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Titre : Commande et commande tolérante aux fautes par modes glissants: application à une
mission de rendezvous en orbite circulaire

Résumé : De nombreux travaux de recherche ont été conduits dans le domaine de synthèse de
lois de commande par modes glissants. Différentes approches de commande été proposées dans la
litérature, telles que l’algorithme Super-Twisting (STA) et sa version récente, l’algorithme généralisé
Super-Twisting (GSTA). Les travaux de recherche présentés dans ce mémoire de thèse s’inscrivent
dans ces méthodes pour résoudre le problème de commande et de commande tolérante aux fautes,
pour une mission spatiale. La mission considère une cible passive et un chasseur. L’objectif visé
est de synthétiser les lois de contrôle d’attitude et de mouvement relatif, tolérantes aux pannes.
Les approches proposées abordent la problématique des modes flexibles des panneaux solaires et
des phénomènes de ballottement du carburant dans les réservoirs.
Dans un premier travail, une loi de commande de type STA est proposée dans une configuration dite
de backstepping. Dans un second travail, une loi de commande tolérante aux fautes basée sur les
modes glissants du second ordre, est proposée. La solution est basée sur l’algorithme GSTA ,placé
en boucle externe de compensation de défauts utilisant un estimateur de défauts non linéaire. Le
problème de saturation des actionneurs est également abordé et une solution basée sur la géométrie
polytopique, est proposée. Les éléments clés de l’approche tolérante aux pannes sont, i) d’une
part la solution ne nécessite pas de diagnostiquer les fautes et donc n’utilise pas d’algorithme de
détection et de localisation de défauts, et ii), d’autre part, l’approche est basée sur le formalisme du
quaternion dual qui permet de tenir compte des effets de couplage attitude/mouvement relatif. Des
critères orientés mission, illustrent les résultats obtenus au travers d’une campagne de simulation
réaliste.

Mots clés : Modes glissants, commande tolérante aux fautes, quaternion dual, mission spatiale.

Title : Sliding mode control with fault tolerance capacities: application to a rendezvous mission
in a circular orbit

Abstract : Increasing attention has grown with regards to Sliding Mode Controllers (SMC).
In order to reduce the so-called chattering effect, the Super-Twisting Algorithm (STA) has been
proposed, recently. In this work, a controller based on the STA in a backstepping setup, is pro-
posed for spacecraft rendezvous in a circular orbit. A key feature is that the chaser is not treated
as a point mass, given that the effects of the flexible modes and propellant sloshing phenomena
are considered. The results obtained are taken further, given that the guarantee of robustness
against perturbations is not enough when it comes to critical systems, through the second order
sliding mode controllers technique. It is shown that the technique enables to solve to problem of
fault tolerant control. The solution is based on the Generalized Super-Twisting Algorithm (GSTA)
with an anti-windup strategy and a nonlinear observer and the dual quaternion formalism. The
main reason of employing a GSTA is because it offers more robustness against state dependent
perturbations (sloshing phenomena and flexible modes) than the STA. In addition, with the help of
the anti-windup strategy, the control law does not saturate the thrusters, avoiding instablity when
faults occur. The proposed solution is evaluated through a simulation campaign in a high-fidelity
non-linear simulator, and mission oriented criteria demonstrate its potential.

Keywords : Sliding modes, fault tolerant control, dual quaternion, aerospace application.

IMS - UMR n.5218 - Bat A31 - Université de Bordeaux - 351 cours de la
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Extended Abstract

Sliding mode control with fault tolerance capacities:
application to a rendezvous mission in a circular orbit

With the growing complexity of control systems, researchers have focused their work on the de-
velopment of robust control laws. Increasing attention has grown with regards to Sliding Mode
Controllers due to its attractive properties: finite time convergence and robustness against matched
disturbances (i.e. disturbances that act on the input channels). It is known that its main drawback
is the chattering effect. In order to reduce this effect, different modifications to the original tech-
nique have been proposed, take for instance the Super-Twisting Algorithm (STA). In this work,
a controller based on the STA in a backstepping setup, is proposed for spacecraft rendezvous in
circular orbit. The rendezvous takes place between a passive (no sensors or actuators) and an active
spacecraft (has sensors, actuators and a Guidance Navigation and Control (GNC) unit). Along
this work, the passive spacecraft is called the target and the active spacecraft is called the chaser.
In addition, the chaser is not treated as a point mass, given that the effects of the flexible modes
and the sloshing phenomena are considered. Furthermore, it has a Control Allocation (CA) unit,
which distributes the control signal into the thrusters. No measurement noise is considered. The
potential of the proposed solution is shown with a high-fidelity nonlinear simulator that considers
the most dimensioning space disturbances (e.g. second zonal harmonic J2, atmospheric drag, mag-
netic disturbance).

The results obtained are taken further, given that the guarantee of robustness against perturba-
tions is not enough when it comes to critical systems. In other words, it is now considered that not
only disturbances can affect the performance of the system, but also faults. Then, the capability
of second order sliding mode controllers to compensate for both, disturbances and faults, is ana-
lyzed. A control that is capable of maintaining an acceptable performance despite the occurrence
of faults is called Fault Tolerant Control (FTC). It is known that certain type of thruster faults
can be modelled in an additive form, i.e. as matched disturbances. From this premise, the work
in this thesis proposes a solution that consists of Generalized Super-Twisting Algorithm (GSTA)
with an anti-windup strategy and a nonlinear observer. The main reason of employing a GSTA is
because it offers more robustness against state dependent perturbations (sloshing phenomena and
flexible modes) than the STA. In addition, with the help of the anti-windup strategy, the control
law does not saturate the thrusters. The proposed solution does not assume the existence of a
Fault Detection and Identification (FDI) unit, i.e. the system is not aware of the occurrence of
a fault. Therefore, the CA unit does not play an active role in the proposed FTC solution. The
considered faults are stuck open and stuck close thruster. The capability of the proposed solution
to compensate against both types of faults, is shown with simulations in the high-fidelity non-linear
benchmark.

Finally, considering that the accuracy of the control solution depends on the model, the proposed
FTC solution is based on a coupled model. This model is expressed in Dual Quaternion formalism,
which is the combination of dual numbers and quaternions. Dual quaternions have similar prop-
erties to quaternions and this allows to extend the control techniques applied to quaternions into
dual quaternions.





Acknowledgements

I would like to start my acknowledgements by thanking CONACyT (Consejo Nacional de Ciencia
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[2] David Henry, Jazmı́n Zenteno Torres, Jérôme Cieslak, Jorge Dávila, and Alejandra Ferreira De
Loza. A dual quaternion sliding mode fault tolerant control solution for spacecraft rendezvous.
Submitted for Review to AIAA Journal of Guidance, Control, and Dynamics, 2020.

ix





Resumé en Français

R.1 Contexte

Le travail de recherche présenté dans ce mémoire de thèse, résulte d’une collaboration initiée il
y a une dixaine d’année, entre l’équipe ARIA (Approche Robuste et Intégrée de l’Automatique)
du laboratoire IMS (Intégration du Matériau au Système) de l’université de Bordeaux et L’IPN
(Instituto Politecnico Nacional) de Mexico. Les travaux menés au sein de cette collaboration visent
à développer de nouvelles méthodes de commande tolérante aux fautes, basées sur les techniques
de commande par modes glissants.

Beaucoup de futures missions spatiales requerront des opérations de proximité autonomes dans
lesquelles la détection des défauts, la localisation et les mesures de tolérance des défauts qui en
découlent, sont d’une importance cruciale. Les missions de rendez-vous et d’amarrage/capture,
comme pour la mission Mars Sample Return (MSR), le Project for On-Board Autonomy No.3
(PROBA 3) ou encore la mission e.Deorbit qui vise à capturer en orbite, le satelitte mort EN-
VISAT, sont aussi intrinsèquement liés aux conditions de fonctionnement et à la sécurité des engins
spatiaux. Les rendez-vous autonomes et les tolérances de défauts ont été reconnus par l’ESA comme
un élément clé des futures missions spatiales, ce qui nécessitera un système de Guidage Navigation
Control (GNC) hautement sophistiqué. Cette thèse porte sur la conception et la validation d’un
système de commande de tolérance de défauts actif, capable d’accommoder des défauts de tuyère
qui affectent un vaisseau spatial chasseur lors d’un rendez-vous avec un vaisseau spatial cible passif
sur une orbite circulaire. Les méthodologies proposées sont développées dans un contexte modes
glissants.

Nous présentons donc dans les paragraphes suivant, les résultats importants des contributions de
nos travaux de recherche.

R.2 Description de la mission spatiale support de nos travaux

La mission spatiale support de nos travaux de recherche, est une mission de rendez-vous entre
deux engins spatiaux, en orbite terrestre, circulaire. La problématique abordée, se concentre sur la
séquence terminale du rendez-vous de la mission, qui correspond aux derniers cent mètres, jusqu’à
la capture.

L’un des engins (la cible) est un véhicule spatial considéré sphérique, sans aucun système embarqué,
c’est à dire qu’il n’est pas équipé ni de capteurs, ni d’actionneurs, ni de système de télémétrie
embarqué. A l’inverse, le deuxième (le chasseur) est équipé de systèmes embarqués lui permettant
de contrôler son attitude et sa position, et donc d’effectuer n’importe quelle trajectoire dans l’espace
et mouvements de rotation. Le mécanisme de capture est un panier avec une ouverture cylindrique,
adaptée à la géométrie sphérique de la cible. Il est orienté selon l’axe de déplacement du chasseur.
L’objectif est de réaliser la capture avec une précision inférieure à quelques centimètres. Le chasseur
est supposé équipé:

xi



• d’un panneau solaire à deux modes flexibles, localisés à 0.1rad/s et 0.5rad/s, chaque mode
ayant un facteur d’amortissement de 0.003;

• de deux réservoirs de carburant, partiellement remplis, de telle sorte que tout mouvement
du chasseur produit des phénomènes de ballottement du carburant, dont les fréquences sont
supposées localisées à 0.4rad/s, 0.8rad/s et 1 rad/s, avec un facteur d’amortissement fixé à
0.1.

Les données relatives aux paramètres physiques de la mission, sont données dans le tableau 1.

Sous-systèmes Paramètres

MCI Masse: m = 300 kg

Inertie: J =

30 1 1
1 40 1
1 1 15

 kg m2

CoM (centre de masse): [1.5 0.2 0.15]m
Réservoir 1 Facteur d’amortissement: 0.1

Fréquence du mode 1: 0.4 rad/s
Fréquence du mode 2: 0.8 rad/s
Fréquence du mode 3: 1 rad/s
Masse du carburant: 10 kg

Réservoir 2 Facteur d’amortissement: 0.1
Fréquence du mode 1: 0.4 rad/s
Fréquence du mode 2: 0.8 rad/s
Fréquence du mode 3: 1 rad/s
Masse du carburant: 20 kg

Panneau solaire Facteur d’amortissement: 3e-3
Fréquence du mode 1: 0.1 rad/s
Fréquence du mode 2: 0.5 rad/s
Inertie: JSA =diag(10, 1, 10)kg m2

Masse: mSA = 40 kg
∆CoM chasseur - SA: d = [0 2 0]m
Angle d’orientation des panneaux: β = 0◦

Matrice de participation modale en rotation: BR:

36.64 0
0 0.06
0 −37


Matrice de participation modale en translation: BT :

 0 6.8
−0.01 0
6.54 0


Table 1: Caractéristiques physiques du chasseur

Pendant le rendez-vous terminal, le contrôle d’attitude et de position du chasseur est continu, et
supposé réalisé à l’aide de tuyères. En début de phase de rendez-vous, le guidage est modifié afin
d’aligner le mécanisme de capture avec la cible (profil de guidage d’attitude correspondant à la
phase dite d’acquisition de la cible). Puis, la position est contrôlée afin de se rapprocher de la cible,
le long de son axe de vitesse (profil de guidage en translation relative dit translation forcée), tout
en maintenant l’attitude du chasseur alignée avec la cible.

La figure 1 illustre les trajectoires du chasseur et de la cible, autour de la terre, ainsi que la
trajectoire de rendez-vous. Les figures présentées sont tirées du simulateur haute-fidélité utilisé
dans nos travaux de thèse. Le tableau 2 donne les paramètres orbitaux caractérisant la trajectoire



de rendez-vous.

Figure 1: Mission spatiale considérée dans les travaux de thèse

Paramètres orbitaux: Cible Chasseur

Rayon orbital (a) 7068km 7068km
Excentricité (e) 0 0
Inclinaison (i) 0rad 0rad
Longitude du

nœud ascendant (Ω)
0rad 0rad

Argument du périgée (ω) 0rad 0rad
Anomalie vraie (ν: ν̇ = n) ν(0) = 1, 5.10−5rad ν(0) = 0rad

Table 2: Caractéristiques de l’orbite de rendez-vous

Niveau système de mesure, le chasseur est supposé équipé d’une centrale inertielle IMU (Inertial
Measurement Units) et d’un viseur d’étoiles, de telle sorte que l’on suppose que tout l’état en
attitude (position angulaire, vitesse angulaire et accélération angulaire) est accessible, via un mod-
ule de navigation. On suppose également que le chasseur est équipé d’un système de mesure de
type LIDAR, de telle sorte que tout l’état en position relative (position relative, vitesse relative et
accélaration relative) est supposé accessible, via un module de navigation. Les modules de naviga-
tion étant pratiquement composés d’estimateurs, ces mesures ne peuvent être considérées parfaites.
Aussi, les caractéristiques suivantes sont-elles considérées:

• des précisions de 0.1deg, 0.01deg/s et 0.01deg/s2 sont considérées pour les mesures d’attitude,
de vitesse angulaire et d’accélération angulaire, selon les trois axes;

• des précisions de 2mm, 0.2mm/s et 0.2mm/s2 sont considérées pour les positions relatives



3D, les vitesses relatives 3D et les accélérations relatives 3D.

Au niveau du système d’actionneurs, deux jeux de tuyères différents sont considérés dans nos
travaux de thèse.

• Dans un premier temps, on considère un jeu de 12 tuyères de 4N , disposées et orientées
comme illustré sur la figure 2 de gauche. Cette configuration de tuyères est utilisée dans les
travaux présentés dans le chapitre 3.

• Une étude de capacité de tolérance aux pannes sur la configuration 12 tuyères, montre que
cette configuration ne permet pas d’atteindre les objectifs de tolérance aux pannes, voir
chapitre 4. Cette problématique est connue sous la terminologie ”fault recoverability property”.
Ainsi, dans un deuxième temps, on considère un jeu de 24 tuyères de 2N , disposées et orientées
comme illustré sur la figure 2 de droite.

Figure 2: Configurations des tuyères utilisées dans le chapitre 3 (gauche) et 4 (droite)

La mission complète avec toutes les caractéristiques précédemment explicitées, est implantée dans
un simulateur haute-fidélité appelé FES (Functional Engineering Simulator), développé sous Mat-
lab/Simulink. FES est un acronyme utilisé dans l’industrie du spatial pour désigner un simulateur
très haute-fidélité, permettant de jouer (et donc de valider en simulation), une mission spatiale
complète. C’est une phase cruciale dans le développement d’une mission spatiale, car elle précède
la mission réelle. Un environnement FES est utilisé pour déterminer les spécifications de mis-
sion, dimensionner les engins spatiaux, vérifier les performances des systèmes et sous-systèmes, etc.
L’environnement FES utilisé prend en compte les perturbations spatiales les plus dimensionnantes,
telles que le deuxième harmonique zonale J2, la trâınée atmosphérique, le champ magnétique ter-
restre, le gradient de gravité terrestre, la pression solaire et albédo-terrestre.

La phase terminale du rendez-vous est très critique, car toute défaillance pourrait conduire à un
échec de la mission. Il est évident, que si, par exemple, une défaillance ouvrant entièrement une
tuyère se produit (une tuyère coincée en position entièrement ouverte), des conséquences drama-
tiques peuvent survenir. Les lois de contrôle peuvent devenir instables, ce qui peut alors conduire le
chasseur à perdre l’attitude et/ou la position de la cible, ou pire entrer en collision avec la cible. Le
problème devient particulièrement critique au cours des 20 derniers mètres de la phase de rendez-
vous.

L’objectif des travaux de recherche présentés dans ce mémoire, vise à apporter des solutions à cette
problématique.



R.3 Commande placée dans une configuration backstepping

La première contribution de nos travaux de thèse est abordée dans le chapitre 3. Nous y présentons
une approche de commande par modes glissants, placée dans une configuration dite de ”boucles
imbriquées”, connue sous le terme ”backstepping”. L’objectif visé est de synthétiser les lois de
contrôle d’attitude et de mouvement relatif du chasseur, de façon à satisfaire aux spécifications
de la mission de rendez-vous. Il est important de souligner ici que la partie tolérance aux fautes
n’est pas abordée, et que le module de navigation est supposé délivré des mesures parfaites (pas de
d’erreur de mesures). Ces hypothèses sont relaxées dans le chapitre 4.

R.3.1 Modélisation

Dans ce chapitre, la dynamique de translation relative est exprimée à l’aide des équations de
Clohessy-Wiltshire, aussi appelées équations de Hill [Wie98, MG12]. Ces équations sont basées
sur l’hypothèse que la distance relative entre les deux engins est très petite devant l’orbite, ce qui
est réaliste pratiquement. Ces équations sont données dans un repère particulier appelé le repère
LVLH (Local Vertical Local Horizontal), identifié par la notation vectorielle •(l) (voir paragraphe
3.1 pour la définition de ce repère). Le modèle est donné par

[
ρ̇
ρ̈

]
=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0


[
ρ
ρ̇

]
+

[
03
I3

](
1

m
F (l)
u + γ(l)

v

)
(1)

où ρ ∈ R3 et ρ̇ ∈ R3 représentent les distances et vitesses relatives tridimensionnelles entre les deux

véhicules, dans le repère LVLH. F
(l)
u ∈ R3 représente le vecteur de forces tridimensionnelles causé

par le système de tuyères (système de propulsion). γ
(l)
v représente une accélération tridimension-

nelle généralisée qui modélise les accélérations sous forme additive, des modes souples du panneau
solaire, des ballottements du carburant et des perturbations spatiales, i.e. le deuxième harmonique
zonale J2, la trâınée atmosphérique, le champ magnétique terrestre, le gradient de gravité ter-
restre, la pression solaire et albédo-terrestre. m est la masse totale du chasseur et n =

√
µa3 où

µ = 3.9860044.1014m3/s2 est la constante gravitationnelle de la Terre.

Le modèle dynamique d’attitude est déduit de la seconde loi de Newton, exprimée dans le repère
chasseur (on parle de repère ”body”, identifiée par la notation vectorielle •(b) ) et linéarisée autour
d’une attitude et d’une vitesse angulaire de référence nulle, soit:[

Θ̇
ω̇

]
=

[
03 I3
03 03

] [
Θ
ω

]
+

[
03

J−1

]
(T (b)

u + T (b)
v ) (2)

Θ ∈ R3 et ω ∈ R3 représentent l’attitude et la vitesse angulaire du chasseur. T
(b)
u ∈ R3 représente

le vecteur de couples tridimensionnelles causé par le système de propulsion et T
(b)
v représente un

couple tridimensionnel généralisé qui modélise les couples de perturbations sous forme additive, des
modes souples du panneau solaire, des ballottements du carburant et des perturbations spatiales.

Dans cette partie de nos travaux, le couplage entre les modèles d’attitude et de position relative,
provient du système de propulsion illustré sur la figure 2 de gauche, puisque la commande des

tuyères uT génère simultanément les forces F
(b)
u = R(b)

l (Θ)F
(l)
u et les couples T

(b)
u . Ici, R(b)

l (Θ)
est la matrice de changement de repère •(l) → •(b). On montre en effet dans nos travaux que la



commande uT des 12 tuyères est liée à F
(b)
u et T

(b)
u par la relation mathématique

F (l)
u = R(l)

b (Θ)F (b)
u = R(l)

b (Θ)[Rf1 . . . Rf12 ]uT

= R(l)
b (Θ)RfuT (3)

T (b)
u =[Rτ1 . . . Rτ12 ]uT = RτuT , R =

[
Rᵀ
τ Rᵀ

f

]ᵀ
(4)

où les colonnes de R sont les coefficients de participation des tuyères, qui définissent comment

chaque tuyère affecte chaque composante des vecteurs F
(b)
u et T

(b)
u . Dans cette équation, R(l)

b (Θ)
est la matrice de changement de repère •(b) → •(l). Inverser cette équation à chaque instant t,

permet de calculer la commande uT (t) des 12 tuyères, connaissant F
(l)
u (t) et T

(b)
u (t). On parle de

module d’allocation, noté CA pour Control Allocation. Dans nos travaux, ce problème est posé
comme le problème d’optimisation suivant:

u(b)
c (t) = argmin

u
(b)
c ∈U={u

(b)
ck :0≤u

(b)
ck ≤ukmax}

∥∥∥Wv(Ru(b)
c (t)− vr)

∥∥∥
p

(5)

vr est le torseur des couples/forces de commande et ukmax = 4N est la valeur max de poussée des
tuyères.

R.3.2 Solution de commande par modes glissants et backstepping

On montre alors que les modèles (1) et (2) admettent la forme générique suivante dite commandable
par bloc [DILU90]:

ẋ1 =A1x1 +B1x2 (6)

ẋi =Aixi +Bixi+1 (7)

ẋr =Arxr +Br(u+ v) (8)

avec i = 2, r − 1. x = [xᵀ1, x
ᵀ
2, . . . , x

ᵀ
r ]ᵀ ∈ Rn, u ∈ Rm et v ∈ Rm font référence à l’état, à la

commande et aux entrées de perturbations, associés aux modèles (1) et (2). xi est défini tel que
xi = [xᵀ1, x

ᵀ
2, . . . , x

ᵀ
i ]
ᵀ, xi ∈ Rni où ni = rank(Bi),

∑r
i=1 ni = n. Le sous-système (6)-(7) pour

i = 2, r − 1 représente la dynamique sous-actionnée du système et (8) corresponds à la dynamique
actionnée. Ainsi, xr ∈ Rm. Les matrices Ai, Bi sont déduites de (1) et (2).

Sous certaines hypothèses, notamment sous l’hypothèse de bornitude des perturbations au sens
l∞, on montre que la structure de commande par backstepping (boucles imbriquées récursives)
et modes glissants (termes ul et un) illustrée sur la figure 3, permet de résoudre le problème de
contrôle en attitude et en position relative du chasseur.

+
−

ε1
ex1

exr−1 εr−1 un
exr

u

xrxr−1x2x1

x1c

v
Nonlinear

DynamicsCA R
u
(b)
c u

ul

+
−

+
−

+
−

+
−

Figure 3: Commande par backstepping et modes glissants

Deux types de commande par modes glissants sont alors proposés:



1) Une commande par mode glissant du premier ordre. L’approche proposée se résume en la
succession des étapes suivantes.

Step 1. Soit l’erreur de consigne ex1 = x1c − x1. On utilise x2 comme commande virtuelle
telle que x2 := ε1 où

ε1 = B†1(ẋ1c −A1x1 − Â1ex1) (9)

où Â1 < 0 permet de fixer les performances de suivi de trajectoire. B†i = Bᵀ
i (BiB

ᵀ
i )−1 est

l’inverse à droite de la matrice Bi.

Step i, i = 2, r− 1. Soit l’erreur exi = εi−1 − xi et la commande virtuelle

εi = B†i (ε̇i−1 −Aix̄i − Âiexi+B
ᵀ
i−1exi−1) (10)

où Âi < 0, i = 2, r − 1.

Step r. Soit la surface de glissement exr = εr−1 − xr et la commande

u = B†r(ε̇r−1 −Arx̄r+B
ᵀ
r−1exr−1)︸ ︷︷ ︸

ul

−un (11)

où un ∈ Rm est la partie non linéaire de la commande par modes glissants du premier ordre,
définie telle que

un = α sign(exr) (12)

On montre alors à l’aide de la théorie de Lyapunov, que cette commande est stable et rejette
les perturbations considérées. Malheureusement, ce type de solution conduit à un effet de
broutement du signal de commande (dit ”chattering”), effet bien connu de la communauté
de la commande par mode glissant.

2) Pour palier le problème de broutement du signal de commande, nous proposons une solution
basée sur l’algorithme Super-Twisting (STA). Cette solution consiste à définir la commande
un dans la rième étape précédente, de la façon suivante:

un = K1Ψ1 +K2

∫ t

t0

Ψ2dτ (13)

où les matrices K1 = diag(k11, . . . k1m), K2 = diag(k21, . . . k2m), Ψ1 = diag(Ψ11, . . . , Ψ1m) et
Ψ2 = diag(Ψ21, . . . , Ψ2m) vérifient

Ψ1j = |exrj |
1
2 sign(exrj ), Ψ2j = sign(exrj ), j = 1,m (14)

et

k2j > δ̃j , k1j >

√
k2j + δ̃j , j = 1,m (15)

On montre alors à l’aide d’un théorème, que cette commande est stable et rejette les per-
turbations considérées, assurant de facto le suivi des trajectoires de référence. Le théorème
établit également les conditions que doivent satisfaire les constantes δ̃j , j = 1,m, voir chapitre
3 pour de plus amples détails.



R.3.3 Résultats de simulation

Les deux types de commande par modes glissants sont implantés dans le simulateur FES. Nous ne
présentons ici que les résultats les plus pertinents, qui correspondent à ceux obtenus avec la loi de
commande STA, voir figures 4 et 5.

Figure 4: Attitudes et positions relatives selon les 3 axes x, y, z

Les résultats obtenus montrent que les profils d’attitude et de position relative, sont suivis par le
chasseur avec des erreurs d’asservissement faibles, et ce malgré la présence des modes souples du
panneau solaire, du ballottement du carburant dans les deux réservoirs et des perturbations spa-
tiales que sont le deuxième harmonique zonale J2, la trâınée atmosphérique, le champ magnétique
terrestre, le gradient de gravité terrestre, la pression solaire et albédo-terrestre. De plus, la figure
5 de droite, montre des signaux de commande des tuyères dans leur plage de fonctionnement non
saturé.

Les résultats obtenus illustrent donc que la solution de contrôle/commande proposée, permet de
satisfaire aux objectifs de rendez-vous et de capture de la cible. Ces résultats sont confirmés par la
représentation des mouvements du chasseur dans le corridor de rendez-vous, donnés sur la figure 6.



Figure 5: Erreurs d’asservissement et commande des tuyères

R.4 Commande tolérante aux fautes basée sur l’algorithme GSTA

La deuxième contribution de nos travaux de thèse est abordée dans le chapitre 4. Les résultats
établis au chapitre 3 sont étendus au cas de la problématique de tolérance aux fautes, les défauts
considérés étant ceux du système de propulsion par tuyères. Une solution est alors proposée sur la
base des modes glissants du second ordre. L’élément clé de la démarche réside dans la modélisation
des défauts actionneurs, qui sont exprimés comme des perturbations d’entrées, conjointement avec
les perturbations spatiales, comme des perturbations d’état qui dépendent de l’état. En d’autres
termes, et contrairement à l’approche précédente, les perturbations ne sont pas approximées. La
démarche méthodologique vise alors à proposer une solution de commande tolérante aux fautes,
basée sur l’algorithme ”Generalized STA” (noté GSTA), placé en boucle externe de compensation de
défauts utilisant un estimateur de défauts non linéaire. Le problème de saturation des actionneurs
est également abordé et une solution basée sur la géométrie polytopique, est proposée. L’élément
clé de l’approche tolérante aux pannes est que la solution ne nécessite pas de diagnostiquer les
fautes et donc n’utilise pas d’algorithme de détection et de localisation de défauts.

R.4.1 Modélisation par l’algèbre du quaternion dual

Dans ce chapitre, les dynamiques de translation relative et de d’attitude du chasseur sont établies
à l’aide du formalisme du quaternion dual, qui permet de tenir compte des effets de couplage
[Cli82, Stu91, GV16]. Nous utilisons la notation ā = ar + εad, ε 6= 0, ε2 = 0 pour un nombre dual,
ar ∈ R et ad ∈ R étant la partie réelle et la partie duale du nombre dual. ε est le nombre dual
unitaire [Cli82, Stu91].

La solution développée est une solution dite à six degrés de libertés (approche 6-DOF). Nous
montrons ainsi que les équations suivantes, exprimées dans le repère chasseur noté •(c), permettent
de modéliser entièrement la mission de rendez-vous (la notation •(t) indique un vecteur dans le
repère cible):

˙̄qe =
1

2
q̄e ◦ ω̄(c)

e (16)

˙̄ω(c)
e = −M̄−1 ◦

(
ω̄(c)
c × M̄ ◦ ω̄(c)

c

)
+ M̄−1 ◦ f̄ (c)

ct − q̄∗e ◦ ˙̄ω
(t)
t ◦ q̄e + ω̄(c)

e ×
(
q̄∗e ◦ ω̄

(t)
t ◦ q̄e

)
(17)



Figure 6: Mission de rendez-vous et de capture

Dans ces équations, q̄e, ω̄
(c)
e , ω̄

(c)
c , ω̄

(t)
t et f̄

(c)
ct représentent le quaternion dual des mouvements

relatifs entre les deux véhicules, la vitesse de rotation duale relative, la vitesse de rotation duale
du chasseur, la vitesse de rotation duale de la cible et la force duale totale, respectivement. M̄ est
la matrice d’inertie duale définie telle que [WLS+12]

M̄ = m
d

dε
I3 + εJ

=

m d
dε + εJxx εJxy εJxz
εJxy m d

dε + εJyy εJyz
εJxz εJyz m d

dε + εJzz

 (18)

On montre alors que, compte tenu des caractéristiques particulières géométriques de la cible et du
mécanisme de capture, ces équations se simplifient sous la forme:

ω̇(c)
e = −J−1

(
ω(c)
e × Jω(c)

e

)
+ J−1

(
τ (c)
cu + τ

(c)
ctd

+ τ (c)
cf

)
(19)

qui traduit la dynamique de rotation du chasseur, et

r̈(c)e = −ω(c)
e × ṙ(c)e − ω(c)

e × ω(c)
e × r(c)e +

f
(c)
cu

m
+
f
(c)
ctd

m
+
f
(c)
cf

m
(20)

tel que ω
(c)
e = ω

(c)
c , pour la dynamique de translation relative. τ

(c)
cu , τ

(c)
ctd
, τ

(c)
cf représentent les

couples générés par le système de propulsion, les perturbations spatiales et les défauts actionneurs

considérés, respectivement. f
(c)
cu ,f

(c)
ctd
,f

(c)
cf représentent les forces générées par le système de propul-

sion, les perturbations spatiales et les défauts actionneurs considérés, respectivement.

Dans cette partie, les couples et forces de propulsion sont modélisés comme dans le chapitre 3, soit
via la distribution d’une matrice de configuration des tuyères R, i.e.[

τ
(c)
cu (t)

f
(c)
cu (t)

]
=

[
Rτ

Rf

]
u(c)
c (t) = Ru(c)

c (t), R ∈ R6×24 (21)

A l’inverse, les perturbations spatiales ainsi que les modes du panneau solaire et des ballottements
du carburant, sont eux modélisés de façon mathématique, et on montre que le modèle obtenu,
conduit à des couples et des forces qui dépendent de l’état, voir chapitre 4 pour de plus amples



détails.

Les défauts considérés sont de type ”embardée à vitesse maximale vers la position complètement
ouverte ou fermée” des tuyères. Inspirés des travaux [Hen08, HCT+19], nous montrons que ce type
de défauts peut être mathématiquement exprimé de la façon suivante

φk(t) =

{
max{uk(t), 1} tuyère ouverte
0 tuyère fermée

(22)

où uk fait référence à la commande en poussée de la kième tuyère. Il vient alors que l’effet de ces
défauts peut être modélisé de façon multiplicative, tel que (la notation ”•̃” souligne le cas défaillant)

ũ(c)ck (t) = (I24 − Ψ(t))u(t) (23)

où Ψ(t) = diag (ψ1(t), ..., ψ24(t)), 0 ≤ ψk(t) ≤ 1, k = 1, 24 étant inconnu. ψk est donné par

ψk(t) =

{
0 si non défaillant

1− φk(t)/u
(c)
ck (t) si défaillant

(24)

Ainsi, ũ
(c)
ck (t) n’est rien d’autre que la poussée réelle de la kième tuyère, à chaque instant t, qui est

bien évidemment inconnue.

Nous montrons alors qu’il est possible d’approximer ces équations sous forme additive, ce qui

conduit à exprimer les couples τ
(c)
cf (t) et les forces f

(c)
cf (t) à l’aide des équations suivantes[

τ
(c)
cf (t)

f
(c)
cf (t)

]
=

24∑
k=1

Kkfk(t) (25)

où fk désigne la signature du kième défaut, Kk étant sa matrice de répartition qui se déduit de R.

R.4.2 Solution de commande tolérante aux fautes

La solution de contrôle tolérant aux fautes qui est proposée dans nos travaux de thèse, est illustrée
sur la figure 7.
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−

ˆ̄f
(c)
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r
(c)
ref
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Figure 7: Control setup

La structure proposée consiste en une commande donnée par:

f̄
(c)
FTC = f̄ (c)

sm −
¯̂
f (c) = f (c)

sm − f̂ (c)︸ ︷︷ ︸
f
(c)
FTC

+ε(τ (c)
sm − τ̂ (c)︸ ︷︷ ︸
τ
(c)
FTC

) (26)



où f
(c)
sm et τ

(c)
sm sont calculés à l’aide de l’algorithme GSTA. Les signaux f̂ (c) et τ̂ (c) sont des esti-

mations des parties réelle et duale des forces duales correspondantes aux perturbations spatiales et
aux défauts. Due à le présence des saturations des tuyères, un système ”anti-windup” est ajouté à
la loi de commande.

La solution proposée repose donc sur la conjonction de trois sous-systèmes:

1) La partie estimation des parties réelle et duale des forces duales correspondantes aux per-
turbations spatiales et aux défauts. Cette dernière est réalisée à l’aide des estimateurs non
linéaires suivant

τ̂ (c) = J
(
ω̇(c)
c − ˆ̇ω(c)

c

)
= τ

(c)
ctd

+ τ (c)
cf
− τ∆ (27)

f̂ (c) = m
(
r̈(c)e − ˆ̈r

(c)
e

)
= f

(c)
ctd

+ f (c)
cf
− f∆ (28)

la partie gauche des égalités représentant la forme de calcul, et la partie droite, la forme
d’évaluation. Ces équations montrent que ces estimations ne sont pas parfaites et qu’elles
sont donc entachées des erreurs τ∆ et f∆.

2) La boucle de commande par modes glissants GSTA, dont l’objectif sera de suivre les trajec-

toires d’attitude et de position relative de référence qref (t) et r
(c)
ref (t), tout en rejetant les

termes d’erreurs τ∆ et f∆.

Sous certaines hypothèses de bornitude relatives à τ∆ et f∆, nous montrons dans nos travaux
de thèse, que la structure suivante de l’algorithme GSTA permet de résoudre le problème:

τ (c)
sm =J

(
−Fτ −Kτ

[
1

2

[
(qε)sω

(c)
c + (qε)v × ω(c)

c

]]
−α1τφ1τ (sτ )−α2τ

∫ t

0
φ2τ (sτ (χ))dχ

)
(29)

f (c)
sm =m

(
−Ff −Kf ṙ

(c)
ε −α1fφ1f (sf ) −α2f

∫ t

0
φ2f (sf (χ))dχ

)
(30)

avec Fτ = −J−1
(
ω

(c)
c × Jω(c)

c

)
, Ff = −ω(c)

c × ṙ(c)e − ω(c)
c × ω(c)

c × r(c)e .

Dans ces équations, qε = q∗ref ◦qc et r
(c)
ε = r

(c)
ref−r

(c)
e représentent les erreurs d’asservissement

en attitude et en position relative. (qε)s et (qε)v sont les parties scalaires et vectorielles du
quaternion qε , tels que

(q̇ε)s = −1

2
(qε)

ᵀ
v ω

(c)
c (31)

(q̇ε)v =
1

2

[
(qε)sω

(c)
c + (qε)v × ω

(c)
c

]
(32)

φ1j(sj) = bsje1/2+βjsj and φ2j(sj) = 1
2bsje

0+ 3
2βjbsje

1/2+β2
j s sont des matrices diagonales,

où bsjeq = |sj |q sign (sj), pour j ∈ {τ, f}. Kj ,αij ,βj ∈ R3, i = 1, 2, j ∈ {τ, f} sont des gains
matriciels à déterminer, dont le choix permet de fixer les performances de la loi de commande.
sτ and sf sont les surfaces de glissement définies telles que:

sτ = ω(c)
c +Kτ (qε)v (33)

sf = ṙ(c)ε +Kfr
(c)
ε (34)

On montre alors à l’aide d’un théorème, que cette commande est stable et rejette les per-
turbations considérées, assurant de facto le suivi des trajectoires des références qref (t) et

r
(c)
ref (t). Le théorème établit également les conditions que doivent satisfaire les paramètres

Kj ,αij ,βj ∈ R3, i = 1, 2, j ∈ {τ, f}.



3) La solution ”anti-windup” proposée repose sur l’utilisation de coefficients de forme eλci , λ < 0,
qui sont introduits dans la loi de commande comme suit:

τ (c)
sm =J

(
−Fτ −Kτ

[
1

2

[
(qε)sω

(c)
c + (qε)v × ω(c)

c

]]
−α1τφ1τ (sτ )

−α2τdiag(eλ∆τi)

∫ t

0
φ2τ (sτ (χ))dχ

) (35)

f (c)
sm =m

(
−Ff −Kf ṙ

(c)
ε −α1fφ1f (sf ) −α2fdiag(eλ∆fi)

∫ t

0
φ2f (sf (χ))dχ

)
i = 1, 3 (36)

Sachant qu’en fonctionnement non saturé, les couples et forces engendrés par le système de
propulsion évoluent dans des polytopesΠτ etΠf respectivement, l’idée consiste à déterminer

si les signaux de commande τ
(c)
FTC et/ou f

(c)
FTC définissent des vecteurs appartenant ou non,

aux polytopes associés. Si le vecteur couple et/ou le vecteur force n’appartient pas à son

polytope associé, on cherche alors le vecteur couple τ
(c)
0 et/ou force f

(c)
0 appartenant au

polytope, le plus proche au sens des moindres carrés. On montre alors que ce problème se
pose comme le problème d’optimisation suivant:

min
τ
(c)
0

∥∥∥τ (c)
FTC − τ

(c)
0

∥∥∥
2

s.t. τ
(c)
0 ∈Πτ

min
f
(c)
0

∥∥∥f (c)
FTC − f

(c)
0

∥∥∥
2

s.t. f
(c)
0 ∈Πf (37)

La figure 8 illustre l’approche proposée.

Figure 8: Principe du système ”anti-windup”

Les termes ∆τi, ∆fi, i = 1, 3 sont alors déterminés tels que

∆τ = τ
(c)
FTC − τ

(c)
0 ∆f = f

(c)
FTC − f

(c)
0 (38)

∆τ = vec(∆τi), ∆f = vec(∆fi), ∆τi ≥ 0, , ∆fi ≥ 0 i = 1, 3

Ainsi, avec λ < 0, lorsque ∆τi et/ou ∆fi sont grands , eλ∆τi et/ou eλ∆fi sont proches de
zéro, ce qui annule le terme intégral dans la commande GSTA, responsable du problème
d’instabilité lié à la saturation des commandes des tuyères. A contrario, si la commande ne

sature pas, τ
(c)
0 = τ

(c)
FTC et f

(c)
0 = f

(c)
FTC . Alors les termes eλ∆τi et eλ∆fi , i = 1, 3 sont égaux

à 1, et les termes intégrales de la commande GSTA opèrent normalement, malgré la présence
de défauts tuyères.



R.4.3 Résultats de simulation

La loi de commande tolérante aux fautes développée, est implantée dans le simulateur FES. Nous
présentons figure 9 les résultats obtenus, dans le cas d’un défaut ”tuyère ouverte” pour la tuyère
n. 1. Le défaut est injecté dans le système de propulsion à l’instant t = 40s et est maintenu durant
toute la durée de la simulation. Les figures présentent, de haut gauche à bas droite, l’attitude du
chasseur et l’erreur d’asservissement associée, la position relative dans le repère LVLH et l’erreur

d’asservissement associée, la force duale f̄
(c)
FTC(t) , la commande des tuyères u

(c)
c (t), l’estimée

¯̂
f (c)

et la commande délivrée par le contrôleur GSTA.

Figure 9: THR 1. Tuyère ouverte: a) Attitude du chasseur et erreur - b) Position relative dans le repère

LVLH et erreur - c) force duales f̄
(c)
FTC - d) commandes des tuyères u

(c)
c - e) force duale estimatée

¯̂
f (c) - f)

commande du contrôleur GSTA f̄
(c)
sm.

Une campagne de simulation est finalement réalisée à l’aide du FES. Les deux types de défaut
(tuyère ouverte et tuyère fermée) sont injectés à chacune des 24 tuyères. Un total de 49 simu-
lations (1 en fonctionnement normal et 48 en fonctionnement défaillant), est donc joué. Afin de



mesurer les performances obtenus, des critères orientés mission tels que l’alignement du système de
capture versus la cible au point de capture, la position du chasseur dans le corridor de rendez-vous,
les vitesses latérales et longitudinales du chasseur au point de contact, l’attitude et la vitesse de
rotation du chasseur au point de contact, sont calculés puis reportés sur la figure ??. Les résultats
obtenus illustrent le potentiel de la solution développée, puisque les résultats montrent que dans
chaque cas, la mission spatiale est un succès, malgré la présence d’un actionneur hors service.

Figure 10: Campagne de simulation FES: a) alignement du système de capture versus la cible b) positions
relatives au point de capture - c) Position relative versus le corridor de rendez-vous - d) attitude du chasseur
- e) attitude au point d’impact f) vitesse angulaire au point d’impact.





1 Introduction

Nowadays, control systems can be found everywhere around us. With the advance of technology,
their reliability and complexity has increased. As a consequence, many critical systems are super-
vised by control systems. A critical system is required to be safe and reliable, given that human lives
depend on it. This is achieved by designing a controller which considers the possible occurrence of
faults. A control that is capable of maintaining an acceptable system’s performance is called Fault
Tolerant Control (FTC). Different control design approaches have been applied for FTC purposes,
an extensive study can be found in [JY12a, YJ15]. This work explores the capabilities of a specific
control design approach called Sliding Mode Control (SMC). SMC has gained attention due to its
robustness properties against matched disturbances, i.e disturbances that act in the control input
channel. Given that some actuator faults can be modelled as matched disturbances, SMC has gained
attention in the FTC community, see for example [FdLCH+15, AET11, AE08, RKFZ15, EAH18].

1.1 Context and motivation

With the current advance in space exploration, different missions involve the use of multiple space-
craft, also known as Satellite Formation Flying (SFF). This approach has gained popularity given
that it is cost and time effective. Some space missions that use or consider SFF are New Millennium
Program [FNG96, BBF+97], specifically for Earth Observing-1 mission developed by the National
Aeronautics and Space Administration (NASA) and Cluster [Rou98], Orion [HTW+98] and Laser
Interferometer Space Antenna (LISA) [Fol01] missions, developed by the European Space Agency
(ESA). Besides maintaining the formation between vehicles, SFF may implicate rendezvous between
two spacecraft. Rendezvous is defined in [Feh03] as a series of orbital maneuvers and controlled
trajectories, which successively bring the active vehicle (chaser) into the vicinity of, and eventually
into contact with the passive vehicle (target). In this work, it is considered that the rendezvous
mission consists of two phases: the acquisition phase, where the chaser aligns with the target and
the rendezvous phase, where the chaser translates to approach towards the target. The importance
of the rendezvous mission relies on the different applications it may have, for instance for debris
removal or on-orbit servicing.

Rendezvous between spacecraft was first done manually between the Gemini spacecraft and the
unmanned Agena target vehicle, in 1966. The first automatic rendezvous then took place in 1967
between two Soviet spacecraft, Cosmos 186 and Cosmos 188. Several others followed after, mainly
within american (US) and soviet (Russia) space programs like Apollo, Soyuz, Skylab, Salyute
and Mir [Ank10]. Recently, ESA developed the unmanned Automated Transfer Vehicle (ATV)
to re-supply the International Space Station (ISS); Hyperspectral PRecursor of the Application
Mission (PRISMA) serves for on-orbit guidance testing of SFF and spacecraft rendezvous [ESA];
and docking between Northrop Grumman’s satellite and an Intelsat communications [Nor].
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Chapter 1. Introduction

Challenges in rendezvous mission

The success of the rendezvous mission depends on the control algorithm employed. Its robustness,
defines the degree of autonomy that the spacecraft can have. Same level of importance relies on
the development of accurate dynamic models, given that the control algorithm is designed based
on it. A dynamic and kinematic model that accurately includes the characteristics of the system
while having a reasonable level of complexity, is desired.

In this work, the rendezvous mission studied is performed in a circular orbit. In addition, in
accordance with the definition given in [Feh03], the chaser refers to the active vehicle (equipped with
sensors, actuators and a Guidance and Navigation Control (GNC) unit) while the target represents
the passive vehicle (no sensor or actuator). Specifically, the sensors equipped in the chaser are a
Light Detection and Ranging (LIDAR) which provides relative positions and velocities, an Inertial
Measurement Unit (IMU) and a Star Tracker. With regards to actuators, it is first considered that
the chaser is equipped with 12 thrusters of 4 N for both attitude and position control. It is assumed
a perfect navigation unit, i.e. all measurements are assumed to be noise free. Then, a new thruster
structure is proposed for FTC purposes which consists of 24 thrusters of 2 N. For this scenario,
noise is taken into account in the navigation unit. Finally, the target is always considered to be a
sphere.

Relative Models

Along this manuscript, relative motion is referred to the description of the chaser’s state with re-
spect to the target. Different approaches can be found in literature for the description of the 3
degrees of freedom (DoF) relative translational model. The work developed in [CW60], presented
the first linear relative model for spacecraft rendezvous in circular orbit. This result was later
extended to elliptical orbits and nonlinear models, see for example [Law63, CH87, YA02].

With regard to the attitude model, different researchers like Euler, Jacobi, Hamilton, Cayley, Klein,
Rodrigues and Gibbs, devoted their work towards establishing the 3DoF rigid body orientation de-
scription [JS01]. In addition, there exist many parameters that can be employed for describing
the orientation of a body, for instance Euler angles, Rodrigues Parameters, Rotation Matrices,
quaternions, Direction Cosine Matrix (DCM), among others.

The works mentioned above, described the general motion of a rigid body in space in terms of a
translation and a rotation, around the Center of Mass (CoM) of the body. In other words, their
description of relative motion of a body is composed of the relative translational and rotational
dynamics of arbitrary points on the body. When one of these points does not coincide with the
CoM of the body, a kinematic coupling between the rotational and translational dynamics of these
points is obtained. This coupling effect is independent of external perturbation, unlike the coupling
effect induced by gravity torques [SG09]. For the case of two spacecraft in proximity, this effect is
accentuated as the distance between them is reduced. Thus, in order to develop a controller with
a higher degree of accuracy, both motions have to be model at the same time, i.e. a coupled model
(6DoF) is needed.

On-orbit thruster failures

A fault occurrence during close proximity maneuvers like rendezvous, may threaten the success of
the mission. Depending on the location and type of the fault, system’s performance can be affected
in different degrees of severity. Based on the study presented in [SBD18], thruster faults account
for the largest percentage of failures in orbit. A summary of the causes of launch vehicle failures
from 1980-2016 is shown in Figure 1.1.
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Chapter 1. Introduction

Figure 1.1: Causes of launch vehicle failures on systems 1980-2016 (adapted from [SBD18])

In addition, according to [Jia05], FTC is mainly concerned about dealing against actuator faults,
given that they affect the system’s behaviour directly. In this work, the occurrence of a thruster
fault is considered. It is assumed that only one thruster fails at a time. Furthermore, the faults
considered are a thruster open at its maximum value and a completely closed thruster. Several
effects are possible in the case when the controller is incapable of compensating it. These faults can
cause instability in the spacecraft, a collision against the target, lost of sight of the target, among
others. Such faulty scenario can not be diagnosed by ground control given that other problems
with regards to communication, arise. Thus, this motivates the study of control strategies that can
cope against faults, specifically against thruster faults.

1.2 Approach and objectives

As mentioned before, the motivation for studying FTC methods is to increase the reliability and
robustness of a critical system. The redundancy of components is the key element for FTC. In
literature, different approaches for FTC purposes can be found, which can be classified in active
or passive approaches. Passive approaches exploit the robustness properties of a specific controller,
and thus, the type of faults that can be compensated is limited. On the other hand, active ap-
proaches can compensate a wider class of faults given that they reconfigure the controller based
on the fault detected. This means, that there exists an interaction between the controller and the
Fault Detection and Isolation (FDI) unit. As a consequence, is harder to guarantee stability of
the closed-loop system given that any delay effect or imperfection in the FDI unit, may lead to
instability. An example of how to address this issue can be found in [CEH15, ECH13, ZWT+16].

Among the different control design approaches, sliding mode techniques are attractive for FTC
purposes due to its robustness properties against matched disturbances (i.e. disturbances that act
on the input channels) and finite-time response. In literature, both active and passive approaches,
with SMC, can be found. With regard to the active approaches, the existence of a FDI unit is
frequently assumed, see for example [HEA11, XCW15, CEAS20, CAE19a, CEA19]. Another com-
mon approach employed in FTC, which allows to compensate a wider range of faults without the
need of reconfiguration of the controller, is Control Allocation (CA) scheme. CA distributes the
control signal into the available actuators. This means that it depends on an FDI unit to know
which actuators are available. In the case study considered in this thesis, the actuators are a set
of thrusters. On the other hand, passive approaches with SMC, mostly consider the case when an
actuator can only actuate a percentage of the desired value, this is known as loss of effectiveness,
see for example [SWZP15, MNB15, LJPZ19, LP17, LP16]. Furthermore, Sliding Mode Observers
(SMO) are employed for fault estimation or detection, given that according to [ES98], SMO have
better performance under several faulty scenarios in comparison with other methods in noise-free

3
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environment.

In this work, the objective is to explore the capabilities of SMC for FTC purposes without the need
of a FDI unit. In addition, unlike the other passive approaches with SMC, the faults considered
along this thesis, are a thruster stuck open at its maximum value or a thruster stuck completely
closed. It is worth noting that the level of severity of a stuck open or stuck closed fault is higher
than a loss of effectiveness. In summary, the question to be answered with this research can be
written as follows: ”is it possible to compensate for a stuck open or a stuck close thruster fault,
without the knowledge of its occurrence?”.

Furthermore, the importance of the development of an accurate model is implicit, given that the
proposed solution is model-based. As mentioned above, a 6DoF model increases the accuracy of the
controller. This thesis begins with the description of two 3DoF models, which are based on classical
approaches for circular orbit, i.e. Hill-Clohessy-Wiltshire (HCW) for relative translational motion
and Newton-Euler for rotational motion. In addition, a first approach towards the development of
a robust controller is done based on these models. Then, in Chapter 4, the 6DoF model is obtained
with dual quaternions. Dual quaternions are a combination of dual numbers and quaternions, which
describe both translational and rotational dynamics in a compact form. A more detailed description
of their properties and particular algebra can be found in Chapter 4. In addition, given that they
have similar properties to quaternions, the control techniques employed for quaternions, can be
extended to dual quaternions. It is at this stage that the capabilities of SMC for FTC purposes
are explored, i.e the FTC is based on dual quaternion formalism. Although dual quaternions
are applied in different fields (robotics, image processing, navigation, computer graphics, control),
with regards to FTC, few works can be found, specifically FTC with SMC. Take for instance
[DHM16, DLJS17, GdR17] where active FTC approaches with SMC are proposed. These works are
proposed without an explicit design of FDI unit, leading to a closed-loop stability not guaranteed.
To overcome this constraint, in this manuscript, a passive technique that consists of a Generalized
Super-Twisting Algorithm (GSTA) with an anti-windup strategy is proposed for FTC purposes.

1.3 Overview of Chapter contents

This thesis comprises 5 chapters. The first chapter is the current introduction, and the content of
the following chapters is described below:

• Chapter 2 aims to be an introduction to SMC techniques. This chapter begins with the
description of the operating principle and the definition of the basic concepts. Then, the con-
trol objective is described, followed by the design procedure. Likewise, the evolution of this
control technique into different families is studied. Their respective design procedure, limi-
tations and robustness properties are highlighted. Finally, an introduction to FTC concepts,
classification and design approaches are revised.

• Chapter 3 presents the development of a SMC applied to the rendezvous mission in circular
orbit. This chapter begins with the description of the vehicles involved (i.e chaser and target)
and the phases that comprise the rendezvous mission. Then, the development of the two 3DoF
model for both dynamics, translational and rotational, is explained along with the frames
and disturbances (e.g. second zonal harmonic, J2, atmospheric drag, magnetic disturbance)
considered. Two SMC in a backstepping setup, are designed in order to guarantee the tracking
of the target despite the disturbances that affect both vehicles. The control effort computed
by the designed controller is then distributed by a CA unit. It is worth noting that, in this
work, the chaser is not studied as a point mass, given that it is considered that the chaser
has a solar array and two half-filled fuel tanks. The stability of the designed controllers is
analyzed with Lyapunov theory. Finally, the proposed solution is validated in a high fidelity
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benchmark, that correctly simulates the rendezvous mission in a circular orbit.

• Chapter 4 explores the capabilities of SMC for fault tolerance purposes. In this work, a stuck
open and a stuck close thruster fault are considered. It is assumed that only one fault occurs
at a time and that there is no fault detection and identification (FDI) unit. Furthermore,
the relative dynamic model in Dual Quaternion formalism is introduced. Unlike the model
developed in Chapter 3, this model takes into account the coupling between translational and
rotational dynamics. Therefore, the controller designed also takes into account the coupling
effects. Similar to Chapter 3, the stability of the designed controller is analyzed with Lyapunov
theory. Finally, the proposed solution is validated in the high-fidelity benchmark used in the
previous chapter.

• Chapter 5 summarizes the results obtained from this research work, in the form of conclu-
sions. Finally, recommendations for extending this research work are given.
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2 Sliding Mode Control

2.1 Introduction

This chapter aims to be an introduction to sliding mode techniques. It begins with the description
of their operating principle, and the definition of the main concepts. The design procedure and
the requirements of the controller are described. The evolution of the Sliding Mode techniques into
different families of controllers is reviewed. The design for each controller with their characteristics,
is also mentioned. Finally, a short discussion about the potential of sliding mode controllers for
fault-tolerant control purposes, is presented.

2.2 Sliding Mode Control

Variable Structure Control (VSC) was first proposed by Emelyanov [Eme63, Eme06] in the Soviet
Union. It was only known outside Russia by means of Utkin [Utk77]. Its operating principle is
based on the ”switching” of the control signal depending on certain conditions, with the goal of
keeping a desirable performance. According to [Eme06, Utk78], VSC properties are exemplified
with a second order system as follows:

ẋ = y

ẏ = ax+ by + u
(2.1)

where x and y are the states; and a, b are system parameters. The main concept is illustrated in Fig.
2.1, where u refers to the control signal; r refers to the reference signal; x, y are the states (see (2.1));
k1, k2 are gains; e is the error and s is the switching condition function. VSC was originally applied
to a second-order linear system and it was the basis for what it is now known as SMC. Nowadays,
VSC has been extended to different types of systems like discrete-time and Multi-input/Multi-
output (MIMO), to mention some. The main property of VSC is that it provides robustness, in
the way of insensitivity against parametric uncertainties and external disturbances. Due to this
property, VSC is applied to numerous fields like aeronautics, aerospace, robotics, electronics and
chemistry, to name a few.

+

−

r

e

k1

k2

Plant

∫yu x

s(e)

Figure 2.1: Structure of a variable structure control (VSC)
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Consider that the control input is described by

u = −γx (2.2)

where γ is a variable that can take values between k1 and k2. Suppose that when γ is k1, the system
(2.1) has complex eigenvalues with positive real part. In addition, when γ is k2, the system has
real positive and negative eigenvalues. The behaviour of the system for each case, is analyzed with
their phase plane in Fig. 2.2. The procedure to obtain this figure is explained in the Appendix
A.1. Note that the origin of the phase plane represents the equilibrium point. For Fig. 2.2(a), the
behaviour of system (2.1), with k1, is shown as an unstable focus at the origin. The saddle point
observed in Fig. 2.2(b), belongs to the systems response when γ is k2.

(a) Unstable focus at the origin (b) Saddle point

Figure 2.2: Phase plane of system (2.1) with two different control inputs

Although in Fig. 2.2 it is shown that both cases result in unstable systems, it can be seen that
there are some regions of stability. See for example case (b) in Fig. 2.2, where the saddle point
approaches the origin. In order to have the desired regions from both cases, a switching function
is defined as:

s = s(x, y) = cx+ y, c > 0 (2.3)

When the switching function is equal to zero, the sliding surface obeys to s = cx+ y = 0. Then, γ
changes its value according to the following expression:

γ =

{
k1, when s(x, y) > 0

k2, when s(x, y) < 0
(2.4)

As shown in (2.4), the structure of the control signal (2.2) is changed depending on the distance
of the state trajectories to the equilibrium point. From its initial conditions, the state trajecto-
ries move firstly towards the sliding surface s = 0. This is known as the reaching phase. Then,
they slide to the equilibrium point through the sliding surface. This is known as the sliding mode
phase. Whenever the states move away from the sliding surface, the controller changes structure
in order to make them come back to it. In other words, high switching between control structures
is involved, also called chattering. When the state trajectories are sliding, the value of s is close to
zero. Furthermore, when in the equilibrium point, s = 0. The concepts previously explained are
illustrated in Fig. 2.3, where the resulting phase plane of the system under VSC is shown.

In literature, a common variable structure for the control signal u is defined as:

u =

{
−1, when s(x, y) > 0

1, when s(x, y) < 0
(2.5)
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s =
0

Figure 2.3: Resulting phase plane diagram of the system under VSC

where s is defined as in (2.3). It follows that (2.5) is rewritten as:

u = −sign(s(x, y)) (2.6)

where sign(·) refers to the sign function, which has as property s · sign(s) = |s|.

Variable structure control is usually known as sliding mode control given the importance of the
sliding mode phase.

Remark 1. In this chapter, the description of the properties and the design procedure of SMC
is exemplified based on a Linear Time-Invariant (LTI) system. However, the reader must take
into account that SMC theory is extended to nonlinear systems, see for example [FYH13, Dav13,
DFPU09, YE07].

2.3 Problem Statement

In this section, the design procedure is exemplified with the following LTI system defined as

ẋ(t) = Ax(t) +B [u(t) + f(t, x, u)] (2.7)

where A ∈ Rn×n, B ∈ Rn×m. It is considered that rank(B) = m, 1 ≤ m < n and the pair (A,B)
is controllable. In (2.7), f(t, x, u) may represent an unknown bounded disturbance or bounded
model uncertainty acting on the input channel, i.e. matched disturbance/uncertainty. On the
contrary, a disturbance/uncertainty that does not act on the input channel is called unmatched.
The main purpose is to design a control law that ensures the convergence of the states despite
model uncertainties or perturbations. The first step for the design of the robust control law is to
define the sliding surface S as

S = {x : s(x) = 0} (2.8)

where the switching function s(x) = Sx is a linear function, with S ∈ Rm×n full rank.

To illustrate the concept of equivalent control, it is first considered that f(t, x, u) = 0 in (2.7). This
leads to the nominal system description as:

ẋ(t) = Ax(t) +Bu(t) (2.9)
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An ideal sliding mode occurs when the state x(t) converges to the sliding surface in finite-time tr,
i.e. the sliding phase begins at time t ≥ tr. It is mathematically expressed as:

s(t) = ṡ(t) = 0 for all t ≥ tr (2.10)

By substituting for (2.9), the equation on sliding motion is described as:

ṡ(t) = S(Ax(t) +Bu(t)) = 0 (2.11)

The necessary average value of the control signal to enforce and ideal sliding motion, i.e. s(t) =
ṡ(t) = 0, is called equivalent control. It is obtained from (2.11) as:

ueq(t) = −(SB)−1(SAx(t)) (2.12)

where (SB) is nonsingular. This condition guarantees the existence of a unique equivalent control
[Utk13]. From (2.12), the equivalent control can be rewritten as a state feedback controller as:

ueq(t) = −(SB)−1(SAx(t)) = Kx(t) (2.13)

It is worth noting that the equivalent control is not implementable, i.e. (2.13) would not induce a
sliding motion. Instead, the concept of equivalent control should be thought as a tool to obtain a
reduced order expression from which closed-loop stability can be analyzed. For (2.9), the closed-
loop response is obtained from substituting (2.12) in (2.9) as:

ẋ(t) = Ax(t) +B
(
−(SB)−1(SAx(t))

)
=
(
I −B(SB)−1S

)︸ ︷︷ ︸
P

Ax(t) (2.14)

where I is the identity matrix and P is a projection operator that satisfies the following conditions
[ES98]:

SP = 0 PB = 0 (2.15)

In the following, the definition of equivalent control for the perturbed case is shown. As mentioned
before, when the states reach the sliding surface s(t) = ṡ(t) = 0. In order to find the equation on
the sliding motion, the derivative of s(t) = Sx(t) is analyzed by using (2.7) as follows:

ṡ(t) = Sẋ(t) = S [Ax(t) +B (u(t) + f(t, x, u))] (2.16)

The expression of the equivalent control, for the perturbed case, is obtained by equating (2.16) to
zero, then the following expression is obtained

ueq(t) = −(SB)−1 [SAx(t) + SBf(t, x, u)] (2.17)

where (SB) is nonsingular. The idea of considering the equivalent control just as a tool is reinforced
by the results obtained for the perturbed case, given that the equivalent control equation (2.17)
is dependent on the disturbance. The expression obtained when substituting (2.17) in (2.7), gives
the closed-loop response defined as:

ẋ(t) = Ax(t) +B
[
−(SB)−1 (SAx(t) + SBf(t, x, u))

]
+Bf(t, x, u)

= Ax(t)−B(SB)−1Ax(t)−B(SB)−1SBf(t, x, u) +Bf(t, x, u)

= (In −B(SB)−1)︸ ︷︷ ︸
P

Ax(t) + (In −B(SB)−1)︸ ︷︷ ︸
P

Bf(t, x, u)
(2.18)

Based on the conditions expressed in (2.15), (2.18) can be rewritten as:

ẋ(t) = PAx(t) (2.19)
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From (2.19), it is shown that during sliding motion, the reduced order system motion is insensitive
to matched disturbances. In addition, it can be seen that the design of the switching function s(t)
is independent of the disturbance, i.e. s(t) = Sx(t) is applicable for both systems, (2.7) and (2.9).
Furthermore, the reduced dynamics equations that describe the system in sliding motion, (2.14)
and (2.19), show that there exists a dependency on the selection of the sliding surface. This effect
is more visible when transforming the system into its canonical form, as explained in the following.

Given that by assumption B has full rank, there exists a transformation matrix T ∈ Rn×n such
that:

TB =

[
0
B2

]
(2.20)

where B2 ∈ Rm×m is nonsingular. Matrix T can be computed by using Gaussian elimination or
QR decomposition, for example. The transformed state coordinates are obtained by employing the
transformation matrix as x̃(t) = Tx(t). Under this transformation, system (2.7) becomes:

˙̃x1(t) = Ã11x̃1(t) + Ã12x̃2(t) (2.21)

˙̃x2(t) = Ã21x̃1(t) + Ã22x̃2(t) +B2(u(t) + f̃(t, x, u)) (2.22)

where x̃1 ∈ Rn−m and x̃2 ∈ Rm. This is also known as a regular form, which also allows to separate
the states that are directly affected by the disturbance.

The switching matrix of the transformed coordinate system is also partitioned as:

S =
[
S1 S2

]
T (2.23)

where S1 ∈ Rm×(n−m) and S2 ∈ Rm×m. Then, the necessary condition for (SB) to be nonsingular
comes from

det(SB) = det(S2B2) (2.24)

where by design B2 6= 0, thus it follows that S2 6= 0 is needed. During the sliding mode phase, the
sliding surface is defined as:

s(t) = S1x̃1 + S2x̃2 = 0 for all t ≥ tr (2.25)

Given that S is full rank, one can express the states as a linear combination of the n −m states.
Based on this, x̃2(t) can be expressed in terms of x̃1(t) as:

x̃2(t) = −S−12 S1x̃1(t) = −Mx̃1(t) (2.26)

Substituting the definition of x̃2(t) in (2.26) for (2.21), it follows:

˙̃x1(t) =
(
Ã11 − Ã12M

)
x̃1(t) (2.27)

This shows that the ideal sliding motion is described by the combination of (2.26) and (2.27). The
selection of the surface S in (2.8), affects the dynamics in (2.27), given the definition of M in (2.26).

In addition, the stability of (2.27) depends on the pair
(
Ã11, Ã12

)
. Consequently, the design of M

depends on the controllability of the same pair. When the system (2.21)-(2.22) is controllable, any
classical state feedback method (quadratic minimisation, robust or direct eigenstructure assignment,
LMI methods) can be employed for the design of M . Then, the matrix S in (2.23) can be computed
as:

S =
[
S2M S2

]
T (2.28)

S2 is commonly chosen as Im, but can be chosen arbitrarily. From (2.26) and (2.28), it can be
seen that S2 only acts as a scaling factor for the switching function and has no direct effect on the
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dynamics of the sliding motion.

Furthermore, from the previous developments, one can notice that (2.14), (2.19) and (2.27) are
independent of the control signal. This means that the systems response is only governed by the
switching function; whilst the control signal is designed to guarantee that the state trajectories will
converge to the sliding surface, i.e. s(x) = 0. This is called the reachablity condition, and for a
single input system, it is expressed as

lim
s→+0

ṡ < 0 and lim
s→−0

ṡ > 0 (2.29)

which can also be rewritten as:

sṡ < 0 (2.30)

Conditions (2.29) and (2.30) do not guarantee the existence of an ideal sliding motion. They only
guarantee asymptotic reach to the sliding surface as shown from (2.30) [ES98]:

s(t) = s(0)e−t (2.31)

A stronger condition that guarantees an ideal sliding motion in finite time, is the η-reachability
condition, expressed as

sṡ ≤ −η|s| (2.32)

where η represents a positive design scalar and | · | represents the absolute value operator. By
rewriting (2.32) as:

1

2

d

dt
s2 ≤ −η|s| (2.33)

and integrating from 0 to ts, it follows:

|s(ts)| − |s(0)| ≤ ηts (2.34)

where ts represents the time taken to reach s = 0, which satisfies:

ts ≤
|s(0)|
η

(2.35)

For the case of multi inputs systems, the η-reachability condition is defined as

sᵀṡ ≤ −η‖s‖ (2.36)

with ‖ · ‖ as the norm operator. A designed control law is said to satisfy the reachability condition
when the state trajectories are driven into the sliding surface and remain thereafter.

A sliding mode control law typically consists of two parts

u(t) = ul(t) + un(t) (2.37)

where ul represents the linear part and un the nonlinear part of the controller. The linear part of
the controller is in charge of maintaining the sliding motion. Moreover, the nonlinear part, is in
charge of compensating the disturbances and inducing the sliding motion.

Typically, the nominal equivalent control or a state feedback are employed as ul. They are designed
based on the nominal system, that is with f(t, x, u) = 0. Moreover, the different families of SMC
can be employed as un. In the following sections, their design procedure and characteristics are
shortly explained.
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2.4 First Order Sliding Mode

A generation classification of SMC can be found in [FMB+15], where it is stated that First Order
Sliding Mode Control (FOSMC) belong to the first generation. In addition, the chattering effect;
relative degree one of the switching function with respect to the output; and finite time-convergence
of the sliding variables but only asymptotic convergence of the states, are highlighted as disadvan-
tages. These disadvantages are targeted with the next generation of SMC.

The design of the following control law is based on (2.37). As mentioned before, the expression
of the nominal system is employed for the design of ul. Consider the system in (2.7), by equating
f(t, x, u) = 0 the following equation is derived:

ẋ(t) = Ax(t) +Bu(t) (2.38)

The switching function is defined as s = Sx. Then, similar to (2.17), the equivalent control
associated to (2.38) is defined as:

ul(t) = ueq(t) = −(SB)−1(SAx(t)) (2.39)

For a FOSMC, the discontinuous part is defined as

un(t) = −ρ(t, x)(SB)−1 sign(s) (2.40)

given that s is a vector, the sign function is applied element by element. The design gain ρ(t, x)
is a scalar in charge of enforcing the sliding motion. Substituting (2.39) and (2.40) in (2.37), the
control law is:

u(t) = −(SB)−1(SAx(t))− ρ(t, x)(SB)−1 sign(s) (2.41)

In order to obtain the equation of the system in sliding motion, the derivative of the switching
function is obtained by using (2.7) and (2.41) as:

ṡ = Sẋ = SAx(t) + SB
[
−(SB)−1(SAx(t))− ρ(t, x)(SB)−1 sign(s)

]
+Bf(t, x, u)

= −ρ(t, x) sign(s) +Bf(t, x, u)
(2.42)

Following the η-reachability condition (2.36), by multiplying both sides of (2.42) by sᵀ and by using
the property sᵀ sign(s) = ‖s‖, it follows:

sᵀṡ = −ρ(t, x)sᵀ sign(s) + sᵀBf(t, x, u)

= −ρ(t, x)‖s‖+ sᵀBf(t, x, u)

≤ ‖s‖(−ρ(t, x) + ‖Bf(t, x, u)‖)
(2.43)

The condition for the value selection of the design gain ρ is:

ρ(t, x) ≥ ‖Bf(t, x, u)‖+ η (2.44)

Then, the following inequality is derived:

sᵀṡ ≤ −η‖s‖ (2.45)

Integral Sliding Modes

Although SMC has the insensitivity property against matched disturbances, it is only guaranteed
after the reaching phase, i.e. when the system is in sliding motion. Integral Sliding Mode Control
(ISMC) was proposed with the aim of eliminating the reaching phase. This implies that the insen-
sitivity property is guaranteed since the beginning of the systems response.
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The design procedure is similar to the one explained in Section 2.4. Consider the LTI system (2.7),
the proposed control law follows the structure in (2.37) and is defined as

u(t) = ul(t) + un(t) = −Kx− ρ(t, x)(GB)−1 sign(s) (2.46)

where K represents a design matrix from the state feedback controller ul = −Kx, see (2.13). For
ISMC, it is considered that there exists a previously designed controller ul, for the nominal system.
The performance of the nominal system with ul, is taken into account for the design of the switching
function. The integral switching function is designed as:

s(t) = Gx(t) + z(t) (2.47)

with G ∈ Rm×n is a design matrix, which satisfies the condition det(GB) 6= 0 considering that B
has full rank. The derivative of the switching function is defined as

ṡ = Gẋ(t) + ż(t) = G [Ax(t) +B (u(t) + f(t, x, u))] + ż(t)

= Gẋ(t) + ż(t) = G [Ax(t) +Bul(t) +Bun(t) +Bf(t, x, u)] + ż(t)
(2.48)

where (2.7) was substituted in (2.48). During sliding motion, it is expected that the equivalent
control uneq compensates the perturbations, so that s = ṡ = 0. It follows that ż(t) has the following
form

ż(t) = −G (Ax(t) +Bul(t)) z(0) = −Gx (2.49)

by substituting (2.49) in (2.48) it follows:

ṡ = G [Ax(t) +Bul(t) +Bun(t) +Bf(t, x, u)]−G (Ax(t) +Bul(t))

= GBun(t) +GBf(t, x, u)
(2.50)

When equating (2.50) to zero, the expression of uneq is defined as:

uneq = −(GB)−1(GBf(t, x, u)) = −f(t, x, u) (2.51)

Then,by substituting (2.51) in (2.7) it follows:

ẋ = Ax(t) +Bul −Bf(t, x, u) +Bf(t, x, u) = Ax(t) +Bul (2.52)

From (2.52), it can be seen that during sliding mode the disturbances are rejected and the system
will be governed by (2.52).

The switching function that eliminates the reaching phase is defined based on (2.49) and (2.47) as:

s(t) = Gx(t) + z(t) = G (x(t)− x(0))−G
∫ t

0
(Ax(τ) +Bul(τ)) dτ (2.53)

where the term −Gx(0) ensures s(0) = 0. This means that the reaching phase is eliminated and
thus, the sliding mode will exist from t = 0.

The analysis of the η-reachability condition follows the procedure shown in the previous sections.
The capability of compensating unmatched disturbances with ISMC is studied in [SEFL14, HEA16].
Furthermore, it is worth noting that ISMC can be combined with other SMC techniques, see for
example [CKB13, KCB+15].

14



Chapter 2. Sliding Mode Control

2.5 Second order sliding modes

The second order sliding mode concept was firstly introduced in [Lev87]. These controllers were
mainly created with the aim of reducing the chattering effect. This is accomplished by driving the
sliding variable and its derivative to zero. Following the classification in [FMB+15], the Twisting
Algorithm (TA) and Terminal Sliding Mode (TSM) belong to the second generation. Even though
this generation reduced the chattering effect, this property was only guaranteed for systems with
relative degree one. The third generation is composed by the Super-twisting Algorithm (STA),
GSTA and the differentiator. The applicability of STA is limited to systems with relative degree
one or two.

Remark 2. In the following, the parameters of the controllers are described with inequalities. The
reader must take into account that in practice, these parameters are never assigned according to
their respective inequalities, as stated in [SEFL14, Lev03b]. This due to the fact that the real
system is not exactly known and thus the model is not adequate, leading to an overestimation of
the parameters KM ,Km, C. Instead it is suggested to adjust the parameters during the simulation.
This remark applies for the controllers described in this section (2.5).

2.5.1 Twisting algorithm

The twisting algorithm was the simplest Second Order Sliding Mode Controller (SOSMC) proposed.
Consider the following system:

ẋ(t) = a(t, x) + b(t, x)u (2.54)

where for some positive constants C and Km it follows that |a(t, x)| ≤ C and 0 ≤ Km ≤ b(t, x).
The TA is defined as:

u(t) = −r1sign(x)− r2sign(ẋ), r1 > r2 > 0 (2.55)

Let r1 and r2 satisfy the conditions Km(r1 + r2)− C > KM (r1 − r2) + C, Km(r1 − r2) > C. The
controller guarantees finite time convergence of the states x1 = x2 = 0 for all t > 0 when the
parameters are chosen according to [Eme86]. The total convergence time is estimated as:

T ≤
∑ |ẋi|

[Km(r1 − r2)− C]
≤ |ẋ0|

(1− q) [Km(r1 − r2)− C]
(2.56)

The interested reader can find the convergence proof in [Eme86, SEFL14].

2.5.2 Terminal Sliding Mode

TSM was first proposed in [VG93]. This controller is based on terminal attractors that guarantee
finite-time convergence of the states. This is accomplished by adding a nonlinear term in the
switching function as:

s(x) = x2 + β
√
|x1| sign(x1) (2.57)

where the value of β > 0. The Terminal Sliding Mode Control is given by:

u(x) = −α sign(s(x)) (2.58)

In [FMB+15], the derived behaviour of the system, due to the selection of β, is analyzed and
classified on terminal and twisting mode. In addition, variations of TSM can be found in literature
as Non-Singular TSM [FYM02] and Fast TSM [YZ02].
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Figure 2.4: Phase plane of the STA controller [Lev03b]

2.5.3 Super-Twisting Controller

Given that the STA does not need the measurement of ṡ, it can be employed as an alternative
for FOSMC. In addition, STA is known for reducing the chattering , this means that a contin-
uous control signal is obtained. Consider the system (2.54), where for some positive constants
C,KM ,Km, UM , q [Lev03b]:

|ȧ|+ UM |ḃ| ≤ C, 0 ≤ Km ≤ b(t, x) ≤ KM , |a/b| < qUM and 0 < q < 1 (2.59)

Then, the STA is described by the following equation:

u = −λ|x|
1
2 sign(x) + u1, u̇1 =

{
−u, |u| > UM

−α sign(x), |u| ≤ UM
(2.60)

Lemma.With Kmα > C and λ sufficiently large, the controller (2.59) guarantees the appearance
of a SOSMC x = ẋ = 0 attaching the trajectories to [−UM , UM ] and stays there. It never leaves
the segment if the initial value is inside at the beginning.

The phase portrait of (2.59) is shown in Fig.2.4. A sufficient condition which validates the Lemma
is:

λ >

√
2

(Kmα− C)

(Kmα+ C)KM (1 + q)

K2
m(1− q)

(2.61)

The total convergence time can be estimated by [Lev03b, SEFL14]:

T ≤
∑
|ẋi|/(Kmα− C) (2.62)

To illustrate its design procedure, one can consider the example of the LTI system (2.7), with the
previously defined switching function (2.3) and the expression for ul in (2.39). Then, the expression
of un is defined as

un = −k1|x|
1
2 sign(x) + v

v̇ = −k2sign(x)
(2.63)

where λ = k1 and α = k2. Following the structure in (2.37), the control law is defined as:

u(t) = −(SB)−1
[
SAx(t) + k1|x|

1
2 sign(x) +

∫ t

0
k2sign(x)dτ

]
(2.64)

where the gains k1 and k2 are selected according to [Lev98, MO12] as k1 = 1.5
√
Γ2 and k2 = 1.1Γ2,

where it is assumed that
∣∣∣ḟ(t, x, u)

∣∣∣ < Γ2 is known. The control law (2.63) leads to s = ṡ = 0 in

finite time, as a consequence x = ẋ = 0 converges asymptotically.
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2.5.4 Generalized/Variable Gain Super-Twisting Algorithm

Variable Gain Super-Twisting Algorithm (VGSTA) is an extension of the STA that provides exact
compensation against state dependent perturbations that can exponentially grow in time. Consider
the system (2.7), which linear transformation is described as in (2.21) and (2.22). The switching
function is described in the new coordinate system as:

s(t) = x̃2 −Kx̃1 (2.65)

The reduced order model is obtained when s(t) = 0, i.e. during sliding mode. It is obtained by
equating (2.65) to zero and substituting it in (2.21) as :

˙̃x1 = Ã11x̃1 + Ã12Kx̃1 =
(
Ã11 + Ã12K

)
x̃1 (2.66)

where K can be designed employing any linear control design method for (2.66), given that the
pair (Ã11, Ã12) is controllable. Following the procedure shown in [GMF11, SEFL14], by applying
the control law defined as:

u = −
(
Ã21 + Ã22K −K

(
Ã11 + Ã12K

))
x̃1 −

(
Ã22 −KÃ12

)
s+ v (2.67)

to (2.21) and (2.22), and considering (x̃ᵀ1, s) as state variables, the system takes the form:

˙̃x1 =
(
Ã11 + Ã12K

)
x̃1 + Ã12s

ṡ = v + f̃ (x̃1, s+Kx̃1, t)
(2.68)

The GSTA also known as VGSTA, has a similar definition to the STA, but with added terms
[Mor09], as:

un = −k1φ1(x) + v

v̇ = −k2φ2(x)
(2.69)

with

φ1(x) = |x|
1
2 sign (x) + k3x φ2(x) =

1

2
sign (x) +

3

2
k3|x|

1
2 sign (x) + k23x (2.70)

where k3 ensures robustness against a wider class of uncertainty and perturbations than the STA,
for instance in the presence of uncertain control coefficient and state dependent perturbations
[CFM18]. The perturbations f̃ (x̃1, s+Kx̃1, t) can also be rewritten as:

f̃ (x̃1, s+Kx̃1, t) =
[
f̃ (x̃1, s+Kx̃1, t)− f̃ (x̃1,Kx̃1, t)

]
︸ ︷︷ ︸

g1(x̃1,s,t)

+ f̃ (x̃1,Kx̃1, t)︸ ︷︷ ︸
g2(x̃1,t)

(2.71)

In order for s(t) to be equal to zero it is required that g1(x̃1, s, t) = 0, whilst it is only necessary
that ġ2(x̃1, t) is bounded by 1

2g2(x̃1, t) [Lev07]. Then, the disturbance is bounded by the known
continuous functions %1(t, x) ≥ 0 and %2(t, x) ≥ 0 as:

g1(x̃1, s, t) ≤ %1(t, x)|φ1(x)| = %1(t, x)
(

1 + k3|x|
1
2

)
|x|

1
2

ġ2(x̃1, t) ≤ %2(t, x)|φ2(x)| = 1

2
%2(t, x) + k3%2(t, x)

(
3

2
+ k3|x|

1
2

)
|x|

1
2

(2.72)

System (2.68) driven by (2.69) can be written as:

˙̃x1 =
(
Ã11 + Ã12K

)
x̃1 + Ã12s

ṡ = −k1φ1(x) + v + g1(x̃1, s, t)

v̇ = −k2φ2(x) + ġ2(x̃1, t)

(2.73)
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Lemma. Suppose that for some known continuous functions %1(t, x) ≥ 0, %2(t, x) ≥ 0 the inequal-
ities (2.72) are satisfied. Then for any initial condition (x̃ᵀ1, s0, v0) the sliding surface s = 0 will be
reached in finite time if the variable gains are selected as [SEFL14]:

k1 = δ +
1

β

{
1

4ε
[2ε%1 + %2]

2

}
a+ 2ε%2 + ε+ [2ε+ %1](β + 4ε2)

k2 = β + 4ε2 + 2εk1

(2.74)

where β > 0, ε > 0, δ > 0 are arbitrary positive constants. The reaching time of the sliding surface
can be estimated by

T =
2

γ2
ln

(
γ2
γ1
V

1
2 (s0, v0) + 1

)
(2.75)

where V (s, v) = ξᵀPξ, ξᵀ =
[
|s|

1
2 sign(s) + k3, v

]
and

γ1 =
ελ

1
2
min{P}

λmax{P}
γ2 =

2εk3
λmax{P}

(2.76)

2.5.5 Observer/Differentiator

The sliding mode differentiator is employed for exact robust differentiation in the absence of mea-
surement noise. For instance, it can be employed for controllers that need the measurements of ẋ,
given that it offers finite-time convergence to the estimated derivative. Based on the STA algo-
rithm, its operating principle is explained below.

Let f(t) be a function to be differentiated. It is assumed that its second derivative is bounded by
a known constant L, i.e. |f̈(t)| < L. Consider that x1 = f and x2 = ḟ , then it can be rewritten as:

ẋ1 = x2

ẋ2 = f̈

y = x1

(2.77)

Similar to the definition of the STA controller defined in (2.63), the differentiator is defined as:

˙̂x1 = −k1|x̂1 − y|
1
2 sign(x̂1 − y) + x̂2

˙̂x2 = −k2sign(x̂1 − y)
(2.78)

By appropriately selecting the gains k1 and k2 [Lev98], finite-time convergence of (f − x̂1) =(
ḟ − x̂2

)
= 0 and the estimate of ḟ can be found in x̂2.

2.6 Arbitrary Sliding Mode Controllers

Arbitrary Sliding Mode Controllers were developed with the aim of stabilizing arbitrary relative
degree systems in finite-time, by using nested sliding mode controllers [Lev01]. Its recursion is de-
pendent on the relative degree of the output. The main families of r-sliding controllers were: nested
sliding and quasi-continuous sliding. Nested sliding and quasi-continuous sliding controllers belong
to the fourth generation of SMC [FMB+15]. Although the quasi-continuous r-sliding controllers
reduce the chattering effect, they do not reduce it to a great extent. A proposed solution to this
problem is analyzed in the following section. The controller design is explained by considering the
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system (2.7), where its output y = Cx has a known relative degree. Then, the controller is defined
as:

u = −αΨr−1,r
(
y, ẏ, . . . , yr−1

)
(2.79)

where βi can be fixed in advance for every relative degree r as positive large values. The design
gain α > 0 is more conveniently adjusted by simulations, as suggested in [SEFL14]. The value of
Ψr−1,r is defined in the following for each family of controllers.

Based on FOSMC, the nested r-sliding controllers are built with Ψ0,r = sign(y) and Ψi,r =
sign

(
y(i) + βiNi,rΨi−1,r

)
. Let q > 1, it follows that Ni,r is defined as:

Ni,r =
(
|y|

q
r + |ẏ|

q
r−1 + . . .+ |y(i−1)|

q
(r−i+1)

) 1
q

(2.80)

Given that the quasi-continuous r-sliding controllers are based on SOSMC, a reduced chattering
effect is observed in the control signal. Their structure consists of the following definitions:

ϕ0,r = y, ϕi,r = y(i) + βiN
(r−i)/(r−i+1)
i−1,r Ψi−1,r

Ψ0,r =
ϕ0,r

N0,r
= sign(y), Ψi,r =

ϕi,r
Ni,r

Ni,r =
∣∣y(i)∣∣+ βiN

(r−i)/(r−i+1)
i−1,r

(2.81)

Arbitrary order Observer/Differentiator

In order for the previous controller (2.79) to be applicable, the r derivatives of y have to be available.
Their computation is obtained by means of the arbitrary order differentiator [Lev03a] defined as

ż0 = v0 = −λkL
1
k+1 |z0 − y|

k
k+1 sign(z0 − σ) + z1

ż1 = v1 = −λk−1L
1
k |z1 − v0|

k−1
k sign(z1 − v0) + z2

...

żk−1 = vk−1 = −λ1L
1
2 |zk−1 − vk−2|

1
2 sign(zk−1 − vk−2) + zk

żk = −λ0Lsign(zk − vk−1)

(2.82)

where L represents the upper bound of |y(k+1)|. According to [Dav13, SEFL14, FMB+15], by
choosing the appropriate gains λ1, λ2, . . . , λk, the following inequality is true in the absence of
noise:

|zi − y(i)| = 0 i = 1, 2, . . . , k (2.83)

Then, the estimated derivative of y(i) is obtained in finite-time in zi.

Continuous Nested Sliding Mode Controllers

Continuous Nested Sliding Mode Controllers (CNSMA) were first proposed in [FMB+15]. They
compose the fifth and last generation of SMC. The aim of the CNSMA was to have a continuous
signal while keeping the properties of the arbitrary order sliding mode controllers. The generalized
form of the Continuous Nested Terminal Sliding Mode Algorithm, for a system with relative degree
r, is proposed as:

ẋ1 = x2

ẋ2 = x3
...

ẋr−1 = −k1|φr−2|
1
2 sign(φr−2) + xr

ẋr = −krsign(φr−2) + ρ

(2.84)
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It is assumed that the perturbation is bounded as |ρ| ≤ ∆. In (2.84), x1, x2, . . . , xr represent the
states and φr−2 = sr−1,r−1, where for i = 2, 3, . . . , (r − 1), the following is defined:

s0,r−1 = x1

s1,r−1 = x2 + k2R1,r−1sign(x1)

si,r−1 = xi+1 + ki+1Ri,r−1sign(si−1,r−1)

(2.85)

with R1,r−1 = |x1|
r
r+1 , Ri,r−1 =

∣∣∣|x1|r1 + |x2|r2 + . . . + |xi−2|ri−2

∣∣∣qi and qi represents a design pa-

rameter.

The main difference between the quasi-continuous r−sliding controllers and the CNSMA is that
the quasi-continuous controller remains continuous until a 2-sliding mode takes place, unlike the
TSM.

The work developed in [BPZ04] can be classified as a nested continuous SMC for relative degree
systems. It is defined as simplex control methods and it is mainly employed for the control of
systems with mono-directional actuators given that it reduces the number of control vectors.

2.7 Adaptive Sliding Mode Controllers

In the previous sections, the tunning of the described controllers was shown to be dependent on
the bound of the disturbance, see for example (2.44). One may assume that when the bound of
the disturbance is unknown or variable, the gains of the controllers can be selected with an over-
estimated bound. The consequence would be an increment in the chattering effect. Consider for
instance, the case when a STA controller is designed with the aim of having a control signal with
a reduced chattering effect. With an overestimated disturbance bound, its chattering attenuation
property might be diminished. Adaptive Sliding Mode Controllers (ASMC) were developed with
the aim of having a robust controller, even when the bound of the disturbance is unknown or in
the case the disturbance is time-varying.

Their main design principle is to adjust the gains of the controller to maintain the sliding motion,
depending only on the information that is available. In literature, different approaches towards
applying adaptation to SMC can be found, see for example [HKC08, EUT+70] where the coefficients
of the switching plane are varied without information of the plant with the aim of improving the
systems response. Recent research in this field, is dedicated to the proposal of a solution that
considers reducing the chattering effect, see for instance [SMP+10, HLC12, TLP13, GBDB17,
HBHS20, EEZ16] were the adaptation principles are applied to the STA, TA, arbitrary order SMC,
TSM and SMO, respectively.

2.8 Output Tracking

The output tracking problem refers to a control system that follows a specific trajectory in order to
have a desired performance. It is commonly employed in practice, for example the attitude angles
of a quadrotor follow reference profiles; to induce a specific trajectory in an autonomous robot or
for the control of electric power systems.

For the output tracking problem, the control design procedure is the same as explained in the
previous sections. The main difference is the definition of the switching function, given that it
is based on the tracking error. Following the example shown in [SEFL14], consider the following
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system:
ẋ1 = x2

ẋ2 = u+ f(t, x, u)

y = x1

(2.86)

where |f(x, t)| < Γ1 represents the bounded disturbances/uncertainties, and the bound f+ is as-
sumed to be known. The reference trajectory is defined as yc = x1c. The tracking error is then
defined as e = y − yc = x1 − x1c. The switching function is defined based on the tracking error as:

s = ce+ ė c > 0 (2.87)

The design process of a control law that drives s = 0 and e = 0 in finite time, follows the specific
procedure for each controller, as explained in the previous sections.

2.9 Fault Tolerance and Sliding Modes

Control systems have become part of our daily life. Initially, their evolution was mainly shaped
by the need of reducing effort, costs and time. Progressively, their complexity increased, since not
only they had to guarantee efficiency, but safety. This can be better understood when considering
systems like chemical reactors, nuclear plants or even airplanes. Thus, the importance of consid-
ering faults during the design process of the controlled systems. A fault is defined in [IB97], as an
unpermitted deviation of at least one characteristic property or parameter of the system from the
acceptable/usual/standard condition. A control that has the capability of maintaining an accept-
able performance despite the occurrence of a fault, is called FTC. It is achieved due to redundancy
of actuators, sensors or other components on the system.

According to their location, faults can be classified as sensor, actuator or component faults, see
Fig. 2.5. Sensor and actuator faults can present total or partial loss. A total loss on an actuator,
represents a stuck actuator that does not generate the expected actuation, despite the applied input.
For the case of a sensor, it means that the received measurements are incorrect. Furthermore, an
actuator with partial loss produces a percentage of the expected actuation. In the sensor case,
the measurements may be noisier, scaled or have an offset. Component faults represent changes in
physical parameters which affect the dynamical behaviour of the system. Is hard to classify them
since they can cover a wide variety of situations. Faults can also be classified according to their
time behaviour as abrupt, incipient and intermittent, see Fig. 2.6. It can be seen that an abrupt
fault behaves like a step signal; an incipient fault like a drifted signal and an intermittent fault as
a signal with interrupts.

+

−
Controller

Reference

Actuators Plant Sensors
Output

Faults Component Faults Faults

Figure 2.5: Classification of faults according to their location

Faults can be modelled as additive or multiplicative representations. For instance, an offset or drift
in the control signal can be described as an additive fault as follows:

uf (t) = u(t) + f(t) (2.88)
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Figure 2.6: Classification of faults according to their time behaviour [Ise06]

where f(t) ∈ Rn represents the fault actuator vector, u(t) ∈ Rn is the control input and uf (t) ∈ Rn
is the faulty control input. On the other hand, faults that cause changes in the parameters of the
system are modelled as multiplicative faults. Following the model employed in [Hen10], uf (t) is
described as a multiplicative fault as

uf (t) = (I− Ψ)u(t) (2.89)

where Ψ = diag[ψi, . . . , ψn] is an unknown matrix that has values that range between [0, 1]. When
ψi = 1, the i-th actuator is faulty; ψi = 0, represents normal actuation; and ψi = %x means a loss
of efficiency.

Similar expressions are obtained for describing faulty output yf (t), caused by faulty sensors. The
difference relies on changing u(t) and uf (t) for y(t) and yf (t), respectively, in (2.88) and (2.89).
Finally, the description of a component fault is translated to a modification on the system’s matrix.
For the LTI case, it is modelled as:

ẋ(t) = Afx(t) +Bu(t) = (A+∆A)x(t) +Bu(t) (2.90)

where ∆A represents a change in the system matrix A.

Based on the use of the redundant components, FTC is classified in passive and active [JY12a,
JY12b]:

• Passive techniques consider that possible system failures are known. Then, the control de-
signed is developed considering the pre-specified faults. Given that the controller stays fixed
during the systems operation, it is expected that it can overcome any component fault. This
makes passive approaches less complex, considering that the robustness properties of a fixed
controller are exploited, see Fig. 2.7. As a consequence, the type of faults that the robust
controller can compensate is limited. However, their lack of complexity plays and advantage
when implementing, given that they are more reliable and they have less requirements in
software/hardware [ELS+10].

• Active techniques reconfigure the control parameters in the presence of a fault. They rely on
a FDI unit, see Fig. 2.8. The FDI is in charge of the constant monitoring of the status of
the system and its components. In this way, when the FDI detects a fault, a reconfiguration
is carried out in the controller. As a result, a wider range of faults can be compensated.
One limitation of this scheme is that it has limited time to perform FDI followed by control
reconfiguration. In addition, the accuracy of the FDI affects the reconfiguration process. In
other words, despite the existence of some stability and performance proofs for active FTC
techniques, the main problem lies in guaranteeing stability and performances of the overall
fault-tolerant scheme taking into account FDI performances (detection delay, possible false
alarms, etc.), control specifications, and reconfiguration mechanism [CEH15].

Many control techniques have been applied for the design of fault tolerant controllers. Consider
for instance H∞, Linear Parameter Varying (LPV), CA, dynamic inversion, adaptive methods,
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Figure 2.7: Architecture of passive FTC
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Figure 2.8: Architecture of active FTC

neural networks, Model Predictive Control (MPC) and SMC, to mention some. Table 2.1 shows a
summary of references with these control techniques. Due to its robustness properties, SMC was
considered as a potential alternative for reconfigurable control in [HW03]. In literature, active and
passive FTC schemes, based on SMC can be found. Most active FTC approaches with SMC are
focused on the development of either FDI or reconfiguration. On the other hand, passive FTC
approaches found in literature are more conservative, i.e. the considered faults are mainly loss of
effectiveness. Furthermore, SMO are used for FTC, specifically for fault reconstruction or for fault
detection. Fault reconstruction with SMO’s is achieved by employing the equivalent output error
injection approach, which is the average value required to maintain the sliding motion [ESP00].
In addition, SMO are also employed to generate residuals by escalating the output estimation er-
ror. This residual then acts as a fault alarm, which is activated when its value is different from zero.

CA method is commonly used with SMC for active FTC purposes. This is mainly because, it allows
the independent design of the control law. In addition, a reconfiguration of the controller is not
needed when a fault occurs. Furthermore, the actuator limitations can be considered by the CA
unit. In order to produce the desired control effort, the CA redistributes the control signal into
the healthy actuators. In Fig. 2.9, the control allocation scheme is shown. It can be seen that CA
depends on an FDI unit, so that the CA knows the availability of the actuators.

2.10 Conclusion

In this chapter, the history of the development of SMC was shortly reviewed. It starts with the
description of the operating principle and the basic concepts that were derived from it. Then, the
evolution of the SMC techniques and their design process is examined. At the same time, their
specific limitations and advantages are reviewed.
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Design Approaches References

H∞ [GS19, LSD12, LJZ18, WPC06]

LQR [OH16, YZMQ13]

Liner Parameter Varying (LPV) [RTAS07, RNP14, CAE19b]

Control allocation (CA) [AE08, RKFZ15, MV11, CJ14, CEAS20]

Dynamic Inversion [JKR08, WHD+19]

Adaptive methods [CG10, MJTC15]

Neural Networks [DP01, LY16, SJSL14, LLT18]

Model Predictive Control (MPC) [IZG11, MJ03]

Sliding Modes
• Active technique [HEA11, XCW15, CEAS20, CAE19a, CEA19]
• Passive technique [SWZP15, MNB15, LJPZ19, LP17, LP16, DCH+16]
• Fault Estimation/Fault Detection [ES98, ESP00, CAE19b, LP18, YYK17, CMZL20]

[XYG17, FIS20, HBHS20, FdLCH+15, RKFZ15]
[DCH19, CCD+17b, CCD+17a, DLCH+15]

Table 2.1: Different design approaches for FTC
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Figure 2.9: Control allocation scheme

The concept of FTC and its classification is introduced. The characteristics that differentiate active
from passive approaches were also described. Furthermore, it is mentioned that SMC techniques
have attracted the attention of the FTC community, due to its insensitivity properties. This idea,
will be explored in the following of the manuscript.

In the next chapter, the study of the rendezvous mission and its dynamics will be studied. The
attitude and position control are designed based on sliding mode techniques. Perturbations coming
from the environment and some model uncertainty are considered during the design process of the
controller. The work that follows will be focused on the FOSMC, STA and GSTA. This is due
to the attenuation on the chattering effect, and the robustness that the STA and the GSTA offer
without the need of higher order derivatives. The FOSMC will be applied for comparison purposes.
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3

Design of a Sliding Mode Control

Scheme

3.1 Introduction

This chapter introduces the design of SMC schemes applied to a rendezvous mission. The first part
of this chapter is devoted to the description of the rendezvous mission, e.g. the phases by which it
is constituted, the vehicles involved (i.e. chaser and target) and their structure. The development
of the nonlinear coupled model for both dynamics, translational and rotational, is developed based
on the HCW formalism. In this model, the effects of the solar arrays and the propellant sloshing
are considered. A linear controllable canonical form of the model is obtained for each dynamics, i.e.
two linear 3DoF models are obtained. These models, serve as the basis for the controller design.
Based on the Sliding-Mode Techniques described in the previous chapter, two SMC are developed
in a backstepping setup. First, the development of a FOSMC is analyzed followed by the study
of the STA. The computed control signals are distributed to the actuators by the CA unit, in the
chaser vehicle. The operating principle of the CA and the description of the thruster model unit
are also addressed. Finally, the proposed solutions are tested in a high-fidelity benchmark that
accurately simulates a rendezvous mission between a chaser spacecraft and a passive target onto a
circular orbit around Earth, taking into account the coupling between attitude and translational
motions, propellant sloshing, modes of the flexible appendages and the most dimensioning space
disturbances (e.g. second zonal harmonic J2, atmospheric drag, magnetic disturbance).

System description and problem formulation

The reference scenario consists of two vehicles inserted into the same circular orbit around Earth.
One vehicle (the target) is a passive spacecraft (there are no available sensor and actuator) while the
second one (the chaser), is equipped by a set of rendezvous sensors and actuators and a complete
GNC unit. The characteristics of the orbit’s rendezvous are a semi-major axis a = 7068 km,
an eccentricity e = 0 and an inclination i = 0 deg. The trajectories of the spacecraft on this
orbit are characterized by constant longitude of the ascending node and argument of periapsis
(fixed to Ω = 0 rad and ω = 0 rad respectively) with initial values of the true anomaly fixed to
ν(0) = 1.5× 10−5 rad for the target and ν(0) = 0 rad for the chaser. With these orbital parameters,
the initial distance between the two spacecraft is 100 m approximately in the y-axis direction in

the so called Local Vertical Local Horizontal (LVLH) frame Fl = {Ot;
−→
Xl,
−→
Yl,
−→
Zl}1. The spacecraft

trajectories in the inertial frame Fi = {OE ;
−→
Xi,
−→
Yi,
−→
Zi}2 and in Fl are illustrated on Fig. 3.1 for

a better understanding. The considered rendezvous trajectory corresponds to i) target acquisition

1The origin of the LVLH frame is at the target center of mass, the axis
−→
Zl is pointing to the opposite of OE , the

axis
−→
Yl is aligned with the negative orbital momentum vector and

−→
Xl completes the frame.

2The inertial frame Fi is defined as on Fig. 2
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where the chaser keeps its position at its initial position and rotates to acquire the target and ii)
rendezvous where the chaser’s attitude is controlled to keep the capture mechanism aligned with
the target and while, at the same time, it performs a forced translation.

Figure 3.1: The orbit and rendezvous trajectory in Fi (left) and in the LVLH frame Fl (right). The
trajectory corresponds to the results in section 3.6

The avionics architecture retained for the mission, is composed of a LIDAR which provides relative
positions and velocities, an IMU and a Star Tracker. It is worth noting that, in this work, it is as-
sumed a perfect navigation unit, i.e. all measurements are assumed to be noise free. The actuation
consists of 12 thrusters of 4N for both attitude and position control.

The complete mission is modelled into a so-called Functional Engineering Simulator (FES) devel-
oped in Matlab/Simulink. Both chaser and target have each one an associated environment module
as some characteristics depend on specific spacecraft properties. Typically, the chaser has two half-
filled tanks that cause propellant sloshing and a solar array with two flexible modes, whereas the
target is assumed to be a spherical object. For the chaser, the considered disturbances are the
second-order zonal harmonic J2, the atmospheric drag and effect of the Earth magnetic filed. With
regard to the target, it is assumed to be affected by the J2 disturbance and the atmospheric drag.

The derivation of the dynamic models is based on expressing linear accelerations and angular
accelerations in adequate frames. Three frames are used for that purpose:

i) Earth centered inertial frame Fi: this frame is a non-accelerating reference frame, with its
origin at the center of the Earth, and the axes ~xi, ~yi,~zi are oriented as shown in Fig. 3.1.

ii) the so-called LVLH frame Fl = {Ot;
−→
Xl,
−→
Yl,
−→
Zl}: the center of this frame coincides with the

target’s CoM (center of mass), the axis
−→
Xl is in the direction

−−−→
OEOt, the axis

−→
Yl is tangent

to the orbit, orthogonal to
−→
Xl and points in the same direction than the trajectory of the

capture and the axis
−→
Zl completes.

iii) chaser’s body frame Fb: the center of this frame coincides with the chaser’s CoM and it’s
axes are oriented in such a way that an attitude angle equal to [0, 0, 0]ᵀ means that the chaser
is aligned with the target along its velocity axis.

We use the notation v(i),v(l),v(b) for a vector v given in the frame Fi,Fl,Fb, respectively. However,
the superscript (i), (l), (b) is omitted when judged not necessary.
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3.2 Modelling issues

Modelling the relative translational motion between the two spacecraft

Let (xc, yc, zc) be the coordinates of the chaser’s CoM, in Fi. Then, the dynamics of the chaser’s
translational motion is described according to [Wie98, MG12]:

ẋ(i)
c = f

(
x(i)
c

)
+

[
03
I3

](
γ(i)
u + γ

(i)
sl + γ(i)

sa + γ
(i)
dc

)
(3.1)

In this equation x
(i)
c = [xc yc zc ẋc ẏc żc]

ᵀ is the state vector composed by the position and velocities

of the chaser along each axis of Fi and γ
(i)
u ,γ

(i)
sl ,γ

(i)
sa ,γ

(i)
dc refer to the 3-dimensional accelerations

due to the propulsion unit, propellant sloshing, flexible appendages and disturbances respectively.

Similarly, let (xt, yt, zt) be the coordinates of the target’s CoM in Fi. Then, the dynamics of the
target’s translational motion can be described according to

ẋ
(i)
t = f

(
x
(i)
t

)
+

[
03
I3

]
γ
(i)
dt (3.2)

where I3 is the identity matrix in R3, x
(i)
t = [xt yt zt ẋt ẏt żt]

ᵀ is the state vector composed by the

positions and velocities of the target. γ
(i)
dt refers to the disturbances (accelerations) about the tar-

get’s CoM.

In Eq. (3.1) and (3.2), the nonlinear state dependent function f
(
x
(i)
j

)
, j ∈ {c, t} is given by

f
(
x
(i)
j

)
=



ẋj
ẏj
żj
−µxj

(x2j+y2j+z2j )
3/2

−µyj
(x2j+y2j+z2j )

3/2

−µzj
(x2j+y2j+z2j )

3/2


j ∈ {c, t} (3.3)

µ = GmE is the Earth gravitational constant where G and mE are the universal gravitational
constant and the mass of the Earth planet, respectively.

Subscribing Eq.(3.2) to Eq.(3.1) leads to the relative translational motion between the two space-
craft, given in Fi. The result is a state space model that involves the relative position ∆x(i) =

x
(i)
c − x(i)

t and the relative velocities ∆ẋ(i) = ẋ
(i)
c − ẋ(i)

t .

Now, consider the rotation matrix R(l)
i (a, e, i, Ω, ω, ν) that performs the projection of a vector

v ∈ R3 from Fi to Fl, see [MG12]. With the retained target orbital parameters (see section

3.1), it can be verified that R(l)
i (a, e, i, Ω, ω, ν) depends only on the semi-major axis a and the

true anomaly ν, that is R(l)
i (a, ν). Applying the change of coordinates ρ = R(l)

i (a, ν)∆x(i) (and

therefore ρ̇ = R(l)
i (a, ν)∆ẋ(i), it follows that the state space model that describes the dynamics of

the relative translational motion between the two spacecrafts in Fl, takes the form of (3.4) where

j = {c, t} and g(.) is a function that depend nonlinearly on ρ, ρ̇, a, ν,γ
(i)
dj .[

ρ̇
ρ̈

]
= g

(
ρ, ρ̇, a, ν,γ

(i)
dj

)
+

[
03
I3

](
1

m
F (l)
u + γ

(l)
sl + γ(l)

sa

)
(3.4)
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In Eq.(3.4), m is the total mass of the chaser’s spacecraft, F
(l)
u = mR(l)

i (a, ν)γ
(i)
u is the three-

dimensional forces due to the thruster-based propulsion unit, γ
(l)
sl = mR(l)

i (a, ν)γ
(i)
sl and γ

(l)
sa =

mR(l)
i (a, ν)γ

(i)
sa are forces due to propellant sloshing and the flexible appendages respectively, given

in Fl.

Since the target follows a circular Keplerian orbit, the velocity of the true anomaly satisfies the
third Kepler law, i.e.

ν̇2a3 = constant = µ = GmE ⇒ ν̇ =

√
µ

a3
= n (3.5)

where µ = 3.9860× 1014 m3/s2. Then, because the distance between the target and the chaser
during the rendezvous is much smaller than the orbit, i.e., ||ρ||2 � a, it is possible to perform a
first order Taylor approximation of (3.4). This leads to the so called Clohessy-Wiltshire equations,
also named the Hill equations [Wie98, MG12]:

[
ρ̇
ρ̈

]
=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0


[
ρ
ρ̇

]
+

[
03
I3

](
1

m
F (l)
u + γ(l)

v

)
(3.6)

In this equation, γ
(l)
v is a generalized disturbance acceleration which is an additive approximation

of the effects that γ
(l)
sl ,γ

(l)
sa and γ

(l)
dj = R(l)

i (a, ν)γ
(i)
dj , j = {c, t} have on the dynamics of the relative

position and relative velocity.

Remark 3. It should be outlined that γ
(l)
sl ,γ

(l)
sa and γ

(i)
dj , j = {c, t} enter endogenously the state

space model (3.4). So, approximating them into a form of a generalized exogenous signal γ
(l)
v must

be valid. Especially such an approximation is valid if γ
(l)
sl ,γ

(l)
sa and γ

(i)
dj , j = {c, t} do not destabilize

the control loop that is developed later. Fortunately, this has been revealed to be the case, see the
simulation results presented in Section 4.6, which are obtained from the functional engineering
simulator that does not consider any kind of approximation.

Modelling the attitude of the chaser’s spacecraft

The rotational motion of the chaser caused by an applied moment (sum of all torques acting on it)
can be derived from the Euler’s second law in the body frame Fb according to:

ω̇ = J−1
∑
k

Tk − J−1ω × Jω (3.7)

Here, ω is the angular velocity vector and J ∈ R3×3 is the inertia matrix of the chaser’s spacecraft
without considering the solar array. In (3.7),

∑
k Tk = Tu + Tsl + Tsa + Td describes the sum of

torques about the chaser’s CoM, in Fb. Tu refers to the moment caused by the thruster-based
propulsion unit and Tsl,Tsa,Td refer to the moment caused by propellant sloshing, the solar array
and the exogenous disturbances.

Using the individual rotation matrices from Euler (3,2,1) rotation [Fon14], the relationship between
the rotational velocities ω and the rate of the Euler angles Θ =

[
φ θ ψ

]ᵀ
is given after by

Θ̇ =
1

cos(θ)

cos(θ) sin(φ) sin(θ) cos(φ) sin(θ)
0 cos(φ) cos(θ) − sin(φ) cos(θ)
0 sin(φ) cos(φ)

ω (3.8)
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Performing a first order Taylor approximation of Eqs. (3.7) and (3.8) around ω = 0 and Θ = 0,
leads to the following linear state space model of the attitude of the chaser:[

Θ̇
ω̇

]
=

[
03 I3
03 03

] [
Θ
ω

]
+

[
03

J−1

]
(T (b)

u + T (b)
v ) (3.9)

Here, T
(b)
v is a generalized disturbance moment (given in Fb) which is an additive approximation

of the effects that Tsl,Tsa,Td have on the dynamics of the attitude and angular velocity.

Modelling the solar array

The dynamics of the solar array is modelled using the 2nd order vector-based equation:

q̈ + 2ξω0q̇ + ω2
0q = −Lᵀ

[
γ
(b)
tot

ω̇

]
, q ∈ Rns.np (3.10)

L =

[
L
L

]
, L,L ∈ R3×(ns.np) (3.11)

In this equation, γ
(b)
tot is the total acceleration given in Fb (i.e. γ

(b)
tot = γ

(b)
c + γ

(b)
sa + γ

(b)
u ), ns = 2 is

the number of flexible modes and np = 1 is the number of solar arrays, respectively. ξ and ω0 are
also matrices of adequate dimensions that correspond to the damping ratios and the frequencies of
each flexible mode. The constant matrices L,L are given by:

L = R(b)
ap (α)BT , L = R(b)

ap (α)BR + S(d)R(b)
ap (α)BT (3.12)

The matrices BR and BT are the flexible appendage participation factor matrices. The role of

the rotation matrix R(b)
ap (α) where α is the appendage angle, is to transform BR,BT , given in the

appendage frame, into the body frame. S(d) also denotes the skew-symmetric matrix of the vector
d ∈ R3, d being the distance vector between the chaser’s CoM and the center of mass of the solar
array.

In this work, since the focus is on the rendezvous, it is assumed that α is constant so that R(α) is
a constant matrix.

Then [
F

(b)
sa

T
(b)
sa

]
= −Lq̈ −

[
msaγ

(b)
tot

Jsaω̇

]
(3.13)

In this equation, msa denotes the mass of the solar array and the matrix Jsa ∈ R3×3 is the total
inertia of the solar array. It corresponds to the sum of the nominal inertia J0 and the so-called
transport inertia.

Let us consider the chaser’s attitude dependent rotation matrix R(b)
l (Θ) that performs the projec-

tion from the LVLH frame Fl onto the chaser’s body frame Fb. Noting that

γ(b)
u =

1

m
R(b)
l (Θ)F (l)

u , γ(b)
c = R(b)

l (Θ)R(l)
i (a, ν)γ(i)

c (3.14)

F (b)
sa = mγ(b)

sa (3.15)

it follows:

F (b)
sa = − 1

1 + msa
m

[
Lq̈ +msa

(
1

m
R(b)
l (Θ)F (l)

u + R(b)
l (Θ)R(l)

i (a, ν)γ(i)
c

)]
Finally, considering the rotation matrix R(l)

b (Θ) that performs the projection from the chaser’s
body frame Fb onto the LVLH frame Fl, it follows:

F (l)
sa = R(l)

b (Θ)F (b)
sa (3.16)
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Modelling the sloshing phenomena

Propellant sloshing in the tank is modelled in this work as a 3D spring-mass model. It is considered

that the chaser has two half-full tanks. Thus, the moment T
(b)
sl =

∑2
i=1 T

(b)
sli

is deduced from the
following mass-spring damper vector-based equation

ẍs + ls
ms
ẋs + ks

ms
xs = γ

(b)
t , xs ∈ R3

T
(b)
sl = r × (ksxs + lsẋs)

(3.17)

In this equation, ls and ks are matrices of adequate dimension, defining the damping and stiffness
coefficients. ms is the sloshing mass and r ∈ R3 is the distance vector between the chaser’s CoM

and the center of mass of the tank. γ
(b)
t is the acceleration on the considered fuel tank which

is defined according to γ
(b)
t = γ(b) −

∑
k γ

(b)
k where

∑
k γ

(b)
k describes the sum of the following

accelerations:

• the Coriolis acceleration: γ
(b)
1 = 2ω × ẋs

• the centrifugal acceleration: γ
(b)
2 = ω × (ω × (r + xs))

• the Euler acceleration: γ
(b)
3 = ω̇ × (r + xs)

• γ(b) is the acceleration about the CoM of the chaser

Modelling the propulsion unit.

Let uT be the command vector of the 12 thrusters. Then, the force F
(l)
u and moment T

(b)
u due to

the thrusters are given by:

F (l)
u = R(l)

b (Θ)F (b)
u = R(l)

b (Θ)[Rf1 . . . Rf12 ]uT

= R(l)
b (Θ)RfuT (3.18)

T (b)
u =[Rτ1 . . . Rτ12 ]uT = RτuT , R =

[
Rᵀ
τ Rᵀ

f

]ᵀ
(3.19)

The columns of R are the influence coefficients defining how each thruster affects each component

of F
(b)
u and T

(b)
u , respectively (R is the thruster configuration matrix).

3.3 Control Allocation

In (3.6) and (3.9), the control commands F
(l)
u ,T

(b)
u are given in terms of forces and torques. Let

Sall = {1, 2, . . . , 12} denotes the set of all the thruster indices, and let u
(b)
ck (t), ∀k ∈ Sall be the com-

manded opening duration of the k-th thruster. Then, the control commands F
(b)
u ,T

(b)
u generated

by thrusters are given by (fault free cases)[
T

(b)
u (t)

F
(b)
u (t)

]
=

[
Rτ

Rf

]
u(b)
c (t) = Ru(b)

c (t), R ∈ R6×12 (3.20)

The columns of R (called the thruster configuration matrix) are the influence coefficients defining

how each thruster commands u
(b)
ck , ∀k ∈ Sall affects each component of T

(b)
u and F

(l)
u . Thus, from

(3.20), it is clear that one can independently address the model either using the torque/force control
inputs (in this case, equations (3.6) and (3.9) are directly used), or using the thruster commands
(in this case, it is needed to consider (3.20)). Note that reversing (3.20) is known as a CA problem
which consists in solving the following optimisation problem

u(b)
c (t) = argmin

u
(b)
c ∈U={u

(b)
ck :0≤u

(b)
ck ≤ukmax},∀k∈Sall

∥∥∥Wv(Ru(b)
c (t)− vr)

∥∥∥
p

(3.21)
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where vr is the vector of the desired force and torque commands and ukmax is the maximum open-
ing value of the kth thruster. Here it is equal to ukmax = 4N ∀k ∈ Sall. The nonsingular weighting
matrix Wv affects the prioritization among force/torque components. The different choice of the
vector p-norm results in i) minimum flow rate allocation for p = 1, minimum power allocation for
p = 2 and iii) minimum peak torque/force allocation for p = ∞. Any algorithm that solves the
optimisation problem stated by Eq. (3.21) is called a CA unit (known also as a thruster manage-
ment unit), see Fig. 3.2 that illustrates the placement of the CA unit in a control loop.

Algorithm 1, whose foundations come from the nonlinear pseudo-inverse controller technique ini-
tially formulated by [JWD95], states the algorithm that solves (3.21). The algorithm terminates if
the precision ε of the allocated torques/forces, weighted by Wv, is achieved (here ε = 10−10) or if the
maximum number of iterations Nmax

iter = 350 is reached. MIB stands for the Minimum Impulse Bit
(minimum shooting time that a thruster can execute), λ = 1.7 allows to manage the convergence

time and M ‡k , k = 1, ..., 12 stands for the generalized inverse of Mk, k = 1, ..., 12, optimal in the
sense of the considered p-norm. The indices k = 1, ..., 12 coincide with the indices of (3.19).

Algorithm 1 Solution of (3.21)

1: Set Niter = 0, v = vr and M̄k = M ;
2: while ‖Wv ∗ error‖1 > ε AND Niter < Nmax

iter do
3: v = v + λ ∗ error;
4: upc = M‡kv;
5: uc = (upc + |upc|)/2;
6: for k = 1 to 12 do
7: if uck > ūk then uck = ūk; end if
8: if uck < MIB then uck = 0; end if
9: end for

10: error = M̄ iu
c − vr; Niter = Niter + 1;

11: end while
12: Set u = uc;

3.4 Sliding Mode Control in a Backstepping Setup

+
−

+
−

Â1
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−

Âr−1
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+
− SMC
exr u
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Nonlinear

DynamicsCA R
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(b)
c u

Figure 3.2: Backstepping and Sliding Mode Control Setup

Consider the following block-controllable form of a system’s model, composed into r connected
sub-systems [DILU90]:

ẋ1 =A1x1 +B1x2 (3.22)

ẋi =Aixi +Bixi+1 (3.23)

ẋr =Arxr +Br(u+ v) (3.24)

for i = 2, r − 1. Here x = [xᵀ1, x
ᵀ
2, . . . , x

ᵀ
r ]ᵀ ∈ Rn, u ∈ Rm and v ∈ Rm refer to the sys-

tem’s state, control input and (matched) disturbance vectors respectively. xi is defined by xi =
[xᵀ1, x

ᵀ
2, . . . , x

ᵀ
i ]
ᵀ, xi ∈ Rni so that ni = rank(Bi),

∑r
i=1 ni = n. The sub-system (3.22)-(3.23) for

31



Chapter 3. Design of a Sliding Mode Control Scheme

i = 2, r − 1 represents the sub-actuated dynamics and (3.24) corresponds to the actuated dynamics.
Thus, xr ∈ Rm. The matrices Ai, Bi are of adequate dimension.

The goal is to design the state feedback sliding mode control law that obeys to a backstepping
paradigm so that x1(t) follows an a priori given trajectory x1c(t), ∀t ≥ 0.

Assumption 1. Let v ∈ Rm. The component vj are bounded, i.e. |vj | ≤ v+0j and the component of

v̇j are bounded, i.e. |v̇j | ≤ v+1j , j = 1,m.

Assumption 2. The time derivatives of x1c up to order r − 1 are assumed to be bounded and
available.

Assumption 1 is required for the existence of the super-twisting control technique, see Eq. (3.35).
For small values of r, assumption 2 is reasonable from a practical point of view since the successive
time derivatives of x1c(t) are generally endogenous signals in a trajectory planing algorithm. Fur-
thermore, sliding mode-based differentiation techniques can be used for estimating the derivatives
up to r − 1, see Section 2.5.5.

The backstepping philosophy consists in computing the internal signals εi, i = 1, r − 1 in r−1 steps
and used xi+1, i = 1, r − 1 as virtual controls. Then, at the rth step, the control law is conceived
such that the state trajectories reach the sliding surface and remain there. A FOSMC and a STA
are used for that purpose. The main goal of employing two sliding mode control techniques is to
illustrate the differences in performance between each method. In the following, the case for the
FOSMC is firstly explained followed by the STA case.

3.4.1 First Order Sliding Mode Controller in a Backstepping setup

The overall controller design procedure can be described in a general form with the following steps:

Step 1. Define the tracking error according to ex1 = x1c − x1. Then, as it is suggested by Eq.
(3.22), x2 is used as a virtual control so that x2 := ε1 where

ε1 = B†1(ẋ1c −A1x1 − Â1ex1) (3.25)

where Â1 < 0 contains the desired convergence performance of x1 towards x1c. Notice that since
rank(Bi) = ni, then BiB

ᵀ
i is invertible, thus B†i = Bᵀ

i (BiB
ᵀ
i )−1 is the right inverse matrix of Bi.

Step i, i = 2, r− 1. Define the error as exi = εi−1 − xi and the virtual control according to:

εi = B†i (ε̇i−1 −Aix̄i − Âiexi+B
ᵀ
i−1exi−1) (3.26)

where Âi < 0, i = 2, r − 1.

Step r. With the sliding surface defined by exr = εr−1 − xr, the control law is given by:

u = B†r(ε̇r−1 −Arx̄r+B
ᵀ
r−1exr−1)︸ ︷︷ ︸

ul

−un (3.27)

un ∈ Rm is the sliding mode controller. For the FOSMC, it is defined as follows:

un = α sign(exr) (3.28)

where the constraints for the selection of α are further analyzed, see Eq.(3.29). The process
to obtain the generalized equations (3.25)-(3.27) is exemplified for a system with r = 3, in the
Appendix section A.2
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Assumption 3. The components of Bᵀ
r−1ėxr−1 are bounded

The following theorem solves the control design problem:

Theorem 1. Consider the system (3.22)-(3.24), whose control signal is designed following the
procedure shown in (3.25)-(3.28). The closed loop system is stable and the controller (3.27) tracks
the reference signal x1c while annihilating v in finite-time.

Proof. The proof is conducted in two stages: First, the convergence of the trajectories to the sliding
surface exr = 0 is shown. Then, a Lyapunov function is designed to demonstrate the convergence
of the sub-actuated dynamics.

To proceed, the convergence of the individual components of the sliding surface exr to zero is
demonstrated. Based on the definition of exr = εr−1 − xr, and by applying the control law (3.28),
its derivative is defined as follows:

ėxr = ε̇r−1 − ẋr = ε̇r−1 −Arx̄r −Br(u+ v)

= ε̇r−1 −Arx̄r −Br
[
B†r
(
ε̇r−1 −Arx̄r+Bᵀ

r−1exr−1

)
−un + v

]
= ε̇r−1 −Arx̄r − ε̇r−1 +Arx̄r −Bᵀ

r−1exr−1 +Br(un − v)

= −Bᵀ
r−1exr−1 +Br(un − v) = −Bᵀ

r−1exr−1 +Br(α sign(exr)− v)

= Brα sign(exr) + δj

(3.29)

with j = 1,m, which represents the components of the vector δj = −Bᵀ
r−1exr−1 − Brv. From

Assumptions 1 and 3, the term δ̇ = −Bᵀ
r−1ėxr−1 − Brv̇ is bounded. This means that there is a

constant δ̃j that |δ̇j | ≤ |(Bᵀ
r−1ėxr−1)j |+ |Br|v+1j ≤ δ̃j , j = 1,m. Then, the system can be stabilized

if the gain α > δ̃, achieving exr = 0 in finite-time and thus xr = εr−1 in finite time.

To proof the convergence of the sub-actuated dynamics, the following Lyapunov function is em-
ployed:

V =
1

2
eᵀx1ex1 + . . .+

1

2
eᵀxrexr (3.30)

Its derivative is defined as

V̇ = eᵀx1 ėx1 + . . .+ eᵀxr ėxr (3.31)

with the expression of ėxi , i = 1, r stated in the above developments, equations (3.22)-(3.24) and
the control law u given by (3.27), it can be verified that

V̇ =

r−1∑
k=1

eᵀxkÂkexk + eᵀxrBr(un − v) (3.32)

Due to exr = 0, the time derivative of V yields to V̇ =
∑r−1

k=1 e
ᵀ
xkÂkexk . Since Âk < 0, k = 1, r − 1,

it follows that V̇ < 0 (sufficient condition) and thus that the proposed control law is asymptotically
stable. Consequently, xi → εi−1, i = 2, r − 1. Therefore x1 → x1c, achieving tracking of the
trajectory x1c(t) asymptotically.

Remark 4. Tuning Âk, k = 1, r − 1 enables to manage the convergence time of xi(t) to εi−1(t), i =
2, r − 1 and x1(t) to x1c(t). Therefore, the convergence time of exr−1 (and thus ėxr−1) to zero can

be reduced if Âr−1 has small eigenvalues (fast dynamics). This may lead the terms
∣∣(Bᵀ

r−1ėxr−1)j
∣∣

negligible in front of v+1j , j = 1,m. A consequence is that, practically, the constants δ̃j can be

chosen as over approximated upper bounds of v+1j , j = 1,m. In other words, the knowledge of
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∣∣(Bᵀ
r−1ėxr−1)j

∣∣ , j = 1,m is not required.

Furthermore, since the finite-time convergence of the last step, i.e. exr = 0, is first proved and
then used to prove asymptotic convergence of the controller, it is natural to ask about the transient
behaviour of other exk , k = 1, r − 1, especially to guarantee the boundedness of the tracking error.
This can be managed adequately through the adequate choice of Âk, k = 1, r − 1.

3.4.2 Super-Twisting Control in a Backstepping setup

In this section, a STA is designed to be the part of the controller in charge of compensating the
disturbances. It is defined as un, and it is expressed as:

un = K1Ψ1 +K2

∫ t

t0

Ψ2dt (3.33)

with the matrices K1 = diag(k11, . . . k1m), K2 = diag(k21, . . . k2m), Ψ1 = diag(Ψ11, . . . , Ψ1m) and
Ψ2 = diag(Ψ21, . . . , Ψ2m), where

Ψ1j = |exrj |
1
2 sign(exrj ), Ψ2j = sign(exrj ), j = 1,m (3.34)

and where the components of the matrices gains K1 and K2 satisfy

k2j > δ̃j , k1j >

√
k2j + δ̃j , j = 1,m (3.35)

where the constants δ̃j , j = 1,m are defined later.

Theorem 2. Consider the system in Eqs.(3.22)-(3.24) whose control signal is designed according
to Eq.(3.27) with the expression in Eq.(3.33). The closed loop system is stable and the controller
(3.27) tracks the reference signal x1c while annihilating v in finite-time.

Proof. Following the procedure of the proof of Theorem 1, one can start by differentiating exr and
applying the control law (3.27), then the derivative of the error is defined as:

ėxrj = Br

(
−k1jΨ1j − k2j

∫ t

t0

Ψ2jdt

)
+ δj (3.36)

with j = 1,m. δj represents the components of the vector δ = −Bᵀ
r−1exr−1 − Brv. Defining

µj = Br

(
−k2j

∫ t
t0
Ψ2jdt

)
+ δj yields to

ėxrj = Br (−k1jΨ1j) + µj , µ̇j = Br (−k2jΨ2j) + δ̇j (3.37)

with δ̇ = −Bᵀ
r−1ėxr−1−Brv̇ which under Assumptions 1 and 3 is bounded, i.e. there exist constants

δ̃j such that |δ̇j | ≤
∣∣(Bᵀ

r−1ėxr−1)j
∣∣+ |Br|v+1j ≤ δ̃j , j = 1,m. Then, it was shown in [SH17] that the

auxiliary system (3.37) can be stabilized by selecting the gains k1j and k2j as in (3.35), achieving
exr = 0 in finite time, therefore xr ≡ εr−1 in finite time.

The second part of the proof consists of demonstrating the convergence of the sub-actuated dynam-
ics. As shown in the previous section, this is accomplished by using the Lyapunov function defined
in Eq.(3.30). The difference from the previous procedure is that un is defined as in Eq.(3.33).
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3.5 Derivation of the control law parameters

Two separate control laws, for attitude tracking and relative position tracking, are derived. Their
design is based on the procedure explained in Sections 3.4.1 and 3.4.2. It is applied to the linearized
model expressed in (3.6) and (3.9). The control inputs and matched disturbances are defined
according to:

• u = 1
mF

(l)
u , Br = I3 and v = γ

(l)
v in the case of (3.6),

• u = T
(b)
u , Br = J−1 and v = T

(b)
v in the case of (3.9),

then, (3.6) and (3.9) are of the form (3.22)-(3.24) with r = 2, where:

• x1 = ρ, xr = x2 = ρ̇ in the case of the model (3.6),

• x1 = Θ, xr = x2 = ω in the case of the model (3.9).

Furthermore, since the LIDAR provides the measurement of the states x1 = ρ and x2 = ρ̇ in the
case of the model (3.6), the Star Tracker provides the measurement of the state x1 = Θ and the IMU
provides the measurement of the state x2 = ω in the case of the model (3.9), then the problem’s
formulation obeys to the one stated in Section 3.4. By using the functional engineering simulator,
numerical values for bounds v+1j , j = 1, 3 (see Assumption 1) are estimated: relative position loop:

v+1 = (0.0565, 0.0198, 0.0302), attitude loop: v+1 = (0.0240, 0.0023, 0.0368).

3.5.1 First Order Sliding Mode Controller

In the following, the controller for position tracking is developed with the objective of serving as
an example of the design process. It is based on the linearized model (3.6), which is first rewritten
in the following form:

[
ẋ1
ẋ2

]
=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0


[
x1
x2

]
+

[
03
I3

]
(u+ v) =

[
A11 A12

A21 A22

] [
x1
x2

]
+

[
03
I3

]
(u+ v)

(3.38)
According to the procedure explained in Section 3.4.1, one begins with the definition of the error
ex1 = x1c − x1. Its derivative is expressed as:

ėx1 = ẋ1c − ẋ1 = ẋ1c −A11x1 −A12x2 (3.39)

Then, given that x2 is used as a virtual controller, x2 := ε1:

ε1 = (A12)
+
(
ẋ1c −A11x1 − Â1ex1

)
(3.40)

Finally, the control law is defined as:

u = ε̇1 −A21x1 −A22x2 + (A12)
ᵀex1 − un (3.41)

where un is defined in (3.28) with the sliding surface ex2 = ε1 − x2. The convergence of the sliding
surface is demonstrated as follows:

ėx2 = ε̇1 − ẋ2 = ε̇1 −A21x1 −A22x2 − u− v
= ε̇1 −A21x1 −A22x2 + ε̇1 +A21x1 +A22x2 − (A12)

ᵀex1 + un − v
= −(A12)

ᵀex1 + un − v = −(A12)
ᵀex1 + α sign(ex2)− v

= α sign(ex2) + δ

(3.42)
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with δ = −(A12)
ᵀex1−v. To guarantee a sliding motion, α is selected according to (3.29). The proof

of the convergence of the sub-actuated dynamics is analyzed by employing a Lyapunov function as
described in (3.30):

V = V1 + V2 =
1

2
eᵀx1ex1 +

1

2
eᵀx2ex2 (3.43)

First, the derivative of V1 is obtained by considering x2 = ε1 − ex2 , which is obtained from the
definition of ex2 . It follows:

V̇1 = eᵀx1 ėx1 = eᵀx1 (ẋ1c −A11x1 −A12x2) = eᵀx1 (ẋ1c −A11x1 −A12 [ε1 − ex2 ])

= eᵀx1

(
ẋ1c −A11x1 −A12

[
(A12)

+
(
ẋ1c −A11x1 − Â1ex1

)
− ex2

])
= eᵀx1Â1ex1 + eᵀx1A12ex2

(3.44)

where the definition of ėx1 is obtained from (3.39). The derivative of V2 is then obtained as:

V̇2 = eᵀx2 ėx2 = eᵀx2 [α sign(ex2) + δ] = eᵀx2 [α sign(ex2)− (A12)
ᵀex1 − v] (3.45)

where the definition of ėx2 is obtained from (3.42). Then, by employing the results obtained in
(3.44) and (3.45), the total derivative of V is expressed as:

V̇ = V̇1 + V̇2 = eᵀx1Â1ex1 + eᵀx1A12ex2 + eᵀx2 [α sign(ex2)− (A12)
ᵀex1 − v] (3.46)

by using the following property eᵀx2A
ᵀ
12ex1 = eᵀx1A12ex2 , it follows:

V̇ = eᵀx1Â1ex1 + eᵀx1A12ex2 − eᵀx1A12ex2 + eᵀx2 [α sign(ex2)− v]

= eᵀx1Â1ex1 + eᵀx2 [α sign(ex2)− v]
(3.47)

The convergence of ex1 is guaranteed according to Remark 4. Same procedure is applied for
the design of the control for attitude tracking by using the model described in (3.9). The inter-
ested reader can find the exemplified design process for the case r = 3 in the Appendix, Section A.2.

For the simulation, the gains were selected based on Remark 4. The backstepping gain is chosen
as Â1 = −I3 for both, the attitude and relative position loop. With respect to the sliding gain α,
it must be chosen so that its value is chosen high enough to enforce the sliding motion. This leads
to α = 0.25I3 for the attitude loop and α = 0.08I3 for the relative position loop.

3.5.2 Super-Twisting Sliding Mode Controller

The design procedure for both control laws, attitude and translation, is similar to the one employed
for the FOSMC case. Take for instance the fact that equations (3.39)-(3.41) are equally defined
for the STA. The main difference relies on the definition employed for un, which is based on (3.33).
Consequently, the convergence proofs are different as shown in the following.

The sliding surface employed is the same as for the FOSMC case, i.e. ex2 = ε1−x2. Its convergence
is demonstrated based on its derivative as

ėx2 = ε̇1 − ẋ2 = ε̇1 −A21x1 −A22x2 − u− v
= ε̇1 −A21x1 −A22x2 + ε̇1 +A21x1 +A22x2 − (A12)

ᵀex1 + un − v

= −(A12)
ᵀex1 + un − v = −(A12)

ᵀex1 +K1Ψ1 +K2

∫ t

t0

Ψ2dt− v

= K1Ψ1 +K2

∫ t

t0

Ψ2dt+ δ

(3.48)
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with δ = −(A12)
ᵀex1−v. The gains are selected according to (3.35) and Remark 4. The convergence

of the sub-actuated dynamics, employs the Lyapunov function expressed in (3.43). The derivative
of V1 is defined as in (3.44), while the derivative of V2 is defined as

V̇2 = eᵀx2 ėx2 = eᵀx2

[
K1Ψ1 +K2

∫ t

t0

Ψ2dt+ δ

]
= eᵀx2

[
−(A12)

ᵀex1 +K1Ψ1 +K2

∫ t

t0

Ψ2dt− v
]

(3.49)

Then, by employing (3.44) and (3.49), the derivative of V is expressed as:

V̇ = eᵀx1Â1ex1 + x1
ᵀA12ex2 + eᵀx2

[
−(A12)

ᵀex1 +K1Ψ1 +K2

∫ t

t0

Ψ2dt− v
]

= eᵀx1Â1ex1 + eᵀx1A12ex2 − eᵀx1A12ex2 + eᵀx2

[
−(A12)

ᵀex1 +K1Ψ1 +K2

∫ t

t0

Ψ2dt− v
]

= eᵀx1Â1ex1 + eᵀx1A12ex2 + eᵀx2

[
−(A12)

ᵀex1 +K1Ψ1 +K2

∫ t

t0

Ψ2dt− v
]

= eᵀx1Â1ex1 + eᵀx2

[
+K1Ψ1 +K2

∫ t

t0

Ψ2dt− v
]

(3.50)

Similar to the FOSMC, the convergence of ex1 is guaranteed by Remark 4. For the simu-
lation, three parameters have to be chosen for each control law, namely Â1 (which enforces
the tracking dynamics) and K1,K2 according to (3.35) (to ensure stability of the super-
twisting algorithm). The following values have been chosen for Â1: relative position loop:
Â1 = −I3, attitude loop: Â1 = −100I3. K1 and K2 are then designed following remark 2:
relative position loop: K1 = diag(0.34, 0.2, 0.25); K2 = diag(0.057, 0.02, 0.031), attitude loop:
K1 = diag(0.22, 0.068, 0.28); K2 = diag(0.025, 0.0024, 0.037).

3.6 Simulation results

The performance of the designed SMC control laws is finally assessed using the functional
engineering simulator. It has a CA unit which is in charge of distributing the control signal into
the thrusters. Its operating principle follows the description in (3.21). In addition, it has a path
planning (guidance) algorithm implemented which is in charge of generating the position/velocity
and attitude/angular velocity profiles for the target acquisition, rendezvous and capture phases.
Here, it is based on a spline-based approach to generate smooth profiles in order to approach
the target along its velocity axis smoothly. It is worth noting that the simulator considers the
nonlinear models and their coupling effects, the second-order zonal harmonic J2, atmospheric
drag, gravity gradient, magnetic disturbances, propellant sloshing and the flexible modes of the
solar array. In addition, the navigation unit is assumed to be perfect, i.e. no measurement noise is
considered.

The investigated scenario used the following parameters:

• Chaser’s mass m = 300 kg

• Chaser’s inertia J = [30, 1, 1; 1, 40, 1; 1, 1, 25]

• Thruster’s saturation= 4 N, Minimum Impulse Bit = 0.1

• Thruster configuration and geometry of the chaser (including the location of its CoM) as
shown in figure 3.3.

• Sampling time= 0.25 s
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Figure 3.3: Thruster configuration and geometry of the chaser (including the location of its CoM)

3.6.1 First Order Sliding Mode Control

In this section, the response of the system, when employing FOSMC, is analyzed. In Fig. 3.4
(left column), the attitude tracking and the reference signal are shown. The position tracking
and the reference signal are illustrated in the right column. It can be seen that the states follows
the reference trajectories. Figure 3.5 presents the behaviour of the angular (left column) and
translational velocities (right column). Angular velocities present a more visible ”chattering” effect
than the translational velocities. However, this oscillation stays close to zero. The control signals
computed by the FOSMC are shown on the upper part of Figure 3.6, where the chattering effect
is visible. In the lower part of Figure 3.6, the tracking errors of attitude and position are shown.
It can be seen that the attitude error oscillates around zero. In the position error graphic, a small
drift on the error as well as its recovery, are visible. As mentioned before, the control signals are
distributed to the thrusters by the CA unit. These distributed signals, are shown on Figure 3.7 for
each thruster. As seen in this figure, the thrusters are not saturated.

Figure 3.4: Positions and Angles with FOSMC
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Figure 3.5: Angular and Transitional velocities with FOSMC

Figure 3.6: Tracking errors and control signals with FOSMC

3.6.2 Super-Twisting Sliding Mode Control

Fig. 3.8 shows the attitude (left column) and the relative position (right column), with their
respective reference signals. It can be seen that there is a satisfactory tracking. Furthermore, when
compared to Fig. 3.4, a reduction on the ”chattering”effect can be appreciated. Fig. 3.9 illustrates
the behaviour of the velocities with the STA. When compared to Fig. 3.5, the main difference
can be observed in the magnitude of the ”chattering”, specifically in the angular velocities. The
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Figure 3.7: Signals applied to thrusters with FOSMC

control signals obtained by the STA are shown in the upper part of Fig. 3.10. The attitude and
relative position tracking errors are presented in the lower part of Fig. 3.10. It can be seen that
the magnitude of the error reduced when compared to Fig. 3.6. In Fig. 3.11, the control signals
applied to each thruster are illustrated.

The capture process of the target by the chaser is illustrated in Fig. 3.12. Both phases, the
acquisition phase and the rendezvous phase, are observed. The target is represented by the red
square. By zooming in on Fig. 3.12, at the beginning of the trajectory, a closer look to the
acquisition phase is obtained. See for instance in Fig. 3.13, where the chaser keeps its position and
only performs a rotation. This, with the objective of aligning with the target. After this step, the
chaser goes into the second phase, which involves a translation towards the target.

3.7 Conclusion

This chapter described the rendezvous mission and the characteristics of the scenario considered.
The developments of the model and its linearization was described. Then, the design procedure
for the development of controllers for attitude and position tracking was done. The design is
based on two sliding mode techniques in a backstepping setup. For the design of the controller,
the coupling effect between the dynamics was neglected and the disturbances are approximated as
an exogenous signal, see Remark 3. The proposed solutions were tested in a nonlinear simulator.
The results obtained showed that both controllers are stable, robust against perturbations and
would not saturate the thrusters. The main difference between both solutions is the already
known ”chattering” effect. A reduction on the magnitude of the chattering is observed when
comparing Figs. 3.8-3.11 against the results obtained when applying the FOSMC, i.e Figs. 3.4-3.7.
In addition, the STA controller showed higher robustness against perturbations, see for example
Fig. 3.6 against Fig. 3.10.
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Figure 3.8: Positions and Angles with STA

Figure 3.9: Angular and Transitional velocities with STA
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Figure 3.10: Tracking errors and control signals with STA

Figure 3.11: Signals applied to thrusters with STA

It is known that in reality the system is more complex than the one considered in this chapter.
Starting by the fact that the disturbances are state dependent and approximating them decreases
the accuracy of the solution. In addition, it should be considered that the success of the mission
can be threatened by sudden faults. The insensitivity property of the SMC will be exploited in
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Figure 3.12: Mission Transition Trajectory

Figure 3.13: Zoom at the beginning of the trajectory

this direction in the following chapter. In addition, the idea of a nonlinear controller, i.e. one that
takes into account the coupling effect between dynamics, will also be explored in following chapter.
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4

Design of a Fault Tolerant Control

Scheme in Dual Quaternion

Formalism

4.1 Introduction

Based on the results obtained on the previous chapter, the development of a control strategy
with fault tolerance capabilities is explored in this chapter. The state dependent perturbations
(sloshing phenomena and flexible modes) are no longer treated as an exogenous approximated
signal. Thus, the development of a coupled model (6DoF) is necessary in order to take into account
the coupling effects. This is achieved by employing the Dual Quaternion formalism, which is a
combination of complex numbers and quaternions. Furthermore, the occurrence of sudden faults is
considered, specifically, a stuck open and a stuck closed thruster fault. The proposed FTC solution
is based on the GSTA theory, nested with a nonlinear fault estimator and an anti-windup strategy.
Stability of the proposed FTC solution is investigated and it is proved that the overall FTC scheme
is asymptotically stable. It is then tested in a functional engineering simulator that accurately
simulates the capture of a passive target by a chaser spacecraft, onto a circular orbit around the
Earth, considering a realistic navigation unit, the flexible modes of the solar arrays of the chaser and
the most significant environmental perturbations, i.e., Earth gravity, the second zonal harmonic
J2, atmospheric drag and magnetic disturbances. Mission-oriented criteria are proposed to analyse
the results, and it is shown that the proposed FTC solution exhibit satisfactory performance, since
the capture performance are met, despite the loss of controllability of the faulty actuator.

4.2 Fault recoverability/compensability

As mentioned in Section 2.9, FTC capabilities rely on the structure of the system. For instance,
if a system does not have an adequate redundancy, the system cannot effectively compensate the
faults despite of the control strategy selected. Redundancy can be provided by software/hard-
ware or analytically (relationship between variables in the system). Control reconfigurability
was proposed in [WZS00], as a redundancy measure in the context of feedback control. It
reveals the feasibility and limitations of the model used for FTC. Furthermore, it analyzes the
remaining controllability and observability properties of a system in adverse conditions. As
a consequence, modifications can be applied to enhance the reliability of the system. This
concept is also employed to evaluate the size of the set of fault tolerant situations, i.e. the
number of recoverable and non-recoverable situations after the occurrence of a fault. This is
known as fault recoverability, and has been addressed with different approaches, see for instance
[FKB99, Sta05, YJS12, GCTS09, BKL+06, SB10, YJSZ15, QTHH16, CJT15, ZTCHD17].
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Having in mind this necessary condition, it is proposed in this chapter to improve the hardware re-
dundancy to observe a recoverable situation after fault occurrence. A new configuration of thrusters
was designed to specifically address FTC strategies. The set of 24 thrusters was placed on the chaser
such that the nominal attainable set of propulsion torques τ and forces f is likewise attainable by
combining the thrusts of any N − 1 = 23 thrusters, see Fig. 4.1. This means that stability and
an acceptable performance can be maintained with 23 thrusters. This is verified with the fault
recoverability analysis, as shown in the following.

Figure 4.1: Thruster configuration, geometry of the chaser and CoM

To derive the fault recoverability criterion, one begins by defining the set of Ωa which contains the
forces/moments related to the studied thruster configuration as:

Ωa(A, b) =

{[
τ
(c)
cu (t)

f
(c)
cu (t)

]
= Ru(c)

c ∈ R6
∣∣∣ A[τ (c)

cu (t)

f
(c)
cu (t)

]
≤ b

}
(4.1)

where A ∈ Rm×k is a real matrix with rows aᵀi , b ∈ Rk is a real vector with entries bi (see

Appendix A.3), R is called the thruster configuration matrix and u
(c)
c is the commanded opening

of the thrusters, which describes the following set:

U =
{
u(c)
c = [u(c)c1 , . . . , u

(c)
ck

]ᵀ ∈ R24
∣∣∣ u(c)cmink ≤ u(c)ck ≤ u(c)cmaxk for k = 1, . . . , 24

}
(4.2)

and let Ũ be the set of the commanded opening of the thrusters considering a fault in the k-th
thruster:

Ũ =
{
ũ(c)
c = (I24 − Ψ(t))u(c)

c ∈ R24
∣∣∣ Ψ(t) = diag (ψ1(t), . . . , ψ24(t)) ,where 0 ≤ ψk(t) ≤ 1

}
(4.3)

where Ψk is used to represent the status of the k-th thruster, as it is further explained in (4.66).
Let Ωk

a be the restricted set of attainable forces/moments using all the thrusters but the k-th one
due to a fault, then Ωk

a ⊆ Ωa.

Ωk
a(Af , bf ) :=

{[
τ
(c)
cf (t)

f
(c)
cf (t)

]
= Rũ(c)

c ∈ R6
∣∣∣ Af

[
τ
(c)
cf (t)

f
(c)
cf (t)

]
≤ bf

}
(4.4)

where Af ∈ Rm×k is a real matrix with rows aᵀif , bf ∈ Rk is a real vector with entries
bif . Consider for example, a thruster that remains stuck open at its maximum actuation
value, the set of attainable forces/moments will be a subset of the original set, i.e. when
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Figure 4.2: Set of attainable forces/torques with stuck open thruster fault

all thrusters were completely functional. This is shown in Fig. 4.2, where the behaviour of
the set of attainable forces and moments is illustrated, considering that thruster 2 remained
stuck open at its maximum actuation value. In this figure, Ωa is colored in blue, whilst Ω2

a is in red.

Furthermore, the set of attainable forces/moments is also studied for the case when one thruster
remains stuck closed. This means that no more actuation is received from that specific thruster.
Fig. 4.3 illustrates this behaviour. Once again, Ωa is colored in blue, whilst Ω2

a is in red. The
investigated faulty situations (one thruster is fully open or closed) are recoverable given that the
faulty set shows a small reduction when compared to the fault free set.

Figure 4.3: Set of attainable forces/torques with stuck close thruster fault

4.3 Mathematical background

4.3.1 Quaternions

Quaternions are the extension of complex numbers to hypercomplex numbers [Cli82, Ham48, Stu91].
A quaternion is defined as:

q = q0 + q1i+ q2j + q3k (4.5)
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where q0 ∈ R is the scalar part and q1i + q2j + q3k ∈ R3 corresponds to a complex part [Ham48].
The multiplication of the imaginary components has the following properties:

i2 = j2 = k2 = −1 (4.6)

ij = −ji = k

jk = −jk = i

ki = −ki = j

Quaternions can also be represented as a combination of a scalar (qs) and complex vector part as
(qv) q = [qs,q

ᵀ
v]ᵀ. Let q, qa and qb represent arbitrary quaternions. The basic operations of the

quaternions are defined as:

• Conjugate
q∗ =

[
qs −qᵀ

v

]ᵀ
(4.7)

• Multiplication

qa ◦ qb =

[
qs1qs2 − qv1 · qv2

qs1qv2 + qs2qv1 + qv1 × qv2

]
(4.8)

• Dot product

qa · qb =
1

2
(qa ◦ q∗b + qb ◦ q∗a) (4.9)

• Cross product

qa × qb =
1

2
(qa ◦ qb − q∗b ◦ q∗a) =

[
0

qs1qv2 + qs2qv1 + qv1 × qv2

]
(4.10)

Quaternion multiplication can also be expressed in matrix form as:

p ◦ q =


p0
p1
p2
p3

 ◦

q0
q1
q2
q3

 =

[
ps
pv

]
◦
[
qs
qv

]
= (p)+q = (q)−p (4.11)

where

p+ =

[
ps −pᵀ

v

pv psI + C(pv)

]
(4.12)

q− =

[
qs −qᵀ

v

qv qsI− C(qv)

]
(4.13)

C(qv) denotes the vector cross product matrix defined as:

C(qv) =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 (4.14)

The computation of (4.12), (4.13) and (4.14) can be found in the Appendix A.4. The norm of a
quaternion is defined as:

|q|2 = q ◦ q∗

=

[
qsqs + qv · qv

qsqv − qsqv − qv × qv

]
=

[
q2s + qv · qv

0

]
=

[
q2s + |qv|2

0

] (4.15)
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If the norm of the quaternion is |q| = 1 the quaternion is called unit quaternion. Unit quaternions
are used to represent a rotation of an angle θ around a unit axis n, and they are defined as:

q =
[
cos
(
θ
2

)
nsin

(
θ
2

)ᵀ]ᵀ
(4.16)

Unit quaternions can be employed for describing rotations. Consider for example a vector rI ∈ R3

in the frame I. This vector can be expressed in the a new frame N as follows:

rN = q∗ ◦ rI ◦ q (4.17)

where rN and rI are two quaternions with vanishing scalar part, i.e. rN =
[
0, rN

]
and rI =

[
0, rI

]
.

4.3.2 Dual numbers

A dual number is defined as:
ā = ar + εad ε 6= 0 ε2 = 0 (4.18)

where ar ∈ R is the real part, ad ∈ R is the dual part and ε is the dual unit [Cli82][Stu91]. Let ā
and b̄ represent dual numbers, then the basic operations for dual numbers are defined as:

ā+ b̄ = ar + br + ε(ad + bd) (4.19)

λā = λar + ελad (4.20)

āb̄ = arbr + ε(arbd + brad) (4.21)

for any scalar λ[WHWH06].

4.3.3 Dual vectors and matrices

Dual vectors and matrices are vectors and matrices that have as elements dual numbers. They are
defined as follows:

ā = ar + εad (4.22)

Ā = Ar + εAd (4.23)

where ar,ad ∈ Rn are real vectors and Ar,Ad ∈ Rn×n are real matrices. Their operations are
defined as:

ā± b̄ = (ar + εad)± (br + εbd) = (ar ± br) + ε(ad ± bd) (4.24)

āᵀ = aᵀ
r + εaᵀ

d (4.25)

hā = h(ar + εad) = har + εhad (4.26)

ā· b̄ = aᵀ
r ·br + ε(aᵀ

r ·bd + aᵀ
d·br) (4.27)

ā× b̄ = ar × br + ε(ar × bd + ad × br) (4.28)

|ā| = |ar|+ ε|ad| (4.29)

sign (ā) = sign (ar) + ε sign (ad) (4.30)

λ(Ā) = λ(Ar) + ελ(Ad) (4.31)

ā ◦ b̄ + b̄
∗ ◦ ā = ā ◦ b̄− b̄ ◦ ā = 2ā× b̄ (4.32)

〈ā|b̄〉 = aᵀ
r · ad + bᵀ

r · bd (4.33)

where ā, b̄ are dual vectors, Ā is a dual matrix, h is a real number, and λ(· ) denotes the eigenvalue
of the corresponding matrix.

The set of dual vectors are denoted in the following V, which is defined according to V = {v̄ : v̄ =
vr + εvd, vr,vd ∈ R}. The notation Vn is used to refer to the set of dual vectors of dimension n.
Following this notation, the complement operator of the dual unit ε, is defined as:

d

dε
v̂ =

d

dε
(vr + εvd) = vd (4.34)
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4.3.4 Dual quaternions

A dual quaternion q̄ is a quaternion which has as elements two quaternions qr and qd that represent
its real and dual parts as q̄ = qr + εqd = [qr,qd]

ᵀ. The operations related to dual quaternions are
similar to the ones applied to quaternions, dual numbers and vectors. Additional operations are
defined as:

q̄∗ = q∗r + εq∗d (4.35)

q̄a ◦ q̄b = qar ◦ qbr + ε(qar ◦ qbd + qad ◦ qbr) (4.36)

Along this manuscript, 1̄ = 1 + ε0 and 0̄ = 0 + ε0 represent the identity and zero in the dual
space with 1 = [1, 0, 0, 0]ᵀ and 0 = [0, 0, 0, 0]ᵀ.

The product of a dual number c̄ with a dual quaternion d̄ is defined as [GV16]:

c̄ ∗ d̄ = (cr + εcd) ∗ (dr + εdd) = crdr + εcddd (4.37)

4.4 Problem statement

4.4.1 The reference mission

The reference mission considered for the FTC strategy is similar to the one described previously in
Chapter 3. This means that the rendezvous studied is between an active spacecraft and a passive
spacecraft, called the chaser and target, respectively. The characteristics of the orbit remain as
described in Section 3.1. The main difference is the thruster structure considered for the chaser,
which consists of 24 thrusters of 2 N as shown in Fig. 4.1. This structure has been designed
especially to study fault-tolerant strategies, as explained in Section 4.2.

At sensor level, more precisely in terms of outputs available from the navigation unit, it is assumed
that the relative position, velocity and acceleration between the two spacecraft are available, as well
as the attitude, angular rate and angular acceleration of the chaser. The retained characteristics
of the navigation outputs are:

• a precision of 2 mm, 0.2 mm/s and 0.2 mm/s2 for relative position, velocity and acceleration,
over the three axes;

• a precision of 0.1 deg, 0.01 deg/s and 0.01 deg/s2 for chaser attitude, angular rate and angular
acceleration, over the three axes.

Furthermore, it is assumed that the chaser is equipped by a solar array with flexible modes located
at 0.1 rad/s and 0.5 rad/s, each mode having a damping factor fixed to 0.003. Moreover, it is
assumed that the chaser is equipped with two propellant tanks that are considered to be partially
filled, so that the motion of the spacecraft causes propellant sloshing over three modes. The
sloshing modes are assumed to be located at 0.4 rad/s, 0.8 rad/s and 1 rad/s, each of them having
a damping factor fixed to 0.1. The chaser’s characteristics are listed in table 4.1. With regards to
the target, it is supposed to be a spheric object. For the capture mechanism, it is supposed to be
a basket. The mission consists of the capture of the target by the chaser spacecraft, i.e. the target
is captured in the basket.

Finally, as expressed in Chapter 3, the complete mission is modelled into the FES developed
in Matlab/Simulink. Within the FES, the chaser and the target have each one an associated
environment module as some characteristics depend on specific spacecraft properties. Typically,
the dynamic equations associated to the chaser, consider the flexible modes due to propellant
sloshing and the solar array, whereas the dynamic equations are those of a punctual mass.

50



Chapter 4. Design of a Fault Tolerant Control Scheme in Dual Quaternion Formalism

Assumption 4. The focus of this work is to develop a FTC solution at control level and not at
guidance level. This means, that the trajectory path computed by the guidance algorithm cannot be
modified after the occurrence of a fault.

4.4.2 Coordinate frames and notations

To establish the model of relative motion between the chaser and the target, the following coordinate
frames are defined:

i) Earth centered inertial frame Fi: this frame is a non-accelerating reference frame, with its
origin at the center of the Earth, and the axes ~xi, ~yi,~zi are oriented as shown in Fig. 4.4, i.e.
the ~xi axis is pointing to the vernal equinox, the ~zi axis is pointing to the north and parallel
to the rotation axis of the Earth and the ~yi axis completes the frame.

ii) target frame Ft: the center of this frame coincides with the target’s CoM, and it’s axes are
oriented in such a way that an attitude angle equal to [0, 0, 0]ᵀ means that Ft coincides with
Fl.

iii) chaser frame Fc: the center of this frame coincides with the chaser’s CoM and it’s axes are
oriented in such a way that an attitude angle equal to [0, 0, 0]ᵀ means that the chaser is
aligned with the target along its velocity axis.

iv) LVLH frame Fl: the origin of the LVLH frame is at the target CoM, the axis ~zl is in the
orbital plane, from the target’s CoM towards the Earth center. The axis ~yl is normal to the
orbital plane and in the opposite direction and parallel to the orbital angular momentum
vector. The ~xl is in the direction of the velocity vector of the target. The LVLH frame is
mainly used to plot the figures and analyse the results, since it offers a good understanding
of the pose of the two spacecraft on the orbit. Note this frame convention is different from
the one employed in Chapter 3.

The notation r(i), r(t), r(c) is used for a vector r given in the frame Fi,Ft,Fc, respectively. When

dealing with the LVLH frame, the index ”LVLH” is used. The notation r
(c)
e should be interpreted

as a relative vector error between the chaser and the target, given in Fc. Finally, the notation

ω
(c)
c /ω

(t)
t denotes the angular velocity of Fc/Ft relative to Fi, expressed in Fc/Ft.

Figure 4.4: The orbit and rendezvous trajectory in Fi (left) and in the last 40 m in the LVLH frame Fl
(right). The trajectory corresponds to the results in section 4.6
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4.4.3 Dual quaternion kinematics and dynamic models

The chaser case

Let q̄c ∈ Hd be the dual quaternion describing the rotation qc ∈ H of the chaser followed by a
translation rc ∈ R3. The kinematics equation of the chaser is given by [BS99, WS12]

˙̄qc =
1

2
q̄c ◦ ω̄(c)

c (4.38)

where ω̄
(c)
c ∈ V3 is a dual vector, called the dual velocity of the chaser, given in the chaser frame

Fc, and defined according to:

ω̄(c)
c = ω(c)

c + ε
(
ṙ(c)c + ω(c)

c × r(c)c
)

(4.39)

The expression in (4.39) employs the property shown in (4.17). This applies for further multipli-
cation operations between a vector in R3 and a quaternion. Let the dual inertia matrix be now
introduced to fully describe the rigid body dynamics with dual quaternions. From [WLS+12], it is
defined according to

M̄ = m
d

dε
I3 + εJ

=

m d
dε + εJxx εJxy εJxz
εJxy m d

dε + εJyy εJyz
εJxz εJyz m d

dε + εJzz

 (4.40)

where m is the chaser mass, J is its inertia matrix, I3 ∈ R3×3 is the real identity matrix. The
inverse of M̄ is defined as M̄

−1
= J−1 ddε + ε 1

mI3. The dual momentum of the chaser is expressed
as [WS12]:

M̄ω̄(c)
c = m

(
ṙ(c)c + ω(c)

c × r(c)c
)

+ εJω(c)
c (4.41)

Then, the dynamics equation of the chaser is given by [BS99, WS12]

˙̄ω(c)
c = −M̄−1

(
ω̄(c)
c × M̄ω̄(c)

c

)
+ M̄−1f̄ (c)

c (4.42)

where f̄
(c)
c = f

(c)
c + ετ

(c)
c is a dual vector in V3, called the total dual force applied to the center of

mass, f
(c)
c ∈ R3 and τ

(c)
c ∈ R3 referring to the total force and total torque, respectively.

In this work, the considered forces and torques are:

• the force and the torque due to the propulsion unit, denoted f
(c)
cu ∈ R3 and τ

(c)
cu ∈ R3 in the

following;

• the force f
(c)
SA ∈ R3 and the torque τ

(c)
SA ∈ R3 due to the flexible modes of the solar array;

• the force f
(c)
P ∈ R3 and the torque τ

(c)
P ∈ R3 due to propellant sloshing;

• the Earth gravity f
(c)
∇ ∈ R3;

• the force f
(c)
J2 ∈ R3 due to the J2 effect (Earth’s oblateness);

• the force f
(c)
atm ∈ R3 due to atmospheric drag;

• a generalized torque disturbance τ
(c)
g ∈ R3 that covers the gravity gradient, the Earth mag-

netic filed and the atmospheric drag;
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• the force f
(c)
cf ∈ R3 and the torque τ

(c)
cf ∈ R3 due to the occurrence of faults in the propulsion

unit.

The generalized torque disturbance τ
(c)
g , is considered to be a three-dimensional decorelated white

noise filtered by a discrete time former filter F , that has been determined by the French Space
Agency in the work reported in [PFH16], i.e.

F (z) ≈ 5.137e− 05z2 + 0.0001027z + 5.137e− 05

z2 − 1.233z + 0.2329
I3 (4.43)

With regards to the Earth gravity, the atmospheric drag and the J2 effect, they are given by
[AVG+09, Jew17, Sid97] (the following equations are given in the inertial frame Fi):

f
(i)
∇ = −mµr

(i)
c

‖r(i)c ‖3
(4.44)

f
(i)
atm = −1

2
ρ(h)SCd

(
ṙ(i)c

)2
(4.45)

f
(i)
J2 = −3

2

mµJ2Re
2

‖r(i)c ‖5

D − 5

(
z
(i)
c

‖r(i)c ‖

)2

I3

 r(i)c (4.46)

In these equations, S = 2 m2 is the dimensional cross-sectional area of the spacecraft
and Cd = 2 is the drag coefficient. ρ(h) is the atmospheric density at the altitude h.
J2 = 0.0010826267 and D = diag(1, 1, 3). Re = 6378.137 km is the Earth’s mean equato-

rial radius, and r
(i)
c =

[
x
(i)
c , y

(i)
c , z

(i)
c

]ᵀ
is the position vector of the chaser expressed in Fi.

µ = 3.986 004 4× 1014 m3/s2 is the Earth’s gravitational parameter.

The flexible modes of the solar array are modelled according to [HCT+19, HLPSA15]

f
(c)
SA = −Lf ẍa −mSAγ

(c)
c , f (c)

c = mγ(c)
c

τ
(c)
SA = −Lτ ẍa − JSAω̇(c)

c (4.47)

where γ
(c)
c and ω̇

(c)
c are derived from (4.42) and from the following second order vector-based

equation

ẍa + 2ξω0ẋa + ω2
0xa = −Lᵀ

[
γ
(c)
c

ω̇
(c)
c

]
(4.48)

with xa ∈ Rns·np , L = [Lᵀ
f L

ᵀ
τ ]ᵀ,Lf ,Lτ ∈ R3×(ns·np), Lf = R(β)BT and Lτ =

R(β)BR + S(d)R(β)BT . np is the number of solar arrays and ns is the number of flexible
modes per solar array. In our application case, np = 1 and ns = 2 (see section 4.4.1), ξ and ω0

are matrices of adequate dimensions that correspond to damping ratios and the frequencies for
each flexible mode. mSA and JSA refer to the mass and the inertia matrix of the solar array,
respectively. The matrices BT and BR are the flexible appendage participation factor matrices.
The role of the rotation matrix R(β), where β is the appendage angle, is to transform BT and
BR, given in the appendage frame, into the body frame. S denotes the skew-symmetric matrix
of the vector d ∈ R3, where d is the distance vector between the chaser’s CoM and the CoM of
the solar array. In this work, β is considered constant which means that R(β) is constant, i.e. the
solar array is considered to be immobile.

Propellant sloshing is modelled as a 3D-mass spring model as proposed in [HCT+19, HLPSA15],
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i.e.

ẍsi +
lsi
msi

ẋsi +
ksi
msi

xsi = γ(c)
c , xsi ∈ R3, i = 1, 2

f
(c)
P = (ms1 +ms2)γ(c)

c

τ
(c)
P =

2∑
i=1

ri × (ksixsi + lsiẋsi) (4.49)

The matrices lsi and ksi , i = 1, 2 define the damping and stiffness coefficients associated to the
two tanks, msi is the propellant mass in the i-th tank and r1 = r2 is the distance vector between
the CoM of the chaser and the CoM of the fuel in a tank.

The numerical value of the main characteristics considered in this thesis, are listed in table
4.1. Modelling the propulsion unit and the faults are considered later, see section 4.4.5.

Then, using the dual vector algebra, it follows

f̄ (c)
c = f̄ (c)

cu + f̄ (c)
cd

+ f̄ (c)
cf

(4.50)

where f̄
(c)
cd = f̄

(c)
SA + f̄

(c)
P + f̄

(c)
∇ + f̄

(c)
J2 + f̄

(c)
atm + f̄

(c)
g is the dual force about the disturbances, all

terms being a dual vector defined in V3.

MCI mass: m = 300 kg inertia: J =

30 1 1
1 40 1
1 1 15

 kg m2 CoM (center of mass): [1.5 0.2 0.15]m

slosh mod-
els

damping coeff. frequency of mode 1 frequency
of mode 2

frequency of mode 3 propellant
mass

Tank 1 0.1 0.4 rad/s 0.8 rad/s 1 rad/s 10 kg
Tank 2 0.1 0.4 rad/s 0.8 rad/s 1 rad/s 20 kg

solar array damping coeff. frequency of mode 1 frequency
of mode 2

inertia mass

3e−3 0.1 rad/s 0.5 rad/s JSA =diag(10, 1, 10)kg m2 mSA =
40 kg

∆CoM chaser - SA
d = [0 2 0]m

appendage angle
β = 0◦ participation factor matrix BR:

36.64 0
0 0.06
0 −37


participation factor matrix BT :

 0 6.8
−0.01 0
6.54 0


Table 4.1: Numerical value of the main characteristics of the chaser spacecraft

The target case

Similar to the above developments, the kinematics and dynamic models of the target corresponds
to (4.38),(4.39) and (4.42), where the notations ”•c” and ”•(c)” are replaced by ”•t” and ” •(t) ”,

respectively. For instance, ˙̄qt = 1
2 q̄t◦ω̄

(t)
t refers to the kinematics equation of the target. Of course,

dealing with the target, the dual forces due to the actuation unit, the solar array flexible modes
and propellant sloshing, do not exist, so that the total dual force that is applied to the target is

concerned by the disturbances, i.e. f̄
(t)
td

= f̄
(t)
∇ + f̄

(t)
J2

+ f̄
(t)
atm + f̄

(t)
g .
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4.4.4 Dual quaternion based relative coupled dynamics

By virtue of the dual quaternion algebra, the motion between the target and the chaser can be
expressed in the chaser frame as the relative quaternion described by

q̄e = q̄∗t ◦ q̄c = qe + ε
1

2
qe ◦ r(c)e (4.51)

where r
(c)
e = r

(c)
c − q∗t ◦ qc ◦ r

(t)
t ◦ q∗c ◦ qt is the relative position between the chaser and the target

expressed in the chaser frame Fc. The time derivative of this relative error takes the following form:

˙̄qe = ˙̄q∗t ◦ q̄c + q̄∗t ◦ ˙̄qc (4.52)

Based on (4.38), the definition of ˙̄qt = 1
2 q̄t ◦ ω̄

(t)
t is obtained. Substituting this definition and (4.38)

in (4.52), it follows:

˙̄qe = −1

2
ω̄

(t)
t ◦ q̄∗t ◦ q̄c +

1

2
q̄∗t ◦ q̄c ◦ ω̄(c)

c

=
1

2
q̄∗t ◦ q̄c ◦

(
ω̄(c)
c − q̄∗t ◦ q̄c ◦ ω̄

(t)
t ◦ q̄∗c ◦ q̄t

) (4.53)

Let ω̄
(c)
e = ω̄

(c)
c − q̄∗t ◦ q̄c ◦ ω̄

(t)
t ◦ q̄∗c ◦ q̄t be now considered. Following (4.51), the relative kinematic

error equation can thus be expressed as:

˙̄qe =
1

2
q̄e ◦ ω̄(c)

e (4.54)

According to [DHFM17], the relative dual angular velocity described as ω̄
(c)
e = ω

(c)
e +

ε
(
ṙ
(c)
e + ω

(c)
e × r(c)e

)
can also be expressed as:

ω̄(c)
e = ω̄(c)

c − q̄∗e ◦ ω̄
(t)
t ◦ q̄e (4.55)

Computing the time derivative of (4.55) gives:

˙̄ω(c)
e = ˙̄ω(c)

c −
(

˙̄q∗e ◦ ω̄
(t)
t ◦ q̄e + q̄∗e ◦ ˙̄ω

(t)
t ◦ q̄e + q̄∗e ◦ ω̄

(t)
t ◦ ˙̄qe

)
(4.56)

Substituting ˙̄qe by its definition in (4.54), the expression (4.56) becomes:

˙̄ω(c)
e = ˙̄ω(c)

c +
1

2
q̄∗e ◦ ω̄(c)

e ◦ ω̄
(t)
t ◦ q̄e − q̄∗e ◦ ˙̄ω

(t)
t ◦ q̄e − q̄∗e ◦ ω̄

(t)
t ◦

1

2
q̄e ◦ ω̄(c)

e (4.57)

Using the identity (4.32) and applying it to the terms 1
2 q̄∗e ◦ ω̄

(c)
e ◦ ω̄(t)

t ◦ q̄e − q̄∗e ◦ ω̄
(t)
t ◦ 1

2 q̄e ◦ ω̄
(c)
e ,

the equation (4.57) can be reformulated as:

˙̄ω(c)
e = ˙̄ω(c)

c − q̄∗e ◦ ˙̄ω
(t)
t ◦ q̄e + ω̄(c)

e ×
(
q̄∗e ◦ ω̄

(t)
t ◦ q̄e

)
(4.58)

Let f̄
(c)
ct = f̄

(c)
c − f̄ (c)

t where f̄
(c)
t ∈ V3 refers to the total dual force affecting the target (see section

4.4.3), given in the chaser frame, i.e. f̄
(c)
t is deduced from f̄

(t)
td

by means of the following change of
coordinates:

f̄
(c)
t = q̄∗e ◦ f̄

(t)
td
◦ q̄e (4.59)

Then, substituting (4.42) into (4.58) leads to

˙̄ω(c)
e = −M̄−1 ◦

(
ω̄(c)
c × M̄ ◦ ω̄(c)

c

)
+ M̄−1 ◦ f̄ (c)

ct − q̄∗e ◦ ˙̄ω
(t)
t ◦ q̄e + ω̄(c)

e ×
(
q̄∗e ◦ ω̄

(t)
t ◦ q̄e

)
(4.60)

The relative kinematic (4.54) and dynamic (4.60) equations are defined similarly to the develop-
ments presented in [BS99, WS12].
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4.4.5 Thruster-based propulsion unit with fault model considerations

In (4.60), the control command is given in terms of the dual force f̄
(c)
cu = f

(c)
cu + ετ

(c)
cu . To

execute a control law practically, one needs to solve the force f
(c)
cu and torque τ

(c)
cu from f̄

(c)
cu , and

then, to allocate them on the spacecraft, by means of an actuation system. As mentioned before,
it is considered that the chaser has a set of 24 thrusters of 2 N, in the configuration shown in Fig. 4.1.

For that purpose, the formula (4.60) is divided into its real part and dual part. Noticing the
particular geometry of the target and the capture mechanism, one can simplify the relative attitude
model to the attitude model of the chaser. This simply illustrates the fact that, since the target is
a spheric spacecraft and the capture mechanism is a basket, the only attitude control requirement
to satisfy, is the attitude of the chaser, and not the relative attitude between the two spacecraft.
Mathematically, this leads to the consideration of the following equations:

ω̇(c)
e = −J−1

(
ω(c)
e × Jω(c)

e

)
+ J−1

(
τ (c)
cu + τ

(c)
ctd

+ τ (c)
cf

)
(4.61)

for the rotational dynamics, and

r̈(c)e = −ω(c)
e × ṙ(c)e − ω(c)

e × ω(c)
e × r(c)e +

f
(c)
cu

m
+
f
(c)
ctd

m
+
f
(c)
cf

m
(4.62)

for the translational dynamics, with ω
(c)
e = ω

(c)
c , f̄

(c)
ctd
∈ V3 : f̄

(c)
ctd

= f̄
(c)
cd − f̄

(c)
t = f

(c)
ctd

+ ετ
(c)
ctd

,

f
(c)
ctd
∈ R3 and τ

(c)
ctd
∈ R3 referring to the induced force and torque due to disturbances affecting

both the chaser and target spacecraft, given in the chaser frame Fc. The detailed mathematical
development for obtaining (4.61) and (4.62) can be found in the Appendix A.5.

Let u
(c)
ck (t), k = 1, 24 be the commanded opening of the k-th thruster valve. Then, the

control commands τ
(c)
cu ,f

(c)
cu generated by the 24 thrusters are given by (for fault free cases)[
τ
(c)
cu (t)

f
(c)
cu (t)

]
=

[
Rτ

Rf

]
u(c)
c (t) = Ru(c)

c (t), R ∈ R6×24 (4.63)

The columns of R (called the thruster configuration matrix) are the influence coefficients defining

how each thruster commands u
(c)
ck , k = 1, 24 affects each component of τ

(c)
cu and f

(c)
cu .

From (4.63), it is clear that one can independently address the model either using the torque/force
control inputs (in this case, equations (4.61) and (4.62) are directly used), or using the thruster
commands (in this case, (4.63) is considered).

The CA unit is described in a similar manner as in Section 3.3, but considering that the maximum
opening valve value is umaxk = 2 N and that k = 1, 24. The placement of the CA unit in the
control loop is illustrated in Fig. 4.5.

With regards to the faults considered in this work, the focus is on the stuck open (fully
open) and stuck closed (closed thruster) faults, i.e. a thruster valve opens/closes during operating,
until its maximum/minimum position. The following mathematical model can be used to describe
these faults [Hen08, HCT+19]

φk(t) =

{
max{uk(t), 1} if stuck open
0 if stuck closed

(4.64)

where the index k refers to the kth thruster. Assuming no simultaneous faults, the considered
thruster faults can be modeled in a multiplicative way according to (2.89), as (the notation ”•̃”
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outlines the faulty case)
ũ(c)ck (t) = (I24 − Ψ(t))u(t) (4.65)

with Ψ(t) = diag (ψ1(t), ..., ψ24(t)), where 0 ≤ ψk(t) ≤ 1, k = 1, 24 are unknown. The status of the
kth thruster is modeled by ψk as follows:

ψk(t) =

{
0 if healthy

1− φk(t)/u
(c)
ck (t) if faulty

(4.66)

where φk enables to consider the two different fault scenarios.

Thus, ũ
(c)
ck (t) is nothing else that the real opening of the kth thruster valve at the time t,

which is of course not known. It follows from (4.65) and (4.63) that the force f
(c)
cf and the torque

τ
(c)
cf due to the occurrence of the faults, are given by[

τ
(c)
cf (t)

f
(c)
cf (t)

]
=

24∑
k=1

Kkfk(t) (4.67)

where the kth column of the matrix K is the kth fault signature associated to the kth fault mode
fk. The indices k = 1, 24 also coincide with the numbering of thrusters as given in Fig. 4.1, and
thus with the columns of the matrix R.

4.4.6 Fault tolerant control problem formulation

Thanks to the developments stated in the previous section, the fault tolerant control problem can
be addressed either using equations (4.61) and (4.62), i.e. using a force/torque formulation, or with
(4.61)-(4.65), i.e. based on a thruster command formulation. The proposed solution is based on
the force/torque formulation. Fig. 4.5 gives an illustration of the FTC solution. As it can be seen,
the proposed solution consists of a control signal defined by

f̄
(c)
FTC = f̄ (c)

sm −
¯̂
f (c) = f (c)

sm − f̂ (c) + ε
(
τ (c)
sm − τ̂ (c)

)
(4.68)

where the control signals f
(c)
sm and τ

(c)
sm are achieved by means of a SMC law, and more precisely,

using the GSTA, see Section 2.5.4. The control signals f̂ (c) and τ̂ (c) are achieved using a
nonlinear estimator that provides the estimates of the real and the dual parts of the distur-

bances f̄
(c)
ctd

and faults f̄
(c)
f . Finally, because it is of prime importance to consider physical

limitations of actuators, especially within the context of FTC, an anti-windup system is joint to
the GSTA-based controller. The external anti-windup principle [HMT+10] is used for that purpose.

Then, the problem turns out to be the design of the disturbance/fault estimator and the
GSTA control law, so that the chaser tracks an attitude and a relative position reference trajectory

(qref (t), r
(c)
ref (t)) that define the rendezvous and capture profiles, despite the presence of the

disturbances f̄
(c)
ctd

and the occurrence of faults f̄
(c)
cf , while keeping stability in case of thruster

saturations.

4.5 Design of the FTC system

4.5.1 The nonlinear fault/disturbance estimator

Following equations (4.61) and (4.62), it is required to design two estimators. The first one

operates at the torque level and is in charge to estimate the disturbance and fault terms τ
(c)
ctd

and
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+

−

ˆ̄f
(c)

qref

r
(c)
ref

  q̄e
ω̄

(c)
e


f̄
(c)
sm

f̄
(c)
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Nonlinear
SMC

CA
u
(c)
c

R
f̄
(c)
cu

f̄
(c)
ctd

Observer

Anti
Windup

Dynamics

Figure 4.5: Control setup

τ
(c)
cf . The second one operates at the force level and is in charge to estimate the disturbance and

fault terms f
(c)
ctd

and f
(c)
cf .

From (4.61), the following estimate is proposed:

ˆ̇ω(c)
c = Fτ + J−1τ (c)

cu (4.69)

Fτ = −J−1
(
ω(c)
c × Jω(c)

c

)
Then, it is immediate to see that

ω̇(c)
c − ˆ̇ω(c)

c = J−1
(
τ
(c)
ctd

+ τ (c)
cf

)
(4.70)

and thus, that an estimate of the disturbances and fault torques (sum of the two terms τ
(c)
ctd

and

τ
(c)
cf ) can be derived by reversing (4.70).

Similarly, the following estimate can be derived from (4.62)

ˆ̈r
(c)
e = Ff +

f
(c)
cu

m
(4.71)

Ff = −ω(c)
c × ṙ(c)e − ω(c)

c × ω(c)
c × r(c)e

and then, an estimate of the disturbances and fault forces (sum of the two terms f
(c)
ctd

and f
(c)
cf ) can

be derived by reversing the following equation:

r̈(c)e − ˆ̈r
(c)
e =

f
(c)
ctd

m
+
f
(c)
cf

m
(4.72)

Remember that the navigation unit is assumed to provide ω̇
(c)
c , r̈

(c)
e and all variables that enter in

Fτ and Ff , leading the aforementioned approach, computationally viable.

4.5.2 The general super twisting algorithm-based controller

Practically, it is reasonable to consider that (4.70) and (4.72) provide corrupted estimates for

τ
(c)
ctd

+ τ
(c)
cf and f

(c)
ctd

+ f
(c)
cf . Let us denote τ∆ and f∆ these corruption terms, introduced such that:

τ̂ (c) = J
(
ω̇(c)
c − ˆ̇ω(c)

c

)
= τ

(c)
ctd

+ τ (c)
cf
− τ∆ (4.73)

f̂ (c) = m
(
r̈(c)e − ˆ̈r

(c)
e

)
= f

(c)
ctd

+ f (c)
cf
− f∆ (4.74)
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It is recalled that τ
(c)
ctd

and f
(c)
ctd

include the dynamics of the flexible appendage and propellant
sloshing, and then that they are functions of the system’s state, see section 3.1 if necessary.
Towards this end, it is assumed that τ∆ and f∆ also depend on the system’s state.

The following assumption, which guarantees that the forces and torques computed by the
FTC law can be allocated by the CA algorithm on the thrusters, is now considered without loss
of generality.

Assumption 5. ‖f (c)
FTC − f

(c)
cu ‖ ≤ ε and ‖τ (c)

FTC − τ
(c)
cu ‖ ≤ ε with ε→ 0. Here, the notation ‖ • ‖ is

defined as the element-wise absolute value.

Then, with (4.68), (4.73), (4.74) and under assumption 5, it can be verified that (4.61) and (4.62)
can be rewritten:

ω̇(c)
c = Fτ + J−1

(
τ (c)
sm + τ∆

)
(4.75)

r̈(c)e = Ff +
1

m

(
f (c)
sm + f∆

)
(4.76)

These equations are nothing else than the dynamics to be controlled by the GSTA-based controller.

The following assumption which is required for the existence of the GSTA, is made:

Assumption 6. Let ϕ =
[(
J−1τ∆

)ᵀ 1
mf

ᵀ
∆

]ᵀ
be a vector of perturbations, that depends on a

vector s, a function of qc,ω
(c)
c , r

(c)
e , ṙ

(c)
e (s will be the sliding surface later). It is assumed that

|∂ϕ/∂t| ≤ δ1 and |∂ϕ/∂s| ≤ δ2, where | • | states for the Euclidean norm.

The following GSTA control scheme is proposed:

τ (c)
sm =J

(
−Fτ −Kτ

[
1

2

[
(qε)sω

(c)
c + (qε)v × ω(c)

c

]]
−α1τφ1τ (sτ )−α2τ

∫ t

0

φ2τ (sτ (χ))dχ

)
(4.77)

f (c)
sm =m

(
−Ff −Kf ṙ

(c)
ε −α1fφ1f (sf ) −α2f

∫ t

0

φ2f (sf (χ))dχ

)
(4.78)

In these equations, qε = q∗ref ◦ qc and r
(c)
ε = r

(c)
ref − r

(c)
e denote the chaser’s quaternion tracking

error and the relative position tracking error, respectively. (qε)s and (qε)v denote the scalar and
vector part of the quaternion qε, respectively. In addition, according to [DHM16, WLS13], the
decomposition of q̇ε in scalar and vector part is defined as:

(q̇ε)s = −1

2
(qε)

ᵀ
v ω

(c)
c (4.79)

(q̇ε)v =
1

2

[
(qε)sω

(c)
c + (qε)v × ω

(c)
c

]
(4.80)

In (4.77) and (4.78), φ1j(sj) = bsje1/2+βjsj and φ2j(sj) = 1
2bsje

0+ 3
2βjbsje

1/2+β2
j s are diagonal

matrix functions, where bsjeq = |sj |q sign (sj), for j ∈ {τ, f}. Kj ,αij ,βj ∈ R3, i = 1, 2, j ∈ {τ, f}
are diagonal gain matrices to be designed. sτ and sf denote sliding surfaces that are defined
according to:

sτ = ω(c)
c +Kτ (qε)v (4.81)

sf = ṙ(c)ε +Kfr
(c)
ε (4.82)

The following theorem provides the solution to the design of Kj ,αij ,βj ∈ R3, i = 1, 2, j ∈ {τ, f}.
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Theorem 3. Under assumption 6, the control law (4.77)-(4.82) ensures trajectory tracking, globally
and in finite time, despite the presence of the state-dependent perturbations τ∆ and f∆, if Kτ >
0,Kf > 0 and if there exists any κ > 0, α1τ ,α1f ,α2τ ,α2f ,βτ and βf such that:

α1i >
2(1 + κ)δ2

βi
, α2i >

1

4hiκ

(
2δ1

1 + κ

α1i
+
κδ2
βi

)2

+ 2δ1 (4.83)

hi = 1− δ2(1 + κ)

βiα1i
i = 1, 6 (4.84)

αj = diag (αjτ ,αjf ) = diag(αji) j = 1, 2 i = 1, 6 (4.85)

β = diag (βτ ,βf ) = diag(βi) i = 1, 6 (4.86)

Proof. - Conditions on α1τ ,α1f ,α2τ ,α2f ,βτ and βf : Consider the definition of the sliding
surface (4.81). Then, it follows with (4.75) and (4.80):

ṡτ =ω̇(c)
c +Kτ (q̇ε)v = Fτ + J−1

(
τ (c)
sm + τ

(c)
∆

)
+Kτ

[
1

2

[
(qε)sω

(c)
c + (qε)v × ω(c)

c

]]
(4.87)

Substituting (4.77) in (4.87), it follows

ṡτ = −α1τφ1τ (sτ )−α2τ

∫ t

0
φ2τ (sτ (χ))dχ+ J−1τ∆ (4.88)

Now, consider the auxiliary variable zτ = −α2τ

∫ t
0 φ2τ (sτ (χ))dχ + J−1τ∆. Then, (4.88) can be

rewritten according to the following pair of differential equations:

ṡτ = −α1τφ1τ (sτ ) + zτ (4.89)

żτ = −α2τφ2τ (sτ ) + J−1τ̇∆ (4.90)

Similarly, it can be verified that the following equations can be derived from (4.78) and (4.82):

ṡf = −α1fφ1f (sf ) + zf (4.91)

żf = −α2fφ2f (sf ) +
1

m
ḟ∆ (4.92)

with zf = −α2f

∫ t
0 φ2f (sf (χ))dχ+ 1

mf∆.

It is now fundamental to remind that τ∆ and f∆ depend on both the rotational and trans-
lational states. Then (4.89)-(4.92) are coupled through the perturbations terms τ̇∆ and ḟ∆. In
other words, and as stated in the introduction, the control problem described by (4.89)-(4.92)
is a 6DOF control problem and then, the system of equations (4.89)-(4.90) can not be treated
separately from the system of equations (4.91)-(4.92).

To proceed (4.89)-(4.92) are merged together and rewritten in the compact form

ṡ = −α1φ1(s) + z (4.93)

ż = −α2φ2(s) + ϕ̇(s) (4.94)

with s =
[
sᵀτ s

ᵀ
f

]ᵀ
, z =

[
zᵀτ z

ᵀ
f

]ᵀ
, ϕ =

[(
J−1τ∆

)ᵀ 1
mf

ᵀ
∆

]ᵀ
, α1 = diag (α1τ ,α1f ) and

α2 = diag (α2τ ,α2f ). Then, noticing that, each matrix and matrix functions that enter in this

equation have a diagonal structure and ϕ̇(s) = ∂ϕ
∂t +

(
∂ϕ
∂s

)
ṡ, it follows under assumption 6, that

direct application of corollary 1 in [CFM18] leads to the conditions (4.83)-(4.86).
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- Conditions on Kτ and Kf : Once sτ = 0 is reached, ω
(c)
c = −Kτ (qε)v. Consider the

following Lyapunov function:

Vτ = [1− (qε)s]
2 + (qε)

ᵀ
v(qε)v (4.95)

The following expression is obtained by differentiating Vτ versus time, and employing (4.79)-(4.80):

V̇τ =− 2[1− (qε)s](q̇ε)s + 2(qε)
ᵀ
v(q̇ε)v

=− 2[1− (qε)s][−
1

2
(qε)

ᵀ
vω

(c)
c ] + 2(qε)

ᵀ
v

1

2
[(qε)sω

(c)
c + (qε)v × ω(c)

c ]

=− 2[−1

2
(qε)

ᵀ
vω

(c)
c +

1

2
(qε)s(qε)

ᵀ
vω

(c)
c ] + 2(qε)

ᵀ
v

1

2
[(qε)sω

(c)
c + (qε)v × ω(c)

c ]

=− [(qε)
ᵀ
vKτ (qε)v − (qε)s(qε)

ᵀ
vKτ (qε)v]− (qε)

ᵀ
v(qε)sKτ (qε)v

= −(qε)
ᵀ
vKτ (qε)v

(4.96)

which is strictly definite negative iff Kτ > 0. Similarly, once sf = 0 is reached, ṙ
(c)
ε = −Kfr

(c)
ε .

Consider the following Lyapunov function:

Vf =
1

2
r(c)ᵀε r(c)ε (4.97)

By differentiating Vf versus time, it follows:

V̇f = r(c)ᵀε ṙ(c)ε = −r(c)ᵀε Kfr
(c)
ε (4.98)

which is definite negative iff Kf > 0.

4.5.3 The anti-windup system

If equations (4.77) and (4.78) are directly used as the control law, saturation caused by the integral
term may lead to a severe overshoot in the system, or provoke instability of the closed loops. This
point becomes especially crucial when dealing with the fault tolerant control problem, since faults
may cause actuator saturation. Here, anti-windup coefficients of the general form eλci , λ < 0 are
introduced in (4.77) and (4.78) as follows:

τ (c)
sm =J

(
−Fτ −Kτ

[
1

2

[
(qε)sω

(c)
c + (qε)v × ω(c)

c

]]
−α1τφ1τ (sτ )

−α2τdiag(eλ∆τi)

∫ t

0
φ2τ (sτ (χ))dχ

) (4.99)

f (c)
sm =m

(
−Ff −Kf ṙ

(c)
ε −α1fφ1f (sf ) −α2fdiag(eλ∆fi)

∫ t

0
φ2f (sf (χ))dχ

)
i = 1, 3 (4.100)

To explain the role of ∆τi, ∆fi, i = 1, 3, recall that the thruster configuration consists of 24

thrusters of 2N . Then, the control vector u
(c)
c ranges in a hypercube of dimension 24. The

images of this hypercube through the thruster configuration matrices Rτ and Rf (see eq. (4.63))
are polytopes Πτ and Πf (computed as in (4.1)). As explained in Section 4.2, these polytopes
are nothing else than the torque and force domains, that can be attained by the thruster-based
actuation unit. Thus, saturation occurs if a torque and/or a force outside of Πτ and Πf , is asked
to be allocated on the thrusters, see Fig. 4.6 that gives an illustration for the torque case.

If saturation occurs, which means that τ
(c)
FTC and/or f

(c)
FTC are outside Πτ and Πf , respectively,

then the nearest attainable torque and/or force that belongs to Πτ/Πf , is computed, in the least
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Figure 4.6: The polytope Πτ (attainable torque domain)

square optimal sense. To formulate this problem, denote τ
(c)
0 and f

(c)
0 as the optimal attainable

torque and force. Then the problem turns out to solve on-line, the following optimisation problems

min
τ
(c)
0

∥∥∥τ (c)
FTC − τ

(c)
0

∥∥∥
2

s.t. τ
(c)
0 ∈Πτ

min
f
(c)
0

∥∥∥f (c)
FTC − f

(c)
0

∥∥∥
2

s.t. f
(c)
0 ∈Πf (4.101)

The terms ∆τi, ∆fi, i = 1, 3 are then defined according to:

∆τ = τ
(c)
FTC − τ

(c)
0 ∆f = f

(c)
FTC − f

(c)
0 (4.102)

∆τ = vec(∆τi), ∆f = vec(∆fi), ∆τi ≥ 0, , ∆fi ≥ 0 i = 1, 3

Thus, with λ < 0, when ∆τi, ∆fi is large enough for some ”i”, eλ∆τi , eλ∆fi is near zero according
to the property of the exponential function, vanishing the integral terms in the GSTA. A contrario,

provided that the system is not saturated, τ
(c)
0 = τ

(c)
FTC and f

(c)
0 = f

(c)
FTC . Then, the value of

eλ∆τi , eλ∆fi , i = 1, 3 is invariant and equal to 1, no matter how the GSTA will react to faults, the
integral terms operate normally.

4.6 Simulation results

The performance of the proposed FTC architecture are next assessed using the Matlab/Simulink
FES. A path planning algorithm based on a spline-based technique, has been implemented to gen-

erate smooth attitude quaternion qref (t) and relative position r
(c)
ref (t) references. With regards to

the parameters of the GSTA (4.99) and (4.100), the following numerical values have been retained:

α1τ ≈ diag(0.002145, 0.001898, 0.002487)

α2τ ≈ diag(0.3373, 0.264, 0.4539).10−3

α1f ≈ diag(0.05056, 0.03464, 0.04609)

α2f ≈ diag(0.01875, 0.0088, 0.01558)

βτ = βf = diag(1, 1.1, 1).10−4, Kτ = Kf = I3
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4.6.1 The perfect navigation case

One can begin by analyzing the behaviour of the system under nominal conditions, i.e. when
noise does not affect the navigation unit and no faults are present. In Fig. 4.7, both phases of
the rendezvous mission, acquisition and forced translation, are indicated. The chaser’s orientation
and relative position (in the LVLH frame) is illustrated in Fig. 4.7.a. In addition, in this figure

the tracking errors can be appreciated. Fig. 4.7.c shows the thruster commands u
(c)
c (t) computed

by the CA unit (3.21). The contribution of each thruster is better illustrated in Fig. 4.8. It is

recalled that the proposed FTC solution f̄
(c)
FTC consists of the GSTA controller f̄

(c)
sm(t) and the

estimation of the fault/disturbance estimator
¯̂
f (c). When in nominal case, the output of the

estimator represents the disturbances only. i.e. the sloshing phenomena and the flexible modes,

as shown in Fig. 4.7.e. Finally, the proposed FTC solution f̄
(c)
FTC is shown in Fig. 4.7.d and the

GSTA controller f̄
(c)
sm(t) in Fig. 4.7.f.

The simulated fault consists of a stuck open fault that occurs in the thruster 1 at time t = 40s, and
is maintained until the end of the simulation. The fault time occurrence has been chosen, so that
it covers both the acquisition phase and the forced translation phase. Fig. 4.9 show the results.
Fig. 4.9.a illustrates the attitude, and Fig. 4.9.b gives the relative position (in the LVLH frame).
The attitude and relative position tracking errors are also plotted, to appreciate the results. As
in Fig. 4.7, the target acquisition phase and the forced translation phase are highlighted on the
plots, for a better understanding of the motion performed by the chaser. The thruster commands

u
(c)
c (t) computed by the CA, are illustrated on Fig. 4.9.c. A zoom is incorporated in the figure, to

better appreciate the behaviour of u
(c)
c (t). The total control signal provided by the overall FTC

scheme (dual force f̄
(c)
FTC(t), see (4.68)) is shown on Fig. 4.9.d. The fault/disturbance dual force

estimate
¯̂
f (c)(t) is illustrated on 4.9.e and the dual force f̄

(c)
sm(t) delivered by the GSTA controllers

is shown on Fig. 4.9.f.

In addition, the contribution of each thruster is shown in Fig. 4.10. In this figure, the signals shown
correspond to the computation of the control algorithm. It should be noted that the solution takes
into account the faulty thruster, due to the fact that the control algorithm is unaware of the
occurrence of the fault.

As it can be seen, during the acquisition phase, the attitude error does not exceed 0.4 deg and the
relative position is less than 5 cm. During the forced translation phase and at the capture point,
these errors are very close to zero. Furthermore, it can be seen on 4.9.c that these performance
are obtained without actuator saturation, except during a short time which correspond to the
transient behaviour of the FTC algorithm due to the fault occurrence. From the zoom presented

in 4.9.c, it can be observed a sinus-like behaviour of u
(c)
c (t). The spectral density of u

(c)
c (t) reveals

frequency components located at frequencies that correspond to the flexible modes of the solar
array and propellant sloshing, which is quite reassuring.

In conclusion, the effectiveness of the proposed solution was proven under fault-free and faulty
case, while considering a perfect navigation unit. This means that the tracking performance is
maintained despite the occurrence of the fault. It is worth noting that the proposed FTC solution
does not destabilize the system in the absence of faults.

4.6.2 Navigation unit in the loop

In this section, it is considered that the navigation unit provides noisy measurements. Recall that
the navigation unit has a precision of 2 mm, 0.2 mm/s and 0.2 mm/s2 for relative position, velocity
and acceleration, over the three axes, and a precision of 0.1 deg, 0.01 deg/s and 0.01 deg/s2 for
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chaser attitude, angular rate and angular acceleration, over the three axes. In the presence of a
fault, it is desired that the system maintains a performance as close as the one obtained under
fault-free conditions. Thus, this performance is first illustrated in Fig. 4.11. The effects of the
noise in the navigation unit can be clearly observed when comparing Fig. 4.7 against Fig. 4.11.
The noise effect can be observed in a more clear way when comparing Fig. 4.8 against Fig. 4.12,
where the contribution of each thruster is shown.

Figure 4.7: Nominal case with perfect navigation unit: a) Attitude of the chaser - b) Relative position - c)

thruster commands u
(c)
c - d) dual force f̄

(c)
FTC - e) fault/disturbance dual force estimate

¯̂
f (c) - f) GSTA dual

force f̄
(c)
sm.
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The performance of the FTC scheme is now analyzed by considering the same faulty situation,
but with a noisy navigation unit in the loop. The results are shown in Fig. 4.13. The effect of
the navigation errors and measurement noises on the control signals can be appreciated in Fig.

Figure 4.8: Control inputs applied to each thruster for the nominal case with perfect navigation unit
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4.13.c to 4.13.e. However, despite this phenomenon, the capture performance is satisfactory, since
during the last 10 meters, the attitude error does not exceed 0.05 deg and the relative position is
less than 1 cm along the three axis. It can be inferred from the presented figures that the obtained
results are satisfactory since the proposed FTC solution has the capability of compensating the
occurrence of the fault despite the noisy measurements.

Furthermore, the control signals applied to each thruster are shown in Fig. 4.14. It is important

Figure 4.9: Perfect navigation and stuck-open fault in THR 1: a) Attitude of the chaser - b) Relative

position - c) thruster commands u
(c)
c - d) dual force f̄

(c)
FTC - e) fault/disturbance dual force estimate

¯̂
f (c) -

f) GSTA dual force f̄
(c)
sm.
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to note that in this figure, the observed signals represent the values that the control algorithm
computed and not the output of the thruster. This is why the value of the signal that corresponds
to the first thruster does not represent the stuck open fault. In addition, the reader must remember
that given that the control algorithm is unaware of the occurrence of the fault, the solution includes
a computed signal for the faulty thruster.

4.6.3 Simulation campaign with the FES

The proposed FTC solution is finally evaluated through an intensive simulation campaign using
the Matlab/Simulink FES. A total of 48 runs have been done, so that each faulty situation is

Figure 4.10: Control inputs applied to each thruster for the perfect navigation and stuck-open fault
in THR 1
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Figure 4.11: Fault free case with navigation in the loop: a) Attitude of the chaser - b) Relative position -

c) dual force f̄
(c)
FTC - d) thruster commands u

(c)
c - e) fault/disturbance dual force estimates

¯̂
f (c) - f) GSTA

dual force f̄
(c)
sm.

covered. More precisely, for each thruster, a stuck open fault and a stuck close fault are simulated
at t = 40s and is maintained during the end of the simulation.

As mentioned before, the importance of the anti-windup strategy relies on avoiding thruster satu-
ration due to the control law. To highlight its effect, a simulation campaign that does not consider
the anti-windup strategy and noise in the navigation unit, is done. In the following, this is called
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Figure 4.12: Control inputs applied to each thruster for the fault free case with navigation in the
loop
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Figure 4.13: Navigation in the loop and stuck-open fault in THR 1: a) Attitude of the chaser - b) Relative

position - c) dual force f̄
(c)
FTC - d) thruster commands u

(c)
c - e) fault/disturbance dual force estimates

¯̂
f (c) -

f) GSTA dual force f̄
(c)
sm.

case 1. Furthermore, a second simulation campaign is carried out which considers the anti-windup
strategy and noise in the navigation unit. In the following, this is called case 2. The performance
of the FTC solution is next evaluated using the following mission-oriented criteria.

• Dealing with relative position and velocity, it is required to maintain the relative position inside
the so-called rendezvous corridor, during the complete forced translation phase. This can be
observed in Fig. 4.16.c. unlike what is shown in Fig.4.15.c. At the capture point, the position
misalignment must be less than 20 cm along the X and Z axis, and the lateral X and Z velocities
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Figure 4.14: Control inputs applied to each thruster for the navigation in the loop and stuck-open
fault in THR 1

must be less than 1 cm/s nominally, the worst case being fixed to 4 cm/s. In terms of longitudinal
Y axis, the velocity must be less than 1 cm/s. In Fig. 4.16.a and Fig. 4.16.b it can be seen that
the relative velocity and position requirements are met, whilst in Fig. 4.15.a and Fig. 4.15.b it
is shown that when considered thruster 4 or 16 as faulty, the position and velocity requirements
are not longer met, i.e. this represents a failed capture of the target.

• With regards to attitude performance, it is required after the acquisition phase, to maintain the
attitude to less than 1 deg along the three axis (pitch φ(t), yaw θ(t), roll ψ(t)) during the forced
translation, so that the capture mechanism is correctly aligned with the target. From Fig. 4.15.d
and Fig. 4.16.d, it can be seen that this requirement is met. At the capture point, the attitude
misalignment must be less than 1 deg, and the angular rate must be less than 0.05 deg/s along
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the three axis. These requirements are also met for both cases, see Figs. 4.15.e, 4.15.f, 4.16.e
and 4.16.f.

These mission-oriented criteria enable to quantify the worst case of mission performance loss due
to faults. Particularly, it can be concluded from Fig. 4.15.b and Fig. 4.16.b that the worst case
correspond to stuck-closed faults that occur in thrusters 2,4,14 and 16. As shown in Fig. 4.15, the
solution without the anti-windup strategy can no longer guarantee the capture of the target in the
presence of faults. One can understand that the behaviour shown in Fig. 4.15, would be further
degraded if noise was considered to affect the navigation unit. This was observed when comparing
Fig. 4.7 and Fig. 4.11. On the other hand, the results obtained for case 2, see Fig. 4.16, proved
that the capture performance requirements are met, no matter which thruster is faulty. Thus, it is
argued that the proposed FTC strategy is promising since it is able to cover all faulty situations,
i.e. when a thruster opens at its maximum rate until its maximum value and when it closes at its
maximum rate, until it produces no thrust.

Figure 4.15: Simulation campaign with the FES without anti-windup strategy (48 faulty cases - faults occur
at t = 40s): a) position misalignment and b) relative velocities at the capture point - c) relative position
versus the rendezvous corridor - d) attitude error - e) attitude and f) angular velocity at the capture point.
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Figure 4.16: Simulation campaign with the FES with anti-windup strategy (48 faulty cases - faults occur
at t = 40s): a) position misalignment and b) relative velocities at the capture point - c) relative position
versus the rendezvous corridor - d) attitude error - e) attitude and f) angular velocity at the capture point.

4.7 Conclusions

In this chapter, a dual quaternion-based general super-twisting algorithm (GSTA) nested with a
fault estimator is employed for achieving fault tolerance against thruster faults, during a rendezvous
mission with a passive target on a circular orbit around Earth. The coupling effects between at-
titude and translation dynamics are taken into account, thanks to the dual quaternion formalism
and to the GSTA theory, leading the approach to behave to the so-called six degree-of-freedom
technique. Stability of the overall FTC is proved considering that the perturbations seen by the
GSTA are state-dependent, and it is shown that the overall FTC scheme is asymptotically stable.
An anti-windup strategy is joint to the GSTA, to prevent instability of the FTC scheme in case of
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actuator saturation. The developed theory is verified through a simulation campaign in a functional
engineering simulator that considers a realistic navigation unit, solar arrays flexible modes, propel-
lant sloshing and the most dimensioning space disturbances, i.e. gravity gradient, magnetic filed
and the atmospheric drag and J2 effect. Mission-oriented criteria are analysed over 48 simulations
under faulty situations and it is shown that the FTC strategy is able to accommodate thruster
faults so that, the space mission is fulfilled, despite the loss of controllability of the faulty actuator.
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5 Conclusions and Perspectives

In this thesis, the development of a robust control law with SMC techniques was firstly analyzed.
The developments were applied to a rendezvous mission in a circular orbit with a passive target.
This solution was further studied by considering the occurrence of faults. Consequently, fault
tolerant capabilities of SMC were explored within the same aerospace mission. The perturbations
caused by the solar arrays and the fuel tanks were considered, i.e. the flexible modes and the sloshing
phenomena. In addition, the most dimensioning space disturbances (e.g. Earth gravity, the second
zonal harmonic J2, atmospheric drag and magnetic disturbances) were considered. Finally, the
proposed solution is implemented in a high-fidelity benchmark, where the results obtained showed
the potential of the proposed solution.

5.1 Conclusions

In Chapter 2, a brief introduction to the main concepts of SMC was done. The main properties
of this technique were highlighted. In addition, the description of the different generations of
SMC and their characteristics were mentioned. From this chapter, it is understood that in order
to reduce the chattering effect, the implementation of a Higher Order SMC is needed. It was
mentioned that, it is implicit that the higher the order of the SMC, the need of higher order
derivatives of the sliding surface increases. It was then concluded that the best trade-off between
the need of derivatives of the sliding surface and having a control signal with reduced chattering,
was offered by the SOSMC.

An insight into the characteristics of the rendezvous mission studied in this work, was done
in Chapter 3. The description of the modelling was developed separately for translational and
rotational motions by neglecting the coupling effects. A first approach towards the development
of a robust controller was developed based on the linearized approximation of the model. The
control techniques employed were FOSMC and STA in a backstepping setup. Stability of both
solutions was assessed with Lyapunov methods. Then, the linear control laws were implemented
in a high-fidelity simulator that is based on the nonlinear equations, i.e. the coupling effect, space
disturbances, sloshing phenomena and flexible modes are taken into account. The results obtained
support the selection of the STA as robust controller, given that the advantages over the FOSMC,
are clearly shown.

FTC capabilities of SMC techniques are explored in Chapter 4, by analyzing two faulty thruster
cases: stuck open and stuck close. A new configuration of thrusters was specifically designed for
this purpose. Unlike in Chapter 3, the new thruster structure has 24 thrusters with an actuation
capacity of 2 N. Fault compensability criteria was analyzed given the new thruster structure.
After this assessment, the design of a FTC solution is studied. The proposed solution consists of a
GSTA controller nested with a nonlinear estimator. It was shown that in order to avoid thruster
saturation, an anti-windup strategy was needed. With the intention of showing the efficiency and
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limitations of the solution, simulations with different conditions were carried out. First, a perfect
navigation unit was considered, i.e. the measurements provided by the navigation unit are nothing
else but the states. The proposed solution had no major problems when dealing with faults. Then,
a more realistic navigation unit was considered, i.e. noisy measurements. It was shown, that the
proposed solution was capable of compensating faults despite of the corrupted measurements.
Finally, two simulation campaigns, considering both types of faults, were conducted. The first
simulation campaign did not consider measurement noise or the anti-windup strategy. Results
showed that this solution can not guarantee a successful target capture, given that for some
thruster failures, the chaser can no longer align its position with the target. The second simulation
campaign, takes into account the noisy measurements and the anti-windup strategy. Results
showed that the proposed FTC solution can overcome the considered type of faults leading to a
successful capture of the target.

In addition, Chapter 4 presented a 6DoF model that allows the consideration of the coupling
effects. Unlike what was considered in Chapter 3, the sloshing phenomena and the flexible modes
are no longer treated as approximations, instead they are treated as state dependent. This lead
to the selection of the GSTA controller, since as mentioned in Section 2.5.4, it is known for its
capability of compensating state dependent perturbations. Furthermore, an anti-windup strategy
was added to the GSTA solution to avoid saturation on the thrusters due to the control law. It
was shown that this was necessary so that the chaser was capable of maintaining the tracking of
the target, no matter which actuator was faulty.

Recalling the arguments expressed in Chapter 1, the main objective of this thesis was to explore
the FTC capabilities of SMC techniques without the need of a FDI unit. As mentioned before,
both active and passive approaches can be found in literature. Most active approaches can not
guarantee stability of the closed loop given the assumption of the presence of a FDI unit. On the
other hand, the limitations on the passive approaches relied on the fact that the faults considered
were only loss of effectiveness. This thesis, successfully proposed a passive FTC solution with SMC,
capable of compensating more serious failures, i.e. a stuck open and a stuck close fault, and with
a realistic navigation unit.

5.2 Perspectives

In the following, a list of suggested future perspectives is stated:

• Robustness against sloshing phenomena and flexible modes was previously shown. It would be
interesting to be able to extend the robustness property against variable or uncertain mass and
inertia.

• It was previously considered that the target was a sphere. The problem would become more com-
plex in the case where the target geometry affects the relative motion. Certainly, the complexity
would increase when considering a tumbling target.

• Further analysis can be done with regards to less aggressive sliding mode techniques, which
do not saturate the thrusters. Perhaps, this could be analyzed as an option to substitute the
anti-windup strategy.

• The availability of the states can not be always guaranteed. Consider for example the case where
no velocities are available. A solution to this problem can be analyzed.

• Although it is known that delays are present in every system, no delays were considered in
this thesis. This can be further analyzed for example when considering delays in the thruster’s
response or in the navigation unit.

76



Appendix

A.1 Phase plane

Fig. 2.2 was obtained with Matlab, specifically with the use of pplane. The simulated system has
the following form:

ẋ = y

ẏ = y − x+ u
(1)

where u = 4x for the saddle point, and u = −4x for the unstable focus at the origin.

A.2 Design Process of Sliding Mode Control in a Backstepping
Setup for r = 3

Consider the following system in state space form:ẋ1ẋ2
ẋ3

 =

A11 A12 A13

A21 A22 A23

A31 A32 A33

x1x2
x3

+

 0
0
Im

 (u+ d) (2)

Following the design process explained in Section 3.4.1, the tracking error is first defined as ex1 =
x1c − x1. Its derivative is expressed as:

ėx1 = ẋ1c − ẋ1 = ẋ1c −A11x1 −A12x2 −A13x3 (3)

Given that x2 is used as virtual controller, i.e. x2 → ε1, the expression of the virtual controller is
obtained from (3) as:

ε1 = (A12)
+
(
ẋ1c −A11x1 −A13x3 − Â1ex1

)
(4)

where the term Â1ex1 is employed to guarantee the convergence of ex1 . The second error is defined
as ex2 = ε1 − x2 and its derivative is expressed as:

ėx2 = ε̇1 − ẋ2 = ε̇1 −A21x1 −A22x2 −A23x3 (5)

Now, x3 is employed as virtual controller, i.e. x3 → ε2. Then, the definition of ε2 is obtained from
(5) as:

ε2 = (A23)
+
(
ε̇1 −A21x1 −A22x2 − Â2ex2 +Aᵀ

12ex1

)
(6)

Term Â2ex2 is used to guarantee the convergence of ex2 . Furthermore, the term Aᵀ
12ex1 is included

to eliminate crossed terms that are derived from further expressions, see (14)-(18). The last error
is defined as ex3 = ε2 − x3 and its derivative is defined as:

ėx3 = ε̇2 − ẋ3 = ε̇2 −A31x1 −A32x2 −A33x3 − u− d (7)
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To study the stability of the under-actuated dynamics a joint Lyapunov function is defined as :

V = V1 + V2 + V3 = eᵀx1ex2 + eᵀx2ex2 + eᵀx3ex3 (8)

First, the derivative of V1 is analyzed by employing the definition in (3) as follows:

V̇1 = eᵀx1 ėx1 = eᵀx1 [ẋ1c −A11x1 −A12x2 −A13x3] (9)

From the definition of ex2 = ε1 − x2 , it is obtained that x2 = ε1 − ex2 . By substituting it in (9)
and employing the definition of ε1 expressed in (4), it follows:

V̇1 = eᵀx1 [ẋ1c −A11x1 −A12{ε1 − ex2} −A13x3]

= eᵀx1

[
ẋ1c −A11x1 −A12

{
(A12)

+
(
ẋ1c −A11x1 −A13x3 − Â1ex1

)
− ex2

}
−A13x3

]
= eᵀx1A12ex2 + eᵀx1Â1ex1

(10)

The next step is to analyze the derivative of V2 by employing the definition of ėx2 in (5) as follows:

V̇2 = eᵀx2 ėx2 = eᵀx2 [ε̇1 −A21x1 −A22x2 −A23x3] (11)

It follows that, from the definition of ex3 = ε2−x3, it can be said that x3 = ε2−ex3 . By substituting
it in (11) and employing the definition of ε2 expressed in (6), it follows:

V̇2 = eᵀx2 [ε̇1 −A21x1 −A22x2 −A23{ε2 − ex3}]

= eᵀx2

[
ε̇1 −A21x1 −A22x2 −A23

{
(A23)

+
(
ε̇1 −A21x1 −A22x2 − Â2ex2 +Aᵀ

12ex1

)
− ex3

}]
= eᵀx2Â2ex2 − eᵀx2A

ᵀ
12ex1 + eᵀx2A23ex3

(12)
Finally, by employing the definition of ėx3 , expressed in (7), the derivative of V3 is as follows:

V̇3 = eᵀx3 ėx3 = eᵀx3 [ε̇2 −A31x1 −A32x2 −A33x3 − u− d] (13)

By using the expressions obtained in (10),(12) and (13), the derivative of the joint Lyapunov
function is:

V̇ = V̇1 + V̇2 + V̇3 = eᵀx1A12ex2 + eᵀx1Â1ex1 + eᵀx2Â2ex2 − eᵀx2A
ᵀ
12ex1 + eᵀx2A23ex3

+ eᵀx3 [ε̇2 −A31x1 −A32x2 −A33x3 − u− d]
(14)

From (14), it can be seen that u has to have the following form:

u = ε̇2 −A31x1 −A32x2 −A33x3 +Aᵀ
23ex2 − uv (15)

where uv represent the discontinuous part of the controller, in this cases, the sliding mode controller.
Then, by substituting (15) in (14) , it follows:

V̇ = V̇1 + V̇2 + V̇3 = eᵀx1A12ex2 + eᵀx1Â1ex1 + eᵀx2Â2ex2 − eᵀx2A
ᵀ
12ex1 + eᵀx2A23ex3

+ eᵀx3 [ε̇2 −A31x1 −A32x2 −A33x3 −
{
ε̇2 −A31x1 −A32x2 −A33x3 +Aᵀ

23ex2 − uv
}
− d]

= eᵀx1A12ex2 + eᵀx1Â1ex1 + eᵀx2Â2ex2 − eᵀx2A
ᵀ
12ex1 + eᵀx2A23ex3 − eᵀx3A

ᵀ
23ex2 + eᵀx3(uv − d)

(16)

Consider the following properties:

eᵀx1A12ex2 = eᵀx2A
ᵀ
12ex1

eᵀx2A23ex3 = eᵀx3A
ᵀ
23ex2

(17)

By employing (17) in (16), it follows:

V̇ = eᵀx1A12ex2 + eᵀx1Â1ex1 + eᵀx2Â2ex2 − eᵀx1A12ex2 + eᵀx2A23ex3 − eᵀx2A23ex3 + eᵀx3(uv − d)

= eᵀx1Â1ex1 + eᵀx2Â2ex2 + eᵀx3(uv − d)
(18)

The convergence of eᵀx1Â1ex1 and eᵀx2Â2ex2 are guaranteed according to Remark 4, in Section
(3.4.1). Convergence of ex3 and the compensation against v is guaranteed by the selected sliding
mode controller and the tunning of its gains.



A.3 Convex Polytopes

As stated in [HRGZ04], the following definitions are given:

• Polytope: A subset P ⊆ Rd that can be presented as a V-polytope or as an H-polytope.

• V-Polytope: The convex hull of a finite set X = {x1, . . . , xn} of points in Rd:

P = conv(X) :=

{
n∑
i=1

λix
i
∣∣∣ λi ≥ 0,

n∑
i=1

λ = 1

}
(19)

• H-Polytope: A bounded solution set of a finite system of linear inequalities:

P = P (A, b) :=
{
x ∈ Rd

∣∣∣aᵀi x ≤ bi for1 ≤ i ≤ m
}

(20)

where A ∈ Rm×d is a real matrix with rows aᵀi and b ∈ Rm is a real vector with entries bi.
Here boundedness means that there is a constant N such that ‖x‖ ≤ N holds for all x ∈ P .

Theorem 4 (Polytope equivalence). The definitions of V-polytopes and of H-polytopes are equiv-
alent. That is, every V-polytope has a description by a finite system of inequalities, and every
H-polytope can be obtained as the convex hull of a finite set of points (its vertices).

A.4 Quaternion product

Given two quaternions p and q, it follows that:

p = p0 + ip1 + jp2 + kp3 q = q0 + iq1 + jq2 + kq3 (21)

where p0, p1, p2, p3, q0, q1, q2 and q3 are numerical values, while ijk represent imaginary components.

The basic operations between the imaginary components ijk are described as:

i2 = j2 = k2 = ijk = −1 (22)

ij = k = −ji (23)

jk = i = −kj (24)

ki = j = −ik (25)

Then, the quaternion product between p and q is defined as:

p ◦ q = (p0 + ip1 + jp2 + kp3) ◦ (q0 + iq1 + jq2 + kq3)

= p0q0 + ip1q0 + jp2q0 + kp3q0

+ ip0q1 + i2p1q1 + jip2q1 + kip3q1

+ jp0q2 + ijp1q2 + j2p2q2 + kjp3q2

+ kp0q3 + ikp1q3 + jkp2q3 + k2p3q3

(26)

By regrouping terms, (26) can be rewritten as:

p ◦ q = p0q0 − (p1q1 + p2q2 + p3q3) + p0(iq1 + jq2 + kq3)

+ q0(ip1 + jp2 + kp3) + i(p2q3 − p3q2)
+ j(p3q1 − p1q3) + k(p1q2 − p2q1)

(27)

Consider the following definition:

p ◦ q = r = r0 + ir1 + jr2 + kr3 (28)



It follows that (27) can be rewritten by considering (28) as:

r0 = p0q0 − p1q1 − p2q2 − p3q3
r1 = p0q1 + p1q0 + p2q3 − p3q2
r2 = p0q2 − p1q3 + p2q0 + p3q1

r3 = p0q3 + p1q2 − p2q1 + p3q0

(29)

which can be rewritten in matrix form as:
r0
r1
r2
r3

 =


p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0

 ◦

q0
q1
q2
q3

 = (p)+q = (q)−p (30)

where pᵀv = [p1, p2, p3] and qᵀv = [q1, q2, q3], then the operators (p)+ and (q)− are defined as:

(p)+ =

[
p0 −pᵀv
pv p0I +C(pv)

]
(q)− =

[
q0 −qᵀv
qv q0I −C(qv)

]
(31)

C(pv) =

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 C(qv) =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 (32)

Based on the previous definitions, the quaternion product of three arbitrary quaternions is defined
as:

p ◦ q ◦ r = (p)+(r)−q = (r)−(p)+q (33)

Then, for a vector ra = [xa, ya, za]
ᵀ in coordinate frame A and rb = [xb, yb, zb]

ᵀ in coordinate frame
B, it follows:

rb = q∗ ◦ ra ◦ q = (q∗)+(q)−ra (34)

where q∗ = [q0,−qᵀ
v]ᵀ. This is verified by using (32) as follows:

q0 q1 q2 q3
−q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0


︸ ︷︷ ︸

(q∗)+

◦


q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0


︸ ︷︷ ︸

(q)−

=


Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44


︸ ︷︷ ︸

Q

(35)

Q11 = q0q0 + q1q1 + q2q2 + q3q3

Q12 = −q0q1 + q1q0 − q2q3 + q3q2 = 0

Q13 = −q0q2 + q1q3 + q2q0 − q3q1 = 0

Q14 = −q0q3 − q1q2 + q2q1 + q3q0

Q21 = −q1q0 + q0q1 + q3q2 − q2q3 = 0

Q22 = q1q1 + q0q0 − q3q3 − q2q2
Q23 = q1q2 + q0q3 + q3q0 + q2q1

Q24 = q1q3 − q0q2 + q3q1 − q2q0

Q31 = −q2q0 − q3q1 + q0q2 + q1q3 = 0

Q32 = q2q1 − q3q0 − q0q3 + q1q2

Q33 = q2q2 − q3q3 + q0q0 − q1q1
Q34 = q2q3 + q3q2 + q0q1 + q1q0

Q41 = −q3q0 + q2q1 − q1q2 + q0q3 = 0

Q42 = q3q1 + q2q0 + q1q3 + q0q2

Q43 = q3q2 + q2q3 − q1q0 − q0q1
Q44 = q3q3 − q2q2 − q1q1 + q0q0

Given that ra can be written as a quaternion with scalar part zero and when multiplied by Q,
the scalar part is equal to zero, then Q can be factorized as:

Q = Ce = qv · qᵀ
v + [q0I −C(qv)]

2 (36)



The property in (36) can be simply verified by:

qv · qᵀ
v =

q1q2
q3

 · [q1 q2 q3
]

=

q1q1 q1q2 q1q3
q2q1 q2q2 q2q3
q3q1 q3q2 q3q3

 (37)

q0I −C(qv) =

q0 0 0
0 q0 0
0 0 q0

−
 0 −q3 q2
q3 0 −q1
−q2 q1 0

 =

 q0 q3 −q2
−q3 q0 q1
q2 −q1 q0

 (38)

[q0I −C(qv)]
2 =

 q0 q3 −q2
−q3 q0 q1
q2 −q1 q0

 q0 q3 −q2
−q3 q0 q1
q2 −q1 q0

 =

d11 d12 d13
d21 d22 d23
d31 d32 d33

 (39)

d11 = q0q0 − q3q3 − q2q2
d12 = q0q3 + q3q0 + q2q1

d13 = −q0q2 + q3q1 − q2q0

d21 = −q3q0 − q0q3 + q1q2

d22 = −q3q3 + q0q0 − q1q1
d23 = q3q2 + q0q1 + q1q0

d31 = q2q0 + q1q3 + q0q2

d32 = q2q3 − q1q0 − q0q1
d33 = −q2q2 − q1q1 + q0q0

In the following (34) is substituted by (36).

A.5 Separation of the relative dynamics model

The relative dynamics equation in its dual form is defined as shown in (4.60):

˙̄ω(c)
e = −M̄−1 ◦

(
ω̄(c)
c × M̄ ◦ ω̄(c)

c

)
︸ ︷︷ ︸

a

+M̄−1 ◦ f̄ (c)
c︸ ︷︷ ︸

b

− q̂∗e ◦ ˙̄ω
(t)
t ◦ q̄e︸ ︷︷ ︸
d

+ ω̄(c)
e ×

(
q̄∗e ◦ ω̄

(t)
t ◦ q̄e

)
︸ ︷︷ ︸

c

(40)

For convenience, the definitions employed for separating (40) are listed in the following:

M̄ = m
d

dε
I3×3 + εJ (41)

M̄−1 = J−1
d

dε
+ ε

1

m
I3×3 (42)

d

dε
(a+ εb) =

d

dε
a+

d

dε
εb = b (43)

ε2 = 0 (44)

ω̄(c)
c = ω(c)

c + εv(c)c = ω(c)
c + ε

(
ṙ(c)c + ω(c)

c × r(c)c
)

(45)

ω̄
(t)
t = ω

(t)
t + εv

(t)
t = ω

(t)
t + ε

(
ṙ
(t)
t + ω

(t)
t × r

(t)
t

)
(46)

ω̄(c)
e = ω(c)

e + εv(c)e = ω(c)
e + ε

(
ṙ(c)e + ω(c)

e × r(c)e
)

(47)

ω(c)
e = ω(c)

c −Ceω
(t)
t (48)

v(c)e = v(c)c −Cev
(t)
t (49)

f̄
(c)
ct = f

(c)
ct + ετ

(c)
ct (50)

As mentioned in Section 4.4.5, given the particular geometry of the target and the capture mech-

anism, the problem is reduced to the model of the chaser, i.e. ω̄
(t)
t = ω

(t)
t + εv

(t)
t = 0. This means

that (40) is reduced to:

˙̄ω(c)
e = −M̄−1 ◦

(
ω̄(c)
c × M̄ ◦ ω̄(c)

c

)
︸ ︷︷ ︸

a

+M̄−1 ◦ f̄ (c)
c︸ ︷︷ ︸

b

(51)



Now that the properties are defined, the separation of (51) into real and dual parts, begins. First,
the term (51).a is separated by employing the properties (41)-(45).

−M̄−1 ◦
(
ω̄(c)
c × M̄ ◦ ω̄(c)

c

)
= −M̄−1 ◦

[(
ω(c)
c + εv(c)c

)
×
(
m
d

dε
I3×3 + εJ

)
◦
(
ω(c)
c + εv(c)c

)]
= −

(
J−1

d

dε
+ ε

1

m
I3×3

)
◦
[(
ω(c)
c + εv(c)c

)
×
(
mv(c)c + εJω(c)

c

)]
= −

(
J−1

d

dε
+ ε

1

m
I3×3

)
◦
[
ω(c)
c ×mv(c)c + ε

(
ω(c)
c × Jω(c)

c

)]
= −

(
J−1(ω(c)

c × Jω(c)
c )
)
− ε[ω(c)

c × v(c)c ]

(52)

Now, the term (51).b is separated by employing (41)-(44) and (50) as follows:

M̄−1 ◦ f̄ (c)
ct =

(
J−1

d

dε
+ ε

1

m
I3×3

)
◦
(
f
(c)
ct + ετ

(c)
ct

)
= J−1τ

(c)
ct + ε

1

m
f
(c)
ct (53)

Then, (51) is rewritten by separating (52) and (53) into real and dual parts, as follows:

• Real part

ω̇(c)
e = −

(
J−1(ω(c)

c × Jω(c)
c )
)

+ J−1τ (c)
c (54)

which can also be rewritten by employing the real part of (48) in (54) and considering that

ω
(t)
t = 0, it follows:

ω̇(c)
e = −J−1

(
ω(c)
e × Jω(c)

e

)
+ J−1τ (c)

c (55)

where τ
(c)
c = τ

(c)
cu + τ

(c)
ctd

+ τ
(c)
cf , as stated in (4.50).

• Dual part

r̈(c)e = −ω(c)
c × v(c)c︸ ︷︷ ︸
a

+
1

m
f (c)
c (56)

Following the definition (48) and (49), (56).a is rewritten as follows considering that ω
(t)
t =

v
(t)
t = 0:

− ω(c)
c × v(c)c = −ω(c)

e × v(c)e (57)

From (47) it is known that ω
(c)
e =

(
ṙ
(c)
e + ω

(c)
e × r(c)e

)
, then (56) is finally written as:

r̈(c)e = −ω(c)
e × ṙ(c)e − ω(c)

e × ω(c)
e × r(c)e +

1

m
f (c)
c (58)

where f
(c)
c = f

(c)
cu + f

(c)
ctd

+ f
(c)
cf as stated in (4.50).
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