + 1 , then Parrival = 0 .

• If `2 = `1 + 1 , then Parrival = P(a(t)) = 1 � � ( ` 1 )P L

i = ` 1
� ( i )

.

• If `1 = L, then Parrival = 0 (some work must arrive when the maximal inter-arrival time is
reached)

If a(t) 6= ; , then we have:

• If `2 6= 1 , then Parrival = 0 (the time elapsed since the latest arrival must be reset to 1).

• If `2 = 1 , then using Wcet (the biggest job size), the general case for the probabilityParrival

is presented below8n 2 [1; M n (x)].

Let us analyze the most general case:a(t) 6= ; and `2 = 1 . In a �rst step, we suppose that the
number of jobs that arrive does not lead to a full buffer, i.e. n < M n (x). we begin by analyzing
the inter-arrival time values. In this situation, as there is at least one arriving job ( a(t) 6= ; ), it
means that we have to consider the inter-arrival time `1, which is chosen among all the possible
inter-arrival times, i.e. all values between`1 and L. This probability, which is the probability that
the �rst job of a(t) arrives, is � ( ` 1 )P L

i = ` 1
� ( i )

. Each additional job in a(t) depends on the probability

of the zero inter-arrival time, because these jobs must arrive simultaneously. For each of them
the arrival probability is � (0). Since there aren � 1 job arrivals after the �rst job in a(t), the
probability for all these jobs is � (0)n � 1. Finally, since there are exactlyn new jobs, we multiply by
the probability of non zero inter-arrival time (1 � � (0)) for the next arrival.

Regarding the deadlines, thea(t) job deadlines are independent, so the probability to haveni jobs
of deadline di is � (di )n i . By considering all existing deadlines we have:

kY

i =1

� (di )n i (5.11)

But since jobs(0; di ) of samedi are not ordered in a(t), the product in Eq. (5.11) captures several
cases that correspond to the same state. Since there areni ! possibilities for the truncated list of
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new jobs of deadline di , we have to take into account all possible combinations of jobs divided by
all the combination for jobs of same deadline, because those are not ordered:

n!
Q k

i =1 ni !
(5.12)

These two analyses lead to the following job arrival probability for a(t) 6= ; and `2 = 1 , in the case
where n < M n (x):

Parrival =
� (`1) � (0)n � 1(1 � � (0))

P L
i = ` 1

� (i )

n!
Q k

i =1 ni !

kY

i =1

� (di )n i (5.13)

In a second step, we consider thatn = M n (x). So this situation simpli�es Eq. (5.13) by removing
the probability that there is not an extra (ja(t)j + 1) th job:

Parrival =
� (`1)

P L
i = ` 1

� (i )
� (0)n � 1 n!

Q k
i =1 ni !

kY

i =1

� (di )n i (5.14)

Summary of the transition probability matrix construction: Putting together Eqs. (5.5), (5.6),
(5.7) , (5.8) , (5.13) and (5.14) gives the formula to compute P t () from the original distributions
�; �; � . This formula is combinatorial, but it is used only once and computed of�ine.

We present below the steps needed to compute one value of the probability matrix,i.e., to go
from state x to state y under speeds. As mentioned before, to compute it from the triplet (x; s; y),
we have to study all the possible cases for the number of executed jobs ofx, denoted u. For all
possibleu, the steps of the algorithm for (x; u; y) are the following:

• Extract the �rst job of deadline du+1 from x.

• Compute the arrival jobs a(t) = y 	 Shiftu (x; r � ).

• Compute the probability Pexec, which depends on u, the executed work for the �rst job of
deadline du+1 and the previous statext .

• Compute the probability Parrival , that depends on a(t) value.

This construction of P t () is also ana posteriori validation that (x(t); `1); s(t) is a properly de�ned
Markov Decision Process:(x; `1) and s contain enough information to compute the probability of
any next state (y; `2).

5.3 Markov Decision Process

The energy consumption of the processor over one time interval(t; t + 1] , when working at speed
s(t) is denoted Power(s(t)) .
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Computing at each time t the optimal speed s� to minimize the expected energy consumption
over T steps, namelyF0(w) = E

P T
u=0 Power(s(u)) can be done by solving the following backward

optimality Bellman equation [Put05].

If the state at time t is w then, the optimal expected energy consumption from t to T is:

F �
t (w) = min

s2A (w)

 

Power(s) +
X

w0

P(w; s;w0)F �
t +1 (w0)

!

(5.15)

The set A (w) is the set of admissible speeds in statew that make sure that no job will miss a
deadline at time t:

A (w) =

(

s 2 S; s �
X

i :di =1

(Wcet � ei )

)

(5.16)

The optimal speeds�
t (w), to be used under statew at time t, is any speed that achieves themin

in [Put05].

As for the in�nite horizon, the long run average energy consumption over one step is g =
lim T !1

1
T E

P T
t =0 Power(s(t)) .

The optimal average consumptiong� is the solution of the �xed point Bellman equation (with bias
h).

g� + h(w) = min
s2A (w)

 

Power(s) +
X

w0

P(w; s;w0)h(w0)

!

: (5.17)

Here again, the optimal speeds� (w) is any speed that achieves themin in the above equation.

The quantities g� as well as the optimal speedss� (w) can be computed of�ine using value iteration,
whose complexity is quadratic in the size of the state space. This can be a burden when the state
space is very large. In this case, a coarser discretization can be used to reduce the size of the state
space.

Theorem 5.1. Let us de�neB the maximal number of jobs that can be present in the buffer at a time
instant, Wcet and � , the respective maximal job sizes and deadlines, then:

1. If smax � Wcet B , then under the optimal speedss� (w) all jobs will be completed before their
deadlines.

2. In the particular case where jobs are released one at a time, ifsmax � Wcet then under the
optimal speedss� (w) all jobs will be completed before their deadlines.

Proof. As B is the maximal number of jobs that can be present in the buffer at a time instant t and
Wcet is the maximal job size, we can deduce that at each instant, the workload of the processor
is at most B � Wcet . The worst case appears when all job deadlines are shortest,i.e. when job
deadlines are 1. In this situation, a processor speed ofB � Wcet can execute all jobs before their
deadlines, that's why if smax � Wcet � B , all jobs can be executed before their deadline in all states
that can be reached with positive probability.

In the particular case where jobs are released one at a time, the maximal work quantity that arrives
at each time step isWcet. If we use a maximal processor speed smaller thanWcet, we can be faced
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to a job of size Wcet and deadline 1, so deadline would be miss. However, if the maximal processor
speed is faster thanWcet, it is possible to execute all jobs before their deadlines. Therefore if
smax � Wcet then the optimal speed policy s� (w) will also execute all jobs before their deadlines.

The algorithm of selecting speed value from(MDP) is as follows with � � the table of the optimal
speed for each state:

Algorithm 6: Dynamic Programming processor speed choice algorithm
For Each t = 0 : : : T � 1

Update xt according to the Section 5.2.3
Set s := � � [xt ]
Execute the job(s) with earliest deadline

at speeds for one time unit
End

5.4 Comparative Analysis with Alternative Solution

We focus on two main alternatives to our solution ((OA) and (PACE) , presented in full details in
the section), proposed in the literature that can deal with universal job features, i.e., with arbitrary
release times, deadlines, and sizes.

As explained in the introduction, there exist many other alternatives. The work of Bini and
Scordino [BS09] is only usable when the processor has two available speeds, and does not propose
a clear generalization. The series of papers by Xu et al. [Xu+04; XMM05; XMM07] also provide
ef�cient solutions to the energy minimization problem. They only deal with periodic tasks with
a deadline equal to the period and identical periods (frame based model). Generalizing this to
periodic tasks with arbitrary deadlines or to sporadic jobs does not seem realistic.

The �rst alternative (OA) is oblivious to size and deadline distributions. This online speed selection
called Optimal Available (OA) was �rst presented in Yao & al [YDS95]. The second alternative
uses a closed form solution for the optimal speed for each job independently. This is called(PACE)
and was introduced in [LS01]. In the next two subsections, we will present these two algorithms
and discuss their respective drawbacks in worst case scenarios. The comparison with our solution
over a large set of job parameters will be the main focus of the following experimental section.

5.4.1 Optimal Available (OA) Speed Selection

The optimal available (OA) algorithm, introduced by Yao et al. [YDS95] is an online speed policy
that chooses the speeds(OA) (wt ) at time t as follows. In any state wt , s(OA) (wt ) is the optimal
speed in order to execute the current remaining work at time t, should all job sizes be equal to
their Wcet and should no further jobs arrive in the system. Yao et al. show that, by considering that
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all jobs present at time t have a remaining worst possible equal toWcet
i � ei (with our notation

x (OA)
t = ( ei ; di ) i =1 :::n ), then:

s(OA) = max
i =1 :::n

Wcet
i � ei

di
: (5.18)

Optimal Available (OA) Speed Selection Algorithm

We denote x(OA)
t the state of the system under(OA) speed policy. The algorithm selecting the

speed selected at timet by (OA) is as follows:

Algorithm 7: (OA) processor speed choice algorithm

For Each t = 0 : : : T � 1
Update x(OA)

t according to the Section 5.2.3.
Compute s(OA) using Eq. (5.18).
Execute the job(s) with earliest deadline at speeds(OA)

for one time unit
End

Example showing (OA) can be sub-optimal

(OA) has many good properties: It is obviously robust to changing job features and has a constant
competitive ratio with an optimal of�ine solution [BKP07]. However, it is certainly sub-optimal,
especially because it does not take advantage of jobs with small sizes.

Consider a single job with arrival time 0, deadline 4 and size equal to1, 2, 3 or 4 with respective
probabilities 1

4 , 1
4 , 1

4 , and 1
4 .

Since(OA) only uses the worst case size to select its speed, then it will use according Algorithm 7,
at each time t = 0 ; 1; 2; 3, the same speed:s(OA)

t = 1 .

If the power dissipated by the processor using speeds is Power(s) = Cs2 (classical for some CMOS
models), then the expected energy spent to complete the job under(OA) is:

E(E (OA) ) = C(
1
4

+
2
4

+
3
4

+
4
4

) =
10C

4
= 2 :5C

On the other hand, in such an simple example, one can compute the speedss(0); s(1); s(2) and
s(3) at respective times0; 1; 2; 3 that minimize the expected energy consumption, using the same
approach as in [XMM05]. Computing these optimal speeds boils down to a constrained convex
minimization problem: Minimize C(s(0)2 + 3

4 s(1)2 + 2
4 s(2)2 + 1

4 s(3)2) under the constraints
s(i ) � 0; 0 � i � 3 and s(0) + s(1) + s(2) + s(3) = 4 . Using a Lagrange multiplier � , the Karush-
Kuhn-Tucker conditions are: s(0) = �; 3

4 s(1) = �; 2
4 s(2) = � and 1

4 s(3) = � , under the constraint
s(0) + s(1) + s(2) + s(3) = 4 . This implies s(0) = 12

25 ; s(1) = 16
25 ; s(2) = 24

25 ; s(4) = 48
25 with the total

expected energy:

E(E � ) =
1200C

625
= 1 :92C
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The relative over-consumption of (OA) versus the optimal policy for this simple job, (E(E (OA) ) �
E(E � ))=E(E � ), is just above30%. The following section 5.4.2 introduces (PACE) , a speed policy
that is optimal as long as the statex contains a single job. In this example(PACE) will be optimal
and will reduce the energy consumption by 30% over (OA) .

Additional ef�ciency loss of (OA) is to be expected when the arrival times and the deadlines
are taken into account and when the distribution of the size of the jobs is even more biased
towards 0.

These intuitions will be con�rmed by the numerical experiments displayed in Section 5.5.

5.4.2 (PACE) Speed Selection

Single Job Speed Selection

In [LS04], the optimal speed policy (PACE) to execute one job while minimizing the expected
energy consumption is computed in closed form. The formula for the speed choice on one jobJ =
(c; d) is as follows, with F the cumulative distributed function of the size of J (F (:) = P(w � :)).

s(PACE) (e) = K (1 � F (e)) � 1=3 (5.19)

The normalizing constant K is obtained by solving the following equation that makes sure that a
job of maximal size Wcet is completed befored:

Z W cet

0

1
s(PACE) (w)

dw = d (5.20)

(PACE) considers that the processor speed choices are continuous, but in practice only a �nite
number of speed values are available. In addition, decision times are also discrete. In the following,
we will use a discrete version of(PACE) speed selection algorithm, which uses at each time instant
the closest integer value to the speed computed with(PACE) .

Moreover as the size distribution is discrete here, the considered cumulative distributed function
for the size is taken piece-wise af�ne and is constructed as follows.8i � c � i + 1 ;

F (w) = ( F� (i + 1) � F� (i ))F� (i )(w � i ) + F� (i ); (5.21)

written under the form F (w) = ai w + bi where F� (i ) =
P i

j =0 � (j ), ai = ( F� (i + 1) � F� (i ))F� (i )
and bi = F� (i ) � (F� (i + 1) � F� (i ))F� (i )i .

From this, the normalizing constant K for a job with deadline d is:

K =
3
4d

X

[i;i +1] 2 [0;W cet ]

1
ai

h
(1 � ia i � bi )4=3 � (1 � (i + 1) ai +1 � bi +1 )4=3

i
(5.22)
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And so the speed for a jobJ with deadline d when e work has already been executed onJ , is

s(PACE) (J (e; d)) = K [1 � (ai e+ bi )]
� 1=3 with i � e < i + 1 (5.23)

The speed computed by Eq.(5.23) is not, in general, an integer. We therefore round it to the
closest available speed from the setS:

round(s;S) = argmin
s02S

fj s � s0jg (5.24)

~s(PACE) (J ) = round(s(PACE) (J ); S) (5.25)

Several Job Speed Selection

In the case where several jobs are present at timet, (PACE) executes each individual job at the
speed computed for each job in isolation, as presented in the previous section. The speed of the
processor is the sum of the speeds allocated to each active job. In other words, these jobs are
executed in processor sharing. The resulting speed must however belong to the setS, so the
computed speed when several jobs are present at timet is:

min

(

s 2 Sjs �
X

J i 2 xt

~s(PACE) (J i )

)

(5.26)

This set could be empty, meaning that the speedsmax is not high enough to execute all the jobs
present in the system before their deadlines. To prevent this from occurring, we will add in the
next section a feasibility condition.

(PACE) Algorithm

Since the state of our systemxt depends on the choice of the speed policy, we will denote by
x(PACE)

t the state of the system under(PACE) speed policy. The algorithm of selecting the current
speed under(PACE) speed policy is as follows:

Algorithm 8: (PACE) processor speed choice algorithm

for each t = 0 to T � 1 do
Update x(PACE)

t according to the Section 5.2.3;
for each job J i 2 x(PACE)

t do
Compute s(PACE) (J i (ei ; di )) using Eq. (5.19);

end for each
if di = 1 then // for schedulability reason

~s(PACE) (J i ) = Wcet � ei ;
end if
Execute each job of statex(PACE)

t at speed:
~s(PACE) (J i ) for one time unit;

end for each
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5.4.3 Suboptimality of (PACE)

As for (OA) we exhibit an example where (PACE) does not behave very well. Since(PACE) is
optimal for single jobs, as well as periodic tasks whose deadline is smaller than the period, the
example will involve simultaneous job releases.

Let us consider the case wherek jobs J1; : : : Jk are released simultaneously, all with the same size
(c = 1 ), with respective deadlines 1; 2; :::; k. Since the distribution of job sizes is degenerate (all
sizes are deterministic, equal to 1), the speed selected by(PACE) to execute one job with relative
deadline d, is constant over the time interval from its release time to its deadline, equal to 1=d.
Therefore, at time 0 and for job J i , the speed selected by(PACE) is s(PACE) (J i ) = 1 =i, so the
cumulative speed at time 0 is

s(PACE) (J1) + ::: + s(PACE) (Jk ) = 1 + 1 =2 + ::: + 1=k

= H k � logk:

At time 1, the cumulative speed is1=2 + ::: + 1=k = H k � H1 and so forth up to the speed used at
time k � 1, equal to 1=k = H k � H k � 1. Under the quadratic model for the power consumption
(Power(s) = Cs2), the total energy spent under (PACE) is

E(E (PACE) ) = C
�
H 2

k + ( H k � H1)2 + ::: + ( H k � H k � 1)2�

= C

 

kH 2
k +

k � 1X

i =1

H 2
i � 2H k

 
k � 1X

i =1

H i

!!

= C

 

kH k

�
H k �

2(k � 1)
k

�
+

k � 1X

i =1

H 2
i

!

= Ck(log k)2 + O(Ck logk):

Meanwhile, under the same set of jobs,(OA) will use speed1 at each time slots0; 1; : : : k � 1. The
total energy used by(OA) to complete all jobs in that case is

E(E (OA) ) = Ck:

When k grows, the relative gain of (OA) over (PACE) grows to in�nity in this case.

These two examples (subsections 5.4.1 and 5.4.3) show respectively that in some cases(PACE)
behaves much better than(OA) , and in some other cases,(OA) is better. The following numerical
experiments show that under certain sets of job features,(OA) (resp. (PACE) ) can be very close
to the optimal speed as computed by our(MDP) algorithm while in other cases it can be very far
from our optimal policy. While this large range of relative loss can sometimes be explained, in
some other cases it is rather hard to understand the true cause of inef�ciency of(OA) or (PACE)
with respect to (MDP) .
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5.5 Numerical Experiments

5.5.1 Experimental Set-up

The experiments are done in two phases. The �rst part is of�ine and consists in computing the
optimal speed policy with the (MDP) solution. We use the (MDP) algorithm described in this
chapter to determine, for each statex 2 X , the optimal speed to apply to the processor. These
speeds are stored in a table.

In the second part, we simulate a sequence of jobs, with the probability distributions used to
construct the (MDP) . At each time instant, we use the previous table to determine the speed of
the processor in the next time slot. For(OA) and (PACE) , we compute the processor speed with
Algorithm 7 and 8 described in Section 5.4 respectively.

Finally, we compare the mean energy consumption of each policy over several sequences of jobs
with the same time horizon.

In a �rst set of experiments, we use synthetic benchmark by using all possible discrete size
distributions over a �xed range, but we also analyze the effect of inter-arrival time and the
deadline distribution over the performance of the three policies.

In a second set of experiments, we use our solution in a practical case: each job is a run of an edge
detection algorithm. The runtime of these jobs are measured and the empirical distribution of the
execution times of these jobs is used to assess the performance of the 3 speed policies.

Here are the results of all these tests in a nutshell: (MDP) outperforms (OA) , when job are
highly irregular, and it outperforms (PACE) when the number of pending jobs is often high. For
sequences of jobs where a single job is pending at any time (for example for periodic tasks),
the performance of (MDP) and (PACE) are close, both being optimal on average in that case.
Differences are due to the time and speed discretization of(PACE) making it sub-optimal when
the discretized solution is far from the ideal one.

In the next sub-section, the algorithm of online simulation is presented.

5.5.2 Online Simulation Algorithm

During the online simulation part, we run several sequences of jobs over a large time horizonT.
During one simulation, a given sequence of jobs is generated using the distributions of the features
(�; �; � ).

The processor speed policies(MDP) , (PACE) , and (OA) presented in Section 5.3 and 5.4 are
used over the sequence of jobs, and the total energy consumption for each of these policies is
computed. After running several simulations (usually 1000, to get a good con�dence on the result),
we compare the empirical mean energy consumption of the three policies.

At the beginning of each online simulation, for a given speed policy, we generate an inter-arrival
time that follows the inter-arrival time distribution � (t), conditioned to be in the interval [1; L ]
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so that a job can arrive at the earliest at the next time step (heret = 1 ). Then we decrease the
current inter-arrival time of one unit of time when we move to the next time step. When the
next release time is reached (unless the buffer is full) then a new job is generated: we generate
its size according to the size distribution with support [1; Wcet] and its deadline according to
the deadline distribution, with support [1; �] . As soon as the job is created then we generate
another inter-arrival time that follows the inter-arrival time distribution over the interval [0; L ],
this time. If this inter-arrival time is 0 and the buffer is not full, then we generate another job
immediately, otherwise we go to the next time step. If the buffer is full, no other job can arrive at
the current time-step, and we have to choose an inter-arrival time on the normalized inter-arrival
time distribution conditioned on the interval [1; L ].

After this simulation step, the set a(t) of job arriving at time (t + 1) � have been generated. The
processor speed is computed under statex t and used to executed jobs present in the system state
at time t. The next statex t +1 is computed as explained in Sec 5.2.3.

As job generations follow the same law for(MDP) , (OA) , and (PACE) , this algorithm is applied for
each policy, and then we can compare each mean energy value computed over these simulations.

5.5.3 General Parameters Used in the Experiments

The distributions used in the experiments are the following:

• For all job features, i.e., inter-arrival times, sizes, and deadlines follow a given distribution,
and are independent of each other. Their cumulative distribution functions are de�ned as in
Section 5.4.2.

• To ensure that our state space is not to large, we consider that there exists a maximal number
of jobs in the buffer of the processor at each time step (notedM n in Section 5.2.4). It will be
�xed to 3 in most of our simulations.

There areN = 1000 simulations done for each experimental test. For each of them, we execute a
job sequence over a time horizon ofT = 1000 time steps.

5.5.4 Numerical Results

In this part we analyze the impact of the features of the jobs (i.e. size, inter-arrival time and
deadline probability distributions) on the energy consumption of (MDP) described in Algorithm 6,
and compare it with the energetic performance of the two other policies (PACE) and (OA) ,
described in Algorithm 8 and in Algorithm 7 respectively. In all these experiments, we analyze
the relative over-consumption. The over-consumption of the policy (PACE) in comparison of the
policy (MDP) is de�ned as follows:

Over-consumption =
Energy(PACE) � Energy(MDP)

Energy(MDP)
(5.27)
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The same formula is used for(OA) .

Impact of Inter-arrival times

In this part we study the impact of the inter-arrival time distribution on the relative over-
consumption of the two policies (OA) and (PACE) in comparison with (MDP) . The experiments
are done for a system with following job features:

• Job deadlines are uniformly distributed from 1 to � = 3 .

• Job sizes are uniformly distributed from 1 to Wcet = 4 .

• Buffer size, as de�ned in Section 5.2.4, is set to M n = 3 .

In the two following tables, Table (5.1) and (5.2) , we summarize the over-consumption obtained
by the two policies (OA) and (PACE) for different inter-arrival time distributions, in the cases
where the maximal inter-arrival time L is bounded by 1 (see Tab.(5.1) ) and when L bounded by
4 with no multiple job arrivals (see Tab (5.2)).

Table 5.1.: Inter-arrival time distribution in�uence on the over-consumption of (OA) versus(MDP) , and of
(PACE) versus(MDP) on simulations with uniform deadline and � =3, and uniform size and
Wcet =4, with L = 1

Inter-arrival time distribution Over-consumption
� = 0 � = 1 (PACE) versus(MDP) (OA) versus(MDP)
3/4 1/4 76.56% 3.94%
1/2 1/2 65.06% 3.42%
1/4 3/4 54.71% 5.73%
0 1 44.5% 11.12%

Table 5.2.: Inter-arrival time distribution in�uence on the over-consumption of (OA) versus(MDP) , and of
(PACE) versus(MDP) on simulations with uniform deadline, with � =3, and uniform size, with
Wcet =4, and 1 < L < 4.

Inter-arrival time distribution Over-consumption
� = 1 � = 2 � = 3 � = 4 (PACE) versus(MDP) (OA) versus(MDP)
1/4 3/4 0 0 14.7% 3.41%
0 1/4 1/2 1/4 0.37% 2.14%
0 0 1/4 3/4 0.59% 2.18%

From Table (5.1) and (5.2) , one can notice that the better the knowledge of the inter-arrival time
arrival, the worse the over-consumption of (OA) versus(MDP) . The trend is the same for(PACE)
policy.

The other aspect is the number of jobs present in the system at a timet. One can also notice
that when there are several job in the buffer, (PACE) speed policy consumes a lot of energy in
comparison to (MDP) . This is due to the fact that (PACE) is only optimal for one job is been
executed at each time. When no job arrives until the active job is completed,(PACE) consumes
the same energy as(MDP) .
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Impact of Deadlines

In this part, we study the impact of the deadline distribution on the different policies. These
experiments are done for a �xed inter-arrival time of 1 in Table (5.3) and 3 in Table (5.4) . The
size is uniform between 1 and Wcet = 4 and the maximal deadline � = 3 . We test our algorithm
for different deadline distributions.

Table 5.3.: Deadline distribution in�uence on the over-consumption of (OA) versus(MDP) , and of (PACE)
versus(MDP) on simulations with uniform size, with Wcet =4, and �xed inter-arrival time L = 1 .

Deadline distribution Over-consumption
d = 1 d = 2 d = 3 (PACE) versus(MDP) (OA) versus(MDP)
1/2 1/2 0 18.05% 18.37%
1/3 1/3 1/3 38.6% 6.62%
1/2 0 1/2 67.7 % 6.07 %
0 1/2 1/2 53.2% 8.64%
0 0 1 47.3% 6.33%

Table 5.4.: Deadline distribution in�uence on the over-consumption of (OA) versus(MDP) , and of (PACE)
versus(MDP) on simulations with uniform size, with Wcet =4, and �xed inter-arrival time L = 3 .

Deadline distribution Over-consumption
d = 1 d = 2 d = 3 (PACE) versus(MDP) (OA) versus(MDP)
1/2 1/2 0 0.36% 0.18%
1/3 1/3 1/3 0.55% 2.39%
1/2 0 1/2 0.46% 2.39%
0 1/2 1/2 0.11% 7.9%
0 0 1 26% 52%

One can notice in Table(5.3) , for the situation where there is one job that arrives at each time step,
that if there are more short deadlines, then the over-consumption of (PACE) is less important.
This is expected, because when there are more short deadlines, it means that there are potentially
less jobs present in the buffer. We are getting closer to situation where jobs are isolated.

(OA) is not very dependent on the deadline distribution and has an identical over-consumption,
except for the case when the system is heavily loaded.

For inter-arrival times all equal to 3, Table (5.4) shows that (PACE) is close to(MDP) in terms of
energy consumption, which is due to the fact that there is only one job in the buffer at each time
instant. If deadlines are large, (MDP) and (PACE) bene�ts for the knowledge of the probabilities
distribution, whereas (OA) , which is oblivious of the probabilities distribution, suffers from a
signi�cant energy over-consumption.

Impact of Job Sizes

In this part, we study the impact of the size distribution on the different policies. The experiments
are done for a system with jobs of �xed deadline d = � = 3 , and sameWcet = 4 .
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To analyze the impact of size distributions, we investigate two cases where jobs form periodic
tasks:

1. At each time step, there is a job that arrives in the system. The inter-arrival time is1 with
probability 1.

2. At one time step out of three, there is a job that arrives in the system. The inter-arrival
time is 3 with probability 1. This condition implies that there is at most one job present in
the buffer of jobs at each instant, because the inter-arrival time has the same value as the
deadline.

In this part, the randomness is only on the size of incoming job, whose range is chosen as follows:

P(C = f 1; 2; 3; 4g) =
�

i 1

10
;

i 2

10
;

i 3

10
;

i 4

10

�
(5.28)

with i 1 + i 2 + i 3 + i 4 = 10 and i 4 > 0

We compute the over-consumption of each policies(OA) and (PACE) in comparison with (MDP)
for all possible distributions satisfying Eq. (5.28).

Impact of the size distribution on the over-consumption of (OA) against (MDP) Fig. 5.1 represents
the over-consumption of (OA) against (MDP) with L = 1 (left) and with L = 3 (right) in function
of the mean value of the job sizes' distribution. In all the �gures, the blue, red, and green curves
depict respectively the min, average, and max values.

Whatever the inter-arrival times, (OA) converges towards(MDP) when the mean of the job sizes
converges to theWcet. This is because(OA) is build as if each job had an size equal to itsWcet.

Since(MDP) takes into consideration the size probability distribution and is an optimal policy, it
is always better than (OA) , as expected. The over-consumption of(OA) is smaller when L = 1 .
The reason is that, whenL = 1 , the system is more heavily loaded, requiring higher processor
speeds and therefore a smaller range of available speeds for both(OA) and (MDP) .

Impact of the size distribution on the over-consumption of (PACE) against (MDP) Fig. (5.2) rep-
resents the over-consumption of(PACE) against (MDP) with L = 1 (left) and with L = 3 (right)
as a function of the mean of the job size.

Fig (5.2) shows that (PACE) with an inter-arrival time of L = 1 is better than when L = 3 . This
observation is in line with the policy de�nition: Indeed, (PACE) is only optimal for a job in
isolation, which is not the case in the left graph of Fig (5.2) . When the inter-arrival time is 1,
several jobs can be present in the buffer at the same time. When the inter-arrival time is3 and the
deadline is also3, there is at most one job in the buffer at any time.

Even if (PACE) is optimal for one job in isolation, we note anyway in the right graph that (PACE)
has a mean over-consumption of20%against (MDP) . These difference could be due to the fact
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Figure 5.1.: In�uence of the size distribution on the over-consumption of (OA) versus(MDP) , with �xed
jobs deadline d = 3 , �xed inter-arrival time L = 1 (left) or L = 3 (right), and a �xed buffer size
B = 3 .
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Figure 5.2.: In�uence of the size distribution on the over-consumption of (PACE) versus(MDP) , with �xed
jobs deadline d = 3 , �xed inter-arrival time L = 1 (left) or L = 3 (right), and a �xed buffer size
B = 3 .
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we consider a discretized(PACE) (which is more realistic in practice, because processor speeds
are �nite and decision times are also discrete). When the inter-arrival time is 3, one can notice
that the size distribution has an important impact on the energy consumption and this is due to
the fact that the speed selected by(PACE) may be close — or not — to an integer value. For
example, with P(f c = (1 ; 2; 3; 4)g) = f 2=10; 0; 7=10; 1=10g, the difference between (PACE) and
(MDP) is very small, only 0:14%. In contrast, with P(f c = (1 ; 2; 3; 4)g) = f 9=10; 0; 0; 1=10g, the
over-consumption of (PACE) is 96:43%. This difference is mainly due to the speed discretization.
Increasing the number of available processor speeds will reduce this difference.

Test with an Edge Detection Algorithm

We tested our online speed policy on a real life embedded system, an edge detection algorithm. It
takes as input a video and produces images that represent the edge detection of one frame out of
3 from the video. This system displays a great variety for its execution time, depending both on
the input data and on the initial state of the hardware. We executed it many times to build the
distribution of its execution time (see Figure 5.3).
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Figure 5.3.: Distribution of execution time for the edge detection algorithm over 1; 000 executions on a1s
video. The �rst barplot depicts the distribution of the execution time, and the second is the
corresponding discretized distribution used to test (MDP) , (OA) and (PACE) .

Figure 5.3 represents the distribution of the duration for the edge detection algorithm on a video
of 1 second, that produces10 images. Since the number of different durations is important (90
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different values in our example, see the top part of Figure 5.3), we reduce it to 10 groups only by
aggregating the values into groups as represented in the bottom part of Figure 5.3.

The overhead of (PACE) versus (MDP) on this example is 186%, while it is 106% for (OA)
versus (MDP) . Concerning (PACE) , this is due to the discretization that is intrinsic to this
algorithm. Concerning (OA) , this is expected because the mean of the size distribution (32:28ms)
is signi�cantly lower than the Wcet (114ms).

5.6 Conclusion

We have proposed a Markov Decision Process(MDP) solution to compute the optimal online
speed policy for the single processor hard real-time energy minimization problem. The goal of this
policy is to decide the speed of the processor so as to minimize the total energy consumption of
the processor thanks to statistical information of the real-time jobs (release time, execution time,
deadline), while guaranteeing that no job misses its deadline. Our context is more general than
previous work: jobs' execution times are unknown at release time, jobs are sporadic, and several
jobs can be active at the same time.

Simulations show that our (MDP) solution outperforms classical online solution on average, and
can be very attractive when the mean value of the execution time distribution is far from the Wcet,
and/or when the statistical knowledge on the jobs' features is accurate.

As in Chapter 4, since the time and space complexity of our algorithm is exponential in the job
deadlines, it will be interesting to �nd some methods to reduce the state space size, because it
limits for now the applicability of our solution. A potential solution would be to reduce the state
space by merging some “close” states of the(MDP) .

Up to know, in Chapter 4 and 5, we do the assumption that for future jobs, we have a statistical
information. Practically, this information is most often not available. Without these data, the only
solution is to learn all the characteristics of job during the HRTS execution. In the following we
present two chapters based on learning techniques, that determine online the optimal policy in
the case of clairvoyant assumption for active jobs and no information for future jobs. The next
chapter, Chapter 6 focus on speci�c learning: learning the distributions of the job features to learn
the (MDP) parameters.
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After considering the case where we have statistical information on active and/or future jobs, we
will focus in this chapter on the case where we have no information on these jobs. Therefore, we
have to uselearning techniques. This chapter analyses one of the learning techniques we will see
in this thesis. The other one will be present in Chapter 7. Let us begin with the state of the art and
the problem statement.

6.1 State of the Art

Determining on-line the speed policy to apply to the processor can be done by learning the
parameters of the Markov Decision Process (MDP) that guides our problem.

In this section, nothing is known on the arrival model of the jobs, nor on their characteristics.
However, we know that an MDP is a model that can represent the system evolution. Therefore,
our goal is to learn all the parameters of this MDP. This MDP will be described in Section 6.2. We
are thus in the �eld of model-based learning.

During all these experimentations, we want to improve, as in the previous chapters (Chapter 3
to 5), the speed choices in order to tend to the average gain (here the minimal average energy
cost). In this chapter, we focus on theundiscounted case, which is why we compute the minimal
average energy cost. Nonetheless, some of our results are also valid in the discounted case (i.e.,
with a discount 
 < 1), and each time it is the case, it will be clearly stated.

To determine the MDP parameters, we �rst implement a training part , during which we learn the
state space and the transition probability matrix. When the system evolves, we discover states,
and we register all the possible jobs that arrive in the system. At some point in time, we stop this
learning part. We then determine the probability of jobs arrival by averaging the number of job
visits per learning step. We thus obtain all the parameters to solve our MDP. Finally, thanks to
a Value Iteration algorithm (as in Chapter 4), we determine the optimal speed policy, which we
apply to the processor starting from this time. Note that other algorithms can also be used to solve
the MDP, such as the Policy Iteration algorithm. These classical algorithms, which compute the
optimal average energy consumption, are provided for example in [Put05].

We only consider a discrete state space and discrete action space. The considered MDP is described
in the next section.
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6.2 Markov Decision Process

Let us start by providing an informal description of the model description, i.e., the MDP. Then
we observe the behavior of the system throughout its evolution. At each sample, we observe the
job arrivals and their characteristics. A samplecorresponds to the arrival of a set of jobs, possibly
empty.

Jobs arrive during the execution of the system, and to decrease the present work quantity, the
processor runs at different speeds during the time. More speci�cally, at each samplen, the
processor has to use an available speedsn to execute partially or totally jobs that are present in
the system. The time evolution and the state description and shift are displayed in Fig. 6.1.

As the state space is independent of time (indeed at a certain time we have visited all the possible
states), in the following we will only consider w; w0, two states and analyze a transition from state
w to state w0 using speeds. Let us also de�ne Sw , the set of speeds that are both available in the
processor speci�cation and also that satisfy the feasibility of the process. In other words it means
that speeds inSw are all large enough to �nish jobs that release at the next time unit.

Fig. 6.1 illustrates the evolution of our state from sample n to n + 1 .

w w0 = Succ(w; s; a)

a

s

+ Power(s)

Figure 6.1.: Markov decision process evolution with job arrivals between samplen and n + 1 . At sample n,
we are in state w and by using processor speeds, with job arrivals a, we go to state w0.

Formally, we consider the following MDP, denoted (Power; W; P; 
 ) in the following:

• The stateof the system at samplen is the remaining work function w. The �nite set of states
is denoted W.

• The only possible action that can be taken by the decision-maker (or learner, in the following)
is the processor speedsn selected at samplen among a �nite set W (jobs are executed
according to EDF scheduling).

• The transition from one state to the next depends on the speedsn (that will reduce the
remaining work of the jobs) and the next job arrivals. In the following, we denote by Succ
the successor function:w0 = Succ(w; s; a) returns the state w0 succeeding to statew when
the speeds is used over the time interval [t; t + 1] and the job arrivals at t + 1 is a.

When job arrivals follow a probability distribution ( P(a) denotes the probability that the
next job arrival is a), this induces a transition probability , P(w; s; w0) from state w to state
w0 under speeds:

P(w; s; w0) = P(a) if w0 = Succ(w; s; a):
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• The immediate cost after n samples is the power consumed by the processor atn, and is
denoted Power(sn ).

The average cost is theundiscounted energy spent per time unitand is de�ned by:

v = E

"

lim
N !1

 
1
N

NX

n =0

Power(sn )

!#

(6.1)

with N the total number of samples. This limit exists as soon as the MDP is weakly communicating
(obviously true here because the state where no jobs are present can be reached with positive
probability from any other state).

Alternatively, the average cost can be computed as thelimit of the total discounted cost:

v = lim

 ! 1

E

 

(1 � 
 )
1X

n =0


 n Power(sn )

!

(6.2)

where 
 < 1 is the discount. It follows that the discount cost for any initial state w is:

V 
 (w) = E

 

(1 � 
 )
1X

n =0


 n Power(sn )

!

: (6.3)

In the following we will focus on the undiscountedcase. The discounted case will studied in details
in Chapter 7. Some properties or theorems will be valid for the two situations, in which case it
will be noti�ed at the beginning of the section. Since the discounted casewill be analyzed in details
in Chapter 7, simulations in this chapter will be done for the discounted caseto be able to compare
the result of this chapter with the results of the next chapter.

6.3 Problem Statement

The goal of this chapter is to learn the speed policy to apply to the processor, that minimizes
the average undiscounted energy, denotedv in Section 6.2, by considering, in contrary to the
previous chapter, that job arrival distribution is unknown. In this case, we want to “build” these
data by learning the job arrival distribution. The unknown information we seek to learn are the
characteristics of the incoming jobs (sizes and deadlines) and also their arrival probabilities. We
will discover these information while the jobs are arriving.

Therefore the transition probability matrix P of the MDP described in Section 6.2 is our unknown.
To determine this matrix, we have to determine the probability P(w; s; w0) to go from state w to
state w0 under speeds. This value matches with the job arrival probability, because the transition
probability matrix is a deterministic function in job distribution. As said before, this probability
depends only on the workload arrivals at each samplen, denoted An , because of our job hypothesis,
i.e., the fact that there are i.i.d. for all job parameters. Furthermore, we assume a stationary
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assumption on the probability laws of the job release time. We de�ne the workload arrival function
An as follows:

An (:) =
X

i j r i = n

ci H r i + di (:) (6.4)

An is given at each instant and with this new incoming information, we enhance the knowledge of
the system. We callf An g0;:;t a learning trajectory, which is built progressively. These job arrivals
are distributed by following the law of their features. After observing this function An , we can
improve the value of the transition probability matrix P.

Practically, determining the speed schedule by learning the transition probability matrix proceeds
in two phases:

1. The learning phase: In the �rst phase, we learn the transition probability matrix. In the
sequel, we denoteN the length of the learning phase. From 0 to N , a group of jobs arrives
with a certain probability distribution at each time step, and we improve step after step the
P̂N matrix value. At time N , we therefore obtain P̂N .

2. The application phase: In the second phase, that is, at timeN , we compute the optimal speed
schedule of the MDP with transition probability matrix P̂N , and we apply this speed policy
to the processor for any samplen > N .

To assess the resulting speed policy, we will compare it in terms of energy consumption, during
the application phase, against the best speed policy that does not anticipate jobs arrival, that is,
against the Optimal Available policy (OA) [YDS95].

6.4 Probability Transition Matrix Learning

We learn the transition probability matrix P(w; s; w0) and the state spaceW of the MDP. After this
learning phase, we can determine the optimal speed policy by solving the MDP with a dynamic
programming algorithm, such as the Value Iteration algorithm.

We study two different versions:

1. The Asynchronousversion: At each iteration, the transition probability matrix is updated
only for each triplet (w; s; w0) that is visited. This version is called Asynchronous Probability
Transition Matrix Learning.

2. The Synchronousversion: At each iteration, the transition probability matrix is updated
for all the possible triplets (w; s; w0). This version is called the Synchronous Probability
Transition Matrix Learning (PL) .
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The synchronous version implies that, for each triplets (w; s; w0), we compute the following
equations that depend of the characteristics of jobs arrival:

8w; w0 2 W ; 8s 2 Sadmissible(w) ;

P̂n i +1 (w; s; w0) =
ni

ni + 1
P̂n i (w; s; w0) +

1
ni + 1

, if w0 = Succ(w; s; An i )

(6.5)

P̂n i +1 (w; s; w0) =
ni

ni + 1
P̂n i (w; s; w0), otherwise (6.6)

As explained before,An is the set of arrival jobs after n samples. The formulaw0 = Succ(w; s; An )
corresponds to the next state function w0 at the next sample and, according to Lemma 4.1 in
Chapter 4, we have:

w0 = Succ(w; s; An ) = T
�
(w � s)+ �

+ An (6.7)

Furthermore, we de�ne the function FirstPassing(:), which returns the number of the �rst it-
eration where the state w is visited. As a result, ni in Eq. (6.6) is de�ned as follows: ni =
n � FirstPassing(x), where n is the number of samples.

Once the probability transition matrix is learned, we use the Value Iteration algorithm to compute
the optimal speed policy.

The asynchronous case obeys also to Eq.(6.6) , however it modi�es the state space and the proba-
bility matrix only for the current state wn and the arbitrary (not necessarily optimal) speed sn . The
convergence time is longer, because we only update one triplet by timing iteration. In this chapter,
we only present the Synchronous version(PL) , because there exists other methods in the literature
to solve the asynchronous part, which are not based on the same idea (more precisely, they are
based on upper-con�dence bound methods [AO06] and on Thomson sampling [ORR13]).

6.5 Learning Probability Matrix Algorithm (PL)

In this section, we describe the Synchronous Learning Probability Matrix Algorithm (PL) . The line
that depends on the system behavior is typeset in blue italic font. Here we gather the characteristics
of the jobs that arrive at the time step n + 1 .

The Asynchronous Learning Probability Matrix Algorithm is based on the same idea, except that
we update only one triplet (w; s; w0) at each time step. The loop in line 4 is suppressed and theP̂
value update is done only for the current state w with the value corresponding to the previous
speed policy, i.e., only for one speed choices. As a consequence, there is only one successor
state w0, and line 9 is executed only once for each iteration of the while loop. The speed choice
at each time step is made such that the energy consumption is minimized. Then, by relying on a
softmax computation1, we choose a non-optimal speed to visit all the state space.

1https://en.wikipedia.org/wiki/Softmax_function
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Algorithm 9: Synchronous Learning Probability Matrix Algorithm (PL)

1: P̂0(w; s; w0) is set to an arbitrary value (say 0) for all w, s and w0

2: Nvisit (w; s; w0)  0 for all w, s and w0 % Visit counter for triplet (w; s; w0)
3: while n < N do
4: for all state w and all admissible speeds do
5: Get the new incoming jobsAn +1

6: W  Succ(w; s; An +1 )
7: for all state w0 do
8: if W = w0 then
9: P̂n +1 (w; s; w0)  Nvisit (w;s;w 0)

Nvisit (w;s;w 0)+1 P̂n (w; s; w0) + 1
Nvisit (w;s;w 0)+1

10: else
11: P̂n +1 (w; s; w0)  Nvisit (w;s;w 0)

Nvisit (w;s;w 0)+1 P̂n (w; s; w0)
12: end if
13: end for
14: end for
15: end while

Once the matrix P̂n has been learned and constructed with Algorithm 9, we use the Value Iteration
algorithm to compute the optimal speed schedule of the(MDP) that uses the transition probability
matrix P̂n .

This raises the following question: Is the P̂n matrix returned by Algorithm 9 close enough to the
actual transition probability matrix P, so as to be able to compute the optimal speed policy? The
next section will answer partially this question by unveiling a convergence criterion.

6.6 Convergence Criterion

In this section, we establish a convergence criterion for the learning phase, based on our estimate
on the probability transition matrix. The convergence criterion presented in Prop. 6.1 will be valid
for the two cases, undiscounted and discounted. Letv� be the average cost of the optimal policy
using the true distribution of jobs with transition matrices P, and let v̂n be the average cost of the
optimal policy using the estimate distribution of jobs after n samples, with transition matrices P̂n .
Then a bound on v̂n � v� can be obtained by using perturbation analysis of Markov Chains.

The optimal cost vector is denoted byV � ;
 and the estimated cost vector byV̂ 

n .

Proposition 6.1. The error v̂n � v� (or kV̂ 

n � V � ;
 k in the discounted case) is smaller than" with

high probability if n, the duration of the learning period, satis�es:

n �
1:66Rmax K

"2 ; (6.8)

whereRmax is the energy cost of the maximal speed,K = 1
(1 � 
 ) in the discounted case andK = 1

p�
0

in the undiscounted case (withp0 the probability of no job arrival and � the maximal deadline).
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Proof. Let us �rst consider the discounted case. By de�nition, for any state w,

V̂ 

n (w) = min

s2S possible(x)

(

(1 � 
 )Power(s) + 

X

w 02W

P̂n (w; s; w0)V̂ 

n (w0)

)

�

(

(1 � 
 )Power(s� ) + 

X

w 02W

P̂n (w; s� ; w0)V̂ 

n (w0)

)

where s� is the optimal speed under the exact distribution. Therefore, by denoting P(s) the matrix
P(:; s; :), one gets

kV̂ 

n � V � ;
 k � 
 kP̂n (s� )V̂ 


n � P(s� )V � ;
 k (6.9)

� 
 kP̂n (s� )V̂ 

n � P̂n (s� )V � ;
 + P̂n (s� )V � ;
 � P(s� )V � ;
 k (6.10)

� 

�

kV̂ 

n � V � ;
 k + kV � ;
 kkP̂n (s� ) � P(s� )k

�
(6.11)

Eq. (6.11) yields:

kV̂ 

n � V � ;
 k �

1
1 � 


kP̂n (s� ) � P(s� )k:kV � ;
 k

�
Rmax

1 � 

kP̂n (s� ) � P(s� )k (6.12)

where Rmax is the energy cost of the maximal speed.

The undiscounted case is more complicated. By de�nition, v� = � � Power with � � the stationary
probabilities under the optimal policies for the exact distribution. Using the speed policy of the
exact distribution under the estimated transition matrix gives a larger average cost: v̂n � � n Power,
where � n is the stationary probabilities of matrix P̂n (s� ).

Let p0 > 0 be the exact probability that no job arrives at the current sample. Then, from each
state w, the state (0; 0; : : : ; 0) is reached after � steps with probability larger than p�

0 . This implies
that � � (0; 0; : : : ; 0) > p �

0 . Using the results and terminology presented in [IM95], the absolute
stability of P can be written as k� � � � n k � K kP̂n (s� ) � P(s� )k with K � k A � 1k. Here A is the
non-singular matrix I � (P(0 ::: 0) ) � , where P(0 ::: 0) is the sub-matrix of P without its �rst row and
�rst column. Since for any state i 6= (0 : : : 0), we have

P
j 6=(0 ::: 0) P �

ij < 1 � p�
0 , as explained above,

then the matrix Q de�ned by Q = 1
1� p�

0
(P �

(0 ::: 0) )
� is a sub-stochastic matrix. The inverse ofA is

A � 1 =
1X

n =0

(P(0 ::: 0) )
� n =

1X

n =0

(1 � p�
0 )n Qn

SinceQ is sub-stochastic, we havekA � 1k � 1=p�
0 . Finally,

v̂n � v� � � n Power � � � Power

� k � � � � n kRmax

�
Rmax

p�
0

kP̂n (s� ) � P(s� )k:

6.6 Convergence Criterion 113



In both cases, the error depends on the normkP̂n (s� ) � P(s� )k. Using a 95%con�dence interval,
we can determine a general bound on this norm, which depends only on the iteration number n.

By using the Central-Limit theorem and by de�ning � the standard deviation of P̂n , and n the
training duration, then P̂n (:) satis�es the following equation:

8w; w0 2 W 2; 8s 2 S,

P

 

P(w; s; w0) �
� � 1

N (0 ;1) (0:95)�
p

n
� P̂n (w; s; w0) � P(w; s; w0) +

� � 1
N (0 ;1) (0:95)�

p
n

!

� 0:95

(6.13)

where � N (0 ;1) (:) is the cumulative distribution function of the standard normal distribution.

Eq. (6.13) is valid for any triplet (w; s; w0), but some triplets can be visited more often during the
learning phase (depending on the jobs arrival probability), so this equation can be satis�ed very
quickly in some cases. In other terms, it means that for some cell of the probability transition
matrix P̂n , the convergence is reached quickly. We could have introduced a numberni correspond-
ing to the convergence bound of thenth

i triplet. Instead, we prefer to keep the same boundn for
all the triplets. Here n corresponds ton = max 8w;s;w 0 ni . It is the number of steps of the (PL)
algorithm that we need to learn all the cells of the P̂n matrix.

Therefore,

P(kP̂n (w; s; w0) � P(w; s; w0)k � " ) = 0 :95 )

�
� � 1

N (0 ;1) (0:95)
� 2

� 2

"2 � n (6.14)

By numerical application, the convergence ofP at " = 0 :01 at 95%is satis�ed when:

2:5762 � 2 " � 2 � n (6.15)

Since each transition follows a binomial distribution, we have:

� (w; s; w0) =
p

P(w; s; w0)(1 � P(w; s; w0)) �
1
2

;

and therefore:

n �
1:66
"2 (6.16)

This concludes the proof.

It follows that, to satisfy vn � v� � 0:01 in 95%of the simulations, the training period must use at
least n � 1:66K: 108 job arrivals. This imposes a very long training period to guarantee a small
error in the speed policy. The numerical experiments reported in Section 6.9 show that, in most
cases, a short training period is enough to obtain very good performances. This may come from
two reasons: �rst, the theoretical bounds are not tight, and second, two quite different transition
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matrices may have similar optimal costs: in all cases, the lower the speed, the better the energy
cost.

6.7 Comparison with Optimal Available policy (OA)

In this section, we show a comparison between the optimal policy� � , which gives the speed at a
time instant if we have the exact value of the transition probability matrix P, and the Optimal
Available (OA) speed policy in the undiscounted case [YDS95].(OA) is interesting because it is an
online speed policy that does not take into consideration statistical assumptions. As a consequence,
our learning policy that learns the transition probability matrix has to beat (OA) in term of energy
consumption. The solutions presented in Chapters 4 and 5 do consider some statistical knowledge,
and the comparisons show that both outperform (OA) in terms of energy consumption.

This part focuses purely on the undiscounted case. The discounted case will be analysed in detail
in Chapter 7.

Recall that (OA) is an online speed policy that chooses the speeds(OA) (w) in state w to be the
minimal speed in order to execute the current remaining work w at samplen, should no further
jobs arrive in the system. More precisely, in statew, (OA) uses the speed

s(OA) (w) = max
u

w(u)
u

(6.17)

where w(:) is the remaining work function.

We �rst show that, under any state w 2 W , the optimal speed � � (w) is always larger than
s(OA) (w).

Proposition 6.2. Both in the �nite or in�nite case, the optimal speed policy� � satis�es

� � (w) � s(OA) (w) (6.18)

for any statew 2 W , if the power consumptionPower is a convex function of the speed.

Proof. The proof is based on the observation that(OA) uses the optimal speed assuming that no
new job will come in the future. Should some job arrive later, then the optimal speed will have
to increase. We �rst prove the result when the set of speedsS is the whole real interval [0; smax ]
(continuous speeds).

Two cases must be considered. Ifs(OA) (w) = max u
w(u)

u is reached for u = 1 (i.e., s(OA) (w) =
w(1)), then � � (w) � s(OA) (w) by de�nition, because the set of admissible speedsA(w) only
contains speeds larger thanw(1) (see Eq. (6.17)).

If the maximum is reached for u > 1, then A(w) may enable the use of speeds beloww(1).

Between the current time instant and u, some new job may arrive and therefore, the optimal policy
should satisfy

P u� 1
i =0 � � (wi ) � w(u).

6.7 Comparison with Optimal Available policy (OA) 115



The convexity of the power function Power implies2 that the terms of the optimal sequence
� � (w); : : : ; � � (wu� 1) must all be above the average value (which is larger thanw(u)=u = s(OA) (w)).
In particular, for the �rst term, � � (w) � s(OA) (w).

Now, if the set of speeds is �nite, then the optimal value of � � (w) must be one of the two available
speeds inS surrounding � (OA) (w). Let s1 and s2 in S be these two speeds,i.e., s1 < � (OA) (w) � s2,
and assume again that the max in Eq.(6.17) is not reached for the �rst time step ( i.e., u = 1 ). If
the smallest speeds1 is chosen as the optimal speed, this implies that further choices for� � (wi )
will have to be larger or equal to s2, to compensate for the work surplus resulting from choosing
a speed below� � (w). This implies that it is never sub-optimal to chooses2 in the �rst place (by
convexity of the Power function).

This trajectorial argument is true almost surely, so that the inequality � � (w) � s(OA) (w) will also
hold for the expectedenergy over both a �nite or in�nite time horizon.

Prop. 6.2 allows us to decrease the state space study, because we can suppress all triplets(w; s; w0)
that use speeds(w) below s(OA) (w).

6.8 Feasibility Condition

Recall De�nition 2.2: The feasibility is the fact that the online speed policy misses no deadline
by using only available speeds. In our case, the online speed policy is the one learned during the
learning phase. The however issue is that, in the learning case, the job knowledge is incomplete,
which raises the question of the feasibility condition. In fact, since the feasibility condition is
independent of the job distribution, even if the system knowledge is incomplete, we can still keep
the same feasibility condition. This is stated Theorem 6.1, which gives the value ofsmax that
ensures feasibility of the (PL) algorithm only in the undiscounted case.

This part analyses only the undiscounted case. The discounted case will be analysed in detail in
Chapter 7

Theorem 6.1. The feasibility of(PL) is ensured if and only ifsmax � C.

Practically, before job executions we don't know if the policy on the system is feasible, but while the
maximal job size satis�ed smax � C, we are certain that the policy decided for the jobs execution
is feasible. We therefore have adynamic feasibility condition: As soon as a job size is abovesmax ,
we have a potential feasibility problem, otherwise the feasibility is guaranteed. Let us now know
prove Theorem 6.1.

Proof. By de�nition, (PL) completes all the jobs before their deadline by construction: � (PL) (n) �
w(PL)

n (n + 1) . Therefore, (PL) is feasible if � (PL) (n) � smax .

1. Case smax < S : In that case, no speed policy can guarantee the feasibility, since there always
can exist a sequence of jobs, each withS work quantity, that arrive at each instant. In that situation,

2Actually, we use the fact that the sum
P u � 1

i =0
Power(s) is Schur-convex whenPower is convex (see [MO79]).
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the mean work quantity that arrive is S, and since the maximal processor speed is strictly belowS,
we can not execute all the work quantity.

2. Case smax � S: To prove the result, we �rst modify the Power function as follows: For all
speedss > s max , we set Power(s) = 1 . For s � smax , the Power function remains unchanged.
This modi�cation is valid because the processor cannot use speeds larger thansmax anyway.
Therefore, the energy consumption for such unattainable speeds can be arbitrarily set to any value.
The bene�t of using this modi�cation is the following. Instead of forcing the speed to remain
smaller than smax , we let the scheduler use unbounded speeds, but this incurs an in�nite energy
consumption. It follows that a test to check if a policy uses speeds larger thansmax is that its
average energy consumption will be in�nite.

Starting from an empty system with no pending job, i.e., w0 = (0 ; 0; : : : ; 0), we de�ne the following
naive policy ~� :

8t 2 N; ~� (n) := cn where cn =
X

J i =( r i ;c i ;d i )

f ci jr i = ng: (6.19)

In other words, cn is the amount of work that arrived at sample n, which is by de�nition less
than S. The policy ~� is feasible because it never uses a speed larger thanS � smax and all work is
executed as fast as possible (within one time slot after its arrival). Furthermore, since for anyn,
~� (n) � S, its long run expected energy consumption per time unit satis�es Q~� (w0) � Power(S).

The optimal policy, being optimal in energy, satis�es Q� (PL) (w0) � Q~� (w0), henceQ� (PL) (w0) �
Power(S). Therefore, (PL) is feasible by construction and never uses a speed larger thansmax .

6.9 Numerical Experiments

As described in previous sections (in particular Sections 6.3 and 6.4), we consider a training period
over which the learning phase of (PL) is used with one or several typical job sequences to learn
the optimal speed policy. Once the training period is over, after N samples, the learned policy is
used in production to save energy in the deployed application.

During the training case, the performance metric is the length of the training period and the
quality of the learned policy.

A key point is that the simulations are performed with a reducedset of processor speeds. More
precisely, in state w we use the setSpossible (w) = f s(OA) (w); s(OA) (w) + 1 ; s(OA) (w) + 2 g. The
reason for this choice is that we expect(OA) to be “not too far” from the optimal speed policy.
This is because(OA) is optimal when no further jobs arrive. Therefore, we expect the optimal
speeds to be close to the speed chosen by(OA) . This choice of reduced processor speeds, along
with Prop 6.2, signi�cantly decreases the duration of our experiments.
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6.9.1 State Space Construction

Since we have no knowledge on the maximal job deadline� and of the maximal job size S
beforehand, the state spaceW is not known in advance, so we cannot use directly the(PL)
algorithm directly as displayed in Section 6.5. To solve this issue, we build the state space
progressivelyand add all the possible states reachedw 2 S by using all the possible speed
belonging to Spossible (:). When a group of jobsAn arrives at time n, we update the current state w
space by computing the successors ofw for all states andall possible speeds with job arrivalsAn .
As a consequence, if statew has not been already visited, we add it in W. The state space grows
until we have visited all the possible job arrival con�gurations.

To implement this modi�cation, Algorithm 9 is changed at Line 4, where we replace W by Wn , the
set of states that have been visited up to samplen. Furthermore, we have to add an if condition
inside the loop beginning at Line 7. This if condition checks whether the state is already present in
the state space; otherwise, we add it inWn .

6.9.2 Performance Criteria

The �rst important point on which we focus is the evaluation of the performance of our learning
algorithm. This is why we present in this section several criterion to evaluate both the learning
performance and convergence of Algorithm 9.

1. To begin, we have to check if the probability transition matrix obtained after the learning
phase of(PL) represents well the “actual” transition probability matrix of the MDP. If this
one is known, we can analyze its convergence. One criteria will be the norm of the difference
between the two probability transition matrices, kP̂n � Pk, versus the lengthn of the training
phase. Even though in Section 6.6 we have an upper bound on the number of iterations
of the learning phase to ensure a “good” convergence of the probability transition matrix
(and also the resulting speed policy), during the simulation we can have in practice a smaller
convergence iteration value, where we know the value of the probability transition matrix.

2. The other metric to analyze the learning performance is to compare our speeds policy
obtained after (PL) with (OA) , the optimal policy when we have zero information for future
jobs. Therefore, we will compute in the following part the overhead of the consumption
of (OA) in comparison with the speed policy obtained after a (PL) learning phase with a
dynamic programming on the learned probability transition matrix. The overhead is de�ned
as follows:

overhead(OA) vs(PL) =
v(OA) � v(PL)

v(PL)
(6.20)

These two metrics will be used in the next section to evaluate(PL) .
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6.9.3 Simulation Results

To evaluate the performance of our learning algorithm (PL) , we have simulated 70 different sets
of job types. Each set consists of a numberk of job types of the form J i = ( pi ; ci ; di ), such that:

• pi is the arrival probability of J i , randomly chosen in the interval [0:1; 0:9]. This arrival
model means that, at each time instant, a job of typeJ i has a probability pi to be released,
for each i 2 f 1; ::; kg. We can thus have, at a given time instant, between0 and k jobs that
are released simultaneously.

• ci is the size ofJ i , randomly chosen in the setf 0; ::; 4g.

• di is the deadline of J i , randomly chosen in the setf 1; 2g.

• k � 5 and
P k

i =1 pi 2 [0:8; 1]. These two choices ensure that the generated systems are
“interesting” for the learning phase, i.e., they have an average load such that the range of
feasible speeds in not reduced to a singleton (as it would be the case, for instance, if at each
instant the cumulated size of job arrivals would amount to a load equal to smax ).

Moreover, the chosen value of the discount
 is 0:9. Regarding Rmax , is differs for each set of jobs
and it is bounded by s3

max . Since we have a discount factor
 < 1, (PL) uses the following set
of speedsf s(OA) (w) � 1; s(OA) (w); s(OA) (w) + 1 ; s(OA) (w) + 2 g. The additional speed in this set,
s(OA) (w) � 1, is due to the fact that we are in the discounted case (see Section 7.5 of Chapter 7).
Recall that the choice of the discount case (and not the undiscounted) for the simulation is made
to be able to compare the result of this chapter with the results of Chapter 7.

In order to understand more precisely the distribution of the different random simulations, we use
in the upcoming �gures a box representation, where each box is composed of:

• A black central line represents the median value.

• The upper bound and lower bound of the rectangle represent respectively the3rd and 1st

quartile.

• The end of the segment is 1:5 times the inter-quartile distance.

• The possible white bullets are the extremal value that are not included in the previous cases.

• The red line and the red points represent the evolution and the value of the mean of the set
of set of jobs.

Fig. 6.2 displays the evolution of the difference kP̂n � Pk, where P̂n is the transition probability
matrix learned after n iterations, n being the length of the training period, ranging between 103

and 107.

Suppose now that the user wishes the energy error in the discounted case,kV̂ 

n � V � ;
 k, to be

less than10� 2. Recall that Eq.(6.12) relates the energy performance and the probability matrix
difference:

kV̂ 

n � V � ;
 k �

Rmax

1 � 

kP̂n (s� ) � P(s� )k
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Figure 6.2.: Evolution of the norm kP̂n � Pk in function of the duration n of the learning phase: n 2
f 103 ; 104 ; 105 ; 106 ; 5:106 ; 107g.
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where Rmax = Power(smax ). Here, smax differs for each set of jobs for feasibility reason. Indeed,
(PL) uses the set of speedsf s(OA) (w) � 1; s(OA) (w); s(OA) (w) + 1 ; s(OA) (w) + 2 g, hence s(PL)

max =
s(OA)

max + 2 . As we will prove in Chapter 8 (more precisely, in Theorem 8.1), the feasibility condition
for (OA) is:

s(OA)
max � C (h� � 1 + 1)

where C is the maximum amount of work that can arrive at any instant ( i.e., C =
P k

i =1 ci ), � is
the maximum relative deadline ( i.e., � = max k

i =1 di ), and hn is the n-th harmonic number ( i.e.,
hn =

P n
i =1 1=i).

This yields the following inequality:

kV̂ 

n � V � ;
 k � k P̂n � Pk

(C(h� � 1 + 1) + 2) 3

1 � 

(6.21)

Consider for example a simulation whereC = 4 and � = 2 . We then haveC(h� � 1 + 1) + 2 = 10 ,
hence (C (h � � 1 +1)+2) 3

1� 
 = 104. Eq. (6.21) therefore implies that it suf�ces to take kP̂n � Pk � 10� 6

to ensure that kV̂ 

n � V � ;
 k � 10� 2. In Fig. 6.2, we see that this theoretical boundon kP̂n � Pk is

not yet reached after 107 learning steps. This can be seen as a poor performance, but in fact, as
shown in Fig. 6.3, the convergence is achievedin practiceafter only 104 learning steps.

100 1m 10m 100m 1M 10M

7.4%

-10%

0%

10%

20%

30%

7.6%

Figure 6.3.: Overhead in percentage of(OA) versus the learning algorithm (PL) depending on the duration
n of the learning phase: n 2 f 102 ; 103 ; 104 ; 105 ; 106 ; 107g.

Fig. 6.3 depicts the overhead of the energy consumption of(OA) compared with the speed policy
obtained with a dynamic programming on the probability transition matrix learned with (PL) , in
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function of the duration n of the learning phase. As can be seen, the convergence for this second
criterion is very fast: the speed policy learned with (PL) outperforms (OA) by 7:4% on average
after 100 learning steps only and this percentages only progresses marginally whenn increases
(7:6% on average after107 learning steps). These very good performances contrast signi�cantly
with the slow convergence rate on the �rst criterion, as depicted in Fig. 6.2.

Between 104 and 107 learning steps, all the box-plots have almost the same distribution: their
mean value is7:6%, their median value is 5:9%, and their quartiles are also identical. For n = 102,
the results are slightly different: the mean value is 7:4% and the median is smaller to, at 5:5%.
Oncen � 103, the mean and median values remain constant. However there are some job sets
that have a negative overhead. This means that, for these particular job sets,(OA) is better than
the speed policy learned with (PL) . Finally, once n � 104, all the overheads are strictly positive,
meaning that for each set of jobs, the speed policy learned with(PL) outperforms (OA) . This is
very good result because104 iterations is a reasonably small number for a learning phase.

It is interesting to compare Fig. 6.3 and Fig. 6.2: even though the convergence is not reached
after 107 learning steps for (PL) , the energy consumption of the speed policy learned with(PL) is
always strictly better than that of (OA) after only 104 learning steps.

Over-consumption of OA vs PL for 70 different task sets

Simulation Number

O
ve

r-
co

ns
um

pt
io

n 
(%

)

0
5

10
15

20
25

30
35 Mean

7.63

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 x < 0 x <= 0 x < 5 x < 10 x < 15 x < 20 x < 50

Over-consumption OA versus PL gathering by Over-cost

Range of Over-consumption with x the Over-consumption

N
um

be
r 

of
 s

im
ul

at
io

ns
 (

%
)

0
20

40
60

80
10

0

Figure 6.4.: Energy consumption overhead in percentage of(OA) versus the speed policy learned with
(PL) after 103 learning steps. The job characteristics(pi ; ci ; di ) are such that pi 2 [0:1; 0:9],
ci 2 f 0; : : : ; 4g, and di 2 f 1; 2g.

Our �nal results are shown in Fig. 6.4, which depicts the energy consumption overhead in
percentage of(OA) versus the speed policy learned with(PL) after 103 learning steps. The job
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characteristics J i = ( pi ; ci ; di ) are chosen as follows: the arrival probabilities pi are randomly
chosen in the interval [0:1; 0:9], the sizesci are randomly chosen in the setf 0; : : : ; 4g; and the
deadlines di are randomly chosen in the setf 1; 2g.

Fig. 6.4-left shows the energy overhead of each individual job set sorted by the resulting en-
ergy consumption overhead. (OA) outperforms (PL) over only one job set. Otherwise (PL)
systematically outperforms (OA) , and the average gain is7:63%.

Fig. 6.4-right gathers the simulations by their over-consumption percentage value. Each vertical
bar corresponds to an interval of energy consumption overhead of(OA) versus(PL) . For instance,
there are 46%job sets for which this energy overhead is below5%.

6.10 Conclusion

This chapter shows that, with no statistical information on jobs, learning the transition probability
matrix of the MDP can be a good opportunity to converge towards the optimal speed policy both
cases, discounted and undiscounted.

The theoretical convergence criterion is long to be obtained, and yet the optimal speed policy is
obtained after a short training period. Overall, the learned speed policy outperforms algorithms
that do not take advantage of a learning phase, such as(OA) .

Here, we have focused on synchronous learning. One extension will be to investigate also
asynchronous learning, in order to minimize the undiscounted case. This has been studied in
the literature and there are based on different technique than the one studied in this chapter. In
Chapter 7 we will study an another method based onQ-learning to solve this problem, however
this solution will be practical only for the discounted case, in contrary to this chapter where the
two cases are possible.
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7.1 Introduction

In Chapter 6 we proposed an algorithm to learn the Markov Decision Process (MDP) parameters,
and from this knowledge we showed how to compute the online speed policy that minimizes the
undiscounted average energy consumptionby solving the MDP with a classical dynamic programming
algorithm (in our case Value Iteration). In this chapter we focus on a different problem: We
want to minimize the discounted total energy consumptionof the processor. Intuitively, having a
discount factor 
 strictly less than 1 means that a given speed has a higher impact on the energy
consumption now than the same speed usedin the past. The “real world” justi�cation for a discount
is to consider that the electricity price is subject to in�ation, the rate of which is exactly the inverse
of the discount factor 
 .

To achieve this, we propose in this chapter to learn directly the energy consumption of the optimal
policy, and therefore the optimal speed policy, without knowing the MDP parameters as we did in
Chapter 6.

Since we want to learn a policy that chooses the processor speed in order to maximize the
cumulative energy cost of the chosen speeds by using the results of previous speed choices, the
learning part should focus on reinforcement learningtechniques. Furthermore, since we have
no idea on the arrival job model and on the job characteristics, we are in the �eld of model-
free reinforcement learning, with a discrete state space (i.e., all the job characteristics, although
unknown, are assumed to be inN) and a discrete action space (i.e., all the speeds used will be
in N).

One solution to solve such a reinforcement learning problem is to usetemporal difference methods,
which generalize the Value Iteration algorithm presented in Chapter 4. It is based on Bellman's
equation and Sutton has proposed the �rst algorithms in [SB98]. One of the temporal difference
algorithm is the Q-learning algorithm [WD92].

Our analysis is consists of two parts:

• The �rst part involves learning the optimal speed policy, in order to obtain the best Q-matrix
value.

• The second part involves comparing the learning cost of the learned speed policy with that
of (OA) (see Chapter 4).
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Let us �rst give an informal description of the behavior of the system as well as the behavior of the
learner that selects the processor speed at each time.

Jobs arrive during the execution of the system, and at each instant the speed policy must choose
one available speed. More speci�cally, aftern samples, the processor use an available speedsn to
execute partially or totally jobs that are present in the system at that time.

The total energy cost when starting in statew at time 0 is the discounted energyspent over time,
with discount factor 
 < 1:

V (w) =
1X

n =0


 n Power(sn ): (7.1)

As said in Section 7.1, the discount factor puts more emphasis on the “recent” choices of processor
speed than on the “ancient” ones.

According to these notations, our MDP will denoted (Power; W; P; 
 ) in the following.

7.2 Problem Statement

In this chapter, we will determine the optimal speed policy that minimize the total energy
consumption. As said in Section 7.1, the problem is different from Chapter 6 because we want to
minimize the total energy consumption(and not the average), and furthermore we consider that
there is a discount factor
 < 1. With these problem characteristics, we have to use a different
method than this one used in Chapter 6 to determine the optimal speed policy.

We do not know the job arrival distribution, so we have no information to determine the speed
policy. Moreover, we do not know the MDP parameters (see Section 6.2 of Chapter 6). Instead of
discovering the MDP parameters by a learning method, we learn directly the cost of the different
speed policies, which then allows us to determine the optimal speed policy. To do that we will the
well known Q-learning algorithm.

As in Chapter 6, the new incoming information at each samplen is the workload arrival function An ,
where a workload accounts for zero, one or several jobs with the same arrival date. One learning
step (i.e., one iteration of the Q-learning algorithm) consists in getting a new sample of the An

function. With this new information, the Q-learning algorithm updates the value knowledge and
improves the cost of the speed policy.

There are two different Q-learning algorithm versions:

• One version is calledasynchronous(AQL) . It is the most “natural” version, in the sense that
at each samplen with workload arrival An , we update the policy cost valuefor the current
state only. At each sample, the learning of the policy cost value improves, and after a given
horizon, we have converged towards the optimal policy. Section 7.3 studies(AQL) in details
and provides a proof of convergence.
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• Another version is called synchronous(SQL). In this version, at each n with workload
arrival An , we update the policy cost valuefor all the possible statesof the state spaceW.
The convergence is reached faster than with(AQL) more states and more speed choices are
explored at each sample.

Both algorithms (AQL) and (SQL) can be used in two different cases. Either in two phases as in
Chapter 6, �rst a learning phaseduring which the speed policy is learned with Q-learning but the
energy is not measured, and then anapplication phaseduring which the speed policy that has been
learned is used and the energy is measured. Or with acombined phaseduring which the speed
policy is learned with Q-learning and used, and of course the energy is measured too.

The following section will be devoted to the description of the Q-learning Algorithm.

7.3 Q-learning Algorithm

7.3.1 Synchronous Q-learning Algorithm (SQL)

Consider the discounted MDP(Power; W; P; 
 ), as described in Chapter 6.

The goal of this section is to show how a learner (selecting the processor speed) can choose
the speedsn at sample n so that it eventually converges to the best possible choices while the
job arrival probabilities are not known ( i.e., P(w; s; w0) is not known). Instead we assume that
a trajectory (i.e., an in�nite sequence of random jobs), distributed according to the probability
distribution of the past job arrivals, is provided to the learner, one arrival at a time. In the following,
this sequence of jobs will be represented by its workload trajectory(An )n 2 N.

By de�nition, the Q-value function q� (w; s) is the minimal discounted energy consumptionstarting
in state w at time 0, using speeds at the �rst time step. The optimal cost V � is related to q� as
follows:

V � (w) = min
s

q� (w; s): (7.2)

The Bellman Optimality Equation (BOE) for the Q-values is:

q� (w; s) = Power(s) + 

X

w 0

P(w; s; w0)V � (w0) (7.3)

=
X

w 02W

P(w; s; w0)
h
Power(s) + 
 min

s0
q� (w0; s0)

i
: (7.4)

Let us now introduce the operator F from the set of Q-value functions to itself:

F (q)(w; s) =
X

w 02W

P(w; s; w0)
h
Power(s) + 
 min

s0
q(w0; s0) � q(w; s)

i
: (7.5)

In functional form, Eq. (7.4) says that q� can be seen as aroot of operator F : F (q� ) = 0 .
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The value iteration for Q-values isq̂n +1 = q̂n + F (q̂n ) and, becauseF is 
 -contracting, it converges
towards the optimal q� , starting from an arbitrary value for q̂0.

The SynchronousQ-learning algorithm (SQL) (Algorithm 10) replaces the expected cost-to-go
term in Eq. (7.4) (i.e., the right term of the addition) by a realisation ( i.e., the mins0 Q̂n (W; s0)
term) involving the next random event (job arrival An ) and computes a sequence of random
variables Qn that mimics Eq. (7.4) , using a vanishing sequence of learning factors,(� n )n 2 N, that
converges towards0 when n ! 1 .

Algorithm 10: SynchronousQ-learning Algorithm (SQL)

1: Q̂0(w; s) is set to an arbitrary value (e.g., 0) for all w and s;
2: while n < N do
3: for all state w and all admissible speeds do
4: Get the new incoming jobsAn +1

5: W  Succ(w; s; An +1 );
6: Q̂n +1 (w; s)  (1 � � n )Q̂n (w; s) + � n (Power(s) + 
 mins0 Q̂n (W; s0)) ;
7: end for
8: end while

recall that N is the total number of samples. Line 4 is typeset in italic blue to insist on the fact that
this part of Algorithm 10 depends only on the system behavior. It corresponds to the fact that we
observe the characteristics of the jobs that arrive at each time steps.

The convergence of theQ-learning algorithm was proved for the �rst time in [WD92]. Here we
provide a simple proof of convergence for the synchronous version of theQ-learning algorithm,
based onstochastic approximation theory.

Theorem 7.1. The random variablesQ̂n (w; s) computed by(SQL) converge almost surely to the
optimal Q-valuesq� (w; s), and hence,(SQL) asymptotically learns the optimal speed policy.

Proof. First, one can easily check that the random variablesQ̂n (w; s) are bounded byPower(smax )=(1�

 ) for any n, w, and s.

Now, to show that Q̂n (w; s) ! q� (w; s) asymptotically, let us �rst rewrite the evolution of Q̂n given
in line. (6) of Algorithm 10 as:

Q̂n +1 (w; s) = Q̂n (w; s) + � n

�
Power(s) + 
 min

b
Q̂n (W; b) � Q̂n (w; s)

�
: (7.6)

Eq. (7.6) can be interpreted as a stochastic approximation of the following deterministic Ordinary
Differential Equation (ODE):

_q(w; s) = EW

�
Power(s) + 
 min

b
q(W; b) � q(w; s)

�
�(w; s)

�
: (7.7)

In a compact form, and using the operator F introduced in Eq. (7.5), this ODE is written as:

_q = F (q): (7.8)
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On the one hand, the operator F is 
 -contracting, therefore the ODE (7.8) has a unique global
attractor, denoted q1 . The theory of stochastic approximation says that, if the sequence� n is
such that

P
� n diverges and

P
� 2

n converges (this double condition is known as “L2 � L1”1),
then the bounded sequenceQ̂n converges towards the unique solutionq1 of the ODE, almost
surely [BM00]. Notice that the unique asymptotic attractor q1 necessarily satis�es the following
equation:

F (q1 ) = EW

�
Power(s) + 
 min

b
q1 (W; b) � q1 (w; s)j(w; s)

�
= 0 : (7.9)

On the other hand, the value iteration equation to compute the optimal Q-values can be written as
an expectation(see Eq. (7.4)):

qn +1 (w; s) =
X

w 0

P(w; s; w0)
�
Power(s) + � min

b
qn (w0; b)

�
(7.10)

= qn (w; s) +
X

w 0

P(w; s; w0)
�
Power(s) + 
 min

b
qn (w0; b) � qn (w; s)

�
(7.11)

= qn (w; s) + EW

�
Power(s) + 
 min

b
qn (W; b) � qn (w; s)

�
�(w; s)

�
: (7.12)

By inspecting (7.12) , one can see directly that its �xed point, namely the optimal Q-value q� ,
satis�es F (q� ) = 0 , and henceq� is equal to q1 .

After proving that (SQL) converges, let us present in the next section the asynchronous case with
the (AQL) algorithm.

7.3.2 Asynchronous Q-learning Algorithm (AQL)

The asynchronous version of theQ-learning Algorithm is different from the synchronous one. It
only updates the Q-value of the current state, along the workload trajectory (An )n 2 N.

Algorithm 11: AsynchronousQ-learning Algorithm (AQL)

1: Q̂(w; s) is set to an arbitrary value (e.g., 0) for all w and s;
2: w0 is the initial state;
3: while n < N do
4: Select speedSn  hn (Wn );
5: Get the new incoming jobsAn +1

6: Wn +1  Succ(Wn ; Sn ; An +1 );
7: Q̂(Wn ; Sn )  (1 � � )Q̂(Wn ; Sn ) + � (Power(Sn ) + 
 mins0 Q̂(Wn +1 ; s0)) ;
8: end while

1X n converge towardsX for the L 1 norm if lim n !1 E(j X n � X j) = 0 , while X n converge towardsX for the L 2

norm if lim n !1 E(j X n � X j2 ) = 0 .
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The learning factor � now depends on the number of visits to the statew, denoted Nbvisit (w).
Its value is chosen as follows in our numerical tests, although any value satisfying theL2 � L1
constraint would work:

� (w) =
1

Nbvisit (w)2=3

Theorem 7.2. Convergence ofQ-learning algorithm [WD92]. If the selection functionhn is such that
each pair(w; s) is visited an in�nite number of times during the execution of the system, then each
Q-value converges towards its optimal value almost surely.

Proof. (Sketch) The proof is the similar to the proof for (SQL) by adding asynchronous convergence
arguments (see for example [BT96]).

The selection function hn chosen in our numerical experiments is typically " -greedyor softmax
as presented in [SB98]. The choice between them depends on the performance metrics. Here,
softmaxis often used because it seems to perform better (see the experimental part: Section 7.7).
Some others algorithms, such as [Aza+11] and [DM17], have been presented in the literature
and are based on the same methods. In this chapter, we will focus in particular on theQ-learning
algorithm.

7.4 Structural Properties of the Q-learning Algorithm

7.4.1 Synchronous Q-learning Algorithm (SQL)

In this section, we show that (SQL) offers several monotonicity properties.

Lemma 7.1. By settingQ̂0(w; s) = Power(smax )
1� 
 , then for all n, Q̂n +1 (w; s) � Q̂n (w; s) for all (w; s).

Proof. The proof holds by induction. Casen = 1 :

Q̂1(w; s) = (1 � � 1)Q̂0(w; s) + � 1

�
Power(s) + 
 min

s02S
Q̂0(W 0; s0)

�

= (1 � � 1)
1X

i =0


 i Power(smax ) + � 1

 

Power(s) + 

1X

i =0


 i Power(smax )

!

� (1 � � 1)
1X

i =0


 i Power(smax ) + � 1

 
1X

i =0


 i Power(smax )

!

(7.13)

= Q̂0(w; s):
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Inequality (7.13) follows from the fact that the function Power(s) is non-decreasing. The general
case follows,8(w; s), by simple inspection of line 6 of Algorithm 10:

Q̂n +1 (w; s) = (1 � � n )Q̂n (w; s) + � n

�
Power(s) + 
 min

s02S
Q̂n (W 0; s0)

�
(7.14)

� (1 � � n )Q̂n � 1(w; s) + � n

�
Power(s) + 
 min

s02S
Q̂n � 1(W 0; s0)

�
(7.15)

= Q̂n (w; s):

Inequality (7.15) comes from the induction assumption and the monotonicity of all the operations
involved in Eq. (7.15).

Let Q̂k be the Q-values obtained by(SQL) when the only speeds available in statew are in the set

Sk =
n

s(OA) (w) � 1; s(OA) (w); s(OA) (w) + 1 ; : : : ; s(OA) (w) + k � 1 ^ smax

o
: (7.16)

The corresponding version of (SQL) is denoted (SQL)(k) in the following. We can state the
following result.

Lemma 7.2. By settingQ̂k
0 (w; s) = Q̂0(w; s) = Power(smax )

1� 
 , then for all n and k > 0, Q(OA) (w; s) �
Q̂k

n (w; s) � Q̂k+1
n (w; s) � Q̂n (w; s) for all w; s.

Proof. By induction. Casen = 0 : For all k, Q̂k
0 values are equal, so nothing needs to be proved.

The general casen is proved by simple inspection of line (6) of Algorithm 10: 8(w; s),

Q̂k+1
n (w; s) = (1 � � n � 1)Q̂k+1

n � 1(w; s) + � n � 1

�
Power(s) + 
 min

s02S k +1
Q̂k+1

n � 1(W 0; s0)
�

� (1 � � n � 1)Q̂k
n � 1(w; s) + � n � 1

�
Power(s) + 
 min

s02S k +1
Q̂k

n � 1(W 0; s0)
�

(7.17)

� (1 � � n � 1)Q̂k
n � 1(w; s) + � n � 1

�
Power(s) + 
 min

s02S k
Q̂k

n � 1(W 0; s0)
�

(7.18)

= Q̂k
n (w; s):

Inequality (7.17) comes from the induction assumption and Inequality (7.18) comes from the fact
that Sk � S k+1 .

7.4.2 Asynchronous Q-learning Algorithm (AQL)

The monotony properties of the (SQL) do not extend to (AQL) . Monotonicity in n does not hold
because the sequence of stateswn is a random sequence of states that cannot be compared. As for
the monotonicity in k, it does not hold because the number of visits to a given state(w; s) depends
on k, and so its Q-value may be large for some large values ofk if the state (w; s) has not been
visited often under Q̂k , while it could be small for a smaller value of k0 if it has been visited often
under Q̂k 0

.
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7.5 Relevant Speed Analysis

In Chapter 6, we proved that in the undiscounted case, the optimal processor speed is always
above s(OA) (w), and so taking into account only speeds larger thans(OA) (w) can decrease the
learning speed set. However, since we consider here a discount factor
 < 1, we have to re-evaluate
this bound.

The goal of this section is to study the impact of the discount factor on the optimal speed policy for
one job J (C; �) when the power function is a cubic function. For the undiscounted case, since the
power function is convex, the optimal speed schedule to execute this job is to run the processor at
a speed equal toC

� at each time step between0 and � � 1.

The goal is to see how the optimal speed policy for the undiscounted case is far from the computed
optimal speed policy in the discounted case. To begin, let us compute the optimal speed policy in
the discounted case. This means we have to solve the following system:

min
s1 ;::;s �

(
�X

i =1


 i � 1s3
i

)

under constraints
� � 1X

i =0

si = C: (7.19)

The Lagrangian of the System (7.19) is:

L (si ; � ) =
�X

i =1


 i � 1s3
i � �

 
�X

i =1

si � C

!

: (7.20)

After derivation, we have:

s2
1 = 
 s 2

2 = ::: = 
 � � 1 s2
� : (7.21)

By letting d = � � 1, the max is therefore obtained for:

s1 = 

d
2 s� (7.22)

s2 = 

d � 1

2 s� (7.23)
...

s� � 1 = 

d � (� � 2)

2 s� : (7.24)

By replacing these values in Eq. (7.19), we obtain the speeds� :

s� = C

 
dX

i =0



i
2

! � 1

: (7.25)
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By replacing in (7.19) with Eqs. (7.22) to (7.24) , the general energy cost of the speed policy is:

CostWithOptimalPolicy = C3
 d

 
dX

i =0



i
2

! � 2

: (7.26)

As we said previously, for jobJ , if there is no discount factor, by convexity of the power function,
the best choice for the energy consumption is to use the speedC� all time instants. Thus the energy
cost of this speed policy in the discounted case is:

CostWithNoDiscountPolicy=
�

C
�

� 3 dX

i =0


 i : (7.27)

Therefore, the over-consumption of the undiscounted speed policy is :

CostWithNoDiscountPolicy
CostWithOptimalPolicy

=
1

� 3
 d

 
1 � 


d
2

1 � 

1
2

! 3
1 + 


d
2

1 + 

1
2

: (7.28)

Now we want to �nd an equivalent of Eq. (7.28) when we are getting closer to the undiscounted
case,i.e., when 
 ! 1. By setting 
 = 1 � " , the limited development of Eq. (7.28) is:

CostWithNoDiscountPolicy
CostWithOptimalPolicy

� 1 �
3
4

(d � 2)" = 1 �
3
4

(� � 3)" (7.29)

Eq. (7.29) shows that the over-consumption of the undiscounted policy is of 3
4 (� � 3)(1 � 
 ).

For the undiscounted case, we have noted in the previous section that considering only speeds
faster or equal to s(OA) in Q-learning let us to obtain the optimal policy. Regarding the discounted
case, in this section, we have shown that addings(OA) � 1 in the set of available speeds is enough
to counterbalance the effect of the discount factor 
 . As a consequence, in the following, we will
reduce the Q-learning speed choices for each state to the speeds faster thans(OA) � 1.

7.6 Feasibility of the Q-learning Algorithm

Section 7.5 shows us thats(OA) � 1 is the minimal speed that can be chosen by theQ-learning
algorithm. As the minimal speed changes, we have also a different feasibility condition on the
maximal speed processorsmax , when we compared with Chapter 6.

Based on the proof developed in the undiscounted case (see Chapter 6), a necessary condition to
ensure that the Q-learning Algorithm is feasible with a speed choice aboves(OA) � 1 is:

smax � C log(�) + � � 2 (7.30)

To �nd this bound, we use the same technique as in the proof of Theorem 8.1 of Chapter 8, but by
considering s(OA) � 1 as the minimal speed choice instead ofs(OA) .
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7.7 Experimental Section

7.7.1 Use Cases

We apply our model-free reinforcement learning framework to two distinct case studies.

• Training case study: The �rst case study considers a training period during which the
learning algorithm is used over one or several typical job sequences, in order to learn the
optimal speed policy. Once the training period is over, the learned speed policy is usedin
production to save energy in the actual real-time system. The performance metric is the
length of the training period and the quality of the learned speed policy. (SQL) is adapted to
this case study. We perform several experiments showing the average performance gap of
the policy computed by (SQL) over a training period that ranges from 103 to 107 samples,
w.r.t. the optimal speed policy.

• Online-cost case study: The second use case does not involve a training period. The energy
cost of the learning algorithm is accounted for from the start: The initial bad choices and
their high energy cost cannot be dismissed. In this case, the only usable learning algorithm
is (AQL) , since speed choices have to be made online.

In the online-cost case study, the performance metric will be theregret w.r.t. the optimal
speed policy. The total cost being discounted, the de�nition of the regret must be adapted.
To do so, we consider the discount factor as a stopping probability of the system at each step.
The energy cost is cumulated up to the stopping time. The system is then restarted in its
initial state and the same dynamic is taken over a new period (theQ-values learned in the
�rst period are kept) until the system stops again, and so on and so forth. The energy cost is
cumulated over N periods and the regret is

R(AQL)
N =

NX

n =1

TnX

i =0

�
Power(sk

i ) � Power(s�
i )

�
; (7.31)

where Tn is a random size of then-th period (up to the n-th stopping time), sk
i is the speed

chosen by(AQL) at sample i , and s�
i the speed chosen by the optimal policy under the same

sequence of job arrivals.

In the following, we perform several experiments showing the average regret w.r.t. the
optimal speed policy of (AQL) for several time horizons. All the simulations are done with
the following set of processor speed:

Spossible (wn ) =
n

s(OA) � 1; s(OA) ; s(OA) + 1 ; s(OA) + 2
o

(7.32)

where wn is the current state at time instant n. The rationale behind this choice of available
speeds is that(OA) is close to the optimal, as we have shown in Section 7.5, and so the
optimal speeds are expected to be close to the speed chosen by(OA) . Moreover, with this
reduced choice we reduce the set of speeds, and hence the duration of our experiments. This
choice concerns both(AQL) and (SQL).
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Most of the experiments reported here belong to the �rst case, i.e. the training case study. The
second case,i.e. the online-cost case, is an ongoing work, and so only one job set has been
analyzed

7.7.2 State Representation in (SQL)

Since we have no knowledge on the maximal deadline� and the maximal size S of the jobs
beforehand, the state space is not known in advance, so that one cannot use(SQL) Algorithm
as is. In line 3 of the algorithm we replace W by Wn , the set of states that have been visited
up to sample n. In this respect, this new version is intermediate between the synchronous and
asynchronousQ-learning Algorithm. If we also denote by W k

n the set of states that(SQL) has
visited at sample n, then, W k

n is growing at sample n and at k, by construction. Therefore, the
monotonicity property given in Lemma 7.1 is still true for this new version of the (SQL) algorithm
with a growing state space.

As described in Chapter 6, the size of the state space can be huge, since it depends on the number of
different jobs and on the maximal parameter values used during the algorithm. As a consequence,
we use a hash-table to access theQ-matrix value in the Q-learning Algorithm.

7.7.3 Training O�ine: (SQL) Evaluation

The of�ine training, done by (SQL) for n samples, leads to a speci�cQ-matrix Q̂n . With this
Q-matrix, we can deduce a speed policy obtained byQ-learning after n samples, that attributes for
each state a processor speed to apply. This speed policy is de�ned as follows:

sn (w) = argmin
s2S

Q̂n (w; s) (7.33)

In this part, we want to evaluate the Q-learning speed policysn (SQL) by comparing it with the
optimal policy, i.e., Value Iteration (VI) , and Optimal Available (OA) . To determine the optimal
policy, we have to know more information about the job stream: sizes, deadlines and arrival
probabilities of each job met during the process (i.e., as in Chapter 2). Let us suppose a known
process, where we compute the optimal policy (it can be computed by value or policy iteration
algorithm, see [Put05]). We compare this optimal policy with all (SQL) that are determined with
no knowledge on the system.

We use two different comparisons to check how far is(SQL) from the optimal:

1. The �rst one is to evaluate the performance of the speed policy (SQL) from the starting
state w0 = (0 ; 0). This case represents the performance of the policy if we restart the system
from scratch.

2. The second one is to evaluatethe performance of the speed policy (SQL) for each possi-
ble starting state . We assign a weight to each value, proportional to the time spent in each
state under this policy. We compare these weighted sums for(VI) and each variant of (SQL).
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This represents the performance of the policy if we continue the process from the last state
of the training process.

To compute the performanceV̂n , which is a vector of performance of states, we have to build
the probability transition for each speed policy. If we know, for each state w, the speed policy
sn (w) and the knowledge of job probabilities, we can determine the probability matrix Pn to
go from one state to another at a �x speed policy sn . The performanceV̂n is therefore given
by:

V̂n = ( I � 
P n ) � 1 Power(sn ) (7.34)

Here we can determine the �rst comparison method 1, by comparing V̂n (w0) for (VI) , and
(SQL).

Furthermore, due to the knowledge of the transition probability matrix Pn , we can compute
the stationary measure� n of the Markov chain determined by the matrix Pn . � n (w) is the
proportion of time we spend in the state w under speed policysn and is computed as follows:

� n Pn = � n (7.35)

Let us notice that � n is not a known parameter, but it can be measured in practice during
the system execution.

Now, to obtain the second comparison method 2, we compute the weighted performance as
follows:

jWjX

i =1

� n (i )V̂n (i ) (7.36)

Figure 7.1 represents the weighted performance for each policy(SQL) and (VI) for different
sample number of the Q-learning algorithm (SQL). This simulation is realized with the
parameters of the Ex. 7.1, and with a discount factor 
 = 0 :99. The learning factor � is
de�ned in Eq. (7.13).

Example 7.1. Job J1 is (p1 = 0 :4; c1 = 4 ; d1 = 3) . Job J2 is (p2 = 0 :4; c2 = 4 ; d2 = 1) . The
maximal processor speed is set to15. The energy consumption per time unit isPower(s) = s3.

In Fig 7.1, (OA) policy consumes the most energy, with a mean energy of6550J . The optimal
policy when we know the job statistics, (VI) , consumes the less, with a mean energy of
4803J . On this example, the convergence of theQ-learning algorithm towards the optimal
policy (VI) is quick, in less than 1000samples (iteration numbers) when we let 3 speeds
choice. When there are only2 speeds, the stability value of the mean energy is5506J , that
leads to a lost of 14:6% in comparison with the optimal.
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Figure 7.1.: Comparison of the cost of the policy weighted by the visit of each states for(SQL) , (MDP) and
(OA) . The discount factor is 
 = 0.99. There are 2 jobs J1(4; 3) that comes 40% of the time
and J2(4; 1) 40% of the time also. During 20% of the time, no job is coming. The processor
maximal speed is bounded by 15. Qlv2 is(SQL) with s(OA) and s(OA) + 1 speed choices and
Qlv3 is (SQL) with s(OA) , s(OA) + 1 , and s(OA) + 2 speed choices
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7.7.4 Simulation Results for (SQL)

In this section, we evaluate the performance of theQ-learning algorithm (SQL) after different
learning periods. To compare the energy cost of each speed policy:(OA) , (SQL) and the optimal
policy (VI) , we introduce two comparison indexes, Def. 7.1 and 7.2.

De�nition 7.1. Overhead of(OA) versus(SQL)

V (OA) � V (SQL)

V (SQL)
(7.37)

De�nition 7.2. Overhead of(SQL) versus the optimal policy

V (SQL) � V �

V � (7.38)

The �rst experimentation done to test the performance of the Q-learning simulation is an analysis
of one job stream. We �rst consider the job stream described in Example 7.1 of Section 7.7.3.

The second experimentation is a more general analysis on a set of Markov decision processes. Job
numbers and jobs features,i.e. deadlines (bounded by � = 2 ), sizes, and arrival time probabilities
are generated randomly under an uniform law. The discount factor value is of 
 = 0 :90. The used
set is the same as that used in Chapter 6.

The third experimentation is the same context as the second, but with a maximal relative deadline
of 3 (� = 3 ).

Experiment 1: A speci�c job stream

In this paragraph, we test the Q-learning algorithm on Ex. 7.1.

The Q-learning parameters are the discount factor,
 = 0 :90, and the learning factor � , de�ned in
Eq. (7.13). In the following we will always consider these values for these parameters.

By doing that we note that after 2:103 learning steps, the overheadof (OA) over (SQL) (see
Def. 7.1) is stabilized around 14%, more precisely13:52%after 104 learning steps.

We can compare(SQL) versus the optimal policy because we know the system characteristics
(here jobs de�nition). Actually, the jobs characteristics are unknown, in particular the arrival job
probability. As a consequence,(SQL) is applicable, but the optimal speed policy (VI) can not be
computed. The comparison versus(VI) is therefore virtual, and we use it purely to know how
close we are to the optimal energy consumption value.
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We have to note that the Q-matrix energy matrix and the processor speed choices have not yet
converge, but the overheadis stabilized.

Experiment 2: Random family of job streams with � = 2

Other experimentations have been executed on a family of job streams to evaluate the performance
of (SQL) algorithm. We use the same experimentation data than in the previous chapter, Chapter 6.
We recall the structure of the system, which is composed of70 different sets of job types. Each set
consists of a numberk of job types of the form J i = ( pi ; ci ; di ), such that:

• pi is the arrival probability of J i , randomly chosen in the interval [0:1; 0:9]. This arrival
model means that, at each time instant, a job of typeJ i has a probability pi to be released,
for each i 2 f 1; ::; kg. We can thus have, at a given time instant, between0 and k jobs that
are released simultaneously.

• ci is the size ofJ i , randomly chosen in the setf 0; ::; 4g.

• di is the deadline of J i , randomly chosen in the setf 1; 2g.

• k � 5 and
P k

i =1 pi 2 [0:8; 1]. These two choices ensure that the generated systems are
“interesting” for the learning phase, i.e., they have an average load such that the range of
feasible speeds in not reduced to a singleton (as it would be the case, for instance, if at each
instant the cumulated size of job arrivals would amount to a load equal to smax ).

Moreover, the chosen value of the discount
 is 0:9.

Fig. 7.2 displays the evolution of the span(V̂ (SQL) � V � ), where V̂ (SQL) is the energy cost learned
after n iterations, n being the length of the training period, ranging between 104 and 107. We use
the spanto check convergence instead of some norm on̂V (SQL) � V � , because when the span is0,
policy (SQL) is exactly an optimal policy.

This result shows us that we are far from the theoretical convergence even after107 learning steps,
but in practicethe overhead results are close from the optimal value.

Fig. 7.3 depicts the overhead of the energy consumption of(OA) compared with the speed policy
obtained by (SQL), in function of the duration n of the learning phase. As can be seen, the
convergence evolves with learning: the speed policy learned with(SQL) outperforms (OA) by
6:4% on average after104 learning steps and this percentage progresses whenn increases. Indeed
this percentage is of7:6% on average after107 learning steps.

Between 104 and 107 learning steps, all the box-plots have almost the same distribution: their
median value is 5:6%, and their quartiles are also identical. Only their mean values differ, due
to the extremal values, and so due to some particular job sets, with a negative overhead when
we compare to (OA) . Finally, once n � 5:106, all the overheads are strictly positive, meaning
that for each set of jobs, the speed policy learned with(SQL) outperforms (OA) . Taken 5:106

iterations is a worse result than this one observed in Chapter 6. This observation will be developed
in Section 7.7.6.
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Figure 7.2.: Evolution of span(V̂ (SQL) � V � ) in function of the duration n of the learning phase: n 2
f 104 ; 105 ; 106 ; 5:106 ; 107g for 70 job streams. Even after107 learning steps, thespan(V̂ (SQL) �
V � ) value is still signi�cant.

Figure 7.3.: Overhead in percentage of(OA) versus the Q-learning algorithm (SQL) depending on the
duration n of the learning phase: n 2 f 104 ; 105 ; 106 ; 5:106 ; 107g.
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Like in Chapter 6, it is interesting to compare Fig. 7.2 and Fig. 7.3: even though the convergence
is not reached after 107 learning steps for (SQL), the energy consumption of the speed policy
learned with (SQL) is always strictly better than that of (OA) after 5:106 learning steps.

Figure 7.4.: Energy consumption overhead in percentage of(OA) versus the speed policy learned with
(SQL) after 103 learning steps. The job characteristics(pi ; ci ; di ) are such that pi 2 [0:1; 0:9],
ci 2 f 0; : : : ; 4g, and di 2 f 1; 2g.

Fig. 7.4 depicts the energy consumption overhead in percentage of(OA) versus the speed policy
learned with (SQL) after 103 learning steps. The job characteristicsJ i = ( pi ; ci ; di ) are chosen
as follows: the arrival probabilities pi are randomly chosen in the interval [0:1; 0:9], the sizesci

are randomly chosen in the setf 0; : : : ; 4g; and the deadlines di are randomly chosen in the set
f 1; 2g.

Fig. 7.4-left shows the energy overhead of each individual job set sorted by the resulting energy
consumption overhead. (OA) outperforms (SQL) over six job sets. Otherwise(SQL) systematically
outperforms (OA) , and the average gain is6:4%. (SQL) is equivalent to (OA) for 35%job sets.

Fig. 7.4-right gathers the simulations by their over-consumption percentage value. Each vertical
bar corresponds to an interval of energy consumption overhead of(OA) versus(SQL). For instance,
there are 53%job sets for which this energy overhead is below5%.
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Experiment 3: Random family of job streams with � = 3

Now in the case of (SQL), we study the overhead and the number of iterations before convergence
of several random systems, with a different maximal deadline.

The �rst set of simulation are done for � = 3 and 8 random systems. The cost of the policy
obtained by (SQL) is always better than the cost obtained by(OA) , and is always equal to the
cost of the optimal policy (VI) . Indeed, the mean of the overhead of(OA) versusQ-learning is
8:19%.

However one problem remains, as in the previous case, after108 iterations, the convergence
between q̂(w) = min s Q̂(w; s) and the value of V �

(VI) is not reached. The percentage of difference
between the two values is above5% for 7 systems out of8.

The second set of simulations are done for� = 3 and 20 random systems. As in the previous case,
the cost of the policy obtained by Q-learning is always better than this one obtained by (OA) ,
and is always equal to the cost of the optimal policy (VI) . The mean value is6:08%. In terms of
convergence ofq̂(w), the result is better, in the sense that14 systems out of20 have converged
at 5%.

7.7.5 Regret Analysis (AQL)

In the (AQL) algorithm, we compute the regret, as de�ned in Section 7.7.1. This analysis is done
for the job stream described in Ex. 7.1. A good curve regret has to show that the regret increase
should be sub-linear, due to the improvement of the choices made by the learning algorithm. In
our case, we note that all curves are linear in time and it shows that even if the time grows, the
policy does not really improved at least over the horizon of the simulation. This seems to indicate
that Q-learning is not ef�cient to minimize the regret in our framework. It could be interesting to
investigate other techniques as UCB method based onQ-value (see [PT17]).

7.7.6 Comparison with the Transition Probability Matrix

We notice that in the previous Chapter, Chapter 6, on the same set of experimentation, we converge
quickly to the optimal solution than in the Q-learning solution we present in this chapter. Indeed
after one thousands samplesn = 1000, the Pn matrix learned lead to a best overhead for (OA)
versus(PL) than the overhead of the speed policy learned with (SQL). The Q-learning algorithm
reached the same overhead in comparison with(PL) only after 107.

7.8 Conclusion

Model-free reinforcement learning algorithms, such asQ-learning, allow us to compute ef�cient
speed policies to process real-time jobs while minimizing the energy consumption. The technique
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Figure 7.5.: Regret for (OA) , Q-learning with 2 speeds,Q-learning with 3 speeds in comparison with (MDP)
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studied here, Q-learning, takes signi�cant time to converge ( i.e., even after 107 learning steps, the
convergence of theQ value is not reached yet), but the optimal policy is actually reached much
faster (i.e., after 5:106 learning steps the learned speed policy outperforms(OA) on all randomly
chosen job sets).

The results obtained in Chapter 6 by learning the probability transition matrix are better than those
obtained in this chapter. This means that it is more ef�cient to learn the probability transition
matrix (and then to compute the optimal speed policy) than to learn directly the optimal speed
policy.

In terms of future research directions, it will be interesting to investigate state space reduction
techniques. Another possibility will be to generalize Chapter 5 by studying learning method for
non clairvoyant active jobs.

The present chapter ends our journey started in Chapter 3 with a total knowledge of the real-time
system and ending in Chapter 7 with no knowledge at all. It is now time to study the exact
condition on the maximal speed of the processor under which our online speed policies are
feasible, and to compare these feasibility conditions with those of the other online speed policies
from the literature. This will be the topic of the next chapter.
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Feasibility of online speed

policies
8

This chapter is different from the others, in the sense that it does not focus on the energy
problem, but it explores the notion of feasibility, that has been quickly studied in previous chapters.
Furthermore, unlike the rest of the document, techniques used in this chapter are totally different
from what was done before. The feasibility of our speed policy and also different policies that
exist in the literature are studied in this chapter. The feasibility is the ability for the processor to
execute any sequence of jobs while satisfying the two following constraints:

1. The processor speed is always below the maximal processor speedsmax .

2. No job misses its deadline.

One policy is the policy we present in Chapter 4. We will begin by presenting in Section 8.1
the different policies we will analyse, and then in Section 8.2 the previous work done on policy
feasibility.

Before presenting the state of the art section, Section 8.1, I would like to emphasize strongly on
the point that in this extension the notation is slightly different, in comparisons to the rest of
this thesis, to make all the equations more readable: the time considered in the remaining work
function wt (:), de�ned in Chapter 4 is absolute. This modi�cation is only valid for this chapter.

This chapter is published in Real Time System Journal (RTSJ) [GGP20b]

8.1 State of the Art

Let us recall how we consider a job in this chapter, and what is the problem on which we focus on:
each job is characterized by its arrival time, its sizei.e. the amount of work to complete the job,
and its strict deadline, either de�ned absolutely or relatively to the arrival time. We consider the
particular case of unconstrained HRTS executed on a single core processor with variable processor
speed. An HRTS is therefore characterized by a tuple(C; � ; smax ), where C is the maximal size
of the jobs, � is their maximal deadline, and smax is the maximal speed of the processor. The
inter-arrival times between the jobs are unconstrained (i.e. neither periodic or sporadic).

Changing the speed of the processor can help to reduce the energy consumption of the processor,
which is essential in many embedded systems. In fact, this is the reason why modern processors
are equipped with Dynamic Voltage and Frequency Scaling (DVFS) capabilities. Several speed
selection policies have been proposed to save energy by modifying the speed of the processor
online. The main idea behind all online speed policies is to lower the speed when the current load
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is low, in order to save energy and, when the load is high, to increase the speed to execute all jobs
before their deadlines.

In this chapter, the main goal is to analyze the feasibility of existing online speed policies. A policy
is feasible if and only if each job is executed before its absolute deadline. Without loss of generality,
we assume that the time scale is discrete and that a new job arrives at each time step. In contrast,
the processor speed can change at any time.

The �rst online speed policy that comes to mind involves, at each time step, executing entirely the
active job within one time step. Obviously this policy is feasible, because all the jobs �nish before
their deadline. Moreover, the maximal processor speed used under this policy is not larger thanC.
Therefore, this policy is feasible if smax � C. This is optimal in terms of feasibility because no
policy can be feasible whensmax < C : indeed, if smax < C , then a job of sizeC with deadline 1
will miss its deadline. In contrast, regarding the energy consumption, this policy consumes more
than any other policy because it does not take advantage of job deadlines (assuming that the
energy is an increasing convex function, which is usually the case). For these reasons, we analyze
in this chapter the feasibility of known policies that lower the energy consumption.

We investigate the four following online speed policies. To the best of our knowledge, these are
the four such existing speed policies. The �rst two ones are(AVR) and (OA) , both from [YDS95],
which both try to optimize the energy consumption of a real-time system. The third one is (BKP)
from Bansal et al. [BKP07], the goal of which is to improve the competitive ratio of (OA) . The
fourth one is a Markov Decision Process policy called(MP) in the rest of the chapter, which
optimizes the expected energy consumption when statistical information on the arrival, WCET,
and deadline of the jobs are available [GGP17].

In their original respective chapter, the authors of (AVR) , (OA) , and (BKP) all make the unrealistic
assumption that smax is unbounded, i.e. smax = + 1 . Under this assumption, feasibility is not as
problematic: all jobs can be executed before their deadline as long as the current selected speed
is large enough. However, under the more realistic assumption of a boundedsmax , one needs to
compute the feasibility region in the parameter space of(C; � ; smax ). Our goal in this chapter is
therefore to determine, for the classical policies(AVR) , (OA) , (BKP) , and for (MP) , the maximal
speedsmax as a function of C and � , that ensures feasibility, and to compare the four policies in
this respect.

The chapter is organized as follows. We survey the related work in Section 8.2. Then we present
the job model used in Section 8.3 and formulate the feasibility analysis problem in Section 8.4. In
the subsequent sections we analyze each online speed policy and we prove, for each of them, what
is the smallest value ofsmax that ensures feasibility (Sections 8.5 to 8.8). Finally, we compare
the four online speed policies based on these valuessmax in Section 8.9 before concluding in
Section 8.10.
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8.2 Related work

The work that is most closely related to our is [CST09], which investigates the feasibility of (AVR)
and (OA) (this latter speed policy being called (OPT) in their paper). The system model is a
single-core processor that must execute an in�nite sequence real-time jobs, speci�ed by anarrival
curve(as in the Real-Time Calculus [TCN00]). Arrival curves generalize both the periodic task
model and the sporadic task model with minimal inter-arrival time. An important assumption
in [CST09] is that all the jobs have the same WCETC and the same relative deadline� . The main
result is that, both for (OA) and (AVR) , the feasibility condition is smax � � u (�)

� , where � u is the
upper arrival curve of the sequence of jobs, meaning that� u (D ) is an upper bound on the work
that can arrive during any time interval of length D . Actually, the same feasibility condition applies
to (BKP) and (MP) , although these speed policies are not studied in [CST09]. In contrast to this
result, we do not constrain the jobs to have the same WCET nor the same deadline. Therefore the
analysis becomes completely different as well as the feasibility conditions which are now different
for each policy.

To the best of our knowledge, all the other results on feasibility analysis of online speed policies
found in the literature target system models either with a �xed inter-arrival time between the
jobs (i.e. periodic tasks) or with a bounded inter-arrival time ( i.e. sporadic tasks). Papers in this
category are plentiful, let us just cite [JG04] in the periodic case and [AIS04] in the sporadic case.
In contrast, we make no assumption on the inter-arrival times between jobs.

8.3 Presentation of the problem

8.3.1 Hard real-time systems

Let us recall the system we consider. As previously we consider a HRTS that executes an in�nite
sequence of sporadic and independent jobsf J i gi 2 N on a single-core processor with varying
frequency. Each jobJ i is de�ned as a tuple (r i ; ci ; D i ) where r i 2 N is the release time (or arrival
time), ci 2 N is the size (also called workload), i.e. the amount of work to complete the job, and
D i 2 N is the absolute deadline of jobJ i , satisfying D i > r i . The jobs are ordered by their release
times. Their relative deadlines aredi := D i � r i , i.e. the amount of time given to the processor
to execute the job. The jobs are sporadic, meaning that their arrival times do not follow any
particular pattern. This is the most general model of jobs.

We further assume that all jobs have a bounded relative deadline: there exists� such that

8i; d i = D i � r i � � (8.1)

where � is the maximal relative deadline. Several jobs may arrive simultaneously but in any case
the cumulated size is assumed to be bounded byC. In other words:

8t;
X

i j r i = t

ci � C: (8.2)
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Finally, we denote by J C; � the set of all possible sequences of jobs that satisfy the two assumptions
stated in Eqs. (8.1) and (8.2).

De�nition 8.1 (Set of all possible sequences of jobs:J C; � ).

J C; � :=

8
<

:
J =

�
J i =( r i ; ci ; D i )

	
i 2 N

�
�
�
�8t;

X

i j r i = t

ci � C ^ 8 i; D i � r i � �

9
=

;
: (8.3)

Minimality of the assumptions. Let us anticipate a bit on what follows and comment about the
relevance of the two assumptions stated by Eq.(8.1) and (8.2) . We claim that these are the
minimal assumptions under which feasibility of a speed policy can be asserted.

First, in most practical cases, the set of jobs comes from a �nite set of tasks (in�nite sequences
of jobs with the same features). In this case, relative deadlines and sizes are always bounded.
Besides, if the set of jobs is �nite, then everything is bounded.

Consider now the most general case,i.e. with an in�nite set of sporadic jobs. If the relative
deadlines are not bounded, then the set of pending jobs at some arbitrary timet cannot be bounded
and the time needed to compute the current speed for all online policies is also unbounded, so
that feasibility cannot be asserted in �nite time.

Once the condition that all jobs have a bounded deadline is stated, the assumption on the arriving
work (8.2) must also be made. Indeed, if a set of jobs arrives at timet, all with deadlines bounded
by � , and brings an unbounded amount of work into the system, then no speed policy with a
given maximal speed will be able to execute this work before timet + � .

8.3.2 Scheduling policy

At any time t 2 R, several jobs may be active (i.e. released and not yet �nished). In this case we
must choose which job to execute �rst on the single-core processor. This ordering is known as a
scheduleand the policy for making this choice is known as the scheduling policy. Let us recall the
de�nition of a schedule feasibility.

De�nition 8.2 (Schedule feasibility). A schedule isfeasible over an in�nite sequence of jobsJ =
f (r i ; ci ; D i )gi 2 N 2 J C; � if and only if each job(r i ; ci ; D i ) is executed between its release time and its
absolute deadline,i.e. betweenr i and D i .

It has been shown that the Earliest Deadline First (EDF) scheduling policy is optimal for feasi-
bility [LL73], meaning that if a sequence J is feasible for some scheduling policy, then it is also
feasible under EDF. Therefore, in the following, we will always assume that the processor uses
EDF to schedule its active jobs.
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8.3.3 Online speed policy

Let us recall the goal we reach in this chapter: we focus on online speed policies, the goal of which
is to choose, at each timet, the speed at which the processor should run, based on the current
information (we assume that no look-ahead is available).

Let us given a sequence of jobsJ = f (r i ; ci ; D i )gi 2 N. We note also in this chapter the speedss(t),
that corresponds to the speed used at all timet 2 R.

As in all the document, all the release times, job sizes, and deadlines are integer numbers.
Therefore, the sequence of jobsf J i ; r i � tg only changes at integer time instants. This is not the
case for the processor speedsf s(u); u � tg, which can change at any time instant. We will detail
this in Section 8.3.4.

Let us recall the de�nition of an online speed policy:

De�nition 8.3 (Online speed policy). An online speed policy� is a function that assigns, at timet
with the history H t , a speeds to the processor:

� (H t ; t) = s: (8.4)

where H t is the history, notion de�ned in Chapter 2.

In the following, we will often use � (t) to simplify the notation, but one should keep in mind the
fact that, in full generality the speed selected at time t may depend on t, the jobs that arrived
before t, and the speeds selected beforet.

Since the maximal speed of the processor issmax , any speed policy� must satisfy the following
constraint:

8t; 8J; 0 � � (H t ; t) � smax : (8.5)

8.3.4 Speed decision instants

We recall here the de�nition of the speed decision instants: It is the instants at which the processor
speed can change. These times do not necessarily coincide with the job arrival times. For instance,
processor speeds may change several times between two potential job arrivals. In the rest of this
chapter, we study the two different cases:

• The processor speed changes can only occur when a job arrives:t 2 N.

• The processor speed changes can occur at any time:t 2 R.

In the following, we denote by T the set of speed decision instants. As discussed above, the two
possible cases are studied in this chapter:T = N and T = R. For (OA) , (AVR) , and (MP) , we
will show that the cases T = N and T = R yield the same feasibility conditions. For (BKP) , the
two cases are slightly different.
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8.3.5 Feasibility problem for online speed policies

The goal of this chapter is to determine the condition for which feasibility is satis�ed for several
speed policies. To do that, we will recall the de�nition of the speed policy's feasibility.

De�nition 8.4 (Speed policy's feasibility). An online speed policy � is feasible over an in�nite
sequence of jobsJ = f (r i ; ci ; D i )gi 2 N if and only if when the processor runs at speed� (t) for all t and
uses EDF, each job(r i ; ci ; D i ) is executed before its absolute deadline:

� is feasible()
�

sup
J 2J C; �

sup
t 2T

� (t) � smax

�
^ no missed deadline: (8.6)

In Eq. (8.6) , the second term “no missed deadline” is not very explicit. For this reason we rede�ne
it by using the remaining work function, which is presented next. In the rest of the chapter we use
the following notation: x+ is the positive part of x: x+ := max( x; 0).

It should be noted that the de�nition below is a more general de�nition for the remaining work
function, because it is considered that speeds can change at any time to place this chapter in the
broadest situation as analysed in Appendix A of Chapter 4.

De�nition 8.5 (Remaining work function) . Theremaining work function under � at time t is the
function w�

t (:), such that, at any future timeu � t, the remaining work w�
t (u) is the amount of work

that has arrived by timet whose deadline is beforeu, minus the amount of work already executed at
time t. It satis�es a Lindley's equation by induction:

8
>><

>>:

w�
0 (u)=0 8u � 0

w�
t (u)=

�
w�

k (u) �
Rt

k � (v)dv
�

+
+ A(t; u) 8k 2 N with k < t � k + 1

and 8u � t > 0

(8.7)

whereA(t; u) is the amount of work corresponding to the jobs arriving at timet whose deadline is
smaller or equal tou.

Two remarks are in order:

Remark 8.1. The arrival function A(t; u) is equal to0 if t 62N, because the release times of all jobs
are in N.

Remark 8.2. Since the maximal job relative deadline is� , w�
t (t +�) is the total amount of remaining

work at time t. In other words,w�
t increases up to timet � and stays constant after that timet + � :

8u � t +� , w�
t (u) = w�

t (�+ t). Moreover, for any online policy� ,
Rk+1

k � (v)dv � w�
k (k+�) because,

at time k, the processor can only execute work present in the system at timek. By straightforward
induction, this implies:

w�
t (t + �) =

X

r i � t

ci �
Z t

0
� (v)dv (8.8)

and when no deadlines are missed, then:

w�
t (t + �) � C� : (8.9)
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Feasibility Characterization

Using Def. (8.7) of the remaining work function, one can make the de�nition of feasibility given
in Def. (8.4) more explicit. For this purpose, we state Prop. 8.1 that links the remaining work
function and the policy. This proposition introduces a new condition of feasibility.

Proposition 8.1.

� is feasible()
�

sup
J 2J C; �

sup
t 2T

� (t) � smax

�
^

�
8J 2 J C; � ; 8t 2 T ; w�

t (t) = 0
�

: (8.10)

The �rst condition says that the speed selected by� at t must always be smaller thansmax , while
the second condition says that at anyt, all the work whose deadline is before t has already been
executed. Although this may seem trivial, let us write an explicit proof of this equivalence.

Proof. We rely on the de�nition of feasibility given in Def. 8.4. There are two parts in this de�nition,
and to prove the proposition, we will begin to show that:

no missed deadline() 8 J 2 J C; � ; 8t 2 T ; w�
t (t) = 0 : (8.11)

The proof of Eq. (8.11) is divided in two parts, each of them proves one implication.

1. No missed deadline=) 8 t; 0 = w�
t (t):

By contraposition, let us show that 0 < w �
t (t) =) missed deadline. If 0 < w �

t (t), then it
means that some work whose deadline is beforet has not been executed by timet, so at
least one job has missed its deadline before timet.

2. 8t; 0 = w�
t (t) =) no missed deadline:

If 0 = w�
t (t), then at each time t, all the work whose deadline was beforet has been executed.

Thanks to EDF, we know that all the jobs whose deadline is exactly at timet have been
executed beforet. This is true for all t, so it is also true for all the jobs.

The condition involving smax is the same as in the original de�nition.

The following proposition establishes a necessary condition of the feasibility for any online speed
policy � .

Proposition 8.2. For decision instantsT = N and T = R and for any policy� , a necessary condition
of feasibility is:

smax � C: (8.12)

Proof. Let � be any feasible online speed policy and letJ be the sequence of jobs made of
the single job J0 = (0 ; C; 1). By Def. 8.5, w�

1 (1) = ( C �
R1

0 � (v)dv)+ . The second part of the
feasibility condition of � says that at time 1, w�

1 (1) must be equal to0. This implies
R1

0 � (v)dv � C.
Since

R1
0 � (v)dv � max0� t � 1 � (t), we therefore have, max0� t � 1 � (t) � C. Then, the �rst part of

the feasibility condition implies that smax � max0� t � 1 � (t). Putting both parts together yields
smax � C.

8.3 Presentation of the problem 151



Proposition 8.3. In the case of integer decision instants (T = N), the condition 8t 2 R; w�
t (t) = 0

can be re-written as8k 2 N; � (k) � w�
k (k + 1) .

Proof. The proof simply follows the de�nitions. When the speed is constant in the interval [k; k +1) ,

w�
k+1 (k + 1) = ( w�

k (k + 1) � � (k))+ + A(k + 1 ; k + 1) ;

with A(k + 1 ; k + 1) = 0 because jobs arriving at timek + 1 have a deadline at leastk + 2 . Hence:

w�
k+1 (k + 1) = ( w�

k (k + 1) � � (k))+

It follows that w�
k+1 (k + 1) = 0 if and only if (w�

k (k + 1) � � (k))+ = 0 . By de�nition of the max,
this is equivalent to � (k) � w�

k (k + 1) .

8.4 Feasibility analysis

The goal of this chapter is to study the feasibility of the four different online speed policies
(OA) , (AVR) , (BKP) , and (MP) . For each policy, we formally establish a necessary and suf�cient
feasibility condition on smax . In each case, the proof follows the same route. We �rst check
that if smax = 1 then the policiy is feasible. This part of the proof is already provided in the
papers introducing the policies, but we brie�y sketch them when the argument is trivial. Then,
still assuming that smax = 1 , we compute the maximal speed � used by the online policy
under a worst case sequence of jobs inJ C; � . Therefore, a necessary and suf�cient condition of
feasibility is smax � � . We construct such a worst case sequence for each policy. While these
worst case sequences will look similar (at least the �rst three), the analysis relies on very different
techniques:

• The proof for (OA) policy uses a construction (Lindley's equation, with a backward construc-
tion) that comes from queueing theory (Section 8.5).

• The proof for (AVR) is based on the explicit construction of a worst case, which consists of a
maximal number of jobs that have the same deadline (Section 8.6).

• The proof for (BKP) exploits arithmetic considerations (Section 8.7).

• The proof for (MP) is based on a dynamic programming analysis (Section 8.8).

At any time t, the (OA) and (MP) policies both compute the processor speed based on the work
remaining at t, while the (AVR) and (BKP) policies do not. This is in part why the proofs are
so diverse. As a �nal note before starting with the proofs, the case of (OA) is by far the more
interesting. In spite of the apparent simplicity of (OA), the proof uses several backward inductions
as well as properties of generalized differential equations (with non-differentiable functions).
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8.5 Feasibility of the Optimal Available speed policy (OA)

8.5.1 De�nition of (OA) [YDS95]

De�nition 8.6 (Optimal Available (OA) ). At each timet 2 T , the job that has the earliest deadline
is executed at speed:

� (OA) (t) = max
v>t

 
w(OA)

t (v)
v � t

!

(8.13)

wherew(OA)
t (:) is the remaining work de�ned in Def. 8.5.

To illustrate (OA) , let us consider the following set of jobs with T 2 N, which is composed of3
jobs and belongs toJ 4;5:

• J1 = ( r 1 = 0 ; c1 = 1 ; d1 = 4) henceD1 = 4 ,

• J2 = ( r 2 = 3 ; c2 = 4 ; d2 = 6) henceD2 = 3 ,

• J3 = ( r 3 = 3 ; c3 = 1 ; d3 = 8) henceD3 = 5 ,

Let us compute the(OA) speed at time3. According to Eq. (8.13), it is equal to:

� (OA) (3) = max
v> 3

 
w(OA)

3 (v)
v � 3

!

At each of the three instants 0, 1, and 2, only the job J1 is present, so the speed computed by
Eq. (8.13) is equal to:

� (OA) (0) = � (OA) (1) = � (OA) (2) =
c1

D1
=

1
4

:

Therefore, at time 3, we have:

� (OA) (3) = max

(
w(OA)

3 (4)
d1 � 3

;
w(OA)

3 (6)
d2 � 3

;
w(OA)

3 (8)
d3 � 3

)

= max
�

c1 � � (OA) (0) � � (OA) (1) � � (OA) (2)
d1 � 3

;

c1 + c2 � � (OA) (0) � � (OA) (1) � � (OA) (2)
d2 � 3

;

c1 + c2 + c3 � � (OA) (0) � � (OA) (1) � � (OA) (2)
d3 � 3

�

= max
�

1
4

;
17
12

;
21
20

�

In conclusion, we have � (OA) (3) = 17
12 .
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8.5.2 Feasibility analysis of (OA)

In this section, we will determine the smallest maximal processor speedsmax that guarantees the
feasibility of (OA) . Theorem 8.1 gives a necessary and suf�cient feasibility condition for (OA) .

Theorem 8.1. (OA) is feasible() smax � C(h� � 1 + 1) , wherehn is then-th harmonic number:
hn =

P n
i =1 1=i.

Proof. We distinguish the cases where the speed decision instants are integer and real numbers.

� The speed decision instants are integer numbers: T = N.

In the integer case, Eq. (8.13) becomes:

� (OA) (t) = max
v2 N; v>t

 
w(OA)

t (v)
v � t

!

: (8.14)

By taking v = t + 1 , Eq. (8.14) implies that � (OA) (t) � w(OA)
t (t + 1) . Therefore, the feasibility

Equation (8.10) can be written as a condition on smax only:

(OA) is feasible () 8 t; smax � � (OA) (t):

The rest of the proof is structured as follows. (i) We will �rst derive a bound on � (OA) (t) (steps 1,
2, and 3). (ii) Then we will construct an explicit worst-case scenario that reaches this bound
asymptotically.

Let us �rst compute an upper bound on the remaining work w(OA)
t (v), for any t 2 N and any

integer v > t . This will be done in several steps. To simplify notations, in the following, we denote
� (OA) = � and w(OA) = w, since the only speed policy considered hare is(OA) and no confusion
is possible.

We can focus on timesv � t + � because the remaining work after time t + � remains the same
(see Remark 8.2). Now,wt (v) only depends on three things:

• the remaining work function at time v � � : wv� � (:),

• the work that arrives between times v � � + 1 and t,

• and the speeds used at timesv � � to t � 1.

The de�nition of wt (v) yields:

wt (v) =
�
wt � 1(v) � � (t � 1)

�
+ + A(t; v) (8.15)

wt � 1(v) =
�
wt � 2(v) � � (t � 2)

�
+ + A(t � 1; v) (8.16)

...

wv� �+1 (v) =
�
wv� � (v) � � (v � �)

�
+ + A(v � � + 1 ; v): (8.17)

This �rst shows that the function wt increases when� decreases.
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Step 1: The �rst step amounts to showing that wt (v) becomes larger if the sizes of all the jobs
whose absolute deadline is larger thanv are set to 0, while keeping the rest unchanged.

This fact is easy to check: In Eqs(8.15) -(8.17) , the only terms that depend on those jobs are the
speeds. Under(OA) , the speeds are increasing with the remaining work. Therefore, by removing
these jobs, all the speeds are decreased (or remain the same) andwt (v) is increased.

Step 2: The second step amounts to checking that, if the remaining work function wv� � (:) is
replaced by the function w�

v � � (:) such that (i) w�
v � � (i ) = 0 for i = v � � + 1 ; : : : ; v � 1 and

w�
v � � (v) = wv� � (v), and such that (ii) all jobs arriving at times v � � < i � t have their deadline

set at v, then this change increases the remaining work at timev. This construction is illustrated
in Fig. 8.1 where the w�

v � � (:) function is depicted by the black curve.

time
t+1

work

C(� � 1)

w0
t � �+1 (�)

w1

s�
t � 2

w0
t � �+1

tt � �+1

Figure 8.1.: Construction of w�
t (v) for v = t + 1 and � = 6 . The bold black curve is the lower bound on the

remaining work w�
v � � (:). The bold blue curve is the �nal upper bound w1 on the remaining

work. The bold green arrows represent the work executed by the processor at each time sloti at
speed� � (i ).

We will show this by induction (putting a star on all values computed with the new work func-
tion w�

v � � (:)):

• Initial step i = 0 : w�
v � � (v) � wv� � (v) by de�nition of w� .

• Induction assumption at step i :

w�
v � �+ i (v) � wv� �+ i (v) (8.18)

• Let us prove the induction property at step i + 1 , i.e., that w�
v � �+ i +1 (v) � wv� �+ i +1 (v). Let

h := w�
v � �+ i (v) � wv� �+ i (v). We �rst have:

� � (v � � + i ) =
w�

v � �+ i (v)

� � i

because, at any timer < v , we have w�
v � �+ i (r ) = 0 by construction.
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For the original system, � (v � � + i ) � wv � �+ i (v)
� � i because the maximum could be reached

for some r < v . This yields:

wv� �+ i (v) � � (v � � + i ) � wv� �+ i (v) �
wv� �+ i

� � i

= w�
v � �+ i (v) � h �

w�
v � �+ i (v) � h

� � i

= w�
v � �+ i (v) �

w�
v � �+ i (v)

� � i
�

�
h �

h
� � i

�

� w�
v � �+ i (v) �

w�
v � �+ i (v)

� � i
= w�

v � �+ i (v) � � � (v � � + i ): (8.19)

Furthermore, for each i , wv� �+ i (v) is the total amount of work present in the original system
at time v � � + i , because we have discarded all jobs with deadline larger thanv in Step 1.
This implies � (v � � + i ) � wv� �+ i (v), hence:

�
wv� �+ i (v) � � (v � � + i )

�
+ = wv� �+ i (v) � � (v � � + i ): (8.20)

Putting Eqs. (8.19) and (8.20) together, since for all k � t, A � (k; v) = A(k; v), we get:

w�
v � �+ i +1 (v) =

�
w�

v � �+ i (v) � � � (v � � + i )
�

+ + A � (v � � + i + 1 ; v)

�
�
wv� �+ i (v) � � (v � � + i )

�
+ A(v � � + i + 1 ; v)

=
�
wv� �+ i (v) � � (v � � + i )

�
+ + A(v � � + i + 1 ; v)

= wv� �+ i +1 (v);

which is the property we wanted to prove at step i + 1 . This �nishes Step 2.

Step 3: In the star system (work function w�
v � � (:)), the speeds used by(OA) at times v � � to

t � 1 are respectively:

� � (v� �) =
w�

v � � (v)

�

� � (v� �+1) =
w�

v � � (v)

�
+

A(v� �+1 ; v)
� � 1

� � (v� �+2) =
w�

v � � (v)

�
+

A(v� �+1 ; v)
� � 1

+
A(v� �+2 ; v)

� � 2
...

� � (t � 1) =
w�

v � � (v)

�
+

A(v� �+1 ; v)
� � 1

+
A(v� �+2 ; v)

� � 2
+ ::: +

A(t � 1; v)
v� t +1

:

We introduce the variable u = v � t and compute the sum of all speeds:

t � 1X

i = v � �

� � (i ) =
(� � u)w�

v � � (v)

�
+

(� � u� 1)A(v� �+1 ; v)
� � 1

+ ::: +
A(t � 1; v)

u+1
: (8.21)
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We then compute the sum of Eqs.(8.15) to (8.17) , in the case of the star system. Note that the
speeds� � (i ) never become larger than the workw� (i ), so the max operator is never “active” and
can be removed:

w�
t (v) = w�

v � � (v) �
t � 1X

i = v � �

� � (i ) +
tX

i = v � �+1

A(i; v ): (8.22)

By replacing in Eq. (8.22) the sum of the speeds (Eq.(8.21) ), we obtain the remaining work at
v = t + u:

w�
t (v) =

uw�
v � � (v)

�
+

uA(v� �+1 ; v)
� � 1

+ ::: +
uA(t � 1; v)

u+1
+ A(t; v): (8.23)

Sincew�
v � � (v) � C� (see Eq.(8.8) ) and A(k; v) � C for all k � t, we obtain an upper bound on

w�
t (t + u):

w�
t (t + u) �

uC�
�

+
uC

� � 1
+ ::: +

uC
u + 1

+ C: (8.24)

This �nishes Step 3 and provides a bound onwt (t + u), for all t, becausewt (t + u) � w�
t (t + u).

To �nd an upper bound on � (OA) (t), we divide by u:

wt (t + u)
u

�
C�
�

+
C

� � 1
+ ::: +

C
u + 1

+
C
u

:

The bound on the right hand side of Eq. (8.5.2) is maximal when u = 1 . We therefore get an upper
bound on � (OA) (t), denoted w1:

� (OA) (t) � C +
C

� � 1
+ ::: +

C
2

+ C
| {z }

w1

: (8.25)

The star remaining function w� (as displayed in Figure 8.1) is not reachable under(OA) . However,
one can construct a remaining work function that is asymptotically arbitrarily close to it. This
construction is illustrated in Figure 8.2. First, jobs of size C and relative deadline � arrive at each
slot during n time slots. When n grows to in�nity, the speed selected by (OA) approachesC and
the remaining work approaches the black staircase displayed in Figure 8.2 (see Lemma 8.1 below).
Then, jobs of sizeC and absolute deadline� + n arrive at all time slots from n + 1 to n + � � 1
(job arrivals are represented alternatively in blue and red in Figure 8.2). In that case, we will show
that w(OA)

n +� � 1(n + 1) will approach w1 asn goes to in�nity.

Lemma 8.1. If the sequence of jobs is such that at each timen a job arrives with sizeC and relative
deadline� , then:

• The speeds� (OA) (n) increase and converge towardsC whenn goes to in�nity;
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n+�n n+1

work

time

C�

v(OA )
max

Figure 8.2.: Asymptotic worst case state, forC = 1 and � = 5 . The staircase black curve represents
the remaining work function reached asymptotically while the coloured parts (blue and red
segments represent one job at each time slot with identical WCETC and identical absolute
deadline) lead to the maximal w(OA)

n +� � 1(n + �) . The green arrows represent the quantities of
work executed by the processor under(OA) .

• The remaining work function converges towards the functionwn (:) such that8i � � ; wn (n +
i ) = iC .

Proof. We show by induction on n that wn (n + � � 1) � C(� � 1) and that � (n) = wn (n + �) =� .

• Initial step n = 0 : a single job has arrived, with size C and deadline � . Therefore,
w0(� � 1) = 0 � C(� � 1) and � (0) = w0(�) =� = C=� .

• Induction assumption at step n:

wn (n + � � 1) � C(� � 1) ^ � (n) = wn (n + �) =� : (8.26)

• Let us prove the induction property at step n + 1 . We have:

wn +1 (n + �) = ( wn (n + �) � � (n))+ + A(n + 1 ; n + �)

= wn (n + �) �
wn (n + �)

�
+ 0

= wn (n + �)
� � 1

�
:

Sincewn (n + �) is always smaller thanC� (see Eq. (8.8)), it follows that:

wn +1 (n + �) � C(� � 1): (8.27)
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Let us now compute the speed� at time n + 1 . Since the speed at timen is � (n) =
maxv

wn (n + v)
v = wn (n +�)

� , which is not reached for v = 1 , then � (n+1) = max( � (n); wn +1 (n+
� + 1) =�) . Replacing � (n) by its value from the induction hypothesis yields:

� (n + 1) = max
�

wn (n + �)
�

;
wn +1 (n + � + 1)

�

�

=
1
�

max
�
wn (n + �) ; wn +1 (n + � + 1)

�
: (8.28)

Since the job that arrives at time n + � + 1 is of sizeC, the second term of themax is:

wn +1 (n + � + 1) = wn +1 (n + �) + C = wn (n + �)
� � 1

�
+ C:

Using the induction assumption. It follows that:

wn +1 (n + � + 1) = wn (n + �) +
�

C �
wn (n + �)

�

�
:

We again use the fact thatwn (n + �) � C� (see Eq.(8.8) ) to conclude that the second term
of the max is always larger than the �rst term, giving:

� (n + 1) =
wn +1 (n + � + 1)

�
: (8.29)

This ends the induction and shows as a byproduct that� (n + 1) � � (n).

Now, since � (n) is increasing, it converges to some valueL � 1 . Since for all n, 0 � wn (n + �) �
c� , and sincewn (n + �) =

P n
i =0 C �

P n � 1
i =0 � (i ) is equivalent to n(C � L ) when n grows, then

L = C.

As for the second part of the Lemma, it follows from inspecting Eq.(8.28) . The fact that � (n +
1) � � (n) goes to0, implies that wn +1 (n + �) goes toC(� � 1). This implies that wn +1 (n + 1 + i )
goes toCi , for all 0 � i � � . This concludes the proof of Lemma 8.1.

In the following we use the following notation: xn � yn if jxn � yn j � " , for some " > 0 arbitrarily
small.

Let us now resume the proof of Theorem 8.1. Consider the following job sequence: Firstn jobs
arrive, with release times 1; 2; : : : n, sizeC and relative deadline � , the next jobs arrive at times
n + 1 ; n + 2 ; : : : n + � � 1 with size C and absolutedeadline n + � . We assume thatn is large
enough so that using Lemma 8.1,wn (n + i ) � Ci for all i � � and � (OA) (n) � C (see Figure 8.2).

By construction of the job sequence,

• at time n + 1 , � (OA) (n + 1) �
C�

� � 1
;

8.5 Feasibility of the Optimal Available speed policy (OA) 159



• more generally, for 1 � k < � , we have on the one hand:

(� � k)� (OA) (n + k) � (� + k � 1)C �
k � 1X

j =1

� (OA) (n + j )

() (� � k � 1)� (OA) (n + k) � (�+ k� 1)C�
k � 1X

j =1

� (OA) (n+ j ) � � (OA) (n+ k)

() (� � k � 1)� (OA) (n + k) � (� + k � 1)C �
kX

j =1

� (OA) (n + j ) (8.30)

and on the other hand:

(� � k � 1)� (OA) (n + k + 1) � (� + k)C �
kX

j =1

� (OA) (n + j ): (8.31)

By subtracting Eq. (8.30) to Eq. (8.31), we obtain:

(� � k � 1)
�

� (OA) (n + k + 1) � � (OA) (n + k)
�

� C

() � (OA) (n + k + 1) � � (OA) (n + k) +
C

� � k � 1
: (8.32)

By applying iteratively Eq. (8.32) from n + k + 1 down to n + 1 , we obtain for all k � 1:

� (OA) (n + k + 1) � � (OA) (n + 1) + C
k+1X

j =2

1
� � j

� � (OA) (n + 1) + C(h� � 2 � h� � k � 2)

where hn is the n-th harmonic number: hn =
P n

i =1 1=i and h0 = 0 . Therefore � (OA) (n +
� � 1) has the following asymptotic value:

C
�

�
� � 1

+ h� � 2

�
= C (1 + h� � 1) = w1;

by using � (OA) (n + 1) � C �
� � 1 .

To conclude, the (OA) policy may use a speed arbitrarily close to its upper bound,w1. Therefore,
it is feasible if and only if

smax � w1 = C (1 + h� � 1) : (8.33)

This concludes the proof of Theorem 8.1 in the caseT = N. �

� The speed decision instants are real numbers: T = R.

We will prove that, when (OA) is given the opportunity to change the speed at any timet 2 R,
the speed chosen at any real timet is the same as the speed chosen at the previous integer instant.
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Let us denote bywN
k the remaining work under integer decision instants, and wR

k the remaining
work under real decision instants. We will prove by induction on k that for any integer k, wR

k = wN
k .

For the sake of simplicity, let us denote as� instead of � R the (OA) speed function when the
speeds can change at any real instant.

For all k 2 N, for all t such that k < t < k + 1 and all v � t, we recall the formula giving the
remaining work, when the current time is t (see Eq. (8.7)):

wR
t (v) =

�
wR

k (v) �
Z t

k
� (x)dx

�

+
+ A(t; v) =

�
wR

k (v) �
Z t

k
� (x)dx

�

+
(8.34)

and according to Def. 8.6 of the (OA) policy, at each time t 2 R we have:

� (t) = max
v>t

�
wR

t (v)
v � t

�
: (8.35)

Combining Eqs. (8.34) and (8.35) yields:

� (t) = max
v>t

�
wR

k (v) �
Rt

k � (x)dx
�

+

v � t
: (8.36)

The (:)+ operator can be removed in Eq.(8.36) because, forv = k + � , wR
k (k + �) �

Rt
k � (x)dx

(see Remark 8.2). It follows that:

� (t) = max
v>t

�
wR

k (v) �
Rt

k � (x)dx
�

v � t
: (8.37)

Let us now prove by induction on k that 8k 2 N, wR
k = wN

k .

• Initial step k = 0 : only the �rst job J1 may have arrived at time 0. Therefore, for all v � 0,
wR

0 (v) = wN
0 (v) = c1 if r 1 = 0 ; d1 � v and wR

0 (v) = wN
0 (v) = 0 otherwise.

• Induction assumption at step k:
wR

k = wN
k : (8.38)

• Now consider t 2 R such that k < t < k + 1 . We �rst prove that � (t) = � (k).

We de�ne m as

m := argmax
v

wR
k (v)

v � k
: (8.39)

This means that

� (k) =
wR

k (m)
m � k

: (8.40)
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Now let us check whether a constant speed on[k; k + 1) — i.e. � (t) = � (k); 8t 2 [k; k + 1) —
can be a solution of Eq.(8.37) , the integral equation de�ning � . With a constant speed, the
numerator in Eq. (8.37) becomes:

wR
t (v) = wR

k (v) � � (k)( t � k): (8.41)

By using the value of � (k) from Eq. (8.40), we obtain:

wR
t (v)

v � t
=

wR
k (v)(m � k) � wR

k (m)( t � k)
(v � t)(m � k)

: (8.42)

First, the particular case wherev = m leads to:

wR
t (m)

m � t
=

wR
k (m)(m � k) � wR

k (m)( t � k)
(m � t)(m � k)

=
wR

k (m)
m � k

= � (k): (8.43)

Second, we show that this particular case is also the maximal value forwR
t (v)=(v � t).

Eq. (8.40) implies that: w R
k (v)

v � k � w R
k (m )

m � k . Together with Eq. (8.42), this yields:

8v 2 R;
wR

t (v)
v � t

=
wR

k (v)(m � k) � wR
k (m)( t � k)

(v � t)(m � k)

�
wR

k (m)(v � k) � wR
k (m)( t � k)

(v � t)(m � k)

=
wR

k (m)(v � t)
(v � t)(m � k)

= � (k): (8.44)

By Appendix (8.11) , the solution of Eq. (8.37) is unique. Therefore the solution of this
equation is:

8t 2 [k; k + 1) � (t) = � (k): (8.45)

Since the speed is constant between two integer time steps, and since, by the induction
assumption (8.38) , wR

k = wN
k , we thus have wR

k+1 = wN
k+1 . This concludes the induction

proof.

This induction proof also shows that the speed decision are the same for integer and real decision
instant. This implies that the behaviour of (OA) with real decision instants is the same as the
behaviour of (OA) with integer decision instants. Therefore the feasibility condition is the same.
This concludes the proof of Theorem 8.1.

8.6 Feasibility of the Average Rate speed policy (AVR)
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8.6.1 De�nition of (AVR) [YDS95]

(AVR) is de�ned in [YDS95] as follows:

De�nition 8.7 (AVerage Rate(AVR) ). At each timet 2 T , the job that has the earliest deadline is
executed at speed:

� (AVR) (t) =
X

i 2A ( t )

ci

D i � r i
(8.46)

whereA(t) is the set ofactive jobs at timet, i.e. jobsJ i = ( r i ; ci ; D i ) such thatr i � t < D i .

Notice that the processor speed� (AVR) (t) is independent of the previous speeds used by the
processor. In contrast, (OA) chooses at timet a speed that, through w(OA) , depends on the
previous speeds used by the processor.

Let us apply (AVR) policy on the example displayed in Section(8.5) , where we consider the same
3 jobs:

• J1 = ( r 1 = 0 ; c1 = 1 ; d1 = 4)

• J2 = ( r 2 = 3 ; c2 = 4 ; d2 = 6)

• J3 = ( r 3 = 3 ; c3 = 1 ; d3 = 8)

The three jobs are active at time3, thus using Eq. (8.46) yields:

� (AVR) (3) =
c1

d1 � r 1
+

c2

d2 � r 2
+

c3

d3 � r 3
=

1
4 � 0

+
4

6 � 3
+

1
8 � 3

Therefore � (AVR) (3) = 107
60 .

We note that the speed chosen at time3 by (AVR) is greater than the one chosen by(OA) . However,
in the next section, we will show that the maximal speed required by (AVR) for feasibility is
smaller than the maximal speed required by(OA) and determined in Section 8.5.

8.6.2 Feasibility analysis

Theorem 8.2 establishes the condition onsmax that insures the feasibility of (AVR) .

Theorem 8.2. (AVR) is feasible() smax � Ch� .

Proof. We distinguish the cases where the decision instants are integer and real numbers.
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� The decision instants are integer numbers: T = N.

According to Prop. 8.1, the (AVR) feasibility proof is split in two different parts.

I The �rst part consists in showing that all jobs are executed before their deadlines,i.e. � (AVR) (t) �
w(AVR)

t (t + 1) .

Let us focus on one jobJ i = ( r i ; ci ; D i ). Under (AVR) , one can consider that the processor
dedicates a fraction of its computing power to execute a quantity of work equal to ci

di
per time

unit from r i to r i + di � 1, for job J i only. So at time r i + di , the job J i is totally executed by the
processor, hence before its deadline. Since this reasoning is valid for all jobs, all jobs are executed
before their deadline under (AVR) as long assmax is large enough.

Therefore, the feasibility equation (8.10) can be simpli�ed and written as a condition on smax :

(AVR) is feasible () 8 t 2 T ; smax � � (AVR) (t): (8.47)

I Let us now compute the minimal value of smax such that (AVR) is feasible, by building a
worst-case scenario:

• By de�nition of (AVR) , there is no in�uence of the work already executed on the value of
the current speed. We therefore focus on the currently active jobs.

• � (AVR) (t) increases with the size of each job, so we consider jobs of maximal size, namelyC.

• � (AVR) (t) increases with the number of active jobs, so our worst-case scenario involves the
maximal possible number of active jobs, namely� (because only one job of sizeC can arrive
at each time step, with a deadline not larger than � ).

• � (AVR) (t) increases when the deadline of the jobs are small, so we consider jobs with the
smallest possible deadline, namelyt + 1 .

time
t� �+1 t t+1

C

Work quantity arrived before t
Work quantity that has to be executed beforet + 1
Executed work quantity under (AVR)

J4 = ( t; C; 1)

J3 = ( t� 1; C; 2)

J2 = ( t� 2; C; 3)

J1 = ( t� �+1 ; C; �)

Figure 8.3.: Worst-case scenario for(AVR) when � = 4 .
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In this worst-case scenario (illustrated in Fig. 8.3 when � = 4 ), the speed � (AVR) (t) is maximal at
time t and is the sum of the average speed of each active jobJ i executed separately:

� (AVR) (t) =
�X

i =1

C
i

= Ch� :

It follows that the feasibility condition for (AVR) is:

Ch� � smax :

This worst-case scenario allows us to determine the maximal processor speedsmax under which
the (AVR) policy can schedule any sequence of jobs without missing a deadline. If we suppose
that smax � Ch� , then there exists a job con�guration on which (AVR) is not feasible, as shown
in Fig 8.3. Therefore Theorem 8.2 is proved.

� The speed decision instants are real numbers: T = R.

By de�nition, � (AVR) (t) only depends on the set of active jobs, satisfyingr i � t < D i . Sincer i

and D i are integer numbers, the set of active jobs is the same fort and for btc. As for the previous
policy, allowing real decision instants for (AVR) does not change the chosen speeds. We thus have
the same feasibility condition for the integer and real decision instants, which is smax � Ch� .

8.7 Feasibility of the Bansal, Kimbrel, Pruhs speed policy

(BKP)

8.7.1 De�nition of (BKP) [BKP07]

De�nition 8.8 (Contributing work) . For any t, t1, and t2 in Rsuch that t1 � t � t2, u(t; t 1; t2) is
the amount of work arrived aftert1 and beforet, the deadline of which is less thant2.

According to Def. 8.8, any job J i = ( r i ; ci ; D i ) contributing to u(t; t 1; t2) must satisfy t1 � r i � t
and D i � t2.

De�nition 8.9 (Bansal, Kimbrel, Pruhs policy(BKP) ). At each timet, the job that has the earliest
deadline is executed at speed:

� (BKP) (t) = max
t 2 >t

�
u(t; et � (e � 1)t2; t2)

t2 � t

�
: (8.48)

Remark 8.3. (BKP) was designed to improve the competitive ratio of(OA) , from � � for (OA) to
2( �e

� � 1 ) � for (BKP) , when the power dissipated by the processor at speeds is s� [BKP07].

Let us apply the policy (BKP) on the simple example displayed in Sections 8.5 and 8.6. We recall
the 3 jobs:
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• J1 = ( r 1 = 0 ; c1 = 1 ; d1 = 4) ,

• J2 = ( r 2 = 3 ; c2 = 4 ; d2 = 6) ,

• J3 = ( r 3 = 3 ; c3 = 1 ; d3 = 8) .

For computing the max in Eq. (8.48) at time 3, let us examine four possible cases:

1. t2 > d 3: In that case, the 3 jobs are present at timeu, hence:

u(3; 3e � (e � 1)t2; t2)
t2 � 3

�
c1 + c2 + c3

d3 � 3
=

6
5

:

2. d2 < t 2 < d 3: Because of the deadlines, in the best case, only 2 jobsJ1 and J2 are present at
time u, hence:

u(3; 3e � (e � 1)t2; t2)
t2 � 3

�
c1 + c2

d2 � 3
=

5
3

:

3. t2 = d2: The 2 jobs J1 and J2 are present at time u, hence:

u(3; 3e � (e � 1)t2; t2)
t2 � 3

=
c1 + c2

d2 � 3
=

5
3

:

4. t2 < d 2: Only job J1 can be present at timeu, hence:

u(3; 3e � (e � 1)t2; t2)
t2 � 3

�
c1

d1 � 3
= 1 :

As a consequence, we obtain:

� (BKP) (3) =
c1 + c2

d2 � 3
=

5
3

:

The following table summarizes the numerical values computed by the three speed policies(OA) ,
(AVR) , and (BKP) at time 3 and for the chosen example with three jobs.

(OA) (AVR) (BKP)

17=12 107=60 5=3

We therefore have the following inequality:

� (OA) (3) � � (BKP) (3) � � (AVR) (3):

In the following, we will show that even if the behavior of (BKP) looks like a compromise between
(OA) and (AVR) , the feasibility condition of (BKP) is much better than both.
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8.7.2 Feasibility analysis of (BKP) with T = N

Theorem 8.3. (BKP) is feasible withT = N () smax � 3
2 (e � 1)C.

Proof. From Theorem 5 in [BKP07], (BKP) completes all the jobs by their deadlines. As a
consequence,8t 2 R (and hence in N), we have � (BKP) (t) � w(BKP)

t (t + 1) . Therefore, the
feasibility equation, Eq. (8.10), can be simpli�ed and rewritten as a condition only on smax :

(BKP) is feasible with T = N () 8 t 2 N; smax � � (BKP) (t): (8.49)

time

C

t � 1 t t + 1� = 1
e� 1

ta
1 ta

2tb
1 tb

2

Work quantity arrived before t
Work quantity that must be executed before t + 1

(
ta
1 = et � (e � 1)ta

2

tb
1 = et � (e � 1)tb

2

Figure 8.4.: (BKP) with integer speed decision instants (t 2 N) and Case 1 (t2 < t + 1 ). Let t i
2 2 (t; t + 1]

with i 2 f a; bg to illustrate the two sub-cases. Beforet + � (sub-casei = a), no jobs are taken
into account in the speed computation, sos(BKP)

max = 0 . After this threshold (sub-casei = b),
s(BKP)

max can be non null because we take potentially into account the job arriving at t � 1 and
ending at t . This job is at worst of sizeC. The two black arrows illustrate the position of t i

1 with
respect to that of t i

2 .

In order to prove Condition (8.49) , we will �nd an upper and a lower bound for the maximal
speed of(BKP) . To �nd an upper bound on s(BKP)

max , we have to determine an upper bound on
u(t; t 1; t2). Let t 2 N. We split the analysis in two cases:

I Case 1: We consider the case wheret2 � t < 1. We are faced with two subcases:

� Either t1 = et � (e � 1)t2 > t � 1. In that subcase, no job can arrive aftert1 with a deadline
smaller than t2. Therefore u(t; t 1; t2) = 0 , and � (BKP) (t) = 0 . This subcase is illustrated in
Fig. 8.4 by the tuple (t; t a

1 ; ta
2).

� Or t1 = et � (e � 1)t2 � t � 1. Here, potentially, one job can arrive at t � 1 and end at t.
We introduce the variable � 2 R such that t2 = t + � and t1 � t � 1. This limit case (the
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earliest t2, under these conditions, such that one job can be taken into account in the(BKP)
speed computation) leads to:

t1 = t � 1

() et � (e � 1)(t + � ) = t � 1

() � =
1

e � 1
:

Therefore the maximal value for u(t; t 1; t2) is C
� and is reached for t2 = t + � . Note that C

� is
independent of t. This subcase is illustrated in Fig. 8.4 by the tuple(t; t b

1; tb
2).

I Case 2: We consider the case wheret2 � t + 1 . In this case the contributing work is bounded
by:

u(t; t 1; t2) � Cbt � t1 + 1c: (8.50)

because, even whent = t1, one job can arrive at t and be taken into account by (BKP) (hence the
“+1 ”). It follows that the speed computed by (BKP) is:

� (BKP) (t) � C max
t 2 >t

�
bt � et + ( e � 1)t2 + 1c

t2 � t

�

� C max
t 2 >t

�
b(e � 1)(t2 � t) + 1 c

t2 � t

�
: (8.51)

To reason about Eq.(8.51) , we introduce the variable 
 2 R+ , such that t2 = t +1+ 
 . Accordingly,
� (BKP) depends only on 
 :

� (BKP) (
 ) � C max

 2 R+

�
b(e � 1)(1 + 
 ) + 1 c

1 + 


�
: (8.52)

Because of the �oor operator, (e � 1)(1 + 
 ) + 1 must be in Nfor the fraction b(e� 1)(1+ 
 )+1 c
1+ 
 to be

maximized, and sincee � 1 is irrational, there must exist k 2 N such that:

1 + 
 =
k

e � 1
: (8.53)

It follows that:

b(e � 1)(1 + 
 ) + 1 c
1 + 


=
(e � 1)(1 + 
 ) + 1

1 + 

= e � 1 +

1
1 + 


: (8.54)

Now, since 
 is positive, we have1 + 
 � 1, so:

k
e � 1

� 1 () k � e � 1: (8.55)
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The function 
 7! e� 1+ 1
1+ 
 is decreasing and
 has to satisfy the condition of the Inequality (8.55) .

Therefore the maximum of Eq. (8.52) is reached for the smallestk 2 N (i.e. the smallest possible

 ) such that Inequality (8.55) is satis�ed:

k = min
j 2 N

f j � e � 1g = de � 1e: (8.56)

Finally, by replacing k by its value in Eq. (8.53), we obtain:


 =
de � 1e
e � 1

� 1 =
3 � e
e � 1

' 0:16: (8.57)

From Eqs. (8.52), (8.54), and (8.57), it follows that:

� (BKP) (t) � C
�

e � 1 +
e � 1

2

�
=

3
2

(e � 1)C ' 2:577C: (8.58)

Putting Case 1 and Case 2 together, we obtain:

8t; � (BKP) (t) = max
�

max
t 2 � t +1

�
u(t; et � (e � 1)t2; t2)

t2 � t

�
;

max
t +1 >t 2 >t

�
u(t; et � (e � 1)t2; t2)

t2 � t

� �

� max
�

max

 2 R+

��
(e � 1) +

1
1 + 


�
C

�
; (e � 1)C

�

� max

 2 R+

��
(e � 1) +

1
1 + 


�
C

�

�
3
2

(e � 1)C ' 2:577C: (8.59)

We now want to establish a lower boundon the maximal speed of (BKP) , by using Eq.(8.59) . If
we are in the particular case depicted in Figure 8.2 wheret = n + � � 1 and t2 = t +1+ 
 , then we
have t1 = et � (e � 1)t2 2 N by de�nition of t1 in Def. 8.9. Under these conditions and according
to the previous computations done for the upper bound case, we have for this particulart:

� (BKP) (t) =
3
2

(e � 1)C: (8.60)

Since the lower bound of Eq.(8.60) is equal to the upper bound of Eq.(8.59) , we can conclude
that:

(BKP) is feasible() smax �
3
2

(e � 1)C:
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8.7.3 Feasibility analysis of (BKP) with T = R

When the speed decision instants are real numbers, another feasibility condition holds for(BKP)
policy, stated in Theorem 8.4.

Theorem 8.4. (BKP) is feasible withT = R () smax � eC.

Proof. Let us consider the same three following variablest, t1, and t2, as in the proof of Theo-
rem 8.3. The only difference is the fact that t is in Rinstead of N.

Similarly to the proof of Theorem 8.3, we have to prove the following equivalence:

(BKP) is feasible with T = R () 8 t 2 R; smax � � (BKP) (t): (8.61)

To do so, we will use the same method as in the previous proof,i.e. we determine an upper and
a lower bound for the maximal speed of (BKP) . To begin, we will �nd an upper boundon the
maximal speed of (BKP) . We introduce the variable � 2 R such that t2 = t + � . The set of jobs
that are taken in consideration in (BKP) speed computation belongs to an interval of lengthe� ,
because:

t2 � t1 = t + � � et1 + ( e � 1)(t + � ) = e�:

This situation is depicted in Figure 8.5.

time

J1 J2

J1 J2

k k + 1 k + 2

t1 t t2
�

t2 � t1 = e�

job arrival t1 = et � (e � 1)t2
job deadline t2 = t + �

Figure 8.5.: Real speed decision instants,i.e. t 2 R and 1 � t2 � t1 < 2. Two jobs J1 = ( k; C; 1) and
J2 = ( k + 1 ; C; 1) are represented.

Let n = bt2 � t1c, hence n � t2 � t1 < n + 1 . Then at most n + 1 jobs can arrive in the [t1; t2)
interval and at most n of them can have a deadline beforet2, therefore u(t; t 1; t2) � nC so
� (BKP) (t) � nC

n=e = eC. For all t in R, an upper bound on (BKP) maximal speed is thus:

� (BKP)
max � eC: (8.62)
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Now we consider the particular situation, where � = 1=e, t2 = 1 and there is one job of sizeC
with deadline 1 that arrives at time 0. In that case, t1 = 0 , t = 1 � 1

e , and t2 = 1 . It follows that
u(t; t 1; t2) = C and:

� (BKP) (t) =
C
�

= eC: (8.63)

As a conclusion, since the upper bound of Eq. (8.62) is reached (see Eq. (8.63)), we have:

(BKP) is feasible() eC � smax :

8.8 Feasibility of the Markov Decision Process speed

policy (MP)

This last policy shows that one can get the best of both worlds: An energy optimal policy whose
feasibility region is maximal, at the price of statistical information about future jobs.

8.8.1 De�nition of (MP) [GGP17]

In this section we assume that the job sequencef J i gi 2 N is endowed with a probability distribution
on (r i ; ci ; di ). The precise values of the probabilities that a job is released at timer i , is of sizeci ,
or has a relative deadlinedi are indeed important to compute the speed used at any timet by the
online speed policy (MP) , but they will not play a role in the feasibility analysis on (MP) , as seen
in the following.

To de�ne (MP) , we �rst introduce the stateof the system at time t that gathers all the information
useful to decide which speed to use at timet. Since all job features are integer numbers and the
relative deadline is smaller than � , the current information at time t can be summarized in the
vector (wt (t + 1) ; wt (t + 2) ; : : : ; wt (t + �)) , which will be called the state at time t in the following,
and denoted x t .

Under this framework, we de�ne the transition matrix Ps(x; x 0), that gathers the probabilities to
go from state x to state x0 in one time step when the processor speed iss. The construction of this
transition matrix requires to know the distribution of the release times, the sizes and the deadlines
of future jobs. This knowledge may come from statistical analysis of the jobs in a training phase
preceding the deployment of the speed policy in the system, or can even be learned online: the
system adjusts its estimation of the optimal speed at each step using a no-regret algorithm (see for
example [SB18]).
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For any online policy � , the long run average expectedenergy consumption per time-unit for
policy � under the probability transition Ps, noted Q� , is de�ned as:

Q� (x0) = E

 

lim
T !1

1
T

TX

t =1

Energy(� (t))

!

: (8.64)

where x0 is the initial state of the process, andEnergy(s) is the energy consumption of the processor
when the speed iss during one unit of time.

An optimal speed policy � � minimizes the average expected energy consumption per time-unit
given in Eq. (8.64). Therefore, the speed policy(MP) is de�ned as:

De�nition 8.10 ((MP) policy) . At each timet 2 T , the job that has the earliest deadline is executed
at speed:

� (MP) (t) is such thatQ� (MP) (x0) = inf
f � j 8 t 2T ; � ( t ) � w �

t ( t +1) g
Q� (x0): (8.65)

Remark 8.4. Several remarks are in order:

• The optimal policy minimizing the expected energy consumption may not be unique. In the
following we consider one arbitrary such speed policy. This does not matter because feasibility
as well as the expected energy consumption is the same for all of them.

• This de�nition of � (MP) is not constructive but when the set of speeds is �nite, then� (MP) can be
constructed explicitly using for example the Policy Iteration algorithm (see for instance [Put05]).

• It can also be shown that an optimal policy,i.e. a solution of Eq.(8.65) , is independent ofx0.
This is outside the scope of this chapter.

8.8.2 Feasibility analysis of (MP)

Theorem 8.5 gives the value ofsmax that ensures feasibility:

Theorem 8.5. (MP) is feasible() smax � C.

Proof. We distinguish the cases where the speed decision instants are integer and real numbers.

� The speed decision instants are integer numbers: T = N.

By de�nition, (MP) completes all the jobs before their deadline by construction: � (MP) (t) �
w(MP)

t (t + 1) . Therefore, (MP) is feasible if at any time t 2 N, � (MP) (t) � smax .

1. Casesmax < C : In that case, no speed policy can guarantee feasibility as shown in Proposi-
tion 8.2.

2. Casesmax � C: To prove the result, we �rst modify the Energyfunction as follows: For all
speedss > s max , we set Energy(s) = 1 . For s � smax , the Energyfunction remains unchanged.
This modi�cation is valid because the processor cannot use speeds larger thansmax anyway.
Therefore, the energy consumption for such unattainable speeds can be arbitrarily set to any
value. The bene�t of using this modi�cation is the following. Instead of constraining the speed to
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remain smaller than smax , we let the scheduler use unbounded speeds, but this incurs an in�nite
consumption. A test to check if a policy uses speeds larger thansmax is that its average energy
consumption will be in�nite.

Starting from an empty system with no pending job, i.e. x0 = (0 ; 0; : : : ; 0), we de�ne the following
naive policy ~� :

8t 2 N; ~� (t) := ct where ct =
X

J i =( r i ;c i ;D i )

f ci jr i = tg: (8.66)

In other words, ct is the amount of work that arrived at time t, which is by de�nition less than C.
The policy ~� is feasible because it never uses a speed larger thanC � smax and all work is executed
as fast as possible (within one time slot after its arrival). Furthermore, since for any t, ~� (t) � C,
its long run expected energy consumption per time unit satis�es Q~� (x0) � Energy(C).

The optimal policy, being optimal in energy, satis�es Q� (MP) (x0) � Q~� (x0), henceQ� (MP) (x0) �
Energy(C). Therefore, (MP) is feasible by construction and never uses a speed larger thansmax .

� The speed decision instants are real numbers: T = R.

When the speed can be changed at any timet 2 R, the average expected energy consumption of
a policy � becomes

Q� (x0) = lim
T !1

E

 
1
T

Z T

0
Energy(� (t))dt

!

: (8.67)

When smax < C , then Proposition 8.2 says that no policy can be feasible, so neither is(MP) .

Now, let us consider that smax � C. The optimal policy � (MP) is de�ned by taking the inf in
Eq. (8.65) , not over the set A N = f � j 8t 2 N; � (t) � w�

t (t + 1) g anymore, but over the set
A R = f � j 8t 2 R; w�

t (t) � 0g. SinceA N � A R (see Prop. 8.3), it follows that QA R

� (MP) � QA N

� (MP) .

We have proven above that ifsmax � C, then QA N

� (MP) is �nite (it is less than Energy(C)). Therefore,
QA R

� (MP) � Energy(C). This implies that the optimal policy never uses speeds larger thansmax , as in
the discrete case. In conclusion, the(MP) policy with T = R is feasible if and only if smax � C.

8.9 Summary and Comparison of the four Policies

Table 8.1 summarizes the necessary and suf�cient feasibility conditions onsmax for the four online
speed policies(OA) , (AVR) , (BKP) , and (MP) , both in the integer and real speed decision instants
cases.

For a given online speed policy � , we de�ne the feasibility region F � as the set of all triples
(C; � ; smax ) such that � is feasible. We rely on this notion of feasibility region to compare the
policies. We make the following remarks:
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Online speed policy Necessary and suf�cient feasibility condition

speed decision instants N R

(OA) smax � C(h� � 1 + 1)

(AVR) smax � Ch�

(BKP) smax � 3
2 (e � 1)C (' 2:577C) smax � eC (' 2:718C)

(MP) smax � C
Table 8.1.: Necessary and suf�cient feasibility condition of the four online speed policies.

1. By observing the (AVR) and (OA) feasibility bounds, we can remark that their maximal
speeds are asymptotically identical when� becomes large. However, since for all� 2 N we
have 1

� � 1, (AVR) and (OA) satisfy the following equation:

� (AVR)
max � � (OA)

max :

Consequently, since the maximal speed reached by(OA) is faster than the maximal speed
reached by(AVR) , (AVR) has a better feasibility than (OA) , in the sense that the feasibility
region of (AVR) includes the feasibility region of (OA) :

F (OA) � F (AVR) :

2. Let us now compare the feasibility regions of(AVR) and (OA) with that of (BKP) . Since this
comparison depends on the harmonic numberh� , we display in Table 8.2 the approximated
values of h� and h� � 1 + 1 (rounded down) for different values of � :

� 2 3 4 5 6 7 8 9

h� 1.500 1.833 2.083 2.283 2.450 2.593 2.717 2.828

h� � 1 + 1 2.000 2.500 2.833 3.083 3.283 3.450 3.593 3.717
Table 8.2.: Values of the harmonic numbersh� and of h� � 1 + 1 (with 3 signi�cant digits).

Since the feasibility bounds of(BKP) are 3
2 (e� 1)C ' 2:577C when T = N and eC ' 2:718C

when T = R, we compare in Table 8.3 the feasibility regions of (AVR) , (OA) , and (BKP)
depending on the value of � :

Feasibility regions F � F (AVR) � F (BKP) F (OA) � F (BKP) F (OA) � F (AVR)

Integer decision instants 8� � 7 8� � 4 8� 2 N

Real decision instants 8� � 9 8� � 4 8� 2 N
Table 8.3.: Feasibility region comparisons for (OA) , (AVR) , and (BKP) .

(MP) is not present in Table 8.3 because it is clear from Table 8.1 that(MP) has the largest
feasibility region:

8� 2 f (OA) ; (AVR) ; (BKP) g; F � � F (MP)
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3. Unlike (OA) and (AVR) , the (BKP) feasibility bounds are independent of the maximal
deadline � . This means that the (BKP) feasibility regions do not change when � grows,
whereas for (OA) and (AVR) the feasibility region decreases to the empty set when�
increases.

4. For (BKP) , one can wonder whether the parameter e can be changed in Eq.(8.48) to
improve its feasibility (see Theorems 8.3 and 8.4). If we replace e by a parameter � in
the de�nition of (BKP) , we obtain a variant policy denoted (BKP � ). The feasibility region
becomesF (BKP � ) = f smax � �C g for any � � e, by using the same proof as in Section 8.7.
However, if � < e , then it can be shown that (BKP � ) is not feasible even with smax = + 1 .
It follows that � = e is the best possible choice.

5. Finally, (MP) is optimal both in terms of energy and feasibility, so it is a good candidate to be
used online to process real-time jobs. Its drawback, however is twofold: on the one hand its
complexity, the time and space complexity to compute� (MP) (t) being O(C � ) (see [GGP17]);
and on the other hand the requirement to know the probability distributions on r i , ci , and di .

8.10 Conclusion

Adjusting the processor speed dynamically in hard real-time systems allows the energy consumption
to be minimized. This is achieved by anonline speed policy, the goal of which is to determine
the speed of the processor to execute the current, not yet �nished, jobs. Several such policies
have been proposed in the literature, including (OA) , (AVR) , (BKP) , and (MP) . Since they are
targeting hard real-time systems, they must satisfy two constraints: each real-time job must �nish
before its deadline, and the maximal speed used by the policy must be less than or equal to the
maximal speedsmax available on the processor. We call the conjunction of these two constraints
the feasibility condition of the policy.

In this chapter, we have established for each of the four policies(OA) , (AVR) , (BKP) , and
(MP) , a necessary and suf�cient condition for the feasibility. (OA) is feasible if and only if
smax � C(h� � 1 + 1) . (AVR) is feasible if and only if smax � Ch� . (BKP) is feasible if and only
if smax � eC when the processor speed can change at any time, andsmax � 3

2 (e � 1)C when
the processor speed can change only upon the arrival of a new job (for the other policies, the
times at which the processor speed can change has no impact on the feasibility condition). Finally,
(MP) is feasible if and only if smax � C. This is optimal because, as shown in Proposition 8.2, the
necessary condition of feasibility of all online policies is smax � C. Therefore, (MP) is optimal
in terms of feasibility in addition to being optimal in energy (on average), but it requires the
statistical knowledge of the arrival times, execution times, and deadlines of the jobs, and it is more
expensive to compute than the other speed policies.

Appendix

8.10 Conclusion 175



8.11 Appendix A: Uniqueness of the solution of Eq. (8.37)

Let us rewrite Eq. (8.37) 8t 2 [k; k + 1[ as follow:

� (t) = max
v>t

wk (v) �
Rt

k � (x)dx
v � t

: (8.68)

The goal of this part is to prove that there exists a unique solution � for this equation. By doing an
appropriate variable shift on Eq. (8.68), u = v � t, we obtain:

� (t) = sup
u> 0

wk (u + t) �
Rt

k � (x)dx
u

: (8.69)

By de�ning W (t) =
Rt

k � (x)dx, and integrating Eq. (8.69) between k and t, we obtain:

W (t) =
Z t

k
sup
u> 0

wk (u + s) � W (s)
u

ds: (8.70)

Let us now de�ne the function F (s; x) as follows:

F (s; x) = sup
u> 0

�
f s(u) � x

u

�
(8.71)

where f s(:) = wk (: + s). Then f s(:) is such that:

1. f s is an increasing function bounded byC� 2 R+ .

2. f s(0) = wk (s) = 0 becausewk (k) = 0 by feasibility and no job arrives between k and s.

3. f s satis�es:

lim
t ! 0
t � 0

f s(t)
t

= 0 (8.72)

becausewk (s) is constant for s 2 [k; k + 1) .

The function W (t) =
Rt

k � (u)du also satis�es the following integro-differential equation:

W (t) =
Z t

k
F (s; W(s))ds: (8.73)

Lemma 8.2. There exists a unique solutionW to Eq.(8.73) .

Proof. First, let us show in Lemmas (8.3)-(8.4) that the function F (s; x) is Lipschitz in x.

Lemma 8.3. Let t0 > 0 be the �rst time such that the sup ofF (s;0) is reached. ThenF (s; x) is a
1
t 0

-Lipschitz function inx.
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Proof. For the proof of Lemma 8.3, we will note g(x) = F (s; x). Let x; y 2 [0; a] (where a is an
arbitrary positive number). We want to prove that:

9k 2 R; jg(x) � g(y)j � kjx � yj: (8.74)

Let us compute the differencejg(x) � g(y)j:

jg(x) � g(y)j =

�
�
�
�sup

t> 0

f s(t) � x
t

� sup
t> 0

f s(t) � y
t

�
�
�
� (8.75)

Since, by assumption, the functionf s(t) is bounded by a, the sup for g(x) is reached for a certain
value of t, noted tx .

By de�nition of the sup, we have supt> 0
f s ( t ) � y

t � f s ( t x ) � y
t x

, hence Eq. (8.75) becomes:

jg(x) � g(y)j �

�
�
�
�
f s(tx ) � x

tx
�

f s(tx ) � y
tx

�
�
�
�

jg(x) � g(y)j �

�
�
�
�
y � x

tx

�
�
�
� (8.76)

Now let us prove Lemma (8.4), which states that tx is an increasing function in x.

Lemma 8.4. Let tx be the function ofx such that:

8a 2 R; 8x 2 [0; a]; tx : x 7�! argmax
t

f s(t) � x
t

:

Thentx is an increasing function ofx.

Proof. Let x; y 2 [0; a] such that x � y, and let ty be such that:

f s(ty ) � y
ty

= max
t

�
f s(t) � y

t

�
(8.77)

The goal is to prove Eq. (8.78) below:

f s(t) � x
t

�
f s(ty ) � x

ty
: (8.78)

By de�nition of the max, we have for any de�ned function f s:

8t 2 R; f s(t) �
f s(ty ) � y

ty
t + y: (8.79)

We now de�ne two lines:

• the line L 1 that corresponds to the slope for the maximal value ofy, i.e. the line that links
the points (0; y) and (ty ; f s(ty )) ; its equation corresponds to the left part of Eq. (8.79);
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• and the line L 2 that links (0; x) on the ordinate axis and the point (t; f s(t)) .

The functions t 7�! L 1(t) and t 7�! L 2(t) correspond to all the points of their respective lines.

By de�nition of L 1(t), we have f s(t) � L 1(t). Moreover as time t � ty , by construction of line L 2,
we have L 2(t) � L 1(t). Sincex � y, we also haveL 2(0) � L 1(0). All these inequalities on some
points of the two lines L 1 and L 2 imply that L 1(ty ) � L 2(ty ). The expressions of the functions
L 1(t) and L 2(t) lead to the following inequality:

f s(ty ) �
f s(t) � x

t
ty + x ()

f s(ty ) � x
ty

�
f s(t) � x

t
:

Eq. (8.78) is therefore satis�ed, and so the function x 7�! tx is an increasing function.

Using Eq.(8.72) , the fact that f s is an increasing function, and the fact that f s(0) = 0 , the �rst
time t such that F (t; 0) > 0 is strictly larger than 0, and as we want to determine for all t the sup
of F (t; 0), then t0 is strictly positive.

Since tx is an increasing function of x by Lemma(8.4) , and sincet0 > 0, then Eq. (8.76) becomes:

jg(x) � g(y)j �
1
t0

jy � xj: (8.80)

Eq. (8.80) concludes that g is 1
t 0

-Lipschitz.

SinceF (s; x) is Lipschitz in x, the Picard-Lindelof theorem allows us to concludes that there exists
a unique solution W (t) for the Eq. (8.73).

Therefore Eq. (8.73) can be rewritten as follow:

� (t) = sup
u> 0

f s(u) � W (t)
u

: (8.81)

By Eq. (8.81), � is a function of W , so � is also unique.

8.12 Appendix B: Concavity of the executed work by (OA)

for a given w

In this appendix we provide a more exhaustive study of the speed policy(OA) . We show that the
work executed by (OA) is the convex envelope of the graph of the remaining work function w(:),
when w(:) is �xed ( i.e. all the jobs arrive at time 0). Using the same notation as in the previous
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appendix (the index k = 0 is dropped in w0), we de�ne W (t) =
Rt

0 � (OA) (u)du, the amount of
work executed by (OA) from time 0 to time t. It is such that:

W (t) =
Z t

0
sup
u� 0

w(u + s) � W (s)
u

ds =
Z t

0
sup
v� s

w(v) � W (s)
v � s

ds: (8.82)

W (t) corresponds to the quantity of work executed between0 and t, and the goal of this part is to
show that W (t) is the smallest concave function that is abovew(t).

Lemma 8.5. Let w be any real non-decreasing function that admits right-derivatives everywhere
(not necessarily staircase), withw(0) = 0 . ThenW (t) as de�ned in Eq.(8.82) satis�es the following
properties:

1. W is continuous,W (0) = 0 , and 8t � 0, W (t) � w(t).

2. W is non-decreasing inw.

3. If w is concave, thenW (t) = w(t).

4. W is concave.

5. W = bw where bw is the convex hull ofw.

Proof.

1. W (t) being an integral from 0 to t, W is continuous, W (0) = 0 , and W has right-derivatives
everywhere: W 0

+ (t) = sup u� 0
w(u+ t ) � W (t )

u . Let us denote by w0
+ (:) the right-derivative

of w: w0
+ (t) = lim u! 0;u � 0(w(t + u) � w(t))=u. Then w0

+ (t) � supu� 0
w(u+ t ) � w ( t )

u . Since
w(0) = 0 = W (0), then by Petrovitsch Theorem on differential inequalities, [Pet01], we have
W (t) � w(t) for all t � 0.

2. By de�nition of the function W , it is a non-decreasing function in w.

3. Let us suppose thatw is concave. By replacing, in the right part of Eq.(8.82) , W by w, one
gets inside the integral:

sup
v� s

w(v) � w(s)
v � s

: (8.83)

Sincew is concave by assumption, it is right and left differentiable at any point t. This means
that w0

+ , the right-derivative of w, is decreasing. Therefore the sup is reached whenv goes
to s. We thus have:

sup
v� s

w(v) � w(s)
v � s

= w
0

+ (s): (8.84)

8.12 Appendix B: Concavity of the executed work by (OA) for a given w 179



By using Eq. (8.84) and replacing in Eq. (8.82), we obtain:

Z t

0
sup
v� s

w(v) � w(s)
v � s

ds =
Z t

0
w

0

+ (u)du = w(t): (8.85)

The last equality in Eq. (8.85) is due to the fact that w is concave. Indeed, sincew is concave,
its derivative is de�ned on the whole interval [k; t ] except for a �nite number of values u.
The integral does not depend on these points, so we have Eq (8.85).

To conclude, w is a solution of Eq (8.82) and so W = w by uniqueness of the solution.

4. For any t � 0, let L t be the right tangent of W at the point t. The equation of the
line L t is: L t (v) = W (t) + W 0

+ (t)(v � t). Since W (t) � w(t), we have for all v � t,
L t (v) = W (t) + W 0

+ (t)(v � t) � w(v).

If we replace w by L t in the de�nition of W, we get a new function WL that is larger than
W by item 2 and is equal to L t by item 3. This means thatW is below its right tangents.

Now, this implies that W is concave: By contradiction, let x < y be such that8z 2 [x; y], we
have W (z) < A (z), where A(:) is the af�ne interpolation between W (x) and W (z). Since
W is below its right tangents, then W (y) � W (z) + W 0

+ (z)(y � z). This implies that W 0
+ (z)

is larger than the slope of A(:): in other words, W 0
+ (z) � W (y) � W (x )

y � x . By integrating this
inequality from x to z, we get W (z) � A(z). This contradicts the initial assumption that
W (z) < A (z).

The �nal conclusion is that W is always above its af�ne interpolation, hence W is concave.

5. Let us prove �rst that W � bw. By de�nition of the convex hull, we know that w � bw, and
as W is an increasing function in w, W � Wbw , where Wbw is the function W where w is
replaced by bw. Since bw is concave, we then have by item3 the fact that bw = Wbw . This
implies:

W � bw:

Now we prove the other inequality, i.e. that bw � W . By item 1, we get W � w. By item 4, we
know that W is concave. Sincebw is the smallest concave function abovew, we �nally have:

W � bw:

We therefore conclude that: W = bw.
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Conclusion 9
9.1 General Conclusion

In this thesis several algorithms that optimize the energy consumption of a single unicore processor
that executes real-time jobs have been presented. The of�ine and online cases have been studied.
For the of�ine case, we present an algorithm that solves the same problem: determining the
best speed schedule to executen jobs before their deadline while minimizing the total energy
consumption. We show that it can be done in constant time. Furthermore the theoretical lower
bound is also linear in the maximal deadline and the size of the jobs. The online case is separated
into several situations, that depend on the knowledge we have of the job features. It depends more
particularly on the information we have on active and future jobs. The online case has already
been studied in the literature, however taking advantage of the potential information we could
have on the future jobs has attracted much attention in this community. In this thesis, three cases
have been studied, each of them considers that past jobs are known: the clairvoyant active jobs
with statistical information for future jobs case is analyzed in Chapter 4, then the non-clairvoyant
active jobs with statistical information for future jobs case is seen in Chapter 5. And to �nish
Chapter 6 and 7 have presented the clairvoyant active jobs without any information on future
jobs case. Statistical information about future jobs may be collected by using past experiments or
simulations, or by analyzing the structure of the job features. We have shown in this document,
for each cases, how to compute the optimal speed schedule. This leads to a gain in energy in
comparison with the solutions that do not take advantage of these information. In each case, our
solutions provide performances that are close to the optimal of�ine solutions on average, and
outperforms classical online solutions. This is also true for the learning cases, but it depends on
the length of the learning period we consider.

In the last chapter we analyzed the feasibility of the online policies. It highlights the fact that the
policies we propose are better in feasibility than the existing online policies from the literature.

9.2 Future Work

There are four main points in the near future that can be explored:

• To �ght against the state space explosion. During all this thesis, we have shown that the
state space size is critical. One way we propose to solve this problem is to group some states
and apply our algorithms on this reduced state space. One extension will be to implement
this method and characterize the “good” way to reduce the state space. In previous chapters,
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we gave some ideas on how to do a coarse discretization, and one future research direction
will be to implement it.

• To run the presented algorithms on realistic benchmarks and not on synthetics one.

• To use more accurate learning algorithm to learn the transition probability matrix. We can
compare these algorithms that exist in the literature with results from Chapter 6, by using
Bayesian methods to estimate the transition probability matrix. This method will be more
interesting, because it does not need an absolute training period and improve the choices
during the algorithm evolution.

• To search how to accelerate the convergence of theQ-learning algorithm. Some algorithms
exist in the literature, but they either have the same time complexity, or they are applicable
only to very small state spaces.

More broadly, this thesis builds a bridge between the real-time systems and the optimization
communities, by using Markov Decision Processes to decrease the energy consumption. Matching
real-time systems and optimization techniques with MDP methods could be used in the future to
solve other real-time problems.
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Appendix A
A.1 Optimality of EDF Scheduling

In this appendix, we generalize a known result about the optimality of EDF schedulability [Hor74]
to the case where the processor speed varies. If EDF policy is feasible, therefore all other optimal
policies are feasible. Here we have to show this optimality under the condition of a processor
speed variability.

Proposition A.1. For any processor speed pro�le, the scheduling policy Earliest Deadline First (EDF)
minimizes the maximum lateness of any set of jobs as described in section 4.2.1 among all scheduling
policies.

Optimal schedulability is equivalent to having a maximum of lateness equal to 0. The proof of
proposition A.1 is done in [Hor74] when the speed is constant (s = 1 ), which is not the case here.
Indeed, speed varies over time, is independent of the active job. We use the idea of Horn's proof to
demonstrate this property.

Proof.
Recall that jobs are de�ned as J i = ( r i ,ci ,di ). We denote alsos(t) the speed function, which is
assumed to be integrable and �nite (this is the only assumption on speeds). For any scheduler� ,
we introduce the following de�nitions:

• The job executed at time t is � (t).

• The �nishing time of job J i under � , is noted f � (J i ).

• The remaining work, w� (J i ; t), is the quantity of work of job J i that remains to be done at
time t under � :

w� (J i ; t) = ci �
Z t

0
s(u)1f � (u )= J i gdu

where 1f � (u )= J i g = 1 if � (u) = J i and 0 otherwise.

• The lateness of job J i under � is:

� � (J i ) = ( f � (J i ) � di )+

• The maximum of lateness of schedule � is:

�( � ) = max
J i

� � (J i )
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From now on, we consider two schedulers,EDF and an arbitrary scheduler � . For � , let us
consider the time instants when the scheduler switches from one job execution to another. For
EDF , let us also consider the time instants when EDF switches from one job to another. By
combining these two sets of time instants, we denote byt1 < � � � < t m , all the time instants when
either EDF or � switches its job.

Let us now focus on the �rst time tk when � and EDF differ: we denote by J the job (represented
in red in Figure A.1) executed by � and by J 0 the job (represented in blue in Figure A.1) executed
by EDF . The fact that EDF choosesJ 0 over J at time tk implies that the respective deadlines of
J and J 0 are such that

dJ � dJ 0 (A.1)

We denote byWk the work quantity executed between tk and tk+1 , i.e., Wk =
Rt k +1

t k
s(t)dt. Since

both jobs J and J 0 are executed betweentk and tk+1 , and since EDF and� coincide up to time tk ,
the remaining work for both of them at time tk must be larger than Wk :

w� (J; t k ) = wEDF(J; t k ) � Wk

w� (J 0; tk ) = wEDF(J 0; tk ) � Wk

` � (J 0)

dJdJ 0

Parts of job J
0

Parts of job J Other Jobs

�
0

f � (J 0)f � (J )

�t k+1tk f � 0(J 0)

` � 0(J )

` � 0(J 0)

f � 0(J )

�

` � (J ) = 0

Figure A.1.: Schedules� and � 0 and their respective lateness on[tk ; � ]. The lateness ofJ
0

is the same under
� and � 0 while the lateness of J increases under� 0, but remains smaller than the lateness ofJ 0

under � . So the maximum of lateness is the same on� and �
0
.

Let us de�ne a new scheduler � 0 as follows:

• 8t 2 [0; tk ], � 0(t) = � (t) = EDF (t).
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• 8t 2 [tk ; tk+1 ], � 0(t) = J 0. Since the function g : t; J �!
Rt

t k
s(u)1f � (u )= J gdu is a continuous

function of t and becausew� (J 0; tk+1 ) � Wk , by the Intermediate Value Theorem, there
exists � such that:

� = inf

(

t

�
�
�
�
�

Z t

t k +1

s(u)1f � (u )= J 0gdu = Wk

)

(A.2)

• Between timestk+1 and � , the scheduler � 0 executesJ whenever � executesJ 0: 8tk+1 � t �
� , � (t) = J 0 ) � 0(t) = J and � (t) 6= J 0 ) � 0(t) = � (t).

` � (J 0)

dJdJ 0

` � 0(J )

Parts of job J
0

Parts of job J Other Jobs

�
0

f � (J 0)

f � 0(J 0)

` � 0(J 0)
= 0

�t k+1tk

f � 0(J )

�

` � (J ) = 0

f � (J )

Figure A.2.: The lateness ofJ
0

is better under � 0 than under � while the lateness of J increases under� 0,
but remains smaller than the lateness ofJ 0 under � . So the maximum of lateness is smaller
under � 0 than under � .

Now let us show that the maximum lateness of � 0 is smaller or equal than the maximum lateness
of � . First, the latenesses of all jobs exceptJ and J 0 do not change under � 0.

Now, let us analyze the lateness of jobJ 0 under � 0. By construction of � 0, the remaining work Wk

is such that w� (J 0; tk ) � Wk . So we are faced with two cases:

• The �rst one is w� (J 0; tk ) > W k . Here, all the remaining work due to job J 0 is not �nished at
[tk ; � ], then the �nishing time is the same under both schedulers, so � � 0(J 0) = � � (J 0). This
case is the case represented in Figure A.1.

• The second one is the case wherew� (J 0; tk ) = Wk . In this case, in tk+1 , the job J 0 has been
entirely executed, so we have:

f � 0(J 0) = tk+1 � f � (J 0) � f � (J 0)
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The two previous cases imply that we have no lateness increase for jobJ 0, so:

� � 0(J 0) � � � (J 0) � �( � ): (A.3)

This case is the case represented in Figure A.2.

Lastly, let us analyze jobJ . Again there are two cases for the lateness� � 0(J ) of job J under � 0:

• f � (J ) > � . This means that the execution of jobJ ends after the time � . In that case, there
is no difference for the �nishing time of J whatever the scheduling. Indeed the difference
between � and � 0 only modi�es the order of the execution of parts of job J , which belongs to
[tk ; � ], but not after time � (see Figure A.1), so:

f � 0(J ) = f � (J )

The lateness is also the same:

� � 0(J ) = � � (J ) � �( � ) (A.4)

• f � (J ) � � . In that case, the end of the jobJ under � 0 occurs exactly at� (see Figure A.1):

f � 0(J ) = �

So the lateness of jobJ under � 0 is:

� � 0(J ) = ( � � dJ )+

On the other hand, we know that at time � , � is executing job J 0, therefore, f � (J 0) � � and
we also know that dJ 0 � dJ (see (A.1)). We can conclude that:

� � 0(J ) � (f � (J 0) � dJ 0)+ = � � (J 0) � �( � ) (A.5)

As a consequence, the maximum lateness does not increase under� 0 in comparison with � : By
Eqs. (A.3), (A.4), and (A.5), we have:

�( � 0) � �( � )

If we repeat this reasoning starting with � 0 instead of � , then the new schedule will coincide with
EDF further in time and the maximum lateness will not increase.

This shows that, eventually, EDF too minimizes the maximum lateness:

�( EDF ) � �( � 0) � �( � )

which concludes the proof.
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A.2 Size of the State Space

This appendix is dedicated to the enumeration of the total number of states of the MDP.

Let w(�) be a valid state of the system, at any timet. Since all parameters are integer numbers
and the maximum deadline of a task is � , the maximal look-ahead at any time is � , hencew(�) is
characterized by its �rst � integer values (that are non-decreasing by de�nition): w(1) � � � � �
w(�) .

Let us de�ne the step sizes ofw, starting from the end: x1 = w(�) � w(� � 1), and more generally,
x j = w(� � j + 1) � w(� � j ), for all j = 1 ; : : : ; � , the released work being of maximal sizeC at
any time, x1 � C becausex1 must be bounded by the amount of work that was released at stept.
Similarly, x1 + x2 must be bounded by the amount of work that was released at stepst and t � 1,
namely 2C, and so on and so forth up to x1 + x2 + � � � + x � � � C. This is the only condition for a
function w to be a possible state when deadlines and sizes are arbitrary integers bounded by�
and C respectively.

Therefore (x1; x2; :::; x � ) satisfy the following conditions:

8
>>>>>>>>>>><

>>>>>>>>>>>:

x1 6 C

x1 + x2 6 2C

x1 + x2 + x3 6 3C
...

x1 + x2 + ::: + x � 6 � C

By de�ning the partial sums yj = x1 + � � � + x j , the number of states satis�es:

Q(C; �) =
CX

y1 =0

2CX

y2 = y1

3CX

y3 = y2

� � �
� CX

y � = y � � 1

1

This multiple sum can be seen as a generalized Catalan number. Indeed, notice that a state
characterized by its steps(x1; : : : ; x � ) is in bijection with a path on the integer grid from (0; 0) to
(� + 1 ; C(� + 1)) , which remains belowthe diagonal of slope C (see Fig. A.3).

Counting the number of such paths has been done in [HP91] and corresponds to the generalized
Catalan numbers,Ck

n = 1
nk +1

� nk +1
n

�
.

We propose below a direct proof for computing Q(C; �) , which is new up to our knowledge. This
new proof is inspired by the ordinary Catalan numbers. First, let us count the total number of
paths from (0; 0) to (� + 1 ; C(� + 1)) without the constraint of staying below the diagonal. This
is standard combinatorics and this number of paths is equal to

� (C +1)(�+1)
�+1

�
.

Second, this set of paths can be partitioned intoclassesaccording to the number of vertical steps
taken abovethe diagonal. According to this classi�cation, Q(C; �) is the size of class0 (the paths
that take no step over the diagonal).
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x 1

x 4

x 2

(0 ; 0)

(6 ; 12)

x 5

x 3

Figure A.3.: A valid state seen as a path below the diagonal(0; 0)—(6; 12), for C = 2 and � = 5 .

Third, by using a shift, we will show that any path of class k (with k < C ) can be bijectively
transformed into a path of classk + 1 . This will prove that all the classes have the same size. Here
is how to proceed.

Since the path is not of classC, it takes excursions below the diagonal and therefore, its �rst
vertical step that hits the diagonal from below is well de�ned. The path P can be written xvy
where v is this vertical step, and x and y are respectively the pre�x and the suf�x of P w.r.t. v.
This is illustrated in Fig. A.4 (left).

We then construct the path P0 by swapping the pre�x and the suf�x of P, i.e., P0 = yvx, and we
claim that P0 is in classk + 1 . The construction of P0 from P is illustrated in Fig. A.4.

• The number of vertical steps in y is the same inP0 and in P becausey starts on the diagonal
and ends on the diagonal in both cases (see Fig. A.4).

• Regarding x, it is shifted upby one step up in P0, so all the vertical steps taken byx above
the diagonal in P are still taken above the diagonal in P0. As for the vertical steps taken
below the diagonal by x in P, they remain below the diagonal in P0. Indeed, suppose that
there exists a vertical step inx that is below the diagonal in P but above the diagonal in P0.
Sincex is shifted up by one step, this means that this step was touching the diagonal from
below in P. This is not possible since the �rst such step isv, hence not in x.

As a result, like y, x also contributes the same number of vertical steps above the diagonal inP
and in P0. It follows that the only difference in the number of vertical steps between P and P0

comes from v, which is not above the diagonal in P but is above in P0. Hence the class ofP0 is
k + 1 .

Let us now show that this transformation is bijective. As explained above, the last sub-pathx in
P0 does not contain any vertical step that starts on the diagonal. This means that the stepv is
the last vertical step that starts from the diagonal in P0. This implies that P can be reconstructed
back from P0. Therefore, the transformation of P into P0 is reversible, so it is an injection. Since
all paths of classk + 1 contain a last vertical step starting on the diagonal, the transformation is
bijective.
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y

x P

v

P 0

v

x

y

Figure A.4.: The left �gure shows a path P (with �+1=6 and C=2 ) which belongs to class8 (i.e., it takes
8 steps above the diagonal). The red step (denotedv) is the �rst vertical step that hits the
diagonal from below. By swapping the pre�x x and the suf�x y of P , the class of the resulting
path becomes9. The resulting path P 0= yvx is displayed on the right.

The construction of this bijection means that the size of classk is equal to the size of classk + 1 ,
for all 0 � k < C . This means that all the classes have the same size. Therefore, the class0 has
sizeQ(C; �) = 1

1+ C (�+1)

� (C +1)(�+1)
�+1

�
.

Using the Stirling formula, we �nally get Q(C; �) � ep
2�

1
(�+1) 3= 2 (e C) � .
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