
HAL Id: tel-02990905
https://theses.hal.science/tel-02990905

Submitted on 5 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Point pattern matching for augmented reality
Liming Yang

To cite this version:
Liming Yang. Point pattern matching for augmented reality. Optics / Photonic. École centrale de
Nantes, 2016. English. �NNT : 2016ECDN0025�. �tel-02990905�

https://theses.hal.science/tel-02990905
https://hal.archives-ouvertes.fr

Liming YANG
Mémoire présenté en vue de lʼobtention
du grade de Docteur de lʼÉcole Centrale de Nantes
sous le sceau de l’Université Bretagne Loire

École doctorale : Sciences Pour l'Ingénieur, Géosciences, Architecture

Discipline : Aménagement de l'espace, urbanisme
Unité de recherche: Ambiances Architectures Urbanités

Soutenue le 7 décembre 2016

Recalage robuste à base de motifs de points pseudo
aléatoires pour la réalité augmentée

JURY

Président : Pascal GUITTON, Professeur des Universités, Université de Bordeaux

Rapporteurs : Peter STURM, Directeur de Recherche, INRIA Grenoble Rhône-Alpes

 Eric MARCHAND, Professeur des Universités, Université de Rennes 1

Examinateurs: Gilles SIMON, Maître de Conférences, Université de Lorraine

Directeur de thèse : Guillaume MOREAU, Professeur des Universités, Ecole Centrale de Nantes

Encadrant de thèse : Jean-Marie NORMAND, Maître de conférences contractuel, Ecole Centrale de Nantes

Abstract

Registration is a very important task in Augmented Reality (AR). It provides the

spatial alignment between the real environment and virtual objects. Unlike tracking

(which relies on previous frame information), wide baseline localization finds the

correct solution from a wide search space, so as to overcome the initialization or

tracking failure problems. Nowadays, various wide baseline localization methods

have been applied successfully. But for objects with no or little texture, there is still

no promising method. One possible solution is to rely on the geometric information,

which sometimes does not vary as much as texture or colour.

This dissertation focuses on new wide baseline localization methods entirely

based on geometric information, and more specifically on points. Point patterns

can be identified by using geometric relationships between points. Based on those

assumptions, this thesis proposes:

∙ A novel point pattern matching algorithm (RRDM) to robustly and quickly

register two 2D point sets under perspective transformation. It is validated by

augmenting different kinds of paper maps of the same city with information

retrieved from a Geographic Information System (GIS) with the help of road

intersections.

∙ Another novel and general point pattern matching algorithm (LGC). It reg-

isters 2D or 3D point patterns under any known transformation type and

supports multi-pattern recognitions. It has a linear behavior with respect to

the number of points, which allows for real-time tracking. LGC is applied to

multi targets tracking/augmentation, as well as to 3D model registration.

∙ A practical method for projector-camera system calibration by using random

dots calibration patterns: the user only needs to manipulate a small calibration

board (B4 size) for 30s to get precise and repeatable calibration results. It

can be useful for large scale Spatial Augmented Reality (SAR).

Besides, I also developed a method to estimate the rotation axis of a surface of

revolution quickly and precisely on 3D data. It is integrated in a novel framework

to reconstruct the surface of revolution on dense SLAM in real-time.

Keywords: augmented reality, point pattern matching, registration, texture-less

tracking, calibration, projector-camera, augmented map, surface of revolution

Résumé

La Réalité Augmentée (RA) vise à afficher des informations numériques virtuelles

sur des images réelles. Pour la RA, le problème du recalage est d’une importance pri-

mordiale, puisqu’il consiste à calculer la position et l’orientation de la caméra filmant

la scène réelle afin d’aligner de manière correcte les objets virtuels dans le monde

réel. Contrairement au tracking qui résout ce problème en utilisant les informations

de l’image précédente, la localisation à grande échelle (wide baseline localization)

calcule la solution en utilisant uniquement les informations présentes dans l’image

courante. Il permet ainsi de trouver des solutions initiales au problème de recalage

et, n’est pas sujet aux problèmes de perte de tracking qui peuvent survenir lorsque

deux images successives sont trop différentes l’une de l’autre. Le problème du re-

calage en RA est relativement bien étudié dans la littérature, mais les méthodes

existantes fonctionnent principalement lorsque la scène augmentée présente des tex-

tures. Pourtant, pour les objets peu ou pas texturés, il est possible d’utiliser leurs

informations géométriques qui représentent des caractéristiques plus stables que les

textures et qui sont indépendantes des changements d’éclairage de la scène.

Cette thèse s’attache donc au problème de recalage basé sur des informations

géométriques, et plus précisément sur les points. Nous proposons deux nouvelles

méthodes de recalage de points (RRDM et LGC) robustes et rapides. LGC est une

amélioration de la méthode RRDM et peut mettre en correspondance des ensem-

bles de motifs de points 2D ou 3D subissant une transformation dont le type est

connu. LGC présente un comportement linéaire en fonction du nombre de points,

ce qui permet un tracking en temps-réel. La pertinence de LGC a été illustrée en

développant une application de calibration de système projecteur-caméra dont les

résultats sont comparables avec l’état de l’art tout en présentant des avantages pour

l’utilisateur en termes de taille de mire de calibration, i.e. une mire de taille B4

seulement est nécessaire quelle que soit le distance de mise au point du projecteur

lorsque l’état de l’art utilise des mires de plus de 1.5× 2m.

Mots-clés : réalité augmenté, recalage des motifs de points, suivi, peu texturé,

calibration, projecteur-caméra, carte augmentée, surface de revolution

Publications

This dissertation is based on the following publications, which have appeared in

peer-reviewed conference proceedings:

VRST 2014 Liming Yang, Jean-Marie Normand, and Guillaume Moreau. "Ro-

bust random dot markers: towards augmented unprepared maps with pure

geographic features." Proceedings of the 20th ACM Symposium on Virtual Re-

ality Software and Technology. ACM, 2014. (Details cf. Chapter 3).

MVA 2015 Liming Yang, Jean-Marie Normand, and Guillaume Moreau. "Aug-

menting off-the-shelf paper maps using intersection detection and geographi-

cal information systems." IEEE International Conference on Machine Vision

Applications (MVA), 2015 14th IAPR. 2015. (Details cf. Section 3.5).

ISMAR 2015 Liming Yang, Jean-Marie Normand, and Guillaume Moreau. "Local

Geometric Consensus: a general purpose point pattern-based tracking algo-

rithm." IEEE Transactions on Visualization and Computer Graphics (ISMAR

2015) 21.11 (2015): 1299-1308. (Details cf. Chapter 4).

ISMAR 2016 Liming Yang, Jean-Marie Normand, and Guillaume Moreau. "Prac-

tical and precise projector-camera calibration." In Proceedings of the 2016

IEEE International Symposium on Mixed and Augmented Reality (ISMAR

2016). (Details cf. Chapter 5).

3DV 2016 Liming Yang, Hideaki Uchiyama, Jean-Marie Normand, Guillaume

Moreau, Hajime Nagahara and Rin-ichiro Taniguchi. "Real-time surface of

revolution reconstruction on dense SLAM." In IEEE International Confer-

ence on 3D Vision (3DV 2016). (Details cf. Chapter 6).

Résumé substantiel

Chapitre 1 : Introduction

La Réalité Augmentée (RA) vise à afficher des informations numériques virtuelles

sur des images réelles. Pour la RA, le problème du recalage est d’une importance

primordiale, puisqu’il consiste à calculer la position et l’orientation de la caméra

filmant la scène réelle afin d’aligner de manière correcte les objets virtuels dans le

monde réel.

Ce problème de recalage en 3D pour être résolu de plusieurs manières différentes

en fonction des dispositifs réalisant la capture de la scène réelle. Pour la RA, la

capture de la scène se fait le plus souvent via des caméras et dans ce cas, la solu-

tion au problème de recalage 3D revient à déterminer la pose (i.e. la position et

l’orientation) de la caméra dans le monde réel à partir des images capturées par

cette dernière.

Il y a deux grandes familles qui regroupent les différentes méthodes d’estimation

de pose : les méthodes dites Narrow Baseline Tracking (NBT) et les méthodes dites

Wide Baseline Localization (WBL). Les algorithmes NBT utilisent la pose calculée

dans l’image précédente et fait l’hypothèse de petits mouvements entre deux images

consécutives afin de calculer la pose de l’image courante. Ces méthodes ne sont donc

pas utilisables quand la pose de l’image précédente n’existe pas (e.g. initialisation)

ou n’a pas été trouvée. A l’inverse, les méthodes WBL ne connaissent pas de telles

restrictions. Plusieurs méthodes de WBL existent, par exemple celles basées sur des

marqueurs artificiels ou des textures. Pourtant, ces méthodes présentes également

des limitations et ne peuvent pas marcher quand les marqueurs ne sont pas acceptés

et en même temps il n’y pas assez de textures.

L’idée centrale de notre thèse provient du problème dit des cartes augmentées, où

l’on souhaite rajouter des informations numériques (issues par exemple d’un Système

d’Information Géographique - SIG) sur des cartes en papier non préparées (c’est à

dire pas de marqueur). L’idée est de pouvoir augmenter plusieurs cartes dont les

couleurs sont différentes de la même ville, à partir du même modèle SIG enregistré.

Parce que les couleurs des cartes sont différentes, on ne peut que compter sur des

caractéristiques géométriques pour les recaler. Les méthodes existantes basées sur

les textures ne peuvent pas résoudre ce problème sans avoir à apprendre au préalable

toutes les cartes.

La distribution des intersections des routes d’une ville est, dans le cas général en

europe, assez caractéristique de cette dernière. Pour résoudre le problème des cartes

augmentées, il est théoriquement possible d’effectuer un recalage en se basant sur

cet ensemble de points. De plus, le point est la géométrie la plus basique et peut

donc se trouver partout. Par conséquent, le recalage par mise en correspondance

d’ensembles de points peut potentiellement servir à la wide baseline localization

dans beaucoup de situations.

Chapitre 2 : L’état de l’art

Les méthodes wide baseline localization peuvent être séparées en trois : les approches

basées sur des marqueurs artificiels, celles basées sur des textures et celles basées

sur des géométries.

Le premier système de suivi de marqueur artificiel en RA a été proposé il y a

presque 20 ans [Rekimoto 1998]. Ces marqueurs sont souvent planaires, en noir et

blanc, et ils contiennent des motifs prédéfinis, distinguables les uns des autres. Par

conséquent, ils sont très faciles à détecter dans des images capturées par caméras.

Une fois ces marqueurs détectés, la pose de la caméra peut être calculée de manière

simple et efficace. Quoique cette approche soit rapide et robuste, la présence de

ces marqueurs un peu partout dans la scène est nécessaire, ce qui est envahissant.

De plus, ces méthodes résistent mal à l’occlusion des marqueurs : si une partie

du marqueur est cachée alors la détection échoue. Enfin, les marqueurs artificiels

doivent occuper une certaine taille dans l’image ce qui rend leur utilisation difficile

en extérieur.

Les approches basées textures utilisent les points caractéristiques que l’on ap-

pelle aussi points d’intérêts. Lors d’un prétraitement hors-ligne, les points d’intérêts

sont extraits dans un modèle (généralement, une image). Un descripteur de grande

dimension est créé à partir des textures locales autour de chaque point d’intérêt.

Ensuite, lors d’une phase en ligne, des points d’intérêts sont détectés dans l’image

courante capturée depuis la caméra, puis sont mis en correspondance avec les points

d’intérêts extraits de modèle en fonction de la distance entre leurs descripteurs.

Grâce aux correspondances, la pose de caméra peut être trouvée. Bien que ces

approches soient implémentées dans beaucoup de SDKs commerciaux, elles ne peu-

vent résoudre les problèmes similaires à celui des cartes augmentées présenté dans

le Chapitre 1.

Les approches basées géométries sont moins matures que les deux autres ap-

proches. Peu de méthodes temps-réel existent à cause de la complexité du problème

v

à résoudre. Ces méthodes essayent d’identifier des géométries dans l’image courante

et de les mettre en correspondance avec la géométrie d’un modèle connu que l’on

souhaite détecter dans l’image courante. Les géométries les plus utilisées sont les

régions, les lignes et les points. Les méthodes basées sur les points ont attiré le plus

d’attention car le point est la géométrie la plus répandue et donc la plus facile à

détecter. La méthode dite des Random Dot Markers (RDM) [Uchiyama 2011b], per-

met de recaler des ensembles de points aléatoirement distribués en temps-réel. Cette

technique a notamment été utilisée par [Uchiyama 2011c] pour réaliser une carte

augmentée à partir d’un SIG et en utilisant les intersections routières d’une carte

détectées manuellement sur la carte. Toutefois, cette méthode échoue lorsque l’on

utilise des intersections de routes détectées automatiquement par un programme.

Cet échec est dû à la faible robustesse de la méthode quand il y a du bruit dans

la détection. Ce bruit va en effet ajouter ou retirer des points à l’ensemble, ainsi

qu’introduire des légères différences aux coordonnées (ce que l’on appelle dans la

suite le jitter) de chaque points détectés dans l’image courante de la caméra. Ceci

va faire échouer la mise en correspondance de cet ensemble de points image avec

l’ensemble des intersections issues du SIG. L’un des buts de notre thèse est de ré-

soudre ce problème en proposant un algorithme à la fois efficace et robuste qui

permettra de prendre en compte ce bruit issu de la détection automatique des in-

tersections de routes.

Chapitre 3 : Marqueurs consistués des points pseudo aléatoires pour

des recalages robustes

L’algorithme “Robust Random Dot Markers” (RRDM) est proposé afin de résoudre

le recalage de deux ensembles de points 2D sous une transformation perspective de

manière robuste et efficace. Par exemple, si on enregistre un ensemble de points

modèle 𝑃 dans RRDM, et on lui donne un autre ensemble de points 𝑄 extrait de

la scène (i.e. de l’image courante filmée par une caméra), RRDM va calculer une

transformation perspective permettant de transformer l’ensemble de points 𝑃 en

(approximativement) Q.

Dans une première phase, RRDM sépare les deux ensembles de points originaux

𝑃 et 𝑄 à mettre en correspondance (i.e. à recaler) en sous-ensembles locaux. Ceci

a pour objectif d’éviter une complexité trop grande lors de la mise en correspon-

dance due à l’explosion combinatoire. Un descripteur robuste s’appelant ratio de

deux surfaces (pour Two Surface Ratio – TSR) est proposé et permet de décrire

les positions relatives entre les points dans un sous-ensemble. Le TSR reste stable

vi

même s’il y a du jitter et des points ajoutés ou supprimés aux ensembles. Une

fois une mesure de similarité calculée grâce au descripteur TSR, un processus de

vote local est réalisé pour chaque couple de sous-ensembles, où l’un des membres

du couple est issu de 𝑃 et l’autre de Q. Ce processus de vote a pour le but de

mettre en correspondance des points dans les deux sous-ensembles. Une transfor-

mation géométrique locale peut alors être estimé à partir de ces correspondances.

RRDM propose pour la première fois d’utiliser un consensus sur des transforma-

tions géométriques locales afin d’éliminer les mauvaises correspondances. Ceci nous

permet d’identifier les correspondances correctes même si leur nombre est très faible

par rapport aux mauvaises.

Des études menées sur des points générés aléatoirement par ordinateur montrent

que RRDM est plus robuste que RDM dans les cas où il y a du jitter, lorsque des

points sont ajoutés ou perdus, ainsi que lorsque la distorsion perspective est grande.

En termes de complexité algorithmique, RRDM a un comportement quadratique

par rapport au nombre de points. Pour le problème de carte augmentée, RRDM

arrive à recaler les intersections de routes issues d’un SIG et celles détectées au-

tomatiquement sur les cartes. Il prouve ainsi que le recalage de points peut être

suffisamment robuste et efficace pour effectuer un recalage purement géométrique.

Bien que RRDM résolve le recalage de deux ensembles de points de manière

robuste, il présente des défauts non négligeables. En effet, RRDM ne peut pas

gérer les cas où il existe plusieurs modèles différents (par exemple rechercher parmi

plusieurs ensembles représentant les intersections de routes de plusieurs villes). De

part son comportement quadratique, il n’est pas assez rapide pour une application

en temps-réel lorsque le nombre de points est plus grand que 100.

Chapitre 4 : Consensus géométrique local

L’algorithme “Consensus Géométrique Local” (LGC) est une suite de la méthode

RRDM et peut mettre en correspondance des ensembles de motifs de points 2D ou

3D subissant une transformation dont le type est connu (par exemple, perspective,

similitude, etc.). LGC possède un comportement linéaire en fonction du nombre

de points, ce qui permet un tracking en temps-réel, même lorsque les ensembles à

mettre en correspondance contiennent un nombre élevé de points.

Tout comme RRDM, LGC découpe tout d’abord les ensembles à mettre en

correspondance en sous-ensembles locaux. Rappelons que LGC supporte plusieurs

ensembles de points modèles que l’on va essayer de détecter dans les images issues de

la caméra. L’algorithme LGC contient trois modules : un générateur d’hypothèses,

vii

un validateur d’hypothèses et un raffineur. Étant donnée un sous-ensemble local

aléatoirement choisi à partir de l’ensemble des points détecté dans l’image de la

caméra, le générateur d’hypothèses estime tout d’abord des correspondances pré-

sumées et une transformation locale présumée pour chaque sous-ensemble de points

modèles. Ces correspondances et cette transformation locale résumées forment les

hypothèse. Pour chaque hypothèse, le validateur applique la transformation pré-

sumée aux sous-ensembles de points présents dans le voisinage de cette hypothèse.

S’il y a assez de sous-ensembles en consensus avec cette transformation présumée,

l’hypothèse est alors considérée comme correcte, c’est-à-dire, elle contient des corre-

spondances correctes. Dans une dernière étape, un raffineur est appliqué avec pour

objectif de trouver le plus de correspondances correctes possibles pour estimer une

transformation précise.

Des études menées sur des ensembles points générés aléatoirement montrent que

LGC est plus robuste que RDM tout en étant aussi efficace, et qu’il est plus efficace

que le Hashing Géométrique classique et que RRDM tout en étant aussi voire plus

robuste. Nous montrons également que LGC est capable de détecter et de suivre

divers objets avec ou sans texture en temps-réel, en augmentant par exemple des

croquis d’ingénierie avec leurs modèles 3D.

Chapitre 5 : Calibration d’un système de projecteur-caméra

En combinant une caméra et un projecteur reliés de manière rigide ou non, un sys-

tème projecteur-caméra (ProCam) permet de projeter des informations numériques

directement sur des surfaces ou des objets réels (Spatial Augmented Reality - SAR).

La calibration de système ProCam consiste à déterminer les paramètres intrinsèques

du projecteur et de la caméra, ainsi que leurs positions relatives (i.e. paramètres

extrinsèques). Ces paramètres sont essentiels pour que les informations numériques

soient bien projetées là ou elles le doivent sur les objets réels.

Pour les applications avec une grande zone de projection, le projecteur est sou-

vent mis au point à une distance assez grande. Par conséquent, les projections à

courte distance deviennent floues car elles sont faites dans une zone de l’espace pour

laquelle le projecteur est hors focus. Les méthodes existantes pour calibrer les sys-

tèmes ProCam dans de telles situations ont besoin soit qu’un utilisateur manipule

une mire de calibration de traille très importante (e.g. 1.5× 2m, soit d’utiliser une

mire 3D de calibration dont le modèle 3D numérique est connu de manière précise,

soit d’attendre quelques minutes pour obtenir les résultats.

Nous proposons une application basée sur l’utilisation de notre algorithme de

viii

LGC qui permet de calibrer un système de ProCam de manière pratique et précise

et ce quelle que soit la distance de mise au point du projecteur. L’utilisateur ne

manipule qu’une mire de taille B4 (soit 250 × 353mm) pendant 30s pour obtenir

un résultat aussi stable et précis qu’une méthode représentative de l’état de l’art,

alors que cette dernière a besoin d’une mire de calibration 22 fois plus grande que la

notre. Des expériences montrent que pour une projection a une distance de 4.5m,

l’erreur de re-projection est de 4mm environ.

Chapitre 6 : Reconstruction de surface de révolution

La démocratisation des dispositifs permettant à un utilisateur d’acquérir rapidement

et simplement un modèle 3D de l’environnement (i.e. scanners 3D, Kinect) a provo-

qué un regain d’intérêt pour les approches d’extraction automatique de connaissance

dans une scène 3D.

La compréhension d’une scène basée sur l’utilisation de données 3D est impor-

tante car elle possède de nombreuses applications comme par exemple la préhension

robotique, la simplification de modèle et la réalité augmentée. Le but de l’extraction

automatique de connaissance dans une scène 3D est dans un premier temps de dé-

tecter l’ensemble des formes primitives (par exemple, sphères, cylindres, etc.) qui

composent la scène 3D avant d’ensuite tenter d’établir des relations entre elles.

Les formes primitives actuellement détectées automatiquement par les méthodes

existantes sont souvent assez limitées, par exemple, planes, sphères, cylindres, etc.

Dans ce chapitre, nous nous intéressons à la détection automatique dans une scène

3D des surfaces de révolution (SoR), puisqu’elles englobent une grande variété de

formes primitives. L’estimation de l’axe de rotation est une étape essentielle dans

la détection d’une surface de révolution. Les méthodes existantes permettant de

détecter les SoR dans une scène 3D ne sont pas satisfaisantes car elles ne sont

pas assez précises ou bien ne sont pas suffisamment efficaces. Ce chapitre propose

une méthode tirant profit de la symétrie des surfaces de révolution, afin de trouver

une formulation simple permettant d’estimer l’axe de rotation de manière précise

et efficace. Nous illustrons la pertinence de notre méthode en reconstruisant des

surfaces de révolution en temps réel dans des données issues d’un SLAM dense.

Nos résultats sur des troncs de cônes synthétiques montrent que les erreurs

d’estimations sur les orientations de l’axe de rotation sont inférieures à 0.5∘ et que

le processus peut reconstruire différents objets usuels (bouteilles, tasses, mugs, etc.)

issus de surfaces de rotations en temps-réel (45fps). Des expériences menées sur des

surfaces de révolutions réelles (deux cylindres) montrent que les erreurs d’estimations

ix

des diamètres sont inférieures à 2mm.

Chapitre 7 : Conclusion

Dans cette thèse nous avons proposé des méthodes pour recaler des motifs de points

pseudo aléatoires, puis nous avons illustré la pertinence de nos approches en dévelop-

pant des applications de réalité augmentée et de calibration de système ProCam

basées sur nos algorithmes de recalage. Nous avons montré que le recalage des mo-

tifs de points est une solution viable pour la localisation à grande échelle dans des

applications de réalité augmentée. Les contributions de cette thèse sont :

∙ Une nouvelle méthode de recalage de points robuste et rapide (RRDM) perme-

ttant de recaler deux motifs de points en 2D sous une transformation perspec-

tive. Nous avons montré que cette méthode permet d’effectuer le recalage des

données issues d’un SIG et de les afficher en réalité augmentée sur des cartes

en papier dont les couleurs sont différentes et ce sans préparation préalable.

∙ LGC, une deuxième méthode de recalage de points plus générale que RRDM.

L’algorithme LGC permet de mettre en correspondance des ensembles de mo-

tifs de points 2D ou 3D subissant une transformation dont uniquement le type

est connu. LGC présente un comportement linéaire en fonction du nombre de

points, ce qui permet un tracking en temps-réel et le rend donc particulière-

ment intéressant pour des applications de réalité augmentée.

∙ Une application de LGC à la calibration de systèmes projecteur-caméra dont

les résultats sont comparables avec l’état de l’art tout en présentant des avan-

tages pour l’utilisateur en termes de manipulation de mire de calibration qui

est 22 fois plus petite que celle nécessaire avec une méthode existante représen-

tative lorsque la projection s’effectue à de grandes distances (≥ 2.5m).

Dans le futur, diverses améliorations sur des applications développées seront

envisagées pour les rendre plus faciles à utiliser. Il est par exemple possible

d’optimiser les performances de LGC pour des applications différentes en choisis-

sant de meilleures valeurs de paramètres. Pour ce faire, il sera nécessaire d’étudier

attentivement les influences de chaque paramètre sur le comportement global de

l’algorithme. De nouvelles applications font aussi partie de nos perspectives de

recherche. Nous pensons par exemple à un SLAM monoculaire pour des environ-

nements peu texturés ou bien à une méthode pour recaler des modèles CAO avec ses

modèles issus des scans 3D pour lesquels les approches existantes ne sont pas satis-

faisantes aujourd’hui. Enfin, afin de proposer une solution plus générale au problème

x

de localisation à grande échelle, nous souhaitons proposer de nouvelles manières

d’utiliser l’ensemble des informations de textures et géométriques, ainsi qu’étudier

d’autres méthodes basées sur des géométries plus complexes que des points, e.g. les

lignes, les régions, etc.

xi

Contents

1 Introduction 1

1.1 Registration . 3

1.1.1 Vision-based localization . 5

1.1.2 Narrow baseline tracking . 7

1.1.3 Wide baseline localization . 7

1.2 Thesis motivation . 8

1.2.1 Finding point correspondences 8

1.2.2 Problem risen from augmented maps 9

1.2.3 Point pattern matching and its difficulties 10

1.3 Thesis statement and contribution 11

1.4 Thesis outline . 12

2 Related work 13

2.1 Fiducial marker based localization 13

2.2 Texture based localization . 15

2.2.1 Feature extraction . 15

2.2.2 Feature description . 16

2.2.3 Feature matching . 17

2.3 Geometry based localization . 17

2.3.1 Region based approaches . 18

2.3.2 Line segment based approaches 19

2.3.3 Wide baseline point pattern matching 20

2.3.4 Random Dot Markers . 24

3 Robust random dot markers (RRDM) 29

3.1 A robust descriptor . 30

3.1.1 Definition . 31

3.1.2 Affine invariance . 32

3.1.3 Point jitter and descriptor variance 33

3.2 Algorithm . 35

3.2.1 Offline pre-registration . 36

3.2.2 Local Voting and Coherency 37

3.3 Choice of parameters . 41

3.3.1 Robustness of descriptor and 𝑘, 𝜂, 𝐷𝑚𝑎𝑥 41

Contents

3.3.2 Threshold 𝑣𝑡 . 42

3.3.3 Influence of point jitter on A and 𝛼𝑡, 𝜃𝑡 43

3.4 Results . 43

3.4.1 Synthetic images . 44

3.4.2 Real markers . 45

3.4.3 Natural map tracking . 48

3.5 Application: Augmented Maps . 51

3.5.1 Intersection detection on real maps 51

3.5.2 Results . 55

3.6 Conclusion . 56

4 Local geometric consensus (LGC) 59

4.1 General algorithm . 60

4.1.1 Definitions and a brief description of the algorithm 61

4.1.2 Hypotheses generator . 62

4.1.3 Hypotheses validator . 66

4.1.4 Result refiner . 67

4.1.5 Parameters . 68

4.1.6 Local consensus: a guarantee of low false alert 71

4.2 Specific Implementations . 73

4.2.1 2D homography . 73

4.2.2 3D similarity . 74

4.3 Results on synthetic point sets . 76

4.3.1 Speed and robustness studies 76

4.3.2 3D model registration . 80

4.3.3 LGC with additional information 82

4.4 Applications . 84

4.4.1 Tracking ordinary planar objects 84

4.4.2 Augmenting engineering drawings 85

4.5 Discussion . 86

4.5.1 Neighbors . 86

4.5.2 Transformation 𝑇 . 86

4.5.3 Repetitive structures . 88

4.6 Conclusion . 88

5 Defocused projector calibration for projector-camera systems 91

5.1 Related work . 92

xiv

Contents

5.1.1 Two-views based methods . 92

5.1.2 Inverse camera methods . 93

5.1.3 Limitations . 94

5.1.4 Contribution . 95

5.2 Calibration Method . 95

5.2.1 Basic notations and inverse camera method 96

5.2.2 Calibration pattern . 97

5.2.3 Algorithm . 98

5.3 Defocusing error . 99

5.3.1 The origin of the defocusing error 100

5.3.2 An estimation of the defocusing error 102

5.4 Calibration results . 103

5.5 Augmentation evaluation . 106

5.5.1 Focus distance . 109

5.5.2 Error distribution . 109

5.5.3 Perspective and depth . 110

5.6 Conclusion . 112

6 Surface of revolution reconstruction from 3D data 113

6.1 Related work . 114

6.2 Surface of revolution axis estimation 116

6.2.1 Basic idea . 116

6.2.2 Approximately linear objective function 118

6.3 Implementation details . 121

6.3.1 Algorithm . 121

6.3.2 Plane cutting and circle fitting 122

6.3.3 Determining 𝑃𝑠 and solving 𝜑(𝜃) 124

6.4 Real-time SoR reconstruction . 125

6.4.1 Segment classification . 125

6.4.2 Workflow . 126

6.5 Results . 128

6.5.1 Synthetic study . 128

6.5.2 Real data . 129

6.6 Conclusion . 131

7 Conclusion 133

7.1 Point Pattern Matching algorithms 133

xv

Contents

7.1.1 2D point pattern matching 133

7.1.2 LGC: a general solution for PPM 134

7.2 Projector-camera system calibration 135

7.3 Scene understanding in 3D data . 135

7.4 Perspectives . 135

Bibliography 139

xvi

List of Figures

1.1 The reality-virtuality continuum [Milgram 1995] 2

1.2 Augmentation shown (a) with OST retina display

([Magic Leap 2015]), (b) with VST Head-mounted display

([Kato 1999]), (c) with OST head-mounted display ([Maimone 2013]),

(d) with VST hand-held display ([Ridden 2013]), (e) OST display

free of head-wore or hand-held device ([Hilliges 2012]), (f) with SAR

([Jones 2014]). 3

1.3 AR displays in different position ([Bimber 2005]) 4

1.4 Pin-hole camera model . 5

1.5 Edinburgh: (a)-(b) paper maps of different styles. (c) road network

extracted from GIS. 9

1.6 Some examples of point patterns (a) star matching [Lang 2010], (b)

bead coding [Datta 2013], (b) engineering drawing of an apartment. . 11

2.1 Examples of fiducial markers: (a) ARTag [Fiala 2005], (b) AR-

ToolKit [Kato 1999], (c) Circular markers [Naimark 2002], (d)

RDM [Uchiyama 2011b]. 14

2.2 SIFT descriptor. Left: Image gradients of 16×16 neighborhood of in-
terest points. Right: Sums of the gradient magnitudes in 8 directions

of 4× 4 subregions [Lowe 1999]. 16

2.3 Random dot markers [Uchiyama 2011b] 25

2.4 An intersection on a paper map is an area (represented by the red

circle for example). It is difficult to tell the precise location of the

intersection. 26

2.5 The number of correctly matched LLAH descriptors for each point

with noise on coordinates. 21 indicates a full match (each point is

associated with 21 descriptors). 27

3.1 𝑃 is the model point set in 2D coordinates, 𝑄 is the observed scene

point set, they are related by a 2D homography 𝐻. 30

3.2 Three Quad-Point configurations. 31

3.3 Possible regions for 𝐹 : only feasible regions are À, Á and Æ. 33

List of Figures

3.4 Jittered Quad-Point and its TSR descriptor. Left : Original Quad-

Point Q (solid blue line) and jittered Quad-Point Q′ (red dotted line)

from a front view. Right : Original (𝑋,𝑌, 𝑐) and jittered (𝑋 ′, 𝑌 ′, 𝑐)

descriptors in descriptor space. Gray region represents the matching

region 𝑅(𝑋,𝑌, 𝑐). 34

3.5 Quantization of descriptor value for configuration 𝑐. The subregion

with red stripes represents 𝐻𝑖𝑑𝑥(𝑋,𝑌, 𝑐) while subregions with green

stripes represent 𝑆𝑖𝑑𝑥(𝑋,𝑌, 𝑐). 36

3.6 An increment of vote for table of 𝑉𝑝,𝑞. Left : Neighbor correspon-

dences are established from two matched Quad-Points. Right : Cor-

responding cells are incremented by one vote in 𝑉𝑝,𝑞. 38

3.7 Vote probability distribution functions (𝜙𝑖,𝜙𝑜) 42

3.8 Cumulative distribution for 𝑃 (| ln𝛼(1)| ≤ ln𝛼𝑡), 𝑃 (| ln𝛼(2)| ≤ ln𝛼𝑡)

(top) and 𝑃 (Δ𝜃 ≤ 𝜃𝑡) (bottom) . 44

3.9 Point quantity experiment: robustness and speed with respect to 𝑚.

𝛽 = 15%, 𝜂 = 3%. 46

3.10 Jitter experiment: 𝑚 = 100. 46

3.11 Video snapshots: upper band for paper markers (the rightest one did

not work), lower band for screen-based markers. 47

3.12 Extra point experiment, 𝛽 × 𝑚 extra points are added inside the

marker. Solid bars represent correct reprojections, empty bars repre-

sent incorrect ones. 48

3.13 Tilted view experiment. Solid bars represent correct reprojections,

empty bars represent incorrect ones. 49

3.14 Missing point experiment. Solid bars represent correct reprojections,

empty bars represent incorrect ones. 50

3.15 Augmenting natural maps of Edinburgh. Maps (a), (b) and (c) are

three different maps registered with a single model and a 3D model

of the castle is rendered onto them. 50

3.16 Schema of the application. 𝐼0 is the first image used for initialization.

𝐻0 is the homography between the GIS and the map contained in 𝐼0 52

3.17 Workflow of road layer extraction . 53

3.18 Classic level set method for map extraction. (a) The initial contour

Γ0. (b) The final contour. (c) The result of two segments represented

in different uniform colors 𝐴1 (white) and 𝐴2 (black). 54

xviii

List of Figures

3.19 (b)-(d) Results of various level sets. The segment 𝐴1 represents road

layer in white, the segment 𝐴2 represents the background in black. (a)

Original map portion. (b) Classic level set method. (c) The presence

of road labels disturbs contours. (d) Our modified level set method. . 54

3.20 Left: an example of rectangular stripes. Right: Initial contours are

created from the edges between white stripes and black stripes. . . . 55

3.21 Data sources. Left: GIS road network (green) and road intersections

(red). Right: One raster map. 55

3.22 Intersection detection results (blue points). Top: filter-based method

used in Section 3.4.3. Bottom: Modified level set (new method). . . . 56

3.23 Initialization results for two different maps. 57

3.24 Frame 11, 94 and 167 (from left to right) of tracking results in video

3. Top row presents original augmented frames while bottom row

shows zooms to illustrate the precision of the matching. 57

4.1 Input and outputs of our algorithm. 𝜂, 𝑘, 𝑁𝑙𝑎𝑟𝑔𝑒 and 𝑁𝑚𝑎𝑥 are the

parameters of the algorithm. 60

4.2 An example of a paired-patch (𝑝, 𝑞) with 𝑘 = 6. 𝑝 and its 6 nearest

neighbors are in red. 𝑞 and its 6 nearest neighbors are in blue. Black

lines with arrows represent correspondences of the paired-patch. Note

that not all points have a correspondence due to missing/extra points,

and wrong correspondences could also occur. 61

4.3 General schema for offline registration: 𝑝-patches are created for each

point in all models and are registered into the generator. 63

4.4 General schema for online matching: Generator (Section 4.1.2) is

a geometric hashing module. Validator (Section 4.1.3) validates the

input hypothesis and creates a list of correspondences from it. Refiner

(Section 4.1.4) computes the final result. 63

4.5 An illustration before the refiner module: model points (in red) are

projected into the scene. Scene points are in blue, correspondences in

𝑠𝑙 are in black. The convex hull of scene points in the correspondence

list C is represented by a green polygon, 𝑜 being its center. Region À

is near C and thus the projected model point and the scene point al-

most overlap. Region Á is far from C and thus the distance between

the projected model point and the scene point is larger. A correspon-

dence will be established for point 𝑞′ outside of C if a model point is

projected within 𝑑𝑡 = 2 𝑜𝑞′

𝑜𝑞𝐶
𝜎 . 69

xix

List of Figures

4.6 Condition 𝑁𝑙𝑎𝑟𝑔𝑒 confirms the presence of model but refiner finds

outliers so the estimation of 𝑇 is not accurate. It can be seen in the

yellow ellipse where points are correctly detected but not matched.

Correspondences found in validator are inside the green ellipse and

are inliers. 70

4.7 Local basis 𝐵 (𝑝0, 𝑝1, 𝑝2, 𝑝3) for 2D homography. 𝑝0 is the origin. �̂�𝑖

are axes of the local coordinate system. 73

4.8 Local basis 𝐵 (𝑝0, 𝑝1, 𝑝2) for 3D similarity. 𝑝0 is the origin. �̂�𝑖 are

axes of the local coordinate system, with �̂�𝑖 ⊥ �̂�𝑗 , (𝑖 ̸= 𝑗). 𝑋𝑖 are the

coordinates of 𝑝2 under this local coordinate system, with 𝑋3 ≡ 0. . 75

4.9 Speed experiment. Top: Ideal conditions without jitter nor ex-

tra/missing points. Reprojections for all methods are 100% precise.

Middle and Bottom: 𝛽=15%, 𝜂=3%, missing=0%, occlusion=0%. . 77

4.10 Jitter experiment (model 𝑃 contains 100 points). 𝛽=0%, miss-

ing=0%, occlusion=0%. 78

4.11 Extra points experiment (model 𝑃 contains 100 points). 𝜂=3%, miss-

ing=0%, occlusion=0%. 79

4.12 Random missing points experiment (model 𝑃 contains 100 points).

𝛽=0%, 𝜂=3%, occlusion=0%. 79

4.13 Occlusion experiment (model 𝑃 contains 100 points). 𝛽=0%, 𝜂=3%,

missing=0%, perspective=30∘. 79

4.14 Perspective experiment (model 𝑃 contains 100 points). 𝛽=0%,

𝜂=3%, missing=0%, occlusion=0%. 79

4.15 Discriminative power. Top: with different number of models. Each

model contains 100 points. Bottom: with different jitter factor. 50

models are used with 100 points in each model. Full boxes stand for

success, empty boxes for good model found with wrong or imprecise

transform. (3.19) is used to judge if a transform is precise. 81

4.16 Left: the model point set (in blue) detected from the original bunny.

Right: an example of scene point set (in blue) detected from a trans-

formed instance. 82

4.17 Graf series and results. Top: graf figures. Bottom left: result for

image pair (left, middle). Bottom right: result for image pair (left,

right). 83

4.18 Models used in this experiment. From left to right: (Top)

appartment-plan, city-map, person, advertisement; (Bottom) post-

card, cross-word, graffiti, point-pattern. 84

xx

List of Figures

4.19 Tracking results: Solid bars stand for correct matching, empty bars

for bad matching (i.e. the algorithm matches the scene to a wrong

model, or produces an imprecise matching by visual assessments). . . 85

4.20 Augmenting CAD drawings of a ragum, an apartment and a kart (see

supplementary video). 86

4.21 Delaunay mesh neighbors (left) and nearest neighbors (right) of the

same point set. Neighboring points (black dots) are connected by

a black edge. Mesh neighbors connect points better than nearest

neighbors, the latter giving rise to four “important edges” represented

in red. 87

4.22 Impact of regular patterns. (a) chessboard, 165/165 repetitive feature

points. (b) office design, 26/109 repetitive feature points. Blue points

are detected while red points are projected model points. 88

5.1 Projector’s light stripe calibration. Left: the setup of the calibration

system. Middle: calibration board. Right: light stripe projected onto

the calibration board. [Yamauchi 2008] 92

5.2 An example of setup of two-views based method. The car and its cor-

responding 3D numeric model is the calibration object. Structured-

light patterns are projected onto the car [Resch 2015]. 93

5.3 Different calibration pattern used in inverse camera methods.

(a) Regular dot pattern is used and point correspondences be-

tween projector and camera are found by projecting structured-

lights [Li 2014]. (b) A physical and a projected regular dot pat-

tern is used [Ouellet 2008]. (c) A physical and a projected chess-

board is used [Gao 2008]. (d) Two matrix of ARToolKit markers are

used [Audet 2009]. 94

5.4 Calibration: only a small board is manipulated whatever the focus

distance of the projector. 96

5.5 Calibration Patterns: 𝑃𝑏 in black are printed on a piece of paper. 𝑃𝑝

in white are projected. Both form the original pattern 𝑃𝑜. 97

5.6 Point patterns used in Alg. 9. From left to right: 𝑃𝑝, projected

pattern𝐻𝑝𝑟𝑒(𝑃𝑝), 𝑃 ′
𝑏 and 𝑃

′
𝑝 in camera view, board pattern 𝑃𝑏. 𝐻𝑐𝑝 =

𝐻𝑐𝑏 if 𝑃 ′
𝑏 and 𝑃

′
𝑝 are well aligned on board. 100

xxi

List of Figures

5.7 Projection geometry for defocusing error: 𝑂 is the projector optical

center, 𝑝𝑜 is the projector plane, 𝑝𝑖 is the plane of focus, 𝑝𝑏 is the

board plane. The blue cone represents the light that follows a lens

projector model. s𝑜 (green) is projected by the lens and forms a

defocused spot s𝑏 on the board. Both the green cone and red cone

represent the light that follows a pinhole projector model. If s𝑜 is

projected by a pinhole projector (the green cone), it should form a

clear spot s′𝑏 on 𝑝𝑏. s𝑟 (red) is the defocused spot “seen” by an inverse

pinhole projector (the red cone). 101

5.8 Comparison of a 2×𝐴0 calibration board used by [Audet 2009] and

a 𝐵4 calibration board used by our method (bottom-right) for large

focus distances (≥ 250cm). 104

5.9 Average and maximum reprojection errors (RMSE): A red point on

the curve indicates a significant difference between Audet’s method

and ours, at 𝑝 < 0.05 using a Student’s t-test. 105

5.10 Focal length results: our method gives a significantly more stable

estimation at 𝑝 < 0.05 using a Student’s t-test. It shows the trend of

focal length variation. 105

5.11 Principal point position results: there is no significant difference be-

tween our method and Audet’s one, despite the size difference between

the calibration patterns. 106

5.12 Evaluation pattern: (printed) black points are used for localization,

(projected) white points are used to measure projection errors. . . . 107

5.13 Projection of a segment: 𝑂𝑐 is the camera’s origin. A world segment

𝐿 is on a board parallel to the camera’s image plane at 𝑧, its image

𝑙 is on the image plane. We have 𝑙/𝐿 = 𝑓𝑐/𝑧. 109

5.14 RMSE with different focus distances. Color dots mean that RMSE

significantly differ from our result: 𝐻0 of (5.11) is rejected. 110

5.15 Reprojection error in rectified views (focusing at 450cm). From left to

right: ours, Audet-CFD, Audet-50cm. Red lines are drawn to show

points alignment. Circles’ diameter is 48mm. 110

5.16 Error distribution in projector’s view (focusing at 250cm). Reprojec-

tion errors (instead of RMSE) are used in the t-test: Color circles

indicate significant differences from our result. 111

5.17 RMSE with various rotations (focusing at 250cm). Color dots mean

RMSE significantly differ from our result: 𝐻0 of (5.11) is rejected. . 111

xxii

List of Figures

5.18 RMSE with various depths (focusing at 250cm). Color dots mean

RMSE significantly differ from our result: 𝐻0 of (5.11) is rejected. . 112

6.1 Symmetry of SoR and planes . 117

6.2 Sketch of 𝑃𝑠: All useful quantities are inside 𝑃𝑠 118

6.3 Angular span of data points on a fitted circle: black points represent

data points in plane 𝑃𝑗 , 𝐶𝑗 is the fitted circle, Ω𝑗 is the angular span

of data points. 123

6.4 Workflow of real-time surface reconstruction for SoR. 126

6.5 A synthetic truncated cone: with small radius 𝑟, height ℎ, angular

span Ω, and the opening angle Θ. 128

6.6 𝜑(𝜃) for different objects: synthetic cone (right top), Can (right mid-

dle) and Cup (right bottom). They are approximately linear. 129

6.7 Synthetic result: errors on the direction of the rotation axis. Top:

errors with respect to opening angles Ω, with 𝜂 = 0.03; Bottom:

errors with respect to the amount of noise 𝜂, with Ω = 120∘. 130

6.8 Dataset 1: Measuring objects of known dimension. Dashed lines

represent ground truth values. Solid lines represent measurements

from reconstruction results. 131

6.9 Dataset 2: Time consumption. 132

6.10 Dataset 2. Top: Original segmented point cloud (left) and our recon-

struction result (right). Bottom: visual comparison between RGB

image (left), original point cloud (middle) and reconstruction result

(right) for Cup and Can objects. 132

xxiii

List of Tables

3.1 Qualities of detections in map tracking experiment (Mean value ±
standard deviation). 49

3.2 Results of the “Map tracking experiment”. Good matching rates is

shown. Detection time and matching time per frame are reported in

the form of “Mean value ± Standard Deviation”. 51

4.1 Registration results . 82

6.1 Different surface types according to 𝑓𝑡 and 𝑓𝑟 125

Chapter 1

Introduction

Contents

1.1 Registration . 3

1.1.1 Vision-based localization . 5

1.1.2 Narrow baseline tracking . 7

1.1.3 Wide baseline localization . 7

1.2 Thesis motivation . 8

1.2.1 Finding point correspondences 8

1.2.2 Problem risen from augmented maps 9

1.2.3 Point pattern matching and its difficulties 10

1.3 Thesis statement and contribution 11

1.4 Thesis outline . 12

Augmented Reality (AR) is a technology which enhances the real-world environ-

ment in real-time by adding some extra information, usually generated by comput-

ers. It allows people to perceive some information which is hidden or does not exist

in the real-world. One of the most commonly accepted definition of AR is given by

Ronald Azuma [Azuma 1997, Billinghurst 2015]: an AR system should have three

key properties:

1. It combines real and virtual content

2. It is interactive in real-time

3. It is registered in 3D

Azuma’s definition is quite general, not specific to visual information. However,

since the vision is usually the most important perception system for humans, most

AR research focus on augmenting the real-world environment using visual informa-

tion. Visual AR is also the focus of this dissertation.

AR is closely related to Virtual Reality (VR), both of which create virtual con-

tents to enhance users’ perception. The reality-virtuality continuum [Milgram 1995],

Chapter 1. Introduction

as shown in Fig. 1.1, clearly illustrates the difference between AR and VR. The con-

tinuum extends from Real Environment (pure real-world environment) to Virtual

Environment (VR). In VR, people are totally immersed into a virtually created

world and no real-world object can be perceived. Mixed Reality (MR) is defined as

the mixture between Real Environment and Virtual Environment. AR is a part of

MR, where only a part of the Real Environment is replaced by some virtual contents.

In AR, people can interact with both real and virtual objects.

Figure 1.1: The reality-virtuality continuum [Milgram 1995]

According to Azuma’s definition, a basic system of visual AR contains three key

components: (1) a 3D registration system, which aligns the virtual environment to

the real environment; (2) a rendering system, which combines the virtual environ-

ment and the real environment, taking account of occlusion due to different depths,

color changes due to lighting conditions, etc.; (3) a display, which shows the render-

ing result to end users. All the three components should run in real-time (normally

≥ 20 frames per second - fps) so that users can notice less artifacts.

Depending on different technologies used to display the augmented contents, AR

displays can be classified into three types [Billinghurst 2015]:

1. Video See-Through (VST): VST displays use a camera to capture the real

environment. They combine the virtual environment and the real environment

numerically and show the final augmented results to users on screens. Users

cannot see the real-world directly but only a digital illustration captured by

the camera and displayed on screens.

2. Optical See-Through (OST): OST displays use optical systems to combine

light from the real environment and light from virtual contents. Users’ eyes

receive the combined light, so he can see the augmented results.

3. Spatial Augmented Reality (SAR): SAR use projection to directly overlay

the virtual environment onto real-world objects. Users directly see both the

real environment along with augmented information, without any other device

in-between.

2

1.1. Registration

(a) (b) (c)

(d) (e) (f)

Figure 1.2: Augmentation shown (a) with OST retina display ([Magic Leap 2015]),
(b) with VST Head-mounted display ([Kato 1999]), (c) with OST head-mounted
display ([Maimone 2013]), (d) with VST hand-held display ([Ridden 2013]), (e)
OST display free of head-wore or hand-held device ([Hilliges 2012]), (f) with SAR
([Jones 2014]).

From another point of view, [Bimber 2005] classifies different AR displays accord-

ing to the spatial position where the real environment and the virtual environment

are mixed, as shown in Fig. 1.3. Different types of displays can be used at differ-

ent spatial positions. Some examples are presented in Fig. 1.2, such as retina OST

(1.2a), head-mounted VST (1.2b) and OST (1.2c), hand-held VST (1.2d), spatial

OST (1.2e) and SAR (1.2f).

1.1 Registration

From Azuma’s definition, another key feature of AR systems is the 3D registration.

It is a common requirement whatever rendering techniques or display devices are

used. 3D registration aligns the virtual and the real environments so that virtual

objects can be merged into the real-world at their desired positions and orientations.

Although 3D registration exists for some VR systems as well, AR systems require

much more accurate registration than VR systems. Since virtual objects are overlaid

onto the real environment, even a 0.5 degree of arc mis-registration can easily be

noticed by users [Azuma 1997].

3

Chapter 1. Introduction

Figure 1.3: AR displays in different position ([Bimber 2005])

When the real environment (or the real target to be augmented) is known, the

registration problem is reduced to a localization problem in 3D, namely determining

the viewer’s pose (i.e. position and orientation) in the real environment coordinate

system. Depending on the devices used, localization can be mainly divided into four

categories:

1. Magnetic-based localization relies on the properties of magnetic fields to

calculate the pose of the receiver, which is attached to the viewer.

2. Vision-based localization uses information retrieved from captured images

by cameras to find the pose of the viewer. Different kinds of cameras may be

used, e.g. traditional RGB cameras, depth cameras, etc.

3. Inertial-based localization uses Inertial Measurement Unit (IMU), which

usually includes accelerometers, gyroscopes and magnetometers. It measures

translational movements, the orientation relative to gravity and the velocity

of the viewer.

4. GPS-based localization relies on satellite navigation to roughly estimate

the viewer’s geographical location.

4

1.1. Registration

5. Hybrid localization combines the the advantages of above mentioned ap-

proaches in order to give a robust and precise estimation.

The magnetic-based approach needs special preparation on target objects, which

increases the workload. Inertial-based and GPS-based approaches can only give a

rough estimation of the viewer’s position, which usually cannot satisfy the precision

requirements of AR systems. The vision-based approach has the advantage to be

simple and cheap, i.e. using images captured by cameras to estimate the position of

cameras with respective to the world. This method is also similar to the humans’ vi-

sual perception. For these reasons, vision-based localization gets the most attention

in the AR community.

1.1.1 Vision-based localization

cO

cx

cy

cz

Actual
image plane

Equivalent
image plane

12

wO

wx

wy

wzx
cx

*cx

Figure 1.4: Pin-hole camera model

The pinhole camera model is the most commonly used camera model in the

computer vision community. Therefore, it is one of the elementary concepts in

vision-based localization. The pin-hole camera model is represented in Fig. 1.4,

with 𝑂𝑤 being the coordinate system of the real environment. 𝑂𝑐 is the coordinate

system of the camera. Assume that the pinhole camera has zero lens distortion.

Light from a world point x traverses through the camera’s optical center and forms

an image x𝑐* on the camera’s actual image plane. For the sake of simplicity, the

image point x𝑐 on the camera’s equivalent image plane is often used instead. The

relationship between x = (𝑥, 𝑦, 𝑧) and x𝑐 = (𝑥𝑐, 𝑦𝑐) in homogeneous coordinates can

be expressed as:

5

Chapter 1. Introduction

⎛⎜⎜⎝
𝑥𝑐

𝑦𝑐

1

⎞⎟⎟⎠ = K [R|t]

⎛⎜⎜⎜⎜⎝
𝑥

𝑦

𝑧

1

⎞⎟⎟⎟⎟⎠ (1.1)

In (1.1), K is the camera’s intrinsic matrix. It is assumed to be invariant as time

and position change. [R|t] is the extrinsic matrix, where R is a rotation matrix and

t is a vector representing the translation. They describe the transformation from the

world coordinate systemO𝑤 to the camera coordinate systemO𝑐. As a consequence,

performing registration for AR systems with a vision-based approach boils down to

finding the camera extrinsic parameter matrix [R|t].

In images captured by real cameras, the lens distortion is unavoidable. If x̃𝑐 =

(�̃�𝑐, 𝑦𝑐) is the image point distorted by the lens distortions, the distortion-free image

point x𝑐 = (𝑥𝑐, 𝑦𝑐) can be usually derived by solving equations below: [Zhang 2014,

Duane 1971]:

�̃�𝑐 = 𝑥𝑐(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) + 2𝑝1𝑥

𝑐𝑦𝑐 + 𝑝2[𝑟
2 + 2(𝑥𝑐)2]

𝑦𝑐 = 𝑦𝑐(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) + 𝑝1[𝑟

2 + 2(𝑦𝑐)2] + 2𝑝2𝑥
𝑐𝑦𝑐

(1.2)

where 𝑟2 = (𝑥𝑐)2 + (𝑦𝑐)2, 𝑘1, 𝑘2, 𝑘3 are radial distortion coefficients and 𝑝1, 𝑝2

are tangential distortion coefficients.

Fortunately, since intrinsic matrix and the distortion coefficients can be assumed

invariant for a camera as time and position change, cameras in AR systems are often

calibrated beforehand. Therefore, localization is to estimate the extrinsic matrix

with known the intrinsic matrix K and lens distortion coefficients.

Most of the time, an AR system seamlessly estimates the location of the viewer

(i.e. the camera) since the viewer moves with respect to the environment. It consists

of estimating the extrinsic matrix [R|t] for each frame in the video sequence captured

by the camera. If the viewer’s pose in the previous frame is known, it can be used

as additional information for estimating the pose of the current frame. The usage of

the previous pose to estimate current pose is called narrow baseline tracking (also

called recursive tracking [Lepetit 2005] or tracking by tracking [Uchiyama 2012]).

For the first frame of the input video sequence, or if the pose of previous frame is

not found (i.e. the tracking failure), the viewer’s pose can only be estimated from

information in current frame. In such a case, it is called wide baseline localization

(also called tracking by detection [Lepetit 2005, Uchiyama 2012]).

6

1.1. Registration

1.1.2 Narrow baseline tracking

Since the previous camera pose is available, and the current pose is assumed to be

changed only little from the previous one, narrow baseline tracking is mostly tackled

by optimization, where the previous pose serves as the initial value. Two approaches

are commonly used:

1. Bayesian tracking recursively estimates the probability density function of

camera pose over time using incoming images captured by the camera and

a mathematical process model. The two most important applications are

Kalman [Gennery 1992] and Particle [Choi 2012] filters.

2. Local optimization calculates the camera pose [R|t] by minimizing the dis-

parity between the model and the observed data, with the camera pose in

previous frame being the initial value. For example, optical flow or template

matching minimizes the difference between a template warped by a transfor-

mation 𝑇 ([R|t]) and the input image [Jurie 2001]. Visual Servo System (VSS)

tackles the dual problem of 2D visual servoing and minimizes the error between

the command and the output of a control system [Comport 2006].

1.1.3 Wide baseline localization

Since no presumed position is available, wide baseline localization consists of finding

the camera pose by solving (1.1) in most of the time. As the intrinsic matrix K

and lens distortion coefficients are known, if there are enough world-image points

correspondences, (1.1) can be solved and [R|t] can be uniquely defined. Depending

on the nature of world points’ spatial arrangement, there are two main approaches:

1. Perspective-n-Point (PnP) is used when world points are not coplanar.

When 𝑛 ≥ 4, [R|t] has a unique solution [Gruen 2002].

2. Pose from 3D plane is used when world points are coplanar. The trans-

formation from the plane containing all world points to the image plane can

be represented by a homography 𝐻. It can be uniquely determined when

𝑛 ≥ 4. When both 𝐻 and K are known, [R|t] can be uniquely deter-

mined [Lepetit 2005].

Compared to the “local optimization” in Section 1.1.2, these two approaches aim

at finding the global optimal solution. Whichever approach used, the most crucial

step in wide baseline localization is to find the correct correspondences between

7

Chapter 1. Introduction

world points and image points. This is often done by matching points from a

previously known model object and its image captured by the camera, i.e. points

from the scene object. In most applications, the number of points to match is much

greater than 4. Additionally, there is always noise in image points due to imperfect

detections. These constraints make this crucial step difficult to solve.

Some other work treat the wide baseline matching as pose classification plus

narrow baseline tracking. Programs learn roughly the pose of the model under

different views offline. During online matching, the learnt pose being most similar

to the scene is found via classification. Then, the pose is used as the initial value

for narrow baseline tracking [Holzer 2009]. This kind of approaches does not need

to know point correspondences explicitly.

1.2 Thesis motivation

Although narrow baseline tracking demands less computation efforts and can be

relatively easy to solve thanks to information from the previous frame, it suffers

from some drawbacks, such as its difficulty to recover from tracking failure and to

deal with fast movements (i.e. large movements between two consecutive frames).

Moreover, it cannot estimate the initial pose. Wide baseline localization comes

with a more expensive computation cost but it does not suffer from any of above

drawbacks.

1.2.1 Finding point correspondences

The key of wide baseline localization is to find correspondences between world points

and image points. Currently, there are commonly two kinds of approaches to find

these correspondences, i.e. marker based approaches and natural feature based

approaches.

Fiducial markers, such as ARToolKit Markers [Kato 1999], contain predefined

self-distinguishable patterns and are attached to target objects at specific locations.

During tracking, they are recognized by the AR system in each frame, thus leading to

points correspondences. They can achieve frame-rate wide baseline localization, but

they require special preparation on each target, and fiducial markers are intrusive

for users.

Nature feature methods are proposed for marker-less wide baseline localization,

such as SIFT [Lowe 2004], SURF [Bay 2008] or BRIEF [Calonder 2012]. These

methods rely on local textures to distinguish different interest points to establish

8

1.2. Thesis motivation

point correspondences. Recently, they become a standard approach for wide baseline

localization in many cases.

1.2.2 Problem risen from augmented maps

The motivation of this dissertation comes from the idea of Augmented Maps. Tradi-

tional paper map offers lots of advantages: users can have natural interactions with

them such as adding annotations or drawing trajectories. It is also easier for sev-

eral users to collaborate on a common paper map which facilitates communication.

However, paper maps remain static: their content cannot be changed according to

users’ preferences, no computation result (such as flow simulation or shortest path)

can be added without adding layers or reprinting the map. These drawbacks can

be removed if paper maps were augmented with dynamic digital information. Since

most information of cities is now recorded in Geographic Information Systems (GIS),

it is a natural way to base augmented maps on GIS.

(a) (b) (c)

Figure 1.5: Edinburgh: (a)-(b) paper maps of different styles. (c) road network
extracted from GIS.

Relying on existing methods, one possible approach is to associate natural fea-

tures of target paper map with their geo-coordinates manually, then the map can

be tracked by traditional natural feature methods. But manual registrations are

inconvenient. Especially when working with different types of maps of the same city

(cf. Fig. 5.3), manual registrations should be done for each type of map. Therefore,

an automatic geo-referencing of paper map with GIS is preferable.

Contents on paper maps and information stored in GIS are very different. For

example, Fig.1.5a-1.5b show two paper maps of different styles of Edinburgh, which

are raster images. Fig.1.5c is an illustration of the road network of the same area

retrieved from a GIS, where raw data are vectorial (e.g. lines, points, polygons,

etc.). Natural feature methods are not able to establish correspondences between

these two sources, since the nature of data is completely different.

In fact, the only common features between a paper map and the data from GIS

9

Chapter 1. Introduction

of the same area are geometric quantities, such as road networks. Uchiyama et

al. have successfully registered paper maps with a GIS by using a point pattern

matching algorithm (Random Dot Markers - RDM [Uchiyama 2011b]) on road

intersections [Uchiyama 2011c]. However, they need to explicitly mark the road

intersections manually so that they can be easily detected. In order to augment

natural, unprepared maps, it is possible to use algorithms, such as [Callier 2011], to

automatically extract road intersections instead of performing a manual detection.

Unfortunately, such algorithms are prone to massive under and over detection as

well as approximation errors of positions of the road intersections. As a result,

it is impossible for the RDM method to compute a correct matching with these

automatically detected road intersections.

Thus, automatic geo-referencing of paper map with GIS still remains unsolved.

More generally speaking, the problem of wide baseline localization when only ge-

ometric quantities are available, without any marker or texture, is still not fully

solved.

1.2.3 Point pattern matching and its difficulties

Point is the most basic geometric element. In some cases, only points are available,

such as a starry sky (cf. Fig. 1.6a) and bead coding used in massive simultaneous

assays in drug screening and drug discovery (cf. Fig. 1.6b). In some cases, objects

may not have much texture information but it is easy to retrieve lots of points from

them, such as engineering drawings (cf. Fig. 1.6c). At last and most important,

points can be a very good connection between “images” in different modes, such

as road intersections from paper maps and those retrieved from GIS. Therefore, a

fast and robust Point Pattern Matching (PPM) method can be a good approach for

geometric (or texture-less) wide baseline localization for AR. Although sometimes

point may have their own characteristics such as colors, sizes, etc. Pure geometric

points with only coordinates are considered here because of their generality.

Point pattern matching, or point set registration, is the process of finding a

spatial transformation that aligns two point sets. Let us consider two point sets

𝑃 and 𝑄, where 𝑃 is the model point set and 𝑄, called the scene point set, is an

observation of 𝑃 . PPM aims at determining the pair-wise point correspondences

between 𝑃 and 𝑄, as well as finding the transformation 𝑇 which brings such cor-

respondences satisfactorily close. PPM has another description known as Largest

Common Set (LCS) [Choi 2006]. LCS aims at finding the transformation 𝑇 which

maximizes the cardinality of the subset 𝑄𝑠 from 𝑄 and keeps the Hausdorff distance

10

1.3. Thesis statement and contribution

(a) (b) (c)

Figure 1.6: Some examples of point patterns (a) star matching [Lang 2010], (b)
bead coding [Datta 2013], (b) engineering drawing of an apartment.

𝑑𝑖𝑠𝑡(𝑇 (𝑃), 𝑄𝑠) under a specific small threshold. Due to acquisition noise, points in

𝑄 may not originally exist in 𝑃 (i.e. over-detection or extra points) and points in

𝑃 may not appear in 𝑄 (i.e. under-detection or missing points). Moreover, even

though there is neither over-detection nor under-detection and the ground truth

transformation 𝑇 is given, the model point set after transformation 𝑇 (𝑃) may not

yet lie exactly on their corresponding points in 𝑄 because of noisy point positions.

This inaccuracy of point position is called jitter afterwards.

The difficulty of PPM is that every point is the same. When considering in-

dividual points rather than a group of points, any two points can be potentially

matched. This gives a huge number of potential matching candidates. The avail-

able information to distinguish different points is only the geometrical distribution

of points, i.e. the spatial relationship between points. However, due to the presence

of under-detection, over-detection and jitter, the only usable information becomes

biased. Given the poorness of the quality of the information, robust matching al-

gorithms are generally time consuming. This is the reason why PPM algorithms

in the literature are either fast but not robust against point jitter [Nakai 2006], or

robust but not fast enough [Wolfson 1997] for tracking purposes in complex AR

applications.

1.3 Thesis statement and contribution

Thesis statement

Wide baseline point pattern matching can be both fast and robust enough for aug-

mented reality applications in texture-less environment.

The main contributions of this dissertation are:

1. A novel point pattern matching algorithm (RRDM) to robustly and quickly

11

Chapter 1. Introduction

register two 2D point sets under perspective transformation. It is validated by

augmenting different kinds of paper maps of the same city with information

retrieved from a Geographic Information System (GIS) with the help of road

intersections.

2. A general algorithm for pure point pattern matching under any transformation

in 2D or 3D in a fast and reliable way. It addresses problems where current

methods would fail or require a lot of preprocessing, including but not lim-

ited to: model-based augmentation with little texture information (e.g. CAD

drawings); augmenting different paper maps with GIS; industrial environments

in which placing textures (or classical black and white markers) may be an

issue; registering 3D models acquired in different lighting conditions; robust

initial pose estimation for edge-based tracking.

3. A practical and precise projector-camera calibration method based on the

above algorithm. It can calibrate an out-of-focus projector and gives stable

calibration results as well as small Root-Mean-Squared errors (RMSE). To cal-

ibrate projectors with large focus distances, traditional methods either require

users to manipulate a huge calibration board or to have a precise 3D model.

The proposed method only needs a B4 (250× 353mm) size calibration board

to achieve comparable calibration results.

1.4 Thesis outline

The rest of the dissertation is organized as follows. Chapter 2 presents related

work on wide baseline localizations. Chapter 3 proposes a robust and fast method

for point pattern matching in 2D, which can be used to register unprepared paper

maps with GIS data. Chapter 4 proposes a general point pattern matching method

in both 2D and 3D. It is more robust, supports multi-model, and has linear time

complexity behavior with respect to the number of points potentially to be matched.

Chapter 5 show one application of LGC for calibrating defocused projectors. Chap-

ter 6 presents a piece of work on 3D data, i.e. a method to detect and reconstruct

surfaces of revolution in a dense-SLAM sequence in real-time. Chapter 7 draws

conclusion of the whole dissertation and perspectives for possible future work.

12

Chapter 2

Related work

Contents

2.1 Fiducial marker based localization 13

2.2 Texture based localization . 15

2.2.1 Feature extraction . 15

2.2.2 Feature description . 16

2.2.3 Feature matching . 17

2.3 Geometry based localization 17

2.3.1 Region based approaches . 18

2.3.2 Line segment based approaches 19

2.3.3 Wide baseline point pattern matching 20

2.3.4 Random Dot Markers . 24

In the past, two surveys on AR have been published in 1997 [Azuma 1997] and

2001 [Azuma 2001]. An analysis of 10 years of ISMAR publications by [Zhou 2008]

has shown the important position of registration, i.e. more than 20% of the total

papers are related to “tracking”. Recently, a survey on pose estimation for augmented

reality was published [Marchand 2016].

This chapter describes previous work on wide baseline registration methods.

It begins with a short summary on fiducial marker based registration methods in

Section 2.1, followed by marker-less registration methods based on local textures in

Section 2.2. It ends up drawing attention on marker-less registration methods based

on geometric information in Section 2.3, which is not totally solved yet but hardly

mentioned in latest survey [Marchand 2016].

2.1 Fiducial marker based localization

Fiducial markers are man-made objects, often planar, placed in the field of view

of the camera to serve as reference points. Most of these markers contain self-

distinguishable patterns, so point correspondences are easy to establish.

Chapter 2. Related work

Such markers were firstly introduced by [Rekimoto 1998] in AR, followed by

many other types of designs. The two most representative types of fiducial mark-

ers are square and circular markers. Square markers use four corners of a rect-

angle as points of interest to estimate a perspective transformation. As a single

marker is sufficient to compute the camera pose, they are also denoted as “pla-

nar” markers [Lepetit 2005]. While ARTag [Fiala 2005] also use matrix codes as in

[Rekimoto 1998] for marker identification, other patterns such as alphabet letters

and simple geometric shapes are also used in ARToolKit [Kato 1999]. Regarding

circular fiducial markers, at least four of them need to be positioned in a coplanar

but non collinear way to compute a unique perspective transformation, thus they

are referred to as “point” markers [Lepetit 2005]. Contrasting concentric circles

(CCC) [Gatrell 1992] is the main trend of this type of markers for which sub-pixel

accuracy can be achieved. [Naimark 2002] adds “data rings” between outer and inner

rings to identify different markers.

[Uchiyama 2011b] proposed Random Dot Markers (RDM). They use local ar-

rangements of point patterns, known as Locally Likely Arrangement Hashing

(LLAH) [Nakai 2006], to establish point correspondences. Their method proves

to be robust to partial occlusions. As this method also can be regarded as geometry

based registration, it will be detailed in Section 2.3.4.

(a) (b) (c) (d)

Figure 2.1: Examples of fiducial markers: (a) ARTag [Fiala 2005],
(b) ARToolKit [Kato 1999], (c) Circular markers [Naimark 2002], (d)
RDM [Uchiyama 2011b].

14

2.2. Texture based localization

2.2 Texture based localization

Texture based methods usually rely on local features for wide baseline local-

ization. These local features can be interest points [Lowe 1999] or interest re-

gions [Forssén 2007]. A high dimension textual descriptor is constructed for each

local feature, and the distance between descriptors is used to measure the similarity

between corresponding local features. Then, feature correspondences can be estab-

lished according to these similarities. Most of commercial SDKs, such as Metaio

(bought by Apple in 2015), Vuforia of PTC, provide localization based on this tech-

nique.

The whole procedure contains two stages: (1) Offline training stage: features

of model objects are extracted and descriptors are calculated. Then a database is

created from these descriptors and the positions of features. (2) Online localization

stage: for each input image, features of scene objects are extracted and descriptors

are calculated. Then these features are matched with model features stored in the

database. Finally, points correspondences are established and the camera pose of

the current image is estimated.

There are three basic tasks in the whole procedure above: feature extraction is

dedicated to localizing visual salient features; feature description is used to con-

struct the high dimension descriptor from the texture of the local patch around

each feature; feature matching is used to establish correspondences according to

descriptors.

2.2.1 Feature extraction

Interest points include geometric corners as well as the points in an image where

the image intensity changes significantly. Usually, we refer to both of them as

corners [Rosten 2010] in a general sense. Curvature maxima can be extracted to

detect geometric corners from the contours of objects [Awrangjeb 2012]. Second-

order derivatives or auto-correlation are used to extract general corners, such as

Difference of Gaussian (DoG) [Lowe 1999], Harris corner detector [Harris 1988], Shi-

Tomasi detector [Shi 1994]. SURF uses the determinant of the Hessian matrix and

relies on integral images for speeding up [Bay 2008]. Pixel intensity comparison is

also used to detect corners more efficiently (FAST) [Rosten 2006]

Thick line and interest regions can be used as features as well. [Grompone 2010]

(LSD), [Wang 2009a] (Line Signature), [Zhang 2013] offer some methods for line

segment extraction. [Donoser 2006] gives a good method for extracting interest

regions (MSER).

15

Chapter 2. Related work

Regarding the wide baseline localization problem, feature repeatability is an

important challenge for the extraction method. A feature is said to be repeatable

when the same feature is extracted from different images of the same scene, despite

perspective distortions or imaging noise. An evaluation of repeatability of different

methods on point feature extraction can be found in [Ballesta 2008], which concludes

that Harris corner detector [Harris 1988] works the best under different scales and

viewpoints.

2.2.2 Feature description

SIFT proposed by David G. Lowe [Lowe 1999] is one of the most famous feature

descriptor. After having extracted interest points, the 16×16 neighborhood of each

interest point is uniformly divided into 4 × 4 subregions. For each subregion, the

sum of the gradient magnitudes are calculated in 8 directions. The descriptor of the

interest point is created by assembling all the sums of the gradient magnitudes in

the 8 directions of all the 4× 4 subregions, resulting in a 128 dimension vector (cf.

Fig. 2.2). The vector is then normalized to achieve illumination invariance.

Figure 2.2: SIFT descriptor. Left: Image gradients of 16 × 16 neighborhood of
interest points. Right: Sums of the gradient magnitudes in 8 directions of 4 × 4
subregions [Lowe 1999].

Following this idea, other kinds of descriptors were then proposed.

SURF [Bay 2008] is built by relying on the distribution of first order Haar wavelet

responses in x and y directions. BRIEF [Calonder 2012] is created by comparing

two sequences of pixels located near the extracted feature, which produces a binary

descriptor. These two methods are used for interest point features. For line seg-

ment features, [Bay 2005] uses color histograms as descriptor, [Wang 2009b] adopts

a SIFT-like approach to create MSLD descriptor. [Forssén 2007] applies SIFT to

create an interest region descriptor.

16

2.3. Geometry based localization

2.2.3 Feature matching

Since descriptors are high dimension vectors, the most common approach is to calcu-

late a distance between different vectors, such as the Euclidean distance [Lowe 1999]

or the Hamming distance [Calonder 2012]. For each feature in the scene, one needs

to find its corresponding features in the database of model features. This is equiva-

lent to finding the nearest neighbor of the scene feature from all model features in

the descriptor space. To this end, either an exhaustive search [Calonder 2012] or

approximate kd-trees [Beis 1997] are used. To prevent false matchings, a threshold

on the distance value [Bay 2005] or on the distance ratio between the first two near-

est neighbors [Lowe 2004] is used. To remove the threshold parameter, one can use

PROSAC [Chum 2005], a geometric based approach (cf. Section 2.3.3.1), to help

find point correspondences.

From another point of view, feature matching can be regarded as a classification

problem given feature descriptors. The view set of a model feature under different

transformations defines a class. Classes are trained offline and scene features are

classified online. Two features belonging to the same class establish a matching.

Random trees [Amit 1997] and random ferns [Ozuysal 2010] have been used and

provide good results.

2.3 Geometry based localization

Different from texture based methods, geometry based localization does not rely

on any photometric information to establish feature correspondences, or to directly

find the camera pose. Since no color information is used, this kind of approach can

register information in different representations. For example, the same object being

painted in different colors can be aligned with its CAD model with no previously

defined color; raster paper maps can be registered with information from GIS; an

infrared image of a scene can be aligned with its visual appearance, etc. Due to

the lack of discriminative information, methods based on geometric information are

often more computational expensive and thus only few work have been proposed for

real-time applications, e.g. AR. Therefore, the following of this dissertation is not

limited to real-time methods in order to give a wider view in this section.

In 2D images, geometric quantities are points, edges, regions (or shapes), etc.

Methods are divided into region based approaches in Section 2.3.1, line segment

based approaches in Section 2.3.2 and point based approaches in Section 2.3.3. More

specifically, I introduce and discuss in detail Random Dot Markers, a point based

17

Chapter 2. Related work

approach in Section 2.3.4 as it consists of the background of this dissertation.

2.3.1 Region based approaches

A 3D object usually forms a region (or a shape) in a 2D image. Considering the fact

that regions are the most complex geometric structures in 2D images, one can obtain

more information than edges or points to perform registration. As a consequence,

many texture-less registration methods rely on the shape or the contour of regions.

To register planar objects, [Goshtasby 1986] uses regions’ mass centers as con-

trol points and applies a point pattern matching method to solve the correspondence

problem. [Flusser 1994] creates a 4 dimensional affine invariant descriptor from each

region. Each descriptor is associated with its homologous mass center, which facil-

itates the point pattern matching problem. [Martedi 2013] use joints of line seg-

ments extracted from the region’s contour as control points. Support Vector Shape

(SVS) [Van Nguyen 2013] is a descriptor of shape constructed using Support Vec-

tor Machine (SVM) [Cortes 1995], where the resulting support vectors are control

points near the contour of the shape. [Campbell 2015] by using control points of SVS

boils down planar shape registration to point pattern matching. [Holzer 2009] virtu-

ally generates different views of the model regions, then creates Distance Transform

(DT) [Rosenfeld 1968] from contours of each virtual view. These distance trans-

forms are then used to train random ferns. The pose estimation problem is solved

by online classification. The method requires the target to contain several regions

and can achieve near real-time matching. [Rothwell 1992] proposes a method to

find four perspective invariant points on a general continuous concave curve. The

method is applied by [Hagbi 2009] to calculate a perspective invariant signature for

each concave curve in order to distinguish different concave shapes. It can estimate

the perspective transformation with only one concave shape. [Donoser 2011] com-

bines the method of [Holzer 2009] and the one of [Hagbi 2009] to work with at least

one concave shape. They achieve real-time matching.

To register 3D objects, a common approach is adopted by most researchers.

First, 2D views of the 3D model object are virtually generated from a set of possible

viewing angles and stored in a database with their corresponding poses in an off-

line phase. Then during online matching, the best virtual image with respect to the

scene image is found by contour matching. At last, the pose corresponding to the

matched model image is used as an initial value and refined by a recursive tracking

process. [Choi 2012] uses chamfer matching for contour matching and particle filter

for pose refinement. [Reinbacher 2010] proposes to use a hierarchical structure to

18

2.3. Geometry based localization

organize the virtual views in order to speed up the matching. [Holzer 2009] treats

the best contour matching problem as a classification problem. He uses the distance

transforms of all virtual views to train ferns and the scene image is classified later

on. As contour matching is a very essential step, some researchers aim at developing

more efficient and robust algorithms. [Damen 2011] discretizes the contour to form

edgelets (short straight segments) and creates a constellation of edgelets by casting a

ray from the one of the edgelets and following reflections of the ray on other edgelets.

The descriptor of this constellation is composed of the parameters (reflecting angles,

zig-zag length ratios) of its generating path, which are used for contour matching.

BORDER [Chan 2016] is another descriptor for contour matching. It samples the

contour to create a sequence of linelets (small line segments of equal length). Angles

between linelets are used to calculate the contour’s descriptor, which are matched

by kd-trees.

2.3.2 Line segment based approaches

Due to noise, occlusion and broken detected lines, the detected endpoints of line seg-

ments are hardly reliable [Li 2016]. This effect coupled with over or under detections,

makes it difficult to register line segments. [Coiras 2000] uses extrapolation of lines

to create triangles. An exhaustive search on triangle matching is adopted to find the

final solution. [Guan 2009] also uses lines or extrapolation of lines but converts line

matching to point matching by using their intersections. [Wang 2013] transforms

lines to points by using their coordinates in the parametric space and thus converts

the line matching to a point matching problem. But it does not work for affine

transformations. [Long 2014] models each line segment as a 6D point and employs

Gaussian Mixture Model and Expectation-Maximization to register the high dimen-

sion point set. This method is used to register a map with an aerial image. But it

cannot converge when the rotational angular difference between two targets is larger

than 40∘. [Gros 1998] uses descriptors constructed by neighboring line segments for

similarity or affine transformations. It calculates transformations between matched

descriptors and finds the clusters of these transformations in parametric space. Line

Signature (LS) [Wang 2009a] creates a 11 dimension descriptor for each line segment

by using its 5 neighboring segments. It deals with affine transformations and uses

a hash table like approach for matching. The BOLD descriptor [Tombari 2013a] is

a vector containing two angles between two line segments and the line connecting

the middle point of them. BOLD descriptors are matched with the help of kd-trees

in order to find correspondences. This method is not affine invariant since angles

19

Chapter 2. Related work

change under affine transformation.

2.3.3 Wide baseline point pattern matching

Pure Point Pattern Matching (PPM), i.e. registration of different point sets with

only their coordinates, is a common problem in many research field such as image

registration, astronomy [Lang 2010] and biochemical tests [Datta 2013]. Major al-

gorithms can be divided into four categories: RANSAC like approaches, geometric

invariant approaches, parametric space approaches and optimization approaches.

2.3.3.1 RANSAC like approaches

RANSAC [Fischler 1981] is a random approach for PPM. First one subset of corre-

spondences is randomly chosen among all possible point correspondences in order

to estimate a first “hypothesis” of the transformation. Then other correspondences

are used to check whether this hypothesis is valid. The hypothesis that gives rise

to the highest number of inliers is chosen as final output. RANSAC is an efficient

method usually when the inlier ratio (in the sense of correspondence) is higher than

50% [Lowe 2004]. Some improvements on RANSAC were then proposed to cooper-

ate with cases where inlier ratios are lower. BaySAC and SimSAC [Botterill 2009]

reduce the probability of correspondences to be selected when they have already

led to a false matching in previous hypotheses. NAPSAC [Myatt 2002] is based on

the observation that if two correspondences match from two neighboring points in

the point set 𝑃 to two neighboring points in the point set 𝑄, then these two corre-

spondences will probably be correct. It chooses the first correspondence uniformly

randomly as in RANSAC. But for other correspondences, it favors the selection of

those in the neighborhood of the first correspondence. Nevertheless, these methods

can hardly work for pure PPM problems, since the number of all combinations of a

model point 𝑝 ∈ 𝑃 and a scene point 𝑞 ∈ 𝑄 is very large [Denton 2007].

If biased information on point set or correspondences is available other than

only point coordinates, other sampling mechanisms are available. With available

point correspondence reliability metrics, PROSAC [Chum 2005] draws the corre-

spondences with higher reliability first during the creation of subsets. Group-

SAC [Ni 2009] is a better choice when source point sets can be classified into different

groups, with the help of additional information from images. [Raguram 2013a] has

integrated several other methods mentioned above into a unified package (USAC).

20

2.3. Geometry based localization

2.3.3.2 Geometric invariant based approaches

Geometric invariant approaches include all methods which exploit inter-point spa-

tial relationships for matching. Geometric Hashing (GH) [Wolfson 1997] is one of

the most famous and classical methods in this category. It uses subsets of points

to construct coordinate bases so that other points’ coordinates under such bases

are invariant to a predefined transformation type. In a first offline step, it chooses

every possible basis in the model, calculates other points’ coordinates in each ba-

sis and stores them into a hash table. During the matching, random bases are

iteratively selected in the scene, the coordinates of the remaining points’ are ex-

pressed in each basis and matched with the model basis in hash table. The pair

of bases which receives the highest number of votes gives the final result. GH is

robust against extra/missing points and jitter but its major drawback is the huge

computational complexity in 𝑂(𝑛𝑏), where 𝑏− 1 is the number of points needed to

form a basis [Wolfson 1997]. [Lamdan 1991] and [Rigoutsos 1995] discussed the in-

fluence of noise on GH. [Wolfson 1997] gives a good review on classical GH. Instead

of using the whole point set for each basis, [Lang 2010] only uses the coordinates

of two points under the coordinate system defined by two other points to encode

geometric relationship into a “codebook”, which reduces the memory cost in case

of large amount of points. The proposed “codebook” can be seen as descriptors.

[Van Wamelen 2004] proposes to match the nearest neighbors of two points to ac-

celerate the process. While these two pieces of work are restricted to similarity

transformations, others use affine invariant geometric descriptors. [Heyl 2013] im-

proves over [Lang 2010] by using surface-ratios to deal with affine transformations

and uses kd-trees for descriptor matching. Its time complexity is 𝑂(𝑛4 log 𝑛) with

respective to the number of points 𝑛, which is not possible to be used for real-time

application. LLAH [Nakai 2006] also uses surface-ratios but only relies on neighbor

points to create descriptors. A hash table is used for descriptor matching. This

method will be explained in detail in Section 2.3.4.

2.3.3.3 Parametric space based approaches

Transformations are uniquely defined by transformation parameters. For example,

an affine transformation can be determined by 6 parameters of real value. The

parameters of a specific transformation type form a high dimension space. The

ground truth transformation corresponds to a point in this parametric space. Some

methods aim at finding this parametric point in order to solve the point pattern

matching problem. Pose clustering [Olson 1997], also known as Generalized Hough

21

Chapter 2. Related work

Transform (GHT) [Ballard 1981], is a representative method in this category. It

discretizes the parametric space into bins, enumerates all possible transformations

and votes in those bins. The bin receiving the highest number of votes is chosen

as the result. However, the enumeration makes these methods computationally

intensive. [Huttenlocher 1992] divides the parametric space into subspaces and uses

the partial Hausdorff distance to measure the matching score, where a smaller score

means a better matching. If the matching score of a subspace is smaller than a

threshold, this subspace itself will be divided to smaller subspace for further search.

[Mount 1999] proposes to use branch-and-bound breadth-first search for acceleration

by introducing lower bounds of subspaces. The parametric space is divided into small

cells (i.e. subspaces) and the upper and lower bounds of partial Hausdorff distances

are calculated for each small cell. A best value is managed and updated when a

smaller upper bound is found. If a cell’s lower bound is larger than the best value,

the cell is rejected and will not be processed further. This process continues until

a satisfactory transformation is found. This method is still not efficient especially

when the dimension of the parameter space is high. [Datta 2013] combines geometric

invariant approach and parametric space approach. It constructs 4-points affine

invariants (4PAI) for each point by using their nearest points. Segment-ratios (which

are affine invariants) are created from each 4PAI and are used for 4PAIs matching.

The matched 4PAIs then generate clusters in the transformation parameter space

to find the affine transformation.

2.3.3.4 Optimization based approaches

For optimization approaches, divergence estimators [Jones 2001] of two point sets

are defined as objective functions to be minimized. The most classical method of

this group is Iterative Closest Points (ICP) [Besl 1992b]. It assigns to each model

point its nearest neighbor in the scene point set with the help of an initial guess of

the transformation. Then it estimates an updated transformation with these cor-

respondences. These two steps iterate until a threshold is reached. The process

minimizes the sum of correspondence distances and guarantees to find a local mini-

mum. But the method is slow for real-time application when the difference between

the poses of two point patterns is big and the basin of convergence of the global

minimum is quite narrow. [Fitzgibbon 2003] uses the Levenberg-Marquardt algo-

rithm to minimize the same objective function and updates the intermediate point

correspondences for derivative computation as well. It improves the basin of con-

vergence to ±60∘ in terms of rotation in some cases. Instead of assuming one-to-one

22

2.3. Geometry based localization

correspondence based on the nearest neighbors in each step, robust point match-

ing [Gold 1998] proposes one-to-many relaxations. Each model point is assigned to

several scene points with different weights according to the distances between them.

These weights are arranged in a correspondence matrix, which collapses to a binary

(one-to-one) correspondence matrix during a deterministic annealing.

Researchers also adopted Gaussian mixture models (GMM). Point sets are in-

terpreted as a statistical sample drawing from GMM. This representation naturally

takes jitter into account and converts a hard discrete optimization to a relatively

easier continuous optimization. [Granger 2002] (EM-ICP) uses model point set to

construct Gaussian Mixtures, where each model point serves as the center of a

Gaussian kernel. It treats the scene points as samples drawn from model Gaussian

Mixture and treats the correspondence matrix as a hidden variable. It applies the

Expectation-Maximization (EM) algorithm: the transformation is fixed and corre-

spondences are estimated from expectation during the E-step; then correspondences

are fixed and transformation is updated by maximizing a likelihood function during

the M-step. Although EM-ICP is more robust than the original ICP, it is about

two times slower for the same number of points. [Jian 2011] models both point

sets as Gaussian Mixtures and minimizes the L2-distance between the two Gaussian

Mixtures. At beginning, the size of the Gaussian kernel is set large, and thus a

rough alignment can be found by minimizing the L2-distance. Then, the size of the

Gaussian kernels is gradually decreased (i.e. annealing) to achieve a finer alignment.

Point correspondences are not found explicitly. This method can be seen as Kernel

Correlation (KC) [Tsin 2004] specialized with a Gaussian kernel. [Jian 2011] also

points out that the objective function of their method, the original ICP, EM-ICP

and KC are all concrete forms of a general divergence family [Jones 2001]. Similarly,

the performance of these methods depends highly on the rotation difference between

two point patterns.

Besides linear transformations (also called rigid transformation in most work),

researchers get more and more interested in non-linear (i.e. non-rigid) transforma-

tions, which can be used for perspective transformation for example. [Chui 2000]

adds a regularization term in the objective function which limits the magnitude

of second order derivatives of the transformation function. [Myronenko 2010] uses

motion coherence theory, which imposes the preservation of topological structure on

point sets, to regularize the transformation function. But these modifications did

not improve the robustness against rotation.

23

Chapter 2. Related work

2.3.3.5 Other approaches

[Wang 2012, Caetano 2006] treat point pattern matchings under Euclidean trans-

formations as graph matching problems. As their methods base on the invariance

of distances between points, it cannot be generalized to affine or perspective trans-

formations. [Shapiro 1992] proposes the spectral context. It calculates the Gaussian

distance between every point pair in the same point set and constructs a proximity

matrix from these distances. Singular Value Decomposition (SVD) maps each point

to an eigenvector of the proximity matrix. In this way, two point sets can be con-

verted to two sets of eigenvectors and the distances between eigenvectors are used for

matching. However, this method breaks down if two patterns have different numbers

of points. [Tang 2014] uses the same idea but on local point sets to construct de-

scriptors for matching and introduces an “approximate distance order” to deal with

noise. Unfortunately, this method takes only similarity transformations into consid-

eration. Evolutionary algorithms [Agrawal 1994, Ezoji 2006, Yin 2012, Zhang 2003]

and Particle Swarm Optimizations (PSO) [Yin 2006] have also been used. But they

either deal with only similarity transformations, or require certain model points to

appear in the scene.

2.3.4 Random Dot Markers

Although there exist numerous approaches for the point pattern matching, algo-

rithms which are efficient enough for real-time wide baseline localization are quite

limited. From this point of view, feasible methods are the local geometric invari-

ant based approaches. The most representative method is LLAH [Nakai 2006],

which can be applied to achieve real-time tracking of Random Dots Markers

(RDM) [Uchiyama 2011b] (cf. Fig. 2.3). It is the starting point of this disserta-

tion and is the closest related work. Therefore, this section provides a detailed

explanation of this method and discusses its drawbacks.

2.3.4.1 Locally Likely Arrangement Hashing (LLAH)

LLAH was originally designed as a document retrieval system. The original param-

eters of LLAH are chosen here for the sake of a simple explanation. LLAH is based

on area-ratios, which are affine invariants, to create descriptors. Given four coplanar

points 𝐴,𝐵,𝐶,𝐷 and 𝑆(·) being the surface of a triangle, the invariant 𝑓 is defined

as follows:

24

2.3. Geometry based localization

Figure 2.3: Random dot markers [Uchiyama 2011b]

𝑓 = 𝐷

(︂
𝑆(Δ𝐴𝐶𝐷)

𝑆(Δ𝐴𝐵𝐶)

)︂
(2.1)

𝐷(·) is a discretization function which converts real number area ratios into

𝐾 = 32 integers. For each point, the nearest 7 neighboring points are selected to

form a neighboring set. All the combinations of 5 points in this neighboring set are

used to construct a descriptor. So in total 𝐶5
7 = 21 descriptors are created for each

point. This design makes the algorithm robust against neighborhood relationship’s

changes due to over/under detection or jitter.

For each descriptor, the discretized area-ratios of all the combinations of 4 points

out of 5 points are used, i.e. 5 ratios. These 5 ratios 𝑓0, .., 𝑓4 are concatenated

head-to-tail to form the descriptor, i.e. an integer 𝑑 = 𝑓0𝑓1𝑓2𝑓3𝑓4.

The matching process is done in two phases: (1) descriptors of model points are

calculated offline and stored in a hash table; (2) during online matching, descriptors

of scene points are calculated. Then model points are found in the hash table

by matching descriptors. A vote is casted for each model-scene point matching.

RANSAC is finally used to find the homography. Authors claim that the time

complexity is linear to the number of points [Nakai 2006].

RDM is developed upon LLAH to track random point patterns in real-time.

Since LLAH cannot match point pattern under large perspective distortions, RDM

additionally manages a dynamic hash table that is updated from the previous frame.

As a consequence, the tracking of RDM should be initialized from an approximate

front view.

2.3.4.2 Limitations

The efficiency of the algorithm comes from the fact that it uses 5 surface ratios

to construct one descriptor, which makes it discriminant. The algorithm is ro-

25

Chapter 2. Related work

bust against small noise thanks to the use of several descriptors per point. RDM

has successfully been used to augment paper maps with GIS when road intersec-

tions are manually extracted [Uchiyama 2009]. But when we use an automatic

extraction of road intersections instead (i.e. more and larger detection errors), such

as [Callier 2011], it does not work any more.

To summarize its limitations, LLAH/RDM is quite sensitive when noise becomes

bigger or the perspective distortion is large. One of the most common noise is the

one on points’ positions. Due to optical or numerical noise, the detection of a point

may be located at several pixels away from its ground-truth position (i.e. jitter).

This effect is more obvious when points to be detected are not visually salient, such

as road intersections on a map (cf. Fig. 2.5). As to perspective distortions, the

position of a point under perspective transformation is slightly different from that

under affine transformation if the depth of field is small. This difference has a similar

effect as the jitter. Hence if an algorithm can manage well jitters, it is able to deal

better with perspective distortions too.

Figure 2.4: An intersection on a paper map is an area (represented by the red circle
for example). It is difficult to tell the precise location of the intersection.

A synthetic experiment is performed to study the influence of jitter on LLAH.

The model set 𝑃 contains 40 points randomly distributed over 600 × 600 pixel

squares. The scene set 𝑄 is a duplication of 𝑃 . Then Gaussian noise 𝛿 ∼ 𝑁(0, 𝜎2)

is added on each coordinate component of all points in 𝑄. Fig. 2.5 shows that the

number of descriptors which can be correctly matched dramatically decreases with

respect to the augmentation of noise on point coordinates. This leads to a total

failure of the algorithm when the noise 𝜎 becomes larger than 4 pixels.

The reason for the algorithm’s sensitivity can be explained as follows: when the

position of a point changes slightly, the surface ratio in (2.1) changes but may not

influence its discretized value 𝑓 . But if the noise on points’ positions is larger, it is

more likely that 𝑓 changes as well. Since the descriptor is a concatenation of 5 𝑓s,

the change of any 𝑓𝑖 leads to a different integer, and thus the matching fails.

26

2.3. Geometry based localization

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
σ of Gaussian noise (pixels)

0

5

10

15

20

25

Nu
m

be
r o

f c
or

re
ct

ly
 m

at
ch

ed
 d

es
cr

ip
to

rs

Figure 2.5: The number of correctly matched LLAH descriptors for each point with
noise on coordinates. 21 indicates a full match (each point is associated with 21
descriptors).

The discrimination of the descriptor makes it quite sensitive to noise on points’

positions. It is difficult to improve the algorithm’s performance by simple adjust-

ments because of the following constraint: if one makes the descriptor more robust

(by reducing 𝐾 for example), it will become less discriminant and thus increases the

number of false matchings. The latter makes the vote result less reliable, which will

make RANSAC work slowly, and maybe even lead to a matching failure.

In a word, the dilemma between robustness and speed of PPM is not solved by

LLAH or any other method. One needs to develop new algorithms to achieve better

performance.

27

Chapter 3

Robust random dot markers

(RRDM)

Contents

3.1 A robust descriptor . 30

3.1.1 Definition . 31

3.1.2 Affine invariance . 32

3.1.3 Point jitter and descriptor variance 33

3.2 Algorithm . 35

3.2.1 Offline pre-registration . 36

3.2.2 Local Voting and Coherency 37

3.3 Choice of parameters . 41

3.3.1 Robustness of descriptor and 𝑘, 𝜂, 𝐷𝑚𝑎𝑥 41

3.3.2 Threshold 𝑣𝑡 . 42

3.3.3 Influence of point jitter on A and 𝛼𝑡, 𝜃𝑡 43

3.4 Results . 43

3.4.1 Synthetic images . 44

3.4.2 Real markers . 45

3.4.3 Natural map tracking . 48

3.5 Application: Augmented Maps 51

3.5.1 Intersection detection on real maps 51

3.5.2 Results . 55

3.6 Conclusion . 56

In this chapter, we focus on overcoming the limitations of RDM mentioned in

Section 2.3.4.2. By considering PPM between one model point set and one scene

point set, we propose a robust matching algorithm which is able to register auto-

matically extracted road intersection from paper maps with GIS data. This work

Chapter 3. Robust random dot markers (RRDM)

has been presented at the symposium on Virtual Reality Software and Technology

(VRST) in 2014.

We reformulate the problem mathematically as follows: let 𝑃 be a model point

set in 2D coordinates; 𝐻 an unknown 2D homography. Let 𝑄 be an observed scene

point set, of which some points belong to 𝐻(𝑃) but with small differences in their

positions, while others are randomly added noise points (i.e. extra points). The

problem is to determine 𝐻 given 𝑃 and 𝑄 (cf. Fig. 3.1). We assume that points

in 𝑃 are uniformly randomly distributed. The challenges of the problem are

large point jitter, extra and missing points (cf. Section 1.2.3). Moreover, we have

to estimate 8 parameters of the 2D homography 𝐻, which is more difficult than 2D

similarity (with 4 parameters) and 2D affinity (with 6 parameters).

Figure 3.1: 𝑃 is the model point set in 2D coordinates, 𝑄 is the observed scene
point set, they are related by a 2D homography 𝐻.

3.1 A robust descriptor

We know that (a) pure point pattern matching can only rely on the geometrical

pattern itself; and that (b) the presence of extra/missing points and point jitter can

significantly alter local geometry of the point pattern. Our task is difficult since we

have to take into account both (a) and (b) at the same time. As seen in Section 2.3.4,

the LLAH descriptor is an integer composed of five surface ratios computed from

seven neighboring points. Any change in those seven neighbors can modify the

descriptor, making it very sensitive to noise. In order to solve this problem, we

propose a Two-Surface-Ratios (TSR) descriptor. It is constructed only by 4 points

(a so-called Quad-Point, cf. Fig 3.2), so that it is less likely to be influenced by (b).

30

3.1. A robust descriptor

We choose four points since fewer points cannot provide any affine invariant. In this

section, we define the TSR descriptor and show how two jittered Quad-Points can

be matched under an affine transformation which lays the groundwork for our new

algorithm.

3.1.1 Definition

We call any four-coplanar-point configuration a Quad-Point. We do not consider

the situation where three points are aligned since it rarely occurs for randomly

distributed points. Each Quad-Point is composed of a main point 𝑀 and three

associated points 𝐹,𝑅,𝐿. Under such a definition, every Quad-Point can be catego-

rized into one of three possible configurations 𝑐. For each configuration, the spatial

relationships between these four points, namely 𝑀 (main), 𝐹 (face), 𝑅 (right), 𝐿

(left), are illustrated in Fig. 3.2. Especially, when 𝑐 = 3, 𝐹 is chosen so that the

surface of triangle Δ𝑀𝑅𝐿 is the second smallest among the four triangles. As a

consequence, a Quad-Point, denoted as Q = ⟨𝑀 ;𝐹,𝑅,𝐿⟩ (note that the order of the
points is important), is uniquely defined when four coplanar points are given and

its main point 𝑀 chosen (we therefore say that the Quad-Point belongs to 𝑀 and

denote it as Q(𝑀) when all four points are known).

Figure 3.2: Three Quad-Point configurations.

Two Quad-Points Q = ⟨𝑀 ;𝐹,𝑅,𝐿⟩ and Q′ = ⟨𝑀 ′;𝐹 ′, 𝑅′, 𝐿′⟩ are affinely equiv-

alent if there exists an affine transformation A between them.

Q ≡ Q′ ⇔ ∃A s.t. 𝑀 ′ = A (𝑀), 𝐹 ′ = A (𝐹), 𝐿′ = A (𝐿), 𝑅′ = A (𝑅) (3.1)

All Affinely Equivalent Quad-Points (AEQ) can be grouped together. Since a

Quad-Point contains exactly two independent invariants [Hartley 2004], each AEQ

group has two degrees of freedom.

We propose to rely on two surface ratios along with a configuration specifier to

describe each AEQ group. Given its nature, we name our descriptor Two-Surface-

31

Chapter 3. Robust random dot markers (RRDM)

Ratio (TSR). In this context, Q(𝑀)’s TSR descriptor, t(Q(𝑀)), is defined as follows:

t(Q(𝑀)) = (𝑋,𝑌, 𝑐) (3.2)

𝑤𝑖𝑡ℎ

⎧⎪⎪⎨⎪⎪⎩
𝑋 =

𝑆Δ𝐹𝑅𝐿

𝑆𝑎
, 𝑌 =

𝑆Δ𝑀𝐹𝐿

𝑆𝑎
, for 𝑐 = 1, 2 (3.3)

𝑋 =
𝑆Δ𝑀𝑅𝐿

𝑆𝑎
, 𝑌 =

𝑆Δ𝑀𝐹𝐿

𝑆𝑎
, for 𝑐 = 3 (3.4)

where 𝑆𝑎 is the surface formed by the convex hull of Q(𝑀).

We prove in the following section that two Quad-Points are affinely equivalent if

and only if their TSR descriptors are equal. Note that in the absence of point jitter,

when two Quad-Points are matched under an affine transformation, they have the

same TSR descriptor.

3.1.2 Affine invariance

We want to demonstrate that two Quad-Points are affinely equivalent if and only if

their TSR descriptors are equal, which means:

t(Q) = t(Q′)⇔ Q ≡ Q′ (3.5)

As Q and Q′ have the same affine invariant, the backward demonstration is

direct from (3.1) and (3.2). We focus on the forward demonstration.

We first show that for a Quad-Point Q, the position of 𝐹 is uniquely defined by

the positions of 𝑀,𝐿,𝑅 and 𝑡(Q) = (𝑋,𝑌, 𝑐).

We use superscript ·(𝑖) to represent a point’s i-th coordinate. Without losing

generality, we translate a Quad-Point so that 𝑀 locates at (0, 0). The 2D plane

is divided into seven regions (cf. Fig. 3.3). According to our definition of TSR

(Section 3.1.1), 𝐹 cannot lay in Â since it would be a “left point” rather than a “face

point”. For the same reason, regions Ã ∼ Å do not fit. So, 𝐹 can only lay in À

(c=1),Á (c=2) or Æ (c=3).

For 𝑐 = 1:

𝑆𝑎 =
1

2

⃒⃒⃒⃒
⃒𝑅(1) 𝐹 (1)

𝑅(2) 𝐹 (2)

⃒⃒⃒⃒
⃒+ 1

2

⃒⃒⃒⃒
⃒𝐹 (1) 𝐿(1)

𝐹 (2) 𝐿(2)

⃒⃒⃒⃒
⃒

𝑆𝐹𝐿𝑅 =
1

2

⃒⃒⃒⃒
⃒𝑅(1) − 𝐿(1) 𝐹 (1) − 𝐿(1)

𝑅(2) − 𝐿(2) 𝐹 (2) − 𝐿(2)

⃒⃒⃒⃒
⃒

𝑆𝑀𝐹𝐿 =
1

2

⃒⃒⃒⃒
⃒𝐹 (1) 𝐿(1)

𝐹 (2) 𝐿(2)

⃒⃒⃒⃒
⃒

(3.6)

32

3.1. A robust descriptor

Figure 3.3: Possible regions for 𝐹 : only feasible regions are À, Á and Æ.

With (3.2), we have:

Z

(︃
𝐹 (1)

𝐹 (2)

)︃
=

(︃
−𝑅(1)𝐿(2) +𝑅(2)𝐿(1)

0

)︃

with Z =

[︃
(1−𝑋)(𝑅(2) − 𝐿(2)) −(1−𝑋)(𝑅(1) − 𝐿(1))

−𝑌 𝑅(2) − (1− 𝑌)𝐿(2) 𝑌 𝑅(1) + (1− 𝑌)𝐿(1)

]︃ (3.7)

This equation gives a unique solution when |Z| ≠ 0, meaning that the coordinates

of 𝐹 are uniquely defined. It can be shown that:

|Z| = −(1−𝑋)

⃒⃒⃒⃒
⃒𝑅(1) 𝐿(1)

𝑅(2) 𝐿(2)

⃒⃒⃒⃒
⃒ = −2(1−𝑋)𝑆𝑀𝐿𝑅 ̸= 0 (3.8)

A similar approach can be applied for 𝑐 = 2 and 𝑐 = 3 for which |Z| = 2(1 +

𝑌)𝑆𝑀𝐿𝑅 and |Z| = 2𝑋𝑆𝑀𝐿𝑅 respectively and where |Z| cannot be zero.
The forward demonstration is as follows: Assume that Q = ⟨𝑀 ;𝐹,𝑅,𝐿⟩ and

Q′ = ⟨𝑀 ′;𝐹 ′, 𝑅′, 𝐿′⟩ have the same TSR descriptor. We can calculate an affine

transformation A which makes 𝑀 ′ = A (𝑀), 𝑅′ = A (𝑅), 𝐿′ = A (𝐿). Then let

𝐹 * = A (𝐹), then Q* = ⟨𝑀 ′;𝐹 *, 𝑅′, 𝐿′⟩ and Q are affinely equivalent and thus

t(Q*) = t(Q) = t(Q′). Since Q′ and Q* have the same TSR descriptor and have

three points in common, they are the same Quad-Point, therefore Q′ = Q* ≡ Q.

3.1.3 Point jitter and descriptor variance

There are two possible sources for point jitter: (i) distortions from the imaging

system and (ii) misdetection of points in the image. The former case can be induced

by lens distortions and is both scene and scale independent. In the latter case, point

33

Chapter 3. Robust random dot markers (RRDM)

jitter is scale dependent, becoming smaller when the scene gets further away from

the camera. For narrative convenience, in the following we only consider point jitter

as arising from the second source.

With the presence of point jitter, the shape of Quad-Points can be changed.

The original Quad-Point and its jittered version are generally not affine equivalent,

thus they cannot be exactly matched according to (3.1). However, when jitter is

not too significant, these two Quad-Points should be “quasi-affine-equivalent”. We

show that the TSR descriptor can deal with this quasi-affine-equivalence.

We assume that point jitter can be modeled as an additive Gaussian noise to the

points’ original positions before perspective transformation. Mathematically, each

point in the Quad-Point is affected by an additive Gaussian noise 𝛿 ∼ 𝑁(0, 𝜎2) on

two coordinates independently (cf. Fig. 3.4), where 𝜎 is small compared to distances

between points forming the Quad-Point.

Figure 3.4: Jittered Quad-Point and its TSR descriptor. Left : Original Quad-Point
Q (solid blue line) and jittered Quad-Point Q′ (red dotted line) from a front view.
Right : Original (𝑋,𝑌, 𝑐) and jittered (𝑋 ′, 𝑌 ′, 𝑐) descriptors in descriptor space.
Gray region represents the matching region 𝑅(𝑋,𝑌, 𝑐).

Under such assumptions, we can compute the descriptor’s variance in first order

approximation. Fig. 3.4 illustrates an example of an original and a jittered Quad-

Point as well as the related descriptors. For illustration purposes, we compute 𝑑𝑋,

the difference between the original Quad-Point’s TSR descriptor component 𝑋 and

34

3.2. Algorithm

the jittered one’s 𝑋 ′, when 𝑐 = 1:

𝑑𝑋 =𝑋 ′ −𝑋 =
𝑆𝐹𝑑𝑆𝑀 − 𝑆𝑀𝑑𝑆𝐹

(𝑆𝑀 + 𝑆𝐹)
2 ∼ 𝑁(0,Σ2

𝑋)

Σ2
𝑋 =

𝜎2

4 (𝑆𝑀 + 𝑆𝐹)
4 {𝑆

2
𝑀

(︁
𝐹𝑅

2
+ 𝐹𝐿

2
+𝑅𝐿

2
)︁

+ 𝑆2
𝐹

(︁
𝑀𝑅

2
+𝑀𝐿

2
+𝑅𝐿

2
)︁

− 𝑆𝑀𝑆𝐹
(︁
𝑀𝑅

2
+𝑀𝐿

2
+ 𝐹𝑅

2
+ 𝐹𝐿

2 − 2𝑀𝐹
2
)︁
}

(3.9)

where 𝑆𝑀 = 𝑆Δ𝐹𝑅𝐿 and 𝑆𝐹 = 𝑆Δ𝑀𝑅𝐿.

So, when a Quad-Point is slightly perturbed by 𝛿 with a small 𝜎, its TSR de-

scriptor will mostly remain unchanged. Thus, we can define two Quad-Points Q
and Q′ such that they are quasi-affinely-equivalent (Q ≃ Q′) thanks to our TSR

descriptor.

Q ≃ Q′ ⇔ |𝑋 −𝑋 ′| ≤ 2Σ̃𝑋 , |𝑌 − 𝑌 ′| ≤ 2Σ̃𝑌 and 𝑐 = 𝑐′ (3.10)

with 𝑡(Q) = (𝑋,𝑌, 𝑐) and 𝑡(Q′) = (𝑋 ′, 𝑌 ′, 𝑐′). Practically, we set Σ̃𝑋 (resp. Σ̃𝑌)

as follows, with Σ𝑚𝑎𝑥 being a parameter of the method:

Σ̃𝑋 =

{︃
Σ𝑋 , if Σ𝑋 ≤ Σ𝑚𝑎𝑥 (3.11)

Σ𝑚𝑎𝑥, otherwise (3.12)

For clarity sake, we say that two Quad-Points are quasi-affinely-equivalent when

the TSR descriptor of one Quad-Point is inside the matching region of the other.

The matching region of Q is represented by a gray box on the right of Fig. 3.4. In

the following, we consider that two Quad-Points are matched if they satisfy (3.10).

3.2 Algorithm

Recall that 𝑃 is the model point set, and it contains the coordinates of 𝑚 model

points. 𝑄 is the scene point set which contains the coordinates of 𝑛 image points

that are detected in the image. Each pair (𝑝, 𝑞), with 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄 is a tentative

correspondence (or in short, a correspondence) that could either be an inlier (i.e. a

true correspondence) or an outlier (i.e. a false correspondence).

Both point jitter 𝜎 and point pattern density 𝜌 (i.e. the number of points per

unit area) play an important role in Quad-Point matching. Given a fixed jitter

value 𝜎, the denser the point pattern, the bigger the descriptor variance, cf. (3.9).

35

Chapter 3. Robust random dot markers (RRDM)

We define the jitter factor 𝜂 = 𝜎
√
𝜌 to describe the amount of point jitter (cf.

Section 3.1.3).

The main idea of our approach is that even under a large perspective distortion,

the transformation between 𝑃 and 𝑄 can be approximated by an affine transfor-

mation in a small region. We use local affine information and consistency between

neighboring regions to establish point correspondences before estimating an homog-

raphy.

Our method can be decomposed into two stages. The first one is in charge of

registering every model point into hash tables. This stage is performed once offline

before online tracking. During the second stage, we retrieve 𝑄 from each image, and

match it with 𝑃 by using a Local Voting and Coherency (LVC) strategy.

3.2.1 Offline pre-registration

The offline pre-registration stage is detailed in Alg. 1. 𝑃 is loaded from a database

representing the point pattern. For each point 𝑝 ∈ 𝑃 , we find its k-nearest neighbors
𝑁𝑘(𝑝). Each point 𝑝 is associated with a set of Quad-PointsQS(𝑝), defined as follows:

QS(𝑝) = {Q(𝑝) = ⟨𝑝; 𝑝1, 𝑝2, 𝑝3⟩ ,∀𝑝1, 𝑝2, 𝑝3 ∈ 𝑁𝑘(𝑝)} (3.13)

The order of 𝑝1, 𝑝2, 𝑝3 is predefined, so each set of Quad-Points QS(𝑝) contains
𝑘!

3!(𝑘−3)! Quad-Points.

Figure 3.5: Quantization of descriptor value for configuration 𝑐. The subregion with
red stripes represents 𝐻𝑖𝑑𝑥(𝑋,𝑌, 𝑐) while subregions with green stripes represent
𝑆𝑖𝑑𝑥(𝑋,𝑌, 𝑐).

We use three bi-dimensional 𝑊 ×𝑊 (𝑊 is an integer parameter of the algo-

rithm) hash tables to register model points so that they can be quickly matched

during the online stage with image points according to their descriptors. Each hash

36

3.2. Algorithm

table corresponds to one configuration of Quad-Points illustrated in Fig. 3.2. We

determine the set of hash bins 𝑆𝑖𝑑𝑥 = {(𝑖, 𝑗, 𝑐)} into which a Quad-Point Q𝑚 with

TSR descriptor t(Q𝑚) = (𝑋,𝑌, 𝑐) is registered as follows, with [·] represents a floor

function:

[(𝑋 − 2Σ̃𝑋)𝑊] ≤ 𝑖 ≤ [(𝑋 + 2Σ̃𝑋)𝑊] + 1, 𝑖 ∈ 𝑁

[(𝑌 − 2Σ̃𝑌)𝑊] ≤ 𝑗 ≤ [(𝑌 + 2Σ̃𝑌)𝑊] + 1, 𝑗 ∈ 𝑁
(3.14)

For clarity sake, imagine that the square [0, 1]×[0, 1] is uniformly divided into𝑊 2

subregions by vertical and horizontal lines as illustrated in Fig. 3.5. Each subregion

represents a hash bin. We register the Quad-Point with t = (𝑋,𝑌, 𝑐) into the hash

bins which intersect the matching region 𝑅(𝑋,𝑌, 𝑐).

Algorithm 1 Offline model points pre-registration

for 𝑝 ∈ 𝑃 do

Extract QS(𝑝) according to (3.13)
for Q𝑚 ∈ QS(𝑝) do

Calculate t(Q𝑚) from (3.2)
Register Q𝑚 in all hash bins in 𝑆𝑖𝑑𝑥 according to (3.14)

3.2.2 Local Voting and Coherency

This stage can be decomposed into three phases: (i) pre-alignment by local voting,

(ii) rejection by local coherency and (iii) recovery. During the local voting phase, we

establish the pre-alignment by computing a score for each correspondence between

𝑃 and 𝑄. During the rejection phase, we calculate a local affinity for each corre-

spondence using their neighboring points. We discard correspondences for which

affinities are not consistent with those of their neighbors. During the recovery step,

we try to find inliers that were potentially wrongly rejected in phase (ii).

3.2.2.1 Local Voting

Similar to Section 3.2.1, a set of Quad-Points QS(𝑞) is generated for each point

𝑞 ∈ 𝑄. The computational cost is 𝑂(𝑘𝑛 log 𝑛+ 𝑘3𝑛).

Then for each Quad-Point Q𝑠 ∈ QS(𝑞), a set of model Quad-Points QM is re-

trieved from hash bin 𝐻𝑖𝑑𝑥 according to its TSR descriptor (𝑋,𝑌, 𝑐). These match-

ing results are recorded into voting tables. 𝐻𝑖𝑑𝑥 is calculated as follows, where [·]
represents a floor function:

𝐻𝑖𝑑𝑥 = ([𝑊𝑋], [𝑊𝑌], 𝑐) (3.15)

37

Chapter 3. Robust random dot markers (RRDM)

From (3.10), (3.14) and (3.15), we are sure that all model Quad-Points which

can be matched with Q𝑠 are contained in QM.

For each tentative correspondence (𝑝, 𝑞), we use a 𝑘×𝑘 matrix to record their k-

neighbor’s corresponding relations, denoted by 𝑉𝑝,𝑞. These relations are established

from two matched Quad-Points as presented in Fig. 3.6. The detailed process is

described in Alg. 2. As each matrix only represents the correspondences between

two subsets, we call it local voting.

p2

p4

p5

p

q1
q2

q4
q

●

●

●

●

p5

p4

p2

q1 q2 q4

1

1

4+1

p1

p3

q3

q5

p1

p3

q3 q5

4

2

3

5+1

4

3

2

4+1

3

1

Vp,q

Figure 3.6: An increment of vote for table of 𝑉𝑝,𝑞. Left : Neighbor correspondences
are established from two matched Quad-Points. Right : Corresponding cells are
incremented by one vote in 𝑉𝑝,𝑞.

Since each scene Quad-Point Q𝑠 has to be tested against each Quad-Point in QM,

the time complexity is 𝑂(𝑘3𝑛𝑟), where the redundancy number 𝑟 is the average size

of QM across all hash entries.

After local voting, the “quality” (cf. [Chum 2005]) of each tentative correspon-

dence can be represented by the sum of the votes in its voting table. With this

measure, a PROSAC-like algorithm can be implemented. However, this approach

does not suit our problem as we will show in the experiments of Section 3.4.

Algorithm 2 Local voting procedure

for 𝑞 ∈ 𝑄 do

Extract QS(𝑞) according to (3.13)
for Q𝑠 = ⟨𝑞;𝐹𝑠, 𝑅𝑠, 𝐿𝑠⟩ ∈ QS(𝑞) do

Calculate t(Q𝑠) from (3.2) and 𝐻𝑖𝑑𝑥(t(Q𝑠)) from (3.15)
Retrieve QM at 𝐻𝑖𝑑𝑥 from hash table
for all Q𝑚 = ⟨𝑝;𝐹𝑚, 𝑅𝑚, 𝐿𝑚⟩ ∈ QM do

𝑉𝑝,𝑞(𝐹𝑚, 𝐹𝑠)++, 𝑉𝑝,𝑞(𝑅𝑚, 𝑅𝑠)++, 𝑉𝑝,𝑞(𝐿𝑚, 𝐿𝑠)++

38

3.2. Algorithm

3.2.2.2 Rejection

This phase aims at rejecting outliers. It begins by clearing votes that are lower or

equal to a threshold 𝑣𝑡 (which value is discussed in Section 3.3.2):

𝑉𝑝,𝑞(𝑝, 𝑞) = 0, if 𝑉𝑝,𝑞(𝑝, 𝑞) ≤ 𝑣𝑡 (3.16)

Let us take one tentative correspondence (𝑝, 𝑞) as an example to explain how to

find its affinity. (cf. Step 1 of Alg. 3). We first find its local correspondences 𝑠𝑝,𝑞

by solving a maximum assignment problem. When the number of correspondences

𝑠𝑖𝑧𝑒(𝑠𝑝,𝑞) is larger than 4, 𝑠𝑝,𝑞 should contain correspondences from at least two

different Quad-Points. This cross validation between Quad-Points helps in reducing

false matchings. Thus, we only consider such kind of tentative correspondence and

estimate an affinity A𝑝,𝑞 from 𝑠𝑝,𝑞. Moreover, we assume a statement 𝐸𝑠:

𝐸𝑠 : A𝑝,𝑞 is the correct transformation between local correspondences 𝑠𝑝,𝑞

In other words, 𝐸𝑠 means that 𝑞 can be back-projected close enough to its

correspondence 𝑝 in 𝑠𝑝,𝑞 by A −1
𝑝,𝑞 . Since A −1

𝑝,𝑞 𝑞−𝑝 can be regarded as the noise before
transformation (i.e. jitter), it follows a Gaussian distribution (cf. Section 3.1.3). As

a consequence, 𝜒2 tests for the sum of squared Gaussian errors can be used to verify

𝐸𝑠.

𝐸𝑠 =
∑︁

(𝑝,𝑞)∈𝑠𝑝,𝑞

||A −1
𝑝,𝑞 𝑞 − 𝑝||2 < 𝜒2

0.05,𝑠𝑖𝑧𝑒(𝑠𝑝,𝑞)−6 (3.17)

We use 𝑠𝑖𝑧𝑒(𝑠𝑝,𝑞) − 6 as the degree of freedom since the estimation of affinity

needs 3 points and each point has 2 degrees of freedom. Tentative correspondences

which fail the 𝜒2 check (3.17) will be rejected.

We then group tentative correspondences that have similar affinities into an

affinity group. Using a Singular Value Decomposition (SVD), we extract two scaling

factors 𝜆(1), 𝜆(2) along two principal axes and one rigid rotation 𝜃 from any affinity

A . We consider two affinities to be similar (A1 ≈ A2) if they satisfy:

Δ𝜃 ≤ 𝜃𝑡, with Δ𝜃 = |𝜃1 − 𝜃2|

𝛼−1
𝑡 ≤ 𝛼(1), 𝛼(2) ≤ 𝛼𝑡, with 𝛼

(𝑖) =

⃒⃒⃒⃒
⃒𝜆(𝑖)1

𝜆
(𝑖)
2

⃒⃒⃒⃒
⃒ (3.18)

Note that based on (3.18), 𝜃𝑡 and 𝛼𝑡 are two parameters required by our algorithm

and will be discussed in Section 3.3.3.

39

Chapter 3. Robust random dot markers (RRDM)

We use the Hungarian algorithm for the maximum assignment problem during

Step 1 of Alg. 3. The Hungarian algorithm has a worst-case time complexity of

𝑂(𝑘3). Nevertheless, it should be noted that since there is a large difference in

the number of votes between inliers and outliers in 𝑉𝑝,𝑞 (cf. Section 3.3.2), the

algorithm is able to find the optimal solution in a few iterations. Step 1 of Alg. 3 is

the most expensive part of the algorithm with a worst time complexity of 𝑂(𝑚𝑛𝑘3).

In Step 2, neighboring tentative correspondences having similar affinity are grouped

together at first to create small affinity groups, which filters out a large amount of

“isolated” tentative correspondences that do not share similar correspondences with

their neighbors. Then these small groups are fused if they have similar affinity in

order to create bigger affinity groups.

Algorithm 3 Rejection

Step 1. Calculate Affinity

for all (𝑝, 𝑞) ∈{All tentative correspondences} do

𝑠 = Solution of maximum assignment problem for 𝑉𝑝,𝑞
𝑠𝑝,𝑞 = 𝑠− {(𝑝, 𝑞)} , ∀𝑉𝑝,𝑞(𝑝, 𝑞) = 0
Rejection: mark (𝑝, 𝑞) as outlier if 𝑠𝑖𝑧𝑒(𝑠𝑝,𝑞) ≤ 4
Estimate A𝑝,𝑞 using 𝑠𝑝,𝑞
Rejection: mark (𝑝, 𝑞) as outlier if 𝐸𝑠 of (3.17) fails

Step 2. Create a set of affinity groups (𝐺)
Group tentative correspondences having similar affinity (3.18) into the same affin-
ity group 𝑔. All 𝑔s make up a set of affinity groups 𝐺. (𝑔 ∈ 𝐺)

Step 3. Estimate homography for each affinity group (𝑔)
for all 𝑔 ∈ 𝐺 and 𝑠𝑖𝑧𝑒(𝑔) > 4 do
Estimate 𝐻𝑔 using RANSAC
Discard (𝑝, 𝑞) ∈ 𝑔, if |𝑝−𝐻−1

𝑔 (𝑞)| > 2𝜎

After this procedure, every correspondence in the same affinity group 𝑔 can be

described by the same homography 𝐻𝑔. Since outliers are randomly matched, it is

almost impossible to estimate the same homography for several outliers. Therefore,

we consider that the largest affinity group contains inliers and call it the solution

list (denoted as 𝑠𝑙 in Alg. 4). More correspondences will be added to this solution

list in the following section.

3.2.2.3 Recovery

We refine the solution list by gradually adding false outliers rejected during Step

2. This increases the number of inliers and results in a better estimation of the

40

3.3. Choice of parameters

homography between 𝑃 and 𝑄. The detailed procedure of the recovery phase is

shown in Alg. 4.

Algorithm 4 Recovery

𝑠𝑙 = largest 𝑔 ∈ 𝐺
repeat

Estimate homography 𝐻 using 𝑠𝑙 with least-square method.
for all (𝑝, 𝑞) ∈ 𝑠𝑙 do
for all (𝑝, 𝑞) ∈ 𝑠𝑝,𝑞 do
if |𝑝−𝐻−1(𝑞)| ≤ 2𝜎 then
𝑠𝑙 = 𝑠𝑙 ∪ {(𝑝, 𝑞)}

until No new element added to 𝑠𝑙
Return H

3.3 Choice of parameters

The algorithm presented in Section 3.2 relies on several parameters. In this Section,

we detail the meaning of each parameter and propose some default values so that

one can easily adapt our algorithm to one’s own applications and needs.

3.3.1 Robustness of descriptor and 𝑘, 𝜂, 𝐷𝑚𝑎𝑥

Random addition or removal of points in the close vicinity of a point can deeply

modify its k-nearest neighboring points. We call the points not originally present

in the neighborhood of a point false neighbors. Such false neighbors result in the

creation of new Quad-Points in the image which necessarily lead to a reduced number

of correct matchings between model points and scene points.

For illustration purposes, let us consider 𝑘 = 7 which leads to the creation

of 𝐶3
7 = 35 Quad-Points for each point in the pattern. In the presence of 25%

additional or missing points (uniformly distributed wrt. the original point pattern)

in the image, we can assume that each point will have 2 false neighbors in all its 𝑘 = 7

nearest neighbors. Thus the number of remaining original Quad-Points reduces to

𝐶3
5 = 10, meaning that about 10 correct matching are left for each point.

So, robustness with respect to additional or missing points can be improved

by increasing 𝑘, at the expense of impacting the computational efficiency of the

algorithm (cf. Section 3.2.2), since most steps have a computational cost in the

order of 𝑘3.

Parameters 𝜂 and 𝐷𝑚𝑎𝑥 are used to manage point jitter. When points in the

image are likely to have a high incertitude in their positions, 𝜂 should be set to a

41

Chapter 3. Robust random dot markers (RRDM)

higher value. When incertitude is so big that (3.12) dominates over (3.11) (resp. for

𝐷𝑌), a larger 𝐷𝑚𝑎𝑥 should be used. Following those guidelines, one can augment

the chances to match a jittered Quad-Point correctly, thus increasing the robustness

of the algorithm against large point jitter. However, increasing 𝜂 and 𝐷𝑚𝑎𝑥 results

in enlarging the matching region and in a higher value of the redundancy number 𝑟

(cf. Section 3.2.2) which in turn impacts the efficiency of the algorithm.

3.3.2 Threshold 𝑣𝑡

Before applying Alg. 3, correspondences that have received less than or equal to 𝑣𝑡

votes in 𝑉𝑝,𝑞 have been rejected. The idea behind this thresholding mechanism is to

keep as many inliers as possible while rejecting potential outliers. A brief study of

the effectiveness of this threshold is now presented.

Let 𝑍𝑖(𝑣) and 𝑍𝑜(𝑣) be two random variables representing the votes respectively

received by an inlier and an outlier in voting tables. We find their probability

distribution functions 𝑍𝑖 ∼ 𝜑𝑖, 𝑍𝑜 ∼ 𝜑𝑜 experimentally by analyzing 200 randomly

distributed points 1000 times with 𝑘 = 7, 𝐷𝑚𝑎𝑥 = 0.2 and 𝜂 = 5%

Using these parameters values, an important difference in the number of votes

received by inliers and outliers is presented in Fig. 3.7. 𝜙𝑖(1) ≈ 0.03% and 𝜙𝑜(1) ≈
17.3% indicate that 0.03% inliers and 17.3% outliers receive 1 vote. The best choice

is 𝑣𝑡 = 8, since 𝑣𝑡 ≥ 9 will not reject more outliers (in proportion) than inliers.

 0

 5

 10

 15

 20

 25

 30

0 2 3 4 6 8 10 12 14 16 18 20 22 24 26

P
e
rc

e
n
ta

g
e

Number of votes

φi
φo

Figure 3.7: Vote probability distribution functions (𝜙𝑖,𝜙𝑜)

It is worth noting that the choice of 𝑣𝑡 has an impact on both the robustness

of the algorithm and its speed. Hence, its value should be chosen according to a

42

3.4. Results

trade-off between robustness (lower 𝑣𝑡 values) and computational efficiency (higher

𝑣𝑡 values).

3.3.3 Influence of point jitter on A and 𝛼𝑡, 𝜃𝑡

Let A1 and A2 be the affinities of two inliers estimated during step 1 of Alg. 3. Due

to the presence of point jitter and perspective distortion, they are usually different

even if we have used inliers for their computation. As a consequence, 𝜃𝑡 and 𝛼𝑡 have

to be carefully chosen in order to decide whether two affinities are similar or not. In

the following, we only study the influence of point jitter on the difference between

affinities since perspective distortion in a small region can be regarded as a special

case of point jitter.

As one can expect, the smaller the distance between points composing a Quad-

Point, the more impact point jitter has on the computation of the affinities. More-

over, the fewer correspondences we use to estimate an affinity, the less precise the

result. Both observations lead to the fact that the difference between two affinities

A1 and A2 becomes more important when 𝑘 gets smaller. In other word, 𝑘 = 3 is

probabilistically speaking the worst situation where the difference between A1 and

A2 might be the greatest.

Experimental results are collected from 1000 runs with 200 points uniformly

distributed and 𝑘 = 3. Cumulative distributions for 𝛼(1), 𝛼(2) and Δ𝜃 are illustrated

in Fig. 3.8 with 𝜂 = 5%. They are computed from inliers according to (3.18).

With 𝛼𝑡 = 1.3, 𝜃𝑡 = 10∘, 𝑃 (| ln𝛼(1)| ≤ ln𝛼𝑡) = 91%, 𝑃 (| ln𝛼(2)| ≤ ln𝛼𝑡) =

86.8% and 𝑃 (Δ𝜃 ≤ 𝜃𝑡) = 84.7%, we show that about 𝑃 (| ln𝛼(1)| ≤ ln𝛼𝑡) ×
𝑃 (| ln𝛼(2)| ≤ ln𝛼𝑡)×𝑃 (Δ𝜃 ≤ 𝜃𝑡) = 66.9% of inliers affinity pairs are judged similar

in the least favourable case.

3.4 Results

In this section, we compare the efficiency and the robustness of our technique (de-

noted as RRDM), an algorithm combining local voting (cf. Section 3.2.2.1) and

USAC [Raguram 2013b] (denoted as USAC) and Random Dot Markers (denoted as

RDM). An homography is estimated only if at least 9 inliers are found. This value is

given by RDM and we apply this rule to all the three methods for a fair comparison.

For RRDM, default parameters are 𝑊 = 100, 𝑘 = 6,Σ𝑚𝑎𝑥 = 0.05, 𝜂 = 3%, 𝑣𝑡 =

4, 𝛼𝑡 = 1.3, 𝜃𝑡 = 10∘. For USAC, all optimization options and PROSAC-based

sampling are selected. inlierThreshold is set to 2
√
2𝜎 since it is the square-

43

Chapter 3. Robust random dot markers (RRDM)

 0

 20

 40

 60

 80

 100

 1 1.1 1.2 1.3 1.4 1.5

αc

P(| ln α(1) | ≤ ln αc)
P(| ln α(2) | ≤ ln αc)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

θc

P(Δθ ≤ θc)

Figure 3.8: Cumulative distribution for 𝑃 (| ln𝛼(1)| ≤ ln𝛼𝑡), 𝑃 (| ln𝛼(2)| ≤ ln𝛼𝑡)
(top) and 𝑃 (Δ𝜃 ≤ 𝜃𝑡) (bottom)

root of symmetric transform error, approximately
√
2 times of squared repro-

jection error [Hartley 2004]. Other parameters are kept as their default val-

ues [Raguram 2013b]. For RDM, only the tracking by detection method (i.e. a

matching procedure is applied for each image without taking advantage of results

obtained in previous frames) of the original Random Dot Markers with default val-

ues for parameters [Uchiyama 2011b] is used for a fair comparison. Experiments are

done on a PC with an Intel Xeon E3 1240@3.40GHz CPU and 16GB of RAM.

3.4.1 Synthetic images

Synthetic images are used to study the expected matching time in relative to the

point quantity, as well as the effects of jitter on each of the three methods. We

choose synthetic images because both jitter value and the number of points are

difficult to control in real images.

Synthetic images are constructed as a virtual marker containing 𝑚 randomly

distributed points in a 1280 × 720 rectangle. It serves as model point set 𝑃 . This

virtual marker is then contaminated by point jitter which is simulated by additive

Gaussian noise, and by 𝛽×𝑚 randomly generated noisy points. This contaminated

virtual marker is placed before a virtual camera so that the angle between the virtual

44

3.4. Results

marker plan and the focal plane of the virtual camera is 30∘. 𝑄 is the camera image

of the point set in the contaminated virtual marker. Remember that Gaussian noise

is controlled by 𝜂 (cf. Section 3.2).

Due to the presence of jitter, an exact estimation is impossible. We use Φ3

mentioned in [Huynh 2009] to measure if a matching is “precise”. With q0 being the

true quaternion of the virtual marker plan and q the estimated one, a matching is

“precise” if:

Φ3 = arccos(‖q0 · q‖) ≤ 1.5∘ (3.19)

In the “Point quantity experiment” (cf. Fig. 3.9), the influence of the amount of

points on performance of methods is studied with 𝛽 = 15% and 𝜂 = 3%. Results

are averaged from 1000 experiments. We show that even with a moderate point

jitter and a small quantity of extra points, RDM gives a very poor estimation.

USAC’s estimation is comparable with the one obtained by RRDM but the execution

time explodes when 𝑚 increases due to lower inlier ratios. Our method remains

consistently precise starting at 𝑚 = 100 even if RDM remains slightly more efficient

than RRDM. This characteristic is very important since for a city like Edinburgh,

for example, a map of the city center contains about 200 road intersections. RDM

and USAC work best at 𝑚 = 100, so we choose this value for later comparison

aiming at a more comparative study.

In the “Jitter experiment” (cf. Fig. 3.10), the LS curve is obtained by using

the classical least square estimation with known point correspondence and can

be considered as an upper bound [Hartley 2004]. Statistics are obtained from 1000

experiments. It can be seen that both RDM and USAC suffer from a very steep

performance decrease when 𝜂 increases.

3.4.2 Real markers

We studied the robustness of the three methods against extra points, missing points

and partial occlusion with real markers. Two kinds of equipment are used: a 42

inches (930 × 523mm) LCD screen filmed at 1920 × 1080 by an iPad Air video

camera and an A4 paper (297× 210𝑚𝑚) filmed at 1280× 720 with a Logitech C270

camera, as illustrated in Fig. 3.11. A video sequence of 200 to 300 frames is recorded

for each case. A visual assessment is provided for all homographies estimated by

these experiments. We have to notice that in these real images, no point jitter

occurs, which cannot highlight the robustness of our method. We show that even

in situations which are in favor of RDM, our method works better as well.

In the “Extra point experiment”, 𝛽×𝑚 extra points are added inside markers to

45

Chapter 3. Robust random dot markers (RRDM)

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Number of points on markers (m)

RRDM RDM USAC

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
re

c
is

e
 r

e
p
ro

je
c
ti

o
n
 (

%
)

Number of points on markers (m)

RRDM RDM USAC

Figure 3.9: Point quantity experiment: robustness and speed with respect to 𝑚.
𝛽 = 15%, 𝜂 = 3%.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

P
re

c
is

e
 r

e
p
ro

je
c
ti

o
n
 (

%
)

η(%)

RRDM
RDM

USAC
LS

Figure 3.10: Jitter experiment: 𝑚 = 100.

46

3.4. Results

Figure 3.11: Video snapshots: upper band for paper markers (the rightest one did
not work), lower band for screen-based markers.

simulate noisy points. Results are shown in Fig. 3.12. RDM’s performance decreases

significantly with respect to our proposal. USAC gives many results when 𝛽 is high

but most of which are wrong estimations.

In the “Tilted view experiment” (cf. Fig. 3.13), we compare the efficiency of the

three methods on the basis of the perspective angle 𝜓, which is defined as the angle

between the marker plane and the camera focal plane. As a consequence, a top

view gives 𝜓 = 0∘. RRDM and USAC give better estimations than RDM, especially

under large perspective angle 𝜓 ≥ 70∘. At 𝜓 = 75∘, USAC seems to outperform

RRDM, but it has too many incorrect reprojections (represented by the empty bar)

to be used.

The “Missing point experiment” is dedicated to incomplete markers detection

and tracking. There can be two kinds of missing elements in markers: (i) a whole

part of a marker is invisible (occluded by another real object for example) and (ii)

randomly distributed missing points are removed from the marker. Fig. 3.14 shows

the results of experiments where (left) a marker is gradually occluded by a sheet

of paper sliding on the screen and (right) where random points are removed from

the marker. In both cases, our algorithm behaves slightly better, although it is a

bit more significant in the randomly missing points case. The performance decay is

logical since all algorithms use neighborhood relationships, which are quickly altered

by random removals of points.

47

Chapter 3. Robust random dot markers (RRDM)

 0

 20

 40

 60

 80

 100

 40 60 80 100 120 140

P
e
rc

e
n
ta

g
e

Extra points ratio β (%)

RRDM
RDM

USAC

Figure 3.12: Extra point experiment, 𝛽×𝑚 extra points are added inside the marker.
Solid bars represent correct reprojections, empty bars represent incorrect ones.

3.4.3 Natural map tracking

We apply RRDM to a map geo-referencing problem in the “Map tracking experi-

ment”. Three different unprepared printed maps of downtown Edinburgh containing

different textures are used, cf. Fig. 3.15a-3.15c. We manually extracted from map

(𝑎) 233 intersections coordinates, which serve as the model point set (i.e. 𝑃). For

each map, a video sequence containing about 100 frames is recorded with an iPad

(with resolution 1280×720). Although only one geo-referencing operation is needed

for each sequence of video in order to initialize tracking (if no tracking failure ap-

pears), we choose to apply it to each frame of the videos to show RRDM’s behavior

under diverse circumstances. For each frame, an automatic intersection detection

technique based on color segmentation (similar to [Callier 2011]) with the help of

manually generated filter offline is used to produce 𝑄 on the fly. In this experiment

𝜂 is set to 5%.

To give an idea of the complexity of the problem we tackle, we manually analyzed

the detection results on 10 randomly picked frames for each video (cf. Table 3.1).

We consider a detected point to be a real intersection if it does not lay too far

(closer than roughly 3 times the local road width) from any intersection on the

map, otherwise it is considered to be a noisy point. However, a real intersection

point in other maps may have no corresponding point in map (𝑎) (i.e. 𝑃) as well.

This can happen because different printed maps may not have the exact same road

network. As a consequence, new road intersections may arise and the total number

of inliers remains unknown. Detection for map (𝑎) has a fairly good quality thanks

48

3.4. Results

 0

 20

 40

 60

 80

 100

 45 50 55 60 65 70 75 80 85 90

P
e
rc

e
n
ta

g
e

Perspective angle ψ (deg)

RRDM
RDM

USAC

Figure 3.13: Tilted view experiment. Solid bars represent correct reprojections,
empty bars represent incorrect ones.

Table 3.1: Qualities of detections in map tracking experiment (Mean value ± stan-
dard deviation).

Map ID Point pattern size Noisy points Inliers found
(𝑎) 236.7± 14.7 52.7± 5.0 102.0± 28.1
(𝑏) 279.6± 16.9 114.9± 11.9 76.8± 19.8
(𝑐) 237.1± 10.3 51.7± 7.4 56.9± 5.5

to its uniform road color (white) and high image quality (originally 1171 × 795

pixels). Roads in map (𝑏) are white and yellow, those colors are similar to some

background elements, leading to a much noisier detection result. Map (𝑐) is also

challenging since its original quality is low (553× 461 pixels). Furthermore, scaling

is not homogeneous between maps (𝑐) and (𝑎) (remember that 𝑃 was constructed

based on map (𝑎)) thus preventing some inliers to be reprojected close enough to

their corresponding detected points. This prevents the result list from a significant

expansion during the recovery phase (cf. Section 3.2.2.3), as a consequence, correct

reprojections are confined in a subregion of the map (see top left area in Fig.3.15c).

Tracking results of RRDM for the videos of maps (𝑎), (𝑏) and (𝑐) are presented

in Table 3.2. As both the total number of inliers and the ground truth of the

homography are unknown, it is difficult to estimate whether a reprojection is correct.

We consider a reprojection to be good if the basement of the 3D model of Edinburgh

castle’s 3D model is inside the castle area on the map which is mainly bounded by

Princes St., Kings Stables Rd, Johnston Terrace and The Mount on the map. Note

49

Chapter 3. Robust random dot markers (RRDM)

 0

 20

 40

 60

 80

 100

 120

 140

 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e

Partial occlusion percentage (%)

Marker partial occlusion

RRDM
RDM

USAC

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60

Hidden points in marker (%)

Randomly removed points

RRDM
RDM

USAC

Figure 3.14: Missing point experiment. Solid bars represent correct reprojections,
empty bars represent incorrect ones.

(a) (b) (c)

Figure 3.15: Augmenting natural maps of Edinburgh. Maps (a), (b) and (c) are
three different maps registered with a single model and a 3D model of the castle is
rendered onto them.

50

3.5. Application: Augmented Maps

Table 3.2: Results of the “Map tracking experiment”. Good matching rates is shown.
Detection time and matching time per frame are reported in the form of “Mean value
± Standard Deviation”.

Map ID Good Detection Matching
matching (%) time (ms) time (ms)

(𝑎) 100.0% 73.0± 11.5 167.0± 14.2
(𝑏) 90.2% 210.6± 23.8 223.6± 18.7
(𝑐) 96.0% 81.2± 6.1 182.4± 15.4

that neither RDM nor USAC work for any of the videos.

3.5 Application: Augmented Maps

In this section, we propose a framework for augmented maps by using RRDM. It

also includes a new method to better extract road network from images of paper

maps without using manually generated filters. The work has been presented at the

conference on Machine Vision Applications (MVA) in 2015.

The framework has three modules: road intersection detection, map-GIS regis-

tration and tracking. Reference intersections coordinates are calculated from GIS

and cleaned beforehand since there are small roads which will never be present on

a city map. During the initialization, three tasks are accomplished on the very first

frame 𝐼0: (1) Map intersections are detected from real maps by our road intersection

detection module (cf. Section 3.5.1); (2) map intersections and reference intersec-

tions are matched by the map-GIS registration module using RRDM; (3) SURF key

points from the paper map in 𝐼0 are registered in the tracking module for later use.

During online tracking, the paper map is tracked with a classical method based on

SURF interest points and descriptors.

3.5.1 Intersection detection on real maps

Since the map-GIS registration is based on road intersections, the quality of road

intersection extraction is crucial. False road intersections can lead to a poor perfor-

mance of the method, or even to total failure. A usual way to find road intersections

on a map is to identify the road network, extract its skeleton before finding lines

intersections. The difficulty lies in the treatment of texts on maps, such as road

names, which severely reduce the quality of the automatically extracted skeleton.

[Callier 2012] relied on lines with homogeneous color in the image to find road pixels

51

Chapter 3. Robust random dot markers (RRDM)

On-line tracking

Pre-initialization

Initialization

Road Intersection
Detection

Map-GIS
Registration

SURF Tracking

Reference
intersections

Detected
intersections

0I

0I

0H

nH

nI

GIS

Road width
detection

Map region
detection

Road layer
seperation

width w map region

Seed point

Figure 3.16: Schema of the application. 𝐼0 is the first image used for initialization.
𝐻0 is the homography between the GIS and the map contained in 𝐼0

and used color histograms to find the road layer. [Chiang 2011] used Mean-shift,

Median-cut and K-means to find the road layer and text/graph separation tech-

niques are used. But none of these methods is efficient enough to allow for real-time

augmentation. A modified version of the above methods is used in Section 3.4.3 but

a map-dependent filter has to be used to speed-up the process.

The contribution of our new method is mainly about road layer extraction im-

provement, and is shown in Fig. 3.19. At first, the user picks a single road pixel

from the image (a seed point). This is very easy to do with a mouse or on a tactile

screen. From this pixel, road color and width can be estimated. Then, a classic

level set method is used to find the map in 𝐼0 to avoid false detections coming from

out of the region of interest. At last, a modified level set method is applied to find

the road layer inside the map.

We use a 50 × 50 local image portion centered at the seed point to find the

road width since road width on a camera image of a map is usually far less than

50 pixels. A Canny edge detector [Canny 1986] is used to extract road edges and a

flood fill at the seed point is applied to find the local road layer, which contains 𝑅

road pixels. We then dilate the local road layer by 1 pixel and the result contains

𝑄 road pixels. Since roads can be modeled as thin rectangles, road width 𝑤 can be

easily calculated as:

52

3.5. Application: Augmented Maps

On-line tracking

Pre-initialization

Initialization

Road Intersection
Detection

Map-GIS
Registration

SURF Tracking

Reference
intersections

Detected
intersections

0I

0I

0H

nH

nI

GIS

Road width
detection

Map region
detection

Road layer
seperation

width w map region

Seed point

Figure 3.17: Workflow of road layer extraction

𝑤 =
𝑤1 + 𝑤2

2

with 𝑤1 = 2𝑅/(𝑄−𝑅) , 𝑤2 = 2𝑅/(𝑄−𝑅+ 4)
(3.20)

where 𝑤1 is for the case where a single road is present in the local image portion

while 𝑤2 is for the case where a crossing is present. These are the two most common

cases in a local map.

The level set method, commonly known as active contour, is often used in image

segmentation. It separates an image into different segments (i.e. subregions) such

that colors of all pixels in the same segment are similar. It usually starts with an

initial contour Γ0 and then moves it iteratively in order to minimize 𝐸(Γ) in (3.21)

where Γ is the contour which separates segments 𝐴1 and 𝐴2. Shi’s implementation

is used as our classic level set method [Shi 2008]:

𝐸(Γ) =

∫︁
𝐴1

|𝐼0(𝑥, 𝑦)−C1|+
∫︁
𝐴2

|𝐼0(𝑥, 𝑦)−C2| (3.21)

where 𝐼0(𝑥, 𝑦) is the color at (𝑥, 𝑦). C1 and C2 are expected colors for the two

segmentations respectively.

At first, a classic level set method is used to extract the map from the image

𝐼0. An initial rectangle contour Γ0 which is just a little smaller than 𝐼0 is used (cf.

Fig. 3.18a). 𝐶1 and 𝐶2 are the averages of pixels’ values in segments 𝐴1 and 𝐴2

respectively. They change dynamically as the contour moves. Fig. 3.18c shows the

segmentation result, with 𝐴1 in white represents the map segment and 𝐴2 in black

represents the background .

Once we have got the map segment in 𝐼0, a modified level set method is applied

on this segment since the classic level set does not work well for road extraction.

53

Chapter 3. Robust random dot markers (RRDM)

(a) (b) (c)

Figure 3.18: Classic level set method for map extraction. (a) The initial contour
Γ0. (b) The final contour. (c) The result of two segments represented in different
uniform colors 𝐴1 (white) and 𝐴2 (black).

More specifically, it has two major drawbacks: (1) It cannot segment holes from

a region since the contour cannot appear from nowhere. However, road networks

divide a map into many disconnected areas, thus forming “holes” (cf. Fig. 3.19b). (2)

The resulting contours usually lie on pixels with high color gradients. So texts on the

map can often prevent the contour from moving, which produces poor segmentation

results (cf. Fig. 3.19c).

(a) (b) (c) (d)

Figure 3.19: (b)-(d) Results of various level sets. The segment 𝐴1 represents road
layer in white, the segment 𝐴2 represents the background in black. (a) Original
map portion. (b) Classic level set method. (c) The presence of road labels disturbs
contours. (d) Our modified level set method.

To overcome the first problem, we initialize the level set method with rectangular

stripes (cf. Fig. 3.20). Each stripe has a width of 2𝑤 cf. (3.20) and the initial

contours are created from the edges of these stripes. This ensures that each “hole”

is divided by the initial contours. For the second problem, since thickness of road

labels is usually small, we can remove them by replacing each pixel by the pixel

whose color is the most similar to road color (i.e. 𝐶1) in the 5× 5 neighborhood, cf.

(3.22). Moreover, 𝐶1 in (3.21)-(3.22) is set to the color of the seed point. 𝐶2 is set

to the average value of pixels in 𝐴2.

54

3.5. Application: Augmented Maps

Figure 3.20: Left: an example of rectangular stripes. Right: Initial contours are
created from the edges between white stripes and black stripes.

𝐼0(𝑥, 𝑦) = argmin
|𝑥′−𝑥|≤2,|𝑦′−𝑦|≤2

|𝐼0(𝑥′, 𝑦′)− 𝐶1| (3.22)

3.5.2 Results

We recorded three videos of different paper maps of Munich with an iPad-air camera

(with resolution 1920× 1080) to test our method. We use OpenStreetMap data as

our GIS database and raster maps found on the Internet and printed (see Fig. 3.21).

Figure 3.21: Data sources. Left: GIS road network (green) and road intersections
(red). Right: One raster map.

We first compare results of intersection detection by the filter-based method

applied in Section 3.4.3 and our modified level set method in Fig. 3.22. Detection

results are greatly improved by our method while the filter-based method has many

false detections especially near texts.

Initialization results for two videos are presented in Fig. 3.23. GIS roads are

placed exactly onto roads of paper maps. Several tracking frames of the video are

presented in Fig. 3.24. We can see that the position of the augmented information

remains correct most of the time. But small drifts appear due to SURF tracking at

55

Chapter 3. Robust random dot markers (RRDM)

Figure 3.22: Intersection detection results (blue points). Top: filter-based method
used in Section 3.4.3. Bottom: Modified level set (new method).

the end (cf. Frame 167 in Fig. 3.24). As to time performance, although registration

takes 500∼1000ms, tracking works at interactive rate, i.e. 20∼30Hz.

3.6 Conclusion

In this chapter, we have introduced RRDM, a method to robustly track random

dot patterns, where over and under point detection, large perspective distortion and

inaccurate detection (jitter) can be taken into account. Unlike traditional feature

point methods, RRDM is also able to robustly track 2D texture-less object. Recom-

mendations on parameters are also given in order to facilitate user’s implementation.

Synthetic images are used to demonstrate the robustness of RRDM against point

jitter and when the marker is composed of a large number of points. In those

cases, RRDM clearly outperforms RDM. We also proved through experiments with

real videos that RRDM is more robust than RDM in presence of partial occlusion,

randomly missing pattern points or under large perspective distortion, and especially

with extra points in the pattern. Regarding efficiency, a real-time tracking (30Hz)

can be achieved when the number of points in a marker is moderate (about 100

points). We also applied RRDM on registration of unprepared printed maps by using

purely geometric coordinates of road intersections as the point pattern. Finally, we

56

3.6. Conclusion

Figure 3.23: Initialization results for two different maps.

Figure 3.24: Frame 11, 94 and 167 (from left to right) of tracking results in video
3. Top row presents original augmented frames while bottom row shows zooms to
illustrate the precision of the matching.

57

Chapter 3. Robust random dot markers (RRDM)

proposed a workflow for augmenting unprepared paper maps with a GIS database.

Although RRDM is robust and has almost solved one of the problems mentioned

at the beginning of this dissertation (cf. Section 1.2), i.e. augmenting different paper

maps without any preparation using GIS, it has three major drawbacks: (1) It can

register the scene point set 𝑄 against only one model point set 𝑃 but it cannot judge

the correctness of a registration. Therefore, recognition of different point patterns

cannot be performed. (2) It has quadratic time complexity in relation to the number

of points to be tracked, which makes the algorithm slow when pattern contains more

than 100 points. (3) It can only deal with 2D perspective transformations due to the

TSR descriptor. In next chapter, we propose another algorithm which can overcome

all these drawbacks.

58

Chapter 4

Local geometric consensus (LGC)

Contents

4.1 General algorithm . 60

4.1.1 Definitions and a brief description of the algorithm 61

4.1.2 Hypotheses generator . 62

4.1.3 Hypotheses validator . 66

4.1.4 Result refiner . 67

4.1.5 Parameters . 68

4.1.6 Local consensus: a guarantee of low false alert 71

4.2 Specific Implementations . 73

4.2.1 2D homography . 73

4.2.2 3D similarity . 74

4.3 Results on synthetic point sets 76

4.3.1 Speed and robustness studies 76

4.3.2 3D model registration . 80

4.3.3 LGC with additional information 82

4.4 Applications . 84

4.4.1 Tracking ordinary planar objects 84

4.4.2 Augmenting engineering drawings 85

4.5 Discussion . 86

4.5.1 Neighbors . 86

4.5.2 Transformation 𝑇 . 86

4.5.3 Repetitive structures . 88

4.6 Conclusion . 88

In this chapter, we consider the PPM problem between several model point sets

and one scene point set. We present a method which can quickly and robustly

match 2D and 3D point patterns based on their sole spatial distribution, but it

can also handle other cues if available. This method can be easily adapted to

Chapter 4. Local geometric consensus (LGC)

many transformations such as similarity transformations in 2D/3D, and affine and

perspective transformations in 2D. This work has been presented at International

Symposium on Mixed and Augmented Reality (ISMAR) in 2015.

We reformulate the matching problem as follows: consider having𝑀 model point

sets (𝑃1, 𝑃2, · · · , 𝑃𝑀), each point set 𝑃𝑖 containing 𝑚𝑖 uniformly randomly dis-

tributed points in 𝑑 = (2, 3) dimensions. Let 𝑇 : R𝑑 → R𝑑 be a geometric

transformation on 𝑑 dimensions of which we only know its type (similarity, homog-

raphy, etc.). Let 𝑄 be a set of observed scene points, some of which belong to 𝑇 (𝑃 ′
𝑖)

where 𝑃 ′
𝑖 is a subset of 𝑃𝑖 (𝑃 ′

𝑖 ⊆ 𝑃𝑖) in which each point may have been slightly

transformed (i.e. jitter). Other points of 𝑄 are extra points, i.e. acquisition noise.

Our objective is to find 𝑃𝑖 amongst the𝑀 known model point sets and to determine

the transformation 𝑇 between 𝑃𝑖 and 𝑄.

4.1 General algorithm

Our algorithm takes as inputs several model point sets 𝑃1, 𝑃2, · · · , 𝑃𝑀 , a query

scene point set 𝑄 and the type of transformation. The output is the matched model

number 𝑖 (𝑖 ∈ 1..𝑀) and 𝑇 between 𝑃𝑖 and 𝑄, with 𝑇 belonging to the given

transformation type (cf. Fig. 4.1).

p2-patch

Generator

p1-patch p1-patchp2-patch

P1,P2,…,PM

Q

Type of T

Pi, T : Q≈T(Pi)

η, k, Nlarge, Nmax

model 1 (P1) model 2 (P2)

Figure 4.1: Input and outputs of our algorithm. 𝜂, 𝑘, 𝑁𝑙𝑎𝑟𝑔𝑒 and 𝑁𝑚𝑎𝑥 are the
parameters of the algorithm.

The core idea is based on the consensus of local geometry: correspondences

information between two small subsets of 𝑃𝑖 and 𝑄 are used to estimate an initial

guess of the transformation. The transformation is then used to find correspondences

of other subsets in the neighborhood. At last the other correspondences between

the two sets can be found iteratively. The very first correspondences between two

subsets are found by Geometric Hashing (GH). More precisely, GH relies on local

coordinate systems, which are invariant to the pre-defined transformation type, for

matching.

Some important definitions and a brief description of LGC are given in Sec-

60

4.1. General algorithm

tion 4.1.1 while the next sections are dedicated to a detailed explanation.

4.1.1 Definitions and a brief description of the algorithm

The algorithm works with local geometric features. By assuming that points are

randomly distributed, the relative positions between points in a local point set is

very characteristic of this point set as mentioned in previous chapters. For each

model point 𝑝 ∈ 𝑃𝑖 or scene point 𝑞 ∈ 𝑄, 𝑝 (or 𝑞) and its 𝑘 nearest neighbors

(𝑘 being a parameter of the algorithm) are used as a local geometric feature, that

we call a 𝑝-patch (resp. 𝑞-patch). We define two patches (𝑝-patch, 𝑞-patch) with

known point correspondences as a paired-patch (𝑝, 𝑞) (cf. Fig 4.2). When point

correspondences are known, one can find the transformation between the paired-

patch. As transformations (such as homographies) may not be linear, they can be

approximated by other linear ones (such as affinities) in a small local area by using

their Taylor expansions (cf. Section 4.5.2). A local transformation 𝑇𝐿 is used in

local patches as a linear approximation of 𝑇 .

●

●
●

●
p0 p1

p2

p3=X1(p1-p0)+X2(p2-p0)+p0

X1

X2

●

●

●

●
p0

p1

p2

X1

X2

p

qp’
q’

Figure 4.2: An example of a paired-patch (𝑝, 𝑞) with 𝑘 = 6. 𝑝 and its 6 nearest
neighbors are in red. 𝑞 and its 6 nearest neighbors are in blue. Black lines with
arrows represent correspondences of the paired-patch. Note that not all points have
a correspondence due to missing/extra points, and wrong correspondences could
also occur.

Let 𝑚𝑖 be the number of points in model 𝑃𝑖 and 𝑉𝑖 be the space enclosed by

𝑃𝑖’s convex hull. Then 𝜌𝑖 = 𝑑
√︀
𝑚𝑖/𝑉𝑖 is the point density of 𝑃𝑖, where dimension

𝑑 is the number of coordinates of each point. As a consequence, 𝑙𝑖 = 𝜌−1
𝑖 is a

measure of inter-point distance. Without losing generality, we assume that all point

sets are normalized beforehand so that the center of mass of each point set is at

origin and 𝑙𝑖 = 𝑙 is now the same for all models. We assume also that the jitter

follows an uncorrelated multivariate normal distribution 𝑁(0, 𝜎I) for all models,

where 𝜎 = 𝑙𝜂 and 𝜂 is the jitter factor (cf. Section 3.1.3). From now on, all point

sets are normalized ones unless otherwise stated.

61

Chapter 4. Local geometric consensus (LGC)

Our algorithm is composed of three modules: hypotheses generator, hypotheses

validator, and results refiner (cf. Fig. 4.4). 𝑀 containers 𝐶𝑖 (𝑖 = 1..𝑀) are used to

store correspondences coming from each model 𝑃𝑖 respectively.

The hypotheses generator is a two-stage procedure: offline registration (cf.

Fig. 4.3) and online generation. During the offline stage, every model patch is

registered in the generator. During the online stage, a scene point 𝑞 is randomly

chosen and the 𝑞-patch is fed to the hypotheses generator to build several paired-

patches. These generated paired-patches are called “hypotheses” in the following.

The validator takes each hypothesis as input and verifies them. If a hypothesis is

judged as containing correct correspondences, the validator produces a list of corre-

spondences and adds them to one of the containers 𝐶𝑖. The “generation-validation”

process is looped until either one of the two following conditions is satisfied: (1)

one container has more than 𝑁𝑙𝑎𝑟𝑔𝑒 correspondences or (2) 𝑁𝑚𝑎𝑥 scene points have

been sent to the generator. We explain these conditions and their values in Sec-

tion 4.1.5. Finally, the result refiner finds and improves the final result with the

largest correspondences set among all containors 𝐶1..𝐶𝑀 (cf. Fig. 4.4). Note that

only the hypotheses generator needs to work on all models whereas the hypotheses

validator and the result refiner only use the scene point set 𝑄 and the model 𝑃𝑖

which contains the model points of the input hypothesis.

The time complexity of the method is about 𝑂(𝑚+ 𝑛), where 𝑚 =
∑︀𝑀

𝑖=1𝑚𝑖 is

the number of total model points, and 𝑛 is the number of scene points. We use the

term “about” since it is not formally proved but is only an estimation and validated

empirically. It will be explained separately for each module in Section 4.1.2-4.1.4.

4.1.2 Hypotheses generator

The hypotheses generator is basically a geometric hashing module. During offline

registration, each 𝑝-patch (i.e. a set of 𝑘 + 1 points) is registered into a hash

table along with its model number. During online generation, the input 𝑞-patch

is considered as a query set and the corresponding 𝑝-patches that may belong to

different models are retrieved.

We chose to use geometric hashing because it can drastically reduce the search

space, it works well with moderate point jitter and in the presence of extra/missing

points, and it can deal with many different types of transformations. By restricting

it to local patches, the number of points in each 𝑝-patch is small enough for efficient

matchings.

Geometric hashing uses a local basis. Let 𝑓(𝑇𝐿) be the degree of freedom of the

62

4.1. General algorithm

p2-patch

Generator

p1-patch p1-patchp2-patch

P1,P2,…,PM

Q

Type of T

Pi, T : Q≈T(Pi)

η, k

model 1 (P1) model 2 (P2)

Figure 4.3: General schema for offline registration: 𝑝-patches are created for each
point in all models and are registered into the generator.

Get q

Generator

Validator

finished?

q-patch

hypothesis: paired-patch (p,q)

correspondences

one correspondence container for each model

Y

Refiner

N

matching result

C1 ...

largest list

off-line registration

on-line matching

C2 CM

Figure 4.4: General schema for online matching: Generator (Section 4.1.2) is a
geometric hashing module. Validator (Section 4.1.3) validates the input hypothesis
and creates a list of correspondences from it. Refiner (Section 4.1.4) computes the
final result.

63

Chapter 4. Local geometric consensus (LGC)

linear transformation 𝑇𝐿. By using 𝑏 = 𝑓𝑙𝑜𝑜𝑟(𝑓(𝑇𝐿)/𝑑)+1 non-degenerated points,

one can construct a local affine right-hand basis B as follows: let the first point be

the origin of the local basis, each following point defines the direction of one axis

for the local basis. Then the last point’s position can be uniquely expressed by a

geometric descriptor X, which is a 𝐷 = 𝑏𝑑 − 𝑓(𝑇𝐿) dimensional vector. The local

basis is constructed so that X is invariant to transformation 𝑇𝐿. If XB𝑖 represents

the descriptor in basis B𝑖 formed by 𝑏 points, we have:

XB1 = XB2 ⇔ ∃!𝑇𝐿 s.t. B2 = 𝑇𝐿(B1) (4.1)

where ∃! represents the unique existential quantification operator meaning “there

exists one and only one”.

Jitter can influence the value of X as well. If the geometric descriptor of basis

B is X, and if B ′ which gives rise to a geometric descriptor X′ is a jittered version

of B , then X′ is a random variable. Since 𝑇𝐿 is a linear transformation, we can

analytically find Σ = (Σ1,Σ2, ...,Σ𝐷) so that 𝑋 ′
𝑖 ∼ 𝑁(𝑋𝑖,Σ

2
𝑖) when the variance

of jitter 𝜎 is comparably small to inter-point distance 𝑙. Note that for simplicity,

Σ is not a covariance matrix but a vector of length 𝐷. As a consequence we say

that B and B ′ with descriptors X and X′ respectively, are matched under jittered

conditions if (4.2) is satisfied:

|𝑋𝑖 −𝑋 ′
𝑖| ≤ 2Σ𝑖 (4.2)

Given 𝑏 points, there are many ways to construct a basis. For a 𝑝-patch, we

choose 𝑝 as the first point (i.e. the origin), other points are chosen so that X lies

in a bounded region 𝑅𝑋 = {X : |𝑋𝑖| ≤ 1, 1 ≤ 𝑖 ≤ 𝐷}. This region is uniformly

partitioned into 100𝐷 bins (meaning that [-1,1] in each dimension is equally divided

in 100 segments) to serve as hash entries. To avoid inefficient record in the hash

table, Σ̃𝑖 is used instead of Σ𝑖 in Alg. 5, with Σ̃𝑖 = 𝑚𝑎𝑥(Σ𝑖, 0.05).

Algorithm 5 Offline registration for all 𝑝-patches in model 𝑃𝑖

for B ∈ {All combination of 𝑏 points in 𝑝-patch containing 𝑝} do
Compute geometric descriptor X and its variance Σ
Register (model number 𝑖, B) into all bins that intersect [X− 2Σ̃,X+ 2Σ̃]

Given the randomly selected input scene point 𝑞, the generation step begins by

creating a list of (𝑝𝑗-patch, 𝑞-patch) with all model points 𝑝𝑗 ∈ ∪𝑃𝑖 (𝑖 = 1..𝑀).

They are called pre-hypotheses since points correspondences are unknown in these

two patches. Each pre-hypothesis has a local voting table for its neighbor points

64

4.1. General algorithm

correspondences. Then the voting schema detailed in Alg. 6 is applied.

Let us take one pre-hypothesis (𝑝-patch, 𝑞-patch) as an example to show the

creation of an hypothesis from the voting results. The process is similar to Alg. 3.

First, all votes less than 𝑣𝑡 (set to 4) are set to 0. Then point correspondences 𝑠𝑝,𝑞

are estimated by solving the maximum assignment problem. To reduce the presence

of bad hypotheses, the local transformation 𝑇𝐿 is only estimated when the number

of correspondences 𝑠𝑖𝑧𝑒(𝑠𝑝,𝑞) is larger than 𝑏, i.e. the number of points in basis 𝐵.

𝑠𝑝,𝑞 and 𝑇𝐿 are considered valid if they satisfy (4.3), where 𝑓(𝑇𝐿) is the degree of

freedom of 𝑇𝐿. If so, 𝑠𝑝,𝑞 is used to create the paired-patch(𝑝, 𝑞), thus giving rise to

one hypothesis.

∑︁
(𝑞,𝑝)∈𝑠𝑝,𝑞

||𝑇−1
𝐿 𝑞 − 𝑝||2 < 𝜒2

0.05,𝑠𝑖𝑧𝑒(𝑠𝑝,𝑞)−𝑓(𝑇𝐿)
(4.3)

Algorithm 6 Online hypotheses generation with 𝑞-patch

Input: A randomly selected scene point 𝑞 ∈ 𝑄
Output: A list of hypotheses: hypo
Create (𝑝-patch, 𝑞-patch) pre-hypotheses, 𝑝 ∈ ∪𝑃𝑖, 𝑖 = 1..𝑀
for all basis 𝐵* ∈ {𝑞-patch} do
Find geometric descriptor X
for all (model number 𝑖, 𝐵) in the hash bin which covers X do

Let 𝑝 = the origin point of 𝐵
Cast one vote for each correspondence between 𝐵* and 𝐵 in the local voting
table of (𝑝-patch, 𝑞-patch)

for all pre-hypotheses (𝑝-patch, 𝑞-patch) do
Set votes less than 𝑣𝑡 to 0
𝑠𝑝,𝑞 = Solution of maximum assignment problem of the voting results (0 vote
excluded)
if 𝑠𝑖𝑧𝑒(𝑠𝑝,𝑞) > 𝑏 then
Estimate 𝑇𝐿 using 𝑠𝑝,𝑞
if 𝑠𝑝,𝑞 and 𝑇𝐿 satisfy (4.3) then
hypo ← paired-patch (𝑝, 𝑞)

Since the generator is a multi-model GH module, its time complexity is 𝑂(𝑚(𝑘+

1)2𝑏) in the worst case when all 𝑝-patches are hashed in a few bins [Wolfson 1997],

where 𝑚 is the total number of model points, 𝑘 is the number of nearest neigh-

bors used and 𝑏 is the number of points in 𝐵, which only depends on the local

transformation type 𝑇𝐿.

65

Chapter 4. Local geometric consensus (LGC)

4.1.3 Hypotheses validator

The core work of the validator is to check whether the local transformation 𝑇𝐿 of

an input hypothesis is an approximation of 𝑇 . If a paired-patch contains point

correspondences of the real transformation, it is called an in-paired-patch and its

local transformation is a good approximation of 𝑇 . Otherwise, it is called an out-

paired-patch.

Local transformations of two neighboring in-paired-patches should be similar

(cf. Section 4.2 for details) as they are both approximations of 𝑇 in the same

neighborhood. Such a relationship cannot be established for out-paired-patches.

We use this consensus between neighbor paired-patches’ transformations to validate

hypotheses. Obviously, the more paired-patches share a consensus with 𝑇𝐿, the

more likely 𝑇𝐿 is a good approximation of 𝑇 . The measurement of consensus is

𝑇𝐿-dependent, it will be addressed when we discuss concrete implementations, cf.

Section 4.2.

The idea of consensus between neighboring paired-patches was already seen in

RRDM (Chapter 3), however this approach is different. In RRDM, transformations

of neighboring paired-patches are first estimated independently by voting before

being compared, which consumes a lot of time. Furthermore, when there are lots of

noise, voting results will become unreliable and thus correct point correspondences

can hardly be found only via voting. In LGC, if the transformation of one paired-

patch is found by voting, we use it as an initial guess to estimate transformations

of its neighboring paired-patches. This allows us to improve the possibility and

the speed of finding similar transformations between neighboring paired-patches. In

addition, by relying on the consensus and on a proper termination criterion 𝑁𝑙𝑎𝑟𝑔𝑒,

LGC can almost guarantee to find a correct estimation of 𝑇 (if it exists), which will

be further improved by the refiner module.

Alg. 7 describes the validator module. Recall that a paired-patch contains corre-

spondences between two patches, thus it can be seen as a small correspondence list

as well. The validator takes an hypothesis paired-patch (𝑝0, 𝑞0) as input, finds its

neighboring paired-patches having a similar local transformation. Since these neigh-

boring paired-patches are in geometric consensus with the hypothesis, they can be

seen as supporters of it. They are added to a supporterlist. Then the validator

module does the same thing to these newly added paired-patches (i.e. supporters).

This process continues until no paired-patch can be added anymore. The resulting

supporterlist is a list of correspondences in the same subregion and in geometric

consensus. If the local transformation 𝑇𝐿 of the input hypothesis is considered as a

66

4.1. General algorithm

good approximation of 𝑇 , supporterlist is registered into container 𝐶𝑖, 𝑖 being the

model number of point 𝑝0. If 𝐶𝑖 is not empty, supporterlist and the stored list are

merged to give a larger correspondences list sharing the same 𝑇 .

Algorithm 7 Validator

Input: One hypothesis: paired-patch (𝑝0, 𝑞0)
Output: A list of correspondences: supporterlist
supporterlist = {(𝑝0, 𝑞0)}
for each (𝑝, 𝑞) ∈ supporterlist do

𝑇𝐿 = local transformation of paired-patch (𝑝, 𝑞)
for all (𝑝′, 𝑞′) ∈ paired-patch (𝑝, 𝑞) do

Find correspondences 𝑠𝑝′,𝑞′ of (𝑝′-patch, 𝑞′-patch) by using nearest neighbors
between 𝑝′-patch and 𝑇−1

𝐿 (𝑞′−patch).
if 𝑠𝑖𝑧𝑒(𝑠𝑝′,𝑞′) > 𝑏 then
Estimate 𝑇 ′

𝐿 using 𝑠𝑝′,𝑞′
if 𝑠𝑝′,𝑞′ and 𝑇 ′

𝐿 satisfy (4.3) and 𝑇𝐿 ≃ 𝑇 ′
𝐿 then

supporterlist ← supporterlist ∪{(𝑝′, 𝑞′)}

Time complexity of the validator depends on the number of input hypotheses.

In the worst case, 𝑁𝑚𝑎𝑥 scene points have been fed to the generator and each scene

point generates𝑚 hypotheses, thus generates𝑚𝑁𝑚𝑎𝑥 hypotheses. As a consequence,

the time complexity is 𝑂(𝑚𝑁𝑚𝑎𝑥) in this worst case.

4.1.4 Result refiner

After loops of “generator-validator”, many correspondences are filled into containers.

If the container 𝐶𝑖 has the most correspondences, then model 𝑃𝑖 is considered to

appear in the scene. The refiner takes the correspondence list in 𝐶𝑖 as input, noted

as 𝑠𝑙. It works on the scene point set 𝑄 and the model point set 𝑃𝑖 to find transfor-

mation 𝑇 . The overall refining process is similar to Section 3.2.2.3, but Delaunay

triangulations and a threshold 𝑑𝑡 are used to improve its performance.

First of all, Delaunay triangulations are generated for both point sets. A point

𝑝’s mesh neighbors are defined as the points who directly connect to 𝑝 by Delau-

nay mesh (cf. Fig. 4.21). As a consequence, each point is connected with its mesh

neighbors by the Delaunay mesh. From 𝑠𝑙, a transformation 𝑇 can be estimated.

Then we try to find matching points for all mesh neighbors of points in 𝑠𝑙. When

a new matching is found, the new correspondence is added to 𝑠𝑙. With these cor-

respondences, the transformation can be better estimated. This process continues

until 𝑠𝑙 stops growing. Note that at the end of Alg. 8, 𝑇 is the transformation be-

tween normalized 𝑃𝑖 and 𝑄. However, since point correspondence between original

67

Chapter 4. Local geometric consensus (LGC)

sets can be derived from 𝑠𝑙, it is very easy to calculate the transformation between

them. The reason for using mesh neighbors instead of nearest neighbors is explained

in Section 4.5.1.

Algorithm 8 Refiner

Input: Largest correspondence list: 𝑠𝑙
Output: Transformation: 𝑇
repeat

Estimate 𝑇 using 𝑠𝑙
for all (𝑝, 𝑞) ∈ 𝑠𝑙 do
Add all mesh neighbors of 𝑞 in potentialComers

Add all mesh neighbors of 𝑝 in tmpSet

In 𝑄, find nearest neighbors of each 𝑇 (𝑝𝑗), 𝑝𝑗 ∈ tmpSet

Add these nearest neighbors into potentialComers

for all 𝑞′ ∈ potentialComers do

if ∃𝑝′ ∈ 𝑃𝑖 : |𝑝′ − 𝑇−1(𝑞′)| ≤ 𝑑𝑡 then
𝑠𝑙 = 𝑠𝑙 ∪ {(𝑝′, 𝑞′)}

Estimate 𝑇 using new 𝑠𝑙
Erase (𝑝, 𝑞) ∈ 𝑠𝑙 if |𝑝− 𝑇−1(𝑞)| > 3𝜎

until 𝑠𝑙 stops growing
Return: 𝑇

In Alg. 8, 𝑑𝑡 is a threshold which describes how far could a projected scene point

𝑇−1(𝑞′) be away from its model corresponding point. This value can vary according

to the position of 𝑞′. Let C be the convex hull of scene points in 𝑠𝑙. If 𝑞′ is inside

C , we can take roughly 𝑑𝑡 = 2𝜎 with 𝜎 being the variance of the additive Gaussian

noise. When 𝑞′ is outside C , the farther it is from C , the larger 𝑑𝑡 will be (cf.

Fig. 4.5). Assuming 𝑜 is the center of C and 𝐶 intersects 𝑜𝑞′ at 𝑞𝐶 , we then take

𝑑𝑡 = 2 𝑜𝑞′

𝑜𝑞𝐶
𝜎.

In the worst case, each repeat loop only adds one correspondence into 𝑠𝑙, which

means that repeat loop runs at most 𝑛 times (i.e. the number of points in 𝑄). Thus

the time complexity in the worst case is about 𝑂(𝑛). We use the term “about” since

we consider the inner loop is fast enough and thus not influence much the refiner

module.

4.1.5 Parameters

All parameters used in LGC will be discussed here so that they can be more easily

adjusted according to specific use.

68

4.1. General algorithm

Figure 4.5: An illustration before the refiner module: model points (in red) are
projected into the scene. Scene points are in blue, correspondences in 𝑠𝑙 are in
black. The convex hull of scene points in the correspondence list C is represented
by a green polygon, 𝑜 being its center. Region À is near C and thus the projected
model point and the scene point almost overlap. Region Á is far from C and thus
the distance between the projected model point and the scene point is larger. A
correspondence will be established for point 𝑞′ outside of C if a model point is

projected within 𝑑𝑡 = 2 𝑜𝑞′

𝑜𝑞𝐶
𝜎

4.1.5.1 𝑘 and 𝜂

The number of nearest neighbors 𝑘 defines the size of local patches, the bigger

it is, the more robust the algorithm is against extra/missing points. Since our

method is based on Geometric Hashing, the efficiency related to 𝑘 in the generator

is 𝑂((𝑘 + 1)𝑏), where 𝑏 is the number of points in a basis B (cf. Sec. 4.1.2).

𝜂 = 𝜎/𝑙 is the jitter factor. When it is larger, the algorithm is more robust

against acquisition noise, but each 𝑝-patch will be registered into more hash bins as

well. The latter impacts the efficiency of the generator at 𝑂(𝜂𝐷), where 𝐷 is the

dimension of the geometric descriptor (cf. Sec. 4.1.2). We found that 𝜂 ≈ 10% is the

limit for the jittered point pattern matching problem since beyond that value, precise

transformation is difficult to obtain even with pre-known point correspondences (cf.

Fig 4.10). Fortunately, we found 𝜂 = 5% - 7% to be sufficient for many applications.

4.1.5.2 𝑁𝑙𝑎𝑟𝑔𝑒 termination rule

The first termination condition on 𝑁𝑙𝑎𝑟𝑔𝑒 means that we are almost sure to have

found the model so there is no need to test more hypotheses. A good choice should

69

Chapter 4. Local geometric consensus (LGC)

give very few false alerts. Given a model 𝑃𝑖 and the scene 𝑄, let us consider two

random events 𝐸0 and 𝐸1:

𝐸0 = 𝑄 is a random set. (i.e. 𝑄 does not come from 𝑃𝑖)

𝐸1 = ∃𝑁𝑙𝑎𝑟𝑔𝑒 consensus correspondences in a local region between 𝑄 and 𝑃𝑖

Reducing false alerts means reducing the probability of 𝐸0 knowing 𝐸1, i.e.

𝑃 (𝐸0|𝐸1). We can show that 𝑃 (𝐸0|𝐸1) ≈ 0 with a very small 𝑁𝑙𝑎𝑟𝑔𝑒. In a con-

servative estimation (see Section 4.1.6 for demonstration) where one has 104 mod-

els to track and each model has 106 points, 𝑃 (𝐸0|𝐸1) is smaller than 10−6 with

𝑁𝑙𝑎𝑟𝑔𝑒 = 20. However, this result cannot guarantee that the method can achieve an

accurate estimation of 𝑇 when a model is present, because the refiner may find false

inliers (cf. Fig. 4.6).

Figure 4.6: Condition 𝑁𝑙𝑎𝑟𝑔𝑒 confirms the presence of model but refiner finds outliers
so the estimation of 𝑇 is not accurate. It can be seen in the yellow ellipse where
points are correctly detected but not matched. Correspondences found in validator
are inside the green ellipse and are inliers.

70

4.1. General algorithm

4.1.5.3 𝑁𝑚𝑎𝑥 termination rules

The second condition on 𝑁𝑚𝑎𝑥 means that we are almost sure that no model exists

for the point set 𝑄. This is a direct inspiration from RANSAC. If 𝑄 has 𝑡 inliers,

and if an in-paired-patch has a probability 𝑝1 to be proposed to the validator and

a probability 𝑝2 to pass the validation phase, then the probability (𝜆) of no result

from the validator after trying 𝑁 image points is:

𝜆 = (1− 𝑡

𝑛
𝑝1𝑝2)

𝑁 (4.4)

If we want the probability of no matching results 𝜆 be smaller than a predefined

value 𝜆𝑚𝑎𝑥, i.e. 𝜆 < 𝜆𝑚𝑎𝑥. We have:

𝑁𝑚𝑎𝑥 =
log(𝜆𝑚𝑎𝑥)

log(1− 𝑡
𝑛𝑝1𝑝2)

(4.5)

From our experiences, the correct correspondences in an in-paired-patch may

be quite difficult to find in very noisy cases. So 𝑝1 can be very small. However,

once an in-paired-patch is found, it is easy to find other in-paired-patches in the

neighborhood and thus it will probably pass the validation. As a consequence, 𝑝2

is large. Let us take 𝑝1 = 0.2 and 𝑝2 = 0.7. In a scene with 50% inliers, if we want

𝜆 < 𝜆𝑚𝑎𝑥 = 0.05, we will get 𝑁𝑚𝑎𝑥 = 41. So no matter how large the point set in

the scene, one needs only to do at most 41 simple geometric hashing queries with

𝑘+ 1 points. In all our experiments, 𝑁𝑚𝑎𝑥 is set to be 45. One can adjust 𝑁𝑚𝑎𝑥 to

a more proper value according to (4.5) to adapt to different outlier ratios.

4.1.6 Local consensus: a guarantee of low false alert

We want to find probability of false alert 𝑃 (𝐸0|𝐸1) mentioned in Section 4.1.5.2.

According to Bayes’ theory, we have:

𝑃 (𝐸0|𝐸1) =
1

1 + 𝑃 (𝐸1|𝐸0)𝑃 (𝐸0)
𝑃 (𝐸1|𝐸0)𝑃 (𝐸0)

(4.6)

To have a conservative estimation, we want to find the upper bound of 𝑃 (𝐸0|𝐸1).

If the upper bound is small enough, it is less likely to have false alerts. 𝑃 (𝐸1|𝐸0)

and 𝑃 (𝐸1|𝐸0) are two events independent of 𝑃 (𝐸0). So 𝑃 (𝐸0|𝐸1) will be larger if

𝑃 (𝐸0) is smaller. 𝑃 (𝐸0) can be seen as the probability that model 𝑃𝑖 appears in the

scene. When there are more models to track, 𝑃 (𝐸0) will be smaller. Considering we

have 104 models to track, which is a huge number, the probability that 𝑃𝑖 appears

71

Chapter 4. Local geometric consensus (LGC)

in the scene is roughly 10−4. In (4.6), 𝑃 (𝐸1|𝐸0) is very large, say 𝑃 (𝐸1|𝐸0) ≈ 1.

We have to find 𝑃 (𝐸1|𝐸0).

Before solving 𝑃 (𝐸1|𝐸0), let us consider a simpler problem (the problem of long

runs): In a 𝑁𝑏 random binary string, 1 appears at each bit with probability 𝑝𝑏. The

length of the largest sequence containing only 1s is a random variable 𝐿. Then,

what is the expectation and the variance of 𝐿? Schilling et al. [Schilling 2012] show

that the result can be approximated by the following equations:

𝐸(𝐿) = 𝑙𝑜𝑔1/𝑝𝑏 (𝑁𝑏(1− 𝑝𝑏))

Σ(𝐿) =
𝜋√

6𝑙𝑛(1/𝑝𝑏)

(4.7)

where the expectation 𝐸(𝐿) is proportional to 𝑙𝑜𝑔𝑁𝑏, it varies little with respect

to the length of the sequence. The variance Σ(𝐿) is independent of 𝑁𝑏.

If we define random field as a field containing many independent and identically

distributed (i.i.d) random experiments organized in space. The problem of long

runs describes the probability that all experiments in a region of the random field

have the same experiment results. 𝐸1|𝐸0 describes the probability that the most

of experiments (instead of all experiments) in a region of the random field have the

same experiment results. Both problems have a similar nature, thus (4.7) can be

used for a rough estimation.

For a given transformation 𝑇 , a point correspondence is considered coherent with

𝑇 if the scene point is back-projected within a 3𝜎 radius neighborhood of the model

point (cf. Alg. 8). If the scene point has a random position, the probability of the

coherence is about (3𝜎/𝑙)𝑑. Remember that 𝑙 is the “inter-point” distance defined in

Section 4.1.1. We choose the limit of jittered point pattern matching, 𝜎 = 0.1𝑙 (cf.

Section 4.1.5). If at least every two correspondences contain one inlier and 𝑑 = 2,

which is a conservative estimation, this results in 𝑝𝑏 ≈ 0.2. Let 𝑁𝑏 = 106 points, we

have 𝐸(𝐿) ≈ 8.4 and Σ(𝐿) ≈ 0.8.

If the transformation 𝑇 needs 𝑏𝑇 points as basis which gives us 𝑏𝑇 “free” points

in 𝑁𝑙𝑎𝑟𝑔𝑒, we have:

𝑃 (𝐸1|𝐸0) = 𝑃 (𝐿 ≥ 𝑁𝑙𝑎𝑟𝑔𝑒 − 𝑏𝑇) (4.8)

Take as example a 2D homography (i.e. 𝑏𝑇 = 4) and 𝑁𝑙𝑎𝑟𝑔𝑒 = 20, thus 𝑁𝑙𝑎𝑟𝑔𝑒 −
𝑏𝑇 − 𝐸(𝐿) ≈ 7.6 ≈ 9.5Σ(𝐿). [Schilling 2012] shows that the distribution of 𝐿

is approximately a normal distribution. As a consequence, 𝑃 (𝐸1|𝐸0) = 𝑃 (𝐿 ≥
𝐸(𝐿) + 9.5Σ(𝐿)) ≪ 10−10. Thus 𝑃 (𝐸0|𝐸1) ≈ 10−6 and it is a conservative upper

72

4.2. Specific Implementations

bound estimation.

4.2 Specific Implementations

In this section, we present the detailed implementation of the algorithm for 2D

homography and 3D similarity. 2D homography is used to match coplanar point

sets (markers) while 3D similarity matching is very useful in 3D model registration.

Given the general algorithm, one needs three more pieces of information for a de-

tailed implementation: (a) How to construct the basis 𝐵 and compute the geometric

descriptor X (b) How to measure the similarity between 𝑇𝐿s. (c) How to find 𝑇𝐿 or

𝑇 with known point correspondences. We detail each of them for both cases.

4.2.1 2D homography

A 2D homography is basically a perspective transformation, and each point has only

two coordinates. So 𝑇 belongs to 2D perspective transformation and 𝑇𝐿 belongs to

2D affine transformations.

(a) The basis 𝐵 is ordered as (𝑝0, 𝑝1, 𝑝2, 𝑝3) so that Δ𝑝0𝑝1𝑝2 has the largest

surface among all triangles containing 𝑝0. 𝑝1 and 𝑝2 are chosen so that
−−→𝑝0𝑝1×−−→𝑝0𝑝2 >

0. This gives us a local right-hand basis and |𝑋1|, |𝑋2| ≤ 1 (cf. Fig. 4.7), same as

in [Lamdan 1990].

●

● ●

●p0 p1

p2 p3=X1(p1-p0)+X2(p2-p0)+p0

X1

X2

●

●

●
p0

p1
X1

X2

p

qp’
q’

Figure 4.7: Local basis 𝐵 (𝑝0, 𝑝1, 𝑝2, 𝑝3) for 2D homography. 𝑝0 is the origin. �̂�𝑖 are
axes of the local coordinate system.

73

Chapter 4. Local geometric consensus (LGC)

Thus, if 𝑝(𝑖) stands for the i-th coordinate of point 𝑝, we have:

A = (𝑎𝑖𝑗) =

(︃
𝑝
(1)
1 − 𝑝

(1)
0 𝑝

(1)
2 − 𝑝

(1)
0

𝑝
(2)
1 − 𝑝

(2)
0 𝑝

(2)
2 − 𝑝

(2)
0

)︃−1

(︃
𝑋1

𝑋2

)︃
= A

(︃
𝑝
(1)
3

𝑝
(2)
3

)︃
(︃
Σ1

Σ2

)︃
= ((𝑋1 +𝑋2 − 1)2 +𝑋2

1 +𝑋2
2 + 1)𝜎

(︃
𝑎211 + 𝑎212

𝑎221 + 𝑎222

)︃ (4.9)

(b) A 2D affinity is a 2 × 3 matrix. After a singular decomposition of the left

2 × 2 square matrix, a rotation 𝜃 and two scale factors 𝛼(1), 𝛼(2) can be retrieved.

By using the result from Section 3.2.2.2, we say that two affine transformations are

similar if the difference of their rotation is less than 10∘ and the ratio of each scaling

is less than 1.3.

(c) With known point correspondences, 𝑇𝐿 can be found by the least square

method while 𝑇 can be found in various ways including OpenCV’s findHomography

method.

4.2.2 3D similarity

A similarity is a linear transformation itself, so 𝑇𝐿 = 𝑇 .

(a) A basis 𝐵 is ordered as (𝑝0, 𝑝1, 𝑝2) so that ‖−−→𝑝0𝑝1‖ ≥ |−−→𝑝0𝑝2‖. −−→𝑝0𝑝2 defines

the positive direction of the second axis of this local basis (cf. Fig. 4.8). Thus the

descriptor X (i.e. the coordinates of 𝑝2) can be expressed as:

𝑋1 =
−−→𝑝0𝑝2 · −−→𝑝0𝑝1
‖−−→𝑝0𝑝1‖2

𝑋2 =
√︁
(‖−−→𝑝0𝑝2‖/‖−−→𝑝0𝑝1‖)2 −𝑋2

1

𝑋3 = 0

(4.10)

It is easy to verify that |𝑋1|, |𝑋2| ≤ 1 and thus variances can be computed as

follows:

Σ1 = Σ2 =

√︀
‖−−→𝑝0𝑝1‖2 + ‖−−→𝑝0𝑝2‖2 + ‖−−→𝑝1𝑝2‖2

‖−−→𝑝0𝑝1‖2

Σ3 = 0

(4.11)

(b) A 3D similarity can be decomposed into a rotation matrix 𝑅 and a scale 𝛼

factor. 𝑅 can be represented as a quaternion q . We say two similarities are equal if

the difference of rotation is less than 10∘ measured by Φ3 defined in [Huynh 2009]

74

4.2. Specific Implementations

●

● ●

●p0 p1

p2 p3=X1(p1-p0)+X2(p2-p0)+p0

X1

X2

●

●

●
p0

p1
X1

X2

p

qp’
q’

Figure 4.8: Local basis 𝐵 (𝑝0, 𝑝1, 𝑝2) for 3D similarity. 𝑝0 is the origin. �̂�𝑖 are axes
of the local coordinate system, with �̂�𝑖 ⊥ �̂�𝑗 , (𝑖 ̸= 𝑗). 𝑋𝑖 are the coordinates of 𝑝2
under this local coordinate system, with 𝑋3 ≡ 0.

and the ratio of scales is less than 1.3, that is:

2 arccos(‖q1 · q2‖) ≤ 10∘,𝑚𝑎𝑥(|𝛼1

𝛼2
|, |𝛼2

𝛼1
|) ≤ 1.3 (4.12)

(c) We use the method from [Umeyama 1991] to estimate the similarity 𝑇 with

known point correspondences. Knowing 𝑛 point correspondences (𝑝𝑖, 𝑞𝑖), 𝑝𝑖 ∈ 𝑃 ,

𝑞𝑖 ∈ 𝑄, 𝑖 = 1..𝑛, the rotation 𝑅, the scale 𝑠 and the translation 𝑡 minimize the sum

of squared error
∑︀𝑛

𝑖=1 ‖𝑞𝑖 − (𝑐𝑅𝑝𝑖 − 𝑡)‖2 are:

𝑅 = 𝑈𝑆𝑉 𝑇

𝑠 =
𝑛∑︀𝑛

𝑖=1 ‖𝑝𝑖 − 𝑝‖2
𝑡𝑟(𝐷𝑆)

𝑡 = 𝑞 − 𝑠𝑅𝑝

(4.13)

where 𝑈 , 𝑉 and 𝐷 are the results of singular decomposition of covariance matrix

Σ (Σ = 𝑈𝐷𝑉 𝑇), and

𝑝 =
1

𝑛

𝑛∑︁
𝑖=1

𝑝𝑖

𝑞 =
1

𝑛

𝑛∑︁
𝑖=1

𝑞𝑖

Σ =
1

𝑛

∑︁
𝑖=1

(𝑞𝑖 − 𝑞)(𝑝𝑖 − 𝑝)𝑇

(4.14)

𝑆 =

{︃
𝑑𝑖𝑎𝑔(1, 1, ..., 1, 1), if 𝑑𝑒𝑡(Σ) ≥ 0 (4.15)

𝑑𝑖𝑎𝑔(1, 1, ..., 1,−1), if 𝑑𝑒𝑡(Σ) < 0 (4.16)

75

Chapter 4. Local geometric consensus (LGC)

4.3 Results on synthetic point sets

In this section, we present results obtained under different conditions. Section 4.3.1

focuses on performance in noisy conditions. While this first section focuses on

2D homography and performs extensive tests, Sections 4.3.2 and 4.3.3 show that

the algorithm has the potential to work well in 3D and can benefit from addi-

tional information. All experiments are performed on a PC with an Intel Xeon E3

1240@3.40GHz CPU and 16GB of RAM.

4.3.1 Speed and robustness studies

The performance of our method is compared with other methods using syn-

thetic data. In the graphs, RDM stands for Uchiyama’s Random Dot Mark-

ers [Uchiyama 2011b] (the original “tracking by detection” implementation is used),

RRDM for the Chapter 3, LGC for our current proposal and GH for traditional Ge-

ometric Hashing [Wolfson 1997]. The default parameters of these methods are used.

The 2D homography is set to a 30∘ perspective transform unless stated otherwise.

Fig. 4.9 to Fig. 4.14 present single model matching, i.e. the scene set Q is matched

against only one model set P, while Fig. 4.15 shows multi-model matching. We use

(3.19) from Section 3.4.1 to judge whether reprojections are precise.

We first investigate the performance with different number of points in the model

point set 𝑃 . Fig. 4.9 shows the result in an ideal condition, that is without jitter

(𝜂 = 0%), extra or missing point, as well as the result with 𝛽 = 15% extra points

and with jitter 𝜂 = 3%. The second case is more realistic and can be seen as a

simulation of a real scene. As shown in the figures, GH is too slow to provide results

for more than 60 points. RRDM has a clear quadratic behavior. RDM works well

in the ideal condition but finds too few precise results in the second case. LGC

achieves the best performance with a linear behavior. We can notice that, LGC

performs better than RRDM for few points in terms of reprojection precision. This

may be counterintuitive since RRDM uses exhaustively local matching but gives

worse results. In fact, this behavior can be understood if we look into details of both

algorithms. RRDM calculates local transformations of subsets independently, so two

local transformations are in consensus only if both of them are estimated correctly

independently. But the validator of LGC calculates the local transformation of

a subset by using the local transformation of its neighboring subset as an initial

guess. Consensus between local transformations can be found once the first local

transformation is estimated correctly. Therefore, LGC has more chance than RRDM

to find subsets in consensus which give rise to more inliers.

76

4.3. Results on synthetic point sets

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Number of points in model set P (m)

RDM RRDM LGC GH

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Number of points in model set P (m)

RDM RRDM LGC GH

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

P
re

c
is

e
 r

e
p
ro

je
c
ti

o
n
 (

%
)

Number of points in model set P (m)

RDM RRDM LGC GH

Figure 4.9: Speed experiment. Top: Ideal conditions without jitter nor ex-
tra/missing points. Reprojections for all methods are 100% precise. Middle and
Bottom: 𝛽=15%, 𝜂=3%, missing=0%, occlusion=0%.

77

Chapter 4. Local geometric consensus (LGC)

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Jitter factor η(%)

RDM RRDM LGC

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

P
re

c
is

e
 r

e
p
ro

je
c
ti

o
n
 (

%
)

Jitter factor η(%)

RDM RRDM LGC LS

Figure 4.10: Jitter experiment (model 𝑃 contains 100 points). 𝛽=0%, missing=0%,
occlusion=0%.

Fig. 4.10 shows results of robustness studies. We increase the jitter factor 𝜂 to

study robustness to acquisition noise which can be due to image processing artifacts,

etc. Here, we stick to point sets containing 100 points with no extra or missing

points. Clearly, RDM can handle some noise, but is outperformed by both RRDM

and LGC. LGC is the fastest and most robust. LS represents results directly found

with pre-known point correspondences, which can be seen as the result obtained

using ground-truth point correspondences. Note that 𝜂 = 10% is about the limit

of obtaining a precise matching even with ground-truth point correspondences for

jittered point pattern matching. LGC sometimes outperforms LS (cf. 𝜂 = 7% and

8%), because LGC does not keep correspondences when the reprojection distance

between the scene and the model points is greater than 3𝜎 (cf. Alg. 8). As a

consequence, LGC may use less noisy point correspondences than LS thus leading

78

4.3. Results on synthetic point sets

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Percentage of added points (%)

RDM RRDM LGC

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
re

c
is

e
 r

e
p
ro

je
c
ti

o
n
 (

%
)

Percentage of added points (%)

RDM RRDM LGC

Figure 4.11: Extra points experiment
(model 𝑃 contains 100 points). 𝜂=3%,
missing=0%, occlusion=0%.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Percentage of removed points (%)

RDM RRDM LGC

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
re

c
is

e
 r

e
p
ro

je
c
ti

o
n
 (

%
)

Percentage of removed points (%)

RDM RRDM LGC

Figure 4.12: Random missing points ex-
periment (model 𝑃 contains 100 points).
𝛽=0%, 𝜂=3%, occlusion=0%.

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Percentage of occlusion (%)

RDM RRDM LGC

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
re

c
is

e
 r

e
p
ro

je
c
ti

o
n
 (

%
)

Percentage of occlusion (%)

RDM RRDM LGC

Figure 4.13: Occlusion experiment
(model 𝑃 contains 100 points). 𝛽=0%,
𝜂=3%, missing=0%, perspective=30∘.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Perspective angle (deg.)

RDM RRDM LGC

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

P
re

c
is

e
 r

e
p
ro

je
c
ti

o
n
 (

%
)

Perspective angle (deg.)

RDM RRDM LGH

Figure 4.14: Perspective experiment
(model 𝑃 contains 100 points). 𝛽=0%,
𝜂=3%, missing=0%, occlusion=0%.

79

Chapter 4. Local geometric consensus (LGC)

to a more accurate homography.

Then, we present results with extra points (such as outliers that could be de-

tected by image processing techniques) in Fig. 4.11, results with randomly removed

points (which simulates underdetections) in Fig. 4.12, results when points in a region

are masked (i.e. occlusion) in Fig. 4.13 and results with respect to the perspective

angle of the camera in Fig. 4.14. In every case LGC is the fastest and the most

robust.

At last, Fig. 4.15 shows the discriminative capabilities of both RDM and LGC

(RRDM works for only one model). RDM is a bit faster when no jitter occurs while

both techniques fully discriminate between several models. RDM fails to retrieve

the correct model as soon as jitter is involved. LGC can almost always retrieve the

correct one whereas its capability to find an accurate transformation remains the

same as in the jitter experiment (Fig. 4.10).

As a conclusion to this theoretical study, our proposal outperforms GH, RDM

and our previous work RRDM for both robustness and speed, showing a linear

behavior in terms of computation time, whatever the conditions. It has also a great

discriminative capability even with large jitter. Next we show that LGC can also

be applied to 3D transforms.

4.3.2 3D model registration

We show in this section that our method implemented in 3D, allows for register-

ing models undergoing similarity transformations. Most 3D models are composed

of 3D point clouds, forming small surfaces which represent their envelopes. Such

point clouds are often obtained from 3D scanners, so they are very dense. As a

consequence, the geometric distribution of neighbor points does not contain enough

discriminative information for LGC.

We use 3D interest point detectors to find geometrical keypoints in such point

clouds. The position of each interest point generally depends on the local topology

of the 3D model. So, the spatial distribution of these interest points is more or less

random on complex models, which is in favor of LGC’s requirements. We perform 3D

model registrations by matching detected interest points from these models under

similarity transformations. Please remember that we only use point coordinates for

matching, neither color information nor normal direction is used.

For illustration purpose, we use the Stanford Bunny with Zhong’s Intrinsic Shape

Signatures [Zhong 2009] (ISS) since it has a good repeatability [Tombari 2013b,

Filipe 2014]. We first create the model point set with ISS key points: for the 35947

80

4.3. Results on synthetic point sets

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 50 100 150 200 250

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Number of models

RDM LGC

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Jitter factor η(%)

RDM LGC

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

G
o
o
d
 m

o
d
e
l
fo

u
n
d
 (

%
)

Jitter factor η(%)

RDM LGC

Figure 4.15: Discriminative power. Top: with different number of models. Each
model contains 100 points. Bottom: with different jitter factor. 50 models are
used with 100 points in each model. Full boxes stand for success, empty boxes for
good model found with wrong or imprecise transform. (3.19) is used to judge if a
transform is precise.

81

Chapter 4. Local geometric consensus (LGC)

Figure 4.16: Left: the model point set (in blue) detected from the original bunny.
Right: an example of scene point set (in blue) detected from a transformed instance.

Table 4.1: Registration results

Instance ID 1 2 3 4 5

Key point size 485 485 479 488 491
Inliers found 459 455 447 457 439

Rotation difference (∘) 0.10 0.06 0.00 0.10 0.10
Scale difference (%) 0.09 0.04 0.05 0.05 0.09

Bunny points, we obtain 480 keypoints. Then, random similarity transformations

are applied on the bunny model to create 5 instances for matching (cf. Fig. 4.16).

𝜂 is set to 3%. Results of registration are listed in Table 4.1. In all cases, rotation

errors are less than 0.1∘ while scale errors are less than 0.1%. We can conclude that

LGC has the potential to be also used for 3D similarities estimation.

4.3.3 LGC with additional information

So far, we have only considered pure point matching problems where each point

is indistinguishable from another. However, points may have their own properties

including color or local feature in textures. We show here that such properties can

be used in our algorithm.

Some traditional feature point matching methods (e.g. SIFT, SURF or BRIEF)

are based on these different properties of points. They first find rough correspon-

dences by using point properties before applying RANSAC-like methods. Since such

methods need high inlier ratios, the rough correspondences should contain a lot of

inliers. This implies that point properties should be discriminant enough, which

results in high dimensional descriptors. We show that using our method instead of

RANSAC greatly reduces the descriptors’ dimension.

82

4.3. Results on synthetic point sets

In our experiment we use ORB [Rublee 2011]. The original ORB descriptor is

composed of a sequence of 32 bits generated from random pixel comparisons. As

a consequence, it is very easy to get lower dimension descriptors from the original

ones. Image points are no longer fed to the generator randomly but according to

their nearest Hamming distances to model points. Let the length of the descriptor

in bits be 𝐿𝑂𝑅𝐵. In the generator, we do not process (𝑝𝑗-patch, 𝑞-patch) which

Hamming distance is larger than 𝐿𝑂𝑅𝐵/2 in Alg. 6, thus reducing the number of

false hypotheses. The condition in Alg. 8 is also relaxed to find more corresponding

points: we add (𝑝′, 𝑞′) to the solution list only if the Hamming distance between

𝑝′ and 𝑞′ is less than 𝐿𝑂𝑅𝐵/3 and if |𝑝′ − 𝑇−1(𝑞′)| ≤ 3𝑑𝑡. We use these values for

illustration purpose, they are not optimized.

��

���

����

����

����

�� �� �� �� �� ���

��
��
���

��
���

��
��
��

�������������������������

���� ����

��

��

��

��

��

��

�� �� �� �� �� ���

��
��
���

���
��
���

���
��
���
��
�

�������������������������

���� ����

��

���

����

����

����

�� �� �� �� �� ���

��
��
���

��
���

��
��
��

�������������������������

���� ����

��

��

��

��

��

��

�� �� �� �� �� ���

��
��
���

���
��
���

���
��
���
��
�

�������������������������

���� ����

Figure 4.17: Graf series and results. Top: graf figures. Bottom left: result for image
pair (left, middle). Bottom right: result for image pair (left, right).

The original 32 bytes ORB are chopped to have lower dimensional descriptors

which are used to compare our method with USAC [Raguram 2013a]. The experi-

ment is repeated 5 times for each case. Results are presented in Fig. 4.17 where we

83

Chapter 4. Local geometric consensus (LGC)

can see that LGC works with much smaller descriptors and is faster than USAC.

4.4 Applications

4.4.1 Tracking ordinary planar objects

Corners in real textured images are assumed to be randomly distributed. As demon-

strated in [Uchiyama 2011a], these corners can be used for tracking. We compare our

method with RDM and SURF in this section on real planar targets. However, our

purpose is not to compete with textural-based trackers in these situations. SURF

serves as a reference. We aim at illustrating the flexibility of our approach to deal

with traditional targets and showing its robustness on real targets.

We use the OpenCV “goodFeaturesToTrack” method [Shi 1994] as interest point

detector in this experiment which performs at about 10ms/frame. The max-

Corners and minDistance parameters are selected in favor of RDM according

to [Uchiyama 2011a] (qualityLevel=0.13 and blockSize=12 for stable point detec-

tion). All remaining parameters are set to their default values. As to SURF, a

FLANN based matcher in OpenCV is used to build a database of descriptors for

tracking.

We use a Logitech C270 camera with resolution set to 640×480. The experiment

is as follows: first eight different coplanar objects (cf. Fig. 4.18) pass individually

in front of the camera. The same top view of each object is registered using three

algorithms (RDM, LGC and SURF). Then, each object is tracked by the three

algorithms separately.

Figure 4.18: Models used in this experiment. From left to right: (Top) appartment-
plan, city-map, person, advertisement; (Bottom) postcard, cross-word, graffiti,
point-pattern.

84

4.4. Applications

��

���

���

���

���

����

��������

��������������

��������

������
�������������

��������

����������

�������
�������������

��
��
���

��
��
��
���
���

�

������

��� ��� ����

Figure 4.19: Tracking results: Solid bars stand for correct matching, empty bars for
bad matching (i.e. the algorithm matches the scene to a wrong model, or produces
an imprecise matching by visual assessments).

Similar experiments are repeated twice for a total of 1753 frames and manual

visual assessments are provided for all estimated homographies. Both SURF and

LGC match at about 15-18ms/frame while RDM matches at around 50ms/frame.

Fig. 4.19 shows a summary of the results for each model during tracking. LGC out-

performs RDM in all cases. Although SURF performs better than LGC in general,

it works badly on cross-word and point-pattern since these two models contain less

textures. As RDM can be used for “augmenting everything” [Uchiyama 2011a], we

claim our method is a better alternative to RDM for this purpose.

4.4.2 Augmenting engineering drawings

Engineering drawings are largely used in mechanical engineering and architectural

design. They are different from ordinary texture-rich models because they are most

of the time 2D representations that contain only geometric information (such as

straight lines and circles) of 3D CAD models. Traditional texture-based keypoint

tracking methods cannot deal with such cases. Fig. 4.20 presents results of aug-

menting engineering drawings with their 3D models. We extract in real-time the

85

Chapter 4. Local geometric consensus (LGC)

intersections of the drawing which are mapped to previously created model point

sets.

Figure 4.20: Augmenting CAD drawings of a ragum, an apartment and a kart (see
supplementary video).

4.5 Discussion

In this section, we discuss some aspects of the algorithm.

4.5.1 Neighbors

We use nearest neighbors to create local patches but use mesh neighbors in the

refiner. We tried to use the same type of neighbors in the algorithm but neither

performs better. Although mesh neighbors are more robust against perspective

distortions [McIlroy 2012], they are very sensitive to extra/missing points, leading

to a less robust generator. On the other hand, when points are gathered into two

or more local groups, nearest neighbors may give rise to “important edges” in the

resulting network (cf. Fig. 4.21). If these edges disappear due to extra/missing

points, two or more subregions are disconnected. Thus by visiting nearest neighbors

in the refiner, inliers are often confined to a small subregion, which gives an imprecise

estimation of the transformation.

4.5.2 Transformation 𝑇

Theoretically, the algorithm works with any transformation 𝑇 , but some conditions

on point sets have to be satisfied.

86

4.5. Discussion

Figure 4.21: Delaunay mesh neighbors (left) and nearest neighbors (right) of the
same point set. Neighboring points (black dots) are connected by a black edge.
Mesh neighbors connect points better than nearest neighbors, the latter giving rise
to four “important edges” represented in red.

Let u0 and u be two points which may not belong to point patterns. u is in the

neighborhood of u0. We assume that 𝑇 can be expanded by the Taylor theorem in

the neighborhood of u0:

𝑇 (u) = 𝑇 (u0) +
𝜕𝑇 (u0)

𝜕u
Δu+

𝜕2𝑇 (u0 + 𝜆Δu)

𝜕u2
(Δu)2 (4.17)

with Δu = u−u0 and 𝜆 ∈ [0, 1]. The first two terms on the right are the linear local

transformation 𝑇𝐿(u) that we mentioned before, the last term is a small quantity of

the same order as (Δu)2, which represents the difference between 𝑇 (u) and 𝑇𝐿(u).

If the difference between 𝑇 (u) and 𝑇𝐿(u) is not very big, the last term can be

easily managed by considering that it represents the “jitter”. The difference can be

expressed as:

‖𝑇 (u)− 𝑇𝐿(u)‖ ≤
⃦⃦⃦⃦
𝜕2𝑇 (u0 + 𝜆Δu)

𝜕u2

⃦⃦⃦⃦
𝑙2 (4.18)

‖𝜕
2𝑇 (u0+𝜆Δu)

𝜕u2 ‖ depends only on transformation 𝑇 , not on inter-point distance

𝑙. Recall that 0.1𝑙 is the limit of algorithm in terms of jitter (cf. Section 4.3). If

the inter-point distance 𝑙 is small enough so that 𝑙 ≤ 0.1‖𝜕
2𝑇 (u0+𝜆Δu)

𝜕u2 ‖−1, then we

have:

‖𝑇 (u)− 𝑇𝐿(u)‖ ≤
⃦⃦⃦⃦
𝜕2𝑇 (u0 + 𝜆Δu)

𝜕u2

⃦⃦⃦⃦
𝑙2 ≤ 0.1𝑙 (4.19)

The difference between 𝑇 (u) and 𝑇𝐿(u) can be smaller than 0.1𝑙. So the algo-

rithm can theoretically deal with any transformation if the distribution of points is

dense enough.

87

Chapter 4. Local geometric consensus (LGC)

4.5.3 Repetitive structures

As our method relies on discriminating local geometric structures, repetitive patterns

are an issue. They impact both the “generator” and the “validator” since they work

on local patterns, but do not affect the “refiner”. If the hypothesis (cf. Sec. 4.1.3) is

generated inside a repetitive pattern, the algorithm will probably give a false result;

otherwise both “generator” and “validator” have enough discriminative information

to estimate a true correspondence. As the generator selects scene points randomly,

the algorithm’s performance and the percentage of points in repetitive patterns are in

negative correlation. Our experiments show that the algorithm fails with exclusively

regular patterns such as a chessboard (cf. Fig. 4.22a), but can successfully handle

small repetitive structures inside a more global irregular one, indeed only 2 frames

out of 317 fail in the “office design” case (cf. Fig. 4.22b). In the latter example, we

rely on [Pham 2014] to extract intersections and junctions.

(a) (b)

Figure 4.22: Impact of regular patterns. (a) chessboard, 165/165 repetitive feature
points. (b) office design, 26/109 repetitive feature points. Blue points are detected
while red points are projected model points.

4.6 Conclusion

In this chapter, we have presented LGC, an algorithm based on Local Geometric

Consensus that can be used for several transformation types, both in 2D and 3D.

Compared to RRDM in Chapter 3 and RDM [Uchiyama 2011b], it is more

generic and can be applied to any known 2D/3D transformation. It has the ability

to recognize and match several different models, which cannot be solved by RRDM.

As to the case of 2D homography, LGC shows a linear time complexity behavior,

which is much faster and more robust than RRDM (quadratic time complexity).

LGC is much more robust than RDM [Uchiyama 2011b] in a noisy circumstance.

88

4.6. Conclusion

We have also shown two real-time applications developed by using LGC tracking.

It concludes that wide baseline point pattern matching performed by LGC can be

both fast and robust enough for texture-less augmented reality applications. In the

following chapter, we will show one more application by applying LGC.

89

Chapter 5

Defocused projector calibration

for projector-camera systems

Contents

5.1 Related work . 92

5.1.1 Two-views based methods . 92

5.1.2 Inverse camera methods . 93

5.1.3 Limitations . 94

5.1.4 Contribution . 95

5.2 Calibration Method . 95

5.2.1 Basic notations and inverse camera method 96

5.2.2 Calibration pattern . 97

5.2.3 Algorithm . 98

5.3 Defocusing error . 99

5.3.1 The origin of the defocusing error 100

5.3.2 An estimation of the defocusing error 102

5.4 Calibration results . 103

5.5 Augmentation evaluation . 106

5.5.1 Focus distance . 109

5.5.2 Error distribution . 109

5.5.3 Perspective and depth . 110

5.6 Conclusion . 112

Projectors are important display devices for large scale augmented reality ap-

plications. Calibration is one of the most essential elements of projector-camera

systems (referred to as ProCam systems in the following), namely determining the

intrinsic matrix and the distortion coefficients of cameras and projectors, as well as

their relative position. A precise calibration will produce a precise mapping between

Chapter 5. Defocused projector calibration for projector-camera

systems

the physical world and camera/projector images, which permits the augmented in-

formation to be projected to their correct positions in SAR. However, precisely

calibrating projectors with large focus distances implies a trade-off between prac-

ticality and accuracy. People either need a huge calibration board or a precise 3D

model [Resch 2015].

With the help of LGC introduced in Chapter 4, we present a practical ProCam

calibration method to solve this problem. The user only needs a small calibration

board to calibrate the system regardless of the focus distance of the projector. Re-

sults show that the Root-Mean-Squared reprojection Error (RMSE) for a 450cm

projection distance are only about 4mm, even though it is calibrated using a small

B4 (250×353mm) calibration board. This work has been presented at International

Symposium on Mixed and Augmented Reality (ISMAR) in 2016.

5.1 Related work

There exist two families of methods for projector calibration: (i) calibrating each

light stripe (cf. Fig. 5.2) [Yamauchi 2008] or each pixel [Luo 2014] of the projector,

and (ii) calibrating the projector as a whole using the pinhole model. The former

is very time consuming since each light stripe or pixel needs to be calibrated indi-

vidually. The latter mainly features two categories of techniques: two-views based

methods and inverse camera methods.

Figure 5.1: Projector’s light stripe calibration. Left: the setup of the calibration
system. Middle: calibration board. Right: light stripe projected onto the calibration
board. [Yamauchi 2008]

5.1.1 Two-views based methods

As an example of “two-views based methods”, Yamazaki et al. [Yamazaki 2011] use

structured-light patterns to create dense point correspondences between the camera

and the projector views to find the fundamental matrix by exploiting two-view

92

5.1. Related work

geometry properties. The final intrinsic matrices of both the projector and the

camera are calculated iteratively by assuming their initial values (by referring to

the reference manual for example [Yamazaki 2011]). This method has no error

propagation but the matrices of the projector and of the camera have a coupling-

effect. It is sensitive to initial values and only estimates 3 parameters of the intrinsic

matrix. With the help of a known precise 3D model of a target object, Resch et

al. [Resch 2015] use bundle adjustment to iteratively correct the estimated matrices

without dependence on initial values. However, a precise 3D model is not always

available in the general case.

Figure 5.2: An example of setup of two-views based method. The car and its
corresponding 3D numeric model is the calibration object. Structured-light patterns
are projected onto the car [Resch 2015].

5.1.2 Inverse camera methods

This kind of methods treats projectors as inverse cameras, so that they can be cali-

brated using Zhang’s method [Zhang 2000]. More precisely, a calibration board with

a pre-defined pattern is used to calibrate the camera. In the meantime, the pro-

jector projects other patterns onto the calibration board. These projected patterns

are used to find camera-projector point correspondences in order to calibrate the

projector. Several methods exist for finding such correspondences. Structured-light

methods [Zhang 2006, Li 2008] employ projections of series of coded gray-bars (cf.

Fig. 5.3a). Even though methods for defocused projector exists [Li 2014], the board

needs to be frozen at the same position by the user for several seconds, which is

not convenient. Other methods capture fewer or even a single image for each board

93

Chapter 5. Defocused projector calibration for projector-camera

systems

position, e.g. by projecting regular dot patterns (cf. Fig. 5.3b) [Ouellet 2008],

a chessboard (cf. Fig. 5.3c [Gao 2008]) or a matrix of ARToolKit markers (cf.

Fig. 5.3d) [Audet 2009]. Our method follows a similar approach.

(a)

(b) (c) (d)

Figure 5.3: Different calibration pattern used in inverse camera methods. (a) Reg-
ular dot pattern is used and point correspondences between projector and camera
are found by projecting structured-lights [Li 2014]. (b) A physical and a projected
regular dot pattern is used [Ouellet 2008]. (c) A physical and a projected chessboard
is used [Gao 2008]. (d) Two matrix of ARToolKit markers are used [Audet 2009].

5.1.3 Limitations

In [Gao 2008] and [Audet 2009], the calibration board has to be positioned in the

focus zone (where projected images are clear), or the pattern becomes too blurred

to be recognized. Moreover, Zhang’s method [Zhang 2000] requires the pattern to

occupy a large part of the field of view of the projector in order to give a better

result. Consequently if a wide-angle projector is focusing at about 2m, the user

needs to manipulate at least an A0 size (841 × 1189mm) calibration board, which

is a burden. The user can also choose to calibrate the projector at a short distance

and then change the focus depending on the application, but this will induce a loss

of precision, as showed later in Section 5.5. We also experimentally noticed that

for Audet et al.’s method [Audet 2009], projectors’ brightness greatly influences

markers recognition.

94

5.2. Calibration Method

Ouellet et al. [Ouellet 2008] need to take 3 images for each board position while

the projector is successively projecting (1) a white image, (2) a regular pattern, (3)

a calibration regular pattern. These images are highly related: (1) is subtracted

from (2) to find the homography between the projector and the camera (𝐻𝑐𝑝). If

the board moves or ambient lighting changes, detection may fail. (3) needs 𝐻𝑐𝑝

to interleave projected points between printed ones. If the board moves, points

may interfere. Moreover, a few missing points in the regular pattern can lead to

detection failures. Thus the whole process is not very robust. At last, this method

detects projected dot centers by back projecting them onto the board plane. When

the board is out of focus, back projected dots may be heavily deformed, which can

make the center detection difficult and introduce large errors.

5.1.4 Contribution

Compared to [Audet 2009] and [Ouellet 2008], our work has the following advantages

which makes it much more practical and usable:

∙ It can work at large distances without having to manipulate unpractical huge

calibration boards, unlike [Audet 2009]

∙ It uses random dot patterns, which are robust to pattern interference and

insensitive to lighting, unlike both [Audet 2009] and [Ouellet 2008]

∙ It only needs one image for each board position, thus has a faster recovery

from detection failure, unlike [Ouellet 2008]

∙ It gives more stable results for intrinsic matrices of cameras and projectors,

compared to [Audet 2009]

5.2 Calibration Method

Our method relies on simple manipulations of a calibration board whatever the pro-

jector’s focus distance is: the user holds a small calibration board before the camera

and the projector. If the board is still for a while (≈ 1s), an image is automatically

captured for calibration. Once a pre-defined number (𝐾, cf. Section 5.4) of images

are acquired, the system can be calibrated using Zhang’s method [Zhang 2000] (cf.

Fig. 5.4).

In the following, we first introduce some basic notations and the generic “inverse

camera” method. Then we present our calibration patterns and how to find feature

correspondences. Finally, the whole calibration procedure is presented.

95

Chapter 5. Defocused projector calibration for projector-camera

systems

Figure 5.4: Calibration: only a small board is manipulated whatever the focus
distance of the projector.

5.2.1 Basic notations and inverse camera method

The ProCam system is described by the camera’s intrinsic matrix 𝐾𝑐, its distor-

tion coefficients 𝐷𝑐, the projector’s intrinsic matrix 𝐾𝑝, its distortion coefficients

𝐷𝑝, the projector rotation in camera frame 𝑅 and the position of the projector’s

optical center in camera frame 𝑡. More precisely, the intrinsic matrix is defined

by [Bradski 2008] as:

K𝜀 =

⎛⎜⎜⎝
𝑓𝜀𝑥 𝛾𝜀 𝑢𝜀

0 𝑓𝜀𝑦 𝑣𝜀

0 0 1

⎞⎟⎟⎠ (5.1)

where 𝜀 stands for 𝑐 or 𝑝, 𝑓𝜀𝑥 and 𝑓𝜀𝑦 are focal lengths, (𝑢𝜀, 𝑣𝜀) is the position

of the principal point, 𝛾𝜀 is the skew.

The “inverse camera” method starts with two sets of correspondences for each

view of the calibration board: 𝑐𝑐𝑏 = {(x,x(𝑐))} and 𝑐𝑐𝑝 = {(y(𝑝),y(𝑐))}, where x is

an interest point (corner/center of markers, etc.) on the calibration board, x(𝑐) is

its image in the camera; y(𝑝) is an interest point in the projected image, y(𝑐) is its

image viewed by camera. With 𝑐𝑐𝑏 obtained from 𝐾(𝐾 ≥ 3) views, the camera can

be first calibrated using Zhang’s method [Zhang 2000]. Lens distortions in x(𝑐) and

y(𝑐) can then be removed.

For the projector, the homography from the board to the camera 𝐻𝑐𝑏 is found

with 𝑐𝑐𝑏. The location on the calibration board of projected features y(𝑝) can then

be expressed as 𝐻−1
𝑐𝑏 y(𝑐), thus a new correspondence set 𝑐𝑝𝑏 = {(y(𝑝), 𝐻−1

𝑐𝑏 y(𝑐))}

96

5.2. Calibration Method

can be established for each view. At last, the projector can be calibrated with 𝑐𝑝𝑏

obtained from 𝐾 views.

5.2.2 Calibration pattern

We choose to use randomly distributed circular dots as both physical patterns

printed on the calibration board and projected patterns, with the following ad-

vantages:

∙ Circular points have no internal structures unlike ARToolKit markers, they

are thus less influenced by defocus or blur or lighting changes.

∙ Different random dots-based markers can be distinguished, real-time tracked

and accurately located by LGC even in the case of partial occlusion and

over/under-detections, unlike regular patterns. This makes the method ro-

bust against pattern overlapping (cf. Chapter 4).

∙ Points occupy a small surface: the same area can contain more points than

other geometries, so more correspondences can be established

Figure 5.5: Calibration Patterns: 𝑃𝑏 in black are printed on a piece of paper. 𝑃𝑝 in
white are projected. Both form the original pattern 𝑃𝑜.

The calibration pattern (cf. Fig. 5.5) is constructed as follows: 2𝑁 points are

randomly generated in a rectangle region, called the original pattern (𝑃𝑜) afterwards.

The first half of these points (𝑃𝑏) are printed on a paper and attached to a rigid

board, the second half (𝑃𝑝) is pre-warped and projected onto the board in order to

form 𝑃𝑜 during the calibration procedure (cf. Section 5.2.3). We set a minimum

inter-point distance for all 2𝑁 points to have a more homogeneous distribution,

which improves camera calibration according to [Shih 1996]. Since our objective

97

Chapter 5. Defocused projector calibration for projector-camera

systems

is to calibrate the projector with a far focus by using a small calibration board,

the board does not have to be close to the plane of focus of the projector, so the

projected points will be defocused and become larger. The minimum inter-point

distance requirement makes the defocused projected points less likely to overlap

with printed points.

5.2.3 Algorithm

We use LGC to find point correspondences, the two basic operations of this algorithm

are defined as follows:

𝐿𝐺𝐶.𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝑃) (5.2)

[𝑃 , 𝑃𝑖, 𝐻] = 𝐿𝐺𝐶.𝑚𝑎𝑡𝑐ℎ(𝐼) (5.3)

(5.2) registers a model point pattern 𝑃 into LGC, several models may be regis-

tered; (5.3) matches detected black points in image 𝐼 with all registered models. If

a model 𝑃𝑖 is found in the detected pattern, (5.3) returns 𝑃𝑖 and its corresponding

detected point set 𝑃 . An homography 𝐻 : 𝑃 = 𝐻(𝑃𝑖) is also returned.

The algorithm contains three parts: initialization, manipulation and improve-

ments (cf. Alg. 9). For initialization, both 𝑃𝑏 and 𝑃𝑝 points are registered into

LGC as models. An initial value 𝐻𝑝𝑟𝑒 is defined so that 𝐻𝑝𝑟𝑒(𝑃𝑝) exactly fits the

projector resolution.

During manipulation, the algorithm matches 𝑃𝑏 (i.e. the calibration board)

with LGC. Once the board is found, it starts to detect and match 𝑃𝑝 (i.e. the

projected pattern) on the calibration board in the same way. If 𝑃𝑝 is found as well,

an homography 𝐻𝑝𝑟𝑒 is computed whose role is to warp the projected pattern to

the right position for the next iteration (cf. Fig. 5.6). Note that 𝐻𝑝𝑟𝑒 only warps

points’ positions, while the points to be projected are always circular. When both

patterns are well aligned (meaning that they form well 𝑃𝑜) and the board is steady

for ≈ 1s, an image 𝐼 is captured, and both 𝐻𝑏𝑐 and 𝐻𝑝𝑐 are recorded. We choose

𝑡𝑠 = 3.0 pixels and 𝑡𝑎 = 2.0 pixels in Alg. 9 empirically.

Once images of 𝐾 views are obtained, an improvement step is executed. It is

used to deal with the fact that the center of a circle is not perspective invariant:

after applying a perspective transformation, the transformed center of the circle is

not the center of the transformed circle. The approach is similar to [Datta 2009]:

each captured image 𝐼 is rectified so that points are nearly circle. More precisely,

since the transformation from the calibration board to the camera image plane is

98

5.3. Defocusing error

the homography 𝐻𝑐𝑏 because of pinhole camera, rectified views 𝐻−1
𝑐𝑏 (𝐼) are used for

physical points 𝑃 ′
𝑏. As we use the pinhole projector model, the relationship between

the projector image and the camera image is the homography 𝐻𝑐𝑝 induced by the

calibration board [Hartley 2004]. Therefore, rectified views 𝐻−1
𝑐𝑝 (𝐼) are used for

projected points 𝑃 ′
𝑝. This latter approach introduces the defocusing error, which is

discussed in the following section. To detect ellipse centers in rectified views, the

OpenCV’s MSER detector [Nistér 2008] is used with its default parameters.

Algorithm 9 Algorithm

𝐿𝐺𝐶.𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝑃𝑏)
𝐿𝐺𝐶.𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝑃𝑝)
set 𝐻𝑝𝑟𝑒 such that 𝐻𝑝𝑟𝑒(𝑃𝑝) exactly fits the projector’s resolution
𝑘 = 0
while 𝑘 < 𝐾 do

Projector: Draw circles at 𝐻𝑝𝑟𝑒(𝑃𝑝) and project them
Camera: Get new image 𝐼
[𝑃 ′

𝑏, 𝑃𝑏, 𝐻𝑐𝑏] = 𝐿𝐺𝐶.𝑚𝑎𝑡𝑐ℎ(𝐼)
if 𝑃 ′

𝑏 found then
[𝑃 ′

𝑝, 𝑃𝑝, 𝐻𝑐𝑝] = 𝐿𝐺𝐶.𝑚𝑎𝑡𝑐ℎ(𝐼), 𝐼 is 𝐼 with inverted color.
if 𝑃 ′

𝑝 found then
𝑠𝑡𝑒𝑎𝑑𝑦 = ∀𝑝 ∈ 𝑃 ′

𝑏 has moved less than 𝑡𝑠 pixels since last image
𝑎𝑙𝑖𝑔𝑛𝑒𝑑 = ∀𝑝 ∈ 𝑃𝑏, ‖𝐻𝑐𝑏(𝑝)−𝐻𝑐𝑝(𝑝)‖ < 𝑡𝑎 pixels
if 𝑠𝑡𝑒𝑎𝑑𝑦 && 𝑎𝑙𝑖𝑔𝑛𝑒𝑑 then
if last over 1𝑠 then
Capture 𝐼, record correspondences (𝑃 ′

𝑏, 𝑃𝑏), (𝑃 ′
𝑝, 𝐻𝑝𝑟𝑒(𝑃𝑝)) and homo-

graphies 𝐻𝑐𝑏, 𝐻𝑐𝑝

𝑘 ++
else

𝐻𝑝𝑟𝑒 = 𝐻𝑝𝑟𝑒𝐻
−1
𝑐𝑝 𝐻𝑐𝑏

Improve detection of 𝑃 ′
𝑏 in rectified views 𝐼𝑏 = 𝐻−1

𝑐𝑏 𝐼
Improve detection of 𝑃 ′

𝑝 in rectified views 𝐼𝑝 = 𝐻−1
𝑐𝑝 𝐼

Calibrate the system (cf. Section 5.2.1)

The initialization step takes ≈ 1s, the manipulation sequence is performed in

real-time, the improvement step can process 2− 3 frames per second.

5.3 Defocusing error

As mentioned in Section 5.2.3, the center of a circle is not perspective invariant.

This can be dealt with view rectification. But if the transformed circle is defocused,

the view rectification cannot compensate the error introduced by the defocus effect.

99

Chapter 5. Defocused projector calibration for projector-camera

systems

Hpre

Hcp Hcb

Pp PbP’b & P’p

L

l

fc zOc

x

y

Figure 5.6: Point patterns used in Alg. 9. From left to right: 𝑃𝑝, projected pattern
𝐻𝑝𝑟𝑒(𝑃𝑝), 𝑃 ′

𝑏 and 𝑃
′
𝑝 in camera view, board pattern 𝑃𝑏. 𝐻𝑐𝑝 = 𝐻𝑐𝑏 if 𝑃 ′

𝑏 and 𝑃
′
𝑝 are

well aligned on board.

In this section, we study the error in center localization by defocus.

5.3.1 The origin of the defocusing error

An optical schema of a single point projection is shown in Fig. 5.7. Since the depth

of field of pinhole cameras/projectors is infinite, a projected dot is never defocused

despite of the distance between the calibration board and the projector (cf. the green

cone in Fig. 5.7). But when the light follows a lens model inside the projector (cf.

the blue cone in Fig. 5.7), there is only one plane of focus. Therefore, a projected dot

is defocused if the calibration board is not exactly on the plane of focus. Therefore,

in order to estimate the defocusing error, the lens model should be considered.

In Fig. 5.7, the projector lens is located at 𝑂. A circle s𝑜 is located on the

projector’s plane 𝑝𝑜. It is projected and forms a clear image s𝑖 on the plane of focus

𝑝𝑖. All light coming from s𝑜 and being transmitted by the lens form a blue cone 𝐶𝑏,

which follows a standard lens projection model. 𝐶𝑏 intersects the board plane 𝑝𝑏

and forms the light spot s𝑏 on the board.

During the calibration, s𝑏 is captured by the camera and forms an image 𝐻𝑐𝑏(s𝑏)

on the camera’s image plane. To detect the centers of s𝑏, homography 𝐻−1
𝑐𝑝 is used

to rectify the image 𝐻𝑐𝑏(s𝑏). This process implies that a pinhole projector model

is used (cf. Section 5.2.3). The rectified spot is 𝐻−1
𝑐𝑝 𝐻𝑐𝑏(s𝑏) = 𝐻𝑝𝑏(s𝑏). 𝐻𝑝𝑏 is the

homography from positions on the calibration board 𝑝𝑏 to those on the projector

image plane 𝑝𝑜 induced by a pinhole projector model. As a consequence, if we think

that the projector works inversely, then the rectified 𝐻𝑝𝑏(s𝑏) can be regarded as

an image of s𝑏 “seen” by the pinhole inverse-projector. In Fig. 5.7, light from s𝑏

following the pinhole inverse-projector model is presented by a red elliptic cone and

thus s𝑟 = 𝐻𝑝𝑏(s𝑏) is the rectified spot. The MSER detector detects the center of s𝑟,

100

5.3. Defocusing error

y

40
0

40

z

40
0

40
80

x

40

0

40

O
d

Cb

pi

si

pb

sb

s′b

ϕ

po

so
sr

Figure 5.7: Projection geometry for defocusing error: 𝑂 is the projector optical
center, 𝑝𝑜 is the projector plane, 𝑝𝑖 is the plane of focus, 𝑝𝑏 is the board plane.
The blue cone represents the light that follows a lens projector model. s𝑜 (green) is
projected by the lens and forms a defocused spot s𝑏 on the board. Both the green
cone and red cone represent the light that follows a pinhole projector model. If s𝑜
is projected by a pinhole projector (the green cone), it should form a clear spot s′𝑏
on 𝑝𝑏. s𝑟 (red) is the defocused spot “seen” by an inverse pinhole projector (the red
cone).

denoted as 𝐸𝑟, and we use (𝐸𝑜,𝐻
−1
𝑝𝑏 (𝐸𝑟)) as one correspondence for the projector

calibration.

However, if there is no defocus in the optical system (i.e. with the pinhole

projector model), the light from s𝑜 should form a green cone and produces an image

s′𝑏 = 𝐻−1
𝑝𝑏 (s𝑜) on the calibration board 𝑝𝑏. If the center of s𝑜 is denoted as 𝐸𝑜,

then the correspondence (𝐸𝑜,𝐻𝑝𝑏(𝐸𝑜)) should be used theoretically without any

defocus. Unfortunately, s′𝑏 is physically not observable, so 𝐻−1
𝑝𝑏 (𝐸𝑟) is used instead

of𝐻−1
𝑝𝑏 (𝐸𝑜) which introduces a defocusing error𝐻

−1
𝑝𝑏 (𝐸𝑟)−𝐻−1

𝑝𝑏 (𝐸𝑜). The projection

of this defocusing error on the projector’s object plane 𝑝𝑜 is then 𝑒 = 𝐸𝑟 − 𝐸𝑜.

101

Chapter 5. Defocused projector calibration for projector-camera

systems

5.3.2 An estimation of the defocusing error

To derive the error 𝑒, a coordinate system is constructed so that the angle between

𝑝𝑏 and the projector’s 𝑧-axis is 𝜙. Let 𝑂 be the origin of the coordinate system,

as well as the projector’s optical center. The 𝑧-axis intersects 𝑝𝑏 at point (0, 0, 𝑏),

meaning that 𝑏 represents the distance between 𝑝𝑏 and the projector. Therefore, the

equation of the board plane 𝑝𝑏 is:

𝑝𝑏 : 𝑧 − 𝑥 cot𝜙− 𝑏 = 0 (5.4)

The projector’s plane 𝑝𝑜 is at 𝑧 = 𝑧𝑜 and the plane of focus 𝑝𝑖 is at 𝑧 = 𝑧𝑖. 𝑑 is

the diameter of the projector lens. The circle s𝑜 has it center at 𝐸𝑜(𝑥𝑜, 𝑦𝑜, 𝑧𝑜) with

𝑟𝑜, the circle s𝑖 has a radius of 𝑟𝑖. Then the equation of 𝐶𝑏 is:

𝐶𝑏 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥(𝑡, 𝛼) = 𝑥𝑜

𝑧𝑜
𝑡+ 𝑑

2

[︁
1− (1− 2𝑟𝑖

𝑑) 𝑡
𝑧𝑖

]︁
cos𝛼

𝑦(𝑡, 𝛼) = 𝑦𝑜
𝑧𝑜
𝑡+ 𝑑

2

[︁
1− (1− 2𝑟𝑖

𝑑) 𝑡
𝑧𝑖

]︁
sin𝛼

𝑧(𝑡, 𝛼) = 𝑡

(5.5)

where 𝑡 > 0, 𝛼 ∈ [0, 2𝜋) are two parameters for 𝐶𝑏.

By using the fact that s𝑏 is the intersection of 𝐶𝑏 and 𝑝𝑏; both s𝑏 and s𝑟 lie on

𝐶𝑟; 𝐶𝑟 is an elliptic cone passing through 𝑂; and s𝑟 is the intersection between 𝐶𝑟

and 𝑝𝑜. We can find the equation of s𝑟 with parameter 𝛼 ∈ [0, 2𝜋):

s𝑟 :

⎧⎨⎩𝑥(𝛼) = 𝑥𝑜 +
𝑧𝑜𝑑𝑐𝑜𝑠𝛼

2𝑏+𝑑𝑐𝑜𝑡𝜙𝑐𝑜𝑠𝛼

(︁
1− 𝑥𝑜

𝑧𝑜
cot𝜙− 𝑏

𝑧𝑖
− 2𝑏𝑟𝑜

𝑧𝑜𝑑

)︁
,

𝑦(𝛼) = 𝑦𝑜 +
𝑧𝑜𝑑𝑠𝑖𝑛𝛼

2𝑏+𝑑𝑐𝑜𝑡𝜙𝑐𝑜𝑠𝛼

(︁
1− 𝑥𝑜

𝑧𝑜
cot𝜙− 𝑏

𝑧𝑖
− 2𝑏𝑟𝑜

𝑧𝑜𝑑

)︁
.

(5.6)

We can prove that s𝑟 is an ellipse centered at (𝑥𝑟, 𝑦𝑟), with:⎧⎨⎩𝑥𝑟 = 𝑥𝑜 − 𝑧𝑜𝑑2 cot𝜙
4𝑏2−𝑑2 cot2 𝜙

(︁
1− 𝑥𝑜

𝑧𝑜
cot𝜙− 𝑏

𝑧𝑖
− 2𝑏𝑟𝑜

𝑧𝑜𝑑

)︁
𝑦𝑟 = 𝑦𝑜

(5.7)

Thus the error 𝑒 is

𝑒 = − 𝑧𝑜𝑑
2 cot𝜙

4𝑏2 − 𝑑2 cot2 𝜙

(︂
1 + cot𝜙

𝑥𝑜
𝑧0
− 𝑏

𝑧𝑖
− 2𝑏𝑟𝑜

𝑧𝑜𝑑

)︂
(5.8)

where −𝑧𝑜 is the object distance since 𝑧𝑜 < 0; 𝑧𝑖 is the focus distance; 𝑑 is

the lens diameter; 𝜙 is the angle between the 𝑧-axis and the board (cf. Fig. 5.7),

and usually lies in [45∘, 135∘] for calibration; 𝑝𝑏 intersects the 𝑧-axis at (0, 0, 𝑏); 𝑥𝑜

measures the distance between s𝑜’s center and the principle point in the projector

102

5.4. Calibration results

plane along the 𝑥-axis.

We can see from (5.8) that with a pinhole projector model (i.e. 𝑑 = 0), the

error will be 0. This corresponds to our intuitive knowledge. Moreover, there is no

defocusing error when the board is vertical (i.e. 𝜙 = 90∘). Because in this case, the

defocused spot is enlarged uniformly so that 𝐸𝑜 and 𝐸𝑟 coincide.

In our experiment, the projector’s width 𝑊 = 1920 px, its height 𝐻 = 1080

px, the effective focal length (i.e. object distance) 𝑓 = −𝑧𝑜 ≈ 2000px, 𝑏 = 50cm,

𝑟𝑜 = 6px. The maximum error 𝑒𝑚𝑎𝑥 is obtained when 𝑣 → ∞, 𝜙 = 𝜙𝑚𝑎𝑥 = 135∘

and 𝑥𝑜 =
√︀
𝑊 2/4 +𝐻2. It can be approximated by:

𝑒𝑚𝑎𝑥 ≈
0.52𝑓𝑑2

𝑏2
≈ 0.29𝑝𝑥 (5.9)

Note that (5.9) can also be used to estimate the smallest admissible board dis-

tance for different projectors 𝑏𝑚𝑖𝑛 = 𝑑
√︁

𝑓
2𝑒𝑚𝑎𝑥

. When the lens diameter 𝑑 of a

projector is large, the board should be placed further from the projector. This

indicates the drawback of our method for projectors with lenses of large sizes.

5.4 Calibration results

Our experimental system consists of a LogiTech C270 webcam (working resolution

640 × 480), an Epson EB-1771W projector (resolution 1920 × 1080, lens diameter

8.35mm), a laptop (Intel i7-4510U@2.00GHz CPU, 8GB of RAM) and calibration

boards. We use our method to calibrate the system with the projector focusing

at various distances, and compare the results with [Audet 2009]. This method is

chosen as a reference since it presents competitive results compared to other ones,

the source code is available online and it is easy to use.

[Audet 2009] proposes to use a B4 paper (250×353mm) attached to a rigid board

as calibration pattern. In order to ease comparison, we use a calibration board of

the same size with 2𝑁 = 200 points. We found that with this size, using a 2mm

radius for points with 16mm minimum inter-point distance works well. The radius

of projected points is 𝑟𝑜 = 6px.

For the projector we use, a B4 board covers almost all the projection view only

at about 50cm from the projector. For other focus distances, three different sizes of

pattern (A2, A1, 2 × 𝐴0) are printed. Marker centers are used in [Audet 2009] as

they report to have a better result. For our method, we only use the B4 calibration

board to demonstrate that it is much easier to use (cf. Fig. 5.8). At each focus

distance, we calibrate 5 times for each method and average the result. For each

103

Chapter 5. Defocused projector calibration for projector-camera

systems

Figure 5.8: Comparison of a 2 × 𝐴0 calibration board used by [Audet 2009] and a
𝐵4 calibration board used by our method (bottom-right) for large focus distances
(≥ 250cm).

calibration, 𝐾 = 10 images are captured, following [Audet 2009]. Both methods call

OpenCV’s calibrateCamera method for final calibration, with the same set of options

and parameters. To prevent the projector’s optical properties from changing with

the temperature, the projector is pre-warmed 30 minutes before the experiments.

We first show the results of calibration reprojection root mean square errors

(RMSE) in Fig. 5.9. RMSE is the most commonly used error measurement for

camera and projector calibrations. Compared to [Audet 2009], our average RMSE

is smaller but our maximum RMSE is larger. This is reasonable since the more

correspondences a method uses, the more likely extreme values appear.

Both methods rely on Zhang’s method [Zhang 2000] to find the projector’s intrin-

sic matrix and distortions coefficients by minimizing the sum of reprojection errors

of all correspondences. However, as pointed out by [González 2005, Shih 1996], min-

imizing reprojection errors on calibration data cannot guarantee that the estimated

internal parameters are the best ones. Ideally, when no modification is applied to

the ProCam system, separated consecutive calibrations should lead to repeatability,

i.e. stable intrinsic matrix and lens distortions for both devices.

Fig. 5.10 shows the results on focal lengths estimation at different focus distances.

Focal lengths estimated by our method are very stable, with 𝑡(5) = 2.69 for standard

deviation (SD) of 𝑓𝑝𝑥 and 𝑡(5) = 2.49 for SD of 𝑓𝑝𝑦, 𝑝 < 0.05. One can clearly observe

104

5.4. Calibration results

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Av
er

ag
e

er
ro

r (
pi

xe
l)

ours Audet

100 200 300 400
Focus distance (cm)

2
0
2
4
6
8

10

M
ax

im
um

 e
rr

or
 (p

ix
el

)

Figure 5.9: Average and maximum reprojection errors (RMSE): A red point on
the curve indicates a significant difference between Audet’s method and ours, at
𝑝 < 0.05 using a Student’s t-test.

2010

2020

2030

2040

2050

2060

f p
x
 (p

ix
el

)

ours Audet

100 200 300 400
Focus distance (cm)

2010

2020

2030

2040

2050

2060

f p
y (

pi
xe

l)

Figure 5.10: Focal length results: our method gives a significantly more stable
estimation at 𝑝 < 0.05 using a Student’s t-test. It shows the trend of focal length
variation.

105

Chapter 5. Defocused projector calibration for projector-camera

systems

950
955
960
965
970
975
980
985

u
p
 (p

ix
el

)
ours Audet

100 200 300 400
Focus distance (cm)

1000
1005
1010
1015
1020
1025
1030
1035
1040
1045

v p
 (p

ix
el

)

Figure 5.11: Principal point position results: there is no significant difference be-
tween our method and Audet’s one, despite the size difference between the calibra-
tion patterns.

the effective focal length varies according to focus change. In Fig. 5.11, our principal

point positions seem more stable as well, but the difference is not significant in t-test

(𝑡(5) = 1.35 for SD of 𝑢 and 𝑡(5) = 1.92 for SD of 𝑣, 𝑝 > 0.05). For the camera,

our method gives stable results 𝑓𝑐 = 812.4 ± 0.9 against Audet’s 𝑓𝑐 = 808.1 ± 4.2,

(𝑓𝑐𝑥, 𝑓𝑐𝑦 are averaged together).

To make a short summary, our method gives smaller RMSE on calibration data,

and more stable intrinsic estimates, despite using a 22.7 times smaller calibration

board.

5.5 Augmentation evaluation

In the SAR community, people do not care so much about the true value of intrinsic

matrices, nor about the RMSE of calibration data, since real augmentation will

hardly lie on these calibration points. They care more about how precise some

information can be projected in the focus zone of the projector. In this section, we

use calibration-independent data to evaluate this effect.

When relying on [Audet 2009] to augment information at large distances, the

user may choose to calibrate either at a short focus distance with a small board (B4

106

5.5. Augmentation evaluation

Figure 5.12: Evaluation pattern: (printed) black points are used for localization,
(projected) white points are used to measure projection errors.

size) with a loss of precision, or to calibrate at a larger distance with more burden

(due to the use of potentially huge calibration boards). As mentioned before, our

method offers the advantage to be able to calibrate the ProCam system with only

a B4 size calibration board, whatever the focus distance of the projector. In order

to draw a fair comparison between our method and Audet’s one, three different

results are compared here: our method and Audet’s calibrating at Correct Focus

Distances with different size of boards (i.e. focus distances of the projector during

calibration and evaluation are the same, denoted in the figures as Audet-CFD), and

Audet’s method calibrating with a focus set at 50cm with a B4 board (denoted as

Audet-50cm).

We use two asymmetric circle patterns (cf. Fig. 5.12) to investigate projection

errors in the focus zone of the projector. 𝑄𝑏 contains the coordinates of all the

printed black points while 𝑄𝑤 contains the coordinates of the projected white ones.

According to the distance between the ProCam system and the calibration board,

different sizes of these patterns are generated. 𝑄𝑏 are printed at exact positions and

with known sizes so that we know their true physical positions on the paper. 𝑄𝑤

contains the ground-truth positions at which white points should be projected. They

are drawn in an image 𝐼(𝑄𝑝) to be warped and projected later. After projection,

the real positions of the projected circles are measured by the camera and compared

to their ground truth values to compute projection errors. A detailed version of

this evaluation algorithm is presented in Alg. 10. Its inputs are intrinsic parameters

of the camera and the projector, their relative position, as well as two evaluation

patterns 𝑄𝑏 and 𝑄𝑤. Its output is a list of reprojection errors {𝑒𝑟} of 𝑄𝑤.

107

Chapter 5. Defocused projector calibration for projector-camera

systems

Algorithm 10 Evaluation

Input: 𝐾𝑐, 𝐷𝑐,𝐾𝑝, 𝐷𝑝, 𝑅, 𝑡 to be evaluated, 𝑄𝑏 and 𝑄𝑤

Output: List of reprojection errors {𝑒𝑟}
𝐼 ← 𝑢𝑛𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝐶𝑎𝑚𝑒𝑟𝑎𝑉 𝑖𝑒𝑤(𝐾𝑐, 𝐷𝑐)
𝑄′

𝑏 ← 𝑑𝑒𝑡𝑒𝑐𝑡𝐵𝑙𝑎𝑐𝑘𝐷𝑜𝑡𝑠(𝐼)*
𝐻𝑐𝑏 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐻𝑜𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦(𝑄′

𝑏, 𝑄𝑏) with 𝑄′
𝑏 = 𝐻𝑐𝑏(𝑄𝑏)

𝑅𝑐𝑏, 𝑡𝑐𝑏 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝐾𝑐, 𝐻𝑐𝑏)
𝑅𝑝𝑏, 𝑡𝑝𝑏 ← 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑅, 𝑡,𝑅𝑐𝑏, 𝑡𝑐𝑏)
𝐻𝑝𝑏 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐻𝑜𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦(𝑅𝑝𝑏, 𝑡𝑝𝑏,𝐾𝑝)
𝐼𝑑𝑝 ← 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑𝐼𝑚𝑎𝑔𝑒(𝐼(𝑄𝑝), 𝐷𝑝, 𝐻𝑝𝑏)
𝑄′

𝑤 ← 𝑑𝑒𝑡𝑒𝑐𝑡𝑊ℎ𝑖𝑡𝑒𝐷𝑜𝑡𝑠(𝐼𝑑𝑝)*
{𝑒𝑟} ← 𝐻−1

𝑐𝑏 (𝑞′𝑤)− 𝑞𝑤, for all (𝑞′𝑤, 𝑞𝑤) ∈ (𝑄′
𝑤, 𝑄𝑤)

(*)Perspective and lens’ distortions are removed from images. This allows us to
find correct circle centers.

Before showing the results, we need to address an issue: how precise can this

evaluation algorithm be? The precision depends on the intrinsics of both the camera

and the projector . Let us take an example with the camera (the projector would

follow the same reasoning): assuming a board parallel to the camera’s image plane

is positioned at a distance 𝑧 from the camera’s origin (cf. Fig. 5.13). A segment of

length 𝐿 is measured by the camera as being 𝑙 pixels long, so we have 𝑙 = 𝑓𝑐𝑧
−1𝐿.

Furthermore, if the angle between the board and the camera’s image plane is 𝜙,

𝑙 = 𝑓𝑐𝑧
−1𝐿 cos(𝜙).

We thus see that the smaller the focal length, the smaller 𝑙. Assuming 𝑙 =

0.5 pixel (used for illustrative purpose as an approximation of the MSER detector

precision), the minimum on board difference we can measure is:

𝑑𝑚𝑖𝑛 =
𝑧

2𝑚𝑖𝑛(𝑓𝑐, 𝑓𝑝) cos𝜙
(5.10)

RMSE are calculated from the list of reprojection errors {�⃗�𝑟} in each evaluation

image. Considering two series of RMSE e1 and e2, if the difference of the average

value
∑︀

e1/𝑛1 −
∑︀

e2/𝑛2 is less than 𝑑𝑚𝑖𝑛, we consider it to be numerical noise.

This effect is represented in Fig. 5.14, 5.17, 5.18 as a gray region encompassing our

curve, which means that other RMSE inside this region shows no difference from

our result due to the measurement limit. Otherwise, an independent significant test

(t-test with different variations) is performed against the result of our method:

𝐻0 :
∑︁

e1/𝑛1 =
∑︁

e2/𝑛2 (5.11)

We choose 𝑝 = 0.05, which means the probability that 𝐻0 is wrongly rejected

108

5.5. Augmentation evaluation

Hpre

Hcp Hcb

Pp PbP’b & P’p

L

l

fc zOc

x

y

Figure 5.13: Projection of a segment: 𝑂𝑐 is the camera’s origin. A world segment 𝐿
is on a board parallel to the camera’s image plane at 𝑧, its image 𝑙 is on the image
plane. We have 𝑙/𝐿 = 𝑓𝑐/𝑧.

is less than 5%. In our system, 𝑓𝑐 < 𝑓𝑝, so we have 𝑚𝑖𝑛(𝑓𝑐, 𝑓𝑝) = 𝑓𝑐 ≈ 810 (cf.

Section 5.4).

5.5.1 Focus distance

We first evaluate RMSE at different focus distances (cf. Fig. 5.14). The circle

pattern is placed at the center of the focus zone to have the least lens distortions.

Although only calibrated at 50cm, Audet-50cm works well for short focus distances

(< 250cm), but the RMSE grow rapidly for large focus distances. Except for 250cm,

there is no significant performance difference between our method and Audet-CFD

although we have to remind the results of Audet-CFD are obtained with huge cum-

bersome calibration boards (i.e. 1189 × 1682mm). For our method, the RMSE

for a 450cm focus/projection distance are only about 4mm. To have a clear visual

difference, we choose 450cm to show the reprojection difference (cf. Fig. 5.15).

5.5.2 Error distribution

Fig. 5.16 shows error distribution in a front view at 250cm. The circle board is

placed at four different places to cover the whole projector view. Both our method

and Audet-CFD have small errors while Audet-50cm gives large errors especially for

small 𝑦 values. We can notice that Audet-CFD generally has smaller errors than

ours in Fig. 5.16 while our method shows smaller RMSE at 250cm in Fig. 5.14.

109

Chapter 5. Defocused projector calibration for projector-camera

systems

0 100 200 300 400 500
distance (cm)

0

2

4

6

8

10

12

14
re

pr
oj

ec
tio

n
er

ro
r (

m
m

)
ours Audet-CFD Audet-50cm

Figure 5.14: RMSE with different focus distances. Color dots mean that RMSE
significantly differ from our result: 𝐻0 of (5.11) is rejected.

Figure 5.15: Reprojection error in rectified views (focusing at 450cm). From left to
right: ours, Audet-CFD, Audet-50cm. Red lines are drawn to show points align-
ment. Circles’ diameter is 48mm.

However, this is not contradictory, since the error difference reaches the limits of

the measurement system.

5.5.3 Perspective and depth

At last, we study the influence of perspective angle and depth in the projector’s

focus zone. The projector is always focusing at 250cm. Fig. 5.17 shows that all

methods perform worse under large oblique angles than under small ones. Audet-

50cm is significantly worse in many cases while our method and Audet-CFD give

almost the same result, yet again at the expense of the size of the calibration board.

Fig. 5.18 shows that when further away from the projector, Audet-50cm has a poor

performance.

110

5.5. Augmentation evaluation

0 500 1000 1500
X (pixel)

0

200

400

600

800

1000

Y
(p

ix
el

)

Ours Audet-CFD Audet-50cm

Figure 5.16: Error distribution in projector’s view (focusing at 250cm). Reprojection
errors (instead of RMSE) are used in the t-test: Color circles indicate significant
differences from our result.

0
2
4
6
8

10
12

re
pr

oj
ec

tio
n

er
ro

r (
m

m
) Rotation along X-axis

ours Audet-CFD Audet-50cm

60 40 20 0 20 40 60
rotation angle(degree)

0

2

4

6

8

10

re
pr

oj
ec

tio
n

er
ro

r (
m

m
) Rotation along Y-axis

Figure 5.17: RMSE with various rotations (focusing at 250cm). Color dots mean
RMSE significantly differ from our result: 𝐻0 of (5.11) is rejected.

111

Chapter 5. Defocused projector calibration for projector-camera

systems

60 40 20 0 20 40 60
Depth from focus plane (cm)

0

1

2

3

4

5

6

7

8

9
re

pr
oj

ec
tio

n
er

ro
r (

m
m

)
ours Audet-CFD Audet-50cm

Figure 5.18: RMSE with various depths (focusing at 250cm). Color dots mean
RMSE significantly differ from our result: 𝐻0 of (5.11) is rejected.

5.6 Conclusion

This chapter presented a practical method to calibrate a projector-camera system,

by using the LGC method introduced in Chapter 4. The method can calibrate

a ProCam system despite the focus distance of the projector. It is user-friendly

and interactive in real-time. We evaluated the calibration results with calibration-

independent data. The reprojection error of the system is competitive with regard

to the state-of-art, but the method only demands a small calibration board and

simple manipulations even at large focus distances (more than 2.5m). Results also

show that the calibrated intrinsic matrix of the projector is more stable than other

state-of-the-art methods [Audet 2009]. The drawback of our method is that it po-

tentially has larger system error for projector with large lenses according to (5.9).

Nevertheless this can be solved by calibrating the system at a slightly larger dis-

tance. Since defocus projections are tolerated by our method, the calibration board

would still be smaller than state-of-the-art methods [Audet 2009].

112

Chapter 6

Surface of revolution

reconstruction from 3D data

Contents

6.1 Related work . 114

6.2 Surface of revolution axis estimation 116

6.2.1 Basic idea . 116

6.2.2 Approximately linear objective function 118

6.3 Implementation details . 121

6.3.1 Algorithm . 121

6.3.2 Plane cutting and circle fitting 122

6.3.3 Determining 𝑃𝑠 and solving 𝜑(𝜃) 124

6.4 Real-time SoR reconstruction 125

6.4.1 Segment classification . 125

6.4.2 Workflow . 126

6.5 Results . 128

6.5.1 Synthetic study . 128

6.5.2 Real data . 129

6.6 Conclusion . 131

This chapter presents the work realized during a three-month internship in

Kyushu University in Japan, and has been presented at International Conference

on 3D Vision (3DV) in 2016. It tackles scene understanding from 3D data, which

is completely different from the previous chapters. Scene understanding from 3D

data is an important research topic in computer vision and robotic perception be-

cause it can be applied to various types of systems such as robotic grasping, model

simplification, augmented reality, etc. Existing methods on this topic can be clas-

sified into two main families: top-down and bottom-up approaches [Nguyen 2015].

Top-down approaches are often referred to as object detection, since they aim at

Chapter 6. Surface of revolution reconstruction from 3D data

detecting pre-known models. Bottom-up approaches are sometimes called geomet-

ric reconstruction methods. They detect primitive shapes in a scene and establish

relationships between these shapes whenever possible.

Primitive detection and localization is a crucial step in bottom-up approaches:

it represents the first step of those methods and determines their application

range. However, existing approaches can only deal with a limited type of prim-

itive shapes such as: planes only [Nguyen 2015], cylinders only [Qiu 2014] or

thin-structures [Song 2015]. More complex primitives such as spheres, cones or

tori [Schnabel 2007] can be detected but those techniques still remain limited to

pre-defined parametric shapes. It is important for applications in reverse engineer-

ing or in the construction field to deal with various types of geometric primitive

shapes. Also, on-line scene understanding is desirable as dense SLAM (i.e. SLAM

from RGB-D data) runs in real-time from 3D data [Tateno 2016].

In this chapter, we aim at detecting and reconstructing surfaces of revolution

(SoR) in a cluttered scene in real-time. SoR can represent the majority of primitives

and are quite common in man-made objects due to their ease of production. Since

the most crucial step in detecting a SoR is to estimate its rotation axis, we propose

a fast and accurate method, which boils down the estimation of the rotation axis to

a one dimension search. The main contributions of this chapter are summarized as

follows:

∙ a fast and accurate estimation of SoR axes from 3D data

∙ a framework for detecting, localizing and reconstructing SoR in a cluttered

scene in real-time.

6.1 Related work

For semantic 3D understanding, structural modeling using geometric primitives has

been investigated in the literature. Qiu et al. [Qiu 2014] use parallel cylinder de-

tection to reconstruct an industrial pipeline system. Song et al. [Song 2015] use

beams and planes to reconstruct thin structural systems, such as chairs. Thanh

et al. [Nguyen 2015] use planes to find semantic structures in a scene. In order to

model the structure of more complex objects, Schnabel et al. [Schnabel 2007] pro-

pose a RANSAC-like method which can detect cones, cylinders, spheres and tori to

reconstruct more types of primitive shapes. Taguchi et al. [Taguchi 2015] improved

this method by introducing distance field functions for efficient computation. Drost

et al. [Drost 2015] propose to use Hough Transform to detect cylinders and spheres.

114

6.1. Related work

All these methods can detect a limited set of parametric shapes, and are not designed

to work in real-time.

A surface of revolution (SoR), or rotational object, is formed by rotating a 2D

curve (i.e. the profile) in 3D space with respect to a 3D line (i.e. the rotation

axis), thus it is axis-symmetric and is a more general representation of most geo-

metric primitives. Once the position of its rotation axis is determined, the profile

can be easily calculated. Existing approaches are dedicated to the estimation of the

rotation axis of a SoR, and can be classified as direct, iterative and brute force meth-

ods. For direct methods, Pottmann et al. [Pottmann 1999] use 3D line geometry

to classify surfaces and find the rotation axis of a SoR by solving a 6D eigenvalue

problem. For iterative methods, [Lou 2009],[Willis 2003] and [Pavlakos 2015] use

ICP-like method [Besl 1992a]. They first estimate the profile function of a SoR by

using a presumed rotation axis, thus creating an initial model of the SoR. Then,

they try to align this model with the point cloud, which results in a better esti-

mation of the axis for the next iteration. Brute force methods use the fact that

the intersection between the SoR and a plane perpendicular to its rotation axis is

a circle. Han et al. [Han 2012] use planes containing the normal of a surface point

to cut a SoR and evaluate the intersecting curve. The plane which gives the least

curvature variation is used to calculate the rotation axis. Mara et al. [Mara 2006]

use a set of parallel planes to cut a SoR. Then circles are fitted on each plane and

the variation of circle centers across all planes is calculated. This set of planes is

then rotated in a 2-dimensional search space so that the set which gives the least

variation of circle centers is used to calculate the rotation axis.

Although direct methods are quite fast, they cannot find accurate results if input

data contains even moderate noise (cf. Section 6.5). Iterative methods use the whole

point cloud, fit the SoR profile at each step, and are thus very time consuming. Brute

force methods are time consuming as well.

To reconstruct SoR in real-time, we propose a new iterative method to improve

the efficiency while still ensuring a good accuracy. It is inspired by the method

of Mara et al. [Mara 2006] that uses parallel planes to cut a SoR. However, while

[Mara 2006] uses a 2-dimensional brute force search, our method finds the axis

by solving a 1-dimensional objective function. The same cutting operation (cf.

Section 6.3.2) is repeated almost a hundred times in [Mara 2006] to reach a solution,

but is only required at most 5 times in our method.

115

Chapter 6. Surface of revolution reconstruction from 3D data

6.2 Surface of revolution axis estimation

The procedure of reconstructing a SoR in our method is summarized as follows:

1. Estimate an initial rotation axis 𝑙0 using Pottmann’s method [Pottmann 1999]

(denoted as P-method afterwards)

2. Improve the rotation axis estimation (cf. Alg. 11)

(a) Use parallel planes to cut the SoR along 𝑙0

(b) For each plane: find the center of the intersecting curve (cf. Fig. 6.1)

(c) Fit a line to all centers

(d) Rotate the cutting planes and goto step 2a if the line is not perpendicular

to the planes

3. Reconstruct the SoR by finding its profile (cf. Section 6.3.1)

A fast and accurate iterative step 2 is our main contribution. Usually, the

direction of a rotation axis 𝑙 can be determined by two Euler angles and many

existing methods use two dimensional search, such as Mara et al. [Mara 2006]. We

show that the search space can be reduced to one dimension, and that the objective

function is easy to solve. Both of them make the algorithm more efficient. Steps 1

and 3 can be seen as pre-process and post-process respectively.

In this section, we first explain the idea of step 2 and then mathematically prove

it. The implementation of step 2 and step 3 are then presented in Section 6.3.

6.2.1 Basic idea

We first show that, given an initial guess 𝑙0 obtained from the P-method, the search

space of the direction of the rotation axis is unidimensional. In Fig. 6.1, we use a

cone R to represent a general SoR for the sake of simplicity. The solid line 𝑙𝑔 is the

ground truth of its rotation axis. Line 𝑙0 represents the initial guess. A plane 𝑃𝑠

containing 𝑙𝑔 can be defined by the normal �⃗�𝑔× �⃗�0, where the unit vector ·⃗ represents
the line’s direction. By rotating �⃗�0 inside 𝑃𝑠, it is possible to find �⃗�𝑔. Therefore, the

search space is reduced to one dimension. Note that we use a 2D sketch of 𝑃𝑠 in

Fig. 6.2 to represent Fig. 6.1 because all useful information is contained in 𝑃𝑠.

We now show that 𝑃𝑠 can be determined without knowing 𝑙𝑔. We first create

𝑛 parallel planes 𝑃𝑗 (𝑗 = 1..𝑛) with normal �⃗�0 to cut R, which results in a set of

2D curves 𝐶𝑗 . Since 𝐶𝑗 are symmetric curves with respect to 𝑃𝑠, their centers 𝑂𝑗

should lie on 𝑃𝑠. We then project the centers of all 𝐶𝑗 on an arbitrary plane, e.g.

116

6.2. Surface of revolution axis estimation

x

40 20
0

20
40

y

40
20

0
20

40

z

0

20

40

60

80

100

R

P1

C1

O1

C2

O2

l l0

C3
O3

Ps

lg
v

θφ

O p
2

O p
3 lc

Figure 6.1: Symmetry of SoR and planes

𝑃1. These projections 𝑂
𝑝
𝑗 (𝑂𝑝

1 = 𝑂1) form a line 𝑙𝑐 (cf. Fig. 6.1), which is also the

intersection between 𝑃𝑠 and 𝑃1. By finding �⃗�𝑐, one can determine 𝑃𝑠.

Next, we derive the objective function of our method. Let us assume that �⃗� is

rotated from �⃗�0 inside 𝑃𝑠 by angle 𝜃 (cf. Fig. 6.1-6.2). The set of parallel planes 𝑃𝑗 is

also rotated so that their normal is �⃗�. A line 𝑣 is fitted to all points 𝑂𝑗 . Intuitively,

if �⃗� = 𝑙𝑔, all 𝐶𝑗 should be circles because of symmetry, and their centers 𝑂𝑗 should

lie on 𝑙𝑔. It means that �⃗� = �⃗�𝑔 ⇒ �⃗� = �⃗�𝑔 = �⃗�. In the next section, we show that the

converse is true if R is not a sphere. That is to say �⃗� = �⃗� ⇔ �⃗� = �⃗�𝑔 for non-spheres.

In Fig. 6.2, unit vectors inside 𝑃𝑠 can be represented by 2D vectors. By abusing

notations, we still use ·⃗ to refer to these 2D vectors, so their cross products are real

numbers. Finally, the objective function is:

𝜑(𝜃) = sin−1(⃗𝑙 × �⃗�)

with 𝜃 = sin−1(⃗𝑙0 × �⃗�)
(6.1)

Both 𝜑(𝜃) and 𝜃 are signed angles. Our objective is to find 𝜃 such that 𝜑(𝜃) = 0.

Once 𝑙𝑔 is found, we can use the average of 𝑂𝑗 as a point on the axis. This gives

117

Chapter 6. Surface of revolution reconstruction from 3D data

Figure 6.2: Sketch of 𝑃𝑠: All useful quantities are inside 𝑃𝑠

us the final rotation axis as:

𝑙𝑔 = (𝑙𝑔,
1

𝑛

𝑛∑︁
𝑗=1

𝑂𝑗) (6.2)

6.2.2 Approximately linear objective function

In this section, we prove that the objective function 𝜑 (6.1) is approximately lin-

ear with respect to 𝜃. This is the core of our method since it guarantees its fast

convergence.

The unknown 𝑙𝑔 is chosen to be the 𝑧-axis in Fig. 6.2 for an easier deduction.

The profile of the SoR in this plane can be expressed as 𝑟 = ±𝑓(𝑧). Parallel planes
intersect with the 𝑧-axis at 𝑧𝑗 . The 2D projection of 𝐶𝑗s on 𝑃𝑠 can be represented

by segments between (𝑧+𝑗 , 𝑟
+
𝑗) and (𝑧−𝑗 , 𝑟

−
𝑗). 𝜙 is defined as the offset angle of initial

guess �⃗�0 from �⃗�𝑔:

𝜙 = sin−1(⃗𝑙𝑔 × 𝑙0) (6.3)

Since 𝜃 is the angle from �⃗�0 to �⃗�, so when 𝜃 = −𝜙, we have �⃗� = �⃗�𝑔 and thus

the objective function 𝜑(𝜃) = 𝜑(−𝜙) = 0. To derive the formula of 𝜑(𝜃), two

intermediate angles are used:

𝛼 = sin−1(⃗𝑙𝑔 × �⃗�)

𝛽 = sin−1(⃗𝑙𝑔 × �⃗�)
(6.4)

118

6.2. Surface of revolution axis estimation

It is easy to derive that:
𝜃 = 𝛼− 𝜙

𝜑 = 𝛽 − 𝛼
(6.5)

By assuming that 𝛼 is small, the profile near 𝑧𝑗 can be approximated by its first

order Taylor expansion:

𝑟 = ±𝑓(𝑧) ≈ ±
(︀
𝑓(𝑧𝑗) + 𝑓 ′(𝑧𝑗)(𝑧 − 𝑧𝑗)

)︀
(6.6)

The equation of plane 𝑃𝑗 can be expressed as:

𝑟 = tan(
𝜋

2
+ 𝛼)(𝑧 − 𝑧𝑗) (6.7)

The intersection points (𝑧+𝑗 , 𝑟
+
𝑗) can be calculated by solving (6.7) and using 𝑟 =

+𝑓(𝑧) from (6.6). Similarly, (𝑧−𝑗 , 𝑟
−
𝑗) can be calculated from (6.7) and using 𝑟 =

−𝑓(𝑧) from (6.6). The center point 𝑂𝑗(𝑧
*
𝑗 , 𝑟

*
𝑗) lies in the middle of the [(𝑧−𝑗 , 𝑟

−
𝑗),

(𝑧+𝑗 , 𝑟
+
𝑗)] line segment and thus can be derived as:

𝑧*𝑗 =
1

2
(𝑧−𝑗 + 𝑧+𝑗) = 𝑧𝑗 +

𝑓(𝑧𝑗)𝑓
′(𝑧𝑗)

cot2 𝛼− 𝑓 ′2(𝑧𝑗)

𝑟*𝑗 =
1

2
(𝑟−𝑗 + 𝑟+𝑗) = −

cot𝛼𝑓(𝑧𝑗)𝑓
′(𝑧𝑗)

cot2 𝛼− 𝑓 ′2(𝑧𝑗)

(6.8)

Since 𝑣 is an interpolation of all 𝑂𝑗 , its slope 𝑘 in the plane can be expressed as

follows:

𝑘 = tan𝛽 = −

𝑛∑︀
1
(𝑧*𝑗)

2 − 𝑛
(︂

𝑛∑︀
1

𝑧*𝑗
𝑛

)︂2

𝑛∑︀
1
𝑧*𝑗 𝑟

*
𝑗 − 𝑛

(︂
𝑛∑︀
1

𝑧*𝑗
𝑛

)︂(︂
𝑛∑︀
1

𝑟*𝑗
𝑛

)︂ tan𝛼 (6.9)

Since 𝛼 is small, the equation above can be simplified by the Taylor expansion and

by using the approximation tan𝛼 ≈ 𝛼 along with (6.8):

𝑘 ≈ −
𝑛

𝑛∑︀
1
𝑧𝑗𝑓(𝑧𝑗)𝑓

′(𝑧𝑗)−
(︂

𝑛∑︀
1
𝑧𝑗

)︂(︂
𝑛∑︀
1
𝑓(𝑧𝑗)𝑓

′(𝑧𝑗)

)︂
𝑛

𝑛∑︀
1
𝑧2𝑗 −

(︂
𝑛∑︀
1
𝑧𝑗

)︂2 𝛼 (6.10)

When 𝛽 is small, we can approximate that 𝑘 = tan𝛽 ≈ 𝛽. Let 𝜉𝑗 = 𝑧𝑗 − 1
𝑛

𝑛∑︀
1
𝑧𝑗 , we

119

Chapter 6. Surface of revolution reconstruction from 3D data

have
𝑛∑︀
1
𝜉𝑗 = 0. As a consequence, (6.10) can be simplified as:

𝛽 ≈ −

𝑛∑︀
1
𝜉𝑗𝑓(𝜉𝑗 + 𝑧)𝑓 ′(𝜉𝑗 + 𝑧)

𝑛∑︀
1
𝜉2𝑗

𝛼 = −(𝐴− 1)𝛼 (6.11)

where

𝐴 =

𝑛∑︀
1
𝜉𝑗𝑓(𝜉𝑗 + 𝑧)𝑓 ′(𝜉𝑗 + 𝑧)

𝑛∑︀
1
𝜉2𝑗

+ 1 (6.12)

Thus, by using (6.5) and (6.11), the objective function 𝜑(𝜃) can be written as:

𝜑(𝜃) = 𝛽 − 𝛼 = −𝐴𝛼 = −𝐴(𝜃 + 𝜙) (6.13)

When �⃗� is rotated to the ground-truth �⃗�𝑔, then 𝜃 = −𝜙 and thus 𝜑(𝜃) = 0, which

corresponds to our intuitive knowledge. In (6.13), 𝜙 is an unknown variable depend-

ing on 𝑙0. Although 𝐴 depends on 𝜉𝑗 (cf. (6.12)), by letting Δ𝜉 = 𝜉𝑛−𝜉1
𝑛−1 , we can

show that when 𝑛→∞:

𝐴 =

𝑛∑︀
1
𝜉𝑗𝑓(𝜉𝑗 + 𝑧)𝑓 ′(𝜉𝑗 + 𝑧)Δ𝜉

𝑛∑︀
1
𝜉2𝑗Δ𝜉

+ 1

≈

𝜉𝑚𝑎𝑥∫︀
𝜉𝑚𝑖𝑛

𝜉𝑗𝑓(𝜉𝑗 + 𝑧)𝑓 ′(𝜉𝑗 + 𝑧)𝑑𝜉

𝜉𝑚𝑎𝑥∫︀
𝜉𝑚𝑖𝑛

𝜉2𝑗 𝑑𝜉

+ 1

(6.14)

It shows that 𝐴 is a discrete approximation of an integral. Thus although 𝐴 depends

on 𝜉𝑗 , it does not vary much when 𝑛 is big. In other words, the objective function

𝜑(𝜃) is approximately linear.

We now show that the solution 𝜑(𝜃) = 0 is unique except for spheres and that it

corresponds to the rotation axis. From (6.13), we can see that 𝐴 = 0 ⇒ 𝜑(𝜃) ≡ 0.

By solving 𝐴 = 0 from (6.14), we find the profile function is 𝑓(𝑧) = ±
√︀

(𝐶 − 𝑧2),
where 𝐶 is an arbitrary constant. This equation represents a sphere of radius

√
𝐶.

𝜑 ≡ 0 means a sphere can have its rotation axis in any direction, which is obvious.

But for other surfaces, since 𝐴 ̸= 0, the solution of 𝜑(𝜃) = 0 is uniquely 𝜃 = −𝜙 by

(6.13). It means that by finding the unique solution of 𝜑(𝜃) = 0, one can find its

120

6.3. Implementation details

unique rotation axis.

6.3 Implementation details

3D data of real objects are often obtained by using RGB-D sensors (i.e. Kinect,

RealSense). They can have various representations, such as point clouds or Signed

Distance Fields (SDF). However, captured data may be noisy. In this section, we ex-

plain implementation details by considering noisy data. The outline of the algorithm

is first introduced in Section 6.3.1. 𝑓𝑖𝑛𝑑𝐶𝑖𝑟𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑒𝑟𝑠 is a basic and important op-

eration in the algorithm. Its detail is explained in Section 6.3.2. At last, we solve

the objective function numerically in Section 6.3.3.

6.3.1 Algorithm

The outline of rotation axis estimation is shown in Alg. 11. It takes a 3D represen-

tation (e.g. a point cloud, a SDF) of a SoR and an initial axis estimation 𝑙0 obtained

from [Pottmann 1999] as inputs and returns the rotation axis 𝑙𝑒.

Algorithm 11 Rotation axis estimation

Input: 3D data of SoR, initial rotation axis 𝑙0 estimated using [Pottmann 1999]
Output: SoR rotation axis 𝑙𝑒
Parameter: number of cutting planes 𝑛1, 𝑖𝑚𝑎𝑥

𝑖 = 0, 𝜃0 = 0, 𝑣𝑎𝑙𝑢𝑒𝑃𝑎𝑖𝑟 = ∅
while 𝑖 < 𝑖𝑚𝑎𝑥 do

if 𝑖 ̸= 0 then
𝜃𝑖 = 𝜃𝑖−1 − 𝜑𝑖−1/𝐴𝑖−1

�⃗�𝑖 ← 𝑟𝑜𝑡𝑎𝑡𝑒(⃗𝑙0, 𝑃𝑠, 𝜃𝑖)
O,w← 𝑓𝑖𝑛𝑑𝐶𝑖𝑟𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑒𝑟𝑠(𝑙𝑖, 𝑛1) or fail
if 𝑖 = 0 then
𝑃𝑠, 𝛿 ← 𝑓𝑖𝑛𝑑𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑃 𝑙𝑎𝑛𝑒(O)

�⃗�𝑖 ← 𝑓𝑖𝑛𝑑𝐶𝑒𝑛𝑡𝑒𝑟𝐿𝑖𝑛𝑒𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(O,w)
𝜑𝑖 = sin−1(⃗𝑙𝑖 × �⃗�𝑖)
𝑣𝑎𝑙𝑢𝑒𝑃𝑎𝑖𝑟.𝑎𝑝𝑝𝑒𝑛𝑑(𝜃𝑖, 𝜑𝑖)
if |𝜑𝑖| < 𝜀 then
return �⃗�𝑒 = �⃗�𝑖

else

if 𝑖 = 0 then
Estimate 𝐴0 with (O, r) from (6.20)

else

𝐴𝑖 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆𝑙𝑜𝑝𝑒(𝑣𝑎𝑙𝑢𝑒𝑃𝑎𝑖𝑟)
𝑖 = 𝑖+ 1

Find smallest |𝜑𝑖| in 𝑣𝑎𝑙𝑢𝑒𝑃𝑎𝑖𝑟 and return �⃗�𝑒 = �⃗�𝑖

121

Chapter 6. Surface of revolution reconstruction from 3D data

The process of cutting the SoR by parallel planes and finding the centers of

intersecting curves is frequently used in our method. Since the angle between the

presumed axis 𝑙𝑖 and the ground-truth 𝑙𝑔 is usually smaller than 10∘ (cf. Fig. 6.7),

we use circle fitting to find the centers 𝑂𝑗 . We call this process findCircleCenters.

O,w,R, ē← 𝑓𝑖𝑛𝑑𝐶𝑖𝑟𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑒𝑟𝑠(𝑙, 𝑛) (6.15)

This process takes the presumed axis 𝑙 and the number of planes 𝑛 as inputs and

returns 𝑛𝑣 valid circles as output, with circle centers O = {𝑂1, 𝑂2, ..., 𝑂𝑛𝑣}, circle
radii R = {𝑅1, 𝑅2, ..., 𝑅𝑛𝑣}, weights w = {𝑤1, 𝑤2, ..., 𝑤𝑛𝑣} and average geometric

errors ē = {𝑒1, 𝑒2, ..., 𝑒𝑛𝑣}. 𝑛𝑣 is the number of valid circles, which may be smaller

than 𝑛. A detailed explanation is provided in Section 6.3.2. Different 𝑛 can be used

as input in different cases. In Alg. 11, we use 𝑛1 in order to distinguish 𝑛2 that is

used for reconstruction (see later in this Section).

In Alg. 11, findSymmetricPlane is the process of finding 𝑃𝑠. It takes all valid

circle centers O as input and gives 𝑃𝑠 and 𝛿 as outputs. 𝛿 represents the incer-

titude of circle centers detection, which is explained in Section 6.3.3. findCenter-

LineDirection is the process of finding the direction of 𝑣 (cf. Fig. 6.2). It takes

circle centers O and their weights w as inputs. It fits a line to points O by us-

ing different weights w and returns �⃗� as output. calculateSlope is the process

of finding the slope 𝐴 of 𝜑(𝜃). It takes as input the previous 𝑖 + 1 value pairs

𝑣𝑎𝑙𝑢𝑒𝑃𝑎𝑖𝑟 = {(𝜃0, 𝜑0), (𝜃1, 𝜑1), .., (𝜃𝑖, 𝜑𝑖)}, fits a line to them and returns the slope

𝐴 of this fitted line.

After finding �⃗�𝑒, the whole object can be reconstructed. 𝑓𝑖𝑛𝑑𝐶𝑖𝑟𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑒𝑟𝑠 is

used as well, but with inputs �⃗�𝑒 and 𝑛2. 𝑛2 can be larger than 𝑛1 in Alg. 11 for a

finer reconstruction result. A surface’s intrinsic coordinate system is constructed,

with origin 𝑂𝑒 being the average of 𝑂𝑗 and the direction of z-axis 𝑧𝑒 = �⃗�𝑒. Within

this coordinate system, the profile function 𝑓(𝑧𝑒) is fitted by splines, thus finishing

the SoR reconstruction.

The global reconstruction error 𝑒, is defined as the average of geometrical error

ē (cf. Section 6.3.2).

𝑒 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(ē) (6.16)

6.3.2 Plane cutting and circle fitting

We use parallel planes separated by an equal interval in findCircleCenters. When

point clouds are used as raw data with resolution (i.e. average inter-point distance)

122

6.3. Implementation details

Figure 6.3: Angular span of data points on a fitted circle: black points represent
data points in plane 𝑃𝑗 , 𝐶𝑗 is the fitted circle, Ω𝑗 is the angular span of data points.

𝜏 , a point is considered inside a plane if its distance to the plane is less than 0.5𝜏 .

If a SDF representation (with voxel size 𝜏) is used, a ray casting method can be

used to find points inside a specified plane. Circles are fitted to points in the same

plane. We define the geometric error as the distance between a point and the fitted

circle in the same plane. A point is considered as an inlier if its geometric error is

less than 𝜏 .

Since scanned 3D data contain lots of defects, such as incomplete scanning and

noise, some planes may contain data with better quality than others. To compensate

those limitations, a circle is considered as valid only when its inlier ratio of circle

fitting is more than 80%, and each valid circle 𝐶𝑗 is associated with a weight 𝑤𝑗

according to its fitting result. Additionally, planes near the two ends of a SoR

are more easily influenced by inaccurate axis direction estimation, so we only use

empirically the middle 70% region of the surface for axis estimation. The weight 𝑤𝑗

for a valid circle is calculated by:

𝑤𝑗 =
Ω𝑗

𝑒𝑗
(6.17)

where Ω𝑗 is the angular span of data points on the fitted circle as shown in Fig. 6.3,

𝑒𝑗 is the average geometric error of all inliers in the current plane.

If findCircleCenters finds less than 2 valid circles, it means that the target surface

is not a true SoR or the data is too noisy to process. The algorithm fails in this

case.

123

Chapter 6. Surface of revolution reconstruction from 3D data

6.3.3 Determining 𝑃𝑠 and solving 𝜑(𝜃)

The basic idea of calculating 𝑃𝑠 has been explained in Section 6.2.1. Assuming that

the incertitude of center detection is 𝛿, the center projections 𝑂𝑝
𝑗 in Fig. 6.1 will lie

in a thick line of width 2𝛿. By using Principle Component Analysis (PCA) on these

center projections, the major eigenvector can be regarded as a good approximation

of �⃗�𝑐 (cf. Fig. 6.1) while the minor eigenvalue 𝜆𝑚𝑖𝑛 is the sum of squared distances

between detected circle centers and 𝑃𝑠. Thus, 𝛿 can be approximated by:

𝛿 ≈
√︀
𝜆𝑚𝑖𝑛/𝑛𝑣 (6.18)

where 𝑛𝑣 is the number of valid circles.

Although 𝜑(𝜃) has a simple form, since the scanned 3D data is noisy and 𝜑(𝜃) is

not exactly linear (cf. Section 6.2.2), we still have to rely on an iterative approach

to solve 𝜑(𝜃) = 0. Recall Newton’s method:

𝜃𝑖+1 = 𝜃𝑖 −
𝜑(𝜃𝑖)

𝜑′(𝜃𝑖)
= 𝜃𝑖 −

𝜑(𝜃𝑖)

𝐴𝑖
(6.19)

For the i-th step, 𝜃𝑖 is known and 𝜑(𝜃𝑖) is evaluated. Owing to its approximate

linearity, 𝜑′(𝜃𝑖) = 𝐴𝑖 can be approximated by fitting previous 𝑖 + 1 data by using

calculateSlope. For the first step 𝑖 = 0, 𝜃0 = 0, we solve the primitive function (6.12)

to find an approximation of 𝐴0:

𝐴0 ≈ 3

𝑓2(𝑧𝑚𝑎𝑥) + 𝑓2(𝑧𝑚𝑖𝑛)− 2
𝑛𝑣

𝑛𝑣∑︀
1
𝑓2(𝑧𝑗)

(𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛)2
+ 1

≈ 3

𝑅2
𝑚𝑎𝑥 +𝑅2

𝑚𝑖𝑛 − 2
𝑛𝑣

𝑛𝑣∑︀
1
𝑅2

𝑗

𝐷2
+ 1

(6.20)

where 𝐷 is the distance between the two most distant planes (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛). When

𝛼 is small, 𝑃𝑗 is almost perpendicular to 𝑙𝑔, so we use the the radius of fitted circle

𝑅𝑗 to approximate 𝑓(𝑧𝑗) (cf. Fig. 6.2) in the second approximation.

The iterative process can be terminated when |𝜑(𝜃)| is small enough, e.g. ≤
10−3𝑟𝑎𝑑. However, since circle center detection cannot be more precise than 𝛿

according to (6.18), the estimation of the rotation axis cannot be more precise than

tan−1(𝛿/𝐷). Since 𝛿 ≪ 𝐷, 𝛿/𝐷 can be used instead of tan−1(𝛿/𝐷). Therefore,

the iterative process is terminated when |𝜑(𝜃𝑖)| < 𝜀 = max(𝛿/𝐷, 10−3). Practically,

we found that this method usually converges in 2-3 steps. However, in the special

case where a point cloud is used, 𝜑(𝜃𝑖) may not be continuous and |𝜑(𝜃𝑖)| < 𝜀 may

124

6.4. Real-time SoR reconstruction

never be achieved. This leads the process to oscillate around 𝜑(𝜃𝑖) = 0. In order to

avoid this, we set the maximum iteration number 𝑖𝑚𝑎𝑥 = 5. If 𝑖𝑚𝑎𝑥 is reached but

|𝜑(𝜃𝑖𝑚𝑎𝑥)| ≥ 𝜀, the 𝑙𝑖 giving the smallest |𝜑| will be chosen as 𝑙𝑒.

6.4 Real-time SoR reconstruction

We propose a workflow to reconstruct SoR from dense SLAM data. It uses real-time

segmentation result from the work of [Tateno 2015], where surfel-based representa-

tion is used. A surfel is a representation of a small surface patch at position 𝑝(𝑥, 𝑦, 𝑧)

in 3D space, with its normal direction �⃗�, its confidence radius 𝑟 and one segment

label. Surfels having the same segment label make up a segment. Usually, each seg-

ment represents a single object in the scene. We should mention that, although we

use surfel-based representation in this section, our algorithm can be easily adapted

to deal with any other SLAM data structure.

Although this workflow can deal with SoR, planes and spheres, we only focus on

SoR to highlight our contribution. A method to distinguish among different types of

surfaces is presented in Section 6.4.1. It allows us to find segments which represent

SoR. The detailed algorithm to reconstruct SoR using [Tateno 2015] as our SLAM

data provider at each frame is presented in Section 6.4.2.

6.4.1 Segment classification

We use a two-step method to classify each segment. A surfel at position 𝑝 having a

normal �⃗� is denoted by (𝑝, �⃗�). Let �⃗� = (𝑝 × �⃗�, �⃗�) be a 6 dimension vector. For all

𝑁 points belonging to one segment, the following two matrices can be calculated:

𝐿 =
1

𝑁

𝑁∑︁
𝑗=1

�⃗�𝑗�⃗�
𝑇
𝑗

𝑀 =
1

𝑁

𝑁∑︁
𝑗=1

�⃗�𝑗 �⃗�
𝑇
𝑗

(6.21)

where 𝐿 is a 3 × 3 matrix and 𝑀 is a 6 × 6 matrix. Let {𝜆𝐿,𝑖 : 𝑖 = 1, 2, 3} be

𝑓𝑡 2 1
𝑓𝑟 - > 2 1 0

Type Plane Sphere SoR Complex

Table 6.1: Different surface types according to 𝑓𝑡 and 𝑓𝑟

125

Chapter 6. Surface of revolution reconstruction from 3D data

Initialization: c = 0

c < ct ?

Estimate data
stability

Check reconstruction
precision

More frames?

Y N

End

Next frame

Y

N

Sm, Sv

Figure 6.4: Workflow of real-time surface reconstruction for SoR.

the eigenvalues of 𝐿 and 𝑓𝑡 be the number of small eigenvalues in {𝜆𝐿,𝑖}. According
to [Lou 2009], the segment can be translated in 𝑓𝑡 directions without changing the

distance function values nearby. We can say that the segment has 𝑓𝑡 translation

free directions. Let {𝜆𝑀,𝑖 : 𝑖 = 1, 2, 3} be the eigenvalues of problem 𝑀�⃗� = 𝜆𝐷�⃗�,

where 𝐷 = 𝑑𝑖𝑎𝑔(1, 1, 1, 0, 0, 0), and 𝑓𝑟 be the number of small eigenvalues in {𝜆𝑀,𝑖}.
According to [Pottmann 1999], the segment has 𝑓𝑟 rotation free directions. With

both 𝑓𝑡 and 𝑓𝑟, surfaces can be classified into 4 groups as shown in Table 6.1. Prac-

tically, an eigenvalue is considered to be small when one of the following conditions

are true:
𝜆𝐿,𝑖 < 0.05

𝜆𝑀,𝑖 < 0.5𝜏2
(6.22)

6.4.2 Workflow

Let us take one segment of SoR as an example to illustrate the workflow. All other

segments follow the same procedure.

Two sets of surfels of the SoR, 𝑆𝑚 and 𝑆𝑣, can be obtained from [Tateno 2015] at

each frame. 𝑆𝑚 contains all surfels in the model obtained from the SLAM procedure.

𝑆𝑣 is the visible subset of 𝑆𝑚 at current frame. When the SoR has only appeared in

front of the camera for a few frames, or when it is occluded or far from the camera,

the acquired data may be not stable. With more information coming from new

frames, data become more stable and the reconstruction more reliable. We use a

confidence label 𝑐 to represent the stability of data points acquired from the SoR.

The workflow to reconstruct the SoR is shown in Fig. 6.4. When 𝑐 is less than a

126

6.4. Real-time SoR reconstruction

threshold 𝑐𝑡, we check the stability by estimating the variation of 𝑆𝑣’s rotation axis.

Although different frames contain different sets of visible surfels, their rotation axis

should be similar. Thus, 𝑐 is incremented by 1 if the angle between two estimations

of the rotation axis is smaller than a threshold 𝛾𝑡 (set to 10∘ in our experiment).

When 𝑐 = 𝑐𝑡 (set to 5 in our experiment), the data is considered to be stable. The

rotation axis of 𝑆𝑚 is estimated and the SoR is then reconstructed for the first time

by applying our methods (cf. Sections 6.2-6.3) on the global model 𝑆𝑚, with 𝜏 (cf.

Section 6.3.2) being the average of diameters (i.e. 2×radius) of all surfels in 𝑆𝑚.

More details are shown in Alg. 12.

Algorithm 12 Stability Estimation and first reconstruction

Input: 𝑆𝑣, 𝑆𝑚 at current frame
Output: (Possibly) first reconstruction
Calculate �⃗� from 𝑆𝑣 using P-method [Pottmann 1999]
if 𝑐 = 0 then
Set �⃗�𝑟 = �⃗�

else if cos−1(⃗𝑙 · �⃗�𝑟) < 𝛾𝑡 then
𝑐 = 𝑐+ 1
if 𝑐 ≥ 𝑐𝑡 then
Estimate initial �⃗�𝑚0 from 𝑆𝑚 with P-method
Improve axis estimation & reconstruct from 𝑆𝑚

else

𝑐 = 𝑐− 1

In later frames, we continue to check the precision of this reconstruction. If the

reconstruction is precise, the reconstructed model should fit well all visible surfels

𝑆𝑣 in new frames. Otherwise, the rotation axis of the SoR should be re-estimated

and the SoR should be reconstructed by using the newest global model 𝑆𝑚. Details

on checking the reconstruction precision are shown in Alg. 13, where 𝑒𝑛𝑢𝑚 indicates

the number of surfels whose modeling error is larger than 𝑒𝑡. Empirically, 𝑒𝑡 is set

to 1.5𝑒, with 𝑒 being the SoR’s global reconstruction error (cf. Section 6.3.1). When

𝑒𝑛𝑢𝑚 is larger than a threshold 𝑁𝑡, the reconstruction should be improved. Since

consecutive frames have large overlapping area, the same surfel may be frequently

recalculated. We found that 𝑁𝑡 = 30%|𝑆𝑚| works well in our experiment.

The calcModelingError process estimates the modeling error 𝑒𝑖 on surfel 𝑠𝑖. 𝑒𝑖

is computed as the distance between 𝑠𝑖 and its approximate nearest point on the

reconstructed surface. The approximate nearest point is constrained so that itself

and 𝑠𝑖 are lying on the same plane which is perpendicular to the rotation axis.

127

Chapter 6. Surface of revolution reconstruction from 3D data

Algorithm 13 Check reconstruction precision and improve reconstruction

Input: 𝑆𝑣, 𝑆𝑚 at current frame, previous reconstruction
Output: (Possibly) new reconstruction
for each 𝑠𝑖 ∈ 𝑆𝑣 do

𝑒𝑖 ← 𝑐𝑎𝑙𝑐𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑔𝐸𝑟𝑟𝑜𝑟(𝑠𝑖, 𝑆
𝑚)

𝑒𝑛𝑢𝑚 = 𝑒𝑛𝑢𝑚+ 1 if 𝑒𝑖 > 𝑒𝑡
if 𝑒𝑛𝑢𝑚 > 𝑁𝑡 then

Improve axis estimation and reconstruct the SoR from 𝑆𝑚

Set 𝑒𝑛𝑢𝑚 = 0

6.5 Results

In this section, we first evaluate the method for estimating the rotation axis, before

using real data to evaluate reconstruction results and the efficiency of our method.

6.5.1 Synthetic study

We use synthetic truncated cone to investigate the feasibility of the method (cf.

Fig. 6.5). The cone is created with small radius 𝑟 = 20, height ℎ = 10 and grid size

𝜏 = 0.2. Since we only calculate the error on the rotation axis estimation, 𝑛1 = 10

is used.

Figure 6.5: A synthetic truncated cone: with small radius 𝑟, height ℎ, angular span
Ω, and the opening angle Θ.

To simulate noise, 𝛿𝑟 ∼ 𝑁(0, 0.5𝜏) is added to the three coordinates of each

point of the synthetic truncated cone, and 𝛿𝑛 ∼ 𝑁(0, 𝜂) is added to each normal

component (normalized afterwards). At last, the synthetic cone is rotated and

moved by a random rigid transformation. We compare the results of our method

with the one from [Pottmann 1999] (denoted as P-method), since we are interested

in efficient methods for real-time application.

128

6.5. Results

10 5 0 5 10
θ (◦)

10

5

0

5

10

15

20

25
φ
(θ

) (
◦
)

Synthetic
Can
Cup

Figure 6.6: 𝜑(𝜃) for different objects: synthetic cone (right top), Can (right middle)
and Cup (right bottom). They are approximately linear.

The objective functions 𝜑(𝜃) of different objects are shown in Fig. 6.6. For the

synthetic cone, we use Θ = 100∘, 𝜂 = 0.03. The Cup and Can objects are taken

from Dataset 2 of Section 6.5.2 (cf. Fig. 6.10). We can see that these 𝜑(𝜃)s are

almost linear, when 𝜃 is near the ground truth.

Fig. 6.7 shows the rotation axis estimation error cos−1(⃗𝑙𝑔, �⃗�) on synthetic data.

Our method gives better results, especially for large noise and opening angles. More-

over, the error of our method is less than 0.5∘ in most cases.

6.5.2 Real data

For real-time reconstruction, 𝑛1 = 𝑛2 = 10 is used. Two datasets are used for

evaluating our online reconstruction algorithm. We use downsampled images to

resolution 160 × 120 to let the whole workflow run in real-time on the CPU as

indicated in [Tateno 2015].

We use two cylinders and a cone with known size in Dataset 1. The cylinders’

radii and the cone’s opening angle are used to measure the precision of the algorithm.

Results are shown in Fig. 6.8. It can be seen that the accuracy of cylinders’ radii is

about 1-2mm, while the accuracy of the cone’s opening angle has a big variation at

the beginning but gradually converges near the ground truth in about 80 frames.

129

Chapter 6. Surface of revolution reconstruction from 3D data

0 20 40 60 80 100 120
Opening angle Θ (◦)

0

1

2

3

4

5

6
Er

ro
r (

◦
)

P-method
Our's

0.00 0.01 0.02 0.03 0.04 0.05
noise η

0

2

4

6

8

10

12

Er
ro

r (
◦
)

P-method
Our's

Figure 6.7: Synthetic result: errors on the direction of the rotation axis. Top: errors
with respect to opening angles Ω, with 𝜂 = 0.03; Bottom: errors with respect to the
amount of noise 𝜂, with Ω = 120∘.

Dataset 2 is an online dataset provided by Tateno1. It contains diverse daily

necessities lying on a desktop. We draw the time consumption for each frame in

Fig. 6.9. The solid line represents the reconstruction time, with an average of 1.87ms

per frame, while the dashed line represents the SLAM+segmentation time, with an

average of 20.40ms per frame. Therefore, on average our method runs at 45fps.

These results are produced on a laptop equipped with Intel Core i7-4510U CPU

@2.00GHz and 8GB RAM.

The final reconstructed objects along with the segmentation map is presented

in Fig. 6.10. The reconstructed objects correctly match the original data and are

visually similar to the original objects in the RGB image.

1http://campar.in.tum.de/Chair/ProjectInSeg

130

6.6. Conclusion

20 40 60 80 100 120
Frame N ◦

20

25

30

35

40

45

50

55

Cy
lin

de
r's

 ra
di

us
 (m

m
)

Cylinder (small) Cylinder (big) Cone

16

17

18

19

20

21

22

23

Co
ne

's
 o

pe
ni

ng
 A

ng
le

 Θ
 (
◦
)

Figure 6.8: Dataset 1: Measuring objects of known dimension. Dashed lines repre-
sent ground truth values. Solid lines represent measurements from reconstruction
results.

6.6 Conclusion

We have developed a fast and accurate method to estimate the rotation axis of

revolution surfaces as well as a real-time online geometric reconstruction workflow.

Experiments show that the proposed method and workflow work well for real world

objects, achieving about 1-2mm accuracy for radius estimation and < 1∘ for cone’s

opening angle estimation.

With these reconstructed geometries, point clouds can be simplified and other in-

teresting work may be performed. For example, SLAM wide-baseline re-localization

problems could be solved by 3D rotation axis matching. Other future work may

also include improving segmentation results by using reconstructed geometries; es-

tablishing spatial relationships between different geometries, etc.

131

Chapter 6. Surface of revolution reconstruction from 3D data

0 50 100 150 200 250 300 350
Frame N ◦

0

5

10

15

20

25

30

Ti
m

e
(m

s)

SLAM+segmentation Reconstruction

Figure 6.9: Dataset 2: Time consumption.

Figure 6.10: Dataset 2. Top: Original segmented point cloud (left) and our re-
construction result (right). Bottom: visual comparison between RGB image (left),
original point cloud (middle) and reconstruction result (right) for Cup and Can
objects.

132

Chapter 7

Conclusion

Contents

7.1 Point Pattern Matching algorithms 133

7.1.1 2D point pattern matching 133

7.1.2 LGC: a general solution for PPM 134

7.2 Projector-camera system calibration 135

7.3 Scene understanding in 3D data 135

7.4 Perspectives . 135

This dissertation was motivated by the drawbacks of texture-based wide baseline

localization (i.e. tracking by detection) methods. It focuses on geometry-based

methods, which can be used when targets contain little or no texture, or lighting

conditions change a lot. Such methods can also be used to register targets under

different representations, such as graphs vs. images. Results of this work show that

wide base line localization can be performed by means of Point Pattern Matching

(PPM). The major contributions of this dissertations are:

7.1 Point Pattern Matching algorithms

Chapters 3 and 4 presented two algorithms for PPM, i.e. Robust Random Dot

Markers (RRDM) and Local Geometric Consensus (LGC). Both of them are robust

against acquisition noise, such as over/under detected points, jitter, as well as partial

occlusions.

7.1.1 2D point pattern matching

RRDM aims at solving registration problems between two point sets undergoing

2D perspective transformations. It splits a whole point set into small local subsets

to avoid the huge computational complexity. A robust Two-Surface-Ratio (TSR)

descriptor is designed to describe spatial relationships between points, which remains

Chapter 7. Conclusion

stable even with the presence of point jitter. A local voting scheme is used for quick

local matchings. Moreover, RRDM proposed for the first time to use geometric

transformation consensus between neighboring subsets to reject outliers. Analysis

and synthetic experiments show that RRDM has a quadratic behavior with respect

to the number of points.

Contribution: RRDM demonstrates that PPM can be both robust and fast

enough for augmented reality applications. Unprepared paper maps of different col-

ors can be registered with the same data extracted from a Geographic Information

System (GIS) by relying on road intersections. Although the quality of the auto-

matically detected road intersections from paper maps can be very poor, a correct

registration between the GIS and the map is still possible with the help of RRDM.

7.1.2 LGC: a general solution for PPM

LGC tackles the problem of multi point sets recognition and matching in a general

way. A hypotheses generator is used to propose putative correspondences of patches

(subset of points). A hypotheses validator is used to identify whether these putative

correspondences are inliers by trying to find other correspondences in their neigh-

borhood. A result refiner is finally used to find more correspondences in order to

give more precise results. Compared to RRDM, LGC employs Geometric Hashing

instead of TSR descriptors to match subsets so that the algorithm can be adapted to

transformations in any dimension theoretically. LGC makes better use of consensus

between local subsets than RRDM. The concept of local geometric consensus helps

to distinguish inliers from outliers, as well as to judge the presence of a model point

set with low false alert rate. Both analysis and experiments show that LGC has a

linear behavior relative to the number of points, which is much more efficient than

than classic Geometric Hashing and RRDM. Compared to RDM, LGC is much more

robust and even a bit faster in some challenging cases.

Contribution: LGC is a general algorithm for PPM, which can deal with

different types of transformations in different dimensions. It demonstrates that PPM

can be both robust and fast enough for real-time tracking to be used in augmented

reality applications. Different types of targets can be modeled as point patterns and

can be recognized and tracked by LGC. As to texture-less objects, LGC outperforms

traditional methods such as SURF.

134

7.2. Projector-camera system calibration

7.2 Projector-camera system calibration

The projector-camera system is used in Spatial Augmented Reality (SAR). In large

scale SAR, the projector’s is usually set at large distance and hence projections

at short distance are defocused. This makes the projector-camera system difficult

to calibrate under such situations. People either need to use a huge calibration

board, acquire a precise 3D model, or wait several minutes for the calibration using

traditional methods. An application for calibrating a projector-camera system is

developed to solve this problem. It relies on two random point patterns and LGC

for calibration. The application is practical and calibrates accurately whatever the

projector’s focus distance. The user only needs to manipulate a B4 size (250 ×
353mm) rigid board during the calibration. The superiority of the method relies on

the fact that (1) In a defocused situation, dots can be more easily detected than

targets requiring edges information (such as chessboards, ARToolKit markers, etc.).

(2) Random dots can be robustly tracked by LGC.

Contribution: The proposed application is practical and as precise as one rep-

resentative state of art. It produces calibration results that are stable and accurate

with a small calibration board whatever the projector’s focus distance. For example,

the reprojection error is only about 4mm for a 4.5m projection distance, which is

comparable to the state of art method using a 22 times larger calibration board.

7.3 Scene understanding in 3D data

Chapter 6 presented a piece of work related to scene understanding from 3D data.

It proposed a novel method to estimate the rotation axis of a Surface of Revolution

(SoR) efficiently. It also designed a workflow to integrate real-time SoR reconstruc-

tion into dense SLAM. By taking advantage of the symmetry of SoR, it proves that

the rotation axis of SoR can be found using a one dimension search. An approximate

objective function is also proposed to obtain fast convergences.

Contribution: A fast method to estimate the rotation axis of SoR is proposed,

which makes the real-time reconstruction of SoR possible. The work can provide

basic elements for high level structure modeling of the scene.

7.4 Perspectives

Although some interesting applications have been developed, there are still many

improvements that can be considered to make them more useful. Regarding the

135

Chapter 7. Conclusion

projector-camera calibration application, a fully automated method would be of

interest in the future and could be achieved by using a non planar calibration tar-

get. Experiments on projectors with extreme focal lengths (e.g. very short/long

focal lengths) are also interesting research topics. For the augmented map appli-

cation, a road layer extraction which does not need any user interaction can be

beneficial in order to create a fully automated application. Quick map localization

in GIS which contains a much wider area than the map is also an interesting topic

(cf. [Minster 2015]). As to real-time reconstruction of SoR, more experiments can be

performed to study the sensitivity of the method with respect to acquisition noise.

More comparisons against other existing but slower methods are needed to study in

detail whether our real-time solution has an impact on the precision of reconstruc-

tions. Real-time reconstruction of more generic primitives, such as superquadric

primitives, is also an interest of research in the future.

As to LGC, two directions can be exploited, i.e. improvements of the algorithm

and development of new applications.

Influence on the performance of some parameters is not fully studied, such as

𝑘 (i.e. the number of nearest neighbors). More comprehensive studies on these

parameters are required to find their optimal values in different cases, which would

help the algorithm to achieve better performance. Similarly, parameter settings on

other kinds of transformation can also be studied. The algorithm can be improved to

better deal with partially regular point patterns, for example, by selecting carefully

points that are fed to the generator. Similar to the “colored LGC” in Section 4.3.3,

other ways of combining both geometric information and “color” information for

registration can also be exploited in order to gain performance when points have

their own characteristics. The problem of massive extra or missing points is another

challenge to be faced as well. It often happens when two point patterns to be

matched are detected from the same target in different scales. For example, lots of

details may be lost in an image with a scale of lower resolution, and thus it produces

massive missing points. The current LGC cannot solve this problem.

Since LGC is a point pattern matching algorithm, which is an elementary task in

many problems, it may have many other potential applications. Current monocular

SLAM techniques rely on texture-based methods to establish point correspondences,

and such methods fail if they work in texture-less environments, such as construc-

tion sites. By using LGC as the point matching module, texture-less monocular

SLAM may be doable. The registration between a scanned 3D model (i.e. a

dense point cloud) and its corresponding CAD model (e.g. triangle meshes with

sparse points) is difficult. It could also be solved by LGC if 3D geometric salient

136

7.4. Perspectives

points can be found from both models, for example, by using Support Vector Shape

(SVS) [Van Nguyen 2013]. Similarly, a solution to re-localizations of dense SLAM in

case of tracking failure may also be proposed based on LGC. Other transformation

types can further be considered. By applying mapping functions such as equisolid

angle, one may be able to match a planar object with its image captured by a fisheye

camera.

Besides LGC and point pattern matchings, other related research directions are

interesting as well in the future. Since LGC needs reliable and repeatable point

patterns as inputs, studies on stable and repeatable point detectors will be very

beneficial. As to texture-less tracking, LGC could be integrated with Virtual Visual

Servoing (VVS) [Comport 2006]. New methods on texture-less wide baseline local-

ization can also be developed by using other types of geometries, such as regions

and line segments, together with points. Or, a combination of different texture-less

registration methods may be interesting in order to propose a general solution.

137

Bibliography

[Agrawal 1994] Ashish Agrawal, Nirwan Ansari and Edwin SH Hou. Evolutionary

programming for fast and robust point pattern matching. In Neural Networks,

1994. IEEE World Congress on Computational Intelligence., 1994 IEEE In-

ternational Conference on, volume 3, pages 1777–1782. IEEE, 1994. (Cited

on page 24.)

[Amit 1997] Yali Amit and Donald Geman. Shape quantization and recognition with

randomized trees. Neural computation, vol. 9, no. 7, pages 1545–1588, 1997.

(Cited on page 17.)

[Audet 2009] Samuel Audet and Masatoshi Okutomi. A user-friendly method to

geometrically calibrate projector-camera systems. In IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pages 47–54, 2009.

(Cited on pages xxi, xxii, 94, 95, 103, 104, 106 and 112.)

[Awrangjeb 2012] Mohammad Awrangjeb, Guojun Lu and Clive S Fraser. Perfor-

mance comparisons of contour-based corner detectors. IEEE Transactions on

Image Processing, vol. 21, no. 9, pages 4167–4179, 2012. (Cited on page 15.)

[Azuma 1997] Ronald T Azuma. A survey of augmented reality. Presence: Teleop-

erators and virtual environments, vol. 6, no. 4, pages 355–385, 1997. (Cited

on pages 1, 3 and 13.)

[Azuma 2001] Ronald Azuma, Yohan Baillot, Reinhold Behringer, Steven Feiner,

Simon Julier and Blair MacIntyre. Recent advances in augmented reality.

IEEE computer graphics and applications, vol. 21, no. 6, pages 34–47, 2001.

(Cited on page 13.)

[Ballard 1981] Dana H. Ballard. Generalizing the Hough transform to detect arbi-

trary shapes. Pattern Recogn., vol. 13, no. 2, pages 111–122, January 1981.

(Cited on page 22.)

[Ballesta 2008] Mónica Ballesta, Arturo Gil, Oscar Reinoso and O Martinez Mozos.

Evaluation of interest point detectors for visual SLAM. International Journal

of Factory Automation, Robotics and Soft Computing, vol. 4, pages 86–95,

2008. (Cited on page 16.)

Bibliography

[Bay 2005] Herbert Bay, Vittorio Ferraris and Luc Van Gool. Wide-baseline stereo

matching with line segments. In 2005 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pages

329–336. IEEE, 2005. (Cited on pages 16 and 17.)

[Bay 2008] Herbert Bay, Andreas Ess, Tinne Tuytelaars and Luc Van Gool. Speeded-

Up Robust Features (SURF). Comput. Vis. Image Underst., vol. 110, no. 3,

pages 346–359, June 2008. (Cited on pages 8, 15 and 16.)

[Beis 1997] Jeffrey S Beis and David G Lowe. Shape indexing using approximate

nearest-neighbour search in high-dimensional spaces. In Computer Vision

and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society

Conference on, pages 1000–1006. IEEE, 1997. (Cited on page 17.)

[Besl 1992a] P. J. Besl and H. D. McKay. A method for registration of 3-D shapes.

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14,

no. 2, pages 239–256, Feb 1992. (Cited on page 115.)

[Besl 1992b] Paul J. Besl and Neil D. McKay. A Method for Registration of 3-D

Shapes. IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pages 239–

256, February 1992. (Cited on page 22.)

[Billinghurst 2015] Mark Billinghurst, Adrian Clark and Gun Lee. A survey of

augmented reality. Foundations and Trends in Human-Computer Interaction,

vol. 8, no. 2-3, pages 73–272, 2015. (Cited on pages 1 and 2.)

[Bimber 2005] Oliver Bimber and Ramesh Raskar. Spatial Augmented Reality:

Merging Real and Virtual Worlds. CRC Press, 2005. (Cited on pages xvii,

3 and 4.)

[Botterill 2009] Tom Botterill, Steven Mills and Richard D Green. New Conditional

Sampling Strategies for Speeded-Up RANSAC. In BMVC, pages 1–11. Cite-

seer, 2009. (Cited on page 20.)

[Bradski 2008] Gary Bradski and Adrian Kaehler. Learning opencv. O’Reilly, 2008.

(Cited on page 96.)

[Caetano 2006] Tiberio S Caetano, Terry Caelli, Dale Schuurmans and Dante Au-

gusto Couto Barone. Graphical models and point pattern matching. IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 10,

pages 1646–1663, 2006. (Cited on page 24.)

140

Bibliography

[Callier 2011] Sébastien Callier and Hideo Saito. Automatic Road Extraction from

Printed Maps. In IAPR Conference on Machine Vision Application, Nara,

Japan, 2011. (Cited on pages 10, 26 and 48.)

[Callier 2012] Sebastien Callier and Hideo Saito. Automatic Road Area Extraction

from Printed Maps Based on Linear Feature Detection. IEICE Transactions,

pages 1758–1765, 2012. (Cited on page 51.)

[Calonder 2012] Michael Calonder, Vincent Lepetit, Mustafa Ozuysal, Tomasz

Trzcinski, Christoph Strecha and Pascal Fua. BRIEF: Computing a Lo-

cal Binary Descriptor Very Fast. IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 34, no. 7, pages 1281–1298, July 2012. (Cited on pages 8, 16 and 17.)

[Campbell 2015] Dylan Campbell and Lars Petersson. An adaptive data represen-

tation for robust point-set registration and merging. In Proceedings of the

IEEE International Conference on Computer Vision, pages 4292–4300, 2015.

(Cited on page 18.)

[Canny 1986] John Canny. A computational approach to edge detection. IEEE

Transactions on pattern analysis and machine intelligence, no. 6, pages 679–

698, 1986. (Cited on page 52.)

[Chan 2016] Jacob Chan, Jimmy Addison Lee and Qian Kemao. BORDER: An Ori-

ented Rectangles Approach to Texture-Less Object Recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 2855–2863, 2016. (Cited on page 19.)

[Chiang 2011] Yao-Yi Chiang and Craig Knoblock. A general approach for extract-

ing road vector data from raster maps. International Journal on Document

Analysis and Recognition (IJDAR), vol. 16, no. 1, pages 55–81, October

2011. (Cited on page 52.)

[Choi 2006] Vicky Choi and Navin Goyal. An efficient approximation algorithm

for point pattern matching under noise. In Latin American Symposium on

Theoretical Informatics, pages 298–310. Springer, 2006. (Cited on page 10.)

[Choi 2012] Changhyun Choi and Henrik I Christensen. 3D textureless object detec-

tion and tracking: An edge-based approach. In 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 3877–3884. IEEE, 2012.

(Cited on pages 7 and 18.)

141

Bibliography

[Chui 2000] Haili Chui and Anand Rangarajan. A new algorithm for non-rigid point

matching. In Computer Vision and Pattern Recognition, 2000. Proceedings.

IEEE Conference on, volume 2, pages 44–51. IEEE, 2000. (Cited on page 23.)

[Chum 2005] O. Chum and J. Matas. Matching with PROSAC - Progressive Sample

Consensus. In Proc. of the 2005 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, CVPR ’05, pages 220–226, 2005.

(Cited on pages 17, 20 and 38.)

[Coiras 2000] Enrique Coiras, Javier Santamarı, Carlos Miravetet al. Segment-based

registration technique for visual-infrared images. Optical Engineering, vol. 39,

no. 1, pages 282–289, 2000. (Cited on page 19.)

[Comport 2006] Andrew I Comport, Eric Marchand, Muriel Pressigout and Francois

Chaumette. Real-time markerless tracking for augmented reality: the virtual

visual servoing framework. IEEE Transactions on visualization and computer

graphics, vol. 12, no. 4, pages 615–628, 2006. (Cited on pages 7 and 137.)

[Cortes 1995] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-

chine learning, vol. 20, no. 3, pages 273–297, 1995. (Cited on page 18.)

[Damen 2011] Dima Damen, Andrew Gee, Andrew Calway and Walterio Mayol-

Cuevas. Detecting and localising multiple 3D objects: A fast and scalable

approach. In IROS Workshop on Active Semantic Perception and Object

Search in the Real World (ASP-AVS-11), pages 1–6, 2011. (Cited on page 19.)

[Datta 2009] Ankur Datta, Jun-Sik Kim and Takeo Kanade. Accurate Camera Cal-

ibration using Iterative Refinement of Control Points. In IEEE 12th Interna-

tional Conference on Computer Vision Workshops, pages 1201–1208, 2009.

(Cited on page 98.)

[Datta 2013] Abhik Datta, Adams W.-K. Kong, Soumita Ghosh and Dieter Trau.

A fast point pattern matching algorithm for robust spatially addressable bead

encoding. In Bioinformatics and Bioengineering (BIBE), 2013 IEEE 13th

International Conference on, pages 1–7, Nov 2013. (Cited on pages xvii, 11,

20 and 22.)

[Denton 2007] Jason A Denton and J Ross Beveridge. An algorithm for projec-

tive point matching in the presence of spurious points. Pattern recognition,

vol. 40, no. 2, pages 586–595, 2007. (Cited on page 20.)

142

Bibliography

[Donoser 2006] Michael Donoser and Horst Bischof. Efficient maximally stable ex-

tremal region (MSER) tracking. In 2006 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’06), volume 1, pages

553–560. IEEE, 2006. (Cited on page 15.)

[Donoser 2011] Michael Donoser, Peter Kontschieder and Horst Bischof. Robust

planar target tracking and pose estimation from a single concavity. In Mixed

and Augmented Reality (ISMAR), 2011 10th IEEE International Symposium

on, pages 9–15. IEEE, 2011. (Cited on page 18.)

[Drost 2015] Bertram Drost and Slobodan Ilic. Local Hough Transform for 3D Prim-

itive Detection. In 3D Vision (3DV), 2015 International Conference on, pages

398–406. IEEE, 2015. (Cited on page 114.)

[Duane 1971] C BROWN Duane. Close-range camera calibration. Photogramm.

Eng, vol. 37, no. 8, pages 855–866, 1971. (Cited on page 6.)

[Ezoji 2006] Mehdi Ezoji, FAEZ Karim, Hamidreza Rashidy Kanan and Saeed

Mozaffari. GA-based affine PPM using matrix polar decomposition. IEICE

transactions on information and systems, vol. 89, no. 7, pages 2053–2060,

2006. (Cited on page 24.)

[Fiala 2005] Mark Fiala. ARTag, a fiducial marker system using digital techniques.

In 2005 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’05), volume 2, pages 590–596. IEEE, 2005. (Cited on

pages xvii and 14.)

[Filipe 2014] Silvio Filipe and Luís A. Alexandre. A Comparative Evaluation of

3D Keypoint Detectors in a RGB-D Object Dataset. In VISAPP 2014 -

Proc. of the 9th International Conference on Computer Vision Theory and

Applications, pages 476–483, 2014. (Cited on page 80.)

[Fischler 1981] Martin A. Fischler and Robert C. Bolles. Random Sample Consen-

sus: A Paradigm for Model Fitting with Applications to Image Analysis and

Automated Cartography. Commun. ACM, vol. 24, no. 6, pages 381–395, June

1981. (Cited on page 20.)

[Fitzgibbon 2003] Andrew W Fitzgibbon. Robust registration of 2D and 3D point

sets. Image and Vision Computing, vol. 21, no. 13, pages 1145–1153, 2003.

(Cited on page 22.)

143

Bibliography

[Flusser 1994] Jan Flusser and Tomas Suk. A moment-based approach to registration

of images with affine geometric distortion. IEEE transactions on Geoscience

and remote sensing, vol. 32, no. 2, pages 382–387, 1994. (Cited on page 18.)

[Forssén 2007] Per-Erik Forssén and David G Lowe. Shape descriptors for maximally

stable extremal regions. In 2007 IEEE 11th International Conference on

Computer Vision, pages 1–8. IEEE, 2007. (Cited on pages 15 and 16.)

[Gao 2008] Wei Gao, Liang Wang and Zhanyi Hu. Flexible method for structured

light system calibration. Optical Engineering, vol. 47, no. 8, pages 083602–

083602, 2008. (Cited on pages xxi and 94.)

[Gatrell 1992] Lance B. Gatrell, William A. Hoff and Cheryl W. Sklair. Robust

image features: concentric contrasting circles and their image extraction. In

Proceedings of SPIE, Cooperative Intelligent Robotics in Space II, volume

1612, pages 235–244, 1992. (Cited on page 14.)

[Gennery 1992] Donald B Gennery. Visual tracking of known three-dimensional ob-

jects. International Journal of Computer Vision, vol. 7, no. 3, pages 243–270,

1992. (Cited on page 7.)

[Gold 1998] Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu and

Eric Mjolsness. New algorithms for 2D and 3D point matching: pose estima-

tion and correspondence. Pattern Recogn., vol. 31, no. 8, pages 1019–1031,

August 1998. (Cited on page 23.)

[González 2005] J Isern González, J Cabrera Gámez, C Guerra Artal and

AM Naranjo Cabrera. Stability Study of Camera Calibration Methods. In

CI Workshop en Agentes Físicos, WAF, 2005. (Cited on page 104.)

[Goshtasby 1986] Ardeshir Goshtasby, George C Stockman and Carl V Page. A

region-based approach to digital image registration with subpixel accuracy.

IEEE Transactions on Geoscience and Remote Sensing, no. 3, pages 390–

399, 1986. (Cited on page 18.)

[Granger 2002] Sébastien Granger and Xavier Pennec. Multi-scale EM-ICP: A fast

and robust approach for surface registration. In European Conference on

Computer Vision, pages 418–432. Springer, 2002. (Cited on page 23.)

[Grompone 2010] von Gioi R Grompone, Jeremie Jakubowicz, Jean-Michel Morel

and Gregory Randall. LSD: a fast line segment detector with a false detection

144

Bibliography

control. IEEE transactions on pattern analysis and machine intelligence,

vol. 32, no. 4, pages 722–732, 2010. (Cited on page 15.)

[Gros 1998] Patrick Gros, Olivier Bournez and Edmond Boyer. Using local planar

geometric invariants to match and model images of line segments. Computer

Vision and Image Understanding, vol. 69, no. 2, pages 135–155, 1998. (Cited

on page 19.)

[Gruen 2002] A Gruenet al. Calibration and orientation of cameras in computer

vision, 2002. (Cited on page 7.)

[Guan 2009] Wei Guan, Lu Wang, Jonathan Mooser, Suya You and Ulrich Neu-

mann. Robust pose estimation in untextured environments for augmented

reality applications. In Mixed and Augmented Reality, 2009. ISMAR 2009.

8th IEEE International Symposium on, pages 191–192. IEEE, 2009. (Cited

on page 19.)

[Hagbi 2009] Nate Hagbi, Oriel Bergig, Jihad El-Sana and Mark Billinghurst. Shape

recognition and pose estimation for mobile augmented reality. In Mixed and

Augmented Reality, 2009. ISMAR 2009. 8th IEEE International Symposium

on, pages 65–71. IEEE, 2009. (Cited on page 18.)

[Han 2012] Dongjin Han, David B Cooper and Hern-soo Hahn. Fast axis estimation

from a segment of rotationally symmetric object. In Computer Vision and

Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1154–1161.

IEEE, 2012. (Cited on page 115.)

[Harris 1988] Chris Harris and Mike Stephens. A combined corner and edge detector.

In Alvey vision conference, volume 15, page 50. Citeseer, 1988. (Cited on

pages 15 and 16.)

[Hartley 2004] Richard I. Hartley and Andrew Zisserman. Multiple view geometry

in computer vision. Cambridge University Press, ISBN: 0521540518, second

édition, 2004. (Cited on pages 31, 44, 45 and 99.)

[Heyl 2013] Jeremy S Heyl. kd Match: A Fast Matching Algorithm for Sheared

Stellar Samples. arXiv preprint arXiv:1304.0838, 2013. (Cited on page 21.)

[Hilliges 2012] Otmar Hilliges, David Kim, Shahram Izadi, Malte Weiss and Andrew

Wilson. HoloDesk: direct 3d interactions with a situated see-through display.

In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, pages 2421–2430. ACM, 2012. (Cited on pages xvii and 3.)

145

Bibliography

[Holzer 2009] Stefan Holzer, Stefan Hinterstoisser, Slobodan Ilic and Nassir Navab.

Distance transform templates for object detection and pose estimation. In

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Con-

ference on, pages 1177–1184. IEEE, 2009. (Cited on pages 8, 18 and 19.)

[Huttenlocher 1992] Daniel P Huttenlocher and William J Rucklidge. A multi-

resolution technique for comparing images using the Hausdorff distance. Rap-

port technique, Cornell University, 1992. (Cited on page 22.)

[Huynh 2009] Du Q. Huynh. Metrics for 3D Rotations: Comparison and Analysis.

J. Math. Imaging Vis., vol. 35, no. 2, pages 155–164, October 2009. (Cited

on pages 45 and 74.)

[Jian 2011] Bing Jian and Baba C Vemuri. Robust point set registration using gaus-

sian mixture models. IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 33, no. 8, pages 1633–1645, 2011. (Cited on page 23.)

[Jones 2001] MC Jones, Nils Lid Hjort, Ian R Harris and Ayanendranath Basu.

A comparison of related density-based minimum divergence estimators.

Biometrika, vol. 88, no. 3, pages 865–873, 2001. (Cited on pages 22 and 23.)

[Jones 2014] Brett Jones, Rajinder Sodhi, Michael Murdock, Ravish Mehra, Hrvoje

Benko, Andrew Wilson, Eyal Ofek, Blair MacIntyre, Nikunj Raghuvanshi

and Lior Shapira. RoomAlive: magical experiences enabled by scalable, adap-

tive projector-camera units. In Proceedings of the 27th annual ACM sympo-

sium on User interface software and technology, pages 637–644. ACM, 2014.

(Cited on pages xvii and 3.)

[Jurie 2001] Frédéric Jurie and Michel Dhome. A simple and efficient template

matching algorithm. In Computer Vision, 2001. ICCV 2001. Proceedings.

Eighth IEEE International Conference on, volume 2, pages 544–549. IEEE,

2001. (Cited on page 7.)

[Kato 1999] H. Kato and M. Billinghurst. Marker tracking and HMD calibration for

a video-based augmented reality conferencing system. Proceedings of the 2nd

IEEE and ACM International Workshop on Augmented Reality (IWAR’99),

pages 85–94, 1999. (Cited on pages xvii, 3, 8 and 14.)

[Lamdan 1990] Yehezkel Lamdan, Jacob T Schwartz and Haim J Wolfson. Affine

Invariant Model-Based Object Recognition. IEEE Trans. Robot. Autom.,

vol. 6, no. 5, pages 578–589, October 1990. (Cited on page 73.)

146

Bibliography

[Lamdan 1991] Yehezkel Lamdan and Haim J Wolfson. On the error analysis ofge-

ometric hashing’. In Computer Vision and Pattern Recognition, 1991. Pro-

ceedings CVPR’91., IEEE Computer Society Conference on, pages 22–27.

IEEE, 1991. (Cited on page 21.)

[Lang 2010] Dustin Lang, David W Hogg, Keir Mierle, Michael Blanton and Sam

Roweis. Astrometry. net: Blind astrometric calibration of arbitrary astro-

nomical images. The astronomical journal, vol. 139, no. 5, page 1782, 2010.

(Cited on pages xvii, 11, 20 and 21.)

[Lepetit 2005] Vincent Lepetit and Pascal Fua. Monocular Model-based 3D Tracking

of Rigid Objects. Foundations and Trends in Computer Graphics and Vision,

vol. 1, no. 1, pages 1–89, January 2005. (Cited on pages 6, 7 and 14.)

[Li 2008] Zhongwei Li, Yusheng Shi, Congjun Wang and Yuanyuan Wang. Accurate

calibration method for a structured light system. Optical Engineering, vol. 47,

no. 5, pages 053604–053604, 2008. (Cited on page 93.)

[Li 2014] Beiwen Li, Nikolaus Karpinsky and Song Zhang. Novel calibration method

for structured-light system with an out-of-focus projector. Applied optics,

vol. 53, no. 16, pages 3415–3426, 2014. (Cited on pages xxi, 93 and 94.)

[Li 2016] Kai Li, Jian Yao, Mengsheng Lu, Yuan Heng, Teng Wu and Yinxuan Li.

Line segment matching: A benchmark. In 2016 IEEE Winter Conference on

Applications of Computer Vision (WACV), pages 1–9. IEEE, 2016. (Cited

on page 19.)

[Long 2014] Tengfei Long, Weili Jiao, Guojin He and Wei Wang. Automatic

line segment registration using Gaussian mixture model and expectation-

maximization algorithm. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 7, no. 5, pages 1688–1699, 2014.

(Cited on page 19.)

[Lou 2009] C Lou, L Zhu and H Ding. Identification and reconstruction of surfaces

based on distance function. Proceedings of the Institution of Mechanical

Engineers, Part B: Journal of Engineering Manufacture, vol. 223, no. 8, pages

981–994, 2009. (Cited on pages 115 and 126.)

[Lowe 1999] David G Lowe. Object recognition from local scale-invariant features. In

Computer vision, 1999. The proceedings of the seventh IEEE international

147

Bibliography

conference on, volume 2, pages 1150–1157. Ieee, 1999. (Cited on pages xvii,

15, 16 and 17.)

[Lowe 2004] David G. Lowe. Distinctive Image Features from Scale-Invariant Key-

points. Int. J. Comput. Vision, vol. 60, no. 2, pages 91–110, November 2004.

(Cited on pages 8, 17 and 20.)

[Luo 2014] Huafen Luo, Jing Xu, Nguyen Hoa Binh, Shuntao Liu, Chi Zhang and

Ken Chen. A simple calibration procedure for structured light system. Optics

and Lasers in Engineering, vol. 57, pages 6–12, 2014. (Cited on page 92.)

[Magic Leap 2015] Inc. Magic Leap. Magic Leap Demo. https://www.youtube.

com/watch?v=kw0-JRa9n94, 2015. [Online; accessed 02-August-2016]. (Cited

on pages xvii and 3.)

[Maimone 2013] Andrew Maimone, Xubo Yang, Nate Dierk, Andrei State, Ming-

song Dou and Henry Fuchs. General-purpose telepresence with head-worn

optical see-through displays and projector-based lighting. In 2013 IEEE Vir-

tual Reality (VR), pages 23–26. IEEE, 2013. (Cited on pages xvii and 3.)

[Mara 2006] Hubert Mara and Robert Sablatnig. Orientation of Fragments of Ro-

tationally Symmetrical 3D-Shapes for Archaeological Documentation. In 3D

Data Processing, Visualization, and Transmission, Third International Sym-

posium on, pages 1064–1071. IEEE, 2006. (Cited on pages 115 and 116.)

[Marchand 2016] E. Marchand, H. Uchiyama and F. Spindler. Pose estimation for

augmented reality: a hands-on survey. IEEE Transactions on Visualization

and Computer Graphics, vol. PP, no. 99, pages 1–1, 2016. (Cited on page 13.)

[Martedi 2013] Sandy Martedi, Bruce Thomas and Hideo Saito. Region-based track-

ing using sequences of relevance measures. In Mixed and Augmented Reality

(ISMAR), 2013 IEEE International Symposium on, pages 1–6. IEEE, 2013.

(Cited on page 18.)

[McIlroy 2012] Paul McIlroy, Shahram Izadi and Andrew Fitzgibbon. Kinectrack:

Agile 6-DoF Tracking Using a Projected Dot Pattern. In Mixed and Aug-

mented Reality (ISMAR), 2012 IEEE International Symposium on, pages

23–29, 2012. (Cited on page 86.)

[Milgram 1995] Paul Milgram, Haruo Takemura, Akira Utsumi and Fumio Kishino.

Augmented reality: A class of displays on the reality-virtuality continuum. In

148

https://www.youtube.com/watch?v=kw0-JRa9n94
https://www.youtube.com/watch?v=kw0-JRa9n94

Bibliography

Photonics for industrial applications, pages 282–292. International Society

for Optics and Photonics, 1995. (Cited on pages xvii, 1 and 2.)

[Minster 2015] Gautier Minster, Guillaume Moreau and Hideo Saito. Geolocation

for printed maps using line segment-based SIFT-like feature matching. In

Mixed and Augmented Reality Workshops (ISMARW), 2015 IEEE Interna-

tional Symposium on, pages 88–93. IEEE, 2015. (Cited on page 136.)

[Mount 1999] David M. Mount, Nathan S. Netanyahu and Jacqueline Le Moigne.

Efficient algorithms for robust feature matching. Pattern Recogn., vol. 32,

no. 1, pages 17–38, January 1999. (Cited on page 22.)

[Myatt 2002] D. R. Myatt, P. H. S. Torr, S. J. Nasuto, J. M. Bishop and R. Crad-

dock. NAPSAC: high noise, high dimensional robust estimation. In In

BMVC02, pages 458–467, 2002. (Cited on page 20.)

[Myronenko 2010] Andriy Myronenko and Xubo Song. Point set registration: Co-

herent point drift. IEEE transactions on pattern analysis and machine intel-

ligence, vol. 32, no. 12, pages 2262–2275, 2010. (Cited on page 23.)

[Naimark 2002] L. Naimark and E. Foxlin. Circular data matrix fiducial system

and robust image processing for a wearable vision-inertial self-tracker. Pro-

ceedings International Symposium on Mixed and Augmented Reality, pages

27–36, 2002. (Cited on pages xvii and 14.)

[Nakai 2006] Tomohiro Nakai, Koichi Kise and Masakazu Iwamura. Use of Affine In-

variants in Locally Likely Arrangement Hashing for Camera-based Document

Image Retrieval. In Proc. of the 7th International Conference on Document

Analysis Systems, DAS’06, pages 541–552, 2006. (Cited on pages 11, 14, 21,

24 and 25.)

[Nguyen 2015] Thanh Nguyen, Gerhard Reitmayr and Dieter Schmalstieg. Struc-

tural Modeling from Depth Images. IEEE Transactions on Visualization

and Computer Graphics, vol. 21, no. 11, pages 1230–1240, 2015. (Cited

on pages 113 and 114.)

[Ni 2009] Kai Ni, Hailin Jin and Frank Dellaert. GroupSAC: Efficient consensus in

the presence of groupings. In 2009 IEEE 12th International Conference on

Computer Vision, pages 2193–2200. IEEE, 2009. (Cited on page 20.)

149

Bibliography

[Nistér 2008] David Nistér and Henrik Stewénius. Linear Time Maximally Stable

Extremal Regions. In 10th European Conference on Computer Vision, ECCV,

pages 183–196, 2008. (Cited on page 99.)

[Olson 1997] Clark F. Olson. Efficient Pose Clustering Using a Randomized Algo-

rithm. Int. J. Comput. Vision, vol. 23, no. 2, pages 131–147, June 1997.

(Cited on page 21.)

[Ouellet 2008] Jean-Nicolas Ouellet, Félix Rochette and Patrick Hébert. Geometric

Calibration of a Structured Light System using Circular Control Points. In

3D Data Processing, Visualization and Transmission, 3DPVT, pages 183–

190, 2008. (Cited on pages xxi, 94 and 95.)

[Ozuysal 2010] Mustafa Ozuysal, Michael Calonder, Vincent Lepetit and Pascal

Fua. Fast keypoint recognition using random ferns. IEEE transactions on

pattern analysis and machine intelligence, vol. 32, no. 3, pages 448–461,

2010. (Cited on page 17.)

[Pavlakos 2015] Georgios Pavlakos and Kostas Daniilidis. Reconstruction of 3D Pose

for Surfaces of Revolution from Range Data. In 3D Vision (3DV), 2015 In-

ternational Conference on, pages 648–656. IEEE, 2015. (Cited on page 115.)

[Pham 2014] The-Anh Pham, Mathieu Delalandre, Sabine Barrat and Jean-Yves

Ramel. Accurate junction detection and characterization in line-drawing im-

ages. Pattern Recogn., vol. 47, no. 1, pages 282–295, January 2014. (Cited

on page 88.)

[Pottmann 1999] Helmut Pottmann, Martin Peternell and Bahram Ravani. An

introduction to line geometry with applications. Computer-Aided Design,

vol. 31, no. 1, pages 3–16, 1999. (Cited on pages 115, 116, 121, 126, 127

and 128.)

[Qiu 2014] Rongqi Qiu, Qian-Yi Zhou and Ulrich Neumann. Pipe-Run Extraction

and Reconstruction from Point Clouds. In 13th European Conference on

Computer Vision, ECCV, pages 17–30. Springer, 2014. (Cited on page 114.)

[Raguram 2013a] Rahul Raguram, Ondrej Chum, Marc Pollefeys, Jiri Matas and

Jan-Michael Frahm. USAC: A Universal Framework for Random Sample

Consensus. IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pages

2022–2038, August 2013. (Cited on pages 20 and 83.)

150

Bibliography

[Raguram 2013b] Rahul Raguram, Ondrej Chum, Marc Pollefeys, Jirí Matas and

Jan-Michael Frahm. USAC: A Universal Framework for Random Sample

Consensus. IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pages

2022–2038, August 2013. (Cited on pages 43 and 44.)

[Reinbacher 2010] Christian Reinbacher, Matthias Ruther and Horst Bischof. Pose

estimation of known objects by efficient silhouette matching. In Pattern

Recognition (ICPR), 2010 20th International Conference on, pages 1080–

1083. IEEE, 2010. (Cited on page 18.)

[Rekimoto 1998] J. Rekimoto. Matrix: a realtime object identification and registra-

tion method for augmented reality. In Computer Human Interaction, 1998.

Proceedings. 3rd Asia Pacific, pages 63–68, Jul 1998. (Cited on pages v

and 14.)

[Resch 2015] Christoph Resch, Hemal Naik, Peter Keitler, Steven Benkhardt and

Gudrun Klinker. On-site Semi-Automatic Calibration and Registration of a

Projector-Camera System Using Arbitrary Objects With Known Geometry.

IEEE Transactions on Visualization and Computer Graphics, vol. 21, no. 11,

pages 1211–1220, 2015. (Cited on pages xxi, 92 and 93.)

[Ridden 2013] Paul Ridden. IKEA catalog uses augmented reality to give

a virtual preview of furniture in a room. http://newatlas.com/

ikea-augmented-reality-catalog-app/28703/, 2013. [Online; accessed

02-August-2016]. (Cited on pages xvii and 3.)

[Rigoutsos 1995] Isidore Rigoutsos and Robert Hummel. A Bayesian approach to

model matching with geometric hashing. Computer vision and image under-

standing, vol. 62, no. 1, pages 11–26, 1995. (Cited on page 21.)

[Rosenfeld 1968] Azriel Rosenfeld and John L Pfaltz. Distance functions on digital

pictures. Pattern recognition, vol. 1, no. 1, pages 33–61, 1968. (Cited on

page 18.)

[Rosten 2006] Edward Rosten and Tom Drummond. Machine Learning for High-

speed Corner Detection. In Proceedings of the 9th European Conference on

Computer Vision - Volume Part I, ECCV’06, pages 430–443, Berlin, Heidel-

berg, 2006. Springer-Verlag. (Cited on page 15.)

[Rosten 2010] Edward Rosten, Reid Porter and Tom Drummond. Faster and better:

A machine learning approach to corner detection. IEEE transactions on

151

http://newatlas.com/ikea-augmented-reality-catalog-app/28703/
http://newatlas.com/ikea-augmented-reality-catalog-app/28703/

Bibliography

pattern analysis and machine intelligence, vol. 32, no. 1, pages 105–119,

2010. (Cited on page 15.)

[Rothwell 1992] Charles A Rothwell, Andrew Zisserman, David A Forsyth and

Joseph L Mundy. Canonical frames for planar object recognition. In Euro-

pean Conference on Computer Vision, pages 757–772. Springer, 1992. (Cited

on page 18.)

[Rublee 2011] Ethan Rublee, Vincent Rabaud, Kurt Konolige and Gary Bradski.

ORB: An Efficient Alternative to SIFT or SURF. In Proc. of the 2011 IEEE

International Conference on Computer Vision, ICCV ’11, pages 2564–2571,

2011. (Cited on page 83.)

[Schilling 2012] Mark F Schilling. The Surprising Predictability of Long Runs. Math.

Mag., vol. 85, no. 2, pages 141–149, April 2012. (Cited on page 72.)

[Schnabel 2007] Ruwen Schnabel, Roland Wahl and Reinhard Klein. Efficient

RANSAC for Point-Cloud Shape Detection. Computer Graphics Forum,

vol. 26, no. 2, pages 214–226, June 2007. (Cited on page 114.)

[Shapiro 1992] Larry S Shapiro and J Michael Brady. Feature-based correspondence:

an eigenvector approach. Image and vision computing, vol. 10, no. 5, pages

283–288, 1992. (Cited on page 24.)

[Shi 1994] Jianbo Shi and Carlo Tomasi. Good Features to Track. In Proc. of the

1994 IEEE Conference on Computer Vision and Pattern Recognition, CVPR

’94, pages 593–600, June 1994. (Cited on pages 15 and 84.)

[Shi 2008] Yonggang Shi and William Clement Karl. A real-time algorithm for the

approximation of level-set-based curve evolution. Image Processing, IEEE

Transactions on, vol. 17, no. 5, pages 645–656, 2008. (Cited on page 53.)

[Shih 1996] Sheng-Wen Shih, Yi-Ping Hung and Wei-Song Lin. Accuracy Analysis

on the Estimation of Camera Parameters for Active Vision Systems. In 13th

International Conference on Pattern Recognition, volume 1 of ICPR, pages

930–935, 1996. (Cited on pages 97 and 104.)

[Song 2015] Meng Song and Daniel Huber. Automatic Recovery of Networks of Thin

Structures. In 3D Vision (3DV), 2015 International Conference on, pages 37–

45. IEEE, 2015. (Cited on page 114.)

152

Bibliography

[Taguchi 2015] Yuichi Taguchi and Srikumar Ramalingam. Method for fitting prim-

itive shapes to 3D point clouds using distance fields, December 2015. US

Patent 9,208,609. (Cited on page 114.)

[Tang 2014] Jun Tang, Ling Shao and Xiantong Zhen. Robust point pattern match-

ing based on spectral context. Pattern Recognition, vol. 47, no. 3, pages

1469–1484, 2014. (Cited on page 24.)

[Tateno 2015] Keisuke Tateno, Federico Tombari and Nassir Navab. Real-time and

scalable incremental segmentation on dense SLAM. In Intelligent Robots

and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages

4465–4472. IEEE, 2015. (Cited on pages 125, 126 and 129.)

[Tateno 2016] Keisuke Tateno, Federico Tombari and Nassir Navab. When 2.5D

is not enough: Simultaneous Reconstruction, Segmentation and Recognition

on dense SLAM. In 2016 IEEE International Conference on Robotics and

Automation (ICRA), pages 2295–2302. IEEE, 2016. (Cited on page 114.)

[Tombari 2013a] Federico Tombari, Alessandro Franchi and Luigi Di Stefano. Bold

features to detect texture-less objects. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 1265–1272, 2013. (Cited on

page 19.)

[Tombari 2013b] Federico Tombari, Samuele Salti and Luigi Di Stefano. Perfor-

mance Evaluation of 3D Keypoint Detectors. Int. J. Comput. Vision, vol. 102,

no. 1-3, pages 198–220, March 2013. (Cited on page 80.)

[Tsin 2004] Yanghai Tsin and Takeo Kanade. A Correlation-Based Approach to

Robust Point Set Registration. In Proc. of the 8th European Conference on

Computer Vision, ECCV 2004, pages 558–569, 2004. (Cited on page 23.)

[Uchiyama 2009] Hideaki Uchiyama, Hideo Saito, Myriam Servières and Guillaume

Moreau. AR GIS on a Physical Map based on Map Image Retrieval using

LLAH Tracking. In IAPR Conference on Machine Vision Application, Yoko-

hama, Japon, 2009. (Cited on page 26.)

[Uchiyama 2011a] Hideaki Uchiyama and E. Marchand. Toward Augmenting Ev-

erything: Detecting and Tracking Geometrical Features on Planar Objects.

In Mixed and Augmented Reality (ISMAR), 10th IEEE International Sym-

posium on, pages 17–25, 2011. (Cited on pages 84 and 85.)

153

Bibliography

[Uchiyama 2011b] Hideaki Uchiyama and Hideo Saito. Random Dot Markers. In

Proc. of the 2011 IEEE Virtual Reality Conference, VR ’11, pages 271–272,

2011. (Cited on pages vi, xvii, 10, 14, 24, 25, 44, 76 and 88.)

[Uchiyama 2011c] Hideaki Uchiyama, Hideo Saito, Myriam Servières and Guillaume

Moreau. Camera tracking by online learning of keypoint arrangements using

LLAH in augmented reality applications. Virtual Real., vol. 15, no. 2-3, pages

109–117, June 2011. (Cited on pages vi and 10.)

[Uchiyama 2012] Hideaki Uchiyama and Eric Marchand. Object detection and pose

tracking for augmented reality: Recent approaches. In 18th Korea-Japan Joint

Workshop on Frontiers of Computer Vision (FCV), 2012. (Cited on page 6.)

[Umeyama 1991] Shinji Umeyama. Least-Squares Estimation of Transformation Pa-

rameters Between Two Point Patterns. IEEE Trans. Pattern Anal. Mach.

Intell., vol. 13, no. 4, pages 376–380, April 1991. (Cited on page 75.)

[Van Nguyen 2013] Hien Van Nguyen and Fatih Porikli. Support vector shape: A

classifier-based shape representation. IEEE transactions on pattern analysis

and machine intelligence, vol. 35, no. 4, pages 970–982, 2013. (Cited on

pages 18 and 137.)

[Van Wamelen 2004] Paul B Van Wamelen, Z Li and SS Iyengar. A fast expected

time algorithm for the 2-D point pattern matching problem. Pattern Recog-

nition, vol. 37, no. 8, pages 1699–1711, 2004. (Cited on page 21.)

[Wang 2009a] Lu Wang, Ulrich Neumann and Suya You. Wide-baseline image

matching using line signatures. In 2009 IEEE 12th International Confer-

ence on Computer Vision, pages 1311–1318. IEEE, 2009. (Cited on pages 15

and 19.)

[Wang 2009b] Zhiheng Wang, Fuchao Wu and Zhanyi Hu. MSLD: A robust descrip-

tor for line matching. Pattern Recognition, vol. 42, no. 5, pages 941–953,

2009. (Cited on page 16.)

[Wang 2012] Xiaoyun Wang and Xianquan Zhang. Point pattern matching algo-

rithm for planar point sets under Euclidean transform. Journal of Applied

Mathematics, vol. 2012, 2012. (Cited on page 24.)

[Wang 2013] Ke Wang, Tielin Shi, Guanglan Liao and Qi Xia. Image registration

using a point-line duality based line matching method. Journal of Visual

154

Bibliography

Communication and Image Representation, vol. 24, no. 5, pages 615–626,

2013. (Cited on page 19.)

[Willis 2003] Andrew Willis, Xavier Orriols and David B Cooper. Accurately Esti-

mating Sherd 3D Surface Geometry with Application to Pot Reconstruction.

In Computer Vision and Pattern Recognition Workshop, 2003. CVPRW’03.

Conference on, volume 1, pages 5–5. IEEE, 2003. (Cited on page 115.)

[Wolfson 1997] Haim J. Wolfson and Isidore Rigoutsos. Geometric Hashing: An

Overview. IEEE Comput. Sci. Eng., vol. 4, no. 4, pages 10–21, October

1997. (Cited on pages 11, 21, 65 and 76.)

[Yamauchi 2008] Koichiro Yamauchi, Hideo Saito and Yukio Sato. Calibration of

a Structured Light System by Observing Planar Object from Unknown View-

points. In 19th International Conference on Pattern Recognition, ICPR,

pages 1–4, 2008. (Cited on pages xxi and 92.)

[Yamazaki 2011] Shuntaro Yamazaki, Masaaki Mochimaru and Takeo Kanade. Si-

multaneous self-calibration of a projector and a camera using structured light.

In IEEE Conference on Computer Vision and Pattern Recognition Work-

shops, pages 60–67, 2011. (Cited on pages 92 and 93.)

[Yin 2006] Peng-Yeng Yin. Particle swarm optimization for point pattern matching.

Journal of Visual Communication and Image Representation, vol. 17, no. 1,

pages 143–162, 2006. (Cited on page 24.)

[Yin 2012] Peng-Yeng Yin. Scatter search for point pattern matching: A compar-

ative study. In Natural Computation (ICNC), 2012 Eighth International

Conference on, pages 1084–1088. IEEE, 2012. (Cited on page 24.)

[Zhang 2000] Zhengyou Zhang. A Flexible New Technique for Camera Calibration.

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22,

no. 11, pages 1330–1334, 2000. (Cited on pages 93, 94, 95, 96 and 104.)

[Zhang 2003] Lihua Zhang, Wenli Xu and Cheng Chang. Genetic algorithm for

affine point pattern matching. Pattern Recognition Letters, vol. 24, no. 1,

pages 9–19, 2003. (Cited on page 24.)

[Zhang 2006] Song Zhang and Peisen S Huang. Novel method for structured light

system calibration. Optical Engineering, vol. 45, no. 8, pages 083601–083601,

2006. (Cited on page 93.)

155

Bibliography

[Zhang 2013] Lilian Zhang and Reinhard Koch. An efficient and robust line segment

matching approach based on LBD descriptor and pairwise geometric consis-

tency. Journal of Visual Communication and Image Representation, vol. 24,

no. 7, pages 794–805, 2013. (Cited on page 15.)

[Zhang 2014] Zhengyou Zhang. Camera calibration. Springer, 2014. (Cited on

page 6.)

[Zhong 2009] Yu Zhong. Intrinsic Shape Signatures: A Shape Descriptor for 3D

Object Recognition. In Proc. of the IEEE 12th International Conference

on Computer Vision Workshops (ICCV Workshops), pages 689–696, 2009.

(Cited on page 80.)

[Zhou 2008] Feng Zhou, Henry Been-Lirn Duh and Mark Billinghurst. Trends in

augmented reality tracking, interaction and display: A review of ten years

of ISMAR. In Proceedings of the 7th IEEE/ACM International Symposium

on Mixed and Augmented Reality, pages 193–202. IEEE Computer Society,

2008. (Cited on page 13.)

156

Liming YANG

Titre de la thèse : Recalage robuste à base de motifs de points
pseudo aléatoires pour la réalité augmentée

Title of thesis: Point pattern matching for augmented reality

Résumé

La Réalité Augmentée (RA) vise à afficher des
informations numériques virtuelles sur des images
réelles. Le recalage est important, puisqu’il permet
d'aligner correctement les objets virtuels dans le monde
réel. Contrairement au tracking qui recale en utilisant les
informations de l’image précédente, la localisation à
grande échelle (wide baseline localization) calcule la
solution en utilisant uniquement les informations
présentes dans l’image courante. Il permet ainsi de
trouver des solutions initiales au problème de recalage
(initialisation) et, n’est pas sujet aux problèmes de «
perte de tracking ». Le problème du recalage en RA est
relativement bien étudié dans la littérature, mais les
méthodes existantes fonctionnent principalement lorsque
la scène augmentée présente des textures. Pourtant,
pour le recalage avec les objets peu ou pas texturés, il
est possible d’utiliser leurs informations géométriques qui
représentent des caractéristiques plus stables que les
textures.

Cette thèse s’attache au problème de recalage basé sur
des informations géométriques, et plus précisément sur
les points. Nous proposons deux nouvelles méthodes de
recalage de points (RRDM et LGC) robustes et rapides.
LGC est une amélioration de la méthode RRDM et peut
mettre en correspondance des ensembles de motifs de
points 2D ou 3D subissant une transformation dont le
type est connu. LGC présente un comportement linéaire
en fonction du nombre de points, ce qui permet un
tracking en temps-réel. La pertinence de LGC a été
illustrée en développant une application de calibration de
système projecteur-caméra dont les résultats sont
comparables avec l’état de l’art tout en présentant des
avantages pour l’utilisateur en termes de taille de mire de
calibration..

Mots-clés
réalité augmentée, recalage des motifs de points,
suivi, peu-texturé, calibration, projecteur-caméra,
carte augmentée, surface de révolution

Abstract

Registration is a very important task in Augmented
Reality (AR). It provides the spatial alignment between
the real environment and virtual objects. Unlike tracking
(which relies on previous frame information), wide
baseline localization finds the correct solution from a
wide search space, so as to overcome the initialization or
tracking failure problems. Nowadays, various wide
baseline localization methods have been applied
successfully. But for objects with no or little texture, there
is still no promising method. One possible solution is to
rely on the geometric information, which sometimes does
not vary as much as texture or color.

This dissertation focuses on new wide baseline
localization methods entirely based on geometric
information, and more specifically on points. I propose
two novel point pattern matching algorithms, RRDM and
LGC. Especially, LGC registers 2D or 3D point patterns
under any known transformation type and supports multi-
pattern recognitions. It has a linear behavior with respect
to the number of points, which allows for real-time
tracking. It is applied to multi targets tracking and
augmentation, as well as to 3D model registration. A
practical method for projector-camera system calibration
based on LGC is also proposed. It can be useful for large
scale Spatial Augmented Reality (SAR). Besides, I also
developed a method to estimate the rotation axis of
surface of revolution quickly and precisely on 3D data. It
is integrated in a novel framework to reconstruct the
surface of revolution on dense SLAM in real-time.

Key Words
augmented reality, point pattern matching,
registration, texture-less tracking, calibration,
projector-camera, augmented map, surface of
revolution

	Introduction
	Registration
	Vision-based localization
	Narrow baseline tracking
	Wide baseline localization

	Thesis motivation
	Finding point correspondences
	Problem risen from augmented maps
	Point pattern matching and its difficulties

	Thesis statement and contribution
	Thesis outline

	Related work
	Fiducial marker based localization
	Texture based localization
	Feature extraction
	Feature description
	Feature matching

	Geometry based localization
	Region based approaches
	Line segment based approaches
	Wide baseline point pattern matching
	Random Dot Markers

	Robust random dot markers (RRDM)
	A robust descriptor
	Definition
	Affine invariance
	Point jitter and descriptor variance

	Algorithm
	Offline pre-registration
	Local Voting and Coherency

	Choice of parameters
	Robustness of descriptor and k, , Dmax
	Threshold vt
	Influence of point jitter on A and t, t

	Results
	Synthetic images
	Real markers
	Natural map tracking

	Application: Augmented Maps
	Intersection detection on real maps
	Results

	Conclusion

	Local geometric consensus (LGC)
	General algorithm
	Definitions and a brief description of the algorithm
	Hypotheses generator
	Hypotheses validator
	Result refiner
	Parameters
	Local consensus: a guarantee of low false alert

	Specific Implementations
	2D homography
	3D similarity

	Results on synthetic point sets
	Speed and robustness studies
	3D model registration
	LGC with additional information

	Applications
	Tracking ordinary planar objects
	Augmenting engineering drawings

	Discussion
	Neighbors
	Transformation T
	Repetitive structures

	Conclusion

	Defocused projector calibration for projector-camera systems
	Related work
	Two-views based methods
	Inverse camera methods
	Limitations
	Contribution

	Calibration Method
	Basic notations and inverse camera method
	Calibration pattern
	Algorithm

	Defocusing error
	The origin of the defocusing error
	An estimation of the defocusing error

	Calibration results
	Augmentation evaluation
	Focus distance
	Error distribution
	Perspective and depth

	Conclusion

	Surface of revolution reconstruction from 3D data
	Related work
	Surface of revolution axis estimation
	Basic idea
	Approximately linear objective function

	Implementation details
	Algorithm
	Plane cutting and circle fitting
	Determining Ps and solving ()

	Real-time SoR reconstruction
	Segment classification
	Workflow

	Results
	Synthetic study
	Real data

	Conclusion

	Conclusion
	Point Pattern Matching algorithms
	2D point pattern matching
	LGC: a general solution for PPM

	Projector-camera system calibration
	Scene understanding in 3D data
	Perspectives

	Bibliography

