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1
Introduction

1.1 Context

Rainfall is a primary input for numerous applications in hydrometeorology such as flood

warning, water resource management, weather forecasting and emergency planning systems.

In urban areas, these applications operate at small scales, therefore rainfall information with a

good accuracy at high spatial and temporal resolutions is required. So far, traditional sensors

such as rain gauge and weather radar are used for measuring rainfall. Rain gauges are yet the

most widely used device for providing an accurate point measurement at a ground level while

weather radars are capable of providing a detailed rainfall information over a large area (Berne

and Krajewski, 2013). However, a lack of such sensors is a major problem in many regions of

the globe.

Nowadays, most cities worldwide are well-equipped with commercial microwave links

that are mainly operated by cellular communication companies. Very recent studies conducted

by (Messer et al., 2006; Leijnse et al., 2007b) suggest that such links could become a promising

sensor for measuring space-time rainfall at fine-scale. The measurement principle is based on

the phenomenon that a transmitted signal along a microwave link is attenuated by rainfall (Atlas

and Ulbrich, 1977). In telecommunication engineering, this phenomenon is well-understood,

and a relationship between rainfall intensity and the microwave signal attenuation has been es-

13



14 CHAPTER 1. INTRODUCTION

tablished (Olsen et al., 1978; Crane, 1980). Using such relationship, averaged rainfall intensity

along a single microwave link path can be obtained from the signal attenuation data. The density

of commercial microwave links is usually high in cities; therefore, this fact raises a new ques-

tion about the feasibility of retrieving rainfall maps over urban areas using signal attenuation

data from cellular communication companies.

The use of commercial microwave links for rainfall measurement could bring two benefits:

i) an alternative to measure rainfall in locations where no rainfall information is available, and

ii) a complement to traditional sensors, in particular weather radar. In spite of scientific progress

on this field, conclusions drawn from the literature review (chapter 3 of this thesis) recognise

three ongoing issues that are still subject to further investigations:

(i) Understanding and quantifying possible measurement errors sources that might occur

along a single or multiple links;

(ii) Combining a single or multiple links with traditional sensors in order to improve the

accuracy of measured rainfall;

(iii) The development of spatial rainfall retrieval algorithms that can be used to convert

signal attenuation data from an existing network of commercial microwave links into

rainfall maps.

Among those issues, the third category is the central focus of the present study. We believe

that this research study is one of the first attempts so far to thoroughly examine the capability

of commercial microwave links employed by cellular communication networks for rainfall re-

trieval at the urban scale. It is true that cellular communication networks are designed to provide

a better communication quality. A geometry of the network topology is complex and arbitrary,

their location and operating frequencies are inhomogeneous. Such pattern of the network ge-

ometry is almost unchanged and it requires a special processing algorithm that is able to retrieve

rainfall map using the recorded signal attenuation data from cellular network.

The importance and originality of this study is in the development of rainfall retrieval

algorithms. Up to now, a limited number of studies have investigated the relative importance of

rainfall retrieval algorithms that can be applied to real existing complex geometry of network

topology. We develop, examine as well as compare two novel retrieval algorithms, namely

inverse and tomographic (introduced in chapter 5 and chapter 6 of this study, respectively) that

can be used in the application of cellular communication networks for rainfall monitoring over

urban areas.
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1.2 Purpose and scope of the present study

The main purpose of this study is to assess the feasibility of rainfall retrieval over urban

areas using signal attenuation data from commercial microwave links. We adopted a simulation

framework applied to a realistic case study. The simulation framework allows to understand

different aspects of the main purpose of this study such as dealing with errors and uncertain-

ties in the measurement of signal attenuation data which is the key challenge in experimental

frameworks that use real microwave signal data from cellular communication companies.

This thesis is based on a network of commercial microwave links operated by cellular

communication companies in Nantes city and uses a set of rainfall images provided by Météo

France.

In this simulation framework, we address two major challenges to achieve the main purpose

of this study:

— To generate rain attenuation data along microwave links. In this step, we generate

path-integrated attenuation data in realistic conditions. This helps to substitute the

generated rain attenuation data for real one that can be obtained by telecommunication

operators.

— To retrieve rainfall map using the generated rain attenuation data. The aim of this step

is to retrieve rainfall maps based on the generated rain attenuation data.

The reader should bear in mind that the present study is based on a simulation framework

which is applied to a realistic case study. This study does not use real signal attenuation data

recorded at microwave antenna stations of cellular companies because commercial data were

not available. Therefore, a full discussion of investigating error sources along microwave links

lies beyond the scope of this study although we did take into account this aspect based on the

reviewed literature. In addition, the main interest in this research is limited only to rainfall

measurement at the city scale.

1.3 What is microwave link?

A microwave link is the main core part of wireless communication systems such as satel-

lites, cellular phone networks, broadcasting, military radars. The microwave link uses an elec-

tromagnetic signal in the frequency range that carries information for short (few meters) or long

(several km) distances between two fixed locations (Freeman, 2006). Operating frequencies are
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Figure 1.1 – Rain attenuation between Transmitter and Receiver station of a microwave link.
(This figure was obtained from the source1)

.

roughly between 5 and 50 GHz, selected by telecommunication engineers. Typically, the mi-

crowave link consists of transmitter, receiver antennas and transmission line Figure 1.1. Aside

from many types (horn, slot, dipole or dielectric), parabolic antennas are very common in the

microwave communication system. The microwave antennas are usually mounted on the top of

buildings, towers so that the signal can be safely transmitted in a clear path.

Microwave signals can be attenuated due to various factors such as wave reflection on the

ground, effects of buildings and trees and other environmental issues. Apart from its installation

in a clear path, the operating frequency and the length of transmission line along these antennas

are often chosen on the basis of climate conditions for a geographic location (Freeman, 2006).

The reason is that the transmitted signal power can also be attenuated by different atmospheric

variables such gas, water vapour, hail, fog, snow and rain. Among them, rain is the most influ-

ential factor, especially at frequencies above 10 GHz (Oguchi, 1983; Freeman, 2006; Gurung

and Zhao, 2011).

1.4 Thesis Outline

The structure of this thesis consists of 7 chapters:

Chapter 2 provides the physical background on rain induced attenuation phenomenon that

1. http://lte.epfl.ch/files/content/sites/lte/files/Research/microwave_
link.png

http://lte.epfl.ch/files/content/sites/lte/files/Research/microwave_link.png
http://lte.epfl.ch/files/content/sites/lte/files/Research/microwave_link.png
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takes place during the signal transmission along microwave links. In this context, this chapter

highlights the key theoretical concepts regarding the context of this research which will serve

as a fundamental basis throughout entire thesis. These concepts are related to electromagnetic

signal scattering and micro-physical structure of rainfall. Further, a formulation of specific rain

attenuation as a function of signal frequency and rain intensity is also discussed.

Chapter 3 contextualises the present research by providing a detailed review on the state

of the art knowledge in microwave link based rainfall measurement. This chapter is subdivided

into three major sections. The first section discusses recent advances in the application of

microwave links to rainfall measurement as well as their integration with weather radar and

rain gauges. The second section reviews ongoing issues regarding measurement error sources

along microwave links. The objective of the third section is to give an overall summary of

existing retrieval algorithms can be used to retrieve rainfall based on signal attenuation data

from microwave links.

Chapter 4 describes the details of our case study used to generate signal attenuation data

due to rainfall. This chapter consists of three major sections. The first two sections present

data sets that include a description of microwave links of cellular communication network and

rainfall images obtained from weather radar. The last section focuses on a methodology for gen-

erating rain attenuation data along the microwave links. Error sources regarding environmental

and hardware-equipments of microwave antenna stations are simulated in order to mimic the

real nature of the signal attenuation data. The attenuation data generated in this chapter will be

used as real signal attenuation data that can be obtained from cellular company operators.

Chapters 5 presents the first retrieval algorithm that will be applied to convert signal atten-

uation data into rainfall map. This chapter utilises microwave signal data generated in Chapter

4 in order to retrieve rainfall map using cellular network. First, the retrieval algorithm and its

application conditions are presented. The presented algorithm here employs the principle of

inverse problems in which a definition of apriori knowledge is of utmost importance. Second,

the sensitivity analysis test to various parameters of the algorithm is performed including condi-

tions such as the presence of different magnitudes of measurement and model errors. Retrieval

performance of the algorithm depending on the network density is analysed. Capabilities as

well as limitations of the proposed algorithm in capturing spatial variability of rainfall are also

discussed.

Chapter 6 presents the second retrieval algorithm which uses the principle of tomography

and in our case, discrete tomography. The objective is the same as stated in Chapter 5, that is to
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reconstruct rainfall map on the basis of microwave rain attenuation data generated in Chapter

4. The present chapter is grouped by three major sections. In the first section, a core principle of

tomography and a mathematical background of the tomographic algorithm used in this chapter

are defined. In the context of tomography problems, arbitrary geometry of network topology,

inhomogeneity of link frequencies and lengths are the key challenges to be addressed in the

application conditions of the algorithm. Therefore, in the second section, specific procedures to

adjust the parameters of the algorithm are presented. The last major section deals with retrieval

tests carried out over different regions of the network system. In addition to this, retrieval

performance of this algorithm is compared with the one to be presented in Chapter 5.

Chapter 7 summarises the main findings of this project and discusses the implications of

the findings of this study to future research.



2
Physical Background

2.1 Introduction

This chapter presents a physical basis of rain induced attenuation phenomenon that takes

place during the signal transmission along the microwave links. Since rain attenuation is an in-

trinsic characteristic of microwave link signal it is important to understand the relation between

micro-physics of rainfall and attenuation of electromagnetic signal in the atmosphere. Rainfall

is not the only source that attenuates the signal strength, atmospheric gases also have an impact

on the microwave signal. However, attenuation caused by rain is the most influential factor

among them, especially above 10 GHz frequency band employed by microwave links (Oguchi,

1983; Freeman, 2006; Gurung and Zhao, 2011). The magnitude of the attenuation increases

from lower to higher rain intensity which indicates that there is a strong relation between these

variables. The issue here is how to quantify that attenuation caused by rainfall. Therefore,

the main objective of the present chapter is to give a theoretical background that explains the

relation between rainfall intensity and microwave signal attenuation.

This chapter is organised as follows. First, section 2.2 gives a detailed description about

the electromagnetic scattering phenomenon with an emphasis on rainfall. Second, section 2.3

focuses on the description of rainfall micro-physics, in particular rain drop size distribution

characteristics. Third, section 2.6 presents the attenuation model that is used to quantify a

19
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specific rain attenuation. Finally, section 2.7 summarizes the chapter.

2.2 Electromagnetic signal scattering

Electromagnetic signal scattering is explained as the redirection of electromagnetic waves

that takes place when they encounter an obstacle or an inhomogeneity, scattering particle (Hahn,

2006; Bohren and Huffman, 2008) as depicted in Figure 2.1. In the context of our study, this

obstacle is rain drop which causes the part of the microwave signal to be scattered and partially

absorbed as well. Since this takes place among all drops which are interacting with the incident

signal, it results in the signal attenuation in the propagation direction of the incident signal.

Figure 2.1 – Electromagnetic scattering in a spherical particle. Modified version of figure by
(Hahn, 2006)

There are different approaches such as T-matrix (Waterman, 1965; Mishchenko et al.,

1996; Mishchenko, 2000), Mie method (Mie, 1908) to compute the electromagnetic signal scat-

tering and absorption by rain drops. For example, T-matrix is the complex method which takes

into account the fact that the shape of the rain drop is oblate. We will explain the rain drop

characteristics later in section 2.3. The T-matrix method is considered to be computationally

expensive. If the drop size is almost equal or smaller than the electromagnetic wavelength,

‘Mie’ scattering can be applied that encompasses the general spherical scattering solution (ab-

sorbing or non-absorbing) without a particular bound on a particle size above 10 GHz (Mie,

1908). This is the scattering of electromagnetic radiation by primarily spherical particles whose

diameters are comparable to the wavelength of the incident radiation. Since the minimum value

at the operating frequencies of commercial microwave links is 5 GHz or greater, Mie scattering

becomes important for calculating the electromagnetic signal attenuation due to rain. The ap-
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plication of both approaches may depend on the climate, temperature as well as the shape of the

rain drop. In the next paragraph, we will provide some details about the Mie scattering theory

that will help to understand the physical background behind the phenomenon of electromagnetic

signal attenuation due to rainfall.

2.2.1 Mie scattering parameters and formulations

Scattering amplitude function is obtained from the solution of the boundary value problem

at the surface of a raindrop. Considering two scattering amplitudes, i.e. S1 and S2, the intensity

and the state of the polarization of the scattered radiation in any direction by angle θ are given

by the following equations:

S1(θ) =
∞∑
n=1

2n+ 1

n(n+ 1)
[anπn(cos θ) + bnτn(cos θ)] (2.1)

S2(θ) =
∞∑
n=1

(2n+ 1)

n(n+ 1)
[bnπn(cos θ) + anτn(cos θ)] (2.2)

where, notations an and bn are the complex Mie coefficients which are obtained from matching

the boundary conditions at the surface of the sphere. They are expressed in terms of spherical

Bessel functions of the first and second kind (shown in Figure 2.2 and Figure 2.3, respectively)

and Hankel function of the first kind evaluated at size parameter α (or sometimes referred as x

and complex refractive index, m × α, (Hulst and Van De Hulst, 1957; Bohren and Huffman,

1983)). The notation α is the size parameter of rain drop and is expressed as follows:

x = α = kD/2 = (
π

λ
)D =

circumference of sphere

wavelength
(2.3)

Angular coefficients τn and πn are the functions of cos θ. They are defined in terms of

Legendre polynomials and their derivatives are expressed as followins:

πn(cos θ) =
1

sin θ
P 1
n(cos θ) and τn(cos θ) =

d

dθ
P 1
n(cos θ) (2.4)

Where, P 1
n are associated Legendre functions.

It is assumed that the complex forward scattering angle direction (θ) is the same as the

incident electromagnetic wave direction; therefore, it is equal to zero. Using this assumption

we obtain S1(0o) = S2(0o) at θ=0o. As a result, the scattering amplitudes in the equations (2.1,
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Figure 2.2 – Spherical Bessel functions of the first kind.

Figure 2.3 – Spherical Bessel functions of the second kind.
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2.2) take the following form:

S(θ = 0o) =
1

2

N max∑
n=1

(2n+ 1)(an + bn) (2.5)

Where, Nmax - maximum size parameter; Nmax ≈ α + α1/3 + 2; α - size parameter (or x).

Mie coefficients an and bn are defined by the following expression:

an =
ψn(α)ψ′n(mα)−mψn(mα)ψ′n(α)

ζ(α)ψ′n(mα)−mψn(mα)ζ ′
n(α)

(2.6)

bn =
mψn(α)ψ′n(mα)− ψn(mα)ψ′n(α)

mζ(α)ψ′n(mα)−mψn(mα)ζ ′
n(α)

(2.7)

Where, m is the complex refractive index of the spherical rain drop and computed using Debye

formula (Ray, 1972) which depends on wavelength λ and temperature t.

The complex refractive index is given by m = m1 − m2i, where m1 and m2 are the real and

imaginary parts of the index of refraction, respectively. The notations (ψ and ζ) are Ricatti-

Bessel functions, defined in terms of the half-integer-order Bessel function of the first kind

(Jn+1/2(z)):

Ψn(z) = (
πz

2
)1/2Jn+1/2(z) (2.8)

ζn(z) = (
πz

2
)1/2Hn+1/2(z) (2.9)

= Ψn(z) + iXn(z) (2.10)

Where, Hn+1/2(z) is the half-integer-order Hankel function of the second kind, where the pa-

rameter Xn is defined in terms of the half-integer-order Bessel function of the second kind,

Yn+1/2(z)

Xn(z) = −(
πz

2
)1/2Yn+1/2(z) (2.11)

Where, z = α or mα.

Using the expression (2.5), we are able to compute the forward scattering amplitude as a

function of rain drop radius. Figure 2.4 illustrates the electromagnetic signal scattering depen-

dence on different sizes of rain drop that has been calculated for frequencies ranging from 10

GHz to 100 GHz. The figure on the left is the real part whereas the figure on the right is the

imaginary part of the forward scattering function. The imaginary part is directly proportional to
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the microwave signal attenuation.

Figure 2.4 – Real (on the left) and imaginary (on the right) parts of the complex forward scat-
tering functions depending on the frequency range.

As can be seen in Figure 2.4 that the imaginary as well as real part of the scattering func-

tions are increasing with respect to an increase of the drop radius size. The imaginary part is

directly proportional to the signal scattering. This clearly represents the electromagnetic signal

scattering dependence on a drop size.

2.2.2 Mie Efficiency factor and Cross Sections

The Mie efficiency factors are derived from the scattering amplitudes. The scattering ef-

ficiency Qsca follows from the integration of the scattered power over all directions (see the

arrows of scattering wave in Figure 2.1). The extinction efficiency Qext follows from the ex-

tinction theorem (Hulst and Van De Hulst, 1957; Hahn, 2006), also called forward-scattering

theorem, leading to extinction efficiency:

Qext =
2

x2

N max∑
n=1

(2n+ 1)Re(an + bn) (2.12)

=
4π

k2
Re{S(0)} (2.13)

Qsca =
2

x2

N max∑
n=1

(2n+ 1)Re(|an|2 + |bn|2) (2.14)



2.2. ELECTROMAGNETIC SIGNAL SCATTERING 25

Where, Qext and Qsca stands for extinction and scattering efficiencies. The notation Re{S(0)}

stands for real part of the complex forward scattering function.

The extinction cross section, denoted as σext, is defined by the following expression:

σext =
λ2

π
Re{S(0)} (2.15)

The expression (2.15) is considered as a function of drop size diameter, wavelength and complex

refractive index of water content. Interdependence between efficiency and cross section factors

are as follows:

Qext = Qsca +Qabs (2.16)

and

σext = σsca + σabs (2.17)

The formulas (2.16) and (2.17) define the amount of extinct wave coming out of the drop

after the scattering and absorption effects.

2.2.3 Mie scattering computation

The algorithm and numerical methods for computing Mie scattering can be found in vari-

ous literatures (Shah, 1977; Wiscombe, 1980; Hajny et al., 1997; Du, 2004; Gogoi et al., 2010).

For the simplicity, we use the following steps to perform Mie scattering computation:

Step 1. Initial values for the calculation as input parameters: rain drop temperature

(t = 0o C), frequencies at 18, 23, 38 GHz;

Step 2. Compute refractive index of water m at a given temperature from Debye

formula;

Step 3. Compute an and bn for n = 1...Nmax, where Nmax ≈ α + α1/3 + 2, from

size parameter x and index of refraction m (uses recursion relations for the spherical

Bessel functions), the equations (2.6, 2.7);

Step 4. Compute Extinction Qext, scattering Qsca efficiencies given in (2.12, 2.14).

Then, we compute extinction, scattering and absorption cross sections (2.16, 2.17);

Step 5. Optionally, compute S1(θ) and S2(θ) at desired scattering angles from an and

bn, πn and τn from recursion.

The algorithm could have been quite simple if the Bessel and Legendre polynomials were



26 CHAPTER 2. PHYSICAL BACKGROUND

replaced by simple complex goniometric functions. The infinite series can be limited to the

n being about 10 (or even less) of a sufficient accuracy. There are available program codes

to perform the algorithm in several programming languages such as Java, C, Fortran, Matlab,

Octave, Pascal (Shah, 1977; Mätzler, 2002; Mishchenko and Travis, 2008; Wriedt, 2008; Gogoi

et al., 2010). All of those programs differ from each other in terms of speed and complexity.

We use the codes written in Python 2.7 considered to be a high-level language and user-friendly

that has standard scientific library 2 to compute functions such as Bessel and Hankel.

2.2.4 Comparison of Mie parameters: Scattering, Absorption, Extinction

To test the impact of drop size on the electromagnetic signal amount we make a comparison

between Mie parameters defined in the previous section. This helps understand the frequency

dependence on the amount of scattering, absorption and extinction as a function of drop size.

To carry out this test, we use 18, 23 and 38 GHz which are the frequencies of the microwave

links chosen in our study. The conditions for this comparison are as follows:

1. Frequency: 18, 23, 38 GHz;

2. Drop radius: 0 to 0.35 cm;

3. Temperature at 0oC;

4. Drop shape is spherical.

Figure 2.5 shows the relation between extinction, scattering and absorption with depen-

dence on the rain drop radius size at 18, 23, 38 GHz. As can be seen that the extinction cross

section values increase as the frequency changes over ascending order with dependence on the

drop radius range. Both extinction and absorption efficiencies are similarly increasing accord-

ing to the frequency ranges. The drop radius below about 0.175 cm gradually influences on

scattering amplitude which indicates that attenuation is considerably large in average-sized rain

drops rather than large rain drops, especially, in between 0.2 cm and 0.35 mm. According to the

Mie cross section calculations it can be seen that maximum extinction efficiency is observed

when the drop radius reaches the values between 0.2 cm and 0.3 cm at 38 GHz. Comparing

values of the extinction cross section in Figure 2.5 (figures on the right column), we can see that

the extinction is gradually increasing, especially at 38 GHz. This results in a sharper increase

compared to lower frequency, i.e. 18 GHz. Also, we can see that rain drop radius smaller than

0.2 cm represents a small change in the cross sections at all used frequencies.

2. http://docs.scipy.org/doc/scipy/reference/index.html
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Figure 2.5 – Mie Efficiency coefficients (on the left) and Cross Sections (on the right). Extinc-
tion, scattering and Absorption at 18, 23, 38 GHz (top-bottom order).
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The extinction cross section rises sharply when the drop radius is greater than 0.2 cm at all

frequencies whereas the absorption cross section increases less slowly.

2.3 Rain drop characteristics

2.3.1 Shape and size of the rain drop

Rain drop, sometimes called as a water droplet, is formed by condensation of water vapour

in a cloud, that is heavy enough to fall from the cloud and large enough to reach the surface of

land or sea before evaporating in the unsaturated air beneath the cloud. The shape of a drop is

more spherical and horizontally oblate due to the force of air in vertical direction as shown in

Figure 2.6. (Pruppacher and Pitter, 1971) investigated the shape of raindrop in the framework

of modelling. They analysed variation of drop deformation with drop size. A diameter of the

drop can only exist not greater than around 7 mm (Laws and Parsons, 1943; Pruppacher and

Beard, 1970; Pruppacher and Pitter, 1971). Extremely large drops are often split into new small

sized drops during falling towards the ground.

2.3.2 Drop size distribution

One of the main factors of the specific attenuation is considered as Drop Size Distribution

(DSD). Its analytical formulations are mainly used for describing the rain drop size concen-

tration in the atmosphere. The main reason why there is a need for computing DSD is that it

helps to classify precipitation types. There are various types of distrometers such as electrome-

chanical, optical, video to measure DSD (Best, 1951; Mason and Andrews, 1960; Fišer et al.,

2002; Tokay et al., 2002; Brandes et al., 2004). The formulation of drop size distribution and its

modelling were investigated in (Marshall and Palmer, 1948; Best, 1951; Joss et al., 1968; Wald-

vogel, 1974; Torres et al., 1994; Tokay et al., 2002; Bringi et al., 2003; Tapiador et al., 2014).

The DSD is typically described using a distribution function N(D) that provides N(D)dD the

mean number of drops per unit of air volume with diameters between D and D + dD. So, let

us see the formulation and characteristics of these two (Gamma and Marshal Palmer) models in

detail in the next paragraph.
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Figure 2.6 – A) Raindrops are not tear-shaped; B) Very small raindrops are almost spherical
in shape; C) Larger raindrops become flattened at the bottom, like that of a hamburger bun,
due to air resistance; D) Large raindrops have a large amount of air resistance, which makes
them begin to become unstable; E) Very large raindrops split into smaller raindrops due to air
resistance 3.

2.3.2.1 Gamma distribution

Due to its suitability, gamma distribution is often used to characterize drop size distribu-

tion. Based on the real recorded data by distrometer, (Mallet and Barthes, 2009) confirm that

more than 90 % of the drop size distributions follow gamma distribution. There are different

types of gamma distribution functions such as gamma and modified gamma. (Ulbrich, 1983)

suggested that gamma function using 3 parameters is able to describe most DSD models and

each parameter can simply be computed from estimated moments. The general expression for

that is as follows:

N(D) = N0D
µexp[−ΛD] (2.18)

Where, Λ - slope of drops; µ - shape of drops; N0 - number of drops;

Gamma DSD is the general form of exponential form. If rain drop sizes are mainly average,

the parameters µ, N0 and Λ show large values. Theses parameters differ from one DSD type to

another, see Table 2.1 and Figure 2.7.

In addition, there are some other models for the drop size spectra such as lognormal, mod-

3. https://en.wikipedia.org/wiki/Drop_(liquid)

https://en.wikipedia.org/wiki/Drop_(liquid)
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Table 2.1 – Gamma model parameter values N0 and Λ, (source: Fiser, 2010).
Rain type N0,mm

−4m−3 Λ,mm−1 µ

Convective 6.29× 105R−0.416 8.35R−0.185 3

Stratiform 2.57× 104R
0.012

5.5R−0.129 3

Figure 2.7 – Gamma DSD plot in convective and stratiform rain, (Table 2.1).

ified gamma, exponential (Joss et al., 1968; Willis, 1984). Overall, (Torres et al., 1994) investi-

gated a general formulation for describing such models using scaling law parameters in a wide

variety of rainy conditions.

2.3.2.2 Marshal Palmer distribution

The classical study conducted by Marshall-Palmer (MP) is very well-known and often used

for computing DSD (Marshall and Palmer, 1948). The study provided an exponential formula-

tion for N(D) according to the analysis of two datasets measured with the filter paper method.

In fact, MP DSD is a special case of Gamma DSD where the parameter µ is equal to zero. MP

model is very suitable for widespread rain type in continental temperate climate. Therefore,

MP size distribution is widely used. However, it shows some inadequacies in expressing other

observed spectra and overestimates the number of both the smallest drops (Waldvogel, 1974).
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Figure 2.8 – Exponential DSD function at 5 mm.hour−1 (Table 2.2).

MP DSD model is expressed by the exponential form of DSD as follows:

N(D,R) = N0exp[−Λ(R)D] (2.19)

Where, D - rain drop diameter, mm; N0 = 8000, mm−4; Λ is supposed to have a power-law

dependence on the rain rate R: Λ(R) = 4.1R−0.21, mm−1. Another study on DSD measurement

by means of a distrometer in Switzerland was conducted by (Joss et al., 1968). They observed

the distribution of the drops varies considerably with different rain types. According to their

results rainfall classification contains 3 types: drizzle, widespread and thunderstorm. The driz-

zle type itself is associated with very light widespread rain which contains drops small size at

rain rate smaller than 2.5 mm.hour−1. The thunderstorm rain type describes the drop size dis-

tribution for convective rain type with relatively high concentration of large drops. The values

for N0 and λ for drizzle, widespread and thunderstorm rain types are presented in Table 2.2 and

related DSD plots in different rain types are depicted in Figure 2.8.

The main reason for the use of these two models i.e. Gamma and MP, is their suitability

in temperate climate. Above mentioned studies confirm that Gamma DSD is mainly used for

the evaluation of DSD function and provides more adaptable result to express the distribution

of the drop sizes in many precipitation types.
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Table 2.2 – Exponential DSD parameters: N0 and λ in different rain types (Joss et al., 1968).
(source: Fiser, 2010).

Rain type N0, mm−1m−3 Λ, mm−1

Average 8, 000 4.1R−0.21

Drizzle 30, 000 5.7R−0.21

Widespread 7, 000 4.1R−0.21

Thunderstorm 1, 400 3R−0.21

2.4 Rainfall intensity

Rainfall intensity is measured directly by raingauges, distrometers or indirectly by weather

radar with taking into account drop size distribution and raindrop velocity parameters. If the

effects of wind (notably updrafts and downdrafts), turbulence, and raindrop interaction are ne-

glected, the (stationary) rain rate, denoted as R in mm.hour−1, is related to the rain-drop size

distribution N(D) according to:

R = 6 ∗ π ∗ 10−4

∫ ∞
0

D3v(D)N(D)dD (2.20)

Where, v(D) is the fall velocity of raindrops (often called terminal velocity) expressed as a

function of drop size in m.sec−1. As an example, the terminal velocity function can be derived

from (Atlas and Ulbrich, 1977):

v(D) = cDγ (2.21)

Where, the coefficients c and γ are 3.78 and 0.67, respectively.

Besides the fact that the expression (2.21) has been shown to be a good fit for a wide

range of rain drop sizes it also makes computation less complicated. More comprehensive and

complex relation for describing terminal velocity can be found in (Beard, 1976).

2.5 Scaling law and self-consistency relationship

In hydrometeorological studies, most DSD models used by now such as the exponential

distribution (Marshall and Palmer, 1948), Weibull distribution (Best, 1951), gamma distribution

(Ulbrich, 1983; Willis, 1984) are particular cases of a general expression (2.22) where the

number of drops per unit of air volume in the size range D to D + dD, N(D,Ψ), depends on
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D and on the reference variable Ψ:

N(D,Ψ) = ΨαΨ ∗ g(
D

RβΨ
) (2.22)

With x = D
RβΨ

we can get g(x) = k ∗ exp(−λx).

In this general expression Ψ can be any integral rainfall variable although R has generally

been used (Torres et al., 1994). For given Ψ, αΨ and βΨ are constants (they do not have any

functional dependence on Ψ and g(x) is a function that is independent of the value of Ψ and

that will be called the general distribution function.

In fact, the expression (2.22) is a scaling law. In our context, the scaling law is theoretical

approach valid over a wide range of scales (i.e. over a wide range of intensities or liquid water

content). The described two DSD models in subsection 2.3.2 can be expressed by (2.22).

An important requirement of sets of power law relationships between rainfall related vari-

ables is that they should be consistent. Consistency means that power law relationships be-

tween variables should satisfy the definitions of these variables in terms of the parameters of

the raindrop size distribution. This so-called self-consistency requirement has been consid-

ered explicitly by (Bennett et al., 1984). The resulting constraints on the coefficients of power

law relationships between rainfall related variables were treated recently in much more gen-

eral fashion by (Torres et al., 1994), as a part of their general formulation for the raindrop size

distribution. Substituting (2.22), (2.21) into the definition of R in terms of the raindrop size

distribution equation (2.20) leads to the self - consistency constraints:

6π ∗ 10−4c

∫ ∞
0

x3+γg(x)dx = 1 (2.23)

a+ (4 + γ)β = 1 (2.24)

Hence, g(x) must satisfy an integral equation (which reduces its degrees of freedom by

one), and there is only one free scaling exponent. These self-consistency constraints guarantee

that substitution of the parametrization for the raindrop size distribution (2.22) into the defining

expression for rainfall intensity (2.20), R, leads to R = R.
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2.6 Specific rain attenuation

The formulation of specific attenuation due to rainfall, denoted as k in dB per km, is

described as follows:

k = log10 e ∗
∫ Dmax

Dmin

σext(D)N(D,R)dD (2.25)

Where, σext(D) - extinction cross section, mm2, defined in the expression (2.15) of section 2.2;

N(D,R) - drop size distribution as a function of drop diameter and rain rate, defined in the

expression (2.18) and (2.19) of section 2.3, mm−4; Dmax, Dmin - maximum and minimum rain

drop diameter, mm; D - Drop diameter, mm; R - Rain intensity, mm.hour−1, defined in the

expression (2.20) of section 2.4; the term e is constant (Euler’s number) equal to approximately

2.718.

Due to its simplicity, the following empirical relation is most commonly used to compute

the specific rain attenuation:

k = aRb (2.26)

Where, a and b - the power law coefficients. The expression (2.26) is often called k-R relation

(Atlas and Ulbrich, 1977; Olsen et al., 1978). The power law coefficients (i.e. a and b) depend

on frequency, polarization, temperature and DSD model. These coefficients are obtained exper-

imentally on the basis of k (the equation 2.25) and R (the equation 2.20) both of which depend

on the DSD recorded by a distrometer in certain climate conditions. It is important to note that

the output of the equation (2.26) is almost the same as that of (2.25). However, these coefficients

are climate dependent variables which mean that the approximated values may differ from one

region to another. Therefore, the main challenge is to accurately measure the DSD data in order

to compute those a and b values.

Many studies (Olsen et al., 1978; Zhang and Moayeri, 1999; Das et al., 2010) established

the k-R relation for different climate regions of the world. If there is no available measured DSD

data, International Telecommunication Union (ITU-R, 2005) provides standard coefficients for

a wide range of frequencies from 1 to 1000 GHz which can be used globally.

2.6.1 Specific attenuation as a function of frequency

In order to better understand the specific rain attenuation dependence on signal frequency

magnitude we compute the formula Equation 2.25 as a function of frequency. We choose dif-

ferent rainfall intensities of 2.5, 5, 12.5, 25, 50, 100, 150 mm.hour−1. The specific attenuation
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values as a function of frequency are depicted in Figure 2.9. The figures a and b represent

Marshal Palmer (2.19) and Gamma DSD models (2.18), respectively.

(a) MP DSD model

(b) Gamma DSD model

Figure 2.9 – Specific rain attenuation as a function of frequency between 1-100 GHz.

The frequency range in x axis is plotted against the specific rain attenuation in y axis.

These models parameters are under the conditions that temperature is 0o C and rain drop shape

is spherical. It is not surprising to see that the specific attenuation in both cases monotonously

increases with the correspondence of increase in frequency values. This clearly indicates that

the signal attenuation is directly proportional to frequency. Similarly, higher rainfall intensities



36 CHAPTER 2. PHYSICAL BACKGROUND

are also the cause for higher rain attenuation since a rain drop size increases at higher rain rates

(e.g., 50 mm.hour−1) and is able to absorb and scatter significant amount of signal.

2.6.2 Specific attenuation as a function of rain intensity

Here, the specific attenuation is computed as a function of the rain intensity. To perform

this computation three frequency values are selected at 18, 23, and 38 GHz. Figure 2.10 il-

lustrates the specific attenuation values computed for ranges of rain intensity from 1 to 100

mm.hour−1. This rain intensity ranges in x axis are plotted against the attenuation values per

km in y axis. It is very clear to see that the more rain intensity, the more specific attenuation

at all frequencies. Generally, absolute difference of the specific attenuation values between MP

and Gamma DSD increases at higher rain intensities. It seems that the magnitude of the spe-

cific rain attenuation is slightly sensitive to the type of DSD model at lower rain intensities.

However, it is more sensitive to the frequency value. As the rain becomes more intense (higher

rate), the specific attenuation based on Gamma DSD rises faster than that of MP DSD at 38

GHz. At frequencies of 18 and 23 GHz, the same trend represents the opposite scenario. The

explanation is that MP DSD is suitable only for widespread rain type which mostly consists of

lower intensity values.

Figure 2.10 – Specific attenuation plot at 18, 23 and 38 GHz using MP and Gamma DSD at
temperature 0oC. Note that the parameters for plotting MP and Gamma DSD were derived
from Table 2.2 and the one demonstrated by (Zhang and Moayeri, 1999), respectively.
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2.7 Summary

In this chapter, the theoretical background of rain attenuation along the microwave links

has been discussed. In particular, electromagnetic signal scattering, absorption dependence

on drop sizes taking into account different rain intensities have been presented. Next, micro

physical structure of rain drops and different models which describe the distribution of rain drop

sizes have been discussed. Moreover, we have shown the rain attenuation model to be a function

of two variables: (i) frequency and (ii) rainfall rate. Further, we compared the specific rain

attenuation obtained on the basis of different drop size distribution models. Overall, the present

chapter will be considered as a fundamental basis for the electromagnetic signal interaction with

rain drops in the atmosphere.





3
State of the art: Rainfall Measurement

Using Microwave Links

3.1 Introduction

Microwave links use electromagnetic radio waves which operate roughly between 5 and

50 GHz. At these frequencies, the signal travelling through the atmosphere gets attenuated by

different forms of hydrometeors such as hail, fog, wind, snow and rain. As it has been discussed

in chapter 2 rain causes the most significant attenuation, particularly at frequencies bands above

10 GHz used in wireless communication systems (Freeman, 2006). We have seen that this

phenomenon occurs because the wavelength of microwave signal is comparable with a diameter

of a rain drop at these frequencies, see section 2.2. Thus, the higher rain intensity is directly

responsible for signal attenuation increase. Once such a relationship has been established, the

average rain intensity along the link can be estimated (Olsen et al., 1978).

Today, microwave links are very high in density and already cover large parts of most urban

areas. Therefore, the introduction of the microwave links in cities can be a promising and po-

tentially valuable way of rainfall monitoring. Rainfall estimation using commercial microwave

links has become an active research subject. In this context, the objective of this chapter is to

provide state-of-the-art knowledge in recent advances, limitations and advantages of the mi-
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crowave link, and the algorithms and methods developed for rainfall monitoring.

This chapter is organised as follows. In section 3.2, applications and recent advances in

microwave links approach are presented. Then, in section 3.3 we discuss the issues regarding

existing challenges which are related to error sources and uncertainties in applications of the

microwave links. In section 3.4, our focus is to give an overall summary of existing algorithms

used to retrieve rainfall based on attenuation data from microwave links. Finally, our conclu-

sions regarding the state-of-the-art knowledge in microwave link based rainfall measurement

are presented in section 3.5.

3.2 Recent advances in microwave link based rainfall mea-

surement

3.2.1 Rainfall measurement along a microwave link

The beginning of the current research goes back to late 1960s. Over the past four decades

there has been an extensive research in microwave link based systems (telecommunication, cel-

lular network, broadcasting, terrestrial and satellite) that focused on understanding the relation-

ship between signal attenuation and rainfall intensity in different climate regions of the world

(Hogg, 1968; Atlas and Ulbrich, 1977; Olsen et al., 1978; Jameson, 1991; Zhang and Moayeri,

1999). In the same line of these investigations, Das et al., 2010 established the rain attenuation

model at frequencies from 10 to 100 GHz in the case of tropical India. These achievements

improved the understanding of the rain attenuation variability and designing the microwave

link frequency ranges depending on the climate. However, these findings were only focused on

establishing a quality communication in different regions of the world.

In the context of the applicability of the microwave links for rainfall measurement, a num-

ber of studies using different methodologies in both theoretical and experimental framework

were carried out. These studies can be classified into two groups (i) research and (ii) opera-

tional microwave link based investigations.

Using research dedicated links, (Holt et al., 2000; Holt et al., 2003) studied the capabilities

of dual-frequency links for rainfall measurement. The proposed idea was to transform a dif-

ference of the signal attenuation measured by the dual-frequency link into a path-averaged rain

intensity. Here, a path-averaged rain intensity is referred to rain rate which is assumed to be an

average value of rain rate along the microwave link path. Similarly, (Rahimi et al., 2003) con-
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ducted an experimental study in the north-west of England. To show how the dual-frequency

link can be used to measure path-averaged rainfall rate, the authors proposed step-by-step proce-

dures for extracting rain attenuation data from measured signal level before using the actual sig-

nal itself for estimating rainfall intensity. The general performance of the approach was tested

over a long hour period in two cases (112 and 52 events). The results show a good agreement

between the link estimates and the one obtained from rain gauges as well as C-band weather

radar both of which were assumed to be the ‘ground-truth’. It is important to note that the link

estimate is different from the rain gauge based one which is a point measurement at a ground

level. The first ‘ground-truth’ used in this study came from a network of 22 tipping-bucket

rain gauges. In order to be able to compare with the link-based estimates, true path-averaged

rain intensity was obtained using the weighted average rain rate records of nearest rain gauges

along the link. Similarly, comparisons with weather radar, which is considered to be the second

ground truth, have been made at the resolution of 2× 2 km2 by weighting the link length with

radar grid (Cartesian). Later, the suitability of the dual-frequency link was also tested in urban

rainfall measurement (Rahimi et al., 2004; Upton et al., 2005). (Minda and Nakamura, 2005)

employed horizontally polarized short link (820 meters) at 50 GHz for measuring the path aver-

aged rainfall intensity. It was shown that the link approach can be used as ‘path-averaged-rain-

gauge’ sensor. Time series data sets recorded by a rain gauge and a disdrometer were used to

validate the system performance. According to (Fenicia et al., 2012) the dual-frequency-based

estimate does not seem to be accurate as compared to one estimated by a single-frequency link.

They came to such conclusion based on the experimental set-up, located in Luxembourg city.

The data sets comprise two horizontally polarized dual-frequency links with different lengths,

and 13 rain gauges closely placed along those two links. The data collected during 1.5 year by

those rain gauges was used to test the performance of the system in space and time. Here, it

is worth mentioning that the characteristics of those link pairs chosen in this study are based

on the recommendations by (Rahimi et al., 2003) where the relationship between rain intensity

and attenuation difference by the link is expected to be linear and not influenced by drop size

distribution variability. Besides, the authors give emphasis on the fact that the performance of

the link approach is limited due to the uncertainty in rain gauge data. In addition to those inves-

tigations, (Leijnse et al., 2007b) proposed that a single-frequency link at 27 GHz is also suitable

for rainfall estimation. In fact, the ‘suitability’ range of the link depends on the linearity of the

relationship between microwave signal attenuation and rain intensity (Atlas and Ulbrich, 1977;

Olsen et al., 1978). The authors confirm the linearity of such relationship at 27 GHz using large
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data set of drop size distribution (about one year) in the case of the Netherlands. Thus, the link

estimates were found to be almost identical to those measured by rain gauges. The true path

averaged rainfall intensity along the link was obtained by the records of 7 rain gauges which

were closely placed along the link. A related point to consider is that the authors give more

emphasis on steps of pre-processing the signal data by taking into account various attenuation

effects which are different from rain. These are related to antenna wetting after the rain event

or signal attenuation before the rain event (Minda and Nakamura, 2005; Leijnse et al., 2008;

Leijnse et al., 2010; Zinevich et al., 2010). (Leijnse et al., 2007a) suggested that using the same

link it is possible to measure evaporation as well. However, the studies discussed above account

for only research dedicated links.

In an operational framework, (Messer et al., 2006) demonstrated the feasibility of rain-

fall monitoring on the basis of commercial microwave links employed by digital fixed radio

systems. The measurement process is the same as previously mentioned studies, but using

the signal attenuation data recorded by cellular networks. The rainfall intensity estimates by

cellular-link were found consistent with those obtained by rain gauge and weather radar. Sev-

eral experiments in very different contexts have confirmed those achievements. For example,

(Leijnse et al., 2007c) conducted a similar experiment applied to the case study in the Nether-

lands territory. In their experimental set-up, two cellular links, both operating at 38 GHz, were

used. These links consist of the same receiver station at which the signal levels are recorded.

The objective in this experiment was to measure the path average rainfall intensity along the

link based on the signal attenuation data obtained by those two links. For this purpose, the

authors used k-R relation which relates a rainfall intensity (R, mm per hour) to a specific atten-

uation (k, dB per km), see the details about the k-R relation in chapter 2. Drop size distribution

data set during long period (more than a year) was used to establish that relationship under the

assumption of spherical rain drop in the Netherlands climate condition. Here, R is considered

to be a function of drop size and velocity and k is the specific attenuation expressed as a func-

tion of the extinction cross section of the rain drop at a given frequency (Hahn, 2006). The

detailed description about that relationship can be found in (Atlas and Ulbrich, 1977; Olsen

et al., 1978). Reference rainfall intensities were obtained by a rain gauge located nearby the

link and by converting reflectivity maps recorded by two C-band weather radars with a spa-

tial (2.5 × 2.5 km2) and temporal (5 min) resolutions. These two instruments were separately

used to validate the link approach. It should be noted that the second reference data set, which

came from weather radar, is the weighted average of the radar pixels along the link. Authors
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used 8 rain events to test the performance of the method. It was found that the estimates based

on the single-frequency approach have a closer agreement with those measured by nearby rain

gauge if rainfall variability along the link is weak. On the other hand, when the rainfall vari-

ability increases, the link based measurement was found to be closer to the one estimated by

weather radar. This could indicate that merging the microwave links with traditional measure-

ment techniques may better capture the spatio-temporal variability of rainfall. Studies regarding

this aspect will be further discussed in subsection 3.2.2.

(Doumounia et al., 2014) obtained encouraging results in Sahelian West Africa test bed

using 29 km long cellular microwave link at 7 GHz. Rain attenuation data was obtained using

the difference between transmitted and received signal levels which have been recorded every

second with a power resolution of 1 dB during monsoon period. Authors employed the k-R

relation to convert signal attenuation data to the path average rainfall intensity along the link

following the same principle used in (Leijnse et al., 2007c). Since only rain induced attenuation

data is useful for rainfall measurement, the method proposed by (Schleiss and Berne, 2010) was

applied to remove attenuation in dry period that does not belong to rain. The measured rainfall

intensity by the cellular link shows a good performance when compared with rain gauge data

at 5 min time interval; however, measuring rainfall in this time step along longer links is not

representative due to the high variability of rainfall. Interestingly, it is worth mentioning that

even though low frequencies are considered to be less sensitive to rainfall, the link tested in

this experiment is still capable of measuring rainfall rate in real time. Based on the results,

the authors state that the measurement by cellular links are more in accordance to the result

obtained by rain gauge data than the ones estimated by satellite.

Recent experiments (Overeem et al., 2011; Rayitsfeld et al., 2012) which group longer

data sets in terms of time length recorded by larger number of microwave links and validation

procedures based on rainfall measurement devices (rain gauges, disdrometers) provide robust

assessments of these initial findings.

Microwave links are not only capable of measuring rainfall, but also applicable to mea-

sure other forms of precipitation. For example, (Ostrometzky et al., 2015) applied the rain

attenuation data recorded by multiple commercial microwave links for measuring the precipi-

tation amount regardless of its type, i.e. whether it is rain, sleet or their mixture. Even, their

application in fog monitoring can be found in (David et al., 2015).
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3.2.2 Combining microwave links with weather radar and rain gauges

Ideally, using microwave links in combination with a rain gauge or a weather radar can

improve the reliability of rainfall estimates. This is certainly beneficial to locations where the

traditional techniques often suffer from drawbacks. In fact, this is one of the motivations for

exploring the applicability of microwave links for rainfall measurement. There has been a few

investigations focused on this aspect with different objectives and methodologies which we will

discuss below.

Usually weather radar based rainfall estimation is adjusted on the basis of rain gauge(s).

However, it is a fact that such adjustment is a subject to various sources of uncertainties. These

are related to malfunctioning of rain gauges caused by wind and temperature effects, and due to

interpolation techniques used to distribute point measurement values over a surface area. The

error caused by the latter factor becomes severe in very high rain intensity with strong variabil-

ity. Besides, finding a convenient location to install a rain gauge is not easy in urban areas.

In this context, using 30 km long vertically polarized dual-frequency microwave link, (Rahimi

et al., 2006) calibrated X-band weather radar located in Essen (Germany). In their experiment,

the signal attenuation measured along the link was applied to correct radar reflectivity data that

has been degraded because of attenuation of radar beam. The corrected radar reflectivity was

then converted to rainfall rates on the basis of Z-R Marshall Palmer relation (Marshall and

Palmer, 1948) to be able to compare with ground-truth measurement. The authors obtained

the ground-truth rain rate from a network of 5 rain gauges closely placed along the link path.

Based on the comparison between the path averaged rain rate computed along the link and the

ground-truth, the approach was found to be effective, especially, in convective rain events to

calibrate the radar reflectivity data. However, the authors state that the capability of the link for

radar calibration is limited since it corrects the radar sector that are only located in the link path.

In addition to this finding, (Cummings et al., 2009) proposed that single-frequency microwave

links can be used to adjust radar-based rainfall estimation. The links used in this investigation

are horizontally polarized, single-frequency at 17.6 and 22.9 GHz with lengths of 23.3 km and

of 15.3 km, respectively. The authors found that the link-based adjustment of weather radar is

as effective as the radar adjustment based on rain gauges.

So far, those findings which have been discussed above mostly use a network of rain gauges

as a ground-truth for validating the proposed methods. Rainfall estimates obtained by rain

gauges are neglected if this device malfunctions. As a result, useful information regarding the

variability of rainfall can be lost. In terms of integration of microwave link into rain gauges,
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(Bianchi et al., 2013b) developed a method for detecting faulty rain gauges using 14 commer-

cial microwave links with different operating frequencies and lengths in Switzerland. Further,

(Bianchi et al., 2013a) combined the link-based rainfall estimates with two other measurement

techniques, namely weather radar and rain gauges, to improve the accuracy of rain rate estima-

tion.

3.3 Measurement error sources and uncertainties

The encouraging results from different applications of microwave links must not hide the

presence of several error sources whose influences were investigated in many articles. Signal

attenuation measured along the microwave link is not only due to rainfall, but also to other

factors which are essentially related to:

— Instrumental impairments such as signal fluctuations by antenna wetting, baseline ef-

fects (gas, water vapour, temperature, wind) and signal quantization (round-off errors)

in hardware equipment of both transmitter and receiver;

— A measurement model, i.e. k-R relation whose parameters depend on the signal fre-

quency and polarization, the variability of drop size distribution as well as temperature.

Here, we discuss the issues regarding the impact of both factors on the accuracy of rainfall

measurement by microwave links.

3.3.1 Error sources due to instrumental impairments

Microwave signal fluctuations are not only due to rainfall, because other instrumental im-

pairments may also cause a signal variation. These impairments include the effects of baseline

(i.e. gas, water vapour, temperature), antenna wetting, and quantization of signal. Therefore,

a key issue here is the possibility of separating rain induced attenuation from these factors.

Various studies addressed this issue on the basis of both research dedicated (Holt et al., 2000;

Rahimi et al., 2003; Upton et al., 2005; Minda and Nakamura, 2005; Leijnse et al., 2008; Feni-

cia et al., 2012) and commercial (Leijnse et al., 2007c; Schleiss and Berne, 2010; Zinevich

et al., 2010; Overeem et al., 2011) microwave links.

Error sources due to gas and water vapour effects are often called attenuation baseline. The

influence of this error depends on atmospheric conditions such as air temperature and humidity

level in a particular region. (Leijnse et al., 2007b) state that the microwave link can estimate

path-averaged rainfall at a high resolution if the attenuation baseline of the microwave link
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signal is perfectly known. The main challenge is to identify and remove this effect from the

measured signal attenuation along the link. It is obvious that the attenuation baseline does not

represent the rain induced attenuation. A simple procedure for identifying this error source is to

measure the signal attenuation along the link before and after the rain event which are referred

to as dry and wet periods, respectively (Rahimi et al., 2003; Minda and Nakamura, 2005; Upton

et al., 2005). The attenuation baseline could be used as a threshold to separate the total rain

attenuation measured in the latter period. Another way is to employ a weather radar or a network

of rain gauges closely located along the link so that dry/wet periods can be detected (Upton et

al., 2005; Minda and Nakamura, 2005; Cummings et al., 2009; Overeem et al., 2011; Fenicia

et al., 2012). It should be noted that the procedure to estimate the attenuation baseline proposed

in all studies differ from each other in terms of underlying assumptions about the nature of this

error source. For example, the methods developed by (Upton et al., 2005; Schleiss and Berne,

2010) are based on the assumption of a constant baseline attenuation that the signal level in dry

period is constant in all rainy events. However, (Fenicia et al., 2012) argued that the assumption

of a constant baseline attenuation seems to be unrealistic due to the signal variability in real-

time conditions. The authors proposed two baseline estimation methods, namely constant and

variable. Comparisons between those models showed that the variable baseline attenuation has

a better performance to detect the wet/dry periods. According to (Zinevich et al., 2010) the

attenuation baseline is the major source of error compared to other effects such as quantization

and drop size distribution variability. A remaining challenge in identifying the baseline errors

is due to low-intensity wet periods in which the signal level is almost identical to one in dry

periods.

Another source of error is the attenuation due to antenna wetting which is also called wet

antenna. The attenuation due to wet antenna arises from the remaining water films on the

antenna radome after (or during) the rain event. Previous studies (Minda and Nakamura, 2005;

Leijnse et al., 2007b; Leijnse et al., 2007c; Leijnse et al., 2008) applied correction methods for

removing the attenuation caused by antenna wetting. (Minda and Nakamura, 2005) corrected

the attenuation due to antenna wetting including two other effects, namely temperature and

water vapour. The wet antenna correction procedure was applied during as well as after the

rain event. (Leijnse et al., 2008) quantified the errors caused by antenna wetting using an

experimental set-up located in the Netherlands. In their study, the signal attenuation data by

(Leijnse et al., 2007b) were used to investigate the error source caused by antenna wetting.

The procedure for correcting the wet antenna attenuation was computed by subtracting the
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expected path-integrated attenuation based on the rain gauges measurements from the measured

total attenuation. The authors demonstrated the relation between wet antenna attenuation and

frequency for different rain intensities for a single antenna. They found that increasing rain rate

is responsible for higher wet antenna attenuation as the frequency increases from 5 to 50 GHz.

The influence of the wet antenna attenuation is very large for shorter links with low frequency

compared to the measured signal attenuation along the path. However, it was shown that the

wet antenna attenuation does not depend on frequency in the range of 17 and 23 GHz. The

authors state that the effects of wet antenna and quantization errors can be reduced if a correct

temporal sampling strategy is selected.

(Zinevich et al., 2010) carried out a comprehensive investigation in which the errors and

uncertainties due to the wet antenna, baseline, quantization, drop size distribution variability

can be modelled. They applied 21 vertically polarized links at 18-23 GHz with maximum link

length of 7.26 km in order to independently quantify the impact of each error source on the

rainfall measurement accuracy. Their conclusion regarding the wet antenna attenuation is that

the error can increase with the link length because of the increased spatial variability.

Next error source is signal quantization which arises from the hardware equipment of

the microwave antenna. The power resolution in this equipment depends on the accuracy of

the measurement device. In general, the signal power is quantized from 0.1 dB upto several

dBs, but very extreme cases, namely 0.1 and 1 dB are commonly used in practice. The higher

signal power resolution is the more accurate the measurement device will be. According to

(Leijnse et al., 2008) the degradation of the power resolution at 1 dB causes severe errors and

uncertainties for short links and at low frequencies. (Zinevich et al., 2010) demonstrated that the

quantization error for shorter links is larger than for the longer links. It is due to the fact that the

path integrated attenuation measured over longer links is larger compared to along shorter links.

However, it depends on the spatial variability of rainfall. The main difficulty in identifying the

quantization error can be due to low rain intensities (Leijnse et al., 2007c). This becomes severe

if the quantization error at 1 dB is considered in light rain event. For example, it has been shown

by (Leijnse et al., 2007c) that the effect of quantization error at 1 dB is considerably large in

low intensity and long lasting rain event. However, the error in rainfall estimation along the

link with a certain quantization interval does not exceed half of that interval value (Widrow and

Kollár, 2008).



48CHAPTER 3. STATE OF THE ART: RAINFALL MEASUREMENT USING MICROWAVE LINKS

3.3.2 Error sources due to a measurement model

Some of the issues addressed in recent studies include the errors and uncertainties related

to a measurement model which is used to convert signal attenuation data into rain intensity.

Due to its simplicity, the k-R relation is often used as a measurement model, see more details

in section 2.6 of chapter 2. The a and b coefficients of this relation are computed on the basis

of drop size distribution measured by distrometer (Bringi et al., 2003) and the extinction cross

section for a given frequency (Oguchi, 1983). As discussed in chapter 2, these coefficients

essentially depend on 3 factors: (i) the link frequency and polarization, (ii) the temperature of

a rain drop, (iii) the variability of drop size distribution. Such factors are the main source of

errors that can lead to under/over estimation of the actual rain rate (Atlas and Ulbrich, 1977;

Leijnse et al., 2007b; Leijnse et al., 2010; Zinevich et al., 2010). So, the issue is to quantify the

influence of each factor on the measurement model accuracy.

In general, the k-R relation applied at the higher frequencies results in larger attenuation

compared to the one applied at lower frequencies. The reason is that microwave links with

high frequencies are more sensitive to rain rate, see 2.9 in chapter 2. In addition, the impact of

signal polarization (either horizontal or vertical) becomes important if the shape of rain drops

is non-spherical. However, this effect seems to be negligible for small rain drops.

Various studies recognise the critical role played by the influence of drop size distribution

on the k-R model. The findings, conclusions and arguments regarding this aspect slightly differ

from each other as follows:

(Atlas and Ulbrich, 1977) investigated an association between the frequency and the model

error dependence on the drop size distribution. It was shown that the uncertainties in determi-

nation of path averaged rain rate due to the drop size distribution variability increase from 10.8

to 39.7% as the frequency decreases from 34.86 upto 9.37 GHz. However, the authors found

that if the k-R relation is almost linear, i.e. b ' 1, this influence is negligible, showing less than

10 % average error. According to authors, the "linearity" of k-R relation reaches a peak at 35

GHz. It is worth mentioning that this linearity range depends on the type of rainfall event which

can be different in other experiments.

(Berne and Uijlenhoet, 2007) studied the impact of the spatial variability of drop size

distribution including the influence of link length and frequency on the estimated path averaged

rain rate along the link. In their experiment, the path averaged rainfall rates were obtained using

the microwave links at frequencies from 5 to 50 GHz with link lengths from 0.5 km to 30 km.

The rainfall data is based on the simulated profiles of drop size distribution which were recorded
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during an intense Mediterranean rain events over 2 years period. It has been found that the link

length does not have a significant impact on the k-R relation parameters used to estimate rainfall

rate, but the frequency does. In contrast to (Atlas and Ulbrich, 1977), the authors reported that

the exponent of the k-R relation, i.e. b, is almost equal to 1 at 30 GHz. Further, the authors state

that such linearity can be achieved at 37 GHz as well.

(Leijnse et al., 2007c) found that a and b coefficients of the k-R relation are relatively in-

sensitive to the type of rainfall and the drop size distribution for the Netherlands case. However,

the conclusion drawn in this experiment is based on the: (i) microwave links at 38 GHz (ii) the

k-R relation coefficients was computed using drop size distribution data measured by (Wessels,

1972) (iii) signal attenuation is caused by spherical rain drops.

(Leijnse et al., 2007b) investigated the effect of temperature on the measurement model.

The k-R relation for different drop size distributions was found to be linear at 27 GHz. It was

reported that the the k-R relation coefficients are not influenced by the temperature variations

between −10 to 40oC. In addition, this effect was also found to be minor for single frequency

links above 10 GHz.

(Leijnse et al., 2008) quantified the effects of the link frequency and length, non-linearity

of the R-k relation, different sampling strategies, and two other factors (quantization and wet

antenna) which have been discussed in subsection 3.3.1. The microwave signal attenuation

along the links lengths from 0.24 to 10.08 km with frequencies from 5 to 100 GHz was sim-

ulated using the rain rate maps obtained from X-band weather radar data recorded over more

than 1.5 years. These findings indicate that the errors and uncertainties related to a nonlinearity

of the R-k relation increase with link lengths at lower frequencies, e.g. below 10 GHz. It seems

possible that these results are due to the spatial variability of rain rate along the links with long

lengths.

(Leijnse et al., 2010) examined the errors and uncertainties caused by the spatial variability

of rainfall as well as drop size distribution as a function of link length and frequency. The

simulated microwave link signals using the drop size distribution data sets recorded over a

long period (nearly 2 years) were applied to estimate the path averaged rain rate along the

link. The authors found that, for single-frequency with single polarization links, the errors and

uncertainties associated with spatial variability of drop size distribution are limited (mean bias

error 10% and uncertainties of 50%) at frequencies between 20 and 40 with lengths from 2 to

10 km. The least amount of errors and uncertainties were found at frequencies around 30 GHz

where the linearity of the k-R relation is dominant.
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(Zinevich et al., 2010) modelled all possible error sources, i.e. the instrumental and en-

vironmental (i.e. related to the measurement model) that might occur during the rainfall mea-

surement along microwave links. Although this study has been discussed in subsection 3.3.1, in

terms of the measurement model related error source, the authors reported that the errors caused

by drop size distribution variability also increases because of lowering frequency band from 22

GHz to 18 GHz as the link length grows. However, these conclusions are under the assumption

that the effects of the sampling errors on the k-R relation coefficients are negligible.

Overall, the conclusions drawn from these investigations are in agreement in terms of

quantifying the influence of each of those error sources that will be introduced in the attenuation

measurement in chapter 4. However, it should be noted that the true nature of these error sources

is not known whether it can be due to the measurement model (subsection 3.3.2) or due to the

instrumental impairments (subsection 3.3.1). In the scope of our study, quantifying the error

sources in connection with rainfall induced attenuation measurement along the microwave link

can be made on the basis of these findings. Therefore, our conclusion regarding the influence

of these error source is generalized rather than relying on a single conclusion of a particular

finding. The nature of the introduced error source will be simulated in chapter 4. That is

to say, the influence of error sources on the attenuation measurement grouped by instrumental

(subsection 3.3.1) and the measurement model, i.e. k-R relation (subsection 3.3.2) is formulated

depending on the link length and frequency ranges.

3.4 Rainfall mapping using multiple links

An important and interesting issue is the mapping of rainfall fields using path integrated

attenuation data measured from a network of commercial microwave links. As confirmed in the

work previously discussed in section 3.2, it is possible to convert the signal attenuation into path

averaged rainfall rate along the link using k-R relation. If this process is applied to a network

of commercial microwave links, two dimensional rainfall map can be obtained (Zinevich et al.,

2008; Zinevich et al., 2009; Goldshtein et al., 2009; Overeem et al., 2013). However, this

process is not straightforward and requires a specific method to derive rainfall maps based on

path integrated attenuation measurements along the microwave links.

The application of such specific methods to a network of commercial microwave links can

be challenging due to many reasons. It is a fact that their characteristics, location, topolog-

ical structure as well as frequencies bands are inhomogeneous and designed to maintain the
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communication quality. Studies attempted to map rainfall fields based on the real microwave

attenuation data differ from each other in terms of processing techniques and algorithms.

The idea of rainfall mapping based on the rain attenuation data from multiple links has

been first investigated by (Giuli et al., 1991). The authors applied a tomographic inversion

algorithm (Kak and Slaney, 1988) which uses a linear combination of basis functions to recon-

struct 2D specific attenuation map from one dimensional (1D) rain attenuation vector. Then, the

retrieved specific attenuation map was directly converted into rainfall map on the basis of the

k-R relation. However, the proposed retrieval system was limited due to the assumptions that

(i) the k-R relation is linear (ii) the geometry of the microwave link topology is homogeneous.

On the one hand, these assumptions are the main conditions for the applicability of the tomog-

raphy framework. On the other hand, they are not valid if real commercial microwave links

are considered. An important challenge in the context of tomography is that the reconstruction

problem is ill-conditioned if the number of attenuation measurements is much smaller than the

estimation area. However, the proposed framework gave a deep insight into the introduction

of the tomography principle in rainfall mapping by microwave links. Later, this approach was

improved by (Giuli et al., 1999). In the same line of these findings, (Cuccoli et al., 2013) pro-

posed to reconstruct rainfall fields from path integrated attenuation measurements on existing

communication radio links that operate at 18, 23 and 38 GHz by means of tomographic pro-

cessing method that they refer as "Combined Deterministic-Stochastic Retrieval Technique".

The specific attenuation fields obtained by the algorithm were converted into rainfall fields on

the basis of the k-R relation after the reconstruction process. The authors obtained interesting

results when testing this method by a simulation approach applied to the real case study: rainfall

fields observed by C-band radar and actual link network of the city of Florence (Italy).

(Zinevich et al., 2008) applied a tomography algorithm based on the SIRT − simultaneous

iterative reconstruction technique described by (Kak and Slaney, 1988) to map rainfall fields.

The algorithm was tested in a simulation framework over a network of 249 real commercial

microwave links of lengths 0.5-27 km, operating at 8-38 GHz during 2 hour-period of intense

rain. The authors addressed the important issues raised by (Giuli et al., 1991) such as the

nonlinearity of the k-R relation and irregular geometry of the network in terms of link lengths

and location. However, the proposed algorithm does not take into account of the modelling

error sources that could arise from the k-R relation in the reconstruction process which was

a subject to a further investigation. (Zinevich et al., 2009) combined a space-time advection

model of rainfall and nonlinear extended Kalman filter (Welch and Bishop, 2006) to perform
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the rainfall mapping from path integrated attenuation measurements. The applied model takes

the advantages of the motion of the rainfall field in space and time. (Goldshtein et al., 2009)

proposed a stochastic interpolation algorithm, which is based on the Inverse Distance Weighting

function (Shepard, 1968) to map rainfall over a irregular space grid. It was shown that the

algorithm is capable of estimating the spatial rainfall over an arbitrary geometry network in the

presence of large quantization noise, i.e. 1 dB. The authors state that the rainfall information by

a rain gauge can be fed into the proposed algorithm to improve the retrieval accuracy.

At a very different scale, (Overeem et al., 2013) demonstrated the capability of a huge

network of 2400 links to retrieve the space-time dynamics of rainfall over the 35500 km2 area of

the Netherlands by using Ordinary Kriging interpolation method (Cressie, 1990). This method

is suitable for interpolation of highly irregular-spaced rainfall estimate points and takes into

account the local variability of the rainfall. The performance of the algorithm highly depends

on the spatial variances of the rainfall which is also called semivariogram.

(Gosset et al., 2015) emphasize the potential interest of radio links for mapping rainfall in

areas with a poor or non-existent coverage of classical (rain gauge and weather radar) measure-

ment devices including urban areas.

Since it was reported in 1991, rainfall mapping by multiple microwave links has been

attracting a considerable interest. However, a limited number of studies have been devoted to the

mapping of rainfall fields from the path integrated attenuation on these links and the feasibility

of the rainfall mapping has not been fully established yet. In particular, on the suitability of

the tomographic approach, the relative importance of the issues (i.e. adequate methods for

tomographic reconstruction and adjustment procedures and the influence of the nonlinearity

of the k-R relation on the tomographic system) has been subject to considerable discussion.

So far, there has been very little research directly investigating the tomographic approach and

yet no attempts have been made on transform-based tomography. In this context, this study

aims to contribute to this growing area of research by exploring the capabilities of commercial

microwave links for rainfall mapping at the urban scale. In particular, this research examines

two completely different mapping techniques which will be presented in chapter 5 and chapter 6.

3.5 Summary

In conclusion, this chapter has attempted to provide a detailed review on the state of the

art relating to microwave link based rainfall measurement. All of the studies reviewed here
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support the hypothesis that microwave links are capable of providing space-time rainfall infor-

mation based on the signal attenuation measurement. It is worth mentioning that not a single

study has failed to prove this hypothesis. However, three most important scientific challenges

from the studies discussed so far which are still subject to further investigations: (i) Quantify-

ing/modelling/estimating error sources regarding microwave link based rainfall measurement;

ii) Integration of a single or multiple links with traditional sensors to refine rainfall measure-

ment information; (iii) the feasibility of rainfall mapping based on the attenuation measurement

from commercial microwave links, in particular, the development of algorithms. In this regard,

the latter subject is the main objective of the present study. Overall, the reviewed works help

conduct our feasibility study in the framework of simulation that will be presented in the next

chapter.





4
Case Study

4.1 Introduction

This chapter presents the methodology of the current study which includes a study area,

devices, tools and assumptions used to obtain rain attenuation data along microwave links. For

this purpose, we adopted a simulation approach corresponding to a realistic case scenario (i.e to

mimic the signal attenuation data measured along the microwave links) to study the feasibility

of rainfall mapping. The case study is carried out using microwave links employed by cellular

network and rainfall maps observed by weather radar at high spatio-temporal resolutions. The

generated rain attenuation data in this chapter is considered as ‘artificial data’ which will then

be used to map rainfall (chapter 5 and chapter 6). The fundamental purpose for doing this is

to substitute the generated rain attenuation data for signal levels measured by a real microwave

link network.

Usually, signal attenuation data can be obtained by the difference of signal levels recorded

between transmitter and receiver stations. However, a major concern in the use of real signal

data is to separate rain induced attenuation from other effects which are often a subject to special

instrumental set-up procedures as discussed in subsection 3.3.1. Even after having performed

the cleaning procedures (e.g. identifying the dry and wet periods), the most important issue is

to compare the reconstructed rain map with true rain field which, in fact, does not exist even

55
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though weather radar or rain gauges are able to provide high precision rainfall information as a

‘ground-truth’.

We adopted a simulation approach that does not suffer from above-mentioned challenges

and it gives the following advantages:

1. The main advantage is the existence of true rain field (i.e. this is based on weather

radar in our study) which enables to validate reconstructed rain field. So, we know the

true rainfall. In this case, the bias related to the ’ground-truth’ rain field does not exist;

2. It is convenient for verifying the feasibility of rainfall mapping using the geometry

of a real network topology without any data processing and cleaning steps which are

challenging in the case of real data;

3. Applicability and adaptability in realistic conditions by changing the scenario and ob-

jective of the study: (i) data collection processes can be manipulated to understand

the influence of the quality of data on the mapped rainfall fields, (ii) If needed, the

real signal data recorded by microwave links can be replaced with the generated rain

attenuation data for the same rainfall mapping process.

However, the main difficulty associated with the simulation approach is the fact that it

might not reflect a nature of real data entirely. In addition, the limitation is clearly the gap be-

tween so called ‘artificial data’ generated by applying a measurement attenuation model, i.e k-R

relation with simulated various measurement errors, and real data measured by antenna stations

of microwave links. The main issue is to decrease that gap as much as possible. Therefore,

the objective of this chapter is to include such challenges in the rain attenuation data generation

process based on microwave links.

This chapter is organised as follows. First, the presentation of the study area and the

spatial distribution of microwave links are given in section 4.2. Then, rainfall fields captured by

weather radar and characterisation of each rain event type are given in section 4.3. Next, the rain

attenuation data generation process is formulated in section 4.4, and the generated attenuation

data and its statistical analysis are discussed in section 4.5. Finally, section 4.6 summarizes the

chapter.
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4.2 Presentation of microwave links network

4.2.1 Study area and microwave links

The case study is carried out in Nantes located in Loire Atlantique department in western

France (see Figure 4.1). This city has a temperate and oceanic climate with no significantly

variable topography. Both rain attenuation measurement and rainfall retrieval experiments are

conducted in the chosen part of the study area with a size of 40 × 40 km2 depicted in yellow

square which corresponds to Nantes city center with a large number of links (Figure 4.1). This

city is well-equipped with commercial microwave links that are used for broadcasting, wireless

internet service, and cellular phone communication systems. We selected only cellular phone

network which groups 52 microwave links at 18 GHz, 102 at 23 GHz and 103 at 38 GHz (256

microwave links in total) with both horizontal and vertical polarization. Their spatial coverage

is almost 1368 km2 area.

Figure 4.1 – Cellular phone network located in Nantes city. The zoomed-in part of the figure
(yellow square) represents the location of microwave links employed cellular network operating
at 18, 23 and 38 GHz. Two yellow arrows are also depicted as an example to indicate the
transmitter stations. The chosen area size is 40× 40 km2.
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For the convenience, one can look at the zoomed-in part of the figure in which the selected

number of microwave links at 18, 23 and 38 GHz are depicted in blue, red and green lines,

respectively.

The lengths of the microwave links range from 0.3 to 16.8 km with 4.2 km on average. It

can be seen in Figure 4.1 that the density of the links decreases from the city center towards

the countryside. It is mainly because the cellular network system is designed for increasing

the communication quality in more populated areas, i.e. in the city center. Therefore, shorter

links are more concentrated in the urban areas whereas the longer ones are mainly located in

the suburbs.

To have a better understanding about the length distribution one can see Figure 4.2 which

shows three histograms for the links at 18, 23 and 38 GHz separately. It turns out that almost

95 % of the links at 38 GHz are shorter than 5 km while the same percentage shows about 11

and 10 km for the links at 18 and 23 GHz, respectively. This is a clear indication to the fact that

microwave link lengths at higher frequencies are most likely expected to be shorter and vice

versa.

Figure 4.2 – Histograms of microwave links length at 18, 23 and 38 GHz. In the figure, ’All
links’ represents a histogram for the lengths of all the microwave links regardless of their fre-
quencies.
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Overall statistical description of the microwave link lengths can be found in Table 4.1. The

rows count, mean, min, max represent the number of microwave links, average, minimum and

maximum lengths, respectively. The percentiles 25%, 50%, 75% show the value below which

the percentage of the link lengths may be found. Except count, all rows have the same unit in

km. Maximum length of the microwave links at 18, 23 and 38 GHz is 12.6, 16.8 and 9.1 km,

respectively. At all frequencies, the minimum lengths are almost the same and less than 1 km.

Table 4.1 – Statistical description of the microwave links lengths.
18 GHz 23 GHz 38 GHz Total

count 51 102 103 256
mean 5.3 5.2 2.6 4.2
min 0.8 0.5 0.3 0.3
25% 2.3 2.9 1.5 2.1
50% 5.2 4.8 2.5 3.6
75% 7.6 7.1 3.7 5.2
max 12.6 16.8 9.1 16.8

4.2.2 Classification of the microwave links density

It is important to define the density level of the microwave links network because it allows

to classify dense and sparse regions in the study area. The reason for this classification is

to understand the influence of the network topology on the accuracy of the rainfall retrieval.

Below, we will demonstrate how the network density level is computed. The result of this

computation will be called pixel density map which can be used to validate the network system

performance over different regions in rainfall mapping process.

A basic assumption is that the higher density of the links should give the higher weights

over the surface. To obtain the pixel density map the following steps are performed:

1. Divide the study area into n number of pixels with the same size. In our case, the pixel

size is chosen to be 2 km × 2 km resolution, see the grid size of Figure 4.4 as an

example.

2. Compute the intersection length of each link with each pixel: Lj = {lj1, lj2, lj3, ...lji}

3. Define the weights of the each crossed part of the link:

Wji =
lj1
Lj
,
lj2
Lj
, ... ,

lji
Lj

(4.1)
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4. Compute the pixel density:

Di =
m∑
j=1

Wji (4.2)

where, j – link index, i – pixel index, m – number of links, W – weight of the link along its

crossed part, D – pixel density, l - length of the crossed part of the link, km, L - Link length,

km.

The output of the calculation procedure presented above gives the pixel density, i.e. D

vector. A greater value of D indicates that a pixel is more informative and well-sampled by the

link, otherwise, less informative. The closer the value of D to zero, the lower density level is in

the network.

Figure 4.3 – Histogram of the pixel density map.

Figure 4.3 shows a histogram of the pixel density computed using the microwave links. In

this figure, the distribution of D is highly right-skewed indicating that the average value of D is

higher than its median. We consider the density level to be low if the condition D ≤ Dmedian is

fulfilled, in our case, Dmedian = 0.5. Similarly, the density level is moderate if D is between 0.5

and 1. Beyond the moderate density level, it is considered to be sufficiently high. The condition

of D ≥ 1 was chosen for the higher density level because we assume that it is acceptable if

about 30 % of the D values is greater than 1. A more reasonable choice for defining these

thresholds can be 1st, 2nd and 3rd quartiles of D. Our choice is very close to these thresholds.

For example, upper threshold in 3rd quartiles for the given D values is 1.4 while our choice is

1.

Figure 4.4 shows the pixel density map obtained at 2 × 2 km2 resolution over the entire

network. The classified density levels are depicted in grey, red and blue color represent low,

moderate and high density regions of the network, respectively. It should be noted that these
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Figure 4.4 – Pixel density map at 2× 2km2 resolution. The colors blue, red, grey represent the
high, moderate, low density areas, respectively.

classified levels in the pixel density map were computed taking into account the lengths of

micrwave links, but not the link frequency.

Table 4.2 – Characteristics of the link density in the study area.
Number of pixels at resolutions

Density Threshold 2× 2 km2 1× 1 km2 0.5× 0.5 km2

High D ≥ 1 61 244 976
Moderate 0.5 < D < 1 32 128 512
Low D ≤ 0.5 89 356 1424
Whole zone − 182 728 2912

Table 4.2 gives the overall summary of the pixel density map. In addition to the classified

density regions, we also denote ‘Whole zone’ to express an entire region without pixel density

map. Number of pixels at different resolution shown in the table correspond to the classified

density levels in blue, red and grey colors. However, it is important to note that the density

level range in D depends on the pixel size. Therefore, it can be different for another type of

microwave link topology.

4.3 Presentation of weather radar rain events

4.3.1 Weather radar

Rainfall maps used in this study were collected between the year of 2009 and 2012 by C-

band weather radar of Treillières, operated by Météo-France. The weather radar is located about
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10 km north of the center of Nantes city. In Figure 4.1, its location is marked as C-band. The

characteristics of this radar are given in Table 4.3. The measured reflectivity profiles in a polar

coordinate system are projected every 5 min onto a 128 km × 128 km Cartesian grid with a

spatial resolution of 0.25× 0.25 km2. Then, the instantaneous reflectivity profiles are converted

into rainfall maps using the Z − R relationship by Marshall-Palmer (i.e. Z = 200 R1.6, with Z

and R being the radar reflectivity in mm6.m−3 and the rainfall rate in mm.h−1, respectively).

Table 4.3 – Characteristics of the Treillières radar.
Frequency band C
Latitude 47o20′12′′N
Longitude 1o39′09′′N
Antenna altitude 80 m
Beam width 1.25o at -3 dB
Plan Position Indicator 0.4o, 0.8o, 0.5o

Temporal resolution 5 min
Spatial resolution 0.25 × 0.25 km2

The radar data was cleaned from the effects of ground clutter, isolated pixels and partial

beam blocking. The detailed description about the scanning strategy of this radar and reflectivity

conversion into rain rate can be found in (Emmanuel et al., 2012). The weather radar rainfall

events are used to generate attenuation measurements along the links at a resolution of 0.25 km

× 0.25 km and considered as reference rainfall fields.

4.3.2 Rainfall events

We selected 7 rain events, regrouping 207 rainfall maps in total, which represent 4 types

of rainfall, namely light rain, shower, organised and unorganised storm, characterized by differ-

ent spatial and temporal variabilities. A description about duration, period and the number of

rainfall maps in each event is given in Table 4.4.

Table 4.4 – Rainfall event periods selected for the case study.
Event type Duration Number of maps Period
Light rain 03h05 37 Sep-2009
Light rain 06h20 76 Jun-2012
Shower 01h30 18 Jun-2012
Shower 40 min 8 Jul-2012
Organised storm 02h50 34 Jun-2012
Unorganised storm 45 min 19 May-2009
Unorganised storm 75 min 15 Jun-2009
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Because the image size of the radar is larger than the study region, only 40 km × 40 km

part of it was chosen to cover the microwave links area. As an example, the radar rain maps for

each event are illustrated in Figure 4.5.

(a) Light rain, 17/09/2009 at 00h30 (b) Shower, 04/07/2012 at 12h50

(c) Organised storm, 11/06/2012 at 13h00 (d) Unorganised storm, 25/05/2009 at 00h25

Figure 4.5 – Example of weather radar rainfall maps with a spatial (0.25×0.25 km2) and
temporal (5 min) resolutions.

Table 4.5 gives a summary statistics of rainfall data set obtained for light rain, shower,

organised and unorganised storm events, separately. This statistics was calculated excluding

the part of the rain maps which consist of zero values. It is worth mentioning that the statistics

for each column was computed by flattening the values of rainfall maps in each event. Here,

the rows count, mean, std, max stand for the number of maps, average, standard deviation,

maximum value of rain rate for each event, respectively. The rows q1, q2 and q3 give the 1st,

2nd, 3rd quartiles of the rainfall data. We can see that the variability of rainfall is quite strong

in organised, unorganised storm and shower events with a standard deviation being equal to
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6.8, 10.8 and 8.2 mm.h−1, respectively. However, 75% of all the data in total do not exceed 3

mm.h−1. Overall, the strongest variability can be observed in unorganised storm event while

the weakest variability belongs to light rain.

Table 4.5 – Summary statistics of rain events.
Light rain Shower Organised storm Unorganised storm Total

count 113 26 34 34 207
mean 1.8 4.1 4.0 6.3 3.0

std 1.6 8.2 6.8 10.8 5.8
q1 0.8 0.4 0.7 1.1 0.8
q2 1.4 1.2 2.2 2.9 1.4
q3 2.2 3.9 4.5 7.0 2.9

max 64.6 133.2 133.2 133.2 133.2

4.4 Generating rain attenuation data

4.4.1 Formulation of the rain attenuation generation

4.4.1.1 Main assumptions

Let our study area be described in two dimensional (2D) discrete space, Figure 4.6. Then, it

is possible to assume that each pixel has a constant rainfall rate, R1, ..., R6 in mm.hour−1 (see,

the part of the figure on the right). In this 2D discrete space, the microwave link propagates a

signal only in the form of straight line with length of L km, between transmitter and receiver,

and passes through some parts of the discrete area (R1, R2, R3, R4) as shown in Figure 4.6. Each

pixel represents the value of constant rainfall rate. Besides, the impact of antenna altitudes and

signal direction (either from transmitter or receiver) on the signal transmission trajectory are

neglected since it is only valid in three dimensional space. Based on such assumptions, the

problem of generating rain attenuation data along the link is formulated under the following

conditions:

1. A transmitted signal is attenuated by rain rate pixels that are only crossed by the mi-

crowave link and these pixel values are constant, see the zoomed-in part of Figure 4.6.

2. Each pixel size in the study area is equal to the resolution of rainfall map by weather

radar and this is 0.25 km × 0.25 km.

3. Attenuation measurement model and its parameters are perfectly known and it can be

expressed as k −R relation, see the formula (2.26) given in chapter 2.
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4. Rain attenuation measurement along the link is affected by different sources of errors

which will be discussed in subsection 4.4.2.

Figure 4.6 – Example of discretizing the study area. The figure on the left represents the
discretized area over the cellular networks at 18, 23 and 38 GHz. The figure on the right shows
an example of intersected pixels by one link with length L.

4.4.1.2 Computing path integrated rain attenuation along the link

We compute a path integrated rain attenuation along the link using the principle of ray

intersection problem presented by (Kak and Slaney, 1988). This computation is based on the

assumptions defined in the previous subsubsection 4.4.1.1. In the context of our study, a ray is

understood as a straight line that connects a transmitter and receiver of the microwave link. This

ray is intersected by certain pixels Ri which divide the link Lj , into different lengths lji, see the

zoomed-in part of the Figure 4.6. Note that the pixel index is the same as the crossed part of the

link index. Then, the path integrated attenuation Aj due to rain rate Ri along a microwave link

Lj can be computed based on the k −R relation as follows:

Aj = aj

n(j)∑
i=1

ljiRi
bj + εj (4.3)

Where, n(j) - number of pixels crossed by the jth link;Ri - rain rate in the ith pixel,mm.hour−1;

lji - the length of the crossed part of the jth link in ith pixel, km. As discussed in chapter 2, the

a and b coefficients are constant values which depend on signal frequency, polarization, climate
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temperature and drop size distribution. In this study, these coefficients were obtained by the

recommendations of International Telecommunication Union (ITU-R, 2005) for three frequen-

cies, namely 18, 23 and 38 GHz. The term ε is the measurement error source which we will

define in subsection 4.4.2. Applying the Equation 4.3 the rain attenuation data over the cellular

network can be generated.

4.4.2 Measurement error sources

Sources of error in rain attenuation measurement process are related to k − R relation

and instrumental impairments. Based on the conclusions from the literature review discussed

in chapter 3, two major sources of error, namely the influence of drop size distribution and

signal quantization are added to compute path integrated rain attenuation data along the link

in Equation 4.3. Since the quantifying the error sources precisely is beyond the scope of this

study, we consider a simple approach in order to simulate the nature of the real signal attenuation

caused by rain.

The first type of error, which is due to the measurement model uncertainty can be denoted

as εj is supposed to be unbiased, complied with zero-mean (µ = 0) Gaussian distribution whose

standard deviation σmj is equal to α percent of the computed rain attenuation Aj:

εj = µ+ σmjN(0, 1) (4.4)

Where, µ - zero mean of the Gaussian distribution; σmj = αAj; α - the percentage variable;

N(0, 1) - Standard normal distribution function.

The measurement error caused by the k-R relation has been generated using Equation 4.4.

Introducing variable standard deviation along each link, i.e the value of σmj , is justifiable and

realistic because error source affecting the attenuation measurement at one antenna station is

totally independent from the one occurring at another station.

Obviously, two questions can arise from the assumptions introduced about the nature of

the error source in Equation 4.4: (i) why it is Gaussian and (ii) the core reason of variable

α percentage of the standard deviation σmj . The assumption of Gaussian distribution is self-

evident because a real nature of possible error sources caused by measurement model, as a

whole, is unknown. Therefore, a reasonable assumption is to assume that this error is ‘Gaussian’

type. Regarding the 2nd assumption, i.e. α percentage, our justification is explained as follows:

The value of α is chosen to be 5% because 95% of our confidence about the accuracy of the
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k-R relation is 2 ∗ α which gives 10% average error. It has been confirmed in many studies

(section 3.3 in chapter 3) that the influence of drop size distribution on the k-R relation is limited,

showing 10% average error, if the linearity of this relation is dominant, i.e. the exponent of the

formula 2.26 (chapter 2) is close to 1. In fact, this is clearly applicable to our case because the

exponents of the k-R relations at frequencies (18, 23 and 38 GHz) are almost 1. Larger value of

α indicates that our confidence about the accuracy of the rain attenuation measurement is lower.

However, we will also test the higher percentages of α to show that the attenuation measurement

might also be influenced by larger amount of error source. Thus, the percentages of α, i.e. 5%

and 20%, will be considered to be two extremes cases of all the possible error sources in rain

attenuation data generation process.

The second type of error is caused by signal quantization and it is introduced after com-

puting the rain attenuation Aj in Equation 4.3. The quantization error occurs when the signal

is truncated at a certain precision. Typical precision values are 0.1 and 1 dB at which the ac-

tual signal is truncated. The variance of the signal quantization error is uniform and equal to

σq
2 = ∆2

12
(Widrow and Kollár, 2008). We quantized Ai at ∆ = 0.1 dB to reflect the signal

quantization impact on the rain attenuation measured along the microwave link. It has been

well-understood in many studies (see, subsection 3.3.1 in chapter 3) that the quantization error

source is a major trouble for shorter links in lower intensity rain events. The larger quantization

value is an indication to the lower accuracy and precision of the hardware equipment of the

antenna station.

It is important to note that the path integrated rain attenuation Ai can get negative values

if randomly generated error εj exceeds the actual rain attenuation value. Therefore, such values

are set to be 0.001 dB to avoid negative attenuation. Thus, the signal attenuation caused by rain

was generated in the presence of those two common error sources.

4.4.3 Rain attenuation generation protocol

In summary, to generate the rain attenuation data over the given microwave links network

in Figure 4.1, the following steps are performed:

Step 1. Discretize the study area with 0.25 km × 0.25 km grid which is the spatial

resolution of rainfall map;

Step 2. Compute the intersection of microwave links with the discretized area, i.e lji;

Step 3. Extract a rainfall map of weather radar (given in subsection 4.3.2) and super-
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impose it over the discretized study area. In this case, the pixel index of the rainfall

map is expected to be the same as the index of the discretized area;

Step 4. Compute the path integrated attenuation along each link (Equation 4.3) with

the presence of k-R model error at α = 5% and 20%. These two cases are independent

from each other;

Step 5. Quantize the measured rain attenuation at 0.1 dB resolution.

The generated rain attenuation data will be used in rainfall mapping process chapter 5 and

chapter 6.

4.5 Generated rain attenuation data

We generated the rain attenuation data using the attenuation measurement protocol de-

scribed in subsection 4.4.3. These 5 steps are repeated for 207 rainfall maps which are grouped

by light rain, shower, organised and unorganised storm events. Figure 4.7 shows an example of

generated rain attenuation data for 6 chosen links at 18, 23 and 38 GHz with different lengths

located at different places of the study area. The x and y axes represent time slots of each

event, e.g. 113 in light rain, and path integrated attenuation computed along the given link,

respectively. The characteristics of these chosen links are given in Table 4.6.

Table 4.6 – Sample links used for visualizing the generated signal
Link ID Frequency, GHz Length, km

35 18 1.92
43 18 9.89
58 23 1.73

129 23 9.9
168 38 1.96
203 38 9.06

It is worth mentioning that the left and right columns of Figure 4.7 belong to shorter (∼

2 km) and longer (∼ 10 km) links, respectively. Expectedly, it turns out that an overall trend

of the attenuation data measured along the longer links seems to be quite high compared to the

shorter links. Beside, this trend goes up with increasing variability and intensity of the rainfall,

see the figure difference between light rain and shower event for example.

Figure 4.8 illustrates all the generated attenuation data during lightrain, shower, organised

and unorganised storm events. The y axis represents the average values of path integrated



4.5. GENERATED RAIN ATTENUATION DATA 69

Figure 4.7 – Example of generated path integrated rain attenuation along the sample links at
5 % error magnitude with 0.1 dB quantization. Note that the link lengths on the left and right
column are ∼ 2 km and ∼ 10 km, respectively. Each row represents the type of rain event (from
top to bottom direction): light rain, shower, organised and unorganised storms.
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attenuation along each link generated over 113, 26, 34 and 34 rainfall maps which belong to

light rain, shower, organised and unorganised storms events, respectively. For example, if we

look at the shower event (i.e. the upper right figure), path integrated attenuation along each

link over 26 rain maps are averaged to get the y axis values. Here, the generated data has been

classified according to the link lengths in 3 different ranges, namely (0, 2], (2, 5] and (5, 17] km

which nearly represent the percentile intervals of (0, 25%], (25%, 50%] and (50%, 75%] of the

lengths of all links, respectively (see Table 4.1). This classification is useful because it gives a

deeper insight into understanding the signal attenuation variability depending on the link length

in different rain events.

Figure 4.8 – Boxplot of overall generated path integrated rain attenuation data set. Note that y
axis represents the mean values of path integrated attenuation computed for each rain event.

Figure 4.9 illustrates the average standard deviation of measurement error sources quanti-

fied with a magnitude of α = 5% and quantization level at 0.1 dB (see subsection 4.4.2). In

general, these results reflect the nature of the error sources discussed in experimental studies

(Leijnse et al., 2007b; Leijnse et al., 2010; Zinevich et al., 2010). It is clearly visible that the

standard deviation value gradually increases with growing link lengths and frequencies. This

shows a ‘close-to-reality’ type of the measurement error sources. The maximum error on aver-

age in each event can be observed for the link lengths between 5 to 17 km as expected in the

literature, see, section 3.3 in chapter 3. Another interesting pattern of the generated error is its
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increasing standard deviation value in higher variability of rainfall. Evidentially, the maximum

error along all the links in light rain event does not exceed 0.5 dB while it is nearly 2 dB in

unorganised storm event. For example, this is clearly visible if we compare the values of box

plots between each event, see the difference between light rain and shower.

However, one unexpected finding was the extent to which the nature of the error introduced

in this experiment does not mimic properly if the link frequency variability is considered (see,

subsection 3.3.2 in chapter 3). In fact, the error magnitude should decrease as the frequency

increases as confirmed both experimentally and theoretically by studies (Atlas and Ulbrich,

1977; Leijnse et al., 2007b; Leijnse et al., 2008; Leijnse et al., 2010; Zinevich et al., 2010).

Figure 4.9 – Box plot: Average standard deviation of measurement error source at 5% mag-
nitude and 0.1 dB quantization. Note that the values of standard deviation in y axis were the
mean values of all generated standard deviations in each event: light rain, shower, organised
and unroganised storm.

A possible explanation may be due to the simplified assumption (i.e. random and un-

known) about the true nature of the error in terms of frequencies in the generated attenuation.

Simulating the error in the presence of such behaviour still helps understand the influence of

error magnitudes on the attenuation measurement process. However, this can be considered as a

limitation of the error nature introduced in our experiment. To compare the 5% error magnitude

as discussed previously, we present the generated attenuation data in the presence of α = 20%
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Figure 4.10 – Box plot: Average standard deviation of measurement error source at 20% mag-
nitude and 0.1 dB quantization. Note that the values of standard deviation in y axis were the
mean values of all generated standard deviations in each event: light rain, shower, organised
and unroganised storm.

error magnitude with same quantization at 0.1 dB. Figure 4.10 shows the standard deviation of

the quantified errors at higher magnitude(α = 20%). It can be seen that in all cases the aver-

age standard deviation is 4 times bigger than the average error shown in Figure 4.9. However,

we argue that introducing larger error magnitude at 20% seems to be unrealistic since the real

nature of the error itself is not known. Therefore, we consider that the parameter α at 5% is

acceptable to mimic the influence of the possible error sources on average. Overall, the average

trend of error generated for this experiment is not far from reality.

4.6 Summary

In this chapter, the main objective was to describe the case study that uses the data sets

(weather radar rainfall maps, microwave links) and a methodology for generating rain atten-

uation data along the microwave links. In particular, we presented the procedure of how the

signal attenuation due to rainfall is generated along the microwave link in a realistic case. The

generated signal attenuation data obtained from this case study will be substituted for real sig-

nal attenuation data recorded by microwave antenna stations of the cellular network. For this
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purpose, we used cellular network and hundreds of weather radar rainfall images in order to

prepare the signal attenuation data. Besides, we also showed how the density of microwave

links network can be classified into different levels. This will be used to validate the dense and

sparse regions of the microwave link network separately.





5
Retrieval Model 1. Inverse Algorithm

5.1 Introduction

This chapter presents the first retrieval model that uses the signal attenuation data generated

along multiple microwave links to retrieve rainfall fields. As far as rainfall retrieval based on

microwave links is concerned, the signal attenuation data generated in chapter 4 is considered to

be data, and rain rates along the link which triggered that attenuation are called parameters. In

this regard, the retrieval of rainfall fields and rain attenuation measurement are inverse and direct

problems, respectively. The reason is that the path integrated attenuation is partly representative

of the spatial distribution of rainfall along the microwave link.

The retrieval model to be presented here employs the principle of inverse problem to find

those unknown parameters based on the data (Menke, 2012). Inverse problems are often subject

to non-uniqueness meaning that the solution we are seeking can be more than one. In order to

single out one solution among other possible ones a priori knowledge is applied. The inverse

algorithm to be presented in this chapter uses such a priori knowledge.

This chapter is organized as follows. The formulation of the rain retrieval model on the

basis of inverse problem is presented in section 5.2. The algorithm used in this model is detailed

in section 5.3 and the application conditions before applying the algorithm are demonstrated in

section 5.4. The application of the inverse algorithm is presented in section 5.5. The statis-

75
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tical metrics used to evaluate the performance of the algorithm are given in section 5.6. The

sensitivity analysis to the application conditions are given in section 5.7.

5.2 Formulation of the problem

5.2.1 Main assumptions

The microwave link network forming a two dimensional discrete space has been shown in

Figure 4.6. The rainfall vector R which groups the rain rates in all crossed pixels of the study

area are the unknowns to be determined based on the attenuation data vector A, see more details

of these notations in (4.3). The physical model which relates the path integrated attenuation

Aj along the jth microwave link to the rain Ri in ith pixel is given in the formula (4.3), in

chapter 4, using which A vector has been generated over the microwave links network based

on the available weather radar rainfall maps. The retrieval problem is formulated under the

following assumptions:

— The physical model are known (see, eq. 4.3), and this model is affected by different

sources of errors.

— The nature and shape of those error sources are random, and assumed to comply with

zero mean Gaussian probability distribution.

— The retrieval problem is non-linear since the operating frequencies of the microwave

link network are not constant (18, 23 and 38 GHz).

Based on such assumptions, the problem is to retrieve those pixels crossed by microwave

links as shown in Figure 4.6. In order to include uncrossed pixels by the links we need to intro-

duce additional equations to the formula (4.3) which are not available. Therefore, a reasonable

approach can be to formulate the problem based on only the sampled pixels. Then, interpolation

techniques such as Inverse Distance Weighting (Shepard, 1968) or Kriging (Creutin and Obled,

1982), which takes into account the spatial structure of rainfall, could be applied to fill in the

unsampled pixels. However, application of interpolation techniques in such cases is beyond the

scope of this current study. Instead, we introduce a new approach, alternative to standard inter-

polation techniques, for filling in the unsampled pixels based on the nearby the sampled ones.

By doing so, we increase the rainfall retrieval area. We will give more detailed description

regarding this aspect in section 5.5.
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5.2.2 Determining the state of the problem

The length of dataA and the number of unknown parameters to be estimatedR are denoted

as LA and LR, respectively. Then, the state of the problem can be described as follows:

1. LR < LA: The problem is over-determined. For example, we can see a part of the

network located in the city center where the richness of information in terms of spatial

density is very high. More than one microwave link carry rainfall information for the

same pixels in many locations, see the city center in Figure 4.1.

2. LR > LA: The problem is under-determined. The suburb areas or rural regions of

the microwave link network where the link density is very low only enabling limited

information about rainfall, see the sparse part of the microwave links in Figure 4.1.

3. LR = LA: The problem is even-determined. We could have seen even-determinedness

in a denser part of the network if the pixel is equally crossed by many links. However,

it is nearly impossible to find such type of the state of the problem in the network area

separately.

Globally, the state of the problem depends on the pixel resolution and the errors affecting the

measured data since the assumption of constant rainfall is valid for each pixel area. The problem

type would be certainly over-determined if the study area was described at a lower resolution

and with more links intersecting all the pixels. However, we do not see such case stated whether

under or over-determined type; therefore, it depends on the network density and the pixel reso-

lution. In this study, the emphasis is given on more under-determined context.

As far as under-determined problems are concerned, the definition of apriori knowledge

is of great importance. Therefore, the solution is usually complemented by the apriori informa-

tion. We demonstrate such a solution vector using the nonlinear inverse algorithm proposed by

(Tarantola and Valette, 1982). This will be discussed in the next section.

5.3 Inverse algorithm

This section describes the retrieval algorithm applied to identify the rainfall vector R

demonstrating the best compromise with respect to the maximum likelihood between the ob-

served values of attenuation data and staying close to an a priori guess to be defined. To do

so, the identification is performed by an iterative non-linear algorithm (Tarantola and Valette,
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1982) which consists of minimizing the following expression:

φ(A,R) = (R−R0)T · CR−1 · (R−R0) + (A(R)− A0)T · CA0

−1 · (A(R)− A0) (5.1)

where, A(R) - Model which relates the rainfall intensity to attenuation; φ(A,R) - Likelihood

function; A0 - Total attenuation vector, i.e. path integrated attenuation data generated along the

microwave links; CA0 - Uncertainty covariance matrix of vector grouping path integrated atten-

uation along the microwave links; R0 - A priori rainfall vector; CR0 - Uncertainty covariance

matrix of a priori rainfall vector.

The exponents of ‘-1’ and ‘T’ stand for inverse and transpose, respectively. The covariance

matrices (denoted asC) indicate the respective confidence allocated to the measured attenuation

data (i.e. generated in chapter 4), and to the values ofR vector in the form of a priori knowledge.

Their specification allows establishing a balance between attenuation data and a priori rain

rate information. We will discuss the details of these parameters, i.e. R0, A0, CR0 , CA0 in

section 5.4. The statistical distributions of both (R − R0) and (A(R) − A0) are Gaussian and

unbiased.

The solution vector that minimizes (5.1) is demonstrated by (Tarantola and Valette, 1982)

as follows:

R = R0 − CR0 ·GT · (CA0 +G · CR0 ·GT )
−1 · [(A(R)− A0)−G · (R−R0)] (5.2)

where, G is the matrix of partial derivatives (first order) of the rain attenuation model. On the

left and the right handside of (5.2), we can see the same vector R which indicates that the first

guess about the solution is needed. Iterative form of (5.2) can be expressed as:

Rt+1 = R0 − CR0 ·Gt
T · (CA0 +Gt · CR0 ·Gt

T )
−1 · [(A(Rt)− A0)−Gt · (Rt −R0)] (5.3)

where t - iteration number. The values of the matrix Gt are defined as follows:

Gt(j, i) =
∂Aj(Rti)

∂Rti

(5.4)

where, Aj(Rti) is the attenuation model applied along the jth link to obtain attenuation value

at Rti rain rate of the ith pixel.

Diagram in Figure 5.1 illustrates the minimization procedure of (5.1) in which the terms
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Yes 

Set inputs: 
   1.  ϕ0 

- initial likelihood 

   2.  R0 - a priori rain vector 
   3.  R1 - first solution vector 
   4.  ε   - tolerance 
   5.  t   - iteration number 
 

ϕ0 = 𝜙𝑡 |
ϕ𝑡−ϕ0

ϕ0
| < ε 

Estimate: Rt , ϕ𝑡  

Output: Rt 

No 

t = t + 1 

Figure 5.1 – Diagram of iterative algorithm used to minimize the likelihood φ given in (5.1).

Rt and φt are estimated. The iterative procedure starts at an arbitrary point. The first guess is

needed to initialize the algorithm at 1st iteration, i.e. t=1. It is important to mention that the first

guess vector Rt at t=1 is different from apriori rainfall vector R0. However, this first guess can

be accepted as R0. Therefore, a reasonable choice for starting the iteration is to assume that the

first guess R1 is equal to R0 (Tarantola and Valette, 1982).

The iteration process of the inverse algorithm is shown in the diagram Figure 5.1. The

algorithm is stable if the problem is not too non-linear and does not display many local minima

in the minimization process. The a priori knowledge heavily influences the solution vector

Rt+1 if the stated problem tends to be under-determined. In case, the apriori information is

sufficient enough to describe the system, the iteration starts and immediately stops at t = 1

point. Because, the relative difference between estimated likelihoods at 0th and 1st iteration

(i.e. φ0 and φ1, respectively) becomes negligible. However, this ‘negligible’ interval depends
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on a user choice. We stopped the iteration if the relative difference is equal to or less than 1%,

see the notation ε in Figure 5.1. If the difference between Rt+1 and R0 is reasonably small,

it means that covariance operators smoothed the solution enough. Detailed description about

the stability and convergence of the algorithm can be found in (Tarantola and Valette, 1982).

The conditions of the a priori knowledge and the parametrization of (5.3) will be explained in

section 5.4.

5.4 Application conditions of the inverse algorithm

In this section, application conditions of the algorithm are presented. More specifically, we

discuss the details of the apriori information used to initialize the algorithm (5.3). The apriori

represents an initial knowledge and our confidence about data and parameter. It is a driving part

of the inverse algorithm; therefore it is important to parametrize it and associated uncertainties

by which the algorithm can be influenced.

We consider that uncertainties in generated attenuation data are totally independent of

uncertainties in rainfall rate vector. Thus, the apriori knowledge can be classified by two groups:

— The apriori on parameters. This represents the apriori rainfall vector, R0, and its asso-

ciated error structure which is described in the form of covariance matrix CR0 . It will

be detailed in subsection 5.4.1.

— The apriori on data. This denotes the attenuation data, A0, generated along the mi-

crowave links, and our confidence about this data expressed in the form of covariance

matrix CA0 . This will be described in subsection 5.4.2.

5.4.1 The a priori rainfall and associated covariance matrix

The apriori knowledge on algorithm parameters is described by the rainfall vector, R0

in mm.hour−1 and by our confidence, which is expressed as an associated error covariance

matrix CR0 . A careful choice of R0 heavily influences the algorithm outcome if the state of the

problem is under-determined. The apriori rainfall vector R0 can be obtained by either a result

of a previous inverse problem run or using a theoretical model by which a relation between

attenuation data and rainfall rate vector can be established. The choice of apriori knowledge

should not be complicated, so a simple approach adopted in this study is to apply k ∼ R relation

along the link in order to computeR0 from the generated dataA0 itself. However, applying such

approach can only give one scalar value of average rainfall rate along the link, but not for each
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value of R0 vector. If the variability of rainfall is strong along the link this approach is clearly

not stable due to the constant rainfall assumption. Therefore, we initialize the algorithm with

different apriori choices.

We consider two choices of the apriori rainfall:

1. Global a priori: The a priori rainfall vector R0 values are the same everywhere and

equal to the mean value of rainfall rates estimated from all the links. In this case,

the initialization of a priori rainfall is called ‘global apriori’. It is computed in the

following order:

(a) Compute the rain rate using the attenuation value A0j generated along jth link:

Rj = (
A0j

a ∗ Lj
)
1/b

(5.5)

The formula (5.5) applies to all the links. The term Rj is the rain rate (assumed to

be average) along the jth link with a length of L km.

(b) Compute the mean value R of these rain rates obtained by the formula (5.5):

R =
1

m

m∑
j=1

Rj (5.6)

Here, the term m is the number of microwave links.

(c) Assign mean rain rate value R to ith pixel:

R0i = R (5.7)

2. Local apriori: The a priori rainfall vector (R0) values are obtained by k number of

links which are the closest to the center of the ith pixel denoted as R0i in Figure 5.2.

Then, the initialization type is called ‘local apriori’. The only condition is that k should

remain constant for each value in the pixels. Its computation is performed as follows:

(a) Obtain rain rate Rj along the jth link using the (5.5);

(b) Group k number of closest links for each pixel: The Euclidean distance is computed

between the ith pixel center (see the black dot labelled asR0i) and microwave links.

This distance is depicted as the dashed-line in Figure 5.2. Only k number of links,

which are the closest to the ith pixel, are chosen: {Ri, ... , Rik}.
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(c) Compute the mean value of rain rates obtained from those grouped links for the ith

pixel:

R0i =
k∑
j=1

1

k
Rij (5.8)

Next term to be defined is CR0 which is the error covariance matrix of the apriori rainfall.

Each element of CR0 represents our confidence denoted as σR0 . In the microwave link area, the

error in one pixel (denoted as x) is spatially correlated to another pixel (denoted as y) in terms

of distance. This spatial structure of the a priori rainfall is assumed to be exponential:

CR0(x, y) = σR0x
× σR0y

× exp (−1

2
× D2

xy

∆2
) (5.9)

where, σR0x
and σR0y

are the standard deviations of the apriori rainfall error in xth and yth

pixels, respectively;Dxy - Euclidean distance between xth and yth pixels, km; ∆ - decorrelation

distance, km.

It is important to note that the calculation of σR0 for global apriori differs from the local

apriori. In the global apriori, σR0 is the same in each pixel and computed as follows:

σR0i
=

√∑m
j=1 (Rj −R)

2

m
(5.10)

The terms Rj and R are given in the formulas (5.5) and (5.6), respectively.

If the local apriori is considered, σR0 is obtained as follows:

σR0i
=

√∑k
j=1 (Rij −R0i)

2

k
(5.11)

The terms Rij and R0i are obtained from the formula (5.8). It should be noted that the index i

in the standard deviation can be replaced by either x or y to define the corresponding σR0x
or

σR0y
in (5.9), respectively.

5.4.2 The attenuation data and associated covariance matrix

The generated data, A0, is considered to be equivalent to real signal attenuation recorded

from the cellular network, expressed in decibel [dB]. In our study, the result of the generated

data represents the path-integrated attenuation along the link, and its standard deviation can be

denoted as σA. The a priori on the attenuation data is defined by two terms of the algorithm
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Figure 5.2 – Example of computing local a priori from k = 5 closest links for the ith point
of R0. Here, these 5 closest distances represent Euclidean distance (black dashed lines) that
connects the pixel center point R0i and the points labelled as 1, 2, 3, 4, 5.
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(5.3): (i) The total attenuation vector A0; (ii) covariance matrix CA0 . It is summarized in the

form of covariance matrix:

CA0 =


σ2
A1
· · · 0

... . . . ...

0 · · · σ2
Aj

 (5.12)

The reason why covariance has zero values except diagonal term is due to the fact that the

microwave link in one location is separate equipment and not affected by the uncertainties

occurred in another link. The diagonal terms of CA0 represent a variance of the generated data.

Generally, this variance consists of the uncertainties sin the generated attenuation data σ2
A0

and

in the model σ2
model:

σ2
A = σ2

A0
+ σ2

model (5.13)

Where, σ2
A0

is the variance of A0; σ2
model = (β × A0)2, β - a magnitude of the error, [%]. The

main reason for adding the σ2
model is that the k-R relation used as a model (i.e. A(R) in (5.2))

could be itself erroneous. (Tarantola and Valette, 1982) explains that this model error concerns

the state model of the algorithm and is fully independent of the measurement error.

We consider that true value and/or percentage of the error σ2
data is unknown. For example,

the cellular network may not work correctly when the signal attenuation is recorded in a real

time. Therefore, it is subject to understanding the influence of the model error on the retrieval

accuracy of the algorithm.

Testing different percentages of β is useful for checking the stability and consistency of

the algorithm. This test will be detailed in section 5.7.

5.5 Application of the inverse algorithm

The density of microwave links usually decreases from the city center to the suburbs. This

can be clearly seen from the spatial structure of the network in Figure 5.2 and associated pixel

density map in Figure 4.4. Such geometry of the network is useful at least for 3 reasons: (i) in-

creasing the estimation area based on previously obtained solution without using interpolation,

(ii) addressing the under-determined status of the problem (subsection 5.2.2), (iii) refining the

resolution according to the network density.

To initialize the algorithm, we start the rain retrieval at a lower resolution, which should be

set in advance, and to finish the retrieval process at a desired resolution. This is implemented

using Grid Nesting Procedure that consists of following stages:
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Stage 1. The inverse algorithm (5.3) identifies the solution vector R at a given resolu-

tion. In this stage, the apriori rainfall (R0 and CR0) is computed.

Stage 2. The inverse algorithm continues the identification of R. The retrieval reso-

lution in this stage is two times higher than previous one which means that a number

of pixels increase four times. The apriori rainfall R0 is reinitialized by R obtained in

stage 1. As a result, the corresponding standard deviation in CR0 is updated by the

variance of the reinitialized R0.

Stage 3. The algorithm terminates the retrieval at a desired resolution which can be set

by the user. In this stage, the apriori rainfall R0 is reinitialized by the solution vector

R obtained in stage 2 and the corresponding standard deviation in CR0 is also updated

by the variance of R0 obtained in this stage.

The reason for calling this procedure as ‘grid nesting’ is that the algorithm applied in each

stage takes the apriori knowledge from previous stages except the first one. The only condition

for implementing the Grid Nesting Procedure is that the retrieval resolutions at each stage must

be known. In our study, the retrieval resolutions in stage 1, 2 and 3 are 2 × 2 km2, 1 × 1 km2

and 0.5× 0.5 km2, respectively. In each stage, R0 and CR0 are updated in the algorithm. When

the resolution changes from lower to higher, the pixels are refined by the new retrieved vector

over stages. Initializing the algorithm in this way is a key feature of our retrieval model.

To better understand the functioning of the Grid Nesting Procedure, a simplified example

for one pixel is presented in Figure 5.3. In this example, the pixel resolutions over stages

are the same as one used in our study. The description is as follows: The retrieved rain rate

R1 in stage 1 is refined in stage 2. Only crossed pixels among those 4 pixels are refined by

the new solution from the lower to the higher. In stage 2, the retrieved values (R2, R3, R4)

are obtained for the crossed part of the area while uncrossed pixel R1 keeps the same value

from the stage 1. Similarly, each pixel at 1 × 1 km2 can be split into 4 smaller pixels with a

resolution of 0.5 × 0.5 km2. For example, one can see the indices of the rainfall in the apriori

and solution vector. The uncrossed pixels keep the same value obtained in the previous solution.

Another important point is that if we change the resolution from the lower to the higher, the pixel

sizes change and the retrieved values at lower resolution is placed into the pixels at the higher

resolution. In other words, the uncrossed pixels at 1×1 and 0.5×0.5 km2 keep the pixel values

retrieved at 2× 2 and 1× 1 km2, respectively.
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Figure 5.3 – An example of Grid Nesting Procedure applied to one pixel crossed by a link.
The left and the right columns represent the apriori rainfall and the retrieved rain rate by the
algorithm, respectively. The rows (top-down direction) are the stage 1, 2 and 3 in Grid Nesting
Procedure. The line (in blue) is a sample microwave link and its labels, ‘Tr.’ and ‘Rec.’, stand
for Transmitter and Receiver, respectively.
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5.6 Metrics

The evaluation of the proposed algorithm is performed using the following statistical met-

rics:

1. Nash-Sutcliffe Efficiency (NSE) gives an overall assessment between the observed and

retrieved rainfall map:

NSE = 1−
∑n

i=1 (Ri −R′i)
2∑n

i=1 (Ri −Ri)
2 (5.14)

The range of NSE is (−∞; 1]. The more close NSE value to 1 is, the more accurate the

model retrieval will be;

2. Pearson’s correlation coefficient (ρ) measures the strength and direction of a linear

relationship between observed and retrieved rainfall map:

ρ =

∑n
i=1(R′i − R̄′)(Ri − R̄)√∑n

i=1(R′i − R̄′)2
√∑n

i=1(Ri − R̄)2
(5.15)

ρ ranges between [−1; 1]. If ρ = −1 that indicates a perfect negative linear relationship,

ρ = 0 indicates no linear relationship between observed and retrieved, and ρ = 1

indicates a perfect positive linear relationship.

3. Bias estimates the difference between observed and retrieved rainfall map:

bias =
1

n

n∑
i=1

(R′i −Ri) (5.16)

The bias metric ranges between [−∞;∞]. The estimator is said to be unbiased if

bias = 0, positive and negative bias if bias > 0 and bias < 0, respectively.

4. Root Mean Square Error (RMSE) gives the difference between observed and retrieved

rainfall map. In other words, it demonstrates the standard deviation of the residuals

between observed and retrieved rainfall map.

RMSE =

√√√√ 1

n

n∑
i=1

(R′i −Ri) (5.17)

The value of RMSE is always positive. The model accuracy is perfect if RMSE = 0.

In all metrics mentioned above, R is observed rainfall vector, R′ is retrieved rainfall

vector, Ri is mean value of observed rainfall vector, n is the number of values in the
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rainfall vector.

5.7 Sensitivity analysis

The sensitivity analysis gives a clear insight into understanding an interrelation between the

algorithm parameters. The importance of the sensitivity to the algorithm parameters is to test the

influence of different values on the solution vector (5.3). ‘ In this section, the sensitivity analysis

to the parameters of the algorithm is discussed. First, subsection 5.7.1 describes the sensitivity

analysis protocol. Next, subsection 5.7.2 addresses the influence of the apriori parameters (i.e.

k and ∆) on the rainfall retrieval. Then, subsection 5.7.3 presents the influence of the model

error magnitudes on the overall retrieval performance.

5.7.1 Sensitivity analysis protocol

Overall structure of the sensitivity analysis test to the algorithm parameters is given in

Figure 5.4. Here, level 1 and 2 represent the values of sensitivity parameters to be tested which

are apriori rainfall choice, i.e. k, and decorrelation distance, i.e. ∆, respectively. The rainfall

retrieval process shown in level 3 is performed according to the following steps:

1. Rainfall map: Extract rainfall map from weather radar. The rainfall map at 0.25 ×

0.25 km2 resolution is obtained from the radar data presented in chapter 4.

2. Generate data: The rain attenuation data over the microwave links network are gener-

ated using the procedures described in subsection 4.4.3 of chapter 4. Here, the default

percentage of α is 5 percent given in the (4.4). The a and b coefficients at 18, 23 and

38 GHz are obtained from (ITU-R, 2005) which will also be applied in the rainfall

retrieval, i.e. following step.

3. Rainfall retrieval: The Grid Nesting Procedure (section 5.5) is applied to carry out

rainfall retrieval.

4. Comparison: The retrieved rainfall map is compared with observed radar rainfall map

using NSE metric given in section 5.6.

Combinations of different values of k from 5 to 256 and decorrelation distance, ∆ from 1

km to 15 km are tested in each rain retrieval. For each pair of k and ∆, the level 3 is applied to

207 rainfall maps which represent light rain, shower, organised and unorganised storm events.

The characteristics of the rainfall data set can be found in subsection 4.3.2 (chapter 4).
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Figure 5.4 – Diagram of overall structure of the sensitivity analysis test.

5.7.2 Sensitivity to the a priori parameter

5.7.2.1 Sensitivity to the a priori choice

The objective is to test the influence of the apriori choice, i.e. global and local, see sub-

section 5.4.1. Here, the sensitivity parameter is the k whose values are selected to be 5, 7, 10,

15, 100 and 256. The lowest and the highest values of k represent local and global apriori type,

respectively. The value of k cannot exceed 256 since it indicates a number of links used in this

study. In fact, the local apriori at k = 256 becomes global which is why we included both

apriori choices in k parameter.

Using the sensitivity test described in subsection 5.7.1, we obtain Figure 5.5 that illustrates

the results of the sensitivity to the apriori parameters. The red dots represent the highest NSE

values which indicate that the algorithm in these choices performs best. We tested the sensitiv-

ity of the algorithm to k in each rainfall event, separately, i.e. light rain, shower, organised and

unorganised storm cases. It seems that the algorithm is quite sensitive to the change in k param-

eter. That is to say, increase in k values decreases the accuracy of the algorithm regardless the

presence of rainfall variability. However, one important feature found in these results is that the

higher variability of rainfall is leading to increase ranges of optimum values of k parameter. For

instance, one can see the red dots count difference between light rain and unorganised storm.
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(a) Light rain event (113 maps) (b) Shower event (26 maps)

(c) Organized storm event (34 maps) (d) Unorganized storm event (34 maps)

Figure 5.5 – Influence of the apriori parameters on the efficiency of the algorithm. The red dots
in the figure indicate the location of the optimal parameters of both a priori and decorrelation
distance. Note that, the NSE values are averaged over all maps for each event.
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5.7.2.2 Sensitivity to the decorrelation distance

The covariance of the apriori rainfall CR0 consists of two parameters: (i) the standard

deviation σR0 , in mm.hour−1, and the decorrelation distance ∆, in km, given in (5.9). The

former parameter cannot be considered to be the part of the sensitivity analysis, because it is

directly obtained from R0. However, the latter is used in the sensitivity test. The objective is

to test the sensitivity of the retrieval algorithm to the parameter ∆. Selected values of ∆ are

between the range of 1 km and 15 km.

The results of the analysis in Figure 5.5 show that the algorithm is also sensitive to ∆

value. It seems that the influence of ∆ increases with the variability of rainfall. In contrast to

k parameter, the optimum choice of ∆ value regardless the rain type is found to be quite strict,

i.e. very few.

The optimum parameter choices of the algorithm for each rainfall type are summarized in

Table 5.1. When the values shown in this table are used the algorithm performs best. It should

be mentioned that optimum choices also include all the combinations of parameters represented

in red dots in Figure 5.5.

Table 5.1 – Optimum parameters of the model obtained in the sensitivity analysis.

Light rain Shower
Organised

storm
Unorganised

storm
Decorrelation distance, ∆ (km) 3 3 3 2
Closest links number, k 5 10 7 5

5.7.3 Influence of the model error

The objective in this subsection is to understand the influence of the model error on the

performance of the algorithm. The term used for the magnitude of the measurement model error

is denoted as β parameter which is the part of σ2
model shown in (5.13). The error magnitude

is expressed as a certain fraction of the generated data A0 added to the overall variance σ2
A of

apriori covariance CA0 (5.12).

As previously discussed in subsection 3.3.2 of chapter 3, exact values of a and b coefficients

used in the model i.e. A(R) in (5.1), are approximate and unknown. The reason is that they

are obtained experimentally on the basis of measured drop size distribution for certain climate

conditions. Therefore, testing different percentages of β parameter is an indication to the fact

that A(R) employed in the algorithm is inaccurate and can affect the stability of the retrieval

algorithm.
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Figure 5.6 – Sensitivity of the algorithm to the model error β in NSE metric. Note that this test
is in the presence of the measurement error with magnitude of α = 5%. The evaluation is per-
formed for 4 types of rainfall: Light rain, shower, unorganised and organised storm (clockwise
direction). The retrieval resolution is 0.5× 0.5km2.

Figure 5.7 – Sensitivity of the algorithm to the model error β in BIAS metric. The description
of Figure 5.6 also applies to this figure.
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Figure 5.6 and Figure 5.7 illustrate the results of the sensitivity of the algorithm to the influ-

ence of the model error in NSE and BIAS metrics, respectively. Here, solid(black), dashed(blue),

dotted(green) and dotted-dashed(red) lines represent the error magnitude percentage (β) at 5,

10, 20 and 50 %, respectively. It should be noted that this sensitivity test is carried out based

on the optimum parameters of the algorithm previously obtained in Table 5.1. When the NSE

metric is considered, i.e. Figure 5.6, we can see that there is a slight influence of the model error

on the algorithm with increasing rainfall variability, see shower event for example. However, it

seems that the algorithm is stable enough showing almost identical performance in all cases, i.e.

highest (β = 50%) and lowest (β = 5%). The results based on the BIAS metric, i.e. Figure 5.7,

show a bit different scenario. That is to say, a negative bias is increasing gradually with model

error magnitude. Overall, the algorithm applied with optimal apriori parameters is found to be

insensitive to the model error magnitudes.

5.8 Evaluation

The objective is to evaluate the capability and limitations of the proposed rainfall retrieval

algorithm. First, the evaluation principle and conditions are described in subsection 5.8.1. Then,

obtained results are discussed in subsection 5.8.2.

5.8.1 Evaluation principle

As a basis, a series of rainfall events recorded by weather radar are used to evaluate the

proposed algorithm. These events consist of 207 rainfall maps grouped by light rain, shower,

organised and unorganised storm events representing different spatial and temporal variability.

A detailed description about the characteristics of the rainfall data and weather radar is given in

section 4.3 of chapter 4.

The evaluation of the proposed method is performed at 0.5 × 0.5 km2 resolution based on

the optimum parameters of the algorithm given in Table 5.1. First, we discuss the overall com-

parison between global and local apriori knowledge introduced in the algorithm. In addition,

we also analyse the overall influence of the inverse algorithm and the apriori knowledge alone

on the retrieval performance. This helps to understand the added value of the apriori knowl-

edge depending on the variability of the rainfall. Second, the proposed algorithm is evaluated

over the entire network in the presence of the measurement α and model β error using only two

extreme cases: (i) α=5%, β=5%, (ii) α=20% and β=20%. Logically, increasing the value of α
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parameter should decrease the retrieval performance. Third, the retrieval efficiency of the net-

work system depending on the link density is also evaluated. This is based on the pixel density

map given in Figure 4.4 that represents the density level of the microwave links. In addition,

overall retrieval performance in the densest and whole area of the network system is presented.

5.8.2 Evaluation results

Regarding the first aspect of our analysis, examples of retrieved rainfall for light rain,

shower, organised and unorganised storm case are shown in Figure 5.8. These maps are obtained

using the Level 3 which is the retrieval protocol depicted in Figure 5.4. It is clear to see that

the spatial variability in all rain types is far better captured when the local apriori choice is

applied (shown in the right column). The reason is that the apriori initialization procedure

heavily influences the algorithm outcome as it has been proven in the sensitivity analysis test.

Therefore, the algorithm performs better in local than in global apriori initialization. However,

we can see that the algorithm is smoothing the solution in all cases compared to observed maps.

Especially, this is clearly visible in shower rain type (depicted in the second row). This can be

explained by the following reason: The Grid Nesting Procedure given in section 5.5 is the first

cause for that because the retrieved rainfall vector in stage 1 remains as a solution vector without

being updated by the new solution. Similarly, the retrieved rain vector in stage 2 remains as a

solution vector in stage 3. On the one hand, the application of the Grid Nesting Procedure is

decreasing the quality of the retrieval i.e. smoothing. On the other hand, it is increasing the

retrieval area.

We have seen that the local apriori is significantly improving the performance of the re-

trieval algorithm. However, two important issues arise: (i) whether this improvement is coming

only from the apriori knowledge, (ii) whether the application of the inverse algorithm adds a

value for the rainfall retrieval. To address these issues, we compare the apriori knowledge with

the inverse algorithm performance. Figure 5.9 illustrates the results of such comparison in NSE

metric. It should be noted that the figures in the 1st, 2nd and 3rd columns are the results of 1st,

2nd and 3rd stages of Grid Nesting Procedure, respectively, see Figure 5.3.

Interestingly, the performance of the inverse algorithm is becoming almost identical as the

retrieval resolution decreases from 2 × 2 km2 to 1 × 1 km2. This is due to the fact that the

apriori solution in the 2nd and 3rd columns do not really represent the local apriori choice.

Rather, they are the results of the algorithm run in the previous stages, accepted as the apriori

knowledge for the next stages.
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(a) Light rain, Time: 00h30, 17.09.2009

(b) Shower, Time: 20h45, 20.06.2012

(c) Organized storm, Time: 05h25, 07.06.2012

(d) Unorganized storm, Time: 18h10, 11.05.2009

Figure 5.8 – Retrieved rain map in 4 rain events: (a) lightrain, (b) shower, (c) organised and (d)
unorganised storm. The retrieval resolution is 0.5× 0.5 km2. The first column is the observed
rain map by weather radar. The 2nd and 3rd columns are the rain maps retrieved using ‘global’
and ‘local’ apriori choices, respectively.
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Figure 5.9 – Comparison between inverse model and a priori knowledge at 2 × 2, 1 × 1 and
0.5× 0.5km2 resolutions which belong to 1st 2nd and 3rd columns, respectively. Red solid lines
indicate the NSE values using only apriori knowledge before applying the inverse algorithm.
Blue solid lines represent the NSE values obtained after applying the inverse algorithm.
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In contrast to the local apriori solution, the inverse algorithm has a significant influence

on the outcome at 2 × 2 km2 resolution. Especially, this influence becomes very large with

increasing variability of rainfall, see the shower event (second row). That is to say, the more

variability of the rainfall is, the larger influence of the inverse algorithm will be.

Table 5.2 – Overall statistical performance of the retrieval algorithm at 0.5×0.5 km2 resolution.

Rain type
α = 5%, β =5% α= 20%, β = 20%

NSE ρ BIAS RMSE NSE ρ BIAS RMSE

Light rain 0.58 0.76 0.04 0.76 0.54 0.74 0.02 0.80
Shower 0.45 0.68 0.17 3.96 0.44 0.66 0.05 4.02
Organised storm 0.44 0.66 0.06 3.90 0.42 0.65 0.01 3.96
Unorganised storm 0.55 0.75 0.52 6.70 0.53 0.74 0.41 6.82

Table 5.2 illustrates the overall statistical performance of the retrieval algorithm in the

presence of measurement and model error for two extreme cases: 5% and 20%. It is worth

mentioning that the values in this table are obtained by averaging all metric values in each rain

type. Surprisingly, bias seems to be counter-intuitive showing the values less in 20% case than

in 5%. However, the algorithm performance decreases in all statistical metrics as the variability

of rainfall increases (from light rain to unorganised storm). Overall, the algorithm is stable

enough indicating negligible difference between those extreme cases.

Figure 5.10 gives overall retrieval efficiency of the algorithm in NSE metric depending on

the density of microwave links. This is performed based on the pixel density map (Figure 4.4)

obtained in subsection 4.2.2. It is important to note that the line colors in Figure 5.10 are the

same as in Figure 4.4 except yellow color which is labelled as Whole density indicating the

evaluation result without density map. It seems that the accuracy of the algorithm in the denser

part of the network i.e. blue line is quite high compared to the sparser part. That is to say, the

rainfall retrieved in the city center is more accurate than in the suburb area. However, regions

with moderate density label (red line) shows unusual performance in the first few retrieved

maps. The explanation to such behaviour is that the number of retrieved pixels to be compared

with observed ones is much smaller than the other ones i.e. red or blue regions. One can find

the number of pixels and area size in Table 4.2.

The scatter plots of the retrieved rainfall given in Figure 5.11 provide another view on the

performance of the proposed algorithm. Regression lines in black and red color belong to the

observed maps by weather radar and estimated maps by the algorithm, respectively. There is a

systematic underestimation along all events for both whole and high density regions in the study
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Figure 5.10 – The retrieval efficiency in NSE at at 0.5× 0.5 km2 resolution in different parts of
the monitoring area classified as high, moderate, low and whole density. The evaluation test is
in the presence of magnitude of measurement (α = 5%), model (β = 5%) and quantization (4 =
0.1 dB) errors. The figures in the clock-wise direction represent light rain, shower, unorganized
and organized storm. Note that map numbers in x axis are ordered to illustrate NSE values in
ascending order.

area. However, this underestimation is decreasing in the dense regions of the network, see the

figures on the right column. We can see that higher rainfall rates are always smoothed resulting

in underestimation. This smoothing is explained by two reasons: (i) the solution vector retrieved

in the 1st stage of Grid Nesting Procedure procedure mostly belongs to rural areas. Then, it is

not updated by the algorithm in the next stages, (ii) the microwave links with longer lengths are

also causing underestimation.

5.9 Summary

The objective in this chapter was to assess the feasibility of rainfall mapping by means

of inverse method applied to generated signal attenuation data based on existing microwave

link network. The nonlinear inverse algorithm is proposed to demonstrate the capability of mi-

crowave links for rainfall monitoring. We presented that the apriori knowledge used to initialize

the algorithm heavily influences the retrieval accuracy although rainfall variability is high. A

series of retrieval tests have been carried out to understand the influence of difference error

sources such as measurement, model. A detailed sensitivity analysis to the apriori parameters
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(a) Light rain event

(b) Shower event

(c) Organised storm event

(d) Unorganised storm event

Figure 5.11 – Scatter plot: The measurement, quantization and model errors are at the mag-
nitude of α = 5%,∆ = 0.1 dB, β = 5%. Right and left hand side of the figure show the
scatterplots computed for whole and high density regions of the study area, see Figure 4.3. Note
that the linear fit has been calculated over the whole dataset for each event at 0.5× 0.5 km2.
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have also been performed to test the stability of the algorithm. The algorithm applied has been

found very stable even the problem to be solved is too under-determined. Various evaluation

procedures have been carried out to analyse the performance of the monitoring system based

on the proposed pixel density map. One weakness of the algorithm found in the evaluation is

systematic underestimation especially in higher rain intensity. However, the proposed algorithm

is able to handle with larger model errors.

Achieved results are naturally a subject to further works: (i) testing the algorithm in time,

(ii) a real case study instead of realistic that requires attenuation data directly obtained by cel-

lular phone network companies, (iii) validation of the proposed approach using a large set of

rainfall data and testing different network topologies.



6
Retrieval Model 2. Discrete Mojette

Transform Algorithm

6.1 Introduction

This chapter presents the second retrieval model that is used to assess the feasibility of

rainfall mapping based on attenuation measurements from commercial microwave links. The

retrieval principle is based on a tomographic approach which converts 1D attenuation data to

2D rainfall map.

Most applications based on tomographic approach (medical, non-invasive control of ob-

jects) are subject to under-determined problem which means that the number of unknown

parameters (denoted as R in the previous chapter) to be estimated are much larger than the

available measured data set (denoted as A in the previous chapter as well). In the context

of microwave link based rainfall mapping, the introduction of tomographic approach is even

more challenging due to for various reasons that have been experienced by (Giuli et al., 1991;

Zinevich et al., 2008; Cuccoli et al., 2013) as discussed in the state of the art chapter 3. First,

a geometry of commercial microwave links network is unavoidably arbitrary and operating fre-

quencies in the network are inhomogeneous. To be applicable, a tomographic reconstruction

would require a homogeneous network. Secondly, the problem to be solved is nonlinear and

101
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under-determined (see, subsection 5.2.2) if we see the monitoring area globally. Therefore, we

examine the applicability as well as limitations of a specific discrete tomographic approach for

rainfall mapping from generated attenuation data. In particular, we address these issues using

adjustment procedures applied to a real network of microwave links presented in the case study.

The retrieval model presented in this chapter uses a discrete tomographic algorithm based

on the Mojette Transform (MT), developed by (Guédon et al., 1995; Guédon and Normand,

2005). Unlike other methods proposed by (Giuli et al., 1991; Cuccoli et al., 2013), the MT uses

completely different way of reconstructing 2D rainfall map from 1D attenuation data relying

only on the geometry of the area to be reconstructed and of the microwave links network.

This chapter is organised as follows. First, section 6.2 describes a core principle of to-

mography. Second, section 6.3 presents a mathematical background of the applied tomographic

algorithm, i.e. the MT algorithm, in this study. Then, section 6.4 addresses specific procedures

used to adjust the parameters of the MT algorithm by taking into account an arbitrary geome-

try of the network topology, non-uniform distribution of links frequency and lengths. Finally,

section 6.5 discusses the results obtained from the retrieval model. In addition, we also present

a comparison between the performance of the tomographic algorithm to be explained in this

chapter and the one presented in chapter 5.

6.2 What is tomography?

Tomography allows to reconstruct an interior part of an object knowing only an attenuated

signal that has passed through it following different paths. Therefore, the tomographic approach

is a reconstruction of images from slices. From a series of 2D images acquired through an

object, using tomographic reconstruction we can get a 3D reconstruction of this object or from

a series of 1D projections of an object we can reconstruct a 2D image of this object. Over

the past few decades, the tomographic approach has emerged as a powerful platform in various

applications, e.g. computer tomographic scanner in medical imaging, seismic and acoustic

retrieval systems in geology and tools in non-destructive controls for manufactured goods as

well (Grangeat, 2002).

An object can be reconstructed from the acquisition of a finite series of its projections

(Figure 6.1). For doing so, four elements of the tomography should be defined: object, bin,

projection and its direction. The object is also called a region of interest that needs to be recon-

structed. Rainfall map is the object in our case. The projection is the attenuation distribution at
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projection direction, i.e. θ angle. This is obtained by penetrating the object with a number of

rays, depicted as black arrows. Each discrete value on this projection is called a bin.

µ

projection

object
x

y

Figure 6.1 – Tomographic projection following θ angle (from Servières, 2005).

6.2.1 Presentation of the Radon Transform

In 1917, Johann Radon defined the transform named after him (Radon, 1917). The direct

transform describes the projection of an object along lines integral. This projection can be done

following various acquisition geometry (Defrise and Greangeat, 2002) such as parallel, cone

beam, fan beam, helicoïdal but we will describe and use only the parallel one here.

A 2D Radon transform projects an object (x, y) onto a 1D projection proj(t, θ) following

θ projection angle. Values onto the projection depend on the integral of the values through the

object along the integral line with the θ direction (Figure 6.1).

The Radon transform proj(t, θ) of function f(x, y) is given in its continuous mode by:

proj(t, θ) =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ(x cos θ + y sin θ − t) dxdy, (6.1)

where 0 ≤ θ ≤ π is the projection angle with the axis ~x and −∞ ≤ t ≤ +∞ is the

curvilinear coordinate onto the projection with respect to the projection of the origin of the

reference system.
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6.2.2 FBP: Filtered Back Projection

The tomographic reconstruction is an ill-posed problem, i.e. either it may have no solution

or its solution is not unique or its solution does not depend continuously on the data. In this last

case, a noise onto the projection makes the inverse reconstruction unstable.

The Filtered Back Projection is one of the most used reconstruction method to retrieve an

object from its projections. We will present it in the following explanation given by (Servières,

2005).

Given the Radon transform proj(t, θ) of function f(x, y) on eq. 6.1 and its Fourier trans-

form F (λ, µ), the reconstructed object g(x, y) could be written from the inverse Fourier trans-

form of F (λ, µ) as :

g(x, y) =

∫ +∞

−∞

∫ +∞

−∞
F (λ, µ) exp(2iπ(λx+ µy)) dxdy. (6.2)

The Central Slice theorem gives us the 1D Fourier transform of a parallel projection of one

object is equal to a slice of the 2D Fourier transform of this object:

P (ν, θ) = F (λ, µ) (6.3)

A demonstration is given in Appendix A.

For g(x, y) we obtain:

g(x, y) =

∫ +∞

−∞

∫ +∞

−∞
P (ν, θ) exp(2iπ(λx+ µy)) dxdy. (6.4)

Changing variables to use a polar coordinate system: λ = ν cos θ

µ = ν sin θ
, (6.5)

gives:

g(x, y) =

∫ 2π

0

∫ +∞

0

P (ν, θ) exp(2iπν(x(cos θ) + y(sin θ))) |ν| dνdθ. (6.6)

Taking into account:

p(t, θ) = p(−t, θ + π) = p(t, θ + 2π), (6.7)
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and splitting (6.6) on [0, π] and [π, 2π], the reconstructed object is written:

g(x, y) =

∫ π

0

∫ +∞

−∞
P (ν, θ) exp(2iπν(x cos θ + y sin θ)) |ν| dνdθ. (6.8)

With t = x cos θ + y sin θ we get :

g(x, y) =

∫ π

0

∫ +∞

−∞
P (ν, θ) exp(2iπνt) |ν| dνdθ. (6.9)

|ν| in this equation express a ramp filter onto the projections.

With:

Q(t, θ) =

∫ +∞

−∞
P (ν, θ) |ν| exp(2iπνt) dν, (6.10)

we get:

g(x, y) =

∫ π

0

Q(t, θ) dθ. (6.11)

In the backprojection step, each projection is filtered by ν and then backprojected onto the

image.

The equations 6.10 and 6.11 are the two steps of the filtered backprojection. In (6.10), a

filtering operator is associated to each projection pθ(t) and gives a filtered projection:

p̃θ(t) = pθ(t) ∗ k(t), (6.12)

with

k(t) =

∫ +∞

−∞
|ν| exp(2iπνt) dν. (6.13)

In the backprojection step, each projection is filtered and then backprojected onto the image

with (6.11) (Radon dual operator):

g(x, y) = R∗p̃θ(t) =

∫ π

0

p̃θ(t) dθ. (6.14)
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6.3 A Discrete Tomographic Method: the Mojette transform

6.3.1 A discrete version of Radon transform: the Dirac Mojette projec-

tions

The Mojette projection is a discrete version of the Radon transform defined about twenty

years ago by Jeanpierre Guédon and others (Guédon et al., 1995; Guédon, 2013). With a

Cartesian grid and pixels it is considered as Dirac, a continuous object f(x, y) is described as:

f(x, y) =
+∞∑

k=−∞

+∞∑
l=−∞

f(k, l)δ(x−∆pk)δ(y −∆pl), (6.15)

where f(k, l) is the object value at the integer point on the grid (k, l) with:

δ(x) =

 1 if x = 0

0 otherwise
, (6.16)

and ∆p is the pixel size.

Then, the Radon transform for the previously defined object is:

projδ(t, θ) =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ(t+ x sin θ − y cos θ) dxdy

=
+∞∑

k=−∞

+∞∑
l=−∞

f(k, l)

∫ +∞

−∞

∫ +∞

−∞
δ(x−∆pk)δ(y −∆pl)δ(t+ x sin θ − y cos θ) dxdy

=
+∞∑

k=−∞

+∞∑
l=−∞

f(k, l)δ(t+ ∆pk sin θ −∆pl cos θ). (6.17)

(p, q) is the discrete projection direction with p (resp. q) the shift in pixels along ~x (resp.

~y). If several (p, q) directions give the same angle (for ex. (1, 1) and (2, 2)) the one with

PGCD(p, q) = 1 is chosen (Guédon, 2001).

The directions (p, q) and (−p,−q) give the same projection then only θ in [0, π[ are kept.

The discrete and continuous projections directions are linked by the following equations:

tan θ =
q

p
, cos θ =

p√
p2 + q2

and sin θ =
q√

p2 + q2
, (6.18)
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Then, the equation (6.17) is written (Guédon, 2013):

projδ(t, θ) =
+∞∑

k=−∞

+∞∑
l=−∞

f(k, l)δ(t
√
p2 + q2 + kq∆p − pl∆p). (6.19)

The projection of the Cartesian grid gives a regular sampling onto the projection with

respect to the projection direction (p, q):

t =
b∆p√
p2 + q2

, (6.20)

where b is the bin index onto the projection.

Bins number onto the projection depends on the (p, q) projection direction and on the size

P ×Q of the bonding box of the projected 2D object.

#binsp,q,P,Q = (P − 1) |p|+ (Q− 1) |q|+ 1. (6.21)

PGCD(p, q) = 1 means that only integer values of b are corresponding to (k, l) pixels.

Then, we get the Mojette Dirac equation:

[Mδf ](b, p, q) = projδ(b, p, q) (6.22)

=
+∞∑

k=−∞

+∞∑
l=−∞

f(k, l)∆(b+ kq − pl), (6.23)

with ∆(b) =

 1 if b = 0

0 otherwise
and (b, p, q) ∈ Z3.

Figure 6.2 gives an example of the Dirac Mojette projections of a 4 × 4 image for 3 pro-

jections directions.

Mojette transform can also be defined for other pixel models and in higher dimension.

Interested reader will find details in (Servières, 2005; Guédon, 2013).

6.3.2 Projections directions

The discrete projection directions used to process the Mojette projections are based on the

use of Farey-Haros series (Svalbe and Kingston, 2003).

The Farey-Haros series of orderN (FN ) is the set of all fractions in lowest terms between 0

and∞ whose denominators do not exceed N , arranged in order of magnitude. For instance, F4
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Figure 6.2 – Mojette Dirac transform of a 4 × 4 image with (p, q) ∈ [(1, 0), (1, 1), (−2, 1)]
(from Servières, 2005).
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}. The Farey-Haros series give a set of discrete

angles. With such a series, we have a set of discrete angles on the q
p

form arranged in order

of magnitude between [0, π
2
[. Angles over [0, π[ are obtained by symmetry. Then, Farey-Haros

series give the discrete angles (p, q) with irreducible fraction q
p

(Figure 6.3).

Figure 6.3 – Farey-Haros series of order 10 and its symmetrics (from Servières, 2005).

6.3.3 FBPM: Filtered Back Projection Mojette

The Filtered Back Projection Mojette is an adaptation in Mojette geometry of the FBP

presented in 6.2.2. It has been defined in (Servieres et al., 2004; Subirats et al., 2004). It is

divided in two steps, a filtering step then a backprojection step.
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6.3.3.1 k0 filter

The filter used to do a FBP Mojette reconstruction is based on a Spline 0 pixel model. The

continuous exact Spline 0 FBP filter was derived in (Guédon and Bizais, 1994):

k0(t, θ) =
1

π sin(2θ)
ln

∣∣∣∣∣ t2 −
∆2
p

4
(1 + sin(2θ))

t2 − ∆2
p

4
(1− sin(2θ))

∣∣∣∣∣ , (6.24)

for t 6= 0 and θ ∈]0, π
4
] with ∆p the pixel size, and

k0(t, 0) =
−1

π

2∆p

4t2 − 1
. (6.25)

Discretizing this filter in the Mojette geometry gives (Servières et al., 2005):

k0(b, p, q) =
p2 + q2

2πpq
ln

∣∣∣∣b2 − (p+q
2

)2

b2 − (p−q
2

)2

∣∣∣∣ , for b 6= 0 and (p, q) 6= (1, 0) (6.26)

with

k0(b, 1, 0) =
−1

π

2s

4b2s2 − 1
and k0(0, p, q) =

p2 + q2

πpq
ln

∣∣∣∣p+ q

p− q

∣∣∣∣ . (6.27)

As stated in (Servières et al., 2005), this filter can not be implemented in a straightforward

manner in the spatial domain. It exhibits discontinuities at the points where the projection of

the pixels (described by a trapezoidal shape) is continuous but not differentiable. The Ramp

filter acting as a derivative operator, the values at these points have to be computed using a

Dirichlet condition.

6.3.3.2 Mojette Back Projection

The Mojette backprojector is defined as the dual of the Mojette projector. For a Dirac pixel

model, the Mojette exact backprojector is defined as (Servières et al., 2003):

[M∗projδ](k, l) =
+∞∑
i=−∞

+∞∑
j=−∞

δ(k − i)δ(l − j)

+∞∑
b=−∞

projδ(b, p, q)∆(b+ qi− pj). (6.28)
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6.4 Reconstruction of rain map using Filtered Back Projec-

tion Mojette

In order to reconstruct 2D rainfall map from the 1D vector of attenuation data we use the

FBP Mojette algorithm, however the adjustment procedures are applied before implementing

the algorithm.

Usually, the FBP Mojette algorithm is applicable only under the following conditions:

1. Ray frequencies are the same and constant along all the projection directions (see,

subsection 6.3.2).

2. Geometry of the data acquisition system is regular and predefined as given in Fig-

ure 6.1.

3. Measurement model that relates the ray attenuation and object values to be recon-

structed is completely linear.

However, we can see exactly the opposite in the case of commercial microwave links that:

(i) the geometry of the network topology is irregular, (ii) the operating frequencies and the link

lengths are different and inhomogeneous (Figure 4.1), (iii) the measurement model that relates

signal attenuation, A in dB, to rain intensity, R in mm.h−1, is nonlinear, i.e A−R model given

in equation (4.3).

In order to find a compromise between 3 conditions of the FBP Mojette algorithm and

those 3 existing challenges in microwave links we do adjustment procedures to the algorithm

properties (i.e. the way of taking projection, projection direction, angles and interpolation of

the projected bins).

6.4.1 Homogenizing the attenuation data set

As previously shown in chapter 4, the attenuation data generated over the network has been

obtained at 18, 23 and 38 GHz using the k-R relation. However, this data set is inhomogeneous

and cannot be applied directly in the tomography context. The reason is that the k-R relation

coefficients obtained at these frequencies (except 38 GHz) are greater than 1 indicating that

the problem type is nonlinear. Hence, the problem is nonlinearity and inhomogeneity of the

measured data set which is not compatible with above defined applicability of the tomography

conditions. To overcome this issue, the data transformation procedure is applied in order to

homogenize the generated attenuation data. The purpose of this procedure is to express the
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generated attenuation data with nonlinear k-R relation by an "equivalent" attenuation associated

with a quasi-linear k-R relation. Hence, the result of the transformation procedure should give

‘homogenized’ and ‘linear’ data which is equivalent to the one generated in chapter 4 .

The data transformation procedure is explained as follows. Let us assume that one mi-

crowave link operates at both 18 and 23 GHz as well. Sometimes, we can see this situation in

the given network that two microwave links with the same length overlaying each other (Fig-

ure 4.1). We denote the rain attenuation along the link, L at 18 and 23 GHz as A1 and A2,

respectively. If we consider that the average rain rate, R, along this link is the same for both

frequencies we can express the equation (4.3) as follows:

A1 = L ∗ a1 ∗R
b1 (6.29)

A2 = L ∗ a2 ∗R
b2 (6.30)

Defining R from both equations leads a relation:

A2 = L ∗ a2 ∗ (
A1

L ∗ a1

)

b2
b1

(6.31)

The formula (6.31) transforms the attenuation measured at 18 GHz into the equivalent

attenuation at 23 GHz. The same transformation can be done for 38 GHz by only changing

the values of A1, a1 and b1. Here, the attenuation data is supposed to be homogeneous at 23

GHz. Because the A-R relation at this frequency is approximately linear showing its exponent

b2 being equal to 1.05 which is nearly 1.

Using (6.31), we transform all the generated attenuation data at 18 and 38 GHz into the

equivalent one at 23 GHz. However, to make sure if the transformation procedure is ‘consistent’

enough we test the scatter plot between transformed and original values in noise free conditions.

This helps to understand whether the transformed data set at 23 GHz can be equivalent to one

that has been generated at 18, 23 and 38 GHz. Figure 6.4 shows such consistency test performed

in four rain events. It turns out that the correlation between those variables is almost 1 which

justifies that the transformation approach is reasonable. Based on this evidence, we can assume

that the transformed data is equivalent to the generated one in chapter 4.
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Figure 6.4 – Scatter plot between the original data at 18, 23 and 38 GHz and transformed data
at 23 GHz.
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6.4.2 Adjustment procedures

6.4.2.1 Choosing reconstructible sub-grids

The objective is to select valid grids for the Mojette projection in the network area. The

selection process consists of two steps:

1. To discretize the study area at a certain resolution;

2. To select the regions that are only ‘reconstructible’ by the MT algorithm.

In the first step, we discretize the area at 2 km × 2 km resolution. It should be noted that

selecting the higher resolutions (e.g. 1 km× 1 km) certainly decreases the size of the region of

interest in the reconstruction process.

Figure 6.5 – Selected 21 sub-grids in black rectangles with different sizes for projection. Note
that the area size of each sub-grid has been chosen visually based on the density of the links at
2× 2 km2 resolution.

In the second step, we divided the study region into ‘reconstructible’ sub-grids so that each

region would be reconstructed independently with respect to the attenuation measured through

it. Only zones totally crossed by the microwave link were chosen for the reconstruction process.

In Figure 6.5, the ‘reconstructible’ sub-grids are depicted as black rectangles with different

sizes over the study area. In our case, we selected 21 valid sub-grids for the reconstruction

process. However, the number of sub-grids are reduced to only one sub-grid (i.e. sub-grid 11),

in the evaluation of the tomographic algorithm. So, two areas i.e. whole area and sub-grid

11 is evaluated to see the algorithm performance difference between those zones. It is worth

mentioning that the number of sub-grids depend on the crossed number of links in the study
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area. We consider the sub-grid region to be ‘reconstructible’ if at least two links cross the

chosen sub-grid and this was performed manually.

6.4.2.2 Taking projections from the microwave link

A set of projections Mp,q with discrete Mojette directions were found for the MT acqui-

sition in each grid. We have chosen discrete (p, q) projections directions fitting the best mi-

crowave link directions and minimizing the number of bins. These possible directions depend

on the ‘reconstructible’ sub-grid size. However, only very few bins onto each projection were

filled. The Figure 6.6 shows an example of taking projections for one link (red solid line in the

black rectangle) from the 4th sub-grid at two projection directions Proj1, Proj2. This sub-grid

is the one of the chosen sub-grids in Figure 6.5

Figure 6.6 – Link projection in 4th sub-grid. Here, the projections from one link (red segment
line) in 2 directions are labelled as Proj1 and Proj2. The term α1 and α2 are the angles
between projections and link.

Below, the steps for taking projections from one link are given:

1. Define projection directions Proj(p, q) using Farey-Haros series (subsection 6.3.2);

2. Find all possible projections Proj(p, q) that are nearly orthogonal to the link L: P =

{Pp,q ⊥ L} > A∗, where A∗ is the orthogonality level;

3. Choose only P with minimum number of bins in the set of the projections (Pp,q):

Pp,q = argmin{Nbin(Pp,q)} where, Nbin - number of bins in (p, q) projection.
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6.4.2.3 Angular interpolation

An angular interpolation technique proposed by (Servières et al., 2005) was applied to fill

empty bins in each projection based on nearby values. Figure 6.7 exemplifies an implementation

of the angular interpolation technique. The main idea here is to fill the bin value b3 located in the

projection (p3, q3) by using the values of b1 and b2 located in neighbouring projections (p1, q1)

and (p2, q2), respectively.

Figure 6.7 – Example scheme of angular interpolation. Here, two bins (b1 and b2) are inter-
polated onto the bin b3. (Cx, Cy) represents the central point of the pixel. (Servières et al.,
2006)

The following steps are computed to perform the angular interpolation technique on to the

empty bins:

1. Find the central point (Cx, Cy) of the projection area, i.e. microwave link area. Then,

it is possible to assume that there is a line (denoted as D) parallel to the projection

(p3, q3) which passes through the central point (Cx, Cy). The equation of this line is

{(Cx − q3 × t;Cy + p3 × t)|t ∈ <}.

2. Take projection of bin b3 on A point:

b3 = −q3 × Cx + q3
2 × t+ p3 × Cy + p3

2 × t (6.32)

3. Project A point on (p1, q1) and (p2, q2) and compute the crossed points. Here, the ith
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projected coordinate is computed as follows:

ti = −qi × Cx + qi × q3 × t+ pi × Cy + pi × p3 × t (6.33)

In our example, two points t1 and t2 are computed using the formula above.

4. Interpolate the b3 using the crossed points ti on each projection. This is implemented

using the values of t1 and t2 and the corresponding angles α1 and α2:

b3 =
α1 × t1 + α2 × t2

α1 + α2

(6.34)

A detailed explanation about the interpolation method can be found in (Servières et al.,

2006). Using these four steps we interpolate all the empty bins based on the neighbouring bin

values. This process is repeated for all the selected sub-grids in the study area.

6.4.3 Summary of the reconstruction protocol

The reconstruction of rainfall maps is performed as follows:

1. Generate the attenuation data using the protocol given in subsection 4.4.3;

2. Transform the generated attenuation data at 23 GHz using the Equation 6.31;

3. Apply the adjustment procedures:

— Choose valid sub-grids at 2 km× 2 km resolution (subsubsection 6.4.2.1);

— Get projection (subsubsection 6.4.2.2);

— Interpolate (subsubsection 6.4.2.3);

4. Reconstruct the attenuation map using the FBP Mojette algorithm (subsection 6.3.3).

The reconstructed images in all sub-grids are assembled then normalized with the max-

imum attenuation value in each sub-grid;

5. Convert the reconstructed attenuation map into rainfall rate field using the inverse form

of the k-R relation at 23 GHz;

6. Compare the reconstructed images with rainfall maps by weather radar at 2 km×2 km

resolution.

The reconstruction of rainfall map can be performed using these 6 steps. It should be

noted that only some parts of the radar rainfall map (shown in black rectangles in Figure 6.8)

are compared with reconstructed rainfall maps since the algorithm is able to retrieve rainfall
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only in ‘reconstructible’ sub-grids. To compute the accuracy of the reconstruction algorithm

the equations 5.14 - 5.17 are used.

Figure 6.8 – Weather radar rainfall image at 2×2 km2 resolution. Black rectangles correspond
to the 21 ‘reconstructible’ sub-grids.

6.5 Results and discussions

In this section, the results obtained by the MT algorithm are presented. In particular, in

order to understand its capability as well as limitations of the proposed algorithm we discuss two

important aspects: (i) General reconstruction performance over an entire region and comparison

with the Inverse algorithm presented in the previous chapter, (ii) The influence of the microwave

links network topology on the algorithm accuracy.

To evaluate the performance of the MT algorithm, we carried out 40 reconstruction tests

using the protocol explained in subsection 6.4.3. The reconstruction tests are grouped by event

type, i.e. 10 maps for each light rain, shower, organised and unorganised storm events which

have also been used for validation purpose in chapter 5. All these tests have been performed in

the presence of 5% magnitude of measurement and 0.1 dB quantization errors.

Regarding the first aspect of our analysis, the example of the reconstructed rain map for

each event is illustrated in Figure 6.9. The reconstructed area consists of 106 pixels covering

448 km2 surface of the study area with a resolution of 2× 2 km2. Since the resolutions of rain

maps by weather radar and inverse model are 0.25× 0.25 km2 and 0.5× 0.5 km2, respectively,

they have been averaged at 2 × 2 km2 resolution to be able to compare with the results of the

Mojette Transform algorithm. Then, the averaged maps by weather radar have been considered

to be a ground-truth.
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(a) Light rain, Time: 21h40, 17.06.2012

(b) Shower, Time: 08h55, 30.06.2012

(c) Organized storm, Time: 13h20, 11.06.2012

(d) Unorganized storm, Time: 18h20, 11.05.2009

Figure 6.9 – Examples of overall comparison of Mojette and Inverse algorithms with weather
radar in four rain types: (a) light rain, (b) shower, (c) organised storm, (d) unorganised storm.
The first column represents the observed rainfall by weather radar. The 2nd and 3rd columns are
the reconstructed rainfall maps based on Inverse and Mojette algorithms, respectively. Here,
the spatial resolution of these maps is 2× 2 km2.
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We can see that the performance of the MT algorithm is poor compared to the Inverse algo-

rithm although it is capturing the spatial structure of the rainfall. Perhaps, the most striking and

unexpected finding is the systematic overestimation in all events. However, the MT algorithm

is only failing if the rainfall intensity is very high, especially more visible in shower event (see,

the figure on the right in the 2nd row in top-bottom direction).

Another important finding is an increase in overestimation with respect to higher rain rates

resulting in larger error in all events. A possible explanation for this may be the lack of adequate

adjustment procedures, especially, choosing the ‘reconstructible’ sub-grids since it was selected

manually in this study. In addition to that, interpolating the empty bins by their neighbourhood

values can be another indication, perhaps a major factor to such outcomes. This indication will

be analysed in detail in Figure 6.10.

Table 6.1 – Reconstruction performance of Inverse and Mojette Transform algorithms over the
monitoring system.

Rain type Metrics Inverse algorithm Mojette algorithm

Light rain

NSE 0.85 -128103.93
ρ 0.92 0.37

BIAS 0.00 420.11
RMSE 0.67 559.09

Shower

NSE 0.60 -6866.61
ρ 0.81 0.11

BIAS 0.35 270.02
RMSE 3.73 464.88

Organised storm

NSE 0.68 -22970.86
ρ 0.88 0.30

BIAS 0.04 322.34
RMSE 1.88 475.51

Unorganised storm

NSE 0.79 -2847.68
ρ 0.89 0.28

BIAS -0.08 312.80
RMSE 4.17 473.86

Table 6.1 illustrates an overall reconstruction performance of the Inverse and Mojette al-

gorithms over the whole network area. We calculated the statistical metrics, namely NSE, ρ,

RMSE and Bias which stand for Nash-Sutcliffe, Pearson’s correlation, Root Mean Square Error

and Bias, respectively defined in section 5.6 of chapter 5. These metrics are computed for each

map and then averaged through all the maps in each event. Even though, the statistical metrics

in this table present very huge errors, it seems that the performance of the MT algorithm in-

creases with higher variability of rainfall. For example, this is clearly visible if the NSE metric
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is considered. When the Inverse algorithm is considered, NSE values are decreasing for the

same trend with increasing variability in rain events. Besides, a similar performance can be

found in Bias and RMSE as well. One interesting finding is that the MT algorithm shows the

minimum Bias in all events, resulting in 270.02 mm.h−1 (see, shower event), while the Inverse

algorithm has its maximum Bias for the same case. Overall trend seems to suggest that the MT

algorithm can perform well if the rainfall variability is very high while this is the opposite case

for the Inverse algorithm. To further investigate this behaviour, we address the second aspect of

our analysis which was stated in the beginning of the section.

Figure 6.10 – Reconstruction performance of the Mojette Transform algorithm over different
regions of the monitoring area. The labels in the figure legend are the sub-grid numbers given
in Figure 6.5.

Regarding the second aspect stated above, Figure 6.10 illustrates spatial statistics in RMSE

metric that has been computed for testing the influence of network geometry on the reconstruc-

tion accuracy of the MT algorithm. We chose the RMSE to carry out the test because the

measurement unit in this metric is the same as rain intensity which is mm.h−1. In this test, only

5 specific locations have been selected which are depicted in the legend of Figure 6.10. These

locations represent sub-grid region numbered in Figure 6.5. The sub-grids 11, 12 and 20 are the

densest parts of the network area while the sub-grids 15 and 19 are very sparse regions. The re-
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sults of the test give better understanding of the reconstruction capability as well as limitations

of the MT algorithm over different geometry of the network.

Surprisingly, the densest regions are heavily decreasing the accuracy of the MT algorithm

showing RMSE error a bit less than 600 mm.h−1 for i.e. sub-grid 11 and a bit more than 1000

mm.h−1 for sub-grid 12. This result is coming from overfeeding too many empty bins onto

projections in the interpolation procedure. Very long links in sub-grid 12 can be a driving source

for that because they produce large attenuation values, especially in high rain rates. Therefore,

the overestimation grows with increasing rain intensity as has been shown in Figure 6.9. The

same pattern applies to the sub-grid 11. Although, the link lengths in this region are very short

it may lead to overfeeding the empty bins during the interpolation procedure.

Interestingly, the MT algorithm performs better in very sparse regions of the network which

have a few links and the density is very low. We can see that the lowest RMSE error over all

events is in sub-grid 19 which is the second sparsest among the considered regions, for example,

showing less than 130 mm.h−1 in organised storm event. Next sparse region, i.e. sub-grid 15,

has almost identical trend in comparison with sub-grid 19. This result also confirms that the

interpolation plays a vital role in the reconstruction accuracy of the MT algorithm.

Overall, the capability of tomographic approach based on the MT algorithm clearly rep-

resents a poor performance due to the following reasons: (i) The accuracy of the tomographic

algorithm used in this chapter strongly depends on a number of projections which are not suffi-

cient along the microwave links, (ii) The ‘reconstructible’ sub-grid choice which was manually

fixed in this study.

6.6 Summary

The objective in this chapter was to demonstrate the feasibility of rainfall mapping by

means of tomographic reconstruction applied to signal attenuation data generated based on real

existing microwave links network. The attempt in this present chapter was to explore the capa-

bility as well as limitations of the tomographic approach on the basis of the Mojette Transform

algorithm. A series of reconstruction tests have been carried out in 4 rain events with strong spa-

tial and temporal variability. It is worth noting that the transform-based tomographic algorithm

was applied to inhomogeneous microwave links network topology, length and frequency for the

first time. The proposed algorithm seems to be quite stable for capturing a spatial variability of

rainfall over less dense network.
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In this chapter, we have addressed three important issues faced in the context of applica-

bility of the tomography approach to rainfall retrieval by microwave links. These issues are

related to (i) adjustment procedures of the tomographic algorithm (ii) Inhomogeneous link fre-

quency and lengths, (iii) Non-linearity of the reconstruction problem. However, a further study

with more focus on the following issues is suggested: (i) improvement on the ‘reconstructible’

sub-grid choice, (ii) improvement on the way of taking projection, (iii) A sensitivity analysis

to the application conditions such as ‘orthogonality level’ and quantification of associated er-

ror sources of the model parameters needs to be investigated. Further, a definition of a priori

knowledge about the state of the problem needs to be sought since the rainfall retrieval problem

to be solved is highly ill-conditioned in the tomography context.



7
Conclusions and Perspectives

7.1 Conclusions

The main objective of this research was to assess the feasibility of retrieving rainfall maps

using signal attenuation data from commercial microwave links that are operated by cellular

network companies. For that purpose, we adopted a simulation framework applied to a real

case study.

We recall two challenges stated at the beginning of the study: i) To generate rain attenuation

data along microwave links, ii) To retrieve rainfall map using the generated rain attenuation data.

We addressed the first challenge using three chapters i.e. chapter 2, chapter 3 and chapter 4.

In chapter 2, we presented a theoretical background on rain attenuation along the mi-

crowave links. In particular, we showed steps for computing electromagnetic signal scattering

as well as absorption by rain drop on the basis of Mie scattering theory and drop size distribution

models. Then, these steps were used to demonstrate the influence of drop size on microwave

signal at frequencies at 18, 23 and 38 GHz used by microwave links of cellular network in this

study. We also demonstrated a dependence of the specific rain attenuation on frequency and

rain intensity.

In chapter 3, the state of the art in rainfall measurement using microwave link(s) was

reviewed in detail. In this chapter, we analysed all existing problems and scientific progress
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regarding the applications of microwave links in rainfall measurement which were grouped

by three most important issues. The conclusions drawn from these issues are summarised as

follows:

Issue 1. Measurement errors sources that might occur along a single or multiple links:

Reviewed papers were classified by two types of errors: instrumental (i.e. quantiza-

tion, link length, frequency, antenna wetting) and environmental(drop size distribution,

temperature, rainfall variability, gas and water vapour effects). The rain attenuation

data presented in chapter 4 was generated on the basis of general conclusions drawn on

these error types.

Issue 2. Integration of a single or multiple links with traditional sensors to refine rainfall

measurement information: Recent advances in this category were outlined for radar

and rain gauges separately.

Issue 3. Development of spatial rainfall retrieval algorithms: Existing algorithms that can

be used to reconstruct rainfall map using signal attenuation data from an existing net-

work of commercial microwave links into rainfall maps were discussed. Algorithms

include: Interpolation (Kriging, Inverse Distance Weighting), tomography. Very few

studies have dealt with this issue. Our contribution has been found in this growing area

of the research.

In chapter 4, the objective was to present a case study that uses data sets i.e. weather radar

rainfall maps and cellular network. In addition, we also provided a procedure for generating

rain attenuation data based on these given data sets. For this, we applied the k-R relation

(given in chapter 2) to generate rain attenuation data along each microwave link of the cellular

network. The measurement error sources caused by drop size distribution variability and signal

quantization were simulated based on the conclusions drawn in chapter 3. Obtained results in

this chapter were used to represent realistic signal attenuation data that could be obtained from

microwave antenna stations of cellular phone companies.

To address the second challenge of the simulation framework, we developed two retrieval

algorithms in chapter 5 and chapter 6 both of which were used to reconstruct rainfall map from

the rain attenuation data generated in chapter 4. The conclusions drawn from these chapters are

as follows:

In chapter 5, we proposed the first retrieval algorithm which uses the principle of inverse

problems. The retrieved rainfall maps by this algorithm were compared with weather radar

rainfall data. The conclusion based on more than 200 retrieval tests shows that the present
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algorithm is capable of capturing spatial variability of rainfall even in a large magnitude of

measurement (i.e. upto 20 %) and model errors (i.e. upto 50%). However, one limitation

was found that the algorithm systematically underestimates the rainfall especially in higher rain

intensity.

In chapter 6, we proposed the second retrieval algorithm which is based on the principle

of tomography. The attempt in this chapter was more focused on exploring capabilities as well

as limitations of the tomographic approach. We addressed three important issues which were

found challenging in the application of tomographic algorithms for the main objective of this

research: i) adjustment procedures on the tomographic algorithm parameters ii) Inhomogeneous

link frequency and lengths, iii) Nonlinearity of the retrieval problem. The proposed algorithm

was tested applying the same rainfall data as the one used in chapter 5. It was found that

the retrieval performance is not as expected resulting very large errors compared to the first

algorithm.

7.2 Perspectives

This research opens several new directions for the future study to better understand rainfall

retrieval capability of commercial microwave links.

Regarding our simulation framework, a further research is required to improve the quality

of generated rain attenuation data in order to reflect a real nature of signal data that can be

measured at microwave antenna stations. Measurement error sources added in rain attenuation

generation (see chapter 4) were simulated based on a simplified assumption i.e random variable

with variance equal to 5% and 20% percent of the total attenuation using Gaussian normal

distribution. This could be improved by formulating a new structure which can include link

characteristics (essentially frequency and length) and climate conditions such as temperature,

humidity, gas, water vapour effects (see chapter 3). This error structure can be developed on

the basis of a methodology for modelling error sources and uncertainty proposed by (Zinevich

et al., 2010).

Regarding the inverse algorithm presented in chapter 5, a further study could be to assess

the long-term effects of the cellular network for rainfall monitoring based on longer data set,

e.g. one week instantaneous rainfall provided by weather radar. In addition, model uncertainty

structure introduced in the algorithm could be changed using the same recommendation given

in the previous paragraph. This helps to get a deeper understanding of capabilities as well as
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limitations of the algorithm. Since this algorithm heavily relies on apriori knowledge, option-

ally, different types of apriori knowledge can be introduced to see a greater degree of accuracy

on this matter.

Various issues on the tomographic algorithm proposed in chapter 6 need to be addressed:

i) improvement on the ‘reconstructible’ sub-grid choice, ii) improvement on the way of taking

projection, iii) A sensitivity analysis to the application conditions such as ‘orthogonality level’

and quantification of associated error sources of the model parameters needs to be investigated.

Furthermore, it would be interesting to test these two proposed retrieval algorithms in dif-

ferent cities of the world based on a real case study that requires signal attenuation data directly

obtained from cellular phone companies. However, this idea will naturally bring a challenge

that signal data recorded at antenna stations must be cleansed before using for rainfall retrieval.

Signal attenuation unrelated to rainfall includes baseline effects (i.e. gas, water vapour, temper-

ature, wind) and antenna wetting after the rainy period. Algorithms developed by (Upton et al.,

2005; Schleiss and Berne, 2010; Fenicia et al., 2012) are available for removing those effects

from the actual signal data.

Global perspective on the main objective of this research could be to combine commercial

microwave links with weather radar to improve the accuracy of real-time rainfall monitoring

over urban areas. This will reduce a lot of money for hydrology applications.



A
Central slice theorem

The Central Slice theorem gives us the 1D Fourier transform of a parallel projection of one

object is equal to a slice of the 2D Fourier transform of this object.

Given p(t, θ) the projections of the f function defined for t ∈ R and θ ∈ [0, π[:

proj(t, θ) =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ(x cos θ + y sin θ − t) dxdy. (A.1)

written in polar coordinates:  x = r cosϕ

y = r sinϕ,
(A.2)

in the 2D function plane:

p(t, θ) =

∫ 2π

0

∫ ∞
0

f(r, ϕ)δ(r cosϕ cos θ − r sinϕ sin θ − t) |r| dϕdr

=

∫ 2π

0

∫ ∞
0

f(r, ϕ)δ(r cos(ϕ− θ)− t) |r| dϕdr.
(A.3)

Taking the 1D Fourier transform of (A.3) on t:
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P (ν, θ) = F (p(t, θ))

=

∫ ∞
−∞

p(t, θ)e−2iπtν dt

=

∫ ∞
−∞

∫ 2π

0

∫ ∞
0

f(r, ϕ)δ(t+ r sin(ϕ− θ)) |r| e−2iπtν dϕdr

=

∫ 2π

0

∫ ∞
0

f(r, ϕ) |r| e2iπνr sin(ϕ−θ) dϕdr.

(A.4)

The centrale slice theorem comes from writing the 2D Fourier transform of the f function in a

Cartesian coordinate system:

F (U, V ) = F (f(x, y))

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−2iπ(xU+yV ) dxdy.
(A.5)

Changing for polar coordinates both in spatial and Fourier domain with: x = r cosϕ

y = r sinϕ
et

 U = ν cosψ

V = ν sinψ
, (A.6)

we get (A.5) :

F (U, V ) =

∫ 2π

0

∫ ∞
−∞

f(r, ϕ)e−2iπrν(cosϕ cosψ+sinϕ sinψ) |r| drdϕ

=

∫ 2π

0

∫ ∞
−∞

f(r, ϕ)e−2iπrν cos(ϕ−ψ) |r| drdϕ.
(A.7)

and then the central slice theorem:

F (1Dp(t, θ)) = F (2Df(r, ψ))ψ=θ . (A.8)
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Bahtiyor ZOHIDOV 
 

Reconstitution des champs de pluvieux en utilisant des mesures 
d’atténuation sur les liaisons hyper-fréquences commerciales. Une étude 
de modélisation de faisabilité. 
 
 

Retrieval of rainfall fields using signal attenuation measurements from 
commercial microwave links. A modeling feasibility study. 

 
 

 
 

Résumé 
 

L’objectif de cette étude est d’évaluer la faisabilité de la 

reconstitution des champs de précipitations dans les zones 

urbaines à l’aide de liaisons hyper-fréquence commerciales. 

Dans un cadre de simulations appliquées à une étude de cas 

réaliste, une attention particulière est portée au réseau de 

téléphonie mobile et à la ville de Nantes en France. Comme 

base, nous utilisons un ensemble de données composé de 207 

images radar météo enregistrées par Météo-France (bande C) à 

haute resolution spatiale (250m x 250m) et temporelle (5 min). 

Nous avons généré des données d’atténuation de pluie le long 

de ces liaisons qui sont utilisés pour représenter le signal réel. 

Ces données d’atténuation peuvent être enregistrées dans les 

stations d’antenne à hyper-fréquence. Deux algorithmes de 

reconstitution, à savoir l’algorithme inverse et la tomographie, 

sont proposés pour reconstruire des champs de pluie sur la 

base des données d’atténuation de pluie générées. Pour valider 

les performances de la méthode, nous réalisons des séries de 

tests de reconstitution de pluie pour des pluies légères, des 

averses, des orages organisés et non organisés avec des 

variabilités spatiales et temporelles. Les comparaisons entre les 

algorithmes inverse et tomographique sont réalisées également 

pour plus de 40 champs de précipitations et les 4 types 

d’événements afin de définir les limites et les capacités des 

deux algorithmes. 

 
Mots-clés 
 

La pluie, Liaison Hyper-Fréquence, 
Atténuation, Méthode d’Inverse, Tomographie. 

Abstract 
 

The objective in this study is to assess the feasibility of retrieval 

of rainfall fields in urban areas using commercial microwave 

links, with a special focus given on cellular network, in a 

simulation framework applied to a realistic case study. The 

study domain is the city of Nantes, France. As a basis, we use a 

data set consisting of 207 weather radar images recorded by 

Météo-France C band at high spatial (250m x 250m) and 

temporal (5 min) resolutions. We generated rain attenuation 

data along those links that are used to represent real signal 

attenuation data that can be recorded at microwave antenna 

stations. Two retrieval algorithms, namely inverse and 

tomography, are proposed to retrieve rainfall fields based on the 

generated rain attenuation data. To validate the system 

performance, we carry out series of rain retrieval tests in light 

rain, shower, organized and unorganized storm events with high 

spatial and temporal variability. The comparisons between the 

inverse and the tomographic algorithms are also made over 40 

rainfall fields in 4 events in order to define limitations and 

capabilities of both algorithms. 

 

 
Key Words 
 

Rainfall, Microwave link, Attenuation, Inverse 
method, Tomography. 
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