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Abstract

In this thesis, we investigate different facets of localization and communication ser-
vices motivated by the symbiosis between them in the millimeter wave (mm-Wave)
context for the fifth generation (5G) of wireless communications. Our aim is twofold:
first, show that this duality is mutually beneficial to both services, and second, aim
towards a co-existence to capture these benefits in order to bring forth mm-Wave
as a strong contender for 5G. First, we look into how beamforming, an integral
part of mm-Wave communications, can aid in improving the localization perfor-
mance. After characterizing the localization performance in terms of Cramér-Rao
lower bound (CRLB), we show that with optimized beamforming, the estimation of
localization variables (delay, angle of departure (AoD) and angle of arrival(AoA))
improves. Then we consider the problem of co-existence of the two services to-
gether in the same system while sharing time and frequency resources. We study
the non-trivial trade-off between the performances of the two services during this
resource budgeting. Then, relying on this trade-off, we design an optimal resource
allocation scheme while also optimizing the beamwidth in order to ascertain high
performance in terms of both localization and communication. In the same con-
text, we also look into different applications of this improved location information
namely initial access, channel estimation and simultaneous localization and com-
munication (SLAM). We show that the related performances improve in terms of
quality, latency and/or complexity in comparison to the conventional methods.





v

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor
Dr. Benoît Denis for his support, enthusiasm, patience and dedication towards
every aspect of my Ph.D. studies. I would like to thank him for being available
irrespective of the time or day. He allowed me a lot of freedom to divulge into
different research aspects while simultaneously ensuring that I do not deviate too
much. In addition, he covered me almost in almost all the bureaucratic aspects of
my Ph.D. (as complicated as it can be) thus allowing me to stay focused on my
research. Without his guidance, this research and this dissertation would not have
seen the light and I am eternally grateful to him for these three years.

Additionally, I would also like to express my thanks to my thesis directors
Prof. Dr. Bernard Uguen and Prof. Dr. Davide Dardari for their continuous sup-
port and guidance during the course of these three years. They provided me with
both technical feedback that helped me maintain the quality of my work and moral
support that motivated me to keep going forward.

I gratefully acknowledge the funding received towards this work in part by Eu-
ropean H2020 project SECREDAS, which is funded through the specific ECSEL
Joint Undertaking research and innovation program (GA No. 783119).

Moreover, I would like to extend my sincere gratitude towards Prof. Dr. Henk
Wymeersch for lending me his expertise and always providing me with new ideas
and constructive support during our collaboration. I am grateful for his friendly
guidance, patience and for always being available during our work together. I learnt
a great deal from him.

Similarly, I would also like to thank Dr. Antonio De Domenico and Gourab
Ghatak for their significant efforts during our collaboration. I enjoyed all our dis-
cussions and it was a pleasure to work with them.

I would also like to take this moment to thank Prof. Dr. Giuseppe Abreu for
being an inspirational figure during my time at Jacobs University. He was the
person who taught me all the fundamental aspects and details of research. Without
the personal and intellectual growth I had under him, I would not be in this position
today.



vi

I would also like to thank Prof. Dr. Geneviève Baudoin, Prof. Dr. Gonzalo Seco-
Granados, Prof. Dr. Dirk Slock, Prof. Dr. Henk Wymeersch and Prof. Dr. Giuseppe
Abreu for agreeing to take part in the dissertation committee.

I gratefully acknowledge all my friends who have helped me during the past three
years. I am especially grateful to Papuli with whom I have shared an unforgettable
journey for 8 years. A big thanks to my friends in Grenoble Luiz, Moises, Federico,
Sandip, Walter, Ujjwol, Shriprem, Kyunghwa, Bikash, Bikram, Angela, Nieves, Ekki,
Hakim, Imane, Aleksandra, Ibtissam, Subash and Sudishna for helping me ease in
the life of Grenoble very well. I am also grateful to all my friends in Germany,
Bishesh, Karish, Abhinandan, Monita, Anuraag, Grishma, Jason and Pritam for
still managing to find the time to spend with me during these three years despite
the distance. Likewise, I would like to thank Paras, Krishna, Neeraj and Sadeep
for always motivating me to keep going. The times I spent with you all are precious
to me and will always be in my memory.

I would, further, like to express my sincere gratitude towards my German family,
Ina Ahrens and Bernd Giesecke, who have always been so welcoming towards me
and have been a vital part of my life in Europe. They have helped me fill the
cultural gap between my home and Europe and have really become my second
family. Thank you for being there for me for the past 8 years.

I would also like to say a heartfelt thank you to my late grandfather Komal
Mudvari and my grandmother Maiya Mudvari for being such an important part of
my childhood and growing up.

Last but not the least, I owe a huge debt of gratitude to my mother Rekha
Koirala, my father Madhav Prasad Koirala and my brother Devyanshu Koirala for
all the sacrifices, love, support, encouragement and motivation they have provided
me throughout my life. They have always shown enthusiasm towards every one of
my small achievements and it has only helped me move forward with even more
vigour. Without your immense support, I would not be in this position and I am
extremely grateful to you.



vii

Contents

Abstract iii

Acknowledgements v

Acronyms xxi

1 Introduction 1
1.1 5G claims and requirements . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of 5G mm-Wave technology . . . . . . . . . . . . . . . . . 3

1.2.1 Millimeter waves . . . . . . . . . . . . . . . . . . . . . . . . 3
Free space pathloss . . . . . . . . . . . . . . . . . . . . . . . 5
Environmental effects . . . . . . . . . . . . . . . . . . . . . . 5
Blockages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 MIMO and beamforming . . . . . . . . . . . . . . . . . . . . 7
Uniform linear array . . . . . . . . . . . . . . . . . . . . . . 8
MIMO beamforming architectures . . . . . . . . . . . . . . . 9

1.2.3 mm-Wave MIMO channel model . . . . . . . . . . . . . . . . 11
1.3 Localization: Overview and prospects in 5G . . . . . . . . . . . . . 12

1.3.1 Intrinsic 5G mm-Wave benefits with respect to localization . 14
Sparse multipath channel . . . . . . . . . . . . . . . . . . . . 15
Large bandwidth availability . . . . . . . . . . . . . . . . . . 15
Large number of antennas . . . . . . . . . . . . . . . . . . . 16
Ultra dense networks . . . . . . . . . . . . . . . . . . . . . . 16
D2D communications . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Duality between mm-Wave localization and communication . . . . . 17
1.4.1 Beamforming optimization . . . . . . . . . . . . . . . . . . . 17
1.4.2 Resource allocation . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.3 Initial access . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.4 Channel estimation and environment mapping . . . . . . . . 19

1.5 Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6 Related contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 21



viii

2 Localization-oriented beamforming 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Methodology and organization . . . . . . . . . . . . . . . . . . . . . 25
2.4 Bound based localization performance characterization . . . . . . . 27
2.5 Beamforming optimization in a single-user scenario . . . . . . . . . 27

2.5.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.2 Beamforming optimization . . . . . . . . . . . . . . . . . . . 29

FIM reformulation for a single subcarrier . . . . . . . . . . . 30
CRLB reformulation for a single subcarrier . . . . . . . . . . 31
Optimization problem for a single subcarrier . . . . . . . . . 31
CRLB reformulation for multiple subcarriers . . . . . . . . . 32
Optimization problem for multiple subcarriers . . . . . . . . 33
Recovery of beamforming vector . . . . . . . . . . . . . . . . 34

2.5.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . 34
System parameters and simulation setup . . . . . . . . . . . 34
Results and analysis . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Beamforming optimization in a multi-user scenario . . . . . . . . . 38
2.6.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.2 Beamforming optimization . . . . . . . . . . . . . . . . . . . 40

FIM for a single subcarrier . . . . . . . . . . . . . . . . . . 40
FIM for multiple subcarriers . . . . . . . . . . . . . . . . . . 41
CRLB formulation for multiple subcarriers . . . . . . . . . . 41
SPEB and SOEB . . . . . . . . . . . . . . . . . . . . . . . . 42
Localization error for a single-user . . . . . . . . . . . . . . . 42
Localization error for multiple users . . . . . . . . . . . . . . 45

2.6.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . 47
System parameters and simulation setup . . . . . . . . . . . 48
Results and analysis . . . . . . . . . . . . . . . . . . . . . . 48

2.7 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Localization-Communication services trade-off study 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Methodology and organization . . . . . . . . . . . . . . . . . . . . . 55
3.4 Standalone localization and communication services . . . . . . . . . 56

3.4.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.2 Frequency sharing . . . . . . . . . . . . . . . . . . . . . . . . 57



ix

3.4.3 Time sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Simultaneous multi-user assessment . . . . . . . . . . . . . . 59
Sequential multi-user assessment . . . . . . . . . . . . . . . 60

3.4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Joint localization and communication services . . . . . . . . . . . . 63

3.5.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Network geometry and BS characteristics . . . . . . . . . . . 63
Path-loss model . . . . . . . . . . . . . . . . . . . . . . . . . 64
Received signal model . . . . . . . . . . . . . . . . . . . . . 65

3.5.2 Frequency sharing . . . . . . . . . . . . . . . . . . . . . . . . 65
Transmission policy and model . . . . . . . . . . . . . . . . 65
Positioning error, data rate coverage and beam selection error 66
Numerical results . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5.3 Time sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Transmission policy and model . . . . . . . . . . . . . . . . 74
Beam dictionary . . . . . . . . . . . . . . . . . . . . . . . . 75
Localization phase . . . . . . . . . . . . . . . . . . . . . . . 77
Beam selection error . . . . . . . . . . . . . . . . . . . . . . 78
Data service phase . . . . . . . . . . . . . . . . . . . . . . . 79
Numerical results . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Beam optimization in a joint localization-communication system 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Methodology and organization . . . . . . . . . . . . . . . . . . . . . 87
4.4 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Radio frame structure . . . . . . . . . . . . . . . . . . . . . 88
4.4.2 Network geometry . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.3 Millimeter-wave beamforming . . . . . . . . . . . . . . . . . 91
4.4.4 Beam alignment errors . . . . . . . . . . . . . . . . . . . . . 91

Beam selection error . . . . . . . . . . . . . . . . . . . . . . 92
Misalignment error . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.5 Blockage, pathloss, and signal propagation . . . . . . . . . . 93
4.5 Initial access procedure . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6 Localization and communication performance . . . . . . . . . . . . 97

4.6.1 Localization phase . . . . . . . . . . . . . . . . . . . . . . . 97
CRLB of the estimation parameters . . . . . . . . . . . . . . 97



x

Beam selection error characterization . . . . . . . . . . . . . 98
Misalignment error characterization . . . . . . . . . . . . . . 99

4.6.2 Communication phase . . . . . . . . . . . . . . . . . . . . . 99
Effective SINR coverage probability . . . . . . . . . . . . . . 100
Effective rate coverage probability . . . . . . . . . . . . . . . 101

4.6.3 Joint optimization of the beamwidth and radio frame structure101
4.7 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7.1 Initial access phase . . . . . . . . . . . . . . . . . . . . . . . 103
4.7.2 Localization phase . . . . . . . . . . . . . . . . . . . . . . . 105
4.7.3 Localization communication trade-off . . . . . . . . . . . . . 107
4.7.4 Rate coverage performance and trends . . . . . . . . . . . . 108
4.7.5 Optimal partitioning factor and beam dictionary size . . . . 109

4.8 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Applications of multipath angles estimation 113
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3 Methodology and organization . . . . . . . . . . . . . . . . . . . . . 115
5.4 Multipath channel estimation with angle measurements . . . . . . . 116

5.4.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Deployment scenario . . . . . . . . . . . . . . . . . . . . . . 117
Channel model . . . . . . . . . . . . . . . . . . . . . . . . . 118
Communication model . . . . . . . . . . . . . . . . . . . . . 118
AoD and AoA estimation . . . . . . . . . . . . . . . . . . . . 119

5.4.2 AoD and AoA aided channel estimation . . . . . . . . . . . . 120
Channel estimation problem . . . . . . . . . . . . . . . . . . 120
Sectorized beamforming model . . . . . . . . . . . . . . . . . 121
Sensing matrix design . . . . . . . . . . . . . . . . . . . . . 121
AoD and AoA aided beam design . . . . . . . . . . . . . . . 122
Channel estimation algorithm . . . . . . . . . . . . . . . . . 123

5.4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . 125
5.5 SLAM with angle measurements . . . . . . . . . . . . . . . . . . . . 127

5.5.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5.2 Factor graph formulation . . . . . . . . . . . . . . . . . . . . 129

Data association auxiliary variables . . . . . . . . . . . . . . 129
Factor graph of joint distribution . . . . . . . . . . . . . . . 130

5.5.3 Message passing via BP . . . . . . . . . . . . . . . . . . . . 131
BP for marginalization . . . . . . . . . . . . . . . . . . . . . 131



xi

Message passing schedule . . . . . . . . . . . . . . . . . . . . 131
Particle implementation . . . . . . . . . . . . . . . . . . . . 133
Centralized vs distributed approach . . . . . . . . . . . . . . 133

5.5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . 134
5.5.5 System parameters and simulation setup . . . . . . . . . . . 135
5.5.6 Results and analysis . . . . . . . . . . . . . . . . . . . . . . 136

5.6 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Conclusions and future perspectives 139
6.1 Main conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.1 Channel and signal assumptions . . . . . . . . . . . . . . . . 141
6.2.2 Scenario assumptions . . . . . . . . . . . . . . . . . . . . . . 144
6.2.3 Experimental validations . . . . . . . . . . . . . . . . . . . . 146

A Proofs of chapter 2 149
A.1 Proof that coefficients k1 > 0 and k2 > 0 . . . . . . . . . . . . . . . 149
A.2 Proof that xTZx > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 150
A.3 Components of the FIM per sub-carrier . . . . . . . . . . . . . . . . 150
A.4 Components of the FIM for all the sub-carriers . . . . . . . . . . . . 151
A.5 Derivation of localization error . . . . . . . . . . . . . . . . . . . . . 152
A.6 Convex reformulation of the AoD constraint . . . . . . . . . . . . . 155

B Proofs of chapter 3 157
B.1 Data rate optimal beamforming in multi-user case . . . . . . . . . . 157
B.2 Derivation of beam-selection error . . . . . . . . . . . . . . . . . . . 159
B.3 Derivation of SINR coverage probability . . . . . . . . . . . . . . . 160

C Proofs of chapter 4 163
C.1 Derivation of CRLB for distance and AoA . . . . . . . . . . . . . . 163

Bibliography 165





xiii

List of Figures

1.1 Global data traffic growth: past, present and future [2]. . . . . . . . 2
1.2 Spectrum availability in mm-Wave frequencies [12]. . . . . . . . . . 4
1.3 Atmospheric absorption across mm-wave frequencies in dB/km [13]. 5
1.4 Rain attenuation in dB/km across frequency at different rainfall rates

[17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 An example of a ULA array model with Nt antenna elements sepa-

rated by a distance κ transmitting with AoD θ with the beamforming
vector f = [f1, f2, · · · fNt ]T . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 MIMO architecture at mm-Wave based on (a) analog (b) digital and
(c) hybrid beamforming [24]. . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Illustration of the interdependence between localization and commu-
nication services in different facets of 5G. . . . . . . . . . . . . . . . 18

2.1 System model for single-user scenario with AoA (φ), time delay (τ)
and orientation o. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Block diagram for localization accuracy refining with beamforming
in a dynamic tracking scenario. . . . . . . . . . . . . . . . . . . . . 29

2.3 Normalized beam direction with optimal beamformer for θ = 80o

||aTx,f∗,n||22 varied with possible directions in a planar coordinate for
(A) κ = 0.5λc and (b) κ = λc. . . . . . . . . . . . . . . . . . . . . . 35

2.4 Delay error bound after beamforming optimization for MS position
(white circle) at distance 50m and 80o from BS (white square). . . . 35

2.5 AoA error bound after beamforming optimization for MS position
(white circle) at distance 50m and 80o from BS (white square). . . . 36

2.6 Error Bound for the estimation of τ for multicarrier system (N = 64)
as a function of SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Error Bound for the estimation of φ for multicarrier system (N = 64)
as a function of SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Delay error bound after beamforming optimization for different MS
position by BS (white square). . . . . . . . . . . . . . . . . . . . . . 37



xiv

2.9 AoA error bound after beamforming optimization for different MS
position by BS (white square) for a fixed MS orientation parallel to
x axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10 Example of canonical scenario with 1 BS and 2 users with orientations
o1 and o2 at locations q1 and q2 respectively. . . . . . . . . . . . . . 39

2.11 Example of canonical scenario with a BS and 3 users positioned at
different distances from the BS with different orientation. . . . . . . 47

2.12 Example of normalized beam direction for a localization error opti-
mized beamformer in the multi-user case, according to (a) min-max
and (b) proportional fairness strategies . . . . . . . . . . . . . . . . 48

2.13 Example of normalized beam gain (with respect to total gain) with
min-max fairness strategy as a function of the direction in the multi-
user case with βτ = 1, βθ = 1 and βφ = 1. . . . . . . . . . . . . . . . 49

2.14 Example of normalized beam gain (with respect to total gain) with
min-max fairness strategy as a function of the direction in the multi-
user case with βτ = 0, βθ = 1 and βφ = 1. . . . . . . . . . . . . . . . 49

2.15 Power allocation per subcarrier for different values of βτ . . . . . . . 50
2.16 Empirical CDF of the PEB per user (best, worst and average perfor-

mance) for different fairness strategies over 1000 MC trials. . . . . . 50
2.17 Empirical CDF of the OEB per user (best, worst and average per-

formance) for different fairness strategies over 1000 MC trials. . . . 51

3.1 Frequency division framework for localization and communication
services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Time division framework for localization and communication services
with simultaneous multi-user assessment. . . . . . . . . . . . . . . . 60

3.3 Time division in a localization and communication framework with
sequential multi-user assessment. . . . . . . . . . . . . . . . . . . . 61

3.4 Inverse of PEB vs. average rate trade-off for both frequency and time
division strategies among the 3 users. . . . . . . . . . . . . . . . . . 62

3.5 Inverse of OEB vs. average rate trade-off for both frequency and
time division strategies among the 3 users. . . . . . . . . . . . . . . 62

3.6 Model depicting the 1D deployment scenario consisting of 1 BS and
1 user node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Illustration of beam selection error. . . . . . . . . . . . . . . . . . . 68
3.8 SNR coverage probabilities for a threshold of γ = −10 dB vs the

fractional power split for different λ. . . . . . . . . . . . . . . . . . 70



xv

3.9 Beam selection error with respect to beamwidth of the transmit an-
tenna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.10 Distance estimation error vs rate coverage probability for different
power budget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.11 Power allocation for the two services for different operating beamwidths. 72
3.12 Illustration of the beam dictionary elements in case of (A) 2 beams

and (B) N beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.13 Illustration of beam selection error. . . . . . . . . . . . . . . . . . . 78
3.14 Average Beam Selection Error P̄BS varied with the beamwidth for

different λs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.15 SINR Coverage Probability PC(γ,N) varied with N for different βs. 81
3.16 Rate Coverage Probability PR(r0, β,N) varied with N for different βs. 82
3.17 Rate Coverage Probability PR(r0, β,N) varied with (1 − β) for dif-

ferent λs and N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 The proposed radio frame structure for localization assisted mm-
Wave communications. . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 An example system model consisting of a serving BS, an interfering
BS and a user node at distance d from the serving BS. The figure
illustrates the relationship between the BS and user positions and
the localization variables (distance d, AoD θ, AoA φ and the user
orientation o). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4 Illustration of the misalignment error. . . . . . . . . . . . . . . . . . 92
4.5 Flowchart representing the BS and user beam selection procedure as

a part of the localization aided initial access procedure. . . . . . . . 96
4.6 Resolution in the n-th step of the localization-based initial access

strategy for different deployment densities. . . . . . . . . . . . . . . 103
4.7 Comparison of the delay in initial access of our localization-based

strategy to the iterative and exhaustive search strategies. . . . . . . 104
4.8 Gain in SINR coverage with an exhaustive search based initial-access

algorithm for two beam dictionary sizes. . . . . . . . . . . . . . . . 104
4.9 Probability of beam selection error vs the beam dictionary size for

different antenna gains. . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.10 Probability of misalignment error vs the beam dictionary size for

different antenna gains. . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.11 Rate coverage probability at 100 Mbps vs the joint error product

bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



xvi

4.12 Rate coverage probability versus the resource partitioning factor for
different beam dictionary sizes for r0 = 100 Mbps. . . . . . . . . . . 108

4.13 Rate coverage probability versus the resource partitioning factor for
different beam dictionary sizes for r0 = 1 Gbps. . . . . . . . . . . . 109

4.14 Optimal value of β with respect to deployment density and noise. . 110
4.15 Optimal beam-dictionary size with respect to deployment density

and the noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 Illustration of the system model with a BS, a user and k-th scatterer
located at positions q, p and sk respectively. The distance between
the BS and the user through direct path is d0 and through the k-th
scatterer is dk. The AoD and AoA for the k-th path are θk and φk
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Example scenario with NB = NU = 8 with both BS and user main
lobe directed towards s1. . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Illustration of beam misalignment error due to erroneous estimation
of φ̂k such that Node 1 is not within the transmitted beam. Node 1
might be receiver or scatterer depending on whether it corresponds
to the direct path or not. . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Beamwidth achieved for different channel estimation methods varied
with total channel estimation duration. . . . . . . . . . . . . . . . . 126

5.5 NMSE comparison for different channel estimation methods varied
with total channel estimation duration. . . . . . . . . . . . . . . . . 126

5.6 Example system model with 3 BS positioned at x1, x2 and x3 and 1
user positioned at s0 with orientation o along with two scatterers at
s1 and s2 and the AoD and AoA of the LOS paths with respect to
BS1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7 Factor graph representation of the posterior distribution in equation
(5.23). In the graph, we have introduced the short form notation fk
to represent p(sk), vk to represent v(ak, s0, sk) andmp, p = 1, · · · , P
represents the p-th element of the set M. The factor and variable
nodes are represented inside squares and circles respectively. . . . . 131

5.8 Factor graph with distributed BP (for performance comparison only).
For notational convenience, vk,i represents v(ak,i, s0, sk) and ψk1,k2 =

ψ(ak1,i, bk2,i) ∀i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.9 Marginal distribution with σ2

θ = σ2
φ = 1 deg2 with the proposed

method. The diamonds, squares and circle represent the true posi-
tions of the 3 BSs, 2 scatterers and the user respectively. . . . . . . 135



xvii

5.10 Marginal distribution with σ2
θ = σ2

φ = 1 deg2 with the distributed
method [125]. The diamonds, squares and circle represent the true
positions of the 3 BSs, 2 scatterers and the user respectively. . . . 136

5.11 CDF plot comparison of the RMSE error between the proposed cen-
tralized and the distributed BP based methods with 1 deg2 variance. 137

6.1 Extension of the beam-selection error model into two dimensions. . 144





xix

List of Tables

1.1 Popular physical layers used in localization, their frequency band-
width, and the raw sample spatial resolution each offers. The raw
resolution is defined as the distance light travels between sampling
instants at that bandwidth (Raw resolution = Speed of light / Band-
width) [39, 40]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Comparison of average number of mm-Wave multipath clusters mea-
sured with different measurement scenarios. . . . . . . . . . . . . . 15





xxi

Acronyms

1G first generation.
2D two dimensional.
2G second generation.
3D three dimensional.
3G third generation.
3GPP 3rd Generation Partnership Project.
4G fourth generation.
5G fifth generation.

AoA angle-of-arrival.
AoD angle-of-departure.

BCRLB Bayesian Cramér-Rao lower bound.
BP belief propagation.
BS base station.

CBF conventional beamformer.
CDF cumulative distribution function.
CRLB Cramér-Rao lower bound.

D2D device-to-device.
DAC digital-to-analog converter.

EB exabytes.
eMBB enhanced mobile broadband.
ESPRIT estimation of signal parameters via rotational invariance.

FIM Fisher information matrix.
FSPL free space pathloss.

GNSS global navigation satellite system.
GPS Global Positioning System.

IoT internet of things.



xxii

ITU International Telecommunication Union.

LOS line-of-sight.

MC Monte Carlo.
MIMO Multiple-input multiple-output.
mm-Wave millimeter wave.
mMTC massive machine type communication.
MS mobile station.
MUSIC multiple signal classification.

NLOS non-line-of-sight.
NMSE normalized mean square error.

OEB orientation error bound.
OFDM orthogonal frequency-division multiplexing.
OMP orthogonal matching pursuit.

PEB position error bound.
PPP Poisson point process.

QoS quality of service.

RAT radio access technique.
RF radio frequency.
RMSE root mean squared error.
RSSI received signal-strength indicator.

SDP semidefinite problem.
SINR signal-to-interference-plus-noise ratio.
SLAM simultaneous localization and mapping.
SNR signal-to-noise ratio.
SOEB squared orientation error bound.
SOMP simultaneous orthogonal matching pursuit.
SPEB squared position error bound.

TDoA time difference of arrival.
ToA time of arrival.

UE user equipment.
ULA uniform linear array.
URLLC ultra-reliable low latency communication.



xxiii

V2V vehicle-to-vehicle.

Wi-Fi wireless fidelity.





xxv

List of Notations

R domain of real numbers
C domain of complex numbers

x vector notation
X matrix notation

(·)T transpose of a vector or a matrix
(·)H conjugate transpose of a vector or a matrix
(·)−1 inverse of a matrix

diag(x) diagonal matrix with entries from x

diag(X1,X2) block diagonal matrix with X1 and X2 as the block components
⊗ Kronecker product
trace(·) trace of a matrix
vec(·) vectorization of a matrix
rank(·) rank of a matrix
E[·] expectation operator

|| · ||p p-norm of a vector or a matrix
<(·) real operator
=(·) imaginary operator
d·e ceiling operator
b·c floor operator

IN identity matrix of size N ×N
0N zero matrix of size N ×N
en Euclidean space standard basis vector with n-th element as 1





xxvii

List of Symbols

ULA antenna model
aTx ULA antenna response vector at transmitter
aRx ULA antenna response vector at receiver
Nt Number of antenna elements in transmitter antenna array
Nr Number of antenna elements in receiver antenna array
GTx Transmitter antenna gain
GRx Receiver antenna gain

Beamforming model
f Transmit beamforming column vector
w Receive beamforming column vector
γTx Main lobe transmitting antenna gain in the sectorized model
ωTx Main lobe beamwidth of the transmitting antenna rad
γRx Main lobe receiving antenna gain in the sectorized model
ωRx Main lobe beamwidth of the receiving antenna rad
g Side-lobe antenna gain in the sectorized model

mm-Wave channel model
h Complex channel coefficient
hR Real part of the complex channel coefficient
hI Imaginary part of the complex channel coefficient
θ Angle of departure rad
φ Angle of arrival rad
τ Time delay s
αL LOS path loss exponent
αN NLOS path loss exponent

mm-Wave network geometry
ξ BS process
λ BS process intensity
dS Radius of the LOS ball m



xxviii

da Distance between the serving and the nearest interfering BS m
hB Height of the BS m

Signal model
PTx BS transmit power dBm
s(t) Transmitted signal
fc Center frequency of transmitted signal Hz
λc Wavelength of transmitted signal m
B Bandwidth of the transmitted signal Hz
c Speed of light ms−1

N0 Noise power spectral density dBm/Hz
σ2
N Total noise power dBm



xxix

Dedicated to:
My parents

Madhav Prasad Koirala & Rekha Koirala
and

My brother
Devyanshu Koirala.





1

Chapter 1

Introduction

1.1 5G claims and requirements

Since its conception in early 1980s, we have been witnessing recurrent revolution-
ary leaps being made in the field of wireless communication networks [1]. The first
generation (1G) of mobile communication was characterized by analog transmission
of speech signals. The proneness of these analog signals to noise paved the way for
the first digital system realized in second generation (2G) systems, offering digi-
tal speech transmission and low data rate services (e.g. short messaging service)
with the downlink peak rate of up to 1.2 Mbps. Then the start of century oversaw
a considerable advancement in the technology with the introduction of the third
generation (3G) with services such as high speed internet access, audio and video
streaming capabilities, accompanied by the rapid and massive deployment of nav-
igation technologies such as Global Positioning System (GPS) with downlink peak
rate of up to 42 Mbps. The success brought in by 3G has been further embold-
ened by the new heights of achievable data rate (up to 1Gbps downlink peak rate)
improving even further user experience in the fourth generation (4G) systems.

Despite the huge technological progress in-between the generations, the com-
mon theme in this evolution, however, is clear: accommodating the ever increasing
traffic and throughput demands of data-driven applications for better user expe-
rience. As evidenced in Fig. 1.1, mobile data traffic is expected to increase to an
unprecedented level of 131 exabytes (EB) per month in 2024, as compared to just 3
EB a decade earlier [2]. In addition, the same report predicts an increase of global
mobile subscriptions to 8.8 billion in 2024 in comparison with 6.8 billion within the
same time frame. This growth in mobile data traffic and number of devices has
put forth a huge challenge for the wireless service providers in the form of "global
spectrum crunch" [3].

Hence, with the 4G technology approaching maturity, the wireless research com-
munity has been actively involved in envisioning the blueprint and setting standards
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Figure 1.1: Global data traffic growth: past, present and future [2].

of fifth generation (5G) wireless networks. 5G promises to meet the expected de-
mands of low-latency, high-rates, reliable and low-cost mobile connectivity and in
the process open access to a plethora of new services and use cases, broadly catego-
rized into three service categories including enhanced mobile broadband (eMBB),
ultra-reliable low latency communication (URLLC) and massive machine type com-
munication (mMTC) [4, 5].

• eMBB: eMBB use cases encompass the data driven use cases, requiring high
data rate and a wide-area coverage even with high user mobility. E.g. Data
heavy multimedia streaming, cloud gaming, augmented and virtual reality.

• URLLC: URLLC use cases consider applications requiring reliably deliver-
ing packets with stringent latency and quality of service (QoS) requirements.
E.g. Remote medical surgery, inter-vehicular communications and the tactile
internet.

• mMTC: mMTC use cases involve massive numbers of connected devices, and
are typically expected to be energy efficient. E.g. massive internet of things
(IoT), large sensor networks.
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To fulfill the needs of these use cases, the key requirements identified for a 5G
system are as follows [6, 7, 8, 9]:

1. Ultra fast with minimum of 20 Gbps peak downlink data rate for eMBB case
as compared to 1 Gbps peak rate in 4G.

2. Low latency with 1 ms round trip latency for URLLC and 4 ms for eMBB
as compared to about 15 ms in 4G [10].

3. Ultra reliable with 99.999% perceived availability. Additionally almost
100% perceived coverage.

4. Massive Connectivity with 1 million devices per km2 in mMTC usage
scenario as compared to a hundred thousand in 4G.

5. Energy Efficient with 90 % reduction in network energy usage and reduction
in power consumption by devices. High sleep ratio and long sleep duration
for the eMBB case.

6. Mobility with ability to achieve the defined QoS for up to 500 km/h as
compared to 350 km/h in 4G.

1.2 Overview of 5G mm-Wave technology

The above mentioned list of requirements for 5G pose challenges in diverse areas.
Hence, 5G will not be based on a single technology, but an integration of various
technologies to deal with these requirements. In the following sections, we will
detail some of the key technologies and techniques that have been identified for 5G,
with a particular focus on the millimeter wave (mm-Wave) domain.

1.2.1 Millimeter waves

Revisiting the fundamental motives that have necessitated this migration towards
the fifth generation of wireless systems, the question arises on how one can achieve
an increase the network capacity. The answer lies in the core laws of information
theory, more precisely, formulated in the Shannon-Hartley theorem [11].

The theorem provides an upper bound on the amount of error free data that can
be transmitted over a noisy communication channel for a given bandwidth. More
specifically,

C = B log2

(
1 +

S

N

)
, (1.1)
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Figure 1.2: Spectrum availability in mm-Wave frequencies [12].

where, C is the channel capacity, B is the bandwidth of the channel, S denotes the
denotes the received power of the desired signal and N is the average noise power
over the bandwidth. The theorem establishes that the achievable rate is always less
than the channel capacity C.

From the above equation, the obvious approaches to increase the channel capac-
ity are to either increase the bandwidth, increase the received power or reduce the
noise power at the receiver. Since for the currently utilized bandwidth, the technol-
ogy is already approaching towards the Shannon limit, the linear proportionality of
the bandwidth with channel capacity makes it an appealing approach to increase
the system’s capacity.

However, as established earlier, the existing sub-6 GHz microwave frequency
band has been overly congested and as a result, the interest has been burgeoning
towards exploring the previously largely underused high frequency millimeter wave
(mm-Wave) band from 30 GHz1 to 300 GHz in the electromagnetic spectrum [9,
13] as shown in Fig. 1.2. In mm-Wave band, the viable frequency bands of interest
as recommended by International Telecommunication Union (ITU) [12] shows a
vast amount of spectrum available for utilization, ideal to allow high data rate to
multiple users at the same time. It is estimated that from this new access to the
mm-Wave band, we can expect 3-10 times (depending on the region) increase in
the total allocated spectrum within the next five years [14].

Reaping this amount of easily available spectrum, however, is not devoid of
any challenge. The propagation characteristics of the radio signals at very high
frequencies (and hence with small wavelengths) is a serious impediment to the
potential benefits that we discussed before. In particular, mm-Wave signals are
highly affected by higher pathloss, propagation loss due to environmental conditions
such as rain, fog and atmospheric gases and its susceptibility to blockages [13, 15,
16].

1Actually, the first mm-Wave systems start operating around 24-26 GHz.



1.2. Overview of 5G mm-Wave technology 5

Figure 1.3: Atmospheric absorption
across mm-wave frequencies in dB/km
[13].
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Figure 1.4: Rain attenuation in dB/km
across frequency at different rainfall rates [17].

Free space pathloss

The free space pathloss (FSPL) can be defined as the attenuation of energy between
two radiators in a free space. The pathloss between two antennas separated by a
distance d is given by the Friis transmission formula [18]:

PL =
1

GTxGRx

(
4πdf

c

)2

, (1.2)

where, f is frequency of the transmitted signal, c is the speed of light and GTx and
GRx are the transmit and recieve antenna gains respectively. In the case of isotropic
transmission (i.e. GTx = GRx = 1), we can see in the above equation PL ∝ f 2,
thus coming to the conclusion that at high frequencies of the mm-Wave signal, the
pathloss is significantly higher.

Environmental effects

In addition to the FSPL, environmental factors such as atmospheric absorption by
gases such as oxygen and water vapour as seen in Fig. 1.3 and rainfall as seen in
Fig. 1.4 also play a significant role in the mm-Wave signal propagation. The figures
above show that the attenuation due to environmental factors (usually measured
in [dB/km]) are frequency dependent. The attenuation due to atmospheric gases is
worse especially for the frequency around 60 GHz, 120 GHz and 180 GHz. Similarly,
the signal propagation in rainy conditions also depends upon the frequency and rate
of rainfall with higher attenuation with increasing frequency and intensity of rainfall.
The attenuation due to these effects makes it challenging particularly for outdoor
communications.
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Blockages

Apart from the previously mentioned FSPL and environmental effects, the sensi-
tivity to blockages in another serious hindrance for mm-Wave signal propagation.
mm-Wave signals are especially susceptible to blockages due to high penetration
loss and negligible diffraction effects [19, 20]. For instance, the attenuation due
to penetration loss through a 10 cm concrete at 3 GHz is 17.7 dB compared to a
significant 175 dB at 40 GHz [20]. It can also be noted that there are significant
differences between line-of-sight (LOS) and non-line-of-sight (NLOS) pathloss char-
acteristics. The authors in [13] measured an average pathloss exponent of 2.55 in
a LOS environment as compared to a significant 5.76 in NLOS cases in downtown
New York City. Hence, these effects due to blockages can seriously pose issues
regarding coverage for instance inside an indoor environment.

In the context of mm-Wave, however, the propagation loss are not as much pro-
nounced due to short transmission distances [21]. Deliberately limiting the cell size
to 100-200m, and hence densifying the access network, contributes to minimize the
high propagation losses inherent to mm-Wave propagation [13]. We have already
established that the FSPL scales quadratically with the propagation distance, hence
shorter propagation distance reduces the attenuation. Moreover, as we can see in
Figs. 1.3 and 1.4, in the case of 80 GHz frequency, the attenuation due to atmo-
spheric absorption is expected to be just .2 dB/km and heavy rain is expected to be
around 10 dB/km. Considering the propagation distance of 200m, the attenuation
loss is just 0.04 dB and 2 dB due to atmospheric absorption and heavy rain re-
spectively, which does not pose a significant enough threat to transmission at such
frequencies.

Additionally, countering the effects of attenuation by exploiting the transmission
and reception directionality with the help of beamforming has also been deemed as
a very effective solution. In equation (1.2), we can leverage on the fact that PL ∝

1
GTxGRx

and boost the transmit and receive antenna gains in preferred directions with
the help of beamforming to mitigate the pathloss effects. Multiple-input multiple-
output (MIMO), in the context of 5G, has been deemed as a key technology to
exploit the potential gain due to beamforming. In the following section, we will
further elaborate the relevance of beamforming and directionality with the help of
MIMO in the context of mm-Wave communications.
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1.2.2 MIMO and beamforming

It is well established that transmitting signals of shorter wavelengths, for instance
in the case of mm-Wave, for physical reasons allow for a smaller antenna size [22].
Exploiting this reduced size, instead of using only one antenna, MIMO in the context
of mm-Wave has the potential to employ a very large number of antenna elements
together to enable a very powerful transmission technique known as beamforming
[23]. Using multiple antenna elements in an antenna array helps in radiating the
signal power towards a particular desired direction with certain beamwidth, instead
of transmitting to all the directions as in the single antenna case. Moreover, it is
also possible to receive the signal only from particular directions with the congruent
technique at the receiver, referred to as combining2.

This radiation pattern is achieved with the help of constructive and destructive
interference between the same signals radiating from different antenna elements
with varying phase and/or amplitude. In addition, the pattern also depends upon
the number, the geometrical arrangement (for e.g. linear, circular, spherical, rect-
angular, 3D) and the inter-element spacing of the antennas in the array. Moreover,
it is also possible to change the radiation direction by simply changing the phases
and/or amplitude of the antenna elements (also referred to as beam steering).

As a consequence, mm-Wave MIMO technology allows for a remarkable devi-
ation from the traditional omni-directional to the highly directional transmission
with the help of antenna arrays at both transmitting and receiving end helping to
compensate for the large propagation loss. Furthermore, with the help of beam-
steering, it is possible to circumvent the problem of direct path blockage by steering
the beam towards other non-direct paths giving possibilities to NLOS communica-
tions. Hence, in addition to the smaller cell sizes, beamforming with the help of
highly directional and steerable antennas has been accepted as an important solu-
tion to the attenuation problem induced by high frequency signal characteristics in
the step towards unleashing the full capabilities of mm-Wave based communications
[24]. An example of very commonly used array configurations (also pertinent to this
thesis) is uniform linear array (ULA).
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....

Figure 1.5: An example of a ULA array model with Nt antenna elements separated by
a distance κ transmitting with AoD θ with the beamforming vector f = [f1, f2, · · · fNt ]T .

Uniform linear array

ULA is considered as one of the simplest and most widely adopted antenna array
type characterized on the basis of antenna element arrangement. As the name sug-
gests, ULA is formed by placing Nt uniformly distanced antennas along a line with
inter-element distance κ, usually equal to λ/2, as illustrated in Fig. 1.5. Assume
xn = (n− 1)κ to be the position of n-th antenna element in the figure.

Consider a point user at a distance rn and angle θ from the n-th antenna array
that receives the transmitted signal s with wavelength λ and frequency f . Here, we
make a "far field assumption" and consider that the destination point is sufficiently
far away to assume the paths from each antenna element to the point is parallel.
As indicated in the figure, the excess time of flight of the signal transmitted from
the n-th antenna is (n − 1)κ cos(θ). Since rn = ctn, where tn is the time taken for
the signal from the n-th antenna to reach the destination, the phase shift can then
be written as:

an = ej2πftn = e
j2πctn
λ = e

j2πrn
λ . (1.3)

Hence the vector of received signals from all the antennas can be written as:

r =

[
se

j2πr1
λ , se

j2πr2
λ , · · · , se

j2πrNt
λ

]T
. (1.4)

2Even though we only focus on the beamforming techniques in this section, all the ideas and
techniques relevant to beamforming can be reciprocated for combining as well. In this thesis, we
refer to combining also as beamforming at the receiver.
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Thus normalizing with respect to the signal power and the phase of the first
antenna element, we can have the normalized ULA response vector aTx(θ) as:

aTx(θ) =
1

Nt

s∗

||s||22
e−

j2πr1
λ r =

1

Nt

[
1, e

j2π(r2−r1)
λ , · · · , e

j2π(rNt
−r1)

λ

]T
(1.5a)

=
1

Nt

[
1, e

j2πκ cos(θ)
λ , · · · , e

j2π(Nt−1)κ cos(θ)
λ

]T
, (1.5b)

where, we have the relation r1 − rn = (n− 1)κ cos(θ).
We can change the radiation pattern from the antenna by modifying the ampli-

tude and phase of each antenna. Considering a ULA of Nt antenna elements and
beamforming weights (in a precoding sense) fn at each array element, the radiation
pattern is given by the following equation.

y = fHaTx(θ), (1.6)

where f = [f1, f2, · · · , fNt ]T ∈ CNt .

MIMO beamforming architectures

We have established that exploiting the spatial beamforming with the help of an-
tenna arrays enables the possibility to counter the significant propagation loss. In
addition, the multiple antennas also allow for spatial multiplexing with the help of
multi-stream transmissions [25]. Both of these features help to improve the spectral
efficiency, and hence MIMO has been touted as a very strong enabler of mm-Wave
technology.

However, there are of course practical limitations such as hardware complexity
and power consumption limits to keep up with while using these arrays in real
systems. Depending on the number of radio frequency (RF) chains used, number of
data streams to be transmitted, and whether the weighting for beamforming is done
in digital or analog domain, the MIMO beamforming architecture can be divided
into three categories [24, 26].

• Digital Beamforming: Digital beamforming is the most complex and cost
intensive beamforming architectures. The beamforming is done in baseband
in digital domain, and requires 1 RF chain and 1 digital-to-analog converter
(DAC) per antenna element. Even though, such implementation fully unlocks
the multi-stream transmission capabilities of MIMO, the cost and power con-
sumption are still very high for practical implementation. In addition, the
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(a.)

(b.)

(c.)

Figure 1.6: MIMO architecture at mm-Wave based on (a) analog (b) digital and (c)
hybrid beamforming [24].
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large number of antenna elements packed in a small space inhibits such im-
plementation due to physical space constraint.

• Analog Beamforming: In contrast, analog beamforming is one of the sim-
plest and most cost efficient MIMO techniques. The beamforming weights
are applied in the analog domain and only 1 RF chain and DAC is required
which helps to reduce the hardware and power consumption cost significantly.
One limitation using this architecture is the inability to exploit multi-stream
transmission. Due to the simplicity of implementation, in this thesis we focus
mainly on the analog beamforming architecture, especially since we plan on
using the technique at the mobile station (MS) end as well where power and
cost efficiency can be of the essence.

• Hybrid Beamforming: As a compromise, hybrid architecture combines the
features of analog and digital architecture to extract the benefits of both. The
beamforming is split in both the analog RF and the digital baseband domain
in the case. Such an architecture supports transmission of multiple streams,
but the number of streams are much less than the number of antennas. This
reduces the number of RF chains and DACs required and hence more efficient
than its digital counterpart.

We have established that exploiting directionality and hence beamforming and
the different beamforming architectures for transmission can be an effective solution
to fulfill the requirements of the next generation of wireless communications. How-
ever, irrespective of the types of antenna used or the signal processing techniques
applied with MIMO, one major issue with the fundamental idea of beamforming is
that the transmitter needs to have the knowledge of the location-dependent chan-
nel between itself and the receiver. In the next section, we will look in detail the
channel model and parameters used in the MIMO systems.

1.2.3 mm-Wave MIMO channel model

Consider a mm-Wave MIMO model with Nt and Nr antenna elements at the trans-
mitting and receiving end respectively. Then the MIMO multipath channel model
H ∈ CNr×Nt with L propagation paths3 can be expressed as a linear sum of channel

3The propagation paths are in-fact clusters of rays sharing common spatial/temporal charac-
teristic. However, while modelling the channel, it is common in literature to represent a cluster
by an effective path [27].
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contributions from each path, written as [24, 28]:

H(t) =

√
NtNr

ξ

L∑
l=0

hlaRx(φl)a
H
Tx(θl)δ(t− τl) (1.7)

where, θl and φl are the the angles with respect to reference directions (referred to
as the orientations of the transmitting and the receiving node) of the l-th path from
transmit and receive antenna array respectively, referred to as angle-of-departure
(AoD) and angle-of-arrival (AoA). Similarly, τl represents the time delay between
the signal transmission and reception through the l-th path. Likewise, the complex
channel coefficient of the l-th path is defined by hl and ξ represents the average
pathloss between the transmitter and the receiver.

Adopting ULA as the antenna array, the transmit antenna response aTx(θ) is
formulated as in equation (1.5). We can similarly formulate the receive antenna
response aRx(φ) by replacing θ with φ and Nt with Nr in the equation (1.5).

Representing the channel in frequency domain, we can write equation (1.7) as:

H(f) =

√
NtNr

ξ

L∑
l=0

hlaRx(φl)a
H
Tx(θl)e

−j2πτlf (1.8)

In a nutshell, the intrinsically directional nature of mm-Wave MIMO communi-
cation tends to accentuate the susceptibility and dependency of key radio channel
variables to both relative location and orientation. In order to comprehend the
channel between two nodes, it is of utmost importance that we understand the lo-
cation dependent variables (i.e. AoD, AoA and the distance), not only of the direct
path between the transmitter and the receiver, but also of the indirect paths, or
equivalently the position and orientation of the receiver and the position of the scat-
terers that contribute to the multipath components. Hence, localizing the user (and
possibly, the scatterers in the physical environment) is one of the most important
pieces of the 5G puzzle that needs to be identified to fully exploit the potentials of
beamforming and hence mm-Wave and MIMO technologies.

1.3 Localization: Overview and prospects in 5G

In the last few decades, with the growing popularity of location based services, lo-
calization4 with the help of radio signals has been recognized as a very important

4In this thesis, the term localization is used to refer to both the position and orientation
estimation. Likewise positioning or position estimation refers to knowing the relative or absolute
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functionality. After the conception of satellite based navigation systems with Tran-
sit [29] in 1960s, the significance grew especially with the global navigation satellite
system (GNSS) systems such as GPS and Galileo [30]. With the advancement in
the wireless communication technologies, localization in cellular domain gained con-
siderable attention, especially starting from 4G systems, and led to the opening of
new avenues in terms of location based services, for e.g. augmented reality with
motion tracking, location based pervasive gaming[31], healthcare [32], and location
dependent advertising [33]. Hence, we can claim that localization services have
already established itself as an indispensable part of the wireless scenario.

In the cases of 3G and 4G cellular systems, the most popular localization tech-
niques are primarily based on:

1. Distance estimation through techniques such as received signal-strength
indicator (RSSI), time of arrival (ToA), time difference of arrival (TDoA) and
delay5 estimation between the reference and the terminal node6 which can
feed multi-lateration techniques for positioning.

2. Angle estimation with the help of AoA estimation techniques such as sub-
space based methods (e.g. multiple signal classification (MUSIC), estimation
of signal parameters via rotational invariance (ESPRIT)) that can in turn
feed multi-angulation techniques for positioning.

However, there are some serious challenges faced by localization in 3G and 4G
(and in general in sub-6 GHz based) systems, namely, prevalence of the multipath
components [34, 35], requirement of multiple anchor nodes, high processing com-
plexity.

• Prevalence of multipath components: The multipath components cor-
respond to replicas of the emitted signal (i.e., echos resulting from multiple
electromagnetic interactions within the propagation environment, such as re-
flection, diffraction, etc), often overlapping with the useful signal components.
These additional signal components create an adverse condition for both de-
lay and angle estimation. For the case of RSSI, the multipath creates a great
variation in received power due to the position of the terminal node. Similarly,
ToA and TDoA based methods also suffers from additional biases during the

location of a node, whereas orientation estimation refers to estimating the heading of the user
with respect to a reference direction.

5In this thesis, the term delay is interchangeably used as "absolute time of flight", which is
affected by clock phase uncertainty in a real system but this can be solved out by implementing
multi-way cooperative handshake protocols.

6Here, the terminal node is referred to the node whose location we are interested in estimating.
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estimation process (for instance during matched filtering). Likewise corre-
lated signals arriving from multiple directions can create an error during AoA
estimation if the angular resolution is not very high.

• Requirement of multiple anchor nodes: Multi-lateration and multi-
angulation techniques for location estimation rely on combining the individual
distance and angle measurements by each anchor nodes. Hence, for such lo-
calization techniques to work accurately, we not only need the deployment of
multiple anchor nodes, but also good placement of the anchors [36].

• Processing Complexity: For the localization techniques requiring complex
architectures such as large number antenna arrays, large number of anchor
nodes and/or a large number of nodes to be positioned simultaneously, the
processing complexity can be very high [37, 38]. The localization algorithms
for such complex requirements require high processing capacity which is not
always the case. Such high processing, further, is generally cost and energy
inefficient.

However, with the help of the technologies relevant to 5G as described earlier,
these localization related issues native to the current generation of wireless tech-
nology can not only be alleviated, but in turn, localization has the potential to
establish itself as a crucial component of 5G. In the following sections, we will first
define performance metrics for localization performance characterization that we
will use in this thesis and then describe how the innate features of 5G can aid in
localization.

1.3.1 Intrinsic 5G mm-Wave benefits with respect to local-

ization

We have already discussed in the earlier sections how the features of mm-Wave and
MIMO can play an important role in 5G communications. However, in addition
to communication, the localization accuracy that can be achieved with mm-Wave
is very high, as it can be seen in table 1.1. In the table, we can see that the the
physical layers operating in sub-6 GHz band (802.11a/g, 802.11n and 802.11ac) have
considerably lower raw resolution as compared to the one operating in mm-Wave
band (802.11ad). This is due to some of the intrinsic features of this technology, as
shown below, that can inherently improve localization as well [33, 41, 42, 43].
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Physical Layer Bandwidth Raw Resolution
IEEE 802.11a/g Wi-Fi 20 MHz 15m

IEEE 802.11n 40 MHz 7.5m
IEEE 802.11ac <160 MHz >1.9m

UWB >500 MHz 0.6m
IEEE 802.11ad > 2 GHz <15cm

Table 1.1: Popular physical layers used in localization, their frequency bandwidth, and
the raw sample spatial resolution each offers. The raw resolution is defined as the distance
light travels between sampling instants at that bandwidth (Raw resolution = Speed of

light / Bandwidth) [39, 40].

Reference Measurement Scenario Average No. of Clusters
LOS NLOS

3GPP model [45] UMi street canyon scenario 12 19
[13] 28 GHz urban scenario 7.2 6.8
[46] 60 GHz indoor scenario 10 10
[47] 60 GHz indoor scenario 3.5 2.2

Table 1.2: Comparison of average number of mm-Wave multipath clusters measured
with different measurement scenarios.

Sparse multipath channel

We have already established that the high frequency mm-Wave signals suffer from
propagation loss due to high pathloss and blockage. This property results in fewer
clustered multipath components (group of multipath components with unique AoD
and AoA distributed around a mean delay), and hence results in a spatially sparse
channel. In Table 1.2, we have shown the comparison between the number of clusters
measured during different campaigns. We can see that the number of clusters are in
real world measurements are lower than the one recommended in the 3rd Generation
Partnership Project (3GPP) channel model. Hence, less perturbation and bias
in the received signal due to few multipath components is certainly a favourable
property for localization. On the other hand, it also means that it is easier to track
the few multipath components, and even use them as constructive information for
improving localization [44] (e.g., to compensate for the blockage of the direct path).

Large bandwidth availability

5G systems have the possibility to exploit large bandwidths. This large bandwidth
allows for a finer degree of time-delay resolution [48] permitting a fine delay esti-
mation, as well as multipath resolution. We have established that the multipath
components are highly dependent on the position of transmitter, receiver and the
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scattering environment. Hence, if we can resolve and track multipath, we can use
the signal to position (and possibly track) not only the transmitter and receiver,
but also physical features belonging to the environment (i.e., scatterers), thus con-
tributing to mapping the latter. In this regard, recent results [49] show that there
is a net gain in localization information (in terms of Fisher information matrix
(FIM)) in the presence of tractable multipath components. Furthermore, the au-
thors show that localization is feasible even in the absence of direct path with few
multipath components. Similarly, in [50], the authors describe a particle filter based
simultaneous localization and mapping (SLAM) approach exploiting the multipath
measurements with wide-band signals.

Large number of antennas

Similarly, another property of 5G systems affecting localization is the possibility
to rely on a large number of antennas. The resulting ability to beamform im-
proves the signal-to-noise ratio (SNR) of the received signal in general, and hence,
contributes positively to the estimation of the location-dependent variables such as
delay, AoD and AoA. In [51, 52], the authors have shown that the theoretical bounds
on localization performances for estimating the mentioned location dependent vari-
ables depends directly on the received signal-to-noise ratio (SNR). Moreover, large
numbers of antennas also provide higher angular resolution in the spatial domain.
Considering the multipath components are sparse, they are likely to arrive from
fewer specific directions. As a result of this property, in addition to using the time-
delay property, the multipath resolution can be performed in spatial domain as well,
jointly aiding localization, mapping and tracking.

Ultra dense networks

Another 5G feature that is advantageous to localization corresponds to ultra dense
networks. A denser base station (BS) network reduces the distance between the base
station (BS) and the terminal node, increasing the LOS connectivity probability.
For instance, according to the 3GPP channel model between 0.5 to 100 GHz in
[53], the LOS probability is always 1 within certain BS-terminal distance whereas
it gradually decreases after crossing the threshold. This increased probability of
direct path improves the location estimation. Besides, the ultra dense networks
also provide an option to rely on a large number of geo-referenced BSs playing the
role of anchors for absolute positioning (assuming multi-BS connectivity).
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D2D communications

Finally, the device-to-device (D2D) technology is another feature native to 5G that
could aid in localization. D2D communication, naturally profiting from close prox-
imity with the user nodes due to low pathloss, latency and reliable links, enables
cooperative localization [54, 55]. Such D2D links can be used to extract reliable
localization information in a distributed manner even in the absence of direct path,
as each such devices can act as an anchor node. This information can be very useful
especially in scenarios requiring quick, frequent and reliable localization information
of the neighbouring nodes, for instance in the case of self driving applications with
the help of vehicle-to-vehicle (V2V) links [43].

1.4 Duality between mm-Wave localization and com-

munication

In the previous section, we established that location information can be an im-
portant piece in the case of 5G. We discussed how different features inherent to
5G (and in particular 5G mm-Wave communications) and the related technologies
could turn out to be a boon for localization. However, this relationship between
communication and localization is not just unilateral. In contrast, due to the fea-
tures of the technologies relevant to 5G, localization has the potential to feature
indispensably in various facets of 5G communications, fostering a strong symbiotic
duality between localization and communication services. Such interdependence
between the two services is illustrated in Fig. 1.7 and described below.

1.4.1 Beamforming optimization

Beamforming optimization is one of the perfect examples exhibiting the interdepen-
dence between localization and communication services.

We have already established that beamforming is an important enabling tech-
nology for 5G in order to counter the previously mentioned propagation loss effects
at a high frequency with higher SNR for both communication and localization ser-
vices. Depending on the types of services, the beamforming optimization (i.e. with
regards to both beam direction and width) can be performed with different tar-
gets in mind. For instance, in the case of communication oriented beamforming,
the target could be rate [56] or SNR [57] maximization whereas for localization
oriented beamforming, minimization of error in estimating particular location de-
pendent variables [58] or some localization error cost function [59]. In [58], the
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Figure 1.7: Illustration of the interdependence between localization and communication
services in different facets of 5G.

authors perform beamforming optimization to jointly minimize the Cramér-Rao
lower bound (CRLB) for estimating AoD and AoA whereas in [59], the authors
consider minimization of squared position error bound (SPEB) of the user.

However, the required terminal node location is one of the major impediments
to the optimization process. In the best case scenario, one perfectly knows the
position of the terminal node, as then it enables the transmitter to beamform in
the corresponding direction with very thin beamwidth, allowing for very high trans-
mission rates. In other cases, the transmitter either has to locate the mobile node
to indirectly, for instance by means of a sector search based on beam sweeping
methods [56, 60] with overhead, or use localization services and technologies [61].
Hence, the availability of accurate localization information can be advantageous
to optimizing the beam and reciprocally, a well optimized beam can help generate
accurate localization estimates.

1.4.2 Resource allocation

Similarly, resource allocation is another factor that inter-locks the localization and
communication functionalities.

At a macro level, in a system providing both localization and communication
services, optimally budgeting the resources such as time or frequency, depending on
the type of application, is of utmost importance in order to fulfill the service require-
ments. For instance, in [62], the authors consider the data-rate and localization-
error trade-off in a single user system with both localization and communication
functionalities while sharing time resources.
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Moreover, in a joint localization and communication framework, the information
from the localization phase could be used later in the communication phase. In such
a scenario, we could divide resources between the services with a certain target in
terms of the localization quality, such that we fulfill the data communication QoS
requirements.

Similarly, at a micro level, we can perform resource allocation in terms of power
allocation and in conjunction with beamforming especially, based on multi-user
and/or multi-path considerations. Depending on the certainty of the user location
in a multi-user scenario, or the accuracy of the scatterer’s location and the channel
coefficient of each path in a multi-path scenario, the beam power can be split into
different directions in order to achieve some localization or communication targets,
as in [61].

1.4.3 Initial access

Initial access - a procedure by which the mobile user establishes a link layer con-
nection with a base station - is another key link between the localization and com-
munication services. We can say that initial access procedure is an even bigger
challenge in 5G as compared to previous generations due to the added dimension of
directionality. Besides the challenges of the past generations, the mobile node needs
to establish a directional link with the transmitter. A common method in practice
to establish this link is either through exhaustive [60, 63] or through iteratively
finer[64] spatial scanning. A major problem with these methods is latency, as scan-
ning the entire space adds up to large delays, contradicting the idea of low latency
communications and user tracking under mobility in 5G. Hence, the localization
functionality could be an integral part of the initial access procedure in an attempt
to avoid the bottleneck caused by delays in spatial search based initial access.

1.4.4 Channel estimation and environment mapping

We have already mentioned before that the channel at high frequencies has a highly
specular and geometric behaviour (very close to optical geometry actually), which
strongly depends on the configuration of the radio link relatively to its physical
environment. Accordingly, in the model described in equation (1.8), the mm-Wave
channel is dependent on the location dependent variables such as delay, AoD and
AoA of all the paths including the direct one and the indirect ones. Hence, local-
izing the user and the scattering points could facilitate a better and faster channel
estimation, which is even more relevant under user mobility, as evidenced by [65]



20 Chapter 1. Introduction

and it can eventually further aid in improving throughput for data communications,
while capturing the "quasi-deterministic" location-dependent channel evolution as a
function of time. Alternatively, one can leverage on the estimation of the mm-Wave
channel, capitalizing on the channel sparsity with techniques such as compressive
sensing, to perform environment mapping with SLAM, as done in [51].

1.5 Research methodology

Based on the previous analysis, the combination of localization and communication
functionalities appears as a key in the quest towards unravelling the full potential
of 5G mm-Wave systems. Motivated by this aspect, in our Ph.D. investigations, we
explore the intricacies of this interdependence, in various aspects and from various
perspectives. In this section, we outline the adopted research methodology and
highlight the key steps, along with related contributions, which will be further
detailed in the following chapters.

In chapter 2, we start with the study of the two way relationship between user lo-
calization and beamforming optimization. In this chapter we primarily study beam-
forming optimization while considering a minimization of the resulting localization
error. We first solve the optimization problem in a simplified scenario considering
a single user single carrier case. We then advance to a multi-carrier scenario and
solve the problem for a multi-user case. In the process, we study the optimal power
allocation across the subcarriers in order to the improve estimation of the location
dependent variables across the users depending on the channel between them and
the BS.

Then, in chapter 3 we focus on how localization and communication services
can be accommodated in the same system given an a-priori resource budget. We
firstly consider a framework comprising both localization and communication ser-
vices independent of each other where we evaluate the trade-off arising from the
different resource sharing strategies, in terms of time and frequency in particular.
Then, moving on to a framework where the two services are interdependent, we
characterize a trade-off considering the resource budgeting between the two service
and also study how beamwidth can play an important role.

Consequently, in chapter 4, we extend this idea to formulate and solve simultane-
ously the resource allocation and beamwidth optimization problems in a framework
consisting of joint localization and communication services. In addition, we also
dig into the initial access problem, assessing the stringent low latency requirements
of 5G. In this context, we exploit the localization techniques in the initial beam
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selection procedure as a part of the initial access and compare our methods with
the popular state-of-the-art beam selection and training methods.

Still capitalizing on the acquisition of location-dependent information, in chapter
5 we then investigate the problems of multipath channel estimation and SLAM
using AoD and AoA measurements. In the first case, we present a localization
aided channel estimation algorithm where we exploit the geometric nature of the
mm-Wave multipath channel. In the latter, we then use the angle estimates to
map jointly the positions of the user and the scatters in a multipath environment,
while considering multiple BSs. In both cases, we compare our scheme with the
state-of-the art.

Finally, we conclude our thesis in chapter 6 and then present the perspectives
for future work.

1.6 Related contributions

Below, we present a list of related personal patents, journals and conference papers
under the purview of this thesis.

Patents proposed:

[p1] "Optimal beamwidth selection and resource allocation in position assisted
mm-wave network", R. Koirala, G. Ghatak, B. Denis, A. De Domenico

[p2] "Iterative beam training method for assessing a mm-Wave network",R. Koirala,
G. Ghatak, B. Denis, A. De Domenico

Journal papers:

[j1] R. Koirala, B. Denis, D. Dardari, B. Uguen, H. Wymeersch, "Positioning
and Throughput Trade-off for Multi-user Multi-carrier mm-Wave MIMO", in
IEEE Access, vol. 7, pp. 167099-167112, 2019

[j2] R. Koirala, G. Ghatak, A. De Domenico, B. Denis, D. Dardari, B. Uguen,
M. Coupechoux, "Joint Beamwidth Optimization and Resource Partitioning
Scheme for Positioning Assisted mm-Wave Communication", submitted to
IEEE Transactions on Wireless Communications

Conference papers:

[c1] R. Koirala, B. Denis, D. Dardari, B. Uguen, "Localization Bound based
Beamforming Optimization for multicarrier mmWave MIMO", Proc. IEEE
WPNC, Bremen, Oct. 2017
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"Positioning Data-Rate Trade-off in mm-Wave Small Cells and Service Dif-
ferentiation for 5G Networks", in Proc. IEEE VTC-Spring, Porto, June 2018

[c3] R. Koirala, B. Denis, B. Uguen, D. Dardari, H. Wymeersch, "Localiza-
tion Optimal Multi-user Beamforming for Multi-Carrier mmWave MIMO Sys-
tems", Proc. IEEE PIMRC, Bologna, Sept. 2018
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"Throughput Characterization and Beamwidth Selection for Positioning-Assisted
mmWave Service", Proc. IEEE ASILOMAR, Pacific Grove, Oct. 2018

[c5] R. Koirala, B. Denis, B. Uguen, D. Dardari and H. Wymeersch, "Localization
and Communication Resource Budgeting for Multi-user mm-Wave MIMO",
Proc. IEEE WPNC, Bremen, Oct. 2019

[c6] R. Koirala, B. Uguen, D. Dardari, H. Wymeersch and B. Denis, "Local-
ization Aided Multipath Channel Estimation for Millimeter Wave Systems",
submitted to IEEE ICC, Dublin, June 2020

[c7] R. Koirala, B. Denis, B. Uguen, D. Dardari and H. Wymeersch, " Simul-
taneous Localization and Mapping in Millimeter Wave Networks with Angle
Measurements", submitted to IEEE ICC, Dublin, June 2020
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Chapter 2

Localization-oriented beamforming

2.1 Introduction

Beamforming, and in particular, its role in mitigating the propagation attenuation
effects in the case of high frequency mm-Wave makes it an enabling technology avail-
ing us the benefits of high frequency communications as described in the previous
chapter. With this in mind, the most natural path of action in the research commu-
nity was to dig into various ways and means to facilitate and optimize beamforming
strategies. The focus in the beamforming literature initially was emphasized mainly
for the purpose of communications [24] for different beamforming architectures and
objectives.

Incorporating beams to perform initial access and establish a reliable connection
between the transmitter and the receiver was one of the primary challenges posed by
the requirement of beamforming in mm-Wave communications [66]. The idea here
was to design a dictionary of beams spanning different directions and beamwidths
at both transmitting and receiving ends. Then the beams for initial access were
selected based on the best link between all the possible combination of the said
beams. In standards like IEEE 802.11ad [60], such codebook based initial access
strategy has been implemented with the consideration of analog beamforming. The
protocol initially involves large searching sectors, which then iteratively converge
towards smaller sectors. In [66], such sequential scanning protocol was described
for the case of hybrid beamforming architecture. With the ability to simultaneous
beamform in multiple directions, the search duration could be significantly reduced
due to parallel beam searching. We study such localization aided initial access
scheme in detail in chapter 4.

The focus was then to find an optimal beamforming solution in order to maxi-
mize some communication oriented goal, with the coarse knowledge of the position
and orientation of the user derived from for instance the initial access phase, initially
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in a single-user scenario. For instance, the authors in [57, 67] present a beamform-
ing optimization strategy for maximizing SNR in the case of single stream analog
beamforming. Similarly in [56], the authors design a multi-resolution beam code-
book with different beamwidths and devise an algorithm to maximize the through-
put with hybrid beamforming. Likewise in [68], the authors present an optimal
hybrid beamforming solution by maximizing the mutual information of a mm-Wave
channel. Now, moving on to the multi-user scenario, the authors in [69] present a
beamforming optimization, while considering a multi-user sum rate maximization
problem. In the same context, the authors in [70] present a beamforming opti-
mization policy that aims at minimizing transmit power while fulfilling each user’s
signal-to-interference-plus-noise ratio (SINR) requirements.

However, contrarily to such communication oriented beamforming studies, there
has been a dearth of works concerning localization oriented beamforming optimiza-
tion. We have already evidenced in chapter 1 that localization in 5G and especially
in the context of mm-Wave communication can play an indispensable role when
compared to the previous generations of wireless communications. Hence, in light
of this, in this chapter we study localization bound based optimal beamforming
in mm-Wave scenario for both single- and multi-user scenarios. In doing so, we
also propose strategies to allocate power across the subcarriers in a multi-carrier
scenario in order to minimize the localization error and various ways in which we
can address the beamforming optimization problem in a multi-user scenario. In the
following section, we present a list of related contributions from the recent state of
the art.

2.2 Related works

The earlier works on mm-Wave localization to the best of our knowledge were
primarily aimed at characterizing the performance bounds of location-dependent
variables estimation, mostly in terms of their Cramér-Rao lower bound (CRLB),
for instance in [51, 52, 71, 72]. In [52], the authors derive the CRLB for estimat-
ing delay, AoD and AoA in a simplistic single-user, single path and single carrier
scenario considering ULA antenna model. Following up, in [51], the authors then
provide the bound for a single-user, multipath scenario with multiple subcarriers.
Likewise in [71], the authors provide the CRLB for delay, AoD and AoA estimation
in a three dimensional (3D) multipath scenario without considering any particular
antenna array configuration. The authors finally present the error bounds while
considering different antenna arrays. Similarly, in [72], the authors derive a similar
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CRLB formulation in a two dimensional (2D) multipath scenario, while making
strong asymptotic assumptions regarding the occupied bandwidth and the number
of transmit and receive antenna elements. The authors present the final result in
terms of equivalent Fisher information matrix (FIM) where the result is presented
in terms of position and orientation estimation and not in terms of delay, AoD and
AoA like in previous cases.

Using these theoretical performance bounds, recent works in the literature have
also been dedicated towards finding the localization optimal beamformers (in a
precoding sense). In particular, the authors in [58] study the localization bounds
based beamforming in a simplistic single-user single-carrier MIMO scenario while
considering a digital beamforming model. The authors formulate the problem as a
robust beamforming optimization problem where the minimum between the position
error bound (PEB) and orientation error bound (OEB) is minimized. Similarly,
following from [72], the authors in [59] propose a beamforming strategies to minimize
a localization error expressed in the form of the SPEB in a single-user scenario while
considering LOS path. This SPEB is shown to be equivalent to a linear combination
of the CRLB terms associated with delay and AoD estimates.

2.3 Methodology and organization

Taking the recent literature into consideration, we present the list of limitation we
have identified and how we plan to deal with them in this chapter.

• Firstly, to the best of our knowledge, leveraging multiple subcarriers in a
localization oriented beamforming optimization problem has not been consid-
ered before in the literature. Hence, we study how beamforming power can
be allocated across the spectrum in order to jointly minimize the performance
bounds of delay and AoA.

• Further extending the beamforming optimization analysis levering multiple
subcarriers, we then consider a problem with single BS and single-user where
we estimate all the channel parameters (delay, AoD, AoA and complex channel
coefficients). The difficulty in considering all the channel parameters lies in
the fact that CRLB is not in closed form, and consequently, it is difficult to
derive the beamforming power allocation insights. Motivated by this problem,
we show that we can tackle this issue by exploiting the beamforming power
allocation per subcarrier, by assuming a symmetric data transmission across
the spectrum.



26 Chapter 2. Localization-oriented beamforming

• With the help of the previous CRLB, we derive a heuristic localization error
cost function as an appropriately weighted function of SPEB and squared ori-
entation error bound (SOEB). Our derivations show that such an error func-
tion can be represented as weighted linear combinations of CRLBs of delay,
AoD and AoA. Our motive then is to study the role of not only the frequency
dimension, but also each location dependent variable in the beamforming op-
timization problem. Hence, we investigate them by solving the beamforming
optimization problem by adjusting the weights associated to each in the cost
function.

• After addressing the single-user beamforming optimization problem, we then
extend our study towards the multiple user scenario, which to the best of
our knowledge, has not been considered in the literature. In the multi-user
scenario, unlike in the previously formulated single-user optimization problem,
there is an additional issue concerning allocation of the beam power for each
user. Hence, we then study the beamforming optimization problem while
considering the various beam allocation fairness criteria for the multiple users.

This chapter is organized as follows. In section 2.4, we explain the choice of
using CRLB, PEB and OEB to characterize localization performance. In section
2.5 we deal with the localization bound optimal beamforming optimization problem
considering joint estimation of delay and AoA. In section 2.5.1, we introduce the
single-user system model, reformulate the FIM for our scenario and accordingly the
CRLB for estimating delay and AoA. We then present the solution of the beam-
forming optimization problem in a multi-carrier mm-Wave case in section 2.5.2. In
section 2.5.3, we show the simulation results and their analysis for the localization
bound based single-user beamforming optimization problem. In section 2.6, we
deal with the multi-user localization optimal beamforming optimization problem.
In section 2.6.1 we introduce the new system model for the multi-user scenario.
In section 2.6.2, we present the FIM and CRLB derivation for both single- and
multi- carrier cases. We formulate a heuristic localization error, which is used as a
key performance indicator to then formulate and solve the localization based opti-
mization problem. In section 2.6.3 we provide and discuss various illustrations of
optimized beamforming results in a canonical scenario. We finally summarize the
main findings of these investigations and conclude the chapter in section 2.7.
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2.4 Bound based localization performance charac-

terization

In the literature, it is common to characterize localization performance using CRLB
which is the inverse of FIM. The FIM is a way of measuring the amount of infor-
mation present in a random variable about a parameter. Likewise, CRLB provides
the lower bound on the variance of an unbiased estimator. In section 2.2, we have
already described the various works that characterize the CRLB in terms of local-
ization variables such as delay, AoD and AoA in the context of mm-Wave.

However, when we are characterizing localization error, we typically look for
error in terms of position and orientation estimation and not in terms of individual
localization variable. For this purpose, PEB and OEB are practical measures of the
localization accuracy. PEB characterizes the error bound concerning the position
of the user, taking into consideration both the distance and AoD measurements.
Likewise, OEB characterizes the error in user’s orientation, considering the AoA
measurements.

Both these metrics are widely used in the literature not only in the mmWave
context, but while considering other systems as well. For instance, in [73, 74] the
authors characterize the localization error in a multi-agent non-cooperative and
cooperative scenarios respectively in terms of SPEB. Likewise, [58] also uses PEB
and OEB to characterize the localization error in a beamforming optimization study.
Similarly, the authors in [62] use PEB and OEB to characterize the localization error
in a localization-communication resource allocation study for single users.

When it comes to the tightness of the bounds, CRLB is tight especially at av-
erage to high SNR [51]. In [51], the authors propose a compressive sensing based
algorithm in both LOS and NLOS scenarios. The authors show the proposed al-
gorithm, for SNR above −20dB in LOS scenario and −10dB in NLOS scenario,
approaches the theoretical bound. Hence, especially in the average to high SNR
scenario, which is a reasonable assumption in mm-Wave scenario, such bounds can
be used as metrics of performance characterization.

2.5 Beamforming optimization in a single-user sce-

nario

In this section, we study optimal beamforming policy to minimize the CRLB of joint
AoA and time delay estimation for a multicarrier mm-Wave system. Considering
one single BS with rough a-priori knowledge of channel coefficients and location
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Figure 2.1: System model for single-user scenario with AoA (φ), time delay (τ) and
orientation o.

information of the MS, we show that it is possible to improve the accuracy of AoA
and time delay estimation, and hence of MS positioning, by means of optimized
beamforming. Mathematical formulation of the CRLB is first introduced and the
related optimization problem is solved for a each single subcarrier independently.
Then we propose a solution optimizing the beamformer jointly for the multicarrier
system. In the process, we also show the effect of frequency diversity and spectrum
occupancy on localization performance.

2.5.1 System model

Consider a mm-Wave MIMO system consisting of Nt transmitting antennas and Nr

receiving antennas at the BS and the MS, respectively. We consider the BS and the
MS to be in LOS and also assume a downlink transmission between them. At every
time slot, the BS transmits N orthogonal frequency-division multiplexing (OFDM)
symbols corresponding to the number of orthogonal subcarriers, denoted by sn for
the n-th subcarrier. The system operates at the center frequency fc with the total
bandwidth B.

The transmitted signal per subcarrier is given by fnsn where fn ∈ CNt is the
beamforming vector per subcarrier. The complex channel response for a multi-
carrier case (like in [51, 56]) Hn ∈ CNr×Nt for the system is given by:

Hn =

√
NtNr

ξ
h e−j2πτ

nB
N aRx,n(φ)aHTx,n(θ), (2.1)

with complex channel gain h, pathloss ξ, delay τ , BS antenna array response
aTx,n(θ) ∈ CNt and MS antenna array response aRx,n(φ) ∈ CNr which depends
on the arrangement of the elements in the antenna array, AoD (θ) and AoA (φ)
(relative to a certain orientation o). In this section, for simplicity and without the
loss of generality, we use ULA as the antenna array model with array elements
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Beamformer optimization
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Figure 2.2: Block diagram for localization accuracy refining with beamforming in a
dynamic tracking scenario.

separated by a distance κ and given by

aTx,n(θ) =
1√
Nt

[
1, ej

2π
λn
κ cos(θ), · · · , ej(Nt−1) 2π

λn
κ cos(θ)

]T
, (2.2)

where λn is the wavelength corresponding to the frequency of the n-th subcarrier.
Likewise, one can simply replace Nt by Nr and θ by φ in (2.2) to get aRx,n(φ). At
the receiver, the Nr × 1 received signal vector is

yn = Hnfnsn + nn = µn + nn, (2.3)

where nn is the complex Gaussian noise defined by the circularly symmetric complex
Gaussian random vector, with variance (per element of the vector) N0 (N0/2 per
real and imaginary dimension).

In our work we consider the joint AoA and time delay estimation, which in 2D is
sufficient for either absolute MS positioning with the knowledge of MS orientation
or just relative positioning without. The delay estimation can be performed with
methods such as downlink ToA or two way TDoA measurements and the AoA
estimation can be performed with subspace based angle measurement methods such
as MUSIC or ESPRIT in downlink.

2.5.2 Beamforming optimization

In this work, we are interested in finding the optimal beamformer per subcarrier
f∗
n which assists in minimizing the delay and AoA estimation error at the receiver.

The advantage of such CRLB based beamforming optimization can be, for instance,
as shown in figure 2.2, in a dynamic MS tracking scenario feeding the system with
the coarse estimates of AoA and delay, the new AoA and delay parameters can be
more accurately estimated in every cycle creating some sort of virtuous loop.
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As formulated in [51], the FIM for the model with all the subcarriers is provided
by the summation of FIM for individual subcarriers.

J =
N∑
n=1

Jn. (2.4)

However for problem simplification, in the following, we will first solve the opti-
mal beamforming problem for a given subcarrier n and also for notational simplicity,
we will denote aTx,n(θ) as aTx,n and aRx,n(φ) as aRx,n.

FIM reformulation for a single subcarrier

The FIM, the inverse of CRLB, for delay-AoA estimation [51, 75] for n-th subcarrier
can be particularized to our scenario as

Jn =

[
ψn(τ, τ) ψn(τ, φ)

ψn(τ, φ) ψn(φ, φ)

]
(2.5)

where

ψn(τ, τ) = αn|aTx,f ,n|2, (2.6a)

ψn(τ, φ) = γn|aTx,f ,n|2, (2.6b)

ψn(φ, φ) = βn|aTx,f ,n|2, (2.6c)

and,

αn = 8π2σ

√
NtNr

ξ

n2B2

N2
= αn2, (2.7a)

γn = 8π2σ
κ sin(φ)nB

λnN

√
Nt

ξNr

Nr−1∑
i=0

i = γ
n

λn
, (2.7b)

βn = 8π2σ
κ2 sin2(φ)

λ2
n

√
Nt

ξNr

Nr−1∑
i=0

i2 = β
1

λ2
n

, (2.7c)

where σ, in this section, is defined as a SNR indicator given by |x|
2|h|2
N0

. In equation
(2.6), aTx,f ,n = aHTx,n(θ)fn is the joint beamforming and TX antenna response.
Note that all the terms of the matrix Jn depend on n and hence on the position of
the subcarrier in the spectrum.
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CRLB reformulation for a single subcarrier

In equation (2.6), we reformulate ||aTx,f ,n||22 as

||aTx,f ,n||22 = aHTx,nfn f
H
n aTx,n = aHTx,nFnaTx,n. (2.8)

This formulation of the beamformer in equation (2.8) simplifies the optimization
problem that will be presented later in this section.

The CRLB, which is again defined as the inverse of the FIM, can be formulated
from (2.5) for respectively delay and AoA estimation as follows:

J−1
τ,n =

βna
H
Tx,nFnaTx,n

(αnβn − γ2
n)(aHTx,nFnaTx,n)2

=
k1

aHTx,nFnaTx,n
, (2.9)

where,

k1 =
N2ζ2

8π2σn2B2
√

Nt
ξNr

(Nrζ2 − ζ2
1 )
, (2.10)

and,

J−1
φ,n =

αna
H
Tx,nFnaTx,n

(αnβn − γ2
n)(aHTx,nFnaTx,n)2

=
k2

aHTx,nFnaTx,n
, (2.11)

where,

k2 =
λ2
n

8π2σ
√

Nt
ξNr

κ2 sin2(φ) (Nrζ2 − ζ2
1 )
, (2.12)

where, for m ∈ {1, 2} we define

ζm =
Nr−1∑
i=0

im. (2.13)

Optimization problem for a single subcarrier

Recalling the main objective, the idea is to find the optimal beamformer that min-
imizes the CRLB for delay and AoA estimation. Since equations (2.9) and (2.11)
both contain the same expression at the denominator, but different constants at
the numerator, it is clear that aHTx,nFnaTx,n must be maximized in order to mini-
mize the CRLB of both τ and φ given that the coefficients k1 and k2 are positive,
which is proved in Appendix A.1. The equivalent expression in the equations also
means that the min-max approach used in [58] is equivalent to just maximization
of aHTx,nFnaTx,n. For a given subcarrier n, we thus lay the optimization problem as
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follows.

min
Fn

trace(−ATx,nFn). (2.14a)

subject to: trace(Fn) = 1, (2.14b)

Fn � 0, (2.14c)

rank(Fn) = 1, (2.14d)

where,ATx,n = aTx,na
H
Tx,n. Note that−aHTx,nFnaTx,n can be formulated as equation

(2.14a) in the semidefinite problem (SDP) form and the objective function and
constraints except for (2.14d) are clearly convex. Constraint (2.14d) is a non-convex
constraint. In the literature it is common to solve the problem by dropping the
latter and then, after obtaining the optimal beamforming vector f∗

n , approximate
Fn to rank-1 matrix. The constraint in equation (2.14b) is imposed to ensure
that the transmitted signal is within the spectral mask allowed by the transmission
regulation. Similarly, the constraint in equation (2.14c) comes as a result of the
structure of Fn in equation (2.8).

CRLB reformulation for multiple subcarriers

Let xn = aHTx,nFnaTx,n. From equation (2.4), the equation for FIM including all
the subcarriers is now given by

J =

α
∑
n

n2xn γ
∑
n

n
λn
xn

γ
∑
n

n
λn
xn β

∑
n

1
λ2n
xn

 , (2.15)

where the coefficients α, β and γ are defined in equation (2.7). We can further
simplify the matrix as:

J =

aTx cTx

cTx bTx

 , (2.16)

where,

a =
[
α 4α · · · N2α

]T
, (2.17a)

b =
[
β
λ21

β
λ22
· · · β

λ2N

]T
, (2.17b)

c =
[
γ
λ1

2γ
λ2
· · · Nγ

λN

]T
, (2.17c)

x =
[
x1 x2 · · · xN

]T
. (2.17d)
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Then from the matrix in equation (2.16), we can derive the CRLB for both delay
and AoA as

J−1
τ =

bTx

xTabTx− xTccTx
=

bTx

xTZx
, (2.18)

and,

J−1
φ =

aTx

xTabTx− xTccTx
=

aTx

xTZx
, (2.19)

where, Z = abT − ccT . Here, in equations (2.18) and (2.19), since a, b and x are
always positive by construction, the numerators are always positive. In Appendix
A.2, we prove that the denominator xTZx is always positive, and hence the negative
of the expression is convex with respect to x.

Optimization problem for multiple subcarriers

Equations (2.18) and (2.19) are non-convex with respect to x, but one can come up
with an equivalent convex reformulation, and thus, convex optimization problem
for the multicarrier case can be formulated as follows.

max
x

aTx or bTx, (2.20a)

subject to: 1TNx < N, (2.20b)

0 ≤ x ≤ 1, (2.20c)

where 1N =
[
1 1 · · · 1

]T
of length N .

The optimization problem in hand is a linear programming problem and since
both the coefficients a and b in (2.18) and (2.19) are increasing for higher subcarrier
indices, the CRLB minimization problem for both the equations can be formulated
as (2.20a).

The optimization problem in equation (2.20) can be viewed as the energy allo-
cation problem across the subcarriers constrained on the limited energy available
(provided by equation (2.20b)) that can be distributed across the subcarriers, judg-
ing by which subcarrier is more valuable for minimizing the CRLB. In addition to
the energy limitation across the subcarriers, equation(2.20c) provides us with the
constraint to limit the transmitted power to the spectral mask.

After solving the energy allocation problem across the subcarriers, for the op-
timal energy available at each subcarrier x∗n, we solve the optimization problem
discussed in equation (2.14) to find the same beamforming optimization problem
as that in equation (2.14) per subcarrier independently as follows.
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min
Fn

trace(−ATx,nFn). (2.21a)

subject to: trace(Fn) = x∗n, (2.21b)

Fn � 0. (2.21c)

Recovery of beamforming vector

After completing the optimization problem in equations (2.20) and (2.21), one would
still need to recover the optimal beamforming vector f ∗n from the matrix F ∗n which
is, as evident from equation (2.8), a rank-1 complex matrix. In [76], the authors
have shown that the best rank-1 approximation of a matrix F ∗n in 2-norm sense is
provided by:

f ∗k =
√
λv, (2.22)

where λ is the biggest eigenvalue of the matrix F ∗n and v is the corresponding
eigenvector.

2.5.3 Numerical results

System parameters and simulation setup

In these first simulations, we use fc = 38 GHz and a large bandwidth B = 1 GHz
with N = 64 subcarriers. For the antenna array, we use the ULA model with
Nt = 30 and Nr = 30 elements. The inter-element spacing between the antenna
array at both transmitter and receiver is set to a constant κ = 0.5λc where λc = c

fc

and c is the speed of light. We assume that the BS roughly knows the relative
MS position. We assume that the orientation o = 0o and hence φ = 80o and the
distance between the nodes as reflected by τ is 50 m unless otherwise specified.

In our simulations, we consider the following mm-Wave pathloss model with
parameters from [77].

ξ(d)[dB] = ξ(d0) + 10α (d/d0) +Xσ, (2.23)

where, ξ(d0) is the free space path loss given by 10 log10

(
4πd0
λc

)2

for a reference
distance d0 = 1m for our case. Parameters α = 1.9 and σ = 4.6 are the path
loss exponent and the standard deviation of the shadow factor Xσ (a zero mean
Gaussian random variable), respectively.
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Figure 2.3: Normalized beam direction with optimal beamformer for θ = 80o ||aTx,f∗,n||22
varied with possible directions in a planar coordinate for (A) κ = 0.5λc and (b) κ = λc.

Figure 2.4: Delay error bound after beamforming optimization for MS position (white
circle) at distance 50m and 80o from BS (white square).

Results and analysis

Figures 2.3a and 2.3b show the normalized optimal beamforming direction given by
||aTx,f ,n||22 for the above-mentioned scenario with different inter-element distances
for transmit antennas. However, it is very important to set carefully the parameters
as it can be seen in figure 2.3b. For instance, the effect of having a large inter-
element distance leads to the presence of grating lobes and results in transmitting
some energy in the unwanted direction. In [78], it has been shown that to avoid
angular oversampling, κ must be below the nyquist sampling rate κ ≤ λc

2
.

In figures 2.4 and 2.5, we illustrate the estimation error bounds for delay and
AoA, defined by

√
J−1
τ and

√
J−1
φ respectively, in dB scale, for a fixed MS location

(60, 50) and BS location (50, 0) after beamformer optimization. It can be noted
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Figure 2.5: AoA error bound after beamforming optimization for MS position (white
circle) at distance 50m and 80o from BS (white square).
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Figure 2.6: Error Bound for the estimation of τ for multicarrier system (N = 64) as a
function of SNR.

that the error bound for both the delay and AoA estimates follows a non trivial
spatial pattern which is due to the side lobe pattern from the antenna. For instance,
for the sector containing MS in the scenario, the error is more than 10dB lower as
compared to outside the sector, due to beamforming.

Likewise, in figures 2.6 and 2.7, we show theoretical bounds for estimations of
time delay and AoA respectively for the multicarrier case with N = 64 subcarriers
as a function of the SNR. It can be noted that with optimal beamforming, even for
small SNR, the error bound for both delay (in range of less than 1ns) and AoA (in
the range of less that 0.1 rad) is low.

Finally in figures 2.8 and 2.9 we show the previously defined delay and AoA error
for different MS positions (i.e., for each point of the map, we consider a virtual MS is
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Figure 2.7: Error Bound for the estimation of φ for multicarrier system (N = 64) as a
function of SNR.

Figure 2.8: Delay error bound after beamforming optimization for different MS position
by BS (white square).

occupying this point and the beamforming optimization is performed accordingly).
For delay error bound, the error pattern is isotropic with the effects of the increasing
pathloss along with distance. For AoA however, the pattern is different due to the
constant MS orientation throughout all the possible MS positions. For the given
scenario, the minimum, average and maximum delay estimation errors are 0.0459
ns, 0.2032 ns and 0.2434 ns respectively and the corresponding AoA estimation
errors are 2.3852× 10−5 rad, 1.4950× 10−4 rad and 0.0522 rad respectively.
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Figure 2.9: AoA error bound after beamforming optimization for different MS position
by BS (white square) for a fixed MS orientation parallel to x axis.

2.6 Beamforming optimization in a multi-user sce-

nario

Following the localization optimal beamforming study in the single-user scenario
considering joint delay and AoA estimation, in this section, we extend the model to
a multi-user scenario. In this section, we study optimal beamforming strategies for
a mm-Wave system consisting of multiple users, while still relying on localization
performance bounds. We consider a single BS with prior coarse knowledge of the
users’ positions and orientations similarly as in section 2.5 and formulate the opti-
mal beamforming problem in order to minimize a localization error cost function.
In addition to following a similar beamforming optimization strategy as in section
2.5, we further incorporate AoD on top of AoA, delay and channel coefficient esti-
mates. With the estimates of all the channel parameters including the AoD, we can
absolutely position all the users in the multi-user scenario. We first formulate the
simplified CRLB of estimation parameters, taking advantage of multiple subcarri-
ers, and then formulate the localization error for optimization of the beamformer.
Then, finally, we evaluate the resulting position and orientation error bounds after
optimization for different fairness strategies.

2.6.1 System model

Consider a mm-Wave downlink scenario consisting of a BS node located at p =[
px, py

]T
∈ R2 and U users, each user u located at qu =

[
qx,u, qy,u

]T
∈ R2 as shown

in Fig. 2.10. Assume that the BS and each user is equipped with a ULA antenna
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Figure 2.10: Example of canonical scenario with 1 BS and 2 users with orientations o1

and o2 at locations q1 and q2 respectively.

with Nt and Nr antenna elements respectively. Likewise, as illustrated in Fig. 2.10,
the orientation of u-th user (relative to the y axis) is given by ou ∈ [0, 2π).

The complex signal at a generic time instance is transmitted acrossN subcarriers
centered around frequency fc with bandwidth B and duration Ts and is denoted by
sn for the n-th subcarrier where n ∈ N =

{−N
2
, · · · , N

2

}
. The i-th element of the

previous is denoted as ni where i = 1, · · ·N .
Let fn ∈ CNt denote the beamformer in the precoding sense for the n-th subcar-

rier. We consider limited beamforming power 0 ≤ trace(fnfHn ) ≤ 1 to satisfy the
spectral mask set by regulations as in the previous section. We consider uniquely
the direct path, assuming a LOS propagation model [52, 59]. The Nr×Nt complex
channel matrix, for the n-th subcarrier between the BS and user-u is denoted by
Hu,n and is formulated as in [56].

Hu,n =

√
NtNr

ξu
hu e

−j2πτu nBN aRx,u(φu)a
H
Tx,u(θu), (2.24)

where hu ∈ C is the complex channel coefficient, ξu is the path-loss between the BS
and the user, and τu, θu and φu are the delay, AoD and AoA respectively associated
with user u. Both the transmitting aTx,u(θu) ∈ CNt and receiving aRx,u(φu) ∈ CNr

antennas are assumed to be ULA. Assuming odd numbers of antenna elements and
the centroid of the array as the reference point (as compared to considering the
first antenna element as reference point in (2.2)), the antenna array response can
be expressed as,

aTx,u =
1√
Nt

[
e−j(

Nt+1
2
−1) 2π

λc
κ cos(θu), · · · , 1, · · · , e−j(

Nt+1
2
−Nt) 2π

λc
κ cos(θu)

]T
. (2.25)

under the same notations as in the previous single-user section. For the ease of



40 Chapter 2. Localization-oriented beamforming

notation, we write aTx,u(θu) as aTx,u and do the same for aRx,u(φu). Likewise,
aRx(φu) can be expressed by simply replacing θu by φu and Nt by Nr in equation
(2.25). Unlike in the previous section, in this section, we consider a narrow-band
model meaning B � fc. In such case, we can assume no beam squinting effects for
both transmit and receive antenna responses. Hence, in contrast to the equation
(2.2), the antenna array responses in this section are considered independent of
subcarrier frequencies1.

We consider the received and post processed signal yu,n ∈ C at the user-u after
whitening and combining as

yu,n =
√
PTx,uw

H
uHu,nfnsn + ñn, (2.26)

where, PTx,u is the transmitted power at the user and ñn ∈ C is the zero-mean Gaus-
sian with a power spectral density of N0 (N0/2 per real and imaginary dimension)
and wu ∈ CNr is the combiner vector at the mobile user.

2.6.2 Beamforming optimization

Here, we will derive the FIM associated with joint delay, AoD and AoA estimates,
firstly for the n-th subcarrier and then generalize it for all the subcarriers and then,
subsequently, derive the corresponding CRLBs. Then, we will derive an equiva-
lent localization error cost function and formulate the beamforming optimization
problem accordingly. During the beamforming optimization, we first characterize
the localization error and the corresponding beamforming optimization problem for
a single-user case and extrapolate it to characterize the optimization problem for
multi-user scenario.

FIM for a single subcarrier

We define the new set of parameters ηu =
[
τu θu φu hR,u hI,u

]
comprising

the estimation variables where hR,u and hI,u respectively represent the real and
imaginary parts of the complex the channel coefficient. Then, the FIM Jn,u ∈ R5×5

characterizing the estimation of these parameters has been derived in [51, 58, 75]
as

1We make this assumption in order to keep the expressions relatively simple in line with other
works in the literature [58, 59].
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Ju,n =


ψn(τu, τu) ψn(τu, θu) ψn(τu, φu) ψn(τu, hR,u) ψn(τu, hI,u)

ψn(θu, τu) ψn(θu, θu) ψn(θu, φu) ψn(θu, hR,u) ψn(θu, hI,u)

ψn(φu, τu) ψn(φu, θu) ψn(φu, φu) ψn(φu, hR,u) ψn(φu, hI,u)

ψn(hR,u, τu) ψn(hR,u, θu) ψn(hR,u, φu) ψn(hR,u, hR,u) ψn(hR,u, hI,u)

ψn(hI,u, τu) ψn(hI,u, θu) ψn(hI,u, φu) ψn(hI,u, hR,u) ψn(hI,u, hI,u)

,
(2.27)

where the values of the matrix entries are given in Appendix A.3.

FIM for multiple subcarriers

The FIM for the multi-carrier case can be extended from equation (2.5) as follows.

Ju =

N/2∑
n=−N/2

Ju,n. (2.28)

Considering a symmetric power density of the transmitted signal (with respect
to the central frequency) after beamforming by assuming f−n = fn and s−n = sn,
we can reformulate the FIM according to Appendix A.4. By considering these
assumptions, we significantly reduce the complexity of inverting the matrix for the
derivation of CRLB, although we reduce the transmit diversity by a factor 2.

CRLB formulation for multiple subcarriers

The symmetry assumption in the transmitted signal decouples the delay estimation
with the rest of estimation variables in the FIM in equation (2.28), and hence, we
can simply invert the delay Fisher information to get the CRLB for delay estimation.
For the AoD and AoA, we can use Schur’s complement similar to [58] and find the
CRLBs, as follows.

ψ−1(τu, τu) =
ατ,u

aHTx,uXτaTx,u
, (2.29a)

ψ−1(θu, θu) =
αθ,u(

ȧHTx,uXȧTx,u −
|ȧHTx,uXaTx,u|2

aHTx,uXaTx,u

) , (2.29b)

ψ−1(φu, φu) =
αφ,u

aHTx,uXaTx,u
. (2.29c)

where, the variables ατ,u = (4π2σud0,u|hu|2)
−1, αθ,u = (d0,uσu|hu|2)

−1, αφ,u =(
σu|hu|2

(
d2,u −

d21,u
d0,u

))−1

and ȧTx,u, σu and di,u for i ∈ {0, 1, 2} are the intermediary
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variables fully defined in Appendices A.3 and A.4. We also define the beamformer

dependent variables Xτ =
N/2∑

n=−N/2
|sn|2n2Fn, X =

N/2∑
n=−N/2

|sn|2Fn and Fn = fnf
H
n .

SPEB and SOEB

In this section we introduce SPEB and SOEB which we can derive from the FIM
in equation (2.28). SPEB and equivalently PEB characterizes the error bound con-
cerning the position of the user, taking into consideration both the distance and
AoD measurements. Likewise, SOEB and hence OEB characterizes the error in
user’s orientation, considering the AoA measurements. Both these metrics char-
acterizing the localization error are widely used in the literature not only in the
mm-Wave context, but while considering other systems as well [73, 74]. Hence, we
introduce these metrics, as they will be used later in this chapter and thesis.

Let µu = [px,u, py,u, ou, hR,u, hI,u] be the vector comprising the new estimation
variables representing user u’s 2D absolute Cartesian coordinates and absolute ori-
entation, along with the real and imaginary channel coefficients respectively. As
derived in [51] and [62], the FIM in terms of the new parameters can be written as

Jµ,u = TuJu(XN)T T
u , (2.30)

where Tu is the Jacobian of µu with respect to the original estimation variables in
ηu formulated in equation (A.12).

Hence, we define SPEB and SOEB for user u as follows.

SPEBu = trace
(
J−1
µ,u,1:2,1:2(XN)

)
. (2.31)

SOEBu = J−1
µ,u,3,3(XN). (2.32)

Localization error for a single-user

In this section, we derive an equivalent overall localization error resulting from the
combined SPEB and SOEB. As we can see in the derivation in Appendix A.5, the
localization error can be formulated as a weighted linear combination of correspond-
ing unitary CRLBs of the three location-dependent variables.

Lu(X,Xτ ) = βτψ
−1(τu, τu) + βθψ

−1(θu, θu) + βφψ
−1(φu, φu). (2.33)
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Here, in order to have a general optimization framework, we replace the weights with
the tunable parameters2 βτ , βθ, βφ ≥ 0 for each estimation variable, namely delay,
AoD, AoA respectively. The goal is to find the beamformer that minimizes this
localization error. With the generalized localization error formulation in equation
(2.33), we can analyze the effect of each estimation parameter independently onto
beamforming by adjusting the a-priori application-dependent weights.

We can however notice that there are two different variables X and Xτ in
the formulation of the localization error, in equation (2.33). In order to maintain
one unique optimization variable in the equation, we can restructure the latter as
follows.

LetM = Nt×N . Using the Kronecker product, we define vectors au = s⊗aTx,u,

ȧu = s ⊗ ȧTx,u and aN,u = sN ⊗ aTx,u, where s =
[
|sn1| |sn2 | · · · |snN |

]T
,

sN =
[
n2

1|sn1| n2
2|sn2| · · · n2

N |snN |
]T

and XN ∈ CM×M is defined as the block
diagonal matrix consisting of the matrix Fn over each subcarrier, expressed as

XN =


Fn1

Fn2

. . .

FnN

. (2.34)

Hence, the localization error can be reformulated as

Lu(XN) =
βτατ,u

aHN,uXNaN,u
+

βθαθ,u(
ȧHuXN ȧu − |ȧ

H
u XNau|2
aHu XNau

) +
βφαφ,u
aHuXNau

. (2.35)

2With the new parameters, the localization error formulated in Appendix A.5 becomes a special
case of the formulation in equation (2.33) when βτ = kτ,u, βθ = kθ,u and βφ = kφ,u. It must also
be noted that the CRLB of the estimation variables are interrelated, as explained in [58]. It
is inevitable that if we estimate a variable, we can estimate another one as well. The weights
do not define the exclusivity of estimation of particular parameters, but rather the estimation
variable on which the focus is. A motivation behind the introduction of the general cost function
in equation (2.33) is that some applications might be more sensitive to angle or ranging errors
than the absolute position error. In such cases, one can adjust the weights β to tune the cost
function depending on application requirements.
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The goal now is to state an optimization problem which minimizes the localiza-
tion error under a power constraint. This problem can be formulated as:

min
XN

Lu(XN), (2.36a)

subject to:

trace(IT
i XNI i) ≤ 1, ∀i, (2.36b)

trace(IT
i XNI i) ≥ 0, ∀i, (2.36c)

IT
i XNIj = 0Nt , ∀i, j : i 6= j, (2.36d)

trace(XN) = K, (2.36e)

XN � 0, (2.36f)

rank(IT
i XNI i) = 1 ∀i. (2.36g)

where i, j ∈ {1, 2, · · · , N}, 0Nt ∈ RNt×Nt represents the zero matrix sized Nt × Nt

and In ∈ RNt×M represents a matrix consisting of identity matrix INt of size Nt×Nt

in n-th block position and 0Nt in the rest of the block positions; in other words,

In = en ⊗ INt (2.37)

where en ∈ RN×1 is the N -dimensional Euclidean space standard basis vector whose
values are all 0s except the n-th element, which is equal to 1.

The constraints from equations (2.36b) and (2.36c) define the power constraint
at each subcarrier as assumed in the system model. Likewise, equation (2.36d)
enforces the block diagonality constraint in the matrix XN . Equation (2.36e) rep-
resents the total power constraint across all the subcarriers and by the virtue of
equation (2.36b), we know that K ≤ N . Similarly, from the positive semidefinite
structure of the individual blocks Fn in XN , we can conclude that XN is positive
semidefinite as well and the rank of each block is 1.

The objective function along with some constraints in this equation, however, are
non-convex. It is possible to reformulate it into a convex optimization problem by
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introducing different slack variables ζτ , ζθ, ζφ and represent the problem as follows:

max
XN ,ζθ,ζφ,ζτ

βθζθ + βφζφ + βτζτ , (2.38a)

subject to:

aHN,uXNaN,u

ατ,u
≥ ζτ , (2.38b)

1

αθ,u

(
ȧHuXN ȧu −

|ȧHuXNau|2

aHuXNau

)
≥ ζθ, (2.38c)

aHuXNau
αφ,u

≥ ζφ, (2.38d)

(2.36b)-(2.36g).

Note that the constraints from equations (2.38b) and (2.38d) are affine. From [79]
and Appendix A.6, we can simplify and cast the hyperbolic constraint in equation
(2.38c) as∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 2<(ȧu

HXNau)

2=(ȧu
HXNau)

ȧHuXN ȧu − ζθαθ,u − aHuXNau


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤ ȧHuXN ȧu − ζθαθ,u + aHuXNau. (2.39)

where <(·) and =(·) represents the real and imaginary operators.
The objective function and all the constraints in equation (2.38), except the rank

constraint in equation (2.36g), are convex. In order to solve first a (sub-)problem
after dropping the incriminated constraint. Then, based on the first step optimiza-
tion result, one gets the best rank-1 approximation for the matrix of interest. The
rank-1 approximation of the matrix F ∗n can be done in the same way as in equation
(2.22).

Localization error for multiple users

Similarly, for a multi-user case, we define the overall localization error as a function
of the localization errors per user.

L(XN) = f (L1(XN), L2(XN), · · ·LU(XN)) . (2.40)

For this multi-user scenario, we consider fairness criteria based beamforming
strategies according to which we define the function f(·). The idea is to allocate
power to different users based on their positions with the help of beamforming
optimization in order to minimize the localization error.
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1. Min-max fairness strategy: In this strategy, we ensure a minimum lo-
calization error requirement for each user. In doing so, we are limited by
the worst user, hence the optimal solution would lead to the minimization of
the localization error of the user with the maximum error. In this case, the
objective function L(XN) would be max (L1(XN), L2(XN), · · · , LU(XN)).

The optimization problem is thus formulated accordingly, as follows:

max
XN ,ζθ,ζφ,ζτ

βθζθ + βφζφ + βτζτ (2.41a)

subject to:

aHN,uXNaN,u

ατ,u
≥ ζτ , ∀u (2.41b)∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
 2<(ȧu

HXNau)

2=(ȧu
HXNau)

ȧHuXN ȧu − ζθαθ,u − aHuXNau


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤ ȧHuXN ȧu − ζθαθ,u + aHuXNau, ∀u

(2.41c)

aHuXNau
αφ,u

≥ ζφ, ∀u (2.41d)

(2.36b)-(2.36g)

Note that the constraints in (2.41b)-(2.41d) have the same CRLB requirement
for each of the estimation parameters (ζτ , ζθ and ζφ) for each user. This
condition serves to maximize the performance of the worst user.

2. Proportional fairness strategy: Alternatively, we can have a proportion-
ally fair beamforming where better users receive proportionally more power
and hence have lower localization errors compared to worse users. We use sum
log as the function f(·) in equation (2.40) and then have the CRLB require-
ments for each user in order to achieve this proportionality while distributing
the power. It has been shown that the diminishing returns property of the
log function can be used to achieve proportional fairness [80]. The objective
function, in this case, would be

∑U
u=1 log (Lu(XN)).
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Figure 2.11: Example of canonical scenario with a BS and 3 users positioned at different
distances from the BS with different orientation.

The optimization problem can be written as

max
XN ,ζθ,u,ζφ,u,ζτ,u

U∑
u=1

log(βθζu,θ + βφζu,φ + βτζu,τ ) (2.42a)

subject to:

aHn,uXNan,u

ατ,u
≥ ζτ,u, ∀u (2.42b)∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
 2<(ȧu

HXNau)

2=(ȧu
HXNau)

ȧHuXN ȧu − ζθ,uαθ,u − aHuXNau


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤ ȧHuXN ȧu − ζθ,uαθ,u + aHuXNau,∀u

(2.42c)

aHuXNau
αθ,u

≥ ζφ,u, ∀u (2.42d)

(2.36b)-(2.36g)

Since we solved the optimization problems in equations (2.41) and (2.42)
without the rank constraints to maintain the convexity, we perform the rank-
1 approximation of matrix F ∗n as for the single-user case in equation (2.22).

2.6.3 Numerical results

In this section we provide some illustrations of optimized beamformers in a canonical
multi-user scenario.
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Figure 2.12: Example of normalized beam direction for a localization error optimized
beamformer in the multi-user case, according to (a) min-max and (b) proportional fairness

strategies

System parameters and simulation setup

Let us consider a mm-Wave BS operating at fc = 38 GHz with bandwidth B = 300

MHz. We fix the antenna elements number for both BS and user to Nt = Nr = 30

elements. We consider both BS and user antennas to have a gain of 13 dBi and an
inter-element distance of κ = 0.5λc. The path loss ξ(du) between the BS and any
mobile user at a distance of du from the BS is given as by equation (2.23).

We consider the illustrating canonical scenario shown in Fig. 2.11 as the system
model, unless otherwise specified.

Results and analysis

In Fig. 2.12, we show the normalized beam gains as a function of BS transmission
directions as a result of localization error optimal multi-user beamforming in the
above canonical scenario. We observe variable levels of power transmitted in the
directions of the three distinct users depending on the fairness strategy considered.
From Fig. 2.11, we observe that User 2 is the best user due to its proximity and
orientation towards the base station followed by User 3 which is at the same distance
as User 1, but with a different orientation. This is evident in Fig. 2.12, as with
the min-max fairness strategy User 1 is allocated relatively more power compared
to with the proportional fairness strategy.

Using the same localization error optimal beamforming model, in Fig. 2.13 and
2.14 we can see the effect of βτ on the subcarriers allocation. As discussed earlier,
during localization, we consider symmetric power allocation across subcarriers (with
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Figure 2.13: Example of normalized beam gain (with respect to total gain) with min-
max fairness strategy as a function of the direction in the multi-user case with βτ = 1,

βθ = 1 and βφ = 1.
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Figure 2.14: Example of normalized beam gain (with respect to total gain) with min-
max fairness strategy as a function of the direction in the multi-user case with βτ = 0,

βθ = 1 and βφ = 1.

respect to the center frequency of the occupied spectrum) to facilitate the statement
and resolution of the optimization problem we derived. Hence, to avoid repetition
due to the underlying symmetry in our analysis, we only consider the repeated
subcarriers in the simulations. We consider 8 subcarriers for simulation in this
scenario, but only look at 4 of them numbered as n = {1, 2, 3, 4}. We limit the
total power K to 2.5 units and optimize the beamformer with βτ = 0 or βτ >
0. When βτ > 0, we can observe that in Fig. 2.13, the first subcarrier has no
power allocated and the remaining subcarriers have unequal power distribution.
However, for the other case where βτ = 0, we have equal allocation across all
the subcarriers, as illustrated by Fig. 2.14. The subcarrier power distribution
for the two cases are presented in Fig. 2.15. It is clear that for βτ > 0, the
optimal beamformer would allocate all the power to the two extremities of the
spectrum. The reason is that, for delay estimation, performance would benefit
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Figure 2.15: Power allocation per subcarrier for different values of βτ .
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Figure 2.16: Empirical CDF of the PEB per user (best, worst and average performance)
for different fairness strategies over 1000 MC trials.

from higher resolution provided by a larger equivalent bandwidth (from using more
distant frequency components). Hence in the figure, under the spectral power mask
constraint (with 0 ≤ trace(fnfHn ) ≤ 1), the optimal power allocation solution is
vertical water-filling starting from the ends of the spectrum. In contrast, for AoD
and AoA estimation, since the frequency plays no role according to the underlying
model, there is a uniform power allocation over all the subcarriers.

Figs. 2.16 and 2.17 show the empirical cumulative distribution function (CDF)
of best case, worst case and average PEB and OEB over users per trial in the multi-
user scenario, over 1000 Monte Carlo (MC) simulation trials of the user positions
consisting of three random users positions/orientations (per trial) evaluated with
both proportional and min-max fairness strategies. In each occupied position of
each MC trial, we use the localization error optimal beamforming to characterize the
best PEB as the one with minimum PEB, the worst PEB as the one with maximum
PEB and the average PEB as the mean PEB over all three users (and similarly for
OEB). We can observe that the CDFs of best, worst and average PEB and OEB
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Figure 2.17: Empirical CDF of the OEB per user (best, worst and average performance)
for different fairness strategies over 1000 MC trials.

are close to each other for all the cases. Even then, we can see that the proportional
fairness, as expected, performs better for the best user whereas worse for the worst
user and in average. It is also evident that the min-max fairness improves the worst
user performance, whereas the proportional fairness improves further the best user.
Based on this observation, we can suggest that, if the dispersion is large between the
worst and the best user, it is better to use the proportional fairness scheme such that
the localization performance of the best user does not degrade too much whereas for
a lower dispersion, min-max optimization improves the overall performance more.

2.7 Chapter conclusions

In this chapter, we characterized the typical mm-Wave localization errors based on
theoretical performance bounds for both single- and multi-user cases and solved a
localization-oriented beamforming optimization problem accordingly.

We firstly tackled the problem for a single-user case, where we investigated the
optimal beamforming problem for jointly minimizing delay and AoA estimation.
While dealing with the single-user case in a multi-carrier mm-Wave system, we
firstly solved the beamforming optimization problem that jointly minimizes the
delay and AoA performance bounds. In the process, we formulated the problem as
a power allocation problem across the subcarriers to achieve the minimum CRLB.
As a result of the optimization, we showed that, theoretically, we can achieve highly
accurate estimates of delay and AoA.

We then considered the multi-user scenario where we derived the localization
error in terms of SPEB and SOEB and accordingly formulated the beamforming
optimization problem minimizing the error. In the process, we reformulated the
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FIM for the joint estimation of all the channel parameters in a multi-carrier case
and consequently, showed that with certain conditions on the transmission, we can
achieve a closed form solution for the CRLB in terms of delay, AoD and AoA. Fur-
thermore, from the formulated localization error, we understood the importance of
optimal power allocation in the frequency spectrum during the localization phase,
especially for delay estimation, and then determined the optimal beamforming so-
lution. Then, while optimizing the beamformer for the multi-user scenario, we
suggested two distinct strategies for power allocation, based on different definitions
of fairness among users, namely min-max and proportional fairness strategies. We
showed that each proposal offers a distinct solution that can be advantageous on
its own depending on the use case scenario.

Despite the findings, we acknowledge that there are some limitations in the
study. Firstly, we only consider a simplistic channel path model with only the direct
path. It is true that in mm-Wave systems, due to their propagation characteristic
as mentioned in chapter 1, the channel is sparse. However, multipath model would
to provide a more complete analysis in the case of both single- and multi-user
optimization. We consider beamforming considering multipath model in the context
of channel estimation in chapter 5 and further mention the possible exploration into
the multipath channel in chapter 6.

Similarly, in the channel model, we do not consider the possibilities of blockages,
even though it is a problem for the signals at mm-Wave frequencies, as described
in chapter 1. In conjunction with the multipath model, the blockage models could
be adopted in the future work, as described in chapter 6.

Likewise, in this chapter we consider coarse knowledge of user position and orien-
tation without explicitly characterizing the error in initial estimation. Considering
such a probabilistic initial estimation would allow us to optimize the width of the
beam in addition to the direction. For instance, if the confidence in the position
and orientation estimate of the user is high, we can transmit a beam with small
width due to the reduced risk of beam alignment errors thus enabling high data rate
and vice versa. We have characterized such error in the estimates of the position
and orientation, and accordingly the optimization of beam direction and width, in
chapters 3, 4 and 5.
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Chapter 3

Localization-Communication services
trade-off study

3.1 Introduction

Unlike with the technologies of previous generations, the localization service in the
case of mm-Wave systems can play an even more crucial role as is can not only ful-
fill its role of standalone service but also aid in different aspects of communication.
For instance, in our previous chapter, we have already showcased the importance of
beamforming and thus directionality to mitigate pathloss effects in such mm-Wave
systems. We can exploit localization services to estimate the position(s) and orien-
tation(s) of the user(s) and use the direction information for efficient beamforming
[58, 59]. In our chapter 1, we have investigated how we can beamform leveraging
upon the localization error in both single- and multi-user scenarios. Likewise, we
can exploit localization to reduce latency in initial access [61] and channel estima-
tion [65], as we will see later in chapters 4 and 5 respectively.

Reciprocally, we have seen in chapter 1 that some of the intrinsic features of
mm-Wave communication can also be highly advantageous for accurate and pre-
cise localization, as backed up by the localization resolution figures in table 1.1.
The inherent properties of mm-Wave such as sparse channel, high bandwidth, large
number of antenna elements and highly dense networks provide favourable condi-
tions for very accurate localization. For instance, in [81], the authors show that
even in the absence of the direct path, the PEB performance in mm-Wave is still
accurate enough. Similarly, in [42], the authors demonstrate the positive impact of
network densification on the positioning error.

Hence, considering such inter-relation between the localization and communica-
tion services, it is highly likely that the two services not only exist as two separate
entities in the context of 5G, but will co-exist symbiotically within the same system.
In the light of the previous remark, it is important to investigate different aspects
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of such co-existence in order to build a framework incorporating and even inter-
operating both services, as efficiently as possible. To achieve this, in this chapter,
we look into how we can split resources between the two services, in particular time
and frequency, in a quest to find an equilibrium for their optimal co-existence.

In this chapter, we study the localization and communication services as both
standalone and joint1 functionalities of a system in order to achieve the required QoS
objectives. In the process, we also aim towards considering a mm-Wave network
scenario with many BSs, unlike the single BS assumption made in chapter 2. In
order to isolate the effects of considering standalone and joint services from the
number of BSs assumption, we gradually complexify the network through this and
the next chapter. Specifically, in this chapter we evaluate the localization and
communication performances firstly in the standalone scenario and then in a joint
scenario both in a single BS scenario. Then, we consider the joint services scenario
in a mm-Wave network scenario with multiple BSs, however with deterministic
deployment where we consider a constant distance between the deployed BSs. In
the chapter 4, we will finally arrive to a probabilistic network deployment in a
similar joint services scenario.

3.2 Related works

In the context of mm-Wave localization, as we have detailed in section 2.2, the
authors in [51, 52, 71, 72] have comprehensively characterized the localization per-
formance limits in terms of CRLB. In [51], the authors present an algorithm to
estimate the position and orientation of the user and verify that even in low SNR,
the algorithm can approach the PEB and OEB.

In the context of mm-Wave communication services, the authors in [82] have
characterized the downlink communication performance in random wireless net-
works in terms of SINR coverage probability and rate coverage probability, using
stochastic geometry [83, 84]. For such a model, the positions of the BSs can be
modeled either using homogeneous Poisson point process (PPP) [85] or using repul-
sive point process [86]. Recently, the authors in [87] investigated a more realistic
scenario, where the mm-Wave BSs are deployed along the roads of a city.

1In this thesis, in the context of localization and communication functionalities, the term
standalone refers to the scenario when the two services act independently of each other. In
contrast, the term joint is used to refer to the scenario when the communication service exploits
the positional or directional information from the localization service.
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In the context of joint localization and communication functionalities, the au-
thors in [88] have studied a distributed antenna system providing both data commu-
nication and positioning functionalities in sub-6 GHz systems. The authors assumed
that the user equipments (UEs) know the positions of the BSs and attempt to esti-
mate their own positions based on the received signals. Similarly, Garcia et al. in
[65] have studied a location-aided initial access strategy for mm-Wave networks, in
which the information of UE locations enables to speed up the channel estimation
and beamforming procedures. Likewise, in [62], the authors investigate the resource
allocation in terms of time in mm-Wave network based on localization performance
bounds. The authors extend this study in [89] to a multi-user scenario where the
trade-off between the two standalone services is studied in terms of sum-rate and
PEB. Likewise, in [90], the authors present an iterative localization based beam
selection algorithm where the transmitter, in each iteration, selects a refined finer
beam based on position and orientation estimation. The refined beam again im-
proves the estimation and the process continues in a virtuous loop. Extending this
idea, in [91], the authors present the beam selection algorithm at both transmitter
and receiving ends.

3.3 Methodology and organization

Considering the advancements in the literature regarding specifically the multi-
service aspects, in this section, we present our motivations behind this work and
introduce the structure of the chapter.

• To the best of our knowledge, resource sharing between the localization and
communication services has not been considered in a multi-user scenario. Mo-
tivated by this limitation and our work on localization oriented beamforming
in chapter 2, we study the trade-off between the two standalone services in a
mm-Wave system as a result of sharing time and frequency resources.

• After assessing the system level performance with standalone services, we
then shift our attention to the resource allocation scheme in a joint local-
ization and communication scenario where localization and communication
phases are inter-dependent on each other. Even though resource allocation
between communication and localization standalone services has already been
considered before in the literature, to the best of our knowledge, it has not
been envisaged yet in a joint scenario.
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• In such a system, we then study not only the optimal allocation of time and
frequency resources, but also look into the implication of localization accuracy
and hence beam alignment errors in the communication phase. Specifically,
taking advantage of the localization error characterization, we study the effects
of beamwidth adjustment in the beam alignment error and consequently in
the data service aspect.

The rest of the chapter is organized as follows. In section 3.4 we study the
trade-off between the localization and communication functionalities when they are
treated as standalone services. In section 3.4.1, we introduce the system model of the
standalone services. Then, in sections 3.4.2 and 3.4.3, we study the different ways
in which time and frequency can be budgeted between the two services. Finally,
we illustrate the trade-off via simulations. We then move on to a system endowed
with joint localization and communication functionalities in section 3.5. For such
a system, we present the network geometry and communication model in section
3.5.1. Then, in sections 3.5.2 and 3.5.3 we present the analysis and numerical results
while sharing time and frequency resources respectively between the two services.
We finally conclude the chapter in 3.6.

3.4 Standalone localization and communication ser-

vices

In this section, we will study the trade-off arising due to resource allocation, in
particular time and frequency (or analogously energy and power respectively), in a
multi-user mm-Wave system supporting both localization and communication ser-
vices. In such a multi-service system, budgeting more resources for the data service
than for localization would indeed imply higher data rates but also, adversely, higher
position and orientation estimation errors. Based on theoretical localization perfor-
mance bounds and on the expression of the average data rate per user, we herein
investigate and compare various ways the two different services could be operated
depending on when the multiple users are assessed.

3.4.1 System model

We consider a two-dimensional mm-Wave communication scenario with a single BS
and U users, exactly as described in chapter 2 section 2.6.1. We also consider the BS
provides both communication and localization functionalities with a limited time
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and frequency budgets. In the previous chapter, we have already defined the local-
ization optimal beamformers and we have also stated that communication oriented
beamformers have been already studied in the literature. Hence, considering both
localization and communication functionalities, the idea is to investigate a trade-off
between the two services while sharing resources between them in both single-user
and multi-user cases. For a fixed resource budget, based on the trade-off and a-
priori QoS requirement for each service, we determine the optimal split between the
resources.

In this section, for the localization phase, we consider the multi-user localization
error optimal beamforming from section 2.6.2. Let X∗L,u and X∗L represent the
optimal localization beamformers XN from equations (2.38) in a single-user case
and (2.41) or (2.42) in a multi-user case respectively. For the communication phase,
we consider the beamformer maximizing the sum-rate for the multiple users similar
to [89] as derived in appendix B.1. In consistency with the localization phase, we
consider using an analog beamforming architecture with 1 RF chain2 transmitting
one stream of data at a time. Similarly, let X∗C,u represent the data rate optimal
beamformer from equation (B.6). Also, the FIM Jµ,u is defined in equation (2.30)

3.4.2 Frequency sharing

In this strategy, we share the available sub-carriers for both localization and com-
munication simultaneously for the full duration of time T as shown in Fig. 3.1.
Let NL and NC represent the sets of subcarriers dedicated for localization and
communication respectively and NL = |NL| and NC = |NC | represent the car-
dinality of the two sets. We further need to split the subcarriers allocated to
the communication phase into U parts, represented as NC,u,∀u, such that we can
beamform all the U users relying on different subcarriers. Since we do not con-
sider any effect of sub-carriers power allocation on the rate3, we can split the fre-
quency among the users arbitrarily. The sets NL and NC are mutually exclusive and⋃U
u=1NC,u = NC . Let us define matrices YL = diag(YL,1,YL,2, · · · ,YL,N) ∈ RM×M

2Note that the primary focus of this work is on beamforming optimization for the localization
phase. In this section we look at a simple example relying on an analog architecture in the commu-
nication phase for the resource allocation trade-off study. However, the choice of a beamforming
architecture and the optimal beamformer for communication can be independent as any type of
solution can be implemented on top of our beamforming optimization framework.

3We have this assumption from the channel model from equation (2.24) where we considered a
frequency flat spectrum in order to have a general system level overview of the effects of resource
sharing. In the equation, we can consider frequency dependent channel coefficient to have a more
realistic model. In that case, we need to further optimize the sub-carrier allocation to particular
users depending on the channel coefficient per user.
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Figure 3.1: Frequency division framework for localization and communication services.

and YC,u = diag(YC,u,1,YC,u,2, · · · ,YC,u,N) ∈ RM×M where

YL,n =

{
INt , if n ∈ NL
0Nt , otherwise.

(3.1)

YC,u,n =

{
INt , if n ∈ NC,u
0Nt , otherwise.

(3.2)

Then, we can define the average data rate as

R =
1

U

U∑
u=1

log2

(
1 +

aHζ,uYCX
∗
CY

T
C aζ,u

N0

)
, (3.3)

where,

aζ,u =
[
ζu|sn1|aTTx,u · · · ζu|snN |aTTx,u

]T
∈ CM , (3.4)

and ζu =
√

PTx
xiu
|hu||wH

u aRx,u|.
Similarly, the average PEB and OEB per user for the multi-user case can be

written as

PEB =
1

U

U∑
u=1

√
Ts
T
trace

(
J−1
µ,u,1:2,1:2 (YLX∗LY

T
L )
)
, (3.5)

and,

OEB =
1

U

U∑
u=1

√
Ts
T
J−1
µ,u,3,3 (YLX∗LY

T
L ), (3.6)

where as defined in section 2.6.1, Ts is the symbol duration. In TL amount of
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localization time, the gain in information is TL/Ts as reflected in equations (3.5)
and (3.6).

The formulation YCX∗C,uY T
C nullifies the beamformer related to the sub-carriers

not dedicated for communication (and likewise YL for localization). Accordingly, the
individual sub-carriers, and thus the total power budgeted over the entire occupied
bandwidth, can be split to cover the two different services.

3.4.3 Time sharing

After the frequency sharing between the services, now we consider a system where
time is split between them. Consider a system level framework with total time
budget of T = TL + TC , where TL is the total time budgeted for localization, and
the rest of the time TC is allocated for communication. We investigate the trade-off
between localization and communication performances as a result of time sharing
between the two services.

For the multi-user scenario, we use two different schemes, namely the simultane-
ous and the sequential4 localization and communication framework. In the former,
we simultaneously localize all the users in the first phase and then simultaneously
communicate with them. In the latter, we perform localization and communication
for the first user independently and then for the second independently and so on.

Simultaneous multi-user assessment

We firstly look into a scheme assessing the multiple users simultaneously. In this
strategy, all the users are simultaneously localized for a complete localization time
duration of TL, even though allocating simultaneous localization pilots to different
users means that each localization signal has reduced power as shown in Fig. 3.2.
Likewise, we have the same situation for the communication phase in this scenario.
In this case we use the optimal beamforming vector for multiple users X∗L and X∗C
for both localization and communication services respectively. We then look at the
resulting average performance per user while considering data rate, PEB and OEB.
The detailed derivations for the latter can be found in equations (2.31) and (2.32).

The average rate per user is

R =
1

U

TC
T

U∑
u=1

T ∗u
TC

log2

(
1 +

aHζ,uX
∗
C,uaζ,u

N0

)
. (3.7)

4Here, the words simultaneous and sequential shall be intended in terms of multi-user assess-
ment (and not in terms of communication or localization functionalities). The word "simultane-
ous" refers to a scenario when all the users are assessed at once, and "sequential" refers to the
scenario when the users are assessed one by one.
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Figure 3.2: Time division framework for localization and communication services with
simultaneous multi-user assessment.

Similarly, the average PEB and OEB per user with localization time limited to
TL can be written as5

PEB =
1

U

U∑
u=1

√
Ts
TL

trace
(
J−1
µ,u,1:2,1:2(X∗L)

)
, (3.8)

and,

OEB =
1

U

U∑
u=1

√
Ts
TL
J−1
µ,u,3,3(X∗L). (3.9)

Sequential multi-user assessment

Then, moving on to the sequential multi-user assessment, we localize and communi-
cate with one single-user at a time, while assessing multiple users one by one. In this
strategy, for both localization and communication phases, at each time instance,
one single user is served with maximum power but only for a reduced time duration
of TL/U and TC/U for localization and communication respectively as shown in
Fig. 3.3, thus respecting the same overall constraints on time TL and TC as in the
previous allocation scheme. In other words, we basically use the single-user time
division strategy for U consecutive periods, once for each user. The average rate
per user can be written as equation (3.7).

5The FIM in [62] is considered for a signal with duration Ts. Since we consider a localization
time of TL, we consider the information increase by a factor of TL/Ts (e.g., equivalently, performing
a coherent integration of successive observations/estimates would reduce noise by the same factor).
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Figure 3.3: Time division in a localization and communication framework with sequen-
tial multi-user assessment.

Similarly, the average PEB and OEB per user with the localization time limited
to TL/U can be written as

PEB =
1

U

U∑
u=1

√
UTs
TL

trace
(
J−1
µ,u,1:2,1:2(X∗L,u)

)
, (3.10)

and,

OEB =
1

U

U∑
u=1

√
UTs
TL
J−1
µ,u,3,3(X∗L,u). (3.11)

3.4.4 Numerical results

Let us consider a mm-Wave BS operating at fc = 38 GHz with bandwidth B = 300

MHz. We fix the antenna elements number for both the BS and the user to Nt =

Nr = 30 elements. We consider both the BS and the user antennas to have a gain
of 13 dBi and an inter-element distance κ = 0.5λc. The path loss ξu between the
BS and any mobile user at a distance du from the BS is given as in equation (2.23).

In Fig. 3.4 (and respectively Fig. 3.5), we represent the corresponding trade-
off between PEB (and respectively OEB) according to different resources sharing
strategies and the average rate. Here, we use the localization optimal beamform-
ing for obtaining the PEB and OEB and the data rate optimal beamforming for
obtaining the average rate, as clarified in sections 3.4.2 and 3.4.3. In case of fre-
quency division, we dedicate the peripheral parts of the spectrum to localization
services for better delay estimation as concluded in chapter 2. From the equations
of data rate, PEB and OEB, one can intuitively understand the effect of frequency
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Figure 3.4: Inverse of PEB vs. average rate trade-off for both frequency and time
division strategies among the 3 users.
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Figure 3.5: Inverse of OEB vs. average rate trade-off for both frequency and time
division strategies among the 3 users.

and time sharing. With a larger proportion of time split for the localization phase,
we can send more localization pilot signals and get better average PEB and OEB
performance. We can notice that PEB and OEB decrease by a factor of

√
1/TL and

the average rate decreases by a factor of (T − TL)/T as we increase TL. Similarly,
with more time allocated for communication, we get higher data rates for commu-
nication as expected. Likewise, increasing the number of sub-carriers allocated for
localization, we get better average PEB and OEB performances, but the resulting
allocation of a low number of sub-carriers for communication decreases the rate
performance.

From Figs. 3.4 and 3.5, we can firstly observe that for single-user, the PEB is
smaller and the data rate is higher. Since there are no beams in other directions
unlike for the multi-user case, more power is received by the user. Similarly, it is
better for the BS to localize and communicate with all the users simultaneously
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rather than sequentially while targeting localization and communication with in-
dividual users. Moreover, we can see that for both PEB and OEB, it is better to
share frequency rather than time to get a better performance. Allocating localiza-
tion pilots on the extremities of the spectrum improves localization performance (in
particular delay performance) while there is no advantageous temporal allocation
for either of the phases while sharing time. Here, in the single-user frequency divi-
sion and multi-user frequency division, we use the peripheral parts of the spectrum
for localization and the remaining central part for communication, and hence we
can see the performance gain for PEB and OEB with optimal power allocation in
frequency rather than in time.

The operating point on each trade-off curve then depends on the QoS require-
ment for each service. Given a particular system scenario and a total resource
budget, we can pin-point the feasible region in the trade-off curve that satisfies the
QoS requirement for each of the localization and communication service and then
find the optimal resource split for the frequency and time division.

3.5 Joint localization and communication services

In contrast to the standalone localization and communication services considered
in the previous section, in this section we investigate a system where localization
and communication services are inter-dependent. We have already established in
the previous chapters that the importance of directionality in 5G suggests that
localization and communication services would most likely be tightly intertwined.
With this in mind, we need to characterize how the localization service can be
infused with the data communication service in order to efficiently achieve the
outlined targets of 5G. In this system, unlike in the standalone case, the data
service phase utilizes the information from localization phase to transmit the data
to the UE. More specifically, the directional information for beamforming in the
data phase is exploited from the localization phase. Hence, here, we scrutinize the
prospects of joint localization and communication while sharing, as in the previous
section, frequency/power and time/energy resources.

3.5.1 System model

Network geometry and BS characteristics

In this joint localization and communication framework, we consider an urban sce-
nario with dense multi-radio access technique (RAT) BSs deployed along the streets
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BS

User

Figure 3.6: Model depicting the 1D deployment scenario consisting of 1 BS and 1 user
node.

of a city with tall buildings contributing to a dense blocking environment. We
assume that the distribution of BS positions in each street is modeled as a one-
dimensional6 PPP ξ with intensity λ [m−1]. Each BS is assumed to be of known
height hB and equipped with directional antennas with beamwidth ω. The trans-
mit power of the BSs is assumed to be PTx. Without loss of generality we perform
our analysis from the perspective of a typical user located at the origin, which as-
sociates with the BS that provides the highest downlink power. Accordingly, the
distribution of the distance d of the typical user from the base of the serving BS is
given by [83]:

fd(x) = 2λ exp(−2λx). (3.12)

Path-loss model

We consider a Nakagami fading with parameter n0 and variance 1 to model the low
local scattering for communication [93]. At the receiver located at the origin, the
power received from a BS located at a distance d including the pathloss is given by:

PRx =
|h|2KPTxGTxGRx

(d2 + h2
B)α/2

, (3.13)

where K = λ2
c/4π

2 is the path loss coefficient, λc is the wavelength corresponding
to the center frequency of the transmitted signal, h represents the fast-fading, α

6The 1D model assumed in this chapter is relevant for the case where the cellular deployment
is envisioned to be along roads. As an example, Verizon and AT&T have both announced plans
to deploy 5G infrastructure on lampposts for mobile access [92], respectively. In such scenario,
the 1D model assumed in our work can be utilized by a network operator to derive system design
insights and to further fine-tune the deployment parameters.
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is the path loss exponent and GTx = |aHTxf |2 and GRx = |wHaRx|2 represent the
directional antenna gains at the transmitter and the receiver respectively.

Received signal model

Let s(t) be the signal transmitted by the BS. The signal received at the user can
be written as:

y(t) =
√
PRxs(t− τ) + n(t), (3.14)

where, τ =
√
d2 + h2

B/c with d being the true distance from the base of the BS to
the user and n(t) is the zero mean Gaussian noise with two-sided power spectral
density N0/2 and corresponding power σ2

N = N0B. We further assume the transmit
signal s(t) with duration Ts has flat spectrum with |S(f)|2 = Ts/(2πB) where B is
the bandwidth of the system, similarly to [62].

3.5.2 Frequency sharing

With respect to the joint localization and communication framework, we look into a
system where the localization and communication services share frequency resources
or power and, accordingly, study the trade-off between the localization and the data
rate performance. In this section, based on the localization performances in terms
of localization error bounds, we firstly define the probability of beam alignment
errors. Then, leveraging on the tools of stochastic geometry, we present an average
characterization of the localization and communication performance of this network,
by exploiting the a-priori knowledge about the distribution of the distances of the
users from the BSs while considering the aforementioned beam alignment errors.
Finally, we prescribe the network operator a scheme to select the beamwidth and
the power splitting factor between the localization and communication functions to
address different QoS requirements, while limiting cellular outage.

Transmission policy and model

We assume a communication scheme where the transmit power of the BS is divided
into two parts: one associated with positioning and the other allotted for data com-
munication. Such power split can be achieved by splitting the spectrum into local-
ization and communication parts. The power allocated for localization determines
the number of control symbols used for this function, whereas the remaining power
is utilized for control and data symbols of the communication phase. We acknowl-
edge that it is possible to utilize the native communication signal for positioning
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services. However, we use a dedicated waveform designed for better localization per-
formance (e.g., see [94] for a discussion on localization specific waveforms). Hence,
splitting of the transmit power becomes necessary to characterize and optimize the
operating trade-off between communication and localization functionalities.

Accordingly, if the total transmit power is PTx, and β is the fraction of power
used for data services, the corresponding transmit power for localization is PL =

(1−β)PTx. Consequently, the transmit power for data service is PC = βPTx. Let the
SNR for the distance estimation and the data communication phases be represented
by SNRL and SNRC , respectively. We also assume that both localization and
communication services are performed for a total duration of T .

In this work, we consider the estimation of the delay in the localization phase,
and accordingly use it to characterize the beam alignment error (as in our one-
dimensional scenario delay and AoD are directly related to each other). Likewise,
we also assume that the network is equipped with efficient interference manage-
ment capabilities (e.g., spatio-temporal frequency reuse), so that the performance
of the users is noise-limited7. In next sections and chapters, we introduce further
localization estimation variables and interference analysis for completeness.

Positioning error, data rate coverage and beam selection error

In this section, we first characterize the minimum variance of the error in the esti-
mation of the distance of the typical user from the serving BS. Then, we derive the
SNR coverage and the rate coverage probabilities.

Distance estimation analysis: Let the power spectral density of the transmit
signal be symmetric [62] and equal to Ts/2πB, where, Ts and B are respectively the
time duration and the bandwidth of the transmitted signal s(t). The symmetry,
consequently, decouples the Fisher information of the distance, i.e., Jd,d from the rest
of the estimation parameters, as shown in chapter 2 and [62]. This is also the reason
we have not considered the channel coefficients yet as an estimation parameter for
the FIM. We will do so in chapter 4 while also considering AoA estimation for UE
side beam alignment. With the received signal model in equation (3.14) we can
write the FIM for delay estimation, as derived in [62, 96] and in appendix C.1, as

Jd,d = ζ
1

(h2
B + d2)α/2

, (3.15)

7Although the assumption of the network being noise-limited simplifies the analysis, Singh et
al. [95] have shown the validity of this assumption in outdoor mm-Wave mesh networks.
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where ζ = (2KPLTGRxGTx|h|2B2π2)/3c2σ2
N .

Now using the distribution of d from (3.12), the expectation of the Fisher in-
formation (or the average information over all possible true distances) is calculated
as:

JD = Ed [Jd,d] = 2λζ

∫ ∞
1

e−2λx

(h2
B + x2)α/2

dx. (3.16)

For the special case of path loss exponent α = 2 (under a LOS assumption), JD
evaluates to (3.17), where Ei is the exponential integral [97].

JD = 2λζ

(
i(e−i2λhBEi(i2λh)− ei2λhBEi(−i2λhB))

2hB
+ 2λ log (2λ)− 1

)
. (3.17)

Likewise, the prior information resulting from the a-priori knowledge of the
distribution of d can be calculated as:

JP = E [log(fd(x))] =

∫ ∞
0

log (fd(x)) fd(x)dx, (3.18a)

=

∫ ∞
0

log (2λ exp (−2λx)) 2λ exp (−2λx) dx, (3.18b)

= log (2λ)− 1. (3.18c)

Finally, the Bayesian information can be obtained as JB = JD+JP according to
[96]. Consequently, the Bayesian Cramér-Rao lower bound (BCRLB) and Jeffrey’s
prior corresponding to the Bayesian information are calculated as 1

JB
and

√
JB,

respectively. Intuitively, higher the Jeffrey’s prior (or lower the BCRLB) is, better
the estimation efficiency will be. From (3.17), we see that a higher Jeffrey’s prior
is facilitated by a larger value of PL, i.e., a smaller β.

Coverage and rate analysis: Now, moving on to the data-service procedure,
the SNR based on the path-loss model in the section 3.5.1 is:

SNRC =
|h|2KGTxGRxPC

σ2
N

(d2 + h2
B)−

α
2 . (3.19)

Accordingly, let us define the SNR coverage probability of the typical user at
a threshold γ, as the probability that the SNR is greater than γ. It represents
the fraction of the users under coverage in the network. Then, the SNR coverage
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Figure 3.7: Illustration of beam selection error.

probability is computed as follows:

P (SNRC ≥ γ) = P
(
|h|2KGTxGRxPC

σ2
N

√
(x2 + h2

B)−α ≥ γ

)
, (3.20a)

= P
(
|h|2 ≥ γσ2

N

PCKGTxGRx(x2 + h2
B)−

α
2

)
, (3.20b)

=

n0∑
n=1

(−1)n+1

(
n0

n

)
Ex
[
exp

(
− nγσ2

N

PCKGTxGRx(x2 + h2
B)−

α
2

)]
, (3.20c)

=

n0∑
n=1

(−1)n+1

(
n0

n

)
2λ

∫ ∞
0

exp

(
−nγσ

2
N(x2 + h2

B)
α
2

PCKGTxGRx

)
exp (−2λx) dx, (3.20d)

where, x is the random variable representing d. Hence, evaluating the integral, the
coverage probability can be formulated as follows:

PC(γ) =

n0∑
n=1

(−1)n+1

(
n0

n

)
2λ exp

(
2λ− h2

Bnγ

G1

)[√
π

2

(√
G1

nγ
− G1

nγ
erf
(
h2
Bnγ

G1

))]
,

(3.21)

where G1 = PCKGTxGRx/σ
2
n for notational simplicity.

Now, similar to the SNR coverage probability, the rate coverage probability at a
threshold r0 is defined as the probability that the downlink data rate of the typical
user is greater than r0. The rate coverage probability can be computed as:

PR(r0) = P (R ≥ r0) = P
(
SNRC ≥ 2

r0
B − 1

)
, (3.22a)

= PC
(

2
r0
B − 1

)
. (3.22b)
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Beam selection error characterization: We assume that through the local-
ization procedure, the user is positioned at d̂. Consider the BS with an antenna
beamwidth ω, serving the user located at an estimated d̂, covers a region of length
d0 on the ground in Fig. 3.7. Using simple trigonometric calculations, we have:

d0 =
2 tan

(
ω
2

) [
1 + d̂2

h2B

]
1− d̂2

h2B
tan2 ω

2

. (3.23)

The beam selection can occur in the absence of dynamic beam-alignment on both
sides of the radio link. Assuming that the user’s antenna is always oriented towards
the BS, or equivalently, in case the user is operating with an omni-directional an-
tenna, beam selection error will occur in case the distance of the actual user position
on the ground is more than d0/2 from the estimated position for a given beamwidth
of ω.

Let us assume that the estimation error for the user localization is symmetric
about its mean. Consequently, we bound the probability of the beam selection error
as follows:

PBS(d) = P
(
|d− d̂| ≥ d0

2

)
(a)

≤ 2σ2
d

d0

(b)
=

2

JBd0

, (3.24)

where d̂ is the estimated distance of the user. Here (a) follows from Chebyshev’s
inequality assuming σ2

d as the variance of estimating the user at d̂. The step (b)
holds of a minimum-variance unbiased estimator (MVUE)8.

Based on this, we can then bound the mean beam selection error by taking the
expectation over d, as follows:

P̄BS = Ed [PBS(d)] ≤ Ed
[

2

JBd0

]
. (3.25)

Numerical results

In this section, we present some numerical results based on the analytical framework
presented above. First, we present how the SNR coverage probability changes
with the power splitting factor (β). Subsequently, we study the trade-off between
localization and data rate as a function of β. Then, with the help of two examples,

8For instance, in [51], the authors demonstrate that in both LOS and NLOS conditions, the
algorithm attains CRLB even at low SNR in the mm-Wave scenario.
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Figure 3.8: SNR coverage probabilities for a threshold of γ = −10 dB vs the fractional
power split for different λ.

we describe our power partitioning scheme. In the following analysis, we assume
GTxGRx = 10 dBi and n0 = 3.

SNR coverage probability: In Fig. 3.8 we plot the SNR coverage probability
PC with respect to β at a threshold of γ = −10 dB. As β increases, the SNR coverage
probability increases due to more power allocated to the data transmission phase.
This provides a guideline to select a minimum operating β for a given deployment
density, such that the outage is limited. As an example, to limit a service outage
below 20%, with a BS deployment of 1 km−1 and a power budget of P = 25 dBm,
the minimum β is 0.15, whereas with a power budget of P = 20 dBm, the minimum
β is 0.5.

More interestingly, this analysis provides the operator with dimensioning rules in
terms of the deployment density of the BSs for a given power budget. For example,
in order to support services with an outage tolerance of 10%, with a power budget
of 20 dBm, a deployment density of 1 km−1 does not suffice, and the operator must
necessarily deploy more BSs.

Beam selection error: In Fig. 3.9 we plot the mean beam selection error with
respect to the beamwidth of the transmit antenna of the BSs. As expected, the
larger the beamwidth and the higher the SNR, the lower the selection error. For
example, for a tolerable beam selection error of 0.02% with SNR = -15 dB and
λ = 5 km−1, the minimum antenna beamwidth should be 8 degrees.
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Distance estimation - data rate trade-off: In Fig. 3.10 we plot the trade-off
between the efficiency of the distance estimation of the user, represented by its Jef-
frey’s prior9, and the rate coverage probability at a rate threshold of 500 Mbps. Each
position in the plot for a given deployment parameter corresponds to a particular β.
Thus for a given power budget, deployment density, and operating beamwidth, the
performance of the system is determined by a particular operating characteristic,
i.e., a trade-off between the positioning efficiency and data rate performance. For a
particular operating characteristic, as we increase β, we improve the rate coverage
probability at the cost of degrading the localization efficiency; whereas, decreasing
β has the opposite effect. Accordingly, there exists a non-trivial trade-off between
distance estimation and the data rate performance of the system. Next, we propose
a scheme for selecting an optimal β, given an operating beamwidth.

QoS aware network parameter setting: We propose the following scheme for
setting the network parameters. First, for a given power budget, deployment density
and operating beamwidth, the corresponding operating characteristic (i.e., a trade-
off curve from Fig. 3.10) is selected. Next, for the chosen operating characteristic,
the minimum βmin is chosen to satisfy the required outage constraint. Then, for a
given positioning error constraint, the maximum value of β, i.e., βmax is selected.
Finally, we select βmin ≤ β ≤ βmax to address the specific QoS requirements.

In what follows, we explain the total power distribution based on the QoS re-
quirements, for a varying degree of beam selection error. We assume a network with
λ = 2 km−1 and a BS power budget of PTx = 20 dBm providing two services:

9The estimation error is calculated as the inverse of the Jeffrey’s prior.
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• Service 1 has a outage tolerance of 10%.

• Service 2 has a positioning error tolerance of 5 cm.

We study the power partitioning scheme under different operating beamwidths.
Intuitively, for a less stringent beam selection requirement, the operating beamwidth
can be smaller. This can be exploited either to improve positioning accuracy or
enhance the data-rate, as per the required QoS.

For service 1, the operator should set β equal to βmin which fulfills the outage
requirement from Fig. 3.10 corresponding to the corresponding beamwidth ω such
that the beam selection error is satisfied from Fig. 3.9. Then, if the operating
beamwidth ω can be decreased, while maintaining the rate coverage requirement,
more power can be allotted for localization and consequently, less power for the
data service phase.

On the other hand, for Service 2, the operator should set β equal to βmax

satisfying the positioning error constraint and ω that satisfies the beam selection
error requirement. Therefore, similarly to Service 1, a thinner beamwidth can
facilitate a larger PC as shown in Fig. 3.11.

The stark difference in the two examples lies in the fact that the advantage of
operating with a thinner beamwidth is exploited differently. With decreasing ω, for
positioning based Service 1, PL increases and PC decreases, whereas the opposite is
true for the high data-rate services (see Fig. 3.11).

It is worth mentioning that the inter-dependence of β and ω for controlling the
positioning performance and the beam selection error is not trivial. As an example,
for a required beam selection error constraint or for a required positioning error
constraint, there exist non-unique (ω, β) pairs. Furthermore, it may happen that
for a given ω and PTx, no feasible β exists that satisfies the positioning and beam
selection error constraints simultaneously, thereby necessitating a higher BS power
budget.

3.5.3 Time sharing

After the frequency sharing framework with the aid of power splitting, we now look
into the time sharing framework with the help of energy partition between the two
phases, thus supporting the two services while still relying on the same system. With
this consideration, similarly to the previous sections, we herein characterize a trade-
off between the resource allocation for localization and communication. With larger
resources devoted to localization, we achieve a lower beam selection error due to
accurate position information, although the resulting limitation in communication
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resources reduces the user data rate. Conversely, to obtain a better rate perfor-
mance the system needs to increase the allocation for communication, consequently
increasing the probability of beam selection error. We characterize localization per-
formance bounds and downlink average rate performance of a mm-Wave network
and accordingly introduce a possible multi-service optimization policy.

We consider the one-dimensional network model similarly to the previous sec-
tion. In contrast to the previous sections, in this section we consider equi-spaced
distribution of BSs, with inter-BS distance equal to a constant da = 1/λ m. Accord-
ingly, we consider the communication model considering interference. In the next
chapter where we consider the problem of beamwidth optimization, we consider a
probabilistic distribution of the inter-BS distance.

Transmission policy and model

In this subsection, we consider a joint localization and communication framework
facilitated by a time frame split across the two phases as illustrated similarly to Fig.
3.2 or Fig. 3.3 but for a single user case. Of the total transmit time T , we allocate
a fraction β for communication, i.e., TC = βT , and the rest (1 − β) to send the
localization pilots, i.e., TL = (1− β)T . Since we consider a constant PTx and T , we
use the terms energy and time allocation for both localization and communication
phases interchangeably.

Without loss of generality we perform our analysis from the perspective of a
typical user located at the origin, which associates with the BS that provides the
highest downlink power in the sub-6GHz band. Accordingly, we refer to the associ-
ated BS as the serving BS. Unlike in the previous section, we assume that the user
experiences interference from the BSs’ other than the serving BS.

Similarly, unlike in the previous section, we also model blockage in this section
by consider the possibility of the user being in both LOS and NLOS with respect
to the serving BS by modelling the the blockage according to LOS ball model with
radius dS similar to [82, 98]. In the LOS ball model approximation, the user is
assumed to be in LOS as long as it is inside the distance dS from the BS, and in
NLOS otherwise. We assume that the path loss coefficient α can be either αL and
αN depending on whether the user is in LOS or NLOS.

The user is assumed to have access to the AoA and AoD information, but since
we are considering one-dimensional model, we can represent the AoD in terms of d
(and thus delay). Each BS, with height hB, and user are equipped with mm-Wave
ULA directional antennas both with Nt antenna elements with a BS antenna array
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response given as follows:

aTx(d) =
1√
Nt

[
1, ej

2πκ
λc

sin(θ(d), · · · , ej(M−1) 2πκ
λc

sin(θ(d)
]
, (3.26)

where, κ is the inter-element distance in the antenna array and λc is the wavelength
corresponding the center frequency fc. For the receive antenna response aRx(φ) at
UE, simply replace θ(d) with φ and Nt with Nr in equation (3.26). Similarly, let
f ∈ CNt×1 and w ∈ CNr×1 represent the transmit and receive beamforming vectors
respectively.

In order to simplify the analysis of the data service phase, we approximate the
beamforming by a sectorized beamforming model [99, 100], where the transmitted
and received beams are divided into two sectors, a main lobe sector whose antenna
gain depends on the beamwidth ω and a side lobe sector with a fixed gain. Here, the
term main lobe stands for the angular region of the antenna pattern centered around
the axis of maximum gain and aperture equal to the half-power beamwidth10. Ac-
cordingly, in the sectorized model, the antenna gain at the BS and the user side
Gx(ωx) = |aHx (θ(d))f |2 or |wHax(φ)|2, where x ∈ {Tx,Rx}, is given by [100] as:

Gx(ωx) =

γx(ωx) = G0
2π−(2π−ωx)ε

ωx
, in the main lobe,

g = G0ε, otherwise,
(3.27)

where G0 is the antenna gain of an equivalent omni-directional beam (i.e., ωx = 2π)
and ε is a small positive constant � 1.

Beam dictionary

We assume that each BS has a mm-Wave beamforming database. Specifically, each
BS is capable of having beam dictionaries of different sizes, where each beam dictio-
nary is composed by a set of beams characterized by the same width. Furthermore,
we assume that the main lobes of different beams of the same dictionary are non-
overlapping. Together, the beams of a dictionary provide complete coverage in the
geographical coverage area (i.e., the Voronoi cell) of the BS as shown in Fig. 3.12.
Consequently, the larger the number of beams in the dictionary, the smaller is the
beamwidth. It must be noted that for a typical BS deployed along the road, the
neighbouring BSs on either side may not be located at the same distances from it.

10Note that the width of the beam depends on the beamforming vectors f and w. In our case of
ULA, large number of antenna can guarantee a thin beam. Similarly, we can switch some antenna
elements off in order to achieve other beamwidths. We can solve an optimization problem like in
[91] to find the optimal beamforming corresponding to a particular beamwidth.



76 Chapter 3. Localization-Communication services trade-off study

𝑑L12 𝑑R12 = 𝑑L22 𝑑R22
(a)

𝑑L1N 𝑑RNN𝑑R1N

⋯

𝑑R N−1 N

(b)

Figure 3.12: Illustration of the beam dictionary elements in case of (A) 2 beams and
(B) N beams.

As a result, the beam dictionary maintained at the BSs would contain the cell size
information for both the sides of them. Without loss of generality, in what follows,
we focus on one side of the typical BS in this chapter as well as chapter 4.

Let ω1 = arctan
(

da
2hB

)
− arctan

(
dL11

hB

)
be the beamwidth of the beam that

provides total coverage of the area da/2, where dL11 = dL12 = dL1N
is the starting

point of the coverage area (as illustrated in Fig. 3.12) and hB is the height of the
BS. Then, for the beam dictionary size k, the beamwidth is defined by ωk = ω1/k.
Now, depending on this beamwidth ωk and the total number of beams, the left and
right boundaries of each main lobe coverage positions of the j-th beam (1 ≤ j ≤ k)
are denoted as dLjk and dRjk . The non-overlapping and adjacent assumption of the
beams implies that dRjk = dL(j+1)k

, ∀j ≤ k.
Hence, we define the beam dictionary database DB of a mm-Wave BS as a lower

triangular matrix consisting of all feasible beams for each beam dictionary. Each
element DBk,j of DB, where j ≤ k, consists of a tuple (ωk, dLjk , dRjk) corresponding
to the j-th beam of the k-th beam dictionary. The elements of the tuple indicate
respectively a) the width of the beam, b) the left boundary, and c) the right bound-
ary of the main lobe of the beam (according to the sectorized model), as illustrated
in (3.30). Then, for the k-th beam dictionary, the j-th beam has a coverage area
Cjk = dRjk − dLjk . The steps for designing the beam dictionary at a mm-Wave BS
are:

1. After being deployed, the new BS exchanges inter-BS signals to discover its
coarse geographical location on the street11, with respect to its neighbouring
mm-Wave BSs12. Using this information, a BS maps its own geographical
coverage area with respect to its neighbors. As all the BSs are assumed to

11Such prior geo-referencing, anyway required for mapping geographical coverage, can also be
performed in alternative ways such as the GPS.

12This information can be provided a-priori by the operator during the deployment phase.
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have the same transmit power, the cell boundaries are midway between two
neighboring BSs.

2. For each value of beam dictionary k ∈ {1, 2, . . . , N}, the BS calculates the
coverage areas of the associated beams as Cj,k = dRjk − dLjk , where:

dRjk = hB tan

(
arctan

(
dLjk
hB

)
+ jωk

)
, j = 1, 2, · · · , k, (3.28)

dLjk =

dR(j−1)k
, j = 2, · · · , k,

0, j = 1.
(3.29)

3. The resulting data-base is thus lower triangular matrix as follows:

DB =


(ω1, dL11 , dR11) 0 0 . . . 0

(ω2, dL12 , dR12) (ω2, dL22 , dR22) 0 . . . 0
...

... . . . . . . ...
(ωN , dL1N

, dR1N
) (ωN , dL2N

, dR2N
) . . . . . . (ωN , dLNN , dRNN )

 ,
(3.30)

where the k-th row consists of the beam dictionary of size k beams and con-
tains the information about the width and the main lobe coverage areas of
the corresponding beams.

Localization phase

Contrarily to to the data communication phase, in the localization phase, we do
not consider the effect of interference. This is primarily because we assume that
the localization estimation occurs using signals transmitted in the control channel,
which is assumed to be interference-free due to the usage of orthogonal resources
for transmitting the pilots.

In this section, we characterize the CRLB in terms of distance like in section
3.5.2. FIM J from [52] and [62] for the estimation of the mentioned variables are
given below. Considering that TL = (1 − β)T amount of time is allocated for
localization,

Jd,d = ζGRx(ωRx)GTx(ωTx)
B2π2

3c2
, (3.31)

where, ζ = (2KPTx|h|2(1− β)T )/(h2
B + d2)σ2

N .
Hence, the CRLBs for the estimation of the distance can be written as follows:
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Figure 3.13: Illustration of beam selection error.

σ2
d = J−1

d,d (3.32)

Beam selection error

Without loss of generality, assume that the real position of the UE is dLjk ≤ d ≤
dRjk , and accordingly, for a given beam dictionary k, the j-th beam, whose coverage
area is given by Cj,k = dRjk−dLjk , should be assigned to it. However, due to ranging
errors, the estimated distance of the user d̂ is distributed as N (d, σ2

d) similarly to
[101], where σ2

d is defined in (3.32). Hence, a beam selection error occurs for the
user when d̂ is not inside the correct interval defined by dLjk and dRjk (see Fig.
3.13). Contrarily to the definition in the frequency sharing case in section 3.5.2,
in this section, the beam selection error is defined with respect to the previously
defined beam dictionary. Averaging out on the possible beams that can be selected
depending on the relative distance of the typical user to BS, we have the following
result.

The probability of beam selection error when the BS estimates the UE to be in
the position d̂ and selects a beam of width ωk, is derived from appendix B.2 as:

PBS,j,k
(
d, σ2

d

)
= P

(
d̂ < dLjk

)
+ P

(
d̂ > dRjk

)
(3.33a)

= 1−Q
(
dLjk − d
σd

)
+Q

(
dRjk − d
σd

)
, (3.33b)

where, as defined earlier, Q (·) is the Q-function.
In case of deterministic equi-spaced BS deployment, where the BSs are at a

distance of da = 1/λ, the average beam selection error over all the possible UE
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positions in case of N total beams is given by

P̄BS =
k∑
j=1

∫ dRjk

dLjk

PBS,j,N(x, σ2
d)fd(x)dx, (3.34)

where,

k =

⌈
1

ωk
arctan

( 1
λ
− dL1N

hB

)⌉
. (3.35)

Note that the wider the antenna beam, the larger is the value of Cj,k. Thus, for a
given distance estimation accuracy (i.e., σd), the beam selection error is smaller for
a larger beamwidth since PBS,j,k(x, σ2

d) decreases with Cj,k in (3.33). On the other
hand, with increasing ωk, the value of σd increases because of the lower antenna
gain. This increases the beam selection error.

Data service phase

In this section, first we characterize the SINR coverage probability of the typical
UE considering the beam selection error into account. Based on that, we define the
effective downlink data rate of the typical UE.

The SINR, according to the transmission policy, can be formulated as:

SINR =
PTx|h|2KGTxGRxd

−αL

σ2
N + PTxKg2

(∑
i∈ξL\0 d

−αL
i |hi|2 +

∑
i′∈ξN d

−αN
i′ |hi′|2

) (3.36)

where ξL and ξN represent the indices of the BSs in LOS and NLOS respectively,
hi and hi′ represent the channel between the user and the i-th BS (LOS) and i′-th
BS (NLOS) respectively.

The SINR coverage probability, as defined earlier, is probability that the typical
user receives the transmitted signal with a SINR over a given threshold. Mathe-
matically, it is characterized in appendix B.3 as follows:

PC,j,k (γ) =

∫ dRj,k

dLj,k

2λ

PBSj,k(x)TBS(x, γ)︸ ︷︷ ︸
Beam Selection Error

+
(
1− PBSj,k(x)

)
T0(x, γ)︸ ︷︷ ︸

No Beam Selection Error

 exp (−2λx) dx,
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where, PBSj,k is defined in equation (B.11), and

T0(x, γ) = exp

(
− γσ2

N

PTxKg2z−αL0

−AL0 (x, γ)−AN0 (x, γ)

)
, (3.37a)

TBS(x, γ) = exp

(
− γσ2

N

PTxKGz
−αL
0

−ALBS (x, γ)−ANBS (x, γ)

)
, (3.37b)

in which z0 =
√
x2 + h2

B as defined in appendix B.3

AL0(x, γ) =

∫ dS

x

γg2(y2 + h2
B)−αL/2

G2z−αL0 + γg2(y2 + h2
B)−αL/2

2λydy, (3.38a)

AN0(x, γ) =

∫ ∞
dS

γg2(y2 + h2
B)−αN/2

G2z−αL0 + γg2(y2 + h2
B)−αN/2

2λ(y − dS)dy, (3.38b)

ALBS(x, γ) =

∫ dS

x

γ(y2 + h2
B)−αL/2

z−αL0 + γ(y2 + h2
B)−αL/2

2λydy, (3.38c)

ANBS(x, γ) =

∫ ∞
dS

γ(y2 + h2
B)−αN/2

z−αL0 + γ(y2 + h2
B)−αN/2

2λ(y − dS)dy. (3.38d)

Hence, the overall SINR coverage probability for a beamwidth ωk is calculated
as

PC(γ, k) =
k∑
j=1

PC,j,k (γ) . (3.39)

Considering that the data service phase consists of a fraction β of the total time
of the positioning-communication scheme, we can obtain the effective rate coverage
probability as below:

PR(r0, β, k) = P (βB log2 (1 + SINR) ≥ r0) (3.40a)

= P
(
SINR ≥ 2

r0
βB − 1

)
(3.40b)

= PC
(

2
r0
βB − 1, k

)
(3.40c)

Numerical results

In this section, we present the simulation results to evaluate the beamwidth selection
strategy for a mm-Wave small cell network with λ = 10 km−1 and 50 km−1 and
dS = 100 m operating at the center frequency fc of 60 GHz with bandwidth B of 1
GHz. Moreover, assume PTx = 1 W, the transmit and receive main and side lobe
antenna gains G = 30 dB and g = −10 dB and σ2

N = −174 dB/Hz. The LOS
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Figure 3.14: Average Beam Selection Error P̄BS varied with the beamwidth for different
λs.
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Figure 3.15: SINR Coverage Probability PC(γ,N) varied with N for different βs.

and NLOS pathloss exponents are assumed to be αL = 2 and αL = 4 respectively.
Similarly, the coefficient K = 7.5× 10−7.

In Fig. 3.14 we present the average beam selection error for different numbers
of beams. A wider beamwidth provides more coverage area for localizing the user,
and hence, reduces the error due to the user being within the main lobe of the
transmitted beam. Likewise, the figure also shows the effect of increasing the inten-
sity of the PPP. With a lower number of BSs due to larger λ, the typical user has
more probability of being far from the BS causing σ2

d to increase. Hence for smaller
beamwidths, this inaccuracy in the knowledge of user position leads to a higher
average beam selection error. However, for larger beamwidths, the larger coverage
area compensates for this inaccuracy and hence both the plots with λ = 10 and
50km−1 converge towards each other.

Furthermore, in Fig. 3.15, we plot the SINR coverage probability as a function
of the number of beams for different β. It can be noticed that increasing the time
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Figure 3.17: Rate Coverage Probability PR(r0, β,N) varied with (1−β) for different λs
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allocation for localization for a better localization performance increases the SINR
coverage probability as it decreases the probability of having a beam selection error.
For a certain β, when the number of beam increases and hence the beamwidths get
thinner, there is a higher chance of beam selection error, in which case, the unwanted
power received from interfering BSs decreases the SINR coverage probability.

Likewise, in Fig. 3.16 we can see the rate coverage probability with r0 = 100

Mbps varying with different Ns for β = 0.1 and 0.8. For lower β, more precise
localization improves the rate coverage probability even with thinner beamwidths.
For larger β, the rate coverage probability first increases and then decreases with
thinner beamwidth due to worse positioning.

Similarly, in Fig. 3.17, we can see the effect of favoring localization over com-
munication with the same parameters as above. The rate coverage probability
increases while increasing TL except after 96% when TC is so low that the rate
coverage degrades very rapidly due to outage. Comparing the different numbers of
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beams, using 16 beams instead of 4 is beneficial with respect to the rate coverage
only after the user has been very accurately localized.

From the above figures, we can summarize that for a given λ, increasing N

increases the beam selection error and even though it increases the SINR cover-
age probability initially. Too thin beams decreases this probability due to beam
selection error and resulting interference from other BSs. Similarly, allocating a
large portion of time for accurate user localization can help in achieving high rate
coverage probability. Hence, from these analyses it is essential to optimally allo-
cate the parameters ω and β for improving both localization and hence throughput
performance at the user.

3.6 Chapter conclusions

In this chapter, we looked at different resource sharing schemes facilitating localiza-
tion and communication functionalities in both standalone and joint frameworks.

We firstly evaluated the trade-off arising from the different resource sharing
strategies over time and frequency, in particular, in a framework supporting both
localization and communication as standalone services. In this multi-service system,
budgeting more resources for the data service than for localization would indeed
imply higher data rates but also, adversely, higher position and orientation estima-
tion errors, which in turn, can be harmful to localization-based beam selection and
alignment, and hence communication performances.

Beyond, we then studied a system supporting both localization and communi-
cation services jointly, where we not only investigated the effects of resource bud-
geting, unlike in the case of standalone services, but also assessed the impact of the
localization performance on the communication phase arising from error in distance
estimation and subsequently in the beam alignment.

We firstly studied the implications of frequency or power sharing between the
two services where we derived dimensioning rules in terms of the density of BSs
required to limit outage probability. We provided the operator with a beamwidth
selection guideline to limit the beam alignment error probability and also stud-
ied the trade-off between the localization performance and the downlink data rate.
Consequently, we presented a scheme for partitioning the transmit power depending
on a-priori requirements. Finally, we studied the impact of time or equivalently en-
ergy sharing between the two phases. Through CRLB calculation, we characterized
the best achievable variance of distance estimators. Then after the characterization
of the uncertainty in distance estimation, we formulated the average beam selection
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error and subsequently the SINR and rate coverage probabilities and showed that
optimizing the beamwidth and the resources partitioning factor is important in or-
der to facilitate the localization and communication functionalities simultaneously.

Regarding the limitations of our study, in section 3.4, we do not consider the
inter-user interference in the communication phase while considering the rate opti-
mization problem. Even if we do not expect that interference would have a signifi-
cant effect on the trends of the trade-off, the consideration would make the analysis
complete. Similarly, in section 3.4.2, we considered a noise-limited case where we
assume that the UE has the capability to resolve the interference from the serving
BS. We however considered the interference during rate analysis in section 3.5.3 and
chapter 4. Similarly, in our model in section 3.5.3, we assumed that the inter-BS
distance is equi-spaced for the trade-off study. In the next chapter, we will con-
sider the BSs are distributed according to the PPP. Moreover, in section 3.5, while
considering the alignment error due to erroneous localization, we only considered
an error from the perspective of the BS considering that the beam of user is either
omnidirectional or oriented towards the serving BS. We have included the beam
alignment errors at both BS and user ends in chapter 4. Finally, in section 3.5.3,
even though we consider the interference due to multiple BSs in the communication
phase, we do not consider it in the localization phase. Even though we do not
expect the analysis of the localization phase with interference will have a significant
impact on the trends of the trade-off, we would like to address the scenario in the
future. We have furthered this discussion in chapter 6.
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Chapter 4

Beam optimization in a joint
localization-communication system

4.1 Introduction

In the previous chapters, we have already seen that beamforming can significantly
help both localization and communication functionalities in a system. Furthermore,
in chapter 3, realizing that the two services are mutually beneficial to one another,
we investigated different resource sharing schemes in order to accommodate the two
services in the same system. In this context, in the standalone case, we have seen
that the effects of resource budgeting were quite intuitive and thus anticipated.
However, in the joint localization and communication case, the trade-off was much
less trivial since the two services are deeply intricate.

Allocating too much resource to the localization is penalizing to the communi-
cation phase. However at the same time, as a result of accurate localization, we
can transmit beams with thin width which allows for high rate performance. On
the contrary, allocating a small amount of resource to the localization phase can
mean that even though large amount of resources are available for the commu-
nication phase, the beam can be wrongly aligned due to erroneous user location
estimation causing an outage. Hence, there is an equilibrium between the allocated
resources and the consequent achievable data rate in the case of joint localization
and communication framework which we will address in this chapter.

In addition, in this chapter, we also consider the problem of initial access - a
process by which the mobile device or a UE establishes an initial link layer connec-
tion with the BS. In the previous generations of wireless systems, the initial access
procedure consisted in the UE finding the most favourable BS and hence the cell
with omnidirectional transmission to initiate the connection with [102]. However,
due to directionality requirements in mm-Wave systems, it is essential to determine
the direction of the UE from the BS and vice versa, to establish this connection
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[66]. In the literature, the initial access schemes have been proposed with different
cell search methods for mm-Wave including the exhaustive search where all the
possible directions are evaluated and the iterative scheme that successively narrows
the search area [103]. However, this new requirement to solve the problem of direc-
tionality in the initial access procedure induces a new problem in terms of latency,
which in fact goes against the notion behind using mm-Wave technology for 5G.
Motivated by this bottleneck, in this chapter, we also look into techniques for faster
initial access aided by localization.

4.2 Related works

In the context of mm-Wave initial access, preliminary works are described in [63,
104] where the authors present the algorithms with exhaustive and random beam
search based initial access schemes. To improve the latency of the above methods,
the Desai et al. in [64] proposed an iterative algorithm where beams are initially
with wide beamwidths and then gradually refined at each iteration to minimize
the beam search space. In [105], the authors exploit the a-priori user’s position
information from external means such as GPS to minimize the beam search area
and hence minimize the duration of initial access. Moreover, Ghatak et al. [106]
have studied networks with co-existing mm-Wave and sub-6GHz RATs, in which the
control signals sent in the sub-6GHz band are used to provide initial access to the
mm-Wave nodes. However, they have not provided any algorithm for facilitating
the initial access procedure.

With respect to localization and communication functionalities, we have already
mentioned in chapter 3 that Destino et al. in [62, 89] have presented frameworks
accommodating both localization and communication services in a single- and multi-
user system respectively. In both papers, the authors describe the trade-off between
data rate and PEB while partitioning time between the two. In the context of beam-
forming optimization (in terms of both alignment and width), in [65], the authors
utilize a-priori user location information to initialize the iterative hierarchical beam
alignment procedure. Likewise, in [61], the authors present a beam alignment op-
timization scheme between the transmitter and the receiver considering erroneous
position estimations at both ends and scatterers. In this work, the authors describe
a 2-step beam alignment algorithm, firstly at the transmitter independently and
then at the receiver following the transmitter’s decision. Recently in [107], the au-
thors presented a beam alignment method where, under similar conditions as [61],
the transmitter and receiver select the beams in a joint manner, thus outperforming
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the 2-step method. Similarly, as described in section 3.2, the authors in [90, 91]
present an iterative scheme for selecting the optimal beams at both transmitter and
receiver based on localization estimation errors.

4.3 Methodology and organization

With respect to the related works from the literature reported in the previous
section, in this section, we present the methodology of this chapter.

• Even though directionality is a key component in the mm-Wave initial access,
to the best of our knowledge, there is no work directly exploiting localization
during the cell search procedure. Moreover, the conventional cell search pro-
cedures in the mm-Wave context necessitates to search in a very large space
and hence is inefficient in terms of latency. Motivated by these limitations, in
this chapter we consider localization assisted initial beam selection procedure
while aiming to reducing the search duration.

• As discussed in the previous chapter, even though there are some optimal
resource allocation schemes in a standalone localization-communication case,
to the best of our knowledge, there is a dearth of work concerning the joint
localization-communication functionalities in terms of both resource alloca-
tion and beam optimization. Motivated by this and the interesting trade-off
pointed out in chapter 3, in a joint localization and communication scenario,
we look to jointly optimize the resource allocation and the transmit and re-
ceive beam. We intend to perform the beamforming optimization not only in
terms of alignment but also the width which has not been addressed in the
literature.

The rest of this chapter is organized as follows. In section 4.4, we present the
system model for both initial access and the localization and communication phases.
We present the channel and network models, and also define the beam alignment
errors in this section. We then firstly consider the problem of localization aided
initial access in section 4.5. Following, we then characterize the joint localization
and communication performance in section 4.6. In section 4.7 we present the nu-
merical results following our works on both initial access and joint localization and
communication. We finally conclude the chapter in 4.8.
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4.4 System model

4.4.1 Radio frame structure

𝑇I  1 − 𝛽)𝑇F 𝑇I 𝛽𝑇F  1 − 𝛽)𝑇F𝛽𝑇F

First Frame Second Frame

Initial Access Phase Data Phase Localization Phase

Figure 4.1: The proposed radio frame structure for localization assisted mm-Wave com-
munications.

We consider a small cell network where multi-RAT BSs are deployed along the
roads, similarly to the previous chapter, to provide a high speed data-access to the
mobile users by jointly exploiting sub-6GHz and mm-Wave bands. In this context,
we propose a new radio frame structure for joint communication and localization
services, which is illustrated in Fig. 4.1. Each frame consists of an initial access
phase of duration TI in addition to the service phase of duration TF similar to
section 3.5.

The access phase provides reliable mm-Wave services to the new UEs in the
system. Accordingly, in this phase, the initial beams at the BS and UE sides are
refined in an iterative manner, until the localization information (ranging and AoA)1

reaches a predefined resolution.
Then, the data and localization phases follow as depicted in Fig. 4.1. The service

phase is further partitioned by a factor β into a data communication phase of length
βTF and a localization phase of length (1−β)TF . Initially, the BS selects a transmit
beam to maximize the effective data rate, which takes into account the localization
errors as well, and satisfy the a-priori localization service requirements. In the
following frames, the beam is further adapted to the newly obtained position2 and
orientation information in order to improve the system performance in terms of rate
coverage. Thus, in the localization phase, the location information of the users are
updated. For static users, this information is improved at each subsequent frame.

1For AoA estimation, we can choose one of the popular techniques such as Bartlett tech-
nique [108], Capon technique [109] or a subspace based techniques [110] (Multiple Signal Classifi-
cation). For distance estimation, as a basic option, one can simply use RSSI based estimation in
the mm-Wave band.

2Note that, as highlighted in the previous chapter, in the one dimensional scenario, for a known
BS position, the position of the user and the distance from the base of the BS to the user are
bijective functions.
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For mobile users, the aim of this phase is to keep a track of the current location so
as to facilitate beam-switching if needed. It is important to note that the beam pair
that facilitates mm-Wave service in the initial access phase is different from the one
in the service phase. The former is refined in an iterative manner in the initial access
phase only depending on the initial localization performance to provide access to
new UEs; whereas, the latter is obtained while trying to maximize the data rate
performance.

In this work, like in chapter 3, we assume that the resources in the localization
phase are perfectly multiplexed across active users, i.e., interference does not affect
the localization performance.

Both downlink and uplink are included in our radio frame structure. Specifically,
in the initial access and localization phases there is an exchange of downlink and
uplink signals to enable precise estimation of the localization parameters. However,
in this chapter, we analyse the performance of the data-phase exclusively during
downlink communications.

4.4.2 Network geometry

Let us consider an urban scenario with multi-storied buildings resulting in a dense
blocking environment similarly to section 3.5.1. The BSs deployed along the roads
of the city are assumed to be of height hB and having a transmit power of PTx.
Their positions in each street are modeled as points of a one-dimensional PPP ξ,
with intensity λ [m−1].

The users are assumed to be static3 and located uniformly on the roads with
a density λU [m−1]. Without loss of generality, we perform our analysis from the
perspective of a BS located at the origin and an associated user located at a distance
d from the BS as illustrated in Fig. 4.2. The user selects the serving BS following
a RSSI based association. Unlike the deterministic deployment in section 3.5.3, in
this chapter, for a BS located at the origin, the distance from the nearest neighbor
(i.e, the closest BS) is given by:

fda(x) = 2λ exp(−2λx). (4.1)

3In this regard, it is important to highlight that mobility does not have a large impact on our
protocol and performance evaluation methodology. As an example, let us assume vehicular users
moving at a speed of 30 km per hour. With 1 ms of frame length, the distance covered by the
user in-between frames is approximately 8 cm, which is considerably small with respect to the
coverage area of any beam in the dictionary.
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Serving BS Interfering BS

User

Figure 4.2: An example system model consisting of a serving BS, an interfering BS
and a user node at distance d from the serving BS. The figure illustrates the relationship
between the BS and user positions and the localization variables (distance d, AoD θ, AoA

φ and the user orientation o).

Assuming that all the BSs have equal transmit power, the coverage area of the
BS located at the origin is given by da/2 on either side of it, where da follows the
distribution (4.1). Moreover, inside the coverage region of this BS, the location of a
random user is uniformly distributed. Accordingly, the joint probability distribution
of the distance d and the coverage area da is given by fda,d(x, y) = fd(y|da =

x)fda(x) [83], where

fd(y|da = x) =

x−1 0 ≤ y ≤ x,

0 otherwise
. (4.2)

Thus, each BS is associated with a Voronoi-cell service coverage area of length da,
which is distributed as equation (4.1).

In the following, we denote the user orientation with respect to the reference
x-axis as o, the AoA at the user as φ and the AoD at the BS as θ. As depicted in
Fig. 4.2, the relations between the position of the BS and the user with the delay
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τ , AoD, AoA and the user orientation are:

τ =
√
d2 + h2

B/c, (4.3a)

ω = cos−1

(
d/
√
d2 + h2

B

)
, (4.3b)

φ = π − cos−1

(
d/
√
d2 + h2

B

)
− o. (4.3c)

It must be noted that in our 1D scenario, θ is dependent directly on d. We also
assume that the orientation of the users are unknown, and accordingly, we consider
that the distribution of the initial AoA of the user f(φ) is uniform between 0 and
2π.

4.4.3 Millimeter-wave beamforming

We assume that the BSs do not cater to multiple users or transmit multi-stream
data, simultaneously. Accordingly, we assume the existence of a single RF chain
with analog beamforming and, like in the other chapters in this thesis, ULA model
with Nt and Nr antenna elements at the transmitter and receiver respectively. The
responses of the transmit and receive array antennas are represented by aTx and aRx
respectively as defined in equation (3.26). In order to simplify the analysis of the
data service phase, we approximate the beamforming by a sectorized beamforming
model similarly to section 3.5.3, where the transmitted and received beams are
divided into two sectors, a main lobe sector whose antenna gain depends on the
beamwidth ω and a side lobe sector with a fixed gain.

Let f(ωTx) ∈ CNt and w(ωRx) ∈ CNr represent the transmit and receive beam-
forming vectors. As defined in [111], the width of the beam can be controlled by
changing the number of activated elements Nt and Nr in the antenna array. The
method of changing the beamwidth is shown in [90, 91]. Accordingly, the sectorized
beamforming model is the same as that already defined in equation (3.27). The
beam dictionary in this chapter is exactly as defined in section 3.5.3.

4.4.4 Beam alignment errors

Following the description of the beam-dictionary, we define two critical metrics of
the system, which we will use to characterize the performance of the localization
phase.
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Figure 4.3

Figure 4.4: Illustration of the misalignment error.

Beam selection error

As already defined in section 3.5.3, the beam selection error is defined as the event
that a UE located in Cj,k is estimated to be at d̂, outside of Cj,k, and accordingly, it
is allotted a different beam than (ωj, dLj,k , dRj,k). Let us denote as σ2

d the variance of
the distance estimation error; the probability of beam selection error (PBS), given
that the UE is located at a distance d, is defined as

PBS,j,k
(
d, σ2

d

)
= P

(
d̂(d, σ2

d) /∈ Cj,k|d ∈ Cj,k
)
. (4.4)

This event is depicted in Fig. 3.13.

Misalignment error

In comparison to the section 3.5, in this chapter, we further introduce the beam
alignment error from the point of view of the UE referred to from hereon as the
beam misalignment error. The beam misalignment error is defined as the event
that, after the AoA estimation, the UE beamforms towards a direction such that
the axes of the main lobe of the UE and BS antennas have an angular separation
greater than a predefined threshold ν. Let us denote as oI the initial user orientation
and as φ̂ and σ2

φ the estimated AoA and the variance of the AoA estimation error,
respectively. After the AoA estimation, the user reorients its main lobe towards the
direction of φ̂ in order to align it towards the BS main lobe. The new orientation
of the user main lobe is denoted by oF in Fig. 4.3. The probability of misalignment
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error, given that the UE is located a distance d (i.e., PMA) is then defined as

PMA,j,k(d, φ, σ
2
φ) = P

(
|φ− φ̂(d, σ2

φ)| ≥ ν(ωk, ωRx)
)
. (4.5)

This event is depicted in Fig. 4.3.

4.4.5 Blockage, pathloss, and signal propagation

Due to the presence of buildings and other obstacles, the communication links can
either be in LOS or NLOS state. We assume a LOS ball model for characterizing
the blockage, similar to that in section section 3.5.3 and [82], with a radius of dS.
Thus, all the BSs present within a distance dS from the user are assumed to be in
LOS, whereas, the BSs lying beyond dS are assumed to be in NLOS. Accordingly,
the LOS BS process is denoted by ξL and the NLOS BS process is denoted by ξN .

Furthermore, because of the low local scattering in mm-Wave communications,
we consider a Nakagami fading h with parameter n0 and variance equal to 1 [93]
similarly to section 3.5.1. Additionally, we assume a pathloss model where the
power at the receiver located at a distance d from the BS is given by PRx =

KPTx|h|2GTx(ωTx)GRx(ωRx)(d
2 + h2

B)
−α
2 , where K is the path loss coefficient, α

is the path loss exponent. Here, similarly to chapter 3, we consider GTx(ωTx) =

|aHx (θ(d))f |2 and GRx(ωRx) = |wHax(φ)|2 are represented by the sectorized beam-
foming model as mentioned earlier. In our model, α = αL or αN depending on
whether the link is in LOS or NLOS state, respectively.

Let us assume that the received signal suffers from a zero-mean additive Gaus-
sian noise with two-sided noise power spectral density N0 [dBm/Hz]. As a result
the SINR in the data-communication phase is given by:

SINRC =
KPTx|h|2GTx(ωTx)GRx(ωRx) (h2

B + d2)
−α

2

N0B +
∑

i∈I KPTx|hi|2g2 (h2
B + d2

i )
−α

2

, (4.6)

where I refers to the set of interfering BSs, hi, and di represent the channel and
distance respectively between the user and the i-th interfering BS. Here it is impor-
tant to note that the BSs do not point their main lobe towards the coverage areas
of other BSs. Consequently, for any given user, the interference power is sent from
the side lobe of the interfering BSs, and never from the main lobe. Similarly, with
our orientation estimation procedure, the users are assumed to beamform towards
their serving BS. As a result, the gain from the interfering BSs is always g2.
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As stated previously, we do not consider the effect of interference in the local-
ization phase. Hence, the SNR in the localization process is given as:

SNRL =
KPTx|h|2GTx(ωTx)GRx(ωRx)

N0B

(
h2
B + d2

)−α
2 . (4.7)

4.5 Initial access procedure

In this section, we discuss our initial beam-selection procedure for a user arriving in
the mm-Wave network. In this procedure, the BS and the user select appropriate
beam pairs with beamwidths ωTx and ωRx respectively, based on the localization
accuracy required for the initial access.

1. When a new user arrives in the network, it associates with the BS that provides
the highest downlink received power in the sub-6GHz band. The UE then
makes a coarse initial estimation d̂ of its distance from the serving BS which
is characterized by an estimation-error variance σ2

d. Without loss of generality,
this initial localization can be obtained by means of technologies such as sub-6
GHz band (e.g., based on RSSI or ToA/TDoA measurements), external means
such as GPS or wireless fidelity (Wi-Fi) or even with standalone mm-Wave
band based distance estimation. The UE then relays this information to the
BS.

2. Next, the BS and the UE switch to the mm-Wave band. The UE selects
a mm-Wave beam of beamwidth ωRx, initially quasi-omnidirectional (with
beamwidth π/2).

3. In DB (as defined in 3.5.3), for each beam dictionary k, there exists a beam
j such that dLjk ≤ d̂ ≤ dRjk . Out of all such possible beam and beamwidth
pairs j and k, the BS selects the pair with the largest beam dictionary size
(i.e., the thinnest beam) that results in a beam selection error probability
PBS,j,k (d, σ2

d) less than a threshold δTx. Mathematically, ωTx = ωk such that

k = max(i) : PBS,j,i
(
d, σ2

d

)
≤ δTx, i = 1, 2, . . . , N, dLjk ≤ d̂ ≤ dRjk . (4.8)

The expression for beam selection error is derived in equation (4.11).

4. After this step, the BS sends downlink pilots in mm-Wave band, the UE
updates d̂ and σ2

d and transmits this information in the uplink. The BS then
updates ωTx accordingly.
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5. In parallel with the ranging estimation, the UE also measures the AoA of
the BS signal φ̂, which is characterized by an estimation-error variance σ2

φ.
First, the user sets the angle of the maximum gain equal to φ̂; then, it fixes
ωRx as the thinnest beam ωi for which the misalignment error probability
PMA,j,k(d, φ, σ

2
φ) is less than a threshold δRx, given that the BS selects the

j-th beam of size ωk. Mathematically,

ωRx = min(ωi) :
[
PMA,j,k(d, φ, σ

2
φ) ≤ δRx

]
, and0 ≤ ωi ≤

π

2
. (4.9)

The expression for misalignment error is derived in equation (4.12).

6. Let δφ and δd be the localization resolution requirements for reliable initial
access; the refinement procedure terminates when either i) the BS beam and
the UE beam simultaneously satisfy σ2

d ≤ δd and σ2
φ ≤ δφ or ii) a maximum

number of iterations is reached.

7. When the termination conditions are not satisfied, the UE continues to mea-
sure the downlink pilots, and accordingly, the estimates of d̂, σ2

d, φ̂, and σ2
φ

are updated. Following these new estimates, steps 3 and 5 are repeated for
an improved initial beam selection.

We refer the reader to Fig. 4.5 for a description of the steps involved in the
iterative loop for the initial access. It must be noted that the number of steps the
initial beam-selection algorithm takes to terminate depends directly on the desired
resolution of the localization. In other words, the more stringent the localization
requirements of the initial access are, the more will be the number of steps of the
initial beam-selection algorithm. Consequently, by tuning δd and δφ, the initial
access delay can be controlled. There is thus an inherent trade-off between initial
access delay and the accuracy of the UE localization, which we shall discuss in
section 4.7.

The proposed initial-access scheme improves the latency for establishing mm-
Wave connection in the system as compared to an exhaustive search solution (as
we will see in the numerical results). However, in case the direct path between
the user and the BS gets obstructed due to dynamic blockage, the localization
performance would suffer and the system could experience beam selection errors.
In the worst case, the user might have to re-initiate the initial-access procedure.
With our algorithm, this situation can be prevented by adapting the beam size
using the previously stored location estimate and the current estimation accuracy.
Thus, integrating the estimation accuracy (e.g., the variance of the estimation error)
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Figure 4.5: Flowchart representing the BS and user beam selection procedure as a part
of the localization aided initial access procedure.
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enables a fall-back solution that is not possible when using only location estimate.
In case of using a simple exhaustive search, the entire set of beam combinations from
the UE and the BS sides needs to be checked to re-establish the connection. Once
the initial-access process is concluded, the system initiates the data and localization
phases, which are defined and optimized in the subsequent sections.

4.6 Localization and communication performance

After the initial access phase, the system starts the service phase, which comprises
two alternating phases: the communication/data service phase and the localization
phase (see Fig. 4.1). In the localization phase, mm-Wave transmission is used
to update the estimates of distance d̂ and AoA of the signal received at the user
φ̂, and potentially improve the localization accuracy. In the data service phase,
the UE is served by the BS with a mm-Wave beam, which is selected from the
dictionary according to the estimated user location. We propose a framework where
the radio frames are divided into flexible sub-frames in order to address jointly the
requirements of localization and data services. In this section, we mathematically
characterize the performance metrics of localization (v.i.z., position and orientation
accuracy) and communication (in terms of downlink rate coverage), as a function of
the resource partitioning factor (β) and the sizes of the beams (ωTx, ωRx), in order
to optimize the radio frame design.

4.6.1 Localization phase

In this section, we model the accuracy of the localization in terms of the CRLBs
of the estimated distance of the UE from the BS d̂ and of the AoA φ̂ which will be
further used for beam selection at the BS and beam alignment at the UE. Since we
consider also the beam misalignment error at the UE, we need to consider the AoA
estimation in addition to the distance estimation like in chapter 3. Then, using
these tools, we characterize the beam selection error PBS resulting from a distance
estimation error and we model the misalignment PMA between the user and the BS
due to inaccuracy in the estimation of the AoA.

CRLB of the estimation parameters

Let the estimates be represented by the vector η = [d, φ, hR, hI ], where hR and hI
respectively describe the real and imaginary parts of the channel between the UE
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and the serving BS. In the previous chapter we did not consider the channel coef-
ficients in the estimation variable, since then we only required distance estimation
and, as mentioned before, considering a symmetric spectrum of the transmitted
signal decouples the distance estimation from other channel parameters. However,
since we are also considering AoA estimation in this case, we need to consider it for
CRLB derivation.

The CRLBs for the estimation of the distance (by inverting the first element
of J) and the AoA (using Schur’s decomposition [58]), as derived in appendix C.1,
can written as follows:

σ2
d =

(
ζGRx(ωRx)GTx(ωTx)

B2π2

3c2

)−1

, (4.10a)

σ2
φ =

(
ζGTx(ωTx)

(
|ȧHRx(φ)w(ωRx)|2 −

|aHRx(φ)w(ωRx)w
H(ωRx)ȧRx(φ)|2

GRx(ωRx)

))−1

,

(4.10b)

where, ζ = 2SNRLB(1− β)TF/GTx(ωTx)GRx(ωRx).
Note that the CRLBs of the estimation of the distance and the AoA are inversely

proportional to ζ. Thus, the variance of the error in estimation decreases with in-
creasing SNRL and decreasing β. Accordingly, the higher the transmit power and/or
the BS deployment density, the better the estimation performance. Similarly, larger
bandwidth improves the distance estimation as it provides finer resolution for ac-
curately analyzing the time of arrival of the received signal.

Beam selection error characterization

The beam selection error for the deterministic deployment scenario has been derived
in the previous chapter in appendix B.2. Accordingly, the average beam selection
error over all the possible UE positions in case of a total number of beams N(y)

(where y is the cell-size) with beamwidth ωk4 and probabilistic da is given by:

P̄BS = Eda

N(da)∑
j=1

P̄BS,j,k

 , (4.11a)

=

∫ ∞
0

N(y)∑
j=1

∫ dRjk

dLjk

PBS,j,k(x, σ2
d)fd(x)dx

 fda(y)dy, (4.11b)

where P̄BS,j,k is defined in equation (B.12).
4Note that since in the service phase, we are only looking to optimize the beam from the

perspective of the BS. Hence, we will denote the BS beam by ωk in the following.
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Misalignment error characterization

We assume that the UE estimates the AoA and then sets the axis of the main
lobe of its antenna to φ̂. However, in case of erroneous estimate, there exists a
possibility to wrongly align the beams (see Fig. 4.3). Let us assume that the user
located at a distance d from the BS has an AoA φ with respect to the BS, and that
is served by the j-th beam of size ωk (i.e., ωTx = ωk). Due to the noise affecting the
received signal, the estimated AoA φ̂ is affected by random errors. Consequently,
we assume that φ̂ is distributed as N

(
φ, σ2

φ

)
, where σ2

φ is defined in (4.10b). For
our analysis, we define the BS-UE beam pair to be misaligned, if |φ − φ̂| is larger
than a threshold ν(ωTx, ωRx). In other words, in case the axes of the main lobe of
the beams of the UE and the BS have an angular separation larger than the a-priori
angular threshold ν(ωTx, ωRx), we assume that the beams are misaligned.

The misalignment error probability for a UE at a distance d from the BS is given
by

PMA,j,k(d, φ, σ
2
φ) = P

(
φ− φ̂ ≤ −ν

)
+ P

(
φ− φ̂ ≥ ν

)
, (4.12a)

= 2Q
(
ν

σφ

)
. (4.12b)

Then, the average misalignment probability is calculated by taking the expec-
tation with respect to d and φ, i.e.,

P̄MA = Ed,da,φ
[
PMA(d, φ, σ2

φ)
]
, (4.13)

where the distribution of d is fd(y), and the distribution of φ is uniform between
0 and 2π as previously stated in the section 4.4.2. From equation (4.12), it can
be observed that larger the threshold for misalignment, the lower is the misalign-
ment probability. As the threshold is directly related to the transmit and receive
beamwidths, in case of wider beamwidths, the probability of misalignment is lower.

4.6.2 Communication phase

In this section, first we characterize the performance of the typical UE considering
beam-selection and misalignment errors. Then, we propose a methodology to jointly
configure the split between the localization and data phases as well as the BS beam
in order to optimize data and localization performance simultaneously. Accordingly,
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in the following, we first model the effective SINR coverage probability and then
we define the effective user data-rate.

Effective SINR coverage probability

Since the locations of the BSs are modeled as points of a 1D PPP, the locations
of the users are assumed to be uniformly in the coverage area of the BSs, and
the orientation of the users is assumed to be uniformly distributed between 0 and
2π, the SINR of a user is a random variable. Mathematically, the SINR coverage
probability is characterized as follows. The SINR coverage probability of the typical
user PC (γ, j, ωk, ωRx) served by the j-th beam of width ωk is given by:

PC (γ, j, ωk, ωRx) =

∫ 2π

0

∫ dRj,k

dLj,k

[
PBS,j,k(x, σ2

d)TBS(x, γ) +
(
1− PBS,j,k(x, σ2

d)
)

((
1− PMA,j,k(x, φ, σ

2
φ)
)
T0(x, γ) + PMA,j,k(x, φ, σ

2
φ)TMA(x, γ)

)]
fd(x)f(φ)dxdφ,

(4.14)

where T0 and TBS are defined in equation (3.37) and

TMA(x, γ) = exp

(
−
(

γσ2
N

PTxKγTx(ωk)gz
−αL
0

+ALMA (x, γ) +ANMA (x, γ)

))
,

(4.15)

in which z0 =
√
x2 + h2

B, σ
2
d is a function of x, σ2

φ is a function of x and φ, and

ALMA(x, γ) =

∫ dS

x

γg(y2 + h2
B)−αL/22λy

γTx(ωk)z
−αL
0 + γg(y2 + h2

B)−αL/2
dy, (4.16a)

ANMA(x, γ) =

∫ ∞
dS

γg(y2 + h2
B)−αN/22λ(y − dS)

γTx(ωk)z−αL + γg(y2 + h2
B)−αN/2

dy. (4.16b)

This derivation can be done similarly to the one in appendix B.3 with the in-
clusion of misalignment error. In (4.14) and appendix B.3, the term T0(x, γ) corre-
sponds to the case in which there is no beam selection error as well as no misalign-
ment. In this case, we have GTx(ωk) = γTx(ωk) and GRx(ωRx) = γRx(ωRx) resulting
in a high coverage probability. The term TMA(x, γ) represents the case where there
is no beam selection error, but the BS-user beam pair suffers from misalignment.
Here the coverage probability decreases as compared to T0(x, γ) although GTx(ωTx)

remains the same, since here we have GRx(ωRx) = g. Finally, the term TBS(x, γ)

refers to the case when there is a beam selection error. It must be noted that ac-
cording to our assumption, in the case of beam selection error, we assume that the
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beams are always misaligned. Here we have GTx(ωk) = GRx(ωRx) = g.
In case of exhaustive-search, the users will not suffer from beam-selection or

misalignment errors, i.e., for exhaustive-search, in (4.14) we have PBS,j,k(x, σ2
d) = 0

and PMA,j,k(x, φ, σ
2
φ) = 0. Accordingly, the users will experience a better SINR,

as discussed in the following: For a given value of ωk and ωRx, an exhaustive-
search based initial access algorithm will suffer from no beam selection error and no
misalignment error. Consequently, the SINR coverage probability for an exhaustive
search algorithm is given by:

PC (γ, j, ωk, ωRx) =

∫ 2π

0

∫ dRj,k

dLj,k

T0(x, γ)fd(x)f(φ)dxdφ. (4.17)

In both the cases, the overall SINR coverage probability, considering all the N
beams of size ωk is:

P̄C(γ, ωk, ωRx) = Eda

N(da)∑
j=1

PC (γ, j, ωk, ωRx)

 , (4.18)

where the expectation is taken with respect to the inter-BS distance da given by
equation (4.1).

Effective rate coverage probability

As the data phase uses β fraction of the total resources in the service phase TF ,
we can compute the probability PR(r0, β, ωk, ωRx) that the effective rate is above
given target rate threshold r0 as below. For a given SINR coverage probability, the
effective rate coverage probability is given by

P̄R(r0, β, ωk, ωRx) = P
(

βTF
TI + TF

B log2 (1 + SINRC) ≥ r0

)
, (4.19a)

= P
(
SINRC ≥ 2

r0(TI+TF )

βBTF − 1

)
, (4.19b)

= P̄C
(

2
r0(TI+TF )

βBTF − 1, ωk, ωRx

)
. (4.19c)

4.6.3 Joint optimization of the beamwidth and radio frame

structure

Given the characterization of the effective rate coverage probability, we present a
framework for selecting, at the BS, the optimal beam with width ω∗Tx from the
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designed beam dictionary. First, we define the product of the beam selection and
misalignment errors to jointly capture the effect of the localization errors, giving
equally importance to both errors5, and illustrate the trade-off between data service
and localization, as

FC(ωk, ωRx, β) = P̄BS · P̄MA. (4.20)

The proposed schematic is presented in the form of a two-stage optimization
problem, as follows:

ω∗Tx = argmax
ωk

 max
β

P̄R(r0, β, ωk, ωRx)

subject to FC(ωk, ωRx, β) ≤ µ

 . (4.21)

To solve this problem, in the first step, for a given ωk, we select the value of
β∗k that maximizes the effective rate coverage probability subject to an a priori
constraint (µ) on the joint error FC . This constraint can be a system parameter
which defines the requirement of the localization service. In the subsequent frames,
based on the new measurements, the estimates (d̂ and φ̂) are updated and the
measurement error variances (σ2

d and σ2
φ) change. Accordingly, the BS beamwidth

ω∗Tx can be further updated by using equation (4.21). We emphasize that the
optimal beamwidth thus calculated is different from the adaptive beamwidth value
evaluated in the initial access phase. The former is calculated offline to maximize
the data-rate given a set of system parameters, whereas, the latter is the beamwidth
adapted for initial access to achieve the required resolution just in terms of distance
and orientation.

4.7 Numerical results

Now we present numerical results related to the initial beam-selection and the
localization-communication trade-offs developed in this chapter. The numerical
results follow the analytical expressions derived in this chapter, where the beam-
selection and misalignment errors are characterized by equations (4.11) and (4.12)
respectively. The errors are incorporated into the SINR coverage probability expres-
sions as derived in equation (4.14). Leveraging this, the rate coverage probability
follows in equation (4.19).

5Other possibilities could have been chosen as i.) setting a threshold simultaneously on each
error probability or ii.) using max(P̄BS , P̄MA) for a robust optimization.
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Figure 4.6: Resolution in the n-th step of the localization-based initial access strategy
for different deployment densities.

4.7.1 Initial access phase

First, let us discuss the performance of the initial beam-selection strategy developed
in section 4.5. In Fig. 4.6, we plot the enhancement in positioning resolution (char-
acterized as the variance of the ranging error) with increasing the number of steps
of our initial beam-selection algorithm. Here, we have assumed that δd = 0.01m is
the minimum resolution required to provide mm-Wave date-service. As expected,
we note that for denser small cell deployments (e.g., λ = 0.1 m−1) the algorithm
stops at a lower number (here 4) of iterations, as compared to the sparser deploy-
ment scenarios. As the deployment becomes sparser (e.g., λ = 0.01 m−1), a larger
number of steps is required for the initial access procedure. This is precisely due
to the fact that for denser deployments, SNRL increases. Accordingly, a larger
beamwidth is sufficient and hence, a lower number of iterations are required to
meet the localization requirements.

Then, in Fig. 4.7 we compare the initial access delay of the proposed localization-
bound based strategy with the one achieved by two well-known beam-sweeping
solutions: exhaustive search and iterative search [56, 60, 112]. For the exhaustive
search, we consider the beamwidth of the BS and the UE to be fixed and equal to
ωTx and ωRx, respectively. Thus, the BS and the UE go through all the possible
2π
ωTx
× 2π

ωRx
beam combinations to select the beam pair that maximizes the SNR.

The exhaustive search has been adopted in the standards IEEE 802.15.3c and IEEE
802.11ad [60]. On the other hand, for the case of iterative search (similar to bisection
search in [113]), we assume that the BS initiates the procedure with k = 2 while the
user uses an omnidirectional beam. In this iterative method, out of the two possible
beams, the BS identifies the beam that results in the highest downlink SNR and
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Figure 4.8: Gain in SINR coverage with an exhaustive search based initial-access algo-
rithm for two beam dictionary sizes.

changes its search space to the region covered by that beam. Then, the BS halves
its beam size and iteratively searches the new space. We assume that the initial
beam-selection phase terminates when this process chooses the same beamwidth ωTx
selected by our localization based algorithm. Thereafter, the BS fixes the selected
beam and the UE carries out the same procedure for obtaining the user side beam.

In our system, similar to [112], we assume that i) one OFDM symbol length
(including cyclic prefix) is 14.3 µs, ii) each synchronization signal occupies only
one OFDM symbol, and iii) the beam reference signal is also transmitted in the
same symbol to uniquely identify the beam index. Clearly, our strategy provides
considerably faster initial access precisely due to the smaller number of steps than
those required by the exhaustive and iterative search based schemes.

The number of iterations our algorithm takes to terminate is a direct measure
of the delay in the initial beam-selection procedure. Specifically, we assume that
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Figure 4.9: Probability of beam selection error vs the beam dictionary size for different
antenna gains.

this delay is computed as the product of the sum of the required number of steps
at the BS side and the UE side and the duration of one OFDM symbol. In Fig. 4.6,
with λ = 0.01 m−1, we observe that for a required δd = 0.01 m, our algorithm
terminates in 20 steps, which corresponds to a delay of about 5.7 ms. Whereas, if
the positioning requirement was specified to be 0.1 m, the algorithm would have
terminated in 3 steps, which corresponds to a initial beam-selection delay of about 1
ms. Thus, there exists a fundamental trade-off between the localization requirement
(δd and δφ) and the delay in the initial beam-selection.

For a fair comparison, we emphasize that conventional algorithms such as the
exhaustive search do not suffer from beam-selection and misalignment errors. This
is shown in Fig. 4.8, where we plot the gain in SINR coverage with an exhaustive
search based initial-access algorithm as compared to our proposed algorithm for
two beam dictionary sizes. We observe that with a large number of beams, the
SINR gain increases. This is precisely because a large beam dictionary size leads to
smaller beam coverage, which in turn increases the beam selection error. More in-
terestingly, we see that for dense deployment of BSs, the gain drops dramatically as
the beam-selection and misalignment errors with the proposed initial-access scheme
are limited.

4.7.2 Localization phase

The reduction in the initial beam-selection delay with the proposed algorithm is
naturally associated with localization errors, which we discuss in this section.

In Fig. 4.9 we plot the beam selection error as a function of the beam-dictionary
size (N) for different antenna gains. It must be noted that the effect of a larger
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Figure 4.10: Probability of misalignment error vs the beam dictionary size for different
antenna gains.

beamwidth on the beam selection error is non-trivial. Larger beamwidth results
in a lower radiated power, which leads to a higher CRLB for distance estimation,
which may lead to a higher beam selection error. However, a larger beamwidth
also corresponds to a larger geographical area covered on ground by the beam (i.e.,
larger Ck,j), which leads to a lower beam selection error.

As expected, the beam selection error is minimized for N = 1, when a single
beam encompasses all the cell coverage area of the BS. The beam selection error
would occur only when using a distance-based cell selection scheme, if the actual
position of the UE is outside the coverage area of the serving BS. For N ≥ 2, inter-
estingly, we observe a stepped behavior of the probability of beam selection error
with respect to the beam dictionary size. The beam selection error gradually de-
creases with increasing beam dictionary size due to the increasing antenna gain (see
equation (3.27)). This behaviour continues until a certain value of beam dictionary
size, where the beam width becomes so thin that the probability that the user lies
outside the beam coverage area is high. This results in an increase in the proba-
bility of beam selection error, which then gradually decreases, when increasing the
beam dictionary size, and so on. This brings forth an important characteristic of
the system: for achieving a given beam selection error performance, multiple beam
sizes can exist. This is precisely because of the fact that with the decreasing size of
the beams, two conflicting phenomena occur: i) an improvement in the estimation
performance owing to larger antenna gain and ii) a reduction of the geographical
area covered by each beam.

Fig. 4.10 shows that the beam misalignment probability has the same peaky



4.7. Numerical results 107

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0.77

0.78

0.79

0.8

0.81

0.82

0.83

Error Product

R
a
te

C
ov
er
a
g
e
P
ro
b
a
b
il
it
y

rs

rs

rs
rs rs rs

rs

r s

rs

rs

rs
rs rs rs

rs

rs

bc

bc

bc
bc bc bc

bc

bc
bc

bc

bc
bc

bc bc bc

bc

λ = 0.1, N = 4

λ = 0.1, N = 16

λ = 0.05, N = 4

λ = 0.05, N = 16

rs
bc
rs
bc

Figure 4.11: Rate coverage probability at 100 Mbps vs the joint error product bound.

trend of the beam selection error with respect to the beam dictionary size. Specif-
ically, the misalignment probability gradually decreases with increasing N until a
certain value after which the beam becomes so thin that the misalignment error
increases.

4.7.3 Localization communication trade-off

In Fig. 4.11 we plot the rate coverage probability of the typical user with respect
to the product of the beam selection and misalignment errors FC(ωk, ωRx, β) for
different beam dictionary sizes. We vary the probability of beam selection error
and the probability of misalignment by tuning the value of β. We observe that
for all beam dictionary sizes, as the value of FC(ωk, ωRx, β) increases (i.e., as the
localization estimation performance degrades), the rate coverage probability is ini-
tially improved. Thereafter, it reaches an optimal value for a certain FC(ωk, ωRx, β)

and decreases on further increasing the value of FC(ωk, ωRx, β). This highlights the
non-trivial trade-off between the localization and the data-rate performance in our
system. This is all the more complex as the optimal value of β (and hence the rate
coverage probability) depends on both the BS deployment density and the dictio-
nary size. To achieve very low values of FC(ωk, ωRx, β), sufficient resources need to
be allotted for the localization phase thus leading to efficient beam-selection and
beam-alignment. A small increase in the value of FC(ωk, ωRx, β) does not result in
a large degradation of the localization performance but, in contrast, enhances the
data-rate as more resources are assigned to the data-communication phase.

However, further increasing the value of FC(ωk, ωRx, β) after a certain β (i.e.,
β∗) deteriorates the rate coverage. This is because poor localization leads to a high
beam selection and beam-misalignment errors. As a result, the antenna gains at the
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Figure 4.12: Rate coverage probability versus the resource partitioning factor for differ-
ent beam dictionary sizes for r0 = 100 Mbps.

transmitter and receiver sides decrease, which directly reduces the useful received
signal power, while the interference power remains same. Overall, this leads to
limited rate performance.

Another interesting observation in this figure, is the fact that, in order to achieve
the same coverage performance, the joint beam-selection and misalignment error is
slightly larger in case of larger beam-dictionaries. This is due to the thinner beams
in larger beam-dictionaries, which increase the probabilities that the users lie outside
the serving beam, or that the beams are misaligned. In the next section, we will see
that this may not always be the case, i.e., depending on other system parameters
such as the antenna gain and the deployment density, thinner beams can provide a
better rate coverage.

4.7.4 Rate coverage performance and trends

In Figs. 4.12 and 4.13 we plot the rate coverage probability with respect to the
resource partitioning factor β varying the antenna gain parameter G0 and the BS
deployment density for different rate requirement thresholds. First, we note again
that there exists an optimal β∗ for each beam dictionary size, for which the rate
coverage probability is maximized. More interestingly, the value of β∗ is not unique
and is dependent not only on the dictionary size but also on the system parameters
such as antenna gains. From Fig. 4.12 we can see that the optimum value of
β decreases for higher N , i.e., thinner beamwidth. This is because with thinner
beamwidth, the localization resources should be increased to limit the probability
that the UE lies outside the coverage area of the beam.
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Figure 4.13: Rate coverage probability versus the resource partitioning factor for differ-
ent beam dictionary sizes for r0 = 1 Gbps.

When the antenna gain is smaller (G0 = 7.5 dBi), we see in Fig. 4.13 that
the rate coverage (at 1 Mbps contrary to 100 Mbps as before) increases with β.
With G0 = 15 dBi, the positioning accuracy is limited (for any value of β), while
increasing β simply increases the communication resources, thereby augmenting the
coverage. In this case, a smaller beamwidth (with N = 16) provides better coverage
than a larger beamwidth (with N = 4), since with limited localization accuracy,
the rate coverage simply increases with decreasing ω due to higher radiated power.

4.7.5 Optimal partitioning factor and beam dictionary size

In this section, we discuss the results obtained solving the transmit beamwidth and
radio frame structure problem presented in equation (4.21). In Fig. 4.14 we plot
the optimal values of β with respect to the BS deployment density λ and the noise
power N0B [dBW]. With low noise power (e.g., -50 dBW) the optimal value of β is
closer to 1 for higher λ. This is due to the fact that for low noise power and densely
deployed BSs, even a limited amount of resources allocated to the localization phase
results in a good localization performance. Thus, the optimal solution is to allocate
large resources to the data phase for enhancing the rate coverage. On the other
hand, for sparsely deployed BSs, larger amount of resources are required for efficient
localization and the value of β decreases, even for the case of low noise.

Interestingly, in the case of high noise (e.g., N0B = -20 dBW), when increasing
the small cell density, the optimal β increases at first and then decreases. This is
due to the fact that for dense deployment of BSs, in case of high noise power, the
effect of the beam selection error is notable due to the concurrent large interference
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Figure 4.14: Optimal value of β with respect to deployment density and noise.

Figure 4.15: Optimal beam-dictionary size with respect to deployment density and the
noise.

(since interfering BSs are closer due to higher density). This requires a lower value
of optimal β to facilitate efficient localization and reduce localization errors. Thus
for higher noise, the behaviour of optimal β is not monotonous with respect to the
deployment density.

In Fig. 4.15 we plot the optimal beam-dictionary size with respect to λ and N0B.
For high noise power, large beams (i.e., smaller dictionaries) must be used so as that
the beam selection error is limited. In case the noise is low (e.g. -50 dBW), the
optimal size of the beam dictionary at first increases with the deployment density,
due to the fact that larger antenna gains improve the rate coverage. However, after
a certain point (i.e., for very dense deployments), the optimal beam-dictionary size
decreases to limit the beam selection errors, which would have a large impact on
the user performance due to the concurrent high interference.
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4.8 Chapter conclusions

In this chapter, we studied a mm-Wave system deployed along the roads of a city
to support localization and communication services simultaneously. We proposed
a novel localization bound-assisted initial beam-selection method for the mobile
users, which reduces the latency of initial access by upto 75%. Then the localization
performance bounds were used to derive the downlink data-rate of the network in a
system supporting jointly the localization and communication services. Our results
highlight that increasing the resources allocated to the localization functions may or
may not enhance the user data-rate. As a result, the study of the optimal resource
partitioning factor is non-trivial. Consequently, we highlighted and explored the
main trends in the optimal resource partitioning factor and mm-Wave beamwidth
with respect to the rate coverage probability, with varying BS deployment density,
antenna gain, and noise. Finally, we provided several key system-design insights
and guidelines based on our results.

Regarding the limitations of this work, firstly, we only considered the LOS path.
In the initial access phase, this consideration implies that, in the case of blockages,
the terminating condition i.e. the minimum CRLB requirement does not get ful-
filled until the blockage is resolved. In the data service phase, the direct path
blockage implies that we are in outage. Instead of relying only on the direct path,
we can utilize other non-direct paths in order to be more robust against the block-
ages. We have elaborated such a model in chapter 6. In this work, even though we
consider a one dimensional road scenario, we do not explicitly consider a mobility
model for the vehicles and we have justified this choice in section 4.4.2. However,
incorporating a mobility model on top of our framework would provide more ro-
bustness to our framework and can be addressed in the future. We have described
the idea in chapter 6. Similarly, we acknowledge that interference, whose effects
onto localization performance are herein neglected, could be better modelled and
assessed in future works, as also accounted for in chapter 6.
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Chapter 5

Applications of multipath angles
estimation

5.1 Introduction

In the previous chapters, we have studied general frameworks enabling the esti-
mation of various location dependent variables. In chapter 2, we saw that with
the right beam alignment, we can improve the localization performance. Similarly,
in chapters 3 and 4, we found out that beyond beam alignment considerations,
beamwidth optimization also plays an important role with respect to localization
performance and accordingly, contributes to improve further location-aided data
communication performance, in terms of both latency and throughput. In the same
context, in this chapter, we will investigate two representative applications relying
on such estimated localization variables.

Contrarily to previous chapters, in this chapter we will not consider delay, but
only angular variables (AoD and AoA), which can be exploited at different levels
and stages of the mm-Wave system as shown in Fig. 1.7. The reason for this choice
is twofold. Firstly, as already motivated in the previous chapters, directionality is
a natural element of the mm-Wave technology. The need to overcome high power
attenuation as a function of the distance and the possibility to integrate many small
antennas at high frequencies make the angular information a rather natural but
crucial element of mm-Wave systems. Secondly, delay based localization methods
such as ToA or TDoA require tight synchronization [114, 115], whereas angle based
methods relax this constraint.

In this chapter, we will present two applications facilitated by angular measure-
ments, namely channel estimation and SLAM.

One major challenge of mm-Wave beamforming (and beyond, of beam align-
ment) is that the transmitter needs to have a fairly good knowledge of channel
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information with respect to the receiver so as to transmit the beam with the ad-
equate width in the right direction, as we have illustrated in earlier chapters. In
this demanding context, estimating the channel between the transmitter and the
receiver, that is to say, estimating the parameters of multipath components (de-
lays, AoAs, AoDs and channel coefficients), is thus of the highest importance. In
this chapter, we will study how the sparse and geometric nature of the mm-Wave
channel can be exploited, by means of angular information, so as to minimize the
number of required measurements (and hence the duration) performed by the trans-
mitter and the receiver beam pair compared to conventional methods. This method
is inspired -and somehow can be fed by- the beam alignment and width selection
method proposed in chapter 4, once it has reached its steady-state regime1 of the
algorithm.

After channel estimation, we then focus on the problem of SLAM in a multi-BS
multipath scenario. The mm-Wave propagation channel is sparse by nature, as
mentioned earlier, meaning that there are only few multipath components. Con-
sequently, in mm-Wave system, it has been shown that it is possible to estimate
the delays, AoAs and AoDs of the main multipath components [116]. Thus, one
can leverage the location-dependent information conveyed by each component to
aid the localization process [49]. Beyond, knowing the positions of the scatterers2

generating these multipath contributions, in addition to localizing the user, offers
a unique opportunity to map the physical environment. Hence, in the latter part
of this work, we investigate the possibility of both localizing the user and mapping
the environment, while still being based uniquely on angular measurements for the
same reasons as previously explained.

5.2 Related works

With regards to channel estimation, in the literature, this problem has been ad-
dressed from the perspective of two distinct stages, namely the beam training
stage and the estimation algorithm stage. Firstly, in the beam training, the most
straightforward approach is to exhaustively search the best beams in terms of re-
ceived power, by testing all possible angular directions on both transmitter’s and
receiver’s sides [60]. Furthermore, the authors in [56] and [117] propose an iter-
ative multi-resolution beam training procedure, where larger beams are used first,

1By steady state regime, we mean the state when the BS and user beam start to converge due
to improved localization in the initial access algorithm.

2In this chapter, we consider term scatterers which can either diffract or reflect the signal to
the receiver.
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before converging iteratively to a beamwidth corresponding to the a-priori required
spatial resolution. Likewise the authors in [65] propose a similar iterative beam
training process fed by AoD and AoA in presence of prior location information.
Similarly, in [118], the authors devise a channel estimation strategy employing dif-
ferent beam patterns in different directions. The latter two strategies reduce the
channel estimation duration in comparison to the exhaustive case, which is critical
in case of 5G applications due to both their latency requirements and the necessity
to operate at mm-Wave, possibly under mobility. Secondly, in the estimation stage,
most of the contributions are based on compressive sensing techniques, exploiting
the aforementioned sparsity of the mm-Wave channel, with algorithms such as or-
thogonal matching pursuit (OMP) [119, 120], simultaneous orthogonal matching
pursuit (SOMP) [51] and L1-norm minimization [121].

Then, regarding the tracking of location dependent variables for both LOS and
NLOS multipath components, the authors in [51] and [122] present an estimator
that exploits the mm-Wave channel sparsity, by relying on SOMP and support de-
tection based algorithms. Similarly, the authors in [123] and [124] present a SLAM
algorithm based on the multiple location estimates of the user and the scatterers
at different time instances. In [115], the authors describe a message passing based
solution for estimating the position and orientation of the user and the positions of
scattering points in both presence and absence of direct path. The authors show
that even in NLOS, the positions of the scatterers can be reliably estimated. Like-
wise, in [125], the authors provide a belief propagation (BP) based approach to track
features in the environment in a dynamic vehicular scenario. The authors perform
the message passing in a distributed way that necessitates passing large number of
messages at each BSs. The authors in [126] propose a BP based algorithm to solve
the data association problem (i.e. associating measurements to the correct sources)
and propose a solver with low complexity. As suggested earlier, since the methods
relying on time-based measurements require tight synchronization [114, 115], coop-
erative localization using only AoA information was proposed in [127]. Similarly, in
[128], the authors investigate indoor localization with only AoA measurements.

5.3 Methodology and organization

Motivated by the previous literature analysis, we present the research method and
the axes of investigation followed in this chapter.

• During the channel estimation procedure, the main limitations of the popular
beam training methods such as the exhaustive or the iterative multi-resolution
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based methods lie in the necessity to search in the whole beam space, which
takes up a lot of time. This ends up being a bottleneck particularly in the
context of low latency 5G applications and in dynamic channel estimation
scenarios. Motivated by this limitation, we instead look to exploit the angular
information of the mm-Wave system to aid the multipath channel estimation
process and reduce the latency.

• In the literature, the works on SLAM firstly consider delay estimation. We
have already argued before that in absence of tight synchronization, the esti-
mates can be erroneous. In the light of this remark, in our work, we consider
only AoD and AoA measurements to localize both the user and the scatterers.

• In the same context, most of the works reported in the literature consider
performing the message passing in a distributed way, as mentioned earlier.
Such an approach could lead to huge communication overhead. In contrast,
in our work, we look into a centralized approach in order to avoid this com-
munication overhead and ease data association.

The rest of this chapter is organized as follows. In section 5.4, we deal with
the problem of localization aided multipath channel estimation. In this context,
in section 5.4.1, we present the system model including the deployment scenario,
channel model, communication model and angles estimation model. In section 5.4.2,
we formulate the channel estimation problem, design the beam, and finally present
the algorithm. In section 5.4.3 we present the comparison of the performance of our
algorithm with the conventional methods. We then consider the problem of SLAM
in section 5.5. In this context, we present, firstly, the system model in section
5.5.1 and then formulate the factor graph in section 5.5.2. From the factor graph,
we design and specify a message passing algorithm, while highlighting its main
specificities in section 5.5.3 including the comparison with conventional methods.
Through simulations, we evaluate and compare the performance of our proposal
with that of a conventional approach in section 5.5.4. We finally conclude the
chapter in section 5.6.

5.4 Multipath channel estimation with angle mea-

surements

In this section, we firstly present a low latency multipath mm-Wave channel estima-
tion algorithm where the beam training phase is aided by angles estimation. First,
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BS

User

Figure 5.1: Illustration of the system model with a BS, a user and k-th scatterer located
at positions q, p and sk respectively. The distance between the BS and the user through
direct path is d0 and through the k-th scatterer is dk. The AoD and AoA for the k-th

path are θk and φk respectively.

during the beam training procedure, we perform AoD and AoA measurements, es-
timate the corresponding variances and based on them, design both downlink and
uplink beams. We then perform the acquisition of received signals with these beams
and accordingly design the sensing matrix, while also iteratively refining the angles
estimation and the beams for the next measurements. Finally, exploiting both the
sparseness and the intrinsic geometric nature of the mm-Wave channel, we apply
compressive sensing tools so as to complete the estimation procedure. One under-
lying expectation is that the corresponding estimation error decreases rapidly in
comparison with other conventional approaches.

5.4.1 System model

Deployment scenario

Consider a mm-Wave downlink scenario with a BS and a user, equipped respectively
withNt antennas andNr antennas and operating at the carrier frequency fc (and the
corresponding wavelength λc) with bandwidth B, and L scatterers, as illustrated
in Fig. 5.1. The BS, the user and the k-th scatterer are located at positions
q = [qx, qy]

T , p = [px, py]
T and s = [sk,x, sk,y]

T respectively. The BS position
is assumed to be known, whereas that of both the user and the scatterers are
unknown a-priori. The BS is assumed to have a known orientation, whereas the
user is arbitrarily oriented towards an angle o ∈ (0, 2π] with respect to the reference
x-axis.
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Channel model

The Nr × Nt complex channel matrix between the BS and the user is denoted by
H and is formulated as in [56], similarly to equation (1.8) as:

H =

√
NrNt

ξ

L∑
k=0

hke
− j2πτk

Ts aRx(φk)a
H
Tx(θk), (5.1)

where hk, τk = dk/c, θk and φk are respectively the complex channel coefficient, the
time delay, the AoD and the AoA of the k-th path between the BS and the user
and Ts = 1/B is the sampling period. Like in the previous chapters, we consider a
ULA model for the antenna array.

We can reformulate equation (5.1) similarly to [56] as

H =

√
NrNt

ξ
ARxΛA

H
Tx, (5.2)

where,

ATx = [aTx(θ0), · · · ,aTx(θL)] , (5.3a)

ARx = [aRx(φ0), · · · ,aRx(φL)] , (5.3b)

Λ = diag
(
h0e
− j2πτ0

Ts , · · · , hLe−
j2πτL
Ts

)
. (5.3c)

Communication model

Consider a downlink scenario between the BS and the user. If the BS uses a
beamforming vector fp and the mobile device uses a combining vector wq, the
resulting received signal can be written similarly to equation (2.3) as:

yq,p = wH
q Hfpsp + nq,p, (5.4)

where, sp is the transmitted symbol such that E [sp] = PTx, where PTx is the average
power used per transmission, and nq,p is a Gaussian distributed noise with zero mean
and bilateral power spectrum density N0/2 per real dimension. ConsideringMB and
MU vectors at the BS and the user respectively, the received signal can be written
in a multipath scenario as

Y = WHHFS +N , (5.5)
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where W = [w1,w2, · · · ,wMU
] and F = [f1,f2, · · · ,fMB

]. Similarly to [56], we
assume that for the channel estimation phase, all the transmitted symbols are equal
and hence S =

√
PTxIMB

, where IMB
is an identity matrix of size MB, and hence

Y =
√
PTxW

HHF +N . (5.6)

AoD and AoA estimation

We assume that the BS and the user have access to the estimates of AoD and AoA
respectively for every k-th path3, which can be expressed as:

θ̂k = θk + eθk , (5.7a)

φ̂k = φk + eφk , (5.7b)

where

θk =

arccos
(

px−qx
||p−q||2

)
k = 0

arccos
(
sk,x−qx
||sk−q||2

)
otherwise,

(5.8a)

φk =

π + arccos
(

px−qx
||p−q||2

)
− o k = 0

π − arccos
(
px−sk,x
||p−sk||2

)
− o otherwise,

(5.8b)

and eθk and eφk are the estimation errors regarding θk and φk respectively. It was
shown in [116] that under conditions such as a large number of transmit and receive
antennas and a large bandwidth, which is reasonable in mm-Wave, the error for
both AoD and AoA can be assumed as independent per path. Moreover, we assume
that the random measurement noise terms are Gaussian distributed with zero mean
and known variances4 σ2

θ and σ2
φ [101].

3The angle estimations can be realized through well known subspace based AoA estimation
techniques [110] such as MUSIC or ESPRIT. The BS can estimate the AoA with downlink mea-
surements. Considering that for a given path, the AoD in downlink at the BS is the same as the
AoA in uplink from the perspective of the user, the latter can estimate AoD with uplink measure-
ments. In this chapter, by AoD, we refer to the uplink AoA. The sparse nature of the mm-Wave
channel means that there are few distinct paths and the angles in each path can be estimated
with high resolution due to the large number of antenna elements [43]

4The variance of estimation depends on the estimator and factors such as SNR, bandwidth and
number of antenna elements. Such variances can be known a-priori, by means of e.g., theoreti-
cal bounds calculation, empirical statistics drawn over sequences of real measurements, or even
through simulations.
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5.4.2 AoD and AoA aided channel estimation

The objective of channel estimation is to estimate the matrix H in a multipath
scenario. Equivalently, one can estimate the channel coefficient and the three loca-
tion dependent variables (i.e., delay, AoD and AoA) for each path. In this section,
we firstly state the channel estimation problem as a sparse problem. We then in-
troduce the same sectorized beamforming model as in equation (3.27) to simplify
the previous channel estimation problem. Finally, we propose the localization aided
channel estimation algorithm.

Channel estimation problem

Vectorizing equation (5.6), we can write

yv = vec(Y ) =
√
PTxvec(WHHF ) + vec(N), (5.9a)

= ζ(F T ⊗WH)(A∗Tx ⊗ARx)vec(Λ) + nv, (5.9b)

= ζ(F TA∗Tx ⊗WHARx)x+ nv, (5.9c)

where ζ =
√
NrNtPTx/ξ, x = vec(Λ) and nv = vec(N).

In order to present a sparse formulation of the estimation problem, consider a
grid of NB discrete AoD and NU AoA directions taken uniformly between 0 and 2π,
with the i-th grid direction represented by θ̃i and φ̃i for AoD and AoA respectively.
Mathematically, θ̃i = 2π(i− 1)/NB and φ̃i = 2π(i− 1)/NU . Assume,

ÃTx =
[
aTx(θ̃1), · · · ,aTx(θ̃NB)

]
, (5.10a)

ÃRx =
[
aRx(φ̃1), · · · ,aRx(φ̃NU )

]
. (5.10b)

Similarly to [56, equation (17)], we can now reformulate equation (5.9c) as a
sparse problem:

yv = ζ(F T Ã∗Tx ⊗WHÃRx)x+ nv = ζMx+ nv, (5.11)

where M is the sensing matrix and the j-th element in the vector yv is

yj = ζ(fTp Ã
∗
Tx ⊗wH

q ÃRx)x+ nj = ζM(j, :)x+ nj, (5.12)

where the j-th measurement is performed with the beamforming vector fp and the
combining vector wq, and M (j, :) represents the j-th row of the sensing matrix.
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BS

BS Grid

User

Scatterer

Figure 5.2: Example scenario with NB = NU = 8 with both BS and user main lobe
directed towards s1.

Likewise

fTp Ã
∗
Tx =

[
aHTx(θ̃1)fp, · · · ,aHTx(θ̃NB)fp

]
, (5.13a)

wH
q ÃRx =

[
wH
q aRx(φ̃1), · · · ,wH

q aRx(φ̃NU )
]
. (5.13b)

Equation (5.13a) (and equivalently, equation (5.13b)) represents the gain due to
the beamforming vector fp in all the grid directions. Hence, fTp Ã∗Tx ⊗ wH

q ÃRx

represents the gain due to fp and wq in all the BS and user grid combinations (i.e.
NB ×NU combinations).

Sectorized beamforming model

We approximate the beamforming model, like in chapters 3 and 4 by the sectorized
model, where the transmitted and received beams are divided into a main lobe
sector and a side lobe sector. The antenna gain Gx(ωx), where x ∈ {Tx,Rx} at
the BS side i.e. |fHax(θk)|2 and user side i.e. |wHax(φk)|2 can be approximated
by equation (3.27).

Sensing matrix design

From equations (5.12) and (3.27), each element of the sensing matrix M can have
four distinct values:

√
γTx(ωTx)γRx(ωRx),

√
γTx(ωTx)g,

√
gγRx(ωRx) and

√
g2 de-

pending on the beam alignment and beamwidths.
Consider an example scenario as illustrated in Fig. 5.2 with NB = NU = 8. We

have beams from the BS and the user with widths ωTx and ωRx respectively, both
directed at a scatterer located at s1. Let mBS = fT Ã∗Tx and mMS = wHÃRx.
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Node 1

Node 2

Figure 5.3: Illustration of beam misalignment error due to erroneous estimation of φ̂k
such that Node 1 is not within the transmitted beam. Node 1 might be receiver or scatterer

depending on whether it corresponds to the direct path or not.

Then, the received signal is

y = ζ
L∑
k=0

√
GRx(ωRx,k)

√
GTx(ωTx,k)hk + n, (5.14a)

= ζ

[√
γTx(ωTx,1)γRx(ωRx,1)h1 +

√
g2h0

]
+ n, (5.14b)

and each row of the sensing matrix is calculated as

mTx = [
√
g,
√
γTx(ωTx),

√
g,
√
g,
√
g,
√
g,
√
g,
√
g], (5.15a)

mRx = [
√
g,
√
g,
√
g,
√
γRx(ωRx),

√
g,
√
g,
√
g,
√
g], (5.15b)

M (j, :) = mTx ⊗mRx. (5.15c)

AoD and AoA aided beam design

Now based on the angles estimate from equation (5.7), for each path, we design the
optimal beamwidth ωTx and ωRx at both BS and user respectively in such a way
to minimize the beam misalignment error per path. We define the misalignment
error as the event that the scatterer (or correspondingly the receiving node in case
of direct path transmission) does not fall within the main beam lobe from the
transmitting (or receiving) node due to estimation errors. This event is depicted in
Fig. 5.3.

Based on this new definition of the misalignment error in a multipath context, we
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design the beamwidth5 ωTx,k with respect to the k-th path such that the probability
of misalignment error is a constant εTx, i.e.,

P
(
θ̂k −

ωTx,k
2
≤ θ ≤ θ̂k +

ωTx,k
2

)
= εTx. (5.16)

Accordingly,

ωTx,k = 2Φ−1

(
εTx + 1

2

)
σθ, (5.17)

where Φ−1(x) is the inverse function of the CDF of standard normal distribution.
Likewise,

ωRx,k = 2Φ−1

(
εRx + 1

2

)
σφ. (5.18)

Channel estimation algorithm

Overall, the proposed localization aided channel estimation algorithm can be sum-
marized by the following steps.

Initialization:

I. Determine initial estimates of AoD θ̂
(1)
k and AoA φ̂

(1)
k at the BS and MS

respectively for all the paths and their corresponding variances σ2
θk

and σ2
φk
.

Beam Training Phase:

II. i← 1

III. For each estimated θ̂(i)
k1

and φ̂(i)
k2

pair, ∀k1, k2 ∈ {0, 1, · · ·L} and corresponding
σ2
θk1

and σ2
φk2

:

1. Calculate the beamwidth ω
(i)
Tx,k1

and ω
(i)
Rx,k2

for BS and MS beams ac-
cording to equations (5.17) and (5.18) respectively.

2. Set the BS and MS beams towards θ̂(i)
k1

and φ̂(i)
k2

respectively with widths
ω

(i)
Tx,k1

and ω(i)
Rx,k2

.

3. With these beams, acquire the received signal yi, according to equation
(5.14a).

4. Calculate the corresponding row of the sensing matrix M (i, :), as in
equation (5.15c).

5In practice, the ability of an antenna to beamform with a certain width depends on the number
and the geometry of the antenna elements. In our scenario, we assume that both BS and MS have
enough elements to support small beamwidth.
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5. If |yi|2 ≥ γi:

i. With downlink transmission towards θ̂(i)
k1

with beamwidth ω(i)
Tx,k1

, the
BS estimates the refined AoA φ̂

(i+1)
k .

ii. With uplink transmission towards φ̂(i)
k1

with beamwidth ω
(i)
Tx,k1

, the
user estimates the refined AoD θ̂

(i+1)
k .

iii. Update the estimation variances σ2
θk

and σ2
φk
.

IV. Go to step III unless the terminating condition6 is satisfied and i← i+ 1.

Estimation Algorithm Phase:

V. z ← OMP(M ,y) and reshape z from NBNU×1 vector to a NB×NU matrix.

Λ̂ = reshape (z, [NB, NU ]) . (5.19)

VI. Output: Ĥ = ÃRxΛ̂Ã
H
Tx

In summary, we firstly initialize the algorithm with coarse estimates of the AoDs
and AoAs along with their variances for all the paths. For each AoD and AoA, we
then calculate the beamwidths such that we limit the misalignment error proba-
bilities to εTx and εRx (with respect to the scatterer in case of secondary path) at
the transmitter and the receiver respectively. We then sequentially transmit for
every pair of AoD and AoA, in total (L+1)2 pairs, with the calculated beamwidths
and measure the received signals and the corresponding row of the sensing ma-
trix according to equations (5.14a) and (5.15c) respectively. Following, we refine
AoDs and AoAs, as well as the corresponding variances, for each path with the new
beamwidth. We only perform this step if the BS and user beam pairs are corre-
sponding to either the direct path or the same scatterer, hence L + 1 times. In
order to decide when to perform this step, we threshold the received signal power
on γi, which is a function of ω(i)

Tx,k1
and ω

(i)
Rx,k2

, such that we only measure the
angles when both the main lobes are aligned towards either each another or the
same scatterer. This beam refining and measuring process is iteratively repeated
until some application dependent terminating condition is fulfilled. The sparsity
of mm-Wave channel ensures that the sensing matrix is sparse, and hence we use
some compressive sensing algorithm such as OMP in this case to finally estimate
the channel.

6The terminating condition can be application dependent. It can be, for e.g., the minimum
beamwidth constraint, the total channel estimation duration constraint, etc.
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5.4.3 Numerical results

In our work, we assume an analog beamforming architecture on both BS and user
sides with only 1 RF chain operating at fc = 28 GHz with bandwidth B = 500

MHz. We assume the transmit power PTx = 30 dBm and the noise power density
at the received signal N0 = −174 dBm/Hz. We consider 1 BS with known position
(q = [0, 0]T ) and orientation (o = 0o), and L = 3 scatterers (and accordingly, 4

paths). Moreover, we assume the NB = NU = 360 grid points at both the BS and
the user respectively. For determining the beamwidth, we consider εTx = εRx =

0.99.
We compare our proposed localization assisted channel estimation method with

that resulting from two well-known solutions, namely exhaustive search and iter-
ative multi-resolution search [56, 60]. For the exhaustive search, we consider the
beamwidths of the BS and the user to be fixed and equal to ωEx

Tx and ωEx
Rx respec-

tively. Thus, with these widths, the BS and the user go through all the possible
combinations of beams throughout the search area in order to complete the beam
training process. On the other hand, for the case of iterative multi-resolution based
search, we implement the multipath channel estimation algorithm in [56], where we
start with an initial beamwidth of π/2 rad and iteratively bisect the beamwidth and
sweep to converge to finer resolution. After the beam training step, we use OMP
according to step V. from the above algorithm, in the estimation phase for both
the cases. Like in chapter 4, we assume that each transmission can be completed
within 14.3µs which is equal to one OFDM symbol length [112]. We characterize
the error in channel estimation in terms of normalized mean square error (NMSE),
defined as NMSE = ||H − Ĥ||22/||H||22, where, || · ||2 represents the 2-norm.

In Fig. 5.4, we can see the minimum beamwidth that can be achieved within
a given duration. For instance, during x µs, we can transmit n = bx/14.3c beam
pairs. For the case of exhaustive search based channel estimation, since we need
to search the entire π/2 space in x µs, the minimum beamwidth that we can use
is ωEx

Tx = ωEx
Rx = π/2n rad. In case of iterative search, the minimum beamwidth

we can achieve during n steps is given by ωItTx = ωItRx = π/2 log2(n), since the
search sector grows to the power of 2 at each bisection. For the localization based
method, the minimum beamwidth with n possible beam pairs depends on how fast
the beamwidth converges at each iteration and hence, on the variance of estimated
AoD and AoA. Since the previous variances, and thus the beamwidths, vary for each
path, for the localization based method, we plot both the minimum and maximum
beamwidths allocated at each iteration. In our simulations, in order to have a closed
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Figure 5.4: Beamwidth achieved for different channel estimation methods varied with
total channel estimation duration.
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form expression of the variances, we assume an estimator meeting the CRLB7 when
estimating of AoD and AoA, as derived in [51]. In Fig. 5.4 we can see that the
beamwidth in the proposed localization assisted algorithm decreases much more
quickly than in other cases.

In Fig. 5.5, we also present the NMSE of channel estimation for each method for
different channel estimation durations and with different beamwidths corresponding
to these estimation durations, as shown in Fig. 5.4. In this figure, we can observe
that with the proposed localization based method, the estimation error, similar
to the beamwidth, decreases more rapidly than the other methods. The reason
for this is that in the proposed method, we directly use the relevant beams even
though there is a small probability of misalignment. However, in the exhaustive
and iterative search based methods, a lot of time is spoilt while searching all the
sectors including those which do not provide any relevant information. This gain
in latency could be crucial especially in the context of low latency 5G applications
and in dynamic channel estimation scenarios, for e.g., tracking a mobile user.

5.5 SLAM with angle measurements

Following our work on channel estimation, in this section, we look into a BP based
SLAM approach suitable for mm-Wave networks. This approach leverages AoA and
AoD information8 with respect to multiple scatterers9. Considering measurements
from multiple BS and scatterers, seen as multiple sources, we solve out the data
association problem from a centralized BP perspective, while jointly estimating the
positions of both the mobile and scatterers.

5.5.1 System model

Consider a 2D scenario with N BSs and a single user as illustrated in Fig. 5.6.
The positions of the BSs are assumed to be known, located at x1,x2, · · · ,xN in

7Although CRLB represents a lower bound on the variance of an unbiased estimator and hence,
the best case scenario, the authors in [51] show that it is possible for an estimator to achieve the
bound even at low SNR.

8Such information can be achieved by various algorithms such as, as described earlier, MUSIC
or ESPRIT, or even following the channel estimation algorithm. For instance, in [51], the authors
present a iterative expectation maximization algorithm in order to extract the localization infor-
mation from the estimated channel. A similar method can be implemented in conjunction with
the previously presented channel estimation algorithm in order to estimate the angles.

9For the sake of positioning each scattering point out of AoA and AoD measurements, we
assume a single interaction with the latter point along each secondary path for simplicity, thus
preserving the unicity of the solution (i.e., rather than assuming multi-bounce interactions per
path). This assumption is realistic in the mm-Wave context since multi-bounce paths would be
too attenuated and likely not even detected on the receiver side.
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BS1

BS2

BS3

Figure 5.6: Example system model with 3 BS positioned at x1, x2 and x3 and 1 user
positioned at s0 with orientation o along with two scatterers at s1 and s2 and the AoD

and AoA of the LOS paths with respect to BS1.

a common coordinate system. Likewise, the user is assumed to be positioned at
s0 with a known orientation10 o. In the scenario, we also assume L scattering
points (and hence L + 1 total possible paths between a BS and the mobile user),
with respective positions s1, s2, · · · , sL. Both the positions of the user and the
scatterers are unknown. We assume that each BS i can measure the AoD and AoA
corresponding to L̂i different paths, contrarily to [49] where, in addition to the
angle measurements, the authors also include delay-based distance measurements
for each path. We also assume that L is known, there are no false alarms11, i.e.
L̂i ≤ L+1, and the measurements can be sorted in any arbitrary order with respect
to the L+ 1 total paths.

Z(i) = [z
(i)
1 , · · · , z(i)

l , · · · , z
(i)

L̂i
], (5.20)

where l ∈ {1, 2, · · · , L̂i} denotes the measurement index of i-th BS corresponding
to a set of estimates of AoD (θ̂) and AoA (φ̂). We also assume that we have access
to the measurement covariance matrix (Σ(i)

l ) corresponding to the measurements of
10For simplicity, we consider that the orientation of the user is known. The absolute heading

can be extracted from some orientation estimators, for instance, inertial measurement unit (IMU)
and magnetometer in the mobile phone [123].

11This consideration excludes the possibility of any measurements not associated with the user,
N BSs and L scatterers. For the problem formulation including the possibility of false alarm, see
[126].
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AoD and AoA between the i-th BS and the l-th scatterer. We consider that all the
measurements z(i)

l are independent. Mathematically,

z
(i)
l = [θ̂

(i)
l , φ̂

(i)
l ] ∼ N

(
[θ

(i)
l , φ

(i)
l ],Σ

(i)
l

)
. (5.21)

The measurements for all theN BSs can be grouped together asZ = [Z(1), · · · ,Z(N)].
The main task now is to thus calculate the posterior distribution p(sk|Z), where

k ∈ {0, 1, · · · , L}. However, since the order of the measurements at each BS is
random, in the process of calculating the posterior distribution, we also need to
solve the data association problem, where we associate each measurement with the
corresponding path (and hence the source).

5.5.2 Factor graph formulation

Data association auxiliary variables

For the purpose of data association, following a similar approach to [125], we in-
troduce the set M = ⊗Ni=1{1, · · · , L̂i} with its cardinality P =

∏N
i=1 L̂i, ak ∈ M

and bm = {0, 1, · · · , L},∀m ∈ M. Each element of the setM, referred to in this
chapter as a measurement vector, is a vector of length N containing all the possible
permutations of measurement indices; ak indicates which measurement vector cor-
responds to the source k. Reciprocally, bm indicates which source corresponds to a
measurement vector. Both a and b can be mapped one-to-one, meaning that the
knowledge of either of the variables is sufficient to know the other. Mathematically,
this relation is expressed as

ψ(ak, bm) =

0 ak = m, bm 6= k or ak 6= m, bm = k,

1 otherwise.
(5.22)

Contrary to [125], where the data association is performed in a distributed way at
each BS, we assume that the association in our case is done in a centralized way
and hence, unlike in [125], the association variables a and b in our work are not
scalars.
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Factor graph of joint distribution

Our objective is to find the marginal probability of sk while also solving out the
data association problem. We have a posterior distribution formulation as follows:

p(s0:L,a, b|Z) ∝ p(Z|s0:L,a, b)Ψ(a, b)
L∏
k=0

p(sk), (5.23)

where, p(sk) is the prior distribution on the position of the sources, a and b contain
all the association variables ak and bm, and ψ(a, b) can be formulated similarly to
[125, 126] from (5.22):

Ψ(a, b) =
L∏
k=0

∏
m∈M

ψ(ak, bm). (5.24)

The measurement likelihood p(Z|s0:L,a, b) can be formulated as:

p(Z|s0:L,a, b) =
N∏
i=1

p(Z(i)|s0:L,a, b), (5.25a)

∝
L∏
k=0

N∏
i=1

p
(
zi[ak]i

|s0, sk
)
, (5.25b)

∝
L∏
k=0

v(ak, s0, sk), (5.25c)

where, p(zi[ak]i
|s0, sk) is a Gaussian distributed variable, as per equation (5.21):

p(zi[ak]i
|s0, sk) ∝ exp

(
− ‖[θ̂(i)

[ak]i
, φ̂

(i)
[ak]i

]− h(s0, sk)‖Σ
(i)
[ak]i

)
, (5.26)

where ||x||A = xTAx and h(s0, sk) is a nonlinear function transforming the loca-
tion of the user s0 in the case of direct path and both the user s0 and the scatterer
sl in the case of non-direct path to the corresponding AoD and AoA variables.

Note that from equation (5.25b), one does not have the dependence on b, as the
equation (5.25a) is conditioned on the knowledge of both a and b and since a and
b are injective-only, knowing one is enough to recover the other. The corresponding
factor graph of the posterior distribution is given in Fig. 5.7.
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Figure 5.7: Factor graph representation of the posterior distribution in equation (5.23).
In the graph, we have introduced the short form notation fk to represent p(sk), vk to
represent v(ak, s0, sk) and mp, p = 1, · · · , P represents the p-th element of the set M.
The factor and variable nodes are represented inside squares and circles respectively.

5.5.3 Message passing via BP

BP for marginalization

We find the marginal p(sk|Z) using the BP message passing algorithm on the factor
graph [129], starting from the root nodes p(sk) to the leaf node12. BP proceeds by
passing messages between variables and factors defined by µv→f (v) and µf→v(v),
respectively, where v is a variable and f is a factor. The marginal p(sk|Z) can then
be found as

p(sk|Z) ∝ µsk→f (sk)× µf→sk(sk), (5.27)

for any connected factor f .

Message passing schedule

We now show the message passing steps from the root nodes fk through the nodes
back to the leaf node fk. The root node fk or p(sk) contains the a-priori distribution
of the position of sk. In the following, we consider the indices 1 ≤ k′ ≤ L and
0 ≤ k ≤ L.

12Note that the factor graph in Fig. 5.7 consists of loops in between the variables a and b. In
such loopy cases, BP can still be used by passing the messages until the latter converge. Even
though such convergence can not be guaranteed, it has been shown that this kind of method often
arrives at a reasonable estimate [130].



132 Chapter 5. Applications of multipath angles estimation

1© In the first step, we pass the a-priori distributions to the corresponding posi-
tion variables.

µfk→sk(sk) = fk(sk). (5.28)

2© In the second step, we have no message from µvk→s0 yet, so we initialize
µvk→s0 = 1, ∀k. Hence, the messages from sk to vk can be written as:

µs0→vk(s0) = f0(s0)
L∏

k′ 6=k

µvk′→s0(s0) = f0(s0), (5.29a)

µsk′→vk′ (sk′) = fk′(sk′). (5.29b)

3© Next, we compute the outgoing messages from the factor node vk to the
variable node ak.

µv0→a0(a0) =

∫
v(a0, s0)µs0→v0(s0) ds0, (5.30a)

µvk′→ak′ (ak′) =

∫∫
v(ak′ , s0, sk′)µsk′→vk′ dsk′ ds0. (5.30b)

From equation (5.25c), we can see that vk is already formulated as the product
of distributions over all the BSs. Hence, in this step, the messages can be
passed in a centralized way, unlike in [125] where the factor graph is formulated
so that the messages need to be passed through each BS separately.

4© Then, we move the message forward to the data association loop. For nota-
tional simplicity, we represent the factor node ψ(ak, bm) by ψk,m. We start
by initializing the messages µ(0)

ψk,m→ak(ak) = 1. We can then execute multiple
iterations. The message in the p-th iteration can be written as [126]:

µ
(p)
ak→ψk,m(ak) = µvk→ak(ak)

∏
m′ 6=m

µ
(p−1)
ψm′,k→ak

(ak), (5.31a)

µ
(p)
ψk,m→bm(bm) =

∑
ak

ψk,mµ
(p)
ak→ψk,m(ak), (5.31b)

µ
(p)
bm→ψk,m(bm) =

∏
k′ 6=k

µ
(p)
ψk′,m→bm

(bm), (5.31c)

µ
(p)
ψk,m→ak(ak) =

∑
bm

ψk,mµ
(p)
bm→ψk,m(bm). (5.31d)
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5© After the data association loop, we have the message from ak to vk as:

µak→vk(ak) =
∏
m

µψk,m→ak(ak). (5.32)

The next step is to calculate the messages µvk→sk(sk) and µvk′→s0(s0).

µv0→s0(s0) =
∑
a0

v(a0, s0)µa0→v0(a0), (5.33a)

µvk′→s0(s0) =

∫ ∑
ak′

vk′µak′→vk′µsk′→vk′dsk′ , (5.33b)

µvk′→sk′ (sk′) =

∫ ∑
ak

vk′µak′→vk′µs0→vkds0, (5.33c)

where, µs0→vk(s0) =
∫ ∑

a0
v(a0, s0)µa0→v0(a0)dsk′ .

6© Finally, the posterior beliefs can be computed as:

p(s0|Z) ∝ µf0→s0(s0)
∏
k

µvk→s0(s0), (5.34a)

p(sk′ |Z) ∝ µfk′→sk′ (sk′)µvk′→sk′ (sk′). (5.34b)

Particle implementation

As the integrals in the previous section cannot be solved in closed form, we approx-
imate them using MC integration. Thereby we represent the messages as lists of
weighted particles. We have to consider that the number of particles is enough to
provide an accurate representation of the probability distributions and the weights
are normalized such that their sum is 1. To compute the products in (5.34a)–(5.34b),
we evaluate all messages only in the particles generated from the priors.

Centralized vs distributed approach

For benchmark purposes, we compare our proposed method against a distributed
BP based SLAM method equivalent to that in [125]13. For the distributed method,
we introduce the setMi = {1, 2, · · · , L̂i}, ∀i for each i-th BS. We define ak,i , mi ∈
Mi indicating which measurement mi corresponds to the source k at the i-th BS.
Similarly, we define bmi,i , k ∈ {0, 1, · · · , L} indicating which source corresponds
to the measurement mi at the i-th BS. Note that contrarily to ak, bm andm in our

13In the literature, it is common to consider such distributed methods especially for the data
association problem [126, 131]
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Figure 5.8: Factor graph with distributed BP (for performance comparison only). For
notational convenience, vk,i represents v(ak,i, s0, sk) and ψk1,k2 = ψ(ak1,i, bk2,i) ∀i.

proposed centralized methods, in this distributed method, ak,i, bmi,i and mi are all
scalars and the relation between ai and bi, the vector of data association variables,
is in fact bijective. We further define

Ψ(a, b) =
N∏
i=1

L̂i∏
k=0

∏
mi∈Mi

ψ(ak,i, bmi,i). (5.35)

where,

ψ(al,i, bmi,i) =

0 ak,i = mi, bmi,i 6= k or ak,i 6= mi, bmi,i = k,

1 otherwise.
(5.36)

Hence, following a formulation similar to the posterior distribution as (5.23), we
can build a factor graph as illustrated in Fig. 5.8. We can compute the beliefs and
accordingly the marginal similarly to the previous section.

5.5.4 Numerical results

In this section, we describe the simulation setup and parameters and then show the
simulation of our proposed method. To benchmark our result, we then compare
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Figure 5.9: Marginal distribution with σ2
θ = σ2

φ = 1 deg2 with the proposed method.
The diamonds, squares and circle represent the true positions of the 3 BSs, 2 scatterers

and the user respectively.

with a model inspired by the distributed BP approach in [125] shown on Fig. 5.8.

5.5.5 System parameters and simulation setup

We consider a scenario with N = 3 BSs, L = 2 scatterers and a user where all the
BSs can measure all three paths (i.e. L̂i = 3,∀i). We consider the locations of BSs
are known with x1 = [0, 0], x2 = [0, 100], x3 = [100, 100], whereas the user and the
scatters are uniformly distributed within an area of 100 m× 100 m area.

We assume that the measurement covariance matrix is a diagonal matrix with
the variance of estimating AoD σ2

θ equal to the variance of estimating the AoA σ2
φ

for all the measurements. Similarly, while simulating the BP algorithm, we consider
Ns0 = Nsk′

= 2500 particles (50 per dimension) to represent the distributions of the
user and the scatterers.

In our simulations, we assume no prior knowledge of the positions of either the
user or the scatterers and hence, we consider they are uniformly distributed within
the deployment area. Hence, to replicate p(s0) as particles, we can draw Ns0 sample
points of s0 from the specified domain and assign the corresponding probability as
weights, in this case a constant (and accordingly for p(sk′)).
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Figure 5.10: Marginal distribution with σ2
θ = σ2

φ = 1 deg2 with the distributed method
[125]. The diamonds, squares and circle represent the true positions of the 3 BSs, 2

scatterers and the user respectively.

5.5.6 Results and analysis

In Figs. 5.9 and 5.10, we plot the marginal distributions of the user and the scat-
terers with blue and orange scatter points, as formulated in equations (5.34a) and
(5.34b) respectively. Since, as said earlier, we are dealing with particles rather
than the continuous distribution, the size of blue and orange circles represents the
weights associated with the corresponding particles. We also plot the true positions
of the BSs, the scatterers and the user for comparison. Between the two figures, we
can clearly see that the particle clouds in our proposed method can separate the
two scatterers and the user unlike the distributed BP. The reason is that in our
method, as we can deduce from equation (5.25b), only the particles with non zero
probabilities according to equation (5.21) with respect to all the BSs are passed on
from the factor v to the variable a in the factor graph. Hence, in this step, before
the data association loop, we do some sort of initial filtering with respect to all the
BSs. On the contrary, in the distributed method, the filtering is done with respect
to only one single BS before the data association loop, and then further filtering is
done later during the collection while passing the message from vk to sk. Filtering
before the loop reduces the propagation of any error during the data association
loop.

Following this discussion, in Fig. 5.11, we plot the empirical CDF of the root
mean squared error (RMSE) between the true and estimated positions of the user
and scatterers. We calculate the RMSE by taking the distance between the true
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Figure 5.11: CDF plot comparison of the RMSE error between the proposed centralized
and the distributed BP based methods with 1 deg2 variance.

and the mean particle position. As we can see, the proposed centralized method
performs better than the distributed method especially when it comes to estimat-
ing the position of the scatterer due to the limited error propagation in the data
association phase.

Regarding the total number of messages between the two approaches, in the
distributed method, we pass O (NL2) messages, versus in the centralized approach
O
(
LN+1

)
messages. Hence, the centralized approach has better performance and

low communication overhead, but at the price of a higher complexity cost. The
distributed method exhibits less complexity, but requires the exchange of particle
clouds among BSs.

5.6 Chapter conclusions

In this chapter we considered two different applications leveraging on the the mul-
tipath angles estimation, namely channel estimation and SLAM.

Firstly, we presented a low latency solution for channel estimation in the context
of mm-Wave systems, with the aid of AoD and AoA information. Exploiting the in-
herently sparse properties of the mm-Wave channel, where the number of multipath
components is limited, we showed that the localization based method outperforms
other existing methods such as the exhaustive and iterative multi-resolution search
based channel estimation approaches. Simulation results in a canonical scenario
illustrated some latency gains accordingly.
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One of the limitations of our channel estimation algorithm in comparison with
the two existing methods is that we still need to have a means of measuring the
angles corresponding to each paths.

Secondly, we proposed a BP based method to solve the problem of mm-Wave
SLAM using only angular measurements in a system with multiple BSs and scatter-
ers and a user node. To reach this objective, we firstly formulated the corresponding
posterior distribution and then the factor graph including the problem of data asso-
ciation. By running the message passing algorithm in the graph, numerical results
demonstrated that even without any a-priori distribution on the positions of the
user and the scatterers, one can achieve relatively high accuracy. In comparison
with methods from the literature where the data association problem is solved in
a distributed manner separately at different BSs and requiring additional range
measurements, we showed that our centralized data association approach provides
a better estimation accuracy, mostly in terms of scatterers positioning.

Regarding our work on SLAM, as a future work we would like to consider a
model including uncertainty in the user orientation and false alarms (i.e., the fact
that observed AoA measurements may not result from any of the modeled scattering
points), which would provide an even more realistic assessment of the problem. In
future, one could also consider coupling even more tightly the proposed mm-Wave
multipath channel estimation method of section 5.4 with angle-based simultaneous
localization and mapping algorithms from section 5.5.
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Chapter 6

Conclusions and future perspectives

6.1 Main conclusions

In conclusion, the mm-Wave technology makes a strong case for accommodating
the arduous demands of low latency high data rate services for 5G, but is thwarted
by the propagation characteristics at such high frequencies. To remedy this propa-
gation problem and thus enable mm-Wave for 5G, localization and location-aided
directionality can both play a crucial role. In addition, some of the properties of
mm-Wave communications are highly suitable for localization, generating an im-
portant interdependence of the two ingredients. Motivated by this importance of
directionality in mm-Wave and the symbiotic relationship between the two func-
tionalities, in this thesis, we investigated how to facilitate this interdependence and
beyond, how to improve synergies between the two functionalities.

We started out by firstly exploring the relationship between beamforming and
localization in chapter 2. We characterized the optimal beamforming, specifically
optimal beam alignment, while minimizing different localization error cost functions
firstly in a simple single-user single carrier scenario and then later in a multi-user
scenario with multiple subcarriers. The localization optimal beamformer was later
used in chapter 3 in order to characterize the localization-communication trade-off.
The considered localization error cost functions were characterized as functions of
the CRLBs of various estimated location-dependent radio estimates. The optimiza-
tion provides the necessary freedom to adjust on-demand the underlying transmit
waveform, as well as to iteratively refine localization performances regardless of the
users’ location (and thus possibly, to enable a spatially homogeneous quality of ser-
vice). Moreover, by exploiting the frequency diversity over the multiple subcarriers
by means of a power allocation scheme, we also illustrated the critical effect of fre-
quency on localization. In the multi-user case, we also looked into different ways in
which the beam power can be allocated to each user depending on different fairness
criteria.
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After tackling the localization optimal beamforming problem, we then investi-
gated the possibility of integrating localization and communication functionalities in
the same system in chapter 3. In this regard, we considered two distinct possibilities,
depending if one service explicitly takes the input from another (joint services), or
not (standalone services). In the standalone case, we studied the trade-off between
the data and localization services while budgeting time and frequency resources in
a multi-user scenario. Allocating more resources for the data communication phase
instead of localization implies, forthrightly, a higher data rate but, concurrently,
also higher localization error bounds (PEB and OEB). In the latter case, we stud-
ied the scenario when the two services are integrated jointly in a system and hence
impact the performance of each other. In this case, we not only look at time and
frequency resource sharing like in the first scenario, but also assess the impact of
localization accuracy on the communication phase in terms of the rate coverage
probability which is impacted by localization estimation induced beam alignment
errors. Unlike the previous scenario, in this case the trade-off was intricate as
the communication performance does not only rely on allocating more resource
but also on accurate beam alignment which in turn leads to a better localization
performance. We concluded this chapter by raising the need for not only proper
beam alignment, as suggested in chapter 2, and optimal time/frequency resource
allocation, but also a proper beamwidth optimization.

Motivated by the previous study, we then, in chapter 4, proposed an optimal
beamwidth selection policy maximizing the rate coverage performance of a mm-
Wave network in a joint localization and communication context. We formulated
the localization performance and consequently the beam alignment errors at both
BS and UE in terms of performance bounds of delay and AoA estimation. Based
on these alignment errors, we first characterized the downlink rate performance
(in terms of rate coverage probability) of a network deployed along the streets of
an urban environment, before characterizing the previously mentioned non-trivial
trade-off. Based on this trade-off, we described an optimal beamwidth selection
strategy. Additionally, we also investigated the localization-based initial beam se-
lection problem as a part of the initial access scheme. We proposed an iterative
beam alignment and width based initial access assisted by the performance bounds
of delay and AoA estimates. In comparison with state-of-the-art contributions, this
new method significantly reduces the beam selection overhead which can be crucial
to many 5G applications.

Finally, in chapter 5, we presented two distinct applications of localization (in
particular AoD and AoA estimation) namely multipath channel estimation and
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SLAM which, in turn, could both aid further mm-Wave communications. Firstly,
it is crucial to understand the channel between the transmitter and the receiver as
it can be beneficial to both localization and communication functionalities. Hence,
we exploited localization and the iterative beam alignment and width adjustment
algorithm, similarly to the one implemented during the initial access phase, to
capture the geometric and sparse nature of the multipath mm-Wave channel. We
showed that using localization instead of the conventional beam sweeping based
beam training models allows us to significantly reduce the channel estimation dura-
tion to maintain an estimation quality. We then looked into SLAM techniques while
using only AoD and AoA information to estimate the positions of the mobile user
and different scatterers in order to map the environment in a multi-BS scenario. We
considered a factor-graph representation of the SLAM problem (including data as-
sociation between the observed angle measurements and their "scattering sources")
and used a message passing algorithm in the form of BP to show that we can obtain
a good localization performance even while not utilizing the distance measurements.
We showed that with our method, we can estimate the positions more accurately
than equivalent decentralized message passing techniques, while also reducing com-
munication overhead.

Overall, in our thesis, we presented different aspects of the intricate relationship
between localization and communications in mm-Wave systems and showed these
functionalities can be beneficial to each other at different stages of the block diagram
introduced on Fig. 1.7 in chapter 1.

6.2 Future perspectives

This thesis paves the way for several future directions of research, some of which
are discussed in this section.

6.2.1 Channel and signal assumptions

In our work, we have made different assumptions regarding the mm-Wave channel
model and such assumptions can be improved in the future.

• Channel coefficients:

In chapters 2 and 3, we considered a frequency flat channel coefficient. Consid-
ering a frequency dependent channel model in chapter 2 would introduce a new
dimension to the power allocation problem across the subcarriers. In contrast
to just allocating the power at the extremities of the spectrum, we would also
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need to consider the channel strength at each subcarrier and jointly decide on
giving preference to certain subcarriers. Similarly, in section 3.4.2 of chapter
3, we considered the allocation of localization oriented pilots on the extremi-
ties of the spectrum. Like in the previous case, with the frequency dependent
channel coefficient, we need to further optimize the subcarriers to allocate the
pilots, in this case not only for localization but also for communication. The
subcarrier allocation would also depend upon the QoS requirement for both
data communication and localization phases.

• Multipath exploitation:

Likewise, in chapters 2, 3 and 4, we have considered a simplistic channel
model with only the direct path. Considering that, firstly, there are only few
dominant paths in mm-Wave channel and secondly, the beams are narrow
(such as in the above mentioned chapters), we can assume that the direct
path is the only dominant path [58, 65]. However, considering a multipath
channel model, similarly to chapter 5, we can improve both localization and
communication performances especially in the case of blockages. Under NLOS
conditions, in chapter 2, we could optimally align the beam with respect to an
alternative path in case of blockage to avoid outage. Similarly, in the initial
access algorithm, one can exploit the multipath in conjunction with AoD
estimation to reduce beam alignment errors in case of blockages and instead
rely on alternative paths rather than proceeding with larger beamwidth due to
degraded localization performances. Similarly, the reduced beam alignment
error would improve the SINR and rate coverage performance in chapters 3
and 4.

• Blockage model:

Blockages play an important role in the context of mm-Wave as we have al-
ready described in chapter 1. Hence, it is important that in the future we
accurately model the blockage in our analyses. For instance, in chapter 2,
we did not consider any blockage model. In the future, in conjunction with
the previously mentioned multipath channel model, we can incorporate the
blockage model in order to find the optimal beamforming. For instance, a
relevant beamforming strategy could consist in transmitting multiple beams
corresponding to the different paths to avoid blockage, or alternatively, per-
forming continuously multipath channel estimation in order to timely switch
the main beam from the missing direct path to a significant secondary path.
In the second part of chapter 3 and chapter 4, we however model the blockage
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with a LOS ball model which is popular in the mm-Wave literature due to its
simplicity[82, 98]. In the future, we can choose a more accurate model, for
instance the ones recommended in the technical report (Release 14) of 3GPP
[53] where both self (human) and dynamic (vehicles) blockages are modelled.

• Interference in localization:

Similarly, in the context of interference at the user from multiple BSs, we
have considered it only in the communication phase. However, in the case
of localization, since we considered that the BSs use orthogonal resources for
transmitting the localization pilots in chapters 3 and 4, we assume no inter-
ference, also in line with other works in the literature. The assumption was
made with the expectation that even though interference would indeed de-
grade the localization performance, the trends of beam alignment error and
accordingly the rate coverage performance would still stay the same. Conse-
quently, the insights derived from the work would still be crucial despite the
simplification. For deriving more accurate conclusions however, the derivation
of the CRLB for the estimation of location-dependent variables in presence of
interference and its subsequent impact on communication performance could
be an interesting axis of research.

• Sectorized beamforming model:

In chapters 3, 4 and 5 we have considered a sectorized beamforming model
for simplicity. It is common in the literature to make such simplifications
[56, 82, 99]. One problem in contrast to more realistic beamforming models
is that all the beamwidths cannot be supported depending on the antenna
array used and hence we have to resort to an approximation such as in [90]
and [91]. Hence, the performance while considering such assumptions may
not exactly match the figures of the reality, even though it gives a good idea
of the trends. Hence, in the future, it would be more interesting to extend
our analysis considering realistic beamforming models like in chapter 2.

• Antenna architecture:

In our work, we have considered the analog beamforming architecture, given
its low power consumption and its relatively low hardware complexity com-
pared to hybrid and digital architectures. The downside of the analog ar-
chitecture however is the inability to multiplex multiple streams of data for
multiple users at the same time owing to its single RF chain. Hence, the hy-
brid architecture has been recently gaining popularity in the literature. Due
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Figure 6.1: Extension of the beam-selection error model into two dimensions.

to the channel sparsity in mm-Wave, only a few RF chains are required for
having a complete access to the dominant paths, and hence it is still within
reasonable power and complexity constraint. Thus, in the future, it could be
worth envisaging an architecture endowed with multiple RF chains so as to
fully exploit this diversity in the context of both localization and communi-
cation.

6.2.2 Scenario assumptions

• 1D vs 2D model:

In chapters 3 and 4, we considered a one dimensional model for emulating the
mm-Wave network inspired from the network operators’ plans to deploy the
first generation of mm-Wave small cells along the roads in urban areas. As an
example, let us note that Verizon has announced plans to deploy 5G on 101
street lights in Sacramento, focused on fixed broadband service with plans of
offering mobile service later [132]. Similarly, AT&T has announced plans to
deploy 5G on 170 outdoor small cells on lamp posts in San Jose for mobile
access [133]. In such scenarios, the stochastic geometry based one dimensional
model assumed in our thesis can be utilized by a network operator to derive
system design insights and use them as a starting point to further fine-tune
the deployment and the operational parameters.

However, our work can be extended in the 2D case with the beam coverage
as shown in Fig. 6.1 in an area defined by the solid angle Ω and can be an
interesting axis of work for the future. Such beams can be supported by a
planar array.

To be more concrete, we can can take the example of the beam selection error,
and show how the concepts developed in this thesis can be extended. In the
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2D case, the beam-selection error for a user (see Fig. 6.1) can be defined as the
probability that the actual location of the user (x0, y0) is outside the beam
selected according to the estimated position (x1, y1). In a similar way, the
other concepts that are developed in this thesis, such as the beam dictionary,
misalignment error probability, SINR coverage probability, and the initial
access procedure can be extended for the 2D case.

• Equal heights of the BSs:

Our network model in chapters 3 and 4 follows from the development that
Verizon and AT&T have both announced plans to deploy 5G infrastructure
on lampposts for fixed wireless network [132] and mobile access [133], respec-
tively. Accordingly, we have assumed that the height of the lampposts (and
consequently, the BSs) are the same throughout the network. However, the
consideration of different heights can be an interesting aspect to study in our
network for future works. Specifically, with a BS installed at a higher altitude
would have a larger geographical coverage, but at the cost of reduced power at
the users. In our model, the effect of varying the height can be incorporated
by either an assumption on the distribution of the heights of instalment, or
by assuming a discrete set of installation heights.

• Mobility model:

The issue of mobility is a very important aspect for communication networks
in general, and a fortiori for mm-Wave networks. In this context, it would be
worth revisiting again both beam alignment and beamwidth selection prob-
lems accordingly. Hence, in the context of all the chapters, adding mobility
model on top of our framework would provide interesting ideas for future work.
We can integrate a user (and even scatterers in a multipath model) tracking
algorithm that can be used to have continuous position information at various
time instances running on top of the proposed framework, without any deep
modification of the latter. In this regard, Bayesian filters such as Extended
Kalman filters or particle filters (e.g., [134, 135]) are popular tools for tracking
the evolution of localization variables and/or user’s position. Estimating user
position with respect to mobility directly impacts the variance of the esti-
mated localization variables (assumed a priori in our algorithms), that could
be taken into account while considering the beam selection errors and accord-
ingly the beam width and alignment optimization. In addition, the position
estimates based on the channel estimation and SLAM approaches proposed
in chapter 5 can be an input to tracking algorithms, similarly to [134].



146 Chapter 6. Conclusions and future perspectives

Regarding the work on SLAM in chapter 5, we could further incorporate the
mobility model according to some dynamic state space characterization of the
user mobility. Such model in the context of SLAM has been implemented in
[125] in the vehicular context. In such cases, we would have an iterative factor-
graph formulation, for each time index, feeding from the both the location
information from the previous time stamp and the new measurements.

However, again, it is important to note that this neither imposes any deep
modification of the proposed method in our thesis, nor contradict related
findings in terms of performance. In other words, we believe UE tracking
and location-based beam optimization are not mutually exclusive but on the
contrary, the former could even be further beneficial to the latter in future
variants of our solution.

• Localization algorithms:

In our work, we considered the different techniques to estimate location-
dependent variables from the literature. Although we can treat the channel
estimation as a localization estimation problem similarly to [51], we have no
specific localization algorithm has been explicitely designed in the very con-
text. For instance, for delay estimation, we could rely on generic methods and
metrics such as RSSI, ToA or TDoA. Similarly, for AoD and AoA estimations
we considered mainly AoA estimation algorithms such as MUSIC or ESPRIT
in uplink and downlink respectively.

Hence, it would be also interesting to investigate more specific algorithms,
that can in turn act as an input to beamforming and thus to the initial
access, resource allocation, channel estimation and SLAM procedures. One
could further use the algorithm and hence the estimates of the location depen-
dent variables in conjunction with the classical positioning algorithms such as
trilateration or triangulation in order to position the user and the scatterers.

6.2.3 Experimental validations

A selection of the solutions reported in this thesis could be validated experimentally,
relying on the complete mm-Wave proof-of-concept system currently under develop-
ment at CEA-Leti. The latter includes hardware antenna systems (e.g., integrated
steerable transmit arrays) in the Ka band (ranging from 17.7 – 21.2 GHz and 27.5
– 31.0 GHz) [136, 137]. This would also offer new opportunities for the exploitation
of yet largely under exploited features such as tunable antenna polarization, which
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could be beneficial when interpreting the received signal from a localization per-
spective (thus enriching further the localization estimation and mapping problems
accordingly). An adaptation of our algorithmic proposals, as well as a revision of a
few related working assumptions, would be also needed (e.g., assuming quantized
phase terms, and other real RF impairments or implementation characteristics). In
terms of tested environments and scenarios, one could consider a gradually complex
and controlled approach. As a starting point, preliminary tests could be conducted
within an anechoic chamber, mostly for functional validation purposes. Then, more
realistic operating contexts could be envisaged, such as urban in-street vehicular
scenarios. In the latter case specifically, since antenna arrays are strapped onto the
car body, the car’s absolute orientation could be derived directly out of AoA estima-
tion with respect to a BS (or a mm-Wave-enabled Road Side Unit). Moreover, the
limited degrees of freedom in terms of car attitude and movement (i.e., resulting in
a constrained pseudo-2D problem) is expected to simplify both angular estimation
and user tracking problems. Finally, generally, the localization functionality could
be assisted from extra on-board sensors and navigation systems (GPS, odometry,
IMU), for instance while assuming coarse a priori location information in our initial
access approach and/or simply for redundancy purposes.
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Appendix A

Proofs of chapter 2

A.1 Proof that coefficients k1 > 0 and k2 > 0

To prove that the coefficients k1 and k2 in equations (2.10) and (2.12) are always
positive, we have to prove that αβ − γ2 ≥ 0 and hence

Nrζ2 > ζ2
1 , (A.1)

where ζ is defined in (2.13). From this definition,

Nrζ2 =
N2
r (Nr + 1)(2Nr + 1)

6
. (A.2)

Similarly,

ζ2
1 =

N2
r (Nr + 1)2

4
. (A.3)

Comparing the above two equations,

Nrζ2 S ζ2
1 , (A.4a)

4Nr + 2 S (3Nr + 1) + 2. (A.4b)

Then, 4Nr > 3Nr +1 and k1 and k2 are positive for all Nr > 1 as a consequence.
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A.2 Proof that xTZx > 0

It has been established that Z ∈ RN×N . Let (np, nq) be any component of the
matrix Z. It is

Z(np, nq) = αβ
n2
p

λ2
nq

− γ2 npnq
λnpλnq

, (A.5a)

Z(nq, np) = αβ
n2
q

λ2
np

− γ2 nqnp
λnqλnp

. (A.5b)

In the term xTZx, the coefficient of xnpxnq is given by

Z(np, nq) +Z(nq, np), (A.6a)

=
(αβ − γ2)(n2

pλ
2
np + n2

qλ
2
nq) + (γnpλnp + γnqλnq)

2

λ2
npλ

2
nq

. (A.6b)

Since αβ − γ2 ≥ 0 (from Appendix A.1) for Nr > 1, we can say that xTZx is
always positive.

A.3 Components of the FIM per sub-carrier

Let Fn = fnf
H
n and ȧTx,u = daTx,u/dθ. By assuming the centroid of the antenna

array as the reference point in equation (2.25), we have the relation aHTxF ȧTx = 0

similar to [59, 72]. Hence, the components of the FIM in equation (2.27), are as
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follows.

ψn(τu, τu) = 4π2ρu,n
n2B2

N2
|hu|2d0,ua

H
Tx,uFnaTx,u, (A.7a)

ψn(τu, θu) = 2πρu,n
nB

N
|hu|2d0,u<{jȧHTx,uFnaTx,u}, (A.7b)

ψn(τu, φu) = 2πρu,n
nB

N
|hu|2d1,u<{jaHTx,uFnaTx,u}, (A.7c)

ψn(τu, hR,u) = 2πρu,n
nB

N
d0,u<{jh∗uaHTx,uFnaTx,u}, (A.7d)

ψn(τ, hI,u) = −2πρu,n
nB

N
d0,u<{h∗uaHTx,uFnaTx,u}, (A.7e)

ψn(θu, θu) = ρu,n|hu|2d0,uȧ
H
Tx,uFnȧTx,u, (A.7f)

ψn(θu, φu) = 0, (A.7g)

ψn(θu, hR,u) = 0, (A.7h)

ψn(θu, hI,u) = 0, (A.7i)

ψn(φu, φu) = ρu,n|hu|2d2,ua
H
Tx,uFnaTx,u, (A.7j)

ψn(φu, hR,u) = ρu,n<{hud1,u}aHTx,uFnaTx,u, (A.7k)

ψn(φu, hI,u) = ρu,n={hud1,u}aHTx,uFnaTx,u, (A.7l)

ψn(hR,u, hR,u) = ρu,nd0,ua
H
Tx,uFnaTx,u, (A.7m)

ψn(hR,u, hI,u) = 0, (A.7n)

ψn(hI,u, hI,u) = ρu,nd0,ua
H
Tx,uFnaTx,u, (A.7o)

where, ρu,n = 2PTx,uTsξu|sn|2/N0, h∗u is the complex conjugate of the channel coef-
ficient, and

d0,u =
∣∣∣∣wH

u aRx,u
∣∣∣∣2

2
, (A.8a)

d1,u = aRx,uw
H
u

d

dφ
wH
u aRx,u, (A.8b)

d2,u =

∣∣∣∣∣∣∣∣ ddφwH
u aRx,u

∣∣∣∣∣∣∣∣2
2

. (A.8c)

A.4 Components of the FIM for all the sub-carriers

For the multiple sub-carrier case, we take advantage of the symmetry of the sub-
carriers, beamformers, combiners and the data sn to formulate the FIM as follows.
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ψ(τu, τu) = 4π2σu
B2

N2
|hu|2d0,ua

H
Tx,uXτaTx,u, (A.9a)

ψ(τu, θu) = 0, (A.9b)

ψ(τu, φu) = 0, (A.9c)

ψ(τu, hR,u) = 0, (A.9d)

ψ(τ, hI,u) = 0, (A.9e)

ψ(θu, θu) = σu|hu|2d0,uȧ
H
Tx,uXȧTx,u, (A.9f)

ψ(θu, φu) = 0, (A.9g)

ψ(θu, hR,u) = 0, (A.9h)

ψ(θu, hI,u) = 0, (A.9i)

ψ(φu, φu) = σu|hu|2d2,ua
H
Tx,uXaTx,u, (A.9j)

ψ(φu, hR,u) = σu<{hud1,u}aHTx,uXaTx,u, (A.9k)

ψ(φu, hI,u) = σu={hud1,u}aHTx,uXaTx,u, (A.9l)

ψ(hR,u, hR,u) = σud0,ua
H
Tx,uXaTx,u, (A.9m)

ψ(hR,u, hI,u) = 0, (A.9n)

ψ(hI,u, hI,u) = σud0,ua
H
Tx,uXaTx,u, (A.9o)

where,

σu =
2PTx,uTsξu

N0

, (A.10)

and Xτ =
N/2∑

n=−N/2
|sn|2n2Fn, and X =

N/2∑
n=−N/2

|sn|2Fn.

A.5 Derivation of localization error

From equation (2.28), we have the FIM matrix as:

Ju =


ψ(τu, τu) 0 0 0 0

0 ψ(θu, θu) 0 0 0

0 0 ψ(φu, φu) ψ(φu, hR,u) ψ(φu, hI,u)

0 0 ψ(φu, hR,u) ψ(hR,u, hR,u) 0

0 0 ψ(φu, hI,u) 0 ψ(hI,u, hI,u)

 (A.11a)

=

(
ψ1,u 02×3

03×2 ψ4,u

)
, (A.11b)
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where 0m×n represents a m by n zero matrix.
Now transforming the FIM Ju to the basis µ from η, we have the relation

Jµ,u = TuJuT
T
u where,

Tu =


cos(θu)/c − sin(θu)/du − sin(θu)/du 0 0

cos(θu)/c cos(θu)/du cos(θu)/du 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 1

 =

(
T1,u T2,u

03×2 T4,u

)
, (A.12)

where du = ||pu − qu||2.
Hence, we can now write

Jµ,u = TuJuT
T
u =

[
T1,u T2,u

03×2 T4,u

][
ψ1,u 02×3

03×2 ψ4,u

][
T T

1,u 02×3

T T
2,u T T

4,u

]
, (A.13a)

=

[
T1,u T2,u

03×2 I3

][
ψ1,u 02×3

03×2 ψ̃4,u

][
T T

1,u 02×3

T T
2,u I3

]
, (A.13b)

= T̃uJ̃uT̃
T
u , (A.13c)

where, J̃u is a diagonal matrix and ψ̃4,u = T4,uψ4,uT
T
4,u which is equal to

ψ̃4,u = T4,uψ4,uT
T
4,u =

ψ(φu, φu) 0 0

0 ψ(hR,u, hR,u) 0

0 0 ψ(hI,u, hI,u)

 . (A.14)

Now, in order to calculate the CRLB, we need to find J−1
µ,u.

J−1
µ,u = T̃−Tu J̃−1

u T̃
−1
u , (A.15)

where T̃−Tu =
(
T̃−1
u

)T
. Using Schur’s complement to calculate the inverse,

T̃−1
u =

[
T1,u T2,u

03×2 I3

]−1

=

[
T−1

1,u −T5,u

03×2 I3

]
, (A.16)
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and, T5,u = T−1
1,uT2,u where

T−1
1,u =

cdu
cos2(θu) + cos(θu) sin(θu)

[
cos(θu)/du sin(θu)/du

− cos(θu)/c cos(θu)/c

]
= ku

[
t11,u t12,u

t21,u t22,u

]
.

(A.17)

Hence, we can formulate T5,u as,

T5,u = T−1
1,uT2,u =

[
0 0 0

1 0 0

]
. (A.18)

From the above expressions, we can finally formulate J−1
µ,u as

J−1
µ,u =

[
T−T1,u ψ

−1
1,uT

−1
1,u −T−T1,u ψ

−1
1,uT5,u

−T T
5,uψ

−1
1 T1,u T T

5,uψ
−1
1 T5,u + ψ̃−1

4

]
, (A.19)

where,

T−T1,u ψ
−1
1,uT

−1
1,u = k2

u

[
t211ψ

−1(τu, τu) + t221ψ
−1(θu, θu)

t212ψ
−1(τu, τu) + t222ψ

−1(θu, θu)

]
, (A.20)

and,

T T5,uψ
−1
1 T5,u =

ψ
−1(θu, θu) 0 0

0 0 0

0 0 0

 . (A.21)

Consider γ to be the homogeneity factor with unit m2/rad2. We can write the
localization error as Lu = trace[J−1

η ]1:3 as

Lu = PEB2
u + γOEB2

u, (A.22a)

= k2
ut

2
11ψ

−1(τu, τu) + k2
ut

2
21ψ

−1(θu, θu)︸ ︷︷ ︸
From J−1

µ,u(1,1)

+ k2
ut

2
12ψ

−1(τu, τu) + k2
ut

2
22ψ

−1(θu, θu)︸ ︷︷ ︸
From J−1

µ,u(2,2)

+ γψ−1(θu, θu) + γψ−1(φ, φ)︸ ︷︷ ︸
From J−1

µ,u(3,3)

, (A.22b)

= kτ,uψ
−1(τu, τu) + kθ,uψ

−1(θu, θu) + kφ,uψ
−1(φu, φu). (A.22c)
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A.6 Convex reformulation of the AoD constraint

In equation (2.38c) consider u = ȧHuXN ȧu, v = ȧHuXNau , w = aHuXNau and
k = αθ,uζθ. Then,

u− |v|
2

w
≥ k, (A.23a)

w(u− k) ≥ vHv, (A.23b)

4w(u− k) ≥ 4vHv, (A.23c)

4w(u− k) + w2 + (u− k)2 ≥ (2|v|)2 + w2 + (u− k)2, (A.23d)

((u− k) + w)2 ≥ (2|v|)2 + w2 + (u− k)2 − 2w(u− k), (A.23e)

((u− k) + w)2 ≥ (2|v|)2 + ((u− k)− w)2, (A.23f)

((u− k) + w) ≥
√

(2<(v))2 + (2=(v))2 + ((u− k)− w)2, (A.23g)

(u− k + w) ≥

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 2<(v)

2=(v)

(u− k − w)


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

. (A.23h)





157

Appendix B

Proofs of chapter 3

B.1 Data rate optimal beamforming in multi-user

case

Consider an analog beamformer with 1 RF chain that transmits beams sequentially
to multiple users users across time i.e. one user at a time. Hence, with such
consideration, for user-u, from the signal model in equation (2.26), we can express
SNR as:

SNRu =
1

N0

nN∑
n=n1

PTx|wH
uHu,nfn,u|2|sn|2, (B.1a)

=
1

N0

nN∑
n=n1

PTx

ξu
|sn|2|hu|2|wH

u aRx,u|2aHTx,uFu,naTx,u, (B.1b)

=
1

N0

aHζ,uXN,uaζ,u, (B.1c)

where,

aζ,u =
[
ζu|sn1|aTTx,u · · · ζu|snN |aTTx,u

]T
∈ CM , (B.2)

and ζu =
√

PTx
ξu
|hu||wH

u aRx,u|.
The sum rate for U users, can now be formulated as

R =
U∑
u=1

Ru =
U∑
u=1

Tu
TC

log2 (1 + SNRu) , (B.3a)

=
U∑
u=1

Tu
TC

log2

(
1 +

aHζ,uXN,uaζ,u

N0

)
. (B.3b)

where, Tu is the fraction of time allocated for data communication phase for a
particular user. Mathematically

∑U
u=1 Tu = TC . The optimization can then be
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formulated similarly to [89] as follows

(P ) : max
XN ,Tu

R (B.4a)

subject to:

Ru ≥ r0, (B.4b)
U∑
u=1

Tu = TC , (B.4c)

(2.36b)-(2.36g).

Since we consider beamforming with respect to one user at a time, we can
separate the optimization problem (P ) into two separate optimization problems
(P1) and (P2), the first one concerning optimal beamforming vector per user and
the second concerning the allocation of time Tu depending on the minimum rate
requirement constraint for the u-th user in the sum rate maximization.

The first optimization problem (P1) can be formulated as:

(P1) : max
XN,u

SNRu (B.5a)

subject to:

(2.36b)-(2.36g).

The above optimization problem (P1) concerns the beamforming optimization
in a given direction for a particular user. The solution to the problem is a well
known problem in the literature [62, 138] referred to as conventional beamformer
(CBF), expressed as follows:

X∗N,u = diag(F ∗u ,F
∗
u , · · · ,F ∗u ), (B.6)

where, F ∗u = f ∗uf
∗H
u and

f ∗u =
aζ,u
||aζ,u||22

. (B.7)

Since the SNR expression is not dependent on the subcarrier frequency, the optimal
beamformer is the same for the beamformers across all the subcarriers.

Now given the optimal beamforming vector for each user, we need to determine
how much fraction of time TC should be allocated to each user. Accordingly, the
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second optimization problem can be written as:

(P2) : max
Tu

R (B.8a)

subject to:

XN,u = X∗N,u (B.8b)

(B.4b),(B.4c).

For the problem (P2), the solution would be to allocate the time firstly to fulfill
the minimum rate requirement per user from equation (B.4b), then to allocate all
the remaining time to the user with highest SNRu in order to maximize the sum
rate. Hence the optimal solution would be:

T ∗u =
r0

log2(1 + SNRu)
TC + z∗u, (B.9)

where,

z∗u =

δTC if SNRu = max (SNR1, · · · , SNRU)

0 otherwise
(B.10)

where, δ = 1−
∑U

u=1 r0/log2(1 + SNRu).

B.2 Derivation of beam-selection error

Beam-selection error occurs for a user in coverage of the beam j of beamwidth
ωk when the estimated position lies outside the beam j. Thus, the probability of
beam-selection error, in case the user is estimated to be located at d̂, is computed
as:

PBS,j,k
(
d, σ2

d

)
= P

(
d̂ < dLjk

)
+ P

(
d̂ > dRjk

)
(B.11a)

= 1−Q
(
dLjk − d
σd

)
+Q

(
dRjk − d
σd

)
. (B.11b)

Accordingly, the average beam-selection error of any user for which the j-th
beam is selected for service is given by:

P̄BS,j,k =

∫ dRjk

dLjk

PBS,j,k(x)fd(x)dx. (B.12)



160 Appendix B. Proofs of chapter 3

Finally, the average beam-selection error for the localization based beam-selection
scheme with a beam-dictionary size of k is calculated as:

P̄BS =
1

λ

k∑
j=1

P̄BS,j,k. (B.13)

B.3 Derivation of SINR coverage probability

Let x be the distance between the base of the serving BS and the UE and z0 =√
x2 + h2

B be the distance between the BS and the UE. Likewise, let dk, k ≥ 1

represent the distance between the base of the k-th interfering BS and the UE.
Likewise, let zk =

√
d2
k + h2

B, ∀k be the distance between the k-th BS and the UE.
Similarly, hk represents the complex channel coefficient between the k-th BS and
the UE. In the following analysis, i and i′ represents the index of BSs in LOS and
NLOS respectively.

Firstly, we consider the case when the main lobe of both the serving BS and
the UE beams are aligned with each other (i.e. no beam selection error). Let
G = γTx(ωTx)γRx(ωRx). The SINR Coverage probability at a threshold γ in case of
no beam-selection error, referred to as T0 is calculated as:

T0(x, γ) = P (SINR ≥ γ) (B.14a)

= P

 PTxKGz
−αL
0 |h0|2

σ2
N + PTxKg2

(∑
i∈ξL\{0} z

−αL
i |hi|2 +

∑
i′∈ξN z

−αN
i′ |hi′ |2

) ≥ γ

 , (B.14b)

= P

|h0|2 ≥
γσ2

N + γPTxKg
2
(∑

i∈ξL\{0} z
−αL
i |hi|2 +

∑
i′∈ξN z

−αN
i′ |hi′|2

)
PTxKGz

−αL
0

 ,

(B.14c)

= E
ξL,ξN ,hi,hi′

[
exp

(
− γσ2

N

PTxKGz
−αL
0

−
γg2

∑
i∈ξL\{0} z

−αL
i |hi|2

Gz−αL0

−
γg2

∑
i′∈ξN z

−αN
i′ |hi′ |2

Gz−αL0

)]
,

(B.14d)

= ζ E
|hi|2,ξL\{0}

exp

−γg
2
∑

i∈ξL\{0}
z−αLi |hi|2

Gz−αL0


 E
|hi′ |2,ξN

exp

−γg
2
∑
i′∈ξN

z−αNi′ |hi′ |2

Gz−αL0


 ,

(B.14e)
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where, ζ = exp
(
− γσ2

N

PTxKGz
−αL
0

)
. Now the terms corresponding to the LOS and the

NLOS case can be evaluated separately as:

E
|hi|2,ξL\{0}

exp

−γg
2
∑

i∈ξL\{0}
z−αLi hi

Gz−αL0


 = E

ξL

 ∏
i∈ξL\{0}

E
|hi|2

[
exp

(
−γg

2z−αLi |hi|2

Gz−αL0

)] ,
(B.15a)

(a)
= exp

(
−
∫ dS

x

1− E|hi|2
[
exp

(
−γg

2(y2 + h2
B)−αL/2|hi|2

Gz−αL0

)]
2λydy

)
, (B.15b)

= exp

(
−
∫ dS

x

γg2(y2 + h2
B)−αL/2

Gz−αL0 + γg2(y2 + h2
B)−αL/2

2λydy

)
= AL0(x, γ), (B.15c)

where (a) follows as a result of the proof according to [139, Theorem 4.9]. The
integral in (a) is only over the zi (and not over z0) as the expectation is over all the
interfering BSs in LOS.

With the same reasoning,

Ehi′ ,ξN

[
exp

(
−
γg2

∑
i′∈ξN z

−αN
i′ |hi′|2

Gz−αL0

)]

= exp

(
−
∫ ∞
dS

γg2(y2 + h2
B)−αN/2

Gz−αL0 + γg(y2 + h2
B)−αN/2

2λ(y − dS)dy

)
= ANL0(x, γ) (B.16)

Likewise, in the case of beam selection error, we can derive the coverage proba-
bility TBS by replacing G with g2 since here we assume that main lobes of both BS
and the UE are not aligned. Then, from the theorem of total probability, the SINR
coverage at a distance x is calculated. Conditioning on the user lying between dLi
and dRi completes the proof.
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Appendix C

Proofs of chapter 4

C.1 Derivation of CRLB for distance and AoA

We consider the received signal model similarly to that as in equation (3.14). Sim-
ilarly to chapter 3 and [62], let the power spectral density of the transmit signal be
symmetric and equal to Ts/2πB, where, Ts and B are the time duration and the
bandwidth of s(t).

The FIM J from [52] and [62] for the estimation of the mentioned variables are
given below.

J =


Jd,d 0 0 0

0 Jφ,φ JhR,φ JhI ,φ

0 Jφ,hR JhR,hR 0

0 Jφ,hI 0 JhI ,hI

, (C.1)

in which:

Jd,d = ζGRx(ωRx)GTx(ωTx)
B2π2

3c2
, (C.2a)

Jφ,φ = ζ|ȧHRx(φ)w|2GTx(ωTx), (C.2b)

JhR,φ =
ζ

|h|2
R
{
haHRx(φ)wwHȧRx(φ)

}
GTx(ωTx), (C.2c)

JhR,hR = ζGRx(ωRx)GTx(ωTx), (C.2d)

JhI ,φ =
ζ

|h|2
I
{
haHRx(φ)wwHȧRx(φ)

}
GTx(ωTx), (C.2e)

JhI ,hI = ζGRx(ωRx)GTx(ωTx), (C.2f)

where ζ = 2SNRLB(1− β)TF/GTx(ωTx)GRx(ωRx) and ȧRx(φ) = ∂aRx(φ)/∂φ.
Finally, the CRLBs for the estimation of the distance (by inverting the first

element of J) and the AoA (using Schur’s decomposition [58]) can be written as
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follows:

σ2
d =

(
ζGRx(ωRx)GTx(ωTx)

B2π2

3c2

)−1

, (C.3a)

σ2
φ =

(
ζGTx(ωTx)

(
|ȧHRx(φ)w(ωRx)|2 −

|aHRx(φ)w(ωRx)w
H(ωRx)ȧRx(φ)|2

GRx(ωRx)

))−1

.

(C.3b)
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Résumé : Dans ce travail de thèse, on se proposait
d’explorer les synergies inhérentes entre services de
radiolocalisation et de communication au sein de sys-
tèmes sans fil en bandes millimétriques (mm-Wave).
Ces derniers sont actuellement pressentis pour cou-
vrir les besoins de la cinquième génération (5G) de
réseaux en termes de débits et de charges utiles.
Un objectif général consistait alors à montrer com-
ment ces deux fonctions pouvaient s’avérer mutuel-
lement bénéfiques. Tout d’abord, nous avons étu-
dié comment la formation de faisceau (au sens du
pré-codage) pouvait contribuer à améliorer les per-
formances de localisation, pour des systèmes multi-
porteuses mono- et multi-utilisateurs. En particulier,
en s’appuyant sur les performances théoriques de lo-
calisation au sens de la limite inférieure de Cramér-
Rao (CRLB), nous avons montré qu’il était possible,
au moyen d’une formation de faisceau optimisée,
d’améliorer l’estimation de variables radio intermé-
diaires, telles que le délai, l’angle de départ (AoD)
et/ou l’angle d’arrivée (AoA) du signal transmis, et

in fine, l’estimation de la position et/ou de l’orienta-
tion du mobile. Nous avons ensuite considéré le pro-
blème de la coexistence des deux services, en en-
visageant différentes stratégies de budgétisation et
de partage de ressources, en temps et en fréquence.
A cette occasion, nous avons illustré la présence de
compromis non-triviaux entre les performances de lo-
calisation et de communication. Nous avons alors pro-
posé des schémas d’allocation de ressources et d’op-
timisation des faisceaux (en termes de largeur et/ou
d’alignement), permettant d’assurer conjointement le
meilleur niveau de performances pour les deux ser-
vices. Nous avons enfin étudié la possibilité d’exploi-
ter explicitement l’information de localisation ainsi ac-
quise, en particulier pour l’accès initial, l’estimation
de canaux multi-trajets, ou encore la localisation et
la cartographie simultanées (SLAM). En comparaison
d’approches plus conventionnelles, nous avons mon-
tré comment les performances de telles applications
pouvaient être améliorées en termes de précision, de
latence et/ou de complexité calculatoire.

Title: Joint Localization and Communication in 5G Millimeter Wave Networks

Keywords: 5G, millimeter wave, localization, communication, beamforming, resource sharing

Abstract: In this thesis, we investigate different facets
of localization and communication services motivated
by the symbiosis between them in the millimeter wave
(mm-Wave) context for the fifth generation (5G) of
wireless communications. Our aim is twofold: first,
show that this duality is mutually beneficial to both ser-
vices, and second, aim towards a co-existence to cap-
ture these benefits in order to bring forth mm-Wave
as a strong contender for 5G. First, we look into how
beamforming, an integral part of mm-Wave commu-
nications, can aid in improving the localization per-
formance. After characterizing the localization perfor-
mance in terms of Cramér-Rao lower bound (CRLB),
we show that with optimized beamforming, the esti-
mation of localization variables (delay, angle of de-
parture (AoD) and angle of arrival(AoA)) improves.

Then we consider the problem of co-existence of the
two services together in the same system while shar-
ing time and frequency resources. We study the non-
trivial trade-off between the performances of the two
services during this resource budgeting. Then, relying
on this trade-off, we design an optimal resource allo-
cation scheme while also optimizing the beamwidth
in order to ascertain high performance in terms of
both localization and communication. In the same
context, we also look into different applications of
this improved location information namely initial ac-
cess, channel estimation and simultaneous localiza-
tion and communication (SLAM). We show that the
related performances improve in terms of quality, la-
tency and/or complexity in comparison to the conven-
tional methods.
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Fonctions conjointes de localisation
et de communication dans les
réseaux 5G en bandes millimétriques

1 Introduction

L’augmentation exponentielle de la demande en matière de services à haut débit
de données et à très faible latence font aujourd’hui apparaître la radio en ban-
des millimétriques (mm-Wave) comme une technologie clé de la 5ème génération
(5G) de réseaux cellulaires [1], du fait des larges bandes passantes disponibles dans
cette gamme de fréquences [2]. Cependant, les transmissions mm-Wave, comme
le vérifie l’équation de Friis, se caractérisent par de fortes pertes d’atténuation en
fonction de la distance parcourue par l’onde, ainsi que par une grande sensibil-
ité aux phénomènes de masquage. Les techniques de formation de faisceaux, qui
mettent en oeuvre des réseaux d’antennes ultra directifs et compacts, permettent
d’apporter les gains en puissance nécessaires pour compenser ces pertes et ainsi
améliorer le rapport signal sur bruit en réception (signal-to-noise ratio (SNR)) [3].
Du fait de cette forte directivité, les fonctions de localisation et de communication
sont intimement liées et inter-dépendantes.

Certaines propriétés intrinsèques des communications en bandes mm-Wave s’avèrent
du reste bénéfiques à la localisation [4, 5]. Typiquement, une large bande fréquen-
tielle et un grand nombre d’éléments au sein du réseau d’antennes permettent des
résolutions élevées, respectivement dans les domaines temporel et angulaire. De
même, la faible densité du canal de propagation en composantes multi-trajets im-
plique un niveau réduit de perturbations et d’interférence pour l’estimation des
métriques radio topo-dépendantes. Enfin, la densification des réseaux permet de
s’appuyer sur un grand nombre de stations de base pouvant faire office de nœuds
d’ancrage géo-référencés. Réciproquement, les informations de localisation peu-
vent être exploitées pour améliorer certaines fonctions de communication, a fortiori
compte tenu de la nature fortement géométrique du canal mm-Wave. La localisation
peut ainsi être utilisée pour assister la formation de faisceau elle-même, accélérer
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Figure 1: Illustration des différentes facettes de l’interdépendance entre services de lo-
calisation et de communication, au sein d’un système sans fil 5G en bande millimétrique.

l’estimation du canal ou encore la phase d’accès initial au réseau. Motivés par cette
relation symbiotique, nous étudions dans notre thèse différents compromis entre
fonctions de communication et de localisation, comme le montre la figure 1. In fine,
l’objectif consiste à pourvoir et à optimiser de manière conjointe les deux types de
services au sein d’un seul et même système mm-Wave.

2 Formation de faisceau adaptée à la localisation

Une première partie de ce travail de thèse portait sur l’optimisation de la forma-
tion de faisceau (au sens du pré-codage) vis-à-vis des performances de localisa-
tion, en complexifiant graduellement le scénario d’étude (en fonction du nombre
de fréquences porteuses, du nombre d’utilisateurs et du type de métriques radio
estimées).

Dans un premier temps, nous avons étudié une stratégie de formation de faisceau
permettant de minimiser la limite inférieure de la borne de Cramer-Rao (CRLB)
caractérisant l’estimation de l’angle d’arrivée (AoA) et du temps d’arrivée (ToA)
dans un scénario multi-porteuses et mono-utilisateur, en l’abordant sous l’angle
d’un problème d’allocation fréquentielle de puissance. Par la suite, nous avons
considéré un scénario multi-utilisateurs, qui plus est, en introduisant l’estimation
de variables radio supplémentaires, à savoir l’angle de départ (AoD) ainsi que les
coefficients complexes du canal (i.e., en complément des variables AoA et ToA).
Nous avons alors calculé une forme simplifiée de la borne CRLB pour chacun des
paramètres estimés indépendamment, avant d’exprimer une erreur "composite" de



2. Formation de faisceau adaptée à la localisation 3

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.15

0.3

0.45

0.6

0.75

0.9

1.05

1.2

1.35

1.5

Subcarrier Number [n]

R
el
a
ti
v
e
b
ea
m

g
a
in

βτ > 0

βτ = 0

Figure 2: Allocation de puissance par sous-porteuse pour différentes valeurs de βτ .

localisation sous la forme d’une combinaison linéaire intégrant les bornes théoriques
précédentes. Enfin, cette erreur "composite" a été introduite comme fonction de
coût pour l’optimisation de faisceau dans les deux cas. La flexibilité de cette fonction
de coût permet de mettre l’accent, au choix, sur l’une ou l’autre des variables radio
intermédiaires estimées, ou encore sur la position finale en résultant.

Dans le contexte multi-utilisateurs, nous avons également considéré des straté-
gies d’allocation de ressource basées sur différents critères d’équité (en particulier,
des stratégies de type min-max et proportional fairness). Ces stratégies permettent
une gestion optimale du faisceau entre utilisateurs en fonction de contraintes ap-
plicatives a priori, tout en appliquant globalement la même approche d’optimisation
que dans le cas mono-utilisateur.

A titre d’exemple, la figure 2 illustre une allocation de puissance en fonction de
la fréquence, respectivement en tenant compte ou en ignorant les composantes liées
à l’estimation du ToA au sein de la fonction de coût (resp. via les coefficients βτ > 0

ou βτ = 0). Il apparaît alors que pour un coefficient βτ > 0, une majeure partie
de la puissance disponible est allouée aux deux extrémités du spectre, augmentant
d’autant la largeur de bande effective et ainsi la capacité de résolution temporelle du
système (pour peu que les ambiguïtés spatiales aient été correctement résolues). En
revanche, pour l’estimation de l’AoD et de l’AoA, dans la mesure où la fréquence ne
joue aucun rôle selon le modèle sous-jacent de signal utilisé, on note une répartition
uniforme de la puissance sur l’ensemble des sous-porteuses. Sur la figure 3, nous
présentons le résultat de l’optimisation de la formation de faisceau pour le scénario
canonique multi-utilisateurs de la figure 4. Nous observons alors des niveaux vari-
ables de puissance transmise dans les directions des trois utilisateurs distincts, en
fonction de la stratégie d’équité considérée et de la qualité relative de chaque lien
(selon la distance et l’orientation vis-à-vis de la stations de base).
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Figure 4: Exemple de scénario canonique impliquant une BS et 3 utilisateurs mobiles,
avec des positions et orientations relatives distinctes vis-à-vis de la BS.

3 Étude du compromis entre services de localisa-

tion et de communication

Après avoir cherché à optimiser la formation de faisceau au sens d’une minimisation
de l’erreur de localisation, nous nous sommes concentrés sur la manière dont les ser-
vices de localisation et de communication peuvent être intégrés et opérés au sein
d’un même système, étant donné un budget en ressources limité a priori (temps,
fréquence, puissance). Nous avons d’abord considéré le cas de services de localisa-
tion et de communication indépendants, pour lequel nous avons évalué a posteriori
le résultat de différentes stratégies statiques/fixes de partage des ressources, en
temps et en fréquence notamment. Pour un tel système, budgétiser a priori trop
des ressources pour le service de transmission de données par rapport au service
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(chaque courbe est iso-budget).

de localisation mène, de manière triviale, à des débits plus élevés, mais aussi à des
erreurs d’estimation de la position et de l’orientation beaucoup plus importantes.
Dans un second temps, en considérant les deux services comme interdépendants,
nous avons caractérisé le meilleur compromis possible entre services, non seulement
pour le partage des ressources en temps et en fréquence, mais aussi pour la largeur
de faisceau.

En raison de l’interdépendance des deux services, la phase de communication
peut s’appuyer sur la phase de localisation afin d’optimiser la largeur de faisceau
et donc de maximiser les performances de communication en termes de SINR et de
probabilité de couverture pour un débit cible donné.

Sur la figure 5, on représente de manière concrète le compromis entre perfor-
mances de localisation et performances de communication (exprimées respective-
ment comme l’inverse de la borne théorique d’erreur de positionnement, PEB, et le
débit moyen, R), et ce, pour des services purement indépendants. Chaque courbe
iso-budget résulte d’une stratégie spécifique de partage des ressources en temps ou
en fréquence (i.e., étant fixés a priori un certain budget total de ressources, ainsi
qu’un certain facteur de partage de ces mêmes ressources entre services). En jouant
sur le facteur de partage des ressources β, il est alors possible de parcourir ces
courbes pour satisfaire le niveau de performance cible pour l’un ou l’autre des ser-
vices. A première vue, le partage fréquentiel semble globalement plus favorable en
mode standalone.

Au-delà du seul facteur d’allocation de ressources (β), l’exemple de la figure 6
met en évidence que la largeur du faisceau (ou de manière équivalente, le nombre
total de faisceaux requis pour couvrir une cellule en DL) peut également jouer un
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rôle prépondérant vis-à-vis des performances de communication.

4 Optimisation du faisceau pour des services con-

joints de localisation et de communication

Après avoir constaté la présence de compromis entre services de localisation et de
communication, nous avons ensuite cherché à formuler et à résoudre conjointement
les problèmes d’allocation de ressources et d’optimisation de faisceau (i.e., au sens
d’une sélection du faisceau et de sa largeur), en supposant que cette dernière pouvait
s’appuyer sur l’information mise à disposition lors de la phase de localisation.

A cet effet, en traitant d’un cas canonique (e.g., déploiement de BSs le long des
rues en milieu urbain), nous avons formulé un nouveau problème d’optimisation, en
cherchant à maximiser les performances de communication sous la contrainte d’une
erreur de localisation inférieure à un seuil critique (e.g., reflétant les besoins d’une
application topo-dépendante). Pour un instant donné, le résultat de cette optimisa-
tion permet alors de déterminer la meilleure largeur de faisceau, ainsi qu’un facteur
d’allocation de ressources améliorant les performances "instantanées" de localisa-
tion et de communication. En exploitant cette procédure dans un contexte itératif
et donc, en supposant la répétition de l’enchaînement des phases de localisation
et de communication en régime établi, on assure ainsi le raffinement et le contrôle
continu de la qualité des deux services.

Nous nous sommes également intéressés plus spécifiquement au problème d’accès
initial, en gardant à l’esprit les exigences de la 5G en matière de faible latence. Dans



4. Optimisation du faisceau pour des services conjoints de localisation et de
communication

7

Figure 7: Valeur optimisée du facteur de partage de ressources β en fonction de la densité
de déploiement des BSs et du niveau de bruit.

Figure 8: Taille optimisée du dictionnaire des faisceaux (inversement liée à largeur du
faisceau) en fonction de la densité de déploiement des BSs et du niveau de bruit.

ce contexte, nous avons, là encore, exploité l’information de localisation de manière
itérative pour la sélection initiale de faisceau. Nous avons alors comparé cette
approche avec des méthodes de sélection et d’apprentissage de faisceau classiques,
à savoir les méthodes itératives de recherche exhaustive et hiérarchique.

Sur les figures 7 et 8, on représente respectivement le facteur d’allocation des
ressources optimisé, ainsi que la largeur de faisceau optimisée, et ce, pour deux
paramètres clés du réseau (i.e., densité de déploiement des BSs en ordonnées et bruit
d’estimation en abscisses). Comme on peut le noter, la méthode proposée permet
de dégager des solutions optimisées a priori non triviales, dépendant grandement de
la configuration du réseau. La figure 9, quant à elle, permet de comparer la durée de
la procédure d’accès initial pour atteindre une certaine résolution spatiale donnée
(via la sélection de faisceau), entre une approche s’appuyant sur l’information de
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Figure 9: Comparaison du délai de la phase d’accès initial en fonction de la densité de dé-
ploiement du réseau, pour la stratégie proposée de sélection/d’apprentissage de faisceaux
s’appuyant sur l’information de localisation et pour des stratégies itératives convention-

nelles de recherche de faisceaux (i.e., exhaustive et hiérarchique).

localisation et des méthodes itératives conventionnelles. La méthode proposée à
base de localisation, en particulier dans le cas d’un déploiement moins dense du
réseau, semble alors surpasser assez nettement les méthodes existantes.

De manière générale, le schéma mis en avant permet, notamment pour les opéra-
teurs, d’adapter au mieux la stratégie de sélection de faisceaux, étant donnée un
déploiement de réseau.

5 Applications s’appuyant sur l’estimation angu-

laire multi-trajets

Nous avons enfin étudié les problèmes d’estimation de canal multi-trajets mmWave
et de localisation et cartographie simultanées (SLAM), en exploitant dans les deux
cas l’information angulaire AoD et AoA, qui est disponible par défaut dans le cadre
de communications mmWave.

Dans le premier cas, nous avons proposé un algorithme d’estimation de canal
mettant à profit la nature géométrique et la faible densité du canal multi-trajets
mmWave, par le biais d’algorithmes d’acquisition comprimée. Nous avons montré
en particulier que l’exploitation d’une information de localisation a priori -même
erronée- en lieu et place de méthodes classiques d’apprentissage de faisceaux basées
sur un balayage, permettait de réduire considérablement la durée et la complexité
de cette phase critique d’estimation du canal, comme on peut le voir sur la figure
10.
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Figure 10: Erreur quadratique moyenne normalisée (NMSE) d’estimation du canal
multi-trajets mmWave pour la méthode proposée s’appuyant sur l’information de locali-

sation et deux méthodes de recherche conventionnelles, en fonction de la durée.

Dans le second cas d’application, nous avons utilisé les angles AoA/AoD es-
timés pour quelques composantes multi-trajets (i.e., issues de la phase précédente
d’estimation de canal) afin d’estimer conjointement la position de l’utilisateur et
celles de surfaces ou d’obstacles passifs dans l’environnement, rétro-diffusant l’onde
transmise. En considérant plusieurs stations de base, nous avons alors utilisé une
approche centralisée de type "passage de messages", basée sur des méthodes de
propagation de croyances (BP) et une représentation du problème sous forme de
factor-graph. Nous avons alors comparé la précision obtenue et la complexité (y
compris en termes de trafic de signalisation) avec celles de méthodes SLAM dis-
tribuées existantes, exploitant les mêmes données d’entrée.

Sur la figure 10, on note qu’avec une méthode basée sur la localisation, l’erreur
d’estimation du canal multi-trajets diminue plus rapidement que les autres méth-
odes. Ce gain de temps pourrait être crucial, en particulier dans le contexte des
applications 5G à faible latence et/ou pour des scénarios dynamiques (e.g., en sit-
uation de mobilité).

Sur l’exemple de la figure 11, on remarque que la méthode BP centralisée pro-
posée s’avère plus performante que sa variante distribuée, notamment en ce qui con-
cerne l’estimation de la position des points de rétro-diffusion de l’environnement.
Cela est principalement dû au fait que la méthode centralisée mutualise naturelle-
ment l’information de plusieurs BSs, permettant ainsi de réduire la propagation
des erreurs de l’algorithme BP, et ce, en intervenant très tôt dans la séquence des
messages passés (i.e., en opérant une forme de pré-filtrage d’information).
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sur les mesures AoA/AoD multi-trajets admises en entrée.

6 Conclusions et perspectives

Dans ce travail de thèse, nous avons présenté des arguments et des résultats allant
dans le sens d’une coexistence symbiotique entre localisation et communications
au sein d’un même système mmWave. Nous avons illustré différents aspects de la
relation complexe unissant ces deux services (e.g., sous l’angle de l’optimisation
du pré-codage, de la sélection de faisceau, menée conjointement à l’allocation de
ressources, ou encore de l’estimation de canal multi-trajets), en mettant en évidence
leurs bénéfices mutuels, ainsi que l’existence de compromis pratiques.

Dans le cadre de futurs travaux, on envisage d’étendre les modèles sous-jacents
utilisés (e.g., prise en compte des obstructions radio, coefficient de canal variable).
De même, on se propose de traiter des scénarios véritablement dynamiques, en
cherchant à assurer la poursuite de l’utilisateur mobile et des paramètres de canaux
associés. Enfin, on vise une validation expérimentale de certaines contributions
de la thèse (e.g., accès initial à faible latence, estimation du canal multi-trajets à
basse complexité ), en s’appuyant en particulier sur des dispositifs antennaires à
26-28GHz développés récemment au CEA-Leti.
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