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Å Topological interior of the set A ⊂ Rd

∂A Topological boundary of the set A ⊂ Rd : ∂A = A \
◦
A

Probability and measures

1{·} denotes the indicator function equal to 1 if true and 0 if false

⊥⊥ denotes the independence of two random variables
d= means equality in distribution

P Probability measure

E Expectation with respect to P

PX probability distribution of the random variable X under the probability
measure P

P0 Palm probability

E0 Palm expectation

U [a, b] Uniform distribution on the interval [a, b]

N (µ, σ2) Normal distribution with mean µ and variance σ2

i.i.d.∼ denotes i.i.d. random variables

xiii



LIST OF NOTATIONS AND ABBREVIATIONS

δx Dirac measure at x

µA denotes the restriction of the measure µ to a set A: µA(·) := µ(A ∩ ·)

supp(µ) denotes the support of a measure µ

L1(µ) Set of functions that are integrable with respect to the measure µ

General notation

denotes the end of a proof

min(a, b) Minimum of the real numbers a and b

max(a, b) Maximum of the real numbers a and b

bxc Lower integer part of the real x: bxc := max{k ∈ Z, k ≤ x}

dxe Upper integer part of the real x: dxe := min{k ∈ Z, k ≥ x}

‖·‖1 Taxicab norm on Rd: if x = (x1, . . . , xd) ∈ Rd, ‖x‖1 :=
d∑
i=1
|xi|

‖·‖2 Euclidean norm on Rd: if x = (x1, . . . , xd) ∈ Rd, ‖x‖2 :=

√√√√ d∑
i=1
|xi|2

‖·‖∞ Supremum norm on Rd: if x = (x1, . . . , xd) ∈ Rd, ‖x‖∞ := max
i=1,...,d

|xi|

a� b informally means that a is much smaller than b

a� b informally means that a is much bigger than b

a ∝ b means that a and b are proportional

dim Dimension of a linear subspace of a vector space

deg Vertex degree in a graph

V Vertex-set of a graph G = (V,E)

E Edge-set of a graph G = (V,E)

Ld d-dimensional Euclidean lattice

Qn(x) d-dimensional cube of side length n ∈ N and centre x ∈ Rd : Qn(x) :=
x+ [−n/2, n/2]d

Qn Qn(0)

B(x, r) d-dimensional closed Euclidean ball with centre x ∈ Rd and radius r >
0 : B(x, r) := {y ∈ Rd, ‖x− y‖2 ≤ r}.

B(x, r) d-dimensional closed ball with centre x ∈ Rd and radius r > 0 for the
supremum norm : B(x, r) := {y ∈ Rd, ‖x− y‖∞ ≤ r}.

xiv



Introduction générale

La cinquième génération de réseaux mobiles (5G) devra relever de nombreux défis. Être
en mesure de servir un nombre jamais vu d’équipements avec une qualité de service sa-
tisfaisante sera l’un d’entre eux. En effet, d’après une étude d’Ericsson [3], le nombre
total d’appareils connectés dans le monde était d’environ 15 milliards en 2015 et devrait
atteindre 30 milliards en 2022. Cette explosion du nombre d’équipments ainsi que l’émer-
gence de nouvelles applications consommant de plus en plus de données (consultation de
sites internet, jeu en ligne, téléchargement et visionnage de vidéos en haute résolution,
internet des objets . . . ) ont conduit à la problématique suivante : comment faire face à
cette croissance du trafic tout en maintenant une qualité de service acceptable ?

Pour répondre à cette problématique, il faut considérer de nouvelles manières de penser
les réseaux de demain. Une des principales technologies étudiées dans la littérature pour
répondre à ce défi est le device-to-device (D2D). Le D2D permet l’établissement de com-
munications directes et de courte portée entre deux appareils, sans que le signal ne doive
passer par des infrastructures supplémentaires dans le réseau. Les applications du D2D
pour les réseaux cellulaires sont nombreuses et très prometteuses.

Un cas d’usage d’intérêt pour les opérateurs est celui de l’übérisation des réseaux. Si
un nouvel opérateur n’ayant pas (ou presque pas) d’infrastructures réseaux arrivait à
construire un réseau reposant uniquement sur des terminaux mobiles, il aurait à sa dispo-
sition un réseau fonctionnel sans avoir eu besoin d’investir dans des infrastructures réseau.
Ceci pourrait donc constituer une menace économique sérieuse pour les opérateurs his-
toriques. A contrario, la possibilité de construire un réseau sans devoir effectuer de tels
investissements pourrait être une opportunité pour les opérateurs historiques dans des
pays où ils ne sont pas encore implantés.

Dans la littérature, l’écrasante majorité des articles de recherche concernant le D2D s’inté-
resse soit aux applications qui peuvent en être faites, soit à des problématiques techniques
très particulières (sécurité, consommation énergétique, distribution des ressources radio,
gestion des interférences . . . ). Cependant, ces travaux ne s’intéressent que rarement au
problème de la modélisation de réseaux D2D à grande échelle. La connectivité de tels
réseaux est alors souvent supposée établie et aucune condition de faisabilité n’est men-
tionnée.
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Introduction générale

Contexte de la thèse et objectifs de recherche
Dans cette thèse, nous nous intéressons à de nouveaux modèles de réseaux D2D en envi-
ronement urbain qui nous permettent d’étudier la problématique de leur connectivité à
grande échelle, ainsi que les conséquences économiques de la faisabilité de tels réseaux D2D
à grande échelle pour les opérateurs. Plus particulièrement, nous essayons de répondre
aux questions suivantes :

- Comment prendre en compte la distribution spatiale des utilisateurs, la topologie
de l’environnement urbain couvert par le réseau et des conditions de connectivité
suffisamment réalistes entre les nœuds du réseau ?

- Quels sont les paramètres minimaux (par exemple la densité minimale d’utilisateurs)
permettant une bonne connectivité du réseau et comment les estimer ?

- Comment quantifier les investissements requis pour mettre en place un réseau D2D
fonctionnel ?

- Quelles pourraient être les conséquences économiques du déploiement de réseaux
basés sur le D2D pour les opérateurs ?

Pour répondre aux questions précédentes, nous proposons de nouveaux modèles sto-
chastiques pour les réseaux D2D, basés sur des outils empruntés à la géométrie stochas-
tique et à la théorie de la percolation.

Contributions de la thèse
Dans notre travail, nous introduisons de nouveaux modèles mathématiques de réseaux
D2D en environnement urbain. En résumé, notre approche de modélisation est comme
suit. Un système de rues S modélisé par une mosaïque de Poisson-Voronoi (abrégé en
PVT, sigle de l’anglais Poisson-Voronoi tessellation) est le support de deux processsus
ponctuels : un processus de Cox modélisant les utilisateurs du réseau répartis sur les arêtes
de S et un processus de Bernoulli modélisant des relais répartis sur les sommets de S.
En notant Z la superposition de ces deux processus ponctuels, nous modélisons le réseau
par un graphe aléatoire de connectivité dont les sommets sont les atomes de Z et où une
arête est tracée entre deux points de Z selon certaines règles données par des conditions
de connectivité entre les nœuds du réseau. Nous interprétons la percolation de ce graphe
aléatoire, c’est à dire une probabilité positive d’existence d’une composante connexe infi-
nie, comme signe d’une bonne connectivité du réseau modélisé.

Nous étudions dans un premier temps un cas particulier où les seules connexions
possibles sont celles en vision directe (abrégé en LOS, sigle de l’anglais line-of-sight), le
long de la PVT S et dans une certaine portée. Autrement dit, deux nœuds du réseau
sont connectés par une arête dans le graphe de connectivité si et seulement si ils sont
suffisamment proches l’un de l’autre et sont situés sur la même arête de la PVT S. Un
exemple d’un graphe de connectivité du réseau avec de telles hypothèses est donné par la
Figure (a). L’une des principales contributions mathématiques de cette thèse est l’étude du
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(a) Simulation d’un graphe de connectivité
quand seules les connexions LOS (vision di-
recte) sont possibles.

(b) Simulation d’un graphe de connectivité
dans le cas où les connexions supplémentaires
en NLOS (vision indirecte) sont prises en
compte.

Figure : Deux exemples de simulations d’un graphe de connectivité du réseau. Les lignes
pointillées bleues représentent le système de rues (PVT S), les points rouges représentent
les utilisateurs du réseau (processus de Cox), les points verts représentent les relais (pro-
cessus de Bernoulli). La plus grande composante connexe de la fenêtre de simulation est
mise en valeur par des arêtes orangées et des nœuds coloriés dans leurs couleurs respec-
tives. Les arêtes des autres composantes connexes sont noircies. Dans les deux cas, les
réalisations du système de rues, du processus de Cox et du processus de Bernoulli sont
les mêmes.

graphe de connectivité du réseau sous ces hypothèses. Nous démontrons que des transitions
de phase entre différents régimes de connectivité ont lieu. Deux régimes particulièrement
intéressants sont mis en évidence. Dans le premier d’entre eux (appelé régime relay-limited,
de l’anglais “limité par les relais”), la connectivité du réseau peut être assurée uniquement
par les relais (points du processus de Bernoulli) tandis que dans le second régime (appelé
régime relay-and-user-limited, de l’anglais “limité par les relais et les utilisateurs”), la
présence d’utilisateurs (points du processus de Cox) est essentielle. A l’aide de simulations
numériques, nous estimons également les frontières de ces différents régimes. Connaître ces
frontières est en effet important pour des questions de planification économique et permet
également de donner des conditions pour que le réseau ainsi modélisé puisse fournir une
bonne connectivité.

Dans le cas particulier décrit ci-dessus, la présence de relais (points du processus de
Bernoulli) aux carrefours des rues (sommets de la PVT S) est cruciale car les seules
connexions possibles dans le graphe de connectivité ont lieu le long des rues (arêtes de
la PVT S). Une quantité insuffisante de relais peut donc constituer un obstacle à la
connectivité du réseau. Nous proposons deux variantes du précédent modèle pour pallier
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ce problème.
D’une part, nous laissons le modèle géométrique tel quel mais nous apportons quelques
modifications au modèle de connectivité. Dans cette nouvelle approche, les connexions en
vision directe sont conservées et des connexions suplémentaires en vision indirecte (abrégé
en NLOS, sigle de l’anglais non-line-of-sight) sont égalements envisagées. Deux nœuds du
réseau pourront ainsi être connectés par une arête dans le graphe de connectivité s’ils
sont situés sur deux arêtes de la PVT S qui sont incidentes à un même sommet v et
si la somme des distances respectives de chacun des deux nœuds à v est inférieure à un
certain seuil. Ces connexions supplémentaires peuvent être vues comme étant dues à des
réflexions ou à la diffusion du signal par des obstacles physiques présents aux carrefours
(sommets de la PVT S). La Figure (b) donne une illustration d’un graphe de connectivité
prenant en compte ces connexions NLOS supplémentaires. L’autre principale contribution
mathématique de cette thèse est l’étude de la percolation du nouveau graphe de connec-
tivité résultant de la prise en compte des connexions NLOS.
D’autre part, nous proposons une approche plus appliquée où les arêtes du système de
rues sont “élargies”. Les carrefours, qui sont donnés par les intersections des rues, ne sont
donc plus ponctuels et ont une surface positive. Ce faisant, nous sommes en mesure de
revoir nos estimations des seuils délimitant les frontières entre les différents régimes de
connectivité du réseau.

Nous introduisons ensuite un modèle de coûts afin de compléter les précédentes estima-
tions numériques et d’étudier de potentiels exemples d’übérisation des réseaux de télécom-
munications où un “néo-opérateur” souhaite construire un réseau entièrement fonctionnel
en se basant seulement sur le D2D. Nous établissons, de manière quantitative, des rela-
tions fondamentales entre des paramètres du réseau (densité d’utilisateurs et de relais)
et la possibilité d’établir des réseaux D2D à grande échelle. Ce faisant, nous donnons des
outils d’aide à la décision pour les opérateurs : il s’agit là de la principale contribution
opérationnelle de notre travail.

En dernier lieu, les simulations numériques permettant d’estimer les paramètres cri-
tiques des modèles de percolation étudiés dans cette thèse ont été réalisées à l’aide d’al-
gorithmes originaux. Ceci constitue la principale contribution de notre travail d’un point
de vue algorithmique et pourrait être appliqué à d’autres problèmes de percolation.

Travaux en lien avec le sujet de la thèse
Avant d’en venir au cœur du sujet, nous introduisons quelques travaux fondateurs en lien
avec cette thèse et qui aideront à comprendre l’approche de recherche adoptée dans notre
travail. Une revue plus exhaustive de la littérature sera faite dans les prochains chapitres
de ce document.

Les modèles mathématiques de réseaux de télécommunications fondés sur une ap-
proche en lien avec la percolation ne sont pas tout à fait une idée récente. Au début des
années 60, dans l’article fondateur du domaine [55], Gilbert a eu l’idée de modéliser les
nœuds d’un réseau de télécommunications sans fil par les atomes d’un processus ponctuel
de Poisson dans le plan R2. En notant par R > 0 la portée (déterministe) des connexions,
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le réseau est modélisé par un graphe de connectivité où deux points du précédent pro-
cessus de Poisson planaire sont reliés par une arête s’ils sont à une distance inférieure
ou égale à R l’un de l’autre. Pour N ≥ 1, Gilbert s’est ensuite intéressé à la probabilité
P (N) qu’il existe une composante connexe de ce graphe contenant au moins N points. A
l’aide de simulations numériques, Gilbert mit en évidence une transition de phase pour le
réseau : lorsque la surface de couverture E = πR2 d’un nœud du réseau devient supérieure
à une certaine valeur critique Ec, la probabilité P (∞) := limn↑∞ P (N) qu’il existe une
composante connexe infinie dans le réseau devient strictement positive. L’approche de
Gilbert a donné naissance à la théorie moderne de la percolation continue. De nos jours,
la théorie de la percolation (continue ou non) reste un domaine de recherche très actif
ayant de nombreuses applications dans divers domaines des sciences et en particulier en
télécommunications.

Des modèles stochastiques pour représenter de vrais systèmes de rues ainsi que des
applications aux réseaux de télécommunications ont été étudiés dans [57–60]. L’idée prin-
cipale développée dans ces travaux est qu’un système de rues peut être remplacé par
une mosaïque aléatoire lui étant statistiquement équivalente, c’est à dire ayant les mêmes
propriétés géométriques moyennes. Cette idée permet ainsi de considérablement simplifier
des problèmes de planification économique des réseaux ou des problèmes d’optimisation
liés au dimensionement de réseau (par exemple le problème du câblage dans un réseau
d’accès). Des procédures statistiques visant à trouver le meilleur modèle, parmi différentes
classes de mosaïques, pour représenter une extraction d’une carte urbaine ont été étudiées
dans la thèse [32].

En se basant sur l’approche précédente et l’idée initiale de Gilbert, la suite logique fut
de considérer des modèles plus complexes de réseaux de télécommunications où les nœuds
du réseau ne peuvent pas être situés n’importe où dans le plan mais sont plutôt contraints
à être localisés sur un support aléatoire tel qu’une mosaïque aléatoire. En gardant une
dispersion poissonienne des nœuds du réseau, on en vient donc à être confronté à l’étude
de processus ponctuels de Poisson doublement stochastiques, souvent appelés processus
de Cox dans la littérature. La percolation de tels processus de Cox a été étudiée pour la
première fois dans [70] et une application à la modélisation de réseaux de télécommuni-
cations a été traitée dans [29].

Dans la plupart des problèmes de percolation, des expressions analytiques des seuils
critiques délimitant les transitions de phase du système sont souvent hors de portée. Le
simple fait de trouver des bornes pour ces seuils peut s’avérer très difficile. Ainsi, il faut
quasi systématiquement recourir à des simulations numériques pour estimer ces seuils
de percolation. A cet égard, les tout premiers travaux ayant considéré des problèmes de
percolation d’un point de vue numérique sont issus de la physique et concernent des pro-
blèmes de conduction [111,118]. Depuis ces travaux et avec l’avènement de l’informatique
moderne, des algorithmes et méthodes de simulations plus efficaces ont été étudiés. Plus
particulièrement, une technique ayant retenu notre attention est empruntée là encore à la
physique [106] : des algorithmes “union-find” sont utilisés pour suivre efficacement l’évo-
lution des composantes connexes d’un graphe issu d’un problème de percolation.
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Dans une moindre mesure, nos travaux sont aussi en lien avec [13], où des outils de géo-
métrie stochastique sont utilisés pour poser et résoudre des problèmes d’optimisation liés
à la planification économique de réseaux de télécommunication, en considérant certaines
fonctionnelles de processus ponctuels.

Structure de la thèse
Cette thèse est divisée en six chapitres. Elle débute par deux chapitres introductifs :
dans le premier chapitre, nous présentons les outils mathématiques (principalement des
concepts de géométrie stochastique et de théorie de la percolation) qui s’avèreront utiles
dans le reste de la thèse ; le chapitre 2 est quant à lui dédié à une présentation générale
des communications sans fil et D2D dans les réseaux cellulaires. Un lecteur familier avec
l’un ou l’autre de ces domaines pourra sauter le chapitre adéquat et commencer sa lecture
du document par le chapitre 3, qui pose les bases de notre travail de manière plus concise
et introduit notre approche pour modéliser et étudier la connectivité des réseaux D2D en
environnement urbain. Dans les chapitres 4 et 5, nous utilisons notre modèle stochastique
pour établir des conditions de faisabilité de connectivité à grande échelle pour des réseaux
D2D en environnement urbain. Dans le dernier chapitre, nous introduisons notre modèle
opérationnel de coûts pour analyser les conséquences économiques du déploiement du D2D
dans les réseaux cellulaires. Nous appliquons ensuite ce modèle à l’étude d’un exemple d’
übérisation des réseaux de télécommunications par l’utilisation du D2D.
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The fifth generation of mobile networks (5G) will have to face various challenges. Provid-
ing coverage and a satisfying quality of service for an unprecedented number of devices
over large areas will be one of them. Indeed, according to a study from Ericsson [3], the
total number of connected devices in the world reached circa 15 billion in 2015 and is
expected to reach 30 billion in 2022. In particular, this explosion of the number of con-
nected devices and the emergence of new and more and more data-intensive applications
(internet browsing, online gaming, high-resolution video streaming and downloading, in-
ternet of things . . . ) have led to the following question: how to deal with this surge in
data traffic, while keeping up with a satisfying quality of service?

In this regard, new ways of thinking the future cellular networks must be considered. One
of the main technologies investigated in the literature to address the previous question
is device-to-device (D2D). D2D consists in the possibility of short-range direct communi-
cations between two devices in a telecommunications network, without the need for the
signal to be routed through additional network infrastructure. Applications of D2D in
cellular networks are not only numerous but also very promising [8, 52].

A use case of particular interest for operators is the one of uberisation of networks. If
a new telecommunications service provider having no (or very few) network infrastruc-
ture could build a network only relying on mobile devices, it would have at its disposal
a complete network without having invested massively in network infrastructure. This
could be a serious threat for traditional operators. Conversely, the possibility of building
a network without making such investments could be a great opportunity for traditional
operators in countries where they are not already present.

In the literature, the overwhelming majority of research articles concerning D2D either
focus on possible applications or on particular technical issues (e.g. security, energy
consumption, radio resources distribution, interference management . . . ). However, they
rarely deal with the problem of modelling large-scale D2D networks. Good connectivity
of such networks is often assumed to be established and no feasibility conditions of this
connectivity are mentioned.
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Thesis overview and research objectives
In this thesis, we are interested in new models of D2D networks in urban environments
which allow us to study the question of their connectivity at large-scale as well as the eco-
nomic consequences of the feasibility of large D2D networks for operators. In particular,
we attempt to answer the following questions:

• How to take into account the spatial distribution of network users, the topology of
the urban environment covered by the network as well as appropriate connectivity
conditions between network nodes?

• What are the minimal parameters (e.g. the density of network users) allowing for
good connectivity of the network and how to estimate them?

• How to quantify the investments required to set up a functional D2D network?

• What could be possible economic consequences of the deployment of D2D-based
networks for operators?

To address the previous questions, we build and propose new stochastic models of
D2D networks relying on tools borrowed from stochastic geometry and percolation theory.

Contributions of the thesis
In our work, we introduce new mathematical models of D2D networks in urban envi-
ronments. Briefly, our modelling approach is as follows. A street system S being given
by a Poisson-Voronoi tessellation (PVT) is the support of two point processes: one Cox
process of network users distributed on the edges of S and one Bernoulli process of relays
distributed on the vertices of S. Denoting by Z the superposition of these two point
processes, the network is then modelled by a random connectivity graph with nodes being
the atoms of Z and where an edge is drawn between two points of Z according to cer-
tain connectivity conditions ruling how network nodes are connected. Percolation of the
network connectivity graph, i.e. the existence of an infinite connected component with
positive probability, is then interpreted as good connectivity of the modelled D2D network.

In a first approach, we study a case where only so-called line-of-sight (LOS) connec-
tions along the edges of the supporting PVT S within a certain range are possible. In
other words, two network nodes are connected if and only if they are sufficiently close to
one another and located on the same edge of the PVT S, as illustrated by Figure (a).
As one of the main mathematical contributions of the thesis, we studied the percolation
of the associated connectivity graph and proved that phase-transitions between different
connectivity regimes exist. Two particularly interesting regimes are called relay-limited
and relay-and-user-limited. In the relay-limited regime, percolation of the graph can solely
be ensured by relays (Bernoulli points), while network users (Cox points) are essential in
the relay-and-user-limited regime. Resorting to numerical simulations, we estimated the
frontiers between these regimes: knowing them is important for economic planning and
allows to state feasibility conditions of good connectivity of D2D networks.
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(a) Example of a simulated network connec-
tivity graph when only LOS connections are
possible.

(b) Example of a simulated network connec-
tivity graph when supplementary NLOS con-
nections are considered.

Figure: Examples of simulated connectivity graphs. The blue dashed lines represent the
PVT street system S, the red points represent network users (Cox process), the green
points represent relays (Bernoulli process). The largest connected component in the
simulation window is emphasised by orange edges and vertices filled in their respective
colours. Edges of the smaller connected components are highlighted in black. In both
cases, the realisations of the street system, of the Cox process and of the Bernoulli process
are the same.

In the case described above, since connections between network nodes are only possible
along straight lines (edges of the PVT S), the additional Bernoulli relays at the crossroads
(vertices of S) are crucial and constitute a bottleneck for percolation of the connectivity
graph. We thus propose two variants of the previous model for tackling this issue.
On the one hand, we leave the geometric nature of the model unchanged but we refine the
connectivity model. More precisely, in this new approach, line-of-sight connections are
preserved and we add supplementary non-line-of-sight (NLOS) connections, allowing two
network nodes to be connected if they are located on edges that are incident to a common
vertex v of S and if the sum of their distances to v is less than a given threshold. This is
supposed to model scattering and/or reflections on buildings at crossroads of the streets,
see Figure (b). As the other main mathematical contribution of this thesis, we study the
percolation of the connectivity graph arising from these new connectivity conditions.
On the other hand, we propose a more applied approach where the street system is
thought to be “enlarged” and where intersections between streets (edges of the PVT S)
are no longer punctual but have a positive surface. Doing so, we revise previous numerical
estimates of the thresholds delimiting the connectivity regimes of the network graph.

We then go on to introduce a supplementary cost model to complete the previous
numerical estimates and study possible uberisation scenarios of telecommunications net-
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works where a “neo-operator” is willing to set up a fully functional network by relying
on D2D only. Predicting and quantifying fundamental relations between crucial network
parameters (density of users and relay points) and the possibility of deploying large-scale
D2D networks, as well as providing examples of decision making tools based on these
fundamental relations is the main operational contribution of this thesis.

Last but not least, numerical estimations of the critical parameters of the percola-
tion models studied in this thesis are conducted via original algorithms, which are the
main computer science contribution of our work and could be used in other percolation
problems.

Related works
Before coming to our own work, we briefly introduce milestone works related to this the-
sis, which help to understand the research approach adopted therein. A more exhaustive
review of the literature will be given in the subsequent chapters.

Mathematical models of telecommunications networks based on a percolation approach
actually go a long way back. At the beginning of the 1960s, in his seminal work [55],
Gilbert already had the idea of modelling nodes of a wireless telecommunications network
by the atoms of a homogeneous Poisson point process in the plane R2. Denoting the
(deterministic) range of communications by R > 0, the network was then modelled by a
connectivity graph where any two points of the previous planar Poisson process are joined
by an edge if they are within distance R of each other. For N ≥ 1, Gilbert then studied
the probability P (N) that there exists a connected component of this graph containing
at least N points. Resorting to numerical simulations, Gilbert underlined the following
phase transition of the network: above a critical value Ec for the coverage zone E = πR2

of a network node, the probability P (∞) := limn↑∞ P (N) that there exists some infinite
connected component in the network becomes positive. Gilbert’s approach gave birth
to the modern theory of continuum percolation. Today, (continuum) percolation theory
remains a very active field of research with numerous applications to various areas of
science and, in particular, telecommunications.

Stochastic models of real street systems with applications to telecommunications net-
works have been investigated in [57–60]. The main idea developed in these works is that
real street systems can be replaced by statistically equivalent random tessellations hav-
ing the same average geometric properties. This in turn allows to considerably simplify
economic planning of networks and optimisation problems related to network design (for
instance, how to spread cables in an access network). Statistical procedures aiming to find
the best fit for an extraction of a real-world city map among several tessellation models
have been investigated in the PhD thesis [32].

Building on the previous approach and on Gilbert’s initial idea, it is no wonder that re-
fined geometric models of telecommunications networks appeared. In such models, nodes
of the network cannot be located anywhere in the plane but are rather constrained to
be supported by a random support such as a random tessellation. Keeping a Poissonian
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spreading of network nodes, one is thus confronted to doubly stochastic Poisson point pro-
cesses, also known as Cox processes in the literature. Percolation of such Cox processes
has been studied for the first time in [70] and an application to models of telecommuni-
cations network has been investigated in [29].

In most percolation problems, analytical expressions of critical thresholds delimiting
the phase transition of the system are out of reach, while finding theoretical bounds can
turn out to be technically challenging. As a matter of fact, one must quasi-systematically
resort to numerical simulations to estimate such percolation thresholds. In this regard,
the very first works considering percolation from a numerical perspective concerned con-
duction problems in Physics [111, 118]. Since then and with the advances of computer
science, more efficient simulation methods and algorithms have been proposed. In partic-
ular, a technique which caught our attention is borrowed from the Physics literature [106],
where so-called union-find algorithms allow to efficiently keep track of the connected com-
ponents of a graph resulting from a percolation problem.

To a lesser extent, our work is also related to [13], where stochastic geometry tools are
used to pose and solve optimization problems related to economic planning of telecom-
munications networks by considering appropriate functionals of point processes.

Structure of the thesis
This thesis is divided into six chapters. It starts with two general introductory chapters:
in the first one, we present the mathematical tools (mainly concepts of stochastic geome-
try and percolation theory) used in the rest of the thesis ; the second one is dedicated to a
general overview of wireless and device-to-device communications in cellular networks. A
reader familiar enough with any of these domains can skip the appropriate introductory
chapter and start reading from Chapter 3, which more straightforwardly lays the founda-
tions of the work done during this thesis and introduces our approach for modelling and
studying the connectivity of D2D networks in urban environments. In Chapters 4 and 5,
we use our stochastic model to derive feasibility conditions of large-scale connectivity
of D2D networks in urban environments. In the final and sixth chapter, we introduce
our operational cost model for analysing the economic consequences of D2D deployment
in cellular networks. As an example of application, we study a particular scenario of
uberisation of a telecommunications network through D2D.
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Chapter 1
Mathematical foundations

The definition of a good mathematical
problem is the mathematics it
generates rather than the problem
itself.

Andrew Wiles

In this chapter, we review fundamental mathematical tools which will be needed
throughout the thesis. As explained in the introduction, we will be interested in studying
telecommunications network models using random connectivity graphs and random spa-
tial patterns. It is therefore essential to introduce a formal and rigorous framework for
the study of such objects. This framework is established in four different sections.

First, we begin with introducing general concepts of stochastic geometry, the branch
of probability theory studying random spatial patterns. Then, these general concepts will
bring us to introduce a class of objects that play a key role both in this thesis and in
stochastic geometry: stationary point processes. Such stationary processes exhibit in-
teresting properties that make them particularly amenable to analytical study. We then
go on with introducing the general theory of objects called random tessellations. Such
tessellations naturally occur in many applications where the typology of a territory plays a
critical role and has to be modelled in a particular way. Finally, as we will be interested in
the connectivity of random graphs in the rest of this thesis, we explore this notion from a
mathematical point of view. In the literature, this problem has been formalised around a
branch of probability called percolation theory. Foundations of this theory, with emphasis
on some particular models, will be presented in the fourth section of this chapter.

1.1 Preliminaries from stochastic geometry

1.1.1 What is stochastic geometry?
Geometrical patterns surround us pretty much everywhere in nature, both at microscopic
and macroscopic scales. In many areas of science and technology, these patterns appear
as data sets, which need to be studied and analysed in greater detail. Common examples
include:
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• Networks in Telecommunications

• Crystal structures in Chemistry

• Biological tissues in Biology

• Material structures in Physics or Engineering

The complexity of such structures often requires a statistical analysis, which can only
be performed using relevant mathematical models and methods. Conversely, one may be
interested in generating random patterns which accurately reproduce geometric features
of a pattern observed in nature. These simulated patterns may then be used to better
understand the original pattern and its physical properties.

A suitable theory for both of these purposes is proposed by a whole branch of mathe-
matics and probability theory studying random spatial patterns and structures: stochas-
tic geometry. In the foreword to the first edition of the standard reference textbook [31],
Kendall traces the origin of the discipline back to the early 1960s. Going even further
back, one may relate the story of stochastic geometry to early problems of classical geo-
metrical probability, (e.g. Buffon’s needle, addressed in the 18th century).

Since then, the discipline has developed and remains a very active field of research.
Textbooks introducing the reader to stochastic geometry are now numerous. The book [31]
has been re-edited twice and presents a comprehensive and global overwiew of the field.
More theoretical textbooks which also include recent developments are [82, 117]. A com-
prehensive and recent approach of the field can be found in [12]. Regarding the ap-
plications of stochastic geometry in telecommunications, many textbooks are available.
Standard references on such applications are [10,11,64]. Newer textbooks, such as [21,73],
underline that stochastic geometry applied to wireless network modelling still concentrates
a great research effort.

1.1.2 General framework
Space of points

In stochastic geometry, one is interested in observing (possibly random) patterns of points
located in some observation space E, called space of points. Most of the time, this space is
sufficiently “nice” and “regular” to avoid pathological issues when dealing with the prop-
erties of point processes defined thereon. A typical example encountered in applications
is Rd, for d ≥ 1.

However, the need for new models and theoretical purposes have led mathematicians
to look at point processes sometimes defined on rather abstract spaces (e.g. the set of
closed subsets of Rd for the Euclidean topology). Though being abstract, these spaces
still verify a certain number of properties and are often referred to as LCSCH spaces in
the literature:

Definition 1.1.1 (LCSCH space). A topological space E is called LCSCH if the following
properties are satisfied:

• E is locally compact, i.e. every point of E has a compact neighbourhood

• E is second countable, i.e. its topology has a countable base
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• E is Haudorff, or separated, i.e. distinct points of E have disjoint neighbourhoods

By standard toplogy arguments, it is easily seen that a consequence of the above
properties is the following:

Corollary 1.1.1.1. Every LCSCH space is a Polish space, i.e. has a countable dense
subset and admits a complete metric.

Proof. See [81, Theorem 5.3].

Note that the metric making E complete needs not be unique, but the framework we
will be presenting is not based on any particular choice of one.

A typical example of LCSCH space is the d-dimensional Euclidean space Rd, d ≥ 1.
From now onwards, we let E be an LCSCH space, endowed with its Borel σ-algebra B,
that is, the σ-algebra generated by the open sets of the topology of E. Elements of B
will be called Borel sets or Borel subsets of E. A subset B ⊂ E is called bounded if it is
relatively compact, i.e. the closure cl(B) of B is compact. We denote by Bc the set of all
bounded Borel subsets of E.

Another consequence of the definition is the following one:

Corollary 1.1.1.2. Every LCSCH space E can be covered by countably many relatively
compact open sets. In other words, E can be covered by countably many sets of Bc.

Proof. See [117, Theorem 12.1.1] or [12, Lemma 1.1.4].

Counting measures

In the general theory of point processes, countable patterns of points in an LCSCH space
E are identified with particular measures called counting measures on (E,B). Informally,
letting δx denote the Dirac measure for x ∈ E, this is done by considering any countable
pattern of points as a sequence (xi)i≥1 of points of E and then identifying it with some
measure µ = ∑

i kiδxi on (E,B), where the ki ≥ 0’s are non-negative coefficients repre-
senting a possible multiplicity of points.

In a more rigorous way, this identification, with a proper definition of counting mea-
sures, is done as follows. First, we consider all measures µ on (E,B) which are locally
finite, i.e. such that µ(B) < ∞ for all bounded Borel sets B ∈ Bc. Then, we define a
counting measure as follows:

Definition 1.1.2 (Counting measure). A counting measure µ is a locally finite measure
taking only values in {0, 1, 2, . . . ,∞} (this latter value being only allowed on unbounded
sets). The set of all counting measures on (E,B) is denoted by M.

A convenient consequence of the previous definition is the following:

Corollary 1.1.2.1. Any counting measure µ on E is σ-finite.

Proof. This is a consequence of Corollary 1.1.1.2 and the fact that a counting measure,
being locally finite, is finite on bounded sets.
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This theoretical framework now allows for a rigorous statement of the aforementioned
identification between a countable pattern of points in E and a counting measure:
Proposition 1.1.3. Any counting measure µ on an LCSCH space E can be written as:

µ =
N∑
i=1

δxi , (1.1.1)

where N ∈ N := {1, . . . ,∞} and (xi)i=1,...,N is a sequence of points of E without accumu-
lation points.
Proof. See [78]. A stronger version of this result is proven in [117, Lemma 3.1.3].

A counting measure µ as represented by (1.1.1) is called simple if the xi’s are distinct.
If not, then µ can be written as µ = ∑N ′

i=1 kiδx′i , where the scalars ki ∈ {1, 2, . . .} are called
the multiplicity of points and the x′i’s are distinct. Identifying a counting measure µ with
a subset of E as done in (1.1.1), we will often use the notation x ∈ µ to mean µ({x}) ≥ 1.
In such a case, we shall say that x is an atom of µ.

Space of configuration of points

Since point processes can be seen as random patterns of points, we need to define a σ-
algebra on the set of counting measures M. We will consider the evaluation σ-algebraM
generated by the projections (or evaluation maps):

M→ {0, 1, 2, . . . ,∞}
µ 7→ µ(B)

with B ∈ B (we can even restrict ourselves to B ∈ Bc by a monotone class argument). In
other words, M is the smallest σ-algebra making the above mappings measurable. The
space (M,M) endowed with this evaluation σ-algebra is often called space of configuration
of points. Note that this specific choice of σ-algebra allows for the following:
Proposition 1.1.4. Let µ be a counting measure written as in (1.1.1). Then, the enu-
meration of the atoms xi of µ can be chosen so as to make the mappings: M 3 µ 7→ xi ∈ E
measurable for all i.
Proof. See [117, Lemma 3.1.3].

1.1.3 Point processes
General definition

The most basic objects dealt with in stochastic geometry are point processes. Informally,
such point processes are random patterns of points in an observation space E. The theo-
retical general framework exposed in the previous subsection will now allow us to properly
define those point processes.

From now on and throughout the rest of this chapter, unless stated otherwise, we
adopt the general framework exposed in the previous subsection and let E be an LCSCH
space endowed with its Borel σ-algebra B. We also fix some probability space (Ω,A,P).

The definition of a point process is as follows:

16



1.1. Preliminaries from stochastic geometry

Definition 1.1.5 (Point process). A point process (PP) is a measurable mapping:

Φ : (Ω,A,P)→ (M,M)

The distribution of Φ will be noted PΦ := P ◦ Φ−1

From the definition, it is clear that a point process Φ can also be seen as a stochastic
process Φ = {Φ(B)}B∈B with state space N0 := {0, 1, . . .} and index B running through
B. Hence, by Kolmogorov’s consistency theorem, the distribution of the point process
Φ is characterised by the family of finite dimensional distributions (Φ(B1), . . . ,Φ(Bk)),
where k ≥ 1 and B1, . . . , Bk run over B. Note once again that, thanks to a monotone
class argument, it is sufficient to consider that B1, . . . , Bk are bounded and so run over
Bc (rather than B).

Since a point process Φ is a random counting measure, the following definitions make
sense:

Definition 1.1.6 (Fixed atom of a point process). The point process Φ is said to have a
fixed atom at x0 ∈ E if P(Φ({x0})) > 0.

Definition 1.1.7 (Simple point process). A point process Φ is said to be simple if Φ(w)
is a simple counting measure almost surely. In other words:

P(∀x ∈ E,Φ({x}) ≤ 1) = 1 (1.1.2)

Remark. Note that E is not necessarily countable and so the measurability of the event
considered in (1.1.2) is not straightforward. This technical issue is dealt with by consider-
ing a system of partitions of E becoming finer and finer and whose diameter (for a metric
making E complete) goes to 0. Such a system is called a null-array of partitions and its
existence is in fact independent of the chosen metric, as long as it makes E complete. A
formal definition and proof of this fact can be found in [78] or [12, Lemma 1.6.3].

Some characteristics of point processes

We now introduce some general characteristics of point processes. The first one is the
mean measure:

Definition 1.1.8 (Mean measure). The mean measure M of a point process Φ is defined
by ∀B ∈ B,M(B) := E[Φ(B)]. In other words, M(B) is the expected number of points
of Φ in B.

It is straightforward to check thatM is indeed a well-defined measure on (E,B), which
may be infinite on unbounded Borel subsets of E.

The mean measure will play a great role in evaluating the expectation of integrals
against Φ. Before coming to that point, we introduce two convenient characteristics of
point processes:

Definition 1.1.9 (Void probability). The void probability of a point process Φ is a set
function νΦ = ν defined on (E,B) by ν(B) := P(Φ(B) = 0).
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The void probability is of great interest thanks to the following fact:

Theorem 1.1.10 (Rényi’s theorem). The probability distribution of a point process Φ is
fully characterised by the family of void probabilities νΦ(B) for all B ∈ Bc.

Proof. The proof is rather technical and can be found in [78, Theorem 3.3].

Another useful tool for calculations is the Laplace functional, defined as follows:

Definition 1.1.11 (Laplace functional). The Laplace functional of a point process Φ is
a functional LΦ = L on the space of non-negative measurable functions f : E→ R+ and
defined by:

L(f) := E
[
e−
∫

E fdΦ
]

(1.1.3)

This definition can be extended to all functions f for which the expectation in (1.1.3) is
well-defined.

As for the void probability, we have the following:

Theorem 1.1.12. The Laplace functional of a point process Φ fully characterises the
distribution of Φ.

Proof. See [10, Section 1.2].

We end up this general section on point processes with a very basic but useful formula
for computing expectations of integrals against point processes: Campbell’s formula.

Theorem 1.1.13 (Campbell’s formula). Let Φ be a point process with mean measure M
and let f : E→ R be either non-negative or integrable with respect toM (i.e. f ∈ L1(M)).
Then the integral

∫
E fdΦ is almost surely well-defined and we have:

E
[∫

E
fdΦ

]
=
∫

E
fdM

Proof. The proof is done by a monotone class argument. First, consider simple functions
of the form f = ∑k

i=1 ai1Bi where ∀ 1 ≤ i ≤ k, ai ≥ 0 and Bi ∈ B. The formula holds
for such functions. Then, for a general non-negative function f , the formula also holds
by considering a sequence of simple functions converging to f and using the monotone
convergence theorem. Finally, for f ∈ L1(M), write f = f+ − f−, where f+ = max(f, 0)
and f− = max(−f, 0). The formula holds for both f+ and f−, so it holds for f .

We now review one of the most celebrated class of point processes in the literature:
the one of Poisson point processes.

1.1.4 Poisson point processes
Poisson point processes appear quite everywhere in the stochastic geometry literature, for
many reasons.

On the theoretical perspective, Poisson point processes are sufficiently tractable to
make lots of analytic computations doable by hand. Moreover, Poisson point processes
feature good properties of stability against several geometric operations, such as super-
position or thinning.
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1.1. Preliminaries from stochastic geometry

On a more applied perspective, Poisson point processes are easy to simulate numeri-
cally and provide good models for lots of geometrical patterns in nature. They also feature
a fundamental property called complete independence, which informally means that points
of Poisson point processes do not tend to interact with one another.
In the rest of this subsection, we only provide a global overview of the main properties of
Poisson point processes. More details can be found in almost every stochastic geometry
textbook ; some even being fully dedicated to this particular topic [85,86].

Definition and first properties

Definition 1.1.14 (Poisson point process). Let Λ be a (deterministic) locally finite mea-
sure on (E,B). A point process Φ is said to be a Poisson point process (PPP) with
intensity measure Λ if the following conditions are satisfied:

1. For all B ∈ B, Φ(B) is a Poisson random variable of parameter Λ(B).

2. For all k ∈ N and all disjoint Borel sets B1, . . . , Bk ∈ B, the random variables
Φ(B1), . . . ,Φ(Bk) are independent. This condition is called the property of complete
independence.

Clearly, the two conditions above suffice to characterise the finite dimensional distri-
butions of a Poisson point process. Hence, by Kolmogorov’s consistency theorem, they
characterise the distribution of the Poisson point process itself.

A case of particular interest when Λ(dx) = λdx on Rd for some 0 < λ < ∞, i.e. the
intensity measure is a multiple of Lebesgue measure. In that case, we say that Φ is a
homogeneous Poisson point process. The scalar λ is called the intensity of Φ.

The main characteristics of a Poisson point process are simple consequences of the
definition above:

Proposition 1.1.15. Let Φ be a Poisson point process with intensity measure Λ. Then
we have the following:

• The mean measure of Φ is Λ.

• The void probability of Φ is defined by: ∀B ∈ B, ν(B) = e−Λ(B)

• The Laplace functional of Φ is defined by:

L(f) = e−
∫

E(1−e−f(x))Λ(dx).

for all f either non-negative or in L1(Λ).

Proof. The form of the mean measure and of the void probability are simple consequences
of the definition. For the Laplace functional, the proof is done by a monotone class
argument, as has been done in the proof of Theorem 1.1.13. See [31, Example 4.2] for
more details.

Another convenient property of Poisson point processes is the following:
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Proposition 1.1.16. Let Φ be a Poisson point process with intensity measure Λ. Let
B1, . . . , Bk be disjoint and denote W = ⋃k

i=1Bi. Then, for all n ∈ N and n1, . . . , nk such
that ∑k

i=1 ni = n, we have:

P{Φ(B1) = n1, . . . ,Φ(Bk) = nk |Φ(W ) = n} = n!
n1! . . . nk!

1
Λ(W )n

k∏
i=1

Λ(Bi)ni

Proof. This is a straightforward consequence of the definition.

The above conditional distribution is a multinomial distribution. Thus, given that
there are n points of a Poisson point process Φ in some observation window W , these
points are i.i.d. distributed according to the distribution Λ(·)

Λ(W ) . This fact is very useful
for two purposes: on the one hand, proving that Poisson point processes do exist and
construct them; on the other hand, numerically simulate Poisson point processes. More
details about the existence and construction of Poisson point processes can be found
in [86, Section 3.2], while details about numerical simulations can be found in [31, Section
2.5].

Finally, one may wonder when a Poisson point process is simple or has a fixed atom.
This can easily be deduced from simple conditions on the intensity measure:

Proposition 1.1.17. Let Φ be a Poisson point process with intensity measure Λ. Then:

1. Φ has a fixed atom at x0 ∈ E if and only if Λ has an atom at x0, i.e. Λ({x0}) > 0.

2. Φ is simple if and only if Λ is non-atomic, i.e. ∀x ∈ E,Λ({x}) = 0.

Proof. The first part is a consequence of the definition. The second part is proved using the
conditional distribution of Poisson points. See [10, Proposition 1.1.3] for more details.

A straightforward consequence of the previous result is that an homogeneous Poisson
point process is simple.

Characterisations of Poisson point processes

In addition to the definition and the Laplace functional, Poisson point processes can be
characterised by other means. The first one is based on the form of the void probability:

Theorem 1.1.18. Let Φ be a simple point process on E. Then Φ is a Poisson point
process if and only if there exists a locally finite non-atomic measure Λ on (E,B) such
that ∀B ∈ Bc,P(Φ(B) = 0) = e−Λ(B).

Proof. The direct part follows from the definition and Proposition 1.1.17. The converse
part is a consequence of Rényi’s theorem.

In particular, a consequence of the previous result is that any simple point process Φ
such that Φ(B) is a Poisson random variable for every B ∈ Bc is a Poisson point process.

There is a more subtle way to characterise Poisson point processes: the property
of complete independence. Recall that a point process Φ is said to have the property
of complete independence if for all disjoint bounded Borel sets B1, . . . , Bk, the random
variables Φ(B1), . . . ,Φ(Bk) are independent.
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1.1. Preliminaries from stochastic geometry

Theorem 1.1.19. Let Φ be a point process on E without fixed atoms. Then Φ is a Poisson
point process if and only if Φ is simple and has the property of complete independence.

The result above explains why Poisson point processes are often chosen in models
where there are no interactions between points.

Proof. The direct part comes from the definition and the fact that if Φ is a Poisson point
process without fixed atoms, its intensity measure Λ is non-atomic and so Φ is simple.
For the converse part, see [37, Lemma 2.4.IV]

Operations preserving Poisson point processes

As mentioned earlier, Poisson point processes are sufficiently tractable to do lots of ana-
lytic computations by hand. Moreover, Poisson point processes are stable under certain
operations. In this section, we define such operations and give without proofs the state-
ments that Poisson point processes are stable under them. For more details, the interested
reader can refer to [86, Theorem 3.3], [86, Chapter 5] or [12, Section 2.2].

We begin with superposition. If (Φk)k∈N is a sequence of point processes on the same
LCSCH space E, their superposition is defined by Φ = ∑

k∈N Φk, where the sum is to be
understood as a sum of measures. Note that this superposition may not be a point process
itself, and one may wonder when it is the case. This point is detailed in [12, Proposition
2.2.1] and in the subsequent corollaries.
Nevertheless, we have the superposition of independent Poisson point processes remains
a Poisson point process:

Theorem 1.1.20 (Superposition theorem). The superposition of independent Poisson
point processes (Φk)k∈N with intensity measures (Λk)k∈N is a Poisson point processes with
intensity measure ∑k∈N Λk if and only if this latter measure is locally finite.

The second operation worth considering is thinning. This consists in suppressing
some of the points of a point process. The most basic kind of thinning encountered in
the stochastic geometry literature is independent thinning, where the decision of erasing
or retaining a point is taken independently from all the other points.
More formally, independent thinning can be defined as follows. Consider some point pro-
cess Φ = ∑

k∈N δXk defined on some LCSCH space E, (Uk)k∈N i.i.d. random variables that
are independent of Φ and uniformly distributed on [0, 1] and some measurable function
p : E → [0, 1] called retention function. The independent thinning of Φ by p is defined
by:

Φ̃ :=
∑
k∈N

1{Uk ≤ p(Xk)}δXk

In other words, each point Xk of Φ is kept independently from all other points with
probability p(Xk).

The independent thinning of a point process remains a point process: its mean measure
and Laplace functional can be computed via the ones of the original un-thinned process,
see [12, Proposition 2.2.6]. More importantly, Poisson point processes are stable under
independent thinning:
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Theorem 1.1.21. The independent thinning of a Poisson point process of intensity
measure Λ with retention function p is a Poisson point process of intensity measure
Λ̃(dx) := p(x)Λ(dx).

The last operation we consider is random transformation of points, which informally
consists in a random and independent displacing of each point of a point process to some
new location, possibly in some different LCSCH observation space E′, according to some
probability kernel p.

Recall from [79, Section 1.3] that a probability kernel p from some LSCSH space (E,B)
to another LSCSH space (E′,B′) is a function p : E× B′ → [0, 1] such that for all x ∈ E,
p(x, ·) is a probability measure on (E′,B′) and for all B′ ∈ B′, p(·, B′) is a non-negative
measurable-function on (E,B). The transformation of a point process Φ = ∑

k∈N δXk by
the probability kernel p is a point process Φp on E′ given by:

Φp =
∑
k∈N

δYk ,

where the (Yk) are points of E′, independent given Φ, with conditional distribution
P(Yk ∈ B′ |Φ) = p(Xk, B

′) whenever B′ ∈ B′. We assume that this indeed defines a
point process on E′ (see [12, Lemma 2.2.14] for a proof of this fact).

Poisson point processes also are stable under transformation by probability kernels:
this is referred to as displacement theorem in the literature.

Theorem 1.1.22 (Displacement theorem). Let Φ be a Poisson point process on some
LSCSH space E, with intensity measure Λ and let p be a probability kernel from (E,B) to
another LSCSH space (E′,B′). Let Λ′ be the measure on E′ defined by:

∀B′ ∈ B′,Λ′(B′) =
∫

E
p(x,B′)Λ(dx),

If Λ′ is a locally finite measure on E′, then the random transformation of Φ by the prob-
ability kernel p is a Poisson point process on E′ with intensity measure Λ′.

1.1.5 Other celebrated point processes
Poisson point processes are not the only ones considered in the stochastic literature. In
this subsection, we review two other celebrated types of point processes which will appear,
at some point, in this thesis.

One-point and binomial point processes

Let X be an E-valued random variable with probability distribution Q, i.e. P(X ∈ B) =
Q(B) whenever B ∈ B. Then Φ = δX is a point process called one-point process. One-
point processes arise often in geometric probability, especially in the case where E = W
is some compact of Rd and Q is the uniform distribution on W .

A natural extension of a one-point process is done by considering the superposition of
independent one-point point processes with common underlying probability distributions
Q for their points. This is the so-called binomial point process:
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Definition 1.1.23 (Binomial point process). Let n ∈ N and let X1, . . . , Xn be i.i.d. E-
valued random variables with common distribution Q. The superposition Φ := ∑n

k=1 δXk
of the one-point processes given by the Xk’s is called a binomial point process. Q is
sometimes called the sampling distribution of Φ in the literature.

More details about binomial point processes can be found in [31, Section 2.2]. Such
binomial point processes are closely related to Poisson point processes when the number
of points n becomes random (see [86, Section 3.2]).

Cox point processes

Cox point processes are extensions of Poisson point processes when the intensity measure Λ
is no longer deterministic but random. For this reason, they are often referred to as doubly
stochastic Poisson point processes. Refining the simpleness of the Poisson assumption,
Cox-based models play a critical role in many areas such as telecommunications, finance
and even biology.

We only give a formal definition, the form of the mean measure and of the Laplace
functional. The interested reader can refer to [86, Section 13] or [31, Section 5.2] for more
detailed accounts of properties of Cox point processes.

Definition 1.1.24 (Cox point process). Let Λ be a random measure on some LCSCH
space (E,B). A point process Φ defined on the same probability space as Λ is said to be
a Cox point process directed (or driven) by Λ if the conditional distribution of Φ given Λ
is the one of a Poisson point process with intensity measure Λ. Λ is called the directing
measure or the driving measure of Φ.

Proposition 1.1.25 (Mean measure and Laplace transform of a Cox point process). Let
Φ be a Cox point process on some LCSCH space (E,B) with driving measure Λ. Then we
have the following:

1. The mean measure M of Φ is given by: ∀B ∈ B,M(B) = E [Λ(B)].

2. The Laplace functional L of Φ is defined by L(f) = E
[
e−
∫

E(1−e−f(x))Λ(dx)
]
for all f

either non-negative or such that the right-hand side of the previous equality is finite
when f is replaced by |f |.

Proof. This is a simple consequence of the definition and of Proposition 1.1.15.

1.2 Stationary point processes
Stationary point processes, i.e. point processes whose distribution is translation-invariant,
play a key role in stochastic geometry. Indeed, the stationarity assumption may allow one
to shift all the atoms of a point process by a common vector, chosen in a convenient way.
Going further, one may be interested in point conditioning questions: for instance, one
may want to study a point process Φ given that Φ has an atom at some fixed location,
say the origin 0. In other words, one may want to study events of the kind

P(Φ ∈ · | 0 ∈ Φ). (1.2.1)
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If 0 is an atom of Φ, the conditioning event in the former probability makes sense. But
what happens when this is not the case? For instance, in the simple case where Φ is a ho-
mogeneous Poisson point process on Rd with intensity λ > 0, we have P(Φ({0}) > 0) = 0,
and so the conditional probability in (1.2.1) seems to make no sense.

To tackle such issues, a more general approach based on measure-theoretic arguments
has been proposed for stationary point processes and allows one to define a Palm prob-
ability under which the origin 0 can be seen as a typical point of Φ. We now present a
global overview of this approach.

1.2.1 Stationary point processes and stationary framework
From now onwards, we consider the case where the observation space is the d-dimensional
Euclidean space for some d ≥ 1, i.e. E = Rd. We endow Rd with its Borel σ-algebra
B = B(Rd). As stated earlier, this is an example of an LCSCH space.

Stationary processes

We will now be interested in stationary (point) processes. Recall that a stochastic process
{X(x) : x ∈ Rd} is said to be stationary if its distribution is translation-invariant, which,
by Kolmogorov’s consistency theorem, is equivalent to the translation invariance of its
finite dimensional distributions. In other words:

∀n ∈ N0,∀y ∈ Rd, (X(x1 + y), . . . , X(xn + y)) d= (X(x1), . . . , X(xn)), (1.2.2)

where d= denotes equality in distribution.

Since a point process Φ can be seen as a stochastic process Φ = (Φ(B))B∈B, the former
definition also applies to point processes.

When studying a family of point processes, the following terminology is often encoun-
tered in the literature:

Definition 1.2.1 (Jointly stationary point processes). Say a family of point processes
(Φi)i are jointly stationary if the joint distribution of these point processes is invariant
under the respective translation by any vector of Rd.

Shifting on measures and functions

The traditional approach to the study of (jointly) stationary point processes is done by
considering a stationary framework on the probability space (Ω,A,P). This approach is
a flow-based one and induces a notion of shifting on measures.

Therefore, we begin by defining a shift on the set of measures µ on (Rd,B(Rd)) by:

∀t ∈ Rd,∀B ∈ B(Rd), Stµ(B) := µ(B + t)

Given a measurable space (K,K), for every mapping f : Rd → K, we denote:

∀t ∈ Rd, Stf : x 7→ f(x+ t)
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Remark. • Let µ be any measure on Rd. Then:

∀t ∈ Rd,∀B ∈ B(Rd),
∫
B
f(x)Stµ(dx) =

∫
B+t

f(x− t)µ(dx)

• If µ =
∑
i

kiδxi ∈M, then ∀t ∈ Rd, Stµ =
∑
i

kiδxi−t

In light of the last point, we can give an equivalent definition for the stationarity of
point processes:

Definition 1.2.2 (Stationary point process). Let Φ be a point process on Rd. For t ∈ Rd,
denote by StΦ the point process resulting from the translation of all atoms of Φ by −t.
We say that Φ is a stationary point process if:

PΦ
d= PStΦ, whenever t ∈ Rd (1.2.3)

In other words, for all t ∈ Rd, the distribution of StΦ is the one of Φ.

We now introduce the concept of flow:

Definition 1.2.3 (Flow). A family {θt}t∈Rd is called a flow on the measurable space
(Ω,A) if the following properties are satisfied :

• ∀t ∈ Rd, θt : Ω→ Ω is bijective

• ∀s, t ∈ Rd, θt+s = θt ◦ θs (hence θ0 = idRd and ∀t ∈ Rd, θ−1
t = θ−t)

• The mapping (Rd,Ω) 3 (t, ω) 7→ θt(ω) is B ⊗A-measurable

To properly define a stationary framework, we need to make sure that the objects we
will consider are somehow going to be compatible with the underlying flow. This induces
the following definitions:

Definition 1.2.4 (Compatible stochastic process). A stochastic process X = {X(t) : t ∈
Rd} is said to be compatible with the flow {θt}t∈Rd if:

∀t ∈ Rd, X ◦ θt = StX

Note that since a point process Φ can be seen as a stochastic process Φ = (Φ(B))B∈B,
this definition also applies to point processes. Thus, if Φ is compatible with the flow {θt}
we have:

Φ(θt(ω))(B) = StΦ(ω)(B) = Φ(ω)(B + t)

for all ω ∈ Ω, B ∈ B, t ∈ Rd.

Definition 1.2.5 (Preserving flow, Stationary framework). We say the flow {θt}t∈Rd is
P-preserving if:

∀t ∈ Rd,P ◦ θ−1
t = P

i.e. ∀t ∈ Rd,∀A ∈ A, P({ω ∈ Ω, θt(ω) ∈ A}) = P(A)
In that case, we say that (Ω,A, {θt}t∈Rd ,P) is a stationary framework.
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1.2.2 Palm probability in the stationary framework
Throughout the rest of this subsection, we assume that (Ω,A, {θt}t∈Rd ,P) is a stationary
framework, i.e. {θt}t∈Rd is a P-preserving flow on (Ω,A).

Consider some stationary point process Φ which is compatible with the flow {θt}t∈Rd .
By measure-theoretic arguments based on Haar’s theorem [109, Theorem 2], we have the
following:

Proposition 1.2.6. If Φ is a stationary point process on Rd, the mean measure M of Φ
is proportional to Lebesgue measure, i.e. :

∃ 0 ≤ λ ≤ ∞;∀B ∈ B,E [Φ(B)] := M(B) = λ|B| (1.2.4)

The scalar λ is called the intensity of Φ. It represents the mean number of points of Φ in
an observation window of Lebesgue measure 1.

Proof. This is just a consequence of Haar’s theorem, which implies that every translation-
invariant measure on Rd is a multiple of Lebesgue measure.

Remark. • A homogeneous Poisson point process is stationary

• A Poisson point process on Rd is actually stationary if and only if it is homogeneous
(see [12, Proposition 6.1.18]).

• A stationary point process on Rd with finite intensity does not have fixed atoms
(see [12, Lemma 6.1.19]).

From now onwards, we will only consider stationary point processes with positive and
finite intensity, i.e. 0 < λ <∞.

We now introduce a measure on Rd × Ω, as follows:

Definition 1.2.7 (Campbell-Matthes measure). We define the Campbell-Matthes mea-
sure C on (Rd × Ω,B(Rd)⊗A) by defining it on rectangles:

∀(B,A) ∈ B(Rd)×A, C(B × A) := E
[∫

Rd
1{x∈B}1{θx(ω)∈A}Φ(dx)

]
Note that some work is required to extend the above definition to the whole product

space Rd × Ω, see [12, Proposition 6.1.20] for more details.
Nevertheless, it is easily checked that the Campbell-Matthes measure is invariant

under translations on its first argument, so that ∀(B,A) ∈ B(Rd) × A, C(B × A) =
constant(A)|B|. This induces the following definition:

Definition 1.2.8 (Palm probability). We can define a probability measure P0 on (Ω,A),
called Palm probability of the point process Φ, given by:

∀A ∈ A,∀B ∈ Rd such that 0 < |B| <∞, P0(A) = C(B × A)
λ|B|

= constant(A)
λ

E0 will denote the expectation with respect to Palm probability.
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1.2. Stationary point processes

We can thus summarise the definition of the Palm probability of Φ as follows: the
Palm probability of Φ is the unique probability measure P0 on (Ω,A) given by

P0(A) = 1
λ|B|

E
[∫

Rd
1{x ∈ B}1{θx ∈ A}Φ(dx)

]

whenever A ∈ A and B ∈ B is a Borel set of finite non-null Lebesgue measure |B|. The
definition of P0 does not depend on the choice of B.
Remark. In a non-stationary context with a general (non-stationary) point process Φ,
similar ideas can be developed but the framework is different. Indeed, relaxing the sta-
tionary assumption on Φ does not allow to introduce a unique Palm probability on the
probability space (Ω,A,P) anymore. One can however introduce the Palm distributions
of Φ, which form a family of probability measures {Px(·)}x∈E on (M,M). These Palm
distributions are also very much linked to point conditioning questions and can be seen,
under certain assumptions, as the conditional distribution of Φ, given that Φ has an atom
at some given location x ∈ E. More details on Palm calculus in the non-stationary context
can be found in [12, Chapter 3] or [31, Section 4.4].

1.2.3 Key properties of Palm probability
For the sake of completeness, we shall now mention three key properties of the Palm
probability of a point process and omit their proofs. The interested reader can refer
to [12, Chapter 6] for the proofs.

The most remarkable property of Palm probability is the following:

Proposition 1.2.9. Under Palm probability, Φ has an atom at 0 almost surely, i.e.

P0(Φ({0}) > 0) = 1

The former induces the notion of typicality: under Palm probability, the origin 0 can
be considered, for ergodicity reasons, to be a representative point of the point process
Φ, which will be called a typical point of Φ. Further references about ergodic theory for
point processes are [10, Section 1.6] and [38, Section 12].

Another key result of Palm calculus in the stationary context is the following analogue
of Campbell’s formula:

Theorem 1.2.10 (Campbell-Little-Mecke-Matthes (CLMM)). Let (Ω,A, {θt},P) be a
stationary framework and let Φ be a stationary process on Rd, compatible with the flow
and with finite positive intensity 0 < λ < ∞. Let P0 be the Palm probability of Φ. Then
for any non-negative measurable function f on Rd × Ω, we have:

E
[∫

Rd
f(x, θx)Φ(dx)

]
= λ

∫
Rd

E0 [f(x, ω)] dx (1.2.5)

This result extends to all functions f when either of the two sides of the above equality is
finite when f is replaced by |f |.
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We end up with another useful application of Palm stationary calculus: having defined
a Palm probability on (Ω,A) allows one to jointly analyse two different point processes
on the same probability space. This gives rise to the so-called mass-transport formula:

Theorem 1.2.11 (Mass-transport formula). Let (Ω,A, {θt},P) be a stationary framework
and let Φ, Φ′ be stationary processes on Rd, compatible with the flow and with finite positive
intensities λ, λ′ respectively. Let P0 and P0′ be the respective Palm probabilities of Φ and
Φ′. Then for any non-negative measurable function g (not necessarily compatible with the
flow) on Rd × Ω, we have:

λE0
[∫

Rd
g(y, ω)Φ′(dy)

]
= λ′E0′

[∫
Rd
g(−x, θx)Φ(dx)

]
(1.2.6)

The terminology can be justified by interpreting g(y, ω) as the amount of mass sent
from the atoms of Φ to the atoms of Φ′. The atoms of Φ′ receive this mass, hence the
negative sign on g(−x, θx). Note that if we apply the formula to Φ′ = Φ we obtain a
conservation of mass:

λE0
[∫

Rd
g(y, ω)Φ(dy)

]
= λE0

[∫
Rd
g(−x, θx)Φ(dx)

]
In other words, in a stationary framework, the mass leaving Φ is equal to the mass enter-
ing Φ. Stationarity is actually often explained in this way in the Physics literature.

Palm stationary calculus is a must-go in every theoretical stochastic geometry text-
book, and many more key formulae and results are available. In particular, the most
celebrated are the inversion formula (allowing one to recover the stationary expectation
Ef of a functional f in terms of its Palm expectation) and the Neveu exchange formula
(relating the expectations of a same functional f under the Palm probabilities of two
different point processes). For more details on such matters, the interested reader can
refer to [12, Chapter 6] or [10, Chapter 4].

1.2.4 Palm probability of Poisson and Cox point processes
When it comes to Palm probability, the case of Poisson point processes is of particular
interest. This is one of the most celebrated results of Palm theory, due to Slivnyak. We
shall state it without proof:

Theorem 1.2.12 (Slivnyak). A stationary point process Φ with positive and finite in-
tensity on Rd is a Poisson point process if and only if its distribution under the Palm
probability is equal to the distribution of the original process Φ with an extra atom at the
origin 0. In other words, Φ is a Poisson point process if and only if:

PΦ
d= P0

Φ+δ0

In a stationary context, the case of Cox point processes is also of particular inter-
est. First, note that stationarity of a Cox point process can easily be deduced from the
stationarity of its driving measure, as summarised by the following result:
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Proposition 1.2.13. Let Φ be a Cox point process on Rd with driving measure Λ. Then
Φ is stationary if and only if Λ is a stationary random measure, i.e. the probability
distribution of Λ is invariant under all translations of Rd.

Proof. This is a simple consequence of the fact that for all t ∈ Rd, StΦ is a Cox process
driven by StΛ.

Remark. In the same way, a Cox point process is isotropic if and only if its driving
measure is isotropic (i.e. its probability distribution is invariant under all rotations of
Rd), see [120, Theorem 5.5].

Since Cox point processes are doubly stochastic Poisson point processes, it is no wonder
that an analogue of Slivnyak’s theorem is available in the Cox case. A bit more work is
however required, as one needs to define a Palm version of the driving measure, see [120,
Equation (5.3)] for more details on this matter. The equivalent of Slivnyak’s result for
Cox point processes is the following theorem:

Theorem 1.2.14. Let Φ be a stationary Cox point process on Rd with driving measure Λ.
Denote by Λ0 a Palm version of Λ. Then the distribution of Φ under its Palm probability
is that of a Cox point process driven by Λ0 with an additional atom at the origin 0.

1.3 Tessellations and random tessellations
In the previous subsections, we reviewed some of the theory of point processes. These
point processes can be used to model particle systems or point systems (such as location of
users in a place) but do not say much about the topology of the environment where these
systems live. In many applications, the topological configuration of an environment where
some system lives is of great importance in performance assessment or in the behaviour
of the system itself. To study the topological configuration of an environment, one needs
to resort to suitable mathematical models: this is done by considering objects called
tessellations or often referred to as mosaics, the latter term being more suggestive. In a
stochastic geometry context, it then makes sense to consider random mosaics as models
for theoretical study and spatial statistics.

1.3.1 Tessellations
A vast mathematical literature is available on (random) tessellations, from books entirely
dedicated to the topic [102, 103, 108] to chapters of more general (stochastic) geometry
books [31, 117]. Though the general definition varies a bit here and there, authors seems
to globally agree on what a generic framework should be: a division of a space into
polyhedra. We formalise this as follows:

Definition 1.3.1 (Tessellation). Let d ≥ 1 and let S ⊆ Rd be a bounded region of Rd or
Rd itself. A tessellation of S is a countable collection (Ci)i≥1 of convex compact connected
subsets of Rd such that:

• S =
⋃
i≥1

Ci, i.e. the Ci’s form a covering of S.
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• ∀i ≥ 1, dim C̊i = d, i.e. Ci is full-dimensional.

• ∀i 6= j, C̊i ∩ C̊j = ∅ i.e. the Ci’s are non-overlapping.

Remark. • In the stochastic geometry literature, the cells of the tessellation are most
of the time assumed to be convex, but tessellations with non-convex cells are also of
noticeable importance in the literature. We won’t need to resort to such tessellations
in this thesis and thus include the convexity assumption in the definition.

• In the literature, other conditions may be added to the previous definition. The one
appearing most often is that the collection (Ci)i≥1 has to be locally finite, i.e. for
all B ⊂ Rd bounded, #{i ≥ 1, B ∩ Ci 6= ∅} <∞.

Assuming, as described above, that the collection (Ci)i≥1 is locally finite, one can de-
rive from the tessellation itself a set of vertices (also called 0-faces in the literature) and
of edges (also called 1-faces), thus allowing to see the tessellation as a (possibly infinite)
graph. More details on this can be found in [102].

Seeing the tessellation as a graph can induce another tessellation called the dual tes-
sellation. It is defined in the following way:

Definition 1.3.2 (Dual tessellation). Let Ξ = (Ci)i≥1 be a tessellation. To each cell
Ci of Ξ is associated a centroid ci (usually the barycentre of the cell). Then create an
undirected graph with vertex set V = {ci, i ≥ 1} and setting an edge (ci, cj), j 6= i if
and only if Ci and Cj share a boundary edge. The tessellation derived from this graph is
called the dual tessellation of Ξ.

1.3.2 Random tessellations
In stochastic geometry, one may be interested in random tessellations. The question is:
how to consider such objects in a rigorous mathematical framework? Several approaches
are possible but all of them, at some point, refer to the theory of random closed sets.
Indeed, it makes sense to think that a random tessellation is just a tessellation whose
cells are random. Since the cells are compact in Rd, they are closed, which makes them
random closed sets.

The general theory of random (closed) sets has extensively been studied in the liter-
ature is a must-go in almost every stochastic geometry textbook. Results from random
set theory will not be needed in the rest of this thesis. For more details on such matters,
the interested reader can refer to [12,31,98,101,108,117].

As mentioned above, a random tessellation can be simply be defined as a tessellation
whose cells are random closed sets:

Definition 1.3.3 (Random tessellations). Let S ⊆ R be a bounded region of Rd or Rd

itself (d ≥ 1). Consider a collection Ξ = (Ci)i≥1 of random closed sets. Assume that
the C ′is satisfy the conditions of the definition of a tessellation almost surely. Then the
tessellation Ξ = (Ci)i≥1 is said to be a random tessellation (with cells being the Ci’s.)

Remark. The former definition is sufficient for most applications and, in particular, is
sufficient for this thesis. More theoretical approaches on random tessellations are available
in the literature, e.g. in [31, Chapter 9].
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1.3. Tessellations and random tessellations

In the literature, we often find the following terminology:

• If d = 2, a tessellation of R2 is said to be planar.

• If d = 3, a tessellation of R3 is said to be spatial.

• Sometimes, the terminology spatial tessellation is encountered for referring to tes-
sellations of Rd when d > 3.

Even though some general results are available for all kinds of tessellations, the vast
majority of results in the literature concern stationary and isotropic tessellations, defined
as follows:

Definition 1.3.4 (Stationary, Isotropy, Motion-invariance). A random tessellation is said
to be stationary (respectively isotropic) if its distribution is invariant by all translations
(respectively rotations) of Rd. A stationary and isotropic random tessellation is said to
be motion-invariant.

1.3.3 Processes related to random tessellations
A random tessellation induces other random processes1:

• The point process of vertices of the cells

• The point process of edges’ midpoints

• The point process of centroids of the cells

• The segment process2 of edges of the cells

If the tessellation is stationary, one can show (e.g. see [31]) that all of the above
processes are. Therefore, one may define their respective intensities: λ0 (intensity of
vertices), λ1 (intensity of edges’ midpoints), λ2 (intensity of centroids of cells) and LA
(intensity of the line process of segment, also called line density, representing the average
edge-length in an observation window of Lebesgue measure 1)3.
Recalling that the intensity of a stationary point process is its mean number of points per
unit volume, we can have the following interpretation:

• λ0 is the mean number of vertices of the tessellation per unit volume.

• Since each edge of the tessellation almost surely has a unique midpoint, λ1 is the
mean number of edges of the tessellation per unit volume.

• Since each cell of the tessellation almost surely has a unique centroid, λ2 is the mean
number of cells of the tessellation per unit volume.

1Actually, one can rigorously define these point processes only if the cells of the tessellation are convex.
Since we imposed the convexity assumption in the definition of a tessellation, we do not worry about this
technicality anymore.

2Segment and line processes can actually be seen as point processes on abstract sets of lines. See [31,
Chapter 8] for a rigorous approach.

3LA is sometimes also denoted λ3 in the literature, but the notation LA refers to a more general
context of the intensity of a line process. We choose to keep the latter notation.
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Depending on the dimension and the type of tessellation, many formulae are available
for the previous quantities in the literature (e.g. see [31, Chapter 9] or [132] for more
advanced formulae). We shall only give some of those without proofs, in very particular
cases of interest for this thesis. Before coming to that point, we introduce two of the most
celebrated tessellations models: Voronoi and Delaunay tessellations.

1.3.4 Voronoi and Delaunay tessellations
Let P = {xi : i ≥ 1} be a locally finite set of points in Rd, i.e. for every bounded B ⊂ Rd,
the number of points of P located in B is finite. For each point xi ∈ P we define its
Voronoi cell Vor(xi‖P ) as follows:

Vor(xi‖P ) := {x ∈ Rd : ‖x− xi‖2 ≤ inf
xj∈P,xj 6=xi

‖x− xj‖2}, (1.3.1)

where ‖·‖2 denotes the Euclidean norm. In other words, the Voronoi cell of xi is the set
of points of Rd that are closer to xi than to any other point of P .
Note that the local finiteness assumption on P ensures that the infimum in the definition
is actually a minimum and is reached. Moreover, it is easy to show that the Voronoi cells
are closed, compact and convex, hence the following definition:

Definition 1.3.5 (Voronoi tessellation). The set of Voronoi cells {Vor(xi‖P ) : i ≥ 1} is
a tessellation of Rd called the Voronoi tessellation (generated by P ).

Delaunay tessellations

Delaunay tessellations, also referred to as Delaunay triangulations can be defined in two
different ways. The easiest, but more abstract, is the following:

Definition 1.3.6 (Delaunay tessellation). Let P = {xi : i ≥ 1} be a locally finite set of
points in Rd. The Delaunay tessellation or Delaunay triangulation generated by P is the
dual tessellation (in the sense of Definition 1.3.2) of the Voronoi tessellation generated by
P .

It can be shown that the cells of the Delaunay tessellations are triangles, hence the
terminology “triangulation”. The Delaunay tessellation can also be defined in a more
concrete way by a direct construction:

Proposition 1.3.7. Let P = {xi : i ≥ 1} be a locally finite set of points in Rd. One can
recover the Delaunay tessellation generated by P in the following way: for all triples of
points (xi, xj, xk) ∈ P 3 with xi 6= xj 6= xk, the triangle with vertices xi, xj and xk is drawn
if and only if the circumcircle of that triangle does not contain any other point of P than
the three vertices of the triangle.

1.3.5 Poissonian random tessellations
In stochastic geometry, Poissonian random tessellations, i.e. random tessellations gen-
erated by Poisson point processes, play a great role. Such tessellations have extensively
been studied, often exhibit remarkable properties, and many formulae are available for
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their characteristics.

We first begin with introducing three of the most studied Poissonian random tessella-
tions. The first two examples can be introduced straightforwardly thanks to the previous
definitions:

Definition 1.3.8 (Poisson-Voronoi and Poisson-Delaunay tessellations (PVT & PDT)).
Let Φ be a simple Poisson point process on Rd. The Voronoi (respectively Delaunay)
tessellation generated by the atoms of Φ is a random tessellation called Poisson-Voronoi
(respectively Poisson-Delaunay) tessellation.

Note that this definition is consistent with the general definition of Voronoi and De-
launay tessellations, as the set of atoms a Poisson point process is locally finite4.

Our third example is more subtle:

Definition 1.3.9 (Poisson line tessellation (PLT)). Consider X =
∑
k

δXk a Poisson point

process of finite positive intensity ρ on the real line R. Let φ be a probability measure
on [0, 2π). Consider a sequence of i.i.d. random variables (θk) i.i.d.∼ φ. Then, associate to
each point Xk of Φ the line Hk tangent to the circle of centre the origin and radius |Xk|
at the point Rθk(Xk) (the image of Xk by the rotation of centre the origin and angle θk).
The set of lines (Hk)k is called a Poisson Line Process and induces a random tessellation
of the plane called a Poisson Line Tessellation (PLT).

Remark. According to the form of φ, various tessellations can be obtained. For instance,
if φ is the uniform distribution on [0, 2π), the resulting PLT is isotropic. If φ consists in
two atoms separated by π

2 , the anisotropy is maximal. In general, the topology of the
PLT is mainly constituted of degree 4-vertices. For more details on PLT and Poisson line
processes, see [85, Section 7].

PVT and PDT are stationary and isotropic. A PLT is always stationary and isotropic
when the angle distribution φ is uniform. For the sake of visualisation, Figure 1.1 shows
particular realisations of a PVT, a PDT and a PLT in a 1-area window in R2.

As mentioned earlier, Poissonian tessellations have remarkable properties and their
parameters (λ0, λ1, λ2, LA) can often be expressed in terms of the intensity of the Pois-
son point process having generated the tessellation. For instance, consider the planar
case, a homogeneous Poisson point process Φ of positive finite intensity 0 < ρ < ∞ and
φ ∼ U [0, 2π[ uniformly distributed on [0, 2π[. Denote by PVT, PDT and PLT the re-
spective Poisson-Voronoi, Poisson-Delaunay and Poisson line tessellations generated by
Φ (respectively by Φ and a uniform angle distribution on [0, 2π[) for the PLT). Then the
respective characteristics of these tessellations are given by Table 1.1.

Table 1.1 is just an example of mean formulae for Poissonian random tessellations.
Many more results are available for different types of tessellations or in the spatial case
(e.g. in [31, 108,132]).

4This is even true for a more general point process Φ ; and due to the fact that Φ is a locally finite
random measure, see Definition 1.1.5.

33



Chapter 1. Mathematical foundations

(a) PVT (b) PDT (c) PLT

Figure 1.1 – Examples of realisations of planar Poissonian random tessellations in a 1-area
window. The PVT (Figure 1.1a) and the PDT (Figure 1.1b) have been generated by a
homogeneous Poisson point process of intensity 100. The PLT (Figure 1.1c) has been
generated with X of intensity 10 and φ the uniform measure on [0, 2π[.

Table 1.1 – Mean characteristics of planar Poissonian random tessellations as a function
of the intensity ρ of the generating homogeneous Poisson point process.

PVT PDT PLT

λ0 2ρ ρ ρ2

π

λ1 3ρ 3ρ 2ρ2

π

λ2 ρ 2ρ ρ2

π

LA 2√ρ 32
3π
√
ρ ρ

More refined formulae are also of reach by considering the Palm probabilities of the
point processes of vertices, edges midpoints and centroids of cells induced by the random
tessellations. The respective typical points (i.e. the origin considered under Palm proba-
bility) of these point processes are called the typical vertex, typical edge and typical cell
of the tessellation. The interested reader can for instance refer to [31, Sections 9.3 and
9.4] for more details.
Finally, the Voronoi tessellation generated by a general simple point process Φ plays
a critical role in stationary Palm calculus. Indeed, the inversion formula of Palm calcu-
lus [12, Theorem 6.2.8] and the Neveu exchange formula [12, Theorem 6.3.7] are expressed
in terms of Voronoi cells.

1.4 Discrete Percolation theory

1.4.1 A brief historical overview
Percolation theory originally arose from an applied problem introduced by Broadbent and
Hammersley in [28,68] and then developed by Frisch and Hammersley [49]. The problem
was the following: assume that some liquid is poured over the top of a porous stone.
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Will the liquid be able to make its way from pore to pore and reach the bottom of the
stone? This physical question was mathematically modelled by Hammersley by using a
three-dimensional network of, say, n× n× n vertices called sites and in which the edges,
called bonds, may be open, i.e. allowing the liquid through, with probability p ∈ [0, 1],
independently from one another. The question therefore became the following one: for a
given p, what is the probability that an open path, i.e. a path consisting of open bonds,
connecting the top of the stone to its bottom exists? This problem is now called Bernoulli
bond percolation has been extensively studied by physicists and mathematicians since its
introduction. Standard references about percolation theory are [26,62,83,95,99,121].

Over the years, percolation theory has gained much interest in the mathematical
community. Though initial models for percolation problems only concerned discrete ge-
ometries, continuum models were also introduced5 with the seminal work [55]. Nowadays,
discrete and continuum percolation theory both remain very active fields of research and
connections between the two are often made: indeed, continuum models are sometimes
seen as the limit of discretised ones and many proofs of continuum models properties
strongly rely on this limit argument.

In the next subsections, we shall review, in the case of the Euclidean lattice, the
most basic model of (discrete) percolation known as Bernoulli percolation or independent
percolation, where the state of bonds or sites are assumed to be independent. For the
developments of this thesis, it will also be useful to put an emphasis on a more refined
version of this model called k-dependent percolation, which is only briefly mentioned in
some (not all!) percolation textbooks.

1.4.2 Bernoulli bond percolation
General framework

Consider an undirected graph G = (V,E) with V the set of vertices (usually called sites in
the context of percolation), assumed to be at most countable, and E the set of edges (called
bonds). For x, y ∈ V , write x ∼ y if {x, y} ∈ E and in that case, say that x and y are con-
nected by an edge. A path from x to y is a sequence of sites x = x0 ∼ x1 ∼ · · · ∼ xk = y
such that ∀ 0 ≤ i ≤ k − 1, xi ∼ xi+1. Finally, we define the degree of a site x ∈ V
as degx = #{y ∈ V, x ∼ y}. We always assume the graph G to be locally finite i.e.
∀x ∈ V, degx <∞.

In the simplest models of percolation having already been extensively studied, G = Ld
is the Euclidean lattice for some d ≥ 1, i.e. V = Zd and

E =
{
{x, y}, x ∈ V, y ∈ V, ‖x− y‖1 :=

d∑
i=1
|xi − yi| = 1

}
.

In other words, x ∼ y if and only if ∃ i ∈ {1, . . . , d}:

• xi = yi ± 1

• ∀j 6= i, xj = yj

5We shall review them more precisely in the third chapter of this thesis. In this section, our main
focus will be on discrete percolation.
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Other lattices have been studied (in particular in dimension d = 2) [26].

In percolation, one randomises the states of bonds or sites. Bonds or sites can be open
(i.e. allowing a flow6 to get through) or closed (i.e. not allowing a flow to get through).
If only the states of bonds are randomised, the model is called bond percolation. If we
rather play with the states of sites, the model is called site percolation. Though mixed
models with both the states of bonds and sites being randomised exist, we shall only be
interested in site or bond percolation.

In both cases, the randomisation of the states of edges (respectively sites) is done by
a parameter p ∈ [0, 1], called percolation parameter. p will be the probability that a bond
(respectively a site) is open in a bond (respectively site) percolation model.

Bernoulli bond percolation

For the sake of simplicity, we will assume from now onwards, unless stated otherwise, that
G = Ld is the d-dimensional Euclidean lattice, for some d ≥ 1.

In Bernoulli bond percolation model, we play with the states of the edges of G in the
following way: for some percolation parameter p ∈ [0, 1], we assign a state to each edge,
independently from all other edges. An edge e ∈ E may be open (probability p) or closed
(probability 1 − p). A convenient way to describe the states of all edges and hence of
the system is the following one: consider some probability space (Ω,A,P) and a random
field (Ue)e∈E of i.i.d. random variables uniformly distributed on [0, 1]. Declare the edge
e ∈ E to be open if Ue ≤ p and closed otherwise. The states of the edges are given by the
variables Ue of the random field, and it is clear from this construction that each edge is
open with probability p independently from all other edges7.
The previously defined model is called Bernoulli (or independent) bond percolation model
with parameter p. To insist on the dependence on the percolation parameter p, the prob-
ability measure P is often denoted by Pp and the related expectation by Ep.

We now give some terminology which will be needed throughout the rest of this section:

Definition 1.4.1 (Open path). A path x0 ∼ · · · ∼ xk is said to be an open path if all of
its edges are open.

The state of an edge (open or closed) can be thought of as its presence or its absence,
which, by abuse of terminology, asserts the following definition:

Definition 1.4.2 (Connected vertices). Two vertices x and y are said to be connected
(in the configuration ω) if there exists an open path from x to y. In that case, we denote
x y.

6Depending on the context and on the applications, a flow may be a flow of water, electrical current,
signal, information. . . Nevertheless, the interpretation remains the same.

7A more rigorous construction often encountered in the literature is done by considering the sample
space sample space of configurations Ω = {0, 1}E and defining a proper probability measure Pp on it. We
won’t need to resort to this technicality in this thesis, but the interested reader can find details about
this construction in [62].
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Definition 1.4.3 (Connected sets). Let A,B ⊂ V . Then A and B are said to be connected
if ∃x ∈ A, y ∈ B, x y. Similarly, this is denoted by A B.

Percolation theory focuses on the study of existence of infinite connected components,
which induces the following definition:

Definition 1.4.4 (Cluster). Let x ∈ V . The cluster of x, denoted C(x) is the open
connected component of x, i.e. the set of sites being connected (in the sense of Definition
1.4.2) to x:

C(x) = {y ∈ V, x y}

Finally, we denote by |C(x)| the cardinal of the cluster of x and write x  ∞ if
|C(x)| = ∞. The latter is equivalent to the existence of an infinite self-avoiding open
path (meaning that no site is visited twice) starting from x.
Remark. Since G is the Euclidean lattice, by translation invariance of the Bernoulli bond
percolation model, we have ∀x ∈ V, |C(x)| d= |C(0)|. Therefore, C(0) is usually denoted C.

Percolation or phase transition

Several quantities are of interest in bond percolation. The most important one is the
percolation function:

Definition 1.4.5 (Percolation function). The percolation function θ is defined by θ(p) =
Pp(|C| =∞) = Pp(0 ∞)

By translation invariance of the model, we also have ∀x ∈ V, θ(p) = Pp(|C(x)| = ∞).
Percolation of the model is defined in the following way:

Definition 1.4.6 (Percolation). We say the model percolates if θ(p) > 0.

It is easy to prove that θ is increasing as a function of p (indeed, the greater p is, the
more connections are allowed in G and so the easier it is to percolate). Since θ(0) = 0
obviously, the primary question that intially concerned Hammersley [68] is the existence
and, if possible, value of a critical value for which θ is positive. This led to the following:

Definition 1.4.7 (Percolation threshold). We define the percolation threshold pc = pc(d)
as: pc := sup{p ∈ [0, 1] : θ(p) = 0}

A consequence of the definition is that θ(p) = 0 and |C| <∞ Pp-a.s. for p < pc, while
θ(p) > 0 and |C| =∞ with positive Pp-probability for p > pc.

The existence of a critical threshold makes Bernoulli bond percolation model one fea-
turing a phase transition, i.e. the system undergoes a radical change when some parameter
(here p) passes a certain critical threshold. This induces the following definition:

Definition 1.4.8. If p < pc, we say that the the system is in the subcritical phase. If
p > pc, we say the system is in the supercritical phase.

The case of dimension 1 is quite trivial: indeed, if p < 1, there will be infintely many
closed bonds to the right and to the left of the origin Pp-a.s. Therefore, for d = 1, pc = 1.
The case of higher dimensions and of other lattices often remains an open question. Even
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the simplest case of the square lattice (i.e. d = 2) remained an open question for years!
For symmetry reasons, one might think that pc(2) = 1

2 . This is indeed the case, but the
proof is actually much more complicated. The result is due8 to Kesten [84]:

Theorem 1.4.9. If d = 2, i.e. the underlying graph of the model is the square lattice,
then pc = 1

2 .

Since the original paper of Kesten [84], the proof has been refined and considerably
shortened, but it still remains highly non-trivial.

Surprisingly though, it is relatively easy, by the means of duality arguments and
the celebrated Peierls argument (used by Peierls to prove phase transition in the two-
dimensional Ising model [110]) to prove that the phase transition is not trivial in dimension
greater than or equal to 2. As the proof is very instructing, we shall state the result with
its proof:

Theorem 1.4.10. For all d ≥ 2, we have 0 < pc(d) < 1.

Proof. As is usually done in percolation theory, the proof is done in two parts. First we
prove that pc > 0 (existence of the subcritical phase) and then we prove that pc < 1
(existence of the supercritical phase).

pc > 0 We will use a so-called path-count argument. Fix some n ≥ 1. A self-avoiding
path γ of length n is a sequence of edges e1, . . . , en with ei 6= ej for i 6= j and such that ei
and ei+1 share a common endpoint for every 1 ≤ i ≤ n − 1. Obviously, if 0 is connected
to infinity, for all n ≥ 1, there exists a self-avoiding path of length n, starting from 0 (i.e.
0 ∈ e1, which means that 0 is an endpoint of e1) and made of open edges. Let An denote
the former event. Then we have:

θ(p) =: Pp(0 ∞) ≤ Pp(An)

Let SAPn denote the set of self-avoiding paths of length n starting from the origin. We
have:

Pp(An) ≤
∑

γ∈SAPn
Pp(all edges of γ are open) = #(SAPn)pn,

where we have used the union bound in the first inequality and the independence of edges
in the equality, and where #(SAPn) denotes the number of self-avoiding paths of length
n starting from 0. Obviously, #(SAPn) ≤ (2d)n, so that, in all, we have:

θ(p) ≤ (2dp)n, for all n ≥ 1

When p < 1
2d , the quantity in the right-hand side converges to 0, and so θ(p) = 0. Hence

pc(d) ≥ 1
2d > 0.

pc < 1 The argument is a bit more subtle in the supercritical phase. First, note
that percolation on Ld implies percolation on Ld+1 for all d ≥ 2, by considering Ld as a

8Kesten actually used an earlier result from Harris [69] (who proved that θ( 1
2 ) = 0 when d = 2) and

independently found results of Russo [115], Seymour and Welsh [119] about the role of the mean cluster
size. Assembling all these arguments, he established the proof of Theorem 1.4.9.
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subspace Ld × {0} of Ld+1. Therefore, we have pc(d + 1) ≤ pc(d) whenever d ≥ 2 and so
it suffices to prove that pc(2) < 1.

Call the square lattice L2 the primal lattice and consider the dual lattice (L2)∗ of L2

defined by the translation of the square lattice L2 by the vector (1/2, 1/2). In other words,
we put a dual vertex at the centre of every face of the primal lattice and draw a dual
edge between two dual vertices if and only if the faces they belong to in the primal lattice
share a common (primal) edge9, see Figure 1.2a.

(a) The square lattice L2 and its dual lattice
(L2)∗. The primary vertices are the black
points, the dual vertices are the white ones.
The primary edges are the plain segments,
the dual edges are the dashed ones.

(b) Illustration of Peierls argument. Black
points are the primal vertices, white points
are the dual ones. A segment between two
primal vertices (black points) represents an
open edge in the primal lattice. A dashed
segment between two dual vertices (white
points) represents a closed edge in the dual
lattice.

Figure 1.2 – Illustration of the dual lattice (L2)∗ and of the Peierls argument.

It is obvious that the square lattice and its dual are isomorphic. A lattice satisfying
this property is called self-dual. Moreover, each edge of the dual lattice crosses a unique
edge of the primal lattice. Hence, we can define a bond percolation model on the dual
lattice (L2)∗ in the following way: declare a dual edge open (respectively closed) if and
only if the unique primal edge it crosses is open (respectively closed). In doing so, it is
obvious we have defined a percolation process on (L2)∗ that has the law Pp of Bernoulli
bond percolation with parameter p. Now we use the celebrated Peierls argument: from a
picture10, it is clear that if the cluster of the origin is finite in the primal lattice, then it
has to be surrounded by a closed dual circuit11 in the dual lattice, see Figure 1.2b.

Therefore, we have:

9The terminology dual lattice comes from the fact that if we consider square lattice L2 as a tessellation
of R2, the dual lattice (L2)∗ is just the dual tessellation of L2, in the sense of Definition 1.3.2.

10A full proof with complete rigour would be tedious to write but can nevertheless be found in [83].
11By circuit surrounding the origin we mean a self-avoiding loop, i.e. the endpoint is also the starting

point.

39



Chapter 1. Mathematical foundations

1− θ(p) =: Pp(|C| <∞)
≤ Pp(there exists a closed circuit surrounding the origin in the dual lattice)
≤ Ep(number of closed circuits surrounding the origin in the dual lattice)

=
∞∑
n=4

ρ(n)(1− p)n,

where we have used Markov’s inequality in the second inequality and the independence
of edges in the dual percolation model in the last equality, and where ρ(n) denotes the
number of circuits surrounding the origin in the dual lattice. Obviously, the previous sum
starts at n = 4 because a circuit surrounding the origin is at least composed of 4 edges.

A rather crude bound for ρ(n) is ρ(n) ≤ n3n−1. Indeed, the circuit around the origin
has to cross the half-line R+ at least once and must therefore intersect the set {(k+1/2, 0) :
0 ≤ k ≤ n/2} (the bounds on k are due to the fact that the circuit is of length n). There
are at most 1 + n/2 ≤ n such possible crossing points. We can thus build any circuit
surrounding the origin in the following way: once the (closest to the origin) crossing of
the circuit with the half-line R+ has been placed, the rest of the circuit is built by adding
edges one by one, each time making three possible choices: go ahead, turn left or turn
right (going back is forbidden has the circuit has to be self-avoiding). There are thus 3n−1

possible choices. Hence ρ(n) ≤ n3n−1

In all, we get:

Pp(|C| <∞) ≤
∞∑
n=4

n3n−1(1− p)n

The series in the right-hand side converges to 0 when p > 2/3. Therefore, θ(p) > 0
whenever p > 2/3 and so pc(2) ≤ 2/3 < 1.

1.4.3 Bernoulli site percolation
In Bernoulli site percolation model, we play with the sites. In that case, we consider a ran-
dom field (Uv)v∈V of i.i.d. random variables uniformly distributed on [0, 1], now indexed
by the set of sites of G.12. As before, a site v ∈ V is said to be open if Uv ≤ p and closed
otherwise. It is again clear from the construction that each site is open with probability
p independently from all other sites. This model is called Bernoulli (or independent) site
percolation model with parameter p.

All the definitions and theorems related to Bernoulli bond percolation can be adapted
to Bernoulli site percolation. A more detailed account on site percolation can be found
in [62].

Site percolation is somehow more general than bond percolation. This is due to the
fact that a bond percolation model on any graph G can be seen as a site percolation model
on a modified graph called the line graph of G, usually denoted L(G). Indeed, consider

12Once again, a more rigourous construction is done by considering the sample space of configurations
Ω = {0, 1}V and defining a probability measure Pp on Ω. See [62] for more details.
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a bond percolation model with parameter p on a graph G. L(G) is obtained by placing
a vertex ve on each edge e of G and connecting two vertices ve and ve′ by an edge if and
only if the corresponding edges e and e′ share a common vertex in G. Then, declare a site
ve of L(G) to be open (respectively closed) if and only if the corresponding edge e of G
is open (respectively closed). Then the percolation process induced on L(G) has the law
of Bernoulli site percolation. Hence, we can view bond percolation as a particular case of
site percolation.

In many percolation textbooks, the main focus is however rather on bond percolation
models. This is mostly for historical reasons: bond percolation was the first model to
be introduced and studied on the square lattice. Moreover, there may be a practical
reason to that. In the proof of Theorem 1.4.10, we resorted to duality arguments to
prove the non-triviality of the phase transition for bond percolation on Euclidean lattices
(pc(d) < 1). This duality argument strongly relies on the fact that the square lattice L2

is self-dual. For site percolation arguments, such duality arguments exist but are more
subtle. Indeed, in site percolation models, we define the dual lattice as follows: for each
face of the primal lattice, we keep the existing edges and add an edge between any two
vertices that are not yet connected. In other words, the dual lattice is just the primal
lattice with added diagonals in each face.

For such a type of duality, the square lattice is no longer self-dual but the triangular
lattice is. Seeing C as being isomorphic to R2, the triangular lattice is easily defined as
being a graph vith vertex set V = {x + yeiπ/3, (x, y) ∈ Z2} and where an edge z ∼ z′

is drawn if |z − z′| = 1. An example of realisation of a site percolation model on the
triangular lattice is illustrated by Figure 1.3. We shall not go into further details on such
matters, as it is not relevant for this thesis.

Figure 1.3 – An example of realisation of a site percolation model on the triangular lattice.
Black points represent the open sites and white points represent the closed sites.

1.4.4 k-dependent site percolation
Consider Bernoulli site percolation on the Euclidean lattice Ld with parameter p. Each
site v ∈ Zd is open with probability p, independently from every other site. As before, wee
see the distribution of the percolation process as the joint distribution of i.i.d. random
variables (Uv)v∈Zd uniformly distributed on [0, 1].
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A natural extension to this model is done by loosening the independence assumption
between the states of any two different sites. A particular case, which will be of interest
in this thesis, is the case of k-dependent percolation, where the associated i.i.d. uniform
random variables are no longer independent but form a k-dependent random field. The
definition is as follows:

Definition 1.4.11 (k-dependent random field). Let k ≥ 1 and let X = (Xz)z∈Zd be a
discrete random field. Denote by d a metric on Zd. The random field X is said to be
k-dependent for the metric d if for all q ≥ 1 and all {s1, . . . sq} ⊂ Z2 finite with the
property that ∀i 6= j, d(si − sj) > k, the random variables (Xsi)1≤i≤q are independent.

Informally, k-dependence of the field means that sufficiently distant random variables
of the field will be independent. Note that the above definition obviously depends on
the chosen metric d on Zd. In the literature, the definition is often given for the taxicab
metric ‖·‖1. Other choices of metric are possible, such as the classical Euclidean metric
‖·‖2 or the supremum metric ‖·‖∞.

The model

Using the aforementioned analogy, it is easy to define the k-dependent site percolation
model:

Definition 1.4.12 (k-dependent site percolation on the Euclidean lattice). Consider the
d-dimensional Euclidean lattice G = Ld and a k-dependent random field for the taxicab
metric d = ‖·‖1 U = (Uz)z∈Zd , where all the underlying random variables are uniformly
distributed on [0, 1]. Let p ∈ [0, 1]. Declare a site z ∈ Zd to be open if Uz ≤ p, and
closed otherwise. This defines a site percolation process on Ld called k-dependent site
percolation.

Remark. In the same way, one may define k-dependent bond percolation on the Euclidean
lattice. k-dependent percolation models can also be defined for more general graphs, as
long as the k-dependence property of the random field is ensured.

Phase transition

k-dependent site percolation, very much as Bernoulli site percolation, exhibits a non-
trivial phase transition on Euclidean lattices:

Theorem 1.4.13. Let G = Ld is the d-dimensional Euclidean lattice and let pc,site(k, d)
denote the critical parameter for k-dependent site percolation on G. Then, for all d ≥ 2
and k ≥ 1, pc,site(k, d) ∈ (0, 1)

In the literature, the proof of Theorem 1.4.13 is most of the time done by resorting to a
result of Liggett, Schonmann and Stacey [91, Theorem 0.0], stating that any {0, 1}-valued
k-dependent random field can, under certain conditions, be stochastically dominated by
a product measure. In terms of percolation models, this is equivalent to stochastically
dominating the k-dependent model by an independent model, which is much easier to be
work with.

In the next chapters of this thesis, we will again encounter k-dependent site percolation
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models. An adapted path-count argument, very much as in the proof of Theorem 1.4.10,
considerably simplifies the proof that pc,site(d, k) > 0. We shall write it, for the sake of
completeness.

Proof that pc,site(d, k) > 0. We begin by proceeding exactly as in the proof of Theo-
rem 1.4.10. Keeping the same notations (and replacing bonds by sites) as in the afore-
mentioned proof, we still have:

θ(p) ≤ P(An) ≤
∑

γ∈SAPn
P(all sites of γ are open)

The subtlety in the k-dependent case is that the probability in the right-hand side is not
equal to pn anymore, as the states of the sites are no longer independent but k-dependent.
To deal with this, write any self-avoiding path γ of length n as γ = {z1, . . . , zn}.

Since we will look at limits when n → ∞, we can assume without loss of generality
that n is large enough for the needs of our developments, say n > (2k)d. We extract a
subset γ′ of sites of γ iteratively as follows. First, retain z′1 := z1 = 0 and remove from γ
all those sites z ∈ γ such that ‖z − z1‖1 ≤ k. Once we have removed all these sites from
γ, retain the next available site of γ, say z′2 and, again, remove all remaining sites z of γ
such that ‖z − z′2‖1 ≤ k, and so on.
At each iteration j, the number of sites removed from γ is upper-bounded by the (discrete)
volume of the (discrete) closed l1-ball with centre z′j and radius k. This volume is upper-
bounded by (2k)d: indeed, this l1-ball is a subset of the l∞-ball13, whose volume is (2k)d.
Since the length of γ is n, the subset γ′ := {z′1, . . . , z′m} of sites of γ extracted by the
previous construction contains at least m ≥ b n

(2k)d c sites of γ.
Moreover, by construction, we have that ∀x, y ∈ γ′, ‖x−y‖1 > k. Hence, by k-dependence
of the random field U = (Uz)z∈Zd , the states of the sites in γ′ are independent. Thus, we
get:

θ(p) ≤
∑

γ∈SAPn
P(all sites of γ are open)

≤
∑

γ∈SAPn
P(all sites of γ′ are open)

=
∑

γ∈SAPn

∏
z′∈γ′

P(z′ is open)

≤
∑

γ∈SAPn
p
b n

(2k)d
c

= #(SAPn)pb
n

(2k)d
c

≤ (2d)np
n

(2k)d
−1
,

where we used the same bound as before #(SAPn) ≤ (2d)n and the fact that b n
(2k)d c ≥

13Recall that the l1-distance and l∞-distance between any two points x = (x1, . . . , xd) and y =
(y1, . . . , yd) of Zd are respectively defined by ‖x−y‖1 :=

∑d
i=1 |xi−yi| and ‖x−y‖∞ := max1≤i≤d |xi−yi|.

The closed l1-ball with centre x and radius r is the set {y ∈ Zd : ‖x − y‖1 ≤ r} and the corresponding
closed l∞-ball is {y ∈ Zd : ‖x− y‖∞ ≤ r}.
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n
(2k)d − 1 in the last line. As n ↑ ∞, the last quantity converges to 0 when p <

(
1
2d

)(2k)d
,

and so pc,site(d, k) ≥
(

1
2d

)(2k)d
> 0.

The former technique can also be used to get back results that are known in the
context of Bernoulli percolation (e.g. exponential bounds for the size of the cluster of the
origin, see [26]) for k-dependent percolation models.
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Chapter 2
Background on wireless communications

It is change, continuing change,
inevitable change, that is the
dominant factor in society today. No
sensible decision can be made any
longer without taking into account not
only the world as it is, but the world
as it will be...
This, in turn, means that our
statesmen, our businessmen, our
everyman must take on a science
fictional way of thinking.

Isaac Asimov

In this chapter, we provide some background on wireless communications which will
be needed to understand the networks models studied in the rest of this thesis. Rather
than giving a complete introduction to the physical concepts at stake in wireless com-
munications from a physicist’s or an engineer’s point of view, the goal of this chapter is
to introduce basic concepts of information theory and digital communications that have
their own place in all the mathematical models of wireless networks.
First, we present these concepts and provide further references for the interested reader.
We then go on with introducing the concept of Device-to-Device (D2D) communications,
thus giving rise to the so-called Device-to-Device networks, in which we will be interested
throughout the rest of this thesis. We finally focus on a possible application of D2D in
future networking scenarios consisting in taking advantage of the explosive growth of the
number of connected devices. Such a way of thinking future cellular networks, resumed
under the terminology crowd-networking in the literature, gives motivation for the work
done in the rest of this thesis.
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2.1 Wireless cellular networks

2.1.1 General terminology
In a first approach, a wireless network can be viewed as a collection of interconnected
nodes located in some physical domain. By wireless networks, we mean that the connec-
tions between the nodes do not require the intervention of a physical medium to carry
the signal such a copper wire or an optical fiber. A wireless link connecting two nodes of
a wireless network is called a wireless channel. Depending on the type of network consid-
ered, the nodes may be of different kinds. For instance, a node may be a user equipped
with a phone and trying to access the web, a fixed antenna or an infrastructure of the
network, allowing the previous user to access the network and the internet. Each node
of the network can be a transmitter or a receiver, and, depending on the type of network
and technology used, some nodes can simultaneously transmit and receive a signal.

In wireless networks, the communications are based on electromagnetic waves, which
are generated by the synchronised oscillations of an electric and a magnetic field. Two of
the main characteristics of such waves are the frequency f , measured in Hertz (Hz) and
its derived units; and the wavelength λ, measured in meters (m) and its derived units.
These two quantities linked by the following relation:

f = c

λ
,

where c = 3.00 × 108 m.s-1 is the speed of light in the vacuum. The frequency f can be
interpreted as the number of oscillations of the wave per unit time, while the wavelength
λ corresponds to the spatial period of the wave, i.e. the distance over which the shape
of the wave repeats. The range of all possible electromagnetic waves that exist is called
the electromagnetic spectrum. Not all frequencies of the electromagnetic spectrum are
equivalent, and, according to where a frequency is located in the electromagnetic spec-
trum, the properties of a wave oscillating at that given frequency may hugely vary. In
telecommunications networks, the frequencies of the waves propagating the signal belong
to a part of the electromagnetic spectrum called the radio spectrum. The limits of the
radio spectrum are subject to debate in the literature, but the most common point of view
(e.g. developed in [126]) is that the radio spectrum roughly corresponds to frequencies in
the range [3 kHz, 300GHz].

The frequencies belonging to the radio spectrum itself have been classified into differ-
ent contiguous sections, also called radio bands, by the International Telecommunications
Union (ITU) [1], a specialized agency of the United Nations charged with regulating and
coordinating at an international scale the use of the different frequency ranges available.
Different classifications done by other regulating bodies (e.g. the American Institute of
Electrical and Electronics Engineers, IEEE) also exist, but the ITU classification is the
most used internationally. Inside each radio band, more ITU’s Radio Regulations (RR)
define the applications and conditions under which a part of the band should be used.

All of the previous machinery is set up to ensure the best possible signal quality
between transmitters and receivers, as well as to avoid signal degradation. At a national
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scale, government agencies allocate the frequency ranges and define how they should be
used or shared, while ensuring that international regulations are respected. However, the
multiplication of users on a given frequency range as well as the variety of applications
may result in a disruption of the quality of some signals1. As a matter of fact, regulating
agencies sometimes authorise the use of a spectrum of frequencies only to a given actor and
for a given use. This is called licensing. Radio bands thus fall into two main categories:

1. Licensed bands, which can be used after the acquisition and payment of a license to
the governing body. The owner of the license is granted exclusive use of the band
he paid for, with the guarantee that no parasite signals coming from another actor
will be emitted in that band.

2. Unlicensed bands, whose use is not regulated by the acquisition of a license. This
means that unlicensed bands can be used by anyone who wants to use them. How-
ever, the term unlicensed does not mean that anyone can do whatever he wants, as
some general regulations must still be followed.

The acquisition of a license representing a considerable amount of money, it is no wonder
that, most of the time, only telecommunications operators and companies have the finan-
cial ability to acquire licenses. This in turn ensures them that they are the only ones able
to use a frequency band after having paid for it. By contrast, anyone may use unlicensed
bands without paying for the right to do so, but has no guarantee he will be the only
one to emit at a given frequency. Some parasite signals at the same frequency may also
be emitted by other users of those unlicensed bands. Therefore, one of the main cons
of using unlicensed spectrum is the difficulty of ensuring that the emitted signal will be
received with a satisfying quality.

2.1.2 Cellular networks
A particular category of telecommunications networks are the well-known cellular net-
works or mobile networks. In such a network, there are many users, equipped with cell-
phones or mobiles, who communicate within a common network infrastructure. This
common network infrastructure is organised and made of various equipment who ensure
global connectivity of the network. Mobile networks were designed with the following
thought: the user may not stay in a fixed location and move, thus asserting the terminol-
ogy mobile networks. The original question in the design of such networks was to allow the
conversation between two users of the network to be pursued even if the users are moving.
Over the years and the advances in radio technology, mobile networks also brought new
possibilities to their users, such as text messaging, video messaging and calling or internet
browsing. The development of mobile networks is classified into several mobile networks
generations, each representing a milestone compared to the precedent one [61, Section
1.4]. The most recent generation of mobile networks is the fourth one (4G) and the fifth
generation of mobile networks (5G) is currently under development, even though its early
deployment has already started in some parts of the world.

1This is called interference. We shall come back to this concept in Subsection 2.1.4.
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(a) Hexagonal cells in a mobile network.
Black points represents BSs. Figure taken
from [126].

(b) A more realistic approach where BSs
are not regularly placed in the network and
where each cellphone connects to the clos-
est BS available. The larger points rep-
resent BSs and the smaller ones represent
users’ cellphones. In this case, the coverage
zone of a cell is given by its Voronoi cell, as
defined in Definition 1.3.5.

Figure 2.1 – Schematic representation of coverage of an area by base stations and cells in
a cellular network.

Each generation brought its own standards, regulations and network equipment. How-
ever, the same concept remains used in all the generations of cellular networks: the ge-
ographical area to be covered is divided into smaller land areas called cells, each being
served by at least one (most of the time several) fixed-location equipment called base
station (BS). Roughly speaking, a BS is what we would call “antenna” in the everyday
language, though the actual BSs have a more complicated architecture including antennas
but also several other communication equipment. A cell being the coverage zone of a BS,
this explains the terminology of cellular networks. In the literature, the first proposed
models for cells date back to 1947 [114], much before the early days of cellular networks,
and made the case for regularly spread base stations with hexagonal cells, see Figure 2.1a.
Though questionable, this initial model was refined over the years, with the hexagonal
concept still in the line of thought as early as from 1979 [97], when standards from the
first generation of mobile networks (1G) were investigated. Even today, models based on
hexagonal cells still draw attention. Indeed, as underlined in [21, Section 2.1], one of the
main advantages of a hexagon-based model is the following: regular hexagons can tile
the plane while not overlapping one another. Equilateral triangles or squares would also
verify the same property. However, for a fixed distance between the centre of a regular
cell and its vertices, an hexagon has a much larger area than a square or a triangle. In
reality however, for various reasons (spectrum management, interference, costs . . . ), BSs
are not regularly placed in the plane and, when a user connects to the network, its cell-
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phone usually connects to the closest BS available so as to ensure the best possible signal
quality, see Figure 2.1b.

Regarding the architecture of cellular networks per se, BSs are not the only equipment
intervening. An oversimplified view, as depicted in Figure 2.2, is the following:

Figure 2.2 – An oversimplified view of a cellular network architecture. The plain lines
correspond to wired connections, the dashed lines correspond to wireless connections.

• A user is equipped with a user equipment (UE), which is most of the time a cell-
phone. With the emergence of new applications, such as internet browsing or cloud-
gaming, the UE may be a tablet, a computer. . . In any case, it designates the piece
of equipment with which the user wants to connect to the network.

• A UE is connected by a wireless channel to a BS. In newer generations, the archi-
etcture of BSs has considerably changed and induced new terminology: in the third
generation (3G) networks, BSs are designated by the term Node B (NB); in 4G
networks, BSs are called evolved Node B or simply eNode B (eNB).

• BSs are interconnected by wired links to additional equipment constituting the
access network. The main role of this access network is to identify a UE and give
it access to the telecommunication service of the provider. The access network is
itself made of differents parts.

• The different parts of the access network are interconnected by another network
of wired links called the core network. Another function of this core network is to
provide a gateway to distant networks, for instance the public switched telephone
network (PSTN) for voice calls, or the internet network for data exchange.
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2.1.3 Radio propagation effects
Consider a transmitter (say, a BS) transmitting a certain radio signal to a receiver (say, a
UE) located at a certain distance from the transmitter. In actual applications, the path
run by the radio wave to reach the receiver may include physical obstacles, such as hills,
buildings, walls . . . These obstacles will have significant effects on the signal transmitted
by the radio wave. Moreover, the signal may also run a long distance before reaching
the receiver: this also has some consequences on the signal received at destination. Such
modifications between the signal emitted and the one received are due to the so-called
propagation effects. Most of the time, the power emitted by the transmitter (representing
the amount of energy necessary to push the signal over to the receiver) will be significantly
different from the actual power received by the receiver, due to the possibly large distance
run by the signal and the possible physical obstacles encountered in way. A low power at
reception may result in an unstable connection (for instance a phone call with low voice
quality, making it harder to understand the person on the phone). We now evoke some
of these propagation effects.

Path loss

Path loss, or path attenuation, is the variation of the power of the radio wave due to
distance between the transmitter and the receiver. This attenuation may be due to
different factors such as diffraction or reflection on physical obstacles, as well as the
nature of the medium in which the radio signal propagates. In the literature, a common
modelling is as follows: assume that a transmitter emits a radio wave with power Ptx
expressed in Watts (W) towards a receiver at distance d. Then, the power Prx (also
expressed in W) received by the receiver is proportional to Ptx`(d) where the function
` : R+ → [0, 1] is decreasing in d and called path loss function. The fact that ` is upper-
bounded by 1 is explained by the fact that it is an attenuation factor of the power of
the emitted signal. Common models used in the literature, as suggested in [11, Example
23.1.3], include the following:

`(d) = (κmax(d0, d))−β,
`(d) = (1 + κd)−β,
`(d) = (κd)−β,

for some constants κ > 0, d0 > 0 and where β ≥ 2 is called the path loss exponent. The
constant κ depends on the geometry of the wireless link used for the transmission (mainly
the heights of the antennas used for emission and reception) and on the frequency of
the radio signal. The case β = 2 corresponds to a propagation model called free-space
propagation, corresponding to a physical reality where the propagating medium of the
wave is free-space, i.e. the emitter and the receiver are in an otherwise empty environment.
In reality, however, the power received at distance d decreases much faster. A striking
example is when a reflection of the signal on the ground occurs and the horizontal distance
d between the transmitter and the receiver becomes considerably large compared to the
heights of the antennas, see Figure 2.3. In that case, the received power decreases as d−4,
as explained in [126, Section 2.1.5].
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Figure 2.3 – Reflection of a radio wave on the ground. When d � hT and d � hS, the
power received at a distance d from the transmitter has a path loss function `(d) ∝ d−4.

The path loss exponent may also strongly depend on the radio frequency used for
transmission, as suggested by numerous studies [42, 90, 112]. Typical values at 900 MHz
and 1.9 GHz can be found in [61, Table 2.1] and the references therein. For higher range
of frequencies, path loss exponents tend to be larger [41]. Finally, [61, 126] suggest that
higher antennas result in smaller path loss exponents.

Shadowing

As we have previously seen, the power received decreases with the distance run by the
signal due to path loss. However, path loss models only take into account the distance
run by the signal and eventual changes of the medium of propagation. Another critical
fact to take into account is the presence of physical obstacles on the path of the wave.
Indeed, according to the laws of electromagnetism, when a wave encounters a physical
obstacle, it may absorb some part of the signal and only transmit a reduced power of
the original signal. Thus, the physical environment plays a critical role: indeed, imagine
two antennas separated from a distance d. In a rural environment, there may be a hill
between the antennas. Now, picture the scene in a densely populated urban area but
with the same distance d between the antennas. For the same distance d, they may now
be separated by dozens of buildings and hence the scenario is completely different, even
though the ground distance between the transmitter and the receiver remains the same.

Most of the time, radio propagation happens in complex environments where the
density of physical obstacles hugely varies. Indeed, the location, sizes, reflecting properties
and material of all the physical obstacles encountered between the source and a destination
are difficult to predict. As a matter of fact, one must often resort to random models to
take into account the blockage of signals by obstacles. Hence, in addition to path loss, the
radio signal also experiences random attenuation due to the presence of physical obstacles:
this phenomenon is called shadowing2. A model often used to compute the received power

2The terminology comes from the fact that the attenuation of radio signals due to physical obstacles
is similar to the effect of clouds partly blocking the sunlight in the sky.
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while taking shadowing and path loss into account is the so-called log-distance path loss
model [61, Section 2.8].

We end this subsection with some very useful terminology that will be used multiple
times in the models studied in this thesis. Picture an emitter and a receiver, say two
antennas. When there is no physical obstacle on the straight line between these two
antennas, the radio signal between the emitter and the receiver can propagate on the
straight line without being blocked: this is called line-of-sight (LOS) propagation. On
the contrary, when the direct path between the two antennas is obstructed by physical
obstacles, the resulting signal propagation is called non-line-of-sight (NLOS) propagation.
Sometimes, in a context of NLOS propagation between two antennas, to secure a satisfying
signal quality at reception, the path run by the radio signal must be diverted and go around
the physical obstacles that are on the direct line between the emitter and the observer.
To prevent signal degradation, network equipment called relays are often placed on the
diverted path. The role of these relays consists in receiving the signal and emitting it
again towards the diverted path, with a possible power amplification.

Fading

In wireless communications, fading is a general term designating an attenuation of a radio
signal over a wireless channel. Fading can have various origins such as the geometry of
the environment, the presence of physical obstacles, the conditions of propagation of the
signal, the weather, a change of propagation medium or the propagation of the signal from
the emitter to the receiver by differents paths (this is referred to as multipath propaga-
tion). Most models used in wireless systems engineering try to capture this phenomenon
by random variables and random processes. More details on such models can be found
in [11,21,64].

2.1.4 Reception of the signal, interference and noise

Interference

One of the key concepts in the Physics of waves and hence in radio communication is in-
terference. Roughly speaking, interference is the phenomenon resulting in a superposition
of electromagnetic waves when several waves propagate simultaneously towards a com-
mon a receiver. By a superposition principle, the signal received can be identified with
the sum of all signals arriving at that point. The combination of all of these signals will
result in a single wave with different characteristics than each one of the waves arriving
at the receiver.

In wireless (cellular) networks, there is significant interference. Indeed, each transmitter-
receiver pair communicates via a wireless channel over the air, and there is no physical
medium for a communication. Furthermore, many users are communicating simultane-
ously and so many signals that are not relevant for a given communication can be received
by a UE. As a matter of fact, dealing with interference is a central question in the design
of cellular networks [66]. In cellular networks, interference may happen between differ-
ent receivers communicating with a single transmitter, or between different transmitters
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communicating with a common receiver, or even between different wireless pairs being in
the same cell or not.

Noise

In addition to interference, all users of a cellular network are exposed to background
parasite signals that are unwanted and have nothing to do with the network. In the
literature, all of these signals are grouped under the terminology of noise. Noise can come
from various sources, such as:

• Thermal motion of charged particles in electrical conductors: this is called thermal
noise

• Statistical fluctuations of the electric current

• Parasite signals occurring over different frequency ranges than the radio spectrum

• Solar radiation

Due to its various origins and unpredictable nature, noise is most of the time modelled as
a stochastic process [126].

Signal-to-interference-plus-noise ratio

Consider a cellular network and a transmitter-receiver pair. For instance, the receiver
may be a UE and the transmitter its serving BS. Denote by S the signal power received
by the user. Typically, as suggested in [21, Equation 2.8], S takes the form S = PH0`(d0),
where P denotes the transmit power of the BS, H0 the fading coefficient of the wireless
channel between the user and its serving BS, ` denotes the path loss function of the
wireless channel and d0 denotes the distance between the UE and the BS. Denote by
I the interference power at the user’s location and by N the power due to noise. A
critical quantity used for performance assessments in wireless networks is the so-called
signal-to-interference-plus-noise ratio (SINR), defined by:

SINR = S

I +N
(2.1.1)

The distribution of the SINR at a user’s location is related to many quality metrics of the
wireless channel but also of cellular networks in general [66]. A prominent example is the
following: under general assumptions on the statistical model used for the wireless channel
(e.g. see [21, Section 5.2]), the probability that a message is successfully transmitted on
the channel is defined by the probability that the SINR exceeds some threshold θ. In
other words, it is a function ps of some threshold θ, defined by:

ps(θ) := P(SINR > θ) (2.1.2)

ps is called transmission success probability. The complement probability 1− ps is called
outage probability. Depending on the stochastic modelling chosen, these quantities have
various distributions. Examples of derivations of distributions for the SINR, the trans-
mission success probability or the outage probability can be found in [10,21,64].
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2.1.5 Capacity

Performance assessment of cellular networks is also done by the assessment of the wireless
channels constituting the network. In the literature, a wireless channel is often modelled
via so-called input/output models. In other words, the wireless channel is a black box
transforming a sequence of information inputs (Xi)i≥1 sampled at discrete time indices
i ≥ 1 into outputs (Yi)i≥1 by some transformation specific to the channel. Most of
the time, the input signal is first encoded by the channel in binary language (i.e. into
sequences of 0s and 1s called bits), then transformed by the channel, and decoded at the
end of the channel, so as to be reconstructed as a proper signal (rather than a binary
sequence which only the channel can work with). A critical quantity for evaluating the
performance of a channel is its capacity, which is defined as the maximal rate at which
information can be transmitted over the channel without error in encoding or decoding.
In other words, capacity is a measure of how much the wireless channel can handle lots of
simultaneous connections. At a more global scale, it is customary in engineering to talk
about the capacity of a (cellular) network as a measure of how the network can handle
traffic load, i.e. how many simultaneous connections the network can handle at the same
time. The greater the capacity, the more people will be able to reliably communicate at
the same time.

One of the most celebrated channels in the literature is the additive white Gaussian
noise (AWGN) channel, defined in the following way:

Yi = Xi + Zi, (2.1.3)

where the random variables (Zi)i≥1 are i.i.d. Gaussian random variables with 0 mean
and variance N0 corresponding to the spectral density of noise, i.e. the noise power per
frequency unit. In the AWGN channel, there is no interference occurring and the channel
does not necessarily operate at a single frequency f but may on frequencies belonging
to some interval of the form [f −B/2; f +B/2], where f is called the central frequency
and B is called the bandwidth. For the AWGN channel, the celebrated Shannon-Hartley
theorem [36, Chapter 10] states that the capacity C is given by:

C = B log2

(
1 + S

N0B

)
, (2.1.4)

where S denotes the received signal power. Since there is no interference in the AWGN
channel, the SINR ratio simplifies into the signal-to-noise ratio (SNR) given by

SNR = S

N
= S

N0B
,

where we have used the fact that the total noise powerN is given by the productN = N0B,
since the spectral density of noise N0 is the noise power per frequency unit and the total
useful range of frequencies of the channel is given by the bandwidth B. As a matter of
fact, the capacity of the AWGN channel also writes as C = B log2 (1 + SNR). This result
shows another example of how the distribution of the S(I)NR is of great interest in the
design of wireless networks.
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2.2 Device-to-Device (D2D) communications

2.2.1 General principles
Device-to-Device (D2D) communications are defined as direct communications between
two UEs (e.g. smartphones, tablets . . . ) without the need for the signal to go through the
BSs or the core network [92], contrary to classical cellular communications, see Figure 2.4.
Depending on the technology used for D2D communications (WiFi, Bluetooth, 4G . . . )

(a) Single-hop D2D com-
munciation

(b) Multihop D2D communi-
cation.

(c) Classical cellular commu-
nication.

Figure 2.4 – Oversimplified view of D2D communications (single hop and multihop) and
cellular communications. In D2D communications, the signal is not routed through a BS
or the core network. In classical cellular communications, the signal is routed through
the BS and the core network (not represented here).

the range of a D2D link may vary but remains short compared to the range of a wireless
cellular channel. As a matter of fact, two situations occur in D2D communications:

• The two devices communicating are sufficiently close to communicate directly via a
single D2D link: this is called single hop D2D communication, see Figure 2.4a.

• The two devices communicating are at distance greater than the range of a D2D
link. In that case, establishing D2D communications remains possible via a chain of
consecutive D2D links where some devices located between the transmitter and the
receiver intervene and relay the signal: this is called multihop D2D communication,
see Figure 2.4b. Protocols are proposed in the literature [5, 107, 116] to establish
multihop D2D and make sure that the intermediate devices, called relays, do not
intercept the communication but only relay it. More advanced scenarios, where
fixed antennas also play the roles of relays, have also been proposed [96,133].

Initially proposed for network performance enhancements and extending coverage via
multihop and relays [9, 131], D2D is also seen as a major component of the future 5G
network, hence motivating an intense research activity [76, 125]. In the context of 5G
networks, D2D is perceived as a way to meet the users’ increasing data demand: over
the past few years, the use of smart devices has been exponentially growing and the pro-
portion of mobile users owning at least two devices (e.g. phone and tablet or phone and
another connected object) is booming. Hence the need for capacity enhancements, net-
work coverage extensions, better spectrum management, better quality of service . . . The
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picture is however much broader: the emergence of new use-cases taking advantage of
users’ proximity, such as content sharing in crowded environments, Machine-to-Machine
communications (e.g. for autonomous cars) or ultra-low latency services, makes D2D a
promising tool for the operators to enable new services on their networks [8, 80].

In the literature, D2D deployment scenarios in cellular networks fall into two main
categories based on the frequency spectrum used by D2D:

• Inband D2D: In this scenario, licensed cellular spectrum is used by operators both
for cellular communications and D2D communications.

• Outband D2D: In this scenario, cellular communications occur on the operators’
licensed spectrum, while D2D communications occur on unlicensed spectrum.

We will now shortly review the pros and cons of each scenario and give further refer-
ences for the interested reader.

Figure 2.5 – Comparison between inband overlay, inband underlay and outband D2D.

2.2.2 Inband D2D
The literature on inband D2D contains the majority of the available references on D2D.
The main advantage for operators in using inband D2D is that, by using their licensed
spectrum for D2D communications, they have a good control on many key performance
indicators [8]. However, by using the same frequency spectrum as cellular communica-
tions, inband D2D may cause interference between cellular communications and D2D
communications and could harm the quality of service of the operators.
In order to solve the interference problems, two sub-scenarios for inband D2D have been
considered in the literature:

• Inband underlay D2D: D2D and cellular communications operate on the operators’
entire licensed spectrum and there is no part of the spectrum specifically dedicated
to D2D communications, see Figure 2.5. The main challenge of this idea is of
course the management of interference via clever algorithms [8, 92]. Observations
are that the highest capacity gains are achieved with inband underlay D2D, since
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the spectrum efficiency is maximised (all the available spectrum is reused for D2D
in addition to cellular communications) [92].

• Inband overlay D2D: D2D and cellular communications still share the operators’
licensed spectrum, but the available spectrum is partitioned: some part is dedicated
to cellular communications and the other part to D2D communications, see Fig-
ure 2.5. This approach solves the problem of interference between cellular and D2D
communications but reduces the resources available for cellular communications and
is not the most efficient in terms of spectrum management [8, 92].

The literature on network performance enhancements via inband D2D is wide: the surveys
[6,8,44,51,76] provide good summaries of the considered performance indicators and many
further references.

2.2.3 Outband D2D
The literature on outband D2D is less substantial.
In outband D2D, D2D communications use unlicensed frequency bands, such as the in-
dustrial, scientific and medical (ISM) radio bands [8, 134], see Figure 2.5. The main ad-
vantage of doing so is of course avoiding the interference between cellular and D2D links.
Moreover, D2D using different frequency bands, simultaneous D2D and cellular commu-
nications are possible in outband D2D. However, the use of unlicensed bands allows less
control of the operators’ key network performance indicators, hence a lower efficiency and
reliability of D2D communications. Moreover, outband D2D is only feasible for devices
having two wireless interfaces (e.g. a cellular interface and another technology such as
WiFi or Bluetooth) [44] and hence is more energy consuming. The survey [8] proposes
two subscenarios for outband D2D communications:

• Outband Controlled D2D: Though occurring on unlicensed spectrum, D2D commu-
nications are managed by the cellular network, so as to partially solve the reliability
issue. This could however lead to network congestion. Outband Controlled D2D
currently concentrates almost all of the research activity on outband D2D.

• Outband Autonomous D2D: There is no intervention of the cellular network in man-
aging the D2D links. This is the easiest deployment scenario for outband D2D (as
it does not require any changes in the core network) but the reliability of D2D links
is absolutely not guaranteed.

A detailed summary of the research activity on outband D2D can be found in [8, 76].

2.2.4 Device-to-Device and crowd-networking
Connected devices, such as smartphones, tablets, smartwatches or intelligent sensors for
domotics have been rapidly and massively adopted worldwide. In the mean time, sub-
scriptions with a high amount of data have become available at reasonable costs. These
two factors combined have resulted in an exponential growth of global mobile data traffic,
as highlighted by numerous studies. For instance, Cisco calculated a 71% surge of the
global mobile data traffic from 2016 to 2017 through its Visual Networking Index [2]. Be-
tween 2012 and 2017, this same traffic has been multiplied by 17. Meanwhile, the number
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of connected devices undergoes an explosive growth too: Ericsson [3] calculated that the
total number of connected devices in the world reached 15.1 billion in 2015 and will be
above 30 billion by 2022.

An idea made possible by the explosion of the number of connected devices is the use
of multihop D2D-enabled networks in so-called crowd-networking scenarios, where the
different stakeholders of a network can collaborate to ensure a global connectivity and a
better quality of service. More concretely, for an operator, this is equivalent to benefiting
from the density of its existing customers for two purposes:

• Ensure a better quality of service by offloading some of the traffic from the BSs to
D2D links.

• Ensure a better coverage in areas where less core network infracstructure has been
deployed.

Crowd-networking, sometimes also called cooperative networking, is a relatively recent
idea [93]. At the dawn of 5G networks, where D2D is seen as a key paradigm for solv-
ing many technical issues, cooperative networking using D2D communications has gained
much interest in the literature [30, 63]. Indeed, thanks to the D2D paradigm, it seems
relevant to take advantage of the spatial proximity of users in crowds to enhance the
global performance of cellular networks. Especially in the outband mode, D2D is fairly
accessible as it uses unlicensed spectrum, and is also relatively cheap to set up for op-
erators, since there is no need to heavily invest in core network infrastructure and BSs.
What is more, thanks to D2D and the possibility for a user of the network to serve as a
relay between any transmitter and receiver in the network, operators have access to a vast
number of somehow “cheap” relays: their own customers! On an economic point of view,
one may then think of operators incentivising their customers (e.g. via a discount in the
price of their mobile phone subscription) into serving as relays: such scenarios would be
“win-win” on all perspectives. Thus, using D2D for crowd-networking scenarios seems of
critical importance for operators and may lead to great economic opportunities.

Let us think even beyond: we can think of new actors willing to rely on D2D and a
sufficiently large density of customers to set up fully functional networks while avoiding
heavy infrastructure investments which had to be made by historical operators. If such
perspectives are feasible, these “neo-operators” could be able to offer a service comparable
to the one offered by traditional operators, at a much lower price! Their arrival would
then deeply disturb the market and force traditional operators to re-invent themselves.
Pretty much in the same way as Uber brought its own revolution in ride-hailing while not
properly owning a single one of the cars used by its drivers, neo-operators relying on D2D
could uberise the telecommunications market by offering to their customers a functional
telecommunications service while not owning any particular network equipment.

Such scenarios show that D2D represents both particularly interesting economic op-
portunities but also threats for traditional operators, hence motivating a deeper analysis
of the feasibility of large-scale D2D networks.
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Chapter 3
Stochastic geometry and percolation for
Device-to-Device networks modelling

The huger the mob, and the greater
the apparent anarchy, the more
perfect is its sway. It is the supreme
law of Unreason. Whenever a large
sample of chaotic elements are taken
in hand and marshaled in the order of
their magnitude, an unsuspected and
most beautiful form of regularity
proves to have been latent all along.

Francis Galton

In this chapter, we lay the foundations of the models that have been studied in this
PhD thesis and then introduce these models.
While the historical approach for mathematically studying the connectivity of wireless
networks has been based on percolation theoretic tools, more refined models have been
considered over the years. In particular, stochastic geometry tools led to considering
supplementary randommodels for the typology of the territory covered by a given network.
This gave birth to doubly-stochastic percolation models where both the support of the
network and the locations of network nodes are random. In this thesis, we have brought
our own contributions to the field with the introduction and study of new models for
addressing the question of large-scale connectivity of D2D networks.
First, we introduce some percolation models, related to our work, that have initially been
proposed for modelling the connectivity of wireless networks in general. Then, we review
more recent works where the underlying topology of the support of the network plays
a critical role. In these models, the support of the network is most of the time given
by a random tessellation. Finally, we introduce our own contributions by presenting the
models and the research perspectives at stake in this thesis.
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3.1 The percolation approach for studying the con-
nectivity of wireless networks

3.1.1 From random graphs to Gilbert’s graphs
From a mathematical point of view, a complex network, and, as such, a telecommunica-
tions network, can be seen as a collection of nodes, with interactions between these nodes
representing possible communications on the network. Thus, modelling such networks
by connectivity graphs makes sense. However, most of real-world networks are rather
large, making it impossible to describe them in detail. Moreover, one may also need to be
able to resort to tractable models that faithfully reproduce large-scale properties of actual
networks. To deal with such technicalities and to accurately reproduce the complexity of
actual networks, models based on random graphs have been considered.
Modelling complex networks and, in particular, wireless communications networks by ran-
dom graphs is not exactly a recent idea: it dates back to the late 1950s and early 1960s.
Though a few papers appeared in the mathematical literature before that time, the works
from Erdős and Rényi [43] and Gilbert [54] are considered to have founded the field of
random graph theory. In these papers, two approaches of the notion of random graph
have been considered:

• In the model of Erdős and Rényi, for given numbers n of vertices and N ≤
(
n
2

)
of

edges, a graph is selected uniformly at random among the set of all graphs with n
vertices and N edges, i.e. with probability 1

Cn,N
, where Cn,N =

((n2)
N

)
. This model is

usually denoted G(n,N).

• In the model of Gilbert, a parameter p ∈ [0, 1] is given and, for a number n of
vertices, each of the possible

(
n
2

)
edges is kept with probability p, independently

from all other edges. This model is usually denoted G(n, p).

Both of these models are referred to as Erdős-Rényi graphs in the mathematical liter-
ature, though Gilbert’s variant, discovered independently but further studied by Erdős
and Rényi, has gained more interest.

Seeing random graphs as models of wireless networks, one may think of the vertices
representing nodes of the network (e.g. BSs or UE) and the edges symbolising possible
connections. However, the Erdős-Réyni approach remains rather simple for modelling
actual wireless networks, mainly for three reasons. First, the locations of the vertices of
the graph is not taken into account, while, in real-world networks, the location of network
nodes plays a critical role in large-scale properties of the network itself. Moreover, in
Erdős-Rényi graphs, the probability that some edge exists is a common global constant
for every edge1. In particular, this probability is independent of the nodes themselves.
Finally, in real-world networks, a critical parameter that must be taken into account is

1Let e = (vi, vj), 1 ≤ i 6= j ≤ n denote an edge. In the G(n, p) model, the probability that e is present
is by definition equal to p. In the G(n,N) model, since all graphs with n vertices and N edges are equally
likely, the probability that e exists is equal to ratio between the number of graphs with n vertices and N
edges where e is present and the total number of graphs with n vertices and N edges. It is easy to see
that this probability is just N/

(
n
2
)
.
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the range of wireless communications, which is not considered in the Erdős-Rényi models.

To tackle these issues, Gilbert published a seminal work [55] in 1961. In this paper,
entitled Random plane networks, Gilbert precisely underlined the necessity to take into
account the locations of BSs but also their range in the modelling. He considered a
random network whose nodes are given by a homogeneous Poisson point process of positive
finite intensity λ > 0 in the plane R2 and declared two nodes of the network to be
connected by an edge if their mutual Euclidean distance is less than some threshold
R > 0. The motivation of this work was to model a telecommunications network of BSs
with communication range R and connections possible only along the edges of the random
graph arising from the previous construction. Denoting by E = λπR2 the mean number
of points in a circle of radius R (in other words the coverage zone of a station), Gilbert
studied the behaviour of the probability P (N) that some connected component containing
at least N points exists. Resorting to numerical simulations, he noticed that the graph
must have some phase transition in E and that the limit P (∞) := limN→∞ P (N) may not
be zero in some cases. Finally, he proved the existence of some threshold Ec separating
two regimes:

• when E < Ec P (∞) = 0 and hence the modelled network can only provide local
communications.

• when E > Ec, P (∞) > 0, so that arbitrarily long-range communications are possible
with positive probability.

In the modern literature, Gilbert’s model is often referred to as Gilbert’s graph or Gilbert’s
disk model, in so far as an equivalent condition for two points Xi, Xj of the underlying
Poisson point processes to be connected is that circles with radius R/2 respectively cen-
tered at Xi and Xj overlap, see Figure 3.1. Such a model for studying the connectivity of
wireless networks answers to critics that could be made to models based on Erdős-Rényi
graphs: the location of the stations, possibly spread over a wide area, as well as the range
of stations are taken into account. Furthermore, the probability that two stations can
communicate is no longer a global constant.

3.1.2 Continuum percolation and wireless networks
With the introduction of the aforementioned model, Gilbert gave birth to continuum
percolation theory. Since then, the problem has been studied in several works [15,67] and
a comprehensive overview has been developed in the textbook [99]. In a more theoretical
fashion than Gilbert’s original idea, the main model at stake in continuum percolation
is the so-called Boolean model (or Poisson Boolean model). This Boolean model can
be thought of as an extension of Gilbert’s model with random connection radii and is
defined as follows: a homogeneous Poisson point process X in Rd with positive finite
intensity λ > 0 is given, as well as some non-negative random variable ρ independent of
X. Denoting by (Xi)i≥1 the points of X, we consider i.i.d. copies (ρi)i≥1 ∼ ρ distributed
like ρ. Each point Xi of X is the center of a closed Euclidean ball B(Xi, ρi) with random
radius ρi, see Figure 3.2. We say that the Boolean model is driven by X and we denote
the model by (X, ρ, λ).
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(a) ‖Xi − Xj‖2 < R and so
the two circles of radius R/2
respectively centered at Xi

and Xj overlap. Communi-
cation between Xi and Xj is
possible.

Xi

Xj

R/2

R/2

(b) ‖Xi − Xj‖2 = R and so
the two circles of radius R/2
respectively centered at Xi

and Xj are tangent. Com-
munication between Xi and
Xj is possible (limit case).

Xi

Xj

R/2

R/2

(c) ‖Xi − Xj‖2 > R and so
the two circles of radius R/2
respectively centered at Xi

andXj do not overlap. Com-
munication between Xi and
Xj is not possible anymore.

Figure 3.1 – Simplifying the conditions of mutual Euclidean distance into overlapping
disks in Gilbert disk model.

0

Figure 3.2 – A realisation of a Boolean model in the plane R2. The blue-shaded region
is the occupied region C. The occupied component W =: W ({0}) of the origin 0 is the
darker blue-shaded region. The black points represents the atoms of the Poisson point
process X and the cross represents the origin 0. The dashed edges represent all possible
connections between the points of X. The figure is strongly inspired of [99, Figure 1.1]
but reproduced by our own means.
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Considering a realisation of a Boolean model in Rd is equivalent to partitioning the
space Rd into two regions:

• The fraction of the space covered by the random balls B(Xi, ρi), i ≥ 1 is called the
occupied region and is denoted by C.

• The complement of the occupied region is called the vacant region.

The connected components of the occupied region are called the occupied components.
For a subset A ⊂ Rd, we denote by W (A) the union of all occupied components having
non-empty intersection with A. We denote by W := W ({0}) the occupied component of
the origin 0. Two points x and y belonging to the same occupied component are said to
be connected2: this is denoted by x! y.

As in discrete percolation, one is interested in the probability of existence of an infinite
occupied component. Denoting by P0 the Palm probability of the underlying Poisson
point process, the percolation function is defined by θρ(λ) := P0 (W is unbounded). As
in the discrete model, the Boolean model is said to percolate if θρ(λ) > 0. In the same
fashion, the critical intensity λc = λc(ρ) of the Boolean model is the smallest intensity
of the underlying Poisson point process ensuring percolation of the Boolean model, i.e.
λc(ρ) := inf{λ > 0 , θρ(λ) > 0}. The non-triviality of the phase transition in the Boolean
model (and hence of λc) depends on the probability distribution ρ generating the random
radii of the balls: general results can be found in the textbook [99] and the references
therein. A more recent exposition of the model can be found in [10, Chapter 3]. In
particular, two of the key results of continuum percolation theory are the following ones:

Proposition 3.1.1 ( [99, Proposition 3.1]). In a Boolean model in Rd, d ≥ 1, the whole
space Rd is covered almost surely if and only if E(ρd) =∞.

Theorem 3.1.2 ( [99, Theorem 3.3]). Consider a Boolean model in Rd, d ≥ 2, such that
E(ρd) <∞. Then we have the following:

1. If P(ρ = 0) < 1, then λc(ρ) < ∞, i.e. there exists a non-trivial supercritical phase
for the percolation of the Boolean model.

2. If E(ρ2d−1) <∞, then λc(ρ) > 0, i.e. there exists a non-trivial subcritical phase for
the percolation of the Boolean model.

As in the discrete case, the exact value of λc(ρ) is far from being easy to get. Even in the
simple context where ρ is almost surely constant, i.e. ρ = r almost surely for some r > 0,
the exact value of the resulting critical intensity λc = λc(r), though being non-trivial, is
out-of-reach by analytical means. As a matter of fact, numerical simulations are often used
to get estimates and approximations for values of the critical intensity [17, 100, 105, 106].
Finally, in the context where the radii are almost surely constant, the Boolean model
reduces to Gilbert’s model and extensions to different point processes than Poisson have
been considered, for example sub-Poisson [22, 23], Ginibre and Gaussian zero [53] and

2Actually, the exact terminology is connected in the occupied region. In some percolation textbooks,
authors sometimes also define the concepts of vacant components and connectivity in the vacant region.
This will not be useful for our developments and we thus adopt a simpler terminology.
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Gibbsian [77,122].

As far as wireless networks are concerned, mathematical models for connectivity based
on a percolation approach have flourished since Gilbert’s initial work. In mathematical
models of wireless networks, the nodes of the networks are usually given by a point process,
very much as in the classical Boolean model. The coverage zone of a network equipment
is then given by some (possibly random) geometric shape, which can be interpreted as the
radiation pattern of a radio equipment (a BS, a UE . . . ). The network is then represented
by a random connectivity graph (two nodes of the network being joined if they respectively
belong to the coverage zone of the other node) and percolation of this graph is interpreted
as large-scale connectivity of the network. Finally, the critical intensity λc is interpreted as
the minimal density of equipment (and/or network users) ensuring large-scale connectivity
of the network.
Over the years and the research activity, various extensions of the Boolean model have
been considered: for instance, patterns that are not circular have been considered in [17].
What is more, the percolation approach to wireless networks modelling has gone far
beyond investigating the non-triviality of the critical user density λc: capacity of wireless
networks has been investigated by percolation techniques in [46] and design questions
have been considered in [45, 65]. Another beautiful example in the use of percolation
techniques is the so-called shape theorem established in [135], investigating how many
hops are needed to connect two points belonging to the same connected component of the
Boolean model. More precisely, in the supercritical regime of the Boolean model, for two
points x 6= y of the infinite connected component3 C, the ratio between the numberN(x, y)
of hops needed to connect x and y in C and the Euclidean distance ‖x − y‖2 converges
in Palm probability to some constant µ = µ(λ) only depending on λ as ‖x − y‖2 → ∞.
From an applied perspective, in the context of wireless networks modelling, this constant
called shape factor simply represents a proportionality factor between the number of hops
connecting two nodes of the network and the distance separating them and is of particular
interest in the design of wireless networks.

3.1.3 Refined connectivity conditions: SINR percolation
As we have seen above, the percolation approach to the mathematical modelling of connec-
tivity in wireless networks has gained much interest among the mathematical community.
In continuum percolation models based on Gilbert’s approach, the connectivity between
two nodes of the network only depends on their mutual distance. In particular, the closer
the transmitter and the receiver are, the more likely they will be connected. In real-world
networks, however, this is not always the case. For instance, if there are a lot of other
wireless pairs at close distance from a transmitter-receiver pair, a significant amount of
interference may be present and make the transmission between the transmitter and the
receiver unsuccessful, even if they are pretty close to one another. As a matter of fact, the
connection between a transmitter and a receiver may not only depend on their mutual
distance, but also on the locations of all the other nodes of the network that generate
interference possibly disrupting the quality of the connection. This physical reality is

3It is a well-known fact that such a component, if it exists, is almost surely unique, for ergodicity
reasons, e.g. see [99, Theorem 3.6].
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not taken into account in classical continuum percolation models. Hence, refined models
should be considered.

To tackle such questions, another variant of Gilbert’s approach for Poisson point pro-
cesses has been considered in [39,40,47]: the SINR graph. It is defined as follows: first, a
homogeneous Poisson point process X in R2 with positive finite intensity λ > 0 is given.
As in Gilbert’s approach, X will represent the nodes of the network. Then, the following
additional model parameters are considered:
• A continuous decreasing path loss function ` : R+ → [0, 1]. Recall from Chapter 2

that such a function describes the attenuation of the signal strength over the distance
between a transmitter and a receiver. To ensure that the model is not degenerate,
the two additional assumptions `(0) > τN/P and

∫∞
0 x`(x)dx <∞ are often made4.

• All nodes of the network are assumed to transmit a signal at a common deterministic
constant power P > 0.

• The power of the background noise is given by some deterministic parameter N ≥ 0.

• A parameter γ ∈ [0, 1], called orthogonality factor and given by the wireless tech-
nology of the system, represents the measures taken to mitigate interference in the
network.

Using the aforementioned parameters, the SINR for the transmission from some node
x ∈ X to another node y ∈ X of the network can be expressed as:

SINR(x, y) := P`(‖x− y‖2)
N + γ

∑
z∈X,z/∈{x,y}

P`(‖z − y‖2)
, (3.1.1)

where, as before, ‖·‖2 denotes the Euclidean distance. In (3.1.1), the numerator is equal
to the power transmitted from x to y and, in the denominator, the sum is equal to the
interference generated at y by all the other nodes of the network. The orthogonality factor
γ represents the measures taken to mitigate interference in the network (e.g. orthogonality
of signals, distinct wireless channels, beamforming . . . ). The case γ = 0 corresponds to
a complete cancelling of interference while the case γ = 1 corresponds to the absence of
measures taken to mitigate interference.
Connectivity is then defined in the following way: given some SINR threshold τ > 0, two
network nodes x and y, i.e. points of the Poisson point process X, are connected if the
SINR for both transmissions (from x to y and from y to x) exceeds the SINR threshold. In
other words: x and y are connected if and only if SINR(x, y) > τ and SINR(y, x) > τ . The
random graph arising from this construction, called the SINR graph, features arbitrarily
long-range dependencies, contrary to Gilbert’s graph: the existence of an edge between
two nodes of the network now also depends on the location of all the other nodes of the
network through the SINR ratio. Note that in the absence of interference, i.e. γ = 0, the
SINR for both transmissions between two nodes x and y is equal to a common value:

SINR(x, y) = SINR(y, x) = P`(‖x− y‖2)
N

4The scalar τ > 0 represents the SINR threshold allowing for successful communications, see the next
paragraph.
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and so the condition SINR(x, y) > τ is equivalent to ‖x − y‖2 < `−1(τN/P ) where `−1

denotes the inverse function5 of `. Thus, the SINR graph in the absence of interference is
equivalent to a Gilbert graph with radius rB = `−1(τN/P ) or, equivalently, to a Boolean
model with constant radii rB/2.
Similarly to classical percolation, a connected path in the SINR graph is a sequence
of Poisson points x1, . . . xk such that xi and xi+1 are connected by an edge whenever
1 ≤ i ≤ k − 1. A connected component or cluster is a maximal set of Poisson points
{xi : i ∈ I} with the property that for all i 6= j ∈ I, xi and xj are connected by an
edge. The SINR graph is said to percolate if it contains an unbounded cluster with pos-
itive probability. However, contrary to classical (continuum) percolation, the boundary
between the subcritical regime (where the SINR graph does not percolate) and the super-
critical regime (where the SINR graph percolates) in SINR percolation is not delimited by
a single critical intensity λc for the underlying Poisson point process, but also by a limit-
ing orthogonality factor given by some function γ∗(λ). More precisely, the main result is
as follows:

Theorem 3.1.3 ( [40, Theorem 1]). Denote by λc = λc(rB) the critical intensity for
percolation of the equivalent Gilbert graph when γ = 0. Then, for all λ > λc, there exists
an orthogonality factor γ∗(λ) > 0 such that, for all γ ≤ γ∗(λ), the SINR graph percolates.

An example of a phase-transition diagram for the SINR graph is given by Figure 3.3.
Under additional assumptions on `, general bounds can be determined for γ, as has been
done in [40]. Moreover, refined versions of the SINR graph have also been considered and
a more detailed exposition with extensions of the model can be found in [10, Chapter 8].
In particular, the case where the transmitted power P is deterministic but not the same
for every node has been considered, as has been the case where transmitted powers are
no longer deterministic but random [94].

3.2 Taking the underlying geometry into account: to-
wards doubly-stochastic models

3.2.1 Random tessellations as street systems models
In the previous section, we have reviewed several percolation models for mathematically
dealing with the question of connectivity of wireless networks in terms of a reduced num-
ber of parameters. In such models, the users of the network are modelled by the atoms of
a certain point process (Poisson, Ginibre, Gaussian zero, Gibssian . . . ) in the plane R2 or
more generally in Rd for some d ≥ 2. A direct consequence of that modelling is that users
can be located everywhere in the underlying observation space and even though they can
be spread over a wide area, as would be the case in actual networks, their specific loca-
tions are not constrained to a particular domain. However, in real-world networks, users
cannot be located everywhere: some part of the environment where users are located may
be occupied by buildings, trees, roads . . . Moreover, a significant part of users, especially
in urban areas, are rather located on the streets of a street system, which has a given

5Since ` : R+ → [0, 1] is continuous and decreasing with `(0) > τN/P , `−1(τN/P ) exists and is
well-defined.
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Figure 3.3 – An example of a simulated phase-transition diagram for the percolation of
the SINR graph when the path loss function is given by `(x) = min(1, x−3). The curve
represents the interference threshold γ∗(λ) as a function of λ. Above this curve, the
SINR graph is subcritical, i.e. it does not percolate. Below this curve, the SINR graph
is supercritical, i.e. it percolates. This is very much different from the dichotomy λ < λc
(subcritical) versus λ > λc (supercritical) of Gilbert’s graph. Figure taken from [40].

topology. It thus makes sense to consider the topology of streets systems when modelling
networks in general, and constrain network nodes, or at least network users, to be located
on a restricted domain of the observation space.

Models of street systems have already been considered when solving telecommunica-
tions engineering problems and approaches for modelling street systems by statistically
equivalent random tessellations have been proposed. By statistically equivalent, we mean
that a given realisation of the chosen random tessellation may of course not look exactly
like the modelled street system, but nevertheless has the same spatial characteristics.
Examples of such characteristics are:

• The mean number of crossroads in the street system per unit area. Seeing the street
system as modelled by a random planar tessellation, the mean number of crossroads
per unit area in the street system corresponds to the intensity of vertices λ0 of the
tessellation.

• The mean number of streets per unit area. In the same way, it corresponds to the
intensity of edges λ1 of the tessellation.

• The mean street length per unit area. It corresponds to the line density LA of the
tessellation.

As has been shown in [59,60,130], large optimisation problems related to network planning
and network deployment and planning can be solved in a much easier way by stochas-
tic modelling and, in particular, by considering a random tessellation equivalent to the
real-world street system at stake in the problem. The stochastic approach also allows
to derive distributions of key quantities related to the design and analysis of real-world
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networks, e.g. cable lengths required for deploying fixed networks. In [57], a general algo-
rithm has been proposed to identity a map extraction of a real-world street system to a
given random tessellation. Furthering this idea, statistical procedures have been proposed
in [58] to determine the best possible fit for a given street system among several classes of
tessellations models. Using the aforementioned tools and ideas, an application to wireless
systems has been considered in [33], where the authors propose a procedure to analyse
in detail the path loss function related to wireless propagation in various complex urban
systems.

Considering that a whole street system can be modelled by a single random tessellation
implies that the map from which the street system has been extracted can somehow
be considered as a homogeneous whole. This is a highly counterintuitive assumption,
especially in urban environments. Indeed, in a whole city, one can often distinguish
several zones with different population densities, and hence different street systems. For
instance, most major cities in Europe feature an hypercentre, then a less dense inner
city and then, going further from the centre, suburban parts and rural fringes. Less
populated areas, such as these rural fringes, typically feature sparser street systems than
the centre of the city. The main question arising from this observation is therefore on
how to segment a city map into several zones which can be considered as morphologically
homogeneous. Each of these zones could then be modelled by a single random tessellation
with given parameters, and different zones would be modelled either by the same type
of random tessellation or not, with different parameters. Such issues have extensively
been studied in the PhD thesis [35] and the associated works [32, 34]. In particular,
a city segmentation algorithm, based on classical data clustering algorithms (K-means
algorithms and spectral clustering), has been proposed in [35, Chapter 10] to cluster a
city map into several zones of homogeneous morphology. Once this work has been done,
statistical fitting procedures are run to identify each zone with a random tessellation
model with determined characteristics (λ0, λ1, λ2, LA). The city segmentation algorithm
has been implemented in linear time and tested out against real city maps: most of the
time, Poisson-Voronoi tessellations have proven to yield good fits of relatively dense urban
street systems.

3.2.2 Doubly-stochastic percolation models for wireless networks
Considering the need for an appropriate modelling of street systems in mathematical
models of wireless networks, it makes sense to think of doubly-stochastic models, in the
following sense:

• A first layer of randomness could consist in a random tessellation or any appropriate
random model for the support of the network.

• A second layer of randomness could consist in a point process modelling the nodes of
the network, supported by the aforementioned random model for the street system.

If we consider a Poissonian model for the nodes of the network, very much as in the
classical Gilbert graph [55] or the SINR graph [40], supported by a random tessellation,
or, more generally, a random support, we arrive at models based on Cox processes.
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Percolation of the Gilbert graph of Cox point processes has been studied very re-
cently [70]. In this work, the authors considered the Gilbert graph in Rd of Cox point
processes driven by a random intensity measure of the form λΛ, where Λ is a random
measure renormalised in such a way that EΛ [0, 1]d = 1 and the scalar λ > 0 can be
seen as an equivalent of the linear intensity of Cox points. The authors underlined that,
without further assumptions on Λ, percolation of the Gilbert graph based on such point
processes can fail. Furthermore, they proved that, under certain conditions of spatial
decorrelation and of connectedness on the support of Λ, percolation of the Gilbert graph
exhibits a non-trivial phase transition. Using the techniques developed in the previous
work, SINR percolation for Cox point processes was studied in [128]. Assuming on the
driving measure Λ the same conditions than those needed for percolation of the Gilbert
graph, analogous results of SINR percolation available for Poisson point processes were
derived for Cox point processes. In the line of thought of the previous works, additional
extensions of classical models in the Cox case have also been considered very recently:
in [74], SINR percolation with random powers has been considered, while the more general
Boolean model with random communication radii has been investigated in [75].

On a more applied approach, Gilbert graphs based on Cox point processes supported
by random tessellations are good models for networks of users communicating via multihop
D2D mechanisms. In this fashion, a case of great interest considered in [70] is when the
driving measure λΛ of the Cox point process is of the form λΛ(dx) = λν1(S ∩ dx),
where S denotes a stationary random tessellation in Rd and where ν1 denotes the 1-
dimensional Hausdorff measure. In such a case, the Cox points are supported by the
random tessellation S and the scalar λ is equal to the mean number of Cox points per
unit length of edge of S. Also, the number of Cox points on each edge e of S is a Poisson
random variable with mean λν1(e), with ν1(e) denoting the length of e.
This case has been studied and investigated on a numerical perspective in [29]. The
authors consider a street system given by a planar PVT or PDT, supporting a Cox
process of network users Xλ driven by the random measure λν1(S ∩ dx), so that λ > 0
denotes the mean number of users per unit edge length. The multihop D2D network is
then modelled by the Gilbert graph of this Cox point process, where two Cox points are
connected by an edge if and only if they are at distance less than a communication radius
r > 0. Finally, they address the following network engineering questions and answer them
with mathematical formalism and numerical simulations:

• What is the minimal density of network users ensuring large scale connectivity
of the network? This is answered by numerically estimating the critical intensity
λc = λc(r) for percolation of the Gilbert graph.

• What is the probability that a randomly selected user of the network is in the large
connected component of the network? This is dealt with by estimating the perco-
lation function θ(λ, r, γ) := P0(0!∞), where P0 denotes the Palm probability of
the Cox process of network users.

• Given the distance between two points in the same connected component, how many
hops are needed to connect them? Here, this question is answered by estimating
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the shape factor µ(λ, r, γ) for the percolation of the Gilbert graph6.

3.3 Our contribution: a new model for the study of
connectivity of D2D networks in urban scenarios

3.3.1 Our approach
In the previous sections, we have reviewed various existing models of wireless networks
available in the literature. As a first model, Gilbert’s work started to make the case for a
stochastic geometry and percolation approach of wireless networks modelling. However,
we have noted that two main critics can be addressed to Gilbert’s model:

1. The presence or absence of connection between two nodes only depends on their
relative Euclidean distance, which is far from physical reality, e.g. because of inter-
ference.

2. The location of users is not constrained on any particular domain of Rd, which is
highly questionable in urban environments where users are located on streets.

While keeping up with a percolation approach, extensions have been proposed in the
mathematical literature to address the previous points, by adopting one of the following
strategies:

• Either put some emphasis on the modelling of more realistic connectivity conditions
by using appropriate radio propagation models. This is for instance what has been
done in classical SINR percolation. We call this approach a telecommunications-
oriented modelling. Such models however fail to take into account a particular
topology (e.g. a street system) for the support of the network.

• Or put some emphasis on a proper modelling of the support of the network and
considering that users cannot be located everywhere in space. This is for instance
what has been done by studying percolation of the Gilbert graph of Cox point
processes. We call this approach a geometry-oriented modelling. However, such
models fail to consider connectivity conditions which are more representative of
physical reality.

Very few models did try to unite these both worlds by being telecommunications-oriented
and geometry-oriented. Addressing the two previous points by considering more realistic
connectivity conditions and a particular topology for the support of the network has only
been considered very recently with the study of SINR percolation for Cox processes [128].
Even though this work considers interference, which is a good first step, some physical
realities related to radio propagation such as fading or shadowing are still not taken into
account. Moreover, in the engineering literature, the main available works treating the

6Contrary to the Poisson case, the theoretical existence of this shape factor has not been established
for Cox processes. In the Poisson case, the existence of µ strongly relies on the subadditivity of the
number of hops in the Gilbert graph. Since the number of hops remains subadditive in the Gilbert graph
considered in [29], the authors assume that the existence of a similar shape factor in the Cox case is
reasonable.
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subject of D2D rather focus on possible applications of D2D communications, and most
of the time take for granted that large-scale connectivity in the network is established.

In this thesis, we wanted to reconcile the two worlds of telecommunications-oriented
and geometry-oriented approaches by introducing new models for D2D networks in urban
areas where both refined connectivity conditions arising from physical reality and some
topology of the support of the network are considered. In particular, the connectivity
mechanism of our model considers the possibility of shadowing and of eventual reflection
and scattering of radio signals, as we shall see in the next section. Finally, we especially
wanted to address the question of connectivity of the modelled network by considering it
under a percolation approach.

3.3.2 The model
We are now ready to introduce our model. We propose to see it as a superposition of four
more elementary bricks, answering to the following four questions:

1. How is the network supported?

2. How are users of the network spread over the network?

3. Are there additional relays for extending D2D coverage or ensuring connectivity
between adjacent streets in case of shadowing?

4. How are the nodes of the network interconnected?

Figure 3.4 – Modelling approach. A random tessellation will serve as street system model
and will prescribe a support for the network. Point processes for network users and relays,
supported by the previous tessellation, will model how users and eventual D2D relays are
spread over the network. Finally, an appropriate connectivity model describes the possible
connections between the nodes of the network.
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Each of these four questions is answered by an elementary brick of our modelling,
see Figure 3.4. In more detail and given some probability space (Ω,A,P) on which the
considered random objects will be defined, our modelling is as follows.

First, the network will be supported by an urban street system given by a Poisson
Voronoi tessellation (PVT) S generated by a planar homogeneous Poisson point process
XS with finite positive intensity λS > 0. We will denote by LA := 2

√
λS the length

intensity of S, i.e. the mean edge length in a 1-area observation window. Seeing this
PVT street system as a planar graph embedded in the plane R2 (as has been explained
in Section 1.3), we respectively denote by E and V the sets of edges and vertices of S.
Interpreting the PVT S as a modelling of a street system, an edge e ∈ E is thought of as
a street and a vertex v ∈ V is thought of as a crossroad being the intersection of several
streets.

We denote by Λ(dx) := ν1(S ∩ dx) the random stationary measure given by the re-
striction of the one-dimensional Hausdorff measure ν1 to the PVT S. In other words,
for any edge e ∈ E, Λ(e) = ν1(e) denotes the length of e and, more generally, for any
given observation window W ⊂ R2, Λ(W ) denotes the total edge length of S contained
in W . Network users, equipped with mobile devices (which could be cellphones, tablets,
smartwatches . . . ) will be modelled by a Cox process Xλ supported by E and driven by
the intensity measure λΛ(dx) := λν1(S ∩dx), where λ > 0 is the user linear intensity, i.e.
the mean number of network users per unit of edge length of S.

Since the conditional distribution of Xλ given S is the one of a Poisson point process
supported by the edges of S, the probability of finding a Cox point at any given crossroad
v ∈ V is exactly 0. Therefore, an additional model for network nodes located at these
crossroads has to be considered. Such nodes located at crossroads will play a critical role
by relaying radio signals and ensuring connectivity between adjacent streets, which is why
we call the network nodes at crossroads relays or fixed relays. These relays, supported
by V , will be modelled by a doubly stochastic Bernoulli point process Y with parameter
p ∈ [0, 1]. Equivalently, this means that a relay is present at a crossroad v ∈ V with
probability p, independently from all other crossroads V 3 v′ 6= v. On a more applied
approach, we can interpret p as the proportion of crossroads equipped with a relay. Note
that such relays can be of various natures, for instance:

• A network user serving as D2D relay

• A fixed antenna

• A base station

• A connected device serving as D2D relay

We assume that the two point processes of network users Xλ and of relays Y are con-
ditionally independent given the street system S, and we denote by Z := Xλ ∪ Y the
superposition of the former two point processes. The points of Z thus represent the nodes
of the modelled D2D network. Now, we need to specify how D2D connections between
network nodes are modelled. We will consider two possible types of D2D connections
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between two network nodes Zi 6= Zj.

On the one hand, we consider the line-of-sight (LOS) connections. Recall, as explained
in Section 2.1.3, that such connections are possible when there is no physical obstacle
preventing direct transmission between a transmitter and a receiver. In our model, we
will consider that two network nodes are in LOS whenever they belong to the same street,
i.e. the same edge of S. We denote by r ∈ R+ the D2D range in LOS, so that two points
Zi 6= Zj in LOS are connected whenever their mutual Euclidean distance ‖Zi − Zj‖2 is
not larger than r. In other words, Zi and Zj are connected by a LOS D2D connection if
and only if: ∃e ∈ E : Zi ∈ e and Zj ∈ e

‖Zi − Zj‖2 ≤ r
(3.3.1)

On the other hand, we consider connections due to scattering or reflection of radio
signals by a physical obstacle (e.g. a building) located at the crossroad of two adjacent
streets, that is to say streets that are incident to a common crossroad. Such connections
make it possible to connect two network users (i.e. points of Xλ = Z \Y ) that are located
on two adjacent streets if the total distance run by the signal is not too large. Denote
by r′ ∈ R+ the threshold for the distance run by the scattered signal and label eZi the
unique edge7 on a which network user Zi ∈ Xλ is located on. Then two network users
Zi 6= Zj are connected by a D2D connection due to scattering or reflection of the signal
if and only if: 

Zi ∈ Xλ, Zj ∈ Xλ

eZi 6= eZj
∃v ∈ V, : eZi ∩ eZj =: {v}
‖Zi − v‖2 + ‖Zj − v‖2 ≤ r′

(3.3.2)

In other words, D2D connections due to scattering or reflection of the signal can connect
any two network users Zi, Zj ∈ Xλ that are located on adjacent streets when the total
distance run by the signal from Zi to Zj (or the other way around) along the street system
is not larger than r′.

Finally, the network is modelled by its (random) connectivity graph G := Gp,λ,r,r′ with
vertices being the points of Z, i.e. the network nodes, and where an undirected edge
Zi! Zj is drawn between two network nodes Zi 6= Zj if and only if they are connected
by a D2D LOS connection or by a D2D connection due to scattering or reflection, that is
to say the pair Zi, Zj satisfies either (3.3.1) or (3.3.2).
Interpreting the edges connectivity graph as the possible D2D communications between
nodes of the network, two network nodes Zi and Zj belonging to the same connected
component of G can thus communicate by a multihop D2D communication in a finite
number of hops. The network is considered to have good connectivity if it allows for
connections at large-scale, that is to say between nodes separated by an arbitrarily large
distance. In mathematical terms, good connectivity of the network is thus interpreted as

7Since the network users are given by the Cox process Xλ, which is simple and supported by the edges
of S, such an edge is necessarily almost surely unique.
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percolation of its (random) connectivity graph, in other words:

P(G has an unbounded connected component) > 0

Examples of simulated networks are illustrated by Figure 3.5. A case of particular interest,
studied in Chapter 4 and illustrated by Figure 3.5a is the case where r′ = 0, i.e. only
LOS communications along the edges of S are possible. Such a situation is often referred
to as canyon shadowing in the literature [71, 72]. Canyon shadowing corresponds to
a physical situation where the boundaries of the physical obstacles of the environment
do not allow for penetration of the radio waves through them. From a mathematical
perspective, we model this by only allowing for communications between a transmitter and
a receiver that are in LOS. As mentioned earlier, and even more particularly in a canyon
shadowing situation, the presence of additional Bernoulli relays located at crossroads
is absolutely essential: they will allow to ensure connectivity between adjacent streets.
Finally, Figure 3.5b shows a simulated network in the general case where both r > 0 and
r′ > 0.

(a) An example of a canyon shawdowing situ-
ation, where r′ = 0. Connections between net-
work nodes are only possible along the edges
of the PVT street system S.

(b) General case where r > 0 and r′ > 0. The
positivity of r′ allows for supplementary con-
nections between adjacent edges of the PVT
street system S.

Figure 3.5 – Examples of simulated networks. The blue dashed lines represent the PVT
street system S, the red points represent network users (Cox process Xλ), the green points
represent relays (Bernoulli process Y ). The largest connected component in the simulation
window is emphasised as follows: points ofXλ and Y are filled with their respective colours
and connections are highlighted in orange. Edges of the smaller connected components
are highlighted in black. In both cases, the realisations of S, Xλ and Y are the same.

3.3.3 Main system assumptions
We now present the crucial system assumptions made in the proposed model.
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The model is two-dimensional

For the sake of simplicity, the problem is considered to be two-dimensional. This as-
sumption can mostly be justified by the fact that a D2D communication is more stable
when the path run by the radio wave is as direct as possible and does not involve a lot of
diffractions and reflections in the third dimension of space.

The area covered by the network is morphologically homogeneous

In our model, we consider that the street system of the area covered by the network is
morphologically homogeneous and can hence be modelled by a single random tessellation.
Based on earlier results and fitting procedures (e.g. see [57,58]) showing that PVT street
systems provide the best fits for street systems in urban areas, we chose to model the
street system in our model by a PVT.

Signal transmission through physical obstacles is neglected

We assume that two network nodes located on two different streets will be separated by at
least one, if not many, physical obstacles. Moreover, we assume that any physical obstacle
encountered will be sufficiently absorbing at the considered radio frequencies and cannot
transmit any signal. As a matter of fact, only LOS communications or communications
due to scattering and/or reflections at the crossroads of two adjacent streets are possible.
Communications in other directions, for instance between two different streets that are
not adjacent, are not possible, due to absorption of the radio waves by physical obstacles
present in the environment of the network.

Scattering and reflection at crossroads comes with a loss of power greater than
path loss for LOS communications

As has been noted in signal propagation models and by empirical measurements [126,
Chapter 7], scattering or reflection of the signal by a physical obstacle located at the
crossroad of two adjacent streets induces a loss of power in the received signal. In our
model, we assume that this loss is considerably larger than the one due to path loss in
LOS communications. As a matter of fact, the connectivity threshold r′ for connections
due to scattering is smaller than the one for LOS connections: r′ ≤ r. In practice, we
may even expect r′ � r, typically r′ = r/10.

Constant communication radii

For the sake of simplicity, user mobility is neglected, so that our model can be seen as a
static picture of the real network at a given time instant.
Regarding propagation effects, we assume that the only fading effect at stake is shadowing,
which is already taken into account in our model. We thus do not need to consider fading
coefficients for the wireless links. Moreover, for the sake of simplicity, we assume the
following:

• Interference is neglected

• Noise power is a global deterministic constant N > 0
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• The powers respectively emitted by users’ mobile devices and network relays are
equal to a common global, deterministic constant P > 0

As has been noted in [56], all of the previous assumptions imply that we can consider
the communication radii r and r′ to be global deterministic constants, which makes the
model more tractable on an analytical perspective.

Assumptions on the D2D mode used

We assume that the D2D scenario used for D2D communications in our model is outband
autonomous D2D. In particular, this means that BSs are not essential for establishing
D2D communications in the network.
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Chapter 4
The case of line-of-sight propagation only:
canyon shadowing

The only thing worse than being blind
is having sight but no vision.

Helen Keller

In this chapter, we study the case where r′ = 0 in the model presented in Section 3.3.
In other words, only line-of-sight (LOS) communications along the edges of the random
tessellation S supporting the network are possible. Such a situation is referred to as
canyon shadowing.

As explained earlier, the chosen Cox process modelling for network users makes the
presence of Bernoulli relays at vertices of S essential for ensuring connectivity between
adjacent edges of S. We may thus expect that some minimal proportion p∗ of relays is a
necessary condition for percolation of the network graph, no matter what. We shall see
this is indeed the case. Furthermore, we have identified several connectivity regimes of
very different natures for the percolation of our model, making its phase transition more
elaborated than a simple dichotomy between a subcritical and a supercritical phase. More
precisely, we exhibit a relay-limited regime where percolation of the connectivity graph
can solely be ensured by the points of the Bernoulli process Y , even in the absence of Cox
points (i.e. setting the user density λ = 0). Conversely, there also exists a relay-and-user-
limited regime, where the users (Cox points) are absolutely essential for percolation of the
connectivity graph. We prove the existence of such regimes with complete mathematical
rigour.

On a more applied approach, resorting to numerical simulations conducted via original
algorithms, we estimate the frontiers between the different connectivity regimes. Relat-
ing these numerical estimations to network parameters, we emphasise the importance of
knowing those frontiers for economic planning of large-scale connectivity of the D2D net-
work.

This chapter is based on the publication [87] and on the submission [89].
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4.1 Introduction

4.1.1 Some other related works
The model introduced in Section 3.3 is of doubly stochastic nature and, by studying the
percolation of the network connectivity graph, we will be faced with a percolation pro-
cess living in a random environment. As mentioned earlier, (SINR) percolation of Cox
processes, closely related to our work, has been considered only very recently [70, 128].
More generally, the study of percolation processes living in random environments had
been considered a few years before the previous works and outlined that many standard
techniques from Bernoulli or continuum percolation cannot be applied. As a matter of
fact, new tools and techniques had to be introduced. In this regard, the paper from
Bollobás and Riordan [25] on the threshold of Voronoi tiling percolation in the plane is
pioneering. Later on, [4, 124] brought additional results concerning this model. Other
percolation models [129], tessellations [27] and other random graphs [16,18,20] have also
been considered. A more general study of Bernoulli and first-passage percolation on ran-
dom tessellations has been conducted in [136,137].

A repeatedly used technique for dealing with continuum percolation models (and more
generally for percolation models featuring spatial dependencies) is the so-called renormal-
ization argument or coarse-graining argument. The main idea is to discretize the original
percolation process into a site percolation process on a discrete lattice (usually the Eu-
clidean lattice Ld), constructed in such a way that if the discrete process percolates,
then so does the original one (or the converse, depending on whether one wants to prove
percolation or the absence of percolation of the original model). The discrete percolation
process is then stochastically dominated by an independent Bernoulli percolation process,
seen as a product measure. This stochastic domination is most of the time obtained via
resorting to a theorem from Liggett, Schonmann and Stacey [91]. More precisely, letting
d, k ∈ N∗ and p ∈ (0, 1), the authors consider a family (Xs)s∈Zd of {0, 1}-valued random
variables satisfying the following property:

∀s ∈ Zd, P(Xs = 1 |σ({Xu, u ∈ Zd : ‖s− u‖∞ ≥ k})) ≥ p.

The class of random fields (Xs)s∈Zd satisfying the above property is denoted by C (d, k, p).
The result is as follows:

Theorem 4.1.1 ( [91, Theorem 0.0]). For each d and k, when p is large enough, the
random fields in C (d, k, p) are stochastically dominated from below by the product random
field with density ρ, where ρ is a constant depending on d, k and p. One can make the
density ρ of the product random field become arbitrarily close to 1 by taking p large enough.

In particular, an important subclass of C (d, k, p) is the one of random fields which
are k-dependent (as defined in Definition 1.4.11) for the supremum metric ‖·‖∞ and have
marginals greater than or equal to p.

Regarding the canyon shadowing assumption, so-called line-of-sight percolation mod-
els for networks in environments with regular obstructions have already found some in-
terest among the mathematical community. In [48], asymptotically tight results on k-
connectivity of the connectivity graphs arising from such models are studied. Bollobás,
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Janson and Riordan [24] extended these results by introducing a line-of-sight site perco-
lation model on the discrete square lattice Z2 and the two-dimensional n-torus [0× n]2.
Asymptotical results for the critical probability were derived as well and interesting con-
nections to Gilbert’s continuum percolation model were also investigated.

However, the study of line-of-sight percolation in a continuum setting with a random
environment has not, as far as we know, been studied yet.

4.1.2 Context

Network model

Recalling the notations introduced in Section 3.3, elementary bricks of the network model
are as follows:

• A probability space (Ω,A,P), on which the random bricks of our model are defined,
is given.

• The street system supporting the network is still a random Poisson-Voronoi tessel-
lation (PVT) S generated by a homogeneous Poisson point process XS of intensity
λS > 0 in R2. The line density is given by LA = 2

√
λS (see Table 1.1) and S is

motion-invariant, i.e. its distribution is invariant under translations and rotations
of R2.

• Network users are given by a Cox point process Xλ driven by the intensity measure
Λ(dx) = λν1(S ∩ dx), where λ > 0.

• Relays are given by a (doubly stochastic) Bernoulli process Y on V , with parameter
p ∈ [0, 1].

• Xλ and Y are conditionally independent given their random support S, which we
denote by Xλ ⊥⊥ Y |S. Note that since the random measure Λ is a deterministic
function of the PVT S, it is equivalent to say that Xλ ⊥⊥ Y |Λ.

Some notation and terminology

The set of edges of S is denoted by E, and, furthering the identification of S with a
street system, elements of E will be called streets from now onwards. Likewise, the set
of vertices of S is denoted by V and elements of V are called crossroads. The length of a
street e ∈ E will be denoted |e|.
The chosen models for network users and relays imply that the number of users on a given
street e ∈ E is a Poisson random variable with mean λ|e| and the number of users on
two disjoint subsets of E are random variables being conditionally independent given the
realisation of S. Moreover, given S, every crossroad v ∈ V is occupied by a relay with
probability p and the state of v (i.e. occupied or not) is independent of the state of any
other crossroad v′ 6= v.
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Connectivity graph

Recall that we denote by Z := Xλ∪Y the superposition of the point processes of network
users and relays. The points of Z will be called network nodes. With the canyon shadow-
ing assumption, r′ = 0 and so the network is modelled by the random connectivity graph
Gp,λ,r,0, where r > 0 designates the D2D range for LOS communications. Recall from Sec-
tion 3.3 that the vertices of this graph are the network nodes and that an undirected edge
Zi! Zj between two network nodes Zi and Zj is drawn whenever they are in LOS and
within range of communication. In other words, as formalised by (3.3.1), Zi and Zj belong
to the same street e ∈ E and we have ‖Zi−Zj‖2 ≤ r. We are interested in the possibility of
having arbitrarily long-range multihop D2D communications over the network. Hence, we
interpret percolation of the connectivity graph Gp,λ,r,0 as good connectivity of the network.

From now onwards, recalling that r′ = 0 in the rest of this chapter, we will
use the abuse of notation Gp,λ,r to designate the general network graph Gp,λ,r,0
in the canyon-shadowing case. When the context is clear, we shall abbreviate
Gp,λ,r by G.

4.1.3 Dimensionless scale-invariant model parameters
Relevant model parameters are:

• The line density of the PVT street system LA > 0, which we also refer to as
street intensity. Note that larger values of LA imply that the street system gets
denser, while smaller values of LA are representative of sparser streets systems. By
definition, LA is the average street length in any 1-area observation window (by
stationarity of S, LA does not depend on the chosen observation window). Hence,
the dimension of LA is the inverse of a length.

• The users’ linear intensity λ > 0, which is the mean number of users per unit street
length, so that the dimension of λ is the inverse of a length.

• The relay proportion p ∈ [0, 1], representing the probability of having a relay in-
stalled at any crossroad v ∈ V . In frequentist terms, we can also interpret p as the
proportion of crossroads of the street system that are equipped with a relay by the
operator. p is dimensionless.

• The D2D communication range r > 0, having the dimension of a length.

From a mathematical point of view, note that, by motion-invariance of S, we can set
LA = 1 without loss of generality for the study of the percolation of the connectivity
graph representing the network. From an engineering point of view, all the parameters
(LA, λ, p, r) are meaningful. From a numerical perspective, note that an infinite graph
cannot be simulated, and so we will have to simulate the network in a given observation
window. It is customary to consider squared simulation windows of the form [0, win]2
(e.g. see [17,106]), but the size win of the simulation window may come as an additional
parameter in the study of the model. In our case, this can be avoided by noting that
our model features scale invariances. Indeed, S, Xλ and Y are motion invariant. Fur-
thermore, as has been noted in [29], changing LA to aLA for some scaling factor a > 0 is
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equivalent to considering a rescaled network where the users’ linear intensity λ has been
replaced by aλ and where the connectivity range r has been replaced by r/a. As a matter
of fact, the two dimensionless parameters λ/LA and rLA are scale-invariant.

Actually, we may even go further by considering refined versions of the previous two
scale-invariant parameters and relating them to the length of a typical street, or typical
edge of the PVT S. Recall, as has been seen in Section 1.3.5, that such a typical edge
is the typical point of the process of edges of S. Following [31, Section 9.4], the length
of this typical edge of S is equal to LA/λ1, where λ1 denotes the intensity of the process
of edges of S, see Section 1.3.3. Since S is a planar PVT having been generated by a
homogeneous Poisson point processXS of intensity λS, we have LA = 2

√
λS and λ1 = 3λS,

see Table 1.1. Thus, λS = L2
A/4 and so the length of the typical edge (or typical street)

of S is simply given by:
LA
λ1

= LA
3λS

= LA

3L
2
A

4

= 4
3LA

.

It thus makes sense to consider the respective dimensionless and scale-invariant parameters
U and H, defined as follows:

U := 4
3
λ

LA
(4.1.1)

H := 4
3

1
rLA

. (4.1.2)

The letter U stands for "users" while the letter H stands for "hops". Indeed, since 4/(3LA)
is the length of a street of S and λ > 0 represents the mean number of users per unit edge
length, U is equal to the mean number of users per typical street. In the same way, since
a single-hop D2D communication covers a length r of a street, 1/r can be interpreted
as the “number” of hops covering a street of unit length and so H represents the mean
number of D2D hops needed to ensure connectivity on a typical street of S. Note that
H represents the interplay between the street system and the transmission range related
to D2D technology: larger values of H mean that more hops will be needed to traverse
streets while smaller values of H mean that fewer hops will be needed to traverse streets.
In other words, larger values of H corresponds to cases where the streets are somehow
long compared to the D2D range r, while smaller values of H corresponds to cases where
the streets are somehow short compared to the D2D range.
Introducing the previous parameters allows us to study the model in terms of the param-
eters (p, U,H): this will be particularly convenient for numerical purposes, as this allows
to perform simulations for a given value of LA and deduce other results for different values
of LA by scale invariance, so that fixing a particular value of LA in numerical experiments
does not matter.

As a matter of fact, from now onwards and in the rest of this chapter, we shall denote
the network connectivity graph in the canyon shadowing situation indifferently by Gp,λ,r,
Gp,U,H or simply G when the context is clear, so as to avoid heavy notation.
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4.2 Phase transitions between different connectivity
regimes

Using the dimensionless scale-invariant parameters introduced in Section 4.1.3, we con-
sider the network connectvity graph G := Gp,U,H parametrized by (p, U,H) and denote
the percolation probability by:

P (p, U,H) := P(Gp,U,H has an unbounded connected component). (4.2.1)

As usual, we say that G percolates if P (p, U,H) > 0 and does not percolate otherwise.
A first observation is the following monotonicity of the model: P is increasing in p and
U and decreasing in H. Indeed, larger values of p and U respectively mean more relays
and more users and the network, making more possible connections and percolation easier
to occur. On the contrary, larger values of H mean that the number of hops needed to
traverse a typical street is larger, making percolation more difficult to occur.

For given p ≥ 0, H ≥ 0 consider the following critical value of the mean number of
users per street U :

Uc(p,H) := inf{U ≥ 0 : P (p, U,H) > 0}, (4.2.2)

with Uc(p,H) := ∞ if P (p, U,H) = 0 for all U ≥ 0. We aim at showing that there is a
region (i.e. a connected subset) of parameters (p,H) such that 0 < Uc(p,H) <∞. Such
a region is where the percolation of G exhibits non-trivial phase transition in the density
of users. Before stating our results, we discuss special cases of the model.

4.2.1 Special cases of the model
PVT site percolation

For H = 0, or equivalently r =∞ (recall that LA > 0 and H = 4/(3rLA)), P (p, U, 0) =:
PPV T (p) does not depend on U and corresponds to the percolation probability of the
Bernoulli site percolation model on the planar PVT 1. Denote the critical parameter of
this model by

p∗ := inf{p ∈ [0, 1] : PPV T (p) > 0}. (4.2.3)

Clearly, by the monotonicity of the model, Gp,U,H does not percolate for p < p∗, whatever
U ≥ 0, H ≥ 0.

PVT hard-geometric bond percolation

For U = 0 (no mobile users) and p = 1 (a relay is present at each crossroad), G1,0,H
corresponds to a non-standard inhomogeneous bond percolation model on the PVT, in
which the edges of the PVT are open or closed depending whether their length is smaller
or larger than the threshold r = 4/(3HLA). We call this model PVT hard-geometric bond

1The PVT site percolation model should not be confused with the Voronoi tiling percolation model,
which consists in coloring each cell of a PVT in black independently from all other cells with some fixed
probability p and investigating the random tiling of black cells. The critical probability for this latter
model in the plane has been proven to be 1/2 in [25].
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percolation. It seems that this model has not been studied in the literature. We define
the critical bond parameter of this model by:

Hc := sup{H ≥ 0 : P (1, 0, H) > 0}. (4.2.4)

PVT soft-geometric bond percolation

Keeping p = 1 and H > 0, considering U > 0 introduces to our model the possibility of
opening some long edges, which are not open in the PVT hard-geometric bond percolation.
Note that this is equivalent to yet another bond percolation, in which the edges of the
PVT are open independently with probabilities depending on their lengths. We call it
PVT soft-geometric bond percolation. It seems that such a model has not been studied in
the literature either.

G as a superposition of three percolation models

Using the aforementioned particular cases of our model, the general connectivity graph
Gp,U,H for non-trivial values of the parameters (p, U,H) can be seen as a superposition
of the three previous percolation models: site model, hard-geometric bond model and
soft-geometric bond model.

4.2.2 Analytical results
We now state our analytical results, which ensure the non-triviality of the previously
defined critical thresholds p∗, Hc and Uc(p,H).
First, the existence of a region where the percolation of the network connectivity graph
Gp,U,H has a non-trivial phase transition in U is ensured by the following two results:

Theorem 4.2.1 (Existence of subcritical intensities of users). For large enough
H ∈ [0,∞) and small enough U > 0 we have P (1, U,H) = 0 and, consequently, by
monotonicity of the model, P (p, U,H) = 0 for any p ∈ [0, 1].

Theorem 4.2.2 (Existence of supercritical intensities of users). For large enough p ∈
(0, 1) we have P (p, U,H) > 0 for any H ∈ [0,∞) and large enough U < ∞ (depending
on H).

A direct consequence of Theorem 4.2.2 and of standard percolation arguments is the
non-triviality of the PVT site percolation threshold:

Corollary 4.2.2.1. The critical parameter for PVT site percolation p∗ defined in (4.2.3)
is non-trivial, i.e. p∗ ∈ (0, 1).

Furthermore, we obtain the existence of a regime where G percolates, whatever small
the density of users. In other words, there exists a region of parameters (p,H) for which
Uc(p,H) = 0. We call such a region the permanently supercritical range and its existence
is ensured by the following result:

Theorem 4.2.3 (Existence of the permanently supercritical range). For large enough
p < 1 and small enough H > 0, we have that P (p, 0, H) > 0.
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As a corollary of Theorems 4.2.1 and 4.2.3, we obtain the non-triviality of the critical
threshold for PVT hard-geometric bond percolation:

Corollary 4.2.3.1. The critical parameter for PVT hard-geometric bond percolation Hc

defined by (4.2.4) is non-trivial, i.e. 0 < Hc <∞.

The proofs of all the above results are postponed to Section 4.4.

4.2.3 Connectivity regimes
In light of the previous analytical results, there are three and may be up to five different
ranges of parameters (p,H) of interest in our model, giving rise to different connectivity
regimes of the network.

The range of parameters (p,H) where 0 < Uc(p,H) < ∞, schematically presented
in orange on Figure 4.1a, can be seen as the critical range of (p,H) in the sense that it
separates the following two ranges of (p,H):

• The permanently subcritical range (schematically presented in blue on Figure 4.1a),
where G does not percolate whatever large the density of users (Uc(p,H) =∞).

• The permanently supercritical range (schematically presented in red on Figure 4.1a),
where G percolates with positive probability, whatever small the density of users
(Uc(p,H) = 0).
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Figure 4.1 – Possible phase transition diagrams of the network connectivity graph G.
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4.2. Phase transitions between different connectivity regimes

From a theoretical perspective, we cannot exclude that the permanently supercritical
range contains a non-empty subset of (p,H) such that G does not percolate without users
(U = 0) but percolates with positive probability for arbitrarily small densities of users, as
depicted on Figure 4.1b. Moreover, we do not know whether the permanently subcritical
range contains some p > p∗, as also depicted on Figure 4.1b. Note that we do not know
the exact shapes of the curves separating these ranges except that they are monotonic.
Even continuity is not known.

By monotonicity of the model, G does not percolate for all p < p∗, whatever U ≥ 0
and H ≥ 0. Thus, the permanently subcritical range of parameters is delimited by the
the PVT site percolation threshold p∗ given by the blue horizontal line on Figure 4.1a. In
other words, large-scale connectivity of the network is delimited by a minimal proportion
of crossroads p∗ equipped with relays. Below that proportion, large-scale communications
are not possible, regardless of all other network parameters.
For (p,H) in the (strictly) permanently supercritical range, G percolates whatever small
the density of users. This means that long-range communications over the network are
possible whatever small the number of D2D users in the network. As a matter of fact,
large-scale connectivity of the network can solely be ensured by the relays: this is what
we call relay-limited connectivity. In such a situation, given the interplay between the
geometry of the streets and the D2D technology represented by H, the operator can en-
sure good connectivity of the network if it accepts to deploy a sufficiently high amount of
relays over the crossroads of the street system.
Finally, in the critical range, where 0 < Uc(p,H) < ∞, the percolation of G exhibits a
non-trivial phase transition in the density of users. This means that large-scale connec-
tivity of the network can be ensured by a finite positive density of users supplementing
the relays. In other words, both relays and users are essential to allow for long-range
communications: this is what we call relay-and-user-limited connectivity.

Still examining the frontiers between the different ranges of parameters, let us also
define the following quantities:

H0 := sup{H ≥ 0 : Uc(1, H) = 0} (4.2.5)

∀H < Hc, pc(H) := inf{p > 0 : P (p, 0, H) > 0}. (4.2.6)
The first quantity is well-defined. Indeed, it is easy to see that H0 ≥ Hc, and, by

Corollary 4.2.3.1, Hc > 0. Moreover, by Theorem 4.2.1, H0 < ∞. In the definition of
H0, the condition Uc(1, H) = 0 means that we are looking at all these values of H for
which percolation of the network with all relays deployed (p = 1) remains possible what-
ever small the density of users (Uc = 0). We conjecture that Hc = H0, as illustrated by
Figure 4.1a. However, if the hypothetical range where G does not percolate without users
but percolates for arbitrarily small densities of users exists, then we would have H0 > Hc,
see Figure 4.1b.

Regarding the well-definedness of pc(H), recall that 0 < Hc <∞ by Corollary 4.2.3.1.
For H < Hc, necessarily P (1, 0, H) > 0 by definition of Hc and monotonicity of the model.
Hence the set {p > 0 : P (p, 0, H)} is non-empty and lower-bounded by 0, so the infimum
pc(H) is well-defined. The function H 7→ pc(H) represents the minimal proportion of
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Chapter 4. The case of line-of-sight propagation only: canyon shadowing

relays p needed to ensure percolation of the network in the relay-limited regime. In other
words, this is the boundary of the permanently supercritical range for (p,H), given by
the red curve on Figures 4.1a and 4.1b.

Numerical results with estimations of the thresholds p∗, Hc as well as the functions
H 7→ pc(H) and (p,H) 7→ Uc(p,H) are detailed in Section 4.2.4.

4.2.4 Numerical results: estimating the frontiers between the
different connectivity regimes

We performed numerical simulations to estimate the frontiers between the different con-
nectivity regimes presented in Figure 4.1 and in the previous section. All of our simu-
lations have been performed using the statistical software R. We now present the results
of these numerical simulations and their consequences in terms of network connectivity.
Details on the methodology of the simulations and the algorithms used will be provided
in Section 4.3.

Estimation of the PVT site percolation threshold p∗

We obtained the following estimate for the PVT site percolation threshold p∗:

p∗ ≈ 0.713 (4.2.7)

Our value only slightly differs from the most recent estimation available in the litera-
ture [19]: p∗ ≈ 0.71410 ± 0.00002. While the authors providing this estimate proceeded
with Monte-Carlo simulations with periodic boundary conditions and investigated the
growth of the largest cluster, we chose a window-crossing method to obtain our estimate
of p∗. More details on our window-crossing method will be provided in Section 4.3. Note
that p∗ is the upper limit of the permanently subcritical range for the percolation of G.
In terms of network design considerations, the estimate p∗ ≈ 0, 713 means that the D2D
network cannot allow for arbitrarily long-range multihop D2D communications if less than
71.3% of crossroads are equipped with a relay, whatever the values of the user density and
of the D2D range. Such a proportion of 71.3% is considerably high and is due to the fact
that with the canyon shadowing assumption, only LOS communications are possible. We
shall however see in Chapter 5 that much less relays are actually needed at large scale.

Estimation of the PVT hard-geometric bond percolation threshold Hc

We found the following estimate for Hc:

Hc ≈ 0.743, (4.2.8)

meaning that the critical threshold for PVT hard-geometric bond percolation corresponds
to the case where the length of the typical edge of the PVT is equal to 74.3% of the
D2D range. Note that Hc is the maximal compromise that can be made on H in the
permanently supercritical range of (p,H), see Figures 4.1a and 4.1b. Within this range,
UC(p,H) = 0 and so G percolates whatever small the density of users. On a more applied
perspective, this means that when the typical street is not longer than 74.3% of the
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4.2. Phase transitions between different connectivity regimes

D2D range, the connectivity of the network is relay-limited and long-range multihop D2D
communications are possible in the absence of users.

Estimations of pc(H)

Recall that pc(H) is the boundary of the permanently supercritical range for the per-
colation of G. In engineering terms, this corresponds to the relay-limited regime, where
large-scale connectivity of the D2D network can be solely ensured by relays, even in the
absence of users. Thus, pc(H) represents the minimal proportion of crossroads of the
street system that have to be equipped with a relay to allow for long-range multihop D2D
communications in the network. Since installing these relays comes with a cost, the map-
ping H 7→ pc(H) can be seen as the investment in relays that the operator must make,
given the interplay H between the geometry of the street system and the D2D range.

Table 4.1 – Estimated values of pc(H).

H pc(H)

0.467 0.75

0.487 0.76

0.503 0.77

0.521 0.78

0.534 0.79

0.548 0.80

0.609 0.85

0.655 0.90

0.702 0.95

Hc ≈ 0.743 1

Estimated values of pc(H) for several values of H are given in Table 4.1 and illustrated
by the black points on Figure 4.2a. We were only able to consider values H > 0.46, as the
percolation regime of G for smaller values of H started to have an erratic behaviour. This
can be explained by two facts. On the one hand, the simulated graphs cannot be infinite
and have to be simulated in bounded simulation windows, which can induce boundary
effects. On the other hand, when H gets smaller, one approaches the permanently super-
critical regime and it is thus much trickier to perform numerical simulations. However,
we do know that pc(0) = p∗ : this corresponds to the isolated black point on Figure 4.2a.
Finally, in order to get a continuous approximation of pc(H) for 0.46 < H < Hc, we
interpolated the estimated values and found out that a quadratic fit:pc(H) = aH2 + bH + c

a ≈ 1.45, b ≈ −0.84, c ≈ 0.83
(4.2.9)
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Figure 4.2 – Plotting of pc(H) as a function of H (left) and of Uc(p,H) as a function of
H for certain values of p (right).

is able to explain 99% of the variance. The values of the coefficients a, b and c are
estimated by a generalised linear regression. This quadratic fit is illustrated by the red
curves on Figure 4.2a and on Figure 4.1. On this latter figure, the continuous fit has
been extended to pc(0) = p∗ by smoothing the curve, for clarity of the phase transition
diagram.

Estimations of Uc(p,H)

Figure 4.2b shows estimations of the critical user density Uc(p,H) for several values of
the parameters (p,H) mainly in the critical range where, recall, Uc(p,H) ∈ (0,∞). Exact
values are given in Table 4.2. In this table, a comparison with the model studied in [29]
has been conducted in the column entitled NoSha. This stands for "No Shadowing", as
the model previously studied in [29] is the Gilbert graph of the same Cox process Xλ: any
two Cox points are connected whenever they are separated by less than the connectivity
threshold r = 4/(3HLA). Relays are thus not needed and shadowing is not taken into
account since connections are possible in all directions.
We see that the mapping (p,H) 7→ Uc(p,H) is decreasing in p and increasing in H, which
was expected. Indeed, for given H, larger values of p imply more relays in the network
and hence less users are needed for percolation. Likewise, for given p, larger values of H
mean that more hops are needed to traverse streets and hence more users are needed.
Interestingly, compared to the previous estimates provided in [29], taking the canyon
shadowing into account does not necessarily mean that more users are needed for perco-
lation of G and thus large-scale connectivity of the D2D network. The relay proportion
p also plays its own role and there is a compromise to make between the relay propor-

88



4.3. Methodology of the numerical simulations

Table 4.2 – Estimated values of the critical user density Uc(p,H).

Uc(p,H)

H p = 1 p = 0.9 p = 0.8 p = 0.75 NoSha [29]

4.44 16.23 17.39 21.17 26.09 15.87

2.67 7.07 8.30 10.59 13.72 7.44

1.33 1.82 2.42 3.56 4.93 –

0.89 0.41 0.77 1.48 2.41 1

0.67 0 0.03 0.51 1.17 –

0.53 0 0 0 0.45 0.32

0.38 0 0 0 0 0.16

tion p and the user density U . For an operator, equipping crossroads with relays comes
with considerable costs, while increasing the user density U by gaining new customers is
feasible, but hard to predict and master.

4.3 Methodology of the numerical simulations
We now turn on to presenting the methodology used in the numerical simulations per-
formed to obtain the above estimations of critical network parameters. All of our simula-
tions have been performed using the statistical software R.

Each simulation of a realisation of the network connectivity graph G corresponds to
the following process:

1. For given network parameters, simulate the PVT street system S, the process of
network users Xλ and the process of relays Y .

2. Use appropriate algorithms to generate the connected components of the network
connectivity graph G.

3. Assess whether the simulated connectivity graph percolates or not.

Once we know whether a simulated graph percolates or not, appropriate statistical
methods are used to estimate critical network parameters such as p∗, Hc or Uc(p,H).

4.3.1 Simulating the network
First and foremost, note that infinite networks cannot be simulated and so we have to
choose a simulation window in order to perform our simulations. Such a simulation
window is chosen to be a square of side win, expressed in kilometres (km). Most of
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the time and when possible (especially in terms of running time of the simulations),
win = 30 km, a value chosen sufficiently large so as to avoid any boundary effects due to
the finiteness of the simulation window.
For practical reasons, we perform our simulations using the original network parameters
(LA, p, λ, r) and then compute the associated dimensionless parameters U and H. Given
(LA, p, λ, r), one first needs to simulate the elementary bricks of the network, i.e. the PVT
street system S, the Cox process of network users Xλ and the Bernoulli process of relays
Y . This is easily done by using the packages2 spatstat [14] and deldir [127] from R. In
more detail, we proceeed as follows:

1. Generate a planar homogeneous Poisson point process XS with intensity λS = L2
A/4.

2. Generate the Voronoi tessellation S associated with XS. The associated line density
is indeed equal to 2

√
λS = LA.

3. Generate the Cox process Xλ.

4. Generate the Bernoulli process Y .

Generating the Poisson point process XS is straightforwardly done using the command
rpoispp from spatstat. In the same way, the command deldir from the package with
the same name generates the associated PVT and PDT in a list L, from which the PVT
is easily accessed. The Cox process Xλ is also easy to simulate with the command
rpoisppOnLines, taking as arguments the users’ linear intensity λ and a line segment
pattern (type psp in R) which will support the simulated Cox process. Converting the
edges of S into such a line segment pattern is also straightforward, using the command
psp. Generating the Bernoulli process Y requires a bit more work, as no direct command
is available in spatstat. We generate a realisation of Y by applying Algorithm 4.1.

Algorithm 4.1: Simulating a realisation of a doubly stochastic Bernoulli process
Y with parameter p, supported by the crossroads of a PVT street system S.
Input: Realisation of a PVT S, p ∈ [0, 1]
Output: Realisation of Y
V ← list of crossroads of S. vi denotes the i-th crossroad.
n← #(V )
Y ← ∅
Generate a vector U = (U1, . . . , Un) of n i.i.d. random variables Ui ∼ U([0, 1])
x← {i : Ui ≤ p}
for i ∈ x do

Y ← Y ∪ {vi}
end

2On a more general perspective, spatstat is a very complete package overwhelmingly used for spatial
statistics. It is regularly updated and documentation of the package is now 1500 pages long.
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4.3.2 Computing the connections of G and generating the con-
nected components

While generating the support of the network, it is fairly easy to assign a unique street
number denoted street_label (an integer number between 1 and the number of streets
#(E)) to each street of the PVT street system S. Then, when we generate the nodes
of the network, we assign an additional attribute node_street_label (a list of integers)
to each node of the network: this vector node_street_label contains the numbers of
the streets on which this particular node is located . For instance, a network node with
node_street_label = {4, 9, 12} is located at the crossroad of streets numbered 4, 9 and
12. Given the structure of the network, note that we are in either one of the following
cases:

• Either a node is a network user (Cox point), in which case it is located on a unique
edge of S and so node_street_label contains only one element.

• Or the node is a relay (Bernoulli point), in which case it is located on a cross-
road of S. Since any crossroad of S has a degree almost surely equal to 33,
node_street_label almost surely contains 3 elements.

Obviously, two nodes of the network (Cox or Bernoulli points) are in LOS if and only if
their respective node_street_label share a common element.

Once the network is generated, given the D2D range r, we need to compute possible
connections in the network. We use Algorithm 4.2. In more detail, we proceed street by
street. For a given street e ∈ E, we obtain the users and relays located on that specific
street. In practice, they are found by checking whether the attributes node_street_label
contain the street_label of the considered street e ∈ E. Once we have obtained these
users and relays, we collapse them into a simple list nodes containing the coordinates of
all the network nodes located on e, and sort it by ascending x-coordinate. By doing so,
we now have all the network nodes located on e in consecutive order of appearance from
one endpoint of e to the other. If the length |e| of e is smaller than the D2D range r,
all successive gaps will be smaller than r. Hence, the first point will be connected to the
second, the second to the third, and so on. If the length of e is larger than the D2D range
r, we compute the successive distances di between consecutive nodes and all di smaller
than r correspond to a connection in the network graph G.
Note that the previous algorithm does not compute all connections of G exhaustively.
Indeed, for a given street e ∈ E, we only compute the connections between successive
network nodes along the street and ignore the connections between any two network
nodes that are not consecutive on the street. This does not matter, as we will then be
interested in the percolation of G and hence in the connected components of G. In par-
ticular, as long as two network nodes are in the same connected component of G, it won’t
matter whether they are connected in 1 or more hops when studying percolation of G.

To generate and keep track of the connected components of G, we use a union-find
algorithm [50], as has been suggested in [106]. The principle of this algorithm is the
following one:

3The degree of any vertex in a planar PVT is almost surely equal to 3, see [108].
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Algorithm 4.2: Computing the D2D connections between the nodes of the net-
work
Input: Realisations of the PVT street system S, the processes of network users

Xλ and relays Y , the D2D range r
Output: A set D of pairs of network nodes representing (some of the) direct

connections in G. Each element of D is thus a pair (Zi, Zj) indicating
that the two network nodes Zi and Zj are connected by an edge
connectivity graph G, i.e. Zi! Zj.

E ← list of streets of S
D← ∅
for e ∈ E do

nodes←
(
Xλ ∩ e

)
∪ (Y ∩ e)

nodes← Order nodes by ascending x-coordinate =: {Z ′1, . . . , Z ′k}
k ← #(nodes)
if length of e =: |e| ≤ r then

D ← D ∪ {(Z ′1, Z ′2), (Z ′2, Z ′3), . . . , (Z ′k−1, Z
′
k)}

else
for i ∈ {1, 2, . . . , k − 1} do

di ← ‖Z ′i − Z ′i+1‖2
if di ≤ r then

D ← D ∪ (Z ′i, Z ′i+1)
end

end
end
Proceed to next street

end

1. Each connected component of G is represented by one of its members called root.
Within a connected component of G, each network node points towards another
node called its parent. The root representing a component is its own parent.

2. At the beginning, each network node is its own parent. This initialisation step is
done by a function Initialise.

3. Using the output of Algorithm 4.2, we know when two network nodes are connected
in G. For each connection Zi ! Zj computed, we look at their roots using a
function Find. If their roots are the same, they are already in the same connected
component and we do nothing. If not, then we merge their connected components
using a function Union.

The previous approach is given by Algorithm 4.3. In computer science, union-find
algorithms are often implemented using forest and tree structures. This asserts the above
denomination of root for the representative member of a connected component. More
precisely, G is represented by a forest data structure of trees and each connected compo-
nent of G is represented by a tree of the forest. Within a tree, i.e. within a connected
component of G, each network node points towards some parent node. The whole tree is

92



4.3. Methodology of the numerical simulations

Algorithm 4.3: Union-find algorithm for keeping track of the connected com-
ponents of G.
Input: The D of connections computed by Algorithm 4.2.
Output: An identification, for each network node Zi ∈ Z, of the connected

component of G to which Zi belongs.
for (x, y) ∈ D do

root_1← Find(x)
root_2← Find(y)
if root_1 = root_2 then

Do nothing
else

Union(x, y)
end

end

then represented by its root, which points towards itself. In this perspective, applying the
Find function to some network node Zi consists in finding the root of the tree representing
the connected component to which Zi belongs. In the same way, if two nodes Zi 6= Zj are
connected in G, the Union function checks whether they are already in the same tree and,
if not, merges the corresponding trees together. Several implementations for the Find and
Union functions have been proposed in the literature. Depending on the implementation
chosen, the time complexity of the Union-Find Algorithm 4.3 can hugely vary. So far, one
of the most efficient approaches available consists in the following:

• Path compression for the Find function. This means that while looking at the root
of a given node of the network, all parent nodes visited in the tree of that node, up
to the root, are also updated so as to directly point to the root, thus flattening the
structure of the tree. Pseudo-code for this approach is given by Algorithm 4.5.

• Weighted union for the Union function. This means that each tree of the forest
is given a certain weight w ∈ N and that, when merging two trees, the tree with
smaller weight will be attached to the tree with larger weight. In other words, root
of the tree with smaller weight will point towards the root of the tree with greater
weight. Pseudo-code for this approach is given by Algorithm 4.6.

As mentioned above, before performing the union-find algorithm, an initialisation step
is required. This initialisation consists in ensuring that each node of the network is its
own parent at the beginning. Moreover, with the weighted union approach for the Union
function, one also needs to initialise the weight of any node to 1. Pseudo-code for the
Initialise function is given by Algorithm 4.4.

Algorithm 4.4: Pseudo-code for the Initialise function.
Function Initialise(x):

x.parent← x
x.weight← 1
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Algorithm 4.5: Pseudo-code for the Find function with path compression.
Function Find(x):

if x.parent 6= x then
x.parent← Find(x.parent)

return x.parent

Algorithm 4.6: Pseudo-code for the for the Union function with weighted union.
Function Union(x, y):

root_x← Find(x)
root_y ← Find(y)
if root_x = root_y then

Do nothing
else

if (root_x).weight < (root_y).weight then
(root_x).parent← (root_y).parent
(root_y).weight← (root_y).weight + (root_x).weight

else
(root_y).parent← (root_x).parent
(root_x).weight← (root_x).weight + (root_y).weight

When both Find with path compression and Union with weighted union are used,
the time complexity of the union-find algorithm presented in Algorithm 4.3 scales as
O(mα(n)) [123], where:

• m is the number of union and find operations performed.

• n is the number of network nodes

• α denotes the inverse Ackermann function defined in the following way. First, the
Ackermann function A : N2 → N is defined by :


A(0, n) = n+ 1
A(m+ 1, 0) = A(m, 1)
A(m+ 1, n+ 1) = A(m,A(m+ 1, n))

(4.3.1)

The inverse Ackermann function α is then defined as the inverse of the increasing
mapping n 7→ A(n, n).

Since the mapping n 7→ A(n, n) increases incredibly fast, the inverse Ackermann function
α increases very slowly. It is often found in the literature that α(n) ≤ 4 for any practical

applications: this is due to the fact that A(4, 4) = 2 ↑↑ 7− 3 =: 2222222

− 3 = 22265536
− 3.

A direct consequence is that the amortized time complexity (i.e. the time complexity
per network node) of Algorithm 4.3 is almost linear in the number m of union and find
operations performed.
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4.3.3 Assessing whether the simulated graph percolates
Once the union-find algorithm has been performed, we have access to all the connected
components of the network connectivity graph G. To assess the percolation of the sim-
ulated graph, we use a window-crossing method: we declare that the simulated graph
percolates if there exists a left-right or a top-bottom crossing of the simulation window
W = [0, win]2 by a connected component of G. Examples are provided in Figure 4.3.

(a) In this simulation, the con-
nectivity graph does not per-
colate: the largest connected
component of G does not cross
the simulation window.

(b) In this simulation, the con-
nectivity graph does not per-
colate: the largest connected
component of G does not cross
the simulation window. How-
ever, it reaches the right side
of the simulation window.

(c) In this simulation, the con-
nectivity graph percolates: the
largest connected component
of G crosses the simulation
window from left to right and
from bottom to top.

Figure 4.3 – Assessing whether a simulated connectivity graph percolates or not. As
before, the blue dashed lines represent the PVT street system S, the red points represent
network users (Cox process Xλ) and the green points represent relays (Bernoulli process
Y ). The largest connected component in the simulation window is emphasised as before:
points of Xλ and Y are filled with their respective colours and connections are highlighted
in orange. Edges of the smaller connected component are highlighted in black.

Note that we cannot require an exact crossing of the simulation window, i.e. a crossing
between two network nodes Zi 6= Zj located exactly on the boundary ∂W of the simulation
window. Indeed, the chosen models for S, Xλ and Y imply the probability P(Z(∂W ) > 0)
that some network node is located on the boundary of the simulation window is exactly
0. Thus, we look at crossings of the simulation window within a margin ε � win. In
other words, a left-right crossing of the simulation window happens when a connected
component of G connects a network node located in the left margin [0, ε] × [0, win] to a
network node located in the right margin [win− ε, win]× [0, win]. In the same way, a top-
bottom crossing of the simulation window happens when when a connected component of
G connects a network node located in the top margin [0, win]× [win− ε, win] to a network
node located in the bottom margin [0, win] × [0, ε]. In practice, the margin for window-
crossing simulations is most of the time chosen to be ε = r/2. This is due to the following
analogy: in networks modelled by Gilbert graphs, the coverage zone of a network node is
a circle centered at that node and with radius r/2, as has been seen in Figure 3.1. Note
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also that ε = r/2 is sufficiently small compared to the size win of the simulation window.
Using the previous Find function (see Algorithm 4.5), checking whether a crossing

of the simulation window exists is done straightforwardly. For instance, checking that a
left-right crossing exists consists in checking whether a network node in the left margin
of the simulation window W has the same root as a network node located in the right
marginW . The same approach is done for checking the existence of a top-bottom crossing
of the simulation window. Putting this altogether, checking whether the simulated graph
G percolates is simply done by Algorithm 4.7.

Algorithm 4.7: Checking whether the simulated connectivity graph G perco-
lates.

Output← “G does not percolate”
left_nodes← {Zi : Zi ∈ Z ∩ [0, ε]× [0, win]}
right_nodes← {Zj : Zj ∈ Z ∩ [win− ε, win]× [0, win]}
top_nodes← {Zk : Zk ∈ Z ∩ [0, win]× [win− ε, win]}
bottom_nodes← {Zl : Zl ∈ Z ∩ [0, win]× [0, ε]}
for Zi ∈ left_nodes do

root_left← Find(Zi)
for Zj ∈ right_nodes do

root_right← Find(Zj)
if root_left = root_right then

Output ← “G percolates”
break

for Zk ∈ top_nodes do
root_top← Find(Zk)
for Zl ∈ bottom_nodes do

root_bottom← Find(Zl)
if root_top = root_bottom then

Output ← “G percolates”
break

return Output

4.3.4 Estimating critical network parameters by appropriate sta-
tistical methods

We now have the tools to simulate a connectivity graph G for a given set of network
parameters and check whether the simulated graph percolates. The question is now on
how to estimate critical network quantities such as p∗, Hc, pc(H) or Uc(p,H) in a relevant
way. First and foremost, note that the definitions of all the above quantities have common
points:

• They are all defined as a supremum or an infimum.

• In this supremum or infimum, two of the three network parameters (p, U,H) are
fixed and the third one is varying.

96



4.3. Methodology of the numerical simulations

• The condition defining the supremum or the infimum is about when the varying pa-
rameter reaches some critical value where the percolation probability P = P (p, U,H)
becomes positive.

As a matter of fact, the methods for estimating any one of the aforementioned critical
network quantities will be quite similar:

• For a given set of parameters (p, U,H), we estimate P (p, U,H) by a Monte-Carlo
method:

– We simulate N realisations (typically, N = 100 is sufficient for most practical
applications) of the connectivity graph G = Gp,U,H .

– To each realisation 1 ≤ i ≤ N of Gp,U,H , we associate a random variable:

yi =

1 if the simulated graph percolates
0 if the simulated graph does not percolate

where, recall, in our simulations, percolation means existence of a left-right or
of a top-bottom crossing of the simulation window [0, win]2.

– We estimate the percolation probability P (p, U,H) by the empirical mean:

ŷ := 1
N

N∑
i=1

yi. (4.3.2)

In other words, the percolation probability P (p, U,H) is estimated by the
proportion of simulations where the simulated graph percolates. Since the
(yi)i≤i≤N are i.i.d. distributed like a Bernoulli random variable with parameter
P (p, U,H), the empirical mean ŷ computed over N simulations is an unbiased
estimator of P (p, U,H).

• For a grid of values for the varying parameter (the two other being fixed), we
estimate P (p, U,H).

• Plotting P (p, U,H) against the varying parameter, we use an appropriate statistical
regression to assess where the critical point is.

We now give a bit more detail for each of the critical network quantities p∗, Hc, pc(H)
and Uc(p,H).

Estimating p∗

Recall that p∗ denotes the critical threshold of the PVT site percolation model:

p∗ := inf{p ∈ [0, 1] : PPV T (p) > 0}, (4.2.3)

where PPV T (p) =: P (p, U, 0) does not depend on U . Moreover, p∗ does not depend on
LA. Thus, when estimating p∗, we fix LA > 0, U = 0, H = 0 (or, equivalently, λ = 0 and
r = ∞) and estimate P (p, 0, 0) = PPV T (p) for a grid of values of p using the estimator
defined in (4.3.2). The result of this procedure is illustrated by Figure 4.4a. Since for
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each value of p, the percolation probability PPV T (p) is estimated by the empirical mean of
N Bernoulli random variables (see (4.3.2)), we propose to interpolate the discrete values
of the percolation probability obtained by simulation with a logistic model given by the
blue curve on Figure 4.4a:

logit(PPV T (p)) := log
(

PPV T (p)
1− PPV T (p)

)
= ap+ b, (4.3.3)

where the parameters a and b are estimated by logistic regression. By analogy with
discrete percolation theory4, we estimate the threshold p∗ by the inflection point of the
logistic curve. Since logit′′(x) = 0 ⇔ x = 1/2 and that logit(1/2) = 0, the logistic
model (4.3.3) yields:

p∗ ≈ − b
a
.

Estimating Hc

Hc denotes the critical threshold of the PVT hard-geometric bond percolation model:

Hc := sup{H ≥ 0 : P (1, 0, H) > 0}. (4.2.4)

Thus, we fix p = 1, U = 0 and, for a grid of values of H, we estimate P (1, 0, H) by the
proportion of simulations where the simulated network graph G1,0,H percolates. Results
are illustrated by Figure 4.4b.

Since P (1, 0, H) is decreasing as a function of H, we interpolate the discrete values by
a “reverse” logistic model given by the blue curve on Figure 4.4b:

logit(1− P (1, 0, H)) =: log
(

1− P (1, 0, H)
P (1, 0, H)

)
= aH + b, (4.3.4)

and we estimate Hc by the inflection point of the “reverse” logistic curve. In the same
way as before, this yields:

Hc ≈ −
b

a
.

Estimating pc(H)

For H < Hc, pc(H) denotes the boundary of the permanently supercritical range of
percolation of G, i.e. the boundary of the relay-limited connectivity regime:

pc(H) := inf{p > 0 : P (p, 0, H) > 0}. (4.2.6)

Therefore, for estimating pc(H), we fix H < Hc and U = 0 and, for a grid of values
for p, we again estimate P (p, 0, H) by the proportion of simulations where the simulated

4Consider for instance independent bond percolation on the square lattice L2 with parameter p and
denote pc := pc(2) the critical parameter. The event {there exists some infinite connected component}
(not necessarily containing the origin!) is a tail event. Denoting Θ(p) the probability of this event, it is
easy to show, thanks to Kolmogorov’s 0-1 law, that Θ(p) = 0 for p < pc and Θ(p) = 1 for p > pc. As a
matter of fact, the plot of the mapping p 7→ Θ(p) is a 0-1 step function with step occurring at pc, so that
we can somehow see pc as the inflection point of this curve.
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Figure 4.4 – Left: Estimation of the PVT site percolation threshold p∗. Right: Estimation
of the PVT hard-geometric bond percolation threshold Hc. The black points represent
the estimations of the percolation probability obtained by simulations, the blue curves
represent the logistic (left figure) and “reverse” logistic (right figure) models. The red
vertical line corresponds to the inflection point of the logistic curve and is supposed
to intercept the percolation threshold. The simulations have been done with a square
simulation window of size win = 30 km and a PVT street density LA = 20 km-1.

graph Gp,0,H percolates. P (p, 0, H) being increasing as a function of H, we can again
resort to logistic regression to interpolate the discrete values of the percolation probability
P (p, 0, H) obtained by discrete simulations. Once again, the threshold pc(H) is estimated
by the inflection point of the logistic curve, see Figure 4.5a.

Estimating Uc(p,H)

Uc(p,H) denotes the critical user density in the critical range of percolation of G (relay-
and-user-limited connectivity regime):

Uc(p,H) := inf{U ≥ 0 : P (p, U,H) > 0} (4.2.2)

In the same fashion as before, for fixed (p,H) and for a grid of values for U , we estimate
P (p, U,H) using the proportion of simulations where the simulated graph Gp,U,H perco-
lates. P (p, U,H) being increasing as a function of U , we can again interpolate the discrete
values of the percolation probability P (p, U,H) by a logistic model and the percolation
threshold Uc(p,H) is estimated by the inflection point of the logistic curve, see Figure
4.5b.
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Figure 4.5 – Left: Example of estimation of pc(H) in the permanently subcritical range of
percolation of G (relay-limited connectivity). Right: Example of estimation of the critical
user density Uc(p,H) in the critical range of percolation of G (relay-and-user-limited
connectivity). The black points represent the estimations of the percolation probability
obtained by simulations, the blue curves represent the logistic models. The red vertical
line corresponds to the inflection point of the logistic curve and is supposed to intercept
the percolation threshold. The simulations have been done with a square simulation
window of size win = 15 km and a PVT street density LA = 20 km-1.

4.4 Proofs of analytical results

4.4.1 General approach
Theorems 4.2.1 to 4.2.3 and their corollaries have been stated in terms of the dimension-
less parameters (p, U,H) introduced in Section 4.1.3. This allowed us to introduce the
different connectivity regimes and their frontiers in a more applied fashion, as illustrated
by Figure 4.1.
However, when working on the proofs of the aforementioned results, it will be much more
convenient to come back to the original parameters (LA, p, λ, r). This is mostly due to the
fact that H, being inversely proportional to r, is less easy to work with when considering
particular events related to connectivity in the network graph. Moreover, as mentioned
earlier, S is motion-invariant and percolation of the connectivity graph does not depend
on the street intensity LA, so that we can set LA = 1 without loss of generality in what
follows. Switching back to the original network parameters (LA = 1, p, λ, r), we will there-
fore now refer to the connectivity graph as G = Gp,λ,r and prove the following equivalent
formulations of Theorems 4.2.1 to 4.2.3:

Reformulation 1 (Reformulation of Theorem 4.2.1). For small enough r ∈ (0,∞] and
small enough λ > 0, G1,λ,r does not percolate and, consequently, by monotonicity of the
model, Gp,λ,r does not percolate either.

Reformulation 2 (Reformulation of Theorem 4.2.2). For large enough p ∈ (0, 1), Gp,λ,r
percolates for any r ∈ (0,∞] and large enough λ <∞ (depending on r).
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Reformulation 3 (Reformulation of Theorem 4.2.3). For large enough p < 1 and large
enough r <∞, Gp,0,r percolates.

The general idea of the proofs of the above reformulations will consist in using a
renormalization argument. More precisely, we will most of the time proceed as follows:

1. Map the percolation of G to a discretized percolation process on a rescaled Euclidean
lattice

2. Depending on the needs, relate the percolation (or the absence of percolation) of G
to the percolation (or absence of percolation) of the discretized process

3. Prove that the discretized process is k-dependent for some k ≥ 1.

4. Apply the result from Liggett, Schonmann and Stacey (Theorem 4.1.1) to conclude
that the discretized process is dominated by a Bernoulli percolation process and
thereby draw conclusions on G.

4.4.2 Preparation and notations
Before proceeding with the proofs of the analytical results stated in Section 4.2.2, we
begin with introducing a few notations and definitions that will be useful for the purposes
of our developments.

Recall that V and E respectively denote the set of vertices and edges of the PVT street
system S and that, furthering the analogy between S and a street system, elements of V
(respectively of E) are called crossroads (respectively streets). A topologically connected
subset s ⊂ e of some street e ∈ E will be called street segment. The length of a street
e ∈ E is noted by |e| and the length of a street segment s will likewise be denoted by |s|.

For A ⊂ R2 and B ⊂ R2, we denote the Euclidean distance between A and B by:

dist2(A,B) := inf{‖x− y‖2, x ∈ A, y ∈ B}.

For x ∈ R2 and a > 0 we denote by Qa(x) := x+[−a/2, a/2]2 the square of side a centered
at x. We note that this is exactly the definition of the closed ball B(x, a/2) with center
x and radius a/2 for the supremum norm of R2:

Qa(x) = {y : ‖y − x‖∞ ≤ a/2} = B(x, a/2).

For simplicity, whenever a = n ∈ N, we will write Qn to mean Qn(0).

We denote by M the space of Borel measures on R2, equipped with the evaluation
σ-algebra5. For a (possibly random) Borel measure µ on R2 and A ⊂ R2, we denote the
restriction of µ to A by µA(·) := µ(A ∩ ·). We also adapt the definition of the support of
µ as follows: the support of µ is the following set:

supp(µ) := {x ∈ Rd : ∀ε > 0, µ(Qε(x)) > 0}
5Recall from Section 1.1.2, that the evaluation σ-algebra is the smallest σ-algebra making the mappings

M 3 Ξ 7→ Ξ(B) measurable for all Borel sets B of R2.
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The following concepts of stabilization and asymptotic essential connectedness, both
introduced in [70] will also be needed for investigating spatial dependencies of random
measures.
Definition 4.4.1. [70, Definition 2.3] A random measure Ξ on R2 is called stabilizing
if there exists a random field of stabilization radii R = {Rx}x∈R2 defined on the same
probability space as Ξ and Ξ-measurable, such that:
(1) (Ξ, R) are jointly stationary,

(2) lim
n↑∞

P
(

sup
y∈Qn∩Q2

Ry < n

)
= 1,

(3) for all n ≥ 1, the random variables{
f
(
ΞQn(x)

)
1

{
sup

y∈Qn(x)∩Q2
Ry < n

}}
x∈ϕ

are independent for all bounded measurable functions

f : M→ [0,+∞)

and finite ϕ ⊂ R2 such that ∀x ∈ ϕ, dist2(x, ϕ \ {x}) > 3n.
We slightly modify the definition of asymptotic essential connectedness given in [70]

for the sake of simplicity and use the following definition:
Definition 4.4.2. Let Ξ be a random measure on R2. Then Ξ is asymptotically essentially
connected if there exists a random field R = {Rx}x∈Rd such that Ξ is stabilizing with R
as in Definition 4.4.1 and if for all n ≥ 1, whenever sup

y∈Q2n∩Q2
Ry < n/2, the following

assertions are satisfied:
(1) supp(ΞQn) 6= ∅

(2) supp(ΞQn) is contained in a connected component of supp(ΞQ2n)
The following result is stated in [70, Example 3.1] for a slightly modified version of

Definition 4.4.2. It is easy to check that it adapts in our case as follows:
Proposition 4.4.3. Let Λ denote the random measure on R2 defined by Λ(dx) = ν1(S ∩
dx), where S is the PVT generated by a planar homogeneous stationary Poisson point pro-
cess XS. Then Λ is stabilizing and asymptotically essentially connected with the following
stabilization field:

∀x ∈ R2, Rx := inf{‖x−XS,i‖, XS,i ∈ XS},
For simplicity, whenever x ∈ R2 and n ∈ N we denote:

R(Qn(x)) := sup
y∈Qn(x)∩Q2

Ry.

Finally, we will use coarse-graining arguments to map our continuum models to dis-
cretized percolation processes. Hence, we will need to define notions of openness and
closedness of crossroads and street segments (possibly the whole streets themselves). This
is done as follows:
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Definition 4.4.4 (Open/Closed crossroad). We say a crossroad v ∈ V is open if it is an
atom of the point process of relays Y , i.e. Y ({v}) = 1. In other words, v is open if there
is a relay at v. We say v is closed if it is not open.
Definition 4.4.5 (Open/Closed street segment). Let e ∈ E be a street and let s ⊆ e be a
non-empty street segment. We say s is open if either of the two following set of conditions
are satisfied:

1. |s| ≤ r

OR

2.

 |s| > r

∀c ⊂ s, (|c| = r , c connected and c topologically closed)⇒ Xλ(c) ≥ 1

In other words, an open street segment allows D2D signals to be transmitted over its
range, either by being shorter than the D2D range r or by not having a disconnection due
to a gap. We say that s is closed if s is not open.

4.4.3 Proof of Theorem 4.2.1
To prove Theorem 4.2.1, we switch back to the original network parameters and prove the
equivalent Reformulation 1. In other words, we aim at showing that G does not percolate
when p = 1 and λ, r are sufficiently small but positive. We will introduce a discrete site
percolation model on the square lattice constructed in such a way that if it does not
percolate, then neither does G. Proving the absence of percolation of the square lattice
model will then be done via appealing to its local dependence.

To this end, for n ≥ 1, say a site z ∈ Z2 is n-good if the following conditions are
satisfied:
(1) R(Qn(nz)) < n

(2) ∀e ∈ E if sz,e := e ∩Qn(nz) 6= ∅, then sz,e is closed.
Say a site z ∈ Z2 is n-bad if it is not n-good.

Our first claim is the following:
Lemma 4.4.6. Percolation of G implies percolation of the process of n-bad sites.
Proof. Assume G percolates and denote by C an unbounded (connected) component of G.
Denote Z = Zn := {z ∈ Z2 : C ∩Qn(nz) 6= ∅}. Since C is unbounded we have #(Z) =∞.
Observe for all z ∈ Z, z is n-bad since condition (2) of n-goodness is not satisfied (there
exists an open street segment intersecting Qn(nz)). Also, Z is almost surely connected 6

in Z2. This follows from the fact that the probability that some edge e ∈ E of the PVT
intersects Z2 is equal to zero 7. Hence, the process of n-bad sites percolates.

6z, z′ ∈ Z2 with z 6= z′ are said to be connected in Z2 whenever ‖z − z′‖1 = 1.
7This is true for the Voronoi tessellation generated by any stationary point process as a consequence

of the fact that such a process does not have points which are equidistant to a given, fixed location ; see
e.g. [12, Lemma 6.2.6].
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By Lemma 4.4.6, it suffices to prove that the process of n-bad sites does not percolate
(for some n) when λ and r are sufficiently small but positive. This will be done using the
fact that it is a 3-dependent percolation model on the square lattice.
Lemma 4.4.7. For z ∈ Z2, set ζz := 1{z is n-bad}. Then (ζz)z∈Z2 is a 3-dependent
random field for the supremum metric ‖·‖∞.

Proof. As a starting point, note that ∀z ∈ Z2, ζz = 1 − 1{z is n-good}. It is therefore
equivalent to prove that the process of n-good sites is 3-dependent.
For z ∈ Z2, set ξz = 1{z is n-good}. Let {z1, . . . zq} ⊂ Z2 be such that ∀i 6= j, ‖zi−zj‖∞ >
3. We want to show that the random variables (ξzi)1≤i≤q are independent. Since we are
dealing with indicator functions, this is equivalent to showing that:

E
( q∏
i=1

ξzi

)
=

q∏
i=1

E(ξzi).

Now, we have:

E
( q∏
i=1

ξzi

)
= E

E
 q∏
i=1

ξzi

∣∣∣∣∣∣Λ


= E

E
 q∏
i=1

1{R(Qn(nzi)) < n}
q∏
i=1

1{∀ e ∈ E, szi,e is closed}

∣∣∣∣∣∣Λ
 (4.4.1)

= E

 q∏
i=1

1{R(Qn(nzi) < n}E

 q∏
i=1

1{∀ e ∈ E, szi,e is closed}

∣∣∣∣∣∣Λ
, (4.4.2)

where we have used Λ-measurability of the random variables {Rx}x∈R2 in (4.4.2).

For 1 ≤ i ≤ q, set Azi := {∀ e ∈ E, szi,e is closed}. According to Definition 4.4.5,
for a given 1 ≤ i ≤ q, the event Azi only depends on the configuration of the random
measure Λ and of the Cox point process Xλ inside the square Qn(nzi). Therefore, given
Λ, the events {Azi : 1 ≤ i ≤ q} only depend on Xλ ∩ Qn(nzi), 1 ≤ i ≤ q. Since we have
∀i 6= j, ‖zi − zj‖∞ > 3, then the squares Qn(nzi) are disjoint. Moreover, given Λ, Xλ has
the distribution of a Poisson Point Process. Thus, by Poisson independence property, the
events (Azi)1≤i≤q are conditionally independent given Λ. Hence (4.4.2) yields:

E
( q∏
i=1

ξzi

)
= E

 q∏
i=1

1{R(Qn(nzi) < n}
q∏
i=1

E

1{∀ e ∈ E, szi,e is closed}
∣∣∣∣∣∣Λ
. (4.4.3)

Set f(ΛQn(x)) := E

1{∀ e ∈ E, sx,e is closed}

∣∣∣∣∣∣Λ
. Then f is a deterministic, bounded

and measurable function of ΛQn(x). Moreover, the set ϕ := {nz1, . . . , nzq} ⊂ R2 is a finite
subset of R2 satisfying:

∀i 6= j, ‖nzi − nzj‖∞ > 3n.
Since the infinite norm is always upper bounded by the Euclidean norm, we have ∀i 6=
j, ‖nzi − nzj‖2 > 3n, and so ϕ satisfies:

∀x ∈ ϕ, dist2(x, ϕ \ {x}) > 3n.
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Hence, by condition (3) in the definition of stabilization (Definition 4.4.1), the random
variables appearing in the right-hand side of (4.4.3) are independent. This yields:

E
( q∏
i=1

ξzi

)
=

q∏
i=1

E

1{R(Qn(nzi) < n}
q∏
i=1

E

1{∀ e ∈ E, szi,e is closed}
∣∣∣∣∣∣Λ


=
q∏
i=1

E (ξzi) ,

thus concluding the proof of the lemma.

Now we prove that the probability for an arbitrary site, which by stationarity can be
chosen to be the origin 0 ∈ Z2, to be n-bad can be made arbitrarily small when first
taking some large enough finite n and then positive small enough λ, r, as stated in the
following Lemma.

Lemma 4.4.8.
lim
n↑∞

lim
λ,r↓0

P(0 is n-bad) = 0

Proof. Note that we have:

P(0 is n-bad) = P
(
{R(Qn) ≥ n} ∪ {∃ e ∈ E : e ∩Qn 6= ∅ and open}

)
≤ P (R(Qn) ≥ n) + P (∃ e ∈ E : e ∩Qn 6= ∅ and open)
≤ P (R(Qn) ≥ n) (a)

+ P (∃ e ∈ E : 0 < |e ∩Qn| ≤ r) (b)
+ P (∃ e ∈ E : e ∩Qn satisfies condition (2) in Definition 4.4.5) . (c)

Take any ε > 0. By the stabilization property of the PVT (Proposition 4.4.3) we have
limn↑∞ P(R(Qn) ≥ n) = 0 and so we can fix n large enough to make the probability in (a)
smaller than ε/3. Then, Qn intersects almost surely zero or a finite number of edges
e ∈ E. Hence the probability in (b) converges to 0 when r → 0 and, consequently, we
can take r small enough to make the probability in (b) smaller than ε/3. Finally, for
given n (and independently of r), we can take λ small enough to make the probability
in (c) smaller than ε/3. Indeed, this latter probability is dominated by the probability
that Xλ(Qn) ≥ 1 and thus converges to 0 when λ → 0 for any finite n. This concludes
the proof of Lemma 4.4.8.

By Lemmas 4.4.7 and 4.4.8, using Theorem 4.1.1, for large enough n < ∞ and small
enough r > 0, λ > 0, the process of n-bad sites is stochastically dominated from above
by an independent site percolation model on the square lattice where the probability of
having an open site is arbitrarily small. Hence this independent site percolation model
is sub-critical. Consequently, we can make the process of n-bad sites non-percolating.
By Lemma 4.4.6 the same is true for G, thus concluding the proof of Reformulation 1 and
the equivalent Theorem 4.2.1.
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4.4.4 Proof of Theorem 4.2.2
As before, we shall prove the equivalent Reformulation 2. This resorts to showing that
for large enough p < 1 the connectivity graph G percolates for all r > 0 and large enough
λ <∞ (depending on r).

We will again use a renormalisation argument. To this end, consider the following
percolation model on the square lattice Z2. For n ≥ 1, say a site z ∈ Z2 is n-good if the
following conditions are satisfied:

(1) R(Q6n(nz)) < 6n.

(2) E ∩ Qn(nz) 6= ∅, i.e. the square Qn(nz) contains a full street (not just a street
segment).

(3) There exists e ∈ E ∩ Qn(nz) such that e is open, in the sense of Definition 4.4.5.
In other words, there exists an open street which is fully included in the square
Qn(nz).

(4) All crossroads in Q6n(nz) are open, in the sense of Definition 4.4.4.

(5) Every two open edges e, e′ ∈ E ∩Q3n(nz) are connected by a path in G ∩Q6n(nz).

We say a site z ∈ Z2 is n-bad if it is not n-good.

The n-good sites have been defined so as to satisfy the following implication.

Lemma 4.4.9. Percolation of the process of n-good sites implies percolation of the con-
nectivity graph G.

Proof. Let C be an infinite connected component of n-good sites. Consider z, z′ ∈ C such
that ‖z − z′‖1 = 1. Without loss of generality, assume z = (a, b) for some a, b ∈ Z and
z′ = (a+1, b). By conditions (2) and (3) in the definition of n-goodness, we can find open
edges e ∈ E ∩Qn(nz) and e′ ∈ E ∩Qn(nz′). Since

Qn(nz) = [na− n/2, na+ n/2]× [nb− n/2, nb+ n/2] ,
Qn(nz′) = [na+ n/2, na+ 3n/2]× [nb− n/2, nb+ n/2] ,

Q3n(nz) = [na− 3n/2, na+ 3n/2]× [nb− 3n/2, nb+ 3n/2] ,
Q6n(nz) = [na− 3n, na+ 3n]× [nb− 3n, nb+ 3n] ,

therefore, we have Qn(nz′) ⊂ Q3n(nz) and so e′ ∈ E ∩Qn(nz′) implies e′ ∈ E ∩Q3n(nz).
Since we also have e ∈ E∩Qn(nz) ⊂ E∩Q3n(nz) and e, e′ are both open, by conditions (4)
and (5) in the definition of n-goodness, e and e′ are connected by a path L in G∩Q6n(nz).
Therefore, the path L also connects e and e′ in G, thus giving rise to an infinite connected
component in G. This concludes the proof of Lemma 4.4.9.

Lemma 4.4.10. For z ∈ Z2, set ξz := 1{z is n-good}. Then (ξz)z∈Z2 is an 18-dependent
random field for the supremum metric ‖·‖∞.
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Proof. In the same way as in the proof of Lemma 4.4.7, it suffices to prove that for all
finite ψ = {z1, . . . zq} ⊂ Z2 such that ∀i 6= j, ‖zi − zj‖∞ > 18, we have:

E
( q∏
i=1

ξzi

)
=

q∏
i=1

E(ξzi).

Denote respectively by Az, Bz, Cz, Dz, Fz the events that the conditions (1), (2), (3), (4),
(5) in the definition of n-goodness hold for z ∈ Z2. We thus have:

∀z ∈ Z2, ξz = 1{Az}1{Bz}1{Cz}1{Dz}1{Fz}.

Note first that whenever z ∈ Z2, the indicators 1{Az} and 1{Bz} are Λ-measurable.
Thus, we have :

E
( q∏
i=1

ξzi

)
= E

E
 q∏
i=1

ξzi

∣∣∣∣∣∣Λ


= E

 q∏
i=1

1{Azi}1{Bzi}E

 q∏
i=1

1{Czi ∩Dzi ∩ Fzi}

∣∣∣∣∣∣Λ
 .

Now, note that conditioned on Λ, for each 1 ≤ i ≤ q, the event Czi ∩ Dzi ∩ Fzi only
depends on the configuration of Xλ and Y inside of the square Q6n(nzi). Since ψ satisfies
∀i 6= j, ‖zi − zj‖∞ > 18, then we have ∀i 6= j, ‖nzi − nzj‖∞ > 18n. As a matter of fact,
the squares {Q6n(nzi)) : 1 ≤ i ≤ q} are disjoint, i.e.

∀i 6= j,Q6n(nzi) ∩Q6n(nzj) = ∅.

By the complete independence of Poisson and Bernoulli processes (recall that, given Λ,
Xλ has the distribution of a Poisson point process and Y the distribution of a Bernoulli
point process), we have

E
( q∏
i=1

ξzi

)
= E

 q∏
i=1

1{Azi}1{Bzi}E

 q∏
i=1

1{Czi ∩Dzi ∩ Fzi}

∣∣∣∣∣∣Λ


= E

 q∏
i=1

1{Azi}1{Bzi}
q∏
i=1

E

1{Czi ∩Dzi ∩ Fzi}

∣∣∣∣∣∣Λ


= E

 q∏
i=1

1{Azi}
q∏
i=1

E

1{Bzi ∩ Czi ∩Dzi ∩ Fzi}

∣∣∣∣∣∣Λ


= E
[ q∏
i=1

1{R(Q6n(nzi) < 6n}f(ΛQ6n(nzi))
]
, (4.4.4)

where f(ΛQ6n(x)) := E (1{Bx ∩ Cx ∩Dx ∩ Fx} |Λ), a bounded measurable determinis-
tic function of ΛQ6n(x), and where by Λ-measurability of the events {Bzi : 1 ≤ i ≤ q},
we put their indicators into the conditional expectation given Λ. Now, the set ϕ :=
{nz1, . . . , nzq} ⊂ R2 is finite and satisfies:

∀i 6= j, ‖nzi − nzj‖∞ > 18n.
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Since the infinite norm is always upper bounded by the Euclidean norm, we have ∀i 6=
j, ‖nzi − nzj‖2 > 18n, and so ϕ satisfies:

∀x ∈ ϕ, dist2(x, ϕ \ {x}) > 18n = 3× 6n.

We can therefore apply condition (3) in Definition 4.4.1 (with n replaced by 6n) to get
that the random variables appearing in the right-hand side of (4.4.4) are independent.
Hence:

E
( q∏
i=1

ξzi

)
=

q∏
i=1

E
[
1{R(Q6n(nzi) < 6n}f(ΛQ6n(nzi))

]

=
q∏
i=1

E(ξzi),

which concludes the proof of Lemma 4.4.10.

Again, we prove that the probability for an arbitrary site to be n-good can be made
arbitrarily large:

Lemma 4.4.11. For any r > 0 we have

lim
n↑∞

lim
p↑1, λ↑∞

P(0 is n-good) = 1

Proof. We shall prove that

lim
n↑∞

lim
p↑1, λ↑∞

P(0 is n-bad) = 0.

Take any ε > 0. Denote respectively by A,B,C,D, F the events that the conditions (1),
(2), (3), (4), (5) in the definition of n-goodness hold for z = 0. Denote also by Ã the
event that R(Q6n) < n/2. Note that Ã ⊂ A and thus we have:

P(0 is n-bad) = P(Ac ∪Bc ∪ Cc ∪Dc ∪ F c)
≤ P(Ãc ∪Bc ∪ Cc ∪Dc ∪ F c)
≤ P(Ãc) + P(Bc) + P(B ∩ Cc) + P(Dc) + P(Ã ∩D ∩ F c).

First, partitioning the square Q6n into 122 = 144 subsquares (Qi)1≤i≤144 of side length
n/2, we get:

P(Ãc) = P(R(Q6n) ≥ n/2)

= P
(144⋃
i=1
{R(Qi) ≥ n/2}

)
≤ 144 P(R(Qn/2) ≥ n/2) by stationarity of the R’s.

Therefore, by condition (2) of Definition 4.4.1, we get limn↑∞ P(Ãc) = 0. Also

P(Bc) = P(E ∩Qn = ∅)
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and thus limn↑∞ P(Bc) = 0. Fix n large enough such that P(Ãc) ≤ ε/5 and P(Bc) ≤ ε/5.
For such n, Qn, Q3n and Q6n intersect almost surely zero or a finite number of edges and
vertices.

Let’s now deal with the quantity P(B ∩ Cc). We have:

P(B ∩ Cc) = P(E ∩Qn 6= ∅ and∀ e ∈ E ∩Qn : e is closed).

This latter probability converges to 0 when λ → ∞ (for fixed n and r > 0). Hence, for
large enough λ <∞ (depending on n, r) we have P(B ∩ Cc) ≤ ε/5.

Similarly,

P(Dc) = P(∃v ∈ V ∩Q6n : v is closed)

converges to 0 when p ↑ 1 (for fixed n and r > 0), hence, for large enough p < 1, we have
P(Dc) ≤ ε/5.

Regarding the event Ã ∩D ∩ F c, note that under the event Ã, we have

R(Q6n) < n/2 < 3n/2.

Hence, by asymptotic essential connectedness (see Definition 4.4.2), we have that supp(ΛQ3n) 6=
∅ and, moreover, there exists a connected component ∆ of supp(ΛQ6n) such that supp(ΛQ3n) ⊂
∆ ⊂ supp(ΛQ6n). Therefore

Ã ∩D ∩ F c ⊂ {∃e ∈ E ∩Q6n : e is closed}.

Clearly, for fixed n, r and independently of p,

lim
λ→∞

P(∃e ∈ E ∩Q6n : e is closed) = 0.

Hence, we can find λ <∞ large enough (depending on n, r) such that P(Ã∩D∩F c) ≤ ε/5.
Since ε > 0 was arbitrary, this concludes the proof of Lemma 4.4.11.

By Lemmas 4.4.10 and 4.4.11, using Theorem 4.1.1, the process of n-good sites is
stochastically dominated from below by a supercritical Bernoulli process for large enough
n < ∞, λ < ∞, p < 1. Thus, we can make the process of n-good sites percolating. By
Lemma 4.4.9, the connectivity graph G with these values of λ, p percolates, thus concluding
the proof of Reformulation 4.2.2 and the equivalent Theorem 4.2.2.

4.4.5 Proof of Theorem 4.2.3
Using Reformulation 3, proving Theorem 4.2.3 amounts to showing that G percolates
when λ = 0, p < 1 is sufficiently large and r < ∞ is sufficiently large. We thus assume
throughout the rest of this subsection that λ = 0, r and p are the varying parameters and
we still refer to G for the associated connectivity graph.

Say a street e ∈ E is hard-geometric-open if its length is smaller than the connectivity
threshold r: |e| ≤ r. If not, say e is hard-geometric-closed.

Once again, we will use a renormalization argument. Since the development is very
similar to the one exposed in the previous subsection, we only give details on which mod-
ifications should be brought to the proof of Theorem 4.2.2 to prove Theorem 4.2.3.

To this end, we consider now the following percolation model on the square lattice Z2.
For n ≥ 1, say a site z ∈ Z2 is n-good if it satisfies the following conditions:
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(1) R(Q6n(nz)) < 6n.

(2) E ∩Qn(nz) 6= ∅, i.e. the square Qn(nz) contains a full street.

(3̂) ∃ e ∈ E ∩Qn(nz) such that |e| ≤ r. In other words, there exists a hard-geometric-
open street that is fully included in the square Qn(nz).

(4) All crossroads in Q6n(nz) are open, in the sense of Definition 4.4.4.

(5̂) Every two hard-geometric-open streets e, e′ ∈ E ∩ Q3n(nz) (i.e. such that |e| ≤ r
and |e′| ≤ r) are connected by a path in G ∩Q6n(nz).

We say a site z ∈ Z2 is n-bad if it is not n-good.

Note that this new definition of n-goodness is exactly the same as the one given in the
proof of Theorem 4.2.2 but with conditions (3) and (5) being replaced by (3̂) and (5̂). In
other words, openness is replaced by hard-geometric-openness.

Since we are now dealing with hard-geometric openness and all the other conditions
are unchanged, the following is straightforward by adapting the proof of Lemma 4.4.9:

Lemma 4.4.12. Percolation of the process of n-good sites implies percolation of the con-
nectivity graph G.

In the same way, we get:

Lemma 4.4.13. For z ∈ Z2, set ξz := 1{z is n-good}. Then (ξz)z∈Z2 is an 18-dependent
random field for the supremum metric ‖·‖∞.

Proof. It suffices to adapt the proof of Lemma 4.4.10 as follows.
Denote respectively by Az, Bz, Ĉz, Dz, F̂z the events that the conditions (1), (2), (3̂),

(4) and (5̂) in the definition of n-goodness hold for z ∈ Z2.
Note first that whenever z ∈ Z2, the indicators 1{Az}, 1{Bz}, 1{Ĉz} are all Λ-

measurable. Doing the exact same calculations as in the proof of Lemma 4.4.10, we arrive
at dealing with the quantity

E
( q∏
i=1

ξ′zi

)
= E

 q∏
i=1

1{Azi}1{Bzi}1{Ĉzi}E

 q∏
i=1

1{Dzi ∩ F̂zi}

∣∣∣∣∣∣Λ
 .

Now, note that conditioned on Λ, for each 1 ≤ i ≤ q, the event Dzi ∩ F̂zi only depends
on the configuration of Y inside of the square Q6n(nzi). We can thus proceed as in the
aforementioned proof by using the complete independence of Y (recall that, given Λ, Y has
the distribution of a Bernoulli point process). Finally, it is clear that 1{Ĉz} is a bounded

deterministic function of ΛQn(nz) and that E
1{Dz ∩ F̂z}

∣∣∣∣∣∣Λ
 is a bounded deterministic

function of ΛQ6n(nz). This allows to proceed exactly as in the proof of Lemma 4.4.10 and
conclude.

Finally, for the hard-geometric model, we still have:
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Lemma 4.4.14.
lim
n↑∞

lim
p↑1,r↑∞

P(0 is n-good) = 1

Proof. Again, we shall prove that:
lim
n↑∞

lim
p↑1,r↑∞

P(0 is n-bad) = 0.

Take any ε > 0. We adapt the proof of Lemma 4.4.11 as follows. Denote respectively by
A,B, Ĉ,D, F̂ the events that the conditions (1), (2), (3̂), (4) and (5̂) in the definition of
n-goodness hold for z = 0. Denote also by Ã the event that R(Q6n) < n/2. As in the
aforementioned proof, we have

P(0 is n-bad) ≤ P(Ãc) + P(Bc) + P(B ∩ Ĉc) + P(Dc) + P(Ã ∩D ∩ F̂ c).
In the above inequality, we deal with the first, second and fourth quantities as before and
so we can fix n large enough such that P(Ãc) ≤ ε/5 and P(Bc) ≤ ε/5. For such n, Qn, Q3n
and Q6n intersect almost surely zero or finitely many edges and vertices. We can then fix
p < 1 large enough such that P(Dc) ≤ ε/5.

Let’s now deal with the quantity P(B ∩ Ĉc). We have:

P(B ∩ Ĉc) = P(E ∩Qn 6= ∅ and ∀ e ∈ E ∩Qn |e| > r)

= E

1{E ∩Qn 6= ∅}
∏

e∈E∩Qn
1{|e| > r}

 .
Note first that on the event {E∩Qn 6= ∅}, the latter product is non-empty. Moreover,

since E ∩Qn contains finitely many edges (recall that n is fixed) and since we have
∀e ∈ E, lim

r↑∞
1{|e| > r} = 0 a.s.,

by dominated convergence, we have that the latter expectation converges to 0 when r ↑ ∞
(for fixed n). Therefore, limr↑∞ P(B ∩ Ĉc) = 0 (for fixed n).

Regarding the event Ã ∩ D ∩ F̂ c, we proceed as before and use asymptotic essential
connectedness to get

Ã ∩D ∩ F̂ c ⊂ (∃e ∈ E ∩Q6n : e is hard-geometric-closed)
Clearly, for fixed n,

lim
r↑∞

P(∃e ∈ E ∩Q6n : e is hard-geometric-closed) = lim
r↑∞

P(∃e ∈ E ∩Q6n : |e| > r)

= 0

Hence, we can find r < ∞ large enough (depending on n) such that P(B ∩ Ĉc) ≤
ε/5 and P(Ã ∩ D ∩ F̂ c) ≤ ε/5. Since ε > 0 was arbitrary, this concludes the proof of
Lemma 4.4.14.

By Lemmas 4.4.13 and 4.4.14, using Theorem 4.1.1, the process of n-good sites is
stochastically dominated from below by a supercritical Bernoulli process for large enough
n, p < 1, r < ∞. Thus, we can make the process of n-good sites percolating. By
Lemma 4.4.12, the connectivity graph G with these values of p and r percolates, thus
concluding the proof of Theorem 4.1.1.
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4.4.6 Proof of Corollaries 4.2.2.1 and 4.2.3.1
We now prove the corollaries 4.2.2.1 and 4.2.3.1 as direct consequences of Theorems 4.2.2
and 4.2.3 and come back to the dimensionless parameters (p, U,H) in terms of which the
Corollaries are stated.

Proof of Corollary 4.2.2.1

p∗ < 1 By Theorem 4.2.2, we can find large enough p ∈ (0, 1) such that P (p, U,H) > 0
for any H ∈ [0,∞) and large enough U < ∞ depending on the chosen H. Choosing
H = 0, we thus obtain the existence of some p ∈ (0, 1) such that P (p, U, 0) > 0 for
some U < ∞. Now, as noted in Section 4.2.1, the case H = 0 corresponds to PVT site
percolation and the percolation probability P (p, U,H) =: PPV T (p) does not depend on
U . Thus, PPV T (p) > 0 for some p < 1, and so p∗ < 1.

p∗ > 0 It is known that the degree of all sites of a planar PVT is almost surely equal to
3, as a consequence of the fact that, almost surely, no 4 points of a homogeneous Poisson
point process in R2 are cocyclic, see e.g. [12, Exercise 11.3.1]. Moreover, S, being a planar
tessellation, is locally finite. This observation combined with the degree bound allows to
use an adapted path-count argument, as follows.

First, denote by G̃p =: Gp,0,0 the random graph arising from the PVT site percolation
process with parameter p and note that percolation of G̃p is equivalent to the percolation
of Gp,U,0 whenever p ∈ [0, 1] and U ≥ 0 (indeed, the fact that H = 0 makes the percolation
independent of the Cox points in our model). Hence:

PPV T (p) = P
(
G̃p has an infinite connected component

)
. (4.4.5)

Denote by Φ the point process of crossroads (i.e. vertices of the PVT S) and denote
by P0 its Palm probability. Since Y is a doubly stochastic Bernoulli point process sup-
ported by the crossroads, the conditional distribution of Y given S is the same under
the stationary probability P and under the Palm probability P0. As a matter of fact, for
every crossroad v ∈ V , we have: P0(Y ({v}) > 0 |S) = P(Y ({v}) > 0 |S) = p. Moreover,
conditionally to the realisation of the PVT S, the states of distinct crossroads (i.e. open
or closed) remain independent.

Fix some n ≥ 1. A self-avoiding path γ of length n starting from the typical crossroad
0 is a sequence of crossroads 0 = v1, . . . , vn ∈ V with vi 6= vj for i 6= j and such that vi
and vi+1 are adjacent in S whenever 1 ≤ i ≤ n − 1. If the typical crossroad 0 belongs
to an infinite connected component in G̃p (which we denote by 0 ∞), there must exist
such a path with a Bernoulli point present at all crossroads of the path. Denote this event
by An.
Then we have:

P0(0 ∞) ≤ P0(An).
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Let SAPn denote the set of self-avoiding paths of length n starting from the typical
crossroad 0. By the union bound, we have:

P0(An) ≤ E0

 ∑
(v1,...,vn)=γ∈SAPn

P0
(

n⋂
i=1
{Y ({vi}) > 0}

∣∣∣∣S
)

= E0

 ∑
(v1,...,vn)=γ∈SAPn

pn


= E0 [#(SAPn)pn] ,

where #(SAPn) denotes the cardinal of SAPn and where we have used the conditional
independence of the states of the vertices as well as the conditional distribution of Y given
S to get the first equality. Now, using the fact that ∀v ∈ V, deg v = 3 a.s., we get that
#(SAPn) ≤ 3× 2n−1. Hence:

P0(0 ∞) ≤ 3× 2n−1pn = 3
2(2p)n−1.

When p < 1/2, the quantity in the right-hand side converges to 0 as n ↑ ∞. Hence, for
p < 1/2, we have P0(0 ∞) = 0.
To conclude that G̃p does not percolate, we proceed as follows. For a crossroad v ∈ V ,
denote by {v  ∞} the event that v belongs to an infinite connected component of the
PVT site percolation graph G̃p. By Markov’s inequality, we have:

P
(
G̃p has an infinite connected component

)
=: P(∃v ∈ V : v  ∞)
≤ E [#{v ∈ V : v  ∞}] ,

and so, by (4.4.5), we get:

PPV T (p) ≤ E [#{v ∈ V : v  ∞}] . (4.4.6)

Denote by λ0 := 2λS the intensity of the point process Φ of crossroads of S and fix some
p < 1/2. By the Campbell-Little-Mecke-Matthes theorem (Theorem 1.2.10), we have:

E [#{v ∈ V : v  ∞}] = E
[∫

R2
1{x ∞}Φ(dx)

]
= λ0

∫
R2

E0 [1{0 ∞}] dx

= λ0

∫
R2

P0(0 ∞)dx

= 0,

where we have used the fact that p < 1/2 ⇒ P0(0  ∞) = 0 to get the last equality.
By (4.4.6), we have PPV T (p) = 0 whenever p < 1/2 and thus p∗ ≥ 1/2 > 0.
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Proof of Corollary 4.2.3.1

Hc <∞ By Theorem 4.2.1, we can fix someH ′ <∞ and U ′ <∞ such that P (1, U ′, H ′) =
0. Note that since P (1, 0, 0) = 1, we have H ′ > 0. By monotonicity of the model, P is
increasing in U and thus P (1, 0, H ′) = 0. Moreover, P is also decreasing in H and so
H ≥ H ′ ⇒ P (1, 0, H) = 0. Hence, by contraposition, P (1, 0, H) > 0 ⇒ H < H ′.
This latter condition is possible since H ′ > 0. Thus, we have the following inclusion of
non-trivial sets:

{H ≥ 0 : P (1, 0, H) > 0} ⊆ [0, H ′[

and so, taking the suprema, we obtain Hc ≤ H ′ <∞.

Hc > 0 By Theorem 4.2.3, we can fix large enough p < 1 and small enough H > 0
such that P (p, 0, H) > 0. By monotonicity of the model, P is increasing in p and so
P (1, 0, H) > 0. Hence Hc ≥ H > 0.

4.5 Conclusion
In this chapter, we have studied the case of canyon shadowing, where only LOS communi-
cations along the edges of the PVT street system S supporting the network are possible. In
such a case, the presence of relays at crossroads (given by the doubly stochastic Bernoulli
process with parameter p) are essential to ensure connectivity between adjacent streets
of S. Such a doubly stochastic model with restrictive connectivity conditions between
network nodes has not been considered in the literature before.

Introducing relevant dimensionless scale-invariant parameters, namely the mean num-
ber of users U and the mean number of D2D hops H per typical street of S, we have
identified several particular cases of our network percolation model, some of which have
not been considered in the literature earlier. Furthermore, the percolation of the network
connectivity graph G = Gp,U,H exhibits phase transitions in U between several connectivity
regimes corresponding to different ranges of network parameters (p,H):

• The permanently subcritical range, where percolation of G is possible no matter how
small the density of users. This means that large-scale connectivity of the network
is relay-limited, in so far as it can be solely ensured by relays present at crossroads.

• The critical range, where percolation of G is possible with a positive and finite
density of users. Large-scale connectivity of the network is thus called relay-and-
user-limited, as it crucially depends on both relays and network users in sufficient
amounts.

• The permanently supercritical range, where G does not percolate, whatever large
the density of users. Large-scale connectivity of the network is thus not possible
with a finite density of users, regardless of all other network parameters as long as
they are not trivial.
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4.5. Conclusion

Estimating the frontiers between these different connectivity regimes is of critical im-
portance for network design and economic planning. Indeed, these frontiers indicate to
operators how large-scale connectivity of the network can be ensured (either solely by
relays or by both users and relays) and what are the minimal network parameters allow-
ing for long-range multihop D2D communications. We thus performed simulations of our
model and, using efficient algorithms adapted to our problem, we proposed estimations
of the critical network parameters and quantities delimiting the different connectivity
regimes of the network.

Our results bring both qualitative (existence of the different connectivity regimes) and
quantitative arguments (estimations of the frontiers between these connectivity regimes)
to possible deployment scenarios of multihop D2D networks.
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Chapter 5
Extending the canyon shadowing assumption:
two variants

All models are approximations.
Essentially, all models are wrong, but
some are useful.

George E.P. Box

In Chapter 4, we considered the case of canyon shadowing in our model, meaning that
only line-of-sight (LOS) communications between network nodes located on the same
street are possible. Such highly restrictive connectivity conditions have heavy conse-
quences: relays must be installed by operators at crossroads of the streets to ensure
connectivity between adjacent streets. What is more, we demonstrated that if less than
p∗ ≈ 71.3% of crossroads are equipped with a relay, then good connectivity of the network
is not possible, regardless of all the other network parameters. In urban scenarios, where
street systems are particularly dense, deploying so many relays is not feasible, as it would
induce considerable costs for operators.

Furthermore, the canyon shadowing assumption is too restrictive for modelling real-
world networks, where connections between two nodes are possible even if they are not in
LOS. In particular, scattering and reflections of the signal may allow for non-line-of-sight
communications (NLOS) and, more importantly, communications between network nodes
that are not located on the same street of the support of the network.

In this chapter, we thus propose two complementary approaches for relaxing the canyon
shadowing assumption:

• On a theoretical perspective, we study the general case where r′ > 0 in the D2D
network model introduced in Section 3.3. Considering r′ > 0 will allow to connect
adjacent streets without needing a relay.

• On a more applied perspective, since relays are located at crossroads, we propose
to see each crossroad as some geometric figure of non-null area, where relaying of
the signal can be done either by a relay (Bernoulli point) or by a network user (Cox
point).
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We will see how both approaches complete each other and are related to a crucial network
design consideration for an operator: relay deployment.

This chapter is partly based on the publication [88].

5.1 Introduction

5.1.1 The bottleneck of signal relaying at crossroads
In our modelling, we see that crossroads play a critical role for large-scale connectivity of
the network. Indeed, the possibility of having long-range communications in the network
via successive D2D hops crucially relies on signal relaying at crossroads and on establishing
connectivity between adjacent streets of S. Connecting adjacent streets by crossing their
intersections (crossroads) thus constitutes a bottleneck for large-scale connectivity of the
network and one may even expect that if the probability of directly relaying the signal
at a crossroad v ∈ V is uniformly small for every v ∈ V , then the emergence of large
connected components in the network graph (and so percolation) will be very unlikely.

In the canyon shadowing case studied in Chapter 4, signal relaying at crossroads could
only be done by the presence of relays (Bernoulli points). We have proven that this induces
a considerable proportion of relays needed to get good connectivity of the network (at
least p∗ ≈ 71.3%). However, deploying so many relays may not be feasible in practice,
mostly for economic reasons. Moreover, the canyon shadowing assumption does not take
into account additional connections between network nodes that are not located on the
same street of the PVT street system S.

Noticing this previous bottleneck of signal relaying at crossroads and the restrictions
arising from that the canyon shadowing assumption, the need for refined models appears
clearly.

5.1.2 The need for refined models
In this chapter, we propose two approaches to relax the canyon shadowing assumption.

Our first approach is of theoretical nature. We study the general case of the model
introduced in Section 3.3 by considering r′ > 0, thus adding the possibility of direct
connections between adjacent streets of the PVT S without requiring for a Bernoulli
relay to be present at their crossroad. Our main interest here will be to see whether
allowing for supplementary connections between adjacent streets will allow to explore the
permanently subcritical range that existed in the canyon shadowing case (see the blue
regions on Figures 4.1a and 4.1b). In particular, one may wonder whether percolation
of Gp,λ,r,r′ may happen under a non-trivial density of users 0 < λ < ∞ when the relay
proportion p is below the PVT site percolation threshold, i.e. p < p∗. We shall prove this
is indeed the case.

In a more applied fashion, our second approach will consist in adopting new models
for the geometry of crossroads. Indeed, the street system being a planar PVT, crossroads
are punctual and hence have a null area. As mentioned in Section 3.3, the fact that
crossroads are punctual, combined with the Cox modelling for network users, implies that
the probability of finding a network user (i.e. a Cox point) at a crossroad is exactly 0.
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In real-world street systems, however, crossroads have a non-null area and streets have
a certain width. Taking into account a non-null area for crossroads in our model could
allow for a positive probability of having network users located at crossroads and relaying
the signal. This, in turn, would mean that less relays could be needed for ensuring good
connectivity in the network. Keeping this in mind, we thus propose a more applied
approach to consider crossroads with non-null area in our model. Resorting to numerical
simulations, in the same fashion as in Section 4.2.4, we will see how this results in requiring
much less relays for ensuring good connectivity of the network.

5.2 Percolation of the general network graph Gp,λ,r,r′

5.2.1 Context
We now treat the general case where r′ > 0 in the D2D network model presented in Sec-
tion 3.3. The elementary bricks of the network model have been recalled in Section 4.1.2:
the street system is given by a PVT S, the network users are given by the Cox process
Xλ and the relays by the (doubly stochastic) Bernoulli process Y . Moreover, we adopt
the same terminology as the one introduced in the aforementioned section, mainly:

• Edges of the PVT street system S are called streets. The set of streets of S is
denoted by E.

• Vertices of the PVT street system S are called crossroads. The set of crossroads of
S is denoted by V .

• A street segment s ⊂ e is a topologically connected subset of a street e ∈ E.

The only difference with the global context introduced in Section 4.1.2 is that we now
consider the case where the range for D2D connections due to scattering or reflections
on crossroads is now positive: r′ > 0. The network is thus modelled by the connectivity
graph G = Gp,λ,r,r′ , where, recall, two network nodes Zi, Zj ∈ Z := Xλ ∪ Y can now be
connected by an edge if they satisfy either of the following sets of conditions:∃e ∈ E : Zi ∈ e and Zj ∈ e

‖Zi − Zj‖2 ≤ r
(3.3.1)

OR
Zi ∈ Xλ, Zj ∈ Xλ

eZi 6= eZj
∃v ∈ V, : eZi ∩ eZj =: {v}
‖Zi − v‖2 + ‖Zj − v‖2 ≤ r′.

(3.3.2)

Contrary to the canyon shadowing case (r′ = 0) studied in Chapter 4, the positivity
of r′ may allow one to ensure connectivity between two adjacent streets without requiring
a relay to be present at the crossroad of these streets.
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5.2.2 Results
As has been done in Chapter 4, denote the percolation probability by

P (p, λ, r, r′) := P(Gp,λ,r,r′ has an unbounded connected component)

and observe P is increasing in p, in λ, in r and in r′. For given p ≥ 0, 0 < r ≤ ∞ and
0 < r′ ≤ r, consider the following critical value for the user intensity λ:

λc(p, r, r′) := inf{λ ≥ 0 : P (p, λ, r, r′) > 0},

with λc(p, r, r′) :=∞ if P (p, λ, r, r′) = 0 for all λ ≥ 0.
As in Section 4.2, our goal is to show that there is a region (connected subset) of parame-
ters (p, r, r′) such that 0 < λc(p, r, r′) <∞. Such a region is where the percolation of the
connectivity graph Gp,λ,r,r′ exhibits a non-trivial phase transition in the density of users.
The following results ensure the existence of this region:

Theorem 5.2.1 (Existence of sub-critical intensities of users). Fix r′ > 0. Then, for
small enough value of 1− (1− p)e−3λr′ > 0, we have P (p, λ, r, r′) = 0 for all r ≥ r′.

In the above theorem, note that both p and λ need to be small enough to ensure
that P (p, λ, r, r′) = 0. The mutual variation of p and λ is captured by the constant
deterministic expression 1− (1− p)e−3λr′ .

Theorem 5.2.2 (Existence of super-critical intensities of users). For all 0 < r′ ≤ r ≤ ∞
and large enough λ < ∞ (depending on r and r′), we have that P (0, λ, r, r′) > 0 and,
consequently, by monotonicity of the model, P (p, λ, r, r′) > 0 for all p ∈ [0, 1].

The proof of Theorem 5.2.1 can be done in a rather simple way by stochastically
dominating Gp,λ,r,r′ from above by a 1-dependent percolation model on S and using a
path-count argument. The proof of Theorem 5.2.2 requires the use of renormalization
techniques similar to the ones used in Section 4.4 and via appealing to the local dependence
of S.

5.2.3 Proof of Theorem 5.2.1
Fixing r′ > 0, proving Theorem 5.2.1 is equivalent to proving that G = Gp,λ,r,r′ does not
percolate when p, λ are sufficiently small but positive for all r ≥ r′. We will introduce a
site percolation model on the PVT street system S defined in such a way that if it does
percolate, G does not. Proving the percolation of the site percolation model will be done
using the fact that it features a conditional 1-dependence, given the realisation of the
street system S.

We first define our site percolation model on the PVT S by defining closed and open
crossroads in the following way:

Definition 5.2.3 (Open/Closed crossroad). A crossroad v ∈ V is said to be closed if the
following conditions are satisfied:

(1) Y ({v}) = 0, i.e. there isn’t a fixed relay at v.
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(2) Xλ(B(v, r′) ∩ Ev) = 0 where B(v, r′) := {x ∈ R2 : ‖x − v‖2 ≤ r′} is the closed
Euclidean ball with centre v and radius r′ and Ev := {e ∈ E : v ∈ e} is the set
of streets of S that are incident to v. In other words, there are no Cox points on
incident streets to v that are within distance r′ of v.

We say that v is open if it is not closed.

Note that the definition is independent of the choice of r.
Closed crossroads somehow block the routing of the signal. Indeed, if v is closed, the
connection cannot be ensured between two streets incident to v: LOS connections are
blocked by the absence of a fixed relay and connections due to reflections or scattering
are blocked because no Cox points are within a distance r′ from v. This is formalised as
follows:

Lemma 5.2.4. Fix a set of parameters (λ, p, r′, r) with λ > 0, p > 0, 0 < r′ ≤ r <∞. If
the process of open crossroads does not percolate, then neither does G.

Proof. It is equivalent to show that if G percolates, then so does the process of open
crossroads. Therefore, assume G percolates and denote by C an unbounded connected
component of G. We claim that, without loss of generality, we can think of C as being
supported by S. Indeed, for any edge Zi! Zj in C, we are in one of the two following
cases:

• Either Zi and Zj belong to the same edge of S, in that case the edge Zi ! Zj
is indeed supported by S. For instance, this is the case for all the connections
Zi! Zi+1, 2 ≤ i ≤ 5 on Figure 5.1.

• Or Zi and Zj belong to different edges of S. Then, by definition of the connection
mechanism, eZi and eZj are incident to a common crossroad v ∈ V and so we
virtually divert the connection Zi! Zj by considering the following path along S:
Zi! v! Zj. An example is provided by the connection Z1 ! Z2 on Figure 5.1:
the direct orange dotted connection is diverted along S by the black thick lines.

Doing so is just a matter of perspective in considering the connections of C and does
not change the nature of C: in particular, this new version of C along the edges of S
remains unbounded and connected.

Now, consider the set C ∩ V =: {v ∈ V : v ∈ C}. Since C is unbounded, one must
have #(C ∩ V ) = ∞. Now, we claim that each v ∈ C ∩ V is an open crossroad, in the
sense of Definition 5.2.3. Indeed, for each v ∈ C ∩ V , there is either a relay at v, so
Y ({v}) > 0 ; or there is a connection in C between two edges of S that are incident to
v and so Xλ(B(v, r′)) ≥ 2 > 0. Moreover, any two consecutive crossroads in C ∩ V are
connected in S, since C is connected.
Hence C gives rise to an infinite connected component of open crossroads and so the
process of open crossroads percolates.

By Lemma 5.2.4, it suffices to prove that the process of open crossroads does not
percolate for sufficiently small but positive p > 0 and λ > 0. This will be done by using
the fact that the process of open crossroads features short-range dependencies only. More
precisely, we have the following:
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Z4

Z1

Z2

Z3

Z5

Z6

Figure 5.1 – Illustration of the model and of some part of the component C. Blue lines
represent the edges of S, red points represent Cox points, the green point represents a
Bernoulli point and orange dotted segments represent connections in the connectivity
graph G. When considering C, if a connection is already along S, it is left unchanged (e.g.
Z2 ! Z3). If a connection is between two points that are on different edges of S, we
divert it by following the edges of S: for instance the connection Z1 ! Z2 is diverted by
the black thick lines.

Lemma 5.2.5. For v ∈ V , denote Iv := 1{v is open}. Denote by d the graph dis-
tance on the PVT street system S. Then, for every finite set of distinct crossroads
U = {v1, . . . , vq} ⊂ V with the property that ∀i 6= j, d(vi, vj) > 1, the random variables
(Iv)v∈U are independent given Λ. In other words, conditioned on Λ (or, equivalently, on
the street system S), the process of open crossroads is 1-dependent for the graph distance
d of S.

Proof. As a starting point, note that it is equivalent to show that the process of closed
sites is 1-dependent. Therefore, set Ĩv := 1{v is closed} whenever v ∈ V and let us show
the property with Iv replaced by Ĩv. Let U be a finite subset of V as in Lemma 5.2.5. To
prove the conditional independence of the random variables (Ĩv)v∈U , it suffices to establish
the following:

E

 q∏
i=1

Ĩvi

∣∣∣∣∣∣Λ
 =

q∏
i=1

E
[
Ĩvi |Λ

]
We have:

E

 q∏
i=1

Ĩvi

∣∣∣∣∣∣S
 = E

 q∏
i=1

1{Y ({vi}) = 0}
q∏
i=1

1{Xλ(B(vi, r′) ∩ Evi) = 0}

∣∣∣∣∣∣Λ


= E

 q∏
i=1

1{Y ({vi}) = 0}

∣∣∣∣∣∣Λ
E

 q∏
i=1

1{Xλ(B(vi, r′) ∩ Evi) = 0}

∣∣∣∣∣∣Λ
 ,

where we have used the fact that Y and Xλ are conditionally independent given Λ in the
last line. Now, note that given Λ, i 6= j ⇒ vi 6= vj and so the events 1{Y ({vi}) = 0 : 1 ≤
i ≤ q} are conditionally independent given Λ. Thus:

E

 q∏
i=1

1{Y ({vi}) = 0}

∣∣∣∣∣∣Λ
 =

q∏
i=1

E [1{Y ({vi}) = 0} |Λ] .
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Moreover, given Λ, Xλ has the distribution of a Poisson point process with intensity
measure λΛ. Moreover, note that we have d(vi, vj) > 1 whenever i 6= j, so that every two
distinct crossroads of U are at least at graph distance 2. Therefore, we have Evi ∩Evj = ∅
whenever i 6= j. As a matter of fact, given Λ, the sets B(vi, r′) ∩ Evi , 1 ≤ i ≤ q are
disjoint, and so the events Xλ(B(vi, r′) ∩ Evi) = 0 are independent. Hence:

E

 q∏
i=1

1{Xλ(B(vi, r′) ∩ Evi) = 0}

∣∣∣∣∣∣Λ
 =

q∏
i=1

E
[
1{Xλ(B(vi, r′) ∩ Evi) = 0} |Λ

]
.

In all, we have:

E

 q∏
i=1

Ĩvi

∣∣∣∣∣∣Λ
 =

q∏
i=1

E [1{Y ({vi}) = 0} |Λ]
q∏
i=1

E
[
1{Xλ(B(vi, r′) ∩ Evi) = 0} |Λ

]

=
q∏
i=1

E [1{Y ({vi}) = 0} |Λ]E
[
1{Xλ(B(vi, r′) ∩ Evi) = 0} |Λ

]

=
q∏
i=1

E
[
1{Y ({vi}) = 0}1{Xλ(B(vi, r′) ∩ Evi) = 0} |Λ

]

=
q∏
i=1

E
[
Ĩvi |Λ

]
,

where we have again used the conditional independence of Xλ and Y given Λ to reunite
both conditional expectations into a single one. This concludes the proof of Lemma 5.2.5.

We finally prove that the process of good crossroads does not percolate does not
percolate for small enough p > 0, λ > 0:

Lemma 5.2.6. Fix r′ > 0. For small small enough p > 0, λ > 0, the process of open
crossroads does not percolate.

Proof. Denote by Φ the point process of crossroads of S and denote by P0 its Palm
probability. Note first that Lemma 5.2.5 and its proof remain true if we replace the
stationary probability P by P0. Indeed, this is due to the fact that the joint distribution of
Xλ and Y given the random support Λ remains the same under P and P0 (see [38, Example
13.1(a)] or [31, Section 5.2.3] for more details).
Next, we claim that given Λ, the Palm probability that any crossroad v ∈ V is open is
upper-bounded by q = qp,λ,r′ := 1− (1− p)e−3λr′ .
Indeed, we have:

P0(v is open |Λ) = 1− P0(v is closed |Λ)
= 1− P0

[
Y ({v}) = 0, Xλ(B(v, r′) ∩ Ev) = 0 |Λ

]
= 1− E0

[
1{Y ({v}) = 0}1{Xλ(B(v, r′) ∩ Ev) = 0} |Λ

]
= 1− E0 [1{Y ({v}) = 0} |Λ]E0

[
1{∩Xλ(B(v, r′) ∩ Ev) = 0} |Λ

]
= 1− (1− p)E0(e−λΛ(B(v,r′)∩Ev) |Λ)
= 1− (1− p)e−λΛ(B(v,r′)∩Ev), (5.2.1)

123



Chapter 5. Extending the canyon shadowing assumption: two variants

where we have used the conditional independence of Xλ and Y given Λ in the antepenulti-
mate equality and the form of their conditional distributions in the penultimate equality.
Now, since S is a PVT, it is known that for all v ∈ V , deg(v) = 3 almost surely (e.g.
see [108]). As a matter of fact, for each v ∈ V , Ev almost surely consists of three different
edges of E incident to v. Denote them by e(i)

v , i = 1, 2, 3 and recall their respective lengths
are denoted by |e(i)

v |. From this and (5.2.1), we thus get:

P0(v is open |Λ) = 1− (1− p)e−λΛ(B(v,r′)∩Ev)

= 1− (1− p) exp
(
−λ

3∑
i=1

min(|e(i)
v |, r′)

)
.

Since we have min(|e(i)
v |, r′) ≤ r′ whenever 1 ≤ i ≤ 3, we indeed have:

P0(v is open |Λ) ≤ 1− (1− p)e−3λr′ =: q,
as claimed. Moreover, it is clear that limp↓0 limλ↓0 qp,λ,r′ = 0 whenever 0 < r′ <∞.

We now use a path-count argument for the (conditionally) 1-dependent process of
open crossroads, very much as in the proof of Theorem 1.4.13, and proceed as follows.
Fix some n ≥ 1. A self-avoiding path γ of length n starting from the typical crossroad
0 is a sequence of crossroads 0 = v1, . . . , vn ∈ V with vi 6= vj for i 6= j and such that
d(vi, vi+1) = 1 for every 1 ≤ i ≤ n− 1, where, recall, d denotes the graph distance on the
PVT street system S.
If the typical crossroad 0 belongs to an infinite connected component of open crossroads
(which we denote by 0  ∞) , there must exist such a path where all crossroads are
open. Denote this event by An.

Then we have
P0(0 ∞) ≤ P0(An).

Let SAPn denote the set of self-avoiding paths of length n starting from the typical
crossroad 0. By the union bound, we have:

P0(An) ≤ E0

 ∑
(v1,...,vn)=γ∈SAPn

P0

 n⋂
i=1
{vi is open}

∣∣∣∣∣∣Λ
 .

Now, we can partition the set {v1, . . . , vn} into two sets U and W , such that any two
distinct vertices in U , say vi 6= vj are such that d(vi, vj) > 1. Since we have deg(v) = 3
almost surely for every v ∈ V , U contains at least bn/3c crossroads of {v1, . . . , vn}. Thus,
we have:

P0

 n⋂
i=1
{vi is open}

∣∣∣∣∣∣Λ
 ≤ P0

⋂
v∈U
{v is open}

∣∣∣∣∣∣Λ
 =

∏
v∈U

P0(v is open |Λ) ≤ qbn/3c,

where we have used Lemma 5.2.5 to get the equality and the previously found bound
to get the last inequality. In all, we get:

P0(0 ∞) ≤ E0

 ∑
(v1,...,vn)=γ∈SAPn

qbn/3c

 = E0
[
#(SAPn)qbn/3c

]
,
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where #(SAPn) denotes the cardinal of SAPn. Again, since deg(v) = 3 almost surely
whenever v ∈ V , a crude bound for #(SAPn) is #(SAPn) ≤ 3×2n−1. Moreover, bn/3c >
n/3− 1 implies qbn/3c ≤ qn/3−1. Hence:

P0(0 ∞) ≤ 3× 2n−1qn/3−1 = 3
2q (2q1/3)n

As n ↑ ∞, the right-hand side converges to 0 when q < 1/8. Since we had q ↓ 0 as λ, p ↓ 0,
we can find small enough p > 0 and λ > 0 such that q < 1/8 for all 0 < r′ < ∞ and
independently of r ∈ [r′,∞[ (due to the fact that q = qp,λ,r′ does not depend on r).
For such p, λ, we thus have P0(0 ∞) = 0.

To finally conclude that the process of open crossroads does not percolate, we proceed
as follows. For every crossroad v ∈ V , denote by {v  ∞} the event that v belongs to
an infinite connected component of open crossroads. Obviously, by Markov’s inequality,
we have:

P(open crossroads percolate) =: P (∃v ∈ V : v  ∞) ≤ E [#{v ∈ V : v  ∞}] . (5.2.2)

Denote by λ0 := 2λS the intensity of the point process Φ of crossroads (i.e. vertices)
of S and recall that P0 denotes the Palm probability of Φ. By the Campbell-Little-Mecke-
Matthes theorem (Theorem 1.2.10), we have:

E [#{v ∈ V : v  ∞}] = E
[∫

R2
1{x ∞}Φ(dx)

]
= λ0

∫
R2

E0 [1{0 ∞}] dx

= λ0

∫
R2

P0(0 ∞)dx

= 0,

which, by (5.2.2), concludes the proof of Lemma 5.2.6.

To finish the proof of Theorem 5.2.1, note that by Lemma 5.2.6, for fixed r′, we can
find small enough λ, p > 0 such that the process of open crossroads does not percolate
for all r ≥ r′. Hence, by Lemma 5.2.4, neither does G. This concludes the proof of
Theorem 5.2.1.

5.2.4 Proof of Theorem 5.2.2
We shall prove that for all 0 < r′ ≤ r ≤ ∞, in the absence of relays (p = 0), the model
G = G0,λ,r,r′ percolates with positive probability for large enough λ < ∞ depending on r
and r′.
Contrary to the proof of Theorem 5.2.1, we will use a renormalization argument. The
goal is to introduce a discrete percolation site model on the square lattice Z2, constructed
in such a way that if the discrete model percolates, then so does G. Then, proving that
the discrete model percolates will be done via appealing to its local dependence.
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To introduce the discrete model, we first introduce convenient notation and terminol-
ogy.

First, we define concepts of openness and closedness for street segments (or possibly
the whole streets themselves) exactly as in Section 4.4:

Definition 5.2.7 (Open/Closed street segment). Let e ∈ E be a street and let ∅ 6= s ⊆ e
be a non-empty street segment of e or the whole street e itself.
Say s is open if either of the two following set of conditions are satisfied:

1. |s| ≤ r

OR

2.

 |s| > r

∀c ⊂ s, (|c| = r , c connected and c topologically closed)⇒ Xλ(c) ≥ 1

Say s is closed if s is not open, i.e.: |s| > r

∃ c ⊂ s, such that |c| = r , c connected, c topologically closed andXλ(c) = 0

Recall once again (see e.g. [108]) that if v ∈ V is a crossroad of the PVT street system
S, deg(v) = 3 almost surely, i.e. v is almost surely the intersection of 3 streets. As a
matter of fact, whenever v ∈ V , there almost surely exists a unique triple (e(1)

v ; e(2)
v ; e(3)

v )
of streets such that:

{v} = e(1)
v ∩ e(2)

v ∩ e(3)
v

Then, for an integer n ≥ 1 and a site z ∈ Z2, we introduce the following terminology,
somehow analogous to the definition of openness in the proof of Theorem 5.2.1:

Definition 5.2.8 ((n, z)-open / (n, z)-closed crossroad). Say a crossroad v ∈ V is (n, z)-
open if v ∈ Q6n(nz), deg(v) = 3 and all of the three following conditions are satisfied:

• X(1)
v +X(2)

v ≤ r′

• X(2)
v +X(3)

v ≤ r′

• X(3)
v +X(1)

v ≤ r′

where, for i = 1, 2, 3, X(i)
v := inf{‖x − v‖2 : x ∈ Xλ ∩ Q6n(nz) ∩ e(i)

v } denotes the
(Euclidean) distance from v to its closest neighbour in the Cox process Xλ, in the square
Q6n(nz) and along the edge e(i)

v . We set X(i)
v :=∞ if the (random) set Xλ∩Q6n(nz)∩e(i)

v

is empty.
As usual, we say that v is (n, z)-closed if it is not (n, z)-open.

We are now ready to introduce our discrete percolation model on the square lattice
z ∈ Z2 as follows:

Definition 5.2.9 (n-good / n-bad site). For n ≥ 1, say a site z ∈ Z2 is n-good if the
following conditions are satisfied:

126



5.2. Percolation of the general network graph Gp,λ,r,r′

(1) R(Q6n(nz)) < 6n

(2) E ∩ Qn(nz) 6= ∅, i.e. the square Qn(nz) contains a full street (not just a street
segment)

(3) There exists e ∈ E ∩Qn(nz) such that e is open, in the sense of Definition 5.2.7

(4) Every crossroad v ∈ V ∩Q6n(nz) is (n, z)-open, in the sense of Definition 5.2.8

(5) Every two open edges e, e′ ∈ E ∩Q3n(nz) are connected by a path in G ∩Q6n(nz)

We say a site z ∈ Z2 is n-bad if it is not n-good.

The n-good sites have been defined so as to satisfy the following:

Lemma 5.2.10. Percolation of the process of n-good sites implies percolation of the con-
nectivity graph G0,λ,r,r′.

Proof. Let C be an infinite connected component of n-good sites. Consider z, z′ ∈ C such
that ‖z − z′‖1 = 1. Without loss of generality, assume z = (a, b) for some a, b ∈ Z and
z′ = (a+1, b). By conditions (2) and (3) in the definition of n-goodness, we can find open
streets e ∈ E ∩Qn(nz) and e′ ∈ E ∩Qn(nz′). Since

Qn(nz) = [na− n/2, na+ n/2]× [nb− n/2, nb+ n/2] ,
Qn(nz′) = [na+ n/2, na+ 3n/2]× [nb− n/2, nb+ n/2] ,

Q3n(nz) = [na− 3n/2, na+ 3n/2]× [nb− 3n/2, nb+ 3n/2] ,

we have Qn(nz′) ⊂ Q3n(nz) and so e′ ∈ E ∩Qn(nz′) implies e′ ∈ E ∩Q3n(nz). Since we
also have e ∈ E ∩ Qn(nz) ⊂ E ∩ Q3n(nz) and e, e′ are both open, by conditions (4) and
(5) in the definition of n-goodness, e and e′ are connected by a path L in G ∩ Q6n(nz).
Therefore, the path L also connects e and e′ in G, thus giving rise to an infinite connected
component in G. This concludes the proof of Lemma 5.2.10.

By Lemma 5.2.10, proving Theorem 5.2.2 amounts to showing that, for all 0 < r′ ≤
r ≤ ∞, the process of n-good sites percolates (for some n) when λ < ∞ is sufficiently
large but finite.

Proving the percolation of the process of n-good sites will be done via appealing to
its local dependence. More precisely, the process of n-good sites is an 18-dependent
percolation model on the square lattice:

Lemma 5.2.11. For z ∈ Z2, set ξz := 1{z is n-good}. Then (ξz)z∈Z2 is an 18-dependent
random field for the supremum metric ‖·‖∞.

Proof. Consider a finite set of indices ψ = {z1, . . . zq} ⊂ Z2 such that ∀i 6= j, ‖zi− zj‖∞ >
18. We want to show that the random variables (ξzi)1≤i≤q are independent. Since the
former random variables are indicator functions, it suffices to show that:

E
( q∏
i=1

ξzi

)
=

q∏
i=1

E(ξzi)
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Denote respectively by Az, Bz, Cz, Dz, Fz the events that the conditions (1), (2), (3), (4),
(5) in the definition of n-goodness hold for z ∈ Z2. We thus have:

∀z ∈ Z2, ξz = 1{Az}1{Bz}1{Cz}1{Dz}1{Fz}.

Note first that whenever z ∈ Z2, the indicators 1{Az} and 1{Bz} are Λ-measurable.
Thus, we have :

E
( q∏
i=1

ξzi

)
= E

E
 q∏
i=1

ξzi

∣∣∣∣∣∣Λ


= E

 q∏
i=1

1{Azi}1{Bzi}E

 q∏
i=1

1{Czi ∩ Fzi}1{Dzi}

∣∣∣∣∣∣Λ
 . (5.2.3)

Moreover, for all 1 ≤ i ≤ q, we have:

1{Dzi} =
∏
v∈

V ∩Q6n(nzi)

1{v is (n, zi)-open}

=
∏
v∈

V ∩Q6n(nzi)

1{deg(v) = 3}1{v ∈ Q6n(nzi)}1{Gv}, (5.2.4)

where, for v ∈ V , Gv denotes the following event:

Gv :=
(
X(1)
v +X(2)

v ≤ r′
)
∩
(
X(2)
v +X(3)

v ≤ r′
)
∩
(
X(3)
v +X(1)

v ≤ r′
)
.

The first two indicators appearing in the product in the right-hand side of (5.2.4) are
Λ-measurable. Using this, the right-hand side of (5.2.3) is equal to:

E

 q∏
i=1

1{Azi}1{Bzi}
∏
v∈

V ∩Q6n(nzi)

1{deg(v) = 3}E

 q∏
i=1

1{Czi ∩ Fzi}
∏
v∈

V ∩Q6n(nzi)

1{Gv}

∣∣∣∣∣∣Λ



Consider some 1 ≤ i ≤ q. It is clear from the definitions that, conditioned on Λ, the
events Czi and Dzi only depend on the configuration of Xλ and Y inside of the square
Q6n(nzi). The same is true for the event Gv whenever v ∈ V ∩Q6n(nzi).
Moreover ψ satisfies ∀i 6= j, ‖zi − zj‖∞ > 18, then we have ∀i 6= j, ‖nzi − nzj‖∞ > 18n.
As a matter of fact, the squares {Q6n(nzi)) : 1 ≤ i ≤ q} are disjoint, i.e.

∀i 6= j,Q6n(nzi) ∩Q6n(nzj) = ∅.

Since the respective conditional distribution ofXλ and Y given Λ are those of a Poisson
point process and of a Bernoulli point process, by complete independence of Poisson and
Bernoulli processes, we have :
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E

 q∏
i=1

1{Czi ∩ Fzi}
∏
v∈

V ∩Q6n(nzi)

1{Gv}

∣∣∣∣∣∣Λ
 =

q∏
i=1

E

1{Czi ∩ Fzi} ∏
v∈

V ∩Q6n(nzi)

1{Gv}

∣∣∣∣∣∣Λ


=
q∏
i=1

f(ΛQ6n(nzi)),

where f(ΛQ6n(x)) := E

1{Cx ∩ Fx} ∏
v∈

V ∩Q6n(x)

1{Gv}

∣∣∣∣∣∣Λ
 is a bounded measurable deter-

ministic function of ΛQ6n(x).

In all, we thus get:

E
( q∏
i=1

ξzi

)
= E

 q∏
i=1

1{Azi}1{Bzi}f(ΛQ6n(nzi))
∏
v∈

V ∩Q6n(nzi)

1{deg(v) = 3}

 . (5.2.5)

For each 1 ≤ i ≤ q, we have that
∏

v∈V ∩Q6n(nzi)
1{deg(v) = 3}(= 1 almost surely) and

1{Bzi} =: 1{∃e ∈ Q6n(nzi) : e is open} obviously are bounded measurable deterministic
functions of ΛQ6n(nzi). Since f also is, we can write:

1{Bzi} f(ΛQ6n(nzi))
∏

v∈V ∩Q6n(nzi)
1{deg(v) = 3} := g(ΛQ6n(nzi))

as one bounded measurable deterministic function g of the configuration of Λ inside the
square Q6n(nzi). Hence (5.2.5) yields:

E
( q∏
i=1

ξzi

)
= E

[ q∏
i=1

1{Azi}g(ΛQ6n(nzi))
]

= E
[ q∏
i=1

1{R(Q6n(nzi)) < 6n}g(ΛQ6n(nzi))
]
. (5.2.6)

The set ϕ := {nz1, . . . , nzq} ⊂ R2 is a finite subset of R2 satisfying:

∀i 6= j, ‖nzi − nzj‖∞ > 18n

Since the infinite norm is always upper bounded by the Euclidean norm, we have ∀i 6=
j, ‖nzi − nzj‖2 > 18n, and so ϕ satisfies:

∀x ∈ ϕ, dist2(x, ϕ \ {x}) > 18n = 3× 6n.

Hence, we can apply condition (3) in the definition of stabilization (Definition 4.4.1) with
n replaced by 6n. As a consequence, we get that the random variables appearing in the
right-hand side of (5.2.6) above are independent, and so:
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E
( q∏
i=1

ξzi

)
=

q∏
i=1

E
[
1{R(Q6n(nzi)) < 6n}g(ΛQ6n(nzi))

]
.

To finish the proof of Lemma 5.2.11, it only remains to show that for all 1 ≤ i ≤ q,
we have

E
[
1{R(Q6n(nzi)) < 6n}g(ΛQ6n(nzi))

]
= E(ξzi).

This is indeed the case:

E
[
1{R(Q6n(nzi)) < 6n}g(ΛQ6n(nzi))

]

= E

1{Azi}1{Bzi}E

1{Czi ∩ Fzi} ∏
v∈

V ∩Q6n(nzi)

1{Gv}

∣∣∣∣∣∣Λ
 ∏

v∈
V ∩Q6n(nzi)

1{deg(v) = 3}



= E

E
1{Azi}1{Bzi}1{Czi ∩ Fzi}

∏
v∈

V ∩Q6n(nzi)

1{Gv}1{deg(v) = 3}

∣∣∣∣∣∣Λ



= E

1{Azi}1{Bzi}1{Czi ∩ Fzi}
∏
v∈

V ∩Q6n(nzi)

1{Gv}1{deg(v) = 3}


= E [1{Azi}1{Bzi}1{Czi}1{Fzi}1{Dzi}] =: E(ξzi),

where we have used Λ-measurability of the indicators 1{Azi}, 1{Bzi} and 1{deg(v) = 3}
in the third line to put everything back into one single conditional expectation.

In all, we have E (∏q
i=1 ξzi) = ∏q

i=1 E(ξzi) as needed. This concludes the proof of
Lemma 5.2.11.

Now, for fixed 0 < r′ ≤ r ≤ ∞, we prove that the probability for an arbitrary site
(which by stationarity can be chosen to be the origin 0 ∈ Z2), to be n-good can be made
arbitrarily large when first taking some large enough finite n and then finite large enough
λ, as stated in the following Lemma.

Lemma 5.2.12. For all r, r′ with 0 < r′ ≤ r ≤ ∞, we have

lim
n↑∞

lim
λ↑∞

P(0 is n-good) = 1

Proof. We shall rather prove that for all 0 < r′ ≤ r ≤ ∞, we have

lim
n↑∞

lim
λ↑∞

P(0 is n-bad) = 0.

Fix such r and r′. Take any ε > 0. Denote respectively by A,B,C,D, F the events
that the conditions (1), (2), (3), (4), (5) in the definition of n-goodness hold for z = 0.
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Denote also by Ã the event that R(Q6n) < n/2. Note that Ã ⊂ A and thus we have:

P(0 is n-bad) = P(Ac ∪Bc ∪ Cc ∪Dc ∪ F c)
≤ P(Ãc ∪Bc ∪ Cc ∪Dc ∪ F c)
≤ P(Ãc) + P(Bc) + P(B ∩ Cc) + P(B ∩Dc) + P(Ã ∩D ∩ F c).

First, partitioning the square Q6n into 122 = 144 subsquares (Qi)1≤i≤144 of side length
n/2, we get:

P(Ãc) = P(R(Q6n) ≥ n/2)

= P
(144⋃
i=1
{R(Qi) ≥ n/2}

)
≤ 144 P(R(Qn/2) ≥ n/2) by stationarity of the R’s.

Therefore, by condition (2) of Definition 4.4.1, we get limn↑∞ P(Ãc) = 0. Also

P(Bc) = P(E ∩Qn = ∅)

and thus limn↑∞ P(Bc) = 0. Fix n large enough such that P(Ãc) ≤ ε/5 and P(Bc) ≤ ε/5.
For such n, Qn, Q3n and Q6n intersect almost surely zero or a finite number of edges and
vertices.

To deal with the quantity P(B ∩ Cc), we simply write:

P(B ∩ Cc) = P(E ∩Qn 6= ∅ and∀ e ∈ E ∩Qn : e is closed).

For fixed n and r > 0, this latter probability now only depends on λ and converges
to 0 when λ → ∞. Hence, for large enough λ < ∞ (depending on n, r) we have
P(B ∩ Cc) ≤ ε/5.

Let us now deal with the fourth quantity. We have:

P(B ∩Dc) = P(E ∩Qn 6= ∅ and∃ v ∈ V ∩Q6n : v is (n,0)-closed)

= E

P
{E ∩Qn 6= ∅} ∩

⋃
v∈V ∩Q6n

{v is (n,0)-closed}

∣∣∣∣∣∣Λ


= E

1{E ∩Qn 6= ∅}P
 ⋃
v∈V ∩Q6n

{v is (n,0)-closed}

∣∣∣∣∣∣Λ


≤ E

1{E ∩Qn 6= ∅}
∑

v∈V ∩Q6n

P (v is (n,0)-closed |Λ)
 ,

where we have used the Λ-measurability of the event {E ∩Qn 6= ∅} in the third equality
and a union-bound on the conditional probability to get the last inequality. Going to the
limit, we thus get:
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lim
λ↑∞

P(B ∩Dc) ≤ lim
λ↑∞

E

1{E ∩Qn 6= ∅}
∑

v∈V ∩Q6n

P (v is (n,0)-closed |Λ)
 . (5.2.7)

Now, note that we have

E

1{E ∩Qn 6= ∅}
∑

v∈V ∩Q6n

P (v is (n,0)-closed |Λ)
 ≤ E(#(V ∩Q6n)).

Since S is a PVT generated by a homogeneous Poisson point process of intensity λS, the
intensity of the point process of vertices of S is given by λ0 = 2λS (see [108]), so that
E(#(V ∩Q6n)) = e−2λS×36n2

<∞ (recall that n is now fixed). Hence, by the dominated
convergence theorem, (5.2.7) yields:

lim
λ↑∞

P(B ∩Dc) ≤ E

lim
λ↑∞

1{E ∩Qn 6= ∅}
∑

v∈V ∩Q6n

P (v is (n,0)-closed |Λ)


= E

1{E ∩Qn 6= ∅} lim
λ↑∞

∑
v∈V ∩Q6n

P (v is (n,0)-closed |Λ)


= E

1{E ∩Qn 6= ∅}
∑

v∈V ∩Q6n

lim
λ↑∞

P (v is (n,0)-closed |Λ)
 , (5.2.8)

where we have used the facts that the event {E ∩Qn 6= ∅} is independent of λ and that,
since n has been fixed, Q6n almost surely intersects a finite number of vertices and so∑
v∈V ∩Q6n

is a finite sum almost surely.

Now, whenever v ∈ V ∩Q6n, we have:

P (v is (n,0)-closed |Λ) = 1− P (v is (n,0)-open |Λ)
= 1− P [(v ∈ V ∩Q6n) ∩ (deg(v) = 3) ∩Gv |Λ] ,

where, recall, Gv, denotes the event:

Gv :=
(
X(1)
v +X(2)

v ≤ r′
)
∩
(
X(2)
v +X(3)

v ≤ r′
)
∩
(
X(3)
v +X(1)

v ≤ r′
)
.

Since the first two events appearing in the conditional probability above are Λ-measurable,
we get:

P (v is (n,0)-closed |Λ) = 1− 1{v ∈ V ∩Q6n}1{deg(v) = 3}P(Gv |Λ).

In the expression above, only P(Gv |Λ) depends on λ. Therefore, we have:

lim
λ↑∞

P(v is (n,0)-closed |Λ) = 1− 1{v ∈ V ∩Q6n}1{deg(v) = 3} lim
λ↑∞

P(Gv |Λ). (5.2.9)

Now, from the definition of Gv, we have:
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P(Gv |Λ) ≥ P
(
X(1)
v ≤ r′/2, X(2)

v ≤ r′/2, X(3)
v ≤ r′/2

∣∣∣∣Λ) .
Given Λ, Xλ has the distribution of a Poisson point process with mean measure λΛ, and
the three events {X(1)

v ≤ r′/2}, {X(1)
v ≤ r′/2} and {X(3)

v ≤ r′/2} depend on disjoint sets
of edges of S, so they are conditionally independent given Λ. This yields:

P(Gv |Λ) ≥ P
(
X(1)
v ≤ r′/2

∣∣∣∣Λ)P(X(2)
v ≤ r′/2

∣∣∣∣Λ)P(X(3)
v ≤ r′/2

∣∣∣∣Λ) .
Obviously, as λ ↑ ∞, the edges of S will eventually be densely filled with Cox points. Thus,
the three conditional probabilities appearing in the right-hand side above all converge to
1 almost surely. Hence limλ↑∞ P(Gv |Λ) = 1 almost surely. From (5.2.9), we thus get:

lim
λ↑∞

P(v is (n,0)-closed |Λ) = 1− 1{v ∈ V ∩Q6n}1{deg(v) = 3} a.s.

Reporting this in (5.2.8), we obtain:

lim
λ↑∞

P(B ∩Dc) ≤ E

1{E ∩Qn 6= ∅}
∑

v∈V ∩Q6n

(1− 1{v ∈ V ∩Q6n}1{deg(v) = 3})
 .

Now we claim that the sum in the right-hand side above is almost surely equal to
1{V ∩ Q6n = ∅}. Indeed, since n has been fixed, Q6n contains almost surely zero or a
finite number of vertices v. We are therefore in one of the two following cases:

• Either V ∩ Q6n = ∅, in which case the sum is empty and hence equal to 1 =
1{V ∩Q6n = ∅}.

• Or V ∩Q6n 6= ∅, in which case the sum is not empty. But then, whenever v ∈ V ∩Q6n,
we obviously have 1{v ∈ V ∩ Q6n} = 1 and, since S is a PVT, deg(v) = 3 almost
surely. Hence the whole sum is equal to 0 = 1{V ∩Q6n = ∅}.

Thus, we finally get:

lim
λ↑∞

P(B ∩Dc) ≤ E [1{E ∩Qn 6= ∅}1{V ∩Q6n = ∅}] = 0.

Therefore, for fixed n and 0 < r′ ≤ r ≤ ∞, limλ↑∞ P(B ∩ Dc) = 0 and so we can find
λ <∞ large enough (depending on n, r and r′) such that P(B ∩Dc) ≤ ε/5.

Regarding the event Ã ∩D ∩ F c, note that under the event Ã, we have

R(Q6n) < n/2 < 3n/2.

Hence, by asymptotic essential connectedness (see Definition 4.4.2), we have that supp(ΛQ3n) 6=
∅ and, moreover, there exists a connected component ∆ of supp(ΛQ6n) such that supp(ΛQ3n) ⊂
∆ ⊂ supp(ΛQ6n). Therefore

Ã ∩D ∩ F c ⊂ {∃e ∈ E ∩Q6n : e is closed}.
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Clearly, for fixed n, r and independently of r′,

lim
λ↑∞

P(∃e ∈ E ∩Q6n : e is closed ) = 0.

Hence, we can find λ <∞ large enough (depending on n, r) such that P(Ã∩D∩F c) ≤ ε/5.

As a matter of fact, we have that for sufficiently large n < ∞ and sufficiently large
λ < ∞ (depending on n,r and r′), P(0 is n-bad) ≤ ε. Since ε > 0 was arbitrary, we have
indeed proven that

lim
n↑∞

lim
λ↑∞

P(0 is n-bad) = 0.

So, whenever 0 < r′ ≤ r ≤ ∞, limn↑∞ limλ↑∞ P(0 is n-good) = 1, as required.

By Lemmas 5.2.11 and 5.2.12, using Theorem 4.1.1, for all 0 < r′ ≤ r ≤ ∞, the process
of n-good sites is stochastically dominated from below by a supercritical Bernoulli process
for large enough n < ∞ and, λ < ∞ (depending on r and r′). Thus, we can make the
process of n-good sites percolating. By Lemma 5.2.10, the connectivity graph G = G0,λ,r,r′

with these values of λ, r, r′ percolates, thus concluding the proof of Theorem 5.2.2.

5.2.5 Discussion of the case of real-world networks: r′ � r

As has been noted in Section 3.3.3, it makes sense to assume that r′ ≤ r, due to the
fact that the loss of power due to scattering or reflection comes in addition to the path
loss. Depending on the nature of physical obstacles encountered by the signal and of the
environment of the network, one may even expect that r′ is considerably smaller than r.
Typically, in dense urban environments, one would expect r′ ≈ r/10.

On a theoretical perspective, Theorem 5.2.2 ensures that percolation of the general
network graph Gp,λ,r,r′ is theoretically possible under a finite density of users λc(p, r) <∞
for all relay proportion p ∈ [0, 1]. This means that, theoretically, large-scale connectivity
of the network can always be achieved under a finite density of D2D users for all values
of p. In particular, taking p = 0, one can thus obtain the existence of a finite density of
D2D users λc(0, r) < ∞ above which communications at large-scale are possible even if
no relays are present in the network.

However, in practice, one may expect repercussions from the fact that r′ � r. Indeed,
r′ being considerably smaller than r, most of the connections in the network may be
due to LOS connections along the streets, rather than to scattering or reflection at the
crossroads of adjacent streets. Thus, a very small proportion of relays p may need to
be compensated by a very large density of users λ to ensure percolation of the network
connectivity graph. Or, the other way around, for a fixed D2D user density λ, the fact
that r′ � r may result in a large critical relay proportion p for ensuring good connectivity
of the network. What if this critical relay proportion p cannot be achieved in practice?

Let us try to get an idea of the situation from a few pictures. Consider for instance
the case of an urban scenario with a PVT street density LA = 20 km-1, corresponding
to a dense urban street system. Also, consider a D2D LOS range corresponding to a 4G
context r = 100m and take r′ = r/10 = 10m for the range of D2D connections due to
scattering or reflections at crossroads. Finally, consider a D2D user density λ = 100 km-1,
meaning that there is 1 D2D user every 10 metres in average, which corresponds to a
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5.2. Percolation of the general network graph Gp,λ,r,r′

(a) p = 0 (b) p = 0.2 (c) p = 0.4

(d) p = 0.6 (e) p = 0.7

Figure 5.2 – Five simulations of the network connectivity graph Gp,λ,r,r/10 for a LOS D2D
range r = 100m, a D2D user density λ = 100 km-1, a PVT street density LA = 20 km-1

and varying values of the relay proportion p. As before, blue dashed lines represent the
PVT street, red points represent the D2D users (Cox points) and green points represent
the relays (Bernoulli points). In the largest connected component of the window, network
nodes are filled with their respective colours and edges are highlighted in orange. Edges
of the smaller connected components are highlighted in black. In the five simulations, the
realisations of the PVT street system S and of the Cox process of network users Xλ are
the same.

rather dense population density.
Figure 5.2 shows examples of simulations of the connectivity graph Gp,λ,r,r/10 for the pre-
vious values of the D2D range r and of the D2D user density λ, with a relay proportion
p ∈ {0, 0.2, 0.4, 0.6, 0.7}. On this figure, we can see that the fact that r′ � r, with a
fixed D2D user density λ, forces the relay proportion p to be quite large for noticing the
emergence of good connectivity of the network. Even for p = 0.7, a substantially large
part of the simulation window remains out of the largest connected component of the
network. This is due to the fact that since r′ � r, connections due to scattering and/or
reflections at crossroads only account for a small proportion of the total connections in
the network.

From the previous figure and remarks, we note that while it is theoretically possible
to have good connectivity of the network even in the absence of relays (p = 0), in practice
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and for a fixed user density λ, the minimal relay proportion needed for large-scale con-
nectivity of the network may still be quite large compared to the PVT site percolation
threshold p∗ ≈ 0.713 estimated in Chapter 4. In other words, still for a fixed D2D user
density λ, the fact that r′ � r may result in a very small influence of r′ on the minimal
relay proportion ensuring percolation of the network connectivity graph. Therefore, one
may need to think of supplementary models that allow for more realistic estimations of
this minimal relay proportion.

5.3 Revising the geometry of crossroads: supplemen-
tary geometric models

5.3.1 General methodology

As stated earlier, in the general D2D network model introduced in Section 3.3, the prob-
ability of finding a Cox point at a given crossroad of the street system is exactly 0. In
practice, this means that network users cannot be on crossroads and play the role of relays
for relaying the signal, thereby ensuring connectivity between adjacent streets. Moreover,
with the chosen modelling, the only way to connect two adjacent streets e 6= e′ intersecting
at the crossroad v without requiring the presence of a relay at v is to have a connection
between two Cox points due to scattering or reflection of the signal at v, as described in
the connectivity mechanism given by (3.3.2).
However, if we were to consider a refined geometry for the street system and especially
a non-null area for the crossroads while keeping the same spreading of network users
(Cox process Xλ) and relays (doubly stochastic Bernoulli process Y ), the problem might
change. In particular, there may be a positive probability to find a network user at a
crossroad, able to relay the signal between streets incident to that crossroad. As a mat-
ter of fact, relays may be compensated by the presence of users at crossroads ensuring
signal relaying, thus resulting in much less relays needed to ensure good connectivity of
the network! Since relays represent a necessary investment for operators, the question of
finding how many of them are needed to ensure connectivity of the network at large scale
is of critical importance.
Therefore, we need supplementary geometric models to take into account the possibility
that D2D users (Cox points) themselves can act as relays. Such models will in turn allow
to estimate more precisely how much relays have to be deployed by an operator to ensure
good connectivity of the network. Given this need of refined geometric models and of
more precise estimations, we propose to proceed as follows:

• First, we “enlarge” the street system by giving a positive width l > 0, expressed in
metres (m) to each street of the PVT S.

• Doing so, the intersections between adjacent streets are no longer punctual.

• We then imagine some geometric figure of non-null area (which, by abuse of termi-
nology, will also be called crossroad) where a D2D user (Cox point) can serve as a
relay between all the streets incident to that area.
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• We estimate the probability that signal relaying between adjacent streets can effec-
tively be ensured, by a relay or by a D2D user.

• We estimate the minimal proportion of relays needed to ensure good connectivity
of the network.

• Relating the obtained estimates to our previous estimates in the canyon shadowing
case, we show that large-scale connectivity of the D2D network in our model actually
requires rather few relays in practice.

5.3.2 Geometric models for crossroads
Giving a non-null area to each crossroad

The street system S being a PVT, the degree of each crossroad is almost surely equal
to 3 [108]. Consider the typical crossroad O of S, in other words the typical point of
the point process of vertices of S, as defined in Section 1.3.3. This typical crossroad can
be represented by the segments e1, e2 and e3 of Figure 5.3, with (not necessarily equal)
angles (α, β, δ = 2π − α− β) being random variables.

Figure 5.3 – Typical crossroad in the original street model. e1, e2, e3 denote the streets
of S incident to the typical crossroad O (there are almost surely 3 such streets).

To define a non-null surface for crossroads, we proceed as follows: we keep the PVT
street system S but we think of “enlarging” S by giving a width l > 0, expressed in
metres (m), to each street e of S. The typical crossroad (and, in fact, every crossroad of
S) illustrated above now rather looks like in Figure 5.4. In this figure, the grey dashed
segments e1, e2 and e3 represent the original streets and the new enlarged streets are
represented by the blue thick lines.

By considering the enlarged streets given by the blue lines, we imagine that the original
punctual crossroad at O (given by the central blue point on Figures 5.3 and 5.4) becomes
some geometric figure of non-null area. Such a geometric figure, by abuse of terminology,
will also be called crossroad from now onwards and will be considered to be the region
where either a relay (Bernoulli point) or a D2D user (Cox point) can also serve as a
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Figure 5.4 – Typical crossroad in the refined street model where all streets of S are
prescribed with a width l > 0. The dashed segments e1, e2 and e3 illustrate how the
typical crossroad looked like in the original realisation of the PVT S (i.e. when streets
have a null width l = 0). The blue lines represent the enlarged streets, of width l > 0. We
consider two cases where the useful crossroad surface for relaying the signal between any
two of the three enlarged streets respectively corresponds to the triangle filled with red
or to the circle filled with green. Keep in mind that O designates the original (punctual)
typical crossroad and is not the centre of the green circle (in fact, one can show that O is
rather the centre of the innercircle of the red triangle ABC).

relay between two of the three streets. Indeed, since crossroads now have a non-null area
when streets have been enlarged, there is a positive probability to find a Cox point inside
the area of the geometric figure delimiting a crossroad. The surface of that geometric
figure can thus be interpreted as the useful surface for signal relaying, in the sense that
it delimits the region of the plane where relaying between adjacent streets can effectively
be ensured.

Main assumptions of the geometric model for crossroads

For convenience or the sake of simplicity, we make the following assumptions in this new
geometric model for crossroads.

First, in order to simplify the derivation of the formula for the (typical) crossroad
surface, we propose two scenarios. The first one corresponds to the case where the cross-
road is defined to be the triangle delimited by the intersections of the streets limits, see
the triangle ABC filled with red on Figure 5.4. We denote the surface of this triangle
by S := S (l, α, β). In the second scenario, the resulting surface is the circumcircle
of the previous triangle, see the triangle filled with green on Figure 5.4. We denote by
S ′ := S ′(l, α, β) the surface of this circumcircle. Compared to what would be the sur-
face of a crossroad in a real-world street system, the triangle case corresponds to a rather
small useful surface for signal relaying, while the circle case corresponds to a rather large
surface. Also, it will be much more likely to find a Cox point in the circle than in the
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triangle, due to the fact that the ratio between the area of a triangle and the one of its
circumcircle is considerably small1.

Secondly, we assume that relaying can be done on the whole crossroad surface within
the LOS range r, as if we were in the canyon shadowing case. In other words, we consider
that a Bernoulli point or a Cox point located anywhere in the useful surface of the cross-
road can be connected by a D2D link to a network node within distance r and located on
one of the streets incident to the crossroad.

Finally, we assume that when the relaying between two adjacent streets of S is done
by a D2D user (i.e. a Cox point), it is done directly, in the sense that it only involves
only one network node located on the crossroad. We thus do not consider cases where
the crossroad is occupied by two or more Cox points intervening in relaying the signal
between the neighbouring streets.

5.3.3 Crossroad surface and occupation probability

We now compute the useful surface of a crossroad in the circle and in the triangle case,
and deduce the probability that signal relaying at the typical crossroad can effectively be
ensured.

The triangle case

We first begin by deriving the triangle surface S = S (l, α, β). Recall this corresponds
to the case when the useful surface for signal relaying at the crossroad is given by the
triangle delimited by the intersections of the enlarged streets (see the triangle ABC filled
with red on Figure 5.4). Note first that the surface of the whole triangle ABC can be
decomposed as the sum of the surfaces of the three triangles OAB, OBC and OCA, in
other words:

S = SOAB + SOBC + SOCA.

By symmetry arguments, it is easy to see that the line (OA) is the bissector of the angle
spanned by the segments e1 and e2, see Figure 5.5. By standard trigonometry arguments,
we thus have:

OA = l

2 sin α
2

; OB = l

2 sin β
2
.

1By standard Euclidean geometry arguments, it is relatively easy to show that such a ratio is maximal
when the underlying triangle is equilateral. In such a case, the (maximal) ratio is then equal to 3

√
3

4π ≈
0.413. Therefore, the area of the circumcircle of a (non-degenerate) triangle is always more than 1/0.413 ≈
2.421 times larger than the area of the corresponding triangle.
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Figure 5.5 – Zoom of Figure 5.4. Consider the orthogonal projection H (respectively K)
of A on the street e1 (respectively on the street e2). By construction, the triangle AHK
is isoceles in A and A belongs to the bissector of the segment [H,K]. This, with the
measure of the blue angle allows to find the measure of the green angles and then the
measure of the red angles. As a consequence, the triangle OHK is isoceles in O. Thus O
also belongs to the bissector of the segment [H,K]. Hence, the line (AO) is the bissector
of the segment [H,K] and, since OHK is an isoceles triangle, is also the bissector of the
angle spanned by the streets e1 and e2.

Hence, by the cross-product formula, the area of the triangle OAB is given by:

SOAB = 1
2OAOB sin ̂(OA,OB)

= l2

8 sin α
2 sin β

2
sin

(
α + β

2

)

= l2

8

[
sin α

2 cos β
2 + sin β

2 cos α
2

sin α
2 sin β

2

]

= l2

8

[
cot β2 + cot α2

]
.

In the same way, by a circular permutation of α, β and δ, we get the following analogous
formulae for the surfaces of triangles OBC and OCA:

SOBC = l2

8

[
cot δ2 + cot β2

]

SOCA = l2

8

[
cot α2 + cot δ2

]
.

Noting that δ = 2π − α − β, we therefore get the surface S (l, α, β) of the triangle
ABC:
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S (l, α, β) = SOAB + SOBC + SOCA

= l2

4

[
cot α2 + cot β2 + cot δ2

]

= l2

4

[
cot α2 + cot β2 − cot

(
α + β

2

)]
. (5.3.1)

The circle case

Now that we have derived a formula for the surface S = S (l, α, β) of the triangle ABC,
we can derive a formula for the surface S ′ = S ′(l, α, β) of its circumcircle. First, note
that S ′ = πR2, where R is the circumcircle radius of the triangle ABC, given by:

R = ABBC AC

4S (l, α, β) (5.3.2)

We already have a formula for S and it only remains to compute the side lengths AB,
AC and BC of the triangle. This is easily done using the law of cosines. For instance, we
have:

AB2 = OA2 +OB2 − 2OAOB cos
(
ÔA,OB

)
= l2

4 sin2 α
2

+ l2

4 sin2 β
2
− 2 l2

4 sin α
2 sin β

2
cos

(
α + β

2

)

= l2

4

 1
sin2 α

2
+ 1

sin2 β
2
− 2

cos
(
α+β

2

)
sin α

2 sin β
2

 .

Using the classical trigonometric identity 1 = cos2 x+sin2 x on the numerators of the first
two fractions and expanding the cosine in the numerator of the last fraction yields:

AB2 = l2

4

[
1 + cot2 α

2 + 1 + cot2 β

2 − 2 cot α2 cot β2 + 2
]

= l2

4

(cot α2 − cot β2

)2

+ 4
 . (5.3.3)

Again, by circularly permutating α, β and δ, and using the fact that δ = 2π − α− β,
we get similar formulae for BC2 and AC2:

BC2 = l2

4

(cot β2 − cot δ2

)2

+ 4
 = l2

4

(cot β2 + cot
(
α + β

2

))2

+ 4
 (5.3.4)

AC2 = l2

4

(cot δ2 − cot α2

)2

+ 4
 = l2

4

(cot
(
α + β

2

)
+ cot α2

)2

+ 4
 . (5.3.5)
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By (5.3.2), the surface S ′(l, α, β) of the circumcircle is given by:

S ′(l, α, β) = πR2 = π
AB2AC2BC2

16S (l, α, β)2 ,

where S (l, α, β), AB, BC andAC are respectively given by equations (5.3.1), (5.3.3), (5.3.4)
and (5.3.5). That is to say, putting everything back together:

S ′(l, α, β) = πl2

64

[
(cot α2−cot β2 )2

+4
][

(cot β2 +cot(α+β
2 ))2

+4
][

(cot(α+β
2 )+cot α2 )2

+4
]

[cot α2 +cot β2−cot(α+β
2 )]2 . (5.3.6)

Crossroad occupation probability

We now propose a formula for the probability that the signal can effectively be relayed
between two streets that are incident to the typical crossroad of the enlarged street system.
Note that this is equivalent to compute the probability that the useful surface of the typical
crossroad (triangle or circumcircle, according to which scenario is considered) is occupied
either by a physical relay (Bernoulli point) or by a D2D user. We call this probability the
crossroad occupation probability.

Denote by A := A (l, α, β) the useful surface of the crossroad:

A (l, α, β) =

S (l, α, β) in the triangle case, see (5.3.1).
S ′(l, α, β) in the circle case, see (5.3.6).

(5.3.7)

Keeping the same models as before for the users (Cox process) and for the relays (Bernoulli
process) and using the conditional independence of the users and relays given the street
system, we pose:

P(typical crossroad is occupied) := 1− P(no user in A )× P(no relay in A ).

Now, note the initial linear intensity λ of users in the Cox process when streets did not
have any width can be thought of to be equivalent to a surface density λ′ = λ/l in our
model where streets have width l > 0. Indeed, in the initial model where streets had null
width l = 0, the mean number of users per street e is a Poisson random variable with
parameter λ|e|. Now that streets are enlarged and have a width l > 0, the accessible
surface for a user on a given street e is now equal to l|e| and so, if λ′ denotes the new
surface intensity of users for an equivalent Cox process on the enlarged street system, the
number of users on e would now be a Poisson random variable with parameter λ′l|e|. The
two models can be seen as equivalent if λ′l|e| = λ|e|, i.e. λ′ = λ/l.
We keep the same models as before and assume that the users are now distributed on the
enlarged streets as a Cox process with surface intensity λ′ = λ/l while the relays are still
distributed like as a Bernoulli point process on the crossroads with parameter p. Thus,
we get:

P(no user in A ) := E
[
e−

λ
l
A (l,α,β)

]
(5.3.8)

P(no relay in A ) := 1− p. (5.3.9)

142



5.3. Revising the geometry of crossroads: supplementary geometric models

Therefore, we have:

P(typical crossroad is occupied) = 1− (1− p)E
[
e−

λ
l
A (l,α,β)

]
.

Recall that α and β are random variables and denote the angles spanned by the streets
of the typical crossroad of the PVT S. To compute the expectation appearing in the above
equation, we use the joint probability density for the random vector (α, β). This joint
probability density has been computed by Muche [104]:

f(α, β) = − 8
3π sinα sin β sin(α + β)1{0 < α < π}1{π − α < β < π}.

Therefore, the crossroad occupation probability is given by:

F (λ, p, l) := P(typical crossroad is occupied)

= 1− (1− p)
∫
R2
e−

λ
l
A (l,α,β)f(α, β)dαdβ

= 1 + 8
3π (1− p)

∫ π

α=0

∫ π

β=π−α
e−

λ
l
A (l,α,β) sinα sin β sin(α + β)dβdα, (5.3.10)

where A (l, α, β) is the useful crossroad surface (either the one of the triangle or the one
of the circumcircle according to the chosen scenario) defined in (5.3.7).

Figure 5.6 shows the plotting of the occupation probability of the typical cross-
road F (λ, p, l) as a function of the user density λ and the physical relay proportion p,
when the street width l is equal to 20 metres, a typical value for a classical European
city centre, estimated via statistical methods suggested in [59]. The blue surface (Fig-
ure 5.6a) corresponds to the triangle case (A = S , as defined in (5.3.1)), the orange
surface (Figure 5.6a) corresponds to the circle case (A = S ′, as defined in (5.3.6)). The
crossroad occupation probabilities corresponding to both cases have been plotted together
on Figure 5.6c: as stated above, for fixed network parameters (l, λ, p) it is clear that the
occupation probability can become much larger in the circle case than in the triangle case,
due to the fact that the ratio between the area of a triangle and the one of its circumcircle
is rather small.

5.3.4 Numerical approach of relay deployment
Thanks to the previous geometric modelling for crossroads, we now propose a method to
estimate a key quantity for network design and for operators: the minimal relay proportion
needed for large-scale connectivity of the network. Indeed, the relay porportion p in our
model is of critical importance, due to the fact that it is the network parameter which is
the most directly impacted by an operator’s strategical decisions. More precisely:

• The geometry of streets is given and so the operator cannot modify it. In our model,
the geometry of the streets is given by the street density LA and the street width
l > 0.

• Regarding the (LOS) D2D range r, different communication ranges are possible
according to the chosen technology (e.g. WiFi or 5G). To enhance D2D performance,
and in particular the D2D range, a research effort is needed. This requires some
time. Therefore, it is difficult for the operator to have leverage on the D2D range.
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(a) Triangle case (b) Circle case

(c) Triangle and circle case plotted together

Figure 5.6 – Crossroad occupation probability F = F (λ, p, l) as a function of the user
density λ and of the relay proportion p for a street width l = 20m. Top left: Case where
the useful surface for relaying at the crossroad is the surface of the triangle delimited
by the intersection of the enlarged streets. Top right: Case where the useful surface
for relaying at the crossroad is the surface of the circumcircle of the aforementioned
triangle. Bottom: Plotting both cases together. Evaluation and plotting of the crossroad
occupation probability F have been performed using the software Mathematica.

• Through advertising and marketing analyses, the operator can incentivise potential
customers to subscribe to its network. Doing so, the operator would gain customers
and this would result in a greater user density λ. However, the main problem is
that the effects of such marketing policies on λ is hard to predict.

• However, the number of relays deployed over the network completely depends on
the operator’s choices.

Furthermore, deploying relays implies considerable costs for an operator, and so determin-
ing via statistical estimations the minimal number of such relays needed for large-scale
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connectivity of the network appears even more crucial.

For convenience and avoiding heavy notations, we fix the street density LA > 0 once
and for all and omit the implicit dependencies on LA from now onwards. Proceeding as in
Chapter 4, we consider the network connectivity graph G = Gp,λ,r in the canyon shadowing
case and interpret percolation of this graph as large-scale connectivity of the modelled
D2D network. Recall, as explained in Section 5.2.5, the main reason why we stick to the
canyon shadowing case for numerical estimations is that r′ has not much influence on
critical network quantities in practice, due to the fact that r′ � r in real-world networks.
Assuming our enlarged street model where crossroads have a non-null surface, crossroads
can now either be occupied by physical relays or by a D2D user relaying the signal. The
reason why we now use the terminology “physical relays” is that such relays would, in
practice, correspond to fixed antennas, but not to D2D users passing by and relaying
the signal. Hence, we define the minimal proportion of physical relays needed to ensure
large-scale connectivity of the network as:

pc(λ, r, l) := inf
{
p ∈ [0, 1] , P

(
GF (λ,p,l),λ,r has an unbounded connected component

)
> 0

}
,

where F (λ, p, l) is the crossroad occupation probability previously defined in (5.3.10) and
we set pc(λ, r, l) :=∞ if P

(
GF (λ,p,l),λ,r has an unbounded connected component

)
= 0 for

all p ∈ [0, 1]. In other words, assuming that all crossroads of the network graph are
statistically equivalent to the typical crossroad, we replace the probability p of finding a
(physical) relay at a crossroad in the network graph by the crossroad occupation probabil-
ity F . We then assess the minimal parameter p ensuring percolation of this new network
graph, and hence large-scale connectivity of the network. Note that the quantity pc(λ, r, l)
represents the necessary investment in relays for an operator, given the D2D user density
λ, the D2D technology given by the D2D range r and the street width l.

To estimate pc(λ, r, l) we proceed as follows. First, using similar algorithms and sta-
tistical methods as the ones exposed in Section 4.3, we estimate the minimal proportion
of occupied crossroads ensuring large-scale connectivity, defined as:

poccupied(λ, r) := inf {p ∈ [0, 1] , P (Gp,λ,r has an unbounded connected component) > 0},
(5.3.11)

with poccupied(λ, r) := ∞ if P (Gp,λ,r has an unbounded connected component) = 0 for all
p ∈ [0, 1]. Note that poccupied(λ, r) can be seen as the analogue of pc(λ, r, 0) when l = 0, i.e.
in the original model where PVT streets had null width and where PVT crossroads were
punctual. Indeed, the crossroad area can be written as A (l, α, β)) = l2 × g(α, β), where
g(α, β) only depends on the random angles (α, β) in both cases, see (5.3.1) and (5.3.6).
Therefore, we have e−λl A (l,α,β) ↑ 1 as l ↓ 0. By monotone convergence, it is thus easy to
show that E

[
e−

λ
l
A (l,α,β)

]
↑ 1 as l ↓ 0. Hence:

lim
l↓0

F (λ, p, l) =: lim
l↓0

1− (1− p)E
[
e−

λ
l
A (l,α,β)

]
= p,

so that the crossroad occupation probability in the initial model where l = 0 is equal to
the probability p of having a relay at a crossroad. This result was expected, as a punctual
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crossroad can only be occupied by a relay.

Now, fix λ, r, l 6= 0 and note that F (λ, p, l) is increasing as a function of p, with:

F (λ, 0, l) = 1− E
[
e−

λ
l
A (l,α,β)

]
=: P(there is at least one user in A )

F (λ, 1, l) = 1.

Thus, if we consider the following equation

F (λ, p, l) = poccupied(λ, r) (5.3.12)

with the variable being p, we are in either one of the following two cases:

• poccupied(λ, r) /∈ [F (λ, 0, l), F (λ, 1, l)]: In that case, (5.3.12) has no solution and, by
analogy with the definition of poccupied, we set p :=∞.

• poccupied(λ, r) ∈ [F (λ, 0, l), F (λ, 1, l)]: In that case, (5.3.12) has a unique solution p.

Denoting by p the previous solution of (5.3.12) (in the large sense), we then estimate the
minimal proportion of physical relays needed for large-scale connectivity by taking

pc(λ, r, l) ≈ max(1,min(0, p)). (5.3.13)

In other words, knowing the proportion of occupied crossroads required for good connec-
tivity of the network and to what extent occupation of crossroads is due to users through
λ, we deduce the remaining part p ∈ [0, 1] due to physical relays. Also, note that if large-
scale connectivity of the network is not possible even by deploying relays on all crossroads
of the street system S, (5.3.12) ensures pc(λ, r, l) = 1. In the same way, if the user density
λ is sufficient to compensate the relays to allow for large-scale connectivity of the network,
pc(λ, r, l) = 0.

Figure 5.7 illustrates two examples of the estimations for this minimal physical relay
proportion pc(λ, r, l) required for connectivity of the D2D network at large scale. In both
examples, two facts are of noticeable importance.

On the one hand, taking into account the presence of D2D users being able to act
as relays on crossroads considerably reduces the proportion of physical relays needed to
ensure good connectivity of the network. On the other hand, the influence of the chosen
geometry for the modelling of crossroads is crucial: the estimated physical relay propor-
tion required for large-scale connectivity varies by at least a factor two in high user density
scenarios. This is, once again, due to the fact that the ratio between the area of a triangle
and its circumcircle is considerably small. As a matter of fact, it is much more likely to
find mobile users at crossroads in the circumcircle case than in the triangle case, which
results in less physical relays needed at a global scale.

Figure 5.7a presents the estimates when the D2D range r = 50m, which corresponds
to a scenario where the radio technology supporting D2D would be WiFi [7]. In such
a case, note that a sufficiently high density of users (mainly λ ≥ 60 km−1), can fully
compensate the relays in the circle case. Note that such a threshold is not unrealistic,
as λ ≈ 60 km−1 equivalently means that there are in average 60 D2D users per kilometre
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Figure 5.7 – Estimation of the minimal proportion of physical relays needed for large scale
connectivity of the network, as a function of user density λ, for r = 50m and r = 200m.
In both cases, LA = 20 km-1 (street density) and l = 20m (street width). As suggested
in [59], these are typical values for the fitting of a classical European city centre street
system by a PVT.

of streets, which means less than one user every fifteen metres in average. This is easily
reached in urban environments.

The case of larger connectivity radii is for instance depicted in Figure 5.7b, where
r = 200m. Interestingly, we approach an asymptotic situation where the total proportion
of occupied crossroads poccupied(λ, r) is independent of λ and equal to the PVT site per-
colation threshold p∗ ≈ 0.713 defined and estimated in Chapter 4 (see the the horizontal
red line on Figure 5.7b). In practice, r = 200m is quite a high D2D range, which can
yet only be obtained by using so-called millimeter-Wave frequencies [113] for the D2D
communications2. This will be the case in 5G networks, where one will thus approach the
asymptotic situation depicted in Figure 5.7b.

5.4 Conclusion
In this chapter, noting that the canyon shadowing assumption studied in Chapter 4 is too
restrictive for accurately modelling real-world networks, we have studied two extensions
of our network model. In particular, our main goal was to show that, in practice, large-
scale connectivity of the network may require a much smaller proportion of crossroads
equipped with physical relays (i.e. antennas) than the previously estimated proportion of

2The terminology “millimeter-Wave” comes from the fact that, for such waves, the order of magnitude
of the wavelength is around the millimeter.
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71.3%.
On a theoretical perspective, by considering the case r′ > 0 where connections due

to scattering or reflection between adjacent streets are possible, we have proven that
connectivity at large scale is theoretically possible for a relay proportion p < 71.3% and,
in fact, for whatever small p ∈ [0, 1]. This may however require very large ranges for the
user density λ and for r′ that cannot be achieved in real-world networks.

This is why we introduced another more applied approach with new geometric models
for streets and crossroads. Doing so, crossroads have a non-null surface and some part of
the relaying can be ensured by users, as would be the case in real-world networks. This in
turn allowed us to considerably reduce predictions of the minimal proportion of crossroads
that have to be equipped with relays so as to ensure good connectivity of the network.

Our results bring new quantitative arguments to the question of relay deployment in
D2D networks, which has a considerable strategical importance for telecommunications
operators.
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Chapter 6
Cost modelling and analysis of large-scale
urban D2D networks

Good fortune is what happens when
opportunity meets with planning.

Thomas Edison

In the previous chapters, our results showed that relays constitute a bottleneck for the
connectivity of the network. From a telecommunications operator’s perspective, deploy-
ing such relays comes with considerable costs and thus represents a necessary investment,
which has to be compensated in some way. However, thanks to the D2D paradigm, oper-
ators can also count on their density of already existing subscribers to do some part of the
signal relaying at crossroads and ensure a better connectivity of the network at a global
scale: this is what we called crowd-networking in Section 2.2.4. Note that this may only be
feasible in environments where the density of D2D users is sufficiently large: this is typi-
cally the case in urban environments. In such a context, D2D-aided crowd-networking can
offer great economic opportunities for new actors willing to enter the telecommunications
market by setting up a fully functional D2D network while limiting heavy investments in
network infrastructure.

In this chapter, we will be interested in modelling and analysing the costs associated
to relay deployment for ensuring good connectivity of D2D networks. This will in turn
allow us to study crowd-networking scenarios through D2D from an economic perspective.
In particular, and using our previous results, we will study as an example the case of a
neo-operator willing to enter the telecommunications market by entirely relying on D2D
to set up its network.

This chapter is based on the publication [88].

6.1 Introduction
In Section 2.2.4, we underlined that the explosion of the number of connected devices
and the possibility of multihop D2D communications pave the way to crowd-networking
scenarios. The main idea behind crowd-networking is that network users themselves will
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take part in ensuring a better quality of service and connectivity of the network globally.
For instance, in the D2D paradigm, this could consist in asking users to serve as relays.
However, most of the time, users have their own behaviour and may not tend to coop-
erate, due to the fact that they have limited resources at their disposal (data amount of
their mobile subscription, battery, . . . ). Therefore, operators need to incentivise users to
cooperate: this can for instance be done by economic means.

D2D-aided crowd-networking scenarios bear high economic stakes for operators as well
as for new actors willing to enter the telecommunications market. Indeed, resorting to
D2D and using the density of their own customers, traditional operators could benefit from
a coverage extension and a better quality of service. In sparser areas or in geographical
locations that are less accessible and hence less served by the network, this is particularly
interesting. Conversely, one can think of new actors (we call them neo-operators) willing
to enter the telecommunications market and set up a fully functional network by entirely
relying on D2D. By proposing a network service at a very low price compared to the
subscription prices proposed by traditional operators, these neo-operators could attract a
sufficient amount of customers to ensure large-scale connectivity of a D2D network and
thus offer a service comparable to the one proposed by traditional operators. In exchange
of paying a very low fee for the use of the network, users could agree to serve as D2D relays
in the network and collaborate to get good connectivity at a global scale. If such scenarios
were to be feasible, neo-operators would be capable of providing telecommunications net-
work services without having properly invested or even owning network equipment: this
is what we call uberisation1. Such uberisation scenarios could do great economic harm to
historical operators, who, unlike neo-operators, had to massively invest in core network
infrastructure at the beginning of their existence.

As a matter of fact, analysing the economic opportunities and threats of D2D in mobile
networks is of great interest for actors of the telecommunications market, or for new actors
willing to enter this market. Building on our previous D2D network model introduced in
Section 3.3, we propose to introduce a related economic model to perform a cost analysis
of D2D deployment in mobile networks. While our previous results allowed to study the
technical feasibility of crowd-networking scenarios through D2D, our cost model will allow
us to study their economic feasibility.

6.2 Economic model description
In this section, we present our economic model, which, coupled with the geometric models
for the spreading of users and relays over the network, will allow to evaluate costs related
to D2D deployment. Throughout our model, the (discrete) variable t ∈ N0 will denote
the time in months elapsed since an initial instant t0 = 0 defined according to our needs.

6.2.1 Cost parameters
In our economic model, we need to take into account the fact that deploying relays implies
expenditures for operators. In return, by offering a telecommunications service to its

1The terminology comes from the company Uber, which deployed a ride-hailing service only by coop-
erating with its network of drivers, accepting to sign up and drive for Uber with their own cars.
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Table 6.1 – Relevant cost parameters and their signification.

Parameter Description

cCAPEX CAPEX cost of one physical relay

cOPEX Yearly OPEX cost of one physical relay

η cOPEX/cCAPEX

G Operator’s monthly revenue per D2D user

TDEP Depreciation period of one physical relay (in years)

A Area covered by the D2D network

customers, the operator can expect a revenue. Finally, parameters for dimensioning the
network (and hence ruling the strategical decisions of the operator while deploying relays)
also need to be specified. Table 6.1 presents all the relevant parameters in a condensed
way.

Parameters related to the costs of relays

Regarding the costs of relays, two types of costs are to be paid by an operator:

• Capital expenditures (CAPEX), representing the money spent by the operator to
buy new relays or renewing existing relays.

• Operational expenditures (OPEX), representing money recurrently spent by the op-
erator in its day-to-day operations to ensure the network’s exploitation. In our case,
these OPEX costs cover for instance maintenance of the relays or energy costs.

We denote by cCAPEX the CAPEX cost of one physical relay and by cOPEX the OPEX cost
of one relay per year. As a matter of fact, as long as a relay is present in the network, the
monthly expense done by the operator for this relay is equal to cOPEX/12. The parameter
η = cCAPEX/cOPEX denotes the ratio between the CAPEX cost of one relay and the yearly
OPEX cost of one relay. Finally, note that relays depreciate over time: that is to say, they
lose their economic value over time (e.g. because of ageing). The operator will thus have
to replace its relays after some time. To capture this, we consider a relay depreciation
period TDEP of years, after which relays will successively be replaced. Note that after
this period, a relay may still be functional but has no economic value anymore for the
operator.

Operator’s revenue

Regarding the operator’s revenue on the use of its D2D network, several sources are
possible. For instance, the use of the D2D service can be billed to network users as
a monthly subscription fee. Another source of revenue for the operator can consist in
funding the deployment of the network by advertisement. For simplicity, we do not take
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into account the nature of the revenue for the operator and model it by a parameter G ≥ 0
corresponding to the monthly revenue received by the operator per D2D user.

Parameters for dimensioning the network

Now that we have specified the CAPEX and OPEX costs of one relay as well as the
operator’s revenue per D2D user, we need to specify the number of relays and D2D users
in the network. In this regard, we assume that an area A, expressed in squared kilometres
(km2) is covered by the considered D2D network. Moreover, we use our previous models
for the street system, the D2D users and the relays. Recall the corresponding parameters:

• The street density LA, expressed in inverse kilometres (km-1) denotes the mean
street length per unit area. If we consider the enlarged version of the street system,
as in Chapter 5, we denote again by l > 0 the width of all streets.

• The D2D users’ linear intensity λ > 0, also expressed in km-1, denotes the mean
number of D2D users per unit length of street. If we consider the enlarged version
of the street system, this is equivalent to considering a surface density of D2D users
equal to λ/l, representing the mean number of D2D users per unit area.

• The relay proportion p, dimensionless, denotes the probability to find a physical
relay at a crossroad of the street system. In frequentist terms, p represents the
proportion of crossroads equipped with a relay.

Recall from [108] that since the street system is a planar PVT, the intensity λ0 of vertices
of the PVT, or, in other words, the mean number of crossroads per unit area, is related
to the street density LA in the following way: λ0 = L2

A/2. Thus, we can express the mean
number of relays in the network as pL2

AA/2. In the same way, since λ denotes the linear
intensity of D2D users and LA denotes the density of streets, the mean number of D2D
users in the network can be expressed as λLAA.

6.2.2 Relay investment strategy and dynamics of user density
To perform economic analyses of D2D deployment in mobile networks, it is not sufficient
to consider the previous cost parameters. Indeed, one also needs to consider the variations
over time of the amount of relays and of the number of D2D users in the network.

The evolution of the number of relays that are deployed in the network is entirely gov-
erned by the strategical decisions of the operator. Indeed, based on the current conjecture,
the operator chooses how much and when relays shall be invested in and deployed over the
network. Hence, along with the previous cost parameters, the operator’s strategy for relay
investment shall be considered in the model. Note that such a strategy may strongly be
influenced by estimations of critical network quantities available to the knowledge of the
operator. For instance, our previous results on the minimal proportion of relays needed
for large-scale connectivity of the network may help an operator to elaborate its relay
deployment strategy, ruling how much relays will be invested in over time. In this regard,
the relay proportion p = p(t) can thus be seen as a time-dependent function. In the same
way, we denote by NB(t) the number of relays that need to be bought by the operator at
the beginning of month t. Also, we write N(t) for the total number of relays present in
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the network at the end of month t.
The number of D2D users in the network, i.e. customers of the operator, may fluctuate

over time, due to several factors, among which are the economic context, the competition
coming from other operators or the users’ own behaviour (for instance when they choose
to switch from one operator to another). To capture this phenomenon, we allow the user
density λ = λ(t) to depend on time. Note that an operator may also predict how its
density of customers may vary over time, e.g. by marketing analyses.

6.2.3 Quantities of interest for cost analysis
On an economic perspective, in order to analyse in more detail the costs related to relay
deployment in our D2D network model, we introduce three quantities of interest for an
operator’s strategical decisions.

First, the cash flow CF : t 7→ CF (t) is a function of time whose value at a given
month t corresponds to the difference between the money earned and the money spent by
the operator at month t. In other words:

CF (t) := Gλ(t)LAA−NB(t)cCAPEX −N(t)ηcCAPEX

12 (6.2.1)

In (6.2.1), the term Gλ(t)LAA corresponds to the revenue of the operator at month t,
while the terms NB(t)cCAPEX and N(t)ηcCAPEX

12 = N(t) cOPEX
12 respectively represent the

CAPEX spent at month t (corresponding to the acquisition of new relays) and the OPEX
spent at month t (costs related to the exploitation of the network). If the cash flow CF
is non-negative at a given month, it means that, during this month, the operator has
earned more money than it has spent and has thus generated benefits. On the contrary,
a negative cash flow means that the monthly expenses were not compensated by the
monthly earnings and so the operator undergoes an economic loss. In such a case, the
operator has to take money from its savings to keep running its service.

It is also easy to see that the cash flow is deeply related to the operator’s ability
to generate value and be profitable in the long run. This is captured by the cumulated
revenue CR : t 7→ CR(t) of the operator, a function of time giving the amount of money
earned by the operator up to month t. In other words:

CR(t) :=
t∑

s=0
CF (s) (6.2.2)

So to speak, the cumulated revenue can be seen as the balance of the operator’s bank
account at month t: when the cumulated revenue is negative at a given time, it means
that the operator has lost more money than it has earned up to that time. When the
cumulated revenue becomes non-negative, it means that the operator has performed a
return on its initial investment in relays and has earned more money than spent since the
initial instant t0 = 0. Most of the time, this initial instant t0 corresponds to the entrance
of the operator on the telecommunications market.

In the end, the operator wishes to have a return on investment ROI by counting on
the revenue coming from its customers and a limited investment in renewing relays. This
return on investment is reached when the cumulated revenue CR becomes positive:

ROI := min{t ≥ 0 : CR(t) > 0}. (6.2.3)
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Note that CR may not be a monotone and thus the cumulated revenue CR may become
negative again once the return on investment is reached. This situation must of course
preferably be avoided by operators, as their goal is to be profitable in the long run.

6.3 An example: analysis of an uberising neo-operator’s
strategy

6.3.1 Main assumptions
We now use our economic model to study an example of uberising scenario where a
neo-operator is willing to enter the telecommunications market by deploying a network
relying on D2D technology only, so as to limit infrastructure investments in relays and
base stations.

Regarding the dimensioning of the network, we assume that the territory covered by
the network is a dense urban environment and consider, as in Chapter 5, that the street
system is modelled by an enlarged PVT with street density LA and where all streets have
a positive width l > 0 (see Figure 5.4). The D2D users are still modelled by a Cox process
Xλ and the physical relays by a Bernoulli process Y . Regarding the connectivity model,
we use the same model as the one studied in Chapter 5, namely the canyon shadowing
case (0 < r < ∞, r′ = 0) with possible relaying of the signal either by D2D users of by
physical relays at crossroads of streets.

Moreover, we assume that all customers of the neo-operator will accept to serve as
relays using multihop D2D. They may for instance be incentivised to do so by being
offered a very low subscription price compared to those offered by traditional operators.
The fact that all customers of the neo-operator agree to serve as D2D relays implies that
the density of customers is simply equal to the D2D user density.

6.3.2 Relay deployment strategy
We now need to specify the relay deployment strategy of the studied neo-operator. The
main idea is to spread CAPEX investments over time and not massively invest in buying
relays too quickly. In this regard, we assume that the deployment of relays will be done
in two steps: a first network phase before the commercial launch of the neo-operator’s
service and a second one after the commercial launch, when the neo-operator starts to gain
customers. The relay deployment strategy of the neo-operator is illustrated by Figure 6.1.
Table 6.2 presents relevant parameters for understanding the uberising strategy of the neo-
operator. The initial time t0 = 0 will from now onwards denote the first month of relay
deployment, i.e. the moment when the operator starts to buy its relays.

In more detail, an initial investment in relays (CAPEX) has to be made before the
commercial launch of the service (t < TLAUNCH). During this initial period of network
deployment, no customers have subscribed to the service and so the user density is null
(λ(t) = 0). Note that once a relay has been installed, operational costs (cOPEX) are to be
paid for this relay by the operator. We denote by pmin the proportion of crossroads that
the neo-operator wishes to equip with relays at the end of this first phase. The choice of
a value for pmin is done by the neo-operator and can be oriented by the results about the
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Figure 6.1 – Relay deployment strategy of the neo-operator to set up its D2D network.

Table 6.2 – Relevant quantities for the neo-operator’s relay deployment strategy.

Parameter Description

t Time (in months)

λ(t) User (linear) intensity at month t

NB(t) Number of relays bought by the neo-operator at the
beginning of month t

N(t) Total number of relays in the network at the end of
month t

TLAUNCH Time at which the service is commercially launched

TCRITICAL Time at which all relays have been deployed

TDEP
Depreciation period of one relay and time at which

relays will start to be successively replaced

minimal relay proportion needed for large-scale connectivity of the network, see Chapter 5.
We also assume that the relays are deployed in equal amount during each month of the
initial deployment period. In other words, during the first phase of relay deployment, the
number of relays NB bought each month is constant and the total number of relays N in
the network is a linear function of time. Recalling that the mean number of relays in the
network is given by pL2

AA/2 and assuming for simplicity that pminL2
AA

2 ∈ N, we can thus
write: 

NB(t) = pminL2
AA

2TLAUNCH
for 0 ≤ t ≤ TLAUNCH − 1

N(t) = pminL2
AA

2TLAUNCH
+ pminL2

AA
2TLAUNCH

t for 0 ≤ t ≤ TLAUNCH − 1
(6.3.1)

At month t = TLAUNCH, the service of the neo-operator is commercially launched. From
that moment, the operator gets a revenue G per month for each D2D user. Worth noticing
is that the neo-operator might not have sufficiently many customers yet to ensure a good
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quality of service. Over time and by contagion effect, new customers will be attracted
and will allow to reach the critical mass needed to ensure large-scale connectivity of the
network.

When the D2D service is commercially launched, the neo-operator will start its second
relay deployment phase (TLAUNCH ≤ t < TCRITICAL), until reaching a proportion pmax of
crossroads equipped with relays. Again, we assume that the relays are deployed in equal
amount during each month of this second phase. Thus, similarly to (6.3.1) and assuming
that pmaxL2

AA
2 ∈ N, we write for the second phase of relay deployment:


NB(t) = (pmax−pmin)L2

AA
2(TCRITICAL−TLAUNCH) for TLAUNCH ≤ t ≤ TCRITICAL − 1

N(t) = pminL2
AA

2 + (pmax−pmin)L2
AA

2(TCRITICAL−TLAUNCH)(t− TLAUNCH + 1) for TLAUNCH ≤ t ≤ TCRITICAL − 1.
(6.3.2)

In practice, the choice of values for pmax and TCRITICAL can also be oriented by the results
about the minimal relay proportion needed for large-scale connectivity of the network.
Typically, the previous values are chosen by the neo-operator in such a way that when all
relays have been deployed (i.e. in proportion pmax at time TCRITICAL), the critical mass of
users ensuring large-scale connectivity of the network has almost been reached. In other
words, this means that the neo-operator tunes pmax and TCRITICAL so as to have:

pmax ≈ poccupied(λ(TCRITICAL), r), (6.3.3)

where, poccupied(λ, r) was defined in (5.3.11). Recall that poccupied(λ, r) is the proportion
of occupied crossroads (either by a D2D user or by a relay) needed to ensure large-scale
connectivity of the network under a user density λ and a D2D range r.

Finally, once all relays have been deployed (t ≥ TCRITICAL), the neo-operator will begin
to replace them at time t = TDEP, in such a way that the whole relay fleet will be entirely
replaced within another depreciation period [TDEP, 2TDEP[, and so on. In other words,
after the critical time TDEP the total number of relays N in the network remains constant,
while the number of bought relays NB is null before TDEP and constant after. We thus
write:

N(t) = pmaxL
2
AA

2 for t ≥ TCRITICAL (6.3.4)

NB(t) =

0 for TCRITICAL ≤ t ≤ TDEP − 1
pmaxL2

AA
2TDEP

for t ≥ TDEP.
(6.3.5)

Putting equations (6.3.1), (6.3.2), (6.3.4) and (6.3.5) together, we thus obtain general
expressions for the total number of relays N and the number of relays to be bought each
month NB. This in turn allows to compute the cash flow CF , the cumulated revenue CR
and the return on investment ROI defined by equations (6.2.1) to (6.2.3).

6.3.3 Simulation parameters
We performed a numerical evaluation of the uberising strategy presented in Section 6.3.2
with parameters coming from internal data provided in Table 6.2b and a D2D user density
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(a) User density as a function of time.

Simulation parameter Numerical value

cCAPEX e1200

η 10%

G e3

TDEP 7 years = 84 months

TLAUNCH 1 year = 12 months

TCRITICAL 2 years 1/2 = 30 months

pmin 10%

pmax 20%

λ(t) As in Fig. 6.2a

LA 20 km/km2

A 25 km2

(b) Numerical values of other simulation parameters.

Figure 6.2 – Parameters used for numerical evaluation of the neo-operator’s uberising
strategy.

λ(t) illustrated by Figure 6.2a.
The parameters dimensioning the typology of the territory covered by the network are

the street density LA = 20 km-1 and the area covered by the network A = 25 km2. As
suggested by fitting against real data [58], such values are typical for the city centre of a
major European city.

We chose a user density t 7→ λ(t) which is increasing as a function of time, thus
assuming that the neo-operator does not lose customers. Note the user density is null
before commercial launch, i.e. for t ≤ TLAUNCH = 1year, then undergoes a steep increase
corresponding to early adopters and finally undergoes a slower growth once the early
adopters effect is over.

In our numerical example, we took pmin = 10% and pmax = 20%. Moreover, the
critical time is equal to TCRITICAL = 30months. Note that this choice of parameters
roughly satisfies (6.3.3). Indeed, λ(TCRITICAL) ≈ 45 km-1 (see the black dashed lines
on Figure 6.2a). In a 5G millimeter-Wave context where r = 200m (see Figure 5.7b),
assuming circle crossroads, this density of users requires a minimal relay proportion of
about pc(λ = 45 km-1, r = 200m) ≈ 20%. Thus, at the critical time TCRITICAL, the
neo-operator has fully deployed its relays and ensured large-scale connectivity of its D2D
network.
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(a) Cash flow CF as a function of time.
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Figure 6.3 – Cash flow CF and cumulated revenue CR in thousands of euros (ke) as a
function of time. The return on investment is reached at ROI = 43 months.
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Figure 6.4 – Zoom of Figure 6.3b. The return on investment is reached at ROI = 43
months.

6.3.4 Results

Figure 6.3 shows the evolution of the cumulated revenue and of the cash flow over time.
Before the commercial launch, only CAPEX and OPEX are spent in relays, and so CR is
decreasing. From the commercial launch, the operator starts to get a revenue: this is the
first abrupt increase of the cash flow CF . At the beginning of the commercial exploitation
of the network, the revenue coming from users may not compensate the CAPEX and
OPEX spent in relays, which is why the cumulated revenue CR stays negative. At the
time TCRITICAL denoting the end of the second relay deployment phase, the cash flow CF
increases abruptly for the second time, due to the fact that the neo-operator does not
have to buy new relays anymore (CAPEX investments thus drop to 0). Once all relays
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have been deployed, only OPEX costs are spent and the growth of the user density allows
to increase the cumulated revenue of the operator. Going further in time, the time TDEP
at which relays start to be replaced corresponds to the sudden drop of the cash flow CF .
This drop is due to the fact that the neo-operator has to buy new relays (CAPEX) to
replace the old ones.

With the parameters values prescribed by Table 6.2b, we obtain a return on investment
ROI = 43months i.e. 31 months after the commercial launch of the D2D service (see
Figure 6.4). In practice, note that such a value is more than satisfying for potential
investors: the return on the initial investment is realised in less than 3 years after the
commercial launch of the service.

6.4 Conclusion
In this chapter, we have presented a cost model for analysing the deployment of D2D in
mobile networks from an economic perspective. This model allows one to more reliably
quantify the necessary investments in relays required to deploying a relay-assisted D2D
network. As a main application, we studied a practical uberisation scenario where a
neo-operator, willing to enter the telecommunications market and disrupt conventional
operators, relies on D2D only to set up its network. In such a case, note that the number
of D2D users may be too small at the beginning of the service to get a fully connected
network. The neo-operator could then start by offering proximity services, until large-
scale connectivity of its network is ensured by sufficiently many D2D users. Another
possibility to reach this critical mass of users could consist in resorting to customers of
existing operators through negociated costs.

Finally, funding the D2D service from its very beginning is essential, otherwise the
return on investment would happen much later in time, and thus the uberisation scenario
described in our model might not be profitable for a new actor in the telecommunications
sector. Our cost model is also sufficiently generic so that any operator willing to launch a
D2D service can replace our simulation parameters with its own internal data. This allows
one to assess when setting up a relay-assisted D2D network will be profitable and paves
the way to interesting discussions regarding deployment of relay-assisted D2D networks.
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General conclusion and research perspectives

In this thesis, we focused on new stochastic models of multihop device-to-device (D2D)
networks in urban environments allowing one to assess the technical and economic feasibil-
ity of such networks at large scale. After having presented the mathematical background
of our work and having given an overview of wireless and D2D communications, we have
addressed the following research objectives.

Reviewing the different approaches adopted in the stochastic geometry literature to model
telecommunications networks, we have underlined that appropriate models for D2D net-
works, especially in urban environments, shall take into account that the underlying topol-
ogy of the network environment is of critical importance. Moreover, realistic connectivity
conditions have to be considered. Based on these points, we thus built and proposed new
models where the support of the network is given by a planar Poisson-Voronoi tessella-
tion (PVT), thought of as a street system of the urban environment covered by the D2D
network. Doubly stochastic point processes supported by the PVT prescribe the spatial
distributions of network users and relays in the network. Representing the network by a
random connectivity graph, we then interpreted percolation of this graph as good con-
nectivity of the network.

In a first approach, we studied the case of a network environment with many obstructions,
resulting in particularly restrictive connectivity conditions where only line-of-sight (LOS)
connections along the edges of the PVT within a certain range are possible. We called this
the canyon shadowing assumption. In this case, we studied percolation of the network
connectivity graph both from a theoretical and a numerical point of view and proved
that phase transitions between several connectivity regimes with very different properties
exist. Particular cases corresponding to percolation models that had not been studied in
the literature before have also been considered. What is more, our numerical simulations
allowed us to estimate the frontiers between the various connectivity regimes, which is of
great practical interest for economic planning of large-scale D2D networks. In particular,
we were able to estimate critical quantities such as the minimal density of users allowing
good connectivity of the network.

In the canyon shadowing case, the presence of relays at crossroads of streets (i.e. vertices
of the PVT) is essential to relay the signal between adjacent streets (edges of the PVT). As
a matter of fact, relays constitute a bottleneck for good connectivity of the network and a
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necessary investment for operators. Moreover, our simulations allowed us to predict that
under an absolute minimal proportion p∗ ≈ 0.713 of crossroads equipped with a relay,
good connectivity of the network is not possible, no matter what. Such a high value
for the relay proportion may not be feasible for operators under reasonable costs and is
mainly due to the fact that, in our model, the probability that some Cox point is located
at a vertex of the PVT is exactly 0. In other words, relaying of the signal at crossroads
can only be done by relays. In real-world networks, however, one may expect some part
of the network users themselves to perform this relaying. We thus proposed two variants
to deal with the previous issue:

• On the one hand, we considered more general connectivity conditions, allowing
for supplementary non-line-of-sight (NLOS) connections due to scattering and/or
reflections of the signal at crossroads. This gives rise to a new network connectivity
graph, whose percolation was studied.

• On the other hand, we considered a new geometrical model where streets are given
a positive width and crossroads have a positive surface. As a matter of fact, the
probability of finding a user at a crossroad and able to relay the signal becomes
positive. This in turn allowed us to revise the critical network estimates that had
been estimated in the previous canyon shadowing case. We particularly focused on
the minimal proportion of crossroads that have to be equipped by a relay to ensure
good connectivity of the network. This quantity indeed represents the necessary
investment that operators have to make in relays before being able to set up a
functional D2D network at large scale.

Our next step consisted in introducing an operational cost model related to our network
stochastic model. This cost model aims at quantifying the costs related to relay deploy-
ment in D2D networks and investigate possible economic consequences of the feasibility
of large-scale D2D networks for operators. As an application, we studied an uberisation
scenario where a neo-operator enters the telecommunications market by setting up a func-
tional telecommunications network relying only on D2D. The idea behind this scenario is
to offer a telecommunications service to users at a very low price, while counting on them
to act as D2D relays. In the end, the neo-operator wishes to have a return on investment
(ROI) by counting on the revenue coming from its customers and a limited investment
in relays. Using our previous numerical results about large-scale connectivity, we studied
an investment strategy in relays making such a neo-operator become profitable at a rea-
sonable time horizon, even if the revenue earned per D2D user is very low compared to
those of traditional operators. This study outlines the great economic opportunities and
threats that could arise from the arrival of D2D in the future cellular networks.

The results presented in this thesis can be used as a first basis towards a more complete
analysis of the connectivity of large D2D networks, of their technical feasibility and of
the associated economic consequences. Several improvements can be considered for future
research directions.

Regarding our D2D network stochastic model, many perspectives can be explored.
First, other choices of random tessellations for the street system could be considered.
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6.4. Conclusion

The phase transition results of Chapters 4 and 5 can easily be generalised to the dual
tessellation of a PVT: a Poisson-Delaunay tessellation (PDT). More generally, we also
believe that our results are still valid for any stabilizing and asymptotically essentially
connected tessellation as defined in Definitions 4.4.1 and 4.4.2. Other tessellation models
could been considered. In particular, when thinking of African or North-American cities,
the so-called Manhattan grids (MG) are often investigated. Nested tessellations could also
be considered in anisotropic environments or when the territory covered by the network
cannot be considered as morphologically homogeneous, see [32].
Secondly, refined connectivity models closer to the physical reality of radio wave prop-
agation could be investigated. For instance, appropriate models for interference could
be considered, as has been done in [128]. The case of random radii for the communica-
tion ranges could also be studied. Moreover, these refined connectivity models could be
combined with refined geometric models for crossroads and streets, such as the enlarged
version of the PVT street system considered in Chapter 5.
Thirdly, and perharps more importantly, appropriate models for user mobility in the
network could be introduced and would allow to consider the problem of large-scale con-
nectivity of D2D networks from a dynamic point of view.

Regarding the mathematical part of our work, note that we only limited ourselves to the
existence of phase transitions between the different connectivity regimes, which is the
primary question in any percolation problem. A next step could consist in investigating
the percolation probability θ that some network node belongs to the infinite connected
component of the network. As has been done in [29], this percolation probability can be
interpreted by the probability that some randomly selected user of the network belongs to
the largest communication cluster. Going further, one could look at the stretch factor µ
giving the ratio between the number of hops needed to connect two users of the network
and their relative Euclidean distance. Though values of this stretch factor µ are accessible
via numerical simulations, proving its existence has not been done yet.

Finally, our operational cost model paves the way towards multiple research directions.
Rather than investigating threats coming from neo-operators, one could investigate eco-
nomic opportunities related to coverage extensions by D2D for traditional operators: for
instance, relying on users to enhance connectivity in areas less served by the network
could avoid massive expenditures in network infrastructure for operators. More compli-
cated scenarios where different neo-operators owning different kinds of relays could also be
investigated, and it would be interesting to see whether coalition or competition between
them would allow for a better connectivity at a global scale. Another stream of general-
isation could also consist in considering users that may not be willing to cooperate and
serve as D2D relays, contrary to the uberisation scenario we studied, where all customers
of the neo-operators agree to serve as a D2D relay. In real-world networks, users have
their own behaviour and have limited resources (e.g. battery) at their disposal. They
must thus be incentivised (e.g. by economic ways) to cooperate and serve as relays: this
would represent additional costs which must be considered by operators.
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Appendix A
0-1 law for the percolation probability of the
network connectivity graph

We must stand firm between two
kinds of madness: the belief that we
can do anything; and the belief that
we can do nothing.

Alain

In this appendix, we state and prove an additional result about the percolation prob-
ability of the network connectivity graph presented in Section 3.3. More precisely, we
have a 0-1 law for the percolation probability of the general network graph G = Gp,λ,r,r′ ,
regardless of the values of the network parameters (LA, p, λ, r, r′). We obtain this result
in two steps: first, we prove an ergodicity result on the superposition Z := Xλ ∪ Y of the
point processes of users and relays. Then, as a consequence of this ergodicity result, we
obtain a 0-1 law for the percolation probability P (p, λ, r, r′) of G.

Our ergodicity result for Z is the following one:

Proposition A.0.1. The superposition Z of the point processes of users and relays is
mixing, and hence ergodic.

Proof. To prove that Z is mixing, we will work on the canonical space and it will thus
suffice to show that

lim
‖x‖2→∞

P(A ∩ SxB) = P(A)P(B), (A.0.1)

for all events A,B ∈ σ(Z) that are measurable with respect to the sigma-algebra σ(Z)
generated by Z and where {Sx}x∈R2 denotes the natural shift on R2.

Note first that by [38, Lemma 12.3.II] (and as has been done in the proof of [38, Propo-
sition 12.3.VI]), it suffices to check the mixing condition (A.0.1) for local events, i.e. of
the form A ∈ σ(Z∩WA) and B ∈ σ(Z∩WB), whereWA andWB are compact observation
windows in R2. Thus, let A and B be such events. We will show that for all ε > 0, we
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can find x with ‖x‖2 sufficiently large so that |P(A ∩ SxB)− P(A)P(B)| ≤ ε.

Take any ε > 0. By condition (2) in the definition of stabilization (Definition 4.4.1),
we can find sufficiently large n ≥ 1 such that P(R(Qn) ≥ n) ≤ ε/3. Moreover, such n can
be chosen so as to satisfy WA ⊆ Qn and WB ⊆ Qn. Fix such n.

Since A ∈ σ(Z ∩WA), A only depends on the configuration of Z inside WA. In the
same way, B only depends on the configuration of Z inside WB, and SxB only depends
on the configuration of Z inside SxWB = WB − x. Since B ⊆ Qn, we have that SxWB ⊆
Qn − x =: Qn(−x). Take x with ‖x‖2 > 6n

√
2. Then we have Qn ∩ Qn(−x) = ∅ and

thus WA ∩ SxWB = ∅, so that the events A and SxB depend on the configuration of Z in
disjoint sets. Since the conditional distribution of Z given the random support Λ is that
of a superposition of a Bernoulli process and of a Poisson point process, the events A and
SxB are conditionnally independent given Λ. Hence:

P(A ∩ SxB) = E
[
E (1{A}1{SxB} |Λ)

]
= E

[
E(1{A} |Λ)E (1{SxB} |Λ)

]
(A.0.2)

Now, since A ∈ σ(Z ∩WA) with WA ⊆ Qn, we can write E(1{A} |Λ) = f(ΛQn) as a
bounded deterministic function of ΛQn . In the same way, we can write E(1{SxB} |Λ) =
g(ΛQn(−x)) as a bounded deterministic function of ΛQn(−x). By (A.0.2), we thus get:

P(A ∩ SxB) = E
[
f(ΛQn)g(ΛQn(−x)

]
= E

[
f(ΛQn)g(ΛQn(−x))1{R(Qn) < n}1{R(Qn(−x)) < n}

]
+ E

[
f(ΛQn)g(ΛQn(−x))1{(R(Qn) ≥ n) ∪ (R(Qn(−x)) ≥ n)}

] (A.0.3)

Let us first deal with the second term appearing in the right-hand side of (A.0.3).
Using the fact that both f and g, being conditional expectations of indicator functions,
are upper-bounded by 1, we get:

E
[
f(ΛQn)g(ΛQn(−x))1{(R(Qn) ≥ n) ∪ (R(Qn(−x)) ≥ n)}

]
≤ P [(R(Qn) ≥ n) ∪ (R(Qn(−x)) ≥ n)]
≤ P [R(Qn) ≥ n] + P [R(Qn(−x)) ≥ n] (A.0.4)

where we have used the union bound in (A.0.4). Now, by stationarity of the stabilization
field {Ry}y∈R2 , we get that the right-hand side in (A.0.4) is equal to 2P [R(Qn) ≥ n]. In
all, we thus get:

E
[
f(ΛQn)g(ΛQn(−x)1{(R(Qn) ≥ n) ∪ (R(Qn(−x)) ≥ n)}

]
≤ 2ε/3 (A.0.5)

We now deal with the first term appearing in the right-hand side of (A.0.3). Note
that since ‖x‖2 > 6n

√
2, the set ϕ := {0,−x} ⊂ R2 satisfies ∀y ∈ ϕ, dist2(y, ϕ \ {y}) >

3n and so, by the condition (3) in the definition of stabilization, the random variables
f(ΛQn)1{R(Qn) < n} and g(ΛQn(−x))1{R(Qn(−x)) < n} are independent. Thus, the first
term appearing in the right-hand side of (A.0.3) becomes:
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E
[
f(ΛQn)g(ΛQn(−x))1{R(Qn) < n}1{R(Qn(−x)) < n}

]
= E [f(ΛQn)1{R(Qn) < n}]E

[
g(ΛQn(−x))1{R(Qn(−x)) < n}

]
.

(A.0.6)

Now, using the fact that f(ΛQn) =: E (1{A} |Λ) and noting that the event {R(Qn) <
n} is Λ-measurable, we can put everything back into a single expectation and get:

E [f(ΛQn)1{R(Qn) < n}] = E [E (1{A} |Λ)1{R(Qn) < n}]
= E [E (1{A}1{R(Qn) < n} |Λ)]
= E [1{A}1{R(Qn) < n}]
= P(A ∩ {R(Qn) < n}).

In the same way, we get:

E
[
g(ΛQn(−x))1{R(Qn(−x)) < n}

]
= P(SxB ∩ {R(Qn(−x)) < n}).

Thus, (A.0.6) yields:

E
[
f(ΛQn)g(ΛQn(−x))1{R(Qn) < n}1{R(Qn(−x)) < n}

]
= P(A ∩ {R(Qn) < n})P(SxB ∩ {R(Qn(−x)) < n})

= P(A ∩ {R(Qn) < n})P ◦ Sx(B ∩ {R(Qn) < n})
= P(A ∩ {R(Qn) < n})P(B ∩ {R(Qn) < n}),

where we have used the stationarity assumption to get the last line. Finally, using the
fact that P(R(Qn) < n) ≥ 1− ε/3, we get

|P(A ∩ {R(Qn) < n})P(B ∩ {R(Qn) < n})− P(A)P(B)| ≤ ε/3

and thus

∣∣∣E [f(ΛQn)g(ΛQn(−x))1{R(Qn) < n}1{R(Qn(−x)) < n}
]
− P(A)P(B)

∣∣∣ ≤ ε/3. (A.0.7)

Using (A.0.5), (A.0.7) to put everything back together in (A.0.3) and using the trian-
gular inequality, we finally get:

|P(A ∩ SxB)− P(A)P(B)| ≤ 2ε/3 + ε/3 = ε (A.0.8)
for sufficiently large x, as required. This concludes the proof of Proposition A.0.1.

Remark. Note that we actually did not need to use the PVT structure nor the asymptotic
essential connectedness of the random support S here. We only used the fact that S is
a stabilizing random tessellation and the complete independence properties of the point
processes of users Xλ and of relays Y given their random support S. As a matter of fact,
Proposition A.0.1 can be generalised to any stabilizing random tessellation S in R2.

Finally, since the percolation of the connectivity graph G is a translation-invariant
event, a straightforward consequence of the previous result is the following 0-1 law:
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Corollary A.0.1.1.

∀LA > 0, p ∈ [0, 1] , λ ≥ 0, 0 ≤ r′ ≤ r, P (p, λ, r, r′) ∈ {0, 1}.

In other words, percolation of the connectivity graph G is either an almost sure or almost
impossible event.

168



Bibliography

[1] Nomenclature of the frequency and wavelength bands used in telecommunications.
Technical Report ITU-T Recommendation B.15, International Telecommunications
Union, October 1996.

[2] Global mobile data traffic forecast update, 2017–2022 white paper.
Technical report, Cisco Visual Networking Index, 2019. Available at:
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-738429.html.

[3] Internet of things forecast. Technical report, Ericsson, 2019. Available at: https:
//www.ericsson.com/en/mobility-report/internet-of-things-forecast.

[4] D. Ahlberg, S. Griffiths, R. Morris, and V. Tassion. Quenched Voronoi percolation.
Advances in Mathematics, 286:889–911, 2016.

[5] M. Alam, D. Yang, J. Rodriguez, and R. A. Abd-Alhameed. Secure Device-to-
Device communication in LTE-A. IEEE Communications Magazine, 52(4):66–73,
2014.

[6] R. Alkurd, R. M. Shubair, and I. Abualhaol. Survey on Device-to-Device com-
munications: Challenges and design issues. In 2014 IEEE 12th International New
Circuits and Systems Conference (NEWCAS), pages 361–364. IEEE, 2014.

[7] A. Asadi, P. Jacko, and V. Mancuso. Modeling D2D communications with LTE and
WiFi. ACM SIGMETRICS Performance Evaluation Review, 42(2):55–57, 2014.

[8] A. Asadi, Q. Wang, and V. Mancuso. A survey on Device-to-Device communication
in cellular networks. IEEE Communications Surveys & Tutorials, 16(4):1801–1819,
2014.

[9] L. Babun, A. I. Yürekli, and I. Güvenç. Multi-hop and D2D communications for
extending coverage in public safety scenarios. In 2015 IEEE 40th local computer
networks conference workshops (LCN Workshops), pages 912–919. IEEE, 2015.

[10] F. Baccelli and B. Błaszczyszyn. Stochastic geometry and wireless networks: Volume
I – Theory. Foundations and Trends in Networking, 3(3–4):249–449, 2009.

169

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast


BIBLIOGRAPHY

[11] F. Baccelli and B. Błaszczyszyn. Stochastic geometry and wireless networks: Volume
II – Applications. Foundations and Trends in Networking, 4(1–2):1–312, 2010.

[12] F. Baccelli, B. Błaszczyszyn, and M. Karray. Random Measures, Point Pro-
cesses, and Stochastic Geometry. 2020. Available at https://hal.inria.fr/
hal-02460214/document.

[13] F. Baccelli, M. Klein, M. Lebourges, and S. Zuyev. Stochastic geometry and archi-
tecture of communication networks. Telecommunication Systems, 7(1-3):209–227,
1997.

[14] A. J. Baddeley, R. Turner, et al. Spatstat: An R package for analyzing spatial point
pattens, 2004.

[15] I. Balberg. Recent developments in continuum percolation. Philosophical Magazine
B, 56(6):991–1003, 1987.

[16] P. Balister and B. Bollobás. Percolation in the k-nearest neighbor graph. In Recent
Results in Designs and Graphs: a Tribute to Lucia Gionfriddo, volume 28, pages
83–100. Quaderni di Matematica, 2013.

[17] P. Balister, B. Bollobás, and M. Walters. Continuum percolation with steps in the
square or the disc. Random Structures & Algorithms, 26(4):392–403, 2005.

[18] P. Balister, A. Sarkar, and B. Bollobás. Percolation, connectivity, coverage and
colouring of random geometric graphs. In Handbook of Large-Scale Random Net-
works, Bolyai Society Mathematical Studies 18, pages 117–142. Springer, 2008.

[19] A. M. Becker and R. M. Ziff. Percolation thresholds on two-dimensional Voronoi
networks and Delaunay triangulations. Physical Review E, 80(4):041101, 2009.

[20] D. Beringer, G. Pete, Á. Timár, et al. On percolation, critical probabilities and
unimodular random graphs. Electronic Journal of Probability, 22(106):1–26, 2017.

[21] B. Błaszczyszyn, M. Haenggi, P. Keeler, and S. Mukherjee. Stochastic geometry
analysis of cellular networks. Cambridge University Press, 2018.

[22] B. Blaszczyszyn and D. Yogeshwaran. Connectivity in sub-Poisson networks. In
2010 48th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 1466–1473. IEEE, 2010.

[23] B. Błaszczyszyn and D. Yogeshwaran. Clustering and percolation of point processes.
Electron. J. Probab, 18(72):1–20, 2013.

[24] B. Bollobás, S. Janson, and O. Riordan. Line-of-sight percolation. Combinatorics,
Probability and Computing, 18(1-2):83–106, 2009.

[25] B. Bollobás and O. Riordan. The critical probability for random Voronoi percolation
in the plane is 1/2. Probability Theory and Related Fields, 136(3):417–468, 2006.

[26] B. Bollobás and O. Riordan. Percolation. Cambridge University Press, 2006.

170

https://hal.inria.fr/hal-02460214/document
https://hal.inria.fr/hal-02460214/document


BIBLIOGRAPHY

[27] B. Bollobás and O. Riordan. Percolation on random Johnson–Mehl tessellations
and related models. Probability Theory and Related Fields, 140(3-4):319–343, 2008.

[28] S. R. Broadbent and J. M. Hammersley. Percolation processes: I. Crystals and
mazes. In Mathematical Proceedings of the Cambridge Philosophical Society, vol-
ume 53, pages 629–641. Cambridge University Press, 1957.

[29] E. Cali, N. N. Gafur, C. Hirsch, B. Jahnel, T. En-Najjary, and R. I. Patterson.
Percolation for D2D networks on street systems. In 2018 16th International Sym-
posium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), pages 1–6. IEEE, 2018.

[30] Y. Cao, T. Jiang, and C. Wang. Cooperative Device-to-Device communications in
cellular networks. IEEE Wireless Communications, 22(3):124–129, 2015.

[31] S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic geometry and its
applications. John Wiley & Sons, 2013.

[32] T. Courtat. Walk on City Maps - Mathematical and Physical phenomenology of the
City, a Geometrical approach. PhD thesis, 2012.

[33] T. Courtat, L. Decreusefond, and P. Martins. Stochastic simulation of ur-
ban environments. Application to path-loss in wireless systems. arXiv preprint
arXiv:1604.00688, 2016. Available at https://arxiv.org/pdf/1912.07895.pdf.

[34] T. Courtat, S. Douady, and C. Gloaguen. Centrality maps and the analysis of
city street networks. In Proceedings of the 5th International ICST Conference on
Performance Evaluation Methodologies and Tools, pages 316–321, 2011.

[35] T. Courtat, C. Gloaguen, and S. Douady. Mathematics and morphogenesis of cities:
A geometrical approach. Physical Review E, 83(3):036106, 2011.

[36] T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley &
Sons, 2012.

[37] D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes:
Volume I, Elementary Theory and Methods. Springer, 2003.

[38] D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes:
Volume II, General Theory and Structure. Springer, 2008.

[39] O. Dousse, F. Baccelli, and P. Thiran. Impact of interferences on connectivity in
ad hoc networks. IEEE/ACM Transactions on networking, 13(2):425–436, 2005.

[40] O. Dousse, M. Franceschetti, N. Macris, R. Meester, and P. Thiran. Percolation in
the signal to interference ratio graph. Journal of applied probability, 43(2):552–562,
2006.

[41] G. D. Durgin, T. S. Rappaport, and H. Xu. Partition-based path loss analysis for
in-home and residential areas at 5.85 GHz. In IEEE GLOBECOM 1998 (Cat. NO.
98CH36250), volume 2, pages 904–909. IEEE, 1998.

171

https://arxiv.org/pdf/1912.07895.pdf


BIBLIOGRAPHY

[42] V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic, A. A.
Julius, and R. Bianchi. An empirically based path loss model for wireless channels
in suburban environments. IEEE Journal on selected areas in communications,
17(7):1205–1211, 1999.

[43] P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17–60, 1960.

[44] D. Feng, L. Lu, Y. Yuan-Wu, G. Y. Li, S. Li, and G. Feng. Device-to-Device
communications in cellular networks. IEEE Communications Magazine, 52(4):49–
55, 2014.

[45] M. Franceschetti, L. Booth, M. Cook, R. Meester, and J. Bruck. Percolation in
multi-hop wireless networks. Technical Report UCB/ERL M03/18, EECS Depart-
ment, University of California, Berkeley, 2003. Available at http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2003/4088.html.

[46] M. Franceschetti, O. Dousse, N. David, and P. Thiran. Closing the gap in the capac-
ity of wireless networks via percolation theory. IEEE Transactions on Information
Theory, 53(3):1009–1018, 2007.

[47] M. Franceschetti and R. Meester. Random Networks for Communication: From
Statistical Physics to Information Systems. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 2008.

[48] A. Frieze, J. Kleinberg, R. Ravi, and W. Debany. Line-of-sight networks. Combi-
natorics, Probability and Computing, 18(1-2):145–163, 2009.

[49] H. Frisch and J. Hammersley. Percolation processes and related topics. Journal of
the society for industrial and applied mathematics, 11(4):894–918, 1963.

[50] Z. Galil and G. F. Italiano. Data structures and algorithms for disjoint set union
problems. ACM Computing Surveys (CSUR), 23(3):319–344, 1991.

[51] P. Gandotra and R. K. Jha. Device-to-Device communication in cellular networks:
A survey. Journal of Network and Computer Applications, 71:99–117, 2016.

[52] P. Gandotra, R. K. Jha, and S. Jain. A survey on Device-to-Device (D2D) com-
munication: Architecture and security issues. Journal of Network and Computer
Applications, 78:9–29, 2017.

[53] S. Ghosh, M. Krishnapur, Y. Peres, et al. Continuum percolation for Gaussian
zeroes and Ginibre eigenvalues. The Annals of Probability, 44(5):3357–3384, 2016.

[54] E. N. Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–
1144, 1959.

[55] E. N. Gilbert. Random plane networks. Journal of the Society for Industrial and
Applied Mathematics, 9(4):533–543, 1961.

172

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2003/4088.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2003/4088.html


BIBLIOGRAPHY

[56] I. Glauche, W. Krause, R. Sollacher, and M. Greiner. Continuum percolation of
wireless ad hoc communication networks. Physica A: Statistical Mechanics and its
Applications, 325(3-4):577–600, 2003.

[57] C. Gloaguen. Stochastic modelling of urban access networks. In Proc. 10th Internat.
Telecommun. Network Strategy Planning Symp.(Munich, June 2002), pages 99–104.
VDE, 2002.

[58] C. Gloaguen, F. Fleischer, H. Schmidt, and V. Schmidt. Fitting of stochastic
telecommunication network models via distance measures and Monte-Carlo tests.
Telecommunication Systems, 31(4):353–377, 2006.

[59] C. Gloaguen, F. Voss, and V. Schmidt. Parametric distance distributions for
fixed access network analysis and planning. In 2009 21st International Teletraf-
fic Congress, pages 1–8. IEEE, 2009.

[60] C. Gloaguen, F. Voss, and V. Schmidt. Parametric distributions of connection
lengths for the efficient analysis of fixed access networks. A nnals of telecommuni-
cations - Annales des télécommunications, 66(1-2):103–118, 2011.

[61] A. Goldsmith. Wireless communications. Cambridge University Press, 2005.

[62] G. Grimmett. Percolation. Springer, 1999.

[63] N. Gupta, A. D. Singh, P. Shrivastava, and V. A. Bohara. A two-way coopera-
tive D2D communication framework for a heterogeneous cellular network. Wireless
Personal Communications, 109(1):579–593, 2019.

[64] M. Haenggi. Stochastic geometry for wireless networks. Cambridge University Press,
2012.

[65] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti. Stochastic
geometry and random graphs for the analysis and design of wireless networks. IEEE
journal on selected areas in communications, 27(7):1029–1046, 2009.

[66] M. Haenggi, R. K. Ganti, et al. Interference in large wireless networks. Foundations
and Trends in Networking, 3(2):127–248, 2009.

[67] P. Hall. On continuum percolation. The Annals of Probability, pages 1250–1266,
1985.

[68] J. M. Hammersley. Percolation processes: Lower bounds for the critical probability.
The Annals of Mathematical Statistics, 28(3):790–795, 1957.

[69] T. E. Harris. A lower bound for the critical probability in a certain percolation
process. In Mathematical Proceedings of the Cambridge Philosophical Society, vol-
ume 56, pages 13–20. Cambridge University Press, 1960.

[70] C. Hirsch, B. Jahnel, and E. Cali. Continuum percolation for Cox point processes.
Stochastic Processes and their Applications, 129(10):3941–3966, 2019.

173



BIBLIOGRAPHY

[71] P. Jacquet and D. Popescu. Self-similar geometry for ad-hoc wireless networks:
Hyperfractals. In International Conference on Geometric Science of Information,
pages 838–846. Springer, 2017.

[72] P. Jacquet and D. Popescu. Self-similarity in urban wireless networks: Hyper-
fractals. In 2017 15th International Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks (WiOpt), pages 1–6. IEEE, 2017.

[73] B. Jahnel and W. König. Probabilistic Methods in Telecommunications. Compact
Textbooks in Mathematics. Springer International Publishing, 2020.

[74] B. Jahnel and A. Tóbiás. SINR percolation for Cox point processes with random
powers. arXiv preprint arXiv:1912.07895, 2019. Available at https://arxiv.org/
pdf/1912.07895.pdf.

[75] B. Jahnel, A. Tóbiás, and E. Cali. Phase transitions for the Boolean model of
continuum percolation for Cox point processes. arXiv preprint arXiv:2003.06206,
2020. Available at https://arxiv.org/pdf/2003.06206.pdf.

[76] F. Jameel, Z. Hamid, F. Jabeen, S. Zeadally, and M. A. Javed. A survey of Device-
to-Device communications: Research issues and challenges. IEEE Communications
Surveys & Tutorials, 20(3):2133–2168, 2018.

[77] S. Jansen et al. Continuum percolation for Gibbsian point processes with attractive
interactions. Electronic Journal of Probability, 21, 2016.

[78] O. Kallenberg. Random measures. Akademie-Verlag, 1983.

[79] O. Kallenberg. Random measures, theory and applications. Springer, 2017.

[80] U. N. Kar and D. K. Sanyal. An overview of Device-to-Device communication in
cellular networks. ICT Express, 4(4):203 – 208, 2018.

[81] A. Kechris. Classical descriptive set theory, volume 156. Springer Science & Business
Media, 2012.

[82] W. S. Kendall, G. Last, and I. S. Molchanov. New perspectives in stochastic geom-
etry. Oberwolfach Reports, 5(4):2655–2702, 2009.

[83] H. Kesten. Percolation theory for mathematicians, volume 423. Springer, 1982.

[84] H. Kesten et al. The critical probability of bond percolation on the square lattice
equals 1/2. Communications in mathematical physics, 74(1):41–59, 1980.

[85] J. Kingman. Poisson Processes. Oxford Studies in Probability. Oxford University
Press, 1993.

[86] G. Last and M. Penrose. Lectures on the Poisson process, volume 7. Cambridge
University Press, 2017.

174

https://arxiv.org/pdf/1912.07895.pdf
https://arxiv.org/pdf/1912.07895.pdf
https://arxiv.org/pdf/2003.06206.pdf


BIBLIOGRAPHY

[87] Q. Le Gall, B. Błaszczyszyn, E. Cali, and T. En-Najjary. The Influence of Canyon
Shadowing on Device-to-Device Connectivity in Urban Scenario. In 2019 IEEE
Wireless Communications and Networking Conference (WCNC), pages 1–7, 2019.

[88] Q. Le Gall, B. Błaszczyszyn, E. Cali, and T. En-Najjary. Relay-assisted Device-
to-Device Networks: Connectivity and Uberization Opportunities. In 2020 IEEE
Wireless Communications and Networking Conference (WCNC), pages 1–7, 2020.
To appear.

[89] Q. Le Gall, B. Błaszczyszyn, E. Cali, and T. En-Najjary. Continuum Line-of-Sight
Percolation on Poisson-Voronoi Tessellations. arXiv preprint arXiv:1904.10875,
2019. Submitted. Available at https://arxiv.org/pdf/1904.10875.pdf.

[90] W. C. Lee. Mobile communications design fundamentals, volume 25. John Wiley &
Sons, 2010.

[91] T. M. Liggett, R. H. Schonmann, and A. M. Stacey. Domination by product mea-
sures. The Annals of Probability, 25(1):71–95, 1997.

[92] X. Lin, J. G. Andrews, and A. Ghosh. Spectrum sharing for Device-to-Device com-
munication in cellular networks. IEEE Transactions on Wireless Communications,
13(12):6727–6740, 2014.

[93] K. R. Liu, A. K. Sadek, W. Su, and A. Kwasinski. Cooperative communications and
networking. Cambridge university press, 2009.

[94] R. Löffler. Percolation phase transitions for the SIR model with random pow-
ers. arXiv preprint arXiv:1908.07375, 2019. Available at https://arxiv.org/pdf/
1908.07375.pdf.

[95] R. Lyons. Random walks and percolation on trees. The Annals of Probability, pages
931–958, 1990.

[96] R. Ma, Y.-J. Chang, H.-H. Chen, and C.-Y. Chiu. On relay selection schemes
for relay-assisted D2D communications in LTE-A systems. IEEE Transactions on
Vehicular Technology, 66(9):8303–8314, 2017.

[97] V. H. Mac Donald. Advanced mobile phone service: The cellular concept. The Bell
system technical Journal, 58(1):15–41, 1979.

[98] G. Matheron. Random sets and integral geometry. Wiley, 1975.

[99] R. Meester and R. Roy. Continuum percolation. Cambridge University Press, 1996.

[100] S. Mertens and C. Moore. Continuum percolation thresholds in two dimensions.
Physical Review E, 86(6):061109, 2012.

[101] I. Molchanov and I. S. Molchanov. Theory of random sets, volume 19. Springer,
2005.

[102] J. Møller. Random tessellations in Rd. Advances in Applied Probability, 21(1):37–73,
1989.

175

https://arxiv.org/pdf/1904.10875.pdf
https://arxiv.org/pdf/1908.07375.pdf
https://arxiv.org/pdf/1908.07375.pdf


BIBLIOGRAPHY

[103] J. Møller. Lectures on random Voronoi tessellations, volume 87. Springer Science
& Business Media, 2012.

[104] L. Muche. The Poisson-Voronoi Tessellation: III. Miles’ formula. Mathematische
Nachrichten, 191(1):247–267, 1998.

[105] M. Newman and R. M. Ziff. Efficient Monte-Carlo algorithm and high-precision
results for percolation. Physical Review Letters, 85(19):4104, 2000.

[106] M. E. Newman and R. M. Ziff. Fast Monte-Carlo algorithm for site or bond perco-
lation. Physical Review E, 64(1):016706, 2001.

[107] H. Nishiyama, M. Ito, and N. Kato. Relay-by-smartphone: realizing multihop
device-to-device communications. IEEE Communications Magazine, 52(4):56–65,
2014.

[108] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial tessellations: concepts
and applications of Voronoi diagrams, volume 501. John Wiley & Sons, 2009.

[109] G. K. Pedersen. The existence and uniqueness of the Haar integral on a locally
compact topological group. Preprint, University of Copenhagen, November, pages
2004–2, 2000.

[110] R. Peierls. On Ising’s model of ferromagnetism. In Mathematical Proceedings of the
Cambridge Philosophical Society, volume 32, pages 477–481. Cambridge University
Press, 1936.

[111] G. Pike and C. Seager. Percolation and conductivity: A computer study. I. Physical
review B, 10(4):1421, 1974.

[112] T. S. Rappaport et al. Wireless communications: principles and practice. Prentice
Hall PTR New Jersey, second edition, 1996.

[113] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K.
Schulz, M. Samimi, and F. Gutierrez. Millimeter-Wave mobile communications for
5G cellular: It will work! IEEE Access, 1:335–349, 2013.

[114] D. Ring. Mobile telephony-wide area coverage - Case 20564. Bell Telephony Lab.
Tech. Memoranda, 47:1–22, 1947.

[115] L. Russo. A note on percolation. Zeitschrift für Wahrscheinlichkeitstheorie und
verwandte Gebiete, 43(1):39–48, 1978.

[116] M. Schmittner, A. Asadi, and M. Hollick. Semud: Secure multi-hop Device-to-
Device communication for 5G public safety networks. In 2017 IFIP Networking
Conference (IFIP Networking) and Workshops, pages 1–9. IEEE, 2017.

[117] R. Schneider and W. Weil. Stochastic and integral geometry. Springer Science &
Business Media, 2008.

[118] C. Seager and G. Pike. Percolation and conductivity: A computer study. II. Physical
Review B, 10(4):1435, 1974.

176



BIBLIOGRAPHY

[119] P. D. Seymour and D. J. Welsh. Percolation probabilities on the square lattice. In
Annals of Discrete Mathematics, volume 3, pages 227–245. Elsevier, 1978.

[120] E. Spodarev. Stochastic Geometry, Spatial Statistics and Random Fields: Asymp-
totic Methods, volume 2068. Springer, 2013.

[121] D. Stauffer and A. Aharony. Introduction to percolation theory. CRC press, 1994.

[122] K. Stucki. Continuum percolation for Gibbs point processes. Electronic communi-
cations in probability, 18, 2013.

[123] R. E. Tarjan and J. Van Leeuwen. Worst-case analysis of set union algorithms.
Journal of the ACM (JACM), 31(2):245–281, 1984.

[124] V. Tassion. Crossing probabilities for Voronoi percolation. The Annals of Probabil-
ity, 44(5):3385–3398, 2016.

[125] M. N. Tehrani, M. Uysal, and H. Yanikomeroglu. Device-to-Device communica-
tion in 5G cellular networks: Challenges, solutions, and future directions. IEEE
Communications Magazine, 52(5):86–92, 2014.

[126] D. Tse and P. Viswanath. Fundamentals of wireless communication. Cambridge
University Press, 2005.

[127] R. Turner. deldir: Delaunay triangulation and Dirichlet (Voronoi) tessellation.
R package version 0.0-8. URL http: // cran. r-project. org/ web/ packages/
deldir , 2009.

[128] A. Tóbiás. Signal-to-interference ratio percolation for Cox point processes. Latin
American Journal of Probability and Mathematical Statistics, 17:273, 01 2020.

[129] M. Q. Vahidi-Asl and J. C. Wierman. First-passage Percolation on the Voronoi
Tessellation and Delaunay Triangulation. In Random graphs, volume 87, pages
341–359, 1990.

[130] F. Voss, C. Gloaguen, F. Fleischer, and V. Schmidt. Distributional properties of
Euclidean distances in wireless networks involving road systems. IEEE Journal on
Selected Areas in Communications, 27(7):1047–1055, 2009.

[131] S. Wang, W. Guo, Z. Zhou, Y. Wu, and X. Chu. Outage probability for multi-hop
D2D communications with shortest path routing. IEEE Communications Letters,
19(11):1997–2000, 2015.

[132] V. Weiss and R. Cowan. Topological relationships in spatial tessellations. Advances
in Applied Probability, 43(4):963–984, 2011.

[133] S. Wen, X. Zhu, Y. Lin, Z. Lin, X. Zhang, and D. Yang. Achievable transmission
capacity of relay-assisted Device-to-Device (D2D) communication underlay cellular
networks. In 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), pages
1–5. IEEE, 2013.

177

http://cran. r-project. org/web/packages/deldir
http://cran. r-project. org/web/packages/deldir


BIBLIOGRAPHY

[134] Y. Wu, W. Guo, H. Yuan, L. Li, S. Wang, X. Chu, and J. Zhang. Device-to-Device
meets LTE-unlicensed. IEEE Communications Magazine, 54(5):154–159, 2016.

[135] F. Xue and P. R. Kumar. The number of neighbors needed for connectivity of
wireless networks. Wireless networks, 10(2):169–181, 2004.

[136] S. Ziesche. Bernoulli Percolation on random Tessellations. arXiv preprint
arXiv:1609.04707, 2016. Available at https://arxiv.org/pdf/1609.04707.pdf.

[137] S. Ziesche. First passage percolation in Euclidean space and on random tessella-
tions. arXiv preprint arXiv:1611.02005, 2016. Available at https://arxiv.org/
pdf/1611.02005.pdf.

178

https://arxiv.org/pdf/1609.04707.pdf
https://arxiv.org/pdf/1611.02005.pdf
https://arxiv.org/pdf/1611.02005.pdf




MOTS CLÉS

Communication Device-to-Device, Percolation, Crowd-networking, Modèles de voirie, Übérisation des
réseaux, Géométrie stochastique

RÉSUMÉ

La cinquième génération de réseaux mobiles devrait être en mesure de servir un nombre jamais vu d’appareils sur de
vastes étendues. Un des principaux paradigmes étudiés pour répondre à ce défi est celui des communications Device-
to-Device (D2D), c’est à dire de communications directes et de courte portée entre les appareils d’un réseau. Un cas
d’usage d’intérêt économique significatif pour les opérateurs est celui de l’übérisation des réseaux : grâce au D2D, un
nouvel opérateur n’ayant pas (ou presque pas) d’infrastructures réseau pourrait construire un réseau mobile fonctionnel
reposant uniquement sur des terminaux mobiles.
Dans cette thèse, nous nous intéressons à de nouveaux modèles mathématiques de réseaux D2D en environnement
urbain. Nous modélisons la voirie d’une ville par une mosaïque de Poisson-Voronoi plane. Les utilisateurs du réseau sont
modélisés par un processus ponctuel de Cox sur les arêtes de cette mosaïque tandis que des relais supplémentaires
sont modélisés par un processus ponctuel de Bernoulli sur ses sommets. Le réseau D2D est alors représenté par un
graphe de connectivité dont les sommets sont les atomes des deux processus ponctuels précédents et où les connex-
ions sont possibles uniquement entre des nœuds du réseau situés sur la même arête ou sur deux arêtes incidentes de
la mosaïque de Poisson-Voronoi. Nous interprétons la percolation de ce graphe aléatoire (c’est-à-dire une probabilité
positive d’existence d’une composante connexe infinie) comme signe d’une bonne connectivité du réseau. A l’aide de
techniques de renormalisation, nous prouvons l’existence de transitions de phases entre différents régimes de connec-
tivité : ceux où la percolation peut être assurée seulement par les relais ou, a contrario, ceux où une densité suffisante
d’utilisateurs est nécessaire. A l’aide de simulations numériques et de nouveaux algorithmes de détection de chemins,
nous estimons des paramètres critiques (par exemple la densité minimale d’utilisateurs) permettant une connectivité à
grande échelle du réseau. Enfin, nous introduisons des modèles de coûts et utilisons les estimations précédentes pour
étudier la faisabilité économique de scénarios d’übérisation des réseaux de télécommunications.

ABSTRACT

The fifth generation of cellular networks is expected to provide coverage for an unprecedented number of devices over
large areas. One of the main paradigms investigated to address this challenge, called Device-to-Device (D2D) communi-
cation, consists in allowing for short-range direct communications between network devices. An application of significant
economic interest for operators is the one of the uberisation of networks, where an operator having no (or very few)
network infrastructure could build a mobile network relying only on its end-devices (users).
In this thesis, we study new mathematical models of D2D networks in urban environments. We see the street system of a
city as a planar Poisson-Voronoi tessellation (PVT). Network users are given by a Cox process supported by the edges of
the PVT while additional network relays are given by a Bernoulli process on the vertices of the PVT. The network is then
modelled by a connectivity graph as follows: vertices are the atoms of both these processes and fixed-range connections
between them possible only along the PVT edges or between network nodes located on adjacent PVT edges. Percolation
of this random graph (existence of an infinite connected component with positive probability) is interpreted as good con-
nectivity of the network. Using renormalisation techniques, we prove the existence of phase transitions between different
connectivity regimes, in particular those where percolation can be solely ensured by the relays or, on the contrary, where
a sufficient density of users is essential. Performing numerical simulations with original path-finding algorithms, we esti-
mate critical parameters (e.g. the density of relays and users) allowing for good connectivity of the network. Finally, we
also introduce appropriate cost models and use our numerical estimates to study the economic feasibility of uberisation
scenarios of telecommunications networks.

KEYWORDS

Device-to-Device communication, Percolation, Crowd-networking, Street systems, Uberisation of networks,
Stochastic geometry
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