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Résumé

Cette thèse s'inscrit dans le domaine de la combinatoire algébrique et porte sur l'étude d'ordres partiels admettant une réalisation géométrique particulière, appelée réalisation cubique.

Après avoir introduit les coordonnées cubiques, nous munissons l'ensemble de ces objets de l'ordre de comparaison composante par composante, formant des treillis. Nous établissons ensuite un isomorphisme d'ordres partiels entre les treillis des coordonnées cubiques et les ordres partiels des intervalles des treillis de Tamari. La réalisation cubique des coordonnées cubiques permet une étude géométrique de ces treillis et également de montrer qu'ils sont épluchables.

Par ailleurs, nous considérons les treillis de Hochschild qui sont des intervalles particuliers de l'ensemble des chemins de Dyck munis de l'ordre dextre. Ces treillis admettent également une réalisation cubique que nous construisons. Nous montrons entre autres que ces treillis sont épluchables, constructibles par doublement d'intervalles et plusieurs propriétés combinatoires dont le dénombrement des -chaînes.

Finalement, nous construisons trois familles d'ordres partiels dont les ensembles sousjacents sont dénombrés par les nombres de Fuss-Catalan. Parmi elles, nous obtenons une généralisation des treillis de Stanley et une généralisation des treillis de Tamari. Ces trois familles d'ordres partiels sont liées par une relation d'extension d'ordre et partagent plusieurs propriétés. Deux algèbres associatives sont ensuite construites comme quotients de généralisations de l'algèbre de Malvenuto-Reutenauer. Leurs produits ont pour support les intervalles de nos analogues des treillis de Stanley et des treillis de Tamari. En particulier, un de ces quotients est une généralisation de l'algèbre de Loday-Ronco.

1.3 Interval-poset of the decreasing forest before (without dotted line) and after (with dotted line) the right rotation of the edge ( ), where a, b and c may be empty.

1.4 Interval-poset of the increasing forest before (with dotted lines) and after (without dotted lines) the right rotation of the edge ( ), where a, b and c may be empty.

1.5 A Tamari diagram 9021043100 (on the left) and a dual Tamari diagram 0010040002 (on the right) of size 10.
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2.2 From the top to bottom and left to right, here are the posets Av 2 (3), Av 3 (3), Av 3 (3), and Av 4 (3). All these posets contain Av 2 (3) as subposet by restricting on input-wings, output-wings, or butterflies.
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Hasse diagrams of some δ-hill posets.

2.4 From the top to bottom and left to right, here are the posets Hi 2 (3), Hi 3 (3), Hi 3 (3), and Hi 4 (3). All these posets contain Hi 2 (3) as subposet by restricting on input-wings, output-wings, or butterflies.

2.5 Hasse diagrams of some δ-canyon posets.

2.6 A sequence of interval contractions from Ca 2 (4) to a poset isomorphic to Ca 2 (3). These interval contractions are poset derivations as introduced in Section 1.3.3. The marked intervals are the ones involved in the interval doubling operations.

2.7

The poset Ca 3 (3) wherein output-wings are marked. The arrows connect these elements to their images by the bijection ρ.

Introduction Avant-propos

La combinatoire est un domaine fondamental à l'intersection des mathématiques et de l'informatique. Elle se décline en plusieurs branches très différentes [START_REF] Flajolet | Analytic combinatorics[END_REF][START_REF] Stanley | Enumerative combinatorics[END_REF]. Un objectif commun à toutes ces branches est d'avoir la compréhension la plus précise possible sur des familles d'objets, tels que des cartes, des arbres ou des permutations. En particulier, dénombrer et établir des bijections entre différentes familles d'objets peut mener à cet objectif. Une de ces branches est la combinatoire algébrique, domaine propice aux interactions fortes entre la combinatoire et l'algèbre. Un exemple bien connu est l'utilisation de structures arborescentes pour représenter et manipuler des éléments dans des structures algébriques libres. C'est dans ce domaine où se mélangent combinatoire et algèbre que se situe cette thèse.

Plus précisément, ce travail se focalise sur l'étude d'ensembles partiellement ordonnés (appelés aussi posets). Ces structures apportent un formalisme qui permet de comparer des objets combinatoires. L'étude de posets sur des familles d'objets combinatoires est motivée entre autres pour les deux raisons suivantes. La première est que, selon le poset étudié, de belles suites de nombres peuvent émerger, en considérant par exemple le nombre d'intervalles [START_REF] Chapoton | Sur le nombre d'intervalles dans les treillis de Tamari[END_REF][START_REF] Bousquet-Mélou | The number of intervals in the -Tamari lattices[END_REF] ou le nombre de chaînes saturées. Un autre intérêt de définir des posets sur des objets combinatoires est qu'ils permettent de définir des changements de bases dans certains espaces vectoriels [START_REF] Loday | Order structure on the algebra of permutations and of planar binary trees[END_REF][START_REF] Hivert | The algebra of binary search trees[END_REF]. Pour reprendre l'exemple des structures arborescentes, il existe dans la littérature différentes structures d'ordres mettant en jeu les arbres binaires, comme par exemple l'ordre phagocyte [START_REF] Baril | The phagocyte lattice of Dyck words[END_REF], l'ordre coupe-greffe [START_REF] Baril | The pruning-grafting lattice of binary trees[END_REF] ou encore l'ordre de Tamari [START_REF] Tamari | The algebra of bracketings and their enumeration[END_REF]. De même, il existe plusieurs ordres partiels définis sur les permutations, objets très classiques de la combinatoire. On peut citer par exemple l'ordre faible droit et l'ordre de Bruhat. Munir des familles d'objets combinatoires d'une structure d'ordre nous permet de les étudier algébriquement. Certains de ces posets admettent une propriété bien particulière, à savoir que pour toute paire d'éléments comparables, il existe une borne supérieure et une borne inférieure pour l'ordre associé. Ces posets sont appelés des treillis. C'est le cas par exemple de l'ordre de Tamari. Il s'agit d'un exemple très important et connu dans la théorie des ordres du fait de sa richesse combinatoire et algébrique. Cet ordre, défini sur l'ensemble des arbres binaires, est donné par la clôture réflexive et transitive de l'opération de rotation droite [START_REF] Huang | Problems of associativity: A simple proof for the lattice property of systems ordered by a semi-associative law[END_REF]. Cette opération fondamentale apparaît aussi dans l'algorithmique des arbres binaires de recherche [START_REF] Adelson-Velsky | An algorithm for organization of information[END_REF]. Les diagrammes de Hasse sont des outils pratiques et classiques pour dessiner les ordres partiels. Il s'agit de graphes orientés reliant les éléments du poset en relation de couverture, orientés de l'élément couvert vers l'élément couvrant pour l'ordre. Par convention, les arcs sont orientés implicitement du haut vers le bas. Par exemple, le cube, qui est le treillis défini sur les sous-ensembles de l'ensemble A := { } ordonnés pour l'inclusion, a pour diagramme de Hasse

∅ { } { } { } { } { } { } A
Cette réalisation des posets permet de mettre en évidence les relations entre les éléments. Par exemple, les éléments { }, { } et { } ne sont pas comparables car il n'existe aucune chemin respectant l'ordre qui les relie. À l'inverse, A est comparable avec tous les éléments du cube. De même, le treillis de Tamari pour les arbres de taille 3 a pour diagramme de Hasse où les noeuds des arbres sont dessinés par et les feuilles par .

Contexte et motivations

Il est toujours possible de dessiner le diagramme de Hasse d'un poset fini. Cependant, nous nous intéressons dans ce travail à des posets dont le diagramme de Hasse possède une propriété spéciale, qui n'est pas toujours garantie. Cette propriété consiste à assimiler les diagrammes de Hasse à un assemblage d'hypercubes, en plongeant la réalisation dans l'espace. Par exemple, le diagramme de Hasse du treillis de Tamari pour les arbres de taille 4 et sa réalisation cubique sont dessinés ci-dessous respectivement à gauche et à droite :

Les posets que nous allons considérer ont la particularité d'être tous définis sur un ensemble de mots et d'être munis d'une relation de comparaison composante par composante. Cette particularité figure comme un des pré-requis pour que ces posets admettent une réalisation cubique.

Chercher la réalisation cubique de posets présente divers avantages. D'une part, elle permet d'avoir un nouveau point de vue sur des posets déjà connus, et d'autre part, elle apporte une nouvelle dimension géométrique, amenant de nouvelles questions sur le volume de la réalisation ou encore sur l'arrangement des complexes cellulaires formant cette réalisation.

Cette thèse explore trois thèmes dont l'intersection est le concept de réalisation cubique. Un autre point commun, plus indirect, vient du fait que les familles de posets étudiées sont liées au treillis de Tamari, que ce soit par l'introduction d'une généralisation avec des objets appelés canyons, ou par l'étude d'une autre généralisation avec les intervalles du L'objectif de ce travail est d'apporter, avec un point de vue qui se veut original offert par la réalisation cubique, une étude de ces familles de posets particulières. Un autre but est aussi d'introduire de nouvelles familles de posets dénombrées par les nombres de Fuss-Catalan, et généralisant le poset de Tamari et le poset de Stanley [START_REF] Stanley | The Fibonacci lattice[END_REF][START_REF] Knuth | Fascicle 4. Generating all trees -History of combinatorial generation[END_REF]. Ces résultats ont également des conséquences algébriques puisque nous apportons des généralisations des algèbres de Malvenuto-Reutenauer [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF] et de Loday-Ronco [START_REF] Loday | Hopf Algebra of the Planar Binary Trees[END_REF], dont les produits sont liés respectivement aux intervalles de l'ordre faible droit et aux intervalles du treillis de Tamari.

Organisation et résultats

Quatre chapitres composent cette thèse. Le chapitre 1 forme le tronc commun des trois derniers, en apportant toutes les définitions et propriétés utilisées par la suite. On y trouve ainsi des notions classiques du domaine de la combinatoire et de l'algèbre liées à l'étude des ordres partiels. Ces notions sont illustrées par plusieurs exemples. Notamment, dans la première partie sont présentés des treillis définis sur des arbres binaires, des chemins de Dyck, ou encore des partitions non croisées. Plusieurs propriétés combinatoires et géométriques sont ensuite données dans la partie suivante. Par exemple, nous verrons la notion de distributivité et de semidistributivité pour un treillis et quelques propriétés connexes, ou encore la construction d'un poset par doublement d'intervalles, en partant du poset trivial [START_REF] Day | Doubling constructions in lattice theory[END_REF]. Nous finirons ce chapitre avec des notions d'algèbre liées aux algèbres de Hopf combinatoires. Puis nous présenterons deux importants exemples de ces objets : l'algèbre de Malvenuto-Reutenauer [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF] définie sur les permutations, et l'algèbre de Loday-Ronco [LR98, HNT05] définie sur les arbres binaires.

Dans le chapitre 2, nous introduisons dans un premier temps les coordonnées cubiques, qui sont des mots d'entiers codant les intervalles du treillis de Tamari. Puis, nous montrerons que les coordonnées cubiques sont en bijection avec les intervalle-posets, eux même connus pour être en bijection avec les intervalles de Tamari [CP15]. Plus qu'une bijection, nous montrons que pour chaque degré, l'ensemble des coordonnées cubiques muni de l'ordre de comparaison composante par composante forme un treillis et est isomorphe au treillis des intervalles de Tamari. Nous donnons ensuite une réalisation géométrique naturelle du treillis des coordonnées cubiques, appelée réalisation cubique. Cette réalisation est obtenue en plaçant dans l'espace R , avec 0, toutes les coordonnées cubiques de même taille et en reliant les éléments qui sont en relation de couverture. Par exemple, pour = 2, la réalisation cubique du treillis des coordonnées cubiques de taille 3, et donc du treillis des intervalles de Tamari pour la même taille, se dessine dans le plan comme suit :

La réalisation cubique permet de mettre en évidence plusieurs propriétés des coordonnées cubiques et de leur treillis. Notamment, cette réalisation fait apparaître une structure cellulaire, nous permettant d'établir une bijection entre ces cellules et des coordonnées cubiques spéciales, appelées synchrones, et ainsi d'obtenir une formule pour calculer le volume de cette réalisation via ces éléments particuliers. Dans une dernière partie, nous montrons que le treillis des coordonnées cubiques est épluchable, ce qui nous permet de généraliser le résultat de Björner et Wachs [BW96,BW97] sur l'épluchabilité du treillis de Tamari.

Le chapitre 3 est dédié à l'étude d'un autre treillis, appelé treillis de Hochschild. Les treillis de Hochschild sont des intervalles particuliers des semitreillis pour la borne inférieure définis sur l'ensemble des chemins de Dyck muni de l'ordre dextre. L'ordre dextre et les treillis de Hochschild ont tous deux été récemment introduits par Chapoton [START_REF] Chapoton | Some properties of a new partial order on Dyck paths[END_REF]. Dans un premier temps, nous rappellerons la bijection établie dans l'article de Chapoton entre les chemins de Dyck de ces intervalles particuliers et un ensemble de mots définis sur l'alphabet {0 1 2}, appelés trimots. Sur l'ensemble des trimots, l'ordre dextre se traduit par cette bijection comme l'ordre de comparaison composante par composante. L'ensemble des trimots muni de cet ordre forme alors un treillis, appelé treillis de Hochschild en référence au polytope de Hochschild dont le treillis de Hochschild est le 1-squelette [START_REF] Saneblidze | The bitwisted Cartesian model for the free loop fibration[END_REF][START_REF] Saneblidze | On the homology theory of the closed geodesic problem[END_REF]. Comme pour le treillis des coordonnées cubiques étudié dans le chapitre 2, nous pouvons donner la réalisation cubique du treillis de Hochschild. L'étude de cette réalisation nous permet de montrer que le treillis de Hochschild est épluchable et constructible par doublement d'intervalles. Parallèlement à cette étude géométrique, nous montrons plusieurs propriétés combinatoires des ces treillis, comme par exemple le dénombrement de ses -chaînes.

Dans le chapitre 4, nous introduisons les δ-cliffs, une généralisation des permutations et des arbres croissants dépendant d'une application de variation δ. En munissant l'ensemble de ces objets de l'ordre de comparaison composante par composante, nous définissons un premier treillis. Puis, nous établissons plusieurs résultats généraux sur ses sous-posets. Parmi ces résultats, nous donnons les conditions suffisantes pour que les posets soient épluchables, soient des treillis avec un algorithme pour calculer la borne inférieure et supérieure entre deux éléments, et soient constructibles par doublement d'intervalles. Certains de ces sous-posets admettent des réalisations cubiques, et nous introduisons trois familles INTRODUCTION de ces sous-posets qui, pour une certaine application de variation δ, ont des ensembles sous-jacents dénombrés par les nombres de Fuss-Catalan. Un de ces sous-posets est une généralisation des treillis de Stanley et un autre est une généralisation des treillis de Tamari. Ces trois familles de posets sont reliées par une relation d'extension d'ordre et elles partagent plusieurs propriétés. Finalement, de la même façon que le produit de l'algèbre de Malvenuto-Reutenauer forme les intervalles de l'ordre faible droit des permutations, nous construisons dans une dernière partie des algèbres dont les produits forment les intervalles des treillis de δ-cliff. Nous donnons alors les conditions nécessaires et suffisantes sur δ pour avoir une algèbre associative, ou libre. En utilisant les posets Fuss-Catalan précédents, nous définissons des quotients de nos algèbres de δ-cliffs. En particulier, un quotient donne l'algèbre de Loday-Ronco et on obtient de nouvelles généralisations de cette structure.

Foreword

Combinatorics is a fundamental area at the intersection of mathematics and computer science. It is divided into several very different branches [START_REF] Flajolet | Analytic combinatorics[END_REF][START_REF] Stanley | Enumerative combinatorics[END_REF]. A common objective for all these branches is to reach the most precise understanding on families of objects, such as maps, trees, or permutations. In particular, counting and establishing bijections between different families of objects can lead to this objective. One of these branches is algebraic combinatorics, a field that leads to strong interactions between combinatorics and algebra. A well-known example is the use of tree structures to represent and manipulate elements in free algebraic structures. It is in this field where combinatorics and algebra are mixed together that this thesis is situated.

More specifically, this work focuses on the study of partially ordered sets (also called posets). These structures provide a formalism that allows the comparison of combinatorial objects. The study of posets on families of combinatorial objects is motivated among others by the following two reasons. The first is that, depending on the studied poset, beautiful sequences of numbers can emerge, by considering for example the number of intervals [START_REF] Chapoton | Sur le nombre d'intervalles dans les treillis de Tamari[END_REF][START_REF] Bousquet-Mélou | The number of intervals in the -Tamari lattices[END_REF] or the number of saturated chains. Another interest of defining posets on combinatorial objects is that they allow to define base changes in certain vector spaces [LR02, HNT05]. To take the example of tree structures, in the literature there are different order structures involving binary trees, such as the phagocyte order [START_REF] Baril | The phagocyte lattice of Dyck words[END_REF], the pruning-grafting order [START_REF] Baril | The pruning-grafting lattice of binary trees[END_REF], or the Tamari order [START_REF] Tamari | The algebra of bracketings and their enumeration[END_REF]. In the same way, there are several partial orders defined on permutations, very classical objects in combinatorics. We can mention for example the right weak order and the Bruhat order. Endowing families of combinatorial objects with an order structure allows us to study them algebraically. Some of these posets admit a very particular property, namely that for any pair of comparable elements, there is a supremum and an infimum for the associated order. These posets are called lattices. This is the case, for example, with the Tamari order. This is a very important and well-known example in the order theory because of its combinatorial and algebraic richness. This order, defined on the set of binary trees, is given by the reflexive and transitive closure of the operation of right rotation [START_REF] Huang | Problems of associativity: A simple proof for the lattice property of systems ordered by a semi-associative law[END_REF]. This fundamental operation also appears in the algorithmic of the binary search trees [START_REF] Adelson-Velsky | An algorithm for organization of information[END_REF].

Like many combinatorial objects, binary trees have the property of being enumerated by Catalan numbers. Each set of objects of size 0 has thus for cardinality cat 1 ( ) := 1 + 1 2

The first numbers described by this formula are 1 1 2 5 14 42 132 429

These numbers are frequently found in combinatorics, and have several generalisations, the most well-known of which is given by the Fuss-Catalan numbers cat ( ) := 1 + 1 + This formula computes for example the ( + 1)-ary trees or the -Dyck paths.

Hasse diagrams are practical and classical tools for drawing partial orders. They are oriented graphs linking the elements of the poset in covering relation, oriented from the covered element to the covering element for the order. By convention, the arrows are implicitly oriented from top to bottom. For instance, the cube, which is the lattice defined on the subsets of the set A := { } ordered for inclusion, has as Hasse diagram

∅ { } { } { } { } { } { } A
This realization of the posets allows to highlight the relations between the elements. For instance, the elements { }, { } and { } are not comparable because there is no path respecting the order that connects them. Conversely, A is comparable with all the elements INTRODUCTION of the cube. Likewise, the Tamari lattice for trees of size 3 has as Hasse diagram where the nodes of the trees are drawn by and leaves by .

Context and motivations

It is always possible to draw the Hasse diagram of a finite poset. However, in this work we are interested in posets whose Hasse diagram has a special property, which is not always guaranteed. This property consists in assimilating the Hasse diagrams to an assembly of hypercubes, by embedding the realization in the space. For instance, the Hasse diagram of the Tamari lattice for trees of size 4 and its cubic realization are drawn below on the left and right respectively:

The posets we are going to consider have the particularity of being all defined on a set of words and of being endowed with a componentwise order. This particularity appears as one of the prerequisites for these posets to admit a cubic realization.

Looking for the cubic realization of posets has various advantages. On the one hand, it gives a new point of view on already known posets, and on the other hand, it brings a new geometrical dimension, raising new questions about the volume of the realization or about the arrangement of the cell complexes forming this realization. This thesis explores three topics whose intersection is the concept of cubic realization. Another common point, more indirect, comes from the fact that the families of posets studied are related to the Tamari lattice, either by introducing a generalisation with objects called canyons, or by studying another generalisation with the intervals of the Tamari lattice and particular intervals of a subposet of the Tamari interval lattice.

The aim of this work is to bring, with an original point of view offered by the cubic realization, a study of these particular families of posets. Another goal is also to introduce new families of posets enumerated by Fuss-Catalan numbers, and generalizing the Tamari posets and the Stanley posets [START_REF] Stanley | The Fibonacci lattice[END_REF][START_REF] Knuth | Fascicle 4. Generating all trees -History of combinatorial generation[END_REF]. These results also have algebraic consequences since we bring generalizations of the Malvenuto-Reutenauer [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF] and Loday-Ronco [START_REF] Loday | Hopf Algebra of the Planar Binary Trees[END_REF] algebras, whose products are respectively related to the intervals of the right weak order and to the intervals of the Tamari lattice.

Organization and results

This thesis consists of four chapters. Chapter 1 forms the common core of the last three, providing all the definitions and properties used thereafter. It contains classical notions of combinatorics and algebra related to the study of partial orders. These notions are illustrated by several examples. Notably, in the first part, lattices defined on binary trees, Dyck paths, or non-crossing partitions are presented. Several combinatorial and geometrical properties are then given in the following section. For instance, we will see the notion of distributivity and semidistributivity for a lattice and some related properties, or the construction of a poset by interval doubling, starting from the trivial poset [START_REF] Day | Doubling constructions in lattice theory[END_REF]. We will end this chapter with notions of algebra related to combinatorial Hopf algebras. Then we will present two important examples of these objects: the Malvenuto-Reutenauer algebra [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF] defined on permutations, and the Loday-Ronco algebra [LR98, HNT05] defined on binary trees.

In Chapter 2, we first introduce cubic coordinates, which are integer words encoding the intervals of Tamari lattices. Then, we will show that the cubic coordinates are in bijection with the interval-posets, themselves known to be in bijection with Tamari intervals [CP15]. More than a bijection, we show that for each degree, the set of cubic coordinates endowed with the componentwise order forms a lattice and is isomorphic to the lattice of Tamari intervals. We then give a natural geometric realization of the lattice of cubic coordinates, called cubic realization. This realization is obtained by placing in the space R , with 0, all the cubic coordinates of the same size and connecting the elements which are in covering relation. For instance, for = 2, the cubic realization of the lattice of cubic coordinates of size 3, and therefore of the lattice of Tamari intervals for the same size, is shown in the plane as follows:

INTRODUCTION

The cubic realization allows to highlight several properties of the cubic coordinates and their lattice. In particular, this realization reveals a cellular structure, allowing us to establish a bijection between these cells and special cubic coordinates, called synchronous, and thus to obtain a formula to compute the volume of this realization via these particular elements. In a final section, we show that the lattice of cubic coordinates is shellable, which allows us to generalise the result of Björner and Wachs [BW96, BW97] on the shellability of the Tamari lattice.

Chapter 3 is dedicated to the study of another lattice, called Hochschild lattice. The Hochschild lattices are particular intervals of the meet-semilattice defined on the set of Dyck paths endowed with the dexter order. The dexter order and the Hochschild lattice were both recently introduced by Chapoton [START_REF] Chapoton | Some properties of a new partial order on Dyck paths[END_REF]. First of all, we will recall the bijection established in the article of Chapoton between the Dyck paths of these particular intervals and a set of words defined on the alphabet {0 1 2}, called triwords. For all the triwords, the dexter order is translated by this bijection as the componentwise order. The set of triwords endowed with this order then forms a lattice, called the Hochschild lattice in reference to the Hochschild polytope, of which the Hochschild lattice is the 1-skeleton [START_REF] Saneblidze | The bitwisted Cartesian model for the free loop fibration[END_REF][START_REF] Saneblidze | On the homology theory of the closed geodesic problem[END_REF]. As for the lattice of cubic coordinates studied in Chapter 2, we can give the cubic realization of the Hochschild lattice. The study of this realization allows us to show that the Hochschild lattice can be shellable and constructible by interval doubling. Alongside this geometrical study, we show several combinatorial properties of these lattices, such as for instance the enumeration of its -chains.

In Chapter 4, we introduce δ-cliffs, a generalization of permutations and increasing trees depending on a range map δ. By endowing the set of these objects with the componentwise order, we define a first lattice. Then, we establish several general results on its subposets. Among these results, we give sufficient conditions for the posets to be shellable, to be lattices with an algorithm to compute the meet and join between two elements, and to be constructible by interval doubling. Some of these subposets admit cubic realizations, and we introduce three families of these subposets which, for some range map δ, have underlying sets enumerated by Fuss-Catalan numbers. One of these subposets is a generalization of the Stanley lattices and another is a generalization of the Tamari lattices. These three families of posets fit into a chain for the order extension relation and they share several properties. Finally, in the same way that the product of Malvenuto-Reutenauer algebra forms the intervals of the right weak order of permutations, we construct, in a last part, algebras whose products form the intervals of the δ-cliff lattices. We then provide necessary and sufficient conditions on δ to have associative or free algebras. Using the previous Fuss-Catalan posets, we define quotients of our algebras of δ-cliffs. In particular, a quotient gives the Loday-Ronco algebra and we get new generalizations of this structure.

CHAPTER 1

Elements of algebraic combinatorics and partial orders

In the three last chapters, we deal with several combinatorial objects and partial orders. Chapter 2 and Chapter 3 each give a study of a specific lattice, and Chapter 4 provide a study of a family of posets enumerated by Fuss-Catalan numbers. The aim of this first chapter is to connect the last three chapters of this thesis with common definitions and notions.

This chapter is organized as follows.

Section 1 sets the groundwork by recalling through examples several combinatorial objects, partial orders, and links between them.

The concepts discussed in Section 2 are less classical than those seen in Section 1. We recall several constructions on posets and lattices, such as the shellability on non-graded posets [BW96] and the construction by interval doubling [START_REF] Day | Doubling constructions in lattice theory[END_REF].

Section 3 is related to Chapter 4, and provides a better understanding of the motivations for the latter chapter. Elementary definitions related to Hopf algebras are recalled, and two important examples are presented: The Malvenuto-Reutenauer Hopf algebra [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF], and the Loday-Ronco Hopf algebra [START_REF] Loday | Hopf Algebra of the Planar Binary Trees[END_REF].

Algebraic and combinatorics objects

The aim of this section is to give the main definitions used in this thesis. Thus, we start by presenting several combinatorial objects. We recall for example the definitions of Dyck paths, binary trees, and permutations. All the sets of these objects are graded by their size, and we can endow these sets with partial orders.

We continue by giving elementary definitions and properties related to posets and lattices. Then, we shall see several examples of order extensions and poset isomorphisms.

Graded sets, words, and Catalan objects.

1.1.1. General notations and conventions. We begin by giving some notations and basic definitions on words, which we shall use in all this thesis. For all words , we denote by the -th letter of . A combinatorial object is an element of a graded set, and its size is its image by the map | • |. The set of combinatorial objects of S of size 0 is denoted by S( ). Thus, a graded set S decomposes as a disjoint union

S = 0 S( ) (1.1.1)
A graded subset of S is a graded set S such that for all 0, S ( ) ⊆ S( ).

Any graded set S is associated to its generating series ( ), which is a series with nonnegative integer coefficients, defined by

S ( ) := 0 #S( ) = ∈S | | (1.1.2)
where #E means the cardinality of the set E.

Let us see some classic examples of graded sets. The first example is the empty graded set ∅ which has no object. Its generating series satisfies ∅ ( ) = 0. Then one has two graded sets with a unique object: the elementary graded set which has one object of size 0, and the atomic graded set which has one object of size 1. The generating series of these two sets satisfy respectively ( ) = 1 and ( ) = .

Another example of graded set is provided by the set of integers N, where the size of an object is its value. The generating series of this set is

N ( ) = 1 1 - = 1 + + 2 + 3 + (1.1.3)
The graded set of words A * on the alphabet A := { } contains all finite sequences of elements of A. For instance, the elements of A * of size less or equal to 3 are (1.1.4) and its generating series is

A * ( ) = 1 1 -2 = 1 + 2 + 4 2 + 8 3 + (1.1.5)
The graded set of graphs contains all finite graphs G := (V E), where V is a finite set of elements called vertices, and E is a finite set of pairs of vertices called edges. Likewise, the graded set of oriented graphs contains all finite oriented graphs G := (V A), where V is a finite set of vertices and A is a finite set of oriented edges from a source vertex to a target vertex, called arrows. The size of a graph (resp. oriented graph) is the cardinality of V .

Let ∈ N and S 1 and S 2 be two graded sets. The sum of graded sets is defined by

(S 1 + S 2 )( ) := S 1 ( ) S 2 ( ) (1.1.6)
and the product is defined by 

(S 1 × S 2 )( ) := {( 1 2 ) : 1 ∈ S 1 2 ∈ S 2 | 1 | + | 2 | = } (1.1.7)
:= + {1} × Dy × {0} × Dy (1.1.10)
where {1} is a graded set with one element of size 1, and {0} is a graded set with one element of size 0. Expression (1.1.10) means that a Dyck path is either the empty word or a binary sequence such that there are as many 1 as 0, and in all prefixes the number of 0 is not greater than the number of 1. The size of a Dyck path is its number of letter 1. For instance, the elements of Dy of size not greater than 3 are 10 1010 1100 101010 110100 110010 101100 111000 (1. 1.11) or in an equivalent way (see 1.1.4),

(1.1.12) Similarly, the graded set of binary trees T 2 is defined by induction by

T 2 := + T 2 × { } × T 2 (1.1.13)
where { } is a graded set with one element of size 1, called node. Expression (1.1.13) means that a binary tree is either empty or two binary trees connected by a node. The size of a binary tree is its number of nodes. For instance, the elements of T 2 of size not greater than 3 are (1.1.14)

Dyck paths and binary trees are two important examples of this thesis, which is why we will recall the definitions of these objects more accurately in the following section.

1.1.3. Regular expressions and algebraic grammars. In order to describe and to enumerate certain sets, we are led to use the regular expression notation [START_REF] Sakarovitch | Elements of automata theory[END_REF]. An atomic regular expression can be either ∅ which denotes the empty set of words, or where is a letter which denotes the singleton { }. To produce regular expressions, for and two (atomic or not) regular expressions, one has three operations: is the set of words that can be obtained by concatenating a word of and a word of , + is the union of the two sets and , and * denote the set of words for any ∈ N. The star used for the last operation is known as the Kleene star. Besides, we use the notation + to denote the set of words * . Note that the expression which denotes the set { } is obtained with ∅ * .

For instance, to describe the set of words S 1 on the alphabet { } such that either the first letter is or there is no letter , only one letter , and the first letter is , then

S 1 = { ∈ { } N : ∈ ( + + ) * + + * } (1.1.15)
From the formal language theory, we also use algebraic grammars (or formal contextfree grammars), which allows us to rewrite a description of a certain set through a set of rules, when the regular expression is less obvious. An algebraic grammar G is a 4tuple (V A S P), where V is a finite set of elements called variables, A is a finite set of letters such that A ∩ V = ∅, S is a element of V called axiom, and P is a finite set of pair (X χ) ∈ V × (V A) * called productions of the grammar.

For instance, to describe the set of words S 2 on the alphabet { } such that the subword is prohibited, then S 2 is specified by the algebraic grammar

S 2 = + S 2 + S 2 (1.1.16) S 2 = + S 2 + S 2 + S 2 (1.1.17)
where S 2 is the set of words on { }. The sets S 2 and S 2 are the variables, the set { } is the set A, and S 2 is the axiom.

We obtain the generating series from an expression, then the generating function, with the linear map

| |
for all words of the expression.

For instance, we can deduce from the regular expression (1.1.15) that the generating function of S 1 is

S 1 ( ) = 1 -3 + 2 (1 -) 2 (1.1.18)
Likewise, the generating series deduced from (1.1.16) and (1.1.17) are

S 2 ( ) = 1 + 2 S 2 ( ) (1.1.19) S 2 ( ) = 1 + 2 S 2 ( ) + S 2 ( ) (1.1.20)
Then, the generating function of S 2 is

S 2 ( ) = 1 - 1 -4 + 4 2 (1.1.21) 1.1.4.
-Dyck paths. An important example of combinatorial objects defined on the alphabet {0 1} is provided by -Dyck paths. We will encounter these objects in Chapter 3 and in Chapter 4.

For any 0 and 0, an -Dyck path of size is a path from (0 0) to (( + 1) 0) in N 2 staying above the -axis, and consisting only in steps of the form (1 -1), called down steps, or steps of the form (1 ), called up steps, with an up step as the first step. The size of an -Dyck path is its number of up steps. We denote by Dy ( ) the set of all -Dyck paths of size .

As for Dyck paths defined in Section 1.1.2, an -Dyck path of size can be seen as a binary sequence of length (1 + ), where the letter 1 encodes an up step and the letter 0 encodes a down step. Generally speaking, we shall use this convention instead. The second, third, and fourth sequences are respectively Sequences A000108, A001764, and A002293 of [Slo].

These numbers are important in the field of algebraic combinatorics, and they are often encountered. In particular, in Chapter 4 we define three sets of objects enumerated by these numbers. For any 0, a Tamari diagram is a word of length on the alphabet N which satisfies the two following conditions: A dual version of Tamari diagrams can be defined by considering the opposite of the conditions (i) and (ii).

(i) 0 -for all ∈ [ ], (ii) 
For any 0, a dual Tamari diagram is a word of length on the alphabet N which satisfies the two following conditions: For any 0, a permutation σ is a bijection from a finite set of cardinality onto itself. The size of a permutation is the cardinality of the underlying set. The set of permutations of size is denoted by S( ), and is enumerated by the factorial numbers !. We use the word notation to specify a permutation, which is the word of size such that = σ( ) for all ∈ [ ].

(i) 0 -1 for all ∈ [ ], ( 
For instance, let σ be a permutation on 12345 such that σ(1) = 5, σ(2) = 1, σ(3) = 3, σ(4) = 2 and σ(5) = 4, namely σ is the word 51324.

Let us recall some classical operations on permutations. Let σ ∈ S( ) and ν ∈ S( ). The over operation is defined by

σ ν := σ 1 σ (ν 1 + ) (ν + ) (1.1.28)
and the under operation is defined by

σ ν := (ν 1 + ) (ν + )σ 1 σ (1.1.29)
For instance, 2413 312 = 2413756 and 2413 312 = 7562413.

The shifted shuffle product ¢ is defined by

σ ¢ ν := σ ¡ ((ν 1 + ) (ν + )) (1.1.30)
where ¡ is the shuffle of letters.

The standardization is the map std from the set of words to the set of permutations that sends a word to the unique permutation std( ) ∈ S | | obtained by numbering the letters of from the smallest to the greatest from 1 to | |, and such that if there is more than one then we consider the leftmost as the smaller. For instance, std(643827685) = 532817694.

For any 0, a Lehmer code (or Lehmer code of permutations) is a word such that 0

- ]. The size of a Lehmer code is its size as a word. Note that the condition on Lehmer code is the same as for (dual) Tamari diagrams, namely condition (i) seen in Section 1.1.5.

1 for all ∈ [ ] [Leh60
There is classical correspondence between permutations and Lehmer codes. Here, we consider a slight variation of Lehmer codes, establishing a bijection between the set of Lehmer codes of size and the set of permutations of the same size. Given a permutation σ of size , let be the Lehmer code such that for any ∈ [ ],

is the number of indices > σ -1 ( ) such that σ( ) < . We denote by leh(σ) the Lehmer code thus associated with the permutation σ. For instance, leh(436512) = 002323.

1.1.7. Non-crossing partitions and Dyck paths. For any 0, a partition of {1 } is non-crossing if whenever four elements 1 < < < are such that are in the same class and are in the same class, then the two classes coincide. The size of a non-crossing partition is the cardinality of the underlying set. The set of non-crossing partitions of size is denoted by NC( ), and his cardinality is cat 1 ( ).

A well know bijection between non-crossing partitions and Dyck paths of same size consists in associating to a non-crossing partition the Dyck path 10 α 1 10 α 2 10 α where α is the size of the class containing if is the maximal index in its class and α = 0 otherwise. For instance, the non-crossing partition {{1 2} {3} {4 6 7} {5}} corresponds to the Dyck path 11001011011000 of size 7.

Trees and algorithms.

1.2.1. Trees and forests. Trees are intrinsically linked to the notion of recursion. This is why they can be found in many scientific fields.

A rooted tree, or simply a tree in our context, is defined recursively as a node together with a (possibly empty) sequence of rooted trees. We shall use the standard terminology about trees like root, edge, child, descendant, subtree, etc. The size of a tree is its number of nodes. The nodes of the trees considered in this work are labeled by positive integers.

We draw trees with the root at the top, where a node is depicted by with its label inside the circle.

We draw rooted trees with the root at the top and the leaves at the bottom, where a node is depicted by . Figure 1.2 shows a rooted tree of size 8. A forest is a sequence of trees. From a forest f of trees, it is always possible to build a tree t by taking the root of each element of f and by linking all these roots to an artificial node, such that this artificial node become the root of t. The size of the obtained tree is one plus the sum of all sizes of trees in f.

Binary trees.

A binary tree (or 2-tree) t is either a leaf or a node attached through two edges to two binary trees, which are called respectively the left subtree and the right subtree of t. Recall that the size of a binary tree is its number of nodes. We denote by T 2 ( ) the set of binary trees of size . The set of binary trees is enumerated by Catalan numbers. We draw binary trees with the root at the top and the leaves at the bottom, where a node is depicted by and a leaf is depicted by (see for instance Figure 1.3).

We will also consider a generalization of binary trees which are the -tree for 0. A -tree is either a leaf or a node attached though edges to -trees. The set of -trees T m is known to be enumerated by ( -1)-Fuss-Catalan numbers.

Let t ∈ T 2 ( ). Each node of t is numbered recursively, starting with the left subtree, then the root, and ending with the right subtree. An example is given in Figure 1.3. This numbering then establishes a total order on the nodes of a binary tree called the infix order. Afterwards, this numbering is used to refer to the nodes. The sequence of nodes numbered from 1 to forms the infix traversal.

When the size of t satisfies 1, the canopy of t is the word of size -1 on the alphabet {0 1} built by assigning to each leaf of t a letter as follows. Any leaf oriented to the left (resp. right) is labeled by 0 (resp. 1). The canopy of t is the word obtained by reading from left to right the labels thus established, forgetting the first and the last one (since there are always respectively 0 and 1). For instance, the binary tree in Figure 1.3 has for canopy the word 0110100. There is a link between infix order of a binary tree and its canopy. For a node of index for the infix order in a tree t, the right subtree of is a leaf oriented to the right if and only if the -th letter of the canopy of t is 1. The left subtree of is a leaf oriented to the left if and only if the ( -1)-th letter of the canopy of t is 0. The two direct implications can be proved by induction on the set of binary trees, for instance, see Lemma 4.3. of [START_REF] Giraudo | Algebraic and combinatorial structures on pairs of twin binary trees[END_REF]. The converses are simply given by the definition of the canopy. A fundamental operation in binary trees is the right rotation [START_REF] Tamari | The algebra of bracketings and their enumeration[END_REF]. Let and be the indices in infix order of two nodes of a binary tree t, such that the node is left child of the node . Right rotation locally changes the tree t so that becomes the right child of (see Figure 1 As for permutations, there is an under operation and a over operation for binary trees due to Loday and Ronco [START_REF] Loday | Order structure on the algebra of permutations and of planar binary trees[END_REF]. Let t ∈ T 2 ( ) and s ∈ T 2 ( ). The over operation between t and s gives the binary tree t s by replacing the leftmost leaf of s by the root of t. Likewise, the under operation between t and s gives the binary tree t s by replacing the right most leaf of t by the root of s.

For instance, for t := and s := , one has t s = (1.2.1)

t s = (1.2.2)
1.2.3. Binary trees and permutations. A binary search tree is a binary tree where nodes are labelled by integers, such that for each node of label , any node in the left subtree of has a label smaller than or equal as , and any node in the right subtree of has a label greater than .

Let t be a binary search tree of size , and be a letter. The algorithm of insertion, denoted by bst, of the letter in t consists in adding a node such that, for each node of t, starting by the root, is placed in the left subtree of if and in the right subtree of otherwise. Therefore, the size of the obtained tree is + 1.

With the algorithm of insertion, one can build a binary search tree from a word of same size as follows. Let be a word of size . The root is the letter , then we build recursively the left subtree and the right subtree of by placing for each letter with ∈ [ ], the letter -1 on the left of if -1 and on the right of otherwise. For instance, the binary tree see in Figure 1.3 is obtained by bst(52871634), which is a permutation.

For any 0, the algorithm of insertion bst provides a surjection from the set of permutations S( ) to the set of binary trees T 2 ( ).

For instance, for = 3, (1.2.8)

Note that when we consider permutations, we can forget the labelling of nodes since the only way to label binary search trees is an infix traversal. For instance, (1.2.4) and (1.2.5) are the same binary tree. 1.2.4. Binary trees and Tamari diagrams. For any 0, the set of Tamari diagrams of size is in bijection with T 2 ( ). Indeed, one builds from a Tamari diagram of size a binary tree s recursively as follows. If = 0, s is defined as the leaf. Otherwise, let be the smallest position in such that is the maximum allowed value, namely -. Then s 1 := 1 -1 and s 2 := +1 are also Tamari diagrams. One forms s by grafting the binary trees obtained recursively by this process applied on s 1 and on s 2 to a new node. Reciprocally, for each node of index of the tree s, labeled with an infix transversal, the value of the -th letter of the corresponding Tamari diagram is given by the number of nodes in the right subtree of the node . The complete demonstration is given in [START_REF] Pallo | Enumerating, ranking and unranking binary trees[END_REF].

In the case of dual Tamari diagrams, the construction of the binary tree t is also recursive, except that it is the maximum position in the dual Tamari diagram whose value is the highest allowed on that section of the word that should be chosen first. Similarly for the reciprocal, the procedure is identical, except that the value of the -th letter in the dual Tamari diagram is given by the number of nodes in the left subtree of the node in the tree t.

For instance, in Figure 1.3, the Tamari diagram is 10040210 and the dual Tamari diagram is 00230100. Figure 1.5 depicts the corresponding binary tree of the Tamari diagram 1003010. 1.2.5. Binary trees and Dyck paths. There are several bijections between binary trees and Dyck paths of the same size. Let us describe one of them. We know that a binary tree t is either a leaf or a node related to a left subtree t 1 and a right subtree t 2 , that is t = (t 1 t 2 ). The bijection, denoted by φ, is then defined as follows. If t is a leaf, then φ(t) is the empty word , otherwise φ(t) = φ(t 1 )1φ(t 2 )0. An example is given in Figure 1.6.

Reciprocally, for any 0, one can build the Tamari diagram, and so the binary tree, from a Dyck path of size as follows. For all ∈ [ ], the letter in is the number of up steps between the -th up step and the first down step of same height at its right in . The word is then a Tamari diagram, and the binary tree is obtained as seen in 1.2.4. For instance, the Dyck path in Figure 1.6 corresponds to the Tamari diagram 1003010, which corresponds to the tree on its left. ) such that is also denoted by .

Posets and

A maximal element of is an element such that if there is ∈ such that then = . Likewise, a minimal element of is an element such that if there is ∈ such that then = . A poset is bounded if it has a unique maximal element and a unique minimal element for .

Since a partial order is transitive, one can realize posets or lattices by knowing only covering relations. The natural way to realize posets is to draw their Hasse diagrams, by drawing a edge between all and in such that ( ) ∈ . For any ( ) ∈ , we choose the convention to represent at the top and at the bottom in the Hasse diagrams. We will keep this convention for all realizations.

The dual of is the set endowed with * defined, for all ∈ such that , by * . We say that is self-dual if there is a poset isomorphism between and its dual (see Section 1.4 for the definition of poset isomorphism).

Let

∈ , the join between and , denoted by ∨ ( ) (or ∨ ), is defined by

∨ ( ) := min { ∈ : and } (1.3.1)
The meet between and , denoted by ∧ ( ) (or ∧ ), is defined by

∧ ( ) := max { ∈ : and } (1.3.2)
A poset is a join-semilattice if for all ∈ , ∨ ( ) exists. Likewise, a poset is a meet-semilattice if for all ∈ , ∧ ( ) exists.

A poset ( ) is a lattice if is a join-semilattice and a meet-semilattice. A sublattice of a lattice is a subset of that is a lattice for the meet and join operations of .

Our first example is the hypercube (or Boolean lattice) of dimension 0, which is the lattice on the set of the subsets of [ ] ordered by set inclusion. Figure 1.7 depicts on the left the lattice 3 on A := { }. On the right one has a poset which is not a lattice, since there are two non comparable elements and such that and , and and .

∅ { } { } { } { } { } { } A F .
. The Hasse diagrams of a lattice (on the left) and of a poset (on the right).

An element of a lattice is join-irreducible (resp. meet-irreducible) if covers (resp. is covered by) exactly one element in . We denote by J( ) (resp. M( )) the set of join-irreducible (resp. meet-irreducible) elements of . These notions are usually considered specially for lattices but we can take the same definitions even when is just a poset.

For instance, in Figure 1.7 one has for the lattice , 1.9 shows the Tamari lattice for = 2 and for = 3.

J( ) = {{ } { } { }} (1.3.3) M( ) = {{ } { } { }} (1.3.
In the literature, the Tamari lattice is closely related to the associahedron, or the Stasheff polytope after the work of Stasheff. More precisely, the Hasse diagram of the Tamari lattice is the 1-skeleton of the associahedron.

As seen previously, the algorithm of insertion bst provides a surjection from S( ) to T 2 ( ) for 0. This implies that the Tamari lattice can be obtained from the right weak order on permutations [START_REF] Hivert | The algebra of binary search trees[END_REF]. More precisely, the Tamari order is the right weak order on 132-avoiding permutations, where 132-avoiding means that we have to remove all permutations such that < > for some < < . Figure 1.10 depicts the Tamari lattice of order 4, obtained from Figure 1.8.

A natural translation of the Tamari order is given by the bijection between binary trees and Tamari diagrams seen in 1.2.4. With this bijection, the Tamari order can be translated as the componentwise order on Tamari diagrams [START_REF] Pallo | Enumerating, ranking and unranking binary trees[END_REF].

Likewise, through the bijection between binary trees and Dyck paths seen in 1.2.5, the Tamari order can also be defined on Dyck paths as follows. For any 0, let ∈ Dy( ) such that := 0 where is a prefix, is a suffix, and is primitive. We set ta if = 0 . The Tamari order on Dy( ) is then the reflexive and transitive closure of ta .

The Tamari posets admit a lot of generalizations, for instance through the so-called -Tamari posets [START_REF] Bergeron | Higher trivariate diagonal harmonics via generalized Tamari posets[END_REF] defined on -Dyck paths, where 0, and through the ν-Tamari posets [PRV17] where ν is a binary word. In Chapter 4, we define another generalisation of the Tamari lattice, based on a generalisation of Tamari diagrams.

Kreweras lattices.

There is a natural order kr on non-crossing partitions due to Kreweras [START_REF] Kreweras | Sur les partitions non croisées d'un cycle[END_REF]. For any 0, let ∈ NC( ). We set kr if is obtained from by merging two parts such that the condition to be a non-crossing partition is satisfied. The Kreweras order kr on NC( ) is then the reflexive and transitive closure of kr .

The translation of the Kreweras order on Dyck paths given by the bijection seen in 1.1.7 is also natural. For any 0, let ∈ Dy( ) such that := 10 where is a prefix, is a suffix, is a subpath, and 1. We set kr if = 1 0 . The Kreweras order on Dy( ) is then the reflexive and transitive closure of kr . See Figure 1.11 for the Kreweras order on Dy(3). 1.3.10. Dexter order. The dexter order, introduced in [Cha20], is the natural order obtained on special elements of the Tamari interval lattices (see Section 2.2.3 for the definition of Tamari interval lattice). In Chapter 3, we shall work on a particular interval of the dexter order, called the Hochschild lattice.

A subpath of is movable if is primitive and if there is a prefix and a suffix such that = 10 , where > 0, and either = or the first letter of is 1. Figure 1.12 gives two examples of movable subpaths. For any 0, let := 10 be a Dyck path of size , where is movable. Let α β be the Dyck path of size such that α β := 10 α 0 β , where α + β = and β > 0.

We set de if = α β , for any movable subpath of . The dexter order de is the reflexive and transitive closure of de , which is the covering relation. Figure 1.13 depicts the three covering Dyck paths of the Dyck path 1100101100 seen in Figure 1.12 for the dexter order. Note that the chosen movable subpath is no longer movable in α β . The set Dy( ) endowed with the dexter order is a meet-semilattice with many properties highlighted in the article of Chapoton [START_REF] Chapoton | Some properties of a new partial order on Dyck paths[END_REF]. See Figure 1.11 for the dexter order on Dy(3). Examples. In 1.3.7, we see that a natural translation of the Tamari order on binary trees is given by the componentwise order on Tamari diagrams. The bijection described in 1.2.4 is in fact a poset isomorphism between the two lattices. Likewise, one has a poset isomorphism between the Tamari order on binary trees and the Tamari order on Dyck paths described in 1.3.7. Figure 1.14 shows the three lattices, which are finally the same lattice.

Poset morphisms and poset

Another example of poset isomorphism is given by the bijection seen in 1.1.7 between non-crossing partitions and Dyck paths. Therefore, the Kreweras order on non-crossing partitions and the Kreweras order on Dyck paths are the same lattice.

In 1.1.6, we give a bijection between permutations and Lehmer codes. This bijection provides our first example of order extension. Thus, the componentwise order on Lehmer codes is a order extension of the right weak order on permutations (see Section 1.2.3 of Chapter 4). Figure 1.15 depicts the lattice of permutations for = 3, and the lattice on Lehmer codes for = 3. Another example of order extension relates the Stanley order, the Tamari order, and the Kreweras order. Indeed, ordered by inclusion, the Stanley lattice is an extension of the Tamari lattice which is an extension of the Kreweras lattice [Knu06, BB09]. Figure 1.16 shows the three orders on Dy(3).

Combinatorial and geometric properties

There are several constructions on posets, as the posets of -chains or the order ideals ordered by inclusion. We start this section by recalling some definitions and properties on lattices, such as the distributivity. Then, we shall see some poset constructions as the posets of intervals or the edge labelling on non-graded posets. We will end this section with the properties of some posets to be constructible by doubling specific intervals. This section will be useful for all next chapters.

Distributive and semidistributive lattices.

Elementary definitions. A lattice is join-semidistributive if for all

∈ ,

∨ = ∨ implies ∨ = ∨( ∧ ) (2.1.1) Likewise, a lattice is meet-semidistributive if for all ∈ , ∧ = ∧ implies ∧ = ∧( ∨ ) (2.1.2)
A lattice is semidistributive if is both join-semidistributive and meet-semidistributive.

A lattice is distributive if

∧( ∨ ) = ( ∧ ) ∨( ∧ ) (2.1.3)
or in an equivalent way

∨( ∧ ) = ( ∨ ) ∧( ∨ ) (2.1.4)
For instance, the Boolean lattices are distributive lattices. The Tamari lattices are non-distributive lattices, as the Kreweras lattices.

It is known [Bir79] that all sublattices of distributive lattices are distributive.

Chains and maximal chains.

A chain of a poset is a tuple

(1) (2) ( -1) ( ) (2.1.5)
where (1) (2)

( -1) ( )
are elements of such that

(1) (2)

• • • ( -1) ( ) (2.1.6) Let be the covering relation of . If ( ) ( +1)
for all ∈ [ -1], then the chain (2.1.5) is saturated.

Let

be a lattice and let

(1) (2) ( -1) ( ) (2.1.7)
be a saturated chain of . The length of the saturated chain (2.1.7) is -1.

Note that in Section 2.2, we deal with -chains, where refers not to the length of the chain but to the number of elements forming that chain.

A longest saturated chain between the minimal element and the maximal element of is a maximal saturated chain. The union of maximal saturated chains of is known as the spine of . The spine of is denoted by S( ).

2.1.3. Extremal and trim lattices. Let be a lattice such that the length of a maximal saturated chain is . If #J( ) = #M( ) = then is an extremal lattice [START_REF] Markowsky | Primes, irreducibles and extremal lattices[END_REF].

An element of a lattice is left modular [START_REF] Blass | Möbius functions of lattices[END_REF] if for any ,

( ∨ ) ∧ = ∨( ∧ ) (2.1.8)
A lattice is left modular if there is a maximal saturated chain of left modular elements.

A lattice is trim [START_REF] Thomas | An analogue of distributivity for ungraded lattices[END_REF] if it is an extremal left modular lattice.

It is shown in [START_REF] Thomas | Rowmotion in slow motion[END_REF] that if a lattice is extremal and semidistributive, then it is also left modular, and therefore trim.

Let

be an extremal lattice. It is known from [START_REF] Thomas | An analogue of distributivity for ungraded lattices[END_REF] that the spine of an extremal lattice is a distributive sublattice of .

2.1.4. The Fundamental theorem for finite distributive lattices. Let be a poset. An order ideal in is a subset of such that if ∈ and then ∈ .

The Fundamental theorem for finite distributive lattices (FTFDL for short) due to Birkhoff [START_REF] Birkhoff | Rings of sets[END_REF] states that any finite distributive lattice is isomorphic to the lattice J( ) of the order ideals of the subposet of restricted to its join-irreducible elements, ordered by inclusion [START_REF] Stanley | Enumerative Combinatorics[END_REF].

More recently, a general version of the FTFDL has been given by Reading, Speyer, and Thomas for finite semidistributive lattices [START_REF] Reading | The fundamental theorem of finite semidistributive lattices[END_REF].

Posets of -chains.

Definitions.

A -chain of a poset is a chain of which is, as a tuple, of length .

For any poset , we can always consider the poset of -chains of where elements are -chains and the order relation is defined, for all γ δ ∈ such that γ := (1) (2) ( )

and δ := (1) (2) ( ) , by γ δ if ( ) ( ) for all ∈ [ ] (2.2.1) 2.2.2. Posets of intervals. Let be a poset and (1) (2) ∈ such that (1) (2) 
. An interval

[ (1) (2)
] is the set of all elements between (1) and (2) . The set of intervals of is denoted by int( ). Since the 2-chain ( (1) (2)

) characterizes the interval [ (1) (2) ] and reciprocally, we use the same notation for intervals as for 2-chains.

The poset of intervals of a poset is the poset on the set int( ) endowed with the partial order int( ) defined, for all ( (1) (2) ) ( (1) (2) ) ∈ int( ), by

( (1) (2) ) int( ) ( (1) (2) ) if (1) (1)
and (2) (2)

(2.2.2)

The property of being a lattice is preserved under this construction.

P 2.2.1. If ( ) is a lattice then (int( ) int( ) ) is a lattice. P . Let ( (1) (2) ) ( (1) (2) ) ∈ int( ). First, we have to show that ∨ ( (1) (1) ) ∨ ( (2) (2)
). By definition of the join, one has (2) ∨ ( (2) (2) ) and ( 2) ∨ ( (2) (2) ). Furthermore, since (1) (2) and (1) (2) , one has (1) ∨ ( (2) (2) ) and (1) ∨ ( (2) (2)

). In addition, ∨ ( (1) (1) ) is the minimal element of satisfying (1) ∨ ( (1) (1)

) and ( 1)

∨ ( (1) (1) ). Thus ∨ ( (1) (1) ) ∨ ( (2) (2)
).

From the equation (2.2.2), one has

∨ int( ) ( (1) (2) ) ( (1) (2) ) = min int( ) {( (1) (2) ) ∈ int( ) : ( (1) (2) ) int( ) ( (1) (2) ) ( (1) (2) ) int( ) ( (1) (2) )} = min int( ) {( (1) (2) ) ∈ int( ) : (1) (1) (2) (2) (1) (1) (2) (2) } = ∨ ( (1) (1) ) ∨ ( (2) (2) ) (2.2.3) The case of the meet ∧ int( ) ( (1) (2) ) ( (1) (2) ) = ∧ ( (1) (1) ) ∧ ( (2) (2)
) is symmetrical.

In the same way for (

(1) (2) ) ( (1) (2) ) ∈ int( ) such that ( (1) (2) ) int( ) ( (1) (2)
), a covering relation for the partial order int( ) is defined.

Tamari intervals and interval-posets. Let s t ∈ T 2 ( ).

A Tamari interval of size is an interval (s t) for the Tamari order ta . The set of Tamari intervals of size is denoted by int(T 2 (n)).

The Tamari interval lattice is the set int(T 2 (n)) endowed with the partial order int(ta) . Let 0 and (s t) (s t ) ∈ int(T 2 (n)), following (2.2.2), we have that (s t) int(ta) (s t ) if s ta s and t ta t . According to Lemma 2.2.1, the poset so defined is a lattice. Moreover, it follows from the definition of int(ta) that (s t ) covers (s t) if either s is obtained by a single right rotation of an edge in s and t = t, or t is obtained by a single right rotation of an edge in t and s = s.

It is known from [START_REF] Chapoton | Sur le nombre d'intervalles dans les treillis de Tamari[END_REF] that Tamari intervals of size are enumerated by

2(4 + 1)! ( + 1)!(3 + 2)! (2.2.4)
The first numbers are 1 1 3 13 68 399 2530 16965

(2.2.5)

This sequence is Sequence A000260 of [Slo].

Interval-posets are posets introduced by Châtel and Pons in [CP15] in order to study the Tamari interval posets. Indeed, there is a poset isomorphism between the Tamari interval lattices and the set of interval-posets endowed with a certain partial order. We shall use the one-to-one correspondence between the two sets in Chapter 2. This is why we shall recall here a part of the bijection in the broad outline. Let 0 and {π 1 π } be a set of symbols numbered from 1 to . An intervalposet π is a partial order on the set {π 1 π } such that (i) if < and π π then for all π such that < < , one has π π , (ii) if < and π π then for all π such that < < , one has π π .

The size of an interval-poset is the cardinality of its underlying set. The set of intervalposets of size is denoted by IP( ), and the elements of interval-poset are called vertices.

The two conditions (i) and (ii) of interval-posets are referred to as interval-poset properties. For any < , the relations π π are known as decreasing relations and the relations π π are known as increasing relations.

As it is shown in Figure 2.1, the Hasse diagram of interval-posets can be drawn as an oriented graph where two vertices π and π are related by an arrow from π to π (resp. π to π ) if π π (resp. π π ) where < . Let 0 and (s t) ∈ int(T 2 (n)) and π ∈ IP( ). The bijection ρ relates on the one hand the restriction of π to its decreasing relations with the binary tree s, and on the other hand the restriction of π to its increasing relations with the binary tree t.

Thus the restriction of π to its decreasing (resp. increasing) relations has a decreasing (resp. increasing) forest as Hasse diagram, where if π π with < (resp. < ), then the node is a descendant of the node . Otherwise, it is placed to the right (resp. left) of the node . To form the binary tree s (resp. t), then read the decreasing (resp. increasing) forest for the prefix transversal from right to left (resp. from left to right). If a node is a descendant of a node in the decreasing (resp. increasing) forest, then the node becomes a right (resp. left) descendant of the node in s (resp. t). Otherwise, it becomes the left (resp. right) descendant of the node . The numbering of the binary trees thus obtained is exactly the infix order. Figure 2.2 gives an example of construction by the bijection ρ of a Tamari interval from an interval-poset of size 5. 

EL-shellability.

Edge labelling and shellability of non-graded posets. In [BW96] and [BW97],

Björner and Wachs generalized the method of labellings of the cover relations of graded posets to the case of non-graded posets. In particular, they showed the EL-shellability of the Tamari poset [START_REF] Björner | Shellable nonpure complexes and posets[END_REF].

Let

be a bounded poset and Λ be a poset, and λ : → Λ be a map. For any saturated chain (1) ( ) of , we set

λ (1) ( ) := λ (1) (2) λ ( -1) ( ) (2.3.1)
We say that a saturated chain of is λ-increasing (resp. λ-weakly decreasing) if its image by λ is an increasing (resp. weakly decreasing) word for the order relation Λ . We say also that a saturated chain (1)

( ) of is λ-smaller than a saturated chain (1) ( ) of if λ (1) ( ) is smaller than λ (1) ( )
for the lexicographic order induced by Λ . The map λ is called EL-labeling (edge lexicographic labeling) of if for any ∈ satisfying , there is exactly one λ-increasing saturated chain from to , and this chain is λ-minimal among all saturated chains from to . Any bounded poset that admits an EL-labeling is EL-shellable [BW96, BW97].

The EL-shellability of a poset implies several topological and order theoretical properties of the associated order complex ∆( ) built from . Recall that the faces of this simplicial complex are all the chains of . Moreover, if has at most one λ-weakly decreasing chain between any pair of elements then the Möbius function of takes values in {-1 0 1}. In this case, the simplicial complex associated with each open interval of is either contractible or has the homotopy type of a sphere [START_REF] Björner | Shellable nonpure complexes and posets[END_REF].

2.3.2. Example and counterexample. Figure 2.3 gives an example of a lattice which is not EL-shellable. Indeed, suppose that there is a poset Λ and a map λ :

→ Λ such that between and there is a unique λ-increasing saturated chain passing through and . Then, the saturated chain ( ) cannot be λ-increasing. Therefore, either the map λ cannot be increasing between and or between and . Thus, there is no way to find for all interval one λ-increasing saturated chain.

The Tamari lattice is an example of an EL-shellable lattice [START_REF] Björner | Shellable nonpure complexes and posets[END_REF].

Construction by interval doubling.

Interval doubling and construction.

Let 2 be the poset {0 1} where 0 1. Let be a poset and I one of its intervals. The interval doubling of I in is the poset This operation has been introduced in [START_REF] Day | Doubling constructions in lattice theory[END_REF] as an operation on posets preserving the property of being a lattice. On the other way round, we say that is obtained by an interval contraction from a poset if there is an interval I of such that [I] is isomorphic as a poset to [START_REF] Caspard | Cayley lattices of finite Coxeter groups are bounded[END_REF].

[I] := ( \ I) ∪ (I × 2) (2.
A lattice is constructible by interval doubling (called "bounded" in the original article [START_REF] Day | Doubling constructions in lattice theory[END_REF]) if is isomorphic as a poset to a poset obtained by performing a sequence of interval doubling from the singleton lattice. It is known from [START_REF] Day | Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices[END_REF] that such lattices are semidistributive. Recall that a finite lattice is constructible by interval doubling if and only if it is congruence uniform, and then in particular, the number of join-irreducible elements of determines the number of interval doubling steps needed to create (see [START_REF] Day | Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices[END_REF] and [START_REF] Mühle | The core label order of a congruence-uniform lattice[END_REF]).

Example and counterexample.

Starting from the trivial poset (one element), one can give the first posets generated by interval doubling. Figure 2.5 shows all the posets obtained for three steps of interval doubling.

Figure 2.6 is the Kreweras order for = 3. Considering Figure 2.5, the only way to obtain another lattice with 5 elements is to doubling one element of the lattice at the bottom left. However, it is clear that the Kreweras lattice cannot be obtained from the latter. Therefore, the Kreweras lattice is not constructible by interval doubling.

Combinatorial Hopf algebras and posets

In Section 3 of Chapter 4, we deal with algebraic structures such as graded algebras and graded coalgebras. More precisely, we shall define a graded associative algebra linked with a poset introduced in Chapter 4.

This section provides several definitions and properties related to combinatorial Hopf algebras, and introduce two important examples of combinatorial Hopf algebras: the Hopf algebra FQSym and the Hopf algebra PBT, defined respectively on permutations and on binary trees. Due to their link with the right weak order and the Tamari order, these two combinatorial Hopf algebras are one of the most important motivations for our work in Chapter 4. We will see how their product and coproduct are related to both partial orders at the end of this section.

The classical references for the elementary notions are [Swe69, Abe80].

Combinatorial Hopf algebras.

3.1.1. Combinatorial vector spaces. Throughout the rest of this thesis, K is a field of characteristic zero. The identity element of K is denoted by 1 K for the product, and 0 K for the addition. The Kronecker delta is denoted δ . Let us recall that δ = 1 K if = , and δ = 0 K else.

Let E be a set and : E K be a map. The support of is the set

Supp( ) := { ∈ E : ( ) = 0} (3.1.1)
The free vector space associated with the set E is

Vect(E) := { : E K : Supp( ) is finite} (3.1.2)
The set F := {F := δ : ∈ E} is a basis of Vect(E), called the fundamental basis.

Therefore, all elements of Vect(E) are expressed as

= ∈Supp( ) ( )F (3.1.3)
and Vect(E) can be seen as the vector space of finite formal sums of elements of E with coefficients in K.

Let S be a graded set such that #S(0) = 1. The combinatorial vector space generated by S is the free vector space Vect(S).

All combinatorial vector spaces are graded, namely they decompose as a direct sum

Vect(S) = 0 Vect(S( )) (3.1.4)
where the vector spaces Vect(S( )), called homogeneous components of degree of Vect(S), are of finite dimension.

If V is a combinatorial vector space then we will denote by V ( ) its homogeneous component of degree .

ELEMENTS OF ALGEBRAIC COMBINATORICS AND PARTIAL ORDERS

The Hilbert series of a combinatorial vector space V is the series

V ( ) := 0 dimV ( ) (3.1.5)
In other words, this series is the generating series of the underlying graded set of V .

3.1.2. Combinatorial algebras. An unital associative algebra is a vector space endowed with a linear map • : ⊗ called product, and a linear map : K called unit such that, for all ∈ and λ ∈ K,

( • ) • = • ( • ) (3.1.6) (λ) • = λ = • (λ) (3.1.7)
When the context is clear, we simply say algebra. It will be specified if the algebra is not associative.

The condition (3.1.6) means that the product • is associative. Equivalently, by denoting the product • by , and the identity map by I, this means that the diagram (3.1.8) is commutative.

⊗ ⊗ ⊗ ⊗ I ⊗ ⊗ I (3.1.8)
Likewise, the condition (3.1.7) means that (1 K ) is the identity element for the product •, that is the diagram (3.1.9) is commutative.

⊗ K ⊗ K ⊗ I ⊗ ⊗ I (3.1.9)
Note that since we can deduce the unit map from the identity element 1 for the product by setting (λ) := λ1 for all λ ∈ K, and reciprocally 1 from by setting 1 := (1 K ), one has that the two notations are equivalent.

Let ( • ) be an algebra. A vector subspace is a subalgebra of if for all ∈ , • ∈ , and if for any λ ∈ K, (λ) ∈ .

An algebra is graded if the vector space is graded, and if ∈ ( ) and ∈ ( ) then • ∈ ( + ) . Moreover, if is graded and dim

(0) = 1 then is connected. An algebra is commutative if for all ∈ , • = • .

Let ( •

) and ( • ) be two algebras. An algebra morphism is a linear map φ :

such that, for all ∈ and λ ∈ K,

φ( • ) = φ( ) • φ( ) (3.1.10) φ( (λ)) = (λ) (3.1.11)
An algebra isomorphism is a bijective algebra morphism. If there is an algebra isomorphism from to , then we write .

The tensor product of and is the algebra

⊗ with the product • defined for all ⊗ ⊗ ∈ ⊗ by ( ⊗ ) • ( ⊗ ) := ( • ) ⊗ ( • ) (3.1.12)
and the unit defined by := ⊗ . An ideal of is a vector subspace I of such that, for all ∈ I and ∈ , • ∈ I and • ∈ I. The quotient of by the ideal I is the algebra /I with the product • defined for all ˙ ˙ ∈ /I by

˙ • ˙ := τ( • ) (3.1.13)
where τ : /I is the canonical projection, and and are elements of such that τ( ) = ˙ and τ( ) = ˙ , and the unit defined by := τ • .

Let A be a set and A * be the set of words on A. Let K A * := Vect(A * ) be an algebra endowed with the product

• : K A * ⊗ K A * K A * such that • := . An algebra is free if there is a set A such that K A * .
A combinatorial algebra is an algebra whose vector space is combinatorial. In particular, a combinatorial algebra is graded, connected, and its homogeneous components are of finite dimension.

Combinatorial coalgebras.

A counital coassociative coalgebra is a vector space endowed with a linear map ∆ :

⊗ called coproduct, and a linear map :

K called counit such that (∆ ⊗ I)∆( ) = (I ⊗ ∆)∆( ) (3.1.14) ( ⊗ I)∆( ) = 1 K ⊗ and (I ⊗ )∆( ) = ⊗ 1 K (3.1.15)
where I : is the identity map.

The condition (3.1.14) means that the coproduct is coassociative, which is equivalent to saying that the diagram (3.1.16) is commutative.

⊗ ⊗ ⊗ ⊗ ∆ ∆ I ⊗ ∆ ∆ ⊗ I (3.1.16)
The commutative diagram (3.1.17) corresponds to the condition (3.1.15).

⊗ K ⊗ K ⊗ I ⊗ ⊗ I ∆ (3.1.17)
For ∈ , the coproduct ∆( ) is a finite sum of tensors in the form

∆( ) = L ⊗ R (3.1.18) Let ( ∆ ) be a coalgebra. A vector subspace is a subcoalgebra of if for any ∈ , ∆( ) ∈ ⊗ .
A coalgebra is graded if the vector space is graded, and if ∈ ( ) then ∆( )

∈ + = ( ) ⊗ ( )
. Moreover, if is graded and dim (0) = 1 then is connected. Let ω : ⊗ ⊗ be the linear map defined for any

⊗ ∈ ⊗ by ω( ⊗ ) := ⊗ . A coalgebra is cocommutative if for any ∈ , ∆( ) = ω(∆( )).
Let ( ∆ ) and ( ∆ ) be two coalgebras. A coalgebra morphism is a linear map φ : such that, for any ∈ ,

(φ ⊗ φ)∆ ( ) = ∆ (φ( )) (3.1.19) ( ) = (φ( )) (3.1.20)
A coalgebra isomorphism is a bijective coalgebra morphism. If there is a coalgebra isomorphism from to , then we write .

The tensor product of and is the coalgebra ⊗ with the coproduct ∆ defined for any ⊗ ∈ ⊗ by

∆( ⊗ ) := ( L ⊗ L ) ⊗ ( R ⊗ R ) (3.1.21) where ∆ ( ) = L ⊗ R and ∆ ( ) = L ⊗ R
, and the counit defined by := ⊗ . An coideal of is a vector subspace I of such that, for any ∈ I, ∆ ( ) ∈ I ⊗ + ⊗ I and I ⊆ ker( ). The quotient of by the coideal I is the coalgebra /I with the product ∆ defined for any ˙ ∈ /I by

∆(˙ ) := (τ ⊗ τ)∆ ( ) (3.1.22)
where τ : /I is the canonical projection, and is an element of such that τ( ) = ˙ , and the counit defined by (˙ ) := ( ).

Let A be a set and A * be the set of words on A. Let K A * := Vect(A * ) be a coalgebra endowed with the coproduct ∆ :

K A * K A * ⊗ K A * such that ∆( ) := = ⊗ .
An algebra is cofree if there is a set A such that K A * .

A combinatorial coalgebra is a coalgebra whose vector space is combinatorial. Like for combinatorial algebras, one has in particular that a combinatorial coalgebra is graded, connected, and its homogeneous components are of finite dimension.

Bialgebras and combinatorial Hopf algebras.

A bialgebra is a vector space which is both an algebra ( • ) and a coalgebra ( ∆ ) such that ∆ and are algebra morphisms, or in an equivalent way, • and are coalgebra morphisms.

The fact that ∆ and are algebra morphisms, and that • and are coalgebra morphisms, means that the following relations hold for all ∈ .

∆( • ) = (• ⊗ •)(I ⊗ ω ⊗ I)(∆( ) ⊗ ∆( )) (3.1.23) ( • ) = ( ) ( ) (3.1.24) ∆( (1 K )) = (1 K ) ⊗ (1 K ) (3.1.25) ( (1 K ) = 1 K (3.1.26)
where I : is the identity map. This conditions can be translated with the following commutative diagrams.

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ∆ I ⊗ ω ⊗ I ∆ ⊗ ∆ ⊗ (3.1.27) ⊗ K ⊗ K K ⊗ (3.1.28) ⊗ K ⊗ K K ∆ ⊗ (3.1.29) K K I (3.1.30)
Let ( • ∆ ) be a bialgebra. A vector subspace is a subbialgebra of if is both a subalgebra and a subcoalgebra of . If is a graded algebra and a graded coalgebra, then is graded. Moreover, if is graded, and both a connected algebra and a connected coalgebra, then is connected.

Let ( • ∆ ) and ( • ∆ ) be two bialgebras. A bialgebra morphism is a linear map φ : which is both an algebra morphism and a coalgebra morphism. Furthermore, φ is a bialgebra isomorphism if φ is an algebra isomorphism and a coalgebra isomorphism.

An ideal I of is both an ideal of as an algebra, and a coideal of as a coalgebra. Likewise, the quotient of by the ideal I is the bialgebra /I which is both the quotient of the algebra as an algebra, and the quotient of the bialgebra as a coalgebra.

A combinatorial bialgebra is a bialgebra whose vector space is combinatorial. A combinatorial bialgebra is graded, connected, and its homogeneous components are of finite dimension.

3.1.5. Combinatorial Hopf algebras. Let ( • ∆ ) be a bialgebra and be the vector space of linear map from to . The vector space can be endowed with the convolution product * defined for all

∈ by * := • • ( ⊗ ) • ∆ (3.1.31)
A Hopf algebra is a bialgebra ( • ∆ ) endowed with a linear map S : called antipode. The antipode is the inverse of the identity map I :

for the convolution product. In other words, the antipode S satisfies

S * I = I * S = • (3.1.32)
which means that the diagram (3.1.33) is commutative.

K ⊗ ⊗ ⊗ ⊗ ∆ ∆ I ⊗ S S ⊗ I (3.1.33)
Since any combinatorial bialgebra is graded and connected, it is always possible to compute an antipode S. Therefore, any combinatorial bialgebra admits a unique antipode satisfying (3.1.32). This leads us to the following conclusion: a combinatorial Hopf algebra is a combinatorial bialgebra.

Examples of combinatorial Hopf algebras.

3.2.1. Malvenuto-Reutenauer Hopf algebra. Our first example is a combinatorial Hopf algebra on permutations, called the Malvenuto-Reutenauer Hopf algebra [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF], or FQSym for free quasi-symmetric functions. We denote by F σ the elements of the fundamental basis F, where σ is a permutation.

On the linear span of {F σ : σ ∈ S}, endowed with the shifted shuffle product, the FQSym product is defined, for all σ ∈ S( ) and ν ∈ S( ), by Likewise, FQSym can be endowed with a coproduct ∆, defined, for all σ ∈ S( ), by

F σ • F ν := π∈σ¢ν F π (3.2.
∆(F σ ) := σ= F std( ) ⊗ F std( ) (3.2.3)
where std( ) is the standardization of . For instance,

∆(F 41532 ) = 1 ⊗ F 41532 + F 1 ⊗ F 1432 + F 21 ⊗ F 321 + F 213 ⊗ F 21 + F 3142 ⊗ F 1 + F 41532 ⊗ 1 (3.2.4)
The space FQSym endowed with ∆ is a combinatorial coalgebra.

Endowed with the product • and the coproduct ∆, FQSym is a combinatorial bialgebra, and therefore a combinatorial Hopf algebra.

There are several other interesting bases of FQSym [DHT02, HNT05], related to the fundamental basis, such as the elementary basis of FQSym, which is defined for any permutation σ by E σ :=

σ we ν F ν (3.2.5)
Similarly, the homogeneous basis of FQSym is defined by

H σ := ν we σ F ν (3.2.6)
These two bases have the property to be multiplicative, that is the FQSym product on these bases is one element. Indeed, for all permutations σ and ν,

E σ • E ν = E σ ν (3.2.7) and H σ • H ν = H σ ν (3.2.8)
where the operations and are defined in 1.1.6.

Since the elements of these bases depend on the right weak order, these two bases are closely related to the combinatorial properties of permutohedron [START_REF] Duchamp | Noncommutative symmetric functions VII: free quasi-symmetric functions revisited[END_REF]. In the following, we will see that the product of FQSym and its coproduct are also linked to the right weak order, and thus to the permutohedron.

Loday-Ronco Hopf algebra.

There are several Hopf subalgebras of FQSym, such as the Poirier-Reutenauer Hopf algebra on Young tableaux [START_REF] Poirier | Algèbres de Hopf de tableaux[END_REF]. The Loday-Ronco Hopf algebra [START_REF] Loday | Hopf Algebra of the Planar Binary Trees[END_REF], or PBT for planar binary trees, is one of them. The algebra PBT, defined on planar binary trees, can be thus defined as the subalgebra of FQSym spanned by the elements

P t := σ∈S bst(σ)=t F σ (3.2.9)
where bst is the algorithm of insertion Likewise, for the PBT coproduct, we compute the coproduct in the basis F of FQSym and then we group the elements via the algorithm of insertion, or equivalently, via the sylvester classes.

Endowed with this product and coproduct thus defined, PBT is a combinatorial Hopf algebra.

Products, coproducts, and partial orders.

3.3.1. FQSym and the right weak order. The Malvenuto-Reutenauer Hopf algebra and the permutohedron are intrinsically linked, and this connection comes from the fact that the product of FQSym can be rephrased, for all permutations F σ and F ν , as

F σ • F ν = π∈[σ ν σ ν] we F π (3.3.1)
Thus rephrased, the product is seen as a sum with intervals for the right weak order as support. For instance, using the example (3.2.2), we obtain that the product F 312 • F 21 is the sum of elements of the interval [31254 54312] we .

In the same way, the FQSym coproduct can also be rephrased as a sum of elements of an interval of the permutohedron. Thus, we get a combinatorial interpretation of this coproduct.

PBT and the Tamari order.

A similar property holds for PBT relative to the Tamari order ta . Therefore, the PBT product can be rephrased, for all binary trees P t and P s , as

P t • P s = r∈[t s t s] ta P r (3.3.2)
where and are the grafting operations on binary trees defined in 1.2.2.

For instance, by considering the example (3.2.11), the product

P • P (3.3.3) is the sum of elements of the interval         ta (3.3.4)
The PBT coproduct can also be rephrased in the same way.

In 1.3.7, it is explained that the Tamari order can be seen on the 132-avoiding permutations through the algorithm of insertion 1.10. Therefore, as the Tamari order is a sublattice of the right weak order, PBT is a Hopf subalgebra of FQSym. CHAPTER 2

Cubic coordinate lattices

Tamari lattices are partial orders having extremely rich combinatorial and algebraic properties. These partial orders are defined on the set of binary trees and rely on the right rotation operation [START_REF] Tamari | The algebra of bracketings and their enumeration[END_REF] defined in Section 1.2.2 of Chapter 1. We are interested in the intervals of these lattices, meaning the pairs of comparable binary trees. As seen in Section 2.2.3 of Chapter 1, Tamari intervals form also a lattice. The number of these objects is given by a formula that was proved by Chapoton [START_REF] Chapoton | Sur le nombre d'intervalles dans les treillis de Tamari[END_REF]:

2(4 + 1)! ( + 1)!(3 + 2)! (0.0.1)
Strongly linked with associahedra, Tamari lattices have been recently generalized in many ways [START_REF] Bergeron | Higher trivariate diagonal harmonics via generalized Tamari posets[END_REF]PRV17]. In this process, the number of intervals of these generalized lattices have also been enumerated through beautiful formulas [START_REF] Bousquet-Mélou | The number of intervals in the -Tamari lattices[END_REF][START_REF] Fang | The enumeration of generalized Tamari intervals[END_REF]. Many bijections between Tamari intervals and other combinatorial objects are known. For instance, a bijection with planar triangulations is presented by Bernardi and Bonichon in [START_REF] Bernardi | Intervals in Catalan lattices and realizers of triangulations[END_REF]. It has been proved by Châtel and Pons that Tamari intervals are in bijection with interval-posets of the same size [CP15] (see Section 2.2.3 of Chapter 1).

We provide in this chapter a new bijection with Tamari intervals, which is inspired by interval-posets. More precisely, we first build two words of size from the Tamari diagrams [START_REF] Pallo | Enumerating, ranking and unranking binary trees[END_REF] of a binary tree. If they satisfy a certain property of compatibility, we build a Tamari interval diagram from these two words. We show that Tamari interval diagrams and interval-posets are in bijection. Then we propose a new encoding of Tamari intervals, by building ( -1)-tuples of numbers from Tamari interval diagrams. We call these tuples cubic coordinates. This new encoding has two obvious virtues: it is very compact and it gives a way of comparing in a simple manner two Tamari intervals, through a fast algorithm. On the other hand, some properties of Tamari intervals translate nicely in the setting of cubic coordinates. For instance, synchronized Tamari intervals [START_REF] Fang | The enumeration of generalized Tamari intervals[END_REF] become cubic coordinates with no zero entry. Besides, cubic coordinates provide naturally a geometric realization of the lattice of Tamari intervals, by seeing them as space coordinates. Indeed, all cubic coordinates of size can be placed in the space R -1

. By drawing their covering relations, we obtain an oriented graph. This gives us a realization of cubic coordinate lattices, which we call cubic realization. This realization leads us to many questions, in particular about the cells it contains. We characterize these cells in a combinatorial way, and we deduce a formula to compute a volume of the cubic realization in the geometrical sense. Another direction, more topological, involves the shellability of partial order (see Section 2.3 of Chapter 1). We show, drawing inspiration from the work of Björner and Wachs [BW96,BW97], that the cubic coordinates poset is EL-shellable, and as a consequence its associated complex is shellable. This chapter is organized in two sections.

In Section 1, we define Tamari interval diagrams and show that they are in bijection, size by size, with interval-posets. We then define cubic coordinates and show that they are in bijection, size by size, with Tamari interval diagrams. Using these two bijections, and after having provided the set of cubic coordinates with a partial order, we show that there is a poset isomorphism between the poset of cubic coordinates and the poset of Tamari intervals.

As pointed out above, the poset of cubic coordinates can then be realized geometrically. This cubic realization and the cells that compose it are the object of Section 2. For each cell, we then associate a synchronous cubic coordinate. By relying upon this particular cubic coordinate, we give a formula to compute the volume of the cubic realization. Finally, we extend the result of Björner and Wachs on the Tamari posets to the Tamari interval posets, by showing that the cubic coordinate posets are EL-shellable.

Cubic coordinates and Tamari intervals

The aim of this section is to build the poset of the cubic coordinates, then to establish the poset isomorphism between this poset and the poset of the Tamari intervals. To achieve this aim, we first define the Tamari interval diagrams based on the interval-posets. The cubic coordinates are then obtained from the Tamari interval diagrams.

Tamari interval diagrams.

1.1.1. Interval-posets. In Section 2.2.3 of Chapter 1 we saw a way of drawing an interval-poset. In this chapter, we shall draw interval-posets as follows. For any < , if π π and there is no vertex π such that π π and < , then we draw an arrow with source π and target π from below as shown in the example in Figure 1.1. Symmetrically, if π π and < and if there is no π such that π π and < , then we draw an arrow with source π and target π from above. We refer to this oriented graph with two types of arrows as the minimalist representation.

The closure for the interval-poset properties is given by adding the decreasing relations π π for any relation π π and by adding the increasing relations π π for any relation π π , for any < < . By taking the reflective closure and the closure for the interval-poset properties, an interval-poset is obtained from such a representation. The interest of the minimalist representation is later justified, in particular with Theorem 1.1.4.

It is important to represent the decreasing relations and the increasing relations independently.

Let 0 and π π ∈ IP( ) and (s t) := ρ(π), (s t ) := ρ(π ). Let ( ) (resp. ( )) the following condition: π is obtained by adding (resp. removing) only decreasing (resp. increasing) relations of target a vertex π in π, such that if only one of these decreasing (resp. increasing) relations is removed (resp. added), then either π is obtained or the object obtained is not an interval-poset.

For the sequel, we need to recall that (s t ) covers (s t) if and only if π and π satisfy either ( ) or ( ). 

π -1 a π π +1 π -1 b π π +1 c F .
. Interval-poset of the increasing forest before (with dotted lines) and after (without dotted lines) the right rotation of the edge ( ), where a, b and c may be empty.

P

. Suppose π and π satisfy ( ) for the vertex π . Therefore, π has more decreasing relations of target π than the vertex π in π. Suppose that the vertices π and π are not related in π, and that π and π are related in π , with < . Then, by the interval-poset property (i), for any π such that < < , π π . Moreover, if we remove only one of these decreasing relations, we obtain either π or an object that is no longer an interval-poset. This means that the number of descending relations added in π is minimal, or equivalently, that the vertex π is closest to the vertex π such that π and π are not related in π and < . This case is depicted in Figure 1.3. By the bijection ρ, add these decreasing relations of target π in π leads to the decreasing forest induced by s represented by Figure 1.2b. A unique right rotation is then made between the trees s and s (see Figure 1.2a). Furthermore, since the increasing relations are unchanged between π and π , the increasing forests induced by t and t are the same, and thus t = t.

Reciprocally, suppose that s is obtained by a unique right rotation of the edge ( ) in s and that t = t. The case is depicted by Figure 1.2a, and the two decreasing forests induced by s and s are depicted by Figure 1.2b. By the bijection ρ, we then obtain the interval-poset whose restriction to decreasing relations is shown by Figure 1.3. Since t = t, the increasing relations of the interval-posets associated with (s t) and (s t ) are the same. Finally, π is obtained by adding only decreasing relations of target π in π. Furthermore, if only one of these relations is removed, then either π is obtained, or the object obtained is not an interval-poset. This means that π and π satisfy ( ).

Symmetrically, we show that π and π satisfy ( ) for π if and only if t is obtained by a unique right rotation of the edge ( ) in t and s = s. Likewise, a dual Tamari diagram is a word of length on the alphabet N which satisfies the two following conditions

(i) 0 -1 for all ∈ [ ], (ii) - -for all ∈ [ ] et ∈ [0 ].
The size of a dual Tamari diagram is its number of letters. For example, the two diagrams in Figure 1.5 are compatible. Figure 1.6 gives two other examples of two incompatible diagrams 00400000 and 00003000, and two compatible diagrams 04000000 and 00000030. Thereafter, if and are compatible, we can also say that and satisfy the compatibility condition. As for Tamari diagrams and dual Tamari diagrams, a graphical representation of the Tamari interval diagram is also possible, as shown in Figure 1.6. Figure 1.7 gives this representation of the Tamari interval diagram (9021043100 0010040002) from the two diagrams seen in Figure 1.5, where we have simply considered the symmetry relative to the abscissa axis of the Tamari diagram, and placed it under its dual. Thus, Tamari diagram is drawn below and its dual Tamari diagram is drawn above. With such a representation, it is then easy to verify that and are compatible. Indeed, any needle of that is below the diagonal linking the top of the needle in position in to the abscissa point -, has a diagonal that intersects the -axis strictly before the position . Symmetrically, any needles of that is above a diagonal linking the top of the needle in position in to the abscissa point + , has a diagonal that intersects the -axis strictly after the position .

One consequence of the compatibility condition is that each needle of non-zero height in the dual Tamari diagram is always preceded by a needle of of zero height. Symmetrically, each non-zero height needle in the Tamari diagram is always followed by a needle of of zero height. In other words, for any ∈ [ ],

and +1 can both be zero, but cannot both be non-zero. ). First, we show that is a partial order, then that interval-poset properties are satisfied.

(1) By definition of χ one has π + π and π - π with 0 and 0 for all π ∈ π. Specifically, π π . This shows that π is reflexive.

(2) Let π , π and π be vertices of π with < < . (a) Suppose that π π and that π π . Then π π implies that there is an integer 0 such that = + . Therefore, by the condition (ii) of a Tamari diagram, = + -. Likewise, π π implies that there is an integer 0 such that = + . Still by the same condition, one has = + -. By using these two inequalities, we obtain that + + . Since + = -, then we have -, which implies by definition of χ that π π in π.

(b) Suppose that π π and that π π . Therefore, π π because π π implies that for each vertex between π and π is in relation with π . (c) Suppose that π π and that π π . Then π π implies that there is an integer 0 such that = -. By the condition (ii) of a dual Tamari diagram, = - -. Likewise, π π implies that there is an integer 0 such that = -. By the same condition (ii), = - -.

By these two inequalities, one has + + . Since + = -, one has -, which implies by definition of χ that π π in π.

(d) Suppose that π π and that π π . Then π π because π π implies that all vertex between π and π is in relation with π .

This shows that π is transitive. Note that it is impossible to have the case π π and π π since π is the image of a Tamari interval diagram. Getting this case would contradict the fact that and are compatible. Similarly, the case π π and π π is impossible.

(3) Let < and π , π be vertices of π. Suppose that π π and that π π . By definition of χ, π π if and only if -. Likewise, π π if and only if -. However, since and are compatible, this case is impossible. This shows that π is antisymmetric. (4) The definition of χ implies directly that π satisfies the interval-poset properties, namely that for all π , π and π vertices of π with < < , if π π then π π , and if π π then π π .

Let 0 and χ be the map sending an interval-poset π of size on a pair of words ( ) ∈ N × N , such that for all ∈ [ ],

:= #{π ∈ π : π π and < };

(1.1.2)

:= #{π ∈ π : π π and < } (1.1.3) L 1.1.3. Let 0, π ∈ IP( ) and 
( ) := χ (π). If -(resp.
-), then π π (resp. π π ), with 0 . ) which is the inverse image of π by χ.

An example is given by Figure 1.7, where a Tamari interval diagram and its intervalposet which is its image by χ are shown.

Cubic coordinates.

We describe in this part the set of cubic coordinates, and we show that there is a bijection between this set and the set of Tamari interval diagrams. We end this part with some properties of the cubic coordinates. 1.2.1. Definition. An ( -1)-tuple on Z is a cubic coordinate if there is a Tamari interval diagram (

) of size such that

= ( 1 - 2 2 - 3 -1 -) (1.2.1)
The size of a cubic coordinate is its number of components plus one. The set of cubic coordinates of size is denoted by CC( ). For instance, (9 -1 2 1 -4 4 3 1 -2) is a cubic coordinate of size 10 since there is the Tamari interval diagram (9021043100 0010040002) satisfying the conditions of the definition.

Besides, for any 1, let φ be the map sending an ( -1)-tuple on Z to a pair ( ) of words on N, both of length , such that satisfies = 0 and for any

∈ [ -1], = max( 0) (1.2.2)
and satisfies 1 = 0 and for any 2 , Using the map χ we can then directly give the cubic coordinate of an interval-poset π.

= | min( -1 0)| (1.2.3) 1.2.
In the same way that we shift the dual Tamari diagram one position to the left, we shift all the increasing relations of the interval-poset to the left by one vertex. Then, for each vertex π , we count the number of elements in increasing or decreasing relation of target π , out of reflexive relation, for all ∈ [ -1]. These numbers become the components of positive sign if it is a decreasing relation, negative otherwise, of the cubic coordinate. As the increasing relations have been shifted, the number associated with the vertex π is always zero. Therefore, this vertex is forgotten for the cubic coordinate. In the same way, to construct an interval-poset from a cubic coordinate with each component of a cubic coordinate, we rebuild the increasing and decreasing relations on -1 vertices, we add the vertex π , then we shift the increasing relations to the right. Depending on the case, either the definition of cubic coordinates or the definition of Tamari interval diagrams is used, as it is done for the proof of Lemma 1.2.2. For example, the following results are stated for +1 with < . We obtain the two converse properties with respectively the point (i) and the point (ii) of interval-poset properties. Specifically, by setting := + 1 and := , we find the formulation of the negation of (iii) of a new Tamari interval diagram, with + 1 < .

In [START_REF] Rognerud | Exceptional and modern intervals of the Tamari lattice[END_REF] ) is synchronized, one has either 2 = 0 or 3 = 0. By ( * ), the second choice is impossible, thus 2 = 0. By the same reasoning, for every ∈ [ -2], = 0. However, also by assumption one has = 0. Therefore, -2 = 0 and = 0 which is a contradiction with ( * ).

1.3. Order structure and poset isomorphism. Firstly, we endow the set of cubic coordinates with an order relation. Then we show that there is an isomorphism between this poset and the poset of Tamari intervals. The two bijections constructed in the first two parts of Section 1 allow us to establish this poset isomorphism. 

Let (s t) (s t ) ∈ int(T 2 (n)) and let ψ := φ -1 • χ -1 • ρ -1
be the map from the Tamari interval poset to the cubic coordinate poset CC( ). For the next results in all this section, let us denote by := ψ((s t)), := ψ((s t )) and (

) := φ( ), ( ) := φ( ), and π := χ( ), π := χ(

).

L 1.3.1. If (s t ) covers (s t) then there is a unique different component between and such that < and there is no cubic coordinate different from and such that .

P

. By Lemma 1.1.1 we know that (s t ) covers (s t) if and only if π and π satisfy either ( ) or ( ). Let us assume that π and π satisfy either ( ) or ( ) for the vertex π . Two cases are possible.

Suppose that π and π satisfy ( ), then since only decreasing relations are added in π relative to π, only is modified in ( ) relative to ( ). Furthermore, since π is obtained by adding decreasing relations of target π in π, only the letter in is increased relative to . Moreover, since the number of descending relations added in π is minimal, there cannot be any Tamari interval diagram between ( ) and ( ), and thus no cubic coordinate between and . In the end, the image by φ -1 of ( ) is the cubic coordinate with = and = for any = .

Suppose that π and π satisfy ( ), the arguments are roughly the same, with the difference that this time, only increasing relations are removed in π relative to π. We obtain that only the component -1 =of has increased relative to .

In both cases, the implication is true.

Note that if there is a unique different component between and such that < and there is no cubic coordinate different from and such that , then in particular covers . Thus, Lemma 1. ) by ( ( ) ( ) ), one has that ( ) = = , so the compatibility with ( ) is always satisfied. Therefore, the only thing to check is that 

= (0) (1) ( -1) ( ) = (1.3.3) such that #D -( -1) ( ) = 1 for all ∈ [ ]. P . Let D - = { 1 2 } (1.3.4) with -1 < for all ∈ [2 ].
= (0) (1) ( -1) ( ) = (1.3.6) such that #D + ( -1) ( ) = 1 for all ∈ [ ].
P . The proof is similar to the demonstration of Lemma 1.3.3. Let

D + = { 1 2 } (1.3.7)
with -1 < for all ∈ [2 ]. For any ∈ [ ], let ( ) be a tuple obtained by replacing in all the components by the components for ∈ [ ]. As we did in the proof of Lemma 1.3.3, we can check that, for any ∈ [ ], the tuple ( ) is a cubic coordinate. Then, by consider the chain

= (0) (1) ( -1) ( ) = (1.3.8) one has that #D + ( -1) ( ) = 1 for all ∈ [ ].
1.3.2. Poset isomorphism.

T 1.3.5. For any 0, the map ψ is a poset isomorphism.

P

. The map ψ is an isomorphism of posets if ψ and its inverse preserves the partial order. As these relations are transitive, Lemma 1.3.1 gives the direct implication. Suppose that . According to Lemma 1.3.2, Lemma 1.3.3 and Lemma 1.3.4 there is always a chain between and such that the components are independently increasing one by one. So we can see what happens when we change only one component by at any step between and .

Obviously, if = , then = and +1 = +1 and no changes are made between the corresponding binary tree pairs. Suppose that < , then three cases are possible.

Suppose that is positive and is positive or null. The image by φ of and differ for the letter , namely = and = , and +1 = +1 = 0. The difference of a letter between (

) and ( ) is directly translated by the map χ: the interval-poset π has more decreasing relations of target π than the vertex π in π. By the map ρ, it means that to go from the tree s to the tree s at least one right rotation of the edge ( ) is made, where is the father of the node in s. Symmetrically, assume that is negative or null, then = -+1 , = -+1 and = = 0. By the map χ, the interval-poset π has less decreasing relations of target π +1 than the vertex π +1 in π. This implies by ρ that to pass from the tree t to the tree t at least one right rotation of the edge ( + 1) is made, where is the right child of the node + 1 in t. Finally, with Lemma 1.3.2, the case where is negative and is positive falls into the conjunction of the two previous cases.

Therefore, implies that (s t) int(ta) (s t ). Hence, the map ψ is an isomorphism of posets.

Let us denote by the covering relation of the poset CC( ). P 1.3.6. Let 0 and ∈ CC( ) such that . Then, there is a unique different component between and .

P

. It is a consequence of Theorem 1.3.5 and Lemma 1.3.1.

The following diagram provides a summary of the applications used in Section 1. Re-

call that ψ = φ -1 • χ -1 • ρ -1
, therefore this diagram of poset isomorphisms is commutative.

TID( ) IP( ) CC( ) int(T 2 (n)) χ φ ψ ρ
(1.3.9)

A consequence of the poset isomorphism ψ is that the order dimension of the poset of Tamari intervals is at most -1 (see Section 1.3.3 of Chapter 1).

Geometric properties

In this section, we give a very natural geometrical realization for the lattices of cubic coordinates. After defining the cells of this realization, we give some properties related to them. Finally, we show that the lattice of the cubic coordinates is EL-shellable.

2.1. Cubic realizations. Theorem 1.3.5 provides a simpler translation of the order relation between two Tamari intervals. We provide the geometrical realization induced by this order relation which is natural for cubic coordinates. In a combinatorial way we study the cells formed by this realization.

2.1.1. Space embedding. For any 0, the cubic realization of CC( ) is the geometric object C(CC( )) defined in the space R -1 and obtained by placing for each ∈ CC( ) a vertex of coordinates ( 1 -1 ), and by forming for each ∈ CC( ) such that an edge between and . Every edge of C(CC( )) is parallel to some vector in the canonical basis of R -1 .

(

(0 1) ( 1 0) ( 1 1) (1 0) (0 2) (0 0) (0 1) (2 0) (1 2) ( 1 2) 
(2 1)

(2 1) F . . C(CC(3)).
Figure 2.1 is the cubic realization of CC(3), where the elements are the vertices and the edges are the covering relations. Figure 2.2 is the cubic realization of CC(4). In these drawings the negative sign components are denoted with a bar.

In algebraic topology, to define the tensor products of A ∞ -algebras, one can use a cell complex called the diagonal of the associahedron. This complex has notably been studied by Loday [START_REF] Loday | The diagonal of the Stasheff polytope[END_REF], by Saneblidze and Umble [START_REF] Saneblidze | Diagonals on the permutahedra, multiplihedra and associahedra[END_REF] or by Markl and Shnider [START_REF] Markl | Associahedra, cellular W -construction and products of A ∞ -algebras[END_REF].

More recently, there is a description of this object in [START_REF] Masuda | The diagonal of the associahedra[END_REF]. The realization of this complex seems to be identical to the cubic realization, up to continuous deformation.

2.1.2. Minimal increasing map. Let 0. We define the set of input-wings as the set (CC( )) containing any ∈ CC( ) which covers exactly -1 elements, output-wings as the set (CC( )) containing any ∈ CC( ) which is covered by exactly -1 elements.

Let 0 and ∈ CC( ). For ∈ [ -1], the covering map ↑ sends to its covering differing only at index , when such covering exists. We denote by ↑ the letter which differs in ↑ ( ).

In particular, for 0, a cubic coordinate of size is an output-wing if for any (a) Suppose there is a satisfying (1), and there is no satisfying (2) in ⇑ +1 ( ). In this case, by choosing the minimal index such that (1) holds, we set := --1 in . Thus, is also minimized, and since < -, the compatibility condition is satisfied in . Furthermore, since ⇑ +1 ( ) is assumed to be a cubic coordinate, all conditions in a Tamari diagram and a dual Tamari diagram are satisfied for . Therefore, our candidate is a cubic coordinate. Note that in the construction of , other possible not minimal satisfying (1) will not cause any problem. (b) Suppose there is an satisfying (2), and there is no satisfying (1) in ⇑ +1 ( ). Then, by choosing the minimal index such that (2) holds, we set := -+ . Therefore, Condition (ii) of a Tamari diagram is satisfied for . Also, by Condition (i) of a Tamari diagram, which implies -. Finally, the compatibility condition is also satisfied because it was assumed that there was no satisfying (1). The tuple is thus a cubic coordinate. As for the previous case, other possible not minimal satisfying (2) will not cause any problem. (c) Suppose there is a and an satisfying (1) and (2) in ⇑ +1 ( ). In this case, we set := min{ -+ --1}. By the two previous cases, the tuple is a cubic coordinate. (d) Otherwise, we set := -. The tuple is a cubic coordinate.

∈ [ -1], ↑ ( )
In any case, for fixed in , either covers ⇑ +1 ( ), and so =⇑ ( ), or there is a cubic coordinate between ⇑ +1 ( ) and such that =⇑ ( ). In both cases, ⇑ ( ) is a cubic coordinate, and differs by only one component from .

Let

0 and ∈ (CC( )). The cubic coordinate ⇑ 1 ( ) is the corresponding inputwing of (the name comes from a corollary of Theorem 2.1.3).

For instance = (0 -1 1 -1 -5 0 1 -1 -3) is an output-wing, and its corresponding input-wing is ⇑ 1 ( ) = (1 0 2 0 -4 3 2 0 -2). By Lemma 2.1.2 such an element does exist. Note that performing the covering map on in a different order than the one prescribed by (2.1.1) does not always result in the corresponding input-wing. This observation can already be made on the two pentagons of Figure 2.1. 2.1.3. Cubic cells. In Figure 2.1 and Figure 2.2, we notice that a "cellular" organization appears. Thanks to the cubic coordinates, a combinatorial definition of these cells is provided. The aim is to have a better understanding of the realization of the cubic coordinate posets as a geometrical object.

For any 0, let ∈ CC( ) such that . A cell is the set of points

:= ∈ R -1 : for all ∈ [ -1] (2.1.2)
By the definition, a cell is an orthotope, that is, a parallelotope whose edges are all mutually orthogonal or parallel. The dimension dim of a cell is its dimension as an orthotope and it satisfies dim = #D( ), where D( ) := { : = }.

From now on, we denote by out any output-wing and by in its corresponding inputwing. Any particular cell out in formed by an output-wing and by its corresponding input-wing is called a cell-wing.

A consequence of Lemma 2.1.1 is that for any cell-wing out in of dimension -1, for all ∈ [ -1], (i) if out < 0, then in 0, (ii) if out 0, then in > 0.

T 2.1.3. Let 1 and out in be a cell-wing of dimension -1, and be a ( -1)-tuple such that for all ∈ [ -1], the component is equal either to out or to in . Then is a cubic coordinate.

P

. If all the components of are equal to those of out (resp. to those of in ), then is a cubic coordinate. Suppose this is not the case, meaning that has components of out and in .

Let us denote ( These two reasons imply that if one builds the cubic coordinate =⇑ ( out ), then by the definition of the covering map one has = < -, because at worst, the covering map sends out to --1 (we have already seen this in the proof of Lemma 2.1.2). However, by the definition of in one has in = , that is in < -. Therefore, the compatibility condition between in and out is satisfied for .

Thus, for all choices of letters of and one has that is a cubic coordinate.

One of the direct consequences of Theorem 2.1.3 is that for every cell-wing out in , at least 2 -1 cubic coordinates belong to this cell.

This theorem also implies that a corresponding input-wing covers -1 cubic coordinates, and so is in particular an input-wing.

Moreover, due to the fact the Tamari interval lattice is self-dual, the number of outputwings is equal to the number of input-wings. Therefore, by Theorem 1.3.5, an input-wing is always a corresponding input-wing of some output-wing. Let 0, and ∈ {-1 1} -1 , and ∈ CC( ). The -region of is the set

( ) := {( 1 -1 ) ∈ R -1 : < if = -1 > otherwise} (2.1.3)
The cubic coordinate is external if there is ∈ {-1 1} -1 such that CC( ) ∩ ( ) = ∅. The -region ( ) is then empty. Otherwise, is internal. Tamari interval diagram φ( ) is not new if there is

(1) either ∈ [ -1] such that = -, (2) or ∈ [2 ] such that = -1, (3) or ∈ [ ] such that = --1 and = --1 with + 1 < .
Suppose there is some satisfying (1), then there cannot be a cubic coordinate such that > because, by the definition of a Tamari diagram, -. Similarly, if we assume that there is satisfying (2), then there cannot be a cubic coordinate such that -1 < -1 because by the definition of a dual Tamari diagram, -1 1 -. If (3) is satisfied, then there cannot be a cubic coordinate such that > and -1 < -1 . Indeed, if the letters and are increased in , then the compatibility condition is contradicted, so the result cannot be a cubic coordinate. Since in each case at least one -region is empty, is external. P 2.1.5. Let 0 and ∈ SCC( ). Then is external.

P

. By Proposition 1.2.6 we know that if is synchronized, then φ( ) is not new. Now, we just saw from Proposition 2.1.4 that if φ( ) is not new, then is external.

Cells and volumes.

We know that each cell-wing contains at least 2 -1 cubic coordinates on the edges. In this section, we show that it is possible to associate bijectively each cell-wing to a synchronized cubic coordinate. Finally, we deduce a formula to compute the volume of the cubic realization.

Cells and synchronized cubic coordinates. Let

1 and out in be a cellwing of dimension -1 and γ be the map defined by 

γ( out -1 in -1 )) (2.2.3)
For instance, the cell-wing (0

-1 1 -1 -5 0 1 -1 -3) (1 0 2 0 -4 3 2 0 -2) is sent by Γ to (1 -1 2 -1 -5 3 2 -1 -3). (0 0 0) (3 2 1) (0 2 1) (3 0 1) (3 2 0) ( 1 2 3) ( 1 0 3) ( 1 2 0) F . . C(CC(4)).
T 2.2.1. For any 1, the map Γ is a bijection from the set of cell-wings of dimension -1 to SCC( ).

P

. The components of Γ out in belong to either out or in . In both cases, it is a non-zero component. According to Theorem 2.1.3, Γ out in is therefore a cubic coordinate of size . Moreover, this cubic coordinate is synchronized because none of its components is null.

Let out in and out in be two cell-wings of dimension -1 such that Γ out in = Γ out in . Let us denote ( out out +1 ) (resp. ( in in +1 )) the pair of letters corresponding to out (resp. in ) and ( out out +1 ) (resp. ( in in +1 )) the pair of letters corresponding to out (resp. in ) by the map φ, for all ∈ [ -1].

To suppose that Γ out in = Γ out in is equivalent to suppose that for all ∈ [ -1], γ( out in ) = γ( out in ). The map Γ is injective if, for every ∈ [ -1], out = out and in = in . Suppose that there is some index such that out = out or in = in , and we take the smallest such index. Then, two cases have to be considered: either γ( out in ) = in or γ( out in ) =out +1 .

(1) Suppose that γ( out in ) = in . In this case, γ( out in ) = in and in = in . Moreover, since in = 0 (resp. in = 0), then necessarily in +1 = 0 (resp. in +1 = 0). Therefore, in = in . On the other hand , the fact that in > 0 (resp. in > 0) implies by Lemma 1.2.2 that 0 out < in and out +1 = 0 (resp. 0 out < in and out +1 = 0). Thus, one has out +1 = out +1 . Therefore, the only way for the hypothesis to be true is that . Since the letter in satisfies the compatibility condition with the letters of in in ↑ ( ), then all letter lower in position satisfies this condition as well. Therefore, and are compatible and is a cubic coordinate distinct from and ↑ ( ) such that ↑ ( ).

However, if is a cubic coordinate, then by the definition of the covering map ↑ := in = out , and so ↑ ( ) :=⇑ ( out ) = . This is not possible with the assumption that in = in , and so that γ( out in ) = γ( out in ).

(2) Suppose that γ( out in ) =out +1 . In this case γ( out in ) =out +1 and out +1 = out +1 . By rephrasing the arguments of the case (1) for the dual, we show that out = out and in = in .

This shows that the map Γ is injective. Now let us show that the cardinal of the set of cell-wings of dimension -1 is equal to the cardinal of SCC( ). Recall that the set of cells of size is exactly (CC( )). Furthermore, by the poset isomorphism ψ we know that these elements are the Tamari intervals having -1 elements covering in the Tamari interval lattices. In [Cha18] Chapoton shows that the set of these Tamari intervals has the same cardinal as the set of synchronized Tamari intervals (see Theorem 2.1 and Theorem 2.3 from [Cha18]). Finally, Proposition 1.2.3 allows us to conclude that the cardinal of SCC( ) and the cardinal of the set of cell-wings of dimension -1 are equal. Thus, the map Γ is bijective.

Let us also defined the map γ by γ( out in ) :

= in if out < 0 out if out 0 (2.2.4) for all ∈ [ -1]. Then Γ is defined by Γ out in := (γ( out 1 in 1 ) γ( out 2 in 2 ) γ( out -1 in -1 )) (2.2.5)
By Theorem 2.1.3, Γ out in is a cubic coordinate belonging to out in , called opposite cubic coordinate. For the synchronized cubic coordinate associated with out in by Γ, denote the opposite cubic coordinate. All the components of are different from those of , and these differences are the greatest possible. For any synchronized cubic coordinate , such a cubic coordinate always exists and is unique.

Note that the map Γ only returns the positive components of in and the negative components of out . Conversely, the map Γ returns the positive components of out and the negative components of in . We already know that the latter combination is always possible for any comparable cubic coordinates according to Lemma 1.3.2. On the other hand, this is not the case for the first mentioned combination.

Volume of C(CC)

. Now let us take a closer look at the geometry of the cubic realization. We already know that there are at least 2 -1 cubic coordinates forming an outline of each cell-wing. The following notions will allow us to say more.

A point of R -1 is inside a cell if, for any ∈ [ -1], = implies < < . A cell
is pure if there is no cubic coordinate inside . The volume vol of is its volume as an orthotope and it satisfies

vol = ∈D( ) ( -) (2.2.6) L 2.2.2.
Let 1 and out in be a cell-wing of dimension -1. The cell out in is pure.

P

. Suppose there is a cubic coordinate such that out < < in for all ∈ [ -1]. By Lemma 2.1.1 we know that if out < 0, then in 0 and if out 0, then in > 0. However, since out < < in , then is different from 0. In the end, if such a cubic coordinate exists, it would be synchronized. But then, there would be a cubic coordinate both synchronized and internal by hypothesis. This is impossible according to Proposition 2.1.5.

We showed with Theorem 2.1.3 that each cell-wing contains at least 2 -1 cubic coordinates. By Lemma 2.2.2, we know that each cell-wing out in is pure, and then has only cubic coordinates on its border.

Let

1 and out in be a cell-wing of dimension -1. Since between out and in all components are different, one has D( out in ) = -1, and so the volume of out in satisfies

vol out in = -1 =1 ( in -out ) (2.2.7)
Let us denote by 0 the cubic coordinate such that 0 = 0 for any ∈ [ -1]. To compute vol out in from the synchronized cubic coordinate associated by Γ, we must first compute the volume of the cell formed by 0 and .

By Lemma 2.1.1, any cell-wing is included in an -region of the 0 cubic coordinate. This means that no cell-wing can be cut by a line passing by the origin 0 and a cubic coordinate of the form (0 0 1 0 0) or (0 0 -1 0 0).

According to Lemma 1.2.2, for any cubic coordinate, replacing any component by 0 gives a cubic coordinate. In other words, for any cubic coordinate , there are -1 cubic coordinates related to which are its projections on the lines passing by 0 and a cubic coordinate of the form (0 0 1 0 0) or (0 0 -1 0 0). Therefore, even if 0 and are not comparable, we consider the cell, denoted by , between 0 and , such that the volume of this cell satisfies vol =

∈D( 0 ) | | (2.2.8)
Note that the dimension of a cell is less than or equal to -1. Moreover, can be no-pure, and may even contain other cells of the same dimension.

By the map Γ, the components of the synchronized cubic coordinate of the cell-wing out in are the greatest in absolute value between out and in . Therefore, in the cellwing out in , is the furthest cubic coordinate from 0 . In particular, contains the cell-wing out in and the dimension of is -1.

Let 0 and ∈ SCC( ). Since by the definition, all components of are different from 0, one has D( For the sequel, we set Λ as the poset Z 3 wherein elements are ordered lexicographically. Let ( ) ∈ such that, for ∈ [ -1], < , and let λ : Z 3 be the map defined by λ(

0 ) = -1. Therefore, vol = -1 =1 | | (2.
) := (ε ) (2.3.1)
where ε :=

-1 if < 0 1 else.
Note that by Proposition 1.3.6, the index such that < is unique.

T 2.3.1. For any 0, the map λ is an EL-labeling of CC( ). Moreover, there is at most one λ-decreasing chain between any pair of elements of CC( ).

P

. Let ∈ CC( ) such that . By Lemma 1.3.2, there is a cubic coordinate such that = and = with (

) := φ( ). Let D - = { 1 2 } (2.3.2)
with -1 < for all ∈ [2 ], and

D + = { 1 2 } (2.3.3) with -1 < for all ∈ [2 ].
By Lemma 1.3.3, there is a chain between and

(1)

( -1) ( ) = (2.3.4)
where, for ∈ [ ], ( ) be a cubic coordinate obtained by replacing in all the components by the components for ∈ [ ].

By Lemma 1.3.4, there is a chain between and

(1)

( -1) ( ) = (2.3.5)
where, for ∈ [ ], ( ) be a cubic coordinate obtained by replacing in all the components by the components for ∈ [ ].

Let us consider the chain obtained by concatenating the two chains (2.3.4) and (2.3.5). Since in this chain only one component differs between two consecutive cubic coordinates, a saturated chain µ can be constructed by considering all the cubic coordinates between them. For both chains (2.3.4) and (2.3.5), the components are independently increasing one by one from the left to the right. By construction, it implies that µ is λ-increasing for the lexicographic order induced by (2.3.1). Moreover, any other choice of saturated chain between and implies choosing, at a certain step , a greater label for the lexicographical order than the label (ε ) of µ, and then having to choose the label (ε ) afterwards. Thus, in addition to being λ-increasing, the saturated chain µ is unique and is λ-minimal among all saturated chains from to .

If a saturated chain λ-decreasing exists between and , it is built by first changing the different and negative components between and from right to left, and then changing the different and positive components between and from right to left. For the same reason that any saturated λ-increasing chain is unique for any interval, if it exists, the λ-decreasing chain is also unique.

For instance, in Figure 2.1, the λ-increasing saturated chain between (-1 -2) and (2 1) is the chain

((-1 -2) (0 -2) (0 -1) (0 0) (1 0) (2 0) (2 1)) (2.3.6) and λ((-1 -2) (2 1)) = ((-1 1 -1) (-1 2 -2) (-1 2 -1) (1 1 0) (1 1 1) (1 2 0)) (2.3.7) CHAPTER 3

Hochschild lattices

In [START_REF] Chapoton | Some properties of a new partial order on Dyck paths[END_REF], Chapoton introduces new meet-semilattices called dexter posets, defined on the set of Dyck paths, endowed with the dexter order (see Section 1.3.10 of Chapter 1). An interesting and surprising link is found in this article: a connection between some specific intervals of dexter posets and cell complexes introduced by Saneblidze [START_REF] Saneblidze | The bitwisted Cartesian model for the free loop fibration[END_REF][START_REF] Saneblidze | On the homology theory of the closed geodesic problem[END_REF] in the area of algebraic topology. These cell complexes are called Hochschild polytopes by Saneblidze. They provide, in the context of algebraic topology, combinatorial cellular models of free loops spaces. There are several ways to build Hochschild polytopes. For instance, they can be obtained by a sequence of truncations of the -simplex, where is the dimension of the polytopes [START_REF] Rivera | A combinatorial model for the free loop fibration[END_REF].

It is shown in [START_REF] Chapoton | Some properties of a new partial order on Dyck paths[END_REF] that the set of Dyck paths in these specific intervals in dexter posets is in bijection with a set of words defined on the alphabet {0 1 2} satisfying some conditions. Better than that, by considering the poset on this set of words endowed with the componentwise order, Chapoton shows that a covering relation on Dyck paths for the dexter order implies by this bijection a covering relation on the corresponding words.

As a first contribution of the present work, we show the reverse implication. This implies that the two posets are isomorphic. Moreover, we show that these posets are lattices. Because of their links with cell complexes of Saneblidze, we call these lattices Hochschild lattices. Our goal is to present a geometric and combinatorial exploration of Hochschild lattices, revealing several interesting features. To this aim, we shall mainly work with the word version of the lattice previously mentioned, whose elements are called triwords.

This chapter is organised as follows.

In Section 1, we shall define triwords and see the bijection between Dyck paths of the specific intervals and triwords.

Then, we divide our study of the posets into two strands: a geometric one and a combinatorial one. Thus, Section 2 is devoted to the geometric properties. First, we provide a natural geometric realization for Hochschild lattices, by placing triwords of size in the space R and by linking by an edge triwords which are in a covering relation. Thanks to this realization, called cubic realization, we are able to show that Hochschild lattices are EL-shellable and constructible by interval doubling (see Section 2.3 and Section 2.4 of Chapter 1).

Section 3 is about enumerative and combinatorial results. We give here for instance the degree polynomial of the Hochschild lattices that enumerates the triwords with respect 75 F . . Hasse diagrams of the dexter meet-semilattice of size 4.

to their coverings and the elements they cover. We also provide a formula to compute the number of intervals of these lattices, as well as a method to compute the number of -chains (see Section 2.2 of Chapter 1). Section 3 ends with the introduction of an interesting subposet of the Hochschild poset, which seems to have similar nice properties.

Definitions and first properties

1.1. Hochschild polytopes and triwords.

1.1.1. A particular interval of the dexter order. The definition of the dexter order is given in Section 1.3.10 of Chapter 1.

The set Dy( ) endowed with the dexter order is a meet-semilattice with many properties highlighted in [START_REF] Chapoton | Some properties of a new partial order on Dyck paths[END_REF]. In this chapter, we restrict ourselves to a particular interval of this meet-semilattice.

For any 1, let F( ) be the interval in Dy( + 2) between 1100(10) and 11 0 100. In particular, any in the interval F( ) satisfies the three following assertions: the sequence of heights of the valleys in is weakly decreasing from left to right, the Dyck path ends either with 010 or 0100, the Dyck path starts with 11 and has only valleys of height 0 or 1. For any 1, let us recall the bijection ρ between F( ) and the set of words of length in the alphabet {0 1 2} satisfying some conditions. Let ∈ F( ) and N 2 be an integer initially set to 0. By reading from left to right the word , let us build the word , initially the empty word, by following the two conditions, (i) when two consecutive 1 are read in , except the first two letters of , then 1 is added to N 2 , (ii) when a valley of height is read in , the word 2 N 2 is added at the end of the building word , and N 2 is then set back to 0. The result ρ( ) is the word obtained after reading all . The length of is because, except the two initial letters 1, every letter 1 in contributes a letter in .

For instance, the image by ρ of the two Dyck paths 1101001010 and 1110010010, both in F(3), are respectively 100 and 120.

Since we are going to work in this chapter on the set ρ(F( )), we need to give a description of this set which is independent of the construction induced by ρ.

1.1.2. Triwords. For any 1, a word of size is a triword of the same size if satisfies, for all ∈ [ ],

(i) ∈ {0 1 2}, (ii) 1 = 2, (iii) if = 0 then = 1 for all > .
The graded set of triwords is denoted by Tr, where the size of a triword is its number of letters. (1.1.3)

Tr = + 0A + 1B (1.1.4) P .
First, A is the set of all words on 0 2. By induction on the length of the words, one can prove that B is the set of all words on {0 1 2} avoiding the subword 01. Finally, since a triword beginning by 0 has no occurrences of 1, and a triword beginning by 1 writes as 1 where ∈ B, (1.1.4) holds.

From Lemma 1.1.1 one obtains the generating series

A ( ) = 1 + 2 A ( ) (1.1.5) B ( ) = 1 + A ( ) + 2 B ( ) (1.1.6) Tr ( ) = 1 + A ( ) + B ( ) (1.1.7)
of A, B, and Tr. We deduce that Tr admits

Tr ( ) = (1 -) 2 (1 -2 ) 2
(1.1.8) as generating function. Therefore, for any 1, the number of triwords is

#Tr( ) = 2 -2 ( + 3) (1.1.9) L 1.1.2.
For any 1, the image ρ(F( )) coincides with Tr( ).

P

. Let ∈ F( ) such that ρ( ) := . Then the first letter of is either 0 or 1. Besides, a letter 0 cannot be follows by a letter 1 because the height of the valleys in is weakly decreasing from left to right. Thus, one has ∈ Tr( ).

Moreover, we know from [START_REF] Chapoton | Some properties of a new partial order on Dyck paths[END_REF] that the number of elements in F( ) is (1.1.9). 1.2. Order structure and poset isomorphism. We endow the set of triwords with the componentwise order and show that the bijection ρ is a poset isomorphism. Then, we describe the meet and join of the poset so defined. be the word with the same letters as , except for the -th letter. Since > , either is obtained by replacing in the -th letter 0 by 1 or by 2, or by replacing in the -th letter 1 by 2. In both cases, is not 0. Moreover, since is the minimal index such that = , if there is a letter 0 before in , then this letter exist also in , and so cannot be 1. Therefore, the subword 01 cannot be generated in . Thus, the word is a triword. It follows that there is a triword such that is covered by . One can conclude that between two triwords in covering relation, there is exactly one different letter.

Poset isomorphism. For any Dyck path = 10

with > 0, a prefix, a suffix, and a movable subpath, let N( ) be the number of consecutive 0 letters that appear before in . P 1.2.2. For any 1, the map ρ is an isomorphism of posets from F( ) to Tr( ).

P

. Let ∈ F( ). We know (Lemma 9.9 from [START_REF] Chapoton | Some properties of a new partial order on Dyck paths[END_REF]) that if covers in F( ) then the words ρ( ) and ρ( ) differ by exactly one letter, which increases. This implies that ρ( ) ρ( ).

Let ∈ Tr( ) such that , and let and be the respective images of and by ρ -1

. Since , there is only one index such that < . Then, there are three cases: either 0 becomes 1 or 0 becomes 2, or 1 becomes 2.

Suppose that = 0 and = 1. Then, in the path , there is a movable subpath (in blue (dark) in (1.2.1)) starting at the height 0 such that N( ) 2. The height of the starting point of gives the value of in by the map ρ. In the path , since only one letter changes between and , the same subpath starts at the height 1 and N( ) = N( ) -1. Because of this move, we have to add one 0 after .

(1.2.1) Suppose that = 0 and = 2. Then, in the path , there is a movable subpath (in blue (dark) in (1.2.2)) starting at the height 0, followed by an other subpath also starting at the height 0. This is the height of the starting point of which gives in by the map ρ. In the path , there is a subpath starting at the height 0 followed by the subpath which is unchanged, such that N( ) = 0 and N(

) = N( ) + N( ).
(1.2.2) Suppose that = 1 and = 2. This case is very similar to the previous case, by changing the height of the starting point 0 of , and by 1.

In all cases, one has de .

1.2.3. Meet and join operations. Let us describe the meet and join operations between two triwords and .

Let

∈ Tr( ), and let := max( 1 1 ) max( ). Since 1 and 1 are both none 2, 1 = 2. Besides, if = 0 for ∈ [ ], then necessarily and have to be equal to 0. In this case, for all > , neither nor can take the value 1. Therefore, if there is an index ∈ [ ] such that = 0, then = 1 for all > . Thus is a triword.

The triword is the join between and . Indeed, is by definition the smallest element such that for all ∈ [ ],

and . Moreover, since the join between and is unique, by Proposition 1.2.2, the Hochschild poset is a join-semilattice. One can conclude that Hochschild poset is a lattice since there is a unique minimal triword [START_REF] Stanley | Enumerative Combinatorics[END_REF]. Note that this fact is already known since the Hochschild poset is an interval of the dexter meet-semilattice [START_REF] Chapoton | Some properties of a new partial order on Dyck paths[END_REF].

Let := min( 1 1 ) min(

). The word is not necessarily a triword. For instance, if we consider = 11112 and = 10022, two triwords of size 5, then = 10012 which contains a subword 01.

Let := ∧ be the word obtained from by changing all subwords 01 by 00 in . P 1.2.3. Let 1 and ∈ Tr( ), then := ∧ is the meet between and .

P

. If := min( 1 1 ) min( ) is a triword, then = . Suppose that is not a triword. Since we replace in all subwords 01 by 00, is a triword. Moreover, if there is a subword 01 in , then either or has a letter 0 following by letters 0 or 2. Necessary, the word inherits this letter 0, and then is a triword if all letters after this letter 0 are 0 or 2. Therefore, the triword is the greatest element such that and .

For example, in order to compute 11112 ∧ 10222, first we compute = 10112, which is not a triword. We replace the subword 2 3 and 2 4 by the subword 00. One has 11112 ∧ 10222 = 10002.

Geometric properties

Through triwords, it is possible to give a cubic realization of the Hochschild lattice by placing in the space R all triwords of size . As for the cubic coordinate lattice seen in Chapter 2, this lattice thus joins the family of posets having a cubic realisation. This realization allows us to show two geometrical results: on the one hand that the Hochschild lattice is EL-shellable and on the other hand that this lattice is constructible by interval doubling.

2.1. Cubic realizations. The Hochschild poset Tr( ) can be seen as a geometric object in the space R by placing for each ∈ Tr( ) a vertex of coordinates ( 1), and by forming for each ∈ Tr( ) such that an edge between and . In other words, as it is done in Chapter 2 for the cubic coordinate poset, we just describe the cubic realization C(Tr( )) of Tr( ). Figure 2.1 shows the cubic realizations of Tr(2) and Tr(3).

The first thought that comes to mind, is that for any 1, any -face of the realization C(Tr( )) is contained in a -1-face of the hypercube of dimension , for ∈ [0 -1]. Indeed, between the minimal triword 0 := and the maximal triword 12 -1 := , there is no triword of size such that < < for all ∈ [ ] since 1 = 0 and 1 = 1.

Therefore, we can see this realization as one empty cell of dimension . Thus, it is clear that the volume of C(Tr( )) is 2 -1 .

EL-shellability.

We refer to Section 2.3 of Chapter 1 in the sequel.

In order to show the EL-shellability of Tr( ) for 1, we set Λ as the poset Z 2 ordered lexicographically. Then we introduce the map λ : → Z 2 defined for any such that by λ(

) := ( ) (2.2.1)
where is the unique index such that = . Observe that because of the covering relation defined in Proposition 1.2.1, the image by λ of any saturated chain in Tr( ) is well-defined. two consecutive triwords ( -1) and ( ) in this saturated chain, ( -1)

( )
. Therefore, the image of the chain by λ is increasing for . Thus this chain is λ-increasing.

Moreover, since between any two consecutive triwords of this chain only one letter is different, if we consider another saturated chain from to , then at some point, this chain passes through a word obtained by increasing a letter which has not the smallest possible index. It lead us to choose later in this chain the letter with a smallest index to increase it. For this reason, the saturated chain obtained is not λ-increasing.

If a λ-weakly decreasing chain exists in [

], then it must have the sequence of edgelabels ((

) ( -1 -1 ) ( 2 2 ) ( 1 1 )) (2.2.5)
Indeed, suppose that between and , there is an index ∈ D( ) such that = 0 and = 2, and there is a triword such that with = 1. Then for this index , the sequence of edge-labels passing through is (( 0) ( 1)), and so the saturated chain passing through in [ ] cannot be λ-weakly decreasing. Therefore, to obtain a λ-weakly decreasing chain in [ ], each index of D( ) can only appear once in the sequence of edge-labels.

Assume that there is a λ-weakly decreasing chain. For the same reason as previously, this chain is unique.

For instance, for Tr(3), the λ-increasing chain between 000 and 122 is (000 100 110 120 121 122)

(2.2.6) and λ(000

122) = ((1 0) (2 0) (2 1) (3 0) (3 1)) (2.2.7)
For the same interval, the λ-weakly decreasing chain is (000 002 022 122) (2.2.8) and λ(000 122) = ((3 0) (2 0) (1 0)) (2.2.9) 2.3. Construction by interval doubling. One may refer to Section 2.4 of Chapter 1.

For all

1, let us build Tr( + 1) from Tr( ) by following these three steps.

(i) Let T 0 ( + 1) be the poset on the set of all words 0 such that ∈ Tr( ). (ii) We build the set T 2 ( + 1) from T 0 ( + 1) by changing for all ∈ T 0 ( + 1) the letter +1 to 2. Let T 0 2 ( + 1) be the union T 0 ( + 1) ∪ T 2 ( + 1). (iii) Let I 0 be the set of words of shape 1(1 + 2) * 0. We build the set I 1 from I 0 by changing for all ∈ I 0 the letter 0 to 1. Let T( + 1) be the union T 0 2 ( + 1) ∪ I 1 .

L 2.3.1. For any 1, the Hochschild poset Tr( + 1) is the poset (T( + 1) ) built from Tr( ).

P

. Let ∈ T( + 1), is written either 0, or 2 with ∈ Tr, or is a word of form 1(1 + 2) * 1. It is clear that, for any ∈ Tr( ), adding a letter 0 or a letter 2 at the end of give a triword of size + 1. Likewise, a word of form 1(1 + 2) * 1 is also a triword. Now, let ∈ Tr( + 1). Suppose that +1 = 1. Since the subword 01 is forbidden, one has ∈ {1 2} for all ∈ [ ]. Therefore, belongs to T( + 1). Suppose that +1 = 0 or that +1 = 2. Since belongs to Tr( + 1), the conditions of triwords remain on the prefix of size of . Thus, one has ∈ Tr( ). T 2.3.2. For any 1, the Hochschild poset Tr( ) is constructible by interval doubling.

P

. We proceed by induction on 1. If = 1, we have the poset 2, namely the poset with two elements, which is a lattice constructible by interval doubling. Assume now that 2. We have to show that Tr( + 1) can be obtained from Tr( ) by a sequence of interval doublings. By Lemma 2.3.1, one has that Tr( + 1) is the poset T( + 1). Since T( + 1) is obtain from Tr( ) by performing the three steps (i), (ii), and (iii), by showing that these two last steps are two operations of interval doubling, the intended result will follow.

Let us consider T 0 ( + 1). By changing for all ∈ T 0 ( + 1) the last letter 0 to 2, a copy T 2 ( + 1) of T 0 ( + 1) is obtained. Since any ∈ T 0 ( + 1) have a copy ∈ T 2 ( + 1) such that = for all ∈ [ ] and +1 +1 , one has that . Therefore, the step (ii) is the doubling of the interval T 0 ( + 1).

In the step (iii) one builds I 1 from I 0 by changing for all ∈ I 0 the letter 0 to 1. Since for all ∈ I 0 such that , any word such that is by definition of a word of shape 1(1 + 2) * 0, one has that I 0 is the interval [1 0 12 -1 0]. For the same reason,

I 1 is the interval [1 +1 12 -1 1].
Since any ∈ I 0 has a copy ∈ I 1 such that = for all ∈ [ ] and Note that for = 0, Tr(0) = { } is constructible by interval doubling. Note also that, for any 1, only two steps are necessary to built Tr( + 1) from Tr( ), by starting with the doubling of T 0 ( + 1) built from Tr( ),

Tr( ) T 0 ( + 1)

T 0 ( + 1) × 2 Tr( + 1) (2.3.1)
For instance, Figure 2.2 depicts the sequence of interval doublings from Tr(2) to Tr(3). To obtain Tr(3) from T 0 (3), we have first to double the interval T 0 (3), then we have to double the interval [110 120].

Combinatorial properties

In this section, several combinatorial and enumerative properties of the Hochschild lattice are proved. We obtain results such as the enumeration of intervals, the enumeration of -chains, and the description of the degree polynomial of the Hochschild lattice. 

Maximal chains and degree polynomial.

3.1.1. Irreducible elements. Let us describe the set of join-irreducible and meet-irreducible elements of Tr( ) by using the regular expression notation [START_REF] Sakarovitch | Elements of automata theory[END_REF] recalled in Section 1.1.

The two possibilities of having a join-irreducible triword are either to change a letter = 1 to 0 such that all letters on the left of are letters 1 and letters on the right of are 0, or to change a letter = 2 to 0 such that all other letters are 0. Indeed, suppose that we change in a triword a letter = 2 to 1. Since should cover just one triword, all other letters in have to be 0. However, since the first letter in is different from 2, there is a letter -1 such that -1 = 0. Thus, -1 can be also decreased. This implies that covers more than just one triword. Since the subword 01 is not allowed, the set of triwords which covers a unique triword is described by J(Tr( )) = { ∈ Tr( ) :

∈ 1 + 0 * + 0 + 20 * } (3.1.1)
Likewise, the three possibilities of having a meet-irreducible triword are either to change a letter 1 to 2 or to change a letter 0 to 1, or to change a letter 0 to 2. Moreover, for all cases, the other letters which are unchanged should be as large as possible. Thus, the set of triwords covered by a unique triword is described by

M(Tr( )) = { ∈ Tr( ) : ∈ 12 * 12 * + 12 * 02 * + 02 * } (3.1.2)
Note that both regular expressions (3.1.1) and (3.1.2) have as generating function

J(Tr) ( ) = M(Tr) ( ) = + 2 (1 -) 2 (3.1.3) From (3.1.3), one can deduce that, for 1, #J(Tr( )) = #M(Tr( )) = 2 -1 (3.1.4)
In Section 2, we have shown that the Hochschild lattice is constructible by interval doubling. However, it is known from [START_REF] Day | Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices[END_REF] that lattices constructible by interval doubling are in particular semidistributive. Moreover, a finite lattice is constructible by interval doubling if and only if it is congruence uniform [START_REF] Day | Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices[END_REF]. In particular, the number of join-irreducible elements J( ) is equal to the number of doubling steps needed to build [START_REF] Mühle | The core label order of a congruence-uniform lattice[END_REF].

Therefore, there are two consequences of Theorem 2.3.2. The first one is that for any 1, the Hochschild poset Tr( ) is semidistributive. Another consequence is that the difference of numbers of join-irreducible elements between Tr( -1) and Tr( ) is always 2. Indeed, Tr( ) is constructible by interval doubling from Tr( -1) with only two steps.

Maximal chains.

L 3.1.1. For any 1, the length of any maximal saturated chain in the Hochschild poset Tr( ) is 2 -1. Moreover, a triword belongs to a maximal saturated chain if and only if all letters following a letter 0 are also 0.

P

. If = 1, then the length of the saturated chain [0 1] is 1. Suppose that > 1. Since all letters 0, except the first one, can be increased to 1, then to 2, the length of a maximal saturated chain in Tr( ) between 0 and 12 -1 is at most 2 -1. Therefore, to obtain a maximal saturated chain between 0 and 12 -1 , all letters 0 in 0 must become 1 before becoming 2, except for the first 0. Considering that, the letters have to be increased from left to right, in order to avoid the forbidden subword 01. This way, each letter of 0 , except the first one, contributes 2 in the length of the saturated chain between the minimal triword and the maximal triword. Since the first 0 contributes 1, the length of such a saturated chain is 2 -1. Furthermore, since the letters have to be increased from left to right, this implies that a triword belongs to a maximal saturated chain if and only if for any letter = 0 then = 0 for all .

By Lemma 3.1.1 and by (3.1.4), one has the following result. P 3.1.2. For any 1, the Hochschild lattice Tr( ) is extremal.

Recall that if a lattice is extremal and semidistributive, then it is also left modular, and therefore trim (see Section 2.1.3 of Chapter 1). Therefore, since Theorem 2.3.2 implies that Tr( ) is semidistributive, Tr( ) is trim. Since the spine of Tr( ) is a distributive sublattice of Tr( ), then by the FTFDL one has that S(Tr( )) is isomorphic to J(J(S(Tr( )))).

For instance, Figure 3.2 depicts the construction of J(J(S(Tr(3)))), which is a distributive lattice isomorphic to S(Tr(3)) (see Figure 3.1).

Our aim is to give a description of triwords belonging to the spine of the Hochschild lattice. Then, in this set, we give a description of join-irreducible triwords. By Lemma 3.1.1 we know that a triword belongs to a maximal saturated chain if and only if for any letter = 0 then = 0 for all . Therefore, the regular expression of these triwords is S(Tr( )) = { ∈ Tr( ) :

∈ 0 * + 1(1 + 2) * 0 * } (3.1.5)
Therefore, the generating function is

S(Tr) ( ) = 1 1 -2 (3.1.6)
and thus #S(Tr( )) = 2 (3.1.7)

Let ∈ S(Tr( )). The two possibilities for to be a join-irreducible triword are either to have one unique letter 1 which can be changed to 0 or to have one unique letter 2 which can be changed to 1. To summarize, J(S(Tr( ))) = { ∈ S(Tr( )) :

∈ 1 + 0 * + 1 + 20 * } (3.1.8)
One can deduce the generating function 

J(S(Tr)) ( ) = + 2 (1 -) 2
1 2 0 -2 120 -2 1 3 0 -3 1 2 20 -3 1 -2 0 2 1 -3 20 2 1 -1 0 1 -2 20 1 1 -1 2 F .
. Shape of the poset J(S(Tr( ))).

3.1.4. Degree polynomial. For this section, we can refer to 1. For instance,

d Tr(1) ( ) = + d Tr(2) ( ) = 2 + 3 + 2 d Tr(3) ( ) = 3 + 5 2 + 5 2 + 3 d Tr(4) ( ) = 4 + 7 3 + 12 2 2 + 7 3 + 4
(3.1.16)

Intervals and -chains.

This section also provides enumerative results about the Hochschild lattice. We have already computed the length of any maximal chain for this lattice in Section 2. Here we give a method to find formulas for the number of -chains of this lattice. We can refer to Section 2.2 of Chapter 1.

3.2.1. -classifications. Firstly, we need to define a classification for all -chains of size .

For a letter and a word , we use the notation ∈ if there is a letter = . Conversely, / ∈ if all letters of are different from .

For any 1 and 1, let (

( -1) ( ) be a -chain of triwords of size . It is always possible to classify -chains according to the presence or absence of the letter 0 in ( ) with ∈ [ ] by setting, for all ∈ [0 ],

( ) := {( (1) (2) ( ) ) : 0 ∈ ( ) 0 / ∈ ( ) for all ∈ [ -] ∈ [ -+1 ]} (3.2.1)
This classification is called the -classification for -chains. Note that the union of all these sets is disjoint and give a description of all -chains. Note also that for = 1, # (1 ) = 1 for all ∈ [0 ].

For any

2, 1, ∈ [0 ], and , let φ

( ) : ( ) N × ( -1 ) (3.2.2) such that, for γ a -chain in ( ), φ ( ) (γ) := (t γ ) (3.2.3)
where γ is the -chain obtained by forgetting the last letter of each word of γ, and t is the number of words ending by 2 in γ.

Let γ ∈ ( ). Clearly, φ ( ) (γ) is a -chain γ which belongs to ( -1 ) with ∈ [ ], since the -chain γ has at the most the same number of triwords with a letter 0 than the -chain γ.

Therefore, by setting γ :=

(1) (1) (2) (2) ( ) ( )
with ( ) ∈ Tr( -1) and ( ) ∈ [0 2] for all ∈ [ ], and (t γ ) := φ ( ) (γ), there are two cases.

Suppose that γ belongs to ( -1 ). Then one has + 1 possibilities to place or not the letter 2. Indeed, for ∈ [ -], ( ) = 0 or ( ) = 2 because by hypothesis 0 ∈ ( ) . For ∈ [ -+ 1 ], because γ is already in ( -1 ), one has ( ) = 1 or ( ) = 2. To summarize, one has +1 possibilities to place the letter 2, knowing that all letters before the first ending letter 2 have to be smaller than 2, and all letters after have to be 2. Suppose now that γ belongs to ( -1 ) with ∈ [ + 1 ]. Then one has + 1 possibilities to place or not the letter 2. Indeed, in this case we must set ( ) = 0 for all ∈ [ --] in order to obtain a -chain in ( ). This implies that all ending letters before ( -) have to be also 0. It follows that for all

∈ [ -+ 1 ], ( ) = 1 or ( ) = 2.
In the two cases, the position of the first letter 2 depends on the integer t.

Thus, for γ a -chain in ( ), it follows that φ

( ) (γ) ∈ [ + 1] × ( -1 ) [ + 1] × ∈[ +1 ] ( -1 ) (3.2.4)
For instance, by setting γ := (00200 02200 02202 12222) (3.2.5) a 4-chain of 1 (5 4), one has φ

( Suppose that δ ∈ ( -1 ). Let δ :=

(1) (1) (2) (2) ( ) ( )
such that for all ∈ [t] we set ( ) = 0 if 0 ∈ ( ) , and ( ) = 1 otherwise, and ( ) = 2 for all ∈ [t + 1 ]. The resulting -chain is a -chain of Tr( ) because (1)

(2)

• • • ( )
by construction. Furthermore, since no 0 is added at the end of a word that does not contain a letter 0 in δ , the -chain δ belongs to ( ). Suppose that δ ∈ ( -1 ), with ∈

[ +1 ]. Let δ := (1) (1) (2) (2) ( ) ( ) such that ( ) = 0 for all ∈ [ -], ( ) = 1 for all ∈ [ -+ 1 -t], and ( ) = 2 for all ∈ [ -t + 1 ]. By construction, one has (1) (2) • • • ( )
. This implies that this -chain is a -chain of Tr( ). Moreover, since the letter 0 is added at the end of ( ) for ∈ [ -], the -chain δ belongs to ( ).

In both cases, since δ belongs to ( ), this implies that the map φ ( ) is surjective.

Let (t 1 γ ) and (t 2 δ ) be two pairs with t 1 t 2 ∈ [0 ], and γ ∈ 1 ( -1 ) and δ ∈ 2 ( -1 ) with 1 2 ∈ [ ]. Let γ be the image of (t 1 γ ) and δ be the image of (t 2 δ ) by φ ( ) -1

. Suppose that (t 1 γ ) = (t 2 δ ). This implies that either t 1 = t 2 or γ = δ . In the first case, if t 1 > t 2 then there are more words ending by 2 in γ than in δ. Thus one has γ = δ. In the second case, there is at least one word in γ such that the prefix of this word where P ( ) is a monic polynomial of degree determined by the z-system.

P

. Since for = 1, all z (1 ) = 1 with ∈ [0 ], one can rewrite the z-system with matrices 

           z 0 ( ) z 1 ( ) . . . z -1 ( ) z ( )             =             + 1 1 1 1 0 + 1 2 2 . . . . . . . . . 0 0 + 1 0 0 0 + 1             -1             1 1 . . . 1 1             (3.2.13)
Let us denote by M this upper triangular matrix, I the identity matrix of dimension + 1, and N := M -( + 1)I. Since I and N commute, one has

M -1 = (( + 1)I + N) -1 = =0 -1 ( + 1) -1-N = ( + 1) -( +1) ( + 1) I + ( -1)( + 1) -1 N + • • • + ( -1)! ( --1)! ! N = ( + 1) -( +1) Q ( ) (3.2.14)
where Q ( ) is clearly polynomial in . It only remains to deduce the polynomial P ( ) from the matrix Q ( ), as the sum of all entries of Q ( ). Furthermore, P ( ) is a polynomial of degree since appears in

( -1)! ( --1)! ! .
Moreover, a particular case from Lemma 3.2.4 gives that N (1 + 1) = !. Since N is a strictly upper triangular matrix, N (1 + 1) is the only nonzero entry of N . This implies that P ( ) is a monic polynomial. L 3.2.4. For any 2 and 1, let M be the upper triangular matrix in (3.2.13), I be the identity matrix of dimension + 1, and N := M -( + 1)I. For any ∈ [ ] and ∈ [ + 1] such that + + 1, one has

N ( + ) = ( + -1)! ( -1)! 
(3.2.15) P . We proceed by induction on . Since N( + 1) = for all ∈ [ + 1], one has that (3.2.15) follows for = 1. Suppose that (3.2.15) is true for -1 and let us consider N . For any ∈ [ + 1], one obtains N ( + ) with the -th line of N -1 and the ( + )-th column of N. Since N is a strictly upper triangular matrix, all left entries before N -1 ( + -1) are zeros, and all below entries after N( + -1 + ) are also zeros. Therefore,

N ( + ) = N -1 ( + -1) N( + -1 + ) = ( + -2)! ( -1)! ( + -1) = ( + -1)! ( -1)! (3.2.16)
and then (3.2.15) holds for all ∈ [ ].

Note that since for = 1, all z (1 ) = 1 with ∈ [0 ], the number of -chains is + 1 for all 1. Using Proposition 3.2.3, one can therefore deduce that P (1) = ( + 1) +1 .

Recall that the triwords of size are enumerated by

2 -2 ( + 3) (3.2.17)
A demonstration of this result is given in Section 1.1, involving generating series. By Proposition 3.2.3, one has 

 z 0 ( 1) z 1 ( 1)   =   2 1 0 2   -1   1 1   =   2 -1 ( -1)2 -2 0 2 -1     1 1   (3.2.18)
which leads to the formula already known, for 1,

z 0 ( 1) + z 1 ( 1) = 2 -2 ( + 3) (3.2.19)
Likewise, to enumerate the intervals of the Hochschild lattice, or in other words their 2-chains, one has 

    z 0 ( 2) z 1 ( 2) z 2 ( 2)      =      3 1 1 0 3 2 0 0 3      -1      1 1 1      =      3 -1 3 -2 ( -1) 3 -2 ( -3) + 3 -3 ( 2 -3 + 8) 0 3 -1 3 -2 (2 -2) 0 0 3 -1           1 1 1      (3.2.20)
The number of intervals of Tr( ) is therefore given by z

0 ( 2) + z 1 ( 2) + z 2 ( 2) = 3 -3 2 + 9 + 17 (3.2.21)
In the same way, the number of 3-chains is Since z (1 ) = 1 and z (1 ) = 0 for all ∈ [0 -1], it follows that the z-system for the mini-Hochschild poset can be rewritten 

           z 0 ( ) z 1 ( ) . . . z -1 ( ) z ( )             =             + 1 1 1 1 0 + 1 2 2 . . . . . . . . . 0 0 + 1 0 0 0 + 1             -1             0 0 . . . 0 1             (3.3.5)
Thus, for any 2 and 1, the number of -chains in the poset Tr µ ( ) is given by the sum of the last column of M -1

, where M is the upper triangular matrix. One can conclude that Proposition 3.2.3 holds for the mini-Hochschild poset.

For instance, one deduce from (3.2.18) that the number of µ-triwords of size is

2 -1 + ( -1)2 -2 = 2 -2 ( + 1) (3.3.6)
as shown through generating series (3.3.3).

In the same way, from (3.2.20) one deduce that the number of intervals of Tr µ ( ) is Similarly to the remark on the sequence of constant terms (3.2.25), it seems that the sequence of constant terms of these polynomials 1 2 6 24 120

3 -3 2 + 6 + 2 (3.3.
(3.3.11)

is the sequence of factorial numbers.

Several other properties verified by the Hochschild poset seem to hold for the mini-Hochschild poset. It may be interesting to proceed to a complete study of this subposet as well.

CHAPTER 4

Fuss-Catalan posets and algebras

The theory of combinatorial Hopf algebras takes a prominent place in algebraic combinatorics. The Malvenuto-Reutenauer algebra FQSym [MR95,DHT02] is a central object in this theory. This structure is defined on the linear span of all permutations and the product of two permutations has the notable property to form an interval of the right weak order. Moreover, FQSym admits a lot of substructures, like the Loday-Ronco algebra of binary trees PBT [LR98, HNT05] and the algebra of noncommutative symmetric functions Sym [GKL + 95]. Each of these structures brings out in a beautiful and somewhat unexpected way the combinatorics of some partial orders, respectively the Tamari order [START_REF] Tamari | The algebra of bracketings and their enumeration[END_REF] and the Boolean lattice, playing the same role as the one played by the right weak order for FQSym. To be slightly more precise, all these algebraic structures have, as common point, a product • which expresses, on their so-called fundamental bases {F } , as

F • F = F (0.0.1)
where is a partial order on basis elements, and and are some binary operations on basis elements (in most cases, some sorts of concatenation operations).

The point of departure of this work consists in considering a different partial order relation on permutations and ask to what extent analogues of FQSym and a similar hierarchy of algebras arise in this context. We consider here first a very natural order on permutations: the componentwise ordering on Lehmer codes of permutations [START_REF] Lehmer | Teaching combinatorial tricks to a computer[END_REF] seen in Section 1.3.6 of Chapter 1. A study of these posets Cl 1 ( ) appears in [START_REF] Denoncourt | A refinement of weak order intervals into distributive lattices[END_REF]. Each poset Cl 1 ( ) is an order extension of the right weak order of order . To give a concrete point of comparison, the Hasse diagrams of the right weak order of order 3 and of Cl 1 (3) are respectively In this work, we consider a more general version of Lehmer codes, called δ-cliffs, leading to distributive lattices Cl δ . Here δ is a parameter which is a map N \ {0} → N, 97 called range map, assigning to each position of the words a maximal allowed value. The linear spans Cl δ of these sets are endowed with a very natural product related to the intervals of Cl δ . Some properties of this product are implied by the general shape of δ. For instance, when δ is so-called valley-free, Cl δ is an associative algebra, and when δ is weakly increasing, Cl δ is free as a unital associative algebra. The particular algebra Cl 1 is in fact isomorphic to FQSym, so that for any range map δ, Cl δ is a generalization of this latter. For instance, when δ is the map m satisfying m( ) = ( -1) with ∈ N, then all Cl m are free associative algebras whose bases are indexed by increasing trees wherein all nodes have + 1 children.

In the same way as the Tamari order can be defined by restricting the right weak order to some permutations, one builds three subposets of Cl δ by restricting to particular δcliffs. This leads to three families of posets: Av δ , Hi δ , and Ca δ . When δ is the particular map m defined above with 0, the underlying sets of all these posets of order 0 are enumerated by the -th -Fuss-Catalan number [START_REF] Dvoretzky | A problem of arrangements[END_REF] cat ( ) :=

1 + 1 + (0.0.4)
These posets have some close interactions: when δ is an increasing map, Hi δ is an order extension of Ca δ , which is itself an order extension of Av δ . Besides, Hi 1 (resp. Ca 1 ) is the Stanley lattice [Sta75, Knu04] (resp. the Tamari lattice), so that Hi m (resp. Ca m ), 0, are new generalizations of Stanley lattices (resp. Tamari lattices -see [START_REF] Bergeron | Higher trivariate diagonal harmonics via generalized Tamari posets[END_REF] for the classical one). Besides, from these posets Hi m and Ca m , one defines respectively two quotients Hi and Ca of Cl m . Notably, the algebra Ca 1 is isomorphic to PBT, and the other ones Ca , 2, are not free as associative algebras.

This chapter is organized as follows.

Section 1 is intended to introduce δ-cliffs and the lattices Cl δ . Even if the posets Cl δ ( ) have a very simple structure, these posets contain interesting subposets ( ). To study these substructures, we establish a series of sufficient conditions on ( ) for the fact that these posets are EL-shellable [BW96, BW97], are lattices (and give algorithms to compute the meet and the join of two elements), and are constructible by interval doubling [START_REF] Day | Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices[END_REF]. Moreover, under some precise conditions, each subposet ( ) can be seen as a geometric object in R . We call this the geometric realization of ( ). We introduce here the notion of cell and expose a way to compute the volume of the geometrical object.

Next, in Section 2, we study the posets Av δ , Hi δ , and Ca δ . For each of these, we provide some general properties (EL-shellability, lattice property, constructibility by interval doubling), and describe its input-wings, output-wings, and butterflies elements, that are elements having respectively a maximal number of covered elements, covering elements, or both properties at the same time. We observe a surprising phenomenon: some posets Av δ , Hi δ , or Ca δ are isomorphic to their subposets restrained on input-wings, output-wings, or butterflies elements. Moreover, a notable link among other ones is that the subposet of Ca m ( ) is isomorphic to the subposet of Hi m-1 ( ) restrained to its input-wings. We also study further interactions between our three families of Fuss-Catalan posets. There are for instance bijective posets morphisms (but not poset isomorphisms) between Av δ and Ca δ , and between Ca δ and Hi δ , when δ is increasing.

Finally, Section 3 presents a study of the algebra Cl δ . We start by introducing a natural coproduct on Cl δ in order to obtain by duality a product, associative in some cases. Three alternative bases of Cl δ are introduced, including two that are multiplicative and are defined from the order on δ-cliffs. When δ is weakly increasing, Cl δ is free as an associative algebra. We end this work by constructing, given a subfamilly of Cl δ , a quotient space Cl of Cl δ isomorphic to the linear span of . A sufficient condition on to have moreover a quotient algebra of Cl δ is introduced. We also describe a sufficient condition on for the fact that the product of two basis elements of Cl is an interval of a poset ( ). These results are applied to construct and study the two quotients Hi := Cl Hi m and Ca := Cl Ca m of Cl m . The algebra Ca 1 is isomorphic to the Loday-Ronco algebra and the other algebras Ca , 2, provide generalizations of this later which are not free. On the other hand, for any 1, all Hi are other associative algebras whose dimensions are also Fuss-Catalan numbers and are not free.

δ-cliff posets and general properties

This section is devoted to introduce the lattices of δ-cliffs and their combinatorial and order theoretic properties. Then, we will review some properties of its subposets, like EL-shellability, constructibility by interval doubling, and geometric realizations.

δ-cliffs.

We introduce here δ-cliffs, their links with Lehmer codes, permutations, and particular increasing trees.

1.1.1. First definitions. A range map is a map δ : N \ {0} → N. We shall specify range maps as infinite words δ = δ(1)δ(2) . For this purpose, for any ∈ N, we shall denote by ω the infinite word having all its letters equal to . We say that δ is rooted if δ(1) = 0, is weakly increasing if for all 1, δ( ) δ( + 1), is increasing if for all 1, δ( ) < δ( + 1)), has an ascent if there are 1

1 < 2 such that δ( 1 ) < δ( 2 ), has an descent if there are 1

1 < 2 such that δ( 1 ) > δ( 2 ), has a valley if there are 1

1 < 2 < 3 such that δ( 1 ) > δ( 2 ) < δ( 3 )
, is valley-free (or unimodal) if δ has no valley, is -dominated for a 1 if there is 1 such that for all , δ( ) δ( ).

For any 0, the -th dimension of δ is the integer dim (δ

) := #{ ∈ [ ] : δ( ) = 0}.
Given a range map δ, a word of integers of length is a δ-cliff if for any ∈ [ ], 0 δ( ). The size | | of a δ-cliff is its length as a word, and the weight ω( ) of is the sum of its letters. The graded set of all δ-cliffs where the degree of a δ-cliff is its size, is denoted by Cl δ . In the sequel, for any 0, we shall denote by m the range map satisfying m := 0 (2 ) (3 ) . For instance, Cl 1 (3) = {000 001 002 010 011 012}

(1.1.1a)

Cl 2 (3) = {000 001 002 003 004 010 011 012 013 014 020 021 022 023 024} (1.1.1b)

In particular, the 1-cliffs are the Lehmer codes seen in Section 1.1.6 of Chapter 1. As seen this section, there is classical correspondence between permutations and Lehmer codes, and the 1-cliff thus associated with the permutation σ is denoted by leh(σ). and form, respectively from the third one, Sequences A001147, A007559, and A007696 of [Slo].

1.1.2. Weakly increasing range maps and increasing trees. Given a rooted weakly increasing range map δ, let ∆ δ : N \ {0} → N be the map defined by ∆ δ ( ) := δ( + 1) -δ( ). A δ-increasing tree is a planar rooted tree where nodes are bijectively labeled from 1 to , any node labeled by ∈ [ ] has arity ∆ δ ( ) + 1, and every child of any node labeled by ∈ [ ] is a leaf or is a node labeled by ∈ [ ] such that > . The size of such a tree is its number of nodes. The leaves of a δ-increasing tree are implicitly numbered from 1 to its total number of leaves from left to right.

Observe that, regardless of any particular condition on δ, any δ-cliff of size 1 recursively decomposes as =

where ∈ [0 δ( )] and is a δ-cliff of size -1. Relying on this observation, when δ is rooted and weakly increasing, let tree δ be the map sending any δ-cliff of size to the δ-increasing tree of size recursively defined as follows. If = 0, tree δ ( ) is the leaf. Otherwise, by using the above decomposition of , tree δ ( ) is the tree obtained by grafting on the + 1-st leaf of the tree tree( ) a node of arity ∆ δ ( ) + 1 labeled by . For instance, tree 2 (0230228) = (1.1.5) P 1.1.1. For any rooted weakly increasing range map δ, tree δ is a one-toone correspondence from the set of all δ-cliffs of size 0 and the set of all δ-increasing trees of size .

P

. Let us first prove that tree δ is a well-defined map. This can be done by induction on and arises from the fact that, for any ∈ Cl δ ( ), the total number of leaves of tree( ) is

1 -+   ∈[ ] ∆ δ ( ) + 1   = 1 +   ∈[ ] δ( + 1) -δ( )   = 1 + δ(2) -δ(1) + δ(3) -δ(2) + • • • + δ( + 1) -δ( ) = 1 + δ( + 1) (1.1.6)
Therefore, there is in tree( ) a leaf of index +1 for any value ∈ [0 δ( +1)]. Therefore, tree( ) is well-defined. Now, let φ be the map from the set of all δ-increasing trees of size to Cl δ ( ) defined recursively as follows. If t is the leaf, set φ(t) := . Otherwise, consider the node with the maximal label in t. Since t is increasing, this node has no children. Set t as the δincreasing tree obtained by replacing this node by a leaf in t, and set as the index of the leaf of t on which this maximal node of t is attached (this index is 1 if t is the leaf). Then, set φ(t) := φ(t )( -1). The statement of the proposition follows by showing by induction on that φ is the inverse of the map tree δ .

In [START_REF] Ceballos | The -weak order and -permutahedra[END_REF], -decreasing trees are considered, where is a sequence of length 0 of nonnegative integers. These trees are labeled decreasingly and any node labeled by A consequence of all this is that δ-cliffs can be seen as generalizations of -decreasing trees by relaxing the considered conditions on δ.

δ-cliff posets.

We endow now the set of all δ-cliffs of a given size with an order relation and give some of the properties of the obtained posets.

1.2.1. First definitions. For any 0, let δ be a range map and be the partial order relation on Cl Assume that σ and ν are two permutations such that σ we ν. Thus, by definition of we , σ decomposes as σ = and ν as ν = where and are letters such that < , and and are words of integers. By definition of φ, since and are adjacent in σ, the right subtree of the node labeled by of φ(σ) is empty. Therefore, due to the property stated in the first part of the proof, and by definition of the map tree 1 and of the covering relation , one has leh(σ) leh(ν). Conversely, assume that and are two 1-cliffs such that . Thus, by definition of , is obtained by changing a letter , 2, in by + 1, and in tree 1 ( ), the right subtree of the node labeled by is empty. Let σ := leh -1 ( ) and ν := leh -1 ( ). Since φ(σ) and tree 1 ( ) are the same increasing binary trees, we have, from the definition of the map φ, that -1 < . Finally, by definition of we , one obtains σ we ν.

We have shown that the bijection leh between S( ) and Cl 1 ( ) is such that, for any σ ν ∈ S( ), σ we ν if and only if leh(σ) leh(ν) . For this reason, leh is a poset isomorphism.

Therefore, Proposition 1.2.1 says in particular that the 1-cliff poset is an extension of the right weak order, as mentioned in Section 1.4 of Chapter 1. Besides, for all rooted weakly increasing range maps δ, one can see (Cl δ ( ) ) as generalizations of the right weak order. After some computer experiments, we conjecture that for any rooted weakly increasing range map δ and any 0, (Cl δ ( ) ) is a lattice.

Subposets of δ-cliff posets.

Despite their simplicity, the δ-cliff posets contain subposets having a lot of combinatorial and algebraic properties. If is a graded subset of Cl δ , each ( ), 0, is a subposet of Cl δ ( ) for the order relation . We denote by the covering relation of each ( ), 0.

We say that is spread if for any 0, 0δ ( ) ∈ and 1δ ( ) ∈ , straight if for any ∈ such that , #D( ) = 1, coated if for any 0, any ∈ ( ) such that , and any ∈ [ -1],

1 +1

∈ , closed by prefix if for any ∈ , all prefixes of belong to , minimally extendable if ∈ and for any ∈ , 0 ∈ , maximally extendable if ∈ and for any ∈ , δ(| | + 1) ∈ .

Observe that when is spread, each poset ( ), 0, is bounded, that is it admits a least and a greatest element. Observe also that if is both minimally and maximally extendable, then is spread. . Since is coated, belongs to , and moreover, since is maximal, := 1 -1 +1

. Therefore, #D( ) = 1. This proves that there exists a ∈ ( ) such that and #D( ) = 1. Thus, is straight.

Let us defined more generally the three following graded sets seen in Section 2.1.2 of Chapter 2. In the case where is straight, we define the graded set of input-wings as the set ( ) containing any ∈ which covers exactly dim | | (δ) elements, output-wings as the set ( ) containing any ∈ which is covered by exactly dim | | (δ) elements, butterflies as the set ( ) being the intersection ( ) ∩ ( ).

By definition, the number of input-wings (resp. output-wings) of size 0 is the coefficient of the leading monomial of the degree polynomial d ( ) ( 1) (resp. d ( ) (1 )). Observe also that if there is an 1 such that δ( ) = 1, there are no butterfly in ( ) for all .

We present now general results about subposets ( ), 0, of δ-cliff posets.

1.3.1. EL-shellability. For this part, we refer to Section 2.3 of Chapter 1.

For the sequel, we set Λ as the poset Z 2 wherein elements are ordered lexicographically. For any straight graded subset of Cl δ , let us introduce the map λ :

→ Z 2 defined for any ( ) ∈ by λ ( ) := (- ) (1.3.1)
where is the unique index

∈ [| |] such that D( ) = { }.
Observe that the fact that is straight ensures that λ is well-defined. T 1.3.2. Let δ be a range map and be a coated graded subset of Cl δ . For any 0, the map λ is an EL-labeling of ( ). Moreover, there is at most one λ -weakly decreasing chain between any pair of elements of ( ).

P

. By Lemma 1.3.1, the fact that is coated implies that is also straight. Let ∈ ( ) such that . Since is straight, the image by λ of any saturated chain from to is well-defined. Now, let = (0) (1)

( -1) ( ) = (1.3.2)
be the sequence of elements of ( ) defined in the following way. For any ∈ [0 -1], the word ( +1) is obtained from ( ) by increasing by the minimal possible value 1 the letter ( ) such that is the greatest index satisfying ( ) < . By construction, for any ∈ [0 -1], each ( +1) writes as

( +1) = 1 -1 + +1
, where is some positive integer. There is at least one value such that ( ) belongs to ( ) since by hypothesis, is coated. For this reason, (1.3.2) is a well-defined saturated chain in ( ). This saturated chain is also λ -increasing by construction. Moreover, since is straight, if one consider another saturated chain from to , this chain passes through a word obtained by incrementing a letter which has not a greatest index, and one has to choose later in the chain the letter of the smallest index to increment it. For this reason, this saturated chain would not be λ -increasing.

In other words, ( ) is the set of all the cliffs obtained from by decrementing their last letters if they are equal to m( ) or by keeping them as they are otherwise. Observe that ( ) is not necessarily a subposet of . Nevertheless, ( ) is still a subposet of Cl δ ( ). Observe also that m( ( )) m( ) -1 For instance, by considering the subposet := {0000 0111 0002 0112 0103 0104 0004}

(1. m( ) is both a subset and an interval of . This definition still holds when m( ) = 0. Observe that any δ-cliff 0 -1 , 1, of covers exactly the single element 0 -1 ( -1) of . This element exists by (N1). Therefore, when is a lattice, these δ-cliffs are join-irreducible. L 1.3.5. Let δ be a range map and be a nonempty subposet of Cl δ ( ) for an 1. If is nested, then for any ∈ [0 m( )], is an interval of .

P

. First, by (N1), admits 0 -1 as unique least element. It remains to prove that has at most one greatest element. By contradiction, assume that there are in two different greatest elements and , where ∈ Cl δ ( -1). Then, by setting := m( ), in the δ-cliffs and are still incomparable. Since these two elements are also greatest elements of , this implies that is not an interval in . This contradicts (N2). 

P

. Let := m( ), := ( ), and := m( ). First, since satisfies (N1), = -1. Moreover, in particular, for any ∈ [0 ], 0 -1 ∈ . Hence, 0 -1 ∈ , so that satisfies (N1). Let ∈ [0 -1]. By (N2), is an interval of . Due to the fact -1, one has = , so that is an interval of . This is equivalent to the fact that is an interval of . By Lemma 1.3.6, the relation = holds and leads to the fact that is an interval of . Therefore, satisfies (N2).

T 1.3.9. Let δ be a rooted range map and be a nested and closed by prefix graded subset of Cl δ . For any 1, ( ) is constructible by interval doubling. Moreover,

( ) → ( ( )) → • • • → m( ( )) ( ( )) ( -1) → ( ( -1)) → • • • → m( ( -1)) ( ( -1)) ( -2) → • • • → (0) { } (1.3.17)
is a sequence of interval contractions from ( ) to the trivial lattice { }.

P

. We proceed by induction on 0. If = 0, since δ is rooted, we necessarily have (0)

{ }, and this poset is by constructible by interval doubling. Assume now that 1 and set := ( ). Since is nested, the sequence of reductions from is well-defined. By Lemmas 1.3.7 and 1.3.8, by setting := m( ) ( ) is obtained by performing a sequence of interval doubling from the poset . Now, due to the definition of the derivation algorithm , is made of the δ-cliffs of wherein the last letters have been replaced by 0. This poset is therefore isomorphic to the poset formed by the prefixes of length -1 of . Since is closed by prefix, is thus the poset ( -1). By induction hypothesis, this last poset is constructible by interval doubling. Therefore, ( ) also is. All this produces the sequence (1.3.17) of interval contractions. Cl δ is the identity map. Besides, we say that any ∈ is an exuviae if e ( ) = .

Let

be the graded set wherein for any 0, ( ) is the image of ( ) by the -elevation map. We call this set the -elevation image. Observe that is a graded subset of Cl δ . Note also that for any ∈ , e ( ) . P 1.3.10. Let δ be a range map and be a closed by prefix graded subset of Cl δ . For any 0, the -elevation map is injective on the domain ( ).

∈ { }, then ∈ . In this case, we call cell the set of points For any 0, the -volume vol (C( ( ))) of C( ( )) is the volume obtained by summing the volumes of all its all its cells of dimension , computed by not counting several times potential intersecting orthotopes. The volume vol(C( ( ))) of C( ( )) is defined as vol (C( ( ))) where is the largest integer such that C( ( )) has at least one cell of dimension . wherein 00 is cell-compatible with 12. Hence, 00 12 is a cell. The point 1 2 3 2 ∈ R 2 is inside 00 12 , and since there are no elements of the poset inside the cell, this cell is pure. Figure 1.3b shows a cubic realization wherein 00 is not cell-compatible with 22 because 02 does not belong to the poset. Nevertheless, 00 11 , 10 21 , and 11 22 are pure cells of dimension 2. Figure 1.3c shows a cubic realization wherein 00 22 is a nonpure cell. Indeed, the δ-cliff 11 is an element of the poset and is inside this cell. Finally, Figure 1.3d shows a cubic realization having 1 as volume since there is exactly one cell 000 111 of maximal dimension (which is 3) and of volume 1. Its 2-volume is 8 since this cubic realization decomposes as the seven disjoint cells 000 011 , 000 101 , 000 110 , 001 111 , 010 111 , 100 111 , and 101 113 of respective volumes 1, 1, 1, 1, 1, 1, and 2.

There is a close connection between output-wings (resp. input-wings) of ( ), 0, and the computation of the volume of C( ( )): if is a cell of maximal dimension of C( ( )), then due to the fact that is straight, (resp. ) is an output-wing (resp. input-wing) of ( ). When for any 0, (i) there is a map ρ : ( )( ) → ( )( ), (ii) all cells of maximal dimension of C( ( )) express as ρ( ) with ∈ ( )( ), (iii) all cells of { ρ( ) : ∈ ( )( )} are pairwise disjoint, then the volume of C( ( )), 0, writes as

vol(C( ( ))) = ∈ ( )( ) vol ρ( ) (1.3.23)
When some cells of { ρ( ) : ∈ ( )( )} intersect each other, the expression for the volume would not be at as simple as (1.3.23) and can be written instead as an inclusionexclusion formula. Of course, the same property holds when ρ is instead a map from ( )( ) to ( )( ) by changing accordingly the previous text. P 1.3.13. Let δ be a range map and be a straight graded subset of Cl δ . If, for an 0, C( ( )) has a cell of dimension dim (δ), then the order dimension of the poset ( ) is dim (δ).

P

. First, since ( ) is a subposet of Cl δ ( ), ( ) is a subposet of the Cartesian product

∈[ ] δ( ) =0 N (1.3.24)
This poset has order dimension dim (δ), so that the order dimension of ( ) is at most dim (δ). Besides, since is straight, the notion of cell is well-defined in the cubic realization of ( ). By hypothesis, ( ) contains a cell of dimension dim (δ). Thus, there is a poset embedding of dim (δ) into the interval [ ] of ( ). Therefore, the order dimension of ( ) is at least dim (δ).

As a particular case of Proposition 1.3.13, the order dimension of Cl δ ( ) is dim (δ). This explains the terminology of " -th dimension of δ" for the notation dim (δ) introduced in Section 1.1.1.

Some Fuss-Catalan posets

We present here some examples of subposets of δ-cliff posets. We focus in this work on three posets whose elements are enumerated by -Fuss-Catalan numbers for the case δ = m, 0. We provide some combinatorial properties of these posets like among others, a description of their input-wings, output-wings, and butterflies, a study of their order theoretic properties, and a study of their cubic realizations. We end this section by establishing links between these three families of posets in terms of poset morphisms, poset embeddings, and poset isomorphisms. We shall omit some straightforward proofs (for instance, in the case of the descriptions of input-wings, output-wings, butterflies, meetirreducible and join-irreducible elements of the posets).

We use the following notation conventions. Poset morphisms are denoted by letters φ and through arrows , poset embeddings by letters ζ and through arrows , and poset isomorphisms by letters θ and through arrows .

δ-avalanche posets.

We begin by introducing a first Fuss-Catalan family of posets.

As we shall see, these posets are not lattices but they form an important tool to study the two next two families of Fuss-Catalan posets.

2.1.1. Objects. For any range map δ, let Av δ be the graded subset of Cl δ containing all δ-cliffs such that for all nonempty prefixes of , then ω( ) δ(| |). Any element of Av δ is a δ-avalanche. For instance, Av 2 (3) = {000 001 002 003 004 010 011 012 013 020 021 022}

(2.1.1) P 2.1.1. For any weakly increasing range map δ, the graded set Av δ is (i) closed by prefix, (ii) is minimally extendable, (iii) is maximally extendable if and only if δ = 0 ω .

P

. Point (i) is an immediate consequence of the definition of δ-avalanches. Let 0 and ∈ Av δ ( ). Since δ( + 1) δ( ), 0 is a δ-avalanche. This establishes (ii).

Finally, we have immediately that Av 0 ω is maximally extendable. Moreover, when δ = 0 ω , there is an 1 such that δ( ) 1 and δ( ) = 0 for all 1 < . Therefore, 0 -1 δ( ) is a δ-avalanche but 0 -1 δ( ) δ( + 1) is not. Therefore, (iii) holds. P 2.1.2. For any 0 and 0, #Av m ( ) = cat ( ) (2.1.2) P . This is a consequence of Proposition 2.2.2 coming next. Indeed, by this result, Av m ( ) is the image by the elevation map of a graded set of objects enumerated by -Fuss-Catalan numbers. Since this set of objects satisfies all the requirements of Proposition 1.3.10, the elevation map is injective, implying that it is a bijection. 

P

. It follows from Proposition 2.1.4 and its description of the input-wings of Av m+1 ( ) that θ is a well-defined map. Let θ : (Av m+1 )( ) → Av m ( ) be the map defined for any ∈ (Av m+1 )( ) and ∈ [ ] by θ ( ) := 1 =1 ( -1) It follows also from Proposition 2.1.4 and the definition of m-avalanches that θ is a well-defined map. Now, since by definition of θ , both θ • θ and θ • θ are identity maps, θ is a bijection. Finally, the fact that θ is a translation implies that θ is a poset embedding.

As a consequence of Proposition 2.1.5, for any 1 and 0, the number of input-wings in Av m ( ) is cat -1 ( ). 

P

. The proof uses Proposition 2.1.4 and is very similar to the one of Proposition 2.1.5.

To summarize, the three previous propositions lead to the following diagram of posets wherein appear avalanche posets and their subposets of input-wings, output-wings, and butterflies. (2.1.6) paths) enumerated with respect to their numbers of up steps. By convention, ( ) has no constant term. Since any -Dyck path decomposes in a unique way as a concatenation of indecomposable -Dyck paths, one has ( ) = (1 -( )) -1 Now, by using the fact that ( ) satisfies ( ) = 1 + ( ) +1 we have

( ) = ( ) -1 ( ) = ( ) = 1 1 -( ) (2.1.9)
This relation satisfied by ( ) between the first and last members of (2.1.9) is known to be the one of the generating series of twisted -Fuss-Catalan numbers (see [Slo] for instance). By Proposition 2.1.9, the first numbers of output-wings of Av m ( ) by sizes are The third and fourth sequences are respectively Sequences A006013 and A006632 of [Slo]. As a side remark, for any 1, the generating series of the graded set (Av m ) is 1 plus the inverse, for the functional composition of series, of the polynomial (1 -) . A possible bijection between these two sets sends any ∈ (Hi m )( ) to the m -cliff of the same size such that for any ∈ [ ], = -+ 1. We have already seen in the proof of Proposition 2.1.9 that these sets are in one-to-one correspondence with ( -1)-Dyck paths which cannot be written as a nontrivial concatenation of two ( -1)-Dyck paths. Therefore, the statement of the proposition follows. P 2.2.10. For any 0 and 1, the map ρ : max Av m ( ) → Hi m ( -1) such that any ∈ max Av m ( ), ρ( ) is the prefix of size -1 of e -1 Hi m ( ), is a bijection. Hi m is an injective map. This implies that the map ρ, defined by considering the inverse of e

1 1 1 1 1 1 1 1 = 0 (2.1.10a) 1 
Hi m is a well-defined map. Let ρ : Hi m ( -1) → max Av m ( ) be the map defined for any ∈ Hi m ( -1) by ρ ( ) := e Hi m ( ) where := ( -1). As pointed out before, ∈ max Av m ( ) if and only if ω( ) = ( -1). This implies that ρ ( ) belongs to max Av m ( ). Moreover, due to the respective definitions of ρ and ρ , both ρ • ρ and ρ • ρ are identity maps. Therefore, ρ is a bijection. P 2.2.12. For any 0 and 0, the map e Hi m is a bijection between J(Hi m ( )) and J(Av m ( )).

P

. This is a straightforward verification using the descriptions of join-irreducible elements of Hi m ( ) and Av m ( ) brought by Propositions 2.2.11 and 2.1.10. where is an input-wing of Hi m ( ). Since all these cells are pairwise disjoint, the volume of C(Hi m ( )) expresses as (1.3.23). Moreover, observe that the volume of each cell θ( ) where in an input-wing, is by definition of θ equal to 1. Therefore, vol(C(Hi m ( ))) is equal to the number of input-wings of Hi m ( ). The statement of the proposition follows now from Proposition 2.2.5.

δ-canyon posets.

We introduce here our last family of posets. They are defined on particular δ-cliffs called δ-canyons. As we shall see, under some conditions these posets are lattices but not sublattices of δ-cliff lattices. In particular, the 1-canyons are the (dual) Tamari diagrams seen in Section 1.1.5 of Chapter 1.

As a larger example, the 2-cliff := 020100459002301 is a 2-canyon. Indeed, by picturing an m-canyon in the exact same way as Tamari diagrams, we can check the previous condition. For instance, the previous is drawn as If α < 0, then we say that and are independant in (graphically, the diagonal of falls under the -axis before reaching the segment of ), If α ∈ [0 -1], then we say that is hinded by in (graphically, the diagonal of hits the segment of ), If α , then we say that dominates in (graphically, the segment of is below or on the diagonal of ).

By definition, a δ-cliff is a δ-canyon if no index of is hinded by another one. P 2.3.1. For any range map δ, the graded set Ca δ is (i) closed by prefix, (ii) is minimally extendable, (iii) is maximally extendable if δ is increasing.

P

. Let be a δ-canyon of size 0. Immediately from the definition of the δ-canyons, it follows that 0 is a δ-canyon of size + 1, and that for any prefix of , is a δ-canyon. Therefore, Points (i) and (ii) check out. Let us now consider the δ-cliff := δ( + 1). If δ is increasing, for all ∈ [ ],

+1-+1 -. Therefore, is a δ-canyon. Therefore, (iii) holds.

Let us now introduce a series of definitions and lemmas in order to show that the sets Ca δ ( ) and Hi δ ( ) are in one-to-one correspondence when δ is an increasing range map. 

P

. Assume that is of size and set := d( ). Assume that is a δ-canyon for a letter ∈ N. Then, the index + 1 is hinded by no other index in . Since is obtained by changing to 0 some letters of , the index + 1 remains hinded by no other index in . Therefore, is also a δ-canyon. Conversely, assume that is a δ-canyon for a letter ∈ N. Then, the index + 1 is hinded by no other index in . By contradiction, assume that is not a δ-canyon. This implies that the index + 1 is hinded by an index in . Let us take maximal among all indices satisfying this property. Due to the maximallity of , is dominated by no other index in so that we have = . This implies that + 1 is hinded by in , which contradicts our hypothesis. Therefore, is a δ-canyon.

L 2.3.3. Let δ be a range map a be a δ-canyon of size 0. Then, 

F Ca δ ( ) = [0 δ( + 1)] \ ∈[ ] d( ) =0 [ + 1 - + d( ) -] ( 2 
δ + # F Ca δ ∩ [0 -1] ω e Ca δ + 1 + δ( + 1) -ω e Ca δ -1 = δ( + 1) (2.3.7)
showing that is a δ-canyon.

m-canyon posets are not isomorphic to the -Tamari posets. Moreover, we shall prove in the sequel that for any increasing map δ, Ca δ is a lattice. As already mentioned, Tamari posets have the nice property to be lattices [START_REF] Huang | Problems of associativity: A simple proof for the lattice property of systems ordered by a semi-associative law[END_REF], are also EL-shellable [START_REF] Björner | Shellable nonpure complexes and posets[END_REF], and constructible by interval doubling [START_REF] Geyer | On Tamari lattices[END_REF]. The same properties hold for -Tamari lattices, see respectively [START_REF] Bousquet-Mélou | The number of intervals in the -Tamari lattices[END_REF] and [START_REF] Mühle | The topology of the -Tamari lattices[END_REF] for the first two ones. The last one is a consequence of the fact that -Tamari lattices are intervals of the Tamari lattices [START_REF] Bousquet-Mélou | The number of intervals in the -Tamari lattices[END_REF] and the fact that the property to be constructible by interval doubling is preserved for all sublattices of a lattice . Now, since for any ∈ [ ], = , and for any ∈ [ + 1 ], = , the fact that and are δ-caynons implies that for any ∈ [ ] and ∈ [ ] such that -1, the inequality -+ holds. Thus, is an δ-canyon, so that (ii) holds. Now, by Lemma 1.3.1, (i) checks out, and by Theorem 1.3.2, (iv) also. Let and be two δ-canyons of size and set as the δ-cliff ∧ . For all ∈ [ ] such that -1, - -. Indeed, either -= -or -= -, and in the two cases - ( ∧ ) -. For this reason, is a δ-canyon. This shows (v). Besides, due to the fact that by Proposition 2.3.1, Ca δ is closed by prefix and is maximally extendable, Theorem 1.3.4 implies (vi). Point (vii) is a consequence of Theorem 1.3.9 since (iii) holds and Ca δ is closed by prefix.

One can observe that Ca m ( ) is not a join semi-sublattice of the lattice of δ-cliffs. Indeed, by setting := 0124 and := 0205, even if and are 2-canyons, ∨ = 0225 is not. By Proposition 2.3.7, the posets Ca m ( ) are lattices and Theorem 1.3.4 provides a way to compute the join of two of their elements. For instance, in Ca 1 , one has 00120

∨ Ca 1 00201 = ⇑ Ca 1 (00120 ∨ 00201) = ⇑ Ca 1 (00221) = 00234 (2.3.9)
and, in Ca 2 , one has

0124 ∨ Ca 2 0205 = ⇑ Ca 2 (0124 ∨ 0205) = ⇑ Ca 2 (0225) = 0235 (2.3.10)
These computations of the join of two elements are similar to the ones described in [START_REF] Markowsky | Primes, irreducibles and extremal lattices[END_REF] (see also [START_REF] Geyer | On Tamari lattices[END_REF]) for Tamari lattices.

Besides, as pointed out by Proposition 2.3.7, when δ is an increasing range map, each Ca δ ( ) is constructible by interval doubling. Figure 2.6 shows a sequence of interval contractions performed from Ca 2 (4) in order to obtain Ca 2 (3).

any ∈ [2 ]. The fact that is an input-wing implies, by Proposition 2.3.8, that < +1 for all ∈ [ -1]. This implies that is an m-canyon, so that (ii) checks out.

Point (iii) follows directly from the definition of ρ: since ρ( ) is obtained by incrementing all the letters of , except the first, in a minimal way so that the obtained m-cliff is an m-canyon, there cannot be any m-canyon inside the cell ρ( ) .

Finally, assume that there are two input-wings and of Ca m ( ) such that there is a point := ( 1) ∈ R such that is inside both the cells ρ ( ) and ρ ( ) . By contradiction, let us assume that = and let us set ∈ [2 ] as the smallest position such that = . Therefore, we have in particular ρ ( ) < < and ρ ( ) < < (2.3.13) Without loss of generality, we assume that < . Now, if -2 -1 , then ρ ( ) = -1 and ρ ( ) = -1. It follows from (2.3.13) that = . Otherwise, when -2 < -1 , we have ρ ( ) = 0 and ρ ( ) = -1. It follows again, from (2.3.13), that = . This contradicts our hypothesis and shows that = . Therefore, (iv) holds. This algorithm ρ brought by Proposition 2.3.11 describes the cells of maximal dimension of the cubic realization of Ca m ( ). Propositions 2.3.9 and 2.3.11 lead to the following diagram of posets wherein appear input-wings, output-wings, and butterflies of canyon posets. (2.4.2) is an isomorphism of posets.

P

. It follows from Proposition 2.3.8 and its description of the input-wings of Ca m ( ) that θ is a well-defined map. Let θ : (Ca m )( ) → Hi m-1 ( ) be the map defined for any ∈ (Ca m )( ) and ∈ [ ] by θ ( ) := ( -+ 1) It follows also from Proposition 2.3.8 that θ is a well-defined map. Now, since by definition of θ , both θ • θ and θ • θ are identity maps, θ is a bijection. Finally, the fact that θ is a translation implies that θ is a poset embedding. 

P

. This is a consequence of Theorems 2.1.8, 2.2.8, 2.3.12, and 2.4.2, and Proposition 1.3.12.

Associative algebras of δ-cliffs

This section is devoted to endow the sets of δ-cliffs with algebraic structures, and we can refer to Section 3 of Chapter 1 for the classical notions. We describe a graded associative algebra on δ-cliffs motivated by a connection with the δ-cliff posets. Indeed, the product of two δ-cliffs is a sum of δ-cliffs forming an interval of a δ-cliff poset. This property is shared by a lot of combinatorial and algebraic structures. For instance, the algebra FQSym of permutations is related to the weak order [DHT02, AS05], the algebra PBT of binary trees is related to the Tamari order [LR02, HNT05], and the algebra Sym of integer compositions is related to the hypercube [GKL + 95].

Coalgebras and algebras.

We introduce here a graded coalgebra structure on the linear span of all δ-cliffs and then, by considering the dual structure, we obtain a graded algebra. When δ satisfies some properties, this gives an associative algebra.

From now, K is any field of characteristic zero and all the next algebraic structures in the category of vector spaces have K as ground field. For any graded vector space , we denote by ( ) the Hilbert series of . where N * denotes the set of all words on N. This coproduct is well-defined since any prefix of a δ-cliff is a δ-cliff and the image of a word on N by the δ-reduction map is by definition a δ-cliff. 

P

. The first part of the statement is a direct consequence of the definition of ∆.

To establish the second part, let us compute the two ways to apply twice the coproduct ∆ on a basis element of Cl δ . For any ∈ Cl δ , we have Observe that by definition of the δ-reduction map, for all ∈ r -1 δ ( ) and ∈ [| |], . Therefore, no can be a δ-cliff. By inspecting Formula (3.1.10) for the product •, we obtain that the sum is empty, so that F • F = 0. In particular when δ is weakly increasing, Lemma 3.1.3 and Theorem 3.1.4 state that any product of two elements of the F-basis of Cl δ is a sum of elements of the F-basis ranging in an interval of a δ-cliff poset. ) is the element with the greatest index appearing in the last member of (3.2.8), this expression is equal to the stated formula.

(∆ ⊗ I)∆(F ) = ∈N * = F ⊗ F r δ ( ) ⊗ F

E and

It can be shown that Cl 1 is free by reasoning on the E-basis. A consequence of the freeness of Cl 1 is that Cl 1 is isomorphic as a unital associative algebra to FQSym [MR95, DHT02], an associative algebra on the linear span of all permutations. This follows from the fact that FQSym is also free as a unital associative algebra and that its Hilbert series is the same as the one of Cl 1 . Moreover, in [START_REF] Novelli | Hopf Algebras of -permutations, ( + 1)-ary trees, and -parking functions[END_REF], the authors construct some associative algebras FQSym as generalizations of FQSym whose bases are indexed by objects being generalizations of permutations. The algebras Cl m , 0, can therefore be seen as other generalizations of FQSym, not isomorphic to FQSym when 2.

3.3. Quotient algebras. This last section of this work provides an answer to the problem set out in the introduction. This question concerns the possibility of constructing a hierarchy of substructures of Cl δ similar to that of FQSym. For this, we consider quotients of Cl δ obtained by considering a graded subset of Cl δ and by equating the basis elements F with 0 whenever / ∈ . As we shall see, this is possible only under some combinatorial conditions on . We describe the products of these quotient algebras and give a sufficient condition for the fact that it can be expressed by interval of the poset ( ) for a certain 0. We end this part by studying the quotients of Cl m obtained from m-hills and m-canyons. Let us introduce here an important combinatorial condition for the sequel on . We say that is closed by suffix reduction if for any ∈ , for all suffixes of , r δ ( ) ∈ . P 3.3.1. Let δ be a valley-free range map and be a graded subset of Cl δ . If is closed by prefix and is closed by suffix reduction, then Cl is a quotient algebra of the unital associative algebra (Cl δ • 1).

P

. Notice first that, since δ is valley-free, Cl δ is by Theorem 3.1.1 a well-defined unital associative algebra. We have to prove that is an associative algebra ideal of Cl . For this, let F ∈ and F ∈ Cl . Let us look at Expression (3.1.10) for computing the product of Cl δ . Assume that there is a cliff ∈ such that F appears in F • F . Then, since is closed by prefix, ∈ , which contradicts our hypothesis. For this reason, F • F belongs to . Moreover, let F ∈ Cl and F ∈ . Assume that there is a cliff ∈ such that F appears in F • F . Then, since is closed by suffix reduction, one has r δ ( ) ∈ . By (3.1.10), r δ ( ) = , leading to the fact that ∈ holds, and which contradicts our hypothesis. Therefore, F • F belongs to . This establishes the statement of the proposition.

Notice that the graded subset Av δ is not closed by suffix reduction. For instance, even if 00112 is an 1-avalanche, the 1-reduction of its suffix 112 is 012, which is not an 1-avalanche.

Let us denote by θ : Cl δ → Cl the canonical projection map. By definition, this map satisfies, for any ∈ Cl δ , θ (F ) = 1 ∈ F (3.3.3) 3.3.2. Product. We show here that under some conditions of , the product in Cl can be described by using the poset structure of . More precisely, we say that Cl has the interval condition if the support of any product F • F , ∈ , is empty or is an interval of a poset ( ), 0.

L 3.3.2. Let δ be a range map and be a graded subset of Cl δ such that for any 0, ( ) is a meet (resp. join) semi-sublattice of Cl δ ( ). For any ∈ , if is a δ-cliff, then the set [ ] ∩ (3.3.4) admits at most one minimal (resp. maximal) element.

P

. Assume that ( ) is a meet semi-sublattice of Cl δ ( ) and that ∈ Cl δ . By Lemma 3.1.2, ∈ Cl δ so that I := [ ] is a well-defined interval of Cl δ ( ). Assume that there exist two δ-cliffs and belonging to I ∩ . Since ( ) is a meet semi-sublattice of Cl δ ( ), by setting := ∧ , one has ∈ . Since is a lower bound of both and , we necessarily have and ∈ I. This shows that when I ∩ is nonempty, this set admits exactly one minimal element. The proof is analogous for the respective part of the statement of the proposition.

When for any 0, ( ) is a lattice, we denote by ∧ (resp. ∨ ) its meet (resp. join) operation. In this case, is meet-stable (resp. join-stable) if, for any 0 and any ∈ ( ), the relation = for an ∈ [ ] implies that the -th letter of ∧ (resp. ∨ ) is equal to . L 3.3.3. Let δ be a range map and be a closed by prefix, maximally extendable, and join-stable graded subset of Cl δ . For any ∈ such is a δ-cliff, the set [ ] ∩ (3.3.5) admits at most one maximal element.

P

. Assume that ∈ Cl δ . By Lemma 3.1.2, ∈ Cl δ so that I := [ ] is a well-defined interval of δ-cliff poset. Assume that there exist two δ-cliffs and belonging to I ∩ . It follows from the hypotheses on of the statement that, by Theorem 1.3.4, the operation ∨ is the join operation of the posets ( ), 0 (see Section 1.3.2). First, the core label order of the Hochschild lattice is isomorphic to a certain shuffle lattice introduced by Greene [START_REF] Greene | Posets of shuffles[END_REF].

A first idea is to show that the poset of cubic coordinates CC( ), meaning the poset of Tamari intervals, is a congruence uniform lattice. A way to prove that is to find a sequence of interval contractions from the lattice CC( ) to the Tamari lattice T 2 ( ), with 0, as it is done to prove that subposets of the cliff posets are constructible by interval doubling in Chapter 4. For instance, a sequence of interval contractions from CC(3) to a poset isomorphic to the Tamari lattice T 2 (3) could be where the marked intervals are the ones involved in the presumed interval doubling operations.

If the posets of Tamari intervals are congruence uniform, we can then ask ourselves what is the core label order of this lattice, and see if there is a link with the lattice of noncrossing partitions.

Likewise, a study of the core label order of the canyon poset and hill poset introduced in Chapter 4 can be done.

Finally, we saw in Chapter 4 that under certain conditions, cubical lattices are constructible by interval doubling. A natural question is to ask if any congruence uniform lattice is a cubical lattice.

Inherited properties for the -chain lattices

It is known that if a poset is a lattice, then the poset of intervals int( ) of this lattice is also a lattice. We recall this fact in Section 2.2 of Chapter 1. Another more recent example of inherited properties for intervals is the trimness of the lattice [START_REF] Thomas | Rowmotion in slow motion[END_REF]. Conversely, intervals of extremal lattices are not usually again extremal lattices [START_REF] Markowsky | Primes, irreducibles and extremal lattices[END_REF].

At the end of Chapter 2 we show that the Tamari interval lattices are EL-shellable, extending the result of Björner and Wachs [START_REF] Björner | Shellable nonpure complexes and posets[END_REF] on the EL-shellability of the Tamari lattices. Likewise, in the previous perspective, we assume that the property of being constructible by interval doubling of the Tamari lattices is inherited by the Tamari interval lattices.

The idea of this proposed axis of research is to see what are the properties which remain valid for the lattices of intervals of lattices satisfying these same properties. More generally, we can consider this question for the lattices of -chains. We can thus ask for instance about the shellability, the constructibility by interval doubling, and the existence of a cubical realization.

The question about the inherited of the cubical lattice property can be rephrased as follows: given a cubical lattice, can we find a way to encode its intervals such that the obtained lattice is cubical? We give the answer for Tamari lattices in Chapter 2 with cubic coordinates, but it seems to be complicated to generalize cubic coordinates for generalizations of Tamari lattices. The question remains for the canyon lattices and the hill lattices, or for the -chains of the Hochschild lattices.

Cliffs operads and generalizations of the Dendriform operad

In Chapter 4 we have seen that for = 1, the canyon posets coincide with the Tamari posets. For > 1, we obtain a generalization of the Tamari lattices, which is different from those already known, as the -Tamari lattices [START_REF] Bergeron | Higher trivariate diagonal harmonics via generalized Tamari posets[END_REF] or the µ-Tamari lattices [PRV17].

One of our main motivations for this work is the definition of an associative algebra on the set of cliffs, where the product between two cliffs is the sum of cliffs forming an interval in the cliff posets. This property is true for many other algebraic structures, such as the Malvenuto-Reutenauer algebra for the weak order [DHT02, AS05], or the Loday-Ronco algebra for the Tamari order [START_REF] Hivert | The algebra of binary search trees[END_REF]. Considering a certain quotient of cliffs algebra, we define the algebra of canyons, which then becomes to the algebra of cliffs what the algebra PBT is to the algebra FQSym. The pair of algebras thus obtained is a generalization of the pair of algebras PBT and FQSym.

The driving idea of this axis is to ask similar questions at the level of operads and not only at the level of associative algebras. Indeed, the space of permutations (and thus the space underlying FQSym) is equipped with an operad structure known as the associative operad [START_REF] Aguiar | The associative operad and the weak order on the symmetric groups[END_REF]. In the work quoted, it is shown that under an appropriate changing of basis, the partial composition of this operad is described by a sum over an interval of the weak order. The dendriform operad has a similar property related to the Tamari order [START_REF] Loday | On the operad of associative algebras with derivation[END_REF].

A first objective is to endow the space of cliffs with an operad structure which would play a role similar to the associative operad, but where the cliff poset is used. Then, in the same way as previously presented, the idea is to build a quotient operad of the cliff operad restricted to canyons. This would lead to an operad whose dimensions are given by Fuss-Catalan number and which would offer a new generalisation of the dendriform operad. The comparaison between this generalization and those already existing [Gir16, Ler07, Nov14] would then be possible.

INTRODUCTION

  Comme beaucoup d'objets combinatoires, les arbres binaires ont la propriété d'être dénombrés par les nombres de Catalan. Chaque ensemble regroupant les objets de taille 0 nombres se retrouvent fréquemment en combinatoire, et possèdent plusieurs généralisations, dont la plus connue est donnée par les nombres de Fuss-Catalan cat ( par exemple les arbres ( + 1)-aires ou encore les -chemins de Dyck.

  INTRODUCTION treillis de Tamari et d'intervalles particuliers d'un sous-poset du treillis des intervalles deTamari.

  the 1-Dyck path (or Dyck path for short) 11001011011000 of size 7, and (1.1.23) is the 2-Dyck path 100101000110000 of size 5. Let us see further definitions about -Dyck paths. Let ∈ Dy ( ). A factor is a subpath of if is a -Dyck path. The Dyck path is primitive if for all Dyck paths and such that =, one has = or = . A factor 01 is called a valley, and the height of a valley is the ordinate of its corresponding middle point in the path. More generally, the height of a step is the ordinate of its lowest point.It is a known fact that -Dyck paths of size are enumerated by -Fuss-Catalan numbers[START_REF] Dvoretzky | A problem of arrangements[END_REF] 

  1.1.5. Tamari diagrams. In Chapter 2 and Chapter 4, we deal with another important object called Tamari diagram [HT72,Pal86]. Let us give the definition of a Tamari diagram, as formulated in [BW97].

+-

  for all ∈ [ ] and ∈ [0 ]. The size of a Tamari diagram is its number of letters. For instance, the sets of Tamari diagrams of size 2, 3 and 4 are {00 10} {000 100 010 200 210} {0000 0010 0100 0200 0210 1000 1010 2000 2100 3000 3010 3100 3200 3210} (1.1.26) In the literature, Tamari diagrams are also known as bracket vectors, objects inspired by the right parenthesage introduced in [HT72] by Huang and Tamari. Furthermore, Tamari diagrams are known to be enumerated by Catalan numbers cat 1 numbers are the 1-Fuss-Catalan numbers (1.1.25b). Thus, the -Fuss-Catalan numbers are a natural generalisation of Catalan numbers.

  ii) - for all ∈ [ ] and ∈ [0 ]. The size of a dual Tamari diagram is its number of letters. In other words, = 1 is a dual Tamari diagram if and only if 1 is a Tamari diagram. Note that the first condition of a Tamari diagram and of a dual Tamari diagram of size implies that = 0 and 1 = 0. A graphical representation of a Tamari diagram of size by needles and diagonals provides a simple way to check the condition (ii) of a Tamari diagram. For each position ∈ [ ], we draw a needle from the point ( -1 0) to the point ( -1 ) in the Cartesian plane. The condition (ii) says that one can draw lines of slope -1 passing through the -axis and the top of each needle without crossing any other needle. For instance, the Tamari diagram 9021043100 is drawn by Figure 1.1. One can observe that none of its diagonals, drawn as dotted lines, crosses a needle. Likewise, a graphical representation can be given for the dual Tamari diagram of size . One draws in the same way as Tamari diagram, and the condition (ii) says that one can draw lines of slope 1 passing through the -axis and the top of each needle without crossing any other needle. Figure 1.1 also depicts the dual Tamari diagram 0010040002. F . . A Tamari diagram 9021043100 (on the left) and a dual Tamari diagram 0010040002 (on the right) of size 10. We will deal with both notions in Chapter 2. A generalisation of Tamari diagrams is provided in Chapter 4, where by agreement we will use the definition of dual Tamari diagrams. 1.1.6. Permutations and Lehmer codes. Permutations are the departure point of the Chapter 4, since this all work starts by giving a generalisation of the Lehmer codes of permutations.
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  . . A rooted tree of size 8.

  binary tree of size 8 and the numbering of its nodes following the infix order.

  .4). Equivalently, this means that ((a b) c) becomes (a (b c)), where a b and c are the subtrees shown in Figure 1.4.

F . .

 . Right rotation of edge ( ) in t (on the left), where a,b, and c are any subtrees.

  binary tree and the associated Tamari diagram of the same size. binary tree and the associated Dyck path of the same size.

F

  

F . .

 . From left to right, Hasse diagrams of the Stanley order, the dexter order, and the Kreweras order on Dy(3).

F

  . . A Dyck path 1100101100 with two movable paths, in blue (dark).

F . .

 . The three Dyck paths covering the Dyck path 1100101100 for the dexter order.

  diagrams of BT(3), the Tamari order on Dy(3), and the componentwise order on Tamari diagrams of size 3. diagrams of S(3) and of the Lehmer code lattice of size 3.

F . .

 . From left to right, Kreweras lattice, Tamari lattice, and Stanley lattice on Dy(3).

  diagram of an interval-poset of size 8.

  of a Tamari interval from an interval-poset by ρ.

F . .

 . Counterexample of a lattice not EL-shellable.F. . Operation of doubling in an interval in blue (dark).

  4.1) having as order relation, which is defined as follows. For any ∈ [I], one has if one of the following assertions is satisfied: (i) ∈ \ I, ∈ \ I, and , (ii) ∈ \ I,

Figure 2 .

 2 Figure 2.4 give an example of interval doubling.

F . .

 . Graph of first posets generated by interval doubling.F. . Counterexample of a lattice not constructible by interval doubling.

  with all apparent (except reflexive) relations.F. . Different representations of an interval-poset of size 8.

  trees s and s (resp. t and t ).

  forests induced by s and s . forests induced by t and t . F . . Right rotation of the edge ( ) in the binary tree s (resp. t), where a,b and c are subtrees. L 1.1.1. The interval-posets π and π satisfy ( ) (resp. ( )) for the vertex π (resp. π ) if and only if s (resp. t ) is obtained by a unique right rotation of the edge ( ) in s (resp. t) and t = t (resp. s = s). -poset of the decreasing forest before (without dotted line) and after (with dotted line) the right rotation of the edge ( ), where a, b and c may be empty.

  Figure 1.2c and Figure 1.4 depicts this case. 1.1.2. The compatibility condition. Our aim is to encode a pair of binary trees of nodes by two words of size . The first binary tree of the pair is encoded by a Tamari diagram and the second is encoded by a dual Tamari diagram, associated by the bijection seen in 1.2.4 of Chapter 1. Then, by checking a certain compatibility condition, we build the Tamari interval diagrams. Let us recall the definition of Tamari diagrams and dual Tamari diagrams seen in Section 1.1.5 of Chapter 1. For any 0, a Tamari diagram is a word of length on the alphabet N which satisfies the two following conditions (i) 0 for all ∈ [ ], (ii) + for all ∈ [ ] and ∈ [0 ].

F

  . . A Tamari diagram 9021043100 (on the left) and a dual Tamari diagram 0010040002 (on the right) of size 10. Let 0 and be a Tamari diagram, and be a dual Tamari diagram, both of size . The diagrams and are compatible if for all 1 < such that then < -. If and are compatible, then the pair ( ) is called Tamari interval diagram. The set of Tamari interval diagrams of size is denoted by TID( ). In other words, a Tamari diagram of size and a dual Tamari diagram of size are compatible if for any needle of position and height = 0 in (resp. = 0 in ), there is no needle of position and height greater than or equal toin (resp.in ) with --1 (resp. + 1 + ) and ∈ [ ].

F . .

 . Two incompatible diagrams (on the left) and two compatible diagrams (on the right).

  Tamari interval diagram of size 10 (on the left) and its associated interval-poset (on the right).

  1.1.3. Tamari interval diagrams and interval-posets. In this part, we use these definitions, conventions, and Lemma 1.1.1 seen in Section 2.2.3 of Chapter 1 Let us show that there is a bijection between the set of Tamari interval diagrams and the set of interval-posets of the same size. Let 0 and χ be the map sending a Tamari interval diagram ( ) of size to the relation ({π 1 π } ) (1.1.1) where π + π for all ∈ [ ] and 0 , and π - π for all ∈ [ ] and 0 . P 1.1.2. For any 0, the map χ has values in IP( ). P . Let ( ) ∈ TID( ) and π := χ(

P.

  According to (1.1.2), the fact that means that there are at leastvertices in decreasing relation to the vertex π . By the point (i) of interval-poset properties, this implies in particular that π π . Respectively, we show with the point (ii) of intervalposet properties that implies that π π . T 1.1.4. For any 0, the map χ : TID( ) IP( ) is bijective. P . Let us show that χ is the inverse map of χ. Let 0, π ∈ IP( ) and ( ) := χ (π). (1) Since π is an interval-poset, there are at mostvertices of π in decreasing relation to π and at most -1 vertices of π in increasing relation to π for all ∈ [ ]. Therefore, the word satisfies Condition (i) of a Tamari diagram and the word satisfies Condition (i) of a dual Tamari diagram. (2) Let π and π + be vertices of π such that ∈ [ ] and ∈ [0 ]. By Lemma 1.1.3, the fact that means that π + π . Thus, by transitivity of interval-posets, one has that for any + , if π π + , then π π . Thus, + + , which implies Condition (ii) of a Tamari diagram. Symmetrically, Condition (ii) of a dual Tamari diagram is checked by considering π and π -vertices of π such that ∈ [ ] and ∈ [0 1.3, the relation implies that π π . Likewise, the relation means that π π . Both of these implications lead to a contradiction with the antisymmetric nature of interval-posets. Necessarily, we have < -, which implies that and are compatible. The pair ( ) is a Tamari interval diagram of size . Finally, it is clear that χ( ) = π by construction. Therefore, the map χ is surjective. Let ( ) and ( ) be two Tamari interval diagrams of size , such that ( ) = ( ) and such that χ( ) := π and χ( ) := π . So there is at least one letter of ( ) and ( ) such that = or = , for ∈ [ ]. Therefore, the number of vertices of π in relation to the vertex π associated with the component and by χ is different from the number of vertices of π in relation to the vertex π associated with the component and by χ, we thus have π = π . This shows that the map χ is injective. The minimalist representation of the interval-posets defined in Section 2.2.3 of Chapter 1 allows us to describe a direct construction of the corresponding Tamari interval diagram. Indeed, let us consider the minimalist representation of an interval-poset π of size . For any relation π π (resp. π π ) drawn, with 1 < , we set := -(resp. := -) and all other elements not involved in any relation to 0. This forms a pair of words (

2 .

 2 Cubic coordinates and Tamari interval diagrams. T 1.2.1. For any 0, the map φ : CC( ) TID( ) is bijective. P . Let and be two cubic coordinates of size such that = . Then there is a component such that = , with ∈ [ -1]. By the map φ, one has then = or +1 = +1 , namely ( ) = ( ). Which shows that the map φ is injective. ), the ( -1)-tuple whose components are given by the difference between and +1 for any ∈ [ -1]. Now if = 0, then +1 = 0 for any ∈ [ -1]. Therefore, φ( ) = ( ), where ( ) is indeed a Tamari interval diagram by hypothesis. By the definition of a cubic coordinate, one can conclude that ∈ CC( ). This shows that the map φ is surjective. Therefore, by the map φ it is possible to build a cubic coordinate from a Tamari interval diagram and reciprocally. Graphically, we have to shift the upper part of a Tamari interval diagram (corresponding to the dual Tamari diagram) to the left by one position and collect the height of the needles from left to right. Then, we put a positive sign for the needles of the lower part of the Tamari interval diagram (corresponding to the Tamari diagram) and a negative sign for the upper part, and we forget the last needle of zero height. To reconstruct a Tamari interval diagram from a cubic coordinate, we reconstruct the needles of the Tamari diagram and the dual Tamari diagram from the components of the cubic coordinate in the same way, and then we shift the dual Tamari diagram to the right by one position.

  1.2.3. Cubic coordinates properties. L 1.2.2. Let 0 and ∈ CC( ) such that there is a component = 0, for ∈ [ -1]. Let be the ( -1)-tuple such that = 0 and = for any = , with ∈ [ -1]. Then is a cubic coordinate.P. Let ( ) := φ( ) and ( +1 ) be the pair of letters corresponding to by the map φ, with ∈ [ -1]. Since = 0, then ( +1 ) = (0 0). By hypothesis, all other pairs of letters are the same as those of ( ) := φ( ). In order to show that is a cubic coordinate, we have to show that () is a Tamari interval diagram, namely that ( ) satisfies the conditions of a Tamari diagram, of a dual Tamari diagram, and of compatibility. Clearly, with ( +1 ) = (0 0), all these conditions are satisfied for ( ).

  case where and share either their Tamari diagrams or their associated dual Tamari diagrams, then we have the two following lemmas. L 1.3.3. Let 0 and ∈ CC( ). If such that = and #D -( ) = , then there is a chain

  ( ) is a dual Tamari diagram. Condition (i) is naturally satisfied. Since , one has for all ∈ [ ]. Therefore, Condition (ii) is satisfied because for ∈ [ ] and ∈ [ + 1 ], all ∈ [ ], since we change only one component between ( -1) and ( ) , one has #D -( -1) ( ) = 1. L 1.3.4. Let 0 and ∈ CC( ). If such that = and D + ( ) = , then there is a chain

  Let 0 and ∈ CC( ). If is internal, then φ( ) is a new Tamari interval diagram. P . Instead, let us show that if φ( ) is not new, then is external. Let us denote ( +1 ) the pair of letters corresponding to by the map φ for ∈ [ -1].

Figure 1 .

 1 Figure 1.1 show the Hasse diagram of this poset for = 2, with the interval F( ) in blue.

  condition (iii) means that there is no subword 01 in any triword. L 1.1.1. The set of triwords is specified by the formal grammar A = + 0A + 2A (1.1.2) B = + 0A + 1B + 2B

  sequence of interval doublings from Tr(2) to Tr(3).

  3.1.3. Spine. Let us consider the subposet J(S(Tr( ))) of S(Tr( )), where S(Tr( ) is the spine of Tr( ) (see Section 2.1.3 of Chapter 1). Figure 3.1 shows the spine of S(Tr(2)) and S(Tr(3)).

  (S(Tr(3))).

F . .

 . Cubic realizations of some spines of Hochschild posets. (J(S(Tr(3)))).

F . .

 . Construction of J(J(S(Tr(3)))) from the poset J(S(Tr(3))).

  1.8) one can also deduce that the shape of J(S(Tr( ))) is as depicted in Figure 3.3. 10 -1

  3.4 of Chapter 1 Let us start by computing the specialization d Tr (1 ) of the degree polynomial of Tr. P 3.1.3. For any 1, the -polynomial of Tr( ) 1.12) of all degree polynomials of Tr( ) for all 0. By Proposition 3.1.3 and Lemma 3.1.4, one can deduce the degree polynomial of Tr( ) by replacing in the -polynomial by -, with ∈ [0 ]. Thus, the degree polynomial of Tr

  chain of Tr( -1), and t ∈ [0 ].

  For any 2 and 1, the -chains of the Hochschild poset Tr( ) are enumerated by =0 z ( ) = ( + 1) -( +1) P ( ) (3.2.12)

  observe, the right weak order relation of permutations of size 3 is included into the order relation of Cl 1 (3).

  It follows immediately from the definition of δ-cliffs that the cardinality of Cl δ ( ) satisfies #Cl δ ( ) =

-

  ∈ [ ] has arity . As a consequence of Proposition 1.1.1, any -decreasing tree can be encoded by a δ-increasing tree where δ is a rooted weakly increasing range map satisfying δ( +1 for all ∈ [ + 1]. The correspondence between such -decreasing trees and δ-increasing trees consists in relabeling by + 1each node labeled by ∈ [ ].

  δ ( ) defined by for any ∈ Cl δ ( ) such that for all ∈ [ ]. The poset (Cl δ ( ) ) is the δ-cliff poset of order . Figure 1.1 shows the Hasse diagrams of some δ-cliff posets. Let us introduce some notation about δ-cliffs. For any ∈ Cl δ ( ) and ∈ [ ], let ↓ ( ) (resp. ↑ ( )) be the word on Z of length obtained by decrementing (resp. incrementing) by 1 the -th letter of . Let also, for any ∈ Cl δ ( ), D( ) := { ∈ [ ] : = } (1.2.1)

L 1.3. 1 .

 1 Let δ be a range map and be a coated graded subset of Cl δ . Then, is straight.

  nested if it is nonempty and (N1) for any ∈ [0 m( )], the δ-cliff 0 -1 belongs to , (N2) for any ∈ [0 m( )],

  L 1.3.6. Let δ be a range map and be a nonempty subposet of Cl δ ( ) for an 1. If m( ) 1 and is nested, then ( ) m( ( )) = m( ) m( )-1 P . Let := m( ), := ( ), and := m( ). First, since satisfies (N1), = -1. Moreover, directly from the definition of the derivation operation , we have = Let δ be a range map and be a nonempty subposet of Cl δ ( ) for an 1. If m( ) 1 and is nested, then ( ) is nested.

1.3. 4 .

 4 Elevation maps. We introduce here a combinatorial tool intervening in the study of the three Fuss-Catalan posets introduced in the sequel. Let be a closed by prefix graded subset of Cl δ . For any ∈ , let F ( ) := { ∈ [0 δ(| | + 1)] : ∈ } (1.3.18) By definition, F ( ) is the set of all the letters that can follow to form an element of . For any 0, the -elevation map is the map e : ( ) → Cl δ ( ) (1.3.19) defined, for any ∈ ( ) and ∈ [ ] by e ( ) := #(any ∈ [ ]. From an intuitive point of view, the value of the -th letter of e ( ) is the number of cliffs of obtained by considering the prefix of ending at the letter and by replacing this letter by a smaller one. Remark in particular that e

Figure 1 .

 1 Figure 1.3 shows examples of these notions. Figure 1.3a shows a cubic realization

(

  iii) the graded set (Av m ) contains all the m-avalanches satisfying = 0 for all ∈ [2 | |], and ω( ) < m(| |) for all prefixes of of length 2 or more. P 2.1.5. For any 0 and 0, the map θ : Av m ( ) → (Av m+1 )( ) defined for any ∈ Av m ( ) and ∈ [ ] by θ( ) := 1 =1 ( + 1) (2.1.3) is a poset isomorphism.

  For any 1 and 0, the map ζ : (Av m ) → (Av m ) defined for any ∈ (Av m )( ) and ∈ [ ] by ζ( ) := 1 =1 ( -1) (2.1.4) is a poset embedding. P . It follows from Proposition 2.1.4 and its descriptions of the input-wings and output-wings of Av m ( ) that ζ is a well-defined map. The fact that ζ is a translation implies the statement of the proposition. P 2.1.7. For any 1 and 0, the map θ : (Av m ) → (Av m+1 ) defined for any ∈ (Av m )( ) and ∈ [ ] by θ( ) := 1 =1 ( + 1) (2.1.5) is a poset isomorphism.

(

  Av m )( ) (Av m+1 )( ) θ (Pr. 2.1.5) ζ (Pr. 2.1.6) θ (Pr. 2.1.7)

  the set M(Av m ( )) contains all m-avalanches such that = where ∈ max Av m ( -1) and ∈ [0 -1], (ii) the set J(Av m ( )) contains all m-avalanches having exactly one letter different from 0.

  the top to bottom and left to right, here are the posets Hi 2 (3), Hi 3 (3), Hi 3 (3), and Hi 4 (3). All these posets contain Hi 2 (3) as subposet by restricting on input-wings, output-wings, or butterflies.P. First, since Hi m is by Proposition 2.2.1 closed by prefix, by Proposition 1.3.10, e

  For any 1 and 1, the set J(Hi m ( )) contains all m-hills such that = 0 -such that ∈ [ -1] and ∈ [ ].

  2.3.1. Objects. For any range map δ, let Ca δ be the graded subset of Cl δ containing all δ-cliffs such that - -, for all ∈ [| |] and ∈ [ ] satisfying -1. Any element of Ca δ is a δ-canyon. For instance Ca 2 (3) = {000 010 020 001 002 012 003 013 023 004 014 024} (2.3.1)

  (2.3.2) and one can observe that none of the dotted lines crosses a needle. Besides, if is a δ-cliff of size and ∈ [ ] are two indices such that < , one has the three following possible configurations depending on the value α := -( -):

  Figure 2.7 shows some examples of images of output-wings of Ca m ( ) by ρ. poset Ca 3 (3) wherein output-wings are marked. The arrows connect these elements to their images by the bijection ρ.

T

  

  the top to bottom and left to right, here are the posets Ca 2 (3), Ca 2 (3), and Ca 3 (3). The two last posets contain (Hi1)(3) as subposets. There is a poset morphism between the output-wings of the first one and the input-wings of the second one.

  from the definition of m-canyons, one has that the m-canyon 0m ( ) is cell-compatible with 1m ( ). Therefore, 0m ( ) 1m ( ) is a cell of C(Ca m ( )). Since all others cells of this cubic realization are contained in this one, one obtains that C(Ca m ( ))To summarize the whole situation, the three families of Fuss-Catalan posets fit into the chain Av δ ( ) Ca δ ( ) Hi δ ( ) the order extension relation. This phenomenon is analogous to the one stating that Stanley lattices are order extensions of Tamari lattices, which in turn are order extension of Kreweras lattices[START_REF] Kreweras | Sur les partitions non croisées d'un cycle[END_REF] (see for instance[START_REF] Bernardi | Intervals in Catalan lattices and realizers of triangulations[END_REF]). Figure 2.9 gives an example of an instance of (2.4.1). the left to the right, here are the posets Av 3 (3), Ca 3 (3), and Hi 3 (3). The poset on the right is an order extension of the one at middle, which is itself an order extension of the one at the left.2.4.2. Isomorphisms between subposets. P 2.4.3. For any 1 and 0, the map θ : Hi m-1 ( ) → (Ca m )( ) defined for any ∈ (Ca m )( ) and ∈ [ ] by θ( ) := + -1

Figure 2 .

 2 Figure 2.10 gives an example of the poset isomorphism described by the statement of Proposition 2.4.3. A consequence of Proposition 2.4.3 is that, for any 2 and 0, the

3.1. 1 .where

 1 Coalgebras of δ-cliffs. For any range map δ, let Cl δ be the linear span of all δ-cliffs. This space is graded and decomposes as Cl δ ( ), 0, is the linear span of all δ-cliffs of size . By definition, the set {F : ∈ Cl δ } is a basis of Cl δ , and we shall refer to it as the fundamental basis or as the F-basis. Let also : Cl δ → K be the linear map defined by (F ) := 1 and by (F ) := 0 for any ∈ Cl δ \ { }.For any 0, the δ-reduction map is the map r δ : N → Cl δ ( ) defined for any word ∈ N and any ∈ [ ] by (r δ ( )) := min{ δ( )} For instance, r 1 (212066) = 012045 and r 2 (212066) = 012066.Let ∆ : Cl δ → Cl δ ⊗ Cl δ be the cobinary coproduct defined, for any ∈ Cl δ , by ∆

  is the range map satisfying δ ( ) = min{δ( ) δ( + )} for any 1. The second equality of (3.1.6) comes from the two following facts. First, for any ∈ [| |], = r δ ( ) = r δ ( ) where is the factor | |+1 | |+| | of . Second, we have for any ∈ [| |], = r δ ( ) | |+ = min | |+ δ(| | + ) so that for any ∈ [| |], r δ ( ) = min{ δ( )} = min | |+ δ(| | + ) δ( ) = r δ | | ( ) where is the suffix of length | | of . Let us now prove that (3.1.5) and (3.1.6) are different if and only if δ has a valley. These two elements are different if and only if there exists a factorization = with ∈ N *such that r δ ( ) = r δ | | ( ). This is equivalent to the fact there exists an index∈ [| |] such that r δ ( ) = r δ | | ( ) . Since is a suffix of , there exists a ∈ [| | + | | + 1 | |] such that = +1 | | . Now, we have r δ ( ) = min{ + -1 δ( )} = min{ + -1 δ(| | + ) δ( )} = r δ | | ( ) (3.1.7)To have this difference, we necessarily haveδ(| | + ) < and δ(| | + ) < δ( ). Now, since is in particular a δ-cliff, we have = + -1 δ( + -1). Therefore, we obtain δ( ) > δ(| | + ) < δ( + -1) (3.1.8) Since | | + 1, this leads to the fact that δ has a valley. This establishes that ∆ is coassociative if and only δ is valley-free. 3.1.2. Algebras of δ-cliffs. Let • : Cl δ ⊗ Cl δ → Cl δ be the binary product defined as the dual of the coproduct ∆ introduced in Section 3.1.1, where the graded dual space Cl δ * is identified with Cl δ . By duality, this product • satisfies, for any ∈ Cl δ , F • F = ∈Cl δ F ⊗ F ∆(F ) F (3.1.9) P . Assume that δ is weakly increasing and let := where ∈ Cl δ . Hence, since is a δ-cliff, for any ∈ [| |], | |+ = δ( ). Since δ is weakly increasing, we have δ( ) δ(| | + ). This implies that | |+ δ(| | + ). Moreover, the fact that is δ-cliff implies that, for any ∈ [| |], = δ( ). Therefore, is a δ-cliff. Conversely, assume that all := are δ-cliffs for all ∈ Cl δ . Hence, since is a δ-cliff, for any ∈ [| |], δ( ). Moreover, since is a δ-cliff, = | |+ δ(| | + ). This implies that δ( ) δ(| | + ). Since this last relation holds for all δ-cliffs and , and that there is at least one δ-cliff of any size, this leads to the fact that δ weakly increasing. Let χ δ : N * → K be the map defined for any ∈ N * by χ δ ( ) := 1 ∈Cl δ . T 3.1.4. For any range map δ, the product • of Cl δ satisfies, for any ∈ Cl δ , F • F = χ δ ( ) is an interval of the poset Cl δ (| | + | |). P . Assume first that := ∈ Cl δ . By Lemma 3.1.2, ∈ Cl δ . By (3.1.10), for any ∈ Cl δ , F appears in F • F if and only if there is ∈ r -1 δ ( ) such that = . This implies that r δ ( ) = and, by definition of the δ-reduction map, for any ∈ [| |], . Moreover, since is a δ-cliff, we have for any ∈ [| |], = | |+ δ(| | + ). Therefore, for all ∈ [| |], δ(| | + ). This is equivalent to the fact that and leads to the expression of the statement of theorem. Assume finally that := / ∈ Cl δ . Since and are δ-cliffs, there exists an index ∈ [| |] such that | |+ > δ(| | + ). Since | |+ = , this implies that > δ(| | + ).

For

  

  H-bases. By mimicking the construction of bases of several combinatorial spaces by using a particular partial order on their basis element (see for instance [DHT02, HNT05]), let for any ∈ Cl δ , E :=

3.3. 1 .

 1 Quotient space. Let δ be a range map. Given a graded subset of Cl δ , let Cl be the quotient space of Cl δ defined by Cl := Cl δ / (3.3.1) such that is the linear span of the set {F : ∈ Cl δ \ } (3.3.2) By definition, the set {F : ∈ } is a basis of Cl .

  P the indicator function (equals to 1 if P holds and 0 otherwise).

	Let	0 and	=	1 2	be a word of size . The prefixes of	are the + 1
	words ,	1	, and the suffixes of	are the + 1 words ,	, with ∈ [ ]. A
	word is a factor of		if there is a prefix and a suffix such that =	. A word
	is a subword of	if can be obtained by deleting letters in . For instance,	is a
	subword of			.	
	1.1.2. Graded sets. In this section, one may refer to [FS09].
							The size of a word is its number
	of letters. For any word	and integer ,	is the word	repeated times. For all
	integers and , [ ] denotes the set { + 1

}. For any integer , [ ] denotes the set [1 ]. Unless otherwise stated, all words are defined on the alphabet N = {0 1 2 }. The empty word is denoted by . 11 If P is a statement, we denote by 1 A graded set (or combinatorial set) is a set S endowed with a map | • | : S N such that for all ∈ N, the set { ∈ S : | | = } is finite.

lattices.

  

	1.3.1. Elementary definitions. A partial order	on a set	is a binary relation
	such that, for all	∈ , this relation is	
	(i) reflexive:	,				
	(ii) antisymmetric: if		and	, then = ,
	(iii) transitive: if		and		, then	.
	A partially ordered set, commonly called poset, is a pair (	). When the context
	is clear, we simply denote this pair by .		
	When two elements	and	of	satisfy	, then we say that	and	are
	comparable. Otherwise they are incomparable. A subposet of a poset is a subset of
	endowed with the induced partial order.		
	Let	∈ such that		and = . The element covers , denoted by	,
	for the partial order	if, for all ∈	such that		, either = or = .
	The binary relation	is called the covering relation of the poset . By a slight abuse
	of notation, the set of elements (			

embeddings.

  

	1.4.1. Definitions. Let (	1	1 ) and (	2	2 ) be two posets. A map φ :	1 →	2 is a
	poset morphism if for any		∈	1 ,	1	implies φ( )	2 φ( ). We say that	2 is an
	order extension of a poset	1 if there is a map φ :	1 →	2 which is both a bijection and
	a poset morphism.				
	A map φ :	1 →	2 is a poset embedding if for any	∈	1 ,	1	if and only if
	φ( )	2 φ( ). Observe that a poset embedding is necessarily injective. A map φ :	1 →	2
	is a poset isomorphism if φ is both a bijection and a poset embedding.
	1.4.2.					

  Instead of the algorithm of insertion, another way to see PBT as Hopf subalgebra of FQSym is to use congruence classes called the sylvester classes[START_REF] Hivert | The algebra of binary search trees[END_REF].

	Thus, the PBT product is deducted from the FQSym product, via the algorithm of
	insertion. For example,			
	P	• P	= P	+ P	+ P
						(3.2.11)
			+ P	+ P	+ P
				. For instance,	
		P		= F 2143 + F 2413 + F 4213	(3.2.10)

  Tamari interval diagrams. The set of synchronized cubic coordinates of size is denoted by SCC( ).A Tamari interval (s t) is synchronized if and only if the binary trees s and t have the same canopy[START_REF] Fang | The enumeration of generalized Tamari intervals[END_REF] PRV17]. The definition of the canopy is recalled in Section 1.2.2 of The two binary trees s and t are not synchronized if there is at least one letter of some index in the canopy of the tree s that is different from the letter of the same index in the canopy of t. Let us show that () is not synchronized if and only if the binary trees s and t are not synchronized.The letter is equal to 0 if and only if there is no descending relation of target π in π, namely, if and only if the node has no right child in the tree s (see Section 2.2.3 of Chapter 1). To summarize, = 0 if and only if the right subtree of the node is a leaf oriented to the right. Now, as recall in Section 1.2.2 of Chapter 1, a leaf linked to the node is oriented to the right if and only if the -th letter in the canopy corresponding to s is 1. = 0 if and only if the left subtree of the node + 1 is a leaf oriented to the left. As seen in Section 1.2.2 of Chapter 1, a leaf linked to the node + 1 is oriented to the left if and only if the -th letter in the canopy corresponding to t is 0. = 0 if and only if the letter of index in the canopy of the tree s is different from the letter of index in the canopy of the tree t. Therefore, () is not synchronized if and only if the binary trees s and t are not synchronized.

		Let P	0. A Tamari interval diagram ( 1.2.4. Let 3 and ( ) ∈ TID( ). The Tamari interval diagram ( ) of size is synchronized if either	= 0 )
	or is new if and only if χ( +1 = 0 for any ∈ [ -1]. ) is a new interval-poset.
		Likewise, a cubic coordinate of size is synchronized if P . Let us show that π := χ( ) is not new if and only if ( = 0 for any ∈ [ -1]. ) is not new. Theo-
	rem 1.1.4 leads to three cases.
			Let us consider the negation of (i) of a new Tamari interval diagram by assuming
			that	=	-. By Lemma 1.1.3, this implies that π	π with ∈ [ -1].
	Reciprocally, if π Chapter 1. properties, all vertices between π and π are in decreasing relation to π . Since π with ∈ [ -1], then by the point (i) of interval-poset
	P is synchronized if and only if ρ(χ( 1.2.3. Let 0 and ( := #{π ∈ π : π π and < }, it implies that ) ∈ TID( ). The Tamari interval diagram ( = -. )) is a synchronized Tamari interval. Likewise, by Lemma 1.1.3, if = -1, then π 1 π with ∈ [2 ]. By the point (ii) )
	and	P	. If ( of interval-poset properties, we get the converse property. ) is not synchronized, then there is an index ∈ [ -1] such that +1 = 0. Let π := χ( ) be the interval-poset associated to ( According to Lemma 1.1.3, if -, then π π , and if +1 -, then = 0 ), and (s t) := ρ(χ( )). π
		Symmetrically,
		To conclude,		= 0 and
		An interval-poset π of size	3 is new if
		(1) there is no decreasing relation of source π ,
		(2) there is no increasing relation of source π	1 ,
		(3) there is no relation π	+1	π	+1 and π	π with < .
	The definition of a new interval-poset is given in [Rog20].
		For any		3, a Tamari interval diagram (	) of size	is new if the following
	conditions are satisfied
			(i) 0		

+1 = 0 if and only if there is no increasing relation of target π +1 in π, namely, if and only if the node + 1 has no left child in the tree t. Then, +1 +1 --1 for all ∈ [ -1],

(ii) 0 -2 for all ∈ [2 ],

(iii) < --1 or < --1 for all ∈ [ ] such that + 1 < . +1 π

  it is shown that a Tamari interval is new if and only if the associated interval-poset is new. With Proposition 1.2.4 we get the following result.

		P	1.2.5. Let	3 and (	) ∈ TID( ). The Tamari interval diagram (	)
	is new if and only if ρ(χ(	)) is a new Tamari interval.
		P	1.2.6. Let	3 and (	) ∈ TID( ). If (	) is synchronized then (	)
	is not new.			
		P	. Assume by contradiction that (	) is synchronized and new. Since (	) is
	new, one has			
	and	2 = 0. This implies, since (		) is synchronized, that	1 = 0 and	= 0. Furthermore,
	since (	) is new, Condition (iii) of a Tamari interval diagram is satisfied. Specifically, for
	any ∈ [ -2], either	< 1 or	+2 < 1. Let us denote by ( * ) this condition. Assuming
	that	1 = 0, since (			

<for ∈ [ -1], and < -1 for ∈ [2 ]. In particular, -1 = 0

  binary trees (s t) such that encodes the binary tree s and encodes the binary tree t. By this composition, (resp. ) is obtained by counting in s (resp. t) the number of left (resp. right) descendants of each node for the infix order.

	then covers .		
	L	1.3.2. Let	0 and	∈ CC( ). If	, then there is a cubic coordinate
	such that	= and	= , where (	) := φ( ).
	P	. The composition of bijections φ -1 • χ -1	associates a pair of words (	) to a
	pair of comparable Additionally,
	we know that if (s t) always have s ta s	int(ta) (s t ), then the interval (s t ) is a Tamari interval because we ta t . The construction of φ -1 • χ -1 and the fact that (s t ) is a Tamari
	interval imply that the pair (		) is always a Tamari interval diagram. Therefore,	is a
	cubic coordinate.		

3.1 has the consequence that if (s t ) covers (s t)

  is well-defined.

		Suppose that ⇑	+1 ( )	0. Let us set (	) := φ( ), and (	) := φ(⇑	+1 ( )). Since	is
	not changed yet in , one has	= . Due to Condition (ii) of a Tamari diagram and the
	compatibility condition, there are two configurations, involving indices, which can make
	contradiction with the fact that (	) is still a Tamari interval diagram when	becomes
	↑ .					
		(1) If there is an index such that 1	<	and	-in , then, since < ,
			one has		-in . By the compatibility condition, that implies	< -in .
			Moreover, since is assumed to be an output-wing,	< --1 in , so that
			can be increased. This inequality remains true in .
		(2) If there is an index	such that 1	-	, by Condition (ii) of a Tamari
			diagram,			-+ in . This remains true in because components with
			index smaller than remain unchanged between and ⇑	+1 ( ). Furthermore,
			since is an output-wing, then	<	-+ . This inequality remains true for
		Let	⇑	0 and ∈ CC( ), and ( +1 ( ).	) := φ( ). If ↑	is positive, then the letter
	increases and becomes equal to ↑ and ↑ is negative or null, then With these two configurations, let us build a cubic coordinate different from ⇑ +1 is equal to 0. Then, we define ↑ :=↑ . If +1 ( ) +1 decreases and becomes equal to | ↑ | and is equal to 0. Then, we set ↓ only for ⇑
	Then,					
		(i) if < 0, then ↑		0,
		(ii) if	0, then ↑ > 0.
		P		. Let us show the first implication, the second being obvious because the cov-
	ering map always strictly increases a component. Let < 0, and let be the ( -1)-tuple
	such that	= 0 and	=	for any = , with ∈ [ -1]. By Lemma 1.2.2,	is a cubic
	coordinate. As		and they differ only at the -th component, by the definition of ↑ ( ),
	we have	↑ ( )		, thus ↑	= 0.
		Let ∈ CC( ). For all ∈ [ ], let
							⇑ ( ) :=↑ (↑	+1	(↑ -1 (↑ ( ))))	(2.1.1)
	with the convention that ↑ ( ) := . For instance, for ∈ CC(5), ⇑	2 ( ) =↑	2 (↑ 3 (↑	4 (↑ 5 ( )))).
		L		2.1.2. Let		0 and ∈ (CC( )). For all ∈ [ ], ⇑ ( ) is a cubic coordinate.
		P		. For = , one has by convention that ⇑ ( ) is a cubic coordinate. Let us
	suppose that for ∈ [ -1], ⇑	+1 ( ) is a cubic coordinate, and let us show that ⇑ ( ) is also
	a cubic coordinate. Depending on the sign of ⇑	+1 ( ) , two cases are possible.
		Suppose that ⇑	+1 ( ) < 0. In this case, consider	the ( -1)-tuple obtained from
	⇑	+1 ( ) by replacing the component ⇑	+1 ( ) by 0. By Lemma 1.2.2, is a cubic coordinate.
	Since ⇑	+1 ( ) < 0 one has ⇑	+1 ( )	. If	covers ⇑	+1 ( ), then =⇑ ( ). Otherwise,
	it is always possible to find another cubic coordinate	between ⇑	+1 ( ) and such that
		=⇑ ( ). In both cases, ⇑ ( ) is a cubic coordinate.

+1 := -↑ . L 2.1.1. Let 0 and ∈ CC( ), and ∈ [ -1] such that ↑ ( ) is well-defined. +1 ( ) , depending on which choices are available to increase . Let us set ( ) := φ( ).

  . It follows directly from Proposition 2.2.4 that any input-wing of Hi m ( ) is also a butterfly of Hi m+1 ( ). The fact the identity map is a poset embedding implies the statement of the proposition.To summarize, the three previous propositions lead to the following diagram of posets wherein appear hill posets and their subposets of input-wings, output-wings, and butterflies.

	By Proposition 2.1.10 and by upcoming Proposition 2.2.10, the number of meet-irreducible elements of Av m ( ) satisfies, for any 1 and 2, M(Av m ( )) = cat ( -2) (2.1.11) and the number of join-irreducibles elements of Av m ( ) satisfies, for any 1 and 1, #J(Av m ( )) = 2 (2.1.12) 2.1.3. Cubic realization. The map ζ introduced by Proposition 2.1.6 is used here to describe the cells of maximal dimension of the cubic realization of Av m ( ), 1, 0. P 2.1.11. For any 1, 0, and ∈ (Av m )( ), (i) the m-avalanche ζ( ) is cell-compatible with the m-avalanche , (ii) the cell ζ( ) is pure, (iii) all cells of { ζ( ) 2.2.6. For any 1 and 0, the map θ : (Hi m )( ) → (Hi m )( ) defined for any ∈ (Hi m )( ) and ∈ [ ] by θ( ) := 1 =1 ( -1) (2.2.7) is a poset isomorphism. P . This proof uses Proposition 2.2.4 and is very similar to the one of Proposi-tion 2.2.5. P 2.2.7. For any 1 and 0, the map ζ : (Hi m )( ) → (Hi m+1 )( ) defined for any ∈ (Hi m )( ) by ζ( ) := is a poset embedding. T 2.2.8. For any 1 and 0, Hi m-1 ( ) (Hi m )( ) (Hi m )( ) (Hi m+1 )( ) θ (Pr. 2.2.5) ζ (Pr. 2.2.7) θ (Pr. 2.2.6) (2.2.8) is a diagram of poset embeddings or isomorphisms. Figure 2.4 gives an example of the poset isomorphisms or embeddings described by the statement of Theorem 2.2.8. P 2.2.9. For any 1, # (Hi m )(0) = 1 and, for any 1, # (Hi m )( ) = tcat -1 ( ) (2.2.9) : ∈ (Av P P . By Proposition 2.2.4, the set (Hi

m )( )} are pairwise disjoint. P m )( ) contains all m-cliffs of size satisfying 1 < • • • < and for any ∈ [2 ], < m( ). By setting m := m -1, this set is in oneto-one correspondence with the set of all m -cliffs of size satisfying -1 < m ( ).

  By Proposition 2.2.11 (or also by Propositions 2.1.10 and 2.2.12), the number of joinirreducibles elements of Hi m ( ) satisfies, for any Due to the similarity between the maps θ and the map ζ introduced in the statement of Proposition 2.1.6, the proof here is very similar to the one of Proposition 2.1.11.As shown by Proposition 2.2.13, the cells of maximal dimension of the cubic realization of Hi m ( ) are all of the form θ( ) where the are input-wings of Hi m ( ).

					1 and	1,
				#J(Hi m ( )) =	(2.2.10)
					2
	Since by Proposition 2.2.3, Hi m ( ) is constructible by interval doubling, this is also the
	number of its meet-irreducible elements [GW16].
	2.2.3. Cubic realization. The map θ introduced by Proposition 2.2.6 is used here to
	describe the cells of maximal dimension of the cubic realization of Hi m ( ),	1,	0.
	P	2.2.13. For any	1,	0, and ∈ (Hi m )( ),
		(i) the m-hill θ( ) is cell-compatible with the m-hill ,
	(ii) the cell θ( )	is pure,	
	(iii) all cells of { θ( ) : ∈ (Hi P 2.2.14. For any 1 and	0,
			vol(C(Hi m ( ))) = cat -1 ( )	(2.2.11)
	P	. Proposition 2.2.13 describes all the cells of maximal dimension of C(Hi m ( ))
	as cells θ( )		

m )( )} are pairwise disjoint.

P

.

  Ca δ is by Proposition 2.3.1 closed by prefix, the Ca δ -elevation map and so the Ca δ -elevation image are well-defined.

							.3.3)
		P	. Let be a δ-canyon of size and let := d( ). For any letter ∈ [0 δ( + 1)],
	the δ-cliff		is a δ-canyon if and only if the index + 1 is hinded by no index in	.
	Now, for any ∈ [ ] such that	= 0, the index hinds the index + 1 in	if and only
	if ∈ [ + 1 -	+	-]. By definition of d, all indices of	are pairwise independent.
	Therefore, for any	∈ [ ] such that = and	= 0 =	, the sets [ + 1 -	+	-]
	and [ + 1 -	+	-] are disjoint. Lemma 2.3.2 and the fact that d is an idempotent
	map imply the stated formula.	
		L	2.3.4. Let δ be a range map and be a δ-canyon. Then,
						ω(e Ca δ ( )) = ω(d( ))	(2.3.4)
		P	. This follows by induction on the size of , by using the relation d( ) =
	e	Ca δ (d( )) and by using Lemma 2.3.2.
		P		2.3.5. For any increasing range map δ and any	0,
						Ca δ ( ) = Av δ ( )	(2.3.5)
		P . First, since By Lemmas 2.3.3 and 2.3.4, and since δ is increasing, for any δ-canyon of size	0,
	one has				
					#F Ca δ ( ) = 1 + δ( + 1) -ω(e Ca δ ( ))	(2.3.6)
		Let us proceed by induction on	to prove that for any	∈ Ca δ ( ), e Ca δ ( ) is a δ-
	avalanche. If = 0, the property holds immediately. Let =	be a δ-canyon of size
		+ 1 where	∈ Ca δ ( ) and ∈ N. By induction hypothesis, e Ca δ ( ) is a δ-avalanche.
	Therefore, in particular, ω(e Ca δ ( )) δ( ). Moreover, by (2.3.6), we have
				ω e Ca δ	= ω e Ca

  [START_REF] Day | Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices[END_REF]. As we shall see here, the δ-canyon posets have the same three properties.

	P	2.3.7. For any increasing range map δ and	0, the poset Ca δ ( ) is
	(i) straight,		
	(ii) coated,		
	(iii) nested,		
	(iv) EL-shellable,	
	(v) a meet semi-sublattice of Cl δ ( ),	
	(vi) a lattice,	
	(vii) constructible by interval doubling.	

P

. Point (iii) is immediate. Assume that and are two δ-canyons of size such that . Let ∈ [ -1] and consider the δ-cliff := 1 +1

  For instance, for δ := 1221013 ω , we have in Cl δ , Let δ be a range map. The space Cl δ endowed with the coproduct ∆ and the counit is a counital graded coalgebra. Moreover, ∆ is coassociative if and only if δ is valley-free.

	T	3.1.1.	
		∆(F 1021 ) = F ⊗ F 1021 + F 1 ⊗ F 021 + F 10 ⊗ F 11 + F	102 ⊗ F 1 + F 1021 ⊗ F	(3.1.3)
	and		
		∆(F 1211010 ) = F ⊗ F 1211010 + F 1 ⊗ F 111000 + F 12 ⊗ F 11010 + F 121 ⊗ F 1010
		+ F 1211 ⊗ F 010 + F 12110 ⊗ F 10 + F 121101 ⊗ F 0 + F 1211010 ⊗ F	(3.1.4)

  By triangularity, the sets {E : ∈ Cl δ } and {H : ∈ Cl δ } are bases of Cl δ , called respectively elementary basis and homogeneous basis, or respectively E-basis and H-basis. For any range map δ, the product • of Cl δ satisfies, for any ∈ Cl δ , By definition of the E-basis provided by (3.2.1), the last member of (3.2.6) is equal to the stated formula. P 3.2.2. For any range map δ, the product • of Cl δ satisfies, for any ∈ Cl δ , The equality between the third and the last member of (3.2.8) is a consequence of the fact that for any ∈ N * , one has r δ ( ) if and only if for all ∈ [| |], < δ( ) implies . By definition of the H-basis provided by (3.2.2), and since F

	and			
				H :=	F	(3.2.2)
					∈Cl δ	r δ (
	For instance, for δ := 1021 ω	,
		E	10010 = F 10010 + F 10011 + F 10110 + F 10111 + F	10210 + F 10211	(3.2.3)
	and			
			H 10010 = F 10010 + F 10000 + F 00010 + F 00000	(3.2.4)
	P	3.2.1. E • E = χ δ (	) E	(3.2.5)
	P	. By (3.1.10), we have
				E • E =	F
					∈Cl δ ∈r -1 δ ( ) ∈Cl δ
				=	F
				∈Cl δ	∈N * ∈Cl δ r δ ( )	(3.2.6)
				=	F
				∈Cl δ	∈N | |
					∀ ∈[| |]
					∈Cl δ
	The equality between the third and the last member of (3.2.6) is a consequence of the fact that for any ∈ N * , one has r H • H = H r δ ( ) (3.2.7)
	P	. By (3.1.10), we have
			H • H =	F
				∈Cl δ ∈r -1 δ ( ) ∈Cl δ
				=	F
				∈Cl δ	∈N * ∈Cl δ r δ ( )	(3.2.8)
				=	F
				∈Cl δ	∈Cl δ ∀ ∈[| |] <δ( ) F ∈N | | ∈Cl δ	(3.2.1)

δ ( ) if and only if for all ∈ [| |].

ELEMENTS OF ALGEBRAIC COMBINATORICS AND PARTIAL ORDERS

CUBIC COORDINATE LATTICES

FUSS-CATALAN POSETS AND ALGEBRAS

Remerciements

T 2.2.1. For any 1, the map λ is an EL-labelling of the Hochschild lattice Tr( ). Moreover, there is at most one λ-weakly decreasing chain between any pair of comparable elements of Tr( ).

P

. Let ∈ Tr( ) such that and D( ( ) be the word of size defined by replacing the letters Since the letters are increased from the triword from left to right, the word ( ) is not a triword if and only if there is a letter = by construction of ( ) . And so = 0 since by hypothesis . Thus, = 0 and = 0 imply respectively that = 1 and = 1 in the triwords and for all > . In particular, one has ( ) = 1 for all > . It follows that the subword 01 cannot occur in ( ) , and then ( ) is a triword. Let us consider the chain (1)

(2) ( -1) ( ) = (2.2.4) which is not necessarily saturated. Then, by concatenating the unique saturated chain in each interval [ ( -1) ( ) ] for all ∈ [ ], we obtain a saturated chain between and . Since each word ( ) of this saturated chain is obtained from by replacing letters from left to right, this chain is clearly weakly increasing for the partial order . Furthermore, between Let us consider the grammar of Tr given by Lemma 1.1.1. By the map

| | out

Tr ( ) one obtains the system of formal series P A ( ) = 1 + P A ( ) + P A ( ) P B ( ) = 1 + P A ( ) + P B ( ) + P B ( )

Tr ( ) = 1 + P A ( ) + P B ( ) (3.1.13) Indeed, in (1.1.2) of the grammar, 0A becomes P A ( ) because the letter 0 can always be increased to 2. Note that the letter 0 in 0A cannot be increased to 1 because in (1.1.4), this expression 0A comes after a first letter 0, and the subword 01 is prohibited by definition of triwords. However, 2A becomes P A ( ) since the letter 2 cannot be increased. Likewise, in (1.1.3), 0A becomes P A (

) because the letter 0 can be increased to 1, and 1B becomes P B (

) because the letter 1 can be increased to 2, unlike the letter 2 in 2B which becomes P B (

).

Thus,

From this expression of P Tr ( ) in partial fraction decomposition, we deduce by a straightforward computation the given expression for d

Tr( ) (1 ).

Let 1 and ∈ Tr( ). For any letter of with ∈ [ ], the number of letters such that the word defined by := for all = is in covering relation with is the degree of the letter . The sum of the degrees of all letters of is the number of elements covered by or covering , namely in ( ) + out ( ). L 3.1.4. For any 1 and ∈ Tr( ), in Tr ( ) + out Tr ( ) = .

P . Suppose that the first letter of is 0, then all letters of are either 0 or 2. The letter 1 can be increased to 1, but since we cannot have a letter 0 followed by 1, all other letters 0 can only be increased to 2, and all letters 2 can only be decreased to 0. And so for the case where 1 = 0, all letters of have degree 1.

Suppose now that the first letter of is 1. Either 1 is the only letter 1 in or there is another letter = 1 such that all letters after are not 1. In the first case, 1 can be decreased to 0, thus all letters of have degree 1. In the second case, since there is at least one other letter 1 in , 1 cannot be decreased to 0. Then the degree of 1 is 0. However, this degree is compensated by the degree of the letter . Indeed, the last letter 1 is the only one which can be decreased to 0 or increased to 2. Hence the degree of is 2, and since all other letters of have degree 1, the sum is equal to . is different from the word with the same index in δ. Here again, one has γ = δ. Hence, the map φ ( ) is injective.

For instance, for the 4-chain (3.2.5), γ belongs to 1 (4 4) and is 2. We can rebuild γ by adding the letter 2 on the two last words of γ , since by definition of triwords, the greater triwords of a -chain must have greater or equal letters compare to smaller triwords. Besides, since the two first words of γ have the letter 0, we can only add the letter 0 at its end.

Let us consider another example with

γ := (00000 00200 12210 12211 12212) (3.2.7)

a 5-chain of 2 (5 5). One has φ

(5 5) 2

(γ) = (t γ ) with t = 1 and γ = (0000 0020 1221 1221 1221) (3.2.8)

Here γ belongs to 3 (4 5). Since γ ∈ 2 (5 5), to rebuild γ from γ , we have to add 0 at the end of the third word of γ . Moreover, since t = 1, the letter 2 is added to the last word and the letter 1 is added to the penultimate word of γ .

Enumeration of -chains.

For all matrices M, we denote in the following by M( ) the entry at the -th line and the -th column.

For any (

) of this classification, one obtains by denoting by z ( ) the cardinality of (

) with ∈ [0 ], the following result. z ( -1 ) (3.2.9) P . This is a direct consequence of Lemma 3.2.1.

For example, for 1 (2 3) ={(00 00 11) (00 00 12) (00 02 12) (02 02 12) (00 10 11) (00 10 12) (10 10 11) (10 10 12)} (3.2.10) the first four 3-chains came from 1 (1 3) = {(0 0 1)}, the next two came from 2 (1 3) = {(0 1 1)}, and the last two came from 3 (1 3) = {(1 1 1)}.

The system

It seems that the sequence of constant terms of the polynomials P ( )

is the sequence of numbers of connected functions on labeled nodes A001865 of [Slo].

Recall that a connected function is a function : [ ] [ ] such that the graph G := (V E) is connected, where V := [ ] is the set of vertices and E := {( ( ))} with ∈ [ ] is the set of edges. be the set of all indices of different letters between and . Let us denote respectively by 0δ ( ) and by 1δ ( ) the δ-cliffs 0 and δ(1) δ( ). For any ∈ Cl δ ( ), let ∧ be the δ-cliff of size defined for any ∈ [ ] by

Subposets of the

We also define ∨ similarly by replacing the min operation by max in (1.2.2). For any ∈ Cl δ ( ), the difference between and is the wordon Z of length defined for any ∈ [ ] by

Observe that when ,is a δ-cliff. The δ-complementary c δ ( ) of ∈ Cl δ ( ) is the δ-cliff 1δ ( ) -For instance, by setting := 0010, if is seen as a 1-cliff, c δ ( ) = 0113, and if is seen as a 2-cliff, c δ ( ) = 0236. This map c δ is an involution.

First properties.

A study of the 1-cliff posets appears in [START_REF] Denoncourt | A refinement of weak order intervals into distributive lattices[END_REF]. Our definition stated here depending on δ is therefore a generalization of these posets. The structure of the δ-cliff posets is very simple since each of these posets of order is isomorphic to the Cartesian product [0

where [ ] is the total order on elements. It follows from this observation that each δ-cliff poset is a lattice admitting respectively ∧ and ∨ as meet and join operations. The lattice Cl δ ( ) can be seen as a sublattice of the Cartesian product N of copies of total orders N, which is a distributive lattice. Since all sublattices of distributive lattices are distributive [Bir79], Cl δ ( ) is distributive.

It follows immediately from the definition of that the covering relation of Cl δ ( ) satisfies if and only if there is an index ∈ [ ] such that = ↑ ( ). Moreover, these posets Cl δ ( ) are graded, and the rank of a δ-cliff is ω( ). The least element of the poset is 0δ ( ) while the greatest element 1δ ( ). 1.2.3. Links with the right weak order. We refer to Section 1.1.6, and to Section 1.3.5 of Chapter 1 for this part.

When δ is a rooted weakly increasing range map, let us consider the binary relation on Cl δ ( ) wherein if there is an index ∈ [ ] such that = ↑ ( ) and, by setting t := tree δ ( ), all the children of the node labeled by of t are leaves, except possibly the first of its brotherhood. For instance, for δ := 0233579 ω and the δ-cliff := 021042, since

we observe that all the children of the nodes labeled by 2, 3, and 6 are leaves, except possibly the first ones. For this reason, is covered by ↑ 3 ( ) = 022042 and by ↑ 6 ( ) = 021043, but not by ↑ 2 ( ) = 031042 since this word is not a δ-cliff.

The reflexive and transitive closure of this relation is an order relation. By Proposition 1.1.1, this endows the set of all δ-increasing trees with a poset structure. It follows immediately from the description of the covering relation of Cl δ ( ) provided in Section 1.2.2 that is a refinement of . For this reason (Cl δ ( ) ) is an order extension of (Cl δ ( ) ). P 1.2.1. For any 0, the poset (Cl 1 ( ) ) is isomorphic to the right weak order on permutations of size .

P

. Let φ be the map from the set of all words of size of integers without repeated letters to the set of increasing binary trees of size where nodes are bijectively labeled by the letters of , defined recursively as follows. If σ is the empty word, then φ(σ) is the leaf. Otherwise, σ decomposes as σ = where is the least letter of σ, and and are words of integers. In this case, φ(σ) is the binary tree consisting in a root labeled by and having as left subtree φ( ) and as right subtree φ( ) -observe the reversal of the order between and . Now, by induction on , one can prove that for any permutation σ of size , the binary trees φ(σ) and tree 1 (leh(σ)) are the same.

Assume now that there is a λ -weakly decreasing saturated chain

between and . By definition of λ and of the poset Λ, for any ∈ [0 -1], the word

is obtained from ( ) by increasing by the minimal possible value the letter ( ) such that is the smallest index satisfying ( ) < . If it exists, this saturated chain is by construction the unique λ -weakly decreasing saturated chain from to .

1.3.2. Meet and join operations, sublattices, and lattices. Here we give some sufficient conditions on for the fact that each ( ), 0, is a lattice. P 1.3.3. Let δ be a range map and be a spread graded subset of Cl δ . We have the following properties:

(i) if for any 0 and any ∈ ( ), ∧ ∈ , then ( ) is a lattice and is a meet semi-sublattice of Cl δ ( ), (ii) if for any 0 and any ∈ ( ), ∨ ∈ , then ( ) is a lattice and is a join semi-sublattice of Cl δ ( ), (iii) if for any 0, ( ) is a sublattice of Cl δ ( ), then ( ) is distributive and graded.

P

. Let ∈ ( ). When ∧ ∈ , ∧ is the greatest lower bound of and in Cl δ ( ) and also in ( ). For this reason, ( ) is a meet semi-sublattice of Cl δ ( ). Moreover, since ( ) is finite and admits 1δ ( ) as greatest element, by [START_REF] Stanley | Enumerative Combinatorics[END_REF], and have a least upper bound ∨ in ( ) for a certain join operation ∨ . Whence (i) and also (ii) by symmetry. Point (iii) is a consequence of the fact that any sublattice of a distributive lattice is distributive, and the fact that any distributive lattice is graded [START_REF] Stanley | Enumerative Combinatorics[END_REF].

Let be a minimally extendable graded subset of Cl δ . For any 0, the -decrementation map is the map

defined recursively by ⇓ ( ) := and, for any ∈ Cl δ ( ) where ∈ Cl δ and ∈ N, by

Observe that the fact that is minimally extendable ensures that ⇓ is a well-defined map. Let also, for any 0 and ∈ ( ),

When is maximally extendable, we denote by ⇑ the -incrementation map defined in the same way as the -decrementation map with the difference that in (1.3.6), the operation max is replaced by the operation min and the relation is replaced by the relation . Here, the fact that is maximally extendable ensure that ⇑ is well-defined. We also define the operation ∨ in the same way as ∧ with the difference that in (1.3.7), the map ⇓ is replaced by ⇑ and the operation ∧ is replaced by the operation ∨. T 1.3.4. Let δ be a range map and be a closed by prefix and minimally (resp. maximally) extendable graded subset of Cl δ . The operation ∧ (resp. ∨ ) is, for any 0, the meet (resp. join) operation of the poset ( ).

P

. Let us show the property of the statement of the theorem in the case where is minimally extendable. The other case is symmetric. We proceed by induction on 0. When = 0, the property is trivially satisfied. Let 1 and ∈ ( ). Since is closed by prefix, one has = and = with ∈ ( -1) and

where := max{ min{ } : ⇓ ( ∧ ) ∈ } Now, by induction hypothesis, we obtain

where ∧ is the meet operation of the poset ( -1). First, we deduce from the above computation that for any ∈ [ ], the -th letter of ∧ is nongreater than min{ }, and that ∧ belongs to ( ). Therefore, ∧ is a lower bound of { }. Second, by induction hypothesis, := ∧ is the greatest lower bound of { }. By construction, since is the greatest letter such that , , and ∈ holds, any other lower bound of { } is smaller than . This prove that is the greatest lower bound of { } and implies the statement of the theorem.

Together with Proposition 1.3.3, Theorem 1.3.4 provides the following sufficient conditions on the graded subset of Cl δ for the fact that for all 0, the posets ( ) are lattices:

(i) is spread and each ( ), 0, is a meet semi-sublattice of Cl δ ( ), (ii) is spread and each ( ), 0, is a join semi-sublattice of Cl δ ( ), (iii) is minimally and maximally extendable, and closed by prefix.

Constructibility by interval doubling.

For this section, we can refer to Section 2.4 of Chapter 1.

The aim of this section is to introduce a sufficient condition on a graded subset of Cl δ for the fact that each ( ), 0, is constructible by interval doubling. We shall moreover describe explicitly the sequence of interval doubling operations involved in the construction of ( ) from the trivial lattice.

Let

be a nonempty subposet of Cl δ ( ) for a given fixed size 1. Let us denote by m( ) the letter max{ : ∈ }. For any

Observe that is a subposet of while may contain δ-cliffs that do not belong to . The derivation of is the set 

This map φ is well-defined because, respectively, one has = for any

Lemma 1.3.6 holds, I is in particular a subset of , and satisfies (N2). Let now ψ : → [I] be the map satisfying

By similar arguments as before, this map ψ is well-defined. Moreover, by construction, ψ is the inverse of φ. Therefore, φ is a bijection. The fact that φ is a poset embedding comes by definition of φ and from the fact that, due to the property of to be nested, for any ∈ \ , all elements greater than in do not belong to . Thus, [I] is isomorphic as a poset to . By assuming that is nested, the sequence of derivations from is the sequence

of subsets of Cl δ ( ). Observe that due to (N1), for any

Given a graded subset of Cl δ , we say by extension that is nested if for all 0, the posets ( ) are nested.

P

. We proceed by induction on . When = 0, the property is trivially satisfied. Let ∈ ( ) such that 1 and e ( ) = e ( ) Since is closed by prefix, we have = and = where ∈ ( -1) and ∈ N. By definition of e , we have e (

) = e ( ) and e ( ) = e ( ) where ∈ N. Hence, e ( ) = e ( ) which leads, by induction hypothesis, to the fact that = . Moreover, we deduce from this and from the definition of the -elevation map that there are exactly letters smaller than such that ∈ and that there are exactly letters smaller than such that ∈ .

Therefore, we have = and thus = , establishing the injectivity of e . L 1.3.11. Let δ be a range map and be a closed by prefix graded subset of Cl δ . The -elevation image is closed by prefix.

P

. Let 0 and ∈ ( ). Then, there exists ∈ ( ) such that e ( ) = .

Let be a prefix of . Since is closed by prefix, the prefix of of length := | | belongs to ( ). Moreover, by definition of e , we have e ( ) = . Therefore, ∈ , implying the statement of the lemma. P 1.3.12. Let δ be a range map and be a closed by prefix graded subset of Cl δ such that for any ∈ , implies F ( ) ⊆ F ( ). For any 0, the map e -1 is a poset morphism from ( ) to ( ).

P

. First, by Proposition 1.3.10, the map e -1 is well-defined. We now proceed by induction on . When = 0, the property is trivially satisfied. Let and be elements of ( ) such that 1 and . By Lemma 1.3.11, we have = and = where ∈ ( -1) and ∈ N. By definition of e -1 , we have e -1 ( ) = e -1 ( ) and e -1 ( ) = e -1 ( ) where ∈ N. Since , one has so that, by induction hypothesis, e -1 ( ) e -1 ( ) Moreover, implies that . Due to the fact that F ( ) ⊆ F ( ), one has by definition of e -1 that . Therefore, e -1 ( ) e -1 ( ) which implies the statement of the proposition. Proposition 1.3.12 says that when is closed by prefix, for any 0, the poset ( ) is an order extension of ( ).

1.3.5. Cubic realizations. As for the cubic coordinate lattices in Chapter 2 and for the Hochschild lattices in Chapter 3, the poset Cl δ and these graded subsets admit a cubic realization. Let us recall and generalize some definitions seen in Section 2.1 of Chapter 2.

Let be a graded subset of Cl δ . For any 0, the realization of ( ) is the geometric object C( ( )) defined in the space R and obtained by placing for each ∈ ( ) a vertex of coordinates ( 1), and by forming for each ∈ ( ) such that an edge between and . Remark that the posets of Figure 1.1 represent actually the realizations of δ-cliff posets. We will follow this drawing convention for all the next figures of posets in all the sequel. When is straight, every edge of C( ( )) is parallel to a line passing by the origin and a point of the form (0 0 1 0 0). In this case, we say that C( ( )) is cubic.

Let us assume from now that is straight. Let ∈ ( ) such that . The word is cell-compatible with if for any word of length such that for any ∈ [ ], 2.1.2. Posets. For any 0, the subposet Av δ ( ) of Cl δ ( ) is the δ-avalanche poset of order . Figure 2.1 shows the Hasse diagrams of some m-avalanche posets.

Let δ be a weakly increasing range map. Notice that in general, Av δ ( ) is not bounded. Since for all ∈ Av δ ( ), ω( ) δ( ), we have ∈ max Av δ ( ) if and only if ω( ) = δ( ). Moreover, due to the fact that any δ-cliff obtained by decreasing a letter in a δ-avalanche is also a δ-avalanche, the poset Av δ ( ) is the order ideal of Cl δ ( ) generated by max Av δ ( ). Finally, as a particular case, we shall show as a consequence of upcoming Proposition 2.2.10 that for any 0 and 1, # max Av m ( ) = cat ( -1). P 2.1.3. For any weakly increasing range map δ and 0, the poset Av δ ( ) (i) is straight, where ∈ Av δ ( ) is covered by ∈ Av δ ( ) if and only if there is an ∈ [ ] such that ↑ ( ) = , (ii) is coated, (iii) is graded, where the rank of an avalanche is its weight, (iv) admits an EL-labeling, (v) is a meet semi-sublattice of Cl δ ( ), (vi) is a lattice if and only if δ = 0 ω .

P

. Points (i), (iii), (v), and (vi) are immediate. If and are two δ-avalanches of size such that , then for any ∈ [ -1], ω( 1) ω( 1). Therefore, the δ-cliff

is a δ-avalanche. For this reason, (ii) checks out. Point (iv) follows from (ii), and Theorem 1.3.2. 

δ-hill posets. We now introduce δ-hills and δ-hill posets as subposets of δ-cliff

posets. As we shall see, some of these posets are sublattices of m-cliff lattices.

2.2.1. Objects. For any range map δ, let Hi δ be the graded subset of Cl δ containing all δ-cliffs such that that for any

+1 . Any element of Hi δ is a δ-hill. For instance, Hi 2 (3) = {000 001 011 002 012 022 003 013 023 004 014 024}

(2.2.1) P 2.2.1. For any weakly increasing range map δ, the graded set Hi δ is (i) closed by prefix, (ii) is minimally extendable if and only if δ = 0 ω , (iii) is maximally extendable.

P

. Point (i) is an immediate consequence of the definition of δ-hills. We have immediately that Hi 0 ω is minimally extendable. Moreover, when δ = 0 ω , there is an 1 such that δ( ) 1. Therefore, 1δ ( ) is a δ-hill but 1δ ( ) 0 is not. This establishes (ii). Finally, since for any 0, δ( + 1) δ( ), one has δ( + 1) for any ∈ Hi δ ( ). This shows that δ( + 1) is a δ-hill. Therefore, (iii) holds.

There is a one-to-one correspondence between Hi m ( ) and the set of -Dyck paths Dy ( ) seen in Section 1.1.4 of Chapter 1. This bijection sends an -Dyck path of size to the m-hill of size such that for any 

Since is in particular a δ-cliff of size , then δ( ), so that ∈ Av δ ( ). This shows that Hi δ ( ) is a subset of Av δ ( ). Now, let be an δ-avalanche of size . Let us show by induction on 0 that there exists ∈ Hi δ ( ) such that e Hi δ ( ) = . When = 0, the property is trivially satisfied. When 1, since Av δ is, by Proposition 2.1.1, closed by prefix, one has = for a ∈ Av δ ( -1) and an ∈ N. By induction hypothesis, there exists ∈ Hi δ ( -1) such that e Hi δ ( ) = . Now, let := + -1 and set := . By using what we have proven in the first paragraph, ω( ) = -1 . Since ω( ) + = ω( ) δ( ), we have that δ( ).

Therefore, since moreover -1 , is a δ-hill and it satisfies e Hi δ ( ) = .

2.2.2. Posets. For any 0, the subposet Hi δ ( ) of Cl δ ( ) is the δ-hill poset of order . Figure 2.3 shows the Hasse diagrams of some m-hill posets. The 1-hill posets are the Stanley lattices seen in Section 1.3.9 of Chapter 1. Therefore, the δ-hill posets can be seen as generalizations of these structures. P 2.2.3. For any weakly increasing range map δ and 0, the poset Hi δ ( ) is (i) straight, where ∈ Hi δ ( ) is covered by ∈ Hi δ ( ) if and only if there is an ∈ [ ] such that ↑ ( ) = , (ii) coated, (iii) nested, (iv) graded, where the rank of a hill is its weight, (v) EL-shellable, (vi) a sublattice of Cl δ ( ), (vii) constructible by interval doubling. . . Hasse diagrams of some δ-hill posets.

P

. Points (i), (ii), (iii), (iv), and (vi) are immediate. Point (v) follows from (ii) and Theorem 1.3.2. Point (vii) is a consequence of Theorem 1.3.9 since (iii) holds and, from Proposition 2.2.1, of the fact that Hi δ is closed by prefix. Alternatively, (vii) is implied by (vi) and the fact that any sublattice of a lattice constructible by interval doubling is constructible by interval doubling [START_REF] Day | Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices[END_REF], which is indeed the case for Cl δ ( ). 

P

. It follows from Proposition 2.2.4 and its description of the output-wings of Hi m+1 ( ) that θ is a well-defined map. Let θ : (Hi m+1 )( ) → Hi m ( ) be the map defined for any ∈ (Hi m+1 )( ) and ∈ [ ] by θ ( ) := -+ 1 It follows also from Proposition 2.2.4 that θ is a well-defined map. Now, since by definition of θ , both θ • θ and θ • θ are identity maps, θ is a bijection. Finally, the fact that θ is a translation implies that θ is a poset embedding.

As a consequence Proposition 2.2.5, for any 1 and 0, the number of inputwings in Hi m ( ) is cat -1 ( ).

Conversely, let us prove by induction on that for any ∈ Av δ ( ), there exists a δ-canyon such that e Ca δ ( ) = . If = 0, the property holds immediately. Let = be a δ-avalanche of size + 1 where ∈ Av δ ( ) and ∈ N. By induction hypothesis, there is ∈ Ca δ ( ) such that e Ca δ ( ) = . Since is a δ-avalanche, δ( + 1) -ω( ). Now, by (2.3.6), since there are 1 + δ( + 1) -ω( ) different letters such that is a δ-canyon, there is in particular a δ-canyon = such that e Ca δ ( ) = .

P 2.3.6. For any increasing range map δ and any 0, the map φ : Ca δ ( ) → Hi δ ( ) defined by φ := e - Hi m is a well-defined map and is a bijection from Av m ( ) to Hi m ( ). Therefore, the statement of the proposition follows.

As a consequence of Proposition 2.3.6, for any 0, m-canyons are enumerated by m-Fuss-Catalan numbers.

2.3.2. Posets. For any 0, the subposet Ca δ ( ) is the δ-canyon poset of order . Figure 2.5 shows the Hasse diagrams of some m-canyon posets. We have already seen that the 1-canyons are the Tamari diagrams. Moreover, as we have seen in Section 1.2.4 of Chapter 1, the set of these objects of size is in one-to-one correspondence with the set of binary trees with nodes. It is also known that the componentwise comparison of Tamari diagrams is the Tamari order (see Section 1.3.7 of Chapter 1). As for the several generalizations of the Tamari posets evoked in Section 1.3.7 of Chapter 1, our δ-canyon posets can be seen as different generalizations of Tamari posets. For any 2, the Remark that, from the definition of m-canyons and the the description of (Ca m ) brought by Proposition 2.3.8, for any ∈ (Ca m ), all m-canyons such that are also input-wings of Ca m . For this reason, for any 0, (Ca m )( ) is an order filter of Ca m ( ). P 2.3.9. For any 1 and 0, the map θ : (Ca m )( ) → (Ca m+1 )( ) defined for any ∈ (Ca m )( ) and ∈ [ ] by θ(

is a poset isomorphism.

P

. It follows from Proposition 2.3.8 and its descriptions of the input-wings and butterflies of Ca m ( ) and Ca m+1 ( ) that θ is a well-defined map. Let θ : (Ca m+1 )( ) → (Ca m )( ) be the map defined for any ∈ (Ca m+1 )( ) and ∈ [ ] by θ ( ) := 1 =1 ( -+ 2) It follows also from Proposition 2.3.8 that θ is a well-defined map. Now, since by definition of θ , both θ • θ and θ • θ are identity maps, θ is a bijection. Finally, the fact that θ is a translation implies that θ is a poset embedding. P 2.3.10. For any 1 and 1, the set J(Ca m ( )) contains all mcanyons having exactly one letter different from 0. By Proposition 2.3.10, the number of join-irreducibles elements of Ca m ( ) satisfies, for any 1 and 1, #J(Ca m ( )) = 2

(2.3.12)

Since by Proposition 2.3.7, Ca m ( ) is constructible by interval doubling, (2.3.12) is also the number of its meet-irreducible elements [START_REF] Grätzer | Lattice Theory: Special Topics and Applications[END_REF].

2.3.3. Cubic realization. Let 1 and 0. For any output-wing of Ca m ( ), we define ρ( ) as the m-canyon ⇑ Ca ( ), where is the m-cliff obtained by incrementing by 1 all letters of except the first one. For instance, the output-wing 01007 of Ca 2 (5) is sent by ρ to the 2-canyon ⇑ Ca 2 (02118) = 02348. We call ρ( ) the left-to-right increasing of . This map is not a poset embedding because, for m := 2 and := 3, ρ(010) = 023 013 = ρ(002) but 010 and 002 are incomparable. P 2.3.11. For any 1, 0, and ∈ (Ca m )( ), (i) the map ρ is a poset morphism and a bijection between (Ca m )( ) and (Ca m )( ), (ii) the m-canyon is cell-compatible with the m-canyon ρ( ), (iii) the cell ρ( ) is pure, (iv) all cells of { ρ( ) : ∈ (Ca m )( )} are pairwise disjoint.

P

. Let us first prove that ρ is a well-defined map. By Proposition 2.3.8, since for all ∈ [2 ],

< m( ), the word obtained by incrementing by 1 all its letters except the first one is an m-cliff. Moreover, since by Proposition 2.3.1, Ca m is maximally extendable, := ⇑ Ca m ( ) is a well-defined m-canyon. Since by construction, for all ∈ [2 ], = 0, each word obtained by replacing by 0 a letter in is an m-canyon. Therefore, covers -1 elements of Ca m ( ). These elements are obtained by decreasing by some value, due to the fact that by Proposition 2.3.7, Ca m is straight. For this reason, is an input-wing, showing that ρ is a well-defined map from (Ca m )( ) to (Ca m )( ). Let us now define the map ρ : (Ca m )( ) → (Ca m )( ) as follows. For any

It is straightforward to prove that ρ is a well-defined map. Moreover, by induction on 0, one can prove that both ρ • ρ and ρ • ρ are identity maps. This establishes (i).

Let be an m-cliff satisfying ∈ { ρ( ) } for any ∈ [ ]. Since ρ is the inverse map of ρ, this is equivalent to the fact that ∈ {ρ ( ) } for all ∈ [ ], where is the input-wing ρ( ) of Ca m ( ). Therefore, by definition of ρ , 1 = 0 and ∈ {0 -1} for is an orthotope. This leads to the stated expression for the volume of the cubic realization of Ca m ( ).

Poset morphisms and other interactions.

The purpose of this part is to state the main links between the three posets Av δ , Hi δ , and Ca δ when δ is an increasing range map. We shall also consider their subposets formed by their input-wings, output-wings, and butterflies elements in the particular case where δ = m for an 0.

2 )) Moreover, by the above remark, this implies φ( ) φ( ) . Therefore, we have φ( ) φ( ), establishing the statement of the theorem.

Even if, by Proposition 2.3.6, e -1 Hi δ • e Ca δ : Ca δ ( ) → Hi δ ( ) is a bijection, this map is not a poset isomorphism. This is the case since there does not exist for instance a poset isomorphism between Ca 1 (3) and Hi 1 (3) -their Hasse diagrams are not superimposable. Moreover, as a consequence of Theorem 2.4.2, for any 0, Hi δ ( ) is an order extension of Ca δ ( ). Furthermore, it is possible to show by induction on the length of the δ-canyons and by using Lemma 2.3.3 that Ca δ satisfies the prerequisites of Proposition 1.3.12. Therefore, Ca δ ( ) is an order extension of Av δ ( ).

where, for any ∈ Cl δ , F ⊗ F ∆(F ) is the coefficient of F ⊗ F in ∆(F ). Therefore, 

the product • of Cl δ is not associative.

We now establish a link between this product • on the F-basis of Cl δ and the posets Cl δ ( ), 0, introduced and studied in the previous sections. For this, let for any 

P

. First, by Proposition 3.3.1, Cl is a well-defined unital associative algebra quotient of Cl δ . Now, the product F • F in Cl can be computed as the image by θ of the product of the same inputs in Cl δ . By Theorem 3.1.4, this product is equal to zero or its support I is an interval of a δ-cliff poset. By construction of Cl , the support of the product F • F in Cl is equal to I := I ∩ . If (i) holds, then by Lemma 3.3.2, I admits both a minimal and a maximal element. If (ii) holds, then by Lemma 3.3.2, I admits a minimal element, and by Lemma 3.3.3, S admits a maximal element. In both cases, I is an interval of a poset ( ), 0.

3.3.3.

Examples: two Fuss-Catalan associative algebras. We define and study the associative algebras related to the m-hill posets and to the m-canyon posets.

Hill associative algebras. For any 0, let Hi be the quotient Cl Hi m . This quotient is well-defined due to the fact that Hi m satisfies the conditions of Proposition 3. We can observe that for any 1, Hi is not free as unital associative algebra. Indeed, the quasi-inverse of the respective generating series of these elements is not the Hilbert series of Hi , which is expected when this algebra is free.

Canyon associative algebras. For any 0, let Ca be the quotient Cl Ca m . This quotient is well-defined due to the fact that Ca m satisfies the conditions of Proposition 3. The associative algebra Ca 1 is the Loday-Ronco algebra [START_REF] Loday | Hopf Algebra of the Planar Binary Trees[END_REF], also known as PBT [START_REF] Hivert | The algebra of binary search trees[END_REF]. It is known that this associative algebra is free and that the dimension of its generators are a shifted version of Catalan numbers: 0 1 1 2 5 14 42 132 429 (3.3.16)

The sequence for the numbers of generators of Ca 2 degree by degree begins by 0 1 2 7 30 149 788 4332 (3.3.17)

We can observe that for any 2, Ca is not free as unital associative algebra. It follows, from the same argument as the previous section, that Ca is not free.

Perspectives

To conclude this thesis, we propose several possible directions of research, in the continuity of the presented work. Except for the last axis of research, the first three concern cubical lattices, meaning lattices admitting a cubical realization, notion introduced in this thesis.

Cubical lattices and polytopes

Tamari lattices are known to be the 1-skeletons of the associahedra, also called the Stasheff polytopes. More precisely, the Hasse diagrams of the Tamari lattices are the edges and vertices of the associahedra.

Among the lattices presented in this work, two are, up to continuous deformation, the 1-skeletons of known cell complexes. Thus, we saw in Chapter 2 that the posets of cubic coordinates seem to be the 1-skeletons of the diagonal of the associahedra [Lod11, SU04, MS06]. Likewise, in Chapter 3, the Hochschild lattices seem to be the 1-skeletons of the Hochschild polytopes, also called the freehedron.

Study the links between cubical lattices and polytopes is the first axis of research proposed. More precisely, it seems that if a lattice admits a cubical realization, it is possible to build, under some rules to find, a cell complex. The reversal question can be also addressed: for any polytope, can we find a cubical lattice which is this 1-skeleton?

In Chapter 4, we study several family of cubical lattices. A first approach consists in finding geometric realizations of these posets, giving cell complexes. Then, knowing that these lattices are related to each other, we can look for links between these realizations. For instance, by finding a certain truncations process to build the cell complexes associated to the canyon lattices from the cell complexes associated to the cliff lattices.

The core label order of cubical lattices

Lattices which are constructible by interval doubling, or congruence uniform lattices, admit an alternative way to order their elements. This order is called the core label order [START_REF] Mühle | The core label order of a congruence-uniform lattice[END_REF] and was first considered under the term of shard intersection order by Reading in the context of posets of regions of hyperplane arrangements [START_REF] Reading | Noncrossing partitions and the shard intersection order[END_REF]. In this quoted article, Reading proves that the core label order of the Tamari lattice is isomorphic to the lattice of noncrossing partitions. Recently, Mühle shows in [START_REF] Mühle | Hochschild lattices and shuffle lattices[END_REF] that the Hochschild poset admits also a lattice as core label order. More than that, he shows that 147