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Photon emission and quantum transport in nanoplasmonic cavities

The study of light-matter interaction has drawn through the years more and more interest. With the improvement of the techniques used for building electromagnetic cavities, it is now possible to couple cavities with nanocircuits merging the fields of quantum optics and nanoelectronics. Not only that, but some experiments also reported the possibility to use a scanning tunneling microscope as a plasmonic cavity coupled with electronic transport.

In this thesis a theoretical framework is proposed, based on mesoscopic quantum electrodynamics, for studying the coupling between electronic transport in a molecular junction and the electromagnetic field of a cavity. This thesis focuses on the sequential tunneling regime for the electrons and use density matrix approach. This allows to derive the master equation as well as a computational scheme to compute electronic current and the photon statistic when it is not possible to obtain analytical results.

First, a single-level model for the molecule in the junction is studied. Indeed the electronic current induces a fluctuation of the charge on the molecule that couples with the electromagnetic field in the cavity. The investigations on this system are done in the experimentally relevant limit of large damping rate κ for the cavity mode and arbitrary strong light-matter coupling strength. This model shows the equivalence between the electron-photon coupling for a single level and the electronphonon coupling that has long been studied in nanoelectronics known as the Franck-Condon principle. The current-voltage characteristics show steps, each separated by the energy of a photon, as the electron tunneling dissipate some energy in the cavity mode. In this work a formula has been derived for the electronic current taking into account the damping of the cavity. This allows to show that the width of the current's steps are controlled by κ rather than the temperature. The single-level junction shows interesting light-emission regimes. At large bias voltage this theory predicts strong photon bunching of the order κ/Γ where Γ is the electronic tunneling rate. However, at the first inelastic threshold the theory predicts current-driven non-classical light emission from the single-level junction. Finally the investigation of the effect of a strong external drive of the cavity on the electronic current shows a quantization of the current that is linked to the Franck-Condon effect.

Finally the theory is applied to a double-level model for the molecular junction inspired by quantum optics. In this scenario, the cavity mode couples to the electronic transition between the two states of the molecule. The effect of the charge fluctuations for each single electronic level is neglected. Therefore the coupling is a dipolar coupling in this case. The focus is mainly on the weak coupling regime. The electronic current shows the Rabi splitting due to the hybridization of the cavity mode and the molecule. Electronic tunneling can occur into these hybridized states and is responsible for light emission in the cavity in a iii single tunneling process. Light antibunching is seen in the weak coupling regime since our model predicts that only single photon emission is possible during a tunneling event in this case. Though the intermediate coupling regime is only briefly treated, the strong coupling regime is shown to be similar to two independent single level.
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Spanish

El estudio de las interacciones entre luz y materia ha atraído un interés creciente a lo largo de los años. La mejora de las técnicas de fabricación de las cavidades electromagnéticas permite hoy conjugar las cavidades con nanocircuitos, combinando así los campos de la óptica cuántica y de la nanoelectrónica. Se añade a eso la posibilidad de usar un microscopio con efecto túnel a modo de cavidad plasmónica combinada con el transporte electrónico que fue demostrado en numerosas experiencias. Esa tesis propone un cuadro teórico basado en la electrodinámica mesoscópica, permitiendo el estudio de la combinación del transporte electrónico dentro de una unión molecular con el campo electromagnético de una cavidad. El foco se centra en el régimen túnel secuencial de los electrones, a cual está apto el uso de la matriz densidad para los cálculos. Ese régimen permite establecer ecuaciones claves que rigen el desarrollo temporal de la matriz densidad, tal como un esquema de cálculo numérico de la corriente electrónica y de la estadística de los fotones en la cavidad cuando no es posible obtener un resultado analítico.

Primero se estudia un modelo de un solo nivel electrónico para la molécula. En efecto, la existencia de una corriente electrónica significa que la carga en la molécula fluctúa y esa fluctuación se combina con el campo electromagnético de la cavidad. El estudio de ese sistema se hace en el limite, experimentalmente pertinente, del ratio alto de la amortiguación κ del modo de la cavidad y del acoplo luz-materia arbitrariamente alto. Ese modelo demuestra la equivalencia del acoplo electrónfotón para un nivel electrónico y el acoplo electrón-fonón que se ha estudiado desde hace mucho tiempo en el campo de la nanoelectrónica bajo el nombre del principio de Franck-Condon. La característica corrientetensión del circuito hace aparecer una evolución de escalones, cada uno separado por la energía de un fotón. Eso corresponde a una disipación de energía por parte de los electrones al modo de la cavidad durante el proceso de transporte. En ese trabajo se derivó una ecuación para la corriente electrónica que toma en cuenta el efecto de la amortiguación de la cavidad. Esto demuestra que la anchura de los saltos en la corriente está controlada por κ más que por la temperatura. El modelo de un solo nivel muestra también regímenes inesperados de emisión de luz. En el límite de voltaje alto entre los electrodos de la unión molecular, la teoría predice una agrupación («bunching») de los fotones emitidos dentro de la cavidad. La correlación entre dos fotones emitidos alcanza un valor del orden de κ/Γ donde Γ es el ratio de tunelamiento de los electrones. Sin embargo, en el primer umbral de transferencia inelástica esa teoría predice una emisión de luz no-clásica provocada por la corriente electrónica. Por fin, el estudio del impacto de una fuerte excitación externa del modo de la cavidad muestra también una cuantización de la corriente relacionada al efecto Franck-Condon.

Finalmente, la teoría desarrollada en esta tesis está aplicada también a una unión molecular de dos niveles electrónicos inspirada de la óptica cuántica. En ese escenario el modo de la cavidad está acoplado con la transición electrónica entre dos orbitales moleculares. El efecto de fluctuaciones de carga en cada orbital no se tiene en cuenta. Entonces en ese marco el acoplo es solo dipolar. Se centra la atención principalmente en el régimen del acoplo débil. La corriente electrónica muestra la huella de oscilaciones de Rabi como resultado de la hibridación del modo de la cavidad con la molécula. El transporte de electrones se puede ocurrir mediante estos estados híbridos. Entonces el traslado de un único electrón es responsable de la emisión de un fotón en la cavidad. Se observa el desagrupamiento («anti-bunching») de la luz emitida. Aunque el régimen de acoplo intermedio es solamente tratado en breve, el régimen de acoplo fuerte muestra que es muy similar a la combinación de dos niveles electrónicos independientes acoplado al modo de la cavidad.

Palabras claves: transporte cuántico, nanofotónica, plasmónica French L'étude de l'interaction entre la lumière et la matière n'a cessé de susciter un intérêt croissant au fil des années. L'amélioration des techniques de fabrication des cavités électromagnétiques permet aujourd'hui de coupler ces cavités à des nanocircuits, se faisant, combinant les champs de l'optique quantique et de la nanoélectronique. À cela s'ajoute enfin la démonstration expérimentale de la possibilité d'utiliser un microscope à effet tunnel comme cavité plasmonique couplée au transport électronique. Cette thèse propose un cadre théorique basé sur l'électrodynamique quantique en cavité, permettant l'étude du couplage entre le transport électronique dans une jonction moléculaire et le champ électromagnétique d'une cavité. L'attention est portée sur le régime de transfert tunnel séquentiel des électrons, auquel est adapté l'utilisation les calculs basés sur l'usage de la matrice densité. Ce régime permet d'établir les equations maîtresses régissant l'évolution temporelle de la matrice densité, ainsi qu'un schéma de calcul numérique du courant électronique et des propriétés statistiques des photons dans la cavité quand il n'est pas possible d'obtenir un résultat analytique.

Dans un premier temps, l'attention est portée sur un modele de jonction moléculaire à une orbitale. En effet, l'existence d'un courant électronique signifie que la charge de la molécule fluctue et cette fluctuation se couple au champ électromagnétique de la cavité. L'étude de ce premier système est faite dans le régime, expérimentalement pertinent, de fort taux d'amortissement κ ≥ k B T du mode de la cavité et de couplage lumière-matière arbitrairement élevé. Ce modèle met en évidence l'équivalence du couplage électron-photon et du couv plage électron-phonon pour un unique niveau électronique. Ce couplage électron-phonon est étudié depuis longtemps en nanoélectronique sous le nom de principe Franck-Condon. La caractéristique courant-tension du circuit fait apparaitre une évolution par paliers ou seuils inelastiques, chacun séparé par l'énergie d'un photon. Ce phénomène correspond à une dissipation d'énergie, par émission de photons dans la cavité, médiée par le courant électronique. Pour cette étude, une formule du courant électronique prenant en compte l'effet de l'amortissement de la cavité (facteur de qualité Q ≈ 10) a été dérivée. Cela a permis de montrer que la largeur des sauts du courant est contrôlée par κ plutôt que la température. Ce modèle démontre la possibilité d'obtenir divers régimes d'émission de lumière par passage de courant au sein de la jonction. Pour une importante différence de potentiel entre les électrodes de la jonction, cette théorie prédît un important groupement («bunching») des photons émis dans la cavité. La fonction de corrélation de deux photons à temps égaux g (2) (0) atteint alors une valeur de l'ordre de κ/Γ, où Γ est le taux de transfert tunnel des électrons. En revanche, au premier seuil de transfert inélastique des électrons, cette théorie prédît une émission de lumière non-classique provoquée par le courant électronique moléculaire à un niveau (la jonction se comporte alors comme une source à un photon). Enfin, nous avons montré qu'en présence d'une source de voltage dépendant du temps appliqué à la cavité, le courant dc présente des paliers analogues à ceux obtenus dans le régime Franck-Condon.

La théorie développée dans cette thèse est ensuite appliquée à une jonction moléculaire à deux niveaux électroniques. Dans ce scénario, le mode de la cavité se couple à la transition électronique entre les deux orbitales moléculaires. L'effet des fluctuations des charges de chaque orbitale est négligé. Dans ce cadre, nous avons étudié le cas d'un couplage cavité-molécule de type dipolaire électrique. L'attention est portée principalement sur le régime de couplage faible entre le dipole de la molécule et le mode de la cavité. Le courant électronique montre l'empreinte des oscillations de Rabi provenant de l'hybridation du mode de la cavité et de la molécule. Le transfert d'électrons peut se produire au travers des états hybridés. On observe alors que le transfert d'un unique électron est responsable de l'émission d'un photon dans la cavité. Les photons émis dans la cavité sont ainsi dégroupés («anti-bunching»). Bien que le régime de couplage modéré soit seulement brièvement traité, le régime de couplage fort, quant à lui, se montre très similaire au couplage de deux niveaux électroniques indépendants avec le mode de la cavité.

Mots-clefs: transport quantique, nano-photonique, plasmonique vi Chapter 1

Introduction

Light-matter interaction

We have known since the 19th century that electrons are sensitive to electromagnetic fields. It is the Lorentz force that is responsible for electronic motion. It was also demonstrated that light is electromagnetic waves and therefore electrons and light were shown to interact in the photovoltaic effect discovered by E. Becquerel in 1839 [START_REF] Copeland | The photovoltaic effect[END_REF]. Another example of lightmatter interaction was shown by R. Hertz in 1887 in the photoelectric effect, where he showed that electrons can be extracted from a metal under light irradiation. Since then more examples of light-matter interactions have been demonstrated in chemistry with photocatalysis [START_REF] Fox | Heterogeneous photocatalysis[END_REF], in biological phenomena such as photosynthesis [START_REF] Bohning | The effect of light intensity on rate of apparent photosynthesis in leaves of sun and shade plants[END_REF] or retinal photoreception [START_REF] Bailes | Melanopsin and inner retinal photoreception[END_REF].

Light-matter interactions have found some technological uses with the design of solar cells using the photovoltaic effect [START_REF] Yu | Towards high performance organic photovoltaic cells: A review of recent development in organic photovoltaics[END_REF] or lasers for example [START_REF] Haken | Laser theory[END_REF]. Physicists have put a lot of efforts in understanding lightmatter interactions from a fundamental point of view as well as the use that can be made of it in engineering. In fact the photoelectric effect described by R. Hertz found a theoretical explanation in 1905 in the famous work of A. Einstein [START_REF] Einstein | On a heuristic viewpoint of the creation and modification of light[END_REF]. This is a corner stone in the understanding of the nature of light since A. Einstein made use of the principle of quantification previously used by M. Planck to explain the black-body spectrum. Hence the notion of light particles, later on called photons, was introduced. This discovery led to the development of quantum mechanics and the study the quantum nature of light lead to the field known today as quantum optics.

Cavity Quantum Electrodynamics

In order to study light-matter interaction between an atom or a molecule and an electric field, physicists placed the object to study between two conducting plates. This is what is called a cavity. As the cavity gives some boundaries that limits the volume in which the electric field exists, this results in a discrete spectrum of the field. The study of the phenomena linked to the discretization of the cavity's modes is called Cavity Quantum Electrodynamics (cavity-QED).

There are three types of phenomena involved in cavity QED. The modification of the spontaneous emission rate of an atom resonant with a cavity mode known as Purcell effect. The modification of the atom's energy levels known as Lamb shift. And finally, the oscillatory energy exchange between the atom and a cavity mode showing a pure quantum behaviour known as Rabi oscillations. The first two phenomena mentioned can be observed in the weak coupling regime but the Rabi oscillations require and define the strong coupling regime, that is when the coupling intensity overcomes the dissipation rates in the system. In other words, from the experimental point of view, the strong coupling regime is achieved when the Rabi oscillations are measurable.

The Purcell effect was the first of the three to be observed [START_REF] Anonymous | Proceedings of the american physical society[END_REF] and its observation started the field of cavity QED. It corresponds to the enhancement of the atomic spontaneous light emission rate by the factor f = 3Qλ 3 /4π 2 n 3 V when placed in a cavity, where λ is the wavelength, Q the quality factor of the cavity, n the refractive index and V the mode volume of the cavity. As the light emission rate of the atom is proportional to the density of modes of the electric field, the fact that the cavity's geometry concentrates a mode in its volume can result in the enhancement of the light emission rate of the atom when the cavity and the atomic transition are tuned. The enhancement factor is roughly given by the quality factor Q of the cavity. On the contrary, if the cavity and the atomic transition are not tuned, the light emission is suppressed since there is no mode available for the atom to relax its energy.

The shift of the atomic energies has been studied from a theoretical point of view [START_REF] Barton | Quantum-electrodynamic level shifts between parallel mirrors: analysis[END_REF][START_REF] Hinds | Cavity qed level shifts of simple atoms[END_REF][START_REF] Brune | From lamb shift to light shifts: Vacuum and subphoton cavity fields measured by atomic phase sensitive detection[END_REF] but very few experiments have been realised [START_REF] Heinzen | Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator[END_REF] as the measurements are limited to a particular contribution resulting from a single wave vector k in a planar geometry. Finally, the Rabi oscillations [START_REF] Walther | Cavity quantum electrodynamics[END_REF] have been studied theoretically using the Jaynes-Cummings model [START_REF] Jaynes | Comparison of quantum and semiclassical radiation theories with application to the beam maser[END_REF] and demonstrated in various experiments [START_REF] Stievater | Rabi oscillations of excitons in single quantum dots[END_REF][START_REF] Kamada | Exciton rabi oscillation in a single quantum dot[END_REF][START_REF] Htoon | Interplay of rabi oscillations and quantum interference in semiconductor quantum dots[END_REF][START_REF] Martinis | Rabi oscillations in a large josephson-junction qubit[END_REF].

The Rabi oscillations are the manifestation of the interaction between the dipolar momentum of a two-level quantum dot µ and the electric field of the cavity which gives a coupling strength Λ = µE zpm , where E zpm is the zero point motion of the electromagnetic field. When Λ overcomes the dissipation of the cavity or the atom spontaneous emission rate, the Rabi oscillations can be measured by observing the splitted peak in the optical spectrum of the cavity. This defines the strong coupling regime. Several experiments have used the strong couplings between atoms and the electric field of a cavity [START_REF] Gross | Superradiance: An essay on the theory of collective spontaneous emission[END_REF][START_REF] Brune | Quantum rabi oscillation: A direct test of field quantization in a cavity[END_REF][START_REF] Hagley | Generation of einstein-podolsky-rosen pairs of atoms[END_REF] allowing to explore the quantum nature of light and matter, but only few have managed to strongly couple a single atom to the cavity field. This was done for the first time building the micromaser [START_REF] Meschede | One-atom maser[END_REF]. A particular interest of the micromaser is its ability to generate sub-Poissonian distribution of photons and therefore purely quantum fields in the cavity.

Recently, the capability to fabricate a source of photons with specified statistics has received great interest. This is mainly due to quantum cryptography requiring the design of single photon sources and therefore Rabi oscillations since they are perturbed by the cavity's electromagnetic environment. Finally optical cavities are limited to a size of hundreds of nanometers since the wavelength we want to select is given by the distance between the boundaries of the cavity.

Mesoscopic Quantum Electrodynamics

Strong coupling with a single quantum dot has mostly been realised for microcavities [START_REF] Walther | Cavity quantum electrodynamics[END_REF][START_REF] Hood | Real-time cavity qed with single atoms[END_REF][START_REF] Mabuchi | Cavity quantum electrodynamics: coherence in context[END_REF][START_REF] Mckeever | Experimental realization of a one-atom laser in the regime of strong coupling[END_REF][START_REF] Reithmaier | Strong coupling in a single quantum dot-semiconductor microcavity system[END_REF]. At the same time nanoelectronics has also known progresses allowing for the fabrication of a wide variety of nanocircuits and the understanding of electron's dynamics. This led to the design of quantum dots with a discrete energy spectrum comparable to artificial atoms. Physicists were able to show, studying the electronic current, how the strong confinement of the electrons in a nanojunction leads to current quantization analogous to what was observed for a waveguide [START_REF] Van Wees | Quantized conductance of point contacts in a twodimensional electron gas[END_REF][START_REF] Büttiker | Quantized transmission of a saddle-point constriction[END_REF][START_REF] Krans | The signature of conductance quantization in metallic point contacts[END_REF]. A few examples of quantum dots have been realised with carbon nanotubes [START_REF] Tans | Individual single-wall carbon nanotubes as quantum wires[END_REF], semiconducting nanowires [START_REF] Franceschi | Single-electron tunneling in inp nanowires[END_REF] or self-assembled quantum dots [START_REF] Klein | A single-electron transistor made from a cadmium selenide nanocrystal[END_REF].

At first the nanocircuits build for nanoelectronics experiments were studied based on dc current measurement, but it was quickly realised that the response of the circuit to microwave excitation was interesting for fundamental purpose but also for the engineering of quantum information devices. Therefore physicists start to study photo-assisted tunneling of electrons [START_REF] Oosterkamp | Microwave spectroscopy of a quantum-dot molecule[END_REF]. The fabrication of nanocircuits and the control of the electronic current offered by nanoelectronics give the missing tool for the fabrication of a single photon source. Indeed there are two major ingredients to gather for the use of a single photon source in quantum information. The ability to generate a small number of photons that was shown by strongly interacting microwave cavities with a quantum dots, and the ability to control the photon source which should be given by nanoelectronics. Hence nanoelectronics and quantum optics have merged in a field called Mesoscopic QED. Since then nanocircuits embedded in microwave cavities have been used to further study electronic transport thanks to photonic spectroscopic tools and to mimic Cavity-QED by trying to engineer ways to strongly coupled an artificial two level system to a microwave cavity. This includes carbon nanotubes [START_REF] Delbecq | Coupling a quantum dot, Fermionic leads, and a microwave cavity on a chip[END_REF][START_REF] Bruhat | Cavity photons as a probe for charge relaxation resistance and photon emission in a quantum dot coupled to normal and superconducting continua[END_REF][START_REF] Cottet | Cavity QED with hybrid nanocircuits: From atomic-like physics to condensed matter phenomena[END_REF][START_REF] Bruhat | Circuit QED with a quantum-dot charge qubit dressed by Cooper pairs[END_REF][START_REF] Cubaynes | Highly coherent spin states in carbon nanotubes coupled to cavity photons[END_REF], quantum dots using the coupling to the charge degree of freedom [START_REF] Mi | Strong coupling of a single electron in silicon to a microwave photon[END_REF][START_REF] Mi | Circuit quantum electrodynamics architecture for gatedefined quantum dots in silicon[END_REF][START_REF] Stockklauser | Strong coupling cavity QED with gate-defined double quantum dots enabled by a high impedance resonator[END_REF][START_REF] Liu | Photon emission from a cavity-coupled double quantum dot[END_REF], and Josephson junctions [START_REF] Wallraff | Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics[END_REF][START_REF] Rolland | Antibunched photons emitted by a dc-biased Josephson junction[END_REF][START_REF] Grimm | Bright on-demand source of antibunched microwave photons based on inelastic Cooper pair tunneling[END_REF].

Plasmonic cavities

We have seen so far that strong coupling between the cavity electromagnetic field and a two level system was achievable in microwave cavities with a real atom [START_REF] Walther | Cavity quantum electrodynamics[END_REF][START_REF] Hood | Real-time cavity qed with single atoms[END_REF][START_REF] Mabuchi | Cavity quantum electrodynamics: coherence in context[END_REF][START_REF] Mckeever | Experimental realization of a one-atom laser in the regime of strong coupling[END_REF][START_REF] Reithmaier | Strong coupling in a single quantum dot-semiconductor microcavity system[END_REF] or using a nanocircuit [START_REF] Delbecq | Coupling a quantum dot, Fermionic leads, and a microwave cavity on a chip[END_REF][START_REF] Bruhat | Cavity photons as a probe for charge relaxation resistance and photon emission in a quantum dot coupled to normal and superconducting continua[END_REF][START_REF] Cottet | Cavity QED with hybrid nanocircuits: From atomic-like physics to condensed matter phenomena[END_REF][START_REF] Bruhat | Circuit QED with a quantum-dot charge qubit dressed by Cooper pairs[END_REF][START_REF] Cubaynes | Highly coherent spin states in carbon nanotubes coupled to cavity photons[END_REF][START_REF] Mi | Strong coupling of a single electron in silicon to a microwave photon[END_REF][START_REF] Mi | Circuit quantum electrodynamics architecture for gatedefined quantum dots in silicon[END_REF][START_REF] Stockklauser | Strong coupling cavity QED with gate-defined double quantum dots enabled by a high impedance resonator[END_REF][START_REF] Liu | Photon emission from a cavity-coupled double quantum dot[END_REF][START_REF] Wallraff | Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics[END_REF][START_REF] Rolland | Antibunched photons emitted by a dc-biased Josephson junction[END_REF][START_REF] Grimm | Bright on-demand source of antibunched microwave photons based on inelastic Cooper pair tunneling[END_REF] such as a double quantum dot junction for example. However, theoretically, if we manage to reduce the size of the cavity, we also increase the coupling and we could hope to overcome the increase of the loss rate. This has under discussion when an emitter is placed in the STM junction in this community and theoretical studies are still lacking though single photon emission was already shown to be possible [START_REF] Merino | Exciton dynamics of c60-based single-photon emitters explored by hanbury brown-twiss scanning tunnelling microscopy[END_REF][START_REF] Zhang | Electrically driven single-photon emission from an isolated single molecule[END_REF].

Outline of the thesis

The first objective of this thesis is to find a theoretical model for electronic transport through a two molecular orbitals coupled to the field of an electromagnetic cavity. Since the Jaynes-Cummings model used in quantum optics does not account for charge fluctuation of the molecule. Of course one has to extend the Hilbert space to take into account the state in which the molecule as a double occupancy or no occupancy at all [START_REF] Hagenmüller | Cavity-assisted mesoscopic transport of Fermions: Coherent and dissipative dynamics[END_REF][START_REF] Hagenmüller | Cavity-enhanced transport of charge[END_REF]. However this is not enough since it neglects a crucial coupling term that called the monopolar coupling in the following. This coupling exists even for a single molecular orbital. Hence in chapter 2 the derivation of the Hamiltonian is discussed focusing on the interaction terms that arise between the electric field and the molecular orbitals.

As mentioned above, the electronic transport modifies how the molecule and the field of the electromagnetic cavity interact. First the current in a molecular junction in which only a single electronic level is involved is studied in chapter 3. In this chapter the theoretical framework for the derivation of the current and other physical quantities is introduced. This work is based on master and rate equations approach using the Born-Markov approximation. This relies on the weak tunneling rates between the electronic leads and the molecule, however the coupling between the molecular orbitals and the cavity's field is treated nonperturbatively. An important advantage of this theoretical approach is that it allows to treat correctly the strong damping of the plasmonic mode of the cavity and its effect on the electronic current.

As it will be shown, light can be emitted thanks to the coupling to a single electronic level molecular junction. In chapter 4 the different regimes of emitted light depending on the parameters of the system are explored. Mainly the coupling strength. The second-order correlation function of the emitted light shows that the single level molecular junction can act as a single photon source and analytical predictions using the rate equation approach are found.

This results are to be compared with the case of the two electronic level molecular junction in chapter 5.

Finally, a summary and an outlook are presented in chapter 6

Chapter 2

Discussion on the model Hamiltonian

The interaction between a molecule or an atom and an electric field has been studied for a very long time [START_REF] Gross | Superradiance: An essay on the theory of collective spontaneous emission[END_REF][START_REF] Brune | Quantum rabi oscillation: A direct test of field quantization in a cavity[END_REF][START_REF] Goy | Observation of cavity-enhanced single-atom spontaneous emission[END_REF]. Classical as well as purely quantum approaches have been used. In this work we are interested in a pure quantum approach. Compared to a semi-classical approach, the purely quantum one is known to describe well the spontaneous as well as stimulated emission of an excited molecule and also allows for the interpretation in term of photons [START_REF] Jaynes | Comparison of quantum and semiclassical radiation theories with application to the beam maser[END_REF][START_REF] Brune | Quantum rabi oscillation: A direct test of field quantization in a cavity[END_REF]. So far, the interaction between an atom and an electric field is well known in fields such as cavity-QED, leading for example to the well known Jaynes-Cummings Hamiltonian [START_REF] Jaynes | Comparison of quantum and semiclassical radiation theories with application to the beam maser[END_REF][START_REF] Shore | The jaynes-cummings model[END_REF]. But, as light emitted from a scanning tunneling microscope (STM) was observed [START_REF] Gimzewski | Enhanced photon emission in scanning tunnelling microscopy[END_REF], came the idea to study the coupling between a molecular junction and the electric field of a cavity. In the STM setup, the molecular junction is made of the STM and a molecule placed between the STM tip and a substrate, and it interacts with the electric field that exists between the STM tip and the substrate [START_REF] Merino | Exciton dynamics of c60-based single-photon emitters explored by hanbury brown-twiss scanning tunnelling microscopy[END_REF][START_REF] Zhang | Visualizing coherent intermolecular dipole-dipole coupling in real space[END_REF][START_REF] Zhang | Electrically driven single-photon emission from an isolated single molecule[END_REF][START_REF] Imada | Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system[END_REF][START_REF] Doppagne | Electrofluorochromism at the single-molecule level[END_REF][START_REF] Chong | Bright electroluminescence from single graphene nanoribbon junctions[END_REF][START_REF] Neuman | Coupling of molecular emitters and plasmonic cavities beyond the point-dipole approximation[END_REF], mimicking cavity QED experiments. So far, some processes have been proposed to explain the light emission [START_REF] Van Den Berg | Charge-photon transport statistics and short-time correlations in a single quantum dotresonator system with an arbitrarily large coupling parameter[END_REF][START_REF] Doppagne | Electrofluorochromism at the single-molecule level[END_REF][START_REF] Uehara | Theory of visible light emission from scanning tunneling microscope[END_REF][START_REF] Kaasbjerg | Theory of light emission from quantum noise in plasmonic contacts: Above-threshold emission from higher-order electron-plasmon scattering[END_REF][START_REF] Xu | Dynamical coulomb blockade theory of plasmon-mediated light emission from a tunnel junction[END_REF][START_REF] Liu | Generalized input-output method to quantum transport junctions. ii. applications[END_REF], however a clear consensus is still missing in this field. In this chapter we introduce the Hamiltonian describing the coupling between a molecule, electronic leads and an electric field, discuss the various type of interaction involved and the importance of each terms regarding one another.

Model Hamiltonian of the electron-photon interaction

The following derivation of the Hamiltonian is based on the work of A. Cottet, T. Kontos and B. Doucot [START_REF] Cottet | Electron-photon coupling in mesoscopic quantum electrodynamics[END_REF]. The system to be described consists in a molecule inside an STM junction. This molecule interacts with the electric field inside the junction and the tip and the substrate acting as electronic leads. The nanocircuit, where electron tunneling occurs, is modelled by a set of charges Q. These charges interact with the electromagnetic field of the cavity {E, B}, where E is the electric field 2.1: Generic scheme of a nanocircuit made of a nanoconductor (black) connected to fermionic reservoirs (blue) and electrostatic gates (red) inside a cavity (green). and B is the magnetic field. The cavity, gate electrodes, and effective plasmonic reservoirs are taken into account as a set of boundary conditions whether the charge Q or the potential V is kept fixed. These ensembles are called F and B, respectively. They are represented by green or blue elements in Fig. 2.1.
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The STM junction is a special case of the typical system considered by Cottet et al [START_REF] Cottet | Electron-photon coupling in mesoscopic quantum electrodynamics[END_REF]. Since the cavity is composed by the electronic reservoirs, its charge is not constant and it is, therefore, an element of B. We call α a particle in Q, so that the charge distribution in the circuit can be written ρ(r, t) = α e α δ(r -r α ) and the current distribution j = α e α ṙα δ(r -r α ), where r is a position in space and e α is the charge of α.

A field F is decomposed following the Hodge decomposition into a part with no rotational F ⊥ , a part with no divergence F and a part with no rotational nor divergence F harm , so that F = F ⊥ + F + F harm . We also call U and A the scalar potential and vector fields such that E = -∇U -∂ t A and B = ∇ × A. From Maxwell's equations in the Coulomb gauge ∇ • A = 0, we find that

∇ • E = ρ/ǫ 0 , ( 2.1) 
which translate onto U as

∆U = ρ/ǫ 0 . (2.2)
We decompose this Laplace equation into two static problems. One corresponding to an homogeneous problem that describes the empty cavity, ∆φ harm (r) = 0, (2.3) with the boundary conditions

S i ∇φ harm (r) • n i d 2 r = -Q i , i ∈ F, (2.4 
)

φ harm (r) = V i , i ∈ B, (2.5) 
where S i is the surface of the object i, n i is the outgoing unit length vector perpendicular to S i . The second static problem in the decomposition corresponds to the description of the charge distribution of the circuit inside the cavity. It reads

∆G(r, r ′ ) = -δ(r -r ′ )/ǫ 0 , ( 2.6) 
with the boundary conditions

S i ∇ r G(r, r ′ ).n i d 2 r = 0, i ∈ F (2.7) G ( r, r ′ ) = 0, i ∈ B and r ∈ S i . (2.8)
This ensures that

E harm (r) = -∇φ harm (2.9) E (r, t) = -∇U = -∇ r G(r, r ′ )ρ(r ′ , t)d 3 r ′ . (2.10)
This leaves us with E ⊥ and B being determined by the potential vector

A E ⊥ = -∂ t A (2.11) B = ∇ × A, (2.12) 
where A follows propagation equation

∆A - 1 c 2 ∂ 2 t A = -µ 0 j ⊥ . (2.13)
The quantized Hamiltonian resulting from this field is [START_REF] Cottet | Electron-photon coupling in mesoscopic quantum electrodynamics[END_REF] 

H = H A + 1 2 α e α U (q α ) + α e α φ harm (q α ), (2.14) 
where p α = m α qα + e α A(q α ) is the conjugate variable of q α and Π(r, t) = -ǫ 0 E ⊥ (r, t) is the conjugate variable of A(r, t), and

H A = α 1 2m α [p α -e α A(q α )] 2 + 1 2 1 ǫ 0 |Π ⊥ (r)| 2 + 1 µ 0 |∇ × A(r)| 2 d 3 r,
(2.15) is the Hamiltonian of an atom coupled to an electromagnetic field. Hence, compared to H A , H has two supplementary terms; the third term in Eq. (2.14), containing the harmonic potential φ harm , accounts for the effect of the electrostatic gates while the second term, containing the longitudinal potential U , accounts for the Coulomb interaction between the tunneling electrons. The fourth term is treated in a standard way by separating the longitudinal part from the transverse part. This gives in one hand a Coulomb interaction Hamiltonian and in the other hand a radiation Hamiltonian H R containing the modes of the cavity. In the following we will consider a single cavity mode, so that H R = ω c a † a with a † the creation operator. The vector potential A is written in terms of the cavity mode A(r) = iA(r)(a -a † ). We can use the field operator of the tunneling charges ψ to write the Hamiltonian Eq. (2.14)

H = ψ † (r)h Q (r)ψ(r)d 3 r + H Coul + ω c a † a (2.

16)

Where and

h Q (r) = 1 2m (eA(r) -i∇) 2 -eφ harm (r) -eV conf (r) (2.
H Coul = e 2 2 ψ † (r)ψ † (r ′ )G(r, r ′ )ψ(r ′ )ψ(r)d 3 r ′ d 3 r. (2.18)
Here e is the (positive) electron charge and m its mass. While H Coul corresponds to the second term in the Hamiltonian Eq. (2.14), the potential V conf corresponds to the confinement potential arising from the last term in Eq. (2.14) treated as a mean field. Now we would like to write this Hamiltonian in a charge representation using second quantization and remove the term A 2 from the Hamiltonian. In order to perform this transformation, it was proposed in Ref. [START_REF] Cottet | Electron-photon coupling in mesoscopic quantum electrodynamics[END_REF] to introduce a pseudopotential V ⊥ (a + a † ) defined for r inside the nanocircuit.

V ⊥ (r) = ω c C(r 0 ,r) A(r ′ ).dr ′ , (2.19)
where r 0 is a point in the nanocircuit and C a continuous path connecting two points. V ⊥ can be interpreted as the work performed by the cavity electric field when a charge is transported along a path C connecting the point r to the reference point r 0 . As long as that magnetic effects are negligible, meaning that ∇ × A can be ignored, the choice of C and r 0 should not have much effects. In this limit it should be noted that ∇V ⊥ (r) ≃ ω c A. We define now the unitary transformation

U = exp e(a -a † ) ω c V ⊥ (r)ψ † (r)ψ(r)d 3 r . (2.20)
While this transformation has no effect on H Coul , it introduces a term V(a + a † ) + V 2 /ω c , where

V = -e ψ † (r)ψ(r)V ⊥ (r)d 3 r, ( 2.21) 
and it removes the term

A 2 from h Q , leading to hQ (r) = - ∆ 2m -eφ harm (r) -eV conf (r). (2.22)
We thereby find that the transformed Hamiltonian is

H = ψ † (r) hQ (r)ψ(r)d 3 r + H Coul + ω c a † a + V(a + a † ) + V 2 /ω c . (2.23)
Hence, we find a linear coupling between the photons and the tunneling electrons, given by V(a+a † ). At this point, if one assumes that the vector potential A does not vary over the length of the nanocircuit A(r) ≃ A one obtains the dipole approximation usually used in cavity-QED. One can expand the pseudopotential keeping only the linear dependence on r: V ⊥ (r) = ω c A • r(a + a † ). However, this approximation does not hold for plasmonic cavities since the electric field is known to have strong variations at the scale of the circuit [START_REF] Neuman | Coupling of molecular emitters and plasmonic cavities beyond the point-dipole approximation[END_REF].

Electronic transport description

As we specified earlier, our aim is to describe the tunneling of the electrons through the nanocircuit. To do so, we need to express the Hamiltonian in the charge representation. We call O the ensemble of objects constituting the nanocircuit and j an orbital of one object. Hence, we describe each part of the nanocircuit as a collection of creation (annihilation) operator c † o,j (c o,j ), such that {c † o,j , c o ′ ,j ′ } = δ o,o ′ δ j,j ′ . The different orbitals in an object are orthogonal, while the overlap between two orbitals of two different objects can exist although we consider the case where this overlap is weak. The tunneling Hamiltonian without the cavity reads [START_REF] Schrieffer | Theory of electron tunneling[END_REF] 

H T = o,j ε o,j c † o,j c o,j + o =o ′ ,j,j ′ (t oj,o ′ j ′ c † o,j c o ′ ,j ′ + H.c.), (2.24) 
where ε o,j is the energy of the orbital j on object o and t oj,o ′ j ′ is the tunnel coupling between orbitals j and j ′ on objects o and o ′ . From this representation of the tunneling charges, we write the field operators as

ψ(r) = o,j ϕ o,j (r)c o,j , (2.25) 
where ϕ o,j is the wave function of the orbital j of o and is mainly localised on o. Thus, introducing the field operator's expression Eq. (2.25) into the Hamiltonian Eq. (2.23) gives

H = H T + ω c a † a + H T Coul + h int (a + a † ), (2.26) 
where

h int = o,o ′ ,j,j ′ Λ oj,o ′ j ′ c † o,j c o ′ ,j ′ (2.27)
The term V 2 /ω c has disappeared since it only introduces a renormalization of the electronic energy levels ε o,j , the tunneling rates t oj,o ′ j ′ and the Coulomb interaction H T Coul .

Electron-photon coupling

The electron-photon coupling intensity is given by

Λ oj,o ′ j ′ = -e V ⊥ (r)ϕ * o,j (r)ϕ o ′ ,j ′ (r)d 3 r. (2.28)
We can separate the couplings into two types of couplings. The first one is when o = o ′ and j = j ′ . It is the coupling to the charge that is absent in the Jaynes-Cummings model. In this case the coupling depends on the pseudopotential and the modulus squared of the wave function

Λ o,j = -e V ⊥ (r)|ϕ o,j (r)| 2 d 3 r. (2.29)
This term is particularly relevant in the case of electronic transport as it does not appear in quantum optics model due to the fact that the charge in the atom/molecule is constant. When o is a quantum dot inside the cavity, this term describes the interaction between the charge fluctuations of the dot and the electric field of the cavity. If we assume that the empty quantum dot is neutral, then adding a charge on it amounts to adding a charged particle into the cavity which should interact with the electric field of the cavity. Otherwise, when o is an electronic lead, this term correspond to the coupling of a fermionic reservoir to the cavity field. This account for the processes by which an electron in a lead can relax some energy in the cavity plasmon mode, emitting a photon, or on the contrary a plasmon mode can decay in a fermionic reservoir, absorbing a photon. We separate these two contribution into Λ D,j for the dots and Λ R,j for the fermionic reservoirs. While this first term can be interpreted as a shift of the energy level (this will be explained in more details later) of the dots or the fermionic reservoirs, the other coupling appearing in Eq. (2.28) is a term mixing the orbitals of two different objects of the nanocircuit

Λ oj,o ′ j ′ = -e V ⊥ (r)ϕ * o,j (r)ϕ o ′ ,j ′ (r)d 3 r, ( 2.30) 
for o = o ′ . This term depends on the overlap between two wave functions and the pseudopotential V ⊥ . It accounts for the modulation of the tunneling between two parts of the nanocircuit by the electromagnetic field of the cavity. This last term can describe the excitation of the plasmonic mode by the tunneling current between two fermionic reservoirs or between the dot and a reservoir. This term is particularly relevant in experiments studying the light emitted by an STM like the one presented in Ref. [START_REF] Imada | Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system[END_REF]. In this experiment, represented schematically in Fig. 2.3 the authors show that a molecule interacts with the electric field. A transition occurs between its HOMO and LUMO states when the current in the STM is turned on. The current in the junction couples to the plasmon through terms of the form -j • A. This coupling is responsible for plasmon emission. The plasmonic field is, in turn, able to induce HOMO-LUMO transitions in the molecule.

where N is the total number of charges in the system. Hence shifting the pseudopotential by a constant C adds a term CN (a † + a) to the Hamiltonian. This term can be removed by the unitary transformation U = e CN (a-a † ) which shifts the cavity operators by the quantity CN . We now discuss which origin we choose for the pseudopotential in order to define the coupling terms Λ oj,o ′ j ′ . This amounts to choosing an element of the circuit for which the coupling strength will be taken to be 0. In fact we have defined earlier B as being the ensemble of the elements in the circuit on which the voltage is fixed. This typically will include the electrodes. For the elements in B the voltage is fixed as a boundary condition given in Eq. (2.5). Therefore the static component of the field, given by φ harm already includes the potential's origin, and the other components of the field E ⊥ and E should not introduce any other potential difference between any points of the elements of B. This means that for all the elements of B, V + V ⊥ should always be equal to 0. Since from the boundary conditions for the elements in B in Eq. (2.8), the parallel component of the electric field have no contribution, we must have that V ⊥ is the same for all elements in B and can be taken to be 0.

As a conclusion the interaction term Λ αj for all the leads α does not depend on the lead α and can always be chosen to be 0. This fixes a "natural" reference to the interaction terms in h int . Another way to say that is that we define Λ lead as being the coupling term to the charge in the leads and we define Λoj = Λ o,j -Λ lead as the coupling strength for an object o that is not in B. Therefore, for a term coupling the charge to the field, meaning o, j = o ′ , j ′ , the coupling strength is the work for bringing the charge from a lead to the dot in the junction. In the following we will set Λ lead = 0, so that Λoj = Λ o,j .

Comparison between charge and dipolar coupling

We propose in this section a rough comparison between the coupling of the charge on one electronic level on a quantum dot and the coupling between the transitions of a charge between two electronic levels of the dot. We will refer to those two coupling as a monopolar coupling Λ m when only one level is involved and to a dipolar coupling Λ i,j when two levels are involved. Let us start with some estimation of those couplings based on their physical interpretations. As we explained in the previous section, the monopolar coupling can be interpreted as the potential interaction between a charged particle and an electric field. This has the form

Λ m = q • V m , (2.32)
where q is the charge of the particle and V m is the potential of the electric field. As the electric field is the gradient of the potential V m , we approximate V m as

V m ≃ LE zpm , ( 2.33) 
considering that the electric field does not vary over the distance L, where L is the typical length over which the tunneling event occurs and E zpm are the zero-point quantum vacuum fluctuations of the cavity electric field.

If we look back at the model we derived earlier we can find a similar result. Indeed, neglecting the pseudopotential's V ⊥ variations in the cavity, we approximate the monopolar coupling as

Λ m ≃ -eV ⊥ (r m ) ≃ eLE zpm , (2.34)
where r m is the location of the molecule. We recover exactly the estimation we made based on our interpretation of Λ m . Considering the energy density of the field, we find the order of magnitude of Λ m

u = ǫ 0 2 E 2 + 1 2µ 0 B 2 = ω c V , (2.35)
where V is the cavity's volume. Then we find the order of magnitude of the field

E zpm ∼ ω c Vǫ 0 . (2.36)
The dipolar interaction is the interaction between a dipolar momentum and an electric field. The energy of this interaction is

Λ i,j = -µ i,j E zpm , (2.37) 
where µ i,j = -ed is the dipolar momentum between the two levels considered and d is the size of the dipole. Hence, we find that the ratio between the monopolar and the dipolar approximation should be of the order of

Λ m Λ i,j ∼ L d . ( 2 

.38)

As we expect L > d, this leads to a monopolar coupling stronger than the dipolar one. However, if we were to use the approximation V ⊥ constant in this case, we would find Λ i,j = 0 as the two orbitals should be orthogonal.

Examples

In this section we show three examples of calculations of the coupling strength that are relevant with usual cases studied in the literature.

Point-like approximation

As we mentioned earlier, in most of the work that has been done so far in Cavity-QED, the quantum emitters have been considered in the point dipole approximation. When the cavity's dimensions are very large compared to the emitter's size this, is not an issue to consider that the electric field around the emitter is almost constant. However, for nanocavities, the emitter has a size that is close to the dimensions of the cavity and therefore some recent works have questioned the point-dipole approximation for plasmonic cavities [START_REF] Neuman | Origin of the asymmetric light emission from molecular exciton–polaritons[END_REF].

Through assuming that the point-dipole approximation holds (that we call in our case the point-like approximation), we want in this section to evaluate the corresponding coupling strength that should actually be an upper approximation of the real coupling strength. Considering the emitter to be point-like means that the extent of its wave functions is negligible compared to the scale over which the electric field varies and therefore the wave functions in the expression of the coupling strength in Eq. (2.28) behave has delta distributions. The coupling strength for a molecular orbital is then

Λ d,i = -eV ⊥ (r 0 ), (2.39) 
where d denotes the quantum dot, i one of its orbital and r 0 its location in the cavity. Here we assumed that V ⊥ is 0 in the leads so for a STM experiment, this means that V ⊥ at the boundaries of the cavity is vanishing and therefore the coupling is Λ d,i = 0 when the dot is at the boundaries of the cavity. A way to show that is to consider the cavity as a box of length L. At x = 0 and x = L are placed two perfectly reflecting surfaces and at y = 0, L and z = 0, L two perfectly conducting metals. We can show from Maxwell's equations that a transverse magnetic field (TM) in such a geometry as the form

             E x = E x0 cos ( nπx L ) sin ( mπy L ) sin ( pπz L ) E y = E y0 sin ( nπx L ) cos ( mπy L ) sin ( pπz L ) E z = E z0 sin ( nπx L ) sin ( mπy L ) cos ( pπz L ) (2.40)
Using the definition of V ⊥ in Eq. (2.19), we choose r 0 = 0 so that the reference is at the surface of a lead and we choose the contour C as simple as possible in Cartesian coordinate as a path going along the z-axis then parallel to the y-axis and finally parallel to the x-axis. Hence

V ⊥ (r) = x 0 E x (x ′ , y, z)dx ′ + y 0 E y (0, y ′ , z)dy ′ + z 0 E z (0, 0, z ′ )dz ′ . (2.41)
Then we find the expression of the potential V ⊥ as a function of the position of the dot inside the cavity

V ⊥ (x, y, z) = E x0 L nπ sin ( nπx L ) sin ( mπy L ) sin ( pπz L ).
(2.42) Fig. 2.3 shows the evolution of the coupling strength along the x direction. We see that if the dot is on a boundary of the cavity then the coupling strength becomes 0, whereas when the dot is in the middle of the cavity the coupling strength reaches its maximum value as the potential also reach its own maximum value. We also recognize in Eq. (2.42) that the coupling strength is in that case given by the product E zpm L. 

Homogeneous electric field

We now show the calculation of the coupling terms in a homogeneous field. This could apply to the microwave domain for which the cavity is very large compared to the nanocircuit inside

E = E 0 = ω c A 0 .
(2.43)

The pseudopotential resulting from such an electric field is

V ⊥ ( r) = C( r 0 , r) E 0 ( r ′ ).d r ′ . (2.44)
We set the origin at r 0 so that r 0 = 0 and define C( r, r ′ ) = r ′ -r .

For such a path V ⊥ have a simple expression in spherical coordinates

V ⊥ ( r) = E 0 • r. (2.45)
It is interesting to note here that changing our reference point would only add a constant term in V ⊥ and only result in shifting the energy levels of the tunneling region and also renormalise the Coulomb interaction term. From the expression of V ⊥ , we find the interaction terms

Λ oj,o ′ j ′ = -e E 0 . rϕ * o,j ( r)ϕ o,j ( r)d 3 r. (2.46)
To evaluate these terms, we use the hydrogen atom wave functions. Let's first consider a monopolar term and the orbital 1s of the hydrogen atom.

We will consider the atom to be in the middle of the cavity. We call ϕ 1s the wave function of the orbital 1s of the hydrogen atom.

ϕ 1s (r) = 1 πa 3 0 e -r/a 0 , (2.47)
Where a 0 is the Bohr radius. As both the pseudopotential and the wave function have a spherical symmetry, we find no coupling between this orbital and the cavity electric field since for all vector r that will have a contribution, the vector -r will have the opposite contribution. In fact any orbital that present a central symmetry won't couple to the charge, then we conclude that the hydrogen atom or any atomic orbital won't couple to the electric field of the cavity through its charge. For the dipolar coupling we don't have the same restriction.

Let us consider the coupling between orbitals 1s and 2py of the hydrogen atom so that the product of the wave function does not have a central symmetry. The wave function for orbital 2py is

ϕ 2py (r) = 1 4 √ 2πa 5/2 0 cos(θ)re -r/2a 0 , (2.48)
Hence, the coupling corresponding to the dipolar momentum between these two orbitals is

Λ 1s,2py = -eπ 32 √ 2 81 a 0 . (2.49)
So far we have only discussed the case where the origin for the potential is at the center of the atom. Introducing an origin r 0 to the potential (or the wave function, which is equivalent and corresponds to moving the atom from the origin of the potential) we only add to the coupling the term

Λ 0 oj,o ′ j ′ = -e E 0 . r 0 φ * o,j ( r)φ o ′ j ′ ( r)d 3 r. (2.50)
Therefore, applying this formula on every component of the coupling, we find a constant term proportional to the total number of charges in the system -e E 0 . r 0 N (a + a † ). This term corresponds to a shift of the cavity mode and can be removed by the unitary transformation U = e -e E 0 . r 0 N (a-a † ) . In conclusion the physics is not changed by moving the atom inside the cavity in this case assuming that we remain in a region where the electric field can be considered constant.

Plate capacitor

As another example we show the plate capacitor which would be a very simple model of cavity in which we can take into account the space variation of the electric field. Our cavity is made of two metallic plates at fixed voltages V 1 and V 2 . As we suppose that the plates are very large in the x and y direction compare to their width and to the distance between them we will consider them as infinite planes orthogonal to the z-axis, see Fig. 2.4.

V 2 V 1 d x y z Figure 2.4: Plate capacitor.
From the Maxwell's equation and the Coulomb gauge condition we find that

             ∆E -1 c 2 ∂ 2 t E = 0 ∆B -1 c 2 ∂ 2 t B = 0 ∆V = 0 ∇ • A = 0 (2.51)
We set the lower plate to be at z = 0, using the boundary conditions on the potential V and the translational invariance on the (x, y) plan,

V (z) = V 1 -V 2 d z + V 2 . (2.52)
From the potential V we deduce that the electric field is

E = V 2 -V 1 d e z + E ac (r, t), (2.53)
where E ac is solution of Eq. (2.51) and of the Maxwell's equations. As the electric field propagates freely in the (x, y)-plan, we assume plane wave solution for the (x, y) variation of E ac

E ac (r, t) = E ac (z)e ik •r -iωt , ( 2.54) 
where r and k have no z component. From the boundary conditions

n × E = 0 (2.55) n • B = 0, (2.56)
where n is unit a vector orthogonal to the plates, we know that the electric field has no (x, y) component at z = 0 and z = d. From Eq. (2.51) and Eq. (2.55) one can show that the fields can be decomposed into the TM and TE solutions. The TM fields have no component in the direction parallel to k for the magnetic field and the TE fields have no component in the direction parallel to k for the electric field. We chose a set of axis so that k = k • e x where e x is a unit vector. Then we write a TE field as

E = E y sin nπ d z e ikx-iωt e y , ( 2.57) 
where e y is a unit vector and a TM field as

B = B y cos nπ d z e ikx-iωt e y .
(2.58)

It follows from Eq. (2.58) that the TM-electric field is

E = - inπc 2 ω B y sin nπ d z e ikx-iωt e x - ω k B y cos nπ d z e ikx-iωt e z . (2.59)
Considering a TM field we find a potential vector

A = - iE z ω cos nπ d z e ikx-iωt e z , ( 2.60) 
where E z = -ωB y /k. To compute the pseudopotential V ⊥ we first choose a path to connect two points in the nanocircuit. Let's choose a path that first extend along ρ, where ρ is the radius in cylindrical coordinates, then z, as shown in Fig. 2.5. The pseudopotential is found using Eq. (2.19)

× r × r ′ C( r, r ′ ) z ρ
V ⊥ (r) = E z d nπ sin nπ d z e ikx + V 0 . (2.61)
We see from Eq. (2.61) that if the field has no component along the z-axis there is no coupling. In the following we disregard the constant V 0 . If we look at the coupling between an orbital 1s of the hydrogen atom and the electric we find

Λ 1s = - eE z d nπ 2 a 3 0 sin nπ d (ρ cos φ + z 0 ) ρ 2 sin φe -2ρ a 0 +ikρ cos θ sin φ dρdθdφ, (2.62)
where z 0 is the z coordinate of the center of the molecular orbital.

Λ 1s = - 2eE z d nπa 3 0 sin nπ d z 0 cos nπ d ρ cos φ ρ 2 sin φe -2ρ a 0 +ikρ cos θ sin φ dρdθdφ, (2.63) 
fixed, then we would reduce the Hilbert space accordingly and this term would be a constant and could be removed from the Hamiltonian through a unitary transformation. Also, this term is similar to the coupling of the charge with vibration modes of a molecule that as been studied in quantum transport in the well-known Franck-Condon physics [START_REF] Liu | Generalized input-output method to quantum transport junctions. ii. applications[END_REF][START_REF] Koch | Theory of the Franck-Condon blockade regime[END_REF][START_REF] Leturcq | Franck-Condon blockade in suspended carbon nanotube quantum dots[END_REF][START_REF] Koch | Franck-Condon blockade and giant Fano factors in transport through single molecules[END_REF][START_REF] Braig | Vibrational sidebands and dissipative tunneling in molecular transistors[END_REF]. Thus, we expect that this coupling could result in the emission of photons when the bias voltage between the STM tip and the substrate allows for it.

Hence, there are four reasons for studying a single-level dot model. The first one is that it is the simplest case we can think of and therefore, it should be a very nice theoretical framework. The second one is that it is experimentally relevant as the bias voltage applied in STM experiments is of the order of 2 eV at most. Therefore, in some cases, the bias voltage is smaller than the gap energy between two orbitals of the dot. This means that only one electronic level is involved in electronic transport and unless the molecule is excited by an external source of radiation, the dipolar coupling cannot lead to emission. Hence, only the monopolar coupling can contribute. Also, in limiting the system to a single electronic level, it allows us to isolate the effects of the charge-coupling, we can then add on top the other coupling as we well understand the effects of the first one. And finally this coupling is in general disregarded in quantum optics and plasmonic. However, we will show in the following that this coupling can result in photon emission and, depending on the parameters the light emitted, can show non-classical features, such as anti-bunching and sub-Poissonian distribution. This makes this kind of systems relevant for designing single-photon sources.

Hamiltonian for the single level-dot

The first step here is to write the Hamiltonian in a suitable representation. To do so, we first try to simplify as much as we can the expression of the interaction. From Eq. (2.26) we find three interaction terms. The first one is the interaction between the dot's charge and the electric field

H int S = Λ d d † d(a + a † ). (3.1)
Of course we assume that we are not in a case where this term is zero as it will be our main focus. The second term is the interaction between the fermionic reservoirs' charges and the field

H int R = αk Λ αk c † αk c αk (a + a † ). (3.2)
In our setup the field cannot penetrate far into the electrodes, so this term can be neglected. Also, near the Fermi energy the properties of the wave function can be considered constant so Λ αk = Λ α . Actually we can choose the potential so that this interaction term is zero by setting the origin of the potential at the electrodes, since we have shown in the previous chapter that the potential should be constant in the electrodes and the same for any electrodes.

Another way to understand this is by considering to subtract Λ B = Λ α everywhere in the coupling terms Λ i , the sum of all the terms proportional to Λ α will give a term proportional to the total number of charges and to the electric field as

Λ α o,j c † o,j c o,j (a + a † ) = Λ α (a + a † ). (3.3)
Such a term can be eliminated of the Hamiltonian by the unitary transformation U = e Λα(a-a † )/ωc . Next, we have the interaction between a tunneling charge and the field

(Λ αk,d c † αk d + H.c.)(a + a † ). (3.4)
From the definition of the coupling, we can estimate the coupling Λ αk,d as a tunneling amplitude times the coupling to the charge at most

Λ αk,d = t αk Λ d /E F , (3.5)
where E F is the Fermi energy at which the electrons tunnel between the leads and the dot. Typically for metallic leads, E F ≃ 5 -10 eV and as shown in Fig. 3.1, the substrate and the dot are separated by an insulating layer so that the tunneling between the dot and the leads is weak. Therefore the coupling between the charge and the electric field in Eq. (3.1) is expected to be dominant compared to the direct coupling between the field and a a tunneling electron. This analysis holds also for the coupling between the direct current between the STM tip and the substrate as we expect the tunneling rate to be even weaker. Hence, so far, we have reduced the Hamiltonian to

H = H S + H B + H int (3.6)
where

H S = ε0 d † d + ω c a † a + Λ d d † d(a + a † ), (3.7 
)

H B = αk ε αk c † αk c αk , ( 3.8 
)

H int = αk t αk c † αk d + H.c., (3.9) 
where d † is the creation operator for the electron of energy ε0 on the dot, a † is the creation operator for the photon field. The two fermionic reservoirs are described by H B , where c † αk is the creation operator of an electron in lead α on orbital k of energy ε αk . The tunneling amplitude between the dot and the orbital k of lead α is given by t αk . Going further we can diagonalize the Hamiltonian H S by shifting the equilibrium position of the cavity mode using the Lang-Firsov unitary transformation U = exp[λd † d(a -a † )], where λω c = Λ d . Doing so the dot creation operator d is transformed into

D † = d † e λ(a † -a) , ( 3.10) 
while the photonic mode's creation operator a is transformed into

ã † = a † -λd † d. (3.11)
In a way, from Eq. (3.10) we see that upon the creation of a charge in the dot, a coherent state of the photon field is created in the cavity. As a result in the transformed Hamiltonian the dot energy level is shifted by λ 2 ω c and the tunneling term also involves transitions between states with a different number of photons while H B is left unchanged.

HS = ε 0 d † d + ω c a † a (3.12) HI = αk t αk c † αk D + H.c. (3.13)
where ε 0 = ε0 -λ 2 ω c . In this representation we can work with the eigenstates of HS and deduce from HI the transition rates between them to extract the current or other information from the system. So far we have considered the cavity to be isolated. However, it is known that if the reduced volume of plasmonic cavities allows for stronger couplings compared to bigger cavities, it is nonetheless at the cost of a bad quality factor. Indeed, cavity factors Q of the order of 10 have been reported in plasmonic cavities [START_REF] Chikkaraddy | Single-molecule strong coupling at room temperature in plasmonic nanocavities[END_REF][START_REF] Santhosh | Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit[END_REF][START_REF] Min | High-q surface-plasmon-polariton whispering-gallery microcavity[END_REF]. It is expected that an STM cavity exhibits a large damping rate κ. To account for this in our model, we include in the description the presence of the electromagnetic environment, that we model by a collection of harmonic oscillators. The cavity field is coupled linearly to the bosonic environment. Hence, we add to the Hamiltonian H B a collection of bosonic modes

H B = αk ε αk c † αk c αk + q ω q b † q b q , (3.14)
where b † q is the creation operator of an external photon with pulsation ω q . The interaction Hamiltonian is then

HI = αk t αk c † αk D + q l q b † q a + H.c. (3.15)
where l q is the transition rate between the mode q from the bath an the mode of the cavity. Including the external bath before or after the Lang-Firsov transformation does not affect the physics we want to describe as the shift of the cavity mode will only introduce a new term in the dot energy that is not relevant as we will consider the reservoirs to be at thermal equilibrium.

Master equation

In order to reduce hybridisation between the substrate and the molecule in STM experiments, an insulating layer is placed above the substrate. As a result the tunneling between the leads and the quantum dot in the junction is weak and the tunneling Hamiltonian can be considered as a perturbation of the system and bath Hamiltonians. In other words the energies in the system are ordered as Γ ≪ k B T ≪ ω c where Γ = 2π αk |t αk | 2 δ(ω -ε αk ) is the electron tunneling rate. This is called the sequential tunneling regime, in which the typical time for an electron tunneling event is the largest time scale at which the system evolves and should dominate the long time evolution. This implies that between two tunneling events the coherence of the electrons is lost. Therefore, the reservoirs evolving at a faster pace can always be considered at equilibrium. This regime fits well the density matrix approach [START_REF] Koch | Franck-Condon blockade and giant Fano factors in transport through single molecules[END_REF][START_REF] Ryndyk | Theory of quantum transport at nanoscale[END_REF].

Depending on the quality factor Q of the cavity, κ = ω c /Q, the damping rate of the cavity, will be smaller or larger than k B T but always bigger than the tunneling rate in the cases we will consider. Indeed, if we consider that the system is at room temperature, then k B T ∼ 10 -2 eV . For a quality factor 10 < Q < 1000 the damping rate verifies 0.1 > κ/ω c > 10 -3 , so that in the worst case Γ ≪ k B T κ ≪ ω c and in the best case Γ ≪ κ ≪ k B T ≪ ω c . We will derive our results in this last limit, for which we can find reliable approximations [START_REF] Cohen-Tannoudji | Photons and Atoms: Introduction to Quantum Electrodynamics[END_REF].

The time evolution of the density matrix ρ is given by the Liouvillevon Neumann equation

ρ = -i[H, ρ]. (3.16)
By defining H 0 = HS + H B and the unitary transformation U (t, t 0 ) = e -iH 0 (t-t 0 ) we can write Eq. (3.16) in the interaction picture in which the time evolution of the density matrix is set by the interaction Hamiltonian H I . This treatment allows us to solve the system for any value of the coupling λ as long as HI can be considered as a perturbation of H 0 . It follows that in the interaction picture any operator A evolves with H 0 and becomes

A I (t) = U † (t, t 0 )AU (t, t 0 ) = e iH 0 (t-t 0 ) Ae -iH 0 (t-t 0 ) . (3.17)
Using the relation given in Eq. (3.17 

ρI (t) = -i[H intI (t), ρ I (t)], (3.18) 
with the initial condition

ρ I (t 0 ) = ρ(t 0 ), (3.19) 
where we chose t 0 as the time at which the interactions between the environments and the system are turned on. This means that at time t 0 the density matrix is in a product state

ρ(t 0 ) = ρ S (t 0 ) ⊗ ρ B (t 0 ). (3.20)
Integrating Eq. (3.18) we find that at first order in H int the density matrix is

ρ I (t) = ρ I (0) -i t t 0 [H intI (t ′ ), ρ I (t ′ )]dt ′ . (3.21)
Re-introducing this last expression in Eq. (3.18) we find the time evolution of ρ I at second order in the interaction

ρI (t) = -i[H intI (t), ρ I (t 0 )] - t t 0 [H intI (t), [H intI (t ′ ), ρ I (t ′ )]]dt ′ . (3.22)
We define ρ S = Tr B (ρ) the reduced density matrix of the system. From the trace invariance properties it follows that

ρ SI = Tr B (ρ I ), (3.23) 
and therefore the time evolution of ρ SI is given by

ρSI (t) = Tr B -i[H intI (t), ρ I (t 0 )] - t t 0 [H intI (t), [H intI (t ′ ), ρ I (t ′ )]]dt ′ .
(3.24) As the interaction Hamiltonian is a product of bath and system operators and we chose t 0 so that the bath and the system are each in thermal equilibrium, the first term in the right-hand side of Eq. (3.24) vanishes since it is proportional to the bath creation and annihilation operators' averages. Since we consider a weak coupling between the bath and the system and since the bath is supposed to be very large compared to the system, we make the Born approximation [START_REF] Cohen-Tannoudji | Photons and Atoms: Introduction to Quantum Electrodynamics[END_REF]. This means that we consider that at all time the density matrix is in a product state between the bath and the system and that we neglect the time dependence of the reduced density matrix of the environment ρ B . In other words, we neglect the effect of the system on the environment at all times.

ρ ≃ ρ S (t) ⊗ ρ B .
(3.25)

This approximation simplifies Eq. (3.24) as it allows to trace out the bath's density matrix and write an equation for ρ S only. The double commutator in Eq. (3.24) involves terms mixing the two electronic reservoirs and the photonic environment. However as nor H B nor H int mixes directly any of them, they act as three separate environments each in their individual equilibrium state. This means that using an eigenbasis such as the charge states and photon number states, we can show that only the term that does not mix operators from two different environments in the double commutator in Eq. (3.24) will survive. Therefore, it only remains terms proportional to

C + α (t, t ′ ) = Tr B k |t αk | 2 c † αk (t)c αk (t ′ )ρ B (3.26) C - α (t, t ′ ) = Tr B k |t αk | 2 c αk (t)c † αk (t ′ )ρ B (3.27) K + (t, t ′ ) = Tr B q |l q | 2 b † q (t)b q (t ′ )ρ B (3.28) K -(t, t ′ ) = Tr B q |l q | 2 b q (t)b † q (t ′ )ρ B , (3.29) 
which are the bath self-correlation functions. As ρ B does not depend on time, it commutes with H B and using once again the trace-invariant properties, we have for any self-correlator S of the environment

S(t, t ′ ) = S(t -t ′ , 0) = S(t -t ′ ). (3.30)
As the bath is in thermal equilibrium, we can compute the self-correlators

C + α (t -t ′ ) = k |t αk | 2 e iε αk (t-t ′ ) f + α (ε αk ) (3.31) C - α (t -t ′ ) = k |t αk | 2 e -iε αk (t-t ′ ) f - α (ε αk ) (3.32) K + (t -t ′ ) = q |l q | 2 e iωq(t-t ′ ) n B (ω q ) (3.33) K -(t -t ′ ) = q |l q | 2 e -iωq(t-t ′ ) [1 + n B (ω q )]. (3.34)
We define the tunneling rates Γ α (ω) = 2π αk |t αk | 2 δ(ω -ε αk ) and assume the wide-band approximation and

f + α (ω) = 1-f - α (ω) = f (ω-µ α )
where f is the Fermi distribution and µ α the chemical potential of the lead α. This means that close to the Fermi energy, the rates Γ α should not depend much on ω.

C + α (t -t ′ ) = Γ α +∞ -∞ e iω(t-t ′ ) f + α (ω)dω/2π (3.35) C - α (t -t ′ ) = Γ α +∞ -∞ e -iω(t-t ′ ) f - α (ω)dω/2π (3.36) (3.37)
Introducing this expression of the correlation functions into Eq. (3.24), we find

ρSI (t) = - t t 0 α C + α (τ )[D I (t), D † I (t ′ )ρ SI (t ′ )] + α C - α (-τ )[ρ SI (t ′ )D † I (t ′ ), D I (t)] + K + (τ )[a I (t), a † I (t ′ )ρ SI (t ′ )] + K -(-τ )[ρ SI (t ′ )a † I (t ′ ), a I (t)] + H.c. dt ′ , ( 3.38) 
where τ = t -t ′ . In Eq. (3.38) the reduced density matrix at time t depends on its past, therefore it seems that ρ S has a non-Markovian evolution. A non-Markovian evolution refers to a process of evolution for which the future states can not be predicted solely from the present state but also depends on the past states of the system. However, as we consider the environment to be in thermal equilibrium its correlation time is given by the temperature. Thus, the correlation time of the environment is very small compared to the typical timescale of the interaction given by Γ and κ over which the reduced density matrix evolves . In this situation we can consider that the density matrix does not evolve in the integral since changes of ρ at times larger than the correlation time are not relevant. It is the so-called Markov approximation [START_REF] Cohen-Tannoudji | Photons and Atoms: Introduction to Quantum Electrodynamics[END_REF]. We also change our variable of integration into τ and set t 0 at -∞.

ρSI (t) = - +∞ 0 α C + α (τ )[D I (t), D † I (t ′ )ρ SI (t)] + α C - α (-τ )[ρ SI (t)D † I (t ′ ), D I (t)] + K + (τ )[a I (t), a † I (t ′ )ρ SI (t)] + K -(-τ )[ρ SI (t)a † I (t ′ ), a I (t)] + H.c. dτ, (3.39) 
We now can go back into the Schrödinger picture using the fact that 

ρS (t) = -i[H 0 , ρ S (t)] + e -iH
e -iH 0 t A I (t)B I (t ′ )e iH 0 t = AB I (-τ ) (3.41) e -iH 0 t A I (t ′ )B I (t)e iH 0 t = A I (-τ )B. (3.42) 
This means that in the Schrödinger representation Eq. (3.39) becomes

ρS (t) = -i[H 0 , ρ S (t)] - +∞ 0 α C + α (τ )[D, D † I (-τ )ρ S (t)] + α C - α (-τ )[ρ S (t)D † I (-τ ), D] + K + (τ )[a, a † I (-τ )ρ S (t)] + K -(-τ )[ρ S (t)a † I (-τ ), a] + H.c. dτ. (3.43)
We can derive the time evolution of the cavity's operators in the inter-

action picture from ȧ † = i[H 0 , a † ] = -iω c a, (3.44) Therefore a I (t) = ae -iωct . (3.45)
Performing the integration on the terms proportional to the bosonic correlation functions K ± we see that this part takes a Lindblad form

e -iH 0 t A I (t)B I (t ′ )e iH 0 t = AB I (-τ ) (3.46)
e -iH 0 t A I (t ′ )B I (t)e iH 0 t = A I (-τ )B. (3.47) This means that in the Schrödinger representation Eq. (3.39) becomes

ρS (t) = -i[H 0 , ρ S (t)] + [D -ρ S (t) -ρ S (t)D + , D † ] + H.c. + κ 2 (2aρ S (t)a † -a † aρ S (t) -ρ S (t)a † a) -κn B [a † , [a, ρ S (t)]],
(3.48) where κ = 2π q |lq| 2 δ(ω c -ω q ) and n B is taken at the cavity frequency ω c and

D ± = +∞ 0 α C ± α (±τ )D I (-τ )dτ. (3.49)
From Eq. (3.48) we define the Liouvillian superoperator Ľ such that

ρS (t) = Ľρ S (t) = -i[H 0 , ρ S (t)] + ( Ľe + Ľc )ρ S (t), (3.50) 
where we defined

Ľe ρ S (t) = [D -ρ S (t) -ρ S (t)D + , D † ] + H.c. Ľc ρ S (t) = κ 2 (2aρ S (t)a † -a † aρ S (t) -ρ S (t)a † a) -κn B [a † , [a, ρ S (t)]]. (3.51) 
Remark. In the definition of the damping rate κ we dropped the imaginary part proportional to iP 1 ω 0 -ωc as it only introduces a renormalisation of the energies.

Rate equations approach

In general we cannot find an analytical solution to Eq. (3.50). However, one can derive the rate equations using a secular approximation on the master equation. The rate equations give an approximation of the time evolution of the populations by separating the evolution of the populations, the diagonal part of ρ S , from the coherences, the off-diagonal part. Let us first project Eq. (3.50) onto the eigenstates of H 0 . The unitary evolution of ρ S only involves off diagonal terms and the damping of the cavity governed by Ľc does not mix the populations and the coherences. Hence, we focus on the electronic part Ľe ρ S of Eq. (3.50). We start from the electronic part of Eq. (3.39) and project it onto an eigenbasis of H 0 . We only show the calculations for the second term in the first commutator. The others can be deduced following exactly the same steps. We call A the first term in the electronic part of Eq. (3.39)

A = +∞ 0 α,abcd C + α (τ )D † ab ρ SIbc D cd e i(Ea-E b +Ec-E d )t e i(E b -Ea)τ dτ |a d| = +∞ 0 α,abcd C + α (τ )D † ab ρ SIbc D cd e i(Ea-E d )t e i(E b -Ea)τ dτ |a d|.
(3.52) The two different expressions of A in Eq. (3.52) are found using the fact that due to the Markov approximation, ρ SI must commute with e ±iH 0 t . Doing the secular approximation means we neglect the fast oscillating terms in Eq. (3.52) that average to 0 when looking at the long time evolution of ρ S . Hence for the two expressions of A in Eq. (3.52) we find

E a -E b + E c -E d = 0 E a -E d = 0. (3.53)
We, therefore, find that E c = E b and A is approximated by 

A ≃ +∞ 0 α,abcd C + α (τ )D † ab ρ SIbc D cd e i(Ec-E b )τ dτ δ Ea,E d δ E b ,
C + α (τ )D † ab ρ SIbb D ba e i(E b -Ea)τ dτ (3.55)
We can perform the integral over τ in Eq. (3.52) using Eq. (3.31) and find

A = ab Γ ab ρ SIbb , ( 3.56) 
where Γ ab is the transition rate given by the Fermi's golden rule between two eigenstates of H 0 . Applying this result on each term of Eq. (3.39) we show that the populations approximately evolves following the rate equations

Ṗ (q, n) = q ′ ,n ′ Γ qn q ′ n ′ P (q ′ , n ′ ) -Γ q ′ n ′ qn P (q, n) + κ(1 + n B ) (n + 1)P (q, n + 1) -nP (q, n) + κn B nP (q, n -1) -(1 + n)P (q, n) , (3.57) 
where P (q, n) is the population of the state |q, n with q its charge and n its photon number and Γ q ′ n ′ qn is the transition rate from the state |q, n to the state |q ′ , n ′ . When κ = 0 this is exactly the rate equations used to study the Franck-Condon blockade regime in [START_REF] Koch | Theory of the Franck-Condon blockade regime[END_REF][START_REF] Koch | Franck-Condon blockade and giant Fano factors in transport through single molecules[END_REF] in molecular electronics. The transition rates Γ q ′ n ′ qn can be found from the Fermi's golden rule

Γ 1n ′ 0n = α Γ α |F n,n ′ | 2 f + α ([n ′ -n]ω c ) Γ 0n ′ 1n = α Γ α |F n,n ′ | 2 f - α ([n -n ′ ]ω c ) (3.58)
where

F n,n ′ = n|e λ(a-a † ) |n ′ is the Franck-Condon matrix element [88] F n,n ′ = (sgn(n ′ -n)) n-n ′ e -λ 2 /2 λ M -m m! M ! L M -m m (λ 2 ), (3.59) 
with m = min(n, n ′ ) and M = max(n, n ′ ) and L β α are the generalised Laguerre polynomials. The physical process described by the rates in Eq. (3.58) is the tunneling of an electron between one electrode and the quantum dot with emission or absorption of n ′ -n photons in the cavity. Taking a closer look at the rates Γ q ′ n ′ qn the Franck-Condon matrix elements act as intensity factor for the rate while the Fermi distributions f ± α give the energy condition for the rate to be different than zero. We see in Eq. (3.58) that an electronic rate corresponding to the charge of the dot is turned on when eV α > (n ′ -n)ω c , while a rate to discharge the dot is turned on when

eV α < (n ′ -n)ω c . (a) ε 0 Γ L Γ L Γ R µ L µ R ω c ω c (b) ε 0 Γ L Γ R Γ R µ L µ R ω c ω c Figure 3.2:
Example of configurations of the leads for excitation or dissipation of the cavity mode by the electronic transport from electron tunneling out of or in the dot. Γ α is the tunneling rate between the dot and the lead α, ω c the cavity frequency, ε 0 the dot energy and eV α is the voltage drop between the lead α and the dot energy level. Fig. 3.2 shows a schematic representation of the processes occurring in the setup where ε 0 shows the dot energy level and µ L/R shows the position of the left and right potentials. The red arrows show the absorption and emission of photons required for the tunneling event to take place so that the energy balance is fulfilled. Although this representation depicts well the relative positions of the energies in the system, it does not show the actual energy conditions that matter for understanding the rate equations. Indeed, we have seen that thanks to the electron-photon coupling there are actually several channels through which electrons can tunnel. Here, we call a channel the transition from a state |q, n to a state |q ′ , n ′ . For each channel there is an energy condition ε 0 + kω c to be fulfilled for an electron to be able to go through, where k = n ′ -n is a relative integer. Fig. 3.3 shows a schematic representation of the energy thresholds corresponding to all the tunneling channels. The relative positions of the electronic leads' potentials with respect to the dot energy level eV L/R are represented by the gray areas while in the middle is given the ladder of energy conditions corresponding to the different types of electronic channels. The channel labeled 0 corresponds to the elastic transport for which no energy is exchanged with the cavity mode. Then the other channels are labeled by kω c with k ∈ Z * . k is the number photons created in the cavity during a charging event of the dot, while if the event corresponds to the electron leaving the dot, it is -k which is the number of photons emitted in the cavity. It means that one energy level kω c corresponds to an infinite number of processes in which n ′ -n = k where n is the number of photons in the cavity before the tunneling event and n ′ is the number of photons in the cavity after the tunneling event. The blue arrows show the direction of the electron during the tunneling event with respect to each electronic leads, the middle area corresponding to the quantum dot location. If an arrow has two heads, it means that the electron can go in or out of the dot, if both arrows point toward a lead, this means that the dot can only be discharged and therefore can't be populated, on the contrary if the two arrows point toward the dot it means that the dot can only be charged. In those two cases there is no current through the corresponding channels.

As a summary, if eV α > kω c , all the tunneling event resulting in the emission of k photons while the dot is being charged in the cavity are allowed while if eV α < -kω c all the tunneling events resulting in the emission of k photons while the dot is being discharged are allowed.

0 ω c -ω c -2ω c -3ω c ... ... Γ L Γ R eV L eV R Figure 3.
3: Schematic representation of the electronic channels located by the energy condition for the electron to pass through a channel. eV α gives the relative position of the lead α chemical potential with respect to the dot energy level ε 0 while a tunneling event resulting in the creation of k photons in the cavity is depicted by an energy kω c . The blue arrows show the direction of the electron during a tunneling event where the middle area corresponds to the quantum dot. Therefore an arrow going from lead α to the energy level kω c means that an electron can charge the dot creating k photons in the cavity during the tunneling event. Γ α is the tunneling rate associated to lead α.

Looking at Fig. 3.3 or Eq. (3.58) we see that if both the voltage drops are in ]-ω c ; ω c [ (disregarding thermal effects), then only elastic tunneling is possible, therefore, the number of photon in the cavity is not affected by the electronic current and the cavity should remain in its initial state. Now if one of the leads has its voltage drop decreased then only the tunneling events resulting in the decrease of the number of photons in the cavity are allowed and the electronic current can only relax the cavity mode. Therefore, if we start from a cavity at thermal equilibrium with k B T ≪ ω c , since photons can't be emitted in the junction and the cavity is initially in its ground state, only the charge transfer occurs. However, if one of the voltage drops is raised above the first inelastic threshold at ω c , the electronic leads can exchange energy with the cavity during a tunneling event and a new channel opens each time the voltage drop verifies |n ′ -n| = ⌊|eV /ω c |n⌋.

Remark. The probability of the processes described in Fig. 3.2 depends on the probability of the stationary state. It is to be expected that the probability of a state with a high number of photons is very small and therefore a process requiring an absorption of photons very unlikely, even if the rate is big, for a cavity that is not driven by a source of light or a very large voltage drop compared to the cavity frequency.

Populations

The first step to find any physical quantity is to find the populations or more generally to solve the master equation and find ρ. As usually in experiment only the long time behaviour of a system is measured, we look for the stationary solution of Eq. (3.50) or Eq. (3.57). In the case of the master equation Eq. (3.50), as we mentioned, we can't find an analytical solution. However, this equation can be solved numerically, see appendix A. For this purpose, we developed a code able from a system Hamiltonian of the form (3.8) and an interaction Hamiltonian of the form (3.15) to find the superoperator Ľ or the corresponding rate equations and compute the stationary solution of Eq. (3.50) or Eq. (3.57).

However, some interesting approximations can be made in order to find an analytical solution of the rate equations. As we mentioned, the plasmonic cavity formed by the STM has been reported to have a very large damping rate [START_REF] Van Den Berg | Charge-photon transport statistics and short-time correlations in a single quantum dotresonator system with an arbitrarily large coupling parameter[END_REF]. In this case we have κ ≫ Γ, which means that the rates governing the evolution of the populations in the rate equations are dominated by the rates proportional to κ which only acts on the photonic populations P p (n). Under those conditions, we can assume that the photonic population P p remain close to their equilibrium distribution. In molecular electronics this is known as equilibrated phonons.

As a first approximation we consider the charge states and the photonic states to be close to independent. This means that the joint probability of the photons and the electrons P (q, n) is approximated by P (q, n) = P c (q)P p (n). As a result this allows us to write rate equations for the photons or for the charge summing Eq. (3.57) over q or n respectively. Ṗc (q) = q ′ Γ q q ′ P c (q ′ ) -Γ q ′ q P c (q) (3.60)

Ṗp (n) = n ′ Γn n ′ P p (n ′ ) -Γn ′ n P p (n) + κ(1 + n B ) (n + 1)P p (n + 1) -nP p (n) (3.61) + κn B nP p (n -1) -(1 + n)P p (n) ,
where

Γ q ′ q = n,n ′ Γ n ′ q ′ nq P p (n) (3.62)
and

Γn ′ n = q =q ′ Γ q ′ n ′ qn P c (q). (3.63) 
The solution of Eq. (3.60) is

P c (q) = Γ q q ′ / α Γ α . (3.64)
Hence, the population of the dot is directly proportional to the rate for an electron tunneling into the dot. From Eq. (3.62) we assume that the photons are equilibrated P p (n) = P eq p (n) = e -nωc/k B T (1-e -ωc/k B T ). Since k B T ≪ ω c we can take the limit P eq p (0) = 1 and then the populations are

                 P c (1) = αn Γ α λ 2n n! f + (nω c -eV α ) αn Γ α λ 2n n! [f + (nω c -eV α ) + f -(-nω c -eV α )] P c (0) = αn Γ α λ 2n n! f -(-nω c -eV α ) αn Γ α λ 2n n! [f + (nω c -eV α ) + f -(-nω c -eV α )] , (3.65)
where eV α = µ α -ε 0 .

Electronic current

The electronic current is computed from the evolution of the number of charges in one electronic reservoirs

N α = k c † αk c αk I α = -e Ṅα = ie k t αk c † αk D -t αk c αk D † . (3.66)
The average current from lead α is then computed thanks to the density matrix I α = -eTr(I α ρ).

(3.67)

When we derived Eq. (3.50) we stopped at order 2 in the rates t αk and l q . In order to have a current at the same order in t αk we therefore use an expansion at first order in the tunneling Hamiltonian for the density matrix, since the current operator is also an operator of order one in the tunneling rates. We hence use Eq. (3.21) into Eq. (3.67) in the interaction picture to find an adequate expression of the average current

I α = ieTr(I αI (t)ρ I (t 0 )) -e t t 0 Tr(I αI (t)[H intI (t ′ ), ρ I (t ′ )])dt ′ . (3.68)
As the first term is proportional to the average current at time t 0 this term is 0. The second term can be treated the same way we derived the time evolution of the reduced density matrix. Using the Born-Markov approximation and the invariance of the trace under permutation we find

I α = 2e α Re +∞ 0 C + α (τ )S I DD † (t, t ′ ) -C - α (τ )S I D † D (t, t ′ ) dτ, (3.69)
where S I AB (t, t ′ ) = A I (t)B I (t ′ ) is the correlation function between A at time t and B at time t ′ in the interaction picture. To compute the average current corresponding to the rate equations, we have to also perform the same secular approximation we used on the density matrix on the average current in Eq. (3.69). We show the calculation for the first correlation S DD † (τ ). 

S DD † (t, t ′ ) = abc D ab D † bc ρ Sca e i(Ea-Ec)t e i(Ec-E b )τ . ( 3 
I α ≃ -e nn ′ Γ 0n ′ 1n:α P (1, n) -Γ 1n ′ 0n:α P (0, n) . (3.72)
Injecting Eq. (3.65) into Eq. (3.72) we find the average current when the charge states and the photonic states can be considered independent in the case of symmetric voltage drops

V L = -V R = V I α ≃ I 0 n P(n)[f (nω c -eV ) -f (nω c + eV )], (3.73) 
Where P(n) = λ 2n e -λ 2 /n! is the Poisson distribution of parameter λ 2 and I 0 = eΓ L Γ R /(Γ L + Γ R ). Although this expression only applies in the case of equilibrated photons, we see that the current evolves in steps each time a voltage drop attains a multiple of the photon energy, similarly to the Franck-Condon physics [START_REF] Liu | Generalized input-output method to quantum transport junctions. ii. applications[END_REF][START_REF] Koch | Theory of the Franck-Condon blockade regime[END_REF][START_REF] Koch | Franck-Condon blockade and giant Fano factors in transport through single molecules[END_REF]. The height of the step is given by the Poisson distribution, which means that the current is suppressed at low bias voltage. This shows how the energy of the leads is dissipated inside the cavity mode.

as P p (0) increases the electronic current also increases due to Γ 12 00 being the biggest rate. Therefore when κ increases, P p (0) also increases and since in Eq. (3.73) the contribution from Γ 12 00 is proportional to P p (0), the current increases.

However, for the asymmetrically biased junction, the channels at negative energy thresholds can only charge the dot for the two electrodes. Therefore, it introduces an asymmetry between the probability of occupancy of the dot since it is more likely that the dot is charged. Fig. 3.10 shows a schematic representation of this asymmetry. While all the negative energies contribute to the charged state of the dot only the energies above eV L contributes to the empty state of the dot. The energies between eV L and eV R have contributions to both states therefore summing over all the energy we see that there are ⌊|e(V L -V R )/ω c |⌋ more energy thresholds contributing to the charged state of the dot. Hence when κ increases and therefore P p (0) it is in fact mostly P (1, 0) which increases. As mentioned |1, 0 has a negative contribution to the current which explains that in this case the current decreases.

2ω c 3ω c ω c 0 -ω c ... ... Γ L Γ R eV L eV R Figure 3
.10: Schematic representation of the energy levels of the system relative to the dot energy ε 0 . eV α gives the relative position of the lead α chemical potential with respect to the dot energy level ε 0 . The blue arrows show the direction of the electron during a tunneling event where the middle area correspond to the quantum dot. An arrow going from lead α to the energy level kω c means the creation of the state |1, k while an arrow turning the other way means its destruction. Γ α is the tunneling rate associated to lead α. The dot on the energy levels represent the contribution of the state to the average number of electron on the dot. Black for 1, white for 0 and gray for Γ L /(Γ L + Γ R ).

We now understand how the damping rate of the cavity affects the height of the current's steps. However, if we look at the width of the steps in Eq. (3.73), we see that the width is given by the temperature from the Fermi distribution. The width of the Fermi function is found

Full computation of the density matrix

When the damping rate of the cavity exceeds the temperature, we expect the population and the current to evolve on a scale given by κ since it is the dominant channel for dissipation. However, when we computed the current at second order in H int in the interaction picture, we neglected terms accounting for the relaxation coming from κ. In order to recover the effect of κ on the width of each current's step we start from Eq. (3.69) and re-sum all the terms by using the full time evolution of the system instead of the system only, thus replacing e iH 0 t by e iHt ,

I α = 2e α Re +∞ 0 C + α (τ )S DD † (t, t ′ ) -C - α (τ )S D † D (t, t ′ ) dτ, (3.75)
where

S AB (t, t ′ ) = A(t) H B H (t ′ ) = A(0) H B H (τ ) .
To compute the correlation functions of the dot, we can use the quantum regression theorem [START_REF] Lax | Quantum noise. x. density-matrix treatment of field and population-difference fluctuations[END_REF][START_REF] Cohen-Tannoudji | Atom-Photon Interactions: Basic Processes and Applications[END_REF]. We call χ = B H (τ )ρ. Then χ = -i[H, χ] and since D and D † only act on the system, we conclude that χ S (t) = Tr S (χ(t)) = B H (t)ρ S time evolution is given by Eq. (3.48). In other words χ(t) = e Ľt χ(0) and

S AB (t, t ′ ) = S AB (τ ) = Tr(Ae Ľt B). Let us define i α ± such that i α ± = +∞ 0 C α ± (τ )e Ľτ dτ. (3.76)
Using the Fourier transform of C α ± , we can write i α ± in the frequency domain instead of time domain as following

i α ± = +∞ -∞ +∞ 0 Γ α f ± α (ω)e (±iω+ Ľ)τ dτ dω 2π , (3.77)
where we used the wide band approximation on Γ α . At this point, we can perform the time integral and find an approximate expression of i α ± ,

i α ± ≃ ∓ Γ α 2π +∞ -∞ f ± α (ω) (iω ∓ η)Id ± Ľdω, (3.78) 
where η → 0 and Id is the identity super-operator. The full expression for the current then reads

I α st = - 2e π Γ α Re +∞ -∞ f + α (ω) t w Ď 1 (iω -η)Id + Ľ Ď † ρ st s + f - α (ω) t w Ď † 1 (iω + η)Id - Ľ Ďρ st s dω . (3.79)
This expression of the current was used in this work to compute numerically the current, see appendix A.

Remark. In fact, in general the Born-Markov approximation is not enough to conserve the positivity of the density matrix, in our previous calculation of the current and of the rate equations, it was the secular approximation that was ensuring the positivity of the density matrix. In rate equations in Fig. 3.5. The current exhibit steps each time we add to the voltage the energy of one photon, which correspond to energy being exchange between the electron and the cavity in an inelastic tunneling process. The heights of the plateaus shown in the two plots are the same which means that the rate equations predicts well the populations far from an inelastic threshold. However, we see in Fig. 3.12 that the current steps are broadened as expected. Previous work by Braig and Flensberg [START_REF] Braig | Vibrational sidebands and dissipative tunneling in molecular transistors[END_REF] already shown a way to incorporate the broadening of the vibration mode into the electronic current in the Franck-Condon physics. Compared to this method, our method is able to take into account the effect of the damping of the cavity on the current without making any assumption on the photon distribution.

We know in the case of the rate equations that the width of the steps is controlled by temperature and grows as

k B T ln 3+2 √ 2 3-2 √
2 from Eq. (3.73). Only the first step at eV L = 0 is not impacted by the damping of the cavity which is explained by the fact that this step correspond to elastic tunneling of electrons where there isn't any exchange of photons. Therefore, since photons are not involved the width is only controlled by the thermal fluctuations in the electronic leads. Fig. 3.13 shows FWHM of the conductance's peak at eV L = ω c . In panel (a) is presented the dependence of the FWHM on the damping rate of the cavity κ for two different values of the temperature and panel (b) presents the dependence of the FWHM on the temperature for two different values of the damping rate of the cavity. temperature k B T for a damping rate κ > k B T in blue and a damping rate κ < k B T in green. We see that when temperature is very large compared to κ the width is only given by the width of the Fermi distribution and therefore by the temperature (shown by the lower black dotted line) and only depends on T (green curve), whereas when κ > k B T for very small temperature the width is only given by κ and therefore we see a plateau at low temperature for the blue curve. However when k B T reaches 0.1κ, the FWHM grows with k B T linearly with a slope given by the Fermi distribution as shown by the upper black dotted line.

Strong drive

Derivation

So far, we have studied the electronic current in a molecular tunnel junction coupled to an electromagnetic cavity in its ground state. However, it is interesting to look at the action of the cavity mode on the current. One way to do that is to drive the cavity out of its ground state. In this section we will consider that the number of photons in the cavity is kept constant thanks to the damping of the cavity. The driven system Hamiltonian is

H S = ε 0 d † d + ω c a † a + Λd † d(a + a † ) + αω c cos(ω L t)(a + a † ).
(3.82)

The interaction Hamiltonian only contains the interaction between the electronic leads and the dot

H int = αk t αk c † αk d + H.c. (3.83)
and the environment is only composed of the electronic leads

H B = αk ε αk c † αk c αk , (3.84)
where the total Hamiltonian is H = H S + H B + H int . We want to derive the master equation for this problem but first we would like to remove the time dependence from H 0 . First of all we can remove the terms coupling the dot and the cavity mode Λd † d(a + a † ) using the unitary transformation

U 0 = e λd † d(a-a † ) . (3.85)
This transforms the system Hamiltonian into

H ′ S = [ε ′ 0 -2Λα cos(ω L t)]d † d + ω c a † a + αω c cos(ω L t)(a + a † ), (3.86)
where ε ′ 0 = ε 0 + λ 2 ω c . The interaction Hamiltonian is transformed into

H ′ int = αk t αk e λ(a-a † ) c † αk d + H.c. (3.87)
In order to remove the time-dependence in the driving term αω c cos(ω L t)(a+ a † ), we use the unitary time-dependent transformation

U 1 (t) = e iω L a † at (3.88)
and neglecting all terms rotating at a frequency bigger than ω c -ω L , we find

H ′′ S = [ε ′ 0 -2Λα cos(ω L t)]d † d + (ω c -ω L )a † a + α 2 ω c (a + a † ) (3.89)
for the system Hamiltonian and

H ′′ int = αk t αk e λ(ae -iω L t -a † e iω L t ) c † αk d + H.c. (3.90)
for the interaction Hamiltonian. Now we want to remove the timedependence of the dot energy level. Here we have a dot energy which is oscillating between two leads, which is equivalent to having the leads' potential oscillating. This problem has been studied in electronic transport by C. Bruder and H. Schoeller [START_REF] Bruder | Charging effects in ultrasmall quantum dots in the presence of time-varing fields[END_REF]. We define the transformation

U 2 (t) = e iǫ(t)d † d , (3.91)
where

ǫ(t) = t 0 2αΛ cos(ω L t ′ )dt ′ = 2αΛ sin(ω L t)/ω L . Using Eq. (3.

91) on H ′′

S removes the time variation in the dot's energy

H ′′′ S = ε ′ 0 d † d + (ω c -ω L )a † a + α 2 ω c (a + a † ) (3.92)
and moves it in the tunneling rates in

H ′′ int H ′′′ int = αk t αk e λ(ae -iω L t -a † e iω L t )+iǫ(t) c † αk d + H.c. (3.93)
Finally we can diagonalise H ′′′ S by shifting the cavity mode by -α using the unitary transformation

U 3 = e αωc 2(ωc-ω L ) (a-a † ) .
(3.94)

In the end the system Hamiltonian is

H S = ε 0 d † d + (ω c -ω L )a † a (3.95)
and the interaction Hamiltonian is

H int = αk t αk e λ(ae -iω L t -a † e iω L t )+iǫ(t) c † αk d + H.c. (3.96)
where we dropped all the superscripts and redefined ǫ as

ǫ(t) = αΛ 3ω L -2ω c (ω c -ω L )ω L sin(ω L t). (3.97)
Eq. (3.96) can be simplified further in the small coupling λ and large drive α so that λα ≫ λ. Then the tunneling rates could be approximated by t αk (t) = t αk e -iǫ(t) . More generally, we consider that α is very large so that we can average a and a † by √ N . Then the Hamiltonian becomes the Hamiltonian of a single dot coupled to electronic leads

H S = ε 0 d † d (3.98)
with time-dependent tunneling rates

H int = αk t αk e -iǫ(t) c † αk d + H.c. (3.99)
where we redefined

ǫ(t) = (2λ √ N -2αΛ 2ω L -ωc (ωc-ω L )ω L ) sin(ω L t). We define ∆ = (2λ √ N -2αΛ 2ω L -ωc (ωc-ω L )ω L ).
We still work in the sequential tunneling regime k B T ≫ Γ, however since the driving introduces a fast time evolution for in the density matrix, we won't use the Markov approximation. As a result we find time dependent rates in the master equation. We can start from the time-evolution of the density matrix in the interaction picture in Eq. (3.18) since H S is time independent. Then expending Eq. (3.18) at second order in H int , and tracing over the leads' degrees of freedom following the derivation in [START_REF] Bruder | Charging effects in ultrasmall quantum dots in the presence of time-varing fields[END_REF], we find

ρSI (t) = - t t 0 αk [D I (t), D † I (t ′ )ρ SI (t ′ )] c † αk c (t) αk (t ′ ) +[D † I (t), D I (t ′ )ρ SI (t ′ )] c αk c † (t) αk (t ′ ) dt ′ + H.c. ( 3 
.100) where we defined D = de -iǫ(t) . Using the Born approximation, we consider that the electronic leads are kept at thermal equilibrium since the perturbation provoked by the dot should be negligible. This approximation allows us to express the average values of the electronic leads in term of the Fermi distribution following Eq. (3.31) to Eq. (3.34). Then in the Schrödinger picture we find that the reduced density matrix ρ S evolves following Since D|q = δ q,1 e -iǫ(t) and D † |q = δ q,0 e iǫ (t) , this last equation reduces to a simple expression

ρS (t) = -i[H 0 , ρ S (t)] - t t 0 αk |t αk | 2 e -iH S (t-t 0 ) × [D I (t), D † I (t ′ )ρ SI (t ′ )]e iε αk (t-t ′ ) f + α (ε αk ) +[D † I (t), D I (t ′ )ρ SI (t ′ )]e -iε αk (t-t ′ ) f - α (ε αk ) e iH S (t-t 0 ) dt ′ + H.c. ( 3 
Ṗq (t) = 2Re t -∞ αk |t αk | 2 δ q,0 f - α (ε αk )P 1 (t ′ ) -δ q,1 f - α (ε αk )P 1 (t ′ ) -δ q,0 f + α (ε αk )P 0 (t ′ ) + δ q,1 f + α (ε αk )P 0 (t ′ ) e i(ε αk -ε 0 )(t-t ′ )-i(ε(t)-ε(t ′ )) dt ′ ,
where we took the limit t 0 → -∞. We finally have an expression of the populations as a function of time. Since the drive is periodic, it seems natural to study the Fourier transformation of the population

Ṗq (t) = 1 π Re t -∞ +∞ -∞ α Γ α (δ q,0 -δ q,1 )P 1 (t ′ ) + (δ q,1 -δ q,0 )f + α (ω ′ ) × e i(ω ′ -ε 0 )(t-t ′ )-i(ε(t)-ε(t ′ )) dω ′ dt ′ , ( 3 
.103) where we defined Γ α = 2π k |t αk | 2 δ(ω -ε αk ), applied the wide-band approximation and used the fact that P 0 (t) + P 1 (t) = 1. Since P q must be periodic due to the driving, we expand P q into a Fourier series

P q (t) = k P q (k)e -ikωt .
(3.104)

Integrating Eq. (3.103) over time and using e -i α ω sin(ωt) = k e -ikωt J k α ω , we find that the Fourier components of P q follow the equation

-iω m mP q (m)e -iωmt = m Γ(δ q,0 -δ q,1 )P 1 (m)e -iωmt + 2Re αm Γ α (2q -1)F ∆ 0m (E α 0 )e -imωt , (3.105) where we defined F ∆ nm (E) = (-1) m-n k J k+n ∆ ω J k+m ∆ ω Y (E + kω), J n being the Bessel's functions and Y (ω) = 1 2 (f (ω) -iH[f ](ω))
, where f is the Fermi distribution, H[f ] is its Hilbert transform and E α 0 = ε 0µ α . The normalisation of the probabilities imposes that i P i (n) = δ n,0 . Identifying each Fourier components on each sides of Eq. (3.105), we show that

P 1 (m) = α Γ α F ∆ 0m (E α 0 ) + F ∆ * 0-m (E α 0 ) Γ -imω , ( 3.106) 
for any m ∈ N, and

P 1 (m) = -P 0 (m) (3.107) 
for m > 0 and P 0 (0) = 1 -P 1 (0).

Since the real part of Y is the Fermi distribution over 2, the populations for m = 0 are

P 1 (0) = 1 Γ αk Γ α J 2 k (∆/ω)f (E α 0 + kω). (3.109)
So, from the Fermi distribution, the populations show steps widened by the temperature at each multiple of the photon energy, the height of the steps being given by the square of the Bessel function J k (∆/ω). This is very similar to the undriven case we discussed in the previous sections except for the height that was given by the Poisson distribution [START_REF] Koch | Franck-Condon blockade and giant Fano factors in transport through single molecules[END_REF]. The electronic current can be derived from Eq. (3.67) which in this case is equivalent to

I α (t) = e qq ′ t -∞ Γ qq ′ (t, t ′ )[N α (q ′ ) -N α (q)]P q (t ′ )dt ′ , ( 3.110) 
Chapter 4

Current-driven light emission from a single-level dot

As we emphasized in the introduction chapter 1 one major goal for mesoscopic QED as well as STM light emission experiments is to design single photon sources. Therefore, we want to know how the electronic current drives the cavity and what kind of photon distribution it generates. Also, the light emission spectrum gives an additional spectroscopic tool to explore the states of the cavity and of the electronic system. In this section we call λ ≤ 0.1 the weak coupling regime and λ ≥ 1 the strong coupling regime although experimentally λ ∼ 0.1 is already the strong coupling regime.

Light-emission spectrum

As we mentioned while studying the current through the junction Fig. 3.5, the current characteristics shows steps corresponding to inelastic tunneling events during which light is emitted. A step occurs when the voltage drop is a multiple of the photon energy in the cavity eV = nω c where n is a relative integer. In fact each step corresponds to the opening of a channel for electronic transport, where a channel is in fact a process in which one electron is exchanged between the dot and one lead. In order to prove that this corresponds to light emission, one can look at the light emission spectrum of the cavity. The light emitted from the junction is proportional to the average number of photons in the cavity ∼ κω c a † a . Fig. 4.1 shows the average number of photons in the cavity as a function of the left and right voltage drops, eV L and eV R , for three different coupling strengths. We recognise in Fig. 4.1 the same step-like behaviour as the current characteristics. Each time the voltage drop hit a multiple of the energy of a photon in the cavity, the average number of photons increases abruptly. Note that at eV α = 0 no step is seen in the average number of photons, contrary to the current. The tunneling events occurring at eV α = 0 corresponds to elastic processes for which the electron conserves its energy. Therefore, no light can be emitted during these tunneling events. the charge population. In general the photon emission is a consequence of the charge's fluctuations. But not directly of the charge states of the molecule. A photon can be emitted during a tunneling event regardless of the event being the charge or the discharge of the molecule and thus regardless of the state of the molecule. However since in a lot of cases the fluctuations of the charge is correlated to the charge state the photonic state and the charge states are not independent. This is typically the case when a state of the molecule is preferred due to the fermionic environment.

Assuming the charge and the number of photons are independent, for instance in a symmetric junction, Eq. (4.2) shows that the number of photons in the cavity is regulated by two different processes. The obvious one is the relaxation of the cavity into its external environment that is described by the terms proportional to κ and the population of photons in the cavity. As we mentioned this term in plasmonic cavities is expected to be largely dominant given that κ ≫ Γ and ensures that the cavity is always close to its ground state. The other process acting on the photonic population is the charging and discharging of the dot given by the terms proportional to Γ. This corresponds to the inelastic tunneling of the electron. Thanks to the electron-photon coupling, electrons, while tunneling, can dissipate some energy in the cavity emitting some photons, or on the contrary, absorb some energy by absorbing some photons from the cavity.

The rates for those processes are given by Γn ′ n , which are proportional to the charge on the dot P c . The tunneling rates, Γ q ′ n ′ qn , are given in Eq. (3.58). In the rates Γ the fact that the quantum dot is being charged or discharged is taken into account in the Fermi distributions f ± and the charge probability P c . Apart from that the photonic part, in those terms, does not depend on the charge state of the molecule. This means that as long as the energy difference appearing in the argument of the function f ± is negative for the charge of the dot (f + ) or positive for the discharge of the dot (f -), the corresponding rate is turned on and the process of emitting a photon in the cavity, or absorbing a photon from the cavity respectively, is allowed. It is only the voltage drops that regulates which process is allowed due to the state of the electronic leads, since the voltage drops also regulate the dot electronic population P c .

Strictly speaking, each steps in the current I and photon average population a † a corresponds to the opening of new transport channels with a given energy |eV α | = nω c being exchanged. However, as this always corresponds to a transition between a state with 0 photon and a state with n photons, this can also be viewed as the spectroscopy of the cavity.

Fig. 4.1 also shows that the electronic current acting like the source of the photons in the cavity allows for the control of the intensity of the light inside the cavity. As in experiment we have typically κ ≫ Γ in plasmonic cavities, the typical time between two tunneling events (given by 1/Γ) is much longer than the damping time (given by 1/κ). In other words, a photon emitted during the tunneling of an electron should dissipate before another tunneling event occurs, and therefore before another photon is emitted in the cavity. This limit corresponds to taking P p (0) ≃ 1 and P p (0) ≫ P p (n) for any integer n other then 0.

µ L µ R Tip Sample Γ 02 κ 0-photon cavity
Let us apply this limit to Eq. (3.57):

Ṗ (q, n) =Γ q,n q ′ ,0 P (q ′ , 0) -δ n,0 n ′ Γ q ′ ,n ′ q,n P (q, n) + κ(1 + n B ) (n + 1)P (q, n + 1) -nP (q, n) + κn B nP (q, n -1) -(1 + n)P (q, n) . ( 4.3) 
For simplicity we take the symmetrically biased junction for which Γ L = Γ R and eV L = -eV R . In this case, the electronic rates Γ q ′ ,n ′ q,n and Γ q ′ ,n q,n ′ are equal. This allows to find the rate equations for the photons only by summing Eq. (4.3) over the charge q, without assuming the charge and the photons to be independent.

Ṗp (n) =Γ 0n P p (0) -δ n,0 n ′ Γ nn ′ P p (n) + κ(1 + n B ) (n + 1)P p (n + 1) -nP p (n) + κn B nP p (n -1) -(1 + n)P p (n) , (4.4) 
where

Γ nn ′ = Γ 1n ′ 0n = Γ 0n ′ 1n . ( 4.5) 
Typically in optics experiments k B T ≪ ω c , thus n B ≃ 0. This simplifies the rate equations further Eq. (4.3) since now the only way to populate the cavity is through the tunneling of an electron from the ground state of the cavity Fig. 4.2,

Ṗp (n) =Γ 0n P p (0) -δ n,0 n ′ Γ nn ′ P p (n) + κ (n + 1)P p (n + 1) -nP p (n) . (4.6)
From Eq. (4.6), we deduce that in the stationary regime

κP p (1) = n Γ 0n P p (0). (4.7) 
can be approximated by a θ function, Eq. (4.10) can be written as

a † a = Γe -λ 2 λ 2 S N V -1 (λ 2 ) κ + Γe -λ 2 [S N V (λ 2 ) -1] , ( 4.11) 
where N V = ⌊eV /ω c ⌋ is the greatest integer smaller than eV /ω c . In the limit of infinite bias voltage, we therefore find that a † a scales as

lim N V →+∞ a † a = λ 2 Γ κ + Γ(1 -e -λ 2 ) . ( 4.12) 
This expression can be simplified further using the fact that κ ≫ Γ to find that lim

N V →+∞ a † a = λ 2 Γ/κ. (4.13) 
We therefore predict that the light intensity in the cavity scales as λ 2 Γ/κ at large bias voltage. However large bias voltage is not the limit that is usually explored. In STML experiments for instance, the bias voltage does not in general go far beyond 2eV [START_REF] Doppagne | Electrofluorochromism at the single-molecule level[END_REF].

Using again the fact that κ ≫ Γ in Eq. ( 4.11), we can expand the denominator in the right-hand side around Γ/κ = 0

a † a ≃ Γ κ e -λ 2 λ 2 S N V -1 (λ 2 ) 1 - Γ κ e -λ 2 {S N V (λ 2 ) -1} + o   Γ κ 2   . (4.14) At first order in Γ/κ, Eq. (4.14) gives that a † a ≃ Γ κ e -λ 2 λ 2 S N V -1 (λ 2 ). (4.15) 
From Eq. (4.14) it appears that the voltage drop gives the number of terms from the power series of e -λ 2 we need to find the light intensity.

Another way to see that the bias voltage controls the accuracy of the approximation we make using Eq. (4.13) instead of Eq. (4.15) for the light intensity. Indeed the error we make using the large bias voltage limit is of the order of Γe -λ 2 λ 2(N V +1) /κ and therefore gives a very good approximation in the weak coupling regime. Thus in the weak coupling regime Eq. (4.13) gives a very good approximation of a † a at any voltage drop. Fig. 4.3 shows the comparison between formula Eq. (4.10) and the numerical computation of a † a using Eq. (3.50) as a function of the damping rate of the cavity κ in a symmetrically biased junction at voltage drop eV = 5.5ω c . The difference between the numerical and analytical solution seems to scale as 1/κ.

As expected we see that when κ gets closer to Γ the analytical solution fails to recover the full numerical result since the cavity does not have the time to fully dissipate between two tunneling events and therefore dissipation is compensated by the inelastic tunneling of the electrons. However for κ = 0.1ω c the comparison between the numerical and analytical results is very good, < 0.3%, and it appears that we can neglect electron-tunneling processes between the excited states of the cavity. the total probability for the detector to absorb a photon is the sum over all the final states of T if averaged over the initial states. This is the measured average field intensity

I(r, t) = if P (i)T if = Tr[E (-) (r, t)E (+) (r, t)ρ].
(4.17)

The degree of coherence G (1) (x, x ′ ) was first introduced in optics to characterize interference of two superposed light fields in interference experiments. It is defined as the correlation function of the electric field at two different times and spaces

G (1) (x, x ′ ) = Tr[E (-) (x)E (+) (x ′ )ρ], (4.18) 
where x = (r, t). Two fields showing interference fringes are called coherent. If instead the interference contrast vanishes, then the two fields do not produce interference fringes and are called incoherent. In this last case one can show that the intensity collected at r from two light sources at r 1 and r 2 and at distance from r s 1 and s 2 , respectively is:

I(x) = G (1) (x 1 , x 1 ) + G (1) (x 2 , x 2 ) + 2Re[G (1) (x 1 , x 2 )], (4.19) 
where x i = (r i , t -s i /c). Nowadays, in STML experiments, for instance, physicists measure the joint probability of detecting a photon at time t and a second one at time t + τ . Fig. 4.6 shows an actual experimental setup extracted from [START_REF] Zhang | Electrically driven single-photon emission from an isolated single molecule[END_REF]. The sample emits light that is collected through two single-photon avalanche diodes delayed in time. It was shown by Glauber [START_REF] Glauber | Coherent and incoherent states of the radiation field[END_REF] that this corresponds to the calculation of the second order degree of coherence or second order correlation function of the light G (2) (τ ) = : I(t)I(t + τ ) : , (

where :: indicates the normal ordering (all creation operators are placed on the left-hand side of the expression). Instead of using G (2) we will study the normalized second-order correlation function

g (2) (t) = G (2) (t) |G (1) (0)| 2 .
(4.21)

In second-quantization formalism this reads: This manipulation allows us to simplify a lot Eq. (4.30) and we find

g (2) (τ ) = a † (t)a † (t + τ )a(t + τ )a(t) a † a 2 . ( 4 
a(s) = a(0) -i j κ j iω j +s b j (0) s + iω c -j |κ j | 2 s+iω j . ( 4.32) 
Using Wigner-Weisskopf approximation [START_REF] Louisell | Quantum statistical properties of radiation[END_REF] on Eq. (4.32) it simplifies into

a(s) = a(0) -i j κ j iω j +s b j (0) s + iω c + κ/2 . (4.33)
We use the inverse Laplace transform on Eq. (4.33) to find a(t)

a(t) = e -(κ/2+iωc)t a(0) - j e -iω j t -e -(iωc+κ/2)t ω c -ω j -iκ/2 κ j b j (0). (4.34)
As the aim is to compute G (2) , we first compute a † (t)a(t). This can be done directly from Eq. (4.24) and Eq. (4.25)

d dt a † a = -κa † a + i j [κ * j b † j (0)e iω j t a -κ j a † b j (0)e -iω j t ]. (4.35) 
Using Eq. (4.34) in Eq. (4.35) and averaging over the bath degrees of freedom assuming the bath to be in thermal equilibrium, we find

a † a B d dt a † a B = -κ a † a B + j 2|κ j | 2 n j Re 1 -e (κ/2+i(ω j -ωc))t κ/2 -i(ω j -ω c ) , ( 4.36) 
where n j = b † j (0)b j (0) follows the Bose distribution and ˙ B is the average over the bath. We can approximate the summation over j with an integral over the frequency ω as the fraction is strongly peaked around ω j = ω c and |κ j | 2 n j should vary very slowly with j. Doing so, we show that

d dt a † a R = -κ a † a R + κn. (4.37)
The solution of this equation is

a † (t)a(t) R = e -κt a † (0)a(0) + n[1 -e -κt ] (4.38) 
From the definition of G (2) in Eq. (4.20) and Eq. (4.38)

G (2) (t) = a † (0) 2 a(0) 2 e -κt + n a † (0)a(0) [1 -e -κt ]. (4.39) 
Using Wick's theorem we know that a †2 a 2 = 2 a † a 2 . Hence,

g (2) (t) = 1 + e -κt ). (4.40) 
Therefore, the degree of coherence of the bare cavity starts from 2 at time t = 0 and decreases towards 1 and t → ∞, with an exponential decay of -κ. This means that the photons in the cavity are always bunched and have a super Poissonian statistic.

Single-level dot junction

The degree of coherence is defined in Eq. (4.22) as the normalised second order correlation function of the electric field. In the density matrix formalism Eq. (4.22) is

g (2) (t) = Tr[a † a † (t)a(t)aρ st ]/ a † a 2 . (4.41)
Eq. (4.41) can be used to find numerically the degree of coherence. Indeed, using the properties of the trace Eq. (4.41) is equivalent to

g (2) (t) = Tr[a † ae -iHt aρ st a † e iHt ]/ a † a 2 . (4.42)
From Eq. (4.42) we define the operator A(t) = e -iHt aρ st a † e iHt . We can compute the time derivative of A and show that A satisfies the same Liouville-von Neumann equation of ρ

Ȧ(t) = -i[H, A(t)]. (4.43)
Therefore since a and a † are system operators only, we can trace out the environment degrees of freedom the same way we did for the density matrix. This means that we can define a reduced operator A S that has was not reported before from the theoretical point of view. Also, from Fig. 4.7, we see that in the case of a single-level dot junction, sub-Poissonian distribution and photon anti-bunching appear to be equivalent. Indeed, both these behaviours are given by the condition g (2) (0) < 1. Thus, we can focus on the initial value of the degree of coherence g (2) (0) only to differentiate photon-bunching and photon anti-bunching behaviour.

From Eq. (4.41) we can find an analytical formula for the second order correlation function of the electromagnetic field. Indeed, in the basis of the shifted cavity, after the Lang-Firsov transformation, the basis states are |q, n where q is the charge on the quantum dot and n is the number of photons in the cavity. Projecting Eq. (4.41) on the basis vectors, we find a simple expression for the second order correlation function

g (2) (0) = n n(n -1)P p (n)/[ n nP p (n)] 2 , ( 4.45) 
That only depends on the populations. This stems from the fact that the operators a † a and a † a † aa are diagonal in this basis. This means that as for the average intensity, we only need the populations to obtain the correlation function. Therefore the diagonal part of the reduced density matrix ρ S is sufficient to compute the second order correlation function.

We already solved the rate equations in the regime of strong damping of the cavity and weak tunneling rates κ ≫ Γ in Eq. (4.8) and Eq. (4.9). Introducing Eq. (4.8) in Eq. (4.45), we find that

g (2) (0) = κ n (n -1) k≥n Γ 0k P p (0)[ n nΓ 0n ] 2 , ( 4.46) 
which can be expressed using the partial sums S n (x) as

g (2) (0) = κe λ 2 S N V -2 (λ 2 ) P p (0)ΓS N V -1 (λ 2 ) . ( 4.47) 
analytical result we found in Eq. (4.47) to the numerical results, we see that at large bias voltage the analytical prediction only depends on the ratio between κ and Γ g (2) (0) = κ 2Γ . (4.48)

Taking κ = 0.1ω c and Γ = 10 -3 ω c in Eq. (4.48) we find that lim V →+∞ g (2) (0) = 50. (4.49)

However for a voltage drop eV L < 2ω c , since we only took into account transitions starting from the ground state of the cavity, Γ 0n in Eq. (4.6), at the first inelastic threshold only Γ 01 is different from 0. This means that only P p (0) and P p [START_REF] Copeland | The photovoltaic effect[END_REF] are not vanishing and since there is no process allowing to attain more populated states of the cavity, the probability of those states is equal to 0. So there is at most one photon in the cavity at any given time, and therefore the degree of coherence vanishes. Photon-bunching can only occur when more than one photon exist in the cavity. Since at the first inelastic threshold only one photon can be emitted in a tunneling event, successive tunneling events are needed to increase the number of photons in the cavity. Therefore, we need to go to higher order in the population to take into account tunneling rates between populated states of the cavity. Let us relax a bit the condition that the cavity is always in its ground state and admit that P p (n) for n ≤ 2 can be non-vanishing. In this case the rate equations Eq. (3.61) become

               Ṗ2 = Γ 02 P 0 + Γ 12 P 1 -P 2 (Γ 21 + Γ 20 ) + 2κ ↑ P 1 -2κ ↓ P 2 Ṗ0 = κ ↓ P 1 -P 0 (κ ↑ + Γ 0,1 + Γ 02 ) P 0 + P 1 + P 2 = 1, (4.50)
Where two new electronic tunneling rates enter the equations: Fig. 4.9 shows the two processes involved in the photon emission. In panel (a), we recognize the process that we already took into account in Eq. (4.6). It corresponds to a photon being excited by the fluctuation of the charge of the quantum dot in the cavity in its ground state. The rate Γ 01 is the product of the tunneling rate Γ, the Fermi distribution and the Franck-Condon overlap between the wave function of the cavity mode at 0 photon and the wave function of the cavity mode displaced by Λ due to the electron on the molecule at 1 photon. As mentioned earlier, the Fermi distribution leads to the condition on the voltage drops that allows for this transition. The Franck-Condon overlap between the two wave functions of the cavity mode involved in Γ 01 is e -λ 2 λ 2 .

Γ 01 = Γe -λ 2 λ 2 α f α (ω c ) and Γ 12 = Γe -λ 2 λ 2 (2-λ 2 ) 2 2 α f α (ω c ). (a) µ L µ R Tip Sample Γ 01 κ 0-photon cavity (b) µ L µ R Tip Sample Γ 12 κ 1-photon cavity
The second process, panel (b), that we consider is the excitation of an additional photon from the charge's fluctuations on the dot in the cavity populated by one photon. The rate corresponding to this process is Γ 12 and is proportional to the overlap between the wave function of the cavity mode with 1 photon and the wave function of the cavity mode with 2 photons displaced by λ due to the additional electron on the dot. This overlap is given by e -λ 2 λ 2 (2 -λ 2 ) 2 /2. Since the rate equations Eq. (4.50) involve a finite number of unknowns, it is solvable and the populations are found in

                 P 0 = 2κ 2 ↓ /∆ P 1 = 2κ ↓ ∆ (κ ↑ + Γ 01 + Γ 02 ) P 2 = (κ ↓ Γ 02 + (2κ ↑ + Γ 12 )(κ ↑ + Γ 01 + Γ 02 ))/∆, (4.51) 
Here we defined ∆ = κ ↓ (Γ 02 + 2κ ↓ ) + (κ ↓ + Γ 01 + Γ 02 )(Γ 12 + 2(κ ↑ + κ ↓ )), κ ↑ = κn B and κ ↓ = κ(n B + 1). Introducing Eq. (4.51) into Eq. (4.44) we find at the first inelastic threshold eV L = ω C g (2) (0) = 2P p (2)

P p (1) 2 = Γ 12 Γ 01 = (2 -λ 2 ) 2 2 . (4.52)
This approximation of the degree of coherence shows that g (2) at the first inelastic threshold mainly depends on the coupling strength λ. From Eq. (4.52) we predict that anti-bunching is possible when 2 -(2) ≤ λ ≤ 2 + √ 2 for a symmetrically biased junction, with a minimum of g (2) (0) = 0 at λ = √ 2. The comparison between the analytical formula Eq. (4.52) and the numerical calculation is shown on Fig. 4.8 in the dotted black curve that represents Eq. (4.52) at λ = √ 2. We see that Eq. (4.52) fit very well the purple curve λ = 1.4 even up until the second inelastic threshold at eV L = 2ω c . Of course this is due to the fact that we took into consideration all the rates involving P p (2), P p (1) and P p (0), a better fit at higher voltage drops could be found by considering more populations in the rate equations.

As a conclusion anti-bunching for a single-electronic level is possible depending on the coupling strength since the emission of a second photon red regions at the upper left and lower right corners shows the superbunching due to electron-tunneling assisted multi-photon emission in the junction. As λ increases in panel (b) the strong bunching in the upper left and lower right corners becomes even stronger due to the increase of the photon-assisted electronic tunneling rates given in Eq. (3.58). Also four blue regions in which the photons are anti-bunched appear. Increasing further the coupling strength up to λ = 1.4 in panel (c), we see that the blue regions expand toward the line eV L = -eV R corresponding to the symmetrically biased junction. As the blue regions merged together, g (2) (0) goes to even smaller values for the symmetrically biased junction. Hence, it seems that anti-bunching is attained for a wider range of coupling strength in a non symmetrically biased junction. This has some interest since in most experimental setups the junction should not be symmetrical. However, the strongest suppression of the photon-bunching is obtained in the symmetrically biased junction. This is confirmed in Fig. 4.11 panel (c) which shows the minimal value obtained for g (2) (0) over any value of the left and right voltage drops (blue line) and for a symmetrically biased junction (purple dashed line) as a function of the coupling strength λ.

We explained the anti-bunching using Eq. (4.52) as the suppression of the electron tunneling assisted photon rate Γ 12 . This rate is actually the sum of four electron tunneling rates: Γ 12 01:L/R and Γ 02 11:L/R each producing a photon in the cavity starting from the cavity already populated by one photon. Fig. 4.12 shows a representation of the electron tunneling processes at the first inelastic thresholds resulting in the emission of a photon (panel (a) and (b)) and the representation of their corresponding energy thresholds (panel (c) and (d)) for a symmetrically biased junction (panel (a) and (c)) and a non-symmetrically biased junction ((b) and (d)). In the case of the symmetrically biased junction, the channels can be considered as pairs since when eV L passes an energy threshold for the charge of the dot corresponding to the emission of k photons (eV L > kω c ), at a given bias voltage (eV L = -eV R = eV /2 where eV defines the bias voltage) eV R meets the threshold for the emission of k photons from the discharge of the dot (eV R < -k). Therefore at the first inelastic threshold in a symmetrically biased junction there are two tunneling channels contributing to g (2) (0). Whereas for a non-symmetrically biased junction only one tunneling channel is contributing since only one of the voltage drop passes through an inelastic threshold. An example of that is shown in Fig. 4.12 panel (b) and (d) where the left potential µ R is tuned to the dot energy ε 0 and therefore the electrons on average only tunnel in the direction of the right lead and photons are only emitted during the charging process when an electron leaves the left lead to go onto the dot. This explains why the anti-bunching in the case of a symmetrically biased junction requires a bigger coupling strength.

Chapter 5

Dipolar coupling of a two-level quantum dot

So far we have studied the single-level quantum dot. We found that the charge fluctuations, when coupled to the electromagnetic field of a cavity, allows to observe new phenomena not expected otherwise: Specifically non-classical photon emission. However, the case of the presence of two electronic levels is also of great interest and it has attracted much attention from the STM community as the most regarded explanation of light emission in molecular STM junctions [START_REF] Zhang | Electrically driven single-photon emission from an isolated single molecule[END_REF][START_REF] Doppagne | Electrofluorochromism at the single-molecule level[END_REF][START_REF] Imada | Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system[END_REF]. An important difference with the single level case is the presence of the dipolar interaction [START_REF] Jaynes | Comparison of quantum and semiclassical radiation theories with application to the beam maser[END_REF][START_REF] Cohen-Tannoudji | Atom-Photon Interactions: Basic Processes and Applications[END_REF][START_REF] Shore | The jaynes-cummings model[END_REF]. The system has two states with the same total charge on the molecule, corresponding to an electron in either the lower or the higher electronic level.

The dipolar momentum between the two states couples to the electromagnetic field of the cavity. One major effect of this coupling is that it impacts drastically the spectrum of the two-level dot and the cavity when the detuning between the levels is close to resonant with the cavity frequency [START_REF] Fink | Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system[END_REF][START_REF] Irish | Generalized rotating-wave approximation for arbitrarily large coupling[END_REF][START_REF] Larson | Dynamics of the jaynes-cummings and rabi models: old wine in new bottles[END_REF][START_REF] Zueco | Qubitoscillator dynamics in the dispersive regime: Analytical theory beyond the rotating-wave approximation[END_REF][START_REF] Ashhab | Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states[END_REF][START_REF] Fink | Dressed collective qubit states and the tavis-cummings model in circuit qed[END_REF][START_REF] Brandes | Coherent and collective quantum optical effects in mesoscopic systems[END_REF]. On top of this effect, electronic current through two-level quantum dot has been shown to impact photon emission in the cavity and conversely [START_REF] Hagenmüller | Cavity-assisted mesoscopic transport of Fermions: Coherent and dissipative dynamics[END_REF][START_REF] Hagenmüller | Cavity-enhanced transport of charge[END_REF][START_REF] Brandes | Coherent and collective quantum optical effects in mesoscopic systems[END_REF][START_REF] Van Der Wiel | Electron transport through double quantum dots[END_REF][START_REF] Sánchez | Resonance fluorescence in transport through quantum dots: Noise properties[END_REF][START_REF] Orgiu | Conductivity in organic semiconductors hybridized with the vacuum field[END_REF][START_REF] Galperin | Current-Induced Light Emission and Light-Induced Current in Molecular-Tunneling Junctions[END_REF]. It is clear that in this problem the interplay between the energy splitting ∆ of the two-level system and the cavity resonating frequency will play an important role. We will assume in the following that the cavity is tuned at this difference of energy ω c = ∆.

Model Hamiltonian

In this chapter we want to explore the light emission from a two-level molecular junction in a cavity. More precisely we want to focus on the dipolar interaction between the electronic transition in the molecule and the cavity electromagnetic field. Doing so, we want to predict from a theoretical point of view what would be the response of the cavity under electronic current excitation neglecting the monopolar interaction of the two electronic levels of the molecule with the cavity field. Therefore, our system is similar to the system we studied in the previous chapters. of excitations in H S [START_REF] Irish | Generalized rotating-wave approximation for arbitrarily large coupling[END_REF][START_REF] Zueco | Qubitoscillator dynamics in the dispersive regime: Analytical theory beyond the rotating-wave approximation[END_REF][START_REF] Ashhab | Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states[END_REF]]

H r S = ε 0 d † g d g + (ε 0 + ∆)d † e d e + ω c a † a + Λ 2 (d † g d e a † + d † g d e a
). (5.6) This form is similar to the Jaynes-Cummings Hamiltonian. Then at moderate coupling-constant values 0.45 ≤ λ ≤ 2 the energy ordering of states n, + and n, -, for n > 0, changes and the even states become of higher energy than their corresponding odd states. At λ = 0.45 the energies predicted using the rotating wave approximation significantly deviate from their real values [START_REF] Irish | Generalized rotating-wave approximation for arbitrarily large coupling[END_REF][START_REF] Larson | Dynamics of the jaynes-cummings and rabi models: old wine in new bottles[END_REF]. The Lamb shift, originating from virtual transitions, are of order λ 2 ω c . However, they are not taken into account in the rotating wave approximation since this effect is generated by the counter-rotating terms in the coupling. This explain the deviation between the energy predicted using H r S compared to H S [START_REF] Irish | Generalized rotating-wave approximation for arbitrarily large coupling[END_REF]. Finally for λ > 1 the states n, + and n, -are degenerate. We will concentrate on the low coupling regime, since so far, experiments on single molecules do not reach coupling strength above a few percent of the photon energy [START_REF] Chikkaraddy | Single-molecule strong coupling at room temperature in plasmonic nanocavities[END_REF]. As in this regime the rotating wave approximation gives good results, we will work with that. This means that in the following we neglect the terms that do not conserve the number of excitation in H [START_REF] Brandes | Coherent and collective quantum optical effects in mesoscopic systems[END_REF]. However starting from the moderate coupling regime the rotating wave approximation fails, therefore, we drop it.

We focus on the resonance between the dipole and the cavity mode ∆ = ω c . The Hamiltonian H r S is exactly solvable [START_REF] Cohen-Tannoudji | Photons and Atoms: Introduction to Quantum Electrodynamics[END_REF][START_REF] Fink | Dressed collective qubit states and the tavis-cummings model in circuit qed[END_REF]. We first use the basis {|0, q , |g, q , |e, q , |2, q } q , where q is the number of photons in the cavity and {0, g, e, 2} are the states of the quantum dot (0 and 2 for the unoccupied and doubly occupied dot and g and e for the occupation of the LUMO and HOMO alone respectively) and we find the eigenstates {|0, n , |S, n , |A, n , |2, n } n with corresponding eigenvalues {nω c , nω c + ε 0 -Λ √ n, n + ε 0 + Λ √ n, (n + 1)ω c + 2ε 0 } n , where n ∈ N is the number of excitations of a state [START_REF] Fink | Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system[END_REF][START_REF] Fink | Dressed collective qubit states and the tavis-cummings model in circuit qed[END_REF][START_REF] Van Der Wiel | Electron transport through double quantum dots[END_REF]. |0, n designates the states with n excitations and 0 electrons on the dot while |2, n designates the state with n excitations and 2 electrons on the dot. We define

|S n = |e,n-1 +|g,n √ 2 and |A n = |e,n-1 -|g,n √ 2
for n > 0. For n = 0, we define |S 0 = |g, 0 and |A 0 doesn't exist. Therefore the gap we found between two consecutive energies of same parity is the Rabi splitting 2Λ

√ n which is the energy separating |S n and |A n .

Electronic current

Let us first look at the current characteristics and obtain a description for the current assisted light emission [START_REF] Hagenmüller | Cavity-assisted mesoscopic transport of Fermions: Coherent and dissipative dynamics[END_REF][START_REF] Hagenmüller | Cavity-enhanced transport of charge[END_REF][START_REF] Brandes | Coherent and collective quantum optical effects in mesoscopic systems[END_REF]. We use the rate equation approach to find the electronic current. As we identified three coupling regimes, we separate this section into three parts, one for each regime, plus an additional section for the non-interacting case.

Non-interacting case (λ = 0)

In the simplest case, the coupling Λ is set to 0.

"

Weak" coupling λ < 0.45

In section 5.1, we showed the eigenstates and eigenenergies of the Hamiltonian H S . From these eigenstates, we can use the Fermi's golden rule with the interaction Hamiltonian H int as a perturbation of H S to find the rates for an electron tunneling from the leads to the dot [START_REF] Hagenmüller | Cavity-enhanced transport of charge[END_REF][START_REF] Koch | Theory of the Franck-Condon blockade regime[END_REF][START_REF] Koch | Franck-Condon blockade and giant Fano factors in transport through single molecules[END_REF][START_REF] Orgiu | Conductivity in organic semiconductors hybridized with the vacuum field[END_REF]]

                         Γ n α→ = Γ αg f + α (-Λ √ n) Γ n+ α→ = Γ αe f + α (ω c -Λ √ n) Γ n α→ = Γ αg f + α (Λ √ n) Γ n+ α→ = Γ αe f + α (ω c + Λ √ n) (5.11)
and the rates for an electron tunneling from the dot to the leads

                       Γ n+ α← = Γ αe f - α (ω c + Λ √ n) Γ n α← = Γ αg f - α (Λ √ n) Γ n+ α← = Γ αe f - α (ω c -Λ √ n) Γ n α← = Γ αg f - α (-Λ √ n) (5.12)
We can start by comparing the two-electronic level case to the singleelectronic level case for the rates. Indeed, in the case of a single-level dot, the tunneling rates couple any states of the cavity to one another, as long as the Franck-Condon overlap is not vanishing Eq. (3.58). However, in the two-level case in the weak coupling regime, the electronic tunneling is dominated by the coupling between states of the same excitation number. In our approximation this translates in having tunneling rates only between states of the same excitation number. This is easily seen from the fact that the tunneling rates between an initial state |i and a final state |f is proportional to | i|H int |f | 2 , and that the tunneling Hamiltonian H int is purely electronic. Therefore, a tunneling event can at most modify the number of photons by one. Intrinsically we can't have multiple photon emission or absorption for the two-level system for λ < 0.45.

Another striking difference is seen in the Fermi function's argument. In the case of a single level, the energy condition in the Fermi functions corresponded to the difference of photon number between the two states involved in the transition. Therefore, it was an integer multiple of the photon energy. In the case of the two-level dot, this energy difference depends on the coupling strength and on the square root of the number of photons. Thus, we expect that steps in the electronic current will appear at each Λ √ n or ω c ± Λ √ n instead of each nω c .

The rate equations read

                                                               Ṗ (|n, 0 ) = P (|S n )Γ n ← + P (|A n )Γ n ← + P (|S n+1 )Γ (n+1)+ ← + P (|A n+1 )Γ (n+1)+ ← -P (|n, 0 )(Γ n → + Γ n → + Γ (n+1)+ → + Γ (n+1)+ → ) Ṗ (|S n ) = P (|n, 0 )Γ n → + P (|n -1, 0 )Γ n+ → + P (|n -1, 2 )Γ n ← + P (|n, 2 )Γ n+ ← -P (|S n )(Γ n ← + Γ n → + Γ n+ ← + Γ n+ → ) Ṗ (|A n ) = P (|n, 2 )Γ n+ ← + P (|n -1, 2 )Γ n ← + P (|n -1, 0 )Γ n+ → + P (|n, 0 )Γ n → -P (|A n )(Γ n → + Γ n ← + Γ n+ → + Γ n+ ← ) Ṗ (|n, 2 ) = P (|A n )Γ n+ → + P (|S n )Γ n+ → + P (|A n+1 )Γ (n+1) → + P (|S n+1 )Γ (n+1) → -P (|n, 2 )(Γ n+ ← + Γ n+ ← + Γ (n+1) ← + Γ (n+1) ← ) (5.13)
Here we don't take into account the damping of the cavity. From these equations we obtain for the tunneling current in the stationary regime:

I L→ = n P (|n, 0 )(Γ n L→ + Γ n L→ + Γ (n+1)+ L→ + Γ (n+1)+ L→ ) +P (|S n )(Γ n+ L→ + Γ n L→ ) + P (|A n )(Γ n L→ + Γ n+ L→ ) I L← = n P (|n, 2 )(Γ n+1 L← + Γ n+1 L← + Γ n+ L← + Γ n+ L← ) +P (|A n )(Γ n+ L← + Γ n L← ) + P (|S n )(Γ n L← + Γ n+ L← ) , ( 5.14) 
where the net tunneling current I L is

I L = I L→ -I L← .
(5.15) Fig. 5.5 shows the electronic current as a function of the voltage drops.

As expected we see in the conductance the signature of the Rabi splitting in the splitting of the two peaks at eV α = ω c . This means that in an experiment, a two-level dot junction coupled to a cavity mode with only a dipolar coupling should exhibit the Rabi splitting in its conductance for a coupling λ < 0.45 and we predict light emission from the split states at eV α = ω c ± Λ [START_REF] Van Der Wiel | Electron transport through double quantum dots[END_REF][START_REF] Galperin | Current-Induced Light Emission and Light-Induced Current in Molecular-Tunneling Junctions[END_REF]. We see in the conductance a first pick at eV L = 0 which corresponds to µ L = ε 0 . This peak corresponds to electronic tunneling through the ground state |S 0 . Then there is another pick at eV L = ∆ = ω c (µ L = ε 0 + ∆) corresponding to electrons tunneling through the excited state while the ground state is already populated. In other words, this is a transition from |S 0 to |0, 2 . Those two kinds of tunneling events do not involve photon emission nor absorption. Close this last pick we discussed there are two side smaller picks, for eV L = ω c ± Λ. These picks correspond to transitions from the in this case since it is at the extremity of any path in the two graphs. Therefore any random walker on the graphs ends at some point on |S 0 and can't leave. Hence in the stationary regime P (|S 0 ) = 1. Even though more path are allowed compared to the previous regime we explored (Λ < eV α < ω c -Λ), |S 0 is still the only possible end of any path in the graphs (see Fig. 5.14). Therefore, the stationary population can still only be P (|S 0 ) = 1 and |S 0 has no photon. This remains true until one of the voltage drops reach ω c , then electrons can go back and forth between |S 0 and |2, 0 and the stationary population is distributed between those two states depending on the ratio Γ Le /Γ Re (see Fig. 5.15). Anyway none of these two states include a photon therefore the cavity is empty in this region. We conclude that in an experimental case, unless one of the electronic leads is tuned the energy of the ground state of the dot |S 0 , we expect from our model, that the number of photons in the cavity should not be affected by the electronic current going through a two-electronic level quantum dot. Now let's focus panel (c) in Fig. 5.12. As the coupling strength increases, the average number of photons in the cavity also increases in the region where electronic current is allowed, however we see that the top left and bottom right red regions of the 2D map are getting bigger as their thresholds are moved from eV α = ω c -Λ to eV α = -Λ. Also, an island of large intensity appears around eV L = eV R = 0. In fact this Island corresponds to the highest light intensity in the cavity where light behave coherently from our prediction of a † a = λ 2 . the cavity is in its ground state |0, 0 . As soon as eV L > 0 the average number of photons in the cavity increases. So, while in the case of the symmetrically biased junction at eV R = eV L = 0, P (|S 0 ) ≃ 1, in the case shown in Fig. 5.16 panel (b), the system can't reach this value and the average number of photons is lower. However the plateau for 0 < eV L < ω c -Λ is obtained in both cases. We then see the exact same structure in the two cases.

Hence, as the coupling strength grows, its effect on the ground state of the molecule |S 0 (in other words the HOMO) can greatly modify the emission spectrum. Indeed, not only |S 1 and |A 1 corresponds to light emission, but also |S 0 in this case. Fig. 5.17 shows the second order correlation function of the field of the cavity corresponding to the same three cases shown in Fig. 5.16 [START_REF] Sánchez | Resonance fluorescence in transport through quantum dots: Noise properties[END_REF]. We see that panel (a) and (b) of Fig. 5.17 and Fig. 5.16 have the same structure. In the regions where the electronic current does not affect the photonic population of the cavity, the cavity should remain in its thermal equilibrium. Therefore, the photons are bunched and g (2) (0) ≥ 1. But when the electronic current starts to affect the field of the cavity at the thresholds eV = ω c -Λ, the second order degree of coherence suddenly decreases. This can be understood from the fact that only single photon processes are involved, since only transitions between states |n, 0 or |n, 2 and |S n±1 or |A n±1 produce a photon exchange. Therefore on a time scale given by Γ at most one photon can be produced in the cavity. It then appears that anti-bunching is far more easier to obtain with two electronic levels than with one since there is no multi-photon process with a dipolar coupling assuming the system is not in the ultra-strong coupling regime. However panel (c) shows that when the coupling strength become high enough the anti-bunching is killed and the electronic current even produces strong bunching with g (2) (0) ∼ 10.

Chapter 6 Conclusions

Summary

Electron-light coupling as long been studied in quantum optics and using microwave cavities. These kinds of experiments have shown the effect of the hybridization of the dipole of a molecule and the electric field of the cavity and the well known Rabi-splitting. However more recently physicists have tried to couple the electric field of the cavity to electronic transport as a way to control the light emitted from the molecule. In parallel, as microwave cavities are confined to single-molecule weak coupling and knowing that the coupling inversely scales with the volume of the cavity, physicists have designed plasmonic cavities at the nanoscale in which they hopped to observe the strong-coupling regime at the nanoscale. The mix of those two results is found in STM experiments where the STM act as a nanoplasmonic cavity and as the electronic leads of a nanocircuit.

This thesis proposes a theoretical framework for studying the coupling between electronic transport and the electric field in a cavity. Our results are applicable for nanoplasmonic cavities such as STM cavities as well as microwave cavities coupled to a nanocircuit. One major effect of the coupling between an electronic current is that not only the cavity electric field couples to the dipolar momentum of the molecule inside the cavity, but it also couples to the charge fluctuations on the molecule. This leads to a "monopolar" coupling that is similar to the coupling between phonons and electrons that has long been studied in molecular electronics. The electron-phonon coupling has been studied in the Franck-Condon physics. As in the experiments we are interested in, typically Γ ≪ k B T and we were interested in studying the effect of the coupling strength on our model, we use a density matrix approach to solve our model in the sequential tunneling regime. This allows us to treat any regime of coupling however we are restricted to sequential tunneling of electrons and neglect any co-tunneling event. By first limiting the system to a single electronic level for the molecule in the junction, we show some specificity of that comes with the coupling the the charge fluctuations on the molecule and we clearly demonstrate the equivalence with the Franck-Condon physics. Hence we showed that the electronic current for a single level exhibits steps at each multiple of the photon en-ergy that corresponds to the inelastic tunneling of the electrons leading to the emission or absorption of some photons in the cavity. Moreover we also incorporated the effect of a bosonic environment to our model as plasmonic cavities are known, due to their small size, to have small quality factors (Q < 10 3 ). Hence we developed a way to compute the current that take into account the broadening due to the large damping rate of the cavity. As we are interested in the photonic response of the cavity, our method does not require any assumption on the photons distribution in the cavity. As the electronic current shows photons are emitted in the cavity due to the electron tunneling, we show that the average number of photons in the cavity displays the exact same behaviour as the electronic current depending on the voltage that is imposed to the electronic leads. Then studying the photon correlation functions we show that the single electronic-level junction shows very unusual behaviour for the emitted light: Super-bunching at large voltage, where multi-photon emission is dominant. Anti-bunching at the first inelastic threshold where only one photon can be emitted in a single electron tunneling event. Of course the existence of the anti-bunching depends on the electron-photon coupling strength. We show that the condition of its existence is mainly found in the Franck-Condon overlap. That is the overlap between a wave function of the bare cavity mode and of the cavity mode displaced by Λ due to the coupling with an electron on the molecule. This overlap affects the photon-assisted electron tunneling rates and we were able to show that around λ = √ 2 the tunneling rate responsible for the emission of a second photon in the cavity is suppressed.

As mostly the two level system is studied in cavity quantum electrodynamics and it is viewed as the most probable cause of light emission in STM junctions, we then applied our model to the case of a two-level system with no "monopolar" coupling. In this case we showed that the hybridization between the molecule and the cavity electric field was measurable in the current even in plasmonic cavities. The signature of the hybridization is shown in the conductance where two side peaks appear around the peak that correspond to the tunneling through the second electronic level. These side peaks are separated in energy by the Rabifrequency 2Λ where Λ is now the "dipolar" coupling. It is to be expected that to these two new peaks correspond light emission processes and this is shown in the light emission spectrum. It is interesting to emphasize that the monopolar and dipolar coupling are both responsible for light emission. However in the case of the monopolar coupling many transitions could result in light emission whereas for the dipolar coupling mainly two transitions are responsible for light emission. This comes from the fact that for the dipolar weak coupling regime, only single-electronic states can emit one photon in the cavity. The light g (2) correlation function shows that in the case of the dipolar coupling antibunching is seen as soon as the hybridized states are involved in the electronic transport as only single-photon emission is possible in this case. Thus antibunching is seen at weak coupling strength, which means that the design of a single-photon source should be easier using the dipolar coupling only compared to the monopolar case. Interestingly as the dipolar coupling strength increases the model starts to deviate towards an equivalent of the monopolar coupling for two electronic levels and we lose the antibunching in the strong coupling regime.

Outlook

While we were able to answer some questions about the effect of the electronic transport on the light emission, a lot more remains to be done. One major addition we can do is to include both the monopolar and the dipolar coupling, and see what are the resulting current and photon statistics. From the experimental point of view, for the two-level system, they both are present.

For our work we developed a python library that we can use to study more complex Systems. We could take into account vibrational effects on the molecule, adding phonons in our model.

Another interesting case is the study of the super radiance in which the light emission is enhanced by the collective interaction of several identical molecules. Regarding the effect of the driving of the electric field on the electronic current, We only partially answered this question, studying the strong drive regime where the photons field becomes classical.

Finally on the method we used, it would be interesting to study the limitations of the Markov approximation that is no more valid for damping rates of the cavity κ > k B T . The dynamics become non-Markovian and require a different approach.
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 023 Figure 2.3: Intensity of the coupling λ along the x direction inside the cavity.
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 25 Figure 2.5: Continuous path C between r and r ′ in the (ρ, z)-plan.

  ) on Eq. (3.16) we find the Liouvillevon Neumann equation in the interaction picture

  Ec |a d|. (3.54) If ε 0 is not a multiple of the cavity frequency ω c the only way for two states |a and |b to have E a = E b is that |a = |b . Then we find A ≃ +∞ 0 α,a,b
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 70 We neglect in Eq.(3.70) the fast oscillating terms for which E a = E c which means that we only take into account terms for which |a = |c S DD † (t, t ′ ) ≃ ab D ab D † ba ρ Saa e i(Ec-E b )τ . (3.71) Using Eq. (3.71) in Eq. (3.69) and integrating over τ , we find
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 101 In order to find the rate equations we project Eq. (3.101) on the dot's states |q where q ∈ {0, 1} Ṗq (t) = q| ρS (t)|q .(3.102)
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 42 Figure 4.2: Representation of an inelastic tunneling event during which 2 photons are emitted in the empty cavity.
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 49 Figure 4.9: Photon emission processes considered. (a) Photon emission from the ground state by an electron tunneling through the junction with rate Γ 01 . (b) Photon emission from the first excitation of the cavity by an electron tunneling with rate Γ 12

Figure 5 . 13 : 1 LFigure 5 . 14 :

 5131514 Figure 5.13: Graph of the transitions allowed for Λ < eV α < ω c -Λ by electron tunneling. Increasing V L , for Λ < eV R < ω c -Λ and eV L > ω c -Λ (light red region in the upper left region in Fig. 5.6), the tunneling rates that are not vanishing are: Γ 1 L/R→ , Γ 1 L/R→ , Γ 1+ R← , Γ 1+ R← and Γ 1+ L→ , Γ 1+ L→ . Γ 1+ L→ corresponds to transitions from |0, 0 to |S 1 and from |A 1 to |2, 1 (emission of 1/2 photons). Γ 1+ L→ corresponds to transitions from |0, 0 to |A 1 and from |S 1 to |2, 1 (emission of 1/2 photons).
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 515 Figure 5.15: Graph of the transitions allowed for Λ < eV R < ω c -Λ and ω c > eV L > ω c -Λ by electron tunneling.

  ′ )e iω j (t ′ -t) dt ′ . ′ )e -(s+iω j )t e iω j t ′ dt ′ dt.

	Eq. (4.25) is integrated to find
				b j (t) = e -iω j t b j (0) -iκ * j	0	t	a(t (4.26)
	Using Eq. (4.26) in Eq. (4.24) shows
	ȧ = -iω c a -	j	|κ j | 2 t 0	a(t ′ )e iω j (t ′ -t) dt ′ -i	j	κ j e -iω j t b j (0).	(4.27)
	We define					a(s) =	0	+∞	e -st a(t)dt,	(4.28)
	the Laplace transform of a. The time evolution of a(s) is given by
	ȧ(s) =	0	+∞	ȧ(t)e -st dt = lim x→∞ [a(t)e -st ] x 0 + s	0	+∞	a(t)e -st dt = sa(s) -a(0). (4.29)
	Therefore using Eq. (4.29) in Eq. (4.27) we show that
	sa(s) -a(0) = -iω c a(s) -i -j |κ j | 2 +∞ j 0	κ j iω j + s t 0 a(t (4.30) b j (0)
	By switching the order of the integrals in the last term in Eq. (4.30) whe
	show that					
				0	+∞	0	t	a(t ′ )e -(s+iω j )t e iω j t ′ dt ′ dt = -	a(s) s + iω j	.	(4.31)
									.22)
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the degree of coherence. Nevertheless looking at the minimization over the full plane (eV L , eV R ), we see that in general we largely underestimated the range for which anti-bunching is possible. Indeed, the condition of anti-bunching is 0.17 ≤ λ ≤ 1.85 from the numerical results. Surprisingly the upper-limit we predicted from Eq. (4.52) at λ = 2 + √ 2 is pretty accurate though the actual maximum value of λ for which anti-bunching is found correspond to an asymmetrically biased junction since the blue curve and the dashed purple curve do not coincide for 1.7 < λ < 2. Fig. 4.11 panels (a) and (b) shows g (2) (0) as a function for various values of the temperature. Temperature has a very straight forward effect on g (2) (0) as it sharpened the thresholds at each integer values of eV L .

01:L As for the single-level dot, we consider the sequential tunneling regime where k B T ≫ Γ. We regard the tunneling Hamiltonian H int as a perturbation, and we diagonalize exactly the system Hamiltonian H S . Then we compute the tunneling rates using Fermi's golden rule. We find a very simple expression of the tunneling rates

where Γ α→k designates the rate for an electron to tunnel from lead α to the dot's level k. From the tunneling rates we deduce the rate equations:

where Γ →k = α Γ α→k . Solving Eq. (5.8) we find the populations

where

The expression for

Appendices

Appendix A

Numerical methods

As mentioned through the manuscript, a lot of results have been obtained numerically when analytical calculation was not possible. To this end we developed a python package named cavity implementing the various approached we used for our calculations. Our package is based on the use of the python libraries numpy, scipy and netCDF4 for data storage. The package is build around four modules. The first module implements the Hamiltonians used through our work. It makes use of the package secondquant developed by T. Frederiksen, implementing general second quantization operators. The Hamiltonians are returned in matrix representation. Then the three other modules implement the rate equation approach, the full Liouvillian approach and the time-dependent approach used to solve section 3.8. The latter three modules have a similar implementation. In Algorithm 1, the reduced density matrix is computed from the Liouvillian operator. Once this is done, ρ can be used to compute any physical quantity O . In the simplest case, corresponding to the Fermi golden rule approach, only the diagonal part of the density matrix is computed. Then any physical quantity can be computed. Of course the calculation of the electronic current in the case of the full density matrix implementation is a little bit more complicated as we recollect the coherent evolution of the cavity mode. In this case Algorithm 2 still applies but we use Algorithm 3 instead of computing the trace in the for loop of Algorithm 2.