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Résumé

Cette these s'inscrit dans le domaine de la combinatoire algébrique et porte sur 'étude
d'ordres partiels admettant une réalisation géométrique particuliére, appelée réalisation
cubique.

Apres avoir introduit les coordonnées cubiques, nous munissons I'ensemble de ces
objets de 'ordre de comparaison composante par composante, formant des treillis. Nous
établissons ensuite un isomorphisme d’ordres partiels entre les treillis des coordonnées
cubiques et les ordres partiels des intervalles des treillis de Tamari. La réalisation cubique
des coordonnées cubiques permet une étude géométrique de ces treillis et également de
montrer qu’ils sont épluchables.

Par ailleurs, nous considérons les treillis de Hochschild qui sont des intervalles parti-
culiers de I'ensemble des chemins de Dyck munis de I'ordre dextre. Ces treillis admettent
également une réalisation cubique que nous construisons. Nous montrons entre autres
que ces treillis sont épluchables, constructibles par doublement d’intervalles et plusieurs
propriétés combinatoires dont le dénombrement des k-chaines.

Finalement, nous construisons trois familles d’ordres partiels dont les ensembles sous-
jacents sont dénombrés par les nombres de Fuss-Catalan. Parmi elles, nous obtenons une
généralisation des treillis de Stanley et une généralisation des treillis de Tamari. Ces trois
familles d’ordres partiels sont liées par une relation d’extension d’ordre et partagent plu-
sieurs propriétés. Deux algebres associatives sont ensuite construites comme quotients de
généralisations de 'algébre de Malvenuto-Reutenauer. Leurs produits ont pour support les
intervalles de nos analogues des treillis de Stanley et des treillis de Tamari. En particulier,
un de ces quotients est une généralisation de l'algebre de Loday-Ronco.

Mots clés. Ordres partiels, treillis de Tamari, objets Fuss-Catalan, algebres associa-
tives, réalisations géométriques.
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Abstract

This thesis is in the field of algebraic combinatorics and deals with the study of partial
orders admitting a particular geometric realization, called cubic realization.

After having introduced the cubic coordinates, we endow the set of these objects with
the componentwise order, forming lattices. Then we establish an isomorphism of partial
orders between the lattices of the cubic coordinates and the partial orders of the intervals
of the Tamari lattices. The cubic realization of the cubic coordinates allows a geometrical
study of these lattices and also to show that they are shellable.

Moreover, we consider the Hochschild lattices, which are particular intervals of the
set of Dyck paths endowed with the dexter order. These lattices also admit a cubic real-
ization that we construct. Among other things, we show that these lattices are shellable,
constructible by interval doubling, and several combinatorial properties such as the enu-
meration of k-chains.

Finally, we build three families of partial orders which underlying sets are enumerated
by the Fuss-Catalan numbers. Among these, one is a generalization of Stanley lattices and
another one is a generalization of Tamari lattices. These three families of partial orders
fit into a chain for the order extension relation and they share some properties. Two
associative algebras are then constructed as quotients of generalizations of the Malvenuto-
Reutenauer algebra. Their products describe intervals of our analogues of Stanley lattices
and Tamari lattices. In particular, one of these quotients is a generalization of the Loday-
Ronco algebra.

Key words. Partial orders, Tamari lattices, Fuss-Catalan objects, associative algebras,
geometric realizations.
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Introduction

Avant-propos

La combinatoire est un domaine fondamental a l'intersection des mathématiques et de
I'informatique. Elle se décline en plusieurs branches trés différentes [FS09, Sta12]. Un ob-
jectif commun a toutes ces branches est d’avoir la compréhension la plus précise possible
sur des familles d’objets, tels que des cartes, des arbres ou des permutations. En particu-
lier, dénombrer et établir des bijections entre différentes familles d’objets peut mener a cet
objectif. Une de ces branches est la combinatoire algébrique, domaine propice aux inter-
actions fortes entre la combinatoire et 'algebre. Un exemple bien connu est l'utilisation de
structures arborescentes pour représenter et manipuler des éléments dans des structures
algébriques libres. C’est dans ce domaine ol se mélangent combinatoire et algébre que
se situe cette thése.

Plus précisément, ce travail se focalise sur I'étude d’ensembles partiellement ordonnés
(appelés aussi posets). Ces structures apportent un formalisme qui permet de comparer
des objets combinatoires. L'étude de posets sur des familles d’objets combinatoires est moti-
vée entre autres pour les deux raisons suivantes. La premiere est que, selon le poset étudié,
de belles suites de nombres peuvent émerger, en considérant par exemple le nombre d’in-
tervalles [Cha06,BMFPR12] ou le nombre de chaines saturées. Un autre intérét de définir
des posets sur des objets combinatoires est qu'ils permettent de définir des changements
de bases dans certains espaces vectoriels [LR02, HNTO05]. Pour reprendre 'exemple des
structures arborescentes, il existe dans la littérature différentes structures d’ordres met-
tant en jeu les arbres binaires, comme par exemple l'ordre phagocyte [BP06], I'ordre
coupe-greffe [BP08] ou encore l'ordre de Tamari [Tam62]. De méme, il existe plusieurs
ordres partiels définis sur les permutations, objets tres classiques de la combinatoire. On
peut citer par exemple l'ordre faible droit et 'ordre de Bruhat. Munir des familles d’objets
combinatoires d'une structure d’ordre nous permet de les étudier algébriquement.

Certains de ces posets admettent une propriété bien particuliere, a savoir que pour
toute paire d’éléments comparables, il existe une borne supérieure et une borne inférieure
pour l'ordre associé. Ces posets sont appelés des treillis. C’est le cas par exemple de
I'ordre de Tamari. Il s'agit dun exemple tres important et connu dans la théorie des ordres
du fait de sa richesse combinatoire et algébrique. Cet ordre, défini sur I'ensemble des
arbres binaires, est donné par la cloture réflexive et transitive de 'opération de rotation
droite [HT72]. Cette opération fondamentale apparait aussi dans l'algorithmique des arbres
binaires de recherche [AVL62].
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Comme beaucoup d’objets combinatoires, les arbres binaires ont la propriété d’étre
dénombrés par les nombres de Catalan. Chaque ensemble regroupant les objets de taille
n > 0 a ainsi pour cardinal

n+1\n

caty(n) := - <2n>'

Les premiers nombres décrits par cette formule sont
1,1,2,5,14, 42,132, 429.

Ces nombres se retrouvent fréquemment en combinatoire, et possédent plusieurs géné-
ralisations, dont la plus connue est donnée par les nombres de Fuss-Catalan

1 mn + n
catm(n)i= gl o)

Cette formule compte par exemple les arbres (m + 1)-aires ou encore les m-chemins de
Dyck.

Les diagrammes de Hasse sont des outils pratiques et classiques pour dessiner les
ordres partiels. Il s'agit de graphes orientés reliant les éléments du poset en relation de
couverture, orientés de 'élément couvert vers I'élément couvrant pour I'ordre. Par conven-
tion, les arcs sont orientés implicitement du haut vers le bas. Par exemple, le cube, qui
est le treillis défini sur les sous-ensembles de 'ensemble A := {a,b,c} ordonnés pour
I'inclusion, a pour diagramme de Hasse

{a,b}  {a,c}  {bc}

N

Cette réalisation des posets permet de mettre en évidence les relations entre les éléments.
Par exemple, les éléments {a}, {b} et {c} ne sont pas comparables car il n'existe aucune
chemin respectant 'ordre qui les relie. A I'inverse, A est comparable avec tous les éléments
du cube. De méme, le treillis de Tamari pour les arbres de taille 3 a pour diagramme de
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Hasse

@;\
Z?“/

ou les noeuds des arbres sont dessinés par o et les feuilles par o.

Contexte et motivations

11 est toujours possible de dessiner le diagramme de Hasse d'un poset fini. Cependant,
nous nous intéressons dans ce travail a des posets dont le diagramme de Hasse posséde
une propriété spéciale, qui n’est pas toujours garantie. Cette propriété consiste a assimiler
les diagrammes de Hasse a un assemblage d’hypercubes, en plongeant la réalisation dans
I'espace. Par exemple, le diagramme de Hasse du treillis de Tamari pour les arbres de
taille 4 et sa réalisation cubique sont dessinés ci-dessous respectivement a gauche et a
droite :

Les posets que nous allons considérer ont la particularité d'étre tous définis sur un
ensemble de mots et d’étre munis d’'une relation de comparaison composante par compo-
sante. Cette particularité figure comme un des pré-requis pour que ces posets admettent
une réalisation cubique.

Chercher la réalisation cubique de posets présente divers avantages. D'une part, elle
permet d’avoir un nouveau point de vue sur des posets déja connus, et d’autre part, elle
apporte une nouvelle dimension géométrique, amenant de nouvelles questions sur le vo-
lume de la réalisation ou encore sur l'arrangement des complexes cellulaires formant
cette réalisation.

Cette these explore trois thémes dont l'intersection est le concept de réalisation cu-
bique. Un autre point commun, plus indirect, vient du fait que les familles de posets étudiées
sont liées au treillis de Tamari, que ce soit par l'introduction d'une généralisation avec des
objets appelés canyons, ou par I'étude d'une autre généralisation avec les intervalles du
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treillis de Tamari et d’'intervalles particuliers d'un sous-poset du treillis des intervalles de
Tamari.

L'objectif de ce travail est d'apporter, avec un point de vue qui se veut original offert
par la réalisation cubique, une étude de ces familles de posets particulieres. Un autre but
est aussi d'introduire de nouvelles familles de posets dénombrées par les nombres de
Fuss-Catalan, et généralisant le poset de Tamari et le poset de Stanley [Sta75, Knu04].
Ces résultats ont également des conséquences algébriques puisque nous apportons des
généralisations des algébres de Malvenuto-Reutenauer [MR95] et de Loday-Ronco [LR98],
dont les produits sont liés respectivement aux intervalles de l'ordre faible droit et aux
intervalles du treillis de Tamari.

Organisation et résultats

Quatre chapitres composent cette these. Le chapitre 1 forme le tronc commun des trois
derniers, en apportant toutes les définitions et propriétés utilisées par la suite. On y trouve
ainsi des notions classiques du domaine de la combinatoire et de l'algebre liées a I'étude
des ordres partiels. Ces notions sont illustrées par plusieurs exemples. Notamment, dans
la premiére partie sont présentés des treillis définis sur des arbres binaires, des chemins
de Dyck, ou encore des partitions non croisées. Plusieurs propriétés combinatoires et
géométriques sont ensuite données dans la partie suivante. Par exemple, nous verrons
la notion de distributivité et de semidistributivité pour un treillis et quelques propriétés
connexes, ou encore la construction d'un poset par doublement d'intervalles, en partant
du poset trivial [Day92]. Nous finirons ce chapitre avec des notions d’algébre liées aux
algébres de Hopf combinatoires. Puis nous présenterons deux importants exemples de
ces objets : 'algebre de Malvenuto-Reutenauer [MR95] définie sur les permutations, et
l'algebre de Loday-Ronco [LR98, HNTO05] définie sur les arbres binaires.

Dans le chapitre 2, nous introduisons dans un premier temps les coordonnées cu-
biques, qui sont des mots d’entiers codant les intervalles du treillis de Tamari. Puis, nous
montrerons que les coordonnées cubiques sont en bijection avec les intervalle-posets, eux
méme connus pour étre en bijection avec les intervalles de Tamari [CP15]. Plus qu'une bi-
jection, nous montrons que pour chaque degré, I'ensemble des coordonnées cubiques muni
de lI'ordre de comparaison composante par composante forme un treillis et est isomorphe
au treillis des intervalles de Tamari. Nous donnons ensuite une réalisation géométrique
naturelle du treillis des coordonnées cubiques, appelée réalisation cubique. Cette réalisa-
tion est obtenue en placant dans I'espace R¥, avec k > 0, toutes les coordonnées cubiques
de méme taille et en reliant les éléments qui sont en relation de couverture. Par exemple,
pour k = 2, la réalisation cubique du treillis des coordonnées cubiques de taille 3, et donc
du treillis des intervalles de Tamari pour la méme taille, se dessine dans le plan comme
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suit :

La réalisation cubique permet de mettre en évidence plusieurs propriétés des coordon-
nées cubiques et de leur treillis. Notamment, cette réalisation fait apparaitre une structure
cellulaire, nous permettant d’établir une bijection entre ces cellules et des coordonnées
cubiques spéciales, appelées synchrones, et ainsi d’obtenir une formule pour calculer le
volume de cette réalisation via ces éléments particuliers. Dans une derniére partie, nous
montrons que le treillis des coordonnées cubiques est épluchable, ce qui nous permet de
généraliser le résultat de Bjorner et Wachs [BW96, BW97] sur I'épluchabilité du treillis de
Tamari.

Le chapitre 3 est dédié a I'étude d’'un autre treillis, appelé treillis de Hochschild. Les
treillis de Hochschild sont des intervalles particuliers des semitreillis pour la borne in-
férieure définis sur l'ensemble des chemins de Dyck muni de l'ordre dextre. L'ordre
dextre et les treillis de Hochschild ont tous deux été récemment introduits par Chapo-
ton [Cha20]. Dans un premier temps, nous rappellerons la bijection établie dans l'article
de Chapoton entre les chemins de Dyck de ces intervalles particuliers et un ensemble
de mots définis sur l'alphabet {0,1,2}, appelés trimots. Sur I'ensemble des trimots, I'ordre
dextre se traduit par cette bijection comme I'ordre de comparaison composante par com-
posante. L'ensemble des trimots muni de cet ordre forme alors un treillis, appelé treillis
de Hochschild en référence au polytope de Hochschild dont le treillis de Hochschild est le
1-squelette [San09,San11]. Comme pour le treillis des coordonnées cubiques étudié dans
le chapitre 2, nous pouvons donner la réalisation cubique du treillis de Hochschild. L'étude
de cette réalisation nous permet de montrer que le treillis de Hochschild est épluchable
et constructible par doublement d’intervalles. Parallelement a cette étude géométrique,
nous montrons plusieurs propriétés combinatoires des ces treillis, comme par exemple le
dénombrement de ses k-chaines.

Dans le chapitre 4, nous introduisons les §-cliffs, une généralisation des permutations et
des arbres croissants dépendant d'une application de variation §. En munissant 'ensemble
de ces objets de I'ordre de comparaison composante par composante, nous définissons
un premier treillis. Puis, nous établissons plusieurs résultats généraux sur ses sous-posets.
Parmi ces résultats, nous donnons les conditions suffisantes pour que les posets soient
épluchables, soient des treillis avec un algorithme pour calculer la borne inférieure et supé-
rieure entre deux éléments, et soient constructibles par doublement d’intervalles. Certains
de ces sous-posets admettent des réalisations cubiques, et nous introduisons trois familles
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de ces sous-posets qui, pour une certaine application de variation &, ont des ensembles
sous-jacents dénombrés par les nombres de Fuss-Catalan. Un de ces sous-posets est une
généralisation des treillis de Stanley et un autre est une généralisation des treillis de Ta-
mari. Ces trois familles de posets sont reliées par une relation d’extension d’ordre et elles
partagent plusieurs propriétés. Finalement, de la méme fagon que le produit de l'algebre
de Malvenuto-Reutenauer forme les intervalles de l'ordre faible droit des permutations,
nous construisons dans une derniére partie des algebres dont les produits forment les in-
tervalles des treillis de 6-cliff. Nous donnons alors les conditions nécessaires et suffisantes
sur 6 pour avoir une algebre associative, ou libre. En utilisant les posets Fuss-Catalan
précédents, nous définissons des quotients de nos algébres de 6-cliffs. En particulier, un
quotient donne l'algébre de Loday-Ronco et on obtient de nouvelles généralisations de
cette structure.

Foreword

Combinatorics is a fundamental area at the intersection of mathematics and computer
science. It is divided into several very different branches [FS09, Stal12]. A common ob-
jective for all these branches is to reach the most precise understanding on families of
objects, such as maps, trees, or permutations. In particular, counting and establishing
bijections between different families of objects can lead to this objective. One of these
branches is algebraic combinatorics, a field that leads to strong interactions between com-
binatorics and algebra. A well-known example is the use of tree structures to represent
and manipulate elements in free algebraic structures. It is in this field where combinatorics
and algebra are mixed together that this thesis is situated.

More specifically, this work focuses on the study of partially ordered sets (also called
posets). These structures provide a formalism that allows the comparison of combinatorial
objects. The study of posets on families of combinatorial objects is motivated among
others by the following two reasons. The first is that, depending on the studied poset,
beautiful sequences of numbers can emerge, by considering for example the number
of intervals [Cha06, BMFPR12] or the number of saturated chains. Another interest
of defining posets on combinatorial objects is that they allow to define base changes in
certain vector spaces [LR02, HNT05]. To take the example of tree structures, in the
literature there are different order structures involving binary trees, such as the phagocyte
order [BP06], the pruning-grafting order [BP0S8], or the Tamari order [Tam62]. In the
same way, there are several partial orders defined on permutations, very classical objects
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in combinatorics. We can mention for example the right weak order and the Bruhat
order. Endowing families of combinatorial objects with an order structure allows us to
study them algebraically.

Some of these posets admit a very particular property, namely that for any pair of
comparable elements, there is a supremum and an infimum for the associated order.
These posets are called lattices. This is the case, for example, with the Tamari order.
This is a very important and well-known example in the order theory because of its
combinatorial and algebraic richness. This order, defined on the set of binary trees, is
given by the reflexive and transitive closure of the operation of right rotation [HT72]. This
fundamental operation also appears in the algorithmic of the binary search trees [AVL62].

Like many combinatorial objects, binary trees have the property of being enumerated
by Catalan numbers. Each set of objects of size n > 0 has thus for cardinality

caty(n) := : <2n>'

n+1\n

The first numbers described by this formula are
1,1,2,5,14, 42,132, 429.

These numbers are frequently found in combinatorics, and have several generalisations,
the most well-known of which is given by the Fuss-Catalan numbers

1 mn + n
catm(n):= o= )

This formula computes for example the (m + 1)-ary trees or the m-Dyck paths.

Hasse diagrams are practical and classical tools for drawing partial orders. They are
oriented graphs linking the elements of the poset in covering relation, oriented from the
covered element to the covering element for the order. By convention, the arrows are
implicitly oriented from top to bottom. For instance, the cube, which is the lattice defined
on the subsets of the set A := {a,b,c} ordered for inclusion, has as Hasse diagram

{a,b}  {a,c}  {bc}

N

This realization of the posets allows to highlight the relations between the elements. For
instance, the elements {a}, {b} and {c} are not comparable because there is no path
respecting the order that connects them. Conversely, A is comparable with all the elements
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of the cube. Likewise, the Tamari lattice for trees of size 3 has as Hasse diagram
| A

where the nodes of the trees are drawn by o and leaves by &o.

Context and motivations

It is always possible to draw the Hasse diagram of a finite poset. However, in this
work we are interested in posets whose Hasse diagram has a special property, which is
not always guaranteed. This property consists in assimilating the Hasse diagrams to an
assembly of hypercubes, by embedding the realization in the space. For instance, the
Hasse diagram of the Tamari lattice for trees of size 4 and its cubic realization are drawn
below on the left and right respectively:

The posets we are going to consider have the particularity of being all defined on a set
of words and of being endowed with a componentwise order. This particularity appears
as one of the prerequisites for these posets to admit a cubic realization.

Looking for the cubic realization of posets has various advantages. On the one hand,
it gives a new point of view on already known posets, and on the other hand, it brings a
new geometrical dimension, raising new questions about the volume of the realization or
about the arrangement of the cell complexes forming this realization.

This thesis explores three topics whose intersection is the concept of cubic realization.
Another common point, more indirect, comes from the fact that the families of posets
studied are related to the Tamari lattice, either by introducing a generalisation with objects
called canyons, or by studying another generalisation with the intervals of the Tamari
lattice and particular intervals of a subposet of the Tamari interval lattice.
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The aim of this work is to bring, with an original point of view offered by the cubic
realization, a study of these particular families of posets. Another goal is also to intro-
duce new families of posets enumerated by Fuss-Catalan numbers, and generalizing the
Tamari posets and the Stanley posets [Sta75, Knu04]. These results also have algebraic
consequences since we bring generalizations of the Malvenuto-Reutenauer [MR95] and
Loday-Ronco [LR98] algebras, whose products are respectively related to the intervals of
the right weak order and to the intervals of the Tamari lattice.

Organization and results

This thesis consists of four chapters. Chapter 1 forms the common core of the last
three, providing all the definitions and properties used thereafter. It contains classical
notions of combinatorics and algebra related to the study of partial orders. These notions
are illustrated by several examples. Notably, in the first part, lattices defined on binary
trees, Dyck paths, or non-crossing partitions are presented. Several combinatorial and
geometrical properties are then given in the following section. For instance, we will see
the notion of distributivity and semidistributivity for a lattice and some related properties,
or the construction of a poset by interval doubling, starting from the trivial poset [Day92].
We will end this chapter with notions of algebra related to combinatorial Hopf algebras.
Then we will present two important examples of these objects: the Malvenuto-Reutenauer
algebra [MR95] defined on permutations, and the Loday-Ronco algebra [LR98, HNTO05]
defined on binary trees.

In Chapter 2, we first introduce cubic coordinates, which are integer words encod-
ing the intervals of Tamari lattices. Then, we will show that the cubic coordinates are
in bijection with the interval-posets, themselves known to be in bijection with Tamari in-
tervals [CP15]. More than a bijection, we show that for each degree, the set of cubic
coordinates endowed with the componentwise order forms a lattice and is isomorphic to
the lattice of Tamari intervals. We then give a natural geometric realization of the lattice
of cubic coordinates, called cubic realization. This realization is obtained by placing in
the space R¥, with k > 0, all the cubic coordinates of the same size and connecting the
elements which are in covering relation. For instance, for k = 2, the cubic realization of
the lattice of cubic coordinates of size 3, and therefore of the lattice of Tamari intervals
for the same size, is shown in the plane as follows:
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The cubic realization allows to highlight several properties of the cubic coordinates and
their lattice. In particular, this realization reveals a cellular structure, allowing us to es-
tablish a bijection between these cells and special cubic coordinates, called synchronous,
and thus to obtain a formula to compute the volume of this realization via these particular
elements. In a final section, we show that the lattice of cubic coordinates is shellable, which
allows us to generalise the result of Bjorner and Wachs [BW96, BW97] on the shellability
of the Tamari lattice.

Chapter 3 is dedicated to the study of another lattice, called Hochschild lattice. The
Hochschild lattices are particular intervals of the meet-semilattice defined on the set of
Dyck paths endowed with the dexter order. The dexter order and the Hochschild lattice
were both recently introduced by Chapoton [ChaZ20]. First of all, we will recall the bijection
established in the article of Chapoton between the Dyck paths of these particular intervals
and a set of words defined on the alphabet {0, 1,2}, called triwords. For all the triwords, the
dexter order is translated by this bijection as the componentwise order. The set of triwords
endowed with this order then forms a lattice, called the Hochschild lattice in reference to
the Hochschild polytope, of which the Hochschild lattice is the 1-skeleton [San09,San11].
As for the lattice of cubic coordinates studied in Chapter 2, we can give the cubic realization
of the Hochschild lattice. The study of this realization allows us to show that the Hochschild
lattice can be shellable and constructible by interval doubling. Alongside this geometrical
study, we show several combinatorial properties of these lattices, such as for instance the
enumeration of its k-chains.

In Chapter 4, we introduce &-cliffs, a generalization of permutations and increasing
trees depending on a range map 6. By endowing the set of these objects with the compo-
nentwise order, we define a first lattice. Then, we establish several general results on its
subposets. Among these results, we give sufficient conditions for the posets to be shellable,
to be lattices with an algorithm to compute the meet and join between two elements, and
to be constructible by interval doubling. Some of these subposets admit cubic realizations,
and we introduce three families of these subposets which, for some range map 6, have
underlying sets enumerated by Fuss-Catalan numbers. One of these subposets is a gener-
alization of the Stanley lattices and another is a generalization of the Tamari lattices. These
three families of posets fit into a chain for the order extension relation and they share
several properties. Finally, in the same way that the product of Malvenuto-Reutenauer al-
gebra forms the intervals of the right weak order of permutations, we construct, in a last
part, algebras whose products form the intervals of the 6-cliff lattices. We then provide
necessary and sufficient conditions on § to have associative or free algebras. Using the
previous Fuss-Catalan posets, we define quotients of our algebras of §-cliffs. In particular,
a quotient gives the Loday-Ronco algebra and we get new generalizations of this structure.



CHAPTER 1

Elements of algebraic combinatorics and partial orders

In the three last chapters, we deal with several combinatorial objects and partial orders.
Chapter 2 and Chapter 3 each give a study of a specific lattice, and Chapter 4 provide a
study of a family of posets enumerated by Fuss-Catalan numbers. The aim of this first
chapter is to connect the last three chapters of this thesis with common definitions and
notions.

This chapter is organized as follows.

Section 1 sets the groundwork by recalling through examples several combinatorial
objects, partial orders, and links between them.

The concepts discussed in Section 2 are less classical than those seen in Section 1. We
recall several constructions on posets and lattices, such as the shellability on non-graded
posets [BW96] and the construction by interval doubling [Day92].

Section 3 is related to Chapter 4, and provides a better understanding of the moti-
vations for the latter chapter. Elementary definitions related to Hopf algebras are re-
called, and two important examples are presented: The Malvenuto-Reutenauer Hopf alge-
bra [MR95], and the Loday-Ronco Hopf algebra [LR98].

1. Algebraic and combinatorics objects

The aim of this section is to give the main definitions used in this thesis. Thus, we
start by presenting several combinatorial objects. We recall for example the definitions
of Dyck paths, binary trees, and permutations. All the sets of these objects are graded by
their size, and we can endow these sets with partial orders.

We continue by giving elementary definitions and properties related to posets and
lattices. Then, we shall see several examples of order extensions and poset isomorphisms.

1.1. Graded sets, words, and Catalan objects.
1.1.1. General notations and conventions. We begin by giving some notations and
basic definitions on words, which we shall use in all this thesis.

For all words u, we denote by u; the i-th letter of u. The size of a word is its number
of letters. For any word a and integer k, a® is the word a repeated k times. For all
integers i and j, [i,j] denotes the set {i,i +1,...,j}. For any integer i, [i] denotes the set
[1,i]. Unless otherwise stated, all words are defined on the alphabet N = {0,1,2,...}. The
empty word is denoted by €.

11
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If P is a statement, we denote by 1p the indicator function (equals to 1 if P holds and
0 otherwise).

Let n > 0 and w = ajas...a, be a word of size n. The prefixes of w are the n + 1
words €, a; ...a;, and the suffixes of w are the n + 1 words €, a;...a,, withi € [n]. A
word x is a factor of w if there is a prefix p and a suffix s such that w = pxs. A word y
is a subword of w if y can be obtained by deleting letters in w. For instance, radar is a
subword of abracadabra.

1.1.2. Graded sets. In this section, one may refer to [FS09].

A graded set (or combinatorial sef) is a set S endowed with a map |-|:S — N such
that for all n € N, the set {x € S : |x| = n} is finite.

A combinatorial object is an element of a graded set, and its size is its image by the

map | - |- The set of combinatorial objects of S of size n > 0 is denoted by S(n). Thus, a
graded set S decomposes as a disjoint union
S=||sm. (1.1.1)
n>0

A graded subset of S is a graded set S’ such that for all n > 0, S'(n) C S(n).

Any graded set S is associated to its generating series G(t), which is a series with
nonnegative integer coefficients, defined by
Gs(t):= Y #S(n)tn =Y ", (1.1.2)
n>0 xes

where #E means the cardinality of the set E.

Let us see some classic examples of graded sets. The first example is the empty
graded set § which has no object. Its generating series satisfies Gy(t) = 0. Then one has
two graded sets with a unique object: the elementary graded set & which has one object
€ of size 0, and the atomic graded set & which has one object of size 1. The generating
series of these two sets satisfy respectively Gg(t) = 1 and G(f) = t.

Another example of graded set is provided by the set of integers N, where the size of
an object is its value. The generating series of this set is

Gn(t) 14+ t+t2++.... (1.1.3)

1t
The graded set of words A* on the alphabet A := {a,b] contains all finite sequences
of elements of A. For instance, the elements of A* of size less or equal to 3 are

€,a,b,aa,ab,bb,aaa,aab,aba,baa,abb, bab,bba, bbb, (1.1.4)

and its generating series is

Gas(t) =1+ 2t + 42+ 85 +.... (1.1.5)

1
T 1-2t
The graded set of graphs contains all finite graphs G := (V, E), where V is a finite set
of elements called vertices, and E is a finite set of pairs of vertices called edges. Likewise,
the graded set of oriented graphs contains all finite oriented graphs G := (V, A), where V
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is a finite set of vertices and A is a finite set of oriented edges from a source vertex to a
target vertex, called arrows. The size of a graph (resp. oriented graph) is the cardinality
of V.

Let n € N and S; and Sy be two graded sets. The sum of graded sets is defined by
(S1 + Sg)(n) := Sy(n) U Sy(n), (1.1.6)

and the product is defined by

(51 X Sg)(n) = {(x1,x2) T X1 €S1,x0 €Sy, x1[ + ]IQ[ = n}. (1.1.7)
For the generating series of Sy + Sy and Sy x Sy, one has

§51+52(t) = §51(t) + §52(t), (1.1.8)

and

Gs,xs,(t) 1= T, (1) Ts, (1) (1.1.9)

For the next two examples, we can refer respectively to 1.1.4 and 1.2.2. The graded
set of Dyck paths Dy is defined by induction by

Dy:= 8+ {1} x Dy x {0} x Dy, (1.1.10)

where {1} is a graded set with one element of size 1, and {0} is a graded set with one
element of size 0. Expression (1.1.10) means that a Dyck path is either the empty word €
or a binary sequence such that there are as many 1 as 0, and in all prefixes the number
of 0 is not greater than the number of 1. The size of a Dyck path is its number of letter
1. For instance, the elements of Dy of size not greater than 3 are

€,10,1010, 1100, 101010, 110100, 110010, 101100, 111000, (1.1.11)

or in an equivalent way (see 1.1.4),
o0 M I

O/O/O\O\O’ M 1.1.12

Similarly, the graded set of binary trees T, is defined by induction by

’

Tpi= 8+ Ty x {0} x Ta, (1.1.13)

where {0} is a graded set with one element of size 1, called node. Expression (1.1.13)
means that a binary tree is either empty or two binary trees connected by a node. The
size of a binary tree is its number of nodes. For instance, the elements of Ty of size not
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greater than 3 are

~

Dyck paths and binary trees are two important examples of this thesis, which is why
we will recall the definitions of these objects more accurately in the following section.

(1.1.14)

1.1.3. Regular expressions and algebraic grammars. In order to describe and to
enumerate certain sets, we are led to use the regular expression notation [Sak09]. An
atomic regular expression can be either #§ which denotes the empty set of words, or a
where a is a letter which denotes the singleton {a}. To produce regular expressions, for
r and s two (atomic or not) regular expressions, one has three operations: rs is the set
of words that can be obtained by concatenating a word of r and a word of s, r + s is the
union of the two sets r and s, and r* denote the set of words r* for any k € N. The star
used for the last operation is known as the Kleene star. Besides, we use the notation r*
to denote the set of words rr*. Note that the expression € which denotes the set {e} is
obtained with §*.

For instance, to describe the set of words S; on the alphabet {a, b, c} such that either
the first letter is a or there is no letter a, only one letter b, and the first letter is ¢, then

S ={ue{ab,c}!: ucala+b+c) +cbc*}. (1.1.15)

From the formal language theory, we also use algebraic grammars (or formal context-
free grammars), which allows us to rewrite a description of a certain set through a set
of rules, when the regular expression is less obvious. An algebraic grammar G is a 4-
tuple (V, A, S, P), where V is a finite set of elements called variables, A is a finite set of
letters such that ANV = @, S is a element of V called axiom, and P is a finite set of pair
(X,%x) € V x (VU A)* called productions of the grammar.

For instance, to describe the set of words Sy on the alphabet {a,b,c} such that the
subword ab is prohibited, then S, is specified by the algebraic grammar

S/Q =€ + aS’g + CSIQ, (1.1.16)
SQ =€ + bSQ + CSQ + aSlg, (1.1.17)

where S’ is the set of words on {a,c}. The sets S's and S, are the variables, the set
{a,b,c} is the set A, and Sy is the axiom.

We obtain the generating series from an expression, then the generating function,
with the linear map u — z/%! for all words u of the expression.
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For instance, we can deduce from the regular expression (1.1.15) that the generating

function of S; is
t t2

Is,(t) = ¢ ST L (1.1.18)
Likewise, the generating series deduced from (1.1.16) and (1.1.17) are
Gg,(t) =1+ 2tGg,(t), (1.1.19)
Gs, () =1+ 2tGs,(t) + tGg,(t). (1.1.20)
Then, the generating function of S, is
G, (f) = ﬁ (1.1.21)

1.1.4. m-Dyck paths. An important example of combinatorial objects defined on the
alphabet {0,1} is provided by m-Dyck paths. We will encounter these objects in Chapter 3
and in Chapter 4.

For any n > 0 and m > 0, an m-Dyck path of size n is a path from (0, 0) to ((m +1)n, 0)
in N? staying above the x-axis, and consisting only in steps of the form (1, —1), called down
steps, or steps of the form (1, m), called up steps, with an up step as the first step. The
size of an m-Dyck path is its number of up steps. We denote by Dy,,(n) the set of all
m-Dyck paths of size n.

As for Dyck paths defined in Section 1.1.2, an m-Dyck path of size n can be seen as a
binary sequence of length n(1 + m), where the letter 1 encodes an up step and the letter
0 encodes a down step. Generally speaking, we shall use this convention instead.

For instance,

(1.1.22)
is the 1-Dyck path (or Dyck path for short) 11001011011000 of size 7, and
(1.1.23)

is the 2-Dyck path 100101000110000 of size 5.

Let us see further definitions about m-Dyck paths. Let d € Dy,,(n). A factor x is a
subpath of d if x is a m-Dyck path. The Dyck path d is primitive if for all Dyck paths
x and y such that d = xy, one has x = € or y = €. A factor 01 is called a valley, and
the height of a valley is the ordinate of its corresponding middle point in the path. More
generally, the height of a step is the ordinate of its lowest point.

It is a known fact that m-Dyck paths of size n are enumerated by m-Fuss-Catalan
numbers [DMA47]

(1.1.24)

caty(n) := ! <

mn +n
mn +1 ’

n
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The first numbers by sizes are

1,1,1,1,1,1,1,1, m =0, (1.1.25a)
1,1,2,5,14, 42,132, 429, m=1, (1.1.25Db)
1,1,3,12,55,273, 1428, 7752, m =2, (1.1.25¢)
1,1,4,22,140,969, 7084, 53820, m=3. (1.1.25d)

The second, third, and fourth sequences are respectively Sequences A000108, A001764%,
and A002293 of [Slo].

These numbers are important in the field of algebraic combinatorics, and they are
often encountered. In particular, in Chapter 4 we define three sets of objects enumerated
by these numbers.

1.1.5. Tamari diagrams. In Chapter 2 and Chapter 4, we deal with another important
object called Tamari diagram [HT72,Pal86]. Let us give the definition of a Tamari diagram,
as formulated in [BW97].

For any n > 0, a Tamari diagram is a word u of length n on the alphabet N which
satisfies the two following conditions:
i) 0<u;<n-—iforallie[n]
(ii) uij < u; —jforalli € [n]and j € [0, w).
The size of a Tamari diagram is its number of letters. For instance, the sets of Tamari
diagrams of size 2, 3 and 4 are
{00,10}, {000, 100, 010, 200,210},

1.1.26
{0000, 0010, 0100, 0200, 0210, 1000, 1010, 2000, 2100, 3000, 3010, 3100, 3200, 3210 }. ( )

In the literature, Tamari diagrams are also known as bracket vectors, objects inspired
by the right parenthesage introduced in [HT72] by Huang and Tamari. Furthermore,
Tamari diagrams are known to be enumerated by Catalan numbers

caty(n) = i . <2:> (1.1.27)

Note that Catalan numbers are the 1-Fuss-Catalan numbers (1.1.25b). Thus, the m-Fuss-
Catalan numbers are a natural generalisation of Catalan numbers.

A dual version of Tamari diagrams can be defined by considering the opposite of the
conditions (i) and (ii).
For any n > 0, a dual Tamari diagram is a word v of length n on the alphabet N
which satisfies the two following conditions:
i) 0<v;<i—1forallice[n],
(ii) vi.j < vi —jforallie[n]andje [0, v].
The size of a dual Tamari diagram is its number of letters. In other words, v = v;...v,
is a dual Tamari diagram if and only if v, ... v; is a Tamari diagram.

Note that the first condition of a Tamari diagram u and of a dual Tamari diagram v
of size n implies that u, = 0 and v; = 0.
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A graphical representation of a Tamari diagram u of size n by needles and diagonals
provides a simple way to check the condition (ii) of a Tamari diagram. For each position
i € [n], we draw a needle from the point (i — 1,0) to the point (i — 1, u;) in the Cartesian
plane. The condition (ii) says that one can draw lines of slope —1 passing through the
x-axis and the top of each needle without crossing any other needle. For instance, the
Tamari diagram 9021043100 is drawn by Figure 1.1. One can observe that none of its
diagonals, drawn as dotted lines, crosses a needle.

Likewise, a graphical representation can be given for the dual Tamari diagram v of
size n. One draws v in the same way as Tamari diagram, and the condition (ii) says that
one can draw lines of slope 1 passing through the x-axis and the top of each needle without
crossing any other needle. Figure 1.1 also depicts the dual Tamari diagram 0010040002.

_CTT Too

FIGURE 1.4. A Tamari diagram 9021043100 (on the left) and a dual Tamari diagram
0010040002 (on the right) of size 10.

We will deal with both notions in Chapter 2. A generalisation of Tamari diagrams
is provided in Chapter 4, where by agreement we will use the definition of dual Tamari
diagrams.

1.1.6. Permutations and Lehmer codes. Permutations are the departure point of the
Chapter 4, since this all work starts by giving a generalisation of the Lehmer codes of
permutations.

For any n > 0, a permutation o is a bijection from a finite set of cardinality n onto
itself. The size of a permutation is the cardinality of the underlying set. The set of
permutations of size n is denoted by &(n), and is enumerated by the factorial numbers n!.
We use the word notation to specify a permutation, which is the word u of size n such
that u; = o(i) for all i € [n].

For instance, let 0 be a permutation on 12345 such that (1) = 5, 6(2) = 1, 0(3) = 3,
0(4) = 2 and o(5) = 4, namely o is the word 51324.

Let us recall some classical operations on permutations. Let 0 € &(n) and v € &(m).
The over operation / is defined by

O/V:i=01...04(v +n)...(vy +n), (1.1.28)
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and the under operation \ is defined by
o\v:= (v +n)...(vyu +n)oy...0p. (1.1.29)
For instance, 2413 /312 = 2413756 and 2413\ 312 = 7562413.
The shifted shuffle product [ is defined by
oWwv:=0w((vi +n)...(vu +n)), (1.1.30)
where W is the shuffle of letters.

The standardization is the map std from the set of words to the set of permutations
that sends a word u to the unique permutation std(u) € &, obtained by numbering the
letters of u from the smallest to the greatest from 1 to |u|, and such that if there is more
than one then we consider the leftmost as the smaller. For instance, std(643827685) =

532817694.

For any n > 0, a Lehmer code (or Lehmer code of permutations) is a word u such
that 0 < u; < i —1 for alli € [n] [Leh60]. The size of a Lehmer code is its size as a
word. Note that the condition on Lehmer code is the same as for (dual) Tamari diagrams,
namely condition (i) seen in Section 1.1.5.

There is classical correspondence between permutations and Lehmer codes. Here,
we consider a slight variation of Lehmer codes, establishing a bijection between the set of
Lehmer codes of size n and the set of permutations of the same size. Given a permutation
o of size n, let u be the Lehmer code such that for any i € [n], u; is the number of indices
j > o7(i) such that o(j) < i. We denote by leh(o) the Lehmer code thus associated with
the permutation o. For instance, leh(436512) = 002323.

1.1.7. Non-crossing partitions and Dyck paths. For any n > 0, a partition of {1,...,n}
is non-crossing if whenever four elements 1 <i < j < k <l < n are such that i, k are in
the same class and j, [ are in the same class, then the two classes coincide. The size of
a non-crossing partition is the cardinality of the underlying set. The set of non-crossing
partitions of size n is denoted by NC(n), and his cardinality is cat;(n).

A well know bijection between non-crossing partitions and Dyck paths of same size
consists in associating to a non-crossing partition the Dyck path 10109 ...10% where
a; is the size of the class containing i if i is the maximal index in its class and a; = 0
otherwise. For instance, the non-crossing partition {{1,2}, {3}, {4,6,7}, {5}} corresponds
to the Dyck path 11001011011000 of size 7.

1.2. Trees and algorithms.

1.2.1. Trees and forests. Trees are intrinsically linked to the notion of recursion. This
is why they can be found in many scientific fields.

A rooted tree, or simply a free in our context, is defined recursively as a node together
with a (possibly empty) sequence of rooted trees. We shall use the standard terminology
about trees like root, edge, child, descendant, subtree, etc. The size of a tree is its number
of nodes. The nodes of the trees considered in this work are labeled by positive integers.
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We draw trees with the root at the top, where a node is depicted by © with its label inside
the circle.

We draw rooted trees with the root at the top and the leaves at the bottom, where a
node is depicted by O. Figure 1.2 shows a rooted tree of size 8.

FIGURE 1.2. A rooted tree of size 8.

A forest is a sequence of trees. From a forest f of n trees, it is always possible to
build a tree t by taking the root of each element of § and by linking all these roots to an
artificial node, such that this artificial node become the root of t. The size of the obtained
tree is one plus the sum of all sizes of trees in f.

1.2.2. Binary trees. A binary tree (or 2-tree) t is either a leaf or a node attached
through two edges to two binary trees, which are called respectively the left subfree and
the right subtree of t. Recall that the size of a binary tree is its number of nodes. We
denote by Ty(n) the set of binary trees of size n. The set of binary trees is enumerated
by Catalan numbers. We draw binary trees with the root at the top and the leaves at
the bottom, where a node is depicted by O and a leaf is depicted by o (see for instance
Figure 1.3).

We will also consider a generalization of binary trees which are the m-tree for m > 0.
A m-tree is either a leaf or a node attached though m edges to m m-trees. The set of
m-trees Ty, is known to be enumerated by (m — 1)-Fuss-Catalan numbers.

Let t € To(n). Each node of t is numbered recursively, starting with the left subtree,
then the root, and ending with the right subtree. An example is given in Figure 1.3. This
numbering then establishes a total order on the nodes of a binary tree called the infix
order. Afterwards, this numbering is used to refer to the nodes. The sequence of nodes
numbered from 1 to n forms the infix fraversal.

When the size n of t satisfies n > 1, the canopy of t is the word of size n — 1 on the
alphabet {0,1} built by assigning to each leaf of t a letter as follows. Any leaf oriented
to the left (resp. right) is labeled by O (resp. 1). The canopy of t is the word obtained by
reading from left to right the labels thus established, forgetting the first and the last one
(since there are always respectively O and 1). For instance, the binary tree in Figure 1.3
has for canopy the word 0110100. There is a link between infix order of a binary tree
and its canopy. For a node of index i for the infix order in a tree t, the right subtree of i
is a leaf oriented to the right if and only if the i-th letter of the canopy of t is 1. The left
subtree of i is a leaf oriented to the left if and only if the (i — 1)-th letter of the canopy of
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t is 0. The two direct implications can be proved by induction on the set of binary trees,
for instance, see Lemma 4.3. of [Gir12]. The converses are simply given by the definition
of the canopy.

FIGURE 1.3. A binary tree of size 8 and the numbering of its nodes following the infix order.

A fundamental operation in binary trees is the right rotation [Tam62]. Let k and [ be
the indices in infix order of two nodes of a binary tree t, such that the node k is left child
of the node I. Right rotation locally changes the tree t so that | becomes the right child
of k (see Figure 1.4). Equivalently, this means that ((a, b), ¢) becomes (a, (b, ¢)), where a, b
and ¢ are the subtrees shown in Figure 1.4.

FIGURE 1.4. Right rotation of edge (k, 1) in t (on the left), where a,b, and ¢ are any subtrees.

As for permutations, there is an under operation and a over operation for binary trees
due to Loday and Ronco [LR02]. Let t € Ty(n) and s € Ty(m). The over operation /
between t and s gives the binary tree t /s by replacing the leftmost leaf of s by the root of
t. Likewise, the under operation \ between t and s gives the binary tree t\s by replacing
the right most leaf of t by the root of s.

For instance, for t:= J{é)“ and s := ],6: , one has

t/s , (1.2.1)

I

t\s (1.2.2)
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1.2.3. Binary trees and permutations. A binary search tree is a binary tree where
nodes are labelled by integers, such that for each node x of label a, any node in the left
subtree of x has a label smaller than or equal as a, and any node in the right subtree of
x has a label greater than a.

Let t be a binary search tree of size n, and a be a letter. The algorithm of insertion,
denoted by bst, of the letter a in t consists in adding a node a such that, for each node
x of t, starting by the root, a is placed in the left subtree of x if a < x and in the right
subtree of x otherwise. Therefore, the size of the obtained tree is n + 1.

With the algorithm of insertion, one can build a binary search tree from a word of
same size as follows. Let u be a word of size n. The root is the letter u,, then we build
recursively the left subtree and the right subtree of u, by placing for each letter u; with
i € [n], the letter u;_4 on the left of u; if u;_y < u; and on the right of u; otherwise.
For instance, the binary tree see in Figure 1.3 is obtained by bst(52871634), which is a
permutation.

For any n > O, the algorithm of insertion bst provides a surjection from the set of
permutations G(n) to the set of binary trees Ty(n).

For instance, for n = 3,

213 (1.2.6)
123 (1.2.3)
231 12.7
132 d@h}é}@h (1.2.4) st (-2.7)
12 1.2.
12 = ﬁ&@h (1.2:5) 301 s (1.2.8)

Note that when we consider permutations, we can forget the labelling of nodes since
the only way to label binary search trees is an infix traversal. For instance, (1.2.4) and
(1.2.5) are the same binary tree.

1.2.4. Binary trees and Tamari diagrams. For any n > 0, the set of Tamari diagrams
of size n is in bijection with Ty(n). Indeed, one builds from a Tamari diagram u of size n
a binary tree s recursively as follows. If n = 0, s is defined as the leaf. Otherwise, let i be
the smallest position in u such that u; is the maximum allowed value, namely n —i. Then
51 = Uy...u;_1 and sg := U;,1 ... U, are also Tamari diagrams. One forms s by grafting
the binary trees obtained recursively by this process applied on s; and on s, to a new
node. Reciprocally, for each node of index i of the tree s, labeled with an infix transversal,
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FIGURE 1.6. A binary tree and the associated Dyck path of the same size.

the value of the i-th letter of the corresponding Tamari diagram is given by the number of
nodes in the right subtree of the node i. The complete demonstration is given in [Pal86].

In the case of dual Tamari diagrams, the construction of the binary tree t is also
recursive, except that it is the maximum position i in the dual Tamari diagram whose value
is the highest allowed on that section of the word that should be chosen first. Similarly
for the reciprocal, the procedure is identical, except that the value of the i-th letter in the
dual Tamari diagram is given by the number of nodes in the left subtree of the node i in
the tree t.

For instance, in Figure 1.3, the Tamari diagram is 10040210 and the dual Tamari
diagram is 00230100. Figure 1.5 depicts the corresponding binary tree of the Tamari
diagram 1003010.

1.2.5. Binary trees and Dyck paths. There are several bijections between binary trees
and Dyck paths of the same size. Let us describe one of them. We know that a binary
tree t is either a leaf or a node related to a left subtree t; and a right subtree t,, that is
t = (4, t). The bijection, denoted by ¢, is then defined as follows. If t is a leaf, then ¢(t) is
the empty word €, otherwise ¢(t) = ¢(t1)1d(t2)0. An example is given in Figure 1.6.

Reciprocally, for any n > 0, one can build the Tamari diagram, and so the binary tree,
from a Dyck path d of size n as follows. For all i € [n], the letter u; in u is the number of
up steps between the i-th up step and the first down step of same height at its right in d.
The word u is then a Tamari diagram, and the binary tree is obtained as seen in 1.2.4. For
instance, the Dyck path in Figure 1.6 corresponds to the Tamari diagram 1003010, which
corresponds to the tree on its left.

1.3. Posets and lattices.
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1.3.1. Elementary definitions. A partial order <o on a set & is a binary relation <¢
such that, for all x,y,z € &, this relation is
(i) reflexive: x <¢ x,
(ii) antisymmetric: if x <¢ y and y <¢ x, then x =y,
(iii) transitive: if x ¢ ¥ and y < z, then x < z.

A partially ordered set, commonly called poset, is a pair (9, <¢). When the context
is clear, we simply denote this pair by .

When two elements x and y of & satisfy x <¢ y, then we say that x and y are
comparable. Otherwise they are incomparable. A subposet of a poset & is a subset of &
endowed with the induced partial order.

Let x,y € & such that x <¢ y and x # y. The element y covers x, denoted by x <¢ y,
for the partial order <« if, for all z € P such that x <¢ z <¢ ¥y, either z = x or z = y.
The binary relation <¢ is called the covering relation of the poset . By a slight abuse
of notation, the set of elements (x, y) such that x <4 y is also denoted by <.

A maximal element of & is an element x such that if there isy € & such that x ¢ ¥y
then y = x. Likewise, a minimal element of & is an element y such that if there is x € &
such that x <¢ ¥y then x = y. A poset &P is bounded if it has a unique maximal element
and a unique minimal element for <.

Since a partial order is transitive, one can realize posets or lattices by knowing only
covering relations. The natural way to realize posets is to draw their Hasse diagrams, by
drawing a edge between all x and y in & such that (x,y) € <. For any (x,y) € <¢, we
choose the convention to represent x at the top and y at the bottom in the Hasse diagrams.
We will keep this convention for all realizations.

The dual of & is the set & endowed with <%, defined, for all x,y € ¢ such that x <¢ ¥,
by ¥y <& x. We say that & is self-dual if there is a poset isomorphism between ¢ and its
dual (see Section 1.4 for the definition of poset isomorphism).

Let x,y € &, the join between x and y, denoted by Vge(x,y) (or x Ve y), is defined by
Ve (x,y) :=ming,{z€P : x K¢ zand y ¢ z}. (1.3.1)

The meet between x and y, denoted by Ag(x,y) (or x Ag ), is defined by
Ag (x,y) :=maxg,{z€P : zgpx and z K¢ ¥ }. (1.3.2)

A poset @ is a join-semilattice if for all x,y € P, Vo(x,y) exists. Likewise, a poset P
is a meet-semilattice if for all x,y € P, Agp(x,y) exists.

A poset (£, <) is a lattice if £ is a join-semilattice and a meet-semilattice. A sublattice
of a lattice £ is a subset of £ that is a lattice for the meet and join operations of X£.

Our first example is the hypercube (or Boolean lattice) of dimension n > 0, which is
the lattice ¥C, on the set of the subsets of [n] ordered by set inclusion. Figure 1.7 depicts
on the left the lattice ¥(3 on A := {a,b,c}. On the right one has a poset % which is not
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a lattice, since there are two non comparable elements d and e such that b ¢ d and
c<¢pd,and b <¢ e and ¢ <X e.

ﬂ a

{a,b} {a,c} {b,c} ><
N N,

FIGURE 1.7. The Hasse diagrams of a lattice (on the left) and of a poset (on the right).

[¢]

X
X

e

An element x of a lattice £ is join-irreducible (resp. meet-irreducible) if x covers
(resp. is covered by) exactly one element in L. We denote by J(£) (resp. M(X)) the
set of join-irreducible (resp. meet-irreducible) elements of ;£. These notions are usually
considered specially for lattices but we can take the same definitions even when X is just
a poset.

For instance, in Figure 1.7 one has for the lattice £,

J(LL) = {{a}, {b}, {c}}, (1.3.3)
M(L) = {{a,b}, {a,c}, {b,c}}. (1.3.4)

1.3.2. Rank functions. Let & be a poset. A rank function rk is a function from & to
N such that rk(x) = 0 if and only if x is a minimal element of &, and rk(y) = rk(x) + 1 if
and only if x <@y for all x,y € . For all x € &, the value rk(x) is the rank of x. If &
admits a rank function then & is graded.

1.3.3. Order dimension. The order dimension [Tro92] of a poset & is the smallest
nonnegative integer k such that there exists a poset embedding of & into (Nk , -\<) where <
is the componentwise partial order (see Section 1.4 for the definition of embedding). For
example, it can be shown that the order dimension of ¥(, is n.

1.3.4. Degree polynomial. For any poset &, the degree polynomial of & is the poly-
nomial dg(x,y) € K[x, y] defined by

de(x,y) := Z xinou) goute(u), (1.3.5)

ue?®?

where for any u € P, ing(u) (resp. outep(u)) is the number of elements covered by (resp.
covering) u in . We define the specialization de(1, y) as the h-polynomial of .
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1234
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4321

FIGURE 1.8. Hasse diagrams of G(4) for <ye-

1.3.5. Right weak order on permutations. For any n > 0, let 0,v € &(n). We set
0 <ywe v if v is obtained from o by replacing one factor ab by ba with a < b. The right
weak order (or weak Bruhat order) <y is the reflexive and transitive closure of <ye,
which is the covering relation. The right weak order on permutations forms a lattice, also
known as the permutohedron. Figure 1.8 depicts the right weak order on permutations
for n = 4.

1.3.6. Lehmer code lattices. For any n > 0, let u and v be two Lehmer codes of the
same size n. We set u 5 v if u; < v; for all i € [n]. The relation < is a partial order called
the componentwise order, and the set of Lehmer codes endows with < is the Lehmer
code lattice [Leh60]. Moreover, u is covered by v, denoted u < v, if there is a unique
i € [n] such that u; < v;, and for all Lehmer codes w such that u < w < u, either w = u
or w = v. A study of these posets appears in [Den13].

The componentwise order is a natural order on words, and plays a very important
role in all the next chapters.

1.3.7. Tamari lattices. For any n > 0, let 5,t € To(n). We set s <4, t if t is obtained by
successively applying one or more right rotations in s. The set Ty(n) endows with <, is
the Tamari lattice of order n [HT72]. Moreover, s is covered by t, denoted by s <, t, if t
is obtained from s by performing one right rotation. Figure 1.9 shows the Tamari lattice
for n = 2 and for n = 3.

In the literature, the Tamari lattice is closely related to the associahedron, or the
Stasheff polytope after the work of Stasheff. More precisely, the Hasse diagram of the
Tamari lattice is the 1-skeleton of the associahedron.

As seen previously, the algorithm of insertion bst provides a surjection from &(n)
to Ty(n) for n > 0. This implies that the Tamari lattice can be obtained from the right
weak order on permutations [HNTO05]. More precisely, the Tamari order is the right weak
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FIGURE 1.9. Hasse diagrams of T2(2) and Ty(3).

order on 132-avoiding permutations, where 132-avoiding means that we have to remove
all permutations u such that u; < u; > ug for some i < j < k. Figure 1.10 depicts the
Tamari lattice of order 4, obtained from Figure 1.8.

A natural translation of the Tamari order is given by the bijection between binary
trees and Tamari diagrams seen in 1.2.4. With this bijection, the Tamari order can be
translated as the componentwise order on Tamari diagrams [Pal86].

Likewise, through the bijection between binary trees and Dyck paths seen in 1.2.5, the
Tamari order can also be defined on Dyck paths as follows. For any n > 0, letd,d’ € Dy(n)
such that d := pOxs where p is a prefix, s is a suffix, and x is primitive. We set d <, d’ if
d’ = px0s. The Tamari order on Dy(n) is then the reflexive and transitive closure of <,.

The Tamari posets admit a lot of generalizations, for instance through the so-called m-
Tamari posets [BPR12] defined on m-Dyck paths, where m > 0, and through the v-Tamari
posets [PRV17] where v is a binary word. In Chapter 4, we define another generalisation
of the Tamari lattice, based on a generalisation of Tamari diagrams.

1.3.8. Kreweras lattices. There is a natural order <y, on non-crossing partitions due
to Kreweras [Kre72]. For any n > 0, let p, g € NC(n). We set p <\, q if q is obtained from
p by merging two parts such that the condition to be a non-crossing partition is satisfied.
The Kreweras order <y, on NC(n) is then the reflexive and transitive closure of <p,.

The translation of the Kreweras order on Dyck paths given by the bijection seen
in 1.1.7 is also natural. For any n > 0O, let d,d’ € Dy(n) such that d := p10™xs where
p is a prefix, s is a suffix, x is a subpath, and m > 1. We set d <, d’ if d’ = p1x0™s.
The Kreweras order on Dy(n) is then the reflexive and transitive closure of <y,. See
Figure 1.11 for the Kreweras order on Dy(3).

1.3.9. Stanley lattices. For any n > 0, letd,d’ € Dy(n). We set d <« d’ if d stays below
d’. The set Dy(n) endows with the partial order <4 is the Stanley lattice [Sta75, Knu04].
Moreover, d is covered by d’ if d’ is obtained from d by replacing a factor 01 by a factor
10. See Figure 1.11 for the Stanley lattice on Dy(3).
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FIGURE 1.10. Tamari order on 132-avoiding permutations of size 4.
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FIGURE 1.44. From left to right, Hasse diagrams of the Stanley order, the dexter order, and
the Kreweras order on Dy(3).

1.3.10. Dexter order. The dexter order, introduced in [ChaZ20], is the natural order
obtained on special elements of the Tamari interval lattices (see Section 2.2.3 for the
definition of Tamari interval lattice). In Chapter 3, we shall work on a particular interval
of the dexter order, called the Hochschild lattice.

A subpath x of d is movable if x is primitive and if there is a prefix p and a suffix
s such that d = p10™xs, where m > 0O, and either s = € or the first letter of s is 1.
Figure 1.12 gives two examples of movable subpaths.

VAV VAN VAV VAN

FIGURE 1.12. A Dyck path 1100101100 with two movable paths, in blue (dark).

For any n > 0, let d := p10™xs be a Dyck path of size n, where x is movable. Let
dqp be the Dyck path of size n such that dg g := p10®x0fs, where a + B = m and B > 0.
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We set d <g.d’ if d’ = dqp, for any x movable subpath of d. The dexter order <q. is the
reflexive and transitive closure of <4, which is the covering relation. Figure 1.13 depicts
the three covering Dyck paths of the Dyck path 1100101100 seen in Figure 1.12 for the
dexter order. Note that the chosen movable subpath x is no longer movable in dqg.

AAVAN

FIGURE 1.13. The three Dyck paths covering the Dyck path 1100101100 for the dexter order.

The set Dy(n) endowed with the dexter order is a meet-semilattice with many proper-
ties highlighted in the article of Chapoton [Cha20]. See Figure 1.11 for the dexter order
on Dy(3).

1.4. Poset morphisms and poset embeddings.

1.4.1. Definitions. Let (1, <1) and (P, <o) be two posets. A map ¢ : P; — Py is a
poset morphism if for any x,y € Py, x <1 y implies ¢(x) <o ¢(y). We say that &P, is an
order extension of a poset &, if there is a map ¢ : ;1 — P, which is both a bijection and
a poset morphism.

A map ¢ : Py —» Py is a poset embedding if for any x,y € Py, x <y y if and only if
¢(x) <o d(y). Observe that a poset embedding is necessarily injective. A map ¢ : P, — Py
is a poset isomorphism if ¢ is both a bijection and a poset embedding.

1.4.2. Examples. In 1.3.7, we see that a natural translation of the Tamari order on
binary trees is given by the componentwise order on Tamari diagrams. The bijection
described in 1.2.4 is in fact a poset isomorphism between the two lattices. Likewise, one
has a poset isomorphism between the Tamari order on binary trees and the Tamari order
on Dyck paths described in 1.3.7. Figure 1.14 shows the three lattices, which are finally
the same lattice.

Another example of poset isomorphism is given by the bijection seen in 1.1.7 between
non-crossing partitions and Dyck paths. Therefore, the Kreweras order on non-crossing
partitions and the Kreweras order on Dyck paths are the same lattice.

In 1.1.6, we give a bijection between permutations and Lehmer codes. This bijection
provides our first example of order extension. Thus, the componentwise order on Lehmer
codes is a order extension of the right weak order on permutations (see Section 1.2.3 of
Chapter 4). Figure 1.15 depicts the lattice of permutations for n = 3, and the lattice on
Lehmer codes for n = 3.



2. COMBINATORIAL AND GEOMETRIC PROPERTIES 29

J{& W 000
N AN
‘ M 010
Z?*\ / N /
"R,

FIGURE 1.14. Hasse diagrams of BT(3), the Tamari order on Dy(3), and the componentwise
order on Tamari diagrams of size 3.
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FIGURE 1.15. Hasse diagrams of &(3) and of the Lehmer code lattice of size 3.
FIGURE 1.16. From left to right, Kreweras lattice, Tamari lattice, and Stanley lattice on Dy(3).

Another example of order extension relates the Stanley order, the Tamari order, and
the Kreweras order. Indeed, ordered by inclusion, the Stanley lattice is an extension of the
Tamari lattice which is an extension of the Kreweras lattice [Knu06, BB09]. Figure 1.16
shows the three orders on Dy(3).

2. Combinatorial and geometric properties

There are several constructions on posets, as the posets of k-chains or the order ideals
ordered by inclusion. We start this section by recalling some definitions and properties
on lattices, such as the distributivity. Then, we shall see some poset constructions as the
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posets of intervals or the edge labelling on non-graded posets. We will end this section
with the properties of some posets to be constructible by doubling specific intervals.

This section will be useful for all next chapters.

2.1. Distributive and semidistributive lattices.
2.1.1. Elementary definitions. A lattice £ is join-semidistributive if for all x,y,z € £,

xVy=xVzimpliesxVy = xV(yAz). (2.1.1)
Likewise, a lattice £ is meet-semidistributive if for all x,y,z € L,
XAy =xAzimpliesx Ay = x Aly V z). (2.1.2)
A lattice £ is semidistributive if £ is both join-semidistributive and meet-semidistributive.
A lattice £ is distributive if
xAlyVz)=(xAy)VixAz), (2.1.3)

or in an equivalent way

xV(yAz) = (xVy) AlxVz). (2.1.4)

For instance, the Boolean lattices are distributive lattices. The Tamari lattices are
non-distributive lattices, as the Kreweras lattices.

It is known [Bir79] that all sublattices of distributive lattices are distributive.
2.1.2. Chains and maximal chains. A chain of a poset & is a tuple
<x(1),x(2), - ,x(”‘”,x(”)>, (2.1.5)

r-1)

where xM, x@, ..., x®-1 x®) are r elements of P such that

(r-1)

W zox? g0 - g0 x <o x), (2.1.6)

Let <¢ be the covering relation of ®. If x) <o x™! for all i € [r — 1], then the
chain (2.1.5) is saturated.

Let £ be a lattice and let
(x“),x@), o, xrl, x(’“)> (2.1.7)
be a saturated chain of L. The length of the saturated chain (2.1.7) is r — 1.

Note that in Section 2.2, we deal with k-chains, where k refers not to the length of the
chain but to the number of elements forming that chain.

A longest saturated chain between the minimal element and the maximal element of
X is a maximal saturated chain. The union of maximal saturated chains of X is known
as the spine of £. The spine of X is denoted by S().
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2.1.3. Extremal and trim lattices. Let X be a lattice such that the length of a maximal
saturated chain is k. If #J(£) = #M(XL) = k then XL is an extremal lattice [Mar92].

An element x of a lattice £ is left modular [BS97] if for any y < z,
(yVx)ANz =yV(ixAz). (2.1.8)
A lattice is left modular if there is a maximal saturated chain of left modular elements.
A lattice is frim [ThoO06] if it is an extremal left modular lattice.

It is shown in [TW19] that if a lattice is extremal and semidistributive, then it is also
left modular, and therefore trim.

Let £ be an extremal lattice. It is known from [Tho06] that the spine of an extremal
lattice is a distributive sublattice of .

2.1.4. The Fundamental theorem for finite distributive lattices. Let & be a poset. An
order ideal in & is a subset S of & such that if x € § and y <¢ x then y € S.

The Fundamental theorem for finite distributive lattices (FTFDL for short) due to
Birkhoff [Bir37] states that any finite distributive lattice £ is isomorphic to the lattice
J(%) of the order ideals of the subposet & of £ restricted to its join-irreducible elements,
ordered by inclusion [Stal1].

More recently, a general version of the FTFDL has been given by Reading, Speyer,
and Thomas for finite semidistributive lattices [RST19].

2.2. Posets of k-chains.
2.2.1. Definitions. A k-chain of a poset & is a chain of & which is, as a tuple, of length

For any poset &, we can always consider the poset of k-chains ®*¥ of & where
elements are k-chains and the order relation is defined, for all 7,8 € %* such that
y:=(u,u®, ..., u¥)and 6 := (vit),v@, . .., vik) by

7 <o 8 if u < vl for all i € [k]. (2.2.1)

2.2.2. Posets of intervals. Let @ be a poset and u™,u® e & such that u) <o u®. An
interval [u¥), u®] is the set of all elements between u!’ and u®. The set of intervals of &
is denoted by int(%). Since the 2-chain (u), u®) characterizes the interval [u™,u®] and
reciprocally, we use the same notation for intervals as for 2-chains.

The poset of intervals of a poset & is the poset on the set int(%?) endowed with the
partial order <) defined, for all (u'),u®), (v, v@) ¢ int(%), by

1),11(2)) <int(®) (v, V(2)) if u <o vl and u®? <o v?. (2.2.2)

(u'
The property of being a lattice is preserved under this construction.

ProposITION 2.2.1. If (£, <¢) is a lattice then (int(£), <int(¢)) is a lattice.
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Prook. Let (u®,u®), (v¥), v®) ¢ int(£). First, we have to show that Ve(u®,v) <o
Ve(u®, v®?). By definition of the join, one has u® < Ve(u®, v?) and v® <o ve(u®, vi?).
Furthermore, since u™ <, u® and v\) < v®, one has u™ <, Ve(u®,v?) and vl <o
Veu®,v®). In addition, Ve(u™,v") is the minimal element of X satisfying u

Ve(u®, vy and v < p Ve(ut, v®). Thus ve(u®, vll) < ve(u®, v@).

<z

From the equation (2.2.2), one has

Vint(fi) ((u(i), u(2)), (V(i), V(2))>

= minx.

int

@ fw®, w) eint(£) : (), u®) <ime) (WL, w), (v, v@) <o (W, w2))

= (Velul, o), v p(u®, v?)) .
(2.2.3)

The case of the meet Ay (U™, u®), (v, v2)) = (Apu, vW), Ap(u?, v?)) is sym-
metrical. O

In the same way for (u¥, u®), (v\), v®) ¢ int(£) such that (u), u®) <ip) (v, v?), a
covering relation for the partial order <y is defined.

2.2.3. Tamari intervals and interval-posets. Let 5,t € Ty(n). A Tamari interval of
size n is an interval (s, t) for the Tamari order <. The set of Tamari intervals of size n
is denoted by int(Ty(n)).

The Tamari interval lattice is the set int(T9(n)) endowed with the partial order <ina)-
Let n > 0 and (s, 1), (s', ') € int(Ty(n)), following (2.2.2), we have that (s,t) <inqta) (5, ) if
§ <t 5 and t < t'. According to Lemma 2.2.1, the poset so defined is a lattice. Moreover,
it follows from the definition of <ina) that (s, ') covers (s, t) if

* either ¢’ is obtained by a single right rotation of an edge in s and ¢ = ¢,
* or t' is obtained by a single right rotation of an edge in t and s’ = s.

It is known from [Cha06] that Tamari intervals of size n are enumerated by

2(4n + 1)!
. 2.2.4
(n+1)!(3n + 2)! ( )
The first numbers are
1,1,3,13,68, 399, 2530, 16965. (2.2.5)

This sequence is Sequence A000260 of [Slo].

Interval-posets are posets introduced by Chétel and Pons in [CP15] in order to study
the Tamari interval posets. Indeed, there is a poset isomorphism between the Tamari
interval lattices and the set of interval-posets endowed with a certain partial order. We
shall use the one-to-one correspondence between the two sets in Chapter 2. This is why
we shall recall here a part of the bijection in the broad outline.


http://oeis.org/A000260
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Let n > 0 and {my,...,7,} be a set of n symbols numbered from 1 to n. An interval-
poset 7t is a partial order <1 on the set {m, ..., 5, } such that

(i) if i < k and 51, < o1 then for all 717 such that i < j < k, one has 717 < 7,
(ii) if i < k and 71; < 71 then for all 7rj such that i < j < k, one has 71j < 7.

The size of an interval-poset is the cardinality of its underlying set. The set of interval-
posets of size n is denoted by IP(n), and the elements of interval-poset are called vertices.

The two conditions (i) and (ii) of interval-posets are referred to as interval-poset prop-
erties. For any i < j, the relations s; < 71; are known as decreasing relations and the
relations 71; <1 71; are known as increasing relations.

As it is shown in Figure 2.1, the Hasse diagram of interval-posets can be drawn as an
oriented graph where two vertices st; and s; are related by an arrow from s; to 71; (resp.
7; to ;) if 71 < 7y (resp. 717 < 7t;) where i < j.

N Y

LS T T3 T4 Tt Tl Jt7 Tt

N

FIGURE 2.1. Hasse diagram of an interval-poset of size 8.

Let n > 0 and (s, t) € int(To(n)) and st € IP(n). The bijection p relates on the one hand
the restriction of s to its decreasing relations with the binary tree s, and on the other
hand the restriction of st to its increasing relations with the binary tree t.

Thus the restriction of 7 to its decreasing (resp. increasing) relations has a decreasing
(resp. increasing) forest as Hasse diagram, where if 7; < 7; with i < j (resp. j < i), then
the node j is a descendant of the node i. Otherwise, it is placed to the right (resp. left) of
the node i. To form the binary tree s (resp. t), then read the decreasing (resp. increasing)
forest for the prefix transversal from right to left (resp. from left to right). If a node j
is a descendant of a node i in the decreasing (resp. increasing) forest, then the node j
becomes a right (resp. left) descendant of the node i in s (resp. t). Otherwise, it becomes
the left (resp. right) descendant of the node i. The numbering of the binary trees thus
obtained is exactly the infix order. Figure 2.2 gives an example of construction by the
bijection p of a Tamari interval from an interval-poset of size 5.

2.3. EL-shellability.
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SRV RN

B) Decreasing (on the left) and in-

(A) Interval-poset of size 5. creasing (on the right) forests

(c) Left binary tree. (p) Right binary tree.

FIGURE 2.2. Construction of a Tamari interval from an interval-poset by p.

2.3.1. Edge labelling and shellability of non-graded posets. In [BW96] and [BW97],
Bjorner and Wachs generalized the method of labellings of the cover relations of graded

posets to the case of non-graded posets. In particular, they showed the EL-shellability of
the Tamari poset [BW97].

Let % be a bounded poset and A be a poset, and A : <¢ — A be a map. For any

saturated chain (xt),...,x*¥)) of &, we set

A<x(“, s ,x“”) = ()\, <x(1), x(2)> e A (x(k‘”,x(k)> > (23.1)

We say that a saturated chain of & is A-increasing (resp. A-weakly decreasing) if its
image by A is an increasing (resp. weakly decreasing) word for the order relation <j.
We say also that a saturated chain (xt),...,x¥)) of & is A-smaller than a saturated chain
(yV,....9®) of @ if A(xW,...,x®) is smaller than A(y",...,y*)) for the lexicographic
order induced by <x. The map A is called EL-labeling (edge lexicographic labeling) of &
if for any x,y € & satisfying x <¢ y, there is exactly one A-increasing saturated chain
from x to y, and this chain is A-minimal among all saturated chains from x to y. Any
bounded poset that admits an EL-labeling is EL-shellable [BW96, BW97].

The EL-shellability of a poset & implies several topological and order theoretical prop-
erties of the associated order complex A(%) built from %. Recall that the faces of this
simplicial complex are all the chains of . Moreover, if ¢ has at most one A-weakly de-
creasing chain between any pair of elements then the Mdbius function of & takes values
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N
| |
N,

FIGURE 2.3. Counterexample of a lattice not EL-shellable.

o

FIGURE 2.4. Operation of doubling in an interval in blue (dark).

in {—1,0,1}. In this case, the simplicial complex associated with each open interval of %
is either contractible or has the homotopy type of a sphere [BW97].

2.3.2. Example and counterexample. Figure 2.3 gives an example of a lattice )£ which
is not EL-shellable. Indeed, suppose that there is a poset A and a map A : <p — A such
that between a and f there is a unique A-increasing saturated chain passing through ¢ and
e. Then, the saturated chain (a, b, d, f) cannot be A-increasing. Therefore, either the map
A cannot be increasing between a and d or between b and f. Thus, there is no way to find
for all interval one A-increasing saturated chain.

The Tamari lattice is an example of an EL-shellable lattice [BW97].

2.4. Construction by interval doubling.
2.4.1. Interval doubling and construction. Let 2 be the poset {0,1} where 0 < 1. Let
% be a poset and I one of its intervals. The interval doubling of I in & is the poset

P = (P\T) U x 2), (2.4.1)
having <, as order relation, which is defined as follows. For any x,y € %[I], one has
x < ¥ if one of the following assertions is satisfied:

i) xeP\LyeP\Land x ¢ y,
(ii) xe P\Ly=(y.,b)elx2 and x K¢ ¥,
(iii) x = (x",a) eI x 2,y e P\, and x' K9 ¥,
(iv) x=(x"a)elx2 y=(y,b)eclx2 and x’' ¢ ¥y and a K¢ b.

Figure 2.4 give an example of interval doubling.

This operation has been introduced in [Day92] as an operation on posets preserving
the property of being a lattice. On the other way round, we say that & is obtained by
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A

FIGURE 2.5. Graph of first posets generated by interval doubling.

&

FIGURE 2.6. Counterexample of a lattice not constructible by interval doubling.

an interval contraction from a poset & if there is an interval I of & such that P[I] is
isomorphic as a poset to ¥ [CLCdPBMO04].

A lattice £ is constructible by interval doubling (called “bounded” in the original
article [Day92]) if £ is isomorphic as a poset to a poset obtained by performing a sequence
of interval doubling from the singleton lattice. It is known from [Day79] that such lattices
are semidistributive. Recall that a finite lattice )£ is constructible by interval doubling if and
only if it is congruence uniform, and then in particular, the number of join-irreducible
elements of X determines the number of interval doubling steps needed to create X
(see [Day79] and [Miith19]).

2.4.2. Example and counterexample. Starting from the trivial poset (one element),
one can give the first posets generated by interval doubling. Figure 2.5 shows all the
posets obtained for three steps of interval doubling.

Figure 2.6 is the Kreweras order for n = 3. Considering Figure 2.5, the only way
to obtain another lattice with 5 elements is to doubling one element of the lattice at the
bottom left. However, it is clear that the Kreweras lattice cannot be obtained from the
latter. Therefore, the Kreweras lattice is not constructible by interval doubling.
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3. Combinatorial Hopf algebras and posets

In Section 3 of Chapter 4, we deal with algebraic structures such as graded algebras
and graded coalgebras. More precisely, we shall define a graded associative algebra linked
with a poset introduced in Chapter 4.

This section provides several definitions and properties related to combinatorial Hopf
algebras, and introduce two important examples of combinatorial Hopf algebras: the Hopf
algebra FQSym and the Hopf algebra PBT, defined respectively on permutations and on
binary trees. Due to their link with the right weak order and the Tamari order, these two
combinatorial Hopf algebras are one of the most important motivations for our work in
Chapter 4. We will see how their product and coproduct are related to both partial orders
at the end of this section.

The classical references for the elementary notions are [Swe69, Abe80].

3.1. Combinatorial Hopf algebras.

3.1.1. Combinatorial vector spaces. Throughout the rest of this thesis, K is a field of
characteristic zero. The identity element of K is denoted by 1k for the product, and Ok for
the addition. The Kronecker delta is denoted 6, y. Let us recall that 6, = Ix if x = y,
and 6,y = Ok else.

Let E be a set and f : E — K be a map. The support of f is the set
Supp(f) := {x € E : f(x) # 0}. (3.1.1)
The free vector space associated with the set E is
Vect(E) := {f : E— K : Supp(f) is finite }. (3.1.2)

The set F:= {F, := y+ 6,y : x € E} is a basis of Vect(E), called the fundamental basis.
Therefore, all elements f of Vect(E) are expressed as

f= Y. flxFs, (3.1.3)
xeSupp(f)
and Vect(E) can be seen as the vector space of finite formal sums of elements of E with

coefficients in K.

Let S be a graded set such that #S(0) = 1. The combinatorial vector space generated
by S is the free vector space Vect(S).

All combinatorial vector spaces are graded, namely they decompose as a direct sum

Vect(S) = (P Vect(S(n)), (3.1.4)

n>0

where the vector spaces Vect(S(n)), called homogeneous components of degree n of
Vect(S), are of finite dimension.

If V is a combinatorial vector space then we will denote by V™ its homogeneous
component of degree n.
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The Hilbert series of a combinatorial vector space V is the series

=Y dimv™en, (3.1.5)

n>0

In other words, this series is the generating series of the underlying graded set of V.

3.1.2. Combinatorial algebras. An unital associative algebra is a vector space A
endowed with a linear map - : A ® A — A called product, and a linear map u : K — A
called unit such that, for all x,y,z € A and A € K,

(x-y)-z=x-(y-2), (3.1.6)

u(d)-x = Ax = x - u(A). (3.1.7)

When the context is clear, we simply say algebra. It will be specified if the algebra is
not associative.

The condition (3.1.6) means that the product - is associative. Equivalently, by denot-
ing the product - by p, and the identity map by I, this means that the diagram (3.1.8) is
commutative.

I®p
AARA ——> A A

lp®1 lp (3.1.8)

p
ASA ——F A

Likewise, the condition (3.1.7) means that u(1) is the identity element for the product -,
that is the diagram (3.1.9) is commutative.

ﬁ@K%ﬁ@ﬁ%K@f(

\ l / (51.9)

Note that since we can deduce the unit map u from the identity element 1 4 for the
product by setting u(A) := Al for all A € K, and reciprocally 14 from u by setting
14 := u(1k), one has that the two notations are equivalent.

Let (A,-,u) be an algebra. A vector subspace A’ is a subalgebra of A if for all
x,ye A, x-ye A, and if for any A € K, u(r) € A'.

An algebra A is graded if the vector space A is graded, and if x € A™ and y € AM™
then x -y € A™*M_ Moreover, if A is graded and dimA? = 1 then A is connected. An
algebra A is commutative if forall x,y e A, x-y =y -x.
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Let (A, 4, uy) and (9B, -@, ug) be two algebras. An algebra morphism is a linear map
¢: A — B such that, forall x,y € A and A € K,

Plx -1 y) = dlx) 5 dly), (3.1.10)

d(unlr)) = ugd). (3.1.11)
An algebra isomorphism is a bijective algebra morphism. If there is an algebra isomor-

phism from A to $B, then we write A =~ $B.

The tensor product of A and 9B is the algebra A ® 9B with the product - defined for
alx ey, x'®y € A®PB by
xRy - Xey)=x1x)0y ay) (3.1.12)

and the unit u defined by u := u; ® ug. An ideal of A is a vector subspace I of A such
that, forallx e landy € A, x-4y €  and y - 4 x € I. The quotient of A by the ideal I is
the algebra A/I with the product - defined for all X,y € A/I by

X-yi=1lx-qy) (3.1.13)
where 1 : A — A/I is the canonical projection, and x and y are elements of A such that
T(x) = X and 1(y) = ¥, and the unit u defined by u := T o uy.

Let A be a set and A* be the set of words on A. Let K(A*) := Vect(A*) be an algebra
endowed with the product - : K{(A*) ® K(A*) — K(A*) such that u- v := uv. An algebra A
is free if there is a set A such that A ~ K(A*).

A combinatorial algebra is an algebra whose vector space is combinatorial. In par-
ticular, a combinatorial algebra is graded, connected, and its homogeneous components
are of finite dimension.

3.1.3. Combinatorial coalgebras. A counital coassociative coalgebra is a vector space
B endowed with a linear map A : 6 — G ® 6 called coproduct, and a linear map c : 6 — K
called counit such that

(AR TAlx) = (I ® A)Alx), (3.1.14)
(c®DAlx) =1x ® x and (I ® ¢)Alx) = x ® 1k, (3.1.15)
where [ : G — G is the identity map.

The condition (3.1.14) means that the coproduct is coassociative, which is equivalent
to saying that the diagram (3.1.16) is commutative.

6—> 606

lA l; ©A (3.1.16)
A

®I
BrE —>BR6RE6

The commutative diagram (3.1.17) corresponds to the condition (3.1.15).
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8®K%G®G%K®G

\ T / (54.47)

For x € G, the coproduct A(x) is a finite sum of tensors in the form

=Y xfoxf. (3.1.18)

Let (B,A,c) be a coalgebra. A vector subspace @ is a subcoalgebra of 8 if for any
xeB, Alc) e 6 8.

A coalgebra 6 is graded if the vector space G is graded, and if x € ™ then A(x)
Disjen 8% ® @Y. Moreover, if 8 is graded and dimB” = 1 then B is connected. Let
w:6® 6 — B® 6 be the linear map defined forany x @ y e BB by wlx ®y) ==y @ x.
A coalgebra 8 is cocommutative if for any x € 6, A(c) = w(A(x)).

Let (B, Ag,cg) and (D, Ag, cg) be two coalgebras. A coalgebra morphism is a linear
map ¢ : 6 — D such that, for any x € G,

(0 ® ¢)Ag(x) = Ag(d(x)), (3.1.19)

cglx) = cold(x)). (3.1.20)

A coalgebra isomorphism is a bijective coalgebra morphism. If there is a coalgebra
isomorphism from G to &, then we write G ~ 9.

The tensor product of G and 9 is the coalgebra G ® ¥ with the coproduct A defined
foranyx ®y € 6 9D by

Alxey)=)Y eyt e oyl (3.1.21)

where Ag(x) = Y x"®@xR and Ag(y) = ¥ ¥ ®@y*, and the counit ¢ defined by ¢ := cg®cg.
An coideal of 3 is a vector subspace I of @ such that, forany x € I, Aglx) e I B+ B®1
and I C ker(c). The quotient of G by the coideal I is the coalgebra B/I with the product
A defined for any x € G/I by

Alx) = (T ® 1)Ag(x), (3.1.22)

where T : 8 — B/I is the canonical projection, and x is an element of G such that t(x) = %,
and the counit ¢ defined by c(x) := cg(x).

Let A be a set and A* be the set of words on A. Let K(A*) := Vect(A*) be a coalgebra
endowed with the coproduct A : K(A*) — K(A*) @ K(A*) such that A(u) := Y, _,, vew.
An algebra @3 is cofree if there is a set A such that G ~ K(A*).

A combinatorial coalgebra is a coalgebra whose vector space is combinatorial. Like
for combinatorial algebras, one has in particular that a combinatorial coalgebra is graded,
connected, and its homogeneous components are of finite dimension.
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3.1.4. Bialgebras and combinatorial Hopf algebras. A bialgebra is a vector space 93
which is both an algebra (94, -, u) and a coalgebra (9, A, c) such that A and c are algebra
morphisms, or in an equivalent way, - and u are coalgebra morphisms.

The fact that A and ¢ are algebra morphisms, and that - and u are coalgebra mor-
phisms, means that the following relations hold for all x,y € 9.

Alx-y) = (@) 20 )(Ak)2Aly)), (3.1.23)
c(x-y) = clx)ely), (3.1.24)

Alu(lk)) = u(lk) ® u(lk), (3.1.25)

)

c(u(lK) = 1]1(, (3126
where I : 3 — 9B is the identity map. This conditions can be translated with the following
commutative diagrams.

BB 9B BB
lA ®A Tp ®p (3.1.27)
IQw®l
BRIBRBR B BB BB

[€4]
/ \ (3.1.28)
c®c

BB —>KK=K

[€4]
/ K (3.1.29)
uxu

BIB<— KK =K

B
/ \ (3.1.30)
I

K— K
Let ($,-,u,A,c) be a bialgebra. A vector subspace 93’ is a subbialgebra of 3 if 93’
is both a subalgebra and a subcoalgebra of 3. If 93 is a graded algebra and a graded
coalgebra, then 9B is graded. Moreover, if B is graded, and both a connected algebra and
a connected coalgebra, then 93 is connected.

Let (6, -g, ug, Ag, cg) and (B, -g, ug, Ag, cg) be two bialgebras. A bialgebra morphism
is a linear map ¢ : B3 — G which is both an algebra morphism and a coalgebra morphism.
Furthermore, ¢ is a bialgebra isomorphism if ¢ is an algebra isomorphism and a coal-
gebra isomorphism.

An ideal I of 9 is both an ideal of %3 as an algebra, and a coideal of 93 as a coalgebra.
Likewise, the quotient of 93 by the ideal I is the bialgebra 93/I which is both the quotient
of the algebra 93 as an algebra, and the quotient of the bialgebra 93 as a coalgebra.
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A combinatorial bialgebra is a bialgebra whose vector space is combinatorial. A
combinatorial bialgebra is graded, connected, and its homogeneous components are of
finite dimension.

3.1.5. Combinatorial Hopf algebras. Let (6,-,u, A,c) be a bialgebra and & be the
vector space of linear map from 9B to 93. The vector space & can be endowed with the
convolution product % defined for all f,g € & by

frxg:=-o(f®g)oA. (3.1.31)

A Hopf algebra 9C is a bialgebra (9C, -, u, A, ¢) endowed with a linear map S: 9 — 9C
called antipode. The antipode is the inverse of the identity map I : $C — 9 for the
convolution product. In other words, the antipode S satisfies

SxI=I*xS=uoc, (3.1.32)

which means that the diagram (3.1.33) is commutative.

/ c u (3.1.33)
\x /
S

®1
FHRIH ——> AR
Since any combinatorial bialgebra is graded and connected, it is always possible to
compute an antipode S. Therefore, any combinatorial bialgebra admits a unique antipode

satisfying (3.1.32). This leads us to the following conclusion: a combinatorial Hopf algebra
is a combinatorial bialgebra.

3.2. Examples of combinatorial Hopf algebras.

3.2.1. Malvenuto-Reutenauer Hopf algebra. Our first example is a combinatorial Hopf
algebra on permutations, called the Malvenuto-Reutenauer Hopf algebra [MR95], or
FQSym for free quasi-symmetric functions. We denote by F; the elements of the funda-
mental basis F, where o is a permutation.

On the linear span of {F;:0 € &}, endowed with the shifted shuffle product, the
FQSym product is defined, for all 0 € &(n) and v € &(m), by

Fo-Fyi= Y Fn (3.2.1)
eoiv

For instance,
F310-For = Fa1oss 4+ Fais04 + F3i540 + Fas10s + Fas140 4 Fasag + a0 (399)
+ Frs140 + Frza10 + Frusio.

Thus, (FQSym, -) is a combinatorial algebra.
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Likewise, FQSym can be endowed with a coproduct A, defined, for all 6 € &(n), by
A(Fs):= Y Faaw) ® Faar)s (3.2.3)
o=uv
where std(w) is the standardization of w. For instance,
A(Fus32) =1 @ Fussa + F1 @ Frusp + For @ Fagy

(3.2.4)
+ Fo13 ® For 4+ P10 @ F1 + Faysz0 ® 1.

The space FQSym endowed with A is a combinatorial coalgebra.

Endowed with the product - and the coproduct A, FQSym is a combinatorial bialgebra,
and therefore a combinatorial Hopf algebra.

There are several other interesting bases of FQSym [DHT02, HNTO05], related to the
fundamental basis, such as the elementary basis of FQSym, which is defined for any
permutation o by

Egi= Y Fu. (3.25)
O<XweV
Similarly, the homogeneous basis of FQSym is defined by
Ho:= Y Fu. (3.2.6)
V=XweO

These two bases have the property to be multiplicative, that is the FQSym product on

these bases is one element. Indeed, for all permutations o and v,

Es-Ey = Eq /v, (3.2.7)

and
HU : Hv = Hd\v: (32.8)

where the operations / and \ are defined in 1.1.6.

Since the elements of these bases depend on the right weak order, these two bases
are closely related to the combinatorial properties of permutohedron [DHNT11]. In the
following, we will see that the product of FQSym and its coproduct are also linked to the
right weak order, and thus to the permutohedron.

3.2.2. Loday-Ronco Hopf algebra. There are several Hopf subalgebras of FQSym,
such as the Poirier-Reutenauer Hopf algebra on Young tableaux [PR95]. The Loday-
Ronco Hopf algebra [LR98], or PBT for planar binary trees, is one of them. The algebra
PBT, defined on planar binary trees, can be thus defined as the subalgebra of FOQSym
spanned by the elements

Pii= Y Fo (3.2.9)

ocS
bst(o)=t

where bst is the algorithm of insertion. For instance,

P = Fors3 + Fosus + Faoys. (3.2.10)
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Instead of the algorithm of insertion, another way to see PBT as Hopf subalgebra of
FQSym is to use congruence classes called the sylvester classes [HNTO5].

Thus, the PBT product is deducted from the FQSym product, via the algorithm of
insertion. For example,

Likewise, for the PBT coproduct, we compute the coproduct in the basis F of FQSym

(3.2.11)

o
i by

and then we group the elements via the algorithm of insertion, or equivalently, via the
sylvester classes.

Endowed with this product and coproduct thus defined, PBT is a combinatorial Hopf
algebra.

3.3. Products, coproducts, and partial orders.

3.3.1. FQSym and the right weak order. The Malvenuto-Reutenauer Hopf algebra
and the permutohedron are intrinsically linked, and this connection comes from the fact
that the product of FQSym can be rephrased, for all permutations F; and F,, as

F,-F, = Y F,. (3.3.1)

nelo /v, o\ V]

<we

Thus rephrased, the product is seen as a sum with intervals for the right weak order
as support. For instance, using the example (3.2.2), we obtain that the product Fz;5 - Fy; is
the sum of elements of the interval [31254, 54312]

%\Ne‘

In the same way, the FQSym coproduct can also be rephrased as a sum of elements
of an interval of the permutohedron. Thus, we get a combinatorial interpretation of this
coproduct.

3.3.2. PBT and the Tamari order. A similar property holds for PBT relative to the
Tamari order <. Therefore, the PBT product can be rephrased, for all binary trees Py
and P, as

P,-P, = Y. P., (3.3.2)
e[t/ s, t\5}<ta

where / and \ are the grafting operations on binary trees defined in 1.2.2.

For instance, by considering the example (3.2.11), the product

pﬁ.piﬁ

(3.3.3)
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is the sum of elements of the interval

m, % . (3.3.4)

The PBT coproduct can also be rephrased in the same way.

In 1.3.7, it is explained that the Tamari order can be seen on the 132-avoiding per-
mutations through the algorithm of insertion 1.10. Therefore, as the Tamari order is a
sublattice of the right weak order, PBT is a Hopf subalgebra of FQSym.






CHAPTER 2

Cubic coordinate lattices

Tamari lattices are partial orders having extremely rich combinatorial and algebraic
properties. These partial orders are defined on the set of binary trees and rely on the
right rotation operation [Tam62] defined in Section 1.2.2 of Chapter 1. We are interested
in the intervals of these lattices, meaning the pairs of comparable binary trees. As seen
in Section 2.2.3 of Chapter 1, Tamari intervals form also a lattice. The number of these
objects is given by a formula that was proved by Chapoton [Cha06]:

2(4n + 1)!

(n+D!Bn+2)!° (0.0.1)

Strongly linked with associahedra, Tamari lattices have been recently generalized in
many ways [BPR12, PRV17]. In this process, the number of intervals of these general-
ized lattices have also been enumerated through beautiful formulas [BMFPR12, FPR17].
Many bijections between Tamari intervals and other combinatorial objects are known.
For instance, a bijection with planar triangulations is presented by Bernardi and Bonichon
in [BB09]. It has been proved by Chétel and Pons that Tamari intervals are in bijection
with interval-posets of the same size [CP15] (see Section 2.2.3 of Chapter 1).

We provide in this chapter a new bijection with Tamari intervals, which is inspired
by interval-posets. More precisely, we first build two words of size n from the Tamari
diagrams [Pal86] of a binary tree. If they satisfy a certain property of compatibility, we
build a Tamari interval diagram from these two words. We show that Tamari interval
diagrams and interval-posets are in bijection. Then we propose a new encoding of Tamari
intervals, by building (n — 1)-tuples of numbers from Tamari interval diagrams. We call
these tuples cubic coordinates. This new encoding has two obvious virtues: it is very com-
pact and it gives a way of comparing in a simple manner two Tamari intervals, through
a fast algorithm. On the other hand, some properties of Tamari intervals translate nicely
in the setting of cubic coordinates. For instance, synchronized Tamari intervals [FPR17]
become cubic coordinates with no zero entry. Besides, cubic coordinates provide natu-
rally a geometric realization of the lattice of Tamari intervals, by seeing them as space
coordinates. Indeed, all cubic coordinates of size n can be placed in the space R*~!. By
drawing their covering relations, we obtain an oriented graph. This gives us a realization
of cubic coordinate lattices, which we call cubic realization. This realization leads us to
many questions, in particular about the cells it contains. We characterize these cells in a
combinatorial way, and we deduce a formula to compute a volume of the cubic realization
in the geometrical sense. Another direction, more topological, involves the shellability of
partial order (see Section 2.3 of Chapter 1). We show, drawing inspiration from the work

47



48 2. CUBIC COORDINATE LATTICES

of Bjorner and Wachs [BW96, BW97], that the cubic coordinates poset is EL-shellable, and
as a consequence its associated complex is shellable.

This chapter is organized in two sections.

In Section 1, we define Tamari interval diagrams and show that they are in bijection,
size by size, with interval-posets. We then define cubic coordinates and show that they are
in bijection, size by size, with Tamari interval diagrams. Using these two bijections, and
after having provided the set of cubic coordinates with a partial order, we show that there
is a poset isomorphism between the poset of cubic coordinates and the poset of Tamari
intervals.

As pointed out above, the poset of cubic coordinates can then be realized geometrically.
This cubic realization and the cells that compose it are the object of Section 2. For each
cell, we then associate a synchronous cubic coordinate. By relying upon this particular
cubic coordinate, we give a formula to compute the volume of the cubic realization. Finally,
we extend the result of Bjorner and Wachs on the Tamari posets to the Tamari interval
posets, by showing that the cubic coordinate posets are EL-shellable.

1. Cubic coordinates and Tamari intervals

The aim of this section is to build the poset of the cubic coordinates, then to establish
the poset isomorphism between this poset and the poset of the Tamari intervals. To
achieve this aim, we first define the Tamari interval diagrams based on the interval-posets.
The cubic coordinates are then obtained from the Tamari interval diagrams.

1.1. Tamari interval diagrams.

1.1.1. Interval-posets. In Section 2.2.3 of Chapter 1 we saw a way of drawing an
interval-poset. In this chapter, we shall draw interval-posets as follows. For any i < j,
if 71; <oty and there is no vertex 5, such that 71, <ot and j < k, then we draw an arrow with
source 71; and target st; from below as shown in the example in Figure 1.1. Symmetrically,
if m; <71, and j < k and if there is no s; such that 7; <, and i < j, then we draw an
arrow with source 7; and target s, from above. We refer to this oriented graph with two
types of arrows as the minimalist representation.

The closure for the interval-poset properties is given by adding the decreasing rela-
tions 5t; < 7t; for any relation 51, < st; and by adding the increasing relations 5t; <7t for any
relation 5t; < 71, for any i < j < k. By taking the reflective closure and the closure for the
interval-poset properties, an interval-poset is obtained from such a representation. The
interest of the minimalist representation is later justified, in particular with Theorem 1.1.4.
It is important to represent the decreasing relations and the increasing relations indepen-
dently.

Let n > 0 and 71,7’ € IP(n) and (s,t) := p(m), (s, ) := p(ir’). Let (x) (resp. (o)) the
following condition: st is obtained by adding (resp. removing) only decreasing (resp.
increasing) relations of target a vertex st in s, such that if only one of these decreasing
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AN A AN A

VLG Jt7 5 Jr7 Jtg
A) Minimalist representation. B) Hasse diagram.

f\,

Jts Jg

ww

c) Diagram with all apparent (except
reﬂex1ve) relations.

FIGURE 1.1. Different representations of an interval-poset of size 8.

(resp. increasing) relations is removed (resp. added), then either st is obtained or the
object obtained is not an interval-poset.

For the sequel, we need to recall that (s, t') covers (s, t) if and only if st and v’ satisfy
either (x) or (o).

(a) Binary trees s and 5" (resp. t and t).

JEs -~ -~ ',,.‘

iy ey g Il

(B) Decreasing forests induced by s and 5. c) Increasing forests induced by t and t'.

FIGURE 1.2. Right rotation of the edge (i, j) in the binary tree s (resp. t), where a,b and ¢ are subtrees.



50 2. CUBIC COORDINATE LATTICES

LEMMA 1.1.1. The interval-posets st and 7' satisfy (x) (resp. (o)) for the vertex 7
(resp. ;) if and only if §' (resp. t') is obtained by a unique right rotation of the edge
(i,j) ins (resp. t) and t' = t (resp. s’ = s).

——
v | Tt LI I § Tt TG e

FIGURE 1.3. Interval-poset of the decreasing forest before (without dotted line) and after (with
dotted line) the right rotation of the edge (i, j), where a, b and ¢ may be empty.

FIGURE 1.4. Interval-poset of the increasing forest before (with dotted lines) and after (without
dotted lines) the right rotation of the edge (i, j), where a, b and ¢ may be empty.

PrOOE. Suppose 7t and 7’ satisfy (x) for the vertex s;. Therefore, ' has more de-
creasing relations of target s/ than the vertex s; in 7. Suppose that the vertices 7r; and
7; are not related in s, and that J'r]f and 7] are related in s, with k < I. Then, by the
interval-poset property (i), for any s, such that i < k < j, 71, < ;. Moreover, if we re-
move only one of these decreasing relations, we obtain either st or an object that is no
longer an interval-poset. This means that the number of descending relations added in s’
is minimal, or equivalently, that the vertex s; is closest to the vertex 7; such that 7r; and s
are not related in st and i < j. This case is depicted in Figure 1.3. By the bijection p, add
these decreasing relations of target str; in st leads to the decreasing forest induced by s’
represented by Figure 1.2b. A unique right rotation is then made between the trees s and
s’ (see Figure 1.2a). Furthermore, since the increasing relations are unchanged between
7t and 51/, the increasing forests induced by t and t' are the same, and thus t' = t.

Reciprocally, suppose that s’ is obtained by a unique right rotation of the edge (i, j)
in s and that t = t. The case is depicted by Figure 1.2a, and the two decreasing forests
induced by s and s’ are depicted by Figure 1.2b. By the bijection p, we then obtain the
interval-poset whose restriction to decreasing relations is shown by Figure 1.3. Since t' = ¢,
the increasing relations of the interval-posets associated with (s, t) and (¢, t') are the same.
Finally, st is obtained by adding only decreasing relations of target 5t; in s1. Furthermore,
if only one of these relations is removed, then either st is obtained, or the object obtained
is not an interval-poset. This means that st and st satisfy (x).



1. CUBIC COORDINATES AND TAMARI INTERVALS 51

Symmetrically, we show that 5t and 7’ satisfy (o) for s; if and only if ¢ is obtained by
a unique right rotation of the edge (i, j) in t and s’ = s. Figure 1.2c and Figure 1.4 depicts
this case. O

1.1.2. The compatibility condition. Our aim is to encode a pair of binary trees of n
nodes by two words of size n. The first binary tree of the pair is encoded by a Tamari
diagram and the second is encoded by a dual Tamari diagram, associated by the bijection
seen in 1.2.4 of Chapter 1. Then, by checking a certain compatibility condition, we build
the Tamari interval diagrams.

Let us recall the definition of Tamari diagrams and dual Tamari diagrams seen in
Section 1.1.5 of Chapter 1. For any n > 0, a Tamari diagram is a word u of length n on
the alphabet N which satisfies the two following conditions

i) 0<u;<n-iforallien]
(ii) ujsj <u; —jforalli € [n] and j € [0, u;].

Likewise, a dual Tamari diagram is a word v of length n on the alphabet N which
satisfies the two following conditions

i) 0<vi<i—1forallic|[n]
(ii) vij < vi —jforalli e [n]etjel0,v].

The size of a dual Tamari diagram is its number of letters.

_CT? T oo

FIGURE 1.5. A Tamari diagram 9021043100 (on the left) and a dual Tamari diagram
0010040002 (on the right) of size 10.

Let n > 0 and u be a Tamari diagram, and v be a dual Tamari diagram, both of size
n. The diagrams u and v are compatible if for all 1 < i < j < n such that u; > j —i
then v; < j —i. If u and v are compatible, then the pair (u,v) is called Tamari interval
diagram. The set of Tamari interval diagrams of size n is denoted by TID(n).

In other words, a Tamari diagram u of size n and a dual Tamari diagram v of size n
are compatible if for any needle of position i and height v; £ 0 in v (resp. u; # 0 in u),
there is no needle of position j and height greater than or equal to i —j in u (resp. j — i
inv)withi —v; <j<i-1(resp.i+1<j<i+u)andie [n]
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B 2

FIGURE 1.6. Two incompatible diagrams (on the left) and two compatible diagrams (on the right).

For example, the two diagrams in Figure 1.5 are compatible. Figure 1.6 gives two
other examples of two incompatible diagrams 00400000 and 00003000, and two compatible
diagrams 04000000 and 00000030. Thereafter, if u and v are compatible, we can also say

that u and v satisfy the compatibility condition.
X2 X3 Xy X6 X7 Xsg X9 X10

w N

o

o

FIGURE 1.7. A Tamari interval diagram of size 10 (on the left) and its associated interval-poset
(on the right).

As for Tamari diagrams and dual Tamari diagrams, a graphical representation of
the Tamari interval diagram is also possible, as shown in Figure 1.6. Figure 1.7 gives
this representation of the Tamari interval diagram (9021043100, 0010040002) from the two
diagrams seen in Figure 1.5, where we have simply considered the symmetry relative
to the abscissa axis of the Tamari diagram, and placed it under its dual. Thus, Tamari
diagram u is drawn below and its dual Tamari diagram v is drawn above. With such a
representation, it is then easy to verify that u and v are compatible. Indeed, any needle
of u that is below the diagonal linking the top of the needle in position j in v to the
abscissa point j — vj, has a diagonal that intersects the x-axis strictly before the position j.
Symmetrically, any needles of v that is above a diagonal linking the top of the needle in
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position i in u to the abscissa point i + u;, has a diagonal that intersects the x-axis strictly
after the position i.

One consequence of the compatibility condition is that each needle of non-zero height
in the dual Tamari diagram v is always preceded by a needle of u of zero height. Sym-
metrically, each non-zero height needle in the Tamari diagram u is always followed by a
needle of v of zero height. In other words, for any i € [n], u; and v;;4 can both be zero,
but cannot both be non-zero.

1.1.3. Tamari interval diagrams and interval-posets. In this part, we use these defi-
nitions, conventions, and Lemma 1.1.1 seen in Section 2.2.3 of Chapter 1

Let us show that there is a bijection between the set of Tamari interval diagrams and
the set of interval-posets of the same size.

Let n > 0 and ) be the map sending a Tamari interval diagram (u, v) of size n to the
relation

({my,...,mn}, <) (1.1.1)

where ;. <7t foralli € [nJand 0 < I < uy, and i, < o1; foralli € [n] and 0 < k < v;.

ProposITION 1.1.2. For any n > 0, the map ¥ has values in 1P(n).

Proor. Let (u,v) € TID(n) and st := x(u, v). First, we show that < is a partial order,
then that interval-poset properties are satisfied.

(1) By definition of ¥ one has 71;,; < 71; and 71;_p < 1; with 0 < I < u; and 0 < k < v
for all ;; € st. Specifically, ;r; <1 7t;. This shows that it is reflexive.
(2) Let 7, 7r; and st be vertices of 7 with i < j < k.

(@) Suppose that 7t; < 7t; and that ;. < 71;. Then 7; <1 7t; implies that there is an
integer 0 < i’ < u; such that j = i + i’. Therefore, by the condition (ii) of
a Tamari diagram, u; = u;v < u; —i’. Likewise, m, < 71; implies that there
is an integer 0 < j° < v; such that k = j + j. Still by the same condition,
one has up = uj,; < u; —j. By using these two inequalities, we obtain that
u; > ug +i +j. Since i’ +j = k — i, then we have u; > k — i, which implies
by definition of y that s, < 71; in .

(b) Suppose that ;t; < 7; and that 7; < 71e. Therefore, 7 < 71, because 7t < 7,
implies that for each vertex between s; and 7 is in relation with stp.

(c) Suppose that 7r; < 71 and that 71; < 7. Then m; < 717 implies that there is an
integer 0 < i’ < v; such that i = j —i’. By the condition (ii) of a dual Tamari
diagram, v; = vj_y < v; —i’. Likewise, 71; < 7, implies that there is an integer
0 <j < vj such that j = k — j’. By the same condition (ii), vj = vp_j < v — .
By these two inequalities, one has v, > v; + i’ + j. Since i’ +j = k — i, one
has v, > k — i, which implies by definition of y that 1; <1 71, in 1.

(d) Suppose that 51; <t 71, and that 51, < 71;. Then 717 < 71; because 7, < 7; implies
that all vertex between s; and s, is in relation with ;.
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This shows that s is transitive. Note that it is impossible to have the case 7; <1 71
and s, < 717 since st is the image of a Tamari interval diagram. Getting this case
would contradict the fact that u and v are compatible. Similarly, the case s; < 7;
and s, < 71; is impossible.

(3) Let i < j and s, 717 be vertices of st. Suppose that 7; < 71; and that 7; < 7. By
definition of ¥, s; < 7t if and only if u; > j —i. Likewise, m; < or; if and only if
v; > j —i. However, since u and v are compatible, this case is impossible. This
shows that st is antisymmetric.

(4) The definition of yx implies directly that st satisfies the interval-poset properties,
namely that for all 7t;, 71y and st vertices of st with i < j < k, if m, <7t then 7 <3,
and if 7ty < 71, then 71 < 7.

d

Let n > 0 and x’ be the map sending an interval-poset st of size n on a pair of words
(u,v) € N* x N, such that for all i € [n],

uii=#{men:m<dmandi<jk (1.1.2)
vir=#{mem:m<mandi<j}l (1.1.3)

LEMMA 1.1.3. Letn > 0, m € IP(n) and (u,v) := x'(n). If u; > j—1 (resp. v; >j —1i),
then 7t; < 7; (resp. 7t < 7rj), with 0 <i <j< n.

PrOOE. According to (1.1.2), the fact that u; > j — i means that there are at least j — i
vertices in decreasing relation to the vertex 71;. By the point (i) of interval-poset properties,
this implies in particular that 7r; < 71;. Respectively, we show with the point (ii) of interval-
poset properties that v; > j — i implies that m; < ;. O

THEOREM 1.1.4. For any n > 0, the map x : TID(n) — IP(n) is bijective.

PRrOOE. Let us show that ¥’ is the inverse map of x. Let n > 0, r € IP(n) and (u, v) :=
x' ().

(1) Since s is an interval-poset, there are at most n — i vertices of st in decreasing
relation to sr; and at most i — 1 vertices of st in increasing relation to st; for all
i € [n]. Therefore, the word u satisfies Condition (i) of a Tamari diagram and the
word v satisfies Condition (i) of a dual Tamari diagram.

(2) Let m; and m;.; be vertices of 7 such that i € [n] and j € [0, u;]. By Lemma 1.1.3,
the fact that u; > j means that sr;,; < st;. Thus, by transitivity of interval-posets,
one has that for any i +j < k < n, if 7, < 734, then i, <71 Thus, uiyj +j < uy,
which implies Condition (ii) of a Tamari diagram.

Symmetrically, Condition (ii) of a dual Tamari diagram is checked by considering
7; and 7r;_j vertices of 7t such that i € [n] and j € [0, v].

(3) For all i,j such that 1 < i < j < n and u; > j — i, suppose that v; > j —i. By
Lemma 1.1.3, the relation u; > j — i implies that 7; < 71;. Likewise, the relation
v; > j — i means that 71; < ;. Both of these implications lead to a contradiction
with the antisymmetric nature of interval-posets. Necessarily, we have v; < j —1,
which implies that u and v are compatible.



1. CUBIC COORDINATES AND TAMARI INTERVALS 55

The pair (u, v) is a Tamari interval diagram of size n. Finally, it is clear that x(u, v) = &
by construction. Therefore, the map y is surjective.

Let (u, v) and (u’, v') be two Tamari interval diagrams of size n, such that (u, v) # (u’, v')
and such that ¥(u,v) := o and ¥(u’,v’) := 7’. So there is at least one letter of (u,v) and
(u’, v') such that u; + uj or v; # v;, for i € [n]. Therefore, the number of vertices of 7t in
relation to the vertex st; associated with the component u; and v; by x is different from
the number of vertices of 7’ in relation to the vertex ; associated with the component u;
and v; by x, we thus have 5t # 5'. This shows that the map  is injective. O

The minimalist representation of the interval-posets defined in Section 2.2.3 of Chap-
ter 1 allows us to describe a direct construction of the corresponding Tamari interval
diagram. Indeed, let us consider the minimalist representation of an interval-poset s of
size n. For any relation 51; < 71; (resp. 7t; <1 71;) drawn, with 1 <i <j < n, we set u; :=j — i
(resp. vj := j — i) and all other elements not involved in any relation to 0. This forms a
pair of words (u, v) which is the inverse image of 5t by ¥.

An example is given by Figure 1.7, where a Tamari interval diagram and its interval-
poset which is its image by x are shown.

1.2. Cubic coordinates. We describe in this part the set of cubic coordinates, and we
show that there is a bijection between this set and the set of Tamari interval diagrams.
We end this part with some properties of the cubic coordinates.

1.2.1. Definition. An (n — 1)-tuple ¢ on Z is a cubic coordinate if there is a Tamari
interval diagram (u, v) of size n such that

C = (ll1 —Vo,Ug —V3,...,Up1 — Vn). (121)

The size of a cubic coordinate is its number of components plus one. The set of cubic
coordinates of size n is denoted by CC(n). For instance, (9, —1,2,1, —4,4,3,1, —2) is a cubic
coordinate of size 10 since there is the Tamari interval diagram (9021043100, 0010040002)
satisfying the conditions of the definition.

Besides, for any n > 1, let ¢ be the map sending an (n — 1)-tuple ¢ on Z to a pair (u, v)
of words on N, both of length n, such that u satisfies u, = 0 and for any i € [n — 1],

u; = max(c;, 0), (1.2.2)
and v satisfies vy = 0 and for any 2 <i < n,
v; = |min(c;_4, 0)]. (1.2.3)
1.2.2. Cubic coordinates and Tamari interval diagrams.
THEOREM 1.2.1. For any n > 0, the map ¢ : CC(n) — TID(n) is bijective.

ProoE. Let ¢ and ¢’ be two cubic coordinates of size n such that ¢ # ¢’. Then there is
a component c; such that ¢; # ¢}, with i € [n — 1]. By the map ¢, one has then u; + u; or
Viit # Vi,q, namely (u,v) # (u', v'). Which shows that the map ¢ is injective.
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Let (u,v) € TID(n). Let c := (uy — vp,ug — V3,...,Un_1 — V), the (n — 1)-tuple whose
components are given by the difference between u; and v;,4 for any i € [n — 1]. Now if
u; # 0, then v;,y = 0 for any i € [n — 1]. Therefore, ¢(c) = (u, v), where (u, v) is indeed a
Tamari interval diagram by hypothesis. By the definition of a cubic coordinate, one can
conclude that ¢ € CC(n). This shows that the map ¢ is surjective. O

Therefore, by the map ¢ it is possible to build a cubic coordinate from a Tamari interval
diagram and reciprocally. Graphically, we have to shift the upper part of a Tamari interval
diagram (corresponding to the dual Tamari diagram) to the left by one position and collect
the height of the needles from left to right. Then, we put a positive sign for the needles
of the lower part of the Tamari interval diagram (corresponding to the Tamari diagram)
and a negative sign for the upper part, and we forget the last needle of zero height. To
reconstruct a Tamari interval diagram from a cubic coordinate, we reconstruct the needles
of the Tamari diagram and the dual Tamari diagram from the components of the cubic
coordinate in the same way, and then we shift the dual Tamari diagram to the right by
one position.

Using the map x we can then directly give the cubic coordinate of an interval-poset 7.
In the same way that we shift the dual Tamari diagram one position to the left, we shift
all the increasing relations of the interval-poset to the left by one vertex. Then, for each
vertex i1;, we count the number of elements in increasing or decreasing relation of target
7;, out of reflexive relation, for all i € [n — 1]. These numbers become the components
of positive sign if it is a decreasing relation, negative otherwise, of the cubic coordinate.
As the increasing relations have been shifted, the number associated with the vertex , is
always zero. Therefore, this vertex is forgotten for the cubic coordinate. In the same way,
to construct an interval-poset from a cubic coordinate with each component of a cubic
coordinate, we rebuild the increasing and decreasing relations on n — 1 vertices, we add
the vertex i, then we shift the increasing relations to the right.

1.2.3. Cubic coordinates properties.

LEMMA 1.22. Let n > 0 and ¢ € CC(n) such that there is a component c; + O, for
i € [n —1]. Letc’ be the (n —1)-tuple such that c; = 0 and ¢} = c; for any j + i, with
j € [n —1]. Then ¢’ is a cubic coordinate.

Proor. Let (u’,v') := ¢(c’) and (u}, vj,,) be the pair of letters corresponding to c; by
the map ¢, with j € [n — 1]. Since ¢; = 0, then (u;, v{,) = (0,0). By hypothesis, all other
pairs of letters are the same as those of (u, v) := ¢(c). In order to show that ¢’ is a cubic
coordinate, we have to show that (u’, v') is a Tamari interval diagram, namely that (u’, V')
satisfies the conditions of a Tamari diagram, of a dual Tamari diagram, and of compatibility.

Clearly, with (u;, v/ ;) = (0,0), all these conditions are satisfied for (u’, v'). O

Depending on the case, either the definition of cubic coordinates or the definition of
Tamari interval diagrams is used, as it is done for the proof of Lemma 1.2.2. For example,
the following results are stated for Tamari interval diagrams.
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Let n > 0. A Tamari interval diagram (u, v) of size n is synchronized if either u; + 0
orvi,y # 0 foranyi e [n—1].

Likewise, a cubic coordinate c of size n is synchronized if ¢; # O for any i € [n —1].
The set of synchronized cubic coordinates of size n is denoted by SCC(n).

A Tamari interval (s, t) is synchronized if and only if the binary trees s and t have the
same canopy [FPR17,PRV17]. The definition of the canopy is recalled in Section 1.2.2 of
Chapter 1.

ProposITION 1.2.3. Let n > 0 and (u, v) € TID(n). The Tamari interval diagram (u, v)
is synchronized if and only if p(x(u, v)) is a synchronized Tamari interval.

PrOOE. If (u, v) is not synchronized, then there is an index i € [n — 1] such that u; = 0
and v; 1 = 0. Let 7t := x(u, v) be the interval-poset associated to (u, v), and (s, t) := p(x(u, v)).
The two binary trees s and t are not synchronized if there is at least one letter of some
index j in the canopy of the tree s that is different from the letter of the same index j in
the canopy of t. Let us show that (u, v) is not synchronized if and only if the binary trees
5 and t are not synchronized.

The letter u; is equal to O if and only if there is no descending relation of target s; in
s, namely, if and only if the node i has no right child in the tree s (see Section 2.2.3 of
Chapter 1). To summarize, u; = 0 if and only if the right subtree of the node i is a leaf
oriented to the right. Now, as recall in Section 1.2.2 of Chapter 1, a leaf linked to the node
i is oriented to the right if and only if the i-th letter in the canopy corresponding to s is 1.

Symmetrically, vi;1 = 0 if and only if there is no increasing relation of target ;¢
in 7t, namely, if and only if the node i + 1 has no left child in the tree t. Then, v;;4 = 0
if and only if the left subtree of the node i + 1 is a leaf oriented to the left. As seen in
Section 1.2.2 of Chapter 1, a leaf linked to the node i + 1 is oriented to the left if and only
if the i-th letter in the canopy corresponding to t is O.

To conclude, u; = 0 and v;1 = 0 if and only if the letter of index i in the canopy of
the tree s is different from the letter of index i in the canopy of the tree t. Therefore,
(u, v) is not synchronized if and only if the binary trees s and t are not synchronized. 0O

An interval-poset 5t of size n > 3 is new if
(1) there is no decreasing relation of source 7,
(2) there is no increasing relation of source sy,
(3) there is no relation 71,4 < i1 and 5t < ot with § <.

The definition of a new interval-poset is given in [Rog20].

For any n > 3, a Tamari interval diagram (u, v) of size n is new if the following
conditions are satisfied
i) 0<uy;<n-i-1forallieln-1]
(i) 0<v;<j—2forallje[2n],
(iii) up <l—-k—-1orvy<l—-k—1forall kIe[n]suchthatk+1 <L
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ProPOSITION 1.2.4. Let n > 3 and (u, v) € TID(n). The Tamari interval diagram (u, v)
is new if and only if x(u, v) is a new interval-poset.

PRrOOE. Let us show that st := ¥(u, v) is not new if and only if (u, v) is not new. Theo-
rem 1.1.4 leads to three cases.

* Let us consider the negation of (i) of a new Tamari interval diagram by assuming
that u; = n —i. By Lemma 1.1.3, this implies that s, < 7; with i € [n — 1].
Reciprocally, if s, <1 71; with i € [n — 1], then by the point (i) of interval-poset
properties, all vertices between s; and 1, are in decreasing relation to st;. Since
u; = #{m € m:m; < and i < j}, it implies that u; = n — 1.

* Likewise, by Lemma 1.1.3, if v; = j —1, then my <717 with j € [2, n]. By the point (ii)
of interval-poset properties, we get the converse property.

* According to Lemma 1.1.5, if u; > j — i, then n; < 7, and if v,y > j — i, then
i1 <7y with © < j. We obtain the two converse properties with respectively
the point (i) and the point (ii) of interval-poset properties. Specifically, by setting
l:=j+1 and k := i, we find the formulation of the negation of (iii) of a new
Tamari interval diagram, with k + 1 < L.

O

In [Rog20] it is shown that a Tamari interval is new if and only if the associated
interval-poset is new. With Proposition 1.2.4 we get the following result.

ProposITION 1.2.5. Let n > 3 and (u, v) € TID(n). The Tamari interval diagram (u, v)
is new if and only if p(x(u,v)) is a new Tamari interval.

ProposITION 1.2.6. Let n > 3 and (u, v) € TID(n). If (u, v) is synchronized then (u, v)
is not new.

PRrOOE. Assume by contradiction that (u, v) is synchronized and new. Since (u, v) is
new, one has u; <n —iforie[n-1],and v; <j—1 for j € [2,n]. In particular, up_4 =0
and v, = 0. This implies, since (u, v) is synchronized, that u; # 0 and v,, # 0. Furthermore,
since (u, v) is new, Condition (iii) of a Tamari interval diagram is satisfied. Specifically, for
any k € [n — 2], either up < 1 or vi,o < 1. Let us denote by (x) this condition. Assuming
that uy # 0, since (u, v) is synchronized, one has either us + 0 or vs # 0. By (x), the second
choice is impossible, thus us # 0. By the same reasoning, for every k € [n — 2], up + O.
However, also by assumption one has v, # 0. Therefore, u, o # 0 and v, + 0 which is a
contradiction with (x). O

1.3. Order structure and poset isomorphism. Firstly, we endow the set of cubic
coordinates with an order relation. Then we show that there is an isomorphism between
this poset and the poset of Tamari intervals. The two bijections constructed in the first
two parts of Section 1 allow us to establish this poset isomorphism.

1.3.1. Componentwise order. Let n > 0 and ¢,¢’ € CC(n). We set that ¢ < ¢’ if and
only if ¢; < ¢ for alli € [n —1]. Endowed with <, the set CC(n) is a poset called the cubic
coordinate poset.
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Let (s,t),(s',¢) € int(Te(n)) and let ¥ := ¢' o ¥~ ' o p~! be the map from the Tamari
interval poset to the cubic coordinate poset CC(n). For the next results in all this section, let
us denote by ¢ := ¥((s, 1)), ¢’ := P((s', t)) and (u, v) := ¢(c), (U, V') := ¢p(c’), and 71 := x(u, v),
= xu,v).

LEMMA 1.3.1. If (s',t) covers (s,t) then there is a unique different component c;
between c and ¢’ such that ¢; < c; and there is no cubic coordinate ¢” different from c

and ¢’ such thatc <c”" < c'.

Proor. By Lemma 1.1.1 we know that (s, t') covers (s, t) if and only if ;t and 5" satisfy
either (x) or (¢). Let us assume that st and 7’ satisfy either (x) or (¢) for the vertex 5;. Two
cases are possible.

* Suppose that 7t and 7’ satisfy (x), then since only decreasing relations are added in
7’ relative to 7t, only u’ is modified in (u’, v') relative to (u, v). Furthermore, since
7t is obtained by adding decreasing relations of target ; in 7, only the letter u; in
u’ is increased relative to u. Moreover, since the number of descending relations
added in st is minimal, there cannot be any Tamari interval diagram between
(u,v) and (u’, v'), and thus no cubic coordinate between ¢ and c’. In the end, the
image by ¢~* of (u’,v') is the cubic coordinate ¢’ with ¢{ = uj and cj = ¢; for any
j i

* Suppose that st and 7’ satisfy (o), the arguments are roughly the same, with the
difference that this time, only increasing relations are removed in 7t relative to

st. We obtain that only the component ¢;_; = —v; of ¢’ has increased relative to
c.
In both cases, the implication is true. O

Note that if there is a unique different component c¢; between c and ¢’ such that ¢; < ¢}
and there is no cubic coordinate ¢” different from ¢ and ¢’ such that ¢ < ¢” < ¢/, then in
particular ¢’ covers c. Thus, Lemma 1.3.1 has the consequence that if (s',t) covers (s, t)
then ¢’ covers c.

LEMMA 1.3.2. Letn > 0 and ¢,c¢’ € CC(n). If ¢ < ¢/, then there is a cubic coordinate
¢

(c”).

PRroOOE. The composition of bijections ¢! o x~! associates a pair of words (u,v) to a
pair of comparable binary trees (s, t) such that u encodes the binary tree s and v encodes
the binary tree t. By this composition, u (resp. v) is obtained by counting in s (resp. t)

¢” such that u” = u and v’ = v/, where (u”,v") :=

the number of left (resp. right) descendants of each node for the infix order. Additionally,
we know that if (s, t) <inqta) (§', '), then the interval (s, t') is a Tamari interval because we
always have s <, §' <t . The construction of ¢ o x~' and the fact that (s, t) is a Tamari
interval imply that the pair (u, v') is always a Tamari interval diagram. Therefore, ¢” is a
cubic coordinate. O

For any c,c’ € CC(n), let
D7 (c,c):={d : cq #+ cj and c; <0}, (1.3.1)
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and

D*(c,c'):={d : cq #cyand cq >0}. (1.3.2)

Now consider the case where ¢ and ¢’ share either their Tamari diagrams or their
associated dual Tamari diagrams, then we have the two following lemmas.

LEMMA 1.3.3. Letn > 0 and c,c¢’ € CC(n). If ¢ < ¢’ such thatu = u’ and #D~(c,¢’) =
r, then there is a chain

<c =cO,cW, .., clrh i = c’), (1.3.3)
such that #D~(ctY,c) =1 for all i € [r].

PRrROOE. Let
D_(C,C,) = {d1,d2,...,dr} (1.3.4)

with dp_41 < dg for all k € [2,r]. For any k < [r], let c® be a tuple obtained by replacing
in ¢ all the components cq4, by the components c&i for i € [k]. The tuple c® is a cubic
coordinate. Indeed, by denoting ¢(c®) by (u®, v(¥)), one has that u®) = u = u’/, so the
compatibility with v(k) is always satisfied. Therefore, the only thing to check is that vk jg

a dual Tamari diagram. Condition (i) is naturally satisfied. Since ¢ < ¢’, one has v; > v;

for all i € [n]. Therefore, Condition (ii) is satisfied because for i € [dg] and j € [i + 1,n],

Vi(k) = v; and V;k) = vj, and so V;k) - Vi(k) =V —V, > vj— v >j—1i The word v** is then a

dual Tamari diagram. Consider the chain
<C =cO,cW, el i = c'). (1.3.5)

For all i € [r], since we change only one component between c~! and ¢, one has
#D~(cl-1,c®) = 1. O

LEMMA 1.3.4. Letn > 0 andc,c’ € CC(n). Ifc < ¢’ such thatv = v and D*(c,c’) = s,
then there is a chain

(C =c M, . el el = c’>, (1.3.6)
such that #D* (ct=,c0) =1 for all i € [s].
PRrOOE. The proof is similar to the demonstration of Lemma 1.3.3. Let
D*(c,c’) = {dy,dy,...,ds} (1.3.7)

with dp_1 < dg for all k € [2,s]. For any k € [s], let c®) be a tuple obtained by replacing
in c all the components ¢4, by the components c; for i € [k]. As we did in the proof of
Lemma 1.3.3, we can check that, for any k ¢ [s], the tuple c® is a cubic coordinate. Then,
by consider the chain

(c =c@,cl, el el = c’>, (1.3.8)

one has that #D* (c(i=Y),c() = 1 for all i € [s]. O
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1.3.2. Poset isomorphism.
THEOREM 1.3.5. For any n > 0, the map v is a poset isomorphism.

ProOOE. The map ¢ is an isomorphism of posets if ¥ and its inverse preserves the
partial order. As these relations are transitive, Lemma 1.3.1 gives the direct implication.
Suppose that ¢ < ¢’. According to Lemma 1.3.2, Lemma 1.3.3 and Lemma 1.3.4 there is
always a chain between ¢ and ¢’ such that the components are independently increasing
one by one. So we can see what happens when we change only one component c; by c;
at any step between ¢ and c'.

Obviously, if ¢; = cj, then u; = u; and v;41 = v/, and no changes are made between
the corresponding binary tree pairs. Suppose that ¢; < ¢}, then three cases are possible.
x Suppose that c; is positive and c; is positive or null. The image by ¢ of ¢ and
c’ differ for the letter u;, namely ¢; = u; and ¢; = u;, and v;,4 = v,y = 0. The
difference of a letter u; between (u, v) and (u’, v') is directly translated by the map
x: the interval-poset ;1" has more decreasing relations of target 71; than the vertex
7; in st. By the map p, it means that to go from the tree s to the tree s at least
one right rotation of the edge (i, j) is made, where j is the father of the node i
in s.
x Symmetrically, assume that c; is negative or null, then c¢; = -v; ;, ¢; = —v;44 and
u; = u; = 0. By the map y, the interval-poset ;1" has less decreasing relations of
target ;.4 than the vertex ;.1 in st. This implies by p that to pass from the tree
t to the tree t' at least one right rotation of the edge (k,i + 1) is made, where k is
the right child of the node i + 1 in t.
% Finally, with Lemma 1.3.2, the case where c; is negative and c; is positive falls into
the conjunction of the two previous cases.
Therefore, ¢ < ¢’ implies that (s, t) Sinqa) (8", ). Hence, the map @ is an isomorphism
of posets. O

Let us denote by < the covering relation of the poset CC(n).

ProposiTION 1.3.6. Let n > 0 and c,c¢’ € CC(n) such that c <c’. Then, there is a
unique different component between ¢ and c'.

Prook. It is a consequence of Theorem 1.3.5 and Lemma 1.3.1. O

The following diagram provides a summary of the applications used in Section 1. Re-
call that ¥ = ¢~1oy~1op~?, therefore this diagram of poset isomorphisms is commutative.

TID(n) % IP(n)
¢ p (1.3.9)

CC(n) # int(Ty(n))

A consequence of the poset isomorphism v is that the order dimension of the poset
of Tamari intervals is at most n — 1 (see Section 1.3.3 of Chapter 1).
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2. Geometric properties

In this section, we give a very natural geometrical realization for the lattices of cubic
coordinates. After defining the cells of this realization, we give some properties related to
them. Finally, we show that the lattice of the cubic coordinates is EL-shellable.

2.1. Cubic realizations. Theorem 1.3.5 provides a simpler translation of the order
relation between two Tamari intervals. We provide the geometrical realization induced
by this order relation which is natural for cubic coordinates. In a combinatorial way we
study the cells formed by this realization.

2.1.1. Space embedding. For any n > 0, the cubic realization of CC(n) is the geomet-
ric object ¢(CC(n)) defined in the space R"~! and obtained by placing for each ¢ € CC(n)
a vertex of coordinates (cy,...,cn—1), and by forming for each c¢,c¢’ € CC(n) such that
c < ¢’ an edge between ¢ and c'. Every edge of €(CC(n)) is parallel to some vector in the
canonical basis of R*~!.

FIGURE 2.1. €(CC(3)).

Figure 2.1 is the cubic realization of CC(3), where the elements are the vertices and
the edges are the covering relations. Figure 2.2 is the cubic realization of CC(4). In these
drawings the negative sign components are denoted with a bar.

In algebraic topology, to define the tensor products of A,,-algebras, one can use a cell
complex called the diagonal of the associahedron. This complex has notably been studied
by Loday [Lod11], by Saneblidze and Umble [SUO4] or by Markl and Shnider [MSO06].
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More recently, there is a description of this object in [MTTV19]. The realization of this
complex seems to be identical to the cubic realization, up to continuous deformation.

2.1.2. Minimal increasing map. Let n > 0. We define the set of

* input-wings as the set $(CC(n)) containing any ¢ € CC(n) which covers exactly
n — 1 elements,

* output-wings as the set O(CC(n)) containing any ¢ € CC(n) which is covered by
exactly n — 1 elements.

Let n > 0 and ¢ € CC(n). For i € [n — 1], the covering map 1; sends c to its covering
differing only at index i, when such covering exists. We denote by T c; the letter which
differs in 1; (c).

In particular, for n > 0, a cubic coordinate ¢ of size n is an output-wing if for any
€ [n —1], 1; (c) is well-defined.

Let n > 0 and ¢ € CC(n), and (u,v) := ¢(c). If T c; is positive, then the letter u;
increases and becomes equal to T ¢; and v;,4 is equal to 0. Then, we define T u; :=1 ¢;. If
1 ¢; is negative or null, then v;,4 decreases and becomes equal to | T ¢;| and u; is equal to
0. Then, we set | vi 1 := — T ¢;.

LEMMA 2.1.1. Letn > 0 and ¢ € CC(n), and i € [n — 1] such that 7; (c) is well-defined.
Then,
(i) if c; <0, then T ¢c; <0,
(ii) if ¢; > 0, then T ¢; > O.

PRrOOE. Let us show the first implication, the second being obvious because the cov-
ering map always strictly increases a component. Let ¢; < 0, and let ¢’ be the (n — 1)-tuple
such that ¢; = 0 and ¢} = ¢; for any j # i, with j € [n — 1]. By Lemma 1.2.2, ¢’ is a cubic
coordinate. Asc < ¢’ and they differ only at the i-th component, by the definition of 7; (c),
we have ¢ <7; (c) < ¢/, thus T ¢; <c; =0. O

Let ¢ € CC(n). For all i € [n], let

i (e) :=Ti (Tist « o« (Tn-1 (Tn (), (2.1.1)
with the convention that T, (¢) := ¢. For instance, for ¢ € CC(5), 12 (¢) =12 (13 (T4 (15 (c)))).

LEmMMA 21.2. Let n > 0 and ¢ € O(CC(n)). For alli € [n], {; (c) is a cubic coordinate.

Proor. For i = n, one has by convention that , (c) is a cubic coordinate. Let us
suppose that for i € [n —1], 121 (c) is a cubic coordinate, and let us show that {; (c) is also
a cubic coordinate. Depending on the sign of ;.1 (c);, two cases are possible.

Suppose that 1.1 (¢); < 0. In this case, consider ¢’ the (n — 1)-tuple obtained from
Ti+1 (c) by replacing the component {;,4 (c); by 0. By Lemma 1.2.2, ¢’ is a cubic coordinate.
Since fi41 (c); < 0 one has {41 (c) < ¢’. If ¢’ covers {i.1 (c), then ¢’ =1; (c). Otherwise,
it is always possible to find another cubic coordinate ¢” between ;.1 (¢) and ¢’ such that

=11 (c). In both cases, {; (c) is a cubic coordinate.
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Suppose that 1;41 (¢); > 0. Let us set (u, v) := ¢(c), and (x,y) := ¢(Ti41 (c)). Since u; is
not changed yet in x, one has x; = u;. Due to Condition (ii) of a Tamari diagram and the

compatibility condition, there are two configurations, involving indices, which can make

contradiction with the fact that (x, y) is still a Tamari interval diagram when x; becomes

Txi.

(1)

If there is an index j such that 1 <i <j<nandy; >j—iiny, then, since y; < v,
one has v; > j —1i in v. By the compatibility condition, that implies u; < j —i in u.
Moreover, since ¢ is assumed to be an output-wing, u; < j —i — 1 in u, so that u;
can be increased. This inequality remains true in x.

If there is an index h such that 1 < i — h < uy, by Condition (ii) of a Tamari
diagram, u; < up —i + h in u. This remains true in x because components with
index smaller than i remain unchanged between ¢ and {;.1 (c). Furthermore,
since c is an output-wing, then u; < up — i + h. This inequality remains true for

fis1 (C).

With these two configurations, let us build a cubic coordinate ¢’ different from ;.1 (c)

only for ;41 (c);, depending on which choices are available to increase u;. Let us set

(W', v) = ¢(c').

(a)

(c)

(d)

Suppose there is a j satisfying (1), and there is no h satisfying (2) in ;1 (c). In
this case, by choosing the minimal index j such that (1) holds, we set u} := j—i —1
in ¢’. Thus, u; is also minimized, and since u; < j — i, the compatibility condition
is satisfied in ¢’. Furthermore, since 1,1 (c) is assumed to be a cubic coordinate,
all conditions in a Tamari diagram and a dual Tamari diagram are satisfied for c’.
Therefore, our candidate ¢’ is a cubic coordinate. Note that in the construction
of ¢/, other possible not minimal j satisfying (1) will not cause any problem.
Suppose there is an h satisfying (2), and there is no j satisfying (1) in ;.1 (c).
Then, by choosing the minimal index h such that (2) holds, we set u; := u; —
i + h. Therefore, Condition (ii) of a Tamari diagram is satisfied for u’. Also, by
Condition (i) of a Tamari diagram, u;, < n — h which implies u; < n —i. Finally,
the compatibility condition is also satisfied because it was assumed that there was
no j satisfying (1). The tuple ¢’ is thus a cubic coordinate. As for the previous
case, other possible not minimal h satisfying (2) will not cause any problem.
Suppose there is a j and an h satisfying (1) and (2) in 1.1 (c). In this case, we set
u; := min{uy, —i+h, j—i—1}. By the two previous cases, the tuple ¢’ is a cubic
coordinate.

Otherwise, we set u; := n — i. The tuple ¢’ is a cubic coordinate.

In any case, for u; fixed in ¢/, either ¢’ covers ;11 (c), and so ¢’ =1; (c), or there is a
cubic coordinate ¢” between {i,1 (c¢) and ¢’ such that ¢” =1; (c). In both cases, {; (c) is a

cubic coordinate, and differs by only one component from c’. O

Let n > 0 and ¢ € O(CC(n)). The cubic coordinate f; (c) is the corresponding input-

wing of ¢ (the name comes from a corollary of Theorem 2.1.3).



2. GEOMETRIC PROPERTIES 65

For instance ¢ = (0, -1,1, -1, -5,0,1, —1, —3) is an output-wing, and its corresponding
input-wing is 11 (¢) = (1,0,2,0, —4,3,2,0, —2). By Lemma 2.1.2 such an element does exist.
Note that performing the covering map on c in a different order than the one prescribed
by (2.1.1) does not always result in the corresponding input-wing. This observation can
already be made on the two pentagons of Figure 2.1.

2.1.3. Cubic cells. In Figure 2.1 and Figure 2.2, we notice that a "cellular” organization
appears. Thanks to the cubic coordinates, a combinatorial definition of these cells is pro-
vided. The aim is to have a better understanding of the realization of the cubic coordinate
posets as a geometrical object.

For any n > 0, let ¢,¢’ € CC(n) such that ¢ < ¢’. A cell is the set of points
(c,c/)i={xeR"™ :c; <x;<c|forallic[n-1]}. (2.1.2)

By the definition, a cell is an orthotope, that is, a parallelotope whose edges are all mutually
orthogonal or parallel. The dimension dim{c,c’) of a cell {(c,c’) is its dimension as an
orthotope and it satisfies dim(c,c¢’) = #D(c,¢’), where D(c,¢’) := {d : cq + cj}.

From now on, we denote by c°"' any output-wing and by c™ its corresponding input-
wing. Any particular cell (c°",c") formed by an output-wing and by its corresponding
input-wing is called a cell-wing.

A consequence of Lemma 2.1.1 is that for any cell-wing (c°", c™") of dimension n — 1,
forallie[n—1]
(i) if ¢ < 0, then ¢ < 0,
(i) if c?" > 0, then ci" > 0.
THEOREM 2.1.3. Let n > 1 and (c®™,c™) be a cell-wing of dimension n — 1, and c be
a (n — 1)-tuple such that for all i € [n — 1], the component c; is equal either to c?™

2 or fo
c. Then c is a cubic coordinate.

Prook. If all the components of ¢ are equal to those of ¢ (resp. to those of c™), then
c is a cubic coordinate. Suppose this is not the case, meaning that ¢ has components of
c® and c™".

out
i

out ,out
i Y

Let us denote (u oul) (resp. (ul, vi,)) the pair of letters corresponding to ¢ (resp.
c¢") and (u;, vi.1) the one corresponding to c; for any i € [n — 1]. By hypothesis on c°*
and c™ the letter u; which is equal to ulf’“‘ or u;:“ satisfies 0 < u; < n —i for any i € [n].
Similarly, the letter v; which is equal to v or V;n satisfies 0 < v; <i -1 for any i € [n].
In order to show that ¢ is a cubic coordinate, let us prove that u satisfies Condition (ii) of
a Tamari diagram, v satisfies Condition (ii) of a dual Tamari diagram and (u, v) satisfies

the compatibility condition.

(i) Let us show that for any choice of letters u; and u;,; with i € [n] and j € [0, u;]
one has u;; <u; —J.
* If u; and u;,; are equal respectively to up™ and to ufy} (resp. to u™ and to
u}‘;j), then Condition (ii) of a Tamari diagram is satisfies because c°" (resp.
c") is a cubic coordinate.
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* Suppose that u; = u" and u;,; = uf}¥. By the definition of ¢ one has uf}} <
u;y;. However u;}; < ui” —j because ¢™ is a cubic coordinate. Therefore,
Condition (ii) of a Tamari diagram is satisfied.
* Suppose that u; = uf™ and wiy; = uff;. Let ¢’ :=fiy; (™). According to
Lemma 2.1.2 ¢’ is a cubic coordinate such that ¢; = u™ and c;j,; = uff,.
Since Condition (ii) of a Tamari diagram is satisfied for ¢’, it must also be
satisfied for c.

(ii) Condition (ii) of a dual Tamari diagram is satisfied with similar arguments given
for the previous case, applied to the dual Tamari diagram v.

(iii) Rather than showing the compatibility condition as it is stated, let us show the
contrapositive. That is, for every 1 < i < j < n such that v; > j — i, let us show
that u; <j —1i.

* Clearly, if u; and v; are equal to uf™ and v?™ (resp. to uj" and v}"), then the
compatibility condition is satisfied.

* Suppose that u; = u™ and v; = v". If v > j — i, then for c®' one has
V]?’“t > j — i because V}“ < V;’“‘. Since c°" is a cubic coordinate, this implies
that u?™ < j —i.

* Suppose that u; = uj” and v; = v If vP" > j — i, then for all k ¢ [i,j —
1], ug™ < j — k because c° is a cubic coordinate and then satisfies the
compatibility condition. Moreover, since ¢ € O(CC(n)) each component
can be minimally increased independently of the others, thus u" < j —k —1
for all k € [i,j — 1]. For the same reason u;;n < u; —h for all h € [0, u;].
These two reasons imply that if one builds the cubic coordinate ¢’ =1; (c®),
then by the definition of the covering map one has c; = u; < j — i, because at
worst, the covering map sends u™ to j —i — 1 (we have already seen this in
the proof of Lemma 2.1.2). However, by the definition of ¢ one has u = u/,
that is u]” < j —i. Therefore, the compatibility condition between u™ and v

is satisfied for c.

Thus, for all choices of letters of u and v one has that ¢ is a cubic coordinate. ]

One of the direct consequences of Theorem 2.1.3 is that for every cell-wing (¢, cM),
at least 2"~! cubic coordinates belong to this cell.

This theorem also implies that a corresponding input-wing covers n — 1 cubic coordi-
nates, and so is in particular an input-wing.

Moreover, due to the fact the Tamari interval lattice is self-dual, the number of output-
wings is equal to the number of input-wings. Therefore, by Theorem 1.3.5, an input-wing
is always a corresponding input-wing of some output-wing.

Letn >0, and € € {-1,1}""%, and ¢ € CC(n). The e-region of c is the set
Rele) := {(xy,...,xn1) € R @ x;<ciife =1, xi > ¢ otherwise }. (2.1.3)

The cubic coordinate c is external if there is € € {—1,1}"*"! such that CC(n) N Rc(c) = 0.
The e-region R.(c) is then empty. Otherwise, c is internal.
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ProposITION 2.1.4. Let n > 0 and ¢ € CC(n). If ¢ is internal, then ¢(c) is a new
Tamari interval diagram.

ProOE. Instead, let us show that if ¢(c) is not new, then c is external. Let us denote
(u;, vi41) the pair of letters corresponding to c; by the map ¢ for i € [n —1].

Tamari interval diagram ¢(c) is not new if there is

(1) either i € [n — 1] such that u; = n — i,

(2) orj € [2,n] such that v; =j -1,

(3) ork,le[n]suchthatuy =l -k —-1andy,=1-k -1 withk+1<1L
Suppose there is some i satisfying (1), then there cannot be a cubic coordinate ¢’ such that
c¢; > c¢; because, by the definition of a Tamari diagram, c; < n — i. Similarly, if we assume
that there is j satisfying (2), then there cannot be a cubic coordinate ¢’ such that c]f,i < Cjq
because by the definition of a dual Tamari diagram, c]’._1 > 1 —j. If (3) is satisfied, then
there cannot be a cubic coordinate ¢’ such that ¢, > ¢, and ¢;_; < c;_1. Indeed, if the
letters up and v; are increased in ¢, then the compatibility condition is contradicted, so the
result cannot be a cubic coordinate. Since in each case at least one e-region is empty, c is
external. O

ProposiTION 2.1.5. Let n > 0 and ¢ € SCC(n). Then c is external.

ProOOE. By Proposition 1.2.6 we know that if ¢ is synchronized, then ¢(c) is not new.
Now, we just saw from Proposition 2.1.4 that if ¢(c) is not new, then c is external. O

2.2. Cells and volumes. We know that each cell-wing contains at least 2"~! cubic
coordinates on the edges. In this section, we show that it is possible to associate bijec-
tively each cell-wing to a synchronized cubic coordinate. Finally, we deduce a formula to
compute the volume of the cubic realization.

2.2.1. Cells and synchronized cubic coordinates. Let n > 1 and (co‘“,ci“) be a cell-
wing of dimension n — 1 and 7 be the map defined by

out J out
out in) . {ci if "' <0,

(e, c; (2.21)

e if ¢ >0,

for all i € [n — 1]. Note that the components returned by the map 7 are never zero. Let
denote by (uf, v?") (resp. (ul", vi1,)) the pair of letters corresponding to ¢ (resp. c")

by the map ¢, for any i € [n — 1]. Thus, the map 7 becomes

oo {va if ¢t <0,

ulh i > 0.

out in

7(ei™, ¢ (2.2.2)

Let I be the map defined by
[(e™, e") 1= (y(ef™, off), 7(e§™ cf), .. 7lesy i) (223)

For instance, the cell-wing ((0, -1,1, -1, -5,0,1, -1, -3),(1,0,2,0, —4,3,2,0, —2)) is sent
by T to (1,-1,2,-1,-5,3,2, -1, -3).
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1,2,3)

FIGURE 2.2. €(CC(4)).

THEOREM 2.2.1. For any n > 1, the map I' is a bijection from the set of cell-wings of
dimension n — 1 to SCC(n).

PRrROOE. The components of I'(c®™,c") belong to either c° or c¢™. In both cases, it
is a non-zero component. According to Theorem 2.1.3, ['(c°%,c™") is therefore a cubic
coordinate of size n. Moreover, this cubic coordinate is synchronized because none of its
components is null.

Let (c®", c™) and (e°", ei") be two cell-wings of dimension n —1 such that I'{c®", c") =
['(e®, ). Let us denote (uf"!, v?¥f) (resp. (ul®, vi",)) the pair of letters corresponding to
e (resp. ¢") and (xPU, y2) (resp. (x/",yi",)) the pair of letters corresponding to e™

(resp. el") by the map ¢, for all i € [n —1].

To suppose that [(c®%,c") = ['(e°", ") is equivalent to suppose that for alli € [n —1],

7, cin) = y(e™, el"). The map I is injective if, for every i € [n — 1], ¢ = e and
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Suppose that there is some index i such that c" # ef" or ¢ # e, and we take

the smallest such index. Then, two cases have to be considered: either 7(c°“‘,ci“) =ul

or y(c;

out

(2) Suppose that y(c?,ci") = —v?". In this case y(e?™, el") = —y* and v} = youi.
By rephrasing the arguments of the case (1) for the dual, we show that ¢ = et
and ci" = el".

’Ci)= —V.

* In this case, y(e;

i
out
i+1°

1) Suppose that y(c?", ch) = ul"
( pp

out gin) — xi“ and ul"® = xI". Moreover, since u® # 0 (resp.

x # 0), then necessarily v/, = 0 (resp. y, = 0). Therefore, ¢ = e".

On the other hand, the fact that ul" > 0 (resp. x" > 0) implies by Lemma 1.2.2
that 0 < uf"' < ul™ and v?"} = 0 (resp. 0 < x?' < x" and y?“} = 0). Thus, one
has v} = yf’}r‘{ Therefore, the only way for the hypothesis to be true is that
ulput 7& xiout.

Without loss of generality, suppose that uf" < x?'. By the definition of the
covering map, one has x?"' < xI". This implies, in addition to the hypothesis
that x™ = ul®, that up"' < x?"* < ul™.

Let ¢ ;=41 (€®) and e :=17;,1 (€°"), both cubic coordinates by Lemma 2.1.2.
By construction, ¢; = c]"llt (resp. e; = e]‘-’“’) for all j € [i] and cp = c® (resp.
ep=el") forallkefi+1,n—1].

By minimality of i, we have that ¢; = e; for all j € [i]. Moreover, by the
hypothesis that T'{(c°,c™) = I'(e°™,e"), we have that ul® = xI" for k ¢
[i+1,n—1]. Indeed, if ul® > 0 (resp. x}" > 0) then necessarily g/(cg“‘,ck) =ul
(resp. y(ep™, el) = xi") and so u} = xj". Otherwise, uj’ = x{" = 0. Note that
because we know nothing about vi* and yi* for k € [i + 2, n], we cannot say
that 7; (c) and 7; (e) are equal.

Now, let ¢’ be a tuple such that ¢; = x{"" and ¢} = ¢; for all j # i and let (u',v')
the pair of words corresponding to ¢’ by the map ¢. Let us show that ¢’ is a
cubic coordinate.

out

By construction, since the word v’ is the dual Tamari diagram of ¢, v’ is a
dual Tamari diagram. Likewise, since the word u’ is the Tamari diagram of
1; (e), u’ is a Tamari diagram.

Moreover, we know that between c, ¢’ and 7; (c), only one positive letter
changes, with ¢; = uf™ Mand 1T ¢ = ul,
that uf"' < x? < ul". Since the letter ul® satisfies the compatibility condition

with the letters of v'" in 1; (c), then all letter lower in position i satisfies

) c = X in and we have established

this condition as well. Therefore, u’ and v’ are compatible and ¢’ is a cubic
coordinate distinct from ¢ and 7; (c¢) such that ¢ < ¢’ <7; (c).

However, if ¢’ is a cubic coordinate, then by the definition of the covering
map 1 ¢;:=ul = xf"”, and so 1; (c) :=1; (c®") = ¢’. This is not possible with

the assumption that ul® = x/", and so that y(c?",c) = y(e™, e).

i
out

This shows that the map I is injective.
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Now let us show that the cardinal of the set of cell-wings of dimension n —1 is equal to
the cardinal of SCC(n). Recall that the set of cells of size n is exactly O(CC(n)). Further-
more, by the poset isomorphism ¥ we know that these elements are the Tamari intervals
having n —1 elements covering in the Tamari interval lattices. In [Cha18] Chapoton shows
that the set of these Tamari intervals has the same cardinal as the set of synchronized
Tamari intervals (see Theorem 2.1 and Theorem 2.3 from [Chal8]). Finally, Proposi-
tion 1.2.3 allows us to conclude that the cardinal of SCC(n) and the cardinal of the set of
cell-wings of dimension n — 1 are equal. Thus, the map I" is bijective. O

Let us also defined the map ¥ by

. cin if ¢ <0,
plep el = 10 O 224
Cj if c?™ >0,
for all i € [n —1]. Then T is defined by
P(e™, o) o= (e, e, 7leg™, ). Fey, e ) 225)

By Theorem 2.1.3, ['(c®", ¢} is a cubic coordinate belonging to (c°%,c™™), called oppo-
site cubic coordinate. For the synchronized cubic coordinate ¢ associated with (c°", c™")
by I', denote c°P the opposite cubic coordinate. All the components of c°P are different
from those of ¢, and these differences are the greatest possible. For any synchronized
cubic coordinate ¢, such a cubic coordinate c°P always exists and is unique.

Note that the map I' only returns the positive components of ¢™ and the negative
components of c®. Conversely, the map I’ returns the positive components of c°* and
the negative components of c¢™. We already know that the latter combination is always
possible for any comparable cubic coordinates according to Lemma 1.3.2. On the other
hand, this is not the case for the first mentioned combination.

2.2.2. Volume of €(CC). Now let us take a closer look at the geometry of the cubic
realization. We already know that there are at least 2"~' cubic coordinates forming an
outline of each cell-wing. The following notions will allow us to say more.

A point x of R*! is inside a cell (¢, ¢’} if, for any i € [n—1], ¢; # ¢} implies ¢; < x; < c}.
A cell (c,c’) is pure if there is no cubic coordinate inside {(c,c’). The volume vol{c,c’) of
(c,c’) is its volume as an orthotope and it satisfies
vol(c,c') = l—[ (c; — ci). (2.2.6)
ieD(c,c’)
LEMMA 2.2.2. Let n > 1 and (c®™,c™) be a cell-wing of dimension n — 1. The cell
(e, cM) is pure.

PRrOOE. Suppose there is a cubic coordinate ¢ such that ¢ < ¢; < c¢I" for all i €
[n —1]. By Lemma 2.1.1 we know that if ¢/ < 0, then ¢ < 0 and if ¢/ > 0, then
¢ > 0. However, since ¢ < ¢; < ¢!, then ¢; is different from 0. In the end, if such
a cubic coordinate ¢ exists, it would be synchronized. But then, there would be a cubic
coordinate both synchronized and internal by hypothesis. This is impossible according to
Proposition 2.1.5. O
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We showed with Theorem 2.1.3 that each cell-wing contains at least 27! cubic coordi-
nates. By Lemma 2.2.2, we know that each cell-wing (c°", ¢") is pure, and then has only
cubic coordinates on its border.

Let n > 1 and (c®",c™) be a cell-wing of dimension n — 1. Since between c°" and c™
all components are different, one has D(c®™,c™™) = n — 1, and so the volume of {c®",c")

satisfies
n-1

vol(c®™, ") = l_l(cin —cuh). (2.2.7)
i=1
Let us denote by c® the cubic coordinate such that ¢! = 0 for any i € [n —1]. To
compute vol(c®™, c") from the synchronized cubic coordinate c associated by I', we must
first compute the volume of the cell formed by c% and c.

By Lemma 2.1.1, any cell-wing is included in an e-region of the cY cubic coordinate.
This means that no cell-wing can be cut by a line passing by the origin ¢ and a cubic
coordinate of the form (0,...,0,1,0,...,0) or (0,...,0,-1,0,...,0).

According to Lemma 1.2.2, for any cubic coordinate, replacing any component by 0
gives a cubic coordinate. In other words, for any cubic coordinate c, there are n — 1 cubic
coordinates related to ¢ which are its projections on the lines passing by c¢® and a cubic
coordinate of the form (0,...,0,1,0,...,0) or (0,...,0,-1,0,...,0). Therefore, even if c°
and c are not comparable, we consider the cell, denoted by (c), between c° and c, such
that the volume of this cell satisfies

vol{c) = I_! il (2.2.8)
ieD(c,c?)
Note that the dimension of a cell is less than or equal to n — 1. Moreover, (c) can be
no-pure, and may even contain other cells of the same dimension.

By the map I', the components of the synchronized cubic coordinate ¢ of the cell-wing
(%, ci") are the greatest in absolute value between c® and c™™. Therefore, in the cell-
wing (c®,ci"), ¢ is the furthest cubic coordinate from c’. In particular, (c) contains the
cell-wing (c°", ¢} and the dimension of (c) is n — 1.

Let n > 0 and ¢ € SCC(n). Since by the definition, all components of ¢ are different
from 0, one has D(c,c®) = n — 1. Therefore,

n-1
vol(c) = [ [leil. (2.2.9)
i=1

Let us endow the set SCC(n) with the partial order < such that for ¢,c¢’ € SCC(n)
one has ¢’ s ¢ if ¢} and ¢; have the same sign and |c¢{| < |c;| for any i € [n —1].

LEMMA 2.2.3. For any n > 1, let (c®,c™") be a cell-wing of dimension n — 1, and
c = [{c®,c). For any x € R*! such that x € {(c), if x ¢ (c®,c™), then there is
¢’ € SCC(n) different from c such that ¢’ <s ¢ and x € {(c¢’).
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PROOE. Let c° be the opposite cubic coordinate of c. Since x ¢ (c®",c™") and x € (c),
then necessarily c° # c°. For the same reasons, there is an index i such that |x;| < |c;”
where ¢ # 0. Let us build from such index i the (n — 1)-tuple Vc such that V¢; = ¢;”
and Vc¢;j = cj for all j # i. According to Theorem 2.1.5, Vc is a cubic coordinate and

belongs to the cell-wing (c®",ci"). Also, Vc is a synchronized cubic coordinate which
satisfies V¢ <5 ¢ and which is different from c. We can then associate to V¢ a cell, which
is strictly included in (c). Then x € (Vc). O

Since by Lemma 2.2.2 all cell-wings are pure, Lemma 2.2.3 implies that (c) C [ [, . r(c"),
and since the reciprocal inclusion is obvious, one has the following result.

LEMMA 2.2.4. Let n > 0 and ¢ € SCC(n). Then
e)y=1]re. (2.2.10)
c'Ksc
Let n > 0 and ¢ € SCC(n). The synchronized volume of ¢ is defined by
sv(c) := vol{(c) — Z sv(c’). (2.2.11)
cc’jjcc
Note that (2.2.11) is a Mobius inversion [Stal2].

PROPOSITION 2.25. Let n > 1 and (c®,c™™) be a cell-wing of dimension n — 1. By
setting c := I'(c®™,c™"), we have

vol(c®, c™™) = sv(c). (2.2.12)
Proor. This is a consequence of Lemma 2.2.4 and of (2.2.11). O

With Proposition 2.2.5 we are able to compute, for any n > 0, the volume of ¢(CC(n))
depending on synchronized cubic coordinates,

vol(€(CC(n))) = Y svlc). (2.2.13)
ceSCC(n)

2.3. EL-shellability. For this section, we refer for definitions and conventions to Sec-
tion 2.3 of Chapter 1.

For the sequel, we set A as the poset Z° wherein elements are ordered lexicographi-
cally. Let (c,c’) € < such that, fori € [n —1], ¢; < ¢}, and let A : < — Z be the map defined
by

Me,c) = (g,i,ci), (2.3.1)
-1 ifc; <O,

where € :=
1 else.

Note that by Proposition 1.3.6, the index i such that c; < c; is unique.
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THEOREM 2.3.1. For any n > 0, the map A is an EL-labeling of CC(n). Moreover,
there is at most one A-decreasing chain between any pair of elements of CC(n).

PRrOOE. Let c,c’ € CC(n) such that ¢ < ¢’. By Lemma 1.3.2, there is a cubic coordinate
¢” such that u” = u and v’ = v’ with (u”, v") := ¢(c”). Let

D‘(c,c”) = {dy,dy,...,d;} (2.3.2)
with dp_4y < dj for all k € [2,r], and
D+(c",c’) = {dj,d;,...,d.}, (2.3.3)

with d,_; < dj, for all k € [2,s].
By Lemma 1.3.3, there is a chain between ¢ and ¢”

(c,c“),...,c(’“"”,c(’“) = c”), (2.3.4)

where, for k € [r], c®) be a cubic coordinate obtained by replacing in ¢ all the components
cq; by the components cy for i € [k].

By Lemma 1.3.4, there is a chain between ¢” and ¢’

<c",c’(1), e ) < c’), (2.3.5)

where, for k € [s], ¢'®! be a cubic coordinate obtained by replacing in ¢” all the components
cg, by the components c; for i € [k].

Let us consider the chain obtained by concatenating the two chains (2.3.4) and (2.3.5).
Since in this chain only one component differs between two consecutive cubic coordinates,
a saturated chain g can be constructed by considering all the cubic coordinates between
them. For both chains (2.3.4) and (2.3.5), the components are independently increasing
one by one from the left to the right. By construction, it implies that p is A-increasing for
the lexicographic order induced by (2.3.1).

Moreover, any other choice of saturated chain between ¢ and ¢’ implies choosing, at
a certain step k, a greater label for the lexicographical order than the label (g, k, c) of
p, and then having to choose the label (g, k, c) afterwards. Thus, in addition to being
A-increasing, the saturated chain p is unique and is A-minimal among all saturated chains
from c to c'.

If a saturated chain A-decreasing exists between ¢ and ¢/, it is built by first changing the
different and negative components between ¢ and ¢” from right to left, and then changing
the different and positive components between ¢” and ¢’ from right to left. For the same
reason that any saturated A-increasing chain is unique for any interval, if it exists, the
A-decreasing chain is also unique. O

For instance, in Figure 2.1, the A-increasing saturated chain between (-1, —2) and (2, 1)

is the chain
((-1,-2),(0,-2),(0,-1),(0,0),(1,0),(2,0), (2,1)), (2.3.6)

and

AM=1,-2),...,2,1)) = ((=1,1, -1),(=1,2, —2), (=1,2, —1),(1,1,0), (1,1,1),(1,2,0)). (2.3.7)
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CHAPTER 3

Hochschild lattices

In [Cha20], Chapoton introduces new meet-semilattices called dexter posets, defined
on the set of Dyck paths, endowed with the dexter order (see Section 1.3.10 of Chapter 1).
An interesting and surprising link is found in this article: a connection between some
specific intervals of dexter posets and cell complexes introduced by Saneblidze [San09,
Sanl1] in the area of algebraic topology. These cell complexes are called Hochschild
polytopes by Saneblidze. They provide, in the context of algebraic topology, combinatorial
cellular models of free loops spaces. There are several ways to build Hochschild polytopes.
For instance, they can be obtained by a sequence of truncations of the n-simplex, where
n is the dimension of the polytopes [RS18].

It is shown in [Cha20] that the set of Dyck paths in these specific intervals in dexter
posets is in bijection with a set of words defined on the alphabet {0,1,2} satisfying some
conditions. Better than that, by considering the poset on this set of words endowed with
the componentwise order, Chapoton shows that a covering relation on Dyck paths for the
dexter order implies by this bijection a covering relation on the corresponding words.

As a first contribution of the present work, we show the reverse implication. This
implies that the two posets are isomorphic. Moreover, we show that these posets are
lattices. Because of their links with cell complexes of Saneblidze, we call these lattices
Hochschild lattices. Our goal is to present a geometric and combinatorial exploration
of Hochschild lattices, revealing several interesting features. To this aim, we shall mainly
work with the word version of the lattice previously mentioned, whose elements are called
triwords.

This chapter is organised as follows.

In Section 1, we shall define triwords and see the bijection between Dyck paths of the
specific intervals and triwords.

Then, we divide our study of the posets into two strands: a geometric one and a com-
binatorial one. Thus, Section 2 is devoted to the geometric properties. First, we provide a
natural geometric realization for Hochschild lattices, by placing triwords of size n in the
space R" and by linking by an edge triwords which are in a covering relation. Thanks
to this realization, called cubic realization, we are able to show that Hochschild lattices
are EL-shellable and constructible by interval doubling (see Section 2.3 and Section 2.4 of
Chapter 1).

Section 3 is about enumerative and combinatorial results. We give here for instance
the degree polynomial of the Hochschild lattices that enumerates the triwords with respect

75
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SN

FIGURE 1.1. Hasse diagrams of the dexter meet-semilattice of size 4.

to their coverings and the elements they cover. We also provide a formula to compute
the number of intervals of these lattices, as well as a method to compute the number
of k-chains (see Section 2.2 of Chapter 1). Section 3 ends with the introduction of an
interesting subposet of the Hochschild poset, which seems to have similar nice properties.

1. Definitions and first properties

1.1. Hochschild polytopes and triwords.
1.1.1. A particular interval of the dexter order. The definition of the dexter order is
given in Section 1.3.10 of Chapter 1.

The set Dy(n) endowed with the dexter order is a meet-semilattice with many proper-
ties highlighted in [Cha20]. In this chapter, we restrict ourselves to a particular interval
of this meet-semilattice.

For any n > 1, let F(n) be the interval in Dy(n + 2) between 1100(10)" and 11"0™100.
In particular, any d in the interval F(n) satisfies the three following assertions:

* the sequence of heights of the valleys in d is weakly decreasing from left to right,
* the Dyck path d ends either with 010 or 0100,
* the Dyck path d starts with 11 and has only valleys of height O or 1.

Figure 1.1 show the Hasse diagram of this poset for n = 2, with the interval F(n) in
blue.
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For any n > 1, let us recall the bijection p between F(n) and the set of words of length
n in the alphabet {0,1,2} satisfying some conditions. Let d € F(n) and N, be an integer
initially set to 0. By reading from left to right the word d, let us build the word u, initially
the empty word, by following the two conditions,
(i) when two consecutive 1 are read in d, except the first two letters of d, then 1 is
added to N,
(ii) when a valley of height h is read in d, the word h2"> is added at the end of the
building word u, and Nj is then set back to 0.
The result p(d) is the word u obtained after reading all d. The length of u is n because,
except the two initial letters 1, every letter 1 in d contributes a letter in u.

For instance, the image by p of the two Dyck paths 1101001010 and 1110010010, both
in F(3), are respectively 100 and 120.

Since we are going to work in this chapter on the set p(F(n)), we need to give a
description of this set which is independent of the construction induced by p.

1.1.2. Triwords. For any n > 1, a word u of size n is a triword of the same size if u
satisfies, for all i € [n],
(i) u; € {0,1,2},
(i) us £ 2,
(iif) if u; =0 then u;j # 1 forall j > i.
The graded set of triwords is denoted by Tr, where the size of a triword is its number of
letters.

For instance,
Tr(1) = {0,1}, Tr(2) = {00,02,10,11,12},

Tr(3) = {000, 020,002, 100,022,110,102,120,111,121,112,122}. (.4.4)
Note that the condition (iii) means that there is no subword 01 in any triword.
LemmA 1.1.1. The set of triwords is specified by the formal grammar
A =€+ 0A+2A, (1.1.2)
B=¢€¢+0A+ 1B+ 2B, (1.1.3)
Tr = € + 0A + 1B. (1.1.4)

ProOE. First, A is the set of all words on 0, 2. By induction on the length of the words,
one can prove that B is the set of all words on {0, 1,2} avoiding the subword 01. Finally,
since a triword beginning by 0 has no occurrences of 1, and a triword beginning by 1
writes as 1u’ where u’ € B, (1.1.4) holds. O

From Lemma 1.1.1 one obtains the generating series
Ga(t) =1+ 2tGa(t), (1.1.5)
Gp(t) =1 + tG(t) + 2tGg(t), (1.1.6)
Ore(t) =1 + tGa(t) + tGp(t) (1.4.7)
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of A, B, and Tr. We deduce that Tr admits

_p2
Ore(t) = (M_Qtt))Q (1.1.8)

1
as generating function. Therefore, for any n > 1, the number of triwords is
#Tr(n) = 2" ?(n + 3). (1.1.9)
LEMMA 1.1.2. For any n > 1, the image p(F(n)) coincides with Tr(n).

ProoE. Let d € F(n) such that p(d) := u. Then the first letter of u is either 0 or 1.
Besides, a letter 0 cannot be follows by a letter 1 because the height of the valleys in d is
weakly decreasing from left to right. Thus, one has u € Tr(n).

Moreover, we know from [Cha20] that the number of elements in F(n) is (1.1.9). O

1.2. Order structure and poset isomorphism. We endow the set of triwords with
the componentwise order and show that the bijection p is a poset isomorphism. Then, we
describe the meet and join of the poset so defined.

1.2.1. Componentwise order. For any n > 1, let < be the partial order on Tr(n) satis-
fying u < v for any u, v € Tr(n) such that u; < v; for all i € [n]. The set Tr(n) endowed
with < is the Hochschild poset of order n.

We set that u < v if and only if u < v and there is only one index i such that u; < v;,
and if there is w € Tr(n) such that u X w < v, then either w = u or w = v. Obviously, the
binary relation < is contained in the covering relation of Tr(n).

Note that the minimal element of Tr(n) is 0" and the maximal element is 12"~

ProposiTION 1.2.1. For any n > 1, the binary relation < is the covering relation of
the Hochschild poset Tr(n).

Proor. Let u,v € Tr(n) such that v covers u. The case n = 1 is clear. Let n > 1
and let i be the minimal index such that u; # v;, and let w := uy...u;_1viuj;1...u, be
the word with the same letters as u, except for the i-th letter. Since v; > u;, either w is
obtained by replacing in u the i-th letter 0 by 1 or by 2, or by replacing in u the i-th letter
1 by 2. In both cases, v; is not 0. Moreover, since i is the minimal index such that u; # v;,
if there is a letter O before u; in u, then this letter exist also in v, and so v; cannot be 1.
Therefore, the subword 01 cannot be generated in w. Thus, the word w is a triword. It
follows that there is a triword w’ < w such that u is covered by w’. One can conclude
that between two triwords in covering relation, there is exactly one different letter. O

1.2.2. Poset isomorphism. For any Dyck path d = p10™xs with m > O, p a prefix, s
a suffix, and x a movable subpath, let N(d, x) be the number of consecutive 0 letters that
appear before x in d.

ProposITION 1.2.2. For any n > 1, the map p is an isomorphism of posets from F(n)
to Tr(n).
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Prook. Let d,b € F(n). We know (Lemma 9.9 from [ChaZ20]) that if d covers b in F(n)
then the words p(b) and p(d) differ by exactly one letter, which increases. This implies
that p(b) < p(d).

Let u,v € Tr(n) such that u<v, and let b and d be the respective images of u and
v by p‘i. Since u < v, there is only one index i such that u; < v;. Then, there are three
cases: either O becomes 1 or 0 becomes 2, or 1 becomes 2.

* Suppose that u; = 0 and v; = 1. Then, in the path b, there is a movable subpath x
(in blue (dark) in (1.2.1)) starting at the height 0 such that N(b, x) > 2. The height
of the starting point of x gives the value of u; in u by the map p. In the path d,
since only one letter changes between u and v, the same subpath x starts at the
height 1 and N(d,x) = — 1. Because of this move, we have to add one 0

after x.
o/\/\ O/N\ (1.2.1)

* Suppose that u; = 0 and v; = 2. Then, in the path b, there is a movable subpath
x (in blue (dark) in (1.2.2)) starting at the height 0, followed by an other subpath
v also starting at the height 0. This is the height of the starting point of y which
gives u; in u by the map p. In the path d, there is a subpath z starting at the
height 0 followed by the subpath y which is unchanged, such that N(d, x) = 0 and
N, N(b,x) + N(b, y).

* Suppose that u; = 1 and v; = 2. This case is very similar to the previous case, by
changing the height of the starting point O of x, y and z by 1.

In all cases, one has b <g d. O

1.2.3. Meet and join operations. Let us describe the meet and join operations between
two triwords u and v.

Let u,v € Tr(n), and let r := max(uy, v1) ... max(uy, v,). Since u; and vy are both none
2, ry +# 2. Besides, if r; = 0 for i € [n], then necessarily u; and v; have to be equal to 0.
In this case, for all j > i, neither u; nor v; can take the value 1. Therefore, if there is an
index i € [n] such that r; = 0, then r; # 1 for all j > i. Thus r is a triword.

The triword r is the join between u and v. Indeed, r is by definition the smallest
element such that for all i € [n], r; > u; and r; > v;. Moreover, since the join between u
and v is unique, by Proposition 1.2.2, the Hochschild poset is a join-semilattice. One can
conclude that Hochschild poset is a lattice since there is a unique minimal triword [Sta11].
Note that this fact is already known since the Hochschild poset is an interval of the dexter
meet-semilattice [Cha20].

Let s := min(uy, vy)...min(u,, v,). The word s is not necessarily a triword. For
instance, if we consider u = 11112 and v = 10022, two triwords of size 5, then s = 10012
which contains a subword 01.
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Let t := u A v be the word obtained from s by changing all subwords 01 by 00 in s.

ProposiTION 1.2.3. Let n > 1 and u,v € Tr(n), then t := u A v is the meet between u
and v.

PRrOOE. If s:= min(uy, v;)...min(u,, v,) is a triword, then t = s. Suppose that s is not
a triword. Since we replace in s all subwords 01 by 00, f is a triword. Moreover, if there is
a subword 01 in s, then either u or v has a letter 0 following by letters O or 2. Necessary,
the word s inherits this letter 0, and then f is a triword if all letters after this letter O are
0 or 2. Therefore, the triword t is the greatest element such that t < u and t < v. O

For example, in order to compute 11112 A 10222, first we compute s = 10112, which
is not a triword. We replace the subword sysz and sps; by the subword 00. One has
11112 A 10222 = 10002.

2. Geometric properties

Through triwords, it is possible to give a cubic realization of the Hochschild lattice
by placing in the space R" all triwords of size n. As for the cubic coordinate lattice seen
in Chapter 2, this lattice thus joins the family of posets having a cubic realisation. This
realization allows us to show two geometrical results: on the one hand that the Hochschild
lattice is EL-shellable and on the other hand that this lattice is constructible by interval
doubling.

2.1. Cubic realizations. The Hochschild poset Tr(n) can be seen as a geometric ob-
ject in the space R" by placing for each u € Tr(n) a vertex of coordinates (uy,..., un),
and by forming for each u, v € Tr(n) such that u < v an edge between u and v. In other
words, as it is done in Chapter 2 for the cubic coordinate poset, we just describe the cubic
realization €(Tr(n)) of Tr(n). Figure 2.1 shows the cubic realizations of Tr(2) and Tr(3).

The first thought that comes to mind, is that for any n > 1, any k-face of the realization
¢(Tr(n)) is contained in a n — 1-face of the hypercube of dimension n, for k € [0,n — 1].
Indeed, between the minimal triword 0" := u and the maximal triword 12"~! := v, there
is no triword w of size n such that u; < w; < v; for all i € [n] since uy = 0 and vy = 1.

Therefore, we can see this realization as one empty cell of dimension n. Thus, it is
clear that the volume of ¢(Tr(n)) is 2"

2.2. EL-shellability. We refer to Section 2.3 of Chapter 1 in the sequel.

In order to show the EL-shellability of Tr(n) for n > 1, we set A as the poset Z> ordered
lexicographically. Then we introduce the map A : < — Z? defined for any u, v such that
u<v by

AMu,v) = (i,u;) (2.2.1)
where i is the unique index such that u; # v;. Observe that because of the covering
relation < defined in Proposition 1.2.1, the image by A of any saturated chain in Tr(n) is
well-defined.
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FIGURE 2.1. Cubic realizations of some Hochschild posets.

For any u, v € Tr(n), let
D(u,v):={d : uqg + vq} (2.2.2)

be the set of all indices of different letters between u and v.

THEOREM 2.2.1. For any n > 1, the map A is an EL-labelling of the Hochschild lattice
Tr(n). Moreover, there is at most one A-weakly decreasing chain between any pair of
comparable elements of Tr(n).

PrOOE. Let u,v € Tr(n) such that u < v and

D(u,v):= {dy,dg,...,ds}, (2.2.3)
with dy < dy < --- < ds. For k € [s], let u®) be the word of size n defined by replacing the
k letters uq,, uq,,...,uq, in u by the k letters vq,, va,, ..., vq, of v.

Thus, for any k € [s], either ulgk) = u; or uEk) = vy; for all i € [n]. Since the letters are

increased from the triword u from left to right, the word u'® is not a triword if and only
if there is a letter ulgk) = 0 and a letter u](»k) =1 with i <dj and j > i. However, if there
is a letter ugk) = 0 in u® with i < d,, then v; = 0 since ugk) = v; by construction of u®.
And so u; = 0 since by hypothesis u; < v;. Thus, u; = 0 and v; = 0 imply respectively that
u; # 1 and v; # 1 in the triwords u and v for all j > i. In particular, one has u;k) # 1 for
all j > i. Tt follows that the subword 01 cannot occur in u®), and then u'® is a triword. Let
us consider the chain

(u,u(“,u@), coulT e = v) (2.2.4)

which is not necessarily saturated. Then, by concatenating the unique saturated chain in
each interval [u®*~1, u™®)] for all k € [s], we obtain a saturated chain between u and v. Since
each word u™® of this saturated chain is obtained from u by replacing letters from left to
right, this chain is clearly weakly increasing for the partial order <. Furthermore, between
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(k-1) (k)

<u
the image of the chain by A is increasing for <. Thus this chain is A-increasing.

two consecutive triwords u®~1 and u® in this saturated chain, u . Therefore,

Moreover, since between any two consecutive triwords of this chain only one letter
is different, if we consider another saturated chain from u to v, then at some point, this
chain passes through a word obtained by increasing a letter which has not the smallest
possible index. It lead us to choose later in this chain the letter with a smallest index to
increase it. For this reason, the saturated chain obtained is not A-increasing.

If a A-weakly decreasing chain exists in [u, v], then it must have the sequence of edge-
labels
((ds, ua,), (ds-1,uq, ), --. ,(d2,uq,), (d1, ug,))- (2.2.5)
Indeed, suppose that between u and v, there is an index d € D(u, v) such that ug = 0 and
vqg = 2, and there is a triword w such that u < w < v with wg = 1. Then for this index
d, the sequence of edge-labels passing through w is ((d,0),(d, 1)), and so the saturated
chain passing through w in [u, v] cannot be A-weakly decreasing. Therefore, to obtain a
A-weakly decreasing chain in [u, v], each index d of D(u, v) can only appear once in the
sequence of edge-labels.

Assume that there is a A-weakly decreasing chain. For the same reason as previously,
this chain is unique. O

For instance, for Tr(3), the A-increasing chain between 000 and 122 is

(000,100, 110,120,121, 122), (2.2.6)
and
A(000,...,122) = ((1,0),(2,0),(2,1),(3,0), (3,1)). (2.2.7)
For the same interval, the A-weakly decreasing chain is
(000, 002, 022, 122), (2.2.8)
and
A(000,...,122) = ((3,0),(2,0), (1,0)). (2.2.9)

2.3. Construction by interval doubling. One may refer to Section 2.4 of Chapter 1.

For all n > 1, let us build Tr(n + 1) from Tr(n) by following these three steps.
(i) Let To(n + 1) be the poset on the set of all words u0 such that u € Tr(n).
(ii) We build the set To(n + 1) from Ty(n + 1) by changing for all u € To(n + 1) the
letter u,.q1 to 2. Let Too(n + 1) be the union To(n + 1) U To(n + 1).
(iii) Let Iy be the set of words of shape 1(1 + 2)*0. We build the set I; from Iy by
changing for all u € I the letter O to 1. Let T(n + 1) be the union Too(n + 1) U L.

LEmMMA 2.3.1. For any n > 1, the Hochschild poset Tr(n + 1) is the poset (T(n + 1), %)
built from Tr(n).

Proor. Let u € T(n + 1), u is written either v0, or v2 with v € Tr, or is a word of form
1(1 + 2)*1. It is clear that, for any v € Tr(n), adding a letter O or a letter 2 at the end of v
give a triword of size n + 1. Likewise, a word of form 1(1 + 2)*1 is also a triword.
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Now, let u € Tr(n + 1). Suppose that u,,4 = 1. Since the subword 01 is forbidden, one
has u; € {1,2} for all i € [n]. Therefore, u belongs to T(n + 1). Suppose that upq =0
or that u,,; = 2. Since u belongs to Tr(n + 1), the conditions of triwords remain on the
prefix v of size n of u. Thus, one has v € Tr(n). d

THEOREM 2.3.2. For any n > 1, the Hochschild poset Tr(n) is constructible by interval
doubling.

Proor. We proceed by induction on n > 1. If n = 1, we have the poset 2, namely the
poset with two elements, which is a lattice constructible by interval doubling. Assume now
that n > 2. We have to show that Tr(n + 1) can be obtained from Tr(n) by a sequence of
interval doublings. By Lemma 2.3.1, one has that Tr(n + 1) is the poset T(n + 1). Since
T(n + 1) is obtain from Tr(n) by performing the three steps (i), (ii), and (iii), by showing
that these two last steps are two operations of interval doubling, the intended result will
follow.

Let us consider To(n +1). By changing for all u € Tyo(n + 1) the last letter O to 2, a copy
To(n + 1) of To(n + 1) is obtained. Since any u € Ty(n + 1) have a copy v € To(n + 1) such
that u; = v; for all i € [n] and up41 < V41, One has that u < v. Therefore, the step (ii) is
the doubling of the interval To(n + 1).

In the step (iii) one builds I; from Iy by changing for all u € I the letter 0 to 1. Since
for all u,v € Iy such that u < v, any word w such that u < w < v is by definition of < a
word of shape 1(1 + 2)*0, one has that Ij is the interval [1"0,12"~!0]. For the same reason,
I, is the interval [17*1,127~11].

Since any u € Iy has a copy v € I; such that u; = v; for alli € [n] and up41 < V41, ONE
has that u < v. Meanwhile, any u € Iy has a copy w € To(n + 1), included in the interval
[1™2,12"], such that u; = w; for alli € [n] and u,.1 < wyy1. However, by construction, one
has upy1 =0, vpyy =1, and wyyy = 2, forallu € Iy, v € 1 and w € [1"2,12"]. Tt follows
thatugxvxwforalluelyvel and w € [1"2,12"] such that u; = v; = w; for i € [n].
Therefore, the step (iii) is the doubling of the interval Ij. O

Note that for n = 0, Tr(0) = {€} is constructible by interval doubling. Note also that,
for any n > 1, only two steps are necessary to built Tr(n + 1) from Tr(n), by starting with
the doubling of Ty(n + 1) built from Tr(n),

Tr(n) ~ To(n + 1) — To(n + 1) x 2 — Tr(n + 1). (2.3.1)

For instance, Figure 2.2 depicts the sequence of interval doublings from Tr(2) to Tr(3).
To obtain Tr(3) from Ty(3), we have first to double the interval Ty(3), then we have to
double the interval [110, 120].

3. Combinatorial properties

In this section, several combinatorial and enumerative properties of the Hochschild
lattice are proved. We obtain results such as the enumeration of intervals, the enumeration
of k-chains, and the description of the degree polynomial of the Hochschild lattice.
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FIGURE 2.2. A sequence of interval doublings from Tr(2) to Tr(3).

3.1. Maximal chains and degree polynomial.

3.1.1. Irreducible elements. Let us describe the set of join-irreducible and meet-irre-
ducible elements of Tr(n) by using the regular expression notation [Sak09] recalled in
Section 1.1.

The two possibilities of having a join-irreducible triword are either to change a letter
u; = 1 to 0 such that all letters on the left of u; are letters 1 and letters on the right of u;
are 0, or to change a letter u; = 2 to 0 such that all other letters are 0. Indeed, suppose
that we change in a triword u a letter u; = 2 to 1. Since u should cover just one triword,
all other letters in u have to be 0. However, since the first letter in u is different from 2,
there is a letter u;_4 such that u;_4 # 0. Thus, u;_4 can be also decreased. This implies
that u covers more than just one triword. Since the subword 01 is not allowed, the set of
triwords which covers a unique triword is described by

J(Tr(n)) = {u € Tr(n) : u e 170" + 0720*}. (3.1.1)

Likewise, the three possibilities of having a meet-irreducible triword are either to change
a letter 1 to 2 or to change a letter O to 1, or to change a letter 0 to 2. Moreover, for all
cases, the other letters which are unchanged should be as large as possible. Thus, the set
of triwords covered by a unique triword is described by

M(Tr(n)) = {u € Tr(n) : u € 12*12* + 12¥702* + 02*}. (3.1.2)
Note that both regular expressions (3.1.1) and (3.1.2) have as generating function
Simall = Samsl0) = (1. (5:13)
From (3.1.3), one can deduce that, for n > 1,
#]J(Tr(n)) = #M(Tr(n)) = 2n — 1. (3.1.4)

In Section 2, we have shown that the Hochschild lattice is constructible by interval dou-
bling. However, it is known from [Day79] that lattices constructible by interval doubling
are in particular semidistributive. Moreover, a finite lattice £ is constructible by interval
doubling if and only if it is congruence uniform [Day79]. In particular, the number of
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join-irreducible elements J(£) is equal to the number of doubling steps needed to build
X [Miih19].

Therefore, there are two consequences of Theorem 2.3.2. The first one is that for any
n > 1, the Hochschild poset Tr(n) is semidistributive. Another consequence is that the
difference of numbers of join-irreducible elements between Tr(n — 1) and Tr(n) is always
2. Indeed, Tr(n) is constructible by interval doubling from Tr(n — 1) with only two steps.

3.1.2. Maximal chains.

LEmMA 3.1.1. For any n > 1, the length of any maximal saturated chain in the
Hochschild poset Tr(n) is 2n — 1. Moreover, a triword belongs to a maximal saturated
chain if and only if all letters following a letter O are also O.

PRrROOE. If n = 1, then the length of the saturated chain [0, 1] is 1. Suppose that n > 1.
Since all letters 0, except the first one, can be increased to 1, then to 2, the length of a
maximal saturated chain in Tr(n) between 0" and 12"! is at most 2n — 1. Therefore, to
obtain a maximal saturated chain between 0" and 12", all letters O in 0" must become 1
before becoming 2, except for the first 0. Considering that, the letters have to be increased
from left to right, in order to avoid the forbidden subword 01. This way, each letter of
0", except the first one, contributes 2 in the length of the saturated chain between the
minimal triword and the maximal triword. Since the first 0 contributes 1, the length of
such a saturated chain is 2n — 1.

Furthermore, since the letters have to be increased from left to right, this implies that
a triword u belongs to a maximal saturated chain if and only if for any letter u; = 0 then
u;j=0forallj>i. O

By Lemma 3.1.1 and by (3.1.4), one has the following result.
ProposITION 3.1.2. For any n > 1, the Hochschild lattice Tr(n) is extremal.

Recall that if a lattice is extremal and semidistributive, then it is also left modular, and
therefore trim (see Section 2.1.3 of Chapter 1). Therefore, since Theorem 2.3.2 implies
that Tr(n) is semidistributive, Tr(n) is trim.

3.1.3. Spine. Let us consider the subposet J(S(Tr(n))) of S(Tr(n)), where S(Tr(n) is the
spine of Tr(n) (see Section 2.1.3 of Chapter 1). Figure 3.1 shows the spine of S(Tr(2)) and
S(Tr(3)).

Since the spine of Tr(n) is a distributive sublattice of Tr(n), then by the FTFDL one
has that S(Tr(n)) is isomorphic to J(J(S(Tr(n)))).

For instance, Figure 3.2 depicts the construction of J(J(S(Tr(3)))), which is a distributive
lattice isomorphic to S(Tr(3)) (see Figure 3.1).

Our aim is to give a description of triwords belonging to the spine of the Hochschild
lattice. Then, in this set, we give a description of join-irreducible triwords.
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FIGURE 3.1. Cubic realizations of some spines of Hochschild posets.
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FIGURE 3.2. Construction of J(J(S(Tr(3)))) from the poset J(S(Tr(3))).

By Lemma 3.1.1 we know that a triword u belongs to a maximal saturated chain if and
only if for any letter u; = 0 then u; = 0 for all j > i. Therefore, the regular expression of
these triwords is

S(Tr(n)) = {u € Tr(n) : ue 0 +1(1 +2)*0*}. (3.1.5)
Therefore, the generating function is
1
Gsimy(t) = 15 (3.1.6)

and thus
#S(Tr(n)) = 2™. (3.1.7)
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Let u € S(Tr(n)). The two possibilities for u to be a join-irreducible triword are either
to have one unique letter 1 which can be changed to 0 or to have one unique letter 2
which can be changed to 1. To summarize,

J(S(Tr(n))) = {u € S(Tr(n)) : ue 170" + 1720*}. (3.1.8)
One can deduce the generating function

t+ t?
Gyisire) () = Tt (3.1.9)

and thus
#J(S(Tr(n))) = 2n — 1. (3.1.10)

From (3.1.8) one can also deduce that the shape of J(S(Tr(n))) is as depicted in Fig-
ure 3.3.

FIGURE 3.3. Shape of the poset J(S(Tr(n))).

3.1.4. Degree polynomial. For this section, we can refer to 1.3.4 of Chapter 1

Let us start by computing the specialization dr.(1, y) of the degree polynomial of Tr.

ProposITION 3.1.3. For any n > 1, the h-polynomial of Tr(n) is
drv(1L,¥) = (v + )" (3% + (n + 1)y +1). (3.1.11)
PRroOOE. Let us compute the generating series

Pr(y,z):= ) drym(l, ¥)z" (3.1.12)

n>0

of all degree polynomials of Tr(n) for all n > 0.
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Let us consider the grammar of Tr given by Lemma 1.1.1. By the map u + z/ulyoutn(u)
one obtains the system of formal series

Pi(y,z) =1 + yzPaly,z) + zPa(y, z),
Pp(y,z) =1+ yzPaly,z) + yzPp(y, z) + zPg(y, z), (3.1.13)
pT!‘(yrz) =1 +ysz(ylZ) + ZPB(y,Z).

Indeed, in (1.1.2) of the grammar, 0A becomes yzP,(y, z) because the letter 0 can always be
increased to 2. Note that the letter 0 in OA cannot be increased to 1 because in (1.1.4), this
expression 0A comes after a first letter 0, and the subword 01 is prohibited by definition of
triwords. However, 2A becomes zP,(y, z) since the letter 2 cannot be increased. Likewise,
in (1.1.3), 0A becomes yzP,(y, z) because the letter O can be increased to 1, and 1B becomes
vzPg(y, z) because the letter 1 can be increased to 2, unlike the letter 2 in 2B which
becomes zPg(y, z).

Thus,
Paly,z) = 1_;7_‘}”:
Py(y,z) = (1_12%2)2 (3.1.14)
Pro(y.2) = 1-z z —z°

1-(z+yz) " - (z+yz)?

From this expression of Pr.(y, z) in partial fraction decomposition, we deduce by a straight-
forward computation the given expression for dyum)(1,¥). O

Let n > 1 and u € Tr(n). For any letter u; of u with i € [n], the number of letters
u; such that the word u’ defined by u; := u; for all j £ i is in covering relation with u is
the degree of the letter u;. The sum of the degrees of all letters of u is the number of
elements covered by u or covering u, namely ing(u) + oute(u).

LEMMA 3.1.4. For any n > 1 and u € Tr(n), int,(u) + outr.(u) = n.

PRrOOE. Suppose that the first letter of u is O, then all letters of u are either O or 2.
The letter uy can be increased to 1, but since we cannot have a letter O followed by 1, all
other letters 0 can only be increased to 2, and all letters 2 can only be decreased to 0. And
so for the case where u; = 0, all letters of u have degree 1.

Suppose now that the first letter of u is 1. Either u, is the only letter 1 in u or there
is another letter u; = 1 such that all letters after u; are not 1. In the first case, u; can
be decreased to O, thus all letters of u have degree 1. In the second case, since there is
at least one other letter 1 in u, u; cannot be decreased to 0. Then the degree of u; is 0.
However, this degree is compensated by the degree of the letter u;. Indeed, the last letter
1 is the only one which can be decreased to O or increased to 2. Hence the degree of u;
is 2, and since all other letters of u have degree 1, the sum is equal to n. O
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By Proposition 3.1.3 and Lemma 3.1.4, one can deduce the degree polynomial of Tr(n)
by replacing y* in the h-polynomial by x"*y¥, with k € [0, n]. Thus, the degree polynomial
of Tr(n) is

drpin) (0, ) = (x + y)n? (x2 +(n +1)xy + yg). (3.1.15)
For instance,
dre)(x,y) =x + 9,
dree)(x,9) = X% + 3xy + y2,
. , (3.1.16)
drez)(x,¥) = x° + 5x°y + bay® + y°,
drpy(x,y) = x* + 7%y + 12x%y? + Txy® + y*.

3.2. Intervals and k-chains. This section also provides enumerative results about the
Hochschild lattice. We have already computed the length of any maximal chain for this
lattice in Section 2. Here we give a method to find formulas for the number of k-chains
of this lattice. We can refer to Section 2.2 of Chapter 1.

3.2.1. L-classifications. Firstly, we need to define a classification for all k-chains of
size n.

For a letter a and a word u, we use the notation a € u if there is a letter u; = a.
Conversely, a ¢ u if all letters u; of u are different from a.

Foranyn >1and k > 1, let (ul¥,u®,.. .,u(k““,u(k)) be a k-chain of triwords of size
n. It is always possible to classify k-chains according to the presence or absence of the
letter 0 in u') with j € [k] by setting, for all i € [0, k],

Ziln, k) == {(u™,u®, ..., u®) : 0cu™,0¢u forallrek—il,seck—i+1,k]}. (321)

This classification is called the Z-classification for k-chains. Note that the union of all
these sets is disjoint and give a description of all k-chains. Note also that for n = 1,
#Zi(1,k) =1 for alli € [0, E].

Foranyn>2 k>1,i€[0,k],and j > i, let
" Ti(n, k) — N x Ti(n -1, k) (3.2.2)
such that, for y a k-chain in Z(n, k),
&) = (67 (3.2.3)

where 7’ is the k-chain obtained by forgetting the last letter of each word of 7, and t is
the number of words ending by 2 in 7.

Let ¥ € Ti(n, k). Clearly, ¢§"'k>(7) is a k-chain 3" which belongs to Z;(n — 1, k) with
j € [i, k], since the k-chain 7’ has at the most the same number of triwords with a letter O
than the k-chain 7.

Therefore, by setting 7 := (via®,v®a®, ... vka®) with v € Tr(n - 1) and
al” e [0,2] for all r € [k], and (t,7') := ¢("’k)(7), there are two cases.

i



90

3. HOCHSCHILD LATTICES

* Suppose that 7’ belongs to Z;(n —1, k). Then one has k + 1 possibilities to place or

not the letter 2. Indeed, for r € [k —i], a™ = 0 or a”) = 2 because by hypothesis
0 e vl"). For s € [k —i + 1, k], because 7' is already in Z;(n —1, k), one has a’® = 1
or a® = 2. To summarize, one has k + 1 possibilities to place the letter 2, knowing
that all letters before the first ending letter 2 have to be smaller than 2, and all
letters after have to be 2.

Suppose now that 7’ belongs to Z;(n — 1, k) with j € [i + 1, k]. Then one has i + 1
possibilities to place or not the letter 2. Indeed, in this case we must set a®) = 0
for all s € [k —j, k —i] in order to obtain a k-chain in Z;(n, k). This implies that all
ending letters before a®*~/) have to be also 0. It follows that for all r € [k —i +1, k],
a” =1 ora® =2,

In the two cases, the position of the first letter 2 depends on the integer t.

Thus, for 7 a k-chain in Z5(n, k), it follows that

oMy ek + 1 x Tiln -1,k || [i+1x || Zin-1k). (3.2.4)

jeli+1.k]
For instance, by setting
v = (00200, 02200, 02202, 12222) (3.2.5)
a 4-chain of Z5(5, 4), one has ¢§5,4)(7) = (t,9/) with
v" = (0020, 0220, 0220, 1222), (3.2.6)

and t = 2.

LEMMA 3.2.1. Foranyn > 2,k > 1, and i € [0, k], the map ¢§“'k> is a bijection.

ProoE. Let 8 := (vl v®@, ..., v¥)) be a k-chain of Tr(n — 1), and t € [0, k].
* Suppose that &' € Zi(n —1,k). Let 6 := (via®,v®a®, ., v*qk)) such that for

all r € [k — t] we set a™) = 0if 0 € v, and al” = 1 otherwise, and a'® = 2
for all s € [k — t + 1,k]. The resulting k-chain is a k-chain of Tr(n) because
a < a® < -.. < al® by construction. Furthermore, since no 0 is added at the
end of a word that does not contain a letter 0 in &', the k-chain 6 belongs to
%i (n, k).

Suppose that 6’ € Z;(n—1, k), withj € [i+1,k]. Let 6 := (vilalV), v@a@, ... vkqk)
such thata™ = O forallr € [k—i],a® =1 foralls c[k—i+1,k—t],and a@ =2
for all q € [k — t + 1,k]. By construction, one has a’ < a® < --- < a®. This
implies that this k-chain is a k-chain of Tr(n). Moreover, since the letter 0 is
added at the end of v for r € [k — i], the k-chain & belongs to Z;(n, k).

In both cases, since § belongs to Z;(n, k), this implies that the map ¢§”'k) is surjective.

Let (t1,7') and (t2, &) be two pairs with t1,t, € [0,k], and ' € Z;(n —1,k) and & €

L, (n — 1, k) with ji, jo € [i,k]. Let ¥ be the image of (t1, ') and 6 be the image of (t5, &)
-1

by ¢§n’k) . Suppose that (t;,7’) # (to,&). This implies that either t; # t, or 7' # &. In the

first case, if t1 > ty then there are more words ending by 2 in 7 than in 6. Thus one has

v + 6. In the second case, there is at least one word in 7 such that the prefix of this word
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is different from the word with the same index in §. Here again, one has y # 6. Hence,
the map ™" is injective. a

For instance, for the 4-chain (3.2.5), ¥’ belongs to % (4, 4) and t is 2. We can rebuild 7y by
adding the letter 2 on the two last words of %/, since by definition of triwords, the greater
triwords of a k-chain must have greater or equal letters compare to smaller triwords.
Besides, since the two first words of 7’ have the letter 0, we can only add the letter O at
its end.

Let us consider another example with

v := (00000, 00200, 12210, 12211, 12212) (3.2.7)
a 5-chain of Z5»(5,5). One has ¢é5’5)(7) = (t,79/) with t = 1 and
" = (0000,0020, 1221, 1221,1221). (3.2.8)

Here 7’ belongs to 5(4,5). Since 7y € Z%»(5,5), to rebuild y from 7/, we have to add O at
the end of the third word of 7. Moreover, since t = 1, the letter 2 is added to the last
word and the letter 1 is added to the penultimate word of 7.

3.2.2. Enumeration of k-chains. For all matrices M, we denote in the following by
M(i,j) the entry at the i-th line and the j-th column.

For any T (n, k) of this classification, one obtains by denoting by 3;(n, k) the cardinality
of Zi(n, k) with i € [0, k], the following result.

ProposITION 3.2.2. Letn > 2 and k > 1. For all i € [0, k], each 3;(n, k) satisfies

k
silnR) = (R +1)i(n =1, k) + (i +1) Y 3i(n —1,k). (3.2.9)

j=i+1
Prookr. This is a direct consequence of Lemma 3.2.1. O
For example, for
T4 (2,3) ={(00,00,11), (00,00, 12), (00, 02, 12), (02,02, 12),
(00,10, 11), (00,10,12), (10,10, 11), (10,10,12) },

the first four 3-chains came from 75 (1, 3) = {(0,0, 1)}, the next two came from Z»(1,3) =
{(0,1,1)}, and the last two came from Z53(1,3) = {(1,1,1)}.

(3.2.10)

The system
j0(n, k) = (k+1)30(n — 1, k) +31(n —1,R) + -+ + 3p-1(n — 1, k) + 5r(n — 1, k),
31(n, k) =(k+1)3(n —1,k) +25n —1,k) + - +2,_1(n —1,k) + 23x(n — 1, k),

3k-1(n, k) = (R + 1)30_1(n — 1, k) + k3p(n — 1, k),

sr(n, k) = (k +1)31(n — 1, k),
(3.2.11)

is called 3-system.
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ProposITION 3.2.3. For any n > 2 and k > 1, the k-chains of the Hochschild poset
Tr(n) are enumerated by

k
) siln, k) = (k + 1) *Dy(n), (3.2.12)
i=0

where Pg(n) is a monic polynomial of degree k determined by the 3-system.

ProOE. Since for n = 1, all 3;(1,k) = 1 with i € [0, k], one can rewrite the j-system
with matrices

30(n, k) k+1 1 1 1 " 1
31(n, k) 0 k+1 2 2 1
= : : D (3.2.13)
3p-1(n, k) 0 ... 0 k+1 k 1
3k(n, k) 0 ... 0 0 k+1 1

Let us denote by M this upper triangular matrix, I the identity matrix of dimension
k+1,and N:= M — (k + 1)I. Since I and N commute, one has

(3.2.14)
= (k + 1)n(+D) <(k + 1 T+ (n - 1)+ 1)F N+ + me>

= (k +1)"**UQy(n),

where Qg(n) is clearly polynomial in n. It only remains to deduce the polynomial Py(n)
from the matrix Qg(n), as the sum of all entries of Qg(n).

(n —1)!

Furthermore, P,(n) is a polynomial of degree k since n* appears in m

Moreover, a particular case from Lemma 3.2.4 gives that N¥(1,k + 1) = kl. Since N
is a strictly upper triangular matrix, N¥(1,k + 1) is the only nonzero entry of NX. This
implies that Pg(n) is a monic polynomial. O

LEMMA 3.2.4. For any n > 2 and k > 1, let M be the upper triangular matrix
in (3.2.13), I be the identity matrix of dimension k + 1, and N := M — (k + 1)I. For any
le[k]landi € [k +1] such thati +1 < k + 1, one has

(i +1—1)!

N'i,i+1) = 1)

(3.2.15)

Proor. We proceed by induction on I. Since N(i,i + 1) =i for alli € [k + 1], one has
that (3.2.15) follows for | = 1. Suppose that (3.2.15) is true for | — 1 and let us consider N'.
For any i € [k + 1], one obtains N(i, i + I) with the i-th line of N'~! and the (i + [)-th column
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of N. Since N is a strictly upper triangular matrix, all left entries before N'='(i,i + 1 — 1)
are zeros, and all below entries after N(i + | — 1,i + l) are also zeros. Therefore,

(i+1-2)! (i+1-1)!
T VI (3.2.16)

and then (3.2.15) holds for all I € [k]. O

NUi,i+l)=N"Yi,i+1-1)Ni+l-1,i+1) = i+1-1)=

Note that since for n = 1, all 3;(1, k) = 1 with i € [0, k], the number of k-chains is k + 1
for all k > 1. Using Proposition 3.2.3, one can therefore deduce that Py(1) = (k + 1)F*1.

Recall that the triwords of size n are enumerated by
2" 2(n + 3). (3.2.17)

A demonstration of this result is given in Section 1.1, involving generating series. By
Proposition 3.2.3, one has

n-1
n,1 2 1 1 on-1 (p _1)on-2 1
ol 1)) _ - n-1) , (3.2.18)
31(n, 1) 0 2 1 0 on-t 1
which leads to the formula already known, for n > 1,
so(n,1) +31(n, 1) = 2" 2(n + 3). (3.2.19)

Likewise, to enumerate the intervals of the Hochschild lattice, or in other words their
2-chains, one has

30(n, 2) 31 1 " 1
un,2)| =10 3 2 1
32(n,2) 0 0 3 1
(3.2.20)
3=t 3n2(n —1) 3" ?(n —3)+3"3n? -3n +8) 1
=1 0 zn-t 3n-2(2n — 2) 1
0 0 zn-t 1
The number of intervals of Tr(n) is therefore given by
30(n,2) +31(n, 2) + 32(n,2) = 3" (n? + 9n + 17). (3.2.21)
In the same way, the number of 3-chains is
477*(n® + 20n® + 93n + 142), (3.2.22)
the number of 4-chains is
55 <n4 + %n3 + 355n? + %9011 + 1569), (3.2.23)
and the number of 5-chains is
6n 6 <n5 + %m +1026n° + %zﬁ +17363n + 21576). (3.2.24)
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It seems that the sequence of constant terms of the polynomials Py(n)
3,17,142,1569, 21576, . . . (3.2.25)

is the sequence of numbers of connected functions on n labeled nodes A001865 of [Slo].
Recall that a connected function is a function f : [n] — [n] such that the graph G := (V,E)
is connected, where V := [n] is the set of vertices and E := {(i, f(i)) } with i € [n] is the set
of edges.

3.3. Subposets of the Hochschild posets. An interesting subposet of the poset Tr(n)
appears by considering the set of triwords restricted to words beginning by the letter 1.
Here, some results are given for this subposet.

3.3.1. Mini-Hochschild posets. Let u € Tr(n) such that u; = 1, then u is called a
p-triword, and the graded set of p-triwords is denoted by Trj,.

From Lemma 1.1.1, one has
Tr, =€+ 1B, (3.3.1)

where B is the set of all words on {0,1,2} avoiding the subword 01.
It follows that the generating series of Tr, is
G, (t) =1 + tGp(t). (3.3.2)
By reminding the two generating series (1.1.5) and (1.1.6), one can deduce, for any n > 1,
#Tr,(n) = 2" %(n + 1). (3.3.3)
The subposet (Tr,(n), <) is called mini-Hochschild poset.

3.3.2. k-chains. As for Hochschild posets, we can give the Z-classification for k-chains
of mini-Hochschild posets. This classification is identical to the classification (3.2.1). For
anyn > 2,k >1,and i € [0, k], let us show that the map ¢§"’k) defined by (3.2.3) is also a
bijection for the set of p-triwords.

First, the reverse image of the map (j)l("’k) adds one letter on the end of each triwords
of the k-chains. It means that if all triwords of a k-chain y in Z;(n — 1, k) for j € [i, k]
are p-triwords, then the reverse image of v is also a k-chain of p-triwords. Likewise, for
a k-chain of p-triwords such that v € Z5(n, k), ¢§"'k)(7) remains a k-chain of p-triwords
since the first letter of each p-triword remains 1. Second, all arguments in the proof of
Lemma 3.2.1 hold in the case of p-triwords because at no point the first letter of triwords
which constitutes k-chains intervenes.

The 3-system for the mini-Hochschild poset holds, and one has for any n > 2, k > 1,
and for all i € [0, k],

siln k) = (R + 1)3(n—1,k) + (i + 1) Z;,, —1,k). (3.3.4)
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Since 3k(1,k) = 1 and 3;(1,k) = 0 for all j € [0,k — 1], it follows that the j-system for the
mini-Hochschild poset can be rewritten

50l k) ket 11 . 1\ /o

31(n, k) 0 k+1 2 ... 2 0
= : : . (3.3.5)

3k_1(n, k) 0 ... 0 k+1 k 0

se(n, k) 0 ... 0 0 k+1 1

Thus, for any n > 2 and k > 1, the number of k-chains in the poset Tr,(n) is given
by the sum of the last column of M"~!, where M is the upper triangular matrix. One can
conclude that Proposition 3.2.3 holds for the mini-Hochschild poset.

For instance, one deduce from (3.2.18) that the number of p-triwords of size n is
on-t 4 (n —1)2"2 =27 2%(n + 1), (3.3.6)
as shown through generating series (3.3.3).

In the same way, from (3.2.20) one deduce that the number of intervals of Tr,(n) is

3"5(n* + 6n +2), (3.3.7)
the number of 3-chains is
4"7%(n3 + 16n* + 41n + 6), (3.3.8)
the number of 4-chains is
575 n* + 9—5113 + @ng + %n +24 ), (3.3.9)
3 2 2
and the number of 5-chains is
6n=o <n5 + gnl‘ +750n° + grﬁ + 3599n + 120). (3.3.10)

Similarly to the remark on the sequence of constant terms (3.2.25), it seems that the
sequence of constant terms of these polynomials

1,2,6,24,120,... (3.3.11)
is the sequence of factorial numbers.

Several other properties verified by the Hochschild poset seem to hold for the mini-
Hochschild poset. It may be interesting to proceed to a complete study of this subposet
as well.






CHAPTER 4

Fuss-Catalan posets and algebras

The theory of combinatorial Hopf algebras takes a prominent place in algebraic com-
binatorics. The Malvenuto-Reutenauer algebra FQSym [MR95,DHT02] is a central object
in this theory. This structure is defined on the linear span of all permutations and the
product of two permutations has the notable property to form an interval of the right
weak order. Moreover, FQSym admits a lot of substructures, like the Loday-Ronco alge-
bra of binary trees PBT [LR98, HNTO05] and the algebra of noncommutative symmetric
functions Sym [GKL"95]. Each of these structures brings out in a beautiful and some-
what unexpected way the combinatorics of some partial orders, respectively the Tamari
order [Tam62] and the Boolean lattice, playing the same role as the one played by the
right weak order for FQSym. To be slightly more precise, all these algebraic structures
have, as common point, a product - which expresses, on their so-called fundamental bases
{FI }x’ as

F.-F, = Z F,, (0.0.1)
x/y<zx\y
where < is a partial order on basis elements, and / and \ are some binary operations on
basis elements (in most cases, some sorts of concatenation operations).

The point of departure of this work consists in considering a different partial order
relation on permutations and ask to what extent analogues of FQSym and a similar hi-
erarchy of algebras arise in this context. We consider here first a very natural order on
permutations: the componentwise ordering < on Lehmer codes of permutations [Leh60]
seen in Section 1.3.6 of Chapter 1. A study of these posets Cly(n) appears in [Den13].
Each poset Cly(n) is an order extension of the right weak order of order n. To give a
concrete point of comparison, the Hasse diagrams of the right weak order of order 3 and

of Cl;(3) are respectively
123 000

132 213 001 010
(0.0.2) and . (0.0.3)

312 231 002 011

321 012
As we can observe, the right weak order relation of permutations of size 3 is included into

the order relation of Cly(3).

In this work, we consider a more general version of Lehmer codes, called 6-cliffs,
leading to distributive lattices Cls. Here 6 is a parameter which is a map N\ {0} — N,

97
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called range map, assigning to each position of the words a maximal allowed value. The
linear spans Cls of these sets are endowed with a very natural product related to the
intervals of Cls. Some properties of this product are implied by the general shape of 6.
For instance, when 6 is so-called valley-free, Cls is an associative algebra, and when 6 is
weakly increasing, Cls is free as a unital associative algebra. The particular algebra Cl is
in fact isomorphic to FQSym, so that for any range map &, Cls is a generalization of this
latter. For instance, when & is the map m satisfying m(i) = m(i — 1) with m € N, then all
Cl,, are free associative algebras whose bases are indexed by increasing trees wherein
all nodes have m + 1 children.

In the same way as the Tamari order can be defined by restricting the right weak order
to some permutations, one builds three subposets of Cls by restricting < to particular &-
cliffs. This leads to three families of posets: Avs, His, and Cas. When 6 is the particular
map m defined above with m > 0, the underlying sets of all these posets of order n > 0
are enumerated by the n-th m-Fuss-Catalan number [DM47]

1 mn +n
Catm (H) = m < n > . (0.04)

These posets have some close interactions: when § is an increasing map, His is an order
extension of Cag, which is itself an order extension of Avs. Besides, Hiy (resp. Cay) is the
Stanley lattice [Sta75, Knu04] (resp. the Tamari lattice), so that Hiy, (resp. Cap), m > 0,
are new generalizations of Stanley lattices (resp. Tamari lattices —see [BPR12] for the
classical one). Besides, from these posets Hiy, and Cap,, one defines respectively two
quotients Hi,, and Ca,, of Cl,. Notably, the algebra Ca; is isomorphic to PBT, and the
other ones Ca,,, m > 2, are not free as associative algebras.

This chapter is organized as follows.

Section 1 is intended to introduce S-cliffs and the lattices Cls. Even if the posets Cls(n)
have a very simple structure, these posets contain interesting subposets §(n). To study
these substructures, we establish a series of sufficient conditions on §(n) for the fact that
these posets are EL-shellable [BW96, BW97], are lattices (and give algorithms to compute
the meet and the join of two elements), and are constructible by interval doubling [Day79].
Moreover, under some precise conditions, each subposet S(n) can be seen as a geometric
object in R™. We call this the geometric realization of S(n). We introduce here the notion
of cell and expose a way to compute the volume of the geometrical object.

Next, in Section 2, we study the posets Avs, His, and Cas. For each of these, we pro-
vide some general properties (EL-shellability, lattice property, constructibility by interval
doubling), and describe its input-wings, output-wings, and butterflies elements, that are
elements having respectively a maximal number of covered elements, covering elements,
or both properties at the same time. We observe a surprising phenomenon: some posets
Avs, Higs, or Cags are isomorphic to their subposets restrained on input-wings, output-wings,
or butterflies elements. Moreover, a notable link among other ones is that the subposet
of Can(n) is isomorphic to the subposet of Hiy, 1 (n) restrained to its input-wings. We also
study further interactions between our three families of Fuss-Catalan posets. There are
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for instance bijective posets morphisms (but not poset isomorphisms) between Avs and
Cas, and between Cas and His, when 6 is increasing.

Finally, Section 3 presents a study of the algebra Cls. We start by introducing a
natural coproduct on Cls in order to obtain by duality a product, associative in some
cases. Three alternative bases of Cls are introduced, including two that are multiplicative
and are defined from the order on S-cliffs. When 6 is weakly increasing, Cls is free as
an associative algebra. We end this work by constructing, given a subfamilly § of Cls, a
quotient space Cls of Cls isomorphic to the linear span of S. A sufficient condition on §
to have moreover a quotient algebra of Cls is introduced. We also describe a sufficient
condition on § for the fact that the product of two basis elements of Cl; is an interval of a
poset S(n). These results are applied to construct and study the two quotients Hip, := Clyy;
and Cap, := Clg,, of Cly. The algebra Ca; is isomorphic to the Loday-Ronco algebra
and the other algebras Ca,,, m > 2, provide generalizations of this later which are not
free. On the other hand, for any m > 1, all Hi,, are other associative algebras whose
dimensions are also Fuss-Catalan numbers and are not free.

1. 6-cliff posets and general properties

This section is devoted to introduce the lattices of §-cliffs and their combinatorial and
order theoretic properties. Then, we will review some properties of its subposets, like
EL-shellability, constructibility by interval doubling, and geometric realizations.

1.1. 6-cliffs. We introduce here 6-cliffs, their links with Lehmer codes, permutations,
and particular increasing trees.

1.1.1. First definitions. A range map is a map 6 : N\ {0} — N. We shall specify range
maps as infinite words 6 = 6(1)6(2).... For this purpose, for any a € N, we shall denote
by a“ the infinite word having all its letters equal to a. We say that 6

* is rooted if (1) = 0,
is weakly increasing if for all i > 1, (i) < 8(i + 1),
is increasing if for all i > 1, &(i) < 8(i + 1)),
has an ascent if there are 1 < iy < iy such that 6(i1) < S(ig),
has an descent if there are 1 < iy < iy such that 6(i1) > 6(ia),
has a valley if there are 1 < iy < iy < i3 such that 6(i1) > 6(iz) < 6(i3),
is valley-free (or unimodal) if § has no valley,
is j-dominated for a j > 1 if there is k > 1 such that for all k" > k, 6(j) > (k).

For any n > 0, the n-th dimension of 6 is the integer dim, (&) := #{i € [n] : §(i) # 0}.

L S . o

Given a range map 6, a word u of integers of length n is a §-cliff if for any i € [n],
0 < u; < 6(i). The size |u| of a 6-cliff u is its length as a word, and the weight w(u) of u
is the sum of its letters. The graded set of all 6-cliffs where the degree of a &-cliff is its
size, is denoted by Cls. In the sequel, for any m > 0, we shall denote by m the range map
satisfying m := O0m (2m) (3m).... For instance,

Cl4(3) = {000,001,002,010,011,012}, (1.1.1a)
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Cla(3) = {000,001, 002,003, 004,010,011,012, 013,014,020, 021, 022,023,024}.  (1.1.1b)

In particular, the 1-cliffs are the Lehmer codes seen in Section 1.1.6 of Chapter 1. As
seen this section, there is classical correspondence between permutations and Lehmer
codes, and the 1-cliff thus associated with the permutation o is denoted by leh(o).

It follows immediately from the definition of S-cliffs that the cardinality of Cls(n)
satisfies
#Cls(n) = | (8(i) + 1), (1.1.2)
ie[n]
The first numbers of m-cliffs are

1,1,1,1,1,1,1,1, m =0,

( )
1,1,2,6,24,120, 720, 5040, m=1, ( )
1,1,3,15,105, 945, 10395, 135135, m=2, (1.1.3c)
1,1, 4,28, 280, 3640, 58240, 1106560, m =3, ( )
1,1,5,45,585,9945, 208845, 5221125, m =4, ( )

and form, respectively from the third one, Sequences A001147, A007559, and A007696
of [Slo].

1.1.2. Weakly increasing range maps and increasing trees. Given a rooted weakly
increasing range map 6, let As : N\ {0} — N be the map defined by As(i) := 6(i + 1) — 6(i).
A 6-increasing tree is a planar rooted tree where nodes are bijectively labeled from 1 to
n, any node labeled by i € [n] has arity As(i) + 1, and every child of any node labeled by
i € [n] is a leaf or is a node labeled by j € [n] such that j > i. The size of such a tree is its
number of nodes. The leaves of a §-increasing tree are implicitly numbered from 1 to its
total number of leaves from left to right.

Observe that, regardless of any particular condition on &, any 6-cliff u of size n > 1
recursively decomposes as u = u’a where a € [0,6(n)] and u’ is a §-cliff of size n — 1.
Relying on this observation, when 6 is rooted and weakly increasing, let trees be the map
sending any S-cliff u of size n to the é-increasing tree of size n recursively defined as
follows. If n = 0, trees(u) is the leaf. Otherwise, by using the above decomposition of u,
trees(u) is the tree obtained by grafting on the a + 1-st leaf of the tree tree(u’) a node of
arity As(n) + 1 labeled by n. For instance,

treey(0230228) = (1.1.4)

(1.15)
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ProposiTION 1.1.1. For any rooted weakly increasing range map 6, trees is a one-to-
one correspondence from the set of all 5-cliffs of size n > 0 and the set of all 6-increasing
trees of size n.

PRroOE. Let us first prove that trees is a well-defined map. This can be done by induc-
tion on n and arises from the fact that, for any u € Cls(n), the total number of leaves of

tree(u) is
1-n+ Asi)+1] =1+ S(i +1) = 6(i)
ic[n] ie[n] (1.1.6)
=1+62) —6(1) +6(3) —6(2) +---+6n+1) —6(n)
=1+6n+1).

Therefore, there is in tree(u) a leaf of index a + 1 for any value a € [0, §(n +1)]. Therefore,
tree(ua) is well-defined.

Now, let ¢ be the map from the set of all §-increasing trees of size n to Cls(n) defined
recursively as follows. If t is the leaf, set ¢(t) := €. Otherwise, consider the node with
the maximal label in t. Since t is increasing, this node has no children. Set t' as the 6-
increasing tree obtained by replacing this node by a leaf in t, and set a as the index of the
leaf of t on which this maximal node of t is attached (this index is 1 if ¢ is the leaf). Then,
set ¢(t) := ¢(t')(a — 1). The statement of the proposition follows by showing by induction
on n that ¢ is the inverse of the map trees. O

In [CP19], s-decreasing trees are considered, where s is a sequence of length n > 0
of nonnegative integers. These trees are labeled decreasingly and any node labeled by
i € [n] has arity s;. As a consequence of Proposition 1.1.1, any s-decreasing tree can be
encoded by a S-increasing tree where 6§ is a rooted weakly increasing range map satisfying
6(i) = Yi<jciot Sn-j+1 for all i € [n + 1]. The correspondence between such s-decreasing
trees and S-increasing trees consists in relabeling by n +1 —i each node labeled by i € [n].
A consequence of all this is that S-cliffs can be seen as generalizations of s-decreasing
trees by relaxing the considered conditions on 6.

1.2. 6-cliff posets. We endow now the set of all §-cliffs of a given size with an order
relation and give some of the properties of the obtained posets.

1.2.1. First definitions. For any n > 0, let § be a range map and < be the partial order
relation on Cls(n) defined by u < v for any u, v € Cls(n) such that u; < v; for all i € [n].
The poset (Cls(n), <) is the 6-cliff poset of order n. Figure 1.1 shows the Hasse diagrams
of some 6-cliff posets.

Let us introduce some notation about &-cliffs. For any u € Cls(n) and i € [n], let |;(u)
(resp. 7;(u)) be the word on Z of length n obtained by decrementing (resp. incrementing)
by 1 the i-th letter of u. Let also, for any u, v € Cls(n),

D(u,v):= {i € [n]:w; # v} (1.2.1)
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000

010 001

011 002

012

() CLy(3).

FIGURE 1.1. Hasse diagrams of some 6-cliff posets.

be the set of all indices of different letters between u and v. Let us denote respectively by
0s(n) and by 15(n) the S-cliffs 0" and &(1)...6(n). For any u,v € Cls(n), let u Av be the
6-cliff of size n defined for any i € [n] by

(uAv); := min{u;, v; }. (1.2.2)

We also define u Vv v similarly by replacing the min operation by max in (1.2.2). For any
u, v € Cls(n), the difference between v and u is the word v — u on Z of length n defined
for any i € [n] by

(v —u) := v; — u;. (1.2.3)

Observe that when u < v, v — u is a 6-cliff. The 6-complementary cs(u) of u € Cls(n) is
the &-cliff 15(n) —u. For instance, by setting u := 0010, if u is seen as a 1-cliff, cs(u) = 0113,
and if u is seen as a 2-cliff, cs(u) = 0236. This map cs is an involution.

1.2.2. First properties. A study of the 1-cliff posets appears in [Den13]. Our definition
stated here depending on & is therefore a generalization of these posets. The structure
of the &-cliff posets is very simple since each of these posets of order n is isomorphic to
the Cartesian product [0, 5(1)] x - -+ x [0, 6(n)], where [K] is the total order on k elements.
It follows from this observation that each 6-cliff poset is a lattice admitting respectively A
and V as meet and join operations. The lattice Cls(n) can be seen as a sublattice of the
Cartesian product N" of copies of total orders N, which is a distributive lattice. Since all
sublattices of distributive lattices are distributive [Bir79], Cls(n) is distributive.

It follows immediately from the definition of < that the covering relation < of Cls(n)
satisfies u < v if and only if there is an index i € [n] such that v = 7;(u). Moreover, these
posets Cls(n) are graded, and the rank of a §-cliff u is w(u). The least element of the poset
is Os(n) while the greatest element 15(n).
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1.2.3. Links with the right weak order. We refer to Section 1.1.6, and to Section 1.3.5
of Chapter 1 for this part.

When 6 is a rooted weakly increasing range map, let us consider the binary relation
<’ on Clg(n) wherein u <’ v if there is an index i € [n] such that v = 7;(u) and, by setting
t := trees(u), all the children of the node labeled by i of t are leaves, except possibly the
first of its brotherhood. For instance, for 6 := 0233579 and the S-cliff u := 021042, since

(1.2.4)

we observe that all the children of the nodes labeled by 2, 3, and 6 are leaves, except
possibly the first ones. For this reason, u is covered by 1z(u) = 022042 and by T4(u) =
021043, but not by T,(u) = 031042 since this word is not a &-cliff.

The reflexive and transitive closure <’ of this relation is an order relation. By Propo-
sition 1.1.1, this endows the set of all 6-increasing trees with a poset structure. It follows
immediately from the description of the covering relation < of Cls(n) provided in Sec-
tion 1.2.2 that <’ is a refinement of <. For this reason (Cls(n), <) is an order extension
of (Cls(n), x). Figure 1.2 shows an example of a Hasse diagram of such a poset.

0000

SN

0001 0100 0010

/NN N

0002 0101 0110 0011

FIGURE 1.2. The Hasse diagram of the poset (Cloy190 (4), <').

ProposiTION 1.2.1. For any n > 0, the poset (Cly(n), <’) is isomorphic to the right
weak order on permutations of size n.

PRrOOE. Let ¢ be the map from the set of all words u of size n of integers without
repeated letters to the set of increasing binary trees of size n where nodes are bijectively
labeled by the letters of u, defined recursively as follows. If o is the empty word, then
¢(0) is the leaf. Otherwise, 0 decomposes as 0 = waw’ where a is the least letter of o,
and w and w’ are words of integers. In this case, ¢(0) is the binary tree consisting in a
root labeled by a and having as left subtree ¢(w’) and as right subtree ¢(w) —observe the
reversal of the order between w and w’. Now, by induction on n, one can prove that for
any permutation o of size n, the binary trees ¢(o) and tree; (leh(o)) are the same.
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Assume that 0 and v are two permutations such that o <y v. Thus, by definition of
<we, 0 decomposes as 0 = wabw’ and v as v = wbaw’ where a and b are letters such
that a < b, and w and w’ are words of integers. By definition of ¢, since a and b are
adjacent in o, the right subtree of the node labeled by b of ¢(0) is empty. Therefore, due
to the property stated in the first part of the proof, and by definition of the map tree; and
of the covering relation <’, one has leh(o) <’ leh(v). Conversely, assume that u and v are
two 1-cliffs such that u <’ v. Thus, by definition of <’, v is obtained by changing a letter u;,
i > 2, in u by u; +1, and in trees (u), the right subtree of the node labeled by i is empty. Let
0 := leh™}(u) and v := leh!(v). Since ¢(0) and tree;(u) are the same increasing binary
trees, we have, from the definition of the map ¢, that u;_y < u;. Finally, by definition of
<we, ONE obtains 0 <y, V.

We have shown that the bijection leh between &(n) and Cly(n) is such that, for any
0,V € &(n), 0 <y v if and only if leh(o) <'leh(v) . For this reason, leh is a poset isomor-
phism. O

Therefore, Proposition 1.2.1 says in particular that the 1-cliff poset is an extension of
the right weak order, as mentioned in Section 1.4 of Chapter 1. Besides, for all rooted
weakly increasing range maps 6, one can see (Cls(n), <’) as generalizations of the right
weak order. After some computer experiments, we conjecture that for any rooted weakly
increasing range map 6 and any n > 0, (Cls(n), ') is a lattice.

1.3. Subposets of S-cliff posets. Despite their simplicity, the S-cliff posets contain
subposets having a lot of combinatorial and algebraic properties. If § is a graded subset
of Cls, each S(n), n > 0, is a subposet of Cls(n) for the order relation <. We denote by
< the covering relation of each S(n), n > 0.

We say that S is

x spread if for any n > 0, 05(n) € § and 15(n) € S,

* straight if for any u, v € S such that u <gv, #D(u,v) = 1,

* coated if for any n > 0, any u,v € S(n) such that u x v, and any i € [n — 1],
UWy...UiVig1...Vp €S,

* closed by prefix if for any u € §, all prefixes of u belong to §,

* minimally extendable if € € § and for any u € §, u0 € S,

* maximally extendable if € € § and for any u € §, ué(ju| + 1) € S.

Observe that when S is spread, each poset $(n), n > 0, is bounded, that is it admits a least
and a greatest element. Observe also that if S is both minimally and maximally extendable,
then S is spread.

LemMA 1.3.1. Let 6 be a range map and S be a coated graded subset of Cls. Then,
S is straight.

PrROOE. Let n > 0 and u,v € S(n) such that u < v and #D(u,v) > 2. Set j :=
maxD(u, v) and w := uy ... Uj_1VjVj4q ... Vn. Since § is coated, w belongs to §, and more-
over, since j is maximal, w := ujy...uj_1Vjujs1...un. Therefore, #D(u,w) = 1. This



1. 6-CLIFF POSETS AND GENERAL PROPERTIES 105

proves that there exists a w’ € S(n) such that u <sw’ < w and #D(u, w’) = 1. Thus, S is
straight. 0

Let us defined more generally the three following graded sets seen in Section 2.1.2 of
Chapter 2. In the case where S is straight, we define the graded set of

* input-wings as the set 9(S) containing any u € § which covers exactly dimj,(6)
elements,
* output-wings as the set O(S) containing any u € § which is covered by exactly
dimy,|(6) elements,
* butterflies as the set $B(S) being the intersection J(S) N O(S).
By definition, the number of input-wings (resp. output-wings) of size n > 0 is the coefficient
of the leading monomial of the degree polynomial dg(n(x,1) (resp. dsum)(1,¥)). Observe
also that if there is an i > 1 such that &§(i) = 1, there are no butterfly in S(n) for all n > i.

We present now general results about subposets S(n), n > 0, of S-cliff posets.
1.3.1. EL-shellability. For this part, we refer to Section 2.3 of Chapter 1.

For the sequel, we set A as the poset Z? wherein elements are ordered lexicograph-
ically. For any straight graded subset S of Cls, let us introduce the map Ag : <5 — Z2
defined for any (u,v) € < by

Aslu, v) = (—i, u;) (1.3.1)
where i is the unique index i € [|u|] such that D(u, v) = {i}. Observe that the fact that S
is straight ensures that As is well-defined.

THEOREM 1.3.2. Let § be a range map and S be a coated graded subset of Cls.
For any n > 0, the map As is an EL-labeling of S(n). Moreover, there is at most one
As-weakly decreasing chain between any pair of elements of S(n).

Proor. By Lemma 1.3.1, the fact that § is coated implies that § is also straight. Let
u,v € S(n) such that u < v. Since § is straight, the image by As of any saturated chain
from u to v is well-defined.

Now, let
<u = w0, wlt), . wkl k= V> (1.3.2)

be the sequence of elements of S(n) defined in the following way. For any i € [0,k — 1],

the word w*!) is obtained from w' by increasing by the minimal possible value a > 1
(i)

the letter w;" such that j is the greatest index satisfying W;i) < vj. By construction, for
any i € [0,k — 1], each w(*! writes as wi*! = uy...uj_4(u; + a)vji1...vn, where a is
some positive integer. There is at least one value a such that w' belongs to S(n) since
by hypothesis, § is coated. For this reason, (1.3.2) is a well-defined saturated chain in S$(n).
This saturated chain is also As-increasing by construction. Moreover, since § is straight,
if one consider another saturated chain from u to v, this chain passes through a word
obtained by incrementing a letter which has not a greatest index, and one has to choose
later in the chain the letter of the smallest index to increment it. For this reason, this

saturated chain would not be As-increasing.
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Assume now that there is a As-weakly decreasing saturated chain
(u = w0, wlth oo k=l gk V) (1.3.3)

between u and v. By definition of A¢ and of the poset A, for any i € [0,k — 1], the word

(i+1) is obtained from w( by increasing by the minimal possible value the letter w;i)

such that j is the smallest index satisfying W;i) < v;. If it exists, this saturated chain is by
construction the unique As-weakly decreasing saturated chain from u to v. O

w

1.3.2. Meet and join operations, sublattices, and lattices. Here we give some suffi-
cient conditions on § for the fact that each S(n), n > 0, is a lattice.

ProrosiTiON 1.3.3. Let 6 be a range map and § be a spread graded subset of Cls.
We have the following properties:

(i) if for any n > 0 and any u,v € §(n), uAv € §, then §(n) is a lattice and is a
meet semi-sublattice of Cls(n),
(ii) if for any n > 0 and any u,v € S§(n), uVvv € S, then S(n) is a lattice and is a
join semi-sublattice of Cls(n),
(iii) if for any n > 0, S(n) is a sublattice of Cls(n), then S(n) is distributive and
graded.

ProOE. Let u,v € S(n). When uAv € §, uAv is the greatest lower bound of u
and v in Cls(n) and also in S$(n). For this reason, $(n) is a meet semi-sublattice of Cls(n).
Moreover, since S(n) is finite and admits 15(n) as greatest element, by [Sta11], u and v have
a least upper bound u V' v in S(n) for a certain join operation V. Whence (i) and also (ii)
by symmetry. Point (iii) is a consequence of the fact that any sublattice of a distributive
lattice is distributive, and the fact that any distributive lattice is graded [Stal1l]. O

Let § be a minimally extendable graded subset of Cls. For any n > 0, the S-decre-
mentation map is the map

s : Cls(n) — S(n) (1.3.4)
defined recursively by | ¢(€) := € and, for any ua € Cls(n) where u € Cls and a € N, by
ls(ua) := |s(u)b (1.3.5)
where
b:=max{b<a:|s(u)be S} (1.3.6)

Observe that the fact that $ is minimally extendable ensures that || ¢ is a well-defined map.
Let also, for any n > 0 and u, v € S(n),

uAsv:=guAv). (1.3.7)

When § is maximally extendable, we denote by {5 the S-incrementation map defined
in the same way as the S-decrementation map with the difference that in (1.3.6), the
operation max is replaced by the operation min and the relation < is replaced by the
relation >. Here, the fact that § is maximally extendable ensure that ¢ is well-defined.
We also define the operation Vs in the same way as Ag with the difference that in (1.3.7),
the map | s is replaced by 15 and the operation A is replaced by the operation V.
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THEOREM 1.3.4. Let 6 be a range map and § be a closed by prefix and minimally
(resp. maximally) extendable graded subset of Cls. The operation Ag (resp. V) is, for
any n > 0, the meet (resp. join) operation of the poset S(n).

PRrOOE. Let us show the property of the statement of the theorem in the case where §
is minimally extendable. The other case is symmetric. We proceed by induction on n > 0.
When n = 0, the property is trivially satisfied. Let n > 1 and u, v € §(n). Since S is closed
by prefix, one has u = u'a and v = v'b with u’,v' € §(n — 1) and a,b € N. Since § is
minimally extendable,

uAsv=uaAsvb
= ls(u'aAv'd)
= ls((u'Av')min{a,b})
= ls(u'Av)c

where ¢ := max{c < min{a,b}: |s(u’' Av')c € §}. Now, by induction hypothesis, we obtain

(1.3.8)

ls(u'Av)e = (uAsV)c (1.3.9)

where Ay is the meet operation of the poset S(n — 1). First, we deduce from the above
computation that for any i € [n], the i-th letter of u A5 v is nongreater than min{u;, v; },
and that u As v belongs to S(n). Therefore, u Ag v is a lower bound of {u,v}. Second, by
induction hypothesis, w’ := u’ Ag v’ is the greatest lower bound of {u’, v'}. By construction,
since ¢ is the greatest letter such that ¢ < a, ¢ < b, and w'c € § holds, any other lower
bound of {u, v} is smaller than w'c. This prove that w'c is the greatest lower bound of
{u, v} and implies the statement of the theorem. O

Together with Proposition 1.3.3, Theorem 1.3.4 provides the following sufficient con-
ditions on the graded subset § of Cls for the fact that for all n > 0, the posets $(n) are
lattices:

(i) S is spread and each §(n), n > 0, is a meet semi-sublattice of Cls(n),
(ii) S is spread and each §(n), n > 0, is a join semi-sublattice of Cls(n),
(iii) S is minimally and maximally extendable, and closed by prefix.

1.3.3. Constructibility by interval doubling. For this section, we can refer to Sec-
tion 2.4 of Chapter 1.

The aim of this section is to introduce a sufficient condition on a graded subset §
of Cls for the fact that each S(n), n > 0, is constructible by interval doubling. We shall
moreover describe explicitly the sequence of interval doubling operations involved in the
construction of §(n) from the trivial lattice.

Let & be a nonempty subposet of Cls(n) for a given fixed size n > 1. Let us denote
by m(%) the letter max{u, :u € ®}. For any a,b € [0,6(n)], let Py := {uec P:u, =a}
and P p 1= {ub:ua € P, }. Observe that ¥, is a subposet of & while ¥, , may contain
6-cliffs that do not belong to . The derivation of & is the set

D(P):= PyUPU---U gjm(gj)_1 ) gjm(gj)‘m(ga)_i. (1.3.10)
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In other words, D(P) is the set of all the cliffs obtained from & by decrementing their last
letters if they are equal to m(%) or by keeping them as they are otherwise. Observe that
9D(P) is not necessarily a subposet of . Nevertheless, D(P) is still a subposet of Cls(n).
Observe also that m(@D(P)) < m(P) — 1. For instance, by considering the subposet

& := {0000,0111,0002,0112,0103,0104, 0004 } (1.3.11)
of Cly(4), we have
Pom(e) = {0004,0114 } (1.3.12)
and
D(P) = {0000,0111,0002,0112,0103, 0003 }. (1.3.13)

The subposet & is nested if it is nonempty and

(N1) for any a € [0, m(%)], the S-cliff 0"~'a belongs to P,
(N2) for any a € [0, m(%P)], Pq,m(e) is both a subset and an interval of &.

This definition still holds when m(%?) = 0. Observe that any &-cliff 0" la,a > 1, of P covers
exactly the single element 0"~! (a — 1) of ®. This element exists by (N1). Therefore, when
% is a lattice, these 6-cliffs are join-irreducible.

LEMMA 1.3.5. Let § be a range map and ¥ be a nonempty subposet of Cls(n) for an
n > 1. If P is nested, then for any a € [0, m(P)], P, is an interval of P.

PRrOOE. First, by (N1), P, admits 0"'a as unique least element. It remains to prove
that $, has at most one greatest element. By contradiction, assume that there are in
&, two different greatest elements ua and va, where u,v € Cls(n — 1). Then, by setting
b := m(¥P), in P, the S-cliffs ub and vb are still incomparable. Since these two elements
are also greatest elements of %P, ;, this implies that P, is not an interval in . This
contradicts (N2). O

LEMMA 1.3.6. Let § be a range map and P be a nonempty subposet of Cls(n) for an
n > 1. If m(%®) > 1 and & is nested, then D(P)ma)) = Pm(e)m(@)1-

PRrOOE. Let b := m(®), ¥ := D(P), and b’ := m(9’). First, since P satisfies (N1),
b’ = b — 1. Moreover, directly from the definition of the derivation operation 9, we have
Py = P UPy. By (N2), Py p is a subset of Py, so that Py, is a subset of Py, . Therefore,
Py = Pop. O

LEMMA 1.3.7. Let 6§ be a range map and P be a nonempty subposet of Cls(n) for an
n > 1. If m(®) > 1 and & is nested, then D(P) is nested.

PrOOE. Let b := m(P), P = D(P), and b’ := m(9’). First, since P satisfies (N1),
b’ = b — 1. Moreover, in particular, for any a < [0,b’], 0"'a € . Hence, 0"'a ¢ &, so
that &’ satisfies (N1). Let a € [0,b’ —1]. By (N2), P, is an interval of &,. Due to the fact
a < b’ —1, one has ¥, = ¥, so that &, is an interval of ¥,. This is equivalent to the
fact that &, ;, is an interval of ¥, ;. By Lemma 1.3.6, the relation ¥}, = %, holds and
leads to the fact that &, ,, is an interval of &,,. Therefore, &’ satisfies (N2). O
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LEMMA 1.3.8. Let 6 be a range map and P be a nonempty subposet of Cls(n) for an
n>1. If m(®) > 1 and & is nested, then & is isomorphic as a poset to D(P)[I| where I
is the interval Py q)—1 of D(P).

PrOOE. Let b := m(®), " := D(P), and b’ := m(%’). By (N1), b’ = b — 1. Let us first
prove that I = &P is an interval of &'. Let u, v € ¥ such that u < v. Assume that there
exists w € &, such that u x w < v. Let us denote by u’ (resp. v/, w’) the prefix of size
n —1 of u (resp. v, w). By (N2), u’b and v'b belong to ;. Moreover, by Lemma 1.3.6,
since P, = Ppp, W € Pp . Therefore, w'b belongs to Pp. Again by (N2), this leads to the
fact that w € 9. This shows that the set &, is closed by interval in &°,. Since finally, by
Lemma 1.3.5, & is an interval of ¥, Py has a unique least and a unique greatest element.
This implies that &}, is an interval of &'.

Since I is an interval of &', we can now consider the poset 9'[I]. By definition of the
interval doubling operation, ¥'[I] = (9 \ Pp) U (Pr x 2). Let ¢ : P'[I] - P be the map
defined by

¢(ua) := ua, if ua € P\ Py and a + b’, (1.3.14a)
d(ub’):i=ub,  ifub € P\ Py, (1.3.14b)
¢((udb’,1)) := ub’, if (ub’,1) € Py x 2, (1.3.14c)
¢((ub’,2)) := ub, if (ub’,2) € Py x 2. (1.3.14d)

This map ¢ is well-defined because, respectively, one has &, = ¥, for any a € [0,b" — 1],
Lemma 1.3.6 holds, I is in particular a subset of P, and & satisfies (N2). Let now ¢ : P —
&'[I] be the map satisfying

Y(ua) = ua, if ua e Panda e [0,b" —1], (1.3.15a)
D(ub) = ub,  if ub’ € P\ Py, (1.3.15b)
Y(ub) = (ub’,2), if ub’ € Py, (1.3.15¢)
Y(ub) = (ub 1),  if ub € Py. (1.3.45d)

By similar arguments as before, this map v is well-defined. Moreover, by construction,
Y is the inverse of ¢. Therefore, ¢ is a bijection. The fact that ¢ is a poset embedding
comes by definition of ¢ and from the fact that, due to the property of & to be nested, for
any ub’ € @\ Py, all elements greater than ub’ in ¥ do not belong to Py. Thus, P'[I]
is isomorphic as a poset to &P. O

By assuming that & is nested, the sequence of derivations from & is the sequence
(QP, DP), PP, ..., @m<g’>(@)) (1.3.16)

of subsets of Cls(n). Observe that due to (N1), for any k € [m(P) — 1], m(D*(P)) > 1, so
that 9*+1(%P) is well-defined.

Given a graded subset S of Cls, we say by extension that § is nested if for all n > 0,
the posets §(n) are nested.
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THEOREM 1.3.9. Let § be a rooted range map and S be a nested and closed by
prefix graded subset of Cls. For any n > 1, §(n) is constructible by interval doubling.
Moreover,

S(n) — D(S(n)) - -+ —» PECN(S(n)) = S(n 1)
- PDS(n —1)) = -+ - PUER-DEN 1)) ~ S(n —2) (1.3.47)
— o= 8(0) = {e}

is a sequence of interval contractions from S(n) to the trivial lattice {e].

ProoOE. We proceed by induction on n > 0. If n = 0, since § is rooted, we necessarily
have §(0) ~ {e}, and this poset is by constructible by interval doubling. Assume now
that n > 1 and set ¥ := S(n). Since § is nested, the sequence of reductions from &
is well-defined. By Lemmas 1.3.7 and 1.3.8, by setting &' := 9™¥)(P), P is obtained by
performing a sequence of interval doubling from the poset &'. Now, due to the definition
of the derivation algorithm 9, 9’ is made of the §-cliffs of & wherein the last letters have
been replaced by 0. This poset & is therefore isomorphic to the poset " formed by the
prefixes of length n —1 of &. Since S is closed by prefix, " is thus the poset §(n —1). By
induction hypothesis, this last poset is constructible by interval doubling. Therefore, S(n)
also is. All this produces the sequence (1.3.17) of interval contractions. O

1.3.4. Elevation maps. We introduce here a combinatorial tool intervening in the study
of the three Fuss-Catalan posets introduced in the sequel.

Let S be a closed by prefix graded subset of Cls. For any u € S, let
Fs(u) := {a €[0,6(u| +1)] :ua € S}. (1.3.18)

By definition, Fs(u) is the set of all the letters a that can follow u to form an element of S.
For any n > 0, the S-elevation map is the map

es : §(n) — Cls(n) (1.3.19)
defined, for any u € S(n) and i € [n] by
es(u); := #(Fs(ug...u;—1) N[0, u; —1]) (1.3.20)

for any i € [n]. From an intuitive point of view, the value of the i-th letter of egs(u) is the
number of cliffs of S obtained by considering the prefix of u ending at the letter u; and by
replacing this letter by a smaller one. Remark in particular that ec), is the identity map.
Besides, we say that any u € § is an exuviae if eg(u) = u.

Let &8s be the graded set wherein for any n > 0, 8¢(n) is the image of S(n) by the
S-elevation map. We call this set the S-elevation image. Observe that &g is a graded
subset of Cls. Note also that for any u € S, es(u) < u.

ProposiTION 1.3.10. Let § be a range map and S be a closed by prefix graded subset
of Cls. For any n > 0, the S-elevation map is injective on the domain S(n).
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ProOE. We proceed by induction on n. When n = 0, the property is trivially satisfied.
Let u,v € S(n) such that n > 1 and es(u) = es(v). Since S is closed by prefix, we have
u = u'a and v = v'b where u’,v' € §(n — 1) and a,b € N. By definition of es, we have
es(u'a) = es(u’)c and eg(v'b) = es(v')c where ¢ € N. Hence, eg(u’) = es(v') which leads,
by induction hypothesis, to the fact that u’ = v'. Moreover, we deduce from this and from
the definition of the S-elevation map that there are exactly c letters a’ smaller than a such
that u’a’ € S and that there are exactly c letters b’ smaller than b such that v'b" € S.
Therefore, we have a = b and thus u = v, establishing the injectivity of eg. O

LemmA 1.3.11. Let 6 be a range map and S be a closed by prefix graded subset of
Cls. The S-elevation image is closed by prefix.

PrOOE. Let n > 0 and v € 8g(n). Then, there exists u € S(n) such that eg(u) = v.
Let v’ be a prefix of v. Since § is closed by prefix, the prefix u’ of u of length n’ := |v/|
belongs to $(n’). Moreover, by definition of es, we have es(u’) = v'. Therefore, v' € &,
implying the statement of the lemma. O

ProposITION 1.3.12. Let § be a range map and S be a closed by prefix graded subset
of Cls such that for any u,v € §, u < v implies Fg(v) C F¢(u). For any n > 0, the map
e;' is a poset morphism from &g(n) to S(n).

Prook. First, by Proposition 1.3.10, the map e§1 is well-defined. We now proceed by
induction on n. When n = 0, the property is trivially satisfied. Let u and v be elements
of 8¢(n) such that n > 1 and u < v. By Lemma 1.3.11, we have u = u’a and v = v'b
where u/,v' € 8s(n — 1) and a,b € N. By definition of e;', we have e;'(u'a) = e5l(u')c
and e5'(v'b) = eg'(v')d where c¢,d € N. Since u < v, one has u’ < v’ so that, by induction
hypothesis, e;'(u') < e5!(v/). Moreover, u < v implies that a < b. Due to the fact that
Fs(v') C Fg(u’), one has by definition of egi that ¢ < d. Therefore, egi(u’)c < egi(v’)d,
which implies the statement of the proposition. O

Proposition 1.3.12 says that when S is closed by prefix, for any n > 0, the poset S(n)
is an order extension of &¢(n).

1.3.5. Cubic realizations. As for the cubic coordinate lattices in Chapter 2 and for the
Hochschild lattices in Chapter 3, the poset Cls and these graded subsets admit a cubic
realization. Let us recall and generalize some definitions seen in Section 2.1 of Chapter 2.

Let S be a graded subset of Cls. For any n > 0, the realization of §(n) is the geometric
object €(S(n)) defined in the space R" and obtained by placing for each u € S(n) a vertex
of coordinates (uy, ..., u,), and by forming for each u,v € §(n) such that u <sv an edge
between u and v. Remark that the posets of Figure 1.1 represent actually the realizations
of 6-cliff posets. We will follow this drawing convention for all the next figures of posets
in all the sequel. When § is straight, every edge of €(S§(n)) is parallel to a line passing by
the origin and a point of the form (0,...,0,1,0,...,0). In this case, we say that €(§(n)) is
cubic.

Let us assume from now that § is straight. Let u,v € S(n) such that u < v. The
word u is cell-compatible with v if for any word w of length n such that for any i € [n],
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wi € {u;, vi}, then w € §. In this case, we call cell the set of points
(u,v):={xeR":u; <x; <v forallic[n]} (1.3.21)

By definition, a cell is an orthotope, that is a parallelotope whose edges are all mutually
orthogonal or parallel. A point x of R" is inside a cell (u,v) if for any i € [n], u; + v;
implies u; < x; < v;. A cell (u,v) is pure if there is no point of S(n) inside (u,v). In
other terms, this says that for all w € [u, v], there exists i € [n] such that u; +# v; and
w; € {u;, vi}. Two cells (u,v) and (u’,v') of €(S(n)) are disjoint if there is no point of
R™ which is both inside (u, v) and (u’, v'). The dimension dim(u, v) of a cell (u, v) is its
dimension as an orthotope and it satisfies dim (u, v) = #D(u, v). The volume vol(u, v) of
(u, v) is its volume as an orthotope and its satisfies

vol(u,v) = l—l Vi — U. (1.3.22)
ieD(u,v)
For any k > 0, the k-volume vol(€(S5(n))) of €(S(n)) is the volume obtained by summing the
volumes of all its all its cells of dimension k, computed by not counting several times poten-
tial intersecting orthotopes. The volume vol(€(S(n))) of €(S(n)) is defined as vol(€(S(n)))
where k is the largest integer such that €(S(n)) has at least one cell of dimension k.

Figure 1.3 shows examples of these notions. Figure 1.3a shows a cubic realization

10 01
20

12
22
(a) A cubic realization of a sub-

poset of the 29-cliffs of order 2. (B) Another cubic realization of
a subposet of the 2“-cliffs of or-

der 2.

20 02

22

113

(c) Another cubic realization of

a subposet of the 2¥-cliffs of or- (D) A cubic realization of a sub-
der 2. poset of the 113“-cliffs of or-
der 3.

FIGURE 1.3. Some cubic realizations of straight subposets of posets of S-cliffs for certain
range maps 6.
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wherein 00 is cell-compatible with 12. Hence, (00,12) is a cell. The point (1,3) € R?
is inside (00,12), and since there are no elements of the poset inside the cell, this cell
is pure. Figure 1.3b shows a cubic realization wherein 00 is not cell-compatible with 22
because 02 does not belong to the poset. Nevertheless, (00,11), (10,21), and (11,22) are
pure cells of dimension 2. Figure 1.3c shows a cubic realization wherein (00, 22) is a non-
pure cell. Indeed, the 6-cliff 11 is an element of the poset and is inside this cell. Finally,
Figure 1.3d shows a cubic realization having 1 as volume since there is exactly one cell
(000, 111) of maximal dimension (which is 3) and of volume 1. Its 2-volume is 8 since this
cubic realization decomposes as the seven disjoint cells (000,011), (000,101), (000, 110),
(001,111), (010,111), (100,111), and {101, 113) of respective volumes 1, 1, 1, 1, 1, 1, and 2.

There is a close connection between output-wings (resp. input-wings) of S(n), n > 0,
and the computation of the volume of €(S(n)): if (u,v) is a cell of maximal dimension
of €(S(n)), then due to the fact that S is straight, u (resp. v) is an output-wing (resp.
input-wing) of $(n). When for any n > 0,

(i) there is a map p : O(S)(n) — 9(S)(n),
(ii) all cells of maximal dimension of €(S(n)) express as (u, p(u)) with u € O(S)(n),

(iii) all cells of {{u,p(u)): u € O(S)(n)} are pairwise disjoint,

then the volume of €(S(n)), n > 0, writes as

vol(€(S(n))) = Y vol(u,p(u)). (1.3.23)
ucO(S)(n)
When some cells of {{u,p(u)):u € O(S)(n)} intersect each other, the expression for the
volume would not be at as simple as (1.3.23) and can be written instead as an inclusion-
exclusion formula. Of course, the same property holds when p is instead a map from
J(S)(n) to O(S)(n) by changing accordingly the previous text.

ProposITION 1.3.13. Let § be a range map and § be a straight graded subset of Cls.
If, for an n > 0, €(8(n)) has a cell of dimension dim,(6), then the order dimension of
the poset S(n) is dim,(8).

Proor. First, since §(n) is a subposet of Cls(n), S(n) is a subposet of the Cartesian
product
[1N (1.3.24)

ic[n]

8(i)#0
This poset has order dimension dim,(S), so that the order dimension of §(n) is at most
dim, (5). Besides, since S is straight, the notion of cell is well-defined in the cubic realization
of S(n). By hypothesis, S(n) contains a cell (u, v) of dimension dim,(S). Thus, there is a
poset embedding of Hgim, (5) into the interval [u, v] of S(n). Therefore, the order dimension
of §(n) is at least dimp(S). O

As a particular case of Proposition 1.3.13, the order dimension of Cls(n) is dimy,(S).
This explains the terminology of “n-th dimension of ” for the notation dim,(S) introduced
in Section 1.1.1.
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2. Some Fuss-Catalan posets

We present here some examples of subposets of S-cliff posets. We focus in this work
on three posets whose elements are enumerated by m-Fuss-Catalan numbers for the case
6 =m, m > 0. We provide some combinatorial properties of these posets like among
others, a description of their input-wings, output-wings, and butterflies, a study of their
order theoretic properties, and a study of their cubic realizations. We end this section by
establishing links between these three families of posets in terms of poset morphisms,
poset embeddings, and poset isomorphisms. We shall omit some straightforward proofs
(for instance, in the case of the descriptions of input-wings, output-wings, butterflies, meet-
irreducible and join-irreducible elements of the posets).

We use the following notation conventions. Poset morphisms are denoted by letters
¢ and through arrows —>, poset embeddings by letters ¢ and through arrows >>, and
poset isomorphisms by letters 6 and through arrows —>.

2.1. 6-avalanche posets. We begin by introducing a first Fuss-Catalan family of posets.
As we shall see, these posets are not lattices but they form an important tool to study the
two next two families of Fuss-Catalan posets.

2.1.1. Objects. For any range map 6, let Avs be the graded subset of Cls containing
all 6-cliffs u such that for all nonempty prefixes u’ of u, then w(u’) < 6(|u’|). Any element
of Avs is a 6-avalanche. For instance,

Av,(3) = {000,001, 002,003, 004,010,011,012,013,020,021,022}. (2.1.1)

ProposITION 2.1.1. For any weakly increasing range map 6, the graded set Avg is

(i) closed by prefix,
(ii) is minimally extendable,
(iii) is maximally extendable if and only if 6 = 0“.

ProOOE. Point (i) is an immediate consequence of the definition of S-avalanches. Let
n > 0 and u € Avg(n). Since 6(n + 1) > 6(n), u0 is a 6-avalanche. This establishes (ii).
Finally, we have immediately that Avy. is maximally extendable. Moreover, when 6 # 0%,
there is an n > 1 such that §(n) > 1 and &(n’) = 0 for all 1 < n’ < n. Therefore, 0"~! §(n)
is a S-avalanche but 0"~! §(n) §(n + 1) is not. Therefore, (iii) holds. O

ProposITION 2.1.2. For any m > 0 and n > 0,
#Avy (n) = caty,(n). (2.1.2)

ProoOE. This is a consequence of Proposition 2.2.2 coming next. Indeed, by this re-
sult, Avy(n) is the image by the elevation map of a graded set of objects enumerated
by m-Fuss-Catalan numbers. Since this set of objects satisfies all the requirements of
Proposition 1.3.10, the elevation map is injective, implying that it is a bijection. g



2. SOME FUSS-CATALAN POSETS 115

000
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011 002 0021 0012 0003

(A) Avy(3).

(B) Ava(3).

(c) Avy (4).

FIGURE 2.1. Hasse diagrams of some 6-avalanche posets.

2.1.2. Posets. For any n > 0, the subposet Avs(n) of Cls(n) is the S-avalanche poset
of order n. Figure 2.1 shows the Hasse diagrams of some m-avalanche posets.

Let 6 be a weakly increasing range map. Notice that in general, Avs(n) is not bounded.
Since for all u € Avs(n), w(u) < 6(n), we have u € maxg Avs(n) if and only if w(u) = &(n).
Moreover, due to the fact that any 6-cliff obtained by decreasing a letter in a §-avalanche is
also a 6-avalanche, the poset Avs(n) is the order ideal of Cls(n) generated by max Avs(n).
Finally, as a particular case, we shall show as a consequence of upcoming Proposition 2.2.10
that for any m > 0 and n > 1, # maxg Avy(n) = cat,(n —1).

ProposiTiON 2.1.3. For any weakly increasing range map é and n > 0, the poset
Avs(n)
(i) is straight, where u € Avs(n) is covered by v € Avs(n) if and only if there is an
i € [n] such that 7;(u) = v,
(ii) is coated,
(iii) is graded, where the rank of an avalanche is its weight,
(iv) admits an EL-labeling,
(v) is a meet semi-sublattice of Cls(n),
(vi) is a lattice if and only if § = 0“.

Prook. Points (i), (iii), (v), and (vi) are immediate. If u and v are two S-avalanches of
size n such that u < v, then for any i € [n — 1], w(uy...u;) < W(vy...v;). Therefore, the
6-cliff uy ...u;viy1 ... vy is a S-avalanche. For this reason, (ii) checks out. Point (iv) follows
from (ii), and Theorem 1.3.2. O

ProposiTION 2.1.4. For any m > 1,

(i) the graded set 9(Avy,) contains all the m-avalanches u satisfying u; #+ 0 for
alli € [2,|u]],

(ii) the graded set O(Avy,) contains all the m-avalanches u satisfying w(u’) < m(|ju’|)
for all prefixes u’ of u of length 2 or more,
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(iii) the graded set B(Avy,) contains all the m-avalanches u satisfying u; + 0 for all
i €2 |u]l, and w(u’) < m(|v’'|) for all prefixes u’ of u of length 2 or more.

ProposITION 2.1.5. For any m > 0 and n > 0, the map 0 : Avy(n) — J(Avy.1)(n)
defined for any u € Avy(n) and i € [n] by
G(H)i = 1H=1(ui + 1) (213)
is a poset isomorphism.

Prook. It follows from Proposition 2.1.4 and its description of the input-wings of
Avphiq(n) that 0 is a well-defined map. Let 6’ : 9(Avy.1)(n) — Avy,(n) be the map de-
fined for any u € 9(Avp.1)(n) and i € [n] by 6'(u); := 1;21(u; —1). It follows also from
Proposition 2.1.4 and the definition of m-avalanches that 6" is a well-defined map. Now,
since by definition of &', both 006" and € o 6 are identity maps, 6 is a bijection. Finally, the
fact that 6 is a translation implies that 6 is a poset embedding. O

As a consequence of Proposition 2.1.5, for any m > 1 and n > 0, the number of
input-wings in Avy,(n) is caty,_1(n).

ProposITION 2.1.6. For any m > 1 and n > 0, the map € : 9(Avy) — O(Avy,) defined
for any u € 9(Avy)(n) and i € [n] by
Clu)i := 124 (u; — 1) (2.1.4)
is a poset embedding.

ProoE. It follows from Proposition 2.1.4 and its descriptions of the input-wings and
output-wings of Avy,(n) that ¢ is a well-defined map. The fact that € is a translation implies
the statement of the proposition. O

ProposITION 2.1.7. Forany m > 1 and n > 0, the map 0 : O(Avy,) = B(Avym.1) defined
for any u € O(Avy)(n) and i € [n] by
G(U)i = 1i#1(ui + 1) (215)
is a poset isomorphism.

ProOE. The proof uses Proposition 2.1.4 and is very similar to the one of Proposi-
tion 2.1.5. O

To summarize, the three previous propositions lead to the following diagram of posets
wherein appear avalanche posets and their subposets of input-wings, output-wings, and
butterflies.

THEOREM 2.1.8. Foranym > 1 and n > 0,

0 (Pr. 2.1.5)
AVm_1(n) 9 (Avm)(n)

¢ (Pr. 2.1.6) (2.1.6)

6 (Pr. 2.1.7)
O(AVp)(n) ————> B(Avp1)(n)
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is a diagram of poset embeddings or isomorphisms.

Figure 2.2 gives an example of the poset isomorphisms or embeddings described by
the statement of Theorem 2.1.8.

FIGURE 2.2. From the top to bottom and left to right, here are the posets Avy(3), Avsz(3),
Avs(3), and Av,(3). All these posets contain Avy(3) as subposet by restricting on input-wings,
output-wings, or butterflies.

Let us define for any m > 0 and n > 1 the n-th twisted m-Fuss-Catalan number by

1 /nm+1) -2
tcat,, (n) := . 21.7
cat(n) = (" 177 2.7
ProposITION 2.1.9. For any m > 1, #0(Avy)(0) = 1 and, for any n > 1,
#O(Avy,)(n) = tcaty(n). (2.1.8)

ProoE. By Proposition 2.1.4, the set O(Avy,)(n) is in one-to-one correspondence with
the set of all m-cliffs v of size n such that for any i € [2,n], vi_1 < v; < m(i). A possible
bijection between these two sets sends any u € O(Avy)(n) to the m-cliff v of the same
size such that for any i € [n], v; := uy + --- + u;. These words are moreover in one-to-
one correspondence with indecomposable m-Dyck paths with n > 1 up steps, that are
m-Dyck paths which cannot be written as a nontrivial concatenation of two m-Dyck paths.
A possible bijection is the one described in upcoming Section 2.2.1. Let us denote by
G(t) (resp. G'(t)) the generating series of m-Dyck paths (resp. indecomposable m-Dyck
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paths) enumerated with respect to their numbers of up steps. By convention, G'(f) has no

constant term. Since any m-Dyck path decomposes in a unique way as a concatenation

of indecomposable m-Dyck paths, one has G(t) = (1 — §”(t))71. Now, by using the fact that
G(t) satisfies G(t) = 1 + tG(t)™*!, we have

gt -1 1 m

g'(t) = =tGt)" =t ——— 2.1.9

=g = 90" = (=) -

This relation satisfied by G’'(f) between the first and last members of (2.1.9) is known

to be the one of the generating series of twisted m-Fuss-Catalan numbers (see [Slo] for

instance). O

By Proposition 2.1.9, the first numbers of output-wings of Avy,(n) by sizes are

1,1,1,1,1,1,1,1, m =0, (2.1.10a)
1,1,1,2,5,14,42,132, m =1, (2.1.10b)
1,1,2,7,30,143,728,3876, m =2, (2.1.10¢)
1,1,3,15,91,612,4389,32890, m = 3. (2.1.10d)

The third and fourth sequences are respectively Sequences A006013 and A006632 of [Slo].
As a side remark, for any m > 1, the generating series of the graded set O(Avy,) is 1 plus
the inverse, for the functional composition of series, of the polynomial (1 — {)™.

ProposiTiON 2.1.10. For any m >1 and n > 1,

(i) the set M(Avy(n)) contains all m-avalanches u such that u = u’a where u’ €
maxg Avp(n —1) and a € [0,m — 1],

(ii) the set J(Avyy(n)) contains all m-avalanches having exactly one letter different
from O.

By Proposition 2.1.10 and by upcoming Proposition 2.2.10, the number of meet-irreducible
elements of Avy,(n) satisfies, for anym > 1 and n > 2,

M(Avy,(n)) = mcaty,(n — 2) (2.1.11)

and the number of join-irreducibles elements of Av,,(n) satisfies, foranym >1and n > 1,

#](Avm(n)) = m <g> (2.1.12)

2.1.3. Cubic realization. The map ¢ introduced by Proposition 2.1.6 is used here to
describe the cells of maximal dimension of the cubic realization of Avy(n), m > 1, n > 0.

ProposITION 2.1.11. For any m > 1, n > 0, and u € 9(Avy)(n),
(i) the m-avalanche €(u) is cell-compatible with the m-avalanche u,
(ii) the cell (¢(u),u) is pure,

(iii) all cells of {{€(u),u):u € T(Avy)(n)} are pairwise disjoint.


http://oeis.org/A006013
http://oeis.org/A006632
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ProoE. Let v be an m-cliff of size n satisfying v; € {€(u);,u;} for all i € [n]. By
definition of &, vy = 0 and v; € {u; —1,u;} for all i € [2,n]. Since u is an input-wing
of Avy, €(u) is an m-avalanche, and due to the definition of m-avalanches, any m-cliff
obtained by decrementing some letters of u is still an m-avalanche. Thus, v € Av,, and (i)
holds. Points (ii) and (iii) are consequences of the fact that there is no element of Avy,(n)
inside a cell (¢(u), u). Indeed, since for any i € [n], |C(u); — u;| < 1, we have v; € {€(u);, u; }
for all v € (¢(u), u) N Avy(n). O

As shown by Proposition 2.1.11, the cells of maximal dimension of the cubic realization
of Avy(n) are all of the form (¢(u), u) where the u are input-wings of Avp,(n).

ProposiTION 2.1.12. For any m > 1 and n > 0,
vol(€(Avy, (n))) = caty_1(n). (2.1.13)

ProoE. Proposition 2.1.11 describes all the cells of maximal dimension of €(Avy,(n))
as cells (¢(u), u) where u is an input-wing of Avy(n). Since all these cells are pairwise
disjoint, the volume of €(Avy,(n)) expresses as (1.3.23). Moreover, observe that the volume
of each cell (¢(u), u) where u in an input-wing is by definition of ¢ equal to 1. Therefore,
vol(€(Avy,(n))) is equal to the number of input-wings of Avy(n). The statement of the
proposition follows now from Proposition 2.1.5. O

2.2. &-hill posets. We now introduce &-hills and 6-hill posets as subposets of 6-cliff
posets. As we shall see, some of these posets are sublattices of m-cliff lattices.

2.2.1. Objects. For any range map 6, let His be the graded subset of Cls containing
all 6-cliffs such that that for any i € [|u] — 1], u; < u;1. Any element of His is a 6-hill. For
instance,

Hiy(3) = {000,001, 011,002, 012,022, 003,013, 023, 004, 014, 024 }. (2.2.1)

PropoOSITION 2.2.1. For any weakly increasing range map 6, the graded set His is

(i) closed by prefix,
(ii) is minimally extendable if and only if § = 0%,
(iii) is maximally extendable.

ProoE. Point (i) is an immediate consequence of the definition of &-hills. We have
immediately that Hip. is minimally extendable. Moreover, when 6 # 0%, there isan n > 1
such that §(n) > 1. Therefore, 15(n) is a &-hill but 15(n)0 is not. This establishes (ii).
Finally, since for any n > 0, 6(n + 1) > 6(n), one has 6(n + 1) > u, for any u € His(n).
This shows that u §(n + 1) is a &-hill. Therefore, (iii) holds. O

There is a one-to-one correspondence between Hiy(n) and the set of m-Dyck paths
Dy,,(n) seen in Section 1.1.4 of Chapter 1. This bijection sends an m-Dyck path w of size
n to the m-hill u of size n such that for any i € [n], u; is the number of down steps to the
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left of the i-th up step of w. For instance, the 2-Dyck path

(2.2.2)

is sent to the 2-hill 02366. Since m-Dyck paths of size n are known to be enumerated by
m-Fuss-Catalan numbers, one has

#Hiy (n) = caty(n). (2.2.3)
ProposiTION 2.2.2. For any range map é and any n > 0,
81—[16 (I’l) = AV&(I’[). (224)

Prook. First, since Hiy, is by Proposition 2.2.1 closed by prefix, the Hiy,-elevation
map and the Hip-elevation image are well-defined. Let u € His(n) and v := ey;, (u). By
definition of &-hills and of the His-elevation map, we have vy = uy and, for any i € [2, n],
vi = u; — u;—1. Therefore, for any prefix v’ := v;...v;, j € [n], of v, we have

w(V') =w + (U —w) + (us —uwg) + -+ + (W — uj1) = wj. (2.2.5)

Since u is in particular a é-cliff of size n, then u; < 6(j), so that v € Avs(n). This shows
that 8y, (n) is a subset of Avg(n).

Now, let u be an 6-avalanche of size n. Let us show by induction on n > 0 that there
exists v € His(n) such that ep;,(v) = u. When n = 0, the property is trivially satisfied.
When n > 1, since Avs is, by Proposition 2.1.1, closed by prefix, one has u = u’a for a
u’ € Avs(n — 1) and an a € N. By induction hypothesis, there exists v’ € His(n — 1) such
that en;; (v') = u’. Now, let b := a + v,,_, and set v := v'b. By using what we have proven
in the first paragraph, w(u’) = v,_,. Since w(u’) + a = w(u) < &(n), we have that b < &(n).

Therefore, since moreover b > v/

' _1» v is a 6-hill and it satisfies ey, (v) = u. O

2.2.2. Posets. For any n > 0, the subposet His(n) of Cls(n) is the 6-hill poset of order
n. Figure 2.3 shows the Hasse diagrams of some m-hill posets. The 1-hill posets are the
Stanley lattices seen in Section 1.3.9 of Chapter 1. Therefore, the §-hill posets can be seen
as generalizations of these structures.

ProposITION 2.2.3. For any weakly increasing range map & and n > 0, the poset
His(n) is
(i) straight, where u € Hig(n) is covered by v € His(n) if and only if there is an
i € [n] such that 1;(u) = v,

(ii) coated,
(iii) nested,

(iv) graded, where the rank of a hill is its weight,

(v) EL-shellable,

(vi) a sublattice of Cls(n),
(vii) constructible by interval doubling.
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000

000

001

011 002

012

(a) Hiy (3).

024

(B) Hia(3).

FIGURE 2.3. Hasse diagrams of some 6-hill posets.

Prook. Points (i), (i), (iii), (iv), and (vi) are immediate. Point (v) follows from (ii) and
Theorem 1.3.2. Point (vii) is a consequence of Theorem 1.3.9 since (iii) holds and, from
Proposition 2.2.1, of the fact that His is closed by prefix. Alternatively, (vii) is implied
by (vi) and the fact that any sublattice of a lattice constructible by interval doubling is
constructible by interval doubling [Day79], which is indeed the case for Cls(n). |

ProposITION 2.2.4. For any m > 0,

(i) the graded set 9(Hiy,) contains all the m-cliffs u satisfying uy < -+ < Uy,
(ii) the graded set O(Hiy,) contains all the m-cliffs u satisfying uy < up < --- < Uy
and for all i € [2, |u]], u; < m(i),
(iii) the graded set B(Hip) contains all the m-cliffs u satisfying uy < --- < uj, and
foralli € [2,|u]], u; < mfi).

ProposITION 2.2.5. For any m > 0 and n > 0, the map 6 : Hin(n) — 9(Hiy.1)(n)
defined for any u € Hin(n) and i € [n] by

Ou);:=u; +i -1 (2.2.6)
is a poset isomorphism.

ProoE. It follows from Proposition 2.2.4 and its description of the output-wings of
Hip . 1(n) that 6 is a well-defined map. Let 6" : (Hiy.1)(n) — Hiy(n) be the map defined for
any u € (Him.1)(n) and i € [n] by 6'(u); := u; —i + 1. It follows also from Proposition 2.2.4
that 0" is a well-defined map. Now, since by definition of 6, both 0 0 6" and 6’ o 6 are
identity maps, 6 is a bijection. Finally, the fact that 0 is a translation implies that 0 is a
poset embedding. O

As a consequence Proposition 2.2.5, for any m > 1 and n > 0, the number of input-
wings in Hiy(n) is caty,,_1(n).
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ProposITION 2.2.6. For any m > 1 and n > 0, the map 6 : 9(Hiy)(n) - O(Hiy)(n)
defined for any u € 9(Hip)(n) and i € [n] by

Q(Il)i = 1i#1(ui — 1) (227)
is a poset isomorphism.

ProokE. This proof uses Proposition 2.2.4 and is very similar to the one of Proposi-
tion 2.2.5. 0O

ProposiTION 2.2.7. For any m > 1 and n > 0, the map ¢ : 9(Hip)(n) = B(Him1)(n)
defined for any u € 9(Hiy)(n) by ¢(u) := u is a poset embedding.

Prook. It follows directly from Proposition 2.2.4 that any input-wing of Hiy, (n) is also a
butterfly of Hiy, 1 (n). The fact the identity map is a poset embedding implies the statement
of the proposition. O

To summarize, the three previous propositions lead to the following diagram of posets
wherein appear hill posets and their subposets of input-wings, output-wings, and butterflies.

THEOREM 2.2.8. Foranym > 1 and n > 0,

6 (Pr. 2.2.5) 6 (Pr. 2.2.6)
Hip 1 (n) I (Hipn) (n) O(Hipm)(n)
¢ (Pr. 2.2.7) (2.2.8)
%(Him+1) (n)

is a diagram of poset embeddings or isomorphisms.

Figure 2.4 gives an example of the poset isomorphisms or embeddings described by
the statement of Theorem 2.2.8.

ProposITION 2.2.9. For any m > 1, #%3(Hiy)(0) = 1 and, for any n > 1,
#9B(Hip)(n) = tcaty,_1(n). (2.2.9)

ProoE. By Proposition 2.2.4, the set B3(Hip,)(n) contains all m-cliffs u of size n satisfying
uy < --+- < u, and for any i € [2,n], u; < m(i). By setting m’ := m — 1, this set is in one-
to-one correspondence with the set of all m’-cliffs v of size n satisfying v;_1 < v; < m/(i).
A possible bijection between these two sets sends any u € $B(Hip)(n) to the m'-cliff v of
the same size such that for any i € [n], v; = u; — i + 1. We have already seen in the proof
of Proposition 2.1.9 that these sets are in one-to-one correspondence with (m — 1)-Dyck
paths which cannot be written as a nontrivial concatenation of two (m — 1)-Dyck paths.
Therefore, the statement of the proposition follows. O

ProprosiTION 2.2.10. For any m > 0 and n > 1, the map p : maxg Avyy(n) — Hip(n —1)
such that any u € maxg Avi(n), p(u) is the prefix of size n — 1 of eﬁiim(u), is a bijection.
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048

FIGURE 2.4. From the top to bottom and left to right, here are the posets Hiy(3), Hiz(3),
Hiz(3), and Hi,(3). All these posets contain Hig(3) as subposet by restricting on input-wings,
output-wings, or butterflies.

ProoE. First, since Hiy, is by Proposition 2.2.1 closed by prefix, by Proposition 1.3.10,
ey, is an injective map. This implies that the map p, defined by considering the inverse
of ey, is a well-defined map. Let p’ : Hip(n — 1) —» maxg Avy(n) be the map defined
for any v € Hip(n — 1) by p'(v) := ep;, (va) where a := m(n — 1). As pointed out before,
u € maxg Avy(n) if and only if w(u) = m(n — 1). This implies that p’(v) belongs to
maxy Avy (n). Moreover, due to the respective definitions of p and p’, both pop’ and p’op
are identity maps. Therefore, p is a bijection. O

ProposiTION 2.2.11. For any m > 1 and n > 1, the set J(Hiy(n)) contains all m-hills
u such that u = 0*a™* such that k € [n — 1] and a € [km].

ProposITION 2.2.12. For any m > 0 and n > 0, the map ey, is a bijection between
J(Him(n)) and ](Avm(n))'

Prook. This is a straightforward verification using the descriptions of join-irreducible
elements of Hiy(n) and Avy,(n) brought by Propositions 2.2.11 and 2.1.10. O
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By Proposition 2.2.11 (or also by Propositions 2.1.10 and 2.2.12), the number of join-
irreducibles elements of Hiy,(n) satisfies, for any m > 1 and n > 1,

#)(Him(n)) = m (g) . (2.2.10)
Since by Proposition 2.2.3, Hiy(n) is constructible by interval doubling, this is also the
number of its meet-irreducible elements [GW16].

2.2.3. Cubic realization. The map 6 introduced by Proposition 2.2.6 is used here to
describe the cells of maximal dimension of the cubic realization of Hiy(n), m > 1, n > 0.

PRrOPOSITION 2.2.13. For any m > 1, n > 0, and u € 9(Hiy)(n),

(i) the m-hill 6(u) is cell-compatible with the m-hill u,
(ii) the cell {(6(u), u) is pure,
(iii) all cells of {{(O(u), u): u € I(Hin)(n)} are pairwise disjoint.

PRrOOE. Due to the similarity between the maps 6 and the map ¢ introduced in the state-
ment of Proposition 2.1.6, the proof here is very similar to the one of Proposition 2.1.11. O

As shown by Proposition 2.2.13, the cells of maximal dimension of the cubic realization
of Hip(n) are all of the form (6(u), u) where the u are input-wings of Hip(n).

ProposITION 2.2.14. For any m > 1 and n > 0,
vol(€(Hipy(n))) = caty_1(n). (2.2.11)

PRrOOE. Proposition 2.2.13 describes all the cells of maximal dimension of €(Hiy,(n))
as cells (6(u)),u where u is an input-wing of Hipy(n). Since all these cells are pairwise
disjoint, the volume of €(Hiy,(n)) expresses as (1.3.23). Moreover, observe that the volume
of each cell (6(u), u) where u in an input-wing, is by definition of 8 equal to 1. Therefore,
vol(€(Hiy(n))) is equal to the number of input-wings of Hiy(n). The statement of the
proposition follows now from Proposition 2.2.5. O

2.3. S-canyon posets. We introduce here our last family of posets. They are defined
on particular S-cliffs called 6-canyons. As we shall see, under some conditions these posets
are lattices but not sublattices of S-cliff lattices.

2.3.1. Objects. For any range map &, let Cas be the graded subset of Cls containing
all 6-cliffs such that u;_; < u; —j, for all i € [|u|] and j € [u;] satisfying i —j > 1. Any
element of Cag is a §-canyon. For instance

Cay(3) = {000, 010,020,001, 002,012,003, 013, 023, 004, 014, 024 }. (2.3.1)

In particular, the 1-canyons are the (dual) Tamari diagrams seen in Section 1.1.5 of
Chapter 1.
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As a larger example, the 2-cliff u := 020100459002301 is a 2-canyon. Indeed, by
picturing an m-canyon in the exact same way as Tamari diagrams, we can check the
previous condition. For instance, the previous u is drawn as

o)

(2.3.2)

A T s

and one can observe that none of the dotted lines crosses a needle. Besides, if u is a 6-cliff
of size n and i,j € [n] are two indices such that i < j, one has the three following possible

configurations depending on the value a := u; — (j — i):

* If a < 0, then we say that i and j are independant in u (graphically, the diagonal
of u; falls under the x-axis before reaching the segment of u;),

* If a € [0,u; — 1], then we say that j is hinded by i in u (graphically, the diagonal
of u; hits the segment of u;),

* If a > u;, then we say that j dominates i in u (graphically, the segment of u; is
below or on the diagonal of u;).

By definition, a &-cliff u is a 6-canyon if no index of u is hinded by another one.

ProrosITION 2.3.1. For any range map 6, the graded set Ca; is
(i) closed by prefix,

(ii) is minimally extendable,

(iii) is maximally extendable if § is increasing.

PrOOE. Let u be a §-canyon of size n > 0. Immediately from the definition of the
6-canyons, it follows that u 0 is a 6-canyon of size n + 1, and that for any prefix u’ of u,
u’ is a §-canyon. Therefore, Points (i) and (ii) check out. Let us now consider the §-cliff

u’ := ud(n +1). If § is increasing, for all j € [n], uns1-j < Uns1 —j. Therefore, u’ is a
6-canyon. Therefore, (iii) holds. O

Let us now introduce a series of definitions and lemmas in order to show that the sets

Cas(n) and His(n) are in one-to-one correspondence when § is an increasing range map.

For any &-canyon u of size n, let d(u) be the §-canyon obtained by changing for each
index i € [n] the letter u; into O if i is dominated by another index j € [i + 1,n]. For
instance, when 6 = m with m = 2, d(020050012) = 000050002. Observe that u € Cas is an
exuviae (see Section 1.3.4) if and only if d(u) = u.

LEmMMA 2.3.2. For any range map & and any 6-canyon u, Fca,(u) = Fea,(d(u)).

PRrOOE. Assume that u is of size n and set w := d(u). Assume that ua is a 6-canyon
for a letter a € N. Then, the index n + 1 is hinded by no other index in ua. Since w
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is obtained by changing to 0 some letters of u, the index n + 1 remains hinded by no
other index in wa. Therefore, wa is also a §-canyon. Conversely, assume that wa is a
6-canyon for a letter a € N. Then, the index n + 1 is hinded by no other index in wa. By
contradiction, assume that ua is not a S-canyon. This implies that the index n +1 is hinded
by an index i in ua. Let us take i maximal among all indices satisfying this property. Due
to the maximallity of i, i is dominated by no other index in u so that we have u; = w;.
This implies that n + 1 is hinded by i in wa, which contradicts our hypothesis. Therefore,
ua is a §-canyon. O

LEMmMA 2.3.3. Let 6 be a range map a u be a 6-canyon of size n > 0. Then,

Feos(u) = [0,8(n + 1))\ | | [n+1—i,n+d(u) —i]. (2.3.3)
ie[n]
d(u);i £0

PRrOOE. Let w be a §-canyon of size n and let w := d(u). For any letter a € [0, 6(n + 1)],

the S-cliff wa is a §-canyon if and only if the index n + 1 is hinded by no index in wa.
Now, for any i € [n] such that w; + 0, the index i hinds the index n + 1 in wa if and only
ifae[n+1-1in+ w —i]l. By definition of d, all indices of w are pairwise independent.
Therefore, for any i,i’ € [n] such thati # i’ and w; # 0 # wy, thesets[n +1 —i,n + w; —i]
and [n +1 —i’,n + wy —i’] are disjoint. Lemma 2.3.2 and the fact that d is an idempotent
map imply the stated formula. O

LEMMA 2.3.4. Let 6 be a range map and u be a 6-canyon. Then,
w(eca,(u)) = w(d(u)). (2.3.4)

ProoE. This follows by induction on the size of u, by using the relation d(u) =
€ca,(d(u)), and by using Lemma 2.3.2. d

ProposiTION 2.3.5. For any increasing range map 6 and any n > 0,
8(336 (n) = AV&(H). (235)
Prook. First, since Cag is by Proposition 2.3.1 closed by prefix, the Cas-elevation map

and so the Cags-elevation image are well-defined.

By Lemmas 2.3.3 and 2.3.4, and since 6 is increasing, for any 6-canyon u of size n > 0,
one has
#Fca (u) =1+ 8(n + 1) — wleca, (u)). (2.3.6)
Let us proceed by induction on n to prove that for any u € Cas(n), eca (u) is a 6-
avalanche. If n = 0, the property holds immediately. Let u = u’a be a §-canyon of size
n + 1 where u’ € Cas(n) and a € N. By induction hypothesis, ec,,(u’) is a 6-avalanche.
Therefore, in particular, w(ec,,(u’)) < 6(n). Moreover, by (2.3.6), we have

0{eca, (1)) = w{ecs, (1)) + #{Fea () N[00 ~ 1]
< wlecy (u)) +1+6n+1) —wlecq,(u)) -1 (2.3.7)
S(n +1),

showing that u’a is a §-canyon.
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Conversely, let us prove by induction on n that for any v € Avg(n), there exists a
6-canyon u such that ecq,(u) = v. If n = 0, the property holds immediately. Let v = v'b
be a §-avalanche of size n +1 where v’ € Avs(n) and b € N. By induction hypothesis, there
is u’ € Cas(n) such that ecqo,(u’) = v'. Since v is a 6-avalanche, b < &(n + 1) — w(v'). Now,
by (2.3.6), since there are 1 + 6(n + 1) — w(v’) different letters a such that u’a is a §-canyon,
there is in particular a §-canyon u = u’a such that ec,,(u) = v. |

ProposITION 2.3.6. For any increasing range map 6 and any n > 0, the map ¢ :
Cags(n) — His(n) defined by
¢ := ey, o eca, (2.3.8)
is a bijection.

Prook. First, since & is increasing, by Propositions 2.2.1 and 2.3.1, both His and Cas are
closed by prefix. Therefore, the maps en;, and ec,, are well-defined. By Proposition 1.3.10,
the maps ec,,, and eq;, are injective, and by Propositions 2.2.2 and 2.3.5, they both share
the same image Avy,(n). This implies that ec,, is a bijection from Cap, to Avy(n), and
that e}_nim is a well-defined map and is a bijection from Avy,(n) to Hiy(n). Therefore, the
statement of the proposition follows. a

As a consequence of Proposition 2.3.6, for any m > 0, m-canyons are enumerated by
m-Fuss-Catalan numbers.

2.3.2. Posets. For any n > 0, the subposet Cas(n) is the §-canyon poset of order n.
Figure 2.5 shows the Hasse diagrams of some m-canyon posets. We have already seen

000

010 001

002

012

(a) Cay (3).

(B) Caz(3).

FIGURE 2.5. Hasse diagrams of some &-canyon posets.

that the 1-canyons are the Tamari diagrams. Moreover, as we have seen in Section 1.2.4
of Chapter 1, the set of these objects of size n is in one-to-one correspondence with the
set of binary trees with n nodes. It is also known that the componentwise comparison of
Tamari diagrams is the Tamari order (see Section 1.3.7 of Chapter 1). As for the several
generalizations of the Tamari posets evoked in Section 1.3.7 of Chapter 1, our S-canyon
posets can be seen as different generalizations of Tamari posets. For any m > 2, the
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m-canyon posets are not isomorphic to the m-Tamari posets. Moreover, we shall prove
in the sequel that for any increasing map &, Ca; is a lattice. As already mentioned, Tamari
posets have the nice property to be lattices [HT72], are also EL-shellable [BW97], and con-
structible by interval doubling [Gey94]. The same properties hold for m-Tamari lattices,
see respectively [BMFPR11] and [Miith15] for the first two ones. The last one is a conse-
quence of the fact that m-Tamari lattices are intervals of the Tamari lattices [BMFPR12]
and the fact that the property to be constructible by interval doubling is preserved for all
sublattices of a lattice [Day79]. As we shall see here, the §-canyon posets have the same
three properties.

ProposITION 2.3.7. For any increasing range map & and n > 0, the poset Cas(n) is
(i) straight,
(ii) coated,
(iii) nested,
(iv) EL-shellable,
(v) a meet semi-sublattice of Cls(n),
(vi) a lattice,
(vii) constructible by interval doubling.

ProoOE. Point (iii) is immediate. Assume that u and v are two &-canyons of size n such
that u < v. Let k € [n — 1] and consider the §-cliff w := uy...upvpy1 ... v,. Now, since
forany i € [k], w; = u; < v, and for any i € [k + 1,n], w; = v; > u;, the fact that u and
v are S-caynons implies that for any i € [n] and j € [w;] such that i —j > 1, the inequality
wj > w;_j + j holds. Thus, w is an 6-canyon, so that (ii) holds. Now, by Lemma 1.3.1, (i)
checks out, and by Theorem 1.3.2, (iv) also. Let u and v be two S-canyons of size n and
set w as the S-cliff uAv. For all j € [w;] such thati —j > 1, w;_; < w; — j. Indeed, either
Wi_j = Uj_j or w;_j = v;_;, and in the two cases w;_; < (uAV); —j. For this reason, w
is a 6-canyon. This shows (v). Besides, due to the fact that by Proposition 2.3.1, Cas is
closed by prefix and is maximally extendable, Theorem 1.3.4 implies (vi). Point (vii) is a
consequence of Theorem 1.3.9 since (iii) holds and Cas is closed by prefix. O

One can observe that Capy(n) is not a join semi-sublattice of the lattice of S-cliffs.
Indeed, by setting u := 0124 and v := 0205, even if u and v are 2-canyons, uV v = 0225
is not. By Proposition 2.3.7, the posets Cap,(n) are lattices and Theorem 1.3.4 provides a
way to compute the join of two of their elements. For instance, in Cay, one has

00120 Vg, 00201 = ¢y, (00120 vV 00201) = fic,, (00221) = 00234, (2.3.9)
and, in Cay, one has
0124 Vca, 0205 = fic,, (0124 v 0205) = f¢,,(0225) = 0235. (2.3.10)

These computations of the join of two elements are similar to the ones described in [Mar92]
(see also [Gey94]) for Tamari lattices.

Besides, as pointed out by Proposition 2.3.7, when 6 is an increasing range map, each
Cas(n) is constructible by interval doubling. Figure 2.6 shows a sequence of interval
contractions performed from Cajy(4) in order to obtain Cas(3).
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FIGURE 2.6. A sequence of interval contractions from Cag(4) to a poset isomorphic to Caz(3).
These interval contractions are poset derivations as introduced in Section 1.3.3. The marked

intervals are the ones involved in the interval doubling operations.

ProposiTION 2.3.8. For any m > 0,

(i) the graded set 9(Cay,) contains all the m-cliffs u satisfying u; < u;yq for all
i€[lul-1],
(ii) the graded set O(Cay,) contains all the m-cliffs u satisfying, for all i € [2, |u
u; < m(i), and, for all i € [|u|], if u; # O, then for all j € [i — 2], u;—j < u; —j,
(iii) the graded set B(Capy,) contains all the m-cliffs u satisfying 1 < u; < m(i) for
allie[2,|u]], and u; —u;j—1 22 for all i € [3, |u]].

]

Remark that, from the definition of m-canyons and the the description of ¥ (Cam)
brought by Proposition 2.3.8, for any u € 9(Cap,), all m-canyons v such that u < v are
also input-wings of Cay,. For this reason, for any n > 0, 9(Capy)(n) is an order filter of
Cam(n).

ProposITION 2.3.9. For any m > 1 and n > 0, the map 0 : 9(Can)(n) — B(Cam41)(n)
defined for any u € 9(Can)(n) and i € [n] by
0(u); == 1ip(w; +1 - 2) (2.3.11)

is a poset isomorphism.
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ProoE. It follows from Proposition 2.3.8 and its descriptions of the input-wings and
butterflies of Cap,(n) and Cap,1(n) that 6 is a well-defined map. Let 6 : B(Cap1)(n) —
9(Cam)(n) be the map defined for any u € B(Cam-1)(n)andi € [n] by 0'(u); := 1i24(u; — i + 2).
It follows also from Proposition 2.3.8 that 8’ is a well-defined map. Now, since by definition
of 6, both 80 6 and 6 o 0 are identity maps, 6 is a bijection. Finally, the fact that 6 is a
translation implies that 8 is a poset embedding. O

ProposITION 2.3.10. For any m > 1 and n > 1, the set J(Can(n)) contains all m-
canyons having exactly one letter different from 0.

By Proposition 2.3.10, the number of join-irreducibles elements of Cay,(n) satisfies, for
anym>1andn > 1,

#](Cam(n)) = m <’2‘> (2.3.12)

Since by Proposition 2.3.7, Cay,(n) is constructible by interval doubling, (2.3.12) is also the
number of its meet-irreducible elements [GW16].

2.3.3. Cubic realization. Let m > 1 and n > 0. For any output-wing u of Can(n), we
define p(u) as the m-canyon ¢, (u’), where u’ is the m-cliff obtained by incrementing by 1
all letters of u except the first one. For instance, the output-wing 01007 of Cas(5) is sent by
p to the 2-canyon {¢,,(02118) = 02348. We call p(u) the left-fo-right increasing of u. This
map is not a poset embedding because, for m := 2 and n := 3, p(010) = 023 < 013 = p(002)
but 010 and 002 are incomparable.

ProposITION 2.3.11. For any m > 1, n > 0, and u € O(Cay)(n),

(i) the map p is a poset morphism and a bijection between O(Cap,)(n) and 9(Cay,)(n),
(ii) the m-canyon u is cell-compatible with the m-canyon p(u),
(iii) the cell (u,p(u)) is pure,
(iv) all cells of {{u,p(u)) : u € O(Camp)(n)} are pairwise disjoint.

PRrOOE. Let us first prove that p is a well-defined map. By Proposition 2.3.8, since for
alli € [2,n], u; < m(i), the word u’ obtained by incrementing by 1 all its letters except the
first one is an m-cliff. Moreover, since by Proposition 2.3.1, Cay, is maximally extendable,
v i= fca, () is a well-defined m-canyon. Since by construction, for all i € [2,n], v; # 0,
each word obtained by replacing by 0 a letter v; in v is an m-canyon. Therefore, v covers
n — 1 elements of Cay(n). These elements are obtained by decreasing v; by some value,
due to the fact that by Proposition 2.3.7, Cay, is straight. For this reason, v is an input-wing,
showing that p is a well-defined map from O(Cay,)(n) to 9(Cap)(n). Let us now define the
map p' : 9(Cam)(n) — O(Can)(n) as follows. For any v € 9(Cay,)(n), u := p'(v) is the m-cliff
satisfying u; = 1;211y, ,<u;—2(u; — 1) for any i € [n]. It is straightforward to prove that p’ is
a well-defined map. Moreover, by induction on n > 0, one can prove that both p o p’ and
p’ o p are identity maps. This establishes (i).

Let v be an m-cliff satisfying v; € {u;,p(u);} for any i € [n]. Since p’ is the inverse
map of p, this is equivalent to the fact that v; € {p'(w);, w;} for all i € [n], where w is the
input-wing p(u) of Cap(n). Therefore, by definition of p’, v = 0 and v; € {O,w; — 1} for
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any i € [2,n]. The fact that w is an input-wing implies, by Proposition 2.3.5, that u; < u;.1
for all i € [n — 1]. This implies that v is an m-canyon, so that (ii) checks out.

Point (iii) follows directly from the definition of p: since p(u) is obtained by increment-
ing all the letters of u, except the first, in a minimal way so that the obtained m-cliff is an
m-canyon, there cannot be any m-canyon inside the cell (u, p(u)).

Finally, assume that there are two input-wings v and w of Capy(n) such that there is
a point x := (xq,...,Xn) € R" such that x is inside both the cells (p'(v), v) and (p'(w), w).
By contradiction, let us assume that v + w and let us set i € [2, n] as the smallest position
such that v; £ w;. Therefore, we have in particular

Pv)i<xi<v; and p'(w) < x; < w;. (2.3.13)

Without loss of generality, we assume that v; < w;. Now, if v; —2 > v;_4, then p/(v); = v; —1
and p'(w); = w; — 1. It follows from (2.3.13) that v; = w;. Otherwise, when v; — 2 < v;_4,
we have p'(v); = 0 and p/(w); = w; — 1. It follows again, from (2.3.13), that v; = w;. This
contradicts our hypothesis and shows that v = w. Therefore, (iv) holds. O

This algorithm p brought by Proposition 2.3.11 describes the cells of maximal dimen-
sion of the cubic realization of Can(n). Figure 2.7 shows some examples of images of
output-wings of Capy,(n) by p.

FIGURE 2.7. The poset Caz(3) wherein output-wings are marked. The arrows connect these
elements to their images by the bijection p.

Propositions 2.3.9 and 2.3.11 lead to the following diagram of posets wherein appear
input-wings, output-wings, and butterflies of canyon posets.



132 4. FUSS-CATALAN POSETS AND ALGEBRAS

THEOREM 2.3.12. Forany m >1 and n > 0,

O(Cam)(n)

p (Pr. 2.3.11) (2.3.14)

0 (Pr. 2.3.9)
J(Capy)(n) —————= B(Cam1)(n)

is a diagram of poset morphisms or isomorphisms.

Figure 2.8 gives an example of the poset morphisms or isomorphisms described by
the statement of Theorem 2.3.12.

FIGURE 2.8. From the top to bottom and left to right, here are the posets Cag(3), Cas(3),
and Cas(3). The two last posets contain 9(Hij)(3) as subposets. There is a poset morphism
between the output-wings of the first one and the input-wings of the second one.

PROPOSITION 2.3.13. Foranym >1 and n > 1,
vol(¢(Camp(n))) = vol(€(Cly(n))) = m"(n —1).. (2.3.15)
PrOOE. Directly from the definition of m-canyons, one has that the m-canyon Oy (n)

is cell-compatible with 1,,(n). Therefore, <0m(n), im(n)> is a cell of ¢(Cap(n)). Since all

others cells of this cubic realization are contained in this one, one obtains that €(Camp(n))
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is an orthotope. This leads to the stated expression for the volume of the cubic realization
of Cap(n). O

2.4. Poset morphisms and other interactions. The purpose of this part is to state
the main links between the three posets Avs, His, and Cas when 6 is an increasing range
map. We shall also consider their subposets formed by their input-wings, output-wings,
and butterflies elements in the particular case where 6 = m for an m > 0.

2.4.1. Order extensions. Observe that the map ec,, is not a poset morphism. Indeed,
for instance in Caj one has 002 < 012 but ec,, (002) = 002 5011 = ec,, (012). Nevertheless,
by composing this map on the left with the inverse of the His-elevation map, we obtain a
poset morphism, as stated by the next theorem.

LEMMA 2.4.1. Let § be a range map, and u and v be two §-canyons of size n. If
u % v, then w(ecy;(u)) < wleca;(v)).

Proor. First, since by Proposition 2.3.1, Cas is closed by prefix, ec,, is well-defined.
By considering the contrapositive of the statement of the lemma and by Lemma 2.3.4,
we have to show that for any S-canyons u and v of size n, w(d(u)) > w(d(v)) implies that
there exists i € [n] such that u; > v;. We proceed by induction on n. If n = 0, the
property holds immediately. Assume now that u = u’a and v = v'b are two S6-canyons
of size n + 1 such that w(d(u'a)) > w(d(v'b)) where u’ and v’ are S-canyons of size n
and a,b € N. If w(d(u’)) > w(d(v")), then by induction hypothesis, there is i € [n] such that
u; > v;. Since u; = u; and v; = v}, the property holds. Otherwise, w(d(u’)) < w(d(v")). Since
w(d(u)) > w(d(v)) and by definition of the map d, we necessarily have a > b. Therefore
one has u,.1 > vn41, showing that the property holds. ]

THEOREM 2.4.2. For any increasing range map 6 and any n > 0, the map e{{}é 0 €Ca,
from Cags(n) to His(n) is a poset morphism.

Prook. First of all, by Proposition 2.3.6, the map ¢ := e{ﬁié 0 ecy, is well-defined. By
definition of the maps ep;; and ec,,, for any 6-canyon w of size n and any i € [n], ¢(w); =
w(eca; (W1 ... w;)). Assume now that u and v are two S-canyons of size n such that u x v.
Then, for any i € [n], uy...u; < v1...v;. By Lemma 2.4.1, this implies w(eca(uy ... u;)) <
w(€ca; (V1 ... V). Moreover, by the above remark, this implies ¢p(u); < ¢(v);. Therefore,
we have ¢(u) < ¢(v), establishing the statement of the theorem. O

Even if, by Proposition 2.3.6, e;ﬁié o ecaq; ¢ Cas(n) — Hig(n) is a bijection, this map is
not a poset isomorphism. This is the case since there does not exist for instance a poset
isomorphism between Cay(3) and Hi; (3) —their Hasse diagrams are not superimposable.
Moreover, as a consequence of Theorem 2.4.2, for any n > 0, His(n) is an order extension
of Cas(n). Furthermore, it is possible to show by induction on the length of the 6-canyons
and by using Lemma 2.3.3 that Cas satisfies the prerequisites of Proposition 1.3.12. There-
fore, Cas(n) is an order extension of Avg(n).
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To summarize the whole situation, the three families of Fuss-Catalan posets fit into
the chain

-1 -1
€cas €hi; © €Cas

Avs(n) —————— > Cas(n) ———— > His(n)

\—/ (2.4.1)

of posets for the order extension relation. This phenomenon is analogous to the one
stating that Stanley lattices are order extensions of Tamari lattices, which in turn are
order extension of Kreweras lattices [Kre72] (see for instance [BB09]). Figure 2.9 gives
an example of an instance of (2.4.1).

FIGURE 2.9. From the left to the right, here are the posets Avz(3), Casz(3), and Hiz(3). The
poset on the right is an order extension of the one at middle, which is itself an order extension
of the one at the left.

2.4.2. Isomorphisms between subposets.

ProposITION 2.4.3. For any m > 1 and n > 0, the map 6 : Hiy_1(n) —» 9(Cap)(n)
defined for any u € 9(Cay,)(n) and i € [n] by

Ou):==u; +i -1 (2.4.2)
is an isomorphism of posets.

Prook. It follows from Proposition 2.3.8 and its description of the input-wings of
Cam(n) that 6 is a well-defined map. Let 8 : 9(Cap,)(n) — Hip_1(n) be the map defined
for any u € 9(Cap)(n) and i € [n] by 6'(u); := (u; —i + 1). It follows also from Proposi-
tion 2.3.8 that 6 is a well-defined map. Now, since by definition of &', both 6068 and 6’0 0
are identity maps, 6 is a bijection. Finally, the fact that 0 is a translation implies that 8 is a
poset embedding. O

Figure 2.10 gives an example of the poset isomorphism described by the statement of
Proposition 2.4.3. A consequence of Proposition 2.4.3 is that, for any m > 2 and n > 0, the
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FIGURE 2.10. The subposet of Cay(4) formed by its input-wings is isomorphic to Hiy (4).

image by 87! of Capy_1(n) N 9(Cap)(n) is Hiy_o(n). Indeed, the set Cay_1(n) N 9(Cay)(n)
is nothing but the set 9(Cay_1)(n).

THEOREM 2.4.4. Foranym >1 and n > 0,

6 (Pr. 2.1.5)
Avp_1(n) =——— 9 (Avm)(n)
eCh ¢ (Pr. 2.1.6)
O(Cam)(n) Cam-1(n) O(Av)(n) ——=> B(AVm.1)(n)
6 (Pr. 2.1.7)
p (Pr. 2.3.11) Ht.  ©€Cap
B(Cam+1)(n) &—— 9(Cam)(n) <——— Him_1(n) =———> 9(Him)(n) =——> O(Him)(n)

6 (Pr. 2.3.9) 6 (Pr. 2.4.3) 6 (Pr. 2.2.5) 6 (Pr. 2.2.6)

¢ (Pr. 2.2.7)

B(Him+1)(n)

(2.4.3)
is a diagram of poset morphisms, embeddings, or isomorphisms.

ProokE. This is a consequence of Theorems 2.1.8, 2.2.5, 2.3.12, and 2.4.2, and Proposi-
tion 1.3.12. O
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3. Associative algebras of 5-cliffs

This section is devoted to endow the sets of &-cliffs with algebraic structures, and
we can refer to Section 3 of Chapter 1 for the classical notions. We describe a graded
associative algebra on S-cliffs motivated by a connection with the S-cliff posets. Indeed,
the product of two 6-cliffs is a sum of 6-cliffs forming an interval of a 6-cliff poset. This
property is shared by a lot of combinatorial and algebraic structures. For instance, the
algebra FQSym of permutations is related to the weak order [DHTO02, AS05], the algebra
PBT of binary trees is related to the Tamari order [LR02, HNTO05], and the algebra Sym
of integer compositions is related to the hypercube [GKL"95].

3.1. Coalgebras and algebras. We introduce here a graded coalgebra structure on
the linear span of all 6-cliffs and then, by considering the dual structure, we obtain a
graded algebra. When 6 satisfies some properties, this gives an associative algebra.

From now, K is any field of characteristic zero and all the next algebraic structures in
the category of vector spaces have K as ground field. For any graded vector space 9, we
denote by $(q)(t) the Hilbert series of 4.

3.1.1. Coalgebras of 6-cliffs. For any range map 6, let Cls be the linear span of all
6-cliffs. This space is graded and decomposes as

Cls = (P Cls(n), (3.1.1)
n>0
where Cls(n), n > 0, is the linear span of all §-cliffs of size n. By definition, the set
{Fy :u € Cls} is a basis of Cls, and we shall refer to it as the fundamental basis or as
the F-basis. Let also ¢ : Cls — K be the linear map defined by c(F¢) := 1 and by c(Fy) :=0
for any u € Cls \ {€}.

For any n > 0, the 6-reduction map is the map rs : N* — Cls(n) defined for any word
u € N® and any i € [n] by (rs(u)); := min{u;, &(i) }. For instance, r4(212066) = 012045 and
re(212066) = 012066.

Let A: Cls — Cls ® Cls be the cobinary coproduct defined, for any w € Cls, by

A(Fy)i= Y Fu@Fpu, (3.1.2)

u,veN*
w=uv

where N* denotes the set of all words on N. This coproduct is well-defined since any prefix
of a 6-cliff is a §-cliff and the image of a word on N by the 6-reduction map is by definition
a &-cliff. For instance, for 6 := 1221013%, we have in Cls,

A(F1021) = Fe ® Fro21 + F1 ® Foor + Fio ® F11 4+ Froo ® Fy + Froat ® F, (3.1.3)

and
A(Fi211010) = Fe @ Fro11010 + F1 ® Fi11000 + F12 ® Fi010 + F121 ® Fro10

(3.1.4)
+ F1211 ® Foro + F12110 ® F10 + Fi21101 ® Fo + Fi211010 ® Fe.
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THEOREM 3.1.1. Let 6 be a range map. The space Cls endowed with the coproduct
A and the counit ¢ is a counital graded coalgebra. Moreover, A is coassociative if and
only if 6 is valley-free.

Prookr. The first part of the statement is a direct consequence of the definition of A.

To establish the second part, let us compute the two ways to apply twice the coproduct
A on a basis element of Cls. For any w € Cls, we have

(A@DAF) = Y Fr@Fpp ®Fuypy (3.1.5)
x,y,zeN*
w=xyz
and
T@AAFW) = Y. Y Fu@Fy@Fyu

u,veN* y’ 7/ eN*
W=Uv ps(v)=y'z’

Y. FeaFyy® Frs )0

x,y,zeN*
wW=xyz

(3.1.6)

where for any k > 0, 6, is the range map satisfying 6,(i) = min{6(i), 6(k + i)} for any
i > 1. The second equality of (3.1.6) comes from the two following facts. First, for any
i €[y, y = rs(v)i = rs(y); where y is the factor wyys1 ... Wyy+jy of w. Second, we
have for any j € [|2]], zj = rs(v)y,; = min{vyy|.;, 8(|y'| + )}, so that for any i € [|2']],
rs(z); = min{z},8(i)} = min{vjy|.i, 8|y +1),6(i)} = r(;‘y,](z)i, where z is the suffix of

length |z'| of w.

Let us now prove that (3.1.5) and (3.1.6) are different if and only if & has a valley.
These two elements are different if and only if there exists a factorization w = xyz with
x,y,z € N* such that rs(z) rs, (z). This is equivalent to the fact there exists an index

i € [|z]] such that rs(z); # rs, (2);- Since z is a suffix of w, there exists a j € [|x|+|y[+1, |w][]
such that z = wjwj,1 ... w)y|. Now, we have
rs(z); = min{wj.;-1,6(i)} £ min{wj.i_1, 8(|y| + i), 8(i) } = rs, (2),. (3.1.7)

To have this difference, we necessarily have &(|y| + i) < z; and 6(|y| + i) < 6(i). Now, since
w is in particular a 6-cliff, we have z; = wj,;_1 < &(j + i — 1). Therefore, we obtain

(i) > S|y +i) < 8 +1i—1). (3.1.8)

Since j > |y| + 1, this leads to the fact that 6 has a valley. This establishes that A is
coassociative if and only 6 is valley-free. O

3.1.2. Algebras of 6-cliffs. Let - : Cls ® Cls — Cls be the binary product defined as the
dual of the coproduct A introduced in Section 3.1.1, where the graded dual space Cls* is
identified with Cls. By duality, this product - satisfies, for any u, v € Cls,

Fu-Fo= Y (Fu®F, A(Fy)) Fu, (3.1.9)

weClg
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where, for any w € Cls, (Fy, ® Fy, A(Fy)) is the coefficient of F, ® F,, in A(F,). Therefore,
Fu-Fo= Y Fu, (3.1.10)

vergl(v)
uv'eCls

where r'gi(v) is the fiber of v under the map rs. For instance, in Cly,

Foo - Fo11 = Fooot1 + Fooo1 + Fooost + Foor11 + Foote1r + Foorst + Foozu1 + Foozer + Foogst, (3.1.11)
in Clp,
Foo - Fo11 = Fooor1 + Foot11 + Fooars + Foost1 + Foosr1, (5.1.12)
and in Cls, where 6 = 01312%, we have both
Foo+Fo11 = Fooot1 + Foot11 + Fooar1 + Foosta (3.1.13)
and
Foo - Fots = 0. (3.1.14)

By Theorem 3.1.1, the product - admits the linear map 1 : K — Cl; satisfying 1(1) = F¢
as unit, and is graded. Moreover, again by this last theorem, - is associative if and only if
§ is valley-free. For instance, for 6 := 101%, § has a valley and since

(Fo-Fo)-Fo — Fo-(Fo-Fo) = Fooo — (Fooo + Foot) = —Foot # 0, (3.1.15)
the product - of Cls is not associative.

We now establish a link between this product - on the F-basis of Cls and the posets
Cls(n), n > 0, introduced and studied in the previous sections. For this, let for any ny, ng >
0 the two binary operations

/,\:Cls(ny) x Cls(ng) — N+ (3.1.16)

defined, for any u,v € Cls, by u/v := uv and u\v := uv’ where v’ is the word on N of
length |v| satisfying, for any i € [|v]],

) {6(|u[+i) if v; = (i),
v; =

(3.1.17)
\Z otherwise.

For instance, for 6 = 112334%, 0101021 = 0101021 and 010\ 1021 = 0103041. For § =

2102, 21\11 = 2110. Observe that this last word is not a 6-cliff.

LemMmA 3.1.2. Let 6 be a range map and u, v € Cls. If the word u /v is a 6-cliff, then
u\v also is.

ProoE. Assume that w := u /v € Cls. Hence, for any i € [|w]], w; < &(i). In particular,
this implies that for any i € [|v|], vi = Wjy+i < 6(|u] + i). By definition of the operation \,
the word w' := u\v satisfies wy,+; € {v;, S(|u| +i)}. Moreover, the fact that u is a S-cliff
implies that for any i € [|u < 6(i). Therefore, w' is a S-cliff. O

L ui =wi

LemmA 3.1.3. A range map 6 is weakly increasing if and only if for any u,v € Cls,
u /v is a 6-cliff.
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PRrOOE. Assume that 6§ is weakly increasing and let w := u /v where u, v € Cls. Hence,
since v is a &-cliff, for any i € [|v]], wjy+i = vi < 6(i). Since 6 is weakly increasing, we
have (i) < 6(Ju| + i). This implies that wy,+; < 6(|u| + i). Moreover, the fact that u is
6-cliff implies that, for any i € [|u|], w; = u; < 6(i). Therefore, u /v is a §-cliff.

Conversely, assume that all w := u /v are 6-cliffs for all u, v € Cls. Hence, since v is a
é-cliff, for any i € [|v|], v; < &(i). Moreover, since w is a 6-cliff, v; = w4 < 6(|u| +1). This
implies that (i) < &(Ju] + i). Since this last relation holds for all 6-cliffs u and v, and that
there is at least one 6-cliff of any size, this leads to the fact that 6 weakly increasing. [

Let xs : N* - K be the map defined for any u € N* by ys(u) := 1, /vecy,.

THEOREM 3.1.4. For any range map 6, the product - of Cls satisfies, for any u, v € Cls,

Fu-Fo=nslusv) Y. Fy (3.1.18)

welu/v,u\v]

where [u/v,u\v] is an interval of the poset Cls(|u| + |v|).

PRrOOE. Assume first that w := u /v € Cls. By Lemma 3.1.2, u\v € Cls. By (3.1.10), for
any w’ € Cls, F,,» appears in F, - F,, if and only if there is v’ € r’gi(v) such that uv’ = w’. This
implies that rs(v') = v and, by definition of the 6-reduction map, for any i € [|v|], vi > v;.
Moreover, since w' is a 6-cliff, we have for any i € [[v[], v; = w|, ,; < S(Ju| +i). Therefore,

for alli € [|v]], vi < v{ < 6(|u| +1i). This is equivalent to the fact that u/v < w’ < u\v and

4

leads to the expression of the statement of theorem.

Assume finally that w := u /v ¢ Cls. Since u and v are &-cliffs, there exists an index
i € [|v|]] such that wy,+; > &(|u| + i). Since wy,|+; = v;, this implies that v; > S(|u| + i).
Observe that by definition of the §-reduction map, for all v’ € r;!(v) and j € [|v]], Vi = V.
Therefore, no uv’ can be a §-cliff. By inspecting Formula (3.1.10) for the product -, we
obtain that the sum is empty, so that F,, - F, = 0. O

For instance, for & := 01120%,

Fo1 - Foto = Foto10 + Foto20 + Fot110 + Fot120,

and, since 01 /011 = 01011 ¢ Cls,
For-Four = 0.

In particular when 6 is weakly increasing, Lemma 3.1.3 and Theorem 3.1.4 state that
any product of two elements of the F-basis of Cls is a sum of elements of the F-basis
ranging in an interval of a 6-cliff poset.

3.2. E and H-bases. By mimicking the construction of bases of several combinatorial
spaces by using a particular partial order on their basis element (see for instance [DHT02,
HNTO05]), let for any u € Clg,

Eyi= Y Fy (3.2.1)

veCls
uxv
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and

H, := Z F,. (3.2.2)

veCls
vu

By triangularity, the sets {E, : u € Cls} and {H, : u € Cls} are bases of Cls, called respec-
tively elementary basis and homogeneous basis, or respectively E-basis and H-basis.
For instance, for & := 1021¢,

E10010 = F1o010 + F1o011 + F1o110 + Fro111 + Fio210 + Froo11, (3.2.3)
and

Hioo10 = F10010 + F10000 + Foooto + Fooooo- (3.2.4)

ProposiTiON 3.2.1. For any range map 6, the product - of Cls satisfies, for any
u,v € Clsg,
Ey-Ey = X(g(u/V) Eu/V (325)

Proor. By (3.1.10), we have
E.-Ey

Il

Y Fu

u’,v'eCls V”El‘gl (V’)
uu’ yv’eCly
’

vV
= E E Fuvr
weCly v/eN* (3.2.6)
uxu’ vsrs(v’)
u'v’eCls
= E E Fuor.
u’eCls V"ENM
usxu’ Vie[|v|]vi<y)

u'v”’eClg
The equality between the third and the last member of (3.2.6) is a consequence of the
fact that for any v’ € N*, one has v < rs(v”) if and only if v; < v/ for all i € [|v|]]. By
definition of the E-basis provided by (3.2.1), the last member of (3.2.6) is equal to the stated
formula. O

ProposITION 3.2.2. For any range map 6, the product - of Cls satisfies, for any
u,v € Clg,
Hu : HV = Hr(;(u\v)- (327)

Proor. By (3.1.10), we have

Hu : HV = Z Z Fu’v”

u’,v'eCls V”E!‘E%V’)
usu  y'v’eCls

vV']v
=Y Y Fuw
u'eCls v’eN* (328)
u'u rs(v')v
u'v”’eClg
-y S Fuopr.
u’eCls v’ eNM

u'su Vig[|v|vi<Sli)=v) <
f

u'v’eCls
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The equality between the third and the last member of (3.2.8) is a consequence of the fact
that for any v’ € N* one has rs(v”) < v if and only if for all i € [|v]], v < 6(i) implies

v{" < v;. By definition of the H-basis provided by (3.2.2), and since F,,x,\ v) is the element
with the greatest index appearing in the last member of (3.2.8), this expression is equal to

the stated formula. O

It can be shown that Cl; is free by reasoning on the E-basis. A consequence of the
freeness of Cl; is that Cl; is isomorphic as a unital associative algebra to FQSym [MR95,
DHTO02], an associative algebra on the linear span of all permutations. This follows from
the fact that FQSym is also free as a unital associative algebra and that its Hilbert series is
the same as the one of Cly. Moreover, in [NT14], the authors construct some associative
algebras MFQSym as generalizations of FQSym whose bases are indexed by objects being
generalizations of permutations. The algebras Cl,,, m > 0, can therefore be seen as other
generalizations of FQSym, not isomorphic to "FQSym when m > 2.

3.3. Quotient algebras. This last section of this work provides an answer to the prob-
lem set out in the introduction. This question concerns the possibility of constructing a
hierarchy of substructures of Cls similar to that of FQSym. For this, we consider quo-
tients of Cls obtained by considering a graded subset § of Cls and by equating the basis
elements F, with 0 whenever u ¢ §. As we shall see, this is possible only under some
combinatorial conditions on §. We describe the products of these quotient algebras and
give a sufficient condition for the fact that it can be expressed by interval of the poset
S(n) for a certain n > 0. We end this part by studying the quotients of Cl,, obtained from
m-hills and m-canyons.

3.3.1. Quotient space. Let 6 be a range map. Given a graded subset § of Cls, let Clg
be the quotient space of Cls defined by

Cl; := Cls/q), (3.3.1)
such that 95 is the linear span of the set
{Fu:ueCls\ S} (3.3.2)
By definition, the set {F, : u € S} is a basis of Cls.

Let us introduce here an important combinatorial condition for the sequel on §. We
say thatS$ is closed by suffix reduction if for any u € §, for all suffixes u’ of u, rs(u’) € S.

ProposiTION 3.3.1. Let § be a valley-free range map and S be a graded subset of
Cls. If S is closed by prefix and is closed by suffix reduction, then Cls is a quotient
algebra of the unital associative algebra (Cls, -, 1).

Prook. Notice first that, since 6 is valley-free, Cls is by Theorem 3.1.1 a well-defined
unital associative algebra. We have to prove that 45 is an associative algebra ideal of Clg.
For this, let F, € 95 and F,, € Cls. Let us look at Expression (3.1.10) for computing the
product of Cls. Assume that there is a cliff uv’ € § such that F,» appears in F,, - F,.. Then,
since § is closed by prefix, u € S, which contradicts our hypothesis. For this reason,
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F, -F, belongs to 9. Moreover, let F, € Cls and F,, € 9. Assume that there is a cliff
uv’ € S such that Fy,,s appears in F, - F,,.. Then, since § is closed by suffix reduction, one has
rs(v') € 8. By (3.1.10), rs(v') = v, leading to the fact that v € S holds, and which contradicts
our hypothesis. Therefore, F, -F, belongs to 9. This establishes the statement of the
proposition. O

Notice that the graded subset Avs is not closed by suffix reduction. For instance, even if
00112 is an 1-avalanche, the 1-reduction of its suffix 112 is 012, which is not an 1-avalanche.

Let us denote by 85 : Cls — Cls the canonical projection map. By definition, this map
satisfies, for any u € Cls,
Os(Fy) = 1yes Fu. (3.3.3)

3.3.2. Product. We show here that under some conditions of S, the product in Clg
can be described by using the poset structure of §. More precisely, we say that Cls has
the interval condition if the support of any product F,-F,, u,v € §, is empty or is an
interval of a poset S(n), n > 0.

LemmA 3.3.2. Let § be a range map and § be a graded subset of Cls such that for
any n > 0, S(n) is a meet (resp. join) semi-sublattice of Cls(n). For any u,v e S, ifu/v
is a §-cliff, then the set

[u/v,u\vlns (3.3.4)

admits at most one minimal (resp. maximal) element.

PRrOOE. Assume that S(n) is a meet semi-sublattice of Cls(n) and that u /v € Cls. By

Lemma 3.1.2, u\v € Cls so that I := [u/v,u\v] is a well-defined interval of Cls(n).
Assume that there exist two S-cliffs w and w’ belonging to I N §. Since S(n) is a meet
semi-sublattice of Cls(n), by setting w” := w Aw’, one has w” € S. Since u /v is a lower

bound of both w and w’, we necessarily have u /v < w” and w” ¢ I. This shows that when
I NS is nonempty, this set admits exactly one minimal element. The proof is analogous
for the respective part of the statement of the proposition. O

When for any n > 0, S(n) is a lattice, we denote by Ag (resp. V) its meet (resp.
join) operation. In this case, § is meet-stable (resp. join-stable) if, for any n > 0 and any
u,v € S(n), the relation u; = v; for an i € [n] implies that the i-th letter of u As v (resp.
u Vs v) is equal to u;.

LEMMA 3.3.3. Let § be a range map and S be a closed by prefix, maximally extend-
able, and join-stable graded subset of Cls. For any u,v € § such u /v is a 6-cliff, the
set

[u/v,u\vlns (3.3.5)

admits at most one maximal element.

PROOE. Assume that u /v € Cls. By Lemma 3.1.2, u\v € Cls so that I := [u/v,u\v]is
a well-defined interval of 6-cliff poset. Assume that there exist two S-cliffs w and w’ belong-
ing to I N §. It follows from the hypotheses on § of the statement that, by Theorem 1.3.4,
the operation V is the join operation of the posets S(n), n > 0 (see Section 1.3.2). First,
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since w < u\v and w < u\v, we have wVvVw’' < u\v. Moreover, by definition of the
Vs operation, w” := w Vs w’ is obtained by incrementing by some values some letters of
w V w’. Now, observe that due to the definitions of the operations / and \, w and w’ write
respectively as w = ur and w’ = ur’ where r and r’ are some words on N. Moreover, if
there is an index i € [|r|] such that r; # rj, then v; = §(i) and (u\V)y+; = 6(|u| + i). This,
the definition of the Vs operation, and the fact that § is join-stable imply that w"” < u\v.
Therefore, w” € INS. This shows that when I NS is nonempty, this set admits exactly one
maximal element. O

THEOREM 3.3.4. Let 6 be a valley-free range map and § be a graded subset of Clg
closed by prefix and by suffix reduction. If at least one the following conditions is
satisfied:

(i) for any n > 0, all posets S(n) are sublattices of Cls(n),
(ii) for any n > 0, all posets §(n) are meet semi-sublattices of Cls(n), maximally
extendable, and join-stable,

then Clg has the interval condition.

ProoE. First, by Proposition 3.3.1, Cls is a well-defined unital associative algebra quo-
tient of Cls. Now, the product F, - F, in Cls can be computed as the image by 85 of the
product of the same inputs in Cls. By Theorem 3.1.4, this product is equal to zero or
its support I is an interval of a 6-cliff poset. By construction of Cls, the support of the
product F, -F, in Clg is equal to I' := I n S. If (i) holds, then by Lemma 3.3.2, I’ admits
both a minimal and a maximal element. If (ii) holds, then by Lemma 3.3.2, I' admits a
minimal element, and by Lemma 3.3.3, S admits a maximal element. In both cases, I’ is
an interval of a poset §(n), n > 0. O

3.3.3. Examples: two Fuss-Catalan associative algebras. We define and study the
associative algebras related to the m-hill posets and to the m-canyon posets.

Hill associative algebras. For any m > 0, let Hi,, be the quotient Cly;_. This quotient is
well-defined due to the fact that Hi,, satisfies the conditions of Proposition 3.3.1. Moreover,
by Proposition 2.2.1 and Point (i) of Theorem 3.3.4, Hi,, has the interval condition. For
instance, one has in Hijy,

Fo1 - For = Fo111 + Forra + For1s + Forgo + Foroz, (3.3.6a)
Fo1-Foo = 0, (3.3.6b)
Foot - Fot2e = Foot1122 + Foo11222 + Foo1002. (3.3.6¢)
In Hiy, one has
Foo - Fogs = Foooos + Foooss + Foosss, (3.3.7a)
Foi1 - For = For111, (3.3.7b)

Foots - Fo14 = 0. (3.3.7¢)
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By computer exploration, minimal generating families of Hi; and Hiy, respectively up
to degree 5 and 4, are

Fo, Foo, Foot,Fot1, Foooz, Foo11, Foor2, Foooe, Fo112, Fot92,
Fo0003, Fo0013, Fooo2s, Fooos3, Foo112, Foo113, Foo122, Foo123, Foo133, Foogoz,

Foo223, Foo23s, Fot113, Fot122, Fot193, Fo1133, Fo1903, For933,  (3.3.8)

and

Fo,  Foo,Fo1,  Footr, Fooz, Foos, Fora, Fors, Foaz, Foos,
Fooos, Fooos, Foo12, Foors, Foo14, Foots, Fooza, Foozs, Foozs, Foos, Fooss, Fooss, Fooss,
Fooss, Fooss, For14, Fot15, Foro2, Fo123, Fo124, Fo12s, Fo13s, Forss, For3s, Fot44, Fotss,
Fooos, Fooos, Fooos, Fooss, Fooss, Fooss, Fogss.  (3.3.9)
Moreover, the sequences for the numbers of generators of Hi; and Hi,, degree by degree
begin respectively by
0,1,1,2,6,18,59, 196, 669, (3.3.10)

and
0,1,2,7,33,168,900, 4980. (3.3.11)

We can observe that for any m > 1, Hi,, is not free as unital associative algebra. Indeed,
the quasi-inverse of the respective generating series of these elements is not the Hilbert
series of Hi,,, which is expected when this algebra is free.

Canyon associative algebras. For any m > 0, let Ca,, be the quotient Clc,,. This
quotient is well-defined due to the fact that Cay, satisfies the conditions of Proposition 3.3.1.
Moreover, by Proposition 2.3.1, the fact that for any m > 0 and n > 0, Cay(n) is join-stable,
and by Point (ii) of Theorem 3.3.4, Ca,, has the interval condition. For instance, one has
in Cay,

Fo-For = Foor + Fooz + Foia, (3.3.12a)
Fo-Foo2 = Fooo2 + Fooos + Fo1o3, (3.3.12b)
Foo12 - Fo103 = Foo120103 + Foo120106 + Foo120107 + Foo120406 + Foo120207 (53.120)
3.12¢

+ Foo120507 + Foo123406 + Foo123407 + Foot23s07 + Foo124507-

In Cay, one has

Fot - Foo1s = 0, (3.3.13a)
Fot1 - Foo1s = Fo1o013- (3.3.13b)

Fooo - Foo = Foooo + Foooos + Fogoos + Fogo07 + Fozoos + Fozo12 + Fogots + Fogote

+ Fo2017 + Fogo1 + Fozoss + Fogoss + Fooos7 + Fogous + Foose + Fogos?  (3.3.13¢)

+ Fogoss + Fogos7 + Fozoes-
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By computer exploration, minimal generating families of Ca; and Cay, respectively
up to respectively up to degree 5 and 4, are

Fo, Foo, Fooo,Foot,  Foooo, Fooot, Foooz, Footo, Footz,
F00000, Foooo1» Foooo2, Fooooz, Foooto, Fooo12, Fooo13, Fooo20, Foooes, Foot00,
Foot01, Foo103, Foot20, Foor3,  (3.3.14)

and

Fo, Foo,Fo1, Fooo, Fooz, Foos, Fo10, Fo12, Fot3, Foos,
Fo000, Foo03, Foooz, Fooos, Foo14, Foots, Foo2o, Foo2s, Fooz4, Fooos, Foozo, Fooss, Fooss, Fooss, Fotoo,

Fot104, Fo105, Fo120, For24, Fo195, Fot130, Fo134, Fo135, Fotss, Fogos, Fooos, Foeso, Fooss, Foess, Foous.
(3.3.15)

The associative algebra Ca, is the Loday-Ronco algebra [LR98], also known as PBT [HNTO05].
It is known that this associative algebra is free and that the dimension of its generators
are a shifted version of Catalan numbers:

0,1,1,2,5,14, 42,132, 429. (3.3.16)
The sequence for the numbers of generators of Ca, degree by degree begins by
0,1,2,7,30,149, 788, 4332. (3.3.17)

We can observe that for any m > 2, Ca,, is not free as unital associative algebra. It follows,
from the same argument as the previous section, that Ca,, is not free.






Perspectives

To conclude this thesis, we propose several possible directions of research, in the
continuity of the presented work. Except for the last axis of research, the first three
concern cubical lattices, meaning lattices admitting a cubical realization, notion introduced
in this thesis.

Cubical lattices and polytopes

Tamari lattices are known to be the 1-skeletons of the associahedra, also called the
Stasheff polytopes. More precisely, the Hasse diagrams of the Tamari lattices are the
edges and vertices of the associahedra.

Among the lattices presented in this work, two are, up to continuous deformation, the
1-skeletons of known cell complexes. Thus, we saw in Chapter 2 that the posets of cubic
coordinates seem to be the 1-skeletons of the diagonal of the associahedra [Lod11,SUO04,
MSO06]. Likewise, in Chapter 3, the Hochschild lattices seem to be the 1-skeletons of the
Hochschild polytopes, also called the freehedron.

Study the links between cubical lattices and polytopes is the first axis of research
proposed. More precisely, it seems that if a lattice admits a cubical realization, it is possible
to build, under some rules to find, a cell complex. The reversal question can be also
addressed: for any polytope, can we find a cubical lattice which is this 1-skeleton?

In Chapter 4, we study several family of cubical lattices. A first approach consists in
finding geometric realizations of these posets, giving cell complexes. Then, knowing that
these lattices are related to each other, we can look for links between these realizations.
For instance, by finding a certain truncations process to build the cell complexes associated
to the canyon lattices from the cell complexes associated to the cliff lattices.

The core label order of cubical lattices

Lattices which are constructible by interval doubling, or congruence uniform lattices,
admit an alternative way to order their elements. This order is called the core label or-
der [Miih19] and was first considered under the term of shard intersection order by
Reading in the context of posets of regions of hyperplane arrangements [Real1]. In this
quoted article, Reading proves that the core label order of the Tamari lattice is isomor-
phic to the lattice of noncrossing partitions. Recently, Miihle shows in [Mith20] that the
Hochschild poset admits also a lattice as core label order. More than that, he shows that

147
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the core label order of the Hochschild lattice is isomorphic to a certain shuffle lattice
introduced by Greene [Gre88].

A first idea is to show that the poset of cubic coordinates CC(n), meaning the poset of
Tamari intervals, is a congruence uniform lattice. A way to prove that is to find a sequence
of interval contractions from the lattice CC(n) to the Tamari lattice To(n), with n > 0, as
it is done to prove that subposets of the cliff posets are constructible by interval doubling
in Chapter 4. For instance, a sequence of interval contractions from CC(3) to a poset
isomorphic to the Tamari lattice To(3) could be

where the marked intervals are the ones involved in the presumed interval doubling
operations.

If the posets of Tamari intervals are congruence uniform, we can then ask ourselves
what is the core label order of this lattice, and see if there is a link with the lattice of
noncrossing partitions.

Likewise, a study of the core label order of the canyon poset and hill poset introduced
in Chapter 4 can be done.

Finally, we saw in Chapter 4 that under certain conditions, cubical lattices are con-
structible by interval doubling. A natural question is to ask if any congruence uniform
lattice is a cubical lattice.

Inherited properties for the k-chain lattices

It is known that if a poset £ is a lattice, then the poset of intervals int(:) of this
lattice is also a lattice. We recall this fact in Section 2.2 of Chapter 1. Another more
recent example of inherited properties for intervals is the trimness of the lattice [TW19].
Conversely, intervals of extremal lattices are not usually again extremal lattices [Mar92].
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At the end of Chapter 2 we show that the Tamari interval lattices are EL-shellable,
extending the result of Bjorner and Wachs [BW97] on the EL-shellability of the Tamari
lattices. Likewise, in the previous perspective, we assume that the property of being
constructible by interval doubling of the Tamari lattices is inherited by the Tamari interval
lattices.

The idea of this proposed axis of research is to see what are the properties which
remain valid for the lattices of intervals of lattices satisfying these same properties. More
generally, we can consider this question for the lattices of k-chains. We can thus ask for
instance about the shellability, the constructibility by interval doubling, and the existence
of a cubical realization.

The question about the inherited of the cubical lattice property can be rephrased as
follows: given a cubical lattice, can we find a way to encode its intervals such that the
obtained lattice is cubical? We give the answer for Tamari lattices in Chapter 2 with cubic
coordinates, but it seems to be complicated to generalize cubic coordinates for generaliza-
tions of Tamari lattices. The question remains for the canyon lattices and the hill lattices,
or for the k-chains of the Hochschild lattices.

Cliffs operads and generalizations of the Dendriform operad

In Chapter 4 we have seen that for m = 1, the canyon posets coincide with the Tamari
posets. For m > 1, we obtain a generalization of the Tamari lattices, which is different from
those already known, as the m-Tamari lattices [BPR12] or the p-Tamari lattices [PRV17].

One of our main motivations for this work is the definition of an associative algebra
on the set of cliffs, where the product between two cliffs is the sum of cliffs forming an
interval in the cliff posets. This property is true for many other algebraic structures, such
as the Malvenuto-Reutenauer algebra for the weak order [DHTO02, AS05], or the Loday-
Ronco algebra for the Tamari order [HNTO05]. Considering a certain quotient of cliffs
algebra, we define the algebra of canyons, which then becomes to the algebra of cliffs
what the algebra PBT is to the algebra FQSym. The pair of algebras thus obtained is a
generalization of the pair of algebras PBT and FQSym.

The driving idea of this axis is to ask similar questions at the level of operads and not
only at the level of associative algebras. Indeed, the space of permutations (and thus the
space underlying FQSym) is equipped with an operad structure known as the associative
operad [ALO7]. In the work quoted, it is shown that under an appropriate changing of
basis, the partial composition of this operad is described by a sum over an interval of
the weak order. The dendriform operad has a similar property related to the Tamari
order [Lod10].

A first objective is to endow the space of cliffs with an operad structure which would
play a role similar to the associative operad, but where the cliff poset is used. Then, in
the same way as previously presented, the idea is to build a quotient operad of the cliff
operad restricted to canyons. This would lead to an operad whose dimensions are given
by Fuss-Catalan number and which would offer a new generalisation of the dendriform
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operad. The comparaison between this generalization and those already existing [Gir16,
Ler07,Nov14] would then be possible.
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