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Résumé :
Les réseaux photoniques à haute performance
peuvent être considérés comme des supports pour
les futurs systèmes de calcul. Contrairement à
l’électronique, les systèmes photoniques offrent des
avantages intéressants, par exemple la possibilité
de réaliser des réseaux complètement parallèles.
Récemment, les réseaux de neurones ont attiré
l’attention de la communauté photonique. L’une
des difficultés les plus importantes, en matière de
réseaux photoniques parallèles à grande échelle,
est la réalisation des connexions. La diffraction
est exploitée ici comme méthode pour traiter les
connexions entre les nœuds (couplage) dans les
réseaux de neurones optiques. Dans cette thèse,
nous étudions l’extensibilité d’un couplage diffractif
en détails de la façon suivante :
Tout d’abord, nous commençons par une
introduction générale à propos de l’intelligence
artificielle, de l’apprentissage machine, des réseaux
de neurones artificiels et des réseaux de neurones
photoniques. Lors de la conception d’un réseau
neuronal fonctionnel, les règles de l’apprentissage
machine sont des éléments essentiels pour
optimiser une configuration et ainsi obtenir une
faible erreur du système, donc les règles de

l’apprentissage sont introduites (chapitre 1). Nous
étudions les concepts fondamentaux du couplage
diffractif dans notre réservoir spatio-temporel. Dans
ce cas, la théorie de la diffraction est expliquée.
Nous utilisons un schéma analytique pour fournir les
limites en termes de taille des réseaux diffractifs,
qui font partie intégrante de notre réseau neuronal
photonique (chapitre 2). Les concepts du couplage
diffractif sont étudiés expérimentalement dans
deux expériences différentes afin de confirmer les
limites obtenues analytiquement, et pour déterminer
le nombre maximum de nœuds pouvant être
couplés dans le réseau photonique (Chapitre 3).
Les simulations numériques d’une telle expérience
sont basées sur deux schémas différents pour
calculer numériquement la taille maximale du
réseau, qui approche une surface de 100 mm2

(chapitre 4). Enfin, l’ensemble du réseau neuronal
photonique est démontré. Nous concevons un
réservoir spatialement étendu sur 900 nœuds. En
conséquence, notre système généralise la prédiction
pour la séquence chaotique de Mackey-Glass
(chapitre 5).
Mots-clés : Réseaux optiques, Diffraction,
Couplage, Réseaux neuronaux photoniques.

Title: Couplage Diffractif Pour Réseaux de Neurones Optiques

Abstract:
Photonic networks with high performance can be
considered as substrates for future computing
systems. In comparison with electronics, photonic
systems have substantial privileges, for instance
the possibility of a fully parallel implementation of
networks. Recently, neural networks have moved
into the center of attention of the photonic
community. One of the most important requirements
for parallel large-scale photonic networks is to realize
the connectivities. Diffraction is considered as a
method to process the connections between the
nodes (coupling) in optical neural networks. In the
current thesis, we evaluate the scalability of a
diffractive coupling in more details as follow:
First, we begin with a general introductions for
artificial intelligence, machine learning, artificial
neural network and photonic neural networks. To
establish a working neural network, learning rules
are an essential part to optimize a configuration
for obtaining a low error from the system, hence
learning rules are introduced (Chapter 1). We

investigate the fundamental concepts of diffractive
coupling in our spatio-temporal reservoir. In that
case, theory of diffraction is explained. We use
an analytical scheme to provide the limits for the
size of diffractive networks which is a part of our
photonic neural network (Chapter 2). The concepts
of diffractive coupling are investigated experimentally
by two different experiments to confirm the analytical
limits and to obtain maximum number of nodes
which can be coupled in the photonic network
(Chapter 3). Numerical simulations for such an
experimental setup is modeled in two different
schemes to obtain the maximum size of network
numerically, which approaches a surface of 100 mm2

(Chapter 4). Finally, the complete photonic neural
network is demonstrated. We design a spatially
extended reservoir for 900 nodes. Consequently, our
system generalizes the prediction for the chaotic
Mackey–Glass sequence (Chapter 5).
Keywords: Optical networks, Diffraction, Coupling,
Photonic neural networks.

Diffractive Coupling for Optical Neural Networks





ACKNOWLEDGMENTS

I would like to thank the following people who have helped me throughout the last three
years:
My supervisors Dr. Daniel Brunner, Dr. Luc Froehly and Dr. Maxime Jacquot for their
enthusiasm in this project, consistent supports and encouragement.
The Institute of Femto-St, Bourgogne Franche-Comté University, for all staff members,
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INTRODUCTION

0.1/ INTRODUCTION

Computing was interesting for human before the technological revolution. One of the
first computers was the Antikythera-mechanism [1]. That mechanism calculates moon
phases and planetary position within the lunisolar calendar. In the Antikythera hardware,
there is an algorithm about lunar and planetary motion which was realized by Hipparchos
of Rhodes. This mechanical computer was a great challenge since it consists of 37
bronze gears and this multistage system required high manufacturing accuracy for it’s
reliable operation. This system needed significant skills which were obtained via human
progress in agriculture, religious, the planets and lunar cycles in that historical period.
This shows progress in computing since two millennia ago. In 1941 a re-programmable
digital electronic-computer Z3 was realized for the practical re-programmability benefits.
As an important challenge the Z3 was applied in the mechanical properties of airplane
wings. The transition from mechanics to electronic-computer set the basis for the current,
Turing complete, integrated and powerful computing processors. The developments of
technology and concepts therefore have created toady’s powerful computers. In that
case, one considers another transition from electronics to photonics or merger of both.
Nowadays, people are familiar with typical electronic computers, while the optical ones
are still relatively unknown, even by representing over five decades ago [2]. For instance
an optical experiment was created by Farhat et al [3] which was an optical content
addressable memory. That system was able to provide the content of stored memory
even if the original question is noise-corrupted or not accurate.

Different type of experiments such as electrical, electro-optical and all optical computing
demonstrate benefits and drawbacks of each hardware. For instance, Lohmann in
1990 discussed with the fundamental requirements to compute and their connection to
physical properties of their hardware substrates [4]. Then, he identified some important
ingredients such as communication or logic for binary logic operations. Electrons
are able to implement nonlinear transformations very well, but the strong interaction
between electrons decrease their possibilities for information transmission. Moreover,
modulation bandwidth of electronic transmission is limited by the information carries’
electrical charge. But transmission of information using photons is possible without
strong interaction, which for instance is important in the implementation of artificial neural
networks (ANNs) with large scale connectivities [5]. In addition, modulation bandwidth is
not limited by the transmission length. Pockels and Kerr effects can be used as the optical
nonlinearities [6]. In another example, the bandwidth of an electro-optical modulation can
arrive at Terra Hertz [7].

Optical logic for computing has received substantial attention because of the success of
computing based on Boolean logic operations. Replacement of electrons with photons
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has three important reasons. First, by using photons, one can avoid the opto-electronic
conversions since almost all communication is today done optically. Second, the po-
tentially high bandwidth of optical processes allows to achieve pico second switching
times. While today’s transistors has the same switching time, in the global system the
bandwidth limitation due to electronics interconnects strongly limits the overall speed.
Third, parallel and spatially distribution of optical signal transmission is another important
factor in optical computers, which are discussed intensely today [8]. For instance, the
article by Caulfield et al. [9] or Miller et al. [10] highlight the optical transistors as principal
units for real world applications and for all optical computing logic.

Another approach for optical computing is based on spatial transformations. For ins-
tance, an optical lens is able to transform optical waves fully in parallel and in a large
space bandwidth. Compared with serial optical binary logic, spatial transformations in
parallel can be considered as a significant advantage. Another example is realizing the
subtraction of two images by using Michelson interferometry [11]. After creating spatial
light modulators for the first time [12], the technology of this optical component brings a
wide range of applications for such optical systems.

Photonic neural networks are an attractive field because they have caused the potential
for next-generation computing. Today neural networks have a revolution in computing.
One of the most important points is that information can propagate between the network’s
nodes based on parallel communication [8]. In this work, we study a photonic system
which is a part of a neural network. In the reduced interpretation, the neurons and their
connectivities are the important parts of these networks, hence we intend to obtain the
maximum size of this neural network in which the connectivities between the nodes are
formed based on diffraction.

0.2/ STRUCTURE OF THE THESIS

In this thesis we investigate fundamental and practical limits to the size of diffractive
coupling for a spatio-temporal neural network as follow:
In Chapter 1, we describe neural networks as inspired by human brain and the concept of
a biological neuron. We present a brief history of development of artificial neural networks
which have been in the center of researches attentions. Based on the structure of the
connections, two classes of neural networks (Feedforward and Recurrent) are explained.
To optimize the configuration in neural network, we require learning rules. Hence, we
will explain two classes of leaning (supervised and unsupervised) which is followed by
a discussion about training two different neural network typologies (Feedforward and
Recurrent). Since the two discussed training strategies are slow and difficult in their
algorithms, reservoir computing is proposed. We will introduce two type of reservoirs,
photonic delay reservoirs and photonic spatio-temporal reservoir. An experimental
example is given for photonic delay reservoir but a photonic spatio-temporal reservoir will
be studied in the fifth Chapter of this thesis as our neural network.

In Chapter 2, connectivity for a large number of photonic nodes is investigated. To find
the limitation for diffractive networks’ size, diffractive coupling will be studied. For the
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goal, theory of diffraction is needed. In that case, we begin from Maxwell equations to
obtain the diffraction theory. During this Chapter, we represent the important concepts
and equations for plane waves, the Huygens principle, the Fresnel integral and the
plane-wave spectrum. Beam propagation between optical elements is computed by
using the plane-wave spectrum. The Fourier transform and inverse Fourier transform
will be introduced during this propagation part. Finally, diffraction of light, transmission
and reflection gratings are described. We continue by defining the principle of diffractive
coupling which creates connectivities between the neurons in a photonic neural network.
We utilize a single diffractive optical element (DOE) to evaluate coupling and analyze the
coupling by using simple analytical calculations. The result of the analytical simulation
shows the maximum size of neural network in which neurons can be successfully
coupled. As a result, maximum number of neurons are obtained.

In Chapter 3, two simple experiments are introduced to confirm the diffractive coupling
experimentally. First, all optical elements in this experiment are introduced in detail.
Then, in the first experiment, a single mode optical fiber emulates optical emitters of a
network. In this method, there are some limitations originating from the components (i.e.
microscope objectives causing beam vignetting). To overcome the restrictions of the first
experiment, we have iterated and tested a large number of optical components, but the
effect is continued to be present. Finally, we therefore introduce the second scheme,
where we tilt the DOE, which allows to go beyond the mentioned limitations. We compare
our experimental data with analytical simulation to confirm the obtained results from this
Chapter.

In Chapter 4, we numerically model the system’s full beam propagation, diffraction
and collimation/imaging to observe the effects found in the experiment. To imple-
ment all relevant effects which could limit our approach, paraxial approximation is
avoided. The applied DOE which is based on phase-shifts was characterized using
phase-retrieval measurements of the element. We use the Debye-approximation for
simulating the imaging microscope objectives. In this Chapter two setups are presented.
In first setup, low magnification microscope objective with low numerical aperture
were used. The result of this scheme will be compared with the first experiment. In
this scheme, we see the vignetting effects from microscope objectives. To solve this
problem, we developed the second setup which has low magnification microscope
objective with a high numerical aperture. We make a comparison between second
experiment, second numerical scheme and analytical simulation. The good agreement
between analytical, numerical and experimental data points shows a successful coupling.

In Chapter 5, our optical neural network will be introduced. First, all optical components
are described. We obtain the result of network coupling in a matrix for 900 nodes in
this experiment. Then, we implement readout connection by using a digital micro-mirror
device. Finally, learning prediction evaluates for Mackey-Glass equation.
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OPTICAL NEURAL NETWORKS

1.1/ NEURAL NETWORKS

1.1.1/ INTRODUCTION

Artificial Intelligence (AI), as a branch of computer science, has been developed based on
a very rough approximate of the most fundamental properties of the human brain [13,14].
In that case, human’s intelligence are defined in a specific way and machines are able to
mimic this way. Artificial intelligence can be used in different tasks for instance in health
care [15] or finance [16]. There are two classifications for AI, the first class is weak AI,
which carries on the simple tasks while, the second class, strong AI, tends to solve more
complex tasks.
Machine learning is a subset of AI. In machine learning, the machines are not program-
med but learn from the past data. To obtain an accurate prediction, it is essential to know
how an logarithm learns. Machine learning is classified into the two categories of super-
vised learning and unsupervised learning which will be explained more in details in the
following sections.
It was in 1943 that Mc Culloch (neuro-physiologist) and Pitts (logician) proposed the first
notions of a model-neuron [17, 18]. This concept was then networked with an input and
output layer by Rosenblatt in 1959 to simulate retinal functionality in order to recognize
shapes [19]. This was the origin of the perceptron. In 1969 Minsky and Papert provided
a rigorous analysis of the perceptron [20]. Werbos developed the back-propagation lear-
ning algorithm in 1971 [21]. In a back-propagation learning algorithm weights are updated
based on error gradient calculated according to the chain rule of differentiation.
In a very simplistic way, a biological neuron is a cell that is characterized by [22,23]:

• The synapses, connection points with other neurons, the nerve or the muscle
fibres.

• The neural inputs.
• The axons, or outputs from the neuron to other neurons or muscle fibres.
• The core that activates the outputs according to the input stimuli.

Figure 1.1 schematically illustrates such an analog neuron [24]. For this figure, we can
describe a model neuron mathematically according to

y = f

 k∑
j=1

wjuj

 , (1.1)

where y is the neuron’s output, uj are the inputs from other neurons in the network, wj are

5
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weights of the corresponding input connections, f is the nonlinear activation function and
k is the number of network’s input. Neural networks are composed of neurons as their
elementary computational units.

𝑢1

𝑦 𝑓

𝑤1

𝑢3

𝑢𝑘

𝑢2
𝑤2

𝑤3

𝑤𝑘

FIGURE 1.1 – Graph of an analog neuron with a non-linear function y = f (u j,w j). uj are
called the inputs and wj are weights.

1.1.1.1/ PERCEPTRON

Perceptrons are binary classifiers that take a linear combination of inputs and produce
a binary output. Perceptrons made the functionality for the neural network models from
1980s until 1990s. The real value input vector u ∈ Rk is mapped to a binary output value
y(u)

y(u) =

1, if w · u + w0 > 0
−1, otherwise,

(1.2)

with

w · u =

k∑
j=1

wjuj, (1.3)

where w j,..., w0 are the parameters of the separating hyperplane or decision boundary.
A single layer perceptron is a simple feedforward neural network [25]. However, a single
layer perceptron in Eq. 1.2 can solve only linearly separable patterns. For instance, they
cannot solve the Boolean XOR problem. To solve this problem, an additional layer of
artificial neurons has to be introduced. Still, perceptrons have been used in several appli-
cations such as image or speech recognition [26].

1.1.2/ ARTIFICIAL NEURAL NETWORKS

An ANN system consists of a number of artificial neurons and a large number of inter-
connections among them. During the past decade, ANNs have been one of the leading
information processing concepts. Their neuro-inspired architectures make them different
from Neumann computing concepts. In 1980s the potential of optics in the ANNs was first
discussed. Today, photonic ANNs are at the centre of researchers’ attention. According
to the structure of the connections, two different classes of neural network are identi-
fied: feedforward neural network and recurrent neural network. In next sections we will
describe these two classes.
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1.1.2.1/ FEEDFORWARD NEURAL NETWORKS

The first class of neural network to be discussed here is feedforward networks. This net-
work consists of at least three layers as illustrated in Fig. 1.2. Neurons are connected
from one layer to next one and the information only travels forward in the layers. The
first and last layers are the input layer and output layer, respectively. The layer that are
not linked to an input or an output is hidden layer. However, a feedforward networks can
consist of several hidden layers in other examples. Connection between the neurons has
a connection strength which is known as weight. This weight defines how much the output
of a neuron effects another one. For example, a single-layer perceptron model in Eq. 1.2
has only one layer, with a feedforward signal moving from a layer to an individual node.
Multi-layer perceptron models are also feedforward [25,27]. A feedforward network with k
inputs, h hidden neurons and m output neurons is shown in Fig. 1.2. This network com-
putes m nonlinear function of its k input variables [27]. In the first stage, the hidden layer
H is a vector calculated as

H = f1 (wiu) , (1.4)

where u is the input vector of k input variables, and wi is the input weights matrix. The
result of matrix-vector product (wiu) is a vector, which is transformed by the perceptron’s
transfer function f1. In the second stage, the output of the network y is calculated as a
perceptron which receives the values from the hidden layer

y = f2 (wrH) , (1.5)

where wr is the readout matrix and f2 is another transfer function. As a result, a feedfor-
ward neural network in multi-layer perceptron is a nonlinear function of the inputs and the
parameters.

𝑖𝑛𝑝𝑢𝑡𝑠
𝑙𝑎𝑦𝑒𝑟

ℎ𝑖𝑑𝑑𝑒𝑛
𝑙𝑎𝑦𝑒𝑟

𝑜𝑢𝑡𝑝𝑢𝑡
𝑙𝑎𝑦𝑒𝑟

𝑢1

𝑢2

𝑢3

𝑢𝑘

𝑦1

𝑦2

𝑦3

𝑦𝑚

𝑤𝑖 𝑤𝑟

FIGURE 1.2 – Scheme of a feedforward neural network with k inputs as input layer, m
output neurons as output layer and h hidden neurons as hidden layer.

1.1.2.2/ RECURRENT NEURAL NETWORK

A second class of neural networks to be discussed here are recurrent neural networks
(RNN) [28, 29]. While a feedforward neural network has a one-directional information
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processing flow, in RNN there is at least one loop inside its connection topology. In such
a loop the connection returns back to its origin. A RNN presents a network in which
the connections allow cycles. The hidden layer in the middle of RNNs is known as the
recurrent layer. A schematic of RNN is shown in Fig. 1.3. Recurrent neural networks can

𝑖𝑛𝑝𝑢𝑡
𝑙𝑎𝑦𝑒𝑟

𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑙𝑎𝑦𝑒𝑟

𝑜𝑢𝑡𝑝𝑢𝑡
𝑙𝑎𝑦𝑒𝑟

𝑢 𝑦

𝑤𝑖

𝑤
𝑤𝑟

FIGURE 1.3 – Graph of a recurrent neural network (RNN). The recurrent layer in the
middle with an internal connections keeps the information. For this reason, the output is
depending on the previous inputs.

be defined as
x(n) = f (wiu(n) + wx(n − 1)) , (1.6)

here u is the input vector, wi is the input weights matrix, w is the map of the previous state
of the recurrent layer, and x(n) is the internal state of a network at discrete time n. The
result of computation y(n) is obtained as

y(n) = wrx(n), (1.7)

here wr is considered as a readout map. Equation 1.6 illustrated that the internal state of
RNN x(n) depends on the current and previous inputs. Hence in RNNs the input informa-
tion does not propagate along a single direction towards the output. Feedforward neural
networks are general function approximators, but RNNs can be regarded as algorithms.
Recurrent neural networks are also known as universal approximators of dynamical sys-
tems [30]. Another considerable difference can be memory. Recurrent neural networks
have memory due to the internal connection loops, while feedforward neural networks
lack it. The Long Short-Term Memory (LSTM) networks are perhaps the most successful
RNN [31]. There are two significant tasks in LSTM first, remember the all past knowledge
second, forget the irrelevant data. To do the mentioned tasks, different activation function
layers which are known gates are used.

1.1.3/ NEURAL NETWORKS TRAINING

Artificial neural networks have the great advances in control and processing the tasks
such as decision-making and pattern recognition. In a successful ANN, there are impor-
tant parameters such as number of layers, number of nodes in the layers and optimal
configurations of connections weights. We require an optimized configuration in order to
minimize the errors made by an ANN in a special task. This configuration is known as
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learning, during which the ANN is trained. In this section, we will describe learning which
is classified into two groups. The goal of these training methods is to obtain a functionality
of y(u) for network weights such that the computational error

Eerror = ‖y(u) − ytarget(u)‖ (1.8)

is minimized. Here, u is a set of input and output has a set ytarget(u). In general, the
learning process can be classified [32]

• Learning with a teacher which mentions to supervised learning.
• Learning without a teacher which mentions to unsupervised learning.

1.1.3.1/ SUPERVISED LEARNING

When we know input and output variables and we need an algorithm to learn the mapping
function from the input to the output, we implement supervised learning. In that case, a
mapping function is approximated such that for new input data the ANN can correctly pre-
dict the desired output [32]. For instance in handwriting recognition, the input is defined
as a database of known faces and the mapping function has to identify these faces. In
another example for spam detection, the input is defined as the characters of a message
and the mapping function has to identify that the email is spam or not by returning true
or false. In last examples the goal is to obtain a mapping function which corresponds to
identifying the specific relationships between the input data and the correct response.
Since in supervised learning we have correct example outputs we can compute the gra-
dients of the output error. Therefore error back propagation is a common training concept
in supervised learning.

1.1.3.2/ FEEDFORWARD NEURAL NETWORK TRAINING

As we explained, to process information for a spacial task, the ANNs need to find a
configuration of weights. Backpropagation can be considered as one of the popular su-
pervised learning methods in feedforward neural network training [33]. Before training, all
the system’s connection matrices are typically initialized randomly. The backpropagation
is executed iteratively [34]. In each iteration, a forward pass is calculated, which provides
the current computation error. Then, during the backward pass, weights are updated from
the output to the input layer. Based on the forward error and the chain rule the error gra-
dient are computed from the final towards the first layer. This procedure causes that the
error is dramatically decreased.
There are several modification of backpropagation algorithm, yet there remain strong
challenges. For instance, reaching the global error minimum is not guaranteed. The trai-
ning speed is also a limitation of this method, since the training is slowly converging.
To train a neural network, lasting multiple iterations may need substantial computation
resources.

1.1.3.3/ RECURRENT NEURAL NETWORK TRAINING

Training a RNN is similar to train a feedforward neural network with a large number of
hidden layers. Figure 1.4 illustrates a RNN. By using the map w, the input u(n) (in black
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arrow) and the recurrent feedback x(n) (in red arrow) are transferred. As a result the in-
put u(n), the recurrent feedback x(n) and the map w establish a recurrent layer, which
produces the internal network state x(n + 1). The result of this network state x(n + 1) is
considered as the input for the following layer. Eventually, the readout map wr returns the
network’s answer y(n + 1).

𝑢(𝑛) 𝑤 𝑤𝑟
𝑥(𝑛)

𝑥(𝑛 + 1) 𝑦(𝑛 + 1)

FIGURE 1.4 – Scheme of a simple RNN. w and wr are the map matrix and the readout
map, respectively.

Feedforward neural network can be constructed when the RNN is unfolded in time as
shown in Fig. 1.5. In this figure, we replicate the recurrent layer k times to display it in k
steps. The results with k layers get k inputs u(n), u(n + 1), ..., u(n + k − 1). As a result, the
internal state x depends on all the last inputs. This also demonstrated how RNNs store
the information from the previous inputs.

𝑢(𝑛) 𝑤𝑟
𝑤𝑥(𝑛)

𝑤 𝑤𝑢(𝑛 + 1)

𝑥(𝑛 + 1)

𝑢(𝑛 + 𝑘 − 1) 𝑥(𝑛 + 𝑘)
𝑥(𝑛 + 𝑘 − 1)

𝑦(𝑛 + 𝑘)

FIGURE 1.5 – Scheme of a RNN where w and wr are the map matrix and the readout map,
respectively. This network is unfolded in time for k time steps to construct a feedforward
neural network.

In order to train this network, we can apply the method which is known back-propagation
through time (BPTT). During the back-propagation, instead of propagating gradient
through the different layers, they are propagated through different time steps hence, gra-
dient can be increased or decreased at each time step. Unfortunately, this can be results
in vanishing or exploding gradients, respectively. Hence, due to potentially vanishing or
exploding gradients, there are difficulties to learn long-range temporal dependencies [35].
There are alternative solutions to this challenge such as teacher forcing [36]. As a results,
the computational expenses in RNNs’ training is typically larger than in feedforward neural
networks with the same number of layers.

1.1.3.4/ UNSUPERVISED LEARNING

In unsupervised learning, there is only input data and no output target value. The goal
is to modify statistical structure or distribution of the injection information based on auto-
nomous optimization to learn more about the input information. The most common unsu-
pervised learning problem is clustering where it is attempted to separate data into groups
such as category, class and cluster. Another typical unsupervised is association rules in
which relationships between variables are analyzed.
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1.1.4/ RESERVOIR COMPUTING

Around the year 2000, two approaches were proposed to solve the problems of training
complexity and slow convergence in RNN training [37]. These concepts could increase
the performances of RNNs by only training the output weights. There were mainly two
approaches considered:

• Liquid state machines (LSMs) are spiking and more biologically inspired networks
which were introduced by Maass [38].

• Echo state networks (ESNs) consist of discrete-time analogue sigmoidal or hyper-
bolic tangent neurons. This concept was introduced by Jaeger [35].

By two solutions above, the number of trained weights is reduced and training corres-
ponds to a single step matrix inversion. As a result, RNNs learning was simpler and the
expenses were reduced. Both concepts, the LSM and ESN were later unified under the
umbrella term Reservoir Computing (RC). The principal scheme of RC as illustrated in
Fig. 1.6 consists of [39,40]:

• The input layer: randomly maps the inputs to the internal nodes of the reservoir.
• A recurrent system (reservoir): non linearly transforms the data according to its

internal connectivity.
• Output layer: linearly recombines the internal states of the reservoir.

𝑤𝑖

𝑤

reservoir
output 
layer

input 
layer

𝑤𝑟

FIGURE 1.6 – The architecture of a reservoir computer consist of: an input layer, the
reservoir, and an output layer. Data are masked with a randomly generated mask wi,
then the second layer with random connections called reservoir, and the third layer which
obtained by multiplication with readout matrix wr.

Reservoir computers can non-linearly map the injected information surprisingly in a large
dimensional space, which shows their high computational power. Reservoirs are usually
established of hundreds of nodes or neurons to make an area with higher dimensionality,
which can increase the chance of good performance [41]. Optical systems can provide
benefits in ANNs. In next sections, we will represent the benefits of photonic neural net-
works, followed by the discussion of two common typologies for photonic RC.

1.2/ PHOTONIC NEURAL NETWORKS

Hardware implementations of ANNs in optical systems have along history. Optical sys-
tems have advantages such as high processing speed due to the high speed in optical
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devices. Artificial neural networks require a large connectivities in a small area to dis-
tribute the state of one node to several other fully in parallel [8], this can be possible
by photonic systems. Interestingly, different approaches are successfully investigated in
order to connect the photonic nodes and control the weights [42, 43]. Optical devices
are also capable of establishing the nonlinear nodes and so the new implementations
of this operation [44]. For instance thin films optical amplifiers and optical bistability are
introduced because of nonlinear performance [45]. Different optical devices are represen-
ted in neuromorphic computing, including semiconductor Laser [46], saturable absorber
laser [47], semiconductor optical amplifiers [48], photo-detectors [49], grating [50] and
modulators [51]. All the systems above have demonstrated abilities of ANNs to process
the information, these modern implementations and concepts constantly being published
for better and larger implementations. This shows the high interest, potential and future
of the optical computing with ANNs. There are two common typologies for photonic RC:
first, system using the time delay reservoir (TDR) concept to create a reservoir by using
a single nonlinear element coupled to a linear delay line and temporal multiplexing [52],
second, spatio-temporal reservoirs where the each network neuron is implemented with
a separate photonic components, and the network is multiplexed in space [8]. We will
describe both typologies in next sections.

1.2.1/ PHOTONIC DELAY RESERVOIRS

In previous section, we discussed the importance and interest for optical ANNs implemen-
tations. One of the approaches of RC is known as a delay-based RC [52]. This concept is
of particular interest because it can be implemented via a single nonlinear node instead
and a delay line. The approach makes use of the high dimensionality of delay systems
to create the state space required for RCs. By using time multiplexing, the neurons in
reservoir layer are emulated, typically during one delay interval.
An example scheme of a hardware optoelectronic RC is shown in Fig. 1.7 [53]. The red
parts in scheme 1.7 show the optical parts, the green elements the electrical parts. A la-
ser as a continuous source light is located behind a Mach-Zehnder modulator (MZ) which
is used to provide a nonlinear transformation (sin2), and the delay loop in this setup is a
fiber spool. At the output of the fibre spool, a photodiode converts the light intensity to a
voltage. The output voltage from the photodiode is combined with an input voltage which
encodes the input information (generated by a function generator). The obtained result is
amplified, then used to drive the intensity modulator. A bias offset ϕ is adjusted by using
a DC voltage to change the operating point of the MZ modulator. After the photodiode, a
digitizer (oscilloscope) records the response of the system.
The schematic illustration in Fig. 1.7 demonstrates the various stages of processing of
the reservoir nodes and inputs. The internal state of the reservoir is x(t). After a temporal
retardation by delay τ, data will be x(t − τ). The input information u(t) is injected with an
input gain β. The input information is combined with data from previous node state x(t−τ).
Then the established signal is amplified by the value α. Function sin2 has been chosen
as nonlinear function to establish new state reservoir. This reservoir state can be written

x(t) = sin2 (αx(t − τ) + βu(t) + ϕ) . (1.9)

All the network states are gathered in readout section, then they are multiplied by res-
pective weights W, finally they are added together to obtain the successful output. This
hardware reservoir was applied in nonlinear channel equalization [54] and speech re-
cognition [55–57]. The excellent obtained results from these experiments illustrated its
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𝛽
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FIGURE 1.7 – Scheme of an optoelectronic delay RC. There are two fundamental parts
in this scheme. Optical and electrical parts are in red and green respectively. An optical
fibre is used to create the delay loop. The input information is produced by computer and
injected to the system by AWG (arbitrary waveform generator). The digitizer (oscilloscope)
records the response of the system.

relevance on tasks of practical importance. Moreover, the information processing was
enough fast for real time information processing. By re-optimizing the output layer (new
readout weight Wr) and by changing operating points (the feedback gain α, the input gain
β, and possibly the bias ϕ), these reservoirs can be used for different tasks.

1.2.2/ PHOTONIC SPATIO-TEMPORAL RESERVOIRS

Here, I will introduce an optical RC where the reservoir is extended in space. Spatially
extended of optical neural networks are a well established concept [52, 58, 59] and in-
terest idea grew fast due to, first, the possibilities of realizing photonic neural networks
with numerous nonlinear nodes fully in parallel [42,58], second, the high connectivity that
could be achieved with optical systems because, optical fields can cross without interac-
ting [60,61].
One benefit of a spatially extended reservoir is that the nodes respond simultaneously
to injected information, and such the network therefore avoids the speed limitation which
occurred because of time multiplexing in time delay system [62]. A spatially multiplexed
photonic reservoir has to consist of a network of photonic nonlinear elements for which
we are able to extract the information for the final output. This network should consist of
a large number of nonlinear nodes to solve difficult tasks, and additionally all nodes need
to be able to potentially exhibit nonlinear dynamics.
In Chapter 5, a spatially extended large optical reservoir in an experiment will be introdu-
ced and developed. To develop this reservoir, we investigate experimentally, numerically
and analytically the fundamental limits to the size of this photonic network from Chapter
2 to Chapter 4. In chapter 5, I will present a reservoir with almost 103 nonlinear nodes,
interconnected with neighboring nodes by using a single passive optical element and we
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will apply the learning techniques to optimize the output weights. As a result, this system
will be successfully trained to predict the chaotic Mackey-Glass (MG) timeseries and will
report on most recent results [8].

1.3/ CONCLUSION

Neural networks have a biologically neuro-inspired origin. Artificial neural networks the-
refore try to mimic the most basic structures of brain. Neuron was modeled in ANNs. One
of the basic ANNs that was explained in this Chapter is feedforward neural networks with
three layers: input layer, hidden layer and output layer, where connections are created
from one layer to the following layer. Such feedforward neural networks are memory-less.
Another ANNs in this Chapter was RNN consisting of three layers: input, recurrent, and
output layer. In RNNs, there are connectivity among neurons in the hidden layer, also
referred to as self connections or cyclic connections. In RNNs, information store in its’
dynamical state which creates an internal memory. The internal state of RNN depends
on current and previous inputs.
To use a physical system as a neural network, it is necessary to apply learning rules.
These learning rules optimize the configuration to solve a particular task. We presented
supervised learning vice-versa unsupervised learning and I described feedforward neural
network training and RNN training to minimize an ANN’s computing error.
While RNNs are powerful, their training algorithm is neither simple nor quick. For this
reason RC was developed in the communities of ANN and neuro-science to solve the
mentioned problems. Reservoir Computers have three layers: input layer, reservoir layer
and readout layer. Random connections and that training only modifies the readout. In
this Chapter, two photonic reservoirs were introduced. Photonic delay reservoirs use a
delay system to create the state space for RC. This hardware was successfully used in
nonlinear channel equalization and speech recognition. In addition, this setup was fast
for real time information processing. Furthermore, I described the optical spatial reser-
voir. In this reservoir we explained the benefits and challenges in compared with delay
reservoir. We will develop and realize a photonic spatio-temporal reservoir in Chapter 5
of this thesis. But first, I will explain the fundamental limits to the size of this photonic net-
work analytically, experimentally and numerically in Chapter 2 to 4. Then, we will describe
completely in details the setup of photonic spatio-temporal reservoir in Chapter 5.
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DIFFRACTIVE COUPLING

In the previous chapter, we explained the objective for developing an optical hardware
neural network. The main concept to create the connectivity in an optical ANN to be
demonstrated in this Thesis is based on diffractive coupling, we therefore the principle
ideas and concepts of scalar diffraction theory. At the end of this chapter, we will describe
the diffractive coupling technique used in our optical neural network.

2.1/ THEORY OF DIFFRACTION

The motivation of this section is to start from Maxwell equations and derive the main equa-
tions and consequences of the diffraction theory. The goal is to explain the assumptions
of the different theoretical models for light such that we are able to derive an adequate
description of the diffractive coupling concept. During the explanation of theoretical mo-
dels, we will introduce the following different important notions: plane waves, spherical
waves, the Huygens principle, the Fresnel integral and the plane-wave spectrum [63,64].

2.1.1/ MAXWELL’S EQUATIONS

Maxwell’s equations are the starting point of our reasoning. This set of coupled partial
differential equations describes the spatial and temporal evaluations of electromagnetic
fields [65,66]

∇ · D = ρ (2.1)

∇ · B = 0 (2.2)

∇ × H −
∂D
∂t

= J (2.3)

∇ × E +
∂B
∂t

= 0 (2.4)

where E is the electric field vector, H is the magnetic field vector, B is magnetic induction
and D electric displacement, ρ is charge density and J is electric current density. Equa-
tions 2.1 and 2.2 characterize the divergence properties of fields, whereas Eq. 2.3 and
Eq. 2.4 treat the coupling between magnetic field and electric fields.
Vector quantities are the basic field vectors such as electric field: E = (Ex, Ey, Ez) and ma-
gnetic Field: H = (Hx,Hy,Hz). Whereas D and B are describing the influence of matter on

15
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the electromagnetic fields such as electric displacement: D = (Dx,Dy,Dz) and magnetic
induction: B = (Bx, By, Bz). Maxwell equations therefore connect the five basic quantities
E, H, B, D and J and the temporal derivatives of E and B. To allow a unique determina-
tion of the field vectors from a given distribution of currents and charges, these equations
must be supplemented by relationship which describe the behavior of matter under the
influence of the field, which are also known as constitutive relations. If the material is
isotropic, linear and homogeneous, they take the relatively simple form

J = σE (2.5)

D = εE (2.6)

B = µH (2.7)

where σ is called the conductivity, ε is the dielectric permittivity of the medium and µ

is the magnetic permeability of the medium. Those quantities characterize the response
of a medium to an electric and magnetic excitation. In many situations they are more
complex, for example when the medium is inhomogenous, non-isotropic and non-linear.
Indeed, if the medium is inhomogenous medium, these quantities are dependant of the
spatial coordinates. If the medium is non-isotropic, these quantities become tensors and
if the medium is non-linear, these quantities become functions of the fields’ amplitudes.
For the following, we will consider a non-magnetic medium. In this kind of medium, the
magnetic permeability of the medium is the magnetic permeability of the vacuum µ0

µ = µ0. (2.8)

Moreover, we will consider neutral medium (ρ = 0) without free current density (J = 0).

2.1.2/ PROPAGATION EQUATION

In this section, we will derive propagation equations from Maxwell’s equations. In Eq. 2.3,
the temporal variation of the electric displacement vector is linked to the spatial varia-
tion of the magnetic field vector [66]. In Eq. 2.4, the temporal variation of the magnetic
induction vector is linked to the spatial variation of the electric field vector, and we want
to obtain differential equations which each of the basic fields must separately satisfy. For
that purpose, we substitute for B from the constitutive Eq. 2.7 into the Eq. 2.4, and we
divide both side by µ0 and apply the Curl operator

∇ × (
1
µ0
∇ × E) + ∇ ×

∂H
∂t

= 0. (2.9)

In parallel, we differentiate Eq. 2.3 with respect to time and use the constitutive Eq. 2.6
for D. We replace

(
∇ × ∂H

∂t

)
in Eq. 2.9 by ( ε∂

2E
∂t2 ) and obtain the following equation

∇ × (
1
µ0
∇ × E) +

ε∂2E
∂t2 = 0. (2.10)

Using the vector identity ∇ × (∇ × U) = ∇(∇ · U)–∇2U we obtain the following equation

∇2E − εµ0
∂2E
∂t2 = 0. (2.11)
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Equation 2.11 is called the propagation equation. It links the spatial and temporal varia-
tions of the electric field in an homogeneous medium. In a similar manner, the propagation
equation for the magnetic field can be obtained

∇2H − εµ0
∂2H
∂t2 = 0. (2.12)

2.1.3/ SCALAR PROPAGATION EQUATION

In our work, we will consider only linear polarisation and can therefore describe the elec-
tric field by a scalar function E(r,t)

E(r, t) = E(r, t)u0, (2.13)

where u0 is a unit vector which indicates the polarization axis. Thus, we can write the
scalar propagation equation for the function E(r,t)

∇2E − εµ0
∂2E
∂t2 = 0. (2.14)

2.1.4/ HELMHOLTZ EQUATION

The Helmholtz equation represents a time-independent form of the propagation equation.
It can be derived Helmholtz equation by applying the technique of separation of variables
in order to reduce the complexity of the analysis. We consider an electric field in which
we assume that the function E(r, t) is in fact separable according to

E(r, t) = A(r)C(t), (2.15)

where A(r) is an amplitude term which depends only on spatial position r, and C(t) is an
amplitude term which depends only on time. In order to obtain a time-independent form,
we will consider a monochromatic wave

C(t) = e jωt, (2.16)

and the scalar propagation Eq. 2.14 becomes

∇2A + ω2εµ0A = 0, (2.17)

which is the scalar Helmholtz equation. This equation describes the spatial evolution of a
monochromatic field in a medium with a dielectric permittivity ε.

2.1.4.1/ PROPAGATION OF PLANE-WAVES

The simplest solution to the Helmholtz equation is a plane wave. Plane waves carry a
given amount of energy per area per time that depends on the amplitude of the electric
and magnetic fields [67,68]. Plane waves are produced by a monochromatic point source
located at infinity. Figure 2.1 consists of the blue planes as positive amplitude planes
whereas red ones as negative amplitude planes. In Fig. 2.1 the field is oscillating in x and
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𝑥

𝑦

𝑧

zero-crossing

wave fronts

FIGURE 2.1 – Structure of a plane wave. Blue planes are positive amplitude planes. Red
planes are negative amplitude planes. Black sine wave shows the direction of plane wave
propagation in z. In zero-crossing point the sign of a mathematical function changes (from
positive to negative).

y direction, and spatial variation only happens along propagation axis z. Such types of
waves are called transversal waves.

Plane waves are characterised by an amplitude and a phase. The amplitude is the peak
magnitude of the oscillation (±M) as shown in Fig. 2.2(a). The phase of the wave corres-
ponds to the position along the propagation direction z. If we think of a wave as having
local maxima and minima with a zero-crossing between them, the relative phase of the
wave is defined from a reference (for example the first zero-crossing) and a considered
point. The notion of phase is shown in Fig. 2.2(a) in time for a fixed spatial position. The
difference between two maxima in time defines the period of the wave T , and frequency f
is the inverse of the period and characterised the number of period per second, whereas
wave’s angular frequency is defined by ω = 2π

T . The notion of phase is shown in Fig. 2.2(b)
in space at a given time. Mathematically, a plane wave is written as a constant amplitude
term M modulated by a complex exponential

E(z, t) = Mei(ωt−kz). (2.18)

To be a solution of the Helmholtz Eq. 2.17, the wave number k must be equal to

k2 = ω2εµ0. (2.19)

We define the dielectric permittivity as follows

ε = εrε0, (2.20)

where εr is a relative permittivity specific to the medium and ε0 is the vacuum permitti-
vity. Since the velocity of light in vacuum is defined as c = 1/

√
ε0µ0, the wave number k

becomes

k =

√
εrω

c
. (2.21)

The refractive index n of a medium is

n =
√
εr, (2.22)
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and thus, wavenumber k becomes
k =

nω
c
. (2.23)

The wavelength λ inside the medium is directly linked to the wavenumber by

λ =
2π
k
, (2.24)

where k is the wave’s wavenumber and distance between the peaks is given by wave-
length λ. Equation 2.23 is known as the dispersion relation of a plane wave in a medium
of refractive index n. It allows to link the optical oscillation with angular frequency ω to the
wave number in the medium k.

𝐸(𝑧0, 𝑡)

𝐸(𝑧, 𝑡0)

T

𝜆

⍵ =
2𝜋

𝑇
, f =

1

𝑇

𝑘 =
2𝜋

𝜆

M
-M

(a)

(b) 𝑧

𝑡

FIGURE 2.2 – (a) Amplitude and phase of a plane wave for a given spatial positions. The
time between two peaks is T , so angular frequency is 2π

T . (b) Amplitude and phase of a
plane wave at a given time. Distance between two peaks is λ, so the wave number is 2π

k .

The superposition principle states that in linear systems the net response caused by two
or more stimuli is the sum of the responses to each stimulus individually. Therefore, if A1
and A2 are a solution of the Helmholtz equation, then A1 + A2 will have a solution. As a
single plane wave is a solution for the Helmholtz equation, then the same therefore is true
for the sum of plane waves. Furthermore, any complex beam can be decomposed into a
sum of plane waves. Consequently, if we are able to decompose a complex optical beam
into a sum of plane waves, we can find of the complex beam propagation according to
Helmholtz equation. Monochromatic plane waves are the most simple solution, however,
more complex solutions do exist.

2.1.4.2/ VELOCITY OF LIGHT IN A MEDIUM

The phase of the plane wave in Eq. 2.18 by setting ϕ = ωt − kz can be written

ω

k
=

∆ϕ
∆t
∆ϕ
∆z

=
∆z
∆t

= vp, (2.25)
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here vp is the phase velocity of a plane wave in a medium. From Eq. 2.23, we therefore
obtain

vp =
ω

k
=

c
n
. (2.26)

For a known n one therefore can obtain the phase’s velocity of propagating in the medium.
The dielectric constant ε is usually greater than unity. Consequently, a wave propagates
slower in a medium than in vacuum.

2.1.5/ HUYGENS PRINCIPLE

There are two traditional ways to find the main results of scalar diffraction theory for the
Rayleigh-Sommerfeld diffraction integrals:

1. The first way is based on the Green theorem to deduce the Kirchhoff diffraction
integral from the Helmholtz equation.

2. The second way is based on the Huygens principle. In this thesis, we implement
the Huygens principle to obtain the Rayleigh-Sommerfeld diffraction integrals, the
Fresnel diffraction formula and the Fraunhofer diffraction formula.

To understand the Huygens principle, we start from the notion of a wave front [69,70]. The
wave front is an imaginary line joining points on a wave that are in phase. Three black
lines in Fig. 2.3 illustrate the fronts created by the shown waves. The distance between
each wave front is λ. The Huygens principle states that every point on a wavefront is itself

𝜆

FIGURE 2.3 – Wave front description. Distance between the peaks is wavelength λ.

the source of a spherical wavelet. There is a point where all of these spherical wavelets
touch and form a line, which is the next wave front or the future position of the wave.
When the plane waves go through a slit (see Fig. 2.4), the points on the plane wave inside
the slit therefore emit spherical wavelets. We will describe this phenomenon by starting
from a simple plane wave

E(r) = eikr, (2.27)

where r is the distance between the point source and the observation point. Physically,
we observe that the amplitude of the wave decreases with distance, and therefore we
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include another factor
E(r) =

1
r

eikr. (2.28)

We can describe this effect of wave propagation by including a factor cos(θ) which was
derived from Green’s function and the first Rayleigh Sommerfeld solution

E(r) =
cos(θ)

r
eikr, (2.29)

where θ is the angle between the Z axis and and r. This can be rewritten more convenient
using cos(θ) = z

r , hence

E(r) =
z
r2 eikr. (2.30)

We will apply Eq. 2.30 in the Rayleigh-Sommerfeld integral in next section.

𝜆

X

Z

𝑟

𝑥

𝛳
𝑧

FIGURE 2.4 – Huygens principle. Every point on a wave front acts as an independent
source to generate wavelets for the next wave front. Propagation of light is in Z direction
and distance between two wave fronts is λ. Where waves approaches a barrier with a
small slit, the points of plane waves emit spherical wavelets.

2.1.6/ RAYLEIGH-SOMMERFELD INTEGRAL

While the boundary conditions on the field strength and the normal derivative are required
to be imposed in Kirchhoff theory, Sommerfeld eliminated these necessities in the Ray-
leigh Sommerfeld theory. For instance in Fig. 2.5, the Rayleigh-Sommerfeld integral adds
the contributions from all point sources in one plane to find the field in another plane that
is separated by distance z. Using x

′

1 and y
′

1 to denote two dimensional position vector in
source plane, and x and y denote the two dimensional position vector in the observation
plane [71,72], the distance between position (x

′

1, y
′

1) and position (x, y) is given by r which
we can calculate. To find the total field at the observation point (x1, y1), we simply integrate
over all the point sources in the plane source z

′

= 0 is therefore

E(x1, y1, z) =
1
iλ

∫ ∫
E(x

′

1, y
′

1, 0)
z
r2 eikrdx

′

1dy
′

1, (2.31)
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with
r =

√
(x1 − x′1)2 + (y1 − y′1)2 + z2, (2.32)

where the term ( z
r2 eikr) was obtained from Eq. 2.30 in the last section.

𝑦′

𝑥′

𝑥

𝑦

𝑧

𝑟
𝑥1
′ 𝑥1

source plane

observation plane

, 𝑦1
′ , 𝑦1

FIGURE 2.5 – Source plane and observation plane used in the Rayleigh-Sommerfeld
integral, where x

′

1 and y
′

1 are position vector in source plane, x and y are the position
vector in the observation plane. The distance between position (x

′

1,y
′

1) and position (x, y)
is given by r.

2.1.7/ FRESNEL DIFFRACTION INTEGRAL

The Rayleigh-Sommerfeld integral is our starting point to deduce the well known Fresnel
and Fraunhofer formulas [66, 73, 74]. Our aim is to simplify the Rayleigh-Sommerfeld
integral Eq. 2.31 under the assumption that the propagation distance z is larger than
the range of the transverse coordinates (x

′

1, y
′

1). In particular, with this assumption we
can simplify the expression for r. As we see r occurs twice in the integral. One in the
denominator and once in the complex exponential. In the denominator we can employ
the following approximation

1
r2 ≈

1
z2 , (2.33)

and can therefore rewrite r from Eq. 2.32 as follow

r = z

√
1 +

(x1 − x′1)2 + (y1 − y′1)2

z2 . (2.34)

By using a first order Taylor expansion (
√

1 + a = 1 + a
2 −

a2

8 + ...), we can approximate Eq.
2.34 as

r ≈ z

1 +
(x1 − x

′

1)2 + (y1 − y
′

1)2

2z2

 , (2.35)

which we can expand r in four terms

r ≈ z +
x2

1 + y2
1

2z
+

x
′2
1 + y

′

1

2z
+
−x1x

′

1 − y1y
′2
1

z
. (2.36)
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By inserting the simplified expression for r of (Eq. 2.36) into the Rayleigh-Sommerfeld
integral (Eq. 2.31), we obtain

E(x1, y1, z) =
eikzeik x2

1+y2
1

2z

λzi

∫ ∫
E(x

′

1, y
′

1, 0)eik
x
′2
1 +y

′2
1

2z eik
−x1 x

′

1−y1y
′

1
z dx

′

1dy
′

1. (2.37)

Since k = 2π
λ , we can write

E(x1, y1, z) =
eikzeik x2

1+y2
1

2z

λzi

∫ ∫
E(x

′

1, y
′

1, 0)eik
x
′2
1 +y

′2
1

2z e−2πi
(
x
′

1
x1
λz +y

′

1
y1
λz

)
dx
′

1dy
′

1. (2.38)

Inside of integral in Eq. 2.38, there are two terms which depend on the integration va-
riables. The first term is a quadratic phase factor, the second one the complex exponen-
tials which has similarities with the definition of Fourier transform

F { f (t)} ≡
∫

f (t)e2πiωtdt. (2.39)

By using the Fourier transform definition, we can therefore rewrite Eq. 2.38

E(x1, y1, z) =
eikzeik x2

1+y2
1

2z

λzi
F

E(x
′

1, y
′

1, 0)eik
x
′2
1 +y

′2
1

2z

 ( x1

λz
,

y1

λz

)
, (2.40)

and this equation is known as the Fresnel diffraction integral.

2.1.8/ FRAUNHOFER DIFFRACTION INTEGRAL

If the propagation distance z is much larger than the transverse distances (x
′

1, y
′

1), then
the quadratic phase factor inside the Fourier transform’s argument in Eq. 2.40 can be
ignored. Thus, the propagated field E(x1, y1, z) is simply the Fourier transform of initial
field multiplied by a simple factor

E(x1, y1, z) =
eikzeik x2

1+y2
1

2z

λzi
F

{
E(x

′

1, y
′

1, 0)
} ( x1

λz
,

y1

λz

)
. (2.41)

Equation 2.41 is known as the Fraunhofer diffraction integral [75, 76]. which is the com-
mon approximation for the optical far field.

2.2/ PLANE-WAVE SPECTRUM

In this section, we will describe the plane-wave spectrum. This approach will be used in
the numerical simulation of the following Chapters. We will derive this method from the
Helmholtz equation Eq. 2.17. At the end of this section, we will create the link between
the plane-wave spectrum and the other approaches (typically Fresnel integral) [77,78].
First, we consider the propagation of an electromagnetic wave E(x, y, z) in z direction bet-
ween z = 0 and z. We can write the two dimensional Fourier transform as follows

E(u, v, z) ≡
∫ ∫

E(x, y, z) · e−2πi(ux+vy)dxdy. (2.42)
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In the same frame of mind, we can define the inverse Fourier transform E(u, v, z)

E(x, y, z) ≡
∫ ∫

E(u, v, z) · e2πi(ux+vy)dudv, (2.43)

where u and v are respectively the spatial frequencies in the x and y direction. Starting
from Helmholtz equation Eq. 2.17 to describe the propagation of the field E(x, y, z) in z
direction (

∇2 + k2
)
· E(x, y, z) = 0, (2.44)

we can express the field as function of its Fourier transform (Eq. 2.43)

∇2
(∫ ∫

E(u, v, z) · e2πi(ux+vy)dudv
)

+ k2
(∫ ∫

E(u, v, z) · e2πi(ux+vy)dudv
)

= 0. (2.45)

By performing the transverse spatial derivatives, Eq. 2.45 becomes

∂2E
∂z2 (u, v, z) + k2(1 − λ2u2 − λ2v2) · E(u, v, z) = 0, (2.46)

for which the mathematical solution simply is

E(u, v, z) = E(u, v, 0)eikz
√

1−λ2u2−λ2v2
. (2.47)

Equation 2.47 shows in particular that the propagation of a complex electromagnetic wave
is simple in Fourier space. To propagate a field in Fourier space, we just have to multiply
the initial field E(u, v, 0) with eikz

√
1−λ2u2−λ2v2 . The plane-wave spectrum method is based on

Eq. 2.47. The propagation of a optical field based on this method can be summarized in
3 steps:

1. Calculate the Fourier transform E(u, v, 0) of the initial field E(x, y, 0). The idea of the
Fourier transform is a plane wave decomposition: it explains notably the name of
the method plane-wave spectrum.

2. Multiply the field E(u, v, 0) in the Fourier space with factor eikz
√

1−λ2u2−λ2v2 (see Eq.
2.47).

3. We can go back in the direct space (x, y) with the inverse Fourier transform to have
access to the propagate field E(x, y, z).

Finally, the plane-wave spectrum is a more general approach than Fresnel diffraction
integral of Eq. 2.40 and Fraunhofer diffraction integral of Eq. 2.41. Indeed, these integrals
can be derived from the plane-wave spectrum. Because of its simplicity and accuracy, the
plane-wave spectrum is in particular well suited for our problem.

2.2.1/ STEPS OF PLANE-WAVE SPECTRUM FOR PROPAGATION

In last section, we introduced the 3 summarized steps to propagate the field by the
plane-wave spectrum. In this section, we investigate these steps in details to find the
function and the algorithms for our numerical simulation:

1- The first step starts with the initial field distributed along x and y as E(x, y, z = 0) and to
calculate the Fourier transform of this field E(u, v, z = 0). Fourier methods are also widely
used for numerical computations [79]. For this reason we will describe Fourier transform
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further in next part.
The Fourier transform is a mathematical operation which transforms data from a spatial
or time domain into a frequency domain. For any function f (x), the Fourier transform can
be defined F(u) [80, 81]. The Fourier transform in continuous space or time is known as
continuous Fourier transform. In this thesis, we measure x in space so u corresponds to
inverse space or spatial frequency. The Fourier transform is defined by

F(u) ≡
∫ +∞

−∞

f (x)e−2πiuxdx, (2.48)

which is a harmonic function which can be considered as sum of the plane waves with dif-
ferent amplitudes, frequencies and phases. In Eq. 2.48, f (x) is relative amplitude and the
term e−2πiux is the plane waves. In two dimensions the continuous Fourier transformation
is given by

F(u, v) ≡
∫ +∞

−∞

f (x, y)e−2πi(ux+vy)dxdy, (2.49)

where the variables x and y represent space, u and v are their corresponding spatial
frequencies.
Next, we introduce a discrete version of the Fourier transform. In that case, we deal with
signals which are discretely sampled, usually at constant intervals. For such data, only
a finite number of sinusoids is needed and the Discrete Fourier Transform (DFT) is the
corresponding operation [82, 83]. For all Fourier transform theorems, there are related
theorems for the DFT. To use the DFT we sample the data points at a sufficiently high
rate. The DFT of N uniformly sampled data points xi where i = 0, 1, ...,N − 1 is determined
by

Xk =

N−1∑
i=0

x je−2πi jk/N , (2.50)

if the signal is sampled uniformly, then the frequency corresponding to one-half that rate
is called the Nyquist frequency as [84–88]

νN/2 =
1

(2∆x)
. (2.51)

The sampling rate of ( 1
∆x ) is known as Nyquist rate, where ∆x is the largest allowed spa-

cing between samples to still reconstruct correctly a signal. If discrete sampling is below
the Nyquist frequency (insufficient sampling) aliasing will appear, which results in incor-
rect frequencies and/or amplitudes [89]. The Fast Fourier transform (FFT) algorithm is
using to translate the DFT in our codes [90, 91]. In our numerical simulation, we use the
algorithm of (FFT) to transfer our initial signal in spatial domain into frequency domain.
Fourier transform has a significant property (the inverse transform) which can be deter-
mined by

f (x) ≡
∫ +∞

−∞

F(v)e2πivxdv, (2.52)

and in two dimension

f (x, y) ≡
∫ +∞

−∞

F(u, v)e2πi(ux+vy)dudv. (2.53)

In two dimensions the discrete Fourier transform is

x j =

N−1∑
k=0

Xke2πi jk/N . (2.54)
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To compute DFT from the Eq. 2.54, another algorithm is introduced. By using the algo-
rithm (F−1), we are able to achieve the result in space domain numerically.

2- The second step applies the eikz
√

1−λ2u2−λ2v2 phase shift for each spatial frequency
component at a position z. This term was obtained by the non-paraxial plane-wave
spectrum. In this section, we explain that how we derive the phase shift numerically.
We therefore calculate this term also in paraxial approximation, allowing to make a
comparison between both results.

Paraxial approximation

The paraxial approximation corresponds to the linear approximation of geometric optics
valid under certain conditions. One of these conditions is that the incidence angles of rays
with regards to the optical axis of an element are small. For obtaining analytical solutions
it is often necessary to apply these approximations in order to simplify the equations
[92–94]. However, in numerical implementations we can use the non-paraxial form. In this
part we start calculating the propagation of a plane wave in paraxial situation [95]. The
phase shift of each plane wave is simply kr~r, with vector r in one dimension x illustrated
in Fig. 2.6. Integrating the propagated plane wave in z direction can then be written as

𝜃

𝒛

𝒙

𝒓

FIGURE 2.6 – Vector ~r in the coordinate system x and z. The plane wave propagates along
z direction and θ is the angle between vector ~r and z component.

E(x, z) =

∫
E(v)eikr~rdr, (2.55)

which we can transform into the relevant dimensions by rewriting ~r according to

E(x, z) =

∫
E(v)eik(x sin θ+z cos θ)dθ. (2.56)

This is commonly substituted by the Taylor approximations according to sinθ = θ or cosθ
= 1 - θ2

2 [96]

E(x, z) =

∫
E(v)eik(xθ+z(1− θ

2
2 ))dθ. (2.57)

By comparing Eq. 2.52 and Eq. 2.57, we find the relation between θ and v as (θ = λv),
which leads to

E(x, z) = e
i2πz
λ

∫
E(v)ei2πxve−iπzλv2

dv. (2.58)
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Equation 2.58 can be rearranged to

E(x, z) = e
i2πz
λ F−1

{
E(v)e−iπzλv2}

, (2.59)

which in two dimensions corresponds to the paraxial approximation according to

E(x, y, z) = e
i2πz
λ F−1

{
E(u, v)eiπzλ(−u2−v2)

}
. (2.60)

Non-paraxial propagation

In numerical calculations the increased complexity for fully applying the sin θ or cos θ terms
in Eq. 2.56 is small. Also, later target will show a high sensitivity to the precise position in
space x and y. Hence, we will introduce the plane wave in non-paraxial propagation along
z [97]. In Eq. 2.56, we replace (cos θ) with (

√
1 − sin2 θ)

E(x, z) =

∫
E(v)eik(x sin θ+z

√
1−sin2θ)dθ. (2.61)

By comparing Eq. 2.52 and Eq. 2.61 the relation between angle θ and spatial frequency
v is (sin θ = λv), which leads to

E(x, z) =

∫
E(v)ei2πxveikz

√
1−λ2v2

dv, (2.62)

and a numerical implementation according to

E(x, z) = F−1
{
E(v)eikz

√
1−λ2v2

}
. (2.63)

In the (x, y)-plane, beam propagation along the z-direction is therefore computed accor-
ding to

E(x, y, z) = F−1
{
E(u, v)eikz

√
1−λ2u2−λ2v2

}
. (2.64)

By comparing to Eq. 2.60 and 2.64, we can see the obvious difference between
propagated plane wave in paraxial approximation and non-paraxial. In the diffractive
coupling context to be introduced later, we need an accuracy of around 1 µm in the
coupling position. For a focal distance of 18 mm, this corresponds to an angle accuracy
of θ = tan−1( 1×10−6

18×10−3 ) = 0.003 radians, showing that the error between the angle in paraxial
approximations is larger than θ = 0.003 radians. Therefore, paraxial effects need to be
removed in the whole numerical simulation. As a result in second step, by multiplying the
obtained phase shift from Eq. 2.64 (non-paraxial propagation) and initial beam in Fourier
space, we propagate the beam E(u, v, 0) in the Fourier space and along z direction until
E(u, v, z).

3- The third step is a solution to transfer the propagated signal from Fourier domain
into space. For this reason we need to apply inverse Fourier from second step E(u, v, z)
to obtain E(x, y, z). By explained three steps above, in our numerical simulations in next
Chapters, we propagate our original beam in the defined distance. Therefore in our setup
in next Chapters wherever the propagation of beam is required, the three steps will be
applied.
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2.2.2/ EXAMPLE: DIFFRACTION BY GRATINGS

In this section, we intend to derive the grating formula. This example will be of relevance,
since our diffractive coupling is based on optical gratings. We will describe an intuitive
approach of the diffraction grating and finally we will demonstrate the grating equation
with the plane-wave spectrum method.

2.2.2.1/ THE OPTICAL GRATING IN RAY-OPTICS

A grating is an optical device composed of a periodic structures (transmission grating or
reflection grating), all spaced at the same distance, called the ”pitch” of the grating. In
general, any object with a periodic pattern on its surface can act as a grating. A grating
for visible light typically has a pitch in the order of the optical wavelengths [98,99].
A grating diffracts or splits light into several beams in different directions. Directions of
these beams depend on the wavelength of the light and the size of the slits and their spa-
cing (pitch). Those diffracted waves interfere with each other to give a diffraction pattern
on the screen [100–102]. The principle of the theoretical study of the grating is the same
as that of the Thomas Young’s slits, except that instead of having only two slits side by
side, we have a greater number, see Fig. 2.7.

D
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diffraction
grating

screen

FIGURE 2.7 – Diffraction of light on an optical grating. In the left side the diffraction grating
is located with period a. The right side is a screen to show the diffraction pattern. Distance
between diffraction grating and the screen is D.

In this first approach, we try to know precisely in which directions the diffracted waves
will interfere constructively. To do this, we study more precisely what happens for two
neighbouring slits as showed on Fig. 2.8. We assume that the distance D between the
grating and the screen is very large compared to distance a. The difference of distance
between the two diffracted waves in Fig. 2.8 is

δ = a sin θ, (2.65)



2.2. PLANE-WAVE SPECTRUM 29
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FIGURE 2.8 – Zoom on 2 slits in the optical grating. Distance between two slits is a. |δ|
is difference of distance between the two diffracted waves. Angle θ is the angle between
diffracted beam and optical axis.

where a is the grating period. The interference will be constructive on the screen for

δ = mλ, (2.66)

where m is an integer. From Eq. 2.65 and Eq. 2.66, the constructive interference is there-
fore characterised by

a sin θ = mλ. (2.67)

In case of a transmission grating where the incident angle θ0 is non zero, see Fig. 2.9, we
can calculate as

δ = mn − st, (2.68)

by replacing mn and st we obtain

δ = a sin(θ0) − a sin(| θm |), (2.69)

if θ0 > 0 then
δ = a sin(θm) − a sin(θ0), (2.70)

by applying Eq. 2.66 in Eq. 2.70 we write

sin(θm) − sin(θ0) = m
λ

a
. (2.71)

For a reflection grating, as shown on Fig. 2.10, the grating equation is

δ = mn − st, (2.72)

by replacing mn and st we have

δ = a sin(θm) − a sin(| θ0 |), (2.73)

if θ0 < 0 hence
δ = a sin(θm) + a sin(θ0), (2.74)
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FIGURE 2.9 – Diffraction of light on two slits of the transmission grating. θ0 is the incident
beam which is non zero. θm is the angle between diffracted beam and optical axis. On the
screen the diffractive orders −1, 0, 1 are established.

by applying Eq. 2.66 in Eq. 2.74 we write

sin(θm) + sin(θ0) = m
λ

a
. (2.75)
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FIGURE 2.10 – Diffraction of light on two slits of reflection grating. θ0 is the incident beam
which is non zero. θm is the angle between diffracted beam and optical axis. On the screen
the diffractive orders −1, 0, 1 are established.
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2.3/ PRINCIPLE OF DIFFRACTIVE COUPLING

In the previous section, it was demonstrated the main results of diffraction theory. Using
the plane-wave spectrum approach could deal with propagation in a uniform medium and
the diffraction of a wave by a periodically structured object. The previous sections will be
utilized to describe the principle of the diffractive coupling in this section, and ultimately
arrive at how to model the connections between neurons in our optical hardware network.
We implement a DOE, which will be considered as a transmission grating [103–105]. The
idea of diffractive coupling is relatively simple: a matrix of optical emitters is sent through
a grating (DOE), creating several diffractive orders [106–108]. Under certain conditions,
we can observe an overlapping between different orders of diffraction of different emitters.
This overlapping will be the basis of the coupling which defines the connectivity between
neurons in our optical hardware network. Coupling among the neurons means that the
states of the neurons affect the states of other neurons which separate information
throughout the network. To model analytically the diffractive coupling, we will split this
section in three parts. First, We present the scheme of diffractive coupling, the elements
and their spatial positions. Second, We analyze the system by deriving of the rules and
equations from the previous sections. We will explain the coupling procedure in a simple
example in two steps. Third, We present the results of a simple analytical simulation, for
explained configuration in the first part. This shows the principle and limits of diffractive
coupling.

The concept of our diffractive coupling is schematically illustrated in Fig. 2.11. This figure
is restricted to the y and z dimensions. The properties along x are identical to y and can
therefore be omitted for illustration-simplicity. In this figure, there is an array of discrete
optical emitters spaced in the (x, y)-plane with the period parray. So, we define a 2D array
of optical emitters such as Gaussian beam. The width of each emitter is w = 3.5 µm at
1
e2 , which is a common modal width for optical single mode emitters. The positions of
emitters inside the array is given by ri,j = parray, where i, j ∈ {−N,N} assign physical node
positions to integer indices.
Emitters are located at za a focal distance away from the first lens or microscope
objective (MO1). We use infinity-corrected MOs and emulate the DOE as a periodic
phase modulation with period of pDOE. The DOE is located at zDOE. After the DOE, all
diffractive orders are established. Each diffractive order has a spatial position along y.
At a distance ( f1 + D) of the emitters, the second microscope objective (MO2) is situated,
which images all diffractive orders onto the focal plane located at a distance of focal
length f2. The diffractive orders are located at the distance ( f1 +D+ f2) of the emitters. Ba-
sed on the spatial position of each diffractive order along y, we define the values 0,+1,−1
as illustrated in Fig. 2.11. For instance the blue circle at zm in the center got the value 0.
The upper diffractive order (blue circle) has the value +1 and the lowest one has value −1.

As shown in the Fig. 2.11, the analysis of diffractive coupling is the distribution of the
original emitter’s field across various diffraction orders in plane z = za. If microscope
objectives are ideal and without aberration we have a trigonometric equation for imaging

tan(Θim
i ) =

i · parray

f1
, (2.76)
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FIGURE 2.11 – Principle of diffractive coupling. Two emitters are imaged via f1 and f2,
where f1 is focal length of MO1 and f2 is focal length of MO2. The DOE is situated between
MOs and creates three discrete diffractive orders −1, 0 and +1. The width of emitters are
called w which is the Gaussian beam width at 1/e2. Θim

i is the angle between the principal
rays of neighboring emitters and Θdiff is the angle between diffractive orders. The distance
between two emitters is parray and between two diffractive orders is ddiff. ddiff

b is the distance
between orders m = 0 and m = −1 for emitter y0 in blue color. ddiff

r is the distance between
orders m = 0 and m = 1 for emitter y1 in red color.

where Θim is the imaging angle. Based on grating Eq. 2.71, we can write

sin(Θdiff
i,m ) − sin(Θim

i ) = m
λ

pDOE , (2.77)

where Θdiff is the diffraction angle after the grating. We can define a trigonometric equa-
tion for diffraction

tan(Θdiff) =
ddiff

f2
, (2.78)

where ddiff is distance between two diffractive orders. To understand better the procedure
of diffractive coupling, we will provide here an example. We consider an emitter being in
center of y with indice i = 0 in Fig. 2.11. In this figure, the emitter y0 is collimated in front
of MO1. After, collimated beam goes through the DOE. Next, light is diffracted from the
DOE in directions corresponding to 0,+1 and −1 (blue circles in Fig. 2.11). The second
microscope objective images the created diffractive orders in plane zm. In Eq. 2.76, in
location y0 we know parray = 0 therefore, Θim = 0 and for diffractive order in position m = −1
we rewrite Eq. 2.77 as

sin(Θdiff
0,−1) = −

λ

pDOE . (2.79)

Equation 2.78 for diffractive order m = −1 for the blue node is

tan(Θdiff
0,−1) =

ddiff
b

f2
, (2.80)
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where ddiff
b is the distance between orders m = 0 and m = −1 for emitter y0 in blue color

and (ddiff
b = 12.2 µm) which has the same value as our experiment and f2 = 45 mm, we

can compute

Θdiff
0,−1 = tan−1

(
12.2 · 10−6

45 · 10−3

)
= 0.27 radiant. (2.81)

Now by replacing Θdiff
0,−1 in Eq. 2.79 and λ = 660 nm, we can compute the DOE’s period as

pDOE =
660 · 10−9

sin(0.27)
= 2.4 µm. (2.82)

The values ( f1, f2, λ) from Fig. 2.11 were selected identical to our experimental setup,
which will be explained in the next Chapter. Now, we use the same process from the
example above for the emitter with indice i = 1 located at y1 = parray in Fig. 2.11. For this
emitter the established diffractive orders in zm are 0,+1 and −1 (in red color). In location
y1 = parray we know Θim , 0 so we can rewrite Eq. 2.76 as

tan(Θim
1 ) =

parray

f1
, (2.83)

where parray = ddiff
b , Eq. 2.83 is

(Θim
1 ) = tan−1

(
12.2 · 10−6

18 · 10−3

)
= tan−1

(
0.67 · 10−3

)
. (2.84)

In Fig. 2.11 and after the DOE, Eq. 2.76 for emitter located in y1 and m = 0 will be

sin(Θdiff
1,0 ) − sin(Θim

1 ) = 0. (2.85)

Equation 2.78 for red diffractive order in position m = 0 will be

tan(Θdiff
1,0 ) =

ddiff
r

f2
, (2.86)

from equation 2.85, we obtained sin(Θdiff
1,0 ) = sin(Θim

1 ). As a result, we adjust the angle
between the diffractive orders to the angle from collimating the emission of neighboring
nodes. We also calculated sin(Θim

1 ) in Eq. 2.84. So, the value of ddiff
r is

ddiff
r = tan(0.67 × 10−3) × 45 · 10−3 = 30.5 µm. (2.87)

The magnification effect of both MOs can be computed as

M =
f2
f1

=
45 · 10−3

18 · 10−3 = 2.5. (2.88)

By dividing our obtained result by magnification M, we obtain ddiff
r = 30.5·10−6

2.5 = 12.2 µm. In
imaged plane zm there will be overlapping for instance between −1 order (blue circle) from
y0 with 0 order (red circle) from y1. In this example we define a coupling criteria between
(diffractive order m = −1 from emitter i = 0) and (diffractive order m = 0 from emitter i = 1).
This criteria for coupling between diffractive orders can be defined as

|∆1| = |ddiff
r − ddiff

b |, (2.89)
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where |∆1| is the mismatch coupling between diffractive order m = −1 in blue circle and
diffractive order m = 0 in red circle, showed in Fig. 2.11. This value illustrates the coupling
mismatch between two mentioned diffractive orders. As we know in this example |∆1| = 0
and the two diffractive orders (blue circle in m = −1 and red circle in m = 0) have 100
percent overlap (coupling). As a result, coupling was optimized for the central emitter.
The goal of the last example in two steps was description of coupling with a simple
method. But the analytical computation of Fig. 2.11 is not limited to this simple example.
We require to calculate coupling mismatch between diffractive orders for all emitter
positions {−yN , ..., yN}.
For emitters placed away from the optimal position (central emitter), the overlapping
between neighboring emitters will gradually be reduced. That is due to the different
trigonometric relationships for imaging and diffraction as we can see in Eqs. 2.76 and
2.79. In these equations we avoided the paraxial approximations so tanθ , θ, sinθ , θ

and |tanθ − sinθ| is a nonlinear function. Therefore, that gradual reduction of overlapping
between neighboring emitters will be nonlinear.
We defined w = 3.5 µm as the width of each emitters. As we explained the overlapping
between neighboring emitters will be reduced. We intend to find the limitation of the
overlapping between diffractive orders. Two diffractive orders can have the overlapping
where mismatch coupling |∆| < 3.5 µm. If the size of |∆| is larger than the width of an
emitter, coupling between the neurons is terminated. Fig 2.11 shows two diffractive
orders far from center without any overlapping since (|∆M | > w) in this location.
In next part we will display the result of a simple analytical simulation and the limitation of
diffractive coupling from parameter |∆|. We will simulate the parameter |∆| for all emitter
positions in za.

We show the limit of our diffractive coupling technique used in our optical neural network.
In this simulation we used experimental parameters for the wavelength, the first focal
length and the second focal length as we calculated during the previous paragraphs. We
consider here an array of 1681 emitters with the constant periodic parray = 12.2 µm. To
measure analytically mismatch |∆|, we use Eq. 2.89.
In Fig. 2.12, we plot the mismatch |∆| as function of emitter position y. We can see that the
mismatch increases when the emitters position diverges far from the optical axis. When
the mismatch becomes greater than the emitters size w, we cannot generate the coupling
which means that there are no connections between neurons (see Fig. 2.12).
The result of this simulation determine our limitation of coupling mismatch. In our experi-
mental set up, the size of emitters w = 3.5 µm. Thus, to have overlapping, the mismatch
must be less than 3.5 µm. This criteria will be satisfied for all the emitters located within
between −8.2 mm < y < 8.2 mm. The mismatch coupling between −8.2 mm < y < 8.2 mm
is less than the width of emitter so, inside this area there is overlapping between the neu-
rons. But outside of −8.2 mm < y < +8.2 mm, neurons do not have overlapping since
|∆| > w. As a result, the coupling in our hardware neural network is valid for emitters loca-
ted inside a range of 16.4 mm (±8.2mm). In this space where distance between diffractive
order is 12.2 µm, we can calculate the maximum number of neurons by

(
16.4·10−3

12.2·10−6 = 1340
)
.

As a result, in an area of (16.4 mm)2 we can obtain 1, 795, 600 neurons.
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FIGURE 2.12 – Mismatch coupling between diffractive orders versus emitter position in za.
Red dash lines identify the limitation of coupling in our hardware neural network. Inside
the red dash line, there is coupling for emitters in the position of −8.2 mm < y < +8.2 mm.
While outside of red dash line, there is no overlapping between the diffractive orders.

2.4/ CONCLUSION

In this Chapter, we derived the main results of the diffraction theory that we will use to de-
velop our optical hardware neural network. We started from Maxwell equations in matter,
and derived the propagation equation and the Helmholtz equation. We reminded the Huy-
gens principle, and showed how to derive the Rayleigh-Sommerfeld integral, the Fresnel
diffraction formula and the Fraunhofer formula. Then, we detailed the plane-wave spec-
trum technique which will be the basic tool in the following chapters. We highlighted the
principle of the optical grating since the diffractive coupling used in our optical hardware
neural network is based on such devices.
We finished this Chapter by describing the diffractive coupling. We used a simple scheme
to explain the concept of diffractive coupling. Then, we explored the principles and limits
of diffractive coupling by applying the analytical solution. We investigated how many neu-
rons can be maximally coupled, which is limited by the coupling mismatch parameter |∆|.
We obtained that if |∆| is increased, the strength of our coupling is reduced. Finally, there
is a point where coupling was terminated. In our setup where |∆| > w, (w is size of an emit-
ter), coupling was terminated. Results of the simulation demonstrated that the coupling
was terminated for | y |< 8.2 mm. We conclude that the coupling is valid for all emitters
located in 16.4 mm and for more than 1340 photonic neurons. Such this area (16.4 mm)2

allows the creation of neural network larger than 1, 795, 600 photonic neurons.





3
EXPERIMENTAL CHARACTERIZATION

OF DIFFRACTIVE COUPLING

In this Chapter, we experimentally investigate the concept of diffractive coupling which
was presented analytically in Chapter 2. We intend to confirm the maximum number of
photonic nodes which can be coupled successfully. We will in particular highlight the ex-
perimental limitations and introduce and evaluate ways to avoid them. We will present two
different experimental setups: once we emulate photonic neurons by translating a single
mode optical emitter across the objective plane, once we emulate the effect of photo-
nic neurons at different positions by tilting the grating. Both approaches isolate different
features of the concept. The setup describes in this Chapter is an essential part of our
hardware reservoir computing system in Chapter 5.

3.1/ TRANSLATE POINT SOURCE ALONG THE (x, y)-PLANE

In this section, we evaluate diffractive coupling of an emitters array via a DOE with a
periodic structure. In order to emulate the different emitters of the photonic neuron array,
a single mode source in translated across the (x, y)-plane will be translated. The goal is
to determine the maximum size of an emitter array which allows diffractive coupling and
to quantify the physical mechanisms behind potential limitations.

3.1.1/ EXPERIMENTAL SETUP

The experimental setup is illustrated in Fig. 3.1 [50]. In this setup, we use a single mode
fibre to emulate different elements inside an array of emitters. The idea is to translate
the source (optical mode of the fiber) in the (x, y)-plane to characterize the coupling and
to identify the impact of different emitter positions. The single mode fiber is located in
the focal plane of the first microscope objective (MO1), and hence a photonic neuron’s
emission is collimated behind MO1. The beam propagates through the DOE, which has a
structure with period pDOE. All diffracted orders are imaged on to the camera in the (x′, y′)
plane by a second microscope objective (MO2). This system is symmetric between x and
y, the experiment is limited to investigate effects of translation along y ; translation along x
is assumed to have an identical effect. In this setup, we use a laser diode (Thorlabs LP660
SF20, λ = 662.1 nm) as our source [109,110]. A single mode fiber guides the emission of
the laser with mode field diameter at its output of (4 ± 0.5) µm. To move the optical fibre,

37
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FIGURE 3.1 – Experimental scheme to test limits of diffractive coupling.

it is necessary to have an (x − y)-stage to determine precisely (micrometer precision) the
displacement in each direction. The fibre is therefore mounted on a differential (x−y)-stage
(Thorlabs ST1XY-D/M). The MO1 (Olympus RMS10X) has a focal length f1 = 18 mm, a
numerical aperture NA1 = 0.25 and working distance WD = 18.5 mm. The DOE used to
distribute the incident beam along an array of (3× 3) of diffractive orders has the following
reference HOLOOR MS-443-650-Y-X. The MO2 (Olympus RMS4X) has a focal length f2 =

45 mm, a numerical aperture NA2 = 0.1 and a working distance WD = 10.6 mm. We use
two neutral density filters (Ft1, Ft2) to avoid saturation of the camera (Thorlabs NE 40A,
NE 30A ), both with a clear aperture diameter of 25 mm. Finally, a CMOS camera (IDS
U3-3482LE-M) is used to record the image inside the focal plane of MO2. This camera
has 2560 × 1920 pixels with a pixel spacing of 2.2 µm.

3.1.1.1/ IMAGE MAGNIFICATION

At the initial stage we determine the magnification of our experimental setup [111, 112].
For that, we remove temporarily the DOE as shown in Fig. 3.2. We set the single mode
fiber on the optical axis of the setup and in the focal plane of MO1. The image is recorded
by the camera and shown in Fig. 3.3. The recorded beam at the central region of the
camera corresponds to (0, 0) in the plane (x′ − y′). According to Fig. 3.3, the recorded

beam has a width of 11 µm at
1
e2 . Furthermore, MO1 has a magnification of M1 = 10

whereas MO2 has a magnification M2 = 4. Thus, the magnification effect M of the setup
is

M =
f2
f1

=
M1

M2
= 2.5. (3.1)

Since, the mode field diameter provided by the manufacturer is (4±0.5) µm, by considering
the magnification effect, we must expect an image beam with a width of (10 ± 1.25) µm
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on the camera. The experimental width measured previously 11 µm is well within the
range provided by the manufacturer. To conclude, the magnification characterized by the
experiment is in agreement with the theoretical expectation.

FIGURE 3.2 – Experimental setup without the DOE to determine the magnification.
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FIGURE 3.3 – Recorded beam in center of camera without the DOE effect.

3.1.1.2/ IMPACT OF DOE

To characterize the effect of the DOE, we include it in the middle of collimated area, i.e.
located centered between the two microscope objectives, see in Fig. 3.4. The emitter is
once again at position (0, 0) of the (x − y)-stage, and the diffractive orders are imaged
on camera as displayed in Fig. 3.5. The central position of camera corresponds to pixel
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(1187, 967), which therefore sets the reference position (0, 0) in the (x′ − y′)-plane. We ob-
serve 9 diffractive orders on the camera and from Fig. 3.5, we can calculate the distance
between two diffractive orders. The physical distance between two diffractive orders is
around 30.8 µm as illustrated in Fig. 3.5. Furthermore, compensating for magnification M
this corresponds to |ddiff | ∼

30.8 µm
2.5 ∼ 12.3 µm. All these calculations are of low resolution

as they are based on simply identifying the pixel in each diffractive order with the highest
intensity.
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FIGURE 3.4 – Experimental setup to analyze diffractive orders on the camera.
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FIGURE 3.5 – Experimental diffractive orders imaged on the camera.
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3.1.1.3/ VIGNETTING

We will now focus on the properties of the imaging generated by off-axis emitter position.
We will also translate the emitter source along the y direction and image the generated
beam on the camera (see Fig. 3.6). First we use an emitter being placed in y1 = 0.88 mm.
The collimation distance between the two MOs is L = 100 mm. As we can see in Fig.
3.6, L is an important parameter because if this distance is too long, there will be a
strong vignetting on MO2. Indeed, the beam will pass through the outer edges of MO2
and such vignetting will impact the quality of the diffractive orders as shown in Fig. 3.7
for y1 = 0.88 mm. For an emitter position far from the optical axis y2 = 1.1 mm, beam
vignetting is so strong that the diffractive orders can not any longer be clearly identified
(see Fig. 3.8).
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FIGURE 3.6 – Experimental setup using off-axis emitters.
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FIGURE 3.7 – Diffractive orders for y1 = 0.88 mm.

2.75

2.90

2.63

FIGURE 3.8 – Diffractive orders for y2 = 1.1 mm.

3.1.1.4/ IMPACT OF THE DISTANCE BETWEEN TWO MICROSCOPE OBJECTIVES

To understand the problem of vignetting, we study the relevant optical rays as shown in
Fig. 3.9. In this figure, θ is the acceptance half angle of the objective, R1 is radius of MO1
and R2 is radius of MO2. We investigate here at which distance L the beam vignetting
occurs for a given emitter position y. The numerical aperture NA1 of the first microscope
objective is given by

NA1 = ni sin θ, (3.2)

where ni is the index of refraction of the immersion medium, which in our experiment is
air, hence ni = 1. We know

R1 = f1 tan θ, (3.3)
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FIGURE 3.9 – Scheme to adjust the maximum distance between MOs (L) for emitters far
from center and based on the diameter of MO2 (R2).

and inserting Eq. 3.2 into Eq. 3.3, this result in

R1 = f1 tan
(
sin−1(NA1)

)
. (3.4)

We obtain R1 = 18 mm × tan
(
sin−1(0.25)

)
= 4.6 mm and R2 = 45 mm × tan

(
sin−1(0.1)

)
=

4.5 mm as the clear aperture radius of both microscope objectives, which are the maxi-
mum extend of an optical input wave the MOs can accept without vignetting. If by transla-
ting the emitter the radius of its collimated beam remains below R1 and R2, we avoid the
vignetting effect. On the other side we know

tan θ1 =
y1

f1
, (3.5)

and
tan θ2 =

y”
L
. (3.6)

Based on the Snell’s law, relationship between the angles of incidence and refraction for
MO1 in Fig. 3.9 is sin θ1 = sin θ2 and therefore θ1 = θ2. Then, from Eq. 3.5 and Eq. 3.6 we
can write

y1L = y” f1, (3.7)

we will consider fixed y1 and f1. If the distance L increases, the collimated beam’s waist
radius y” at the clear aperture input of MO2 will increase. Because of limited size of R2,
beam vignetting can potentially occur. The maximum value of L is y”max = R2 and by using
Eq. 3.7 we obtain

Lmax =
f1R2

y1
, (3.8)

thus, for y1 = 0.88 Lmax = 94 mm and for y2 = 0.98 Lmax = 84 mm. These numbers clearly
demonstrate why for L = 100 mm, the beam of an emitter located at y1 only exhibits slight
beam vignetting, while for y2 the effect is very pronounced.
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3.1.1.5/ REDUCE DISTANCE BETWEEN MOS

In our experiment, we seek the fundamental limitation of diffractive coupling due to the
increasing relevance of non-paraxial and to achieve this objective, we must move the
point source around 8 mm as we obtained in Chapter 2. In order to achieve this purpose,
we must significantly reduce L. In that case, to reduce L we remove filters Ft1 and Ft2
of Fig. 3.1 and instead use fiber based attenuators (Thorlabs Attenuator FA25T) with 25
dB and (Thorlabs Attenuator FA10T) with 10 dB. In Fig. 3.10 the experimental setup is
described. Distance L is reduced to 55 mm and the DOE again located in the middle
between the two MOs. Nine diffractive orders are imaged on the camera (see Fig. 3.11).
For Lmax = 55 mm, Eq. 3.8 gives y1 =

R2 f1
Lmax

= 1.4 mm, which corresponds to the maximum
displacement allowing to avoid strong vignetting effect.
However, we also can be limited by the size of the camera’s detection array. Due to the
imaging system’s to magnification (M = 2.5), the extension of the emitter array which can
still be imaged onto the camera in y is 2560×2.2 µm

2.5 = ±1.2 mm and in x is 1920×2.2 µm
2.5 =

±0.85 mm. The imaged beam in Fig. 3.11 showed the 3 × 3 diffractive orders without
vignetting effect for emitter in the position y1 = +1.16 mm. This displacement corresponds
approximately to our limit to record the diffractive orders. This limit due to the size of
camera therefore prohibits the full characterization of the limitations expected of diffractive
coupling. In order to overcome this practical limitation, we can mount the camera to an
(x − y − z) stage. Whenever imaged beam comes to the edge of the camera by moving
emitter in y direction, we can shift camera further in the y direction by the stage.
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FIGURE 3.10 – Setup after removing filters and adding the attenuator.

3.1.2/ RESULTS WITH EMULATING OPTICAL EMITTERS

In last sections, we studied the limitations (e.i. vignetting and the size of camera) of our
setup by translating of the optical fiber’s position. In this section, we obtain the detailed
result from moving a single mode fibre along the (x, y)-plane. We measure in detail the
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FIGURE 3.11 – Diffractive orders on the camera for emitter in y1 = 1.16 mm.

distance between diffractive orders, the diffractive coupling mismatch and the width of
diffractive orders.

3.1.2.1/ IMPACT OF BEAM VIGNETTING

In this section, we consider the following case: we emulate an array of 10 discrete sources
with different positions in y direction. The displacements in y direction are in the range
(−1.14,+1.01) mm. First, we register on the camera the position of each source point
by removing the DOE. Then, we add the DOE and record the 9 diffractive orders on
the camera for each of the 10 emitters. We process the obtained images by fitting each
diffractive order with a two dimensional Gaussian

I(x, y) = I0 exp
(

x − x0

w1

)2

exp
(
y − y0

w2

)2

, (3.9)

where I0 is the maximum intensity, x0 and y0 are the center position inside the x and y
plane, respectively. w1 and w2 are radius in x and y direction, respectively. Figure 3.12
shows the distance between 9 diffractive orders and nomenclature in which the orders
are labeled. Six distances between neighbouring diffractive orders can be measured in
y direction (red arrows) with distance |ddiff |. To obtain a strong optical coupling in our
device, the distances |ddiff | must remain constant. In next steps, we explain 3 different
measurements from our experimental data points. In order to measure accurately the
distance between two orders, we fit the intensity profile and the results are shown in Fig.
3.13 for different emitter positions. The black dash line in the Fig. 3.13 is the constant
distance (|ddiff | ∼ 12.2 µm) for which in a periodic array coupling is optimal for emitter
position between y0 = 0 mm and y10 = 1.14 mm. In Fig. 3.13 for emitters y < 1 mm,
experimental distances between diffractive orders |ddiff | follow the black dash line with a
slight difference. This difference is due to:

• First, the detection noise of the camera which will be obtained as a correct value
in next Chapter.
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d
diff

FIGURE 3.12 – Distance between diffractive orders |ddiff | in the y plane (red arrows) for 9
diffractive orders.

• Second, the limited precision of the fitting routine. This limitation is the conse-
quence of the numerical algorithm to fit the experimental data with Eq. 3.9.

However, for emitters y > 1 mm, this difference starts growing significantly. This behaviour
occurred due to vignetting effect in our experiment for y > 1 mm, introduced in the sec-
tion 4.1.1.3. As shown previously, vignetting destroyed the quality of diffracted orders on
camera.
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FIGURE 3.13 – Distances between neighbouring diffractive orders |ddiff | as a function of
the emitter position. Black dash line: the constant distance for which in a periodic array’s
coupling is optimal.

In another measurement in Fig. 3.14 mismatch |∆| versus emitter positions y from experi-
mental data are plotted in a double-logarithmic scale with red stares while, the analytical
limit is plotted as the black dash line. The analytic curve in Fig. 3.14 shows a clear po-
lynomial increase of mismatch |∆|. However, we observe a number of additional features
in the experimental data. For emitter displacements y < 0.5 mm, mismatch |∆| is below
30 nm but still larger than the mismatch predicted analytically, which is due to noise of the
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camera and the limited precision of the fit algorithm. In contrast, for y > 0.5 mm in Fig.
3.14 we see a strong divergence of the experimentally obtained |∆| from the theoretical
prediction (due to effect of noise and fit algorithm). This divergence arrives at |∆| = 0.3 µm
for y10 = 1.14 mm because of the vignetting effect in our setup. We therefore need to solve
vignetting problem caused by the small radius (R1 = 4.6 mm and R2 = 4.5 mm) or low NA
(NA1 = 0.25 and NA2 = 0.1) of the MOs.
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FIGURE 3.14 – Mismatch |∆| versus emitter positions y from experimental data in a double-
logarithmic scale (red stars). Theoretical data are plotted as a black line.

The quality of optical coupling depends on several parameters in the system. One of this
significant parameters is the width of the focal spot [113]. In this last measurement, the
width of all established diffractive orders is investigated. For this reason, we present the
obtained data from fitted function Eq. 3.9 for width parameter at 1

e2 and for all diffractive
orders on the camera. w1 and w2 from Eq. 3.9 are the width of every diffractive order
in x and y plane, respectively. Figure 3.15 shows the w2 for all diffractive orders in red
circles. The predicted analytical width is shown in 3.15 as the black dashed line. From
our setup we see for emitters y < 1 mm that the change of width is smooth and achieves
0.8 µm difference from black dash line (effect of noise and fit algorithm). While, for emitters
y > 1 mm the width size is dramatically increasing. Indeed, for emitter’s displacement from
y0 = 1 mm to y10 = 1.14 mm, width in w2 = 3.4 µm arrives at w2 = 5.2 µm which is linked to
the beginning of vignetting. Such a vignetting problem reduces the coupling efficiency in
our setup hence, we will suggest a solution to remove this impact in next section.

3.2/ OPTIONS OF SOLVING THE RESTRICTION OF BEAM VIGNET-
TING

As we explained in last sections, due to a limited diameter of microscope objectives, vi-
gnetting effect can occur. To address this problem, we selected several kinds of MOs with
different NAs. For instance, we exchange MO2 with another MO (Olympus RMS20x with
NA2 = 0.5). But since the minimum distance of mounting the optical elements from MO1 to
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FIGURE 3.15 – Width for 90 diffractive orders in experiment (red circles) relative to the
diffraction limit (black dashed line) versus emitter positions y. Vignetting leads to a strong
increase of the width for y > 1 mm.

MO2 is at least 55 mm, vignetting impact will arrive quickly for non-centered beams. We
tested achromatic doublets such as the Thorlabs AC254-030-B-ML instead of MO1 and
Thorlabs AC254-060-B-ML or Thorlabs AC254-080-B-ML instead of MO2. The problem of
achromatic doublet was that they exhibit strong spherical aberrations, which tend to the
deformation of a flat object. Figure 3.16 illustrated the aberration effect on our beam for
achromatic doublet Thorlabs AC254-150-B-ML in the replacement of MO2 for placing the
single mode fiber at y = 1.57 mm.

3.92

4

3.8

FIGURE 3.16 – Effect of aberrations on a beam after replacing MO2 with an achromatic
doublet.

In another test, we replace MO2 with a tube lens for infinity corrected microscope ob-
jective (Nikon, 58-520) which typically provide homogeneous, flat images with negligible
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aberration. The focal length of this tube lens is f = 200 mm. The entrance pupil diameter
in tube lens is 32 mm, which is enough large for our purpose. The advantage of these
tubes lenses is that their larger clear aperture’s diameters allows more space between
objective and tube lens. In this tube lens as long as the distance between the tube lens
and objective is less than 232.7 mm, there will be no vignetting. Figure 3.17 shows the
diffractive orders from an emitter on the camera. Aberration from the tube lens changed
the shape of diffractive orders. Since we need the accurate results in our system, this so-
lution can not be accepted. For all mentioned reasons, we seek another method to isolate
the emulation of diffactive effects from imaging aberrations.
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FIGURE 3.17 – Diffractive orders obtained by using tube lens. The effect of aberration
changes the shape of diffractive orders.

3.3/ EMULATE EMITTER POSITIONS THROUGH DOE-TILTING

3.3.1/ EXPERIMENTAL SETUP

In this section, instead of translating the fibre, we tilt the DOE, as demonstrated in Fig.
3.18. This approach continuously keeps the collimated beam at the center position of the
setup and camera. Shifting in x − y results in an angle of the collimated beam, and its
effect on diffractive coupling, we can emulate by keeping the collimated beam the same
by tilting the grating. We use the following equation to explain the position of emitter on
(x − y)-stage by tilting the DOE

y = f1 · tan(θi). (3.10)

In Eq. 3.10 not that the beam stays center, but that tilting θi emulates positions y, and after
that for such an approach the beam remains centered. In this experiment, the position of
optical fibre is always at the center of the (x − y)-stage. In this setup we modified MO1,
which now has f1 = 20 mm (MO1: Nikon N10X-PF) while all other optical elements are
identical to the first experiment shown in Fig. 3.10.

For each new recording in this setup, we tilt the DOE from θi = 0 to θi = 22 degrees, which
is equivalent to emulating emitter positions ranging from y0 = 0 mm to ylim = 8 mm. The
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FIGURE 3.18 – Experimental setup to test limits of diffractive coupling by tilting the DOE
angle from 0 degree to 22 degrees.

optical coupling limit obtained from the analytical model was found to be ylim = 8 mm. For
this reason, after 22 degree, we stop recording the data on the camera. In next section
we will present experimentally 3 measurements (distance between diffractive orders,
mismatch |∆| and width of diffractive orders) for Fig. 3.18 [50].

3.3.1.1/ COUPLING MISMATCH |∆|

To show the result of tilting the DOE, we start with distance between diffractive orders
as discussed in Fig. 3.12. Different emitter positions in the range of 0 mm < y < 8 mm
are emulated via tilting the DOE. If we got 20 source points in y direction, number of
distances in red arrows |ddiff | from Fig. 3.12 for this setup will be (20 × 6 = 120). The
physical properties of the diffractive orders were characterized based on the the same
numerical fit with a Gaussian as in the previous sections. Distances between diffractive
orders |ddiff | for different emitter positions y are shown in Fig. 3.19. The black dashed line
is the constant distance for which in a periodic array coupling is optimal. In Fig. 3.19 for
positions from y0 = 0 mm to ylim = 8 mm, distance is increasing from |ddiff

0 | ∼ 12.21 µm until
|ddiff

end | ∼ 14 µm.
The difference between red rectangles and the black dashed line in ylim = 8 mm arrives
1.8 µm which is the maximum disagreement between experimental and the alignment
condition. This difference shows that the coupling effect reduces smoothly by moving
emitters far from center. As a result, we have coupling in ylim = 8 mm which is less strong
than the coupling in y0 = 0 mm.

In another measurement, Fig. 3.20 illustrates mismatch |∆| for different emulated emitter
positions in y in a double-logarithmic scale. In this figure, red stars show experimental
data and analytical data is the black line. We can divide this plot into two sections with
characteristic behaviour. The first part is related to positions located in y < 0.5 mm. As
before the mismatch |∆| remains below 30 nm, which as previously discussed is below the
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FIGURE 3.19 – Red rectangles: 120 distances between |ddiff | diffractive orders versus
emitter positions y from y0 = 0 mm to ylim = 8 mm. Black dashed line: distance between
diffractive orders in analytical solution.

data acquisition and analysis accuracy of our system.
The second part corresponds to the range of 0.5 mm < y < 8 mm. In this range, the
red stars overlap perfectly with the black line. This excellent result demonstrates the high
potential of diffractive coupling if vignetting is avoided. To conclude, the agreement of the
distance mismatch for tilt angles ranging from 0 to 22 degree with analytical data confirm
the validity of diffractive coupling for arrays with emitters inside an area of 8 mm.

10-3 10-2

Emitter position y (m)

10-8

10-7

10-6

M
is

m
a
tc

h
 l
Δ

l 
(m

)

FIGURE 3.20 – The diffractive coupling mismatch |∆| obtained by the experiment (red
stars) and the analytical limit from Eq. (1.10) (black line) excellently agree.

As we explained before, the diameter of the focused beam is one of the significant factor
to establish high-quality optical coupling. For this reason in another measurement based
on Eq. 3.9, w2 for all diffractive orders is obtained. The width of the 180 diffractive orders at
1
e2 for emitter positions from y0 = 0 mm to ylim = 8 mm are displayed in Fig. 3.21 and in red
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circles ; the diffraction limit is shown as the black dashed line to which the experimental
data excellently agrees. Small mismatches between the red circles and black dashed line
are again due to the noise of the system and the limited precision of the fit functions. For
the distance of 8 mm and where distance between two diffractive orders is 12.2 µm, we
can maximally couple ( 8·10−3

12.2·10−6 = 655) emitters or photonic nodes.
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FIGURE 3.21 – Distribution of width for 180 diffractive orders in 1/e2 from y0 = 0 mm to
ylim = 8 mm in red circles. The diffraction limit is in black dashed line.

3.3.2/ LIMITATION OF THE SETUP

As we saw in the last section, by keeping emitter constant in the center, we achieved
the successful coupling from θi = 0 degree to θi = 22 degree without vignetting effect.
Another great advantage was the roughly constant size of the width for all diffractive
orders. But, since emitter did not move, physical effects of system such as aberration
could not be recognized on the camera. Therefore, this system is not sensitive to off-axis
beam induced imperfections of imaging.

3.4/ CONCLUSION

In this Chapter, based on two experiments we investigated the practical limits to the size
of photonic networks coupled by diffraction. In the first experiment, a single-mode fiber’s
output was translated by a (x−y)-stage in order to imitate an array of single mode emitters.
The plotted results illustrated that this setup is sensitive to aberration. We identified the
following effects limiting the size of an emitter array which can be potentially coupled by
diffraction:

• For off-axis emitters, beam-vignetting was observed in mismatch distance |∆| be-
cause of a too low NA of the MOs.

• Strong vignetting was also found in focus spot’s width.
• Replacing MOs with achromatic doublet or tube lens deteriorate imaged beam

because of optical aberrations.
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To characterize maximum size of optical coupling in a setup without beam vignetting,
we created a second characterization methodology. We used the same optical elements
for new setup except MO1. The single-mode fiber’s output was located on the optical
axis for measurements, and different emitter positions in an array were emulated by
tilting the DOE from θi = 0 to θi = 22 degrees, which corresponds to emitter located
between y0 = 0 mm to ylim = 8 mm. By applying this technique, the vignetting effect was
avoided. However, this system is not sensitive to aberration effects since the location
of all emitters is constant. According to experimental and analytical data, diffractive
coupling can be obtained for emitters located in a space of 8 mm. Mismatch |∆| was
less than 4 µm which is a typical size of an optical nod. This achievement determined
successful coupling by second experiment and the high quality of system to create the
diffractive orders. In another measurement, we showed the quality of system, we plotted
the width of all diffractive orders at 1

e2 . Crucially, the focal spot’s width is constant for all
recorded diffractive orders inside the 8 mm and close to the diffraction limit. The emitter
positions y at all figures in Chapter 3 were selected as an example to confirm the size of
photonic networks coupled. After this confirmation, hence inside an area of (16 mm)2 we
can coupled 1, 719, 000 photonic nodes.





4
NUMERICAL MODEL

In the previous Chapter we investigated experimentally the limitations of diffractive cou-
pling. During our measurements, we observed numerous effects introducing limitations.
For instance a strong divergence of mismatch distance |∆| and an increase of the focal
spot waist radius induced beam vignetting. These effects cannot be accurately described
with the simple analytical treatment introduced in Chapter 2. We require a treatment
considering effects of coherent light propagation through the system for any emitter
position. For this reason, in this Chapter we will model the experimental setup and nu-
merically reproduce the beam propagation, collimation, focusing and diffraction. During
our simulation and calculations different techniques are applied. These techniques are
indicated in Fig. 4.1 which include propagation, the Debye integral for emulating high
NA MOs, absorbing boundaries, masking at the MOs’ clear aperture and rescaling the
coordinate systems in the object and image plane [50].
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FIGURE 4.1 – The scheme of numerical simulation. The mentioned explanations are the
techniques which are used during our simulation.
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Within this Chapter, we will first explain in detail the techniques indicated in Fig 4.1. Se-
cond, we adjust the numerical model that we use parameters from the experiment. Third,
we suggest a solution to overcome the limitations induced by the vignetting effects.

4.1/ BEAM PROPAGATION

In order to propagate an optical wave through an optical setup, we introduced several
methods in the second Chapter, among others the Helmholtz equation (Eq. 2.17) which
represents a time-independent form of the propagation equation. Then we derived a
simple solution for this equation, which uses plane waves to propagate the complex
optical fields. In the numerical simulation we utilize the plane waves spectrum which was
studied in details in Chapter 2.

4.1.1/ ABSORBING BOUNDARY

After applying the three steps of wave propagation in our numerical simulation, as explai-
ned in Chapter 2, we see that the FFT algorithm induces a periodicity in our calculation
window’s boundary condition. Due to this periodicity, a beam which is going out on one
side enters into the window by the other side, as illustrated in Fig. 4.2, which shows the
propagation of a Gaussian beam with an angle [114–116]. This propagation is along z
axis and an angle of the Gaussian beam of θ = 53 degree. As a result from Fig. 4.2, the
beam re-entered on the other side of the propagation. To avoid this numerical artifact, we
implement the absorbing boundary. In this method, we define a Hyper Gaussian in Eq.
4.1, inside which the signal is maintained, while outside of the propagating beam will be
strongly attenuated and absorbed. In Eq. 4.2 the absorbing boundary is defined for two
approaches first the hyper Gaussian and second the rectangular absorbing boundary

Abs(x, y) = exp
(

x − x0

w1

)m

exp
(
y − y0

w2

)m

, (4.1)

when

Abs(x, y) =

Hyper Gaussian, if 2 < m < 10
Rectangular, if 10 < m

(4.2)

Absorbing boundary approaches are modeled in Fig. 4.3 for −5 mm < x < +5 mm. Fi-
gure 4.3(a) illustrates an hyper Gaussian absorbing boundary where m = 6 in Eq. 4.1
while, Fig. 4.3(b) is a rectangular absorbing boundary for m = 60. In this thesis, we use
hyper Gaussian function since the absorption of the boundary occurs smoothly than the
simple rectangular function. Therefore, the final equation of wave propagation including
the absorbing boundary will be

E(x, y, z) = Abs(x, y) F−1
{
E(u, v)eikz

√
1−λ2u2−λ2v2

}
. (4.3)

The result of wave propagation after implying the Eq. 4.3 in the simulation is displayed
in Fig. 4.4 for hyper Gaussian absorbing boundary and rectangular absorbing boundary.
This method removes the problem of periodicity in our numerical simulation. In Fig. 4.4(a)
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Beam wrongly entering 
due to periodicity of FFT

Beam leaving optical path

FIGURE 4.2 – Observation of the periodic boundaries introduced by the FFT during beam
propagation. A Gaussian beam in angle θ = 53 degree is propagated along the z direction.
It leaves the simulated window from one side (bottom) and re-enters from the another side
(top of window). This is a numerical and un-physical artefact.
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FIGURE 4.3 – Proposed models to remove the boundary effect during beam propagation.
(a) The hyper Gaussian absorbing boundary. (b) The rectangular absorbing boundary.

the beam propagates along z and the edge of window is absorbed smoothly by a hyper
Gaussian absorbing boundary and Fig. 4.4(b) demonstrates a zoom to see better the
form of hyper Gaussian absorbing boundary at the edge. While, in Fig. 4.4(c) the beam
propagates along z and is absorbed at the edge of the window in form of a rectangle and
a zoom into the edge of window for this state is shown in Fig. 4.4(d). Therefore, we apply
this technique (hyper Gaussian absorbing boundary) during propagation of the field in the
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simulation to solve the periodic boundaries introduced by the FFT.
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FIGURE 4.4 – Absorbing boundary solution for a Gaussian beam in angle θ = 53 degree
is propagated along z direction in Fig. 4.2. (a) The hyper Gaussian to absorb the beam
smoothly at the edge of window. (b) The inset showing a zoom into the edge of window in
hyper Gaussian absorbing boundary. (c) The rectangular absorbing boundary to absorb
the beam rectangulary at the edge of window. (d) The inset showing a zoom into the edge
of window in rectangular absorbing boundary.

4.2/ MICROSCOPE OBJECTIVES

Typical microscopes contain many lenses [117–119]. There are two parameters com-
monly used to characterize a microscope objective are their magnification such as 4X,
10X or 20X and numerical aperture (NA). For an entrance pupil radius of microscope ob-
jective R and its focal length f where n is index of refraction of the immersion medium we
can write

NA = n sin
(
tan−1

(
R
f

))
, (4.4)

by replacing
(
tan−1

(
R
f

))
with θ in Eq. 4.4 we obtain

NA = n sin θ. (4.5)
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In Eq. 4.4 if the pupil radius is larger and f is constant, NA will be higher. We can describe
a thin lens in the (x, y)-plane in Eq. 4.6 as

t(r) = a0 exp
(
−i

π

λ f
(r2)

)
, (4.6)

where t(r) is phase transmission function, f is the focal length of the lens, and r2 = x2 +y2.

In Eq. 4.6, a0 = exp(−ik0r0) is a constant phase factor and the term exp
(
−i

π

λ f
(r2)

)
changes

with the square of the distance r from the optical axis. For point sources arranged with
such an radially changing phase, all fields will constructively interfere at distance f . Accor-
ding to the Huygens principle, a lens therefore has to implement a radial phase retardation
in order to focus. There is a direct method which calculates the electromagnetic field at
focal point of a lens. However, such a direct solution of the propagating plane-wave spec-
trum exhibits a challenge because in (x − y)-plane, we need a potentially extremely large
number of samples to simulate a lens (a curve shape). To obtain the number of samples
for a lens, we set an example: an optical beam with λ = 660 nm propagates through a
lens with f = 20 mm creating N phase-slips

N · λ = f , (4.7)

here N = 3× 104 for this lens. Considering at least 5 samples per 2π, we therefore require
more than N = 1.5 × 105 data points. Hence, such a direct method is well suited to calcu-
late the focus field for a lens with low NA [120]. In order to find the limitation of coupling
in our setup, we are very sensitive to aberrations and therefore need a dense sampling
of the curved wavefront. In that case since the memory of computer is limited, we are not
able to realize a sufficient number of samples. Moreover, the duration of calculation for
the highest possible number of samples would be very long. For this reason, we attempt
to find another solution to propagate plane wave in high NA microscope.
In experiments, the aperture stop of the MO defines the clear aperture of MOs. In nume-
rical simulation, we limit the transmission of a MO to this area, inside the clear aperture’s
diameter a beam is allowed to pass while outside of this area beam can not pass. We
determined a mask function fm in MOs for position r2 = x2 + y2 according to

fm =

1, if r < R
0, otherwise

(4.8)

Function fm is multiplied onto the field at the MOs aperture stop.

4.2.1/ DEBYE INTEGRAL

Instead of numerically implementing the direct propagation through the MOs we will em-
ploy the Debye integral. The Debye integral is a method to calculate the electromagnetic
field at the focal plane as well as the field of the collimated beam. In this method, one pro-
jects the incident beam into cylindrical coordinates then spherical coordinates to obtain
the image’s focal point. By applying the Debye integral, we can simulate the microscope
objective with high NA and without an excessive number of samples [120–127]. Figure
4.5 demonstrates a basic scheme explaining individual steps of the Debye integral me-
thod [120]. Behind the aperture stop A with radius R, the monochromatic light is parallel
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to the optical axis. The optical field propagates toward the principal plane P1. In principal
plane P1

x = r cos(φ), (4.9)

and
y = r sin(φ), (4.10)

where r is the off-axis coordinate of incident beam
(
r =

√
x2 + y2

)
and φ is the azimuth

angle around the z-axis
φ = arctan

( y
x

)
. (4.11)

In Fig 4.5, the focal length f can be defined as

f = F1V1, (4.12)

where F1 is focal point and the principal plane P1 has vertex point V1. Principal plane P2
is curved according to the thin lens formula, hence after passing trough the plane P2,
the field focuses to focal point F2. The principal planes P2 has the vertex point V2. [120].
Calculating imaging by a microscope objective based on the Debye integral requires:
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FIGURE 4.5 – Principal of the Debye integral. Optical field components are projected onto
the microscope objective principal plane P1 then P2. The focal length f is calculated as
f = F1V1. The point P lies on the plane P2 and shows the focusing of a ray at the focal
point F2, reproduced from [120].

First, projecting the incident field ~Ei(x, y) onto cylindrical coordinates. These coordinates
create ~Ei(r, φ) at plane P1, ~Ei(r, φ) is decomposed into the optical field’s radial component
(p-polarized) and tangential component (s-polarized). The unit vectors for p-polarization
is

~ep =

cos φ
sin φ

0

 , (4.13)

and in s-polarization is

~es =

− sin φ
cos φ

0

 . (4.14)
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Second, the transformed field is projected onto the microscope objective’s principle plane
P2 in spherical coordinates. In the plane P2, ~ep is deflected by angle θ and creates

~er =

cos φ cos θ
sin φ cos θ

sin θ

 , (4.15)

where nt is refractive index behind the P2. In the point of P we use

sin θ =
r
R

NA
nt
. (4.16)

As a result, amplitude, phase and polarization of the transmitted field in plane P2 are given
by

~Et(θ, φ) = tp
(
~Ei · ~ep

)
~er + ts

(
~Ei · ~es

)
~es, (4.17)

where tp is the transmission coefficients for p-polarization and ts is the transmission coef-
ficients for s-polarization. In our calculations we use tp = 1 and ts = 1.

Third, after these transformations, the electric field ~E at the point (x, y, f ) near the focus is
calculated by integrating the propagation of plane waves along z axis

~E(x, y, z) =
−i f
λ0

"
Ω

~Et(θ, φ)ei(kzz−kx x−kyy)dΩ. (4.18)

The phase term eikzf is a phase accumulation and e−i(kxx+kyy) determines the phase diffe-
rence of the beam from the on-axis point (0, 0, f ) to the off-axis point (x, y, f ). By introdu-
cing the two limits of 0 < φ < 2π and 0 < θ < Θ in Eq. 4.18 we rewrite

~E(x, y, z) =
−i f
λ0

∫ Θ

0
sin(θ)

∫ 2π

0
~Et(θ, φ)ei(kzz−kx x−kyy)dθdφ, (4.19)

where in focal point F2, we observed (sin Θ = NA). We can rewrite Eq. 4.19 in the form of
a Fourier transform

~E(x, y, z) =
−i f
λ0k2

t

"
r<R

(
~Et(θ, φ)eikzz/ cos θ

)
e−i(kx x+kyy)dkxdky, (4.20)

which leads to

~E(x, y, z) =
−i f
λ0k2

t
FFT

 ~Et(θ, φ)ei(kzz)

cos θ

 , (4.21)

where in spherical coordinates θ, φ and in focal point F2, we have kt = k0.

4.2.1.1/ NUMERICAL IMPLEMENTATION

Based on the final calculation from the Debye diffraction integral as an inverse Fourier
transform, we can now develop a numerical procedure to compute the field of an imaged
or focused wavefront by a microscope objective with high NA. For numerical simulation of
the Fourier transform, our algorithms operate in discrete which requires the data points
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as the samples. We defined S as the sampling points over the aperture radius. By using
kx = m∆k and ky = n∆k where ∆k =

k0NA
S , we obtain sampling positions in plane P2 at

θmn = arcsin
(
∆k
kt

√
x2 + y2

)
, (4.22)

and
φmn = arctan

( n
m

)
, (4.23)

for | m |, | n |≤ S. As a result in the numerical implementation, we express the Debye
integral for a microscope objective by

~E(xk, yk, f ) =
−iR2

λ0 f S 2 FFT

 ~Et(θmn, φmn)eikzmnz

cos θ

 . (4.24)

Equation 4.24 computes the optical field in the image plane after a microscope objective.
In order to obtain the collimated beam, we employ the inverse Fourier transform of incident
beam and hence, complete the propagation between the microscope objectives (x, y, z =

55 mm) and its image plane (x, y, z = f )

~E(xk, yk, f ) =
−iR2

λ0 f S 2 F−1

 ~Et(θmn, φmn)eikzmnz

cos θ

 , (4.25)

the obtained ~E(xk, yk, f ) from Eq. 4.25 is replaced ~Ei in Eq. 4.17

~Et(θ, φ) = tp
(
~E(xk, yk, f ) · ~ep

)
~er + ts

(
~E(xk, yk, f ) · ~es

)
~es, (4.26)

by replacing ~Et(θmn, φmn) inside of Eq. 4.17, we can achieve the collimated beam.

4.3/ RE-SCALING OF IMAGE PLANE

During the second step of plane-wave spectrum propagation (2.2.1), we explained the
non-paraxial effects in beam propagation. Because of high sensitivity to optical inaccura-
cies in our setup, it was required to avoid any approximation. In this section, we show how
the usage of the Debye integral concept unfortunately induces an approximation between
frequencies of the plane-wave spectrum and position space. Finally, we re-scale numeri-
cally the image plane in order to compensate for this effect.
For this goal, we illustrate the relationship between spatial positions (x, y) and spatial fre-
quencies (u, v) in paraxial and non-paraxial scale. Figure 4.6 is an example where the
microscope objective is located in spatial frequency space with coordinate v. The collima-
ted beam in the frequency plane will be focused on the x plane in focal length f .

4.3.1/ COORDINATES UNDER PARAXIAL APPROXIMATIONS

In paraxial equations, one typically approximates sin θ ' tan θ ' θ. From Fig 4.6, we obtain

tan θ =
x0

f
, (4.27)
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FIGURE 4.6 – An imaging system in our optical setup. Image plane coordinate is x and
frequency plane coordinate is v. Beam is imaged in focal length f .

using the link between spatial frequency and angle θ based on the paraxial approximation,
introduced in the propagation section Eq. 2.52 and Eq. 2.57, leads to

θ = λv, (4.28)

the left parts of Eq. 4.27 and Eq. 4.28 are equal leading to

x0 = λv f . (4.29)

Equation 4.29 provides the relationship between the image coordinate plane and spatial
frequencies.

4.3.2/ NON-PARAXIAL COORDINATES

For the general context not relying on approximations one has to assume sin θ , tan θ.
Combined with Eq. 4.27 one obtains

sin θ
cos θ

=
x0

f
, (4.30)

Combined with the angle versus spatial frequency relationship given by Eq. 2.52 and Eq.
2.61

sin θ = λv, (4.31)

we obtain
x0 =

f sin θ
cos θ

=
λv f
cos θ

, (4.32)

this can further be simplified by using cos θ =
√

1 − sin2 θ =
√

1 − λ2v2

x0 =
λv f

√
1 − λ2v2

. (4.33)
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The numerical coordinate system is connected via Eq. 4.33. By comparing Eq. 4.29 and
Eq. 4.33, we find that the non-paraxial coordinate plane can be obtained by a resca-
ling through dividing paraxial spatial frequency coordinates with the term

√
1 − λ2v2. This

term is non-linear and hence its effects in our system will be most dominant at positions
far away from the center.
Figure 4.7 is a part of an array of Gaussian beams (0 mm < y < 4.5 mm) for different emit-
ter positions imaged according to the setup in Fig. 4.1 located in −4.5 mm < y < 4.5 mm.
Gaussian emitters are compared in paraxial and non-paraxial coordinate systems in red
and blue colors. Red emitters illustrate in paraxial coordinate planes and blue Gaussian
emitters in non-paraxial coordinate planes. For emitters where y < 2 mm, difference bet-
ween beams in red and blue beams is small, but for y > 2 mm is significant. For instance
at y1 = 0.16 mm the difference between those two planes is 0.3 µm, while at yend = 4.5 mm
is 0.151 mm, which certainly can not be neglected. The non-paraxial re-scaling is there-
fore applied to all our numerical simulation.
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FIGURE 4.7 – Results of an array of Gaussian emitters in paraxial and non-paraxial coor-
dinate systems. Blue color are non-paraxial and red color are paraxial simulations. Diffe-
rence between both coordinate systems are considerable at y > 2 mm.

4.4/ THE DOE

The diffractive coupling employed in this work is based on a DOE, which is a phase only
object. Our aim is to model the experiment as close as possible to reality. In order to
do so, the phase of the DOE that we use in our simulation should corresponds to the
phase of the DOE element. The procedure to measure this phase uses an adaptation
of the Gerschberg Saxton (GS) phase retrieval algorithm [128, 129]. The principle of
this method relies on the fact that there is only one phase possible for two known beam
intensity distributions separated by a distance z. This is essentially due to the Fourier
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transform property which is here involved as a tool to propagate from one plane to the
other. It is an iterative algorithm that converges even faster when the intensity variations
between the two planes are significant.
Figure 4.8 illustrates the experimental setup. The coherent light source is a HeNe laser.
We expand the beam of the HeNe in order to illuminate an area, which was a round
Gaussian beam with 7 mm diameter on the DOE what involves a magnification via
the beam expander by ×17. After the DOE an imaging system composed of a lens, a
microscope objective and a CCD detector produces a reduced image ( 1

20 ) of a plane after
the DOE. The imaged plane can be changed since the imaging system is mounted on
a translation stage with a position precision better than the micrometer (Newport M ILS
100LM). Different images planes at different z positions after the beam is passed through
the DOE are recorded.

CCD Camera

MO2

Laser
MO z

y’

z
x
x

y

DOE

y

Tube lens

Lens
Lens

Spatial    
Filter

Imaging systemObject system

FIGURE 4.8 – Experimental setup to obtain numerically the structure of the DOE by using
a phase retrieval technique.

The phase retrieval itself consists in an iterative procedure. Whereas the GS is applied
between conjugated Fourier planes here it is applied between the direct and frequency
space at a finite distance z. The procedure can be describe as follow. The intensity in dif-
ferent plane zn is measured in our experiment and called In, yet phase φn is unknown. We
start with I0 which is the measured intensity in plane z0. Then a non-paraxial propagation
of the beam to the next z1 plane is computed via the planar wave spectrum model [77].
This model consists in applying the Fourier transform to the beam in the direct space

which is then multiplied by a phase term exp
(
i2πz

√
1
λ2 − v2

x − v2
y

)
where vx and vy are the

spatial frequencies of the planar wave spectrum. Then the result of intensity profile is

back Fourier transform leading to the new field
√

I′1exp(iφ1) in x, y coordinates at the z1

plane. Then I
′

1 is replaced by I1 which is known from measurement whereas the com-
puted phase term is kept unchanged. Then,

√
I1exp(iφ1) is retro-propagated until plane

z0 using the same procedure. For several planes (z2, ..., zn) the operation is repeated until
convergence. By using this operation, the phase in plane z0 will be found.
We require phase retrieval to obtain the phase distribution from the DOE. In that case, we
apply the described procedure. Figure 4.9 shows the volume of recorded propagation in
five planes (z0, ..., z4). The measured structure presents the diffraction angle, and our final
numerical scheme from phase retrieval technique is shown in Fig. 4.10.
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FIGURE 4.9 – Volume of recorded propagation during five plane (z0, ..., z4) by implementing
the phase retrieval technique.
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FIGURE 4.10 – Periodic pattern in our DOE which is obtained based on a phase retrieval
technique. The color bar axis is for intensity in arbitrary unit.

4.5/ NUMERICAL IMPLEMENTATION

According to all explained techniques in this Chapter, we start setting up our numerical
simulation. At first, we make a simulation for the first experiment from Fig. 3.10. Since
this simulation incorporates the major limitations of the optical components, we should
observe the physical effects such as vignetting. We then modify the setup in order to
overcome these limitations using commercially available components. The obtained data
points from numerical simulations will be compared with analytic.
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4.5.1/ USING LOW MAGNIFICATION MICROSCOPE OBJECTIVES WITH A LOW NU-
MERICAL APERTURE

As a first system we investigate the setup schematically illustrated in Fig. 4.11 in our
numerical simulation. All elements and their parameters are selected from the first expe-
rimental setup Fig. 3.10. As a special characteristic in this setup, microscope objectives
have low magnifications and low NAs. All components of this figure are described in the
numerical model.
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FIGURE 4.11 – Numerical setup with an array of emitters in plane y. All components and
their parameters are the same as in the experiment of Fig. 3.10. MO1 has a NA = 0.25
and f1 = 18 mm, MO2 has a NA = 0.1 and a f1 = 45 mm. The periodic DOE is located
between the two MOs.

In Fig. 4.11, we create an array of Gaussian emitters in an area of (−1.2 mm < y <

+1.2 mm) with a constant position in the x plane. As in the experiment, the width of each
Gaussian emitter is w = 3.5 µm at 1

e2 and wavelength is λ = 660 nm. Since we have
an image plane, we require to re-scale our image plane (x, y) according to in Eq. 4.33.
Therefor, the (x, y) coordinate plane of our array is divided by

√
1 − λ2v2. In this case

the parameter v can be obtained from the information of MO1. We define MO1 with the
focal length f1 = 18 mm and NA = 0.25. From Eq. 4.4 we can obtained the pupil radius
of MO1 as R1 = 4.64 mm. Consequently, the parameter v1 can be introduced as (v1 =

1
2Rmax = 107 mm−1). In MO2 the focal length is f2 = 45 mm and NA = 0.1. Radius pupil
of this objective is calculated in Eq. 4.4 as R2 = 4.52 mm. Hence, parameter v1 will be
(v1 = 1

2Rmax = 110 mm−1).

4.5.2/ RESULTS

After fitting the created data in numerical simulation, the results can be showed. These
results were obtained from two low magnification MOs with low NAs. As the experimental
setup, we are seeking the data for the distance between diffractive orders, mismatch
distance |∆| and width of each diffractive order.

4.5.2.1/ DISTANCE BETWEEN DIFFRACTIVE ORDERS

In Fig. 4.12, for emitters |y| < 0.8 mm, we see the numerical data which follow the horizon-
tal line with a distance of |ddiff

0 | = 12.2 µm, which hence is the condition to have coupling
in a periodic array of emitters. For emitters in |y| > 0.8 mm however, there is a divergence
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away from the coupling condition. This divergence is dramatically increasing with the dis-
tance from the center of the array. For instance, at |y0| = 0.85 mm, distance between the
diffractive orders is (12 ± 0.2 µm). Already at |yend | = 1.21 mm this distance has increased
to (12 ± 1.2 µm).

FIGURE 4.12 – Distances between diffractive orders |ddiff | versus the emitter positions |y|.
Blue rectangles are numerical data, the black dashed line is the distance for coupling a
periodic array.

4.5.2.2/ DISTANCE MISMATCH

Another significant factor which was investigated in second Chapter was mismatch dis-
tance |∆|. To find the coupling limitation numerically, |∆| is one of the main parameters in
the entire simulation. In Fig. 4.13, mismatch |∆| is shown for the full array of emitters in
double-logarithmic scale. The numerical data points are the blue stars, the experimental
data are red stars (from the third Chapter), while the analytical result from the second
Chapter is the black line. Numerical data in Fig. 4.13 show three behaviours:
First behaviour, for the range of |y| < 0.4 mm the mismatch |∆| is constant. This beha-
viour occurs because of the fit algorithm limited precision. Second behaviour, for distance
0.4 mm < y < 0.9 mm mismatch has a good agreement with analytical line. Third be-
haviour, for the range of |y| > 0.9 mm the mismatch has a strong divergence from the
analytical solution. In numerical mismatch where |y0| = 1.2 mm, |∆| arrives 2 µm. This is
the previously discussed vignetting effect of the MOs with a low NA.
We can compare the figures of |∆| for the low NA in numerical simulation and the first
experiment. The experimental results are demonstrated at the Fig. 4.13 in red stars. Now
we can have a comparison for the area of |y| < 0.4 mm numerically and experimentally.
In numerical simulation the limited precision of the fitting routine in 7 nm occurred. But in
experimental data, additional uncertainty is added due to the detection noise. Both effects
combined resulted in a position uncertainty of 17 nm.
It is important to point out that such high levels of position accuracy can only be achieved
since we have accurate knowledge of the emitters’ mode profile. This position accuracy
is far beyond the diffraction limit, and our setup would certainly not be able to resolve
emitters spaced by such a small distance. However, the accurate mapping of our imaging
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FIGURE 4.13 – Scheme of mismatch distance |∆| versus emitter positions |y| in a double-
logarithmic scale. Blue stars are |∆| in numerical simulation for array of emitter positions
|y|. Black dashed line is analytical mismatch for array |y|. Red stars are |∆| in experiment
for array of emitter positions y.The good agreement between the red and the blue data.

setup, the low detection noise level and the precise knowledge of the mode profile allow
an accurate position determination with this precision.
In Fig. 4.13 the numerical simulations excellently reproduce the divergences induced by
optical beam vignetting as found in the first experiment from the previous Chapter. The
properties of their imaging are obtained from the same fitting routine as in the previous
section, the results of width for all diffractive orders are demonstrated in Fig. 4.14. In
addition, the analytical indicating the diffraction limit for this imaging setup is shown as
the black dashed line. For emitters |y| < 0.87 mm we have a good agreements between
the analytical and numerical simulations and the diffraction limit. For |y| > 0.87 mm, there
is a high divergence for numerical and experimental data points. At |y0| = 1.26 mm the
width of the individual imaged diffractive orders has reached 6.1 µm. From Fig. 4.14 we
see that the numerical simulations and experimental data really agree perfectly well. This
validates the model and we can fully understand the underlying mechanisms.

4.5.3/ USING LOW MAGNIFICATION MICROSCOPE OBJECTIVES WITH A LARGE
NUMERICAL APERTURE

In order to solve the physical effects due to vignetting in our scheme, we decided to modify
the setup. In the new scheme, we change the MOs’ NAs as illustrated in Fig. 4.15 [50].
All other parameters are the same as Fig. 4.11
For MO1, we increase the NA to NA = 0.45, while f1 remains 18 mm as the Fig. 4.11. In
this case, by considering the new NA and Eq. 4.4 we can calculate R1 = 9.1 mm. The new
R1 is almost two times larger than R1 from Fig. 4.11.
For MO2, we change the NA to NA = 0.2 but f2 is same as Fig. 4.11. Again by using Eq.
4.4 and the new parameter for NA we can write R2 = 9.2 mm.
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FIGURE 4.14 – Width of all diffractive orders in plane y′ versus emitter positions |y|. Blue
circles are width of diffractive orders in numerical simulation for array of emitter positions
|y|. Red circles are width of diffractive orders in experiment for array of emitter positions y.
Black dashed line is the width in analytical simulation for array |y|.
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FIGURE 4.15 – Numerical setup with an array of emitters in plane y. This setup has the low
magnifications in MOs and high NAs. MO1 has high NA = 0.45 in focal length f1 = 18 mm.
MO2 has a NA = 0.2 in focal length f2 = 45 mm. The periodic DOE is located between
both MOs.

4.5.4/ RESULTS

In next sections, we will present precisely the measurements of distance between diffrac-
tive orders, mismatch |∆| and width of diffractive orders for the new scheme.

4.5.4.1/ DISTANCE BETWEEN TWO DIFFRACTIVE ORDERS

In the Fig. 4.15 and in y plane we create 49 emitters as our array. These emitters are distri-
buted in a distance of 10 mm. Figure 4.16 shows the distances between diffractive orders
|ddiff | for the absolute emitter array of (−5 mm < y < +5 mm) as blue rectangles. The cou-
pling condition for a periodic array is given by the black dashed line |ddiff

0 | = 12.2 µm. For
all emitters the distances between diffractive orders are distributed from |ddiff

0 | = 12.21 µm
until |ddiff

end | = 14 µm. The maximum difference between the blue rectangles and the dashed
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line is 1.8 µm. In the range of (−1 mm < y < +1 mm) we have almost 100 percent coupling
between the orders. Due to the diffraction at |y0| = 5 mm we have only 50 percent coupling
where the width of diffractive orders are 3.5± 0.5 µm. But the distance between diffractive
orders |ddiff | remain close to the required condition such that coupling is still maintained,
though it could be substantially reduced to the outer parts of the array.

FIGURE 4.16 – Distance between diffractive orders |ddiff | versus emitter positions |y|. Blue
rectangles: distribution of the distance in numerical simulation. The black dashed line: the
constant distance of the alignment condition in a periodic array.

4.5.4.2/ DISTANCE MISMATCH

Figure 4.17 illustrates the mismatch distance |∆| for all diffractive orders in absolute y
axis (−5 mm < y < +5 mm). Mismatches |∆| are plotted in a double-logarithmic scale for
numerical data points in blue stars. The analytical results are in a black line.

Such as our experiment we can divide this results in some parts based on data behaviors.
For |y| < 0.4 mm the mismatch distance is constant in 7 nm. However, for |y| > 0.4 mm
there is a good agreement between analytical and numerical data. By moving to the new
NAs, we could eliminate the vignetting problem. In addition, the agreement between data
from Fig. 4.17 confirmed the coupling in our setup.

4.5.4.3/ WIDTH OF DIFFRACTIVE ORDERS

The width of each Gaussian beam in our array is w = 3.5 µm. We investigate the width
for each diffractive order after propagation in plane y′. The result of width are shown in
Fig.4.18. In this figure the numerical data are in blue circle and the width of the diffraction
limit is given by the black dashed line. In this setup for |y| < 2 mm the width of the diffracted
order images remain close to the diffraction limit. For |y| > 2 mm this agreement is reduced
slowly and the difference between numerical and analytical data points arrives at 2 µm
in |y0| = 5 mm. This difference is of the order of half the diameter of our emitters mode
profile, and hence still a significant part of coupling should be maintained. Finally, the



72 CHAPTER 4. NUMERICAL MODEL

FIGURE 4.17 – Mismatch |∆| versus emitter positions |y| in a double-logarithmic scale. Blue
stars are distribution of numerical mismatch after fit. Black line is analytical mismatch.

beam diameters remain close to the required condition that coupling is still maintained,
though it could be substantially reduced to the outer parts of the array.

FIGURE 4.18 – Width for all diffractive orders in 1
e2 versus emitter positions |y|. Blue stars

are distribution of numerical width after fit in array of emitter positions |y|. Black dashed
line is diffraction limit.

4.5.4.4/ DISTANCE MISMATCH WITH AND WITHOUT RE-SCALING THE IMAGE PLANES

To show the importance of re-scaling of the image plane (dividing the correction factor
to (x, y) plane in paraxial state), we plotted |∆| in a double-logarithmic scale for numerical
data points with re-scaling the planes in Fig. 4.19 in blue stars, |∆| without re-scaling
are as brown stars in Fig. 4.19. The brown stars show a periodic emitter position |y|,
which occurred because we applied the paraxial approximations (tan θ = sin θ = θ) in our
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calculation to obtain the image planes. While, in blue stars the computed image planes
are based on non-paraxial re-scaling (tan θ , sin θ , θ).

l l

FIGURE 4.19 – Mismatch |∆| versus emitter positions |y| in a double-logarithmic scale. Blue
stars are the distribution of numerical mismatch with non-paraxial re-scaling of the image
planes. Brown stars are distribution of numerical mismatch with paraxial calculation in the
image planes. Black line is analytical mismatch.
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4.6/ CONCLUSION

In this Chapter we investigated coupling in numerical simulations for two setups. We
reproduced the experimental setup in detail in our numerical simulations. We used several
techniques during our simulations:

• In order to include the relevant effects which might limit our approach, it is crucial
that the paraxial approximation is avoided during our simulation.

• To simulate numerically the propagation of beam, we introduced discrete Fourier
transform (DFT). To compute the DFT we had to consider the number of samples
and Nyquist frequency. During the propagation of optical field we included an ab-
sorbing boundary to remove the effect of a periodic boundary which appeared due
to the periodic boundaries introduced by the FFT.

• Simulation of a lens or MO requires sampling the wave’s phase profile with a large
number of sampling data points, which renders the use of a standard desktop PC
unpractical. We introduced the Debye integral as a solution to compute the field at
the end of focal point based on a smaller number of sampling points. Calculating
imaging by a MO based on the Debye’s integral requires projecting the incident
field on to cylindrical coordinates. This creates a decomposition into the optical
field’s radial (p-polarized) and tangential (s-polarized) components. The transfor-
med field is then projected onto the MO’s principle plane in spherical coordinates.
After these transformations, the electric field E at a point (x, y, f ) near the focus is
obtained by integrating the propagated plane waves.

• We modulated the optical beam based on DOE’s phase profile. This phase profile
was obtained from the optical component by using a phase retrieval method.

• Each MO’s clear aperture is limited by applying a circular mask with a transparent
center and an opaque outer area. The radius of this circle is defined by the radius
of the MO.

• Since the Debye integral method utilized the paraxial approximation, we required
to re-scale the images planes. The principle was a coordinate re-scaling which
accounts for the relation between spatial positions and spatial frequencies.

After explaining the techniques, we obtained the distance between diffractive orders, mis-
match distance |∆| and width of each diffractive order then compared the experimental
results to the numerical model. In numerical simulations we observed the vignetting ef-
fects comparable to the experimental data of the previous Chapter. That vignetting events
occurred because of low NA in MOs. We then numerically investigated another system
where we used the same configuration but we increase the NAs for both MOs using
NA1 = 0.45 and NA2 = 0.2. This augmented the MOs’ diameters, the problem of vignetting
was solved.
We explored the fundamental limit of coupling based on diffraction and investigated how
many photonic neurons can maximally be coupled. For the high NA version of the concept
the distance between diffractive orders remains inside 12.2 µm < |ddiff | < 14 µm for all
emitters in distance 10 mm. In two dimensions and for the resulting area of 100 mm2, the
optical emitters can therefore be coupled for 671, 300 emitters.



5
PHOTONIC NEURAL NETWORK

In previous Chapters, we evaluated experimentally and numerically diffractive coupling in
a simple setup. In the first Chapter, we introduced a spatio-temporal reservoir computer
[37, 130] and in this Chapter we describe the experimental setup to build such a system
[8]. First, we present a simplified scheme of the experiment which illustrates the relevant
components. In this study we use a reinforcement learning based process consisting of
multiple iteration steps and we used the MG prediction task to determine its performance.
Finally, our photonic RNN successfully generalized the target system’s properties.

5.1/ INTRODUCTION TO RECURRENT NEURAL NETWORKS

Figure 5.1 shows a single layer of a recurrent neural network. Circles are considered as
neurons, and the connections which are illustrated as arrows. In our neural network, in-
formation enters the system via a single input node, as illustrated in Fig. 5.1, which is
coupled to a recurrently connected network of nonlinear nodes, which are realized with
a spatial light modulator (SLM). Recurrent and complex network connections are imple-
mented via the DOE-based diffractive coupling discussed during the previous Chapters.
The resulting connectivity is matrix WDOE, which we realize using a digital micro-mirror
device (DMD). The network’s state is summed according to weight matrix WDMD. Then,
the computational result is provided at the single output node. We will explain WDMD and
WDOE in more details in the next section.

5.2/ EXPERIMENTAL SETUP AND DIFFRACTIVE NETWORK

In Fig. 5.2, we schematically illustrate our hardware neural network, which consists of the
following optical elements [8]:

• BS: A beam splitter is designed to split the incident beam into two beams with two
different directions at a Reflection/Transmission (R = 0.5/T = 0.5) ratio.

• PBS: A polarizing beam splitter divides light into two polarized light transmitting
p-polarized light and reflecting s-polarized light.

• SLM: A spatial light modulator modulates intensity or phase of light. Spatial light
modulators are two dimensional array of pixels distributed across a liquid crystal
cells with the possibility of addressing them individually. In our case, the SLM is
operated with an auxiliary computer. The SLM reflects light by a reflective surface
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FIGURE 5.1 – Schematic illustration of a recurrent neural network with the input (green
arrow), which is coupled to the nonlinear nodes. The recurrent connections of nodes are
illustrated by blue arrows. The system’s output as created by the weighting the network
states with WDMD.

in the back to reflect the incoming light. In our reservoir, each cell of the SLM is
considered as a node. In this experiment, the lateral size of the SLMs’ cells which
are squares, is 12.5 µm [131,132].

• DMD: A digital micro-mirror device is an array of aluminum micro-mirrors to reflect
the light. Each micro-mirror has two electrodes underneath, and their controllable
charge can tilt the mirror between the two extreme locations. For the mirrors, there
are two tilting angles where the output values, which are Boolean are defined ba-
sed on these angles. [133].

An illumination laser (Thorlabs LP660-SF20, λ = 661.2 nm, Ibias = 89.69 mA, T=23oC) is
adjusted to s-polarization. A consecutive 50/50 BS reflects the illumination beam toward
the PBS, which reflects the s-polarization into MO1 (MO1, Nikon CFI Plan Achro10×).
When the illumination laser focuses on the back focal plane of MO1, then the SLM
pixels (i=1,...,N) are illuminated by a plane wave of amplitude E0

i . A λ
2 plate between

PBS and MO1 is used to control the polarization of the entrance beam in order to
optimize for intensity modulation by the SLM. Finally, the optical field in p-polarization is
transmitted through the PBS, and at integer time n, the field behind the PBS is obtained by

Ei(n) = E0
i cos

(
2π

kSLM

(
xSLM

i (n) + θ0
i

))
, (5.1)

here xS LM
i (n) is the SLM pixel’s gray scale with defined value xS LM

i (n) ∈ {0, 1, ..., 255}.
kS LM = 244.6 ± 1.6 is the conversion between polarization angle in radiance and the pixel
gray scale. θ0

i = 11.1 ± 1.1 is considered as a gray scale offset, which is constant. The
values kSLM and θ0

i are experimentally measured for the 900 pixels of the network.
The transmitted beam passes the DOE (HOLOOR MS-443-650-Y-X) and each pixel of

the SLM is diffracted into 3 by 3 diffractive orders. All diffractive orders are transmitted
through MO2 and a mirror reflects the full signal back for a second pass through the
DOE. Every individual pass creates 3 by 3 diffractive orders and the double pass creates
the last diffraction pattern which is a convolution of the diffraction pattern with itself. On
average these results are observed in a 5 × 5 diffraction pattern for each node. This
pattern presented a coupling matrix WDOE in Fig. 5.3 [8]. Self-coupling in the network is
possible where the imaging setup is in a 4f architecture. For this reason, a λ

4 wave-plate
is included, hence when the beam passes two times through λ

4 , its polarization changes
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FIGURE 5.2 – Scheme of a recurrent neural network. The optical nodes are establishes
by pixels of a SLM. Nonlinear nodes are created by a PBS which is a polarization filtering.
Coupling between the nodes is fulfilled by a DOE. Before detection at the system’s output,
there is a digital micro-mirror device, which creates a spatially modulated image of the
SLMs state.

from p-polarized to s-polarized. After going through the PBS, the now s-polarized beam
is reflected towards the MO3 (Nikon CFI Plan Fluor 4×) and imaged on the camera (CAM,
Thorlabs DCC1545M). We require the camera’s image in order to drive SLM. To create
a recurrent network, a closed loop is needed which is found between the SLM and the
camera. Camera state is given by

xC
i (n) = α | Ei |

2, (5.2)

with
α =

GS
Isat

ND, (5.3)

where xC
i (n) ∈ {0, 1, ...,GS } and GS= 255 is the 8-bit camera gray scale and Isat is the

camera’s saturation intensity. To obtain the maximum dynamical range of the camera
while avoiding overexposure, transmission through a neutral density filter (ND) is selected.
In this experiment the magnification is 2.5 and size of each SLM’s pixel is 12.5 µm, while
this value is 5.2 µm for camera’s pixel. The optical field on the camera is given by

EC
i =

N∑
j

WDOE
i, j E j, (5.4)

by using the SLM and the camera, we can obtain WDOE (network coupling matrix) expe-
rimentally. Figure 5.3 illustrates WDOE for a photonic network of 900 nodes. This matrix
represents the 5× 5 structure because of double pass trough DOE. Black expresses high
coupling strength, white absent of coupling. To show more details, we added the inset
zoom of this matrix for a smaller region in Fig. 5.3. From this inset, we can observe that
the connectivity strengths diversify. The DOE’s area that is passed by the collimated beam
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FIGURE 5.3 – Coupling matrix in our RNN for 900 nodes where black presents high cou-
pling strength and white presents absent of coupling. A zoom for a smaller region shows
better this coupling strength.

shifts slightly from pixel to pixel, resulting in a modification for the beam’s phase modula-
tion and as a consequence the intensity distribution between diffractive orders varies [8].
There are also external information, which must be coupled to the system by a matrix
of injection Win j, whose entires are randomly and uniformly drawn from [0, 1]. Each state
x(n + 1) of photonic network is computed according to

xi(n + 1) = α | E0
i |

2 cos2

β · α∣∣∣∣ N∑
j

WDOE
i, j E j(n)

∣∣∣∣2 + γW in j
i u(n + 1) + θi

 , (5.5)

where u(n + 1) is the input information being injected to the network, γ is the injection gain
and β is the scalar feedback gain. To control the instruments and to up date the network,
MATLAB was using.

5.2.1/ READOUT

In order to achieve the desired computation in our system we require to adjust this sys-
tem. Generally, it is possible by several learning rules to modify the connection weights
[134, 135]. Our RNN nodes are spatially distributed. By using an array of micro-mirrors
(DLi4120 XGA, pitch 13.68 µm), the optical signal can be flipped in two states either +12◦

or −12◦. In our experiments, where the micro-mirrors are in the state −12◦, the output
signal is measured by a detector (DET, Thorlabs PM100A, S150C). As a result, the DMD
can be considered as an optical spatial filter to implement the output weights. For the
system where readout weights were Boolean, the signal at the detector is described by

yout(n + 1) ∝
∣∣∣∣ N∑

i

WDMD
i,k

(
E0

i − Ei(n + 1)
) ∣∣∣∣2, (5.6)
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where WDMD
i=1,..,N,k is a square matrix and k is the current learning iteration or learning epoch.

Unlike delay reservoir, here the weights are not temporal modulations and Eq. 5.6 is
fulfilled for all parameters in parallel.

5.2.2/ PHOTONIC LEARNING

In this section, we evaluate the learning procedure and prediction of the MG series
[136,137]. First, we introduce the MG equation. The MG equation is nonlinear time delay
differential equation

dx
dt

= B
x(t − r)

1 + x(t − r)n − Ax, (5.7)

for instance A = 1, B = 2, r = 1 and n = 9.65. Based on the values of parameters,
this equation displays a range of periodic and chaotic dynamics. In Eq. 5.6, WDMD

i=1,..,N,k
got (k = 1, 2, ...,K) learning iterations, in that case yout(n + 1) approximates the desired
response for u(n + 2) at k = K.
We used two hundred points of the chaotic Mackey–Glass sequence as u(n + 1). At each
iteration we modify RNN’s output weights. In this modification if the error is reduced,
a reward signal is taken, otherwise it will be rejected. We therefore teach our photonic
RNN [138–140]. By this method, our photonic RNN can generalize the target system’s
properties. The good prediction performance can be seen in Fig. 5.4. On the left y axis of
this figure in blue line, data shows the recorded output power. Data on the right y axis in
red dots is according to the normalized prediction target signal. A difference between blue
line and red dots is hardly visible. The prediction error ε in yellow dashed line is also very
small [8]. As a result, our system was successfully trained for chaotic signal prediction.
We therefore realized learning fully implemented photonic hardware.

Reservoir output
Target signal
Error

 

FIGURE 5.4 – Reservoir output in µm in blue line and prediction target in red dots. Red
dots and blue line can hardly be diffracted. Prediction error is in yellow line.
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5.3/ CONCLUSION

In this Chapter, a concept of photonic recurrent neural network was presented. Internal
connections between neurons were established by diffractive coupling, which constructed
the connectivity matrix of WDOE. We successfully obtained WDOE for a network of 900
nodes in our experiment. If we apply this system as a neural network, which requires
learning rules to optimize the configuration of WDMD. The single output is the sum of
network’s state. Besides the network internal connections, the system was coupled to
information injection. The signal reflected by the PBS was imaged onto the surface of
a DMD, which allowed the detection of a weighted network state. Readout connection
was via a digital micro-mirror device, which could be flipped between ±12◦. Weights
WDMD were adjusted according to reinforcement learning. For measuring the system’s
performance, we introduced the MG system and we evaluated one step ahead prediction
for this equation. This system was successfully trained for chaotic signal prediction and
our recorded output got a good agreement with signal target prediction and the prediction
error was small.



6
CONCLUSION AND OUTLOOK

6.1/ CONCLUSION

In this thesis we have analytical, experimental and numerical investigation to obtain the
maximum size of an optical network coupled via diffraction. Analytically, we evaluated
the fundamental limits of coupling in our network by using a single DOE. Experimentally,
two different setups were developed to go beyond these limitations. Numerically, different
techniques in our simulation implemented to achieve the desirable performance. In a
second try, we modified the numerical model to explore the maximum number of nodes
which can be coupled. Finally, the confirmation of coupling in the system allowed us to
study the whole spatial RNN in order to predict the chaotic MG sequence. This thesis
was organized as follows:

In Chapter 1, we explained ANNs as a substrate of machine learning, which tries to
crudely mimic the structure of human brain which was a complex network of neurons.
We started with a highly simplistic model of a neuron, the perceptron. One of the most
basic ANN is the feed-forward neural network. In this model, neurons are arranged in
layers and connections between the neurons are always in the forward direction. Another
important class of ANNs are RNNs, which are circular networks including unidirectional
coupling of neurons. In RNNs information in the network is encoded in its dynamical
state, creating an internal memory. We then studied neural networks training to find an
optimal configuration of connection weights which minimize the error of a computation
to be carried out. We presented feed forward and recurrent neural network training, and
reservoir computing as a new method reducing number of weights that are modified was
discussed. Photonic neural networks have become popular reservoir computing systems
because of high processing speed and a large connectivitys in a limited space achievable
with photonic devices. We presented two photonic reservoir computing concepts: the
photonic delay reservoir and the photonic spatio-temporal reservoir. In photonic delay
reservoirs a single non-linear node under the influence of delayed feedback implements
a neural network in a temporally multiplexed system. Hardware reservoir computing
based on delay reservoir was demonstrated which was applied to channel equalization
and speech recognition. As a second topology we introduced the creation of optical
reservoir computing where the reservoir is extended in space. A primary motivation for
optical spatio-temporal reservoir technology is to establish connectivity fully in parallel for
a large number of photonic nodes. Hardware spatio-temporal reservoir will be discussed
more in Chapter 5.
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In Chapter 2 we were able to derive the fundamental limit for the size of photonic
networks coupled via diffraction based on a simple analytical description. We started
from the Maxwell equations to derive the propagation equation and the scalar Helmholtz
equation and presented plane waves as solutions of the Helmholtz equation. The Kirch-
hoff diffraction integral and the Huygens principle are two ways to obtain the diffraction
theory. In this thesis, the Huygens principle allows to derive the Rayleigh-Sommerfeld
diffraction integrals, the Fresnel diffraction formula and the Fraunhofer diffraction formula.
We continued to study the plane-wave spectrum as another method to propagate the
complex optical fields. The plane-wave spectrum will be implemented in Chapter 4 in our
numerical simulations of diffractive coupling. Finally, as an example light diffraction, the
transmission and reflection grating were presented and the equations were obtained to
utilize in our analytical description to approximate the effect of a DOE by a transmission
grating.
We analytically explored the principles and limits of diffractive coupling by considering
coupling arrays of discrete photonic emitters as the network’s nodes. Imaging a periodic
array through a periodic diffraction grating creates spatially multiplexed images. We
obtained the maximum number of neurons which can be coupled. By using parameters
mismatch coupling |∆| and width of diffractive orders w, we were able to show where
the coupling was terminated. Finally, for diffractive networks’ size of (16.4 mm)2, we
confirmed at least 1, 795, 600 photonic nodes.

In Chapter 3, we investigated practical limits to the size of photonic networks coupled
via diffraction. We characterized these based on two independent experiments which
investigate fundamentally different limitations. In the first setup, a single mode optical
fiber emulated optical nodes, and coupling for different spatial positions within a network
was characterized by translation of the optical fiber’s position. The beams diffracted
by the DOE were imaged on the camera. The results from this setup were fit and
characterized through the distance between diffractive orders, the mismatch distance
and width of diffractive orders. We found that beam vignetting by the MOs induced strong
aberrations. For this reason, we develop the second experiment in order to eliminate this
practical limitations and to experimentally confirm the analytical limit. In a second setup
instead of translating the fiber we tilt the DOE which is linked to position of emitters where
each emitter position is equal to multiplication of the focal length of MO into tangent of the
tilted angle of DOE. We obtained three parameters distance between diffractive orders,
mismatch distance and width of diffractive orders for tilted angles in a range of 0 degree
to 22 degree. Tilting the DOE therefore emulates different node positions without the
effect of beam vignetting and we obtained an excellent agreement between the analytical
model and the experimental data. Results confirm the validity of diffractive coupling far
beyond what was in the first experiment and for an area of (16 mm)2.

In Chapter 4, we numerically modeled beam propagation, diffraction and collima-
tion/imaging from the first experiment. A correct description of the underlying optical
processes requires considering effects of coherent light propagation through the imaging
system. We avoided paraxial approximations such as sin θ ' tan θ ' θ and the plane-wave
spectrum was the method for describing propagation of an electromagnetic field during
the simulation. We employed the Debye integral method to simulate the propagation
through high NA microscope objectives. A rescaling of image plane was applied to all
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numerical simulations which accounted for the relation between spatial position and
spatial frequencies in an imaging system beyond the paraxial approximation limit. To
include the effect of the DOE, we modulated the optical beam between both microscope
objectives according to the DOE’s phase profile. The phase profile was obtained directly
from the component based on a phase retrieval technique. We accurately reproduced
the first experimental setup, including the directly measured distances from the MO1 to
the DOE and from the DOE to the MO2, plus the physical properties of both microscope
objectives as obtained from their data-sheets. In addition, we used the same fitting and
data-extraction routing as for the experiment. The results of distance between diffractive
orders, mismatch distance and width of diffractive orders were demonstrated and
compared with the first experiment, and the numerical method excellently reproduced the
vignetting effect as encountered in the experiment. We therefore modified the numerical
simulation and replaced MO1 with a high NA, low magnification microscope objective and
simulations show that in this configuration beam vignetting would strongly be reduced.
Moreover, the numerical simulation confirmed the validity of diffractive coupling under
conditions comparable to a realistic experimental setting. Finally, our experimental,
numerical and analytical investigation provided the first systematic analysis of size-limits
for optical networks coupled via diffraction.

In Chapter 5, we discussed the development of our hardware spatial recurrent neural
network. The goal was to develop and optically implement learning tools, information pro-
cessing (by using reservoir computing) and the programmable readout layer. This RNN
includes hundreds of nonlinear nodes by using a spatial light modulator where each pixel
of the SLM established an individual node and in combination with a PBS realizes a non-
linear mapping for each node. We utilized coupling according to the previously introduced
diffractive concept based on a DOE. By measuring the state of each node and feeding
it back to SLM, the dynamics were obtained. We recorded the state of network with a
CMOS camera and the input layer was realized digitally. We utilized the learning rules ba-
sed on reinforcement learning. These learning rules controlled the state of a DMD upon
which the network state was imaged and whose mirrors acted as output weights. We trai-
ned our system to predict the chaotic MG sequence and the resulting prediction error was
very low. We also demonstrated a network with 900 nonlinear nodes.

6.2/ OUTLOOK

In this thesis, we were able to obtain the interesting methods and results in our optical
system. There are several methods which can be investigated in future studies being
listed in below:
In numerical simulations instead of phase retrieval method for DOE phase modulation,
that structure can be obtained by mathematical equations. Changing the DOE pattern
also can be highly interesting in order to compare with the diffractive coupling in this
thesis.
Regarding our studies, we can recalculate our measurements in ray optics. In that case,
the result of numerical simulation can easily be achieved by the commercial software
such as optic studio (Zmax). The significant points in this application is that one can
change easily all parameters of the lenses such as diameter, thickness, material, etc.
As a result, we can design and optimize system with desirable parameters to reduce
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exceedingly the aberration factor and to establish a larger number of nodes by enlarging
the area of diffraction coupling. Finally, the discussed lenses or MOs can be fabricated
by some companies to utilize in our experimental setups.
In Chapter 5, the spatially extended reservoir was investigated for prediction the chaotic
MG sequence. This research can be extended by changing the learning rules for different
applications such as image or voice recognition. Regarding the use of SLM in our
reservoir computing, if it is replaced with an optical element like an optically addressed
spatial light modulator (OASLM) to modulate light, we can explore an all optical reservoir
computing.
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