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Abstract

English

The study of light–matter interaction has drawn through the years more
and more interest. With the improvement of the techniques used for
building electromagnetic cavities, it is now possible to couple cavities
with nanocircuits merging the fields of quantum optics and nanoelectron-
ics. Not only that, but some experiments also reported the possibility to
use a scanning tunneling microscope as a plasmonic cavity coupled with
electronic transport.

In this thesis a theoretical framework is proposed, based on meso-
scopic quantum electrodynamics, for studying the coupling between elec-
tronic transport in a molecular junction and the electromagnetic field of a
cavity. This thesis focuses on the sequential tunneling regime for the elec-
trons and use density matrix approach. This allows to derive the master
equation as well as a computational scheme to compute electronic cur-
rent and the photon statistic when it is not possible to obtain analytical
results.

First, a single–level model for the molecule in the junction is stud-
ied. Indeed the electronic current induces a fluctuation of the charge
on the molecule that couples with the electromagnetic field in the cav-
ity. The investigations on this system are done in the experimentally
relevant limit of large damping rate κ for the cavity mode and arbitrary
strong light–matter coupling strength. This model shows the equivalence
between the electron–photon coupling for a single level and the electron–
phonon coupling that has long been studied in nanoelectronics known as
the Franck–Condon principle. The current–voltage characteristics show
steps, each separated by the energy of a photon, as the electron tunneling
dissipate some energy in the cavity mode. In this work a formula has
been derived for the electronic current taking into account the damp-
ing of the cavity. This allows to show that the width of the current’s
steps are controlled by κ rather than the temperature. The single-level
junction shows interesting light–emission regimes. At large bias voltage
this theory predicts strong photon bunching of the order κ/Γ where Γ
is the electronic tunneling rate. However, at the first inelastic threshold
the theory predicts current–driven non–classical light emission from the
single–level junction. Finally the investigation of the effect of a strong
external drive of the cavity on the electronic current shows a quantization
of the current that is linked to the Franck–Condon effect.

Finally the theory is applied to a double–level model for the molec-
ular junction inspired by quantum optics. In this scenario, the cavity
mode couples to the electronic transition between the two states of the
molecule. The effect of the charge fluctuations for each single electronic
level is neglected. Therefore the coupling is a dipolar coupling in this
case. The focus is mainly on the weak coupling regime. The electronic
current shows the Rabi splitting due to the hybridization of the cavity
mode and the molecule. Electronic tunneling can occur into these hy-
bridized states and is responsible for light emission in the cavity in a
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single tunneling process. Light antibunching is seen in the weak cou-
pling regime since our model predicts that only single photon emission
is possible during a tunneling event in this case. Though the intermedi-
ate coupling regime is only briefly treated, the strong coupling regime is
shown to be similar to two independent single level.

Keywords: quantum transport, nanophotonics, plasmonics

Spanish

El estudio de las interacciones entre luz y materia ha atraído un interés
creciente a lo largo de los años. La mejora de las técnicas de fabricación de
las cavidades electromagnéticas permite hoy conjugar las cavidades con
nanocircuitos, combinando así los campos de la óptica cuántica y de la
nanoelectrónica. Se añade a eso la posibilidad de usar un microscopio con
efecto túnel a modo de cavidad plasmónica combinada con el transporte
electrónico que fue demostrado en numerosas experiencias.

Esa tesis propone un cuadro teórico basado en la electrodinámica
mesoscópica, permitiendo el estudio de la combinación del transporte
electrónico dentro de una unión molecular con el campo electromagnético
de una cavidad. El foco se centra en el régimen túnel secuencial de los
electrones, a cual está apto el uso de la matriz densidad para los cálculos.
Ese régimen permite establecer ecuaciones claves que rigen el desarrollo
temporal de la matriz densidad, tal como un esquema de cálculo numérico
de la corriente electrónica y de la estadística de los fotones en la cavidad
cuando no es posible obtener un resultado analítico.

Primero se estudia un modelo de un solo nivel electrónico para la
molécula. En efecto, la existencia de una corriente electrónica significa
que la carga en la molécula fluctúa y esa fluctuación se combina con el
campo electromagnético de la cavidad. El estudio de ese sistema se hace
en el limite, experimentalmente pertinente, del ratio alto de la amor-
tiguación κ del modo de la cavidad y del acoplo luz–materia arbitraria-
mente alto. Ese modelo demuestra la equivalencia del acoplo electrón–
fotón para un nivel electrónico y el acoplo electrón–fonón que se ha estu-
diado desde hace mucho tiempo en el campo de la nanoelectrónica bajo
el nombre del principio de Franck–Condon. La característica corriente–
tensión del circuito hace aparecer una evolución de escalones, cada uno
separado por la energía de un fotón. Eso corresponde a una disipación
de energía por parte de los electrones al modo de la cavidad durante el
proceso de transporte. En ese trabajo se derivó una ecuación para la
corriente electrónica que toma en cuenta el efecto de la amortiguación de
la cavidad. Esto demuestra que la anchura de los saltos en la corriente
está controlada por κ más que por la temperatura. El modelo de un solo
nivel muestra también regímenes inesperados de emisión de luz. En el
límite de voltaje alto entre los electrodos de la unión molecular, la teoría
predice una agrupación («bunching») de los fotones emitidos dentro de
la cavidad. La correlación entre dos fotones emitidos alcanza un valor
del orden de κ/Γ donde Γ es el ratio de tunelamiento de los electrones.
Sin embargo, en el primer umbral de transferencia inelástica esa teoría
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predice una emisión de luz no-clásica provocada por la corriente elec-
trónica. Por fin, el estudio del impacto de una fuerte excitación externa
del modo de la cavidad muestra también una cuantización de la corriente
relacionada al efecto Franck–Condon.

Finalmente, la teoría desarrollada en esta tesis está aplicada también
a una unión molecular de dos niveles electrónicos inspirada de la óptica
cuántica. En ese escenario el modo de la cavidad está acoplado con la
transición electrónica entre dos orbitales moleculares. El efecto de fluc-
tuaciones de carga en cada orbital no se tiene en cuenta. Entonces en
ese marco el acoplo es solo dipolar. Se centra la atención principalmente
en el régimen del acoplo débil. La corriente electrónica muestra la huella
de oscilaciones de Rabi como resultado de la hibridación del modo de la
cavidad con la molécula. El transporte de electrones se puede ocurrir
mediante estos estados híbridos. Entonces el traslado de un único elec-
trón es responsable de la emisión de un fotón en la cavidad. Se observa
el desagrupamiento («anti-bunching») de la luz emitida. Aunque el rég-
imen de acoplo intermedio es solamente tratado en breve, el régimen de
acoplo fuerte muestra que es muy similar a la combinación de dos niveles
electrónicos independientes acoplado al modo de la cavidad.

Palabras claves: transporte cuántico, nanofotónica, plasmónica

French

L’étude de l’interaction entre la lumière et la matière n’a cessé de sus-
citer un intérêt croissant au fil des années. L’amélioration des techniques
de fabrication des cavités électromagnétiques permet aujourd’hui de cou-
pler ces cavités à des nanocircuits, se faisant, combinant les champs de
l’optique quantique et de la nanoélectronique. À cela s’ajoute enfin la
démonstration expérimentale de la possibilité d’utiliser un microscope à
effet tunnel comme cavité plasmonique couplée au transport électronique.

Cette thèse propose un cadre théorique basé sur l’électrodynamique
quantique en cavité, permettant l’étude du couplage entre le transport
électronique dans une jonction moléculaire et le champ électromagné-
tique d’une cavité. L’attention est portée sur le régime de transfert tun-
nel séquentiel des électrons, auquel est adapté l’utilisation les calculs
basés sur l’usage de la matrice densité. Ce régime permet d’établir les
equations maîtresses régissant l’évolution temporelle de la matrice den-
sité, ainsi qu’un schéma de calcul numérique du courant électronique et
des propriétés statistiques des photons dans la cavité quand il n’est pas
possible d’obtenir un résultat analytique.

Dans un premier temps, l’attention est portée sur un modele de jonc-
tion moléculaire à une orbitale. En effet, l’existence d’un courant élec-
tronique signifie que la charge de la molécule fluctue et cette fluctu-
ation se couple au champ électromagnétique de la cavité. L’étude de
ce premier système est faite dans le régime, expérimentalement per-
tinent, de fort taux d’amortissement κ ≥ kBT du mode de la cav-
ité et de couplage lumière–matière arbitrairement élevé. Ce modèle
met en évidence l’équivalence du couplage électron–photon et du cou-
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plage électron–phonon pour un unique niveau électronique. Ce couplage
électron–phonon est étudié depuis longtemps en nanoélectronique sous
le nom de principe Franck–Condon. La caractéristique courant–tension
du circuit fait apparaitre une évolution par paliers ou seuils inelastiques,
chacun séparé par l’énergie d’un photon. Ce phénomène correspond à
une dissipation d’énergie, par émission de photons dans la cavité, médiée
par le courant électronique. Pour cette étude, une formule du courant
électronique prenant en compte l’effet de l’amortissement de la cavité
(facteur de qualité Q ≈ 10) a été dérivée. Cela a permis de montrer
que la largeur des sauts du courant est contrôlée par κ plutôt que la
température. Ce modèle démontre la possibilité d’obtenir divers régimes
d’émission de lumière par passage de courant au sein de la jonction. Pour
une importante différence de potentiel entre les électrodes de la jonction,
cette théorie prédît un important groupement («bunching») des pho-
tons émis dans la cavité. La fonction de corrélation de deux photons à
temps égaux g(2)(0) atteint alors une valeur de l’ordre de κ/Γ, où Γ est
le taux de transfert tunnel des électrons. En revanche, au premier seuil
de transfert inélastique des électrons, cette théorie prédît une émission
de lumière non–classique provoquée par le courant électronique molécu-
laire à un niveau (la jonction se comporte alors comme une source à un
photon). Enfin, nous avons montré qu’en présence d’une source de volt-
age dépendant du temps appliqué à la cavité, le courant dc présente des
paliers analogues à ceux obtenus dans le régime Franck–Condon.

La théorie développée dans cette thèse est ensuite appliquée à une
jonction moléculaire à deux niveaux électroniques. Dans ce scénario, le
mode de la cavité se couple à la transition électronique entre les deux
orbitales moléculaires. L’effet des fluctuations des charges de chaque or-
bitale est négligé. Dans ce cadre, nous avons étudié le cas d’un couplage
cavité-molécule de type dipolaire électrique. L’attention est portée prin-
cipalement sur le régime de couplage faible entre le dipole de la molécule
et le mode de la cavité. Le courant électronique montre l’empreinte des
oscillations de Rabi provenant de l’hybridation du mode de la cavité et
de la molécule. Le transfert d’électrons peut se produire au travers des
états hybridés. On observe alors que le transfert d’un unique électron
est responsable de l’émission d’un photon dans la cavité. Les photons
émis dans la cavité sont ainsi dégroupés («anti-bunching»). Bien que le
régime de couplage modéré soit seulement brièvement traité, le régime de
couplage fort, quant à lui, se montre très similaire au couplage de deux
niveaux électroniques indépendants avec le mode de la cavité.

Mots-clefs: transport quantique, nano-photonique, plasmonique
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Chapter 1

Introduction

1.1 Light–matter interaction

We have known since the 19th century that electrons are sensitive to elec-
tromagnetic fields. It is the Lorentz force that is responsible for electronic
motion. It was also demonstrated that light is electromagnetic waves and
therefore electrons and light were shown to interact in the photovoltaic
effect discovered by E. Becquerel in 1839 [1]. Another example of light-
matter interaction was shown by R. Hertz in 1887 in the photoelectric
effect, where he showed that electrons can be extracted from a metal
under light irradiation. Since then more examples of light-matter inter-
actions have been demonstrated in chemistry with photocatalysis [2], in
biological phenomena such as photosynthesis [3] or retinal photorecep-
tion [4].

Light–matter interactions have found some technological uses with
the design of solar cells using the photovoltaic effect [5] or lasers for
example [6]. Physicists have put a lot of efforts in understanding light-
matter interactions from a fundamental point of view as well as the use
that can be made of it in engineering. In fact the photoelectric effect de-
scribed by R. Hertz found a theoretical explanation in 1905 in the famous
work of A. Einstein [7]. This is a corner stone in the understanding of the
nature of light since A. Einstein made use of the principle of quantifica-
tion previously used by M. Planck to explain the black-body spectrum.
Hence the notion of light particles, later on called photons, was intro-
duced. This discovery led to the development of quantum mechanics and
the study the quantum nature of light lead to the field known today as
quantum optics.

1.2 Cavity Quantum Electrodynamics

In order to study light–matter interaction between an atom or a molecule
and an electric field, physicists placed the object to study between two
conducting plates. This is what is called a cavity. As the cavity gives
some boundaries that limits the volume in which the electric field exists,
this results in a discrete spectrum of the field. The study of the phe-
nomena linked to the discretization of the cavity’s modes is called Cavity

1



Quantum Electrodynamics (cavity-QED).
There are three types of phenomena involved in cavity QED. The

modification of the spontaneous emission rate of an atom resonant with
a cavity mode known as Purcell effect. The modification of the atom’s
energy levels known as Lamb shift. And finally, the oscillatory energy
exchange between the atom and a cavity mode showing a pure quan-
tum behaviour known as Rabi oscillations. The first two phenomena
mentioned can be observed in the weak coupling regime but the Rabi
oscillations require and define the strong coupling regime, that is when
the coupling intensity overcomes the dissipation rates in the system. In
other words, from the experimental point of view, the strong coupling
regime is achieved when the Rabi oscillations are measurable.

The Purcell effect was the first of the three to be observed [8] and
its observation started the field of cavity QED. It corresponds to the
enhancement of the atomic spontaneous light emission rate by the factor
f = 3Qλ3/4π2n3V when placed in a cavity, where λ is the wavelength,
Q the quality factor of the cavity, n the refractive index and V the
mode volume of the cavity. As the light emission rate of the atom is
proportional to the density of modes of the electric field, the fact that
the cavity’s geometry concentrates a mode in its volume can result in
the enhancement of the light emission rate of the atom when the cavity
and the atomic transition are tuned. The enhancement factor is roughly
given by the quality factor Q of the cavity. On the contrary, if the cavity
and the atomic transition are not tuned, the light emission is suppressed
since there is no mode available for the atom to relax its energy.

The shift of the atomic energies has been studied from a theoretical
point of view [9–11] but very few experiments have been realised [12] as
the measurements are limited to a particular contribution resulting from
a single wave vector k in a planar geometry. Finally, the Rabi oscillations
[13] have been studied theoretically using the Jaynes–Cummings model
[14] and demonstrated in various experiments [15–18].

The Rabi oscillations are the manifestation of the interaction between
the dipolar momentum of a two-level quantum dot µ and the electric field
of the cavity which gives a coupling strength Λ = µEzpm, where Ezpm is
the zero point motion of the electromagnetic field. When Λ overcomes
the dissipation of the cavity or the atom spontaneous emission rate, the
Rabi oscillations can be measured by observing the splitted peak in the
optical spectrum of the cavity. This defines the strong coupling regime.
Several experiments have used the strong couplings between atoms and
the electric field of a cavity [19–21] allowing to explore the quantum
nature of light and matter, but only few have managed to strongly couple
a single atom to the cavity field. This was done for the first time building
the micromaser [22]. A particular interest of the micromaser is its ability
to generate sub-Poissonian distribution of photons and therefore purely
quantum fields in the cavity.

Recently, the capability to fabricate a source of photons with specified
statistics has received great interest. This is mainly due to quantum
cryptography requiring the design of single photon sources and therefore
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Rabi oscillations since they are perturbed by the cavity’s electromagnetic
environment. Finally optical cavities are limited to a size of hundreds
of nanometers since the wavelength we want to select is given by the
distance between the boundaries of the cavity.

1.3 Mesoscopic Quantum Electrodynamics

Strong coupling with a single quantum dot has mostly been realised
for microcavities [13, 30–33]. At the same time nanoelectronics has also
known progresses allowing for the fabrication of a wide variety of nanocir-
cuits and the understanding of electron’s dynamics. This led to the de-
sign of quantum dots with a discrete energy spectrum comparable to
artificial atoms. Physicists were able to show, studying the electronic
current, how the strong confinement of the electrons in a nanojunction
leads to current quantization analogous to what was observed for a waveg-
uide [34–36]. A few examples of quantum dots have been realised with
carbon nanotubes [37], semiconducting nanowires [38] or self-assembled
quantum dots [39].

At first the nanocircuits build for nanoelectronics experiments were
studied based on dc current measurement, but it was quickly realised
that the response of the circuit to microwave excitation was interesting for
fundamental purpose but also for the engineering of quantum information
devices. Therefore physicists start to study photo-assisted tunneling of
electrons [40]. The fabrication of nanocircuits and the control of the
electronic current offered by nanoelectronics give the missing tool for
the fabrication of a single photon source. Indeed there are two major
ingredients to gather for the use of a single photon source in quantum
information. The ability to generate a small number of photons that was
shown by strongly interacting microwave cavities with a quantum dots,
and the ability to control the photon source which should be given by
nanoelectronics. Hence nanoelectronics and quantum optics have merged
in a field called Mesoscopic QED. Since then nanocircuits embedded in
microwave cavities have been used to further study electronic transport
thanks to photonic spectroscopic tools and to mimic Cavity-QED by
trying to engineer ways to strongly coupled an artificial two level system
to a microwave cavity. This includes carbon nanotubes [41–45], quantum
dots using the coupling to the charge degree of freedom [46–49], and
Josephson junctions [50–52].

1.4 Plasmonic cavities

We have seen so far that strong coupling between the cavity electromag-
netic field and a two level system was achievable in microwave cavities
with a real atom [13, 30–33] or using a nanocircuit [41–52] such as a
double quantum dot junction for example. However, theoretically, if we
manage to reduce the size of the cavity, we also increase the coupling
and we could hope to overcome the increase of the loss rate. This has

4







under discussion when an emitter is placed in the STM junction in this
community and theoretical studies are still lacking though single photon
emission was already shown to be possible [64, 72].

1.5 Outline of the thesis

The first objective of this thesis is to find a theoretical model for elec-
tronic transport through a two molecular orbitals coupled to the field of
an electromagnetic cavity. Since the Jaynes–Cummings model used in
quantum optics does not account for charge fluctuation of the molecule.
Of course one has to extend the Hilbert space to take into account the
state in which the molecule as a double occupancy or no occupancy at
all [74,75]. However this is not enough since it neglects a crucial coupling
term that called the monopolar coupling in the following. This coupling
exists even for a single molecular orbital. Hence in chapter 2 the deriva-
tion of the Hamiltonian is discussed focusing on the interaction terms
that arise between the electric field and the molecular orbitals.

As mentioned above, the electronic transport modifies how the molecule
and the field of the electromagnetic cavity interact. First the current in
a molecular junction in which only a single electronic level is involved
is studied in chapter 3. In this chapter the theoretical framework for
the derivation of the current and other physical quantities is introduced.
This work is based on master and rate equations approach using the Born-
Markov approximation. This relies on the weak tunneling rates between
the electronic leads and the molecule, however the coupling between the
molecular orbitals and the cavity’s field is treated nonperturbatively. An
important advantage of this theoretical approach is that it allows to treat
correctly the strong damping of the plasmonic mode of the cavity and
its effect on the electronic current.

As it will be shown, light can be emitted thanks to the coupling to
a single electronic level molecular junction. In chapter 4 the different
regimes of emitted light depending on the parameters of the system are
explored. Mainly the coupling strength. The second-order correlation
function of the emitted light shows that the single level molecular junc-
tion can act as a single photon source and analytical predictions using
the rate equation approach are found.

This results are to be compared with the case of the two electronic
level molecular junction in chapter 5.

Finally, a summary and an outlook are presented in chapter 6

7



Chapter 2

Discussion on the model
Hamiltonian

The interaction between a molecule or an atom and an electric field has
been studied for a very long time [19, 20, 76]. Classical as well as purely
quantum approaches have been used. In this work we are interested
in a pure quantum approach. Compared to a semi-classical approach,
the purely quantum one is known to describe well the spontaneous as
well as stimulated emission of an excited molecule and also allows for
the interpretation in term of photons [14, 20]. So far, the interaction
between an atom and an electric field is well known in fields such as
cavity-QED, leading for example to the well known Jaynes–Cummings
Hamiltonian [14, 77]. But, as light emitted from a scanning tunneling
microscope (STM) was observed [78], came the idea to study the coupling
between a molecular junction and the electric field of a cavity. In the
STM setup, the molecular junction is made of the STM and a molecule
placed between the STM tip and a substrate, and it interacts with the
electric field that exists between the STM tip and the substrate [64–70],
mimicking cavity QED experiments. So far, some processes have been
proposed to explain the light emission [28, 68, 79–82], however a clear
consensus is still missing in this field. In this chapter we introduce the
Hamiltonian describing the coupling between a molecule, electronic leads
and an electric field, discuss the various type of interaction involved and
the importance of each terms regarding one another.

2.1 Model Hamiltonian of the electron–photon

interaction

The following derivation of the Hamiltonian is based on the work of
A. Cottet, T. Kontos and B. Doucot [83]. The system to be described
consists in a molecule inside an STM junction. This molecule interacts
with the electric field inside the junction and the tip and the substrate
acting as electronic leads. The nanocircuit, where electron tunneling oc-
curs, is modelled by a set of charges Q. These charges interact with the
electromagnetic field of the cavity {E,B}, where E is the electric field
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Figure 2.1: Generic scheme of a nanocircuit made of a nanoconductor
(black) connected to fermionic reservoirs (blue) and electrostatic gates
(red) inside a cavity (green).

and B is the magnetic field. The cavity, gate electrodes, and effective
plasmonic reservoirs are taken into account as a set of boundary con-
ditions whether the charge Q or the potential V is kept fixed. These
ensembles are called F and B, respectively. They are represented by
green or blue elements in Fig. 2.1.

The STM junction is a special case of the typical system considered
by Cottet et al [83]. Since the cavity is composed by the electronic
reservoirs, its charge is not constant and it is, therefore, an element of B.
We call α a particle in Q, so that the charge distribution in the circuit
can be written ρ(r, t) =

∑

α eαδ(r − rα) and the current distribution
j =

∑

α eαṙαδ(r− rα), where r is a position in space and eα is the charge
of α.

A field F is decomposed following the Hodge decomposition into a
part with no rotational F⊥, a part with no divergence F‖ and a part
with no rotational nor divergence Fharm, so that F = F⊥ + F‖ + Fharm.
We also call U and A the scalar potential and vector fields such that
E = −∇U − ∂tA and B = ∇ × A. From Maxwell’s equations in the
Coulomb gauge ∇ · A = 0, we find that

∇ · E‖ = ρ/ǫ0, (2.1)

which translate onto U as

∆U = ρ/ǫ0. (2.2)

We decompose this Laplace equation into two static problems. One cor-
responding to an homogeneous problem that describes the empty cavity,

∆φharm(r) = 0, (2.3)

with the boundary conditions
∫

Si

∇φharm(r) · nid
2r = −Qi, i ∈ F , (2.4)

φharm(r) = Vi, i ∈ B, (2.5)

9



where Si is the surface of the object i, ni is the outgoing unit length vector
perpendicular to Si. The second static problem in the decomposition
corresponds to the description of the charge distribution of the circuit
inside the cavity. It reads

∆G(r, r′) = −δ(r − r′)/ǫ0, (2.6)

with the boundary conditions
∫

Si

∇rG(r, r′).nid
2r = 0, i ∈ F (2.7)

G(r, r
′) = 0, i ∈ B and r ∈ Si. (2.8)

This ensures that

Eharm(r) = −∇φharm (2.9)

E‖(r, t) = −∇U‖ = −
∫

∇rG(r, r′)ρ(r′, t)d3r′. (2.10)

This leaves us with E⊥ and B being determined by the potential vector
A

E⊥ = −∂tA (2.11)

B = ∇ × A, (2.12)

where A follows propagation equation

∆A− 1
c2
∂2

tA = −µ0j⊥. (2.13)

The quantized Hamiltonian resulting from this field is [83]

H = HA +
1
2

∑

α

eαU‖(qα) +
∑

α

eαφharm(qα), (2.14)

where pα = mαq̇α + eαA(qα) is the conjugate variable of qα and Π(r, t) =
−ǫ0E⊥(r, t) is the conjugate variable of A(r, t), and

HA =
∑

α

1
2mα

[pα − eαA(qα)]2 +
1
2

∫

(

1
ǫ0

|Π⊥(r)|2 +
1
µ0

|∇ × A(r)|2
)

d3r,

(2.15)
is the Hamiltonian of an atom coupled to an electromagnetic field. Hence,
compared to HA, H has two supplementary terms; the third term in
Eq. (2.14), containing the harmonic potential φharm, accounts for the
effect of the electrostatic gates while the second term, containing the
longitudinal potential U‖, accounts for the Coulomb interaction between
the tunneling electrons. The fourth term is treated in a standard way
by separating the longitudinal part from the transverse part. This gives
in one hand a Coulomb interaction Hamiltonian and in the other hand
a radiation Hamiltonian HR containing the modes of the cavity. In the
following we will consider a single cavity mode, so that HR = ωca

†a with
a† the creation operator. The vector potential A is written in terms of
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the cavity mode A(r) = iA(r)(a − a†). We can use the field operator of
the tunneling charges ψ to write the Hamiltonian Eq. (2.14)

H =
∫

ψ†(r)hQ(r)ψ(r)d3r +HCoul + ωca
†a (2.16)

Where

hQ(r) =
1

2m
(eA(r) − i∇)2 − eφharm(r) − eVconf (r) (2.17)

and

HCoul =
e2

2

∫

ψ†(r)ψ†(r′)G(r, r′)ψ(r′)ψ(r)d3r′d3r. (2.18)

Here e is the (positive) electron charge and m its mass. While HCoul cor-
responds to the second term in the Hamiltonian Eq. (2.14), the potential
Vconf corresponds to the confinement potential arising from the last term
in Eq. (2.14) treated as a mean field. Now we would like to write this
Hamiltonian in a charge representation using second quantization and
remove the term A2 from the Hamiltonian. In order to perform this
transformation, it was proposed in Ref. [83] to introduce a pseudopoten-
tial V⊥(a+ a†) defined for r inside the nanocircuit.

V⊥(r) = ωc

∫

C(r0,r)
A(r′).dr′, (2.19)

where r0 is a point in the nanocircuit and C a continuous path connecting
two points. V⊥ can be interpreted as the work performed by the cavity
electric field when a charge is transported along a path C connecting
the point r to the reference point r0. As long as that magnetic effects
are negligible, meaning that ∇ × A can be ignored, the choice of C and
r0 should not have much effects. In this limit it should be noted that
∇V⊥(r) ≃ ωcA. We define now the unitary transformation

U = exp

{

e(a− a†)
ωc

∫

V⊥(r)ψ†(r)ψ(r)d3r

}

. (2.20)

While this transformation has no effect on HCoul, it introduces a term
V(a+ a†) + V2/ωc, where

V = −e
∫

ψ†(r)ψ(r)V⊥(r)d3r, (2.21)

and it removes the term A2 from hQ, leading to

h̃Q(r) = − ∆
2m

− eφharm(r) − eVconf(r). (2.22)

We thereby find that the transformed Hamiltonian is

H̃ =
∫

ψ†(r)h̃Q(r)ψ(r)d3r +HCoul + ωca
†a+ V(a+ a†) + V2/ωc. (2.23)

Hence, we find a linear coupling between the photons and the tunneling
electrons, given by V(a+a†). At this point, if one assumes that the vector
potential A does not vary over the length of the nanocircuit A(r) ≃ A
one obtains the dipole approximation usually used in cavity-QED. One
can expand the pseudopotential keeping only the linear dependence on
r: V⊥(r) = ωcA · r(a + a†). However, this approximation does not hold
for plasmonic cavities since the electric field is known to have strong
variations at the scale of the circuit [70].
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2.2 Electronic transport description

As we specified earlier, our aim is to describe the tunneling of the elec-
trons through the nanocircuit. To do so, we need to express the Hamil-
tonian in the charge representation. We call O the ensemble of objects
constituting the nanocircuit and j an orbital of one object. Hence, we
describe each part of the nanocircuit as a collection of creation (annihi-
lation) operator c†o,j(co,j), such that {c†o,j, co′,j′} = δo,o′δj,j′ . The different
orbitals in an object are orthogonal, while the overlap between two or-
bitals of two different objects can exist although we consider the case
where this overlap is weak. The tunneling Hamiltonian without the cav-
ity reads [84]

HT =
∑

o,j

εo,jc
†
o,jco,j +

∑

o6=o′,j,j′

(toj,o′j′c†o,jco′,j′ +H.c.), (2.24)

where εo,j is the energy of the orbital j on object o and toj,o′j′ is the
tunnel coupling between orbitals j and j′ on objects o and o′. From this
representation of the tunneling charges, we write the field operators as

ψ(r) =
∑

o,j

ϕo,j(r)co,j, (2.25)

where ϕo,j is the wave function of the orbital j of o and is mainly localised
on o. Thus, introducing the field operator’s expression Eq. (2.25) into
the Hamiltonian Eq. (2.23) gives

H = HT + ωca
†a+HT

Coul + hint(a+ a†), (2.26)

where
hint =

∑

o,o′,j,j′

Λoj,o′j′c†o,jco′,j′ (2.27)

The term V2/ωc has disappeared since it only introduces a renormaliza-
tion of the electronic energy levels εo,j, the tunneling rates toj,o′j′ and the
Coulomb interaction HT

Coul.

2.3 Electron–photon coupling

The electron–photon coupling intensity is given by

Λoj,o′j′ = −e
∫

V⊥(r)ϕ∗o,j(r)ϕo′,j′(r)d3r. (2.28)

We can separate the couplings into two types of couplings. The first one
is when o = o′ and j = j′. It is the coupling to the charge that is absent
in the Jaynes–Cummings model. In this case the coupling depends on
the pseudopotential and the modulus squared of the wave function

Λo,j = −e
∫

V⊥(r)|ϕo,j(r)|2d3r. (2.29)

This term is particularly relevant in the case of electronic transport as it
does not appear in quantum optics model due to the fact that the charge
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in the atom/molecule is constant. When o is a quantum dot inside the
cavity, this term describes the interaction between the charge fluctuations
of the dot and the electric field of the cavity. If we assume that the empty
quantum dot is neutral, then adding a charge on it amounts to adding
a charged particle into the cavity which should interact with the electric
field of the cavity. Otherwise, when o is an electronic lead, this term
correspond to the coupling of a fermionic reservoir to the cavity field.
This account for the processes by which an electron in a lead can relax
some energy in the cavity plasmon mode, emitting a photon, or on the
contrary a plasmon mode can decay in a fermionic reservoir, absorbing
a photon.

We separate these two contribution into ΛD,j for the dots and ΛR,j

for the fermionic reservoirs. While this first term can be interpreted as
a shift of the energy level (this will be explained in more details later)
of the dots or the fermionic reservoirs, the other coupling appearing in
Eq. (2.28) is a term mixing the orbitals of two different objects of the
nanocircuit

Λoj,o′j′ = −e
∫

V⊥(r)ϕ∗o,j(r)ϕo′,j′(r)d3r, (2.30)

for o 6= o′. This term depends on the overlap between two wave func-
tions and the pseudopotential V⊥. It accounts for the modulation of the
tunneling between two parts of the nanocircuit by the electromagnetic
field of the cavity. This last term can describe the excitation of the plas-
monic mode by the tunneling current between two fermionic reservoirs
or between the dot and a reservoir. This term is particularly relevant in
experiments studying the light emitted by an STM like the one presented
in Ref. [67]. In this experiment, represented schematically in Fig. 2.3 the
authors show that a molecule interacts with the electric field. A tran-
sition occurs between its HOMO and LUMO states when the current
in the STM is turned on. The current in the junction couples to the
plasmon through terms of the form −j · A. This coupling is responsible
for plasmon emission. The plasmonic field is, in turn, able to induce
HOMO-LUMO transitions in the molecule.
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where N is the total number of charges in the system. Hence shifting
the pseudopotential by a constant C adds a term CN(a† + a) to the
Hamiltonian. This term can be removed by the unitary transformation
U = eCN(a−a†) which shifts the cavity operators by the quantity CN .

We now discuss which origin we choose for the pseudopotential in
order to define the coupling terms Λoj,o′j′ . This amounts to choosing an
element of the circuit for which the coupling strength will be taken to
be 0. In fact we have defined earlier B as being the ensemble of the
elements in the circuit on which the voltage is fixed. This typically will
include the electrodes. For the elements in B the voltage is fixed as a
boundary condition given in Eq. (2.5). Therefore the static component
of the field, given by φharm already includes the potential’s origin, and
the other components of the field E⊥ and E‖ should not introduce any
other potential difference between any points of the elements of B. This
means that for all the elements of B, V‖ + V⊥ should always be equal to
0. Since from the boundary conditions for the elements in B in Eq. (2.8),
the parallel component of the electric field have no contribution, we must
have that V⊥ is the same for all elements in B and can be taken to be 0.

As a conclusion the interaction term Λαj for all the leads α does not
depend on the lead α and can always be chosen to be 0. This fixes a
“natural” reference to the interaction terms in hint. Another way to say
that is that we define Λlead as being the coupling term to the charge in
the leads and we define Λ̃oj = Λo,j − Λlead as the coupling strength for an
object o that is not in B. Therefore, for a term coupling the charge to the
field, meaning o, j = o′, j′, the coupling strength is the work for bringing
the charge from a lead to the dot in the junction. In the following we
will set Λlead = 0, so that Λ̃oj = Λo,j.

2.5 Comparison between charge and dipo-

lar coupling

We propose in this section a rough comparison between the coupling of
the charge on one electronic level on a quantum dot and the coupling
between the transitions of a charge between two electronic levels of the
dot. We will refer to those two coupling as a monopolar coupling Λm when
only one level is involved and to a dipolar coupling Λi,j when two levels
are involved. Let us start with some estimation of those couplings based
on their physical interpretations. As we explained in the previous section,
the monopolar coupling can be interpreted as the potential interaction
between a charged particle and an electric field. This has the form

Λm = q · Vm, (2.32)

where q is the charge of the particle and Vm is the potential of the elec-
tric field. As the electric field is the gradient of the potential Vm, we
approximate Vm as

Vm ≃ LEzpm, (2.33)
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considering that the electric field does not vary over the distance L, where
L is the typical length over which the tunneling event occurs and Ezpm

are the zero-point quantum vacuum fluctuations of the cavity electric
field.

If we look back at the model we derived earlier we can find a simi-
lar result. Indeed, neglecting the pseudopotential’s V⊥ variations in the
cavity, we approximate the monopolar coupling as

Λm ≃ −eV⊥(rm) ≃ eLEzpm, (2.34)

where rm is the location of the molecule. We recover exactly the estima-
tion we made based on our interpretation of Λm. Considering the energy
density of the field, we find the order of magnitude of Λm

u =
ǫ0

2
E2 +

1
2µ0

B2 =
ωc

V , (2.35)

where V is the cavity’s volume. Then we find the order of magnitude of
the field

Ezpm ∼
√

ωc

Vǫ0

. (2.36)

The dipolar interaction is the interaction between a dipolar momentum
and an electric field. The energy of this interaction is

Λi,j = −µi,jEzpm, (2.37)

where µi,j = −ed is the dipolar momentum between the two levels con-
sidered and d is the size of the dipole. Hence, we find that the ratio
between the monopolar and the dipolar approximation should be of the
order of

Λm

Λi,j

∼ L

d
. (2.38)

As we expect L > d, this leads to a monopolar coupling stronger than the
dipolar one. However, if we were to use the approximation V⊥ constant in
this case, we would find Λi,j = 0 as the two orbitals should be orthogonal.

2.6 Examples

In this section we show three examples of calculations of the coupling
strength that are relevant with usual cases studied in the literature.

2.6.1 Point-like approximation

As we mentioned earlier, in most of the work that has been done so far
in Cavity-QED, the quantum emitters have been considered in the point
dipole approximation. When the cavity’s dimensions are very large com-
pared to the emitter’s size this, is not an issue to consider that the electric
field around the emitter is almost constant. However, for nanocavities,
the emitter has a size that is close to the dimensions of the cavity and
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therefore some recent works have questioned the point-dipole approxi-
mation for plasmonic cavities [85].

Through assuming that the point-dipole approximation holds (that
we call in our case the point-like approximation), we want in this section
to evaluate the corresponding coupling strength that should actually be
an upper approximation of the real coupling strength. Considering the
emitter to be point-like means that the extent of its wave functions is
negligible compared to the scale over which the electric field varies and
therefore the wave functions in the expression of the coupling strength
in Eq. (2.28) behave has delta distributions. The coupling strength for a
molecular orbital is then

Λd,i = −eV⊥(r0), (2.39)

where d denotes the quantum dot, i one of its orbital and r0 its location
in the cavity. Here we assumed that V⊥ is 0 in the leads so for a STM ex-
periment, this means that V⊥ at the boundaries of the cavity is vanishing
and therefore the coupling is Λd,i = 0 when the dot is at the boundaries
of the cavity. A way to show that is to consider the cavity as a box of
length L. At x = 0 and x = L are placed two perfectly reflecting surfaces
and at y = 0, L and z = 0, L two perfectly conducting metals.

We can show from Maxwell’s equations that a transverse magnetic
field (TM) in such a geometry as the form



























Ex = Ex0 cos (
nπx

L
) sin (

mπy

L
) sin (

pπz

L
)

Ey = Ey0 sin (
nπx

L
) cos (

mπy

L
) sin (

pπz

L
)

Ez = Ez0 sin (
nπx

L
) sin (

mπy

L
) cos (

pπz

L
)

(2.40)

Using the definition of V⊥ in Eq. (2.19), we choose r0 = 0 so that the
reference is at the surface of a lead and we choose the contour C as simple
as possible in Cartesian coordinate as a path going along the z-axis then
parallel to the y-axis and finally parallel to the x-axis. Hence

V⊥(r) =
∫ x

0
Ex(x′, y, z)dx′+

∫ y

0
Ey(0, y′, z)dy′+

∫ z

0
Ez(0, 0, z′)dz′. (2.41)

Then we find the expression of the potential V⊥ as a function of the
position of the dot inside the cavity

V⊥(x, y, z) =
Ex0L

nπ
sin (

nπx

L
) sin (

mπy

L
) sin (

pπz

L
). (2.42)

Fig. 2.3 shows the evolution of the coupling strength along the x
direction. We see that if the dot is on a boundary of the cavity then the
coupling strength becomes 0, whereas when the dot is in the middle of the
cavity the coupling strength reaches its maximum value as the potential
also reach its own maximum value. We also recognize in Eq. (2.42) that
the coupling strength is in that case given by the product EzpmL.
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0

Figure 2.3: Intensity of the coupling λ along the x direction inside the
cavity.

2.6.2 Homogeneous electric field

We now show the calculation of the coupling terms in a homogeneous
field. This could apply to the microwave domain for which the cavity is
very large compared to the nanocircuit inside

~E = ~E0 = ωc
~A0. (2.43)

The pseudopotential resulting from such an electric field is

V⊥(~r) =
∫

C(~r0,~r)

~E0(~r ′).d~r ′. (2.44)

We set the origin at r0 so that ~r0 = ~0 and define C(~r, ~r ′) = ~r ′ − ~r .
For such a path V⊥ have a simple expression in spherical coordinates

V⊥(~r) = ~E0 · ~r. (2.45)

It is interesting to note here that changing our reference point would only
add a constant term in V⊥ and only result in shifting the energy levels of
the tunneling region and also renormalise the Coulomb interaction term.
From the expression of V⊥, we find the interaction terms

Λoj,o′j′ = −e
∫

~E0.~rϕ
∗
o,j(~r)ϕo,j(~r)d3r. (2.46)

To evaluate these terms, we use the hydrogen atom wave functions. Let’s
first consider a monopolar term and the orbital 1s of the hydrogen atom.
We will consider the atom to be in the middle of the cavity. We call ϕ1s

the wave function of the orbital 1s of the hydrogen atom.

ϕ1s(r) =
1

√

πa3
0

e−r/a0 , (2.47)

Where a0 is the Bohr radius. As both the pseudopotential and the wave
function have a spherical symmetry, we find no coupling between this
orbital and the cavity electric field since for all vector ~r that will have
a contribution, the vector −~r will have the opposite contribution. In
fact any orbital that present a central symmetry won’t couple to the
charge, then we conclude that the hydrogen atom or any atomic orbital
won’t couple to the electric field of the cavity through its charge. For the
dipolar coupling we don’t have the same restriction.

18



Let us consider the coupling between orbitals 1s and 2py of the hy-
drogen atom so that the product of the wave function does not have a
central symmetry. The wave function for orbital 2py is

ϕ2py(r) =
1

4
√

2πa5/2
0

cos(θ)re−r/2a0 , (2.48)

Hence, the coupling corresponding to the dipolar momentum between
these two orbitals is

Λ1s,2py = −eπ32
√

2
81

a0. (2.49)

So far we have only discussed the case where the origin for the potential
is at the center of the atom. Introducing an origin r0 to the potential (or
the wave function, which is equivalent and corresponds to moving the
atom from the origin of the potential) we only add to the coupling the
term

Λ0
oj,o′j′ = −e ~E0.~r0

∫

φ∗o,j(~r)φo′j′(~r)d3r. (2.50)

Therefore, applying this formula on every component of the coupling,
we find a constant term proportional to the total number of charges in
the system −e ~E0.~r0N(a + a†). This term corresponds to a shift of the
cavity mode and can be removed by the unitary transformation U =
e−e ~E0.~r0N(a−a†). In conclusion the physics is not changed by moving the
atom inside the cavity in this case assuming that we remain in a region
where the electric field can be considered constant.

2.6.3 Plate capacitor

As another example we show the plate capacitor which would be a very
simple model of cavity in which we can take into account the space vari-
ation of the electric field. Our cavity is made of two metallic plates at
fixed voltages V1 and V2. As we suppose that the plates are very large in
the x and y direction compare to their width and to the distance between
them we will consider them as infinite planes orthogonal to the z-axis,
see Fig. 2.4.

V2

V1

d

x
y

z

Figure 2.4: Plate capacitor.

From the Maxwell’s equation and the Coulomb gauge condition we
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find that


























∆E − 1
c2∂

2
tE = 0

∆B − 1
c2∂

2
tB = 0

∆V = 0

∇ · A = 0

(2.51)

We set the lower plate to be at z = 0, using the boundary conditions on
the potential V and the translational invariance on the (x, y) plan,

V (z) =
V1 − V2

d
z + V2. (2.52)

From the potential V we deduce that the electric field is

E =
V2 − V1

d
ez + Eac(r, t), (2.53)

where Eac is solution of Eq. (2.51) and of the Maxwell’s equations. As
the electric field propagates freely in the (x, y)-plan, we assume plane
wave solution for the (x, y) variation of Eac

Eac(r, t) = Eac(z)eik‖·r‖−iωt, (2.54)

where r‖ and k‖ have no z component. From the boundary conditions

n× E = 0 (2.55)

n ·B = 0, (2.56)

where n is unit a vector orthogonal to the plates, we know that the electric
field has no (x, y) component at z = 0 and z = d. From Eq. (2.51) and
Eq. (2.55) one can show that the fields can be decomposed into the TM
and TE solutions. The TM fields have no component in the direction
parallel to k‖ for the magnetic field and the TE fields have no component
in the direction parallel to k‖ for the electric field. We chose a set of axis
so that k‖ = k · ex where ex is a unit vector. Then we write a TE field as

E = Ey sin
(

nπ

d
z
)

eikx−iωtey, (2.57)

where ey is a unit vector and a TM field as

B = By cos
(

nπ

d
z
)

eikx−iωtey. (2.58)

It follows from Eq. (2.58) that the TM-electric field is

E = −inπc2

ω
By sin

(

nπ

d
z
)

eikx−iωtex −ω

k
By cos

(

nπ

d
z
)

eikx−iωtez. (2.59)

Considering a TM field we find a potential vector

A = −iEz

ω
cos

(

nπ

d
z
)

eikx−iωtez, (2.60)
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where Ez = −ωBy/k. To compute the pseudopotential V⊥ we first choose
a path to connect two points in the nanocircuit. Let’s choose a path that
first extend along ρ, where ρ is the radius in cylindrical coordinates, then
z, as shown in Fig. 2.5.

×
r

×r′

C(~r, ~r ′)
z

ρ

Figure 2.5: Continuous path C between r and r′ in the (ρ, z)-plan.

The pseudopotential is found using Eq. (2.19)

V⊥(r) = Ez
d

nπ
sin

(

nπ

d
z
)

eikx + V0. (2.61)

We see from Eq. (2.61) that if the field has no component along the z-axis
there is no coupling. In the following we disregard the constant V0. If
we look at the coupling between an orbital 1s of the hydrogen atom and
the electric we find

Λ1s = − eEzd

nπ2a3
0

∫

sin

(

nπ

d
(ρ cos φ + z0)

)

ρ2 sin φe
− 2ρ

a0
+ikρ cos θ sin φ

dρdθdφ,

(2.62)

where z0 is the z coordinate of the center of the molecular orbital.

Λ1s = −2eEzd

nπa3
0

sin

(

nπ

d
z0

)∫

cos

(

nπ

d
ρ cos φ

)

ρ2 sin φe
− 2ρ

a0
+ikρ cos θ sin φ

dρdθdφ,

(2.63)
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fixed, then we would reduce the Hilbert space accordingly and this term
would be a constant and could be removed from the Hamiltonian through
a unitary transformation. Also, this term is similar to the coupling of
the charge with vibration modes of a molecule that as been studied in
quantum transport in the well-known Franck-Condon physics [82,86–89].
Thus, we expect that this coupling could result in the emission of photons
when the bias voltage between the STM tip and the substrate allows for
it.

Hence, there are four reasons for studying a single-level dot model.
The first one is that it is the simplest case we can think of and therefore, it
should be a very nice theoretical framework. The second one is that it is
experimentally relevant as the bias voltage applied in STM experiments
is of the order of 2 eV at most. Therefore, in some cases, the bias voltage
is smaller than the gap energy between two orbitals of the dot. This
means that only one electronic level is involved in electronic transport
and unless the molecule is excited by an external source of radiation,
the dipolar coupling cannot lead to emission. Hence, only the monopolar
coupling can contribute. Also, in limiting the system to a single electronic
level, it allows us to isolate the effects of the charge-coupling, we can then
add on top the other coupling as we well understand the effects of the
first one. And finally this coupling is in general disregarded in quantum
optics and plasmonic. However, we will show in the following that this
coupling can result in photon emission and, depending on the parameters
the light emitted, can show non-classical features, such as anti-bunching
and sub-Poissonian distribution. This makes this kind of systems relevant
for designing single-photon sources.

3.1 Hamiltonian for the single level-dot

The first step here is to write the Hamiltonian in a suitable representa-
tion. To do so, we first try to simplify as much as we can the expression
of the interaction. From Eq. (2.26) we find three interaction terms. The
first one is the interaction between the dot’s charge and the electric field

H int
S = Λdd

†d(a+ a†). (3.1)

Of course we assume that we are not in a case where this term is zero
as it will be our main focus. The second term is the interaction between
the fermionic reservoirs’ charges and the field

H int
R =

∑

αk

Λαkc
†
αkcαk(a+ a†). (3.2)

In our setup the field cannot penetrate far into the electrodes, so this
term can be neglected. Also, near the Fermi energy the properties of
the wave function can be considered constant so Λαk = Λα. Actually we
can choose the potential so that this interaction term is zero by setting
the origin of the potential at the electrodes, since we have shown in the
previous chapter that the potential should be constant in the electrodes
and the same for any electrodes.
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Another way to understand this is by considering to subtract ΛB = Λα

everywhere in the coupling terms Λi, the sum of all the terms proportional
to Λα will give a term proportional to the total number of charges and
to the electric field as

Λα

∑

o,j

c†o,jco,j(a+ a†) = Λα(a+ a†). (3.3)

Such a term can be eliminated of the Hamiltonian by the unitary trans-
formation U = eΛα(a−a†)/ωc . Next, we have the interaction between a
tunneling charge and the field

(Λαk,dc
†
αkd+H.c.)(a+ a†). (3.4)

From the definition of the coupling, we can estimate the coupling Λαk,d

as a tunneling amplitude times the coupling to the charge at most

Λαk,d = tαkΛd/EF , (3.5)

where EF is the Fermi energy at which the electrons tunnel between
the leads and the dot. Typically for metallic leads, EF ≃ 5 − 10 eV
and as shown in Fig. 3.1, the substrate and the dot are separated by an
insulating layer so that the tunneling between the dot and the leads is
weak. Therefore the coupling between the charge and the electric field
in Eq. (3.1) is expected to be dominant compared to the direct coupling
between the field and a a tunneling electron. This analysis holds also for
the coupling between the direct current between the STM tip and the
substrate as we expect the tunneling rate to be even weaker. Hence, so
far, we have reduced the Hamiltonian to

H = HS +HB +Hint (3.6)

where

HS = ε̃0d
†d+ ωca

†a+ Λdd
†d(a+ a†), (3.7)

HB =
∑

αk

εαkc
†
αkcαk, (3.8)

Hint =
∑

αk

tαkc
†
αkd+H.c., (3.9)

where d† is the creation operator for the electron of energy ε̃0 on the
dot, a† is the creation operator for the photon field. The two fermionic
reservoirs are described by HB, where c†αk is the creation operator of an
electron in lead α on orbital k of energy εαk. The tunneling amplitude
between the dot and the orbital k of lead α is given by tαk. Going fur-
ther we can diagonalize the Hamiltonian HS by shifting the equilibrium
position of the cavity mode using the Lang–Firsov unitary transforma-
tion U = exp[λd†d(a − a†)], where λωc = Λd. Doing so the dot creation
operator d is transformed into

D† = d†eλ(a†−a), (3.10)
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while the photonic mode’s creation operator a is transformed into

ã† = a† − λd†d. (3.11)

In a way, from Eq. (3.10) we see that upon the creation of a charge in
the dot, a coherent state of the photon field is created in the cavity. As
a result in the transformed Hamiltonian the dot energy level is shifted
by λ2ωc and the tunneling term also involves transitions between states
with a different number of photons while HB is left unchanged.

H̃S = ε0d
†d+ ωca

†a (3.12)

H̃I =
∑

αk

tαkc
†
αkD +H.c. (3.13)

where ε0 = ε̃0 − λ2ωc. In this representation we can work with the
eigenstates of H̃S and deduce from H̃I the transition rates between them
to extract the current or other information from the system. So far we
have considered the cavity to be isolated. However, it is known that if
the reduced volume of plasmonic cavities allows for stronger couplings
compared to bigger cavities, it is nonetheless at the cost of a bad quality
factor. Indeed, cavity factors Q of the order of 10 have been reported in
plasmonic cavities [29,58,90]. It is expected that an STM cavity exhibits
a large damping rate κ. To account for this in our model, we include in
the description the presence of the electromagnetic environment, that we
model by a collection of harmonic oscillators. The cavity field is coupled
linearly to the bosonic environment. Hence, we add to the Hamiltonian
HB a collection of bosonic modes

HB =
∑

αk

εαkc
†
αkcαk +

∑

q

ωqb
†
qbq, (3.14)

where b†q is the creation operator of an external photon with pulsation
ωq. The interaction Hamiltonian is then

H̃I =
∑

αk

tαkc
†
αkD +

∑

q

lqb
†
qa+H.c. (3.15)

where lq is the transition rate between the mode q from the bath an the
mode of the cavity. Including the external bath before or after the Lang–
Firsov transformation does not affect the physics we want to describe as
the shift of the cavity mode will only introduce a new term in the dot
energy that is not relevant as we will consider the reservoirs to be at
thermal equilibrium.

3.2 Master equation

In order to reduce hybridisation between the substrate and the molecule
in STM experiments, an insulating layer is placed above the substrate.
As a result the tunneling between the leads and the quantum dot in the
junction is weak and the tunneling Hamiltonian can be considered as
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a perturbation of the system and bath Hamiltonians. In other words
the energies in the system are ordered as Γ ≪ kBT ≪ ωc where Γ =
2π
∑

αk |tαk|2δ(ω − εαk) is the electron tunneling rate. This is called the
sequential tunneling regime, in which the typical time for an electron
tunneling event is the largest time scale at which the system evolves and
should dominate the long time evolution. This implies that between two
tunneling events the coherence of the electrons is lost. Therefore, the
reservoirs evolving at a faster pace can always be considered at equilib-
rium. This regime fits well the density matrix approach [88,91].

Depending on the quality factor Q of the cavity, κ = ωc/Q, the
damping rate of the cavity, will be smaller or larger than kBT but always
bigger than the tunneling rate in the cases we will consider. Indeed, if we
consider that the system is at room temperature, then kBT ∼ 10−2eV .
For a quality factor 10 < Q < 1000 the damping rate verifies 0.1 >
κ/ωc > 10−3, so that in the worst case Γ ≪ kBT . κ ≪ ωc and in the
best case Γ ≪ κ ≪ kBT ≪ ωc. We will derive our results in this last
limit, for which we can find reliable approximations [92].

The time evolution of the density matrix ρ is given by the Liouville–
von Neumann equation

ρ̇ = −i[H, ρ]. (3.16)

By defining H0 = H̃S + HB and the unitary transformation U(t, t0) =
e−iH0(t−t0) we can write Eq. (3.16) in the interaction picture in which the
time evolution of the density matrix is set by the interaction Hamiltonian
HI . This treatment allows us to solve the system for any value of the
coupling λ as long as H̃I can be considered as a perturbation of H0. It
follows that in the interaction picture any operator A evolves with H0

and becomes

AI(t) = U †(t, t0)AU(t, t0) = eiH0(t−t0)Ae−iH0(t−t0). (3.17)

Using the relation given in Eq. (3.17) on Eq. (3.16) we find the Liouville–
von Neumann equation in the interaction picture

ρ̇I(t) = −i[HintI(t), ρI(t)], (3.18)

with the initial condition

ρI(t0) = ρ(t0), (3.19)

where we chose t0 as the time at which the interactions between the
environments and the system are turned on. This means that at time t0
the density matrix is in a product state

ρ(t0) = ρS(t0) ⊗ ρB(t0). (3.20)

Integrating Eq. (3.18) we find that at first order in Hint the density
matrix is

ρI(t) = ρI(0) − i
∫ t

t0

[HintI(t′), ρI(t′)]dt′. (3.21)
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Re–introducing this last expression in Eq. (3.18) we find the time evolu-
tion of ρI at second order in the interaction

ρ̇I(t) = −i[HintI(t), ρI(t0)] −
∫ t

t0

[HintI(t), [HintI(t′), ρI(t′)]]dt′. (3.22)

We define ρS = TrB(ρ) the reduced density matrix of the system.
From the trace invariance properties it follows that

ρSI = TrB(ρI), (3.23)

and therefore the time evolution of ρSI is given by

ρ̇SI(t) = TrB

(

−i[HintI(t), ρI(t0)] −
∫ t

t0

[HintI(t), [HintI(t′), ρI(t′)]]dt′
)

.

(3.24)
As the interaction Hamiltonian is a product of bath and system operators
and we chose t0 so that the bath and the system are each in thermal
equilibrium, the first term in the right-hand side of Eq. (3.24) vanishes
since it is proportional to the bath creation and annihilation operators’
averages. Since we consider a weak coupling between the bath and the
system and since the bath is supposed to be very large compared to
the system, we make the Born approximation [92]. This means that we
consider that at all time the density matrix is in a product state between
the bath and the system and that we neglect the time dependence of
the reduced density matrix of the environment ρB. In other words, we
neglect the effect of the system on the environment at all times.

ρ ≃ ρS(t) ⊗ ρB. (3.25)

This approximation simplifies Eq. (3.24) as it allows to trace out the
bath’s density matrix and write an equation for ρS only. The double
commutator in Eq. (3.24) involves terms mixing the two electronic reser-
voirs and the photonic environment. However as nor HB nor Hint mixes
directly any of them, they act as three separate environments each in
their individual equilibrium state. This means that using an eigenbasis
such as the charge states and photon number states, we can show that
only the term that does not mix operators from two different environ-
ments in the double commutator in Eq. (3.24) will survive. Therefore, it
only remains terms proportional to

C+
α (t, t′) = TrB

(

∑

k

|tαk|2c†αk(t)cαk(t′)ρB

)

(3.26)

C−α (t, t′) = TrB

(

∑

k

|tαk|2cαk(t)c†αk(t′)ρB

)

(3.27)

K+(t, t′) = TrB

(

∑

q

|lq|2b†q(t)bq(t
′)ρB

)

(3.28)

K−(t, t′) = TrB

(

∑

q

|lq|2bq(t)b
†
q(t
′)ρB

)

, (3.29)
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which are the bath self-correlation functions. As ρB does not depend
on time, it commutes with HB and using once again the trace-invariant
properties, we have for any self-correlator S of the environment

S(t, t′) = S(t− t′, 0) = S(t− t′). (3.30)

As the bath is in thermal equilibrium, we can compute the self-correlators

C+
α (t− t′) =

∑

k

|tαk|2eiεαk(t−t′)f+
α (εαk) (3.31)

C−α (t− t′) =
∑

k

|tαk|2e−iεαk(t−t′)f−α (εαk) (3.32)

K+(t− t′) =
∑

q

|lq|2eiωq(t−t′)nB(ωq) (3.33)

K−(t− t′) =
∑

q

|lq|2e−iωq(t−t′)[1 + nB(ωq)]. (3.34)

We define the tunneling rates Γα(ω) = 2π
∑

αk |tαk|2δ(ω − εαk) and
assume the wide-band approximation and f+

α (ω) = 1−f−α (ω) = f(ω−µα)
where f is the Fermi distribution and µα the chemical potential of the
lead α. This means that close to the Fermi energy, the rates Γα should
not depend much on ω.

C+
α (t− t′) = Γα

∫ +∞

−∞
eiω(t−t′)f+

α (ω)dω/2π (3.35)

C−α (t− t′) = Γα

∫ +∞

−∞
e−iω(t−t′)f−α (ω)dω/2π (3.36)

(3.37)

Introducing this expression of the correlation functions into Eq. (3.24),
we find

ρ̇SI(t) = −
∫ t

t0

{

∑

α

C+
α (τ)[DI(t), D†I(t′)ρSI(t′)]

+
∑

α

C−α (−τ)[ρSI(t′)D†I(t′), DI(t)]

+ K+(τ)[aI(t), a†I(t′)ρSI(t′)]

+ K−(−τ)[ρSI(t′)a†I(t′), aI(t)] +H.c.

}

dt′,

(3.38)

where τ = t − t′. In Eq. (3.38) the reduced density matrix at time t
depends on its past, therefore it seems that ρS has a non-Markovian evo-
lution. A non-Markovian evolution refers to a process of evolution for
which the future states can not be predicted solely from the present state
but also depends on the past states of the system. However, as we con-
sider the environment to be in thermal equilibrium its correlation time
is given by the temperature. Thus, the correlation time of the environ-
ment is very small compared to the typical timescale of the interaction
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given by Γ and κ over which the reduced density matrix evolves . In
this situation we can consider that the density matrix does not evolve in
the integral since changes of ρ at times larger than the correlation time
are not relevant. It is the so-called Markov approximation [92]. We also
change our variable of integration into τ and set t0 at −∞.

ρ̇SI(t) = −
∫ +∞

0

{

∑

α

C+
α (τ)[DI(t), D†I(t′)ρSI(t)]

+
∑

α

C−α (−τ)[ρSI(t)D†I(t′), DI(t)]

+ K+(τ)[aI(t), a†I(t′)ρSI(t)]

+ K−(−τ)[ρSI(t)a†I(t′), aI(t)] +H.c.

}

dτ,

(3.39)

We now can go back into the Schrödinger picture using the fact that

ρ̇S(t) = −i[H0, ρS(t)] + e−iH0tρ̇SI(t)eiH0t. (3.40)

Using Eq. (3.40) onto some products of operatorsAI(t)BI(t′) andAI(t′)BI(t)
in the interaction picture, we find

e−iH0tAI(t)BI(t′)eiH0t = ABI(−τ) (3.41)

e−iH0tAI(t′)BI(t)eiH0t = AI(−τ)B. (3.42)

This means that in the Schrödinger representation Eq. (3.39) becomes

ρ̇S(t) = − i[H0, ρS(t)] −
∫ +∞

0

{

∑

α

C+
α (τ)[D,D†I(−τ)ρS(t)]

+
∑

α

C−α (−τ)[ρS(t)D†I(−τ), D]

+ K+(τ)[a, a†I(−τ)ρS(t)]

+ K−(−τ)[ρS(t)a†I(−τ), a] +H.c.

}

dτ.

(3.43)

We can derive the time evolution of the cavity’s operators in the inter-
action picture from

ȧ† = i[H0, a
†] = −iωca, (3.44)

Therefore
aI(t) = ae−iωct. (3.45)

Performing the integration on the terms proportional to the bosonic cor-
relation functions K± we see that this part takes a Lindblad form

e−iH0tAI(t)BI(t′)eiH0t = ABI(−τ) (3.46)

e−iH0tAI(t′)BI(t)eiH0t = AI(−τ)B. (3.47)
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This means that in the Schrödinger representation Eq. (3.39) becomes

ρ̇S(t) = − i[H0, ρS(t)] + [D−ρS(t) − ρS(t)D+, D
†] +H.c.

+
κ

2
(2aρS(t)a† − a†aρS(t) − ρS(t)a†a) − κnB[a†, [a, ρS(t)]],

(3.48)
where κ = 2π

∑

q |lq|2δ(ωc − ωq) and nB is taken at the cavity frequency
ωc and

D± =
∫ +∞

0

∑

α

C±α (±τ)DI(−τ)dτ. (3.49)

From Eq. (3.48) we define the Liouvillian superoperator Ľ such that

ρ̇S(t) = ĽρS(t) = −i[H0, ρS(t)] + (Ľe + Ľc)ρS(t), (3.50)

where we defined

ĽeρS(t) = [D−ρS(t) − ρS(t)D+, D
†] +H.c.

ĽcρS(t) =
κ

2
(2aρS(t)a† − a†aρS(t) − ρS(t)a†a) − κnB[a†, [a, ρS(t)]].

(3.51)

Remark. In the definition of the damping rate κ we dropped the imagi-
nary part proportional to iP 1

ω0−ωc
as it only introduces a renormalisation

of the energies.

3.3 Rate equations approach

In general we cannot find an analytical solution to Eq. (3.50). However,
one can derive the rate equations using a secular approximation on the
master equation. The rate equations give an approximation of the time
evolution of the populations by separating the evolution of the popula-
tions, the diagonal part of ρS, from the coherences, the off-diagonal part.
Let us first project Eq. (3.50) onto the eigenstates of H0. The unitary
evolution of ρS only involves off diagonal terms and the damping of the
cavity governed by Ľc does not mix the populations and the coherences.
Hence, we focus on the electronic part ĽeρS of Eq. (3.50). We start from
the electronic part of Eq. (3.39) and project it onto an eigenbasis of H0.
We only show the calculations for the second term in the first commu-
tator. The others can be deduced following exactly the same steps. We
call A the first term in the electronic part of Eq. (3.39)

A =
∫ +∞

0

∑

α,abcd

C+
α (τ)D†abρSIbcDcde

i(Ea−Eb+Ec−Ed)tei(Eb−Ea)τdτ |a〉〈d|

=
∫ +∞

0

∑

α,abcd

C+
α (τ)D†abρSIbcDcde

i(Ea−Ed)tei(Eb−Ea)τdτ |a〉〈d|.

(3.52)
The two different expressions of A in Eq. (3.52) are found using the fact
that due to the Markov approximation, ρSI must commute with e±iH0t.
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Doing the secular approximation means we neglect the fast oscillating
terms in Eq. (3.52) that average to 0 when looking at the long time
evolution of ρS. Hence for the two expressions of A in Eq. (3.52) we find

Ea − Eb + Ec − Ed = 0

Ea − Ed = 0.
(3.53)

We, therefore, find that Ec = Eb and A is approximated by

A ≃
∫ +∞

0

∑

α,abcd

C+
α (τ)D†abρSIbcDcde

i(Ec−Eb)τdτδEa,Ed
δEb,Ec

|a〉〈d|. (3.54)

If ε0 is not a multiple of the cavity frequency ωc the only way for two
states |a〉 and |b〉 to have Ea = Eb is that |a〉 = |b〉. Then we find

A ≃
∫ +∞

0

∑

α,a,b

C+
α (τ)D†abρSIbbDbae

i(Eb−Ea)τdτ (3.55)

We can perform the integral over τ in Eq. (3.52) using Eq. (3.31) and
find

A =
∑

ab

ΓabρSIbb, (3.56)

where Γab is the transition rate given by the Fermi’s golden rule between
two eigenstates of H0. Applying this result on each term of Eq. (3.39)
we show that the populations approximately evolves following the rate
equations

Ṗ (q, n) =
∑

q′,n′

{

Γqn
q′n′P (q′, n′) − Γq′n′

qn P (q, n)
}

+ κ(1 + nB)
{

(n+ 1)P (q, n+ 1) − nP (q, n)
}

+ κnB

{

nP (q, n− 1) − (1 + n)P (q, n)
}

,

(3.57)

where P (q, n) is the population of the state |q, n〉 with q its charge and
n its photon number and Γq′n′

qn is the transition rate from the state |q, n〉
to the state |q′, n′〉. When κ = 0 this is exactly the rate equations used
to study the Franck-Condon blockade regime in [86, 88] in molecular
electronics. The transition rates Γq′n′

qn can be found from the Fermi’s
golden rule

Γ1n′

0n =
∑

α

Γα|Fn,n′|2f+
α ([n′ − n]ωc)

Γ0n′

1n =
∑

α

Γα|Fn,n′|2f−α ([n− n′]ωc)

(3.58)

where Fn,n′ = 〈n|eλ(a−a†)|n′〉 is the Franck-Condon matrix element [88]

Fn,n′ = (sgn(n′ − n))n−n′

e−λ2/2λM−m

√

m!

M !
LM−m

m (λ2), (3.59)

with m = min(n, n′) and M = max(n, n′) and Lβ
α are the generalised

Laguerre polynomials. The physical process described by the rates in
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Eq. (3.58) is the tunneling of an electron between one electrode and the
quantum dot with emission or absorption of n′−n photons in the cavity.
Taking a closer look at the rates Γq′n′

qn the Franck-Condon matrix elements
act as intensity factor for the rate while the Fermi distributions f±α give
the energy condition for the rate to be different than zero. We see in
Eq. (3.58) that an electronic rate corresponding to the charge of the dot
is turned on when eVα > (n′ − n)ωc, while a rate to discharge the dot is
turned on when eVα < (n′ − n)ωc.

(a)

ε0
ΓL

ΓL

ΓR

µL

µR

ωc

ωc

(b)

ε0

ΓL

ΓR

ΓR

µL

µR

ωc

ωc

Figure 3.2: Example of configurations of the leads for excitation or dis-
sipation of the cavity mode by the electronic transport from electron
tunneling out of or in the dot. Γα is the tunneling rate between the dot
and the lead α, ωc the cavity frequency, ε0 the dot energy and eVα is the
voltage drop between the lead α and the dot energy level.

Fig. 3.2 shows a schematic representation of the processes occurring
in the setup where ε0 shows the dot energy level and µL/R shows the
position of the left and right potentials. The red arrows show the ab-
sorption and emission of photons required for the tunneling event to take
place so that the energy balance is fulfilled. Although this representation
depicts well the relative positions of the energies in the system, it does
not show the actual energy conditions that matter for understanding the
rate equations. Indeed, we have seen that thanks to the electron-photon
coupling there are actually several channels through which electrons can
tunnel. Here, we call a channel the transition from a state |q, n〉 to a
state |q′, n′〉. For each channel there is an energy condition ε0 + kωc to
be fulfilled for an electron to be able to go through, where k = n′ − n is
a relative integer.

Fig. 3.3 shows a schematic representation of the energy thresholds
corresponding to all the tunneling channels. The relative positions of
the electronic leads’ potentials with respect to the dot energy level eVL/R

are represented by the gray areas while in the middle is given the ladder
of energy conditions corresponding to the different types of electronic
channels. The channel labeled 0 corresponds to the elastic transport for
which no energy is exchanged with the cavity mode. Then the other
channels are labeled by kωc with k ∈ Z

∗. k is the number photons
created in the cavity during a charging event of the dot, while if the
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event corresponds to the electron leaving the dot, it is −k which is the
number of photons emitted in the cavity. It means that one energy level
kωc corresponds to an infinite number of processes in which n′ − n = k
where n is the number of photons in the cavity before the tunneling event
and n′ is the number of photons in the cavity after the tunneling event.
The blue arrows show the direction of the electron during the tunneling
event with respect to each electronic leads, the middle area corresponding
to the quantum dot location. If an arrow has two heads, it means that
the electron can go in or out of the dot, if both arrows point toward a
lead, this means that the dot can only be discharged and therefore can’t
be populated, on the contrary if the two arrows point toward the dot it
means that the dot can only be charged. In those two cases there is no
current through the corresponding channels.

As a summary, if eVα > kωc, all the tunneling event resulting in the
emission of k photons while the dot is being charged in the cavity are
allowed while if eVα < −kωc all the tunneling events resulting in the
emission of k photons while the dot is being discharged are allowed.

0

ωc

−ωc

−2ωc

−3ωc

...

...

ΓL ΓR

eVL

eVR

Figure 3.3: Schematic representation of the electronic channels located
by the energy condition for the electron to pass through a channel. eVα

gives the relative position of the lead α chemical potential with respect
to the dot energy level ε0 while a tunneling event resulting in the creation
of k photons in the cavity is depicted by an energy kωc. The blue arrows
show the direction of the electron during a tunneling event where the
middle area corresponds to the quantum dot. Therefore an arrow going
from lead α to the energy level kωc means that an electron can charge
the dot creating k photons in the cavity during the tunneling event. Γα

is the tunneling rate associated to lead α.

Looking at Fig. 3.3 or Eq. (3.58) we see that if both the voltage drops
are in ]−ωc;ωc[ (disregarding thermal effects), then only elastic tunneling
is possible, therefore, the number of photon in the cavity is not affected
by the electronic current and the cavity should remain in its initial state.
Now if one of the leads has its voltage drop decreased then only the
tunneling events resulting in the decrease of the number of photons in
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the cavity are allowed and the electronic current can only relax the cavity
mode. Therefore, if we start from a cavity at thermal equilibrium with
kBT ≪ ωc, since photons can’t be emitted in the junction and the cavity
is initially in its ground state, only the charge transfer occurs. However,
if one of the voltage drops is raised above the first inelastic threshold
at ωc, the electronic leads can exchange energy with the cavity during
a tunneling event and a new channel opens each time the voltage drop
verifies |n′ − n| = ⌊|eV/ωc|n⌋.

Remark. The probability of the processes described in Fig. 3.2 depends
on the probability of the stationary state. It is to be expected that the
probability of a state with a high number of photons is very small and
therefore a process requiring an absorption of photons very unlikely, even
if the rate is big, for a cavity that is not driven by a source of light or a
very large voltage drop compared to the cavity frequency.

3.4 Populations

The first step to find any physical quantity is to find the populations
or more generally to solve the master equation and find ρ. As usually
in experiment only the long time behaviour of a system is measured,
we look for the stationary solution of Eq. (3.50) or Eq. (3.57). In the
case of the master equation Eq. (3.50), as we mentioned, we can’t find an
analytical solution. However, this equation can be solved numerically, see
appendix A. For this purpose, we developed a code able from a system
Hamiltonian of the form (3.8) and an interaction Hamiltonian of the form
(3.15) to find the superoperator Ľ or the corresponding rate equations
and compute the stationary solution of Eq. (3.50) or Eq. (3.57).

However, some interesting approximations can be made in order to
find an analytical solution of the rate equations. As we mentioned, the
plasmonic cavity formed by the STM has been reported to have a very
large damping rate [28]. In this case we have κ ≫ Γ, which means that
the rates governing the evolution of the populations in the rate equations
are dominated by the rates proportional to κ which only acts on the
photonic populations Pp(n). Under those conditions, we can assume that
the photonic population Pp remain close to their equilibrium distribution.
In molecular electronics this is known as equilibrated phonons.

As a first approximation we consider the charge states and the pho-
tonic states to be close to independent. This means that the joint
probability of the photons and the electrons P (q, n) is approximated
by P (q, n) = Pc(q)Pp(n). As a result this allows us to write rate equa-
tions for the photons or for the charge summing Eq. (3.57) over q or n
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respectively.

Ṗc(q) =
∑

q′

{

Γq
q′Pc(q

′) − Γq′

q Pc(q)
}

(3.60)

Ṗp(n) =
∑

n′

{

Γ̄n
n′Pp(n′) − Γ̄n′

n Pp(n)
}

+ κ(1 + nB)
{

(n+ 1)Pp(n+ 1) − nPp(n)
}

(3.61)

+ κnB

{

nPp(n− 1) − (1 + n)Pp(n)
}

,

where
Γq′

q =
∑

n,n′

Γn′q′

nq Pp(n) (3.62)

and
Γ̄n′

n =
∑

q 6=q′

Γq′n′

qn Pc(q). (3.63)

The solution of Eq. (3.60) is

Pc(q) = Γq
q′/
∑

α

Γα. (3.64)

Hence, the population of the dot is directly proportional to the rate for
an electron tunneling into the dot. From Eq. (3.62) we assume that the
photons are equilibrated Pp(n) = P eq

p (n) = e−nωc/kBT (1−e−ωc/kBT ). Since
kBT ≪ ωc we can take the limit P eq

p (0) = 1 and then the populations are



































Pc(1) =

∑

αn Γα
λ2n

n!
f+(nωc − eVα)

∑

αn Γα
λ2n

n!
[f+(nωc − eVα) + f−(−nωc − eVα)]

Pc(0) =

∑

αn Γα
λ2n

n!
f−(−nωc − eVα)

∑

αn Γα
λ2n

n!
[f+(nωc − eVα) + f−(−nωc − eVα)]

,

(3.65)

where eVα = µα − ε0.

3.5 Electronic current

The electronic current is computed from the evolution of the number of
charges in one electronic reservoirs Nα =

∑

k c
†
αkcαk

Iα = −eṄα = ie
∑

k

{

tαkc
†
αkD − tαkcαkD

†
}

. (3.66)

The average current from lead α is then computed thanks to the density
matrix

〈Iα〉 = −eTr(Iαρ̇). (3.67)

When we derived Eq. (3.50) we stopped at order 2 in the rates tαk and
lq. In order to have a current at the same order in tαk we therefore use
an expansion at first order in the tunneling Hamiltonian for the density
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matrix, since the current operator is also an operator of order one in the
tunneling rates. We hence use Eq. (3.21) into Eq. (3.67) in the interaction
picture to find an adequate expression of the average current

〈Iα〉 = ieTr(IαI(t)ρI(t0)) − e
∫ t

t0

Tr(IαI(t)[HintI(t′), ρI(t′)])dt′. (3.68)

As the first term is proportional to the average current at time t0 this
term is 0. The second term can be treated the same way we derived the
time evolution of the reduced density matrix. Using the Born-Markov
approximation and the invariance of the trace under permutation we find

〈Iα〉 = 2e
∑

α

Re
∫ +∞

0

{

C+
α (τ)SI

DD†(t, t′) − C−α (τ)SI
D†D(t, t′)

}

dτ, (3.69)

where SI
AB(t, t′) = 〈AI(t)BI(t′)〉 is the correlation function between A at

time t and B at time t′ in the interaction picture. To compute the average
current corresponding to the rate equations, we have to also perform the
same secular approximation we used on the density matrix on the average
current in Eq. (3.69). We show the calculation for the first correlation
SDD†(τ).

SDD†(t, t′) =
∑

abc

DabD
†
bcρScae

i(Ea−Ec)tei(Ec−Eb)τ . (3.70)

We neglect in Eq. (3.70) the fast oscillating terms for which Ea 6= Ec

which means that we only take into account terms for which |a〉 = |c〉

SDD†(t, t′) ≃
∑

ab

DabD
†
baρSaae

i(Ec−Eb)τ . (3.71)

Using Eq. (3.71) in Eq. (3.69) and integrating over τ , we find

〈Iα〉 ≃ −e
∑

nn′

{

Γ0n′

1n:αP (1, n) − Γ1n′

0n:αP (0, n)
}

. (3.72)

Injecting Eq. (3.65) into Eq. (3.72) we find the average current when the
charge states and the photonic states can be considered independent in
the case of symmetric voltage drops VL = −VR = V

〈Iα〉 ≃ I0

∑

n

P(n)[f(nωc − eV ) − f(nωc + eV )], (3.73)

Where P(n) = λ2ne−λ2
/n! is the Poisson distribution of parameter λ2

and I0 = eΓLΓR/(ΓL + ΓR). Although this expression only applies in the
case of equilibrated photons, we see that the current evolves in steps each
time a voltage drop attains a multiple of the photon energy, similarly to
the Franck-Condon physics [82, 86, 88]. The height of the step is given
by the Poisson distribution, which means that the current is suppressed
at low bias voltage. This shows how the energy of the leads is dissipated
inside the cavity mode.
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as Pp(0) increases the electronic current also increases due to Γ12
00 being

the biggest rate. Therefore when κ increases, Pp(0) also increases and
since in Eq. (3.73) the contribution from Γ12

00 is proportional to Pp(0), the
current increases.

However, for the asymmetrically biased junction, the channels at neg-
ative energy thresholds can only charge the dot for the two electrodes.
Therefore, it introduces an asymmetry between the probability of occu-
pancy of the dot since it is more likely that the dot is charged. Fig. 3.10
shows a schematic representation of this asymmetry. While all the nega-
tive energies contribute to the charged state of the dot only the energies
above eVL contributes to the empty state of the dot. The energies be-
tween eVL and eVR have contributions to both states therefore summing
over all the energy we see that there are ⌊|e(VL − VR)/ωc|⌋ more energy
thresholds contributing to the charged state of the dot. Hence when κ
increases and therefore Pp(0) it is in fact mostly P (1, 0) which increases.
As mentioned |1, 0〉 has a negative contribution to the current which
explains that in this case the current decreases.

2ωc

3ωc

ωc

0

−ωc

...

...

ΓL ΓR

eVL

eVR

Figure 3.10: Schematic representation of the energy levels of the system
relative to the dot energy ε0. eVα gives the relative position of the lead
α chemical potential with respect to the dot energy level ε0. The blue
arrows show the direction of the electron during a tunneling event where
the middle area correspond to the quantum dot. An arrow going from
lead α to the energy level kωc means the creation of the state |1, k〉 while
an arrow turning the other way means its destruction. Γα is the tunneling
rate associated to lead α. The dot on the energy levels represent the
contribution of the state to the average number of electron on the dot.
Black for 1, white for 0 and gray for ΓL/(ΓL + ΓR).

We now understand how the damping rate of the cavity affects the
height of the current’s steps. However, if we look at the width of the
steps in Eq. (3.73), we see that the width is given by the temperature
from the Fermi distribution. The width of the Fermi function is found
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3.7 Full computation of the density matrix

When the damping rate of the cavity exceeds the temperature, we expect
the population and the current to evolve on a scale given by κ since it is
the dominant channel for dissipation. However, when we computed the
current at second order in Hint in the interaction picture, we neglected
terms accounting for the relaxation coming from κ. In order to recover
the effect of κ on the width of each current’s step we start from Eq. (3.69)
and re–sum all the terms by using the full time evolution of the system
instead of the system only, thus replacing eiH0t by eiHt,

〈Iα〉 = 2e
∑

α

Re
∫ +∞

0

{

C+
α (τ)SDD†(t, t′) − C−α (τ)SD†D(t, t′)

}

dτ, (3.75)

where SAB(t, t′) = 〈A(t)HBH(t′)〉 = 〈A(0)HBH(τ)〉. To compute the
correlation functions of the dot, we can use the quantum regression theo-
rem [94,95]. We call χ = BH(τ)ρ. Then χ̇ = −i[H,χ] and since D and D†

only act on the system, we conclude that χS(t) = TrS(χ(t)) = BH(t)ρS

time evolution is given by Eq. (3.48). In other words χ(t) = eĽtχ(0) and
SAB(t, t′) = SAB(τ) = Tr(AeĽtB). Let us define iα± such that

iα± =
∫ +∞

0
Cα
±(τ)eĽτdτ. (3.76)

Using the Fourier transform of Cα
±, we can write iα± in the frequency

domain instead of time domain as following

iα± =
∫ +∞

−∞

∫ +∞

0
Γαf

±
α (ω)e(±iω+Ľ)τdτ

dω

2π
, (3.77)

where we used the wide band approximation on Γα. At this point, we
can perform the time integral and find an approximate expression of iα±,

iα± ≃ ∓Γα

2π

∫ +∞

−∞

f±α (ω)

(iω ∓ η)Id± Ľ
dω, (3.78)

where η → 0 and Id is the identity super-operator. The full expression
for the current then reads

〈Iα〉st = −2e

π
ΓαRe

{

∫ +∞

−∞
f+

α (ω)twĎ
1

(iω − η)Id+ Ľ
Ď†ρst

s

+ f−α (ω)twĎ†
1

(iω + η)Id− Ľ
Ďρst

s
dω

}

.

(3.79)

This expression of the current was used in this work to compute numer-
ically the current, see appendix A.

Remark. In fact, in general the Born–Markov approximation is not
enough to conserve the positivity of the density matrix, in our previous
calculation of the current and of the rate equations, it was the secular
approximation that was ensuring the positivity of the density matrix. In
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rate equations in Fig. 3.5. The current exhibit steps each time we add to
the voltage the energy of one photon, which correspond to energy being
exchange between the electron and the cavity in an inelastic tunneling
process. The heights of the plateaus shown in the two plots are the
same which means that the rate equations predicts well the populations
far from an inelastic threshold. However, we see in Fig. 3.12 that the
current steps are broadened as expected.

Previous work by Braig and Flensberg [89] already shown a way to
incorporate the broadening of the vibration mode into the electronic
current in the Franck–Condon physics. Compared to this method, our
method is able to take into account the effect of the damping of the
cavity on the current without making any assumption on the photon
distribution.

We know in the case of the rate equations that the width of the steps
is controlled by temperature and grows as kBT ln

(

3+2
√

2
3−2
√

2

)

from Eq. (3.73).
Only the first step at eVL = 0 is not impacted by the damping of the
cavity which is explained by the fact that this step correspond to elastic
tunneling of electrons where there isn’t any exchange of photons. There-
fore, since photons are not involved the width is only controlled by the
thermal fluctuations in the electronic leads. Fig. 3.13 shows FWHM of
the conductance’s peak at eVL = ωc. In panel (a) is presented the depen-
dence of the FWHM on the damping rate of the cavity κ for two different
values of the temperature and panel (b) presents the dependence of the
FWHM on the temperature for two different values of the damping rate
of the cavity.
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temperature kBT for a damping rate κ > kBT in blue and a damping rate
κ < kBT in green. We see that when temperature is very large compared
to κ the width is only given by the width of the Fermi distribution and
therefore by the temperature (shown by the lower black dotted line) and
only depends on T (green curve), whereas when κ > kBT for very small
temperature the width is only given by κ and therefore we see a plateau
at low temperature for the blue curve. However when kBT reaches 0.1κ,
the FWHM grows with kBT linearly with a slope given by the Fermi
distribution as shown by the upper black dotted line.

3.8 Strong drive

3.8.1 Derivation

So far, we have studied the electronic current in a molecular tunnel junc-
tion coupled to an electromagnetic cavity in its ground state. However,
it is interesting to look at the action of the cavity mode on the current.
One way to do that is to drive the cavity out of its ground state. In
this section we will consider that the number of photons in the cavity is
kept constant thanks to the damping of the cavity. The driven system
Hamiltonian is

HS = ε0d
†d+ ωca

†a+ Λd†d(a+ a†) + αωc cos(ωLt)(a+ a†). (3.82)

The interaction Hamiltonian only contains the interaction between the
electronic leads and the dot

Hint =
∑

αk

tαkc
†
αkd+H.c. (3.83)

and the environment is only composed of the electronic leads

HB =
∑

αk

εαkc
†
αkcαk, (3.84)

where the total Hamiltonian is H = HS +HB +Hint. We want to derive
the master equation for this problem but first we would like to remove
the time dependence from H0. First of all we can remove the terms
coupling the dot and the cavity mode Λd†d(a + a†) using the unitary
transformation

U0 = eλd†d(a−a†). (3.85)

This transforms the system Hamiltonian into

H ′S = [ε′0 − 2Λα cos(ωLt)]d
†d+ ωca

†a+ αωc cos(ωLt)(a+ a†), (3.86)

where ε′0 = ε0 + λ2ωc. The interaction Hamiltonian is transformed into

H ′int =
∑

αk

tαke
λ(a−a†)c†αkd+H.c. (3.87)
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In order to remove the time-dependence in the driving term αωc cos(ωLt)(a+
a†), we use the unitary time-dependent transformation

U1(t) = eiωLa†at (3.88)

and neglecting all terms rotating at a frequency bigger than ωc − ωL, we
find

H ′′S = [ε′0 − 2Λα cos(ωLt)]d
†d+ (ωc − ωL)a†a+

α

2
ωc(a+ a†) (3.89)

for the system Hamiltonian and

H ′′int =
∑

αk

tαke
λ(ae−iωLt−a†eiωLt)c†αkd+H.c. (3.90)

for the interaction Hamiltonian. Now we want to remove the time-
dependence of the dot energy level. Here we have a dot energy which is
oscillating between two leads, which is equivalent to having the leads’ po-
tential oscillating. This problem has been studied in electronic transport
by C. Bruder and H. Schoeller [96]. We define the transformation

U2(t) = eiǫ(t)d†d, (3.91)

where ǫ(t) =
∫ t

0 2αΛ cos(ωLt
′)dt′ = 2αΛ sin(ωLt)/ωL. Using Eq. (3.91) on

H ′′S removes the time variation in the dot’s energy

H ′′′S = ε′0d
†d+ (ωc − ωL)a†a+

α

2
ωc(a+ a†) (3.92)

and moves it in the tunneling rates in H ′′int

H ′′′int =
∑

αk

tαke
λ(ae−iωLt−a†eiωLt)+iǫ(t)c†αkd+H.c. (3.93)

Finally we can diagonalise H ′′′S by shifting the cavity mode by −α using
the unitary transformation

U3 = e
αωc

2(ωc−ωL)
(a−a†)

. (3.94)

In the end the system Hamiltonian is

HS = ε0d
†d+ (ωc − ωL)a†a (3.95)

and the interaction Hamiltonian is

Hint =
∑

αk

tαke
λ(ae−iωLt−a†eiωLt)+iǫ(t)c†αkd+H.c. (3.96)

where we dropped all the superscripts and redefined ǫ as

ǫ(t) = αΛ
3ωL − 2ωc

(ωc − ωL)ωL

sin(ωLt). (3.97)

Eq. (3.96) can be simplified further in the small coupling λ and large drive
α so that λα ≫ λ. Then the tunneling rates could be approximated by
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tαk(t) = tαke
−iǫ(t). More generally, we consider that α is very large so

that we can average a and a† by
√
N . Then the Hamiltonian becomes

the Hamiltonian of a single dot coupled to electronic leads

HS = ε0d
†d (3.98)

with time-dependent tunneling rates

Hint =
∑

αk

tαke
−iǫ(t)c†αkd+H.c. (3.99)

where we redefined ǫ(t) = (2λ
√
N − 2αΛ 2ωL−ωc

(ωc−ωL)ωL
) sin(ωLt). We define

∆ = (2λ
√
N − 2αΛ 2ωL−ωc

(ωc−ωL)ωL
). We still work in the sequential tunneling

regime kBT ≫ Γ, however since the driving introduces a fast time evolu-
tion for in the density matrix, we won’t use the Markov approximation.
As a result we find time dependent rates in the master equation. We
can start from the time-evolution of the density matrix in the interac-
tion picture in Eq. (3.18) since HS is time independent. Then expending
Eq. (3.18) at second order in Hint, and tracing over the leads’ degrees of
freedom following the derivation in [96], we find

ρ̇SI(t) = −
∫ t

t0

∑

αk

{

[DI(t), D†I(t′)ρSI(t′)]〈c†αkc (t)αk(t′)〉

+[D†I(t), DI(t′)ρSI(t′)]〈cαkc
†(t)αk(t′)〉

}

dt′ +H.c.

(3.100)
where we defined D = de−iǫ(t). Using the Born approximation, we con-
sider that the electronic leads are kept at thermal equilibrium since the
perturbation provoked by the dot should be negligible. This approxima-
tion allows us to express the average values of the electronic leads in term
of the Fermi distribution following Eq. (3.31) to Eq. (3.34). Then in the
Schrödinger picture we find that the reduced density matrix ρS evolves
following

ρ̇S(t) = −i[H0, ρS(t)] −
∫ t

t0

∑

αk

|tαk|2e−iHS(t−t0)×
(

[DI(t), D†I(t′)ρSI(t′)]eiεαk(t−t′)f+
α (εαk)

+[D†I(t), DI(t′)ρSI(t′)]e−iεαk(t−t′)f−α (εαk)
)

eiHS(t−t0)dt′ +H.c.

(3.101)
In order to find the rate equations we project Eq. (3.101) on the dot’s
states |q〉 where q ∈ {0, 1}

Ṗq(t) = 〈q|ρ̇S(t)|q〉. (3.102)

Since D|q〉 = δq,1e
−iǫ(t) and D†|q〉 = δq,0e

iǫ(t), this last equation reduces
to a simple expression

Ṗq(t) = 2Re
∫ t

−∞

∑

αk

|tαk|2
(

δq,0f
−
α (εαk)P1(t′) − δq,1f

−
α (εαk)P1(t′)

−δq,0f
+
α (εαk)P0(t′) + δq,1f

+
α (εαk)P0(t′)

)

ei(εαk−ε0)(t−t′)−i(ε(t)−ε(t′))dt′,
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where we took the limit t0 → −∞. We finally have an expression of the
populations as a function of time. Since the drive is periodic, it seems
natural to study the Fourier transformation of the population

Ṗq(t) =
1

π
Re

∫ t

−∞

∫ +∞

−∞

∑

α

Γα

{

(δq,0 − δq,1)P1(t
′) + (δq,1 − δq,0)f

+
α (ω′)

}

× ei(ω′−ε0)(t−t′)−i(ε(t)−ε(t′))dω′dt′,
(3.103)

where we defined Γα = 2π
∑

k |tαk|2δ(ω − εαk), applied the wide-band
approximation and used the fact that P0(t) + P1(t) = 1. Since Pq must
be periodic due to the driving, we expand Pq into a Fourier series

Pq(t) =
∑

k

Pq(k)e−ikωt. (3.104)

Integrating Eq. (3.103) over time and using e−i α
ω

sin(ωt) =
∑

k e
−ikωtJk

(

α
ω

)

,
we find that the Fourier components of Pq follow the equation

−iω
∑

m

mPq(m)e−iωmt =
∑

m

Γ(δq,0 − δq,1)P1(m)e−iωmt

+ 2Re

{

∑

αm

Γα(2q − 1)F∆
0m(Eα

0 )e−imωt

}

,

(3.105)
where we defined F∆

nm(E) = (−1)m−n∑

k Jk+n

(

∆
ω

)

Jk+m

(

∆
ω

)

Y (E + kω),
Jn being the Bessel’s functions and Y (ω) = 1

2
(f(ω) − iH[f ](ω)), where

f is the Fermi distribution, H[f ] is its Hilbert transform and Eα
0 = ε0 −

µα. The normalisation of the probabilities imposes that
∑

i Pi(n) = δn,0.
Identifying each Fourier components on each sides of Eq. (3.105), we
show that

P1(m) =

∑

α Γα

[

F∆
0m(Eα

0 ) + F∆∗
0−m(Eα

0 )
]

Γ − imω
, (3.106)

for any m ∈ N, and
P1(m) = −P0(m) (3.107)

for m > 0 and
P0(0) = 1 − P1(0). (3.108)

Since the real part of Y is the Fermi distribution over 2, the populations
for m = 0 are

P1(0) =
1

Γ

∑

αk

ΓαJ
2
k (∆/ω)f(Eα

0 + kω). (3.109)

So, from the Fermi distribution, the populations show steps widened by
the temperature at each multiple of the photon energy, the height of the
steps being given by the square of the Bessel function Jk(∆/ω). This is
very similar to the undriven case we discussed in the previous sections
except for the height that was given by the Poisson distribution [88]. The
electronic current can be derived from Eq. (3.67) which in this case is
equivalent to

〈Iα〉 (t) = e
∑

qq′

∫ t

−∞
Γqq′(t, t′)[Nα(q′) −Nα(q)]Pq(t

′)dt′, (3.110)
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Chapter 4

Current-driven light emission
from a single-level dot

As we emphasized in the introduction chapter 1 one major goal for meso-
scopic QED as well as STM light emission experiments is to design single
photon sources. Therefore, we want to know how the electronic current
drives the cavity and what kind of photon distribution it generates. Also,
the light emission spectrum gives an additional spectroscopic tool to ex-
plore the states of the cavity and of the electronic system. In this section
we call λ ≤ 0.1 the weak coupling regime and λ ≥ 1 the strong coupling
regime although experimentally λ ∼ 0.1 is already the strong coupling
regime.

4.1 Light-emission spectrum

As we mentioned while studying the current through the junction Fig. 3.5,
the current characteristics shows steps corresponding to inelastic tunnel-
ing events during which light is emitted. A step occurs when the voltage
drop is a multiple of the photon energy in the cavity eV = nωc where
n is a relative integer. In fact each step corresponds to the opening of
a channel for electronic transport, where a channel is in fact a process
in which one electron is exchanged between the dot and one lead. In
order to prove that this corresponds to light emission, one can look at
the light emission spectrum of the cavity. The light emitted from the
junction is proportional to the average number of photons in the cavity
∼ κωc〈a†a〉. Fig. 4.1 shows the average number of photons in the cavity
as a function of the left and right voltage drops, eVL and eVR, for three
different coupling strengths. We recognise in Fig. 4.1 the same step-like
behaviour as the current characteristics. Each time the voltage drop hit
a multiple of the energy of a photon in the cavity, the average number
of photons increases abruptly. Note that at eVα = 0 no step is seen in
the average number of photons, contrary to the current. The tunneling
events occurring at eVα = 0 corresponds to elastic processes for which the
electron conserves its energy. Therefore, no light can be emitted during
these tunneling events.
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the charge population. In general the photon emission is a consequence
of the charge’s fluctuations. But not directly of the charge states of the
molecule. A photon can be emitted during a tunneling event regardless
of the event being the charge or the discharge of the molecule and thus
regardless of the state of the molecule. However since in a lot of cases
the fluctuations of the charge is correlated to the charge state the pho-
tonic state and the charge states are not independent. This is typically
the case when a state of the molecule is preferred due to the fermionic
environment.

Assuming the charge and the number of photons are independent,
for instance in a symmetric junction, Eq. (4.2) shows that the number
of photons in the cavity is regulated by two different processes. The
obvious one is the relaxation of the cavity into its external environment
that is described by the terms proportional to κ and the population of
photons in the cavity. As we mentioned this term in plasmonic cavities is
expected to be largely dominant given that κ ≫ Γ and ensures that the
cavity is always close to its ground state. The other process acting on the
photonic population is the charging and discharging of the dot given by
the terms proportional to Γ. This corresponds to the inelastic tunneling
of the electron. Thanks to the electron-photon coupling, electrons, while
tunneling, can dissipate some energy in the cavity emitting some photons,
or on the contrary, absorb some energy by absorbing some photons from
the cavity.

The rates for those processes are given by Γ̄n′

n , which are proportional
to the charge on the dot Pc. The tunneling rates, Γq′n′

qn , are given in
Eq. (3.58). In the rates Γ̄ the fact that the quantum dot is being charged
or discharged is taken into account in the Fermi distributions f± and
the charge probability Pc. Apart from that the photonic part, in those
terms, does not depend on the charge state of the molecule. This means
that as long as the energy difference appearing in the argument of the
function f± is negative for the charge of the dot (f+) or positive for
the discharge of the dot (f−), the corresponding rate is turned on and
the process of emitting a photon in the cavity, or absorbing a photon
from the cavity respectively, is allowed. It is only the voltage drops that
regulates which process is allowed due to the state of the electronic leads,
since the voltage drops also regulate the dot electronic population Pc.

Strictly speaking, each steps in the current I and photon average
population 〈a†a〉 corresponds to the opening of new transport channels
with a given energy |eVα| = nωc being exchanged. However, as this
always corresponds to a transition between a state with 0 photon and a
state with n photons, this can also be viewed as the spectroscopy of the
cavity.

Fig. 4.1 also shows that the electronic current acting like the source
of the photons in the cavity allows for the control of the intensity of
the light inside the cavity. As in experiment we have typically κ ≫
Γ in plasmonic cavities, the typical time between two tunneling events
(given by 1/Γ) is much longer than the damping time (given by 1/κ).
In other words, a photon emitted during the tunneling of an electron
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Figure 4.2: Representation of an inelastic tunneling event during which
2 photons are emitted in the empty cavity.

should dissipate before another tunneling event occurs, and therefore
before another photon is emitted in the cavity. This limit corresponds to
taking Pp(0) ≃ 1 and Pp(0) ≫ Pp(n) for any integer n other then 0.

Let us apply this limit to Eq. (3.57):

Ṗ (q, n) =Γq,n
q′,0P (q′, 0) − δn,0

∑

n′

Γq′,n′

q,n P (q, n)

+ κ(1 + nB)
{

(n+ 1)P (q, n+ 1) − nP (q, n)
}

+ κnB

{

nP (q, n− 1) − (1 + n)P (q, n)
}

.

(4.3)

For simplicity we take the symmetrically biased junction for which ΓL =
ΓR and eVL = −eVR. In this case, the electronic rates Γq′,n′

q,n and Γq′,n
q,n′

are equal. This allows to find the rate equations for the photons only by
summing Eq. (4.3) over the charge q, without assuming the charge and
the photons to be independent.

Ṗp(n) =Γ0nPp(0) − δn,0

∑

n′

Γnn′Pp(n)

+ κ(1 + nB)
{

(n+ 1)Pp(n+ 1) − nPp(n)
}

+ κnB

{

nPp(n− 1) − (1 + n)Pp(n)
}

,

(4.4)

where
Γnn′ = Γ1n′

0n = Γ0n′

1n . (4.5)

Typically in optics experiments kBT ≪ ωc, thus nB ≃ 0. This sim-
plifies the rate equations further Eq. (4.3) since now the only way to
populate the cavity is through the tunneling of an electron from the
ground state of the cavity Fig. 4.2,

Ṗp(n) =Γ0nPp(0) − δn,0

∑

n′

Γnn′Pp(n)

+ κ
{

(n+ 1)Pp(n+ 1) − nPp(n)
}

.
(4.6)

From Eq. (4.6), we deduce that in the stationary regime

κPp(1) =
∑

n

Γ0nPp(0). (4.7)
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can be approximated by a θ function, Eq. (4.10) can be written as

〈a†a〉 =
Γe−λ2

λ2SNV −1(λ
2)

κ+ Γe−λ2 [SNV
(λ2) − 1]

, (4.11)

where NV = ⌊eV/ωc⌋ is the greatest integer smaller than eV/ωc. In the
limit of infinite bias voltage, we therefore find that 〈a†a〉 scales as

lim
NV→+∞

〈a†a〉 =
λ2Γ

κ+ Γ(1 − e−λ2)
. (4.12)

This expression can be simplified further using the fact that κ ≫ Γ to
find that

lim
NV→+∞

〈a†a〉 = λ2Γ/κ. (4.13)

We therefore predict that the light intensity in the cavity scales as λ2Γ/κ
at large bias voltage. However large bias voltage is not the limit that
is usually explored. In STML experiments for instance, the bias voltage
does not in general go far beyond 2eV [68].

Using again the fact that κ ≫ Γ in Eq. (4.11), we can expand the
denominator in the right-hand side around Γ/κ = 0

〈a†a〉 ≃ Γ

κ
e−λ2

λ2SNV −1(λ
2)

[

1 − Γ

κ
e−λ2{SNV

(λ2) − 1}
]

+ o





[

Γ

κ

]2


 .

(4.14)
At first order in Γ/κ, Eq. (4.14) gives that

〈a†a〉 ≃ Γ

κ
e−λ2

λ2SNV −1(λ
2). (4.15)

From Eq. (4.14) it appears that the voltage drop gives the number of
terms from the power series of e−λ2

we need to find the light intensity.
Another way to see that the bias voltage controls the accuracy of the
approximation we make using Eq. (4.13) instead of Eq. (4.15) for the
light intensity. Indeed the error we make using the large bias voltage
limit is of the order of Γe−λ2

λ2(NV +1)/κ and therefore gives a very good
approximation in the weak coupling regime. Thus in the weak coupling
regime Eq. (4.13) gives a very good approximation of 〈a†a〉 at any voltage
drop.

Fig. 4.3 shows the comparison between formula Eq. (4.10) and the
numerical computation of 〈a†a〉 using Eq. (3.50) as a function of the
damping rate of the cavity κ in a symmetrically biased junction at voltage
drop eV = 5.5ωc. The difference between the numerical and analytical
solution seems to scale as 1/κ.

As expected we see that when κ gets closer to Γ the analytical solution
fails to recover the full numerical result since the cavity does not have
the time to fully dissipate between two tunneling events and therefore
dissipation is compensated by the inelastic tunneling of the electrons.
However for κ = 0.1ωc the comparison between the numerical and ana-
lytical results is very good, < 0.3%, and it appears that we can neglect
electron-tunneling processes between the excited states of the cavity.
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the total probability for the detector to absorb a photon is the sum over
all the final states of Tif averaged over the initial states. This is the
measured average field intensity

I(r, t) =
∑

if

P (i)Tif = Tr[E(−)(r, t)E(+)(r, t)ρ]. (4.17)

The degree of coherence G(1)(x, x′) was first introduced in optics to char-
acterize interference of two superposed light fields in interference experi-
ments. It is defined as the correlation function of the electric field at two
different times and spaces

G(1)(x, x′) = Tr[E(−)(x)E(+)(x′)ρ], (4.18)

where x = (r, t). Two fields showing interference fringes are called coher-
ent. If instead the interference contrast vanishes, then the two fields do
not produce interference fringes and are called incoherent. In this last
case one can show that the intensity collected at r from two light sources
at r1 and r2 and at distance from r s1 and s2, respectively is:

I(x) = G(1)(x1, x1) +G(1)(x2, x2) + 2Re[G(1)(x1, x2)], (4.19)

where xi = (ri, t− si/c). Nowadays, in STML experiments, for instance,
physicists measure the joint probability of detecting a photon at time
t and a second one at time t + τ . Fig. 4.6 shows an actual experi-
mental setup extracted from [72]. The sample emits light that is col-
lected through two single-photon avalanche diodes delayed in time. It
was shown by Glauber [97] that this corresponds to the calculation of
the second order degree of coherence or second order correlation function
of the light

G(2)(τ) = 〈: I(t)I(t+ τ) :〉, (4.20)

where :: indicates the normal ordering (all creation operators are placed
on the left-hand side of the expression). Instead of using G(2) we will
study the normalized second-order correlation function

g(2)(t) =
G(2)(t)

|G(1)(0)|2 . (4.21)

In second-quantization formalism this reads:

g(2)(τ) =
〈a†(t)a†(t+ τ)a(t+ τ)a(t)〉

〈a†a〉2
. (4.22)
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Eq. (4.25) is integrated to find

bj(t) = e−iωjtbj(0) − iκ∗j

∫ t

0
a(t′)eiωj(t′−t)dt′. (4.26)

Using Eq. (4.26) in Eq. (4.24) shows

ȧ = −iωca−
∑

j

|κj|2
∫ t

0
a(t′)eiωj(t′−t)dt′ − i

∑

j

κje
−iωjtbj(0). (4.27)

We define
a(s) =

∫ +∞

0
e−sta(t)dt, (4.28)

the Laplace transform of a. The time evolution of a(s) is given by

ȧ(s) =

∫ +∞

0
ȧ(t)e−stdt = lim

x→∞
[a(t)e−st]x0 + s

∫ +∞

0
a(t)e−stdt = sa(s) − a(0).

(4.29)

Therefore using Eq. (4.29) in Eq. (4.27) we show that

sa(s) − a(0) = − iωca(s) − i
∑

j

κj

iωj + s
bj(0)

−
∑

j

|κj|2
∫ +∞

0

∫ t

0
a(t′)e−(s+iωj)teiωjt′

dt′dt.
(4.30)

By switching the order of the integrals in the last term in Eq. (4.30) whe
show that

∫ +∞

0

∫ t

0
a(t′)e−(s+iωj)teiωjt′

dt′dt = − a(s)

s+ iωj

. (4.31)

This manipulation allows us to simplify a lot Eq. (4.30) and we find

a(s) =
a(0) − i

∑

j
κj

iωj+s
bj(0)

s+ iωc −∑

j
|κj |2

s+iωj

. (4.32)

Using Wigner–Weisskopf approximation [100] on Eq. (4.32) it simplifies
into

a(s) =
a(0) − i

∑

j
κj

iωj+s
bj(0)

s+ iωc + κ/2
. (4.33)

We use the inverse Laplace transform on Eq. (4.33) to find a(t)

a(t) = e−(κ/2+iωc)ta(0) −
∑

j

e−iωjt − e−(iωc+κ/2)t

ωc − ωj − iκ/2
κjbj(0). (4.34)

As the aim is to compute G(2), we first compute a†(t)a(t). This can be
done directly from Eq. (4.24) and Eq. (4.25)

d

dt
a†a = −κa†a+ i

∑

j

[κ∗jb
†
j(0)eiωjta− κja

†bj(0)e−iωjt]. (4.35)
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Using Eq. (4.34) in Eq. (4.35) and averaging over the bath degrees of
freedom assuming the bath to be in thermal equilibrium, we find 〈a†a〉B

d

dt
〈a†a〉B = −κ〈a†a〉B +

∑

j

2|κj|2njRe
1 − e(κ/2+i(ωj−ωc))t

κ/2 − i(ωj − ωc)
, (4.36)

where nj = 〈b†j(0)bj(0)〉 follows the Bose distribution and 〈〉̇B is the
average over the bath. We can approximate the summation over j with
an integral over the frequency ω as the fraction is strongly peaked around
ωj = ωc and |κj|2nj should vary very slowly with j. Doing so, we show
that

d

dt
〈a†a〉R = −κ〈a†a〉R + κn. (4.37)

The solution of this equation is

〈a†(t)a(t)〉R = e−κta†(0)a(0) + n[1 − e−κt] (4.38)

From the definition of G(2) in Eq. (4.20) and Eq. (4.38)

G(2)(t) = 〈a†(0)2a(0)2〉e−κt + n〈a†(0)a(0)〉[1 − e−κt]. (4.39)

Using Wick’s theorem we know that 〈a†2a2〉 = 2〈a†a〉2. Hence,

g(2)(t) = 1 + e−κt). (4.40)

Therefore, the degree of coherence of the bare cavity starts from 2 at time
t = 0 and decreases towards 1 and t → ∞, with an exponential decay of
−κ. This means that the photons in the cavity are always bunched and
have a super Poissonian statistic.

4.2.2 Single–level dot junction

The degree of coherence is defined in Eq. (4.22) as the normalised second
order correlation function of the electric field. In the density matrix
formalism Eq. (4.22) is

g(2)(t) = Tr[a†a†(t)a(t)aρst]/〈a†a〉2. (4.41)

Eq. (4.41) can be used to find numerically the degree of coherence. In-
deed, using the properties of the trace Eq. (4.41) is equivalent to

g(2)(t) = Tr[a†ae−iHtaρsta
†eiHt]/〈a†a〉2. (4.42)

From Eq. (4.42) we define the operator A(t) = e−iHtaρsta
†eiHt. We can

compute the time derivative of A and show that A satisfies the same
Liouville-von Neumann equation of ρ

Ȧ(t) = −i[H,A(t)]. (4.43)

Therefore since a and a† are system operators only, we can trace out
the environment degrees of freedom the same way we did for the density
matrix. This means that we can define a reduced operator AS that has

67





was not reported before from the theoretical point of view. Also, from
Fig. 4.7, we see that in the case of a single-level dot junction, sub-
Poissonian distribution and photon anti-bunching appear to be equiv-
alent. Indeed, both these behaviours are given by the condition g(2)(0) <
1. Thus, we can focus on the initial value of the degree of coherence
g(2)(0) only to differentiate photon-bunching and photon anti-bunching
behaviour.

From Eq. (4.41) we can find an analytical formula for the second order
correlation function of the electromagnetic field. Indeed, in the basis of
the shifted cavity, after the Lang-Firsov transformation, the basis states
are |q, n〉 where q is the charge on the quantum dot and n is the number
of photons in the cavity. Projecting Eq. (4.41) on the basis vectors, we
find a simple expression for the second order correlation function

g(2)(0) =
∑

n

n(n− 1)Pp(n)/[
∑

n

nPp(n)]2, (4.45)

That only depends on the populations. This stems from the fact that
the operators a†a and a†a†aa are diagonal in this basis. This means that
as for the average intensity, we only need the populations to obtain the
correlation function. Therefore the diagonal part of the reduced density
matrix ρS is sufficient to compute the second order correlation function.
We already solved the rate equations in the regime of strong damping of
the cavity and weak tunneling rates κ ≫ Γ in Eq. (4.8) and Eq. (4.9).
Introducing Eq. (4.8) in Eq. (4.45), we find that

g(2)(0) =
κ
∑

n(n− 1)
∑

k≥n Γ0k

Pp(0)[
∑

n nΓ0n]2
, (4.46)

which can be expressed using the partial sums Sn(x) as

g(2)(0) =
κeλ2

SNV −2(λ
2)

Pp(0)ΓSNV −1(λ2)
. (4.47)

69





analytical result we found in Eq. (4.47) to the numerical results, we see
that at large bias voltage the analytical prediction only depends on the
ratio between κ and Γ

g(2)(0) =
κ

2Γ
. (4.48)

Taking κ = 0.1ωc and Γ = 10−3ωc in Eq. (4.48) we find that

lim
V→+∞

g(2)(0) = 50. (4.49)

However for a voltage drop eVL < 2ωc, since we only took into account
transitions starting from the ground state of the cavity, Γ0n in Eq. (4.6),
at the first inelastic threshold only Γ01 is different from 0. This means
that only Pp(0) and Pp(1) are not vanishing and since there is no process
allowing to attain more populated states of the cavity, the probability
of those states is equal to 0. So there is at most one photon in the
cavity at any given time, and therefore the degree of coherence vanishes.
Photon-bunching can only occur when more than one photon exist in
the cavity. Since at the first inelastic threshold only one photon can be
emitted in a tunneling event, successive tunneling events are needed to
increase the number of photons in the cavity. Therefore, we need to go
to higher order in the population to take into account tunneling rates
between populated states of the cavity. Let us relax a bit the condition
that the cavity is always in its ground state and admit that Pp(n) for
n ≤ 2 can be non-vanishing. In this case the rate equations Eq. (3.61)
become































Ṗ2 = Γ02P0 + Γ12P1 − P2(Γ21 + Γ20) + 2κ↑P1 − 2κ↓P2

Ṗ0 = κ↓P1 − P0(κ↑ + Γ0,1 + Γ02)

P0 + P1 + P2 = 1,

(4.50)

Where two new electronic tunneling rates enter the equations: Γ01 =

Γe−λ2
λ2∑

α fα(ωc) and Γ12 = Γe−λ2
λ2 (2−λ2)2

2

∑

α fα(ωc).
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Figure 4.9: Photon emission processes considered. (a) Photon emission
from the ground state by an electron tunneling through the junction with
rate Γ01. (b) Photon emission from the first excitation of the cavity by
an electron tunneling with rate Γ12
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Fig. 4.9 shows the two processes involved in the photon emission. In
panel (a), we recognize the process that we already took into account in
Eq. (4.6). It corresponds to a photon being excited by the fluctuation
of the charge of the quantum dot in the cavity in its ground state. The
rate Γ01 is the product of the tunneling rate Γ, the Fermi distribution
and the Franck–Condon overlap between the wave function of the cavity
mode at 0 photon and the wave function of the cavity mode displaced by
Λ due to the electron on the molecule at 1 photon. As mentioned earlier,
the Fermi distribution leads to the condition on the voltage drops that
allows for this transition. The Franck–Condon overlap between the two
wave functions of the cavity mode involved in Γ01 is e−λ2

λ2.
The second process, panel (b), that we consider is the excitation of an

additional photon from the charge’s fluctuations on the dot in the cavity
populated by one photon. The rate corresponding to this process is Γ12

and is proportional to the overlap between the wave function of the cavity
mode with 1 photon and the wave function of the cavity mode with 2
photons displaced by λ due to the additional electron on the dot. This
overlap is given by e−λ2

λ2(2−λ2)2/2. Since the rate equations Eq. (4.50)
involve a finite number of unknowns, it is solvable and the populations
are found in



































P0 = 2κ2
↓/∆

P1 =
2κ↓
∆

(κ↑ + Γ01 + Γ02)

P2 = (κ↓Γ02 + (2κ↑ + Γ12)(κ↑ + Γ01 + Γ02))/∆,

(4.51)

Here we defined ∆ = κ↓(Γ02 + 2κ↓) + (κ↓ + Γ01 + Γ02)(Γ12 + 2(κ↑ + κ↓)),
κ↑ = κnB and κ↓ = κ(nB + 1). Introducing Eq. (4.51) into Eq. (4.44) we
find at the first inelastic threshold eVL = ωC

g(2)(0) =
2Pp(2)

Pp(1)2
=

Γ12

Γ01

=
(2 − λ2)2

2
. (4.52)

This approximation of the degree of coherence shows that g(2) at the
first inelastic threshold mainly depends on the coupling strength λ. From

Eq. (4.52) we predict that anti-bunching is possible when
√

2 −
√

(2) ≤

λ ≤
√

2 +
√

2 for a symmetrically biased junction, with a minimum of
g(2)(0) = 0 at λ =

√
2. The comparison between the analytical formula

Eq. (4.52) and the numerical calculation is shown on Fig. 4.8 in the
dotted black curve that represents Eq. (4.52) at λ =

√
2. We see that

Eq. (4.52) fit very well the purple curve λ = 1.4 even up until the second
inelastic threshold at eVL = 2ωc. Of course this is due to the fact that
we took into consideration all the rates involving Pp(2), Pp(1) and Pp(0),
a better fit at higher voltage drops could be found by considering more
populations in the rate equations.

As a conclusion anti-bunching for a single-electronic level is possible
depending on the coupling strength since the emission of a second photon
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red regions at the upper left and lower right corners shows the super-
bunching due to electron-tunneling assisted multi-photon emission in the
junction. As λ increases in panel (b) the strong bunching in the upper
left and lower right corners becomes even stronger due to the increase of
the photon-assisted electronic tunneling rates given in Eq. (3.58). Also
four blue regions in which the photons are anti-bunched appear. Increas-
ing further the coupling strength up to λ = 1.4 in panel (c), we see that
the blue regions expand toward the line eVL = −eVR corresponding to
the symmetrically biased junction. As the blue regions merged together,
g(2)(0) goes to even smaller values for the symmetrically biased junction.
Hence, it seems that anti-bunching is attained for a wider range of cou-
pling strength in a non symmetrically biased junction. This has some
interest since in most experimental setups the junction should not be
symmetrical. However, the strongest suppression of the photon-bunching
is obtained in the symmetrically biased junction. This is confirmed in
Fig. 4.11 panel (c) which shows the minimal value obtained for g(2)(0)
over any value of the left and right voltage drops (blue line) and for a
symmetrically biased junction (purple dashed line) as a function of the
coupling strength λ.

We explained the anti-bunching using Eq. (4.52) as the suppression of
the electron tunneling assisted photon rate Γ12. This rate is actually the
sum of four electron tunneling rates: Γ12

01:L/R and Γ02
11:L/R each producing

a photon in the cavity starting from the cavity already populated by
one photon. Fig. 4.12 shows a representation of the electron tunneling
processes at the first inelastic thresholds resulting in the emission of a
photon (panel (a) and (b)) and the representation of their corresponding
energy thresholds (panel (c) and (d)) for a symmetrically biased junction
(panel (a) and (c)) and a non-symmetrically biased junction ((b) and
(d)). In the case of the symmetrically biased junction, the channels can
be considered as pairs since when eVL passes an energy threshold for the
charge of the dot corresponding to the emission of k photons (eVL > kωc),
at a given bias voltage (eVL = −eVR = eV/2 where eV defines the bias
voltage) eVR meets the threshold for the emission of k photons from
the discharge of the dot (eVR < −k). Therefore at the first inelastic
threshold in a symmetrically biased junction there are two tunneling
channels contributing to g(2)(0). Whereas for a non-symmetrically biased
junction only one tunneling channel is contributing since only one of the
voltage drop passes through an inelastic threshold. An example of that is
shown in Fig. 4.12 panel (b) and (d) where the left potential µR is tuned
to the dot energy ε0 and therefore the electrons on average only tunnel
in the direction of the right lead and photons are only emitted during
the charging process when an electron leaves the left lead to go onto the
dot. This explains why the anti-bunching in the case of a symmetrically
biased junction requires a bigger coupling strength.
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the degree of coherence. Nevertheless looking at the minimization over
the full plane (eVL, eVR), we see that in general we largely underestimated
the range for which anti-bunching is possible. Indeed, the condition of
anti-bunching is 0.17 ≤ λ ≤ 1.85 from the numerical results. Surprisingly

the upper-limit we predicted from Eq. (4.52) at λ =
√

2 +
√

2 is pretty
accurate though the actual maximum value of λ for which anti-bunching
is found correspond to an asymmetrically biased junction since the blue
curve and the dashed purple curve do not coincide for 1.7 < λ < 2.
Fig. 4.11 panels (a) and (b) shows g(2)(0) as a function for various values
of the temperature. Temperature has a very straight forward effect on
g(2)(0) as it sharpened the thresholds at each integer values of eVL.
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Figure 4.12: Photon emission processes. (a) for a symmetrically biased
junction and (b) for an unsymmetrically biases junction. Panel (c) and
(d) represent the energy thresholds corresponding to the tunneling chan-
nels in panel (a) and (b), respectively.
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Chapter 5

Dipolar coupling of a
two-level quantum dot

So far we have studied the single–level quantum dot. We found that
the charge fluctuations, when coupled to the electromagnetic field of a
cavity, allows to observe new phenomena not expected otherwise: Specif-
ically non-classical photon emission. However, the case of the presence
of two electronic levels is also of great interest and it has attracted much
attention from the STM community as the most regarded explanation
of light emission in molecular STM junctions [66, 68, 71]. An important
difference with the single level case is the presence of the dipolar interac-
tion [14, 95, 101]. The system has two states with the same total charge
on the molecule, corresponding to an electron in either the lower or the
higher electronic level.

The dipolar momentum between the two states couples to the elec-
tromagnetic field of the cavity. One major effect of this coupling is that
it impacts drastically the spectrum of the two–level dot and the cavity
when the detuning between the levels is close to resonant with the cavity
frequency [102–108]. On top of this effect, electronic current through
two–level quantum dot has been shown to impact photon emission in the
cavity and conversely [74, 75, 108–112]. It is clear that in this problem
the interplay between the energy splitting ∆ of the two-level system and
the cavity resonating frequency will play an important role. We will as-
sume in the following that the cavity is tuned at this difference of energy
ωc = ∆.

5.1 Model Hamiltonian

In this chapter we want to explore the light emission from a two-level
molecular junction in a cavity. More precisely we want to focus on the
dipolar interaction between the electronic transition in the molecule and
the cavity electromagnetic field. Doing so, we want to predict from a
theoretical point of view what would be the response of the cavity under
electronic current excitation neglecting the monopolar interaction of the
two electronic levels of the molecule with the cavity field. Therefore,
our system is similar to the system we studied in the previous chapters.
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of excitations in HS [103,105,106]

Hr
S = ε0d

†
gdg + (ε0 + ∆)d†ede + ωca

†a+ Λ2(d
†
gdea

† + d†gdea). (5.6)

This form is similar to the Jaynes–Cummings Hamiltonian. Then at
moderate coupling-constant values 0.45 ≤ λ ≤ 2 the energy ordering of
states n,+ and n,−, for n > 0, changes and the even states become
of higher energy than their corresponding odd states. At λ = 0.45 the
energies predicted using the rotating wave approximation significantly
deviate from their real values [103,104]. The Lamb shift, originating from
virtual transitions, are of order λ2ωc. However, they are not taken into
account in the rotating wave approximation since this effect is generated
by the counter–rotating terms in the coupling. This explain the deviation
between the energy predicted using Hr

S compared to HS [103]. Finally for
λ > 1 the states n,+ and n,− are degenerate. We will concentrate on the
low coupling regime, since so far, experiments on single molecules do not
reach coupling strength above a few percent of the photon energy [29].
As in this regime the rotating wave approximation gives good results,
we will work with that. This means that in the following we neglect
the terms that do not conserve the number of excitation in H [108].
However starting from the moderate coupling regime the rotating wave
approximation fails, therefore, we drop it.

We focus on the resonance between the dipole and the cavity mode
∆ = ωc. The Hamiltonian Hr

S is exactly solvable [92, 107]. We first use
the basis {|0, q〉, |g, q〉, |e, q〉, |2, q〉}q, where q is the number of photons
in the cavity and {0, g, e, 2} are the states of the quantum dot (0 and
2 for the unoccupied and doubly occupied dot and g and e for the oc-
cupation of the LUMO and HOMO alone respectively) and we find the
eigenstates {|0, n〉, |S, n〉, |A, n〉, |2, n〉}n with corresponding eigenvalues
{nωc, nωc + ε0 − Λ

√
n, n+ ε0 + Λ

√
n, (n+ 1)ωc + 2ε0}n, where n ∈ N is

the number of excitations of a state [102, 107, 109]. |0, n〉 designates the
states with n excitations and 0 electrons on the dot while |2, n〉 desig-
nates the state with n excitations and 2 electrons on the dot. We define
|Sn〉 = |e,n−1〉+|g,n〉√

2
and |An〉 = |e,n−1〉−|g,n〉√

2
for n > 0. For n = 0, we define

|S0〉 = |g, 0〉 and |A0〉 doesn’t exist. Therefore the gap we found between
two consecutive energies of same parity is the Rabi splitting 2Λ

√
n which

is the energy separating |Sn〉 and |An〉.

5.2 Electronic current

Let us first look at the current characteristics and obtain a description for
the current assisted light emission [74,75,108]. We use the rate equation
approach to find the electronic current. As we identified three coupling
regimes, we separate this section into three parts, one for each regime,
plus an additional section for the non-interacting case.

5.2.1 Non-interacting case (λ = 0)

In the simplest case, the coupling Λ is set to 0.
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µL

µR

∆
ε0

ΓL→e ΓR→e

ΓL→g ΓR→g

Figure 5.3: Two-level quantum dot tunnel junction

As for the single–level dot, we consider the sequential tunneling regime
where kBT ≫ Γ. We regard the tunneling Hamiltonian Hint as a pertur-
bation, and we diagonalize exactly the system Hamiltonian HS. Then we
compute the tunneling rates using Fermi’s golden rule. We find a very
simple expression of the tunneling rates















































Γα→g = Γαgf
+
α (0)

Γα→e = Γαef
+
α (∆)

Γα←g = Γαgf
−
α (0)

Γα←e = Γαef
−
α (∆),

(5.7)

where Γα→k designates the rate for an electron to tunnel from lead α to
the dot’s level k. From the tunneling rates we deduce the rate equations:



















































Ṗ (0) = Γ←gP (g) + Γ←eP (e) − (Γ→g + Γ→e)P (0)

Ṗ (g) = Γ→gP (0) + Γ←eP (2) − (Γ←g + Γ→e)P (g)

Ṗ (e) = Γ→eP (0) + Γ←gP (2) − (Γ←e + Γ→g)P (e)

Ṗ (2) = Γ→eP (g) + Γ→gP (e) − (Γ←g + Γ←e)P (2),

(5.8)

where Γ→k =
∑

α Γα→k. Solving Eq. (5.8) we find the populations















































































P (0) =
Γ←eΓ←g

ΓΣ

P (g) =
Γ←eΓ→g

ΓΣ

P (e) =
Γ→eΓ←g

ΓΣ

P (2) =
Γ→eΓ→g

ΓΣ

(5.9)

where ΓΣ = Γ→eΓ→g + Γ→eΓ←g + Γ←eΓ→g + Γ←eΓ←g. The expression for
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5.2.2 "Weak" coupling λ < 0.45

In section 5.1, we showed the eigenstates and eigenenergies of the Hamil-
tonian HS. From these eigenstates, we can use the Fermi’s golden rule
with the interaction Hamiltonian Hint as a perturbation of HS to find the
rates for an electron tunneling from the leads to the dot [75,86,88,111]



















































Γn
α→ = Γαgf

+
α (−Λ

√
n)

Γn+
α→ = Γαef

+
α (ωc − Λ

√
n)

Γ
n

α→ = Γαgf
+
α (Λ

√
n)

Γ
n+

α→ = Γαef
+
α (ωc + Λ

√
n)

(5.11)

and the rates for an electron tunneling from the dot to the leads
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n+
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−
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√
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Γn+
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√
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α← = Γαgf

−
α (−Λ

√
n)

(5.12)

We can start by comparing the two-electronic level case to the single–
electronic level case for the rates. Indeed, in the case of a single–level
dot, the tunneling rates couple any states of the cavity to one another, as
long as the Franck–Condon overlap is not vanishing Eq. (3.58). However,
in the two-level case in the weak coupling regime, the electronic tunnel-
ing is dominated by the coupling between states of the same excitation
number. In our approximation this translates in having tunneling rates
only between states of the same excitation number. This is easily seen
from the fact that the tunneling rates between an initial state |i〉 and
a final state |f〉 is proportional to |〈i|Hint|f〉|2, and that the tunneling
Hamiltonian Hint is purely electronic. Therefore, a tunneling event can
at most modify the number of photons by one. Intrinsically we can’t
have multiple photon emission or absorption for the two-level system for
λ < 0.45.

Another striking difference is seen in the Fermi function’s argument.
In the case of a single level, the energy condition in the Fermi functions
corresponded to the difference of photon number between the two states
involved in the transition. Therefore, it was an integer multiple of the
photon energy. In the case of the two-level dot, this energy difference
depends on the coupling strength and on the square root of the number
of photons. Thus, we expect that steps in the electronic current will
appear at each Λ

√
n or ωc ± Λ

√
n instead of each nωc.
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The rate equations read






























































































































Ṗ (|n, 0〉) = P (|Sn〉)Γn
← + P (|An〉)Γn

← + P (|Sn+1〉)Γ(n+1)+
←

+ P (|An+1〉)Γ(n+1)+
← − P (|n, 0〉)(Γn

→ + Γ
n
→ + Γ(n+1)+

→ + Γ
(n+1)+
→ )

Ṗ (|Sn〉) = P (|n, 0〉)Γn
→ + P (|n − 1, 0〉)Γn+

→ + P (|n − 1, 2〉)Γn
←

+ P (|n, 2〉)Γn+
← − P (|Sn〉)(Γn

← + Γ
n
→ + Γn+

← + Γ
n+
→ )

Ṗ (|An〉) = P (|n, 2〉)Γn+
← + P (|n − 1, 2〉)Γn

← + P (|n − 1, 0〉)Γn+
→

+ P (|n, 0〉)Γn
→ − P (|An〉)(Γn

→ + Γ
n
← + Γn+

→ + Γ
n+
← )

Ṗ (|n, 2〉) = P (|An〉)Γn+
→ + P (|Sn〉)Γn+

→ + P (|An+1〉)Γ(n+1)
→

+ P (|Sn+1〉)Γ(n+1)
→ − P (|n, 2〉)(Γn+

← + Γ
n+
← + Γ(n+1)

← + Γ
(n+1)
← )

(5.13)

Here we don’t take into account the damping of the cavity. From these
equations we obtain for the tunneling current in the stationary regime:

IL→ =
∑

n

{

P (|n, 0〉)(Γn
L→ + Γ

n

L→ + Γ
(n+1)+
L→ + Γ

(n+1)+

L→ )

+P (|Sn〉)(Γn+

L→ + Γ
n

L→) + P (|An〉)(Γn
L→ + Γn+

L→)
}

IL← =
∑

n

{

P (|n, 2〉)(Γn+1
L← + Γ

n+1

L← + Γn+
L← + Γ

n+

L←)

+P (|An〉)(Γn+

L← + Γ
n

L←) + P (|Sn〉)(Γn
L← + Γn+

L←)
}

,

(5.14)

where the net tunneling current IL is

IL = IL→ − IL←. (5.15)

Fig. 5.5 shows the electronic current as a function of the voltage drops.
As expected we see in the conductance the signature of the Rabi split-

ting in the splitting of the two peaks at eVα = ωc. This means that in
an experiment, a two-level dot junction coupled to a cavity mode with
only a dipolar coupling should exhibit the Rabi splitting in its conduc-
tance for a coupling λ < 0.45 and we predict light emission from the
split states at eVα = ωc ± Λ [109, 112]. We see in the conductance a
first pick at eVL = 0 which corresponds to µL = ε0. This peak cor-
responds to electronic tunneling through the ground state |S0〉. Then
there is another pick at eVL = ∆ = ωc (µL = ε0 + ∆) corresponding to
electrons tunneling through the excited state while the ground state is
already populated. In other words, this is a transition from |S0〉 to |0, 2〉.
Those two kinds of tunneling events do not involve photon emission nor
absorption. Close this last pick we discussed there are two side smaller
picks, for eVL = ωc ± Λ. These picks correspond to transitions from the
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in this case since it is at the extremity of any path in the two graphs.
Therefore any random walker on the graphs ends at some point on |S0〉
and can’t leave. Hence in the stationary regime P (|S0〉) = 1.

|0, 1〉

|S1〉 |A1〉

|0, 0〉 |2, 0〉

|S0〉

|2, 1〉

|S1〉 |A1〉

|0, 0〉 |2, 0〉

|S0〉

Figure 5.13: Graph of the transitions allowed for Λ < eVα < ωc − Λ by
electron tunneling.

Increasing VL, for Λ < eVR < ωc − Λ and eVL > ωc − Λ (light red
region in the upper left region in Fig. 5.6), the tunneling rates that are
not vanishing are: Γ1

L/R→, Γ
1

L/R→, Γ
1+

R←, Γ1+
R← and Γ1+

L→, Γ
1+

L→. Γ1+
L→ corre-

sponds to transitions from |0, 0〉 to |S1〉 and from |A1〉 to |2, 1〉 (emission
of 1/2 photons). Γ

1+

L→ corresponds to transitions from |0, 0〉 to |A1〉 and
from |S1〉 to |2, 1〉 (emission of 1/2 photons).

|0, 1〉

|S1〉 |A1〉

|0, 0〉 |2, 0〉

|S0〉

|2, 1〉

|S1〉 |A1〉

|0, 0〉 |2, 0〉

|S0〉

Figure 5.14: Graph of the transitions allowed for Λ < eVR < ωc − Λ and
ωc > eVL > ωc − Λ by electron tunneling.

Even though more path are allowed compared to the previous regime
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we explored (Λ < eVα < ωc − Λ), |S0〉 is still the only possible end of any
path in the graphs (see Fig. 5.14). Therefore, the stationary population
can still only be P (|S0〉) = 1 and |S0〉 has no photon.

This remains true until one of the voltage drops reach ωc, then elec-
trons can go back and forth between |S0〉 and |2, 0〉 and the stationary
population is distributed between those two states depending on the ra-
tio ΓLe/ΓRe (see Fig. 5.15). Anyway none of these two states include a
photon therefore the cavity is empty in this region.

|0, 1〉

|S1〉 |A1〉

|0, 0〉 |2, 0〉

|S0〉

|2, 1〉

|S1〉 |A1〉

|0, 0〉 |2, 0〉

|S0〉

Figure 5.15: Graph of the transitions allowed for Λ < eVR < ωc − Λ and
ωc > eVL > ωc − Λ by electron tunneling.

We conclude that in an experimental case, unless one of the electronic
leads is tuned the energy of the ground state of the dot |S0〉, we expect
from our model, that the number of photons in the cavity should not
be affected by the electronic current going through a two-electronic level
quantum dot.

Now let’s focus panel (c) in Fig. 5.12. As the coupling strength in-
creases, the average number of photons in the cavity also increases in
the region where electronic current is allowed, however we see that the
top left and bottom right red regions of the 2D map are getting bigger
as their thresholds are moved from eVα = ωc − Λ to eVα = −Λ. Also,
an island of large intensity appears around eVL = eVR = 0. In fact this
Island corresponds to the highest light intensity in the cavity where light
behave coherently from our prediction of 〈a†a〉 = λ2.
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the cavity is in its ground state |0, 0〉. As soon as eVL > 0 the average
number of photons in the cavity increases. So, while in the case of the
symmetrically biased junction at eVR = eVL = 0, P (|S0〉) ≃ 1, in the
case shown in Fig. 5.16 panel (b), the system can’t reach this value
and the average number of photons is lower. However the plateau for
0 < eVL < ωc − Λ is obtained in both cases. We then see the exact same
structure in the two cases.

Hence, as the coupling strength grows, its effect on the ground state
of the molecule |S0〉 (in other words the HOMO) can greatly modify the
emission spectrum. Indeed, not only |S1〉 and |A1〉 corresponds to light
emission, but also |S0〉 in this case.

Fig. 5.17 shows the second order correlation function of the field of
the cavity corresponding to the same three cases shown in Fig. 5.16 [110].
We see that panel (a) and (b) of Fig. 5.17 and Fig. 5.16 have the same
structure. In the regions where the electronic current does not affect the
photonic population of the cavity, the cavity should remain in its thermal
equilibrium. Therefore, the photons are bunched and g(2)(0) ≥ 1. But
when the electronic current starts to affect the field of the cavity at the
thresholds eV = ωc − Λ, the second order degree of coherence suddenly
decreases. This can be understood from the fact that only single photon
processes are involved, since only transitions between states |n, 0〉 or |n, 2〉
and |Sn±1〉 or |An±1〉 produce a photon exchange. Therefore on a time
scale given by Γ at most one photon can be produced in the cavity.
It then appears that anti-bunching is far more easier to obtain with two
electronic levels than with one since there is no multi-photon process with
a dipolar coupling assuming the system is not in the ultra-strong coupling
regime. However panel (c) shows that when the coupling strength become
high enough the anti-bunching is killed and the electronic current even
produces strong bunching with g(2)(0) ∼ 10.
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Chapter 6

Conclusions

6.1 Summary

Electron-light coupling as long been studied in quantum optics and us-
ing microwave cavities. These kinds of experiments have shown the effect
of the hybridization of the dipole of a molecule and the electric field of
the cavity and the well known Rabi-splitting. However more recently
physicists have tried to couple the electric field of the cavity to electronic
transport as a way to control the light emitted from the molecule. In par-
allel, as microwave cavities are confined to single-molecule weak coupling
and knowing that the coupling inversely scales with the volume of the cav-
ity, physicists have designed plasmonic cavities at the nanoscale in which
they hopped to observe the strong-coupling regime at the nanoscale. The
mix of those two results is found in STM experiments where the STM act
as a nanoplasmonic cavity and as the electronic leads of a nanocircuit.

This thesis proposes a theoretical framework for studying the cou-
pling between electronic transport and the electric field in a cavity. Our
results are applicable for nanoplasmonic cavities such as STM cavities
as well as microwave cavities coupled to a nanocircuit. One major ef-
fect of the coupling between an electronic current is that not only the
cavity electric field couples to the dipolar momentum of the molecule
inside the cavity, but it also couples to the charge fluctuations on the
molecule. This leads to a "monopolar" coupling that is similar to the
coupling between phonons and electrons that has long been studied in
molecular electronics. The electron–phonon coupling has been studied
in the Franck–Condon physics. As in the experiments we are interested
in, typically Γ ≪ kBT and we were interested in studying the effect of
the coupling strength on our model, we use a density matrix approach
to solve our model in the sequential tunneling regime. This allows us to
treat any regime of coupling however we are restricted to sequential tun-
neling of electrons and neglect any co-tunneling event. By first limiting
the system to a single electronic level for the molecule in the junction,
we show some specificity of that comes with the coupling the the charge
fluctuations on the molecule and we clearly demonstrate the equivalence
with the Franck–Condon physics. Hence we showed that the electronic
current for a single level exhibits steps at each multiple of the photon en-
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ergy that corresponds to the inelastic tunneling of the electrons leading
to the emission or absorption of some photons in the cavity. Moreover
we also incorporated the effect of a bosonic environment to our model as
plasmonic cavities are known, due to their small size, to have small qual-
ity factors (Q < 103). Hence we developed a way to compute the current
that take into account the broadening due to the large damping rate of
the cavity. As we are interested in the photonic response of the cavity,
our method does not require any assumption on the photons distribution
in the cavity. As the electronic current shows photons are emitted in the
cavity due to the electron tunneling, we show that the average number of
photons in the cavity displays the exact same behaviour as the electronic
current depending on the voltage that is imposed to the electronic leads.
Then studying the photon correlation functions we show that the single
electronic-level junction shows very unusual behaviour for the emitted
light: Super-bunching at large voltage, where multi-photon emission is
dominant. Anti-bunching at the first inelastic threshold where only one
photon can be emitted in a single electron tunneling event. Of course the
existence of the anti-bunching depends on the electron-photon coupling
strength. We show that the condition of its existence is mainly found in
the Franck–Condon overlap. That is the overlap between a wave func-
tion of the bare cavity mode and of the cavity mode displaced by Λ due
to the coupling with an electron on the molecule. This overlap affects
the photon-assisted electron tunneling rates and we were able to show
that around λ =

√
2 the tunneling rate responsible for the emission of a

second photon in the cavity is suppressed.
As mostly the two level system is studied in cavity quantum electro-

dynamics and it is viewed as the most probable cause of light emission
in STM junctions, we then applied our model to the case of a two-level
system with no "monopolar" coupling. In this case we showed that the
hybridization between the molecule and the cavity electric field was mea-
surable in the current even in plasmonic cavities. The signature of the
hybridization is shown in the conductance where two side peaks appear
around the peak that correspond to the tunneling through the second
electronic level. These side peaks are separated in energy by the Rabi-
frequency 2Λ where Λ is now the "dipolar" coupling. It is to be expected
that to these two new peaks correspond light emission processes and
this is shown in the light emission spectrum. It is interesting to em-
phasize that the monopolar and dipolar coupling are both responsible
for light emission. However in the case of the monopolar coupling many
transitions could result in light emission whereas for the dipolar coupling
mainly two transitions are responsible for light emission. This comes from
the fact that for the dipolar weak coupling regime, only single-electronic
states can emit one photon in the cavity. The light g(2) correlation func-
tion shows that in the case of the dipolar coupling antibunching is seen
as soon as the hybridized states are involved in the electronic transport
as only single-photon emission is possible in this case. Thus antibunch-
ing is seen at weak coupling strength, which means that the design of
a single-photon source should be easier using the dipolar coupling only
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compared to the monopolar case. Interestingly as the dipolar coupling
strength increases the model starts to deviate towards an equivalent of
the monopolar coupling for two electronic levels and we lose the anti-
bunching in the strong coupling regime.

6.2 Outlook

While we were able to answer some questions about the effect of the
electronic transport on the light emission, a lot more remains to be done.
One major addition we can do is to include both the monopolar and
the dipolar coupling, and see what are the resulting current and photon
statistics. From the experimental point of view, for the two-level system,
they both are present.

For our work we developed a python library that we can use to study
more complex Systems. We could take into account vibrational effects
on the molecule, adding phonons in our model.

Another interesting case is the study of the super radiance in which
the light emission is enhanced by the collective interaction of several iden-
tical molecules. Regarding the effect of the driving of the electric field on
the electronic current, We only partially answered this question, studying
the strong drive regime where the photons field becomes classical.

Finally on the method we used, it would be interesting to study the
limitations of the Markov approximation that is no more valid for damp-
ing rates of the cavity κ > kBT . The dynamics become non-Markovian
and require a different approach.
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Appendix A

Numerical methods

As mentioned through the manuscript, a lot of results have been obtained
numerically when analytical calculation was not possible. To this end we
developed a python package named cavity implementing the various
approached we used for our calculations. Our package is based on the
use of the python libraries numpy, scipy and netCDF4 for data storage.
The package is build around four modules. The first module implements
the Hamiltonians used through our work. It makes use of the package
secondquant developed by T. Frederiksen, implementing general second
quantization operators. The Hamiltonians are returned in matrix repre-
sentation. Then the three other modules implement the rate equation
approach, the full Liouvillian approach and the time-dependent approach
used to solve section 3.8. The latter three modules have a similar imple-
mentation.

Algorithm 1: How to compute ρS.
Build the Hamiltonian of the system Hs;
From Hs build the Liouvillian Eq. (3.50) or its secular
approximation Eq. (3.57) as a matrix;

Replace a line in L with the matrix representation of Tr(X);
Solve Lρ = B where B ensures that Tr(ρ) = 1;
Convert ρ into a matrix;
Result: Compute the density matrix ρ

In Algorithm 1, the reduced density matrix is computed from the
Liouvillian operator. Once this is done, ρ can be used to compute any
physical quantity 〈O〉. In the simplest case, corresponding to the Fermi
golden rule approach, only the diagonal part of the density matrix is
computed. Then any physical quantity can be computed.
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Algorithm 2: How to compute 〈O〉 as a function of the voltage
drops

Initialize a 2D voltage map V = (VL, VR);
Initialize the matrix representation of O;
for µL, µR in V do

Compute ρS(µL, µR);
Compute Tr(Oρ);

end
Result: Compute 〈O〉 as a function of voltage map V

Of course the calculation of the electronic current in the case of the
full density matrix implementation is a little bit more complicated as
we recollect the coherent evolution of the cavity mode. In this case
Algorithm 2 still applies but we use Algorithm 3 instead of computing
the trace in the for loop of Algorithm 2.

Algorithm 3: How to compute the electronic current taking into
account the cavity damping

Initialize the Liouvillian Eq. (3.50);
Compute ρ;
Define a grid G;
for ω in G do

Compute the current density i(ω) in frequency space;
end
Integrate the current density;
Result: Compute the electronic current

For the integration Algorithm 3 uses numpy function trapz. Finally
the time dependence of an operator is computed using the Liouvillian
operator L using exponential multiplication expm_multiply from scipy.
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Algorithm 4: How to compute time dependent correlation func-
tions

Result: Compute a time dependent correlation function
Initialize operators O1 and O2;
Initialize the Liouvillian;
Compute ρ as a matrix;
if t ≥ 0 then

Compute v = O2ρ as a vector;
Compute S = expm_multiply(Lt, v) as a matrix;
Compute Tr(O1S);

end
else

Hermitian transpose O1 and O2;
Compute v = O1ρ as a vector;
Compute S = expm_multiply(-Lt,v) as a matrix;
Compute Tr(O2S)∗;

end

Algorithm 4 separates the case of positive and negative times as the
formula used to holds only for positive times. To address negative time
evolution one has to Hermition transpose the expression and makes the
system evolves with −L.
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