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Dans cette thèse, j'étudie la dynamique des endomorphismes de l'espace projectif complexe. Je m'intéresse aux endomorphismes post-critiquement algébriques, une notion qui généralise celle de fractions rationnelles post-critiquement finies en dimension 1. En particulier, j'étudie les valeurs propres d'un endomorphisme post-critiquement algébrique le long de l'orbite d'un point périodique. En dimension 1, un résultat bien connu, qui remonte aux travaux de Pierre Fatou, dit que ces valeurs sont soit nulles soit de module strictement plus supérieurs à 1. Dans cette thèse, j'étudie une conjecture qui généralise ce résultat en dimension au moins 2.

Dans la première partie de cette thèse, j'étudie une famille des endomorphismes post-critiquement algébriques introduite dans la thèse de Sarah Koch. En utilisant la caractérisation topologique des fractions rationnelles de William Thurston, sous certaines conditions, Sarah Koch a associé à une fraction rationnelle post-critiquement finie g un endomorphisme post-critiquement algébrique f . Lorsque g est un polynôme quadratique, je donne une caractérisation détaillée des valeurs propres de l'endomorphisme associé f en ses points fixes. En particulier, je montre que celles-ci sont soit nulles soit de modules strictement supérieurs à 1. Ce résultat suggère la validité de la conjecture.

Dans la deuxième partie, je montre que la conjecture est vraie dans le cas de dimension 2 sans hypothèse supplémentaire et en toute dimension lorsque les points périodiques sont en dehors de l'ensemble post-critique et sans autre hypothèse.

Introduction

In this thesis, we discuss the discrete dynamics of holomorphic endomorphisms of CP n . Without any further indication, every endomorphism considered in this thesis is holomorphic. Given an endomorphism f : CP n → CP n , one of the main dynamical questions is to understand the asymptotic behavior of the sequence z 0 , z 1 = f (z 0 ), . . . , z n = f •n (z 0 ), . . . as n tends to ∞ and as z 0 varies in CP n . The theory has been studied since the beginning of the XIX century (see [START_REF] Daniel | A history of complex dynamics[END_REF]) in the case of one complex variable, and the case of several variables has thrived with a lot of beautiful results in the late 40 years.

Let f : CP n → CP n be an endomorphism of degree d ≥ 2. The critical locus C f of f is the set of points z such that the derivative D z f : T z CP n → T f (z) CP n is not surjective. The endomorphism f is called post-critically algebraic if the post-critical set of f , that is

P C(f ) = j≥1 f •j (C f ),
is an algebraic set of codimension one. If n = 1, such endomorphisms are called postcritically finite, since proper algebraic sets in CP 1 are finite sets.

A point z ∈ CP n is called a periodic point of f if there exists an integer p ≥ 1 such that f •p (z) = z. The smallest integer p satisfying such a condition is called the period of z and the orbit of z is called a periodic cycle of period p of f . A periodic point z is called a fixed point if its period is 1. An eigenvalue of f along the cycle of a periodic point z of period p is an eigenvalue of D z f •p . When n = 1, such a value is called the multiplier of f along the cycle of z.

In what follows, we focus on the notion of post-critically algebraic endomorphisms and study the most elementary yet intriguing dynamical object: their periodic points. Our goal is to prove that, for such endomorphisms, eigenvalues along a periodic cycle are either 0 or of modulus strictly bigger than 1. This has been done in the unidimensional vii case and the higher dimensional case has been received a lot of attention lately. In this thesis, we are able to close the case when n = 2 and we obtain several partial results in higher dimension. Let us get into details.

When n = 1, the multipliers of a rational map along its periodic cycles and the dynamics of its critical points are closely related. We have the following fundamental result, which is essentially due to Fatou.

Theorem 1. Let f : CP 1 → CP 1 be a post-critically finite rational map and λ be the multiplier of f along a periodic cycle. Then either λ = 0 or |λ| > 1.

This thesis seeks for a generalization of this theorem in higher dimension. More precisely, we propose the following conjecture.

Conjecture A. Let f be a post-critically algebraic endomorphism of CP n with n ≥ 2 and λ be an eigenvalue of f along a periodic cycle. Then either λ = 0 or |λ| > 1.

When n = 1, the proof of Theorem 1 relies on the study of the relation between critical orbits and periodic cycles of endomorphisms of CP 1 . When n ≥ 2, most of the tools used in the unidimensional proof are no longer available. Some weaker form of Conjecture A has been studied by several authors. For example, it was studied in • [FS94, Theorem 6.1] under the assumption that the complement of P C(f ) is Kobayashi hyperbolic and hyperbolically embedded,

• [Jon98, Proposition 2.9] in the case of dimension n = 2 and under the assumption that C f has no periodic component,

• [Ast20, Theorem B] under a mild geometric assumption on the irreducible components of P C(f ).

However, no complete result has been obtained. This thesis, with three chapters, is devoted to the study of Conjecture A in higher dimension.

In Chapter 1

After a brief review of some important notions, we study several examples of postcritically algebraic endomorphisms in dimension one and higher. In dimension one, we focus on those classes of post-critically finite rational maps whose multipliers along periodic cycles can be computed explicitly. Then we study the natural generalizations of these examples in higher dimension. We also consider some other classes of post-critically viii algebraic endomorphisms which are defined as product maps or are semiconjugate to another post-critically algebraic endomorphism via a ramified covering. In some cases, we can compute the eigenvalues along periodic cycles by the same technique used with examples in dimension one. In some other cases, we can only control the eigenvalues along periodic cycles outside the post-critical set. In all cases, the eigenvalues under control are either 0 or of modulus strictly bigger than 1.

In Chapter 2

We reinforce the evidences of Conjecture A by studying the eigenvalues at fixed points of a class of post-critically algebraic endomorphisms constructed by Sarah Koch. In [START_REF] Koch | Teichmüller theory and critically finite endomorphisms[END_REF], Koch introduced a systematic way to produce infinitely many post-critically algebraic endomorphisms of CP n with n ≥ 2. In this chapter, we study the eigenvalues of the following class of such post-critically algebraic maps at their fixed points. We refer to [START_REF] Koch | Teichmüller theory and critically finite endomorphisms[END_REF] for the general definitions and construction.

Definition 0.0.1. Let (k, m) ∈ N × N * be such that k + m -1 ≥ 2. The map

G k,m : C k+m-1 → C k+m-1
is defined as,

• if k = 0, G 0,m : C m-1 → C m-1 is of the form G 0,m :      x 1 x 2 . . . x m-1      →      -x 2 m-1 x 2 1 -x 2 m-1 . . . x 2 m-2 -x 2 m-1      . • if k = 0, G k,m : C k+m-1 → C k+m-1 is of the form G k,m :     
x 1 x 2 . . .

x k+m-1      →       -x k+m-1 +x k-1 2 2
x 1 -x k+m-1 +x k-1 2 2

. . .

x k+m-2 -x k+m-1 +x k-1 2 2       .
Given two integers (k, m) ∈ N × N * such that k + m -1 ≥ 2, it follows from [Koc13, Theorem 5.17] and [START_REF] Koch | Teichmüller theory and critically finite endomorphisms[END_REF]Theorem 5.18] that G k,m induces a post-critically algebraic endomorphism of CP k+m-2 of degree 2. In addition, according to [Koc13, Corollary 7.2], if z is a periodic point of G k,m outside the post-critical set, then every eigenvalue of G k,m along the orbit of z has modulus strictly bigger than 1. In this chapter, we show that all eigenvalues of G k,m at a fixed point are either 0 or of modulus strictly bigger than 1, i.e. we give an affirmative answer to Conjecture A for the cases of fixed points of G k,m .

Theorem A. Let (k, m) ∈ N × N * be such that k + m -1 ≥ 2 and µ be an eigenvalue of G k,m at a fixed point. Then either µ = 0 or |µ| > 1.

Moreover, we obtain a complete characterization of the eigenvalues of D z G k,m when z is a fixed point of G k,m . More precisely, let z = (z 1 , . . . , z k+m-1 ) ∈ C k+m-1 be a fixed point of G k,m . An important observation, which is a consequence of the construction of G k,m , is that the polynomial P (t) = t 2 + z 1 ∈ C[t] is post-critically finite.

When z / ∈ P C(G k,m ), Theorem A follows from [Koc13, Corollary 7.2], which is based on the work of Thurston. When z ∈ P C(G k,m ), we show that there exist two integers (k , m ) ∈ N×N * and a vector subspace E of C k+m-1 of dimension k +m -1 such that E is invariant under G k,m and the restriction of G k,m to E is conjugate to G k ,m . Moreover, z / ∈ P C(G k ,m ). Thus, by applying the results due to Koch, we can understand the eigenvalues of D z G k,m when their associated eigenvectors are tangent to E.

Our main contribution is the characterization of the eigenvalues of D z G k,m with associated eigenvectors which are not tangent to E. It turns out that there is a relation between such eigenvalues and the multiplier of P along the periodic cycle in its critical orbit. More precisely, the critical value of P , which is z 1 , is mapped under the k -th iterate of P to a periodic cycle of P of period m and of multiplier λ. We show that the set of the eigenvalues of D z G k,m whose associated eigenvectors are not tangent to E is

{0} if k = 0 {µ | µ m = λ m m , µ m = λ} if k = 0.
Since P is post-critically finite, it follows from Theorem 1 that, in any case, every eigenvalue of D z G k,m is either 0 or of modulus strictly bigger than 1.

In Chapter 3

We study Conjecture A in the general setting. Let f : CP n → CP n be a post-critically algebraic endomorphism of CP n and z be a periodic point of f . Since every iterate of f is also post-critically algebraic, by passing to an iterate, it is enough to assume that z is a fixed point of f . We have to deal with two main cases: the fixed point is either outside the post-critical set or inside the post-critical set.

x

The case when the fixed point is outside the post-critical set was first studied in [START_REF] Erik | Complex dynamics in higher dimension i[END_REF]. Under the assumption that the complement of the post-critically set is Kobayashi hyperbolic and hyperbolically embedded, they showed that every eigenvalue of D z f has modulus at least 1 (see [START_REF] Erik | Complex dynamics in higher dimension i[END_REF]Theorem 6.1]). Note that the Koch maps satisfy this geometric condition. In [START_REF] Erik | Complex dynamics in higher dimension i[END_REF]Theorem 5.3], the author proved that the Kobayashi hyperbolicity of the complement of the post-critical set is a generic condition in the space of holomorphic endomorphisms of CP n of a given degree. However, the map

p d :
CP n → CP n with d ≥ 2, [z 0 : . . . : z n ] → z d 0 : . . . : z d n which is the simplest example of a post-critically algebraic endomorphism, does not satisfy this condition. Indeed, the post-critical set P C(p d ) of p d is the union of n + 1 hyperplanes {x i = 0 | 0 ≤ i ≤ n}. The map t → [e t : 1 : . . . : 1] is a non-constant holomorphic function avoiding P C(p d ). Thus, according to [Kob13, Proposition 3.6.1], the complement of P C(p d ) in CP n is not Kobayashi hyperbolic. We improve the method of [FS94, Theorem 6.1] to get rid of the Kobayashi hyperbolic assumption and we are able to exclude the possibility of eigenvalues of modulus 1. The first main result of this chapter is the following.

Theorem B. Let f be a post-critically algebraic endomorphism of CP n and λ be an eigenvalue of f along a periodic cycle outside the post-critical set. Then |λ| > 1.

Let us give a sketch of the proof. We prove the result by contradiction. More precisely, without loss of generality, assume that z / ∈ P C(f ) is a fixed point of f and that D z f has at least one eigenvalue of modulus 1. Denote by E n the sum of generalized eigenspaces associated to such eigenvalues. We build an immersed center manifold of f at z, i.e. an immersed complex submanifold M of CP n containing z such that f (M ) ⊆ M and, in a neighborhood of z, f | M is conjugate to the linear map D z f : E n → E n . Let λ be an eigenvalue of D z f of modulus 1 and v ∈ E n be an eigenvector associated to λ. By using the local conjugacy between f | M and D z f | En , we show the existence of a holomorphic map τ : D(0, r) → CP n such that τ (D(0, r)) ⊂ CP n \ P C(f ), τ (0) = z and τ (0) = v.

Moreover, for all t ∈ D(0, r), f • τ (t) = τ (λt).

Using the latter property, we show that τ can be extended holomorphically to D(0, R) xi for a maximal R < +∞ and τ (se iθ ) tends to a limit value in P C(f ) as s tends to R - for almost every value θ ∈ [0, 2π). By applying a lemma due to Fatou, we show that the defining polynomial of P C(f ) vanishes identically on τ (D(0, R)), and hence, vanishes at τ (0) = z. This contradicts the assumption that z / ∈ P C(f ).

When the fixed point is inside the post-critical set, we restrict our study to dimension n = 2. The second main result of this chapter is the proof of Conjecture A when n = 2 without any additional hypothesis.

Theorem C. Let f be a post-critically algebraic endomorphism of CP 2 and λ be an eigenvalue of f along a periodic cycle. Then either λ = 0 or |λ| > 1.

More precisely, let f be a post-critically algebraic endomorphism of CP 2 and z be a periodic point of f . Thanks to Theorem B, we can assume that z is a fixed point of f in P C(f ). The derivative D z f has two eigenvalues λ 1 and λ 2 , counting multiplicities. We consider two subcases: either z is a regular point of P C(f ), or z is a singular point of P C(f ).

If the fixed point z is a regular point of P C(f ), the tangent space T z P C(f ) is invariant under D z f . Then D z f admits an eigenvalue λ 1 with associated eigenvectors in T z P C(f ). The other eigenvalue λ 2 arises as the eigenvalue of the linear endomorphism D z f : T z CP 2 /T z P C(f ) → T z CP 2 /T z P C(f ) induced by D z f . On the one hand, we prove that the eigenvalue λ 1 has modulus strictly bigger than 1 by using the normalization of irreducible algebraic curves and Theorem 1. On the other hand, we show that either λ 2 = 0 or |λ 2 | > 1 by following the same idea used to prove Theorem B.

If the fixed point z is a singular point of P C(f ), in most of the cases, there exists a relation between λ 1 and λ 2 . Then by using Theorem 1, we deduce that for j = 1, 2, either λ j = 0 or |λ j | > 1. This was observed in [START_REF] Jonsson | Some properties of 2-critically finite holomorphic maps of P 2[END_REF]. For the sake of completeness, we will recall the detailed statements and include the proof. This allows us to conclude the proof of Conjecture A for post-critically algebraic endomorphisms of CP 2 .

Chapter 1 Preliminaries

We expect the readers to be familiar with the basic notions of algebraic geometry, complex manifolds, holomorphic maps between complex manifolds and the basic notions of complex dynamics in higher dimension. We will quickly recall these topics in section 1.1 and we refer to [START_REF] Clifford | Introduction to holomorphic functions of several variables[END_REF][START_REF] Huybrechts | Complex geometry: an introduction[END_REF][START_REF] Hartshorne | Algebraic geometry[END_REF],[SSC + 10] for more details. Experienced readers can skip directly to 1.3, where we shall discuss the main object of this thesis: the eigenvalues of post-critically algebraic endomorphisms at its periodic points. The convention throughout the rest of this thesis is that all complex manifolds are Haudsdorff, second countable and paracompact. Without further notice, every endomorphism of a complex manifold in this thesis will be holomorphic.

Complex manifolds and holomorphic maps

We refer to [START_REF] Huybrechts | Complex geometry: an introduction[END_REF] for an introduction of complex manifolds and holomorphic maps between complex manifolds. In this thesis, we are interested in endomorphisms of complex projective spaces. Given an integer n ≥ 1, recall that the complex projective space CP n is a compact connected complex manifold of dimension n, defined as the quotient of C n+1 \ {0} by the equivalence relation

(x 0 , . . . , x n ) ∼ (y 0 , . . . , y n ) ⇔ ∃ λ ∈ C * such that x i = λy i for 0 ≤ i ≤ n.
Denote by [x 0 : . . . : x n ] ∈ CP n the equivalence class of (x 0 , . . . , x n ) ∈ C n \ {0}. We denote by π : C n+1 \ {0} → CP n the canonical projection, i.e. the map defined by π(x 0 , . . . , x n ) = [x 0 : . . . :

x n ].
The space CP n is equipped with the complex structure defined by the n + 1 holomorphic charts {(U i , ϕ i :

U i → C n ), 0 ≤ i ≤ n + 1}, where U i = {[x 0 : . . . : x n ] ∈ CP n | x i = 0}, ϕ i ([x 0 : . . . : x n ]) = x 0 x i , . . . , x i-1 x i , x i+1 x i , . . . , x n x i .
We will identify C n with the open set U 0 via the inverse of ϕ 0 , i.e. the map defined by

(x 1 , . . . , x n ) → [1 : x 1 : . . . : x n ].
Every holomorphic map f : CP n → CP n , i.e. an endomorphism of CP n , is rational (see [START_REF] Erik | Complex dynamics in higher dimension i[END_REF]Theorem 2.1]). This means that there exist n + 1 homogeneous polynomials

P i ∈ C[x 0 , . . . , x n ], 0 ≤ i ≤ n of the same degree d ≥ 1 such that 0≤i≤n P -1 i (0) = {0} and f • π = π • (P 0 , . . . , P n ).
Such a polynomial map (P 0 , . . . , P n ) :

C n+1 → C n+1 is called a lift of f to C n+1 .
The integer d ≥ 1 is called the algebraic degree, or the degree, of f . Conversely, a map F = (P 0 , . . . , P n ) : C n+1 → C n+1 , where P 0 , . . . , P n are homogeneous polynomials of degree d satisfying 0≤i≤n P -1 i (0) = {0}, induces an endomorphism of CP n of degree d.

Analytic sets and algebraic sets

We are also interested in analytic subsets of complex manifolds, and particularly, algebraic subsets of C n or CP n . We shall recall some important definitions and properties of such objects. For further details and proofs of the following statements, the readers are invited to see [START_REF] Mikhailovich | Complex analytic sets[END_REF][START_REF] Mikhailovich | Introduction to complex analysis[END_REF] for the case of analytic sets, and [START_REF] Reid | Basic Algebraic Geometry 1[END_REF] for the case of algebraic subsets.

Let M be a complex manifold. A set X ⊆ M is an analytic set if, for every z ∈ X, there exist an open neighborhood U of z and a finite set of holomorphic functions

f 1 , . . . , f k : U → C such that U ∩ X = {x ∈ U | f 1 (x) = . . . = f k (x) = 0}.
Let X be a non-empty analytic set of a complex manifold M . A point z ∈ X is called a regular point (or smooth point) if X is a submanifold in some open neighborhood of z, and it is called a singular point otherwise. Denote by Reg X the set of regular points and by Sing X the set of singular points of X. Note that Sing X is again an analytic set. An analytic set X is called irreducible if X is not the union of two proper analytic subsets or equivalently, Reg X is a connected manifold. An analytic set X ⊂ X is said to be an irreducible component of X, if X irreducible and maximal, i.e. is contained in no other irreducible analytic set X" ⊂ X. An irreducible component of an analytic set X is the closure of a connected component of Reg X. The regular part Reg X of X can have several connected components which are complex manifolds of different dimensions. The dimension of X, dim X, is the maximum of the dimensions of connected components of Reg X. The codimension of X in M is dim M -dim X. An analytic set is called purely k-dimensional if every connected component of Reg X has the same dimension k. A pure dimensional analytic set of codimension one in a complex manifold M can defined locally as the zero locus of a single holomorphic function, i.e. as a hypersurface (see [START_REF] Mikhailovich | Introduction to complex analysis[END_REF]Chapter III]).

Assume n ≥ 1. A set Γ ⊂ C n is called an algebraic set of C n if its elements are common zeros of finite polynomials P 1 , . . . , P k of n complex variables. The set {P 1 , . . . , P k } is called a set of defining polynomials of Γ. A set X ⊂ CP n is called a projective algebraic set (or an algebraic set of CP n ) if π -1 (X) is an algebraic set of C n+1 which is defined by a set of homogeneous polynomials. Such a set of polynomials is also said to be a set of defining polynomials of X. The family of algebraic sets in CP n is stable under intersections and finite union. The Zariski topology on CP n is the topology whose the closed sets are the algebraic subsets of CP n . By definition, algebraic subsets of CP n (resp. of C n ) are analytic subsets of CP n (resp. C n ). Conversely, Chow's theorem asserts that every analytic set of CP n which is closed under the usual topology is algebraic (see [Gun90, Volume II, Theorem M.3]). We can define regular points, singular points, dimension, codimension for an algebraic set, of CP n (resp. of C n ) as for an analytic set of CP n (resp. of C n ). It is known that an irreducible algebraic set of codimension one can be defined by only one polynomial (see [START_REF] Reid | Basic Algebraic Geometry 1[END_REF]Theorem 1.21]).

Given an algebraic set X ⊂ CP n , the set X := π -1 (X) ∪ {0} ⊂ C n+1 is called the affine cone over X. The geometries of X and X are closely related. In particular, dim X = dim X + 1 and 

Reg X = π(Reg X), Sing X = π(Sing X \ {0}) (see [
, . . . , Q n } ⊂ C[x 0 , x 1 , . . . , x n ]
, where Q i is the homogenization of P i , i.e.

Q i = x deg P i 0 P i x 1 x 0 , . . . , x n x 0 ∀i ∈ {1, . . . , n}.
In particular, Γ is of codimension one if and only if Γ proj is of codimension one.

Critical points, critical values

In this paragraph, we will discuss holomorphic maps between complex manifolds. We will mainly work with maps between complex manifolds of the same dimension, in the following, all considered complex manifolds will have the same dimension.

Definition 1.1.1. Let M and N be complex manifolds of the same dimension and

f : M → N be a holomorphic map. The critical set C f is the set of points z ∈ M such that the derivative D z f : T z M → T f (z) N is not surjective. The critical value set V f := f (C f ) is the image of C f under f .
Let M and N be complex manifolds of the same dimension and f : M → N be a holomorphic map. Assume z ∈ M . Let (U, ϕ) of M be a chart containing z and (V, ψ) of N be a chart containing f (z) such that f (U ) ⊂ V . The point z is a critical point of f if and only if the (complex) Jacobian of ψ • f • ϕ -1 at ϕ(z) is not invertible. In particular, the critical set of f , if it is neither empty nor M , is a pure dimensional analytic set of codimension one, which is locally defined by the determinant of the Jacobian of f in local charts (see [Huy06, Proposition 1.1.13]).

Ramified coverings

Recall that, given two connected topological spaces X and Y and a covering map f : X → Y , the cardinal of f -1 (y), which can be finite or infinite, does not depend on y ∈ Y and is called the order of the covering. Definition 1.1.2. Let M and N be complex manifolds of the same dimension. A holomorphic map f : M → N is called a ramified covering (or branched covering) if there exists an analytic set D of codimension one in M such that the map

f : M \ f -1 (D) → N \ D
is a covering of finite order (see [START_REF] Clifford | Introduction to holomorphic functions of several variables[END_REF]Volume II,Definition C.3]). We will say that f is ramified over D.

Let f : M → N be a ramified covering ramifying over D ⊂ N . If N is connected, the order of the covering f : M \f -1 (D) → N \D does not depend on D and is called the order of f . Assume z ∈ N and w ∈ f -1 (z). For every connected open neighborhood V z ⊂ N of z, denote by V w the connected component f -1 (V z ) containing w. The restricted map f | Vw : V w → V z is a ramified covering. Note that when V z varies in a local basis of z, V w forms a local basis of w. Moreover, the order of the ramified covering f | Vw is constant when we consider V z small enough. This common order is called the branching order or the multiplicity of f at w. The set of points in M of branching order at least 2 is called the branch locus. In fact, the branch locus f is precisely the critical set C f . In particular, f is ramified over the critical value set. The following result will be important.

Theorem 1.1.3 (Chapter 3. Proposition 1.2 [SSC + 10]). Let n ≥ 1 and f : CP n → CP n be an endomorphism of CP n of degree d ≥ 1. Then f is a ramified covering of order d n .
In fact, every lift to C n+1 of an endomorphism of degree d of CP n is also a ramified covering of order d n+1 .

Let f : CP n → CP n be an endomorphism of degree d ≥ 1 and let F : C n+1 → C n+1 be a lift of f . If d = 1, then f is unramified, i.e. is a covering, and hence f is a biholomorphism. If d ≥ 2, since CP n is simply connected, f cannot be a covering. Hence, f is ramifying over the critical value set V f which is an algebraic set of codimension one of CP n . In this case, the map F is also a ramified covering ramifying over V F which is the affine cone over V f . In particular, V F is an algebraic set of codimension one of C n+1 .

Normal families of holomorphic maps

We will deal with families of holomorphic maps of complex manifolds. An important notion in this setting is that of a normal family of holomorphic maps. We shortly recall here the essential tools of the theory of normal families of holomorphic maps.

Let M, N be connected complex manifolds. Denote by C 0 (M, N ) the set of continuous maps from M to N and by Hol(M, N ) ⊂ C 0 (M, N ) the set of holomorphic maps. The standard topology on Theorem 1.1.5 (Montel's theorem). Let M be a complex manifold. A family F ⊆ Hol(M, C n ) is normal if and only if it is locally uniformly bounded, i.e. uniformly bounded on compact sets of M .

C 0 (M, N ) is the compact-open topology (see [Wu67, Part I. Section 1]) By convention, N is paracompact, hence it is metrizable. Once a distance is chosen on N , a sequence (f n ) n ⊂ C 0 (M, N ) converges to f ∈ C 0 (M, N ) if and only if (f n ) n converges to f
We conclude this section by the following result, which is due to Cazacu [START_REF] Andreian | Coverings and convergence theorems[END_REF]. It asserts that normality is preserved after lifting by a covering.

Theorem 1.1.6 (Theorem 4 [START_REF] Andreian | Coverings and convergence theorems[END_REF]). Let M, N, P be connected complex manifold. Let : N → P be a covering and let {f n : M → P } n≥0 , {g n : M → N } n≥0 be sequences of holomorphic maps such that, for every n ≥ 0, the following diagram commutes.

N M gn o o fn P
If f n converges locally uniformly on M to f 0 and there exists a point x ∈ M such that g n (x) converges to g 0 (x), then g n converges locally uniformly to g 0 .

Dynamics in complex projective spaces

Dynamics of endomorphisms of a complex manifold

We will be interested in the family defined by the iterates of a self-map of a complex manifold. More precisely, let M be a complex manifold and f : M → M be an endomorphism. Given an integer j ≥ 0, denote by

f •j = f • . . . • f j times
the j-th iterate of f . Given a point z ∈ M , the orbit of z under f is the sequence (f •j (z)) j≥0 . Complex dynamics study the asymptotic behavior of the family of iterates {f •j } j≥0 of f as n tends to infinity. We are concerned about the asymptotic behavior of the orbit of z when z varies in M and n tends to infinity. In this thesis, we shall focus on the set of points with finite orbit. Definition 1.2.1. Let M be a complex manifold and let f : M → M be an endomorphism. A point z ∈ M is called a periodic point of f if there exists an integer p ≥ 1 such that f •p (z) = z. The smallest integer satisfying such a property is called the period of z.

When p = 1, z is called a fixed point. A point z is a preperiodic point of f if f •k (z) is periodic for some integer k ≥ 0. The smallest integer k such that f •k (z) is periodic is called the preperiod. The orbit of z is called a cycle of f .
In particular, a point z ∈ M is preperiodic if and only if the orbit of z under f is finite. Furthermore, a preperiodic point of preperiod 0 is periodic. Given a periodic point z of period p of f , every point in the orbit of z is a fixed point of f •p . The derivative D z f •p of f •p at z is a linear endomorphism of T z M . The eigenvalues of D z f •p play an important role in the study of the dynamics of f in a neighborhood of the orbit of z.

Definition 1.2.2. Let M be a complex manifold of dimension one and let f : M → M be an endomorphism. Let z be a periodic point of period p. The unique eigenvalue λ of D z f •p is called the multiplier of f a long the orbit of z. The cycle of z is called

• superattracting if λ = 0, • attracting if 0 < |λ| < 1, • neutral or indifferent if |λ| = 1, additionally -parabolic if λ is a root of unity, -elliptic otherwise, • repelling if |λ| > 1.
When M has dimension at least 2, in general, D z f p has several eigenvalues. With a slight abuse of notation, we will use the following definition to characterize such values.

Definition 1.2.3. Let M be a complex manifold let f : M → M be an endomorphism. Let z ∈ M be a periodic point of period p of f . An eigenvalue λ of D z f •p is called an eigenvalue of f along the cycle of z (or at the cycle of z). We say that λ is

• superattracting if λ = 0, • attracting if 0 < |λ| < 1, • neutral or indifferent if |λ| = 1, additionally -parabolic if λ is a root of unity, -elliptic otherwise, • repelling if |λ| > 1.
Definition 1.2.4. Let M be a complex manifold and f : M → M be an endomorphism. The cycle of a periodic point z is called superattracting (resp. attracting, indifferent or neutral, repelling) cycle if all eigenvalue of f along the orbit of z are superattracting (resp. attracting, indifferent or neutral, repelling).

Endomorphisms of CP n

Let f : CP n → CP n be an endomorphism of degree d ≥ 2 with n ≥ 1. Since we are mainly interested in periodic points, the following result is important.

Theorem 1.2.5 (Corollary 3.2, [START_REF] Erik | Complex dynamics in higher dimension i[END_REF]). Let f : CP n → CP n be an endomorphism of degree d ≥ 2. Given an integer p ≥ 1, f has finitely many periodic points of period p.

We refer to [START_REF] Milnor | Dynamics in One Complex Variable[END_REF] for further details on the dynamics of f : CP n → CP n when n = 1 and to [SSC + 10, Chapter 3] when n ≥ 2.

Recall that f is a ramified covering, ramifying over the critical value set V f . Similarly, for every j ≥ 1, f •j is a ramified covering ramifying over V f •j . The post-critical set P C(f ) is the union of the critical values set of all iterates of f , i.e.

P C(f ) = j≥1 V f •j . Note that, for every j ≥ 2, V f •j = f (C f ) ∪ f •2 (C f ) ∪ . . . ∪ f •j (C f ). In particular, P C(f ) = j≥1 f •j (C f ).
Since f maps an algebraic set onto an algebraic set of the same dimension, P C(f ) is a countable union of codimension one algebraic sets of CP n . We will focus on the case when this union is finite. Definition 1.2.6. Let f be an endomorphism of CP n of degree d ≥ 2. The map f is called post-critically algebraic if its post-critical set P C(f ) is an algebraic set of codimension one of CP n . Remark 1.2.7. Let f be an endomorphism of CP n and F be a lift of f . Since C F is the algebraic cone over C f , the map f is post-critically algebraic if and only if the P C(F ) is an algebraic set of codimension one in C n+1 . We shall discuss more about the notion of being post-critically algebraic for polynomial maps of C n in Section 1.3.2.

In dimension one, post-critically algebraic endomorphisms are called post-critically finite rational maps and have been one of most important topic in the theory of complex dynamics. Some typical post-critically finite examples are x → x 2 , x → 1

x 2 , x → x 2 -2. To the best of my knowledge, post-critically algebraic endomorphisms of CP n , for n ≥ 2, were first mentioned in [BDM + 90]. In this problem list, Curtis McMullen asked for the generalizations of post-critically finite rational maps in CP n which preserve the Kobayashi hyperbolicity of the complement of the post-critical set. In [START_REF] Erik | Critically finite rational maps on P 2[END_REF], John Erik Fornaess and Nessim Sibony answered this question by introducing a class of maps on CP n , for n ≥ 2, of the form σ : {x 0 , x 1 , . . . , x n } → {x 0 , x 1 , . . . , x n }, they observed that the map σ•h λ is post-critically algebraic. This thesis is devoted to the study of the dynamics of post-critically algebraic endomorphisms of CP n .

h λ : CP n → CP n [x 0 : x 1 : . . . : x n ] → x d 0 : λ(x 0 -2x 1 ) d : . . . : λ(x 0 -2x n ) d

Examples of post-critically algebraic endomorphisms

Let f be an endomorphism of CP n and let z ∈ CP n be a periodic point of f of period p. Recall that z is a fixed point of f •p and the derivative D z f •p of f •p at z is a linear endomorphism of T z CP n . We want to study the eigenvalues of

D z f •p : T z CP n → T z CP n .
When n = 1, such a value, which is called the multiplier along the cycle of z, plays a crucial role in the study of rational maps in a neighborhood of a periodic point. In most of the cases, given a periodic point and its multiplier, one can understand the behavior of the family of iterates of f in a full neighborhood of this periodic point. Moreover, the behavior of critical points controls the existence of certain types of periodic points. We refer to [START_REF] Milnor | Dynamics in One Complex Variable[END_REF]§8,9,[START_REF] Sibony | Holomorphic Dynamical Systems: Lectures given at the C.I[END_REF]11] for more details. In particular, when a rational map is post-critically finite, we have the following well-known result, which is essentially due to Fatou.

Theorem 1.3.1. Let f be a post-critically finite rational map and λ be the multiplier of f along a periodic cycle. Then either λ = 0 or |λ| > 1.

The classical proof of this result is based on the study of the local dynamics of rational maps in a neighborhood of a periodic point. More precisely, let z be a periodic point of a rational map f of degree at least 2 (not necessarily post-critically finite). Then,

• if the cycle of z is either attracting or parabolic, then the cycle of z is the limit of the infinite orbit of some critical point (see [START_REF] Milnor | Dynamics in One Complex Variable[END_REF]Lemma 8.5] for the attracting case and [START_REF] Milnor | Dynamics in One Complex Variable[END_REF]Theorem 10.15] for the parabolic case),

• if the cycle of z is elliptic indifferent then, either f is linearizable 1 in a neighborhood of the cycle of z, i.e. the cycle of z is contained in a cycle of Siegel discs 2 , and the boundary of the Siegel disk containing the cycle of z is accumulated by the infinite orbit of some critical point ([Mil11, Theorem 11.7]), or f is not linearizable in a neighborhood of the cycle of z and the cycle of z is accumulated by the infinite orbit of some critical point [START_REF] Milnor | Dynamics in One Complex Variable[END_REF]Theorem 11.17] or [Mil11, Theorem 14.4]).

In higher dimension, we may have several eigenvalues along a given periodic cycle and the dynamics in a neighborhood of a periodic cycle is much more complicated. Since postcritically algebraic endomorphisms of CP n with n ≥ 2 are the generalizations of postcritically finite rational maps, it is natural to ask whether Theorem 1.3.1 remains true in higher dimension. The results used in the classical proof are generally not available when n ≥ 2. In the next two paragraphs, we shall analyse some examples in dimension one and their natural generalizations in higher dimension. For these examples, we can either compute explicitly the eigenvalues at periodic cycles or control the eigenvalues at the cycles outside the post-critical set. These examples give evidences of a possible generalization of Theorem 1.3.1.

Examples in dimension one

We review three families of rational maps, whose construction can be generalized to higher dimension: the families of finite quotients of affine maps. We refer to [START_REF] Milnor | On lattes maps. Dynamics on the Riemann Sphere: A Bodil Branner Festschrift[END_REF] for more details about the construction and the dynamics of such maps.

1 Let p be the period of z. The map f is linearizable in a neighborhood of the cycle of z if there exist an open neighborhood U of z, a holomorphic injective map ϕ : U → C such that ϕ(z) = 0 and, for every

x ∈ U ∩ ϕ(U ), ϕ • f •p (x) = (f •p ) (z)ϕ(x)
. 2 The maximal domain on which f is linearizable (see [START_REF] Milnor | Dynamics in One Complex Variable[END_REF]Definition 11.2]).

Note that CP 1 is isomorphic to the Riemann sphere Ĉ = C ∪ {∞}. Every rational map of degree d can be written in the form P (x) Q(x) where P, Q are polynomials without common irreducible divisor and d = max{deg P, deg Q}.

Example 1.3.2. Let f be a post-critically finite rational map of degree d ≥ 2 such that P C(f ) has exactly two points. Using Riemann-Hurwitz's formula, one can show that, in such a case, P C(f ) is totally invariant, i.e. f -1 (P C(f

)) = P C(f ). It is classical that f is conjugate to either x → x d or x → 1
x d (see [START_REF] Milnor | Dynamics in One Complex Variable[END_REF]Lemma 4.9]). In particular, periodic points of f are either in P C(f ) or roots of unity and the multiplier of f at periodic cycles is either 0 or of modulus d p > 2.

The maps in Example 1. 

T d • ϕ = ϕ • p d .
where ϕ(x) := x + 1

x and p d (x) = x d . In other words, we have the following commutative diagram.

Ĉ x →x d / /

x →x+ 1

x

Ĉx →x+ 1 x Ĉ T d / / Ĉ
For examples, we have:

T 2 (x) = x 2 -2, T 3 (x) = x 3 -3x, T 4 (x) = x 4 -4x 2 + 2, . . .
One can show that that for every d ≥ 2, P C(T d ) = {2, -2, ∞}, and hence T d is postcritically finite.

Example 1.3.4. Given any lattice Λ = Z+τ Z with τ ∈ C\R, the quotient T := C/Λ is a compact Riemann surface, which is called a torus. The automorphism x → -x of T has four fixed points. The quotient S of T by identifying each x ∈ T with -x is a Riemann surface. By Riemann-Hurwitz's formula, one can show that S is isomorphic to CP 1 . Denote by ℘ : T → CP 1 a quotient map. The map ℘ is a ramified covering of order 2, with four critical points of branching order 2 which are fixed points of the automorphism

x → -x. The doubling map D 2 : x → 2x commutes with the map x → -x, and hence induces a map f :

CP 1 → CP 1 such that f • ℘ = ℘ • D 2 .
Such a rational map f is called a Lattès map. We refer to [START_REF] Milnor | Dynamics in One Complex Variable[END_REF]§7] for the details of the construction. The map f is post-critically finite with the post-critical set is precisely four critical values of ℘ (see [START_REF] Milnor | On lattes maps. Dynamics on the Riemann Sphere: A Bodil Branner Festschrift[END_REF]Lemma 3.4]).

We will take a closer look at periodic cycles and the multipliers at periodic cycles of the latter two classes of maps. Let f be either a Chebyshev polynomial or a Lattès map. By definition, f is semiconjugate to a holomorphic self-map, say g, of a complex manifold Γ, which is either Ĉ or a torus. The map ϕ : Γ → CP 1 , which satisfies the semiconjugacy relation

ϕ • g = f • ϕ, (1.3.1)
is a branched covering of finite order. The semiconjugacy relation provides a relation between periodic points (and hence the multipliers) of f and those of g. More precisely, if z ∈ CP 1 is a fixed point of f , then equality (1.3.1) implies that g(ϕ -1 (z)) ⊆ ϕ -1 (z). Since ϕ is of finite order, ϕ -1 (z) is a finite set which is invariant by g. Note that every iterate of f is still of the same type of f , either a Chebyshev polynomial or a Lattès map. Hence, by passing to an iterate, we can assume that there exists a point w ∈ Γ such that g(w) = w and ϕ(w) = z. The following result shows that we can compute the multiplier of f at z once the multiplier of g at w is known.

Lemma 1.3.5. Let f, g, ϕ : (C, 0) → (C, 0) be holomorphic germs such that

ϕ • g = f • ϕ.
Assume that f, g and ϕ are not constantly vanishing. Then there exists an integer k ≥ 1 such that f (0) = g (0) k .

Proof. Since f, g and ϕ are not constantly vanishing, there exist three integers r, s, k ∈ N * and three constants a r , b s , c k ∈ C \ {0} such that, in a neighborhood of 0, we can write

f (x) = a r x r + O(x r+1 ), g(x) = b s x s + O(x s+1 ). and ϕ(x) = c k x k + O(x k+1 ) The hypothesis ϕ • g = f • ϕ implies that c k b s x s + O(x s+1 ) k +O (b s x s + O(x s+1 )) k+1 = a r c k x k + O(x k+1 ) r +O (c k x k + O(x k+1 )) r+1 ,
and hence,

c k b k s x sk + O(x sk+1 ) = a r c r k x rk + O(x rk+1
). Comparing the coefficient of the first non-trivial terms in both sides, we deduce that

r = s c k b k r = a r c r k If r > 1, and hence s > 1, we have f (0) = 0 = g (0). If r = s = 1, then b 1 = g (0), a 1 = f (0) and c k g (0) k = f (0)c k Since c k = 0, we deduce that g (0) k = f (0).
Applying Lemma 1.3.5, we deduce that a multiplier of f at a fixed point is up to some powers of a multiplier of g at its fixed points. Note that g is either a power map (as in Example 1.3.2) or an affine map, which means that we can compute explicitly the multipliers of g at periodic points. Therefore, we can also compute explicitly the multipliers of f at its fixed points, and hence also at periodic points. In particular, every multiplier of either a Chebyshev map or a Lattès map is either superattracting or repelling.

Examples in higher dimension

Given an endomorphism of CP n with n ≥ 2, we want to study the eigenvalues of its derivative along a periodic cycle. It is natural to expect that the algebraicity of the postcritical set will allow us to control the eigenvalues at periodic points and we can generalize Theorem 1.3.1. As stated in the Introduction, to study the eigenvalues of post-critically algebraic endomorphisms, one can make use of some geometric properties on the postcritical set or on its complement, like the Kobayashi hyperbolicity of the complement (see [START_REF] Erik | Complex dynamics in higher dimension i[END_REF]Theorem 6.1]) or the regularity of the intersection of irreducible components of the post-critical set (see [START_REF] Astorg | Dynamics of post-critically finite maps in higher dimension[END_REF]Theorem B]). We can also rely on some dynamical assumptions on the post-critical set, like the non-periodicity of critical components (see [Jon98, Theorem 2.9]). However, there exist several examples of post-critically algebraic endomorphisms in the literature which do not satisfy these assumptions. We shall review some of them in the following. We will focus on the possible type of eigenvalues of such maps at periodic points. In some cases, we can give explicitly the values of the eigenvalues. However, in other cases, we only prove that the periodic cycles outside the post-critical set has only repelling eigenvalues. The question of characterizing the possible values of the eigenvalues of a post-critically algebraic endomorphism at all its periodic cycles remains open in general.

Post-critically algebraic regular polynomial maps

We shall extend the notion of being post-critically algebraic to some classes of polynomial endomorphisms of C n with n ≥ 2. In particular, we can see how to generalize the class of post-critically finite polynomials to higher dimension by considering product maps. In this case, we can control the eigenvalues of the product thanks to Theorem 1.3.1.

Assume n ≥ 2. A polynomial map F = (P 1 , . . . , P n ),

P i ∈ C[x 1 , . . . , x n ] is called a polynomial map of degree d if deg P i = d for every i ∈ {1, . . . , n}. The homogenization of a polynomial map F of degree d is a homogeneous polynomial map G = (Q 0 , . . . , Q n ) : C n+1 → C n+1 such that Q 0 = x d 0 and Q i is the homogenization of P i , i.e. Q i = x d 0 P i x 1 x 0 , . . . , x n x 0 ∀i ∈ {1, . . . , n}. Definition 1.3.6. A polynomial map F : C n → C n of degree d ≥ 2 is regular if the homogenization of F induces an endomorphism of CP n .
This notion follows the notions of regular polynomial maps given by Bedford and Jonsson in [START_REF] Bedford | Dynamics of regular polynomial endomorphisms of C k[END_REF] and it is different from the notion of regular polynomial automorphism used in [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]. One can show that every lift of an endomorphism of CP n is regular. A general polynomial endomorphism of C 2 does not have some important properties which are crucial for our work later, like the properness or the finiteness,. Therefore, we will restrict our attention to only regular polynomial maps. The following lemma provides a way to characterize when a polynomial map is regular.

Lemma 1.3.7. Let F = (P 1 , . . . , P n ) : C n → C n be a polynomial map of degree d. For every i ∈ {1, . . . , n}, let P i,d be the sum of monomials of degree d of P i . Set H := (P 1,d , . . . , P n,d ) :

C n → C n . Then, F is regular if and only if H -1 (0) = {0}.
Proof. For every i ∈ {1, . . . , n}, we can write P i ∈ C[x 1 , . . . , x n ] in the form

P i = P i,d + P i,d-1 + . . . P i,1 + P i,0
where P i,j is the sum of monomials of degree j of P i for every i ∈ {1, . . . , n} and j ∈ {0, . . . , d}. The homogenization

G = (Q 0 , Q 1 , . . . , Q n ) of F is of the form Q 0 = x d 0 and Q i = P i,d + x 0 P i,d-1 + . . . + x d-1 0 P i,1 + x d 0 P i,0 ∀i ∈ {1, . . . , n}. By definition, F is regular if only if G induces an endomorphism of CP n , i.e. G -1 (0) = {0}. Assume that (z 0 , z) ∈ C × C n such that G(z 0 , z) = 0. Note that Q 0 = 0 if and only if that z 0 = 0. Moreover, for every i ∈ {1, . . . , n}, Q i (0, z) = P i,d (z). Consequently, G(z 0 , z) = 0 if and only if z 0 = 0 and
H(z) = (P 1,d (z), . . . , P n,d (z)) = 0. Hence, G -1 (0) = {0} if and only if H -1 (0) = {0}. Definition 1.3.8. A regular polynomial map F : C n → C n of degree d ≥ 2 is called post-critically algebraic if the homogenization of F induces a post-critically algebraic endomorphism of CP n .
Definition 1.3.9. Let F : C n → C n be a regular polynomial map. The post-critical set of F is the union of the images of C F under iterations of F ,

P C(F ) := j≥1 F •j (C F ).
We can characterize, as we show in the following result, the post-critically algebraic regular polynomial maps by the algebraicity of its post-critical set.

Lemma 1.3.10. Let F : C n → C n be a regular polynomial map of degree d ≥ 2. The map F is post-critically algebraic if and only if the post-critical set P C(F ) of F is a codimension one algebraic set of C n . Proof. Set F = (P 1 , . . . , P n ) with P i ∈ C[x 1 , . . . , x n ]. Denote by G = (Q 0 , . . . , Q n ) : C n+1 → C n+1 the homogenization of F , i.e. Q 0 = x d 0 and Q i = x d 0 P i x 1 x 0 , . . . , x n x 0 ∀i ∈ {1, . . . , n}.
Denote by g the endomorphism of CP n induced by G. We first show that the critical set C g of g is the union of the projective closure of C F with the hyperplane {x 0 = 0}.

For every i, j ∈ {1, . . . , n}, we have

∂Q i ∂x j = x d-1 0 ∂P i ∂x i x 1 x 0 , . . . , x n x 0 .
In other words, ∂Q i ∂x j is the homogenization of ∂P i ∂x j for every i, j ∈ {1, . . . , n}. Let J F be the Jacobian determinant of F at (x 1 , . . . , x n ) and J Q be the Jacobian determinant of Q at (x 0 , x 1 , . . . , x n ). Let H be the homogenization of J F . Then,

J Q = dx d-1 0 • H. Consequently, C g = {[x 0 : x 1 : . . . : x n ] ∈ CP n | x 0 = 0 or H(x 0 , x 1 , . . . , x n ) = 0}.
Since J F is a defining polynomial of C F , the polynomial H, which is the homogenization of J F , is a defining polynomial of the projective closure of C F . Therefore,

C g = {x 0 = 0} ∪ C F proj .
If we identify C n with the open set U 0 = {x 0 = 0} ⊂ CP n , the set U 0 is invariant under g, i.e. g(U 0 ) ⊆ U 0 , and the restriction of g to U 0 is precisely F . Thus P C(g) = {x 0 = 0} ∪ P C(F ) proj where P C(F ) proj is the closure with respect to Zariski topology of P C(F ) in CP n . By definition, F is post-critically algebraic if and only if P C(g) is an algebraic set of codimension one in CP n . Hence, F is post-critically algebraic if and only if P C(F ) is an algebraic set of codimension one in C n .

The following example is the generalization of Example 1.3.2.

Example 1.3.11. The simplest example of post-critically algebraic regular polynomial map is the map

p d : C n → C n , p d (x 1 , . . . , x n ) := (x d 1 , . . . , x d n ) with d ≥ 2.
According to Lemma 1.3.10, for every d ≥ 2 and n ≥ 1, p d is post-critically algebraic regular polynomial map. The post-critical set of p d is the union of n coordinates hyperplanes {x i = 0} of C n . In fact, when n ≥ 2, the map p d induces an endomorphism

p d : CP n-1 → CP n-1
, which is also a post-critically algebraic endomorphism. Every periodic point of period p of p d is of the form (ζ 1 , . . . , ζ n ) where ζ i is either 0 or a (d p -1)-th root of unity. Hence, every eigenvalue of p d at a periodic point of period p is either 0 or of modulus d p , i.e. either superattracting or repelling.

Such an example is particularly interesting since it induces a post-critically algebraic endomorphism of CP n-1 whose the complement of the post-critical set is not hyperbolic. More precisely, the post-critical set of

p d : CP n-1 → CP n-1 is the union of n projective hyperplanes Γ i := {[x 1 : . . . : x n ] ∈ CP n-1 | x i = 0}, 1 ≤ i ≤ n. The following non-trivial holomorphic map ϕ : C → CP n-1 , ϕ(t) = [e t : 1 : . . . : 1]. satisfies that ϕ(C)∩Γ i = ∅ for every i ∈ {1, . . . , n}, which implies that ϕ(C)∩P C(p d ) = ∅.
According to [Kob13, Proposition 3.6.1], CP n-1 \P C(p d ) is not hyperbolic. In particular, we cannot apply [FS94, Theorem 6.1]. However, we can still compute explicitly the eigenvalues of p d at a periodic cycle. It follows from a similar computation as the one with p d that each eigenvalues of p d at a periodic cycle of period p is either 0 or d p .

The previous example can be generalized to the class of polynomial maps which are products of post-critically finite polynomials. More precisely, assume n ≥ 2 and let

f i ∈ C[x i ], i ∈ {1, . . . , n} be n polynomials of the same degree d ≥ 2. Set F := (f 1 , . . . , f n ) : C n → C n , F (x 1 , . . . , x n ) = (f 1 (x 1 ), . . . , f n (x n )). Since f i , 1 ≤ i ≤ n are of the same degree d ≥ 2, we can write f i (x i ) = a i x d i + b d-1 x d-1 i + b d-2 x d-2 i + . . . , a i = 0 ∀i ∈ {1, . . . , n}.
The map

H = (a 1 x d 1 , . . . , a n x d n ) : C n → C n satisfies that H -1 (0) = {0}. According to Lemma 1.3.7, F = (f 1 , . . . , f n ) is regular.
The following result shows F is post-critically algebraic when f i are post-critically finite. Moreover, we can control eigenvalues of such maps thanks to one-dimensional results.

Proposition 1.3.12. Assume n ≥ 2. Let f i ∈ C[x i ], i ∈ {1, . . . , n} be n post-critically finite polynomials of the same degree d ≥ 2 and set F := (f 1 , . . . , f n ) : C n → C n , F (x 1 , . . . , x n ) = (f 1 (x 1 ), . . . , f n (x n )).
Let g be the endomorphism of CP n induced by the homogenization of F . Then g is postcritically algebraic. Moreover, if λ is an eigenvalue of g at a periodic cycle, then either λ = 0 or |λ| > 1.

Proof. First, we show that F is post-critically algebraic. The Jacobian matrix of

F at a point z ∈ C n is of the form      f 1 (z 1 ) 0 . . . 0 0 f 2 (z 2 ) . . . 0 . . . . . . . . . . . . 0 0 . . . f n (z n )      Hence, C F = 1≤i≤n C i-1 × C f i × C n-i , whence P C(F ) = i∈{1,...,n} C i-1 × P C(f i ) × C n-i .
Since f i is post-critically finite for every i ∈ {1, . . . , n}, i.e. P C(f i ) is finite, P C(F ) is a finite union of hypersurfaces. According to Lemma 1.3.10, F is post-critically algebraic, hence by definition, so is g.

Second, we show that each eigenvalue of g at a periodic cycle is either superattracting or repelling. Denote by [x 0 : x 1 : . . . : x n ] the homogeneous coordinates of CP n . Observe that if we identify C n with the open set {x 0 = 0} ⊂ CP n , then C n and Γ = {x 0 = 0} ⊂ CP n are invariant under g and the restriction of g to C n is F . Let z = (z 1 , . . . , z n ) ∈ C n be a periodic point of period p of g. Since the restriction of g to C n is F , it is enough to consider z as a periodic point of F . Since F acts coordinateswise, for every i ∈ {1, . . . , n}, z i is a periodic point of f i of period p i of multiplier λ i . Moreover, p is the lowest common multiple of {p i , 1 ≤ i ≤ n}. Let λ be an eigenvalue of F at z, i.e. λ is an eigenvalue of D z F •p . Since the Jacobian matrix of F is diagonal, there exists i ∈ {1, . . . , n} such that

λ = λ p p i i .
Since f i is post-critically finite, λ i is either superattracting or repelling. Whence, so is λ.

To conclude, let z ∈ Γ = {x 0 = 0} be a periodic point of g. Observe that T z Γ is an invariant subspace of D z g and that

Spec D z g = {0} ∪ Spec D z g| TzΓ .
It is enough to consider Spec D z g| TzΓ . The map restricted to Γ by g is of the form [0 : x 1 : . . . :

x n ] → [0 : a 1 x d 1 : . . . : a n x d n ].
In other words, the restriction to Γ of g is conjugate to the endomorphism p d of CP n-1 , which is induced by the map p d studied in Example 1.3.11. Consequently, each eigenvalue of Spec D z g| TzΓ is either superattracting or repelling.

We will conclude this paragraph by computing the eigenvalues at periodic cycles of an example of post-critically algebraic regular polynomial map which is not a product.

Example 1.3.13. Given an integer d ≥ 2, consider the map f :

C 2 → C 2 defined by f : (x 1 , x 2 ) → (-x d 1 + x d-1 2 , x d 2 ).
The critical set C f has two irreducible components, {x 2 = 0} and {x 1 = 0}. The critical curve {x 2 = 0} is invariant. The critical curve {x 1 = 0} is mapped to the singular curve

{x d 1 -x d-1 2 = 0} and the map f maps {x d 1 -x d-1 2 = 0} back to {x 1 = 0}
. This class of post-critically algebraic maps was introduced in [Ron08], as example of post-critically algebraic maps whose post-critical sets have a periodic singular irreducible components.

We can show that, for every d ≥ 2, every eigenvalue at periodic points of f is either superattracting or repelling. Let (z, w) be a periodic point of period m of f . Note that w is a periodic point of the polynomial

p d (t) = t d ∈ C[t]. The line L := C × {x 2 = w} is invariant by f •p .
Moreover, the map induced by f on L is conjugate to a post-critically finite polynomial. Hence, the eigenvalue λ 1 of D q f •m with associated eigenvectors tangent to L is either superattracting or repelling. If D q f •m is not diagonalizable, then we are done.

Assume that

D q f •m is diagonalizable with two distinct eigenvalues λ 1 = λ 2 , i.e. Spec D q f •m = {λ 1 , λ 2 }. In particular, there exists an eigenvector (u, v) of D q f •m associ- ated to λ 2 such that (u, v) / ∈ T w L, i.e. v = 0. The Jacobian matrix of f •m at (z, w) is of the form λ 1 α 0 (p •m d ) (w) α ∈ C. Since v = 0, λ 2 = (p •m d ) (w), i.e. λ 2
is the multiplier of p d at a periodic point w.

According to Example 1.3.2, λ 2 is either superattracting to repelling.

Maps defined by a semiconjugacy

We discuss post-critically algebraic maps (endomorphisms of CP n or regular polynomial maps) which are semiconjugate to post-critically algebraic regular polynomials. These maps usually have post-critical sets with singular irreducible components. In general, the eigenvalues at periodic cycles of such post-critically algebraic endomorphisms are not completely characterized. Except for the class of symmetric products for which we can compute explicitly the eigenvalues, we shall see that we can only control the eigenvalues of the cycles outside the post-critical set.

Example 1.3.14 (Symmetric products). Symmetric products have been used to produce examples of endomorphisms of CP n with certain dynamical properties when n ≥ 2. Their dynamics is rather simple and quite well understood (see [SSC + 10, Ued93, GHK]). In particular, we shall see that symmetric products of post-critically finite rational maps are post-critically algebraic and every eigenvalue of a symmetric product at a periodic point is either superattracting or repelling.

Given n ≥ 2, the symmetric group S n defines an action on (CP 1 ) n by permuting the coordinates. The quotient space is isomorphic to CP n (see [Maa05, Corollary 2.6]). Denote by η n : (CP 1 ) n → CP n the quotient map . Let f : CP 1 → CP 1 be a rational map. The n-symmetric product of f is an endomorphism S f : CP n → CP n such that the following diagram commutes.

(CP 1 ) n (CP 1 ) n CP n CP n ηn (f, . . . , f ) ηn S f
The following lemma shows that the n-symmetric product of a post-critically finite rational map is post-critically algebraic.

Lemma 1.3.15 (Lemma 3.1, [GHK]). Let f be a rational map and let S f be the n-symmetric product of f . The post-critical set of S f is

P C(S f ) = η n 1≤j≤n (CP 1 ) j-1 × P C(f j ) × (CP 1 ) n-j ∪ 1≤i<j≤n Ω i,j
where

Ω i,j = {(x 1 , . . . , x n ) ∈ (CP 1 ) n | f (x i ) = f (x j )}.
In particular, f is post-critically finite if and only if the n-symmetric product of f is post-critically algebraic.

The periodic points of S f are closely related to those of f . In fact, let z = η n (z 1 , . . . , z n ) be a periodic point of period p of S f , where z i ∈ CP 1 for i ∈ {1, . . . , n}. Then,

η n (z 1 , . . . , z n ) = S •p f (η n (z 1 , . . . , z n )) = η n (f •p (z 1 ), . . . , f •p (z n )).
This means that there exists a permutation σ ∈ S n such that for every i ∈ {1, . . . , n}, z σ(i) = f •p (z i ). Since every element of S n has finite order, there exists an integer m ≥ 1 such that for every i ∈ {1, . . . , n}, z i = f •mp (z i ). In other words, for every i ∈ {1, . . . , n}, z i is a periodic point of f . Conversely, assume that z 1 , . . . , z n are periodic points of f of period p 1 , . . . , p n respectively. Let p = lcm(p 1 , . . . , p m ) be the lowest common multiplier of p 1 , . . . , p n . Then

S •p f • η n (z 1 , . . . , z n ) = η n (f •p (z 1 ), . . . , f •p (z n )) = η n (z 1 , . . . , z n ),
i.e. η n (z 1 , . . . , z n ) is a periodic point of S f . Hence, the set periodic points of S f is precisely the set of points of the form η n (z 1 , . . . , z n ) where z i are periodic points of f . The following result show the eigenvalues of S f at a periodic point, which can be computed in terms of the multipliers of f at its periodic points.

Proposition 1.3.16 (Proposition 2.3 [GHK]). Let f : CP 1 → CP 1 be a rational map and S f be the n-symmetric product of f . Assume that z 1 , . . . , z n are n periodic points of f and that η n (z 1 , . . . , z n ) is a periodic point of period p of S f . Let P ∈ C[t] be the characteristic polynomial of D ηn(z 1 ,...,zn) S •p f .

• If a periodic point of multiplier λ of f occurs m times in (z 1 , . . . , z n ), then P is divisible by

(t -λ)(t -λ 2 ) . . . (t -λ m ).
• If applying η n to (z 1 , . . . , z n ) results in a periodic orbit of length ml of multiplier λ for f collapsing to a periodic orbit of length l for S f (this can occur when say the whole orbit is contained in {z 1 , . . . , z n }), then P is divisible by

t m -λ.
In particular, combining with Theorem 1.3.1, this result implies that every eigenvalue at a periodic point of a n-symmetric product of a post-critically finite rational map is either superattracting or repelling. We refer to [GHK] for further discussion about the arithmetic dynamics of symmetric products.

We will now discuss the generalization in higher dimension of Lattès maps and Chebyshev polynomials.

Example 1.3.17. [Generalized Lattès maps] An endomorphism f : CP n → CP n of degree d ≥ 2 is called a Lattès map if there exist a ramified covering ϕ : T n → CP n and an endomorphism A : T n → T n such that the following diagram commutes.

T n A / / ϕ T n ϕ CP n f / / CP n , i.e. ϕ • A = f • ϕ.
where T n is a complex torus of dimension n and A is induced by an affine self-map of C n whose linear part is of the form √ d • U , where U is an isometry with respect a norm on C n (see [START_REF] Dupont | Exemples de lattès et domaines faiblement sphériques de C n[END_REF]). The dynamics of Lattès maps has been deeply studied in several papers (see [BL98, BL01, Din01, Dup03, BD05, GHK, Bie19]. In particular, in [GHK], the authors showed that the n-symmetric products of Lattès rational maps are higher dimensional Lattès maps.

Regarding eigenvalues at periodic points, it is open whether Conjecture A is true for Lattès maps, that is, whether every eigenvalue of a Lattès map along a periodic cycle is either superattracting or repelling? When n = 2, in [START_REF] Rong | Lattes maps on P 2[END_REF], Rong gave the classification of Lattès maps and they satisfy the assumption in [Jon98, Proposition 2.9]. This means that the critical set of a Lattès map does not have periodic irreducible component. In particular, every periodic cycles of a Lattès map of CP 2 is repelling. We shall see in Chapter 3 that we can conclude the case n = 2 for every post-critically algebraic maps. In general, it is also an open question that whether the complement of post-critical set of a Lattès map is Kobayashi hyperbolic, hence we can not apply [FS94, Theorem 6.1] to control the eigenvalues of a Lattès map at a periodic cycle outside the post-critical set. However, thanks to the semiconjugacy with an affine map, we can show that every eigenvalue of a Lattès map at a periodic point outside an algebraic set containing the ramification locus of ϕ is repelling. For the convenience of the readers, we also recall the proof that Lattès maps are post-critically algebraic.

Proposition 1.3.18. Let f : CP n → CP n be a Lattès map of degree d ≥ 2. Then f is post-critically algebraic. Moreover, there exists an algebraic set V of codimension one containing P C(f ) such that every eigenvalue of f at a periodic point outside V is repelling.

Proof. Let ϕ : T n → CP n be a ramified covering and A : T n → T n be an affine map, whose linear part is

√ d • U with U is an isometry, such that ϕ • A = f • ϕ. (1.3.1)
Denote by V ϕ the set of critical values of ϕ. Since ϕ is ramified covering which is not a covering, the critical value set V ϕ is non-empty. Hence, V ϕ is an algebraic set of codimension one of CP n . Observe that

V f ∪ f (V ϕ ) ⊂ V ϕ .
Indeed, assume x ∈ CP n and y ∈ ϕ -1 (x). Deriving both sides of (1.3.1) at y, we have

D A(y) ϕ • ( √ d • U ) = D x f • D y ϕ since the linear part of A is √ d • U . Note that rank( √ d • U ) = n. Hence, rank D A(y) ϕ = rank (D x f • D y ϕ) . If x ∈ C f , i.e. rank D x f < n, then rank D A(y) ϕ < n. This means that A(y) is a critical point of ϕ. In particular, ϕ • A(y) ∈ V ϕ . Thus, f • ϕ(y) = ϕ • A(y) ∈ V ϕ . Hence, f (x) ∈ V ϕ and V f = f (C f ) ⊂ V ϕ . If x ∈ V ϕ , then we can choose a point y ∈ ϕ -1 (x) such that rank D y ϕ < n. Hence, rank D A(y) ϕ = rank (D x f • D y ϕ) < n. Similarly, we deduce that f (x) ∈ V ϕ , i.e. f (V ϕ ) ⊂ V ϕ .
Therefore, we deduce that

V f ∪ f (V ϕ ) ⊂ V ϕ . Consequently, f (V f ) ⊂ f (V ϕ ) ⊂ V ϕ .
Inductively, we deduce that, for every j ≥ 0, f

•j (V f ) ⊂ V ϕ . Hence P C(f ) = j≥0 f •j (V f ) ⊂ V ϕ .
Since V ϕ is an algebraic set of codimension one, f is post-critically algebraic.

We shall now show that each eigenvalue of f at a periodic point outside V ϕ is repelling. Since f •j is also a Lattès map for every j ≥ 1, it is enough to consider eigenvalues at fixed points. Assume z is a fixed point of f and let λ be an eigenvalue of D z f . Then (1.3.1) implies that A(ϕ -1 (z)) ⊂ ϕ -1 (z). Since ϕ has finite order, there exist a point w ∈ ϕ -1 (z) and an integer p ≥ 1 such that A •p (w) = w. Deriving the equality ϕ

• A •p = f •p • ϕ at w, we have D w ϕ • ( √ d • U ) p = D z f •p • D w ϕ If z / ∈ V ϕ , D w ϕ is invertible. Hence, ( √ d • U ) p and D z f •p are conjugate. Consequently, λ p is an eigenvalue of ( √ d • U ) p . Since U is unitary, |λ p | = d p 2 , i.e. λ = √ d p > 1. Hence, λ is repelling. Example 1.3.19. [Generalized Chebyshev polynomials] 3 Set p 2 : C 2 → C 2 , p 2 (t 1 , t 2 ) = (t 2 1 , t 2 2 ) 
and ψ :

(C * ) 2 → (C * ) 2 , (x, y) = ψ(t 1 , t 2 ) = t 1 + t 2 + 1 t 1 t 2 , 1 t 1 + 1 t 2 + t 1 t 2 .
The polynomial map P :

C 2 → C 2 , P (x, y) = (x 4 -4x 2 y + 2y 2 + 4x, y 4 -4xy 2 + 2x 2 + 4y)
is called a generalized Chebyshev polynomial. The polynomial P satisfies the following relation

ψ • p 2 = P • ψ, (1.3.2)
i.e. it makes the following diagram commuting.

(C * ) 2 p 2 / / ψ (C * ) 2 ψ C 2 P / / C 2
The generalization of Chebyshev polynomials to higher dimension was considered in [Ves87, Ves91, Wit88, HW88]. Roughly speaking, given two integers k and n, a generalized Chebyshev polynomial is a polynomial map

P k : C n → C n of C n such that P k (Φ(x)) = Φ(kx)
, where Φ is a map from some complex Lie group to C n . In some cases, like the map P above, the map P k is a post-critically algebraic regular polynomial. Dynamics of the map P have been studied in [START_REF] Uchimura | Generalized chebyshev maps of C 2 and their perturbations[END_REF]. The analogue map defined on C 3 is studied in [START_REF] Uchimura | Holomorphic endomorphisms of P 3 (C) related to a lie algebra of type A 3 and catastrophe theory[END_REF]. We refer to [START_REF] Douglas | Folding polynomials and their dynamics[END_REF] for an exposition of the construction.

The critical set of P has two irreducible components, {xy -1 = 0} and {x 2 y 2 -2x 3 -2y 3 + 4xy -1 = 0}. They are all mapped onto a singular curve V = {x 2 y 2 -4x 3 -4y 3 + 18xy -27 = 0}, which is invariant by P . Thus, P is post-critically algebraic and the post-critical set of P has a unique irreducible singular component V . Moreover,

ψ : (C * ) 2 \ ψ -1 (V ) → C 2 \ V is a covering of order 6 (see [Uch09, p.997]).
We now show that every periodic cycle of P which is outside its post-critical set V is repelling. Let us first consider a fixed point z / ∈ V of P . The equality (1.3.2) implies that p 2 (ψ -1 (z)) ⊂ ψ -1 (z). Since ψ : (C * ) 2 \ V → C 2 \ V is a covering of order 6, ψ -1 (z) is a finite set of cardinality 6, and hence p •6 2 fixes every point in ψ -1 (z). Consequently, we can choose w ∈ ψ -1 (z) such that p •6 2 (w) = (w), ψ(w) = z and ψ is an isomorphism in a neighborhood of w. Differentiating both sides of the equality ψ

• p •6 2 = P •6 • ψ at w, we have D w ψ • D w p •6 2 = D z P •6 • D w ψ. Thus, D w p •6
2 and D z P •6 are conjugate. Let λ be an eigenvalue of D z P . Then λ 6 is an eigenvalue of D z P •6 . Therefore, λ 6 is an eigenvalue of D w p •6 . Note that w does not belong the post-critical set of p 2 . Thus, according to Example 1.3.11, λ 6 is repelling, hence so is λ. If z / ∈ V is a periodic point of period p of P , then z is a fixed point of P •p . Since P •p is semiconjugate to p •p 2 via ψ, by similar arguments as the above, every eigenvalue of D z P •p is repelling.

Chapter 2

Eigenvalues at fixed points of Koch maps

A family of post-critically algebraic endomorphisms

In Chapter 1, we saw that one can produce examples of post-critically algebraic endomorphisms of CP n with n ≥ 2 by using products of post-critically finite rational maps or by using semiconjugacy. In [START_REF] Koch | Teichmüller theory and critically finite endomorphisms[END_REF], Sarah Koch introduced a systematic way to produce post-critically algebraic endomorphisms of CP n , n ≥ 2. In this chapter, we study the eigenvalues of the following class of such post-critically algebraic maps at their fixed points. We refer to [START_REF] Koch | Teichmüller theory and critically finite endomorphisms[END_REF] for the general definitions and construction.

Definition 2.1.1. Let (k, m) ∈ N × N * be such that k + m -1 ≥ 2. The map G k,m : C k+m-1 → C k+m-1
is defined as,

• if k = 0, G 0,m : C m-1 → C m-1 is of the form G 0,m :      x 1 x 2 . . . x m-1      →      -x 2 m-1 x 2 1 -x 2 m-1 . . . x 2 m-2 -x 2 m-1      . • if k = 0, G k,m : C k+m-1 → C k+m-1 is of the form G k,m :      x 1 x 2 . . . x k+m-1      →       -x k+m-1 +x k-1 2 2 x 1 -x k+m-1 +x k-1 2 2 
. . . In this chapter, we will study the eigenvalues of G k,m for (k, m) ∈ N×N * , k+m-1 ≥ 2 at its fixed point. We will check Conjecture A for this cases, i.e. we will show that each eigenvalue of G k,m at a fixed point either 0 or has modulus strictly bigger than 1. More precisely, we will show the following result. (k ,m ). To study more easily these objects, we introduce a partial order on N × N * , a dynamically equivalent family of maps, that we denote by

x k+m-2 -x k+m-1 +x k-1 2 2       . Given two integers (k, m) ∈ N × N * such that k + m -1 ≥ 2, it
{F k,m : M k,m → M k,m , (k, m) ∈ N × N * },
where M k,m is a subspace of the vector spaces of complex sequences C N * . We shall use these objects to show in Theorem A' a complete characterization of the eigenvalues of G k,m at its fixed points. The rest of this chapter is devoted to the constructions of F k,m and the proof of Theorem A. Assume (k, m) ∈ N × N * . Denote by E = C N * the vector space of complex sequences x = (x i ) i≥1 . Set 0 = (0, 0, . . .). Let L ⊂ E be the one-dimensional subspace consisting of constant sequences and H k,m ⊂ E be the hyperspace defined by

An alternative construction

H k,m := {x ∈ E | x k + x k+m = 0} with the convention x 0 := 0. Lemma 2.2.1. For every (k, m) ∈ N × N * , we have E = H k,m ⊕ L.
Proof. On one hand, given x ∈ E, define y ∈ E by

y i := x i -κ with κ = x m if k = 0 x k +x k+m 2 if k ≥ 1 . Then y k + y k+m = 0 hence y ∈ H k,m . Note that x -y ∈ L hence E = H k,m + L.
On the other hand, assume x ∈ H k,m ∩ L. Then x k+m + x k = 0 and x k+m = x k , whence x k = x k+m = 0. Since x is a constant sequence, it vanishes identically, that is

H k,m ∩ L = {0}. Denote by π k,m : E → E the projection to H k,m parallel to L. Consider the map Q : E → E defined by Q(x) = y with y 1 := 0 and y i = x 2 i-1 , i ≥ 1. Definition 2.2.2. Given (k, m) ∈ N × N * , the moduli map of type (k,m) is the map F k,m := π k,m • Q : E → E. Characterizations of F k,m
Lemma 2.2.3. Given (k, m) ∈ N × N * , for every x, y ∈ E, we have

F k,m (x) = y ⇔ y k+m + y k = 0 y i = x 2 i-1 + y 1 for all i ≥ 2.
In particular,

y 1 = -x 2 m-1 if k = 0, - x 2 k-1 +x 2 k+m-1 2 if k ≥ 1. Proof. Assume x ∈ E and y = π k,m (Q(x)) = F k,m (x) 
. On the one hand, y ∈ π k,m (E) = H k,m , i.e. y k + y k+m = 0. On the other hand, set z = Q(x), i.e. z 1 = 0 and z i = x 2 i-1 for all i ≥ 1. Then for all i ≥ 1,

y i = z i -κ with κ := z m if k = 0 z k +z k+m 2 if k ≥ 1 .
In particular,

y 1 = z 1 -κ = -κ = -x 2 m-1 if k = 0, - x 2 k-1 +x 2 k+m-1 2 if k ≥ 1.
whence for all i ≥ 2, y i = z i + y 1 , i.e. y i = x 2 i-1 + y 1 . Conversely, assume x, y ∈ E such that y k + y k+m = 0 and for all i ≥ 2, y i = x 2 i-1 + y 1 . In particular, y ∈ H k,m . Set z = y -Q(x). Then for all i ≥ 2,

z i = y i -x 2 i-1 = y 1 hence z ∈ L. In other words, y = π k,m (Q(x)) = F k,m (x).
Although F k,m is defined on a vector space of infinite dimension, we will now see that the dynamics of F k,m is captured entirely by some finite dimensional vector space. Given (k, m) ∈ N × N * , let P k,m ⊂ E be the subspace of preperiodic sequences of preperiod at most k to a cycle of period dividing m, i.e.

P k,m := {x ∈ E | x i+m = x i for i ≥ k + 1}.
Since sequences in P k,m are uniquely determined by the first k + m entries, the vector space P k,m has finite dimension k + m. Definition 2.2.4. Given (k, m) ∈ N × N * , the space M k,m := P k,m ∩ H k,m is called the moduli space of type (k, m).

Note that the constant sequence (1, 1, . . .) is in P k,m \ H k,m and that H k,m has codimension one in E. Hence, M k,m is a vector space of dimension k + m -1. The following two lemmas show the importance of M k,m . Lemma 2.2.5. We have

F k,m (M k,m ) = M k,m and F k,m : M k,m → M k,m is a nondegen- erate homogeneous map of degree 2. Proof. Let us first prove that Q(M k,m ) ⊆ P k,m . Assume x ∈ M k,m . Since x ∈ P k,m ∩H k,m ,
x has preperiod k and period dividing m and x k+m = -x m . In particular, x 2 k+m = x 2 m . Consequently, setting y := Q(x),

y k+1 = x 2 k + y 1 = x 2 k+m + y 1 = y k+m+1 y i = x 2 i-1 + y 1 = x 2 m+i-1 + y 1 = y i+m for all i ≥ k + 2. Thus Q(x) ∈ P k,m Since π k,m (P k,m ) ⊂ P k,m , we deduce that F k,m (M k,m ) ⊂ P k,m . Since F k,m (E) ⊂ H k,m , F k,m (M k,m ) ⊂ P k,m ∩ H k,m = M k,m .
Clearly, the map Q is homogeneous of degree 2 and the map π k,m is homogeneous of degree 1, thus F k,m is homogeneous of degree 2.

Let us now prove that F k,m is nondegenerate. Assume x ∈ M k,m and

π k,m • Q(x) = F k,m (x) = 0.
Then y := Q(x) ∈ Ker(π k,m ) = L. By definition of Q, y 1 = 0. Since y ∈ L, y is a constant sequence thus y = 0. This implies that x i = 0 for all i ≥ 1, i.e. x = 0. Since M k,m has finite dimension and F k,m : M k,m → M k,m is homogeneous and nondegenerate, it is surjective. Lemma 2.2.6. We have that n≥1

F •n k,m (E) = M k,m .
Proof. According to the previous lemma,

F k,m (M k,m ) = M k,m . In addition, F k,m (E) ⊂ H k,m . Since M k,m = H k,m ∩ P k,m , it is enough to prove that n≥1 F •n k,m (E) ⊂ P k,m .
This follows from the following claim: for all n ≥ 1, if x ∈ F •n k,m (E), then x i+m = x i for all i ∈ {k + 1, . . . , k + n -1}.

Let us prove this claim by induction. If n = 1, the claim is empty, so there is nothing to prove. Assume it holds for some n ≥ 1. Assume y ∈ F

•(n+1) k,m (E), i.e. y = F k,m (x) with x ∈ F •n k,m (E).
The induction hypothesis implies that for all i ∈ {k+2, . . . , k+n}, x i+m-1 = x i-1 , so that y i+m = y i . In addition, since x ∈ H k,m , x k+m = x k , so that y k+m+1 = y k+1 . Thus the claim is true for n + 1.

2.2.2

The main result about F k,m Lemma 2.2.5 and Lemma 2.2.6 allow us to restrict our study to the dynamics of F k,m on M k,m . With a slight abuse of notations, from now on, we shall denote by F k,m the restriction of F k,m : E → E to M k,m . The following result sums up the properties of F k,m : M K,m → M k,m which are important for us.

Theorem A'. Given (k, m) ∈ N × N * , let z ∈ M k,m be a fixed point of the map F k,m : M k,m → M k,m .
Let k be the preperiod of the sequence z and m be its period. Then, 1. the polynomial P (t) = t 2 + z 1 ∈ C[t] is post-critically finite and z = (P •j (0)) j≥1 ; in particular, the critical value z 1 of P is preperiodic of preperiod k to a cycle of period m of multiplier λ, 2. there exists a partial order on N × N * such that (k , m ) (k, m) if and only if

M k ,m ⊆ M k,m is a F k,m -invariant subspace and the restriction of F k,m to M k ,m is F k ,m , 3. if k + m -1 ≥ 2, F k,m : M k,m → M k,m and G k,m : C k+m-1 → C k+m-1 are conjugate, 4. Spec D z F k ,m ⊂ C \ D, 5. If (k, m) = (k , m ), Spec (D z F k,m ) * | (M k ,m ) 0 = {0} if k = 0 {µ | µ m = λ m m , µ m = λ} if k = 0 . where M 0 k ,m = {ω ∈ M * k,m | ω| M k ,m ≡ 0} is the annihilator of M k ,m in M k,m
In particular, we shall see that Theorem A is a direct consequence of Theorem A'. The rest of this chapter is devoted to the proof of Theorem A'. Item 1 is proved in Proposition 2.4.4. The partial order will be introduced in Definition 2.2.8 and item 2 will be proved in Proposition 2.2.9. Item 3 is proved in Proposition 2.2.7. Item 4 is due to Koch, and we recall its proof in Proposition 2.4.8 for the sake of completeness. Our main contribution is the proof of item 5 which will be proved in Proposition 2.4.10. Finally, we prove Theorem A by using the results above.

F

k,m is conjugate to G k,m
The following lemma assures that the class of maps F k,m for (k, m) ∈ N × N * is a good alternative when one wants to study G k,m . Recall that when k = 0, m ≥ 3, we have

G 0,m :      x 1 x 2 . . . x m-1      →      -x 2 m-1 x 1 -x 2 m-1 . . . x 2 m-2 -x 2 m-1      . and when k ≥ 1, m ≥ 2, we have G k,m :     
x 1 x 2 . . .

x k+m-1      →         -x k+m-1 +x k-1 2 2 x 1 -x k+m-1 +x k-1 2 2 
. . .

x k+m-2 -x k+m-1 +x k-1 2 2         . Proposition 2.2.7. Let (k, m) ∈ N × N * be such that k + m -1 ≥ 2, the maps F k,m and G k,m are holomorphically conjugate.
Proof. When k = 0, let τ 0 : M 0,m → C m-1 be the linear map defined by

τ 0 (x) = (x 1 , . . . , x m-1 )
Observe that τ 0 is an isomorphism. In fact, since it is a linear map of two vector spaces of the same dimension, it is enough to prove that τ 0 is injective. Assume x ∈ M 0,m and τ 0 (x) = 0. In particular, x ∈ M 0,m implies that x m = 0, and τ 0 (x) = 0 implies that x 1 = . . . = x m-1 = 0. For every i ≥ m + 1, there exists i ∈ {1, . . . , m} such that i ≡ i mod m. Since x ∈ M 0,m , x i = x i = 0. In other words, x i = 0 for every i ≥ 1, whence τ 0 is an isomorphism.

We have

τ 0 • F 0,m = G 0,m • τ 0 .
In fact, assume x ∈ M 0,m and y = F 0,m (x). According to Lemma 2.2.3, for every i ≥ 2

y i = x 2 i-1 + y 1 with y 1 = -x 2 m-1 . Hence τ 0 • F 0,m (x) = (y 1 , . . . , y m-1 ) = (-x 2 m-1 , x 2 1 -x 2 m-1 , . . . , x 2 m-2 -x 2 m-1 ). Since G 0,m • τ 0 (x) = G 0,,m (x 1 , . . . , x m-1 ) = (-x 2 m-1 , x 2 1 -x 2 m-1 , . . . , x 2 m-2 -x 2 m-1 ),
we have τ 0 • F 0,m = G 0,m • τ 0,m . This proves the statement when k = 0.

When k ≥ 1, let τ : M k,m → C k+m-1 be the linear map defined by

τ (x) = (x 2 -x 1 , x 3 -x 1 , . . . , x k+m-1 -x 1 , x k+m -x 1 ).
Observe that τ is an isomorphism. Indeed, since it is clearly a linear map of two vector spaces of the same dimension, it is enough to prove that τ is injective. Assume x ∈ M k,m and τ (x) = (0, . . . , 0). Then x 1 = x 2 = . . . = x k+m-1 = x k+m . Since x k+m + x k = 0, we deduce that x k = x k+m = -x k , and hence x k = 0. Whence, x i = 0 for all i ∈ {1, . . . , k +m}. And since x i+m = x i for all i ≥ k +1, we have x i = 0 for all i ≥ k +m+1.

Then, to conclude, it is enough to show that

τ • F k,m = G k,m • τ. Assume x ∈ M k,m . First, we compute τ • F k,m (x). Set y = F k,m (x).
According to Lemma 2.2.3, we have for all i ≥ 2, y i = x 2 i-1 + y 1 . In addition, τ (y) = (y 2 -y 1 , y 3y 1 , . . . , y k+m -y 1 ). Hence

τ • F k,m (x) = τ (y) = (x 2 1 , x 2 2 , . . . , x 2 k+m-1 ). (2.2.1)
Second, we compute G k,m • τ (x). Set (w 1 , . . . , w k+m-1 ) = τ (x). Then, for all i ∈ {1, . . . , k + m -1}, w i = x i+1 -x 1 , or equivalently,

w i + x 1 = x i+1 . Since x ∈ M k,m with k ≥ 1, x k + x k+m = 0. Hence - w k+m-1 + w k-1 2 = - 1 2 (x k+m -x 1 + x k -x 1 ) = x 1 and G k,m • τ (x) = G k,m      w 1 w 2 . . . w k+m-1      =       -w k+m-1 +w k-1 2 2 w 1 -w k+m-1 +w k-1 2 2
. . .

w k+m-2 -w k+m-1 +w k-1 2 2       =      x 2 1 x 2 2
. . .

x 2 k+m-1      .
Combining with (2.2.1), we have

G k,m • τ (x) = (x 2 1 , x 2 2 , . . . , x 2 k+m-1 ) = τ • F k,m (x).

Comparing moduli maps

Our initial expectation was that for arbitrary pairs (k 1 , m 1 ) and (k 2 , m 2 ) in N × N * , the maps F k 1 ,m 1 and F k 2 ,m 2 would agree on the intersection M k 1 ,m 1 ∩ M k 2 ,m 2 . However this is not true as shown in the following example. Consider the sequence

x := {2, 0, 0, . . . , 0, . . .}

Then x ∈ M 2,1 ∩ M 3,1 and Q(x) = {0, 4, 0, 0, 0, 0, 0, . . .} However,

F 2,1 (x) = {-2, 2, -2, -2, - 2 
, -2, . . .} and F 3,1 (x) = {0, 4, 0, 0, 0, 0, 0, . . .}.

We will now see that if some order (k , m The strict order ≺ is defined by

) (k, m) is satisfied, then M k ,m ⊆ M k,m and F k ,m is the restriction of F k,m to M k ,m .
(k , m ) ≺ (k, m) ⇔ (k , m ) (k, m) and (k , m ) = (k, m).
Proposition 2.2.9. For two pairs of integers (k, m), (k , m ) ∈ N × N * , we have that

(k , m ) (k, m) ⇔ M k ,m ⊆ M k,m , F k,m | M k ,m = F k ,m .
Proof. Let us first assume that (k , m ) (k, m) and prove that M k ,m ⊆ M k,m . Assume x ∈ M k ,m . Then x is preperiodic of period less than k to a cycle of period dividing m . Since k ≤ k and m | m, we deduce that x ∈ P k,m . We need to show that x k + x k+m = 0. Indeed,

• if k = k, since m | m, x k+m + x k = x k +m + x k = 0. • if k = 0; in that case m | k; since x ∈ M 0,m , we have that x k+m = x k = 0.
Let us now assume that M k ,m ⊆ M k,m . We claim that (k , m ) (k, m). Indeed,

• either k = 0; in this case, consider x ∈ M 0,m given by x i = 0 if m | i and 1 otherwise. If x k+m + x k = 0 then necessarily, x k+m = x k = 0 thus m divides k and m.

• or k ≥ 1; in this case, consider x ∈ M k ,m given by x k = -1, x k +jm = 1 for j ≥ 1 and x i = 2 otherwise. If x k+m + x k = 0 then x k = -1 and x k+m = 1. Hence k = k and m | m.

Under the assumption that (k , m ) (k, m), let us prove that

F k,m | M k ,m = F k ,m . Assume x ∈ M k ,m . Set y = F k ,m (x) and z := F k,m (x). According to Lemma 2.2.3, for all i ≥ 2, y i = x 2 i-1 + y 1 , z i = x 2 i-1 + z 1 where y 1 = -x 2 m -1 if k = 0 - x 2 k -1 +x 2 k +m -1 2 if k ≥ 1 and z 1 = -x 2 m-1 if k = 0 - x 2 k-1 +x 2 k+m-1 2 if k ≥ 1.
It is enough to prove that y 1 = z 1 .

• Case k = 0. In that case, k and m are multiples of m . If k = 0 then y

1 = -x 2 m -1 = -x 2 m-1 = z 1 . If k = 0, x k+m-1 = x k-1 = x m -1 hence y 1 = -x 2 m -1 = - x 2 k-1 + x 2 k+m-1 2 = z 1 .
• Case k = 0. In that case, k = k and m is a multiple of m . Then

x k+m-1 = -x k +m -1 if m -1 = 0 and m -1 ≥ 1 x k +m -1 otherwise.
Then

y 1 = - x 2 k -1 + x 2 k +m -1 2 = - x 2 k-1 + x 2 k+m-1 2 = z 1 .

Dynamics of moduli maps on their post-critical sets

In the following, we fix a pair of integers (k, m) In [START_REF] Koch | Teichmüller theory and critically finite endomorphisms[END_REF], Koch proved that the maps G k,m is post-critically algebraic for every (k, m) ∈ N × N * . Since G k,m and F k,m are conjugate, the moduli maps F k,m are also post-critically algebraic. Since we need to understand better the dynamics of F k,m on its post-critical set, so we will reprove here that F k,m is post-critically algebraic.

∈ N × N * . Define C k,m := the critical set of F k,m : M k,m → M k,m V k,m := the critical value set of F k,m : M k,m → M k,m
Lemma 2.3.1. We have that C k,m = {x ∈ M k,m | x i = 0 for some 1 ≤ i ≤ k + m -1} Proof. Recall that F k,m = π k,m • Q.
Differentiating both sides, we see that for any x ∈ M k,m and for any v ∈ T x E = E,

D x F k,m (v) = π k,m • D x Q(v) = π k,m (0, 2x 1 v 1 , 2x 2 v 2 , . . .)
On the one hand, assume x ∈ C k,m . Then there exists v ∈ T x M k,m \ {0} such that x i v i = 0 for all i ≥ 1. Observe that there exists i ∈ {1, . . . , k + m -1} such that v i = 0 whence x i = 0. Indeed otherwise, v k+m = -v k = 0 and by preperiodicity, v i = 0 for all i ≥ 1.

On the other hand, given x ∈ E, define v ∈ E by

v j =      -1 if x j = 0 and j = k 1 if x j = 0 and j = k 0 if x j = 0 Then x j v j = 0 for all j ≥ 1 so that D x F k,m (v) = 0. Moreover, if x ∈ M k,m then v ∈ M k,m . Finally, if there exists i ∈ {1, . . . , k + m -1} such that x i = 0 then v = 0 whence x ∈ C k,m . Definition 2.3.2. Denote by ∆ k,m = {x ∈ M k,m | there exists 1 ≤ i < j ≤ k + m such that x i = x j } The set ∆ k,m consists of k+m 2 hyperplanes. Proposition 2.3.3. We have that V k,m ⊆ ∆ k,m and F k,m (∆ k,m ) ⊆ ∆ k,m . Consequently, P C k,m ⊆ ∆ k,m .
Proof. Let x ∈ C k,m and set y = F k,m (x). Then by Lemma 2.3.1, there exists i ∈ {1, . . . , k + m -1} such that x i = 0. By Lemma 2.2.3, we have

y i+1 = x 2 i + y 1 = y 1 Thus y ∈ ∆ k,m , whence V k,m ⊆ ∆ k,m
. Now we prove that ∆ k,m is invariant under F k,m . Assume x ∈ ∆ k,m and set y = F k,m (x). Then there exist 1 ≤ i < j ≤ k + m such that x i = x j . By Lemma 2.2.3, for every l ≥ 2, y l = x 2 l-1 + y 1 . Note that since x ∈ M k,m , x k + x k+m = 0 with the convention x 0 := 0.

• If j ≤ k + m -1, we have y i+1 = x 2 i + y 1 = x 2 j + y 1 = y j+1 . • If j = k + m, then -either i = k so that x k = x i = x j = x k+m ; since x k + x k+m = 0, x k = 0 whence x ∈ C k,m and y ∈ ∆ k,m ;
or i = k so that i + 1 = k + 1; since x k = -x k+m = -x i , we have

y i+1 = x 2 i + y 1 = x 2 k + y 1 = y k+1 .
Hence, in any case, we have y ∈ ∆ k,m , i.e. F k,m (∆ k,m ) ⊂ ∆ k,m and the lemma is proved.

Fixed points of moduli maps

In this section, we shall study the eigenvalues of the derivative of F k,m at its fixed points.

Relation with post-critically finite polynomials

There is a close connection between fixed points of moduli maps and post-critically finite quadratic polynomials. More precisely, we will consider monic centered quadratic polynomials,

P (t) = t 2 + c ∈ C[t], c ∈ C
The critical orbit of such a polynomial is the sequence c P ∈ E defined by

c P = (c i ) i≥1 ∈ E where c i = P •i (0).
Since the preperiod and the period of a preperiodic sequence will be extensively discussed in this chapter, we introduce the following notions.

Definition 2.4.1. Given integers k ≥ 0, m ≥ 1, a sequence x ∈ E is called preperiodic of type (k, m) if for every i ≥ k + 1, x i+m = x i , preperiodic of exact type (k, m) if,
additionally, k and m are the smallest integers satisfying such conditions.

For a sequence of exact type (k, m), the pair (k, m) consists of the preperiod k and the period m. The vector space P k,m is the space of preperiodic sequences of type (k, m). Definition 2.4.2. A polynomial of (exact) type (k, m) is a monic centered quadratic polynomial P whose critical orbit c P is of (exact) type (k, m).

In other words, a polynomial is of type (k, m) if and only if its critical orbit belongs to P k,m . Note that a polynomial of type (k, m) is post-critically finite.

Remark 2.4.3. Let P be a polynomial of type (k, m). If k = 0, then the critical value c of P is a periodic point of period dividing m, i.e. P •m (c) = c. In other words, P •(m-1) (c) ∈ P -1 (c). However, since P is a unicritical polynomial, P -1 (c) consists of exactly one point which is the critical point of P . This means that P •(m-1) (c) is in fact the critical point of P . This is the case if and only if the critical point of P is also a periodic point of type (0, m).

Proposition 2.4.4. Given (k, m) ∈ N × N * , assume z ∈ M k,m and set P (t) = t 2 + z 1 . Then F k,m (z) = z ⇔ z = c P P is of exact type (k , m ) (k, m).
Proof. Assume P is of exact type (k , m ) (k, m) and z = c P . We have to prove that

F k,m (z) = z. Since M k ,m ⊆ M k,m and F k,m | M k ,m = F k ,m , it is enough to prove that F k ,m (z) = z.
In other words, we only need to consider the case (k , m ) = (k, m). In that case, the critical orbit z = (P •i (0)) i≥1 of P is a preperiodic sequence of exact type (k, m). In particular,

z k+m+1 = z k+1 , z k+m = z k .
Note that for every i ≥ 2,

z i = P •i (0) = z 2 i-1 + z 1 .
According to Lemma 2.2.3, in order to prove that F k,m (z) = z, it is enough to prove z k + z k+m = 0.

• If k = 0, by Remark 2.4.3, the critical point 0 of P is periodic of period m, so that

z m = P •m (0) = 0 hence z 0 + z m = 0. • If k = 0, the fact that z k+m+1 = z k+1 implies that z 2 k+m + z 1 = z 2 k + z 1 whence (z k+m -z k )(z k+m + z k ) = 0.
Since z k+m = z k , it implies that z k+m + z k = 0.

In either cases, z k + z k+m = 0 whence F k,m (z) = z. Assume now F k,m (z) = z. First, let us prove that P is of type (k, m). According to Lemma 2.2.3, for every i ≥ 2, we have that z i = z 2 i-1 + z 1 hence

z i = P (z i-1 )
In other words, z is the sequence of iterates of z 1 under P . Recall that by Lemma 2.2.6, M k,m contains every fixed point of F k,m hence z ∈ M k,m ⊂ P k,m . Therefore, the polynomial P is a polynomial of type (k, m). Second, let (k , m ) be the exact type of P . We need to prove that (k , m ) (k, m), i. Therefore, P •k (0) = z k = 0. In other words, 0 is a periodic point of P , i.e. k = 0, and the period of 0 is m . Moreover, P •k (0) = 0 also implies that k is a multiple of m . Thus, we can conclude that (k , m ) (k, m).

The partial order enables us to study the relative positions of the fixed points of F k,m and ∆ k,m . Lemma 2.4.5. Let z be a fixed point of F k,m and let (k , m ) be the exact type of z.

Then, z ∈ ∆ k,m if and only if (k , m ) ≺ (k, m).
Proof. Assume z ∈ ∆ k,m , i.e. there exists 1 ≤ i < j ≤ k + m such that z i = z j . In particular, z is a preperiodic sequence of preperiod at most i -1 and of period dividing j -i. Whence, since (k , m ) is the exact type of z, we have k ≤ i -1 and m divides j -i.

• If i ≤ k then k ≤ i -1 < k. • If i ≥ k + 1 then j -i ≤ k + m -(k + 1) < m. Since m | j -i, we have m < m.
In both cases, we have (k , m ) = (k, m). Note that, according to Proposition 2.4.4, (k , m) (k, m). Hence (k , m ) ≺ (k, m). Conversely, assume (k , m ) ≺ (k, m). In particular, k ≤ k, m ≤ m and (k , m ) = (k, m). Note that z is of exact type (k , m ). Hence,

z k +1 = z k +m +1 . If k = k then k < k. Whence k + 1 and k + m + 1 are integers in {1, . . . , k + m}. If k = k then m < m.
In this case, k + 1, k + m + 1 are also in {1, . . . , k + m}. Therefore, in both cases, we deduce by that z ∈ ∆ k,m .

Eigenvalues of moduli maps at fixed points

In order to study the eigenvalues of the derivative of moduli maps at one of its fixed point, we will in fact study its transpose. Note that when k

+ m = 1, M k,m = {0} and F k,m is trivial. Let us fix (k, m) ∈ N×N * such that k +m ≥ 2. Assume z ∈ M k,m is a fixed point of F k,m . We will describe the transpose of the derivative D z F k,m : T z M k,m → T z M k,m . Since M k,m is a vector space, there is a canonical identification of T z M k,m with M k,m , the derivative D z F k,m : T z M k,m → T z M k,m identifies with a linear map L : M k,m → M k,m ,
and the transpose identifies with the pull-back map

L * : M * k,m → M * k,m .
The dual space M * k,m

For i ≥ 1, let ω i ∈ M * k,m be the linear form defined by for all v ∈ M k,m ,

ω i (v) := v i .
Lemma 2.4.6. The family {ω i ,

1 ≤ i ≤ k + m -1} is a basis of M * k,m . Proof. Note that dim M k,m = k +m-1 hence it is enough to prove that {ω 1 , . . . , ω k+m-1 } are linearly independent. Assume that 1≤i≤k+m-1 λ i ω i = 0 with λ i ∈ C.
Let i ≥ 1. To prove that λ i = 0, consider the vector v ∈ M k,m defined by

• if i < k, v j = 1 if j = i 0 otherwise, • if i = k, v j =        1 if j = i = k -1 if j > k and j ≡ k mod m 0 otherwise, • if i > k, v j = 1 if j ≥ i and j ≡ i mod m 0 otherwise.
In any case, we have

0 = 1≤i≤k+m-1 λ i ω i (v) = λ i v i = λ i .

The transpose of the derivative

Observe that the transpose

L * : M * k,m → M * k,m is the pull-back of forms, i.e. for all ω ∈ M * k,m , L * ω = ω • L.
For all i ≥ 1, set

δ i = 2z i where z = (z 1 , z 2 , . . .) ∈ M k,m is a fixed point of F k,m .
Lemma 2.4.7. We have that

L * ω 1 = -δ m-1 ω m-1 if k = 0 -δ k-1 ω k-1 +δ k+m-1 ω k+m-1 2 otherwise,
and for all i ≥ 2,

L * ω i = δ i-1 ω i-1 + L * ω 1 . Proof. Recall that for all v ∈ M k,m , L(v) = π k,m • D z Q(v). Set u = D z Q(v) then u 1 = 0 and for all i ≥ 2, u i = 2z i-1 v i-1 = δ i-1 v i-1 .
In addition, if w := π k,m (u) then for all i ≥ 2,

w i = u i + w 1 with w 1 = -u m if k = 0 -u k +u k+m 2 if k = 0.
Combining those formulas, we obtain that w = L(v) and for all i ≥ 2,

w i = δ i-1 v i-1 + w 1 with w 1 = -δ m-1 v m-1 if k = 0 -δ k-1 v k-1 +δ k+m-1 v k+m-1 2 otherwise.
(2.4.1)

We deduce that for all v ∈ M k,m ,

L * ω 1 (v) = ω 1 • L(v) = w 1 = -δ m-1 v m-1 if k = 0 -δ k-1 v k-1 +δ k+m-1 v k+m-1 2 otherwise, hence L * ω 1 = -δ m-1 ω m-1 if k = 0 -δ k-1 ω k-1 +δ k+m-1 ω k+m-1
In addition, for all i ≥ 2 and for all v ∈ M k,m , we have

L * ω i (v) = ω i • L(v) = δ i-1 v i-1 + ω 1 • L(v) hence L * ω i = δ i-1 ω i-1 + L * ω 1 .

Fixed points outside the post-critical set

According to Section 2.2.3, the map F k,m is conjugate to the map G k,m constructed by Koch [START_REF] Koch | Teichmüller theory and critically finite endomorphisms[END_REF]. By [Koc13, Corollary 7.2], the derivative of G k,m at its fixed points outside the post-critical set has only repelling eigenvalues, whence so does F k,m . For the sake of completeness, we give here the proof of this property. For further discussion about the arithmetics of such eigenvalues, we refer to [START_REF] Buff | Eigenvalues of the thurston operator[END_REF]. The main content of this paragraph is the following result. Proof. Since M k,m has finite dimension, it is suffice to prove that the transpose L * of D z F k,m has only repelling eigenvalues.

Recall that, by Lemma 2.4.6, the family {ω i : M k,m → C} i∈{1,...,k+m-1} is a basis of M * k,m . According to Lemma 2.4.7, setting δ i = 2z i , we have

L * ω 1 =    -δ m-1 ω m-1 if k = 0 - δ k-1 ω k-1 + δ k+m-1 ω k+m-1 2 if k ≥ 1,
and for all i ≥ 2,

L * ω i = δ i-1 ω i-1 + L * ω 1 .
Since z is a fixed point of F k,m of exact type (k, m), we have that for all i ∈ {1, . . . , k+ m -1}, δ i = 0. Indeed, note that according to Proposition 2.4.4, z is the critical orbit of P (t) = t 2 +z 1 . Assume that δ i = 0 for some i ∈ {1, . . . , k +m-1}. Then P •i (0) = z i = 0. This implies that k = 0 and m divides i. However i ≤ k+m-1 < m, hence contradiction.

We may therefore define a linear map

L * : M * k,m → M * k,m by ∀i ∈ {1, . . . , k + m -1} L * (ω i ) = ω i+1 -ω 1 δ i . (2.4.2)
Lemma 2.4.9. The linear map L * is invertible and its inverse is L * .

Proof. We need to prove that L * • L * = L * • L * = id. First, observe that for all i ∈ {1, . . . , k + m -1},

L * •L * (ω i ) = L * ω i+1 -ω 1 δ i = 1 δ i (L * (ω i+1 ) -L * (ω 1 )) = 1 δ i δ i ω i +L * (ω 1 )-L * (ω 1 ) = ω i .
Second, we prove

L * • L * = Id M * k,m .
Note that, by the definition of M k,m , we have that

ω k+m = 0 if k = 0 -ω k if k ≥ 1 and ∀i ≥ k + m + 1 ω i+m = ω i .
To compute L * • L * (ω 1 ), observe that if k = 0, then

L * • L * (ω 1 ) = L * (-δ m-1 ω m-1 ) = -δ m-1 L * (ω m-1 ) = -(ω m -ω 1 ) = ω 1 and if k ≥ 1, then L * • L * (ω 1 ) = L * - δ k-1 ω k-1 + δ k+m-1 ω k+m-1 2 = - 1 2 (ω k -ω 1 ) + (ω k+m -ω 1 ) = ω 1 .
In both cases,

L * • L * (ω 1 ) = ω 1 . For L * • L * (ω i ) with i ∈ {2, . . . , k + m -1}, L * • L * (ω i ) = L * δ i-1 ω i-1 + L * (ω 1 ) = δ i-1 ω i -ω 1 δ i-1 + L * L * (ω 1 ) = ω i .
Thus, the linear map L * : M * k,m → M * k,m is indeed the inverse of L * In order to prove Proposition 2.4.8, it is therefore enough to prove that every eigenvalue of

L * : M * k,m → M * k,m is contained in the open unit disc D.
Inspired by the proof of [Koc13, Corollary 7.2], we will show that L * is conjugate to a linear transformation on a space of meromorphic quadratic differentials on C, whose eigenvalues are all contained in D.

Consider the quadratic polynomial P (t) := t 2 + z 1 , so that z i = P •i (0) for all i ≥ 1. Following Milnor [START_REF] Milnor | Tsujii's monotonicity proof for real quadratic maps[END_REF], denote by Q(C) the space of meromorphic quadratic differentials on C which have at worst simple poles and let us use the notation

Q ∈ Q(C) with Q = q(t)dt 2 .
and q(t) is a meromorphic function. Let U ⊂ C be a sufficiently large disk so that P -1 (U ) is compactly contained in U and for Q ∈ Q(C), consider the norm

Q U := U q(t)dt 2 .
The pushforward of Q by P is the quadratic differential P * Q ∈ Q(C) defined by

P * Q := P (u)=t q(u) P (u) 2 dt 2 .
It follows from the triangle inequality that

P * Q U ≤ Q P -1 (U ) < Q U . For i ≥ 1, let Q i ∈ Q(C)
be the quadratic differential defined by

Q i := dt 2 t -z i . According to [Mil14, Lemma 1] ∀i ∈ {1, . . . , k + m -1} P * Q i = Q i+1 -Q 1 δ i . (2.4.3)
The quadratic differentials (Q i ) i∈ 1,k+m-1 span a vector space 

Q P ⊂ Q(C) of dimension k + m -1.
P → M k,m which sends Q i ∈ Q(C) to ω i ∈ M k,m is an isomorphism which conjugates P * : Q P → Q P to L * : M * k,m → M * k,m Since P * Q U < Q U for all Q ∈ Q P , the spectrum of P * : Q P → Q P is contained in the unit disk. It follows that the spectrum of L * : M * k,m → M * k,m
is contained in the unit disk as required.

Fixed points inside the post-critical set

We will now study the derivatives of moduli maps at fixed points which are inside the post-critical set. Let z ∈ P C k,m be a fixed point of F k,m and let (k , m ) be the exact type of z.

According to Lemma 2.4.5, (k , m ) ≺ (k, m) and, by Proposition 2.2.9, M k ,m M k,m

Proof. By duality, it is equivalent to show that

M 0,m = 1≤i≤k+m Ker α i .
Assume v ∈ M 0,m . Then for all j ≥ 1, v j = v j+m . Given i ∈ {1, . . . , k + m}, we have

α i (v) = ω i (v) -ω i+m (v) = v i -v i+m = 0. Hence M 0,m ⊆ 1≤i≤k+m Ker α i .
Conversely, assume v ∈ 1≤i≤k+m Ker α i , i.e. for all i ∈ {1, . . . , k + m}, v i = v i+m . In order to prove that v ∈ M 0,m , we will prove that for all j ≥ k + m + 1, v j = v j+m and that v m = 0. Given j ≥ k + m + 1, there exists an integer j ∈ {k + 1, . . . , k + m} such that j ≡ j mod m. Since v ∈ M k,m , we have v j = v j and v j+m = v j +m . Moreover, the fact that v ∈ Ker α j implies that v j = v j +m . Thus

v j = v j = v j +m = v j+m .
In order to conclude, we need to show that v m = 0. Note that the previous argument shows that v is a periodic sequence of period dividing m . Since m divides k and m,

v m = v k = v k+m . Since v ∈ M k,m , we have v k + v k+m = 0, whence v m = v k = v k+m = 0.
Lemma 2.4.12. We have L * α 1 = 0 and for i ≥ 2, L * α i = δ i-1 α i-1 .

Proof. According to Lemma 2.4.7, for all i ≥ 2,

L * ω i = δ i-1 ω i-1 + L * ω 1 . Hence, if i ≥ 2, L * α i = L * (ω i -ω i+m ) = δ i-1 ω i-1 -δ i+m -1 ω i+m -1 . Since z ∈ M 0,m , we have δ i-1 = 2z i-1 = 2z i+m -1 = δ i+m -1 . Hence L * α i-1 = δ i-1 (ω i-1 -ω i+m -1 ) = δ i-1 α i-1 . If i = 1, since m ≥ 1, we have 1 + m ≥ 2 so that L * ω 1+m = δ m ω m + L * ω 1 . Hence L * α 1 = L * (ω 1 -ω 1+m ) = -δ m ω m .
Since z ∈ M 0,m , we have z m = 0. Therefore, δ m = 2z m = 0 and L * α 1 = 0.

It follows from Lemma 2.4.11 and Lemma 2.4.12 that L * : M 0 0,m → M 0 0,m is nilpotent.

Proof of Proposition 2.4.10 when k = 0. In this case, since (k , m ) ≺ (k, m), we have

k = k and m = pm with p ≥ 2.
Let λ be the multiplier of P (t) = t 2 + z 1 at P •k (z 1 ). Note that, according to Proposition 2.4.4, z is the critical orbit of P . Since z is preperiodic of preperiod k > 0, the critical point 0 of P is preperiodic, i.e. λ = 0. We will show that

Spec(L * : M 0 k,m → M 0 k,m ) = {µ | µ m = λ p , µ m = λ}.
Given j ∈ Z/mZ, denote by j the representative of j in {k + 1, . . . , k + m}, define a linear form β j : M k,m → C by β j := ω j -ω j+m .

Note that for all j ∈ Z/mZ, β j : M k,m → C is non trivial. In fact, for any j ∈ Z/mZ, define u ∈ M k,m by

u i =        1 if i ≥ k + 1 and i ≡ j mod m -1 if i = k and j = k + m 0 otherwise.
Since m < m, β j (u) = u j = 1 = 0. We will show that these forms span M 0 k,m M k,m and use them to study the linear map L * : M 0 k,m → M 0 k,m . The properties we need are provided by the following lemmas.

Lemma 2.4.13. We have M 0 k,m = Span{β j , j ∈ Z/mZ}.

-2z k+m = -δ k+m . Moreover, ω k = -ω k+m , whence δ k ω k = δ k+m ω k+m . Thus

L * ω k+1 = δ k+m ω k+m + L * ω 1 .
If j = k + 1 then j -1 = j -1. According to Lemma 2.4.7, we have

L * ω j = δ j-1 ω j-1 + L * ω 1 = δ j-1 ω j-1 + L * ω 1 = σ j-1 ω j-1 + L * ω 1 .
In any case, we have the equality (2.4.5). Hence

L * β j = L * (ω j -ω j+m ) = σ j-1 ω j-1 -σ j+m -1 ω j+m -1 .
Note that j -1 and j + m -1, which are congruence modulo m , are two integers at least k + 1. Since z ∈ M k,m , we have

σ j-1 = δ j-1 = δ j+m -1 = σ j+m -1 . Thus L * β j = σ j-1 (ω j-1 -ω j+m -1 ) = σ j-1 β j-1 .
Recall that λ is the multiplier of P (t) = t 2 + z 1 at the periodic point z k+1 of period m = m p .

Lemma 2.4.15. For all j ∈ Z/mZ,

(L * ) m (β j ) = λβ j-m and (L * ) m (β j ) = λ p β j .
Proof. The second equality is the straightforward consequence of the first one. Hence, it is enough to prove the first equality. According to Proposition 2.4.4, z is the critical orbit of the polynomial P (t) = t 2 + z 1 , i.e. z i = P i (0). In particular, for any j ∈ Z/mZ, we have P (z j-1 ) = z j . Since z is of type (k, m ), the multiplier λ of the cycle of z j is

λ = i∈ 1,m P (z j-i ) = i∈ 1,m δ j-i = i∈ 1,m σ j-i .
Hence, by Lemma 2.4.14, we have

(L * ) m (β j ) =   i∈ 1,m σ j-i   β j-m = λβ j-m , and 
(L * ) m (β j ) = (L * ) m p (β j ) = λ p β j .
Let ν be a m -th root of λ. Set

T = L * ν : M 0 k,m → M 0 k,m .
We shall prove that T is diagonalizable with simple eigenvalues and the eigenvalues of T are m-th roots of unity except 1. According to Lemma 2.4.15, for all j ∈ Z/mZ, T m (β j ) = β j-m . In addition, n∈m Z/mZ

β n = n∈m Z/mZ (ω n -ω n+m ) = 0 = n∈m Z/mZ ω n - n∈m Z/mZ ω n+m = 0.
Recall that p = m m . Hence

β 0 + T m (β 0 ) + . . . + T m (p-1) (β 0 ) = 0
Applying m -1 times T and adding the results, we deduce that

β 0 + T (β 0 ) + T 2 (β 0 ) + . . . + T m p-1 (β 0 ) = 0
According to Lemma 2.4.13 and Lemma 2.4.14, the set {β 0 , L * (β 0 ), (L * ) 2 (β 0 ), . . .} generates M 0 k,m . Hence {β 0 , T (β 0 ), T 2 (β 0 ), . . .} also generates M 0 k,m . Therefore,

Id +T + T 2 + . . . + T m-1 = 0 (2.4.6)
This means that the minimal polynomial of T divides the polynomial 1 + X + X 2 + . . . + X m-1 . Consequently, T is diagonalizable and the eigenvalues of T are roots of unity which are not 1. We now show that T has only simple eigenvalues. Assume ζ ∈ Spec T . Let v ∈ M k,m be an eigenvector associated to ζ. Set

H ζ = 1 m Id + T ζ + . . . + T m-1 ζ m-1 .
The equality (2.4.6) implies that T m = Id. Additionally, ζ m = 1. Hence

H ζ • T ζ = H ζ so that H ζ • T j = ζ j H ζ ∀j ≥ 1.

Chapter 3

Eigenvalues along periodic cycles of post-critically algebraic endomorphisms

Statements of the main results

As we have seen in the previous chapters, in many cases, the eigenvalues of a postcritically algebraic endomorphism of CP n along a periodic cycle are either 0 or of modulus strictly bigger than 1. In this chapter, we shall focus on the following conjecture.

Conjecture A. Let f be a post-critically algebraic endomorphism of CP n and λ be an eigenvalue of f along a periodic cycle. Then either λ = 0 or |λ| > 1.

This conjecture was studied, without being stated explicitly in the form above, in:

• [FS94, Theorem 6.1] under the assumption that the complement of P C(f ) is Kobayashi hyperbolic and hyperbolically embedded,

• [Jon98, Proposition 2.9] in the case of dimension n = 2 and under the assumption that C f has no periodic component,

• [Ast20, Theorem B] under a mild geometric assumption on the irreducible components of P C(f ).

In this chapter, we improve the above results: we prove the conjecture when n = 2 without any additional hypothesis, and also in any dimension for z / ∈ P C(f ).

More precisely, let f : CP n → CP n be a post-critically algebraic endomorphism of CP n and let z be a periodic point of f . Since every iterate of f is also post-critically finite, by passing to an iterate, it is enough to assume that z is a fixed point of f . We have to deal with two main cases: the fixed point is either outside the post-critical set or inside the post-critical set.

When the fixed point is outside the post-critical set, we improve the method of [FS94, Theorem 6.1] to get rid of the Kobayashi hyperbolic assumption and exclude the possibility of eigenvalues of modulus 1. We obtain the following general result.

Theorem B. Let f be a post-critically algebraic endomorphism of CP n and λ be an eigenvalue of f along a periodic cycle outside the post-critical set. Then |λ| > 1.

When the fixed point is inside the post-critical set, we restrict our study to dimension n = 2. The second main result of this chapter is the proof of Conjecture A when n = 2 without any additional hypothesis.

Theorem C. Let f be a post-critically algebraic endomorphism of CP 2 and λ be an eigenvalue of f along a periodic cycle. Then either λ = 0 or |λ| > 1.

More precisely, let f be a post-critically algebraic endomorphism of CP 2 and let z be a periodic point of f . Thanks to Theorem B, we can assume that z is a fixed point of f in P C(f ). The derivative D z f has two eigenvalues λ 1 and λ 2 , counting multiplicities. We consider two subcases: either z is a regular point of P C(f ), or z is a singular point of P C(f ).

If the fixed point z is a regular point of P C(f ), the tangent space T z P C(f ) is invariant by D z f . Then D z f admits an eigenvalue λ 1 with associated eigenvectors in T z P C(f ). The other eigenvalue λ 2 arises as the eigenvalue of the linear endomorphism D z f : T z CP 2 /T z P C(f ) → T z CP 2 /T z P C(f ) induced by D z f . On one hand, we prove that the eigenvalue λ 1 has modulus strictly bigger than 1 by using the normalization of irreducible algebraic curves and Theorem 1, which is a classical theorem about the eigenvalue of post-critically finite rational map. On the other hand, we show that either λ 2 = 0 or |λ 2 | > 1 by following the same idea used to prove Theorem B, If the fixed point z is a singular point of P C(f ), in most of the cases, there exists a relation between λ 1 and λ 2 . Then by using Theorem 1, we deduce that for j = 1, 2, either λ j = 0 or |λ j | > 1. This was observed in [START_REF] Jonsson | Some properties of 2-critically finite holomorphic maps of P 2[END_REF]. For the sake of completeness, we will recall the detailed statements and include the proof. This allows us to conclude the proof of Conjecture A for post-critically algebraic endomorphisms of CP 2 .

The rest of this chapter is devoted to the proof of Theorem B and Theorem C. In Section 3.2, we will recall the results of Ueda and prove that when a fixed point is not a critical point then every eigenvalue has modulus at least 1. In Section 3.3, we will present the strategy and the proof of Theorem B. In Section 3.4, we will give the proof that for an eigenvalue λ of a post-critically algebraic map at a fixed point which is a regular point of the post-critical set and the associated eigenvectors are not tangent to the post-critical set, then λ is either zero or of modulus strictly bigger than 1. In Section 3.5, we will study the dynamics of post-critically algebraic endomorphisms of CP 2 and prove Theorem C.

Periodic cycles outside the critical set

In this section, we will prove that the eigenvalues of a post-critically algebraic endomorphism of CP n at a fixed point, which is not a critical point, have modulus at least or equal to 1. The proof relies on the existence of an open subset on which we can find a family of inverse branches and the fact that the family of inverse branches of endomorphisms of CP n is normal. These results are due to Ueda, [START_REF] Ueda | Critical orbits of holomorphic maps on projective spaces[END_REF].

Recall that endomorphisms f of CP n are finite branched covering ramifying over

f (C f ). If f is post-critically algebraic, for every j ≥ 1, f •j is ramified over P C(f ).
Let z / ∈ C f be a fixed point of f . Then f •j is locally invertible in a neighborhood of z. The following result which are due to Ueda ensures that we can find a common open neighborhood on which inverse branches of f •j fixing z are well-defined for every j ≥ 1. Lemma 3.2.1 ([Ued98], Lemma 3.8). Let X be a complex manifold and D be an analytic subset of X of codimension 1. For every point x ∈ X, if W is a simply connected open neighborhood of x such that (W, W ∩ D) is homeomorphic to a cone over (∂W, ∂W ∩ D) with vertex at x, then for every branched covering η : Y → W ramifying over D ∩ W , the set η -1 (x) consists of only one point. Proposition 3.2.2. Let f be a post-critically algebraic endomorphism of CP n of degree d ≥ 2 and let z / ∈ C f be a fixed point of f . Let W be a simply connected open neighborhood of z such that (W, W ∩ P C(f )) is homeomorphic to a cone over (∂W, ∂W ∩ P C(f )) with vertex at z. Then there exists a family of holomorphic inverse branches

h j : W → CP n of f •j fixing z, that is, h j (z) = z, f •j • h j = Id | W .
Note that for a fixed point z of a post-critically algebraic endomorphism f of CP n , since P C(f ) is an algebraic set, there always exists a simply connected neighborhood W of z such that (W, W ∩ P C(f )) is homeomorphic to a cone over (∂W, ∂W ∩ P C(f )) with vertex at z. Indeed, if z / ∈ P C(f ) then we can take any simply connected neighborhood W of z in CP n \ P C(f ). If z ∈ P C(f ) then it follows from [Sea19, Theorem 3.2] that such a neighborhood always exists. We refer to [START_REF] Milnor | Singular Points of Complex Hypersurfaces[END_REF] to an approach when z is an isolated singularity of P C(f ), see also [START_REF] Seade | On the topology of isolated singularities in analytic spaces[END_REF]Remark 2.3].

Proof of Proposition 3.2.2. For every j ≥ 1, denote by W j the connected component of f -j (W ) containing z. Since f •j are branched covering ramifying over P C(f ), f •j induces a branched covering

f j := f •j | W j : W j → W
ramifying over W ∩ P C(f ). By Lemma 3.2.1, we deduce that f -1 j (z) consists of only one point, which is in fact z. Since W is simply connected hence connected, the order of the branched covering f j coincides with the branching order of f •j at z. Note that z is not a critical point of f •j therefore the branching order of f •j at z is 1. This means that f j is branched covering of order one of complex manifolds, thus f j is homeomorphism hence biholomorphism (see [START_REF] Clifford | Introduction to holomorphic functions of several variables[END_REF]Corollary 11Q]). The holomorphic map h j : W → W j defined as the inverse of f j is the map we are looking for.

Once we obtain a family of inverse branches, the following theorem, which is due to Ueda, implies that this family is normal.

Theorem 3.2.3 ([Ued98],Theorem 2.1). Let f be an endomorphism of CP n . Let X be a complex manifold with a holomorphic map π : X → CP n . Let {h j : X → CP n } j be a family of holomorphic lifts of f •j by π, that is f •j • h j = π. Then {h j } j is a normal family.

Thus, for a fixed point z of a post-critically algebraic endomorphism f , if z is not a critical point (or equivalently, D z f is invertible), we can obtain an open neighborhood W of z in CP n and a normal family of holomorphic maps {h j : W → CP n } j such that

f •j • h j = Id W , h j (z) = z.
The normality of {h j } j implies that {D z h j } j is a uniformly bounded sequence (with respect to a fixed norm • on T z CP n ). Since D z h j = (D z f ) -j , we can deduce that every eigenvalue of D z f has modulus at least 1. Consequently, we can find a D z f -invariant decomposition of T z CP n as the following direct sum

T z CP n =   λ∈Spec Dzf,|λ|=1 E λ   ⊕   λ∈Spec Dzf,|λ|>1 E λ   = E n ⊕ E r
where E λ is the generalized eigenspace of the eigenvalue λ. We call E n the neutral eigenspace and E r the repelling eigenspace of D z f (see also 3.3.2). If E λ is not generated by eigenvectors (or equivalently, D z f | E λ is not diagonalizable), we can find at least two generalized eigenvectors e 1 , e 2 of D z f corresponding to λ such that

D z f (e 1 ) = λe 1 , D z f (e 2 ) = λe 2 + e 1 .
Then D z h j (e 2 ) = λ -j e 2 -jλ -(j+1) e 1 . If |λ| = 1, then D z h j (e 2 ) tends to ∞ as j tends to ∞. This contradicts the uniformly boundedness of {D z h j } j . Hence D z f | E λ is diagonalizable. Thus, we have proved the following result. Corollary 3.2.4. Let f be a post-critically algebraic endomorphism of CP n of degree d ≥ 2 and let λ be an eigenvalue of f at a fixed point z /

∈ C f . Then |λ| ≥ 1. Moreover, if |λ| = 1, D z f | E λ is diagonalizable.

Periodic cycles outside the post-critical set

In this section, we prove Theorem B.

Theorem B. Let f be a post-critically algebraic endomorphism of CP n and λ be an eigenvalue of f along a periodic cycle outside the post-critical set. Then |λ| > 1.

In fact, we will consider an equivalent statement and prove this equivalent statement.

Equivalent problem in the affine case.

Recall that for an endomorphism f : CP n → CP n of degree d, there exists a polynomial endomorphism F = (P 1 , . . . , P n+1 ) :

C n+1 → C n+1
where P i are homogeneous polynomials of the same degree d ≥ 1 and

F -1 (0) = {0} such that f • π = π • F
where π : C n+1 \ {0} → CP n is the canonical projection. The integer d is called the algebraic degree (or degree) of f . Such a map F is called a lift of f to C n+1 . Further details about holomorphic endomorphisms of CP n and their dynamics can be found in [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF], [START_REF] Clifford | Introduction to holomorphic functions of several variables[END_REF], [SSC + 10], [START_REF] Erik | Complex dynamics in higher dimension i[END_REF], [START_REF] Erik | Complex dynamics in higher dimension. ii. Modern methods in complex analysis[END_REF].

Lifts to C n+1 of an endomorphism of CP n belong to a class of non-degenerate homogeneous polynomial endomorphisms of C n+1 . More precisely, a non-degenerate homogeneous polynomial endomorphism of C n of algebraic degree d is a polynomial map F : C n → C n such that F (λz) = λ d z for every z ∈ C n , λ ∈ C and F -1 (0) = {0}. Conversely, such a map induces an endomorphism of CP n . This kind of maps has been studied extensively in [START_REF] John | Superattractive fixed points in C n[END_REF] 1 . If we consider C n+1 as a dense open set of CP n+1 by the inclusion

(ζ 0 , ζ 1 , . . . , ζ n ) → [ζ 0 : ζ 1 : . . . : ζ n : 1]
then F can be extended to an endomorphism of CP n+1 . Moreover, this extension fixes the hypersurface at infinity CP n+1 \ C n+1 ∼ = CP n and the restriction to this hypersurface is the endomorphism of CP n induced by F .

Thus, if f is a post-critically algebraic endomorphism of CP n , every lift F of f to C n+1 is the restriction of a post-critically algebraic endomorphism of CP n+1 to C n+1 . Postcritically algebraic non-degenerate homogeneous polynomial endomorphisms of C n+1 have similar properties, which are proved in Section 2, as post-critically algebraic endomorphisms of CP n . More precisely, we can sum up in the following proposition. Proposition 3.3.1. Let F be a post-critically algebraic non-degenerate homogeneous polynomial endomorphism of C n+1 of degree d ≥ 2 and let z / ∈ C F be a fixed point of F . Then, we have the following assertions. a. Let X be a complex manifold and let π : X → C n+1 be a holomorphic map. Then every family of holomorphic maps {h j : X → C n+1 } j , which satisfies that F •j •h j = π for every j ≥ 1, is normal.

b. There exist a simply connected open neighborhood W of z in C n+1 and a family {h j : W → C n+1 } j of inverse branches of iterates of F , i.e. F •j • h j = Id W , fixing z.

c. Every eigenvalue λ of Spec(D z F ) has modulus at least 1. The tangent space T z C n+1 admits a D z F -invariant decomposition T z C n+1 = E n ⊕E r where the neutral eigenspace E n is the sum of generalized eigenspaces corresponding to eigenvalues of modulus 1 and the repelling E r is the sum of generalized eigenspaces corresponding to eigenvalues of modulus strictly bigger than 1.

d. If |λ| = 1 then D z f | E λ is diagonalizable. Remark 3.3.2.
Regarding eigenvalues at fixed points, studying eigenvalues at fixed points of post-critically algebraic endomorphisms of CP n is equivalent to studying eigenvalues at fixed points of post-critically algebraic non-degenerate homogeneous polynomial selfmap of C n+1 . More precisely, let f : CP n → CP n be an endomorphism of degree d ≥ 2 and let F be a lift of f . Assume z is a fixed point of f . Then, the complex line L containing π -1 (z) is invariant under F and the map induced by F on L is conjugate to x → x d . In particular, there exists a fixed point w ∈ L \ {0} of F such that π(w) = z and D w F preserves T w L ⊂ T w C n+1 with an eigenvalue d. Then, D w F descends to a linear endomorphism of the quotient space T w C n+1 /T w (Cw) which is conjugate to The advantage of this observation is that we can make use of some nice properties of the affine space C n . More precisely, we will use the fact that the tangent bundle of C n is trivial

D z f : T z CP n → T z CP n .

Strategy of the proof of Theorem B

Recall that an eigenvalues λ of D z f :

T z C n → T z C n is called • superattracting if λ = 0, • attracting if 0 < |λ| < 1, • neutral if |λ| = 1,
parabolic or rational if λ is a root of unity, elliptic or irrational if λ is not a root of unity,

• repelling if |λ| > 1, (see Definition 1.2.3). By Remark 3.3.2, in order to prove Theorem B, it is enough to prove the following result. Proposition 3.3.1. Let f be a post-critically algebraic non-degenerate homogeneous polynomial endomorphism of C n of degree d ≥ 2. Let λ be an eigenvalue of f at a fixed point z / ∈ P C(f ). Then λ is repelling.

The strategy of the proof is as follows.

Step 1. Set X = C n \ P C(f ) and let π : X → X2 be its universal covering. We construct a holomorphic map g : X → X such that

f • π • g = π and g fixes a point [z] such that π([z]) = z.
Step 2. We prove that the family {g •m } m is normal. Then there exists a closed complex submanifold M of X passing through [z] such that g| M is an automorphism and dim M is the number of eigenvalues of D z f of modulus 1, i.e. neutral eigenvalues, counted with multiplicities. Due to Corollary 3.2.4, it is enough to prove that dim M = 0.

Step 3. In order to prove that dim M = 0, we proceed by contradiction. Assuming that dim M > 0. We then construct a holomorphic mapping Φ :

M → T [z] M such that Φ([z]) = 0, D [z] Φ = Id and Φ • g = D [z] g • Φ.
We deduce that D z f has no parabolic eigenvalue.

Step 4. Assume that λ is a neutral irrational eigenvalue and v is an associated eigenvector. We prove that the irreducible component Γ of Φ -1 (Cv) containing [z] is smooth and Φ| Γ maps Γ biholomorphically onto a disc D(0, R), 0 < R < +∞.

Step 5. Denote by κ : D(0, R) → M the inverse of Φ| Γ . We prove that π • κ has radial limits almost everywhere on ∂D(0, R) and these radial limits land on ∂X. We deduce from this a contradiction and Proposition 3.3.1 is proved.

Lifting the backward dynamics via the universal covering

Denote by X = C n \P C(f ) the complement of P C(f ) in C n . Since P C(f ) is an algebraic set, the set X is a connected open subset of C n then the universal covering of X is well defined. Denote by π : X → X the universal covering of X defined by

X = [γ] | γ is a path in X starting at z 0 and π [γ] = γ(1),
where [γ] denotes the homotopy class of γ in X, fixing the endpoints γ(0) and γ(1).

Denote by [z] the element in X representing the homotopy class of the constant path at z. We endow X with a complex structure such that π : X → X is a holomorphic covering map. Set Y = f -1 (X) ⊂ X and Y = π -1 (Y ) ⊂ X. Since f : Y → X is a covering map, every path γ in X starting at z 0 lifts to a path f * γ ⊂ Y starting at z 0 . In addition, if γ 1 and γ 2 are homotopic in X, then f * γ 1 and f * γ 2 are homotopic in Y ⊂ X, in particular in X. Thus, this pullback map f * induces a map g : X → X such that the following diagram commutes:

X π X g o o π X f / / X Note that g([z]) = [z].
In addition, g is holomorphic since in local charts given by π, it coincides with inverse branches of f .

Normality of maps on the universal covering

We will prove that the family {g •j } j is a normal family. For every integer j ≥ 1, define

k j = π • g •j so that f •j • k j = π.
Lemma 3.3.2. The family {k j : X → X} j is normal and any limit takes values in X.

Proof. By Proposition 3.3.1, the family {k j : X → C n } j is normal. Denote by Q : C n → C a polynomial such that P C(f ) is the zeros locus of Q. Consider the family

Q j = Q • k j : X → C.
The family {Q j } is a normal family of nonvanishing function. Then by Hurwitz's theorem, every limit map is either a nonvanishing function or a constant function. But Q j ([z]) = Q(z) = 0 hence every limit map is a nonvanishing function, i.e. every limit map of {k j } is valued in X. Thus {k j : X → X} is normal.

We can deduce the normality of {g •j } j . Proposition 3.3.3. The family {g •j } j is normal.

Proof. Let {g •js } s be a sequence of iterates of g. Extracting subsequences if necessary, we can assume that k js converges to a holomorphic map k : X → X.

Since X is simply connected and π : X → X is a holomorphic covering map, there exists a holomorphic map g 0 : X → X such that π • g 0 = k and g 0 ([z]) = [z]. Note that for every j ≥ 1, g •j ([z]) = [z], thus the sequence g •j ([z]) j converges to g 0 ([z]). According to [AC03, Theorem 4], the sequence g •js s converges locally uniformly to g 0 . This shows that g •j j is normal. Remark 3.3.4. The proof of Lemma 3.3.2 relies on the post-critically algebraic hypothesis. Without the post-critically algebraic assumption, for a fixed point z which is not accumulated by the critical set, we can still consider the connected component U of C n \ P C(f ) containing z and the construction follows. Then we will need some control on the geometry of U to prove that the family {g •j } is normal. For example, if U is a pseudoconvex open subset of C n or in general, if U is a taut manifold, then {g •j } j is normal.

Consequences of normality

The normality of the family of iterates of g implies many useful information. In particular, following Abate [Aba89, Corollary 2.1.30-2.1.31], we derive the existence of a center manifold of g on X.

Theorem 3.3.5. Let X be a connected complex manifold and let g be an endomorphism of X. Assume that g has a fixed point z. If the family of iterates of g is normal, then 1. Every eigenvalue of D z g is contained in the closed unit disc.

2. The tangent space T z X admits a D z g-invariant decomposition T z X = E n ⊕ E a such that D z g| En has only neutral eigenvalues and D z g| Ea has only attracting or superattracting eigenvalues.

3. The linear map D z g| En is diagonalizable. 4. There exists a limit map ρ of iterates of g such that ρ • ρ = ρ 5. The set of fixed points of ρ, which is ρ(X), is a closed submanifold of X. Set M = ρ(X).

6. The submanifold M is invariant by g. In fact, g| M is an automorphism.

7. The submanifold M contains z and T z M = E n .

Applying this theorem to X and g : X → X fixing [z], we deduce that D [z] g has only eigenvalues of modulus at most 1 and T [z] X admits a D [z] g-invariant decomposition as

T [z] X = E n ⊕ E a . Differentiating both sides of f • π • g = π at [z], we have D z f • D [z] π • D [z] g = D [z] π. Hence λ is a neutral eigenvalue of D z f if and only if λ -1 is a neutral eigenvalue of D [z] g. Consequently, D [z] π maps E n to the neutral eigenspace E n of D z f , E a onto the repelling eigenspace E r of D z f (see Proposition 3.3.1).
We also obtain a closed center manifold M of g at [z], i.e. if λ is a neutral eigenvalue of D [z] g of eigenvector v, then v ∈ T [z] M . So in order to prove Theorem 3.3.1, it is enough to prove that dim M = 0. The first remarkable property of M is that π(M ) is a bounded set in C n . Proposition 3.3.6. The image π(M ) is bounded.

Proof. For every [γ] ∈ X, note that {π(g •j ([γ]))} j is in fact a sequence of backward iterations of γ(1) by f and the ω-limit set of backward images of C n by f is bounded. More precisely, since f is a homogeneous polynomial endomorphism of C n of degree d ≥ 2, the origin 0 is superattracting and the basin of attraction B is bounded with the boundary is ∂B = H -1 f (0) where

H f (w) = lim j→∞ 1 d j log f •j (w) for w ∈ C n \ {0}.
The function H f is called the potential function of f (see [START_REF] John | Superattractive fixed points in C n[END_REF]). It is straight forward by computation that H f (π(m)) = 0 for every m ∈ M . Hence π(M ) ⊂ ∂B is bounded.

Semiconjugacy on the center manifold

Assume that dim M > 0. Denote by Λ the restriction of D [z] g on T [z] M . The following proposition assures that we can semiconjugate g| M to Λ.

Proposition 3.3.7. Let M be a complex manifold and let g be an endomorphism of M such that the family of iterates of g is normal. Assume that g has a fixed point z such that D z g is diagonalizable with only neutral eigenvalues and that there exists a holomorphic map ϕ : M → T z M such that ϕ(z) = 0, D z ϕ = Id. Then there exists a holomorphic map Φ : M → T z M such that Φ(z) = 0, D z Φ = Id and 

D z g • Φ = Φ • g. Proof. Consider the family {(D z g) -n • ϕ • g •n : M → T [z] M } n , we know that {g •n } n is normal, thus {ϕ • g •j } j is
{(D z g) -n • ϕ • g •n } n . Φ N = 1 N N -1 n=0 (D z g) -n • ϕ • g •n .
The family {Φ N } N is also locally uniforly bounded, thus normal. Observe that

Φ N • g = 1 N N -1 n=0 (D z g) -n • ϕ • g •(n+1) = D z gΦ N + D z g - 1 N ϕ + 1 N (D z g) -(N +1) • ϕ • g •(N +1) .
For every subsequence {N k }, the second term on the right hand side converges locally uniformly to 0. So for every limit map Φ of {Φ N } N , Φ satisfies that

Φ • g = D z g • Φ.
Since g fixes z we have that for every N ≥ 1,

D z Φ N = 1 N N -1 n=0 (D z g) -n • D z ϕ • D z g •n = Id .
So D z Φ = Id for every limit map Φ of {Φ N } N . Now we consider the complex manifold M obtained in Step 3.3.5 and the restriction of g on M which is an automorphism with a fixed point [z]. Since Λ has only neutral eigenvalues, in order to apply Proposition 3.3.7, we need to construct a holomorphic map ϕ : M → T [z] M such that D [z] ϕ = Id . The map ϕ is constructed as the following composition:

M i - → X π - → X δ - → T z X (D [z] π) -1 -----→ T [z] X π Ea --→ T [z] M.
where δ : X → T z X is a holomorphic map tangent to identity, π Ea : T [z] X → T [z] M is the projection parallel to E a , i : M → X is the canonical inclusion and its derivative

D [z] i : T [z] M → T [z] X is again the canonical inclusion. Then D [z] ϕ : T [z] M → T [z] M is D [z] ϕ = D [z] (π Ea • (D [z] π) -1 • δ • π • i) = π Ea • (D [z] π) -1 • D z δ • D [z] π • D [z] i = Id .
Remark 3.3.8. The existence of a holomorphic map δ : X → T z X tangent to identity is one of the advantages we mentioned in Remark 3.3.2. It comes from the intrinsic nature of the tangent space of affine spaces. In this case, X is an open subset of C n which is an affine space directed by C n . Corollary 3.3.9. Let z be a fixed point of a non-degenerate homogeneous polynomial post-critically algebraic endomorphism f of C n . Assume that z / ∈ P C(f ). If λ is a neutral eigenvalue of D z f then λ is an irrational eigenvalue.

Proof. It is equivalent to consider a neutral eigenvalue λ of D [z] g and assume that λ = e 2πi p q . Hence (D [z] g) q fixes pointwise the line Cv in T [z] M . This means that locally near [z], g •q fixes Φ -1 (Cv) hence f •q fixes π(Φ -1 (Cv)) near z. Note that Φ is locally invertible near [z] hence Φ -1 (Cv) is a complex manifold of dimension one near [z]. Then π(Φ -1 (Cv)) is a complex manifold near z because π is locally biholomorphic. In particular, π(Φ -1 (Cv)) contains uncountably many fixed points of f •q . This is a contradiction because f •q has only finitely many fixed points (see [SSC + 10, Proposition 1.3]). Hence λ is an irrational eigenvalue.

Linearization along the neutral direction

We obtained a holomorphic map Φ : 

M → T [z] M, Φ([z]) = 0, D [z] Φ = Id and Φ • g| M = Λ • Φ (3.
D g(x) Φ • D x g| M = Λ • D x Φ.
We deduce that g(C Φ ) = C Φ . Moreover, g(Σ) = Σ. Thus g(Sing Σ) = Sing Σ and hence g(Γ 0 ) = Γ 0 .

Note that Γ 0 ⊂ Reg Γ is smooth since Sing Γ ⊂ Γ∩Sing Σ and in fact Γ 0 is a Riemann surface. In particular, [z] ∈ Γ 0 .

We will prove that Γ 0 is biholomorphic to a disc and Φ| Γ 0 is conjugate to an irrational rotation. Then we can deduce from that Γ = Γ 0 and Φ Γ conjugates g| Γ to an irrational rotation. Let us first recall an important theorem in the theory of dynamics in one complex dimension. Theorem 3.3.11 (see [START_REF] Milnor | Dynamics in One Complex Variable[END_REF]Theorem 5.2]). Let S be a hyperbolic Riemann surface and let g : S → S be a holomorphic map with a fixed point z. If z is an irrational fixed point with multiplier λ then S is biholomorphic to the unit disc and g is conjugate to the irrational rotation ζ → λζ. Proof. Consider θ such that τ θ exists and τ θ / ∈ P C(f ), i.e. τ θ ∈ X. Note that

Lemma 3.3.12. The Riemann surface Γ 0 is hyperbolic, Φ(Γ 0 ) = D(0, R) with R ∈ (0, +∞) and Φ| Γ 0 : Γ 0 → D(0, R) is a biholomorphism conjugating g| Γ 0 to the irrational rotation ζ → λζ, i.e. Φ • g| Γ 0 = λ • Φ| Γ 0 . Proof. Recall that π(M ) is bounded in C n .
γ R : [0, 1] → X
where γ R (t) = τ (tRe iθ ), γ R (1) = τ θ is a well-defined path in X starting at z hence it defines an element in X. Moreover, in X, the family of paths

{[γ r ]} 0≤r≤R γ r : [0, 1] → X where γ r (t) = τ (tre iθ ) converges to [γ R ] as r → R -. A quick observation is that in X, we have [γ r ] = κ(re iθ ) ⊂ M for every r ∈ [0, 1). Since M is a closed submanifold of X, then [γ R ] ∈ M or in fact [γ R ] ∈ Γ. Recall that Φ : Γ → D(0, R) is a biholomorphic mapping hence re iθ = Φ([γ r ]) r→R - ---→ Φ([γ R ]) ∈ D(0, R).
But re iθ r→R ----→ Re iθ / ∈ D(0, R) which yields a contradiction. Thus τ θ ∈ P C(f ). Now, denote by Q a defining polynomial of P C(f ) then

Q • τ : D(0, R) → C has vanishing radial limit lim r→R -Q • τ (re iθ ) for almost every θ ∈ [0, 2π). Then, Q • τ vanishes identically on D(0, R) (see [Mil11, Theorem A.3]). In particular, Q • τ (0) = Q(z) = 0 hence z ∈ P C(F ).
It is a contradiction and our proof of Proposition 3.3.15 and Theorem 3.3.1 is complete.

Periodic cycles in the regular locus: the transversal eigenvalue

Now we consider a fixed point z of a post-critically algebraic endomorphism f of CP n which is a regular point of P C(f ). Then T z P C(f ) is well-defined and it is a D z f -invariant subspace of T z CP n . On one hand, it is natural to expect that our method of the previous case can be extended to prove that D z f | TzP C(f ) has only repelling eigenvalues (it cannot have superattracting eigenvalues, see Remark 3.4.5 below). Unfortunately, there are some difficulties due to the existence of singularities of codimension higher than 1 that we cannot overcome easily. On the other hand, we are able to adapt our method to prove that the transversal eigenvalue with respect to T z P C(f ), i.e. the eigenvalue of D z f : T z CP n /T z P C(f ) → T z CP n /T z P C(f ), is repelling. More precisely, we will prove the following result. 

f : T z C n /T z P C(f ) → T z C n /T z P C(f ) is either repelling or superattracting.
Since P C(f ) has codimension one, D z f has exactly one eigenvalue and we denote it by λ. The value λ is also an eigenvalue of D z f . The proof of Proposition 3.4.2 will occupy the rest of this section.

Strategy of the proof

Denote by X = C n \ P C(f ).

Step 1. We first prove that if λ = 0 then |λ| ≥ 1 and z is not a critical point. Then we prove that |λ| = 1 will lead to a contradiction. By assuming |λ| = 1, following from the discussion in Section 3.2, there exists an eigenvector v of D z f corresponding to λ such that v / ∈ T z P C(f ).

Our goal is to build a holomorphic map τ : D(0, R) * → X such that τ (0) = z, τ (0) = v and τ has radial limit almost everywhere and these radial limits land on P C(f ) whenever they exist. The construction of τ occupies Step 2 to Step 6 and the contradiction will be deduced in Step 7.

Step 2. We construct a connected complex manifold X of dimension n with two holomorphic maps π : X → X, g : X → X such that

f • π • g = π.
Step 3. We prove that {g •j } j is a normal family. Then we extract a subsequence {g •j k } k converging to a retraction ρ : X → X, i.e. ρ • ρ = ρ.

Step 4. We will study M = ρ( X). More precisely, we will prove that M is closely related to a limit manifold of inverse branches of f at z.

Step 5. We construct a holomorphic map Φ : M → E n which semi-conjugates g to the restriction of (D z f ) -1 to the neutral eigenspace E n (see Proposition 3.3.1.c).

Step 6. We prove that there exists an irreducible component Γ of Φ -1 (Cv) which is smooth and biholomorphic to the punctured disc. More precisely, we prove that Φ(Γ) = D(0, R) * with R ∈ (0, +∞) and the map τ := π • (Φ| Γ ) -1 extends to a holomorphic map from D(0, R) to C n so that τ (0) = z, τ (0) = v.

Step 7. We prove that the map τ has radial limit almost everywhere and the limit belong to P C(f ) if it exists. It implies that π • τ ⊂ P C(f ) which yields a contradiction to the fact that v / ∈ T z P C(f ). This means that the assumption |λ| = 1 is false thus Proposition 3.4.2 is proved.

Existence of the transversal eigenvector

Let us recall the following result due to Grauert.

Proposition 3.4.3 ([GR58], Satz 10). Let U, V be open neighborhood of 0 in C n and let f : U → V be a holomorphic branched covering of order k ramifying over V f = {ζ n = 0} ∩ V . Then there exists a biholomorphism Φ : U → W such that the following diagram commutes W

(ζ 1 ,...,ζn) →(ζ 1 ,...,ζ n-1 ,ζ k n ) U f / / Φ > > V
In particular, the branched locus

B f = Φ -1 ({ζ n = 0} ∩ W ) is smooth and f | B f : B f → V f is a biholomorphism.
This is in fact a local statement and we can apply it to a post-critically algebraic non-degenerate homogeneous polynomial endomorphism of C n to obtain the following result. 

v of D z f such that v / ∈ T z P C(f ). Indeed, note that Spec(D z f ) = Spec(D z f | TzP C(f ) ) ∪ Spec(D z f )
where Spec(D z f ) has only one eigenvalue λ of modulus one. Then the repelling eigenspace E r is included in T z P C(f ). The diagonalizability of D z f | En implies that E n is generated by a basis of eigenvectors. The vector v is such an eigenvector which is not in T z P C(f ).

(X, z)-homotopy and related constructions

Denote by X = C n \ P C(f ).

Construction of X

We construct a complex manifold X, a covering map π : X → X and a holomorphic map g :

X → X such that f • π • g = π.
Denote by Ξ = {γ : [0, 1] → C n continuous map such that γ(0) = z, γ((0, 1]) ⊂ X} the space of paths starting at z and varying in X. Let γ 0 , γ 1 ∈ Ξ. We say that γ 0 and γ 1 are (X, z)-homotopic if there exists a continuous map H : Denote by γ 0 ∼ X γ 1 if γ 0 and γ 1 are (X, z)-homotopic. In other words, γ 0 and γ 1 are homotopic by a homotopy of paths {γ t , t ∈ [0, 1]} such that γ t ∈ Ξ for every t. It is easy to see that (X, z)-homotopy is an equivalence relation on Ξ. Denote by X the quotient space of Ξ by this relation and by [γ] the equivalent class of γ ∈ Ξ. Denote by

[0, 1] × [0, 1] → C n such that H(0, s) = z, H(1, s) = γ 0 (1) = γ 1 (1), H(t, 0) = γ 0 (t), H(t, 1) = γ 1 (t), H(t, s) ⊂ X ∀t = 0.
π : X → X, π([γ]) = γ(1)
the projection. We endow X with a topology constructed in the same way as the topology of a universal covering. More precisely, let B be the collection of simply connected open subsets of X. Note that B is a basis for the usual topology of X. We consider the topology on X which is defined by a basis of open subsets {U

[γ] } U ∈B,[γ]∈X where γ(1) ∈ U and U [γ] = {[γ * α]|α is a path in U starting at γ(1)}.
We can transport the complex structure of X to X and this will make X a complex The two previous lemmas allow us to define a map g : X → X as follow

g([γ]) = [f * γ]. Then f • π • g = π.
The connectedness of X.

The connectedness of X is not obvious from the construction. We will introduce a notion of regular neighborhood which is not only useful in proving X is connected but also very important later. 1. (W, W ∩ P C(f )) is homeomorphic to a cone over (∂W, ∂W ∩ P C(f )) with a vertex at z.

For every path γ

0 , γ 1 ∈ Ξ such that γ 0 ([0, 1]), γ 1 ([0, 1]) ⊂ W and γ 0 (1) = γ 1 (1). Then γ 0 ∼ X γ 1 . Let W be an open subset of C n containing z. Set W = {[γ]|γ ∈ Ξ, γ((0, 1]) ⊂ W }. Lemma 3.4.9. If W is a regular neighborhood of z, then π : W → W \ P C(f ) is a biholomorphism.
Proof. We can observe that W is open. Indeed, for an element

[γ] in W , let U be an open set in W \ P C(f ) containing γ(1), then U [γ] ⊂ W . The projection π| W : W → W \ P C(f ) is surjective since W \ P C(f ) is path-connected. So we have to prove that π : W → W \ P C(f ) is injective. Indeed, let z be a point in W \ P C(f ) and let [γ 0 ], [γ 1 ] be two elements in W such that π([γ 0 ]) = π([γ 1 ]) = z, i.e. γ 0 (1) = γ 1 (1). Since W is regular, we have γ 0 ∼ X γ 1 or [γ 0 ] = [γ 1 ]. So π| W is injective hence biholomorphic.
In particular, W is path-connected. If γ : [0, 1] → X is a path in Ξ then the path γ s : [0, 1] → C n defined by γ s (t) = γ(t(1 -s)) also belongs to Ξ and γ s ([0, 1]) = γ([0, 1 -s]). It follows that every element in X can be joined by paths to an element in W thus X is path-connected hence connected. Now we will prove that we can indeed find a regular neighborhood when z is a regular point of P C(f ). Let (ζ 1 , . . . , ζ n ) be a local coordinates vanishing at z in which P C(f ) is given by {ζ 1 = 0}. Let U be the unit polydisk centered at z. Proposition 3.4.10. Any polydisc centered at z in U is a regular neighborhood.

Proof. Let γ 0 and γ 1 be two elements of Ξ such that γ 0 ([0, 1]), γ 1 ([0, 1]) ∈ U and γ 0 (1) = γ 1 (1). Consider the loop η = γ 0 * (-γ 1 ) and the continuous map H : [0, 1] × [0, 1] → C n defined by H(t, s) = s • η(t).

The loop η bounds H([0, 1] × [0, 1] \ {(0, 0)}) ⊂ X, which implies that γ 0 ∼ X γ 1 .

Remark 3.4.11. The construction above also implies that z admits a basis of neighborhoods consisting of regular neighborhoods.

Dynamics of g on regular neighborhoods.

Let W be a regular neighborhood of z and σ : W \ P C(f ) → W be the inverse of π| W . Note that if W is constructed as above, then by Proposition 3.3.1.b, there exists a family of holomorphic maps h j : W → C n , j ≥ 1 such that h j (z) = z, f •j • h j = Id W .

thus dim M = dim H(U ).

In other words, M X := π(M ) ∪ H(U ) is a submanifold of C n in a neighborhood of z. Moreover, following Proposition 3.3.6, we can deduce that π(M ) is a bounded set in C n .

Semiconjugacy on the center manifold

Denote by Λ = (D z f | En ) -1 . We will construct a holomorphic Φ : M → E n such that

Φ • g| M = Λ • Φ.
The construction follows the idea in Section 3.3.6 and the connection established in Step 3 between g and inverse branches of f at z. Lemma 3.4.17. There exists a holomorphic map Φ : M → E n such that Φ • g = Λ • Φ.

Proof. We consider a holomorphic map ϕ : M → E n constructed as the following composition

M → X π - → C n δ - → T z C n π Er --→ E n
where δ : C n → T z C n is a holomorphic map such that δ(z) = 0, D z δ = Id, π Er : T z C n → E n is a projection on E n parallel to E r . Note that since π(M ) is bounded, ϕ(M ) is also a bounded set in E n . We consider the family

Λ -j • ϕ • g •j : M → E n , j ≥ 0.
Since Λ is diagonalizable with only neutral eigenvalues, this family is uniformly bounded hence so is the family of its Cesàro averages

{Φ N = 1 N N -1 j=0 Λ -j • ϕ • g •j } N .
Therefore, {Φ N } N is normal and every limit map Φ of {Φ N } N satisfies that Φ • g = Λ • g.

Note that Φ(M ) is also a bounded set in E n .

Let us fix such a limit map Φ = lim k→∞ Φ N k . We will prove that Φ restricted to U ∩ M is a biholomorphism. In order to do so, we consider the following holomorphic function

Φ 1 := Φ • σ| H(U ) : H(U \ P C(f )) → C n .
Since H(U \ P C(f )) ⊂ π(M ) is a bounded set in C n , the map Φ 1 is bounded hence we can extend it to a holomorphic function on H(U ). By an abuse of notations, we denote the extension by Φ 1 . We will prove that Φ 1 is invertible in a neighborhood of z in H(U ).

More precisely, on H(U ) \ P C(f ), we have

Φ 1 = lim k→∞ 1 N k N k -1 j=0 Λ -j • ϕ • g •j • σ| h(U )\P C(f )
Consider the map ϕ 1 : π(M ) ∪ H(U ) → E n , ϕ 1 = π Er • δ| M X . Then ϕ 1 (z) = 0, D z ϕ 1 = Id and ϕ = ϕ 1 | π(M ) • π. It follows that

Φ 1 = lim k→∞ 1 N k N k -1 j=0 Λ -j • ϕ 1 | π(M ) • π • g •j • σ| H(U )\P C(f ) = lim k→∞ 1 N k N k -1 j=0 Λ -j • ϕ 1 | π(M ) • h j | H(U )\P C(f )
Note that D z h j | H(U ) = Λ j , then we can deduce that Φ 1 (z) = 0 and D z Φ 1 = Id. Therefore, there exists a regular neighborhood V of z in W such that Φ 1 is biholomorphic on V ∩ H(U ). Consequently, since σ is a biholomorphism, the neighborhood V induces an open neighborhood V = σ(V \ P C(f )) in W such that Φ is biholomorphic on V ∩ M. By shrinking U , we can assume that V = U hence Φ| U ∩M is a biholomorphism. If the periodic cycle is not in P C(f ), then λ = 0 and the result follows from Theorem B. Therefore, without loss of generality, we may assume that z is a fixed point of f in P C(f ). Note that if λ is an eigenvalue of f at a fixed point z, then λ j is an eigenvalue of f •j at the fixed point z. If we can prove that λ j is either superattracting or repelling, so is λ. Thus, in order to prove Theorem C, we can always consider f up to some iterates if necessary.

After passing to an iterate, we may assume that the fixed point belongs to an invariant irreducible component Γ of P C(f ). The reason why we have to restrict to dimension n = 2 is that, in this case, Γ is an algebraic curve. There is a normalization n : Γ → Γ where Γ is a smooth compact Riemann surface and n is a biholomorphism outside a finite set (see [START_REF] Reid | Basic Algebraic Geometry 1[END_REF], [START_REF] Clifford | Introduction to holomorphic functions of several variables[END_REF] or [START_REF] Mikhailovich | Complex analytic sets[END_REF]). And there is a holomorphic endomorphism f : Γ → Γ such that n • f = f • n.

In section 3.5.1, we analyse the dynamics of f : Γ → Γ and in particular, we show that when f is post-critically algebraic, then f is post-critically finite. In Section 3.5.2, we complete the proof in the case where the fixed point belongs to the regular part of P C(f ) and in Section 3.5.3, we complete the proof in the case where the fixed point belongs to the singular part of P C(f ).

Dynamics on an invariant curve

Assume that f : CP 2 → CP 2 is an endomorphism of degree d ≥ 2 (not necessarily postcritically algebraic) and Γ ⊂ CP 2 is an irreducible algebraic curve such that f (Γ) = Γ. Let n : Γ → Γ be a normalization of Γ and f : Γ → Γ be an endomorphism such that n • f = f • n.

According to [FS94, Theorem 7.4], the endomorphism f : Γ → Γ has degree d ≥ 2. It follows from the Riemann-Hurwitz Formula that the compact Riemann surface Γ has genus 0 or 1. In addition, if the genus is 1, then f has no critical point and all fixed points of f are repelling with common repelling eigenvalue λ satisfying |λ| = √ d . If the genus is 0, then the following lemma implies that the postcritical set of f and f are closely related. of singular points of Γ, the point n -1 (z) is a fixed point of f and n will conjugate D z f | TzΓ and D n -1 (z) f . Denote by λ the eigenvalue of D z f | TzΓ . Then λ is also the eigenvalue of D n -1 (z) f . The previous discussion allows us to conclude that either λ = 0 or |λ| > 1. Thus we can deduce the following result. 

Periodic cycles in the singular locus of the post-critical set

When the fixed point z is a singular point of P C(f ), by passing to some iterates of f , we can assume that f induces a holomorphic germ at z which fixes a singular germ of curve at z which is induced by some irreducible components of P C(f ). On the one hand, from the local point of view, there exists (in most of cases) a relation between two eigenvalues of D z f as a holomorphic germ fixing a singular germ of curve. On the other hand, from the global point of view, these eigenvalues can be identified with the eigenvalue the germ at a fixed point of the lifts of f via the normalization of P C(f ). Then by Proposition 3.5.2, we can conclude Theorem C.

Holomorphic germ of (C 2 , 0) fixing a singular germ of curve Let (Σ, 0) be an irreducible germ of curve at 0 in (C 2 , 0) defined by a holomorphic germ g : (C 2 , 0) → (C, 0). In local coordinates (x, y) of C 2 , if g(0, y) ≡ 0, i.e. g does not identically vanish on {x = 0}, it is well known that there exists an injective holomorphic germ γ : (C, 0) → (C 2 , 0) of the form γ(t) = (t m , αt n + O(t n+1 ))

parameterizing Σ, i.e. γ((C, 0)) = (Σ, 0) (see [Wal04, Theorem 2.2.6]). If Σ is singular, after a change of coordinates, α can be 1 and m and n satisfy that 1 < m < n, m |n. The germ γ is called a Puiseux parametrization. In fact, if Σ is a germ induced by an algebraic curve Γ in CP 2 , then γ coincides with the germ induced by the normalization morphism. When Σ is singular, the integers m and n are called the first two Puiseux characteristics of Γ and they are invariants of the equisingularity class of Γ. In particular, m and n do not depend the choice of local coordinates. We refer to [START_REF] Terence | Singular points of plane curves[END_REF] for further discussion about Puiseux characteristics. We refer also to [START_REF] Zariski | Le problème des modules pour les branches planes: cours donné au Centre de Mathématiques de l' École Polytechnique[END_REF] and references therein for discussion about equisingular invariants. Now, consider a proper4 holomorphic germ g : (C 2 , 0) → (C 2 , 0) and a singular germ of curve (Σ, 0). If Σ is invariant by g, i.e. g(Σ) = Σ, g acts as a permutation on irreducible branches of Σ. Then by passing to some iterates of g, we assume that there exists an invariant branch. The following propositions show that there exists a relation between two eigenvalues of D 0 g.

When g has an invariant singular branch, the following result was observed by Jonsson, [START_REF] Jonsson | Some properties of 2-critically finite holomorphic maps of P 2[END_REF]. Then the eigenvalues of D 0 g are λ m and λ n .

Proof. The germ g has an expansion of the form g(x, y) = ax + by + h 1 (x, y), cx + dy + h 2 (x, y) g(Σ 1 ) = Σ 2 , we have t m (a + h 3 (t m , αt n + O(t n+1 ))) = 0 hence a = 0. Then the linear part of D 0 g is (0, cx + dy) hence 0 and d are the eigenvalues of D 0 g where d is the eigenvalue of the restriction of D 0 g to T 0 Σ 2 .

And finally, if g has two invariant smooth branches which are tangent, we have the following result (see also [START_REF] Jonsson | Some properties of 2-critically finite holomorphic maps of P 2[END_REF]). Proposition 3.5.6. Let g : (C 2 , 0) → (C 2 , 0) be a proper holomorphic germ and let Σ 1 , Σ 2 be irreducible invariant germs of smooth curves at 0. If Σ 1 and Σ 2 intersect tangentially, i.e. Σ 1 = Σ 2 and T 0 Σ 1 = T 0 Σ 2 then there exists a positive integer m such that the eigenvalues of D 0 g are λ and λ m where λ is the eigenvalue of D 0 g| T 0 Σ 1 .

Proof. Since Σ 1 is smooth, we can choose a local coordinates (x, y) such that Σ 1 = {y = 0}. The defining function of Σ 2 can not identically vanish on {x = 0} since otherwise, Σ 2 and Σ 1 would not tangent. Then Σ 2 has a parametrization of the form γ(t) = (t, t m + O(t m+1 )).

Since Σ 1 = {y = 0} is invariant, g has an expansion in the coordinates (x, y) of the form: Using these observations, we can conclude the proof of Theorem C.

Proof of Theorem C -final. Let f be a post-critically algebraic endomorphism of CP 2 and let z be a fixed point such that z is a singular point of P C(f ). We will look at the germ (P C(f ), z) induced by P C(f ) at z and prove Theorem C depending on how f acts on irreducible branches of (P C(f ), z). Passing to an iterate of f if necessary, we assume that there exists a branch Σ of (P C(f ), z) such that f (Σ) = Σ. Denote by Γ the irreducible component of P C(f ) inducing Σ. Then Γ is also invariant by f . Denote by n : Γ → Γ the normalization of Γ and by f the lifting of f by the normalization n : Γ → Γ.

  uniformly on compact sets of M , i.e. locally uniformly. Definition 1.1.4. A subset F ⊂ Hol(M, N ) is called a normal family if every sequence of elements of F contains a subsequence converging locally uniformly.One of the most important characterizations of normal families is Montel's theorem, whose proof can be found for instance in [Gun90, Volume I, Theorem F.3].

2 xd | λ- 2 λd

 22 with d ≥ 2 and (1 -2λ) d = 1. This class generalizes the class of post-critically finite rational maps {λ x-= 1}. Moreover, for every permutation of coordinates

  follows from[START_REF] Koch | Teichmüller theory and critically finite endomorphisms[END_REF] Theorem 5.17] and[START_REF] Koch | Teichmüller theory and critically finite endomorphisms[END_REF] Theorem 5.18] that G k,m induces a post-critically algebraic endomorphism of CP k+m-2 of degree 2. In addition, according to [Koc13, Corollary 7.2], every periodic cycles of G k,m which is outside the post-critical set is repelling. This means that if z is a periodic point of G k,m outside the post-critical set, then every eigenvalue of G k,m along the orbit of z is repelling. The question of what is the possible values of the eigenvalues of G k,m along a periodic cycle inside the post-critical set is left open.

  Theorem A. Let (k, m) ∈ N × N * be such that k + m -1 ≥ 2 and µ be an eigenvalue of G k,m at a fixed point. Then either µ = 0 or |µ| > 1. Let z be a fixed point of G k,m . When z / ∈ P C(G k,m ), this was done by [Koc13, Corollary 7.2]. In general, it turns out that there is a relation between the eigenvalues of D z G k,m and the polynomial P (t) = t 2 + z 1 ∈ C[t]. This relation depends on the relative position of z and P C(G k,m ) and on how G k,m and G k ,m are related for different pairs (k, m),

2. 2 . 1

 21 Construction of F k,m and M k,m

Definition 2 . 2 . 8 .

 228 Let be the partial order on N × N * defined by (k , m ) (k, m) ⇔ m divides m, either k = k or (k = 0 and m divides k).

  and P C k,m := the post-critical set of F k,m : M k,m → M k,m . We shall now study the dynamics of F k,m on P C k,m . If k + m = 1, dim M k,m = 0 and F k,m : M k,m → M k,m is trivial. From now on, we fix (k, m) ∈ N×N * such that k +m ≥ 2.

  e., m | m either k = k or (k = 0 and m | k) Since (k , m ) is the exact type of the orbit of z 1 , k ≤ k and m | m. If k = k, we are done. If k = k, we need to prove that k = 0 and m | k. Since z ∈ M k ,m , k + 1 ≤ k and m | m, we have that z k = z k+m . Since z ∈ M k,m , we also have z k+m + z k = 0.

Proposition 2 .

 2 4.8. Given (k, m) ∈ N × N * , let z / ∈ P C k,m be a fixed point of the moduli map F k,m . Then D z F k,m has only repelling eigenvalues.

  Hence a value λ is an eigenvalue of D w F if and only if either λ is an eigenvalue of D z f or λ = d.Conversely, if w is a fixed point of F then either w = 0 (and the eigenvalues of D 0 F are all equal to 0) or w induces a fixed point π(w) of f . Since we consider only postcritically algebraic endomorphisms of degree d ≥ 2, Conjecture A is equivalent to the following conjecture.Conjecture B. Let f be a non-degenerate homogeneous polynomial post-critically algebraic endomorphism of C n and let λ be an eigenvalue of f along a periodic cycle. Then either λ = 0 or |λ| > 1.

  3.1) where Λ = D [z] g| T [z] M . Let λ = e 2πiθ , θ ∈ R \ Q be an irrational eigenvalue of Λ and Cv be a complex line of direction v in T [z] M . The line Cv is invariant by Λ, i.e. Λ(Cv) = Cv, hence Σ := Φ -1 (Cv) is invariant by g. Denote by Γ the irreducible component of Φ -1 (Cv) containing [z]. Lemma 3.3.10. Set Γ 0 = Γ \ Sing Σ. Then g(Γ) = Γ and g(Γ 0 ) = Γ 0 . Proof. On one hand, since g is automorphism, it maps irreducible analytic sets to irreducible analytic sets. On the other hand, D [z] Φ = Id then by Inverse function theorem, Φ -1 (Cv) is smooth near [z], hence Γ is the only irreducible component of Φ -1 (Cv) near [z]. Then g(Γ) = Γ. Concerning Γ 0 , we observe that Sing Σ = Σ∩C Φ where C Φ = {x ∈ M | rank D x Φ < dim M } the set of critical points of Φ. By differentiating (3.3.1) at x ∈ M , we have

Proposition 3 .

 3 4.4 ([Ued98], Lemma 3.5). Let f be a post-critically algebraic nondegenerate homogeneous polynomial endomorphism of C n of degree d ≥ 2. Thenf -1 (Reg P C(f )) ⊂ Reg P C(f ) and f : f -1 (Reg P C(f )) → Reg P C(f )is locally a biholomorphism.Remark 3.4.5. In particular, Proposition 3.4.4 implies that if f has a fixed point z ∈Reg P C(f ) then D z f | TzP C(f ) is invertible. Hence D z f | TzP C(f )does not have any superattracting eigenvalue.If λ = 0 then z is not a critical point. By Proposition 3.3.1, the modulus of λ is at least 1. Then we will prove Proposition 3.4.1 by contradiction by assuming that |λ| = 1. If |λ| = 1, there exists an associated eigenvector

Figure 3 .

 3 Figure 3.4-1: Two paths which are homotopic relative to X

Figure 3 .

 3 Figure 3.4-3: Pull-back preserves the (X, z)-homotopic paths

Definition 3 .

 3 4.8. A bounded open subset W of C n containing z is called a regular neighborhood of z if:

Figure 3 .

 3 Figure 3.4-4: Constructions on M
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 353 Let f be a post-critically algebraic endomorphism of CP 2 of degree d ≥ 2, let Γ ⊂ CP 2 be an invariant irreducible algebraic curve, let z ∈ RegΓ be a fixed point of f and let λ be the eigenvalue of D z f | TzΓ . Then, either λ = 0 or |λ| > 1.

3.5. 2

 2 Periodic cycles in the regular locus of the post-critical setProof of Theorem C -first part. Let f be a post-critically algebraic endomorphism of CP 2 with a fixed point z which is a regular point of P C(f ). Denote by Γ the irreducible component of P C(f ) containing z. Then Γ is invariant by f . Denote byD z f : T z CP 2 /T z Γ → T z CP 2 /T z Γ the linear endomorphism induced by D z f . Note that Spec(D z f ) = Spec(D z f | TzΓ ) ∪ Spec(D z f )By Proposition 3.4.4, the eigenvalue of D z f | TzΓ is not 0 hence repelling by Lemma 3.5.3. By Proposition 3.4.1, the eigenvalue of D z f is either superattracting or repelling. Thus Theorem C is proved when the fixed point is a regular point of the post-critical set.

Proposition 3 .

 3 5.4. Let Σ be an irreducible singular germ of curve parametrized by γ : (C, 0) → (C 2 , 0) of the formγ(t) = (t m , t n + O(t n+1 )), 1 < m < n, m |n. Let g : (C 2 , 0) → (C 2 , 0) and ĝ : (C, 0) → (C, 0), ĝ(t) = λt + O(t 2 ) be holomorphic germs such that g • γ = γ • ĝ.

  g(x, y) = λx + by + h 1 (x, y), y(d + h 2 (x, y))where λ, b, d ∈ C, h 1 (x, y) = O( (x, y) 2 ), h 2 (x, y) = O( (x, y) ). The linear part of D 0 g is (λx + by, dy) thus λ, d are eigenvalues of D z f . Letting x = t, y = t m + O(t m+1 ), we have f (t, t m + O(t m+1 )) = (λt + O(t 2 ), dt m + O(t m+1 ))Since f (Σ 2 ) = Σ 2 , we deduce that d = λ m . Note that λ is the eigenvalue of D 0 g| T 0 Σ 1 .

  

  

  Har13, Excercise 2.10] or [Chi12, Proposition 1.2.5]). Moreover, X has codimension one in CP n if and only if the affine cone over X is also of codimension one in C n+1 . Let Γ be an algebraic subset of C n , which is defined by k polynomials P 1 , . . . , P k ∈ C[x 1 , . . . , x n ]. Recall that we can identify C n with the open subset U 0 of CP n by the homeomorphism ϕ 0 . Hence, Γ is identified with a subset of CP n . The closure Γ proj of Γ with respect to the Zariski topology in CP n is called the projective closure of Γ. A set of defining polynomials of Γ proj is {Q 1

  3.2 are the simplest ones of post-critically finite rational maps. We shall see in Example 1.3.11 that we can nevertheless use them to construct post-critically algebraic endomorphisms of CP n , n ≥ 2 with interesting properties. Given an integer d ≥ 2, a polynomial T d of degree d is called the d-th Chebyshev polynomial if it satisfies that

	Example 1.3.3.

  locally uniformly bounded. The linear map D z g is diagonalizable with neutral eigenvalues, so {D z g -n } n is uniformly bounded on any bounded set. Then {(D z g) -n • ϕ • g •n } n is a normal family. Denote by Φ N the Cesaro average of

  Thus π induces a non constant bounded holomorphic function from Γ 0 to C n . Therefore, Γ 0 is a hyperbolic Riemann surface. Note that [z] is a fixed point of the holomorphic map g| Γ 0 with the irrational multiplier λ. Then we can apply Theorem 3.3.11 to obtain a conjugacy ψ : Γ 0 → D(0, 1) such that ψ• g| Γ 0 = λ • ψ.exists for almost every θ ∈ [0, 2π). Proposition 3.3.15. If τ θ exists, τ θ ∈ P C(f ).

	Remark 3.3.14. This is another advantage we mentioned in Remark 3.3.2.

  Proposition 3.4.1. Let f be a post-critically algebraic endomorphism of CP n of degree d ≥ 2 and let z be a point of Reg P C(f ). Then the eigenvalue of the linear map D z f :T z CP n /T z P C(f ) → T z CP n /T z P C(f ) is either repelling or superattracting.By Remark 3.3.2, it is equivalent to prove the following result. Proposition 3.4.2. Let f be a post-critically algebraic non-degenerate homogeneous polynomial endomorphism of C n of degree d ≥ 2 and let z be a point of Reg P C(f ). Then the eigenvalue of the linear map D z

It is worth noting that some Chebyshev maps and Lattès maps belong to another class of maps which preserve an algebraic web. In dimension 2, this class of maps was studied in[START_REF] Dabija | Algebraic webs invariant under endomorphisms[END_REF] 

otherwise.

In fact, these are regular polynomial self-maps of C n (see 1.3.2) which are homogeneous

Since we are now only work on C n , we won't use π as the canonical projection from C n+1 to CP n

In Section 3.3.4, we choose an element representing z. Such an element does not exist in this case

Proper germ means that g -1 (0) = 0. In particular, an endomorphism of CP 2 induces a proper germ at its fixed points.

Remerciements

is invariant under F k,m . Since M k ,m is invariant under D z F k,m , the vector space

which is called the annihilator of M k ,m in M k,m , is invariant under the transpose L * and we have the following decomposition

(2.4.4)

Moreover, according to Proposition 2.2.9, we have

Whence, by Proposition 2.4.8, L| M k ,m has only repelling eigenvalues. In order to describe Spec L, we need to study Spec

. We will prove the following result.

Proposition 2.4.10. Given (k, m) ∈ N × N * , let z ∈ P C k,m be a fixed point of F k,m of exact type (k , m ) ≺ (k, m). Let λ be the multiplier of the polynomial

along the cycle of P •k (z 1 ). Then

The rest of this section is devoted to the proof of this proposition. To simplify the notation, we denote by L * the restriction of (D z F k,m ) * to M 0 k,m . The study of the transpose L * : M 0 k ,m → M 0 k ,m is divided into two cases, k = 0 and k = 0, and each case will be treated separately.

Proof of Proposition 2.4.10 when k = 0. Since (0, m ) (k, m), m divides k and m. It is enough to prove that L * : M 0 0,m → M 0 0,m is nilpotent. Recall that for i ≥ 1, the form

Recall that M 0 0,m = {ω : M k,m → C such that ω| M 0,m ≡ 0}.

Lemma 2.4.11. We have M 0 0,m = Span {α i , 1 ≤ i ≤ k + m} .

Proof. By duality, it is equivalent to show that

Assume v ∈ M k,m . Then for all i ≥ k + 1, v i = v i+m . Since j ∈ j and m divides m, we have j ≡ j + m mod m . Moreover, j ≥ k + 1 and j + m ≥ k + 1, whence

Conversely, assume v ∈ j∈Z/mZ Ker β j . We want to prove that for all integer i ≥ k + 1, v i = v i+m and that v k + v k+m = 0. First, assume i ≥ k + 1 and let j ∈ Z/mZ be the congruence class of i. Since j ∈ j, we have i ≡ j mod m. Moreover v ∈ Ker β j , and so

From the fact that v ∈ M k,m , we therefore deduce that v i = v j and v j+m = v i+m . Thus,

Second, let us show v k + v k+m = 0. The previous argument shows that v is preperiodic of preperiod at most k and of period dividing m . Since m divides m, we deduce that

Thus, it is now important to understand the how L * acts on {β j , j ∈ Z/mZ}. Given j ∈ Z/mZ, set σ j = δ j = 2z j .

Lemma 2.4.14. For j ∈ Z/mZ, we have

Proof. For j ∈ Z/mZ, recall that j is the representative of j in k + 1, k + m . Let us first prove that for all j ∈ Z/mZ,

Thus the eigenspace associated to the eigenvalue ζ of T has dimension 1, i.e. T has only simple eigenvalues. Since T = L * ν , L * is diagonalizable with simple eigenvalues which are m-th roots of ν m = λ p . In addition, 1 is not an eigenvalue of T hence ν is not an eigenvalue of L * . Since ν is an arbitrary m -th root of λ, we deduce that

We conclude this chapter by showing that Conjecture A is true for the eigenvalues of G k,m at a fixed point.

Proof of Theorem A. According to Proposition 2.2.7, F k,m and G k,m are conjugate. Hence it is enough to consider an eigenvalue µ of F k,m at a fixed point z ∈ M k,m and show that either µ = 0 or |µ| > 1. When z / ∈ P C(F k,m ), the result follows from Proposition 2.4.8. When z ∈ P C(F k,m ), according to Proposition 2.4.4 and Lemma 2.4.5, the polynomial P (t) = t 2 +z 1 ∈ C[t] is post-critically finite and that the orbit of z 1 under P is preperiodic of preperiod k to a cycle of length m and of multiplier λ such that (k , m ) ≺ (k, m). Moreover, by Proposition 2.2.9, we have that

, and hence, we have the following decomposition 

Proposition 3.3.13. The analytic set Γ is smooth and and the map

Proof. It is enough to prove that Γ = Γ 0 . From Lemma 3.3.12, we deduce that Γ 0 is simply connected. Note that Γ 0 ⊂ Reg Γ is the complement of a discrete set Γ ∩ Sing Σ in Γ. We denote Γ the normalization of Γ, a Riemann surface (see [START_REF] Mikhailovich | Complex analytic sets[END_REF]), and by Γ the universal covering of Γ. Since Γ 0 ⊂ Reg Γ, the preimage Γ0 of Γ 0 by the normalization, which is isomorphic to Γ 0 , is simply connected. Hence the preimage of Γ0 by the universal covering in Γ is a simply connected open subset in Γ with discrete complement. Then either Γ is biholomorphic to the unit disc (or C) and Γ 0 = Γ or Γ is biholomorphic to CP 1 and Γ \ Γ 0 is only one point. Since π| Γ is a non constant bounded holomorphic function valued in C n , the only case possible is that Γ is biholomorphic to a disc and Γ 0 = Γ.

Thus, we obtain a biholomorphic map

End of the proof

Denote by τ = π • κ. Note that τ (0) = z. Since τ (D(0, R)) ⊂ π(M ) is bounded hence by Fatou-Riesz's theorem (see [START_REF] Milnor | Dynamics in One Complex Variable[END_REF]Theorem A.3]), the radial limit

manifold of dimension n. Note that π is also a holomorphic covering map.

Lifts of inverse branches of f

We will construct a holomorphic mapping

which is induced by the pullback action of f on paths in Ξ.

Lemma 3.4.6. Let γ be a path in Ξ. Then there exists a unique path

Proof. Since f is locally invertible at z and since f -1 (X) ⊂ X, there exists

This construction does not depend on the choice of t 0 . 

Proof. Lemma 3.4.6 implies that the pull-back of a homotopy of paths in Ξ between γ 0 and γ 1 is a homotopy of paths in Ξ between f * γ 0 and f * γ 1 . See also Figure 3.4.3.

We can deduce from the definition of g that for every j ≥ 1, π • g

More precisely, let [γ] ∈ W , i.e. γ((0, 1]) ⊂ W \ P C(f ), then by definition, we have for every j ≥ 1,

Recall that the family {h j : W → C n } j is normal.

The assumption |λ| = 1 allows us to control the value taken by any limit maps of this family. Note that f -1 (X) ⊂ X hence h j (W \ P C(f )) ⊂ X for every j ≥ 1. Lemma 3.4.12. Let h = lim s→∞ h js be a limit map of {h j : W → C n } j . Then

Let v be an eigenvector of D z f associated to the eigenvalue λ. Then we have

for some limit value λ of {λ j } j . Since we assumed that

Normality of family of maps lifted via the relative homotopy

We will prove that {g •j : X → X} j is normal. Following 3.3.4, it is enough to prove two following lemmas.

Lemma 3.4.13. The family {k j = π • g •j : X → X} j is normal and any limit map can be lifted by π to a holomorphic endomorphism of X.

Proof. Note that {k j : X → C n } j is locally uniformly bounded hence normal (see Proposition 3.3.6). Consider a limit map k of this family, by using Hurwitz's theorem, we deduce that either k( X) ⊂ X or k( X) ⊂ P C(f ).

Let W be a regular neighborhood of z then there exists a family {h j : W → C n } j of f •j fixing z (see 3.4.3). We have

where σ : W \ P C(f ) → W is the section of π| W . Therefore k| W • σ is a limit map of {h j | W \P C(f ) }. Lemma 3.4.12 implies that k( W ) ⊂ X, and hence, k( X) ⊂ X. Thus {k j : X → X} j is normal.

We shall now show that the map k : X → X can be lifted to a map from X to X.

For each element [γ] ∈ X, we denote by η the image of γ under the analytic continuation of h along γ. Note that h fixes z. Thus, Lemma 3.4.12 implies that η ∈ Ξ. This construction does not depends on the choice of γ in the equivalence class [γ]. Thus, the map

is well-defined. The map π • k coincides with k on an open set W , and hence on X. In other words, k is a lifted map of k by π.

Hence we deduce that: Proposition 3.4.14. The family {g •j : X → X} j is normal.

Proof. Let {g •js } s be sequence of iterates of g. Extracting subsequences if necessary, we can assume that {k js } s converges locally uniformly to a holomorphic map k : X → X. By Lemma 3.4.13, there exists a holomorphic map k : X → X so that π • k = k. We will prove that {g •js } s converges locally uniformly to k. Applying [AC03, Theorem 4], it is enough to prove that there exists an element

We consider a regular neighborhood W of z and the family {h j : W → C n } j of f •j fixing z (see 3.4.3). Let [γ] be an element in W 3 and an associated path γ :

Thus we conclude the proof the proposition.

Following [Aba89, Corollary 2.1.29], the normality of {g •j } j implies that

• there exists a subsequence {g •j k } k converging to a holomorphic retraction

• by [START_REF] Cartan | Sur les rétractions d'une variété[END_REF], the image M = ρ( X) is a closed submanifold of X,

• by [Aba89, Corollary 2.1.31], M is invariant by g and g| M is an automorphism.

Existence of the center manifold

We will study the dynamics of g restricted on M . The difference between the construction of universal covering used in the first case (the fixed point is outside P C(f )) and the construction of X in this case is that X does not contain a point representing z. Hence it is not straight forward that we can relate the dynamics of g on M with the dynamics of f near z.

We consider the objects introduced in Section 3.4.3. In particular, we consider a regular neighborhood W of z in C n and the family {h j : W → C n } j of inverse branches fixing z of f •j on W . Recall that

is the inverse of the biholomorphism π : W → W \ P C(f ) and that lim

Define a holomorphic map H : W \ P C(f ) → C n as follows: Note that h j (z) = z for every j ≥ 1. Then H(z) = z. By continuity of H, there exists an open neighborhood U of z in W such that H(U ) ⊂ W . Note that we choose U to be a regular neighborhood of z (see Remark 3.4.11) and we can shrink U whenever we need to. Recall that for every [γ] ∈ W , we have g

is well defined on U \ P C(f ) and equals to H| U \P C(f ) . Since H is the extension of H, we deduce that

Proposition 3.4.15. The set H(U ) is a submanifold of W containing z whose dimension is the number of neutral eigenvalues of D z f counted with multiplicities. Moreover,

Proof. The first assertion is due to [START_REF] Cartan | Sur les rétractions d'une variété[END_REF] since H • H = H on U . The rest are consequences of the fact that H is a limit map of the family {h j : W → C n } j of inverse branches fixing z of f (see Corollary 3.2.4).

Lemma 3.4.16. dim M = dim H(U ).

Proof. Since X is connected, M is also a connected complex manifold. Thus dim M = rank D x ρ for every x ∈ M . In particular, if we choose x = σ(z) with w ∈ U \ P C(f ) then rank D x ρ = rank w H = dim H(U )

Linearization along the neutral direction

The map Φ 1 extends the image of Φ in the sense that Φ(M ) ∪ Φ 1 (H(U )) contains a full neighborhood of 0 in E n . Let v ∈ E n be an eigenvector of D z f associated to λ. We will study Φ -1 (Cv) by studying Φ -1 1 (Cv). Denote by Γ 1 the irreducible component of Φ -1 1 (Cv) containing z.

and σ is a biholomorphism, there exists a unique irreducible component Γ of Φ -1 (Cv) such that Γ contains σ(Γ 1 \ {z}). Moreover, Φ(Γ) is a punctured neighborhood of 0 in Cv. This means that 0 / ∈ Φ(Γ) but Φ(Γ) ∪ {0} contains an open neighborhood of 0 in Cv. We will prove that Γ is in fact biholomorphic to a punctured disc and Φ| Γ is a biholomorphism conjugating g| Γ to the irrational rotation ζ → λζ.

Following Section 3.3.7, we consider Γ 0 = Γ \ C Φ where C Φ the set of critical points of Φ. Then Γ 0 is a hyperbolic Riemann surface which is invariant by g. The map g induces an automorphism g| Γ 0 on Γ 0 such that g| •j k Γ 0 converges to ρ = Id M which is identity on Γ 0 .

On one hand, Γ 0 contains σ(Γ 1 \P C(f )) hence Φ(Γ 0 ) is also a punctured neighborhood of 0 in Cv. On another hand, g restricted on σ(Γ 1 \ P C(f )) is conjugate to h restricted on Γ 1 \ P C(f ). Note that h fixes z = Γ 1 ∩ P C(f ). Hence we can consider an abstract Riemann surface Γ 0 = Γ 0 ∪ {z} and two holomorphic maps ι : Γ 0 → Γ 0 , Φ : Γ 0 → Cv ⊂ E n so that ι is an injective holomorphic map, Γ 0 \ ι(Γ 0 ) = {z}, Φ (z) = 0 and the following diagram commutes.

Moreover, Γ 0 admits an automorphism g fixing the point z with multiplier λ and extends g| Γ 0 in the sense that g

Then by arguing as in Lemma 3.3.12, we deduce that.

Lemma 3.4.18. The Riemann surface Γ 0 is biholomorphic to a disc D(0, R), R ∈ (0, +∞) and Φ : Γ 0 → Φ (Γ 0 ) = D(0, R), Φ (z) = 0 is a biholomorphism conjugating g to the irrational rotation ζ → λζ.

Consequently, Γ 0 is biholomorphic to D(0, R) and Φ| Γ is a biholomorphism.

Proposition 3.4.19. The set Γ is smooth and the map

is a biholomorphism with R ∈ (0, +∞).

Proof. It is enough to prove that Γ = Γ 0 . The idea is similar to the proof of Proposition 3.3.13 Note that Γ 0 is the complement of a discrete set Γ ∩ Sing Φ -1 (Cv) in Γ and Γ 0 is biholomorphic to a punctured disc D(0, R) * . Moreover, Φ(Γ 0 ) ⊂ Φ(Γ) is also a punctured neighborhood of 0 and Γ 0 ⊂ Reg Γ has discrete complement.

Then we can consider an abstract one dimensional analytic space Γ = Γ ∪ {z} such that Γ 0 ⊂ Γ and Γ \Γ 0 is a discrete set containing singular points of Γ (which is exactly Γ \ Γ 0 ). Then by arguing similarly to 3.3.13, we can deduce that Γ is biholomorphic to D(0, R) hence the proposition is proved. Proof. Note that τ (D(0, R))

End of the proof

Then by arguing similarly to Proposition 3.3.15, we deduce that the radial limit τ θ ∈ P C(f ) if this limit exists.

Recall that Q is the defining polynomial of P C(f ) then Q•τ has vanishing radial limit for almost every θ ∈ [0, 2π). This means that Q • τ is identically 0. Hence τ (D(0, 1)) ⊂ P C(f ). This is a contradiction since τ (0) = v / ∈ T z P C(f ). The proof the Proposition 3.4.2 is complete. Lemma 3.5.1. Denote by V f and V f the set of critical values of f and f respectively. Then

Proof. The set of critical values of f is characterized by the following property: x / ∈ V f if and only if for every y ∈ f -1 (x), f is injective near y. Note that n : Γ → Γ induces a parametrization of the germ (Γ, x) such that for every x ∈ Γ and for every y ∈ n -1 (x), n is injective near y (see also 2.3,[START_REF] Terence | Singular points of plane curves[END_REF]).

Combining with the fact that n is locally injective, we deduce that f is injective near y. Thus x / ∈ V f .

Thus we obtain the conclusion of the lemma.

Proposition 3.5.2. If Γ has genus 0 and f is a post-critically algebraic endomorphism then f is a PCF endomorphism.

Proof. We have that

• n for all j ≥ 1, applying the previous lemma to f •j and f •j yields

In both cases, P C( f ) is contained in the preimage by n of a proper algebraic subset of Γ, which therefore is finite. Since n is proper, P C( f ) is finite and so, f is PCF.

Assume that f has a fixed point z which is a regular point of Γ (which is not necessarily an irreducible component of P C(f )). Since n is a biholomorphism outside the preimage where h 1 (x, y) = O( (x, y) 2 ), h 2 (x, y) = O( (x, y) 2 ). Replacing those expansions in the equation γ • ĝ = g • γ, we have λ m t m + O(t m+1 ), λ n t n + O(t n+1 ) = at m + bt n + h 1 (t m , t n + O(t n+1 )), ct m + dt n + h 2 (t m , t n + O(t n+1 )) .

Comparing coefficients of the term t m in each coordinate, we deduce that a = λ m and c = 0. Comparing coefficients of the term t n in the second coordinate, since m n, the expansion of h 2 can not contribute any term of order t n , hence d = λ n . The linear part of g has the form a b 0 d hence a, d are eigenvalues of D 0 g. In other words, λ m and λ n are eigenvalues of D 0 g.

When g has an invariant smooth branch which is the image of another branch, g is not an injective germ hence 0 is an eigenvalue of D 0 g. This case was not considered in [START_REF] Jonsson | Some properties of 2-critically finite holomorphic maps of P 2[END_REF] since Jonsson assumed that there is no periodic critical point. Proposition 3.5.5. Let g : (C 2 , 0) → (C 2 , 0) be a proper holomorphic germ and let Σ 1 , Σ 2 be irreducible germs of curves at 0 such that Σ 1 = Σ 2 , g(Σ 1 ) = Σ 2 , g(Σ 2 ) = Σ 2 . If Σ 2 is smooth then the eigenvalues of D z g are 0 and λ where λ is the eigenvalue of D 0 g| T 0 Σ 2 .

Proof. Since Σ 2 is smooth, we choose a local coordinates (x, y) of (C 2 , 0) such that Σ 2 = {x = 0}. Since Σ 1 and Σ 2 are distinct irreducible germs, the defining function of Σ 1 does not identically vanish on Σ 2 . Then we can find a Puiseux parametrization of Σ 1 of the form γ(t) = (t m , αt n + O(t n+1 )), α ∈ C \ {0}

where m, n are positive integers (see [Wal04, Theorem 2.2.6]). The germ g has an expansion of the form g(x, y) = (ax + by + h 1 (x, y), cx + dy + h 2 (x, y))

where h 1 (x, y) = O( (x, y) 2 ), h 2 (x, y) = O( (x, y) 2 ). The invariance of Σ 2 implies that b = 0 and g has the form g(x, y) = (x(a + h 3 (x, y)), cx + dy + h 2 (x, y))

where h 3 (x, y) = O( (x, y) ), h 2 (x, y) = O( (x, y) 2 ). Replacing γ and f in the equation