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RésuméCette thèse s’inscrit dans le domaine de la combinatoire algébrique et porte sur l’étuded’ordres partiels admettant une réalisation géométrique particulière, appelée réalisationcubique.
Après avoir introduit les coordonnées cubiques, nous munissons l’ensemble de cesobjets de l’ordre de comparaison composante par composante, formant des treillis. Nousétablissons ensuite un isomorphisme d’ordres partiels entre les treillis des coordonnéescubiques et les ordres partiels des intervalles des treillis de Tamari. La réalisation cubiquedes coordonnées cubiques permet une étude géométrique de ces treillis et également demontrer qu’ils sont épluchables.
Par ailleurs, nous considérons les treillis d’Hochschild qui sont des intervalles particu-liers de l’ensemble des chemins de Dyck munis de l’ordre dextre. Ces treillis admettentégalement une réalisation cubique que nous construisons. Nous montrons entre autresque ces treillis sont épluchables, constructibles par doublement d’intervalles et plusieurspropriétés combinatoires dont le dénombrement des k-chaînes.
Finalement, nous construisons trois familles d’ordres partiels dont les ensembles sous-jacents sont dénombrés par les nombres de Fuss-Catalan. Parmi elles, nous obtenons unegénéralisation des treillis de Stanley et une généralisation des treillis de Tamari. Ces troisfamilles d’ordres partiels sont liées par une relation d’extension d’ordre et partagent plu-sieurs propriétés. Deux algèbres associatives sont ensuite construites comme quotients degénéralisations de l’algèbre de Malvenuto-Reutenauer. Leurs produits ont pour support lesintervalles de nos analogues des treillis de Stanley et des treillis de Tamari. En particulier,un de ces quotients est une généralisation de l’algèbre de Loday-Ronco.
Mots clés. Ordres partiels, treillis de Tamari, objets Fuss-Catalan, algèbres associa-tives, réalisations géométriques.
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AbstractThis thesis is in the field of algebraic combinatorics and deals with the study of partialorders admitting a particular geometric realization, called cubic realization.After having introduced the cubic coordinates, we endow the set of these objects withthe componentwise order, forming lattices. Then we establish an isomorphism of partialorders between the lattices of the cubic coordinates and the partial orders of the intervalsof the Tamari lattices. The cubic realization of the cubic coordinates allows a geometricalstudy of these lattices and also to show that they are shellable.Moreover, we consider the Hochschild lattices, which are particular intervals of theset of Dyck paths endowed with the dexter order. These lattices also admit a cubic real-ization that we construct. Among other things, we show that these lattices are shellable,constructible by interval doubling, and several combinatorial properties such as the enu-meration of k-chains.Finally, we build three families of partial orders which underlying sets are enumeratedby the Fuss-Catalan numbers. Among these, one is a generalization of Stanley lattices andanother one is a generalization of Tamari lattices. These three families of partial ordersfit into a chain for the order extension relation and they share some properties. Twoassociative algebras are then constructed as quotients of generalizations of the Malvenuto-Reutenauer algebra. Their products describe intervals of our analogues of Stanley latticesand Tamari lattices. In particular, one of these quotients is a generalization of the Loday-Ronco algebra.

Key words. Partial orders, Tamari lattices, Fuss-Catalan objects, associative algebras,geometric realizations.
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Introduction

Avant-proposLa combinatoire est un domaine fondamental à l’intersection des mathématiques et del’informatique. Elle se décline en plusieurs branches très différentes [FS09,Sta12]. Un ob-jectif commun à toutes ces branches est d’avoir la compréhension la plus précise possiblesur des familles d’objets, tels que des cartes, des arbres ou des permutations. En particu-lier, dénombrer et établir des bijections entre différentes familles d’objets peut mener à cetobjectif. Une de ces branches est la combinatoire algébrique, domaine propice aux inter-actions fortes entre la combinatoire et l’algèbre. Un exemple bien connu est l’utilisation destructures arborescentes pour représenter et manipuler des éléments dans des structuresalgébriques libres. C’est dans ce domaine où se mélangent combinatoire et algèbre quese situe cette thèse.
Plus précisément, ce travail se focalise sur l’étude d’ensembles partiellement ordonnés(appelés aussi posets). Ces structures apportent un formalisme qui permet de comparerdes objets combinatoires. L’étude de posets sur des familles d’objets combinatoires est moti-vée entre autres pour les deux raisons suivantes. La première est que, selon le poset étudié,de belles suites de nombres peuvent émerger, en considérant par exemple le nombre d’in-tervalles [Cha06,BMFPR12] ou le nombre de chaînes saturées. Un autre intérêt de définirdes posets sur des objets combinatoires est qu’ils permettent de définir des changementsde bases dans certains espaces vectoriels [LR02, HNT05]. Pour reprendre l’exemple desstructures arborescentes, il existe dans la littérature différentes structures d’ordres met-tant en jeu les arbres binaires, comme par exemple l’ordre phagocyte [BP06], l’ordrecoupe-greffe [BP08] ou encore l’ordre de Tamari [Tam62]. De même, il existe plusieursordres partiels définis sur les permutations, objets très classiques de la combinatoire. Onpeut citer par exemple l’ordre faible droit et l’ordre de Bruhat. Munir des familles d’objetscombinatoires d’une structure d’ordre nous permet de les étudier algébriquement.
Certains de ces posets admettent une propriété bien particulière, à savoir que pourtoute paire d’éléments comparables, il existe une borne supérieure et une borne inférieurepour l’ordre associé. Ces posets sont appelés des treillis. C’est le cas par exemple del’ordre de Tamari. Il s’agit d’un exemple très important et connu dans la théorie des ordresdu fait de sa richesse combinatoire et algébrique. Cet ordre, défini sur l’ensemble desarbres binaires, est donné par la clôture réflexive et transitive de l’opération de rotationdroite [HT72]. Cette opération fondamentale apparaît aussi dans l’algorithmique des arbresbinaires de recherche [AVL62].
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2 INTRODUCTION
Comme beaucoup d’objets combinatoires, les arbres binaires ont la propriété d’êtredénombrés par les nombres de Catalan. Chaque ensemble regroupant les objets de taille

n > 0 a ainsi pour cardinal
cat1(n) := 1

n + 1
(2n
n

)
.

Les premiers nombres décrits par cette formule sont
1, 1, 2, 5, 14, 42, 132, 429.

Ces nombres se retrouvent fréquemment en combinatoire, et possèdent plusieurs géné-ralisations, dont la plus connue est donnée par les nombres de Fuss-Catalan
catm(n) := 1

mn + 1
(
mn + n

n

)
.

Cette formule compte par exemple les arbres (m + 1)-aires ou encore les m-chemins deDyck.
Les diagrammes de Hasse sont des outils pratiques et classiques pour dessiner lesordres partiels. Il s’agit de graphes orientés reliant les éléments du poset en relation decouverture, orientés de l’élément couvert vers l’élément couvrant pour l’ordre. Par conven-tion, les arcs sont orientés implicitement du haut vers le bas. Par exemple, le cube, quiest le treillis défini sur les sous-ensembles de l’ensemble A := {a, b, c} ordonnés pourl’inclusion, a pour diagramme de Hasse

∅

{a} {b} {c}

{a, b} {b, c}{a, c}

A

.

Cette réalisation des posets permet de mettre en évidence les relations entre les éléments.Par exemple, les éléments {a}, {b} et {c} ne sont pas comparables car il n’existe aucunechemin respectant l’ordre qui les relie. À l’inverse, A est comparable avec tous les élémentsdu cube. De même, le treillis de Tamari pour les arbres de taille 3 a pour diagramme de
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Hasse

,

où les nœuds des arbres sont dessinés par et les feuilles par .
Contexte et motivationsIl est toujours possible de dessiner le diagramme de Hasse d’un poset fini. Cependant,nous nous intéressons dans ce travail à des posets dont le diagramme de Hasse possèdeune propriété spéciale, qui n’est pas toujours garantie. Cette propriété consiste à assimilerles diagrammes de Hasse à un assemblage d’hypercubes, en plongeant la réalisation dansl’espace. Par exemple, le diagramme de Hasse du treillis de Tamari pour les arbres detaille 4 et sa réalisation cubique sont dessinés ci-dessous respectivement à gauche et àdroite :

.

Les posets que nous allons considérer ont la particularité d’être tous définis sur unensemble de mots et d’être munis d’une relation de comparaison composante par compo-sante. Cette particularité figure comme un des pré-requis pour que ces posets admettentune réalisation cubique.Chercher la réalisation cubique de posets présente divers avantages. D’une part, ellepermet d’avoir un nouveau point de vue sur des posets déjà connus, et d’autre part, elleapporte une nouvelle dimension géométrique, amenant de nouvelles questions sur le vo-lume de la réalisation ou encore sur l’arrangement des complexes cellulaires formantcette réalisation.Cette thèse explore trois thèmes dont l’intersection est le concept de réalisation cu-bique. Un autre point commun, plus indirect, vient du fait que les familles de posets étudiéessont liées au treillis de Tamari, que ce soit par l’introduction d’une généralisation avec desobjets appelés canyons, ou par l’étude d’une autre généralisation avec les intervalles du



4 INTRODUCTION
treillis de Tamari et d’intervalles particuliers d’un sous-poset du treillis des intervalles deTamari.

L’objectif de ce travail est d’apporter, avec un point de vue qui se veut original offertpar la réalisation cubique, une étude de ces familles de posets particulières. Un autre butest aussi d’introduire de nouvelles familles de posets dénombrées par les nombres deFuss-Catalan, et généralisant le poset de Tamari et le poset de Stanley [Sta75, Knu04].Ces résultats ont également des conséquences algébriques puisque nous apportons desgénéralisations des algèbres de Malvenuto-Reutenauer [MR95] et de Loday-Ronco [LR98],dont les produits sont liés respectivement aux intervalles de l’ordre faible droit et auxintervalles du treillis de Tamari.

Organisation et résultatsQuatre chapitres composent cette thèse. Le chapitre 1 forme le tronc commun des troisderniers, en apportant toutes les définitions et propriétés utilisées par la suite. On y trouveainsi des notions classiques du domaine de la combinatoire et de l’algèbre liées à l’étudedes ordres partiels. Ces notions sont illustrées par plusieurs exemples. Notamment, dansla première partie sont présentés des treillis définis sur des arbres binaires, des cheminsde Dyck, ou encore des partitions non croisées. Plusieurs propriétés combinatoires etgéométriques sont ensuite données dans la partie suivante. Par exemple, nous verronsla notion de distributivité et de semidistributivité pour un treillis et quelques propriétésconnexes, ou encore la construction d’un poset par doublement d’intervalles, en partantdu poset trivial [Day92]. Nous finirons ce chapitre avec des notions d’algèbre liées auxalgèbres de Hopf combinatoires. Puis nous présenterons deux importants exemples deces objets : l’algèbre de Malvenuto-Reutenauer [MR95] définie sur les permutations, etl’algèbre de Loday-Ronco [LR98,HNT05] définie sur les arbres binaires.
Dans le chapitre 2, nous introduisons dans un premier temps les coordonnées cu-biques, qui sont des mots d’entiers codant les intervalles du treillis de Tamari. Puis, nousmontrerons que les coordonnées cubiques sont en bijection avec les intervalle-posets, euxmême connus pour être en bijection avec les intervalles de Tamari [CP15]. Plus qu’une bi-jection, nous montrons que pour chaque degré, l’ensemble des coordonnées cubiques munide l’ordre de comparaison composante par composante forme un treillis et est isomorpheau treillis des intervalles de Tamari. Nous donnons ensuite une réalisation géométriquenaturelle du treillis des coordonnées cubiques, appelée réalisation cubique. Cette réalisa-tion est obtenue en plaçant dans l’espace Rk , avec k > 0, toutes les coordonnées cubiquesde même taille et en reliant les éléments qui sont en relation de couverture. Par exemple,pour k = 2, la réalisation cubique du treillis des coordonnées cubiques de taille 3, et doncdu treillis des intervalles de Tamari pour la même taille, se dessine dans le plan comme



ORGANISATION ET RÉSULTATS 5
suit :

.

La réalisation cubique permet de mettre en évidence plusieurs propriétés des coordon-nées cubiques et de leur treillis. Notamment, cette réalisation fait apparaître une structurecellulaire, nous permettant d’établir une bijection entre ces cellules et des coordonnéescubiques spéciales, appelées synchrones, et ainsi d’obtenir une formule pour calculer levolume de cette réalisation via ces éléments particuliers. Dans une dernière partie, nousmontrons que le treillis des coordonnées cubiques est épluchable, ce qui nous permet degénéraliser le résultat de Björner et Wachs [BW96,BW97] sur l’épluchabilité du treillis deTamari.
Le chapitre 3 est dédié à l’étude d’un autre treillis, appelé treillis d’Hochschild. Lestreillis d’Hochschild sont des intervalles particuliers des semitreillis pour la borne infé-rieure définis sur l’ensemble des chemins de Dyck muni de l’ordre dextre. L’ordre dextreet les treillis d’Hochschild ont tous deux été récemment introduits par Chapoton [Cha20].Dans un premier temps, nous rappellerons la bijection établie dans l’article de Chapo-ton entre les chemins de Dyck de ces intervalles particuliers et un ensemble de motsdéfinis sur l’alphabet {0, 1, 2}, appelés trimots. Sur l’ensemble des trimots, l’ordre dextrese traduit par cette bijection comme l’ordre de comparaison composante par compo-sante. L’ensemble des trimots muni de cet ordre forme alors un treillis, appelé treillisd’Hochschild en référence au polytope d’Hochschild dont le treillis d’Hochschild est le1-squelette [San09,San11]. Comme pour le treillis des coordonnées cubiques étudié dansle chapitre 2, nous pouvons donner la réalisation cubique du treillis d’Hochschild. L’étudede cette réalisation nous permet de montrer que le treillis d’Hochschild est épluchableet constructible par doublement d’intervalles. Parallèlement à cette étude géométrique,nous montrons plusieurs propriétés combinatoires des ces treillis, comme par exemple ledénombrement de ses k-chaînes.
Dans le chapitre 4, nous introduisons les δ-cliffs, une généralisation des permutations etdes arbres croissants dépendant d’une application de variation δ. En munissant l’ensemblede ces objets de l’ordre de comparaison composante par composante, nous définissonsun premier treillis. Puis, nous établissons plusieurs résultats généraux sur ses sous-posets.Parmi ces résultats, nous donnons les conditions suffisantes pour que les posets soientépluchables, soient des treillis avec un algorithme pour calculer la borne inférieure et supé-rieure entre deux éléments, et soient constructibles par doublement d’intervalles. Certainsde ces sous-posets admettent des réalisations cubiques, et nous introduisons trois familles
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de ces sous-posets qui, pour une certaine application de variation δ, ont des ensemblessous-jacents dénombrés par les nombres de Fuss-Catalan. Un de ces sous-posets est unegénéralisation des treillis de Stanley et un autre est une généralisation des treillis de Ta-mari. Ces trois familles de posets sont reliées par une relation d’extension d’ordre et ellespartagent plusieurs propriétés. Finalement, de la même façon que le produit de l’algèbrede Malvenuto-Reutenauer forme les intervalles de l’ordre faible droit des permutations,nous construisons dans une dernière partie des algèbres dont les produits forment les in-tervalles des treillis de δ-cliff. Nous donnons alors les conditions nécessaires et suffisantessur δ pour avoir une algèbre associative, ou libre. En utilisant les posets Fuss-Catalanprécédents, nous définissons des quotients de nos algèbres de δ-cliffs. En particulier, unquotient donne l’algèbre de Loday-Ronco et on obtient de nouvelles généralisations decette structure.

? ?
?

ForewordCombinatorics is a fundamental area at the intersection of mathematics and computerscience. It is divided into several very different branches [FS09, Sta12]. A common ob-jective for all these branches is to reach the most precise understanding on families ofobjects, such as maps, trees, or permutations. In particular, counting and establishingbijections between different families of objects can lead to this objective. One of thesebranches is algebraic combinatorics, a field that leads to strong interactions between com-binatorics and algebra. A well-known example is the use of tree structures to representand manipulate elements in free algebraic structures. It is in this field where combinatoricsand algebra are mixed together that this thesis is situated.More specifically, this work focuses on the study of partially ordered sets (also calledposets). These structures provide a formalism that allows the comparison of combinatorialobjects. The study of posets on families of combinatorial objects is motivated amongothers by the following two reasons. The first is that, depending on the studied poset,beautiful sequences of numbers can emerge, by considering for example the numberof intervals [Cha06, BMFPR12] or the number of saturated chains. Another interestof defining posets on combinatorial objects is that they allow to define base changes incertain vector spaces [LR02, HNT05]. To take the example of tree structures, in theliterature there are different order structures involving binary trees, such as the phagocyteorder [BP06], the pruning-grafting order [BP08], or the Tamari order [Tam62]. In thesame way, there are several partial orders defined on permutations, very classical objects
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in combinatorics. We can mention for example the right weak order and the Bruhatorder. Endowing families of combinatorial objects with an order structure allows us tostudy them algebraically.

Some of these posets admit a very particular property, namely that for any pair ofcomparable elements, there is a supremum and an infimum for the associated order.These posets are called lattices. This is the case, for example, with the Tamari order.This is a very important and well-known example in the order theory because of itscombinatorial and algebraic richness. This order, defined on the set of binary trees, isgiven by the reflexive and transitive closure of the operation of right rotation [HT72]. Thisfundamental operation also appears in the algorithmic of the binary search trees [AVL62].
Like many combinatorial objects, binary trees have the property of being enumeratedby Catalan numbers. Each set of objects of size n > 0 has thus for cardinality

cat1(n) := 1
n + 1

(2n
n

)
.

The first numbers described by this formula are
1, 1, 2, 5, 14, 42, 132, 429.

These numbers are frequently found in combinatorics, and have several generalisations,the most well-known of which is given by the Fuss-Catalan numbers
catm(n) := 1

mn + 1
(
mn + n

n

)
.

This formula computes for example the (m + 1)-ary trees or the m-Dyck paths.
Hasse diagrams are practical and classical tools for drawing partial orders. They areoriented graphs linking the elements of the poset in covering relation, oriented from thecovered element to the covering element for the order. By convention, the arrows areimplicitly oriented from top to bottom. For instance, the cube, which is the lattice definedon the subsets of the set A := {a, b, c} ordered for inclusion, has as Hasse diagram

∅

{a} {b} {c}

{a, b} {b, c}{a, c}

A

.

This realization of the posets allows to highlight the relations between the elements. Forinstance, the elements {a}, {b} and {c} are not comparable because there is no pathrespecting the order that connects them. Conversely, A is comparable with all the elements
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of the cube. Likewise, the Tamari lattice for trees of size 3 has as Hasse diagram

,

where the nodes of the trees are drawn by and leaves by .
Context and motivationsIt is always possible to draw the Hasse diagram of a finite poset. However, in thiswork we are interested in posets whose Hasse diagram has a special property, which isnot always guaranteed. This property consists in assimilating the Hasse diagrams to anassembly of hypercubes, by embedding the realization in the space. For instance, theHasse diagram of the Tamari lattice for trees of size 4 and its cubic realization are drawnbelow on the left and right respectively:

.

The posets we are going to consider have the particularity of being all defined on a setof words and of being endowed with a componentwise order. This particularity appearsas one of the prerequisites for these posets to admit a cubic realization.
Looking for the cubic realization of posets has various advantages. On the one hand,it gives a new point of view on already known posets, and on the other hand, it brings anew geometrical dimension, raising new questions about the volume of the realization orabout the arrangement of the cell complexes forming this realization.
This thesis explores three topics whose intersection is the concept of cubic realization.Another common point, more indirect, comes from the fact that the families of posetsstudied are related to the Tamari lattice, either by introducing a generalisation with objectscalled canyons, or by studying another generalisation with the intervals of the Tamarilattice and particular intervals of a subposet of the Tamari interval lattice.
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The aim of this work is to bring, with an original point of view offered by the cubicrealization, a study of these particular families of posets. Another goal is also to intro-duce new families of posets enumerated by Fuss-Catalan numbers, and generalizing theTamari posets and the Stanley posets [Sta75, Knu04]. These results also have algebraicconsequences since we bring generalizations of the Malvenuto-Reutenauer [MR95] andLoday-Ronco [LR98] algebras, whose products are respectively related to the intervals ofthe right weak order and to the intervals of the Tamari lattice.

Organization and resultsThis thesis consists of four chapters. Chapter 1 forms the common core of the lastthree, providing all the definitions and properties used thereafter. It contains classicalnotions of combinatorics and algebra related to the study of partial orders. These notionsare illustrated by several examples. Notably, in the first part, lattices defined on binarytrees, Dyck paths, or non-crossing partitions are presented. Several combinatorial andgeometrical properties are then given in the following section. For instance, we will seethe notion of distributivity and semidistributivity for a lattice and some related properties,or the construction of a poset by interval doubling, starting from the trivial poset [Day92].We will end this chapter with notions of algebra related to combinatorial Hopf algebras.Then we will present two important examples of these objects: the Malvenuto-Reutenaueralgebra [MR95] defined on permutations, and the Loday-Ronco algebra [LR98, HNT05]defined on binary trees.
In Chapter 2, we first introduce cubic coordinates, which are integer words encod-ing the intervals of Tamari lattices. Then, we will show that the cubic coordinates arein bijection with the interval-posets, themselves known to be in bijection with Tamari in-tervals [CP15]. More than a bijection, we show that for each degree, the set of cubiccoordinates endowed with the componentwise order forms a lattice and is isomorphic tothe lattice of Tamari intervals. We then give a natural geometric realization of the latticeof cubic coordinates, called cubic realization. This realization is obtained by placing inthe space Rk , with k > 0, all the cubic coordinates of the same size and connecting theelements which are in covering relation. For instance, for k = 2, the cubic realization ofthe lattice of cubic coordinates of size 3, and therefore of the lattice of Tamari intervalsfor the same size, is shown in the plane as follows:

.
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The cubic realization allows to highlight several properties of the cubic coordinates andtheir lattice. In particular, this realization reveals a cellular structure, allowing us to es-tablish a bijection between these cells and special cubic coordinates, called synchronous,and thus to obtain a formula to compute the volume of this realization via these particularelements. In a final section, we show that the lattice of cubic coordinates is shellable, whichallows us to generalise the result of Björner and Wachs [BW96,BW97] on the shellabilityof the Tamari lattice.Chapter 3 is dedicated to the study of another lattice, called Hochschild lattice. TheHochschild lattices are particular intervals of the meet-semilattice defined on the set ofDyck paths endowed with the dexter order. The dexter order and the Hochschild latticewere both recently introduced by Chapoton [Cha20]. First of all, we will recall the bijectionestablished in the article of Chapoton between the Dyck paths of these particular intervalsand a set of words defined on the alphabet {0, 1, 2}, called triwords. For all the triwords, thedexter order is translated by this bijection as the componentwise order. The set of triwordsendowed with this order then forms a lattice, called the Hochschild lattice in reference tothe Hochschild polytope, of which the Hochschild lattice is the 1-skeleton [San09,San11].As for the lattice of cubic coordinates studied in Chapter 2, we can give the cubic realizationof the Hochschild lattice. The study of this realization allows us to show that the Hochschildlattice can be shellable and constructible by interval doubling. Alongside this geometricalstudy, we show several combinatorial properties of these lattices, such as for instance theenumeration of its k-chains.In Chapter 4, we introduce δ-cliffs, a generalization of permutations and increasingtrees depending on a range map δ. By endowing the set of these objects with the compo-nentwise order, we define a first lattice. Then, we establish several general results on itssubposets. Among these results, we give sufficient conditions for the posets to be shellable,to be lattices with an algorithm to compute the meet and join between two elements, andto be constructible by interval doubling. Some of these subposets admit cubic realizations,and we introduce three families of these subposets which, for some range map δ, haveunderlying sets enumerated by Fuss-Catalan numbers. One of these subposets is a gener-alization of the Stanley lattices and another is a generalization of the Tamari lattices. Thesethree families of posets fit into a chain for the order extension relation and they shareseveral properties. Finally, in the same way that the product of Malvenuto-Reutenauer al-gebra forms the intervals of the right weak order of permutations, we construct, in a lastpart, algebras whose products form the intervals of the δ-cliff lattices. We then providenecessary and sufficient conditions on δ to have associative or free algebras. Using theprevious Fuss-Catalan posets, we define quotients of our algebras of δ-cliffs. In particular,a quotient gives the Loday-Ronco algebra and we get new generalizations of this structure.



CHAPTER 1
Elements of algebraic combinatorics and partial orders

In the three last chapters, we deal with several combinatorial objects and partial orders.Chapter 2 and Chapter 3 each give a study of a specific lattice, and Chapter 4 provide astudy of a family of posets enumerated by Fuss-Catalan numbers. The aim of this firstchapter is to connect the last three chapters of this thesis with common definitions andnotions.This chapter is organized as follows.Section 1 sets the groundwork by recalling through examples several combinatorialobjects, partial orders, and links between them.The concepts discussed in Section 2 are less classical than those seen in Section 1. Werecall several constructions on posets and lattices, such as the shellability on non-gradedposets [BW96] and the construction by interval doubling [Day92].Section 3 is related to Chapter 4, and provides a better understanding of the moti-vations for the latter chapter. Elementary definitions related to Hopf algebras are re-called, and two important examples are presented: The Malvenuto-Reutenauer Hopf alge-bra [MR95], and the Loday-Ronco Hopf algebra [LR98].
1. Algebraic and combinatorics objectsThe aim of this section is to give the main definitions used in this thesis. Thus, westart by presenting several combinatorial objects. We recall for example the definitionsof Dyck paths, binary trees, and permutations. All the sets of these objects are graded bytheir size, and we can endow these sets with partial orders.We continue by giving elementary definitions and properties related to posets andlattices. Then, we shall see several examples of order extensions and poset isomorphisms.

1.1. Graded sets, words, and Catalan objects.1.1.1. General notations and conventions. We begin by giving some notations andbasic definitions on words, which we shall use in all this thesis.For all words u, we denote by ui the i-th letter of u. The size of a word is its numberof letters. For any word a and integer k, ak is the word a repeated k times. For allintegers i and j , [i, j] denotes the set {i, i + 1, . . . , j}. For any integer i, [i] denotes the set[1, i]. Unless otherwise stated, all words are defined on the alphabet N = {0, 1, 2, . . .}. Theempty word is denoted by ε.
11



12 1. ELEMENTS OF ALGEBRAIC COMBINATORICS AND PARTIAL ORDERS
If P is a statement, we denote by 1P the indicator function (equals to 1 if P holds and0 otherwise).Let n > 0 and w = a1a2 . . . an be a word of size n. The prefixes of w are the n + 1words ε , a1 . . . ai , and the suffixes of w are the n + 1 words ε , ai . . . an , with i ∈ [n]. Aword x is a factor of w if there is a prefix p and a suffix s such that w = pxs. A word yis a subword of w if y can be obtained by deleting letters in w. For instance, radar is asubword of abracadabra.1.1.2. Graded sets. In this section, one may refer to [FS09].A graded set (or combinatorial set) is a set S endowed with a map | · | : S Ï N suchthat for all n ∈ N, the set {x ∈ S : |x| = n} is finite.A combinatorial object is an element of a graded set, and its size is its image by themap | · |. The set of combinatorial objects of S of size n > 0 is denoted by S(n). Thus, agraded set S decomposes as a disjoint unionS = ⊔

n>0 S(n). (1.1.1)
A graded subset of S is a graded set S′ such that for all n > 0, S′(n) ⊆ S(n).Any graded set S is associated to its generating series G(t), which is a series withnonnegative integer coefficients, defined by

GS(t) := ∑
n>0 #S(n)tn =∑

x∈S t
|x|, (1.1.2)

where #E means the cardinality of the set E.Let us see some classic examples of graded sets. The first example is the empty
graded set ∅ which has no object. Its generating series satisfies G∅(t) = 0. Then one hastwo graded sets with a unique object: the elementary graded set E which has one object
ε of size 0, and the atomic graded set Z which has one object of size 1. The generatingseries of these two sets satisfy respectively GE(t) = 1 and GZ(t) = t.Another example of graded set is provided by the set of integers N, where the size ofan object is its value. The generating series of this set is

GN(t) = 11− t = 1 + t + t2 + t3 + . . . . (1.1.3)
The graded set of words A∗ on the alphabet A := {a, b} contains all finite sequencesof elements of A. For instance, the elements of A∗ of size less or equal to 3 are

ε, a, b, aa, ab, bb, aaa, aab, aba, baa, abb, bab, bba, bbb, (1.1.4)and its generating series is
GA∗ (t) = 11− 2t = 1 + 2t + 4t2 + 8t3 + . . . . (1.1.5)

The graded set of graphs contains all finite graphs G := (V,E), where V is a finite setof elements called vertices, and E is a finite set of pairs of vertices called edges. Likewise,the graded set of oriented graphs contains all finite oriented graphs G := (V,A), where V
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is a finite set of vertices and A is a finite set of oriented edges from a source vertex to a
target vertex, called arrows. The size of a graph (resp. oriented graph) is the cardinalityof V .

Let n ∈ N and S1 and S2 be two graded sets. The sum of graded sets is defined by
(S1 + S2)(n) := S1(n) t S2(n), (1.1.6)

and the product is defined by
(S1 × S2)(n) := {(x1, x2) : x1 ∈ S1, x2 ∈ S2, |x1|+ |x2| = n}. (1.1.7)

For the generating series of S1 + S2 and S1 × S2, one has
GS1+S2 (t) := GS1 (t) +GS2 (t), (1.1.8)

and
GS1×S2 (t) := GS1 (t)GS2 (t). (1.1.9)

For the next two examples, we can refer respectively to 1.1.4 and 1.2.2. The gradedset of Dyck paths Dy is defined by induction by
Dy := E + {1} ×Dy× {0} ×Dy, (1.1.10)

where {1} is a graded set with one element of size 1, and {0} is a graded set with oneelement of size 0. Expression (1.1.10) means that a Dyck path is either the empty word εor a binary sequence such that there are as many 1 as 0, and in all prefixes the numberof 0 is not greater than the number of 1. The size of a Dyck path is its number of letter1. For instance, the elements of Dy of size not greater than 3 are
ε, 10, 1010, 1100, 101010, 110100, 110010, 101100, 111000, (1.1.11)

or in an equivalent way (see 1.1.4),
, , , , ,

, , , .
(1.1.12)

Similarly, the graded set of binary trees T2 is defined by induction by
T2 := E + T2 × { } × T2, (1.1.13)

where { } is a graded set with one element of size 1, called node. Expression (1.1.13)means that a binary tree is either empty or two binary trees connected by a node. The
size of a binary tree is its number of nodes. For instance, the elements of T2 of size not
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greater than 3 are

, , , , ,

, , , .

(1.1.14)

Dyck paths and binary trees are two important examples of this thesis, which is whywe will recall the definitions of these objects more accurately in the following section.
1.1.3. Regular expressions and algebraic grammars. In order to describe and toenumerate certain sets, we are led to use the regular expression notation [Sak09]. An

atomic regular expression can be either ∅ which denotes the empty set of words, or awhere a is a letter which denotes the singleton {a}. To produce regular expressions, for
r and s two (atomic or not) regular expressions, one has three operations: rs is the setof words that can be obtained by concatenating a word of r and a word of s, r + s is theunion of the two sets r and s, and r∗ denote the set of words rk for any k ∈ N. The starused for the last operation is known as the Kleene star. Besides, we use the notation r+to denote the set of words rr∗. Note that the expression ε which denotes the set {ε} isobtained with ∅∗.

For instance, to describe the set of words S1 on the alphabet {a, b, c} such that eitherthe first letter is a or there is no letter a, only one letter b, and the first letter is c, then
S1 = {u ∈ {a, b, c}N : u ∈ a(a + b + c)∗ + c+bc∗}. (1.1.15)

From the formal language theory, we also use algebraic grammars (or formal context-free grammars), which allows us to rewrite a description of a certain set through a setof rules, when the regular expression is less obvious. An algebraic grammar G is a 4-tuple (V,A, S, P), where V is a finite set of elements called variables, A is a finite set ofletters such that A ∩ V = ∅, S is a element of V called axiom, and P is a finite set of pair(X, χ) ∈ V × (V t A)∗ called productions of the grammar.
For instance, to describe the set of words S2 on the alphabet {a, b, c} such that thesubword ab is prohibited, then S2 is specified by the algebraic grammar

S′2 = ε + aS′2 + cS′2, (1.1.16)S2 = ε + bS2 + cS2 + aS′2, (1.1.17)
where S′2 is the set of words on {a, c}. The sets S′2 and S2 are the variables, the set
{a, b, c} is the set A, and S2 is the axiom.

We obtain the generating series from an expression, then the generating function,with the linear map u 7Ï z|u| for all words u of the expression.
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For instance, we can deduce from the regular expression (1.1.15) that the generatingfunction of S1 is

GS1 (t) = t1− 3t + t2(1− t)2 . (1.1.18)
Likewise, the generating series deduced from (1.1.16) and (1.1.17) are

GS′2 (t) = 1 + 2tGS′2 (t), (1.1.19)
GS2 (t) = 1 + 2tGS2 (t) + tGS′2 (t). (1.1.20)Then, the generating function of S2 is
GS2 (t) = 1− t1− 4t + 4t2 . (1.1.21)

1.1.4. m-Dyck paths. An important example of combinatorial objects defined on thealphabet {0, 1} is provided by m-Dyck paths. We will encounter these objects in Chapter 3and in Chapter 4.For any n > 0 and m > 0, an m-Dyck path of size n is a path from (0, 0) to ((m+1)n, 0)in N2 staying above the x-axis, and consisting only in steps of the form (1,−1), called down
steps, or steps of the form (1,m), called up steps, with an up step as the first step. The
size of an m-Dyck path is its number of up steps. We denote by Dym(n) the set of all
m-Dyck paths of size n.As for Dyck paths defined in Section 1.1.2, an m-Dyck path of size n can be seen as abinary sequence of length n(1 +m), where the letter 1 encodes an up step and the letter0 encodes a down step. Generally speaking, we shall use this convention instead.For instance,

(1.1.22)
is the 1-Dyck path (or Dyck path for short) 11001011011000 of size 7, and

(1.1.23)
is the 2-Dyck path 100101000110000 of size 5.Let us see further definitions about m-Dyck paths. Let d ∈ Dym(n). A factor x is a
subpath of d if x is a m-Dyck path. The Dyck path d is primitive if for all Dyck paths
x and y such that d = xy, one has x = ε or y = ε. A factor 01 is called a valley, andthe height of a valley is the ordinate of its corresponding middle point in the path. Moregenerally, the height of a step is the ordinate of its lowest point.It is a known fact that m-Dyck paths of size n are enumerated by m-Fuss-Catalannumbers [DM47] catm(n) := 1

mn + 1
(
mn + n

n

)
. (1.1.24)
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The first numbers by sizes are1, 1, 1, 1, 1, 1, 1, 1, m = 0, (1.1.25a)1, 1, 2, 5, 14, 42, 132, 429, m = 1, (1.1.25b)1, 1, 3, 12, 55, 273, 1428, 7752, m = 2, (1.1.25c)1, 1, 4, 22, 140, 969, 7084, 53820, m = 3. (1.1.25d)The second, third, and fourth sequences are respectively Sequences A000108, A001764,and A002293 of [Slo].These numbers are important in the field of algebraic combinatorics, and they areoften encountered. In particular, in Chapter 4 we define three sets of objects enumeratedby these numbers.1.1.5. Tamari diagrams. In Chapter 2 and Chapter 4, we deal with another importantobject called Tamari diagram [HT72,Pal86]. Let us give the definition of a Tamari diagram,as formulated in [BW97].For any n > 0, a Tamari diagram is a word u of length n on the alphabet N whichsatisfies the two following conditions:(i) 0 6 ui 6 n − i for all i ∈ [n],(ii) ui+j 6 ui − j for all i ∈ [n] and j ∈ [0, ui].The size of a Tamari diagram is its number of letters. For instance, the sets of Tamaridiagrams of size 2, 3 and 4 are

{00, 10}, {000, 100, 010, 200, 210},
{0000, 0010, 0100, 0200, 0210, 1000, 1010, 2000, 2100, 3000, 3010, 3100, 3200, 3210}. (1.1.26)

In the literature, Tamari diagrams are also known as bracket vectors, objects inspiredby the right parenthesage introduced in [HT72] by Huang and Tamari. Furthermore,Tamari diagrams are known to be enumerated by Catalan numbers
cat1(n) := 1

n + 1
(2n
n

)
. (1.1.27)

Note that Catalan numbers are the 1-Fuss-Catalan numbers (1.1.25b). Thus, the m-Fuss-Catalan numbers are a natural generalisation of Catalan numbers.A dual version of Tamari diagrams can be defined by considering the opposite of theconditions (i) and (ii).For any n > 0, a dual Tamari diagram is a word v of length n on the alphabet Nwhich satisfies the two following conditions:(i) 0 6 vi 6 i − 1 for all i ∈ [n],(ii) vi−j 6 vi − j for all i ∈ [n] and j ∈ [0, vi].The size of a dual Tamari diagram is its number of letters. In other words, v = v1 . . . vnis a dual Tamari diagram if and only if vn . . . v1 is a Tamari diagram.Note that the first condition of a Tamari diagram u and of a dual Tamari diagram vof size n implies that un = 0 and v1 = 0.

http://oeis.org/A000108
http://oeis.org/A001764
http://oeis.org/A002293
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A graphical representation of a Tamari diagram u of size n by needles and diagonalsprovides a simple way to check the condition (ii) of a Tamari diagram. For each position

i ∈ [n], we draw a needle from the point (i − 1, 0) to the point (i − 1, ui) in the Cartesianplane. The condition (ii) says that one can draw lines of slope −1 passing through the
x-axis and the top of each needle without crossing any other needle. For instance, theTamari diagram 9021043100 is drawn by Figure 1.1. One can observe that none of itsdiagonals, drawn as dotted lines, crosses a needle.

Likewise, a graphical representation can be given for the dual Tamari diagram v ofsize n. One draws v in the same way as Tamari diagram, and the condition (ii) says thatone can draw lines of slope 1 passing through the x-axis and the top of each needle withoutcrossing any other needle. Figure 1.1 also depicts the dual Tamari diagram 0010040002.

FIGURE 1.1. A Tamari diagram 9021043100 (on the left) and a dual Tamari diagram0010040002 (on the right) of size 10.
We will deal with both notions in Chapter 2. A generalisation of Tamari diagramsis provided in Chapter 4, where by agreement we will use the definition of dual Tamaridiagrams.
1.1.6. Permutations and Lehmer codes. Permutations are the departure point of theChapter 4, since this all work starts by giving a generalisation of the Lehmer codes ofpermutations.
For any n > 0, a permutation σ is a bijection from a finite set of cardinality n ontoitself. The size of a permutation is the cardinality of the underlying set. The set ofpermutations of size n is denoted by S(n), and is enumerated by the factorial numbers n!.We use the word notation to specify a permutation, which is the word u of size n suchthat ui = σ (i) for all i ∈ [n].
For instance, let σ be a permutation on 12345 such that σ (1) = 5, σ (2) = 1, σ (3) = 3,

σ (4) = 2 and σ (5) = 4, namely σ is the word 51324.
Let us recall some classical operations on permutations. Let σ ∈ S(n) and ν ∈ S(m).The over operation is defined by

σ ν := σ1 . . . σn(ν1 + n) . . . (νm + n), (1.1.28)
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and the under operation is defined by

σ ν := (ν1 + n) . . . (νm + n)σ1 . . . σn. (1.1.29)
For instance, 2413 312 = 2413756 and 2413 312 = 7562413.

The shifted shuffle product � is defined by
σ � ν := σ � ((ν1 + n) . . . (νm + n)), (1.1.30)

where � is the shuffle of letters.
The standardization is the map std from the set of words to the set of permutationsthat sends a word u to the unique permutation std(u) ∈ S|u| obtained by numbering theletters of u from the smallest to the greatest from 1 to |u|, and such that if there is morethan one then we consider the leftmost as the smaller. For instance, std(643827685) =532817694.
For any n > 0, a Lehmer code (or Lehmer code of permutations) is a word u suchthat 0 6 ui 6 i − 1 for all i ∈ [n] [Leh60]. The size of a Lehmer code is its size as aword. Note that the condition on Lehmer code is the same as for (dual) Tamari diagrams,namely condition (i) seen in Section 1.1.5.
There is classical correspondence between permutations and Lehmer codes. Here,we consider a slight variation of Lehmer codes, establishing a bijection between the set ofLehmer codes of size n and the set of permutations of the same size. Given a permutation

σ of size n, let u be the Lehmer code such that for any i ∈ [n], ui is the number of indices
j > σ−1(i) such that σ (j) < i. We denote by leh(σ ) the Lehmer code thus associated withthe permutation σ . For instance, leh(436512) = 002323.

1.1.7. Non-crossing partitions and Dyck paths. For any n > 0, a partition of {1, . . . , n}is non-crossing if whenever four elements 1 6 i < j < k < l 6 n are such that i, k are inthe same class and j, l are in the same class, then the two classes coincide. The size ofa non-crossing partition is the cardinality of the underlying set. The set of non-crossingpartitions of size n is denoted by NC(n), and his cardinality is cat1(n).
A well know bijection between non-crossing partitions and Dyck paths of same sizeconsists in associating to a non-crossing partition the Dyck path 10α110α2 . . . 10αn where

αi is the size of the class containing i if i is the maximal index in its class and αi = 0otherwise. For instance, the non-crossing partition {{1, 2}, {3}, {4, 6, 7}, {5}} correspondsto the Dyck path 11001011011000 of size 7.
1.2. Trees and algorithms.1.2.1. Trees and forests. Trees are intrinsically linked to the notion of recursion. Thisis why they can be found in many scientific fields. We use the definition from graph theory,namely a rooted tree is an oriented acyclic graph with a unique root, and such that anynode, except the root, is a child of a single node.
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A tree consists in nodes (or internal nodes) which are elements with at least one child,and leaves which are elements with no child, where a child is either a node or a leaf. Theelements are connected by edges. The size of a tree is its number of nodes.If it exists, a root is the only node which is not a child. A rooted tree is a tree with aroot. Unless otherwise specified, all the trees we consider in this thesis are rooted trees.Let x be a node, a subtree of x is a rooted tree admitting a child of x as root. A descendantof x is a node in a subtree of x. An ordered tree (or plane tree) is a rooted tree such thatan ordering from left to right is specified for the children of each node.We draw rooted trees with the root at the top and the leaves at the bottom, where anode is depicted by and a leaf is depicted by . Figure 1.2 shows a rooted tree of size 8.

FIGURE 1.2. A rooted tree of size 8.
A forest is a sequence of trees. From a forest f of n trees, it is always possible to builda rooted tree t by choosing a root for each element of f and by linking all these rootsto an artificial node, such that this artificial node become the root of t. The size of theobtained tree is the sum of all sizes in f plus 1.Let m > 0. A m-tree is either a leaf or a node attached though m edges to m m-trees.The set of m-trees Tm is known to be enumerated by (m − 1)-Fuss-Catalan numbers.1.2.2. Binary trees. A binary tree (or 2-tree) t is either a leaf or a node attachedthrough two edges to two binary trees called respectively left subtree and right subtreeof t [Sta12]. Recall that the size of a binary tree is its number of nodes. We denote byT2(n) the set of binary trees of size n. The set of binary trees is enumerated by Catalannumber. In all this thesis, we consider all binary trees as ordered and rooted binary trees.Let t ∈ T2(n). Each node of t is numbered recursively, starting with the left subtree,then the root, and ending with the right subtree. An example is given in Figure 1.3.This numbering then establishes a total order on the nodes of a binary tree called infix

order. Afterwards, this numbering is used to refer to the nodes. The path following thisnumbering is called infix traversal.The canopy of t is the word of size n − 1 on the alphabet {0, 1} built by assigning toeach leaf of t a letter as follows. Any leaf oriented to the left (resp. right) is labeled by 0(resp. 1). The canopy of t is the word obtained by reading from left to right the labels thusestablished, forgetting the first and the last one. For instance, the binary tree in Figure 1.3has for canopy the word 0110100.
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FIGURE 1.3. A binary tree of size 8 and the numbering of its nodes following the infix order.
A fundamental operation in binary trees is the right rotation [Tam62]. Let k and l bethe indices in infix order of two nodes of a binary tree t, such that the node k is left childof the node l. Right rotation locally changes the tree t so that l becomes the right childof k (see Figure 1.4). Equivalently, this means that ((a, b), c) becomes (a, (b, c)), where a, band c are the subtrees shown in Figure 1.4.

l

a b

k c

k

a l

cb
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FIGURE 1.4. Right rotation of edge (k, l) in t (on the left), where a,b, and c are any subtrees.
As for permutations, there is an under operation and a over operation for binary treesdue to Loday and Ronco [LR02]. Let t ∈ T2(n) and s ∈ T2(m). The over operationbetween t and s gives the binary tree t s by replacing the leftmost leaf of s by the root of

t. Likewise, the under operation between t and s gives the binary tree t s by replacingthe right most leaf of t by the root of s.
For instance, for t := and s := , one has

t s = , (1.2.1)

t s = . (1.2.2)
1.2.3. Binary trees and permutations. A binary search tree is a binary tree wherenodes are labelled by integers, such that for each node x of label a, any node in the left
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subtree of x has a label smaller than or equal as a, and any node in the right subtree of
x has a label greater than a.

Let t be a binary search tree of size n, and a be a letter. The algorithm of insertion,denoted by bst, of the letter a in t consists in adding a node a such that, for each node
x of t, starting by the root, a is placed in the left subtree of x if a 6 x and in the rightsubtree of x otherwise. Therefore, the size of the obtained tree is n + 1.

With the algorithm of insertion, one can build a binary search tree from a word ofsame size as follows. Let u be a word of size n. The root is the letter un , then we buildrecursively the left subtree and the right subtree of un by placing for each letter ui with
i ∈ [n], the letter ui−1 on the left of ui if ui−1 6 ui and on the right of ui otherwise.For instance, the binary tree see in Figure 1.3 is obtained by bst(52871634), which is apermutation.

For any n > 0, the algorithm of insertion bst provides a surjection from the set ofpermutations S(n) to the set of binary trees T2(n).
For instance, for n = 3,

123 7Ï
3

2
1

(1.2.3)

132 7Ï 2
1 3 (1.2.4)

312 7Ï 2
1 3 (1.2.5)

213 7Ï
3

1
2

(1.2.6)

231 7Ï
1

3
2

(1.2.7)

321 7Ï
1

2
3

(1.2.8)
Note that when we consider permutations, we can forget the labelling of nodes sincethe only way to label binary search trees is an infix traversal. For instance, (1.2.4) and(1.2.5) are the same binary tree.
1.2.4. Binary trees and Tamari diagrams. For any n > 0, the set of Tamari diagramsof size n is in bijection with T2(n). Indeed, one builds from a Tamari diagram u of size na binary tree s recursively as follows. If n = 0, s is defined as the leaf. Otherwise, let i bethe smallest position in u such that ui is the maximum allowed value, namely n− i. Then

s1 := u1 . . . ui−1 and s2 := ui+1 . . . un are also Tamari diagrams. One forms s by graftingthe binary trees obtained recursively by this process applied on s1 and on s2 to a newnode. Reciprocally, for each node of index i of the tree s, labeled with an infix transversal,the value of the i-th letter of the corresponding Tamari diagram is given by the number ofnodes in the right subtree of the node i. The complete demonstration is given in [Pal86].
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FIGURE 1.5. A binary tree and the associated Tamari diagram of the same size.
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FIGURE 1.6. A binary tree and the associated Dyck path of the same size.
In the case of dual Tamari diagrams, the construction of the binary tree t is alsorecursive, except that it is the maximum position i in the dual Tamari diagram whose valueis the highest allowed on that section of the word that should be chosen first. Similarlyfor the reciprocal, the procedure is identical, except that the value of the i-th letter in thedual Tamari diagram is given by the number of nodes in the left subtree of the node i inthe tree t.
For instance, in Figure 1.3, the Tamari diagram is 10040210 and the dual Tamaridiagram is 00230100. Figure 1.5 depicts the corresponding binary tree of the Tamaridiagram 1003010.
1.2.5. Binary trees and Dyck paths. There are several bijections between binary treesand Dyck paths of the same size. Let us describe one of them. We know that a binarytree t is either a leaf or a node related to a left subtree t1 and a right subtree t2, that is

t = (t1, t2). The bijection, denoted by φ, is then defined as follows. If t is a leaf, then φ(t) isthe empty word ε , otherwise φ(t) = φ(t1)1φ(t2)0. An example is given in Figure 1.6.
Reciprocally, for any n > 0, one can build the Tamari diagram, and so the binary tree,from a Dyck path d of size n as follows. For all i ∈ [n], the letter ui in u is the number ofup steps between the i-th up step and the first down step of same height at its right in d.The word u is then a Tamari diagram, and the binary tree is obtained as seen in 1.2.4. Forinstance, the Dyck path in Figure 1.6 corresponds to the Tamari diagram 1003010, whichcorresponds to the tree on its left.
1.3. Posets and lattices.
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1.3.1. Elementary definitions. A partial order 4P on a set P is a binary relation 4Psuch that, for all x, y, z ∈ P, this relation is(i) reflexive: x 4P x,(ii) antisymmetric: if x 4P y and y 4P x, then x = y,(iii) transitive: if x 4P y and y 4P z, then x 4P z.
A partially ordered set, commonly called poset, is a pair (P,4P). When the contextis clear, we simply denote this pair by P.
When two elements x and y of P satisfy x 4P y, then we say that x and y are

comparable. Otherwise they are incomparable. A subposet of a poset P is a subset of Pendowed with the induced partial order.
Let x, y ∈ P such that x 4P y and x 6= y. The element y covers x, denoted by xlP y,for the partial order 4P if, for all z ∈ P such that x 4P z 4P y, either z = x or z = y.The binary relation lP is called the covering relation of the poset P. By a slight abuseof notation, the set of elements (x, y) such that xlP y is also denoted by lP.
A maximal element of P is an element x such that if there is y ∈ P such that x 4P ythen y = x. Likewise, a minimal element of P is an element y such that if there is x ∈ Psuch that x 4P y then x = y. A poset P is bounded if it has a unique maximal elementand a unique minimal element for 4P.
Since a partial order is transitive, one can realize posets or lattices by knowing onlycovering relations. The natural way to realize posets is to draw their Hasse diagrams, bydrawing a edge between all x and y in P such that (x, y) ∈ lP. For any (x, y) ∈ lP, wechoose the convention to represent x at the top and y at the bottom in the Hasse diagrams.We will keep this convention for all realizations.
The dual of P is the set P endowed with 4∗P defined, for all x, y ∈ P such that x 4P y,by y 4∗P x. We say that P is self-dual if there is a poset isomorphism between P and itsdual (see Section 1.4 for the definition of poset isomorphism).
Let x, y ∈ P, the join between x and y, denoted by ∨P(x, y) (or x ∨P y), is defined by

∨P (x, y) := min4P{z ∈ P : x 4P z and y 4P z}. (1.3.1)
The meet between x and y, denoted by ∧P(x, y) (or x ∧P y), is defined by

∧P (x, y) := max4P{z ∈ P : z 4P x and z 4P y}. (1.3.2)
A poset P is a join-semilattice if for all x, y ∈ P, ∨P(x, y) exists. Likewise, a poset Pis a meet-semilattice if for all x, y ∈ P, ∧P(x, y) exists.
A poset (L,4L) is a lattice ifL is a join-semilattice and a meet-semilattice. A sublatticeof a lattice L is a subset of L that is a lattice for the meet and join operations of L.
Our first example is the hypercube (or Boolean lattice) of dimension n > 0, which isthe lattice Hn on the set of the subsets of [n] ordered by set inclusion. Figure 1.7 depictson the left the lattice H3 on A := {a, b, c}. On the right one has a poset P which is not
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a lattice, since there are two non comparable elements d and e such that b 4P d and
c 4P d, and b 4P e and c 4P e.

∅

{a} {b} {c}

{a, b} {b, c}{a, c}

A

a

b c

ed

f

FIGURE 1.7. The Hasse diagrams of a lattice (on the left) and of a poset (on the right).
An element x of a lattice L is join-irreducible (resp. meet-irreducible) if x covers(resp. is covered by) exactly one element in L. We denote by J(L) (resp. M(L)) theset of join-irreducible (resp. meet-irreducible) elements of L. These notions are usuallyconsidered specially for lattices but we can take the same definitions even when L is justa poset.
For instance, in Figure 1.7 one has for the lattice L,

J(L) = {{a}, {b}, {c}}, (1.3.3)
M(L) = {{a, b}, {a, c}, {b, c}}. (1.3.4)

1.3.2. Rank functions. Let P be a poset. A rank function rk is a function from P to
N such that rk(x) = 0 if and only if x is a minimal element of P, and rk(y) = rk(x) + 1 ifand only if xlP y for all x, y ∈ P. For all x ∈ P, the value rk(x) is the rank of x. If Padmits a rank function then P is graded.

1.3.3. Order dimension. The order dimension [Tro92] of a poset P is the smallestnonnegative integer k such that there exists a poset embedding of P into (Nk,4
) where 4is the componentwise partial order (see Section 1.4 for the definition of embedding). Forexample, it can be shown that the order dimension of Hn is n.

1.3.4. Degree polynomial. For any poset P, the degree polynomial of P is the poly-nomial dP(x, y) ∈ K[x, y] defined by
dP(x, y) := ∑

u∈P
xinP(u) youtP(u), (1.3.5)

where for any u ∈ P, inP(u) (resp. outP(u)) is the number of elements covered by (resp.covering) u in P. We define the specialization dP(1, y) as the h-polynomial of P.
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FIGURE 1.8. Hasse diagrams of S(4) for 4we.
1.3.5. Right weak order on permutations. For any n > 0, let σ, ν ∈ S(n). We set

σ lwe ν if ν is obtained from σ by replacing one factor ab by ba with a < b. The right
weak order (or weak Bruhat order) 4we is the reflexive and transitive closure of lwe,which is the covering relation. The right weak order on permutations forms a lattice, alsoknown as the permutohedron. Figure 1.8 depicts the right weak order on permutationsfor n = 4.

1.3.6. Lehmer code lattices. For any n > 0, let u and v be two Lehmer codes of thesame size n. We set u 4 v if ui 6 vi for all i ∈ [n]. The relation 4 is a partial order calledthe componentwise order, and the set of Lehmer codes endows with 4 is the Lehmer
code lattice [Leh60]. Moreover, u is covered by v, denoted ul v, if there is a unique
i ∈ [n] such that ui < vi , and for all Lehmer codes w such that u 4 w 4 u, either w = uor w = v. A study of these posets appears in [Den13].The componentwise order is a natural order on words, and plays a very importantrole in all the next chapters.1.3.7. Tamari lattices. For any n > 0, let s, t ∈ T2(n). We set s 4ta t if t is obtained bysuccessively applying one or more right rotations in s. The set T2(n) endows with 4ta isthe Tamari lattice of order n [HT72]. Moreover, s is covered by t, denoted by slta t, if tis obtained from s by performing one right rotation. Figure 1.9 shows the Tamari latticefor n = 2 and for n = 3.In the literature, the Tamari lattice is also called the associahedron, or the Stasheff
polytope after the work of Stasheff. More precisely, the Hasse diagram of the Tamarilattice is the 1-skeleton of the associahedron.As seen previously, the algorithm of insertion bst provides a surjection from S(n)to T2(n) for n > 0. This implies that the Tamari lattice can be obtained from the rightweak order on permutations [HNT05]. More precisely, the Tamari order is the right weak
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FIGURE 1.9. Hasse diagrams of T2(2) and T2(3).
order on 132-avoiding permutations, where 132-avoiding means that we have to removeall permutations u such that ui < uj > uk for some i < j < k. Figure 1.10 depicts theTamari lattice of order 4, obtained from Figure 1.8.A natural translation of the Tamari order is given by the bijection between binarytrees and Tamari diagrams seen in 1.2.4. With this bijection, the Tamari order can betranslated as the componentwise order on Tamari diagrams [Pal86].Likewise, through the bijection between binary trees and Dyck paths seen in 1.2.5, theTamari order can also be defined on Dyck paths as follows. For any n > 0, let d, d′ ∈ Dy(n)such that d := p0xs where p is a prefix, s is a suffix, and x is primitive. We set dlta d′ if
d′ = px0s. The Tamari order on Dy(n) is then the reflexive and transitive closure of lta.The Tamari posets admit a lot of generalizations, for instance through the so-called m-Tamari posets [BPR12] defined on m-Dyck paths, where m > 0, and through the ν-Tamariposets [PRV17] where ν is a binary word. In Chapter 4, we define another generalisationof the Tamari lattice, based on a generalisation of Tamari diagrams.1.3.8. Kreweras lattices. There is a natural order 4kr on non-crossing partitions dueto Kreweras [Kre72]. For any n > 0, let p, q ∈ NC(n). We set plkr q if q is obtained from
p by merging two parts such that the condition to be a non-crossing partition is satisfied.The Kreweras order 4kr on NC(n) is then the reflexive and transitive closure of lkr.The translation of the Kreweras order on Dyck paths given by the bijection seenin 1.1.7 is also natural. For any n > 0, let d, d′ ∈ Dy(n) such that d := p10mxs where
p is a prefix, s is a suffix, x is a subpath, and m > 1. We set dlkr d′ if d′ = p1x0ms.The Kreweras order on Dy(n) is then the reflexive and transitive closure of lkr. SeeFigure 1.11 for the Kreweras order on Dy(3).1.3.9. Stanley lattices. For any n > 0, let d, d′ ∈ Dy(n). We set d 4st d′ if d stays below
d′. The set Dy(n) endows with the partial order 4st is the Stanley lattice [Sta75,Knu04].Moreover, d is covered by d′ if d′ is obtained from d by replacing a factor 01 by a factor10. See Figure 1.11 for the Stanley lattice on Dy(3).
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FIGURE 1.10. Tamari order on 132-avoiding permutations of size 4.

FIGURE 1.11. From left to right, Hasse diagrams of the Stanley order, the dexter order, andthe Kreweras order on Dy(3).
1.3.10. Dexter order. The dexter order, introduced in [Cha20], is the natural orderobtained on special elements of the Tamari interval lattices (see Section 2.2.3 for thedefinition of Tamari interval lattice). In Chapter 3, we shall work on a particular intervalof the dexter order, called the Hochschild lattice.A subpath x of d is movable if x is primitive and if there is a prefix p and a suffix

s such that d = p10mxs, where m > 0, and either s = ε or the first letter of s is 1.Figure 1.12 gives two examples of movable subpaths.

FIGURE 1.12. A Dyck path 1100101100 with two movable paths, in blue (dark).
For any n > 0, let d := p10mxs be a Dyck path of size n, where x is movable. Let

dα,β be the Dyck path of size n such that dα,β := p10αx0βs, where α + β = m and β > 0.
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We set dlde d′ if d′ = dα,β , for any x movable subpath of d. The dexter order 4de is thereflexive and transitive closure of lde, which is the covering relation. Figure 1.13 depictsthe three covering Dyck paths of the Dyck path 1100101100 seen in Figure 1.12 for thedexter order. Note that the chosen movable subpath x is no longer movable in dα,β .

FIGURE 1.13. The three Dyck paths covering the Dyck path 1100101100 for the dexter order.
The set Dy(n) endowed with the dexter order is a meet-semilattice with many proper-ties highlighted in the article of Chapoton [Cha20]. See Figure 1.11 for the dexter orderon Dy(3).
1.4. Poset morphisms and poset embeddings.1.4.1. Definitions. Let (P1,41) and (P2,42) be two posets. A map φ : P1 → P2 is a

poset morphism if for any x, y ∈ P1, x 41 y implies φ(x) 42 φ(y). We say that P2 is an
order extension of a poset P1 if there is a map φ : P1 →P2 which is both a bijection anda poset morphism.

A map φ : P1 → P2 is a poset embedding if for any x, y ∈ P1, x 41 y if and only if
φ(x) 42 φ(y). Observe that a poset embedding is necessarily injective. A map φ : P1 →P2is a poset isomorphism if φ is both a bijection and a poset embedding.

1.4.2. Examples. In 1.3.7, we see that a natural translation of the Tamari order onbinary trees is given by the componentwise order on Tamari diagrams. The bijectiondescribed in 1.2.4 is in fact a poset isomorphism between the two lattices. Likewise, onehas a poset isomorphism between the Tamari order on binary trees and the Tamari orderon Dyck paths described in 1.3.7. Figure 1.14 shows the three lattices, which are finallythe same lattice.
Another example of poset isomorphism is given by the bijection seen in 1.1.7 betweennon-crossing partitions and Dyck paths. Therefore, the Kreweras order on non-crossingpartitions and the Kreweras order on Dyck paths are the same lattice.
In 1.1.6, we give a bijection between permutations and Lehmer codes. This bijectionprovides our first example of order extension. Thus, the componentwise order on Lehmercodes is a order extension of the right weak order on permutations (see Section 1.2.3 ofChapter 4). Figure 1.15 depicts the lattice of permutations for n = 3, and the lattice onLehmer codes for n = 3.
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FIGURE 1.14. Hasse diagrams of BT(3), the Tamari order on Dy(3), and the componentwiseorder on Tamari diagrams of size 3.
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FIGURE 1.15. Hasse diagrams of S(3) and of the Lehmer code lattice of size 3.

FIGURE 1.16. From left to right, Kreweras lattice, Tamari lattice, and Stanley lattice on Dy(3).
Another example of order extension relates the Stanley order, the Tamari order, andthe Kreweras order. Indeed, ordered by inclusion, the Stanley lattice is an extension of theTamari lattice which is an extension of the Kreweras lattice [Knu06, BB09]. Figure 1.16shows the three orders on Dy(3).

2. Combinatorial and geometric propertiesThere are several constructions on posets, as the posets of k-chains or the order idealsordered by inclusion. We start this section by recalling some definitions and propertieson lattices, such as the distributivity. Then, we shall see some poset constructions as the
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posets of intervals or the edge labelling on non-graded posets. We will end this sectionwith the properties of some posets to be constructible by doubling specific intervals.

This section will be useful for all next chapters.
2.1. Distributive and semidistributive lattices.2.1.1. Elementary definitions. A lattice L is join-semidistributive if for all x, y, z ∈ L,

x ∨y = x ∨ z implies x ∨y = x ∨(y ∧ z). (2.1.1)
Likewise, a lattice L is meet-semidistributive if for all x, y, z ∈ L,

x ∧y = x ∧ z implies x ∧y = x ∧(y ∨ z). (2.1.2)
A latticeL is semidistributive ifL is both join-semidistributive and meet-semidistributive.
A lattice L is distributive if

x ∧(y ∨ z) = (x ∧y)∨(x ∧ z), (2.1.3)
or in an equivalent way

x ∨(y ∧ z) = (x ∨y)∧(x ∨ z). (2.1.4)
For instance, the Boolean lattices are distributive lattices. The Tamari lattices arenon-distributive lattices, as the Kreweras lattices.
It is known [Bir79] that all sublattices of distributive lattices are distributive.
2.1.2. Chains and maximal chains. A chain of a poset P is a tuple(

x(1), x(2), . . . , x(r−1), x(r)), (2.1.5)
where x(1), x(2), . . . , x(r−1), x(r) are r elements of P such that

x(1) 4P x(2) 4P · · · 4P x(r−1) 4P x(r). (2.1.6)
Let lP be the covering relation of P. If x(i) lP x(i+1) for all i ∈ [r − 1], then thechain (2.1.5) is saturated.
Let L be a lattice and let (

x(1), x(2), . . . , x(r−1), x(r)) (2.1.7)
be a saturated chain of L. The length of the saturated chain (2.1.7) is r − 1.

Note that in Section 2.2, we deal with k-chains, where k refers not to the length of thechain but to the number of elements forming that chain.
A longest saturated chain between the minimal element and the maximal element of

L is a maximal saturated chain. The union of maximal saturated chains of L is knownas the spine of L. The spine of L is denoted by S(L).
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2.1.3. Extremal and trim lattices. Let L be a lattice such that the length of a maximalsaturated chain is k. If #J(L) = #M(L) = k then L is an extremal lattice [Mar92].
An element x of a lattice L is left modular [BS97] if for any y 4L z,

(y ∨x)∧ z = y ∨(x ∧ z). (2.1.8)
A lattice is left modular if there is a maximal saturated chain of left modular elements.

A lattice is trim [Tho06] if it is an extremal left modular lattice.
It is shown in [TW19] that if a lattice is extremal and semidistributive, then it is alsoleft modular, and therefore trim.
Let L be an extremal lattice. It is known from [Tho06] that the spine of an extremallattice is a distributive sublattice of L.
2.1.4. The Fundamental theorem for finite distributive lattices. Let P be a poset. An

order ideal in P is a subset S of P such that if x ∈ S and y 4P x then y ∈ S.
The Fundamental theorem for finite distributive lattices (FTFDL for short) due toBirkhoff [Bir37] states that any finite distributive lattice L is isomorphic to the lattice

J(P) of the order ideals of the subposet P of L restricted to its join-irreducible elements,ordered by inclusion [Sta11].
More recently, a general version of the FTFDL has been given by Reading, Speyer,and Thomas for finite semidistributive lattices [RST19].
2.2. Posets of k-chains.2.2.1. Definitions. A k-chain of a poset P is a chain of P which is, as a tuple, of length

k.
For any poset P, we can always consider the poset of k-chains Pk of P whereelements are k-chains and the order relation is defined, for all γ, δ ∈ Pk such that

γ := (u(1), u(2), . . . , u(k)) and δ := (v(1), v(2), . . . , v(k)), by
γ 4Pk δ if u(i) 4P v(i) for all i ∈ [k]. (2.2.1)

2.2.2. Posets of intervals. Let P be a poset and u(1), u(2) ∈ P such that u(1) 4P u(2). An
interval [u(1), u(2)] is the set of all elements between u(1) and u(2). The set of intervals of Pis denoted by int(P). Since the 2-chain (u(1), u(2)) characterizes the interval [u(1), u(2)] andreciprocally, we use the same notation for intervals as for 2-chains.

The poset of intervals of a poset P is the poset on the set int(P) endowed with thepartial order 4int(P) defined, for all (u(1), u(2)), (v(1), v(2)) ∈ int(P), by
(u(1), u(2)) 4int(P) (v(1), v(2)) if u(1) 4P v(1) and u(2) 4P v(2). (2.2.2)

The property of being a lattice is preserved under this construction.
PROPOSITION 2.2.1. If (L,4L) is a lattice then (int(L),4int(L)) is a lattice.
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PROOF. Let (u(1), u(2)), (v(1), v(2)) ∈ int(L). First, we have to show that ∨L(u(1), v(1)) 4L

∨L(u(2), v(2)). By definition of the join, one has u(2) 4L ∨L(u(2), v(2)) and v(2) 4L ∨L(u(2), v(2)).Furthermore, since u(1) 4L u(2) and v(1) 4L v(2), one has u(1) 4L ∨L(u(2), v(2)) and v(1) 4L
∨L(u(2), v(2)). In addition, ∨L(u(1), v(1)) is the minimal element of L satisfying u(1) 4L
∨L(u(1), v(1)) and v(1) 4L ∨L(u(1), v(1)). Thus ∨L(u(1), v(1)) 4L ∨L(u(2), v(2)).

From the equation (2.2.2), one has
∨int(L) ((u(1), u(2)), (v(1), v(2)))= min4int(L){(w(1), w(2)) ∈ int(L) : (u(1), u(2)) 4int(L) (w(1), w(2)), (v(1), v(2)) 4int(L) (w(1), w(2))}= min4int(L){(w(1), w(2)) ∈ int(L) : u(1) 4L w(1), u(2) 4L w(2), v(1) 4L w(1), v(2) 4L w(2)}= (∨L(u(1), v(1)),∨L(u(2), v(2))) . (2.2.3)

The case of the meet ∧int(L) ((u(1), u(2)), (v(1), v(2))) = (∧L(u(1), v(1)),∧L(u(2), v(2))) is sym-metrical. �

In the same way for (u(1), u(2)), (v(1), v(2)) ∈ int(L) such that (u(1), u(2)) 4int(L) (v(1), v(2)), acovering relation for the partial order 4int(L) is defined.
2.2.3. Tamari intervals and interval-posets. Let s, t ∈ T2(n). A Tamari interval of

size n is an interval (s, t) for the Tamari order 4ta. The set of Tamari intervals of size nis denoted by int(T2(n)).
The Tamari interval lattice is the set int(T2(n)) endowed with the partial order 4int(ta).Let n > 0 and (s, t), (s′, t′) ∈ int(T2(n)), following (2.2.2), we have that (s, t) 4int(ta) (s′, t′) if

s 4ta s′ and t 4ta t′. According to Lemma 2.2.1, the poset so defined is a lattice. Moreover,it follows from the definition of 4int(ta) that (s′, t′) covers (s, t) if
? either s′ is obtained by a single right rotation of an edge in s and t′ = t,
? or t′ is obtained by a single right rotation of an edge in t and s′ = s.

It is known from [Cha06] that Tamari intervals of size n are enumerated by2(4n + 1)!(n + 1)!(3n + 2)! . (2.2.4)
The first numbers are 1, 1, 3, 13, 68, 399, 2530, 16965. (2.2.5)This sequence is Sequence A000260 of [Slo].

Interval-posets are posets introduced by Châtel and Pons in [CP15] in order to studythe Tamari interval posets. Indeed, there is a poset isomorphism between the Tamariinterval lattices and the set of interval-posets endowed with a certain partial order. Weshall use the one-to-one correspondence between the two sets in Chapter 2. This is whywe shall recall here a part of the bijection in the broad outline.

http://oeis.org/A000260
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Let n > 0 and {π1, . . . , πn} be a set of n symbols numbered from 1 to n. An interval-

poset π is a partial order � on the set {π1, . . . , πn} such that(i) if i < k and πk � πi then for all πj such that i < j < k, one has πj � πi ,(ii) if i < k and πi � πk then for all πj such that i < j < k, one has πj � πk.The size of an interval-poset is the cardinality of its underlying set. The set of interval-posets of size n is denoted by IP(n), and the elements of interval-poset are called vertices.
The two conditions (i) and (ii) of interval-posets are referred to as interval-poset prop-

erties. For any i < j , the relations πj � πi are known as decreasing relations and therelations πi � πj are known as increasing relations.
As it is shown in Figure 2.1, the Hasse diagram of interval-posets can be drawn as anoriented graph where two vertices πi and πj are related by an arrow from πi to πj (resp.

πj to πi) if πi � πj (resp. πj � πi) where i < j .

π1 π2 π3 π4 π5 π6 π7 π8

FIGURE 2.1. Hasse diagram of an interval-poset of size 8.

Let n > 0 and (s, t) ∈ int(T2(n)) and π ∈ IP(n). The bijection ρ relates on the one handthe restriction of π to its decreasing relations with the binary tree s, and on the otherhand the restriction of π to its increasing relations with the binary tree t.
Thus the restriction of π to its decreasing (resp. increasing) relations has a decreasing(resp. increasing) forest as Hasse diagram, where if πj � πi with i < j (resp. j < i), thenthe node j is a descendant of the node i. Otherwise, it is placed to the right (resp. left) ofthe node i. To form the binary tree s (resp. t), then read the decreasing (resp. increasing)forest for the prefix transversal from right to left (resp. from left to right). If a node jis a descendant of a node i in the decreasing (resp. increasing) forest, then the node jbecomes a right (resp. left) descendant of the node i in s (resp. t). Otherwise, it becomesthe left (resp. right) descendant of the node i. The numbering of the binary trees thusobtained is exactly the infix order. Figure 2.2 gives an example of construction by thebijection ρ of a Tamari interval from an interval-poset of size 5.

2.3. EL-shellability.
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π1 π2 π3 π4 π5

(A) Interval-poset of size 5.

1
2 3

4
5

1
2 3

4 5
(B) Decreasing (on the left) and in-creasing (on the right) forests

1

2
3

4
5

(C) Left binary tree.

1

2
3

4
5

(D) Right binary tree.
FIGURE 2.2. Construction of a Tamari interval from an interval-poset by ρ.

2.3.1. Edge labelling and shellability of non-graded posets. In [BW96] and [BW97],Björner and Wachs generalized the method of labellings of the cover relations of gradedposets to the case of non-graded posets. In particular, they showed the EL-shellability ofthe Tamari poset [BW97].
Let P be a bounded poset and Λ be a poset, and λ : lP → Λ be a map. For anysaturated chain (x(1), . . . , x(k)) of P, we set

λ
(
x(1), . . . , x(k)) := (λ(x(1), x(2)), . . . , λ(x(k−1), x(k))). (2.3.1)

We say that a saturated chain of P is λ-increasing (resp. λ-weakly decreasing) if itsimage by λ is an increasing (resp. weakly decreasing) word for the order relation 4Λ.We say also that a saturated chain (x(1), . . . , x(k)) of P is λ-smaller than a saturated chain(
y(1), . . . , y(k)) of P if λ(x(1), . . . , x(k)) is smaller than λ

(
y(1), . . . , y(k)) for the lexicographicorder induced by 4Λ. The map λ is called EL-labeling (edge lexicographic labeling) of Pif for any x, y ∈ P satisfying x 4P y, there is exactly one λ-increasing saturated chainfrom x to y, and this chain is λ-minimal among all saturated chains from x to y. Anybounded poset that admits an EL-labeling is EL-shellable [BW96,BW97].

The EL-shellability of a poset P implies several topological and order theoretical prop-erties of the associated order complex ∆(P) built from P. Recall that the faces of thissimplicial complex are all the chains of P. Moreover, if P has at most one λ-weakly de-creasing chain between any pair of elements then the Möbius function of P takes values
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a

b c

ed

f

FIGURE 2.3. Counterexample of a lattice not EL-shellable.

FIGURE 2.4. Operation of doubling in an interval in blue (dark).
in {−1, 0, 1}. In this case, the simplicial complex associated with each open interval of Pis either contractible or has the homotopy type of a sphere [BW97].2.3.2. Example and counterexample. Figure 2.3 gives an example of a latticeL whichis not EL-shellable. Indeed, suppose that there is a poset Λ and a map λ : lL → Λ suchthat between a and f there is a unique λ-increasing saturated chain passing through c and
e. Then, the saturated chain (a, b, d, f ) cannot be λ-increasing. Therefore, either the map
λ cannot be increasing between a and d or between b and f . Thus, there is no way to findfor all interval one λ-increasing saturated chain.The Tamari lattice is an example of an EL-shellable lattice [BW97].

2.4. Construction by interval doubling.2.4.1. Interval doubling and construction. Let 2 be the poset {0, 1} where 0 4 1. Let
P be a poset and I one of its intervals. The interval doubling of I in P is the poset

P[I] := (P \ I) ∪ (I × 2), (2.4.1)having 4′P as order relation, which is defined as follows. For any x, y ∈ P[I], one has
x 4′P y if one of the following assertions is satisfied:(i) x ∈ P \ I , y ∈ P \ I , and x 4P y,(ii) x ∈ P \ I , y = (y ′, b) ∈ I × 2, and x 4P y ′,(iii) x = (x′, a) ∈ I × 2, y ∈ P \ I , and x′ 4P y,(iv) x = (x′, a) ∈ I × 2, y = (y ′, b) ∈ I × 2, and x′ 4P y ′ and a 4P b.Figure 2.4 give an example of interval doubling.This operation has been introduced in [Day92] as an operation on posets preservingthe property of being a lattice. On the other way round, we say that P is obtained by
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FIGURE 2.5. Graph of first posets generated by interval doubling.

FIGURE 2.6. Counterexample of a lattice not constructible by interval doubling.
an interval contraction from a poset P′ if there is an interval I of P such that P[I] isisomorphic as a poset to P′ [CLCdPBM04].A lattice L is constructible by interval doubling (called “bounded” in the originalarticle [Day92]) ifL is isomorphic as a poset to a poset obtained by performing a sequenceof interval doubling from the singleton lattice. It is known from [Day79] that such latticesare semidistributive. Recall that a finite latticeL is constructible by interval doubling if andonly if it is congruence uniform, and then in particular, the number of join-irreducibleelements of L determines the number of interval doubling steps needed to create L(see [Day79] and [Müh19]).2.4.2. Example and counterexample. Starting from the trivial poset (one element),one can give the first posets generated by interval doubling. Figure 2.5 shows all theposets obtained for three steps of interval doubling.Figure 2.6 is the Kreweras order for n = 3. Considering Figure 2.5, the only wayto obtain another lattice with 5 elements is to doubling one element of the lattice at thebottom left. However, it is clear that the Kreweras lattice cannot be obtained from thelatter. Therefore, the Kreweras lattice is not constructible by interval doubling.
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3. Combinatorial Hopf algebras and posetsIn Section 3 of Chapter 4, we deal with algebraic structures such as graded algebrasand graded coalgebras. More precisely, we shall define a graded associative algebra linkedwith a poset introduced in Chapter 4.This section provides several definitions and properties related to combinatorial Hopfalgebras, and introduce two important examples of combinatorial Hopf algebras: the Hopfalgebra FQSym and the Hopf algebra PBT, defined respectively on permutations and onbinary trees. Due to their link with the right weak order and the Tamari order, these twocombinatorial Hopf algebras are one of the most important motivations for our work inChapter 4. We will see how their product and coproduct are related to both partial ordersat the end of this section.The classical references for the elementary notions are [Swe69,Abe80].

3.1. Combinatorial Hopf algebras.3.1.1. Combinatorial vector spaces. Throughout the rest of this thesis, K is a field ofcharacteristic zero. The identity element of K is denoted by 1K for the product, and 0K forthe addition. The Kronecker delta is denoted δx,y . Let us recall that δx,y = 1K if x = y,and δx,y = 0K else.Let E be a set and f : E Ï K be a map. The support of f is the setSupp(f ) := {x ∈ E : f (x) 6= 0}. (3.1.1)The free vector space associated with the set E isVect(E) := {f : E Ï K : Supp(f ) is finite}. (3.1.2)The set F := {Fx := y 7Ï δx,y : x ∈ E} is a basis of Vect(E), called the fundamental basis.Therefore, all elements f of Vect(E) are expressed as
f = ∑

x∈Supp(f ) f (x)Fx , (3.1.3)
and Vect(E) can be seen as the vector space of finite formal sums of elements of E withcoefficients in K.Let S be a graded set such that #S(0) = 1. The combinatorial vector space generatedby S is the free vector space Vect(S).All combinatorial vector spaces are graded, namely they decompose as a direct sumVect(S) =⊕

n>0 Vect(S(n)), (3.1.4)
where the vector spaces Vect(S(n)), called homogeneous components of degree n ofVect(S), are of finite dimension.If V is a combinatorial vector space then we will denote by V (n) its homogeneouscomponent of degree n.
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The Hilbert series of a combinatorial vector space V is the series

HV (t) := ∑
n>0 dimV (n)tn. (3.1.5)

In other words, this series is the generating series of the underlying graded set of V .
3.1.2. Combinatorial algebras. An unital associative algebra is a vector space Aendowed with a linear map · : A ⊗A Ï A called product, and a linear map u : K Ï Acalled unit such that, for all x, y, z ∈ A and λ ∈ K,

(x · y) · z = x · (y · z), (3.1.6)
u(λ) · x = λx = x · u(λ). (3.1.7)

When the context is clear, we simply say algebra. It will be specified if the algebra isnot associative.
The condition (3.1.6) means that the product · is associative. Equivalently, by denot-ing the product · by p, and the identity map by I , this means that the diagram (3.1.8) iscommutative.

A⊗A ⊗A A ⊗A

A ⊗A A

I ⊗ p

p ⊗ I p
p

(3.1.8)
Likewise, the condition (3.1.7) means that u(1K) is the identity element for the product ·,that is the diagram (3.1.9) is commutative.

A⊗K A⊗A K⊗A

A

I ⊗ u

p

u ⊗ I

' ' (3.1.9)
Note that since we can deduce the unit map u from the identity element 1A for theproduct by setting u(λ) := λ1A for all λ ∈ K, and reciprocally 1A from u by setting1A := u(1K), one has that the two notations are equivalent.
Let (A, ·, u) be an algebra. A vector subspace A′ is a subalgebra of A if for all

x, y ∈ A′, x · y ∈ A′, and if for any λ ∈ K, u(λ) ∈ A′.
An algebra A is graded if the vector space A is graded, and if x ∈ A(n) and y ∈ A(m)then x · y ∈ A(n+m). Moreover, if A is graded and dimA(0) = 1 then A is connected. Analgebra A is commutative if for all x, y ∈ A, x · y = y · x.
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Let (A, ·A, uA) and (B, ·B, uB) be two algebras. An algebra morphism is a linear map

φ :A Ï B such that, for all x, y ∈ A and λ ∈ K,
φ(x ·A y) = φ(x) ·B φ(y), (3.1.10)

φ(uA(λ)) = uB(λ). (3.1.11)An algebra isomorphism is a bijective algebra morphism. If there is an algebra isomor-phism from A to B, then we write A ' B.
The tensor product of A and B is the algebra A ⊗B with the product · defined forall x ⊗ y, x′ ⊗ y ′ ∈ A ⊗B by

(x ⊗ y) · (x′ ⊗ y ′) := (x ·A x′)⊗ (y ·B y ′), (3.1.12)
and the unit u defined by u := uA ⊗ uB . An ideal of A is a vector subspace I of A suchthat, for all x ∈ I and y ∈ A, x ·A y ∈ I and y ·A x ∈ I . The quotient of A by the ideal I isthe algebra A/I with the product · defined for all ẋ, ẏ ∈ A/I by

ẋ · ẏ := τ(x ·A y), (3.1.13)
where τ :A ÏA/I is the canonical projection, and x and y are elements of A such that
τ(x) = ẋ and τ(y) = ẏ, and the unit u defined by u := τ ◦ uA .

Let A be a set and A∗ be the set of words on A. Let K〈A∗〉 := Vect(A∗) be an algebraendowed with the product · : K〈A∗〉 ⊗K〈A∗〉 Ï K〈A∗〉 such that u · v := uv. An algebra Ais free if there is a set A such that A ' K〈A∗〉.
A combinatorial algebra is an algebra whose vector space is combinatorial. In par-ticular, a combinatorial algebra is graded, connected, and its homogeneous componentsare of finite dimension.
3.1.3. Combinatorial coalgebras. A counital coassociative coalgebra is a vector space

C endowed with a linear map ∆ : C Ï C⊗C called coproduct, and a linear map c : C Ï Kcalled counit such that (∆⊗ I)∆(x) = (I ⊗∆)∆(x), (3.1.14)
(c ⊗ I)∆(x) = 1K ⊗ x and (I ⊗ c)∆(x) = x ⊗ 1K, (3.1.15)where I : C Ï C is the identity map.

The condition (3.1.14) means that the coproduct is coassociative, which is equivalentto saying that the diagram (3.1.16) is commutative.
C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆
∆ I ⊗∆∆⊗ I (3.1.16)

The commutative diagram (3.1.17) corresponds to the condition (3.1.15).
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C ⊗K C ⊗ C K⊗ C

C

I ⊗ c c ⊗ I

∆' ' (3.1.17)
For x ∈ C, the coproduct ∆(x) is a finite sum of tensors in the form

∆(x) =∑
i
xLi ⊗ xRi . (3.1.18)

Let (C,∆, c) be a coalgebra. A vector subspace C′ is a subcoalgebra of C if for any
x ∈ C′, ∆(c) ∈ C′ ⊗ C′.

A coalgebra C is graded if the vector space C is graded, and if x ∈ C(n) then ∆(x) ∈⊕
i+j=n C(i) ⊗ C(j). Moreover, if C is graded and dimC(0) = 1 then C is connected. Let

ω : C ⊗ C Ï C⊗ C be the linear map defined for any x ⊗ y ∈ C ⊗ C by ω(x ⊗ y) := y ⊗ x.A coalgebra C is cocommutative if for any x ∈ C, ∆(c) = ω(∆(x)).
Let (C,∆C, cC) and (D,∆D, cD) be two coalgebras. A coalgebra morphism is a linearmap φ : C Ï D such that, for any x ∈ C,

(φ ⊗ φ)∆C(x) = ∆D(φ(x)), (3.1.19)
cC(x) = cD(φ(x)). (3.1.20)A coalgebra isomorphism is a bijective coalgebra morphism. If there is a coalgebraisomorphism from C to D, then we write C ' D.

The tensor product of C and D is the coalgebra C ⊗D with the coproduct ∆ definedfor any x ⊗ y ∈ C ⊗D by
∆(x ⊗ y) :=∑(xL ⊗ yL)⊗ (xR ⊗ yR) (3.1.21)

where ∆C(x) =∑xL⊗xR and ∆D(y) =∑yL⊗yR , and the counit c defined by c := cC⊗cC.An coideal of C is a vector subspace I of C such that, for any x ∈ I , ∆C(x) ∈ I ⊗C+ C⊗ Iand I ⊆ ker(c). The quotient of C by the coideal I is the coalgebra C/I with the product∆ defined for any ẋ ∈ C/I by ∆(ẋ) := (τ ⊗ τ)∆C(x), (3.1.22)where τ : C Ï C/I is the canonical projection, and x is an element of C such that τ(x) = ẋ,and the counit c defined by c(ẋ) := cC(x).
Let A be a set and A∗ be the set of words on A. Let K〈A∗〉 := Vect(A∗) be a coalgebraendowed with the coproduct ∆ : K〈A∗〉 Ï K〈A∗〉 ⊗ K〈A∗〉 such that ∆(u) := ∑

u=vw v ⊗ w.An algebra C is cofree if there is a set A such that C ' K〈A∗〉.
A combinatorial coalgebra is a coalgebra whose vector space is combinatorial. Likefor combinatorial algebras, one has in particular that a combinatorial coalgebra is graded,connected, and its homogeneous components are of finite dimension.
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3.1.4. Bialgebras and combinatorial Hopf algebras. A bialgebra is a vector space Bwhich is both an algebra (B, ·, u) and a coalgebra (B,∆, c) such that ∆ and c are algebramorphisms, or in an equivalent way, · and u are coalgebra morphisms.The fact that ∆ and c are algebra morphisms, and that · and u are coalgebra mor-phisms, means that the following relations hold for all x, y ∈ B.∆(x · y) = (· ⊗ ·)(I ⊗ ω ⊗ I)(∆(x)⊗∆(y)), (3.1.23)

c(x · y) = c(x)c(y), (3.1.24)∆(u(1K)) = u(1K)⊗ u(1K), (3.1.25)
c(u(1K) = 1K, (3.1.26)where I : B Ï B is the identity map. This conditions can be translated with the followingcommutative diagrams.

B ⊗B B B ⊗B

B ⊗B ⊗B ⊗B B ⊗B ⊗B ⊗B

p ∆
I ⊗ ω ⊗ I

∆⊗∆ p ⊗ p (3.1.27)
B

B ⊗B K⊗K ' K

p c

c ⊗ c
(3.1.28)

B

B ⊗B K⊗K ' K

∆ u

u ⊗ u
(3.1.29)

B

K K

u c

I
(3.1.30)

Let (B, ·, u,∆, c) be a bialgebra. A vector subspace B′ is a subbialgebra of B if B′is both a subalgebra and a subcoalgebra of B. If B is a graded algebra and a gradedcoalgebra, then B is graded. Moreover, if B is graded, and both a connected algebra anda connected coalgebra, then B is connected.Let (B, ·B, uB,∆B, cB) and (C, ·C, uC,∆C, cC) be two bialgebras. A bialgebra morphismis a linear map φ : B Ï C which is both an algebra morphism and a coalgebra morphism.Furthermore, φ is a bialgebra isomorphism if φ is an algebra isomorphism and a coal-gebra isomorphism.An ideal I of B is both an ideal of B as an algebra, and a coideal of B as a coalgebra.Likewise, the quotient of B by the ideal I is the bialgebra B/I which is both the quotientof the algebra B as an algebra, and the quotient of the bialgebra B as a coalgebra.
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A combinatorial bialgebra is a bialgebra whose vector space is combinatorial. Acombinatorial bialgebra is graded, connected, and its homogeneous components are offinite dimension.3.1.5. Combinatorial Hopf algebras. Let (B, ·, u,∆, c) be a bialgebra and E be thevector space of linear map from B to B. The vector space E can be endowed with the

convolution product ∗ defined for all f, g ∈ E by
f ∗ g := · ◦ (f ⊗ g) ◦∆. (3.1.31)A Hopf algebra H is a bialgebra (H, ·, u,∆, c) endowed with a linear map S :H ÏHcalled antipode. The antipode is the inverse of the identity map I : H Ï H for theconvolution product. In other words, the antipode S satisfies
S ∗ I = I ∗ S = u ◦ c, (3.1.32)which means that the diagram (3.1.33) is commutative.

H K H

H⊗H H⊗H

H⊗H H⊗H

c u

∆
∆

I ⊗ S

S ⊗ I

p

p

(3.1.33)

Since any combinatorial bialgebra is graded and connected, it is always possible tocompute an antipode S. Therefore, any combinatorial bialgebra admits a unique antipodesatisfying (3.1.32). This leads us to the following conclusion: a combinatorial Hopf algebrais a combinatorial bialgebra.
3.2. Examples of combinatorial Hopf algebras.3.2.1. Malvenuto-Reutenauer Hopf algebra. Our first example is a combinatorial Hopfalgebra on permutations, called the Malvenuto-Reutenauer Hopf algebra [MR95], orFQSym for free quasi-symmetric functions. We denote by Fσ the elements of the funda-mental basis F, where σ is a permutation.On the linear span of {Fσ : σ ∈ S}, endowed with the shifted shuffle product, theFQSym product is defined, for all σ ∈ S(n) and ν ∈ S(m), byFσ ·Fν := ∑

π∈σ�ν
Fπ . (3.2.1)

For instance,F312 ·F21 = F31254 + F31524 + F31542 + F35124 + F35142 + F35412 + F53124+ F53142 + F53412 + F54312. (3.2.2)
Thus, (FQSym, ·) is a combinatorial algebra.
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Likewise, FQSym can be endowed with a coproduct ∆, defined, for all σ ∈ S(n), by∆(Fσ ) := ∑

σ=uv Fstd(u) ⊗ Fstd(v), (3.2.3)
where std(w) is the standardization of w. For instance,∆(F41532) = 1⊗ F41532 + F1 ⊗ F1432 + F21 ⊗ F321+ F213 ⊗ F21 + F3142 ⊗ F1 + F41532 ⊗ 1. (3.2.4)
The space FQSym endowed with ∆ is a combinatorial coalgebra.Endowed with the product · and the coproduct ∆, FQSym is a combinatorial bialgebra,and therefore a combinatorial Hopf algebra.There are several other interesting bases of FQSym [DHT02, HNT05], related to thefundamental basis, such as the elementary basis of FQSym, which is defined for anypermutation σ by Eσ := ∑

σ4weν
Fν. (3.2.5)

Similarly, the homogeneous basis of FQSym is defined byHσ := ∑
ν4weσ

Fν. (3.2.6)
These two bases have the property to be multiplicative, that is the FQSym product onthese bases is one element. Indeed, for all permutations σ and ν,Eσ · Eν = Eσ ν, (3.2.7)and Hσ ·Hν = Hσ ν, (3.2.8)where the operations and are defined in 1.1.6.Since the elements of these bases depend on the right weak order, these two basesare closely related to the combinatorial properties of permutohedron [DHNT11]. In thefollowing, we will see that the product of FQSym and its coproduct are also linked to theright weak order, and thus to the permutohedron.3.2.2. Loday-Ronco Hopf algebra. There are several Hopf subalgebras of FQSym,such as the Poirier-Reutenauer Hopf algebra on Young tableaux [PR95]. The Loday-

Ronco Hopf algebra [LR98], or PBT for planar binary trees, is one of them. The algebraPBT, defined on planar binary trees, can be thus defined as the subalgebra of FQSymspanned by the elements Pt := ∑
σ∈Sbst(σ )=t

Fσ , (3.2.9)
where bst is the algorithm of insertion. For instance,P = F2143 + F2413 + F4213. (3.2.10)
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Instead of the algorithm of insertion, another way to see PBT as Hopf subalgebra ofFQSym is to use congruence classes called the sylvester classes [HNT05].Thus, the PBT product is deducted from the FQSym product, via the algorithm ofinsertion. For example,P ·P = P + P + P

+ P + P + P .
(3.2.11)

Likewise, for the PBT coproduct, we compute the coproduct in the basis F of FQSymand then we group the elements via the algorithm of insertion, or equivalently, via thesylvester classes.Endowed with this product and coproduct thus defined, PBT is a combinatorial Hopfalgebra.
3.3. Products, coproducts, and partial orders.3.3.1. FQSym and the right weak order. The Malvenuto-Reutenauer Hopf algebraand the permutohedron are intrinsically linked, and this connection comes from the factthat the product of FQSym can be rephrased, for all permutations Fσ and Fν , asFσ ·Fν = ∑

π∈[σ ν, σ ν]4we
Fπ . (3.3.1)

Thus rephrased, the product is seen as a sum with intervals for the right weak orderas support. For instance, using the example (3.2.2), we obtain that the product F312 ·F21 isthe sum of elements of the interval [31254, 54312]4we .In the same way, the FQSym coproduct can also be rephrased as a sum of elementsof an interval of the permutohedron. Thus, we get a combinatorial interpretation of thiscoproduct.3.3.2. PBT and the Tamari order. A similar property holds for PBT relative to theTamari order 4ta. Therefore, the PBT product can be rephrased, for all binary trees Ptand Ps, as Pt ·Ps = ∑
r∈[t s, t s]4ta

Pr, (3.3.2)
where and are the grafting operations on binary trees defined in 1.2.2.For instance, by considering the example (3.2.11), the productP ·P (3.3.3)
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is the sum of elements of the interval ,


4ta
. (3.3.4)

The PBT coproduct can also be rephrased in the same way.In 1.3.7, it is explained that the Tamari order can be seen on the 132-avoiding per-mutations through the algorithm of insertion 1.10. Therefore, as the Tamari order is asublattice of the right weak order, PBT is a Hopf subalgebra of FQSym.





CHAPTER 2
Cubic coordinate lattices

Tamari lattices are partial orders having extremely rich combinatorial and algebraicproperties. These partial orders are defined on the set of binary trees and rely on theright rotation operation [Tam62] defined in Section 1.2.2 of Chapter 1. We are interestedin the intervals of these lattices, meaning the pairs of comparable binary trees. As seenin Section 2.2.3 of Chapter 1, Tamari intervals form also a lattice. The number of theseobjects is given by a formula that was proved by Chapoton [Cha06]:2(4n + 1)!(n + 1)!(3n + 2)! . (0.0.1)
Strongly linked with associahedra, Tamari lattices have been recently generalized inmany ways [BPR12, PRV17]. In this process, the number of intervals of these general-ized lattices have also been enumerated through beautiful formulas [BMFPR12, FPR17].Many bijections between Tamari intervals and other combinatorial objects are known.For instance, a bijection with planar triangulations is presented by Bernardi and Bonichonin [BB09]. It has been proved by Châtel and Pons that Tamari intervals are in bijectionwith interval-posets of the same size [CP15] (see Section 2.2.3 of Chapter 1).
We provide in this chapter a new bijection with Tamari intervals, which is inspiredby interval-posets. More precisely, we first build two words of size n from the Tamaridiagrams [Pal86] of a binary tree. If they satisfy a certain property of compatibility, webuild a Tamari interval diagram from these two words. We show that Tamari intervaldiagrams and interval-posets are in bijection. Then we propose a new encoding of Tamariintervals, by building (n − 1)-tuples of numbers from Tamari interval diagrams. We callthese tuples cubic coordinates. This new encoding has two obvious virtues: it is very com-pact and it gives a way of comparing in a simple manner two Tamari intervals, througha fast algorithm. On the other hand, some properties of Tamari intervals translate nicelyin the setting of cubic coordinates. For instance, synchronized Tamari intervals [FPR17]become cubic coordinates with no zero entry. Besides, cubic coordinates provide natu-rally a geometric realization of the lattice of Tamari intervals, by seeing them as spacecoordinates. Indeed, all cubic coordinates of size n can be placed in the space Rn−1. Bydrawing their covering relations, we obtain an oriented graph. This gives us a realizationof cubic coordinate lattices, which we call cubic realization. This realization leads us tomany questions, in particular about the cells it contains. We characterize these cells in acombinatorial way, and we deduce a formula to compute a volume of the cubic realizationin the geometrical sense. Another direction, more topological, involves the shellability ofpartial order (see Section 2.3 of Chapter 1). We show, drawing inspiration from the work
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48 2. CUBIC COORDINATE LATTICES
of Björner and Wachs [BW96,BW97], that the cubic coordinates poset is EL-shellable, andas a consequence its associated complex is shellable.This chapter is organized in two sections.In Section 1, we define Tamari interval diagrams and show that they are in bijection,size by size, with interval-posets. We then define cubic coordinates and show that they arein bijection, size by size, with Tamari interval diagrams. Using these two bijections, andafter having provided the set of cubic coordinates with a partial order, we show that thereis a poset isomorphism between the poset of cubic coordinates and the poset of Tamariintervals.As pointed out above, the poset of cubic coordinates can then be realized geometrically.This cubic realization and the cells that compose it are the object of Section 2. For eachcell, we then associate a synchronous cubic coordinate. By relying upon this particularcubic coordinate, we give a formula to compute the volume of the cubic realization. Finally,we extend the result of Björner and Wachs on the Tamari posets to the Tamari intervalposets, by showing that the cubic coordinate posets are EL-shellable.

1. Cubic coordinates and Tamari intervalsThe aim of this section is to build the poset of the cubic coordinates, then to establishthe poset isomorphism between this poset and the poset of the Tamari intervals. Toachieve this aim, we first define the Tamari interval diagrams based on the interval-posets.The cubic coordinates are then obtained from the Tamari interval diagrams.
1.1. Tamari interval diagrams.1.1.1. Interval-posets. In Section 2.2.3 of Chapter 1 we saw a way of drawing aninterval-poset. In this chapter, we shall draw interval-posets as follows. For any i < j ,if πj �πi and there is no vertex πk such that πk�πi and j < k, then we draw an arrow withsource πj and target πi from below as shown in the example in Figure 1.1. Symmetrically,if πj � πk and j < k and if there is no πi such that πi � πk and i < j , then we draw anarrow with source πj and target πk from above. We refer to this oriented graph with twotypes of arrows as the minimalist representation.The closure for the interval-poset properties is given by adding the decreasing rela-tions πj �πi for any relation πk �πi and by adding the increasing relations πj �πk for anyrelation πi �πk , for any i < j < k. By taking the reflective closure and the closure for theinterval-poset properties, an interval-poset is obtained from such a representation. Theinterest of the minimalist representation is later justified, in particular with Theorem 1.1.3.It is important to represent the decreasing relations and the increasing relations indepen-dently.
Let n > 0 and π, π ′ ∈ IP(n) and (s, t) := ρ(π), (s′, t′) := ρ(π ′). Let (?) (resp. (�)) thefollowing condition: π ′ is obtained by adding (resp. removing) only decreasing (resp.increasing) relations of target a vertex πk in π , such that if only one of these decreasing
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π1 π2 π3 π4 π5 π6 π7 π8

(A) Minimalist representation.

π1 π2 π3 π4 π5 π6 π7 π8

(B) Hasse diagram.

π1 π2 π3 π4 π5 π6 π7 π8

(C) Diagram with all apparent (exceptreflexive) relations.
FIGURE 1.1. Different representations of an interval-poset of size 8.

(resp. increasing) relations is removed (resp. added), then either π is obtained or theobject obtained is not an interval-poset.For the sequel, we need to recall that (s′, t′) covers (s, t) if and only if π and π ′ satisfyeither (?) or (�).
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(A) Binary trees s and s′ (resp. t and t′).
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(B) Decreasing forests induced by s and s′.
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i b

c

a

i

a b

j c

(C) Increasing forests induced by t and t′.
FIGURE 1.2. Right rotation of the edge (i, j) in the binary tree s (resp. t), where a,b and c are subtrees.
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LEMMA 1.1.1. The interval-posets π and π ′ satisfy (?) (resp. (�)) for the vertex πi

(resp. πj ) if and only if s′ (resp. t′) is obtained by a unique right rotation of the edge(i, j) in s (resp. t) and t′ = t (resp. s′ = s).

a︷ ︸︸ ︷
. . . πi−1 πi

b︷ ︸︸ ︷
πi+1 . . . πj−1 πj

c︷ ︸︸ ︷
πj+1 . . .

FIGURE 1.3. Interval-poset of the decreasing forest before (without dotted line) and after (withdotted line) the right rotation of the edge (i, j), where a, b and c may be empty.

. . . πi−1︸ ︷︷ ︸
a

πi πi+1 . . . πj−1︸ ︷︷ ︸
b

πj πj+1 . . .︸ ︷︷ ︸
c

FIGURE 1.4. Interval-poset of the increasing forest before (with dotted lines) and after (withoutdotted lines) the right rotation of the edge (i, j), where a, b and c may be empty.
PROOF. Suppose π and π ′ satisfy (?) for the vertex πi. Therefore, π ′ has more de-creasing relations of target π ′i than the vertex πi in π. Suppose that the vertices πj and

πi are not related in π , and that π ′j and π ′i are related in π ′, with k < l. Then, by theinterval-poset property (i), for any π ′k such that i < k < j , π ′k � π ′i . Moreover, if we re-move only one of these decreasing relations, we obtain either π or an object that is nolonger an interval-poset. This means that the number of descending relations added in π ′is minimal, or equivalently, that the vertex πj is closest to the vertex πi such that πj and πiare not related in π and i < j . This case is depicted in Figure 1.3. By the bijection ρ, addthese decreasing relations of target πi in π leads to the decreasing forest induced by s′represented by Figure 1.2b. A unique right rotation is then made between the trees s and
s′ (see Figure 1.2a). Furthermore, since the increasing relations are unchanged between
π and π ′, the increasing forests induced by t and t′ are the same, and thus t′ = t.Reciprocally, suppose that s′ is obtained by a unique right rotation of the edge (i, j)in s and that t′ = t. The case is depicted by Figure 1.2a, and the two decreasing forestsinduced by s and s′ are depicted by Figure 1.2b. By the bijection ρ, we then obtain theinterval-poset whose restriction to decreasing relations is shown by Figure 1.3. Since t′ = t,the increasing relations of the interval-posets associated with (s, t) and (s′, t′) are the same.Finally, π ′ is obtained by adding only decreasing relations of target πi in π. Furthermore,if only one of these relations is removed, then either π is obtained, or the object obtainedis not an interval-poset. This means that π and π ′ satisfy (?).
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Symmetrically, we show that π and π ′ satisfy (�) for πj if and only if t′ is obtained bya unique right rotation of the edge (i, j) in t and s′ = s. Figure 1.2c and Figure 1.4 depictsthis case. �

1.1.2. The compatibility condition. Our aim is to encode a pair of binary trees of nnodes by two words of size n. The first binary tree of the pair is encoded by a Tamaridiagram and the second is encoded by a dual Tamari diagram, associated by the bijectionseen in 1.2.4 of Chapter 1. Then, by checking a certain compatibility condition, we buildthe Tamari interval diagrams.
Let us recall the definition of Tamari diagrams and dual Tamari diagrams seen inSection 1.1.5 of Chapter 1. For any n > 0, a Tamari diagram is a word u of length n onthe alphabet N which satisfies the two following conditions(i) 0 6 ui 6 n − i for all i ∈ [n],(ii) ui+j 6 ui − j for all i ∈ [n] and j ∈ [0, ui].Likewise, a dual Tamari diagram is a word v of length n on the alphabet N whichsatisfies the two following conditions(i) 0 6 vi 6 i − 1 for all i ∈ [n],(ii) vi−j 6 vi − j for all i ∈ [n] et j ∈ [0, vi].The size of a dual Tamari diagram is its number of letters.

FIGURE 1.5. A Tamari diagram 9021043100 (on the left) and a dual Tamari diagram0010040002 (on the right) of size 10.
Let n > 0 and u be a Tamari diagram, and v be a dual Tamari diagram, both of size

n. The diagrams u and v are compatible if for all 1 6 i < j 6 n such that ui > j − ithen vj < j − i. If u and v are compatible, then the pair (u, v) is called Tamari interval
diagram. The set of Tamari interval diagrams of size n is denoted by TID(n).

In other words, a Tamari diagram u of size n and a dual Tamari diagram v of size nare compatible if for any needle of position i and height vi 6= 0 in v (resp. ui 6= 0 in u),there is no needle of position j and height greater than or equal to i − j in u (resp. j − iin v) with i − vi 6 j 6 i − 1 (resp. i + 1 6 j 6 i + ui) and i ∈ [n].
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FIGURE 1.6. Two incompatible diagrams (on the left) and two compatible diagrams (on the right).
For example, the two diagrams in Figure 1.5 are compatible. Figure 1.6 gives twoother examples of two incompatible diagrams 00400000 and 00003000, and two compatiblediagrams 04000000 and 00000030. Thereafter, if u and v are compatible, we can also saythat u and v satisfy the compatibility condition.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

FIGURE 1.7. A Tamari interval diagram of size 10 (on the left) and its associated interval-poset(on the right).
As for Tamari diagrams and dual Tamari diagrams, a graphical representation ofthe Tamari interval diagram is also possible, as shown in Figure 1.6. Figure 1.7 givesthis representation of the Tamari interval diagram (9021043100, 0010040002) from the twodiagrams seen in Figure 1.5, where we have simply considered the symmetry relativeto the abscissa axis of the Tamari diagram, and placed it under its dual. Thus, Tamaridiagram u is drawn below and its dual Tamari diagram v is drawn above. With such arepresentation, it is then easy to verify that u and v are compatible. Indeed, any needleof u that is below the diagonal linking the top of the needle in position j in v to theabscissa point j − vj , has a diagonal that intersects the x-axis strictly before the position j .Symmetrically, any needles of v that is above a diagonal linking the top of the needle in
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position i in u to the abscissa point i+ ui , has a diagonal that intersects the x-axis strictlyafter the position i.

One consequence of the compatibility condition is that each needle of non-zero heightin the dual Tamari diagram v is always preceded by a needle of u of zero height. Sym-metrically, each non-zero height needle in the Tamari diagram u is always followed by aneedle of v of zero height. In other words, for any i ∈ [n], ui and vi+1 can both be zero,but cannot both be non-zero.
1.1.3. Tamari interval diagrams and interval-posets. In this part, we use these defi-nitions, conventions, and Lemma 1.1.1 seen in Section 2.2.3 of Chapter 1
Let us show that there is a bijection between the set of Tamari interval diagrams andthe set of interval-posets of the same size.
Let n > 0 and χ be the map sending a Tamari interval diagram (u, v) of size n to therelation

({π1, . . . , πn},�) (1.1.1)
where πi+l � πi for all i ∈ [n] and 0 6 l 6 ui , and πi−k � πi for all i ∈ [n] and 0 6 k 6 vi.

PROPOSITION 1.1.2. For any n > 0, the map χ has values in IP(n).
PROOF. Let (u, v) ∈ TID(n) and π := χ(u, v). First, we show that � is a partial order,then that interval-poset properties are satisfied.
(1) By definition of χ one has πi+l � πi and πi−k � πi with 0 6 l 6 ui and 0 6 k 6 vifor all πi ∈ π. Specifically, πi � πi. This shows that π is reflexive.(2) Let πi , πj and πk be vertices of π with i < j < k.(a) Suppose that πj � πi and that πk � πj . Then πj � πi implies that there is aninteger 0 6 i′ 6 ui such that j = i + i′. Therefore, by the condition (ii) ofa Tamari diagram, uj = ui+i′ 6 ui − i′. Likewise, πk � πj implies that thereis an integer 0 6 j ′ 6 vj such that k = j + j ′. Still by the same condition,one has uk = uj+j ′ 6 uj − j ′. By using these two inequalities, we obtain that

ui > uk + i′ + j ′. Since i′ + j ′ = k − i, then we have ui > k − i, which impliesby definition of χ that πk � πi in π.(b) Suppose that πj � πi and that πi � πk. Therefore, πj � πk because πi � πkimplies that for each vertex between πi and πk is in relation with πk.(c) Suppose that πi � πj and that πj � πk. Then πi � πj implies that there is aninteger 0 6 i′ 6 vi such that i = j − i′. By the condition (ii) of a dual Tamaridiagram, vi = vj−i′ 6 vj − i′. Likewise, πj �πk implies that there is an integer0 6 j ′ 6 vj such that j = k− j ′. By the same condition (ii), vj = vk−j ′ 6 vk − j ′.By these two inequalities, one has vk > vi + i′ + j ′. Since i′ + j ′ = k − i, onehas vk > k − i, which implies by definition of χ that πi � πk in π.(d) Suppose that πj � πk and that πk � πi. Then πj � πi because πk � πi impliesthat all vertex between πi and πk is in relation with πi.
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This shows that π is transitive. Note that it is impossible to have the case πi � πkand πk � πj since π is the image of a Tamari interval diagram. Getting this casewould contradict the fact that u and v are compatible. Similarly, the case πi � πjand πk � πi is impossible.(3) Let i < j and πi , πj be vertices of π. Suppose that πj � πi and that πi � πj . Bydefinition of χ, πj � πi if and only if ui > j − i. Likewise, πi � πj if and only if
vj > j − i. However, since u and v are compatible, this case is impossible. Thisshows that π is antisymmetric.(4) The definition of χ implies directly that π satisfies the interval-poset properties,namely that for all πi , πj and πk vertices of π with i < j < k, if πk�πi then πj �πi ,and if πi � πk then πj � πk.

�

THEOREM 1.1.3. For any n > 0, the map χ : TID(n)Ï IP(n) is bijective.

PROOF. Let π ∈ IP(n) and let (u, v) ∈ Nn × Nn be a pair of words, such that for all
i ∈ [n],

ui := #{πj ∈ π : πj � πi and i < j}; (1.1.2)
vj := #{πi ∈ π : πi � πj and i < j}. (1.1.3)Let us show that this pair of words (u, v) is a Tamari interval diagram and that itsimage by χ gives π.

(1) Since π is an interval-poset, there are at most n − i vertices of π in decreasingrelation to πi and at most i − 1 vertices of π in increasing relation to πi for all
i ∈ [n]. Therefore, the condition (i) of a Tamari diagram and (i) of a dual Tamaridiagram are satisfied.(2) Let πi and πi+j be vertices of π such that i ∈ [n] and j ∈ [0, ui]. The fact that
ui > j means according to the equation (1.1.2) that there are at least j verticesin decreasing relation to the vertex πi , that is πi+j � πi. Thus by transitivity ofinterval-posets, one has that for any i+ j 6 k 6 n, if πk � πi+j then πk � πi. Thus
ui+j + j 6 ui , which implies the condition (ii) of a Tamari diagram.Symmetrically, the condition (ii) of a dual Tamari diagram is checked by consid-ering πi and πi−j vertices of π such that i ∈ [n] and j ∈ [0, vi].(3) Let 1 6 i < j 6 n such that ui > j−i. Suppose that vj > j−i. The relation ui > j−imeans that there are j−i vertices of π in decreasing relation to πi , meaning πj�πi.Likewise, the relation vj > j− i means that πi�πj . Both of these implications leadto a contradiction with the antisymmetric nature of interval-posets. Necessarily,we have vj < j − i, namely u and v are compatible.The pair (u, v) is a Tamari interval diagram of size n. Finally, it is clear that χ(u, v) = πby construction. The map χ is therefore surjective.Let (u, v) and (u′, v ′) be two Tamari interval diagrams of size n, such that (u, v) 6= (u′, v ′)and such that χ(u, v) := π and χ(u′, v ′) := π ′. So there is at least one letter of (u, v) and(u′, v ′) such that ui 6= u′i or vi 6= v ′i , for i ∈ [n]. Therefore the number of vertices of π in
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relation to the vertex πi associated with the component ui and vi by χ is different fromthe number of vertices of π ′ in relation to the vertex π ′i associated with the component u′iand v ′i by χ, that is π 6= π ′. This shows that the map χ is injective. �The minimalist representation of the interval-posets defined in Section 2.2.3 of Chap-ter 1 allows a direct construction of the corresponding Tamari interval diagram. Indeed,let us consider the minimalist representation of an interval-poset π of size n. For anyrelation πj �πi (resp. πi �πj ) drawn, with 1 6 i < j 6 n, we set ui := j− i (resp. vj := j− i).This forms a pair of words (u, v) which is the inverse image of π by χ.An example is given by Figure 1.7, where a Tamari interval diagram and its interval-poset which is its image by χ are shown.

1.2. Cubic coordinates. We describe in this part the set of cubic coordinates, and weshow that there is a bijection between this set and the set of Tamari interval diagrams.We end this part with some properties of the cubic coordinates.1.2.1. Definition. Let n > 0 and (u, v) be a Tamari interval diagram of size n. We builda (n− 1)-tuple (u1− v2, u2− v3, . . . , un−1− vn) from the letters of (u, v), by subtracting vi+1from ui for any i ∈ [n]. The resulting (n − 1)-tuples can be characterized using Tamariinterval diagram definition.Let n > 0 and c be a (n − 1)-tuple of components with value in Z. The (n − 1)-tuple
c is a cubic coordinate if the pair (u, v), where u is the word defined by un := 0 and forany i ∈ [n − 1] by

ui := max(ci, 0), (1.2.1)and v is the word defined by v1 := 0 and for any 2 6 i 6 n by
vi := |min(ci−1, 0)|, (1.2.2)is a Tamari interval diagram. The size of a cubic coordinate is its number of componentsplus one. The set of cubic coordinates of size n is denoted by CC(n).For instance, the cubic coordinate of the Tamari interval diagram in Figure 1.7 is(9,−1, 2, 1,−4, 4, 3, 1,−2).1.2.2. Cubic coordinates and Tamari interval diagrams. Let us denote by φ the mapwhich sends a cubic coordinate c to a Tamari interval diagram (u, v).

THEOREM 1.2.1. For any n > 0, the map φ : CC(n)Ï TID(n) is bijective.PROOF. Let c and c′ be two cubic coordinates of size n such that c 6= c′. Then there isa component ci such that ci 6= c′i , with i ∈ [n − 1]. By the map φ, one has then ui 6= u′i or
vi+1 6= v ′i+1, namely (u, v) 6= (u′, v ′). Which shows that the map φ is injective.Let (u, v) ∈ TID(n). Let c := (u1 − v2, u2 − v3, . . . , un−1 − vn), the (n − 1)-tuple whosecomponents are given by the difference between ui and vi+1 for any i ∈ [n − 1]. Now if
ui 6= 0 then vi+1 = 0 for any i ∈ [n − 1]. Therefore φ(c) = (u, v), where (u, v) is indeeda Tamari interval diagram by hypothesis. By definition of a cubic coordinate, one canconclude that c ∈ CC(n). Which shows that the map φ is surjective. �
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Therefore, by the map φ it is possible to build a cubic coordinate from its Tamariinterval diagram and reciprocally. Graphically, by simply shifting the dual Tamari diagramto the left by one position and collect the height of the needles from left to right, puttinga positive sign for the needles of the Tamari diagram and a negative sign for its dual, andforgetting the last needle of zero height. Reconstruct the needles of the Tamari diagramand its dual from the components of the cubic coordinate in the same way, and then shiftthe Tamari dual diagram to the right by one position.
Using the map χ we can then directly give the cubic coordinate of an interval-poset π.In the same way that we shift the dual Tamari diagram one position to the left, we shiftall the increasing relations of the interval-poset to the left by one vertex. Then, for eachvertex πi , we count the number of elements in increasing or decreasing relation of target

πi , out of reflexive relation, for all i ∈ [n − 1]. These numbers become the componentsof positive sign if it is a decreasing relation, negative otherwise, of the cubic coordinate.As the increasing relations have been shifted, the number associated with the vertex πnis always zero. This vertex is therefore forgotten for the cubic coordinate. In the sameway, with each component of a cubic coordinate, we rebuild the increasing and decreasingrelations on n − 1 vertices, then we shift the increasing relations to the right, in order toform the vertex πn.
1.2.3. Cubic coordinates properties.

LEMMA 1.2.2. Let n > 0 and c ∈ CC(n) such that there is a component ci 6= 0, for
i ∈ [n−1]. Let c′ the (n−1)-tuple such that c′i = 0 and c′j = cj for any j 6= i, with j ∈ [n−1].
Then c′ is a cubic coordinate.

PROOF. Let (u′, v ′) := φ(c′) and (u′i, v ′i+1) be the pair of letters corresponding to c′i by themap φ. Since c′i = 0 then (u′i, v ′i+1) = (0, 0). In order to show that c′ is a cubic coordinate,we have to show that (u′, v ′) is a Tamari interval diagram. This is equivalent to satisfyingthe conditions of a Tamari diagram, a dual Tamari diagram, and compatibility. Replacein (ii) of a Tamari diagram ui with 0. The condition ui+j 6 ui − j for any i ∈ [n] and
j ∈ [0, ui] becomes 0 6 0 because j equals 0. Similarly, if we replace in (ii) of a dual Tamaridiagram vi by 0 then the condition vi−j 6 vi − j for any i ∈ [n] and j ∈ [0, vi] becomes0 6 0 for the same reason. Finally, we have to check the condition of compatibility: forall 1 6 i < j 6 n, if ui 6 j − i then vj < j − i. This condition is always true for ui = 0 orfor vj = 0 because j − i > 0. Therefore, the (n − 1)-tuple c′ is a cubic coordinate. �

Depending on the case, either the definition of cubic coordinates or the definition ofTamari interval diagrams is used, as it is done for the proof of Lemma 1.2.2. For example,the following results are stated for Tamari interval diagrams.
Let n > 0. A Tamari interval diagram (u, v) of size n is synchronized if either ui 6= 0or vi+1 6= 0 for any i ∈ [n − 1].
Likewise a cubic coordinate c of size n is synchronized if ci 6= 0 for any i ∈ [n − 1].The set of synchronized cubic coordinates of size n is denoted by SCC(n).
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A Tamari interval (s, t) is synchronized if and only if the binary trees s and t havethe same canopy [FPR17]. The definition of the canopy is recalled in Section 1.2.2 ofChapter 1.
PROPOSITION 1.2.3. Let n > 0 and (u, v) ∈ TID(n). The Tamari interval diagram (u, v)

is synchronized if and only if ρ(χ(u, v)) is a synchronized Tamari interval.

PROOF. Suppose that (u, v) is not synchronized, then there is an index i ∈ [n− 1] suchthat ui = 0 and vi+1 = 0. Let π := χ(u, v) be the interval-poset associated to (u, v), and(s, t) := ρ(χ(u, v)).
The letter ui is equal to 0 if and only if there is no descending relation of target πi in

π , namely if and only if the node i has no right child in the tree s (see Section 2.2.3 ofChapter 1). Furthermore, since i cannot be equal to n, the node i cannot be the rightmostnode in S. Therefore, it is a left child of the node i+1. Then the right subtree of the node
i is a leaf oriented to the right.

Symmetrically, vi+1 = 0 if and only if there is no increasing relation of target πi+1 in
π , namely if and only if the node i+ 1 has no left child in the tree t. Since i+ 1 is alwaysdifferent from 1, the node i+1 cannot be the leftmost node in t, so the node i+1 must bea right child of the node i. Therefore, the right subtree of the node i has a leaf orientedto the left as left subtree.

Finally, there is at least one letter of index i in the canopy of the tree s different fromthe canopy of the tree t, for the same index. However, two binary trees s and t are notsynchronized if there is at least one letter of index i in the canopy of the tree s that isdifferent from the letter of index i in the canopy of t. Therefore, the binary trees s and tare not synchronized if and only if (u, v) is not synchronized. �

An interval-poset π of size n > 3 is new if(1) there is no decreasing relation of source πn ,(2) there is no increasing relation of source π1,(3) there is no relation πi+1 � πj+1 and πj � πi with i < j .The definition of a new interval-poset is given in [Rog20].
For any n > 3, a Tamari interval diagram (u, v) of size n is new if the followingconditions are satisfied(i) 0 6 ui 6 n − i − 1 for all i ∈ [n − 1],(ii) 0 6 vj 6 j − 2 for all j ∈ [2, n],(iii) uk < l − k − 1 or vl < l − k − 1 for all k, l ∈ [n] such that k + 1 < l.
PROPOSITION 1.2.4. Let n > 3 and (u, v) ∈ TID(n). The Tamari interval diagram (u, v)

is new if and only if χ(u, v) is a new interval-poset.

PROOF. Let us show that π := χ(u, v) is not new if and only if (u, v) is not new.
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? Suppose there is πn � πi with i ∈ [n− 1]. By Theorem 1.1.3, one has ui = #{πj ∈
π : πj � πi and i < j}. Therefore for χ−1(π) one has ui = n − i. This is thenegation of (i) of a new Tamari interval diagram.

? Suppose there is π1 �πj with j ∈ [2, n]. Then for χ−1(π) one has vj = j−1 because
vj = #{πi ∈ π : πi � πj and i < j}. This is the negation of (ii) of a new Tamariinterval diagram.

? Suppose there is one relation πi+1 � πj+1 and πj � πi with i < j . For χ−1(π), itimplies on the one hand vj+1 > j− i and on the other hand ui > j− i. Specifically,by setting l := j + 1 and k := i one has k + 1 < l. This is the negation of (iii) of anew Tamari interval diagram.
�

In [Rog20] it is shown that a Tamari interval is new if and only if the associatedinterval-poset is new. With Proposition 1.2.4 we get the following result.
PROPOSITION 1.2.5. Let n > 3 and (u, v) ∈ TID(n). The Tamari interval diagram (u, v)

is new if and only if ρ(χ(u, v)) is a new Tamari interval.

PROPOSITION 1.2.6. Let n > 3 and (u, v) ∈ TID(n). If (u, v) is synchronized then (u, v)
is not new.

PROOF. If (u, v) is new, then ui < n − i for i ∈ [n − 1], and vj < j − 1 for j ∈ [2, n].In particular, un−1 = 0 and v2 = 0. This implies, since (u, v) is synchronized, that u1 6= 0and vn 6= 0. Furthermore, (u, v) is new if the condition (iii) of a Tamari interval diagramis satisfied. Specifically, for any k ∈ [n − 2], either uk < 1 or vk+2 < 1. Note (∗) thiscondition. Assuming that u1 6= 0 one has either u2 6= 0 or v3 6= 0. By (∗), the secondchoice is impossible, thus u2 6= 0. By the same reasoning, for every k ∈ [n − 2], uk 6= 0.However, also by assumption one has vn 6= 0. Therefore, un−2 6= 0 and vn 6= 0 which is acontradiction with (∗). �

1.3. Order structure and poset isomorphism. Firstly, we endow the set of cubiccoordinates with an order relation. Then we show that there is an isomorphism betweenthis poset and the poset of Tamari intervals. The two bijections constructed in the firsttwo parts of Section 1 allow us to establish this poset isomorphism.
1.3.1. Componentwise order. Let n > 0 and c, c′ ∈ CC(n). We set that c 4 c′ if andonly if ci 6 c′i for all i ∈ [n− 1]. Endowed with 4, the set CC(n) is a poset called the cubic

coordinate poset.
Let (s, t), (s′, t′) ∈ int(T2(n)). For the next results in all this section, let us denote by

c := ψ((s, t)), c′ := ψ((s′, t′)) and (u, v) := φ(c), (u′, v ′) := φ(c′), and π := χ(u, v), π ′ := χ(u′, v ′).
LEMMA 1.3.1. If (s′, t′) covers (s, t) then there is a unique different component ci

between c and c′ such that ci < c′i and there is no cubic coordinate c′′ different from c
and c′ such that c 4 c′′ 4 c′.



1. CUBIC COORDINATES AND TAMARI INTERVALS 59
PROOF. By Lemma 1.1.1 we know that (s′, t′) covers (s, t) if and only if π and π ′ satisfyeither (?) or (�). Let us assume that π and π ′ satisfy either (?) or (�) for the vertex πi. Twocases are possible.
? Suppose that π and π ′ satisfy (?), then since only decreasing relations are addedin π ′ relative to π , only u′ is modified in (u′, v ′) relative to (u, v). Furthermore,since π ′ is obtained by adding decreasing relations of target πi in π , then onlythe letter u′i in u′ is increased relative to u. Moreover, since the number ofdescending relations added in π is minimal, there cannot be any Tamari intervaldiagram between (u, v) and (u′, v ′), and thus no cubic coordinate between c and
c′. In the end, the image by φ−1 of (u′, v ′) is the cubic coordinate c′ with c′i = u′iand c′j = cj for any j 6= i.

? Suppose that π and π ′ satisfy (�), then since only increasing relations are removedin π ′ relative to π , only v ′ is changed in (u′, v ′) relative to (u, v). Furthermore,since π ′ is obtained by removing increasing relations of target πi in π , then onlythe letter v ′i in v ′ is decreased relative to v. Adding the fact that the number ofincreasing relations removed in π is minimal, then only the component c′i−1 = −v ′iof c′ has increased relative to c.In both cases, the implication is true. �

Note that if there is a unique different component ci between c and c′ such that ci < c′iand there is no cubic coordinate c′′ different from c and c′ such that c 4 c′′ 4 c′, then inparticular c′ covers c. Thus, Lemma 1.3.1 has the consequence that if (s′, t′) covers (s, t)then c′ covers c.Let us go back to the composition of bijections φ−1 ◦ χ−1. This composition associatesto a pair of comparable binary trees (s, t) a pair of words (u, v) such that u encodes thebinary tree s and v encodes the binary tree t. Indeed, by this composition u (resp. v) isobtained by counting in s (resp. t) the number of left (resp. right) descendants of eachnode for the infix order. Now, if (s, t) 4int(ta) (s′, t′), then the interval (s, t′) is a Tamariinterval because we always have s 4ta s′ 4ta t′. This implies that the pair (u, v ′) is always acompatible pair of words. A direct consequence is the following lemma.
LEMMA 1.3.2. Let n > 0 and c, c′ ∈ CC(n). If c 4 c′ then there is a cubic coordinate

c′′ such that u′′ = u and v ′′ = v ′, where (u′′, v ′′) := φ(c′′).
For any c, c′ ∈ CC(n), letD−(c, c′) := {d : cd 6= c′d and c′d 6 0}, (1.3.1)and D+(c, c′) := {d : cd 6= c′d and cd > 0}, (1.3.2)and D(c, c′) := D−(c, c′) ∪D+(c, c′). (1.3.3)Now consider the case where c and c′ share either their Tamari diagrams or theirassociated dual Tamari diagrams, then we have the two following lemmas.
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LEMMA 1.3.3. Let n > 0 and c, c′ ∈ CC(n). If c 4 c′ such that u = u′ and D−(c, c′) 6= ∅

then there is a cubic coordinate c′′ different from c and c′ such that c 4 c′′ 4 c′.PROOF. Let c′′ be a (n−1)-tuple such that this image (u′′, v ′′) by φ is defined as follows:
u′′ = u and for v ′′ we set v ′′i = v ′i and v ′′j = vj for any i ∈ [s] and j ∈ [s + 1, n] with
s ∈ D−(c, c′). Since u′′ = u, the word u′′ is a Tamari diagram. Furthermore, since c and
c′ are cubic coordinates, u and v are compatible and u′ and v ′ are compatible. Therefore,the only thing to check is that v ′′ is a dual Tamari diagram. The condition (i) is naturallysatisfied. Since c 6 c′, the condition (ii) is satisfied because vk > v ′k for all k ∈ [n]. The(n − 1)-tuple c′′ is a cubic coordinate. �LEMMA 1.3.4. Let n > 0 and c, c′ ∈ CC(n). If c 4 c′ such that v = v ′ and D+(c, c′) 6= ∅
then there is a cubic coordinate c′′ different from c and c′ such that c 4 c′′ 4 c′.PROOF. The proof is similar to the demonstration of Lemma 1.3.3 by choosing for theimage (u′′, v ′′) of c′′ to set v ′′ = v and u′′i = u′i and u′′j = uj for any i ∈ [r] and j ∈ [r + 1, n]with r ∈ D+(c, c′). �LEMMA 1.3.5. Let n > 0 and c, c′ ∈ CC(n). If c 4 c′ with #D(c, c′) = s, then there is
a saturated chain (

c = c(0), c(1), . . . , c(s−1), c(s) = c′
)
, (1.3.4)

such that #D(c(i−1), c(i)) = 1 for all i ∈ [s].PROOF. Suppose that c 4 c′, it means that for all i ∈ [n − 1] one has ci 6 c′i. LetD−(c, c′) = {d1, d2, . . . , dr} (1.3.5)and D+(c, c′) = {dr+1, dr+2, . . . , ds}, (1.3.6)with dk−1 < dk for all k ∈ [s]. According to Lemma 1.3.2 there is a cubic coordinate c(r)such that u(r) = u and v(r) = v ′. Since between c and c(r) the positive components are thesame, we can build from Lemma 1.3.3 a chain(
c = c(0), c(1), . . . , c(r−1), c(r)) (1.3.7)

where c(k) is obtained by replacing successively in c all the components cd1 , cd2 , . . . , cdk bythe components c(r)
d1 , c(r)

d2 , . . . , c(r)
dk , for all k ∈ [r]. Thus, we build a chain between c and c(r)by changing only one component from left to right between each c(k−1) and c(k) for all

k ∈ [r].Note that the letters in the dual Tamari diagrams associated with c(r) and c′ are thesame, and the letters in the Tamari diagrams associated with c(r) and c are the same. Inother words, D+(c, c′) = D+(c(r), c′). Therefore, we build from Lemma 1.3.4 a chain(
c(r), c(r+1), . . . , c(s−1), c(s) = c′

) (1.3.8)
where c(k) is obtained by replacing successively in c(r) all the components cdr+1 , cdr+2 , . . . , cdkby the components c′dr+1 , c′dr+2 , . . . , c′dk , for all k ∈ [r + 1, s]. As before, we then obtain achain between c(r) and c′ by changing only one component from left to right betweeneach c(k−1) and c(k) for all k ∈ [r + 1, s]. �
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1.3.2. Poset isomorphism. Let ψ := φ−1◦χ−1◦ρ−1 be the map from the Tamari intervalposet to the cubic coordinate poset CC(n).
THEOREM 1.3.6. For any n > 0, the map ψ is a poset isomorphism.PROOF. The map ψ is an isomorphism of posets if ψ and its inverse preserves thepartial order. As these relations are transitive, Lemma 1.3.1 gives the direct implication.Suppose that c 4 c′. According to Lemma 1.3.5 there is always a chain between c and c′such that the components are independently increasing one by one. So we can see whathappens when we change only one component ci by c′i at any step between c and c′.Obviously, if ci = c′i then ui = u′i and vi+1 = v ′i+1 and no changes are made betweenthe corresponding binary tree pairs. Suppose that ci < c′i , then two cases are possible.
? Suppose that c′i is positive and ci is positive or null. The image by φ of c and
c′ differ for the letter ui , namely c′i = u′i and ci = ui , and vi+1 = v ′i+1 = 0. Thedifference of a letter ui between (u, v) and (u′, v ′) is directly translated by the map
χ: the interval-poset π ′ has more decreasing relations of target πi than the vertex
πi in π. By the map ρ, it means that to go from the tree s to the tree s′ at leastone right rotation of the edge (i, j) is made, where j is the father of the node iin s.

? Symmetrically, assume that c′i is negative or null, then c′i = −v ′i+1, ci = −vi+1 and
ui = u′i = 0. By the map χ, the interval-poset π ′ has less decreasing relations oftarget πi+1 than the vertex πi+1 in π. This implies by ρ that to pass from the tree
t to the tree t′ at least one right rotation of the edge (k, i+ 1) is made, where k isthe right child of the node i + 1 in t.In both cases c 4 c′ implies that to get (s′, t′) only right rotations in the tree s and inthe tree t can be made. Therefore (s, t) 4int(ta) (s′, t′).The map ψ is an isomorphism of posets. �Let us denote by l the covering relation of the poset CC(n).

PROPOSITION 1.3.7. Let n > 0 and c, c′ ∈ CC(n) such that cl c′. Then, there is a
unique different component between c and c′.PROOF. It is a consequence of Theorem 1.3.6 and Lemma 1.3.1. �The following diagram provides a summary of the applications used in Section 1. Re-call that ψ = φ−1 ◦χ−1 ◦ρ−1, therefore this diagram of poset isomorphisms is commutative.

TID(n) IP(n)

CC(n) int(T2(n))

χ

φ

ψ

ρ (1.3.9)
A consequence of the poset isomorphism ψ is that the order dimension of the posetof Tamari intervals is at most n − 1 (see Section 1.3.3 of Chapter 1).



62 2. CUBIC COORDINATE LATTICES
2. Geometric propertiesIn this section, we give a very natural geometrical realization for the lattices of cubiccoordinates. After defining the cells of this realization, we give some properties related tothem. Finally, we show that the lattice of the cubic coordinates is EL-shellable.

2.1. Cubic realizations. Theorem 1.3.6 provides a simpler translation of the orderrelation between two Tamari intervals. We provide the geometrical realization inducedby this order relation which is natural for cubic coordinates. In a combinatorial way westudy the cells formed by this realization.2.1.1. Space embedding. For any n > 0, the cubic realization of CC(n) is the geomet-ric object C(CC(n)) defined in the space Rn−1 and obtained by placing for each c ∈ CC(n)a vertex of coordinates (c1, . . . , cn−1), and by forming for each c, c′ ∈ CC(n) such that
cl c′ an edge between c and c′. Every edge of C(CC(n)) is parallel to a line passing bythe origin and a cubic coordinate of the form (0, . . . , 0, 1, 0, . . . , 0) or (0, . . . , 0,−1, 0, . . . , 0).

(1̄, 2̄)

(0, 1̄) (1̄, 0)
(1̄, 1)

(1, 0)

(0, 2̄)

(0, 0)
(0, 1)

(2, 0)

(1, 2̄)
(1, 1̄)

(2, 1)

(2, 1̄)

FIGURE 2.1. C(CC(3)).
Figure 2.1 is the cubic realization of CC(3), where the elements are the vertices andthe edges are the covering relations. Figure 2.2 is the cubic realization of CC(4). In thesedrawings the negative sign components are denoted with a bar.In algebraic topology, to define the tensor products of A∞-algebras, one can use a cellcomplex called the diagonal of the associahedron. This complex has notably been studiedby Loday [Lod11], by Saneblidze and Umble [SU04] or by Markl and Shnider [MS06].
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More recently, there is a description of this object in [MTTV19]. The realization of thiscomplex seems to be identical to the cubic realization, up to continuous deformation.2.1.2. Minimal increasing map. Let n > 0 and c, c′ ∈ CC(n) such that cl c′. Knowingthat between c and c′ only one component is different, one may define the set of

? input-wings as the set I(CC(n)) containing any c ∈ CC(n) which covers exactly
n − 1 elements,

? output-wings as the set O(CC(n)) containing any c ∈ CC(n) which is covered byexactly n − 1 elements.Note that both notions of input-wings and output-wings will be used in Chapter 4,where elements both input-wings and output-wings will also be considered.Let n > 0 and c ∈ CC(n). Suppose there is c′ ∈ CC(n) such that c′i > ci and c′j = cjfor all j 6= i with i, j ∈ [n − 1]. The minimal increasing map of ↑i is defined by
↑i (c) := (c1, . . . , ci−1, ↑ ci, ci+1, . . . , cn−1), (2.1.1)such that c l ↑i (c) and ci <↑ ci 6 c′i. This map ↑i allows us to select one coveringcubic coordinate of c in particular. In the following, it is said that ↑i (c) is the minimal

increasing of c for the component ci.In particular, for n > 0, a cubic coordinate c of size n is an output-wing if for any
i ∈ [n − 1], ↑i (c) is well-defined.Let n > 0 and c ∈ CC(n), and (u, v) := φ(c). If ↑ ci is positive then the letter uiincreases and becomes equal to ↑ ci and vi+1 is equal to 0. Then, we set ↑ ui :=↑ ci. If ↑ ciis negative or null then vi+1 decreases and becomes equal to | ↑ ci| and ui is equal to 0.Then, we set ↓ vi+1 :=↑ ci.

LEMMA 2.1.1. Let n > 0 and c ∈ CC(n), and i ∈ [n−1] such that ↑i (c) is well-defined.
Then,

(i) if ci < 0 then ↑ ci 6 0,
(ii) if ci > 0 then ↑ ci > 0.

PROOF. Let us show the first implication, the second being obvious because the min-imal increasing map always strictly increases a component. Let ci < 0. Suppose bycontradiction that ↑ ci > 0. Let us then note c′ the (n − 1)-tuple such that c′i = 0 and
c′j = cj for any j 6= i, with j ∈ [n − 1]. By Lemma 1.2.2 c′ is a cubic coordinate. Clearly,
c 4 c′ 4↑i (c), with the three distinct elements. Which is impossible by definition of theminimal increasing map. �

LEMMA 2.1.2. Let n > 0 and c ∈ O(CC(n)) and i ∈ [n − 1]. If

c′ =↑i+1 (↑i+2 (. . . (↑n−1 (c)) . . . )), (2.1.2)
is well-defined then ↑i (c′) is well-defined.

PROOF. Suppose that (2.1.2) is satisfied for i + 1. Let us show that ↑i (c′) is also well-defined. Then two cases are possible for ci.
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Suppose that ci < 0. In this case, consider c′′ the (n − 1)-tuple obtained from c′ byreplacing the ci component by 0. This (n−1)-tuple c′′ is a cubic coordinate by Lemma 1.2.2.Since ci < 0 one has c′ 4 c′′. If c′′ is a cover for c′ then c′′ =↑i (c′). Otherwise, it is alwayspossible to find another cubic coordinate c′′′ between c′ and c′′ such that c′′ =↑i (c′). Inboth cases, ↑i (c′) is well-defined.
Suppose that ci > 0. Let (u, v) := φ(c), then ci = ui. The minimal increasing of c′ for

ui can lead to three different cases due to the two conditions of a Tamari diagram and thecompatibility condition.(i) If there is an index j such that 1 6 i < j 6 n and ↓ vj > j− i then vj > j− i because
↓ vj < vj . By the compatibility condition that implies ui < j − i. Moreover, since
c is assumed output-wing, ui < j − i − 1, so that ui can be increased in c. Thisinequality remains true for c′.(ii) If there is an index h such that 1 6 i − h 6 uh then ui 6 uh − i + h by thecondition (ii) of a Tamari diagram. This remains true in c′ because componentswith index smaller than i remain unchanged between c and c′. Furthermore,since c is an output-wing then ui < uh − i+h. This property remains true for c′.(iii) If there is an index k such that 1 6 i < k 6 n then by (i) of a Tamari diagram,
↑ uk 6 n − k.

Let us build a (n − 1)-tuple c′′ different from c′ only for component ci and let us seewhat choices are available for ui.
(a) Suppose there is a j satisfying (i) and there is no h satisfying (ii) in c′. In this case,we set ui := j − i − 1. The compatibility condition is satisfied because ui < j − i.Furthermore, since c′ is assumed to be well-defined, all conditions in a Tamaridiagram and a dual Tamari diagram are satisfied for c′′. Our candidate c′′ istherefore a cubic coordinate.(b) Suppose there is a h satisfying (ii) and there is no j satisfying (i) in c′. Then weset ui := uh− i+h. The condition (ii) of a Tamari diagram is thus satisfied for ui.Also, by the condition (i) of a Tamari diagram, uh 6 n−h which implies ui 6 n−i.Finally, the compatibility condition is also satisfied because it was assumed thatthere was no j satisfying (i). The tuple c′′ is thus a cubic coordinate.(c) Suppose there is a j and a h satisfying (i) and (ii) in c′. In this case, we set

ui := min{uh − i + h, j − i − 1}. The tuple c′′ is then a cubic coordinate by thetwo previous cases.(d) Otherwise, we set ui := n − i. The tuple c′′ is a cubic coordinate.
In all four cases, the existence of a k satisfying (iii) has no influence. Indeed, in (a)

↑ uk is increased by ↓ vj and is thus lower than ui = j − i− 1 in c′′. In (b) ↑ uk is increasedby uh and is thus lower than ui = uh − i + h in c′′. In (c) ↑ uk is increased by either ↓ vjor uh. Finally in (d) since ↑ uk 6 n − k and n − k < n − i one has ↑ uk < n − i.
In any case, for ui fixed in c′′, either there is a ↑ ui such that 0 <↑ ui < ui and ↑i (c′)is well-defined, otherwise ↑i (c′) = c′′. �
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Let n > 0 and c ∈ O(CC(n)) and c′ ∈ CC(n). The cubic coordinate c′ is the corre-

sponding input-wing of c if
c′ =↑1 (↑2 (. . . (↑n−1 (c)) . . . )). (2.1.3)For instance c = (0,−1, 1,−1,−5, 0, 1,−1,−3) is an output-wing, and its correspondinginput-wing is c′ = (1, 0, 2, 0,−4, 3, 2, 0,−2). By Lemma 2.1.2 such an element does exist.Note that performing the minimal increasing of c in a different order does not alwaysresult in the corresponding input-wing. This observation can already be made on the twopentagons of Figure 2.1.2.1.3. Cubic cells. In Figure 2.1 and Figure 2.2, we notice that a "cellular" organizationappears. Thanks to the cubic coordinates, a combinatorial definition of these cells is pro-vided. The aim is to have a better understanding of the realization of the cubic coordinateposets, as a geometrical object.For any n > 0, let c, c′ ∈ CC(n) such that c 4 c′. A cell is the set of points

〈c, c′〉 := {x ∈ Rn−1 : ci 6 xi 6 c′i for all i ∈ [n − 1]}. (2.1.4)By definition, a cell is an orthotope, that is a parallelotope whose edges are all mutuallyorthogonal or parallel. The dimension dim 〈c, c′〉 of a cell 〈c, c′〉 is its dimension as anorthotope and it satisfies dim 〈c, c′〉 = #D(c, c′), where D(c, c′) := D−(c, c′) tD+(c, c′). Thesize of the cell 〈c, c′〉 is dim 〈c, c′〉+ 1.From now on, we denote by cout any output-wing and by cin its corresponding input-wing.A consequence of Lemma 2.1.1 is that for any cell 〈cout, cin〉 of size n, for all i ∈ [n−1],(i) if cout
i < 0 then cin

i 6 0,(ii) if cout
i > 0 then cin

i > 0.
THEOREM 2.1.3. Let n > 0 and 〈cout, cin〉 be a cell of size n, and c be a (n − 1)-tuple

such that all component ci is equal either to cout
i or to cin

i , for all i ∈ [n− 1]. Then c is a
cubic coordinate.

PROOF. If all the components of c are equal to those of cout (resp. to those of cin), then
c is a cubic coordinate. Suppose this is not the case, meaning that c has components of
cout and cin.Let us note (uout

i , vout
i+1) (resp. (uin

i , v in
i+1)) the pair of letters corresponding to cout

i (resp.
cin
i ) and (ui, vi+1) the one corresponding to ci for any i ∈ [n − 1]. By hypothesis on coutand cin the letter ui which is equal to uout

i or uin
i satisfies 0 6 ui 6 n − i for any i ∈ [n].Similarly, the letter vi which is equal to vout

i or v in
i satisfies 0 6 vi 6 i − 1 for any i ∈ [n].Let us show that c satisfies the condition (ii) of a Tamari diagram, the condition (ii) of adual Tamari diagram and the compatibility condition.

(i) Let us show that for any choice of letters ui and ui+j with i ∈ [n] and j ∈ [0, ui]one has ui+j 6 ui − j .



66 2. CUBIC COORDINATE LATTICES
? If ui and ui+j are equal respectively to uout

i and to uout
i+j (resp. to uin

i and to
uin
i+j ) then the condition (ii) of a Tamari diagram is satisfies because cout (resp.
cin) is a cubic coordinate.

? Suppose that ui = uin
i and ui+j = uout

i+j . By definition of cin one has uout
i+j < uin

i+j .However uin
i+j 6 uin

i − j because cin is a cubic coordinate. Therefore thecondition (ii) of a Tamari diagram is satisfied.
? Suppose that ui = uout

i and ui+j = uin
i+j . Let c′ =↑i+j (↑i+j+1 (. . . (↑n−1 (cout)) . . . )).According to Lemma 2.1.2 c′ is a cubic coordinate such that c′i = uout

i and
c′i+j = uin

i+j . Since the condition (ii) of a Tamari diagram is satisfied for c′, itmust also be satisfied for c.(ii) The condition (ii) of a dual Tamari diagram is satisfied with the same argumentsgiven for the three previous cases, applied to the dual Tamari diagram v.(iii) Rather than showing the compatibility condition as it is stated, let us show thecontrapositive. That is, for every 1 6 i < j 6 n such that vj > j − i, let us showthat ui < j − i.
? Clearly, if ui and vj are equal to uout

i and vout
j (resp. to uin

i and v in
j ) then thecompatibility condition is satisfied.

? Suppose that ui = uout
i and vj = v in

j . If v in
j > j − i then for cout one has

vout
j > j − i because v in

j < vout
j . Since cout is a cubic coordinate, this impliesthat uout

i < j − i.
? Suppose that ui = uin

i and vj = vout
j . If vout

j > j − i then for all k ∈ [i, j −1], uout
k < j − k because cout is a cubic coordinate and then satisfies thecompatibility condition. Moreover, since cout ∈ O(CC(n)) each componentcan be minimally increased independently of the others, thus uout

k < j−k−1for all k ∈ [i, j − 1]. For the same reason ui+h < ui − h for all h ∈ [0, ui].These two reasons imply that if one builds the cubic coordinate c′ =↑i (↑i+1(. . . (↑n−1 (cout)) . . . )) then by definition of the minimal increasing map onehas c′i = u′i < j − i, because at worst, the minimal increasing map sends uout
ito j − i− 1. However, by definition of cin one has uin

i = u′i , that is uin
i < j − i.Therefore the compatibility condition between uin and vout

j is satisfied for c.
Thus, for all choices of letters of u and v one has that c is a cubic coordinate. �

One of the direct consequences of Theorem 2.1.3 is that for every cell 〈cout, cin〉, atleast 2n−1 cubic coordinates belong to this cell.
This theorem also implies that a corresponding input-wing covers n− 1 cubic coordi-nates, and so is in particular an input-wing.
Moreover, due to the fact the Tamari interval lattice is self-dual, the number of output-wings is equal to the number of input-wings. Therefore, by Theorem 1.3.6, an input-wingis a corresponding input-wing.
Let n > 0 and ε ∈ {−1, 1}n−1, and c ∈ CC(n). A region of c is the set
Rε(c) := {(x1, . . . , xn−1) ∈ Rn−1 : xi < ci if εi = −1, xi > ci otherwise}. (2.1.5)
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The cubic coordinate c is external if there is ε ∈ {−1, 1}n−1 such that CC(n) ∩Rε(c) = ∅.The region Rε(c) is then empty. Otherwise c is internal.

PROPOSITION 2.1.4. Let n > 0 and c ∈ CC(n). If c is internal then φ(c) is a new
Tamari interval diagram.PROOF. Instead, let us show that if φ(c) is not new, then c is external. Let us note(ui, vi+1) the pair of letters corresponding to ci by the map φ for i ∈ [n − 1].Tamari interval diagram φ(c) is not new if there is(1) either i ∈ [n − 1] such that ui = n − i,(2) or j ∈ [2, n] such that vj = j − 1,(3) or k, l ∈ [n] such that uk = l − k − 1 and vl = l − k − 1 with k + 1 < l.Suppose there is i satisfying (1) then there cannot be a cubic coordinate c′ such that c′i > cibecause by definition of a Tamari diagram c′i 6 n − i. Similarly, if we assume that thereis j satisfying (2) then there cannot be a cubic coordinate c′ such that c′j−1 < cj−1 becauseby definition of a dual Tamari diagram, c′j−1 > 1 − j . If (3) is satisfied, then there cannotbe a cubic coordinate c′ such that c′k > ck and c′l−1 < cl−1. Indeed, if the letters uk and vlare increased in c then the compatibility condition is contradicted, so the result cannot bea cubic coordinate. Since in each case at least one region is empty, c is external. �PROPOSITION 2.1.5. Let n > 0 and c ∈ SCC(n). Then c is external.PROOF. By Proposition 1.2.6 we know that if c is synchronized then φ(c) is not new.Now, we just saw from Proposition 2.1.4 that if φ(c) is not new, then c is external. �

2.2. Cells and volumes. We now have a definition of cells. In addition, we knowthat each cell contains at least 2n−1 cubic coordinates on the edges. In this section, weshow that it is possible to associate bijectively each cell to a synchronized cubic coordinate.Finally, we deduce a formula to compute the volume of the cubic realization.2.2.1. Cells and synchronized cubic coordinates. Let n > 0 and 〈cout, cin〉 be a cell ofsize n and γ be the map defined by
γ(cout

i , cin
i ) := {cout

i if cout
i < 0,

cin
i if cout

i > 0, (2.2.1)
for all i ∈ [n − 1]. Note that the components returned by the map γ are never zero. Letdenote by (uout

i , vout
i+1) (resp. (uin

i , v in
i+1)) the pair of letters corresponding to cout

i (resp. cin
i )by the map φ, for any i ∈ [n − 1]. Then the map γ becomes

γ(cout
i , cin

i ) := {−vout
i+1 if cout

i < 0,
uin
i if cout

i > 0. (2.2.2)
Let Γ be the map defined byΓ〈cout, cin〉 := (γ(cout1 , cin1 ), γ(cout2 , cin2 ), . . . , γ(cout

n−1, cin
n−1)). (2.2.3)For instance, the cell 〈(0,−1, 1,−1,−5, 0, 1,−1,−3), (1, 0, 2, 0,−4, 3, 2, 0,−2)〉 is sent byΓ to (1,−1, 2,−1,−5, 3, 2,−1,−3).
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(0, 0, 0)

(3, 2, 1)

(0, 2, 1)
(3, 0, 1)

(3, 2, 0)

(1̄, 2̄, 3̄)

(1̄, 0, 3̄)

(1̄, 2̄, 0)

FIGURE 2.2. C(CC(4)).
THEOREM 2.2.1. For any n > 0, the map Γ is a bijection from the set of cells of size

n to SCC(n).
PROOF. The components of Γ〈cout, cin〉 belong to either cout or cin. In both cases, itis a non-zero component. According to Theorem 2.1.3, Γ〈cout, cin〉 is therefore a cubiccoordinate of size n. Moreover, this cubic coordinate is synchronized because none of itscomponents is null.Let 〈cout, cin〉 and 〈eout, ein〉 be two cells of size n such that Γ〈cout, cin〉 = Γ〈eout, ein〉.Let us note (uout

i , vout
i+1) (resp. (uin

i , v in
i+1)) the pair of letters corresponding to cout

i (resp. cin
i )and (xout

i , yout
i+1) (resp.(xin

i , y in
i+1)) the pair of letters corresponding to eout

i (resp. ein
i ) by themap φ, for all i ∈ [n − 1].The map Γ is injective if cout

i = eout
i (resp. cin

i = ein
i ) for any i ∈ [n − 1]. To supposethat Γ〈cout, cin〉 = Γ〈eout, ein〉 is equivalent to suppose that for all i ∈ [n − 1], γ(cout

i , cin
i ) =
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γ(eout

i , ein
i ). Two cases are then to be considered, either γ(cout

i , cin
i ) = uin

i or γ(cout
i , cin

i ) =
−vout

i+1. By definition of the map γ, no other case is possible.
(1) Suppose that γ(cout

i , cin
i ) = uin

i with i ∈ [n − 1].
? In this case, γ(eout

i , ein
i ) = xin

i and uin
i = xin

i . Moreover, since uin
i 6= 0 (resp.

xin
i 6= 0), then necessarily v in

i+1 = 0 (resp. y in
i+1 = 0). Therefore cin

i = ein
i .

? Let us show that cout
i = eout

i . The fact that uin
i > 0 (resp. xin

i > 0) impliesby Lemma 1.2.2 that 0 6 uout
i < uin

i and vout
i+1 = 0 (resp. 0 6 xout

i < xin
iand yout

i+1 = 0). Thus one has vout
i+1 = yout

i+1. So it remains to be shown that
uout
i = xout

i . Suppose by contradiction that uout
i < xout

i . By definition of theminimal increasing map, one has xout
i < xin

i . This implies, in addition tothe hypothesis that xin
i = uin

i , that uout
i < xout

i < uin
i . Let c =↑i+1 (. . . (↑n−1(cout)) . . . ) and e =↑i+1 (. . . (↑n−1 (eout)) . . . ). By Lemma 2.1.2 c and e are bothcubic coordinates. By construction cj = uout

j (resp. ej = xout
j ) for all j ∈ [i]and ck = cin

k (resp. ek = ein
k ) for all k ∈ [i + 1, n − 1]. Now let c′ be a tuplesuch that c′i = xout

i and c′j = cj for all j 6= i. Let us show that c′ is a cubiccoordinate. Let (u, v) and (u′, v ′) be the two pairs of words correspondingrespectively to c and c′. Since only one positive letter changes between cand c′, the words v and v ′ are the same. Furthermore, since c is a cubiccoordinate, the word v is in particular a dual Tamari diagram. Therefore v ′is also a dual Tamari diagram. On the other hand, for any k ∈ [i + 1, n − 1]one has u′k = uin
k by definition of an input-wing. However, by hypothesis

uin
k = xin

k . Since the cubic coordinate e is in particular a Tamari diagram, thefact that u′k = xin
k for any k ∈ [i + 1, n − 1] means that u′ is also a Tamaridiagram. Finally, since ↑i (c) is a cubic coordinate by Lemma 2.1.2, it satisfiesin particular the compatibility condition, with ↑ ci = uin

i by definition of aninput-wing. This condition remains satisfied if the letter uin
i is decreased tothe letter xout

i . Therefore, c′ satisfies the compatibility condition and is acubic coordinate. We have built a cubic coordinate c′ distinct from c and
↑i (c) such that c 4 c′ 4↑i (c), which is impossible according to the definitionof the minimal increasing map.(2) Suppose that γ(cout

i , cin
i ) = −vout

i+1. In this case γ(eout
i , ein

i ) = −yout
i+1 and vout

i+1 = yout
i+1.By rephrasing the arguments of the case (1) for the dual, we show that cout

i = eout
iand cin

i = ein
i .This shows that the map Γ is injective.

Now let us show that the cardinal of the set of cells of size n is equal to the cardinalof SCC(n). Recall that the set of cells of size n is exactly O(CC(n)). Furthermore, by theposet isomorphism ψ we know that these elements are the Tamari intervals having n− 1elements covering in the Tamari interval lattices. In [Cha18] Chapoton shows that theset of these Tamari intervals has the same cardinal as the set of synchronized Tamariintervals (see Theorem 2.1 and Theorem 2.3 from [Cha18]). Finally, Proposition 1.2.3allows us to conclude that the cardinal of SCC(n) and the cardinal of the set of cells ofsize n are equal. Thus, the map Γ is bijective. �
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Let us also defined the map γ̄ by

γ̄(cout
i , cin

i ) := {cin
i if cout

i < 0,
cout
i if cout

i > 0, (2.2.4)
for all i ∈ [n − 1]. Then Γ̄ is defined byΓ̄〈cout, cin〉 := (γ̄(cout1 , cin1 ), γ̄(cout2 , cin2 ), . . . , γ̄(cout

n−1, cin
n−1)). (2.2.5)By Theorem 2.1.3, Γ̄〈cout, cin〉 is a cubic coordinate belonging to 〈cout, cin〉, called oppo-

site cubic coordinate. For the synchronized cubic coordinate c associated with 〈cout, cin〉by Γ, note cop the opposite cubic coordinate. All the components of cop are different fromthose of c, and these differences are the greatest possible. For any synchronized cubiccoordinate c, such a cubic coordinate cop always exists and is unique.Note that the map Γ only returns the positive components of cin and the negativecomponents of cout. Conversely, the map Γ̄ returns the positive components of cout andthe negative components of cin. We already know that the latter combination is alwayspossible for any comparable cubic coordinates according to Lemma 1.3.2. On the otherhand this is not the case for the first mentioned combination.2.2.2. Volume of C(CC). Now let us take a closer look at the geometry of the cubicrealization. We already know that there are at least 2n−1 cubic coordinates forming anoutline of each cell. The following notions will allow us to say more.A point x of Rn−1 is inside a cell 〈c, c′〉 if for any i ∈ [n−1], ci 6= c′i implies ci < xi < c′i.A cell 〈c, c′〉 is pure if there is no cubic coordinate inside 〈c, c′〉. In other terms, this saysthat for all c′′ ∈ [c, c′], there exists i ∈ [n − 1] such that ci 6= c′i and c′′i ∈ {ci, c′i}. The
volume vol 〈c, c′〉 of 〈c, c′〉 is its volume as an orthotope and its satisfiesvol 〈c, c′〉 = ∏

i∈D(c,c′) c
′
i − ci. (2.2.6)

LEMMA 2.2.2. Let n > 0 and 〈cout, cin〉 be a cell of size n. The cell 〈cout, cin〉 is pure.

PROOF. Suppose there is a cubic coordinate c such that cout
i < ci < cin

i for all i ∈[n − 1]. By Lemma 2.1.1 we know that if cout
i < 0 then cin

i > 0 and if cout
i > 0 then

cin
i > 0. However, since cout

i < ci < cin
i then ci is different from 0. In the end, if sucha cubic coordinate c exists, it would be synchronized. But then, there would be a cubiccoordinate both synchronized and internal by hypothesis. This is impossible according toProposition 2.1.5. �We showed with Theorem 2.1.3 that each cell contains at least 2n−1 cubic coordinates.By Lemma 2.2.2, we know that each cell 〈cout, cin〉 is pure, and then has only cubic coor-dinates on its border.Let n > 0 and 〈cout, cin〉 be a cell of size n. Since between cout and cin all componentsare different, one has D(cout, cin) = n − 1, and so the volume of 〈cout, cin〉 satisfies

vol〈cout, cin〉 = n−1∏
i=1 c

in
i − cout

i . (2.2.7)
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Let us denote by c0 the cubic coordinate such that c0

i = 0 for any i ∈ [n − 1]. Tocompute vol〈cout, cin〉 from the synchronized cubic coordinate c associated by Γ, we mustfirst compute the volume of the pseudo-cell formed by c0 and c. Let us summarize thedata we have so far.By Lemma 2.1.1, any cell is included in a region of the c0 cubic coordinate. This meansthat no cell can be cut by a line passing by the origin c0 and a cubic coordinate of theform (0, . . . , 0, 1, 0, . . . , 0) or (0, . . . , 0,−1, 0, . . . , 0).According to Lemma 1.2.2, for any cubic coordinate, replacing any component by 0gives a cubic coordinate. In other words, for any cubic coordinate c, there are n−1 cubiccoordinates related to c which are its projections on the lines passing by c0 and a cubiccoordinate of the form (0, . . . , 0, 1, 0, . . . , 0) or (0, . . . , 0,−1, 0, . . . , 0). Therefore, even if c0and c are not comparable, we can define a pseudo-cell, denoted by 〈c〉, between c0 and c,such that the volume of this pseudo-cell satisfiesvol 〈c〉 = ∏
i∈D(c,c0) |ci|. (2.2.8)

Note that the dimension of a pseudo-cell is less than or equal to n− 1. Moreover, 〈c〉 canbe no pure, and may even contain other pseudo-cells of the same dimension.By the map Γ the components of the synchronized cubic coordinate c of cell 〈cout, cin〉are the greatest in absolute value between cout and cin. Therefore, in the cell 〈cout, cin〉,
c is the furthest cubic coordinate from c0. In particular, 〈c〉 contains the cell 〈cout, cin〉.Therefore of dimension of 〈c〉 is n − 1.Let n > 0 and c ∈ SCC(n). Since by definition, all components of c are different from0, one has D(c, c0) = n − 1. Therefore,

vol 〈c〉 = n−1∏
i=1 |ci|. (2.2.9)

Let us endow the set SCC(n) with the partial order 4s such that for c, c′ ∈ SCC(n)one has c′ 4s c if c′i and ci have the same sign and |c′i| 6 |ci| for any i ∈ [n − 1].
LEMMA 2.2.3. For any n > 0, let 〈cout, cin〉 be a cell of size n, and c := Γ−1〈cout, cin〉.

For any x ∈ Rn−1 such that x ∈ 〈c〉, if x /∈ 〈cout, cin〉 then there is c′ ∈ SCC(n) different
from c such that c′ 4s c and x ∈ 〈c′〉.

PROOF. Let cop be the opposite cubic coordinate of c. Since x /∈ 〈cout, cin〉 and x ∈ 〈c〉,then necessarily cop 6= c0. For the same reasons, there is an index i such that |xi| < |copi |where copi 6= 0. Let us build ∇ic the (n − 1)-tuple such that ∇ici = copi and ∇icj = cjfor all j 6= i. According to Theorem 2.1.3, ∇ic is a cubic coordinate and belongs to thecell 〈cout, cin〉. Also, ∇ic is a synchronized cubic coordinate which satisfies ∇ic 4s c andwhich is different from c. We can then associate to ∇ic a cell, which is strictly includedin 〈c〉. Then x ∈ 〈∇ic〉. �Since by Lemma 2.2.2 all cells are pure, Lemma 2.2.3 implies that 〈c〉 ⊆∐c′4sc Γ−1(c′),and since the reciprocal inclusion is obvious, one has the following result.
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LEMMA 2.2.4. Let n > 0 and c ∈ SCC(n). Then

〈c〉 = ∐
c′4sc

Γ−1(c′). (2.2.10)
Let n > 0 and c ∈ SCC(n). The synchronized volume of c is defined bysv(c) := vol 〈c〉 −∑

c′4sc
c′ 6=c

sv(c′). (2.2.11)
Note that Expression (2.2.11) is a Möbius inversion [Sta12].

PROPOSITION 2.2.5. Let n > 0 and 〈cout, cin〉 be a cell of size n, be the synchronized
cubic coordinate associated with it by Γ. Thenvol〈cout, cin〉 = sv(c). (2.2.12)

PROOF. This is a consequence of Lemma 2.2.4 and of (2.2.11). �

With Proposition 2.2.5 we are able to compute, for any n > 0, the volume of C(CC(n))depending on synchronized cubic coordinates,vol(C(CC(n))) = ∑
c∈SCC(n) sv(c). (2.2.13)

2.3. EL-shellability. For this section, we refer for definitions and conventions to Sec-tion 2.3 of Chapter 1.For the sequel, we set Λ as the poset Z3 wherein elements are ordered lexicographi-cally. Let (c, c′) ∈ l such that ci < c′i for i ∈ [n− 1] and let λ : lÏ Z3 be the map definedby
λ(c, c′) := (ε, i, ci), (2.3.1)

where ε := {−1 if ci < 0,1 else.
THEOREM 2.3.1. For any n > 0, the map λ is an EL-labeling of CC(n). Moreover,

there is at most one λ-weakly decreasing chain between any pair of elements of CC(n).
PROOF. Let c, c′ ∈ CC(n) such that c 4 c′. By Lemma 1.3.5, there is a saturated chain(

c = c(0), c(1), . . . , c(s−1), c(s) = c′
)
. (2.3.2)

Recall that the chain (2.3.2) is obtained by consideringD−(c, c′) := {d : cd 6= c′d and c′d 6 0} = {d1, d2, . . . , dr} (2.3.3)and D+(c, c′) := {d : cd 6= c′d and cd > 0} = {dr+1, dr+2, . . . , ds}, (2.3.4)with dk−1 < dk for all k ∈ [s]. the chain (2.3.2) is then the concatenation of two saturatedchains, the first one between c and c(r)(
c = c(0), c(1), . . . , c(r−1), c(r)), (2.3.5)
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where c(k) is obtained by replacing successively in c all the components cd1 , cd2 , . . . , cdk bythe components c(r)

d1 , c(r)
d2 , . . . , c(r)

dk , for all k ∈ [r], and the second saturated chain between
c(r) and c′ (

c(r), c(r+1), . . . , c(s−1), c(s) = c′
)
, (2.3.6)where c(k) is obtained by replacing successively in c(r) all the components cdr+1 , cdr+2 , . . . , cdkby the components c′dr+1 , c′dr+2 , . . . , c′dk , for all k ∈ [r + 1, s], with the observation thatD+(c, c′) = D+(c(r), c′).Since in this chain only one component differs between two cubic coordinates c(k−1)and c(k) for all k ∈ [s], the saturated chain can be constructed by considering all thecubic coordinates between them. Besides, since the chain between c and c′ is obtainedby changing only one component from left to right between each cubic coordinates, thenthis saturated chain is λ-increasing for the lexicographic order induced by (2.3.1). Let usnote this chain µ.Moreover, any other choice of saturated chain between c and c′ implies choosing, ata certain step k, a greater label for the lexicographical order than the label (ε, k, ck) of µ,and then having to choose the label (ε, k, c′′k) afterwards. Thus, the saturated chain µ isunique and is λ-smaller.If there is a saturated chain λ-weakly decreasing between c and c′, then it is obtainedby first replacing successively in c the components cds , cds−1 , . . . , cdk by the components

c′ds , c
′
ds−1 , . . . , c′dk for any k ∈ [r+1, s], with D+(c, c′) := {dr+1, dr+2, . . . , ds}. Then, by replac-ing successively in the cubic coordinate thus obtained the components cdr , cdr−1 , . . . , cdk by

c(r)
dr , c

(r)
dr−1 , . . . , c(r)

dk for any k ∈ [r], with D−(c, c′) := {d1, d2, . . . , dr}. To summarize, if a sat-urated chain λ-weakly decreasing exists between c and c′, it is built by first changing thedifferent and positive components between c and c′ from right to left, and then changingthe different and negative components between c and c′ from right to left. For the samereason that any saturated λ-increasing chain is unique for any interval, if it exists, the
λ-weakly decreasing chain is also unique. �For instance, in Figure 2.1, the λ-increasing saturated chain between (−1,−2) and (2, 1)is the chain ((−1,−2), (0,−2), (0,−1), (0, 0), (1, 0), (2, 0), (2, 1)), (2.3.7)and
λ((−1,−2), . . . , (2, 1)) = ((−1, 1,−1), (−1, 2,−2), (−1, 2,−1), (1, 1, 0), (1, 1, 1), (1, 2, 0)). (2.3.8)





CHAPTER 3
Hochschild lattices

In [Cha20], Chapoton introduces new meet-semilattices called dexter posets, definedon the set of Dyck paths, endowed with the dexter order (see Section 1.3.10 of Chapter 1).An interesting and surprising link is found in this article: a connection between somespecific intervals of dexter posets and cell complexes introduced by Saneblidze [San09,
San11] in the area of algebraic topology. These cell complexes are called Hochschildpolytopes by Saneblidze. They provide, in the context of algebraic topology, combinatorialcellular models of free loops spaces. There are several ways to build Hochschild polytopes.For instance, they can be obtained by a sequence of truncations of the n-simplex, where
n is the dimension of the polytopes [RS18].It is shown in [Cha20] that the set of Dyck paths in these specific intervals in dexterposets is in bijection with a set of words defined on the alphabet {0, 1, 2} satisfying someconditions. Better than that, by considering the poset on this set of words endowed withthe componentwise order, Chapoton shows that a covering relation on Dyck paths for thedexter order implies by this bijection a covering relation on the corresponding words.As a first contribution of the present work, we show the reverse implication. Thisimplies that the two posets are isomorphic. Moreover, we show that these posets arelattices. Because of their links with cell complexes of Saneblidze, we call these latticesHochschild lattices. Our goal is to present a geometric and combinatorial explorationof Hochschild lattices, revealing several interesting features. To this aim, we shall mainlywork with the word version of the lattice previously mentioned, whose elements are calledtriwords.This chapter is organised as follows.In Section 1, we shall define triwords and see the bijection between Dyck paths of thespecific intervals and triwords.Then, we divide our study of the posets into two strands: a geometric one and a com-binatorial one. Thus, Section 2 is devoted to the geometric properties. First, we provide anatural geometric realization for Hochschild lattices, by placing triwords of size n in thespace Rn and by linking by an edge triwords which are in a covering relation. Thanksto this realization, called cubic realization, we are able to show that Hochschild latticesare EL-shellable and constructible by interval doubling (see Section 2.3 and Section 2.4 ofChapter 1).Section 3 is about enumerative and combinatorial results. We give here for instancethe degree polynomial of the Hochschild lattices that enumerates the triwords with respect
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FIGURE 1.1. Hasse diagrams of the dexter meet-semilattice of size 4.
to their coverings and the elements they cover. We also provide a formula to computethe number of intervals of these lattices, as well as a method to compute the numberof k-chains (see Section 2.2 of Chapter 1). Section 3 ends with the introduction of aninteresting subposet of the Hochschild poset, which seems to have similar nice properties.

1. Definitions and first properties

1.1. Hochschild polytopes and triwords.1.1.1. A particular interval of the dexter order. The definition of the dexter order isgiven in Section 1.3.10 of Chapter 1.
The set Dy(n) endowed with the dexter order is a meet-semilattice with many proper-ties highlighted in [Cha20]. In this chapter, we restrict ourselves to a particular intervalof this meet-semilattice.
For any n > 1, let F(n) be the interval in Dy(n + 2) between 1100(10)n and 11n0n100.In particular, any d in the interval F(n) satisfies the three following assertions:
? the sequence of heights of the valleys in d is weakly decreasing from left to right,
? the Dyck path d ends either with 010 or 0100,
? the Dyck path d starts with 11 and has only valleys of height 0 or 1.Figure 1.1 show the Hasse diagram of this poset for n = 2, with the interval F(n) inblue.
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For any n > 1, let us recall the bijection ρ between F(n) and the set of words of length

n in the alphabet {0, 1, 2} satisfying some conditions. Let d ∈ F(n) and N2 be an integerinitially set to 0. By reading from left to right the word d, let us build the word u, initiallythe empty word, by following the two conditions,(i) when two consecutive 1 are read in d, except the first two letters of d, then 1 isadded to N2,(ii) when a valley of height h is read in d, the word h2N2 is added at the end of thebuilding word u, and N2 is then set back to 0.The result ρ(d) is the word u obtained after reading all d. The length of u is n because,except the two initial letters 1, every letter 1 in d contributes a letter in u.For instance, the image by ρ of the two Dyck paths 1101001010 and 1110010010, bothin F(3), are respectively 100 and 120.Since we are going to work in this chapter on the set ρ(F(n)), we need to give adescription of this set which is independent of the construction induced by ρ.1.1.2. Triwords. For any n > 1, a word u of size n is a triword of the same size if usatisfies, for all i ∈ [n],(i) ui ∈ {0, 1, 2},(ii) u1 6= 2,(iii) if ui = 0 then uj 6= 1 for all j > i.The graded set of triwords is denoted by Tr, where the size of a triword is its number ofletters.For instance,Tr(1) = {0, 1}, Tr(2) = {00, 02, 10, 11, 12},Tr(3) = {000, 020, 002, 100, 022, 110, 102, 120, 111, 121, 112, 122}. (1.1.1)
Note that the condition (iii) means that there is no subword 01 in any triword.
LEMMA 1.1.1. The set of triwords is specified by the formal grammar

A = ε + 0A+ 2A, (1.1.2)
B = ε + 0A+ 1B+ 2B, (1.1.3)Tr = ε + 0A+ 1B. (1.1.4)

PROOF. First, A is the set of all words on 0, 2. By induction on the length of the words,one can prove that B is the set of all words on {0, 1, 2} avoiding the subword 01. Finally,since a triword beginning by 0 has no occurrences of 1, and a triword beginning by 1writes as 1u′ where u′ ∈ B, (1.1.4) holds. �From Lemma 1.1.1 one obtains the generating series
GA(t) = 1 + 2tGA(t), (1.1.5)
GB(t) = 1 + tGA(t) + 2tGB(t), (1.1.6)
GTr(t) = 1 + tGA(t) + tGB(t) (1.1.7)
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of A, B, and Tr. We deduce that Tr admits

GTr(t) = (1− t)2(1− 2t)2 (1.1.8)
as generating function. Therefore, for any n > 1, the number of triwords is#Tr(n) = 2n−2(n + 3). (1.1.9)

LEMMA 1.1.2. For any n > 1, the image ρ(F(n)) coincides with Tr(n).
PROOF. Let d ∈ F(n) such that ρ(d) := u. Then the first letter of u is either 0 or 1.Besides, a letter 0 cannot be follows by a letter 1 because the height of the valleys in d isweakly decreasing from left to right. Thus, one has u ∈ Tr(n).Moreover, we know from [Cha20] that the number of elements in F(n) is (1.1.9). �

1.2. Order structure and poset isomorphism. We endow the set of triwords withthe componentwise order and show that the bijection ρ is a poset isomorphism. Then, wedescribe the meet and join of the poset so defined.1.2.1. Componentwise order. For any n > 1, let 4 be the partial order on Tr(n) satis-fying u 4 v for any u, v ∈ Tr(n) such that ui 6 vi for all i ∈ [n]. The set Tr(n) endowedwith 4 is the Hochschild poset of order n.We set that ul v if and only if u 4 v and there is only one index i such that ui < vi ,and if there is w ∈ Tr(n) such that u 4 w 4 v, then either w = u or w = v. Obviously, thebinary relation l is contained in the covering relation of Tr(n).Note that the minimal element of Tr(n) is 0n and the maximal element is 12n−1.
PROPOSITION 1.2.1. For any n > 1, the binary relation l is the covering relation of

the Hochschild poset Tr(n).
PROOF. Let u, v ∈ Tr(n) such that v covers u. The case n = 1 is clear. Let n > 1and let i be the minimal index such that ui 6= vi , and let w := u1 . . . ui−1viui+1 . . . un bethe word with the same letters as u, except for the i-th letter. Since vi > ui , either w isobtained by replacing in u the i-th letter 0 by 1 or by 2, or by replacing in u the i-th letter1 by 2. In both cases, vi is not 0. Moreover, since i is the minimal index such that ui 6= vi ,if there is a letter 0 before ui in u, then this letter exist also in v, and so vi cannot be 1.Therefore, the subword 01 cannot be generated in w. Thus, the word w is a triword. Itfollows that there is a triword w ′ 4 w such that u is covered by w ′. One can concludethat between two triwords in covering relation, there is exactly one different letter. �

1.2.2. Poset isomorphism. For any Dyck path d = p10mxs with m > 0, p a prefix, sa suffix, and x a movable subpath, let N(d, x) be the number of consecutive 0 letters thatappear before x in d.
PROPOSITION 1.2.2. For any n > 1, the map ρ is an isomorphism of posets from F(n)

to Tr(n).
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PROOF. Let d, b ∈ F(n). We know (Lemma 9.9 from [Cha20]) that if d covers b in F(n)then the words ρ(b) and ρ(d) differ by exactly one letter, which increases. This impliesthat ρ(b) 4 ρ(d).Let u, v ∈ Tr(n) such that ul v, and let b and d be the respective images of u and

v by ρ−1. Since ul v, there is only one index i such that ui < vi. Then, there are threecases: either 0 becomes 1 or 0 becomes 2, or 1 becomes 2.
? Suppose that ui = 0 and vi = 1. Then, in the path b, there is a movable subpath x(in blue (dark) in (1.2.1)) starting at the height 0 such that N(b, x) > 2. The heightof the starting point of x gives the value of ui in u by the map ρ. In the path d,since only one letter changes between u and v, the same subpath x starts at theheight 1 and N(d, x) = N(b, x) − 1. Because of this move, we have to add one 0after x.

Ï (1.2.1)
? Suppose that ui = 0 and vi = 2. Then, in the path b, there is a movable subpath
x (in blue (dark) in (1.2.2)) starting at the height 0, followed by an other subpath
y also starting at the height 0. This is the height of the starting point of y whichgives ui in u by the map ρ. In the path d, there is a subpath z starting at theheight 0 followed by the subpath y which is unchanged, such that N(d, x) = 0 and
N(d, y) = N(b, x) +N(b, y).

Ï (1.2.2)
? Suppose that ui = 1 and vi = 2. This case is very similar to the previous case, bychanging the height of the starting point 0 of x, y and z by 1.In all cases, one has b 4de d. �1.2.3. Meet and join operations. Let us describe the meet and join operations betweentwo triwords u and v.Let u, v ∈ Tr(n), and let r := max(u1, v1) . . .max(un, vn). Since u1 and v1 are both none2, r1 6= 2. Besides, if ri = 0 for i ∈ [n], then necessarily ui and vi have to be equal to 0.In this case, for all j > i, neither uj nor vj can take the value 1. Therefore, if there is anindex i ∈ [n] such that ri = 0, then rj 6= 1 for all j > i. Thus r is a triword.The triword r is the join between u and v. Indeed, r is by definition the smallestelement such that for all i ∈ [n], ri > ui and ri > vi. Moreover, since the join between uand v is unique, by Proposition 1.2.2, the Hochschild poset is a join-semilattice. One canconclude that Hochschild poset is a lattice since there is a unique minimal triword [Sta11].Note that this fact is already known since the Hochschild poset is an interval of the dextermeet-semilattice [Cha20].Let s := min(u1, v1) . . .min(un, vn). The word s is not necessarily a triword. Forinstance, if we consider u = 11112 and v = 10022, two triwords of size 5, then s = 10012which contains a subword 01.
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Let t := u∧ v be the word obtained from s by changing all subwords 01 by 00 in s.
PROPOSITION 1.2.3. Let n > 1 and u, v ∈ Tr(n), then t := u∧ v is the meet between u

and v.

PROOF. If s := min(u1, v1) . . .min(un, vn) is a triword, then t = s. Suppose that s is nota triword. Since we replace in s all subwords 01 by 00, t is a triword. Moreover, if there isa subword 01 in s, then either u or v has a letter 0 following by letters 0 or 2. Necessary,the word s inherits this letter 0, and then t is a triword if all letters after this letter 0 are0 or 2. Therefore, the triword t is the greatest element such that t 6 u and t 6 v. �

For example, in order to compute 11112∧ 10222, first we compute s = 10112, whichis not a triword. We replace the subword s2s3 and s2s4 by the subword 00. One has11112∧ 10222 = 10002.
2. Geometric propertiesThrough triwords, it is possible to give a cubic realization of the Hochschild latticeby placing in the space Rn all triwords of size n. As for the cubic coordinate lattice seenin Chapter 2, this lattice thus joins the family of posets having a cubic realisation. Thisrealization allows us to show two geometrical results: on the one hand that the Hochschildlattice is EL-shellable and on the other hand that this lattice is constructible by intervaldoubling.

2.1. Cubic realizations. The Hochschild poset Tr(n) can be seen as a geometric ob-ject in the space Rn by placing for each u ∈ Tr(n) a vertex of coordinates (u1, . . . , un),and by forming for each u, v ∈ Tr(n) such that ul v an edge between u and v. In otherwords, as it is done in Chapter 2 for the cubic coordinate poset, we just describe the cubicrealization C(Tr(n)) of Tr(n). Figure 2.1 shows the cubic realizations of Tr(2) and Tr(3).The first thought that comes to mind, is that for any n > 1, any k-face of the realization
C(Tr(n)) is contained in a n − 1-face of the hypercube of dimension n, for k ∈ [0, n − 1].Indeed, between the minimal triword 0n := u and the maximal triword 12n−1 := v, thereis no triword w of size n such that ui < wi < vi for all i ∈ [n] since u1 = 0 and v1 = 1.Therefore, we can see this realization as one empty cell of dimension n. Thus, it isclear that the volume of C(Tr(n)) is 2n−1.

2.2. EL-shellability. We refer to Section 2.3 of Chapter 1 in the sequel.In order to show the EL-shellability of Tr(n) for n > 1, we set Λ as the poset Z2 orderedlexicographically. Then we introduce the map λ : l → Z2 defined for any u, v such that
ul v by

λ(u, v) := (i, ui) (2.2.1)where i is the unique index such that ui 6= vi. Observe that because of the coveringrelation l defined in Proposition 1.2.1, the image by λ of any saturated chain in Tr(n) iswell-defined.
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FIGURE 2.1. Cubic realizations of some Hochschild posets.

For any u, v ∈ Tr(n), let D(u, v) := {d : ud 6= vd} (2.2.2)be the set of all indices of different letters between u and v.
THEOREM 2.2.1. For any n > 1, the map λ is an EL-labelling of the Hochschild latticeTr(n). Moreover, there is at most one λ-weakly decreasing chain between any pair of

comparable elements of Tr(n).
PROOF. Let u, v ∈ Tr(n) such that u 4 v and

D(u, v) := {d1, d2, . . . , ds}, (2.2.3)with d1 < d2 < · · · < ds. For k ∈ [s], let u(k) be the word of size n defined by replacing the
k letters ud1 , ud2 , . . . , udk in u by the k letters vd1 , vd2 , . . . , vdk of v.Thus, for any k ∈ [s], either u(k)

i = ui or u(k)
i = vi for all i ∈ [n]. Since the letters areincreased from the triword u from left to right, the word u(k) is not a triword if and onlyif there is a letter u(k)

i = 0 and a letter u(k)
j = 1 with i 6 dk and j > i. However, if thereis a letter u(k)

i = 0 in u(k) with i 6 dk , then vi = 0 since u(k)
i = vi by construction of u(k).And so ui = 0 since by hypothesis ui 6 vi. Thus, ui = 0 and vi = 0 imply respectively that

uj 6= 1 and vj 6= 1 in the triwords u and v for all j > i. In particular, one has u(k)
j 6= 1 forall j > i. It follows that the subword 01 cannot occur in u(k), and then u(k) is a triword. Letus consider the chain (

u,u(1), u(2), . . . , u(s−1), u(s) = v
) (2.2.4)which is not necessarily saturated. Then, by concatenating the unique saturated chain ineach interval [u(k−1), u(k)] for all k ∈ [s], we obtain a saturated chain between u and v. Sinceeach word u(k) of this saturated chain is obtained from u by replacing letters from left toright, this chain is clearly weakly increasing for the partial order 4. Furthermore, between
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two consecutive triwords u(k−1) and u(k) in this saturated chain, u(k−1) lu(k). Therefore,the image of the chain by λ is increasing for 4. Thus this chain is λ-increasing.Moreover, since between any two consecutive triwords of this chain only one letteris different, if we consider another saturated chain from u to v, then at some point, thischain passes through a word obtained by increasing a letter which has not the smallestpossible index. It lead us to choose later in this chain the letter with a smallest index toincrease it. For this reason, the saturated chain obtained is not λ-increasing.If a λ-weakly decreasing chain exists in [u, v], then it must have the sequence of edge-labels ((ds, uds ), (ds−1, uds−1 ), . . . , (d2, ud2 ), (d1, ud1 )). (2.2.5)Indeed, suppose that between u and v, there is an index d ∈ D(u, v) such that ud = 0 and
vd = 2, and there is a triword w such that u 4 w 4 v with wd = 1. Then for this index
d, the sequence of edge-labels passing through w is ((d, 0), (d, 1)), and so the saturatedchain passing through w in [u, v] cannot be λ-weakly decreasing. Therefore, to obtain a
λ-weakly decreasing chain in [u, v], each index d of D(u, v) can only appear once in thesequence of edge-labels.Assume that there is a λ-weakly decreasing chain. For the same reason as previously,this chain is unique. �For instance, for Tr(3), the λ-increasing chain between 000 and 122 is(000, 100, 110, 120, 121, 122), (2.2.6)and

λ(000, . . . , 122) = ((1, 0), (2, 0), (2, 1), (3, 0), (3, 1)). (2.2.7)For the same interval, the λ-weakly decreasing chain is(000, 002, 022, 122), (2.2.8)and
λ(000, . . . , 122) = ((3, 0), (2, 0), (1, 0)). (2.2.9)

2.3. Construction by interval doubling. One may refer to Section 2.4 of Chapter 1.For all n > 1, let us build Tr(n + 1) from Tr(n) by following these three steps.(i) Let T0(n + 1) be the poset on the set of all words u0 such that u ∈ Tr(n).(ii) We build the set T2(n + 1) from T0(n + 1) by changing for all u ∈ T0(n + 1) theletter un+1 to 2. Let T0,2(n + 1) be the union T0(n + 1) ∪ T2(n + 1).(iii) Let I0 be the set of words of shape 1(1 + 2)∗0. We build the set I1 from I0 bychanging for all u ∈ I0 the letter 0 to 1. Let T(n+ 1) be the union T0,2(n+ 1) ∪ I1.
LEMMA 2.3.1. For any n > 1, the Hochschild poset Tr(n+ 1) is the poset (T(n+ 1),4)

built from Tr(n).
PROOF. Let u ∈ T(n+1), u is written either v0, or v2 with v ∈ Tr, or is a word of form1(1 + 2)∗1. It is clear that, for any v ∈ Tr(n), adding a letter 0 or a letter 2 at the end of vgive a triword of size n + 1. Likewise, a word of form 1(1 + 2)∗1 is also a triword.
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Now, let u ∈ Tr(n+ 1). Suppose that un+1 = 1. Since the subword 01 is forbidden, onehas ui ∈ {1, 2} for all i ∈ [n]. Therefore, u belongs to T(n + 1). Suppose that un+1 = 0or that un+1 = 2. Since u belongs to Tr(n + 1), the conditions of triwords remain on theprefix v of size n of u. Thus, one has v ∈ Tr(n). �

THEOREM 2.3.2. For any n > 1, the Hochschild poset Tr(n) is constructible by interval
doubling.

PROOF. We proceed by induction on n > 1. If n = 1, we have the poset 2, namely theposet with two elements, which is a lattice constructible by interval doubling. Assume nowthat n > 2. We have to show that Tr(n + 1) can be obtained from Tr(n) by a sequence ofinterval doublings. By Lemma 2.3.1, one has that Tr(n + 1) is the poset T(n + 1). Since
T(n + 1) is obtain from Tr(n) by performing the three steps (i), (ii), and (iii), by showingthat these two last steps are two operations of interval doubling, the intended result willfollow.Let us consider T0(n+1). By changing for all u ∈ T0(n+1) the last letter 0 to 2, a copy
T2(n + 1) of T0(n + 1) is obtained. Since any u ∈ T0(n + 1) have a copy v ∈ T2(n + 1) suchthat ui = vi for all i ∈ [n] and un+1 6 vn+1, one has that u 4 v. Therefore, the step (ii) isthe doubling of the interval T0(n + 1).In the step (iii) one builds I1 from I0 by changing for all u ∈ I0 the letter 0 to 1. Sincefor all u, v ∈ I0 such that u 4 v, any word w such that u 4 w 4 v is by definition of 4 aword of shape 1(1+2)∗0, one has that I0 is the interval [1n0, 12n−10]. For the same reason,
I1 is the interval [1n+1, 12n−11].Since any u ∈ I0 has a copy v ∈ I1 such that ui = vi for all i ∈ [n] and un+1 6 vn+1, onehas that u 4 v. Meanwhile, any u ∈ I0 has a copy w ∈ T2(n + 1), included in the interval[1n2, 12n], such that ui = wi for all i ∈ [n] and un+1 6 wn+1. However, by construction, onehas un+1 = 0, vn+1 = 1, and wn+1 = 2, for all u ∈ I0, v ∈ I1 and w ∈ [1n2, 12n]. It followsthat u 4 v 4 w for all u ∈ I0, v ∈ I1 and w ∈ [1n2, 12n] such that ui = vi = wi for i ∈ [n].Therefore, the step (iii) is the doubling of the interval I0. �

Note that for n = 0, Tr(0) = {ε} is constructible by interval doubling. Note also that,for any n > 1, only two steps are necessary to built Tr(n+ 1) from Tr(n), by starting withthe doubling of T0(n + 1) built from Tr(n),Tr(n) ' T0(n + 1)Ï T0(n + 1)× 2Ï Tr(n + 1). (2.3.1)For instance, Figure 2.2 depicts the sequence of interval doublings from Tr(2) to Tr(3).To obtain Tr(3) from T0(3), we have first to double the interval T0(3), then we have todouble the interval [110, 120].
3. Combinatorial propertiesIn this section, several combinatorial and enumerative properties of the Hochschildlattice are proved. We obtain results such as the enumeration of intervals, the enumerationof k-chains, and the description of the degree polynomial of the Hochschild lattice.
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FIGURE 2.2. A sequence of interval doublings from Tr(2) to Tr(3).
3.1. Maximal chains and degree polynomial.3.1.1. Irreducible elements. Let us describe the set of join-irreducible and meet-irre-ducible elements of Tr(n) by using the regular expression notation [Sak09] recalled inSection 1.1.
The two possibilities of having a join-irreducible triword are either to change a letter

ui = 1 to 0 such that all letters on the left of ui are letters 1 and letters on the right of uiare 0, or to change a letter ui = 2 to 0 such that all other letters are 0. Indeed, supposethat we change in a triword u a letter ui = 2 to 1. Since u should cover just one triword,all other letters in u have to be 0. However, since the first letter in u is different from 2,there is a letter ui−1 such that ui−1 6= 0. Thus, ui−1 can be also decreased. This impliesthat u covers more than just one triword. Since the subword 01 is not allowed, the set oftriwords which covers a unique triword is described by
J(Tr(n)) = {u ∈ Tr(n) : u ∈ 1+0∗ + 0+20∗}. (3.1.1)

Likewise, the three possibilities of having a meet-irreducible triword are either to changea letter 1 to 2 or to change a letter 0 to 1, or to change a letter 0 to 2. Moreover, for allcases, the other letters which are unchanged should be as large as possible. Thus, the setof triwords covered by a unique triword is described by
M(Tr(n)) = {u ∈ Tr(n) : u ∈ 12∗12∗ + 12∗02∗ + 02∗}. (3.1.2)

Note that both regular expressions (3.1.1) and (3.1.2) have as generating function
GJ(Tr)(t) = GM(Tr)(t) = t + t2(1− t)2 . (3.1.3)

From (3.1.3), one can deduce that, for n > 1,
#J(Tr(n)) = #M(Tr(n)) = 2n − 1. (3.1.4)

In Section 2, we have shown that the Hochschild lattice is constructible by interval dou-bling. However, it is known from [Day79] that lattices constructible by interval doublingare in particular semidistributive. Moreover, a finite lattice L is constructible by intervaldoubling if and only if it is congruence uniform [Day79]. In particular, the number of
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join-irreducible elements J(L) is equal to the number of doubling steps needed to build
L [Müh19].

Therefore, there are two consequences of Theorem 2.3.2. The first one is that for any
n > 1, the Hochschild poset Tr(n) is semidistributive. Another consequence is that thedifference of numbers of join-irreducible elements between Tr(n− 1) and Tr(n) is always2. Indeed, Tr(n) is constructible by interval doubling from Tr(n − 1) with only two steps.

3.1.2. Maximal chains.

LEMMA 3.1.1. For any n > 1, the length of any maximal saturated chain in the
Hochschild poset Tr(n) is 2n − 1. Moreover, a triword belongs to a maximal saturated
chain if and only if all letters following a letter 0 are also 0.

PROOF. If n = 1, then the length of the saturated chain [0, 1] is 1. Suppose that n > 1.Since all letters 0, except the first one, can be increased to 1, then to 2, the length of amaximal saturated chain in Tr(n) between 0n and 12n−1 is at most 2n − 1. Therefore, toobtain a maximal saturated chain between 0n and 12n−1, all letters 0 in 0n must become 1before becoming 2, except for the first 0. Considering that, the letters have to be increasedfrom left to right, in order to avoid the forbidden subword 01. This way, each letter of0n , except the first one, contributes 2 in the length of the saturated chain between theminimal triword and the maximal triword. Since the first 0 contributes 1, the length ofsuch a saturated chain is 2n − 1.
Furthermore, since the letters have to be increased from left to right, this implies thata triword u belongs to a maximal saturated chain if and only if for any letter ui = 0 then

uj = 0 for all j > i. �

By Lemma 3.1.1 and by (3.1.4), one has the following result.
PROPOSITION 3.1.2. For any n > 1, the Hochschild lattice Tr(n) is extremal.

Recall that if a lattice is extremal and semidistributive, then it is also left modular, andtherefore trim (see Section 2.1.3 of Chapter 1). Therefore, since Theorem 2.3.2 impliesthat Tr(n) is semidistributive, Tr(n) is trim.
3.1.3. Spine. Let us consider the subposet J(S(Tr(n))) of S(Tr(n)), where S(Tr(n) is thespine of Tr(n) (see Section 2.1.3 of Chapter 1). Figure 3.1 shows the spine of S(Tr(2)) and

S(Tr(3)).
Since the spine of Tr(n) is a distributive sublattice of Tr(n), then by the FTFDL onehas that S(Tr(n)) is isomorphic to J(J(S(Tr(n)))).
For instance, Figure 3.2 depicts the construction of J(J(S(Tr(3)))), which is a distributivelattice isomorphic to S(Tr(3)) (see Figure 3.1).
Our aim is to give a description of triwords belonging to the spine of the Hochschildlattice. Then, in this set, we give a description of join-irreducible triwords.
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FIGURE 3.1. Cubic realizations of some spines of Hochschild posets.
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FIGURE 3.2. Construction of J(J(S(Tr(3)))) from the poset J(S(Tr(3))).
By Lemma 3.1.1 we know that a triword u belongs to a maximal saturated chain if andonly if for any letter ui = 0 then uj = 0 for all j > i. Therefore, the regular expression ofthese triwords is

S(Tr(n)) = {u ∈ Tr(n) : u ∈ 0∗ + 1(1 + 2)∗0∗}. (3.1.5)Therefore, the generating function is
GS(Tr)(t) = 11− 2t , (3.1.6)and thus #S(Tr(n)) = 2n. (3.1.7)
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Let u ∈ S(Tr(n)). The two possibilities for u to be a join-irreducible triword are eitherto have one unique letter 1 which can be changed to 0 or to have one unique letter 2which can be changed to 1. To summarize,

J(S(Tr(n))) = {u ∈ S(Tr(n)) : u ∈ 1+0∗ + 1+20∗}. (3.1.8)
One can deduce the generating function

GJ(S(Tr))(t) = t + t2(1− t)2 , (3.1.9)
and thus #J(S(Tr(n))) = 2n − 1. (3.1.10)

From (3.1.8) one can also deduce that the shape of J(S(Tr(n))) is as depicted in Fig-ure 3.3.
10n−1

120n−2

120n−2 130n−3

1220n−3 1n−202

1n−3202 1n−10

1n−220 1n

1n−12
FIGURE 3.3. Shape of the poset J(S(Tr(n))).

3.1.4. Degree polynomial. For this section, we can refer to 1.3.4 of Chapter 1
Let us start by computing the specialization dTr(1, y) of the degree polynomial of Tr.
PROPOSITION 3.1.3. For any n > 1, the h-polynomial of Tr(n) is

dTr(n)(1, y) = (y + 1)n−2(y2 + (n + 1)y + 1). (3.1.11)
PROOF. Let us compute the generating series

PTr(y, z) := ∑
n>0 dTr(n)(1, y)zn (3.1.12)

of all degree polynomials of Tr(n) for all n > 0.
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Let us consider the grammar of Tr given by Lemma 1.1.1. By the map u 7Ï z|u|youtTr(u)one obtains the system of formal series

PA(y, z) = 1 + yzPA(y, z) + zPA(y, z),
PB(y, z) = 1 + yzPA(y, z) + yzPB(y, z) + zPB(y, z),
PTr(y, z) = 1 + yzPA(y, z) + zPB(y, z). (3.1.13)

Indeed, in (1.1.2) of the grammar, 0A becomes yzPA(y, z) because the letter 0 can always beincreased to 2. Note that the letter 0 in 0A cannot be increased to 1 because in (1.1.4), thisexpression 0A comes after a first letter 0, and the subword 01 is prohibited by definition oftriwords. However, 2A becomes zPA(y, z) since the letter 2 cannot be increased. Likewise,in (1.1.3), 0A becomes yzPA(y, z) because the letter 0 can be increased to 1, and 1B becomes
yzPB(y, z) because the letter 1 can be increased to 2, unlike the letter 2 in 2B whichbecomes zPB(y, z).

Thus,
PA(y, z) = 11− z − yz ,
PB(y, z) = 1− z(1− z − yz)2 ,
PTr(y, z) = 1− z1− (z + yz) + z − z2(1− (z + yz))2 .

(3.1.14)

From this expression of PTr(y, z) in partial fraction decomposition, we deduce by a straight-forward computation the given expression for dTr(n)(1, y). �

Let n > 1 and u ∈ Tr(n). For any letter ui of u with i ∈ [n], the number of letters
u′i such that the word u′ defined by u′j := uj for all j 6= i is in covering relation with u isthe degree of the letter ui. The sum of the degrees of all letters of u is the number ofelements covered by u or covering u, namely inP(u) + outP(u).

LEMMA 3.1.4. For any n > 1 and u ∈ Tr(n), inTr(u) + outTr(u) = n.

PROOF. Suppose that the first letter of u is 0, then all letters of u are either 0 or 2.The letter u1 can be increased to 1, but since we cannot have a letter 0 followed by 1, allother letters 0 can only be increased to 2, and all letters 2 can only be decreased to 0. Andso for the case where u1 = 0, all letters of u have degree 1.
Suppose now that the first letter of u is 1. Either u1 is the only letter 1 in u or thereis another letter ui = 1 such that all letters after ui are not 1. In the first case, u1 canbe decreased to 0, thus all letters of u have degree 1. In the second case, since there isat least one other letter 1 in u, u1 cannot be decreased to 0. Then the degree of u1 is 0.However, this degree is compensated by the degree of the letter ui. Indeed, the last letter1 is the only one which can be decreased to 0 or increased to 2. Hence the degree of uiis 2, and since all other letters of u have degree 1, the sum is equal to n. �
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By Proposition 3.1.3 and Lemma 3.1.4, one can deduce the degree polynomial of Tr(n)by replacing yk in the h-polynomial by xn−kyk , with k ∈ [0, n]. Thus, the degree polynomialof Tr(n) is dTr(n)(x, y) = (x + y)n−2(x2 + (n + 1)xy + y2). (3.1.15)
For instance, dTr(1)(x, y) = x + y,dTr(2)(x, y) = x2 + 3xy + y2,dTr(3)(x, y) = x3 + 5x2y + 5xy2 + y3,dTr(4)(x, y) = x4 + 7x3y + 12x2y2 + 7xy3 + y4.

(3.1.16)
3.2. Intervals and k-chains. This section also provides enumerative results about theHochschild lattice. We have already computed the length of any maximal chain for thislattice in Section 2. Here we give a method to find formulas for the number of k-chainsof this lattice. We can refer to Section 2.2 of Chapter 1.
3.2.1. Z-classifications. Firstly, we need to define a classification for all k-chains ofsize n.
For a letter a and a word u, we use the notation a ∈ u if there is a letter ui = a.Conversely, a /∈ u if all letters ui of u are different from a.
For any n > 1 and k > 1, let (u(1), u(2), . . . , u(k−1), u(k)) be a k-chain of triwords of size

n. It is always possible to classify k-chains according to the presence or absence of theletter 0 in u(j) with j ∈ [k] by setting, for all i ∈ [0, k],
Zi(n, k) := {(u(1), u(2), . . . , u(k)) : 0 ∈ u(r), 0 /∈ u(s) for all r ∈ [k−i], s ∈ [k−i+1, k]}. (3.2.1)

This classification is called the Z-classification for k-chains. Note that the union of allthese sets is disjoint and give a description of all k-chains. Note also that for n = 1,#Zi(1, k) = 1 for all i ∈ [0, k].
For any n > 2, k > 1, i ∈ [0, k], and j > i, let

φ(n,k)
i : Zi(n, k)Ï N×Zj (n − 1, k) (3.2.2)

such that, for γ a k-chain in Zi(n, k),
φ(n,k)
i (γ) := (t, γ ′) (3.2.3)

where γ ′ is the k-chain obtained by forgetting the last letter of each word of γ, and t isthe number of words ending by 2 in γ.
Let γ ∈ Zi(n, k). Clearly, φ(n,k)

i (γ) is a k-chain γ ′ which belongs to Zj (n − 1, k) with
j ∈ [i, k], since the k-chain γ ′ has at the most the same number of triwords with a letter 0than the k-chain γ.

Therefore, by setting γ := (
v(1)a(1), v(2)a(2), . . . , v(k)a(k)) with v(r) ∈ Tr(n − 1) and

a(r) ∈ [0, 2] for all r ∈ [k], and (t, γ ′) := φ(n,k)
i (γ), there are two cases.
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? Suppose that γ ′ belongs to Zi(n−1, k). Then one has k+1 possibilities to place ornot the letter 2. Indeed, for r ∈ [k − i], a(r) = 0 or a(r) = 2 because by hypothesis0 ∈ v(r). For s ∈ [k− i+1, k], because γ ′ is already in Zi(n−1, k), one has a(s) = 1or a(s) = 2. To summarize, one has k+1 possibilities to place the letter 2, knowingthat all letters before the first ending letter 2 have to be smaller than 2, and allletters after have to be 2.
? Suppose now that γ ′ belongs to Zj (n− 1, k) with j ∈ [i+ 1, k]. Then one has i+ 1possibilities to place or not the letter 2. Indeed, in this case we must set a(s) = 0for all s ∈ [k− j, k− i] in order to obtain a k-chain in Zi(n, k). This implies that allending letters before a(k−j) have to be also 0. It follows that for all r ∈ [k−i+1, k],
a(r) = 1 or a(r) = 2.In the two cases, the position of the first letter 2 depends on the integer t.Thus, for γ a k-chain in Zi(n, k), it follows that

φ(n,k)
i (γ) ∈ [k + 1]×Zi(n − 1, k) ⊔ [i + 1]× ⊔

j∈[i+1,k]Zj (n − 1, k). (3.2.4)
For instance, by setting

γ := (00200, 02200, 02202, 12222) (3.2.5)a 4-chain of Z1(5, 4), one has φ(5,4)1 (γ) = (t, γ ′) with
γ ′ = (0020, 0220, 0220, 1222), (3.2.6)and t = 2.

LEMMA 3.2.1. For any n > 2, k > 1, and i ∈ [0, k], the map φ(n,k)
i is a bijection.

PROOF. Let δ′ := (v(1), v(2), . . . , v(k)) be a k-chain of Tr(n − 1), and t ∈ [0, k].
? Suppose that δ′ ∈ Zi(n − 1, k). Let δ := (

v(1)a(1), v(2)a(2), . . . , v(k)a(k)) such that forall r ∈ [k − t] we set a(r) = 0 if 0 ∈ v(r), and a(r) = 1 otherwise, and a(s) = 2for all s ∈ [k − t + 1, k]. The resulting k-chain is a k-chain of Tr(n) because
a(1) 6 a(2) 6 · · · 6 a(k) by construction. Furthermore, since no 0 is added at theend of a word that does not contain a letter 0 in δ′, the k-chain δ belongs to
Zi(n, k).

? Suppose that δ′ ∈ Zj (n−1, k), with j ∈ [i+1, k]. Let δ := (v(1)a(1), v(2)a(2), . . . , v(k)a(k))such that a(r) = 0 for all r ∈ [k− i], a(s) = 1 for all s ∈ [k− i+1, k− t], and a(q) = 2for all q ∈ [k − t + 1, k]. By construction, one has a(1) 6 a(2) 6 · · · 6 a(k). Thisimplies that this k-chain is a k-chain of Tr(n). Moreover, since the letter 0 isadded at the end of v(r) for r ∈ [k − i], the k-chain δ belongs to Zi(n, k).In both cases, since δ belongs to Zi(n, k), this implies that the map φ(n,k)
i is surjective.Let (t1, γ ′) and (t2, δ′) be two pairs with t1, t2 ∈ [0, k], and γ ′ ∈ Zj1 (n − 1, k) and δ′ ∈

Zj2 (n − 1, k) with j1, j2 ∈ [i, k]. Let γ be the image of (t1, γ ′) and δ be the image of (t2, δ′)by φ(n,k)
i

−1. Suppose that (t1, γ ′) 6= (t2, δ′). This implies that either t1 6= t2 or γ ′ 6= δ′. In thefirst case, if t1 > t2 then there are more words ending by 2 in γ than in δ. Thus one has
γ 6= δ. In the second case, there is at least one word in γ such that the prefix of this word
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is different from the word with the same index in δ. Here again, one has γ 6= δ. Hence,the map φ(n,k)

i is injective. �For instance, for the 4-chain (3.2.5), γ ′ belongs to Z1(4, 4) and t is 2. We can rebuild γ byadding the letter 2 on the two last words of γ ′, since by definition of triwords, the greatertriwords of a k-chain must have greater or equal letters compare to smaller triwords.Besides, since the two first words of γ ′ have the letter 0, we can only add the letter 0 atits end.Let us consider another example with
γ := (00000, 00200, 12210, 12211, 12212) (3.2.7)a 5-chain of Z2(5, 5). One has φ(5,5)2 (γ) = (t, γ ′) with t = 1 and
γ ′ = (0000, 0020, 1221, 1221, 1221). (3.2.8)Here γ ′ belongs to Z3(4, 5). Since γ ∈ Z2(5, 5), to rebuild γ from γ ′, we have to add 0 atthe end of the third word of γ ′. Moreover, since t = 1, the letter 2 is added to the lastword and the letter 1 is added to the penultimate word of γ ′.3.2.2. Enumeration of k-chains. For all matrices M , we denote in the following by

M(i, j) the entry at the i-th line and the j-th column.For any Zi(n, k) of this classification, one obtains by denoting by zi(n, k) the cardinalityof Zi(n, k) with i ∈ [0, k], the following result.
PROPOSITION 3.2.2. Let n > 2 and k > 1. For all i ∈ [0, k], each zi(n, k) satisfies

zi(n, k) = (k + 1)zi(n − 1, k) + (i + 1) k∑
j=i+1 zj (n − 1, k). (3.2.9)

PROOF. This is a direct consequence of Lemma 3.2.1. �For example, for
Z1(2, 3) ={(00, 00, 11), (00, 00, 12), (00, 02, 12), (02, 02, 12),(00, 10, 11), (00, 10, 12), (10, 10, 11), (10, 10, 12)}, (3.2.10)

the first four 3-chains came from Z1(1, 3) = {(0, 0, 1)}, the next two came from Z2(1, 3) =
{(0, 1, 1)}, and the last two came from Z3(1, 3) = {(1, 1, 1)}.The system

z0(n, k) = (k + 1)z0(n − 1, k) + z1(n − 1, k) + · · ·+ zk−1(n − 1, k) + zk(n − 1, k),
z1(n, k) = (k + 1)z1(n − 1, k) + 2z2(n − 1, k) + · · ·+ 2zk−1(n − 1, k) + 2zk(n − 1, k),...

zk−1(n, k) = (k + 1)zk−1(n − 1, k) + kzk(n − 1, k),
zk(n, k) = (k + 1)zk(n − 1, k), (3.2.11)is called z-system.
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PROPOSITION 3.2.3. For any n > 2 and k > 1, the k-chains of the Hochschild posetTr(n) are enumerated by

k∑
i=0 zi(n, k) = (k + 1)n−(k+1)Pk(n), (3.2.12)

where Pk(n) is a monic polynomial of degree k determined by the z-system.

PROOF. Since for n = 1, all zi(1, k) = 1 with i ∈ [0, k], one can rewrite the z-systemwith matrices 

z0(n, k)
z1(n, k)...
zk−1(n, k)
zk(n, k)


=


k + 1 1 1 . . . 10 k + 1 2 . . . 2... . . . ...0 . . . 0 k + 1 k0 . . . 0 0 k + 1



n−1

11...11


. (3.2.13)

Let us denote by M this upper triangular matrix, I the identity matrix of dimension
k + 1, and N := M − (k + 1)I . Since I and N commute, one has
Mn−1 = ((k + 1)I +N)n−1

= k∑
i=0
(
n − 1
i

)(k + 1)n−1−iN i

= (k + 1)n−(k+1)((k + 1)kI + (n − 1)(k + 1)k−1N + · · ·+ (n − 1)!(n − k − 1)!k!Nk
)

= (k + 1)n−(k+1)Qk(n),
(3.2.14)

where Qk(n) is clearly polynomial in n. It only remains to deduce the polynomial Pk(n)from the matrix Qk(n), as the sum of all entries of Qk(n).
Furthermore, Pk(n) is a polynomial of degree k since nk appears in (n − 1)!(n − k − 1)!k! .
Moreover, a particular case from Lemma 3.2.4 gives that Nk(1, k + 1) = k!. Since Nis a strictly upper triangular matrix, Nk(1, k + 1) is the only nonzero entry of Nk. Thisimplies that Pk(n) is a monic polynomial. �

LEMMA 3.2.4. For any n > 2 and k > 1, let M be the upper triangular matrix
in (3.2.13), I be the identity matrix of dimension k + 1, and N := M − (k + 1)I . For any
l ∈ [k] and i ∈ [k + 1] such that i + l 6 k + 1, one has

N l(i, i + l) = (i + l − 1)!(i − 1)! . (3.2.15)
PROOF. We proceed by induction on l. Since N(i, i + 1) = i for all i ∈ [k + 1], one hasthat (3.2.15) follows for l = 1. Suppose that (3.2.15) is true for l− 1 and let us consider N l .For any i ∈ [k+1], one obtains N l(i, i+ l) with the i-th line of N l−1 and the (i+ l)-th column
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of N . Since N is a strictly upper triangular matrix, all left entries before N l−1(i, i + l − 1)are zeros, and all below entries after N(i + l − 1, i + l) are also zeros. Therefore,
N l(i, i+ l) = N l−1(i, i+ l− 1) N(i+ l− 1, i+ l) = (i + l − 2)!(i − 1)! (i+ l− 1) = (i + l − 1)!(i − 1)! , (3.2.16)

and then (3.2.15) holds for all l ∈ [k]. �

Note that since for n = 1, all zi(1, k) = 1 with i ∈ [0, k], the number of k-chains is k+ 1for all k > 1. Using Proposition 3.2.3, one can therefore deduce that Pk(1) = (k + 1)k+1.Recall that the triwords of size n are enumerated by2n−2(n + 3). (3.2.17)A demonstration of this result is given in Section 1.1, involving generating series. ByProposition 3.2.3, one hasz0(n, 1)
z1(n, 1)

 = 2 10 2
n−111

 = 2n−1 (n − 1)2n−2
0 2n−1

11
 , (3.2.18)

which leads to the formula already known, for n > 1,
z0(n, 1) + z1(n, 1) = 2n−2(n + 3). (3.2.19)Likewise, to enumerate the intervals of the Hochschild lattice, or in other words their2-chains, one has

z0(n, 2)
z1(n, 2)
z2(n, 2)

 =


3 1 10 3 20 0 3

n−1

111


=


3n−1 3n−2(n − 1) 3n−2(n − 3) + 3n−3(n2 − 3n + 8)0 3n−1 3n−2(2n − 2)0 0 3n−1




111
 .

(3.2.20)

The number of intervals of Tr(n) is therefore given by
z0(n, 2) + z1(n, 2) + z2(n, 2) = 3n−3(n2 + 9n + 17). (3.2.21)In the same way, the number of 3-chains is4n−4(n3 + 20n2 + 93n + 142), (3.2.22)the number of 4-chains is

5n−5(n4 + 1103 n3 + 355n2 + 34903 n + 1569), (3.2.23)
and the number of 5-chains is

6n−6(n5 + 1192 n4 + 1026n3 + 132612 n2 + 17363n + 21576). (3.2.24)
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It seems that the sequence of constant terms of the polynomials Pk(n)

3, 17, 142, 1569, 21576, . . . (3.2.25)
is the sequence of numbers of connected functions on n labeled nodes A001865 of [Slo].Recall that a connected function is a function f : [n]Ï [n] such that the graph G := (V,E)is connected, where V := [n] is the set of vertices and E := {(i, f (i))} with i ∈ [n] is the setof edges.

3.3. Subposets of the Hochschild posets. An interesting subposet of the poset Tr(n)appears by considering the set of triwords restricted to words beginning by the letter 1.Here, some results are given for this subposet.
3.3.1. Mini-Hochschild posets. Let u ∈ Tr(n) such that u1 = 1, then u is called a

µ-triword, and the graded set of µ-triwords is denoted by Trµ.
From Lemma 1.1.1, one has Trµ = ε + 1B, (3.3.1)where B is the set of all words on {0, 1, 2} avoiding the subword 01.
It follows that the generating series of Trµ is

GTrµ (t) = 1 + tGB(t). (3.3.2)
By reminding the two generating series (1.1.5) and (1.1.6), one can deduce, for any n > 1,

#Trµ(n) = 2n−2(n + 1). (3.3.3)
The subposet (Trµ(n),4) is called mini-Hochschild poset.
3.3.2. k-chains. As for Hochschild posets, we can give the Z-classification for k-chainsof mini-Hochschild posets. This classification is identical to the classification (3.2.1). Forany n > 2, k > 1, and i ∈ [0, k], let us show that the map φ(n,k)

i defined by (3.2.3) is also abijection for the set of µ-triwords.
First, the reverse image of the map φ(n,k)

i adds one letter on the end of each triwordsof the k-chains. It means that if all triwords of a k-chain γ in Zj (n − 1, k) for j ∈ [i, k]are µ-triwords, then the reverse image of γ is also a k-chain of µ-triwords. Likewise, fora k-chain of µ-triwords such that γ ∈ Zi(n, k), φ(n,k)
i (γ) remains a k-chain of µ-triwordssince the first letter of each µ-triword remains 1. Second, all arguments in the proof ofLemma 3.2.1 hold in the case of µ-triwords because at no point the first letter of triwordswhich constitutes k-chains intervenes.

The z-system for the mini-Hochschild poset holds, and one has for any n > 2, k > 1,and for all i ∈ [0, k],
zi(n, k) = (k + 1)zi(n − 1, k) + (i + 1) k∑

j=i+1 zj (n − 1, k). (3.3.4)

http://oeis.org/A001865
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Since zk(1, k) = 1 and zj (1, k) = 0 for all j ∈ [0, k − 1], it follows that the z-system for themini-Hochschild poset can be rewritten

z0(n, k)
z1(n, k)...
zk−1(n, k)
zk(n, k)


=


k + 1 1 1 . . . 10 k + 1 2 . . . 2... . . . ...0 . . . 0 k + 1 k0 . . . 0 0 k + 1



n−1

00...01


. (3.3.5)

Thus, for any n > 2 and k > 1, the number of k-chains in the poset Trµ(n) is givenby the sum of the last column of Mn−1, where M is the upper triangular matrix. One canconclude that Proposition 3.2.3 holds for the mini-Hochschild poset.For instance, one deduce from (3.2.18) that the number of µ-triwords of size n is2n−1 + (n − 1)2n−2 = 2n−2(n + 1), (3.3.6)as shown through generating series (3.3.3).In the same way, from (3.2.20) one deduce that the number of intervals of Trµ(n) is3n−3(n2 + 6n + 2), (3.3.7)the number of 3-chains is 4n−4(n3 + 16n2 + 41n + 6), (3.3.8)the number of 4-chains is
5n−5(n4 + 953 n3 + 4452 n2 + 20752 n + 24), (3.3.9)

and the number of 5-chains is
6n−6(n5 + 1072 n4 + 750n3 + 65052 n2 + 3599n + 120). (3.3.10)

Similarly to the remark on the sequence of constant terms (3.2.25), it seems that thesequence of constant terms of these polynomials1, 2, 6, 24, 120, . . . (3.3.11)is the sequence of factorial numbers.Several other properties verified by the Hochschild poset seem to hold for the mini-Hochschild poset. It may be interesting to proceed to a complete study of this subposetas well.





CHAPTER 4
Fuss-Catalan posets and algebras

The theory of combinatorial Hopf algebras takes a prominent place in algebraic com-binatorics. The Malvenuto-Reutenauer algebra FQSym [MR95,DHT02] is a central objectin this theory. This structure is defined on the linear span of all permutations and theproduct of two permutations has the notable property to form an interval of the rightweak order. Moreover, FQSym admits a lot of substructures, like the Loday-Ronco alge-bra of binary trees PBT [LR98, HNT05] and the algebra of noncommutative symmetricfunctions Sym [GKL+95]. Each of these structures brings out in a beautiful and some-what unexpected way the combinatorics of some partial orders, respectively the Tamariorder [Tam62] and the Boolean lattice, playing the same role as the one played by theright weak order for FQSym. To be slightly more precise, all these algebraic structureshave, as common point, a product · which expresses, on their so-called fundamental bases
{Fx}x , as Fx ·Fy = ∑

x y4z4x y

Fz, (0.0.1)
where 4 is a partial order on basis elements, and and are some binary operations onbasis elements (in most cases, some sorts of concatenation operations).The point of departure of this work consists in considering a different partial orderrelation on permutations and ask to what extent analogues of FQSym and a similar hi-erarchy of algebras arise in this context. We consider here first a very natural order onpermutations: the componentwise ordering 4 on Lehmer codes of permutations [Leh60]seen in Section 1.3.6 of Chapter 1. A study of these posets Cl1(n) appears in [Den13].Each poset Cl1(n) is an order extension of the right weak order of order n. To give aconcrete point of comparison, the Hasse diagrams of the right weak order of order 3 andof Cl1(3) are respectively123

132
312

213
231

321

(0.0.2) and
000

001
002

010
011

012

. (0.0.3)
As we can observe, the right weak order relation of permutations of size 3 is included intothe order relation of Cl1(3).In this work, we consider a more general version of Lehmer codes, called δ-cliffs,leading to distributive lattices Clδ . Here δ is a parameter which is a map N \ {0} → N,

97



98 4. FUSS-CATALAN POSETS AND ALGEBRAS
called range map, assigning to each position of the words a maximal allowed value. Thelinear spans Clδ of these sets are endowed with a very natural product related to theintervals of Clδ . Some properties of this product are implied by the general shape of δ.For instance, when δ is so-called valley-free, Clδ is an associative algebra, and when δ isweakly increasing, Clδ is free as a unital associative algebra. The particular algebra Cl1 isin fact isomorphic to FQSym, so that for any range map δ, Clδ is a generalization of thislatter. For instance, when δ is the map m satisfying m(i) = m(i − 1) with m ∈ N, then all
Clm are free associative algebras whose bases are indexed by increasing trees whereinall nodes have m + 1 children.

In the same way as the Tamari order can be defined by restricting the right weak orderto some permutations, one builds three subposets of Clδ by restricting 4 to particular δ-cliffs. This leads to three families of posets: Avδ , Hiδ , and Caδ . When δ is the particularmap m defined above with m > 0, the underlying sets of all these posets of order n > 0are enumerated by the n-th m-Fuss-Catalan number [DM47]
catm(n) := 1

mn + 1
(
mn + n

n

)
. (0.0.4)

These posets have some close interactions: when δ is an increasing map, Hiδ is an orderextension of Caδ , which is itself an order extension of Avδ . Besides, Hi1 (resp. Ca1) is theStanley lattice [Sta75, Knu04] (resp. the Tamari lattice), so that Him (resp. Cam), m > 0,are new generalizations of Stanley lattices (resp. Tamari lattices —see [BPR12] for theclassical one). Besides, from these posets Him and Cam, one defines respectively twoquotients Him and Cam of Clm. Notably, the algebra Ca1 is isomorphic to PBT, and theother ones Cam , m > 2, are not free as associative algebras.
This chapter is organized as follows.
Section 1 is intended to introduce δ-cliffs and the lattices Clδ . Even if the posets Clδ(n)have a very simple structure, these posets contain interesting subposets S(n). To studythese substructures, we establish a series of sufficient conditions on S(n) for the fact thatthese posets are EL-shellable [BW96,BW97], are lattices (and give algorithms to computethe meet and the join of two elements), and are constructible by interval doubling [Day79].Moreover, under some precise conditions, each subposet S(n) can be seen as a geometricobject in Rn. We call this the geometric realization of S(n). We introduce here the notionof cell and expose a way to compute the volume of the geometrical object.
Next, in Section 2, we study the posets Avδ , Hiδ , and Caδ . For each of these, we pro-vide some general properties (EL-shellability, lattice property, constructibility by intervaldoubling), and describe its input-wings, output-wings, and butterflies elements, that areelements having respectively a maximal number of covered elements, covering elements,or both properties at the same time. We observe a surprising phenomenon: some posetsAvδ , Hiδ , or Caδ are isomorphic to their subposets restrained on input-wings, output-wings,or butterflies elements. Moreover, a notable link among other ones is that the subposetof Cam(n) is isomorphic to the subposet of Him−1(n) restrained to its input-wings. We alsostudy further interactions between our three families of Fuss-Catalan posets. There are
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for instance bijective posets morphisms (but not poset isomorphisms) between Avδ andCaδ , and between Caδ and Hiδ , when δ is increasing.Finally, Section 3 presents a study of the algebra Clδ . We start by introducing anatural coproduct on Clδ in order to obtain by duality a product, associative in somecases. Three alternative bases of Clδ are introduced, including two that are multiplicativeand are defined from the order on δ-cliffs. When δ is weakly increasing, Clδ is free asan associative algebra. We end this work by constructing, given a subfamilly S of Clδ , aquotient space ClS of Clδ isomorphic to the linear span of S. A sufficient condition on Sto have moreover a quotient algebra of Clδ is introduced. We also describe a sufficientcondition on S for the fact that the product of two basis elements of ClS is an interval of aposet S(n). These results are applied to construct and study the two quotients Him := ClHimand Cam := ClCam of Clm. The algebra Ca1 is isomorphic to the Loday-Ronco algebraand the other algebras Cam , m > 2, provide generalizations of this later which are notfree. On the other hand, for any m > 1, all Him are other associative algebras whosedimensions are also Fuss-Catalan numbers and are not free.

1. δ-cliff posets and general propertiesThis section is devoted to introduce the lattices of δ-cliffs and their combinatorial andorder theoretic properties. Then, we will review some properties of its subposets, likeEL-shellability, constructibility by interval doubling, and geometric realizations.
1.1. δ-cliffs. We introduce here δ-cliffs, their links with Lehmer codes, permutations,and particular increasing trees.1.1.1. First definitions. A range map is a map δ : N\{0} → N. We shall specify rangemaps as infinite words δ = δ(1)δ(2) . . . . For this purpose, for any a ∈ N, we shall denoteby aω the infinite word having all its letters equal to a. We say that δ
? is rooted if δ(1) = 0,
? is weakly increasing if for all i > 1, δ(i) 6 δ(i + 1),
? is increasing if for all i > 1, δ(i) < δ(i + 1)),
? has an ascent if there are 1 6 i1 < i2 such that δ(i1) < δ(i2),
? has an descent if there are 1 6 i1 < i2 such that δ(i1) > δ(i2),
? has a valley if there are 1 6 i1 < i2 < i3 such that δ(i1) > δ(i2) < δ(i3),
? is valley-free (or unimodal) if δ has no valley,
? is j-dominated for a j > 1 if there is k > 1 such that for all k′ > k, δ(j) > δ(k′).For any n > 0, the n-th dimension of δ is the integer dimn(δ) := #{i ∈ [n] : δ(i) 6= 0}.Given a range map δ, a word u of integers of length n is a δ-cliff if for any i ∈ [n],0 6 ui 6 δ(i). The size |u| of a δ-cliff u is its length as a word, and the weight ω(u) of uis the sum of its letters. The graded set of all δ-cliffs where the degree of a δ-cliff is itssize, is denoted by Clδ . In the sequel, for any m > 0, we shall denote by m the range mapsatisfying m := 0m (2m) (3m) . . . . For instance,Cl1(3) = {000, 001, 002, 010, 011, 012}, (1.1.1a)
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Cl2(3) = {000, 001, 002, 003, 004, 010, 011, 012, 013, 014, 020, 021, 022, 023, 024}. (1.1.1b)In particular, the 1-cliffs are the Lehmer codes seen in Section 1.1.6 of Chapter 1. Asseen this section, there is classical correspondence between permutations and Lehmercodes, and the 1-cliff thus associated with the permutation σ is denoted by leh(σ ).It follows immediately from the definition of δ-cliffs that the cardinality of Clδ(n)satisfies #Clδ(n) = ∏

i∈[n](δ(i) + 1). (1.1.2)
The first numbers of m-cliffs are1, 1, 1, 1, 1, 1, 1, 1, m = 0, (1.1.3a)1, 1, 2, 6, 24, 120, 720, 5040, m = 1, (1.1.3b)1, 1, 3, 15, 105, 945, 10395, 135135, m = 2, (1.1.3c)1, 1, 4, 28, 280, 3640, 58240, 1106560, m = 3, (1.1.3d)1, 1, 5, 45, 585, 9945, 208845, 5221125, m = 4, (1.1.3e)and form, respectively from the third one, Sequences A001147, A007559, and A007696of [Slo].1.1.2. Weakly increasing range maps and increasing trees. Given a rooted weaklyincreasing range map δ, let ∆δ : N \ {0} → N be the map defined by ∆δ(i) := δ(i+1)− δ(i).A δ-increasing tree is a planar rooted tree where nodes are bijectively labeled from 1 to
n, any node labeled by i ∈ [n] has arity ∆δ(i) + 1, and every child of any node labeled by
i ∈ [n] is a leaf or is a node labeled by j ∈ [n] such that j > i. The size of such a tree is itsnumber of nodes. The leaves of a δ-increasing tree are implicitly numbered from 1 to itstotal number of leaves from left to right.Observe that, regardless of any particular condition on δ, any δ-cliff u of size n > 1recursively decomposes as u = u′a where a ∈ [0, δ(n)] and u′ is a δ-cliff of size n − 1.Relying on this observation, when δ is rooted and weakly increasing, let treeδ be the mapsending any δ-cliff u of size n to the δ-increasing tree of size n recursively defined asfollows. If n = 0, treeδ(u) is the leaf. Otherwise, by using the above decomposition of u,treeδ(u) is the tree obtained by grafting on the a + 1-st leaf of the tree tree(u′) a node ofarity ∆δ(n) + 1 labeled by n. For instance,

tree2(0230228) = 4 1
7 236 5 , (1.1.4)

and for δ := 0233579ω , one has ∆δ = 2102220ω , and
treeδ(021042) = 4 5 26

13 . (1.1.5)

http://oeis.org/A001147
http://oeis.org/A007559
http://oeis.org/A007696
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PROPOSITION 1.1.1. For any rooted weakly increasing range map δ, treeδ is a one-to-

one correspondence from the set of all δ-cliffs of size n > 0 and the set of all δ-increasing
trees of size n.

PROOF. Let us first prove that treeδ is a well-defined map. This can be done by induc-tion on n and arises from the fact that, for any u ∈ Clδ(n), the total number of leaves oftree(u) is
1− n +∑

i∈[n] ∆δ(i) + 1 = 1 +∑
i∈[n] δ(i + 1)− δ(i)

= 1 + δ(2)− δ(1) + δ(3)− δ(2) + · · ·+ δ(n + 1)− δ(n)= 1 + δ(n + 1).
(1.1.6)

Therefore, there is in tree(u) a leaf of index a+1 for any value a ∈ [0, δ(n+1)]. Therefore,tree(ua) is well-defined.Now, let φ be the map from the set of all δ-increasing trees of size n to Clδ(n) definedrecursively as follows. If t is the leaf, set φ(t) := ε. Otherwise, consider the node withthe maximal label in t. Since t is increasing, this node has no children. Set t′ as the δ-increasing tree obtained by replacing this node by a leaf in t, and set a as the index of theleaf of t′ on which this maximal node of t is attached (this index is 1 if t′ is the leaf). Then,set φ(t) := φ(t′)(a − 1). The statement of the proposition follows by showing by inductionon n that φ is the inverse of the map treeδ . �

In [CP19], s-decreasing trees are considered, where s is a sequence of length n > 0of nonnegative integers. These trees are labeled decreasingly and any node labeled by
i ∈ [n] has arity si. As a consequence of Proposition 1.1.1, any s-decreasing tree can beencoded by a δ-increasing tree where δ is a rooted weakly increasing range map satisfying
δ(i) = ∑16j6i−1 sn−j+1 for all i ∈ [n + 1]. The correspondence between such s-decreasingtrees and δ-increasing trees consists in relabeling by n+1− i each node labeled by i ∈ [n].A consequence of all this is that δ-cliffs can be seen as generalizations of s-decreasingtrees by relaxing the considered conditions on δ.

1.2. δ-cliff posets. We endow now the set of all δ-cliffs of a given size with an orderrelation and give some of the properties of the obtained posets.
1.2.1. First definitions. For any n > 0, let δ be a range map and 4 be the partial orderrelation on Clδ(n) defined by u 4 v for any u, v ∈ Clδ(n) such that ui 6 vi for all i ∈ [n].The poset (Clδ(n),4) is the δ-cliff poset of order n. Figure 1.1 shows the Hasse diagramsof some δ-cliff posets.
Let us introduce some notation about δ-cliffs. For any u ∈ Clδ(n) and i ∈ [n], let ↓i(u)(resp. ↑i(u)) be the word on Z of length n obtained by decrementing (resp. incrementing)by 1 the i-th letter of u. Let also, for any u, v ∈ Clδ(n),

D(u, v) := {i ∈ [n] : ui 6= vi} (1.2.1)
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FIGURE 1.1. Hasse diagrams of some δ-cliff posets.

be the set of all indices of different letters between u and v. Let us denote respectively by0̄δ(n) and by 1̄δ(n) the δ-cliffs 0n and δ(1) . . . δ(n). For any u, v ∈ Clδ(n), let u∧ v be the
δ-cliff of size n defined for any i ∈ [n] by

(u∧ v)i := min{ui, vi}. (1.2.2)
We also define u∨ v similarly by replacing the min operation by max in (1.2.2). For any
u, v ∈ Clδ(n), the difference between v and u is the word v − u on Z of length n definedfor any i ∈ [n] by (v − u)i := vi − ui. (1.2.3)Observe that when u 4 v, v − u is a δ-cliff. The δ-complementary cδ(u) of u ∈ Clδ(n) isthe δ-cliff 1̄δ(n)−u. For instance, by setting u := 0010, if u is seen as a 1-cliff, cδ(u) = 0113,and if u is seen as a 2-cliff, cδ(u) = 0236. This map cδ is an involution.

1.2.2. First properties. A study of the 1-cliff posets appears in [Den13]. Our definitionstated here depending on δ is therefore a generalization of these posets. The structureof the δ-cliff posets is very simple since each of these posets of order n is isomorphic tothe Cartesian product [0, δ(1)]× · · · × [0, δ(n)], where [k] is the total order on k elements.It follows from this observation that each δ-cliff poset is a lattice admitting respectively ∧and ∨ as meet and join operations. The lattice Clδ(n) can be seen as a sublattice of theCartesian product Nn of copies of total orders N, which is a distributive lattice. Since allsublattices of distributive lattices are distributive [Bir79], Clδ(n) is distributive.
It follows immediately from the definition of 4 that the covering relation l of Clδ(n)satisfies ul v if and only if there is an index i ∈ [n] such that v = ↑i(u). Moreover, theseposets Clδ(n) are graded, and the rank of a δ-cliff u is ω(u). The least element of the posetis 0̄δ(n) while the greatest element 1̄δ(n).
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1.2.3. Links with the right weak order. We refer to Section 1.1.6, and to Section 1.3.5of Chapter 1 for this part.When δ is a rooted weakly increasing range map, let us consider the binary relation

l′ on Clδ(n) wherein ul′ v if there is an index i ∈ [n] such that v = ↑i(u) and, by setting
t := treeδ(u), all the children of the node labeled by i of t are leaves, except possibly thefirst of its brotherhood. For instance, for δ := 0233579ω and the δ-cliff u := 021042, since

treeδ(u) = 4 5 26
13 , (1.2.4)

we observe that all the children of the nodes labeled by 2, 3, and 6 are leaves, exceptpossibly the first ones. For this reason, u is covered by ↑3(u) = 022042 and by ↑6(u) =021043, but not by ↑2(u) = 031042 since this word is not a δ-cliff.The reflexive and transitive closure 4′ of this relation is an order relation. By Propo-sition 1.1.1, this endows the set of all δ-increasing trees with a poset structure. It followsimmediately from the description of the covering relation l of Clδ(n) provided in Sec-tion 1.2.2 that l′ is a refinement of l. For this reason (Clδ(n),4) is an order extensionof (Clδ(n),4′). Figure 1.2 shows an example of a Hasse diagram of such a poset.
0000

0001 0100 0010
0002 0101 0110 0011

0102 0012 0111
0112

FIGURE 1.2. The Hasse diagram of the poset (Cl0112ω (4),4′).

PROPOSITION 1.2.1. For any n > 0, the poset (Cl1(n),4′) is isomorphic to the right
weak order on permutations of size n.

PROOF. Let φ be the map from the set of all words u of size n of integers withoutrepeated letters to the set of increasing binary trees of size n where nodes are bijectivelylabeled by the letters of u, defined recursively as follows. If σ is the empty word, then
φ(σ ) is the leaf. Otherwise, σ decomposes as σ = waw ′ where a is the least letter of σ ,and w and w ′ are words of integers. In this case, φ(σ ) is the binary tree consisting in aroot labeled by a and having as left subtree φ(w ′) and as right subtree φ(w) —observe thereversal of the order between w and w ′. Now, by induction on n, one can prove that forany permutation σ of size n, the binary trees φ(σ ) and tree1(leh(σ )) are the same.
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Assume that σ and ν are two permutations such that σ lwe ν. Thus, by definition of

lwe, σ decomposes as σ = wabw ′ and ν as ν = wbaw ′ where a and b are letters suchthat a < b, and w and w ′ are words of integers. By definition of φ, since a and b areadjacent in σ , the right subtree of the node labeled by b of φ(σ ) is empty. Therefore, dueto the property stated in the first part of the proof, and by definition of the map tree1 andof the covering relation l′, one has leh(σ )l′ leh(ν). Conversely, assume that u and v aretwo 1-cliffs such that ul′ v. Thus, by definition of l′, v is obtained by changing a letter ui ,
i > 2, in u by ui+1, and in tree1(u), the right subtree of the node labeled by i is empty. Let
σ := leh−1(u) and ν := leh−1(v). Since φ(σ ) and tree1(u) are the same increasing binarytrees, we have, from the definition of the map φ, that ui−1 < ui. Finally, by definition of
lwe, one obtains σ lwe ν.We have shown that the bijection leh between S(n) and Cl1(n) is such that, for any
σ, ν ∈ S(n), σ lwe ν if and only if leh(σ )l′ leh(ν) . For this reason, leh is a poset isomor-phism. �

Therefore, Proposition 1.2.1 says in particular that the 1-cliff poset is an extension ofthe right weak order, as mentioned in Section 1.4 of Chapter 1. Besides, for all rootedweakly increasing range maps δ, one can see (Clδ(n),4′) as generalizations of the rightweak order. After some computer experiments, we conjecture that for any rooted weaklyincreasing range map δ and any n > 0, (Clδ(n),4′) is a lattice.
1.3. Subposets of δ-cliff posets. Despite their simplicity, the δ-cliff posets containsubposets having a lot of combinatorial and algebraic properties. If S is a graded subsetof Clδ , each S(n), n > 0, is a subposet of Clδ(n) for the order relation 4. We denote by

lS the covering relation of each S(n), n > 0.
We say that S is
? spread if for any n > 0, 0̄δ(n) ∈ S and 1̄δ(n) ∈ S,
? straight if for any u, v ∈ S such that ulS v, #D(u, v) = 1,
? coated if for any n > 0, any u, v ∈ S(n) such that u 4 v, and any i ∈ [n − 1],
u1 . . . uivi+1 . . . vn ∈ S,

? closed by prefix if for any u ∈ S, all prefixes of u belong to S,
? minimally extendable if ε ∈ S and for any u ∈ S, u0 ∈ S,
? maximally extendable if ε ∈ S and for any u ∈ S, u δ(|u|+ 1) ∈ S.Observe that when S is spread, each poset S(n), n > 0, is bounded, that is it admits a leastand a greatest element. Observe also that if S is both minimally and maximally extendable,then S is spread.

LEMMA 1.3.1. Let δ be a range map and S be a coated graded subset of Clδ . Then,
S is straight.

PROOF. Let n > 0 and u, v ∈ S(n) such that u 4 v and #D(u, v) > 2. Set j :=max D(u, v) and w := u1 . . . uj−1vjvj+1 . . . vn. Since S is coated, w belongs to S, and more-over, since j is maximal, w := u1 . . . uj−1vjuj+1 . . . un. Therefore, #D(u,w) = 1. This
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proves that there exists a w ′ ∈ S(n) such that ulSw ′ 4 w and #D(u,w ′) = 1. Thus, S isstraight. �

Let us defined more generally the three following graded sets seen in Section 2.1.2 ofChapter 2. In the case where S is straight, we define the graded set of
? input-wings as the set I(S) containing any u ∈ S which covers exactly dim|u|(δ)elements,
? output-wings as the set O(S) containing any u ∈ S which is covered by exactlydim|u|(δ) elements,
? butterflies as the set B(S) being the intersection I(S) ∩ O(S).By definition, the number of input-wings (resp. output-wings) of size n > 0 is the coefficientof the leading monomial of the degree polynomial dS(n)(x, 1) (resp. dS(n)(1, y)). Observealso that if there is an i > 1 such that δ(i) = 1, there are no butterfly in S(n) for all n > i.We present now general results about subposets S(n), n > 0, of δ-cliff posets.1.3.1. EL-shellability. For this part, we refer to Section 2.3 of Chapter 1.For the sequel, we set Λ as the poset Z2 wherein elements are ordered lexicograph-ically. For any straight graded subset S of Clδ , let us introduce the map λS : lS → Z2defined for any (u, v) ∈ lS by

λS(u, v) := (−i, ui) (1.3.1)where i is the unique index i ∈ [|u|] such that D(u, v) = {i}. Observe that the fact that Sis straight ensures that λS is well-defined.
THEOREM 1.3.2. Let δ be a range map and S be a coated graded subset of Clδ .

For any n > 0, the map λS is an EL-labeling of S(n). Moreover, there is at most one
λS-weakly decreasing chain between any pair of elements of S(n).

PROOF. By Lemma 1.3.1, the fact that S is coated implies that S is also straight. Let
u, v ∈ S(n) such that u 4 v. Since S is straight, the image by λS of any saturated chainfrom u to v is well-defined.Now, let (

u = w(0), w(1), . . . , w(k−1), w(k) = v
) (1.3.2)be the sequence of elements of S(n) defined in the following way. For any i ∈ [0, k − 1],the word w(i+1) is obtained from w(i) by increasing by the minimal possible value a > 1the letter w(i)

j such that j is the greatest index satisfying w(i)
j < vj . By construction, forany i ∈ [0, k − 1], each w(i+1) writes as w(i+1) = u1 . . . uj−1(uj + a

)
vj+1 . . . vn , where a issome positive integer. There is at least one value a such that w(i) belongs to S(n) sinceby hypothesis, S is coated. For this reason, (1.3.2) is a well-defined saturated chain in S(n).This saturated chain is also λS-increasing by construction. Moreover, since S is straight,if one consider another saturated chain from u to v, this chain passes through a wordobtained by incrementing a letter which has not a greatest index, and one has to chooselater in the chain the letter of the smallest index to increment it. For this reason, thissaturated chain would not be λS-increasing.
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Assume now that there is a λS-weakly decreasing saturated chain(

u = w(0), w(1), · · · , w(k−1), w(k) = v
) (1.3.3)between u and v. By definition of λS and of the poset Λ, for any i ∈ [0, k − 1], the word

w(i+1) is obtained from w(i) by increasing by the minimal possible value the letter w(i)
jsuch that j is the smallest index satisfying w(i)

j < vj . If it exists, this saturated chain is byconstruction the unique λS-weakly decreasing saturated chain from u to v. �1.3.2. Meet and join operations, sublattices, and lattices. Here we give some suffi-cient conditions on S for the fact that each S(n), n > 0, is a lattice.
PROPOSITION 1.3.3. Let δ be a range map and S be a spread graded subset of Clδ .

We have the following properties:
(i) if for any n > 0 and any u, v ∈ S(n), u∧ v ∈ S, then S(n) is a lattice and is a

meet semi-sublattice of Clδ(n),
(ii) if for any n > 0 and any u, v ∈ S(n), u∨ v ∈ S, then S(n) is a lattice and is a

join semi-sublattice of Clδ(n),
(iii) if for any n > 0, S(n) is a sublattice of Clδ(n), then S(n) is distributive and

graded.

PROOF. Let u, v ∈ S(n). When u∧ v ∈ S, u∧ v is the greatest lower bound of uand v in Clδ(n) and also in S(n). For this reason, S(n) is a meet semi-sublattice of Clδ(n).Moreover, since S(n) is finite and admits 1̄δ(n) as greatest element, by [Sta11], u and v havea least upper bound u∨′ v in S(n) for a certain join operation ∨′. Whence (i) and also (ii)by symmetry. Point (iii) is a consequence of the fact that any sublattice of a distributivelattice is distributive, and the fact that any distributive lattice is graded [Sta11]. �Let S be a minimally extendable graded subset of Clδ . For any n > 0, the S-decre-
mentation map is the map

⇓S : Clδ(n)→ S(n) (1.3.4)defined recursively by ⇓S(ε) := ε and, for any ua ∈ Clδ(n) where u ∈ Clδ and a ∈ N, by
⇓S(ua) := ⇓S(u)b (1.3.5)where

b := max{b 6 a : ⇓S(u)b ∈ S}. (1.3.6)Observe that the fact that S is minimally extendable ensures that ⇓S is a well-defined map.Let also, for any n > 0 and u, v ∈ S(n),
u∧S v := ⇓S(u∧ v). (1.3.7)When S is maximally extendable, we denote by ⇑S the S-incrementation map definedin the same way as the S-decrementation map with the difference that in (1.3.6), theoperation max is replaced by the operation min and the relation 6 is replaced by therelation >. Here, the fact that S is maximally extendable ensure that ⇑S is well-defined.We also define the operation ∨S in the same way as ∧S with the difference that in (1.3.7),the map ⇓S is replaced by ⇑S and the operation ∧ is replaced by the operation ∨.
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THEOREM 1.3.4. Let δ be a range map and S be a closed by prefix and minimally

(resp. maximally) extendable graded subset of Clδ . The operation ∧S (resp. ∨S) is, for
any n > 0, the meet (resp. join) operation of the poset S(n).

PROOF. Let us show the property of the statement of the theorem in the case where Sis minimally extendable. The other case is symmetric. We proceed by induction on n > 0.When n = 0, the property is trivially satisfied. Let n > 1 and u, v ∈ S(n). Since S is closedby prefix, one has u = u′a and v = v ′b with u′, v ′ ∈ S(n − 1) and a, b ∈ N. Since S isminimally extendable,
u∧S v = u′a∧S v ′b= ⇓S(u′a∧ v ′b)= ⇓S((u′ ∧ v ′)min{a, b})= ⇓S(u′ ∧ v ′) c

(1.3.8)
where c := max{c 6 min{a, b} : ⇓S(u′ ∧ v ′) c ∈ S}. Now, by induction hypothesis, we obtain

⇓S
(
u′ ∧ v ′

)
c = (u′ ∧S v ′) c (1.3.9)where ∧S is the meet operation of the poset S(n − 1). First, we deduce from the abovecomputation that for any i ∈ [n], the i-th letter of u∧S v is nongreater than min{ui, vi},and that u∧S v belongs to S(n). Therefore, u∧S v is a lower bound of {u, v}. Second, byinduction hypothesis, w ′ := u′ ∧S v ′ is the greatest lower bound of {u′, v ′}. By construction,since c is the greatest letter such that c 6 a, c 6 b, and w ′ c ∈ S holds, any other lowerbound of {u, v} is smaller than w ′c. This prove that w ′c is the greatest lower bound of

{u, v} and implies the statement of the theorem. �

Together with Proposition 1.3.3, Theorem 1.3.4 provides the following sufficient con-ditions on the graded subset S of Clδ for the fact that for all n > 0, the posets S(n) arelattices:
(i) S is spread and each S(n), n > 0, is a meet semi-sublattice of Clδ(n),

(ii) S is spread and each S(n), n > 0, is a join semi-sublattice of Clδ(n),
(iii) S is minimally and maximally extendable, and closed by prefix.1.3.3. Constructibility by interval doubling. For this section, we can refer to Sec-tion 2.4 of Chapter 1.The aim of this section is to introduce a sufficient condition on a graded subset Sof Clδ for the fact that each S(n), n > 0, is constructible by interval doubling. We shallmoreover describe explicitly the sequence of interval doubling operations involved in theconstruction of S(n) from the trivial lattice.Let P be a nonempty subposet of Clδ(n) for a given fixed size n > 1. Let us denoteby m(P) the letter max{un : u ∈ P}. For any a, b ∈ [0, δ(n)], let Pa := {u ∈ P : un = a}and Pa,b := {ub : ua ∈ Pa}. Observe that Pa is a subposet of P while Pa,b may contain

δ-cliffs that do not belong to P. The derivation of P is the set
D(P) := P0 ∪P1 ∪ · · · ∪ Pm(P)−1 ∪Pm(P),m(P)−1. (1.3.10)
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In other words, D(P) is the set of all the cliffs obtained from P by decrementing their lastletters if they are equal to m(P) or by keeping them as they are otherwise. Observe that
D(P) is not necessarily a subposet of P. Nevertheless, D(P) is still a subposet of Clδ(n).Observe also that m(D(P)) 6 m(P)− 1. For instance, by considering the subposet

P := {0000, 0111, 0002, 0112, 0103, 0104, 0004} (1.3.11)
of Cl2(4), we have

P2,m(P) = {0004, 0114} (1.3.12)and
D(P) = {0000, 0111, 0002, 0112, 0103, 0003}. (1.3.13)

The subposet P is nested if it is nonempty and(N1) for any a ∈ [0,m(P)], the δ-cliff 0n−1a belongs to P,(N2) for any a ∈ [0,m(P)], Pa,m(P) is both a subset and an interval of P.This definition still holds when m(P) = 0. Observe that any δ-cliff 0n−1a, a > 1, ofP coversexactly the single element 0n−1 (a− 1) of P. This element exists by (N1). Therefore, when
P is a lattice, these δ-cliffs are join-irreducible.

LEMMA 1.3.5. Let δ be a range map and P be a nonempty subposet of Clδ(n) for an
n > 1. If P is nested, then for any a ∈ [0,m(P)], Pa is an interval of P.

PROOF. First, by (N1), Pa admits 0n−1a as unique least element. It remains to provethat Pa has at most one greatest element. By contradiction, assume that there are in
Pa two different greatest elements ua and va, where u, v ∈ Clδ(n − 1). Then, by setting
b := m(P), in Pa,b the δ-cliffs ub and vb are still incomparable. Since these two elementsare also greatest elements of Pa,b , this implies that Pa,b is not an interval in P. Thiscontradicts (N2). �

LEMMA 1.3.6. Let δ be a range map and P be a nonempty subposet of Clδ(n) for an
n > 1. If m(P) > 1 and P is nested, then D(P)m(D(P)) = Pm(P),m(P)−1.PROOF. Let b := m(P), P′ := D(P), and b′ := m(P′). First, since P satisfies (N1),
b′ = b − 1. Moreover, directly from the definition of the derivation operation D, we have
P′b′ = Pb,b′∪Pb′ . By (N2), Pb′,b is a subset of Pb , so that Pb′ is a subset of Pb,b′ . Therefore,
P′b′ = Pb,b′ . �

LEMMA 1.3.7. Let δ be a range map and P be a nonempty subposet of Clδ(n) for an
n > 1. If m(P) > 1 and P is nested, then D(P) is nested.

PROOF. Let b := m(P), P′ := D(P), and b′ := m(P′). First, since P satisfies (N1),
b′ = b − 1. Moreover, in particular, for any a ∈ [0, b′], 0n−1a ∈ P. Hence, 0n−1a ∈ P′, sothat P′ satisfies (N1). Let a ∈ [0, b′ − 1]. By (N2), Pa,b is an interval of Pb. Due to the fact
a 6 b′ − 1, one has Pa = P′a , so that P′a,b is an interval of Pb. This is equivalent to thefact that P′a,b′ is an interval of Pb,b′ . By Lemma 1.3.6, the relation P′b′ = Pb,b′ holds andleads to the fact that P′a,b′ is an interval of P′b′ . Therefore, P′ satisfies (N2). �
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LEMMA 1.3.8. Let δ be a range map and P be a nonempty subposet of Clδ(n) for an

n > 1. If m(P) > 1 and P is nested, then P is isomorphic as a poset to D(P)[I] where I
is the interval Pm(P)−1 of D(P).

PROOF. Let b := m(P), P′ := D(P), and b′ := m(P′). By (N1), b′ = b − 1. Let us firstprove that I = Pb′ is an interval of P′. Let u, v ∈ Pb′ such that u 4 v. Assume that thereexists w ∈ P′b′ such that u 4 w 4 v. Let us denote by u′ (resp. v ′, w ′) the prefix of size
n − 1 of u (resp. v, w). By (N2), u′b and v ′b belong to Pb. Moreover, by Lemma 1.3.6,since P′b′ = Pb,b′ , w ∈ Pb,b′ . Therefore, w ′b belongs to Pb. Again by (N2), this leads to thefact that w ∈ Pb′ . This shows that the set Pb′ is closed by interval in P′b′ . Since finally, byLemma 1.3.5, Pb′ is an interval of P, Pb′ has a unique least and a unique greatest element.This implies that Pb′ is an interval of P′.Since I is an interval of P′, we can now consider the poset P′[I]. By definition of theinterval doubling operation, P′[I] = (P′ \ Pb′ ) t (Pb′ × 2). Let φ : P′[I] → P be the mapdefined by

φ(ua) := ua, if ua ∈ P′ \ Pb′ and a 6= b′, (1.3.14a)
φ
(
ub′
) := ub, if ub′ ∈ P′ \ Pb′ , (1.3.14b)

φ
((
ub′, 1)) := ub′, if (ub′, 1) ∈ Pb′ × 2, (1.3.14c)

φ
((
ub′, 2)) := ub, if (ub′, 2) ∈ Pb′ × 2. (1.3.14d)This map φ is well-defined because, respectively, one has P′a = Pa for any a ∈ [0, b′ − 1],Lemma 1.3.6 holds, I is in particular a subset of P, and P satisfies (N2). Let now ψ : P →

P′[I] be the map satisfying
ψ(ua) = ua, if ua ∈ P and a ∈

[0, b′ − 1], (1.3.15a)
ψ(ub) = ub′, if ub′ ∈ P′ \ Pb′ , (1.3.15b)
ψ(ub) = (ub′, 2), if ub′ ∈ Pb′ , (1.3.15c)
ψ
(
ub′
) = (ub′, 1), if ub′ ∈ Pb′ . (1.3.15d)By similar arguments as before, this map ψ is well-defined. Moreover, by construction,

ψ is the inverse of φ. Therefore, φ is a bijection. The fact that φ is a poset embeddingcomes by definition of φ and from the fact that, due to the property of P to be nested, forany ub′ ∈ P′ \ Pb′ , all elements greater than ub′ in P′ do not belong to Pb′ . Thus, P′[I]is isomorphic as a poset to P. �

By assuming that P is nested, the sequence of derivations from P is the sequence(
P,D(P),D2(P), . . . ,Dm(P)(P)) (1.3.16)

of subsets of Clδ(n). Observe that due to (N1), for any k ∈ [m(P)− 1], m(Dk(P)) > 1, sothat Dk+1(P) is well-defined.
Given a graded subset S of Clδ , we say by extension that S is nested if for all n > 0,the posets S(n) are nested.
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THEOREM 1.3.9. Let δ be a rooted range map and S be a nested and closed by

prefix graded subset of Clδ . For any n > 1, S(n) is constructible by interval doubling.
Moreover,

S(n)→D(S(n))→ · · · → Dm(S(n))(S(n)) ' S(n − 1)
→D(S(n − 1))→ · · · → Dm(S(n−1))(S(n − 1)) ' S(n − 2)
→ · · · → S(0) ' {ε} (1.3.17)

is a sequence of interval contractions from S(n) to the trivial lattice {ε}.

PROOF. We proceed by induction on n > 0. If n = 0, since δ is rooted, we necessarilyhave S(0) ' {ε}, and this poset is by constructible by interval doubling. Assume nowthat n > 1 and set P := S(n). Since S is nested, the sequence of reductions from Pis well-defined. By Lemmas 1.3.7 and 1.3.8, by setting P′ := Dm(P)(P), P is obtained byperforming a sequence of interval doubling from the poset P′. Now, due to the definitionof the derivation algorithm D, P′ is made of the δ-cliffs of P wherein the last letters havebeen replaced by 0. This poset P′ is therefore isomorphic to the poset P′′ formed by theprefixes of length n−1 of P. Since S is closed by prefix, P′′ is thus the poset S(n−1). Byinduction hypothesis, this last poset is constructible by interval doubling. Therefore, S(n)also is. All this produces the sequence (1.3.17) of interval contractions. �

1.3.4. Elevation maps. We introduce here a combinatorial tool intervening in the studyof the three Fuss-Catalan posets introduced in the sequel.
Let S be a closed by prefix graded subset of Clδ . For any u ∈ S, let

FS(u) := {a ∈ [0, δ(|u|+ 1)] : ua ∈ S}. (1.3.18)
By definition, FS(u) is the set of all the letters a that can follow u to form an element of S.For any n > 0, the S-elevation map is the map

eS : S(n)→ Clδ(n) (1.3.19)
defined, for any u ∈ S(n) and i ∈ [n] by

eS(u)i := #(FS(u1 . . . ui−1) ∩ [0, ui − 1]) (1.3.20)
for any i ∈ [n]. From an intuitive point of view, the value of the i-th letter of eS(u) is thenumber of cliffs of S obtained by considering the prefix of u ending at the letter ui and byreplacing this letter by a smaller one. Remark in particular that eClδ is the identity map.Besides, we say that any u ∈ S is an exuviae if eS(u) = u.

Let ES be the graded set wherein for any n > 0, ES(n) is the image of S(n) by the
S-elevation map. We call this set the S-elevation image. Observe that ES is a gradedsubset of Clδ . Note also that for any u ∈ S, eS(u) 4 u.

PROPOSITION 1.3.10. Let δ be a range map and S be a closed by prefix graded subset
of Clδ . For any n > 0, the S-elevation map is injective on the domain S(n).
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PROOF. We proceed by induction on n. When n = 0, the property is trivially satisfied.Let u, v ∈ S(n) such that n > 1 and eS(u) = eS(v). Since S is closed by prefix, we have

u = u′a and v = v ′b where u′, v ′ ∈ S(n − 1) and a, b ∈ N. By definition of eS, we have
eS(u′a) = eS(u′)c and eS(v ′b) = eS(v ′)c where c ∈ N. Hence, eS(u′) = eS(v ′) which leads,by induction hypothesis, to the fact that u′ = v ′. Moreover, we deduce from this and fromthe definition of the S-elevation map that there are exactly c letters a′ smaller than a suchthat u′ a′ ∈ S and that there are exactly c letters b′ smaller than b such that v ′ b′ ∈ S.Therefore, we have a = b and thus u = v, establishing the injectivity of eS. �

LEMMA 1.3.11. Let δ be a range map and S be a closed by prefix graded subset ofClδ . The S-elevation image is closed by prefix.

PROOF. Let n > 0 and v ∈ ES(n). Then, there exists u ∈ S(n) such that eS(u) = v.Let v ′ be a prefix of v. Since S is closed by prefix, the prefix u′ of u of length n′ := |v ′|belongs to S(n′). Moreover, by definition of eS, we have eS(u′) = v ′. Therefore, v ′ ∈ ES,implying the statement of the lemma. �

PROPOSITION 1.3.12. Let δ be a range map and S be a closed by prefix graded subset
of Clδ such that for any u, v ∈ S, u 4 v implies FS(v) ⊆ FS(u). For any n > 0, the map
e−1
S is a poset morphism from ES(n) to S(n).

PROOF. First, by Proposition 1.3.10, the map e−1
S is well-defined. We now proceed byinduction on n. When n = 0, the property is trivially satisfied. Let u and v be elementsof ES(n) such that n > 1 and u 4 v. By Lemma 1.3.11, we have u = u′a and v = v ′bwhere u′, v ′ ∈ ES(n − 1) and a, b ∈ N. By definition of e−1

S , we have e−1
S (u′a) = e−1

S (u′)cand e−1
S (v ′b) = e−1

S (v ′)d where c, d ∈ N. Since u 4 v, one has u′ 4 v ′ so that, by inductionhypothesis, e−1
S (u′) 4 e−1

S (v ′). Moreover, u 4 v implies that a 6 b. Due to the fact thatFS(v ′) ⊆ FS(u′), one has by definition of e−1
S that c 6 d. Therefore, e−1

S (u′)c 6 e−1
S (v ′)d,which implies the statement of the proposition. �Proposition 1.3.12 says that when S is closed by prefix, for any n > 0, the poset S(n)is an order extension of ES(n).1.3.5. Cubic realizations. As for the cubic coordinate lattices in Chapter 2 and for theHochschild lattices in Chapter 3, the poset Clδ and these graded subsets admit a cubicrealization. Let us recall and generalize some definitions seen in Section 2.1 of Chapter 2.Let S be a graded subset of Clδ . For any n > 0, the realization of S(n) is the geometricobject C(S(n)) defined in the space Rn and obtained by placing for each u ∈ S(n) a vertexof coordinates (u1, . . . , un), and by forming for each u, v ∈ S(n) such that ulS v an edgebetween u and v. Remark that the posets of Figure 1.1 represent actually the realizationsof δ-cliff posets. We will follow this drawing convention for all the next figures of posetsin all the sequel. When S is straight, every edge of C(S(n)) is parallel to a line passing bythe origin and a point of the form (0, . . . , 0, 1, 0, . . . , 0). In this case, we say that C(S(n)) is

cubic.Let us assume from now that S is straight. Let u, v ∈ S(n) such that u 4 v. Theword u is cell-compatible with v if for any word w of length n such that for any i ∈ [n],
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wi ∈ {ui, vi}, then w ∈ S. In this case, we call cell the set of points

〈u, v〉 := {x ∈ Rn : ui 6 xi 6 vi for all i ∈ [n]}. (1.3.21)By definition, a cell is an orthotope, that is a parallelotope whose edges are all mutuallyorthogonal or parallel. A point x of Rn is inside a cell 〈u, v〉 if for any i ∈ [n], ui 6= viimplies ui < xi < vi. A cell 〈u, v〉 is pure if there is no point of S(n) inside 〈u, v〉. Inother terms, this says that for all w ∈ [u, v], there exists i ∈ [n] such that ui 6= vi and
wi ∈ {ui, vi}. Two cells 〈u, v〉 and 〈u′, v ′〉 of C(S(n)) are disjoint if there is no point of
Rn which is both inside 〈u, v〉 and 〈u′, v ′〉. The dimension dim 〈u, v〉 of a cell 〈u, v〉 is itsdimension as an orthotope and it satisfies dim 〈u, v〉 = #D(u, v). The volume vol 〈u, v〉 of
〈u, v〉 is its volume as an orthotope and its satisfiesvol 〈u, v〉 = ∏

i∈D(u,v) vi − ui. (1.3.22)
For any k > 0, the k-volume volk(C(S(n))) of C(S(n)) is the volume obtained by summing thevolumes of all its all its cells of dimension k, computed by not counting several times poten-tial intersecting orthotopes. The volume vol(C(S(n))) of C(S(n)) is defined as volk(C(S(n)))where k is the largest integer such that C(S(n)) has at least one cell of dimension k.Figure 1.3 shows examples of these notions. Figure 1.3a shows a cubic realization
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FIGURE 1.3. Some cubic realizations of straight subposets of posets of δ-cliffs for certainrange maps δ.
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wherein 00 is cell-compatible with 12. Hence, 〈00, 12〉 is a cell. The point ( 12 , 32) ∈ R2is inside 〈00, 12〉, and since there are no elements of the poset inside the cell, this cellis pure. Figure 1.3b shows a cubic realization wherein 00 is not cell-compatible with 22because 02 does not belong to the poset. Nevertheless, 〈00, 11〉, 〈10, 21〉, and 〈11, 22〉 arepure cells of dimension 2. Figure 1.3c shows a cubic realization wherein 〈00, 22〉 is a non-pure cell. Indeed, the δ-cliff 11 is an element of the poset and is inside this cell. Finally,Figure 1.3d shows a cubic realization having 1 as volume since there is exactly one cell
〈000, 111〉 of maximal dimension (which is 3) and of volume 1. Its 2-volume is 8 since thiscubic realization decomposes as the seven disjoint cells 〈000, 011〉, 〈000, 101〉, 〈000, 110〉,
〈001, 111〉, 〈010, 111〉, 〈100, 111〉, and 〈101, 113〉 of respective volumes 1, 1, 1, 1, 1, 1, and 2.There is a close connection between output-wings (resp. input-wings) of S(n), n > 0,and the computation of the volume of C(S(n)): if 〈u, v〉 is a cell of maximal dimensionof C(S(n)), then due to the fact that S is straight, u (resp. v) is an output-wing (resp.input-wing) of S(n). When for any n > 0,

(i) there is a map ρ : O(S)(n)→ I(S)(n),
(ii) all cells of maximal dimension of C(S(n)) express as 〈u, ρ(u)〉 with u ∈ O(S)(n),

(iii) all cells of {〈u, ρ(u)〉 : u ∈ O(S)(n)} are pairwise disjoint,then the volume of C(S(n)), n > 0, writes asvol(C(S(n))) = ∑
u∈O(S)(n) vol 〈u, ρ(u)〉 . (1.3.23)

When some cells of {〈u, ρ(u)〉 : u ∈ O(S)(n)} intersect each other, the expression for thevolume would not be at as simple as (1.3.23) and can be written instead as an inclusion-exclusion formula. Of course, the same property holds when ρ is instead a map from
I(S)(n) to O(S)(n) by changing accordingly the previous text.

PROPOSITION 1.3.13. Let δ be a range map and S be a straight graded subset of Clδ .
If, for an n > 0, C(S(n)) has a cell of dimension dimn(δ), then the order dimension of
the poset S(n) is dimn(δ).

PROOF. First, since S(n) is a subposet of Clδ(n), S(n) is a subposet of the Cartesianproduct ∏
i∈[n]
δ(i) 6=0

N. (1.3.24)
This poset has order dimension dimn(δ), so that the order dimension of S(n) is at mostdimn(δ). Besides, since S is straight, the notion of cell is well-defined in the cubic realizationof S(n). By hypothesis, S(n) contains a cell 〈u, v〉 of dimension dimn(δ). Thus, there is aposet embedding ofHdimn(δ) into the interval [u, v] of S(n). Therefore, the order dimensionof S(n) is at least dimn(δ). �

As a particular case of Proposition 1.3.13, the order dimension of Clδ(n) is dimn(δ).This explains the terminology of “n-th dimension of δ” for the notation dimn(δ) introducedin Section 1.1.1.
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2. Some Fuss-Catalan posetsWe present here some examples of subposets of δ-cliff posets. We focus in this workon three posets whose elements are enumerated by m-Fuss-Catalan numbers for the case

δ = m, m > 0. We provide some combinatorial properties of these posets like amongothers, a description of their input-wings, output-wings, and butterflies, a study of theirorder theoretic properties, and a study of their cubic realizations. We end this section byestablishing links between these three families of posets in terms of poset morphisms,poset embeddings, and poset isomorphisms. We shall omit some straightforward proofs(for instance, in the case of the descriptions of input-wings, output-wings, butterflies, meet-irreducible and join-irreducible elements of the posets).
We use the following notation conventions. Poset morphisms are denoted by letters

φ and through arrows , poset embeddings by letters ζ and through arrows , andposet isomorphisms by letters θ and through arrows .
2.1. δ-avalanche posets. We begin by introducing a first Fuss-Catalan family of posets.As we shall see, these posets are not lattices but they form an important tool to study thetwo next two families of Fuss-Catalan posets.
2.1.1. Objects. For any range map δ, let Avδ be the graded subset of Clδ containingall δ-cliffs u such that for all nonempty prefixes u′ of u, then ω(u′) 6 δ(|u′|). Any elementof Avδ is a δ-avalanche. For instance,

Av2(3) = {000, 001, 002, 003, 004, 010, 011, 012, 013, 020, 021, 022}. (2.1.1)
PROPOSITION 2.1.1. For any weakly increasing range map δ, the graded set Avδ is

(i) closed by prefix,
(ii) is minimally extendable,

(iii) is maximally extendable if and only if δ = 0ω .

PROOF. Point (i) is an immediate consequence of the definition of δ-avalanches. Let
n > 0 and u ∈ Avδ(n). Since δ(n + 1) > δ(n), u0 is a δ-avalanche. This establishes (ii).Finally, we have immediately that Av0ω is maximally extendable. Moreover, when δ 6= 0ω ,there is an n > 1 such that δ(n) > 1 and δ(n′) = 0 for all 1 6 n′ < n. Therefore, 0n−1 δ(n)is a δ-avalanche but 0n−1 δ(n) δ(n + 1) is not. Therefore, (iii) holds. �

PROPOSITION 2.1.2. For any m > 0 and n > 0,

#Avm(n) = catm(n). (2.1.2)
PROOF. This is a consequence of Proposition 2.2.2 coming next. Indeed, by this re-sult, Avm(n) is the image by the elevation map of a graded set of objects enumeratedby m-Fuss-Catalan numbers. Since this set of objects satisfies all the requirements ofProposition 1.3.10, the elevation map is injective, implying that it is a bijection. �
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FIGURE 2.1. Hasse diagrams of some δ-avalanche posets.

2.1.2. Posets. For any n > 0, the subposet Avδ(n) of Clδ(n) is the δ-avalanche posetof order n. Figure 2.1 shows the Hasse diagrams of some m-avalanche posets.
Let δ be a weakly increasing range map. Notice that in general, Avδ(n) is not bounded.Since for all u ∈ Avδ(n), ω(u) 6 δ(n), we have u ∈ max4 Avδ(n) if and only if ω(u) = δ(n).Moreover, due to the fact that any δ-cliff obtained by decreasing a letter in a δ-avalanche isalso a δ-avalanche, the poset Avδ(n) is the order ideal of Clδ(n) generated by max4 Avδ(n).Finally, as a particular case, we shall show as a consequence of upcoming Proposition 2.2.10that for any m > 0 and n > 1, # max4 Avm(n) = catm(n − 1).
PROPOSITION 2.1.3. For any weakly increasing range map δ and n > 0, the posetAvδ(n)

(i) is straight, where u ∈ Avδ(n) is covered by v ∈ Avδ(n) if and only if there is an
i ∈ [n] such that ↑i(u) = v,

(ii) is coated,
(iii) is graded, where the rank of an avalanche is its weight,
(iv) admits an EL-labeling,
(v) is a meet semi-sublattice of Clδ(n),

(vi) is a lattice if and only if δ = 0ω .

PROOF. Points (i), (iii), (v), and (vi) are immediate. If u and v are two δ-avalanches ofsize n such that u 4 v, then for any i ∈ [n − 1], ω(u1 . . . ui) 6 ω(v1 . . . vi). Therefore, the
δ-cliff u1 . . . uivi+1 . . . vn is a δ-avalanche. For this reason, (ii) checks out. Point (iv) followsfrom (ii), and Theorem 1.3.2. �

PROPOSITION 2.1.4. For any m > 1,
(i) the graded set I(Avm) contains all the m-avalanches u satisfying ui 6= 0 for

all i ∈ [2, |u|],
(ii) the graded set O(Avm) contains all the m-avalanches u satisfying ω(u′) < m(|u′|)

for all prefixes u′ of u of length 2 or more,
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(iii) the graded set B(Avm) contains all the m-avalanches u satisfying ui 6= 0 for all

i ∈ [2, |u|], and ω(u′) < m(|u′|) for all prefixes u′ of u of length 2 or more.PROPOSITION 2.1.5. For any m > 0 and n > 0, the map θ : Avm(n) → I(Avm+1)(n)
defined for any u ∈ Avm(n) and i ∈ [n] by

θ(u)i := 1i 6=1(ui + 1) (2.1.3)
is a poset isomorphism.PROOF. It follows from Proposition 2.1.4 and its description of the input-wings ofAvm+1(n) that θ is a well-defined map. Let θ′ : I(Avm+1)(n) → Avm(n) be the map de-fined for any u ∈ I(Avm+1)(n) and i ∈ [n] by θ′(u)i := 1i 6=1(ui − 1). It follows also fromProposition 2.1.4 and the definition of m-avalanches that θ′ is a well-defined map. Now,since by definition of θ′, both θ ◦ θ′ and θ′ ◦ θ are identity maps, θ is a bijection. Finally, thefact that θ is a translation implies that θ is a poset embedding. �As a consequence of Proposition 2.1.5, for any m > 1 and n > 0, the number ofinput-wings in Avm(n) is catm−1(n).

PROPOSITION 2.1.6. For any m > 1 and n > 0, the map ζ : I(Avm) → O(Avm) defined
for any u ∈ I(Avm)(n) and i ∈ [n] by

ζ(u)i := 1i 6=1(ui − 1) (2.1.4)
is a poset embedding.PROOF. It follows from Proposition 2.1.4 and its descriptions of the input-wings andoutput-wings of Avm(n) that ζ is a well-defined map. The fact that ζ is a translation impliesthe statement of the proposition. �PROPOSITION 2.1.7. For any m > 1 and n > 0, the map θ : O(Avm)→B(Avm+1) defined
for any u ∈ O(Avm)(n) and i ∈ [n] by

θ(u)i := 1i 6=1(ui + 1) (2.1.5)
is a poset isomorphism.PROOF. The proof uses Proposition 2.1.4 and is very similar to the one of Proposi-tion 2.1.5. �To summarize, the three previous propositions lead to the following diagram of posetswherein appear avalanche posets and their subposets of input-wings, output-wings, andbutterflies.

THEOREM 2.1.8. For any m > 1 and n > 0,

Avm−1(n) I(Avm)(n)

O(Avm)(n) B(Avm+1)(n)

θ (Pr. 2.1.5)

ζ (Pr. 2.1.6)

θ (Pr. 2.1.7)

(2.1.6)



2. SOME FUSS-CATALAN POSETS 117
is a diagram of poset embeddings or isomorphisms.

Figure 2.2 gives an example of the poset isomorphisms or embeddings described bythe statement of Theorem 2.1.8.
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FIGURE 2.2. From the top to bottom and left to right, here are the posets Av2(3), Av3(3),Av3(3), and Av4(3). All these posets contain Av2(3) as subposet by restricting on input-wings,output-wings, or butterflies.
Let us define for any m > 0 and n > 1 the n-th twisted m-Fuss-Catalan number by

tcatm(n) := 1
n

(
n(m + 1)− 2

n − 1
)
. (2.1.7)

PROPOSITION 2.1.9. For any m > 1, #O(Avm)(0) = 1 and, for any n > 1,#O(Avm)(n) = tcatm(n). (2.1.8)
PROOF. By Proposition 2.1.4, the set O(Avm)(n) is in one-to-one correspondence withthe set of all m-cliffs v of size n such that for any i ∈ [2, n], vi−1 6 vi < m(i). A possiblebijection between these two sets sends any u ∈ O(Avm)(n) to the m-cliff v of the samesize such that for any i ∈ [n], vi := u1 + · · · + ui. These words are moreover in one-to-one correspondence with indecomposable m-Dyck paths with n > 1 up steps, that are

m-Dyck paths which cannot be written as a nontrivial concatenation of two m-Dyck paths.A possible bijection is the one described in upcoming Section 2.2.1. Let us denote by
G(t) (resp. G′(t)) the generating series of m-Dyck paths (resp. indecomposable m-Dyck
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paths) enumerated with respect to their numbers of up steps. By convention, G′(t) has noconstant term. Since any m-Dyck path decomposes in a unique way as a concatenationof indecomposable m-Dyck paths, one has G(t) = (1−G′(t))−1. Now, by using the fact that
G(t) satisfies G(t) = 1 + tG(t)m+1, we have

G′(t) = G(t)− 1
G(t) = tG(t)m = t

( 11−G′(t)
)m (2.1.9)

This relation satisfied by G′(t) between the first and last members of (2.1.9) is knownto be the one of the generating series of twisted m-Fuss-Catalan numbers (see [Slo] forinstance). �

By Proposition 2.1.9, the first numbers of output-wings of Avm(n) by sizes are
1, 1, 1, 1, 1, 1, 1, 1, m = 0, (2.1.10a)

1, 1, 1, 2, 5, 14, 42, 132, m = 1, (2.1.10b)
1, 1, 2, 7, 30, 143, 728, 3876, m = 2, (2.1.10c)

1, 1, 3, 15, 91, 612, 4389, 32890, m = 3. (2.1.10d)The third and fourth sequences are respectively Sequences A006013 and A006632 of [Slo].As a side remark, for any m > 1, the generating series of the graded set O(Avm) is 1 plusthe inverse, for the functional composition of series, of the polynomial t(1− t)m.
PROPOSITION 2.1.10. For any m > 1 and n > 1,

(i) the set M(Avm(n)) contains all m-avalanches u such that u = u′a where u′ ∈max4 Avm(n − 1) and a ∈ [0,m − 1],
(ii) the set J(Avm(n)) contains all m-avalanches having exactly one letter different

from 0.

By Proposition 2.1.10 and by upcoming Proposition 2.2.10, the number of meet-irreducibleelements of Avm(n) satisfies, for any m > 1 and n > 2,
M(Avm(n)) = mcatm(n − 2) (2.1.11)

and the number of join-irreducibles elements of Avm(n) satisfies, for any m > 1 and n > 1,
#J(Avm(n)) = m

(
n2
)
. (2.1.12)

2.1.3. Cubic realization. The map ζ introduced by Proposition 2.1.6 is used here todescribe the cells of maximal dimension of the cubic realization of Avm(n), m > 1, n > 0.
PROPOSITION 2.1.11. For any m > 1, n > 0, and u ∈ I(Avm)(n),

(i) the m-avalanche ζ(u) is cell-compatible with the m-avalanche u,
(ii) the cell 〈ζ(u), u〉 is pure,

(iii) all cells of {〈ζ(u), u〉 : u ∈ I(Avm)(n)} are pairwise disjoint.

http://oeis.org/A006013
http://oeis.org/A006632
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PROOF. Let v be an m-cliff of size n satisfying vi ∈ {ζ(u)i, ui} for all i ∈ [n]. Bydefinition of ζ, v1 = 0 and vi ∈ {ui − 1, ui} for all i ∈ [2, n]. Since u is an input-wingof Avm, ζ(u) is an m-avalanche, and due to the definition of m-avalanches, any m-cliffobtained by decrementing some letters of u is still an m-avalanche. Thus, v ∈ Avm and (i)holds. Points (ii) and (iii) are consequences of the fact that there is no element of Avm(n)inside a cell 〈ζ(u), u〉. Indeed, since for any i ∈ [n], |ζ(u)i − ui| 6 1, we have vi ∈ {ζ(u)i, ui}for all v ∈ 〈ζ(u), u〉 ∩ Avm(n). �

As shown by Proposition 2.1.11, the cells of maximal dimension of the cubic realizationof Avm(n) are all of the form 〈ζ(u), u〉 where the u are input-wings of Avm(n).
PROPOSITION 2.1.12. For any m > 1 and n > 0,

vol(C(Avm(n))) = catm−1(n). (2.1.13)
PROOF. Proposition 2.1.11 describes all the cells of maximal dimension of C(Avm(n))as cells 〈ζ(u), u〉 where u is an input-wing of Avm(n). Since all these cells are pairwisedisjoint, the volume of C(Avm(n)) expresses as (1.3.23). Moreover, observe that the volumeof each cell 〈ζ(u), u〉 where u in an input-wing is by definition of ζ equal to 1. Therefore,vol(C(Avm(n))) is equal to the number of input-wings of Avm(n). The statement of theproposition follows now from Proposition 2.1.5. �

2.2. δ-hill posets. We now introduce δ-hills and δ-hill posets as subposets of δ-cliffposets. As we shall see, some of these posets are sublattices of m-cliff lattices.
2.2.1. Objects. For any range map δ, let Hiδ be the graded subset of Clδ containingall δ-cliffs such that that for any i ∈ [|u| − 1], ui 6 ui+1. Any element of Hiδ is a δ-hill. Forinstance, Hi2(3) = {000, 001, 011, 002, 012, 022, 003, 013, 023, 004, 014, 024}. (2.2.1)
PROPOSITION 2.2.1. For any weakly increasing range map δ, the graded set Hiδ is

(i) closed by prefix,
(ii) is minimally extendable if and only if δ = 0ω ,

(iii) is maximally extendable.

PROOF. Point (i) is an immediate consequence of the definition of δ-hills. We haveimmediately that Hi0ω is minimally extendable. Moreover, when δ 6= 0ω , there is an n > 1such that δ(n) > 1. Therefore, 1̄δ(n) is a δ-hill but 1̄δ(n) 0 is not. This establishes (ii).Finally, since for any n > 0, δ(n + 1) > δ(n), one has δ(n + 1) > un for any u ∈ Hiδ(n).This shows that u δ(n + 1) is a δ-hill. Therefore, (iii) holds. �

There is a one-to-one correspondence between Him(n) and the set of m-Dyck pathsDym(n) seen in Section 1.1.4 of Chapter 1. This bijection sends an m-Dyck path w of size
n to the m-hill u of size n such that for any i ∈ [n], ui is the number of down steps to the
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left of the i-th up step of w. For instance, the 2-Dyck path

(2.2.2)
is sent to the 2-hill 02366. Since m-Dyck paths of size n are known to be enumerated by
m-Fuss-Catalan numbers, one has #Him(n) = catm(n). (2.2.3)

PROPOSITION 2.2.2. For any range map δ and any n > 0,

EHiδ (n) = Avδ(n). (2.2.4)
PROOF. First, since Him is by Proposition 2.2.1 closed by prefix, the Him-elevationmap and the Him-elevation image are well-defined. Let u ∈ Hiδ(n) and v := eHiδ (u). Bydefinition of δ-hills and of the Hiδ-elevation map, we have v1 = u1 and, for any i ∈ [2, n],

vi = ui − ui−1. Therefore, for any prefix v ′ := v1 . . . vj , j ∈ [n], of v, we have
ω
(
v ′
) = u1 + (u2 − u1) + (u3 − u2) + · · ·+ (uj − uj−1) = uj . (2.2.5)Since u is in particular a δ-cliff of size n, then uj 6 δ(j), so that v ∈ Avδ(n). This showsthat EHiδ (n) is a subset of Avδ(n).Now, let u be an δ-avalanche of size n. Let us show by induction on n > 0 that thereexists v ∈ Hiδ(n) such that eHiδ (v) = u. When n = 0, the property is trivially satisfied.When n > 1, since Avδ is, by Proposition 2.1.1, closed by prefix, one has u = u′a for a

u′ ∈ Avδ(n − 1) and an a ∈ N. By induction hypothesis, there exists v ′ ∈ Hiδ(n − 1) suchthat eHiδ (v ′) = u′. Now, let b := a + v ′n−1 and set v := v ′b. By using what we have provenin the first paragraph, ω(u′) = v ′n−1. Since ω(u′) + a = ω(u) 6 δ(n), we have that b 6 δ(n).Therefore, since moreover b > v ′n−1, v is a δ-hill and it satisfies eHiδ (v) = u. �

2.2.2. Posets. For any n > 0, the subposet Hiδ(n) of Clδ(n) is the δ-hill poset of order
n. Figure 2.3 shows the Hasse diagrams of some m-hill posets. The 1-hill posets are theStanley lattices seen in Section 1.3.9 of Chapter 1. Therefore, the δ-hill posets can be seenas generalizations of these structures.

PROPOSITION 2.2.3. For any weakly increasing range map δ and n > 0, the posetHiδ(n) is
(i) straight, where u ∈ Hiδ(n) is covered by v ∈ Hiδ(n) if and only if there is an

i ∈ [n] such that ↑i(u) = v,
(ii) coated,

(iii) nested,
(iv) graded, where the rank of a hill is its weight,
(v) EL-shellable,

(vi) a sublattice of Clδ(n),
(vii) constructible by interval doubling.



2. SOME FUSS-CATALAN POSETS 121

000
001

002011
012(A) Hi1(3).

000
001

002
003

004

011
012

013 014
022

023
024(B) Hi2(3).

0000
0001

0002
0003

0011
0012

00130022
0023

0111
0112 01130122
0123(C) Hi1(4).

FIGURE 2.3. Hasse diagrams of some δ-hill posets.
PROOF. Points (i), (ii), (iii), (iv), and (vi) are immediate. Point (v) follows from (ii) andTheorem 1.3.2. Point (vii) is a consequence of Theorem 1.3.9 since (iii) holds and, fromProposition 2.2.1, of the fact that Hiδ is closed by prefix. Alternatively, (vii) is impliedby (vi) and the fact that any sublattice of a lattice constructible by interval doubling isconstructible by interval doubling [Day79], which is indeed the case for Clδ(n). �

PROPOSITION 2.2.4. For any m > 0,
(i) the graded set I(Him) contains all the m-cliffs u satisfying u1 < · · · < u|u|,

(ii) the graded set O(Him) contains all the m-cliffs u satisfying u1 6 u2 < · · · < u|u|
and for all i ∈ [2, |u|], ui < m(i),

(iii) the graded set B(Him) contains all the m-cliffs u satisfying u1 < · · · < u|u| and
for all i ∈ [2, |u|], ui < m(i).

PROPOSITION 2.2.5. For any m > 0 and n > 0, the map θ : Him(n) → I(Him+1)(n)
defined for any u ∈ Him(n) and i ∈ [n] by

θ(u)i := ui + i − 1 (2.2.6)
is a poset isomorphism.

PROOF. It follows from Proposition 2.2.4 and its description of the output-wings ofHim+1(n) that θ is a well-defined map. Let θ′ : I(Him+1)(n)→ Him(n) be the map defined forany u ∈ I(Him+1)(n) and i ∈ [n] by θ′(u)i := ui− i+1. It follows also from Proposition 2.2.4that θ′ is a well-defined map. Now, since by definition of θ′, both θ ◦ θ′ and θ′ ◦ θ areidentity maps, θ is a bijection. Finally, the fact that θ is a translation implies that θ is aposet embedding. �

As a consequence Proposition 2.2.5, for any m > 1 and n > 0, the number of input-wings in Him(n) is catm−1(n).



122 4. FUSS-CATALAN POSETS AND ALGEBRAS
PROPOSITION 2.2.6. For any m > 1 and n > 0, the map θ : I(Him)(n) → O(Him)(n)

defined for any u ∈ I(Him)(n) and i ∈ [n] by

θ(u)i := 1i 6=1(ui − 1) (2.2.7)
is a poset isomorphism.

PROOF. This proof uses Proposition 2.2.4 and is very similar to the one of Proposi-tion 2.2.5. �

PROPOSITION 2.2.7. For any m > 1 and n > 0, the map ζ : I(Him)(n) → B(Him+1)(n)
defined for any u ∈ I(Him)(n) by ζ(u) := u is a poset embedding.

PROOF. It follows directly from Proposition 2.2.4 that any input-wing of Him(n) is also abutterfly of Him+1(n). The fact the identity map is a poset embedding implies the statementof the proposition. �

To summarize, the three previous propositions lead to the following diagram of posetswherein appear hill posets and their subposets of input-wings, output-wings, and butterflies.
THEOREM 2.2.8. For any m > 1 and n > 0,

Him−1(n) I(Him)(n) O(Him)(n)

B(Him+1)(n)

θ (Pr. 2.2.5)

ζ (Pr. 2.2.7)

θ (Pr. 2.2.6)

(2.2.8)

is a diagram of poset embeddings or isomorphisms.

Figure 2.4 gives an example of the poset isomorphisms or embeddings described bythe statement of Theorem 2.2.8.
PROPOSITION 2.2.9. For any m > 1, #B(Him)(0) = 1 and, for any n > 1,

#B(Him)(n) = tcatm−1(n). (2.2.9)
PROOF. By Proposition 2.2.4, the setB(Him)(n) contains all m-cliffs u of size n satisfying

u1 < · · · < un and for any i ∈ [2, n], ui < m(i). By setting m′ := m− 1, this set is in one-to-one correspondence with the set of all m′-cliffs v of size n satisfying vi−1 6 vi < m′(i).A possible bijection between these two sets sends any u ∈ B(Him)(n) to the m′-cliff v ofthe same size such that for any i ∈ [n], vi = ui − i+ 1. We have already seen in the proofof Proposition 2.1.9 that these sets are in one-to-one correspondence with (m − 1)-Dyckpaths which cannot be written as a nontrivial concatenation of two (m − 1)-Dyck paths.Therefore, the statement of the proposition follows. �

PROPOSITION 2.2.10. For any m > 0 and n > 1, the map ρ : max4 Avm(n)→ Him(n−1)
such that any u ∈ max4 Avm(n), ρ(u) is the prefix of size n − 1 of e−1Him (u), is a bijection.
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FIGURE 2.4. From the top to bottom and left to right, here are the posets Hi2(3), Hi3(3),Hi3(3), and Hi4(3). All these posets contain Hi2(3) as subposet by restricting on input-wings,output-wings, or butterflies.

PROOF. First, since Him is by Proposition 2.2.1 closed by prefix, by Proposition 1.3.10,
eHim is an injective map. This implies that the map ρ, defined by considering the inverseof eHim is a well-defined map. Let ρ′ : Him(n − 1) → max4 Avm(n) be the map definedfor any v ∈ Him(n − 1) by ρ′(v) := eHim (va) where a := m(n − 1). As pointed out before,
u ∈ max4 Avm(n) if and only if ω(u) = m(n − 1). This implies that ρ′(v) belongs tomax4 Avm(n). Moreover, due to the respective definitions of ρ and ρ′, both ρ ◦ ρ′ and ρ′ ◦ ρare identity maps. Therefore, ρ is a bijection. �

PROPOSITION 2.2.11. For any m > 1 and n > 1, the set J(Him(n)) contains all m-hills
u such that u = 0k an−k such that k ∈ [n − 1] and a ∈ [km].

PROPOSITION 2.2.12. For any m > 0 and n > 0, the map eHim is a bijection between
J(Him(n)) and J(Avm(n)).

PROOF. This is a straightforward verification using the descriptions of join-irreducibleelements of Him(n) and Avm(n) brought by Propositions 2.2.11 and 2.1.10. �
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By Proposition 2.2.11 (or also by Propositions 2.1.10 and 2.2.12), the number of join-irreducibles elements of Him(n) satisfies, for any m > 1 and n > 1,

#J(Him(n)) = m
(
n2
)
. (2.2.10)

Since by Proposition 2.2.3, Him(n) is constructible by interval doubling, this is also thenumber of its meet-irreducible elements [GW16].
2.2.3. Cubic realization. The map θ introduced by Proposition 2.2.6 is used here todescribe the cells of maximal dimension of the cubic realization of Him(n), m > 1, n > 0.
PROPOSITION 2.2.13. For any m > 1, n > 0, and u ∈ I(Him)(n),

(i) the m-hill θ(u) is cell-compatible with the m-hill u,
(ii) the cell 〈θ(u), u〉 is pure,

(iii) all cells of {〈θ(u), u〉 : u ∈ I(Him)(n)} are pairwise disjoint.

PROOF. Due to the similarity between the maps θ and the map ζ introduced in the state-ment of Proposition 2.1.6, the proof here is very similar to the one of Proposition 2.1.11. �
As shown by Proposition 2.2.13, the cells of maximal dimension of the cubic realizationof Him(n) are all of the form 〈θ(u), u〉 where the u are input-wings of Him(n).
PROPOSITION 2.2.14. For any m > 1 and n > 0,

vol(C(Him(n))) = catm−1(n). (2.2.11)
PROOF. Proposition 2.2.13 describes all the cells of maximal dimension of C(Him(n))as cells 〈θ(u)〉 , u where u is an input-wing of Him(n). Since all these cells are pairwisedisjoint, the volume of C(Him(n)) expresses as (1.3.23). Moreover, observe that the volumeof each cell 〈θ(u), u〉 where u in an input-wing, is by definition of θ equal to 1. Therefore,vol(C(Him(n))) is equal to the number of input-wings of Him(n). The statement of theproposition follows now from Proposition 2.2.5. �

2.3. δ-canyon posets. We introduce here our last family of posets. They are definedon particular δ-cliffs called δ-canyons. As we shall see, under some conditions these posetsare lattices but not sublattices of δ-cliff lattices.
2.3.1. Objects. For any range map δ, let Caδ be the graded subset of Clδ containingall δ-cliffs such that ui−j 6 ui − j , for all i ∈ [|u|] and j ∈ [ui] satisfying i − j > 1. Anyelement of Caδ is a δ-canyon. For instance

Ca2(3) = {000, 010, 020, 001, 002, 012, 003, 013, 023, 004, 014, 024}. (2.3.1)
In particular, the 1-canyons are the (dual) Tamari diagrams seen in Section 1.1.5 ofChapter 1.
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As a larger example, the 2-cliff u := 020100459002301 is a 2-canyon. Indeed, bypicturing an m-canyon in the exact same way as Tamari diagrams, we can check theprevious condition. For instance, the previous u is drawn as

(2.3.2)

and one can observe that none of the dotted lines crosses a needle. Besides, if u is a δ-cliffof size n and i, j ∈ [n] are two indices such that i < j , one has the three following possibleconfigurations depending on the value α := uj − (j − i):
? If α < 0, then we say that i and j are independant in u (graphically, the diagonalof uj falls under the x-axis before reaching the segment of ui),
? If α ∈ [0, ui − 1], then we say that j is hinded by i in u (graphically, the diagonalof uj hits the segment of ui),
? If α > ui , then we say that j dominates i in u (graphically, the segment of ui isbelow or on the diagonal of uj ).By definition, a δ-cliff u is a δ-canyon if no index of u is hinded by another one.

PROPOSITION 2.3.1. For any range map δ, the graded set Caδ is
(i) closed by prefix,

(ii) is minimally extendable,
(iii) is maximally extendable if δ is increasing.

PROOF. Let u be a δ-canyon of size n > 0. Immediately from the definition of the
δ-canyons, it follows that u 0 is a δ-canyon of size n + 1, and that for any prefix u′ of u,
u′ is a δ-canyon. Therefore, Points (i) and (ii) check out. Let us now consider the δ-cliff
u′ := u δ(n + 1). If δ is increasing, for all j ∈ [n], un+1−j 6 un+1 − j . Therefore, u′ is a
δ-canyon. Therefore, (iii) holds. �Let us now introduce a series of definitions and lemmas in order to show that the setsCaδ(n) and Hiδ(n) are in one-to-one correspondence when δ is an increasing range map.For any δ-canyon u of size n, let d(u) be the δ-canyon obtained by changing for eachindex i ∈ [n] the letter ui into 0 if i is dominated by another index j ∈ [i + 1, n]. Forinstance, when δ = m with m = 2, d(020050012) = 000050002. Observe that u ∈ Caδ is anexuviae (see Section 1.3.4) if and only if d(u) = u.

LEMMA 2.3.2. For any range map δ and any δ-canyon u, FCaδ (u) = FCaδ (d(u)).
PROOF. Assume that u is of size n and set w := d(u). Assume that ua is a δ-canyonfor a letter a ∈ N. Then, the index n + 1 is hinded by no other index in ua. Since w
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is obtained by changing to 0 some letters of u, the index n + 1 remains hinded by noother index in wa. Therefore, wa is also a δ-canyon. Conversely, assume that wa is a
δ-canyon for a letter a ∈ N. Then, the index n + 1 is hinded by no other index in wa. Bycontradiction, assume that ua is not a δ-canyon. This implies that the index n+1 is hindedby an index i in ua. Let us take i maximal among all indices satisfying this property. Dueto the maximallity of i, i is dominated by no other index in u so that we have ui = wi.This implies that n+ 1 is hinded by i in wa, which contradicts our hypothesis. Therefore,
ua is a δ-canyon. �

LEMMA 2.3.3. Let δ be a range map a u be a δ-canyon of size n > 0. Then,FCaδ (u) = [0, δ(n + 1)] \ ⊔
i∈[n]d(u)i 6=0

[n + 1− i, n + d(u)i − i]. (2.3.3)
PROOF. Let w be a δ-canyon of size n and let w := d(u). For any letter a ∈ [0, δ(n+1)],the δ-cliff wa is a δ-canyon if and only if the index n + 1 is hinded by no index in wa.Now, for any i ∈ [n] such that wi 6= 0, the index i hinds the index n + 1 in wa if and onlyif a ∈ [n + 1− i, n +wi − i]. By definition of d, all indices of w are pairwise independent.Therefore, for any i, i′ ∈ [n] such that i 6= i′ and wi 6= 0 6= wi′ , the sets [n + 1− i, n +wi − i]and [n + 1− i′, n +wi′ − i′] are disjoint. Lemma 2.3.2 and the fact that d is an idempotentmap imply the stated formula. �

LEMMA 2.3.4. Let δ be a range map and u be a δ-canyon. Then,

ω(eCaδ (u)) = ω(d(u)). (2.3.4)
PROOF. This follows by induction on the size of u, by using the relation d(u) =

eCaδ (d(u)), and by using Lemma 2.3.2. �

PROPOSITION 2.3.5. For any increasing range map δ and any n > 0,

ECaδ (n) = Avδ(n). (2.3.5)
PROOF. First, since Caδ is by Proposition 2.3.1 closed by prefix, the Caδ-elevation mapand so the Caδ-elevation image are well-defined.By Lemmas 2.3.3 and 2.3.4, and since δ is increasing, for any δ-canyon u of size n > 0,one has #FCaδ (u) = 1 + δ(n + 1)− ω(eCaδ (u)). (2.3.6)Let us proceed by induction on n to prove that for any u ∈ Caδ(n), eCaδ (u) is a δ-avalanche. If n = 0, the property holds immediately. Let u = u′a be a δ-canyon of size

n + 1 where u′ ∈ Caδ(n) and a ∈ N. By induction hypothesis, eCaδ (u′) is a δ-avalanche.Therefore, in particular, ω(eCaδ (u′)) 6 δ(n). Moreover, by (2.3.6), we have
ω
(
eCaδ(u′a)) = ω

(
eCaδ(u′))+ #(FCaδ(u′) ∩ [0, a − 1])

6 ω
(
eCaδ(u′))+ 1 + δ(n + 1)− ω(eCaδ(u′))− 1= δ(n + 1), (2.3.7)

showing that u′a is a δ-canyon.
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Conversely, let us prove by induction on n that for any v ∈ Avδ(n), there exists a

δ-canyon u such that eCaδ (u) = v. If n = 0, the property holds immediately. Let v = v ′bbe a δ-avalanche of size n+1 where v ′ ∈ Avδ(n) and b ∈ N. By induction hypothesis, thereis u′ ∈ Caδ(n) such that eCaδ (u′) = v ′. Since v is a δ-avalanche, b 6 δ(n + 1)− ω(v ′). Now,by (2.3.6), since there are 1+δ(n+1)−ω(v ′) different letters a such that u′a is a δ-canyon,there is in particular a δ-canyon u = u′a such that eCaδ (u) = v. �

PROPOSITION 2.3.6. For any increasing range map δ and any n > 0, the map φ :Caδ(n)→ Hiδ(n) defined by
φ := e−1Hiδ ◦ eCaδ (2.3.8)

is a bijection.

PROOF. First, since δ is increasing, by Propositions 2.2.1 and 2.3.1, both Hiδ and Caδ areclosed by prefix. Therefore, the maps eHiδ and eCaδ are well-defined. By Proposition 1.3.10,the maps eCam and eHim are injective, and by Propositions 2.2.2 and 2.3.5, they both sharethe same image Avm(n). This implies that eCam is a bijection from Cam to Avm(n), andthat e−1Him is a well-defined map and is a bijection from Avm(n) to Him(n). Therefore, thestatement of the proposition follows. �

As a consequence of Proposition 2.3.6, for any m > 0, m-canyons are enumerated by
m-Fuss-Catalan numbers.2.3.2. Posets. For any n > 0, the subposet Caδ(n) is the δ-canyon poset of order n.Figure 2.5 shows the Hasse diagrams of some m-canyon posets. We have already seen
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0123(C) Ca1(4).
FIGURE 2.5. Hasse diagrams of some δ-canyon posets.

that the 1-canyons are the Tamari diagrams. Moreover, as we have seen in Section 1.2.4of Chapter 1, the set of these objects of size n is in one-to-one correspondence with theset of binary trees with n nodes. It is also known that the componentwise comparison ofTamari diagrams is the Tamari order (see Section 1.3.7 of Chapter 1). As for the severalgeneralizations of the Tamari posets evoked in Section 1.3.7 of Chapter 1, our δ-canyonposets can be seen as different generalizations of Tamari posets. For any m > 2, the
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m-canyon posets are not isomorphic to the m-Tamari posets. Moreover, we shall provein the sequel that for any increasing map δ, Caδ is a lattice. As already mentioned, Tamariposets have the nice property to be lattices [HT72], are also EL-shellable [BW97], and con-structible by interval doubling [Gey94]. The same properties hold for m-Tamari lattices,see respectively [BMFPR11] and [Müh15] for the first two ones. The last one is a conse-quence of the fact that m-Tamari lattices are intervals of the Tamari lattices [BMFPR12]and the fact that the property to be constructible by interval doubling is preserved for allsublattices of a lattice [Day79]. As we shall see here, the δ-canyon posets have the samethree properties.

PROPOSITION 2.3.7. For any increasing range map δ and n > 0, the poset Caδ(n) is
(i) straight,

(ii) coated,
(iii) nested,
(iv) EL-shellable,
(v) a meet semi-sublattice of Clδ(n),

(vi) a lattice,
(vii) constructible by interval doubling.PROOF. Point (iii) is immediate. Assume that u and v are two δ-canyons of size n suchthat u 4 v. Let k ∈ [n − 1] and consider the δ-cliff w := u1 . . . ukvk+1 . . . vn. Now, sincefor any i ∈ [k], wi = ui 6 vi , and for any i ∈ [k + 1, n], wi = vi > ui , the fact that u and

v are δ-caynons implies that for any i ∈ [n] and j ∈ [wi] such that i − j > 1, the inequality
wj > wi−j + j holds. Thus, w is an δ-canyon, so that (ii) holds. Now, by Lemma 1.3.1, (i)checks out, and by Theorem 1.3.2, (iv) also. Let u and v be two δ-canyons of size n andset w as the δ-cliff u∧ v. For all j ∈ [wi] such that i − j > 1, wi−j 6 wi − j . Indeed, either
wi−j = ui−j or wi−j = vi−j , and in the two cases wi−j 6 (u∧ v)i − j . For this reason, wis a δ-canyon. This shows (v). Besides, due to the fact that by Proposition 2.3.1, Caδ isclosed by prefix and is maximally extendable, Theorem 1.3.4 implies (vi). Point (vii) is aconsequence of Theorem 1.3.9 since (iii) holds and Caδ is closed by prefix. �One can observe that Cam(n) is not a join semi-sublattice of the lattice of δ-cliffs.Indeed, by setting u := 0124 and v := 0205, even if u and v are 2-canyons, u∨ v = 0225is not. By Proposition 2.3.7, the posets Cam(n) are lattices and Theorem 1.3.4 provides away to compute the join of two of their elements. For instance, in Ca1, one has00120∨Ca1 00201 = ⇑Ca1 (00120∨ 00201) = ⇑Ca1 (00221) = 00234, (2.3.9)and, in Ca2, one has0124∨Ca2 0205 = ⇑Ca2 (0124∨ 0205) = ⇑Ca2 (0225) = 0235. (2.3.10)These computations of the join of two elements are similar to the ones described in [Mar92](see also [Gey94]) for Tamari lattices.Besides, as pointed out by Proposition 2.3.7, when δ is an increasing range map, eachCaδ(n) is constructible by interval doubling. Figure 2.6 shows a sequence of intervalcontractions performed from Ca2(4) in order to obtain Ca2(3).
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FIGURE 2.6. A sequence of interval contractions from Ca2(4) to a poset isomorphic to Ca2(3).These interval contractions are poset derivations as introduced in Section 1.3.3. The markedintervals are the ones involved in the interval doubling operations.
PROPOSITION 2.3.8. For any m > 0,

(i) the graded set I(Cam) contains all the m-cliffs u satisfying ui < ui+1 for all
i ∈ [|u| − 1],

(ii) the graded set O(Cam) contains all the m-cliffs u satisfying, for all i ∈ [2, |u|],
ui < m(i), and, for all i ∈ [|u|], if ui 6= 0, then for all j ∈ [i − 2], ui−j < ui − j ,

(iii) the graded set B(Cam) contains all the m-cliffs u satisfying 1 6 ui < m(i) for
all i ∈ [2, |u|], and ui − ui−1 > 2 for all i ∈ [3, |u|].

Remark that, from the definition of m-canyons and the the description of I(Cam)brought by Proposition 2.3.8, for any u ∈ I(Cam), all m-canyons v such that u 4 v arealso input-wings of Cam. For this reason, for any n > 0, I(Cam)(n) is an order filter ofCam(n).
PROPOSITION 2.3.9. For any m > 1 and n > 0, the map θ : I(Cam)(n) → B(Cam+1)(n)

defined for any u ∈ I(Cam)(n) and i ∈ [n] by

θ(u)i := 1i 6=1(ui + i − 2) (2.3.11)
is a poset isomorphism.
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PROOF. It follows from Proposition 2.3.8 and its descriptions of the input-wings andbutterflies of Cam(n) and Cam+1(n) that θ is a well-defined map. Let θ′ : B(Cam+1)(n) →

I(Cam)(n) be the map defined for any u ∈ B(Cam+1)(n) and i ∈ [n] by θ′(u)i := 1i 6=1(ui − i + 2).It follows also from Proposition 2.3.8 that θ′ is a well-defined map. Now, since by definitionof θ′, both θ ◦ θ′ and θ′ ◦ θ are identity maps, θ is a bijection. Finally, the fact that θ is atranslation implies that θ is a poset embedding. �

PROPOSITION 2.3.10. For any m > 1 and n > 1, the set J(Cam(n)) contains all m-
canyons having exactly one letter different from 0.

By Proposition 2.3.10, the number of join-irreducibles elements of Cam(n) satisfies, forany m > 1 and n > 1, #J(Cam(n)) = m
(
n2
)
. (2.3.12)

Since by Proposition 2.3.7, Cam(n) is constructible by interval doubling, (2.3.12) is also thenumber of its meet-irreducible elements [GW16].2.3.3. Cubic realization. Let m > 1 and n > 0. For any output-wing u of Cam(n), wedefine ρ(u) as the m-canyon ⇑Cam (u′), where u′ is the m-cliff obtained by incrementing by 1all letters of u except the first one. For instance, the output-wing 01007 of Ca2(5) is sent by
ρ to the 2-canyon ⇑Ca2 (02118) = 02348. We call ρ(u) the left-to-right increasing of u. Thismap is not a poset embedding because, for m := 2 and n := 3, ρ(010) = 023 4 013 = ρ(002)but 010 and 002 are incomparable.

PROPOSITION 2.3.11. For any m > 1, n > 0, and u ∈ O(Cam)(n),
(i) the map ρ is a poset morphism and a bijection between O(Cam)(n) and I(Cam)(n),

(ii) the m-canyon u is cell-compatible with the m-canyon ρ(u),
(iii) the cell 〈u, ρ(u)〉 is pure,
(iv) all cells of {〈u, ρ(u)〉 : u ∈ O(Cam)(n)} are pairwise disjoint.

PROOF. Let us first prove that ρ is a well-defined map. By Proposition 2.3.8, since forall i ∈ [2, n], ui < m(i), the word u′ obtained by incrementing by 1 all its letters except thefirst one is an m-cliff. Moreover, since by Proposition 2.3.1, Cam is maximally extendable,
v := ⇑Cam (u′) is a well-defined m-canyon. Since by construction, for all i ∈ [2, n], vi 6= 0,each word obtained by replacing by 0 a letter vi in v is an m-canyon. Therefore, v covers
n − 1 elements of Cam(n). These elements are obtained by decreasing vi by some value,due to the fact that by Proposition 2.3.7, Cam is straight. For this reason, v is an input-wing,showing that ρ is a well-defined map from O(Cam)(n) to I(Cam)(n). Let us now define themap ρ′ : I(Cam)(n)→ O(Cam)(n) as follows. For any v ∈ I(Cam)(n), u := ρ′(v) is the m-cliffsatisfying ui = 1i 6=11ui−16ui−2(ui − 1) for any i ∈ [n]. It is straightforward to prove that ρ′ isa well-defined map. Moreover, by induction on n > 0, one can prove that both ρ ◦ ρ′ and
ρ′ ◦ ρ are identity maps. This establishes (i).Let v be an m-cliff satisfying vi ∈ {ui, ρ(u)i} for any i ∈ [n]. Since ρ′ is the inversemap of ρ, this is equivalent to the fact that vi ∈ {ρ′(w)i, wi} for all i ∈ [n], where w is theinput-wing ρ(u) of Cam(n). Therefore, by definition of ρ′, v1 = 0 and vi ∈ {0, wi − 1} for
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any i ∈ [2, n]. The fact that w is an input-wing implies, by Proposition 2.3.8, that ui < ui+1for all i ∈ [n − 1]. This implies that v is an m-canyon, so that (ii) checks out.Point (iii) follows directly from the definition of ρ: since ρ(u) is obtained by increment-ing all the letters of u, except the first, in a minimal way so that the obtained m-cliff is an
m-canyon, there cannot be any m-canyon inside the cell 〈u, ρ(u)〉.Finally, assume that there are two input-wings v and w of Cam(n) such that there isa point x := (x1, . . . , xn) ∈ Rn such that x is inside both the cells 〈ρ′(v), v〉 and 〈ρ′(w), w〉.By contradiction, let us assume that v 6= w and let us set i ∈ [2, n] as the smallest positionsuch that vi 6= wi. Therefore, we have in particular

ρ′(v)i < xi < vi and ρ′(w) < xi < wi. (2.3.13)
Without loss of generality, we assume that vi < wi. Now, if vi−2 > vi−1, then ρ′(v)i = vi−1and ρ′(w)i = wi − 1. It follows from (2.3.13) that vi = wi. Otherwise, when vi − 2 < vi−1,we have ρ′(v)i = 0 and ρ′(w)i = wi − 1. It follows again, from (2.3.13), that vi = wi. Thiscontradicts our hypothesis and shows that v = w. Therefore, (iv) holds. �

This algorithm ρ brought by Proposition 2.3.11 describes the cells of maximal dimen-sion of the cubic realization of Cam(n). Figure 2.7 shows some examples of images ofoutput-wings of Cam(n) by ρ.
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FIGURE 2.7. The poset Ca3(3) wherein output-wings are marked. The arrows connect theseelements to their images by the bijection ρ.

Propositions 2.3.9 and 2.3.11 lead to the following diagram of posets wherein appearinput-wings, output-wings, and butterflies of canyon posets.
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THEOREM 2.3.12. For any m > 1 and n > 0,

I(Cam)(n)

O(Cam)(n)

B(Cam+1)(n)θ (Pr. 2.3.9)

ρ (Pr. 2.3.11) (2.3.14)

is a diagram of poset morphisms or isomorphisms.

Figure 2.8 gives an example of the poset morphisms or isomorphisms described bythe statement of Theorem 2.3.12.
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FIGURE 2.8. From the top to bottom and left to right, here are the posets Ca2(3), Ca2(3),and Ca3(3). The two last posets contain I(Hi1)(3) as subposets. There is a poset morphismbetween the output-wings of the first one and the input-wings of the second one.

PROPOSITION 2.3.13. For any m > 1 and n > 1,vol(C(Cam(n))) = vol(C(Clm(n))) = mn−1(n − 1)!. (2.3.15)
PROOF. Directly from the definition of m-canyons, one has that the m-canyon 0̄m(n)is cell-compatible with 1̄m(n). Therefore, 〈0̄m(n), 1̄m(n)〉 is a cell of C(Cam(n)). Since allothers cells of this cubic realization are contained in this one, one obtains that C(Cam(n))
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is an orthotope. This leads to the stated expression for the volume of the cubic realizationof Cam(n). �

2.4. Poset morphisms and other interactions. The purpose of this part is to statethe main links between the three posets Avδ , Hiδ , and Caδ when δ is an increasing rangemap. We shall also consider their subposets formed by their input-wings, output-wings,and butterflies elements in the particular case where δ = m for an m > 0.
2.4.1. Order extensions. Observe that the map eCaδ is not a poset morphism. Indeed,for instance in Ca1 one has 002 4 012 but eCa1 (002) = 002�4 011 = eCa1 (012). Nevertheless,by composing this map on the left with the inverse of the Hiδ-elevation map, we obtain aposet morphism, as stated by the next theorem.
LEMMA 2.4.1. Let δ be a range map, and u and v be two δ-canyons of size n. If

u 4 v, then ω(eCaδ (u)) 6 ω(eCaδ (v)).
PROOF. First, since by Proposition 2.3.1, Caδ is closed by prefix, eCaδ is well-defined.By considering the contrapositive of the statement of the lemma and by Lemma 2.3.4,we have to show that for any δ-canyons u and v of size n, ω(d(u)) > ω(d(v)) implies thatthere exists i ∈ [n] such that ui > vi. We proceed by induction on n. If n = 0, theproperty holds immediately. Assume now that u = u′a and v = v ′b are two δ-canyonsof size n + 1 such that ω(d(u′a)) > ω(d(v ′b)) where u′ and v ′ are δ-canyons of size nand a, b ∈ N. If ω(d(u′)) > ω(d(v ′)), then by induction hypothesis, there is i ∈ [n] such that

u′i > v ′i. Since ui = u′i and vi = v ′i , the property holds. Otherwise, ω(d(u′)) 6 ω(d(v ′)). Since
ω(d(u)) > ω(d(v)) and by definition of the map d, we necessarily have a > b. Thereforeone has un+1 > vn+1, showing that the property holds. �

THEOREM 2.4.2. For any increasing range map δ and any n > 0, the map e−1Hiδ ◦ eCaδ
from Caδ(n) to Hiδ(n) is a poset morphism.

PROOF. First of all, by Proposition 2.3.6, the map φ := e−1Hiδ ◦ eCaδ is well-defined. Bydefinition of the maps eHiδ and eCaδ , for any δ-canyon w of size n and any i ∈ [n], φ(w)i =
ω(eCaδ (w1 . . . wi)). Assume now that u and v are two δ-canyons of size n such that u 4 v.Then, for any i ∈ [n], u1 . . . ui 4 v1 . . . vi. By Lemma 2.4.1, this implies ω(eCaδ (u1 . . . ui)) 6
ω(eCaδ (v1 . . . vi)). Moreover, by the above remark, this implies φ(u)i 6 φ(v)i. Therefore,we have φ(u) 4 φ(v), establishing the statement of the theorem. �

Even if, by Proposition 2.3.6, e−1Hiδ ◦ eCaδ : Caδ(n) → Hiδ(n) is a bijection, this map isnot a poset isomorphism. This is the case since there does not exist for instance a posetisomorphism between Ca1(3) and Hi1(3) —their Hasse diagrams are not superimposable.Moreover, as a consequence of Theorem 2.4.2, for any n > 0, Hiδ(n) is an order extensionof Caδ(n). Furthermore, it is possible to show by induction on the length of the δ-canyonsand by using Lemma 2.3.3 that Caδ satisfies the prerequisites of Proposition 1.3.12. There-fore, Caδ(n) is an order extension of Avδ(n).
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To summarize the whole situation, the three families of Fuss-Catalan posets fit intothe chain

Avδ(n) Caδ(n) Hiδ(n)e−1Caδ e−1Hiδ ◦ eCaδ

e−1Hiδ
(2.4.1)

of posets for the order extension relation. This phenomenon is analogous to the onestating that Stanley lattices are order extensions of Tamari lattices, which in turn areorder extension of Kreweras lattices [Kre72] (see for instance [BB09]). Figure 2.9 givesan example of an instance of (2.4.1).
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FIGURE 2.9. From the left to the right, here are the posets Av3(3), Ca3(3), and Hi3(3). Theposet on the right is an order extension of the one at middle, which is itself an order extensionof the one at the left.
2.4.2. Isomorphisms between subposets.

PROPOSITION 2.4.3. For any m > 1 and n > 0, the map θ : Him−1(n) → I(Cam)(n)
defined for any u ∈ I(Cam)(n) and i ∈ [n] by

θ(u)i := ui + i − 1 (2.4.2)
is an isomorphism of posets.

PROOF. It follows from Proposition 2.3.8 and its description of the input-wings ofCam(n) that θ is a well-defined map. Let θ′ : I(Cam)(n) → Him−1(n) be the map definedfor any u ∈ I(Cam)(n) and i ∈ [n] by θ′(u)i := (ui − i + 1). It follows also from Proposi-tion 2.3.8 that θ′ is a well-defined map. Now, since by definition of θ′, both θ ◦ θ′ and θ′ ◦ θare identity maps, θ is a bijection. Finally, the fact that θ is a translation implies that θ is aposet embedding. �

Figure 2.10 gives an example of the poset isomorphism described by the statement ofProposition 2.4.3. A consequence of Proposition 2.4.3 is that, for any m > 2 and n > 0, the
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FIGURE 2.10. The subposet of Ca2(4) formed by its input-wings is isomorphic to Hi1(4).
image by θ−1 of Cam−1(n) ∩ I(Cam)(n) is Him−2(n). Indeed, the set Cam−1(n) ∩ I(Cam)(n)is nothing but the set I(Cam−1)(n).

THEOREM 2.4.4. For any m > 1 and n > 0,

Avm−1(n) I(Avm)(n)

O(Avm)(n) B(Avm+1)(n)Cam−1(n)O(Cam)(n)

I(Cam)(n)B(Cam+1)(n) Him−1(n) I(Him)(n) O(Him)(n)

B(Him+1)(n)

e−1Cam−1

e−1Him−1 ◦ eCam−1ρ (Pr. 2.3.11)

ζ (Pr. 2.1.6)

ζ (Pr. 2.2.7)

θ (Pr. 2.1.5)

θ (Pr. 2.1.7)

θ (Pr. 2.4.3)θ (Pr. 2.3.9) θ (Pr. 2.2.5) θ (Pr. 2.2.6)

(2.4.3)
is a diagram of poset morphisms, embeddings, or isomorphisms.

PROOF. This is a consequence of Theorems 2.1.8, 2.2.8, 2.3.12, and 2.4.2, and Proposi-tion 1.3.12. �
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3. Associative algebras of δ-cliffsThis section is devoted to endow the sets of δ-cliffs with algebraic structures, andwe can refer to Section 3 of Chapter 1 for the classical notions. We describe a gradedassociative algebra on δ-cliffs motivated by a connection with the δ-cliff posets. Indeed,the product of two δ-cliffs is a sum of δ-cliffs forming an interval of a δ-cliff poset. Thisproperty is shared by a lot of combinatorial and algebraic structures. For instance, thealgebra FQSym of permutations is related to the weak order [DHT02,AS05], the algebraPBT of binary trees is related to the Tamari order [LR02, HNT05], and the algebra Symof integer compositions is related to the hypercube [GKL+95].

3.1. Coalgebras and algebras. We introduce here a graded coalgebra structure onthe linear span of all δ-cliffs and then, by considering the dual structure, we obtain agraded algebra. When δ satisfies some properties, this gives an associative algebra.
From now, K is any field of characteristic zero and all the next algebraic structures inthe category of vector spaces have K as ground field. For any graded vector space V, wedenote by HV(t) the Hilbert series of V.
3.1.1. Coalgebras of δ-cliffs. For any range map δ, let Clδ be the linear span of all

δ-cliffs. This space is graded and decomposes as
Clδ =⊕

n>0 Clδ(n), (3.1.1)
where Clδ(n), n > 0, is the linear span of all δ-cliffs of size n. By definition, the set
{Fu : u ∈ Clδ} is a basis of Clδ , and we shall refer to it as the fundamental basis or asthe F-basis. Let also c : Clδ → K be the linear map defined by c(Fε) := 1 and by c(Fu) := 0for any u ∈ Clδ \ {ε}.For any n > 0, the δ-reduction map is the map rδ : Nn → Clδ(n) defined for any word
u ∈ Nn and any i ∈ [n] by (rδ(u))i := min{ui, δ(i)}. For instance, r1(212066) = 012045 andr2(212066) = 012066.

Let ∆ : Clδ → Clδ ⊗Clδ be the cobinary coproduct defined, for any w ∈ Clδ , by
∆(Fw) := ∑

u,v∈N∗
w=uv

Fu ⊗ Frδ (v), (3.1.2)
where N∗ denotes the set of all words on N. This coproduct is well-defined since any prefixof a δ-cliff is a δ-cliff and the image of a word on N by the δ-reduction map is by definitiona δ-cliff. For instance, for δ := 1221013ω , we have in Clδ ,∆(F1021) = Fε ⊗ F1021 + F1 ⊗ F021 + F10 ⊗ F11 + F102 ⊗ F1 + F1021 ⊗ Fε , (3.1.3)
and ∆(F1211010) = Fε ⊗ F1211010 + F1 ⊗ F111000 + F12 ⊗ F11010 + F121 ⊗ F1010+ F1211 ⊗ F010 + F12110 ⊗ F10 + F121101 ⊗ F0 + F1211010 ⊗ Fε . (3.1.4)
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THEOREM 3.1.1. Let δ be a range map. The space Clδ endowed with the coproduct∆ and the counit c is a counital graded coalgebra. Moreover, ∆ is coassociative if and

only if δ is valley-free.

PROOF. The first part of the statement is a direct consequence of the definition of ∆.To establish the second part, let us compute the two ways to apply twice the coproduct∆ on a basis element of Clδ . For any w ∈ Clδ , we have
(∆⊗ I)∆(Fw) = ∑

x,y,z∈N∗
w=xyz

Fx ⊗ Frδ (y) ⊗ Frδ (z) (3.1.5)
and

(I ⊗∆)∆(Fw) = ∑
u,v∈N∗
w=uv

∑
y ′,z′∈N∗rδ (v)=y ′z′

Fu ⊗ Fy ′ ⊗ Frδ (z′)

= ∑
x,y,z∈N∗
w=xyz

Fx ⊗ Frδ (y) ⊗ Frδ|y| (z),
(3.1.6)

where for any k > 0, δk is the range map satisfying δk(i) = min{δ(i), δ(k + i)} for any
i > 1. The second equality of (3.1.6) comes from the two following facts. First, for any
i ∈ [|y ′|], y ′i = rδ(v)i = rδ(y)i where y is the factor w|u|+1 . . . w|u|+|y ′| of w. Second, wehave for any j ∈ [|z′|], z′j = rδ(v)|y ′|+j = min{v|y ′|+j , δ(|y ′|+ j)}, so that for any i ∈ [|z′|],rδ(z′)i = min{z′i, δ(i)} = min{v|y ′|+i, δ(|y ′|+ i), δ(i)} = rδ|y′| (z)i, where z is the suffix oflength |z′| of w.Let us now prove that (3.1.5) and (3.1.6) are different if and only if δ has a valley.These two elements are different if and only if there exists a factorization w = xyz with
x, y, z ∈ N∗ such that rδ(z) 6= rδ|y| (z). This is equivalent to the fact there exists an index
i ∈ [|z|] such that rδ(z)i 6= rδ|y| (z)i. Since z is a suffix of w, there exists a j ∈ [|x|+ |y|+1, |w|]such that z = wjwj+1 . . . w|w|. Now, we have

rδ(z)i = min{wj+i−1, δ(i)} 6= min{wj+i−1, δ(|y|+ i), δ(i)} = rδ|y| (z)i. (3.1.7)
To have this difference, we necessarily have δ(|y|+ i) < zi and δ(|y|+ i) < δ(i). Now, since
w is in particular a δ-cliff, we have zi = wj+i−1 6 δ(j + i − 1). Therefore, we obtain

δ(i) > δ(|y|+ i) < δ(j + i − 1). (3.1.8)
Since j > |y| + 1, this leads to the fact that δ has a valley. This establishes that ∆ iscoassociative if and only δ is valley-free. �

3.1.2. Algebras of δ-cliffs. Let · : Clδ⊗Clδ → Clδ be the binary product defined as thedual of the coproduct ∆ introduced in Section 3.1.1, where the graded dual space Clδ∗ isidentified with Clδ . By duality, this product · satisfies, for any u, v ∈ Clδ ,
Fu ·Fv = ∑

w∈Clδ 〈Fu ⊗ Fv ,∆(Fw)〉 Fw , (3.1.9)
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where, for any w ∈ Clδ , 〈Fu ⊗ Fv ,∆(Fw)〉 is the coefficient of Fu ⊗ Fv in ∆(Fw). Therefore,Fu ·Fv = ∑

v ′∈r−1
δ (v)

uv ′∈Clδ
Fuv ′ , (3.1.10)

where r−1
δ (v) is the fiber of v under the map rδ . For instance, in Cl1,F00 ·F011 = F00011 + F00021 + F00031 + F00111 + F00121 + F00131 + F00211 + F00221 + F00231, (3.1.11)in Cl2, F00 ·F011 = F00011 + F00111 + F00211 + F00311 + F00411, (3.1.12)and in Clδ , where δ = 01312ω , we have bothF00 ·F011 = F00011 + F00111 + F00211 + F00311 (3.1.13)and F00 ·F013 = 0. (3.1.14)By Theorem 3.1.1, the product · admits the linear map 1 : K→ Clδ satisfying 1(1) = Fεas unit, and is graded. Moreover, again by this last theorem, · is associative if and only if

δ is valley-free. For instance, for δ := 101ω , δ has a valley and since
(F0 ·F0) ·F0 − F0 ·(F0 ·F0) = F000 − (F000 + F001) = −F001 6= 0, (3.1.15)the product · of Clδ is not associative.We now establish a link between this product · on the F-basis of Clδ and the posetsClδ(n), n > 0, introduced and studied in the previous sections. For this, let for any n1, n2 >0 the two binary operations

, : Clδ(n1)×Clδ(n2)→ Nn1+n2 (3.1.16)defined, for any u, v ∈ Clδ , by u v := uv and u v := uv ′ where v ′ is the word on N oflength |v| satisfying, for any i ∈ [|v|],
v ′i = {δ(|u|+ i) if vi = δ(i),

vi otherwise. (3.1.17)
For instance, for δ = 112334ω , 010 1021 = 0101021 and 010 1021 = 0103041. For δ =210ω , 21 11 = 2110. Observe that this last word is not a δ-cliff.

LEMMA 3.1.2. Let δ be a range map and u, v ∈ Clδ . If the word u v is a δ-cliff, then
u v also is.

PROOF. Assume that w := u v ∈ Clδ . Hence, for any i ∈ [|w|], wi 6 δ(i). In particular,this implies that for any i ∈ [|v|], vi = w|u|+i 6 δ(|u| + i). By definition of the operation ,the word w ′ := u v satisfies w|u|+i ∈ {vi, δ(|u|+ i)}. Moreover, the fact that u is a δ-cliffimplies that for any i ∈ [|u|], ui = w ′i 6 δ(i). Therefore, w ′ is a δ-cliff. �

LEMMA 3.1.3. A range map δ is weakly increasing if and only if for any u, v ∈ Clδ ,
u v is a δ-cliff.
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PROOF. Assume that δ is weakly increasing and let w := u v where u, v ∈ Clδ . Hence,since v is a δ-cliff, for any i ∈ [|v|], w|u|+i = vi 6 δ(i). Since δ is weakly increasing, wehave δ(i) 6 δ(|u| + i). This implies that w|u|+i 6 δ(|u| + i). Moreover, the fact that u is

δ-cliff implies that, for any i ∈ [|u|], wi = ui 6 δ(i). Therefore, u v is a δ-cliff.Conversely, assume that all w := u v are δ-cliffs for all u, v ∈ Clδ . Hence, since v is a
δ-cliff, for any i ∈ [|v|], vi 6 δ(i). Moreover, since w is a δ-cliff, vi = w|u|+i 6 δ(|u|+ i). Thisimplies that δ(i) 6 δ(|u|+ i). Since this last relation holds for all δ-cliffs u and v, and thatthere is at least one δ-cliff of any size, this leads to the fact that δ weakly increasing. �

Let χδ : N∗ → K be the map defined for any u ∈ N∗ by χδ(u) := 1u v∈Clδ .
THEOREM 3.1.4. For any range map δ, the product · of Clδ satisfies, for any u, v ∈ Clδ ,Fu ·Fv = χδ(u v) ∑

w∈[u v,u v] Fw (3.1.18)
where [u v, u v] is an interval of the poset Clδ(|u|+ |v|).

PROOF. Assume first that w := u v ∈ Clδ . By Lemma 3.1.2, u v ∈ Clδ . By (3.1.10), foranyw ′ ∈ Clδ , Fw ′ appears in Fu ·Fv if and only if there is v ′ ∈ r−1
δ (v) such that uv ′ = w ′. Thisimplies that rδ(v ′) = v and, by definition of the δ-reduction map, for any i ∈ [|v|], v ′i > vi.Moreover, since w ′ is a δ-cliff, we have for any i ∈ [|v|], v ′i = w ′|u|+i 6 δ(|u|+ i). Therefore,for all i ∈ [|v|], vi 6 v ′i 6 δ(|u|+ i). This is equivalent to the fact that u v 4 w ′ 4 u v andleads to the expression of the statement of theorem.Assume finally that w := u v /∈ Clδ . Since u and v are δ-cliffs, there exists an index

i ∈ [|v|] such that w|u|+i > δ(|u| + i). Since w|u|+i = vi , this implies that vi > δ(|u| + i).Observe that by definition of the δ-reduction map, for all v ′ ∈ r−1
δ (v) and j ∈ [|v|], v ′j > vj .Therefore, no uv ′ can be a δ-cliff. By inspecting Formula (3.1.10) for the product ·, weobtain that the sum is empty, so that Fu ·Fv = 0. �

For instance, for δ := 01120ω ,
F01 ·F010 = F01010 + F01020 + F01110 + F01120,and, since 01 011 = 01011 /∈ Clδ , F01 ·F011 = 0.

In particular when δ is weakly increasing, Lemma 3.1.3 and Theorem 3.1.4 state thatany product of two elements of the F-basis of Clδ is a sum of elements of the F-basisranging in an interval of a δ-cliff poset.
3.2. E and H-bases. By mimicking the construction of bases of several combinatorialspaces by using a particular partial order on their basis element (see for instance [DHT02,

HNT05]), let for any u ∈ Clδ , Eu := ∑
v∈Clδ
u4v

Fv (3.2.1)
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and Hu := ∑

v∈Clδ
v4u

Fv . (3.2.2)
By triangularity, the sets {Eu : u ∈ Clδ} and {Hu : u ∈ Clδ} are bases of Clδ , called respec-tively elementary basis and homogeneous basis, or respectively E-basis and H-basis.For instance, for δ := 1021ω ,E10010 = F10010 + F10011 + F10110 + F10111 + F10210 + F10211, (3.2.3)and H10010 = F10010 + F10000 + F00010 + F00000. (3.2.4)

PROPOSITION 3.2.1. For any range map δ, the product · of Clδ satisfies, for any
u, v ∈ Clδ , Eu ·Ev = χδ(u v) Eu v (3.2.5)PROOF. By (3.1.10), we haveEu ·Ev = ∑

u′,v ′∈Clδ
u4u′
v4v ′

∑
v ′′∈r−1

δ (v ′)
u′v ′′∈Clδ

Fu′v ′′
= ∑

u′∈Clδ
u4u′

∑
v ′′∈N∗
v4rδ (v ′′)
u′v ′′∈Clδ

Fu′v ′′
= ∑

u′∈Clδ
u4u′

∑
v ′′∈N|v|

∀i∈[|v|],vi6v ′′i
u′v ′′∈Clδ

Fu′v ′′ .
(3.2.6)

The equality between the third and the last member of (3.2.6) is a consequence of thefact that for any v ′′ ∈ N∗, one has v 4 rδ(v ′′) if and only if vi 6 v ′′i for all i ∈ [|v|]. Bydefinition of the E-basis provided by (3.2.1), the last member of (3.2.6) is equal to the statedformula. �PROPOSITION 3.2.2. For any range map δ, the product · of Clδ satisfies, for any
u, v ∈ Clδ , Hu ·Hv = Hrδ (u v). (3.2.7)PROOF. By (3.1.10), we haveHu ·Hv = ∑

u′,v ′∈Clδ
u′4u
v ′4v

∑
v ′′∈r−1

δ (v ′)
u′v ′′∈Clδ

Fu′v ′′
= ∑

u′∈Clδ
u′4u

∑
v ′′∈N∗rδ (v ′′)4v

u′v ′′∈Clδ
Fu′v ′′

= ∑
u′∈Clδ
u′4u

∑
v ′′∈N|v|

∀i∈[|v|],vi<δ(i)Ñv ′′i 6vi
u′v ′′∈Clδ

Fu′v ′′ .
(3.2.8)
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The equality between the third and the last member of (3.2.8) is a consequence of the factthat for any v ′′ ∈ N∗, one has rδ(v ′′) 4 v if and only if for all i ∈ [|v|], vi < δ(i) implies
v ′′i 6 vi. By definition of the H-basis provided by (3.2.2), and since Frδ (u v) is the elementwith the greatest index appearing in the last member of (3.2.8), this expression is equal tothe stated formula. �

It can be shown that Cl1 is free by reasoning on the E-basis. A consequence of thefreeness of Cl1 is that Cl1 is isomorphic as a unital associative algebra to FQSym [MR95,
DHT02], an associative algebra on the linear span of all permutations. This follows fromthe fact that FQSym is also free as a unital associative algebra and that its Hilbert series isthe same as the one of Cl1. Moreover, in [NT14], the authors construct some associativealgebras mFQSym as generalizations of FQSym whose bases are indexed by objects beinggeneralizations of permutations. The algebras Clm, m > 0, can therefore be seen as othergeneralizations of FQSym, not isomorphic to mFQSym when m > 2.

3.3. Quotient algebras. This last section of this work provides an answer to the prob-lem set out in the introduction. This question concerns the possibility of constructing ahierarchy of substructures of Clδ similar to that of FQSym. For this, we consider quo-tients of Clδ obtained by considering a graded subset S of Clδ and by equating the basiselements Fu with 0 whenever u /∈ S. As we shall see, this is possible only under somecombinatorial conditions on S. We describe the products of these quotient algebras andgive a sufficient condition for the fact that it can be expressed by interval of the poset
S(n) for a certain n > 0. We end this part by studying the quotients of Clm obtained from
m-hills and m-canyons.3.3.1. Quotient space. Let δ be a range map. Given a graded subset S of Clδ , let ClSbe the quotient space of Clδ defined by

ClS := Clδ/VS (3.3.1)such that VS is the linear span of the set
{Fu : u ∈ Clδ \ S}. (3.3.2)By definition, the set {Fu : u ∈ S} is a basis of ClS.Let us introduce here an important combinatorial condition for the sequel on S. Wesay thatS is closed by suffix reduction if for any u ∈ S, for all suffixes u′ of u, rδ(u′) ∈ S.

PROPOSITION 3.3.1. Let δ be a valley-free range map and S be a graded subset ofClδ . If S is closed by prefix and is closed by suffix reduction, then ClS is a quotient
algebra of the unital associative algebra (Clδ, ·,1).

PROOF. Notice first that, since δ is valley-free, Clδ is by Theorem 3.1.1 a well-definedunital associative algebra. We have to prove that VS is an associative algebra ideal of ClS.For this, let Fu ∈ VS and Fv ∈ ClS. Let us look at Expression (3.1.10) for computing theproduct of Clδ . Assume that there is a cliff uv ′ ∈ S such that Fuv ′ appears in Fu ·Fv . Then,since S is closed by prefix, u ∈ S, which contradicts our hypothesis. For this reason,
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Fu ·Fv belongs to VS. Moreover, let Fu ∈ ClS and Fv ∈ VS. Assume that there is a cliff
uv ′ ∈ S such that Fuv ′ appears in Fu ·Fv . Then, since S is closed by suffix reduction, one hasrδ(v ′) ∈ S. By (3.1.10), rδ(v ′) = v, leading to the fact that v ∈ S holds, and which contradictsour hypothesis. Therefore, Fu ·Fv belongs to VS. This establishes the statement of theproposition. �Notice that the graded subset Avδ is not closed by suffix reduction. For instance, even if00112 is an 1-avalanche, the 1-reduction of its suffix 112 is 012, which is not an 1-avalanche.Let us denote by θS : Clδ → ClS the canonical projection map. By definition, this mapsatisfies, for any u ∈ Clδ ,

θS(Fu) = 1u∈S Fu. (3.3.3)3.3.2. Product. We show here that under some conditions of S, the product in ClScan be described by using the poset structure of S. More precisely, we say that ClS hasthe interval condition if the support of any product Fu ·Fv , u, v ∈ S, is empty or is aninterval of a poset S(n), n > 0.
LEMMA 3.3.2. Let δ be a range map and S be a graded subset of Clδ such that for

any n > 0, S(n) is a meet (resp. join) semi-sublattice of Clδ(n). For any u, v ∈ S, if u v
is a δ-cliff, then the set [u v, u v] ∩ S (3.3.4)
admits at most one minimal (resp. maximal) element.PROOF. Assume that S(n) is a meet semi-sublattice of Clδ(n) and that u v ∈ Clδ . ByLemma 3.1.2, u v ∈ Clδ so that I := [u v, u v] is a well-defined interval of Clδ(n).Assume that there exist two δ-cliffs w and w ′ belonging to I ∩ S. Since S(n) is a meetsemi-sublattice of Clδ(n), by setting w ′′ := w ∧w ′, one has w ′′ ∈ S. Since u v is a lowerbound of both w and w ′, we necessarily have u v 4 w ′′ and w ′′ ∈ I . This shows that when
I ∩ S is nonempty, this set admits exactly one minimal element. The proof is analogousfor the respective part of the statement of the proposition. �When for any n > 0, S(n) is a lattice, we denote by ∧S (resp. ∨S) its meet (resp.join) operation. In this case, S is meet-stable (resp. join-stable) if, for any n > 0 and any
u, v ∈ S(n), the relation ui = vi for an i ∈ [n] implies that the i-th letter of u∧S v (resp.
u∨S v) is equal to ui.

LEMMA 3.3.3. Let δ be a range map and S be a closed by prefix, maximally extend-
able, and join-stable graded subset of Clδ . For any u, v ∈ S such u v is a δ-cliff, the
set [u v, u v] ∩ S (3.3.5)
admits at most one maximal element.PROOF. Assume that u v ∈ Clδ . By Lemma 3.1.2, u v ∈ Clδ so that I := [u v, u v] isa well-defined interval of δ-cliff poset. Assume that there exist two δ-cliffs w and w ′ belong-ing to I ∩ S. It follows from the hypotheses on S of the statement that, by Theorem 1.3.4,the operation ∨S is the join operation of the posets S(n), n > 0 (see Section 1.3.2). First,
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since w 4 u v and w ′ 4 u v, we have w ∨w ′ 4 u v. Moreover, by definition of the
∨S operation, w ′′ := w ∨Sw ′ is obtained by incrementing by some values some letters of
w ∨w ′. Now, observe that due to the definitions of the operations and , w and w ′ writerespectively as w = ur and w ′ = ur′ where r and r′ are some words on N. Moreover, ifthere is an index i ∈ [|r|] such that ri 6= r′i , then vi = δ(i) and (u v)|u|+i = δ(|u|+ i). This,the definition of the ∨S operation, and the fact that S is join-stable imply that w ′′ 4 u v.Therefore, w ′′ ∈ I ∩S. This shows that when I ∩S is nonempty, this set admits exactly onemaximal element. �

THEOREM 3.3.4. Let δ be a valley-free range map and S be a graded subset of Clδ
closed by prefix and by suffix reduction. If at least one the following conditions is
satisfied:

(i) for any n > 0, all posets S(n) are sublattices of Clδ(n),
(ii) for any n > 0, all posets S(n) are meet semi-sublattices of Clδ(n), maximally

extendable, and join-stable,
then ClS has the interval condition.

PROOF. First, by Proposition 3.3.1, ClS is a well-defined unital associative algebra quo-tient of Clδ . Now, the product Fu ·Fv in ClS can be computed as the image by θS of theproduct of the same inputs in Clδ . By Theorem 3.1.4, this product is equal to zero orits support I is an interval of a δ-cliff poset. By construction of ClS, the support of theproduct Fu ·Fv in ClS is equal to I ′ := I ∩ S. If (i) holds, then by Lemma 3.3.2, I ′ admitsboth a minimal and a maximal element. If (ii) holds, then by Lemma 3.3.2, I ′ admits aminimal element, and by Lemma 3.3.3, S′ admits a maximal element. In both cases, I ′ isan interval of a poset S(n), n > 0. �

3.3.3. Examples: two Fuss-Catalan associative algebras. We define and study theassociative algebras related to the m-hill posets and to the m-canyon posets.
Hill associative algebras. For anym > 0, let Him be the quotient ClHim . This quotient iswell-defined due to the fact that Him satisfies the conditions of Proposition 3.3.1. Moreover,by Proposition 2.2.1 and Point (i) of Theorem 3.3.4, Him has the interval condition. Forinstance, one has in Hi1,

F01 ·F01 = F0111 + F0112 + F0113 + F0122 + F0123, (3.3.6a)
F01 ·F00 = 0, (3.3.6b)

F001 ·F0122 = F0011122 + F0011222 + F0012222. (3.3.6c)In Hi2, one has F02 ·F023 = F02223 + F02233 + F02333, (3.3.7a)
F011 ·F01 = F01111, (3.3.7b)

F0015 ·F014 = 0. (3.3.7c)
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By computer exploration, minimal generating families of Hi1 and Hi2, respectively upto degree 5 and 4, are

F0, F00, F001,F011, F0002,F0011,F0012,F0022,F0112,F0122,F00003,F00013,F00023,F00033,F00112,F00113,F00122,F00123,F00133,F00222,F00223,F00233,F01113,F01122,F01123,F01133,F01223,F01233, (3.3.8)
and

F0, F00,F01, F001,F002,F003,F012,F013,F022,F023,F0004,F0005,F0012,F0013,F0014,F0015,F0022,F0023,F0024,F0025,F0033,F0034,F0035,F0044,F0045,F0114,F0115,F0122,F0123,F0124,F0125,F0133,F0134,F0135,F0144,F0145,F0223,F0224,F0225,F0234,F0235,F0244,F0245. (3.3.9)
Moreover, the sequences for the numbers of generators of Hi1 and Hi2, degree by degreebegin respectively by 0, 1, 1, 2, 6, 18, 59, 196, 669, (3.3.10)and 0, 1, 2, 7, 33, 168, 900, 4980. (3.3.11)We can observe that for any m > 1, Him is not free as unital associative algebra. Indeed,the quasi-inverse of the respective generating series of these elements is not the Hilbertseries of Him , which is expected when this algebra is free.

Canyon associative algebras. For any m > 0, let Cam be the quotient ClCam . Thisquotient is well-defined due to the fact that Cam satisfies the conditions of Proposition 3.3.1.Moreover, by Proposition 2.3.1, the fact that for any m > 0 and n > 0, Cam(n) is join-stable,and by Point (ii) of Theorem 3.3.4, Cam has the interval condition. For instance, one hasin Ca1, F0 ·F01 = F001 + F002 + F012, (3.3.12a)
F0 ·F002 = F0002 + F0003 + F0103, (3.3.12b)

F0012 ·F0103 = F00120103 + F00120106 + F00120107 + F00120406 + F00120407+ F00120507 + F00123406 + F00123407 + F00123507 + F00124507. (3.3.12c)
In Ca2, one has F01 ·F0014 = 0, (3.3.13a)

F01 ·F0013 = F010013. (3.3.13b)
F020 ·F02 = F02002 + F02005 + F02006 + F02007 + F02008 + F02012 + F02015 + F02016+ F02017 + F02018 + F02045 + F02046 + F02047 + F02048 + F02056 + F02057+ F02058 + F02067 + F02068.

(3.3.13c)
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By computer exploration, minimal generating families of Ca1 and Ca2, respectivelyup to respectively up to degree 5 and 4, are

F0, F00, F000,F001, F0000,F0001,F0002,F0010,F0012,F00000,F00001,F00002,F00003,F00010,F00012,F00013,F00020,F00023,F00100,F00101,F00103,F00120,F00123, (3.3.14)and
F0, F00,F01, F000,F002,F003,F010,F012,F013,F023,F0000,F0003,F0004,F0005,F0014,F0015,F0020,F0023,F0024,F0025,F0030,F0034,F0035,F0045,F0100,F0104,F0105,F0120,F0124,F0125,F0130,F0134,F0135,F0145,F0204,F0205,F0230,F0234,F0235,F0245.(3.3.15)The associative algebra Ca1 is the Loday-Ronco algebra [LR98], also known as PBT [HNT05].It is known that this associative algebra is free and that the dimension of its generatorsare a shifted version of Catalan numbers:0, 1, 1, 2, 5, 14, 42, 132, 429. (3.3.16)The sequence for the numbers of generators of Ca2 degree by degree begins by0, 1, 2, 7, 30, 149, 788, 4332. (3.3.17)We can observe that for any m > 2, Cam is not free as unital associative algebra. It follows,from the same argument as the previous section, that Cam is not free.





Perspectives

To conclude this thesis, we propose several possible directions of research, in thecontinuity of the presented work. Except for the last axis of research, the first threeconcern cubical lattices, meaning lattices admitting a cubical realization, notion introducedin this thesis.
Cubical lattices and polytopesTamari lattices are known to be the 1-skeletons of the associahedra, also called theStasheff polytopes. More precisely, the Hasse diagrams of the Tamari lattices are theedges and vertices of the associahedra.

Among the lattices presented in this work, two are, up to continuous deformation, the1-skeletons of known cell complexes. Thus, we saw in Chapter 2 that the posets of cubiccoordinates seem to be the 1-skeletons of the diagonal of the associahedra [Lod11,SU04,
MS06]. Likewise, in Chapter 3, the Hochschild lattices seem to be the 1-skeletons of theHochschild polytopes, also called the freehedron.

Study the links between cubical lattices and polytopes is the first axis of researchproposed. More precisely, it seems that if a lattice admits a cubical realization, it is possibleto build, under some rules to find, a cell complex. The reversal question can be alsoaddressed: for any polytope, can we find a cubical lattice which is this 1-skeleton?
In Chapter 4, we study several family of cubical lattices. A first approach consists infinding geometric realizations of these posets, giving cell complexes. Then, knowing thatthese lattices are related to each other, we can look for links between these realizations.For instance, by finding a certain truncations process to build the cell complexes associatedto the canyon lattices from the cell complexes associated to the cliff lattices.

The core label order of cubical latticesLattices which are constructible by interval doubling, or congruence uniform lattices,admit an alternative way to order their elements. This order is called the core label or-
der [Müh19] and was first considered under the term of shard intersection order byReading in the context of posets of regions of hyperplane arrangements [Rea11]. In thisquoted article, Reading proves that the core label order of the Tamari lattice is isomor-phic to the lattice of noncrossing partitions. Recently, Mühle shows in [Müh20] that theHochschild poset admits also a lattice as core label order. More than that, he shows that
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the core label order of the Hochschild lattice is isomorphic to a certain shuffle latticeintroduced by Greene [Gre88].

A first idea is to show that the poset of cubic coordinates CC(n), meaning the poset ofTamari intervals, is a congruence uniform lattice. A way to prove that is to find a sequenceof interval contractions from the lattice CC(n) to the Tamari lattice T2(n), with n > 0, asit is done to prove that subposets of the cliff posets are constructible by interval doublingin Chapter 4. For instance, a sequence of interval contractions from CC(3) to a posetisomorphic to the Tamari lattice T2(3) could be
(1̄, 2̄)

(0, 1̄) (1̄, 0)
(1̄, 1)

(1, 0)

(0, 2̄)

(0, 0)
(0, 1)

(2, 0)

(1, 2̄)
(1, 1̄)

(2, 1)

(2, 1̄)
→

(0, 1̄) (1̄, 0)
(1̄, 1)

(1, 0)
(0, 0)

(0, 1)
(2, 0)

(1, 1̄)

(2, 1)

(2, 1̄) →

(1̄, 0)
(1̄, 1)

(1, 0)
(0, 0)

(0, 1)
(2, 0)

(2, 1)

→ (1, 0)
(0, 0)

(0, 1)
(2, 0)

(2, 1)
' 100

000
010

200
210

,

where the marked intervals are the ones involved in the presumed interval doublingoperations.
If the posets of Tamari intervals are congruence uniform, we can then ask ourselveswhat is the core label order of this lattice, and see if there is a link with the lattice ofnoncrossing partitions.
Likewise, a study of the core label order of the canyon poset and hill poset introducedin Chapter 4 can be done.
Finally, we saw in Chapter 4 that under certain conditions, cubical lattices are con-structible by interval doubling. A natural question is to ask if any congruence uniformlattice is a cubical lattice.

Inherited properties for the k-chain latticesIt is known that if a poset L is a lattice, then the poset of intervals int(L) of thislattice is also a lattice. We recall this fact in Section 2.2 of Chapter 1. Another morerecent example of inherited properties for intervals is the trimness of the lattice [TW19].Conversely, intervals of extremal lattices are not usually again extremal lattices [Mar92].
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At the end of Chapter 2 we show that the Tamari interval lattices are EL-shellable,extending the result of Björner and Wachs [BW97] on the EL-shellability of the Tamarilattices. Likewise, in the previous perspective, we assume that the property of beingconstructible by interval doubling of the Tamari lattices is inherited by the Tamari intervallattices.The idea of this proposed axis of research is to see what are the properties whichremain valid for the lattices of intervals of lattices satisfying these same properties. Moregenerally, we can consider this question for the lattices of k-chains. We can thus ask forinstance about the shellability, the constructibility by interval doubling, and the existenceof a cubical realization.The question about the inherited of the cubical lattice property can be rephrased asfollows: given a cubical lattice, can we find a way to encode its intervals such that theobtained lattice is cubical? We give the answer for Tamari lattices in Chapter 2 with cubiccoordinates, but it seems to be complicated to generalize cubic coordinates for generaliza-tions of Tamari lattices. The question remains for the canyon lattices and the hill lattices,or for the k-chains of the Hochschild lattices.

Cliffs operads and generalizations of the Dendriform operadIn Chapter 4 we have seen that for m = 1, the canyon posets coincide with the Tamariposets. For m > 1, we obtain a generalization of the Tamari lattices, which is different fromthose already known, as the m-Tamari lattices [BPR12] or the µ-Tamari lattices [PRV17].One of our main motivations for this work is the definition of an associative algebraon the set of cliffs, where the product between two cliffs is the sum of cliffs forming aninterval in the cliff posets. This property is true for many other algebraic structures, suchas the Malvenuto-Reutenauer algebra for the weak order [DHT02, AS05], or the Loday-Ronco algebra for the Tamari order [HNT05]. Considering a certain quotient of cliffsalgebra, we define the algebra of canyons, which then becomes to the algebra of cliffswhat the algebra PBT is to the algebra FQSym. The pair of algebras thus obtained is ageneralization of the pair of algebras PBT and FQSym.The driving idea of this axis is to ask similar questions at the level of operads and notonly at the level of associative algebras. Indeed, the space of permutations (and thus thespace underlying FQSym) is equipped with an operad structure known as the associativeoperad [AL07]. In the work quoted, it is shown that under an appropriate changing ofbasis, the partial composition of this operad is described by a sum over an interval ofthe weak order. The dendriform operad has a similar property related to the Tamariorder [Lod10].A first objective is to endow the space of cliffs with an operad structure which wouldplay a role similar to the associative operad, but where the cliff poset is used. Then, inthe same way as previously presented, the idea is to build a quotient operad of the cliffoperad restricted to canyons. This would lead to an operad whose dimensions are givenby Fuss-Catalan number and which would offer a new generalisation of the dendriform
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operad. The comparaison between this generalization and those already existing [Gir16,
Ler07,Nov14] would then be possible.
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Cette thèse s’inscrit dans le domaine de la combinatoire algébrique et porte sur l’étude d’ordres
partiels admettant une réalisation géométrique particulière, appelée réalisation cubique.

Après avoir introduit les coordonnées cubiques, nous munissons l’ensemble de ces objets de l’ordre
de comparaison composante par composante, formant des treillis. Nous établissons ensuite un isomor-
phisme d’ordres partiels entre les treillis des coordonnées cubiques et les ordres partiels des intervalles
des treillis de Tamari. La réalisation cubique des coordonnées cubiques permet une étude géométrique
de ces treillis et également de montrer qu’ils sont épluchables.

Par ailleurs, nous considérons les treillis d’Hochschild qui sont des intervalles particuliers de l’en-
semble des chemins de Dyck munis de l’ordre dextre. Ces treillis admettent également une réalisation
cubique que nous construisons. Nous montrons entre autres que ces treillis sont épluchables, construc-
tibles par doublement d’intervalles et plusieurs propriétés combinatoires dont le dénombrement des
k-chaînes.

Finalement, nous construisons trois familles d’ordres partiels dont les ensembles sous-jacents sont
dénombrés par les nombres de Fuss-Catalan. Parmi elles, nous obtenons une généralisation des treillis
de Stanley et une généralisation des treillis de Tamari. Ces trois familles d’ordres partiels sont liées
par une relation d’extension d’ordre et partagent plusieurs propriétés. Deux algèbres associatives sont
ensuite construites comme quotients de généralisations de l’algèbre de Malvenuto-Reutenauer. Leurs
produits ont pour support les intervalles de nos analogues des treillis de Stanley et des treillis de
Tamari. En particulier, un de ces quotients est une généralisation de l’algèbre de Loday-Ronco.

Mots clés. Ordres partiels, treillis de Tamari, objets Fuss-Catalan, algèbres associatives, réalisa-
tions géométriques.
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