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General Introduction

People have developed classical molecular models to understand the behavior of sys-
tems ranging from hard disks to proteins. Equilibrium statistical physics connects
atomic interactions and macroscopic physical quantities such as pressure, specific
heat, and, more profoundly, order parameters that decide criticality. Although chem-
ical reactions and biochemical conformational changes are often out-of-equilibrium,
their statistics like reaction paths and rates can also be understood by simulating
atomic models. The Boltzmann distribution is fundamental in statistical physics but
requires high-dimensional integral beyond any analytical solution. Molecular me-
chanics and Monte Carlo stand out as the two most successful numerical methods,
laying the base of modern molecular simulations.

Much effort was devoted in pursuit of increasingly large-scale simulations in vari-
ous fields of study. Phase transitions of special physical interests occur in the thermo-
dynamic limit, and studies of finite-size effect also desire simulations of larger space
and time for the sake of accuracy. In biochemical settings, numerous interesting reac-
tions occur on a millisecond time scale, far beyond the nanosecond time scale reached
by personal computers and state-of-the-art molecular dynamics.

Among all problems, long-range interactions are notoriously onerous from a com-
putational perspective, in spite of their pervasive role in nature. Electrostatic interac-
tions are indispensable in reproducing realistic properties in a system with a polarized
solvent. Practical large-scale algorithms must avoid pairwise iteration while calculat-
ing the Coulomb force. And so far, the most commonly used method heavily relies
on the spatial discretization, which brings systematic bias.

Event-chain Monte Carlo (ECMC) is a novel irreversible Monte Carlo method ap-
plicable in any continuous system, and it has demonstrated excellent efficiency from
simple hard disks to spin systems. Taking advantage of its factorized nature, its first
long-range variant was proposed with O(N4/3)-per-sweep time complexity for three-
dimensional Coulomb particles.

During the past three years, we focused on long-range algorithms under the
framework ECMC, and applied them to realistic water systems. We established
its theoretical foundation and also initiated an open-source application for all re-
searchers. This thesis is a summary of my work under the supervision of Werner
Krauth and in collaboration with Anthony Maggs, Philipp Höllmer, and Michael
Faulkner.

The thesis will expand as follows. In chapter 1, we will review molecular simu-
lation methods as a general background. Methods other than ECMC—molecular dy-
namics, reversible Monte Carlo, and existing trials over irreversibility—will be briefly
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introduced.
In chapter 2 we introduce ECMC in detail. Apart from other ECMC formula-

tions, we describe its theoretical foundation with general many-body factors, through
a novel graphic lifting scheme, and establish a connection between factorization and
redundant flow. We then provide the event-driven implementation and its specific
thinning process, which brings ECMC with faster speed and applicability to all en-
ergy forms. In chapter 3, we talk about existing work and our progress of long-range
ECMC adaptation. We find that the tin-foil electrostatics is the most suitable be-
cause its pairwise form facilitates factorization. Apart from the traditional Ewald
summation, various approaches exist for ECMC’s Coulomb calculation, and they
all converge to the tin-foil electrostatics. Furthermore, factorization plays a signifi-
cant role in reducing the event rate for dipoles, thus lowers the overall complexity.
Three lifting schemes corresponding to dipole factors are proposed and result in dif-
ferent dynamics. Combining all these discoveries plus the cell-veto method leads to
a three-dimensional Coulomb ECMC method of O(N logN)-per-sweep complexity.
This work [1] has been published on the Journal of Chemical Physics.

We also attach emphasis on application development and release JELLYFYSH-V1.0
as a universal python application for all-atom simulations. Summarizing our work
[2] published on Computer Physics Communication, chapter 4 describes its underlying
architecture, in which we reformulate ECMC in favor of event processing, with all
potential operations as an event stream. The mediator design pattern featuring a
central hub and peripherical functioning modules is believed to accommodate future
extensions best. Then in chapter 5, we continue our way towards the real simulation
by providing event handlers for diverse environments with concrete instances for
users to follow.

We put JELLYFYSH into practice in chapter 6 with large systems of water molecules.
Besides the programming adaptation to the real Coulomb system, we also make great
effort to optimize the long-range modules, in particular the cell-veto method. De-
tailed profiling of Coulomb events provides insights over the rate, distribution, and
types of Coulomb events. Furthermore, we test JELLYFYSH with a water system up
to 216 molecules. The polarization signal not only reflects the speed of relaxation but
shows unusual excitation for few-molecule states. For the first time, we incorporate
molecular translation into single-active-particle ECMC and measure its effect in the
relaxation of overall polarization.

Given the double time scales in the equilibration of water polarization, we pro-
ceed with an additional study over sequential choices of direction in Monte Carlo in
chapter 7. Moving directions that change progressively exhibit exotic dynamics of
the dipole angle, and we find that proper sequential schemes outperform the conven-
tional way that always resamples along orthogonal axes. It also reveals that the set of
resampling directions has a great impact on the performance, whose comprehensive
mechanism is left as our future study. We submitted the results [3] to journals and
now it is a preprint.

In the appendices, we attach the three aforementioned papers published or sub-
mitted during my doctoral study.
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Chapter 1

Simulation method review

1.1 The need for large-scale simulation
The impression when talking about simulation is that we are going to integrate an
equation of motion such as Newton’s law mi∂

2ri/∂t2 = −∇iU , or equations for con-
tinuum like Maxwell equations or Navier-Stokes equations. We can know everything
if the evolution of a system’s elements is evident.

Problems arise concerning non-continuous space such as spin systems in which
each variable takes discrete values. Such physical configurations serve as abstract
models of reality but can reflect the intrinsic properties of complex systems. No de-
terministic equation of motion is present for discrete systems. On the other hand, due
to the Lyapunov instability, the behavior of the simulated system is very sensitive to
the initial condition. In other words, even if a sufficiently sophisticated program can
predict the exact state ri(t) for some time t, the computer-representation inaccuracy
of the initial state ri(0) results in an exponential difference between ri(t) and the real
position, let alone the cumulative error brought by numerical integrators, and devia-
tion from rough model and environment noises. In fact, progress has deviated from
the exact solution of ri(t) since the invention of simulation algorithms like molecular
dynamics and Monte Carlo.

Usually, we care more about statistics under thermodynamic conditions than or-
bits, and equilibrium statistical mechanics is capable of capturing the nature of static
states. It can calculate the freezing point of water, predict the stable phase of an alloy,
and obtain the average time for two molecules to react as well as the reaction path.
The ultimate physical equation we need to solve throughout our work is Boltzmann’s
law describing the probability of a state in equilibrium

π(c) = 1
Z
e−βU(c), (1.1.1)

where β, U and Z are the inverse temperature, energy and normalizing factor respec-
tively.

Physical quantities can be acquired by sampling the configuration space, and flex-
ible approaches exist to this end. Molecular dynamics simulates a canonical ensemble
with the help of a thermostat by integrating Newton’s equation of motion (or more
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Chapter 1. Simulation method review

generally, Hamilton’s equations), which can reach the target Boltzmann distribution
in small step limit. Monte Carlo methods perform moves that are not connected by
the equation of motion and reach the desired distribution by respecting the global
balance condition. It is a convenience of Monte Carlo methods that only the relative
probability between two states is required. Now Monte Carlo becomes a universal
technology to reveal properties of a variety of systems, from simple particles, bio-
chemical molecules, to engineering and finance.

1.1.1 Examples
Here we give two examples of how simulations help us understand nature.

Hard disks

Even though modern physics has developed to be so sophisticated and high-energy
that daily experiments can never justify, it is surprising to see that the hard-disk melt-
ing problem has been puzzling physicists for half a century.

Phases in condensed matter are often characterized by correlation length, typically
classified into long-range, quasi-long-range, and short-range orders. Hard disk serves
as the two-dimensional prototype to explain the classical phase transition on a plane.
Theorists have early established through an elastic model that long-range order can-
not appear in systems of less than three dimensions. Thus, two-dimensional systems
become the focus of physical interests, in which solid states feature quasi-long order
and liquid states feature short-range order. Kosterlitz and Thouless [4] proposed in
1973 their famous theory that topological defects—that are unbinding pairs of vortex
and anti-vortex in XY model—are suddenly favorable when the temperature passes
a threshold. First-order scenarios can also exist, such as in the narrow-well XY model
that resembles q > 4 Potts model. For hard-disks, things become more complicated
in the presence of positional and orientational orders. The well-known Kosterlitz-
Thouless-Halperin-Nelson-Young theory [5, 6, 7] proposed in the late 1970s predicts
that the unbinding of dislocation and disclination will consecutively break positional
and orientational orders, making hard disks transition from the solid to the hexatic
state and finally to the liquid through second-order transition, in competition with
other first-order theories.

A large number of realistic and numerical experiments were conducted just for
the hard-disk phase transition. Since the first simulation [8], people simulated via
molecular dynamics and Monte Carlo with increasing system size and precision. Not
until later works [9, 10, 11] cleaned up the puzzle using large-scale ECMC simulation,
people had been debating over the nature of hard-disk phase transition for thirty
years.

In 2011, the ECMC algorithm was applied [9] to equilibrate up to a million disks
around criticality, which was confirmed by later work [11] which also compared sev-
eral most advanced methods at that year and drew the long-anticipated equation of
state of hard disks. They concluded that: with decreasing density, hard disks un-
dergo a second-order transition to a hexatic phase, then to a liquid phase with the
first-order transition, which contradicts both the KTHNY theory and other first-order
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1.1. The need for large-scale simulation

Figure 1.1: Orientational order parameter field of configurations obtained with the
massively parallel Monte Carlo algorithm for N = 10242 disks. With increasing den-
sity, (a) pure liquid (low density), (b) a bubble of hexatic phase (middle density), and
(c) a stripe regime of hexatic phase (high density) are visible. (d) A scale bar illustrates
the size of the fluctuations. (From Ref [11].)

scenarios. Shown in Fig. 1.1 is the orientational order of three configurations around
critical density produced with massively parallel Monte Carlo. With the information
of equilibrated states, they were able to differentiate phases and measure the transi-
tion orders.

SARS-CoV-2

Large-scale biochemical simulations are instrumental in revealing the dynamics and
conformation of proteins, in which D. E. Shaw is a pioneer who founded his research
center called D. E. Shaw Research, and devised a special-purpose supercomputer to
perform all-atom simulations.

Less than one month after the outbreak in the U.S. of Covid-19, the disease caused
by SARS-CoV-2, D.E.Shaw Research released their simulation results [12] relevant to
the virus’ proteins. Shown in Fig. 1.2 are two critical biochemical configurations of
the trimetric spike protein of the virus, human ACE2 (receptor of the virus protein),
and tested drug molecules. The millisecond large-scale atomic simulations are rich
in dynamical information of the virus. They suggest that specific molecules from the
human body are susceptible to the virus’ characteristic protein, making them easy
targets of the deadly virus. And medical solutions at the molecular level come out at
the same time as simulations show that part of drug molecules prohibits the required
binding of the virus and human protein.

They reported that among 5152 molecules in the drug library, 78 can be bound to
ACE2, and 50 can be bound to the spike protein as candidates for the next pharma-
ceutic process. The valuable information provided by D. E. Shaw Research is believed
to be helpful in drug development.

1.1.2 State of the art
Despite the progress in hard disks and the success in simulating SARS-CoV-2 pro-
teins, months-long intensive computation played a crucial role, and larger-scale sim-
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Chapter 1. Simulation method review

Figure 1.2: Two simulated states of SARS-CoV-2 protein dynamics. (a) The virus
spike protein (orange) is binding human ACE2 (white and blue). (b) A drug molecule
(center, multiple colors) is binding the virus’ trimetric spike protein. This drug is
said to have been approved or investigated by the Food and Drug Agency of the U.S.
(From Ref [12].)

ulations are still heavily in demand. In order to prepare 64 independent 10242-disk
states, Bernard and Krauth spent nine months running ECMC on a single CPU core
[9, 10]. The only algorithm that can outperform ECMC and validate their finding
was massively parallel Monte Carlo in 2013, while such high performance was only
achieved with the help of 1536 cores of an NVIDIA GeForce GTX 680. Still, such in-
tensive simulation appeared slow in relaxing the system’s orientational order, and a
larger system of hundreds of millions of disks is still desirable for benchmark and
confirmation.

The data by D. E. Shaw Research was produced by a special supercomputer called
Anton [13] that was designed exclusively for protein molecular dynamics simulation
and outperformed all the general supercomputers at that time. Anton, supported
with 512 nodes, each containing highly optimized functioning components, can ad-
vance a system of 20,000 atoms by ten microseconds in a day, compared with less than
1ns by GROMACS on a personal computer. Furthermore, it can potentially handle
larger systems in a scalable manner (almost constant complexity per sweep) thanks
to its maximally parallel architecture.

There is a variety of scientific software for molecular simulations, and it is all de-
signed for special contexts. From quantum-effect particles to macro-scale proteins,
from serial ones to GPU-parallelization, using Monte Carlo or molecular dynamics,
each software works in its specific field to balance versatility and performance. Many
widespread tools are open-source, so they attract a worldwide community to main-
tain and contribute to them. For example, LAMMPS [14] stands for Large-scale Atom-
ic/Molecular Massively Parallel Simulator, and is now maintained and distributed by
researchers in Sandia National Labs and Temple University. In this work, we aim to
develop ECMC for large-scale all-atom simulations and regard LAMMPS as the fu-

16



1.2. Molecular dynamics

ture model.
As for methodology, molecular dynamics tells important time-dependent infor-

mation such as the accessibility of a given molecular surface, the transition time be-
tween two protein states, the appearance and disappearance of a particular chemical
channel or cavity. And due to the simultaneous motion of all elements, fast algo-
rithms exist to compute the long-range force on each particle, and parallel algorithms
by domain decomposition apply as efficiently as short-range systems. That is why
molecular dynamics becomes popular in most biochemical simulation software. On
the other hand, just in terms of operation, Monte Carlo abandons the system’s natu-
ral motion, and it is allowed to take imaginary moves such as cluster flipping in spin
models, chain regeneration for polymers, and atomic tunneling to realize substantial
changes (see section 1.3.3.4 for more examples). Actually, Monte Carlo restricted only
by Eq. 1.1.1 bears much more flexibility in diverse contexts. In the problem of en-
semble consideration, parallelization, energy minimization, and many others, Monte
Carlo has successfully exploited the freedom of a given system.

In the rest of this chapter, we will introduce molecular dynamics in section 1.2,
talking about how the state-of-the-art molecular dynamics works and its major prac-
tical concerns. Then in sections 1.3 and 1.4 we will introduce Monte Carlo methods
from the most naive reversible one to our irreversible ECMC. In section 1.5, we will
give some other necessary knowledge, including the molecular models and measur-
ables in preparation for our work.

1.2 Molecular dynamics
According to the ergodic theorem, the time average of a natural orbit equals the en-
semble average over the configuration space, so integrating the equation of motion
and taking the average along the path converge to statistics in equilibrium. An ideal
integrator perfectly reproduces the solution of Newton’s equation of motion, or more
systematically, of Hamilton’s equations

∂qi
∂t

=∂H

∂pi
,

∂pi
∂t

=− ∂H
∂qi

,

(1.2.1)

where qi’s are generalized coordinates, and pi’s are generalized momentums.
A molecular dynamics algorithm consists of a numerical integrator and a thermo-

stat used to correct the deviation caused by the integrator. Nevertheless, statistical
bias is inevitable during the numerical integration. A second source of error comes
from the long-range force calculation since modern Coulomb computation heavily
relies on the spatial discretization. What is more annoying is that a source of error
implies a set of parameters that a user must handle, and in the case of molecular dy-
namics, they are integrators, mesh sizes, interpolation methods.... By comparison,
Monte Carlo methods do not perform temporal discretization, and ECMC can even
avoid long-range force error through its distinct way of the Coulomb force calcula-
tion.
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1.2.1 Integrator

For time integral, people have developed many algorithms (see [15, 16] for reference)
that can approximate Newton’s equation of motion. Numerical integrators in general
all bear some errors without exception, while the error remains at a relatively low
level if the integrator respects the structural properties of Hamilton’s equations—the
time reversibility, volume preservation, conservation of energy and momentum, and
more importantly, simplecticity. In practice, energy drift is observed in many kinds
of integrators. Zhong and Marsden [17] in 1988 proved that if the energy and the mo-
mentum map include all the integrals of motion, then one cannot create integrators
that are symplectic, energy preserving, and momentum preserving. As symplectic-
ity implies phase space volume preservation, one cannot, in general, have preserva-
tions of phase space volume, energy, and momentum all in one method. In molecu-
lar dynamics practice, people use two classes of mechanical integrators: symplectic-
momentum and energy-momentum integrators.

1.2.2 Long-range algorithms

Biochemistry requires models with the Coulomb interaction in which truncations in
its tail lead to serious artifacts [18]. The solvent consisting of water and possible
ions can impose a polarizing effect over charged organic molecules. Challenges arise
when long-range interaction is considered, and even modern algorithms heavily de-
pend on mesh methods on which charge spreading and interpolation are commonly
based. Imprecision does not vanish, but we control it at a tolerable level. When using
LAMMPS with tunable precision levels, one can observe the slowdown with higher
precision.

We need fast computation of the Coulomb interaction upon each atom without
iterating all atomic pairs. Among all trials, the so-called particle-mesh Ewald [19, 20],
particle-particle-particle-mesh [21] and an Anton adaptation called k-space Gaussian
split Ewald [22] stand out as today’s widespread methods.

All predominant long-range methods are developed upon Ewald’s summation
that splits the potential into a short-range core and a long-range smooth tail. The
short-range part is calculated via visiting each particle’s neighbors, and the long-
range part is dealt with by sophisticated mesh-based methods. Usually, charges are
spread into nearby grid points, then it performs convolution by fast Fourier transfor-
mation to gain potential values on grids, and does interpolation to acquire forces on
individual charges. The second step for the long-range term takes O(N logN) time
and often predominates the total time consumption in molecular simulations (see Ta-
ble 1 of [13]).

1.2.3 Event-driven molecular dynamics

It is worth mentioning event-driven molecular dynamics here for two reasons: it does
improve molecular dynamics performance by getting rid of small timesteps, and our
ECMC resembles event-driven molecular dynamics in terms of event processing.
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Event-driven molecular dynamics deals with short-range interactions exclusively.
In order to get rid of small timesteps, it sacrifices much accuracy of the potential by
replacing it with a step-wise potential [23]. Velocities change only when two particles
touch the potential step. Such improvement makes molecular dynamics event-driven
that the program needs only to predict the next “step-touching” event between which
all velocities remain constant, and calculates outgoing velocities. It is an accurate
algorithm to simulate inaccurate models.

Event-driven molecular dynamics is particularly suitable for hard disks, and one
has to update the time stamps only for colliding disks even though all disks are mov-
ing. All upcoming collisions are stored in a central heap to select the soonest event,
which is very similar to event processing in ECMC. Consequently, the central heap
becomes the algorithmic bottleneck and usually takes O(logN) to have an event, al-
though there are efforts [24, 25] to ease the burden of the heap.

The unpredictable correlation between any parts of the simulated system renders
event-driven molecular dynamics difficult to parallelize. An event happening in one
corner may trigger immediate events in the distance and destroy all speculations by
another thread. People have devised many algorithms [26, 27, 28] for parallel hard-
disk simulators and successful algorithms rely on good avoidance of conflicts and fast
reversion of already-done moves, and more effort will have to be made for further
interaction range.

1.3 Traditional Monte Carlo
The term Monte Carlo is used in most cases in company with Markov chain, which
indicates a stochastic process that the next state relies only on the current state. The
program walks along a chain of target-space states s1→ s2→ s3 · · · , and the probabil-
ity distribution of si+1 is solely determined by si. This is the behavior of all simula-
tions1, so we will use the name Monte Carlo but omit Markov chain2 except in section
1.3.1 when talking about its mathematics.

A Monte Carlo algorithm samples a prior probability distribution π(s) of a state
space that one only has to know relative probabilities between any two states, i.e.,
π(s1)/π(s2). It includes a strategy to jump to the next state, given the current state.
The probability in an n-state space can be described with a vector π = (π1,π2, ...,πn),
and let T be the transition matrix whose element Tij indicates the probability to go
from si to sj . It satisfies ∑

j

Tij = 1, Tij ≥ 0, ∀1≤ i, j ≤ n. (1.3.1)

Matrix satisfying Eq. 1.3.1 is also known as stochastic matrix. The distribution of the
next state can be conveniently written as πT and it becomes πTn after n moves.

1Direct sampling can be an example of non-Markovian Monte Carlo, but it is not a simulation
method.

2In Understanding Molecular Simulation by Frenkel and Smit [15], they use Monte Carlo throughout as
well, though the Markovian property is obvious.
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1.3.1 Properties of transition matrix

1.3.1.1 Balance condition

The goal of Monte Carlo algorithms is to acquire statistics for the target distribution π,
so we hope that π is the stationary distribution of the transition matrix T . Expanding
πT = π we get ∑

j

π(sj)Tji = π(si), (1.3.2)

which is called global balance condition. This is a necessary condition for target dis-
tribution, and it means the conservation of probability flow∑

j

fji =
∑
k

fik = π(si), (1.3.3)

with fji = π(sj)Tji the probability flow from j to i.
There are degrees of freedom to construct a transition matrix T respecting the

global balance condition. However, universal constructs applicable to all spaces and
energy forms fall under a smaller category. It obeys detailed balance condition that
enforces canceling flow between any two states

π(si)Tij = π(sj)Tji, ∀i, j. (1.3.4)

It is easy to verify that detailed balance implies global balance by summing over j
of Eq. 1.3.4. In section 1.3.3 we will present several detailed-balance Monte Carlo
methods, but decades of development tell us that a Monte Carlo method as general
as the Metropolis-Hasting algorithm and without detailed balance does not exist.

Also, we have two properties for the transition matrix which will be used later

Proposition. • If T (1) and T (2) both obey the global balance condition, their product
T (1)T (2) satisfies global balance too.

• If T (1) and T (2) commute and obey detailed balance, T (1)T (2) satisfies the detailed bal-
ance condition.

1.3.1.2 Convergence to stationary distribution

A stochastic matrix with the balance condition is not sufficient for the Markov chain to
sample the entire space as desired. Intuitively, one must be able to go to any state with
an arbitrary starting point, so the space must be connected by the transition matrix.
Another less common situation is that if the chain exhibits periodicity, the chain itself
does not converge, but its long-term average does. The two properties are defined as

• Irreducibility. For any i and j, there exists a positive integer r so that T rij > 0.

• Aperiodicity. Let GCD be the greatest common divisor of a set of integers, then
T = GCD{s : T sii > 0} can prove independent of i, and T is aperiodic if T = 1.
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Figure 1.3: Examples of Markov chain that motivate aperiodicity and the ergodic
theorem. (a) A 4-state space with homogeneous probability, in which the Markov
chain switches between {1,4} and {2,3}. This chain has period 2. (b) A state violating
irreducibility. If many chains start with state 3, they can still reach the distribution
π1 = π2 = 1/2, π3 = 0. But for a single chain, it either stays at state 1 or state 2.

As for the criteria of convergence, total variation distance [29] is the most common
one defined as

‖π′−π′′‖TVD = 1
2
∑
i

|π′i−π′′i |. (1.3.5)

In the following, we call π = (π1,π2, ...,πn) with 0≤ πi ≤ 1 and
∑
iπi = 1 a valid initial

state.
Fig. 1.3 (a) shows an example with period T = 2 thus the chain jumps between

the sets {1,4} and {2,3}. In the case T > 1, π(0)T p does not converge as k→∞, while
the average 1

p

∑p
k=0 π(0)T k converges as p→∞.

Theorem 1. Given an n×n irreducible stochastic matrix T , and a valid initial state π(0),
then the average after p iterations

πp = 1
p

p−1∑
k=0

π(0)T k, (1.3.6)

converges to a vector π∞ as p→∞. This π∞ satisfies π∞T = π∞, and is unique regardless
of the initial state.

Its proof can follow that of Theorem. 2, which is given by Levin et al. [29]. In
existence of aperiodicity the convergence holds without taking the average.

Theorem 2. Given an n×n irreducible aperiodic stochastic matrix T , and a valid initial
state π(0), then π(0)T k → π∞ as k →∞. This π∞ is the unique stationary distribution.
Furthermore, there exists α ∈ (0,1) and C > 0 that

‖π(0)T k−π∞‖TVD <Cαk. (1.3.7)

A proof can be found in [29], theorem 4.9. This theorem rules out chains jumping
between non-intersecting sets, as shown in Fig. 1.3 (a) .

In fact, irreducibility and aperiodicity are satisfied in most physics simulations.
The global balance condition is equivalent to that the target distribution is one eigen-
vector with eigenvalue 1. Theorem. 2 tells us that the Markov chain will surely reach
the desired distribution. Therefore, the global balance condition is usually the key
requirement to construct Monte Carlo methods.
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1.3.1.3 Ergodic theorem

The ergodic theorem has a similar role as the strong law of large numbers. It states
that the stationary distribution is reached, not only statistically when we start from
numerous initial states, but also in a single chain when the time tends to infinity.
Fig. 1.3 (b) provides an example in which π1 = π2 = 1/2 is reached with infinite trials
starting from state 3, but no single chain can visit both state 1 and state 2. Irreducibil-
ity is violated in this example.

With irreducibility, the target distribution can be ensured when taking statistics of
a single chain.

Theorem 3. A Markov chain (X1,X2, ...) is drawn with an arbitrary starting state and tran-
sition rule T that is an irreducible stochastic matrix. The mean vectors µ(p) = (µ(p)

1 ,µ
(p)
2 , ...,µ

(p)
n )

are defined as

µ
(p)
i = 1

p

(
number of i′s in (X1,X2, ...,Xp)

)
. (1.3.8)

Then the probability

P

(
lim
p→∞

µ(p) = π∞
)

= 1, (1.3.9)

with π∞ the unique stationary distribution.

If one starts with state 3 of Fig. 1.3 (b) , with P = 1/2 it gets the chain (3,1,1,1, ...)
and otherwise gets the chain (3,2,2,2, ...), which is excluded by this theorem due to
the violation of irreducibility. See appendix C of [29] for a proof.

We also have the conjecture without proof that aperiodicity can lead to a stronger
conclusion

Conjecture 1. A Markov chain (X1,X2, ...) is drawn with a starting state X1 and the tran-
sition rule T that is an irreducible aperiodic stochastic matrix. We pick an infinite sequence of
positive integers a1 < a2 < a3 < · · · The mean vectors ν(p) = (ν(p)

1 ,ν
(p)
2 , ...,ν

(p)
n ) are defined

as
ν

(p)
i = 1

p

(
number of i′s in (Xa1 ,Xa2 , ...,Xap)

)
. (1.3.10)

Then the probability

P

(
lim
p→∞

ν(p) = π∞
)

= 1, (1.3.11)

with π∞ the unique stationary distribution.

If this proposition holds, mixing is guaranteed for any pre-selected elements of a
single Markov chain.

1.3.1.4 Eigenvalue analyses

Eigenvalues and eigenvectors are informative in understanding the structure of an
operation encoded as a matrix. For a transition matrix representing detailed-balance
Markov chain, it has n real eigenvalues.
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Theorem 4. Let T be an n×n stochastic matrix that is irreducible and aperiodic, and its
stationary vector π = (π1, ...,πn) satisfies πiTij = πjTji ∀i, j. Then it is diagonalizable and
has eigenvalues 1 = λ1 > λ2 ≥ λ3 ≥ ·· · ≥ λn >−1.

Intuitively, starting with any single state, we project the initial state onto the eigen-
vectors of T , the component corresponding to the stationary distribution will stay in-
variant, while other components will be multiplied with λi after each move. Hence
the distance to the stationary distribution decays exponentially, at the rate of

λ? = max{|λi| : λi 6= 1, i= 1, ...,n} , (1.3.12)

if the component corresponding to λ? does not vanish. More specifically, we have the
following theorem

Theorem 5. Let T be an irreducible aperiodic transition matrix for a Markov chain with
detailed balance condition, and d(p) be the worst case total variation distance at time p

d(p) = max
{
‖π(0)T p−π∞‖TVD : π(0) is a valid initial state

}
, (1.3.13)

where π∞ is the stationary distribution of T . Then

lim
p→∞

d(p)1/p = λ?. (1.3.14)

It means that the second largest eigenvalue really indicates the speed of conver-
gence. We recommand the chapter 12 of [29] as systematic proofs of the two theorems
above.

1.3.2 Tricks by modifying target distribution
One of the excitement while thinking about the Monte Carlo method is that we can
never expect what will happen if we combine two distinct ideas. Here, we are go-
ing to cover several important Monte Carlo methods throughout its history. What
is intriguing is that they are not mutually exclusive but extend the power of Monte
Carlo in different dimensions. For example, skew detailed balance described in sec-
tion 1.4.2.2 has an obvious application in the one-dimensional walk in a non-uniform
space, so can apply to temperature jumps in extended Monte Carlo. Stochastic poten-
tial switching is able to derive the factorization for the Metropolis-Hastings algorithm
and ECMC, and can also lead to the cluster algorithm for soft-potential particles.

Many Monte Carlo methods improve by proposing unrealistic moves specific to
each physical system, and others construct probability flows beyond the detailed bal-
ance condition. Nevertheless, some ideas appear even by reconsidering the target
distribution. Here we introduce three methods that reach the desired probability via
a different energy function.

Importance sampling

Sometimes the target distribution π fails to cover the phenomenon of interests, e.g.,
singularities with little weight but significant contribution to physics, rare events that
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occur infrequently but are crucial to the studied system. If we have some prior knowl-
edge under what circumstance the crucial event happens more, then we can bias the
sampler by giving it a new distribution π?. π? concentrates more on the interest-
ing points, and the Monte Carlo algorithm with importance sampling takes π? as
the target distribution and performs any Monte Carlo method. However, the drawn
samples are weight with π(si)/π?(si) to make the estimator unbiased

〈O〉=
n∑
i=1

Oiπi =
n∑
i=1

[
Oiπi
π?i

]
π?i ≈

1
Ns

Ns∑
k=1

O(sk)
π(sk)
π?(sk)

, (1.3.15)

where on the rightmost side, {sk} are Ns states generated by a standard Monte Carlo
algorithm with biased π?.

A straightforward example of importance sampling is to integrate
∫ 1

0 x
−pdx (see

[30], section 1.4.2), where naive Monte Carlo by drawing randomly xi ∈ (0,1] is slow
to capture the property around x = 0. Applications of importance sampling include
rare event simulations [31]. However, it has two drawbacks: First, π? is not always
obvious 3; Second, π/π? is hard to calculate, especially when the partition function is
unknown.

Stochastic potential switching

Stochastic potential switching was first formulated by Mak [32]. Before, the initial
idea appeared in Swendsen and Wang’s cluster algorithm [33] for the Ising model
that probabilistically turns off part of interactions. Here we present it by splitting the
desired probability distribution.

One can split the target distribution into two positive parts π = π′+ π′′. For each
term we design a tailored Monte Carlo algorithm, i.e., using one Monte Carlo algo-
rithm to explore π′ and the other to explore π′′. This is feasible because Monte Carlo
only needs to know π(si)/π(sj) instead of absolute values. Before each Monte Carlo
step or several steps, the program must determine which term of π it is going to ex-
plore by the corresponding ratio, namely π′(si)/π(si) and π′′(si)/π(si).

Fig. 1.4 illustrates the stochastic potential switching process. Changing π to
π′ or π′′ amounts to using new potentials instead, and they satisfy exp(−βU) =
exp(−βU ′) + exp(−βU ′′) and hence the name. Splitting π into many does not always
speed the mixing of states. However, if we have a fast Monte Carlo algorithm for
π′ then the overall sampling is fast4. Mak found another example [32] besides the
cluster Ising model. In the Lennard-Jones liquid, he turned off by certain probability
the attractive tail of the Lennard-Jones interaction (each interaction pair is switched
separately, so strictly speaking, π is divided into 2P terms where P is the number of
pairs interacting with Lennard-Jones tail). With the majority of interactions off, faster
algorithms become effective such as cluster flipping, which promotes the overall effi-
ciency of the original simulation.

3Imagine that we are simulating protein folding events, then we must have prior knowledge, that is,
what configurations are favorable of the folding event.

4Typically, if we alternate our Monte Carlo algorithm among MC1, MC2,..., MCn, each with O(1)
switching probability, the resulting performance is determined on the fastest one and has minimal dy-
namic exponent as the fastest one too.
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Figure 1.4: Schema of stochastic potential switching. The target distribution π is di-
vided into π′ and π′′, each simulated with a specific Monte Carlo algorithm. The
overall Monte Carlo is fast if one of the subsystems is fast.

Incidentally, stochastic potential switching can also derive factorization, for both
Metropolis-Hastings algorithm and ECMC. Taking the Metropolis-Hastings algo-
rithm for a two-state system as example, let π(s1) = 1 and π(s2) = e−β(U1+U2), then a
Metropolis-Hastings acceptance ratio is min{1,e−β(U1+U2)}. We assume U1 ≤ U2 and
split their probabilities as

π′(s1) =min
{

1,e−βU1
}
,

π′′(s1) =1−min
{

1,e−βU1
}
,

π′(s2) =min
{

1,e−βU1
}

min
{

1,e−βU2
}
,

π′′(s2) =e−β(U1+U2)−min
{

1,e−βU1
}

min
{

1,e−βU2
}
.

(1.3.16)

Transition rates become switching rates multiplied by acceptance rates for both chan-
nels. One can check that the transition rate s1 → s2 is min

{
1,e−βU2

}
min

{
1,e−βU1

}
through π′, and is 0 through π′′ under the condition U1 ≤ U2 (otherwise we switch
U1 and U2). The result is the same as the factorized Metropolis-Hastings method (see
section 1.3.3.1).

Replica exchange Monte Carlo

Replica exchange Monte Carlo is also known as extended ensemble Monte Carlo.
The equilibrium state is physically a function of temperature π = π(·,β), and it is
intuitive that, for one dimension, the high temperature boosts the transition across
the energy barrier between local minimums. One way to exploit high-temperature’s
fast transition while leaving the estimation unbiased is by extending the ensemble to
replicas of multiple temperatures.

The state space {si} is then given an additional temperature variable {si,βk}with
βk ∈ {β1 > β2 > · · · > βB > 0} and β1 is the desired system temperature. π(si,βk) ∼
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e−βkU(si)/Zk agrees with the state probability at βk, and the program just samples in
this extended space. If we hope that program to stay in all temperature replica with
the same probability then we have to set Zk =

∑
si e
−βkU(si)/B, the free energy at βk

divided by B.
Simulated tempering proposed by Marinari and Parisi [34] keeps one replica at

each moment as normal Monte Carlo. It travels at fixed βk, but jumps to βk−1 or
βk+1 occasionally and leaves the physical state invariant. To reach homogeneous
probability in β, the spirit of Monte Carlo is employed again, and the simplest
Metropolis-Hastings method (see section 1.3.3.1) suggests r = min{1,e−(βk±1−βk)U(s)

Z(βk)/Z(βk±1)} where U(s) is the energy for the current state independent of β. Nu-
merous problems revolve around simulated tempering. How to acquire Z(β)? Is the
homogeneous distribution always good? Are there better schemes than local jumps
of the Metropolis-Hastings style?

Hukushima and Nemoto [35] proposed parallel tempering where B states each
with β1, · · · ,βB are kept and simulated simultaneously. At certain moments neighbor-
ing states exchange their configurations, i.e., {s1,βk},{s2,βk+1} → {s2,βk},{s1,βk+1}
and the Metropolis-Hastings style acceptance ratio is min{1,e−(βk−βk+1)(U(s2)−U(s1)}.
Parallel tempering serves as a powerful tool for the acceleration of all Monte Carlo
simulations and attracts a great number of studies over its implementation and adap-
tation. The additional temperature axis brings another degree of freedom concerning
the temperature switching scheme. Finally, it is important to note that the number
of temperatures scales as the total energy variation in order to keep a reasonable ac-
ceptance in switching, while the total energy is usually proportional to the system
size.

1.3.3 Several reversible algorithms

If detailed balance holds, the chance for a chain (s1,s2, · · · ,sn) equals its reverse be-
cause

P (chain = (s1, · · · ,sn)) = π(s1)Ts1s2 · · ·Tsn−1sn

=Ts2s1 · · ·T (snsn−1)π(sn) = P (chain = (sn, · · · ,s1)).
(1.3.17)

In the second step the detailed balance condition is applied. The converse statement
is also true by expanding P (chain = (si,sj)) = P (chain = (sj ,si)). Under the detailed
balance condition people have developed lots of Monte Carlo variants for it allows a
wide range of probability redistribution schemes.

1.3.3.1 Metropolis-Hastings algorithm

Metropolis et al. [36] first applied Monte Carlo in physical simulations, and their idea
was generalized by Hastings [37]. They decomposed the choice of the next state Tij
into proposing followed by accepting, with probabilities fp and fa respectively. If
the proposal rate is symmetric, i.e., fp(si → sj) = fp(sj → si), then detailed balance
requires

e−βU(si)fa(si→ sj) = e−βU(sj)fa(sj → si). (1.3.18)
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Metropolis et al. found a simple solution

fa(si→ sj) = min
{

1,e−β(U(sj)−U(si))
}

(1.3.19)

satisfying the detailed balance. In fact, for a two-state space, the famous Metropolis-
Hastings algorithm maximizes the flow between the states.

The acceptor obviously relies on the total energy change of the system. Interest-
ingly, if we split the total energy into terms U =

∑
rUr and let each term lead an in-

dividual acceptor, detailed balance is respected in which the final acceptance implies
that all terms accept, which we called factorized acceptance ratio

fFact
a (si→ sj) =

∏
r

min
{

1,e−β(Ur(sj)−Ur(si))
}
. (1.3.20)

We call each Ur a factor, and the way to split U is called factorization. In appearance,
a factorization does not speed up mixing because it reduces the transition rate while
increasing the rejection rate (i.e., the probability of staying in the same state). In some
special cases, factorization has inspired fast algorithms without calculating total en-
ergy (see section 3.3). If the system involves long-range interactions, any move of
a particle leads to changes of O(N) terms, and the factorized form allows efficient
sampling instead of O(N) enumeration, which is the key idea for ECMC to simulate
long-range systems.

The Metropolis-Hastings algorithm is so simple in concept and easy to implement
that it becomes the baseline of all later advances. However, such a simple idea suffers
a significant drawback: a naive implementation enforces local proposals, and the de-
tailed balance condition imposes diffusive dynamics over the probability flow, which
renders the method slow to reach the stationary distribution.

1.3.3.2 Gibbs sampler

The Gibbs sampler [38] is also known as heat-bath Monte Carlo. In a multivariate sys-
tem if one component of the state si = (x1,x2, ...,xp) takes among n values v1, ...,vn,
Gibbs sampler relaxes one variable each time to its conditional target probability.
Putting explicitly, let si = (x1,x2, ...,xk = vi, ...,xp) and sj = (x1,x2, ...,xk = vj , ...,xp)
then

Tsisj = π((x1,x2, ...,xk = vj , ...,xp))∑vn
v=v1 π((x1,x2, ...,xk = v, ...,xp))

(1.3.21)

which does not rely on the current value of xk. The Gibbs sampler that chooses ran-
dom i and updates {xi} satisfies detailed balance, whereas the one updating xi in a
sequential manner violates detailed balance but preserves only global balance (see
section 1.4.1.1).

Taking a two-state example, the Gibbs sampler always means that the next state is
s1 with probability π(s1) and s2 with π(s2). This is in fact slower than the Metropolis-
Hastings algorithm because the latter will never allow two consecutive s2 if π(s1) ≥
π(s2).
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1.3.3.3 Overrelaxation

For simplicity, assume that we are sampling according to a univariate normal distri-
bution π(x)∼ e−ax2

, and by Gibbs sampling the transition from x to x′ is identical to
probability of π(x′). Adler [39] modified the proposal distribution to have the form

Tx,x′ =
1
Z

exp
{
− a

ω(2−ω)
[
(1−ω)x−x′

]2}
, (1.3.22)

with an adjusting parameter ω and the normalizing parameter Z. When ω = 0, x′ = x;
when ω = 1, the same Gaussian distribution is taken where x′ centers around 0; when
ω = 2, x′ =−x.

This method, called overrelaxation, directly applies to the energy of the quadratic
form. Whitmer [40] showed that taking ω close to 2 leads to much faster sampling
in multi-quadratic actions of the lattice model. Moreover, as the number of variables
increases, ω close to 2 is more favorable, meaning that the algorithm always tends to
negate the previous xi.

Efforts have been made to generalize to arbitrary energy functions since the over-
relaxation of quadratic form was proposed. Parameterization into a conditional Gaus-
sian distribution [41] is possible, yet more systematic solutions [42] rely on sampling
and filtering. Neal [43] proposed a smart algorithm by sampling a number of the
variable to be updated, conditioned on other variables, and taking the same index as
in the old value but in reverse order.

1.3.3.4 Cluster Monte Carlo

Cluster Monte Carlo very well reflects the advantage of the Monte Carlo method.
It performs substantial changes in the system, connecting two faraway points in the
phase space that molecular dynamics cannot achieve. Some systems are really hard to
sample using local methods. For example, the two-dimensional Ising spin at the crit-
ical point has infinite spatial correlation, giving rise to huge clusters (i.e., connected
same spins)5. Here we present briefly cluster Monte Carlo for spins, hard disks, and
polymers (see [44] and section 2.4 of [45] for reference).

Spin Swendsen and Wang [33] first proposed a fast-relaxation algorithm for the
critical-point 2D Ising model by constructing clusters based on configurations and
randomly assigning the same spin within clusters. This idea was reformulated by
Wolff [46] later to become the most popular cluster spin algorithm.

Each cluster move of the Wolff algorithm starts with one random spin, adds a
same neighboring spin into the cluster with probability e−2βJ where coupling con-
stant appears in U =−

∑
i,j Jsisj , and flips the spin of the entire cluster as one move.

They argued that this sophisticated rejection-free scheme satisfies detailed balance,
and numerical tests showed that it brought the dynamical critical exponent down to
z = 0.13 from z ≈ 2 of local Monte Carlo.

5At high temperature, the Ising model has small clusters, so it is easy; at low temperature, it is easy
too if the entire-system flipping is introduced.
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The success in the Ising model inspired the generalization in continuous spin
models [46], anti-ferromagnetic models and spin glasses [47, 48]. A key issue to the ef-
ficiency of cluster algorithms is the cluster size. We hope that both the cluster size and
its complement are of the magnitude of system size, which occurs at the percolation
threshold.

Hard disk Large-scale moves of hard disks are more easily realized in relatively
low density. The best-known algorithms are the geometric cluster algorithm [49] and
the Jaster algorithm [50], both of which favor low density to achieve fast mixing.

The geometric cluster algorithm chooses a pivot to perform reflections on the orig-
inal configuration. The overlap of new and old configurations induces bonds between
disk pairs, and clusters are formed with the inter-disk bonds. Reflecting one entire
cluster does not have conflicts with any other cluster, so clusters can be either re-
flected or remain unchanged, which is rejection-free. On the other hand, the Jaster
algorithm starts with translating a random disk by distance ` in a random direction,
and does the same for the one causing collision until no collision occurs, and it ac-
cepts the translated configuration. If one translation results in more than one conflict,
then it is rejected. The same concern of moved cluster size exists in both algorithms.
Incidentally, the Jaster algorithm resembles ECMC in the sense that they both induce
a chain of hard disks displaced in the same direction.

Polymer A polymer can be described as chains of interacting particles p1,p2, ...,pN .
The ties between two adjacent particles within a chain are much stronger, sometimes
even rigid, than the rest of particle pairs, so polymer transformation is usually consid-
ered as an unconventional move to fast explore the polymer’s conformational space.

Proposed by Siepmann and Frenkel [51] is a typical Monte Carlo algorithm by
resampling part of the polymer’s chain. It would be easier if we set all particles on
lattice sites. First, it relaxes a random segment pk,pk+1, ...,pN of the chain from one
end, then settles pk and records non-occupied sites W ′k and all possible sites Wk for
it. And do the same for pk+1 until pN . The acceptance rate is the product

∏N
i W

′
i/Wi

which is lowered with increasing density.

1.4 Irreversible Monte Carlo
Irreversible Monte Carlo evolves through a Markov chain with a definite time direc-
tion, generating a Markov chain with a different probability from its reversed chain.
As reversibility is synonymous with the detailed balance condition, the reversible
probability flows fij and fji cancel between i and j under detailed balance, so the
program explores the configuration space in a random-walk manner. Only with de-
tailed balance, universal algorithms exist, such as the Metropolis-Hastings algorithm
and the Gibbs sampler applicable to all energy functions.

We call a series of operations that change O(N) elements a sweep, such as N
single-flip trials for a spin system. To understand the dynamical benefit brought by ir-
reversible Monte Carlo, we express the time consumption to draw an effective sample
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as

t= C ∗ tswp ∗ tcor. (1.4.1)

Time for a sweep tswp is O(N) for short-range system, and is complicated for long-
range system depending on methods to compute O(N) interactions. It is also note-
worthy that a larger system usually implies a greater rejection rate if pairwise fac-
torization is employed. The correlation time tcor indicates how many sweeps it costs
to have an independent sample. It is not evident but is usually acquired by realis-
tic measurements, taking the form of tcor = O(Lz) where L is the system side length,
since it relates to physical modes propagating across the system. z is called dynamical
exponent and has special physical interests.

Since the invention of reversible Monte Carlo, people have been trying to improve
it by introducing directions to guide the program in the state space. Random walks in
a system of size N usually take O(N2) steps, and from the perspective of a continu-
ous system, the Metropolis-Hastings algorithm introduces diffusive dynamics, so any
density disturbance takes O(L2) to propagate, that is why it often results in z ≈ 2 in
many common systems.

Turitsyn et al. [52] draw an analogy to mixing sugar in a cup of coffee, in which
detailed-balance Monte Carlo with diffusive behavior equilibrates like the sugar nat-
urally dissolving into the coffee. Stirring the liquid will conceivably accelerate the
mixing, and in this case, there is a preferred direction for any point in the configura-
tion space. Illustrated in Fig. 1.5 are different degrees of irreversibility. Sometimes
it is not difficult to construct small loops in a micro-system, i.e., directional tour in
a few local states, which proves helpful but cannot essentially change Monte Carlo’s
behavior. Only with a global direction can an algorithm get rid of O(L2) scaling and
achieve fast exploration.

However, there is no easy construct of irreversible Monte Carlo, for it must satisfy
the global balance condition. Methods presented in the following achieve irreversibil-
ity either with limited improvement, or under additional information. Our goal is to
have an algorithm that eliminates the random-walk behavior so that observable au-
tocorrelations will not scale up as O(L2). The challenge is that even people painstak-
ingly devise an irreversible Monte Carlo, it proves locally irreversible (case of Fig. 1.5
(b) ), and the exponent z does not improve. By contrast, ECMC works in any contin-
uous space6, and achieves a reduction in the dynamical exponent in many systems
though its move is local.

We classify irreversible Monte Carlo methods into two classes: one with lifting
variables and the other with no lifting variable. Information kept in lifting variables
somehow resembles a general direction, so it presents more hope to achieve global
directionality, whereas non-lifting Monte Carlo has no more information than tradi-
tional ones, so it is expected to only accelerate by a constant.

6Converting a discrete space to a continuous one is possible, with artificial constraints and potentials,
but there is no study on whether ECMC keeps its advantages under such environment.
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Figure 1.5: Different degrees of irreversibility. (a) Reversible Monte Carlo that satis-
fies fij = fji. (b) Locally irreversible Monte Carlo which has the same complexity in
traveling the whole space. (c) Globally irreversible Monte Carlo traveling at lower
complexity.
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1.4.1 Non-lifting irreversible Monte Carlo

While developing ECMC, we always wonder what role the lifting variable that indi-
cates active particle plays for the efficiency of ECMC. Such a lifting variable makes the
active particle motion persistent, and by imposing very short chains, the performance
of ECMC returns to the case of traditional Monte Carlo. However, advancing active
particles in the same direction is not equivalent to traveling in phase space without
turning back. On the other hand, keeping explicit directions in lifting variable does
not always help, as suggested by the example of skew detailed balance (see section
1.4.2.2).

By presenting three examples of non-lifting Monte Carlo followed by two with
lifting, we review people’s effort in achieving irreversibility. Actually, two of three
non-lifting irreversible Monte Carlo keep additional implicit information: The next
variable to relax in a sequential scheme, and the momentum in hybrid Monte Carlo.
Checking how different degrees of irreversibility improve mixing provides us instruc-
tive (though feeble) clues over the role of lifting in ECMC’s excellent performance.

1.4.1.1 Sequential updates

The most straightforward irreversible scheme comes from updating variables in a se-
quential manner. While performing Metropolis-Hastings or Gibbs style updates on
spin systems, instead of randomly choosing the next spin to flip for the Ising model,
we can try to change spin 1, spin 2,..., until spin N and then go back to spin 1. This
method is obvious without detailed balance since one cannot change back spin k im-
mediately after making trial on it.

Denote T (k) as the transition matrix for relaxing the variable k using any reversible
scheme. The whole procedure is then imposing T (i) consecutively for i from 1 to N .
Since each T (k) satisfies detailed balance, the product T (1)T (2) · · ·T (N) preserves global
balance.

Early in the inital paper [36] of Monte Carlo methods, Metropolis et al. has al-
ready applied sequential updates of particles. Ren and Orkoulas [53] investigated the
performance of a sequentially updating scheme in comparison with a random one.
Intuitively, updating one spin will result in the tendency of changing its neighbors.
They argued that the transition matrix TS =

∏N
i=1T

(i) has smaller diagonal terms TSii
than those for random updates. According to Peskun’s theorem [54], a transition ma-
trix with small diagonal terms implies less rejection rate and faster equilibration.

The advantage of sequential updates is not only a prefactor faster in simulation,
but underpins a rigorous parallelization paradigm. Ren and Orkoulas [55] showed
that sequential updates can be split into several non-interacting branches based on
domain decomposition, which can be performed concurrently. Multiple processors
will be able to execute each branch in a parallel manner without losing accuracy.

In fact, the concept of sequential updates has broader usage than just in Metropolis-
Hastings or Gibbs updates. It favors a manual selection of the next variable to be
relaxed. Lei and Krauth [56] proved that, if we treat each chain in ECMC as an op-
eration, for N hard disks on a ring, a sequential choice of the initial particle of each
chain can reduce the mixing time scaling from O(N2 logN) to O(N2). Furthermore,
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Figure 1.6: Schema of probability allocations under global balance condition. Three
algorithms are compared: Metropolis-Hastings, Gibbs samples and Suwa-Todo. Each
column represents a state with a solid rectangle and a frame. A valid Markov chain al-
locates rectangles into frames and the rejection is indicated with self-allocation. (From
Ref [57, 58].)

a manual sequence of directions is valid, such as xyzxyz.... Fig. 3.19 in section 3.6.2
confirms the faster relaxation by sequential directions.

1.4.1.2 Geometric Allocation

When the number of states is limited, Suwa and Todo [57, 58] graphically interpreted
the global balance condition as reallocating probabilities. They found an efficient
scheme with zero flow into the same configuration.

Demonstrated in Fig. 1.6 are probability allocations for three common algorithms.
Each state si has contribution π(si) (i.e., outgoing flow) and capacity π(si) (i.e., incom-
ing flow), illustrated as color bars and frames respectively in Fig. 1.6. The Metropolis-
Hastings algorithm is the random proposal followed by a ratio filter, and Gibbs sam-
pler relies on proportionate redistribution, both of which cannot avoid self-flow fii.
Instead, the Suwa-Todo algorithm starts from the maximum-probability state denoted
as s1, inserts contributions π(s1),π(s2)... into a first-in-first-out (FIFO) queue. Then, it
begins fulfilling capacities from s2 with elements outputting from the FIFO queue. In
this way, if π(s1)≤ 1/2, the rate of rejection is always zero.

For systems whose configurations are countable, it is usually possible to perform
geometric allocation with respect to individual components. For a state consisting of
p variables, s= (x1,x2, ...,xp) with xk taking value among v1, ...,vn, a list of n elements
π((x...,xk−1, ·,xk+1, ...)) will be created with n elements to update variable xk.

Direct applications include the Potts model [57, 58] in which the Suwa-Todo al-
gorithm exhibits considerable acceleration depending on the system specification.
An interesting application is the temperature change in extended-ensemble Monte
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Carlo (see section 1.3.2). People have tested the Suwa-Todo allocation in temperature
updates for both simulated tempering [59] and parallel tempering [60], and it is re-
ported that the irreversible Suwa-Todo scheme facilitates temperature exchange and
hence the overall performance. Despite the zero probability returning to any state, the
Suwa-Todo method remains locally irreversible and the speedup is up to a constant,
because it is usually unfeasible to put the entire phase space to the FIFO queue.

1.4.1.3 Hybrid Monte Carlo

Hybrid Monte Carlo, also known as Hamiltonian Monte Carlo, was introduced by
Duane et al. [61]. It applies only to continuous configuration space because it uses a
molecular dynamics integrator to generate proposal moves. The Metropolis-Hastings
filter is used to accept the move (see [62], chapter 5).

Hybrid Monte Carlo process can be described as:

1. Extend the state space s = (q1, ..., qn) to a phase space with velocity so that s =
(q,v), q = (q1, ..., qn), and v = (p1, ...,pn). Define the Hamiltonian H(q,p) =
U(q) +

∑n
i=1 p

2
i /2.

2. (a) For the current (q,p), perform Hamiltonian mechanics of Eq. 1.2.1 for time
t, which reduces to q̇i = pi and ṗi =−∂U/∂qi. Then let p′ =−p(t), q′ = q(t).
(b) Accept (q′,p′) with the Metropolis-Hastings filter, and the energy is replaced
with H .

3. Flip p′←−p′.

4. Disturb p by p′′ = p′
√

1−α+αN, where N is a normal distribution with same
dimension of p centering around zero and has variance corresponding to the
temperature, α is a tuning parameter.

5. Take (q′,p′′) as a new state and go to step 2 until halted.

Let T (1),T (2),T (3) be operators representing steps 2, 3, and 4 respectively. We can
argue that hybrid Monte Carlo ensures the desired distribution π. First, p and q are
decoupled in H so

∫
p π(q,p) ∝ e−βU(q). Second, which is crucial, Hamiltonian me-

chanics is reversible and volume-preserving, thus T (1) respects detailed balance, and
detailed balance for T (2) and T (3) is obvious, so their product T (1)T (2)T (3) respects
global balance. Third, ergodicity is ensured by α > 0.

Flipping twice p is for arguing the balance condition, which needs not explicitly
performing. Step 2 must be done with a numerical integrator, and it follows that
the integrator must be time-reversible and volume-preserving, such as the leap-frog
method. Nevertheless, the entire scenario is clear: New state is deterministically gen-
erated by the Hamiltonian integrator for certain time steps. If α= 1, it accepts the new
state through the filter, then erases the previous momentum and resamples anew. If
α= 0, it keeps the momentum for an accepted move and reverses the momentum for
a rejected move. Keeping the momentum contributes to directional exploration, while
momentum reversal makes it double back. Thus α serves as a crucial parameter over
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reversibility7, and good balance [63] must be kept for optimal efficiency. Also, hybrid
Monte Carlo introduces a set of tuning parameters such as the small step ε, t, and
possibly masses mi assigned to each momentum, which all affect the performance.

1.4.2 Lifting irreversible Monte Carlo
Reversible Monte Carlo methods employ symmetric proposal probabilities fp(i →
j) = fp(j → i) so that tuning the acceptance rate allows us to realize detailed bal-
ance. Many systems achieve fast exploration with explicit use of direction. For ex-
ample, particle momentum counteracts diffusive dynamics to make components in
a fluid mix faster. Angular momentum drives a molecule under constant rotation.
Persistence in flipping up spins or flipping down will also lead to rapid decorrelation
between spin configurations.

Lifting variables allow people to add information in Monte Carlo moves so that
the program has the memory of previous moves. A state si is extended with a lift-
ing variable si = (xi,ai), and the proposal depends heavily upon the lifting variable
ai. Here we present several lifting irreversible Monte Carlo ideas, including one-
dimensional random walk, skew detailed balance, and our ECMC.

1.4.2.1 One-dimensional random walk

A chain ofN sites with uniform desired probability is one of the few models with lift-
ing variables that rigorous mathematics can apply. Diaconis et al. [64] established the
first rigorous scaling of convergence for lifting irreversible Monte Carlo, proving that
its mixing time converges within O(N) steps compared to O(N2) with an undirected
random walk.

Previously, an unbiased random walk may jump from site i to i− 1 or i+ 1 each
with probability 1/2. The end of the chain needs special treatment if periodic bound-
ary conditions are not applied. Diaconis et al. added the direction to the state repre-
sented by (i,d) with d=±1, and the transition rule is

T(i,d)→(i+d,d) = 1− 1
N
,

T(i,d)→(i+d,−d) = 1
N
.

(1.4.2)

A special transition rule is needed for the site 0 and N −1 since they did not employ
periodicity. It means that Monte Carlo will probably move in the same direction as
the preceding move with probability 1−1/N , but may also change the lifting variable
with probability 1/N . They proved that starting with any state, the total variation
distance with respect to the stationary state after l updates drops to ∼ C l/N where
0 < C < 1. This implies that the convergence rate in terms of sweeps, does not rely
on the system size, which outperforms unbiased random walk which takes N2 steps
(namely N sweeps) to reach a distance of N . The generalization to two-dimensional
cases is mentioned in Chen et al. [65]

7Most of the literature classifies hybrid Monte Carlo as a reversible method, perhaps due to the key
step 2, which alone is reversible. However, for α > 0 case, (q,p) travels with clear direction.
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For non-uniform distribution, Diaconis et al. [64] also gave an algorithm with
transition

T(i,d)→(i+d,d) = pMH(1−θ),
T(i,d)→(i+d,−d) = pMHθ,

T(i,d)→(i,d) = (1−pMH)θ,
T(i,d)→(i,−d) = (1−pMH)(1−θ),

(1.4.3)

where pMH = min{1,e−β(U(si+d)−U(si))} is the Metropolis-Hastings filter, and θ is a
small adjusting parameter. Special conditions are needed for sites on the boundary.
Improvement depends on specific problems and individual distributions.

In fact, this one-dimensional non-uniform sampler is not unique. The Suwa-Todo
algorithm in section 1.4.1.2 gives another construct with zero flow back to the same
site, but needs to know π(si) for all i before allocation. The ladder construct of non-
detailed-balance Hybrid Monte Carlo by Sohl-Dickstein et al. [66] provides one more
possibility, which reduces rates of d→ −d by looking ahead (If current site is si, it
calculates relative values of π(si), ...,π(si+K)). Skew detailed balance introduced in
section 1.4.2.2 has a direct application in the one-dimensional chain, and achieves
minimal turnaround rate of d→−d using π(si±1) and π(si) only.

1.4.2.2 Skew detailed balance

Skew detailed balance was first proposed by Turitsyn et al. [52, 67], a framework
allowing people to manipulate proposed directions. It is constructed upon existing
reversible flow.

To apply skew detailed balance, as other lifting Monte Carlo methods, we first
extend any state with an additional lifting variable s = (x,a). For simplicity, we let
a ∈ {−1,+1}. We have to make clear what the proposed states are for any value of
x and a. For example, in the two-dimensional Ising model, a = 1 means that the
next move is to flip up one spin, and a = −1 means to flip down one spin. Thus the
proposed set of configurations for si are grouped into two small sets {p−i } and {p+

i }.
Then one has to choose an underlying reversible flow that is presumably

Metropolis-Hastings style while other schemes have been tested [68]. We duplicate
states {si} into two copies {s+

i } and {s−i }. For {s+
i } the flow {p−i } → s+

i → {p
+
i } are

kept, and for {s−i } the flow {p+
i } → s−i → {p

−
i } are kept. Also, we have to set up

flows between s+
i and s−i to make incoming and outgoing flows meet, together with

self-loops to reach global balance. Specifically we have

T(j,d),(i,d) =Tji, ∀j 6= i, j ∈ {p−di },
T(i,d),(j,d) =Tij , ∀j 6= i, j ∈ {pdi },

π(si)T(i,d),(i,−d) =

 ∑
j∈{p−di }

π(sj)T(j,d),(i,d)−
∑

j∈{pdi }

π(si)T(i,d),(j,d)


+

+C,

T(i,d),(i,d) =1−
∑

j∈{pdi }

T(i,d),(j,d)−T(i,d),(i,−d),

(1.4.4)

36



1.4. Irreversible Monte Carlo

Figure 1.7: Schematic representation of the state space replicas. Dashed lines repre-
sent replica switching transitions, which compensate for compressibility of the prob-
ability flows associated with solid lines. (From Ref [52].)

where [x]+ = max{0,x}, d ∈ {−,+} and C is a non-negative constant indicating the
mutual flow between (i,d) and (i,−d), restricted only by T(i,d),(i,d) ≥ 0. Fig. 1.7 illus-
trates the schema of skew detailed balance.

Note that skew detailed balance requires flows of both incoming and outgoing
states to determine replica switching flow, which is not always feasible and limits
the applicability of skew detailed balance algorithms. Turitsyn et al. [52] originally
applied the skew detailed balance to the mean-field Ising model, i.e., Ising model
in which any spin interacts with all others with the same intensity8. They found that
critical slowdown appearing in the Metropolis-Hastings algorithm does not exist with
irreversible skew detailed balance, which was also reported by Fernandes and Weigel
[69]. Sakai and Hukushima [70] studied the transition matrix under skew detailed
balance condition on a N -state circle with a uniform distribution and concluded that
proper choice of parameters does improve the relaxation rate.

Further investigations were done in both one-dimensional and two-dimensional
Ising models. The Ising model is one of the few models that allow us to calculate
flow sums like

∑
s∈p−i

s→ s+
i in O(1) time, with the bookkeeping of the number of

spins for each kind of neighbor compositions. Sakai and Hukushima [71] discussed
in detail the effect in the dynamics of different constructs of skew detailed balance.
They found that one of the parameter choices was able to reduce the dynamical crit-
ical exponent. For the two-dimensional Ising model, however, no evidence shows
a significant reduction in dynamical exponent [69, 72]. Nevertheless, skew detailed
balance provides an ideal sampling algorithm in one-dimensional states, with the
only requirement of neighboring state probabilities. Sakai and Hukushima [73] also
applied it to simulated tempering and gained acceleration in the relaxation of the
two-dimensional Ising model.

8In the mean-field Ising model, all spins are identical because interactions exist identically for all
pairs. Thus for a model of N spins, a state can be represented by a number N+ indicating the number
of up-spins. This model is essentially a one-dimensional (N + 1)-state model.
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1.5 Models and measurements
We are not going to study various molecular models in this thesis but will take the
all-atom SPC/Fw water model [74] as an ideal testbed.

1.5.1 Molecular models
Classical molecular models are classified into three levels—all-atom, united-atom,
and coarse-grain models, depending on the represented atomic groups for one sim-
ulated unit. The all-atom model is also known as explicit-atom model, meaning that
each atom is represented by one object, typically a point charge, regardless of the
atom type and size. The united-atom model, in contrast, groups several atoms into
one unit, usually called a radical group like -CH2-, -CH3 and -O-. Each united atom
group is treated as one object. Moreover, a coarse-grain model combines a couple
of united atoms into a bigger object. The interactions in all three models consist of
bounded interactions between two adjacent units and non-bounded interactions, pos-
sibly between any pair. Parameters for the interaction are obtained from simulations
or ab initio methods. From all-atom model, united-atom model, to coarse-grain model,
they become more efficient in computation but are less accurate [75].

We focus on the all-atom water model in this thesis for the sake of simplicity even
though ECMC can, in principle, handle all kinds of models and interactions.

1.5.2 Measurements
There are various approaches to measure the convergence of a certain Monte Carlo
method such as correlation time, mixing time, χ2 rate of convergence, etc (see [29] for
reference). They do not agree in value and even in scaling with respect to the system
size. Here we are not going to discuss their difference but present the correlation time,
which is the simplest and most visible in our numerical experiments.

An observable is a function of states: X : C →R possibly representing any physical
quantity9, where C is the configuration space. Through a Markov chain we get a series
of observables {Xi} for i= 1, ...,M (see section 2.3.3 for sampling in ECMC). Then we
obtain its estimate by

〈X〉=
∑
i

π(si)X(si)≈
1
M

∑
i

Xi, (1.5.1)

The deviation of data scales as 1/
√
M and we wonder how the quality of the estimate

increases with larger sample size. Explicitly, a good measure for the convergence
speed is

var(X) = lim
M→∞

Mvar
[∑M

i=1Xi

M

]
. (1.5.2)

This limit converges to a constant and it is determined by the number of independent
samples in a chain. Thus it is straightforward to introduce the sample autocorrelation

corX(t) = 〈(X(s)− X̄)(X(s+ t)− X̄)〉
X̄2− X̄2

(1.5.3)
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where X̄ is the same as 〈X〉. By expanding var(X) we have

var(X) = lim
M→∞

1
M

(〈(∑
Xi

)2
〉
−M2X̄2

)
=
( +∞∑
t=−∞

corX(t)
)(

X̄2− X̄2
)
,

(1.5.4)

with the assumption that corX(t) decays exponentially for large t. Actually corX(t)∼
e−t/τcor , and τcor is the autocorrelation time of X . The curve corX(t) is our measure of
convergence in later chapters.

9In some cases, an observable is also expressed as a complex number, then Eq. 1.5.3 becomes

corX(t) = 〈(X(s)− X̄)∗(X(s+ t)− X̄)〉
¯|X|2−|X̄|2

(1.5.5)
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Chapter 2

Event-chain Monte Carlo

2.1 Introduction

ECMC was proposed [76] by Bernard and Krauth in 2009. It was initially designed
to equilibrate hard-disk systems. In that work, hard disks undergo sequential moves
called chains, during which one hard disk moves in a fixed direction until it hits an-
other disk. Then the target disk, which previous moving disk collides with, takes over
the velocity until it hits a third disk, or the sum of displacements of all disks reaches
the constant chain length `. This simple process preserves global balance, and differ-
ent options exist in deciding the target disk’s direction of motion and how to sample
the initial direction for each chain. Bernard and Krauth found that the scheme mov-
ing all disks in the same direction within one chain, which violates detailed balance,
achieves the fastest mixing.

Later, they applied ECMC in an unprecedented large-scale hard-disk simulation
[9] and revealed the phase transition of the hard-disk system with the most convinc-
ing evidence ever. The continuous transition followed by a first-order phase transition
in solid-hexatic-liquid melting scenario contradicts both the long-established one-step
melting and the two-step KTHNY process [4, 5, 6, 7]. In the following work, different
state-of-the-art simulation methods were implemented. ECMC, event-driven molec-
ular dynamics and massively parallel local Monte Carlo were compared in the sense
of their performance. For 5122 hard disks, ECMC is roughly 70 times faster than local
Monte Carlo and is seven times faster than event-driven molecular dynamics, and is
only defeated by parallel local Monte Carlo when more than one thousand GPU cores
run simultaneously.

The generalization of ECMC to arbitrary continuous potentials did not appear un-
til the work by Peters and With [77] which prove that the global balance condition is
respected if, for a factor, the energy change before the next event is drawn from an
exponential distribution with mean 1/β. Afterward, the extension for many-body in-
teractions was proposed [78] by Harland et al., with the same event rate β[∂U/∂xA]+
as a two-body factor, but one must specify an additional scheme to determine the
next active particle. We will give a graphic explanation for it in section 2.2.2. In addi-
tion, Michel et al. found a succinct expression [79] to obtain NVT system pressure via
ECMC statistics.
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In the meanwhile, ECMC is tested in other systems including hard spheres
[80], soft-potential particles [81], XY model [82, 83], Heisenberg model [84], one-
dimensional short-range system [85, 56, 86], dense polymers [87], and even quantum
chromodynamics [88]. It is noteworthy that in XY and Heisenberg spin models,
ECMC can fast explore systems driven by spin waves, while it suffers a critical slow-
down that the dynamical exponent is higher around the system’s critical point. And
the reason [83] is found related to the topological defect of the model. So far, all
the complexities come from numerical experiments except that the mixing time of
one-dimensional hard disks [85, 56] can be obtained rigorously.

The discovery of ECMC has spawned numerous studies of the irreversible
Markov chains. The original work [76] tested reversible and irreversible straight-
chain ECMC, and a reflected-chain alternative. Infinite choices that respect the global
balance exist in theory for direction change at the collision moment and at the end
of chains, yet only a few studies [89, 90] have contributed to this freedom. On the
other hand, the idea of factor field [86] has lowered the dynamical exponent to the
theoretical lower bound 1/2 in one-dimensional short-range systems, a novel concept
countering all existing experience gained in conventional Monte Carlo.

It is not difficult to generalize ECMC to arbitrary energy landscapes, giving rise
to mathematical variants such as the bouncy particle sampler [91] and the zigzag
process [92]. In the following, we will introduce ECMC using the classical physics
model. The proof of global balance will not be rigorous but is brief and sufficiently
convincing. In section 2.2 we explain the basic process of ECMC via infinitesimal dis-
placement, then in section 2.3 we talk about approaches that can significantly speed
up the computation.

2.2 Basics
We start with lifted configurations and derive the event rate in the presence of a sin-
gle factor based on the global balance condition. Unlike other ECMC tutorials, we
assume since the beginning that factors are many-body, of which pairwise interac-
tions are special cases. Lifting schemes will also be given in section 2.2.2. Then we
extend to the case of multiple factors and provide a more general view of the proba-
bility flow.

2.2.1 Lifted configurations
ECMC is built upon lifted configurations. The basics of equilibrium statistical
mechanics tell us that the distribution of a physical configuration satisfies π(c) =
e−βU(c)/Z where c is the general position of a physical system relying on Ñ coordi-
nates c= c(x1,x2, ...,xÑ ) which we call physical variables. An extended configuration
attaches a lifting variable a to the physical variable, and we denote the extended con-
figuration as a tuple (c,a). This lifting variable often represents the moving index at
the currrent moment, and in many cases a is an integer ranging from 1 to Ñ , meaning
that the coordinate xa is changing. For a physical configuration, the probability π(c)
is equally shared by each lifted configuration, so π(c,a) = e−βU(c)/ZNa, where Na
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is the number of values that a can take (we sometimes omit this normalizing factor
in the following arguments). The lifted configuration is also viewed as replicas of
original configuration in the literature.

For example, for N particles moving along a one-dimensional chain we can set
up the lifted configuration as c = ((x1, ...,xN ),a) where xi’s are coordinates and a ∈
{1, ..,N} meaning that xa is advancing. For two dimensions, physical variables be-
come (x1, ...,xN ,y1, ...,yN ) and a ∈ {1x, ...,Nx,1y, ...,Ny}. Generally speaking, a is al-
lowed to take more values than the set of physical variables. For instance, if we allow
one-dimensional N particles to move forward and backward, then a can take values
from the set {1, ..,N}×{+,−} of 2N elements, the sign indicating the direction of mo-
tion. Likewise, a can also indicate the mode where multiple variables change together,
which we will encounter in section 5.1.4 and section 6.3.2 for molecular translation.

2.2.2 Factor event rate

In ECMC events are triggered by factors. Factors originate from interactions. They
can be one interaction, one or more terms of an interaction, or even a set of interac-
tions. Different arrangements of factors considerably contribute to ECMC’s variety
and flexibility. Later in chapter 4, we even regard auxiliary operations as pseudo-
factor such as sampling and direction switching. Here we denote a factor as a tuple
of its index set and the type (IM ,TM ) where IM is a subset of {1, .., Ñ}. We start with
a single many-body factor.

Between two consecutive events, active particles move at a constant velocity. An
event in ECMC changes the lifted variable, i.e., the velocity, while keeping the phys-
ical variable invariant. The universal event rate per unit length in ECMC is given by

q = β

[
∂U

∂xa

]+
(2.2.1)

where [x]+ = max(x,0) and U =U({xi}) is the potential for the factor. In the language
of infinitesimal steps, the active particle has to hand over its activity with the prob-
ability q∆s in the forthcoming small step ∆s. It means that events occur only when
the active particle move increases the potential, and a scheme must be specified to
choose the next active particle, which we call target particle. Then the previous active
particle stops, whereas the target particle starts moving until a new event happens,
and the activity passes to a third particle(it can be the same as the first active particle).
Fig. 2.1 gives an illustration of ECMC process. For a factor involving two particles,
the other particle is the target. However, for many-body interactions, the scheme is
not straightforward and is in general not unique.

Consider a lifted configuration ((x1, ...,xN ),a). The incoming probability flow
consists in two parts, as shown in Fig. 2.2, the mass flow (c′,a)→ (c,a) and the lifting
flow (c,b 6= a)→ (c,a) where c= (x1, ...,xN ), c′ = (x1, ...,xa− ε, ...,xN ) and ε is a small
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Figure 2.1: Process of ECMC evolution with three particles on a plane. We demon-
strate here the system evolution under ECMC with three particles in a periodic box.
The nine subfigures are the event moments, including eight physical events and one
direction switching.
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Figure 2.2: Mass flow and lifting flow into the lifted configuration (c,1), where c is
a two-particle state in a box. The mass flow comes from (c′,1) where c′ is ε distance
behind c. The lifting flow is from the state with particle 2 active. (From Ref [1].)

displacement. Ignoring the normalizing factor 1/NZ, its value is

Fmass = e−βU(c′)
(

1−β
[
∂U

∂xa

]+
ε

)
+o(ε)

=
(
e−βU(c)− ∂e

−βU(c)

∂xa
ε

)(
1−β

[
∂U

∂xa

]+
ε

)
+o(ε)

= e−βU(c)
(

1 +β
∂U

∂xa
ε

)(
1−β

[
∂U

∂xa

]+
ε

)
+o(ε)

= e−βU(c)
(

1 +β

[
∂U

∂xa

]−
ε

)
+o(ε),

(2.2.2)

where [x]− = min(x,0).
On the other hand, the lifting probability flow coming from (c,b) with b 6= a is

F lift =
∑
b 6=a

e−βU(c)β

[
∂U

∂xb

]+
ελba+o(ε). (2.2.3)

Here we refer to λij as the probability to choose j as the proceeding active particle
when i is active at the event time. It has λij ∈ [0,1] and

∑
j λij = 1.

By applying global-balance condition Fmass +F lift = π(c) = e−βU(c), we get

[
∂U

∂xa

]−
+
∑
b 6=a

[
∂U

∂xb

]+
λba = 0, ∀a. (2.2.4)

If ∂U/∂xa > 0, then λba = 0 for all b, meaning that events happen while the energy is
increasing. If ∂U/∂xa ≤ 0, no event happens as particle a moves, but moves of other
particles within the factor may activate a with the event rate multiplied by λba that
obeys ∑

b6=a

[
∂U

∂xb

]+
λba =− ∂U

∂xa
, ∀ ∂U

∂xa
< 0. (2.2.5)

45



Chapter 2. Event-chain Monte Carlo

Figure 2.3: Graphic interpretation of lifting schemes. (a) Two-body factor. (b) (c)
Three-body factors. Choices for |IM | ≤ 3 is unique. (d) (e) Five-body factor, for which
there are infinite ways to allocate positive bars to negative bars. (From Ref [1].)

To better understand this process, at the instant when the event happens, we di-
vide all particles within this factor into two sets I+ and I−, so that

∂xiU < 0, ∀i ∈ I−, (2.2.6)
∂xiU ≥ 0, ∀i ∈ I+. (2.2.7)

Then we create bars for each of them whose lengths equal |∂xiU |. Put the bars with
positive derivatives above, and place those with negative derivatives below. Total
length of positive bars should equal total length of negative bars due to the transla-
tional invariance, namely

∑
i∂U/∂xi = 0. We refer to a specific choice of λba as a lifting

scheme, which can be interpreted as the allocation of positive bars into negative bars,
as shown in Fig. 2.3.

For a factor (I,T ) with |I|= 2, the target particle is unique, and λij = 1 for ∂xiU > 0
and ∂xjU < 0 otherwise λij = 0. For |I|= 3 the choice is unique, too, while a random
number is needed if two particles have negative derivatives. For |I| > 3 there can be
infinite choices, a simple ratio lifting scheme is

λij =
|∂xjU |∑

j′∈I− |∂xj′U |
, (2.2.8)

which is independent of i. Now we obtain a general lifting scheme, and in section
3.5 we will order the atoms according to their molecular indices and devise lifting
schemes that prioritize the flow going inside or outside the active molecule.
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2.2.3 Factorization

2.2.3.1 Multiple Factors

If the potential can be written as a sum of many terms U =
∑
M∈MUM , each UM can

be regarded as a factor and it can trigger events independently.
Each factor M that involves active particle a has an effect at every small step of

the ECMC process, with the same expression of the event rate β[∂UM/∂xa]+, and with
individual lifting schemes λMij . Throughout the derivation in section 2.2.2, ε is small
enough that two events are improbable to coincide in the same interval ε, so that the
probability of encountering more than one events is at most O(ε2).

Therefore the probability flows in existence of many factors, take similar forms as
Eqs. 2.2.2 and 2.2.3

Fmass = e−βU(c′)
(

1−
∑
M

β

[
∂UM
∂xa

]+
ε

)
+o(ε)

= e−βU(c)
(

1 +
∑
M

β

[
∂UM
∂xa

]−
ε

)
+o(ε),

(2.2.9)

F lift =
∑
M

∑
b6=a

e−βU(c)β

[
∂UM
∂xb

]+
ελMba +o(ε), (2.2.10)

with λMij that [
∂UM
∂xa

]−
+
∑
b 6=a

[
∂UM
∂xb

]+
λMba = 0, ∀a. (2.2.11)

It is easy to verify Fmass +F lift = e−βU(c) + o(ε) and global balance holds in presence
of more than one factors.

Factorization in traditional Monte Carlo does not usually have advantages. Split-
ting the potential into small factors often leads to a higher rejection rate, thus slows
the system’s relaxation. However, ECMC favors factorization for the reason that fac-
tors involving many particles have to invoke complicated lifting schemes that require
all relevant particles’ derivatives at the event time. On the contrary, splitting factors
usually facilitates the calculation of the event time and the target particle. In the sim-
ulation of soft-potential particles [81], the two-body factor is always employed. An-
other example of factorization is the particle system interacting via the Lennard-Jones
potential U = A/|r|12−B/|r|6, where it is favorable to split into A/|r|12 and −B/|r|6
so that both terms can be easily inverted.

2.2.3.2 Redundant flow

We can interpret the difference between factorizations as introducing loops of excess
probability flow. Interaction consisting of many terms U =

∑
M UM may be treated as

one or more small factors. If only one factor exists, particles with positive derivatives
are sources of the probability transfer, i.e., have outgoing flows; particles with neg-
ative derivatives are receivers of the probability flow. When we split one factor into
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Figure 2.4: Redundant flow loop caused by factorization. Three boxes represent the
lifted configurations with a common physical state. Each of them has incoming and
outgoing mass flows to other physical states, and their potential induces lifting flow
in between. By splitting the potential into more than one factor, we effectively impose
extra loop to the lifting flow.

many, additional loops are added to the original graph, resulting in loops of redun-
dant flow. Fig. 2.4 gives an example of this operation.

We can describe a redundant flow loop by a set of additional sources qRi > 0 for
i= 1, ...,N , and a distribution ratio λRij . The Eqs. 2.2.2 and 2.2.3 now become

Fmass = e−βU(c′)
(

1−β
[
∂U

∂xa

]+
ε− qRa ε

)
+o(ε)

= e−βU(c)
(

1 +β

[
∂U

∂xa

]−
ε− qRa ε

)
+o(ε)

(2.2.12)

F lift =
∑
b 6=a

e−βU(c)
(
β

[
∂U

∂xb

]+
λba+ qRb λ

R
ba

)
ε+o(ε), (2.2.13)

under the following constraint ∑
b6=a

qRb λ
R
ba = qRa , ∀a. (2.2.14)

Again, Fmass +F lift = e−βU(c) +o(ε) holds in the presence of the term qR.
The similarity between Eqs. 2.2.9 ∼ 2.2.11 and Eqs. 2.2.12 ∼ 2.2.14 suggests their

same mathematical essence. Factorization stems from splitting physical interactions,
which is more apparent and intuitive, while the construct of redundant flow can be
arbitrary and flexible.

It is the flexible choice of probability flows that brings ECMC with infinite va-
riety and enormous posibilities. In the first place, all interactions are one factor U ;
thus, the incoming flow and outgoing flow do not coexist upon one coordinate. Then
we split U into smaller factors, usually for computational convenience. Sometimes
one may even add flows from nothing, i.e., by adding 0 = U −U , which is our cur-
rent manner for direction change that can be considered as a mutual flow x↔ y that
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guarantees ergodicity. It appears that redundant flows have no gain in simulation
dynamics, making it more likely to stay with the current configuration. However,
the construct of the factor field [86] enables us to lower the dynamical exponent in a
one-dimensional system, countering people’s intuition.

To sum up, the ECMC algorithm for single active particles via a time-driven ap-
proach can be described as follows, with the example of N particles moving in one
direction:

1. Initialize the lifted configuration (c,a).

2. Iterate over the factors UM with xa ∈ UM .

3. For each factor, calculate the corresponding derivative with respect to xa. Draw
a random number r ∈ [0,1], if r happens to be in [0,β [∂xaUM ]+ ε], an event oc-
curs. If more than one events coincides within ε, then pick a random one. ε
should be tuned to ensure that coincidences are very rare.

4. If an event occurs, calculate the next active particle using the derivatives of all
particles of the factor. For two-body factors, the target particle is simply the
non-active one. The current active particle stops, and the target particle starts
moving.

5. If no event occurs, advances the active particle by ε.

6. Go back to step 2 and repeat.

2.3 Fast implementation

If ECMC stays in the time-driven approach, it will hardly be capable of competing
with other well-established methods. It consumes a great deal of time to integrate
over small timesteps and introduces imprecision that is hard to analyze. Molecular
dynamics has accumulated progress to overcome this inefficiency over the years, by
parallel computing forces throughout the entire system, or altering potentials into
piecewise-constant ones (see section 1.2.3) to which event-driven approaches can ap-
ply.

ECMC is a stochastic process with a natural event-driven formulation with what-
ever potential the system has. In section 2.3.1 we describe how to convert small step
integration into inverting potential functions. Then in section 2.3.2, we introduce the
bounding potential that simplifies the event calculation so that only the derivative of
the original potential is called.

2.3.1 Event-driven approach

Assume that the system has only one factor. At a moment the active particle is at
position xa. Its probability to travel a distance of η without any event rejecting it,
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p(η), satistifies the equation

dp
dη =−pβ

[
∂U

∂x

]+
∣∣∣∣∣
x=xa+η

, (2.3.1)

with the initial condition p(0) = 1. By integrating over η, we get

p(η) = e
−β
∫ xa+η
xa

[∂xU ]+dx = e−βU
+(η) (2.3.2)

where U+(η) =
∫ xa+η
xa

[∂xU ]+ dx keeps the positive-derivative part of U and is flat oth-
erwise, as exemplified in Fig. 2.5.

Figure 2.5: Sampling of the displacement in an event-driven manner for a potential
UM . U+

M represents the part of UM with positive derivative. Then an exponential
random number is drawn as the energy change. The displacement is calculated and
matches the energy change of U+

M . (From Ref [1].)

The Eq. 2.3.2 tells us that the probability for the active particle to go beyond η is
e−βU

+(η). The change of U+ to next event can be sampled via

∆U+ =− 1
β

logr (2.3.3)

in which r is a random number uniformly distributed in (0,1]. Then we invert
∆U+

M (η) to get η.
For the case with more than one factor, we can obtain the displacement ηM from

each relevant factor M . The displacement to the next event is the minimum of dis-
placements among all factors, and the triggering factor is the one with smallest dis-
placement,

Mtrigger = argminM,a∈IM {ηM} , (2.3.4)

η = min
M,a∈IM

{ηM} . (2.3.5)

The succeeding active particle is calculated using a lifting scheme within the trigger-
ing factor.
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2.3.2 Bounding potential

The method described in section 2.3.1 requires explicitly calculating the inversion of
U+ that is not usually possible in most realistic cases. In our SPC/Fw water model
that employs the Amber force field in section 5.3.3, the intra-molecular harmonic po-
tential, and oxygen-oxygen Lennard-Jones potential are invertible, while the tension
part and the Coulomb interaction with periodic boundary conditions are not. Bound-
ing potentials allow us to sample the next event time of non-invertible potential fac-
tors.

For a potential U , the bounding potential UB is a function of xa whose derivative
not less than ∂xU everywhere if ∂xU > 0, i.e.,

[∂xUB]+ ≥ [∂xU ]+ . (2.3.6)

An example is shown in Fig. 2.6. In the time-driven approach, we can use UB in place
of U to check if an event occurs within displacement ε. Since UB overestimates the
event rate, a certain portion of events may be false, with ratio given by

rC =


[
∂U
∂x

]+
/∂UB∂x , if ∂UB∂x > 0;

0, otherwise.
(2.3.7)

It means that we have to perform a confirmation by drawing a random number be-
tween 0 and 1 to check if it falls within [0, rC ] so the event has truly happened.

Figure 2.6: Sampling the displacement with the help of bounding potential.

The method discussed in section 2.3.1 replaces small timesteps with a direct sam-
pling of event times. Likewise, we can sample the displacement given by an bounding
potential in an event-driven manner, then confirm it by Eq. 2.3.7. Since no more re-
strictions exist on the specific form of bounding potential except Eq. 2.3.6, we have a
variety of choices to make it easily invertible.

In practice, we employ various forms of bounding potentials. In section 3.4 we
will take c/|rat| as bounding potential for the Coulomb interaction under periodic
boundary conditions. The cell algorithm that we will introduce in section 3.3 is essen-
tially a potential with static piecewise-constant derivatives, estimated before Markov
chains. Moreover, a potential with dynamic piecewise-constant derivative by spec-
ulation is also possible and is our event-driven solution for the tension force of the
SPC/Fw H2O model.
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2.3.3 Sampling
Sampling is an auxiliary but indispensable component of ECMC. It does not affect
ECMC’s dynamics but is the way for ECMC to output observables of physical inter-
ests.

In principle, any observable X can be extracted using the configuration average
along the path of ECMC

〈X〉 ∼ 1
T

∫ T

0
X(c(t))dt (2.3.8)

where c(t) is the configuration at time t. This formula contains integral, so it is hard
to compute. Empirically we can instead draw samples in constant interval

〈X〉 ∼ 1
Ns

Ns∑
n=1

X(c(nts)) (2.3.9)

where ts is the sampling interval.
One may also consider non-constant sampling intervals such as exponential dis-

tribution, but no studies have contributed to it. A pitfall for sampling is that one
draws samples exactly at the event time to avoid explicit “sampling events” in the
program. This approach leads to wrong estimates of physical observables. For ex-
ample, in hard-disk simulations, two disks touch each other at event times, while the
probability of touching disks tends to zero among all possible states.

2.3.4 Direction switching and restarts
Direction switching is necessary to ensure ergodicity, e.g., to mix hard disks in both di-
rections. Its validity can be understood as a constant flow x↔ y that will not break the
global balance. In higher dimensions, switching schemes have more options, either
choosing the next direction randomly or cyclically. We will give a measurement in
section 3.6. In principle, the constant probability flow x↔ y means that the switching
interval should be an exponential random number. In practice, however, a constant
time interval is usually employed without bias in the results.

Sometimes we can also set up restart events that drop current active particles and
randomly select a new one. This operation can be regarded as a constant flow between
each pair of particles. Restarts have been shown to affect dynamics [85, 56, 86, 93] of
ECMC though more studies are on the way.
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Event-chain Monte Carlo for
long-range interaction

3.1 Long-range system
The Coulomb potential is a fundamental interaction whose nature is strongly in-
fluenced by its long tail [18]. The Lennard-Jones potential and inverse-power-law
potentials, if no cutoff is introduced, lead to correlations between the system’s far-
away components. Modern biochemical simulations commonly use the Amber force
field involving inter-molecular long-range terms with empirical parameters, without
which the resulting statistics fail to reflect the true nature of simulated bodies [18]. Al-
though long-range interactions are crucial in revealing realistic physical phenomena,
they remain a bottleneck of large-scale biochemical simulation algorithms.

In this chapter, we focus on long-range systems simulated by ECMC to see if the
novel irreversible Monte Carlo can bring breakthroughs. As introduced in section
1.2.2, the state-of-the-art method that splits the Coulomb potential into a short-range
core and a relatively smooth long-range tail leads to Ewald’s formula [94], with the
latter solved by fast Fourier transformation. New methods under the framework of
ECMC without resort to Fourier transformation may be more efficient.

Long-range interactions are related to boundary conditions, at least in a compu-
tational sense, and the periodic boundary conditions are usually adopted in order
to avoid boundary effects. Mathematically, let S1 be the topological space of a cir-
cle, then a periodic plane becomes a torus denoted as S1×S1, illustrated in Fig. 3.1
(a) , and three-dimensional periodic space can be described as S1×S1×S1. Taking
Coulomb interaction as an example, the long-range interaction, at the first place, is
ill-defined in light of periodicity because no solution exists for Poisson’s equation
∇2U(r) =

∑
ciδ(r− ri) that determines the potential of a point-charge system if the

system is non-neutral (taking the zeroth Fourier mode leads to 0 = const). We may
take another view by unfolding the periodic system, which implies that every object
has an infinite number of images, as shown in Fig. 3.1 (b) . Summing up contributions
from all images for two charges

∑
n 1/|r12 +nL| obviously diverges.

We categorize long-range interactions into the following three classes:

1. Finite-range interactions that have cutoffs beyond which the forces vanish.
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Figure 3.1: Representations of a two-dimensional periodic system. (a) A torus, to
which the system is topologically equivalent. (b) Unfolded representation, with re-
peated images of particles. (Panel (a) is from Ref [1].)

2. Long-range interactions of fast decay, that is, the interaction whose tail scales
as 1/rp and p > d. The potential computation has no ambiguity since

∑
n 1/|r +

nL|p converges absolutely.

3. Long-range interactions of slow decay, that is, the interaction whose tail scales
as 1/rp and p≤ d.

Assuming that the system is big enough and that interactions exist between all pairs,
we cannot enumerate all the interacting pairs to sample the event with reasonable
time. In the first case, a cell system is sufficient for fast access of relevant pairs given
the active particle. In the second case, a smart scheme is needed to avoid iteration
over all the N − 1 pairs. The cell algorithm [95], which we will introduce in section
3.3, can meet this requirement for homogeneous systems in which density ρ ≈ const.
In the third case, an ambiguity arises under periodic boundary conditions, and we
will focus on one working convention called tin-foil electrostatics and develop its
equivalent forms for ECMC.

We will address the formulation issue of slow-decay interaction at first in section
3.2, to derive a self-consistent definition of the two-body Coulomb event rate. We find
that ECMC provides various approaches that circumvent Ewald summation for the
calculation of pairwise Coulomb interaction. All these methods can be easily adapted
to other kinds of long-range interactions too.

The second issue that is treated this chapter is to efficiently sample the next event
among all O(N) factors that involve the active particle. The cell algorithm, together
with Walker’s method, serves as the mainstay to effectively reduce the complexity
from O(N) to O(1) for the three-dimensional Coulomb plasma. This algorithm ap-
plies to short-range interaction as well and helps avoid iterating over all possible
neighbors.

In addition to the Coulomb derivative given in section 3.2, one also needs a bound-
ing potential since its periodic version is no longer invertible. We will give a simple
Coulomb bounding potential in section 3.4, taking into account its 1/|r| singularity at
the origin.
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3.2. Calculation of pairwise Coulomb interaction

Next, we will introduce our finding of the dipole factor that enable us to reduce
the event rate from O(N

1
3 ) to O(logN). Furthermore, two lifting schemes in addition

to the ratio lifting scheme for dipole systems will be proposed. The inside-first lifting
scheme yields an inter-dipole lifing rate that scales as 1/r4. This fully exploits the 1/r4

dipole-dipole interaction within ECMC’s capacity. Realistic systems mostly comprise
or can be decomposed of dipoles, so the invention of the dipole factor will hopefully
accelerate biochemical simulations in the future.

Good agreement between different methods such as the Metropolis-Hastings al-
gorithm and ECMC, atomic and dipole factorizations, and various lifting schemes
will be presented at the end of this chapter, and in chapter 5, we will provide more
verifications of the cell setup.

3.2 Calculation of pairwise Coulomb interaction

3.2.1 Ewald summation
The Coulomb potential ofN charges c1, c2, ..., cN in a cubic box under periodic bound-
ary conditions is generally the solution of Poisson’s equation ∇2φ =

∑
ciδ(ri)/ε0.

However, this simple expression has no solution for non-neutral systems, and the fact
that solutions are not unique raises physical unclarity. We will follow the formulation
proposed by de Leeuw et al. [94] and will list the results below.

Intuitively, in the unfolded view of periodic boundary conditions, the total energy
of the system can be expressed as

UC = 1
2
∑

n∈Z3

∑
1≤i,j≤N

cicj
|ri−rj +nL| , (3.2.1)

where L is the box side length, and the summation should exclude self-interaction of
the same image. In this expression, different summing orders lead to distinct results,
so it does not converge absolutely. de Leeuw et al. showed that summing for spherical
shells results in

UC =
∑

1≤i<j≤N

1
L
cicjψ

(rij
L

)
+ 2επ

3L3 |P|
2 +Uself(α), (3.2.2)

in which

ψ(r) =
∑

n

erfc(α|r+nL|)
|r+nL| + 1

π

∑
m∈Z3,m6=0

e2πim·r−π2|m|2/α2

|m|2 , (3.2.3)

with erfc the complementary error function

erfc(x) = 1−2π−
1
2

∫ x

0
e−t

2dt, (3.2.4)

Uself a term of self energy independent of ri, and P the system’s polarization

P =
∑

1≤i≤N
ciri. (3.2.5)
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Chapter 3. Event-chain Monte Carlo for long-range interaction

In Eq. 3.2.2, ε is the dielectric constant that originates from summing order. The value
ε = 1 corresponds to summing over spherical shells. To avoid many-body Coulomb
interaction we adopt the so-called tin-foil convention where ε = 0 so that the polar-
ization term vanishes. Then the energy can be decomposed as a sum of pair energies

UC =
∑

1≤i<j≤N
cicj

∑
n∈Z3

erfc(α|rij +nL|)
|rij +nL|

+4π
L3

∑
q 6=(0,0,0)

e−q2/(4α2)

q2 cos(q ·rij)

+Uself(α).

(3.2.6)

where q = 2πm/L with m ∈ Z3. Here, α is a parameter that does not affect the result
but influences the convergence speed. Considering that the complementary error
function around infinity behaves as erfc(x) ∼ e−x2

/(
√
πx) > e−x

2
/
√
π we get bounds

of n and m
|n| ∼

√
− log(

√
πδ)/(αL),

|m| ∼
√
− log(πLδ)αL/π,

(3.2.7)

that are sufficient to reach precision δ. In practice, α is chosen so that the real-space
part, i.e., the term with the complementary error function, converges faster than the
Fourier part, which can reduce the costly computation of the error function.

To get the event rate of a single moving particle in ECMC, we just take the deriva-
tive of Eq. 3.2.6, and the result comprises individual pairs, each consisting of a
Fourier-space term and a real-space term

q̃Clb(r12 = r2−r1) = q̃real(r12) + q̃Four(r12), (3.2.8)

with

q̃real(r12) = c1c2
∑

n∈Z3

x12 +nxL

|r12 +nL|2
[erfc(α|r12 +nL|)

|r12 +nL| + 2α√
π
e−α

2|r12+nL|2
]

(3.2.9)

and

q̃Four(r12) = c1c2
4π
L3

∑
q 6=0

qx
e−q2/(4α2)

q2 sin(q ·r12) (3.2.10)

in which we assume that the particle 1 is active. Fig. 3.2 shows the values on four z
profiles qClb = β [q̃Clb]+.

In the simulation of a number of charges, we find by profiling the program that
direct calculation of the Coulomb derivative by Eqs. 3.2.9 and 3.2.10 takes the majority
of total time (>80%). In fact, over a hundred terms must be taken into account to
achieve the error level of double-precision float (2−53). However, there are tricks to
speed up the computation:

1. Using spherical cutoffs for both real-space and Fourier-space terms, instead of
cubic cutoffs.

2. Tuning the parameter α to include more Fourier-space terms than real-space
terms, to reduce calls of the error function.
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3.2. Calculation of pairwise Coulomb interaction

Figure 3.2: Pairwise Coulomb event rates qClb(r = (x12,y12,z12)) at five different z
sections for β = L = c1 = c2 = 1, with (a)(b)z12 = 0.1, (c)(d)z12 = 0.2, (e)(f)z12 = 0.3,
(g)(h)z12 = 0.4, and (i)(j)z12 = 0.5. Subfigures on the left are event rates with the
merged-image approach given by Eqs. 3.2.9 and 3.2.10, while those on the right are
for separate-image event rates by Eq. 3.2.37. (From Ref [1].)

57



Chapter 3. Event-chain Monte Carlo for long-range interaction

3. Exploiting the positive-negative symmetry of Fourier-space terms with respect
to components of q. In fact, only roughly 1/8 of all terms have to be calculated.

4. Pre-calculating sin and cos of qxr12,x, qyr12,y, and qzr12,z , then sin(q · r12) can be
calculated in an iterative manner.

After taking into account the tricks above, the Coulomb derivative computation takes
roughly 30% of the time (run by JELLYFYSH, see chapter 4). Actually, as a stochas-
tic algorithm, ECMC has the potential to circumvent all detailed calculations while
keeping the results unbiased, which is still under development.

3.2.2 Line-charge method
3.2.2.1 Construct

One may by intuition write down the two-body Coulomb derivative as the sum of
image derivatives

q̃Clb = c1c2
∑

n

∂

∂x1

1
|r12|

= c1c2
∑

n

x12
|r12|3

. (3.2.11)

Again, this summation suffers from poor convergence even though it indeed con-
verges to some true charge-charge derivatives with a certain dielectric constant de-
pending on the summing order. For a faraway image R= |nL|, the derivative decays
as R−2. The expression does not converge absolutely since

∫∞ r−2d3r =∞.
The line-charge model overcomes this divergence by bundling a charged line of

length pL image, laid along the direction of motion of the active particle with the
target image in the center. Every line is charged evenly with a density −c2/pL. The
composite of the target image and the accompanying line charge, labeled as n, will
contribute to the derivative

q̃Clb,line (r = r12 +nL= (x,y,z))

=c1c2

[
x

|r|3 + 1
pL

( 1
|r+pLêx/2|

− 1
|r−pLêx/2|

)]
.

(3.2.12)

This formula results in identical statistics as Eqs. 3.2.9 and 3.2.10, as shown in Fig. 3.3
(a) . The agreement is intuitive whereas rigorous proof remains non-obvious. We will
justify the equivalence by introducing a homogeneous volume-charge model.

Eq. 3.2.12 is computationally powerful in two respects. First, it has vanishing
charge and dipole moments, and the leading term behaves as a charge-quadrupole
interaction and thus scales asR−4. Moreover, q̃Clb,line(r12,n)+ q̃Clb,line(r12,−n) decays
even faster at the speed of R−5. When summing through cubic or spherical shells,∫ R

q̃Clb,line(r12,n)dn∼
∫ R

r−3dr ∼ U −R−2, (3.2.13)

argeeing with our numerical test shown in Fig. 3.3 (a) .
Second, Eq. 3.2.12 needs no explicit calculations of the line-charge contribution,

that is, of the second and third terms in Eq. 3.2.12 for each image. Only those at the
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3.2. Calculation of pairwise Coulomb interaction

Figure 3.3: Convergence comparison in logarithmic scale between results of various
methods for pairwise Coulomb derivatives at r12 = (1/3,1/6,1/7). (a) Line-charge
model with p = 1 and p = 2, kite-charge model, volume-charge model, and algebraic
compensation. The curve “algebra-2” corresponds to using T1 of Eq. 3.2.33 as the
compensating term, and “algebra-3” corresponds to T3 of Eq. 3.2.33. (b) Richardson’s
method starting with p = 1 line-charge model. The original series is with respect to
increasing cutoffs.

end of “concatenated” lines survive. This effect significantly reduces the computation
work of the line-charge model, with only a few additional terms on the boundary.

For the choice of the line charge length p in Eq. 3.2.12, any positive integer is
acceptable while 2p(2n+ 1)2 ends of lines are unable to cancel. In Fig. 3.4 (a) and
(b) we show unfolded images of the target particle compensated by L and 2L line
charges respectively. Usually, p = 1 is the ideal choice if we sum up Eq. 3.2.12. This
way, we put all images as one factor, so it is called “merged-image” factorization.
However, if we factorize images and treat each image accompanied by its screening
charge as an individual factor, singularities appear at the image charge position and
ends of the line charges. In this case, p= 1 suffers a non-physical singularity at r12 =
(L/2,0,0) besides the physical one at (0,0,0). Hence in the separate-image approach,
we propose p= 2 so that these two singularities coincide.

3.2.2.2 Equivalence to tin-foil convention

Here we demonstrate the equivalence between Ewald’s method with the tin-foil con-
vention and the line-charge method. We will show that the line-charge method has
the identical result as a homogeneous volume-charge method. The equivalence to the
polarization-free Ewald’s summation is because the net target charge vanishes in the
volume-charge method, whereas we will not cover this part of the argument here.

For a static charge with structure factor ρ2(q), a test charge c1 has a potential

U(r12) = 4πc1

∫ ∞
−∞

d3q
(2π)3 e

iq·r12 ρ2(q)
|q|2 . (3.2.14)
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Chapter 3. Event-chain Monte Carlo for long-range interaction

Figure 3.4: Screening charge models. (a) Line-charge model with p = 1. (b) Line-
charge model with p = 2. (c) Sheet-charge model. (Panels (b) and (c) are from Ref
[1].)

Summing up (2K+ 1)3 images, we use the following formula

DK(qx) =
K∑

l=−K
eiqxlL = sin [qxL(K+ 1/2)]

sin(qxL/2) , (3.2.15)

and we denote D̃K(q) =DK(qx)DK(qy)DK(qz). Taking into account (2K+1)3 images
and in the limit of K→∞, we reach

DK(qx) K→∞−−−−→ 2π
L

∞∑
m=−∞

δ

(
qx−m

2π
L

)
. (3.2.16)

For a point charge c with line-screening charge of length pL

ρline = c(1− sincpqxL2 ), (3.2.17)

and for one with volume-screening charge of side length L

ρvolume = c(1− sincqxL2 sincqyL2 sincqzL2 ) (3.2.18)

where sinc(x) = sin(x)/x.
By taking their difference, we get

∆U = Uline−Uvolume

= c1c2

∫ d3q
2π2DK(q)e

iq·r12

|q|2
(

sincqxL2 sincqyL2 sincqzL2 − sincpqxL2

)
.

(3.2.19)

Eq. 3.2.16 tells us that DK(q) peaks around qi = 2πm/L,m ∈ Z, while sinc(qiL/2)
is zero at those values except for qi = 0. A short analysis suggests that non-zero terms
of Eq. 3.2.19 come from qx = 0 (the qx = qy = qz = 0 case needs special analysis). The
line-charge and volume-charge models have different potentials. However, taking
the derivative with respect to x1 yields

∂∆U
∂x1

= c1c2

∫ d3q
2π2DK(q)qx sin(q ·r12)

|q|2
(

sincqxL2 sincqyL2 sincqzL2 − sincpqxL2

)
.

(3.2.20)
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3.2. Calculation of pairwise Coulomb interaction

Due to an additional qx, the integer points qx = 0, qyqz 6= 0 vanish as well. At around
qx = qy = qz = 0 we expand the trigonometric functions and get

∂∆U
∂x1

q→0−−−→
q2
x

[
(p2−1)q2

x− q2
y− q2

z

]
|q|2 DK(q)∼ 0. (3.2.21)

Therefore, the contribution around q = 0 is zero for large K too.
In summary, the above derivation demonstrates the equivalence between the line-

charge method and the volume-charge method in the limit of infinite images.

3.2.3 Higher-order methods
The success of the line-charge method provides an alternative for calculation of the
pairwise Coulomb derivative. As discussed in section 3.2.2.1, the remainder of count-
ing (2n+1)3 images decays as n−5. To reach double-float precision (2−53), we have to
calculate∼ 230 terms, far beyond the allowed limit of any molecular simulator. Hence,
to reach relatively high precision, the line-charge method is outperformed by Ewald’s
method. Nevertheless, algorithms exist that can converge faster than the compensat-
ing line charge besides Ewald’s sum, and many of them inherit the idea of screening
charge.

The following methods that we develop to compute Coulomb potential deriva-
tives have actually exceeded the current need in the program. In JELLYFYSH intro-
duced in chapter 4 and its applications, the Ewald summation is sufficient. It has the
best precision with acceptable time consumption. We propose the following higher-
order methods as complements that may be advantageous in other situations.

3.2.3.1 Volume-charge method

During the proof that the line-charge method Eq. 3.2.12 is equivalent to tin-foil elec-
trostatics of Eq. 3.2.6, we introduce a volume-charge model illustrated in Fig. 3.5 (a) ,
which actually converges two-order faster than line-charge model due to its vanish-
ing quadrupole and octupole moments.

Similar to Eq. 3.2.12, the volume-charge model for two charges c1 and c2 with c2
surrounded by a homogeneous cubic compensating charge of side length L, has the
following derivative

q̃Clb,volume(r12,n) = c1c2

{
x12 +nxL

|r12 +nL|3

+ 1
L3 [I1(x12 +L/2,y12,z12,L)− I1(x12−L/2,y12,z12,L)]

}
, (3.2.22)

where the integration is defined as

I1(x0,y0,z0,L) =
∫ y0+L/2

y0−L/2
dy
∫ z0+L/2

z0−L/2
dz 1√

x2
0 +y2 +z2

=
∑

sy ,sz∈{+1,−1}
syszI2(x0,y0 +syL/2,z0 +szL/2).

(3.2.23)
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Chapter 3. Event-chain Monte Carlo for long-range interaction

Figure 3.5: Two constructs of compensating charge with vanishing quadrupole mo-
ment. (a) Volume-charge model. (b) “Kite” model with each line of length L. The
target image is in the center of the kite, and four legs of the kite make up a square of
side length L/

√
3.

Explicitly integrating I1, we have

I2(x,y,z) =y log
(√

x2 +y2 +z2 +z

)
+z log

(√
x2 +y2 +z2 +y

)
−xarctan

(
yz

x
√
x2 +y2 +z2

)
+xarctan

(
y

x

)
−y.

(3.2.24)

The entire expression consists of as many as 8×5 terms before simplification, and
many of them contain costly logarithm and inverse trigonometric functions. It is thus
difficult to evaluate, even in the case that compensating terms cancel for neighbor-
ing images. Thus we seek other methods to construct screening charges with zero
quadrupole moments.

3.2.3.2 Kite-charge method

The volume-charge model is not the unique construct with a vanishing quadrupole
moment. More than one compensating line charge can be associated with one image,
giving more freedom of the screening charge construct. In fact, a tricky arrangement
of four line charges can cancel the quadrupole moment.

According to the definition of the quadrupole moment of a single charge

Qij = q(3rirj−|r|2δij), (3.2.25)

a line of charge density 1/L extending from (−L/2,y,z) to (L/2,y,z) carries a
quadrupole moment

Q=

L2/6−y2−z2 0 0
0 −L2/12 + 2y2−z2 3yz
0 3yz −L2/12−y2 + 2z2

 . (3.2.26)

It is easy to let the diagonal terms vanish by making y2 = z2 = L2/12. To cancel
the off-diagonal terms 3yz we should have more than one line. Considering sym-
metries required to cancel the dipole moment, we conclude that we need a mini-
mum of four lines evenly distributed on the y2 + z2 = L/6 circle. One possibility is
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3.2. Calculation of pairwise Coulomb interaction

(y,z) = (syL/
√

12,szL/
√

12) for sy,sz ∈ {+1,−1}, meaning that four lines of length L
center around the target particle image pointing along +x (hence the name “kite”) as
shown in Fig. 3.5 (b) . And furthermore, the composite remains invariant under the
rotation along x axis, thus the simplest solution that we found is

(y1,z1) = (L/
√

6,0), (y2,z2) = (0,L/
√

6),
(y3,z3) = (−L/

√
6,0), (y4,z4) = (0,−L/

√
6), (3.2.27)

and the corresponding imagewise derivative becomes

q̃Clb,kite (r = r12 +nL= (x,y,z))

=c1c2

 x

|r|3 +
∑

(y,z)∈K

1
4L

(
1

|r+Lêx/2 +yêy/2 +zêz/2|

− 1
|r−Lêx/2 +yêy/2 +zêz/2|

)]
,

(3.2.28)

where K is the set whose elements are listed in Eq. 3.2.27. A kite of length L is given
above while the generalization to pL(p ∈ Z+) is straightforward. Fig. 3.3 (a) justifies
its two-order faster decay than for the line-charge method with increasing n, in which
(2n+ 1)3 images are evaluated.

3.2.3.3 Richardson acceleration

Richardson’s method [96] is a general algorithm to accelerate the convergence of a
sequence with polynomial remainder. Assume that the sum Sn of the first n terms of
a series has

Sn = S∞+ C

np
+o(n−p), p > 0. (3.2.29)

The constructed series,

S′n = (n+ 1)pSn+1−npSn
(n+ 1)p−np , (3.2.30)

can eliminate the n−p term, preserve the S∞ limit, and thus converge at least as fast
as n−p−1. Iterating this process can create a series that converges at arbitrary order.

We let Sn be the sum of derivative contributions of (2n+ 1)3 line-charge compos-
ites and then perform Richardson’s acceleration, as shown in Fig. 3.3 (b) . The relative
magnitudes of n and S(m)

n agree with the expectation that them-th order Richardson’s
method applied to the line-charge model can converge at the speed of n−m−2.

3.2.3.4 Algebraic compensation

All the methods mentioned above aim to accelerate the convergence of the summation
of a sequence. All kinds of screening charges are derived from physical settings, but
it may imply a more general series-acceleration algorithm from a mathematical point
of view.
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Chapter 3. Event-chain Monte Carlo for long-range interaction

In the screening charge model of line shape or kite shape, the terms resulted from
screening charges both take the form of the Coulomb potential 1/|r|, which can be
viewed as an indefinite integral of the summed function (here the target function is
∂x(1/|r|), and the integral is 1/|r| which we called line charge). We find that taking
derivatives of summed functions instead of integrals as compensating terms is capa-
ble of obtaining a series of faster convergence.

Assume that we hope to calculate
∑∞
p=1 f(p), and let F (x) =

∫
f(x) and f (n)(x) =

dnf(x)/dxn the nth order derivative. Their Taylor expansions are given by

f(x+a) =
∞∑
n=0

1
n!f

(n)(x)an,

F (x+a) =
∞∑
n=0

1
(n+ 1)!f

(n)(x)an+1,

f (m)(x+a) =
∞∑
n=m

1
(n−m)!f

(n)(x)an−m.

(3.2.31)

We expect that a combination of F (x± 1/2) and f (n)(x± 1/2) is able to approximate
f(x) to arbitrary order. First, with inspiration of the line-charge model we get

F (x−1/2) +f(x)−F (x+ 1/2) = O(f (2)(x)), (3.2.32)

with the assumption that f (n) decays faster for larger n, which is true for the Coulomb
interaction. Next, we let

T1(x) =F (x)− 1
24f

(1)(x),

T3(x) =F (x)− 1
24f

(1)(x) + 7
5760f

(3)(x),

T5(x) =F (x)− 1
24f

(1)(x) + 7
5760f

(3)(x)− 31
967680f

(5)(x),

(3.2.33)

then
T1(x−1/2) +f(x)−T1(x+ 1/2) = O(f (2)(x)),
T3(x−1/2) +f(x)−T3(x+ 1/2) = O(f (4)(x)),
T5(x−1/2) +f(x)−T5(x+ 1/2) = O(f (6)(x)).

(3.2.34)

Fig. 3.3 (a) verifies the faster convergence of algebraic constructs Tn in an application
of three-dimensional periodic Coulomb system. Similar to the line-charge method,
compensating terms Tn cancel for neighboring images. Only Tn(r12 + (n+x + êx)L)
and Tn(r12− (n−x + êx)L) survive. Although terms with higher-order derivatives of
1/|r| decay faster, it introduces more complexity in the computation of their deriva-
tives, which becomes the bottleneck of this algebraic approach. In fact, F (x) and
f (n)(x) at x+p/2 for p∈Z and p > 1 can also help eliminate slow decaying terms, and
∂yf and ∂zf are candidates for three-dimensional function too. A systematic investi-
gation of this method is still missing.
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3.2. Calculation of pairwise Coulomb interaction

3.2.4 Interpolation
Interpolation is a universal approximate method applicable to all sufficiently smooth
functions. It is also feasible for evaluating the Coulomb derivative of Eq. 3.2.8. It is
noteworthy that the Coulomb derivative with respect to x direction, contains an x/|r|3
singularity at the origin. Instead of interpolating q̃Clb we approximate the following
functions

q̃f,1(r12) = q̃Clb
|r12|3

x12
(3.2.35)

and
q̃f,2(r12) = q̃Clb−

x12
|r12|3

, (3.2.36)

where r12 ∈ [−L/2,L/2]3 is the separation of their nearest images. q̃f,2 has branch cuts
at the surfaces x = ±L/2 since x12 changes its sign when passing from ±L/2− ε to
±L/2 + ε. Nevertheless, the singularity at the origin disappears, and q̃f,1 and q̃f,2 are
both continuous for r12 ∈ [−L/2,L/2]3. Fig. 3.6 shows their values at six z-sections.

No evidence shows a substantial difference in the qualities of using q̃f,1 or q̃f,2,
so q̃f,1 is chosen in our event-driven implementation. We will not discuss various
interpolation methods but take first-order and third-order Lagrange polynomial in-
terpolations for testing purposes. They are also known as linear and cubic interpola-
tions, respectively, and the generalization to three dimensions is straightforward. We
compare their resulting errors in Fig. 3.7.

3.2.5 Separate-image method
As discussed in section 2.2.3, ECMC allows for different ways of grouping interacting
terms, which presents no physical effects but leads to distinct algorithmic complexi-
ties and Markov-chain dynamics. All the methods mentioned above yield converging
expressions for q̃Clb of Eq. 3.2.8, but all regard the pair energy as one factor in ECMC.
Terms of potential can be grouped into more than one factor. We will describe below
the example of splitting Eq. 3.2.12.

In the separate-image approach, we do not sum up Eq. 3.2.12 to obtain q̃Clb but
regard each image represented by n as an individual factor that is able to trigger
events with the rate

qClb,line (r = r12 +nL= (x,y,z))

=β
[
c1c2

{
x

|r|3 + 1
pL

[ 1
|r+pLêx/2)| −

1
|r−pLêx/2)|

]}]+

=β [q̃Clb,line (r)]+ .

(3.2.37)

In the naive time-driven approach, each time the active particle proposes a tiny move
ε, the program iterates over all images of the other particle (perhaps with a cutoff
for images), calculates qClb,line for each image and checks whether an event happens
within ε. Similarly to section 2.2.3, the displacement up to the next event in event-
driven description is chosen from the minimum of all displacements given by each
image factor. We verify imagewise factorization in Fig. 3.8 in a simple two-atom
system.
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Chapter 3. Event-chain Monte Carlo for long-range interaction

Figure 3.6: q̃f,1 (left column) and q̃f,2 (right column) at six z sections, with each row
one z value. They are for z = 0.0,0.1,0.2,0.3,0.4,0.5 from top row to bottom row.
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3.2. Calculation of pairwise Coulomb interaction

Figure 3.7: Distributions of |q̃Clb| values and errors of several methods. Blue: reference
values by Ewald’s sum with α = 3.45, real-space cutoff 2 and Fourier-space cutoff
6. Orange: Line-charge method with 53 images. Green: Kite-charge method with 53

images. Red: Trilinear interpolation using 1003 grids. Purple: Tricubic interpolation
using 1003 grids. Results are gained through direct sampling, and separation r12 are
drawn evenly from the simulation box.

In general, every formula calculating the pairwise Coulomb derivative has corre-
sponding “term-wise” factorization, and how it facilitates the simulation depends on
the difficulty of inverting each term, the efficiency of sampling remaining terms, and
on whether loop flows can be avoided.

The analysis in section 2.2.3.2 tells us that factorization is equivalent to introducing
extra probability flows which are particularly manifest in the separate-image method.
For the line-charge model, we need to demonstrate the following∑

n
qClb,line (r12 +nL)−

∑
n
qClb,line (r21 +nL)

=βq̃Clb(r12) = β
∑

n
q̃Clb,line(r12 +nL).

(3.2.38)

In fact, the left-hand side of this equation can be written as∑
n
qClb,line (r12 +nL)−

∑
−n

qClb,line (r21−nL)

=
∑

n
qClb,line (r12 +nL)−

∑
n
qClb,line (−r12−nL)

=β
∑

n

{
[q̃Clb,line(r12 +nL)]+− [q̃Clb,line(−r12−nL)]+

}
=β

∑
n

{
[q̃Clb,line(r12 +nL)]+− [−q̃Clb,line(r12 +nL)]+

}
=β

∑
n
q̃Clb,line(r12 +nL)

(3.2.39)
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Chapter 3. Event-chain Monte Carlo for long-range interaction

Figure 3.8: Cumulative distribution of |r12| of two-charge system with c1 = c2 = L =
1 and β = 2.0. We tested three algorithms: Metropolis-Hastings MC, ECMC with
merged images, ECMC with separate images. (From Ref [1].)

where we use that q̃Clb,line(−r) = −q̃Clb,line(r) which can be proved by Eq. 3.2.37. In
summary, we show that the imagewise factorization in the line-charge model does not
change the net flow, so it just amounts to an extra loop between the active charge and
the target. Consequently, flows between them are greater than those in the merged-
image approach. We show in Fig. 3.2 the comparison of magnitudes of flows of
merged-image and separate-image approaches.

3.3 ECMC cell-veto algorithm

3.3.1 Description

The cell-veto algorithm [95] is an ideal algorithm, under the framework of ECMC, to
sample the minimum displacement among dense interactions, i.e., any active particle
interacting with other O(N) particles. This algorithm builds upon two ideas: pair-
wise factorization and upper bounds for each of the factors. Consider for example a
continuous spin system where the coupling constants are non-zero for all pairs but
decay as J(i, j) = |rij |−p where rij is the minimum separation vector of site i and j.
Then we can bound from above the pair potential of each interaction by a constant,
and it is easy to sample fromN independent constant Poisson processes with different
intensities.

In particle system the algorithm takes more complex forms. First, we have to
divide the simulation box into cells, usually into square ones, denoted as C. For the
time being, each cell is allowed to have only one occupant (later we will consider the
exception that more than one object coincides in one cell). Then for each pair of cells
C and C ′, we must provide an upper bound for the event rate for any possible particle
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3.3. ECMC cell-veto algorithm

X X X

Figure 3.9: Cell-veto algorithm. (a) Division of simulation box into cells. (b) The
cell setup provides a piecewise-constant bounding potential for the two-body inter-
action, and there are three kinds of events related to it—unconfirmed physical event,
confirmed event, and cell-boundary event (labeled by A, B and C respectively). (From
Ref [1].)

pair with one within C and the other within C ′

qcell(C,C ′)≥ max
r1∈C,r2∈C′

q(r12 = r2−r1). (3.3.1)

Instead of all other particles rejecting the active particle’s move, now the triggering
objects can be regarded as individual cells, each enforcing a constant event rate. We
put all q(C,C ′) except C = C ′ into Walker’s table, to later sample C ′ with probability
proportional to q(C,C ′) in O(1) time. The detail of Walker’s method will be given in
section 3.3.3. And we define the total cell-veto event rate as

qtot(C) =
∑

C′∈C,C′ 6=C
qcell(C,C ′). (3.3.2)

We show the decomposition of cells in Fig. 3.9 (a) .
During the Markov chain, the program samples the displacement η for the event

rate qtot, and thereafter samples from Walker’s table which cell C ′ triggers the event.
Then it advances the active particle by η and inspects the cell C ′. If C ′ has no oc-
cupant, it is a fake event. If C ′ has an occupant, it calculates the instant separation
r12 after advancing the active particle by η, the instant real event rate q(r12), and the
confirmation rate rC = [q(r12)/qcell(C,C ′)]+. It confirms the event with probability rC ,
and once confirmed, the activity is passed to the occupant of C ′.

Usually the cell decomposition is sufficiently regular and symmetric, so that
qcell(C,C ′) = qcell(C ′−C) relies on the relative separation of C and C ′. Then only one
Walker’s table holding the relative cells is required. When we draw an element ∆C
from Walker’s table, we must retrieve the target cell through C ′ = C+ ∆C.

Cell-boundary events must be considered every time the active particle crosses
the boundary. The computer then changes the internal registration of the cell system.
Fig. 3.9 (b) shows three kinds of events related to cells. There are two kinds of ex-
ceptional events, one occurring if there is more than one particle in a cell, the other
coming from infinite or too large qcell(∆C) for some ∆C’s. First, we have to keep a
list of surplus particles whose cells have already been occupied, and the number of
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Chapter 3. Event-chain Monte Carlo for long-range interaction

the surplus should keep O(1); otherwise, iterating over the surplus list will consider-
ably lower the performance. Second, we have to exclude the exceptional cells from
Walker’s table and iterate them separately for each move of the active particle. The
full procedure can be described as follows

1. Divide the box into cells C, register particles into cells, and keep the surplus list.

2. Estimate qcell(∆C).

3. Put all moderate-valued qcell(∆C) into Walker’s table, and keep the list for ex-
ceptions.

4. During the Markov chain, for the current active particle, calculate displace-
ments {ηM} of other factors (those not related to cells).

5. Calculate displacements {ηe} by occupants of exceptional cells, and by surplus
particles.

6. Calculate the displacement ηb to the cell boundary.

7. Calculate the displacement ηc according to qtot.

8. Determine the minimum displacement η = min{ηc,ηb,{ηe},{ηM}} and advance
the active particle by η.

9. If η comes from {ηM} or {ηe}, use the normal procedure to determine the nature
of the event (true or fake) and the target particle.

10. If η is from ηb, change the information registered in the cell occupancy system.

11. If η is from ηc, then draw from Walker’s table an element ∆C, and calculate the
triggering cell C ′ = C+ ∆C. Then inspect the occupant of C ′:

• If C ′ is empty, the event is not confirmed.
• Let r12 be the instant separation between active particle and the particle in
C ′, calculate rC = q(r12)/qcell(∆C) and draw a random number r ∈ [0,1].
If r ≤ rC the event is confirmed, C ′’s occupant becomes active; otherwise,
the event is not confirmed.

12. Go back to step 4 and repeat.

The cell-veto algorithm is essentially a constant bounding potential for arbitrary
interactions within each cell. It is valid since qcell(C,C ′) is greater than any true event
rate inside. Some remarks for cell algorithms are

• The cell size must be carefully tuned. Too small cells lead to too big qtot and
hence slow the simulation, while big cells will cause more surplus particles.

• We do not need the exact maximum q(r12) in a cell to obtain qcell. A rough
estimator suffices, and one can multiply it by a constant. We will provide several
estimators in section 4.5.4.

• If an event is not confirmed or the event is boundary-crossing, we do not, in
principle, have to recalculate all proposed displacements from step 4. In this
case, only the unconfirmed event or the boundary event needs refreshing.
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3.3. ECMC cell-veto algorithm

3.3.2 Cell-veto event rate

We devise the cell algorithm so that the surplus list and the exceptional cells stay
constant with increasing system size. It is the cell-veto event rate that predominates
all triggered events. The cell-veto events consist of empty-cell events, unconfirmed
events due to overestimating qcell, unconfirmed events due to variance of q, and real
events.

qtot =ReRoverRvar q
tot
real. (3.3.3)

Re is the ratio of all cells over occupied cells. It is roughly∼ 10 for charged atoms and
the water system described in section 3.6.2. Rover means the qcell value returned by
the estimator divided by the right-hand side of Eq. 3.3.1. It depends on the estimator
and is usually slightly greater than 1. Rvar is the estimate of the variance between the
true q(r12) and max{q(r12)}. For faraway cells holding atoms it is close to one, while
for dipole systems there is a factor of 4.0 (see Eq. 3.5.13).

The qtot
real represents the confirmed event rate. For the example of Coulomb parti-

cles with identical charges, we have

qtot
real ∼

∫ L

r0
ρq(r)d3r∼

∫ L

r0

1
r2 r

2dr ∼ L∼N
1
3 . (3.3.4)

This means that the event rate for plasma simulation scales as N
1
3 at constant den-

sity. For O(N) particles to move constant distance each, it takes O(N
4
3 ) time. This

simplified analysis has actually captured the true complexity and we will give a more
detailed derivation in section 3.5.2.

3.3.3 Walker’s method

Given m items with probabilities π1, ...,πm with
∑m
i=1πi = 1, we wonder how to effi-

ciently draw items from the list so that their rates of occurrence correspond to {πi}.
One simple way is by binary search. First we draw a random number r ∈ (0,1],
and then find the minimum number k so that

∑k
i=1πi ≥ r, which can be done with

O(logN) time using binary search.
Walker’s algorithm provides an optimally efficient approach that can sample with

O(1) complexity, under the condition that the probabilities must be static and fixed
before the simulation. It works through elaborately disassembling πi, and rearrang-
ing them into m boxes with volume 1/m. Each of these holds exactly two pieces of
different origins (except for the end of the construct). The procedure can be described
as follows

1. Put all πi into two lists, one with πi > 1/m (“big” list) and the other with πi ≤
1/m (“small” list).

2. Take one item πs from the small list and one πb from the big list and register a
Walker item [(πs,s),(1/m−πs, b)]. A Walker item is a tuple of the form (proba-
bility, original index).
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Chapter 3. Event-chain Monte Carlo for long-range interaction

3. The non-registered big item now is πb− (1/m−πs). Put it back to the small or
big list according to its remaining value. Go back to step 2 until one of the lists
becomes empty.

4. Elements in the remaining list must be of probability 1/m. Put them all into
Walker’s table.

Afterm iterations of the steps above, Walker’s table hasm elements, each with a tuple
of two probability pieces. The two probabilities sum up to 1/m for each of the table’s
elements. Note that the number of remaining items in both lists equals the iterations
to be done. Once one of the lists is exhausted, the remaining list items must be all
with a value 1/m. Fig. 3.10 illustrates the rearrangement of the raw probabilities.
Once Walker’s table is ready, one can randomly draw an item [(πi, i),(1/m− πi, j)]

Figure 3.10: Schema of Walker’s algorithm. (a) Cell system. Gray cells are treated
as exceptions, while others are to be sampled through Walker’s method, but we take
five with color for simplicity. (b) Values of qcell with the horizontal line indicating
their average. (c) The resulting Walker’s table. (Adapted from Ref [95].)

from itsm elements, and return iwith probabilitymπi and j with probability 1−mπi.

3.4 Coulomb bounding potential
The Coulomb potential for periodic boundary conditions given by Eq. 3.2.6 is non-
invertible. The cell algorithm has already provided an effective bounding poten-
tial based on cells. For excluded cells and surplus particles, however, the Coulomb
derivative is not upper-bounded. Hence non-cell-based schemes are required to sam-
ple displacements.

We propose that U (b)
Clb(r12) = kbc1c2/|r12| serves as a good candidate for Coulomb

bounding potential, because they both have a 1/|r| at the origin. The constant kb has
to be big enough to bound the Coulomb derivative from above. According to section
3.2.4

kb ≥max
r
q̃f,1(r)≈ 1.5836. (3.4.1)

Rather than being smooth everywhere except at the origin, U (b)
Clb is discontinuous at

the surface x=±L/2, but has the same period L as UClb of Eq. 3.2.6.
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Figure 3.11: Dipole systems. (a) Water model with charged atoms. (b) A big neu-
tral molecule, with each atom charged. (c) Decomposition of the big molecule into
dipoles.

3.5 Dipole factors
Many realistic systems are neutral, mostly because they appear as dipoles or can be
treated as a combination of dipoles. Models of small molecules consisting of charged
atoms are often natural dipoles such as water; otherwise, for big molecules such
as charged polymers, we have ways to decompose them into two-atom dipoles, as
shown in Fig. 3.11.

As mentioned in section 3.3.2, the event rate of a three-dimensional Coulomb sys-
tem increases as N

1
3 . This scaling is a natural effect of the 1/r2 Coulomb interac-

tion. In this framework, the event rate can however be lowered by exploiting the
1/r4 dipole-dipole interaction. The answer is positive in the framework of ECMC.
By translating a dipole without rotating or changing its inner structure, the event
rate triggered by a faraway dipole can scale as 1/|r12|4, which alone cannot, however,
guarantee ergodicity. In this section, we will introduce the dipole factor for moving a
single active atom. This way can take advantage of the 1/r3 charge-dipole interaction
and finally reach an O(logN) total event rate.

3.5.1 Two-dipole case
We consider the ECMC event rate for two dipoles in an infinite space. Particles in
dipole one are 1 and 2, and those in the other are 3 and 4. Each particle carries the
same charge unit, by c1 = c3 = −c2 = −c4. We denote their centers as A and B, with
condition that rAB� r12 and rAB� d34, as shown in Fig. 3.12. Coulomb interactions
exist between 1-3, 1-4, 2-3, and 2-4.

If we treat the four pairs of Coulomb potentials as four factors referred to as atom
factors,M= {({i, j},Coulomb) i= 1,2;j = 3,4}, the event rate for active particle 1 is

q1,atom = βc2
([

∂

∂x1

1
|r13|

]+
+
[
− ∂

∂x1

1
|r14|

]+)
. (3.5.1)

Using r13 = r1B +rB3, we expansion

∂

∂x1

1
|r1B +rB3|

≈ (1 +rB3 ·∇B) ∂

∂x1

1
|r1B|

. (3.5.2)
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Figure 3.12: Factorization of Coulomb for two dipoles. (a) Atom factorization. There
are four factors, {1,3}, {1,4}, {2,3}, and {2,4}, but only {1,3} is shown. (b) Dipole factor-
ization, and there is only one dipole factor. (From Ref [1].)

and the same for 1/|r14|. By taking into account rB3 ·∇B ∼ rB3/L� 1, we find that
the leading term survives in Eq. 3.5.1 and results in

q1,atom ≈ βc2
([

∂

∂x1

1
|r1B|

]+
+
[
− ∂

∂x1

1
|r1B|

]+)

= βc2
∣∣∣∣ ∂∂x1

1
|r1B|

∣∣∣∣ ,
(3.5.3)

which decays as 1/|r1B|2 for large r1B .
We can also bundle four pairs of Coulomb interaction into one factor, M =

{({1,2,3,4},Coulomb)} which we call dipole factor. It sounds like an artificial four-
body Coulomb interaction with no distinct physical effect from pairwise ones, but in
ECMC when we calculate the event rate for active particle 1

q1,dipole = βc2
[
∂

∂x1

1
|r13|

− ∂

∂x1

1
|r14|

]+

≈ βc2
[
(r43 ·∇B) ∂

∂x1

1
|r1B|

]+
,

(3.5.4)

in which the first term of the right-hand side of Eq. 3.5.2 cancels but the second term
survives. Eq. 3.5.4 implies that event rate for the particle-dipole interaction scales as
1/|r1B|3 (one derivative lowers it by one order).

To further exploit the dipole-dipole interaction with its 1/r4 scaling, we have to
expand to second order. Take 1/|r13| for example,

∂

∂x1

1
|r1A+rAB +rB3|

≈ [1 +rB3 ·∇B +rA1 ·∇A+T2] ∂

∂xA

1
|rAB|

, (3.5.5)

where T2 is the second order expansion operator

T2 = 1
2 (rB3 ·∇B +r1A ·∇A)2 . (3.5.6)

The event rate caused by the move of particles 1 and 2 as a whole is

q12,dipole = βc2
[
∂

∂x1

1
|r13|

− ∂

∂x1

1
|r14|

− ∂

∂x2

1
|r23|

+ ∂

∂x2

1
|r24|

]+
. (3.5.7)
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By inserting Eq. 3.5.5 into the above equation, we find that the leading term and
the first order term of Eq. 3.5.5 both vanish, due to the relations rB3 = −rB4 and
rA1 =−rA2. The first surviving term is brought by T2

q12,dipole ≈ βc2

1
2

∑
i=1,2;j=3,4

(rAi ·∇A+rBj ·∇B) ∂

∂xA

1
|rAB|

+

= βc2
[1

2
[
(r12 ·∇A)2 + (r34 ·∇B)2

] ∂

∂xA

1
|rAB|

]+
.

(3.5.8)

It decays as 1/|rAB|4 for large rAB . As suggested before, when we translate the dipole
as a whole, the derivative with respect to this move takes the form of Eq. 3.5.7. And
we will show in section 3.5.3 that the inside-first lifting scheme that prioritizes the
atom 2 as the next active particle, will have probability as 1/|r|4 to pass its activity to
atoms in dipole B.

3.5.2 Homogeneous systems
In this section, we will analyze the total event rate of the Coulomb factor with atom
and dipole factorizations. We always assume that the system is homogeneous, and
refer to the density of charges or dipoles as ρ.

First, the tin-foil Coulomb potential of Eq. 3.2.6 takes the form

UC(r12) = c1c2
|r12|

f1

(r12
L

)
, (3.5.9)

where f1 is a smooth function defined in [−1/2,1/2]3. This is manifest by noting
that for r12→ γr12 and for L→ γL, we have UC→ UC/γ (which can be obtained by
α→ α/γ in Eq. 3.2.6). Let rs = r/L and we have

UC(rs) = c1c2
L

1
|rs|

f1(rs), (3.5.10)

q̃Clb(rs) = c1c2
L2

xsf1(rs)−|rs|2∂xsf1(rs)
|rs|3

= c1c2
L2

xs
|rs|3

f2(rs). (3.5.11)

Since ∂xsf1(rs)|xs=0 = 0, f2(rs) is another smooth function that we denote as q̃f,1 in
section 3.2.4.

For the case of atom factorization, assuming that all particles have charge c, the
total event rate for an active charge is

〈Qatom〉=
∫

[−L/2,L/2]3−R(ε)
ρ [q̃Clb(r)]+ d3r

=
∫

[−1/2,1/2]3−R(ε/L)
ρL3 [q̃Clb(rs)]+ d3rs

=
∫

[−1/2,1/2]3−R(ε/L)
ρc1c2L

[
xs
|rs|3

f2(rs)
]+

d3rs,

(3.5.12)
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where R(ε) is the sphere of radius ε centering around the origin. The integrand is
proportional to 1/|rs|2 while d3rs contributes |rs|2 around the origin as well. Thus the
integration is finite around rs = 0 and the final result is proportional toL. We conclude
that the event rate for atom factorization scales as N1/3 under periodic boundary
conditions.

As for dipole factorization, we use d · ∇q̃Clb to approximate the charge-dipole
event rate for a faraway dipole d. However, we have to average over dipole orienta-
tions. To this end, let v be an arbitrary vector and n a vector uniformly distributed on
R(1). Then

〈[n ·v]+〉n = |v|4π

∫ π

0
dθ
∫ 2π

0
dφsinθ [cosθ]+ = |v|4 , (3.5.13)

and so

〈Qdipole〉=
∫

[−L/2,L/2]3−R(ε)
ρ〈[d ·∇q̃Clb(rs)]+〉dd3rs

= |d|4 ρ|c1c2|
∫

[−1/2,1/2]3−R(ε/L)

∣∣∣∣∇s( xs
|rs|3

f2(rs)
)∣∣∣∣d3rs,

(3.5.14)

where ∇s is the gradient operator with respect to rs and ∇s = L∇. The integrand in
Eq. 3.5.14 is proportional to 1/|rs|3. Thus we have

〈Qdipole〉 ≈
|d|
4 |c1c2|

(
C− log ε

L

)
≈ |d|4 |c1c2| logL, as L→∞. (3.5.15)

Dipole factorization can reduce the event rate scaling to logL.
Likewise, we may calculate the total event rate with respect to dipole translation.

〈Qdipole−dipole〉=
∫

[−L/2,L/2]3−R(ε)
ρ〈[d2 ·∇(d1 ·∇q̃(r))]+〉d2d3r

= |d1||d2|
4 ρ

∫
[−L/2,L/2]3−R(ε)

|∇ · (nd1 ·∇q̃(r))|d3r

= |d1||d2|c1c2ρ

4L

∫
[−1/2,1/2]3−R(ε/L)

∣∣∣∣∇s(nd1 ·∇s)
(
xs
|rs|3

f2(rs)
)∣∣∣∣d3rs.

(3.5.16)
As the integrand scales as 1/|rs|4, we obtain

〈Qdipole−dipole〉 ∝
|d1||d2|c1c2ρ

4

(
ε−1− C

L

)
, (3.5.17)

which means that the total event rate is bounded from above and the difference to the
limit decays as 1/L.

3.5.3 Dipole lifting schemes
We introduce in section 2.2.2 that a lifting scheme is needed to select the next particle
to move in the presence of many-body interactions. The ratio lifting scheme [78] is
a universal way to distribute the probability flow in proportion to the magnitude of
derivatives for those decreasing energy. For dipoles, the ratio lifting scheme works as
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Figure 3.13: Lifting schemes for a dipole factor. (a) Two dipoles whose Coulomb
interactions are included in a dipole factor. It is assumed that ∂x1UM > 0, ∂x4UM > 0,
∂x2UM < 0 and ∂x3UM < 0. (b) Ratio lifting scheme. (c) Inside-first lifting scheme. The
outflow to activate atoms in the other dipoles is indicated by the mismatch of ∂x1UM
and |∂x4UM | that is proportional to 1/|r|4. (d) Outside-first lifting scheme. (From Ref
[1].)

indicated in Fig. 3.13 (b) and ensures the target distribution. Moreover, we propose in
the following two other lifting schemes, namely an “inside-first” lifting scheme and
an “outside-first” lifting one featuring dipole-dipole interaction.

We first classify and align the derivative bars, i.e., bars of length proportional to
absolute value of the corresponding derivatives, into a positive table and a negative
table. Those with positive derivatives are sorted in a positive table by their atom
indices, and those with negative derivatives are inserted into a negative table by order
of atom indices. Since the positive table’s length equals the negative table’s length,
any position in the positive table corresponds to one in the negative one, meaning that
we can establish a bijective map between the two tables. Then we draw a random
position within the active bar, which must be in the positive table, and search the
resulting point in the negative table. In this way, we find the target atom, as shown
in Fig. 3.13 (c) . For the outside-first scheme, we reverse the negative table at first (or
equivalently reverse the positive table), and do the same mapping to find the target
atom, as shown in Fig. 3.13 (d) .

Since we index atoms in an dipole by dipole order1, atoms of the same dipole will
be sorted to the same side of both tables. Hence the inside-first scheme prioritizes
other atoms in the same dipole to be the target atom. In contrast, the outside-first
scheme favors atoms from the other dipole, and it maximizes the flow going out of
the dipole. Furthermore, we find that outgoing flow, i.e., the inter-dipole lifting rate
in the inside-first scheme is exactly indicated by the mismatch between positive bars
and negative bars of one dipole (see Fig. 3.13 (c) ), whose magnitude is given by Eq.
3.5.8 in proportion to 1/|rAB|4. Eq. 3.5.17 tells us that the outgoing probability is
bounded from above no matter how large the system is.

The event rates and lifting rates are summarized in the Table. 3.5.3, for atom
factorization and dipole factorization with three proposed lifting schemes.

1Atom indices must be fixed a priori. Orders in both tables for one physical configuration are invari-
able throughout the Markov chain. One easy pitfall is that one may tend to place the dipole containing
the active atom always to the left, which proves to be wrong. One good practice is to index an atom by
a tuple of molecule and atom number (iM , iA), and sort with relation (i1, j1)≤ (i2, j2)⇔ i1 < i2 or(i1 =
i2 andj1 ≤ j2).
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scheme qintra qinter <Qintra > <Qinter >

atom factors 0 |r|−2 0 N
1
3

ratio lifting |r|−3 |r|−3 logN logN
dipole factors inside-first lifting |r|−3 |r|−4 logN B−C/N

1
3

outside-first lifting |r|−3 |r|−3 logN logN

Table 3.1: Pairwise Coulomb event rate scalings with respect to dipole separation, and
total Coulomb event rate scalings with respect to system size, for different factoriza-
tions and lifting schemes.

3.6 Numerical tests
We give two more simulations apart from Fig. 3.8 to verify our methods. One contains
two dipoles and the other simulates 32 water molecules.

3.6.1 Dipole system
In the dipole model, we introduce harmonic bonds connecting two atoms within a
dipole

Ubond(r12) = 1
2kb (|r12|− rb)2 (3.6.1)

and a short-range repulsive potential

Urep(r12) = k2

(
r0
|r12|

)6
(3.6.2)

with kb, k2, r0 and rb all positive. We make it decay fast enough that no periodicity
needs considering. With the indices of Fig. 3.13 (a) , harmonic potentials exist between
atom 1 and 2, and between 3 and 4. Moreover, we impose repulsive potential between
atom 1 and 4, 2 and 3. Thus the harmonic and repulsive factors are

{({1,2},bond),({3,4},bond),({1,4},rep),({2,3},rep)}. (3.6.3)

Note that we are using the notation introduced in section 2.2.2 that a factor is repre-
sented by (IM ,TM ) which are the index set and the type respectively. Two possible
factorizations of the Coulomb interaction are

Particle factorization :{({1,3},Coulomb),({1,4},Coulomb),
({2,3},Coulomb),({2,4},Coulomb)},

(3.6.4)

and

Dipole factorization :{({1,2,3,4},Coulomb)}. (3.6.5)

In Fig. 3.14, we simulate two dipoles using five methods: merged-image parti-
cle factorization, separate-image dipole factorization with inside-first lifting scheme,
merged-image dipole factorization with ratio, inside-first, and outside-first schemes.
All methods agree visibly in the distribution of |r13| and |r14|, and we will give more
accurate verifications in section 5.3.
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Figure 3.14: Cumulative distributions of |r13| and |r14| of two dipole simulation using
five approaches, with factor sets indicated by Eq. 3.6.3, Eq. 3.6.4 and Eq. 3.6.5. Simu-
lation box is periodic with L= 1, c1 =−c2 = c3 =−c4 = 1.0, kb = 400, k2 = 1.0, r0 = 0.1
and β = 1.0. (From Ref [1].)

3.6.2 SPC/Fw water model

The popular SPC/Fw [74] (simple point-charge flexible) water model treats each atom
as a point charge. Interactions include a harmonic force as in Eq. 3.6.1 with r0 =
1.012Å and kb = 1059.162kcalmol−1 Å

−2
, and a bending potential related to each H-

O-H angle

Ubending(r1,r2,r3) = 1
2ka (φ123−φ0)2 , (3.6.6)

where φ123 represents the angle formed by the vectors r21 and r23, with φ0 = 113.24◦
and ka = 75.90kcalmol−1 rad−2. A Lennard-Jones potential acts between any pair of
oxygens

ULJ(r12) = kLJ

[(
σ

|r12|

)12
−
(

σ

|r12|

)6
]

(3.6.7)

with kLJ = 0.62kcalmol−1 and σ = 3.165Å. The Lennard-Jones potential decays suf-
ficiently fast that no periodic boundary conditions needs to be considered for it. Fi-
nally, Coulomb potentials exist between any intermolecular atom pair, with −2cH =
cO =−0.82e where e is elementary charge.

The factor set without Coulomb factor between two SPC/Fw water molecules
labeled as in Fig. 3.15 (a) is

({1,2},bond), ({2,3},bond), ({4,5},bond), ({5,6},bond)
({1,2,3},bending), ({4,5,6},bending), ({2,5},LJ).

(3.6.8)
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Figure 3.15: SPC/Fw water model and corresponding factors. (a) Two H2O molecules
consisting of six point charges indexed from 1 to 6. (b) Examples of four types of fac-
tors: bond, bending, Lennard-Jones, and Coulomb (via dipole factorization). (From
Ref [1].)

Likewise, the particle and dipole Coulomb factor sets are2

Particle factorization :{({i, j},Coulomb) for i ∈ {1,2,3}, j ∈ {4,5,6}} (3.6.9)
Dipole factorization :{({1,2,3,4,5,6},Coulomb)}. (3.6.10)

Fig. 3.15b shows the dipole factorization for two H2O molecules.
First, we verified our methods by comparing the distribution of the oxygen-

oxygen separation |rOO| as shown in Fig. 3.16. In order to investigate the event
composition and justify the efficiency of dipole factors, we measure event rates for
increasing system sizes for all four interactions, as shown in Fig. 3.17. We conclude
that the Coulomb events are predominant, and that 〈QClb〉 is proportional to logNH2O
as NH2O → ∞, while the event numbers of the other interactions remain roughly
constant in varying system sizes since they are local. By extrapolation we expect that
〈QClb〉 ≈ 107Å−1 for 220 water molecules.

Furthermore, we select systems of NH2O = 64, 128 and 256 and focus on the dis-
tance between the active and the target particle at the moment when Coulomb events
happen. Different lifting schemes for dipole factorization are compared in Fig. 3.18.
All systems exhibit sharp peaks around 1Å with heights proportional to logNH2O,
complying with Table. 3.5.3. As expected, the inside-first scheme as shown in Fig. 3.18
(c) has a faster decay than others as 1/|r|2 (1/|r|4 in Eq. 3.5.8 multiplied by the
spherical measure |r|2), which numerically implies that the outflow of the inside-first
scheme scales as 1/|r|4 and the total outgoing probability is upper bounded.

Also, we test the influence of the chain length over the rotation speed of a sin-
gle water molecule. Our ECMC implementation features atomic motion along axes
in comparison with arbitrary directions, which greatly simplifies the code, while it
remains a question whether such a scheme can achieve as fast molecular rotation as
other methods.

We define the orientation of a molecule as its polarization

P = rOH1 +rOH2. (3.6.11)
2It is possible to decompose a H2O molecule into two dipoles each with moment 0.41erOH but we

believe that it does not make any significant difference from treating a water molecule as one dipole.
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Figure 3.16: Distribution of the oxygen-oxygen separation through the traditional
Monte Carlo and ECMC with a dipole factor and the inside-first lifting scheme. The
simulation is done for 32 molecules in a time-driven manner, at temperature 300K
and density 1g/cm3. (From Ref [1].)
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water molecules to 256. Measurements are done using dipole factorization and the
same parameters as in Fig. 3.16. (From Ref [1].)
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Figure 3.18: Distributions of |rat| at moments when events occur, of Coulomb dipole
factor through ratio, inside-first and outside-first lifting schemes. (From Ref [1].)

Taking a global one-angstrom displacement as a unit of time, we can define the auto-
correlation of P through the inner product

CP(t) = 〈P(s) ·P(s+ t)〉s. (3.6.12)

In equilibrium, CP(t) decays exponentially as CP(t)∼ e−t/λ with the autocorrelation
time λ. In Fig. 3.19, we test two direction switching schemes each with respect to a
range of chain length `. One scheme is the random choice of the next direction, and
the other is cyclic as xyzxyz.... It shows that minimal correlation is realized at around
`≈ 0.1Å, and cyclic the scheme has smaller λ than the random scheme. We generalize
the result to `= 0.2NH2O for N -molecule systems as used in section 6.3.2.
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[Å
]

random

cyclic

Figure 3.19: Autocorrelation length λ for the dipole moment in ECMC of a single
H2O molecule (fixed chain length `) for the cyclic sequence of event-chain directions
(xyzxyz...) and for random direction sequence. (From Ref [1].)
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Chapter 4

JeLLyFysh architecture

All current molecular-simulation packages employ molecular dynamics, for the rea-
son that Monte Carlo cannot produce time-dependent information and is slow in
treating Coulomb interactions. With our development of long-range ECMC in the-
ory, it becomes a promising candidate for long-range systems. Also, Monte Carlo
performs non-realistic moves for a fast exploration of configuration space, which is
helpful in various settings. For example, it may take long time for a molecular dy-
namics simulation to observe a certain chemical reaction, one can prepare multiple
independent initial states via Monte Carlo methods and then simulate them with
molecular dynamics. However, the slow diffusive bahavior of Monte Carlo methods
has impeded this approach.

On the other hand, since ECMC has shown its powerful advantages in simple
physics models, it is usually desirable to generalize to a more complicated system
up to macro-scale biochemical molecules. In pursuit of methodological improvement
and widespread usage, an efficient platform will considerably contribute. Reusable
codes will ease the burden of reinventing programs for all researchers and reduce the
risk of bugs that have long been undermining the reliability of simulation research.

Moreover, a robust application also serves as a scientific and methodological
benchmark. New features of ECMC or comparison between methods will benefit
from an ECMC application with excellent stability. Adaption to diverse chemical
and biological models cannot be done by individuals but the entire society of rele-
vant fields. Modern scientific software such as LAMMPS [14], GROMACS [97], and
AMBER [98] has spawned their communities, to which thousands of worldwide de-
velopers make contributions. Taking them as our model, we developed JELLYFYSH

(JF), an ECMC simulation application for all-atom systems, in hopes that JF can one
day become useful in routine applications.

We are aware of many kinds of functionalities and desirable simulation environ-
ments in the long term. Apart from the advanced algorithms, many aspects are crucial
to an application’s success, such as parallelization, GPU support, data visualization,
and extendability to non-ECMC methods(quantum, replica exchange, etc.). We leave
these possibilities open for the future but lay the foundation of JF.

When JF-V1.0 was released [2] in August 2019, it was able to run particle sys-
tems consisting of atoms or dipoles, with short-range potentials and the long-range
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Coulomb potential, and supported by cell-veto algorithms and other bounding po-
tentials. We implemented its structure and simple applications through about 20,000
lines of python code, which was believed to be the best language for architecture and
further extension. Modules are expected to speed up by replacing them with C/C++.

JF-V1.0 has included all the state-of-the-art methods in chapter 2 and chapter 3,
so it is intrinsically event-driven. All physical collisions and operations like sam-
pling, direction switching, and even the start and the end of the program, are treated
as events. The program simulates in a manner of event flow processing, which we
believe is the most compatible way to incorporate future developments.

JF is available on GitHub (repository https://github.com/jellyfysh/
JeLLyFysh) with all source code open under the license GNU GPLv3.

4.1 Issues of application development
The JF application is more than a program to generate data shown in the previous
chapters. Not only is it able to realize more functionalities in a single framework,
but it also has to consider the possibility of user-customized modules in various con-
texts. Specifically, we list the considerations of scientific application in the following,
though none of them is independent.

1. Structure. In order to incorporate multiple mandatory or optional functioning
modules, a highly efficient structure [99] is required in analogy to a process-
ing line. Different functioning parts must be written in separate modules, and
we realized it for JF by different python packages. Modules to store the current
configuration, distribute events, calculate event times, select the next event, and
output something, all have to have their own relatively self-contained packages.
In JF we adopt the “mediator” design pattern (see [99], chapter 5) to communi-
cate data between modules.

2. Reusability. Any written code is supposed to function for the long term. To
achieve this goal, one must make up a standard of code and has a mechanism to
regulate extensions. In JF each package contains an abstract class that explicitly
defines all mandatory interfaces for any implementation. Once a module is
completed, a corresponding unittest must be provided so that errors are easily
detected in future modifications.

3. Extendability. As mentioned above, we have only implemented a couple of
realistic simulation examples and leave its vast potential for the future. Object-
oriented programming languages are capable of meeting this requirement, and
python is a modern object-oriented language. The majority of the modules in
JF are coded as python classes. Future developers can extend any package by
adding classes inheriting from an abstract class. Furthermore, users are allowed
to create and customize the used set of packages by specifying configuration
files. On the other hand, a simpler principle implies, in general, more compati-
bility. We treat all kinds of operations as events so that they can be realized by
corresponding event handlers.
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4. Readability. For future developers and contributors from outside, it will be ben-
eficial to facilitate their involvement. Understanding several tens of thousands
of lines is not easy. The aforementioned structure helps to simplify tedious spec-
ifications. We also enforce strict python coding conventions, including the nam-
ing of classes, modules, and variables. Also, docstrings are written for every
function of every module of JF-V1.0 as an essential element of documentation.

5. Ecosystem. It is a big topic related to not only every aspect of the application
itself but the way we manage it. One must maintain a good ecosystem for an ap-
plication in order to attract more users and developers. All the aforementioned
considerations are essential to a thriving ecosystem. Apart from them, we re-
lease JF on GitHub with source code open, and we will follow the working flow
of GitHub to incorporate external contributions. We are aware that version con-
trol is crucial as well, though version 1.0 has only been released so far. License,
code of conduct, and several quick manuals are provided in the main directory
of the application.

4.2 Features of JELLYFYSH-V1.0
In JF-V1.0, we realized the modules that accomplish the working structure, provide
basic settings, calculate basic events, and implement the long-range ECMC algo-
rithms. The mediator pattern and the factory facility are expected to live for all ver-
sions. We designed a hierarchical representation of big molecular objects, and all
current modules must respect such a protocol. As for the functioning parts, we have
activators based on factor map and cells, event handlers that realize physical events
and pseudo-events, potentials for the SPC/Fw model, and a heap scheduler. To sup-
port the state-of-the-art cell-veto method, the cell facility, the cell occupancy and cor-
responding event handlers are also provided. Inside the project, there are many other
helping modules that we do not list here.

We hope to realize the following features in the future.

1. Parallelization. This will be done by allowing multiple active particles.

2. Multiprocessing support, to simultaneously calculate times for several candi-
date events.

3. Fast unconfirmed event processing. JF-V1.0 treats unconfirmed events as nor-
mal events that trash and recreate almost all other events. In fact, unconfirmed
events can leave other events intact, which will significantly reduce the calcula-
tion burden.

4. Smart trashing and recreating schemes. For now, users must set up the lists for
which events are trashed and which events are recreated.

5. Speedup via more efficient language like C/C++.

6. More packages of potentials and event handlers to adapt to various particle
systems.
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Figure 4.1: JF event flow. Events occurs at moments Ea, Eb and Ec selected as soonest
of candidates. At each event time, some events are trashed while some are created. It
refers to specific factors ({a1,a2, ...,a5}, {b1, b2, ..., b6}) in order to generate new candi-
date events with tags t_1,..., t_5. (From Ref [2].)

4.3 Basic concepts

4.3.1 Event flow
ECMC advances the configuration in a fixed direction and deflects it with lifting
events. We devise JF as a processing line running with all kinds of events and treat
auxiliary operations such as sampling in the same manner as treating physical colli-
sions, except that no lifting move occurs at the sampling moment. We describe JF’s
event flow as Fig. 4.1.

Besides physical events, those operational events are called pseudo-events. They
do not change the direction of configuration advances, as shown in Fig. 4.2. More-
over, we associate each pseudo-event with a triggering pseudo-factor. All events have
event times, indicating when they occur. States restricted to its factor or pseudo-
factor, before and after the event time, are called the event’s in-state and out-state.
Also, an event has a tag indicating its nature. The program must select from candi-
date events the soonest one and calculates its resulting operation. Then, it removes
and recreates some events according to a specific scheme. We will describe this pro-
cedure in section 4.4.1.

4.3.2 Units
We denote particle objects simulated in JF as point masses. Each point mass has a
position, a velocity, an identifier, charges, and a time stamp as properties. Thus we
prepare Unit class with those five attributes. Later, when introducing the tree struc-
ture, the unit is also used to represent artificial center-of-mass objects (which are not
point masses) in the tree’s non-leaf node. Units are universal in JF acting as informa-
tion carriers shipped among modules; thus, most functioning parts have to extract,
process, and create units.
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Figure 4.2: Example of JF events. (a) Event of a three-body factor. Lifting variables
change when the event happens. (b) Cell-boundary crossing as a pseudo-event, in
which only the internal state has to change. (From Ref [2].)

A similar term in JF especially in the tree state handler (see section 4.3.3) is called
particle that has only position and charge. As the number of active point masses
is much smaller than the total number of point masses, the tree state handler stores
them in separate modules. Hence the position and charge of a unit independent of its
lifting variable will be stored as a Particle instance.

Given the information of a unit with position s, velocity v and time stamp t0, its
position can be inferred by

s(t) =
{

s, if v = None;
s+v(t− t0), if v 6= None.

(4.3.1)

Eq. 4.3.1 is only sensible in an event-driven approach. The effect of an event usu-
ally includes time-slicing involved units, i.e., to update the position and time stamps
up to the event time. Units that do not belong to the triggering factor are allowed
to have time stamps lagging behind the most recent event. For example, sampling
events and end-of-chain events have to time-slice all active units to the event time.
The cell-boundary event, however, time-slices only the active unit. We have to note
that whether to time-slice and which units to be time-sliced become more complicated
in the presence of the tree structure in order to respect consistency.

4.3.3 Global state and internal state
The global state stands for the configuration of the point masses and related barycen-
ters. JF-V1.0 treats configurations via a tree structure of connected nodes, with leaf
nodes hosting a real point mass and upper nodes holding artificial objects that rep-
resent barycenters of their direct child nodes. A barycenter node together with all
its child nodes, is treated as a composite object in JF-V1.0. Thus, a composite object
has all information appearing in point masses, including position, velocity, identifier,
charge, and time stamp. The position and velocity of a non-leaf node unit are calcu-
lated simply via the average of units of its direct children, and the program keeps in
the state handler (see section 4.4.4) a list of top nodes in order to iterate over them.
Fig. 4.3 (a) and (b) show an example of a tree representation of several units and their
velocities.

The identifier adopted in JF-V1.0 comes from its order in the tree. The state han-
dler numbers root nodes, and nodes number their child nodes. The identifier of a unit
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Figure 4.3: Global state and the internal state of JF. (a) Point masses with composite
objects. Two composite objects are for the barycenter of molecular components, and
a top composite object represents the whole molecule. (b) The tree structure for the
molecule in (a). The top node and children of all nodes are numbered so that iden-
tifiers can be handily acquired by listing numbers along a path. Solid arrows reflect
velocities in (a) while hollow arrows are the induced velocities. (c) Cell occupancies
as examples of internal states. JF can simultaneously be equipped with multiple cell
occupancies. Here, one is for point mass units, and the other is for composite object
units. (From Ref [2].)

is the tuple with all the numbers along the path towards it.

An active point mass moves by itself, inducing its parent unit to move, and all
its ancestors gain activities. On the other hand, a composite object unit can move at
velocity v as well and makes all descendants within the subtree move at v. The latter
case is realistic, and can be molecule motion as a whole. Thus we introduce the term
of an independent active unit and an induced active unit. The unit for an original
moving point mass and composite object unit for molecule moving as a whole are
regarded independent, while their ancestors and children acquiring velocity belong
to induced active units. Fig. 4.3 (a) and (b) provide examples of independent active
point masses and composite objects, as well as induced active units.

Apart from the global state, JF defines an internal state to maintain useful infor-
mation concerning the global state. For example, cell occupancy makes use of a cell
setup, and updates unit-cell correspondence according to the current global state, as
shown in Fig. 4.3 (c) . Thus the internal state is partial information of the global state.
JF keeps internal states in the activator (see section 4.4.3), and there can be multiple
internal states created for one simulation.

An internal state has two mandatory methods. update is called during mediator
step 2, and it uses the current active state to update the internal state. For those
internal state changes without lifting moves, we must regard them as extra events.
Internal states can be accessed with indices, so its __getitem__method is required.
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Figure 4.4: JF-V1.0 architecture and the main loop inside the mediator. Boxes indi-
cate modules of JF, each contained in a python package. Arrows imply directional
data communication (requests sent from the mediator are not deemed as data). Red
dashed boxes represent processes of our multiprocessing trial. Steps inside the me-
diator describe the main loop’s procedure, with each iteration being a leg in Fig. 4.1.
(From Ref [2].)

4.4 Essential modules
Simulating particle systems demands the coordination of many functions. JF dis-
tributes them in various modules, and in JF-V1.0, it has a mediator, an activator, a
state handler, event handlers, a scheduler, and an input-output (IO) handler. We de-
pict their communication in Fig. 4.4 featuring a clear mediator design pattern whose
topology takes a star shape. It means that the mediator stands in the center and con-
nects all the rest while data exchanges between peripheral modules are forbidden.

4.4.1 Mediator
The mediator is the hub of all activities of JF. It provides a Mediator class mandating
the run and post_run methods that will be called by the executing script. The main
loop of event-driven ECMC is hosted in the runmethod. And also, the mediator is at-
tached with event-handler-specific methods to get arguments for an event’s out-state
(methods with name get_argument + event_handler_name) and to do any operations
at the event moment (methods with name mediate + event_handler_name).

We implemented the SingleProcessMediator and the MultiProcessMediator.
The main loop of the SingleProcessMediator consists of nine steps:

1. The mediator requests the state handler for an active global state, whose format
can vary according to different state handlers.

2. It sends the active global state to the activator. The activator returns a list of
factors (indicated by event handlers in JF-V1.0) and involved unit identifiers.

3. It fetches the in-state from the state handler. Identifiers returned by the activator
are replaced by corresponding units.
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4. The mediator calls the method send_event_time of event handlers obtained in
step 2 with the in-state arguments acquired in step 3. Then it pushes all returned
candidate event times into the scheduler.

5. It asks the scheduler which event handler produced the nearest event.

6. The mediator calls the send_out_state method of the event handler that pro-
duced the smallest event time, optionally with arguments obtained by the me-
diator’s event-handler-specific get_argument method that may inquire the ac-
tivator.

7. The out-state is sent and recorded in the state handler.

8. The mediator asks the activator for event handlers to be stopped and removes
them from the scheduler.

9. The mediator requests the entire global state from the state handler and sends it
to the IO handler for measurement. This step is only executed for event handlers
associated with the output handler.

This loop continues until an EndOfRun exception occurs. The post_run method is
invoked afterwards.

The MultiProcessMediatormakes use of python’s multiprocessing package. It
distributes the job of each event handler to one long-lived process and designates
a two-way pipe (multiprocessing.Pipe object) to each event handler. The mediator
and other modules are executed through another process, indicated by the red dashed
line in Fig. 4.4. Only the mediator needs to be changed when switching from single
processing to multiprocessing, and all event handlers are automatically modified in
two ways. First, a run_in_process method is added to loop over the four states
shown in Fig. 4.5; second, the send_event_time and send_out_state methods are
decorated so that the only argument is the pipe connecting to the event handler, and
that the in-state, the resulting out-state, and other arguments are transferred via pipes.

We split an event calculation into an event time and the following out-state. An
event-handler process may stay in one of the four states during the Markov chain:
idle, event_time_started, suspended and out_state_started. The event-handler
process takes actions under the control of a multi-process mediator through shared
multiprocessing.Event objects. A start event and a continuing event (this event is
not the event in ECMC) are set up for an event-handler process to undergo stages of
event computation in order. In addition, our multi-process mediator takes into con-
sideration the available number of CPU cores. If Nc cores are designated for simula-
tion, Nc− 1 are allowed to run at any moment in order to avoid task-switching cost,
which we realize through a multiprocessing.Semaphore instance. During stage 4
that requests candidate event times, the mediator prioritizes the calculation of event
times of all active event handlers while suspending out-state calculations. When a
CPU core is idle, one of the event handlers’ out_state_started events is released,
and the CPU core can go on with its out-state calculation. This coordinating scheme
can, in principle, optimize the usage of CPU resources while it suffers from a compu-
tational bottleneck in practice.
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Figure 4.5: Stages of event handlers. Two mandatory methods send_event_time and
send_out_state are called by the mediator during the stage of requesting candidate
event times and requesting the out-state. idle and suspended stages are for mul-
tiprocessing, and actually they are labels in the multi-process mediator. (From Ref
[2].)

4.4.2 Event handler

Since all physical lifting moves, artificial direction switching, and operational state
recording are treated as events in JF, event handlers play a versatile role throughout
JF’s event flow.

The abstract class EventHandlermandates send_event_time and send_out_state
methods. An in-state usually accompanies the former. As their names suggest,

they return event times and out-states respectively, while out-states may not al-
ways be requested unless the event handler is chosen as the nearest event. Once
send_event_time is called, the event handler calculates the event time, stores tem-
porarily the state, and waits for the request of out-state. The mediator is responsible
for making the proper invoking order, e.g., to avoid calling send_out_state consec-
utively, as shown in Fig. 4.5.

Some event handlers have no in-state such as the sampling event handler. How-
ever, some need more information to produce the out-state. For example, an end-of-
chain event handler requires the current state at the event time, so the mediator sends
it as an argument of out-state. A cell-veto event handler also requests the occupant
information of the target cell by accompanying the event time with a cell index. It is
important to note that all state updates are computed in event handlers. In particu-
lar, event handlers are responsible for maintaining the consistency of the hierarchical
state representation.

Most event handlers do calculations in company with helping modules. Fac-
tor event handlers need to connect to potentials where physics is contained, and
potential becomes a JF package that will be detailed in section 4.5.4. Customized
event handlers and potentials reflect the variety of particle simulation reality.

4.4.3 Activator

Fig. 4.6 depicts the working of JF’s activator. It does three jobs: 1. The method
get_event_handlers_to_run searches relevant factors for given active units; 2. The
method get_trashable_events provides the list of event handlers to be removed af-
ter an event; 3. It maintains internal states, and returns its information via the method
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Figure 4.6: Inner state of tag activator and its interaction with the mediator. Tag acti-
vator maintains one or more internal states, a list of taggers and a event handler pool.
It communicates with the mediator through three interface functions. Arguments and
return values of the functions are shown above and below the method names respec-
tively. (From Ref [2].)

get_info_internal_state. Here in JF-V1.0, a relevant factor is represented by a list
of unit identifiers plus an event handler instance. To this end, the activator requires
the proceeding event handler. Even though complete information on active units is
sent to the activator, it keeps partial information of the global state in internal states.

In JF-V1.0 we implemented the class TagActivatorwhich categorizes events with
tags. Events with the same tag are deemed as the same nature, and they will be
created or trashed indiscriminately. For example, while simulating Coulomb atoms
via cell-based bounding potential, sampling, end-of-chain, cell-bounded Coulomb,
excluded cell, and surplus particles appear as tags in order to process events in a sim-
plified way. JF-V1.0 creates each type of event through Tagger instances, depending
on how to find involved units for the event type. For instance, the NoInStateTagger
class produces candidate events without seeking any in-state; a FactorTypeMapIn-
StateTagger instance is equipped with a factor map specifying interactions between
atoms according to their identifiers; cell-related taggers have the responsibility to in-
voke the update of the cell system, a typical internal state, and acquires the units of
in-state by inquiring it.

Besides numerous ways to obtain in-state identifiers, taggers are specified with a
multi-dispatching table detailed in the configuration file in JF-V1.0. For each tagger,
a trashable list and a creating list of events are provided, then once an event occurs,
the activator looks through the trashable list and returns all running event handlers
with tags in it (that is why the proceeding event handler is necessary). It creates new
candidate events in the same way. Another two lists are activating and deactivating
lists which are exclusively used for root-mode motion in JF-V1.0. They allow events to
deactivate and re-activate certain taggers, which provides a convenient realization of
switching between atom motion and dipole translation. Also, the activator manages
the event handler pool, and users must specify the number of event handler instances
in JF-V1.0.
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Figure 4.7: Fig:Inner mechanism of tree state handler, with an example of
extract_from_global_state. The whole state is stored separately as physical state
and lifting state. When the method is called with an argument (0, 3, 0), a new
branch is created with new unit instances attached on it and it is passed back to the
mediator. (From Ref [2].)

4.4.4 State handler

A StateHandler instance not only stores the global state, namely the physical con-
figuration plus lifting variables, but also rules the protocol of communication among
the entire JF. The other modules must act in accordance with the output format of the
specified state handler, and event handler return out-states that are acceptable by the
state handler. In JF-V1.0, we provide TreeStateHandler class whose output values
are tree branches, so event handlers, activators, and IO handlers of JF-V1.0 must work
with the format of tree branches.

Positions and charges of units are taken as physical variables, and they are stored
in an instance of the PhysicalState. The velocity and the time stamp are kept in a
LiftingState instance. As the number of active units is limited, the storing strate-
gies for them are usually different. For the TreeStateHandler that implements the
tree structure described in section 4.3.3, it uses Node objects to construct trees in its
TreePhysicalState, whereas it adopts a simple python dictionary to store non-zero
elements of the lifting state. The instance of TreePhysicalState keeps the list of root
nodes of composite objects, and each node has links to all direct descendants and
parent node. Node information, instances of the Particle class, is kept in the value
attribute. An example of the internal storage of the tree state handler is shown in Fig.
4.7. Both the lifting state and the physical state provide basic methods like set and
get to update and output information.

The state handler has four abstract methods in total. extract_from_global_state
returns the desired state for a given identifier. For the global tree state, we rule that

the returned value is the “branch” of the corresponding node with all ancestors and
descendants, and with units attached to each node. Fig. 4.7 illustrates the interface
of this method. Another method insert_into_global_state is used to commit
events’ resulting out-state. The tree state handler accepts a sequence of root nodes
of branches, then makes corresponding changes inside. During mediator step 1,
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the method extract_active_global_state is called, in which information of active
units (for tree state handler, it becomes branches of independent active units) are
returned and passed to the activator. Finally, the extract_global_state method
outputs the entire global state for the purpose of measurement that output handlers
will perform.

It is important to note that the tree state handler reconstructs branches to send to
the outside, using newly instantiated nodes and units. This convention means that
outside modules have no access to the state handler’s inner storage, and that is why
the name cnode appears elsewhere in JF.

4.4.5 Scheduler

JF’s scheduler has relatively simple functionality compared to other modules. The
abstract class Scheduler has three methods. push_event is used to input an event
handler together with its event time. get_succeeding_event returns the event han-
dler instance with the smallest event time within the scheduler, and trash_event
removes a certain event handler from it.

A heap structure is capable of treating all aforementioned requests with complex-
ity O(logNE), whereNE is the current number of event handlers inside the scheduler.
In JF-V1.0 we implemented the HeapScheduler class via the python package heapq.
Actually, we found later that a naive list is faster since the number of candidate events
is usually very small, while the ListScheduler class does not appear in JF-V1.0.

4.4.6 Input-output handler

The input-output handler is equipped with an input handler and an arbitrary number
of output handlers. Each run of JF can specify one input handler and multiple output
handlers. The class InputOutputHandler connects the mediator directly, and has read
, write and post_run methods to read from the input handler, write to a specific
output handler, and close output handlers.

The input handler is called only once at the beginning of the Markov chain, in
order to prepare the initial configurations. Any implementation of an input handler
needs to specify its read function. In JF-V1.0, we provide two input handlers. The
RandomInputHandler class randomly generates an initial state, and the PdbInput-
Handler reads the state from a .pdb (protein data bank) file. This class depends on
the MDAnalysis package.

Output handlers are diverse, including measurement, state recording, memory
dumping, etc. They only have to implement the write method to generate output
data and post_run method to close files. We provided in JF-V1.0 separation output
handlers calculating atom separations for a configuration, the pdb output handler to
write to .pdb file, one output handler to calculate H2O molecule bond angle and bond
length, and one to dump the entire program state via the dill package.

All input and output handlers work with tree representation. The input handler
returns a list of trees with nodes attached with Particle objects. Output handlers get
the global state organized as trees and have to resolve them.
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4.5 Important tools

Several modules of JF-V1.0 are not crucial to its architecture, but are essential tech-
niques of large-scale ECMC simulation or are necessary to provide modules with
required information. The setting package and the Initializer class are indis-
pensable to run any application. The Cell, CellOccupancy, Estimator, Potential
and LiftingScheme classes are closely related to the ECMC algorithm, so we explain
here briefly their implementation.

4.5.1 Globally used modules

The information of the simulated system, e.g., the temperature and the box side
length, is kept in an independent package called setting, and actually, it leads an-
other configuration tree (see section 5.2) other than the main architecture represented
by the mediator.

The basic setting parameters include β, dimension, number of root nodes and
so on (see file setting/__init__.py). They all live in the namespace of setting.
A specific setting may have its own variables (e.g., the side length of a cubic set-
ting), but it must give values of those in basic parameters. We implemented in JF-
V1.0 the HypercuboidSetting and the HypercubicSetting, each with an additional
system_length variable. Basic parameters have their copies under those specific set-
tings, too. Also, by defining hypercuboid setting as a similar setting of the hypercubic
one, the program can automatically determine values for the hypercuboid one. For
example, once we set beta to be β and system_length to be L in hypercubic setting, β
will also exist as setting.beta and setting.hypercuboid_setting.beta, and Lwill
also be in setting. hypercuboid_setting.system_lengths as a tuple ofD identical
values.

We place functions related to position and separation calculations in implemen-
tation of the PeriodicBoundaries class, whose instance is an attribute of both basic
setting module and specific setting, too. For example, method separation_vector
that maps an arbitrary vector onto its nearest image, may be in setting.hypercubic_
setting.periodic_boundaries and setting.periodic_boundaries.

Besides, some other commonly used functions, such as vector operations, are in
base directory.

4.5.2 Cells and cell occupancy

The cell system is important for fast accessing the active particle’s interacting pairs,
and is also basic to Walk’s method to sample the displacement for long-range systems
(see section 3.3). JF-V1.0 regards cell occupancy as an internal state and takes cells
as an attribute of cell occupancy. As exemplified by Fig. 4.3 (c) , a JF simulation is
allowed to have more than one cell and cell occupancy instance.
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Figure 4.8: Methods of cell system. (a) excluded_cells, successor, cell_min and
cell_max for the cell labeled with c. Horizontal and vertical directions are indexed
as 0 and 1. These methods are required by Cells abstract class. (b) translate,
relative_cell and zero_cell of PeriodicCells class. Two blue-striped cells are
identical due to periodic boundary conditions. (From Ref [2].)

4.5.2.1 Cells

A cell instance defines the geometry of the cell division, including not only the posi-
tion and the shape of each cell but their translational relation. There are six abstract
methods within the Cells class. yield_cells is used to iterate all cells. Given one
cell, excluded_cells returns the set of cells that have to be treated exceptionally1.
The position_to_cell method, as the name suggests, returns the cell identifier for
a given point. This method has been unambiguously implemented that any com-
puter representation of float-number coordinates within the simulation box range is
mapped to one cell2. cell_min and cell_max give points with minimum and maxi-
mum coordinates respectively within the cell, though it applies to only hypercuboid
cells3. Finally, the successor method gives an adjacent cell in a certain direction.
Fig. 4.8 (a) shows an example of the cell methods.

In addition to Cells, child class PeriodicCell mandates methods translate,
relative_cell and zero_cell. zero_cell is the exact origin of the cell system used
for other methods, though JF-V1.0 applications never call it. Method translate cal-
culates the cell obtained by translating one cell by another cell’s vector, which is espe-
cially useful in the cell-veto algorithm. Likewise, relative_cell returns the relative
vector of cells a and b, which can also be expressed as a cell. The aforementioned
methods make sense only when the system exhibits periodicity, and an example is
shown in Fig. 4.8 (b) . A typical implementation of periodic cells is cuboid cells with
homogeneous division, realized in CuboidPeriodicCells.

1Exceptional cells depend in principle on the potential, while in JF-V1.0 users have to set up in con-
figuration files how many exceptional layers are around the current cell.

2It is not like a continuous real number. Two adjacent float numbers always have a tiny gap due to
finite-bit representation.

3Strictly speaking, they return finite-bit floats. Otherwise, the maximum or minimum may not exist
in real number set that is not closed.
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Figure 4.9: Cell occupancy classifies the global state into cell-based particles, surplus
particles, and active units. (From Ref [2].)

4.5.2.2 Cell occupancy

JF cell occupancy comprises occupants, surplus units, and variables for active units
and cells, as shown in Fig. 4.9. Information on the current active units is passed
from the state handler via the mediator to the activator. The activator analyzes active
unit information plus the proceeding event in order to update the internal states.
The change of internal state leads to additional pseudo-events such as cell-boundary
crossing.

The abstract class CellOccupancy keeps the cell occupancy information with the
yield_surplus and yield_active_cells methods, and the cells and cell_level
properties. Property cells returns the underlying Cells instance, and cell_level
gives which level of units are taken as occupants. We implemented SingleActive-
CellOccupancy in which one or zero active unit is present. It can optionally take
into account a charge value specified during instantiation, so that only units of non-
zero charge are registered as occupants. It keeps the occupants in a list mapping cell
indices onto occupants or None, and surplus units are stored in a dictionary mapping
cells onto a list of surplus units.

4.5.3 Initializer

The JF application starts with a factory (see section 5.2) to create all necessary in-
stances according to the customized configuration file. The mediator’s run method
leads the main running body. Between instantiation and simulation, some modules
need to be initialized because we find that several initializing operations must be done
after all instances are well prepared. For example, an input handler has to read in the
initial physical configuration, and install it within the state handler and the activator.
Also, a cell-veto event handler requires charge information of particles in order to set
up the cell-veto event rate.

We make JF perform those operations through the initializemethod of required
classes, and these classes must inherit from the Initializer class (thus multiple in-
heritances must apply). Instances of Initializerwill freeze all their public methods
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right after instantiation, but thaw them once the initialize method is called4. Al-
though the purpose of initialization is straightforward, JF-V1.0 undergoes an obscure
procedure to call all required initializemethods5. Hence it is not users’ business to
customize initializers, but it is for developers.

4.5.4 Potentials, estimator
We place physical potentials in a separate directory and have two abstract classes
Potential and InvertiblePotential. All potentials must implement derivatives,
and an invertible potential has to, in addition, provide a displacement for certain
energy change. We designed them in a straightforward style. derivative takes one
or more separation vectors and a direction of motion, and displacement requires
potential change in addition. Users are encouraged to create any potential that is
needed for simulation.

The estimator is used to obtain an upper bound and a lower bound within a hy-
percuboid area of given potential. This estimation can be achieved by taking evenly
or randomly a large number of points inside the region. For point-point interaction,
we implemented the BoundaryPointEstimator and the InnerPointEstimatorwhich
draw points evenly from the surfaces and from the entire hypercuboid respectively.
For point-dipole interaction, two-point potentials are only provided, so the estimator
must know the typical dipole moment and take all possible orientations into account.
The DipoleMonteCarloEstimator samples a large number of dipole positions and
orientations randomly, then takes their maximum; The DipoleInnerPointEstimator
draws sD points from a D-dimensional hypercuboid with s points per dimension,
aligns an imaginary dipole along the direction of the potential gradient and takes the
maximum from all positions, which proves more efficient than the Monte Carlo esti-
mator. It is important to note that no method can ensure optimality in estimating an
arbitrary function. Thus a prefactor can be specified, and the result will be multiplied
by it. Moreover, an estimator allows the user to provide an empirical bound to rule
out possible unphysical results. If the estimated result is greater than the empirical
bound, the empirical bound is returned instead.

4.5.5 Lifting schemes
Lifting schemes described in section 2.2.2 serve as an independent package and are in-
voked by many-body event handlers. We provide in JF-V1.0 RatioLifting, Inside-
FirstLifting, and OutsideFirstLifting as three implementations of the Lifting
abstract class. The base class has already realized methods for resetting and inserting
new particles as well as their derivatives (and aligning them into negative and pos-
itive tables). Specific lifting schemes have to provide ways to select the next active
particle among the negative table in the method get_active_identifier.

4Strictly speaking, one must call initialize of the base class, so super().initialize has to be
called in child class.

5Initialization of the state handler is called in SingleProcessMediator.__init__. For the activator,
it is called in MediatorAbstractClass.__init__. And for internal state, they are called in Activator.
initialize. For event handlers, they are initialized by corresponding tag activators.
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JELLYFYSH simulation

In this chapter, we prepare realistic applications of JF with the help of concrete in-
stances. We show how to write configuration files for methods introduced in chapter
3. By running real simulations, users will understand the functions and the mecha-
nism of various event handlers, and how event handlers treat each event in a two-step
manner. Taggers have many types, but fortunately, taggers that have already been de-
veloped satisfy the requirement of most particle simulations. The potential package
will be supplemented with real potentials and bounding potentials.

5.1 Event handlers of JELLYFYSH-V1.0

5.1.1 Event handler for two-body invertible potentials

The TwoLeafUnitEventHandler class is the most typical event handler that inverts
a two-body physical potential. Its instance is created with a invertible potential (an
instance of the InvertiblePotential class) and the relevant charge name.

The design of this class complies with the tree structure of the internal state.
When its send_event_time is called, it at first resolves the in-state in the form of a
sequence of branches to obtain lists of leaf nodes and leaf units. Next, it identifies
the active node and the active unit, as well as other information like the direction of
motion and the speed. The random number corresponding to the energy change is
generated within the send_event_time method, too. Finally, it calls the potential’s
get_displacement method with the separation between the active point mass and
the non-active one to acquire the displacement s. A new event time t is returned by
adding the corresponding traveling time to the active unit’s time stamp.

For send_out_state, it just time-slices the active unit to t by advancing its po-
sition and time stamp, then exchanges the velocities and time stamps of two leaf
units though they are None for the non-active unit. A specific series of methods is
provided in the base classes to keep variables consistent along the trees in a register-
and-commit manner. The entire procedure is typical for all event handlers.

101



Chapter 5. JELLYFYSH simulation

Figure 5.1: Schema of event handler with bounding potential. Displacements con-
cerning only bounding potentials are drawn during send_event_time. Event confir-
mations and lifting changes are done within send_out_state.

5.1.2 Event handlers for non-invertible potentials

For non-invertible-potential event handler, the addition to an invertible-potential
event handler is a bounding potential and a confirmation step (see section 2.3.2). In
JF-V1.0, we provided three kinds of bounding potentials: by a direct invertible poten-
tial, by a cell-based potential with piecewise-constant derivatives, and by speculated
potential with piecewise-constant derivatives.

5.1.2.1 Direct bounding potential

An InvertiblePotential instance as bounding potential must be specified for the
TwoLeafUnitBoundingPotentialEventHandler, both for two-body interactions. In
send_event_time, it samples a displacement under the bounding potential and re-
turns the corresponding event time.

An event confirmation takes place only after the send_out_state method is
called. The method advances point masses like in the invertible case, then confirms
the event with the ratio given by Eq. 2.3.7. If the event is confirmed, an out-state will
be returned with exchanged lifting variables; otherwise, velocities and time stamps
remain the same while the active unit is advanced1. The procedure is shown in Fig.
5.1.

1Treating unconfirmed events in the same way as confirmed events leads to inefficiency especially in
cell-veto events. Later improvements include letting out-state of unconfirmed events be None, and the
mediator repeats requesting event times and out-states until concrete out-state is returned. See section
6.1.
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5.1.2.2 Cell-based bounding potential

Even if an analytical bounding potential is hard to provide, JF is able to define one by
setting derivatives to local maximums. Specifically, for any pairwise potential U

qcb
U (r1,r2) = qcell

U (C1,C2)≥ max
r1∈C1,r2∈C2

[
∂U(r1,r2)

∂x1

]+
. (5.1.1)

Obviously it is constant for any position pair with r1 ∈ C1 and r2 ∈ C2. qcell
U (C1,C2) is

usually simplified as qcell
U (C =C2−C1) for periodic cells. Users must provide with an

CellBoundingPotential instance which is instantiated with an estimator, in order to
calculate qcell

U during initialization.
A process similar to section 5.1.2.1 with a cell bounding potential is performed

with qcb
U as its bounding event rate. We implemented in JF-V1.0 the TwoLeafUnit-

CellBoundingPotentialEventHandler class for atom factors and TwoComposite-
ObjectCellBoundingPotentialEventHandler class for dipole factors. Both their
event handlers must be used in company with cell-boundary events (instance of the
CellBoundaryEventHandler class) to incorporate internal state changes. The dis-
placement sampled for the event time may drive the active unit out of the current
cell.

5.1.2.3 Dynamic bounding potential

A bounding potential can also be constructed by speculating derivatives for a distance
in front of the active unit. A simple speculation for two-body potentials U can be

qspec
U (r12) = max{qU (r12), qU (r12−v1∆t)}+ cs, (5.1.2)

where ∆t is an adjustable speculation time and cs is a positive offset. This formula
is able to bound potential with relatively small fluctuation, and is implemented in
the TwoLeafUnitEventHandlerWithPiecewiseConstantBoundingPotential class.
Similarly, the FixedSeparationsEventHandlerWithPiecewiseConstantBounding-
Potential class is given for many-body potentials. We find in practice that they
provide efficient bounding potentials with very few exceptions for the Lennard-Jones
potential in Eq. 3.6.7 and the bending potential in Eq. 3.6.6.

5.1.3 Cell-veto event handler
Cell-veto event handlers deal with a set of two-body potential factors with the cell-
veto algorithm described in section 3.3. In JF-V1.0 we implemented LeafUnitCell-
VetoEventHandler for atom factors and CompositeObjectCellVetoEventHandler for
dipole factors. They both feature an elaborate communication with the mediator, in
the process of event time and out-state computation.

The in-state for a cell-veto event handler is not the entire global state, but rather
the branch for the active unit alone. A cell-veto event handler samples the event time
through exponential random distribution with the rate qtot defined by Eq. 3.3.2, and
draws the relative cell ∆C with a probability proportional to qcell

U (∆C), which can be
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done in constant time through Walker’s method. Then it has to identify the cell C1
that hosts the active unit and calculate the triggering cell by C2 = C1 + ∆C.

The triggering cell identifier C2 is sent back accompanying the event time, then
the get_arguments_cell_veto_event_handler method is called in the mediator to
inquire the internal state for the occupant inside C2. The branch corresponding to C2
occupant will be sent via arguments of send_out_state. The cell-veto event handler
uses the global state for the active unit and the triggering unit to compute the real
event rate qreal, and confirms a cell-veto event by qreal/qcell

U .
A cell-veto event usually does not appear alone to treat long-range potentials.

Surplus units excluded cells often exist. Surplus and occupants of excluded cells are,
however, handled by normal two-body event handlers with a bounding potential.
Direct two-body events, and factor events for an active unit interacting with surplus
units and excluded cell occupants, differ in taggers that create them. Like the event
handler with cell-based bounding potential, the cell-veto event handler works with a
cell-boundary event handler to update the internal state.

5.1.4 Event handlers for composite object motion
Motions in ECMC are not restricted to single particle moves. section 2.2.1 has for-
mulated ECMC in such a way that any set of general coordinates {ai} can be chosen
and the lifting schemes require only

∑
iai ·∇U = 0. In dipole or water molecule sim-

ulations, we can select a part of {ai} to be translations of one molecule along x, y or
z axes, accompanied with molecular rotation or normal particle motion to guarantee
ergodicity.

There is much to be studied concerning the factorization, lifting schemes, bound-
ing potentials, and cell scheme for composite object motion. We leave it for the future,
but gave a simple JF implementation for the moment. We prepare in JF-V1.0 event
handlers to move a composite object as a whole and event handlers to switch between
point-mass motion and molecular motion. The RootUnitActiveTwoLeafUnitEvent-
Handler class is for the event handler to deal with two-body inter-dipole factors. Sim-
ilar to the TwoLeafUnitEventHandler, it gets an in-state with two leaf units and cal-
culates event times as in particle mode, but requests the entire branch for the moving
molecule and the object molecule by send_out_state arguments, time-slices them
and exchanges their velocities. The RootUnitActiveTwoCompositeObjectSummed-
BoundingPotentialEventHandler class is used to treat interactions between all in-
termolecular pairs with dipole factorization, with bounding potential consisting of
separate pairwise bounding potentials (note that no many-body lifting schemes are
needed because there are only two general directions involved).

We also provide the RootLeafUnitActiveSwitcher class as an event handler to
switch between the leaf mode and the root mode. It exploits the event handler’s
function of activation and deactivation, which allows to freeze and reactivate specific
taggers at event times specified by the user. One must create an event handler as a
leaf-to-root switch and the other as a root-to-leaf switch. They deactivate themselves
and reactivate each other to achieve alternating motions. The event handler for leaf
mode will pick randomly one leaf unit from the active branch as the next active point
mass, while the event handler for root mode will impose the velocity onto the whole
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Figure 5.2: Workings of the end-of-chain event handlers. (a) Its operation can be
regarded as being triggered by a set of pairwise pseudo-factors containing all particle
pairs. The global state at the moment of calling send_event_time is not used to infer
the out-state. (b) Global state when the mediator requests the end-of-chain out-state.
One of the pseudo-factor triggers the event, and the relevant state is sent to the event
handler. (c) The event-handler advances the currently active unit then passes the
activity to a new unit, and changes to a new direction of motion. Then it sends back
the out-state. (From Ref [2].)

molecule containing active point mass.

5.1.5 Sampling event handler and end-of-chain event handler

The function of the sampling event handler is to draw samples of the global state
at certain moments, and the end-of-chain event handler is used to impose artificial
direction switches. Their logics both deserve sufficient consideration.

Taking FixedIntervalSamplingEventHandler as an example, it sets up an inter-
nal counter for sampling times by accumulating a constant interval and is instanti-
ated with a specified output handler. The sampling event handler has no in-state,
but at the event time, the active global state will be sent from the state handler to
the sampling event handler via the mediator in order to push them all to the event
time. After committing the out-state, the mediator dumps the entire global state to
the corresponding output handler. All measurements and data recording will take
place within the output handler.

The mechanism of the end-of-chain event handler is a bit more complicated. As
shown in Fig. 5.2, the global state when send_event_time is called, is meaningless,
but rather the state when send_out_state is called, will be processed. The new active
unit identifier is returned alongside the event time, and branches for both the current
active unit and the next active unit are communicated through send_out_state ar-
gument. With this information, the end-of-chain event handler can easily terminate
the current motion and start the desired one. In JF-V1.0, end-of-chain event handlers
are designed based on the EndOfChainEventHandler abstract class, which requires a
specific implementation to only give a new chain length, active identifier, and direc-
tion of motion. The SameActivePeriodicDirectionEndOfChainEventHandler, as the
simplest example, always takes the same chain length and does not change the active
unit but alternates the direction of motion in a cyclic manner.
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5.1.6 Other helping event handlers
JF simulation has no mandatory event handlers other than the StartOfRunEvent-
Handler and the EndOfRunEventHandler class that indicate the beginning and the
finishing of the run as their names suggest. It is inscribed inside the TagActivator
class that, for the first time to generate candidate events, only the start-of-run event
handler will be returned, which usually introduces an event at time zero. The first set
of real candidate events can then be conveniently defined as in the creating list of the
start-of-run event. And also, the InitialChainStartOfRunEventHandler class does
the job of imposing the velocity and time stamp for the first active unit.

The total simulation time is set in the parameter of an FinalTimeEndOfRunEvent-
Handler instance that is created at the beginning (by the start-of-run event handler)
and stays inside the scheduler throughout the whole simulation. It does two things,
to time-slice all active objects to the event time and to raise an EndOfRun exception.

We also created special facilities to dump the whole program for debugging pur-
poses. This is realized through an DumpingEventHandler instance similar to a sam-
pling event handler, and an DumpingOutputHandler instance. The magical thing is
that, with the help of the dill package, all memory can be packaged and restored
later by dumping the mediator object, because other objects are all direct or indirect
attributes of it.

5.2 Factory
Figs. 5.3 and 5.4 best illustrate the forms of the class signature, configuration files and
the underlying tree structure ruled by the factory design pattern [99]. By such a tree-
like organization of program objects, JF preserves vast flexibility and extensibility.

To understand the factory pattern, we first have to introduce JF’s packages. Physi-
cally, a JF package is a directory somewhere in the program, whose name is indicated
by the directory’s name. It contains several modules (i.e., formatted python scripts),
each defining a usable class that we call “option” here. Options within a package fol-
low the design of python class inheritance, and an abstract class usually exists in one
script ruling the interface of its child classes. The name of an option is indicated by its
script’s name and class name, which are supposed to be the same except the difference
between the Pascal case and snake case. For example, inside the package scheduler
we can see abstract class Scheduler. Also, there is an option called heap_scheduler
whose class HeapScheduler inherits from the Scheduler class.

Then we can explain the factory design pattern using the tree of Fig. 5.4.

1. Nodes of the tree except the root Run are packages of JF. An option must be
specified for one node. For instance, the HeapScheduler option is for the node
Scheduler required by a single-process mediator.

2. Signatures (i.e. the arguments of the __init__method) of each option must be
specified with types as exemplified in Fig. 5.3 (a) . If an argument is a JF class,
it points to a child node package, and an option must be given. Any JF class is
capable of including other JF classes as its signature, thus the object tree can be
constructed in an iterative way.
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Figure 5.3: Configuration file coulomb_atoms/power_bounded.ini. (a) Signature of
the single_process_mediator.__init__ method. (b) Excerpt of configuration file
with some lines split for readability (which is not allowed in reality). A configura-
tion file consists of sections, each having several properties and values. The section,
properties and values correspond to the class name, __init__ argument names and
assigned values, as indicated by the color code of (b). (From Ref [2].)

Figure 5.4: Tree structure corresponding to the configuration file of Fig. 5.3. Each
node represents a JF class except the root node. The script run.py creates a Mediator
instance and a Setting instance. Tags of events are highlighted in the figure. (From
Ref [2].)
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3. The factory.py script creates instances before the Markov chain, using the
information given in the configuration file and the importing paths of mod-
ules. Usually, an object has access to its direct child objects, but not its indirect
children or nodes of upper levels except that particular communication is per-
formed initially.

The factory mechanism significantly facilitates customization and future exten-
sion of the application, which will be described in section 5.2.2. Next, we will de-
scribe aspects more related to user interfaces and then explain how the factory builds
up such a tree-structured set of objects.

5.2.1 Running

The application starts with executing run.py in root directory using python3 or
pypy3. In version 1.0, we provide a couple of running options that are shown with
python3 run.py −h command, including the logging level, log file, and JF version.
A configuration file must follow if we hope to start a simulation. A successful execu-
tion can be

python3 run.py -v -l logs/logs.txt\
config_files/2018_JCP_149_064113/\
coulomb_atoms/power_bounded.ini

in the directory src.
run.py executes the following jobs consecutively.

1. Set up the logging function.

2. Parse the configuration file through the configparser package.

3. Use the factory to build up a Setting instance to configure common parameters.

4. Use the factory to build up a Mediator instance.

5. Call mediator.run(), until an EndOfRun exception is thrown.

6. Call mediator.post_run().

A similar resume.py is provided alongside run.py to resume the program with a
dumped file. States of all objects under the mediator, as well as the setting and the
random number object, are completely stored in the dumped file.

We have tried to minimize the usage of external packages. However, some are
inevitable in order to perform special functions. The dumping facility has to im-
port dill. The plotting scripts in src/output/2018_JCP_149_064113 depends on
matplotlib and numpy. PdbInputHandler and PdbOutputHandler use mdanalysis
to read .pdb files.
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Figure 5.5: Modification of the configuration file to replace the Coulomb potential
with a harmonic potential. Left: Part of the configuration file for Coulomb potential.
Right: Part for the harmonic potential.

5.2.2 Customization

In this section, we will briefly explain how to customize the simulation by adapting
configuration files and how to extend the functionality of JF-V1.0 by writing our mod-
ules and packages. For more detail we refer readers to those introductory .md files in
the root directory, especially FACTORY.md.

5.2.2.1 Configuration file

The format of configuration files implements a tree structure inside. For a section
representing a JF class, properties correspond to arguments of its __init__ method
and users can specify values for the created instance. If an argument is a JF class
(usually it is an abstract class), a value must be (or can be, if it is a keyword argument)
specified with a child class of the required one in the snake case. Furthermore, in most
cases, the given class must be instantiated with positional parameters, then we have
to give a new section of the configuration file with the same name as the class. The
configuration file allows aliases in addition to value-section correspondence. With
the format “property = alias (value)”, the section for it will be the “alias” instead of
the “value” (conversion to Pascal case is still necessary).

For example, in Fig. 5.3 (a) , to create an instance of SingleProcessMediator, one
has to give an InputOutputHandler, an Activator, a Scheduler and a StateHandler.
Thus in the SingleProcessMediator section of Fig. 5.3 (b) , we designate four values
for them which are child classes of the abstract ones. And also, three of them ex-
cept HeapScheduler require arguments, so corresponding sections must be created
detailing all necessary parameters which may also be JF classes. In this way, the tree-
structured set of objects is expressed serially in the configuration files.

Fig. 5.5 shows how to change simulated Coulomb potential to a harmonic one.
The bounding potential is no longer needed due to the invertibility of harmonic po-
tential.
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5.2.2.2 Development

It is easy to extend a package by adding one realization of the abstract class. For exam-
ple, to write your own invertible potential, you just have to implement derivative,
potential, and displacement methods. All necessary parameters for the potential
are defined as arguments of the __init__ method that must be accompanied with
type hints. For more complicated modules like event handlers and taggers, the com-
munication protocol with the mediator and the rest should be considered. If one of
the arguments of __init__ method is a JF class, a package must be created for it, as
mentioned in the factory pattern. We choose PEP8 style for python code except that
the line length is set to 120 characters, and PEP257 conventions for docstrings.

5.3 Verifications
Examples shown in this section serve purposes not only for JF integration test but also
as examples of various taggers, event handlers, and potentials. Their physical sys-
tems are not different from those described in chapter 3—which are Coulomb atoms,
dipoles, and the SPC/Fw water model—-but much more precise measurements can
bring confidence in both our algorithms and JF code.

For the verifications described below, they all feature a single-process mediator,
heap scheduler, hypercubic setting, and tag activator. JF’s integration of different
systems and algorithms proves that we have adopted a vastly flexible code structure.

5.3.1 Coulomb atoms
The two-Coulomb-atom system has a very simple factor, that is, merged-image
Coulomb factor M = {((1,2),Coulomb)}, with β = 2.0, box side length L = 1.0,
chain length ` = 0.78965 and charges c1 = c2 = 1.0. We simulate this system via
three methods with configuration files in the directory src/config_files/2018
_JCP_149_064113/coulomb_atoms.

We performed multiple long runs and measured the probability of |r12| < 0.6 as
well as its error with all three approaches in the following—the inverse-power bound-
ing potential, cell-based bounding potential, and cell-veto algorithm—as shown in
Fig. 5.6.

The initial physical state is generated with two random-positioned atoms inside
the input handler, whereas a start-of-run event handler gives the lifting state. Hence
one can change the number of atoms in the RandomInputHandler section and ini-
tial active atom in section StartOfRunEventHandler. Also, measurements take place
within the SeparationOutputHandler instance, which is linked with the sampling
event handler.

5.3.1.1 Inverse-power Coulomb bounding potential

The configuration file in power_bounded.ini is used for simulating atoms each with
charge 1.0 through the inverse-power bounding potential described in section 3.4.
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Figure 5.6: Validation with a two-atom system of section 5.3.1. The cumulative dis-
tribution of |r12| is plotted on the left and the errors via four methods are given on
the right. 1©: Traditional Monte Carlo. 2©: Method described in section 5.3.1.1. 3©:
Method described in section 5.3.1.2. 4©: Method described in section 5.3.1.3. (From
Ref [2].)

Corresponding part of the configuration file specifying the Coulomb factor is
shown in the left panel of Fig. 5.5. To deal with the Coulomb interaction via inverse-
power bounding potential, one must set up a FactorTypeMapInStateTagger, which
reads in factors from a given file and designate two-body event handlers with bound-
ing potential for it. Since only two atoms are simulated, one event handler will be suf-
ficient. The Coulomb factor event trashes itself and recreates itself too. The Coulomb
potential and the inverse-power bounding potential are set inside parameters of the
event handler. Other events are sampling, end-of-chain, start-of-run, and end-of-run,
all of which have no in-state; thus, the NoInStateTagger is used.

5.3.1.2 Cell-Based bounding potential

A cell-bounding-potential event must be configured to draw the event time and the
displacement in place of a normal two-body event with bounding potential. Further-
more, as we introduce a cell-occupancy internal state, we have to create an additional
cell-boundary event handler, sufficient excluded-cell event handlers, and cell-surplus
event handlers. The configuration file for it is cell_bounded.ini

JF-V1.0 activates events of the cell-based bounding potential by instance of
CellBoundingPotentialTagger, and specify TwoLeafUnitCellBoundingPotential-
EventHandler for it since atoms are represented by separate nodes. Inside the event
handler section, we specify its potential as MergedImageCoulombPotential and
its bounding potential as CellBoundingPotential where the piecewise-constant-
derivative potential is estimated and sampled. The estimator is specified as a param-
eter of cell-bounding potential. Excluded-cell events and cell-surplus events are acti-
vated by the ExcludedCellsTagger and the SurplusCellsTagger respectively while
their event handlers are of the same TwoLeafUnitBoundingPotentialEventHandler
class which uses an inverse-power Coulomb bounding potential, and works in the
same way as that of section 5.3.1.1. We must give an internal state label, to all these
cell-related taggers as well as the cell-boundary tagger.
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Figure 5.7: Validation with a two-dipole system of section 5.3.2. The cumulative dis-
tributions of |r13| and |r14| are plotted on the left and the errors via five methods
are given on the right. 1©: Traditional Monte Carlo. 2©: Method described in sec-
tion 5.3.2.1. 3©: Method described in section 5.3.2.2. 4©: Method described in section
5.3.2.3. 5©: Method described in section 5.3.2.4. (From Ref [2].)

5.3.1.3 Cell-veto method

A replacement of the cell-bounding potential tagger with a cell-veto tagger in con-
figuration of section 5.3.1.2 leads to the cell-veto simulation of two charged atoms as
configured in cell_veto.ini.

The cell-veto tagger is then given LeafUnitCellVetoEventHandler to deal with
atom factors in which an estimator must be given. Likewise, cell-surplus, excluded-
cell, and cell-boundary events are also necessary to run via the cell-veto method, and
they are configured in the same way as in section 5.3.1.2.

5.3.2 Dipoles

The two-dipole system is defined by Eqs. 3.6.3 ∼ 3.6.5 consisting of harmonic, re-
pulsive and Coulomb interactions. We prepare seven different simulation methods
in the directory src/config_files/2018_JCP_149_064113/dipoles. All dipole sim-
ulations have parameters β = 1.0, c1 =−c2 = c3 =−c4 = 1.0, L= 1.0, `= 0.78965 with
potential prefactors kb = 400, k2 = 1.0 and r0 = 0.1.

Here we present five methods featuring atom or dipole factorizations, using
inverse-power bounding potential or cell-based bounding potential, or cell-veto al-
gorithm. The first four are with single active atom, while the last one is for testing the
dipole mode of motion, as illustrated in Fig. 5.8 (a) and (b) respectively. Results and
errors for π(|r13|)< 0.22 and π(|r14|)< 0.22 are compared in the right table of Fig. 5.7.

Like in the two-atom case, the initial dipole state is created randomly by an
RandomInputHandler instance, while the node creator becomes the DipoleRandom-
NodeCreator class which distributes dipole centers evenly within the simulation box
and samples dipole orientations on a unit sphere.
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Figure 5.8: Two-dipole systems. (a) Leaf mode, in which one atom is independently
active and its parent node acquires an induced velocity. (b) Root mode. In the root
mode one dipole is translated as a whole, so the root has an independent active unit
while its leaves have induced active units.

5.3.2.1 Atomic Coulomb factors

The configuration file atom_factors.ini adopts atomic Coulomb factorization given
by Eq. 3.6.4. Coulomb, harmonic and repulsive factor events are all activated by
FactorTypeMapInStateTagger instances. Like in section 5.3.1, the Coulomb interac-
tion is treated with an inverse-power bounding potential, while the harmonic poten-
tial and the repulsive potential are invertible thus TwoLeafUnitEventHandler objects
are created for them. For the active atom at any moment, there are four two-body
factors relevant to it (2 Coulomb + 1 harmonic + 1 repulsive).

5.3.2.2 Dipole Coulomb factors, cell-based bounding potential

The configuration file cell_bounded.ini features a cell-based bounding potential to
deal with the Coulomb dipole factor. To realize that, we must provide ways to identify
the target dipole’s cell, estimate the charge-dipole event rate, and give a bounding
potential for exceptional cases.

The SingleActiveCellOccupancy class is coded so that it can take non-leaf units
as occupants. Potential users can choose an arbitrary level of nodes as cell occupants
by setting the property cell_level (value 1 for dipole, 2 for atom in the dipole case).
The event handler to treat dipole factors via cell-based bounding potentials is an
TwoCompositeObjectCellBoundingPotentialEventHandler instance, for which an
underlying pairwise potential, a cell-based bounding potential and a lifting scheme
must be specified. In the configuration section CellBoundingPotential, we have to
choose a dipole estimator among those described in section 4.5.4.

As for the direct bounding potential, we choose the sum of individual pairwise
bounding potential, i.e., the inverse-power one. The TwoCompositeObjectSummed-
BoundingPotentialEventHandler class is designed for this purpose. It needs to
know only the two-body real potential and the two-body bounding potential. In this
way, the bounding event rate is the sum of those of pairs involving the active atom so
that the event time can be calculated as the minimum of each relevant pair. The real
event rate takes into account the dipole factor, which can be guaranteed to be equal to
or less than the bounding potential sum. Excluded-cell events and cell surplus events
have to be treated in this way.

Since the cell occupancy registers dipoles instead of atoms, it is the dipole node
position that determines the corresponding cell. Hence, the cell change of an atom
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does not necessarily imply changes in the internal state. Luckily, CellBoundary-
EventHandler can fully consider this matter and return the event time at which the
relevant node crosses a boundary.

5.3.2.3 Dipole Coulomb factors, cell-veto

The configuration file cell_veto.ini is similar to cell_bounded.ini but uses the
cell-veto algorithm instead. It treats dipole factors in normal cells by a Composite-
ObjectCellVetoEventHandler instance, which is activated by CellVetoTagger just
like the one for atomic factors. The configuration for cell-occupancy, excluded-cell
events and cell surplus events are the same as in section 5.3.2.2.

5.3.2.4 Dipole Coulomb factors, alternating leaf mode, and root mode

The configuration file dipole_motion.ini realizes dipole motion as a whole and
switches between the dipole and the atom mode with dipole Coulomb factors. Fig.
5.8 illustrates the two modes. Factor events consist of two kinds—leaf mode events
and root mode events. Taggers with a suffix “leaf” activate the leaf mode events. The
corresponding tagger classes, event handlers, and other specifications are the same as
the file dipole_factor_inside_first.ini.

The root mode has Coulomb and repulsive factor events which are created also by
the FactorTypeMapInStateTagger. Then, the root-mode Coulomb event is passed to
the RootUnitActiveTwoCompositeObjectSummedBoundingPotentialEventHandler
and the root-mode repulsive event is given to the RootUnitActiveTwoLeafUnit-
EventHandler. The former requires a pairwise bounding potential and takes the
sum over all inter-dipole pairs as the dipole-dipole bounding potential for the dipole
Coulomb factor. The latter treats invertible potential exclusively.

In addition, two root-leaf switchers are needed which are activated by the Active-
RootUnitInStateTagger. They feature special lists of activation and deactivation as
described in section 5.1.4. The root-to-leaf event deactivates all root mode events and
activates all leaf mode events while the leaf-to-root event does the contrary.

5.3.3 SPC/Fw water
In order to put JF into a more realistic application, we also test it for two sets of cells
and a three-body potential. System parameters are identical to those in section 3.6.2
except that we restrict to two molecules and the system length is L= 10.0Å. The chain
length here is set to be 2.12345Å.

We present four methods differing in how to treat the Coulomb and the Lennard-
Jones factors. Confirmations and errors are shown in Fig. 5.9. The initial state is
created randomly using a WaterRandomNodeCreator instance. We take the oxygen-
oxygen separation as the observable that are calculated in the OxygenOxygenSepara-
tionOutputHandler. Configuration files used in this section are in the JF directory
src/config_files/2018_JCP_149_064113/water. For the moment, we concentrate
on two water molecules for the sake of demonstration and verification. In chapter 6,
we will simulate much larger water systems through JF for performance benchmark.
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Figure 5.9: Validation with a two-water-molecule system of section 5.3.3. The cu-
mulative distribution of |rOO| is plotted on the left and the errors via four methods
are given on the right. 1©: Traditional Monte Carlo. 2©: Method described in sec-
tion 5.3.3.1. 3©: Method described in section 5.3.3.2. 4©: Method described in section
5.3.3.3. 5©: Method described in section 5.3.3.4. (From Ref [2].)

5.3.3.1 Atomic Coulomb factors inverse-power bounded, Lennard-Jones
inverted

The configuration file coulomb_power_bounded_lj_inverted.ini sets up the har-
monic, bending, Coulomb and Lennard-Jones factors in a similar way as in section
5.3.1.1 and section 5.3.2.1. The factor map must be carefully set to reflect a total of 16
factors between two water molecules (9 Coulomb + 1 LJ + 2 bending + 4 harmonic)
(see factor_set_water_atomic.txt).

The event handler different from previous examples is the FixedSeparations-
EventHandlerWithPiecewiseConstantBoundingPotential which uses a speculated
bounding potential (see section 5.1.2.3).

5.3.3.2 Dipole Coulomb factors inverse-power bounded, Lennard-Jones
cell-bounded

The configuration file coulomb_power_bounded_lj_cell_bounded.ini takes dipole
Coulomb factorization and uses cell-based bounding potential for Lennard-Jones
interaction. For each pair of water molecule there exists only one Coulomb factor
involving all six atoms. It treats Coulomb interaction using the TwoComposite-
ObjectSummedBoundingPotentialEventHandler class in the same way as we do for
excluded-cell occupants and surplus units in section 5.3.2.2.

To have a cell-based bounding potential for the Lennard-Jones potential, we have
to construct a cell occupancy exclusively for oxygen atoms. We exploit the “charge”
property of the SingleActiveCellOccupancy class and set it as the oxygen indicator
(an instance of ChargeValues). Oxygen atoms have 1.0 for this value, while hydrogen
atoms have 0.0 so that oxygen atoms are registered in the cell occupancy.
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5.3.3.3 Dipole Coulomb factors cell-veto, Lennard-Jones inverted

The configuration file coulomb_cell_veto_lj_inverted.ini uses the cell-veto algo-
rithm for the dipole Coulomb factorization. To this end, we need to have a cell oc-
cupancy that reflects the position of the molecular center, which can be achieved by
setting cell_level to be 1. Then the handling of the Coulomb event is the same as in
section 5.3.2.3.

5.3.3.4 Dipole Coulomb factors cell-veto, Lennard-Jones cell-veto

The configuration file coulomb_cell_veto_lj_cell_veto.ini deals with the Coulomb
and the Lennard-Jones interactions both via the cell-veto algorithm. Hence two sets
of cell occupancy have to be created, one with cell level one, and the other with
cell level two and the oxygen indicator as charge. For large systems, the cell-veto
algorithm becomes indispensable to achieve acceptable time costs.
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Realistic water system

In this chapter, we put JF into real system simulation to have benchmarks for both
the event-chain algorithm and JF application. In chapter 3, we propose an event-
driven approach for the simulation of long-range systems though our proof of concept
relies on simple time-driven codes. ECMC is supposed to face real challenges when
entering complex biochemical systems. The configuration, observable, and physical
order are no longer as simple as for the hard-disk testbed.

First, we will introduce important improvements to JF-V1.0 in order to eliminate
obvious overhead in JF-V1.0. Then in section 6.2, we investigate the optimal setting
for a large water system, notably for the cell-veto method that is rich in informa-
tion where it costs most of the time. Finally, we test JF with water systems from 8
molecules to 216 against LAMMPS to better understand ECMC’s efficiency.

6.1 Speeding up JELLYFYSH

The general architecture laid out in chapter 4 is a simplified event stream aimed to
handle all kinds of operations. There, we focus on its extensibility but sacrifice the
efficiency. For example, JF-V1.0 treats unconfirmed events in the same way as con-
firmed events, and the heap scheduler is developed for a large number of candidate
events. We did not take into account features of simulated systems, including the
event composition and time consumptions, which are crucial to the next improve-
ment. Any popular scientific platform demands extreme optimizations, for the whole
user group will repeatedly use common modules. In this sense, JF remains a proto-
type since the python codes are slow among programming languages, and function-
ing modules are to be rewritten.

6.1.1 Fast track for unconfirmed events

In JF-V1.0, the happening of each event requires recalculation of the other event times,
except sampling, the start-of-run, and the end-of-run. This strategy becomes particu-
larly costly since most of the events are unconfirmed events from bounding potentials
and the cell-veto algorithm. In the cell-veto algorithm, event rates are highly overes-
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Figure 6.1: JF architecture adapted for events with bounding potentials. We add an
extra loop to update by calling event handlers’ resend_event_timewithout touching
events already in the scheduler.

timated (see sections 3.3.2 and 6.2.2). In fact, it proves much cheaper to handle empty
target cells and unconfirmed cell events than confirmed cell events.

It can save much computation power if unconfirmed events do not interfere with
other events but update their event times. This goal is achieved using an extended
communication scheme between event handlers and the mediator, and an additional
loop inside the mediator. For the mediator, we create another loop inside the main
loop between requesting the shortest event time and committing out-state, as shown
in Fig. 6.1. It repeats until an event is confirmed by inspecting that the returned
out-state is not None. The scheduler sorts event times as usual, and pops an event in
every iteration of re-requesting event times. When an out-state is sent back, the inner
loop breaks and the out-state is committed in the state handler for the subsequent
operations.

In the event handler part, a new abstract class EventHandlerWithUnconfirmed-
Events is created featuring the method resend_event_time that has no arguments.
If the event is not confirmed, the value None will be sent back as the return value of
send_out_state. The mediator then calls the event handler’s resend_event_time
instead of going back to call send_event_time. The whole event handler procedure
is modified as shown in Fig. 6.2.

6.1.2 Other improvements
After the release of JF-V1.0, we developed other JF features to spread and speed up
JF. First, for those time-consuming modules, it is advisable to implement in C and
compile before execution. There are multiple ways to realize a mixture of C code in
a python project, and we chose cffi to replace several calculation-intensive and self-
contained modules1. Also, a scheduler using python list is provided. We found that

1For reference, see https://doc.pypy.org/en/latest/extending.html and https://
cffi.readthedocs.io/en/latest/goals.html.
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Figure 6.2: Stages of event handler with the method of resending the event time,
for treating events with bounding potential. resend_event_time is called until
send_out_state returns a value that is not None. The three event handler methods
are called by three corresponding mediator stages on the left.

HeapScheduler costs a large portion of time probably because the external module
heapq is not suited for event operation and because the number of candidate events
does not warrant heap structure. The third thing we tested in order to speed up is a
node-free version of JF, in which only unit is kept while node and the tree structure
were abandoned. The measurements tell us that, for hard disks, the speed of the node-
free version is 1.6 times the speed with nodes, so we will keep the node structure for
all simulated systems to preserve consistency.

Another notable feature after JF-V1.0 is that we made JF into a python package. In
fact, python provides tools to develop, encapsulate, distribute, and install packages
(search python steuptools for reference). After the installation, one can run JF in any
directory and the typical command becomes

jellyfysh -v -l logs.txt config_file.ini

where logs.txt and config_file.ini are the log file and the configuration file.

6.2 Coulomb event profiling

We study in this section how JF deals with long-range Coulomb events to find un-
derlying statistics related to Coulomb events via the cell-veto algorithm, in hopes
for more profound insights into time cost of the Coulomb event processing. We fix
simulated system to be 203 water molecules in a box of side length 62.722Å (so with
density∼ 1g/cm3) at 300K. In such a system all algorithms dealing with the Coulomb
interaction become prohibitively slow except the cell-veto algorithm. In the cell-veto
algorithm, a key quantity Q̃cell

Clb is the reduced total Coulomb derivative. This is the
sum kept in Walker’s table, representing the sum of cell-based bounds of charge-
water derivatives with unit active charge. When speaking of the Coulomb event rate
〈Qcell

Clb〉, their relation is

〈Qcell
Clb〉= β(1

3 |cO|+
2
3 |cH|)Q̃cell

Clb = 0.918Q̃cell
Clb. (6.2.1)
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6.2.1 Charge-water estimator

ECMC is an unbiased sampler under the condition that potentials are exact, and
bounding potentials have event rates not less than the energy function derivatives
everywhere, as indicated in Eq. 2.3.6. In the case of the Coulomb cell-veto algorithm,
bounding potentials are constant within any cell and are given by an estimator in
JF. N = 203 molecules imply around 403 cells, necessitating an efficient estimating
method.

Early in JF-V1.0, we developed dipole estimators and applied them to two-
molecule water simulations. However, there are signs showing that bounds by
simplifying water as dipole fail to capture true properties of the charge-water interac-
tion. A dipole model as simplified water molecule leads to significant underestima-
tion. If one insists on the dipole estimator, a prefactor must be applied and results in
worrying large event rates (see section 6.2.2 where bounds are given by charge-dipole
estimator).

Thus, we implemented another two estimators for charge-water Coulomb inter-
action. They take water’s inner structure into account but regard the water molecule
as a three-point rigid structure. The first one is ChargeWaterOptimizationEstimator
that uses scipy.optimize.minimize to obtain the maximum and minimum deriva-
tives. It fixes at first the active atom, and calculates the effective position range of the
target molecule, then explores the parameter space of the target molecule (a total of
six degrees of freedom). This estimation is done by sampling the initial guess and
calls scipy to find local extreme values. The second estimator randomly samples the
position of the active atom as well as the target molecule’s position and orientation.
It can not only return extremes but the distribution of the charge-water derivative.

Assuming a homogeneous distribution of the active water molecule and the target
molecule, for both their positions and orientations, we show in Fig. 6.3 the distribu-
tions of charge-water derivatives in two selected cells. In light of a large sample size
of 1.28×109, we find that they rarely reach even 0.9 times of their maximums. There-
fore, a precise estimation by searching the maximum is not necessary. Moreover, most
of the extremes come from molecule positions on the cell boundary. Thus we expect
that using a non-homogeneous distribution and favoring molecules on the boundary
will lead to higher estimation efficiency.

6.2.2 Optimizing cell-veto events

We tested a wider range of cell-occupancy parameters including the number of cells
per side and layers around the zeroth cell treated as exclusion. The result is shown in
Table. 6.1.

Table. 6.1 contains much information. First, 323 cells have effectively eliminated
surplus particles to an acceptable level, and with 343 cells, the surplus number can be
ignored. Second, the highest speed comes with 403 cells and 53 exclusions, so we take
Ncell = 8N as the best choice of cell density from now on.

We also measured and got the confirmed Coulomb event rate for non-excluded
cells as 〈Qcv

Clb〉 = 43± 1Å−1. The reduced rate given by the estimator, however, is
13549Å−1 for 403 cells. It means that our cell-veto implementation has seriously over-
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Ncell Nexcluded Qtot
Clb Qtot

LJ N spl
Clb N spl

LJ speed(Å/s)
303 33 10434 2045.6 26 21 1.62
323 33 12074 2141.4 4 0 2.51
363 33 16377 2796.7 0 1 2.55
403 33 23034 3206.6 0 0 2.38
443 33 30600 3546.5 0 0 2.07
303 53 4632 5.7 26 21 1.07
323 53 5768 7.8 4 0 2.06
363 53 8626 12.8 0 1 2.51
403 53 13549 42.4 0 0 2.58
443 53 19533 177.3 0 0 2.42
483 53 25937 623.5 0 0 2.26
523 53 33097 1458.3 0 0 2.06
303 73 2734 0.8 26 21 0.36
323 73 3462 1.2 4 0 0.72
363 73 5314 2.6 0 1 1.16
403 73 7722 5.2 0 0 1.69
443 73 11192 9.4 0 0 1.98
483 73 15337 15.1 0 0 2.21
523 73 20179 21.2 0 0 2.19

Table 6.1: JF speed for 8000-molecule system with variable numbers of cells per side
and exclusion layers. The first six columns from left to right are the number of cells,
the number of excluded cells, the total cell-veto event rate for Coulomb and Lennard-
Jones interactions, the number of surplus particles in molecular cell (for Coulomb),
and that for oxygen cell (for Lennard-Jones). The speed in last column is measured in
Å per second. Each case is run for 50Å on 2.10GHz Intel Xeon Gold 6230 CPU. The
derivative bounds for Coulomb are gained through inner point charge-dipole estima-
tor by treating water molecule as dipole of 0.82 elementary charge and 1.3Å separa-
tion, and results are multiplied by 1.2. Lennard-Jones derivative bounds are obtained
through a particle-particle inner point estimator with a prefactor of 1.5. All data come
from one 8000-molecule configuration in equilibrium produced by LAMMPS. And
they are run with a JF version under development so only the relative speeds make
sense.
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Chapter 6. Realistic water system

Figure 6.3: Differences between one and cumulative distribution of charge-water
derivative. The simulated box is divided into 403 cells indexed from (0, 0, 0) to (39,
39, 39), and here we focus on two cells, each with 1.28×109 samples randomly drawn
from zero cell and the target cell. (a) Target cell is (4, 1, 0), whose maximum returned
by scipy optimization is 8.12. (b) Target cell is (5, 6, 7), whose maximum is 0.157.
Note that qc−w has roughly symmetric distribution around 0, so the curves here starts
from (0, 0.5).

estimated the cell-based charge-water event rate (at the same time, violations are still
reported that the true event rate exceeds the bounding event rate for some cells). Eq.
6.2.1 accounts for 0.918. A factor of eight comes from the occupancy rate, and another
factor of four comes from dipole orientations as derived in Eq. 3.5.13. JF may have
overestimated 13549/8/4∗0.918/43 = 9.04 fold.

To understand this loss, we first invoked the scipy estimator for more reliable
upper bounds, which returns 9917Å−1. It accounts for 1.37 of the factor 9.04, and the
remaining 6.62 must stem from the molecule’s positional variation within a cell, and
from simplifying the water molecule as a dipole. Therefore, we employ increasingly
finer cells, with 203, 403, and 803 cells in total, and set the exclusion cells as 33, 53, and
93 so that the nearest molecular pairs treated by the cell-veto algorithm are invari-
ant. We measured the distribution of cell-veto rejection events, namely unconfirmed
events from occupied cells. The distribution of molecule-center separations is shown
in Fig. 6.4.

The occupied event rates for 203, 403, and 803 cells are measured to be 2034Å−1,
1133Å−1 and 701Å−1 respectively (The event rate for 403 cells agrees with total cell-
veto event rates because 1133 = 9917∗0.918/8). If 803 cells are small enough to elim-
inate the molecular variation in position, it follows that a factor of 1133/701 = 1.62
originates from finite cell size, and the remaining 701/(43 ∗ 4) = 4.08 is from treating
water molecules as ideal dipoles.

In summary, for our standard 8000-molecule-403-cell test case, a typical upper
bound of the derivative given by the charge-dipole estimator (here we take 13549Å−1)
implies

• A total of 13549∗0.918 = 12438Å−1 cell-veto events,
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Lcell = 3.14Å

Figure 6.4: Cumulative distribution of molecule-center separations for rejected cell-
veto events. Variable cell sizes are tested and excluded layers are set so that nearest
possibility remains the same. Events from empty cells are not counted.

• 13549/8 = 1694Å−1 occupied-cell events,

• 43Å−1 confirmed events.

The empty-cell event is considered as inevitable, yet the large gap between 43 and
1694 can be divided into the following facts

• Estimator overestimates by 1.37 times.

• For ideal dipole, there is a factor 4 for its orientation.

• Water molecule inner structure accounts for 4.08.

• The large cell size brings a factor 1.62.

6.2.3 Dipole factor vs. atomic factor
When we propose dipole factor in section 3.5 the complexity per sweep to sample
a dipole system reduces from O(N4/3) to O(N logN). However, such a speedup is
not expected to manifest in a system of 8000 molecules because N1/3/ logN = 1.54
for N = 8000, and we are concerned that a complicated dipole algorithm introduces
another factor which is more than 1.54.

The dipole factorization has more computational burdens than the atom factoriza-
tion. The event time sampling involves the interactions between the active atom and
the entire target molecule, meaning three times as much computation for water as two
atoms. To confirm an event, it demands night pairs of Coulomb interaction and has
to perform an elaborate lifting scheme while one pair is sufficient in atomic factors.

123



Chapter 6. Realistic water system

Also, as discussed in section 6.2.1, it is more complicated to bound from above the
charge-water derivative than the charge-charge derivative.

Thus we tested the atom factorization for 8000 molecules through JF. While the
dipole factorization using the cell-veto algorithm is a fundamental feature in JF, the
implementation of atom factorization for our benchmark model proves tricky. It is un-
realistic to have one single-occupant cell holding either a hydrogen atom or an oxygen
atom because the typical H-O separation 1.013Å is too short that a vast number of
cells are needed. In the end, it is done by setting up three cell occupancies holding the
first hydrogen atom, the second hydrogen, and the oxygen atom, respectively. Any
type of active atom interacts with all three sets of cells2.

In a system of the same setting, but with unit charges, our estimator tells us that
the corresponding Qcell

Clb = 12228Å−1. For three charged sets, the total reduced rate is
12228Å−1 ∗ (2|cH|+ |cO|) = 20054Å−1, and this number is comparable with reduced
cell-veto derivative bound 9917Å−1 for dipole factors. We expect that simpler com-
putation in the atomic factor case can compensate for its larger event rate.

However, atomic factorization takes more than three times longer as the dipole
case, contrary to what we believed. We found that the confirmed event rate in the
dipole factor case is around 84Å−1, including 64Å−1 Coulomb events, and this num-
ber rises to 578Å−1 with 546Å−1 Coulomb events in the atomic factor case. Con-
firmed events imply lifting moves that require recalculation of all candidate events,
which seems inevitable. In our testing model, there are 53/8≈ 15 particles treated as
excluded neighbors for one set of cell, and typical surplus atoms is 13, so there are
15∗3(Coulomb nearby)+15(LJ nearby)+13(Coulomb surplus)+2(intra−molecule)≈
75 pair interactions to be updated, accounting for the slowdown in atomic factoriza-
tion. This measurement reveals that it is the confirmed cell-veto event that takes the
majority of the time.

In the future, instead of trashing all physical events for each lifting move, we can
stash the candidate events for each atom in hope that it will be reused later. For exam-
ple, keeping a list for every atom within the active molecule until a new molecule be-
comes active will avoid around 40% recalculation if the inside-first scheme is adopted,
according to our tests.

6.3 Water system benchmark
In this section we are going to start with relatively small systems, from 8 molecules
to 216, with the box side length fixed to 18.975Å to keep the density 1g/cm−3 for
216 molecules (so for less molecules this means a dilute system). We measure the
total polarization as the criteria of the system’s relaxation, which is defined for N
molecules as

P =
N∑
i

cH(ri,OH1 +ri,OH2), (6.3.1)

where ri,OH1 and ri,OH2 are separations between oxygen atoms, and the first or the
second hydrogen atom respectively. Periodic boundaries are taken into account so

2In addition, a small change is added to avoid intra-molecule Coulomb interaction.
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Figure 6.5: Normalized and non-normalized autocorrelation function of P for eight
molecules. (a) Non-normalized autocorrelation denoted as CP. (b) Normalized au-
tocorrelation referred to as C̃P. The time unit here is defined as total displacement
divided by eight.

that ri,OH1 and ri,OH1 do not cross the entire system. The corresponding autocorrela-
tion function is defined as

CP(t) = 〈P(s) ·P(s+ t)〉s, (6.3.2)

where the average is taken over all valid samples, and the normalized autocorrelation
is

C̃P(t) = CP(t)/CP(0). (6.3.3)

6.3.1 Chain state
We observe that CP for an 8-molecule simulation behaves strangely. Shown in Fig.
6.5 are CP and C̃P of 40 independent runs each with 106Å total displacement and
starting with one equilibrated state prepared by LAMMPS. Two C̃P curves deviate
from others with much slower decay, and their corresponding absolute values show
that those chains bear higher polarizations than the rest.

Then we pick one of the outliers and plot P as a function of time in Fig. 6.6. We
find that one of its components presents a step-like shape: At some point, it increases
to an unusually high level, stays for a period, and finally drops back to normal. The
other abnormal CP curves also exhibit such an excitation. The runs whose autocorre-
lations CP are normal, however, do not feature the step-like polarization signal.

It seems that the system transitions to an unusual excited state at some point. This
state has a distinguished polarization but has low free energy because its duration
comprises less than one-hundredth of the total simulation. Due to the symmetry in
the positive and negative direction, and in x, y, and z coordinates, similar excitations
are also observed with Pi< 0 and i∈ {x,y,z}. To capture the excited state’s nature, we
record the trajectories of runs and make them into animation. In Fig. 6.7, we present
three snapshots during the simulation. The times are carefully picked to have one in
the normal state, one in rising slope, and a third in a highly polarized state.
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Figure 6.6: P as a function of t for the abnormal case in Fig. 6.5 whose CP(0)≈ 2.

Figure 6.7: Visualization of an eight-molecule simulation that transitions to a high-
polarization state. (a) A normal state, where molecules cluster into a drop. (b) An
intermediary state. (c) The high-polarization state, in which eight molecules form a
chain crossing the simulated box.
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Figure 6.8: Scatter plot of P on x− y plane through LAMMPS. Eight molecules are
simulated in a system of side length 18.975Å for twenty hours. The central cluster
represents non-excited polarization while four lobes around are excited chain states.

The chain state shown in Fig. 6.7 (c) lays out molecules in order, thus has lower
entropy. This chain state cannot exist without periodicity in the simulation box, so
the system topology is crucial to its stability. A simulation conducted by LAMMPS
suggests that the chain state has similar total energy as the drop state, and there is
an energy barrier in between. We plot the polarizations on x− y plane in Fig. 6.8
acquired by 20 hours of LAMMPS. Admittedly, LAMMPS is much faster than JF in
reproducing the 8-molecule chain state.

6.3.2 Molecular translation
We start increasing the molecule number in order to approach realistic situations.
The box side length remains as L= 19Å while the numbers of water molecules N are
taken to be 8, 27, 64, and 212. L= 19Å corresponds to N = 216 at the density 1g/cm3.
However, N = 212 is used instead because the less packed state is believed to speed
up the relaxation. Here we fix the chain length ` = 0.2N , and the cyclic switching
scheme is employed. As discussed in section 6.3.1, the presence of outliers due to the
chain state may heavily drive the mean C̃P upwards. Thus we take the median of C̃P
from many runs as the measured normalized autocorrelation. To gain uncertainty for
their median, we apply the bootstrapping method. If there are n runs, then n samples
are drawn with replacement from them, and we can get the median from the drawn
samples. Repeat this process, and the standard deviation of repetitions is the desired
error.

The autocorrelation of P shown in Fig. 6.9 suggests a significant slowdown for
large system size, making it prohibitively slow for realistic case. We notice that the
initial part of C̃P decays faster but faces a slower decay afterwards.

The presence of two time scales usually implies an underlying factor impeding the
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Figure 6.9: C̃P with variable molecule numbers through the cyclic direction switching
scheme with `= 0.2N .

relaxation of the algorithm. Here, ECMC seems to shake molecules during a short pe-
riod but is hindered immediately by the configuration structure. To better understand
the reason, we implement molecule translation, that is, moving a single molecule as a
whole, just like the root-mode dipole motion described in section 5.1.4. What is new is
that the cell-veto algorithm is included in the root-mode scheme, and the correspond-
ing event handler and water-water Monte Carlo estimator are also implemented.

We alternate atom motion and molecule motion, and switch the moving di-
rection right after each turn of the molecule move. Thus the pattern becomes
XaXmYaYmZaZmXaXm... where a means atom mode, and m means molecule mode.
The atom mode persists `a while molecule mode lasts `m (`m is the total translation
displacement, and the sum of individual atom displacement will be 3`m). We fix
`a = 0.2N while testing varied `m. Samples are only drawn in atom mode, and only
atom mode is taken into sampling interval.

Fig. 6.10 shows the change of C̃P with different lengths of molecule mode sand-
wiched in atom mode, as well as the errors. With the help of molecule mode, C̃P
decays faster and there is sign that the second time scale is eliminated. The total
performance in terms of C̃P, however, does not improve with consideration of the
molecule mode cost.

However, with increasingly molecule numbers, the improvement by introducing
the molecule translation diminishes, as shown in Fig. 6.11. Long simulation time
also disables us to precisely quantify their accelerations3, but no evidence shows that
XaXmYaYm... scheme can help reduce the second time scale to the level of LAMMPS.
Other schemes like (XaYa)n(YaZa)n(ZaXa)n are also tested whereas the improve-

3It takes more than two days to run N = 212 by 106Å, to make up Fig. 6.11 (d)
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Figure 6.10: Normalized CP of eight-molecule simulations with variable molecule
translation lengths between cyclic atom mode. (a) Pure atom mode `m = 0. (b)
`m = 1Å . (c) `m = 5Å . (d) `m = 20Å . Error bars are obtained through bootstrapping
method. Dotted lines are for y = 1/e.
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Figure 6.11: Normalized CP for simulations of 8, 27, 64 and 212 molecules. Molecule
translations of varied durations are inserted between atom modes, while atom modes
all last `a = N/5Å. (a) N = 8. (b) N = 27. (c) N = 64. (d) N = 212. Dotted lines in (a)
and (b) are for y = 1/e.
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ments are also limited. More tests and theoretical analyses are needed to reveal the
reason of the double time scales.

6.3.3 Discussions
Apart from the above results, we also performed other measurements though the data
are not ready to be published. First, ECMC can still achieve short correlation times
for the density mode of water systems, so it is the collective rotation instead of the
translation that poses challenges. The animation of a 216-molecule simulation dis-
plays restricted movements of dense molecules. Each molecule vibrates around its
initial position, while the orientation and separations relative to the neighbors are al-
most frozen. It does not help by changing the lifting schemes proposed in section 3.5.
On the other hand, traditional Monte Carlo also faces slow relaxation of the molec-
ular polarization if only the atomic displacement is applied. It achieves a significant
speedup by the proposal of molecular rotation.

To close the gap between JF with translational motion and LAMMPS, we analyze
their procedures and list the differences here. The previous measurement in Fig. 3.19
only confirms the relaxation of molecule polarization through the motion along axes,
but it does not reveal the relaxation speed.

First, LAMMPS is highly optimized, while JF-V1.0 remains immature. LAMMPS
is mainly written in C++ and is compiled before running, but JF-V1.0 uses python.
Moreover, LAMMPS features massive parallelization and even GPU acceleration.
When running on a personal computer, multiple cores are used at the same time.
It will be a good comparison by writing LAMMPS’ algorithm and ECMC in the same
language and the same style.

Some may argue that the ten-fold overestimation of the cell-veto Coulomb event
rate is the main reason, as discussed in section 6.2.2. Further parameter adjustment
may bring a slight speedup, while the unconfirmed events caused by the freedom of
dipole rotation and particle movement within a cell are inevitable. We believe that
a more profound mechanism exists that impedes the collective molecular rotation,
given the presence of the second time scale and our test that molecular rotations can
also speed up traditional Monte Carlo.

Next, trajectories given by molecular dynamics suggest that the motion in arbi-
trary directions may imply a faster equilibrium, so we can lift the restriction that all
displacement must be along axes, which motivates chapter 7. In chapter 7, we will
test the idea where the proposed direction of relaxation changes gradually, and the
reduction in the mixing time is confirmed for dipoles with relatively narrow poten-
tials. One can further exploit this freedom since there are numerous combinations of
proposed directions.

Furthermore, lifting schemes provide another way to realize motions in general
directions. One example is the reflective chain in the initial proposal [76] of ECMC,
and it renders ECMC more similar to physical collisions. Intuitively, reflective chains
enforce consistent rotation for a single planar dipole, whereas its generalization to
higher dimensions is unclear.
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Chapter 7

Sequential Monte Carlo

The dynamics of water molecule rotations obtained in section 6.3 bring a novel ques-
tion for the ECMC. Simple complements through molecular rotation help, but do not
significantly eliminate the slow time scale in the relaxation of the polarization. In fact,
much freedom of the ECMC has not been exploited, and we have so far been restrict-
ing on the motion in positive senses of three orthogonal axes, namely +x, +y, and
+z. It is intuitive to think that the molecular dynamics is faster due to its motion in
all spatial directions.

On the other hand, sequential proposals in conventional Monte Carlo methods
are regarded as the first approach leading to irreversibility, as discussed in section
1.4.1.1. Metropolis et al. mentioned the sequential scheme of updating particles in
the original paper [36] of Monte Carlo method (it said “...we move each of the parti-
cles in succession according to...”). Orkoulas et al. formulated sequential updates in
spin system [53] and then applied them to various other scenarios [55, 100, 101]. The
speedup was demonstrated by both theoretical analyses and simulations, while they
only studied the sequentiality in terms of spin or particle order.

In this chapter, we combine the two ideas above and apply the sequential proposal
in the choice of directions, to study the possible gain and underlying dynamics if the
proposal direction evolves gradually. In view of the difficulties experienced in chapter
6, we considered a system of a two-dimensional dipole as the testbed for this method
and found that the evolution of the dipole angle exhibits distinct patterns, that is, the
so-called “zigzag” and “excursion”. The order of directions imposes an additional
level of irreversibility to the existing schemes of ECMC. Finely tuning the speed of
the direction change can achieve several times of speedup, and the generalization to
higher dimensions and multiple molecules is possible in the future.

7.1 Single-dipole system

7.1.1 Configuration
We extract from more realistic models a simple dipole placed on a plane, as shown
in Fig. 7.1 (a) . Two atoms of the dipole are represented by positions x1 and x2. We
impose hard-disk potential between any two atoms and another intra-dipole hard
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…

…

Figure 7.1: Configurations and notations of the two-dimensional dipole system. (a)
Left: Dipoles on a plane, with the active particle moving in a given direction. Parti-
cles interact with hard-disk potential and intra-dipole hard repulsive potential. Mid-
dle: The series of direction φ0,φ1, .... Right: The potential between two particles of a
dipole. (b)∼(d) Important notations, with dotted lines representing the direction of
motion. (b) and (c) illustrate the case with |λ|< 1 and (d) is for |λ|> 1. (Adapted from
Ref [3].)

potential so that the energy of the studied single-dipole system can be expressed as

U(x1,x2) =
{

0 if r ≤ ρ≤R,
∞ otherwise,

(7.1.1)

where ρ = |x1−x2| is the distance between two atoms. The potential is illustrated in
the right panel of Fig. 7.1 (a) .

We can reparametrize any valid state as where θ represents the angle of dipole
orientation and (ρ,θ) becomes the polar representation of x2−x1. In light of periodic
boundary condition, x1 must be in S1×S1, the two-dimentional torus. The condition
for a valid state is simply expressed as ρ ∈ [r,R] and θ ∈ [0,2π), and the probability is
evenly distributed (Euclidean measure) within a ring Ω, as shown in Fig. 7.1 (b) .

7.1.2 Sequential Monte Carlo method
Among (x1,ρ,θ), the parameter x1 is trivially distributed in S1×S1, and we are not
interested in the equilibration of this part. x1 corresponds to the collective translation
of the molecular systems, and ECMC has proved efficient in decorrelating density
modes. On the other hand, the θ coordinate is a simplification of molecular orienta-
tions whose mixing presents a realistic challenge. Although such a ring’s stationary
distribution can be obtained analytically, we hope that this simplified model serves
as a prototype to reveal new mechanisms of Monte Carlo with sequential directions.
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Here we list three algorithms that respect the global balance condition for the distri-
bution of x = x2−x1.

The most straightforward algorithm is the direct application of the Metropolis-
Hastings method with symmetric proposals as described in Algo. 1.

Algorithm 1 Metropolis-Hastings algorithm
initialize x← x0
for 1≤ i≤Ns do

draw ∆x ∈ [−ε,ε]2
x′ = x + ∆x
if x′ is in the ring Ω then

x← x′
end if
print x

end for

The ECMC algorithm simulates with consecutive chains that follow a determined
series of directions. Each time we draw a chain length ` from a certain distribution
and a direction from the pre-determined set. The active particle is advanced until
it hits the hard wall induced by the other particle, or the cumulative displacement
reaches `. Previously, the directions of motion were kept along positive senses of
axes, but now we extend to the sequence {e0,e1, ...} with ek = (cosφk,sinφk), φk =
πnk/180, where n is the change in degree between two consecutive directions. We
denote the series asDn and for the moment we focus on n∈Z. And also, it is clear that
moving x1 in e is equivalent to moving x in−e, so the ECMC for sampling x becomes
Algo. 2. It is noteworthy that in Algo. 2, the function distance_before_collision

Algorithm 2 Event-chain Monte Carlo with finite chain length
initialize x← x0
for 1≤ i≤Ns do

draw chain length `
e← (cosφi,sinφi)
while ` > 0 do
s= min(`,distance_before_collision(x,e))
x← x +e∗s
`← `−s
e←−e

end while
print x

end for

must consider both the inner circle and the outer circle of Ω. Here, samples of x
are drawn at the end of chains, which is valid when the chain length is unrelated to
the collision. Taking n = 90 is similar our conventional ECMC implementation that
alternates between +x and +y directions.

Usually, Algo. 2 samples ` from a distribution with a characteristic length `0.
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To further simplify the model, we set up `0→∞ to eliminate the finite-chain-length
effect, which amounts to sampling x along the cut l, that is, the ring Ω cut by the
line x +αe. Thus, we have the direct sampling Algo. 3. The pesudocode for Algo.

Algorithm 3 Direct sampling
initialize x← x0
for 1≤ i≤Ns do

e← (cosφi,sinφi)
l← cut_line(Ω,x,e)
x← random point from l
print x

end for

3 simulates in the normal reference frame, and the sampling directions will evolve
gradually following the series φ0,φ1, ..., as shown in the middle panel of Fig. 7.1 (a) .
In practice, one can also operate in the reference frame always with φ= 0. In this case,
one has to rotate x clockwise ∆φ= nπ/180 before each iteration. We will use the two
interpretations to describe the evolution later in Fig. 7.3. In the rest of this chapter,
Algo. 3 will be used as the common method to study the effect of sequential choices
of the direction. We vary the set Dn to see the resulting physical and algorithmic
consequences.

Each iteration in Algo. 3 is taken as one time unit. Also, rolled-out angles are
labeled with tilde so we have φ̃t = πnt/180, the corresponding θ̃t and ρt. We define
the impact parameter λt, i.e., the component of x normal to et, as

λt = sin(θt−φt)ρt/r. (7.1.2)

Obviously, λt ∈ [−R/r,R/r]. When x is on the left side of the direction et, λt is posi-
tive; otherwise, it is negative. Moreover, λt has a crucial threshold ±1 which will be
manifest later. For now, one can distinguish that if |λt| < 1, as illustrated in Fig. 7.1
(b) and (c), x will be resampled from a segment formed between the two circles; if
|λt|> 1, as shown in Fig. 7.1 (d) , x is free along a chord of the outer circle. These two
cases do not only differ in the program but have distinct features in dynamics.

7.1.3 Validation
We verify our Algo. 3 here using the distributions of ρ and λ, which can be obtained
analytically, as well as the homogeneous distribution over Ω.

The stationary probability density of ρ should be proportional to ρ itself, so we
have

π(ρ) = 2ρ
r2(η2−1) , (7.1.3)

where η =R/r is the ratio of the outer and inner circles of the ring.
As for the distribution of λ, it should also be proportional to the length of l, namely

π(|λ|) =

C
√
η2−λ2, if 1≤ |λ| ≤R/r;

C
(√

η2−λ2−
√

1−λ2
)
, if 0≤ |λ| ≤ 1.

(7.1.4)
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Figure 7.2: Probability distributions of ρ, |λ| and x = (x,y) with η = 2.0. Results are
simulated through Algo. 3 and compared with analytic solutions. Statistics are drawn
from 108 samples and put into 400 bins in (a) and (b), and into 1002 grids in (c).

The normalizing factor is C = 4/π(η2−1).
We performed a long simulation using the code of Algo. 3. The statistics of ρ, λ

and x are plotted in Fig. 7.2. The agreement between the simulated and analytical
distributions validates the global balance condition under the sequential method.

7.2 Rotational dynamics

We track the evolutions of θ̃ and λ as shown in Fig. 7.3 that exhibit distinct patterns
which are never observed in traditional Monte Carlo simulations. In this section we
study the typical dynamics presented under moderate choices of η and Dn, which
consist of “zigzags” and “excursions” in the curves of λ, as shown in Fig. 7.3 (a) and
(b). We also observed exotic behaviors when using large n values. For example, n= 85
leads to “amplitude-modulated” waves of λ, while we will not cover it in this thesis.

7.2.1 Zigzag and excursion

In Fig. 7.3 (a) and (b), the rolled-out dipole angle θ̃ can rise and fall with fluctuation
during a long simulation. The rising parts of θ̃ correspond to |λ| > 1 and the falling
parts correspond to |λ|< 1. When θ̃ increases, λ behaves like a one-dimensional ran-
dom walk, but when θ̃ decreases, λ undergoes a more deterministic evolution that
drives it between ±1. Patterns of decreasing θ̃ contain more than a drifted random
walk but a series of steps, each corresponding to a λ period (see the middle panel of
Fig. 7.4).

Given λt, the dipole separation xt lies on the segment parallel to et. It is possible
to infer the distribution of λt+1 through rotating xt by ∆φ. The drift term for λt+1 is

Eλt+1 =


λt cos∆φ−At sin∆φ if |λ|< 1 and xt ∈ S+,

λt cos∆φ+At sin∆φ if |λ|< 1 and xt ∈ S−,
λt cos∆φ if |λ| ≥ 1,

(7.2.1)
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Figure 7.3: Sample trajectories of the rolled-out dipole angle θ̃ and the impact param-
eter λ, with respect to φ̃. Axes are rescaled with ∆φ to highlight the similarity with
different values of ∆φ. The right column is the initial potions of those in the left col-
umn. (a) η = 2.0, ∆φ= π/180. (b) η = 2.0, ∆φ= 0.1π/180. (c) η = 1.01, ∆φ= 85π/180.
(Styles are from Ref [3].)

Figure 7.4: The states of x corresponding to zigzags and excursions. The θ̃ and λ
curves are extracted from Fig. 7.3 (a) . On the left are consecutive states for an excur-
sion, while on the right we show states of a zigzag period in the reference frame with
φ= 0. (Adapted from Ref [3].)
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where At = (Bt+Ct)/2 with Bt =
√
η2−λ2

t and Ct =
√

1−λ2. S+ and S− are the part
of lt where cos(θ−φ) > 0 and the part where cos(θ−φ) < 0, as shown in Fig. 7.1 (b) .
And the variance of λt+1 is

σ2(λt+1) =
{ 1

12(Bt−Ct)2 sin2 ∆φ if |λt|< 1,
1
3B

2
t sin2 ∆φ if |λt| ≥ 1.

(7.2.2)

According to Eq. 7.2.1, for small ∆φ, the drift term Eλt+1−λt is proportional to (∆φ)2

when |λt|> 1, while it is proportional to ∆φ if |λt|< 1, which agrees with the observa-
tion that the former case is driven by random walk, whereas the latter is dominated
by motion with less randomness.

In the case of |λ|> 1, given that the drift and the variance are both proportional to
(∆φ)2, we can write down the equation for λ as

λt+1 = λt+D1∆φ2 +D2∆φω′, (7.2.3)

where D1 = −1/2, D2 =
√

(η2−λ2
t )/3, ω′ is a uniform random number within

[−1/2,1/2], in agreement with Eqs. 7.2.1 and 7.2.2. After a long period ∆t, the
change of λ should take the form of discrete Langevin equation

λt+∆t = λt+D1∆φ2∆t+ D̄2∆φ
√

∆tω. (7.2.4)

Here, D̄2 is an effective value of D2 during the period, and ω is a Gaussian random
number with zero mean and unit variance. It is not difficult to notice the rescaling
invariance of Eq. 7.2.4 by letting ∆φ→ k∆φ, t→ k−2t (the same for ∆t) and λt→λk−2t.
Thus, in Fig. 7.3 (a) and (b), we set the axes as (φ̃t− φ̃0)∆φ and (θ̃t− θ̃0)∆φ, then
the lengths and frequencies of excursions are comparable for different ∆φ values. In
addition, the |λ| > 1 condition for excursions suggests that, x remains in a circular
segment of Ω, as illustrated in the left panel of Fig. 7.4. As the circular segment
rotates following the change of φ̃, the dipole angle should rotate in the same speed,
which results in a slope equal to 1 in the rising side of θ̃ ∼ φ̃ curve.

As for the zigzags, the |λ| curve consists of a succession of V-shapes, meaning
that λ goes between ±1 in a more deterministic manner. The corresponding values
of θ̃ take downward steps with relatively fixed widths and heights. If we track x in
this period, we find that it stays outside the circular segments of |λ| > 1 but jumps
between S+ and S−. The right panel of Fig. 7.4 shows the correspondence of critical
moments of λ and x. When x is in the middle of S+ or S−, θ̃ remains roughly the
same; when it hits the edge of |λ|= 1, θ̃ may jump from S+ or S− to the other, giving
rise to a sharp drop of the θ̃ value.

Analytical approaches exist to approximate the zigzag curves. Taking Eq. 7.2.1
but neglecting the variance given by Eq. 7.2.2 leads to a reasonable estimate since the
diffusion term is minimum, as shown by the black curve of Fig. 7.5. If we further
expand Eq. 7.2.1, say, for the first case, we get

λt+1 = λt(1−∆φ2/2)−At∆φ. (7.2.5)

Dropping the term ∆φ2, we have

− ∆λ
A(λ) = ∆φ. (7.2.6)
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Figure 7.5: Simulated and ayalytical results for λ with η = 2.0 and ∆φ = π/180. All
tests start with λ = 1. Red curves are simulated by Algo. 3, that is, our sequential
Monte Carlo method. Blue dots are the discrete version of analytical results given by
Eq. 7.2.1. Black curve is the continuous version given by Eq. 7.2.8.

This can further be approximated by a continuous differential equation

− dλ
1
2

(√
η2−λ2−

√
1−λ2

) = dφ. (7.2.7)

The solution of λ has an analytic expression

φ−φ0 =
−λ
√
η2−λ2−η2 arcsin λ

η +λ
√

1−λ2 + arcsinλ
η2−1 . (7.2.8)

Replacing φ with t ∼ φ/∆φ, we reach a continuous relation of λ and t. Fig. 7.5 starts
with λ = 1 and shows a good agreement between the Monte Carlo method, the dis-
crete and the continuous analytical solutions.

7.2.2 Large-time limit
In this section, we study the change of the dipole angle θ̃. In general, the expectation
of θ̃ can increase or decrease, depending on whether the initial x belongs to S− or S+

region. To simplify the analysis, we assume an equilibrated initial distribution of x.
First, if xt and the induced θt have equilibrated uniform distributions, xt+1 and

θt+1 are uniformly distributed too. One can argue that π(θ̃t+1 − θ̃t) is symmetric
around zero because the contributions from the points with θ̃t = φ̃t + φ′ and those
with θ̃t = φ̃t−φ′ have opposite effects to the change of θ̃. The zero mean is confirmed
by Fig. 7.6 (a) . Furthermore, the change in the rolled-out angle after more than one
iteration has zero mean as well, because

E(θ̃t− θ̃0) =
t∑
i=1

E(θ̃i− θ̃i−1) = 0. (7.2.9)
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Figure 7.6: Distributions of θ̃t+∆t− θ̃t for different values of ∆t. η = 1.1 and ∆φ =
π/180 are taken throughout. Blue dotted vertical lines indicate their zero mean values.
Statistics are gained by 106 initial points randomly drawn from Ω. (a) ∆t = 1, with
the dashed line obtained by numerical integral. (b) Moderate ∆t’s. (c) Large ∆t limit.
(From Ref Ref [3].)

Each term of E(θ̃i− θ̃i−1) vanishes because θ̃i−1 and xi−1 have uniform distrubtions.
However, θ̃t− θ̃0 is no longer symmetric due to the shift of φ, as shown in Fig. 7.6 (b)
and (c).

As ∆t increases, π(θ̃t+∆t− θ̃t) becomes asymmetric, with main part around zero
and a small bump on the right. The position of the small bump agrees with the
change of φ. It represents trajectories that stay in excursions, so the magnitude of
the bump diminishes for larger ∆t since the probability for always staying |λ|> 1 de-
cays. For large ∆t limit, the small bump is no longer visible, and the overall shape of
π(θ̃t+∆t− θ̃t) tends to a Gaussian distribution because it consists in contributions from
different times that are uncorrelated. For η = 1.1 and ∆φ= π/180, Fig. 7.6 (c) tells us
that π(θ̃t+∆t− θ̃t) approaches a Gaussian distribution with zero mean and 0.1652∆t
variance.

7.3 Mixing of orientation
To measure the advantage of our method with sequential direction choices, we take
the mixing time as the criterion. The mixing time is defined upon total variation dis-
tance given by Eq. 1.3.5, and by Levin’s convention [29], it is the time at which the
total variation distance to the equilibrated state reduces to 1/4. And for our single
dipole system, we are interested in algorithms that can fast explore the space of its
orientation, so we project the probability of x onto θ component. The target distribu-
tion is π(θ) = 1/2π. The mixing time in our case can be written as

tmix = min
{
t : ‖π(θt)−

1
2π‖TVD ≤

1
4

}
. (7.3.1)

Many factors affect the mixing time. First, we study the effect of the initial state.
Levin and Peres define the mixing time as Eq. 7.3.1 given by the worst-case initial
state. In order to identify this worst case, we tried different choices of initial θ and
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Figure 7.7: (a) Mixing times for various initial points, with η = 1.1 and ∆φ = π/180.
(b) and (c) show the total variation distance with respect to time, for different values
of ∆φ. (b) is for η = 1.1 and (c) is for η = 1.01. (Panel (a) is adapted from Ref [3].)

ρ, and the results are shown in the colormap of Fig. 7.7 (a) . According to Fig. 7.7 (a)
, the initial state leading to the worst mixing time occurs near the sides with |λ| = 1,
but the mixing times are very close for all initial points with |λ| < 1. Thus, we take
θ0 = 0 and ρ0 = (r+R)/2 for following measurements (φ0 is always 0).

Shown in Fig. 7.7 (b) and (c) are total variation distances from π(θt) to the target
1/2π, with increasing t. It first confirms that our method can reach the theoretical
equilibrium, and different choices of ∆φ have influence over the speed. For the case
of η = 1.1 and η = 1.01, ∆φ= 25◦ is optimal compared with 1◦, 45◦ and 90◦.

Furthermore, we investigate the effect of the series Dn, i.e., ∆φ = nπ/180. We
wonder whether the elements of Dn have the major influence, or its order makes the
main contribution. Hence, we perform the direct sampling Algo. 3 with Dn, either
sequentially or randomly, which are denoted as (Dn,S) and (Dn,R). Also, we tested
the variant that randomly chooses directions with no constraint, i.e., directions from
the unit circle, which is denoted as D∞.

In Fig. 7.8 (a) , we plot the mixing times with respect to various values of Dn, and
they are chosen sequentially. We find that if n is very small, φ changes slowly, and the
mixing time is large. However, tmix has multiple peaks around certain values of n,
and those peaks coincide with the inverse number1 of elements in set Dn, denoted as
|D|−1. This coincidence implies that periodicity is a factor in choices of D, and a large
period (or aperiodicity) is preferred.

Then we compare the sequential selection of Dn and the random selection in
Fig. 7.8 (b) , with η = 1.005. We find that sequential order always outperforms ran-
dom order, and mixing times of random order are lower-bounded by that of D∞.
Compared with tmix of D∞ that is also the minimum for (Dn,R), (Dn,S) can reach a
lower mixing time that is around 1.5 times faster. In Fig. 7.8 (c) we study the cases
with η = 1.01 and η = 1.05. Peaks are less intense with increasing η, while the optimal
Dn’s in sequential order can all outperform random direction schemes.

1Note that set elements cannot repeat, and directions that differ by multiples of π are regarded iden-
tical. So |D1|= 180, |D30|= 6, and |D90|= 2.
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Figure 7.8: Mixing times with respect to Dn, for random order (R) and sequential
order (S). Dark blue lines in three panels are tmix’s for (Dn,S). We compare it with
: (a) inverse number of set elements |Dn|−1; (b) random order (Dn,R), and random
arbitrary directions D∞; (c) other η values. (Adapt from Ref [3].)

Figure 7.9: Optimal values of ∆φ and overall accelerations using sequential order of
Dn, for 1.0< η ≤ 2.0. (a) Values of ∆φ that give smallest tmix. (b) Speedup compared
with (D90,S) and D∞. (Panel (b) is adapted from Ref [3].)
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Finally, we measure the optimal choices of Dn that give the lowest mixing times
and the overall speedup, as plotted in Fig. 7.9. The optimal ∆φ’s present a compli-
cated pattern, and it is hard to extract a formula. Small values of η favor relatively
small ∆φ, while when η > 1.4 the optimal ∆φ’s are between π/4 and π/2. As for the
speedup, sequential directions can indeed accelerate, especially compared with direc-
tions constrained in +x and +y for small η. When we compare with arbitrary random
directions, the sequential method has still around 1.5 times speedup for all η < 2.0. So
far, we have only understood the mechanism for small ∆φ. Further theories need to
be established for moderate values of ∆φ and the optimal choice.
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General Conclusion

During the past three years we aimed to apply the ECMC algorithm to long-range
systems, in hope that ECMC that exhibits exciting speedup in hard-disk and spin
systems can also outperform widespread molecular dynamics in biochemical simu-
lations. The bottleneck to simulating a realistic system is the long-range Coulomb
interaction, while ECMC with factorized filter provides an innovative approach by
sampling from pairwise Coulomb factors.

The currently most efficient molecule dynamics have always invoked the N -body
Coulomb computation. First, we rewrote the Coulomb interaction in a two-body
form, since the ECMC’s advantage relies on the pairwise factorization. We proved
that the line-charge method proposed by Kapfer and Krauth [95] is an alternative of
tin-foil electrostatics. With its inspiration, we proposed several other methods of fast
convergence such as kite-charge and volume-charge models.

Second, for dipole systems, we exploited the freedom of factorization in ECMC to
find that dipole factors are able to achieve O(N logN) time complexity for a sweep. In-
teresting lifting schemes appeared for dipole systems, and we proposed two schemes
in addition to the simplest ratio scheme. In particular, the inside-first lifting scheme
which maximally favors next active atoms to be located within the same molecule,
has a bounded inter-molecule lifting rate regardless of molecule numbers. We de-
menstrated these concepts in [1].

Then, we developed a Python application called JELLYFYSH for ECMC simulation
of the particle systems, with belief that a universal scientific platform will greatly
benefit researchers. For the first time, we implemented a complete prototype version
of ECMC with the dipole factorization and the cell-veto algorithm. The structured
codes allow us to easily customize physical settings and enrich the function of JF. The
specification of JF was published in [2].

Furthermore, we studied the efficiency of ECMC through JELLYFYSH benchmark.
It shows that Coulomb events cost most of the time, and in particular, it is the con-
firmed events that predominate time consumption due to the recalculation of candi-
date events. For this reason, dipole factors outperform atomic factors by three times.
The autocorrelation of the total polarization presents double time scales, and the sec-
ond significant slows down a water system’s rotation. Enforcing molecule translation
helps to alleviate the slowdown while the mechanism is still to be discovered.

Finally, our proposal of sequential Monte Carlo provides an approach to over-
come the slow rotation. Tests over a planar dipole showed a speedup depending on
the potential width and they led to asymmetric evolutions of the dipole orientation.
We found that the inverse number of unique directions coincides with the speedup,
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implying that the periodicity plays an important role in the optimal set of directions.
Relaxing the dipole in an ordered sequence of directions is always preferred, com-
pared to taking directions randomly from the sequence. We published the results in
[3].

There are many open problems to be studied in the future. ECMC with pure
atomic motions proved fast in mixing single-molecule orientations, while it is inef-
ficient for the bulk-molecular rotation, thus the reason remains unknown for the ef-
ficiency gap between molecular dynamics and ECMC, just as rotating molecule can
significantly speed up the decorrelation in traditional Monte Carlo methods. And
also, we are not clear about the role of factorizations and lifting schemes in ECMC’s
dynamics. The correlation time drops dramatically when the optimal factorization
is chosen as in the study of factor field, and here the three lifting schemes proposed
in section 3.5 may bring distinct dynamics. Advantages of ECMC are more evident
for atomic systems, where open questions include parallelization and the factor field
beyond one dimension.
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Appendix A

Publication I

All-atom computations with irreversible Markov
chains

Michael F. Faulkner, Liang Qin, A. C. Maggs, and Werner Krauth
J. Chem. Phys. 149, 064113 (2018)

This article contains the published result described in chapter 3. First, it gives the
basics of ECMC and the cell-veto framework to deal with long-range interactions.
Then it introduces our new work in extending ECMC into Coulomb systems. The
methods for three-dimensional Coulomb systems require two additional elements —
the computation of Coulomb potential derivatives, and the dipole factorization. Our
Coulomb computations are based on Ewald’s formula of electrostatics and the line-
charge method. We adapted Ewald’s formula to the sum of two-body interactions,
and proposed other methods that all converge to tin-foil electrostatics.

The dipole factor is an application of the many-body ECMC method. It groups
all pairs of Coulomb interactions between two dipoles into one factor. By exploit-
ing the charge-dipole interaction, it is the first Monte Carlo algorithm that achieves
O(N logN)-per-sweep complexity. Two specific lifting schemes are also proposed fa-
voring intra-dipole or inter-dipole probabilities flows.

We test our methods with Coulomb atom, dipole, and SPC/Fw water systems.
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We apply the irreversible event-chain Monte Carlo (ECMC) algorithm to the simulation of dense
all-atom systems with long-range Coulomb interactions. ECMC is event-driven and exactly samples
the Boltzmann distribution. It neither uses time-step approximations nor spatial cutoffs on the range of
the interaction potentials. Most importantly, it need not evaluate the total Coulomb potential and thus
circumvents the major computational bottleneck of traditional approaches. It only requires the deriva-
tives of the two-particle Coulomb potential, for which we discuss mutually consistent choices. ECMC
breaks up the total interaction potential into factors. For particle systems made up of neutral dipolar
molecules, we demonstrate the superior performance of dipole–dipole factors that do not decompose
the Coulomb potential beyond the two-molecule level. We demonstrate that these long-range factors
can nevertheless lead to local lifting schemes, where subsequently moved particles are mostly close
to each other. For the simple point-charge water model with flexible molecules (SPC/Fw), which
combines the long-ranged intermolecular Coulomb potential with hydrogen–oxygen bond-length
vibrations, a flexible hydrogen–oxygen–hydrogen bond angle, and Lennard-Jones oxygen–oxygen
potentials, we break up the potential into factors containing between two and six particles. For this
all-atom liquid-water model, we demonstrate that the computational complexity of ECMC scales very
well with the system size. This is achieved in a pure particle–particle framework, without the interpo-
lating mesh required for the efficient implementation of other modern Coulomb algorithms. Finally,
we discuss prospects and challenges for ECMC and outline several future applications. Published by
AIP Publishing. https://doi.org/10.1063/1.5036638

I. INTRODUCTION
A. Irreversible Markov processes

Numerical methods are ubiquitous in the natural sciences,
with Markov-chain Monte Carlo (MCMC)1 and molecular
dynamics2 playing central roles. Markov-chain Monte Carlo
applies to any computational science problem that can be
formulated as an (perhaps fictitious) equilibrium-statistical-
physics system and whose solution requires sampling its
probability distribution. As in physical and chemical sys-
tems, equilibrium within the computational context usually
means that all probability flows vanish. This requirement is
enforced by the detailed-balance condition, an essential ingre-
dient of most Markov-chain Monte Carlo methods and notably
of the Metropolis algorithm.3 Monte Carlo algorithms usu-
ally take much time to approach equilibrium4 and, once in
equilibrium, to generate independent samples. This is, in part,
due to the fact that detailed balance leads to time-reversible
Markov-chain dynamics, which is diffusive and therefore
slow.

In recent years, a new class of irreversible “event-
chain” Monte Carlo (ECMC) algorithms has been proposed.5,6

ECMC algorithms violate detailed balance but satisfy a weaker
global-balance condition. Configurations at large times sam-
ple the equilibrium distribution, but the asymptotic steady state

comes with non-vanishing probability flows. In particle sys-
tems with periodic boundary conditions, for example, atoms
may continue to move preferentially in certain directions. In
continuous spin systems, likewise, configurations realize the
equilibrium distribution even though spins rotate in a preferred
way.7–9 ECMC moves (displacements of particles, rotations of
spins, etc.) are infinitesimal and persistent: An “active” particle
moves directly from one event to the next, that is, it continues
to move until a proposed move is vetoed by a unique “target”
particle, which in turn becomes the active particle. This pass-
ing of the active-particle label is called a lifting,10,11 and this
concept overcomes the characteristic rejections of randomly
proposed finite moves in the Metropolis algorithm. The ECMC
algorithm was instrumental in the solution of the hard-disk
melting problem, after decades of debate.12,13 For soft poten-
tials,6 it can decorrelate with a smaller dynamical exponent
than the local Metropolis algorithm.7,9 Furthermore, in a one-
dimensional particle system, ECMC was demonstrated to mix
on shorter time scales than Markov chains that satisfy detailed
balance.14,15

In ECMC, the traditional Metropolis acceptance criterion
based on the change in potential is replaced by a consen-
sus rule. This is the essence of the factorized Metropolis
filter, which applies to translation-invariant systems with pair-
wise interactions between particles6 and, more generally, to

0021-9606/2018/149(6)/064113/21/$30.00 149, 064113-1 Published by AIP Publishing.
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models whose interactions can be split into sets of indepen-
dent factors.16 The ECMC algorithm does not compute the
total system potential energy. This makes it very appealing
for long-range-interacting systems, where this computation is
costly. For Coulomb systems, ECMC altogether avoids tradi-
tional algorithms for the electrostatic potential,17 the dominant
computational bottleneck for long-range-interacting models.
Rather, the cell-veto algorithm18 efficiently establishes con-
sensus on the acceptance or the rejection of a proposed move,
even if all particles interact with each other. This is the starting
point for the present work.

Generally, computations in statistical physics fall into
two categories. They either aim at thermodynamic averages
(energy, specific heat, spatial correlation functions, etc.) or
at dynamic properties (time correlations, nucleation barriers,
coarsening, etc.). In principle, the computation of thermody-
namic averages is the realm of Markov-chain Monte Carlo,
whereas the analysis of dynamical behavior calls on molecular
dynamics, as it solves Newton’s equations of motion. Specifi-
cally, however, the field of large-scale all-atom computations
with long-ranged interactions is today dominated by molecu-
lar dynamics for both categories. The dominance of molecular
dynamics is rooted in two facts: First, traditional Monte Carlo
methods usually update just O(1) particles at a time, and the
acceptance/rejection step is then followed by the exact com-
putation of the change in potential. The best currently known
algorithm19 for the change in potential after such a local update
in a Coulomb system is of complexity O(

√
N) so that one

Monte Carlo sweep (a sequential update of all N particles)
requires O(N3/2) computations. In molecular dynamics, by
contrast, the discretized Newton’s equations update all particle
positions simultaneously, and the necessary computation of the
forces on all particles comes at a cost ofO(N log N), much less
than for a Monte Carlo sweep. Second, Newtonian dynamics
conserves momentum and explores phase space more effi-
ciently than the local Metropolis algorithm. This advantage of
molecular dynamics over Monte Carlo is, for example, brought
out by the different scaling of the velocity auto-correlation
functions in the context of long-time tails.20,21

The time evolution of molecular dynamics has physical
meaning, but from an algorithmic point of view, it is con-
strained by the requirement that it must implement Newton’s
law. As a result, there is no additional freedom to accelerate the
exploration of phase space. By contrast, Monte Carlo dynam-
ics is non-physical and only constrained by the global-balance
condition. A well-chosen Monte Carlo dynamics can consid-
erably speed up the sampling of the equilibrium distribution.
Those equilibrium samples may also serve as starting con-
figurations for parallel molecular-dynamics calculations that
give access to high-precision dynamical correlation functions.
Furthermore, if more complex out-of-equilibrium rare-event
physical phenomena (such as protein folding) are of interest,
the time scales of long-time features can be accessed by the
inspection of the rare events produced by parallel simulation on
Nproc processors. Similar to the half-life analysis of radioac-
tive substances composed of large numbers of atoms, a rare
event that takes place on a time scale τ on a single processor
will then take place on a time scale τ/Nproc on one of the Nproc

processors.

In this work, we develop the framework for the appli-
cation of ECMC to classical long-range-interacting all-atom
systems. In particular, we demonstrate efficient ECMC meth-
ods that rigorously sample the canonical ensemble, without
even evaluating the total potential. The factorizations that we
implement with the cell-veto algorithm allow us to move a
single particle from one event to the next in a computer run
time that is independent of the number of point charges in a
system. For a local charge-neutral system (for example, collec-
tions of charge-neutral many-atom molecules), the mean-free
path (the mean distance between events) decreases only log-
arithmically with the number of point charges in the system.
This implies that the computational effort required to move
every particle in a simulation a constant distance scales as only
O(N log N), with no approximation and without the demand-
ing interpolation onto the mesh that is introduced in many
modern electrostatic simulations.

We validate our algorithm through explicit comparisons
with a standard Metropolis algorithm and with molecular-
dynamics simulations, each performed with Ewald sum-
mations. We focus on two conceptual issues. One is the
computation of Coulomb pair-event rates, that is, essentially,
the derivatives of the two-particle Coulomb potential with
respect to the position of the “active” particle. In the sim-
plest version of ECMC, this corresponds to the probability
with which an active particle will stop and induce a lifting
to another particle. The other issue concerns the factorization
schemes of the system potential in which we lump together
different interactions that partially compensate each other
so that the ECMC mean-free path between events is much
increased. We first apply our ECMC algorithm to a pair of
like Coulomb point charges and then to systems of charge-
neutral dipoles in a three-dimensional simulation box with
periodic boundary conditions. We finally demonstrate the per-
fect agreement of thermodynamic observables between ECMC
and conventional Monte Carlo and molecular dynamics for up
to 256 water molecules at the standard density and tempera-
ture. The freedom offered by ECMC in choosing dynamics,
factor decompositions, and lifting schemes leaves ample room
for improvements. We expect it to be widely applicable to
all-atom simulations of charged systems.

B. All-atom molecular simulations

Of great importance in soft-matter research, biological
physics, and related fields, the all-atom approach projects
the full quantum-mechanical many-body system onto the
reduced classical degrees of freedom of the atomic positions.
The projection yields the potential energy as a function of
all the particle positions, and the Monte Carlo method can
then, in principle, be applied directly. Molecular dynamics
also starts from the atomic potential, as the forces in New-
ton’s equations are given by its spatial derivatives. Present-
day parametrized empirical force-field models22,23 further
break up the potentials and make them amenable to practi-
cal computations. For example, separate terms in the potential
typically describe deviations of chemical bonds from their
equilibrium values, with individual contributions for stretch-
ing, bending, and torsion. Likewise, distinct intermolecular
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potentials capture longer-ranged features of the interactions;
for example, dispersion forces, hard-core repulsions, and long-
ranged charge–charge and dipolar interactions. The all-atom
reduction from quantum mechanics to a classical interacting
system is approximate and not uniquely defined. Various force-
field models are used in a number of code bases,24,25 which are
also implemented in other prominent codes.26–28 The param-
eters in each force-field model are optimized to reproduce
thermodynamic and structural features over a reduced range of
temperatures and pressures. Different potential functions coex-
ist even for the description of simple molecules such as water.29

We use in this work an all-atom potential for water that fea-
tures two-body bond stretching, three-body bending as well as
long-ranged Coulomb interactions, and a Lennard-Jones (LJ)
potential.30

Modern codes generally compute the long-ranged
Coulomb potential through variants of the Ewald algorithm
applied to a discretized analog of the continuous position
space. The Fourier contribution to the potential is evaluated
by first interpolating each point charge to multiple points on
a mesh and then solving the Poisson equation via fast Fourier
transform, which, combined, is of complexity O(N log N)
per computation of the potential energy. Numerous formu-
lations of this algorithm have been developed starting with
the particle–particle–particle–mesh method.31 More recent
generations combine the particle–mesh philosophy with the
Ewald formula, to create the particle–mesh–Ewald method32

together with many variants33–35 which, together, remain the
workhorse of modern simulation codes. The charge interpo-
lation onto the mesh generally presents the main computa-
tional workload. These methods use intricate strategies to
maintain a high level of accuracy. Mesh interpolation leads
to very large self-energy artifacts which have to be sub-
tracted with great care in order not to modify the physical
interactions.

Alternative approaches exist for the computation of the
Coulomb potential and the electrostatic forces on particles.
The hierarchical multipole-moment expansion,36 for example,
expands the interactions of a particle with all the other par-
ticles in terms of spherical harmonics, and therefore avoids
Fourier transforms and mesh interpolations. However, the
expansion converges only with high orders of the multipole
moments so that one molecular-dynamics time step, although
it is of complexity O(N), comes with a prohibitive prefac-
tor. Local algorithms that propagate electric fields rather than
solve the Poisson equation also bypass the fast Fourier trans-
form.37–39 This is an advantage in architectures where the
Fourier transform involves large-scale non-local information
transfers. In these algorithms, the complexity of a single-
particle update is O(1) but the use of a background mesh
to discretize the electrostatic degrees of freedom again leads
to costly interpolations from the continuum charges to the
discrete space.40,41 In contrast to well-established methods,
ECMC is directly formulated in continuous space, and its
successful implementation only relies on translational invari-
ance on all length scales. In essence, ECMC requires no
discretization of the simulation box, and the total Coulomb
potential and forces may remain unknown throughout the
simulation.

All-atom molecular-dynamics simulations must take into
account a variety of time scales and lengths. Indeed, the
high-precision time integration of intramolecular spring forces
requires a discretization time in the femtosecond range. The
physics associated with the much longer time scales that one
wishes to study include density fluctuations (which relax on the
picosecond time scale), Debye-layer equilibration (nanosec-
onds), and conformation changes (milliseconds). At the same
time, the precise rendering of dielectric and screening proper-
ties requires high-quality computations, and the long-ranged
nature of the interaction calls for large system sizes in order
to overcome finite-size effects. In order to efficiently man-
age both the stiffness (the presence of many relevant time
scales) and long-ranged potentials, interactions are often bro-
ken up and sophisticated multiple time-step algorithms are
implemented.42,43 Use of a thermostat44 is crucial in order
to counteract a drift of the system energy and to connect
the potential-energy surface with the system temperature. The
ECMC algorithm considers the same potentials as its competi-
tors, but it is fundamentally event-driven.45 This is exceptional
in the presence of continuous potentials, whereas the event-
driven formulation for hard-sphere5 or for stepped potentials46

finds its correspondence in event-driven molecular-dynamics
algorithms.47,48 In the absence of discrete-time approxima-
tions, the exact Boltzmann distribution is sampled at any
given temperature. This renders the thermostat unnecessary.
In our application, the triggering of events remains well bal-
anced between intramolecular, short-range intermolecular, and
long-ranged intermolecular Coulomb events.

The remainder of this work is split into two parts. Part I
corresponds to Sec. II, where we review recent advances in
ECMC. We present the literature in a consistent mathematical
language, which provides a unified framework for the appli-
cation of ECMC to Coulomb systems. In Part II (Secs. III–V),
we apply this framework to all-atom computations of various
systems with Coulomb interactions. We demonstrate both the
convergence to the Boltzmann distribution and the algorith-
mic scaling discussed in Sec. I A. The precise comparison
of computer run time with established molecular-dynamics
and Monte Carlo algorithms is, however, not presented in this
work.

II. ECMC ALGORITHM

ECMC5,6 is an irreversible continuous-time Markov pro-
cess: Its moves are thus infinitesimal. Analogously, Newton’s
differential equations are of course also defined in continuous
time. The molecular-dynamics algorithms that solve Newton’s
equations must be time-discretized for all systems except for
hard spheres2 or for stepwise constant potentials.47,48 By con-
trast, in ECMC, discretization is generally avoided through the
event-driven approach. In the present section, we discuss the
essential issues of the algorithm’s setup and implementation
as well as its complexity.

A. Factors, factorized Metropolis filter

In ECMC, the interactions in an N-particle system are
split into a finite or infinite set of factors M = (IM , TM )
∈ P({

1, . . . , N
}) × T, where P is the power set of the indices
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(comprising all indices, pairs of indices, triplets, etc), and T
is a set of interaction types. We refer to IM as the index set of
the factor and to TM as its type. The total potential U, which
is a function of all particle positions

{
r1, . . . , rN

}
, is written as

a sum over factor potentials UM

U
({

r1, . . . , rN
})
=

∑

M∈M
UM

({
ri : i ∈ IM

})
, (1)

where UM only depends on the factor indices IM and is
of type TM . In Eq. (1), the set M =

{
M : UM , 0

}

⊂ P({
1, . . . , N

}) × T only contains factors that have a non-
zero contribution for some values of the positions. In a
system with only pair interactions, a non-zero factor may
be

({
i, j

}
, pair

)
. The corresponding factor potential would

then be U({i,j }, pair)(ri, rj), and the total potential in Eq. (1)
then becomes U =

∑
i<j U({i,j }, pair)(ri, rj), which is normally

written as U =
∑

i< j Upair(ri, rj).
In this work, we use more general factorizations. The

Lennard-Jones factor, that we write as
({

i, j
}
, LJ

)
, has a factor

potential

U({i,j }, LJ)
(
rij

)
= k LJ


(
σ

|rij |
)12

−
(
σ

|rij |
)6 , (2)

where rij = rj − ri is the shortest separation vector from par-
ticle i to particle j, possibly corrected for periodic boundary
conditions. The Lennard-Jones factor “LJ” in Eq. (2) may be
replaced by two types, namely, the type LJ6 (describing the
1/|rij |6 part of the Lennard-Jones interaction) and the type
LJ12 (describing its 1/|rij |12 part).6 For two indices i and j,
this yields two factors, namely,

({
i, j

}
, LJ6

)
and

({
i, j

}
, LJ12

)
.

Likewise, the bending energy in a water molecule with par-
ticles i, j, k will correspond to a factor index IM =

{
i, j, k

}

and to a factor type given by the specific function chosen
for this interaction. A similar approach was introduced for
modeling neighboring beads in a polymer.16 In Secs. IV B
and V, we consider factors that lump together all of the
Coulomb interactions between the four particles comprising
two distinct dipoles and even between the six particles of
two water molecules, respectively. The factor corresponding
to the latter case is given by

({
i, j, k, l, m, n

}
, Coulomb

)
. (For

simplicity of notation, we do not differentiate in this work
the Coulomb types for two, four, and six particles.) As men-
tioned, the set of factors can be infinite,18 even for finite N.
As an example, in a finite periodic system, one can view
the three-dimensional Coulomb interaction between particles
i and j as a sum of interactions between i and each periodic
copy of j indexed by an image index n ∈ Z3. For the case
of the above two-water-molecule Coulomb interaction, we
would then have M =

({
i, j, k, l, m, n

}
, Coulombn

)
. The type

set T would then contain all of the separate-image Coulomb
interactions,

{
Coulombn : n ∈ Z3} ⊆ T, (3)

where the set of Coulomb types may be a proper or an
improper subset of T. We will treat such factor types in
Sec. III.

Given the potential factorization enforced by Eq. (1),
the Boltzmann weight π(c) = exp

[−βU(c)
]

of configuration

c =
{
r1, . . . , rN

}
reduces to a product over factor weights

πM (cM ) = exp
[−βUM (cM )

]
,

π(c) =
∏

M

πM (cM ) =
∏

M

exp
[−βUM (cM )

]
, (4)

where cM is the factor configuration, that is, the configura-
tion c restricted to the indices of factor M. The traditional
Metropolis filter,1 which defines the acceptance probabil-
ity for a move from configuration c to configuration c′ in
the Metropolis algorithm, does not factorize in a similar
fashion,

p Met (c→ c′
)
= min

[
1, exp

(−β∆U
)]

, (5)

= min
1,

∏

M

exp
(−β∆UM

) , (6)

where ∆UM = UM (c′M ) − UM (cM ) is the factor-potential dif-
ference between factor configurations cM and c′M . The recent
factorized Metropolis filter6 inverts the order of the product
and the minimization and thus casts the acceptance probabil-
ity of a move into the same factorized form as the Boltzmann
weight,

p Fact (c→ c′
)
=

∏

M

min
[
1, exp

(−β∆UM
)]

. (7)

The factorized filter in Eq. (7) and the Boltzmann weight
are now written as analogous products. Strictly speaking, M
is a generalized index denoting a factor

(
exp

(−β∆UM
)

or
min

[
1, exp

(−β∆UM
)] )

. It is for simplicity that we refer to M
as a “factor” rather than a “generalized index for the Boltzmann
factor and the filter factor.”

The factorized Metropolis filter satisfies the detailed-
balance condition,

π(c)p Fact(c→ c′) = π(c′)p Fact(c′ → c). (8)

This is evident if there is only a single factor [U = UM in Eq. (1)
so that Eqs. (5) and (7) are identical] because the Metropolis
algorithm itself is well known to satisfy it,

π(c)p Met(c→ c′)︸                ︷︷                ︸
FMet

c→c′

= π(c′)p Met(c′ → c)︸                 ︷︷                 ︸
FMet

c′→c

. (9)

If there is more than one factor, pFact also satisfies detailed
balance because the Boltzmann weight π of Eq. (4) and the
factorized Metropolis filter pFact of Eq. (7) factorize (that
is, break up) in exactly the same way and Eq. (7), on the
level of a single factor, is again equivalent to the Metropolis
algorithm.

Applying the Metropolis filter pMet of Eq. (5) is equivalent
to drawing a Boolean random variable,

XMet(c→ c′) =


“True” if ran(0, 1) < p Met(c→ c′),

“False” else,

(10)

where “True” means that the move from configuration c to con-
figuration c′ is accepted. Similarly, the factorized Metropolis
filter pFact could be applied by drawing a single Boolean ran-
dom variable with pFact replacing pMet in Eq. (10). However,
because pFact ≤ pMet, this would yield a less efficient algorithm.
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We rather view the factorized Metropolis filter as a conjunction
of Boolean random variables,

XFact(c→ c′) =
∧

M∈M
XM

(
cM → c′M

)
. (11)

Now, XFact(c → c′) is “True” if the independently drawn
factorwise Booleans XM are all “True”,

XM =


“True” if ranM (0, 1) < e−β∆UM ,

“False” else,
(12)

where the uniform random variables ranM (0, 1) are mutually
independent for all M.

The conjunction of Eq. (11) formulates the consensus
principle: In order to be accepted, the move c → c′ must be
independently accepted by all factors M. For example, for a
homogeneous N-particle system with pair factors

({
i, j

}
, pair

)
,

the move of a single particle k must be individually accepted
by the factors

({
k, j

}
, pair

) ∀j , k. In other words, the move of
particle k must be accepted by all other particles, each through
its individual Metropolis filter.

For a continuously varying potential, the acceptance prob-
ability of a single factor M has the following infinitesimal
limit:

min
[
1, exp (−β∆UM )

]
= exp

(−β∆U+
M
)

∆UM→dUM−−−−−−−−−→ 1 − βdU+
M , (13)

where

x+ = max(0, x) (14)

is the unit ramp function of a real number x. In this limit, the
factorized Metropolis filter becomes

p Fact(c→ c′) = 1 − β
∑

M

[
dUM (cM → c′M )

]+
, (15)

and the total rejection probability for the move becomes a sum
over factors

1 − p Fact(c→ c′) = β
∑

M

[
dUM (cM → c′M )

]+
. (16)

In ECMC, the infinitesimal limit generally corresponds to
the continuous-time displacement of a particle k at position
rk = (xk , yk , zk) and it is usually along a coordinate axis. Sup-
posing that this displacement is in direction êx, the differential
of the factor potential becomes

dUM = q̃M,k dxk , (17)

where

q̃M,k
({

ri : i ∈ IM
})
=
∂UM

∂xk
, (k ∈ IM ) (18)

is the factor derivative with respect to particle k. We then define
the factor event rate with respect to particle k as

qM,k = β
[
q̃M,k

]+, (19)

so that each of the terms dU+
M becomes

βdU+
M = qM,k dxk . (20)

The event rate qM ,k yields the probability of an event being
triggered by particle k within factor M. The total event
rate

Qk
({

r1, . . . , rN
})
=

∑

M=(IM ,TM ):k∈IM

qM,k
({

ri : i ∈ IM
})

(21)

with respect to a particle k naturally involves only event rates
for factors that contain k in their index set.

B. Lifting and factorization schemes

The lifting concept10 is central to ECMC. It lends per-
sistence to the individual Monte Carlo moves and thereby
allows one to take the zero-displacement limit. It is in this
limit that the sampling of factors becomes unique. We now
describe the implementation of a lifted irreversible Markov
chain for the simulation of pair-interacting particles,6 starting
with a single pair. We then generalize16 the method to complex
multi-particle potentials.

In a standard Markov-chain Monte Carlo algorithm, the
rejection of a move of some particle at time s imposes that
the state c(s + 1) of the Markov chain at time s + 1 remains
unchanged with respect to the state c(s) at time s. A new
move is then proposed. For a local Monte Carlo algorithm
in a particle system, this new move normally consists in an
independently sampled displacement applied to another ran-
domly chosen particle. In order to converge toward the correct
stationary distribution π, we recall that the Markov chain must
satisfy the global-balance condition,

Fc =
∑

c′′
Fc′′→c =

∑

c′′
π(c′′)p(c′′ → c) = π(c), (22)

meaning that the total flow Fc into a configuration c must
equal its Boltzmann weight.49 The detailed-balance condition
of Eq. (8) is only a special solution of Eq. (22). In addition
to the global-balance condition, the Markov chain must also
be irreducible and aperiodic. These two conditions are easily
satisfied;4 the former guarantees that any configuration will
eventually be visited, while the latter guarantees that the large-
time limit has no hidden periodicities.

In ECMC, any physical configuration c (that is, any set of
particle coordinates) is augmented (or “lifted”11) to include
the so-called lifting variable describing which particle is
“active”,

c ≡ {
r1, . . . , rN

} 7→ (c, a). (23)

In principle, the Boltzmann weight now depends on a, but,
for simplicity, we require π[(c, a)] = π(c)/N and absorb the
normalization factor 1/N into the zero of the potential and
omit it in the following.

In ECMC, furthermore, the particle a (the active parti-
cle) remains active for subsequent moves as long as they are
accepted, and the displacement (in the case that we will treat)
is always the same.50 For simplicity of notation, in the fol-
lowing, the displacement η is applied in the êx direction for all
moves so that the position ra is updated to ra + ηêx for accepted
moves. When a displacement ra → ra + ηêx is rejected by a
target particle t, the state of the lifted Markov chain changes
in the augmented space as
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(c, a)→ (c, t), (24)

but the physical configuration c remains unchanged. Liftings
thus replace rejections, and the resulting ECMC algorithm is
rejection-free on the augmented space. The global-balance
condition must be written in terms of the augmented con-
figurations, and the probability flow F(c,a) into each lifted
configuration (c, a) is then given by the sum of the mass flow
Fmass

(c,a) , that is, the flow corresponding to a particle displacement

and the lifting flow Flift
(c,a). This sum must equal the statistical

weight of (c, a) that, as discussed, equals π(c),

F(c,a) = Fmass
(c,a) + Flift

(c,a) = π(c). (25)

In order to assure irreducibility of the Markov chain, one may
change the direction of motion, most simply by selecting from
the set

{
êx, êy, êz

}
in a way that does not need to be random

(see the discussion in Sec. V B). In ECMC, the process in
between two changes of direction is the eponymous “event
chain.” The length ` of an event chain (the cumulative sum
of the displacements) and the distribution of ` are essential
parameters for the performance of the algorithm.

To demonstrate that ECMC satisfies the global balance
condition and to study the conditions on the lifting probabil-
ities, we first consider a system of two particles

{
1, 2

}
. We

may suppose, without restriction, that the active particle is 1
so that, at a given time, the lifted configuration is (c, 1). This
lifted configuration can only be reached from two other lifted
configurations, one that differs in the configuration variable
and the other in the lifting variable (see Fig. 1). The lifted
configurations and the corresponding flows are

(26)

where c =
{
r1, r2

}
, c′′ =

{
r1 − ηêx, r2

}
, and c′ =

{
r1, r2

+ ηêx
}
. The mass flow of the lifted algorithm from (c′′, 1)

to (c, 1) equals the total Metropolis flow from the non-lifted
configuration c′′ to c. Because of detailed balance, the lat-
ter equals the (non-lifted) Metropolis flow from c to c′′ so
that

Fmass
(c,1) = FMet

c′′→c = FMet
c→c′′︸             ︷︷             ︸

see Eq. (9)

= π(c)p Met(c→ c′′). (27)

The lifting flow in Eq. (26) equals the rejection probabil-
ity of the Metropolis move c → c′. Because of translational
invariance (c′′ is a translated version of c′), it agrees with
the Metropolis rejection probability of the move back from
c to c′′,

Flift
(c,1) = π(c)

[
1 − p Met(c→ c′)

]
,

= π(c)
[
1 − p Met(c→ c′′)

]
. (28)

FIG. 1. Mass flow [from (c′′, 1)] and lifting flow [from (c, 2)] into a lifted
configuration (c, 1), corresponding to an accepted and a rejected particle move,
respectively [see Eq. (26)]. The total flow should equal the Boltzmann weight
π(c) in order to satisfy the global balance condition of Eq. (22).

Fmass
(c,1) and Flift

(c,1) thus add up to the Boltzmann weight π(c)
and global balance is satisfied. The validity of the lifted algo-
rithm (which only satisfies global balance, but breaks detailed
balance) hinges on the fact that the underlying Metropolis
algorithm satisfies detailed balance and on the translation
invariance of the system.

In the infinitesimal limit, for N particles and a particle-
pair factorized potential, the total probability flow into a lifted
configuration (c, a) has up to N components, namely, N − 1
lifting flows from (c, k) to (c, a) for k , a and one mass move
from (c′, a) to (c, a), where c′ is again the non-lifted config-
uration with xa replaced by xa − dx. This corresponds to one
lifting flowFlift(k → a) equivalent to that in Eq. (26) per target
particle k , a and a mass flow that is the infinitesimal analog of
that in Eq. (26). Furthermore, a particle-pair potential may be
further factorized according to multiple factor types TM ; there
then exist N − 1 lifting flows for each factor M consisting of
two particles (|IM | = 2, with IM the index set of M). Of course,
factors that do not contain a in their index set do not contribute
to this flow.

Factors M with more than two particles (|IM | > 2) can
also be handled within the lifting framework16 because, by
translational invariance, the sum over the factor derivatives
with respect to particle k satisfies

∑

k∈IM

∂xk UM
({

ri : i ∈ IM
})
= 0. (29)

It is useful to separate the particle indices k ∈ IM of a factor
M into two sets I+

M (with positive factor derivatives) and I−M
(negative factor derivatives) such that

k+ ∈ I+
M ⇔ ∂xk+ UM > 0, (30)

k− ∈ I−M ⇔ ∂xk−UM < 0, (31)

where the factor derivatives satisfy
∑

k+∈I+
M

∂xk+ UM = −
∑

k−∈I−M

∂xk−UM (32)

[see Fig. 2(a)].
The mass flow into a lifted configuration (c, k+) with

k+ ∈ I+
M by itself satisfies global balance,

Fmass
(c,k+) = πM (c′′)p Met

M (c′′ → c)

= πM (c)p Met
M (c→ c′′) = πM (c), (33)
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FIG. 2. Factors and lifting schemes. (a) A factor M consisting of |IM | = 5 particles split into non-empty sets I+
M (particles that increase the factor potential) and

I−M [see Eqs. (30) and (31)]. [(b)–(e)] Lifting schemes. Unit branchingγk+→k− = 1 andγk+
1→k− = 1,γk+

2→k− = 1 for a pair-particle factor [(b)] and a three-particle

factor with |I−M | = 1 [(c)], and “ratio” lifting scheme for |IM | = 3, |I+
M | = 1 [(d)] and for |IM | > 3 [(e), see Eq. (40)].

so that there can be no additional lifting moves into
(c, k+). This implies that lifting moves are always as
(c, k+)→ (c, k−), that is, from an active particle in I+

M to a target
particle in I−M . By contrast, the mass flow into the configuration
(c, k−) is smaller than πM (c),

Fmass
(c,k−) = πM (c′′)p Met

M (c′′ → c)

= πM (c)p Met
M (c→ c′′)

= πM (c)(1 + β∂xk−UM︸    ︷︷    ︸
<0 (see Eq. (31))

dx). (34)

The total lifting flow into (c, k−) comes from all lifted
configurations (c, k+) with k+ ∈ I+

M ,

Flift
(c,k−) = πM (c)β

∑

k+∈I+
M

∂xk+ UM dx γk+→k− , (35)

where γk+→k− is the lifting probability from k+ to k− once
the displacement of k+ has been rejected. In order for global
balance to hold, Eqs. (34) and (35) must add up to π(c) for all
k− ∈M−. Therefore, and for the algorithm to be rejection-free,
one needs16

∀k− ∈ I−M : ∂xk−UM︸  ︷︷  ︸
<0

+
∑

k+∈I+
M

∂xk+ UM︸  ︷︷  ︸
>0

γk+→k− = 0, (36)

∀k+ ∈ I+
M :

∑

k−∈I−M

γk+→k− = 1. (37)

Equations (36) and (37) can be visualized as |I+
M | intervals

of length ∂xk+ UM placed on the upper row of a two-row table
and of |I−M | intervals of length |∂xk−UM | on the lower row [see
Figs. 2(b)–2(e)]. The total lengths of the two rows are equal
[see Eq. (32)], and γk+→k− is the fraction of the interval k+ on
the upper row that lifts into k− on the lower row. Equation (36)
describes a conservation of the interval lengths from the upper
row to the lower row.

For a pair factor (|IM | = 2), each row has one element
and the lifting is unique [γ = γk+→k− = 1; see Fig. 2(b)].
For a three-particle factor (|IM | = 3), if |I+

M | = 2, again clearly
γk+→k− = 1 for each one of the particles k+ ∈ I+

M [see Fig. 2(c)].
If |I+

M | = 1 and |I−M | = 2, then Eq. (36) yields the unique
branching probabilities16 from k+ to k−1 and k−2 ,

γk+→k−1 = −
∂xk−1

UM

∂xk+ UM
∝ |∂xk−1

UM |, (38)

γk+→k−2 = −
∂xk−2

UM

∂x+
k
UM

∝ |∂xk−2
UM |, (39)

which is readily understood from Fig. 2(d). Analogously, for
factors with |IM | > 3, the “ratio” lifting corresponds to cut-
ting up each element in the upper row of the table into pieces
of length proportional to the elements in the lower row so
that

γk+→k− =

���∂xk−UM
���∑

k−∈I−M
���∂xk−UM

��� (40)

[see Fig. 2(e)]. For factors with more than three particles
(|IM | > 3), the “ratio” lifting scheme is not unique.16 We will
make use of this freedom, in Secs. IV and V, for factors with
up to six particles corresponding to the atoms of two H2O
molecules.

C. Event-driven and cell-veto methods

The implementation of ECMC differs notably from that of
the Metropolis algorithm, both because of the continuous-time
nature of the Markov chain, which can be simulated with-
out approximations using the event-driven approach,45 and
because of the consensus property, which can be checked in
O(1) operations via the cell-veto method, even for infinite-
ranged interactions.18 (This method can be understood as a
“thinning” of the underlying nonhomogeneous Poisson pro-
cess.51) The event-driven formulation of ECMC and the effi-
cient establishment of the consensus are explored in the present
section. The intent is to overcome the limitations of time-
driven ECMC which considers a finite move ηêx of the active
particle,

{
r1, . . . , ra, . . . , rN

} → {
r1, . . . , ra + ηêx, . . . , rN

}
. (41)

This move is either accepted (and then repeated) or it leads
to a rejection (by a factor M ∈ M containing particle a),
and it gives rise to a lifting (or possibly to multiple simul-
taneous liftings). The complexity of time-driven ECMC is
O(|{M : a ∈ IM

} |) per displacement ηêx. Time-driven ECMC
has a discretization error, as it becomes inconsistent if more
than one factor simultaneously rejects the move in Eq. (41).
The parameter η must be small enough for multiple rejec-
tions to be rare. Time-driven ECMC is thus slow, especially
for long-ranged interactions, and inexact. It is useful only for
testing.

The finite-move ECMC can be implemented as an event-
driven, rather than as a time-driven, algorithm,45,52 and
because all factors are independent, we may consider a sin-
gle one of them. In the above time-driven ECMC, if the move
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in Eq. (41) (the first move, m = 1) is accepted,
another displacement of magnitude η is attempted. The lth
move is
{
r1, . . . , ra + (l−1)ηêx, . . . , rN

}→ {
r1, . . . , ra + lηêx, . . . , rN

}
.

(42)
After m − 1 acceptances, finally, the mth such move
is rejected (and leads to a lifting). The parameter m is
itself a random variable distributed with a factor-dependent
probability

pM (m) =
m−1∏

l=1

e−β∆U+
M (l)

︸          ︷︷          ︸
accepted; see Eq. (13)

move m rejected︷              ︸︸              ︷[
1 − e−β∆U+

M (m)
]
, (43)

where ∆U+
M (l) is the change ∆U+

M corresponding to the lth
move in Eq. (42). The variable m can be sampled from Eq. (43)
and the move ra → ra + (m − 1)ηêx accepted in one step.
Although the right-hand side of Eq. (43) gives a probability
distribution for the displacement of the active particle a, it only
depends on the positive increments of the factor potential. In
the continuum limit η → 0, the second term on the right-hand
side becomes βdU+

M (ra + ηM êx), that is, the factor event rate of
Eq. (20), where ηM is the total displacement before a rejection
by factor M takes place. In this limit, the exponent in the first
term on the right-hand side contains the integral of the factor
event rate for the displacement of ra between 0 and ηM . This
gives the probability density45

pM
(

U+
M
)
= βexp

(−βU+
M
)
. (44)

In Eq. (44), the exponential distribution is sampled by

βU+
M = − log{ ranM (0, 1)}, (45)

where

βU+
M (ra + ηM êx)︸               ︷︷               ︸

sampled via Eq. (45)

=

∫ ηM

0
β
[
∂xa UM

({
ra + ηêx, rk : k ∈ IM

})]+

︸                                          ︷︷                                          ︸
factor event rate, see Eq. (20)

dη. (46)

In other words, βU+
M is the cumulative event rate of Eq. (20).

Equation (46) is an implicit relation for the limiting dis-
placement ηM at which the rejection takes place as a func-
tion of the sampled value of βU+

M . For a two-particle factor
M =

({
a, k

}
, pair

)
, the integration of the pair event rate

in Eq. (46) consists in the replacement of the potential UM

by a related potential which is zero at ra and where all
the negative increments are replaced by horizontal lines (see
Fig. 3).

As mentioned, the factors are independent and each con-
cerned factor M provides a value ηM . The next event takes
place at

η = min
M:a∈IM

ηM (47)

and the factor which realizes this minimum (that is, η),

argminM:a∈IM
ηM , (48)

is the one in which the lifting takes place. For a continuous
potential, this factor is uniquely defined and possible simulta-
neous events, due to finite-precision arithmetic, are too rare to
play a role.

FIG. 3. Event-driven ECMC45 for a two-particle factor M. The integral
of the factor derivative multiplied with β equals βUM , whereas the inte-
gral of the event rate (in red) must equal βU+

M , which is sampled from
Eq. (45). The calculation of the displacement ηM from the sampled value of
βU+

M = − log ran(0, 1) is indicated by arrows.

The integration of the factor event rate in Eq. (46) can
be tedious if it cannot be cast into an explicit analytical form.
This will, for example, be the case for the Coulomb poten-
tial in the merged-image framework of Sec. III C. In addition,
the inversion of the factor potential [the computation of ηM

in Eq. (46)] can be non-trivial. Finally, this calculation must
in principle be redone for all the factors that contain the
active particle a. For a long-ranged potential, this requires
O(N) = O(|{M ∈ M : i ∈ IM

} |) event-rate integrations
and inversions per event. The cell-veto algorithm,18 by use
of a comparison function, avoids the integration and the inver-
sion of the event rate, and it moreover reduces the overall
complexity of ECMC to O(1) per event.

We again first consider a pair factor
({

1, 2
}
, pair

)
, with 1

being the active particle. The lifted position is (c, 1) [with
c = (r1, r2)] and the displacement is again in direction êx

(as in the situation in Fig. 1). We embed the two particles
in disjoint cells C1 and C2 (see Fig. 4). The potentials that we
consider here are singular only at r1 = r2 so that the event rate
for factor M may be bounded by a constant “cell-event” rate
q cell

TM
(C1, C2),

qM,1(r1, r2) ≤ q cell
TM

(C1, C2) ∀r1 ∈ C1, r2 ∈ C2, (49)

where the right-hand side only depends on the factor type.
This factor-type dependence may take into account separate
cell schemes that could, for example, correspond to Coulomb
interactions between isolated charges, dipole–dipole interac-
tions, or to the Lennard-Jones potential. (We recall that we do
not differentiate the different Coulomb types for 2, 4, 6 parti-
cles to ease notation.) In this work, the condition C1 , C2 is
adequate to ensure a reasonable value of the cell-event rate. In
other cases,18 one must exclude a local set of cells and treat

FIG. 4. Cell-veto algorithm for a two-particle factor M. (a) Active particle 1
in cell C1 and target particle 2 in cell C2. (b) The event-rate qM ,1(r1, r2) is
bounded from above by the cell-event rate q cell

TM
(C1, C2), which can be sampled

trivially. A cell event may either be rejected (at point “A”) or confirmed (at
point “B”) as a particle event [see Eq. (50)], while a cell event taking place
outside C1 (at point “C”) means that the active particle 1 will advance toward
the cell boundary.
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local neighbors outside the cell-veto framework. Cell-event
rates are easily tabulated in advance of the ECMC computation
proper.

The probability of the event taking place for an infinites-
imal displacement dx equals qM ,1(r1, r2)dx. Since

qM,1(r1, r2) dx = q cell
TM

(C1, C2) dx
︸            ︷︷            ︸

infinitesimal

qM,1(r1, r2)

q cell
TM

(C1, C2)
︸         ︷︷         ︸

.1

, (50)

the event can initially be sampled as a “cell event” with the
constant infinitesimal probability q cell

TM
(C1, C2)dx, before being

confirmed with the finite probability qM,1(r1, r2)/q cell
TM

(C1, C2)
≤ 1. We may suppose that the cell event takes place at a lifted
configuration (c′, 1) with

c′ = (r1 + ηêx, r2), (51)

π(η) = exp
[
−ηq cell

TM
(C1, C2)

]
, (52)

where η can be sampled via

η = − log[ ran(0, 1)]/q cell
TM

(C1, C2). (53)

Three outcomes are possible for the sampled values of η
and the subsequent confirmation step. First, the cell event may
correspond to a configuration c′ [in Eq. (51)] that is already
outside the active-particle cell (c′ < C1). In this case, the move
is (c, 1)→ (c′′, 1), where c′′ is the configuration intersecting
the trajectory of particle 1 with the boundary of C1. Such a
cell-boundary event moves the particle, but does not trigger a
lifting. Second, the cell event may take place at a configura-
tion c′ ∈ C1 but fails to be confirmed as an event (because a
uniform random number ran

{
0, q cell

TM
(C1, C2)

}
> qM,1(r1, r2))

[see the second term on the right-hand side of Eq. (50)]. In
this case, the move is (c, 1) → (c′, 1) and no lifting takes
place. Third, a cell event may take place at a position c′ ∈ C1

and it is confirmed as an event. This event induces a lifting
(c′, 1) → (c′, 2) [see Fig. 4(b)]. In this whole process, the
factor derivative q̃M,1 is evaluated only when a cell event is
triggered from the exponential distribution in Eq. (52). The
costly integration of the factor event rate in Eq. (46) is thus
avoided.

For an N-particle system, the cell-veto algorithm orga-
nizes the search of the next lifting in O(1) operations. It
suffices to choose a regular grid of cells such that, nor-
mally, only a single particle belongs to each cell. (Exceptional
double-cell occupancies can be handled easily.18) In this case,
the total event rate with respect to the factor type TM for
an active particle in Ca is bounded by the total cell event
rate,

Qcell
TM

(Ca) =
∑

cells Ct,Ca

q cell
TM

(Ca, Ct). (54)

In a translationally invariant system, the total cell event rate
does not depend on the active cell so that Qcell

TM
(Ca) ≡ Qcell

TM
,

a constant that is computed before the ECMC simulation
starts from the total number of cells that scales as O(N).
The next cell event is obtained from an exponential dis-
tribution with parameter Qcell

TM
(Ca). This event corresponds

to cell Ct with probability ∝ q cell
TM

(Ca, Ct), posing a discrete
sampling problem that can be solved in O(1) by Walker’s
algorithm.18,53

The cell-veto algorithm samples the Boltzmann distribu-
tion without performing the event-rate integration in Eq. (46).
It requires only O(1) factor-potential evaluations per event in
an N-particle system. As a consequence, the total potential of
Eq. (1) is not updated and the potential remains unknown as
the Markov chain evolves. This is what sets ECMC apart from
traditional simulation approaches.

III. ECMC COULOMB ALGORITHMS

In a three-dimensional simulation box with periodic
boundary conditions, the Coulomb potential is only condi-
tionally convergent for a charge-neutral system, and it is
infinite for a system with a net charge. Finiteness of the poten-
tial can be recovered in both cases if each point charge is
compensated by a background charge distribution. Tradition-
ally, this is chosen as uniform within the simulation box.17

The precise association of each background charge with its
point charge is not unique. This leads to different electro-
static boundary conditions, which are linked to the polarization
state of the simulation box. Consistency imposes a distinct
fluctuation theorem17 for each choice of the boundary con-
dition when computing macroscopic physical properties such
as the dielectric constant. Alternatively to the uniform com-
pensating background charge, in ECMC, a line-charge model
was introduced.18 In this model, the background charge dis-
tribution is one-dimensional and the factor derivatives are
absolutely convergent. The potential for different variants
of the line-charge model can be absolutely or conditionally
convergent.

As discussed in Sec. II A, ECMC allows for different
Coulomb factor sets that may influence the convergence prop-
erties of the algorithm, although the steady state is invariably
given by the Boltzmann distribution. Roughly, there are two
inequivalent Coulomb factorizations.18 First, the periodic two-
particle problem can be embedded on a three-dimensional
torus and the potential merged from all the topologically
inequivalent minimal paths between particles [see Fig. 5(a)].
For two particles,

{
1, 2

}
, this “merged-image” system has a

single factor
({

1, 2
}
, Coulomb

)
. For N particles, this gives the

factor set

{({
i, j

}
, Coulomb

)
: i < j ∈ {

1, . . . , N
}}

. (55)

FIG. 5. Periodic two-particle Coulomb system. (a) Toroidal representation
corresponding to a merged-image factor. (b) Line-charge representation. The
target point-charge particle and each of its copies are compensated by line
charges of length 2L. The active particle inside the central simulation box[
0, L

)3 is not replicated. (c) Compensating volume-charge representation
corresponding to “tin-foil” boundary conditions.
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In general, the merged-image factors may comprise more than
two particles, but they do not distinguish between the differ-
ent images of a local configuration (for example, an H2O
molecule). Second, we may picture the three-dimensional
periodic system as an infinite number of periodic images of
the simulation box indexed by an integer vector n ∈ Z3.
For two particles already, this “separate-image” system has
an infinite number of factors and for N particles, the factor
set is

{({
i, j

}
, Coulombn

)
: i < j ∈ {

1, . . . , N
}
, n ∈ Z3}. (56)

More generally, an individual “separate-image” factor may
describe an image of certain particles inside the simulation
box.

The aim of this section is threefold. First, we present the
tin-foil and the line-charge Coulomb formulations and then
demonstrate that, although the potentials differ, the Coulomb
factor derivatives (that for pair factors yield the pair event rates)
are identical. Second, we discuss two efficient algorithms for
the merged-image Coulomb derivatives of a pair of particles,
one algorithm from the tin-foil perspective and the other sum-
ming up line-charge derivatives. Third, we set up an ECMC
simulation for two particles in a periodic three-dimensional
simulation box in order to validate that the merged-image and
the separate-image factor sets indeed show indistinguishable
equilibrium properties. We then discuss possible applications
for both factorizations.

A. Tin-foil electrostatics within ECMC

The traditional treatment of electrostatic interactions with
periodic boundary conditions is based17 on a large spherical
aggregate of images of the three-dimensional cubic simu-
lation box. The polarization state of the simulation box is
expressed through electrostatic boundary conditions. With
“tin-foil” boundary conditions, the potential of N particles
i ∈ {

1, . . . , N
}

of charge ci (in units where the Coulomb poten-
tial between two point charges in free space is U ij = cicj/|rij |),
is17

UC
({

r1, . . . , rN
}
,
{
c1, . . . , cN

})
=

1
2

N∑

i=1

ciψ(ri) + Uself(α),

(57)
with the electrostatic potential ψ

ψ(ri) =
N∑

j,i=1

cj


∑

n∈Z3

erfc(α |rij + nL |)
|rij + nL |

+
4π

L3

∑

q,(0,0,0)

e−q2/(4α2)

q2
cos

(
q · rij

) , (58)

where the Fourier-space sum is over q = 2πm/L with m ∈ Z3.
The self-energy contribution Uself(α) is independent of the
particle positions and drops out of our considerations, which
are only concerned with derivatives of the potential. The
left-hand side of Eq. (57) is independent of the convergence
factor α > 0, which however influences the speed of evalu-
ation of Eq. (58). Direct evaluation of the sums for N point
charges leads to an optimal choice α ∼ N1/6/L, and a scal-
ing in operations O(N3/2). The particle–mesh Ewald method

uses an interpolating mesh to approximate the Fourier sum,
leading to O(N log N) operations to evaluate the potential.
In merged-image ECMC, we only use Eq. (58) for N = 2
with α = O(1/L) and evaluate the derivative of the Coulomb
potential to machine precision with O(1) effort.

We continue, as in Sec. II B, with a two-particle factor({
1, 2

}
, Coulomb

)
. The tin-foil factor derivative is given by

q̃({1,2}, Coulomb),1(r12,
{
c1, c2

}
) = q̃Real(r12) + q̃Four.(r12), (59)

with the real-space derivative q̃real,

q̃real(r12) = c1c2

∑

n∈Z3

x12 + nxL

|r12 + nL |2
[

erfc(α |r12 + nL |)
|r12 + nL |

+
2αe−α2 |r12+nL |2

π1/2

 , (60)

and the Fourier-space derivative q̃Four.,

q̃Four.(r12) = c1c2
4π

L3

∑

q,0

qx
e−q2/(4α2)

q2
sin(q · r12). (61)

For two particles and, more generally, for pair factors in an N-
particle system, the merged-image Coulomb pair-event rate,
from Eq. (59), is given by

q({1,2}, Coulomb),1
(
r12,

{
c1, c2

})

= β
[
q̃({1,2}, Coulomb),1

(
r12,

{
c1, c2

})]+
. (62)

In Secs. IV and V, we will consider dipole–dipole factors
with an index set comprising the four or six particles of two
molecules and the “Coulomb” type corresponding to all the
Coulomb interactions between the two molecules. The factor
potential in this case is the sum over Coulomb pairs within
the factor, and the factor derivatives needed in Eq. (36) are the
sum of a finite number of pairwise Coulomb derivatives as in
Eq. (59). The evaluation of the dipole–dipole factor derivatives
remains of complexity O(1) because the number of elements
in each factor remains finite as N → ∞. In ECMC, at most a
single factor has to be evaluated precisely for each move (see
Sec. II C), whereas in traditional MCMC or MD computa-
tions the Coulomb potential in Eq. (57) or its derivatives are
computed for all N particles.

B. Line-charge model

In a large periodically reproduced aggregate of the sim-
ulation box, the sum over the Coulomb derivatives between
a charged active particle and multiple target images (without
neutralizing backgrounds) is ill-defined. However, the com-
pensating uniform volume charge is not the only option to
regularize the sum, as the line-charge model18 and its vari-
ants provide alternatives to tin-foil electrostatics. Here, straight
lines of charges are associated with each copy of the target
particle, and aligned with its direction of motion [in our exam-
ple êx, see Fig. 5(b)]. Although the merged-image line-charge
potential, in its simplest version, is itself not absolutely con-
vergent, its factor derivatives are unequivocally defined and
equivalent to those obtained with tin-foil boundary conditions.
By itself, the line charge neutralizes the charge of the target par-
ticle and (because it is centered) also creates an object with zero
dipole moment. Previous work18 used line charges of length
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L. Here, we consider lengths pL with integer p [see Fig. 5(b)].
The line charges are replicated over a cubic lattice indexed
by the lattice vector n. Lines of different images meet [see
Fig. 5(b)]. The Coulomb potential of the line-charge model
naturally differs from the one of the tin-foil model because
the background charge distributions are manifestly different.
However, the merged-image Coulomb derivative of the line-
charge model, relevant to ECMC, is identical to the tin-foil
expression.

Explicitly, the contribution to the Coulomb derivative
from an image n [with n = (0, 0, 0) the original simulation
box] is

q̃({1,2}, Coulombn),1
(
r12

)
= c1c2

{
x12 + nxL

|r12 + nL |3

+
1

pL

[
1

|r12 + L(n + pêx)/2| −
1

|r12 + L(n − pêx)/2|
]}

.

(63)

The line charge generates an electrostatic potential at large
separations, r = Ln, which varies with a quadrupolar form.
Thus, in any given direction the Coulomb derivative decays as
1/|r|4. For this reason, the sum over the images of the Coulomb
derivatives of Eq. (63) converges absolutely. The merged-
image Coulomb derivative, in the line-charge formulation, is
thus

tin-foil expression, Eq. (59)︷                                ︸︸                                ︷
q̃({1,2}, Coulomb),1

(
r12,

{
c1, c2

})
=

∑

n

q̃({1,2}, Coulombn),1
(
r12

)

︸                           ︷︷                           ︸
sum over line charges, Eq. (63)

.

(64)
To show this, we first consider the target particle 2 in the sim-
ulation box and all its images to be surrounded by a cube of
neutralizing charge of volume L3 centered on the particle 2 and
its images. This volume-charge model [see Fig. 5(c)] is closely
connected to the line-charge model [see Fig. 5(b)]. The point
charge and associated volume charge have vanishing charge,
dipole, and quadrupole moments (whereas the line-charge
model, in its simplest form, has a finite quadrupole moment).
We now compare spherical (radius R � L) and cubic aggre-
gates (of side 2R) of target images and study the electrostatic
potential within the central simulation box. In this process, the
active particle is not replicated, and it remains within the sim-
ulation box. Due to the vanishing quadrupole moment of the
volume charges, the difference in the electrostatic potential on
the particle 1 in the spherical and cubic aggregates decreases
at least as fast as 1/R2. However the electrostatic potential in
the center of the spherical aggregate corresponds to a zero-
polarization state which is identical to the tin-foil expression
of Eq. (58).

We now find explicit integral expression for the Coulomb
derivative of an aggregate of line charges and volume charges
and show that the difference is zero in the limit of a large
assembly. We again consider the interaction between an active
particle and the cubic aggregate of the (2K + 1)3 copies of
the target particle (the central simulation box and its images).
(The active particle is placed inside the simulation box.) The
Coulomb potential between the active particle and a single

target particle is

U12 = 4πc1

∫ ∞
−∞

d3q

(2π)3
eiq ·r12

ρ2(q)

|q|2 , (65)

where ρ2(q) is the structure factor of the target particle and
the background. We now sum over the images, separated by
a multiple of the simulation box size L along each axis. This
requires evaluating the sum

DK (qx) =
K∑

l=−K

eiqx lL =
sin

[
qxL(K + 1/2)

]

sin(qxL/2)
, (66)

and analogously for qy and qz. With the product

D̃K (q) = DK (qx)DK (qy)DK (qz), (67)

this gives the potential of the active particle in the aggregate
of the target particle and its images,

UK = 4πc1

∫ ∞
−∞

d3q

(2π)3
D̃K (q) eiq ·r12

ρ2(q)

|q|2 . (68)

Equation (66) is the Dirichlet kernel which converges, in
a weak sense, to a sum of δ-functions in the limit of
large K,

DK (qx) −−−−→
K→∞

2π
L

∞∑

m=−∞
δ

(
qx − m

2π
L

)
, (69)

and similarly for qy and qz. The width of the central peak
of DK scales as 1/K for large K. Integrals over sufficiently
well-behaved objects become summations in the limit of
large K,

∫
d3q

(2π)3
D̃K (q)f (q)→ 1

L3

∑

q=2πm/L

f (q). (70)

For the volume-charge model, the structure factor is

ρ2(q) = c2

(
1 − sinc

qxL
2

sinc
qyL

2
sinc

qzL
2

)
, (71)

where the first term on the right-hand side describes the
point charge and the product of cardinal sine functions,
sinc(qx) = sin(qx)/qx, etc., the uniform background volume
charge.

From Eqs. (68) and (71), the potential of a finite cubic
array of images of the particle 2, with active particle 1,
is

Uvolume
K = c1c2

∫
d3q
2π2

D̃K (q)
eiq ·r12

|q|2

×
(
1 − sinc

qxL
2

sinc
qyL

2
sinc

qzL
2

)
. (72)

For line charges of length pL, we find

U line
K = c1c2

∫
d3q
2π2

D̃K (q)
eiq ·r12

|q|2
(
1 − sinc

pqxL
2

)
. (73)

The volume-charge model is equivalent to the tin-foil Coulomb
potential. The line-charge model, whose potential is not
absolutely convergent, is nevertheless equivalent for ECMC
because, as we will see, the integrals in Eqs. (72) and
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(73) yield uniquely defined and equivalent Coulomb deriva-
tives for large K. The difference between the two is given
by

∆UK = (U line
K − Uvolume

K ) = c1c2

∫
d3q
2π2

D̃K (q)
eiq ·r12

|q|2

×
(

sinc
qxL
2

sinc
qyL

2
sinc

qzL
2
− sinc

pqxL
2

)
.

The Dirichlet kernels imply that the integral in this equation
is dominated by contributions near q = 2πm/L. However, the
function sinc(qiL/2) also has zeros at these same points (except
when qi = 0, where the sinc function is equal to one). For
large K, the potential differences is thus dominated by a sum
over qy, qz, with qx = 0. This implies that the potential on
the active particle equals (to within a constant) the tin-foil
potential for motion parallel to the line-charges, but the dif-
ference of potentials is corrugated in the perpendicular y–z
plane. This is a consequence of the fusion of multiple aligned
line charges into a single uniform line when p is integer [see
Fig. 5(b)].

We examine the derivative of ∆UK to show that the
Coulomb derivatives converge to the same value,

∂x1∆UK =

∫
d3q
2π2

D̃K (q)
qx sin(q · r12)

|q|2

×
(

sinc
qxL
2

sinc
qyL

2
sinc

qzL
2
− sinc

pqxL
2

)
, (74)

which suppresses the contributions which remained for the
calculation of the potential, due to the factor qx sin(qxx) near
qx = 0.

Finally, we consider explicitly the possible divergence at
|q| = 0 in Eq. (74), due to the presence of the term 1/|q|2. We
expand all the trigonometric functions in the integrand, ∆IK ,
to find

∆IK −−−→
q→0

const ×
q2

x

[
(p2 − 1)q2

x − q2
y − q2

z

]
|q|2 D̃K (q).

Even this contribution is thus driven to zero for large K.
We conclude that in a periodic three-dimensional system,
the line-charge model becomes equivalent to the volume-
charge model, and therefore to tin-foil electrostatics. The
line charges must lie parallel to the direction of motion but
can of course be switched at will. In contrast, the volume-
charge model gives the tin-foil Coulomb derivatives in all
directions.

C. Algorithms for Coulomb derivatives

The merged-image Coulomb derivatives are best
computed from the tin-foil expressions of Eq. (62). To accel-
erate the evaluation, we reduce the Fourier-space compo-
nent of Eq. (61) to a sum over non-negative components
(mx, my, mz),

q̃f (r12) = Axyz sin(λx
12) cos(λy

12) cos(λz
12), (75)

where λx
12 = 2πmxx12/L, and similarly in y and z and

where

Axyz =
16c1c2mx

L2 |m|22δmy ,0+δmz ,0
exp

(
−π

2 |m|2
α2L2

)
(76)

is a position-independent tensor that can be computed before
the simulation starts. In Eq. (75), repeated indices (x, y, z) are
summed over non-negative integers (mx, my, mz).

The merged-image Coulomb derivatives can also be com-
puted from the sum of the line-charge derivatives [see the
right-hand side of Eq. (64)]. Because of the symmetry of
the line charges, the quadrupolar contribution to the deriva-
tive is an odd function of x so that forward and backward
terms cancel, and that the sum converges as 1/K2 for large
K. The convergence may be accelerated using Richardson
extrapolation54 (see Fig. 6). Denoting the finite line-charge
sum over the range n ∈ [−K, K]3 as SK and assuming
that

SK = S∞ +
A

Kp , (77)

one may eliminate A as

S′K+1 =
(K + 1)pSK+1 − KpSK

(K + 1)p − Kp . (78)

The sequence (S′K+1 − S∞) then decays as 1/Kp+1. The trans-
formation of Eq. (78) can be iterated, each time gaining
one power in the asymptotic behavior of the sequence. The
merged-image line-charge derivatives converge to the tin-
foil expression of Eq. (59), confirming that the two algo-
rithms compute the same object and that individual factors
in the line-charge model may be used to simulate tin-foil
potentials.

As in the line-charge model, one may sum up the asso-
ciated point charges and their compensating volume charges
explicitly, rather than proceeding through Fourier transfor-
mation. However, the analytic formulas are difficult to work
with. A further possibility consists in compensating each point
charge with more than one line charge. Remarkably, four line
charges arranged on a square of side L/

√
12 in the y–z plane,

cancel dipole and quadrupole moments in the multipole expan-
sion and lead to an absolutely converging sum for the electro-
static potential. One may also construct more elaborate sheets

FIG. 6. Comparison of the tin-foil expression for the Coulomb factor deriva-
tive and the sum over line charges for a given value of r12 [see Eq. (64)] as a
function of the cutoff K. The 8-fold iterated Richardson extrapolation for the
line-charge expression agrees with the tin-foil expression to within 10−12 for
K ≈ 20.
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FIG. 7. Comparison of the sum of the separate-image event rates
∑

n β
[
q̃({1,2}, Coulombn),1

(
r12

)]+ (upper row) and the merged-image event rate
β
[
q̃({1,2}, Coulomb),1

(
r12

)]+ (lower row). In all panels r12 = (x12, y12, z12) with (a) z12 = 0.1, (b) z12 = 0.2, (c) z12 = 0.3, and (d) z12 = 0.4. L = 1 and
βc1c2 = 1 throughout.

and volumes of screening charges to cancel higher orders in
the multipole expansion. All of these screening objects pre-
sented here regularize the sum of the pair derivatives over
images and allow for separate-image factor sets [analogous
to Eq. (56); see Sec. III D]. Although the sequence SK decays
faster, the Coulomb event rate is not reduced by these different
objects.

D. Separate-image ECMC

As we have seen, all the Coulomb interactions in a finite
system with periodic boundary conditions can be image-
merged into a single Coulomb type that sums over all the
inequivalent minimal paths between two points on a torus,
and that correspond to images in the rolled-out representation
of periodic boundary conditions. For two particles 1 and 2, this
is expressed through a single factor M =

({
1, 2

}
, Coulomb

)
.

The corresponding factor derivatives can then be computed
with the traditional tin-foil expression [Eq. (59)] or within the
line-charge framework [Eq. (64)]. The choice of one over the
other is a matter of efficiency only (the algorithmic complex-
ity being the same). Each of the formulations suggests other

FIG. 8. Cumulative histogram of the pair separation |r12 | for two particles
of equal charge in a periodic three-dimensional simulation box (βc1c2 = 2,
L = 1).

choices for the interaction types. In the line-charge formula-
tion, the choice of an infinite set of types

{
Coulombn : n ∈ Z3}

suggests itself. For two particles 1 and 2, the set of separate-
image factors is

{({
1, 2

}
, Coulombn

)
: n ∈ Z3}. Within

ECMC, these images are statistically independent but only
one of them must be computed precisely for each event.
This is because, as in Sec. II, we can use a variant of the
cell-veto algorithm (supplemented with an asymptotic bound-
ing function18), in order to sample the relevant image index
n and to then compute the corresponding factor derivative
of Mn.

Separate-image Coulomb factors generally come with
larger pair event rates, as the contributions from different
images do not compensate (see Fig. 7). On the other hand, eval-
uating a separate-image Coulomb derivative [as in Eq. (63)] to
machine precision requires just a few operations, many fewer
than what is required for its merged-image counterpart. Details
of the separate-image Coulomb factors can influence the effi-
ciency of the algorithm. As an example, the terminal point of
the line charge is a singular point of Eq. (63) and should not
approach another point charge in the system. This motivates
our choice of length 2L (or multiples thereof), as the terminal
point of one line charge then coincides with the position of
an image of the original particle. For the Coulomb potential,
the nonphysical line-charge singularity, confounded with the
singularity of the point charge, no longer disrupts the ECMC
dynamics.

The dynamic behavior of the different factor sets for the
Coulomb problem has not yet been explored in detail. As a first
step, for a system of two like Coulomb charges, merged-image
and separate-image ECMC was validated against the regular
tin-foil Metropolis algorithm (see Fig. 8). All three methods
clearly sample the Boltzmann distribution in the asymptotic
steady state.

IV. DIPOLE–DIPOLE FACTORS

In ECMC, one may tailor the factor sets to the problems
at hand. In electrostatic systems made up of local dipoles,
specific “dipole–dipole” Coulomb factors may thus contain
all the atoms distributed over two molecules that can be
far apart from each other. These factors yield much smaller
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event rates than “particle–particle” pair factors. In addition, a
special “inside-first” lifting scheme can direct most of the lift-
ing flow from the active particle to a target particle situated
on the same molecule. Even for a non-local factor made up
of two distant dipoles, the lifting flow will thus mostly be
between an active particle and a target particle on the same
molecule (the probability of an intramolecular lifting grows
like log N, whereas all the intermolecular liftings remain con-
stant). We expect such a local lifting scheme for extended
factors to show interesting dynamic properties. In the present
section, we explore dipole–dipole factors in a simple model
of charge-neutral two-particle molecules before employing
them, in Sec. V, to a model of liquid water. We expect dipole–
dipole factors and their variants to have useful applications in
ECMC.

Concretely, for a simple model of two-particle dipoles in a
three-dimensional periodic simulation box, the dipole–dipole
factor for the particles

{
1, 2, 3, 4

}
is given by

({
1, 2, 3, 4

}
, Coulomb

)
, (79)

[see Fig. 9(b)], where the corresponding Coulomb factor
potential is

U({1,2,3,4}, Coulomb)(r1, . . . , r4) =
2∑

i=1

4∑

j=3

UC
(
rij,

{
ci, cj

})
. (80)

The factor of Eq. (79) thus comprises the four Coulomb poten-
tials between these particles, using the Coulomb potential of
Eq. (57). The model excludes, as is usual,30 Coulomb inter-
actions within a dipole. For the same four particles, one may
also use the “particle–particle” factors

{({
1, 3

}
, Coulomb

)
,
({

1, 4
}
, Coulomb

)
({

2, 3
}
, Coulomb

)
,
({

2, 4
}
, Coulomb

)}
, (81)

with the “particle–particle” factor potential

U({i,j }, Coulomb)
(
rij,

{
ci, cj

})
= UC

(
rij,

{
ci, cj

})
(82)

[see Fig. 9(a)]. We suppose that the particle 1 is active. The
dipole–dipole event rate

β
[
q̃({1,2,3,4}, Coulomb),1

]+ (83)

then allows the interactions UC(r13) and UC(r14) to com-
pensate each other (and to give the event rate correspond-
ing to a point charge interacting with a dipole), while the
particle–particle event rate

β
[
q̃({1,3}, Coulomb),1

]+ + β
[
q̃({1,4}, Coulomb),1

]+ (84)

remains much larger (corresponding to a point charge sepa-
rately interacting with two isolated point charges) because the

FIG. 9. Model of two-particle dipoles. (a) Particle–particle factor associating
two point charges that belong to different dipoles. (b) “dipole–dipole” factor
comprising four Coulomb interactions.

unit-ramp functions are both non-negative [see Eq. (14)] and
one of them is usually zero.

A. Event-rate scaling for Coulomb factors

We now consider a homogeneous system of dipoles of size
|d| ∼ d small compared to the simulation box (see Fig. 10). For
concreteness, we suppose that particle 1 is the active particle.
The event rate, whose scaling with system size we compute
in the present section, is the result of the interaction between
the particle 1 and the distant dimer (in Fig. 9 made up of
particles 3 and 4). As there is no Coulomb interaction between
particles on the same dipole, the position of particle 2 (the
dipole partner of particle 1) does not come into play for the
event rate. We will see in Sec. IV B that this is no longer true for
the lifting rates, which are influenced both by the distant dimer
and by the local dimer of particle 1, that is, by the position of
particle 2.

The electrostatic potential at a distance r from a point
charge ck , within the merged-image (tin-foil) formulation in a
box of side L, is given by the scaling form

ψL(r) =
ck

|r| fE(r/L), (85)

which generalizes Coulomb’s law valid in free space. The func-
tion f E(x) is smooth and remains O(1) for all x ∈ [−1/2, 1/2]3.
For separations such that |r|/L � 1, the potential given by
Eq. (85) has the expansion55

ψ(r) = ck

(
1
|r| +

const
L

+
2π |r|2

3L3
+ · · ·

)
. (86)

The nth-order derivatives of f E(r/L) are also smooth and have
an amplitude which scale as L−n. The Coulomb derivative
between an active particle and a particle k, separated by a
vector r ∈ [−L/2, L/2]3, also has the scaling form

βq̃({1,k }, Coulomb),1 =
lB
|r |2 f 1

E (r/L). (87)

FIG. 10. Lifting schemes for a dipole–
dipole factor. (a) Dipole–dipole factor
with four Coulomb interactions. It is
assumed that ∂x1 UM > 0, ∂x4 UM > 0
and ∂x2 UM < 0, ∂x3 UM < 0. (b)
“ratio” lifting, (c) “inside-first” lifting
(d) “outside-first” lifting.
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Here, we have introduced the characteristic Bjerrum length
lB = |e2|β, with e being the elementary charge, the dis-
tance at which the Coulomb interaction equals the thermal
energy and used f 1

E as a new scaling function, which again
remains O(1). An explicit form for Eq. (87) at small sepa-
rations can be found from Eq. (86). For a constant number
density ρ of particles within the simulation cell, the mean
total Coulomb event rate per particle,

〈
Qp–p

〉
, is given by the

integral

〈Qp–p〉 =
∑

k,1

〈
q({i,k }, Coulomb),1

〉
(88)

=

∫

[−L/2,L/2]3

lBρ

|r|2 f 1
E (r/L) d3r

= lBρL
∫

[−1/2,1/2]3

1

x2
f 1
E (x) d3x ∼ lBρL. (89)

This mean total event rate thus diverges as O(L). The recip-
rocal of

〈
Qp–p

〉
sets the scale for the mean-free path due to

charge–charge interactions, and it is of length scale O(1/L).
The result agrees with the naive free-space argument18 based
on the bare 1/|r| Coulomb interaction. At constant density,
the divergence of Eq. (89) in L ∼ N1/3 implies that the
active and target particles are often widely separated from
each other. With pair factors, one thus expects a complex-
ity of O(N4/3) for an O(1) displacement of all particles in the
system.

The scaling form of the potential can also be used to deter-
mine the event rate for dipole–dipole factors [as in Fig. 9(b)],
the interaction of point charges with dipoles, or the interaction
of pairs of well-separated dipoles. The potential at a distance
r from a dipole in the periodic box is found from Eq. (85) by
applying the operator (−d·∇), with d the dipole moment. Using
again |d| ∼ d implies that the event rate of the dipole–dipole
factor, resulting from the interaction of the active particle 1
with the dipole at a distance r corresponds to a particle–
dipole Coulomb interaction. The dipole–dipole event rate, for
two dipoles separated by a vector r ∈ [−L/2, L/2]3 is given
by

βq̃({1,2,3,4}, Coulomb),1 ∼ dlB
|r|3 f 1

E (r/L), (90)

where r denotes the vector from the active particle to the
dipole. Equation (90) implies that ECMC with dipole–dipole
factors has a much lower mean total Coulomb event rate
〈QCoulomb〉,

〈QCoulomb〉 =
∫

[−L/2,L/2]3

lBρd

|r|3 f 2
E (r/L) d3r

= lBρd
∫

[−1/2,1/2]3

1

|x|3 f 2
E (x) d3x, (91)

where f 2
E is another scaling function. The second integral

in Eq. (91) is weakly divergent near the origin (which sim-
ply means that in ECMC very nearby dipoles have to be
treated individually). Excluding a region of radius O(d/L),
the mean total Coulomb event rate using dipole–dipole factors
is

〈QCoulomb〉 ∼ lBρd log(L/d). (92)

This much reduced total event rate, obtained by limiting the
contributions from large distances, is our main motivation for
using dipole–dipole factors.

The scaling obtained in Eqs. (90) and (92) is independent
of the specific definition of the dipole model. It only relies
on the use of dipole–dipole factors connecting two charge-
neutral molecules that may be far apart (see Sec. V, where
the dipoles are realized by H2O molecules). The scaling is
also insensitive to the introduction of screening charge distri-
butions, and it holds both for the merged-image and for the
separate-image factor sets. Adapting this factorization frame-
work to systems composed of molecules that behave as approx-
imate higher-order multipoles would further improve the
scaling.

B. Dipole–dipole lifting schemes

We now consider lifting schemes for dipole–dipole fac-
tors, and for concreteness, we consider a four-particle sys-
tem of particles

{
1, 2

}
, forming a charge-neutral dipole d12

and particles
{
3, 4

}
, forming an analogous dipole d34. In this

two-dipole system, particle 1, for example, not only inter-
acts with a charge-neutral dipole d34, but is itself inside such
a dipole d12. Although the Coulomb lifting rate is oblivi-
ous to the position of 2 (as there is no Coulomb interaction
between particles 1 and 2), particle 2 is part of the dipole–
dipole factor, and its position influences the relative lifting
rates.

We obtain the derivatives with respect to particles
1 and 2 for the factor M =

({
1, 2, 3, 4

}
, Coulomb

)
as

follows:

βq̃M,1 = lB

[
a
|d34 |
|r|3 + O

( |d34 |2
|r|4

)
+ O

( |d34 |
L3

)]
, (93)

βq̃M,2 = lB

[
−a
|d34 |
|r|3 + O

( |d34 |2
|r |4

)
+ O

(|d34 |
L3

)]
. (94)

The dominant terms in these two equations are equal in mag-
nitude yet opposite in sign, reflecting that particles 1 and
2 interact with the same distant dipole d34, are of oppo-
site sign, and close to each other (on the dipole d12). For
the factor derivatives with respect to particles 3 and 4, we
find

βq̃M,3 = lB

[
ã
|d12 |
|r|3 + O

( |d12 |2
|r|4

)
+ O

( |d12 |
L3

)]
, (95)

βq̃M,4 = lB

[
−ã
|d12 |
|r|3 + O

( |d12 |2
|r |4

)
+ O

(|d12 |
L3

)]
. (96)

[For ease of notation, we used here Eq. (86) for small |r|/L
rather than the full scaling form.]

The coefficient a (and analogously for ã) reflects the ori-
entation of d34 with respect to the distance vector between the
two dipoles (see Fig. 10). Remarkably, the factor derivatives of
M with respect to the particles within each dipole (q̃M,1 + q̃M,2

and q̃M,3 + q̃M,4) cancel at order 1/|r|3 and leave a remainder of
1/|r|4. This dipole–dipole compensation to order 1/|r|3 of the
factor derivatives is a general feature for pairs of local dipoles
(that can be composed of more than two atoms) inside a factor
and occurs in the same manner with the full scaling functions
in the merged-image potential.



064113-16 Faulkner et al. J. Chem. Phys. 149, 064113 (2018)

We recall from Eq. (29) that the four factor derivatives
exactly sum up to zero. As illustrated in Sec. II B (see Fig. 2),
the lifting scheme corresponds to arranging the indices k+ ∈ I+

M
on the upper row of a two-row table and the indices k− ∈ I−M
on the lower row. In a factor with large separation |r|, each row
contains one element corresponding to each of the two dipoles
(see Fig. 10).

The “ratio” lifting scheme is as described in Sec. II B. All
elements fall off as O(1/|r|3) [see Eq. (90)], and both rows
contain elements representing each dipole. From Eqs. (94)
and (96), this leads to comparable proportions of intra- and
inter-molecular liftings. Both rates fall off at the same rate, but
their coefficients are different reflecting the orientations of the
dipoles. The total inter- and intra-dipole lifting rates both scale
as log L [see Fig. 10(b) and Table I].

In the “inside-first” lifting scheme, the elements corre-
sponding to each dipole are aligned with each other. The
two match to order ∼1/|r|3. The mismatch in bar length
is O(1/|r |4) in Eqs. (93) and (94). In the full scaling
picture, the difference in length of the elements can be
computed analogously. Coulomb liftings thus occur mostly
within a dipole, and long-ranged inter-dipole liftings remain
bounded in number for large system sizes [see Fig. 10(c) and
Table I].

Finally, the “outside-first” lifting scheme consists in ver-
tically aligning elements corresponding to different dipoles.
Aligned elements are of length ∼|a| and ∼|ã| so that intra-
and inter-dipole lifting rates again both fall off as O(1/|r |3).
The situation is analogous to the one for the “ratio” lifting,
and the “outside-first” scheme remains strongly non-local [see
Fig. 10(d) and Table I].

In contrast to the above dipole–dipole factors, the
“particle–particle” factor, as argued in Eqs. (87) and (89), pro-
duces events which occur at the scale of the simulation box at
a rate which decreases as only 1/|r|2, leading to a total event
rate increasing linearly with L. The lifting flow is between one
dipole and the other, and the intra-dipole lifting rate is zero
(see Table I).

C. Validation of factors and liftings

The dipole–dipole factors and their different lifting
schemes can be checked for consistency for two charge-
neutral dipoles with a short-ranged vibrational intra-dipole
potential, a repulsive potential between oppositely charged

TABLE I. Coulomb lifting rates for two dipoles separated by a distance |r|/L
� 1, together with full integrated rate in simulation box of size L3: One
particle–particle and three dipole–dipole schemes (“ratio,” “outside-first,” and
“inside-first”). qintra: lifting rate to the non-active particle within the active
dipole. qinter: lifting rate to the triggering dipole. 〈Qintra〉 and 〈Qinter〉 denote
the mean total event rates (using the full scaling form, as in Sec. IV A),
integrated over the simulation box.

Lifting scheme
qintra qinter 〈Qintra〉 〈Qinter〉 Lifting

Particle 0 1/|r|2 0 L inter-dipole

Ratio 1/|r|3 1/|r|3 log L log L inter + intra
Outside-first 1/|r|3 1/|r|3 log L log L inter + intra
Inside-first 1/|r|3 1/|r|4 log L const inter-dipole

particles (needed to keep dipoles apart from each other),
and intermolecular Coulomb interactions. With particles num-
bered as in Fig. 9, the model corresponds to a factor
set

{({
1, 2

}
, bond

)
,
({

3, 4
}
, bond

)
,
({

1, 4
}
, rep

)
,

({
2, 3

}
, rep

)
,
({

1, 2, 3, 4
}
, Coulomb

)}
, (97)

with the harmonic bond factor potential,

U({i,j }, bond)
(
rij

)
=

1
2

kb

(
|rij | − r0

)2
, (98)

with kb > 0, a short-range repulsive potential

U({i,j }, rep)
(
rij

)
=

1
2

k2

(
r0

|rij |
)6

, (99)

with k2 > 0, and a scalar separation r0, in addi-
tion to the dipole–dipole Coulomb factor potential of
Eq. (80).

The dipole–dipole Coulomb factor differs from the
particle–particle Coulomb factors in the set,

{({
1, 2

}
, bond

)
,
({

3, 4
}
, bond

)
,
({

1, 4
}
, rep

)
,

({
2, 3

}
, rep

)
,
({

1, 3
}
, Coulomb

)
,
({

1, 4
}
, Coulomb

)
,

({
2, 3

}
, Coulomb

)
,
({

2, 4
}
, Coulomb

)}
, (100)

where the factor potentials corresponding to bond vibrations
and the repulsion between unlike charges are as in Eqs. (98) and
(99) and the Coulomb factor potentials are those of Eq. (82).
In addition, since |IM | = 2 for each particle-factorized fac-
tor M, we have no freedom in choosing a lifting scheme (see
Sec. IV B).

The “ratio,” “inside-first” and “outside-first” lifting
schemes for the dipole–dipole factor are easily implemented
and compared to the particle–particle lifting scheme. By
construction, they yield identical thermodynamic correla-
tions (see Fig. 11). Although the event rates are fixed
by the decomposition of the total potential into factors,
the different lifting schemes may differ in their dynamical
behavior.

FIG. 11. Cumulative histograms of the distances |r13 | [like charges, see
Fig. 10(a)] and |r14 | [opposite charges, see Fig. 10(a)] for the particle–particle
factor set of Eq. (100) and also for the factor set of Eq. (97) using dipole–
dipole Coulomb factors, using the three lifting schemes of Figs. 10(b)–10(d).
Also separate-image dipole–dipole factors with inside-first lifting. Periodic
cubic simulation box with L = 1, ci = ±1 point charges, β = 1, kb = 400,
k2 = 1, and r0 = 0.1.
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V. LIQUID WATER AND DIPOLE–DIPOLE FACTORS

To explore ECMC in a realistic context, we imple-
ment in this section the simple point-charge water model
with flexible molecules (SPC/Fw), a well-studied all-atom
model for liquid water.30 This model combines the long-
ranged Coulomb potential with hydrogen–oxygen bond-length
vibrations, a flexible hydrogen–oxygen–hydrogen angle, and
a specific oxygen–oxygen interaction of the Lennard-Jones
type. The SPC/Fw model is closely related to one used in
molecular-dynamics simulations of solvated peptides.43

Naturally, each water molecule is charge-neutral and
dipolar so that the dipole–dipole factorization of Sec. IV
applies. This realizes a mean-free path for a single particle
as ∼1/log N in the thermodynamic limit (an earlier ECMC
Coulomb algorithm18 had obtained a mean-free path scaling as
∼1/N1/3).

A. Factors in the SPC/Fw water model

To simulate liquid water with the SPC/Fw potential, we
use the following type set:

{
bond, bending, LJ, Coulomb

}
. (101)

As an example, the factor set for two water molecules, con-
taining particles

{
1, 2, 3

}
and

{
4, 5, 6

}
, respectively, [and with

2 and 5 being the oxygens, see Fig. 12(a)] is
{({

1, 2
}
, bond

)
,
({

2, 3
}
, bond

)
,

({
4, 5

}
, bond

)
,
({

5, 6
}
, bond

)
,
({

2, 5
}
, LJ

)
,

({
1, 2, 3

}
, bending

)
,
({

4, 5, 6
}
, bending

)
,

({
1, . . . , 6

}
, Coulomb

)}
. (102)

This factor set [see Fig. 12(b)] trivially generalizes to more
than two H2O molecules.

In Eq. (102), the “bond” factor potential of Eq. (98)
describes oxygen–hydrogen bond vibrations with the equilib-
rium bond distance r0 = 1.012 Å and kb = 1059.162 kcal mol−1

rad−2, that correspond to the SPC/Fw parameters. The “bend-
ing” factor potential describes the fluctuations in the bond
angle within each H2O molecule,

U({i,j,k }, bending)(ri, rj, rk) =
1
2

ka

(
φ {i,j,k } − φ0

)2
,

where φ {1,2,3} and φ {4,5,6} denote the internal angle between
the two legs of each H2O molecule (see Fig. 12).
We adopt the SPC/Fw parameters: φ0 = 113.24◦ and
ka = 75.90 kcal mol−1 Å−2. The specific Lennard-Jones inter-
action between oxygen atoms corresponds to the “LJ” factor

potential

U({2,5}, LJ)(r25) = k LJ


(
σ

|r25 |
)12

−
(
σ

|r25 |
)6 , (103)

where kLJ = 0.62 kcal mol−1 and σ = 3.165 Å are pre-
scribed in the SPC/Fw model. The Lennard-Jones potential
is truncated beyond 9.0 Å. This truncation, however, is unnec-
essary if the cell-veto algorithm is used. Finally, the dipole–
dipole “Coulomb” factor potential, in direct generalization of
Eq. (80), is given by

U({1,...,6}, Coulomb)(r1, . . . , r6) =
3∑

i=1

6∑

j=4

UC(rij,
{
ci, cj

}
).

(104)
Here, the Coulomb potential of Eq. (57) is used with the
SPC/Fw parameters c1 = c3 = c4 = c6 = 0.41e and c2 = c5

= −0.82e (with e the elementary charge).
The type set of Eq. (101) is by no means unique. We

could also break up the Lennard-Jones interaction into two
types, corresponding to the two components of the Lennard-
Jones potential (as discussed in Sec. II A). Also, instead
of the merged-image Coulomb type, we could adopt any of
the variants of the separate-image type, resulting in a type
set,

{bond, bending, LJ, Coulombn : n ∈ Z3}.
Finally, it is possible to break up the “bond” and “bending”
factors into NH2O−1 equal terms in order to construct a unique
dipole–dipole factor for each pair of H2O molecules in such
a way that the type set only contains a single element. All
these choices are correct, but they may differ in the ease of
implementation and in the speed with which they approach
equilibrium.

B. Intrinsic rotations

Our version of ECMC is formulated in terms of displace-
ments that, for a given event chain, are along one of the
directions

{
êx, êy, êz

}
. Each individual event chain can strain

the system, but is unable to rotate it, as the coordinates per-
pendicular to the direction of motion remain unchanged. The
flexible SPC/Fw H2O molecule may itself get strained in a
single event chain. Applying strain subsequently in different
directions is known to be equivalent to a rotation on all lev-
els, and, in particular, on the level of a single molecule. This
guarantees that the algorithm is irreducible and can attain all
of configuration space.

The rotation that is induced through subsequent event
chains in the three directions can be illustrated in an

FIG. 12. SPC/Fw water model and
ECMC factors. (a) Two H2O molecules,
with particles

{
1, 2, 3

}
and

{
4, 5, 6

}
,

respectively (2 and 5 being the oxy-
gens). Each of the molecules has a finite
dipole moment. (b) “bond,” “bending,”
“LJ,” and “Coulomb” factors imple-
menting the SPC/Fw model. Factors
contain between two and six particles.
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ECMC simulation of a single H2O molecule, using only
the intramolecular factor types in Eq. (101). The rota-
tional dynamics of such a single molecule is easily tracked
through the equilibrium autocorrelation function of the
dipole moment d = r21 + r23 (see Fig. 12), given
by

A(s) =
〈
d
(
s′
) · d(

s′ + s
)〉 ∼ exp(−s/λ) for s→ ∞,

where the variables s and s + s′ denote the ECMC dis-
placement (proportional to the time of the continuous
Markov process). A(s) decays exponentially at large s with
a rate that gives the autocorrelation length λ of molecular
orientation.

At temperature 300 K, the cumulative chain length it takes
to rotate the molecule around itself is about one to two orders
of magnitude larger than the H2O molecule itself (see Fig. 13).
In the limit of large chain lengths `, the autocorrelation length
of the dipole moment is proportional to `. This simply means
that lengthening an already long chain does not add to the
internal strain of the water molecule, as a local equilibrium is
reached.

The sequence of chain directions need not be random:
The switching of directions merely renders the Markov
chain irreducible, whereas global balance is satisfied for
any infinitesimal move (without the return move necessary
for detailed balance). As a deterministic, cyclic, sequence
êx êyêzêx êy . . . avoids repetitions, we find it to decorrelate the
dipole moment faster than a uniform random sampling of
chain directions (see Fig. 13). The rotations of molecules
are thus generated as a byproduct of the switching of event-
chain directions. In practical applications, it remains to be
seen whether the rotations of molecular ensembles decay par-
ticularly slowly. In this case only, the ECMC algorithm will
need to be modified in order to explicitly take into account
rotations.

C. ECMC for liquid water

The SPC/Fw potential is adapted for liquid water at stan-
dard temperature 300 K and density 1 g/cm3. An ECMC
simulation at these conditions is easily set up with factors

FIG. 13. Autocorrelation lengthλ for the dipole moment in ECMC of a single
H2O molecule (fixed chain length `) for the cyclic sequence of event-chain
directions (êx êy êz êx . . .) and for their random resampling.

FIG. 14. Cumulative histogram of the oxygen–oxygen separation |rOO | for
32 H2O molecules at standard density and temperature via conventional
reversible Monte Carlo and ECMC using the factor set of Eq. (102) with the
inside-first lifting scheme. The random choice of directions was used with a
fixed value of ` = 0.5 Å. The maximal difference between the two distributions
is smaller than 10−3.

(including the dipole–dipole Coulomb factor) as in Eq. (102)
generalized for NH2O > 2. The “ratio,” “outside-first,” and
“inside-first” lifting schemes are taken over from the dipole
case discussed in Sec. IV. However, the dipole is now con-
structed from three particles. For a far distant pair of H2O
molecules, the factor derivatives with respect to the hydro-
gen positions are usually of the same sign and of opposite
sign to that of the oxygen. In the notations of Fig. 12 and
using M =

({
1, . . . , 6

}
, Coulomb

)
, we thus have that to

order 1/r3,

∂x1 UM ∼ ∂x3 UM ∼ −1
2
∂x2 UM . (105)

This can again be used in the inside-first lifting scheme to
keep most of the lifting flow inside the molecule of the active
particle. Care must be exercised in these lifting schemes to
arrange the particles in a fixed order that is independent of
which particle is active (it is incorrect to place the active par-
ticle systematically on the left-most position on the upper row
of the table in Fig. 10).

FIG. 15. Ensemble-averaged total “Coulomb,” “bond,” “LJ,” and “bending”
event rates as a function of the number of H2O molecules. The Coulomb event
rate scales logarithmically. Event rates depend on the choice of factors but are
independent of the lifting scheme.
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FIG. 16. Histogram of distance |r|
between the active and the target particle
for the Coulomb events for the “ratio,”
“outside-first,” and “inside-first” lifting
schemes and for 64, 128, and 256 H2O
molecules. The integral of each his-
togram corresponds to 〈QCoulomb〉 in
Fig. 15. Dashed lines indicate |r|−z with
exponents z: 1, 1, 2, which corresponds
to qinter ∼ |r|−(z+2) in Table I.

For long simulation times, the ECMC algorithm exactly
samples the Boltzmann distribution of this model, and ther-
modynamic observables can be compared with Metropolis
Monte Carlo using the Ewald summation for the Coulomb
potential. This can be verified for the oxygen–oxygen dis-
tances that agree to very high precision, demonstrating that the
irreversible ECMC converges toward the same steady state as
reversible Monte Carlo algorithms (see Fig. 14). To make sure
that equilibrium is reached, the initial configurations were cho-
sen randomly in a very dilute system and slowly compressed
toward the target density.

In the liquid-water simulation for NH2O > 2, the factors
M = (IM , TM ) belong to four different types (that is, TM ∈ T
and |T | = 4), into which the ensemble-averaged total event
rate [see Eq. (21)] can be split,

1
N

N∑

k=1

〈
Qk

({
r1, . . . , rN

})〉
=

∑

T ∈T
〈QT 〉. (106)

〈QCoulomb〉 agrees with the definition in Sec. III [see Eq. (91)].
The three local factor types naturally give constant scaling of
their associated mean event rates 〈Qbond〉, 〈QLJ〉, and

〈
Qbending

〉

with system size, whereas 〈QCoulomb〉 clearly features log NH2O

scaling with the number of H2O molecules (see Fig. 15). The
logarithmic scaling of the total Coulomb event rate validates
the prediction of Eq. (92). The total event rate increases by
5 Å−1 when NH2O doubles.

Finally we study the lifting flows for the dipole–dipole
factors under the “ratio,” “inside-first,” and “outside-first”
schemes (see Sec. IV B). As discussed in Sec. IV A, the event
rates are independent of the lifting schemes for a given factor
set. However, the probability distributions of the distance |r|
between the active and the target particles are different (see
Fig. 16). First, the peak at the oxygen–hydrogen bond length
corresponding to a lifting within the molecule increases loga-
rithmically with system size. Second, with increasing system
size the distribution of event distances develops a power-
law tail. In both the “ratio” and the “outside-first” lifting
schemes, the tail of the probability distribution decreases as
|r|−1. The “inside-first” scheme decays as |r|−2. These results,
corresponding to the evolution of qinter in |r|−3 and |r|−4, are
summarized in Table I.

Remarkably, the “inside-first” lifting scheme induces
mostly local lifting flows, even for Coulomb factors that asso-
ciate H2O molecules that are far distant from one another.
Most of the liftings are local and the central peak increases

as log NH2O. We expect a local lifting to keep the dynam-
ics of the system coherent and to lead to faster convergence
toward equilibrium. It appears also possible to replace the
interaction with far-away H2O molecules by the interaction
with an effective medium (given that the lifting flow remains
local). In the “ratio” and “outside-first” lifting schemes, this
would probably not be possible as the lifting flow toward far-
away dipoles is of the same order of magnitude as the local
flow.

VI. CONCLUSIONS

In this work, we have outlined the ECMC framework for
all-atom computations. Our algorithm advances a single par-
ticle in the presence of long-ranged electrostatic interactions
in O(1) operations, with a mean-free path which decreases as
O(1/ log N). This gives an overall complexity of O(N log N)
to advance N particles, each by O(1). This speed can be
achieved for locally charge-neutral systems, where particles
can be grouped into local dipoles. The algorithm can take into
account the presence of free point charges, and its performance
worsens only gradually with their number. The algorithm is
manifestly translation-invariant and event-driven. It is free of
discretization errors and exactly samples the Boltzmann distri-
bution, without needing a thermostat. Its outstanding property
is that it neither computes total forces nor determines the
system potential.

ECMC breaks with tradition in two ways. First, as a
Markov-chain algorithm, it offers the freedom to choose
among a variety of moves. Our approach of advancing sin-
gle particles may be a first step only. Nevertheless, as we
have shown, it effectively rotates dipoles and flexible water
molecules in three-dimensional space and samples the entire
configuration space. We have explored the great freedom to
choose factors and liftings that suit the problem at hand.
Second, ECMC breaks with tradition in that it is purely
particle–particle: It treats electrostatic interactions between
point charges, but is oblivious to the electrostatic field. This
aspect liberates it from the interpolating mesh that in tradi-
tional particle–particle–particle–mesh methods approximates
the Coulomb field. Rather, the algorithm is based on the inter-
action of pairs of particles and, more generally, of factors that
may comprise pairs of local dipoles or even more complex
objects.

In this work, we have checked that thermodynamic quan-
tities from ECMC agree with those obtained with methods
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that satisfy detailed balance. As a next step for analyzing
ECMC in all-atom systems, it will be important to study its
relaxation dynamics in detail. This dynamics will certainly
depend on the choice of factors and, for example, for the
case of dipole–dipole factors treated here, on the choice of
liftings. The inside-first lifting scheme yields mostly local
dynamics, and we would expect it to lead to a faster decay
of correlation functions. Besides this, we have discussed that
the length and the probability distribution of the event-chain
parameter ` and even the sequence of the directions of the
event-chain can significantly influence the ECMC dynamics
although, as we have verified extensively, the steady state is
always given by the Boltzmann distribution. We would hope
that, in addition to the overall favorable algorithmic scal-
ing, the fast decay of density fluctuations carries over from
short-range-interacting particle and spin systems. The influ-
ence of different factorization and lifting schemes on the
dynamics of ECMC will also have to be understood. From
an algorithmic implementation point of view, we think that
the parallelization of the method56 will have to be dealt with
carefully. ECMC simulations of water will permit standard-
ized comparison of run times with the ones of traditional
molecular-dynamics algorithms. Other applications, such as
solvated peptides43 and polarizable models, appear within
reach.
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Publication II

JeLLyFysh-Version1.0 — a Python application for
all-atom event-chain Monte Carlo

Philipp Höllmer, Liang Qin, Michael F. Faulkner, A.C. Maggs, Werner Krauth
Computer Physics Communications (2020) 107168

This paper summarizes our work described in chapters 4 and 5. There, we lay the
foundation of JF, an open-source python application for all-atom simulations. All
operations become events in JF. We design the mediator architecture to organize ap-
plication modules and to realize the event processing. It introduces various modules,
including those essential to prepare events and those to implement long-range meth-
ods in chapter 3.

This paper also features an introduction to JF’s development and usage. We give
examples, with the same physical systems as in appendix A, to show the functions
of event handlers and the way to write configuration files, and to verify JF with high
precision.
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1. Introduction

Event-chain Monte Carlo (ECMC) is an irreversible continuous-
time Markov-chain algorithm [1,2] that often equilibrates faster
than its reversible counterparts [3–7]. ECMC has been success-
fully applied to the classic N-body all-atom problem in statisti-
cal physics [8,9]. The algorithm implements the time evolution
of a piecewise non-interacting, deterministic system [10]. Each
straight-line, non-interacting leg of this time evolution termi-
nates in an event, defined through the event time at which it

✩ This paper and its associated computer program are available via the
Computer Physics Communication homepage on ScienceDirect (http://www.
sciencedirect.com/science/journal/00104655).
✩✩ The review of this paper was arranged by Prof. D.P. Landau.
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E-mail address: werner.krauth@ens.fr (W. Krauth).

takes place and through the out-state, the updated starting con-
figuration for the ensuing leg. An event is chosen as the earliest
of a set of candidate events, each of which is sampled using
information contained in a so-called factor. The entire trajectory
samples the equilibrium probability distribution.

ECMC departs from virtually all Monte Carlo methods in that
it does not evaluate the equilibrium probability density (or its ra-
tios). In statistical physics, ECMC thus computes neither the total
potential (or its changes) nor the total force on individual point
masses. Rather, the decision to continue on the current leg of
the non-interacting time evolution builds on a consensus which
is established through the factorized Metropolis algorithm [2].
A veto puts an end to the consensus, triggers the event, and
terminates the leg (see Fig. 1). In the continuous problems for
which ECMC has been conceived, the veto is caused by a single
factor.

https://doi.org/10.1016/j.cpc.2020.107168
0010-4655/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. ECMC time evolution. At events Ea, Eb, Ec , . . . , a number of factors ({a1, a2, . . . , a5}, {b1, b2, . . . , b6}, . . .) are activated. For each leg ((Ea → Eb), (Eb → Ec ), . . . ),
each factor must at all times independently accept the continued non-interacting evolution, and must determine a candidate event time at which this is no longer
the case. The earliest candidate event time (which determines the veto) and its out-state yield the next event (the event Eb is triggered by a2). In JF-V1.0, after
committing an event to the global state, candidate events with certain tags are trashed (tags t_1, t_3 at Eb) or maintained active (tags t_2, t_4 at Eb), and others
are newly activated. JF introduces non-confirmed events and also pseudo-factors, which complement the factors of ECMC, and which may also trigger events.

The resulting event-driven ECMC algorithm is reminiscent of
molecular dynamics, and in particular of event-driven molecu-
lar dynamics [11–13], in that there are velocity vectors (which
appear as lifting variables). These velocities do not correspond
to the physical (Newtonian) dynamics of the system. ECMC dif-
fers from molecular dynamics in three respects: First, ECMC is
event-driven, and it remains approximation-free for any inter-
action potential [14], whereas event-driven molecular dynamics
is restricted to hard-sphere or piecewise constant potentials.
(Interaction potentials in biophysical simulation codes have been
coarsely discretized [15] in order to fit into the event-driven
framework [16–18].) Second, in ECMC, most point masses are
at rest at any time, whereas in molecular dynamics all point
masses typically have non-zero velocities. In ECMC, an arbitrary
fixed number of independently active point masses with iden-
tical non-zero velocity vectors may be chosen. In most present
applications of ECMC, only a single independent point mass is
active at any time. The ECMC dynamics is thus very simple, yet
it mixes and relaxes at a rate at least as fast as in molecular
dynamics [4,6,7]. Third, ECMC by construction exactly samples
the Boltzmann (canonical) distribution, whereas molecular dy-
namics is in principle micro-canonical, that is, energy-conserving.
Molecular dynamics must therefore generally be coupled to a
thermostat in order to sample the Boltzmann distribution. The
thermostat also eliminates the drift in physical observables that
is caused by integration errors. In contrast, ECMC is free from
truncation and discretization errors.

ECMC samples the equilibrium Boltzmann distribution with-
out being itself in equilibrium, as it violates the detailed-balance
condition. Remarkably, it establishes the aforementioned consen-
sus and proceeds from one event to the next with O(1) computa-
tional effort even for long-range potentials, as was demonstrated
for soft-sphere models, the Coulomb plasma [4,19], and for the
simple point-charge with flexible water molecules (SPC/Fw)
model [20,21].

JeLLyFysh (JF) is a general-purpose Python application that
implements ECMC for a wide range of physical systems, from
point masses interacting with central potentials to composite
point objects such as finite-size dipoles, water molecules, and
eventually peptides and polymers. The application’s architecture
mirrors the mathematical formulation that was presented previ-
ously (see [21, Sect II]). The application can run on virtually any
computer, but it also allows for multiprocessing and, in the future,
for parallel implementations. It is being developed as an open-
source project on GitHub. Source code may be forked, modified,

and then merged back into the project (see Section 6 for access
information and license issues). Contributions to the application
are encouraged.

The present paper introduces the general architecture and the
key features of JF. It accompanies the first public release of the
application, JeLLyFysh-Version1.0 (JF-V1.0). JF-V1.0 implements
ECMC for homogeneous, translation-invariant N-body systems in
a regularly shaped periodic simulation box and with interactions
that can be long-range. In addition, the present paper presents
a cookbook that illustrates the application for simplified core
examples that can be run from configuration files and validated
against published data [21]. A full-scale simulation benchmark
against the Lammps application is published elsewhere [22].

The JF application presented in this paper is intended to grow
into a basis code that will foster the development of irreversible
Markov-chain algorithms and will apply to a wide range of com-
putational problems, from statistical physics to field theory [23].
It may prove useful in domains that have traditionally been
reserved to molecular dynamics, and in particular in the all-atom
Coulomb problem in biophysics and electrochemistry.

The content of the present paper is as follows: The remainder
of Section 1 discusses the general setting of JF as it implements
ECMC. Section 2 describes its mediator-based architecture [24].
Section 3 discusses how the eponymous events of ECMC are
determined in the event handlers of JF. Section 4 presents system
definitions and tools, such as the user interface realized through
configuration files, the simulation box, the cell systems, and the
interaction potentials. Section 5, the cookbook, discusses a num-
ber of worked-out examples for previously presented systems
of atoms, dipoles or water molecules with Coulomb interac-
tions [21]. Section 6 discusses license issues, code availability and
code specifications. Section 7 presents an outlook on essential
challenges and a preview of future releases of the application.

1.1. Configurations, factors, pseudo-factors, events, event handlers

In ECMC, configurations c = {s1, . . . , si, . . . , sN} are described
by continuous time-dependent variables where si(t) represents
the position of the ith of N point masses (although it may also
stand for the continuous angle of a spin on a lattice [3]). JF
is an event-driven implementation of ECMC, and it treats point
masses and certain collective variables (such as the barycen-
ter of a composite point object) on an equal footing. Rather
than the time-dependent variables si(t), its fundamental particles
(Particle objects) are individually time-sliced positions (of the
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Fig. 2. Factors and pseudo-factors. (a) In-state and sampled out-state (each with two active units) for a three-unit factor M (implementing, for example, the
inter-molecular bending potential UM of Section 4.4.5). (b) In- and out-states for a cell-boundary event handler realizing a pseudo-factor. Times at which units are
time-sliced are indicated. tout is the event time.

point masses or composite point objects). Non-zero velocities
and time stamps are also recorded, when applicable. The full
information can be packed into units (Unit objects), that are
moved around the application (see Section 1.2).

Each configuration c has a total potential U({s1, . . . , sN}), and
its equilibrium probability density π is given by the Boltzmann
weight

π ({s1, . . . , sN}) = exp [−βU({s1, . . . , sN})] , (1)

that is sampled by ECMC (see [21]). The total potential U is
decomposed as

U({s1, . . . , sN}) =

∑
M∈M

UM ({si : i ∈ IM}), (2)

and the Boltzmann weight of Eq. (1) is written as a product over
terms that depend on factors M , with their corresponding factor
potentials UM . A factor M = (IM , TM ) consists of an index set IM
and of a factor type TM , and M is the set of factors that have
a non-zero contribution to Eq. (2) for some configuration c. In
the SPC/Fw water model, for example, one factor M with factor
type TM = Coulomb might describe all the Coulomb potentials
between two given water molecules, and the factor index set
IM would contain the identifiers (indices) of the involved four
hydrogens and two oxygens (see Section 5.3).

ECMC relies on the factorized Metropolis filter [2], where the
move from a configuration c to another one, c ′, is accepted with
probability

pFact(c → c ′) =

∏
M∈M

min [1, exp (−β∆UM)] , (3)

where ∆UM = UM (c ′

M )−UM (cM ). Rather than evaluating the right-
hand side of Eq. (3), the product over the factors is interpreted as
corresponding to a conjunction of independent Boolean random
variables

XFact(c → c ′) =

⋀
M∈M

XM (cM → c ′

M ). (4)

In this equation, XFact(c → c ′) is ‘‘True’’ (the proposed Monte
Carlo move is accepted) if the independently sampled factorwise
Booleans XM are all ‘‘True’’. Equivalently, the move c → c ′

is accepted if it is independently accepted by all factors. This
realizes the aforementioned consensus decision (see Fig. 1).

For an infinitesimal displacement, the random variable XM of
only a single factor M can be ‘‘False’’, and the factor M vetoes the
consensus, creates an event, and starts a new leg. In this process,
M requires only the knowledge of the factor in-state (based on
the configuration cM , and the information on the move), and the
factor out-state (based on c ′

M ) provides all information on the
evolution of the system after the event. The event is needed in
order to enforce the global-balance condition (see Fig. 2a). In
this process, lifting variables [25], corresponding to generalized
velocities, allow one to repeat moves of the same type (same
particle, same displacement), as long as they are accepted by

consensus.1 Physical and lifting variables build the overcomplete
description of the Boltzmann distribution at the base of ECMC,
and they correspond to the global physical and global lifting
states of JF, its global state.

JF, the computer application, is entirely formulated in terms
of events, beyond the requirements of the implemented event-
driven ECMC algorithm. The application relies on the concept of
pseudo-factors, which complement the factors in Eq. (2), but are
independent of potentials and without incidence on the global-
balance condition (see Fig. 2b). In JF, the sampling of configuration
space, for example, is expressed through events triggered by
pseudo-factors. Pseudo-factors also trigger events that interrupt
one continuous motion (one ‘‘event chain’’ [1]) and start a new
one. Even the start and the end of each run of the application are
formulated as events triggered by pseudo-factors.

In ECMC, among all factors M in Eq. (2), only those for which
UM changes along one leg can trigger events. In JF, these factors
are identified in a separate element of the application, the activa-
tor (see Section 2.4), and they are realized in yet other elements,
the event handlers. An event handler may require an in-state.
It then computes the candidate event time and its out-state
(from the in-state, from the factor potential, and from random
elements). The complex operation of the activator and the event
handlers is organized in JF-V1.0 with the help of a tag activator,
with tags essentially providing finer distinction than the factor
types TM . A tagger identifies a certain pool of factors, and also
singles out factors that are to be activated for each tag. The trig-
gering of an event associated with a given tag entails the trashing
of (non-triggered) candidate events with certain tags, while other
candidate events are maintained (see Fig. 1). Also, new candidate
events have to be computed by event handlers with given tags.
This entire process is managed by the tag activator.

1.2. Global state, internal state

In the event-driven formulation of ECMC, a point mass with
identifier σ and with zero velocity is simply represented through
its position sσ , while an active point mass (with non-zero veloc-
ity) is represented through a time-sliced position sσ (tσ ), a time
stamp σ (tσ ) and a velocity vσ :

sσ (t) =

{
sσ if vσ = 0
sσ (tσ ) + (t − tσ )vσ else (active point mass).

(5)

An active point mass thus requires storing of a velocity vσ and of
a time stamp tσ , in addition to the time-sliced position sσ (tσ ). In
JF, the global state traces all the information in Eq. (5). It is broken
up into the global physical state, for the time-sliced positions sσ ,
and the global lifting state, for the non-zero velocities vσ and the
time stamps tσ .

JF represents composite point objects as trees described by
nodes. Leaf nodes correspond to the individual point masses.

1 For concreteness, the lifting variables in this paper are referred to as
‘‘velocities’’, although they are not derived from mechanical equations of motions
and their conservation laws. The concept of lifting variables is more general [25].
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Fig. 3. Tree representation of composite point objects in JF-V1.0. (a) Molecule with functional parts. (b) Tree representation, with leaf nodes for the individual atoms
and higher-level nodes for barycenters. Nodes each have a particle (a Particle object) containing a position vector and charge values. A unit (a Unit object),
associated with a node, copies out the particle’s identifier and its complete global-state information. (c) Internal representation of composite point objects with
separate cell systems for particle identifiers on different levels. On the leaf level, only one kind of particle is tracked.

A tree’s inner node may represent, for example, the barycenter
of a part of a molecule, and the root node that of the entire
molecule (see Fig. 3a–b). The velocities inside a composite point
object are kept consistent, which means that the global lifting
state includes non-zero velocities and time stamps of inner and
root nodes. The storing element of the global state in JF is the
state handler (see Section 2.3). The global state is not directly
accessed by other elements of the application, but branches of the
tree can be extracted (copied) temporarily, together with their
unit information. Independent and induced units differentiate
between those that appear in ECMC and those that are carried
along in order to assure consistency (see Fig. 3).

For internal computations, the global state may be supple-
mented by an internal state that is kept, not in the state handler,
but in the activator part of the application (see Section 2.4). In JF-
V1.0, the internal state consists of cell-occupancy systems, which
associate identifiers of composite point objects or point masses
to cells. (An identifier is a generalized particle index with, in
the case of a tree, a number of elements that correspond to the
level of the corresponding node.) In JF, cell-occupancy systems are
used for book-keeping, and also for cell-based bounding poten-
tials. JF-V1.0 requires consistency between the time-sliced par-
ticle information and the units. This means that the time-sliced
position sσ (tσ ) and the time-dependent position sσ (t) in Eq. (5)
belong to the same cell (see Fig. 2b). Several cell-occupancy
systems may coexist within the internal state (possibly on dif-
ferent tree-levels and with different cell systems, see Fig. 3c and
Section 5.3.4). ECMC requires time-slicing only for units whose
velocities are modified. Beyond the consistency requirements, JF-
V1.0 performs time-slicing also for unconfirmed events, that is,
for triggered events for which, after all, the out-state continues
the straight-line motion of the in-state (see Section 3.1.2).

1.3. Lifting schemes

In its lifted representation of the Boltzmann distribution, ECMC
introduces velocities for which there are many choices, that is,
lifting schemes. The number of independent active units can in
particular be set to any value nac ≥ 1 and then held fixed
throughout a given run. This generalizes easily from the known
nac = 1 case [26]. A simple nac-conserving lifting scheme uses a
factor-derivative table (see [21, Fig. 2]), but confirms the active
out-state unit only if the corresponding unit is not active in the
in-state (its velocity is None).

For |IM | > 3, the lifting scheme (the way of determining
the out-state given the in-state) is not unique, and its choice

influences the ECMC dynamics [21]. In JF-V1.0, different lifting-
scheme classes are provided in the JF lifting package. They all
construct independent-unit out-state velocities for independent
units that equal the in-state velocities. This appears as the most
natural choice in spatially homogeneous systems [1].

1.4. Multiprocessing

In ECMC, factors are statistically independent. In JF, therefore,
the event handlers that realize these factors can be run indepen-
dently on a multiprocessor machine. With multiprocessor support
enabled, candidate events are concurrently determined by event
handlers on separate processes, using the Python multipro-
cessing module. Candidate event times are then first requested
in parallel from active event handlers, and afterwards the out-
state for the selected event. Given a sufficient number of available
processors, out-states may be computed for candidate events in
advance, before they are requested (see Section 2.1). The event
handlers themselves correspond to processes that usually last
for the entire duration of one ECMC run. When not computing,
event handlers are either in idle stage waiting to compute a
candidate event time or in suspended stage waiting to compute
an out-state.

Using multiple processes instead of threads circumvents the
Python global interpreter lock, but the incompressible time lag
due to data exchange slows down the multiprocessor imple-
mentation of the mediator with respect to the single-processor
implementation.

1.5. Parallelization

ECMC generalizes to more than one independent active unit,
and a sequential, single-process ECMC computation remains triv-
ially correct for arbitrary nac (although JF-V1.0 only fully imple-
ments the nac = 1 case). The relative independence of a small
number of independent active units in a large system, for 1 ≪

nac ≪ N , allows one to consider the simultaneous committing
in different processes of npr events to the shared global state.
(A conflict arises if this disagrees with what would result by
committing them in a single process.) If npr ≪ N , conflicts
between processes disappear (for short-range interacting sys-
tems) if nearby active units are treated in a single process (see
Fig. 4a). The parallel implementation of ECMC, for short-range
interactions, is conceptually much simpler than that of event-
driven molecular dynamics [27–29], and it may well extend to
long-range interacting system.
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Fig. 4. Parallel ECMC with local potentials (interaction range d). (a) Multiprocess version with nac ≪ N active units. Nearby active units avoid conflict in a single
process. (b) Domain decomposition with separated stripes. Particles in between stripes are immobile. The separation region (of width ∆) is wider than d, so that all
of the conflict between stripes is avoided (see [30]).

An alternative type of parallel ECMC, domain decomposition
into nac stripes, was demonstrated for two-dimensional hard-
spheres systems, and considerable speed-up was reached [30].
Here, stripes are oriented parallel to the velocities, with one
active unit per stripe. Stripes are isolated from each other by
immobile layers of spheres [30], which, however, cause rejections
(or reversals of one or more components of the velocity). The
stripe decomposition eliminates all scheduling conflicts. As with
any domain decomposition [27], it is restricted to physical models
with short-range interactions. It is not implemented in JF-V1.0
(see Fig. 4b).

2. JF architecture

JF adopts the design pattern based on a mediator [24], which
serves as the central hub for the other elements that do not
directly connect to each other. In this way, interfaces and data
exchange are particularly simple. The mediator design maximizes
modularity in view of future extensions of the application.

2.1. Mediator

The mediator is doubled up into two modules (with Sin-
gleProcessMediator and MultiProcessMediator classes).
The runmethod of either class is called by the executable run.py
script of the application, and it loops over the legs of the
continuous-time evolution. The loop is interrupted when an End-
OfRun exception is raised, and a post_run method is invoked.
For the single-process mediator, all the other elements are in-
stances of classes that provide public methods. In particular, the
mediator interacts with event handlers. For the multi-process
mediator, each event handler has its own autonomous iteration
loop and runs in a separate process. It exchanges data with the
mediator through a two-way pipe. Receiving ends on both sides
detect when data is available using the pipe’s recv method.

In JF-V1.0, the same event-handler classes are used for the
single-process and multi-process mediator classes. The multi-
process mediator achieves this through a monkey-patching tech-
nique. It dynamically adds a run_in_process method to each
created instance of an event handler, which then runs as an
autonomous iteration loop in a process and reacts to shared flags
set by the mediator. The multi-process mediator in addition dec-
orates the event handler’s send_event_time and send_out_
state methods so that output is not simply returned (as it is
in the single-process mediator) but rather transmitted through a
pipe. Only the mediator accesses the event handlers, and these
re-definitions of methods and classes (which abolish the need
for two versions for each event-handler class) are certain not to
produce undesired side effects.

On one leg of the continuous-time evolution, the mediator
goes through nine steps (see Fig. 5). In step 1, the active global

Fig. 5. JF architecture, built on the mediator design pattern. The iteration loop
takes the system from one event to the next (for example from Ea to Eb in
Fig. 1). All elements of JF interact with the mediator, but not with each other.
The multi-process mediator interacts with event handlers running on separate
processes, and exchanges data via pipes.

state (the part of the global state that appears in the global lifting
state) is obtained from the state handler. (In the tree state handler
of JF-V1.0, branches of independent units are created for all
identifiers that appear in the lifting state.) Knowing the preceding
event handler (which initially is None) and the active global state,
it then obtains from the activator, in step 2, the event handlers
to activate, together with their in-state identifiers. For this, the
activator may rely on its internal state, but not on the global state,
to which it has no access. In step 3, the corresponding in-states
are extracted (that is, copied) from the state handler. In step 4,
candidate event times are requested from the appropriate event
handlers and pushed into the scheduler’s push_event method.
In step 5, the mediator obtains the earliest candidate event time
from the scheduler’s get_succeeding_event method and asks
its event handler for the event out-state (step 6) to be com-
mitted to the global state (step 7). The activator, in step 8,
determines which candidate events are to be trashed (in JF-V1.0:
based on their tags), that is, which candidate event times are
to be eliminated from the scheduler. Also, the activator collects
the corresponding event handlers, as they become available to
determine new candidate events. In the optional final step 9,
the mediator may connect (via the input–output handler) to
an output handler, depending on the preceding event handler.
A mediating method defines the arguments sent to the output
handler (for example the extracted global state), and considerable
computations may take place there.

The multi-process mediator uses a single pipe to receive the
candidate event time and the out-state from an event han-
dler. In order to distinguish the received object, the media-
tor assigns four different stages to the event handlers (idle,
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event_time_started, suspended, out_state_started
stages). The assigned stage determines which flags can be set
to start the send_event_time or send_out_state methods.
It also determines the nature of the data contained in the pipe.
In the idle stage, the mediator can set the starting flag after
which the event handler will wait to receive the in-state through
the pipe. This starts the event_time_started stage during
which the event handler determines the next candidate event
time and places it into the pipe. After the mediator has recovered
the data from the pipe, it places the event handler into the
suspended stage. If requested (by flags), the event handler can
then either compute the out-state (out_state_started stage),
or else revert to the event_time_started stage.

The strategy for suspending an event handler or for having
it start an out-state computation (before the request) can be
adjusted to the availability of physical processors on the multi-
processor machine. However, in JF-V1.0, the communication via
pipes presents a computational bottleneck.

2.2. Event handlers

Event handlers (instances of a number of classes that inherit
from the abstract EventHandler class) provide the
send_event_time and send_out_state methods that return
candidate events. These candidate events either become events
of a factor or pseudo-factor or they will be trashed (see Fig. 6).2

When realizing a factor or a pseudo-factor, event handlers
receive the in-state as an argument of the send_event_time
method. The send_out_state method then takes no argument.
In contrast, event handlers that realize a set of factors or pseudo-
factors request candidate event times without first specifying
the complete in-state, because the element of the set that trig-
gers the event is yet unknown at the event-time request (see
Section 3.2.2 for examples of event handlers that realize sets of
factors). The send_event_time method then takes the part of
the in-state which is necessary to calculate the candidate event
time. Also, it may return supplementary arguments together with
the candidate event time, which are used by the mediator to
construct the full in-state. The in-state is then an argument of
the send_out_state method, as it was not sent earlier.

In JF-V1.0, each run requires a start-of-run event handler (an
instance of a class that inherits from the abstract StartOfRun-
EventHandler class), and it cannot terminate properly with-
out an end-of-run event handler. Section 3 discusses several
event-handler classes that are provided.

2.3. State handler

The state handler (an instance of a class that inherits from
the abstract StateHandler class) is the sole separate element
of JF to access the global state. In JF-V1.0, the global physical
state (all positions of point masses and composite point objects)
is contained in an instance of the TreePhysicalState class
represented as a tree consisting of nodes (each node corresponds
to a Node object). Each node contains a particle (a Particle ob-
ject) which holds a time-sliced position. In JF-V1.0, each leaf node
may in addition have charges as a Python dictionary mapping the
name of the charge onto its value.

Each tree is specified through its root node. Root nodes can
be iterated over (in JF-V1.0, they are members of a list). Each
node is connected to its parent and its children, which can also be
iterated over. In JF-V1.0, the children are again members of a list.

2 A candidate event time may stem from a bounding potential, and not be
confirmed for the factor potential. In JF-V1.0, unconfirmed and confirmed events
are treated alike.

Fig. 6. Basic stages of event handlers for factors and pseudo-factors (stages
1 and 3 relevant for the multi-process mediator only). In the idle and
suspended stages, the event handler is halted (via flags controlled by the
multi-process mediator), thus liberating resources for other candidate-event-
time computations. With the multi-process mediator, candidate out-states may
be computed before the out-state request arrives.

These lists imply unique identifiers of nodes and their particles
as tuples. The first entry of the tuple gives a node’s root-node list
index, followed by the indices on lower levels down to the node
itself (see Fig. 3).

The global lifting state is stored in JF-V1.0 in a Python dic-
tionary mapping the implicit particle identifier onto its time
stamp and its velocity vector. This information is contained in
an instance of the TreeLiftingState class. Both the physical
and lifting states are combined in the TreeStateHandler which
implements all methods of a state handler.

To communicate with other elements of the JF application
(such as the event handlers and the activator) via the mediator,
the state handler combines the information of the global physical
and the global lifting state into units (that is, temporary Unit
objects, see Fig. 7). For a given node in the state handler, its
physical-state and lifting-state information is mirrored (that is,
copied) to a unit containing its implicit identifier, position, charge,
velocity and time stamp. All other elements can access, mod-
ify, and return units. This provides a common packaging format
across JF. The explicit identifier of a unit allows the program to
integrate changed units into the state handler’s global state.

In the tree state handler of JF-V1.0, the local tree structure of
nodes can be extracted into a branch of cnodes, that is, nodes
containing units.3 Each event handler only requires the global
state reduced to a single factor in order to determine candidate
event times and out-states. As a design principle in JF-V1.0,
the event handlers keep the time-slicing of composite point ob-
jects and its point masses consistent. Information sent to event
handlers via the mediator is therefore structured as branches,
that is, the information of a node with its ancestors and de-
scendants. The state handler’s extract_from_global_state
method creates a branch for a given identifier of a particle by
constructing a temporary copy of the immutable node structure
of the state handler using cnodes. Out-states of events in the
form of branches can be committed to the global state using the
insert_into_global_state method.

The extract_active_global_state method, the first of
two additional methods provided by the state handler, extracts
the part of the global state which appears in the global lift-
ing state. The tree state handler constructs the minimal num-
ber of branches, where each node contains an active unit, so
that all implicit identifiers appearing in the global lifting state
are represented. The activator may then determine the factors
which are to be activated. The method is also used to time-
slice the entire global state (see Section 3.2.2). Second, the ex-
tract_global_statemethod extracts the full global state. (For

3 The distinction between particles and units, as well as between nodes and
cnodes stresses that the state handler can only be accessed by the mediator,
although information on the physical and the lifting state must of course travel
throughout the application.
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Fig. 7. Inner storage of the tree state handler and example of its extract_from_global_state method, applied to the global state of Fig. 3b.

the tree state handler of JF-V1.0, this corresponds to a branch for
each root node.) This method does not copy the positions and
velocities.

In JF-V1.0, the global physical state is initialized via the input
handler within the input–output handler (see Section 2.6). The
initial lifting state, however, is set via the out-state of the start-
of-run event handler, which is committed to the global state at
the beginning of the program (see Section 3.2.2). This means that,
in JF-V1.0, the lifting state cannot be initialized from a file.

2.4. Activator

The activator, a separate element of the JF application, is an
instance of a class that inherits from the abstract Activator
class. At the beginning of each leg, the activator provides to the
mediator the new event handlers which are to be run, using
the get_event_handlers_to_runmethod. (As required by the
mediator design pattern, no data flows directly between the
activator and the event handlers, although it initially obtains
their references, and subsequently manages them.) The activator
also returns associated in-state identifiers of particles within the
global state. The extracted parts of the global state of these in-
state identifiers are needed by the event handlers to compute
their candidate event times (the identifier may be None if no
information is needed).

Once the mediator has committed the preceding event to the
global state via the state handler, the activator finally prepares (in
the get_trashable_events method) a list of trashable candi-
date events.

In JF-V1.0, the activator is an instance of the TagActivator
class (that inherits from the Activator class). The tag activa-
tor’s operations depend on the interdependence of tags of event
handlers and their events. Event handlers receive their tag by
instances of classes located in the activator and derived from the
abstract Tagger class that are called ‘‘taggers’’.

A tagger centralizes common operations for identically tagged
event handlers (see Fig. 8). On initialization, the tagger receives
its tag (a string-valued tag attribute) and an event handler (that
is, a single instance), of which it creates as many identical event-
handler copies as needed (using the Python deepcopy method).
Each tagger provides a yield_identifiers_send_event_
time method which generates in-state identifiers based on the
branches containing independent active units (this means that
the taggers are implemented especially for the TreeState-
Handler. The TagActivator, however, can be used with any
state handler since it just transmits the extracted active global
state). These in-states are passed (after extracting the part of the
global state related to the identifiers from the state handler) to
the send_event_time method of the tagger’s event handlers.
The number of event handlers inside a tagger should meet the

maximum number of events with the given tag simultaneously in
the scheduler. In this paper, event handlers (and their candidate
events) are referred to by tags, although in JF they do not have
the tag attribute of their taggers.

On initialization, a tagger also receives a list of tags for event
handlers that it creates, as well as a list of tags for event han-
dlers that need to be trashed. The tag activator converts this
information of all taggers into its internal _create_taggers
and _trash_taggers dictionaries. Additionally, the tag activator
creates an internal dictionary mapping from an event
handler onto the corresponding tagger (_event_handler_
tagger_dictionary).

A call of the get_event_handlers_to_run method is ac-
companied by the event handler which created the preceding
event and by the extracted active global state. The event han-
dler is first mapped onto its tagger. The taggers returned by
the _create_taggers dictionary then generate the in-state
identifiers, which are returned together with the correspond-
ing event handlers (in a dictionary). For the initial call of the
get_event_handlers_to_run method no information on the
preceding event handler can be provided. This is solved by ini-
tially returning the start-of-run event handler. Similarly the
_trash_taggers dictionary is used on each call of get_
trashable_events. The corresponding event handlers are then
also liberated, meaning that the activator can return them in the
next call of the get_event_handlers_to_run method.4 For
this, the activator internally splits the pool of all event handlers
of a given tag into those with a scheduled candidate event and
the ones that are available to take on new candidate events.

The activator also maintains the internal state. In JF-V1.0, the
internal state consists of cell-occupancy systems. Therefore, the
internal state is an instance of a class that inherits from the
CellOccupancy class, which itself inherits from the abstract
InternalState class. Taggers may refer to internal-state in-
formation to determine the in-states of their event handlers.
The cell-occupancy system does not double up on the informa-
tion available in the state handler. It keeps track of the iden-
tifier of a particle (which may correspond to a point mass or
a composite point object), but does not store or copy the par-
ticle itself (see Section 4.3). The mediator can access the in-
ternal state via the get_info_internal_state method (see
Fig. 8). To acquire consistency between the global state and
the internal state (and between a particle and its associated
unit), a pseudo-factor triggers an event for each active unit
tracked by the cell-occupancy system that crosses a cell boundary
(see Fig. 2b). The internal state is updated in each call of the
get_event_handlers_to_run method.

4 The action of the _create_taggers and _trash_traggers dictionaries
can be overruled with the concept of activated and deactivated taggers. Event
handlers out of deactivated taggers are not returned to the mediator.
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Fig. 8. Tag activator, and its complex interaction with the mediator. It readies event handlers and in-state identifiers, provides internal-state information for an
out-state request, and identifies the trashable candidate events, as a function of the preceding event.

2.5. Scheduler

The scheduler is an instance of a class inheriting from the ab-
stract Scheduler class. It keeps track of the candidate events and
their associated event-handler references. Its get_succeeding_
event method selects among the candidate events the one with
the soonest candidate event time, and it returns the reference
of the corresponding event handler. Its push_event method
receives a new candidate event time and event-handler reference.
Its trash_event method eliminates a candidate event, based on
the reference of its event handler. In JF-V1.0, the scheduler is an
instance of the HeapScheduler class. It implements a priority
queue through the Python heapq module.

2.6. Input–output handler

The input–output handler is an instance of the InputOut-
putHandler class. The input–output handler connects the JF
application to the outside world, and it is accessible by the
mediator. The input–output handler breaks up into one input
handler (an instance of a class that inherits from the abstract
InputHandler class) and a possibly empty list of output han-
dlers (instances of classes that inherit from the abstract Out-
putHandler class). These are accessed by the mediator only
via the input–output handler. Output handlers can also perform
significant calculations.

The input handler enters the initial global physical state into
the application. JF-V1.0 provides an input handler that enters
protein-data-bank formatted data (.pdb files) as well as an input
handler which samples a random initial state. The initial state
(constructed as a tree for the case of the tree state handler)
is returned when calling the read method of the input–output
handler, which calls the read method of the input handler.

The output handlers serve many purposes, from the output
in .pdb files to the sampling of correlation functions and other
observables, to a dump of the entire run. They obtain their argu-
ments (for example the entire global state) via its write method.
The write method of the input–output handler receives the
desired output handler as an additional argument through the
mediating methods of specific event handlers. These are triggered
for example after a sampling or an end-of-run event. The corre-
sponding event handlers are initialized with the name of their
output handlers.

3. JF event-handler classes

Event-handler classes differ in how they provide the send_
event_time and send_out_state methods. Event handlers
split into those that realize factors and sets of factors and those
that realize pseudo-factors and sets of pseudo-factors. The first
are required by ECMC while the second permit JF to represent
the entire run in terms of events.

3.1. Event handlers for factors or sets of factors

Event handlers that realize a factor M , or a set of factors, are
implemented in different ways depending on the analytic prop-
erties of the factor potential UM and on the number of involved
independent units.

3.1.1. Invertible-potential event handlers
In JF, an invertible factor potential UM (an instance of a class

that inherits from the abstract InvertiblePotential class)
has its event rate integrated in closed form along a straight-line
trajectory (as in Fig. 1). The sampled cumulative event rate (U+

M in
[21, Eq. (45)]) provides the displacement method. Together
with the time stamp and the velocity of the active unit, this
determines the candidate event time. In JF-V1.0, the two-leaf-unit
event handler (an instance of the TwoLeafUnitEventHandler
class) is characterized by two independent units at the leaf level.
It realizes a two-particle factor with an invertible factor potential.
The in-state (an argument of the send_event_time method) is
stored internally, and it remains available for the subsequent call
of the send_out_state method. Because of the two indepen-
dent units, the lifting simply consists in these two units switch-
ing their velocities (using the internal _exchange_velocity
method) and keeping the velocities of all induced units consis-
tent.

3.1.2. Event handlers for factors with bounding potential
For a factor potential UM that is not inverted (by choice or

by necessity because it is non-invertible), the cumulative event
rate U+

M is unavailable (or not used) and so is its displacement
method. Only the derivative method is used. To realize such
a factor without an inverted factor potential, an event handler
then uses the displacement method of an associated bounding
potential whose event rate at least equals that of UM and that is
itself invertible. A non-inverted UM may be associated with more
than one bounding potential, each corresponding to a different
event handler (the molecular Coulomb factors in Section 5.2 asso-
ciate the Coulomb factor potential in the same run with different
bounding potentials). In JF-V1.0, a number of event handlers
are instances of classes that inherit from the EventHandler-
WithBoundingPotential class, and that realize factors with
bounding potentials. Each of these event handlers translates the
sampled displacement of the bounding potential into a candidate
event time. On an out-state request (via the send_out_state
method), the event handler confirms the event with a proba-
bility that is given by the ratio of the event rates of the factor
potential and the bounding potential. The out-state consists of
independent units together with their branches of induced units.
For two independent units, the lifting simply consists in the
application of a local _exchange_velocity method, which ex-
changes independent-unit velocities and enforces velocities for
the induced units. For more than one independent unit, the out-
state calculation requires a lifting. For an unconfirmed event,
no lifting takes place. In JF-V1.0, confirmed and unconfirmed
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events have time-sliced out-states. The inefficient treatment of
unconfirmed events is the main limitation of this version of the
application.

A special case of a bounding potential is the cell-based bound-
ing potential which features piecewise cell-bounded event rates.
The two independent units are localized within their respective
cells, and the bounding potential’s rate is for all positions of the
units larger than the factor potential event rate. In JF-V1.0, the
constant cell-bounded event rate is determined for all pairs of
cells on initialization (see Section 4.4.4). The resulting displace-
ment may move the independent active unit outside its cell. The
proposed candidate event will then, however, be preempted by a
cell-boundary event and therefore trashed (see Section 3.2.1).

3.1.3. Cell-veto event handlers
Cell-veto event handlers (instances of a number of classes that

inherit from the abstract CellVetoEventHandler class) realize
sets of factors, rather than a single factor. The factor in-states (for
each element of the set) are not transmitted with the candidate-
event-time calculations. Instead, the branch of the independent
active unit is an argument of the send_event_timemethod. The
sampled factor in-state is transmitted with the out-state request.
The cell-veto event handler implements Walker’s algorithm [31]
in order to sample one element in the set of factors in O(1)
operations.

Cell-veto event handlers are instantiated with an estimator
(see Section 4.6). In addition, they obtain a cell system which is
read in through its initialize method (see Section 4.2). The
estimator provides upper limits for the event rate (in the given
direction of motion) for the independent active unit anywhere
in one specific cell (called the ‘‘zero-cell’’, see Section 4.3), and
for a target unit in any other cell, except for a list of excluded
cells. These upper limits can be translated from the zero-cell to
any other active-unit cell, because of the homogeneity of the
simulation box. In JF-V1.0, the cell systems for the cell-veto event
handler can be on any level of the particles’ tree representation
(see Section 5.3.4, where a molecule-cell system tracks individual
water molecules on the root level, while an oxygen-cell system
tracks only the leaf nodes corresponding to oxygens).

A Walker sampler is an instance of the Walker class in
the event_handler package. It provides the total event rate
(total_rate), which, for a homogeneous periodic system, is
a constant throughout a run. On a candidate-event-time re-
quest, a cell-veto event handler computes its displacement no
longer through the displacement method of a factor poten-
tial or a bounding potential, but simply as an exponential ran-
dom number divided by the total event rate. (The particularly
simple send_event_time method of a cell-veto event han-
dler is implemented in the abstract CellVetoEventHandler
class, see [21] for a full description.) The Walker sampler’s sam-
ple_cell method samples the cell of the target unit in O(1). It
is returned, together with the candidate event time, as an argu-
ment of the send_event_time method. The out-state request is
accompanied by the branch of the independent unit in the target
cell, if it exists. Confirmation of events and, possibly, lifting are
handled as in Section 3.1.2.

3.2. Event handlers for pseudo-factors or sets of pseudo-factors

The pseudo-factors of JF unify the description of the ECMC
time evolution entirely in terms of events. The distinction be-
tween event handlers that realize pseudo-factors and those that
realize sets of pseudo-factors remains crucial. In the former, the
factor in-state is known at the candidate-event-time request. It
is transmitted at this moment and kept in the memory of the
event handler for use at the out-state request. For a set of pseudo-
factors, the factor in-state can either not be specified at the

Fig. 9. Set of pseudo-factors realized by the end-of-chain event handler.
(a) Set of end-of-chain pair pseudo-factors for four point masses coupling the
final active unit of the old chain and the beginning active unit of the new chain.
(b) At the event time, the realized pseudo-factor with the incoming active unit
and the outgoing unit is known. (c) A new event chain is started. The outgoing
active unit is shown.

candidate-event-time request, or would require transmitting too
much data (one in-state per element of the set). It is therefore
transmitted later, with the out-state-request (see Fig. 9).

3.2.1. Cell-boundary event handler
In the presence of a cell-occupancy system, JF-V1.0 preserves

consistency between the tracked particles of the global physical
state and the corresponding units (which must both belong to the
same cell). This is enforced by a cell-boundary event handler, an
instance of the CellBoundaryEventHandler class. This event
handler has a single independent unit and realizes a pseudo-
factor with a single identifier. A cell-boundary event leads to the
internal state being updated (see Section 2.4).

On instantiation, a cell-boundary event handler receives a cell
system. (Each cell-occupancy system requires one independent
cell-boundary event handler.) A candidate-event-time request
by the mediator is accompanied by the in-state contained in
a single branch and a single unit on the level tracked by the
cell-occupancy system. An out-state request is met with the cell-
level-unit’s position corresponding to the minimal position in the
new cell.

3.2.2. Event handlers for sampling, end-of-chain, start-of-run, end-
of-run

Sampling event handlers are instances of classes that in-
herit from the abstract SamplingEventHandler class. Sampling
event handlers are expected to produce output (they inherit
from the EventHandlerWithOutputHandler class and are con-
nected, on instantiation, with their own output handler which is
used in the mediating method of this event handler). Several sam-
pling event handlers may coexist in one run. Their output handler
is responsible for computing physical observables at the sampling
event time (see Section 2.6). JF-V1.0 implements sampling events
as the time-slicing of all the active units. A sampling event
handler thus realizes a set of single-unit pseudo-factors, and the
in-state is not specified at the candidate-event-time request. In
JF-V1.0, the candidate event times of the sampling event handler
are equally spaced. The out-state request is accompanied by
branches of all independent active units, which are then all time-
sliced simultaneously. Sampling candidate events are normally
trashed only by themselves or by an end-of-run event.

End-of-chain event handlers are instances of classes that in-
herit from the abstract EndOfChainEventHandler class. They
effectively stop one event chain and reinitialize a new one. This
is often required for the entire run to be irreducible (see [21]).
The end-of-chain event handler clearly realizes a set of pseudo-
factors, rather than a single pseudo-factor (see Fig. 9a). An end-
of-chain event handler implements a method to sample a new
direction of motion. In addition, it implements a method to de-
termine a new chain length (that gives the time of the next
end-of-chain event) and, finally, the identifiers of the next inde-
pendent active cnodes. For this, the end-of-chain event handler
is aware of all the possible cnode identifiers (see Section 4.2).
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On an event-time request, the end-of-chain event handler
returns the next candidate event time (computed from the new
chain length) and the identifier of the next independent ac-
tive cnode. The out-state request is accompanied by the current
and the succeeding independent active units and their associ-
ated branches (see Fig. 9b). For the out-state, the event handler
determines the next direction of motion (see Fig. 9c).

A start-of-run event handler (an instance of a class that in-
herits from the abstract StartOfRunEventHandler class) is the
sole event handler whose presence is required. The start-of-run
event is the first one to be committed to the global state, because
its candidate event time is set equal to the initial time of the
run (usually zero) and because the activator will initially only
activate the start-of-run event handler. The start-of-run event
handler serves two purposes. First, it sets the initial lifting state.
Second, the activator uses the start-of-run event handler as an
entry point. Its tag (the start_of_run tag in the configuration
files of Section 5) is then used to determine the events that should
be activated and created thereafter.

The end-of-run event handler (an instance of a class that
inherits from the abstract EndOfRunEventHandler class) ter-
minates a run by raising an end-of-run exception and thus ends
the mediator loop. An end-of-run event handler is usually con-
nected, on instantiation, with its own output handler. In JF-V1.0,
its send_event_time method returns the total run-time, which
transits from the configuration file. On the send_out_state
request, all active units are time-sliced. The end-of-run output
handler may further process the global state which it receives via
the mediating method of the end-of-run event handler.

3.3. Event handlers for rigid motion of composite point objects, mode
switching

The event handlers of JF-V1.0 are generally suited for the rigid
motion of composite point objects (root mode), that is, for inde-
pendent non-leaf-node units (as implemented in Section 5.2.4).
This is possible because all event handlers keep the branches
of independent units consistent. As the subtree-node units of
an independent-unit node move rigidly, the displacement is not
irreducible. Mode switching into leaf mode (with single active
leaf units) then becomes a necessity in order to have all factors
be considered during one run and to assure the irreversibility of
the implemented algorithm. In JF-V1.0, the corresponding event
handlers are instances of the RootLeafUnitActiveSwitcher
class. On instantiation, they are specified to switch either from
leaf mode to root mode or vice versa.

These event handlers resemble the end-of-chain event han-
dler, but only one of them is active at any given time. They
provide a method to sample the new candidate event time based
on the time stamp of the active independent unit at the time of its
activation. An out-state request from one of these event handlers
is accompanied by the entire tree of the current independent
active unit of one mode and met with the tree of the independent
active unit on the alternate mode.

4. JF run specifications and tools

The JF application relies on a user interface to select the phys-
ical system that is considered, and to fully specify the algorithm
used to simulate it. Inside the application, some of these choices
are made available to all modules (rather than having to be
communicated repeatedly by the mediator). The application also
relies on a number of tools that provide key features to many of
its parts.

4.1. Configuration files, logging

The user interface for each run of the JF application consists of
a configuration file that is an argument of the executable run.py
script.5 It specifies the physical and algorithmic parameters (tem-
perature, system shape and size, dimension, type of point masses
and composite point objects, and also factors, factor potentials,
lifting schemes, total run time, sampling frequency, etc.).

A configuration file is composed of sections that each cor-
respond to a class requiring input parameters. The [Run] sec-
tion specifies the mediator and the setting. The ensuing sections
choose the parameters in the __init__methods of the mediator
and of the setting. Each section contains pairs of properties and
values. The property corresponds to the name of the argument in
the __init__ method of the given class, and its value provides
the argument (see Fig. 12). The content of the configuration
file is parsed by the configparser module and passed to the
JF factory (located in the base.factory module) in run.py.
Standard Python naming conventions are respected in the classes
built by the JF factory, which implies the naming conventions
in the configuration file (see Section 6.3 for details). Within the
configuration file, sections can be written in any order, but their
explicit nesting is not allowed. Nesting is, however, implicit in the
structure of the configuration file.

The JF application returns all output via files under the control
of output handlers. Run-time information is logged (the Python
logging module is used). Logged information can range from
identification of CPUs to the initialization information of classes,
run-time information, etc. Logging output (to standard output
or to a file) can take place on a variety of levels from DEBUG
to INFO to WARNING that are controlled through command-line
arguments of run.py. An identification hash of the run is part of
the logging output. It also tags all the output files so that input,
output and log files are uniquely linked (the Python uuidmodule
is used).

4.2. Globally used modules

JF-V1.0 requires that all trees representing composite point
objects are identical and of height at most two. Furthermore, in
the NVT physical ensemble, the particle number, system size and
temperature remain unchanged throughout each run. After ini-
tialization, as specified in the configuration file, these parameters
are stored in the JF setting package and the modules therein,
which may be imported by all other modules, which can then
autonomously construct identifiers. Helper functions for periodic
boundary conditions (if available) and for the sampling of random
positions are also accessible.

JF-V1.0 implements hypercubic and hypercuboid setting mod-
ules. Both settings define the inverse temperature and also the
attributes of all possible particle identifiers, which are broadcast
directly by the setting package. In contrast, the parameters
of the physical system are accessed only using the modules of
the specific setting (for example the setting.hypercubic_
setting module).6 The setting package and its modules are
initialized by classes which inherit from the abstract Setting
class. The HypercuboidSetting class defines only the hyper-
cuboid setting, the HypercubicSetting class, however, sets up
both the hypercubic_setting and the hypercuboid_
setting modules together with the setting package. This al-
lows modules that are specifically implemented for a hypercuboid
setting to be used with the hypercubic setting.

5 Configuration files follow the INI-file format and, in JF, feature the extension
.ini.
6 Attributes in the setting package are copied to the modules for

convenience.
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Fig. 10. Cell methods. (a) excluded_cells, successor, cell_min and
cell_max methods required by the abstract Cells class. Horizontal and
vertical directions are indexed as 0 and 1, respectively. (b) translate and
relative_cell methods (illustrated by vectors) required by the Periodic-
Cells class, in addition to the methods of the Cells class. Periodic boundary
conditions are required, and the two blue (north-east hatched) cells are identical.
The periodic-cell system’s origin is given by the zero_cell property.

Each setting can implement periodic boundaries, by inheriting
from the abstract PeriodicBoundaries class and by imple-
menting its methods. Since many modules of JF only rely on
periodic boundaries but not on the specific setting, the setting
package gives also access to the initialized periodic boundary
conditions. Similarly, a function to create a random position is
broadcast by the setting package. All the configuration files in
Section 5 are for a three-dimensional cubic simulation box, that
is, use the hypercubic setting with dimension = 3.

Additional useful modules are located in the JF base package.
The abstract Initializer class located in the initializer
module enforces the implementation of an initialize method.
This method must be called ahead of other public methods of
the inheriting class. The strings module provides functions to
translate strings from snake to camel case and vice versa, as
well as to translate a package path into a directory path. Helper
functions for vectors, such as calculating the norm or the dot
product, are located in the vectors module.

4.3. Cell systems and cell-occupancy systems

A cell-occupancy system is an instance of a class that inherits
from the abstract CellOccupancy class, located in the activator.
Any cell-occupancy system is associated with a cell system, itself
an instance of a class that inherits from the abstract Cells class.

In JF-V1.0, the cell system consists of a regular grid of cells
that are referred to through their indices. Cells can be iterated
over with the yield_cells method. For a given cell, the ex-
cluded cells are accessed by the excluded_cells method, the
successor cell in a suitably defined direction by the successor
method and the lower and the upper bound position in each
direction through the cell_min and cell_max methods (see
Fig. 10a). Finally, the position_to_cell method returns the
cell for a given position. Cell systems with periodic boundary con-
ditions are described as periodic cell systems (instances of classes
that inherit from the abstract PeriodicCells class, which itself
inherits from the Cells class). Their zero_cell property cor-
responds to the cell located at the origin. Their relative_cell
method receives a cell and a reference cell, and establishes equiv-
alence between the relative and the zero-cell. The inverse to this
is the translate method (see Fig. 10b).

A cell-occupancy system (which is located in the activator)
associates the identifiers of cell-based particles and of surplus
particles with a cell. It also stores active cells, that is, cells that

contain an active unit (see Fig. 11). Cell-based and surplus parti-
cles in the state handler correspond to units with zero velocity,
so that there is no real distinction between units and particles
for them. The cell-occupancy system inherits from the abstract
InternalState class and therefore provides __getitem__ and
update methods. The former returns a particle identifier based
on a cell, whereas the latter updates the cell occupancies based on
the currently active units. This keeps the internal state consistent
with the global state. Moreover, the cell-occupancy may iterate
over surplus particle identifiers via the yield_surplus method.
The active cells and the corresponding identifiers of the active
units are generated using the yield_active_cells method
(see Fig. 11).

JF-V1.0 implements the SingleActiveCellOccupancy class
which features only a single active cell and which keeps the active
unit identifier among its private attributes. The cell-based particle
identifiers are stored in an internal _occupant list, and surplus-
particle identifiers are stored in an internal _surplus dictionary
mapping the cell indices onto the surplus-particle identifiers.

The stored cell-occupancy system can address different levels
of composite particles: one cell-occupancy system may track
particles (and units) associated to root nodes, while another may
track particles associated with leaf nodes. This is set on initial-
ization via the cell_level property which equals the length of
the particle identifier tuple. The concerned cell system is itself set
on initialization. An indicator charge allows one to select specific
particles on a given level for tracking.

A single run can feature several internal states stored within
the activator. These instances may rely on different cell-occupancy
systems and cell systems. For consistency between internal states
and the global state, each cell-occupancy system requires its own
cell-boundary event handler.

4.4. Inter-particle potentials and bounding potentials

In JF, potentials play a dual role, not only as factor poten-
tials UM in event handlers but also as bounding potentials for
factor potentials UM . Potentials are located in the JF potential
package. They inherit from the abstract Potential class and
provide a derivative method. They may also inherit from the
abstract InvertiblePotential class, and must then addition-
ally provide a displacement method. In JF-V1.0, derivatives and
displacements are with respect to the positive change of the
active unit along one of the coordinates (indicated through the
direction argument). For a potential U(rj − ri) and direction
= 0, the derivative is, for example, given by

[
∂/∂xiU(rj − ri)

]
.

4.4.1. Inverse-power-law potential, Lennard-Jones potential
The inverse-power-law potential (an instance of the Inverse-

PowerPotential class that inherits from the abstract Invert-
iblePotential class) concerns the separation vector rij = rj−ri
(without periodic boundary conditions, in d-dimensional space)
between a unit j and an active unit i as

U({i,j}, inv)(rij, ci, cj) = cicjk
⏐⏐⏐⏐ 1rij

⏐⏐⏐⏐p . (6)

Here, k and p > 0 correspond to the prefactor and power
parameters set on initialization. The charges ci and cj are entered
into the methods of the potential as parameters charge_one and
charge_two. This allows one instance of the InversePowerPo-
tential class to be used for different charges. The derivative
method is straightforward, while the displacement method
distinguishes the repulsive (cicjk > 0) and the attractive (cicjk <

0) cases.



12 P. Höllmer, L. Qin, M.F. Faulkner et al. / Computer Physics Communications 253 (2020) 107168

Fig. 11. Cell-occupancy system, an internal state of the activator, with active units accounted for differently from surplus and cell-based particles. Only a fixed number
of cell-based particle identifiers are allowed per cell (here one per cell). Surplus-particle identifiers may be iterated over from the outside of the cell-occupancy
system with the yield_surplus method. In JF-V1.0, surplus particles form an internal dictionary mapping the cell onto the particle identifier.

The Lennard-Jones potential (an instance of the Lennard-
JonesPotential class) implements the Lennard-Jones potential

U({i,j}, LJ)(rij) = kLJ

[(
σ

|rij|

)12

−

(
σ

|rij|

)6
]

, (7)

where rij = rj − ri is the separation vector (without periodic
boundary conditions, in d-dimensional space) between a unit j
and an active unit i. The parameters prefactor and charac-
teristic_length set on instantiation correspond to kLJ and σ .
This Lennard-Jones potential provides a straightforward deriva-
tive method. Its displacement method relies on an algebraic
inversion.

4.4.2. Displaced-even-power-law potential
An instance of the DisplacedEvenPowerPotential class

that inherits from the abstract InvertiblePotential class,
the displaced-even-power-law potential, concerns the separation
vector rij = rj − ri (without periodic boundary conditions, in
d-dimensional space) between a unit j and an active unit i

U({i,j}, depp)(rij) = kdepp
(
|rij| − r0

)p
, (8)

where kdepp > 0, p ∈ {2, 4, 6, . . . }, and r0, respectively, are the
parameters prefactor, power, and equilibrium_separation
parameters set on instantiation. The derivative and dis-
placement methods are provided analytically.

4.4.3. Merged-image Coulomb potential and bounding potential
An instance of the MergedImageCoulombPotential class

that inherits from the abstract Potential class, the merged-
image Coulomb potential is defined for a separation vector rij =

rj − ri (with periodic boundary conditions in a three-dimensional
cubic simulation box of side L) between a unit j and an active unit
i as

UC(rij, ci, cj) =

∑
n∈Z3

cicj/|rij + nL|. (9)

The conditionally convergent sum in Eq. (9) can be consistently
defined in terms of ‘‘tin-foil’’ boundary conditions [32]. It then
yields an absolutely convergent sum, partly in real space and
partly in Fourier space (see [21, Sect. IIIA]),

UC(rij, ci, cj) = cicj

⎡⎣∑
n∈Z3

erfc(α|rij + nL|)
|rij + nL|

+
4π
L3

∑
q̸=(0,0,0)

e−q2/(4α2)

q2 cos
(
q · rij

)⎤⎦ , (10)

with α a tuning parameter and q = 2πm/L, m ∈ Z3. JF-V1.0
provides this class for a cubic simulation box only. Its parameters
are optimized to reach machine precision for its derivative
method. Summations over n and m are taken within spherical
cutoffs, namely for all |n| ≤ position_cutoff and |m| ≤

fourier_cutoff excluding m = (0, 0, 0). (The potential in
Eq. (10) differs from the tin-foil Coulomb potential in a constant
self-energy term that does not influence the derivatives.)

The merged-image Coulomb potential is not invertible. When
it serves as a factor potential, bounding potentials provide the re-
quired displacementmethod. JF-V1.0 provides a merged-image
Coulomb bounding potential as an instance of the InversePow-
erCoulombBoundingPotential class, with

UC,Bounding(rij, ci, cj) = cicjkC/|rij,0|. (11)

Here, rij,0 is the minimum separation vector, that is, the vector
between ri and the closest image of rj under the periodic bound-
ary conditions. (The merged-image Coulomb bounding potential
thus involves no sum over periodic images.) The constant kC must
satisfy

kC ≥ max
r∈[−L/2,L/2]3

|r|3

x
∂UC(r, 1, 1)

∂x
, (12)

so that the factor-potential event rate is bounded. A value kC ≳
1.5836 (the parameter prefactor) is appropriate for a cubic
simulation box. The merged-image Coulomb bounding potential
is closely related to the inverse-power-law potential of Eq. (6)
with p = 1, although the restriction to the minimum separation
vector makes that the latter cannot be used directly.

4.4.4. Cell-based bounding potential
A cell-based bounding potential is an instance of a class

that inherits from the abstract InvertiblePotential class.
It bounds the derivative of the factor potential inside certain
cell regions by constants. These constants can be computed an-
alytically on demand or even sampled using a separate Monte
Carlo algorithm. On initialization, a cell-based bounding potential
receives an estimator (see Section 4.6). Also the information about
the cell system is transmitted. Then, the cell-based bounding
potential iterates over all pairs of cells (making use of periodic
boundary conditions) and determines an upper and a lower
bound derivative for the factor units being in those cells for
each possible direction of motion using the estimator. Here, the
cell-based bounding potential is not applied to excluded cells,
where the cell-bounded event rate diverges, is simply too large,
or otherwise inappropriate.

The constant-derivative bound leads to a piecewise linear
invertible bounding potential. The call of the displacement



P. Höllmer, L. Qin, M.F. Faulkner et al. / Computer Physics Communications 253 (2020) 107168 13

method is accompanied by the direction of motion, the charge
product, the sampled potential change and the cell separation.
In JF-V1.0, any cell-based bounding potential requires a cell-
boundary event handler, that detects when the displacement pro-
posed by the displacement method in fact takes place outside
the cell for which it is computed.

4.4.5. Three-body bending potential
The SPC/Fw water model of Section 5.3 includes a bending po-

tential (an instance of the BendingPotential class), which de-
scribes the fluctuations in the bond angle within each molecule.
For the three units i, j, and k within such a molecule (with j being
the oxygen), it is given by

U({i,j,k}, bending)(rij, rjk) =
1
2
kb

[
φ{i,j,k}(rij, rjk) − φ0

]2
. (13)

Here, φ{i,j,k}(rij, rjk) denotes the internal angle between the two
hydrogen–oxygen legs. The constants kb and φ0 are set on ini-
tialization of the potential (see [21]). The derivative method
is provided explicitly for this potential, which is, however, not
invertible.

In JF-V1.0, an associated piecewise linear bounding potential
is constructed dynamically by an event handler.7 Here, the event
handler speculates on a constant bounding derivative through
its position between two subsequent time-sliced positions of the
active unit: qbounding = max{q(r), q(r + v∆t)} + const where
q(r) is the potential derivative at r. The interval length |v∆t| and
the constant offset are input from the configuration file. Fine-
tuning provides an efficient bounding potential that does not
under-estimate the event rate, yet limits the ratio of unconfirmed
events.

4.5. Lifting schemes

Event handlers with more than two independent units require
a lifting scheme (an instance of a class that inherits from the
Lifting class). The event handler calls a method of the lifting
scheme to compute its out-state. At first, the event handler
prepares factor derivatives of relevant time-sliced units. The
derivative table (see [21, Figs 2 and 10]) is filled with unit
identifiers, factor derivatives and activity information through its
insert method. Finally, the event handler calls the get_
active_identifier method that returns the identifier of the
next independent active unit. The lifting scheme’s reset method
deletes the derivative table. It is called before the first derivative
is inserted. JF-V1.0 implements the ratio, inside-first and outside-
first lifting schemes for a single independent active unit (see
[21, Sect. IV]).

4.6. Estimator

Estimators (instances of a class that inherits from the abstract
Estimator class) determine upper and lower bounds on the
factor derivative in a single direction between a minimum and
maximum corner of a hypercuboid for the possible separations.
For this, they provide the derivative_bound method. Both
upper and lower bounds are useful when the potential can have
either positive and negative charge products (as happens for
example for the merged-image Coulomb potential as a function
of the two charges). In general, an estimator compares the factor
derivatives for different separations in the hypercuboid to obtain
the bounds. These are corrected by a prefactor and optionally by

7 Instance of the FixedSeparationsEventHandlerWithPiecewiseCon-
stantBoundingPotential class.

an empirical bound, which are set on instantiation (together with
the factor potential).

JF-V1.0 provides estimators which either regard regularly or
randomly sampled separations within the hypercuboid. The
inner-point and boundary-point estimators vary the separation
evenly within the hypercuboid or on the edge of the hyper-
cuboid, respectively. For these separations, the factor potential
derivatives (optionally including charges) are compared. Two
more estimators consider the interaction between a charged
active unit and two oppositely charged target units within a
dipole. Here, the factor derivative is summed for the two possi-
ble active-target pairs. A Monte-Carlo estimator distributes both
the separation and the dipole orientation randomly. The dipole-
inner-point estimator varies the separations evenly but aligns
the dipole orientation along the direction of the gradient of the
factor derivative. The implemented estimators are appropriate for
the cookbook examples of Section 5, where the upper and lower
bounds on the factor derivatives (and equivalently on the event
rates) must be computed for a small number of cell pairs only.

5. JF cookbook

The configuration files8 in JF-V1.0 introduce the key features
of the application by constructing runs for two charged point
masses, for two interacting dipoles of charges, and for two in-
teracting water molecules (using the SPC/Fw model). All config-
uration files are for a three-dimensional cubic simulation box
with periodic boundary conditions, and they reproduce published
data [21].

As specified in their [Run] sections, the configuration files
use a single-process mediator (an instance of the SinglePro-
cessMediator class), and the setting package is initialized
by an instance of the HypercubicSetting class (see for exam-
ple Fig. 12). All configuration files in the directory use a heap
scheduler (an instance of the HeapScheduler class), a tree state
handler (instance of the TreeStateHandler class), as well as a
tag activator (an instance of the TagActivator class) in order
to activate event handlers, trash candidate events and prepare
in-states.

The start_of_run, end_of_run, end_of_chain, and sam-
pling event handlers (that realize common pseudo-factors) are
implemented in largely analogous sections across all the con-
figuration files, although their parent sections (that define the
corresponding taggers) provide different tag lists for trashing
and activation of event handlers. The corresponding tagger sec-
tions are presented in detail in Section 5.1.1, and only briefly
summarized thereafter.

5.1. Interacting atoms

The configuration files in the coulomb_atoms directory of
JF-V1.0 implement the ECMC sampling of the Boltzmann distri-
bution for two identical charged point masses. They interact with
the merged-image Coulomb pair potential and are described by
a Coulomb pair factor. One of the two point masses is active,
and it moves either in the +x, +y, or +z direction. Statistically
equivalent output is obtained for the merged-image Coulomb
pair potential (the factor potential) associated with the inverse-
power bounding potential (Section 5.1.1), or else with a cell-based
bounding potential, either realized directly (Section 5.1.2), or
through a cell-veto event handler (Section 5.1.3). Although the
configuration files use the language of Section 1.2 for the repre-
sentation of particles, all trees and branches are trivial, and each
root node is also a leaf node.

8 Configuration files in the src/config_files/2018_JCP_149_064113
directory tree are described in this section.
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Fig. 12. Configuration file coulomb_atoms/power_bounded.ini. (a) A typical __init__ method of a JF class. (b) Excerpts of the configuration file (some lines
split for clarity). Sections with properties and values that correspond to the argument names in the __init__ methods of JF classes.

Fig. 13. Tree representation of the sections in the configuration file coulomb_atoms/power_bounded.ini. Only part of the tree is shown and names of event
handlers for sampling and end-of-chain are shortened. The children of the [TagActivator] section correspond to all the declared taggers, which point towards
sections for their associated event-handler classes.

5.1.1. Atomic factors, inverse-power Coulomb bounding potential
The configuration file coulomb_atoms/power_bounded.ini

implements a single Coulomb pair factor with the merged-image
Coulomb factor potential that is associated with its inverse-power
Coulomb bounding potential. The same event handler realizes
this factor for any separation of the point masses. The activator
requires no internal state.

Although it would be feasible to directly implement (that is,
hard-wire) all event handlers for this simple system, the tag
activator is used. All event handlers are thus accessed via taggers
that are listed, together with their tags, in the [TagActivator]
section (see Fig. 13 for a tree representation of the sections).
The coulomb tagger is an instance of the FactorTypeMapIn-
StateTagger class, indicating that its event handlers require
a specific in-state created from a pattern stored in a file indi-
cated in the [FactorTypeMaps] section. This pattern mirrors
the factor index sets and factor types for a system with two
root nodes. The entry [0, 1], Coulomb in this file indicates
that, for two point masses, a Coulomb potential would act be-
tween particles 0 and 1. From this information, the tagger’s
yield_identifiers_send_event_time method generates all
the in-state identifiers for any number of point masses.

The [Coulomb] section specifies input for the coulomb tag-
ger’s tag lists (the creates list and the trashes list). Here,
a coulomb event creates and trashes only coulomb candidate
events (see the configuration file of Section 5.3.1 for different tag
lists for the same coulomb event handlers).

The [Coulomb] section further specifies that the coulomb
event handler is an instance of the TwoLeafUnitBoundingPo-
tentialEventHandler class and that, for two point masses,
only one coulomb event handler is needed. The corresponding
section9 specifies the factor potential to be an instance of the
MergedImageCoulombPotential class. It specifies the bound-
ing potential as an instance of the InversePowerCoulomb-
BoundingPotential class. The sampling, end_of_chain,
start_of_run and end_of_run taggers are all instances of the
NoInStateTagger class (their event handlers require no in-
state), and also provide their event handlers and their tag lists,
which are then transmitted to the tag activator. Each of these tag-
gers’ yield_identifiers_send_event_time methods yields

9 The [TwoLeafUnitBoundingPotentialEventHandler] section. The sec-
tion name may be replaced by an alias to respect the tree structure of the
configuration file (see Section 5.2.1).
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Fig. 14. Cumulative histogram of the pair separation |r12| (nearest image) for
two charges in a periodic three-dimensional cubic simulation box with periodic
boundary conditions (βc1c2 = 2, L = 1). 1⃝: Reversible Markov-chain Monte
Carlo (see [21, Fig. 8]) 2⃝: Method of Section 5.1.1 3⃝: Method of Section 5.1.2
4⃝: Method of Section 5.1.3, each with standard errors for π (|r12| < 0.6).

the in-state identifiers needed by the taggers’ event handlers in
order to realize corresponding factors or pseudo-factors.

The configuration file’s [InputOutputHandler] section
specifies the input–output handler. It consists of the separation-
output handler (an instance of the SeparationOutputHandler
class), which is connected to the sampling event handler. In the
present example, it samples the nearest-image separation (under
periodic boundary conditions) of any two point masses. The
initial global physical state is created randomly by the random-
input handler (an instance of the RandomInputHandler class).
The configuration file coulomb_atoms/power_bounded.ini
reproduces published data (see Fig. 14, 2⃝).

The configuration file coulomb_atoms/power_bounded.
ini can be modified for N point masses. In the [RandomIn-
putHandler] section, the number of root nodes must then equal
N . In the [Coulomb] section, the number of event handlers must
be set to at least N−1 (this instructs the Coulomb tagger to deep-
copy the required number of event handlers). Without changing
the factor-type map with respect to the N = 2 case, each event
handler will be presented with the correct in-state corresponding
to a pair of units with one of them being the active unit. The
complexity of the implemented algorithm is O(N) per event.

5.1.2. Atomic factors, cell-based bounding potential
The configuration file coulomb_atoms/cell_bounded.ini

implements a single Coulomb pair factor with the merged-image
Coulomb potential, just as the configuration file of Section 5.1.1.
However, a cell-occupancy internal state associates the factor
potential with a cell-based bounding potential. The target (non-
active) unit may be cell-based or surplus (see Fig. 11). The target
unit may also be in an excluded nearby cell of the active cell
(see Fig. 10), for which the cell-based bounding potential cannot
be used. In consequence, three taggers correspond to distinct
event handlers that together realize the Coulomb pair factor.
The consistency requirement of JF-V1.0 assures that particles and
units are always associated with the same cell.

Taggers and their tags are listed in the [TagActivator] sec-
tion. The coulomb_cell_bounding tagger, for example, appears
as an instance of the CellBoundingPotentialTagger class.
The coulomb_cell_bounding event handler then realizes the
Coulomb factor unless the cell of the target particle is excluded
with respect to the active cell and unless it is a surplus particle
(in these cases the tagger does not generate any in-state for its
event handler). Otherwise, the Coulomb pair factor is realized by
a coulomb_surplus or a coulomb_nearby event handler. (For
two units, as the active unit is taken out of the cell-occupancy
system, no surplus candidate events are ever created.)

The cell-occupancy systems (an instance of the
SingleActiveCellOccupancy class) are also declared in the
[TagActivator] section and further specified in the [Single-
ActiveCellOccupancy] section. The associated cell system is

described in the [CuboidPeriodicCells] section. The internal
state, set in the [SingleActiveCellOccupancy] section, has
no charge value. This indicates that the identifiers of all parti-
cles at the cell level (here cell_level = 1) are tracked (see
Section 5.3.2 for an example where this is handled differently).

The coulomb_nearby tagger, an instance of the Exclud-
edCellsTagger class, yields the identifiers of particles in ex-
cluded cells of the active cell, by iterating over excluded cells
and by checking whether they contain appropriate identifiers.
In the same way, the coulomb_surplus tagger relies on the
yield_surplus method of the cell-occupancy system to gener-
ate in-states.

To keep the internal state consistent with the global state,
a cell-boundary event handler is used in the CellBoundary-
Tagger class (together, this builds cell_boundary candidate
events). The cell-boundary tagger just yields the active-unit iden-
tifier as the in-state used in the corresponding event handler. The
configuration file coulomb_atoms/cell_bounded.ini repro-
duces published data (see Fig. 14, 3⃝).

To adapt the configuration file for N > 2 point masses
(from the N = 2 case that is provided), in the [RandomIn-
putHandler] section, number_of_root_nodes must be set to
N . The number of coulomb_cell_bounding, coulomb_nearby,
and coulomb_surplus event handlers must be increased. Sur-
plus particles can now exist. The number of event handlers to
allow for depends on the cell system, whose parameters must be
adapted in order to limit the number of surplus particles, and also
to retain useful cell-based bounds for the Coulomb event rates.

5.1.3. Atomic factors, cell-veto
The configuration file coulomb_atoms/cell_veto.ini im-

plements a Coulomb pair factor together with the merged-image
Coulomb potential. A cell-occupancy internal state is used. The
Coulomb pair factor is then realized, among others, by a cell-
veto event handler, which associates the merged-image Coulomb
potential with a cell-based bounding potential.

All the Coulomb pair factors of the active particle with tar-
get particles that are neither excluded nor surplus are taken
together in a set of Coulomb factors, and realized by a single
coulomb_cell_veto event handler. The candidate event time
can be calculated with the branch of the active unit as the in-
state, which is implemented in the CellVetoTagger class. (The
cell-veto tagger returns the identifier of the active unit.) The
event handler returns the target cell (in which the target unit is
to be localized) together with the candidate event time. The out-
state request is accompanied by the branch of the target unit (if
it exists), and the out-state computation is in analogy with the
case studied in Section 5.1.2.

The configuration file features the coulomb_cell_veto tag
together with the coulomb_nearby, coulomb_surplus,
cell_boundary, sampling, end_of_chain, start_of_run,
and end_of_run tags. The configuration file reproduces pub-
lished data (see Fig. 14, 4⃝).

To adapt the configuration file for N point masses, the number
of root nodes must be set to N in the [RandomInputHandler]
section. The number of event handlers for the coulomb_nearby
and coulomb_surplus events might have to be increased. How-
ever, a single cell-veto event handler realizes any number of
factors with cell-based target particles whereas in Section 5.1.2
each of them required its own event handler.

5.2. Interacting dipoles

The configuration files in the dipoles directory of JF-V1.0
implement the ECMC sampling of the Boltzmann distribution
for two identical finite-size dipoles, a model that was intro-
duced previously [21]. Point masses in different dipoles interact
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Fig. 15. Cumulative histogram of the pair separation |r13| and |r14| (nearest image) for two dipoles (see the inset) in a periodic three-dimensional cubic simulation
box with periodic boundary conditions (βcicj = ±1, L = 1). 1⃝: Reversible Markov-chain Monte Carlo (see [21, Fig. 11]) 2⃝: Method of Section 5.2.1 3⃝: Method of
Section 5.2.2 4⃝: Method of Section 5.2.3 5⃝: Method of Section 5.2.4, each with standard errors for π (|r13| < 0.22) and π (|r14| < 0.22).

via the merged-image Coulomb potential (pairs 1–3, 1–4, 2–3,
2–4 in Fig. 15). Point masses within each dipole interact with
a short-range potential (pairs 1–2 and 3-4). A repulsive short-
range potential between oppositely charged atoms in different
dipoles counterbalances the attractive Coulomb potential at small
distances (pairs 1–4 and 2–3).

Each dipole is a composite point object made up of two oppo-
sitely charged point masses. It is represented as a tree with one
root node that has two children. The number of root nodes in the
system is set in the [RandomInputHandler] section of the con-
figuration file, where the dipoles are created randomly through
the fill_root_node method in the DipoleRandomNodeCre-
ator class. In the setting package, the input handler spec-
ifies that there are two root nodes (number_of_root_nodes
= 2). Each of them contains two nodes (which is coded as
number_of_nodes_per_root_node = 2) and the number of
node levels is two (number_of_node_levels = 2). As these
numbers are set in the setting package, all the JF modules can
autonomously construct all possible particle identifiers.

Statistically equivalent output is obtained for pair factors for
all interactions (Section 5.2.1), for dipole–dipole Coulomb factors
and their factor potential associated with a cell-based bound-
ing potential (Section 5.2.2), for dipole–dipole Coulomb factors
with the cell-veto algorithm (Section 5.2.3), and by alternating
between concurrent moves of the entire dipoles with moves of
the individual point masses (Section 5.2.4). The latter example
showcases the collective-motion possibilities of ECMC integrated
into JF. All configuration files here implement the short-range po-
tential as an instance of the DisplacedEvenPowerPotential
class with power = 2 and the repulsive short-range potential as
an instance of the InversePowerPotential class with power
= 6.

5.2.1. Atomic Coulomb factors
The configuration file dipoles/atom_factors.ini imple-

ments for each concerned pair of point masses a Coulomb pair
factor, with the merged-image Coulomb potential associated with
the inverse-power Coulomb bounding potential. Several event
handlers that are instances of the same class realize these factors,
and the number of event handlers must scale with their number.
No internal state is declared. Pair factors are implemented for
each pair of point masses that interact with a harmonic or a
repulsive potential. One of the four point masses is active at
each time, and it moves either in the +x, +y, or +z direction.
The configuration file represents composite point objects as trees
with two levels (see Section 1.2). Positions and velocities are kept
consistent on both levels, although the root-unit properties are
not made use of. The tree structure only serves to identify leaf
units on the same dipole.

In the configuration file, taggers and tags are listed in the
[TagActivator] section. The coulomb, harmonic, and repul-
sive taggers are separate instances of the same FactorType
MapInStateTagger class, and the corresponding sections set
up the corresponding event handlers. Both the harmonic and
the repulsive event handlers are instances of the TwoLeafU-
nitEventHandler class. Aliasing nevertheless assures a tree-
structured configuration file (the harmonic tagger is for example
declared with a HarmonicEventHandler class which is an alias
for the TwoLeafUnitEventHandler class). The coulomb tagger
and its event handlers are treated as in Section 5.1.1.

The sampling, start-of-run, end-of-run and end-of-chain
pseudo-factors are realized by event handlers that are set up
in the same way as in all other configuration files. However,
the parent sections differ: the parent of the [InitialChain-
StartOfRunEventHandler] section sets the start_of_run
tagger, which specifies that after the start_of_run event, new
coulomb, harmonic, repulsive, sampling, end_of_chain,
and end_of_run event handlers must be activated. The tag lists
thus differ from those of the [StartOfRun] section in other con-
figuration files. The configuration file dipoles/atom_factors
.ini reproduces published data (see Fig. 15, 2⃝).

5.2.2. Molecular Coulomb factors, cell-based bounding potential
The configuration file dipoles/cell_bounded.ini imple-

ments for each pair of dipoles a Coulomb four-body factor. (The
sum of the merged-image Coulomb potentials for pairs 1–3, 1–4,
2–3, 2–4 in Fig. 15 constitutes the Coulomb factor potential.) The
event rates for such factors decay much faster with distance than
for Coulomb pair factors, and the chosen lifting scheme consider-
ably influences the dynamics (see [21, Sect. IV]). The configuration
file installs a cell-occupancy internal state on the dipole level
(rather than for the point masses). A cell-bounded event handler
then realizes a Coulomb four-body factor with its factor potential
associated with an orientation-independent cell-based bounding
potential for dipole pairs that are not in excluded cells relative to
each other. The configuration file furthermore implements pair
factors for the harmonic and the repulsive interactions. One of
the four point masses is active at each time, and it moves either
in the +x, +y, or +z direction.

The configuration file’s [TagActivator] section defines all
taggers and their corresponding tags. Among the taggers for
event handlers realizing the Coulomb four-body factor, the
coulomb_cell_bounding tagger differs markedly from the
set-up in Section 5.1.2, as the event handler10 is for a pair of com-
posite point objects. The lifting scheme is set to inside_first

10 Set in the [TwoCompositeObjectCellBoundingPotentialEventHand-
ler] section.
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_lifting. The bounding potential is defined in the [Cell-
BoundingPotential] section. A dipole Monte Carlo estimator
is used for simplicity (see Section 4.6). As it obtains an upper
bound for the event rate from random trials for each relative cell
orientations, its use is restricted to there being only a small num-
ber of cells. The coulomb_nearby and coulomb_surplus tag-
gers are for event handlers realizing the Coulomb four-body fac-
tor when the bounding potential cannot be used. In this case, the
merged-image Coulomb potential is summed not only for the fac-
tor potential, but also for the bounding potential.11 The standard
sampling, end_of_chain, end_of_run, and start_of_run
taggers as well as the ones responsible for the harmonic and
repulsive potentials are set up in a similar way as in Section 5.2.1.

The [TagActivator] section defines the internal state that
is used by the coulomb_cell_bounding, coulomb_nearby,
and coulomb_surplus taggers. The [SingleActiveCellOc-
cupancy] section specifies the cell level (cell_level = 1
indicates that the particle identifiers have length one, corre-
sponding to root nodes, rather than length two, which would
correspond to the dipoles’ leaf nodes). Positions and velocities
must thus be kept consistent on both levels. The cell-occupancy
system requires the presence of a cell_boundary event handler,
again on the level of the root nodes. This event handler is aware
of the cell level, and it ensures consistency of the events trig-
gered by the cell-based bounding potential with the underlying
cell system. The configuration file dipoles/cell_bounded.ini
reproduces published data (see Fig. 15, 3⃝).

5.2.3. Molecular coulomb factors, cell-veto
The configuration file dipoles/cell_veto.ini implements

the same factors and pseudo-factors and the same internal state
as the configuration file of Section 5.2.2. A single cell-veto event
handler then realizes the set of factors that relate to cells that
are not excluded for any number of cell-based particles, whereas
in the earlier implementation, the number of cell-bounded event
handlers must exceed the possible number of particles in non-
excluded cells of the active cell. This is what allows to implement
ECMC with a complexity of O(1) per event.

The configuration file resembles that of Section 5.2.2. It mainly
replaces the latter file’s coulomb_cell_bounding event han-
dlers with a coulomb_cell_veto event handler. Slight differ-
ences reflect the fact that a cell-veto event handler uses no
displacement method of the bounding potential but obtains
the displacement from the total event rate (see the discussion in
Section 3.1.3). The configuration file dipoles/cell_veto.ini
reproduces published data (see Fig. 15, 4⃝).

5.2.4. Atomic Coulomb factors, alternating root mode and leaf mode
The configuration file dipoles/dipole_motion.ini imple-

ments two different modes. In leaf mode, at each time one of
the four point masses is active, and it moves either in the +x,
+y, or +z direction (see Fig. 16a). In root mode, at each time
the point masses of one dipole moves as a rigid block, in the
same direction (see Fig. 16b). (The root mode, by itself, does not
assure irreducibility of the Markov-chain algorithm, as the orien-
tation and shape of any dipole molecule would remain unchanged
throughout the run.)

JF-V1.0 represents the dipoles as trees, and both modes are
easily implemented. In leaf mode, the Coulomb factors are re-
alized by coulomb_leaf event handlers that are instances of
the same class12 as the coulomb_nearby event handlers in

11 The tree structure of the configuration file is hidden in this case, as the JF
factory (which builds instances of classes based on its content) creates separate
instances for all the descendants of a section, not requiring the use of aliases.
12 Instances of the TwoCompositeObjectSummedBoundingPotential-
EventHandler class.

Sections 5.2.2 and 5.2.3. The root mode, in turn, is patterned
after the simulation of two point masses (as in Section 5.1.1):
all inner-dipole potentials are constant. The inter-dipole Coulomb
potentials sum up to an effective two-body potential, the factor
potential of a two-body factor realized in a Coulomb-dipole event
handler. The repulsive short-range potential between oppositely
charged atoms in different dipoles also translates into a poten-
tial between the dipoles in rigid motion, and serves as a factor
potential of a two-body factor, realized in a specific event handler.

Taggers and their tags are listed in the [TagActivator] sec-
tion. The harmonic_leaf, repulsive_leaf (leaf-mode) tag-
gers, as well as all those related to event handlers that realize
pseudo-factors are as in Section 5.2.1. The coulomb_leaf tagger
corresponds to the coulomb_nearby tagger in Section 5.2.2. The
coulomb_root and repulsive_root taggers are analogous to
those in Section 5.1.1 for the two-atom case.

As all other operations that take place in JF, the switches
between leaf mode and root mode are also formulated as events.
They are related to two pseudo-factors and realized by a
leaf_to_root event handler and by a root_to_leaf event
handler, respectively. (These two event handlers are aliases for
instances of the RootLeafUnitActiveSwitcher class.) The
root_to_leaf and leaf_to_root taggers, in addition to the
create and trash lists, set up separate activate and deac-
tivate lists (see Section 2.4). The configuration file reproduces
published data (see Fig. 15, 5⃝). Of particular interest is that the
tree representation of composite point objects preserves consis-
tency between leaf-node units and root-node units: the event
handlers return branches of cnodes for all independent units (see
Fig. 7) whose unit information can be integrated into the global
state.

5.3. Interacting water molecules (SPC/Fw model)

The configuration files in the water directory implement the
ECMC sampling of the Boltzmann distribution for two water
molecules, using the SPC/Fw model that was previously stud-
ied with ECMC [21]. Molecules are represented as composite
point objects with three charged point masses, one of which is
positively charged (representing the oxygen) and the two oth-
ers are negatively charged (representing the hydrogens). Point
masses in different water molecules interact via the merged-
image Coulomb potential. In addition, point masses within each
molecule interact with a three-body bending interaction, and a
harmonic oxygen–hydrogen potential. Finally, any two oxygens
interact through a Lennard-Jones potential [21].

In the tree state handler (defined in the [TreeStateHan-
dler] section, a child of the [SingleProcessMediator] sec-
tion), water molecules are represented as trees with a root node
and three children (the leaf nodes of the tree). The total num-
ber of water molecules (that is, of root nodes) is set in the
[RandomInputHandler] section of each configuration file. The
molecules are created through the fill_root_node method in
the WaterRandomNodeCreator class. There are two node levels
(number_of_node_levels = 2) and three nodes per root node
(number_of_nodes_per_root_node = 3). The charges of a
molecule are set in the [ElectricChargeValues] section (a
descendant of the [WaterRandomNodeCreator] section).

All the configuration files in the water directory of JF-V1.0
implement the pair harmonic factors that are realized through
harmonic event handlers. The corresponding taggers are defined
in the [Harmonic] sections, with the displaced even-power po-
tential and its parameters set in the [HarmonicEventHandler]
and [HarmonicPotential] sections. The configuration files
furthermore implement the taggers corresponding to the three-
body bending factors in their [Bending] sections. The bend-
ing event handler has three independent units (attached to
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Fig. 16. Two moves implemented in dipoles/dipole_motion.ini. (a) In leaf mode, a single independent active leaf unit has velocity v. The corresponding dipole
center (the active root unit) is induced to move at v/2. (b) In root mode, one dipole (independent active root unit) has velocity v, and both its active leaf units have
induced velocity v.

Fig. 17. Cumulative histogram of the oxygen–oxygen pair separation |rOO| for
two SPC/Fw water molecules in a periodic cubic simulation box. 1⃝: Reversible
Markov-chain Monte Carlo (see [21, Fig. 14]) 2⃝: Method of Section 5.3.1 3⃝:
Method of Section 5.3.2 4⃝: Method of Section 5.3.3 5⃝: Method of Section 5.3.4,
each with standard errors for π (|rOO| < 2.9Å).

branches). It thus requires a lifting scheme (which is chosen in the
[BendingEventHandler] section), which is, however, unique
(see [21, Fig. 2]). In all these configuration files, one of the six
point masses is active, and it moves either in the +x, +y, or
+z direction (the optional rigid displacement of the entire water
molecule, could be set up as in Section 5.2.4).

Statistically equivalent output is obtained for a simple set-up
featuring pair factors for the Coulomb potential and a Lennard-
Jones interaction that is inverted (Section 5.3.1), or for a
molecular-factor Coulomb potential associated with a power-law
bounding potential and a cell-based Lennard-Jones bounding po-
tential (Section 5.3.2). In addition, the cell-veto algorithm for the
Coulomb potential coupled to an inverted Lennard-Jones poten-
tial (Section 5.3.3) is also provided. Finally, cell-veto event han-
dlers take part in the realization of complex molecular Coulomb
factors and also realize Lennard-Jones factors between oxygens
(Section 5.3.4). This illustrates how multiple independent cell-
occupancy systems may coexist within the same run.

5.3.1. Atomic Coulomb factors, Lennard-Jones inverted
The configuration file water/coulomb_power_bounded_

lj_inverted.ini implements pair Lennard-Jones, harmonic
and Coulomb factors. The Coulomb factors are realized for any
distance of the point masses by event handlers that associate
the merged-image Coulomb potential with its inverse-power
Coulomb bounding potential. The Lennard-Jones potential is in-
verted. This configuration file needs no internal state.

In the configuration file, the [TagActivator] section lists
all the taggers together with their tags, which in addition to
the taggers related to pseudo-factors, are reduced to coulomb,
harmonic, bending, and lennard_jones. The merged-image
Coulomb potential, with its associated power-law bounding po-
tential (both for attractive and repulsive charge products), is
specified in the [Coulomb] section of the configuration file.
The Lennard-Jones potential is invertible and its displacement
method is used rather than that of a bounding potential. The out-
put handler is defined in the [OxygenOxygenSeparationOut-
putHandler] section, a child of the [InputOutputHandler]

section. It obtains all the units, extracts the oxygens through
their unit identifier, and records the oxygen–oxygen separation
distance. This reproduces published data (see Fig. 17, 2⃝).

5.3.2. Molecular Coulomb factors, Lennard-Jones cell-bounded
The configuration file water/coulomb_power_bounded_lj_

cell_bounded.ini for the water system corresponds to pair
factors for the Lennard-Jones and the harmonic potentials and
to molecular factors for the Coulomb interaction. The Coulomb
factor potential is the sum of the merged-image Coulomb po-
tential for the nine relevant pairs of point masses (pairs across
two molecules). It is realized in a particular event handler,13
analogously to how this is done for the Coulomb interaction
in Sections 5.2.2 and 5.2.3. The associated bounding potential
(both for attractive and repulsive charge combinations) is given
by the sum over all the individual pairs. Although the Lennard-
Jones interaction can be inverted, the configuration file sets up
a cell-occupancy internal state that tracks the identifiers for the
oxygens. As in previous cases, this leads to three types of events,
corresponding to the nearby, surplus, and cell-based particles, in
addition to cell-boundary events.

Taggers and their tags are listed in the [TagActivator]
section. Taggers are generally utilized as in other configuration
files. The internal state is specified in the [TagActivator] sec-
tion. As set up in the [SingleActiveCellOccupancy] section,
it features an oxygen_indicator charge (set in the [Oxy-
genIndicator] section). The oxygen-indicator charge is non-
zero only for the oxygens. In consequence, the oxygen cell system
(defined in the [OxygenCell] section) tracks only oxygens. This
reproduces published data (see Fig. 17, 3⃝).

5.3.3. Molecular Coulomb cell-veto, Lennard-Jones inverted
The configuration file water/coulomb_cell_veto_lj_

inverted.ini for the water system corresponds to the same
factors as in Section 5.3.2. As a preliminary step towards the
treatment of all long-range interactions with the cell-veto algo-
rithm, in Section 5.3.4, molecular Coulomb factors are realized
here (for non-excluded cells of the active cell) with a cell-veto
event handler.

Taggers and their tags are listed in the [TagActivator] sec-
tion, and they are generally similar to those of other configuration
files. In addition, the internal state for the Coulomb system is
defined in the [TagActivator] section and further described
in the [SingleActiveCellOccupancy] section. The latter de-
scribes the cell level (which serves for the water molecules) as
on the root node level (cell_level = 1), the barycenter of the
leaf-node positions of each water molecule. (Root-node and leaf-
node positions are set in the random input handler, which itself
uses a water random node creator.)

The event handlers consistently update all leaf-node positions
and root-node positions from a valid initial configuration ob-
tained in an instance of the WaterRandomNodeCreator class.

13 An instance of the TwoCompositeObjectSummedBoundingPoten-
tialEventHandler class.



P. Höllmer, L. Qin, M.F. Faulkner et al. / Computer Physics Communications 253 (2020) 107168 19

Consistency will be deteriorated over long runs, but this is of
little importance for the simple example case presented here. The
configuration file reproduces published data (see Fig. 17, 4⃝).

5.3.4. Molecular Coulomb cell-veto, Lennard-Jones cell-veto
The configuration file water/coulomb_cell_veto_lj_cell

_veto.ini offers no new factors compared to Sections 5.3.2 and
5.3.3, but it uses, for illustrative purposes, two cell-occupancy
systems and two cell-veto event handlers. As nearby and surplus
particles are excluded from the cell-veto treatment, this implies
two sets of cell-veto, nearby, and surplus event handlers in
addition to two cell-boundary event handlers. For the molec-
ular Coulomb factors, the cell-veto event handler receives as
a factor potential the sum of pairwise merged-image Coulomb
potentials with attractive and repulsive charge combinations. The
corresponding cell-occupancy system tracks the barycenter of
individual water molecules, and consistency between root-node
units and leaf-node units is of importance. Although the Lennard-
Jones potential can be inverted, the configuration file sets up a
second cell-occupancy system for the Lennard-Jones potential.
The cell-occupancy system tracks only leaf-node particles that
correspond to oxygen atoms.

Taggers and their tags are listed in the [TagActivator]
section. This section is of interest as it sets up the internal state as
two cell-occupancy systems, both instances of the same Single-
ActiveCellOccupancy class. They require different parameters,
and are therefore presented under aliases, in the [OxygenCell]
and [MoleculeCell] sections. Each of these cell-occupancy sys-
tems uses a separate cell system instance of the same class. As
the two cell systems have the same parameters, they do not
need to be aliased in the configuration file. The configuration file
reproduces published data (see Fig. 17, 5⃝).

6. License, GitHub repository, Python version

JF, the Python application described in this paper, is an open-
source software project that grants users the rights to study and
execute, modify and distribute the code. Modifications can be fed
back into the project.

6.1. License information, used software

JF is made available under the GNU GPLv3 license (for details
see the JF LICENSE file). The use of the Python MDAnalysis
package [33,34] for reading and writing .pdb files, of the Python
Dill package [35,36] for dumping and restarting a run of the ap-
plication, and of the Python Matplotlib [37] and NumPy [38,39]
packages for the graphical analysis of output is acknowledged.

6.2. GitHub repository

JeLLyFysh, the public repository for all the codes and the
documentation of the application, is part of a public GitHub
organization.14 The repository can be forked (that is, copied to
an outside user’s own public repository) and from there studied,
modified and run in the user’s local environment. Users may
contribute to the JF application via pull requests (see the JF
README.md and CONTRIBUTING.md files for instructions and
guidelines). All communication (bug reports, suggestions) take
place through GitHub ‘‘Issues’’, that can be opened in the reposi-
tory by any user or contributor, and that are classified in GitHub
projects on JeLLyFysh.

14 The organization’s url is https://github.com/jellyfysh.

6.3. Python version, coding conventions

JF-V1.0 is compatible with Python 3.5 (and higher) and with
PyPy 7 (and higher), a just-in-time compiling Python alternative
to interpreted CPython (see the JF documentation for details). JF
code adheres to the PEP8 style guide for Python code, except for
the linewidth that is set to 120 (see the CONTRIBUTING.md file
for details).

Following the PEP8 Python naming convention, JF modules
and packages are spelled in snake case and classes in camel case
(the state_handler module thus contains the StateHandler
class). In configuration files, section titles are in camel case and
enclosed in square brackets (see Fig. 13).

Versioning of the JF project adopts two-to-four-field version
numbers defined as Milestone.Feature.AddOn.Patch. Version 1.0,
as described, represents the first development milestone which
reproduces published data [21]. Patches and bugfixes of this
version will be given number 1.0.0.1, 1.0.0.2, etc. (Finer-grained
distinction between versions is obtained through the hashes of
master-branch GitHub commits.) New configuration files and re-
quired extensions are expected to lead to versions 1.0.1, 1.0.2, etc.
Version 1.1 is expected to fully implement different dimensions
and arbitrary rectangular and cuboid shapes of the JF poten-
tial package. Versions 1.2 and 1.3 will consistently implement
nac ≥ 1 independent active particles (on a single processor)
and eliminate unnecessary time-slicing for some events triggered
by pseudo-factors and for unconfirmed events. All development
from Versions 1.0 to 2.0 can be undertaken concurrently. Fully
parallel code is planned for Version 3.0. In JF development, two-
field versions (2.0, 3.0, etc.) may introduce incompatible code,
while three- and four-field version numbers are intended to be
backward compatible.

7. Conclusions, outlook

As presented in this paper, JF is a computer application for
ECMC simulations that we hope will be useful for researchers in
different fields of computational science. The JF-V1.0 constitutes
its first development milestone: built on the mediator design
pattern, it systematically formulates the entire ECMC time evo-
lution in terms of events, from the start-of-run to the end-of-run,
including sampling, restarts (that is, end-of-chain), and the factor
events. A number of configuration files validate JF-V1.0 against
published test cases for long-range interacting systems [21].

For JF-V1.0, consistency has been the main concern, and code
has not yet been optimized. Also, the handling of exceptions
remains rudimentary, although this is not a problem for the
cookbook examples of Section 5.

All the methods are written in Python. Considerable speed-up
can certainly be obtained by rewriting time-consuming parts of
the application in compiled languages, in particular of the poten-
tial package. One of the principal limitations of JF-V1.0 is that
pseudo-factor-related and unconfirmed events are time-sliced,
leading to superfluous trashing and re-activation of candidate
events. Optimized bounding potentials for many-particle factor
potentials also appear as a priority.

The consistent implementation of an arbitrary number nac
of simultaneously active particles is straightforward, although
it has also not been implemented fully in JF-V1.0. (As men-
tioned, this is planned for JF (Version 2.0)). This will enable full
parallel implementations on multiprocessor machines. Simplified
parallel implementations for one-dimensional systems and for
hard-disk models in two dimensions are currently being proto-
typed. The parallel computation of candidate events (using the
MultiProcessMediator class implemented in JF-V1.0) is at
present rather slow. Bringing the full power of parallelization and
of multi-process ECMC to real-world applications appears as its
outstanding challenge for JF.
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This paper is the published result that we obtained in chapter 7. Usually, the naive
implementation of ECMC relaxes particles along orthogonal coordinate axes. Here,
we propose a scheme with gradual direction changes in order for fast mixing of the
dipole angle. A simple dipole with hard potential on a plane is selected for testing
purposes. We find that, in contrast to traditional Monte Carlo methods, the sequential
Monte Carlo method exhibits distinct patterns in the evolution of the dipole angle,
though the estimate of the angle change remains zero. Further tests show that the
efficiency of this scheme agrees with the number of elements of the direction set, and
the sequential order is always preferable over the random choice from the set.
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We discuss non-reversible Markov chains that generalize the sweeps commonly used in particle
systems and spin models towards a sequential choice from a set of directions of motion. For a
simplified dipole model, we show that direction sweeps leave the stationary probability distribution
unchanged, but profoundly modify the trajectory of the Markov chain. Choosing a larger direction
set can lead to much shorter mixing times. The sequential order is faster than the random sampling
from the set. We discuss possible applications of sequential Monte Carlo in polymer physics and
molecular simulation.

Since its introduction in 1953, the Markov-chain Monte
Carlo (MCMC) method [1] has developed into an essen-
tial tool in science and engineering as well as into a ram-
ified mathematical research discipline. [2] The concept of
sampling is central to the method. Sampling may consist
in generating (representative) integrands or addends to
approximate a high-dimensional integral or a sum. Sam-
pling may also refer to the evaluation of representative
Feynman diagrams in order to approximate, with purely
statistical errors, a perturbative series in quantum field
theory. [3, 4] The randomness in MCMC, its trademark
property, corresponds to samples j at Monte-Carlo time
step t being produced from samples i at time step t − 1
with the independent probabilities contained in a transi-
tion matrix P = P (i, j). The stationary distribution π
of samples satisfies the global-balance condition πP = π.

The randomness of the moves may often be reduced
without destroying the convergence to π. This was under-
stood for particle systems in the original 1953 reference
where, instead of moving randomly sampled particles,
“. . . we move each of the particles in succession . . . ” (see
[1, p.22]). The sequential MCMC algorithm for particle
systems is non-reversible, [5, 6] as it violates the detailed-
balance condition πiP (i, j) = P (j, i)πj that characterizes
reversible Markov chains. However, it still satisfies the
global-balance condition that is a prerequisite for conver-
gence towards π. The sequential algorithm is somewhat
more efficient. [7–9] In the Ising model and related sys-
tems, sequential spin updates (so called “sweeps”) also
break detailed balance, and they also lead to moderate
speedups compared to the detailed-balance chains that
flip spins randomly. [10] In the event-chain Monte Carlo
(ECMC) algorithm, [11, 12] randomness is drastically re-
duced in that a particle move, if accepted, is identically
repeated for the same particle. If the move is rejected for
a given particle, it is identically repeated for the particle
that caused the rejection. Lifting variables [13] allow one
to formulate the sequential Markov chains and, in par-
ticular, ECMC as time-independent transition matrices
acting on an extended configuration space.

FIG. 1. Ring representation of dipole. (a): Dipole atom mov-
ing along a fixed direction. (b): Single dipole, with segments
S− and S+ for impact parameter |λ| < 1. (c): Intersection
of lt and lt+1 at x2(t + 1). (d): For φt = 0: lines lt; impact
parameter λcut for which all xt+1 satisfy λt+1 > 1.

In the present paper, we reduce randomness in MCMC
through a sequential selection of directions from a pos-
sibly large set D. Specifically, we study a model of a
two-dimensional simple dipole. For k steps, all moves of
the two atoms composing these dipoles are in direction
±φ, after which all moves are in direction ±(φ+∆φ), etc.
(Directions are parametrized by an angle with respect to
a fixed axis, say, the x-axis.) We show the special inter-
est of choosing small ∆φ, where, paradoxically, the mix-
ing time of the algorithm can be much shortened. This
sequential MCMC algorithm leaves the stationary distri-
bution strictly unchanged. For a single dipole, the non-
trivial random walk of the sequence of samples exhibits a
statistical force that may accelerate ECMC simulations
of long-range interacting N -body systems of extended
elements, e.g., complex liquids made up of dipoles, such
as water molecules (see [14, 15]). It may also apply to
reversible or non-reversible MCMC simulations of poly-
mers, dipolar systems or glass models.

For concreteness, we consider a two-dimensional dipole
with atoms at x1 and x2 and a flat inner-dipole interac-
tion

U(ρ) =

{
0 if ρ ∈ [r,R],

∞ otherwise,
(1)



2

with ρ = |x2−x1|. This dipole can be envisaged as part of
a more complex system of many dipoles with hard-sphere
interactions between any two atoms. Periodic boundary
conditions are assumed throughout (see Fig. 1a). A stan-
dard reversible Metropolis sampling of this system would
propose a random displacement of one of the two atoms
in a way that satisfies detailed balance. The move would
be rejected if it proposes a dipole extension outside the
range allowed by eq. (1). The sampling can be easily ex-
tended to the presence of other dipoles with hard-sphere
interactions between atoms. The ECMC algorithm for
this system would move an atom in a given direction un-
til ρ = r or until ρ = R and then move the other atom in
the same direction (hard-sphere interactions with other
dipoles are implemented easily).

With periodic boundary conditions, the configuration
space for a single dipole is given by T 2 × Ω with a uni-
form Euclidean measure, where T 2 is the two-dimensional
torus, and Ω a two-dimensional ring of inner radius r
and outer radius R. With the potential of eq. (1), the
Boltzmann weight π factors out translations in T 2. We
may thus set x1 = (0, 0). The position of the atom 2
is then described by the dipole length ρ and the dipole
angle θ (see Fig. 1b). The uniform Euclidean mea-
sure translates into a dipole-length distribution π(ρ) =
2ρ/

[
r2
(
η2 − 1

)]
for ρ ∈ [r,R] with η = R/r. The

dipole angle θ is uniformly distributed in (−π, π].

In our sequential Markov-chain algorithm, we consider
a direction set D = {φ0, φ1...φn−1}, but propose them in
a specific time order t = 0, 1, 2, . . . , rather than to sample
from this set at each t. Any direction set spanning R2

and any sequence taken from this set yields the same sta-
tionary distribution π as long as the choice of directions is
independent of the configuration. Any continuous step-
size distribution implies that the Markov chain converges
towards π. For concreteness, we analyze the case where
φk+1−φk = ∆φ is constant, with positive ∆φ. Each value
φl is repeated for k Monte Carlo moves, and we consider
the limit k → ∞, in which local equilibrium is reached.
For simplicity of notation, we increment the Monte Carlo
time t by one at the choice of a new direction (rather than
to increment it by k). In the limit k →∞, the Metropo-
lis algorithm (with an additional non-hopping condition
that corresponds to small step size) and ECMC both re-
alize a direct sample [16] under the constraint given by
the direction of motion.

We now analyze the motion of the dipole for a given
direction φ. Because of x1 = (0, 0), this is equivalent
to the move of atom 2 on a straight line. At time t,
the dipole moves on the line lt (which forms the angle
φt) from x2(t) to x2(t+ 1) (see Fig. 1b). Because of the
implicit limit k →∞, x2(t+1) is a uniform random point
on the segment of lt ∩ Ω that also contains x2(t). The
nature of this move depends on the impact parameter:

λt = sin(θt − φt)ρt/r, (2)

in other words on the signed distance (in units of r) of
lt to the origin. (In a reference frame where φ = 0, λ is
positive for x2 in the upper half plane and negative in
the lower half plane.)

If |λt| > 1, the line lt forms a single segment St in
Ω. In contrast, if |λt| < 1, there are two such segments,
namely S−t (to the left, in the reference frame in which
φ = 0) and S+

t (to the right). Then, if |λt+1| < 1 (in
addition to |λt| < 1), the dipole is trapped in its segment
from time t to t+ 1, and the impact parameter decreases
if in S+ and increases if in S−. This trapping gives rise
to a deterministic counter-rotation of the dipole angle
with respect to the rotation of the directions, as we will
describe later.

The evolution of the impact parameter λ can be de-
scribed through drift and diffusion terms. The expecta-
tion (mean value) of λt+1, for a fixed value of λt, is

Eλt+1 =





λt cos ∆φ−At sin ∆φ if x2(t) ∈ S+ ,

λt cos ∆φ+At sin ∆φ if x2(t) ∈ S− ,
λt cos ∆φ if |λt| > 1,

(3)

where At = 1
2 (Bt + Ct) with Bt =

√
η2 − λ2

t and Ct =√
1− λ2

t . The fluctuation term (variance) of the impact
parameter λt+1 is

σ2(λt+1) =

{
1
12 sin2 (∆φ) (Bt − Ct)2

if |λt| < 1 ,
1
3 sin2 (∆φ)B2

t if |λt| > 1 .
(4)

For small |∆φ|, the drift E (λt+1) − λt (from eq. (3))
is proportional to (∆φ)2 for |λ| > 1, and proportional
to ∆φ for |λ| < 1. The fluctuation term of eq. (4) is
always proportional to (∆φ)2. This can be compared to
the discrete-time Langevin equation

ξt+1 = ξt +D(1)(ξt, tt)τ +
√
D(2)(ξt, tt)τ wt, (5)

where D(1) and D(2) are Kramers–Moyal expansion coef-
ficients, τ is the time step, and wt are Gaussian random
numbers (see [17, eq. (3.138)]). For |λt| > 1, the impact
parameter performs what we can call an “excursion”, a
random walk in the quantity τ = (∆φ)2. Such an excur-
sion corresponds to a total number ∆t of time steps (that
is, changes of ∆φ) that scales as ∆t ∼ const/(∆φ)2 and a
total angle that diverges as φ̃t− φ̃0 = ∆t∆φ ∝ 1/∆φ. (φ̃
differs from φ in that it is rolled out, rather than folded
into the interval (−π, π].) During the excursion, the
dipole rotates (for ∆φ > 0) in the positive sense (see inset
of Fig. 2a). Thus, the difference in the rolled-out dipole
angle θ̃ during an excursion diverges as ∼ const/∆φ.
This is evidenced by typical trajectories of θ̃t∆φ as a
function of φ̃t∆φ for different values of ∆φ (see Fig. 2a
and b).

For |λt| < 1, the fluctuation term of eq. (4) is negligi-
ble for small |∆φ|, and eq. (3) (for the upper case) leads
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FIG. 2. Sample trajectories of the rolled-out dipole angle θ̃
(blue, upper) and of |λ| (yellow, lower) for η = 2. Axes are
rescaled with ∆φ. Insets: Initial portion of the trajectories.
(a): ∆φ = π/180. Sketch I illustrates “excursions” , sketch II
“zigzags”. (b): ∆φ = 0.1π/180.

to the non-linear differential equation dλ = −A(λ)dφ.
Its solution agrees with the trajectories (for |λ| < 1) ob-
tained by numerical simulation (see inset of Fig. 2a). The
half-period (in φ̃), that is, the difference in φ̃ which cor-
responds to one move from λ = 1 to λ = −1 (or vice
versa), is always smaller than π. In the reference frame
of constant φ̃, it rotates in the mathematically negative
sense (see the trajectory from B to point D in the in-
set of Fig. 2a). After one such half-period (which corre-
sponds to roughly constant θ̃), the dipole either jumps
to the other segment (from S+ to S− or from S− to S+)
and continues to rotate in the negative sense (creating a
“zigzag” for |λ| < 1) or else goes over to an excursion
with |λ| > 1. In trajectories of θ̃t∆φ as a function of
φ̃t∆φ, the zigzags become ever steeper as ∆φ→ 0 unlike
the excursions, that approach a well-defined limit (see
Fig. 2a and b, again).

One zigzag corresponds to a constant negative rotation
of θ̃ (as ∆φ→ 0) whereas one excursion corresponds to a
positive rotation diverging as ∼ const/∆φ. Nevertheless,
positive and negative rotations balance, and the expecta-
tions E (θ̃t+∆t− θ̃t) are all zero. This is trivial for ∆t = 1,
as the distribution π(θ̃t+1− θ̃t) is symmetric around zero
because of detailed balance (see Fig. 3a). Furthermore,
θ̃t − θ̃0 = θ̃t − θ̃t−1 + · · ·+ θ̃1 − θ̃0 yields

E
(
θ̃t − θ̃0

)
= E

(
θ̃t − θ̃t−1

)
+ E

(
θ̃t−1 − θ̃t−2

)
+ . . .

+ E
(
θ̃2 − θ̃1

)
+ E

(
θ̃1 − θ̃0

)
= 0, (6)

FIG. 3. Distributions π(θ̃t+∆t − θ̃t) for η = 1.1 and ∆φ =
π/180. (a): ∆t = 1. (b): Distributions for moderate ∆t. (c):
Rescaled large-∆t distributions compared to a Gaussian.

because the expectation of a sum of (possibly dependent)
random variables equals the sum of expectations. For
∆t > 1, the distribution of the rolled-out dipole angle can
be highly asymmetric, although the random walk remains
unbiased (see Fig. 3b). For ∆t . const/(∆φ)2, the distri-
bution peaks for large θ̃ that corresponds to trajectories
that remain on long excursions. For ∆t� const/(∆φ)2,
the distribution approaches a Gaussian (and becomes
again symmetric), because excursions and zigzags then
compensate for each interval [t, t+ ∆t] (see Fig. 3c).

The vanishing of E (θ̃t+∆t − θ̃t) implies that many
(∝ 1/∆φ) zigzags follow one another in between two ex-
cursions of the dipole. Microscopically, this can be under-
stood through the existence of a cutoff value λcut of the
impact parameter (see Fig. 1c). A dipole with |λt| > λcut

leads to |λt+1| > 1, while a dipole with λcut > |λt| > 1
may either produce |λt+1| > 1 or |λt+1| < 1, in which case
it may remain trapped in its corresponding segment.

We quantify the convergence of the complicated ran-
dom walk composed of zigzags and excursions through
the total variation distance (TVD) [2, 18],

||πt − π||TVD =
1

2

∫
dx|P tπ0(x)− π(x)|, (7)

where x stands for all the variables describing the con-
figuration space and π0 is the most unfavorable initial
probability distribution. The time t after which the
TVD reaches ε = 1/4 is defined as the mixing time
tmix = tmix(1/4). For ε′ < ε, tmix(ε′) is easily bounded
through the value for ε = 1/4. [2] In our case, the distri-
bution πt depends on three variables θ, ρ, and φ. How-
ever, ρ relaxes very quickly and φ is a lifting variable
without influence on π. We thus consider the TVD for
the distribution πθ, that only depends on θ (that is, we
integrate over ρ and φ). Finally, we use a δ-function at
most unfavorable ρ0 and θ0 as an initial distribution π0.
With these approximations, we systematically study tmix

for our sequential MCMC as a function of the set D char-
acterized by ∆φ. We compare the sequential algorithm
with random discrete MCMC where the new direction is
randomly sampled from D and with random continuous
MCMC where ∆φ = ran(0, π).
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FIG. 4. Mixing times and trajectories for general ∆φ (a): tmix

at η = 1.005 compared to mixing times of random discrete
and continuous MCMC. Inset: tmix for small ∆φ and η &
1. (b): Optimal speedup with respect to ∆φ = π/2 and to
random continuous MCMC. Inset: Dependence on ρ0 and θ0

for η = 1.1 and ∆φ = π/180. (c): θ̃t and λt for η = 1.01 and
∆φ = 85π/180.

Several properties stand out (see Fig. 4). First, we find
that accessing the elements of D sequentially is generi-
cally better than randomly sampling the direction fromD
(see Fig. 4a). (This no longer holds as ∆φ→ 0 where the
mixing time naturally diverges for sequential MCMC.)
The benefits of sequential MCMC are reminiscent of what
is known for the sequential particle labeling [7] or for spin
sweeps [10]. The mixing time is very sensitive to the size
of D. Second, we find that sequential MCMC is faster
than the random continuous choice of directions except
when |D| is very small. Third, we confirm that for small
∆φ, the very special Markov chain described in the core
of this paper indeed has the smallest mixing time. This,
in our model, can of course only be observed for η−1� 1
because the speedup for small ∆φ is cut off by the diver-
gence of tmix for ∆φ → 0 (see inset of Fig. 4a). Fourth,
we find that the sequential Markov chains for generic ∆φ
remain peculiar (as they are for small ∆φ). They feature
intriguing patterns for λt and the rolled-out dipole angle
θ̃t (see Fig. 4c).

In conclusion, we have discussed in this paper a class
of Markov chains with reduced randomness. Our ex-
ample consisted in the choice of directions from a set.
Sequentially accessing the elements of this set left the
stationary probability distribution unchanged. It pro-
foundly changed the properties of the Markov chain and
clearly reduced mixing times. In real-world MCMC, mix-
ing times and correlation times are often counted in weeks

or months. There, the potential benefits of what corre-
sponds in our simplified dipole model to small ∆φ may
not be cut off by the ∆φ → 0 divergence of the mix-
ing time. It will thus be fascinating to understand the
usefulness of sequential MCMC in applications such as
polymer physics and, also, systems of long-range inter-
acting extended molecules at the core of the JeLLyFysh
project. [15]
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RÉSUMÉ

Cette thèse étudie le comportement de la chaîne d'événements de Monte Carlo (ECMC) 
dans les systèmes de particules à longue portée. Nous proposons la formule 
d'échantillonnage ECMC dans un système de Coulomb dans le cadre des conditions 
périodique aux limites. En regroupant toutes les paires coulombiennes entre deux 
molécules, le facteur dipolaire induit des taux d'événements plus faibles. En combinaison 
avec la "cell-veto" méthode, nous obtenons un algorithme O(NlogN)-par-balayage pour 
les systèmes dipolaires. Nous développons également une application scientifique 
appelée JeLLyFysh pour les simulations moléculaires par ECMC. JeLLyFysh est conçu 
de manière très extensible et est open-source en ligne. A l’aide de JeLLyFysh, nous 
établissons un profil des performances de l'ECMC pour les grands systèmes d'eau. La 
dynamique qui en résulte implique qu'un schéma plus sophistiqué est nécessaire pour 
équilibrer la polarisation. Ainsi, nous testons la stratégie d'échantillonnage avec 
changement séquentiel de direction. L'évolution du dipôle présente une dynamique 
particulière, et l'ensemble des choix de direction ainsi que l'ordre de sélection s'avèrent 
tous deux cruciaux pour atteindre la distribution stationnaire de l'orientation du dipôle. 

MOTS CLÉS

Méthode de Monte Carlo, chaîne de Markov irréversibles, interaction coulombienne,
système de longue portée, simulation moléculaire

ABSTRACT

This thesis studies the behavior of event-chain Monte Carlo (ECMC) in long-range 
particle systems. We propose the formula for ECMC to sample in a Coulomb system 
under periodic boundary conditions. By grouping all Coulomb pairs between two 
molecules, the dipole factor induces smaller event rates. Together with the cell-veto 
method, we obtain an O(NlogN)-per-sweep algorithm for dipole systems. Also, we 
develop a scientific application called JeLLyFysh for molecular simulations through 
ECMC. JeLLyFysh is designed in a highly extensible way, and is open-source online. 
Using JeLLyFysh, we profile the performance of ECMC for large water systems. The 
resulting dynamics imply that a more sophisticated scheme is needed to equilibrate the 
polarization. Thus, we test the sampling strategy with sequential direction changes. The 
dipole evolution exhibits distinct dynamics, and the set of direction choices and the order 
of selection prove both crucial in mixing the dipole's orientation. 

KEYWORDS

Monte Carlo method, irreversible Markov chain, Coulomb interaction,
long-range system, molecular simulation
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