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Introduction

Context

The ocean is the largest solar energy collector on Earth. It absorbs about 90% of Earth’s radiation

imbalance (Hansen et al., 2011) and, as such, plays a crucial role in the regulation of our climate. The

amount of heat the ocean can store is modulated by its complex circulation, which spans a broad range

of spatial scales, from centimeters to thousands of kilometers. This dissertation focuses on the scale

range 1–500 km, which encompasses two major physical structures: mesoscale eddies (100–300 km size),

Figure 0.1: Visible Infrared Imaging Radiometer Suite on the
Suomi satellite captures an extensive phytoplankton bloom just
west of the Drake Passage, one of the most turbulent regions
in the ocean. Mesoscale eddies and submesoscales filaments are
noticeable on this image. From https://earthobservatory.
nasa.gov.

which account for most of the oceanic

Kinetic Energy (KE), and subme-

soscale fronts (≤ 50 km size), which

capture most of the vertical velocity

field.

Satellite altimetry of the past twenty-

five years has revealed the existence of

a strongly energetic mesoscale turbu-

lent flow field in all the oceans (Klein

et al., 2019). This oceanic mesoscale

turbulence is characterized by cyclonic

and anticyclonic eddies with an hori-

zontal length scale of 100–300 km, a

vertical length scale of 500–1000 m and

a time scale ranging from a few days

to several weeks (Chelton et al., 2011).

At leading order, mesoscale eddies are

in geostrophic balance, i.e., a balance

between pressure and Coriolis forces.

They are mostly energetic in turbulent

regions such as the Gulf Stream, the
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Kuroshio Extension, and the Antarctic Circumpolar Current (Figures 0.1 and 0.2).

Figure 0.2: Surface relative vorticity in the Kuroshio Extension on March 15th 2002 from a high-resolution
(1/30◦ in the horizontal and 100 vertical levels) numerical simulation of the North Pacific using the ocean general
circulation model for the Earth Simulator. From Sasaki et al. (2014).

Mesoscale eddies account for ∼ 80% of the total oceanic KE (Ferrari and Wunsch, 2009). In terms of

KE budget, numerical and theoretical studies indicate that mesoscale eddies experience an inverse KE

cascade, with KE fluxing from the source (∼ 50–100 km), resulting from the baroclinic instability of

large-scale currents, towards larger scales (Tulloch et al., 2011; Klein et al., 2019). In simple terms, this

happens when two small eddies merge to form a larger one. This inverse KE cascade increases the total

eddy KE and strengthens large geostrophic eddies as they become more coherent and their life time

increases (Arbic et al., 2012; Qiu et al., 2014; Sasaki et al., 2014). Mesoscale eddies are a key component

of the global ocean circulation and significantly impact, among others, carbon sequestration, biological

productivity, heat transport and thus the Earth’s climate as a whole (Ferrari and Wunsch, 2009).

However, a new vision of ocean dynamics has emerged in the last two decades. It highlights the previ-

ously unsuspected importance of submesoscale motions, confined within the ocean surface mixed layer,

for the general ocean circulation (Spall and Richards, 2000; Lévy et al., 2001). Submesoscales have an

9



horizontal length scale ≤ 50 km and a time scale ranging from hours to days. They lie intermediate to

meso- and small-scale 3-D (0.1–100 m) motions and take the form of elongated fronts or filaments embed-

ded within mesoscale eddies (Figures 0.1 and 0.2). Contrary to mesoscale eddies, submesoscale motions

are not in geostrophic balance (Thomas et al., 2008), as such they are referred to as "ageostrophic"

motions.

While mesoscales capture most of the horizontal eddy KE (u, v), submesoscales capture most of the

vertical eddy KE (w) (Klein and Lapeyre, 2009; McWilliams, 2016), as illustrated in Figure 0.3. This

figure shows that while most of the variance of (u, v) lies in the mesoscales, most of the variance of w is

contained at submesoscales. Submesoscale dynamics are known to generate vertical velocities of ∼100

m/day that are typically an order of magnitude larger than those associated with the mesoscale. As

such, submesoscale dynamics play an important role in the vertical transport of key properties such as

climatically important gazes, heat and nutrient (Klein and Lapeyre, 2009; Ferrari, 2011).

Figure 0.3: a) Vertical velocity and b) horizontal velocity at a 200-m depth as a function of the length scale for
mesoscales (blue line) and submesoscales (red line), assuming equal KE for both regimes at the length scale of
100 km. From Klein and Lapeyre (2009).

To date, submesoscale dynamics have mainly been studied in the upper ocean, and in particular within

the ocean mixed layer (∼50–100 m deep), where they are thought to be dominant due to the presence

of horizontal density gradients, vertical shear, weak stratification, and a surface boundary conducive

to frontogenesis. In contrast, submesoscales in the ocean interior are currently assumed to be weak.

This is because the ocean interior is commonly assumed to be in geostrophic balance, preventing the

formation of strong horizontal gradients. However, growing evidence suggests that the interior ocean
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may depart from geostrophy and host energetic submesoscales. For instance, this has been proposed

by Molemaker et al. (2010) in an idealized study, in which the authors demonstrate the presence of

energetic frontogenesis driven by mesoscale eddies in the ocean interior. Seismic imaging has also long

revealed the existence of energetic eddies in the ocean interior (Biescas et al., 2008; Menesguen et al.,

2009; Barbosa Aguiar et al., 2015), such as the subsurface anticyclones of the North Atlantic known as

"meddies" (Armi et al., 1988; Ménesguen et al., 2012) or the coherent eddies of the Gulf Stream (Gula

et al., 2019). In addition, the recent in situ study of Yu et al. (2019) diagnosed strong upward vertical

heat fluxes in the ocean interior that are believed to be produced by submesoscale dynamics.

Furthermore, mesoscale and submesoscale dynamics are often studied independently. To date, only a

few studies (Fox-Kemper and Menemenlis, 2008; Klein and Lapeyre, 2009; Tulloch and Smith, 2009)

have examined their interactions beyond the dynamics of stable/unstable submesoscale fronts embedded

in a large-scale strain field. This dissertation addresses the question of the two-way interaction between

mesoscale eddies and submesoscale structures in a fully turbulent flow field. More precisely, the focus

of this work is on ageostrophic dynamics (see Chapter 2 for the precise definition) in the ocean interior,

and in particular below the mixed layer, where little is known about their existence. The main purposes

of this work are to show that ageostrophic motions (i) are generated by the backgound mesoscale eddy

field via frontogenesis processes, and (ii) are not solely confined to the ocean surface mixed layer but,

rather, can extend in the ocean interior down to depths of a thousand meters. As such, submesoscale

fronts provide an important, yet unexplored, pathway for the transport of heat, chemical and biological

tracers, between the ocean interior and the surface, with potential major implications for the biogeo-

chemical and climate systems.

This dissertation focuses on one of the most energetic regions of the world’s ocean: the Antarctic

Circumpolar Current (ACC) (Hogg et al., 2015), from which numerous eddies emanates, making it

prone to the generation of submesoscale motions. This region has been chosen because of availability of

two groundbreaking datasets: (i) submesoscale-resolving in situ observations collected by instrumented

elephant seals in the Kerguelen area (Indian sector of the Southern Ocean, Figure 1.2) and (ii) outputs

from a realistic simulation at high-resolution that includes internal tides. In addition, this region benefits

from a thorough satellite altimetry coverage, allowing to access the mesoscale activity of the area. As
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such, the availability of these three independent datasets enabled the study of ageostrophic dynamics

in the ocean interior from an observational and modeling perspective.

Outline

• Chapter 1 describes the three datasets used in this dissertation:

– Conductivity-Temperature-Depth data collected by instrumented southern elephant seals in

the Kerguelen area (Figure 1.2), providing vertical sections of density at high-resolution,

capable to resolve agoestrophic dynamics at depth.

– Conventional satellite altimetry data, providing maps of sea surface height (SSH), a proxy for

surface pressure, sufficient to resolve the mesoscale activity of the area. Finite size Lyapunov

exponents are subsequently computed from SSH to retrieve the strain field.

– A global and realistic numerical simulation with a 1/48◦ horizontal resolution, 90 vertical

levels and tidal forcing, i.e., the so-called LLC4320 simulation.

• Chapter 2 introduces the theoretical concepts related to quasi-geostrophic and ageostrophic dy-

namics that will be used in Chapters 3–5. The aim of this chapter is to summarize the key

theoretical results related to meso- and submesoscale turbulence. This chapter can be read inde-

pendently from the others.

• Chapter 3 demonstrates the existence of submesoscale fronts in the ocean interior. These fronts

generate enhanced upward vertical heat transport at depth. The results are based on an innovative

methodology combining seal and satellite data, and are backed by an analysis of the high-resolution

numerical simulation.

• Chapter 4 is in the continuity of Chapter 3; it confirms the presence of ageostrophic dynamics

in the ocean interior and proposes a dynamical explanation for it, based on an analysis of the

high-resolution numerical simulation.

• Chapter 5 presents a biological impact of ageostrophic dynamics for a top predator; the southern

elephant seal. Its foraging activity is shown to be stimulated in the vicinity of submesoscale fronts.

• Lastly, the main results of this dissertation are summarized and some perspectives on questions

that will need to be addressed in future work are presented.

12



1 Datasets

Three main datasets are used in this dissertation thesis; high-resolution observations collected by instru-

mented elephant seals in the Kerguelen area, satellite altimetry data, from which finite-size Lyapunov

exponents are derived, and outputs from a realistic numerical simulation at high-resolution. The com-

bination of the first two independent datasets (seal and satellite data) provides a synoptic 3-D view of

the upper ocean, down to depths of ∼ 500 m (Figure 1.1). The numerical simulation is then used to

confront and extend the observational results to the first thousand meters of the water column.

Figure 1.1: Schematic view of the upper 500 m of the ocean in the Kerguelen area (Indian sector of the Southern
Ocean, see white polygon). Elephant seals sample mesoscale eddies. They are localized by the Argos satellite
system (satellite on the left). Their dive trajectory is shown by the dashed curve. Satellite altimeter diagnoses
sea surface height (satellite on the right). c©Tandi Reason Dahl.

1.1 High-resolution observations collected by instrumented southern elephant seals

Hydrographic data collected by marine mammals such as Southern Elephant Seals (Mirounga leonina)

represent a consequent source of information, especially in the undersampled polar oceans where observa-

13



Figure 1.2: a) Zonal number of profiles from MEOP-CTD (blue), ship-based CTD (red) and ARGO floats
(yellow) from the world ocean database 2013 (Boyer et al., 2013). Note the major contribution of MEOP south
of 50◦S. b) Density distribution of 529,373 CTD profiles from the MEOP-CTD database. From Pauthenet (2018).

tions are notoriously hard to acquire (Roquet et al., 2014; Treasure et al., 2017) (Figure 1.2). Since 2002,

instrumented animals have been generating large datasets of oceanographic Conductivity-Temperature-

Depth (CTD) casts (> 500 000 profiles), which are freely available to the scientific community through

the Marine Mammals Exploring the Oceans Pole to Pole (MEOP) data portal (http://meop.net). Us-

ing marine mammals as data-collection platform has proved to be a powerful and cost-effective way to

improve the ocean observing system for both physical and biological oceanographers. In fact, over 90%

of CTD profiles south of 60◦S have been collected by instrumented marine mammals (Treasure et al.,

2017) (Figure 1.2).

Subantarctic and Antarctic islands, such as the Kerguelen, Macquarie, New South Wales, South Geor-

gia, Bouvet or Falkland Islands, are home to large population of southern elephant seals. The southern

elephant seal is a deep-diving (600 ± 200 m, with maxima around 2,000 m, Figure 1.3), wide-ranging

marine predator species. It forages on mesopelagic fish in either one of three main habitats: the Antarc-

tic continental shelf, the Kerguelen Plateau or deep open water regions (Hindell et al., 2016). Southern

elephant seals spend ∼ 8 months per year at sea and come back to land twice a year for a cumulative

period of ∼ 4 months; once to moult and once to breed.
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Figure 1.3: Colony of southern elephant seals at Kerguelen Islands during the molting season in December
2016, with an instrumented female in the background (white circle). Find out more about it in the NASA news
release at https://www.jpl.nasa.gov/news/news.php?feature=7392. Picture c©Etienne Pauthenet, Sorbonne
Université. The inset shows the trajectory of a southern elephant seal, with temperature profiles reaching depths
of ∼ 1000 m. c©Thomas Jaud.

Figure 1.4: Photograph of a CTD-
SRDL, with visible hardware compo-
nents labeled. The miniaturized CTD
unit samples the water column during
the ascent phase of the seal’s dive. Data
are then transmitted via the satellite
transmission system Argos. From Trea-
sure et al. (2017).

When they come back to land, elephant seals are equipped

with CTD–Satellite Relay Data Logger (CTD-SRDL) tags

(Figure 1.4), that are either retrieved at the end of the de-

ployment or fall off with the animal’s dead skin during the

next moulting season. CTD-SRDLs are built by the Sea

Mammal Research Unit at the University of St Andrews in

Scotland and incorporate a miniaturized CTD unit manufac-

tured by Valeport Ltd. (Boehme et al., 2009). They record

conductivity, temperature and pressure, from which salinity

and, then, density are derived (Figure 1.4). In addition, the

seal’s geographic position is tracked via the Argos satellite sys-

tem.

The data is traditionally compressed before being sent via Argos, due to limited battery and bandwidth

capabilities. Approximately 5 profiles, made of ∼15 points each, are sent per day (Roquet et al., 2011).
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However, thanks to recent improvements in battery capacity, a handful of CTD-SRDL have been set in

continuous recording mode at the sampling frequency of 0.5 Hz, recording every dive realized by a seal

during its journey. Since elephant seals typically perform more than 80 dives per day, this gives access

to the density field at high-resolution over periods of several months, opening new horizons for the study

of submesoscale physics in eddy-rich regions of the world oceans. Since 2014, twenty-eight such tags

have been deployed at the Kerguelen Islands (French Southern Territories, Figure 1.2) and at Peninsula

Valdes (Argentina) as part of the SO-MEMO program led by Christophe Guinet (CEBC/CNRS, France).

However, to be fitted on marine mammals, the tags are considerably smaller than a traditional CTD

and often contain residual noise related to the miniaturized sensors capabilities (Roquet et al., 2017).

Raw temperature and conductivity data are affected by a thermal lag effect, particularly pronounced

across sharp thermoclines, and especially apparent on high-resolution profiles. Thus, we implemented

an post-processing procedure aimed at improving the data quality, described in Siegelman et al. (2019b)

and presented below. We build on papers published by Roquet et al. (2011) and Mensah et al. (2018).

These authors developed initial corrections and accuracy estimates of animal-borne CTD data collected

as part of the international MEOP consortium. Here, we take advantage of the newly available dataset

of high-resolution profiles recorded, in continuous, at the sampling frequency of 0.5 Hz. More precisely,

we make use of 7 tags deployed in the Southern Ocean from 2014 to 2018, allowing to access for the

first time the ascent and descent of a dive. Thanks to this unique dataset, we develop and validate an

autonomous post-processing procedure that considerably improves the quality all CTD-Satellite Relay

Data Logger (CTD-SRDL) data, i.e. both high-resolution profiles recorded at the frequency of 0.5 Hz

and compressed low-resolution ones transmitted in near-real time via satellite. The procedure corrects

for the thermal lag effect on temperature and salinity and, subsequently, removes density inversions by

adjusting salinity while leaving temperature unchanged. Overall, the procedure is applied to over 50 000

profiles (including high- and low-resolution profiles). In the process, we also refined accuracy estimates

of CTD-SDRL data and, in particular, estimated for the first time the compression error associated to

low-resolution data that, to date, represent 95% of the tags logged in the MEOP database. Thanks to

recent progress in the field of bio logging, continuous high-resolution dataset are expected to become

increasingly available. As such, the approaches proposed in this paper should gain increasing utility.
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We refer the curious reader to Siegelman et al. (2019b) for technical details related to each tag’s own

characteristics and associated errors. However, briefly, the final used in this dissertation has a post-

correction accuracy of ±0.02◦C for temperature and ±0.03 g.kg−1 for salinity, a median horizontal

resolution of 700 m, a vertical resolution of 1 m and a mean temporal resolution of 25 min. Note

that this resolution is greater than the one currently obtained from ocean gliders, which typically have

a horizontal resolution of 2–4 km and a temporal resolution of 3–6 hours. In addition, and contrary

to ocean gliders, elephant seals are endurance swimmers that can easily fight the current, painlessly

crossing through, and thus sampling, mesoscale eddies and submesoscale fronts in the energetic ACC.

In Chapter 3, we use of tag 48 deployed in a turbulent mesoscale area east of the Kerguelen Islands and

in Chapter 5, we analyze tag 50 deployed west of the Kerguelen Islands in a less turbulent area (Figure

1.5). Both tags were deployed during the late austral spring–early austral summer of 2014.

Figure 1.5: Continous CDT-SRDL deployed on 5 southern elephant seals in 2014 at the Kerguelen Islands. The
tag number is indicated. Sea level anomaly (sla) from AVISO in shown the background for December 15, 2014.
SSH contours corresponding to the Subantarctic (SAF; -0.25 m) and Polar (PF; -0.70 m) fronts are shown in
black. Topography contours are plotted in grey.
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ABSTRACT

Most available CTD Satellite Relay Data Logger (CTD-SRDL) profiles are heavily compressed before

satellite transmission. High-resolution profiles recorded at the sampling frequency of 0.5Hz are, however,

available upon physical retrieval of the logger. Between 2014 and 2018, several loggers deployed on elephant

seals in the Southern Ocean have been set in continuous recording mode, capturing both the ascent and

descent for over 60 profiles per day during several months, opening new horizons for the physical oceanog-

raphy community. Taking advantage of a new dataset made of seven such loggers, a postprocessing procedure

is proposed and validated to improve the quality of all CTD-SRDL data: that is, both high-resolution profiles

and compressed low-resolution ones. First, temperature and conductivity are corrected for a thermal mass

effect. Then salinity spiking and density inversion are removed by adjusting salinity while leaving temperature

unchanged. This method, applied here to more than 50 000 profiles, yields significant and systematic im-

provements in both temperature and salinity, particularly in regions of rapid temperature variation. The

continuous high-resolution dataset is then used to provide updated accuracy estimates of CTD-SRDL data.

For high-resolution data, accuracies are estimated to be of 60.028C for temperature and 60.03 g kg21 for

salinity. For low-resolution data, transmitted data points have similar accuracies; however, reconstructed

temperature profiles have a reduced accuracy associated with the vertical interpolation of 60.048C and a

nearly unchanged salinity accuracy of 60.03 g kg21.

1. Introduction

Hydrographic data collected by marine mammals such

as southern elephant seals (SES; Mirounga leonina),

Steller sea lions (Eumetopias jubatus), or ribbon seals

(Histriophoca fascia) equipped with conductivity–

temperature–depth Satellite Relay Data Logger (CTD-

SRDL) tags (referred to as ‘‘tag’’) represent a consequent

source of information, especially in the undersampled

polar oceans where observations are notoriously hard

to acquire (Roquet et al. 2014; Treasure et al. 2017).

The temperature and conductivity sensors of these tags,

manufactured by Valeport, Ltd., yield high precision

(60.0058C for temperature and 60.01ms cm21 for con-

ductivity; see Boehme et al. 2009) and reasonable accu-

racies (60.028C for temperature and 60.03 g kg21 for

salinity) after delayed-mode calibration (Roquet et al.

2011). However, to be fitted on marine mammals, the

tags are considerably smaller than a traditional CTD

and often contain residual noise related to the minia-

turized sensors capabilities (Roquet et al. 2017). Re-

cent studies (Nakanowatari et al. 2017; Mensah et al.

2018) demonstrated that the tags are affected by a ther-

mal mass error on their temperature and conductivity

cells, particularly pronounced across sharp thermoclines.
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Correction of the thermal mass–induced error have been

proposed and shown to work (Nakanowatari et al. 2017;

Mensah et al. 2018) but only for salinity and not for

temperature. Mensah et al. (2018) demonstrated that the

thermal mass error on salinity is of O(1022) gkg21 with

maxima of O(1021) gkg21. These authors developed a

correction, based on Lueck and Picklo (1990), which di-

rectly corrects salinity rather than conductivity and yields

an error decrease of the salinity measure of up to 50%

when using generic parameters values. However, due to

the lack of thermal mass correction for temperature,

density errors, some of them imputable to temperature,

remain.

In addition, some aspects of the accuracy estimates of

these data are insufficiently characterized. Indeed, be-

sides the calibration errors discussed in Roquet et al.

(2011), errors associated with the dynamical response

of the tags and the reconstruction of profiles after com-

pression also exist but have not been estimated.

In the present paper, we take advantage of a newly

available continuous high-resolution dataset (described

in section 2c) that advantageously contains the ascend-

ing and descending phase of dive, allowing to compare

upcasts and downcasts for the first time. This unique

dataset is used to tackle all the issues mentioned above,

that is, the implementation of a thermal lag correction

for temperature and conductivity, incorporation of a

salinity correction to remove density inversions, and

estimation of the dynamic response error of the tags and

of the compression error associated with low-resolution

data, all of which contribute to improving the post-

processing and accuracy estimates of CTD-SRDL data.

Section 2 presents the datasets and method employed

in this study. Section 3 introduces the correction pro-

cedure, which includes preliminary salinity and tem-

perature adjustments and the thermal mass correction

for conductivity and temperature as well as the density

inversion removal algorithm. Section 4 describes the

parameter estimation for the thermal mass correction.

Section 5 presents the correction and accuracy estimates

for high-resolution data. Section 6 presents the correc-

tion and accuracy estimates for compressed data. A sum-

mary and conclusions are proposed in section 7.

2. Datasets and method

a. Satellite-transmitted compressed profile data

Compressed low-resolution profiles are transmitted

in near–real time via the Argos satellite system for ;4

profiles per day (among the ;60 dives per day per-

formed by SES) and are typically made of ;15 points

chosen via a broken-stick point selection algorithm

(Boehme et al. 2009). To date, the majority of available

biologged data is made of low-resolution profiles. They

represent 85% of the profiles and 95% of the tags in the

Marine Mammals Exploring the Oceans Pole to Pole

(MEOP) database, which is the largest database of

biologged acquired hydrographic data with over

500 000 profiles collected since 2004 (Treasure et al.

2017). In particular, the heavy subsampling associated

with the satellite-transmission method of low-resolution

data implies the existence of a compression loss that will

be evaluated for the first time in section 6c.

The low-resolution dataset employed in this study is

made of 43 tags deployed on SES around the Kerguelen

Islands fromFebruary 2011 to January 2018 (trajectories

in black and red in Fig. 1a), amounting to a total of

14 762 CTD profiles. The environment in which SES

dived is marked by temperatures of 08–48C, salinities of
34–34.9 gkg21, and densities of 26.9–27.8 kgm23, char-

acteristic of the areas north of the polar front (PF), in the

Antarctic zone (AAZ), which is defined as the area lo-

cated between the PF and the southern Antarctic Cir-

cumpolar Current Front (SACCF) and south of the

SACCF (Fig. 1).

b. High-resolution profile data from retrieved tags

High-resolution profiles are recorded at the sampling

frequency of 0.5Hz for ;10 profiles per day and are

typically made of ;1000 points. However, these data

are only available after physical retrieval of the tag due

to limited battery capabilities. Thus, compressed pro-

files are a subsample of high-resolution ones. The high-

resolution dataset employed in this study corresponds

to the high-resolution version of the low-resolution

dataset, that is, the same 14 762 dives (trajectories in

black and red in Fig. 1a) but recorded at the sampling

frequency of 0.5Hz. The high-resolution dataset is

used to validate the proposed correction scheme for

compressed low-resolution data and to derive the

compression error (see section 6).

c. Continuous high-resolution data

Thanks to recent progress in the field of miniaturiza-

tion and satellite telemetry, tags can now record tem-

perature, salinity, and pressure at the sampling frequency

of 0.5Hz for every dive of the seal’s journey (.60 dives

per day), giving access, for the first time, to both the as-

cending and descending phase of a dive. Such tags can

last for more than 3 months and cover large oceanic

domains at a very high horizontal and vertical resolu-

tion (see sections of temperature and salinity in Fig. 2).

These state-of-the-art data are opening new horizons

for the physical oceanography community and in par-

ticular for the study of small-scale processes ofO(1–50) km,

also called submesoscales. These submesoscale features,
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characterized by elongated fronts and filamentary struc-

tures, are now captured by such observations, contrary to

previous data obtained from animal-borne CTDs that

were either of low resolution or only of high vertical (but

not horizontal) resolution. To date, such data have only

been briefly introduced in Mensah et al. (2018) to vali-

date their salinity-based correction. In this paper, we

fully exploit the potential of these new data, referred to

as the ‘‘continuous high-resolution dataset,’’ that allows

for direct comparison of upcasts and downcasts prior to

and after correction.

The continuous high-resolution dataset employed in

this study is made of seven tags (39 183 profiles) deployed

on SES around the Kerguelen Islands in the Indian

Ocean sector of the Southern Ocean from October

2014 to January 2018 (trajectories in red on Fig. 1a).

The environment in which the SES conducted pro-

files is marked by temperatures of 18–58C, salinities of
33.9–34.9 g kg21, and densities of 26.7–27.7 kgm23,

characteristic of the area north of the SACCF (see

Figs. 1 and 2).

d. General methodology

In addition to the temperature and salinity adjust-

ments introduced in Roquet et al. (2011) and briefly re-

called in section 3a, we propose an autonomous two-step

FIG. 1. (a) Spatial distribution of profiles collected by the 43 low-resolution tags (LR; black) among which 7 are also at continuous high

resolution (HR; red), deployed from 2011 to 2018 on SES on the Kerguelen Islands. Climatological position of the Subantarctic Front

(SAF), Polar Front (PF), SouthernAntarctic CircumpolarCurrent Front (SACCF), and SouthernBoundaryFront (SBdy) are indicated in

blue according to Kim and Orsi (2014). (b) Mean conservative temperature (CT) profile of the 43 LR tags (black) and 7 HR tags (red).

(c) As in (b), but for absolute salinity (SA). (d) As in (b), but for potential density s0. In (b)–(d) the 20th and 80th percentiles are shaded.
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postprocessing procedure for the correction of MEOP’s

profiles also applicable to other hydrographic data

acquired via biologging or with unpumped glider. We

first implement a correction scheme for the thermal

mass effect where temperature (Morison et al. 1994)

and conductivity are simultaneously corrected (Lueck

and Picklo 1990) instead of only and directly correcting

salinity as is done in Mensah et al. (2018). This was,

however, made possible by the theoretical framework

delineated in Mensah et al. (2018) (see sections 3b and 4).

We then aim at further refining the salinity correction

regarding density inversions, which has not been ad-

dressed by previous works and is of particular importance

for high-resolution profiles. To do so, hydrographic pro-

files are stabilized within the water column by minimally

adjusting absolute salinity (SA) while leaving the values

of in situ temperature unchanged with the method

developed by Barker and McDougall (2017) (see

section 3c).

The procedure is applied to the continuous high-

resolution dataset as well as to the low-resolution

dataset introduced in section 2. For high-resolution

data, the effect of the correction is documented

globally and then separately for the areas north and

south of the PF (Fig. 1). The correction is then vali-

dated without relying on external data. Indeed, we use

the continuous high-resolution dataset that advanta-

geously contains both the ascending and descending

phase of a dive, to validate the proposed correction by

comparing upcast and downcast data before and af-

ter correction. Finally, the continuous high-resolution

dataset is used to estimate the mean errors associated

with the tag’s dynamical response, which are also esti-

mated globally and separately north and south of the

PF (see section 5).

For low-resolution data, the effect of the correction is

documented for three oceanic zones: north of the PF, in

the AAZ, and south of the SACCF (Fig. 1). The cor-

rection is then validated by comparing corrected high-

resolution profiles to their low-resolution version prior

to and after correction. Finally, the compression error

associated with low-resolution data is estimated for

the first time by comparing corrected low-resolution

profiles to their high-resolution counterparts. The com-

pression error is derived globally and then separately for

the areas north of the PF, in the AAZ, and south of the

SACCF (Fig. 1; see section 6).

Estimation of both the dynamic and compression er-

rors enables us to provide updated accuracy estimates for

high- and low-resolution data, which should be of prime

importance to the physical oceanography community.

3. Correction procedure

a. Step 1: Salinity and temperature adjustments

In this section, we briefly recall the delayed-mode

calibration designed by Roquet et al. (2011) and ap-

plied to the high- and low-resolution datasets before

the correction scheme developed in this study (steps 2

and 3; Fig. 3). Temperature and salinity are first cor-

rected for pressure-induced linear biases by comparing

CTD-SRDL data to ship-based CTD measurements.

An external field effect on the conductivity sensor is

also detected, inducing an additional salinity offset.

FIG. 2. Example of 200-km-long section of (a) conservative temperature and (b) absolute salinity at high reso-

lution in the Southern Ocean from tag ct112–050–14 (red southwest trajectory from Kerguelen Islands in Fig. 1a).

The tag recorded information at the sampling frequency of 0.5Hz from 28 Oct 2014 to 21 Jan 2015, amounting to

6942 dives, or over 80 dives per day, and for a cumulative distance of 5665 km.
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This salinity offset is corrected with delayed-mode

methods. The first method uses the stable salinity maxi-

mum characterizing the Lower Circumpolar DeepWater

sampled by the seals foraging south of the SACCF and

where this approach is not possible, a statistical method of

cross comparison of CTD-SRDL measurements is used.

For more details on the delayed-mode calibration

methods, we refer the reader to Roquet et al. (2011).

Finally, temperature and salinity are vertically in-

terpolated onto a regular grid of 1-m resolution.

Note that the two-step correction procedure proposed

in this paper can be implemented on hydrographic data

acquired via biologging and unpumped glider without

requiring step 1, which was specifically designed for the

tags manufactured by Valeport, Ltd.

b. Step 2: Thermal mass error

The thermal mass error (TME) is due to the transfer

of heat from the sensor’s walls to the sample being

measured. This well-documented phenomenon (Lueck

1990) affects the conductivity cells of CTDs, which leads

to a significant error in the estimation of salinity. This

error is a function of the temperature gradient in space

and time and has been widely documented for sharp

thermocline (Lueck and Picklo 1990; Morison et al.

1994; Mensah et al. 2009; Liu et al. 2015). The tags

considered in this study are particularly affected by

the TME on their conductivity cells since they are un-

pumped. In addition, it appears that an error in tem-

perature also related to the TME exists (Mensah et al.

2018). Building on Mensah et al. (2018), who only and

directly corrected salinity, we implement a correction

scheme for the TME that simultaneously corrects con-

ductivity and temperature.

To correct the conductivity measure, we apply the

procedure proposed by Lueck and Picklo (1990). The

thermal mass error is modeled as an initial error aC,

decaying within a relaxation time of 1/b (Lueck 1990).

Conductivity is then corrected via

C
T
(n)5G

C
a
C
(12 0:5bD

t
)21

T
hp
(n) , (1)

with CT the conductivity correction added to the con-

ductivity nth sample, Thp(n) the high-pass-filtered sam-

ple’s temperature, using a first-order discrete-time filter

with a time constant t5b21 2 0:5Dt, n the sample’s

index, GC 5 (›C/›T)jS,p the coefficient of sensitivity of

conductivity to temperature at fixed salinity, and pres-

sure and Dt the sampling time interval, with Dt 5 2 s for

CTD-SRDLs. Note that Eq. (1), expressed as inMensah

et al. (2018), is equivalent to Lueck and Picklo’s (1990)

original formulation. Salinity is subsequently derived

from the corrected conductivity.

Following Morison et al. (1994), temperature is cor-

rected for the TME with a similar scheme according to

T
T
(n)5a

T
(12 0:5bD

t
)21

T
hp
(n) , (2)

where the only difference with Eq. (1) is the absence of

the sensitivity coefficient GC. This second step is sum-

marized in the schematic on Fig. 3. Adequate values for

the three parameters aT , aC, and b are estimated in

section 4.

c. Step 3: Density-inversion removal

Density inversions are commonly contained in ocean-

ographic observations and are often due to instrumental

noise and phenomena such as salinity spiking. While the

FIG. 3. Schematic summarizing the correction procedure implemented in the MEOP da-

tabase. From the raw CTD data, temperature TRaw and salinity SRaw are first adjusted and

vertically interpolated onto a regular grid according to the procedure described in Roquet et al.

(2011) (step 1 detailed in section 3a). Then, adjusted conductivityCAdj and temperatureTAdj are

corrected for the thermal mass error (step 2 detailed in section 3b). Density inversions are then

removed byminimally adjusting STME while leavingTTME unchanged. Finally, a Gaussian filter

with a 1-dbar window is applied to TTME and SDIR (step 3 detailed in section 3c).
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TME correction (step 1) suppresses part of this noise,

most of the salinity spikes and density inversions persist

after its application. Barker and McDougall (2017)

propose a method to stabilize hydrographic profiles

that removes part of this residual noise. The proce-

dure minimally adjusts SA while leaving the values of

conservative temperature (CT) unchanged. This den-

sity inversion removal (DIR) procedure adjusts the

profiles such that they never exceed a minimum N2

threshold (N is the Brunt–Väisälä frequency), set here,
and by default, to 1 3 1029 s22. Then a Gaussian filter

with a 1-dbar window is applied to CT and SA to re-

move sharp and localized jumps induced by the DIR

for SA profiles. These jumps occur at a frequency

higher than the original sampling frequency and thus

are not the reflection of a physical process. Further-

more, since experimental noise is observed in CT and

in SA, which both contribute to the density estimate,

smoothing CT in addition to SA ensures potential

density s0 free of density inversion or equivalently

maintains a positive N2. Indeed, N2 profiles can exhibit

negative values when the filter is only applied to SA but

not when it is applied to both SA and CT (not shown).

The Gaussian filter also has the advantage to account

for the irregular sampling in depth of the raw data that

is dependent on the variable vertical speed of the ani-

mal. Last, the 1-dbar window does not alter the vertical

resolution of the data since the original sampling fre-

quency is of 0.5Hz and the animal ascending speed

is between 1 and 2m s21 (Hindell and Lea 1998). This

third step is summarized in the schematic on Fig. 3.

4. Parameter estimation for the thermal mass
error correction

To achieve an equivalent final salinity correction as

the one obtained in Mensah et al. (2018), we use their

generic parameters values of b5 0.06 s21 and aS5 0.04.

Since Mensah et al.’s (2018) correction is based on the

assumption that the correction of salinity is a linear

combination of temperature and conductivity correc-

tions, the initial error coefficients aC, aT , and aS are

related by aC 5aT 2aS, where aS is the initial error for

salinity. The relaxation time 1/b is assumed to be iden-

tical for both temperature and conductivity (thus also

for salinity).

To derive an optimal aT , we use the continuous high-

resolution dataset mentioned in section 2. The temper-

ature correction delineated by Eq. (2) is applied to the

ascending and descending phases of every dive ranging

from depths of a minimum of 150m up to 1000m and

occurring within a 10-min interval in order to compare

similar water masses, adding up to a total of 32 154 dives.

Differences in temperature between ascent and descent

are not only due to the thermal mass effect; changes in

the timing and geographic location between both phases

actually account for a large part of this difference. How-

ever, the temperature difference between ascent and

descent caused by natural variability should have no

average bias. Consequently, the temperature correc-

tion scheme delineated by Eq. (2) is tested through a

least squares regression scheme, in which we look for

the optimal aT that minimizes the mean bias in tem-

perature �400m

z50 B(aT , z) between the ascending phase

of dive i and the descending phase of dive i 1 1, where

B(a
T
, z)5

1

n2 1
�
n21

i51

[T
aT
a (i, z)2T

aT

d (i1 1, z)], (3)

with z 2 [0, 400] the depth of the measurements (m),

i the ith dive, n the number of dives per tag, and TaT
a

and TaT

d the temperature during ascent and descent,

respectively, after application of the temperature cor-

rection with the coefficient aT . Note that below 400m,

Thp is close to 0 such that the impact of the correction

becomes negligible (Fig. 4), which justifies the choice of

400m in�400m

z50 B(aT , z). Note also that we do not use the

same dive for comparing ascending and descending

phases but instead compare the ascending phase of dive i

to the descending phase of dive i 1 1 because SES tend

to station at the surface for only a few minutes (;2min)

while they swim underwater for longer periods of time

(;25min). It enables us to minimize the natural vari-

ability between ascents and descents.

The test is carried out separately for each of the seven

tags, with resulting aT ranging from 0.07 to 0.10 (see

Table S1 in the online supplemental material). An op-

timal coefficient aT equal to 0.09 is then defined as the

mean of the seven aT obtained for each tag. This opti-

mal aT coefficient is used to implement the TME cor-

rection for temperature. A value of aC 5aT 2aS 5
0:092 0:045 0:05 is therefore used in combination

with b5 0:06 s21, which produces a salinity correction

nearly identical to the one of Mensah et al. (2018).

Figure 4 presents the mean Thp and temperature bias

averaged for the seven tags. Noticeably, the mean

temperature bias before correction is inversely pro-

portional to the mean Thp_ascent 2 Thp_descent (black

line), which confirms the appropriateness of the TME

correction for the temperature field. Indeed, before

correction, the mean temperature bias exhibits a sig-

nificant positive (negative) bias between 0 and 200m

(200 and 400m) (black line in Fig. 4b). However, after

correction, the mean bias is centered around zero (blue

line in Fig. 4b), indicating the suppression of a system-

atic bias throughout thewater column.More importantly,
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between 0 and 400m, where the impact of the correc-

tion is the greatest due to the presence of the strongest

Thp, themean temperature bias is reduced by 75%with

an absolute value of 0.018C before correction and only

0.0038C after correction, which is below the sensor’s

precision of 60.0058C (Boehme et al. 2009). Besides

the averaged impact of the TME correction for tem-

perature, Fig. 5a presents a typical ascent and descent

profile prior to and after correction. The temperature

difference between ascent and descent is reduced by

0.088C at 112m, a rather considerable improvement. In

other words, application of the TME correction to the

temperature field successfully removes the mean bias

related to the thermal mass effect that is even main-

tained within the sensor’s precision of 60.0058C.

5. Correction and accuracy of high-resolution
profiles

a. Effect of the correction scheme

Here we only consider the ascending phase of a dive

since it is the one retained in the final MEOP database.

We use the same continuous high-resolution dataset as

in section 4 but with no restrictive criteria for depth or

time. As a result, the two-step postprocessing correction

is now implemented for the 39 183 high-resolution pro-

files of the continuous high-resolution dataset.

A typical pre- and postcorrection profile at high res-

olution is presented on the top panels of Fig. 6. The

TME (blue curve) first adjusts CT, SA, and s0 on a low-

frequency scale of O(100)m. Then salinity spikes and

subsequent density inversions occurring at a scale of

O(1)m are removed by the DIR (red curve).

Differences between raw and corrected data are

computed at both steps and RMS values are presented

on Fig. 7. Overall, the largest corrections take place

between the surface and 300m, that is, where stronger

gradients of temperature are located (Fig. 4). As ex-

pected, the TME has a much larger contribution to the

CT correction, whereas both TME and DIR contribute

significantly to the correction of SA. Indeed, during the

DIR the only effective correction applied to CT is the

Gaussian filter. For CT, the root-mean-square (RMS)

between raw and corrected data is 5.9 3 10238C after

application of the TME and only 6.1 3 10238C after

application of the additional DIR step (Fig. 7a). On the

other hand, for SA, the RMS between raw and corrected

data is of 2.8 3 1023 g kg21 after the TME step and

5.3 3 1023 g kg21 after the DIR. Likewise, for s0, the

RMS is of 2.7 and 4.53 1023 kgm23 after the TME and

DIR, respectively. These results highlight the equally

important impact of each step for the correction of SA

and s0 (Figs. 6 and 7). Furthermore, the order of the

steps is important and applying the TME prior to the

DIR considerably reduces the amplitude of the DIR

(not shown here). In other words, the DIR has a lesser

impact on the profiles when applied after the TME than

directly on raw data, which points out the contribution

FIG. 4. (a)Mean high-pass filter of temperature Thp during the ascent (blue line) and descent (red line) andmean

Thpascent 2Thpdescent (black line) for the 7 HR tags of the continuous high-resolution dataset used to implement the

thermal mass error correction. (b) Mean bias prior to correction (black line) and after correction (blue line) for the

7 HR tags of the continuous high-resolution dataset. The 20th and 80th percentiles are shaded.
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of the thermal mass effect correction for reducing den-

sity inversions. The mean RMS between raw and cor-

rected data is 1.35 3 10228C for CT and 1.17 3
1022 g kg21 for SA within the upper 300m. These values

are largely above the sensor’s precision, and underscore

the relative importance of the correction.

The impact of the correction for high-resolution pro-

files is now documented for two zones of the Southern

Ocean: north and south of the PF, following the clima-

tological definition of Kim and Orsi (2014). Unfortu-

nately, the continuous high-resolution dataset used in

this study does not contain enough profiles south of the

SACCF (191 profiles or ,0.05% of the dataset) to

compute separate statistics for the AAZ and the area

south of the SACCF. North of the PF, the profiles are

marked by a mean temperature and salinity of 2.508C
and of 34.42 g kg21, while south of the PF, the means are

of 2.018C for temperature and 34.57 g kg21 for salinity

(Table 1). RMSs between raw and corrected data are

presented per area and depth range in Table 1. While

below 300m, the impact of correction is equivalent north

and south of the PF, it differs between 0 and 300m, where

the correction is stronger by ;20% south of the PF for

both CT, SA, and s0. For CT, the mean RMS is 1.4 3
10228C north of the PF and 1.63 10228C south of the PF.

For SA, the mean RMS is 1.13 1022 gkg21 north of the

PF and 1.3 3 1022 gkg21 south of the PF. For s0, it is

9 3 1023 kgm23 north of the PF and 1.1 3 1022 kgm23

south of it (Table 1).

b. Validation of the correction scheme for
high-resolution profiles

Following the same methodology as in section 4, the

two-step correction is applied to the ascending and

descending phases of the 39 183 dives that are deeper

than 150m and occur within a 10-min interval, which

FIG. 5. Typical ascent (blue line) and descent (red line) profiles prior to correction (dashed line) and after

correction (solid line), zoomed from 0 to 500m. (a) Conservative temperature. (b) Absolute salinity. (c) Potential

density. (d) CT–SA diagram.

752 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 36



amounts to 32 154 dives. Comparison between the as-

cending phase of dive i and the descending phase of

dive i 1 1 is done before correction as well as at both

steps of the procedure. For each tag, the RMS error of

ascend versus descend is calculated at each depth z

according to

RMS(z)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n2 1
�
n21

i51

[X
a
(z, i)2X

d
(z, i1 1)]2

s
, (4)

with n the total number of dives per tag, Xa and Xd the

field (CT, SA, or r0) during the ascent and descent,

respectively. This RMS is calculated for the uncor-

rected (RMSraw) and corrected (RMScor) CT, SA, and

r0 at the TME and DIR steps. The performance of the

correction is then evaluated through the difference

Dcor 5 RMSraw 2 RMScor at both steps, with positive

values indicating a decrease of the RMS error due to a

convergence of ascending and descending profiles

post correction. All seven tags see a continuous and

significant improvement at each step of the procedure

for all three fields. The difference between the as-

cending and descending phases for both CT, SA, and

s0 is reduced after correction, as can be inferred from

FIG. 6. Typical profile undergoing the correction scheme. High-resolution profiles of (a)–(c) conservative temperature, absolute salinity,

and potential density, respectively. (d)–(f) As in (a)–(c), respectively, but showing low-resolution profiles.
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the positiveDcor presented on the upper panels of Fig. 8,

even though between 200 and 400m the difference is

slightly negative for CT (but inferior to the sensor’s pre-

cision). The TME reduces most the difference between

ascents and descents for CT with mean jDcorj over the

water column of 1.3 3 10238C at both steps. For SA and

s0, the two steps incrementally contribute to reduce the

difference between ascents and descents with a mean

jDcorj of 1.5 and 3.0 3 1023 gkg21 for SA at step TME

and DIR, respectively, and 1.4 and 2.93 1023 kgm23 for

s0 at step TME and DIR, respectively.

Overall, the error difference Dcor is most reduced in

areas of strong temperature gradients, that is, between

the surface and 300-m depth (Figs. 4 and 8), which itself

coincides with the strongest impact of the correction

procedure (Fig. 7), emphasizing the procedure’s effi-

ciency. Besides the effect of the correction scheme

presented on Fig. 8 over the entire water column, a

typical pre- and postcorrection profile, between the

surface and 300m, is shown on Fig. 5. The profile, which

occurs in a region presenting sharp temperature vari-

ations and thus particularly prone to thermal mass and

salinity spiking effects, sees its temperature difference

between ascent and descent reduced by 8 3 10228C at

112m and its salinity by 4 3 1022 g kg21 at 130m, two

rather considerable improvements which are also re-

flected on the density profile (Fig. 5c) and in the TS

plan (Fig. 5d).

FIG. 7. Mean RMS between raw and corrected data for (top) the 7 HR tags for (a) CT, (b) SA, and (c) s0 and (bottom) the 43 LR tags for

(d) CT, (e) SA, and (f) s0. The 20th and 80th percentiles are shaded.
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c. Accuracy estimates

Besides calibration errors discussed in Roquet et al.

(2011) and estimated to be of 60.028C for temperature

and 60.03 g kg21 for salinity after delayed-mode cali-

bration, the tags are also subject to a thermal lag re-

sponse as documented in this study as well as in previous

works (Nakanowatari et al. 2017; Mensah et al. 2018).

Even after correction, a residual error imputable to

thermal lag effects remains. In this section, we quantify

this dynamical bias present in CTD-SRDL data, and

also detail it north and south of the PF.

The mean dynamical error is estimated from the

continuous high-resolution dataset through the calcu-

lation of B(aT , z) defined by Eq. (3) after application of

the two-step correction. Results are presented for the

entire water column on the top panels of Fig. 9 and

summary statistics per zone can be found in Table 1, in

which the mean dynamical error over the water column

is defined by

M
zmax

5
1

z
max

�
zmax

z50

jB(a
T
, z)j, (5)

where zmax is the maximal depth, here, 1000m. For both

CT and SA, the mean dynamical bias M1000 is of 2.7 3
10238C and 4.13 1023 g kg21, respectively, which is well

below the sensor’s accuracies of 60.0058C for temper-

ature and 60.02 g kg21 for salinity. The s0 also has a

weak mean bias with a value of 3.5 3 1023 kgm23. For

all three quantitiesM1000 is larger north than south of the

PF by 75% for CT and 50% for SA and s0. Furthermore,

across all areas, the mean dynamical bias is larger in

the first 300m by 45% for CT and 25% for SA and s0.

In conclusion, application of the TME and DIR con-

siderably improves the final accuracy of CTD-SRDL

data, with mean dynamical errors estimated to be below

the sensor’s precision of 60.0058C for temperature

and 60.02 g kg21 for salinity. This means that after

application of the correction procedure, dynamical

errors are negligible compared to calibration errors

such that the accuracies of 60.028C for temperature

and 60.03 g kg21 for salinity presented in Roquet et al.

(2011) are still valid for high-resolution data.

6. Correction and accuracy of compressed profiles

a. Effect of the correction scheme

The low-resolution version of the high-resolution

profile shown on Fig. 6a is presented on the bottom

panels of the same figure. Overall, the correction pro-

cedure behaves similarly but with a few noticeable

differences. Similarly to the high-resolution profile, CT

is primarily affected by the TME. However, for SA and

s0, only the effect of the TME is large while that of DIR

has become insignificant. As mentioned before, the

TME acts on scales ofO(100) m while the DIR tends to

act on scales of O(1) m. The strong (weak) impact of

the TME (DIR) is thus consistent with the low reso-

lution of the profile that does not have enough data

points to generate salinity spiking. In addition, the

Gaussian filter has a negligible impact for all three

quantities (not shown), which is also coherent with the

low resolution of the profile.

These observations can be generalized to the entire

dataset and the application of the correction procedure

to the 14 762 low-resolution profiles yields similar re-

sults as for high-resolution ones (Fig. 7, lower panels).

The shape of the correction’s impact within the water

column is preserved, with the strongest corrections

occurring once again between the surface and 300-m

depth. However, as mentioned before, the TME now

has the main impact for CT, SA, and s0 with a mean

TABLE 1. Statistics relative to high-resolution (HR) data per oceanic zone and depth range averaged for the seven tags of the continuous

HR dataset used in this study. Mean CT, SA, and RMS between raw and final profiles are presented, as is the mean error bias defined by

Eq. (5), for which 14 904 profiles are used north of the PF and 17 250 south of the PF, adding to a total of 32 154 profiles. The location of the

PF is defined according to Kim and Orsi (2014).

Zone

No. of HR

profiles

Depth

(m)

CT

(8C)
SA

(g kg21)

RMS of

CT (8C)
RMS of

SA (g kg21)

RMS of s0

(kgm23)

CT mean

bias (8C)
SA mean bias

(g kg21)

s0 mean bias

(kgm23)

North of PF 17 592 0–300 2.64 34.04 0.014 0.011 0.009 0.004 0.005 0.005

300–1000 2.45 34.58 0.003 0.003 0.002 0.003 0.004 0.004

0–1000 2.50 34.42 0.006 0.006 0.004 0.003 0.005 0.004

South of PF 21 591 0–300 1.66 34.20 0.016 0.013 0.011 0.003 0.004 0.004

300–1000 2.17 34.73 0.003 0.002 0.002 0.001 0.002 0.002

0–1000 2.01 34.57 0.007 0.007 0.005 0.002 0.003 0.003

All 39 183 0–300 2.38 34.10 0.014 0.012 0.010 0.003 0.005 0.004

300–1000 2.36 34.63 0.003 0.003 0.002 0.002 0.004 0.003

0–1000 2.36 34.47 0.006 0.006 0.004 0.003 0.004 0.003
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RMS between raw and corrected data of 4.9 and 4.5 3
10238C for CT at step TME andDIR, respectively, 2.3 and

3.0 3 1023 gkg21 for SA, and 2.3 and 2.7 3 1023kgm23

for s0. Once again, the correction is noticeably stronger

between 0 and 300m with average RMS between raw and

final data of 11.9 3 10238C for CT, 7.1 3 1023 gkg23 for

SA, and 6.6 3 1023kgm23 for s0.

As for the high-resolution profiles, a regional analysis

is conducted on the low-resolution dataset. Since a large

amount of profiles are located south of the SACCF (5438

profiles or 37% of the dataset), three zones are now an-

alyzed: the area north of the PF, the AAZ, and the area

south of the SACCF, where the fronts are also defined

according to Kim and Orsi (2014). Mean temperatures

are 2.778, 2.178, and 0.848C and mean salinities 34.43,

34.52, and 34.62 gkg21 for the areas north of the PF,

in the AAZ, and south of the SACCF, respectively.

The temperature correction is equivalent in all three

zones regardless of the depth range. For SA and s0,

the correction is equivalent in the three zones below

300m but in the upper 300m it is more important

south of the PF (in both the AAZ and the area south

of the SACCF), as for to the correction impact on

high-resolution data. For SA, the mean RMS is

0.005 g kg21 north of the PF and 0.007 and 0.008 g kg21

in the AAZ and south of the SACCF, respectively. For

s0, it is 0.005 kgm
23 north of the PF and 0.007 kgm23

south of it (Table 2).

FIG. 8. Mean RMS difference between ascending and descending phases of a dive at each step of the correction procedure for (top) the 7

HR tags for (a) CT, (b) SA, and c) s0 and (bottom) the 43 LR tags for (d) CT, (e) SA, and (f) s0. The 20th and 80th percentiles are shaded.
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b. Validation of the correction scheme for
compressed profiles

To validate the correction for low-resolution profiles,

we undertake a comparison between the 14 762 low-

resolution profiles at each step of the correction pro-

cedure (raw, TME, DIR) and their available corrected

high-resolution version. Similar to the validation of

high-resolution data, the RMS error of high versus low

resolution is calculated, for each tag, at each depth z

according to

RMS(z)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

X
HRfinal

(z, i)2X
LR

(z, i)
h i2s

, (6)

with n the total number of dives, XHRfinal
the high-

resolution corrected field (CT, SA, or r0), and XLR the

low-resolution field (CT, SA, or r0). Note that in Eq. (6),

the high-resolution profiles are those obtained after

application of the correction scheme and referred to as

XHRfinal
. RMS is calculated for the uncorrected (RMSraw)

and corrected (RMScor) low-resolution profiles of CT,

FIG. 9. (top)Mean error bias of high-resolution profiles related to the dynamical response of the tag. Themean error bias is calculated as

the mean difference between the corrected ascents and descents [see Eq. (3)] for (a) CT, (b) SA, and (c) r0 averaged for the 7 HR tags of

the continuous high-resolution dataset employed in this study and separated by frontal zones according to Kim and Orsi (2014). (bottom)

Compression error associated with the low-resolution dataset. The compression error is calculated as the mean RMS difference between

the corrected high- and low-resolution profiles for (d) CT, (e) SA, and (f) r0 averaged for the 43 tags and separated by oceanic zones

according to Kim and Orsi (2014). The 20th and 80th percentiles are shaded.
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SA, and r0 at both steps of the procedure. Similar to

section 5b, the performance of the correction is then eval-

uated through the difference Dcor 5 RMSraw 2 RMScor
after application of the first step (TME) and second

step (DIR). Positive Dcor indicates a decrease of the

RMS error due to the convergence between the ref-

erence corrected high-resolution profile XHRfinal
and

the low-resolution profile undergoing the correc-

tion scheme. The results are presented on the lower

panels of Fig. 8 for the averaged 43 tags and RMSs

are of O(1023)8C for CT, O(1023) g kg21 for SA, and

O(1023) kgm23 for r0. Similarly to high-resolution

profiles, there is a continuous decrease of the RMS error

at each step of the procedure, validating the correction

for low-resolution profiles. Once again, the strongest er-

ror decrease occurs in the first upper hundreds of meters

of the water column. In contrast with high-resolution

profiles, for which the first two steps have an equal im-

pact, and in accordance with the correction impact on

low-resolution profiles (see section 5a), it is now the TME

that reduces most the RMS error. Indeed, for CT, the mean

jDcorj is 1.0 3 10238C after TME and 1.3 3 10238C after

DIR. For SA, the mean jDcorj is 0.9 and 1.33 1023 gkg21

after TME and DIR, respectively and for s0, it is 1.4 and

1.3 3 1023kgm23 after TME and DIR, respectively.

c. Compression error on low-resolution data

In this section, we estimate the compression error

associated with the linear interpolation between trans-

mitted data and quantify it for three major zones of the

SouthernOcean: the area north of the PF, theAAZ, and

the area south of the SACCF. The compression error is

derived through the calculation of the RMS error be-

tween corrected high- and low-resolution profiles [see

Eq. (6)]. The results are presented for the three zones on

the lower panels of Fig. 9 and in Table 2. For CT, the

compression error is important and has a mean value of

60.0328C, which is larger than the calibration error

value of 60.028C obtained after delayed-mode calibra-

tion (Roquet et al. 2011). This error increases fromnorth

to south with values of 60.028C north of the PF,

60.0258C in the AAZ, and 60.0298C south of the

SACCF. For SA, the compression error is overall rela-

tively small, with a value of61.13 1022 g kg21 across all

areas. However, south of the SACCF, the compression

error in salinity is important in the first 200m, with a

maximal error of 65 3 1022 g kg21 at 87m. Further-

more, in the upper 300m this compression error also

increases from north to south with mean values of

61.1 3 1022 g kg21 north of the PF, 61.4 3 1022 g kg21

in the AZ, and62.13 1022 g kg21 south of the SACCF.

However, from 300 to 1000m this tendency is reversed

with mean compression errors of613 1022 gkg21 northT
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of the PF, 68 3 1023 g kg21 in the AZ, and 65 3
1023 g kg21 south of the SACCF. Similar patterns are

obtained for s0, with a mean compression error of

60.008 kgm23 across all areas and a maximal error

south of the SACCF of643 1022 kgm23 at 87m. Note

that the compression error profiles (Fig. 9) present lower

values at fixed depths of 200, 300, 400, 500, 700, and

1000m, which is due to the compression algorithm that

picks these depth levels more often.

Overall, the compression error is important for CT

but negligible for SA and s0 with mean values of

60.0328C, 60.011 g kg21, and 60.008 kgm23, respec-

tively. Since the compression error can be assumed to be

independent from the calibration error, new accuracy

estimates for low-resolution data can be derived as

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Error2compression 1Error2calibration

q
, which is equal to

60.048C for temperature and 60.03 g kg21 for salinity.

These accuracy estimates can now be used to quantify

the error associated with low-resolution data of the

MEOP database (;85% of the profiles). However, if

more precision is needed relative to a specific depth or

oceanic zone, we encourage the users to refer to the

compression error profiles of Fig. 9 as well as to Table 2.

7. Summary and conclusions

In this paper, we took advantage of the new genera-

tion of data available at the sampling frequency of 0.5Hz

to improve the quality of CTD-SDRL data. We pro-

vided evidence that the temperature sensors are af-

fected by a thermal mass error. A correction scheme was

therefore developed to improve temperature estimates

by simultaneously correcting conductivity and tem-

perature. This correction builds upon Mensah et al.

(2018), who only and directly corrected salinity.

In a second step, we refined salinity estimates by

removing salinity spiking and density inversions ac-

cording to Barker and McDougall (2017). This two-

step postprocessing correction was implemented for

two datasets collected by Kerguelen SES: a continu-

ous high-resolution dataset made of 7 tags (39 183

profiles) deployed from 2014 to 2018 and a low-

resolution dataset made of 43 tags (14 762 profiles)

deployed from 2011 to 2018. The continuous high-

resolution dataset was used to test the robustness and

efficiency of the procedure for high-resolution data by

comparing upcast and downcast data, which signifi-

cantly converged after application of the correction. The

correction scheme was then validated for low-resolution

data by comparing corrected high- and low-resolution

profiles, which showed similar improvements. To date,

correction and validation of the profiles is mainly done by

comparison with regional atlases of historical data and

ship-based CTDs (Roquet et al. 2011), thus relying on

external observations acquired at a different date and

location, and containing their own measure bias. A

major advantage of this method is that it does not

rely on external data and can be independently im-

plemented. In addition to improving the tags’ data

quality, updated accuracy estimates were derived.

Dynamical biases were found to be negligible in front

of calibration errors such that the accuracy of high-

resolution data is estimated to be 60.028C for tem-

perature and 60.03 g kg21 for salinity. For the first

time, the compression error associated with the in-

terpolation of low-resolution data was quantified and

found to be 63.2 3 10228C for temperature and

61.1 3 1022 g kg21 for salinity (Table 2). This implies

that the accuracies of low-resolution data are60.048C
for temperature and 60.03 g kg21 for salinity (section

6c). This analysis is of prime importance for users of

theMEOP database, as it will enable them to carefully

quantify the error associated with theMEOP data and

ultimately refine their analyses.

Both datasets used in this study are located in the

Southern Ocean. This suggests that the TME coeffi-

cients derived in section 3 may not be optimal for da-

tasets located in other areas, in particular in regions

marked by stronger thermoclines. Hence, we encour-

age users to determine their own optimal coefficient in

the areas of deployment following the same method-

ology as the one presented in section 3 whenever pos-

sible. Nevertheless, our results have shown that the

TME parameters provide satisfactory results for the

Southern Ocean, which is where most of the MEOP

data are located. In addition, this method should yield

similar results for the polar areas of the Northern

Hemisphere that are characterized by similar temper-

ature gradients and where most of the remaining MEOP

data are located.

Another potential drawback of this method is that it

removes all density inversions within the water column

yet they may occur on scales of order 1–5m as the result

of physical instabilities such as gravitational or Kelvin–

Helmholtz’s ones (Kundu and Cohen 1990). This is

particularly the case during winter when these instabil-

ities are known to be more frequent (Haine and

Marshall 1998) and will become a growing concern

with the advent of continuous high-resolution tags ca-

pable of detecting such density inversions. To refine the

correction, an option would be to use, when available,

accelerometry sensors deployed on marine mammals in

conjunction with CTD tags to detect the animal’s head

movements, speed, and direction variations. These mo-

tions recorded by the accelerometer, and often linked to

the apex predator’s foraging effort (Viviant et al. 2010),
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may cause the water to flow in a reverse direction within

the unpumped cell of the tag. This may in turn generate

thermal mass and salinity spiking effects. Being able

to discriminate density inversions resulting from the

animal’s behavior and physical processes is key to per-

fect the correction procedure. Incorporation of such

biological data in the correction of biologged profiles in

conjunction with sensor accuracy improvements ap-

pears as the next step forward to refine the quality and

accuracy of animal tag oceanographic data.

In conclusion, we have presented a new postprocess-

ing method that yields conclusive results for the im-

provement of CTD-SDRL data. This technique may

also be useful for unpumped glider data. Given the

recent technological advances in biologging, continuous

high-resolution dataset are expected to become in-

creasingly available such that the approaches proposed

here should have increasing utility.
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1.2 Satellite altimetry data

The Antarctic Circumpolar Current hosts an energetic field of mesoscale eddies that are routinely mon-

itored from space. The Kerguelen area is representative of such a turbulent mesoscale eddy field (Figure

1.6). As elephant seals principally evolve within these eddy-rich regions (Figures 1.2 and 1.6), it is

particularly relevant to use a combination of satellite and seal data in the Kerguelen area to study

ageostrophic dynamics in the real ocean.

Figure 1.6: Map of the standard deviation of eddy Sea Surface Height (SSH) amplitude, from the 16-year period
from October 1992 to December 2008, and for eddy lifetimes >16 weeks. From Chelton et al. (2011).

1.2.1 Sea surface height

Satellites equipped with high-precision altimeters have been observing Sea Surface Height (SSH) across

the globe, at spatial scales of 100 to more than 5,000 km, for the past twenty-five years (Klein et al.,

2019). SSH observations obtained from these altimeters (Figure 1.7) have a resolution sufficient to

resolve mesoscale eddies (100–300 km size), and as such, have led to a major breakthrough emphasizing

the existence of a strongly energetic mesoscale turbulent eddy field in all the oceans (Chelton et al., 2011).
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Figure 1.7: Artist’s concept of seven altimeters orbiting
Earth: Jason-CS/Sentinel-6B, SWOT, Jason-CS/Sentinel-
6A, Jason 3, TOPEX/Poseidon, Jason 1 and OSTM/Jason
2. From https://swot.jpl.nasa.gov/.

In this dissertation thesis, we use the

delayed-time global ocean gridded L4 SSH

and derived variables reprocessed prod-

uct (1993–ongoing) distributed by Coperni-

cus Marine Environment Monitoring Service

(CMEMS, http://marine.copernicus.eu/).

This product processes data from all altime-

ter missions: Jason-3, Sentinel-3A, HY-2A,

Saral/AltiKa, Cryosat-2, Jason-2, Jason-1,

T/P, ENVISAT, GFO, ERS1/2 (Figure 1.7).

It provides a consistent and homogeneous

product suitable for both near-real-time ap-

plications and offline studies. Multimission

altimeter satellite gridded SSH and derived

variables are computed with respect to a

twenty-year mean. All the missions are ho-

mogenized with respect to a reference mis-

sion which is currently OSTM/Jason-2. The

final horizontal effective resolution of this

product is 1/4◦ (Figure 1.8) and the time

resolution is daily.

A thorough description of the processing method can be found in Rio et al. (2016). However, briefly,

Sea Level Anomaly (SLA) is computed with an optimal and centered computation time window (6

weeks before and after the date). For delayed-time SLA, the system acquires and then synchronizes

altimeter data; each mission is homogenized using the same models and corrections, and the best al-

timeter data is used. The multi-mission cross-calibration process removes any residual orbit error, as

well as large scale biases and discrepancies between various data flows; all altimeter fields are interpo-

lated at crossover locations and dates. After a repeat-track analysis, a mean profile, which is peculiar

to each mission, or a Mean Sea Surface (MSS, when the orbit is non repetitive) is subtracted to com-
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Figure 1.8: Evolution of Sea Level Anomaly (SLA) in the Kerguelen area from the global ocean gridded L4 SSH
product distributed by CMEMS.

pute SLA. The MSS is available via the Aviso+ dissemination (http://www.aviso.altimetry.fr/en/

data/products/auxiliary-products/mss.html). Data are then cross validated, filtered from residual

noise and small scale signals, and then sub-sampled. Finally, an optimal interpolation is made merging

all the flying satellites in order to compute gridded SLA. The Absolute Dynamic Topography (ADT,

or equivalently SSH) is then computed as follows: ADT = SLA + MDT where MDT is the Mean

Dynamic Topography distributed by Aviso+ (http://www.aviso.altimetry.fr/en/data/products/

auxiliary-products/mdt.html). Geostrophic currents (black arrows in Figure 1.8) are derived from

SLA using the geostrophic approximation (Vallis, 2017).

The mesoscale eddy field of the Kerguelen area considerably evolves over periods of a few days, as can be
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seen in Figure 1.8. Indeed, within ten days, i.e., the time between each snapshot in Figure 1.8, mesoscale

eddies have either merged, vanished or changed shape due to the strong deformation field generated by

their co-interaction. Thus, in this dissertation thesis, we use daily snapshots of SLA in order to retrieve

the optimal time evolution of the mesoscale turbulence (Ubelmann et al., 2015). Note that, within 10

days, elephant seals travel ∼700 km, which corresponds roughly to the domain-size of Figure 1.8. Thus,

elephant seals are able to capture the evolution of mesoscale eddies, with no synopticity issues. While

satellite data are sufficient to resolve the mesoscale activity on the horizontal plane, seal data give access

to smaller-scales along a vertical section. As such, these two independent datasets contain different but

complementary information that can be combined to retrieve a synoptic 3-D view of the deformation

field. This information is used to study ocean scale interactions, and more specifically the formation of

submesoscale fronts generated by the mesoscale background eddy field.

1.2.2 Finite-size Lyapunov exponent

Figure 1.9: Variation of the spatial-mean finite time
Lyapunov exponent λ with spatial-mean strain rate γ for
several different 20◦ by 20◦ regions in different oceans,
for 5 (black), 10 (red) and 20 (blue) days of integration
times. From Waugh and Abraham (2008).

Finite-Size Lyapunov Exponent (FSLE) are

used as a proxy for the strain rate gener-

ated by mesoscale eddies. Unlike the Okubo-

Weiss criterion, FSLE takes into account the

rotation of the strain tensor axis (Lapeyre

et al., 1999). FSLE corresponds to the La-

grangian integration of the strain field over a

given length scale and allows to characterise

both the direction and intensity of the strain

field. An empirical relation relation between

FLSE and the strain field has been estab-

lished by Waugh and Abraham (2008) (Figure

1.9).

More precisely, FSLE measures the separation rate of the trajectories of close initial particles (1–10km).

As such, it quantifies dispersion processes (Haza et al., 2012) and maps coherent structures (d’Ovidio
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et al., 2004). FSLE is defined as:

λ(δ0, δf ) =
1

τ
log(

δf
δ0

), (1)

where δ0 and δf are the initial and final separation distances and τ the first time at which a separation δf

is reached. FSLE has the dimension of time−1. FSLE define directions where stretching or compressing

processes are dominant, by providing exponential rates of deformation of water parcels. When computed

backward in time, they identify parcels that have undergone strong stretching, which typically occurs

along fronts and at the periphery of eddies (Figure 1.10).

Figure 1.10: Snapshot of backward in time Finite-Size Lyapunov Exponent (FSLE) on 2019-05-30 in the Antarc-
tic Circumpolar Current, computed from satellite altimetry data and distributed by AVISO.

When computed forward in time, they identify parcels that have undergone strong compression. The

intersections of stretching and compressing lines identify Lagrangian hyperbolic points leading to strong

filamentation of tracers along the stretching direction following an exponential growth rate. Particles

spread while moving toward hyperbolic points along repelling ridges, whereas they aggregate while

moving away from hyperbolic points along attracting ridges (Lehahn et al., 2007; Haller and Sapsis,

2011). Areas surrounding hyperbolic points are particularly prone to frontogenesis and chaotic advec-

tion. That is, in between co-rotating mesoscale eddies, where mesoscale density gradients are stirred by

the deformation field yielding the production of strong density gradients at submesoscale.
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1.3 High-resolution realistic numerical simulation

A numerical simulation, the so-called LLC4320, enabled by NASA Advanced Supercomputing Division,

is used to investigate ocean dynamics down to the submesoscale. The LLC4320 simulation is based on a

global, full-depth ocean and sea ice configuration of the Massachusetts Institute of Technology general

circulation model (MITgcm) (Marshall et al., 1997; Hill et al., 2007) and uses a Latitude–Longitude–polar

Cap (LLC) grid (Forget et al., 2015). The MITgcm was spun up in a hierarchy of increasing horizontal

resolutions with 90 vertical levels (details in Table 1). The simulation analyzed here is the highest reso-

lution, the LLC4320 at 1/48◦ (0.75 km near Antarctica, 2.3 km at the equator, and 1 km in the Arctic

Ocean), with a time step of 25 s. The prognostic variables are saved as instantaneous snapshots at

hourly intervals. Control files and details of the high-resolution LLC model setups and forcing files are

available at http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/llc_hires. This simulation uses

primitive equations and resolves mesoscale eddies, internal tides, and other hydrostatic processes at

scales as small as about 10 km. As an illustration, an instantaneous snapshot of surface current speed

from the simulation is presented in Figure 1.11, where numerous mesoscale eddies can be seen.

Table 1: Details of the LLC spin-up hierarchy adapted from Rocha et al. (2016a). In this dissertation thesis,
two subsets of the LLC4320 are analyzed (Figure 1.11).

Simulation Resolution [◦] Time step [s] Period Tides

ECCO2 1/6 1,200 January 2009 – December 2011 No
LLC1080 1/12 90 January 2010 – July 2012 No
LLC2160 1/24 45 January 2011 – April 2013 Yes
LLC4320 1/48 25 September 2011 – November 2012 Yes

Surface fluxes are from the 0.14◦ European Centre for Medium-range Weather Forecasting (ECMWF)

atmospheric operational model analysis, starting in 2011. The surface fields include 10-m wind velocity,

2-m air temperature and humidity, downwelling long and shortwave radiation, and atmospheric pressure

load. These fields are converted to surface fluxes using the bulk formulae of Large and Yeager (2004)

and the dynamic/thermodynamic sea ice model of Losch et al. (2010). Thanks to this prescribed

reanalysis of atmospheric state and the fact that the model’s global SST distribution lies in a realistic

range, LLC4320’s air–sea fluxes are of comparable magnitude to climatological’s ones (Large and Yeager,

2009). The model also includes tidal forcing for the 16 most significant components that are applied as

additional atmospheric pressure forcing (Chaudhuri et al., 2013). Vertical mixing is parameterized based
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on the critical value of Richardson number and is implemented using the K-Profile Parameterization

(KPP) scheme (Large et al., 1994) that has been extensively used and evaluated in ocean modeling

studies (Large et al., 1997; Fernández-Castro et al., 2014).

Figure 1.11: Snapshot of surface current speed from LLC4320. The Kerguelen region (red rectangle) is considered
in this dissertation. Adapted from Klein et al. (2019).

Horizontal wavenumber spectra suggest that the effective resolution of LLC4320 is about 10 km in

terms of wavelength (Rocha et al., 2016b). The LLC4320 has also been evaluated and validated via the

comparison with in situ observations of kinetic energy at different wavelengths and frequencies (Rocha

et al., 2016b,a).

This dissertation focuses on ageostrophic dynamics and, hence, on submesoscales in a subset of the

LLC4320 in the Kerguelen area (red rectangle in Figure 1.11). The current integration time of LLC4320

is able to reach the equilibrium state for submesoscale dynamics because of their short timescales (< 1

week). Note that while the simulation does not reach the equilibrium state for the larger-scale ocean

dynamics in the global ocean (Lévy et al., 2010), which is beyond the current capability of the most

powerful computers, it should resolve, to a large extent, some key sources of submesoscale generation,

such as mixed layer instabilities (Boccaletti et al., 2007; Callies et al., 2016; Callies and Ferrari, 2013;

Sasaki et al., 2014; Fox-Kemper et al., 2008), wind-front interactions (Thomas and Ferrari, 2008), and

strain-induced frontogenesis (McWilliams, 2016; Capet et al., 2008).
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2 Dynamical concepts on meso- and submesoscale turbulence

The purpose of this chapter is to introduce some key theoretical concepts used to discriminate quasi-

geostrophic dynamics from ageostrophic dynamics, and upon which the results of this dissertation are

based. Section 2.1 introduces several key non-dimensional numbers, section 2.2 presents the Ertel poten-

tial vorticity that is used throughout this dissertation to characterize meso- and submesoscale dynamics.

Section 2.3 discusses the dynamics of the quasi-geostrophic regime and section 2.4 the dynamics of the

ageostrophic regime. These dynamical concepts are key to understand the results presented in Chapters

3–5, and in particular the presence of energetic submesoscale fronts in the ocean interior, associated with

large vertical velocities and strong upward vertical heat and buoyancy fluxes. Note that this chapter is

intended to serve as an in-depth glossary of the physical concepts used throughout this dissertation. It

can be read independently from Chapters 3–5, which are self-sufficient.

2.1 Key non-dimensional numbers for a stratified fluid in rotation

The ocean is essentially a shallow layer of fluid on a sphere, whose total mean depth of ∼ 5000 m is much

smaller than its horizontal basin scale extent of ∼ 6000 km, and whose motions are strongly influenced

by two effects: rotation, via the Coriolis force, and stratification. The latter meaning that the mean

vertical gradient of density is often large compared to the horizontal one. This dissertation focuses on

the interactions between mesoscale eddies and submesoscale structures at mid- to high-latitudes. Such

meso- and submesoscale turbulence can be characterized by four key non-dimensional numbers, that

have distinct meanings and allow to non-dimensionalise the equations of momentum and density for a

Boussinesq and hydrostatic flow. These non-dimensional numbers are:

• the Reynolds number Re ≡ UL
ν , where U is the velocity scale, L the horizontal length scale, and ν

the viscosity. Re is the ratio of the advective terms to the viscous terms present in the momentum

equations. A large Re emphasizes the turbulent character of a flow field as the advective terms

are larger than the viscous ones. Typically, Re � 10 000 for the oceanic scales considered in this

dissertation, i.e., from 1 to 6000 km (Gill, 1982).

• the Rossby number Ro ≡ U
fL is the ratio of the advective terms to the Coriolis terms in the

momentum equations. Altimeter data emphasize that mesoscale eddies, with a size of 100–300

km, are characterized by Ro ≤ 0.05 (Chelton et al., 2011). For these low Ro, the flow is in quasi-
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geostrophic (QG) equilibrium, i.e., it is at leading order in geostrophic balance; a balance between

pressure and Coriolis forces (Pedlosky, 2013). This indicates a dominance of geostrophic motions,

ug, over ageostrophic motions, ua, since motions, u, can be approximated by u ∼ ug + Ro ug

(Pedlosky, 2013). Since geostrophic motions are non-divergent, the resulting QG regime is weakly

divergent and it is adequately described by a set of equations presented in section 2.3. Furthermore,

recent studies indicate that submesoscale structures, with a size ≤ 50 km, can be associated with

Ro of O(1), indicating that ageostrophic motions have the same order of magnitude as geostrophic

motions at these scales (McWilliams, 2016). This ageostrophic regime is adequately described by a

set of equations that differs from the QG equations, and is presented in section 2.4. As this regime

significantly departs from geostrophic, it involves large vertical velocities. In this dissertation,

typically Ro are of ∼ 0.05 for QG flows and ∼ 0.3–0.5 for ageostrophic flows (Molemaker et al.,

2010).

• the Burger number Bu ≡ N2H2

f2L2 , where H is the depth scale of the mesoscale–submesoscale struc-

tures and N2 = ∂b
∂z is the squared Brunt–Väisälä frequency, which characterizes the vertical

stratification, with b is the buoyancy. Typically, Bu is close to one for meso- and submesoscales,

indicating that the aspect ratio between the horizontal and vertical scales is similar for meso- and

submesoscales (Thomas et al., 2008).

• the Richardson number Ri ≡ N2f2

(∇Hb)2
, where ∇H is the horizontal gradient operator. Ri can be

interpreted as the steepness of the isopycnal’s slope: Ri ∼ f2

N2

(
∂b/∂z
∂b/∂x

)2
b=cst

in the x–direction.

For Bu ∼ 1, Ro = Ri−1/2 (Molemaker et al., 2005). As such, Ri � 1, or equivalently Ro � 1,

correspond to the QG regime, characterized by a small isopycnal’s slope, whereas Ri and Ro

of O(1) correspond to the ageostrophic regime, characterized by a steep isopycnal’s slope and

therefore strong lateral gradients of buoyancy at submesoscale.

Let us now introduce the term "Balanced Motions" (BMs) that will be extensively used throughout

this dissertation. Balanced motions are characterized by Ro ≤ 1 and exclude internal gravity waves

(IGWs), whose frequencies are larger than the Coriolis frequency. Both classes of motions, i.e., balanced

motions and IGWs, are governed by the primitive equations, i.e., the Boussinesq equations in hydrostatic

balance (the non-hydrostatic regime is not considered in this dissertation). Given Ro ≤ 1, the divergence

equation becomes a diagnostic equation (Gent and McWilliams, 1983), implying that balanced motions
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do not propagate, whereas IGWs do (Gent and McWilliams, 1983). As a result, the dynamics of balanced

motions and IGWs greatly differ. This chapter exclusively considers the dynamics of balanced motions,

which include mesoscale eddies and submesoscale structures.

2.2 Ertel potential vorticity

In this section, we introduce a key physical quantity, the Ertel Potential Vorticity (PV), that can be

considered as the cornerstone for the study of a stratified fluid in rotation, such as the ocean. The Ertel

PV is used to infer the properties of meso- and submesoscale turbulence (Deremble et al., 2014), from

the surface of the ocean down to depths of ∼ 1 000 m, i.e., well below the mixed layer (see Chapter 4).

The equation governing the Ertel PV evolution can be derived from the primitive equations (PE),

which describe the properties of a Boussinesq flow in hydrostatic balance (Pedlosky, 2013). Assuming

an f -plane for the sake of simplicity, i.e., f = cst, these PE read:

Du
Dt

+ f k× u = − 1

ρ0
∇Hp, (2)

Db

Dt
= 0, (3)

∇H · u + ∂zw = 0, (4)

b = ∂zP, (5)

D

Dt
= ∂t + u · ∇H + w ∂z, (6)

where u is the horizontal velocity vector, p is pressure, b is buoyancy and k is the vertical unit vector.

For this set of equations and neglecting the spatial derivatives of w, the Ertel PV is:

q = (f k +∇× u) · ∇b, (7)

where ∇× u is the three-dimensional curl, with ∇ the 3D gradient operator, applied to the horizontal

velocity vector u, i.e., the 3-D vorticity vector associated with the horizontal velocity field (Pedlosky,

2013). A key property of the Ertel PV, which is derived from equations (2)–(6), is that it is conserved
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along a Lagrangian trajectory in the absence of sources or sinks (see Haynes and McIntyre (1990) for a

derivation), such that:
Dq

Dt
= 0. (8)

The conservation of Ertel PV places a strong constraint on the flow field and imparts additional infor-

mation for the study of meso- and submesoscale turbulence. Indeed, the dynamics of a given balanced

flow can be entirely retrieved through the inversion of this conserved scalar (Hoskins et al., 1985; Davis,

1992). Another major consequence, particularly relevant for this dissertation work, is that Ertel PV, as

any other tracer conserved on a Lagrangian trajectory, experiences a direct cascade in which numerous

submesoscale filaments of Ertel PV are generated by co-interacting mesoscale eddies (Pedlosky, 2013).

As such, it is possible to discriminate meso- and submesoscale dynamics from the analysis of the Ertel

PV field.

Indeed, the Ertel PV can be written as:

q = (f + ζ) ∂zb+ (k× ∂zu) · ∇H b, (9)

with ζ the vertical component of the relative vorticity defined as ζ = ∂xv − ∂yu. From equation (9),

the Ertel PV can be decomposed into three main components: (f + ζ) ∂zb, −∂zv ∂xb and ∂zu ∂yb.

Each component can be interpreted as a quasi-equilibrium between vortex stretching and vorticity

in the Lagrangian framework. This is illustrated in Figure 2.1 for the first component, i.e., for the

vertical vortex stretching, ∂zb, and the vertical absolute vorticity, f + ζ. Similarly, the second and third

components, −∂zv ∂xρ and ∂zu ∂yρ, can be interpreted as the relationship between horizontal stretching

and horizontal vorticity in the x and y-direction, respectively. They can also be understood with the

schematic of Figure 2.1 but instead of being in the z-plane, the competition between stretching and

vorticity is now in the x and y-plane, respectively. For simplicity’s sake, the last two components are

combined into one, i.e., −∂zv ∂xb+ ∂zu ∂yb, in this dissertation.

Following Thomas et al. (2013), the Ertel PV can also be expressed in terms of the non-dimensional
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Figure 2.1: Quasi-equilibrium between vertical vortex stretching and absolute vorticity ω = f + ζ. Because of
the conservation of the volume of fluid and of the angular momentum, vorticity is amplified in the direction of
the stretching. From Vallis (2017).

Rossby number1, Ro ≡ ζ/f , and Richardson number, Ri ≡ f2N2/(∇b)2, as:

q ≈ f N2
(
1 + Ro− Ri−1

)
. (10)

Using |Ro| = Ri−1/2 (Molemaker et al., 2010), q becomes:

q ≈ f N2
(
1 + Ro− Ro2

)
, (11)

indicating that in the QG regime the terms associated with the horizontal buoyancy gradients can be

neglected.

The Ertel PV field diagnosed from the LLC4320 simulation is presented in Figure 2.2. It allows to

discriminate meso- and submesoscale structures. In the Southern Hemisphere (f < 0), the Ertel PV

is principally negative when it is dominated by its first component because ∂zb is mostly positive and

ζ/f > −1, as can be seen in Figure 2.2a,b,d. Furthermore, numerous submesoscale structures related to

lateral gradients of buoyancy can be seen in Figure 2.2 c. The contribution of the strongest submesoscale

features (panel c) to the Ertel PV is actually of the same order of magnitude as the contribution of

the first component (panel b). From equations (10) and (11), it indicates that submesoscales are char-

acterized by large Ro, implying a departure from the QG regime and the presence of an ageostrophic

regime. The comparison between panels b and c further highlights that these submesoscale buoyancy
1from now on, we use Ro ≡ ζ/f , such that Ro can be positive or negative.
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Figure 2.2: Decomposition of a snapshot of Ertel PV according to equation (9) at 39 m in the Kerguelen area
(Southern Hemisphere, see Figure 1.11) on 2012-12-202 02:00:00 UTC, from the LLC4320 simulation at 1/48◦
(∼1.7 km horizontal resolution in the Kerguelen area). The x and y-axes are shown in model grid points. Note
the different colobar scale in panels a–b and c.

gradients are mostly filamentary structures located around and in-between mesoscale eddies. As such,

these submesoscale structures act as dynamical barriers encircling mesoscale eddies. These dynamical

barriers prevent Lagrangian particles to cross strong gradients of Ertel PV, therefore trapping fluid

parcels within eddies (Mariotti et al., 1994).

Equation (10) indicates that when the first and second component of the Ertel PV are of comparable

magnitude, Ri is small, implying a steep isopycnal’s slope. In this case, the Ertel PV exhibits thin

vertical structures on the vertical, as can be seen in the upper 200 m of the water column, especially
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when the ML is shallow, such as in the beginning of fall as well as during spring- and summertime (day

20–60 and 270–350 in Figure 2.3 for instance). These characteristic of the Ertel PV are extensively used

in Chapter 4, in both physical and spectral space, to characterize the respective contribution of meso-

and submesoscale dynamics in the ocean interior.

Figure 2.3: Year-long time series of Ertel PV [10−9 s−3], calculated from glider data in the subtropical northeast
Atlantic. The time series is divided into (top) fall, (middle) winter and (bottom) spring–summer periods; calendar
dates (dd.mm) are provided along the top of the panels. The white contour indicates Ertel PV = 0, while the
black contour is the mixed layer depth. From Thompson et al. (2016).

2.3 Quasi-geostrophic dynamics (Ro � 1 and Ri � 1)

Mesoscale eddies, associated with Ro � 1 and Ri � 1, are at leading order in geostrophic balance:

a balance between Coriolis and horizontal pressure forces. As such, they can be characterized by a

streamfunction ψ(x, y) (Figure 2.4), from which horizontal motions can be retrieved via ug = k×∇ψ,

with ug the geostrophic horizontal velocity vector. SSH, introduced in section 1.2, can be considered as

a streamfunction at the ocean surface. Consequently, horizontal motions ug and the KE associated with

mesoscale eddies can be retrieved via the first order spatial derivatives of ψ. However, mesoscale eddies

are far from stationary; they evolve quickly, within a few days (Figure 1.8). In order to retrieve the time
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evolution of the mesoscale eddy field, one needs to know the Lagrangian acceleration of the flow field,

i.e., dgug/dt, with dg/dt = ∂/∂t+ug ·∇H (see Hua et al. (1998) and Muraki et al. (1999) for a derivation).

In the QG regime, any given variable can be decomposed in a Taylor series where only the first order

terms are kept. For horizontal motions, this decomposition yields:

u ∼ ug + Ro ua,

with ug (ua) the (a)geostrophic part of the flow. The QG equations can be derived from the primitive

equations (2) to (6) using a similar Taylor series decomposition, where advection by ageostrophic motions

ua is negelected. In addition, since Ri is large in the QG regime, the vertical advection term in the

buoyancy equation, w bz, can be replaced by w N
2, with N2

= bz and b the buoyancy averaged over

the domain. In the QG framework, the Ertel PV is replaced by the QG PV, which includes only the

first component of the Ertel PV, and the Ertel PV equation is solely advected by geostrophic motions.

In summary, the QG equations differ from the PE ones as the advection by ageostrophic motions ua is

neglected. As these ageostrophic motions are weak and geostrophic motions are non-divergent, the flow

is weakly divergent in a QG regime. However, a question that arises concerns the connection between

the production of submesoscale structures, that are not necessarily in geostrophic balance, within a

mesoscale eddy field. This is explored in the QG regime in the following section.

2.3.1 Production of submesoscales by mesoscale eddies

The production of submesoscale features embedded within a mesoscale eddy field can be understood by

analyzing the advection of a tracer by a geostrophic flow in the QG regime. Let us consider a tracer c

that obeys the conservation equation:
dgc

dt
= 0. (12)

Its gradient will obey:
dg∇c
dt

= −A∇c, (13)

48



where A is the velocity gradient tensor, that can be written as:

A ≡ 1

2




σn σs + ζ

σs − ζ −σn


 (14)

with ζ = ∂xvg−∂yug the relative vorticity, σn = ∂xug−∂yvg the normal strain rate, and σs = ∂xvg+∂yug

the shear strain rate (Okubo, 1970). Note that σn can be recovered from σs by a rotation of the axes

of π/4, and vice versa.

From equation (13), one can see that the production of tracer gradients depends on the eigenvalues of

A. A commonly used criterion to infer the production of tracer gradients is the Okubo-Weiss (OW)

quantity λ, derived by Okubo (1970) and Weiss (1991, 1981). λ is the squared eigenvalues of A:

λ =
1

4
(σ2n + σ2s − ζ2). (15)

Figure 2.4: Field of geostrophic streamfunction ψ. From
Hua et al. (1998).

λ is used to partition the fluid into elliptic re-

gions dominated by ζ, and hyperbolic regions

dominated by σn and σs (Figure 2.4). Under

the assumption that the velocity gradient is

slowly varying along a Lagrangian trajectory,

the behavior of the tracer gradient can be de-

termined by λ: tracer gradients do not grow

in vortex cores where λ < 0 since the eigenval-

ues of A are purely imaginary. In this case,

the gradient vector experiences a simple rota-

tion. On the other hand, in strain-dominated

areas where λ > 0, the eigenvalues of A are

real and tracer gradients exponentially grow.

Thus, strain-dominated areas are particularly

prone to the formation of submesoscale fronts. These mechanisms are further detailed in many insightful

studies (Gent and McWilliams, 1983; Basdevant and Philipovitch, 1994; Hua et al., 1998; Muraki et al.,
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1999; Lapeyre et al., 1999).

Following Hua and Klein (1998), the OW quantity can also be written as:

λ = −Jxy(∂xψ, ∂yψ). (16)

Relation (16) indicates that the OW quantity, and therefore the production of strong tracer gradients,

principally depends on the curvature of the stream function associated with the geostrophic flow. This

remark points to the strong potential of future spatial altimeter missions, such as the upcoming NASA-

CNES Surface Water Ocean Topography (SWOT) satellite mission, that will resolve the curvature of

the SSH field, i.e., the second order derivatives of the surface streamfunction ψ, thanks for a ten-times

improved spatial resolution compared to conventional altimeters, in addition to a large swath.

Figure 2.5: Okubo–Weiss quantity, defined as λ in the main text, normalized by f2, computed at 99 m in the
ACC in the LLC4320 simulation at 1/48◦ resolution (see section 1.3).

Figure 2.5 displays a snapshot of the OW quantity in the energetic ACC. On one hand, λ is mostly

negative within eddy cores, highlighting the dominance of vorticity in these regions of the flow. On

the other hand, λ is mostly positive around mesoscale eddies, highlighting the dominance of the strain

field. Around mesoscale eddies, both relative and potential vorticity as well as buoyancy gradients are

increased, as can be seen in Figure 2.2. These gradients act as dynamical barriers (Mariotti et al.,
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1994; Lapeyre et al., 2001), as discussed in section 2.2 and Chapter 4. The strain field is also domi-

nant in-between eddies, such as at ψ-saddle points. Submesoscale fronts and filaments that build up in

these regions are the signature of chaotic advection (Aref, 1984; Lapeyre, 2002; Ollitrault et al., 2005).

Chaotic advection refers to the action of stretching and folding by mesoscale eddies, creating long and

thin filaments of tracers, as can be seen in the ocean on chlorophyll or Ertel PV maps; see Figures 0.1

and 2.2. Ultimately, these filaments eventually mix with their surrounding environment (Ledwell et al.,

1993; Pierrehumbert et al., 1994). Chaotic advection renders mixing much more efficient than what

would be expected based on the classical diffusion paradigm used in 3-D turbulence, by at least 2 to 3

orders of magnitude (Garrett, 1983).

Figure 2.6: Vorticity field of an isolated vortex submitted
to an externally prescribed strain field at a late stage after
stripping has started; filaments surround the vortex and
a sharp boundary develops as shown in the vorticity cross
section in the inset figure. From Mariotti et al. (1994).

The combination of these two opposite

submesoscale effects, i.e., dynamical bar-

riers and chaotic advection, strengthens

mesoscale eddies. Indeed, an elliptic re-

gion, such as a vortex, displays two sad-

dle points from which vorticity filaments can

get expelled via the so-called "vortex strip-

ping" (Mariotti et al., 1994). Figure 2.6

presents the vorticity distribution of such a

two-dimensional vortex submitted to the ac-

tion of an external strain field. The vorticity

initially located at the periphery of the vor-

tex is torn away through the ejection of fila-

ments. While the eddy is eroded during this

process, the ejection of vorticity filaments

also allows the eddy to regain an axisymmet-

ric shape. As a consequence, the vorticity gradient is significantly increased around the eddy (see the

inset in Figure 2.6) and acts as a barrier that prevents the eddy from getting destroyed by the external

strain field. This situation also applies to the Ertel PV and buoyancy in the presence of strong gradients.
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2.3.2 Frontal dynamics in the QG regime

In the QG regime, the weakness of the ageostrophic motions prevents the formation of strong lateral

gradients of buoyancy at submesoscale. This property is related to |Ro| � 1, i.e., weak ageostrophic

motions, and Ri � 1, i.e., weak buoyancy gradients. This inhibition becomes apparent when looking at

the time evolution of the thermal wind balance’s components, which reads:

∇Hb = −f k× ∂ug
∂z

. (17)

The time evolution of these components is affected by geostrophic motions, and in particular by the

geostrophic strain field, but also by the weak ageostrophic motions as:

dg∇Hb
dt

= −A∇Hb−N2∇Hw, (18)

dg
dt

(
−f k× ∂ug

∂z

)
= A

(
−f k× ∂ug

∂z

)
− f2 ∂

∂z
(ua), (19)

Equations (18) and (19) reveal that each component of the thermal wind balance reacts differently to

geostrophic motions, leading to a destruction of the thermal wind balance. Indeed, the matrixA, defined

by equation (14), appears in equation (18) and with the opposite sign in equation (19). Consequently,

in areas where the eigenvalues of A are real (λ>0), like in strain-dominated areas, the geostrophic

term involving A will induce an exponential growth of lateral buoyancy gradients and an exponential

decay of the corresponding vertical gradients of horizontal velocity, leading to a rapid destruction of

the thermal wind balance. This thermal wind imbalance causes motions to depart from geostrophy

and, subsequently, induces ageostrophic motions (ua,w). In the QG approximation, the role of these

ageostrophic motions, through the second terms on the right-hand sides (RHS) of equations (18) and

(19) is to instantaneously reestablish geostrophy. In other words, the thermal wind balance is destroyed

by geostrophic dynamics but is instantaneously restored by ageostrophic motions. These ageostrophic

motions counter the formation of strong horizontal buoyancy gradients and adjust the vertical gradi-

ents of the horizontal velocity such that equation (17) still holds. As a result, the flow generates an

ageostrophic 3D circulation (ua,w) aimed at restoring thermal wind balance.
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Note that a diagnostic equation for these ageostrophic motions can be derived by eliminating the time

derivative from equations (18) and (19), yielding the so-called QG Omega equation (Hoskins et al.,

1978; Hua et al., 1998; Hakim and Keyser, 2001):

N̄2 ∇2
Hw + f2 ∂2zw = 2∇H ·Q, (20)

where Q is the frontogenetic vector derived by Hoskins et al. (1978) and defined as:

Q = (Q1, Q2) = −A · ∇Hb (21)

The classical frontogenesis process emphasizes that the increase tendency of buoyancy gradients embed-

ded in a strain field is balanced by ageostrophic motions (ua,w) that tend to decrease these gradients

(Hoskins and Bretherton, 1972), as schematized in Figure 2.7.

Figure 2.7: Schematic illustration of the ageostrophic circulation that develops in response to strengthening of
a horizontal density/buoyancy front. The figure corresponds to a vertical cross section through a submesoscale
front. Black lines are isopycnals. The red arrows correspond to the ageostrophic circulation. Lighter fluid (dark
blue) is on the right of the figure and denser fluid (light blue) is on the left. From Klein and Lapeyre (2009).

This can be understood by multiplying equation (18) by [∇Hb]T , yielding the equation for the buoyancy

gradient magnitude’s time evolution:

1

2

dg|∇Hb|2
dt

= −[∇Hb]T ·A · ∇Hb−N2 · [∇Hb]T · ∇Hw. (22)

Equation (22) captures the balance between the gradient production by geostrophic strain, i.e., −[∇Hb]T ·
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A · ∇Hb, and the gradient destruction by ageostrophic motions, i.e., −N2 · [∇Hb]T · ∇Hw. Figure 2.8

illustrates these two effects, i.e., the frontogenetic nature of geostrophic strain and the frontolytic nature

of vertical velocity.

b   

b’ > 0

b’ < 0  

b’ > 0  

b’ < 0  

b >  

Figure 2.8: Schematic illustration of the effect of deformation and vertical velocity on buoyancy gradient.
Adapted from the personnal communication of Guillaume Lapeyre (Laboratoire de Météorologie Dynamique,
École Normale Supérieure) and Patrice Klein (Caltech/JPL).

A dimensional analysis based on the thermal wind balance and the approximation w ∝ H
L Ro ug, derived

from u ∼ ug + Ro ua and from a dimensional analysis of the continuity equation, i.e., ∇H ua +wz = 0

(Pedlosky, 2013), yields:

1

2

∣∣∣∣
dg|∇Hb|2

dt

∣∣∣∣ ∝ |∇Hug| |∇Hb|
2 (1 + Ri · Ro2). (23)

Thus, the equilibrium between frontolytic and frontogenetic processes is consistent with the relation

Ri−1/2 ∼ |Ro|. When |Ro| � 1 and Ri � 1, as in the QG regime, ageostrophic motions and buoyancy

gradients are small. One can see, from equation (23) and from the conservation of buoyancy along a

Lagrangian trajectory, that strong buoyancy gradients at submesoscale cannot emerge in this regime

because of the weak ageostrophic motions, and vice versa. This explains why the buoyancy wavenumber

spectrum displays a k−5 slope at depth in the QG regime, with k the horizontal wavenumber (Smith

and Ferrari, 2009). As a result, buoyancy gradients at depth are characterized by a k−3 spectral slope,
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emphasizing the mesoscale character of these gradients. Note that this is however not the case for

temperature and salinity. Indeed, since their gradient evolution equation is closer to equation (13) than

equation (22) (Klein et al., 1998; Smith and Ferrari, 2009), strong, density compensated, submesoscale

gradients of temperature and salinity may emerge in the QG regime. However, when the regime departs

from QG, i.e., for Ro and Ri of O(1) satisfying |Ro| ∼ Ri−1/2 (section 2.1), equation (23) indicates that

both terms on the RHS of equation (22) are of comparable magnitude, permitting the production of

vigorous buoyancy gradients at submesoscale. Yet, equation (22) is derived from the QG equations and,

thus, does not take into account all the physics captured by the primitive equations, which are better

suited for ageostrophic dynamics. The primitive equations yield a more complex solution as well as an

intensified production of buoyancy gradients at submesoscale, as developped in the next section.

2.4 Ageostrophic dynamics (Ro and Ri of O(1))

In the ageostrophic regime, the advection of a given quantity takes into account not only geostrophic

motions but also ageostrophic motions, as the latter now have the same order of magnitude as the

former, again using u ∼ ug +Roua. The momentum and density equations appropriate for this regime

are the primitive equations. Associated dynamics greeatly differ from that of the QG regime where

Ro � 1 and Ri � 1. Indeed, Molemaker et al. (2010) showed that relaxing the QG hypotheses in an

idealized model of the ocean interior lead to the emergence of large Ro and energetic frontogenesis at

submesoscale driven by mesoscale eddies. These authors compared two idealized numerical simulations

at high-resolution; one using the Boussinesq equations and one using the QG ones. As expected, in the

QG run, strong buoyancy gradients at submesoscale are confined to the surface, as w = 0 there and

therefore the formation of strong gradients is not inhibited, whereas submesoscale buoyancy gradients

at depth are much weaker. In contrast, the Boussinesq simulation exhibits a totally different solution in

the ocean interior; submesoscale gradients have large magnitude, leading to an enhanced frontogenesis

in the ocean interior (Figure 2.9).

In addition, Molemaker et al. (2010) found that the Boussinesq solution is energetically dominated by

flows in gradient-wind balance, i.e., a balance between the Coriolis force, pressure gradients force and

the nonlinear terms in the momentum equations, and even more so by flows in hydrostatic balance.

These results strongly challenge the well accepted QG paradigm for the ocean interior. As such, the
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Figure 2.9: PDF of |∇b| in the ocean interior (red) and near the surface (blue) for the Boussinesq run (a) and
the QG one (b). From Molemaker et al. (2010).

purpose of this section is to understand the mechanisms that are not present in the QG regime, but that

can lead to enhanced frontogenesis at submesoscale in the ocean interior in the ageostrophic regime.

For simplicity’s sake, we restrict ourselves to a 2-D situation.

2.4.1 Frontal dynamics in the ageostrophic regime

Let us consider the case of a 2-D semi-geostrophic front in the y–z plane, where semi-geostrophy refers to

geostrophy in the x-direction and ageostrophy in the y–z -direction (Holton, 1973). We further assume

that all derivatives in the x-direction are zero, which leads to ∂b/∂x = 0, but ∂b/∂y 6= 0. The along-front

velocity is purely geostrophic, i.e., u = ug, and in thermal wind balance, i.e., f ∂ug/∂z = −∂b/∂y. This

situation is well suited for the study of submesoscale fronts generated by a strain field that is elongated

in one direction. The Lagrangian derivative is:

d

dt
=
dg
dt

+

(
va
∂

∂y
+ w

∂

∂z

)
, (24)

where, dg
dt = ∂

∂t
+ ug

∂
∂x

+ vg
∂
∂y

is the material derivative following the geostrophic wind balance, va is

the y-component of the ageostrophic velocity and w its vertical component. The terms not present in

the QG material derivative are shown in blue.
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Since ageostrophic motions are related to w through the continuity equation, i.e., ∂va/∂y+ ∂w/∂z = 0,

equations (18) and (19) become:

d

dt

(
∂b

∂y

)
= Q2 −

∂va
∂y

∂b

∂y
− ∂w

∂y

(
N2 +

∂b

∂z

)
, (25)

d

dt

(
−f ∂ug

∂z

)
= −Q2 − f

∂va
∂z

(
f−∂ug

∂y

)
−∂w
∂z

∂b

∂y
, (26)

with Q2 given by (21). The terms present in equations (25) and (26) but not in equations (18) and (19)

are shown in blue. The impact of the blue terms on frontal dynamics can be understood through the

equation of the buoyancy gradient magnitude’s time evolution, deduced from (25) with Q2 = −∂vg
∂y

∂b
∂y .

This equation reads:

1

2

d

dt

∣∣∣∣
∂b

∂y

∣∣∣∣
2

= −∂vg
∂y

∣∣∣∣
∂b

∂y

∣∣∣∣
2

− ∂va
∂y

∣∣∣∣
∂b

∂y

∣∣∣∣
2

− ∂w

∂y

∂b

∂y

(
N2 +

∂b

∂z

)
, (27)

Equation (27) is similar to equation (22) except for the blue terms. These terms, and in particular

the first one, explain the strong asymmetry in the y–direction, displayed in Figure 2.10, which is not

observed in the QG framework (Hakim and Keyser, 2001). This asymmetry, in the upper part of the

front in Figure 2.10c, is characterized by intensified (subdued) buoyancy gradients on the cold (warm)

side of the front. Let us now consider the first and second terms on the RHS of (27); ∂vg∂y is related to the

large-scale strain field whose negative sign is the same on the cold and warm sides of the front and which

tend to increase buoyancy gradients. In contrast, ∂va
∂y is negative (positive) on the cold (warm) side

of the front. This means that ∂va
∂y will increase (decrease) the buoyancy gradients on the cold (warm)

side of the front, leading to a significant asymmetry, as displayed in Figure 2.10. This asymmetry

due to ∂va
∂y has also been reported in Capet et al. (2008) (see their Figure 7). The intensification of

buoyancy gradients on the cold side should lead to an increased Ri−1, since the latter is proportional

to the isopycnal’s slope. Furthermore, because of the thermal wind balance, f ∂ug/∂z = −∂b/∂y, the

geostrophic jet, ug, will increase on the cold side of the front, leading to enhanced relative vorticity, as

displayed in Figure 2.10b, and thus to an increased Ro. As illustrated in Figure 2.10a, the asymmetric

ageostrophic circulation is associated with intensified vertical velocities on the cold side of the front.

The reverse situation is observed in the lower part of the front.
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Figure 2.10: Ageostrophic secondary circulation at a submesoscale front. a) w and b) u at z = -2.5 m, and c)
overturning streamfunction ψM (red contours) and buoyancy b (black contours), corresponding to the solution
of equations (25) and (26). From Thomas et al. (2008).

The omega equation resulting from (25) and (26) further helps to understand this asymmetry and the

intensification of the vertical velocity field. In the case of a 2–D semi-geostrophic front, the ageostrophic

circulation in the y–z plane can be represented in terms of a meridional streamfunction ψM defined as:

va = −∂ψM
∂z

, w =
∂ψM
∂y

, (28)

which satisfies the continuity equation. Adding equations (25) and (26), and using the thermal wind

balance to eliminate the time derivative and equation (28) to eliminate va and w, we obtain the so-called

Sawyer-Eliassen omega equation:

N2
s

∂2ψM
∂y2

+ F 2 ∂
2ψM
∂z2

+ 2 S2 ∂
2ψM
∂y∂z

= 2 Q2, (29)
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where

N2
s ≡ N

2
+
∂b

∂z
, F 2 ≡ f

(
f−∂ug

∂y

)
, S2 ≡ −∂b

∂y
. (30)

Equation (29) can be compared to the QG version of the omega equation (equation (20)) obtained by

neglecting advection by the ageostrophic circulation. This equation reads in its ψM -formulation form:

N
2 ∂2ψM

∂y2
+ f2

∂2ψM
∂z2

= 2 Q2. (31)

Thus, in the QG case, the coefficients in the differential operator on the LHS only depend on the

standard Brunt–Väisälä frequency N and the planetary vorticity f , whereas in the semi-gesotrophic

case (29), they depend on the deviation of buoyancy from its standard profile through the Ns and S

terms and the absolute vorticity through the F term. Again, the terms involved in the Sawyer-Eliassen

equation but not in the QG one are shown in blue in equations (29) and (30).

Provided that N2
sF

2−S4 > 0, the Sawyer-Eliassen equation (29) is an elliptic boundary value problem,

which admits a real solution. The solution can be found using the method of the Green’s function, as

detailed in Hakim and Keyser (2001). The Green’s function G for ψM satisfies the following equation:

N2
s

∂2G

∂y2
+ F 2 ∂

2G

∂z2
+ 2 S2 ∂2G

∂y∂z
= δ(y − Y, z − Z), (32)

which, for any Q2-vector distribution, yields the ageostrophic circulation ψM = −2
∫ ∫

G(y − Y, z −

Z) Q2(Y,Z) dY dZ +ψH where ψH is a homogeneous solution to ∇ ·ua = 0, which ensures ψM satisfies

the boundary conditions. The solution to equation (32) is given by:

G =
1

4π
√
f q2D

log|Arg|, (33)

where

Arg =
[(y − Y )− (z − Z)S2/F 2]2

L2
SG

+
(z − Z)2

H2

and

LSG = H

√
f q2D
F 2

(34)
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is the semi-geostrophic Rossby radius of deformation, and H is the vertical length scale of the flow. The

2-D Ertel PV, q2D, is given by:

q2D =
1

f
(N2

sF
2 − S4) = f N2

s (1 + Ro− Ri−1). (35)

The condition N2
sF

2−S4 > 0 can thus be written as f2 N2
s (1 +Ro−Ri−1) > 0. From the dependence

of equation (33) on the Ertel PV, it can be seen that a real solution does not exist when f q2D ≤ 0,

indicating that equation (29) has a real solution if and only if f q2D > 0. This places a strong constraint

on Ri−1, which is positive and has to be smaller than |1 + Ro|. In turn, it leads to a limitation of the

steepness of the front and also to a limitation of the importance of S2 relatively to the other terms in

the Sawyer-Eliassen equation (29).

2.4.2 Vertical velocities

The vertical velocity field associated with equation (33) is given by:

w = − F 4

2π(f q2D)3/2H2

(y − Y )

Arg
. (36)

From equation (36), one can see that the magnitude of w is inversely proportional to the Ertel PV.

The spatial variation of the coefficients in equation (30) and the presence of the cross-derivative term

produce a distortion of the secondary circulation, as shown in Figure 2.10 (Thomas et al., 2008). The

ageostrophic secondary circulation cell (red ellipses in Figure 2.10c) is titled along isopycnals (black

contours in Figure 2.10c) and has an asymmetrical shape. This is because, at the surface for instance,

the relative vorticity, −∂ug/∂y, is positive on the left side of the front and negative on the right side

(Figure 2.10b), leading to a larger F 2 on the left side of the front than on the right. As a consequence,

for a given Ertel PV, LSG (equation (34)) is smaller and |w| greater on the left side of the front than on

the right. This is consistent with the fact that an increase in relative vorticity coincides with an increase

in lateral density gradient, as previously discussed and as can be seen from equation (35). Thus, an in-

crease in Ro is associated with an increase in Ri−1 ∝ (by/bz)
2, indicating that lateral buoyancy gradients

are increased, or stratification destroyed. This implies that on the cold side of the front (w<0), w has

a narrower width but greater amplitude than on the warm side (w>0). This asymmetry considerably

enhances vertical buoyancy flux and restratification processes compared to the QG regime.
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In the context of this dissertation, and in particular in Chapter 3, it is important to note that many

studies, starting with Hoskins (1982) and more recently confirmed by Hakim and Keyser (2001), have

emphasized that the Sawyer-Eliassen and QG solutions are qualitatively similar when the condition

F 2N2 − S4 > 0 is satisfied. In particular, the Sawyer-Eliassen and weak QG ageostrophic circulations,

and therefore the w-field, have the same sign. Indeed, the sense of the ageostrophic secondary circulation

cell (red ellipses in Figure 2.10c) is thermally direct in both cases, i.e., it tends to flatten isopycnals and

restore the thermal wind balance. This is because the Green’s function is forced by a RHS in equation

(29) such that Q2 ·∇b > 0, corresponding to the case of frontogenetic deformation (Figure 2.8). Overall,

the main differences between the Sawyer-Eliassen and QG ageostrophic circulations are:

• the shape of the ageostrophic circulation, which is more tilted and oriented parallel to the isopy-

cnals in the Sawyer-Eliassen solution.

• the amplitude of the w-field, which is larger in the Sawyer-Eliassen solution for Ri of O(1) than

in the QG case.

The qualitative similitude between the two omega equations is useful when the blue terms in equation

(29) are unknown, as it is the case in Chapter 3. In this situation, the difference in w-magnitude can

be retrieved using the analytical solutions for the QG and Sawyer-Eliassen (SE) versions of the omega

equation derived in Hakim and Keyser (2001). These authors show that wSE ∼ wQG

(
PVQG

PVPE

)1/2
with

wSE and wQG the solutions of the SE and QG omega equation, respectively, and PVPE and PVQG the

Ertel and QG PV, respectively. Following Thomas et al. (2008), using the approximations PVQG ∼ fN2

and PVPE ∼ fN2(1−Ri−1) leads to PVQG/PVPE =
(
1− Ri−1

)−1. This relation is used in Chapter 3

to quantify the vertical velocity’s underestimation at low Ri.

Overall, the intensification of frontogenesis mechanisms in the ageostrophic regime explains the idealized

results of Molemaker et al. (2010), emphasizing the existence of strong submesoscale buoyancy gradients

in the ocean interior. These dynamical concepts also explain the observational and numerical results of

Chapters 3 and 4, highlighting the existence of the strong buoyancy gradients in the ocean interior that

are associated with intense vertical velocities and enhanced upward vertical fluxes of heat and buoyancy.
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3 Enhanced upward heat transport at deep submesoscale fronts

In this chapter, we apply the dynamical concepts presented in Chapter 2 to two observational datasets

(seal and satellite observations) collected in the energetic ACC in late spring/early summer, i.e., when

the mixed layer depth is ∼ 100 m deep. Finite-Size Lyapunov Exponent (FSLE) derived from satellite

altimetry are used as a proxy for the mesoscale strain field (see section 1.2.2). Frontogenesis is studied

by comparing the mesoscale strain field, given by FSLE, to the production of lateral gradient of buoy-

ancy, provided by the seal data. The two independent datasets are then combined into a QG omega

equation, yielding important vertical velocities reaching ±100 m/day, but which should attain ±140

m/day had the full Sawyer-Eliassen equation been used (see Supplementary Materials below). Lateral

buoyancy gradients and their associated intense vertical velocities are primarly located on the periphery

of mesoscale eddies, consistent with the theoretical results presented in Chapter 2. Both extend down

to depths of at least 400 m, i.e., well below the mixed-layer, highlighting the presence of ageostrophic

dynamics in the ocean interior. Enhanced vertical heat transport at these deep submesoscale ocean

fronts is subsequently diagnosed, with local values reaching ±2000 W/m2 and average values reaching

+100 W/m2 at 200 m. This effect is argued to remarkably alter oceanic heat uptake and exacerbate

restratification processes. It will be strongest in eddy-rich regions such as the ACC, the Kuroshio Ex-

tension, and the Gulf Stream, all of which are key players in the climate system.

Siegelman, L., Klein, P., Rivière, P., Thompson. A.F., Torres, H.S., Flexas, M. and Mene-

menlis, D. (2019). Enhanced upward heat transport at deep submeoscale ocean fronts. Nature

Geoscience. doi:10.1038/s41561-019-0489-1
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Vertical heat transport (VHT) is one of the key mecha-
nisms by which the ocean regulates Earth’s climate. Munk 
and Wunsch1 first postulated that VHT is balanced by an 

upward component due to the large-scale mean flow (>
I

300 km) 
and a downward component explained by fine-scale diffusive pro-
cesses (<

I
20 km). However, recent studies2,3 highlighted the impor-

tance of mesoscale eddies (50–300 km) for VHT. Thus, global VHT 
by mean flow and diffusion are now thought to be both downward 
and balanced by an upward eddy heat flux, with the mean and eddy 
components generally being the largest contributors2.

Mesoscale eddies are intensified in energetic areas such as the 
Antarctic Circumpolar Current (ACC), Kuroshio Extension and 
Gulf Stream4. They are known to drive the production of subme-
soscale fronts (<

I
20 km), that is, regions that separate waters of dif-

ferent densities5–9, which are ubiquitous on satellite images of ocean 
colour (Fig. 1). To date, submesoscale fronts were mainly thought 
to be confined to the ocean surface mixed layer (�

I
100 m deep)8,9. 

This is because, in the classical model, motions below the mixed-
layer are broadly assumed to be in geostrophic balance (a balance 
between Coriolis and horizontal pressure forces), which prevents 
the formation of strong density gradients10. As a consequence, fine 
scales below the mixed-layer are still principally associated with 
diffusive processes that drive downward heat transport. However, 
a handful of studies suggest that submesoscale fronts associated 
with upward heat transport may also penetrate below the mixed 
layer11–14. Yet, these studies do not explain the formation mechanism 
of these submesoscale fronts because they are confined to small 
domains (<

I
50 km). Observational evidence over domains suffi-

ciently large to capture multiple mesoscale eddies and their associ-
ated submesoscale fronts are needed for the closure of oceanic VHT. 
Such measurements are still lacking because capturing fine spatial 
and temporal scales over extended domains lie at the edge of our 
observational capabilities.

Here we meet this observational challenge by analysing a unique 
dataset collected by an instrumented elephant seal in the ACC. 
The seal data revealed the presence of numerous deep-reaching 
submesoscale fronts that extend well below the mixed-layer and are 
principally found on eddies’ edges. We then developed a pioneer-
ing methodology that combines satellite and seal observations to 
retrieve a three-dimensional (3D) synoptic view of ocean dynamics 
from the meso- to submesoscale. The results explicitly demonstrate 
that deep-reaching submesocale fronts are generated by the strain 
field associated with co-interacting mesoscale eddies. By invoking 
the properties of mesoscale turbulence, we explain why deep-reach-
ing fronts, counterintuitively, drive an enhanced VHT below the 
surface mixed layer that is directed upward; this is also supported 
by a numerical model analysis (Supplementary Information). The 
associated VHT is larger than the mean flow and eddy contribu-
tions2, and of similar magnitude to air–sea fluxes15. This effect is 
argued to crucially limit oceanic heat uptake and therefore to alter 
the ocean heat storage capacity.

Frontal region sampled by elephant seal and satellite
Measurements were collected by a southern elephant seal (Mirounga 
leonina) in the Kerguelen area (Indian sector of the Southern Ocean, 
Fig. 1) during the austral spring and summer. The dataset has a hor-
izontal resolution of 1 km, a vertical resolution of 1 m and extends 
from the surface down to 400 m in the ocean interior. Over a period 
of more than three months and a distance that exceeded 5,000 km, 
the seal continuously recorded temperature, conductivity and pres-
sure, from which the buoyancy b

I
 (opposite sign to density) was 

derived (Methods). An example of the buoyancy field is shown in 
Fig. 2a–c. In addition, satellite altimeter observations supply daily 
horizontal fields of sea surface height (SSH), a proxy of surface 
pressure, with an effective resolution sufficient to resolve mesoscale 
eddies of size of 50–100 km.

Enhanced upward heat transport at deep 
submesoscale ocean fronts
Lia Siegelman   1,2,3*, Patrice Klein1,2,4, Pascal Rivière   3, Andrew F. Thompson1, Hector S. Torres2, 
Mar Flexas   1 and Dimitris Menemenlis   2

The ocean is the largest solar energy collector on Earth. The amount of heat it can store is modulated by its complex circula-
tion, which spans a broad range of spatial scales, from metres to thousands of kilometres. In the classical paradigm, fine oce-
anic scales, less than 20 km in size, are thought to drive a significant downward heat transport from the surface to the ocean 
interior, which increases oceanic heat uptake. Here we use a combination of satellite and in situ observations in the Antarctic 
Circumpolar Current to diagnose oceanic vertical heat transport. The results explicitly demonstrate how deep-reaching subme-
soscale fronts, with a size smaller than 20 km, are generated by mesoscale eddies of size 50–300 km. In contrast to the clas-
sical paradigm, these submesoscale fronts are shown to drive an anomalous upward heat transport from the ocean interior 
back to the surface that is larger than other contributions to vertical heat transport and of comparable magnitude to air–sea 
fluxes. This effect can remarkably alter the oceanic heat uptake and will be strongest in eddy-rich regions, such as the Antarctic 
Circumpolar Current, the Kuroshio Extension and the Gulf Stream, all of which are key players in the climate system.
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The area sampled by the seal from 1,000 to 2,300 km (red line 
in Fig. 1), that is, from 2 November to 24 November 2014, is rich 
in eddies and lies within the energetic ACC16, as illustrated by the 
SSH contours in Fig. 1. The seal crossed numerous co-interacting 
cyclonic (low SSH) and anticyclonic (high SSH) mesoscale eddies. 
Geostrophic currents, derived from the SSH, reach values of 1 m s–1 
around the eddy edges (Fig. 2a) and are similar to those found in 
the Gulf Stream and the Kuroshio Extension, the two other most 
energetic ocean currents4. This area is thus representative of the 
flow field encountered within eddy-rich regions of the world 
oceans, and will receive particular emphasis in this study. The other 
areas crossed by the seal (Fig. 1) are much less energetic (Extended 
Data Fig. 1).

A comparison between the satellite SSH and buoyancy anom-
alies sampled by the seal in the turbulent area (Fig. 2a–c and 
Supplementary Fig. 1a–c) highlights the expected vertical struc-
ture of the mesoscale eddies10: buoyancy anomalies are positive and 
bowl shaped in anticyclonic eddies (high SSH) and negative and 
reversed bowl shaped in cyclonic eddies (low SSH, Fig. 2a–c and 
Extended Data Fig. 1a–c). The combination of satellite observations 
of SSH and seal measurements of buoyancy provides a synoptic 3D 
view of the flow field encountered by the seal, and, in particular, of 
the eddy field, which can extend down to depths of at least 400 m. 
Supplementary Information gives a more detailed analysis of the 
consistency at mesoscale between these two independent datasets.

Frontal structures, or buoyancy fronts, are identified by the 
along-track derivative of buoyancy and are defined as bs ¼ ∂b=∂s

I
, 

where s
I

 is the curvilinear abscissa, that is, the along-track direc-
tion. The fronts, shown in Fig. 2d, have a width between 5 and 20 km 
and are thus submesoscale features. Indeed, the Rossby radius of 
deformation in the Kerguelen area is �

I
15 km (ref. 17), which cor-

responds to an eddy radius of �
I
50 km (refs. 17,18), consistent with 

the SSH observations (Fig. 2a). These fronts are well-resolved by 
the seal’s 1 km horizontal resolution measurements. They are more 
numerous below the mixed layer and extend down to at least 400 m. 

Large buoyancy gradients are preferentially found at the edges of the 
mesoscale eddies and in-between them. Buoyancy gradient magni-
tudes reach values larger than 5 ´ 10�7

I
 s–2. The root mean squared 

(r.m.s.) of the lateral gradient of buoyancy, used as an indicator of 
the gradient magnitude, is larger than 0:5 ´ 10�7

I
 s–2, regardless of 

depth (Extended Data Fig. 2a). Compared to the few other exist-
ing submesoscale-resolved datasets19–21, these values are of the same 
order of magnitude, which highlights the important frontal activity 
of the area.

Frontal dynamics in the ocean interior
Figure 3 illustrates how the production of horizontal gradients of 
buoyancy is driven by a pure strain field, which corresponds to the 
hyperbolic regions in-between co-interacting eddies5, as can be seen 
in Fig. 1. In the schematic Fig. 3a, the strain field (black arrows) 
stretches a tracer patch in the y direction and compresses it in the x 
direction. This leads to the formation of strong horizontal gradients 
of buoyancy, or fronts, at submesoscale that are associated with a 
growth rate related to the strain rate ux ¼ ∂u

∂x
I

 (Fig. 3b).
To assess the relevance of this mechanism in the Kerguelen area, 

we analysed the background strain field in relation to the observed 
buoyancy gradients. We used daily finite size Lyapunov exponents 
(FSLEs)22 computed from satellite-derived geostrophic velocities 
to characterize the strain field properties (Methods). FSLEs indi-
cate both the orientation and timescale (colour bar in Fig. 4a) of 
the stretching and compression induced by the strain field (respec-
tively, the red and blue curves in Figs. 3a and 4a). As illustrated in 
Fig. 3a, we expect a tracer patch, or equivalently a buoyancy anom-
aliy, to be aligned with stretching FSLE22. The spatial distribution 
of FSLE (Fig. 4a and Extended Data Fig. 3) confirms that regions 
in-between eddies and on eddy edges are prone to the formation of 
strong horizontal buoyancy gradients (|bx|). However, the seal’s tra-
jectory is often oblique rather than perpendicular to the buoyancy 
fronts, which may lead to an underestimation of the front’s mag-
nitude. Therefore, to correct for the seal’s orientation with respect 
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Fig. 1 | Study region (22 December 2014). A three-month seal trajectory (black line) superimposed with a snapshot of chlorophyll a and SSH (white 
contours). Three regions are highlighted: the highly turbulent area (red), the weakly turbulent area (grey) and the southern eddy edge (orange). Cyclones 
(C) and anticyclones (A) are identified from elliptic SSH contours. Hyperbolic SSH contours located inbetween eddies identify the strain field (Fig. 3a). 
Red arrows indicate the direction of the seal. Bathymetry contours of 0.5, 2 and 3 km (thin black lines) from NOAA ETOPO5 (National Oceanic and 
Atmospheric Administration’s Earth topography five minute grid) outline the Kerguelen plateau. Inset: Kerguelen region (red polygon).
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to the FSLE it encounters, buoyancy gradients were first normal-
ized by the angle between the seal’s trajectory and the FSLE direc-
tion (Methods). Note that the normalized buoyancy gradients are 
now referred to as bx

I
, where the subscript x

I
 refers to the direc-

tion normal to the stretching FSLE (Fig. 3a). We then compared the 
along-track time series of stretching FSLE estimated along the seal’s 

path with the normalized buoyancy gradients at 300 m (a compari-
son with buoyancy gradients at different depths below the mixed 
layer produces similar results). There is good agreement between 
the FSLE and normalized buoyancy gradients at 300 m (Fig. 4 and 
Extended Data Fig. 4a), as well as a consistent relationship that 
links the two (Fig. 4b). The two time series are strongly intermit-

50° S

a

b

c

d

e

2 × 10–3 –0.4

–0.4

–0.6

S
S

H
 (

m
)

D
ep

th
 (

m
)

–0.8

–1.0

–1.2

100

–1.8

–2.0

–2.2

–2.4

–2.6

3.0

1.5

0.0

–1.5

–3.0

102

101

100

10–1

200

300 –0.023

400

D
ep

th
 (

m
) 100

200

300

400

D
ep

th
 (

m
) 100

200

300

400
1,000 1,200 1,400 1,600

Along-track distance (km)

1,800 2,000 2,200

–0.5

–0.6

–0.7

S
S

H
 (m

)
–0.8

–0.9

–1.0

–1.1

–1.2

1.5 × 10–3

1 × 10–3

5 × 10–4

B
uoyancy anom

aly (m
 s

–2)

–5 × 10–4

–1 × 10–3

–1.5 × 10–3

–2 × 10–3

2

1

0

B
uoyancy anom

aly
(10

–3 m
 s

–2)

 B
uoyancy (10

–2 m
 s

–2)
H

orizontal buoyancy
gradient (10

–7 s
–2)

R
ichardson num

ber

–1

–2

–0.80

–0.85

–0.90

S
teric height (m

)–0.95

–1.00

0

→ 0.5 m.s–1

52.5° S

85° E

–0
.0

22
–0

.0
20 –0.020

–0.021

–0
.0

21

–0.022 –0
.0

20

0.019
–0.020 –0.022

–0.023
–0.021

–0.021

–0.021

–0
.0

21

–0.021
–0.019

0.020

0.021
0.022

–0
.0

25 –0
.0

24

–0.023

–0.024

0.022

–0
.0

25

–0
.0

20

–0
.0

23
–0

.0
24

–0.024

–0
.0

22

–0.020
–0.022

–0.023
–0.024

–0
.0

21

–0
.0

22

Fig. 2 | characteristics of the strongly turbulent area (red in Fig. 1). a, A snapshot (13 December 2014) of SSH and geostrophic currents (black arrows) 
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I
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Richardson number. The mixed layer depth (MLD) is shown by a thick black line in c–e.
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tent. Peaks of FSLE and buoyancy gradients are often co-located 
(Fig. 4a,b and Extended Data Fig. 4a). Note that similar results are 
obtained with non-normalized gradients, which demonstrates that 
no bias is added via the normalization. Combined together, these 
two datasets provide observational evidence of how an eddy strain 
field, diagnosed at the sea surface, drives strong buoyancy gradients 
at a submesoscale in the ocean interior.

A comparison between panels c and d in Fig. 2 further reveals 
that, whereas mesoscale buoyancy anomalies are slanted on the 
vertical, as evidenced by the bowl-shaped structures of buoyancy 
(panel c), buoyancy fronts at the submesoscale are almost vertical 
(panel d). This density slope property is related to the dynamical 
regime that drives these structures and can be quantified by the 
non-dimensional Richardson number Ri (Methods). The small Ri 
values observed in Fig. 2d suggest an energetic ageostrophic regime 
associated with intense vertical currents. The emergence of these 
vertical currents, w

I
, counterbalances the formation of sharp subme-

soscale fronts generated by the ambient strain field. This mecha-
nism is referred to as frontogenesis23 and is sketched in Fig. 3b. It 
leads to an equilibrium that is captured by the classical omega equa-
tion, which involves the vertical current field w

I
, the strain field ux

I
 

and the lateral gradient of buoyancy field bx
I

. Here we diagnose the 
vertical currents w

I
 by solving the 2D (x,z) quasi-geostrophic (QG) 

version of the omega equation23(Methods), with bx
I

 obtained from 
seal observations and ux

I
 estimated from stretching FSLE (Fig. 4). 

However, compared to the full omega equation, there is a tendency 
for the vertical currents diagnosed here to be underestimated by 
� 1:4
I

 (Methods).
The vertical section of w

I
 shown in Fig. 5b reveals positive and 

negative w
I
 values with large magnitudes of up to 100 m d–1, that is, 

almost an order of magnitude greater than that attributed to meso-
scale eddies alone24. Vertical currents have a width of 5–10 km. They 
are intensified in the ocean interior, below the mixed layer down to 
at least 400 m, and do not necessarily penetrate into the mixed layer. 
The continuous vertical extent of these vertical currents highlights 
the crucial role played by deep-reaching submesoscale fronts in 
connecting the ocean interior to the surface. The w

I
 field is charac-

terized by the same intermittency present in the FSLE and buoyancy 
gradient fields (Figs. 2d, 4c, 5b and Extended Data Fig. 4b). Large 
w
I
 magnitudes are co-located with strong buoyancy gradients and 

intense FSLE, and are therefore mostly found on the edges of, and 
in-between, eddies.

The analysis of the vertical currents presented here is supported 
by a comparison with a realistic regional numerical model with a 
1.5 km horizontal resolution (Supplementary Information gives 
more details on the model). The values of w

I
 derived from the obser-

vations are comparable to, although smaller than, those obtained 
in the model (Extended Data Fig. 5a). Overall, these results sug-
gest that the vertical pathway provided by deep ocean fronts in the 
spring and summer is likely a generic mechanism throughout the 
ocean. This deep-reaching vertical pathway has important conse-
quences for the vertical transfer of heat between the ocean interior 
and the surface mixed layer, as explored in the next section.

VHT at deep submesoscale fronts
Oceanic heat transport was estimated from temperature and ver-
tical velocity anomalies, from the surface down to 400 m depth  
(Fig. 5a,b). A vertical section of this transport (Methods gives the 
calculation) is shown in Fig. 5c, in which a positive (negative) 
value indicates an upward (downward) heat transport. Positive 
values result from frontogenesis processes, that is, the production 
of fronts, as illustrated in Fig. 3b. Negative values arise from front-
olysis processes, that is, the destruction of fronts (Supplementary 
Information). Heat transport is strongly enhanced at the location of 
submesoscale fronts generated by the background strain field and 
has a local amplitude that reaches 2,000 W m–2 below the surface 
mixed layer, and extends down to at least 400 m, consistent with the 
high-resolution regional model (Extended Data Figs. 5b and 6) and, 
surprisingly, of the same order of magnitude as instantaneous air–
sea heat fluxes19.

We explored the contribution of fine oceanic scales to the domain-
averaged VHT. Averaged VHT within the eddy-rich area of the ACC 
sampled by the seal (1,000–2,000 km, in red in Fig. 1) is directed 
upward, that is, from the ocean interior back to the surface (Fig. 5f). 
This direction is strikingly opposite to that induced by the diffusive 
processes used in the classical paradigm. However, this result can 
be understood in terms of the direct cascade of potential energy, a 
well-known property of mesoscale eddy turbulence25. The direct cas-
cade implies that frontogenesis statistically dominates frontolysis, 
and thus that the net VHT associated with submesoscale fronts is 
positive (Supplementary Information), which is also striking in the 
model outputs (Extended Data Fig. 6). Furthermore, the heat trans-
port magnitude reached an averaged value of �

I
100 W m–2 at 200 m 

(Fig. 5f). Remarkably, this value is an order of magnitude larger than 

Fig. 3 | Strain field, frontogenesis and VHT. a, A horizontal slice (x,y) of a tracer patch (light blue) in a strain field (black arrows). The strain elongates 
(compresses) the tracer in the y (x) direction10. Red (blue) FSLE (proxy of strain) arrows identify horizontal stretching (compressing) directions. The 
fronts are aligned with the stretching FSLE. b, A 3D slice of the strain-induced submesoscale front. The thin black lines are isotherms. Vertical velocities 
(w, straight black arrows) develop in response to the front intensification. As the temperature and w anomalies are positively correlated, frontogenesis-
induced VHT is upward (see Methods for a full description).
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that associated with mesoscale eddies alone26, which is, along with 
the mean flow, traditionally thought to be the main contributor to 
VHT2. It is also of comparable magnitude to domain-averaged air–
sea heat fluxes15, which illustrates a potential coherent pathway that 
links the ocean interior to the atmosphere. Note that the percentage 
of seal dives decreases with depth (grey line in Fig. 5f), from 100 to 
40%

I
 between 200 and 400 m. This probably accounts for a part of 

the r.m.s. decrease (stagnation) of temperature (velocity) anomalies 
below 200 m, as one would have expected5 (Fig. 5d,e). As a conse-
quence, the already unexpected strong heat transport (Fig. 5c,f) is 
likely to be underestimated because of it, in addition to the conserva-
tive estimate of the vertical currents discussed in the previous section. 
Indeed, the domain-integrated heat transport from the high-resolu-
tion numerical simulation yields a similar—although stronger—posi-
tive VHT (Extended Data Fig. 7) with, for instance, a value of �

I
140 

W m–2 at 200 m. As such, these results strongly contrast with the clas-
sical paradigm based on diffusive heat transport, as they emphasize 
the existence of an intense and upward heat transport in the ocean 
interior well below the ocean surface mixed layer that is preferentially 
localized in strain-dominated areas (Extended Data Fig. 6).

The data presented here provide the first observational evidence 
of a large and anomalous, that is, upward, heat transport associated 
with deep-reaching submesoscale fronts in an eddy-rich area of 
the world ocean. The observations, supported by a high-resolution 
regional model (Supplementary Information), highlight the crucial 

role played by submesoscale frontal dynamics in the ocean interior, 
well below the ocean surface mixed layer, for oceanic heat transport.

In summary, the deep-reaching frontal dynamics and its associ-
ated large positive VHT, observed here in numerous sharp fronts 
of the ACC, are driven by mesoscale eddies and are likely to occur 
widely in the ocean, such as in the eddy-rich Gulf Stream and 
Kuroshio Extension, all of which are key players in the climate sys-
tem. It potentially plays an important role by, for instance, exac-
erbating restratification processes as warm (cold) waters become 
warmer (colder). Furthermore, a first-order estimation indicates 
that these deep ocean fronts lead to an additional increase of the sea 
surface temperature that ranges between �

I
0.2 and �

I
0.6 °C within 

a month (Methods gives the calculation and caveats), which illus-
trates the potential impact of deep-reaching ocean fronts on air–
sea fluxes and how they can substantially limit oceanic heat uptake 
from the atmosphere.

These observational results suggest revisiting current estimates 
of the Earth’s heat budget and stress the need to account for small-
scale physics, not only within, but also below, the ocean surface 
mixed layer, in the prediction of future climate states. Inaccurate 
representation of such physics could considerably underestimate 
the amount of heat transferred from the ocean interior back to the 
surface and, as a consequence, potentially overestimate the amount 
of heat the ocean can absorb. Finally, these results may have a far 
greater scope as the evidence for intense vertical currents associated 
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with the deep-reaching ocean fronts presented here also indicates an 
efficient pathway for the transport of chemical and biological trac-
ers, with potential major implications for biogeochemical systems.
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Methods
SSH and geostrophic currents. The SSH used to retrieve the mesoscale dynamics 
of the Kerguelen area (67–91° E, 48–58° S) is composed of the mean dynamic 
topography CNES/CLS 201527 and the sea level anomaly maps produced by the 
DUACS (data unification and altimeter combination system) processing chain 
that merges the multi-altimeter along-track data. This specific regional dataset 
was produced in the context of the DUACS-HR project, which aimed to increase 
the resolution of altimetry maps by applying recently developed methods, such as 
dynamic interpolation28. The period from October 2014 to January 2015 benefits 
from an extremely favourable satellite coverage of four altimeters (AltiKa, Jason-2, 
Cryosat-2 and HY-2), which allowed a very good spatial and temporal sampling. 
The temporal resolution is daily and, as estimated in Ballarotta et al.29, the spatial 
effective resolution of the gridded anomalies approaches 40 km in wavelength. 
Using the geostrophic approximation, geostrophic surface currents (u,v) are 
derived from SSH following10:

u ¼ � g
f
∂SSH
∂y

; v ¼ g
f
∂SSH
∂x

ð1Þ

where g
I

 is gravity and f
I

 the Coriolis parameter.

FSLE. Instead of using a direct estimate of the strain rate (that is, du/dx calculated 
directly from SSH, Fig. 3) that only describes the buoyancy gradient’s growth rate, 
we use FSLEs. Indeed, FSLEs have the advantage of exploiting both the spatial 
and temporal variability of the velocity field deduced from SSH, and consequently 
provide information about both the growth rate and orientation of elongated 
buoyancy gradients30,31. FSLE is a Lagrangian diagnostic that measures the 
separation of close initial particles embedded in a given flow field. The separation’s 
growth rate is defined as:

λðd0; df Þ ¼
1
τ
logðdf

d0
Þ ð2Þ

where d0
I

 and df
I

 are the initial and final separation distances, respectively, and τ
I

 
the first time at which a separation df

I
 is reached. FSLE has the dimension of time–1. 

FSLE is particularly suited to diagnose the properties of a strain field. Positive 
(negative) FSLE indicate that patches of particles are being stretched (compressed) 
in a given direction determined by the background strain field. As such, large 
positive (negative) FSLE values indicate regions of strong stretching (compression) 
(Fig. 3a and Supplementary Information give more details). Here, positive 
(negative) FSLE are computed backward (forward) in time22.

For the Kerguelen area, 88 daily maps of altimetry-based FSLEs were computed 
following d’Ovidio et al.22 and using the geostrophic velocities derived from the 
SSH. The parameters were chosen close to those of d’Ovidio et al.22 with d0 = 0.04° 
and df = 1°, that is, a final separation distances of about 110 km.

An along-track time series of stretching (that is, positive) FSLE was extracted 
along the seal’s path to capture the stretching direction and intensity of the strain 
field. A subsequent 5 km window moving average was applied to remove the strong 
intermittency present in the raw data (Fig. 4 and Extended Data Fig. 4a). Stretching 
FSLEs were then compared to lateral gradients of buoyancy sampled by the seal.

Southern elephant seal measurements. A newly released in situ dataset collected 
in the austral summer by a female southern elephant seal during her three-month 
post-breeding trip (20 October 2014 to 16 January 2015) east of the Kerguelen 
Islands (Indian sector of the Southern Ocean, Fig. 1) was analysed. Compared 
to previous tags mounted on elephant seals, this one recorded every single dive 
realized by the animal (>

I
80 dives per day) at high-resolution as opposed to 2–5 

dives per day for previous tags. The seal was localized through the Argos satellite 
system and was equipped with sensors that recorded conductivity, temperature and 
pressure (CTD-Satellite Relay Data Logger) at a continuous frequency of 0.5 Hz. 
Only the ascending phase of a dive was used because it is more uniform in speed 
and direction compared to the descent when the seal dives sinuously to forage32. 
The dataset comprised 6,333 dives, which corresponds to a cumulative length of 
5,270 km with a median spacing between two dives of 700 m (Extended Data Fig. 
8a). Dives, which could be as deep as 500–1,000 m, lasted less than 25 min and 
were separated by intervals of a few minutes during which the seal breathes but 
does not transit. More than 80%

I
 of the dives reached a depth of at least 200 m, 50%

I
 

reached 300 m and 35%
I
 reached 400 m or deeper.

To ensure a better accuracy of the temperature- and conductivity-derived 
salinity data, two additional steps were applied: first, a thermal cell effect correction 
was applied to the temperature and conductivity fields. A density inversion 
removal algorithm, which seeks the minimum adjustment of the salinity profile 
to achieve neutral stability, was subsequently applied to the salinity field. The 
accuracy of the final postprocessed data was ±

I
0.02 °C for the temperature  

and ±
I

0.03 g kg–1 for salinity. More details on the postprocessing method and  
final data accuracy are given in Siegelman et al.32. Potential density was calculated 
from the corrected conservative temperature and absolute salinity with the TEOS-
10 equation33.

The animal in this study was handled in accordance with the Institut polaire 
francais Paul-Emile Victor (IPEV) ethical and Polar Environment Committees 

guidelines as part of the SNO-MEMO and IPEV program 109 (principle 
investigator H. Weimerskirch). The experimental protocols were approved by the 
Ethics Committee of IPEV and the Polar Environment Committees.

Buoyancy. Along-track time series of buoyancy, b ¼ gð1� ρ=ρ0Þ
I

, where g is 
gravity, ρ

I
 is potential density and p0 = 1,025 kg m–3 is a reference density, revealed 

a variability that covers both the meso- and submesoscales. For the analysis, in 
particular the calculation of lateral buoyancy gradients bs ¼ ∂b=∂s

I
, buoyancy 

was first linearly interpolated along the seal’s path onto a regular grid of 100 m 
resolution, which corresponds to the shortest along-track distance between two 
dives (Extended Data Fig. 8a). A moving average with a 1 km window was then 
applied such that the final dataset had a horizontal resolution of 1 km and a vertical 
resolution of 1 m. Buoyancy anomalies were resolved by multiple vertical profiles, 
such that the structures were not related to aliasing of the along-track data. The 
surface buoyancy anomalies in Fig. 2a,b were defined by the time series of the 
mean buoyancy from 15 to 50 m minus its mean value calculated from 15 to 50 m 
along the entire trajectory.

MLD. The MLD was defined as the level of a 0.03 kg m–3 density increase from 
15 m depth.

Normalization of buoyancy gradients. As the seal’s trajectory was more often 
oblique to the stretching FSLEs (it crossed rather than ran perpendicular to them 
(Extended Data Fig. 8b)) and buoyancy fronts were assumed to be aligned with the 
stretching FSLE, buoyancy gradients sampled by the seal needed to be corrected to 
account for the seal’s orientation with respect to the FSLE it encountered. To do so, 
the buoyancy gradients were divided by the sine of the angle θ

I
 between the seal’s 

trajectory and the FSLE direction. More precisely, θ
I

 is the angle between the FSLE 
eigenvector and the seal’s path. To focus on the regions prone to the formation of 
submesoscales, only bs

I
 associated with large FSLE (>

I
0.15 d–1) were normalized 

and are referred to as bx
I

. However, a sensitivity analysis (which ranged from 0.1 to 
0.3 d–1, not shown here) to this threshold value led to similar results.

Link between strain, frontogenesis and VHT. The ambient strain field in  
Fig. 3a acts to elongate the tracer patch in the stretching direction (y direction) and 
to compress it in the x direction because the area of the tracer patch is conserved 
to the leading order10. This increases the tracer gradient in the x direction. The 
orientation and timescale of the strain field can be captured by FSLE. In Fig. 3a, the 
red (blue) FSLE lines identify the horizontal stretching (compressing) direction. 
This mechanism is particularly relevant for the formation of submesoscale fronts, 
which are thus aligned with the stretching FSLE (red line). Figure 3b shows a 
schematic illustration of the frontogenesis process. It corresponds to a 3D slice 
through a submesoscale front generated by a background mesoscale strain field 
(curved black arrows), like that in Fig. 3a. Warmer (or equivalently lighter) fluid 
(light red) is on the right of the Fig. 3b and colder (or equivalently heavier) fluid 
(light blue) is on the left. As a consequence, the VHT associated with frontogenesis 
is directed upward because of the positive correlation between the temperature and 
vertical velocity anomalies.

Richardson number. The non-dimensional Richardson number Ri, estimated 
from the seal measurements, is defined as Ri � f 2N2=b2x

I
, with N2 ¼ ∂b=∂z

I
 

the Brunt–Väissälä frequency and bx ¼ ∂b=∂x
I

 the normalized along-track 
lateral gradient of buoyancy. Ri characterizes the dynamic regime and can 
be interpreted as the steepness of the isopycnal slopes relatively to N=f

I
, as 

Ri ¼ f 2

N2
∂b=∂z
∂b=∂x

� �2
¼ f 2

N2
∂x
∂z

� �2

I

. Thus, for Ri>>1
I

, which corresponds to the QG 
regime34,35, the steepness of the isopycnal slope, ∂b=∂x∂b=∂z

I

, is small. For Ri close to one 
(that is, Ri≤4

I
), which corresponds to the ageostrophic regime34,35, the steepness of 

the isopycnal slope, ∂b=∂x∂b=∂z

I

, is large. Seal observations suggest a strong ageostrophic 
regime, as instances of strong bx

I
, jbx j≥2:5 ´ 10�7

I
 s–2, coincide with Ri<2

I
 (Fig. 2  

and Extended Data Fig. 2b). Small Ri values (Ri<2
I

) indicate an ageostrophic 
regime in which the vertical currents are large34,35.

Vertical velocities. Classical methods to diagnose vertical velocities are based on the 
Q-vector version of the omega equation23,36. In this study, we used the QG version of 
the omega equation (Supplementary Information discusses this choice). Buoyancy 
fronts are assumed to be elongated along a stretching direction (red FSLE in Fig. 3a) 
such that the along-front gradient of buoyancy in the y direction is negligible with 
respect to the cross-front one (x direction). Thus, we considered the 2D version (x,z) 
of the QG omega equation. This equation assumes that the trajectory is normal to 
the front, that is, that the front is embedded in a pure strain field, which is achieved 
through the buoyancy gradient normalization mentioned above. This equation is:

N2wxx þ f 2wzz ¼ �2 ðuxbxÞx ð3Þ

where the subscripts indicate the derivatives. ux
I

 is estimated from stretching FSLE 
derived from satellite altimetry and bx

I
, N2

I
 and f 2

I
 are from the seal’s measurements.

Equation (3) is solved using the flexible framework for spectrally solving 
differential equations provided by Dedalus37.
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Note that when the Richardson number is close to one, equation (3) 
underestimates the vertical velocities. When Ri � 2

I
, the magnitude of this 

underestimation is of ~0.7, which implies that the vertical velocities w
I

 diagnosed 
at sharp fronts should be closer to 1.4w (Supplementary Information gives more 
details).

Note also that this study focuses on strain-dominated regions. However, in 
other regions, for instance, within mesoscale eddies, the strain rate is weaker and 
its impact on the formation of horizontal gradients is counterbalanced by the 
impact of the relative vorticity, which leads to the formation of weaker gradients 
of buoyancy. In such regions, even though the 2D version of the omega equation 
is no longer appropriate and a 3D version needs to be used, the resulting vertical 
velocities are 7.5 times weaker than those associated to submesoscale fronts in 
strain-dominated regions5, like the ones considered in the present study.

VHT. The VHT is defined as ρCpw
0
T

0

I
, where Cp = 3,985 J kg–1 K–1 is the specific 

heat capacity of seawater, ρ
I

 = 1,025 kg m–3 is the density of the fluid, and w0

I
 and 

T
0

I
 are the vertical velocity and temperature anomalies, respectively.

Impact of deep-reaching ocean fronts on the mixed-layer temperature. The 
impact of the deep-reaching ocean fronts on the mixed-layer temperature, and 
therefore the sea surface temperature, is derived from a thermodynamic equation 
that captures the evolution of the mixed-layer temperature T

I
. This approach has 

already been used and validated at leading order26. The equation, integrated over 
the mixed-layer depth, is:

C
dT
dt

¼ S� λT ð4Þ

where C ¼ ρCpH
I

 is the total heat capacity of the mixed layer, H
I

 is the mixed-layer 
depth, S

I
 is the heat transport at the base of the mixed layer due to deep-reaching 

fronts and -λT
I

 is the negative feedback from the air–sea heat fluxes. From equation 
(4), a positive S

I
 causes a higher temperature T

I
, and hence a larger upward air–

sea heat exchange λT
I

.
A sensitivity analysis was carried out to assess the range of the mean mixed-

layer temperature change due to submesoscales over a period of one month, which 
corresponds to the time spent by the seal in the turbulent region and the time 
span of the high-resolution model. We set S

I
 to vary between 50 and 100 W m2, as 

obtained from both the observational (Fig. 5f and model (Extended Data Fig. 7) 
results, λ

I
 to vary between 15 and 2 W m–2 K–1, according to Vallis38 and the mixed-

layer H
I

 to vary between 100 and 200 m, which implies that C
I

 varies between 
� 4 ´ 108
I

 and � 8 ´ 108
I

 J m–2 K–1. As a consequence, equation (4) integrated over 
one month indicates that the mean mixed-layer temperature increase ranges 
between � 0:2

I
 and � 0:6

I
 °C.

Note this is a first-order estimation that includes several caveats. In particular, 
this estimation does not take into account any subsequent atmospheric feedback 
on the ocean that may arise in response to these surface heat fluxes (λT

I
). For 

instance, such a feedback may include interactions between the wind stress and 
SST anomalies at submesoscales39, which may limit the mean temperature increase.

Data availability
The marine mammal data were collected and made freely available by the 
International MEOP Consortium and the national programs that contribute 
to it, and is available at www.meop.net/database/meop-databases/meop-sms-
database-submesosc.html. The Ssalto/Duacs altimeter products were produced 
and distributed by the Copernicus Marine and Environment Monitoring Service 
with support from CNES, and is available at http://marine.copernicus.eu/services-
portfolio/access-to-products/.
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Extended Data Fig. 1 | Weakly turbulent and southern eddy edge areas. Same as Fig. 2 but for i) 2014/11/24 to 2014/12/20 with the SSH snapshot in a) 
taken on 2014/12/07. The seal crosses a large anti-cyclonic region (grey trajectory in Fig. 1) characterized by weaker currents (smaller SSH anomalies) and 
referred to as the weakly turbulent area. ii) 2014/12/22-29 with the SSH snapshot in a) taken on 2014/12/26. The seal follows the edges of mesoscale 
eddies over a distance of ~600 km. This region is referred to as the southern eddy (in orange in Fig. 1). Bold black arrows indicate the direction of the seal.

NATuRE GEoSciENcE | www.nature.com/naturegeoscience



Articles Nature GeoscieNce

Extended Data Fig. 2 | Lateral gradient of buoyancy and Richardson number in the strongly turbulent area. a) RMS of lateral gradients of buoyancy, |bx|, 
as a function of depth in the strongly turbulent area. b) Scatter plot between lateral gradients of buoyancy, |bx|, and Richardson number, Ri, in the strongly 
turbulent area. Ri<2 coincide with strong buoyancy gradients (|bx|>2.5 x 10-7s-2), highlighting the ageostrophic character of the dynamical regime 
encountered by the seal and the expected strong frontogenesis processes at play.
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Extended Data Fig. 3 | Map of finite size Lyapunov exponents. Map of FSLE over the entire domain on 13 November 2014. FSLE are greatly enhanced in 
the strongly turbulent region (black rectangle and in red in Fig. 1) compared to the rest of the domain.
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Extended Data Fig. 4 | Finite size Lyapunov exponents and horizontal gradient of buoyancy, vertical velocities and vertical heat transport at 300 m. 
Times series of a) Horizontal gradients of buoyancy at 300 m sampled by the seal (in black) and FSLE derived from satellite altimetry along the seal’s track 
(in blue). b) Vertical velocities at 300 m derived from the seal and satellite data by solving the omega equation (see main text and Methods). c) Vertical 
heat transport (see Methods). The areas described in the main text and in Fig. 1 are highlighted by the colored rectangles.
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Extended Data Fig. 5 | Daily averaged vertical velocities and vertical heat transport from the high-resolution numerical simulation. Daily averaged 
vertical section from the high-resolution numerical simulation for November 22, 2011 at 52°S of a) Vertical velocities b) Vertical heat transport. Isopycnals 
are shown by the black lines. Enhanced vertical velocities and heat transport with a width of 5-10 km are found in the ocean interior and, in particular, 
below the mixed layer, similar to the observation presented in the main text.
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Extended Data Fig. 6 | Averaged vertical heat transport from the high-resolution numerical simulation. 2-D (x,y) view of 10-day averaged vertical heat 
transport (VHT) at a) 50 m and b) 200 m. Isotherms are shown in black. Domain averaged values are respectively 92 and 197 W/m2. VHT is enhanced 
at depth and follows the isotherms on the eddy edges, and its averaged value is directed upward (positive value), all of which is consistent with the 
observational results presented in the main text.
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Extended Data Fig. 7 | Domain averaged vertical heat transport from the high-resolution numerical simulation. Monthly averaged vertical heat transport 
(<VHT>) as a function of depth over the entire domain from the high-resolution numerical simulation. VHT is directed upwards (positive values) and its 
magnitude is similar - although even higher - than what is derived from the observational data presented in the main text.
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Extended Data Fig. 8 | Distance between two dives and angle between the seal’s trajectory and the fronts. a) Histogram of the distance between 
two dives. Median distance between two dives is 700 m (dotted line) and the shortest distance is 100 m. b) Histogram of the angle between the seal’s 
trajectory and the stretching FSLE it encounters for FSLE>0.15 day-1. Oblique crossings are most frequent and a normalization is implemented to correct 
for it (see Methods).
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Consistency between seal and satellite observations at meso- and submesoscale
The contribution of the vertical stratification to the SSH can be estimated by integrating the hydrostatic equation dp/dz =−ρg.
The SSH (η) referenced from z = 0 is then given by1

η =
p′b

ρ0g
− pa

ρ0g
−

∫ 0

−H

ρ ′

ρ0
dz, (1)

where p is the pressure, ρ the potential density, ρ0 the reference potential density (1025 kg m−3), ρ ′ the potential density
anomaly (ρ = ρ0+ρ ′), g the gravity of Earth, pa the atmospheric surface pressure, H the depth of the ocean and p′b = pb−ρ0gH
the bottom pressure anomaly with pb the ocean bottom pressure. The term

∫ η
0 ρ ′/ρ0 dz has been neglected because η � H.

The three terms on the right hand side of equation (1) represent respectively the contributions from the bottom pressure, the
atmospheric pressure loading, and the steric height. The steric height (ζ ) is computed with the seal dataset from the surface
down to H = 400 m for dives reaching at least 400 m (3100 dives) as ζ400 =

∫ 0
−400 ρ ′/ρ0 dz. ζ400 is then compared to the SSH

observed by altimetry.

SSH obtained from satellite data and mixed layer depth (MLD) and buoyancy anomalies, sampled by the seal, have a larger
magnitude in the strongly turbulent region (Fig. 2) than in the weakly turbulent one (Extended Data Fig. 1i). Anticyclonic
structures, or positive SSH anomalies, are associated with an increase in MLD and bowl-shaped positive buoyancy anomalies
from the surface down to 400 m depth (Fig. 2 and Extended Data Fig. 1). Shallow MLD and negative buoyancy anomalies are
associated with cyclonic structures, or negative SSH anomalies, confirming the fact that buoyancy anomalies compensate SSH
anomalies. To further quantify this compensation over the water column, we have compared SSH with the depth-integrated
buoyancy also called steric height. Since seal observations mostly sample the upper ocean, the steric height contribution has
been estimated from surface down to 400 m (which concerns at least 35% of the dives) as ζ400 =

∫ 0
−400 bdz with b the buoyancy

(see Methods). As emphasized by the time-series in Fig. S1a (SSH in black and ζ400 in blue), SSH and steric height fluctuations
correlate well over the entire trajectory, but only for scales smaller than 100 km. SSH reveals a large-scale signal (∼1000 km)
not present for ζ400. This indicates that SSH at larger scales is likely compensated by the buoyancy field below 400 m and/or by
bottom pressure, The contribution of ζ400 to SSH is no more than 30% as revealed by the linear regression coefficient of 3.58
linking the two-time series (not shown).

To remove this large-scale contribution and focus only on the meso/sub-mesoscale band, time-series of the horizontal gradients
of SSH and ζ400 are computed (a gradient operator overemphasizes contribution of smaller scales). This is the equivalent
of comparing horizontal currents from SSH using the geostrophic approximation, with those explained by the buoyancy
field contribution in the water column using the thermal wind balance1. The two time-series are now closer in terms of
amplitude differences (Fig. S1b). ζ400 gradients statistically explain almost 75% of the SSH gradients as revealed by the linear
regression coefficient of 1.35 linking the two time-series (not shown). This further emphasizes the consistency between the
two independent datasets at meso/sub-mesoscale despite their different spatial resolution. The main differences concern the
extrema of SSH gradients (mostly located on the eddy edges) that overcome those of ζ400 gradients by a factor of two to three.
This suggests the steric height is not integrated deep enough to capture SSH in the upper mesoscale band and therefore that
dynamics of this band affects at least the first 400 m below the surface.
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Link between the strain field, Finite Size Lyapunov Exponents and lateral gradients of
buoyancy
As illustrated in Fig. 3a, buoyancy anomalies embedded in a strain field are elongated in one direction and compressed in
the perpendicular direction. This mechanism can be understood in terms of particle dispersion, and thus in terms of Finite
Size Lyapunov Exponents (FSLE); two particles, initially close and embedded in a strain field, become quickly separated in
one particular direction (the stretching direction, in red in Figs 3a and 4a). As such, the time scale of their separation can be
characterized by λ−1 (see equation 2 in Methods), with large λ being indicative of an intense strain field. More precisely, FSLE
characterize both the time scale (via the largest FLSE eigenvalue λ ) and the direction (via the FSLE eigenvector associated to
λ ) of the elongation of buoyancy anomalies.

Thus, the time scale λ (shown in the colorbar of Fig. 4a for instance) can be used to characterize the production of buoyancy
gradient expressed in the RHS of the omega equation (equation 3 in Methods). In particular, the intersection of intense
compressing and stretching FSLE lines, respectively in blue and red in Figs 3a and 4a, identify Lagrangian hyperbolic points,
where particles (or tracers) are simultaneously being stretched along one direction and compressed along the other one. Areas
surrounding hyperbolic points are particularly prone to frontogenesis.

Vertical velocities underestimation
At steeply titled isopycnals’ fronts, the vertical velocity field is more accurately captured by the full omega equation, known as
the Sawyer-Eliassen (SE) equation, than by its QG version2, 3. The 2-D (x,z) SE equation, assuming the front is embedded in a
pure strain field and diffusive processes are negligible, reads2:

N2 ∂ 2ψ
∂x2 +F2 ∂ 2ψ

∂ z2 +2S2 ∂ 2ψ
∂ z∂x

= 2uxbx, (2)

with ψ a meridional streamfunction related to the ageostrophic circulation (i.e. defined as va = − ∂ψ
∂ z , w = ∂ψ

∂x , with va

the ageostrophic component of the meridional component of the horizontal velocity field. N2 = N2(x,z), S2 = −bx and
F2 = f ( f + ∂v

∂x ), where ∂v
∂x is the relative vorticity associated with the front3.

Compared with the QG version (equation 3 in Methods) rewritten in the form of the ageostrophic stream function, equation
(2) involves F2 = f ( f + ∂v

∂x ) instead of f 2 as well as N2(x,z) instead of N2(z). In addition, equation (2) involves the extra

term 2S2 ∂ 2ψ
∂ z∂x . A dimensional analysis, using L and D as respectively the horizontal and depth scales of the front, indicates

that this extra term is of the order of Ri−1, with Ri the Richardson number, compared to the other two terms on the LHS2, 3.
Since Ri−1 is not small but close to one at locations of sharp fronts, this term should not be ignored. Nevertheless, a real
solution for equation (2) exists if and only if F2N2− S4 > 0. This condition can be written as f 2N2(1+Ro-Ri−1)>0, with
Ro the Rossby number. As such, it places a strong constraint on Ri−1, which is postive and has to be smaller than |1+Ro|.
This leads to a limitation of the steepness of the front and also to a limitation of the importance of the S2 term relatively to others.

However, we do not have access to F2 and in particular to ∂v
∂x , the along-front relative vorticity, that can be of order f . SSH

observations have a spatial resolution too low to resolve ∂v
∂x at these scales. This is why we use the QG version (equation 3

in Methods). Nevertheless, many studies, starting with Hoskins (1982)4 and more recently confirmed by Hakim and Keyser
(2001)2, emphasize that the SE and QG solutions are qualitatively similar when the condition F2N2− S4 > 0 is met. In
particular, the SE and QG ageostrophic circulation, and therefore the w-field, have the same sign. What differs is the amplitude
of the w-field, which is larger in the SE solution, as well as the shape of the ageostrophic circulation, which is more tilted
and oriented parallel to the isopycnals in the SE solution. Thus, the QG omega solution gives the correct sign for w but the
magnitude may be underestimated at low Ri.

This underestimation can however be quantified using the analytical solutions for the QG and SE versions of the omega
equation derived in Hakim and Keyser (2001)2. These authors show that wSA ∼ wQG[

PVQG
PVPE

]1/2 with wSA and wQG respectively
the solution of the QG and SA equations and PVQG and PVPE respectively the QG potential vorticity and the Ertel potential
vorticity. Using the approximations PVQG ∼ f N2 and PVPE ∼ f N2[1−Ri−1], as detailed by Thomas et al. 20083, leads to
[

PVQG
PVPE

]1/2 = [ 1
1−Ri−1 ]

1/2. When Ri = 2, which corresponds to the strongest fronts in the seal measurements (see main text), we
get wSA ∼ 1.4×wQG. In other words, the maximum w-values found in our study should be closer to 140 m/day than to 100
m/day.
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Dominance of frontogenesis versus frontolysis understood via the direct cascade of po-
tential energy

The classical frontogenesis process5 emphasizes that the increase tendency of a buoyancy gradient embedded in a strong strain
field is balanced by a vertical velocity field that tends to decrease this buoyancy gradient (black arrows in Fig. 3b). The reason
is that a buoyancy gradient increase destroys the thermal wind balance and this balance is restored by the emergence of the
vertical velocity field. These mechanisms lead to the omega equation (see Methods section “Vertical velocities”). As illustrated
in Fig. 3b, the frontogenesis process leads to an upward vertical heat flux (red arrows in Fig. 3b) because of the positive
correlation between temperature and vertical velocities anomalies.

On the other hand, the frontolysis process, or the destruction of front, occurs when the strain rate decreases and/or changes its
direction. As a consequence, the buoyancy gradient relaxes, which is then balanced by a vertical velocity field (and therefore a
vertical heat flux) in the opposite direction for the same reason as before (thermal wind balance). The frontolysis process is
also captured by the omega equation and is associated with a downward vertical heat flux because of the negative correlation
between temperature and vertical velocities anomalies (Fig. 5c). Frontogenesis (frontolysis) processes explain occurrences of
positive (negative) vertical heat fluxes displayed in Fig. 5c and Extended Data Fig. 5b.

However, a well-known property of mesoscale eddy turbulence is the direct cascade of potential energy driven by the background
strain field. The direct cascade refers to the creation of buoyancy anomalies at smaller and smaller scales and thus to the
continuous production of submesoscale fronts6. This is why frontogenesis processes statistically dominate frontolysis ones, as
can be seen in Fig. S2c where positive buoyancy fluxes are more numerous and of greater magnitude than negative ones. As a
consequence, we propose that the dominance of positive vertical heat fluxes at submesoscale as demonstrated in the main text is
consistent with the strong background eddy field (Fig. 5f).

Numerical simulation comparison
The vertical velocity field and vertical heat transport (VHT) calculated from the observations are compared to the same fields
obtained from a high-resolution numerical simulation in the Kerguelen area in late spring-early summer (November 2011)
performed with the Massachusetts Institute of Technology general circulation model (MITgcm). This high-resolution simulation
has a horizontal resolution of 1/48◦, 90 vertical levels and 10 minute outputs and is described in many papers (see for example
Su et al. (2018)7). The model domain is 45◦S–55◦S/ 85◦E–95◦E (or ∼ 1000× 1000 km). This domain is embedded in
the MITgcm LLC 4320 global numerical simulation performed at the same resolution but with hourly outputs7. Boundary
conditions and forcings are supplied by the global simulation.

Vertical sections of daily averaged vertical velocities and vertical heat transport obtained from this simulation are presented in
Extended Data Fig. 5. At depths of 100–600 m, intense vertical velocities with a width of 5–10 km are present below the mixed
layer and reach 300 m/day. Similar features are observed for vertical heat transport with values locally reaching 4000 W/m2.
Two-dimensional slices (x,y) of vertical heat transport averaged over 10 days are shown in Extended Data Fig. 6 at 50 and 200
m. This Fig. clearly highlights that the organization of VHT is driven by the background mesoscale strain field, intensified
on the eddy edges. This Fig. also shows the dominance of positive VHT in the domain as well as its intensification at depth.
Finally, Extended Data Fig. 7 presents the domain-averaged VHT over one month, which reveals similar - although larger -
values than the ones derived from the observational data. Overall, the similar shape, distribution within the water column, and
magnitude of both quantities in the model and in the observations strengthen the results presented in this study, and further
highlight the impact of deep reaching ocean fronts on oceanic heat transport.
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Supplementary Fig. S1. SSH and steric height (ζ400). a) Time series of satellite SSH (black line) along the seal’s path and
steric height (ζ400, blue line) calculated from the SES dataset down to 400 m. b) Time series of the lateral gradients of SSH
(SSHx, black line) and steric height (ζ400x , blue line). On both panels, the red (grey) zone corresponds to the strongly (weakly)
turbulent area of Fig. 2(S1i).
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Supplementary Fig. S2. Buoyancy and temperature anomalies and vertical buoyancy fluxes from seal and satellite
data Same as Fig. 5 but for buoyancy. a) Vertical section of buoyancy anomaly sampled by the seal. b) Vertical section of
vertical velocity anomaly derived from the seal and satellite data by solving the omega equation (see main text and Methods). c)
Vertical section of vertical buoyancy flux (or transport, VBF) defined as w′b′, with w′ and b′ are the anomalies of vertical
velocity and buoyancy, respectively. The mixed layer depth is shown in bold black. From panel c) it is clear that frontogenesis
(positive VBF, in red) dominates frontolysis (negative VBF, in blue).
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4 Ageostrophic dynamics of deep submesoscale fronts

In this chapter, we offer a dynamical explanation for the observational results presented in Chap-

ter 3. A subset of the global realistic LLC4320 simulation, with a 1/48o horizontal resolution

and tidal forcing (see section 1.3), is used in the ACC to demonstrate that the ocean interior

departs from the quasi-geostrophic regime down to depths of 900 m, i.e., well below the mixed-

layer. Results highlight that, contrary to the classical paradigm, the ocean interior is strongly

ageostrophic, with a pronounced cyclone-anticyclone asymmetry and a dominance of frontoge-

nesis over frontolysis. Numerous vortices and filaments, from the surface down to 900 m, are

characterized by large Rossby and low Richardson numbers, strong lateral gradients of buoy-

ancy and vigorous ageostrophic frontogenesis. These deep submesoscales fronts are only weakly

affected by internal gravity waves and drive intense upward vertical heat fluxes, consistent with

recent observations in the ACC (Siegelman et al., 2019a) and the Gulf Stream (Yu et al., 2019).

As such, deep submesoscale fronts provide an efficient pathway for the transport of heat from the

ocean interior to the surface, suggesting the unexpected presence of deep oceanic restratification.

Siegelman, L.. (2020). Energetic submesoscale dynamics in the ocean interior. Journal of

Physical Oceanography.
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ABSTRACT

Submesoscale ocean processes, characterized by order-1 Rossby and Richardson numbers, are currently

thought to be mainly confined to the ocean surface mixed layer, whereas the ocean interior is commonly

assumed to be in quasigeostrophic equilibrium. Here, a realistic numerical simulation in the Antarctic

Circumpolar Current, with a 1/488 horizontal resolution and tidal forcing, is used to demonstrate that the

ocean interior departs from the quasigeostrophic regime down to depths of 900m, that is, well below

the mixed layer. Results highlight that, contrary to the classical paradigm, the ocean interior is strongly

ageostrophic, with a pronounced cyclone–anticyclone asymmetry and a dominance of frontogenesis over

frontolysis. Numerous vortices and filaments, from the surface down to 900m, are characterized by large

Rossby and low Richardson numbers, strong lateral gradients of buoyancy, and vigorous ageostrophic

frontogenesis. These deep submesoscales fronts are only weakly affected by internal gravity waves and drive

intense upward vertical heat fluxes, consistent with recent observations in the Antarctic Circumpolar Current

and theGulf Stream.As such, deep submesoscale fronts are an efficient pathway for the transport of heat from

the ocean interior to the surface, suggesting the presence of an intensified oceanic restratification at depth.

1. Introduction

Oceanic mesoscale and submesoscale turbulence has

been extensively studied in the past decade (Klein and

Lapeyre 2009; Mahadevan 2016; McWilliams 2016).

Results emphasize the existence of submesoscale fronts

(#50-km width), predominantly confined to the surface

mixed layer (ML) and particularly energetic in winter

when ML instabilities are active (Fox-Kemper et al. 2008;

Callies et al. 2015). These fronts, mostly produced by co-

interacting mesoscale eddies (50–300 km size), are as-

sociated with important positive vertical heat fluxes (Su

et al. 2018). In contrast, submesoscale vertical heat

fluxes in the ocean interior are thought to be small. This

is because, in the classical paradigm, motions below

the ML are broadly assumed to be in quasigeostrophic

(QG) balance, preventing the formation of strong

density gradients at depth.

However, growing evidence suggests that interior ocean

dynamics significantly depart from quasigeostrophy and

may be strongly ageostrophic, as proposed by Molemaker

et al. (2010). These authors show that relaxing the QG

assumptions in an idealized model of the ocean interior

leads to the emergence of large Rossby number and

energetic frontogenesis driven by mesoscale eddies.

Seismic imaging has also long revealed the existence

of ageostrophic mesoscale eddies (50–100 km) in the

ocean interior (Biescas et al. 2008; Menesguen et al.

2009; Barbosa Aguiar et al. 2015), such as the subsur-

face anticyclones of the North Atlantic Ocean known

as ‘‘meddies’’ (Armi et al. 1988) or the coherent eddies

of the Gulf Stream (Gula et al. 2019). In addition,

two recent in situ studies diagnosed strong upward

vertical heat fluxes in the ocean interior (Siegelman

et al. 2020; Yu et al. 2019), believed to be produced by

ageostrophic dynamics. In particular, Siegelman et al.

(2020) reported an enhanced vertical heat flux at deep

submesocale ocean fronts in the Kerguelen region in

spring and summer, seasons traditionally associated

with weak submesoscales (Sasaki et al. 2014; Callies

et al. 2015).
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Here, ageostrophic dynamics of deep submesoscale

ocean fronts are studied in the Antarctic Circumpolar

Current (ACC), offering a dynamical explanation for

the observational results of Siegelman et al. (2020).

The numerical simulation is described in section 2. The

Ertel potential vorticity (PV), used to characterize meso–

submesoscale turbulence and therefore ocean-scale in-

teractions, is briefly introduced in section 3 in terms of

nondimensional numbers. The ageostrophic character of

this turbulence, along with frontal dynamics and vertical

heat fluxes are analyzed in section 4. Some conclusions

and perspectives are provided in section 5.

2. Realistic numerical simulation

A primitive equation global ocean simulation with a

horizontal resolution of 1/488, 90 vertical levels and in-

ternal tides (appendix A) is used to study ocean-scale

interactions over a broad range of scales, from 10km to

basin scales. A subdomain of the ACC, just north of

the Kerguelen Islands, that spans 558–738E, 408–468S
(;1300km 3 700km) is analyzed. The domain size is

sufficiently large to capture part of the large-scale

Subantarctic Front (SAF; Fig. 1) (Kim and Orsi 2014),

and the model resolution is sufficiently high to resolve

multiple mesoscale eddies and to permit the emergence

of submesoscale features such as elongated fronts and

submesoscale vortices (Fig. 2).

The timeperiod ranges from15October to 15November

2012, that is, late spring in the Southern Hemisphere.

This season lies intermediate to the submesoscale-

energetic winter and summertime, when submesoscales

are thought to be inhibited by shallow ML (Sasaki et al.

2014; Callies et al. 2015). Here, the mixed layer depth

(MLD) is relatively shallow with an average value

of 50m but having local maxima of 100m within

cyclonic eddies.

3. Ertel potential vorticity as a tracer of ocean-scale
interactions

The Ertel PV is a key dynamical quantity for the study

of a stratified fluid in rotation. It is conserved along a

Lagrangian trajectory and is only modified by sources,

sinks, and friction. As such, the Ertel PV experiences a

direct cascade in which numerous submesoscale fila-

ments are generated by co-interactingmesoscale eddies,

the latters emerging from baroclinic instabilities of large-

scale flows (Pedlosky 2013a). The Ertel PV is used here

to characterize the flow field in terms of mesoscale and

submesoscale turbulence.

The Ertel PV can be expressed as

q5 ( f 1 z)b
z
1 (k3 u

z
) � =

H
b , (1)

where b5 g(12 r/r0) is buoyancy, with g being Earth’s

gravitational acceleration, r being potential density, and

r0 being a reference density of 1027.5 kgm23, f is the

Coriolis parameter, z 5 yx 2 uy is the vertical compo-

nent of the 3D vorticity vector (i.e., the relative vortic-

ity), k3 uz 5 (2yz, uz) is its horizontal component, and

the spatial derivatives of w are neglected (Holton 1973).

Subscripts denote partial derivatives.

The Ertel PV can thus be decomposed into two main

components: ( f 1 z)bz and 2yzbx 1 uzby. It can also be

expressed in terms of the nondimensional Rossby num-

ber Ro ([z/f) and Richardson number Ri [[f2N2/(=b)2]

(assuming thermal wind balance) as

FIG. 1. Map of buoyancy anomaly (shading; the ‘‘e’’ in the values indicates that the numeral

preceding the e should bemultiplied by 10 raised to the sign and numerals following it), defined as

the anomaly with respect to the domain-averaged value, at 99m superimposed with contours of

SSH ranging from 20.9 to 1.15m at 0.03-m interval. The map is a randomly selected snapshot

taken at 0200UTC28Oct 2012, which is representative of the time period considered in this study.
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q’ fN2(11Ro2Ri21) , (2)

where N2 [ bz is the Brunt–Väisälä frequency squared

(Thomas et al. 2008).

For QG flows, Ro� 1 and Ri� 1, which corresponds

to a balance between pressure and Coriolis forces at

leading order and a small isopycnal slope, respectively.

For ageostrophic flows, Ro5O(1) and Ri# 1, indicating

a break of geostrophic balance and a large isopycnal

slope, respectively. Commonly accepted values forRo in

an ageostrophic regime start at;0.3–0.5, corresponding

to Ri21 of ;0.1–0.2. This is because Ro2 5 Ri21 when

the horizontal length scale of the flow is close to the first

Rossby radius of deformation (Molemaker et al. 2005).

In the next sections, ageostrophy is explored in terms of

the Ertel PV, Ro, and Ri.

4. Results

a. Ocean-scale interactions in the Antarctic
Circumpolar Current

1) LARGE-SCALE BACKGROUND FLOW

The large-scale meandering SAF has a width of

O(100 km) and strong currents reaching 1.5m s21 and

separates dense waters in the south from light waters

in the north (Fig. 1). This geostrophic jet, is, to leading

order, in thermal wind balance within the perma-

nent thermocline, which exhibits a sharp stratification

gradient; N2 increases from 3 3 1025 to 5.5 3 1025 s22

over just 50 km from south to north and the permanent

thermocline’s depth deepens from 200 to 700m (see at

43.58S in Fig. 3a). This is reflected in the large-scale

features of Ertel PV that are essentially governed by fN2

[Eq. (2)] and follow contours of sea surface height (SSH;

Fig. 2). North of the SAF and down to 506m, the Ertel

PV has a lowmagnitude of;33 1029 s23, indicating the

presence of moderately stratified fluid (N/f ; 160) sit-

ting above the permanent thermocline. South of the

SAF and starting from 99m, the Ertel PV has a high

magnitude of ;5 3 1029 s23, indicating the presence of

strongly stratified fluid within the permanent thermocline

(N/f ; 215). Large-scale patterns of Ertel PV become

more prominent with depth (Fig. 2), covering the quasi

totality of the domain at 900m (not shown).

Numerous mesoscale cyclones and anticyclones are

released through baroclinic instabilities of the SAF. The

eddies have a size of ;150 and 50km south and north,

respectively, of the SAF (Fig. 1). This striking size dif-

ference is a consequence of the stratification difference

that is reflected in the first Rossby radius of deformation,

Ld 5 NH/f, with H being the depth scale of the flow,

corresponding to the depth of themain thermocline, and

f being the Coriolis frequency. Mesoscale buoyancy

anomalies (in color in Fig. 1) are mostly present in the

vicinity of the SAF and are consistent with the thermal

wind balance, that is, positive within anticyclones and

negative within cyclones. However, there is a slight phase

shift between these mesoscale buoyancy anomalies and

large-scale SSH contours, as can be seen at 438S, 628E
(Fig. 1). This offset is key to the generation of sub-

mesoscale buoyancy fronts and filaments, because the

strain field will then be able to stretch and compress

these background anomalies (Klein et al. 2019). These

large- and mesoscale characteristics are common to the

two othermost energetic currents: theKuroshio Extension

(Sasaki et al. 2014) and the Gulf Stream (Chassignet and

Xu 2017).

2) MESO- AND SUBMESOSCALE TURBULENCE

Meso- and submesoscale turbulence is characterized

by the spontaneous emergence of numerous small-scale

filaments and vortices with a horizontal size of tens of

kilometers (McWilliams 2016), not directly identifiable

in SSH (Fig. 1) but evident in tracer fields, such as the

Ertel PV (Klein et al. 2019).

Meso- and submesoscale features are strongly hetero-

geneous throughout the domain, as can be seen in the

maps of Ertel PV (Figs. 2a–c). North of the SAF, nu-

merous small eddies (;50km in size) are associated with

negative Ertel PV anomalies extending down to at least

506m. These eddies are surrounded by filaments of Ertel

PV at their periphery and in between them, elongated

over distances of tens of kilometers. Instances of depth-

intensified turbulence also occurs, such as at 506m around

41.58S, 698E (Fig. 2c). South of the SAF, that is, in

the large-scale-dominated and high-Ertel-PV region, few

large mesoscale eddies (;200km size) are mostly con-

fined to the first 200–300m. They are associated with

elongated filaments over distances greater than 100km.

The Ertel PV is mostly explained by its first compo-

nent, that is, ( f1 z)N25 fN2(11Ro), as can be seen on

the Ertel PV decomposition shown in Fig. 2, highlight-

ing the dominant contribution of the relative vorticity at

meso and submesoscale. The second component, that

is, 2yzbx 1 uzby ’ 2fN2Ri21, is generally an order of

magnitude lower than the first one, except at the loca-

tion of strong submesoscale fronts where they become

comparable (see section 4b). This latter component is

mostly dominant in the vicinity of the SAF and its width

increases with depth (Figs. 2g–i).

The ageostrophic character of the ocean interior be-

comes obvious on vertical sections of Ertel PV (Figs. 3

and 4), especially north of the SAFwhere the permanent

thermocline can be deeper than 500m. Three classes of

eddy emerge. First, surface-trapped mesoscale eddies
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are conspicuous in the domain, see at 62.58E in Fig. 4a

for instance. They extend down to 100–200m, have a

horizontal size of about 50 km, and are associated with

low Ertel PV (Figs. 4c,d). They are mostly anticyclones

(z/f , 0), characterized by jRoj $ 0.5 and surrounded

by positive rings of z/f (Figs. 4i,j), which explains the

high-Ertel-PV rings located at their periphery. Strikingly,

these eddies are encircled by strong vertical and

horizontal gradients of buoyancy, apparent in both

N2 (Figs. 4a,b) and the second component of the Ertel

PV (Figs. 4g,h). Since the Ertel PV and buoyancy fields

are conserved along a Lagrangian trajectory, these sub-

mesoscale fronts should act as dynamical barriers that

prevent mesoscale eddies from getting destroyed by their

interaction with neighboring ones. As a consequence,

mesoscale eddies become more coherent and energetic

and their lifetime increases (Mariotti et al. 1994).

Second, subsurface mesoscale eddies are ubiquitous

throughout the domain—see at 578E in Fig. 4a or at

41.88 and 42.58S in Fig. 4b for instance. Their vertical

extent is of 400–600m, and their horizontal size is

50–100km. They have a less pronounced surface signa-

ture than surface-trapped ones (Fig. 2). Once again,

these eddies are mostly anticyclones associated with

low Ertel PV anomalies and surrounded by rings of

z of opposite sign as well as enhanced buoyancy gradi-

ents, explaining the contours of high Ertel PV located at

their edges. High jRoj ($0.5) is found both in their core

and at their periphery. These subsurface eddies may

result from the subduction of low buoyancy waters lo-

cated south of the SAF below higher buoyancy waters

north of the SAF (Fig. 1). These eddies are also remi-

niscent of those recently observed in the Gulf Stream

(Gula et al. 2019) as well as of the well-known meddies

encountered in the North Atlantic (Menesguen et al.

2009; Barbosa Aguiar et al. 2015).

Third, deep mesoscale eddies with almost no surface

signature are present, see for example at 418S in Fig. 3a

and 698E in Fig. 3b. These eddies appear to emerge from

the instabilities of the permanent thermocline north of

the SAF, contributing to inject deep and strongly strat-

ified fluid in upper oceanic layers (see at 698E in Fig. 3b

where waters at 600m are injected up to 200m). Contrary

to the previous two types, they aremostly cyclones (z/f. 0)

associated with anomalies of high Ertel PV that is ex-

plained by its first component (Fig. 3h). Yet, similar to

surface-trapped and subsurface eddies, they are sur-

rounded by intense submesoscale buoyancy gradients

and rings of relative vorticity of opposite sign (Figs. 3i,j).

The ageostrophic character of the flow field down to

506m, that is, well below the mixed layer, also occur

away from the SAF, in the northern part of the domain

(e.g., at 608–668E in Fig. 3b); high jRoj$ 0.5 is associated

with numerous submesoscale structures above the per-

manent thermocline (600–800m; Figs. 3b,j). These sub-

mesoscale features exhibit alternating low and high

Ertel PV anomalies (Fig. 3d), mostly explained by the

relative vorticity (Fig. 3j). Indeed, they have a very weak

signature on buoyancy gradients (Fig. 3h).

South of the SAF, shallow eddies above the permanent

thermocline (;200m, Fig. 3a) have similar characteristics

as surface-trapped ones north of the SAF (Fig. 3b); they

are surrounded by filaments of z of opposite sign and

enhanced buoyancy gradients. Within the permanent

thermocline, an unexpected signature of internal gravity

waves (IGWs) is present on the Ertel PV and relative

vorticity fields. IGWs exhibit patterns of radial and

crisscross beams, as can be seen at 43.58–45.58S inFigs. 4d,
4f, and 4j. However, they should not impact the spatial

distribution of Ertel PV because linear waves do not

transport material or tracer (Kundu and Cohen 2004).

Nevertheless, these IGWs can have a local and transient

signature as their high vertical velocity (Pedlosky 2013b;

Kundu and Cohen 2004) may affect the buoyancy field.

This interesting feature is further developed below.

The simulation includes energetic IGWs, comprising

internal tides, near-inertial motions and a large IGWs

continuum at higher frequencies. As such, it is essential

to be able to disentangle them from balanced motions,

that is, flows in thermal or gradient wind balance that

encompass meso and submesoscales (Klein et al. 2019).

To do so, we use frequency–wavenumber (v–k) spectra

following the methodology described in Torres et al.

(2018). The dispersion relation curve associated with the

highest baroclinic mode resolved by the model (10th

baroclinic mode, curved dashed line in Fig. 5) partitions

IGWs, located above the curve, and balanced motions,

located below the curve [see appendix B and Torres

et al. (2018) for more details]. The v–k spectra of KE,

Ertel PV, z, and =b are shown at 39, 299, and 900m

(Fig. 5). However they have a similar shape from the

surface down to 506m and decrease linearly with depth

(partially shown for 39 and 299m). As expected, most

of the KE is contained at mesoscale (.50 km) and low

frequencies at both 39, 299, and 900m (Figs. 5a,e,i).

While the impact of IGWs is visible, especially for M2

tidal motions and near-inertial waves, their relative

contribution is weak compared to that of balanced

motions. The Ertel PV exhibits a different distribution.

At 39m,most of the variance is contained at submesoscales

(,50km, Fig. 5b). At 900m, the Ertel PV is less energetic

and the variance is contained at both meso and sub-

mesoscale (Fig. 5j). Once again, the impact of IGWs on

the Ertel PV is substantially weaker than that of balanced

motions. The relative vorticity field is even less af-

fected by IGWs. At 39m (Fig. 5c), most of the variance is
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contained at high wavenumbers, whereas at 900m

(Fig. 5k) the variance is distributed between meso and

submesoscales, similar to the Ertel PV. Consistent

with the features observed in physical space, v–k

spectra of z are similar to those of Ertel PV’s first

component (f 1 z)N2 (Figs. S1a–c in the online supple-

mental material). Lateral gradients of buoyancy j=bj are
not affected by IGWs down to 506m (Figs. 5d,h) but they

are at 900m (Fig. 5l). Down to 506m, the variance

is principally captured by submesoscales. At 900m,

the variance distribution is similar to the Ertel PV.

Consistent with the features observed in physical space,

v–k spectra of j=bj are remarkably similar to those of

Ertel PV’s second component2yzbx1 uzby (Figs. S1b–d

in the online supplemental material). The variance of=b

is mostly explained by submesoscales down to 506m. At

900m, the variance of =b is smaller. Overall, v–k spectra

highlight that the Ertel PV and its components are prin-

cipally explained by scales #50km and that IGWs have

only a weak impact. As such, these results emphasize

the existence of energetic submesoscales in the ocean

interior, and in particular of energetic frontal dynamics

over the domain and time period considered in this study.

b. Ageostrophic dynamics in terms of lateral
gradients of buoyancy, Ro, and Ri

1) LATERAL GRADIENT OF BUOYANCY

Lateral gradients of buoyancy j=bj are of particular

interest because of their link with frontogenesis pro-

cesses associated with large vertical buoyancy and heat

fluxes (Hoskins and Bretherton 1972). Strong j=bj are
mostly at submesoscale (Figs. 6a,c,e). They are found

from the surface down to 900m along the SAF as well as

FIG. 6. Maps of (left) lateral gradients of buoyancy j=bj superimposed with SSH contours ranging from20.9 to 1.15m at 0.1-m interval

and (right) the frontogenesis function Fs at (a),(b) 99, (c),(d) 299, and (e),(f) 506m. The maps are a randomly selected snapshot taken at

0200UTC 28Oct 2012. The dashed rectangle in (b) corresponds to an active submesoscale area used in Fig. 15 (below) to compute vertical

heat fluxes.
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at the periphery and in between mesoscale eddies, that

is, in strain dominated regions, as inferred from SSH

contours (Figs. 6a,c,e). They have awidth of;10km and

are meandering over length scales ranging from 50km,

in the intense submesoscale area located at the center

of the domain (438S, 63.58E), to several hundreds of

kilometers along the SAF. The typology of j=bj is very
rich; whereas j=bj in the intense submesoscale area tend

to be concentrated in the upper hundred meters of the

water column, other j=bj have an enhanced subsurface

signature, which is especially the case for subsurface

eddies located north of the SAF (Figs. 6a,c,e and 7).

Overall, j=bj are similarly distributed as Ertel PV’s

second component2yzbx 1 uzby (Figs. 2g–i, 3g–h and

4g–h) as most of j=bj are in thermal wind balance in the

alongfront direction (in red in Figs. 2g–i).

Furthermore, the 3D distribution of j=bj is remarkably

consistent with that of mesoscale buoyancy anomalies. A

striking relation between mesoscale buoyancy anoma-

lies and submesoscale j=bj emerges (Fig. 7). One can

observed the classical bowl shape of the buoyancy field

within anticyclone, such as between 578 and 598E from

0 to 350m, and reverse bowl shape within cyclone, such

as at 698–708E between 300 and 800m (Fig. 7b). Intense

j=bj, highlighted by the black contours in Fig. 7, are

located at the periphery of mesoscale eddies, both

FIG. 7. Four vertical sections of buoyancy anomaly b0 (shading; the ‘‘e’’ in the values indicates that the numeral preceding the e should be

multiplied by 10 raised to the sign and numerals following it), superimposed with j=bj. 5 3 1028 s22 (black contours) corresponding to

the dashed white lines in Fig. 2d. The mixed layer depth is shown in gray and corresponds to a density increase of 0.03 kgm23 from the

density at 10m. Shown is a randomly selected snapshot taken at 0200 UTC 28 Oct 2012.

736 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 50



within and below the MLD, consistent with the maps

of j=bj (Figs. 6a,c,e). While some j=bj extend from the

surface down to depths of 700m, following deep

reaching buoyancy anomalies (at 66.5 8E in Fig. 7c for

instance), other j=bj are only present at depth with a

weak—or no—surface signature. This is the case for

deep eddies (Figs. 7b–d). j=bj are slanted and follow the

bowl-shaped buoyancy anomalies. Such slanted j=bj are
known to result from the competition between hori-

zontal strain and vertical shear (Haynes and Anglade

1997; Klein et al. 1998; Meunier et al. 2015).

Statistics over the domain indicate that j=bj at 39m,

that is, mostly within the ML, reaches values of up to

2.63 1027 s22 (Fig. 8a). These values are close to, although

smaller than, what is found in the literature in both ob-

servational and numerical studies. Indeed, Siegelman et al.

(2019, 2020) reported values of up to 4 3 1027 s22 using

in situ observations collected by southern elephant seals in

this region in spring and summer, whereas Rosso et al.

(2014) documented j=bj of up to 5 3 1027 s22 at 50m

in a high-resolution model at 1/808 also in this region.

Note that the lower j=bj obtained here compared to

Rosso et al. (2014) is likely due to the lower resolution of

our model. However, a key and surprising result con-

cerns the quasi-constant magnitude of j=bj with depth.

Indeed, j=bj still reach values greater than 2 3 1027 s22

below the ML and cumulative distributions of j=bj
at different depths are broadly similar down to 506m:

j=bj . 5 3 1028 s22 account for 25% of the domain at

39 and 99m, 20% at 299 and 506m, and 15% at 900m

(Fig. 8a). This weak depth dependence of j=bj, once
again, strongly contrasts with QG dynamics. Indeed,

buoyancy anomalies in the QG regime have a spectral

slope in k22 near the surface and k25 in the ocean interior,

that is, a k23 difference between surface and depth (Hua

and Haidvogel 1986; Smith and Ferrari 2009; Molemaker

et al. 2010). Here, the wavenumber spectrum of buoyancy

displays a slope in k22 down to 99m and in k22.5 below

(Fig. 9), which highlights the ageostrophic character of

the dynamics at depth. The k23 difference in spectral

slope between the QG and ageostrophic regimes also

applies to j=bj. This implies that, if a mesoscale buoyancy

gradient with a size of 100 km is similar at surface and

depth, j=bj with a size of 10 km should be smaller by a

FIG. 8. Cumulative distribution of (a) j=bj, (b) jz/f j, (c) Fs/(=b)
2 and (d) strain rate at different depths over the

entire domain for a randomly selected snapshot taken at 0200 UTC 28 Oct 2012. The horizontal dashed line

corresponds to y 5 0.25.
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factor of 30 at depth than at the surface, or smaller by

a factor of 1000 in terms of variance. This is clearly not

the case here (Figs. 5d,h,l), highlighting the striking

departure from QG dynamics in the ocean interior.

The v–k spectra of j=bj also emphasize the impor-

tance of scales ,50 km and the weak impact of IGWs

(Figs. 5d,h,l), consistent with the features in physical space.

2) ROSSBY NUMBER

The signature of many submesoscale eddies and fila-

ments is apparent in z/f, at 39 (not shown), 99 (Fig. 10a),

299 (Fig. 10c), and 506m (Fig. 10e). Similar to the maps

of Ertel PV (Figs. 2a–c), larger eddies are found south of

the SAF, whereas deeper subsurface eddies are mostly

found north of the SAF, starting at 299m. Filaments of

z/f have a deep vertical extent reaching 500m, as can

be seen in Figs. 3i,j and 4i,j, consistent with Ertel PV’s

vertical structure (Figs. 3c,d and 4c,d). Interestingly,

deep-reaching filaments of z/f are collocated with weak

vertical stratification (Figs. 3a,b,i,j and 4a,b,i,j), highlighting

the almost two-dimensional character of oceanic turbu-

lence in this region and season (McWilliams 1984).

Large jRoj are found not only near the surface but

also in the ocean interior, down to 900m. Ro ranges

from21.8 to 3.5 at 39m (not shown), between21.7 and

3.1 at 99m (Fig. 11a), between 21.4 and 2.1 at 299m

(Fig. 11b), between21.4 and 1.8 at 506m (Fig. 11c), and

between20.7 and 0.7 at 900m (not shown), highlighting

the rare occurrence of inertial instability (z/f , 21)

down to 506m. Cumulative histograms indicate that 20%

of jRoj are larger than 0.45 at 39m, 0.3 at 299m and even

0.25 at 506m (Fig. 8b). These values are remarkably large

given the relatively moderate model resolution (;1.7-km

horizontal resolution). As suggested by the results of

the previous section, the distribution of Ro is positively

skewed down to 299m, with skewness values of 0.66 at

39m, 0.42 at 99m, 0.19 at 209m, 0.07 at 299m,20.05 at

506m, and 20.53 at 900m. These skewness values

indicate a dominance of cyclones (z/f . 0) down to

299m and a dominance of anticyclones (z/f . 0) from

506 to 900m, consistent with the idealized results of

Roullet and Klein (2010). These domain-wide statistics

further confirm the strong departure fromQG, not only

within the mixed layer, but also in the ocean interior.

Filaments and vortices of Ro (Figs. 10a,c,e) can be

separated with theOkubo–Weiss quantity (appendix C).

Using this partition, Roullet and Klein (2010) showed that

filaments of vorticity have a larger positive skewness than

vortices, said to be due to ageostrophic frontogenesis.

This is quantified over the entire domain using the same

Okubo–Weiss partitioning as Roullet and Klein (2010),

aimed at excluding vortices of Ro. Results show that the

relationship between j=bj andfilaments ofRo is asymmetric

and positively correlated down to 506m; negative or posi-

tive filaments ofRo are collocatedwithweak or strong j=bj,
respectively (Figs. 12a–c). At 900m, the relation becomes

symmetrical, suggesting a quasigeostrophic regime with the

absence of cyclone–anticyclone asymmetry (Fig. 12d).

3) INVERSE RICHARDSON NUMBER

Similar to Ro, the signature of many submesoscale vor-

tices and filaments is apparent in the inverse Richardson

FIG. 9. Wavenumber spectrum of buoyancy at different depths over the entire domain for a

randomly selected snapshot taken at 0200 UTC 28 Oct 2012.
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number, defined by Ri21 [ (=b/fN)2 assuming thermal

wind balance, down to 506m (Figs. 10b,d,f). The 3D

distribution of Ri21 closely resembles that of j=bj
(Figs. 6a,c,e), and large Ri21 are collocated with large

j=bj. The Ri21 reaches 1.5 at 99m, 0.5 at 299m, 0.2 at

506m, and 0.13 at 900m. These large Ri21 ($0.1–0.2)

further highlight the ageostrophic nature of the ocean

interior over the entire domain, known to be conducive

to intense frontogenesis. Note that the thermal wind

balance is a reasonable assumption that only breaks at a

few locations south of the SAF and below the main

thermocline. These locations can be identified by the

negative values of the second component of the Ertel PV

(Figs. 2g–i). A possible explanation for the thermal wind

imbalance is the impact of IGWs, that are present below

the main thermocline south of the SAF (Figs. 3c–d and

4c–d), and are associated with a temporal term that

breaks the thermal wind balance, as suggested byDanioux

et al. (2012). This can also be seen in the v–k spectrum of

the Ertel PV (Fig. 5f), where a part of the variance is

captured by IGWs (above the dashed line).

Overall, these results highlight the generation mech-

anism of agesotrophic submesoscale fronts bymesoscale

turbulence (Klein and Lapeyre 2009), not only within

theML but also in the ocean interior, as further detailed

in the next section for two submesoscale fronts.

c. Ageostrophic frontal dynamics

1) CASE STUDY OF AGEOSTROPHIC

FRONTAL DYNAMICS

In this section, frontal dynamics associated with j=bj
in the ocean interior are examined for two submesoscale

fronts with a width of ;10km. One front is located at

the SAF boundary (43.58S, 71.38E) and the other is on

the edge of an elliptic mesoscale eddy in the northwest

of the domain (41.88S, 59.18E), as inferred from SSH con-

tours in Fig. 1. Both fronts are identified by the red arrows

FIG. 10. As in Fig. 6, but for the (left) Rossby number z/f and (right) inverse Richardson number Ri21.
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on the vertical sections of Ertel PV in Fig. 3b and by the red

lines on the horizontal map of Ertel PV in Fig. 2d. Their

departure fromQG is quantified in terms of theRossby and

Richardson numbers. The nature of the frontal dynamics is

investigated with the frontogenesis function Fs defined as

F
s
[2Q � =b , (3)

where Q is the frontogenetic vector of Hoskins et al.

(1978), which can be expressed as

Q5
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Since the equation of the evolution of a buoyancy gra-

dient is given by

1

2

dj=bj2
dt

5F
s
1=w � =b , (5)

withw being the vertical velocity field (Hoskins 1982). A

positive Fs indicates the presence of frontogenesis, and a

negative Fs indicates the presence of frontolysis (i.e.,

frontal destruction).

The exact location of the submesoscale fronts is ap-

parent in the buoyancy anomaly field (blue curve in

Fig. 13), which exhibits a sharp jump down to 299m in

both fronts. The fronts are associated z/f (red curve)

ranging from 21 to 2 at 39m, from 21 to 1 at 99m,

from 20.75 to 0.75 at 209m, and from 20.5 and 0.5 at

both 299 and 506m. These high jRoj (.0.5) are the

signature of an ageostrophic regime down to 506m. In

addition, both fronts are associated with high inverse

Richardson number (Ri21; green curve). Similar to Ro,

Ri21 decreases with depth: Ri21 reaches 0.3 and 0.6 at

39m, 0.3 and 0.4 at 99m, 0.25 and 0.4 at 209m, 0.2 and

0.23 at 299m, and only 0.05 and 0 at 506m, for the front

in the SAF and the one at the eddy’s periphery, re-

spectively. These high Ri21 ($0.2) further confirm the

ageostrophic character of deep-reaching submesoscale

fronts. Last, the frontogenesis function Fs spikes at the

location of these fronts, from the surface down to 299m,

highlighting their frontogenetic nature.Fs is on the order

of 10218–10217 s25, which, when normalized by j=bj2,
leads to rapid time scales from one to several hours.

Interestingly, instance of frontolysis are often observed

on one side of the front adjacent to frontogenesis (see at

99m in Fig. 13c and at 299m in Fig. 13h, for instance).

Frontolysis alone also occurs (see at 506m in Fig. 13i),

indicating the front’s total collapse. Furthermore, the

slanted shape of submesoscale fronts discussed in the

previous section is clearly visible in Fig. 13, as empha-

sized by the lateral shift of the fronts with depth.

A conspicuous asymmetry between the dense (b0 , 0)

and light (b0 . 0) side of the fronts is present, not only at

the surface, but also at depth. Cyclonic vorticities (z/f. 0;

dense side) are considerably stronger than anticyclonic

vorticities (z/f, 0; light side) and frontogenesis (Fs . 0)

occurs on the dense side of the front. Asymmetrical

FIG. 11. Histograms of (a)–(c) jz/fj and (d)–(f) Fs/(=b)
2 at (left) 99, (center) 299, and (right) 506m over the entire domain for a randomly

selected snapshot taken at 0200 UTC 28 Oct 2012.
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frontogenesis is a distinctive characteristic of strongly

ageostrophic flows (Hoskins 1982; McWilliams et al.

2009; Hakim and Keyser 2001; Capet et al. 2008) as it

leads to a secondary circulation tilted along isopycnals,

whereas the QG circulation cell is not tilted (Hakim and

Keyser 2001). As a result, the vertical velocity field is

negatively skewed, which further amplifies the skewness

of Ro through the vorticity equation (Hoskins 1982;

Hakim et al. 2002; Thomas et al. 2008).

The frontal dynamics considered here are complex

because the fronts are not idealized nor isolated.Multiple

submesoscale fronts of varying intensity are present in the

vicinity of a stronger one, as can be seen in the successive

occurrences of positive and negative Ro of different

magnitudes (Fig. 13). Consequently, it is challenging to

derive a pointwise correspondence between the different

quantities considered here, which was also the case for

the nice results of Capet et al. (2008). However, we refer

the reader to the idealized surface front presented in

Fig. 4 of Thomas et al. (2008), where these relations are

flabbergasting.

Overall, these results highlight the ageostrophic char-

acter of deep-reaching submesoscale fronts, characterized

by large Ro and Ri21 and positive Fs. These findings point

to a positive skewness Fs associated with these fronts over

the entire domain, as explored in the next section.

2) AGEOSTROPHIC FRONTOGENESIS

The 3D distribution of the frontogenesis function Fs

closely resembles that of j=bj. Strong Fs coincide with

FIG. 12. Scatterplots of j=bj and z/f conditioned by Okubo–Weiss normalized by f2 such that ;20% of the domain

points are kept so as to capture the filaments and exclude the vortices, following the method described in Roullet and

Klein (2010) (seemain text and appendixC) at (a) 99, (b) 299, (c) 506, and (d) 900m. The scatterplots are computed over

the entire domain for a randomly selected snapshot taken at 0200 UTC 28 Oct 2012. Each point represents the average

over each grid interval on the abscissa (that has a total of 200 grid intervals), and thin vertical lines show the stddev around

the averages. A strong asymmetry between positive and negative z/f and =b is present down to 506m, highlighting an

ageostrophic regime. However, at 900m the relation is symmetrical, suggesting a QG regime, as discussed in section 4.
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strong j=bj at all depths and Fs is characterized by fila-

mentary structures with a width of ;10km down to

299m. At depth, filaments of Fs are concentrated along

the SAF (Fig. 6). This spatial correspondence confirms

that submesoscale fronts are generated by frontogenesis

processes in the ocean interior.

The time scale associated to frontogenesis and front-

olysis can be retrieved from Fs/(=b)
2 [Eq. (5)]. RMS

values of Fs/(=b)
2 range from 1.7 3 1025 to 1025 s21

between the surface and 500m, corresponding to time

scales from 10h to a day. Twenty percent of frontogenetic

processes [Fs/(=b)
2. 0] are larger than 23 1025 s21—that

is, 14 h—at 39mand 13 1025 s21—that is, a day—at 900m

(Fig. 8c). Similar results are obtained for frontolytic

processes [Fs/(=b)
2 , 0] (Fig. 8c). These time scales are

consistent with the strain rate, for which 20% of the

values are larger than 53 1025 s21—that is, 12 h—at 39m

and 1.5 3 1025 s21—that is, 19 h—at 900m (Fig. 8d).

The rms of positive Fs/(=b)
2 is greater than that of

negative Fs/(=b)
2 by a factor of at least 1.4, regardless

of depth, indicating that frontal creation is faster than

frontal collapse. Similar to Ro, Fs/(=b)
2 is positively

skewed, with skewness values of ;0.2 down to 506m

(Figs. 11d–f), highlighting the dominance of frontogen-

esis over frontolysis in the ocean interior. Overall, the

strong asymmetry of Fs in the upper 500m emphasizes

once again the ageostrophic character of frontogenesis in

the ocean interior, which is known to be associated with

enhanced vertical velocities and vertical heat fluxes.

d. Vertical velocities and vertical heat flux

Vertical sections of daily-averaged vertical velocities

w reveal positive and negative w of up to 500mday21

(Figs. 14a,c,e,g). Structures of w have a width of

;10–20 km. They are intensified in the ocean interior,

below the mixed layer down to at least 900m. Strong

FIG. 13. Horizontal profiles across two individual submesoscale fronts at different depths, described in the main text: (a),(b) 39,

(c),(d) 99, (e),(f) 209, (g),(h) 299, and (i),( j) 506m. In all panels, the buoyancy anomaly b0 is in blue, the frontogenesis function Fs is in

black, the Rossby number z/f is in red, and the inverse Richardson number Ri21 is in green. These sections are shown by the red lines in

Fig. 2d and the red arrows in Figs. 3c and 3d.
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buoyancy gradients (in black in Figs. 14a,c,e,g) are col-

located with with large w. The signature of divergence

is apparent as intensified and thin vertical features of w

are collocated with z in areas of weak vertical stratifica-

tion (at 418–438S in Fig. 14a or at 688E in Fig. 14c for

example). Instances of strong w inside subsurface eddies

also occur, with =b acting as a barrier (at 42.58S in

Fig. 14g).w are impacted by IGWs, as can be seen at 44.58S
in Fig. 14g. The rms of w over the domain is maximal at

350mwith a value of 45mday21 and is 20mday21 at both

50 and 900m (dashed blue curve in Fig. 15).

Vertical heat fluxes (VHF) are estimated from temper-

ature and vertical velocity anomalies as VHF5 r0Cpw
0T 0,

where the prime refers to the anomaly with respect to the

domain-averaged value and Cp 5 3985 J kg21K21 is the

specific heat capacity of seawater (Figs. 14b,d,f,h). A

positive or negative value respectively indicates an up-

ward or downward heat flux. Positive values result from

frontogenesis, whereas negative values arise from front-

olysis. VHF have a local amplitude reaching 2000Wm22

down to at least 900m. VHF are enhanced at the loca-

tion of strong submesoscale fronts that border surface

trapped, subsurface and deep mesoscale eddies. Time

and domain-averaged VHF (hVHFi) are positive and en-

hanced in the ocean interior relative to the first 50m,

that is, below theML (Fig. 15), shedding new light on the

diabatic nature of the ocean interior. In the active sub-

mesoscale area (dashed rectangle in Fig. 6b), hVHFi
over 5 days reach values of up to 370Wm22 at 150m and

remain surprisingly large at depth; 260Wm22 at 500m

and 140Wm22 at 900m (orange curve in Fig. 15). Over

the entire domain and one month, hVHFi reaches a max-

imal value of 260Wm22 at 120m, 140Wm22 at 50m, and

30Wm22 at 900m (green curve in Fig. 15). These findings

are consistent with the in situ observations of Siegelman

et al. (2020). The v–k cospectra (appendix C) corrobo-

rate these results and further show that, down to 299m,

VHF are explained by scales ,50km and frequencies

corresponding to time scales from a few hours to a few

days (Figs. 16a–c). At 506m (Fig. 16d) and below (not

shown), VHF are explained by scales of 30–150km. A key

and striking result is that linear IGWs do not impact VHF,

which are predominantly explained by balanced motions.

However, this does not fully exclude the impact of non-

linear IGWs and their interactions with balanced motions

(Thomas 2017). These results shed light on the efficient

pathway for the transport of heat from the ocean interior

to the surface enabled by deep submesoscale fronts.

5. Summary and perspectives

The region considered in this study is a subdomain of the

ACC, which is sufficiently large to capture ocean-scale

interactions, from the large-scale meandering SAF, to

multiple mesoscales eddies and numerous submesoscale

fronts. Mesoscale eddies emanating from the SAF interact

and coexist on both sides of the jet, down to a least 506m.

These surface-trapped, subsurface and deep mesoscale

eddies are associated with submesoscale structures char-

acterized by large jRoj (.0.5) dominated by cyclonic

vorticity (z/f . 0). Intense gradients of Ertel PV, Ro, and

buoyancy are located at their periphery, acting as age-

sotrophic dynamical barriers, which increase the eddies’

coherence and lifetime (Mariotti et al. 1994). Note that

the generation mechanism of these subsurface and deep

eddies remains an open question that is out of the scope

of this paper and will be the object of a future study.

Lateral gradients of buoyancy, resulting from the

straining generated by mesoscale eddies, have a re-

markable weak depth dependence, in stark contrast with

QG dynamics but in close agreement with agesotrophic

Boussinesq flows (Molemaker et al. 2010). Resulting

frontogenesis is associated with rapid time scales from a

few hours to a day, comparable to the background strain

FIG. 15. RMS of daily-averaged vertical velocities over the entire

domain on 28 Oct 2012 (dashed blue curve), along with domain-

averaged vertical heat fluxes hVHFi over the entire domain and

one month (15 Oct–15 Nov 2012) (orange curve) and over the

active submesoscale area (dashed black rectangle in Fig. 6d) and 5

days (26–31 Oct 2012) (green curve). The hVHFi are directed up-

ward (positive values), and they are enhanced at depth, especially

below the mixed layer.
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field. Frontogenesis is asymmetric, amplifying the positive

skewness of Ro, which is the signature of ageostrophic

dynamics. Consequently, frontogenesis statistically domi-

nates frontolysis, consistent with the theoretical and ide-

alized studies of Klein and Lapeyre (2009), Roullet and

Klein (2010), and Molemaker et al. (2015). As a result,

there is a net upward VHF at deep-reaching submesoscale

fronts that is induced by the asymmetrical character of the

ageostrophic frontogenesis (Molemaker et al. 2015). These

VHF are larger in the ocean interior than within the ML,

concordant with the in situ findings of Siegelman et al.

(2020) and Yu et al. (2019), and suggesting the presence of

an intensified oceanic restratification at depth.

Several caveats pertaining to the model resolution

need to be mentioned. First, even though j=bj are strong
and associated with large jRoj (.0.5), they remain weaker

than in the observations, especially in terms of Ri21.

This is likely due to the fact that buoyancy gradients are

partly captured by higher vertical normal modes than

those resolved by the model because of its coarse ver-

tical resolution at depth (5m at a depth of 49m vs 45m at

900m). In comparison, the in situ data in Siegelman et al.

(2020) have a constant vertical resolution of 1m. This

points to the need of choosing a vertical resolution able

to adequately resolve higher vertical normal modes. In

addition, the horizontal resolution of the model seems

to lie at the edge of being submesoscale resolving, as can

be seen in Fig. 13 where the sharp fronts are only cap-

tured by a single model grid point. As such, a higher 3D

resolution is needed to fully represent the ageostrophic

dynamics of the interior ocean, which are likely to be

even stronger than what is reported here.

This study solely considers a region of the ACC in

springtime. However, the vertical heat fluxes diagnosed

here in the ocean interior are comparable to those ob-

tained in theML inwinter on a global scale (Su et al. 2018).

FIG. 16. Frequency–wavenumber cospectra of vertical velocities and temperature computed from 15 Oct to

15 Nov 2012 at (a) 39, (b) 99, (c) 299, and (d) 506m. These cospectra are presented in a variance-preserving form,

which allows one to directly compare the relative contribution of different time and spatial scales with the total

variance (appendix B).
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As such, these results call for extended analyses of deep

ageostrophic frontal dynamics at different seasons and

throughout the World Ocean, in particular in other parts

of the ACC, as well as in the Gulf Stream and Kuroshio

Extension, in order to confirm the ageostrophic char-

acter of the ocean interior.
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APPENDIX A

Details of the LLC4320 Simulation

The outputs of an ocean general circulation model,

enabled by NASAAdvanced Supercomputing Division,

are used to investigate ocean dynamics down to the

submesoscale. Themodel is based on a global, full-depth

ocean and sea ice configuration of the Massachusetts

Institute ofTechnology general circulationmodel (MITgcm)

(Marshall et al. 1997; Hill et al. 2007) and uses a latitude–

longitude–polar cap (LLC) grid (Forget et al. 2015). The

MITgcm was spun up in a hierarchy of numerical simula-

tions with increasing horizontal resolutions with 90 vertical

levels. The simulation analyzed here is the highest

resolution, the LLC4320 at 1/488, with a time step of 25 s.

The prognostic variables are saved as instantaneous

snapshots at hourly intervals. Control and forcing files as

well as details of the high-resolution LLC model setups

are available online (http://mitgcm.org/viewvc/MITgcm/

MITgcm_contrib/llc_hires).

Surface fluxes are from the 0.148 European Centre for

Medium-Range Weather Forecasting (ECMWF) atmo-

spheric operational model analysis, starting in 2011. The

model also includes tidal forcing for the 16 most sig-

nificant components that are applied as additional

atmospheric pressure forcing (Chaudhuri et al. 2013).

Vertical mixing is parameterized based on the critical

value of Richardson number and is implemented using

the K-profile parameterization (KPP) scheme (Large

et al. 1994) that has been extensively used and evaluated

in oceanmodeling studies (Large et al. 1997; Fernández-
Castro et al. 2014). More details on the LLC4320 sim-

ulation, in particular on its validation with observations,

can be found in Torres et al. (2018).

APPENDIX B

Frequency–Wavenumber Spectrum and Cospectrum

The w–k spectrum of a given variable f(x, y, t) is

computed in a box of 700 km 3 700 km and over

1 month. We refer the reader to Torres et al. (2018) for

the full method. However, briefly, before computing the

w–k spectrum of a f(x, y, t), its linear trend is removed

and a 3D Hanning window is subsequently applied to

the detrended f(x, y, t) (Qiu et al. 2018). A discrete

3D Fourier transform is then computed to retrieve

f̂(k, l, v), where the caret indicates the Fourier trans-

form, k is the zonal wavenumber, l is the meridional

wavenumber, and v is the frequency. The 3D Fourier

transform is used to compute a 2D spectral density

jf̂j2(k, v), where k is the isotropic wavenumber, defined

as k 5 (k2 1 l2)1/2. The transformation from an aniso-

tropic spectrum to an isotropic spectrum is performed

following the method described by Savage et al. (2017).

The dispersion relation curves for IGWs (Gill 1982)

have been also estimated for each vertical normal mode

(Torres et al. 2018). The curve related to the tenth baro-

clinic vertical mode, that is, the highest baroclinic mode

resolved by the simulation, was found to be the most

relevant to partition balancedmotions (below the curve)

and IGWs (above the curve). To better compare the

variance explained by IGWs and BMs in different areas

of thev–k space, the spectra are presented in a variance-

preserving form, which is achieved by multiplying the

w–k spectra by v and k (Torres et al. 2018).

The v–k cospectra of vertical heat fluxes are com-

puted similar to thev–k spectrum, following themethod

described in Flexas et al. (2019). First, the Fourier trans-

forms of vertical velocity Ŵ(k, l, v) and temperature

T̂(k, l, v) are calculated. The cospectrum of vertical

heat fluxes is then given by

Ŵ .T(k, l,v)5Re[Ŵ . T̂*(k, l,v)1 Ŵ* . T̂(k, l,v)] ,

where Re is the real part of the complex quantity and

the asterisk indicates the complex conjugate. The 2D

cospectrum̂W.T(k, v) is retrievedusing the samemethod

as before. The v–k spectrum and cospectrum are

presented in a variance-preserving form for easier

comparison across the frequency–wavenumber domain.
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APPENDIX C

Okubo–Weiss Quantity

The Okubo–Weiss quantity is defined as

l5
1

4
(s2

n 1s2
s 2 z2) .

where z5 yx2 uy is the relative vorticity, sn5 ux2 yy is

the normal strain rate, and ss 5 yx 1 uy is the shear

strain rate. The Okubo–Weiss quantity, derived by

Okubo (1970) and Weiss (1991), is used to partition the

fluid into regions with different dynamical properties,

that is, elliptic regions dominated by z (l , 0) from

hyperbolic regions dominated by sn and ss (l . 0)

(Fig. C1 and Fig. S2 in the online supplemental mate-

rial). Under the assumption that the velocity gradient

is slowly varying along a Lagrangian trajectory, the be-

havior of a tracer gradient can be determined by the sign

of l (Hua and Klein 1998). Indeed, tracer gradients do

not grow in vortex cores where l , 0. In this case, the

gradient vector experiences a simple rotation. On the

other hand, in strain-dominated areas where l . 0,

tracer gradients exponentially grow.
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5 Submesoscale fronts as biological hotspot

In this chapter, the importance of submesoscale fronts for upper trophic levels is explored west

of the Kerguelen Islands (Figure 1.2). The bio-physical dataset collected by a seal (tag 50,

Figure 1.5) reveals a conspicuous increase in the seal’s foraging activity at the westernmost

part of its trip, concomittant with a standing meander of the ACC. Thanks to the continuous

high-resolution of the tag, that surpasses the present-day capabilities of other instruments, e.g.

autonomous floats or gliders, we were able to propose a physical explanation for such high bi-

ological activity based on the study of submesoscale fronts. Indeed, these submesoscale fronts,

with a size of 5–20 km, are enhanced at the standing meander site and reveal the presence of

strong mixing. Our findings help explain why multiple marine top predators from the Kerguelen

Islands and adjacent locations, ranging from elephant seals to macaroni penguins, recurrently

head to this standing meander area.

Siegelman, L., O’Toole, M., Flexas, M., Rivière, P. and Klein, P. (2019). Submesoscale ocean

fronts act as biological hotspot for southern elephant seal. Scientific reports, 9(1), p.5588.

108



1Scientific RepoRts |          (2019) 9:5588  | https://doi.org/10.1038/s41598-019-42117-w

www.nature.com/scientificreports

submesoscale ocean fronts act as 
biological hotspot for southern 
elephant seal
Lia siegelman  1,2,3, Malcolm o’toole4, Mar Flexas2, Pascal Rivière1 & patrice Klein2,3

The area west of the Kerguelen Islands (20–70°E/45–60°S) is characterized by a weak mesoscale activity 
except for a standing meander region of the Antarctic Circumpolar Current (ACC) localized between 
20 and 40°E. A unique bio-physical dataset at high-resolution collected by a southern elephant seal 
(Mirounga leonina) reveals a conspicuous increase in foraging activity at the standing meander site 
up to 5 times larger than during the rest of her three-month trip west of the Kerguelen Islands. Here, 
we propose a physical explanation for such high biological activity based on the study of small-scale 
fronts with scales of 5 to 20 km, also called submesoscales. The standing meander is associated with 
intensified frontal dynamics at submesoscale, not observed in the rest of the region. Results shed new 
light on the spatial distribution of submesoscale fronts in the under-sampled area west of the Kerguelen 
plateau and emphasize their importance for upper trophic levels. Despite that most elephant seals 
target foraging grounds east of the Kerguelen Plateau, our findings suggest that excursions to the west 
are not accidental, and may be explained by the recurrently elevated physical and biological activity of 
the site. As such, other standing meanders of the ACC may also act as biological hotspots where trophic 
interactions are stimulated by submesoscale turbulence.

The Antarctic Circumpolar Current (ACC) hosts a small number of standing meanders localized in the lee of 
topographic features. These meandering large-scale jets trigger mesoscale eddies, with a size of 50 to 200 km, 
associated with hotspots of eddy kinetic energy of up to two orders of magnitude greater than in surrounding 
areas where the eddy activity is weak1–4. Thompson et al.2 reported four such standing meander regions across the 
ACC, among which one is localized between 45–60°S/20–40°E (Fig. 1). This standing meander area, linked to the 
topographical feature of the Southwest Indian Ridge, is identifiable from climatological altimetry data2,5 and has 
an average eddy kinetic energy value greater than 0.10 m2 s−2 over the duration of our study (from October 2014 
to January 2015) (Fig. 2a).

Dynamical studies of the last decade further indicate that the flow shear, hereafter referred to as the strain 
field, associated to these mesoscale eddies generates submesoscale fronts with a size of 5 to 20 km in-between 
them and on their edges6–8. These structures, mainly thermohaline fronts, are now thought to capture most of the 
vertical velocities in the upper ocean and therefore to be the preferential pathway for the vertical exchange of heat, 
nutrients and other tracers between the surface and the deep ocean. In the iron-limited Southern Ocean, these 
dynamics have profound implications for phytoplankton production and biogeochemical systems9–11. However, 
these submesoscale dynamics are not well documented and poorly quantified in the ocean due to the lack of 
submesoscale-resolving in situ observations available over large domains. As a consequence, impacts on upper 
trophic levels remain largely unexplored. While numerous studies have identified mesoscale eddies as favorable 
feeding grounds for top predators such as elephant seals12–15, the relation between submesoscale turbulence and 
marine top predator’s at-sea foraging behaviour has only been inferred from altimetry-derived Lagrangian diag-
nostics16,17. To date, this has been the only available approach to overcome the lack of bio-physical observations 
capable of resolving oceanic submesoscale features.

The present study focuses on the area west of the Kerguelen Islands (Indian sector of the Southern Ocean, 
Fig. 2) over the austral summer. The Kerguelen region is known to host a complex local circulation18,19 due to 
the presence of strong bathymetric features, e.g. the Kerguelen Plateau and the Southwest Indian Ridge (Fig. 2b). 
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These features are likely to play a positive role for for the marine fauna. Indeed, the Kerguelen Islands are home 
to large colonies of marine predators and, in particular, host the second largest population of Southern Elephant 
Seals (SES, Mirounga leonina). The southern elephant seal is a deep-diving, wide-ranging marine predator spe-
cies20 that forages in either one of three main habitats: the Antarctic continental shelf, the Kerguelen Plateau 
or deep open water regions21. Antarctic shelf waters provide prime habitat for both sexes, but females from 
Kerguelen use them less because advancing sea ice may impede their annual return to breed21. Instead, most 
female SES from Kerguelen forage in the open water regions and along the sea ice edge year round13,14,22,23. Over 
the last two decades, the post-breeding trips (from ∼October to January) of 103 females have been recorded as 
part of the National Observing System MEMO (Mammifére Echantillonnneurs du Milieu Océanique). More than 
80% of these seals target the area east of the plateau (Fig. 1) where high eddy kinetic energy (>0.20 m2 s−2, Fig. 2a) 
and chlorophyll concentrations (Fig. 2b) are found. Alternatively, less than 10% of seals head west of Kerguelen 
Islands (Fig. 1) in a region of weak eddy kinetic energy (<0.02 m2 s−2, Fig. 2a) and low chlorophyll concentrations 
(Fig. 2b). However, feeding-like behaviour of southern elephant seals in the standing meander region west of 
Kerguelen Islands has previously been idenfied24. This particular region also appears as a biological hotspot for 
predators from adjacent colonies on Prince Edwards Islands (46.9°S, 37.7°E), including elephant seals25,26 and 
macaroni penguins27.

The present work complements the research of other tagging programs that use animals as oceanographers to 
study animal behaviour in relation to characteristic water masses28 and large- to meso-scale oceanic features29–32. 
However, this study focuses on submesocale physics thanks to a unique dataset at unprecedented high-resolution 
collected in situ by a female southern elephant seal from the Kerguelen Islands. Unlike previous tags mounted on 
marine mammal, the one used in this study recorded for the first time every single dive realized by a seal during 
its journey (or over 6900 dives). This dataset advantageously contains both physical and behavioural data, which 
allow us to explore the submesoscale dynamics of the region west of the Kerguelen Islands as well as its relation 
with the foraging behaviour of the tagged seal. The seal’s trajectory displays a similar excursion to the standing 
meander site as the ones discussed above. This excursion is accompanied by a significant increase in foraging 
behaviour up to 5 times greater than during the rest of the trip (Fig. 2b). Here, we propose for the first time a 
physical explanation for such a biologically active area based on the study of submesoscale dynamics in the vast 
domain sampled by the seal and broadly defined by 20–70°E/45–55°S, potentially explaining the other southern 
elephant seals western excursions observed in Fig. 1.

Results
Southern elephant seal observations at unprecedented high-resolution. Results are inferred from 
a unique dataset of physical and biological observations collected by a female southern elephant seal (Fig. 2b). 
The seal was equipped with sensors measuring temperature, conductivity and pressure at a continuous high-fre-
quency of 0.5 Hz and its travel was tracked through the Argos satellite system. Buoyancy, which is of opposite sign 
to the fluid density, and spiciness, which indicates thermohaline variations along constant density surfaces33 (see 
Methods), are estimated from temperature and salinity observations. Both fields have a final vertical resolution 
of 1 m and a horizontal resolution of 1 km (see Methods). This gives access to a unique dataset of vertical sections 
(x–z) of buoyancy and spiciness at very high-resolution over a long distance (>5000 km) and down to 600 m 
in the ocean interior. Simultaneously, the same device recorded animal behavioural information, based on the 

Figure 1. Spatial distribution of the 103 post-breeding female southern elephant seals tagged from the 
Kerguelen Islands since the beginning of the Marine Mammal Exploring the Ocean Pole-to-Pole consortium 
in 2004. Southern elephant seals are separated per region: west (W) in blue and east (E) and northwest (NW) 
in gray. Insert figure shows regional seal distribution. The high-resolution trajectory considered in this study 
is shown in orange. The region of the standing meander is identified by the black rectangle2. Climatological 
position of the Sub-Antarctic Front (SAF), Polar Front (PF), Southern Antarctic Circumpolar Current Front 
(SACCF) and Southern Boundary front (SBDY) are indicated in black according to Kim and Orsi70.
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premise a predator will maximize resource acquisition by adapting its movement in response to prey distribution 
and density34,35. More precisely, the seal’s foraging behaviour is estimated through the computation of the First-
Passage Hunting Time (FPHT), which combines the first passage time metric used in Bailleul et al.36 and the sinu-
osity method of Heerah et al.37. FPHT advantageouly takes into account the horizontal and vertical dive’ sinuosity 
in order to indicate the amount of time the seal spent hunting within an area of given radius. In this study, FPHT 
is computed at the radius R of 40 km, which is of the order of the local Rossby radius of deformation in terms of 
wavelength38, in order to capture the mesoscale features of the area. However, a sensitivity analysis demonstrates 
that the results are robust to the choice of R (see Methods and Supplementary Fig. S1).

During its three-month post-breeding round trip from the Kerguelen Islands in the austral summer (28 Oct 
2014 to 21 Jan 2015), the seal traveled a distance of 5665 km. The seal’s voyage can be divided into three distinct 
parts (Fig. 2b): two relatively straight transit lines back and forth between the Kerguelen Islands and the standing 
meander site–accounting for 85% of the total distance (4850 km) but only 67% of the total time–and the remain-
ing 15% of the trip (815 km), accounting for a third of the time, spent in the standing meander region. The seal’s 
foraging activity appears to be enhanced at the standing meander site, where FPHT reach values up to five times 
that of the rest of the trip (Fig. 2b). In order to understand this contrast, we study the underlying physics at meso- 
and sub-mesoscale.

Submesoscale dynamics west of the Kerguelen Plateau. During its 85 day trip, the seal encounters 
two well-defined mesoscale features: a cyclonic eddy and a meander located at the easternmost tip of the stand-
ing meander area (Fig. 2). The cyclonic eddy has a size of ∼150 km and is located north of an anticyclonic one, 
creating a dipole structure, which generates a westward jet of ∼0.2 m/s in between both eddies. The meander has 
an elongated shape with a length of ∼350 km and a width of ∼50 km. The local flow is directed southward with a 
magnitude of ∼0.3 m/s. In both structures, the seal travels in the same direction as the current. More precisely, the 
seal crosses the southern part of the cyclonic eddy, amounting to a cumulative distance of 350 km, in 6 days and 

Figure 2. (a) Mean Eddy Kinetic Energy (EKE) over the seal’s journey (27 Oct 2014 - 21 Jan 2015) 
superimposed with sea surface height contours at mid-trajectory (12 Dec 2014) ranging from −1.6 to 1.7 m 
with 0.1 m increments obtained from AVISO satellite data. The Polar Front (PF) is indicated in bold black as the 
−0.61 m contour according to Kim and Orsi70. (b) Mean chlorophyll a concentration obtained from satellite 
data during the seal’s journey superimposed with the seal’s trajectory colored by the First-Passage Hunting Time 
(FPHT) with a radius R = 40 km, i.e. of the order of the first Rossby radius of deformation in the Kerguelen area. 
2 and 4 km bathymetry contours from ETOPO5 are shown in white. On (a and b) black and white rectangles 
identify the standing meander area and cyclonic eddy discussed in the main text. (c) Lagrangian time series 
of Sea Level Anomaly (SLA, in black) and strain (in blue) along the seal’s path derived from satellite data (see 
Methods).
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corresponding to a speed of ∼60 km/day. In contrast, the seal spends 23 days on the edge of the meander over a 
cumulative distance of 815 km, which corresponds to a speed of ∼35 km/day, i.e. the seal reduces overall speed by 
roughly 40% in the meander in comparison with the cyclonic eddy. However, both mesoscale features, identified 
from satellite data of sea level anomaly (see Methods), are associated to a strong strain field reaching 0.8 day−1 in 
the standing meander and 0.6 day−1 in the cyclonic eddy (Fig. 2c). Since theoretical studies indicate that a turbu-
lent mesoscale eddy field can drive and constrain submesoscale turbulence7,39, both areas are potentially favorable 
for the development of submesoscale features.

Standing meander. Seal observations clearly indicate that submesoscale buoyancy gradients with a width of 5 
to 20 km are indeed present at the standing meander, extending from the surface down to 500 m and intensified 
within the mixed layer (Fig. 3f). A succession of large surface gradients coincides with instances of mixed layer 
depth shoaling on the edges of the meander as inferred from the comparison with sea surface height (black 
arrows in Fig. 3f). These events are presumably related to the seal zig-zagging through the standing meander and 
thus identify its edges. Gradient magnitudes reach values larger than 2 × 10−7 s−2, consistent with numerical and 
observational studies40–43. The mixed layer depth has an average value of 85 m (black line in Fig. 3e–g).

Similar patterns are observed for lateral gradients of spiciness, indicative of thermohaline intrusion occurring 
along isopycnals and thus of oceanic mixing. They also have a scale of 5 to 20 km and extend down to at least 
500 m (Fig. 3g). However, the mixed layer is free of lateral gradients of spiciness, which are enhanced below 
the temperature minimum (see for example the gradient at the red square location in Fig. 3g). Altough, several 
instances of large lateral gradients of spiciness occur above the temperature minimum, especially noticeable from 
2675 to 2750 km (Fig. 3g, blue square). Strong lateral gradients of spiciness reach values of 8 × 10−5 km−4. Finally, 
strong lateral gradients of spiciness are not always associated with buoyancy ones (see for example between 2780 

Figure 3. Key physical properties for a 350-km long section in the standing meander. (a) Snapshot of Sea 
Surface Height (SSH) on 2014/12/10 superimposed with the seal’s trajectory from 2014/12/5-14. Blue, red and 
black dots indicate the profiles in the Temperature (CT)–Salinity (SA) diagrams. The Polar Front is indicated in 
bold black as the −0.61 m contour according to Kim and Orsi70. Sea surface height contours are incremented 
by 0.05 m. (b) Temperature–salinity diagram highlighting a profile presenting intrusions above the temperature 
minimum (Θmin). (c) Temperature–salinity diagram highlighting a profile presenting intrusions below the 
temperature minimum. (d) Temperature–salinity diagram highlighting a profile presenting no intrusion. In 
(b–d), the gray profiles correspond to the rest of the transect in (a). (e) Vertical section of temperature for 
the transect in (a). (f) Vertical section of lateral gradient of buoyancy (bx) for the transect in (a). Black arrows 
indicate instances of mixed layer depth shoaling, concomitant with intense gradients of buoyancy. (g) Vertical 
section of lateral gradient of spiciness (πx) for the transect in a). In (e–g), the profiles shown in (a–d) are 
indicated by blue, red and black squares at the bottom of the plots. The black line indicates the mixed layer 
depth and the gray line the depth of the temperature minimum.
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and 2850 km, red square in Fig. 3f–g). This happens when anomalies of temperature and salinity are stretched 
by the local strain field, which generates strong gradients of temperature and salinity at submesoscale that are 
however density compensated.

To further understand these water mass intrusions, we use temperature–salinity diagrams (Fig. 3b–d). The 
seal mainly encounters Winter Water, formed during the previous cold season, and characterized by the presence 
of a subsurface temperature minimum and shallow, warm and fresh Antarctic Surface Water sitting mainly above 
Winter Water (highlighted in Fig. 3b–d and schematized in Fig. 4). Temperatures are comprised between 0.6 
and 3.2°C. Temperature-salinity profiles present numerous thermohaline intrusions localized at different depths 
(Fig. 3b–e). As previously mentioned, intrusions occur above the temperature minimum, as highlighted on the 
blue profile in Fig. 3b and below the temperature minimum, as shown on the red profile in Fig. 3c. For compar-
ison, Fig. 3d highlights a profile presenting no such intrusion. These intrusions, as well the erosion of the tem-
perature minimum at depth, are also reflected in the vertical section of temperature (Fig. 3e) presenting sharp 
variations at submesoscale. Overall these results highlight the intense submesoscale activity present along the 
edges of the meander where waters are being mixed.

Cyclonic eddy. The seal-sampled water masses (Antarctic Surface Water and Winter Water, Fig. 5) are charac-
terized by temperatures between 0.4 and 2.4 °C with warmer and colder waters north and south of the transect, 
respectively (Fig. 5a,b). The dives can be separated by temperature minima of 0.8, 1.25 and 1.5 °C. Lateral gradi-
ents of buoyancy below the mixed layer are of the same order as those observed in the meander (Fig. 5d). However, 
a few differences are worth mentioning. First, the mixed layer is deeper in the cyclonic eddy with an average 
value of 115 m and, unlike in the meander, no lateral gradients of buoyancy are observed within it. More impor-
tantly, the cyclonic eddy is characterized by weak lateral gradients of spiciness seldom reaching 2 × 10−5 kg m−4  
(Fig. 5e) and systematically localized below the temperature minimum (see for example the black arrows in 
Fig. 5d). The absence of thermohaline intrusion is also reflected in the temperature–salinity diagram (Fig. 5b) 
that displays a remarkable fan-shape distribution with gaps between the different temperature minima, indicative 
of the clear separation between water types, and thus, stratification and absence of mixing.

Entire transect. Overall, the submesoscale characteristics along the entire trajectory (standing meander 
excluded) resemble those found in the cyclonic eddy; inferred from the time series of lateral gradients of buoy-
ancy and spiciness presented in Fig. 6a,b. Lateral gradients of buoyancy within the mixed layer (shown at 15 m in 
Fig. 6a), and spiciness throughout the water column (shown at 150 m in Fig. 6b), are stronger inside than outside 
the standing meander. However, below the mixed layer, lateral gradients of buoyancy are homogeneous along 
the entire transect, with no clear intensification in the meander (not shown). In the first 80 m, the root mean 
square of the lateral gradient of buoyancy inside the standing meander is greater than outside of it by a factor >2. 
Below 80 m, this factor is <2 and further decreases with depth (Fig. 6c). For lateral gradients of spiciness, the root 
mean square inside the standing meander is 1.5 to 3.2 times greater than outside the standing meander (Fig. 6d), 

Figure 4. Schematic summarizing how submesoscale turbulence distributed on the edges of coherent 
mesoscale structures (here a standing meander of the ACC) affects the seal’s foraging behaviour and featuring 
the water masses encountered by the seal; Antarctic Surface Water (AASW) and Winter Water (WW). Relative 
depths of water masses are provided as an indication only. Tandi Reason Dahl is the author of this image.
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highlighting the strong mixing occurring in the vicinity of the standing meander. Overall, the observed sub-
mesoscale features are mostly located in regions of intense shear, consistent with theoretical studies7,39 indicating 
that submesoscale frontal structures result from the mesoscale stirring field generated by co-interacting eddies.

Impact of submesoscale dynamics on southern elephant seal behaviour. The intense submesos-
cale fronts observed at the standing meander site suggest that the biological pump is stimulated via mixing and 
frontogenesis processes that contribute to the injection of nutrients from deeper layers to the euphotic zone where 
primary production occurs11. However, knowing how marine top predators respond to this submesoscale turbu-
lence remains an open question.

Here, we investigate the seal’s foraging activity and, in particular, relate submesoscale fronts to local forag-
ing behaviour. To do so, we identify transitions in movement patterns (e.g. from transit behaviour to feeding) 
between mesoscale regions of 50 to 200 km-size along the seal’s trajectory. As previously mentioned, we use the 
First-Hunting Passage Time (FPHT) with a radius R of 40 km, which captures the mesoscale features of the area, 
as a proxy for the seal’s foraging activity (see Methods).

FPHT intensifies significantly at the standing meander site with values >20 hours. The bimodal distribution 
of FPHT inside and outside of the standing meander further underscores this finding, with FPHT between 15 
and 40+ hours inside the standing meander, while generally being <10 hours outside of it with a median of 
4 hours outside versus 23 hours inside (Fig. 6e). There is a good agreement between the time series of FPHT and 
both lateral gradient of spiciness at 150 m and lateral gradient of buoyancy at 15 m (Fig. 6a,b). This is particularly 
noticeable at the standing meander where strong gradients of buoyancy and spiciness are associated with greater 
FPHT (Fig. 6). For lateral gradients of spiciness, different depths lead to similar results. On the other hand, for 

Figure 5. Key physical properties for the 350-km long section on the southern part of the cyclonic eddy. (a) 
Snapshot of Sea Surface Height (SSH) on 2014/11/16 superimposed with the seal’s trajectory from 2014/11/14-
19 colored by the dives subsuface temperature minimum (CTmin). Sea surface height contours are incremented 
by 0.05 m. (b) Temperature (CT)–Salinity (SA) diagram for the transect in a. Same color code as (a). (c) Vertical 
section of temperature for the transect in (a). (d) Vertical section of lateral gradient of buoyancy (bx) for the 
transect in (a). The black arrows highlight a few lateral gradients of buoyancy localized below the temperature 
minimum. (e)Vertical section of lateral gradient of spiciness (πx) for the transect in a). In (c–e), the profiles 
shown in (a,b) are indicated by the colored squares at the bottom of the plots. The black line indicates the mixed 
layer depth and the gray line the depth of the temperature minimum.
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lateral gradients of buoyancy, this results holds in the first 80 meters but not below. This is because at depth, lateral 
gradients of buoyancy are more homogeneously distributed along the seal’s trajectory (Fig. 6c).

Generalized additive models corroborate the qualitative relationships observed between FPHT and key phys-
ical quantities (Figs 2 and 6). At mesoscale, FPHT is positively linked to the strain field (Fig. 7a), consistent 
with previous studies suggesting that elephant seals target energetic mesoscale structures16,17,21. At submesoscale, 
FPHT is also positively linked to lateral gradients of buoyancy at 15 m and lateral gradients of spiciness at 150 m 
(Fig. 7b,c). This last result highlights the seal’s preference for submesoscale features, that are concentrated at the 
standing meander site. Moreover, the mixed layer depth is negatively linked to FPHT, highlighting the seal’s pref-
erence for shallower mixed layer, which often occur on the edges of mesoscale structures, and thus correspond 
to areas of strong buoyancy gradients (Figs 3f and 7c). However, it is hard to disentangle the seasonal component 
from the spatial variability at submesoscale in the time series of the mixed layer depth.

These results emphasize that submesoscale frontal structures constitute favorable foraging habitats for top 
marine predators such as elephant seals (Fig. 4). The seal’s foraging activity is significantly enhanced on the edges 
of the standing meander where most of the submesoscale features are located. The standing meander west of the 
Kerguelen Islands that hosts the vast majority of submesoscale features thus appears to be a physical and biolog-
ical hotspot for apex marine predators.

Conclusion and Discussion
Our results provide evidence that submesoscales, while dominant in winter time, are also active in the Southern 
Ocean during the summertime. This is consistent with recent observational findings obtained from gliders in the 
Drake passage in summer43 and in the sub-Antarctic zone in spring42.

This work documents the spatial distribution of submesoscale features over a large oceanic domain 
(>5000 km) in the under sampled area west of the Kerguelen Islands. A clear partitioning of the physical 

Figure 6. Lagrangian time series along the seal’s track of (a) Lateral buoyancy gradient (|bx|) at 15 m. (b) Lateral 
gradient of spiciness (|πx|) at 150 m (in black) and First-Passage Hunting Time (FPHT) at 40 km (in blue) 
calculated as in Fig. 2b. The eddy and standing meander discussed in the main text and described in Figs 5 and 
3 are indicated in gray. Root mean square (RMS) ratio inside/outside of the meander as a function of depth for 
(c) lateral buoyancy gradient. (d) lateral gradient of spiciness. (e) Probability density estimate of First-Passage 
Hunting Time (FPHT, in hour) inside (blue) and outside (orange) of the meander. Medians are indicated in 
dashed colored lines and a rug plot is shown on the bottom. Lateral gradients of buoyancy and spiciness, and 
First-Passage Hunting Time are significantly greater inside the meander.
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properties at submesoscale is observed: within the standing meander area, the mixed layer contains strong lateral 
gradients of buoyancy. Below the mixed layer, intense lateral gradients of spiciness are present down to 500 m, 
indicating the presence of strong thermohaline intrusions, also noticeable on temperature–salinity diagrams 
(Fig. 3). In comparison, the rest of the area, including the cyclonic eddy discussed in the results section, is charac-
terized by weak lateral gradients of spiciness throughout the water column and tame lateral gradients of buoyancy 
within the mixed layer, which is deeper in the cyclonic eddy than in the meander. However, lateral gradients of 
buoyancy at depth are comparable and relatively weak over the entire domain. The weakness of these lateral gra-
dients of buoyancy can be understood through their link with the mesoscale strain field. Indeed, the strain field 
associated to mesoscale eddies is known to stretch buoyancy (or density) anomalies, leading to the creation of 
strong gradients at submesoscale7. However, over the vast domain sampled by the seal, the mesoscale strain field 
is weak (apart in the standing meander and the cyclonic eddy), as inferred from the map of eddy kinetic energy 
(Fig. 2a) and the time series of the strain field (blue curve in Fig. 2c). As a consequence, lateral gradients of spic-
iness and buoyancy remain subdued in most of the domain. However, this contrast is also observed between the 
two distinct mesoscale features encountered by the seal: the standing meander and the cyclonic eddy. One simple 
hypothesis explaining this dichotomous distribution may be related to their respective sizes. While the meander 
is an elongated feature of ∼350 km of length, the cyclonic eddy has a smaller size of ∼100 km, which makes it 
statistically less likely to host mixing events and thus even less likely to observe it. Furthermore, our observational 
results confirm modelling studies of the last decade showing that submesoscale fronts are produced mostly at the 
edges and in-between mesoscale eddies39.

The abundance and strength of submesoscale features observed on the edges of the standing meander are 
of biological significance for upper trophic levels: the SES considered in this study spends significantly more 
time foraging in the vicinity of strong submesoscale features located on the edge of the meander where it also 
decreases its speed. This is consistent with the results of Della Penna et al.17, who found that SES adopt a “quasi 
planktonic behaviour”, i.e. are horizontally advected, on the edge of mesoscale features identified as favorable 
feeding grounds. At these locations, an intense foraging activity is however observed on the vertical, similar to the 
animal considered in this study. Our results are also consistent with recent findings of Hindell et al.21 suggesting 
that rather than targeting one specific water mass, SES may simply be targeting areas of high mixing that are 
presumably concomitant with high prey concentrations due to the higher turnover of nutrients within the water 
column. Our findings are also consistent with previous work linking mesoscale features to SES behaviour. Indeed, 
numerous studies of the last decade have identified mesoscale eddies as favorable feeding grounds for SES with a 
preference for cold cyclonic structures and the edges of anticyclonic ones12–15. Both structures were reported to 
be enriched in organisms of different trophic levels44–46, and aggregate resources into narrower layers closer to the 
surface where they are more accessible to air-breathing SES47. Interestingly, when the seal encounters the standing 
meander, it most intensified his foraging behaviour at a depth of 220 m (Supplementary Fig. S2). Furthermore, 
hunting dive depth and maximum dive depth variances decrease (Supplementary Fig. S2). This relatively constant 
foraging dive depth of SES possibly reflects narrower prey fields associated with improved foraging success24,48, 
hinting that local dynamics creates predictable biological boundaries that facilitate prey accessibility.

Figure 7. Effect of key physical properties on the seal’s foraging effort, quantified by First-Passage Hunting 
Time (FPHT) at 40 km, inferred from generalized additive models. (a) Strain derived from satellite data. (b) 
Lateral buoyancy gradient (|bx|) at 15 m derived from seal data. (c) Lateral spiciness gradient (|πx|) at 150 m 
derived from seal data. (d) Mixed Layer Depth (MLD) derived from seal data. Shaded grey polygons show 95% 
confidence interval. A rug plot is added to the bottom of each panel.
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Since the beginning of the bio-logging program in 2004, all but one of the five post-breeding females tra-
jectories located west of the Kerguelen Islands present similar excursions to the standing meander site (Fig. 1). 
Even though the reason why SES transit west is presumably related to multiple factors, such as minimizing 
intra-specific competition49 for instance, it is still necessary that they find optimal conditions for feeding. This 
suggests that western excursions to the standing meander region (Fig. 1) are not accidental, and may be explained 
by the recurrently elevated physical activity of the site. Furthermore, individual SES often return to the same 
broad scale foraging grounds over consecutive years, presumably because these habitats are reliable ‘oasis’ in a 
highly variable environment50,51. This site loyalty has been shown to be an effective strategy adopted by marine 
predators foraging in a dynamic and heterogeneous environment such as the Southern Ocean50,52,53. These find-
ings are consistent with the fact that the standing meander region highlighted in this study is a permanent physi-
cal feature of the Southern Ocean, as described by Thompson et al.2. As such, the western trips observed in Fig. 1 
are unlikely a temporary phenomenon, and are expected to be repeated by individuals as elephant seals have a 
high degree of individual foraging site fidelity over periods of up to 10 years50,54.

Within the Antarctic Circumpolar Current, other standing meanders and areas of high eddy kinetic energy 
may also act as physical and biological hotspot. For instance, the region east of the Kerguelen Islands located at 
∼80°E–50°S, analyzed in Siegelman et al. (submitted), is a homogeneous hotbed of eddy kinetic energy where a 
strongly turbulent mesoscale eddy field generates intense submesoscale motions associated to a vigorous vertical 
velocitiy field. In addition to the iron input from the Kerguelen plateau which sustains a recurrent plume of pri-
mary production near shore9, Siegelman et al. (submitted) show that the submesoscale turbulence, and its asso-
ciated vigorous vertical velocities, may stimulate primary production in the open ocean. The combined intensity 
of submesoscale features, boosting the biological system and modulating prey aggregation15, and its proximity 
to the Kerguelen Islands may thus explain southern elephant seals’ statistical preference for the high eddy kinetic 
energy area east of the Kerguelen plateau (Figs 1 and 2) or maybe because the western standing meander region 
is much farther away.

Our study, limited to a region of the Southern Ocean, stresses the need for more submesoscale-resolving 
physical and biological observations across the globe and during different seasons. In particular, it would be inter-
esting to repeat this analysis during wintertime when submesoscale features are known to be more abundant and 
energetic55. Ultimately, understanding how the behaviour of individual marine predators is modulated by sur-
rounding structures is key for assessing the health and functioning of open ocean ecosystems and is instrumental 
in designing effective marine protection policies in a changing climate.

Methods
Satellite data. 85 daily maps of gridded 0.25° × 0.25°L4 Sea Surface Height (SSH) and Seal Level Anomaly 
(SLA) were obtained from the AVISO Ssalto/Duacs products, covering the spatial and temporal extent of the seal 
observation data. The Lagrangian time series of SLA along the seal’s track was used to identify the standing mean-
der site (the region of positive SLA between 2525 and 3340 km) and the cyclonic eddy (the region of negative SLA 
between 1520 and 1865 km) (Fig. 2).

Using the geostrophic approximation, geostrophic surface currents (u, v) are derived as
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where g is gravity and f the Coriolis parameter56. The strain field σ is subsequently computed as
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where subscripts denote partial derivative.
In addition, the map of Chlorophyll a concentration level 2 data in Fig. 2b has been processed by CLS for the 

Kerguelen area. It corresponds to a time average of Chlorophyll a concentration over the 85 days of the seal’s 
journey.

Southern Elephant Seal dataset. High-resolution data was recorded by a seal-borne Conductivity- 
Temperature-Depth Satellite Relay Data Logger (CTD SRDL, Sea Mammal Research Unit, University of St 
Andrews) deployed on a post-breeding female southern elephant seal from the Kerguelen Islands (49°20′S, 
70°20′E). The seal is tracked by the Argos satellite system and is equipped with sensors recording conductivity, 
temperature and pressure at a continuous frequency of 0.5 Hz between 27 October 2014 and 20 January 2015, 
with an accuracy of ±0.02 °C for temperature and ±0.03 g/kg for salinity57. Only the ascending phase of a dive is 
used because it is more uniform in speed and direction compared to the descent when the seal dives sinuously to 
forage. The dataset is comprised of 6942 dives, or over eighty dives per day, which corresponds to a cumulative 
length of 5665 km with a median spacing between two dives of 700 m (Supplementary Fig. S3). Dives can be as 
deep as 500 to 1000 m. They generally last less than 25 minutes and are separated by a few minutes surfacing, 
where the seal breathes without transiting. More than 85% of the dives reach a depth of at least 100 m, 45% reach 
300 m and 25% are 400 m or deeper.

To ensure a better accuracy of the conductivity-derived salinity data, two additional steps are applied to the 
temperature and salinity fields. First temperature and salinity are corrected for a thermal cell effect, and then 
a density inversion removal algorithm is applied to the salinity field. Potential density is then calculated from 
corrected temperature and salinity with the TEOS-10 equation58. The correction procedure and accuracy of the 
dataset are presented in more details in Siegelman et al.57. The dataset has been made available to the community 
and can be found on the Marine Mammals Exploring the Oceans Pole to Pole database (http://www.meop.net/).
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The animal in this study was handled in accordance with the Institut polaire francais Paul-Emile Victor 
(IPEV) ethical and Polar Environment Committees guidelines as part of the SNO-MEMO and IPEV program 
109 (PI. H. Weimerskirch). The experimental protocols were approved by the Ethics Committee of IPEV and 
Polar Environment Committees.

Buoyancy. Along-track time series of buoyancy (in s−2), b = g(1 − ρ/ρ0), where g is gravity, ρ is potential 
density, and ρ0 = 1025 kg m−3 is a reference density reveals variability covering both meso- and submesoscales. 
For the analysis, in particular the calculation of lateral buoyancy gradients (bx), buoyancy was first linearly inter-
polated along the seal’s path onto a regular grid of 100 m resolution, corresponding to the shortest along-track 
distance between two dives (Fig. S1). A moving average with a 1 km window was then applied such that the final 
dataset has a vertical resolution of 1 m and a horizontal resolution of 1 km. Buoyancy anomalies are resolved by 
multiple vertical profiles, such that the structures are not related to aliasing of the along-track data.

Spiciness. Spiciness (in kg m−3) is a state variable most sensitive to isopycnal thermohaline variations and 
least correlated with the density field33. Spiciness is conserved in isentropic motions and its value increases with 
increasing temperature and salinity. Positive (warm, salty) and negative (cold, fresh) subsurface spiciness anoma-
lies can be generated by subsurface isopycnal advection across spiciness fronts59,60. As such, variation in spiciness 
is particularly useful to detect thermohaline intrusions characteristic of intense mixing. Spiciness is derived from 
salinity and temperature with the TEOS-10 equation58.

Mixed layer depth. The mixed layer depth (in m) is defined as the level of a 0.03 kg.m−3 density increase 
with respect to the density at 15 m depth61.

Quantify seal foraging activity. Foraging activity is estimated from high-resolution dive data, recorded 
at the continuous sampling frequency of 0.5 Hz, by taking into account both the horizontal and vertical sinuosity 
of a dive. Indeed, a seal is expected to decrease its speed when feeding and move more sinuously along the hori-
zontal axis, displaying what is effectively area-restricted search behaviour (ARS)13,62. However, adding the vertical 
dimension is also important36, and high-resolution dive data of female SES demonstrates how vertical sinuosity 
can significantly improve the predictive capacity of ARS as a proxy for foraging success24. This is backed by simu-
lated diving tracks of beluga whales (Delphinapterus leucas) used to refined ARS in a 3D space63.

Here, we develop an index, the First-Passage Hunting Time (FPHT), which indicates the amount of time spent 
hunting in a region of given radius and includes the following steps. First, we compute the Hunting Time (HT) 
via an automated broken stick algorithm, which summarizes the vertical sinuosity of the dive data based on the 
optimized number of segments within each dive. Further details outlining this step are provided in Heerah et al.37. 
A behavioural state is then assigned to each dive segment based on visual inspection of dive segment sinuosity 
distribution: low sinuosity values (>0.9) represent transit behaviour and high sinuosity values (<0.9) repre-
sent hunting behaviour. To validate this method, prey encounter events were detected from an accelerometer64 
that, unfortunately, only recorded during the first three weeks of the seal’s trip due to limited storage capacity. 
However, evidence suggests that elephant seals even exhibit high foraging success during the outward transit 
when movement was relatively rapid and direct65. Furthermore, most prey encounter events (79%) recorded 
during these initial three weeks occurred within hunting segments, which comforts the use of the accelerometer 
data as validation data thoughouth the entire seal’s journey. This result is also consistent with the analyses of two 
post-breeding elephant seal trips in Heerah et al.37. Next, we modify the First-Passage Time approach (FPT)66, 
which is a scale-dependent foraging metric (i.e. ARS) that estimates how much time is required for an animal 

Figure 8. Schematic of First Passage Hunting Time (FPHT) calculation. (a) Typical dive profile recorded by the 
device deployed on the elephant seal. (b) The dive is separated into segments of hunting (red) and transit (blue) 
using the broken stick method (for details see Heerah et al.37). Hunting time (HT) is the summed total time of 
hunting segments in each dive. The number of prey encounter events detected by an on-board accelerometer 
(green) increased almost fourfold in hunting segments. (c) The First Passage Hunting Time at each point of the 
seal’s trajectory is then calculated as the sum of Hunting Time within a radius R.
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to cross a given radius. Instead, we estimate how much time spent hunting is required for the seal to cross a 
given radius, referred hereafter as First-Passage Hunting Time (FPHT). Values of FPHT and FPT are similar 
across scales, but differences demonstrate how FPT cannot always account for vertical foraging activity (Fig. S1). 
Relatively speaking, FPHT > FPT is where more time is spent hunting within dives than is captured by the seal’s 
horizontal movement and vice versa. This methodology is refined compared to Bailleul et al. (2008) who took the 
entire bottom phase time. Specifically, we sum the time spent in hunting segments and ignore the time spent in 
transit segments. A summary of FPHT derivation is presented in Fig. 8.

FPHT is computed at the radius R of 40 km in order to capture the mesoscale features of the area. However, 
results are robust to the choice of R. Indeed, although the behavioural pattern seems ambiguous at fine scale 
(r = 5 km), it is generally consistent at broader scales (r > 10 km): the seal transits west of Kerguelen for a 
month (low FPHT), followed by increased hunting activity at the standing meander (high FPHT), followed by a 
three-week transit return to Kerguelen (low FPHT) (Fig. S1).

Generalized additive models. Generalized Additive Models (GAMs) were used to explore relationships 
between key physical variables and FPHT using a Gaussian distribution with the identity link function. Times 
series of FPHT at 40 km were used as the response variable, and time series of the lateral gradient of buoyancy at 
15 m, lateral gradient of spiciness at 150 m and mixed layer depth (from the seal’s observations) and strain field 
(from satellite data) were used as explanatory variables. A summary table is presented in Supplementary Table S1. 
Model assumptions pertaining to GAMs, including normality and homogeneity of variance were checked using 
plots of residuals against fitted values67,68. GAMs were computed with the ‘mgcv’ package for R69.

Data Availability
The marine mammal data were collected and made freely available by the International MEOP Consortium and 
the national programs that contribute to it (http://www.meop.net). The Ssalto/Duacs altimeter products were 
produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS) (http://
www.marine.copernicus.eu).
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Conclusion and perspectives

Results, derived from in situ and model data, demonstrate that ageostrophic motions (i) are

generated by the backgound mesoscale eddy field via frontogenesis processes, and (ii) are not

solely confined to the ocean surface mixed layer but, rather, extend in the ocean interior down to

depths of a thousand meters. As such, deep-reaching fronts at submesoscale provide an impor-

tant, yet unexplored, pathway connecting the ocean interior to the surface. In terms of vertical

heat fluxes (VHF), instantaneous values associated with these fronts reach ± 2 000 W m−2.

Furthermore, time and domain-averaged VHF over one month and ∼ 500 km × 500 km are

directed upward regardless of depth, and have a magnitude of up to + 350 W m−2 below the

mixed layer (Siegelman et al., 2019a; Siegelman, pres). These results suggest revisiting current

estimates of the Earth’s heat budget and stress the need to account for small-scale physics, not

only within, but also below the ocean surface mixed layer, in the prediction of future climate

states. In addition, the results of this dissertation may have a far greater scope as the evidence

for intense vertical currents associated with deep-reaching submesoscale ocean fronts may also

provide an efficient pathway for the transport of chemical and biological tracers, with potential

major implications for biogeochemical systems.

Limitations of, and questions raised by, the present PhD work offer several routes for future work.

First, the results of this dissertation suggest that an inaccurate representation of ageostrophic

motions could considerably underestimate the amount of heat transferred from the ocean in-

terior back to the surface and, as a consequence, potentially overestimate the amount of heat

the ocean can absorb. However, the coupled ocean-atmosphere system is complex and regulated

by two-way oceanic-atmospheric feedbacks. Thus, a central question that arises concerns the

impact of deep VHF on the atmosphere, through air-sea fluxes for instance. Accurately answer-

ing this question from a modeling perspective requires a coupled ocean-atmosphere simulation

at high resolution, such as the global one that is running as I write at the NASA Advanced

Supercomputing Division at the Ames research center. However, recent results already indicate

that sea surface temperature fronts associated with oceanic mesoscale eddies trigger a significant

wind divergence, which leads to large latent heat and moisture release in the vicinity of oceanic
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eddies. Consequently, mesoscale eddies in the Kuroshio Extension exert a distant influence on

winter rainfalls along the U.S. Northern Pacific coast, leading to an increase of 20–25% of the

total rainfall (Ma et al., 2015), and mesoscale eddies in the Gulf Stream impact the wintertime

European blocking (O’Reilly et al., 2017). These results highlight that oceanic mesoscale eddies

have the capacity to mediate intermittent air-sea interactions, suggesting that the influence of

submesoscale turbulence on atmospheric storm tracks is potentially a lot greater than previously

thought.

In the context of the upcoming NASA-CNES Surface Water Ocean Topography (SWOT) mis-

sion that will be launched in 2021, one may ask whether it is possible to diagnose ageostrophic

dynamics in the ocean interior from space. It is known that the strain field associated with

oceanic eddies governs tracer dispersion (Hua et al., 1998; Lapeyre et al., 1999) and that advec-

tion and stretching properties widely differ in the QG and ageostrophic regimes (Scott, 2006;

Özgökmen et al., 2012; Foussard et al., 2017). On the one hand, in the QG regime, the k−3 KE

spectrum slope implies that the stretching of small-scale filaments is driven by the largest eddies

alone. In this case, tracer fluxes, from large to small scales, are associated with "non-local" scale

interactions as the large scales control the small ones (Scott, 2006). On the other hand, in an

ageostrophic regime, the k−2 KE spectrum slope implies that filament dynamics are controlled by

both meso- and submesoscales. These interactions are now referred to as "local" as small-scale

filaments can also be produced by the smallest eddies (Scott, 2006). Preliminary results indicate

that FSLEs can be used to diagnose local and non-local advection properties of a tracer from

space, as can be seen in Figure 5.1 for the Ertel PV (Siegelman et al., prep). When submesoscale

motions are taken into account in addition to mesoscale ones alone, FSLE are characterized by

smaller scales and larger magnitudes. These results are particularly relevant in the context of

SWOT, which will resolve SSH at an unprecedented resolution of 15-km wavelength, i.e., ten

times greater than current satellite altimeters. SWOT will give access for the first time to both

meso- and submesoscales on a global scale, enabling the study of local and non-local advection

from space. This opens the door to retrieve the vertical velocity field at both meso- and sub-

mesoscale from space, not only at the ocean surface but also in the ocean interior. A promising

route to do so is based on the diagnostic omega equation, relating the strain field and lateral
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Figure 5.1: Snapshot of FSLE (top) and Ertel PV (bottom) at 0.5 m (left), 299 m (middle), and 900 m (right)
in the Kerguelen area (Figure 1.11) on 2011-12-25 15:00:00 UTC, computed from the LLC4320 simulation (see
section 1.3). From Siegelman et al. (prep).

gradients of buoyancy to vertical velocities (Chapter 2). This constitutes an on-going project

with Pr. Bo Qiu (University of Hawaii, see submitted NASA SWOT proposal 2019) in the con-

text of eSQG reconstruction methods of the vertical velocity field (Qiu et al., 2019). The current

major limitation of the traditional eSQG method is that it can only retrieve the buoyancy, and

thus the vertical velocity, field at mesoscale. To overcome this limitation, and similarly to what

was done in Chapter 3, we intend to use FSLEs to derive the strain field from upcoming SWOT

observations. More precisely, the idea is to add an extra step in the current eSQG method: at

each depth, the buoyancy field computed with eSQG will be advected as a 2-D tracer by the

velocity field, also derived from eSQG. This Lagrangian advection will allow buoyancy gradients

at submesoscale to emerge due to the direct cascade of PE energy. This buoyancy field will then

be compared/realigned with FSLEs diagnosed from SWOT, which should now take into account

local and non-local straining dynamics as a function of depth. Finally, the vertical velocity field

at submesoscale will be derived from the omega equation.

Throughout this dissertation, with the exception of the wavenumber-frequency spectra presented
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in Chapter 4, interactions between IGWs and balanced motions (BM) have not been studied.

However, although BMs and IGWs occupy distinct regions of the spectral space (Figure 5.2),

they do interact (Chereskin et al., 2019). Many studies have revealed that IGW propagation is

polarized by the sign of relative vorticity and stratification anomaly of mesoscale eddies (Kunze,

1985; Young and Jelloul, 1997; Danioux et al., 2011; Joyce et al., 2013; Zaron and Egbert, 2014;

Grisouard and Thomas, 2015; Ponte and Klein, 2015; Whitt and Thomas, 2015; Dunphy et al.,

2017; Thomas, 2017). As a result, IGWs are preferentially trapped within anticyclonic eddies

and expelled from cyclonic eddies, and

Figure 5.2: Wavenumber-frequency spectrum schematic dis-
playing the multiple dynamical regimes: RW stands for Rossby
waves, MBM for mesoscale balanced motions, SBM for subme-
soscale balanced motions, USM for unbalanced submesoscale mo-
tions, and IGW for internal gravity waves. The dispersion re-
lations for the first ten baroclinic modes are shown: mode 1 in
gray dotted line, mode 2–9 in green dashed lines, and mode 10
in black. The non-dispersive line ω−ck = 0 is drawn for an eddy
speed c of 10 m s−1. From Torres et al. (2018).

their frequencies and wavenumbers

significantly increase during this pro-

cess (Whitt and Thomas, 2015).

Thus, the scattering and dispersive

impacts of BMs on IGWs may ulti-

mately lead to intensified (reduced)

mixing in anticyclonic (cyclonic) ed-

dies. Besides driving localized mix-

ing, recent studies suggest that inter-

actions between IGWs and BMs may

also stimulate submesoscale fronts

and their associated vertical veloci-

ties (Xie and Vanneste, 2015; Tay-

lor and Straub, 2016; Wagner and

Young, 2016; Barkan et al., 2017;

Thomas, 2017; Rocha et al., 2018).

As such, the propagation direction

and velocity of IGWs trapped in a

balanced strain field may be consid-

erably modified, leading to non-zero momentum and buoyancy fluxes associated with IGWs

(Thomas, 2017). These fluxes represent an energy transfer from mesoscale KE to wave PE, with

this energy being subsequently transferred to submesoscale fronts with high frequencies, i.e.,
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the USM area in Figure 5.2. This mechanism, referred to as stimulated imbalance, increases

the vertical velocity field associated with submesoscale fronts and therefore vertical advective

fluxes of tracers (Barkan et al., 2017; Thomas, 2017; Rocha et al., 2018). To date, these energy

transfers have mainly been studied in idealized models (Xie and Vanneste, 2015; Taylor and

Straub, 2016; Wagner and Young, 2016; Barkan et al., 2017; Thomas, 2017; Rocha et al., 2018)

and remain largely unknown and unexplored in the real ocean. This constitutes an active area

of research that is of interest to me (see the studies of Klein et al. (2019) presented in Appendix

A and Torres et al. (2019) in Appendix B that I co-authored) and a route that I would like to

pursue during my upcoming postdoctoral position. In particular, it remains to be determined

whether high-frequency IGWs can lead, in addition to irreversible mixing, to a substantial in-

crease of vertical advective tracer fluxes, as found in Su et al. (2018) and Su (pers. comm.).

Note that the on-going Near Inertial Shear and Kinetic Energy in the North Atlantic Experiment

(NISKINE) promises to provide the first direct observations of these processes from ship-based

and autonomous floats (Rainville et al., 2019), and should serve as a baseline for future in situ

experiments aimed at studying the interactions between IGWs and BMs in other regions of the

world ocean.

Regarding in situ campaigns, I would also like to suggest potential strategies for the study of

ageostrophic dynamics in the ocean interior:

• In order to sample submesoscale motions, it appears crucial to target areas of intense

mesoscale activity, i.e., strain-dominated areas of the flow field, which can be diagnosed

from space. In order to do so, one can imagine a similar setup to the one implemented

in the POMME experiment by Legal et al. (2007). In this experiment, a ship equipped

with an ADCP and a SeaSoar closely followed regions of negative Okubo-Weiss (OW, i.e.,

strain-dominated areas of the flow field) where a radiator pattern across the frontal region

was executed. Instead of tracking the OW quantity, which tends to be noisy (Figure 2.5),

especially when derived from altimeter data (not shown), I suggest to use FSLEs. FSLEs

have the advantage of being at finer-scale for a similar initial SSH field (Figure 1.10). In

addition, FSLEs take into account the rotation of the strain tensor axis (Lapeyre et al.,
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1999) and thus the time evolution of the Lagrangian strain field, whereas OW does not.

• Another rich, yet under-looked, approach to study meso- and submesoscale turbulence in

the ocean interior is through seismic reflection profiling. This technique originated in the oil

industry and was first used for oceanographic purposes to observe internal waves (Gonella

and Michon, 1988). More recently, seismic reflection has been used to study oceanographic

fronts in relation to thermohaline structures in the northern Atlantic (Holbrook et al.,

2003; Nandi et al., 2004) as well as mesoscale eddies and submesoscale filaments in the

ocean interior (Pinot et al., 1996; Holbrook and Fer, 2005; Biescas et al., 2008; Krahmann

et al., 2008; Klaeschen et al., 2009; Quentel et al., 2010, 2011; Ménesguen et al., 2012).

Seismic data also allow the detection of submesoscale eddies that hydrographic sections

rarely capture (Menesguen et al., 2009; Quentel et al., 2010; Ménesguen et al., 2012; Gula

et al., 2019), as can be seen in Figure 5.3.

Figure 5.3: Vertical section of seismic reflection (top) and salinity (bottom). Velocity vectors on the bottom
panel (black bolt cross, velocities directed to the east; black bold dot, velocities directed to the west) indicate an
anticylonic mesoscale eddy (Meddy), a cyclonic submesoscale eddy (SM1). Adapted from Quentel et al. (2010).
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Abstract Satellite observations of the last two decades have led to a major breakthrough emphasizing
the existence of a strongly energetic mesoscale turbulent eddy field in all the oceans. This ocean mesoscale
turbulence is characterized by cyclonic and anticyclonic eddies (with a 100- to 300-km size and depth
scales of ∼500–1,000 m) that capture approximatively 80% of the total kinetic energy and is now known to
significantly impact the large-scale ocean circulation, the ocean's carbon storage, the air-sea interactions,
and therefore the Earth climate as a whole. However, ocean mesoscale turbulence revealed by satellite
observations has properties that differ from those related to classical geostrophic turbulence theories. In
the last decade, a large number of theoretical and numerical studies has pointed to submesoscale surface
fronts (1–50 km), not resolved by satellite altimeters, as the key suspect explaining these discrepancies.
Submesoscale surface fronts have been shown to impact mesoscale eddies and the large-scale ocean
circulation in counterintuitive ways, leading in particular to up-gradient fluxes. The ocean engine is now
known to involve energetic scale interactions, over a much broader range of scales than expected one
decade ago, from 1 to 5,000 km. New space observations with higher spatial resolution are however needed
to validate and improve these recent theoretical and numerical results.

1. Introduction
In 1992, a satellite with a high-precision altimeter, Topex/Poseidon (T/P, CNES/NASA), was launched in
space to observe the sea surface height (SSH) in all oceans over a range of scales from 100 km to more
than 5,000 km. SSH observations, a proxy of surface pressure, were used to retrieve oceanic surface motions
using the geostrophic approximation (that assumes an equilibrium between Coriolis and pressure gradi-
ents forces). First analyses of T/P observations profoundly revolutionized the field of oceanography. They
showed that General Ocean Circulation Models (OGCM) with low spatial resolution were strongly deficient
in estimating the kinetic energy (KE) of oceanic motions (Fu & Smith, 1996; Stammer et al., 1996). Wal-
ter Munk, testifying before the U.S. Commission on Ocean Policy in April 2002, emphasized that T/P was
“the most successful ocean experiment of all time”. In September 2018, over 300 ocean scientists attended a
5-day symposium in Ponta Delgada (Azores Archipelago) to celebrate 25 years of Progress in satellite radar
altimetry. Ocean monitoring over more than two decades, using T/P and other satellite altimeters (Figure 1),
has led to a major scientific breakthrough responsible of a paradigm shift: all the oceans are now known to
be populated by numerous coherent eddies at mesoscale (100–300 km) as illustrated by Figure 2a. Altime-
ter observations further emphasize these eddies capture almost 80% of the total oceanic KE of the ocean
(Chelton et al., 2011; Ferrari & Wunsch, 2009; Morrow & Le Traon, 2012; Wunsch, 2002, 2009). Although
energetic eddies are present everywhere, they are intensified in hot spots associated with major oceanic
currents such as the Gulf Stream, the Kuroshio Extension, and the Antarctic Circumpolar Current (see
Figure 2b). This vision of a strongly turbulent ocean at mesoscale has been confirmed by recent numerical
OGCMs performed with high resolution of a few kilometers (see Figure 3).

Due to the high vertical stratification of the open ocean and the Earth rotation, oceanic motions at scales
larger than 100 km are geostrophic and quasi-horizontal (Vallis, 2017); that is, vertical motions at these
scales are very weak. So it is not surprising that the ocean mesoscale turbulence (OMT) revealed by satel-
lite altimeters was then expected to obey the properties of geostrophic turbulence (GT), described in many
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Figure 1. Existing and future satellite altimeters (see https://sealevel.jpl.nasa.gov/).

theoretical and numerical studies starting with Charney (1971; see, e.g., Hua et al., 1998; Hua & Haidvogel,
1986; McWilliams, 1989; Rhines, 1975, 1979).

Because of the specific impacts of the rotation and vertical stratification, GT properties strongly differ from
the classical 3-D turbulence properties (Tennekes & Lumley, 1974). A first difference is the existence in GT
of an inverse KE cascade, driven by the nonlinear interactions between eddies, such that KE fluxes from the
scales of eddy sources (mostly explained by baroclinic instability) toward larger scales (for which Rossby
wave dispersion starts to dominate and nonlinear interactions weaken). Such inverse KE cascade is con-
comitant with the nonlinear merging between coherent eddies giving rise to larger ones (Vallis, 2017). As
a consequence, the resulting eddy fluxes significantly increase the total KE and further strengthen large
geostrophic eddies by making them more coherent with a longer life time and ultimately leading to the
emergence of zonal jets when Rossby wave dispersion becomes significant (Panetta, 1993; Rhines, 1975).
Such inverse KE cascade is not observed in 3-D turbulence that only experiences a direct KE cascade from
KE sources to smaller scales and therefore to dissipation scales (Tennekes & Lumley, 1974). A second differ-
ence is the direct cascade of dynamically passive or active tracers toward small scales driven by geostrophic
eddies (Lapeyre et al., 2001). Through the action of stretching and folding, geostrophic eddies generate
long and thin filaments of tracers (as illustrated in the ocean by the chlorophyll or Ertel potential vorticity
maps; see Figures 4a and 4b) that eventually mix with their surrounding environment (Ledwell et al., 1993;
Pierrehumbert et al., 1994). Maps of Finite Size Lyapunov Exponents, or FSLE, are a usual index to mate-
rialize these stretching and folding processes (see Figure 4c). The associated mechanisms, called chaotic
advection (Aref, 1984; Lapeyre, 2002), make mixing much more efficient than expected from the classical
diffusion paradigm used in 3-D turbulence, by at least 2 to 3 orders of magnitude (Garrett, 1983).

Using the GT framework has been illuminating to understand how oceanic mesoscale eddies, observed by
satellite, control the global meridional heat transport (Hausmann & Czaja, 2012) and how they shape the
large-scale ocean circulation through the inverse KE cascade (Hurlburt & Hogan, 2000). The GT frame-
work has also been used to understand how OMT drives the three-dimensional dispersion and mixing of
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Figure 2. (a) Trajectories of cyclonic (blue lines) and anticyclonic (red lines) eddies (estimated from altimeter data)
over the 16-year period, October 1992 to December 2008, for lifetimes >16 weeks (from Chelton et al., 2011). (b) Map of
the standard deviation of eddy SSH amplitude (in centimeters; from Chelton et al., 2011, used with permission.) SSH =
sea surface height.

tracers, such as nutrients and therefore the biological diversity and carbon storage (d’Ovidio et al., 2010;
McGillicuddy Jr, 2016). Mezic et al. (2010) applied GT ideas to improve the forecast of pollutants dispersion
using altimeter observations. They used these ideas for the forecast of the oil spill dispersion after the Deep
Water Horizon accident in the Gulf of Mexico (see also Poje et al., 2014). Assimilation of satellite altimeter
observations and in situ global data sets (such as the ARGO float dataset) in numerical models has led to the
fast development of operational oceanography (Chassignet et al., 2018; Le Traon, 2013). Some assimilation
techniques make use of the GT framework to better represent the OMT impacts on tracers. For example,
Gaultier et al. (2012) proposed to assimilate the stretching (or strain) field (i.e., the second-order spatial
derivatives of SSH) instead of simply assimilating SSH. These authors showed how this idea helped to much
better predict the chlorophyll dispersion by mesoscale eddies.

Figure 3. Instantaneous snapshot of the kinetic energy in the global ocean, from a global Estimating the Circulation
and Climate of the Ocean (ECCO) numerical simulation ((1/48)◦ degree resolution in the horizontal and 90 vertical
levels). (See https://science.jpl.nasa.gov/projects/ECCO–ICES/).
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Figure 4. (a) Satellite image of the chlorophyll in the Southern Ocean (see https://earthobservatory.nasa.gov/). (b) Map
of the Ertel potential vorticity in the Southern Ocean from the global ECCO numerical simulation (see above). Ertel
potential vorticity is a dynamical active tracer conserved on a 3-D Lagrangian trajectory. (c) Map of the Finite Size
Lyapounov Exponents (FLSE) in the Southern Ocean estimated using sea surface height from the global ECCO
numerical simulation ((1/48)◦ resolution in the horizontal and 90 vertical levels; see https://science.jpl.nasa.gov/
projects/ECCO-IcES/). FSLE are an index of the dispersion of tracers and particles by geophysical eddies (with a size of
less than 100 km on this map; see more details about FSLE in d’Ovidio et al., 2010).

Still, some disconcerting discrepancies between OMT properties diagnosed from SSH observations and what
is expected from GT theory are not fully understood (Morrow & Le Traon, 2012) as detailed in section 2. One
of the key suspects, highlighted by numerical models with high spatial resolution, is the impact of smaller
scales not resolved by existing satellite altimeters, in particular surface frontal structures with a 1- to 50-km
width (called submesoscales in the present paper) for which the geostrophic approximation still works, but
only at zero leading order. The numerous numerical and theoretical studies devoted to submesoscales and
their interactions with mesoscale eddies of the past 15 years have led to startling discoveries discussed in
section 3. One of them points to the extension of the inverse KE cascade to scales down to 30 km, that is,
in a regime where frontal processes are beginning to take place. This suggests that the oceans are even less
diabatic and more inertial than we thought; that is, fluxes of any quantities (including KE) are much less
controlled by diffusivity or viscosity (which leads to irreversible downgradient fluxes) and more by nonlinear
interactions that can lead to reversible up and downgradient fluxes. Mesoscale and submesoscale motions
with scales down to 30 km should be observable by the forthcoming Surface Water and Ocean Topogra-
phy (SWOT) altimeter mission (Fu & Ferrari, 2008) described in section 4. However, one challenge to meet
to analyze these future observations is that balanced motions (BMs) with scales smaller than 100 km are
entangled with another class of motions, the internal gravity waves (IGWs), as discussed in section 5.

The most recent results using numerical models with the highest spatial resolution allowed by available
petascale computers (Chassignet & Xu, 2017, Lévy et al., 2010, Su et al., 2018, Torres et al., 2018; Figure 3)
highlight that ocean-scale interactions, involving scales down to 1 km, affect the ocean dynamics in counter-
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Figure 5. Frequency (cycle/day) and zonal wavenumber (cycles/km) spectrum of sea surface height variance estimated
from altimeter data. (left) A two-dimensional spectrum plotted on a linear power scale, smoothed in frequency and
zonal wavenumber. (right) The logarithm of the power. Dashed curves indicate the barotropic and first baroclinic mode
dispersion curves of Rossby waves. Dash-dotted lines are the corresponding curves for the unit aspect ratio. The
“nondispersive line” defined in the text lies along the ridge of maximum energy density and is closely approximated by
the dotted white line (in the red area of the right panel) with a slope of 4 km/day (from Wunsch, 2009, 2010, © La
Societe Canadienne de Meterologie et d'Oceanographie, reprinted by permission of Taylor & Francis Ltd, www.
tandfonline.com on behalf of La Societe Canadienne de Meterologie et d'Oceanographie.).

intuitive ways, as illustrated by some examples in section 6. Submesoscale structures in one region not only
impact ocean dynamics locally but also impact ocean dynamics in remote regions (Chassignet & Xu, 2017;
Lévy et al., 2010). The implication is that understanding how the ocean engine works, over such a large
range of scales, requires a numerical strategy involving large domains and employing the highest spatial
resolution. However, as Carl Wunsch put it during the OSTST meeting in Lisbon in 2010: “Increased resolu-
tion in ocean models needs to be accompanied by higher resolution observations” on a global scale, which is
presently a real challenge, as discussed in section 7. Such observations are indeed highly needed to question
theories and models in order to improve our understanding of the ocean dynamics, which eventually will
lead to new theories and models. The synergy of using observations from different satellite missions should
help to better understand the dynamics involved in this broad range of scales, as discussed in section 7.

The purpose of this paper is not to provide a thorough and comprehensive review of the important contri-
bution of satellite altimeters to the knowledge of the OMT but rather to point to the missing mechanisms
that can potentially improve this knowledge. The paper mostly focuses on the upper ocean (from the sur-
face down to ∼1,000 m) in extra-equatorial latitudes. Equatorial dynamics are discussed in another paper in
this issue (see Menesguen et al., 2019).

2. Ocean Mesoscale Turbulence and Theory of Geostrophic Turbulence
Present altimeter observations concern spatial scales (larger than 70–100 km) for which the associated
motions are characterized by a Rossby number (defined as Ro ≡ U∕fL with U and L, respectively, a veloc-
ity and length scales, and f the Coriolis frequency) smaller than 1. This means that these surface motions
are either in geostrophic balance (i.e., a balance between Coriolis and horizontal pressure forces leading to
−𝑓 k⃗ × U = −g∇SSH, with k⃗ the vertical vector) or in gradient wind balance (a balance that, in addition,
involves the nonlinear terms, i.e., U.∇U − 𝑓 k⃗ × U = −g∇SSH; Vallis, 2017).

BMs diagnosed from satellite altimeter observations now concur with the idea that the oceans are fully tur-
bulent, involving strongly interacting mesoscale eddies and giving rise to significant energy transfers across
scales. This turbulent character was revealed by one of the first 𝜔-k spectrum (with 𝜔 the frequency and k
the horizontal wavenumber) of ocean variability estimated from SSH observations (Wunsch, 2009, 2010). As
illustrated in Figure 5, the maximum of the SSH variance does not follow the dispersion relation curves asso-
ciated with linear Rossby waves. Rather, it lies approximately along a “nondispersive” line, c.k +𝜔 = 0 (with
k < 0), corresponding to an eddy propagation speed of c ≈ 4.6 cm/s (close to the values found independently
by Fu, 2009). This finding highlights the strong nonlinear character of mesoscale eddies, confirmed later on
by the study of Chelton et al. (2011). All these results point to the existence of an energetic OMT expected
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Figure 6. Global distribution of the spectral slopes (k−n) of sea surface height wavenumber spectrum in the
wavelength band of 70–250 km estimated from the Jason-1 altimeter measurements. The color scale is related to values
of n (from Xu & Fu, 2012, © American Meteorological Society. Used with permission.).

to share the GT properties described in Charney (1971), Hua and Haidvogel (1986), McWilliams (1989),
and Hua et al. (1998). However, some intriguing discrepancies between OMT and GT properties quickly
emerged. Let us comment on two of them.

The first one concerns the KE spectral slope estimated from satellite altimetry. Based on GT theory, the KE
spectrum should scale in k−3 (Charney, 1971). However, KE spectra deduced from altimeter observations
using the geostrophic balance do display a linear slope in log-log space in the scale range 100–300 km, but
with a power law varying between k−2 and k−3. This discrepancy, early noted by Fu (1983), was first attributed
to altimeter noise. But more careful estimations, using a larger set of altimeter observations, by Le Traon et
al. (2008), confirmed the k−2 slope. Such slope for the KE spectrum suggests that smaller eddies resolved by
satellite altimeters are more energetic than predicted by GT. Xu and Fu (2012) recently highlighted an even
more complex picture displaying a strong regional dependency of the SSH spectral slope (Figure 6). On one
hand, in many high KE regions, the resulting KE spectral slopes vary between k−3 and k−2. On the other
hand, in low KE regions, such as in the eastern part of ocean basins, the spectral slope is even flatter than k−2,
which is unrealistic in terms of geostrophic motions (Xu & Fu, 2012). The consensus that presently emerges
is that this diversity of spectral slopes is not due to altimeter noise but is due to physical mechanisms other
than those involved in GT that vary seasonally and regionally (Dufau et al., 2016; Xu & Fu, 2012).

Another discrepancy concerns the KE fluxes or the inverse KE cascade. As mentioned before, GT theory
suggests that mesoscale geostrophic eddies should experience an inverse KE cascade, with KE fluxing from
the scales of eddy sources (50–100 km for the ocean) to the scales of the most energetic eddies (Le ∼ 250–300
km for oceanic mesoscale eddies; Charney, 1971; Hua & Haidvogel, 1986; Hua et al., 1998; McWilliams,
1989; Rhines, 1975. Studies by Smith, 2007 and Tulloch et al. 2011), using altimeter observations and in situ
data, confirmed the factor 3 to 4 between the eddy source scales and scales of the most energetic eddies,
suggesting an inverse KE cascade over a broad scale range. However, the first KE fluxes estimated from
altimeter observations by Scott and Wang (2005) were not consistent with this picture. Rather, these authors
found an inverse KE cascade over a narrower scale range, that is, starting only at wavelengths larger than 150
km, the smaller wavelengths (including the eddy source scales) experiencing a direct KE cascade (Figure 7a).
Some studies, such as Arbic et al. (2012) and Arbic et al. (2013), questioned the contribution of smaller
scales, unresolved by altimeter observations, for the transfer of energy between scales. Using an OGCM with
a (1/32)◦ spatial resolution, they showed that the scale range and magnitude of the inverse KE cascade are
strongly sensitive to the resolution of small scales: when small scales are taken into account, the inverse
KE cascade involves a much broader scale range involving smaller scales. Thus, KE at scales unresolved
by satellite altimeters may contribute to KE fluxes that strengthen eddies resolved by altimetry through the
inverse KE cascade. This contribution of unresolved scales seems to be in agreement with the ∼ k−2 spectral
slope previously mentioned and as further detailed in section 3. Note that, in terms of inverse KE cascade,
Arbic et al. (2012) are the first authors to show that OMT experiences an inverse KE cascade in frequency
as well.
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Figure 7. (a) Spectral kinetic energy flux versus total wavenumber estimated from altimeter data. Black curve using
sea surface height on a 32 × 32 grid, red curve using sea surface height on a 64 × 64 grid, blue curve using velocity on
a 64 × 64 grid. Positive slope reveals a source of energy. The larger negative lobe reveals a net inverse cascade to lower
wavenumber. Error bars represent standard error. (From Scott & Wang, 2005, © American Meteorological Society. Used
with permission.) (b) Spectral kinetic energy flux (from numerical simulations) integrated over the upper 200 m for a
flow forced by the Charney instability (and therefore involving submesoscale frontal structures; solid black) and a flow
forced by Phillips instability (and therefore with no submesoscale structure; solid gray). Uncertainty is represented as
dotted lines based on the assumption that the 360-day run corresponds to 12 independent realizations. In the inset, the
vertical axis is zoomed in the range of large wavenumbers to better emphasize the forward cascade. (from Capet et al.,
2016, © American Meteorological Society. Used with permission.) Similar results are found in Sasaki et al. (2014).

For larger scales, OMT properties appear to match GT properties. One example concerns the arrest of the
inverse KE cascade which leads, from GT, to the emergence of alternating zonal jets with a width close to
the Rhines scale, that is, the scale at which the Rossby wave dispersion starts to dominate and the nonlinear
interactions weaken (Hua & Haidvogel, 1986; Panetta, 1993; Rhines, 1975; Vallis, 2017). Maximenko et al.
(2005, 2008) tested their existence using satellite altimeter observations averaged over more than 10 years
(which filters out mesoscale eddies). Results reveal the presence of multiple zonal jets, with an east-west
velocity direction alternating with latitude, in many parts of the world oceans (Maximenko et al., 2005,
2008). At midlatitudes, jets have often a meridional wavelength close to or larger than 300 km, that is, close
to the Rhines scale.

The second example concerns the vertical eddy scale. The combination of SSH and moorings observa-
tions (Wunsch, 2009, 2010; Wortham & Wunsch, 2014) shows that roughly 40% of the KE at mesoscale is
barotropic in nature, with about another 40% lying in the first baroclinic mode. Since the buoyancy fre-
quency, N(z), in the ocean is surface intensified, the KE contribution of the first baroclinic mode is also
intensified there, leading to the conclusion that KE inferred from altimeter observations is primarily (but not
wholly) in the first baroclinic mode (Hua et al., 1985; Wunsch, 2010). In other words, KE at mesoscale con-
centrates in the first 500–1,000 m below the surface in agreement with the GT theory and numerical studies
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of Fu and Flierl (1980), Hua and Haidvogel (1986), and Smith and Vallis (2001). As found by these studies,
the energy is rapidly transferred from high to lower baroclinic modes, leading to an inverse KE cascade that
is not only 2-D but also 3-D in space.

As a summary, altimeter observations reveal that OMT shares some similarities with GT but also point
to some discrepancies. Present studies indicate that many of these discrepancies, in particular in high KE
regions, are likely explained by the missing contribution of unresolved small scales of BMs that concern
submesoscale density fronts at the ocean surface as discussed in section 3. On the other hand, discrepancies
in low KE regions seem to be due to the contribution of IGWs, as discussed in section 5.

3. Ocean Mesoscale/Submesoscale Turbulence: A New Paradigm Involving
Submesoscale Fronts
It has been acknowledged for a long time that the formation and development of atmospheric storms (the
equivalent of ocean mesoscale eddies) can only be understood by taking into account density fronts with
smaller scales at the troposphere's boundaries (i.e., the Earth surface and the tropopause). The turbulence
associated with this boundary frontal dynamics (Hoskins, 1976) was first studied by Blumen (1978) who
developed a surface quasi-geostrophic (SQG) theory. SQG theory assumes zero potential vorticity in the fluid
interior with the flow being driven by the time evolution of density at the boundaries, leading to intense
fronts at scales smaller than the Rossby radius of deformation (Held et al., 1995). SQG turbulence was used
to explain the dynamics of the atmospheric tropopause by Juckes (1994) and Hakim et al. (2002).

The impact of surface density fronts at submesoscale on the OMT started to be questioned only in the early
2000s. Subsequent studies were based on the theoretical results obtained for the atmosphere and in partic-
ular on the SQG theory. Although it has obvious limitations and shortcomings, such as an underprediction
of the amplitude of subsurface velocities (see LaCasce, 2012 for example), SQG dynamics coupled with GT
à la Charney (Tulloch & Smith, 2006) has been a helpful dynamical framework to understand the interac-
tions between submesoscale dynamics and mesoscale eddies. But later studies have revealed a more complex
picture as detailed below.

3.1. Surface Frontal Dynamics
Within the oceanic context, early 2000s numerical models (Lévy et al., 2001) that resolved scales down to 10
km pointed to an appealing property of surface density fronts at submesoscales. These fronts are intimately
associated with large vertical velocities extending from surface down to a depth of at least 300–500 m, with
values much larger than those reported for 3-D GT but close to those reported for SQG turbulence (Klein &
Lapeyre, 2009). Two other properties of SQG turbulence that address the discrepancies mentioned before,
led to studies focused on near-surface fronts at submesoscales and their interactions with mesoscale eddies
using the SQG paradigm (starting in 2006 with LaCasce and Mahadevan (2006), Lapeyre and Klein (2006)
and Lapeyre et al. (2006)): the first property is the k−5/3 KE spectrum of SQG turbulence (Blumen, 1978;
Held et al., 1995), instead of a k−3 spectrum for 3-D GT or 2-D turbulence. The second property is that an
SQG flow experiences an inverse KE cascade (Capet et al., 2008), starting at submesoscale, indicating that
submesoscale fronts may energize larger scales.

Later on, a large number of studies quickly revealed that the production of oceanic submesoscale fronts and
their interactions with mesoscale eddies may result from mechanisms different from SQG. Thus, Boccaletti
et al. (2007) and Fox-Kemper et al. (2008), among others, revisited previous results from Stone (1966) who
described baroclinic instabilities within atmospheric boundary layers. They showed that similar instabilities
occur within the oceanic surface mixed layer during winter when it is deep. These mixed-layer instabili-
ties lead to the production of numerous intensified submesoscale fronts during this period. Seasonality of
submesoscale fronts has been confirmed by in situ observations in the North Atlantic (Callies et al., 2015;
Thompson et al., 2016; see Figure 8a) and further detailed by several oceanic numerical models at a basin
scale (Chassignet & Xu, 2017; Mensa et al., 2013; Qiu et al., 2014; Rocha, Gille, et al., 2016; Sasaki et al., 2014
and also, J. Le Sommer, personal communication, June, 2018). Klein et al. (2008), Roullet et al. (2012), Qiu
et al. (2014), and Capet et al. (2016) pointed to another mechanism, a coupled surface/interior baroclinic
instability (the so-called Charney, 1947, instability), able to produce submesoscale fronts near the surface
(a mechanism also emphasized by Tulloch et al., 2011). Recently, Barkan et al. (2017) further discussed how
the high-frequency part of the wind forcing can also trigger frontal instabilities at submesoscale.
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Figure 8. (a) Yearlong time series of Ertel potential vorticity (10−9 s−3), calculated from glider data in the Northeastern
Atlantic ocean. The time series is divided into (top) fall, (middle) winter, and (bottom) spring-summer periods;
calendar dates (dd.mm) are provided along the top of the panels. The black contour is the mixed layer depth. (from
Thompson et al., 2016, © American Meteorological Society. Used with permission.) (b) Meridional section of vertical
velocity in the Northwestern Pacific (from a numerical simulation): vertical velocity (color, m/day), potential density
(black contour), and Mixed-Layer Depth (MLD) (green line). (from Sasaki et al., 2014).

In most of these studies, the driving mechanism for the production of submesoscale fronts is the action of the
geostrophic strain on the surface buoyancy gradients which leads to intensified horizontal fronts and strong
vertical motions. It turns out that these fronts, whatever mechanisms that produce them, have properties
close to SQG turbulence, such as a tight relation between buoyancy and relative vorticity (see Figure 7 of
Klein et al., 2008) and an ∼ k−2 (i.e., close to k−5/3) KE spectrum slope associated with an inverse KE cascade
starting at submesoscales. Some extensive reviews have been recently dedicated to surface frontal dynamics
at submesoscale in the oceans such as those by McWilliams (2016) and Lapeyre (2017).

3.2. Coupling Between Surface Frontal Turbulence and OMT: A New Energy Route
Involving Submesoscales
Whereas mesoscale eddies capture most of the horizontal motions (horizontal KE), submesoscale fronts are
now known to capture most of the vertical velocity field (vertical KE) in the upper ocean, that is, in the
first 500–1,000 m below the surface (Klein et al., 2008; McWilliams, 2016,Thompson et al., 2016; see also
Figure 8b). This important property, that can be demonstrated using SQG and QG arguments (see Figure
10 in Klein & Lapeyre, 2009), has been confirmed by several numerical models at a basin or global scale
(Sasaki et al., 2014; Su et al., 2018; see Figure 8b). As Ferrari (2011) puts it “these small-scale surface fronts
are the equivalents of the thin ducts in the lung called aveoli that facilitate the rapid exchange of gases when
breathing.” Near-surface submesoscale fronts are now thought to be the preferential path of heat, nutrient,
and other gas exchanges between the ocean interior and surface. In addition, vertical velocity associated
with submesoscale fronts impacts the energy route. Indeed, vertical fluxes of buoyancy (or density) driven
by submesoscale frontogenesis near the ocean surface correspond to a transformation of potential energy
(PE) into KE that scales as w𝜌 ∝ |∇𝜌|2 with w the vertical velocity and 𝜌 the density (see Capet et al., 2008;
Fox-Kemper et al., 2008; Lapeyre et al., 2006 for this scaling). Since the density spectrum near the surface
has a k−2 slope (Fox-Kemper et al., 2008; Sasaki et al., 2014), and therefore∇𝜌 has a flat spectrum, this means
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Figure 9. Schematic of the energy route involving mesoscales and submesoscales. PE is known to experience a direct
cascade from large to small scales because of the eddy stirring (see upper line). The new energy pathway involving
submesoscales includes a transformation of PE into KE at fine scale (∼10–20 km) due to frontogenesis and an inverse
KE cascade over a wide spectral range (see lower line). Conventional satellite altimeters only capture the classical
energy pathway involving interior baroclinic instability at mesoscale (down to 100 km). Future wide-swath altimeters,
such as Surface Water and Ocean Topography, should capture the energy pathway involving finer scales (down to
∼10–20 km). PE = potential energy; KE = kinetic energy.

that w𝜌 is captured by the smallest scales (Klein & Lapeyre, 2009). In terms of energy exchanges, the picture
that emerges is a tight interaction between oceanic mesoscale eddies and submesoscale motions that lead
to more energetic mesoscales eddies. Indeed, as sketched in Figure 9 (upper part), mesoscale eddies stir and
stretch the surface density field leading to the production of surface density anomalies at smaller and smaller
scales (a process called direct PE cascade) and therefore to the production of fronts at submesoscale. These
submesoscale fronts give rise to vertical fluxes of density, and therefore to a transformation of PE into KE at
submesoscale. A large part of this KE at submesoscale is then transferred to mesoscale eddies through the
inverse KE cascade (Capet et al., 2016; see Figure 7b and lower part of Figure 9).

The energy route involving submesoscale density fronts can be coupled with the energy route à la Salmon
(Salmon, 1980), that is, the one associated with GT involving a transformation of PE into KE at the Rossby
radius of deformation (i.e., at mesoscale) through baroclinic instability, as sketched in Figure 9. Such cou-
pling has been proposed by several studies (Callies et al., 2016; Tulloch & Smith, 2006). The resulting energy
route and the associated ocean-scale interactions now include a much broader range of scales (Figure 9)
with the inverse KE cascade now starting at submesoscales, as shown by Capet et al. (2016; Figure 7b). This
inverse KE cascade over a broad scale range reconciles with the findings of Smith (2007) and Tulloch et al.
(2011) and is also consistent with the results from Arbic et al. (2013) mentioned before. As sketched in
Figure 9, future wide-swath satellite altimeters (such as SWOT; see section 4) should resolve not only the
eddy generation scales but also a large part of submesoscales and therefore this inverse KE cascade.

The inverse KE cascade over such a broad scale range has been questioned when the strong ageostrophic
character of submesoscale fronts is taken into account (see Molemaker et al., 2010 for a discussion). So far,
most numerical models at a basin or a global scale, using primitive equations with resolution up to 1–3
km (Capet et al., 2016; Mensa et al., 2013; Qiu et al., 2014; Rocha, Chereskin, et al., 2016; Rocha, Gille,
et al., 2016; Sasaki et al., 2014; Su et al., 2018), take into account this ageostrophic character. They point
to a transition scale, between the inverse and the direct KE cascade, close to 20–30 km in terms of wave-
length depending on the season and the oceanic region (see again Figure 7b). Many of these studies further
show how energetic submesoscale fronts in winter can impact the mesoscale eddy field in spring and sum-
mer because of the time lag associated with the inverse KE cascade (see Qiu et al., 2014; Sasaki et al., 2014).
Thus, mixed-layer instabilities at submesoscale in winter appear to provide an explanation of the puzzling
seasonality of mesoscale KE (displaying a KE peak in spring/summer) observed in altimeter observations
(Sasaki et al., 2014; Zhai et al., 2008). Numerical models also reveal a significant seasonality of the velocity
wavenumber spectrum, displaying a k−2 slope in winter and k−3 slope in summer. These results are consis-
tent with the in situ data analysis of Callies et al. (2015) in the Gulf Stream region, of Qiu et al. (2017) in the
Western Pacific, and with the results from Xu and Fu (2012) and Dufau et al. (2016) based on a reanalysis
of conventional altimeter observations.
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Figure 10. The minimum wavelengths (km), Ls, expected to be resolved by Surface Water and Ocean Topography
(a), in ASO (b), and in FMA (c). The seasonal change (ASO-FMA) is shown in panel (d). These wavelengths have been
estimated using a numerical simulation (from Wang et al., 2019, © American Meteorological Society. Used with
permission.) ASO = August-September-October; FMA = February-March-April.

4. Observational Challenges Using Future Satellite Altimetry (SWOT)
The theoretical and numerical results, of the last decade, on submesoscale BMs and their impacts on
mesoscale eddies, need to be confronted and confirmed by observations. Since these results emphasize a
strong regionality and seasonality, observations have to be global in space and continuous in time over sev-
eral years. Only satellite altimetry can achieve this goal. Existing conventional radar altimetry has, however,
two limitations. First, the instrument noise exceeds signal strength at wavelengths shorter than 50–70 km.
Second, only one-dimensional SSH is profiled along the satellite ground tracks. To advance the observational
capability, and in particular to capture a broader scale range of BMs, a wide-swath altimeter mission, SWOT,
has been designed to observe SSH with a higher spatial resolution and in two dimensions (Fu & Ferrari,
2008). This is possible using the radar interferometry technique (Fu & Ubelmann, 2014; Rodríguez et al.,
2018). The SWOT resolution is expected to be about 15 km over 68% of the ocean, assuming 2-m significant
wave height, along a swath with a ∼ 120 km width (see https://swot.jpl.nasa.gov/mission.htm).

However, before diagnosing BMs at scales smaller than 50–70 km using SWOT observations, several chal-
lenges have to be met. First, the measurement noise increases with significant height of surface waves and
this noise is known to be seasonally and geographically dependent. Second, at wavelengths shorter than
∼ 100 km, the SSH signals of internal tides and IGWs may become comparable to those of submesoscale
BMs. This entanglement of the balanced and wave motions is discussed in more details in the next section.
It leads to a complicated spatial and temporal variability of the scales of BMs resolvable by SWOT (Qiu et al.,
2018). Using an OGCM with a high spatial resolution (similar to the one leading to Figure 3), Wang et al.
(2019) studied the scales expected to be resolved by SWOT after taking into account the noise issues. Shown
in Figure 10 are global maps of the minimum wavelengths, Ls, possibly resolvable by SWOT. In the tropics,
the measurement noise is generally the lowest owing to the small height of surface waves, leading to the
highest resolution (Ls < 20 km), which is also attributable to the shallow spectral slope of the SSH (Xu &
Fu, 2012). In regions of the Southern Ocean with moderate mesoscale KE, the measurement noise is the
worst owing to the large height of surface waves, which leads to the poorest resolution (Ls ∼ 40–50 km).
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Figure 11. (From Torres et al., 2018). (i) Schematic spectrum displaying the multiple dynamical regimes: Mesoscale
Balanced Motions (MBM), Submesoscale Balanced Motions (SBMs), “Unbalanced Submesoscale Motions” (USMs)
and IGWs. Additionally, the scheme shows the linear dispersion relations of the first 10 baroclinic modes for
IGWs (in green, upper part) and of baroclinic mode one for Rossby waves (in green, lower left corner). (ii)
Frequency-wavenumber spectra of KE (EKE [m2/s2/(cpkm × cph)]) corresponding to the Kuroshio-Extension region,
in winter. The spectrum, estimated from a numerical simulation, is multiplied by k and 𝜔. (ii) (a) Frequency spectra.
(b) Wavenumber spectra. (c) Frequency-wavenumber spectra (from Torres et al., 2018). Three horizontal bands with
frequencies close to tidal (semidiurnal and diurnal) and inertial frequencies span a larger range in the small scales
band. Integrating this 𝜔 − k spectrum over the k range or 𝜔 range leads to the frequency spectrum (a) or the
wavenumber spectrum (b), respectively.

However, in other regions of the Southern Ocean with strong mesoscale and submesoscale eddies, such as
downstream the Kerguelen Plateau, the resolution is much better (Ls < 30 km). As shown in Figure 10d,
during the winter seasons, the resolution is generally poorer than summer north of 40◦S because of the
effects of surface waves. The situation south of 40◦S is different. During winter, the mesoscale energy is so
high that the signal strength overcomes the increased noise, leading to higher resolution than summer.

In addition to the variability of the spatial resolution, the temporal sampling of SWOT is also challenging.
Owing to the 120-km swath, it will take 21 days to map the world oceans, with the number of repeat obser-
vations varying from two in the tropics to six at latitudes of 60◦. Given the short time scales of the ocean
variability at small scales, this temporal sampling poses another challenge to reconstruct coherent patterns
of SSH over time. To meet this challenge, it is desirable to make use of high-resolution assimilative models
guided by geophysical fluid dynamics argument (Ubelmann et al., 2015) and also by an a priori knowledge
of the relative contribution of BMs and IGWs (see Qiu et al., 2018; Torres et al., 2018). These last two stud-
ies should help analyze the regionality and seasonality of observations at submesoscales. Given the global
high-resolution measurements of SSH signals down to O(15 km), the SWOT mission should provide us
with unprecedented information about the evolution of small-mesoscale and submesoscale features and the
possibility to reconstruct the upper ocean circulation such as relative vorticity and vertical velocity associ-
ated with BMs (Klein et al., 2009; Qiu et al., 2016). By disentangling the SSH signals of BMs versus IGWs
(see section 5 below), the SWOT-measured SSH data may also allow us to potentially explore interactions
between the balanced and unbalanced motions.

5. BMs and IGWs
As mentioned before, ocean currents with scales equal to or less than 300 km involve not only BMs but
also IGWs whose properties significantly differ from BMs. IGWs include wind-forced near-inertial waves,
with frequencies close to f and coherent internal tides with diurnal and semidiurnal frequencies (Alford
et al., 2016; Müller et al., 2015). IGWs also include a continuum of motions with frequencies higher than f
and spatial scales smaller than 100 km (see Figures 11i and 11ii). IGWs, unlike BMs, are characterized by a
fast propagation and are mostly driven by weakly nonlinear interactions (Müller et al., 2015), with almost
zero potential vorticity (see Alford et al., 2016 for a review). These characteristics explain why, contrary to
BMs, IGWs have almost no direct impact on vertical and horizontal advective fluxes of any quantity. On the
other hand, IGWs are known to drive a large part of the ocean mixing through a direct KE cascade toward
the smallest scales (Polzin & Lvov, 2011). As a consequence, they trigger irreversible diffusive fluxes and
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therefore represent an important pathway for the route to dissipation of KE. However, studies of the last 3
years emphasize that characteristics of this pathway depend on how BMs and IGWs interact.

5.1. Ocean-Scale Interactions Involving BMs and IGWs
Although BMs and IGWs occupy distinct regions in the spectral space (see Figure 11), they do interact
(Chereskin et al., 2019). Since Kunze (1985), many studies have revealed that IGW propagation is polarized
by the sign of the relative vorticity and the sign of the stratification anomaly (or stretching) of mesoscale
eddies (Danioux et al., 2011; Dunphy et al., 2017; Grisouard & Thomas, 2015; Joyce et al., 2013; Kunze, 1985;
Young & Jelloul, 1997; Ponte & Klein, 2015; Thomas, 2017; Whitt & Thomas, 2015; Zaron & Egbert, 2014). As
a result, these waves may become trapped within anticyclonic eddies and expelled from cyclonic ones with
their frequencies and wavenumbers significantly increasing during this process (see Whitt & Thomas, 2015
for a short review). In other words, the scenario that emerges is that the scattering and dispersive impacts
of BMs on IGWs may ultimately lead to intensified mixing in anticyclonic structures and reduced mixing in
cyclonic ones which, in turn, modifies the OMT properties (Klein et al., 2003).

Besides driving localized mixing, more recent studies suggest that the interactions between IGWs and BMs
may stimulate submesoscale fronts and their associated vertical velocity field (Barkan et al., 2017; Rocha
et al., 2018; Taylor & Straub, 2016; Thomas, 2017; Wagner & Young, 2016; Xie & Vanneste, 2015). Thus, IGWs
caught up in a balanced strain field may experience considerable modifications to their propagation direc-
tion and speed, leading to nonzero momentum and buoyancy fluxes associated with these waves (Thomas,
2017). These fluxes represent an energy transfer from mesoscale KE to the wave PE, this energy being subse-
quently transferred to submesoscale fronts with high frequencies. Such mechanism, also called stimulated
imbalance, leads to increase the vertical velocity field associated with submesoscale fronts and therefore
the vertical advective fluxes of any quantities (Barkan et al., 2017; Rocha et al., 2018; Thomas, 2017). These
energy transfers are still not well understood, and whether they can explain the energy observed in the region
of “unbalanced motions” displayed in Figure 11, panel i, is unclear. Their confirmation by future studies will
indicate whether high-frequency IGWs can lead, in addition to irreversible mixing, to a substantial increase
of vertical advective fluxes of any quantity (Su et al., 2018).

In summary, understanding the interactions between BMs and IGWs, and the consequences on ocean mix-
ing, is still in its infancy but is progressing quickly. Results obtained so far on this topic have been mostly
obtained from numerical models. They need to be confirmed or infirmed by observations. As a preliminary,
the question is how to partition motions into BMs and IGWs in the global ocean from observations.

5.2. Partition of Motions Into BMs and IGWs in the Global Ocean
BMs can be diagnosed from SSH for scales down to at least 100 km. Coherent tidal motions have an impact
on SSH at specific wavenumbers. These tidal peaks explain the shallow SSH spectrum slope (much shallower
than k−4) found by Xu and Fu (2012) in low KE regions (Richman et al., 2012; Savage et al., 2017a; J. Callies,
personal communication, November, 2018). Tidal motions can be retrieved from long time series of SSH
observations (that filter out mesoscale eddies; Egbert et al., 1994; Ray & Mitchum, 1997; Ray & Zaron, 2016;
Stammer et al., 2014). Near-inertial waves have no impact on SSH (Gill et al., 1974) but can retrieved from
surface drifters (Lumpkin & Elipot, 2010). Diagnosing the IGW continuum with higher frequencies and
higher wavenumbers (scales smaller than 100 km) from observations is still a challenge because of the strong
entanglement of BMs and IGWs at these scales. Recent studies indicate this challenge may be partially met
using satellite observations.

Using OGCMs with tides, several studies in the last 3 years have documented the spatial distribution of
BMs and IGWs in the world ocean (Rocha, Gille, et al., 2016; Savage et al., 2017a, 2017b; see Figures 11
to 16 in 2017b). Qiu et al. (2018) and Torres et al. (2018) have further analyzed when and where IGWs
with scales smaller than 100 km have a dominant imprint on the surface fields observable from space. One
important property exploited by Qiu et al. (2018) and Torres et al. (2018; see also Savage et al., 2017a; Savage
et al., 2017b) is that IGWs and BMs occupy two distinct regions in the 𝜔-k spectral space, separated by the
dispersion relation curve for the highest baroclinic mode of IGWs (see the schematic in Figure 11, panel i).
The region above this curve (that includes frequencies equal to or higher than f ) is associated with IGWs
and exhibits discrete bands aligned with the linear dispersion relation of the different baroclinic modes,
suggesting weakly nonlinear interactions (see Figure 11, panel ii; Rocha, Chereskin, et al., 2016; Savage et al.,
2017a; Torres et al., 2018). On the other hand, the region below the highest baroclinic mode is associated
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Figure 12. Global maps of the ratio R (see below) for kinetic energy at the ocean surface (estimated from a numerical
simulation): Top panels stand for submesoscale range (10–50 km); bottom panels stand for mesoscale range (50–100
km). Left panels are for January to March (winter in the Northern Hemisphere and summer in the Southern
Hemisphere), and right panels are for August to September (summer in the Northern Hemisphere and winter in the
Southern Hemisphere). For a given range of spatial scales, the variance above the dispersion relation curve for internal
gravity waves (IGWs) corresponding to the highest baroclinic mode has been associated with IGWs and the one below
this curve associated with balanced motions (BMs). R is the ratio between the variance associated with BMs and that
associated with IGWs: R = BMvariance

IGWvariance
. So for a given spatial-scale band, R > 1 means that the variability of the flow is

explained by BMs, and R < 1 means that the variability of the flow is explained by IGWs. These panels emphasize the
strong seasonality of the partition of kinetic energy into IGWs and BMs for scales smaller than 100 km and the strong
regional diversity and differences between Northern and Southern Hemispheres (from Torres et al., 2018).

with BMs and has energy continuously spread out in the 𝜔-k space, suggesting strong energy exchanges
through nonlinear interactions (Figure 11, panel ii).

Qiu et al. (2018) and Torres et al. (2018) defined a criterion to discriminate BMs and IGWs for two scale
ranges (10–50 and 50–100 km). Their criterion R makes use of a 𝜔-k spectrum (see caption of Figure 12 for
the definition of R). From the definition of R, BMs dominate for R > 1 and IGWs for R < 1. Based on
12,000 𝜔-k spectra that cover the global ocean, their results highlight that IGWs dominate BMs in many
regions (region in blue in Figure 12). Results emphasize not only a strong seasonality (with BMs dominating
in winter and IGWs in summer) but also a strong regional variability. These two studies further revealed
that, in summer, the IGW impacts on SSH lead to a significant slope discontinuity on the SSH wavenumber
spectrum, at scales smaller than 100 km, a discontinuity not observed on the KE spectrum. On the other
hand, IGWs were found to have no impact on sea surface temperature (SST) and Sea Surface Salinity (SSS).
These very different signatures of IGWs on SSH, KE, SST, and SSS indicate that exploiting the synergy of
using different satellite observations should help to discriminate IGWs and BMs in the global ocean (Torres
et al., 2018). In that context, it is important to mention that, in addition to the SWOT mission, a future Wind
and Current Mission (WaCM), still under development, aims to produce simultaneous observations of wind
stress and surface oceanic currents at high resolution (Rodríguez et al., 2018). The strong potential of WaCM
will be to observe not only surface currents but also the wind work (i.e., the dot product of the wind stress
and surface currents) and therefore to identify the wind-driven near-inertial motions that have no signature
in SSH (Gill et al., 1974).
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Figure 13. Finite Size Lyapunov Exponent from a simulation without (a) and with submesoscales (b). The color panels
indicate Finite Size Lyapunov Exponent in day−1. Blue colors show inflowing/stable trajectories from forward in time,
and red colors show outflowing/unstable trajectories from backward in time particle advection. (from Haza et al., 2012,
used with permission.) (c) Separation distance of a particle pair as a function of time, D(t), estimated in the Gulf of
Mexico using (1) high-resolution data from 300 drifters (black curves) and (2) low-resolution AVISO sea surface height
data (red). Dispersion is found to be 10–100 times larger when high-resolution data are used (from Poje et al., 2014,
used with permission.).

6. Impact of Ocean Mesoscale/Submesoscale Turbulence on the Earth Climate
BMs (including mesoscale and submesoscale motions) are now known to have a strong impact on the
large-scale ocean circulation, the ocean biology, and on the coupled ocean-atmosphere system, through the
vertical and horizontal fluxes of any quantities. Recent studies, based on satellite altimeter products com-
bined with in situ observations and on results from numerical simulations within large domains at high
resolution, have highlighted the ocean turbulence contribution to the transport of heat, mass, chemical
constituents of seawater, and air-sea interactions. In this section, we discuss some examples related to the
impacts of this turbulence (that includes submesoscale fronts) on ocean dynamics and air-sea interactions.
Impacts on ocean biology and carbon storage are discussed in recent review papers such as Lévy et al. (2012),
Mahadevan (2016), and McGillicuddy Jr (2016).

6.1. Stirring and Mixing Properties
The stretching (or strain) field and the Lagrangian accelerations associated with geostrophic eddies deter-
mine the properties of the dispersion of tracers and particles (Hua & Klein, 1998; Lapeyre et al., 1999). In
GT, the k−3 KE spectrum slope implies that only by the largest eddies are responsible of the stretching of
small-scale filaments. The tracer fluxes from large to small scales are associated with “nonlocal” scale inter-
actions as the large scales control the small scales (Scott, 2006). However, when the KE spectrum slope is
in k−2, such as when energetic submesosale fronts/eddies are present, filament dynamics are controlled by
all eddies (including submesoscale eddies). Such interactions are called “local” since small-scale filaments
can be produced by the smallest eddies (Scott, 2006). In that case the dispersion properties are much differ-
ent from those driven by GT (Foussard et al., 2017; Özgökmen et al., 2012; Scott, 2006). Differences between
local and nonlocal properties are well highlighted by maps of Finite Size Lyapunov Exponents as displayed
in Figures 13a and 13b (from Haza et al., 2012). When submesoscale fronts/eddies are taken into account,
FSLE are characterized by scales much smaller and magnitudes much larger (i.e., more intense stirring)
than when submesoscale fronts/eddies are not taken into account.
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Figure 14. Global patterns of vertical heat transport (estimated from a numerical simulation) explained by
submesoscales (<50 km) in winter (January–March for the Northern Hemisphere and July–September for the
Southern Hemisphere). Values are spatially smoothed over 3◦ × 3◦ square boxes; positive values indicate upward.
In most area of midlatitudes, vertical heat transport at submesoscales is ∼20–200 W/m2 and is systematically
upward (adapted from Su et al., 2018, used with permission).

Figure 13c (from Poje et al., 2014) issued from the analysis of high-resolution observations from surface
drifters (that take into account submesoscale fronts and eddies) and SSH observations (that do not resolve
submesoscale fronts and eddies) further quantifies the contribution of submesoscale fronts/eddies on the
particle dispersion: particle dispersion is larger by at least 1 order of magnitude when estimated from
high-resolution observations that include submesoscales (black curves in Figure 13c) than with observations
that do not include submesoscales (such as those from AVISO SSH; see the red dashed curves in Figure 13c).

6.2. Horizontal Heat Transport
Hausmann and Czaja (2012) analyzed the relationship between satellite microwave SST and altimeter SSH
observations. In regions of large SSH variability, SST and SSH mesoscale anomalies are nearly in-phase,
involving intense warm-top anticyclones and cold-top cyclones. In quieter regions, weaker SST signa-
tures are almost in quadrature with eddy SSH. These authors found that eddies flux heat poleward in the
mixed-layer over a broad range of oceanic regimes. Magnitude of this heat transport, particularly significant
in the Antarctic Circumpolar Current region, attains ∼ 0.2 PW, a value similar to that found by other studies
using different observations, in particular the ARGO float data set (see Dong et al., 2014; Qiu & Chen, 2005)
and studies using numerical simulations (Lévy et al., 2010). However, Hausmann and Czaja (Hausmann &
Czaja, 2012) found that the poleward (equatorward) propagation of warm anticyclones (cold cyclones) pro-
duces a much weaker poleward heat transport in the mixed layer than the horizontal fluxes resulting from
the westward phase shift between SST and SSH fluctuations. In other words, the meridional heat transport
is not so much due to individual eddies transporting temperature anomalies, but it is principally due to hor-
izontal heat fluxes resulting from the stirring of temperature anomalies by mesoscale eddies. This finding
points to the importance of the phase shift between SSH and SST mesoscale anomalies for the estimation of
the meridional heat fluxes. Lévy et al. (2010) further revealed that taking into account the impact of the sub-
mesoscale structures, in addition to that of mesoscale eddies, does not lead to a systematic increase of the
total meridional heat transport. Rather, impacts of submesoscale structures lead to significantly decrease
this transport in some regions and increase it in others (see their Figure 12).

6.3. Vertical Heat Transport
Submesoscale frontal dynamics are known to be characterized by O(1) Rossby number and to capture most
of the vertical velocity field in the upper ocean (Klein & Lapeyre, 2009; McWilliams, 2016; Mensa et al., 2013;
Sasaki et al., 2014; Thompson et al., 2016). One consequence, revealed by Hakim et al. (2002) and confirmed
by Lapeyre and Klein (2006) and McWilliams et al. (2009; see also Fox-Kemper et al., 2008, 2011), is that
these submesoscale fronts are associated with positive vertical heat fluxes, that is, upgradient (from deep
cold waters to surface warm waters) and not downgradient. This adiabatic property has been highlighted
in a recent paper by Su et al. (2018) using an OGCM at unprecedented high spatial resolution (2 km in the
horizontal and 90 vertical levels). Results indicate that upper ocean submesoscale turbulence produces a
systematically upward heat transport that is 5 to 10 times larger than the vertical heat transport explained
by mesoscale eddies! Wintertime magnitudes of these submesoscale heat fluxes are up to 200 W/m2 for mid-
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Figure 15. Vertical distribution of the modeled (left column) zonal velocity (cm/s) and (right column) eddy kinetic
energy (cm2/s2) along 55◦W for the (1/50)◦, (1/25)◦, and (1/12)◦ numerical simulations (from Chassignet & Xu, 2017,
© American Meteorological Society. Used with permission).

latitudes (when averaged over 3 months and in boxes of 300-km size; see Figure 14). These vertical heat
fluxes warm the sea surface by up to 0.3 ◦C annually and produce an upward annual-mean air-sea heat flux
anomaly of 4–10 W/m2 at midlatitudes (Su et al., 2018). Such results indicate that submesoscale BMs asso-
ciated with submesoscale frontal structures are critical to the vertical transport of heat between the ocean
interior and the atmosphere and are thus a key component of the Earth's climate. Noting that submesoscale
fronts are preconditioned by mesoscale eddies, the results from Su et al. (2018) further highlight the impacts
of the ocean-scale interactions on the Earth Climate.

6.4. Impact of Submesoscale Fronts on the Large-Scale Ocean Circulation
The impact of submesoscale frontal physics on the large-scale ocean circulation has been examined by Lévy
et al. (2010) and Chassignet and Xu (2017). To test this impact, these authors used several numerical mod-
els at a basin scale, each one with a different spatial resolution. After a reasonable spin-up period (10–20
years), the large-scale ocean circulation and the mean structure of the ventilated thermocline strongly differ
when the resolution increased from 10 to 2 km (which highlights the impact of submesoscales). Changes
involve the emergence of a denser and more energetic eddy population at the 2-km resolution, occupy-
ing most of the basin and sustained by submesoscale physics. Taking into account submesoscale dynamics
leads to “regional” and “remote” effects. Regional effects occur through the inverse KE cascade that strongly
intensifies zonal jets such as in the Gulf Stream region. This intensification subsequently leads to isopycnals
steepening (through the thermal wind balance), which significantly counterbalances and locally overcomes
the eddy-driven heat transport that tends to flatten isopycnals (Lévy et al., 2010). Chassignet and Xu (2017)
further note that, when the spatial resolution is increased, the representation of the Gulf Stream penetration
and associated recirculating gyres changes from unrealistic to realistic (in terms of comparison with obser-
vations) and that the penetration into the deep ocean drastically increases (see Figure 15). Remote effects
occur through the resulting general equilibration of the main thermocline that shifts zonal jets at midlati-
tudes southward by a few degrees, significantly altering the shape and position of the gyres. Consequence
is that the deep convection in high latitudes is reduced, leading to a significant modification of the merid-
ional overturning circulation. Thus, results from Lévy et al. (2010) and Chassignet and Xu (2017) emphasize
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that the impact of submesoscale fronts on the mean circulation and mean transport at a basin scale cannot
be ignored anymore. There is a need to repeat these two numerical experiments in larger domains with an
even higher spatial resolution (J. Callies, personal communication), in particular on the vertical, using the
coming exascale computers.

6.5. Air-Sea Interaction
Chelton et al. (2004) discovered a remarkably strong positive correlation between surface winds and SST at
mesoscale (i.e., 100–300 km) using a combination of radar scatterometers and SST observations. As shown
later by Frenger et al. (2013), mesoscale eddies are characterized by a positive correlation between SST,
SSH, cloudiness, and precipitation rate. Similar correlations were found between air-sea heat fluxes and SST
(Bôas et al., 2015; Byrne et al., 2015; Ma et al., 2015). An arising question concerns the impact of OMT at the
scale of the atmospheric storm track (i.e., O(5,000–10,000 km)). Ma et al. (2015) and Foussard et al. (2019)
showed that increased air-sea heat fluxes at the ocean surface, due to oceanic eddies, could lead to a nonlocal
response associated with a modification of the atmospheric circulation far from the oceanic eddying region.

In parallel, using numerical models with spatial resolution accounting for scales as small as 50 km, Minobe
et al. (2008) showed that local SST fronts in the Gulf Stream could impact the entire troposphere. These
authors found a conspicuous signal in their atmospheric general circulation model, indicating a wind con-
vergence over the warm flank of the oceanic front up to 12 km in altitude (i.e., close to the tropopause). One
important characteristic is that the wind convergence was found to be proportional to the SST Laplacian (a
second-order derivative that involves small scales). This sensitivity to small scales explains why past numer-
ical models, with lower resolution, were unable to represent such dynamics (Bryan et al., 2010). Since then,
numerous studies with higher spatial resolution have highlighted the importance of such SST gradients,
with scales down to the submesoscales, for the tropospheric storm tracks (Deremble et al., 2012; Foussard
et al., 2019; Nakamura et al., 2008). These results have led to a renewed interest in understanding the role
played by SST anomalies at scales down to 5–10 km in atmosphere dynamics.

Although the ocean current magnitude is much smaller than the atmospheric wind speed, a large number
of numerical studies, at least in the last two decades, have shown that oceanic currents at mesoscales and
submesoscales can also significantly impact the wind stress. In terms of ocean dynamics, the resulting effects
on the wind work lead to a net KE transfer from the ocean to the atmosphere. This transfer corresponds to a
decay of almost 30% of the ocean KE at mesoscale at midlatitudes (Eden & Dietze, 2009) and less than 20%
for oceanic submesoscales (Renault et al., 2018). In terms of atmospheric dynamics, the wind stress curl and
divergence resulting from the ocean current impacts should affect the vertical velocity in the atmosphere. A
recent in situ experiment has been carried out in the Gulf of Mexico using a Doppler Scatterometer to observe
simultaneously the surface currents and wind stress at very high resolution (∼2.5 km). The results reveal and
confirm the strong correlation between the wind stress curl and the relative vorticity associated with oceanic
submesoscales (E. Rodriguez, personal communication, November, 2018). Magnitude of the wind stress curl
is such that the wind divergence in the atmosphere is 1 order of magnitude larger than found by Minobe
et al. (2008).

These results further confirm that oceanic mesoscale eddies and submesoscales structures can significantly
impact the atmospheric boundary layer and the whole troposphere. There is still some work to do to further
quantify these impacts and the consequences on the atmospheric storm tracks.

7. Discussion and Conclusion
Analysis of altimeter observations collected in the last 25 years and results obtained from OGCMs with
high spatial resolution emphasize that all the oceans are fully turbulent, involving a broad range of scales
from at least 2 km to 5,000 km. All these scales are now known to strongly interact, leading to signifi-
cant energy exchanges between scales, in particular in the upper ocean. Resulting ocean-scale interactions
impact the Earth climate in counterintuitive ways. For instance, the smallest scales render mesoscale eddies
more coherent with a longer lifetime and can also trigger significant upgradient and not downgradient ver-
tical fluxes of any quantity. A better understanding of the IGWs impacts may lead to a more complex vision
depending on how much they interact with BMs. Overall, results highlight that the oceanic fluid is much
less diabatic and much more inertial than thought 25 years ago (i.e., again with fluxes much less controlled
by diffusivity or viscosity and more by nonlinear interactions that lead to reversible upgradient and down-
gradient fluxes). Numerous studies now emphasize that these ocean-scale interactions are crucial for the
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ocean's KE budget, the meridional heat transport, the air-sea interactions, and more generally for the Earth
climate.

Running numerical models with high resolution is a powerful approach to assess ocean-scale interactions
but only when they are performed with the highest spatial resolution (down to at least 1 km) and on a global
scale in order to take into account, both, the local and nonlocal interactions. This strategy is the only one
capable to assess the wealth of ocean-scale interactions over a broad range of scales. Such ocean numerical
models as well as atmosphere-ocean coupled models with similar resolutions can be run on the present
petascale computers. Future numerical models, with a higher resolution than presently considered, will
certainly challenge the results presented in this paper, by revealing new and unsuspected impacts of smaller
scales presently unresolved. These models will undoubtedly improve our understanding of the ocean engine.

Numerical findings need however to be confirmed or infirmed by high-resolution observations on a global
scale and over several years, as already pointed out by Carl Wunsch in 2010. As emphasized in this paper,
BMs and internal gravity waves have different impacts in terms of fluxes on the KE budget, which points
to the need to discriminate them from observations. In that respect, future wide-swath altimeter missions,
such as the SWOT mission (Fu & Ferrari, 2008), will be critical to make major advances. These observations
are the only ones capable to diagnose correctly BMs down to scales of 30–50 km. However, these future
SSH observations will have to be combined with existing satellite observations as well as with those from
missions under development to retrieve other IGWs. The latter missions include WaCM (Rodríguez et al.,
2018), already mentioned, that will observe simultaneously the wind stress and oceanic currents at very
high resolution and therefore give access to near-inertial waves and smaller IGWs. They also include other
missions such as the Surface KInematic Monitoring mission (Ardhuin et al., 2018) and the Wavemill mission
(Martin et al., 2016) aiming to observe surface currents with high resolution. An optimal strategy to better
capture the subtleties of ocean turbulence would be to exploit the synergy of analyzing all these satellite
observations in combination with in situ data on a global scale, such as the ones collected by surface drifters
(Lumpkin et al., 2017) and ARGO floats (Le Traon, 2013) deployed in all oceans.

The importance, for the Earth climate, of fully taking into account the ocean-scale interactions is further
emphasized by recent geophysical studies on the Earth atmosphere and oceans. The Earth atmosphere
involves cyclones and anticyclones (although with larger scales than in the oceans) that strongly interact
the so-called atmospheric storm tracks. However, if geophysical turbulence refers to an inverse KE cascade
over a broad inertial range (defined as the scale range between the eddy source scale and the scale of the
most energetic eddies), the atmosphere is found much less turbulent than the oceans (Jansen & Ferrari,
2012). The atmosphere is indeed characterized by an inverse KE cascade over a very small inertial range
compared to the oceans (Merlis & Schneider, 2009; Schneider & Walker, 2006). Scales of the atmospheric
cyclones and anticyclones are close to their source scales (scales of the baroclinic instability). On the other
hand, as pointed out several times in this paper, the OMT is characterized by an inverse KE cascade over
a broad inertial range (Hua & Haidvogel, 1986; Hua et al., 1998). The consequence, as discussed by Jansen
and Ferrari (2012), is that the atmospheric response to external forcings is much faster and much less iner-
tial than the ocean response, which should impact the dynamics of the coupled ocean-atmosphere system.
These differences between the ocean and atmosphere turbulent properties emphasize the importance of
the future developments on ocean-scale interactions for studies of climate and climate change (Jansen &
Ferrari, 2012).
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Abstract Numerical studies indicate that interactions between ocean internal gravity waves (especially
those <100 km) and geostrophic (or balanced) motions associated with mesoscale eddy turbulence
(involving eddies of 100–300 km) impact the ocean's kinetic energy budget and therefore its circulation.
Results from these studies have never been confirmed by observations in regional or basin‐scale domains.
Here we show that internal gravity waves have a spectral signature on sea surface height during summer that
significantly differs from that of balanced motions. These spectral differences lead us to propose a new
dynamical framework that quantifies the interactions between internal gravity waves and balanced motions
in physical space from sea surface height snapshots, and in particular the energy exchanges between them.
Our results, using this dynamical framework, highlight the strong potential of future satellite altimeter
missions to make critical advances in assessing the ocean's kinetic energy budget from observations in
large domains.

1. Introduction

Two classes of motions dominate ocean kinetic energy (KE): balanced motions (BMs) and internal gravity
waves (IGWs). BMs considered in this study involve motions associated with mesoscale eddy turbulence,
such as mesoscale eddies (with a 100‐ to 300‐km size) and also smaller‐scale structures with horizontal scales
down to 10 km (Ferrari &Wunsch, 2009). BMs are principally in geostrophic balance (balance between pres-
sure forces and Coriolis forces), with their frequencies smaller than or close to the Coriolis frequency, f. They
are mostly energetic in turbulent regions such as the Gulf Stream, the Kuroshio Extension, and the Antarctic
Circumpolar Current. BMs account for almost 80% of the total ocean KE and explain most of the advective
horizontal and vertical transport of heat and any tracers (Ferrari &Wunsch, 2009). IGWs, on the other hand,
are waves with frequencies close to or larger than f and spatial scales from hundreds of kilometers to tens of
meters. Unlike BMs, IGWs are weakly nonlinear and characterized by a fast propagation (Alford et al., 2016).
They include coherent internal tides, wind‐driven near‐inertial waves, and an IGW continuum with higher
frequencies and much smaller spatial scales than the coherent internal tides and near‐inertial waves. In tur-
bulent regions, KE at scales larger than 100 km is principally dominated by BMs (Ferrari & Wunsch, 2009).
KE at smaller scales is usually dominated by BMs in winter and IGWs in summer (Callies et al., 2015; Qiu
et al., 2018; Rocha, Gille, et al., 2016; Torres et al., 2018).

The motivation for partitioning motions into BMs and IGWs is that they impact the ocean KE budget differ-
ently (Klein et al., 2019). BMs mostly experience an inverse KE cascade, with KE fluxing from sources (start-
ing from ~30‐ to 50‐km wavelength) toward larger scales, which contributes to sustain mesoscale eddy
turbulence (Arbic et al., 2012; Qiu et al., 2014; Sasaki et al., 2014). IGWs, on the other hand, and in particular
the IGW continuum, experience a direct KE cascade with KE fluxing toward smaller scales, ultimately lead-
ing to irreversible mixing (Polzin & Lvov, 2011). As such, IGWs map out an important path in the route to
KE dissipation that affects mesoscale eddy turbulence.

However, BMs and IGWs do not evolve independently but strongly interact, and their interaction further
impacts the ocean KE budget. Numerous studies, starting with Kunze (1985) and Young and Jelloul
(1997), have shown that IGWs at large scales are scattered and dispersed by mesoscale eddies, leading to
waves with smaller spatial scales and higher frequencies, trapped within anticyclonic eddies and expelled
from cyclonic ones (Danioux et al., 2008; Whitt & Thomas, 2015). More recent theoretical and numerical
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studies emphasize that these scatteringmechanisms facilitate the energy exchanges between BMs and IGWs,
exacerbating the cyclone‐anticyclone asymmetry and eventually further dissipating mesoscale eddies
(Barkan et al., 2017; Rocha et al., 2018; Taylor & Straub, 2016;Thomas, 2017). These theoretical and
numerical results have never been confirmed by in situ and/or space observations in regional or basin‐
scale domains.

The present study addresses this observational challenge in the context of the upcoming Surface Water and
Ocean Topography satellite mission, SWOT (Fu & Ferrari, 2008). Starting in 2021, SWOTwill provide observa-
tions of the SSH, interpreted as a stream function or surface pressure, with unprecedented spatial resolution (up
to ~10 km) on a global scale. In the meantime, to assess the potential of these observations, our study uses as a
testbed the numerical outputs of an ocean global circulation model (OGCM), tidal resolving and with a very
high‐resolution (1/48° in the horizontal and 90 vertical levels) (see section A in supporting information for a
detailed description of the model). Our results indicate that SSH observations at high resolution can be used
to monitor the BM‐IGW interactions and in particular the energy exchanges between BMs and IGWs, making
a critical advance in assessing the potential for monitoring the KE budget of the world's oceans from space.

Our study exploits one SSH characteristic pointed out in Rocha, Chereskin, et al. (2016) and subsequent stu-
dies [see Torres et al., 2018, and references herein]: The SSH wave number spectrum displays, in summer, a
significant slope discontinuity at a scale in the 50‐ to100‐km range. The shallower spectral slope at smaller
scales within that range is explained by IGWs and the steeper slope at larger scales by BMs (Qiu et al., 2018;
Torres et al., 2018). This SSH characteristic motivated us to develop a dynamical framework to diagnose BMs
and IGWs directly from SSH snapshots and to recover the IGW‐BM energy exchanges. We focus on three
energetic regions during summer (Figure 1), namely, the Kuroshio Extension (August‐September‐
October), the Agulhas Current (January‐February‐March), and the Drake Passage (January‐February‐
March). The dynamical framework and the resulting diagnosis method are detailed in section 2 (see also
section B in supporting information). The diagnosis method is then tested in section 3. Results illustrate
the performance to recover from SSH snapshots, not only IGWs and BMs in physical space but also the
KE exchanges between BMs and IGWs. Although our study is a first attempt, these results emphasize the

Figure 1. Map of surface speed in the world ocean from the OGCM (see Methods, section A). The zooms correspond to the three regions considered in this study,
namely the Kuroshio‐Extension [KEx, 30°N, 156°E],) the Agulhas Current [AC, 40°S, 30°E] and the Drake Passage [Drake, 62°S, 67°W].
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unexpected strong potential of future wide‐swath satellite altimeters to monitor BM‐IGW interactions from
SSH in energetic oceanic regions. The last section discusses the caveats related to our framework.

2. A Dynamical Framework to Diagnose IGWs and BMs From SSH
2.1. Partitioning BMs and IGWs in Spectral Space

One approach to partition motions into BMs and IGWs, using numerical outputs from an OGCM(see section
A in supporting information), is to move to the frequency (ω)‐wave number (κ) domain. Indeed, as explained
in Qiu et al. (2018) and Torres et al. (2018), the dispersion relation curve associated with the highest barocli-
nic mode taken into account in the model (the 10th baroclinic mode in the model we use, see dashed white
line in Figure 2, top panels) separates IGWs located above this curve and the BMs located below (Figure 2,
top panels). A more quantitative approach to infer the dominance of BMs over IGWs is to calculate for each
wave number the ratio between the SSH variance below the dashed white line (i.e., BMs) and SSH variance
above this line (i.e., IGWs) [Qiu et al., 2018 and Torres et al., 2018]. This ratio, R(κ) = BMvariance/IGWvariance,
plotted on Figure 2 (middle panels), highlights the existence of a wave number, Ki (red dashed lines on
Figure 2), that clearly separates the region with smaller wave numbers where BMs dominate (with R(κ)
>>1) from the one with larger wave numbers where IGWs dominate (with R(κ) ≪ 1). The wave number,

Figure 2. (top panels) The ω − κ spectra of sea surface height (SSH) from the ocean global circulation model (see Methods) for the three targeted regions. The
white (black) thick dashed curve stands for the dispersion relation of internal gravity waves for baroclinic mode‐10 (mode‐3). The red dashed lines mark the
transition Lt = Ki

‐1 between BMs and IGWs dominance. (middle panels) Ratio [R(κ)] between BMs and IGWs variances as a function of wave number, κ. (bottom
panels) KEg (red lines): Geostrophic kinetic energy spectra diagnosed (using B3) from the SSH wave number spectra (estimated from the ω − κ spectra integrated
over all frequencies), KEuv (gray lines): Kinetic energy spectra deduced from u and v, and KEigw (green lines): internal gravity wave kinetic energy diagnosed
from SSH (using B8). From left to right, each panel refers, respectively, to the Kuroshio‐Extension [KEx, 30°N, 156°E],) the Agulhas Current [AC, 40°S, 30°E] and
the Drake Passage [Drake, 62°S, 67°W]. IGWs = internal gravity waves; BMs = balanced motions; KE = kinetic energy.
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Ki, corresponds to wavelengths close to 55, 50, and 40 km, respectively, for the Kuroshio Extension, the
Agulhas Current, and the Drake Passage.

2.2. Spectral Relationships Between SSH Variance and KE for BMs and IGWs

Oceanic observations do not give access to a full ω − κ spectrum. They give access only to either a frequency
spectrum (as mooring observations) or a wave number spectrum (as SSH observations). The present study
makes use of SSH observations and in particular exploits a conspicuous property of the SSH wave number
spectrum in summer. It concerns a significant spectral slope discontinuity between a steep slope (in a κ‐4

− κ‐5) for small wave numbers and a shallower slope (in a κ−2) for larger wave numbers (Rocha,
Chereskin, et al., 2016, Torres et al., 2018). Integration of the ω − κ spectra of Figure 2 (top panels) over
all frequencies reveals, in each region, an SSHwave number spectrum (not shown) with such a spectral slope
discontinuity at exactly the same wave number, Ki, as the one revealed by the ratio, R(κ). To further check
whether this spectral slope discontinuity allows to partition motions into BMs and IGWs, we have diagnosed
the KE from SSH using the classical relationship between SSH and BMs and using an appropriate relation-
ship between SSH and IGWsmotions (see section B in supporting information for details). The diagnosed KE
spectra are then compared with the one deduced from surface motions.

If we apply the classical relationship between SSH and BMs (that makes use of the geostrophic balance) to
the full SSH spectrum, we get the red curves (KEg‐spectra) displayed in Figure 2 (bottom panels). These
curves exhibit in all regions a slope discontinuity at the same wave number as the one revealed by the ratio
R(κ), that is, κ= Ki. Compared with the KE spectrum estimated from surface motions (i.e., KEuv, gray curves
in Figure 2, bottom panels), there is a quantitative agreement in the three regions for κ < Ki, which validates
the geostrophic approximation. However, for κ > Ki, a breakdown of the geostrophic balance is observed
since KEg‐spectra display a flat slope in this scale range, whereas KEuv‐spectra have still a κ

−2 spectral slope.

We now choose an appropriate relationship between SSH and IGW motions for the wave number range
κ > Ki. As detailed in the section B in supporting information, this relationship (equation B8 in supporting
information) is based on a simple linear shallow‐water model (LSWM). Choosing such amodel assumes that
the largest part of the IGWs is captured by only one baroclinic mode. Using matching conditions to guaran-
tee the continuity of the SSH and KE spectra at κ = Ki (see section B in supporting information), we have
found that this baroclinic mode is directly related to the wave number Ki and is very close to the third bar-
oclinic mode for the three regions (black dashed curves on top panels in Figure 2). The KEigw‐spectra diag-
nosed from SSH using this relationship, shown by the green lines in Figure 2 (bottom panels), are very close
to the KEuv spectra in the three regions.

The good correspondence between the KEg spectra (for κ< Ki) and the KEigw spectra (for κ> Ki) with the KEuv
spectra in the three regions indicates that the slope discontinuity in the SSHwave number spectrum in summer
clearly separates IGWs at small scales fromBMs at larger scales. More importantly, our approach indicates that
the wave number corresponding to this discontinuity further identifies the baroclinic mode that captures the
largest part of the IGWs, leading to an adequate relationship between SSH and IGW motions in summer.

2.3. A Methodology to Diagnose Separately BMs and IGWs in Physical Space

The success of the approach described in the preceding section—using the geostrophic approximation for
BMs and a single LSWM for IGWs to retrieve the full KE spectrum from a seasonal SSH spectrum—opens
the possibility to diagnose the two‐dimensional surface velocity field of both BMs and of IGWs in physical
space from two‐dimensional SSH snapshots.

To test this possibility, the followingmethodology is used.We consider a single snapshot of the SSH field, η(x,y).
We define a domainwith double periodic conditions bymultiplying η(x,y) by a two‐dimensional Hanning win-
dow (see section C in supporting information) and, then, we apply a two‐dimensional Fourier transform to the
resulting η(x,y) field to getbη k; lð Þ, where the symbol ^ refers to the Fourier transform and k and l the wave num-

ber components. This field is partitioned as follows: bη k; lð Þ ¼ bηg k; lð Þ κ2¼k2þl2<K2
i
þ bηigw��� ���

κ2¼k2þl2>K2
i

(see section

B in supporting information).Next, wediagnose BMs and IGWs in the spectral space using the appropriate rela-
tionships for BM and IGW motions (relations B2 and B7 in section B in supporting information). Finally, we
recover BMs and IGWs in physical space using an inverse Fourier transform.
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3. Results
3.1. Diagnosing BMs and IGWs in Physical Space

We test the preceding methodology using our numerical simulation (section A in supporting information).
We consider a two‐dimensional SSH snapshot [i.e., η(x,y)], extracted from the numerical simulation outputs.
Then, we diagnose separately BMs and IGWs in physical space using the methodology described before.
Results, in terms of the KE explained by BMs (KEg‐d) and IGWs (KEigw‐d) with subscript d for diagnosed,
are shown in Figures 3b and 3d for the Kuroshio Extension (see also Figures S2 and S3 in the supporting
information, respectively, for the Agulhas Current and the Drake Passage). Note that the color bar for
BMs is 4 times larger than that for IGWs. BMs have larger spatial scales than IGWs, as expected. We compare
these diagnosed KE fields with those observed in the OGCM, that is, KEg‐o and KEigw‐o (with subscript o for
observed), in Figures 3a and 3c, respectively (see also Figures S2 and S3). KEg‐o and KEigw‐o are estimated

from u(x,y) and v(x,y) using high‐pass and low‐pass filters involving K−1
i .

Comparison between Figures 3a and 3b indicates a strong similarity between KEg‐o and KEg‐d. For the
Kuroshio Extension, the mean value for KEg‐d is close to 0.056 m2/s2, consistent with KEg‐o value,
0.055 m2/s2. Similar results are found for other regions. The KEg‐o and KEg‐d fields display smooth patterns
intensified on the eddy edges (identified by SSH contours). Peaks in the KEg‐d field are at the same location
as those in the KEg‐o field, with the same intensity. This similitude is confirmed by a pointwise comparison
that leads to a correlation between KEg‐d and KEg‐o of 0.9, 0.87, and 0.85, respectively, for the Kuroshio
Extension, the Agulhas Current, and the Drake Passage. Comparison of the velocity vectors observed in
the simulation with the one diagnosed from SSH (first row in Figure 4, see also Figures S4 and S5) is quite
good, as expected, except in the Drake Passage (Figure S5 where BMs might be in gradient wind balance
(Vallis, 2017) instead of geostrophic balance.

Figure 3. Two‐dimensional kinetic energy field for the Kuroshio Extension. Top panels, (a) mesoscale kinetic energy, KEg‐o deduced from u and v, (c) internal grav-
ity wave kinetic energy KEigw‐o deduced from u and v. Bottom panels, (b) geostrophic kinetic energy, KEg‐d diagnosed from sea surface height (SSH) and (d)
internal gravity wave kinetic energy KEigw‐d diagnosed from SSH. The light gray lines stand for SSH contours. Note that for a pointwise comparison with the
diagnosed fields, u(x,y) and v(x,y) have been multiplied by a two‐dimensional Hanning window before estimating the observed KE, that is, KEg‐o and KEigw‐o The
gray circle delineates the region of influence of the Hanning window. Correlation between KEg‐o and KEg‐d is 0.9 and 0.7 between KEigwO and KEI. KE = kinetic
energy; IGWs = internal gravity waves.
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Next, we compare IGWs observed in the simulation with those diagnosed from SSH (see panels c [KEigw‐o]
and d [KEigw‐d] in Figures 3, S2, and S3). A first comment is that KEigw‐o patterns differ much from KEg‐o

patterns. Besides having smaller scales, their locations and geometries totally differ. IGW patterns are often
located not only on the eddy edges but also inside the eddies (as in the Drake Passage, Figure S3). Sometimes,

Figure 4. Zooms of the two‐dimensional kinetic energy field and velocity vectors for the Kuroshio Extension. From top to bottom: first row; (left) mesoscale kinetic
energy, KEg‐o deduced from u and v; right) geostrophic kinetic energy KEg‐d diagnosed from sea surface height (SSH). Second row; (left) Internal gravity wave
kinetic energy, KEigw‐o, deduced from u and v; right) internal gravity wave kinetic energy, KEigw‐d, diagnosed from SSH. The light gray lines stand for SSH
contours. Third row; stick diagram of velocity vector for IGWs corresponding to the dashed lines displayed in the middle panels. Fourth row; Kinetic energy
exchange between BMs and IGWs by the shear production term, SP (see equation (1)), in the Kuroshio Extension: deduced from u and v (SPH‐o, left panel) and
diagnosed from SSH (SPH‐d, right panel). Correlation coefficient between SPH‐o and SPH‐d is 0.45. Themean value of the shear production estimated from u and v is
−1.17 × 10−9 m2/s3 and the mean value of the shear production estimated from SSH is −2.5 × 10−9 m2/s3.
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they look like radial patterns on the eddy edges as in the Agulhas Current region (Figure S2), a reminder of
some recent studies (see Figure 3 in Rocha et al., 2018). The Root‐Mean‐Square (RMS) value of the KEigw‐d

field (0.025 m2/s2) is close to the one for KEigw‐o (0.024 m2/s2). Similar results are found in other regions
(Figures S2 and S3). KEigw‐d is intensified at the same locations as KEigw‐o, although this intensification
seems to be larger in the KEigw‐d field. The geometry of the KEigw‐d patterns is quite similar to KEigw‐o pat-
terns. Scales of KEigw‐d are slightly larger than those observed in the simulation. The correlation value
between KEigw‐o and KEigw‐d is 0.7 instead of 0.9 for the BM fields. Lower correlations are found for other
regions (0.66 and 0.48, respectively, for the Agulhas Current and the Drake Passage). However, considering
that KEigw‐o has a magnitude lower than KEg‐o and IGW scales are smaller than BM scales, even such amod-
erate correlation is encouraging. Finally, we compare the IGW velocity vectors observed in the simulation
with those diagnosed from SSH (see second row in Figures 4, S4, and S5). Again, the resemblance between
the two fields, in terms of magnitude and direction, is remarkable, although not as good as for BMs. For a
better comparison, we have plotted two zonal sections of the IGW velocity vectors (third row in Figures 4,
S4, and S5). The amplitudes and directions of these vectors compare well in the Kuroshio Extension and
in the Agulhas Current, but not as well in the Drake Passage. IGW velocity vectors are often aligned with
the KEigw‐o or KEigw‐d patterns, in particular, when these patterns are radial with respect to eddies. This
alignment suggests an energy exchange between BMs and IGWs (Thomas, 2017).

3.2. Recovering BM–IGW Interactions From Space

BM‐IGW interactions might lead to significant energy exchanges between these two classes of motions
(Barkan et al., 2017; Rocha et al., 2018; Taylor & Straub, 2016; Thomas, 2017). The results of the previous
section have encouraged us to test the possibility of inferring these exchanges from SSH observations. One
quantity we have considered is the KE exchange between BMs and IGWs. From the KE equation (see,
e.g., Barkan et al., 2017), the expression of this term (the shear production term, or SPH) is

SPH ¼ − u2igw−v
2
igw

h i ∂Ug

∂x
þ uigwvigw

∂Vg

∂x
þ ∂Ug

∂y

� �
: (1)

A positive (negative) SPH value means a KE transfer from BMs (IGWs) to IGWs (BMs). We have estimated
SPH using the velocity field from the numerical outputs (Figure 4, first and second rows, left panels) and the
one diagnosed from SSH (Figure 4, first and second rows, right panels). For the Kuroshio Extension region,
the resulting fields SPH‐o (observed) and SPH‐d (diagnosed) are shown on Figure 4 (fourth row, left and right
panels, respectively). The SPH‐o field displays positive and negative patterns located in regions where KEigw‐o

is large (Figure 3c). The magnitude of SPH‐o is consistent with the magnitude of KEigw‐o and KEg‐o. The diag-
nosed shear production term, SPH‐d, (Figure 4, fourth row, right panel) is remarkably similar to the observed
one. The correlation between SPH‐d and SPH‐o is close to 0.5 in the Kuroshio Extension and the Agulhas
Current but poor for the Drake Passage (Figures S7 and S8). Values of SPH‐o and SPH‐d averaged over the
whole domain are close to 10−9 m2/s3 for the three regions: For instance, in the Kuroshio Extension, the
mean value of the shear production estimated from u and v is −1.17 × 10−9 m2/s3, and the mean value of
the shear production estimated from SSH is−2.5 × 10−9 m2/s3. These magnitudes are close to those reported
in recent studies although we have applied a double Hanning window on the variables (see section C in sup-
porting information). These results emphasize that SSH observations can help to infer not only the IGWs'
spatial organization by BMs but also the energy transfer between these two classes of motions.

One important question is whether KEigw patterns and KE exchanges between IGWs and BMs evolve on a
fast time scale (i.e., the propagation time scale of the waves, or ω−1). If the answer is yes, we would need fre-
quent SSH snapshots to monitor IGW‐BM interactions. We have performed some sensitivity tests. Although
IGW frequencies are larger than f (section B in supporting information), KEigw patterns do not change
within 1 or 2 days (cf. Figures 3 and S6). This is true also for the KE exchanges between IGWs and BMs
(not shown). Actually, the time evolution of the interactions and KE exchanges appear to follow that of
BMs. This means that frequent SSH snapshots are not needed. SSH snapshots with a few days' intervals
should be enough to diagnose the spatial organization of IGWs by BMs. This result can be understood within
the framework of Young and Jelloul (1997). These authors demonstrated that BMs impact the IGW disper-
sion on a time scale larger than the IGW oscillating time scale (ω−1) and close to the BMs time scale. Thus,
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although uigw and vigw and in particular their direction evolves with a fast time scale, KEigw and the KE
exchanges between BMs and IGWs evolve only on a slow time scale.

4. Discussion and Perspectives

Recent theoretical and numerical results have emphasized the key role of BM‐IGW interactions for the
ocean KE budget and therefore for ocean general circulation. These results need to be confirmed by obser-
vations in regional or basin‐scale domains and over long periods, which is a major challenge. The present
study has exploited some spectral properties of BMs and IGWs to understand whether future wide‐swath
satellite altimeters with high spatial resolution might help to meet this challenge. Although this is a first
attempt, results are encouraging and indicate that space observations can help to monitor BM‐IGW inter-
actions in the world's oceans. This monitoring will represent a new and major step for our understanding
of ocean circulation. There are, however, several caveats to emphasize and some future extensions to
mention.

(i) The dynamical framework presented in this study is valid only when the SSH spectrum exhibits a clear
slope discontinuity that separates IGWs at small scales from BMs at larger scales. Numerical studies
indicate this should be the case in summer in many energetic regions, including the Gulf Stream, the
Kuroshio Extension, and the Agulhas Current, where coherent internal tides have a weaker impact
on SSH than do BMs (Qiu et al., 2018; Richman et al., 2012; Rocha, Gille, et al., 2016; Torres et al.,
2018). But the slope discontinuity still needs to be confirmed by real SSH observations at high spatial
resolution, which will be available after SWOT launches in 2021. However, IGWs' dominance in sum-
mer, in the small‐scale range, has been reported by recent studies using Acoustic Doppler Current
Profiler observations. Callies et al. (2015) showed that, in the Gulf Stream recirculation region, IGWs
dominate the KE spectrum at scales smaller than 50 km. Qiu et al. (2017) reported similar results in
the Kuroshio Extension region. In both studies, the KE spectrum slope in the small‐scale range is either
similar to, or shallower than, the slope in the larger‐scale range. This means that, when using an SSH‐

KE spectral relationship similar to B8 (section B in supporting information), the resulting SSH spectral
slope should be shallower (with a κ−2 − κ−3 slope) at smaller scales than at larger scales (usually a
κ−4 − κ−5 slope), leading to a significant slope discontinuity.

(ii) Our approach, using an LSWM, assumes that IGWs are explained by one dominant baroclinic mode,
intimately related to the wave number at which the SSH spectrum exhibits a slope discontinuity. The
third baroclinic mode found for the three regions is consistent not only with the findings of Rocha,
Gille, et al. (2016) for the Kuroshio Extension but also with the more recent study from Lahaye et al.
(2019) for the world ocean in summer. Both studies indicate that the dominance of the third baroclinic
mode is explained by shallow mixed layers in summer. Using an LSWM implies a direct relationship
between IGW frequencies and wave numbers, that is, ω = ω(κ), or κ = κ(ω). This means all frequencies
are supposed to be captured by one spatial snapshot of SSH. Farrar and Durland (2012) relied on a simi-
lar relationship [ω= ω(k)] to retrieve SSH frommooring data, but considered several baroclinic modes.
A future extension of this study should be considering several baroclinic modes by following the
approach used in Farrar and Durland (2012).

(iii) Our numerical tests emphasize that IGW‐BM interactions involve slow time scale compared with the
fast time scales associated with wave frequencies: Within 1 or 2 days, the KEigw and SP patterns do
not change significantly, meaning that no frequent SSH observations are needed. This slow time evolu-
tion can be explained by invoking the linear relationship between IGW frequencies and wave numbers
mentioned before. Indeed, considering several wavelengths, as is done when going back to physical
space, is equivalent to averaging over different wave periods.

(iv) IGW‐BM interactions involving wave numbers κ < Ki are not considered in our approach. IGWs at
these scales (larger than 50–100 km), which include coherent internal tides and near‐inertial waves,
represent more than 50% of the total IGW KE in the three regions considered (see also Figure S1).
Such IGWs might impact the IGW‐BM interactions, in particular, in coastal areas in the presence of
a steep topography (Flexas et al., 2015). However, previous studies (Barkan et al., 2017; Rocha et al.,
2018; Taylor & Straub, 2016; Thomas, 2017) suggest that it is principally the IGW‐BM interactions
involving IGW scales smaller than 50–100 km that impact the KE exchanges between IGWs and
BMs in energetic regions.
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Despite these caveats, results of this study highlight the strong potential of future altimeter missions, such as
SWOT, that aim to observe SSH with an unprecedented spatial resolution (~10 km) in two dimensions (wide
swath of 120 km) over 68% of the world's ocean. The expected slope discontinuity in the SSH spectrum is
such that the small‐scale part of the spectrum should be above the noise level, which is likely to be true
for high‐KE regions of the world's ocean (Wang et al., 2019). SWOT observations will have a repeat period
of 21 days. This means interpolation techniques, such as those proposed in Ubelmann et al. (2015), will be
needed to produce daily SSH fields. Finally, exploiting the synergy of using SWOT observations with in situ
surface drifters will enhance our ability to diagnose BM‐IGW interactions in the near future and therefore
their impact on the KE budget and ocean general circulation.
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Titre :  Dynamique agéostrophique dans l'océan intérieur 
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Résumé : L'océan est le plus grand réservoir 
d'énergie solaire de notre planète. La quantité de 
chaleur qu'il est capable de stocker est modulée par 
sa circulation complexe, opérant sur une vaste 
gamme d’échelles allant du centimètre à la dizaine de 
milliers de kilomètres. Cette thèse s'intéresse à deux 
types de processus océaniques: les tourbillons de 
mésoéchelle, d'une taille de 100 à 300 km, et les 
fronts de sous-mésoéchelle, d'une taille inférieure à 
50 km. L'idée communément admise est que les 
mouvements agéostrophiques de sous-mésoéchelle 
sont principalement confinés à la couche de mélange 
océanique de surface et sont faibles dans l'océan 
intérieur. Cette vision classique de la dynamique 
océanique repose sur l'hypothèse que l'océan 
intérieur est en équilibre quasi-géostrophique, 
empêchant la formation de forts gradients de densité 
en profondeur. Cette thèse remet en question ce 
paradigme en se basant sur des observations CTD in 
situ à haute résolution collectées par des éléphants 
de mer instrumentés, des images satellite d’élévation 
de la surface de l’ocean, et des sorties de modèle à 
haute résolution dans le Courant Circumpolaire 
Antarctique.    

Les résultats indiquent que les mouvements 
agéostrophiques sont (i) générés par le champ 
tourbillonnaire de mésoéchelle via des processus de 
frontogenèse, et (ii) ne sont pas limités à la couche 
de mélange de surface ; bien au contraire, ils 
pénètrent dans l'océan intérieur jusqu'à 1000 m de 
profondeur. Ces fronts agéostrophiques de sous-
mésoéchelle sont associés à d'importants flux de 
chaleur dirigés de l'intérieur de l'océan vers la 
surface, d'une amplitude comparable aux flux air-
mer. Cet effet peut potentiellement altérer la 
capacité de stockage de chaleur de l'océan et 
devrait être le plus fort dans les zones 
tourbillonnaires telles que le Courant Circumpolaire 
Antarctique, le Kuroshio et le Gulf Stream, les trois 
courants clefs du système climatique. Il apparaît 
ainsi que les fronts agéostrophiques de sous-
mésoéchelle représentent une voie importante, mais 
encore largement méconnue, pour le transport de 
chaleur, de nutriments et de gaz entre l'intérieur et la 
surface de l'océan, avec des répercussions 
potentiellement majeures pour les systèmes 
biogéochimique et climatique. 

 

 

Title: Ageostrophic dynamics in the ocean interior 
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Abstract: The ocean is the largest solar energy 
collector on Earth. The amount of heat it can store is 
modulated by its complex circulation, which spans a 
broad range of spatial scales, from centimeters to 
thousands of kilometers. This dissertation 
investigates two types of physical processes: 
mesoscale eddies (100-300 km size) and 
submesoscale fronts (£ 50 km size). To date, 
ageostrophic submesoscale motions are thought to 
be mainly trapped within the ocean surface mixed 
layer, and to be weak in the ocean interior. This is 
because, in the classical paradigm, motions below the 
mixed layer are broadly assumed to be in quasi-
geostrophic balance, preventing the formation of 
strong buoyancy gradients at depth. This dissertation 
introduces a paradigm shift; based on a combination 
of high-resolution in situ CTD data collected by 
instrumented elephant seals, satellite observations of 
sea surface height, and high-resolution model outputs 
in the Antarctic Circumpolar Current, we show that 

ageostrophic motions (i) are generated by the 
backgound mesoscale eddy field via frontogenesis 
processes, and (ii) are not solely confined to the 
ocean surface mixed layer but, rather, can extend in 
the ocean interior down to depths of 1 000 m. Deep-
reaching ageostrophic fronts are shown to drive an 
anomalous upward heat transport from the ocean 
interior back to the surface that is larger than other 
contributions to vertical heat transport and of 
comparable magnitude to air-sea fluxes. This effect 
can potentially alter oceanic heat uptake and will be 
strongest in eddy-rich regions such as the Antarctic 
Circumpolar Current, the Kuroshio Extension, and 
the Gulf Stream, all of which are key players in the 
climate system. As such, ageostrophic fronts at 
submesoscale provide an important, yet unexplored, 
pathway for the transport of heat, chemical and 
biological tracers, between the ocean interior and the 
surface, with potential major implications for the 
biogeochemical and climate systems. 

 


