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Introduction

The increase of energy consumption and global issues, such as global warm-
ing and climate change, have increased the interest for alternative ways
to generate energy [1]. These issues are usually linked to the use of fos-
sil fuels for transport, industrial processes, and for energy generation in
thermal power stations. According to some predictions, the global oil re-
serves will last approximately for fifty years more. Due to this fact and
environmental concerns, the international community have been tried over
the past few year to create agreements and initiatives in order to reduce
the primary energy consumption, which is approximately 30% oil based
[2]. Recently, during the 2015 United Nations Climate Change Conference
(COP21), through a series of resolutions, some countries agreed to search
for strategies to increase the efficiency in energy generation, limit carbon
dioxide emissions, and boost the utilization of renewable energy sources.
The private sector, conscientious of these matters, is also promoting this
way of thinking, and is investing in new technologies. For example, the suc-
cess of companies such as Tesla motors, indicates that clean energy powered
vehicles tend to become a new trend; environmental friendly and profitable
[3, 4].

Among other solutions, the use of thermoelectric technology is con-
sidered a very promising alternative and clean technology for energy har-
vesting and recovery. By using thermoelectric devices one can convert
the wasted heat from different sources, like solar radiation, and automotive
exhausts, into electric power via thermoelectric generators, or Seebeck gen-
erators. In addition, thermoelectric materials are also capable of operate
on the other way around, converting an electric voltage into temperature
differences. This effect is known as thermoelectric cooling, or Peltier cool-
ing, with applications varying from refrigerators, temperature controllers,
or other cooling devices.[5, 6, 7]

The critical aspect concerning thermoelectrics is to develop efficient de-
vices. The thermoelectric efficiency is related to an dimensionless quantity

15
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materials perfectly suitable to be used as playground for various theoret-
ical developments. On the past, many approaches based on the harmonic
theory, and on perturbation theory failed to obtain reliable results. Hence,
showing the need of methodologies beyond the perturbative limit. One of
the most promising methods is the so called stochastic self-consistent har-
monic approximation [16, 17, 18]. This methods aims to minimize the free
energy of a given system via a stochastic procedure. Then, it allows the
evaluation of anharmonic phonon spectra, self-energies, and lattice insta-
bilities, as needed for the IV-VI salts.

This thesis devoted to the study the anharmonic contribution to the lat-
tice dynamical properties of the thermoelectric compounds PbTe and SnTe
using some new developments of the stochastic self-consistent harmonic
approximation . First, on chapter 1 we discuss some relevant findings and
the phenomenology of IV-VI chalcogenides. Chapters 2 and 3 we present
the theoretical framework used in this thesis, starting from the harmonic
theory and the density-functional perturbation theory to the inclusion of
anharmonicity via different approaches. In the latter, we discuss the limits
of perturbative methods, and we give a brief, although deep, introduction
to the method used in this work. Chapter 4 aims to test and validate
the methodology by applying it to our systems of interest for a variety
of different cases. The comparison between experimental findings and our
calculations for PbTe and SnTe are presented on chapter 5. Finally, the
main conclusions drawn will be acquainted in chapter 6.



Chapter 1

Main experimental findings:

structural, electronic, and

vibrational properties of SnTe

and PbTe.

The family of IV-VI compounds have been extensively studied experimen-
tally since the fifties. In particular, PbTe, GeTe, and SnTe gained attention
due to their thermoelectric properties [10, 12], the relevance of the anhar-
monic effects in their phonon spectra [19, 20], the occurrence of ferroelectric
phase transitions in SnTe and GeTe [13, 21, 22, 23], and more recently, the
presence of surface states on SnTe. Hence, including the latter on the hot
field of topological insulators [24, 25].

In this chapter we give a brief overview on some experimental findings
focusing on PbTe and SnTe. We start our discussion with their crystal
structure and its dependence on temperature and pressure. Then, we dis-
cuss about their electronic properties. We focus this discussion on features
such as the presence of a small-gap, a band inversion mechanism present
on the Pb1−xSnxTe alloy dependent on Sn concentration, and the existence
of surface states on SnTe. In addition, we discuss some theoretical results
present in literature. Then, we highlight some experimental studies aiming
to describe the lattice dynamical properties and the role of anharmonicity
in both compounds. First we discuss some inelastic ion scattering mea-
surements for PbTe. Then, we compare the latter with findings for SnTe.
Finally, the study of the ferroelectric transition in SnTe is addressed.
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1.1 Crystal structure

One of the main reasons why some materials of the IV-VI family are inter-
esting is due to their, in principle, simple structure. At room temperature
and ambient pressure, PbTe and SnTe have a rock-salt structure as illus-
trated in Fig.(1.1). Where PbTe has a lattice parameter of a = 6.462 Å at
300 K whereas SnTe lattice constant is a = 6.387 Å for the same tempera-
ture [26, 27].

Figure 1.1: A section of the rock salt structure of PbTe and SnTe. The primitive unit
cell is given in green.

For temperatures in the range between 0 K to 120 K, SnTe undergoes
a structural transition towards a rhomboedral structure, becoming then a
ferroelectric material. In this phase, due to a small dimerization along the
(111) direction, the lattice parameter assumes the values of a = 6.325 Å
and the rhombohedral angle is α = 89.895◦ [28]. The structural transition
is illustrated in Fig.(1.2) depends strongly on the sample doping, being
absent if the carrier concentrations (due to off-stoichiometry) is smaller
than np = 1.5 × 1020 cm−3. We will talk more about this transition when
discussing the measurements of optical properties of SnTe, since it can be
studied using different techniques.
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Figure 1.2: SnTe structural transition from a rock-salt to a rhombohedral structure.
From ref [29]

Finally, according to X-ray experiments, an orthorhombic phase can be
induce as pressure is applied. The critical pressure is 20 kbar and 42 kbar,
for SnTe and PbTe, respectively [30].

1.2 Electronic structure

1.2.1 Experimental findings

PbTe and SnTe are narrow direct-gap semiconductors. The optical gap is
of the order of 0.31 eV and 0.18 at the L point on the BZ, for PbTe and
SnTe at 300 K, respectively. In addition, the band edges are nonparabolic,
and the ordering of the levels at L is composition sensitive and determines
the temperature and pressure coefficients of the band gap [31]. In order to
calculate transport properties the mechanism behind the levels ordering at
L must be well understood and determined [31]. Hence, this fact motivated
both experimental and theoretical studies using a large range of techniques
[32].

On the experimental side, Dimmock et at.[33] carried out photolumi-
nescence experiments in order to evaluate the evolution of the electronic
properties of the PbxSn1−xTe alloy in function of temperature and Sn con-
centration. For PbTe, via luminescence data, the values for the band gap
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at the L point in the Brillouin zone (BZ) varies from 0.186 eV to around
0.31 eV at 12 K and 300 K respectively. Hence, the authors concluded that
the band gap increases with temperature. On the other hand, SnTe band
gap dependence was found, via tunneling experiments [34], to have the op-
posite behavior, ranging from 0.18 eV at 300 K and 0.3 eV at ≈ 4.2 K. In
addition, by varying the mole fraction of SnTe, 1 − x, in the PbxSn1−xTe
alloy, it was found that the band gap reduces as the alloy becomes Sn rich,
being zero for 1 −x = 0.35 at low temperature, and 1 −x = 0.62 at 300 K.
For this reason, they proposed a model, illustrated in Fig.(1.3), in which
the valence and conduction bands of SnTe are inverted in relation from
these of PbTe.

Figure 1.3: Model for the valance and conduction bands at low temperature for PbTe,
for the composition in which the energy gap Eg is zero, and for SnTe. By increasing
the concentration of Sn the gap energy becomes zero at a certain point, after a band
inversion occurs. Taken from ref.[33]

It is believed that the conduction band and the valence band edges are
a L−

6 and a L+
6 states, respectively. On the Pb rich system, the L−

6 and
L+

6 are associated with p-orbital of Pb, and Te, respectively. By increasing
Sn concentration the energy gap Eg decreases as these states approach
each other, it becomes zero for a intermediate stage in which the states are
degenerate, and then increases with now the L−

6 and L+
6 states representing

the valence and conduction band edges, respectively.
More recent experiments using the angle-resolved photoemission spec-

troscopy technique (ARPES) investigated this band inversion in detail [35],
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supporting the model of Dimmock. In addition, other ARPES measure-
ments [24] verified the exsitence of a topological crystalline insulator (TCI)
phase of SnTe.

The work of Tanaka et al.[24] shows that SnTe is a TCI with metallic
Dirac-cone surface band. In addition, they performed similar measurements
showing that PbTe is a trivial insulator, which is in agreement with theoret-
ical predictions. The ARPES measurements shown in Fig.(1.4a) displays
the electronic states close to Ef and around the Λ̄ point of the BZ. This
point is the one in which the the top of the Dirac-like band is found, and it
is located slightly away from the X̄ point of the surface BZ corresponding
to a projection of the L point of the bulk BZ. It found that PbTe does
not exhibits evidence of a metallic Dirac-like band, and shows only a broad
feature coming from the top of the valence band, as shown in Fig.(1.4b).
Hence, one can concludes that a topological phase transition from the triv-
ial insulator, PbTe, to a TCI phase takes place in the Pb1−xSnxTe alloy.
The, the model proposed by Dimmock et al.[33] is recovered, as can be
illustrated in Fig.(1.4c).

1.2.2 Comments on ab-initio simulations of the elec-

tronic structure

The electronic and structural properties of PbTe have been largely inves-
tigated via ab-initio methods since the interest on these materials grew
during the sixties. However, their description can be quite tricky due to
some of their particular features. Since PbTe and SnTe are small-gap semi-
conductors, the evaluation of their band structure via ab-initio calculations,
specially within the density functional theory (DFT)[36, 37] is a delicate
matter. The use of standard approximations, such as local density ap-
proximations (LDA) and generalized gradient approximation (GGA) [38],
normally underestimates the direct gap at the L point in the Brillouin-zone
(BZ), specially for PbTe. This property depends on the lattice parameter
chosen in the simulations. Furthermore, it influences directly the calcula-
tions of optical properties, so a consistent approach is desirable.

The first measure taken in order to correct the band gaps, is to include
the spin-orbit coupling. Using LDA, Wei et al.[39] were able to reduce the
error in the band gaps. Their calculations were partially empirical, making
use of constant potential applied to the conduction-band states aiming to
match the calculated gaps with the experimental data.

Within a fully DFT framework, the effects of the spin-orbit coupling
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Figure 1.4: Comparison between PbTe and SnTe band structure [24].In (a) the electronic
states close to Ef and around the Λ̄ point of the BZ are shown. (b) shows the ARPES
intensity plots showing the broader feture comming from the top of the valence band of
PbTe and the presence of the metallic Dirac-like band in SnTe. (c) illustrates the band
inversion model with the addition of the surface states. Here SS, CB, VB denote the
surface state, the bulk conduction band, and the bulk valence band, respectively.
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were investigated deeply by Hummer et al.[40] It has been shown that
the inclusion of the spin-orbit coupling by using GGAfunctionals leads to
negative gap on the L point. The authors believe that the use of hybrid
exchange-correlation functionals, such as the HSE06 [41], are particularly
adequate since the increase the precision of the calculations. On the other
hand, they also state that calculations using GGA functionals neglecting
spin-orbit coupling are an suitable and less costly option [40].

Figure 1.5: Electronic band structure of SnTe (a) and PbTe (b) from ref.[42]. The red
dots represents the fraction of electronic charge residing on the Te atoms. The grey are
highlights the intrinsic band of SnTe.

Using the GGA several studies manage to describe the inversion of the
valence band character between PbTe and SnTe verified experimentally.
Fig.(1.6) show the calculations performed by Hsieh et al.[42]. This study
succesfully calculated the surface states of SnTe close to X̄ as reported by
Tanaka et al.[24]. In addition, they’ve also shown the inversion of the band
character between PbTe and SnTe, Fig.(1.5).

1.3 Vibrational properties

The understanding of the vibrational properties of thermoelectric mate-
rials is crucial for both fundamentals reasons as for the development of
efficient thermoelectric devices. PbTe and SnTe are among the most effi-
cient thermoelectric materials, due to the their very low phonon thermal
conductivity, klat.[39, 42, 43, 44, 45] For some time it was believed that this
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Figure 1.6: Band dispersion of SnTe. The (001) surface states are denoted by the red
lines. As found in experiment, the Dirac point is slightly away from the X̄ point of the
surface BZ. Taken from [42]

low thermal conductivity was due to the heavy masses, as well the proxim-
ity to a ferroelectric lattice instability which causes strong anharmonicity in
these compounds. This strong anharmonicity causes the frequency of the
low energy transverse optic modes (TO) at zone center to increase with
increasing temperature [19, 46, 47].

We will start our discussion with PbTe because in principle it is simpler
than SnTe due to the absence of a ferroelectric transition. For this reason it
is called an incipient ferroelectric material. The work of Cochran et al [15].
investigated the phonon dispersion curves of PbTe via INS experiments and,
in addition, proposed some theoretical models to interpret their findings.
Fig.(1.7) shows the phonon dispersion curves obtained at T = 300 K.

Their work reported that the TO modes at zone center have a value
around 4.1 meV for T = 300 K. This work, in conjunction with the anal-
ysis of other IV-VI rock-salt chalcogenides, stated the first steps on the
comprehension of lattice anharmonicity in this class of materials. How-
ever, due to new developments on the instrumentation, more recent INS
experiments[19, 20] showed that PbTe is more complex and exhibits larger
anharmonicity than SnTe. It presents a satellite peak on the neutron struc-
ture factor around the Γ point at 300 K, stating that in reality the peak
obtained on the previous measurements are related to this additional peak
whereas the high energy peak is close to 7.0 meV. Fig.(1.8) displays the
neutron structure factor S(q, E) data for dispersion along [0,0,L] in (113)
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Figure 1.7: Phonon dispersion curves of PbTe at 296 K for different directions along
the BZ. The dots denote the INS measurements as the solid lines represent a theoretical
model for PbTe developed by the authors [15].

BZ, where pink diamonds represent the peak in the TO scans at Γ. Further-
more, they report another intriguing feature, an avoided crossing between
longitudinal acoustic (LA) and TO phonon branches. The measured modes
repel each other strongly for q= (0, 0, 1/3) as illustrated by the red arrows
in Fig.(1.8) causing the avoided crossing. This feature is more evident at
temperatures higher than 300 K.

Hence, due to its strong anharmonicity, the theoretical description of
PbTe phonon spectra and the features reported is quite tricky. Methods
based on the quasi-harmonic approximation and perturbation theory failed
to describe the phonon spectra in function of temperature as well the pres-
ence of satellite peaks. [48, 49]. The used of more complex methodologies
in then required in order to obtain reliable results.

Differently from PbTe, SnTe does not exhibits complex features in its
INS spectra as obtained by Li et al.[20] Fig.(1.9) compares the features
of the INS spectra of PbTe and SnTe. For low temperatures the spectra
of SnTe show that it is close to an instability as the TO modes are low
in energy. In particular, in this work they found that the ferroelectric
transition occurs at Tc ≈ 42 K.

The critical temperature for the ferroelectric transition is a debate which
dates from the first works on SnTe vibrational properties. Some of the
works stated that it might occur for temperatures close to 0K, in others
that it range is somehow large, varying from 0 K to 120 K.[13, 21, 22, 23] In
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Figure 1.8: PbTe S(q, E) data for dispersion along [0,0,L] in (113) BZ at (a) 300 K and
(b) 600 K. The white lines denote harmonic calculations performed by the authors, and
pink diamonds indicates the peak for the TO scans at Γ. The red arrows indicate where
the avoid crossing between LA and TO modes occurs. From ref.[19]

fact, is was found that the transition temperature of SnTe depends strongly
on the sample doping. Furthermore, since stoichiometric SnTe does not
exists in nature due to Te vacancies [50], a carefully analysis of the doping
is crucial. An interesting study made by Brillson et al.[23] evaluated Tc

in function of carrier concentrations via Raman scattering experiments.
Since the rock-salt structure does not have Raman active modes no signal
is obtained. However, when the ferroelectric transition occurs they were
capable to observe the Raman signature of the rhombohedral structure.

A more in depth study as later performed by Kobayashi et al.[28] in
which measurements of the electrical resistivity and Hall coefficient as func-
tions of temperature were made for p-type SnTe crystals with carrier con-
centrations ranging from (1.2 − 7.7) × 1020 cm−3. Fig.(1.10) and Fig.(1.11)
illustrates the Tc dependence on doping. The first shows the results ob-
tained via the anomaly on the resistivity, and the second combines the first
with INS, Raman, neutron Bragg reflection, and x-ray results.

1.4 Summary

In this chapter we discussed some experimental findings on PbTe and SnTe.
We started with the different structures that these systems can assume de-
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Figure 1.9: INS measuments of S(q, E) of SnTe. (a,b) S(q, E) measured at T = 50 and
300 K, respectively, along the [H,H,3] direction. White lines are renormalized phonon
dispersion calculated at T = 300 K. Taken from [20]

pending on temperature and pressure. Then, we discussed their electronic
properties and how it have been treated within the DFT framework. Fi-
nally, we discussed some of the main results on PbTe and SnTe lattice
dynamical properties. The experiments discussed in this chapter demon-
strate how anharmonicity manifests itself in these compounds, leading to
a complex phonon spectra dependence on temperature, structural phase
transitions for SnTe, and the presence of satellite peaks on the neutron
scattering function of PbTe.

In this spirit, on the next two chapter we will introduce the theoretical
framework used in this thesis in order to investigate anharmonic effects in
the lattice dynamical properties of materials.





Chapter 2

Dynamical properties of solids

In this chapter we describe the theoretical background and some concepts
related to the evaluation of lattice-dynamical properties of solid. In order
to be concise, we try to reduce the use of mathematical formalism. The
majority of the condensed matters concepts discussed in this chapter are
well-known and well documented [51, 52, 53].

The main objective of this chapter is to introduce briefly some key
concepts concerning early developments of lattice-dynamical calculations.
First, the general picture is introduced, followed by the ionic Hamiltonian
and the harmonic approximation. Next, the density functional perturba-
tion theory is presented.

Unless we state otherwise, throughout the sections introducing the
methodology used in this thesis, we adopt atomic units (a.u.), so that
e = ~ = me = 4πǫ0 = 1. In addition, considering that magnetism is not
studied, spin degrees of freedom are not considered throughout.

2.1 Lattice dynamics

2.1.1 The general picture

We can think of matter as an ensemble of interacting atoms, sometimes
under the influence of an external field. In order to describe its physical
and chemical properties, one can treat it as a collection of atomic nuclei and
electrons interacting via Coulomb electrostatic forces. The Hamiltonian for
such system can be expressed on the following way:

31
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Ĥ = T̂ion + T̂e + V̂ion,ion + V̂e,e + V̂e,ion

=
Nion
∑

I

1
2MI

P̂ 2
I +

Ne
∑

i

1
2

p̂2
i +

1
2

Nion
∑

I 6=J

ZIZJ

|R̂I − R̂J |

+
1
2

Ne
∑

i6=j

1
|r̂i − r̂j|

− 1
2

Ne,Nion
∑

i,I

ZI

|r̂i − R̂I |
, (2.1)

where T̂ion and T̂e are the kinetic-energy operators for the ions and elec-
trons, respectively; V̂ion,ion, V̂e,e, V̂e,ion are the ion-ion interaction operator,
electron-electron interaction operator, and ion-electron interaction opera-
tor, respectively. In Eq.(2.1), electrons are denoted by lower case subscripts
and ions, with masses MI and atomic numbers ZI , by upper case subscripts.
The quantities r̂i and R̂I are the position operators for the ith electron
and Ith ion, respectively. Then as well, the momentum operators of the
ith electron and Ith ion as p̂i and P̂I , respectively. In the framework of
quantum mechanics the properties of the system can be derived by solving
the associated many-body Schroedinger equation,

Ĥ |Ψ〉 = E |Ψ〉 (2.2)

to find the total energy E and, the eigenstates |Ψ〉. The total many-body
wavefunction depends on the position of all ions and electrons in the system
as:

〈r,R| Ψ〉 = Ψ(r,R) = Ψ(r1, ..., rNe,R1, ...,RNion
). (2.3)

From this point, let r and R represent the set of all electronic and ionic
positions, respectively. Excluding cases with a very small number of par-
ticles, such as hydrogenoid atoms, the problem defined by (2.1) is almost
impossible to treat within a fully quantum mechanical framework. Over
the past century a lot of effort has been made in order to develop method-
ologies capable of solving numerically the many-body problem and find
good results in relation to experiments. The evolution of computers and
numerical algorithms has increased the precision as well the scalability of
numerical calculations and still is a very active field of research. One of the
most successful methods is the so called density functional theory, which
will be discussed briefly on appendix A.
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2.1.2 The ionic Hamiltonian

In order to decouple the electronic from the vibrational degrees of freedom
in a solid, one can use the Born-Oppenheimer approximation [54]. Since
the time scale associated to the motion of the ions is much slower than that
associated with electrons, we can consider that the atoms are static at a
given position, and the electronic part of the Hamiltonian can be solved
with ionic positions as parameters. Hence, within this approximation, we
can divide the Hamiltonian in an electronic and ionic parts, ĤBO = Ĥe +
Ĥion. Assuming that the electronic Hamiltonian

Ĥe = T̂e + V̂e,ion + V̂e,e , (2.4)

has electronic eigenfunctions Ψe
α(r,R) and eigenvalues Ee

α(R), then using
the Dirac notation, the Schroedinger equation for the electronic part is
given as

Ĥe |Ψe〉 = Ee(R) |Ψe〉 (2.5)

Once this eigenvalue problem is solved, we have a starting point to deter-
mine the lattice-dynamical properties of a system. If the ionic potential is
defined as

Û(R) = V̂ion,ion + Ee(R) , (2.6)

the Hamiltonian related to ionic motion is rewritten as

Ĥion = T̂ion + Û(R). (2.7)

In writing this equation we have neglected mixed terms in the electron and
phonons degrees of freedom since we are working under the framework of
the Born-Oppenheimer approximation. Then, by solving the Schroedinger
equation for the ions

Ĥion

∣

∣

∣Ψion
〉

= E
∣

∣

∣Ψion
〉

(2.8)

we find the ionic eigenfunctions Ψion
β (R) and eigenvalues E . Therefore,

within the Born-Oppenheimer approximation the total eigenfuntions is ex-
pressed as the product of the electronic and ionic wavefuntion

〈r,R| Ψe
α,Ψ

ion
β

〉

= Ψe
α(r,R)Ψion

β (R). (2.9)
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with

〈

Ψe
α′ ,Ψion

β′

∣

∣

∣ ĤBO

∣

∣

∣Ψe
α,Ψ

ion
β

〉

= δαα′δββ′ , (2.10)

meaning that the matrix elements of ĤBO is diagonal.
At this point, lets analyze closely the potential Û(R) defined by (2.6).

Let s denote an ion within the unit cell, R a lattice vector, and α a Cartesian
direction.Since ions generally vibrate around their equilibrium position Rsα

eq

determined by the minima of the BO energy surface, it is reasonable to
expand the potential Û(R) as a function of the ionic displacements from
equilibrium uα

s (R) as

Û(R) = Û0 +
∞

∑

n=2

Ûn (2.11)

where

Ûn =
1
n!
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s1...sn

∑

R1...Rn

ûα1
s1

(R1)...ûαn

sn
(Rn)φα1...αn

s1...sn
(R1, ...,Rn). (2.12)

and

φα1...αn

s1...sn
(R1, ...,Rn) =

[

∂(n)U(R)
∂uα1

s1
(R1)...uαn

sn
(Rn)

]

0

(2.13)

In equation (2.12) α represents Cartesian coordinates, the quantity φα1...αn

s1...sn
(R1, ...,Rn)

is the n-body, or nth order force-constants and represents the nth derivative
of the total energy with respect to the ionic displacements.

The first term of this expansion is a constant, the first order contribu-
tion vanishes since it is proportional to the forces acting on the ion in the
equilibrium positions that, by default, are zero. By considering up to the
second order contribution we are within the so called harmonic approxima-
tion [52, 55]. Therms beyond second order are associated to anharmonic
effects.
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2.2 Density functional perturbation theory

(DFPT)

2.2.1 Dynamical matrix from the density response

function

Even if the harmonic approximation give us a god starting point to study
dynamical properties of materials, in order to evaluate the dynamical ma-
trices we need to compute the derivatives of

U(R) =
〈

Ψion
∣

∣

∣ Û(R)
∣

∣

∣Ψion
〉

= Vion,ion + 〈Ψe| Ĥe(R) |Ψe〉 . (2.14)

The first derivatives can be easily calculated by using the Hellmann-Feynman
theorem [56]. The theorem states that the first derivative of the eigenval-
ues of a Hamiltonian, Ĥλ, dependent on a parameter λ is given by the
expectation value of the derivative of the Hamiltonian:

∂Eλ

∂λ
= 〈Ψλ| Ĥλ

∂λ
|Ψλ〉 (2.15)

In this case, since the electronic Hamiltonian dependence on the ionic ex-
plicitly comes from the term V̂e,ion, we have

∂U(R)

∂uβ
J

=
∂Vion,ion

∂uβ
J

+ 〈Ψe| Ĥe(R)

∂uβ
J

|Ψe〉 =
∂Vion,ion

∂uβ
J

+
∫

drn(r,R)
∂Ve,ion(r)

∂uβ
J

(2.16)
where the electron-ion interaction between electron-i and ion-I can be
viewed as an external one-body potential formed by the ionic background
that acts on each electron independently as

Vext = Ve,ion(r), (2.17)

with

Vext(r) = −
Nion
∑

I

ZI

|r − RI | , (2.18)

and n(r,R) is the ground state electron charge density corresponding to
the ionic configuration R. In order to calculate the second derivatives at
equilibrium, from Eq.(2.16) we have



36

[

∂2U(R)

∂uα
I u

β
J

]

0

=

[

∂2Vion,ion

∂uα
I ∂u

β
J

]

0

+
∫

dr

[

∂n(r,R)
∂uα

I

]

0

[

∂Vext(r)

∂uβ
J

]

0
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+
∫

drn(r,R)

[

∂2Vext(r)

∂uα
I ∂u

β
J

]

0

Equation (2.20) implies that the calculation of the second derivatives re-
quires the evaluation of the ground-state electron charge density, n(r,R),
as well as of its linear response to a distortion of the ionic geometry ∂n(r,R)

∂uα

I

.
The fundamental result above shows how one can extract the phonon spec-
trum via the elctronic properties. This result was first reported by the end
of the sixties by de Cicco and Johnson [57], and later by Pick,Cohen, and
Martin [58].

As stated in section 2.1.2, the second derivatives of the potential give to
us the force constant matrices. We define the second order force constants
Cαs,βs′(RI − RJ) as the sum of ionic and electronic contributions:

Cαs,βs′(RI − RJ) = Cion
αs,βs′(RI − RJ) + Celec

αs,βs′(RI − RJ) (2.20)

where

Cion
αs,βs′(RI − RJ) =

[

∂2Vion,ion

∂uα
s ∂u

β
s′

]

0
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]
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.

Here, we denote RI as lattice vectors, α the cartesian coordinates, and s as
the atoms in the cell. At this point, the only missing quantity that we have
to calculate is the linear response of the electronic density to a phonon
perturbation. On the next section we will discuss how one can obtain
it via density functional perturbation theory. Once the force constant is
fully determined, the harmonic phonon frequencies are then obtained by
diagonalization of the dynamical matrix Dαs,βs′(q):

Dαs,βs′(q) =
1

√

MsM ′
s

Cαs,βs′(q), (2.23)
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where

Cαs,βs′(q) =
∑

R

Cαs,βs′(R)eiq·R (2.24)

is the Fourier transform of the matrix of force constants, and MI are the
masses of the ions. In addition, we used translational invariance in order
to express the force constants as a function of the generic lattice vector R.
With the dynamical matrix defined, then the eigenvalue problem

∑

βs′

Dαs,βs′(q)eβs′

qv = ω2
qve

βs′

qv (2.25)

gives us the square of the frequencies ω2
qv and the polarization vectors eqv

of mode v at momentum q.

2.2.2 Density functional perturbation theory (DFPT)

On the previous section, we state that the second derivatives of the po-
tential are determined by the electronic density linear response. In this
section we will see how one can determine this response within the DFT
formalism. The procedure described is the so called density functional per-
turbation theory (DFPT) [53, 59]. The main idea of this method is to use
first order perturbation theory to investigate the Kohn-Sham orbitals vari-
ation when the ions are displaced from their equilibrium positions. The
Kohn-Sham problem and the electronic density within its formulation is
defined and discussed on appendix A. Considering the electronic density
defined by the Kohn-Sham problem

n(r,R) =
Nbands

∑

i

|φ(r,R)|2, (2.26)

where φ are the Kohm-Sham orbitals, the change in the density is

∆n(r,R) = 4Re

N/2
∑

i=1

φ∗
i (r,R)∆φi(r,R) (2.27)

Where the finite-difference operator ∆λ is defined as

∆λF =
∑

i

∂Fλ

∂λi

∆λi. (2.28)

We omit the superscript in Eq.(2.27) and on the subsequent formulas. This
omission does not give rise to ambiguities on the development of the DFPT.
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Since the imaginary part of the change in the density Eq.(2.27) vanishes,
the prescription to keep only the real part can be dropped.

The variation of the Kohm-Sham orbitals is obtained by first order
perturbation theory [60]:

(ĤSCF − εi) |∆ψi〉 = −(∆ĤSCF − ∆εi) |ψi〉 (2.29)

where

ĤSCF (r) = −∇2

2
+ VSCF (r) (2.30)

is the unperturbed Kohn-Sham Hamiltonian,

∆VSCF (r) = ∆Vext(r) +
∫ n(r′,R)dr′

|r − r′| (2.31)

+

[

dvxc(n)
dn

]

n=n(r,R)

∆n(r,R),

is the first order correction to the self-consistent potential, and ∆εi =
〈φi| ∆VSCF (r) |φi〉 is the first order variation of the Kohn-Sham eigenvalue
εi. Equation (2.29) is analogous to the Sternheimer [61] equation within the
context of atomic physics. Remarkably Eqs.(2.26) to (2.32) form a set of
selfconsistent equations for the perturbed system. Hence, in order to obtain
the change in density, it is possible to follow a self-consistent approach. The
first-order correction to a given eigenfunction of the Schrödinger equation,
given by Eq.(2.29), can be expressed in terms of a sum over the spectrum
of the unperturbed Hamiltonian

∆φi(r,R) =
∑

j 6=i

φj(r,R)
〈φj(r,R)| ∆VSCF |φi(r,R)〉

εi − εj

. (2.32)

Using Eq.(2.32), the electron charge-density response can be written as

∆n(r,R) = 4
N/2
∑

i=1

∑

j 6=i

φ∗
i (r,R)φj(r,R)

〈φj(r,R)| ∆VSCF |φi(r,R)〉
εi − εj

.

(2.33)
It is important to state that the equation above can be recast in a form
in which we do not have to estimate the change in the unoccupied states,
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since only occupied states contribute to the change in the density. On
the other hand, this statement is valid when for the insulating case only.
A deeper discussion can be found on the DFPT review paper written by
Baroni et al. In practice, the DFPT is an widely used method in order
to evaluate lattice-dynamical properties of solids. However, its accuracy
is dependent on the quality of the ab-inito calculations, leading to some
errors for more complex systems and when anharmonicity is not negligible.
Throughout this thesis, specially when discussing the results, we will refer
to the calculations of the phonon dispersion curves made using the DFPT
as harmonic calculations.

2.2.3 Born effective charges

In this section we will make some comments on how one can evaluate
the Born effective charges within the linear response framework [59]. The
knowledge of this quantity is particularly important in order to treat polar
semiconductors, and to describe some effects such as the LO-TO splitting.

In polar semiconductors, since the Coulomb forces are long range, in the
limit q → 0, a macroscopic electric fields rise for longitudinal optic phonons
(LO). For finite q, polar semiconductors are dealt with in the same way
as nonpolar ones. In the long-wavelength limit, however, the macroscopic
electric field E, which accompanies the lattice distortion must be treated
with care since the associated electronic potential Φ(r) = −E · r is not
lattice-periodic. Within linear-response theory, electric fields can be dealt
with during the self-consistent process performed to determine the density
response to ionic displacements. One can treat long-wave vibrations in
polar semiconductors by exploiting the known analytic properties of the
dynamical matrix

CαI,βJ(q) = Can
αI,βJ(q) + Cna

αI,βJ(q), (2.34)

where the analytic part Can
αI,βJ(q) is the matrix obtained from the response

to a zone-center phonon, calculated with boundary conditions correspond-
ing to the absence of a macroscopic electric field. These conditions are
implicitly assumed during electronic-structure calculations with periodic
boundary conditions for the electronic wave functions. The nonanalytic
part is generally expressed in terms of the high-frequency static dielectric
tensor

↔
ǫ

∞
and the Born effective charges tensor Z∗

I as
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Cna
αI,βJ(q) =

4π
Ω

(q · Z∗
I )α(q · Z∗

J)β

q · ↔
ǫ

∞ · q
, (2.35)

with I denoting the Ith atom in the unit cell and Ω is the volume of the
unit cell.

The Born effective charges are related to the total macroscopic po-
larization P tot induced by a zone center phonon considering zero electric
boundary conditions, and are defined as

Z∗
I,αβ = Ω

∂P tot
α

∂uβIq=0

, (2.36)

where uβIq=0 is the amplitude of the zero-center phonon,

uβI(R) = uβIqe
iq·R. (2.37)

Since the total macroscopic polarization can be fully determined via linear
response, the evaluation of the Born effective charges, as well the dielectric
tensor, is achieved. This leads to the full knowledge of the force constant
matrix CαI,βJ(q), allowing then the calculation of vibrational properties
for polar semiconductors.



Chapter 3

Anharmonicity

In the previous chapter we discussed how the lattice dynamical properties
of solids can be evaluated within the harmonic framework. However, for
systems in which anharmonic effects are not negligible, the harmonic ap-
proximation does not give reliable results, failing to describe phenomenons
such as phonon scattering times, finite thermal conductivity, phonon and
linewidths.

In this chapter we will introduce the methods used in this thesis to
include anharmonicity in our calculations. We begin by commenting on
anharmonic effects, after we discuss how third order contributions can be
calculated, and then, used to estimate phonons lineshifts, linewidths, and
the spectral function. After, we discus the self-consistent harmonic ap-
proximation, and its stochastic implementation that allows one to assess
the third and fourth order dynamical matrices, anharmonic phonon disper-
sion, as well to investigate the presence of displacive second-order phase
transitions.

3.1 Anharmonic effects

On the harmonic approximation we assume that the ions oscillate with an
small amplitude in relation to their equilibrium positions. This assumption
seems to be adequate for a large number of compounds for temperatures
below the melting point. However, even if the theory can describe phonon
frequencies and its associated physical properties, an fully harmonic theory
fails to describe other physical phenomena since it takes on account only
up to the quadratic terms on the ionic potential.

Within the harmonic approximation the Hamiltonian is diagonalized in
terms of phonons that do not interact with each other leading to infinite

41
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Figure 3.1: Slice of the spectral function of PdH at 80 K, q = 0, 0, 1

2
[62]. It is noticeable

that the phonons have a width related to anharmonic effects. The dashed lines represents
the position of the modes.

Figure 3.2: Processes produced in lowest-order perturbation theory by cubic and quartic
anharmonic terms. (a) Cubic: one phonon decays into two. (b) Cubic: two phonons
merge into one. (c) Quartic: one phonon decays into three. (d) Quartic: two phonons
turn into two others (phonon-phonon scattering). (e) Quartic: three phonons merge
into one. Taken from ref.[55]

lifetimes and the absence of phonon decay [55]. Hence, in neutron scat-
tering experiments, on insulators, the scattering cross section for a fixed
momentum transfer q as a function of energy transfer is composed of delta
functions centered at the ωµ(q) frequencies. On the other hand, in the mea-
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sured spectra the peaks have an noticeable width which is directly related
to the anharmonic contribution to the ionic potential. In addition, due
to the nature of the harmonic phonons an harmonic crystal has a infinite
thermal conductivity, which cannot exist in nature.

Therefore, to include higher order terms in Ĥion, it is necessary to search
for suitable many-body approaches that include interacting phonons, since
the Hamiltonian is no further diagonalizable. The diagrams in Fig.(3.2)
are some examples of phonon-phonon interactions which depend directly
on the number of anharmonic terms included in the Hamiltonian. In the
next chapter we will discuss more on some ways phonons interact with each
other and how we can treat this interaction.

3.2 Thermal expansion and the Quasi-Harmonic

Approximation

Among the approaches aimed to calculate temperature dependent struc-
tural properties of solids, the quasi-harmonic approximation (QHA) pro-
vides reliable results for a large variety of compounds [63]. In this approx-
imation, the Helmholtz free energy, F of a system is given by

F (T,a) = E(a) + kBT
∑

vq

log [2 sinh(
ωvq(a)
2kBT

)] , (3.1)

where E(a) is the static energy of the crystal, T is the temperature, kB is
the Boltzman constant, and ωvq(a) are the vibrational frequencies of the
system as a function of the structural parameters a. Particularly, QHA
calculations can be quite accurate since the frequencies used in Eq.(3.1)
may be determined via DFPT calculations. On the other hand, its validity
depends on the magnitude of the anharmonic contribution. This method
requires the absence of imaginary phonon frequencies , and thus can not
describe structural transitions. In addition, the QHA must be applied for
a range of temperatures below the melting point. Fig(3.3) and Fig(3.4)
illustrates the case of PbTe in which even if the phonon eigenvalues are not
imaginary, the QHA breaks down due to its strong anharmonicicty.
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Figure 3.5: The self-energy Feynman diagrams which contribute to the total self energy
Πµ(q, ω) at the perturbative level [62]. The loop (L), the bubble (B), and tadpole (T)
diagrams. The tadpole is divided into two optical (To) and acoustic (Ta) contributions.
The latter accounts for thermal expansion (TE). The dot and squares denote a fourth-
order, and third order vertex, respectively.

3.3 Perturbation theory and anharmonic ef-

fects

3.3.1 Phonon self-energies, linewidth, and lineshifts

When dealing with weak anharmonicity, a natural first approach is to treat
it via perturbation theory. At lowest order, the harmonic phonon self
energy is corrected by the Feynman self-energy diagrams shown in Fig.(3.5),
the loop (L), bubble (B), and tadpole diagrams (T). The real part of the
diagrams is responsible for a change on the phonon frequencies, the phonon
lineshift; while the imaginary part is responsible for the broadening of the
phonon branches, the phonon linewidth. The three phonon process linked
to the bubble diagram has both imaginary and real parts, contributing
to both lineshift and linewidth. The remaining diagrams only affects the
change of phonon frequencies.

Their contribution to the self-energy are given by [62, 65, 66, 67, 68]

ΠL
µ(q, ω) =

1
2N

∑

q1µ1

φµµµ1µ1(−q, q, q1,−q1) [2nB(ωµ1(q1)) + 1] , (3.2)

ΠB
µ (q, ω) = − 1

2N

∑

q1q2
µ1µ2

∑

G

δ−q+q1+q2,G|φµµ1µ2(−q, q, q2)|2F (ω, ωµ1(q1), ωµ2(q2),

(3.3)
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ΠT
µ (q, ω) =

1
N

∑

q1
µµ1µ2

φµµµ2(−q, q, 0)φµ1µ1µ2(−q1, q1, 0)
2nB(ωµ1(q1)) + 1

ωµ2(0)
,

(3.4)
where

F (ω, ωµ1(q1), ωµ2(q2) =

[

2(ω1 + ω2)[1 + nB(ω1) + nB(ω2)]
(ω1 + ω2)2 − (ω + iδ)2

]

(3.5)

+

[

2(ω1 − ω2)[nB(ω2) − nB(ω1)]
(ω2 − ω1)2 − (ω + iδ)2

]

,

nB(ω) = 1/(eβω − 1) is the bosonic occupation factor, G is a reciprocal
lattice vector, and N the number of unit cells in the system. Hence,

Πµ(q, ω) = ΠL
µ(q, ω) + ΠB

µ (q, ω) + ΠT
µ (q, ω) (3.6)

is the total self-energy at the perturbative level.
As shown in equations (3.2) to (3.4) to calculate the different contri-

bution to the self-energy one needs to calculate the third and fourth order
force constants. Several approaches have emerged in order to compute the
third-order derivatives via the 2n + 1 theorem [69, 70, 71, 72] and using
finite differences [73]. However, the fourth-order term are more compli-
cate to evaluate since the the number of fourth-order derivatives quickly
increases with the number of atoms. Hence, the perturbative evaluation
of the loop diagram is only affordable for few-atom highly symmetric cells.
By consequence, new approaches to calculate the fourth-order contribution
are needed.

The tadpole diagrams are related to the relaxation of internal structural
parameters, as well the cell parameters. Usually, these diagrams can be
taken on account by using the QHA framework[74].

The bubble contribution is the only one that contributes to the phonon
linewidth. When the phonon self-energy is small with respect to the har-
monic frequencies, |Πµ(q, ω)| ≪ ωµ(q), the half-width at half maximum of
phonon µ with momentum q is given by the imaginary part of the bubble
self-energy term is given as

Γph−ph
µ (q) = −ImΠB

µ (q, ωµ(q)). (3.7)

The real parts of the bubble and loop diagrams give the shift of the
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phonon frequencies due to phonon-phonon interaction as

∆µ(q) = Re[ΠL
µ(q, ωµ(q)) + ΠB

µ (q, ωµ(q))] (3.8)

3.3.2 Perturbation theory validity

The perturbative approach to treat anharmonicity relies on the limit where
|Πµ(q, ω)| ≪ ωµ(q). However, when ωµ(q) becomes very small or imaginary
then this condition is violated and perturbation theory breaks down. This
is the case for many ferroelectrics, thermoelectrics [20, 19], and materials
which exhibit charge-density wave effects [75]. For those cases, in order
to calculate the anharmonic renormalized phonon frequencies, linewidths,
and lineshifts one needs to go beyond perturbation theory.

Among the most non-perturbative treatments of anharmonicity, we can
mention the self-consistent ab initio lattice dynamics (SCAILD) method
[76], which is an iterative way of converging the phonon frequencies at dif-
ferent temperatures accounting for anharmonic effects. However, it does
not optimize the eigenvectors of the harmonic potential nor the internal
parameters in the crystal or molecular structure, and does not include
anharmonic corrections in the free energy. The temperature dependent ef-
fective potential (TDEP) [77], that has been successfully applied to study
a large diversity of materials, including thermoelectric compounds. This
technique can optimize the potential with respect to both polarization vec-
tors and internal parameters, and, in principle, can include anharmonic
corrections. However, since it is based on ab-initio molecular dynamics
(AIMD) calculations, it lacks quantum effects and it might break down at
low temperatures. Finally, the method we used in this thesis, the stochastic
self-consistent harmonic approximation (SSCHA)[16, 17, 18]. This method
is based on the self-consistent harmonic approximation (SCHA) [78] and
aims to overcome the limitations of the perturbation theory and AIMD
based methods. On the next section we will describe its formulation fol-
lowing close the key articles published by Errea [16, 17], and Bianco [18].
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FH[H] = tr[ρHH] +
1
β

tr[ρH ln ρH], (3.10)

The Gibbs-Bogoliubov (GB) variational principle states that

FH ≤ FH [H] = FH + tr [ρH(U − U)] . (3.11)

Hence, by minimizing FH with respect to the trial Hamiltonian H, a good
approximation for the free energy is obtained. It has been shown by Errea et
al, that this minimization can be done using a conjugate-gradient algorithm
if one has the knowledge of the total energy and forces. Within the SCHA,
even if the variation principle in Eq.(3.11) is valid for any trial potential
U , as proposed originally by Hooton [78], we restrict the choice of U to an
harmonic potential parametrized in terms of the vector R (the centroids)
of dimension 3Na, with Na corresponding to the number of atoms, and by
the square positive-definite matrix Φ(R) of order 3Na as:

UR,Φ =
1
2

∑

ab

Φab(R − R)a(R − R)b , (3.12)

where R corresponds to the average position of the atoms for the trial
density matrix ρH, namely ’centroids’. From this point, let R denote in
component-free notation the quantity Rαs(l), which is a collective coordi-
nate that specifies unambiguously the atomic configuration. The indexes α
, s, and l represent the Cartesian directions, the atom within the unit cell,
and the three dimensional lattice vector, respectively. The past convention
will also be applied to the centroids. In what follows we will also use a single
composite index a = (α, s, l) to indicate Cartesian index, atom index and
lattice vector together. In addition, throughout this section, we will use
bold letters to indicate also other quantitics in component-free notation.

We define Φ(R) as the SCHA square matrix which minimizes the func-
tional FH [H], giving the best approximation for a given configurations of
the centroids R. This matrix satisfies the relation:

Φ =

〈

∂2U

∂R∂R

〉

ρHR

; (3.13)

where the average has to be understood as a quantum thermal average over
the density matrix ρH.
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3.4.2 Structural second order phase transition, and

the free energy curvature

In second order phase transitions associated to the atomic positions, such
as ferroelectric and charge-density wave transitions, the centroids R are
suitable quantities in order to define an order parameter Q, which is the
observable measured in diffraction experiments.

Landau’s theory of second order phase transitions [79] states that the
free energy F (R) minimum, for temperatures above the transition temper-
ature Tc, is achieved when the system is in a high symmetry phase i.e. in
a equilibrium configuration Rhs for the given temperature T . When T is
lowered and reaches Tc, the minimum becomes less distinct, turning into
a saddle point. By lowering the temperature further, T < Tc, the system
assumes less symmetric equilibrium configurations R(T ), in which the free
energy is smaller. Therefore, the Hessian of the free energy with respect
to the centroids of the high temperature phase is the meaningful param-
eter to study to detect phase transitions. Fig.(3.7) illustrates the process
described above.

The SSCHA free-energy Hessian in a centroid position R can be com-
puted using the analytical formula (in component-free notation):

∂2F

∂R∂R
= Φ +

(3)

ΦΛ(0)

[

1 −
(4)

ΦΛ(0)

]−1 (3)

Φ , (3.14)

where Φ is given in Eq. 3.13 while
(3)

Φ and
(4)

Φ correspond to third and
fourth order SSCHA tensors respectively. Those quantities can be defined
by generalizing Eq. (3.13) to high orders:

(n)

Φ a1···an
(R) =

〈

∂nU

∂Ra1 · · · ∂Ran

〉

ρH

(3.15)

In Eq.( 3.14) the value at z = 0 of the 4th-order tensor Λ(z) is used. For
a generic complex number z it is defined, in components, by

Λabcd(z) = −1
2

∑

µν

F (z, ωµ, ων)

×
√

√

√

√

~

2Maωµ

ea
µ

√

~

2Mbων

eb
ν

√

√

√

√

~

2Mcωµ

ec
µ

√

~

2Mdων

ed
ν , (3.16)

with Ma the mass of the atom a, ω2
µ and ea

µ eigenvalues and corresponding
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Figure 3.7: Second-order phase transition, as described by Landau’s theory. Q is a
macroscopic, scalar, order parameter identifying a system configuration. We consider a
situation in which the symmetry Q → −Q holds. When Q = 0 the systems assumes an
high-symmetric phase. ∆F (Q) = F (Q) − F (0) is the difference between the free energy
of phase Q and the free energy of the high-symmetry phase, for a given temperature
T . For each T , ∆F (Q) has a minimum in the equilibrium configuration Qeq(T ). For
temperatures above the critical temperature; T > Tc, the free energy has a minimum in
Qeq(T ) = 0. For temperatures below the critical temperature; T < Tc , Q = 0 becomes a
local maximum, whereas the minimum Qeq(T ) acquires two opposite degenerate values,
different from zero. This fact can be visualized as noticing that the curve turns into a
saddle. The order parameter Qeq(T ) is a continuous function even during the transition.
Figure taken from [18]

eigenvectors of Φab/
√
MaMb, respectively, and

F (z, ων , ωµ) =2

[

(ωµ + ων)[1 + nB(ωµ) + nB(ων)]
(ωµ + ων)2 − z2

− (ωµ − ων)[nB(ωµ) − nB(ων)]
(ωµ − ων)2 − z2

]

(3.17)

where nB(ω) = 1/(eβ~ω − 1) is the bosonic occupation number. This re-
lation is directly related to Eq.(3.6). In order to have a better visualization
of the different terms of Eq.(3.14) one can rewrite it as:

∂2F

∂R∂R
= Φ +

(3)

ΦΛ
(3)

Φ +
(3)

ΦΛΘΛ
(3)

Φ , (3.18)
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where

Θ =

[

1 −
(4)

ΦΛ

]−1 (4)

Φ . (3.19)

For simplicity and to make the discussion of our results clearer, we
define

〈D3V 〉 =
(3)

ΦΛ
(3)

Φ (3.20)

〈D4V 〉 =
(3)

ΦΛΘΛ
(3)

Φ. (3.21)

We highlight these two terms in particular, since they will play a major
role to explain the contribution to the calculated anharmonic phonon spec-
tra of the systems studied in this thesis. If one is interested to understand
better the calculation of the free-energy Hessian, a detailed derivation of
Eq.(3.14) can be found on the paper by Bianco et.al. Here we simply re-
call that all quantities involved in Eq.(3.18) are obtained by a statistical
sampling of ρH over randomly displaced atomic positions. The knowledge
of forces on the displaced atomic configurations is sufficient to obtain both
〈D3V 〉 and 〈D4V 〉 as well as the Hessian of the free energy. Therefore,
Eq.(3.14) allows the study of structural second order phase transitions by
evaluating the second derivatives of F (R). The additional terms beyond
Φ allow the free energy Hessian elements to assume negative values.

3.4.3 Phonon quasiparticles

From the harmonic theory it is possible to define the zero temperature
harmonic dynamical matrix on a similar fashion as we did for Eq.(2.23) as

D
(0)
ab =

1√
MaMb

∂2U

∂Ra∂Rb

∣

∣

∣

∣

∣

R(0)

, (3.22)

where R(0) is the temperature-independent configuration for which
U(R) has a minimum. Hence, for each temperature, by considering the
free energy Hessian in the corresponding equilibrium configuration Req di-
vided by the square root of the masses, we can define the generalization of
Eq.(3.22) at finite temperature as:
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D
(F )
ab =

1√
MaMb

∂2F

∂R
a∂R

b

∣

∣

∣

∣

∣

Req

= (3.23)

= D
(S)
ab + Π(S)

ab . (3.24)

where the Hessian is obtained from Eq.(3.14) and D
(S)
ab = Φab/

√
MaMb. At

this point the quantity Π(S)
ab has no particular physical meaning. However,

later it will be interpreted as a self-energy.

It is worth to explore the limit case of Eq.(3.14) where
(4)

ΦΛ is negligi-
ble with respect to the identity matrix. In this case the Hessian is given

by the SCHA matrix plus the so-called "bubble" term
(3)

ΦΛ
(3)

Φ only. With
the dynamical matrices defined, the free-energy phonons can be obtained
solving the eigenvalue equation

∑

b

D
(F )
ab ǫ

b
µ = Ω2

µǫ
a
µ , (3.25)

where Ωµ represents the phonon frequencies, and ǫa
µ the polarization

vectors.

D
(S)
ab =

1√
MaMb

Φab(Req). (3.26)

3.4.4 SSCHA self-energies

in the context of the SSCHA it is possible to formulate an ansatz in order
to give an approximate expression to the one-phonon Green function G(z)
for the variable

√
Ma(Ra − Ra

hs)

G−1(z) = z2
1 − M− 1

2 ΦM− 1
2 − Π(z) = −D(F ), (3.27)

where Π(z) is the SSCHA self-energy, given by

Π(z) = M− 1
2

(3)

ΦΛ(z)
[

1 −
(4)

ΦΛ(z)
]−1 (3)

Φ M− 1
2 , (3.28)

where Mab = δabMa is the mass matrix. When the term
(4)

ΦΛ(z) is much
smaller than the identity matrix the dynamical case reduces the SSCHA
self-energy to the so-called bubble self-energy, namely

Π(z) ≈ Π(B)(z) = M− 1
2

(3)

ΦΛ(z)
(3)

Φ M− 1
2 , (3.29)
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We then neglect the mixing between different phonon modes and assume
that Π(z) is diagonal in the basis of the eigenvectors eαs

µ (q) of Φαs,βt(q)/
√
MsMt

where Φαs,βt(q) is the Fourier transform of Φαs,βt. We then define

Πµ(q, ω) =
∑

αs,βt

eαs
µ (q)Παsβt(q, ω + i0+)eβt

µ (q) (3.30)

and ω2
µ(q) are the eigenvalues of the Fourier transform of D(S). The phonon

frequencies squared, Ω2
qµ, corrected by the bubble self-energy are than ob-

tained as
Ω2

qµ = ω2
µ(q) + ReΠµ(q, ωqµ) (3.31)

In studying the response of a lattice to neutron scattering we need
the one-phonon spectral function. By using Eq. (3.27) for G(z) we can
calculate the cross-section σ(ω) = −ωTr Im G(ω + i0+)/π, whose peaks
signal the presence of collective vibrational excitations (phonons) having
certain energies, as they can be probed with inelastic scattering experiments
(here the chosen normalization factor is such that

∫

dωσ(ω) is equal to the
total number of modes). Again, we take advantage of the lattice periodicity
and we Fourier transform the interesting quantities with respect to the
lattice indices. In particular, we consider the Fourier transform of the
SSCHA self-energy, Παsβt(q, z). Neglecting the mixing between different
modes, the cross section is then given by

σ(q, ω) =

1
π

∑

µ

−ω ImΠµ(q, ω)
(ω2 − ω2

µ(q) − ReΠµ(q, ω))2 + (ImΠµ(q, ω))2
. (3.32)

.

3.5 Summary

In this chapter we discussed how one can treat anharmonicity within dif-
ferent frameworks. In this section, we will summarize some cases and for
the sake of clarity, we will point out some of them that we considered in
our preliminary investigations on anharmonic effects in PbTe and SnTe.

First, on the weak anharmonicity limit one can uses directly perturba-
tion theory as it is described via equations (3.2) to (3.4). Here, one must
work on the limit |Πµ(q, ω)| ≪ ωµ(q).

The second approach is to couple perturbation theory to the SSCHA
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as done before in the literature. In this case the the loop and tadpole
contributions are given by the SSCHA, and the bubble term is added on
top of them via perturbation theory. In this approach the bubble can be
calculated using different methods, such as finite differences and implemen-
tations of the 2n + 1 theorem. At this point we recall the contribution of
each phonon diagram to the linewidth and lineshift. The tadpole accounts
for relaxation of internal structural parameters.

Perturbation theory Equation

Linewidth Γph−ph
µ (q) = −ImΠB

µ (q, ωµ(q))

Lineshift ∆µ(q) = Re[ΠL
µ(q, ωµ(q)) + ΠB

µ (q, ωµ(q))]

The next case is to use only the SSCHA. In this scenario we can explore
Eq.(3.14) for the cases in which z = 0, denoted as static, and for z being a
generic complex number, in our case the phonon frequencies obtained via
SSCHA. For the static case one can obtain the second derivatives of the
free energy considering different anharmonic contributions as illustrated
in table 3.5. For the different cases one can obtain the dynamical via
Eq.(3.24).

Case (z = 0) Eq.(3.18)

SSCHA ∂2F
∂R∂R

= Φ

SSCHA + 〈D3V 〉 ∂2F
∂R∂R

= Φ +
(3)

ΦΛ(0)
(3)

Φ

SSCHA + 〈D3V 〉 + 〈D34〉 ∂2F
∂R∂R

= Φ +
(3)

ΦΛ(0)
(3)

Φ +
(3)

ΦΛΘΛ(0)
(3)

Φ

For the dynamical case, an ansatz to consider a general z was pro-
posed and explained with details by Bianco et al and briefly discussed in
(3.4.4). Under this ansatz, the phonon self energies are given by Eq.(3.28).
In our calculations, we approximate the SSCHA self-energy to the bubble
self-energy. Up to this point we are considering an off-diagonal self en-
ergy. We can then neglect the mixing between different phonon modes and
assume that Π(z) is diagonal. The different approaches to calculate the
self-energies are shown on the table below.
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Case (z = ω = ωsscha
qµ ) self-energy

Off-diagonal Π(z) ≈ Π(B)(z) = M− 1
2

(3)

ΦΛ(z)
(3)

Φ M− 1
2

Diagonal Πµ(q, ω) =
∑

αs,βt e
αs
µ (q)Παsβt(q, ω + i0+)eβt

µ (q)



Chapter 4

Magnitude of the anharmonic

contribution

On chapter 3 we introduced the SSCHA method which allows the access
the anharmonic free energy Hessian using a non-perturbative approach.
As the development of the SSCHA method is quite recent, it needs to be
tested and extensively applied to real materials. Thermoelectrics such as
PbTe and SnTe are a perfect playground to validate the SSCHA due to
the occurrence of anharmonicity in their phonon spectra and due to their
simple crystal structure.

In this spirit, this chapter is devoted to apply the SSCHA in differ-
ent scenarios, in order to validate our approach as well to investigate the
magnitude of the anharmonic contribution to the phonon spectra and self-
energies for our systems of interest. We start our discussion by exploring
the harmonic phonons and its dependence on the cell volume, born-effective
charges, and k-point sampling. After, we evaluate the contribution of the
different terms on the SSCHA free energy Hessian, Eq.(3.18). Then, the
thermal expansion for PbTe was investigated. In addition, the dependence
of the phonon spectra on the supercell size is analyzed using an auxiliary
model potential. Then, we compare the results obtained via perturbation
theory with SSCHA results using third-order force constants calculated via
finite differences. Finally, the phonon spectral function, is calculated using
third-order force constants obtained using both methods, finite differences
as well the SSCHA.

57
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4.1 Calculation details

In order to make our tests we perform DFT calculations using the QUANTUM-
ESPRESSO package [80] . For both PbTe and SnTe the exchange-correlation
interaction is treated with the Perdew-Burke-Ernzerhof (PBE) generalized
gradient approximation [81]. To describe the interaction between electrons
and ions, we use norm-conserving pseudopotentials [82] for PbTe, and PAW
[83] pseudopotentials for SnTe. In both case the semi-core 4d states in va-
lence are included for Te and Sn, and 5d for Pb. Electronic wave functions
are expanded in a plane-wave basis with kinetic energy cutoffs of 65 Ry
and 28 Ry for scalar relativistic pseudopotentials, for PbTe and SnTe re-
spectively.

Integrations over the Brillouin zone (BZ) are performed using a uni-
form grid of 8 × 8 × 8 k-points for PbTe, and a denser grid of 12 × 12 × 12
k for SnTe. Particular care must be taken in converging SnTe with re-
spect to k-points as the depth of the potential well as a function of phonon
displacements is strongly dependent on the sampling, see Fig.(4.4) and
subsection 4.2.2. Previous calculations [20] carried out with smaller sam-
plings are found to be underconverged. Born effective charges calculated
via DFPT are included for PbTe calculations only. For both PbTe and
SnTe we consider the high temperature rock-salt structure, and the PBE
optimized lattice parameters of 6.55 Å and 6.42 Å respectively. The effect
of the thermal expansion is discussed in section 4.3.2.

The Harmonic phonon frequencies are obtained within the DFPT [53]
as implemented in QUANTUM-ESPRESSO. For the tests reported in this
work, we make use of the 2×2×2, and then, the 4×4×4 q-point grids for
both systems. Fourier interpolation is used to obtain the phonon dispersion
along high symmetry lines.

To calculate the anharmonic renormalized phonons we use the SSCHA
[16, 17, 18]. The trial Hamiltoniana is minimized in a supercell. As men-
tioned on chapter 3, the minimization process requires the energies and
forces acting on a supercell for a set of random configurations generated by
the trial density matrix. Those elements have been calculated on 2 × 2 × 2
and 4×4×4 supercells using the same parameters for the harmonic DFPT
calculations. The number of random configurations we use is of the order of
one thousand which is sufficient to converge our calculations. For PbTe no
interpolation is used since the 4×4×4 supercell is converged and adequate
to describe the experimental results. In addition, we compare the third or-
der force constants obtained via the SSCHA with the ones calculated using
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the finite difference method implemented on the ShengBTE package [73].

4.2 Harmonic phonon dispersion

4.2.1 Dependence on the volume

It is well known that in ferroelectrics and thermoelectrics the phonon spec-
tra strongly depends on the volume used in the calculations. Hence, The
choice of an appropriate lattice parameter is crucial for the analysis. In the
literature, several papers debate the advantages and drawbacks of using
the experimental lattice constant over the DFT optimized lattice parame-
ter, and vice versa. For this reason, we carry out our independent analysis
on the dependence of the harmonic phonon spectra on the lattice parame-
ters. In Fig.(4.1) we show harmonic phonon dispersions calcualted within
DFPT for PbTe and SnTe using (i) the zero temperature PBE theoretical
lattice parameter and (ii) the experimental ones aexp = 6.46Å and 6.32 Å,
respectively. In both cases the experimental parameter is smaller then the
theoretical one, as if the systems were experiencing a finite pressure.

As expected, the results are strongly volume dependent. In the case
of PbTe, the use of the experimental lattice parameter hardens all the
phonons, but this hardening is particularly large for the transverse optical
(TO) mode at zone center that is shifted from 3.17 meV to 6.19 meV. How-
ever in both cases, the harmonic phonon frequencies remain positive and no
structural instability is detected in PbTe, in agreement with experiments.
PbTe is usually referred as an incipient ferroelectric because of the softness
of the TO phonon mode. It is important to underline that in the case of
PbTe INS experiments find a clear LO/TO splitting. We thus included this
effect in our harmonic calculation.

At ambient pressure SnTe undergoes a phase transition in the 0−100 K
temperature range. At low temperature the crystal symmetry changes from
cubic (Fm3m) to rhombohedral (R3m). The distortion is a displacive phase
transition involving a small dimerization in the unit cell. The distortion is
compatible with a phonon instability at zone center. Real samples of SnTe
are non stoichiometric and the ferroelectric transition temperature strongly
depends on the number of holes present in the system. It is approximately
100 K for hole concentrations of the order of 1×1020 cm−3 and decreases to
approximately 30 K for ten times larger hole concentrations. At these large
doping no LO/TO splitting is expected, so we neglect it in our simulations.

The dependence of the harmonic calculation on volume is stronger in the
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Figure 4.1: Harmonic phonons dispersion of PbTe and SnTe for different lattice con-
stants. For the experimental lattice parameter (red lines) both systems do not present
negative frequencies. For the PBE optimized lattice parameter (blue lines), the SnTe
phonon spectra has negative frequencies on Γ, indicating a structural instability. The
TO modes at Γ exhibit an strong dependence on the volume.

case of SnTe. The ferroelectric transition (imaginary TO phonon at zone
center) is present when using the more expanded theoretical PBE volume
while it disappears if the experimental volume is used. This again under-
lines the critical role of the volume and functional used in the calculation
of phonon spectra in ferroelectrics and thermoelectrics.
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Figure 4.2: Low-temperature rhombohedral structure of SnTe can be obtained as a small
distortion of the rock-salt structure by (a) displacing the two fcc sublattices relative to
each other by a0τ along the (111) direction, corresponding to a frozen-in k= 0 optic
phonon, followed by (b) a rhombohedral shear in the (111) direction. To construct the
phonon potential we considered step (a). Figure from ref.[31]

4.2.2 k-points sampling in SnTe

An additional complications concerning the convergence of DFT calcula-
tions for SnTe is the k-point sampling. Even if the difference on the total
energy of the Fm3m structure between the 8×8×8 and 20×20×20 k-point
grids is of the order of 0.8 meV/atom, upon distortion towards the R3m
structure illustrated in Fig.(4.2), the depth of the potential well differs of
1.55 meV/cell.

Thus, using a smaller k-point grid, as done previous calculations, illus-
trated in Fig.(4.3), substantially overestimates the ferroelectric instability,
as shown in Fig. 4.4. For this reason, we used a converged 12 × 12 × 12
k-point grid in our SnTe calculations.

4.2.3 Born effective charges and doping

The fact that both undoped PbTe and SnTe do not exist stoichiometric
raises questions on how those systems should be simulated. For PbTe,
since the typical doping in quite small and the LO-TO splitting is quite
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Figure 4.3: Double-well anharmonic phonon potential. Frozen phonon potentials of
Γ–point TO phonon mode of SnTe and PbTe. Red solid boxes and lines correspond to
relaxed lattice parameters at 0 K. The depth of the well in this case is close to 1 meV.
Taken from the supplemental material of ref.[20]

pronounced, the inclusion of the Born effective charges is a natural choice.
The effective charges for PbTe are calculated via DFPT and a posteriori
added to the SSCHA dynamical matrices. On the other hand, on SnTe
the effects of doping on the phonon dispersion are way more significant.
Undoped SnTe should be ferroelectric, however its nature depends on the
carriers concentration. Typically SnTe is heavily hole doped [28]. As hole
concentration increases, the transition temperature decreases down to a
point in which the system remains cubic, even at low temperatures, hence
losing the ferroelectric phase. In order to tackle this problem, we compared
the harmonic phonon dispersion for doped and undoped SnTe on a 4×4×4
supercell. We have not included the Born effective charges as they would be
screened by doping, and we used nh = 3.23 × 1020 cm−3 from ref [84] as the
carrier concentration. Fig.(4.5) shows that the instability remains at this
doping level, and the phonon dispersion along high symmetry directions
are almost unaffected within the BZ.
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Figure 4.4: Frozen phonon potential for SnTe in function of the k-point grid.

4.3 Anharmonic contribution to the phonon

dispersion: static limit (z = 0)

4.3.1 Magnitude of 〈D3V 〉 and 〈D4V 〉 terms

In order to evaluate the magnitude of anharmonic affects on the phonon
spectra and the role of the different terms of Eq.(3.14), we will consider
the static version of Eq.(3.18), namely (z = 0). One can rewrite it as:

∂2F

∂R∂R
= Φ +

(3)

ΦΛ(0)
(3)

Φ +
(3)

ΦΛ(0)ΘΛ(0)
(3)

Φ (4.1)

As before, for simplicity we define:

Θ =

[

1 −
(4)

ΦΛ(0)

]−1 (4)

Φ . (4.2)
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Figure 4.5: SnTe harmonic phonon dispersion using a 4×4×4 supercell: undoped (red)
and doped (blue) case. Besides points very close to the zone center, doping does not
change considerably the dispersion curves.

and

〈D3V 〉 =
(3)

ΦΛ(0)
(3)

Φ (4.3)

〈D4V 〉 =
(3)

ΦΛ(0)ΘΛ(0)
(3)

Φ (4.4)

To investigate the different terms in Eq.(3.18), and in particular the
mutual role of 〈D3V 〉 and 〈D4V 〉 we perform SSCHA runs, on a 2 × 2 × 2
supercell, for different temperatures; 300 and 600K for PbTe, and 50 and
100K for SnTe.

Fig.(4.6) and Fig.(4.7) compare the contribution of 〈D3V 〉 and 〈D4V 〉
to the phonon frequencies. Our calculations show that for PbTe the 〈D4V 〉
term is negligible below 300 K while it is somewhat more relevant at 600
K. For SnTe in the temperature range studied in this work the 〈D4V 〉
term is also negligible. As a consequence, in these temperature regions the
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Figure 4.6: Anharmonic phonon dispersion curves for PbTe at 300 K and 600 K. Orange
lines denote calculations neglecting the bubble and superior order terms, (ωµ(q)) ; black
dashed lines represent the calculations including 〈D3V 〉, while red lines includes the
full expression, 〈D3V 〉 + 〈D4V 〉, (Ωµq). The phonon frequencies are obtained using
Eq.(3.31) in the static limit, namely by using Πµ(q, 0).

Hessian of the free energy is entirely determined by the D(S) matrix and
the so-called ”bubble” term 〈D3V 〉.

This analysis justifies why we neglect the 〈D4V 〉 term in the calculations
for larger supercells. This test is important since the contribution related to
〈D4V 〉 can be calculated only using smaller supercells, like the 2×2×2. On
the SSCHA recent implementation, the calculation of 〈D4V 〉 is expensive
and very memory consuming for larger supercells.

Having determined the smallness of 〈D4V 〉 we proceed towards larger
supercell calculations. By using an empirical potential fitted on the SS-
CHA configurations we check the convergence with respect to supercell
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Figure 4.7: SSCHA runs for SnTe at 50 K and 100 K. Orange lines denote calculations
neglecting the bubble and superior order terms, (ωµ(q)) ; black dashed lines represent
the calculations including the bubble, 〈D3V 〉; while red lines includes the full expression,
〈D3V 〉 + 〈D4V 〉, (Ωµq). The phonon frequencies are obtained using Eq.(3.31) in the
static limit, namely by using Πµ(q, 0). .

size . We found that the use of a 4 × 4 × 4 supercell leads to converged
phonon frequencies. So we use this supercell to carry out our first principles
calculations. These test will be discussed deeply in section 4.3.3.

4.3.2 Evaluation of PbTe thermal expansion at 600K

To evaluate the effects of thermal expansion in our calculations for PbTe at
600K, we perform several SSCHA runs for different volumes using a 2×2×2
supercell. We add the vibrational free energy to the BO total energy to
construct an energy vs lattice parameter curve, illustrated in Fig(4.8). By
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Figure 4.8: vibrational free energy plus the BO total energy vs lattice parameter.

finding the minimum of this curve we obtain a lattice parameter of 6.642
Å for PbTe at 600K using the PBE functional in our calculations.

With this new lattice constant, we then compute the anharmonic phonon
dispersion as before. Fig.(4.9) shows the phonon spectra for the two lattice
parameters (PBE T = 0K and T = 600K) considering just 〈D3V 〉 and
the case 〈D3V 〉 + 〈D4V 〉. The phonon frequencies shift towards smaller
values in relation to the PBE at 0K as illustrated in Fig.(4.7). The shift
is not significant for the 〈D3V 〉 + 〈D4V 〉 case, whereas for the other case
it is bigger.

4.3.3 Empirical potential calculations

In order to investigate supercell size effects on the phonons modes, specially
at the zone center, in addition to the full ab-initio calculations contained
in this thesis, we made use of a model potential based on the formulation
developed by Marianetti et al [85, 86]. This potential was developed to
study mainly rock-salt compounds and is well tested on lead telluride. The
potential has the following form:

V (R) =
1
2

∑

ab

φabu
aub + V

(3)
A (u) + V

(4)
A (u) , (4.5)

where u = R−R(0), R(0) corresponding to the equilibrium configuration on
the rock-salt structure. The harmonic matrices φab were calculated using
the same parameters as for the DFPT calculations described on the main
text. Anharmonic terms V (3)

A and V
(4)

A are defined as:
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Figure 4.9: Anharmonic phonon spectra for the PBE at 600 K lattice parameter versus
the PBE at 0 K case. It is noticeable that the difference is larger by including only
〈D3V 〉. The phonon frequencies (Ωµq) are obtained using Eq.(3.31) in the static limit,
namely by using Πµ(q, 0).

V
(3)

A (u) = p3

Na
∑

s=1

∑

α=x,y,z

[

A3
s,α+

− A3
s,α−

]

(4.6)

and

V
(4)

A (u) = p4

Na
∑

s=1

∑

α=x,y,z

[

A4
s,α+

+ A4
s,α−

]

+ p4x

Na
∑

s=1

∑

α=x,y,z

[

A2
s,α+

(

(E (1)
s,α+

)2 + (E (2)
s,α+

)2
)

+A2
s,α−

(

(E (1)
s,α−

)2 + (E (2)
s,α−

)2
)]

(4.7)

where, for example
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As,x±
=

1√
2

(

ux±(s),x − us,x
)

E (1)

s,x±
=

1√
2

(

ux±(s),y − us,y
)

E (2)

s,x±
=

1√
2

(

ux±(s),z − us,z
)

.

(4.8)

The variables x+(s) and x−(s) represent the nearest-neighbour of atom
s, along the cartesian direction +x and −x, respectively. For the other
cartesian directions, ±y and ±z, we generalized this notation. The quantity
u is the displacement from the equilibrium position.

The potentials for both systems were defined by fitting the parame-
ters p3, p4, and p4x to ab-initio forces calculated for one thousand random
atomic configurations generated in the first principles SSCHA calculation.
For PbTe we used a combination of configurations generated at 300K and
600K, resulting on the coefficients p3 = 2.99 eV/(Å)3, p4 = 4.17 eV/(Å)4,
and p4x = −1.32 eV/(Å)4. For SnTe we used configurations generated at
100K obtaining p3 = 2.51 eV/(Å)3 and p4 = 6.18 eV/(Å)4, in this case p4x

was neglected since its contribution was not relevant.
Fig.(4.10) and Fig.(4.11) compare the phonon dispersion on a 4 × 4 × 4

supercell calculated ab-intio and using the empirical potential for PbTe
(300K) and SnTe (100K), respectively. For PbTe the larger difference is
at zone center, this may be due to the fact that we used random configura-
tions generated on a broader range of temperatures. However, this is not a
problem in order to study the convergence of the TO modes using the em-
pirical potential for different supercell sizes. For SnTe, since we generated
our random configurations at 100 K, one may expect a better agreement.

Fig.(4.14) presents the convergence tests regarding the TO modes of
PbTe and SnTe. For the first compound, the difference between the 2×2×2
and 4 × 4 × 4 is small for the points which are included exactly by using
the 2×2×2 supercell (X,Γ, L), as shown in Fig.(4.12). However, as stated
before, we used the 4×4×4 supercell in order to include more points along
on the BZ and, as a consequence, to describe more accurately the phonon
dispersion of PbTe.
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Figure 4.10: Anharmonic PbTe phonon dispersion at 300 K on a 4 × 4 × 4 supercell:
Ab-initio vs (blue lines) empirical potential (red lines).
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Figure 4.11: Anharmonic SnTe phonon dispersion at 100 K on a 4 × 4 × 4 supercell:
Ab-initio vs (blue lines) empirical potential (red lines). The phonon frequencies (Ωµq)
are obtained using Eq.(3.31) in the static limit, namely by using Πµ(q, 0).
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(blue) and 4×4×4 (red) supercell. Both dispersions were calculated using an empirical
potential and including the bubble term. The phonon frequencies (Ωµq) are obtained
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Figure 4.13: Comparison between SnTe anharmonic phonon spectra using a 4 × 4 × 4
(red) and 5 × 5 × 5 (purple) supercell. In this case the bubble and higher order terms
are neglected on our calculations. The phonon frequencies (ωµ(q)) are obtained using
Eq.(3.31).
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As mentioned before, for SnTe we considered at least a 4 × 4 × 4 super-
cell in our ab-initio calculations, since the 2 × 2 × 2 does not seem to be
sufficient. In order to test the convergence we explored the model potential
on the 4 × 4 × 4 and also on the 5 × 5 × 5 supercells. In this case, we
compared just the SSCHA runs without including extra terms due to the
computationally costly evaluation of third-order force constants for larger
supercells. Fig.(4.13) shows the phonon dispersion for the 4 × 4 × 4 and
5 × 5 × 5 supercell. It is necessary to emphasize that the latter presents
some wiggles due to the Fourier transform, so the negative energies are not
physical, just an interpolation artifact.

Figure 4.14: On the TO modes in function of T for PbTe (top) and SnTe (bottom) for
different supercell sizes. The bubble contribution was taken on for supercells up to the
4×4×4. The phonon frequencies (Ωµq) are obtained using Eq.(3.31) in the static limit,
namely by using Πµ(q, 0).

As can be viewed in Fig.(4.14), the difference between the TO modes
using different supercells is not significant for our purposes.
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4.4 Anharmonic contribution to the phonon

dispersion: Dynamical self-energy cal-

culations,
(

z = ω = ωsschaqµ

)

In this section we consider the dynamic case, denoted
(

z = ω = ωsscha
qµ

)

, to
make some relevant tests. First, we explore the differences between con-
sidering the diagonal and off-diagonal self energies. To do it, we compare
the spectral weight for the Γ point in the BZ, we plot the phonons frequen-
cies obtained by the first case on top of the spectral function found by the
latter, and we contrast the spectral function obtained by both. Finally,
we investigate the nature of the third-order force constants given by the
SSCHA. In the following tests, full ab-initio calculations were used and
4 × 4 × 4 supercells considered.

4.4.1 Diagonal vs off-diagonal self-energies

As stated on chapter 3 the phonon self-energies can be evaluated using per-
turbative and non-perturbative approaches. In this section we compare the
results obtained considering the diagonal self-energy and the off diagonal
self energy. In the spirit of our analysis in section 4.3 we will neglect terms
beyond the bubble in our calculations, since they do not have a substantial
contribution to the self-energy. In this approximation we then, consider
the diagonal self energy given by

Πµ(q, ω) =
∑

αs,βt

eαs
µ (q)Παsβt(q, ω + i0+)eβt

µ (q). (4.9)

The phonon frequencies squared, Ω2
qµ, corrected by the bubble self-

energy are than obtained as

Ω2
qµ = ω2

µ(q) + ReΠµ(q, ωqµ). (4.10)

On this limit one may recover the perturbation theory results. This
fact is well demonstrated on the paper of Bianco et al.

For the off-diagonal self-energy we work on the case when

Π(z) ≈ Π(B)(z) = M− 1
2

(3)

ΦΛ(z)
(3)

Φ M− 1
2 . (4.11)

We then calculate the spectral weight, spectral function, and the phonon
modes for the diagonal case.
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Regardless the nature of the method, one must have the knowledge
of high-order force constants to do it. For example, within perturbation
theory, the calculation of the bubble term given by Eq.(3.3) relies on the
knowledge of the third-order force constants, which are the third derivatives
of the potential

φα1α2α3
s1s2s3

(R1,R2,R3) =

[

∂3U(R)
∂uα1

s1
(R1)uα2

s2
(R2)uα3

s3
(R3)

]

0

. (4.12)

In order to calculate this object we make use of the finite difference
method implemented on the code thirdorder.py part of the ShengBTE
package [73]. First, the code generates a minimal set of displaced supercell
configurations, then we use DFT calculations to obtain the forces for these
configurations, and finally the code use the results to construct the whole
anharmonic force constants set. For the sake of consistency, our tests are
carried out using the regular third-order force constants instead of the SS-

CHA third-order force constants
(3)

Φ. The comparison between the first and
the latter will be addressed in the following section.

We start by comparing the anharmonic phonon dispersion and the spec-
tral function obtained by using the diagonal and off-diagonal self-energies,
respectively. For PbTe, Fig.(4.15) shows the anharmonic phonon disper-
sion at 300 and 600 K on top of the spectral function calculated using the
off-diagonal case.

It is noticeable that the phonon dispersion coincide with the most in-
tense branches on the spectral function. Hence, for this system, this test
shows there are not significant differences between the diagonal and off-
diagonal self energies. Another remarkable feature, is the presence of the
satellite peak at Γ. This peak is more intense at 300 K and becomes more
diffuse for the other case. Past TDEP calculations carried by Romero et al
[64]. found a similar behaviour for this satellite. We will discuss more on
this matter on the following chapter, when the experimental results will be
mentioned.

Fig.(4.16) shows the anharmonic phonon spectra along special points
on the BZ for SnTe at 50 and 100 K. Also for this system the differences be-
tween using the diagonal and off-diagonal self-energies are minimal. Hence,
there is no a significant difference between the position of the phonon modes
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Figure 4.15: Anharmonic phonon spectra of PbTe at 300 K (left) and 600 K (right)
calculated via perturbation theory, diagonal case (solid lines), on top of the spectral
function calculated considering off-diagonal self-energies (heat map). The presence of a
satellite peak is verified at q= Γ. The third-order forces constants were calculated using
the finite differences method.

and the branches on the spectral function.
Another way to compare both approaches is to analyse the spectral

weight curve obtained by considering only one point on the BZ. In this tests
we considered the Γ point, since it is where the most interesting physics
happens in these compounds. For both systems, the peaks related to the
TO modes, displayed on Fig.(4.17) and Fig(4.18), softens at low temper-
atures. For the case of PbTe, by raising the temperature, the intensity of
the satellite peak decreases, and it becomes broader. SnTe exhibits a single
peak as expected, since no additional feature is reported in literature.

4.4.2 Third order force constants

The implementation of the SSCHA allows one to calculate the SSCHA
third order force constants

(3)

Φa1a2a3(R) =

〈

∂3U

∂Ra1∂Ra2∂Ra3

〉

ρH

(4.13)



76

Figure 4.16: Anharmonic phonon spectra of SnTe at 50 K (top) and 100 K (bottom)
calculated via perturbation theory, diagonal case (solid lines) on top of the spectral
function (heat map) calculated considering off-diagonal self-energies. A good agreement
between the phonon frequencies and the spectral function is obtained. Differently to
PbTe, we do not verify the existence of satellites. As before, the third-order forces
constants were calculated using the finite differences method.

using an stochastic procedure. Here, we recall that during the developments
concerning the SSCHA we defined the composite index a = (α, s, l), which
indicates cartesian index, atom index and lattice vector together. How-
ever, since these force constants are obtained stochastically, their "quality"
depends on the number of configurations used. On the ideal case for an
infinite number of configurations, they should be equivalent to the regular
force constants. In order to clarify this matter, we used the off-diagonal
self-energies to compare the spectral function obtained using the SSCHA
third-order force constants and the ones used in the previous subsection.
In our tests we made use of one thousand configurations to ensure the
convergence of the SSCHA runs.
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Figure 4.17: Spectral weight of PbTe at 300K (right) and 600 K (left), for q= Γ.
The position of the peaks as well the shape of the curves demonstrate that there is no
significant difference in considering the diagonal and off-diagonal case.

Fig.(4.19) and Fig.(4.20) displays the calculations for PbTe at 300 K,
they correspond to the spectral function along the Γ-X directions along the
BZ, and a slice for the zone center, respectively. It is noticeable that the
two plots on Fig.(4.19) are very similar, and the shift of the peak positions
on Fig.(4.20) are small.

We have a samilar behaviour for the calculations at 600 K shown in
Fig.(4.21) and Fig.(4.22). In this case the most noticeable difference is
that the satellite is broader for the case in which we use the SSCHA third-
order force constants.

For SnTe we repeated the same tests for 50 and 100 K. Fig.(4.23) to
Fig.(4.26) show the comparison between the spectral functions obtained
using the two types of force constants, and the spectral weight on Γ. By
looking to these pictures we can state that for this range of temperatures,
the calculations using SSCHA third-order force constants or regular third-
order force constants is equivalent. The validity of this statement has
to be investigated for each case. However, we believe that the use of a
sufficient large number of random configurations on the SSCHA allow a
good description of effects related to the third-order contribution to the
anharmonic potential.

We can conclude then that the stochastic force constants are suitable
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Figure 4.18: Spectral weight of SnTe at 50K (right) and 100 K (left), for q= Γ.

to carry out the evaluation of anharmonic properties, since they give very
similar results in comparison with the ones obtained via third-order force
constants calculated using finite differences. In addition, this result demon-
strates the power of the SSCHA, since it is able to evaluate on the same
run anharmonic contributions of different orders. Thus, not requiring any
additional external calculations.

4.5 Summary

In this chapter some tests were carried out in order to explore the validity
and some limits of the SSCHA. It is important to stress that these tests
are very important since the new developments on the SSCHA are quite
recent. We started our analysis by exploring the harmonic theory. We
observed that the choice of the lattice parameter considerably affects the
phonon spectra of PbTe and SnTe. In addition, specially for SnTe, the
TO modes at zone center may even be imaginary depending on this choice.
After, we commented on the k-point sampling for SnTe which has shown
to be a delicate issue, requiring a larger grid.

We used the SSCHA on the static, (z = 0), limit to verify that for our
systems of interest, the most relevant terms on the anharmonic potential
comes mainly from contributions up to the third-order. This allowed us to
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Figure 4.19: Spectral function of PbTe at 300K. The third-order forces constants were
calculated via the SSCHA (left) and by the finite difference method (right).

compare directly SSCHA calculations with perturbation theory findings,
since by using the latter one can include the bubble term. Furthermore,
PbTe thermal expansion and dependence on the supercell size were tackled
under this limit.

We explored also the dynamic case,
(

z = ω = ωsscha
qµ

)

, and investigated
the differences between the diagonal and off-diagonal self-energies. For
PbTe and SnTe, the differences are not significant, however this may not be
the case for systems in which terms beyond the bubble are relevant. Finally
the impact on the numerical calculations using SSCHA third-order forces
constants was studied. We noticed that for a sufficient number of random
configurations on the SSCHA runs, the SSCHA force constants should be
equivalent, or at least very similar, to the force-constants obtained by third
derivatives of the ionic potential.
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Figure 4.20: Spectral weight of PbTe at 300K (right) and 600 K (left), for q= Γ. The
position of the peaks is very similar, the different

Figure 4.21: Spectral function of PbTe at 600K. The third-order forces constants were
calculated via the SSCHA (left) and by the finite difference method (right). In this
case, the low energy region at Γ exhibits a more diffusive behaviour for the SSCHA
calculations.
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Figure 4.22: Spectral function of PbTe at 600K for q= Γ. The third-order forces
constants were calculated via the SSCHA (left) and by the finite difference method
(right).

Figure 4.23: Spectral function of SnTe at 50K. The third-order forces constants were
calculated via the SSCHA (top) and by the finite difference method (bottom). For SnTe
we do not verify the presence of a satellite peak at Γ.
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Figure 4.24: Slice of the spectral function of SnTe at 50 K, q= Γ. the third-order force
constants were calculated via the SSCHA and by the finite difference method.

Figure 4.25: Spectral function of SnTe at 100 K along special point on the BZ. The third-
order forces constants were calculated via the SSCHA (top) and by the finite difference
method (bottom).
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Figure 4.26: Slice of the spectral function of SnTe at 100 K, q= Γ. the third-order
force constants were calculated via the SSCHA and by the finite difference method. The
agreement between the curves is evident.
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Chapter 5

Lattice-dynamics of PbTe and

SnTe

On chapter (4) we tested the validity and different limits of the SSCHA
method. With this tests in hand, we established a consistent approach to
carry on our final calculations.

The objective of this chapter is to apply our converged approach to
PbTe and SnTe, and compare our findings using the SSCHA to experimen-
tal data and other articles in the literature. We start by commenting on the
possible origins of the strong anharmonicity on PbTe. After, we compare
our calculated anharmonic phonon frequencies obtained for different tem-
peratures. Then, we compare experimental INS data with our calculations,
exploring the anharmonic spectra as well our calculated spectral function.
For the latter, we discuss the presence of an additional peak found at center
of the BZ and how it is affected by temperature.

For SnTe, we carry out a similar analysis. However, in addition to
the case of PbTe, for this system we estimate the transition temperature at
which a displacive structural phase transition occurs. To do it, we calculate
the square of the TO modes at zone center as a function of temperature,
where the phonon instability is present.

5.1 Lead telluride (PbTe)

5.1.1 Anharmonic phonon dispersion

The anharmonic effects in PbTe have been extensively studied experimen-
tally using techniques such as INS, and various theoretical models to ex-
plain features such as the dependence of the TO modes on temperature,
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Figure 5.3: PbTe harmonic (dashed lines) and anharmonic (solid lines) phonon dis-
persion curves at 300 K compared with INS experiments at 300 K (black dots). The
anharmonic phonon dispersion (Ωqµ) is obtained from Eq.(3.31) and includes the con-
tribution from the bubble self-energy.

5.1.2 Satellite peak due to phonon-phonon scatter-

ing.

In order to determine if the SSCHA approximation can describe correctly
the phonon satellites for PbTe, the phonon self-energy is calculated per-
forming Fourier interpolation over a denser 40×40×40 phonon momentum
grid. Fig.(5.5) and Fig.(5.6) shows our calculated anharmonic phonon dis-
persion versus the spectral function of PbTe at 300 and 600 K obtained by
using the SCHA self-energy.

We also display on Fig.(5.5), with pink dots, the Energy of the TO
phonon and of its satellite as measured in INS experiments detailed in
ref.[19].
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Figure 5.4: PbTe harmonic (dashed lines) and anharmonic (solid lines) phonon disper-
sion curves at 300 K compared with INS experiments at 300 K (black dots) from ref.[15].
The anharmonic phonon dispersion (Ωqµ) is obtained from Eq.(3.31) and includes the
contribution from the bubble self-energy.

Figure 5.5: PbTe Spectral function at 300 K calculated along the X-Γ-X path (color
map). Solid lines denote the anharmonic phonon dispersion curves, black dots denote
the experimental data from Ref. and pink squares denote the experimental values for
the peaks at the zone center from more recent experiments described in ref.[19]. The
color code is determined by the value of σ(q, ω) in Eq.(3.32).
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Both the satellite, more intense for 300 K, and the tendency of a avoided
crossing LA and TO bands for temperatures above 600 K are well described
by our methodology. Moreover, the energies of the TO peaks at Γ obtained
by the SSCHA are compatible with the observed values. The presence
of these features were also investigated in the literature using different
methods. In particular, non-perturbative methods such as theTDEP were
able to obtain similar results [64].

Figure 5.6: PbTe Spectral function at 600 K calculated along the X-Γ-X path (color
map). Solid lines denote the anharmonic phonon dispersion curves. The intensity of the
satellite peak decreases with increasing temperature, and the TO modes shift towards
higher energies.

5.2 Tin telluride (SnTe)

We start our calculation for SnTe by comparing the harmonic spectra and
the anharmonic phonon dispersion at 50 and 100 K. On the harmonic case
it is evident the presence of the phonon stabilities at the Γ point in the BZ.
By raising the temperature, the TO modes shift towards higher energies
close to 1.4 meV for T = 50 K and 2.4 meV for T = 100 K. This range of
values is consistent with INS measurements performed by Li et al [20].

Calculations for SnTe are reported in Fig.(5.8) where the comparison
between the phonon spectra obtained via SSCHA at T = 100K and recent
IXS experiments[84] at T = 75K is shown.
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Figure 5.7: Comparison between the harmonic (black lines) and anharmonic phonon
dispersion curves of SnTe at 50 K (red lines) and 100 K along special points in the BZ.
The anharmonic phonon dispersion (Ωqµ) is obtained from Eq.(3.31) and includes the
contribution from the bubble self-energy.

Figure 5.8: Harmonic (dashed lines) and anharmonic (solid lines) phonon dispersion
relations of SnTe at 100 K (red lines) compared with IXS experiments [84] at 75 K

(black dots). The anharmonic phonon dispersion (Ωqµ) is obtained from Eq.(3.31) and
includes the contribution form the bubble self-energy.
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Even, if this system was studied theoretically before, using methods
such as the TDEP and self-consistent ab-initio lattice dynamics (SCAILD),
the calculations focused on higher temperatures [84]. Our calculated an-
harmonic dispersion curves present the main features of the experimental
data for all investigated high symmetry directions along the BZ. Overall,
we find a good agreement with experimental data. It is worth to mention
that in order to describe correctly the experimental results the difference
between harmonic and anharmonic dynamical matrices are interpolated to
a 14 × 14 × 14 supercell for SnTe.

We also calculated the spectral-function for SnTe, considering the 4 ×
4 × 4 supercell. Differently from PbTe, we do not find the presence of a
satellite peak at zone center as can be seen in Fig.(5.9). This was also
observed experimentally by Li et al. [20] via INS measurement.

Figure 5.9: SnTe Spectral function at 100 K calculated along the X-Γ-X path (color
map). Solid lines denote the anharmonic phonon dispersion curves. We do not find any
additional structure on SnTe spectral function. The color code is determined by the
value of σ(q, ω) in Eq.(3.32).
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5.2.1 Structural phase transition in SnTe

In order to study the second order structural phase transition in SnTe
we evaluate the energy squared of the TO modes at Γ as a function of
temperature T . Our data with the inclusion of anharmonicity are consistent
with a ferroelectric transition at ≈ 23 K. However, this value should be
taken with care as the theoretical calculations are limited by the error in
the knowledge of the exchange correlation functional that leads to a big
variation in the equilibrium volume. On the other hand, experimentally,
the transition temperature of SnTe is strongly dependent on sample doping,
varying from 0K to around 120K for different carriers concentrations.
Fig.(A.5) compares our results for the energy squared of the TO mode
with recent IXS [84] experiments.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  20  40  60  80  100

 (
E

T
O

)2
 (

m
e
V

2
) 

 Temperature (K) 

Exp.
Th. Anhar.

Figure 5.10: Energy square of the TO phonons on the zone-center plotted against tem-
perature. The red squares denote the results obtained by using Eq.(3.31), and black
squares results form O’Neill et al.[84]. The linear extrapolation indicates that the the
modes softens to zero energy towards Tc ≈ 23 K for our calculations.

For future applications, a solution to increase the precision of studies
concerning structural instabilities, may be the utilization of hybrid func-
tionals, such as the HSE06, that account better for exchange and correla-
tion. Even if we are interested on this matter, this is beyond the scope of
this thesis.
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5.3 Summary

We successfully applied a novel technique based on the stochastic self con-
sistent harmonic approximation capable of investigating phase transitions
via the calculation of the Hessian of the free energy. We have studied the
temperature dependent anharmonic phonon spectra of PbTe and SnTe.
We found a strong dependence of vibrational properties on the exchange-
correlation functional used in the calculation and on the corresponding
equilibrium volume. By using the PBE functional with the theoretical
equilibrium volume, we find very good agreement with experimental INS
spectra and INS spectra. Then, obtaining a correct description in how the
anharmonic phonon dispersions depend on temperature.

By exploring these systems as a theoretical playground, the SSCHA
showed to be not only capable of describing single particle spectra, but also
manybody features like phonon satellites are correctly explained. Finally,
we describe the occurrence ferroelectric transition in SnTe from the high-
T rock-salt structure to the low-T rhombohedral one. The value of the
ferroelectric critical temperature is found to be strongly dependent in the
volume used in the calculations, consequently, on the exchange-correlation
functional.



Chapter 6

Conclusion and Perspectives

The goal of this thesis was to apply to thermoelectric systems, such as lead
telluride and tin telluride, a novel technique based on the self-consistent
harmonic approximation, called stochastic self-consistent harmonic approx-
imation (SSCHA) ; capable to investigate phase transitions and take into
account anharmonic effects by the calculation of the free energy Hessian.

We chose PbTe and SnTe due to their simple structure, and also due
to the presence of strong anharmonicity. The latter manifests itself in
different ways for these compounds, such as the softening of phonon modes
with decreasing temperature, the presence of satellite peaks on the PbTe
inelastic neutron scattering (INS) spectra, and the phase transition at low
temperature observed in SnTe.

This manuscript started by introducing briefly some phenomenology
concerning PbTe and SnTe, focusing on the structure, electronic proper-
ties, and vibrational properties of these materials. Next, we introduced
the harmonic approximation and the density-functional perturbation the-
ory (DFPT) in which one can start to investigate numerically the phonon
dispersion curves of materials. On chapter 3 , we discussed the addition
of anharmonic term to the ionic potential and some methods to calculate
them. In particular, we focused on the SSCHA, trying to write an intro-
duction to its theory and capabilities.

An important part of the work was devoted to test and validate the
SSCHA approach and its new implementations by using our systems of
interest as playground. We dedicated chapter 4 to discuss tests and first
applications pf the SSCHA. The magnitude of anharmonic effects was ex-
tensively studied for this systems, making use of an empirical potential and
via ab-initio calculations. Next, we compared anharmonic phonon disper-
sion curves including different contributions to the ionic anharmonic free
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energy, finding that terms beyond third-order can be neglected for PbTe
and SnTe. Within the same analysis we also estimate the effects of ther-
mal expansion on the phonon frequencies for the PbTe system. Afterwards,
we compared results using off-diagonal and diagonal anharmonic phonon
self-energies, showing that for both systems, the differences are minimal.
In addition, the nature of the stochastic third-order force constants were
investigated by comparing our results with third-order force constants cal-
culated via finite differences method on top of the SSCHA phonon spectra.
In this case the third order-force constants were used to calculate the con-
tribution of the bubble diagram to the phonon self-energies. Our analysis
found that for converged calculations no significant differences are noticed.
These results are not important just for our studies but can also be viewed
as a protocol to initiate the investigation of anharmonic properties in other
materials.

After the testing phase, we carried out full ab-initio calculation in order
to compare our findings to experimental data, chapter 5. We studied the
temperature dependent anharmonic phonon spectra of PbTe and SnTe at
different temperatures. We found a strong dependence of vibrational prop-
erties on the exchange-correlation functional used in the calculation and
on the corresponding equilibrium volume. By using the PBE functional
with the theoretical equilibrium volume, we find very good agreement with
experimental INS spectra as well inelastic x-ray scattering (IXS) experi-
ments.

The corrected behavior of the transverse optical (TO) modes with tem-
perature was found for both materials, and the spectra exhibit a good
agreement with past measurements in literature. By investigating the spec-
tral function of PbTe and SnTe, we showed that the SSCHA is not only
capable of describing single particle spectra, but also manybody features
like phonon satellites are correctly reproduced. In addition, we describe the
occurrence of a ferroelectric transition in SnTe from the high-T rock-salt
structure to the low-T rhombohedral one. The value of the ferroelectric
critical temperature is found to be strongly dependent on the volume used
in the calculations, and consequently, on the exchange-correlation func-
tional.

We believe that this thesis demonstrated the power of the SSCHA, that
can be used in a large variety of systems in future works. For example, it
is suitable to study shape memory alloys such as NiTi [88, 89], used in a
broad spectrum of technologies, from medical applications to the aerospace
industry. This compound in particular exhibits a phase transition, from
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a β-phase to R-phase. Its understanding depends on the knowledge of
the phonon dispersion. The stability of the β-phase, however, is not de-
scribed correctly via the harmonic theory, showing instabilities along dif-
ferent points of the BZ. In Fig.(6.1) we show a preliminary analysis on this
matter by using the SSCHA. Another possible application is the study of
surfaces and thin-films. Following the study of ferroelectric transitions on
SnTe, the SSCHA can explore SnTe thin films in which the Tc is enhanced
to values close to 270 K [90].

Concerning the developments of the technique, in order to maximize
the SSCHA capabilities the computational limitations must be reduced.
Since the SSCHA depends on the calculations of interatomic forces and
total energies, we believe that an optimization of the implementation, and
also the use of alternative way to calculate these objects shall be explored.
For instance, the use of empirical potentials, or machine learning techniques
can expand the potential of the method, allowing the investigation of larger
supercells and a big variety of more complex systems within its framework.

Figure 6.1: Preliminary results on the NiTi system. Tee plot compares experimental
data at 400 K (points) with the harmonic phonon dispersion using the 2 × 2 × 2 (black)
and 3 × 3 × 3 (black) supercells, and unconverged SSCHA calculations; 2 × 2 × 2 (blue)
and 3 × 3 × 3 (red) supercells.
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Appendix A

Density functional theory

overview

In this appendix we present an short overview of the Density Functional
Theory (DFT) focusing on the main theorems and on the Kohn-Sham
approach.[36, 37] A deeper discussion including the discussion on approx-
imations for the exchange-correlations terms, plane-waves basis set, and
pseudopotentials, can be found in many textbooks, as well in review pa-
pers. All calculations presented on this thesis were performed using the
DFT as implemented on the QUANTUM ESPRESSO package.

A.1 Hohenberg-Kohn theorems

Via the Born-Oppeheimer approximation it is possible to decouple the elec-
tronic from the vibrational degrees of freedom. Hence, one can tackle the
electronic problem independently from the vibrational one. The density
functional theory (DFT), developed by Hohenberg and Kohn, aims at sim-
plifying the resolution of the electronic problem by reducing the many-body
problems with 3Ne variables to a simple problem with one parameter, the
electronic density. The DFT is based on two theorems rewritten by Martin
as:

Theorem. For any system of interacting particles in an external po-

tential Vext(r), the potential Vext(r) is determined uniquely, except for a

constant,by the ground state particle density n(r,R).

Theorem. A universal functional for the energy Ee[n] in terms of

the density n(r,R) can be defined, valid for any external potential Vext(r).
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For any particular Vext(r), the exact ground state energy of the system is

the global minimum of this functional, and the density that minimizes the

functional is the exact ground state density n(r,R).

Corollary. The functional Ee[n] alone is sufficient to determine the

exact ground state energy and density.

In resume, there is an universal functional F [n(r,R)] of the electron
charge density such that the functional

Ee[n] = F [n] +
∫

n(r,R)Vext(r)dr (A.1)

is minimized by the electron charge density of the ground state correspond-
ing to the external potential Vext(r), under the constraint that the number
of electrons is given by the integral of n(r,R).

A.2 The Kohn-Sham equations

According to the Hohemberg-Kohn theorems, if one can determine the elec-
tronic density that minimizes the functional of Eq.(A.1) then the ground
state energy of the system is also determined. A practical way to calculate
this object is the approach developed by Kohn and Sham. In this approach,
the electronic density is written in terms of Ne single particle wavefunctions
as

n(r,R) =
Ne
∑

i

|φ(r,R)|2. (A.2)

This single particle wavefunctions are auxiliary objects with no physical
meaning called Kohn-Sham orbitals. On the other hand, the electronic
density found by using this object corresponds to the density of the real
system. On the spirit of the Kohn-Sham approach the functional F [n] is
expressed as

F [n] = T0[n] +
1
2

∫ n(r,R)n(r′,R)drdr′

|r − r′| + Exc[n], (A.3)

where T0[n] is the kinetic-energy functional, the second term is the classical
electrostatic self-interaction of the electron charge-density distribution, and
the last term is the so called exchange-correlation term. The latter is part
of the energy functional we do not know how to evaluate in principle.

Variation of the energy functional with respect to the density n(r,R),
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keeping the number of electrons fixed, leads formally to the same equation
as would hold for a system of noninteracting electrons subject to an effective
potential VSCF (r), called the self-consistent field (SCF) potential, of the
form

VSCF (r) = Vext(r) + VHartree(r) + Vxc(r) (A.4)

with

VHartree(r) =
∫ n(r′,R)dr′

|r − r′| (A.5)

and

Vxc(r) =
δExc[n]
δn(r,R)

. (A.6)

By knowing VSCF (r) and the electronic density in terms of the Kohn-
SHam orbitals , Eq.(A.2), one can evaluate the noninteracting electronic
problem by solving the one-electron Schroedinger equation

ĤSCF (r)φi(r,R) = εiφi(r,R), (A.7)

where

ĤSCF (r) = −∇2

2
+ VSCF (r). (A.8)

Eq.(A.7) has the form of a nonlinear Schroedinger equation in which the
potential depends on its own eigenfunctions through the electronic density,
and are denominated Kohn-Sham equations. If the exchange-correlation
term is known, then this equation can be solved self-consistently using
different methods. The exact Vxc potential is not known. Hence, some ap-
proximation have to be made in order to treat Vxc(r). The most well-known
approximations for this contribution are the local density approximation
(LDA) and the generalized gradient approximation (GGA). We chose the
latter to carry out the DFT calculations described on this thesis.

A.3 Local density approximation (LDA)

Considering that in the limit of the homogeneous electron gas exchange-
correlation effects are local in character, Kohn and Sham proposed that the
exchange-correlation energy could be approximated simply as an integral
over all space with the exchange- correlation energy density at each point
assumed to be the same as in a homogeneous electron gas:

ELDA
xc [n](R) =

∫

drn(r,R)ǫhom
xc (n(r,R)). (A.9)
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Where it is possible to find different parametrizations of ǫhom
xc in literature

[91, 92].

A.4 Generalized gradient approximation (GGA)

Due to its local character, the LDA is expected to work better for solids
close to a homogeneous electron gas than for more inhomogeneous systems.
Kohn and Sham proposed that the LDA could be improved including cor-
rections coming from the gradient of the density. In a similar form as the
LDA equation the GGA exchange-correlation can be cast on the following
form:

EGGA
xc [n](R) =

∫

drf(n(r,R),∇n(r,R)). (A.10)

There are many paramtrizations for the function f in literature [81,
93, 94]. However, there is not a definite value for f making it difficult to
encounter the best functional. Hence, the gradient correction to the LDA is
not a general improvement and can give worse results for some systems and
some properties. As a consequence, the choice of the exchange-correlation
which may lead to reliable results is system dependent.



Résumé en français

Introduction

Les matériaux thermoélectriques attirent de plus en plus d’attention en rai-
son de leur propriété de pouvoir convertir la chaleur en énergie électrique
et vice-versa [5, 6, 7]. En cas d’utilisation avec des sources d’énergie pro-
pres, comme le l’énergie solaire par exemple, de tels matériaux peuvent être
une solution alternative au problème d’augmentation de la demande en én-
ergie et d’autres problèmes mondiaux tels que le réchauffement climatique
[1, 2, 3]. Le développement et la classification des dispositifs thermoélec-
triques est lié à une quantité adimensionnelle appelée facteur de mérite qui
est donnée par :

ZT =
S2σT

k
, (A.11)

Où S est le coefficient de Seebeck, T la température, et σ et k sont les
conductivités électroniques et thermiques, respectivement. Plus le facteur
de mérite est élevé, mieux est le dispositif ferroélectrique.

Dans ces systèmes, les effets anharmoniques jouent un rôle important
car ils diminuent la conductivité thermique via la diffusion phonon-phonon
et par conséquent, augmentent le facteur ZT . De plus, certains composés
thermoélectriques subissent des transitions de phase du second ordre en-
traînées par des modes phoniques dites « doux ». Proche de la cette tran-
sition de phase, les fréquences des phonons deviennent très douces et le
potentiel ressenti par les ions fortement anharmoniques. Par conséquent,
un traitement non perturbatif de l’anharmonicité est crucial pour com-
prendre la dynamique du réseau cristallin et l’efficacité des matériaux ther-
moélectrique. D’un point de vue théorique, plusieurs approximations ont
été développées ces dernières années afin de résoudre ce problème, et il
devient enfin possible de décrire les effets anharmoniques au-delà le régime
perturbatif [76, 77, 16, 18].

Parmi tous les thermoélectriques, le PbTe et le SnTe se distinguent par
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leurs propriétés intéressantes [10, 12, 13, 14, 15, 19, 20]. Les deux systèmes
ont des facteurs de mérite élevés faisant d’eux des thermoélectriques effi-
caces. De plus, à température ambiante, ils ont des structures simples de
type NaCl. La simplicité de leur structure et l’importance des effets anhar-
moniques pour décrire les propriétés dynamiques de leurs réseaux cristallins
les rendent des systèmes idéals pour valider les approches théoriques non
perturbatives du problème anharmonique.

En plus de ses propriétés thermoélectriques, le SnTe exhibe une tran-
sition ferroélectrique intrigante à basse température. Cette transition vers
une structure rhomboédrique se produit lorsque les modes optiques-transverses
(TO) au centre de la zone de Brillouin (BZ) se ramollissent pendant le re-
froidissement. Les mesures expérimentales, passées et récentes, indique que
différentes températures de transition, allant de 0 K jusqu’à 120 K exis-
tent. Une telle variation de Tc est due à la variation du dopage intrinsèque
[28]. D’autre part, le PbTe ne subit pas une transition de phase à basse
température, bien qu’il ait un caractère ferroélectrique naissant. De plus,
des expériences INS récentes ont rapporté que le PbTe possède un pic de
phonon satellite proche du centre de la BZ, ce qui représente une empreinte
claire de la forte anharmonicité dans ce matériaux [19].

D’un point de vue théorique, les deux systèmes ont été étudiés dans le
passé en utilisant des calculs ab-initio, ainsi que des méthodes basées sur la
dynamique moléculaire [76, 77, 20]. La plupart de ces calculs utilisent une
approche non-perturbative puisque les calculs basés sur la théorie des per-
turbations conduisent à des instabilités structurelles totalement absentes
dans les mesures expérimentales [77, 87]. Certaines de ces méthodes don-
nent un bon accord avec l’expérience, spécialement pour le PbTe. Cepen-
dant, les résultats peuvent être affectés par une plusieurs facteurs, tels que
le volume utilisé durant les calculs [47].

Dans ce résumé, nous présentons les spectres de phonons anharmoniques
de PbTe et SnTe en fonction de la température en utilisant l’approximation
harmonique stochastique et auto-cohérente (SSCHA) [16, 17, 18]. On déter-
minera ainsi l’ampleur des effets anharmoniques sur les spectres vibra-
tionnels et sur la transition ferroélectrique.

Ce résumé est organisé dans l’ordre suivant : Tout d’abord, dans la sec-
tion A.4, nous introduisons le cadre théorique et la méthodologie appliquée.
Nous présentons ensuite l’approximation harmonique stochastique auto-
cohérente (SSCHA) [16, 17, 18] et, dans ce cadre, l’évaluation de l’Hessian
de l’énergie libre [18]. Dans la section A.4, nous discuterons les paramètres
utilisés dans nos calculs ab-initio. Les principaux résultats concernant les
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dispersions de phonons harmoniques et anharmoniques et la comparaison
entre nos calculs et les données expérimentales sont décrits dans la section
A.4.

Théorie

Nous étudions la dynamique; des réseaux cristallins du PbTe et du SnTe
dans l’approximation de Born-Oppenheimer (BO). Ainsi, nous considérons
l’Hamiltonien quantique pour les atomes définis par l’énergie potentielle
de BO V (R). La variable R dans V (R) est une notation compacte (sans
composante) de la quantité Rαs(l), une coordonnée collective qui spécifie
complètement la configuration atomique. L’indice α indique la direction
cartésienne, s désigne l’atome dans la cellule unitaire et l indique un vecteur
tridimensionnel du réseau direct (cristallin). Dans la suite, nous utiliserons
également un l’index composite a = (α, s, l) qui regroupe l’index cartésien,
l’index atomique et le vecteur du réseau direct. De plus, en général, nous
utiliserons souvent dans cet article les caractères en gras pour indiquer
d’autres quantités en notation compact.

Afin traiter les effets quantiques et l’anharmonicité dans une approche
non-perturbative, nous utilisons l’approximation harmonique stochastique
et auto-cohérente (SSCHA) [16, 17, 18]. Pour une température donnée T , la
méthode permet de trouver une estimation approximative pour F (Rαs(l)),
l’énergie libre du cristal en fonction de la position atomique moyenne Rαs(l)
(le centroids). Pour un centroids donné R, l’énergie libre SSCHA est
obtenue à travers un Hamiltonien quadratique auxiliaire, appelé l’Hamiltonien
de la SSCHA HR. Dans une transition de phase du second ordre, à
haute température, l’énergie libre est minimale pour une configuration de
haute symétrie Rhs mais, lors durant le refroidissement, Rhs devient un
point-selle à la température de transition Tc. Par conséquent, l’Hessian de
l’énergie libre évaluée à Rhs, ∂2F/∂R∂R|

Rhs
, est définie positive a tem-

pérature élevée, mais elle développe une ou plusieurs directions négatives
à Tc. L’Hessian de l’énergie libre SSCHA dans un centroïde R peut être
calculé en utilisant la formule analytique (en notation compacte) [18].

∂2F

∂R∂R
= Φ +

(3)

ΦΛ(0)
[

1 −
(4)

ΦΛ(0)
]−1 (3)

Φ, (A.12)

avec
(n)

Φ a1···an
(R) =

〈

∂nU

∂Ra1 · · · ∂Ran

〉

ρH

(A.13)
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où les moyennes sont par rapport à la matrice densité de l’Hamiltonien
SSCHA HR, c’est-à-dire ρHR

= e−βHR/tr
[

e−βHR

]

, et β = (kbT )−1 où kb

est la constante de Boltzmann. Dans Eq. A.12 la valeur à z = 0 du tenseur
de 4ème ordre Λ(z) est utilisée. Pour un nombre complexe générique z, ce
tenseur est défini par :

Λabcd(z) = −1
2

∑

µν

F (z, ωµ, ων)

×
√

√

√

√

~

2Maωµ

ea
µ

√

~

2Mbων

eb
ν

√

√

√

√

~

2Mcωµ

ec
µ

√

~

2Mdων

ed
ν , (A.14)

avec Ma la masse de l’atome a, ω2
µ et ea

µ les valeurs et vecteurs propres de
DS = Φab/

√
MaMb, respectivement, et

F (z, ων , ωµ) =
2
~

[

(ωµ + ων)[1 + nB(ωµ) + nB(ων)]
(ωµ + ων)2 − z2

− (ωµ − ων)[nB(ωµ) − nB(ων)]
(ωµ − ων)2 − z2

]

(A.15)

où nB(ω) = 1/(eβ~ω − 1) est le numéro d’occupation bosonique. En évalu-
ant l’hessienne de l’énergie libre à Rhs Eq.A.12 et en étudiant son spectre
en fonction de la température, on peut prédire l’occurrence d’une transi-
tion de phase du second ordre et estimer Tc. En particulier, puisque nous
considérons un cristal, nous profitons de la périodicité du réseau et nous
utiliseront la transformée de Fourier de l’hessienne de l’énergie libre par
rapport aux indices de réseau. Par conséquent, puisqu’il y a 2 atomes dans
la cellule unitaire de PbTe et SnTe, nous calculons en fait les valeurs pro-
pres λ2

µ(q) de la matrice carrée de 6ème order ∂2F/∂Rαs(−q)∂Rβt(q) pour
différents points q de la BZ.

Comme le montre la Réf.[18], dans le formalisme de la SSCHA, il est
possible de formuler un ansatz afin de donner une expression approximative
à la fonction de Green du phonon (Gz) pour la variable

√
Ma(Ra − Ra

hs)

G−1(z) = z2
1 − M− 1

2 ΦM− 1
2 − Π(z) = −D(F ), (A.16)

Où Π(z) est la self-énergie de la SSCHA, donnée par

Π(z) = M− 1
2

(3)

ΦΛ(z)
[

1 −
(4)

ΦΛ(z)
]−1 (3)

Φ M− 1
2 , (A.17)
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où Mab = δabMa est la matrice de masse. Pour les applications pris en

considération dans cette thèse, le terme statique
ssf

bPhiΛ(0) est négligeable
par rapport à la matrice d’identité. L’utilisation de cette approximation
dans le cas dynamique réduit la self-énergie de la SSCHA à la self-énergie
dite de « bulle », à savoir

Π(z) ≈ Π(B)(z) = M− 1
2

(3)

ΦΛ(z)
(3)

Φ M− 1
2 , (A.18)

On néglige alors le mélange entre différents modes de phonons et sup-
posons que Π(z) est diagonal dans la base des vecteurs propres eαs

µ (q)
of Φαs,βt(q)/

√
MsMt où Φαs,βt(q) est la transformée de Fourier de Φαs,βt.

Nous définissons ensuite

Πµ(q, ω) =
∑

αs,βt

eαs
µ (q)Παsβt(q, ω + i0+)eβt

µ (q) (A.19)

et ω2
µ(q) sont les valeurs propres de la transformée de Fourier de D(S). Les

fréquences des phonons au carré, Ω2
qµ, corrigées par la self-énergie de it

bulle sont obtenus comme

Ω2
qµ = ω2

µ(q) + ReΠµ(q, ωqµ) (A.20)

En étudiant la réponse d’un réseau à la diffusion des neutrons, nous
avons besoin de la fonction spectrale à un phonon. En utilisant Eq. (A.16)
pour G(z) nous pouvons calculer la section efficace σ(ω) = −ωTr Im G(ω+
i0+)/π, dont les sommets indiquent la présence d’excitations vibratoires
collectives (phonons) ayant certaines énergies, car elles peuvent être sondées
avec des expériences de diffusion inélastiques (ici le facteur de normalisation
choisi est tel que

∫

dωσ(ω) est égal au nombre total de modes). Encore une
fois, nous profitons de la périodicité du réseau en utilisant la transformée
de Fourier des quantités intéressantes par rapport aux indices de réseau.
En particulier, nous considérons la transformée de Fourier de la self énergie
de la SSCHA, Παsβt(q, z). En négligeant le mélange entre les différents
modes, la section est alors donnée par

σ(q, ω) =

1
π

∑

µ

−ω ImΠµ(q, ω)
(ω2 − ω2

µ(q) − ReΠµ(q, ω))2 + (ImΠµ(q, ω))2
. (A.21)

.
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Méthodologie

Nous effectuons nos calculs dans le formalise de la théorie de la fonction-
nelle de densité (DFT) en utilisant le logiciel QUANTUM-ESPRESSO [80].
Dans les deux systèmes, l’interaction d’échange-corrélation est traitée dans
l’approximation de gradient généralisée de Perdew-Burke-Ernzerhof (PBE)
[81]. Pour décrire l’interaction entre les électrons et les ions, nous utilisons
des pseudopotentiels à norme conservée [82] pour le PbTe, et PAW [83]
pour le SnTe. Dans les deux systèmes, les états semi-core de valence inclus
sont les 4d pour Te et Sn, et les 5d pour Pb. Les fonctions d’ondes élec-
troniques sont décomposées en une somme d’ondes planes avec un seuils
maximale d’énergie cinétique de 65 Ry et 28 Ry pour les pseudopotentiels
relativistes scalaires de PbTe et SnTe respectivement. Les intégrations sur
la zone de Brillouin (BZ) sont effectuées en utilisant une grille uniforme de
8 × 8 × 8k -points pour PbTe et une grille plus dense de 12 × 12 × 12k pour
SnTe. Un soin particulier doit être pris en convergeant l’énergie de l’états
fondamentale par rapport aux points k pour le SnTe car la profondeur du
puits de potentiel en tant que fonction des déplacements de phonons dépend
fortement de l’échantillonnage de la BZ. Les calculs antérieurs [20] effectués
avec des échantillonnages raréfiés s’avèrent être non-convergée. Les charges
efficaces de Born calculées par la théorie de perturbation de la fonction-
nelle de densité (DFPT) sont incluses pour les calculs de PbTe seulement.
Pour le PbTe et le SnTe, nous considérons la structure sel (NaCl) à haute
température et les paramètres de réseau optimisés en PBE qui sont de 6.55
Å et 6.42 Å respectivement.

Les fréquences harmoniques des phonons sont calculées dans le formal-
isme de la DFPT [53] e utilisant la version implémenté dans QUANTUM-
ESPRESSO. Nous utilisons les grilles 2×2×2, puis 4×4×4 q pour les deux
systèmes. L’interpolation de Fourier est utilisée pour obtenir la dispersion
des phonons suivant des lignes de haute symétrie.

Pour calculer les fréquences des phonons renormalisées par les effets
anharmoniques, nous utilisons le formalisme de la SSCHA [16, 17, 18].
L’Hamiltonien d’essai a est minimisé dans une super-cellule. Ce processus
de minimisation nécessite la connaissance des énergies et des forces agissant
sur une super-cellule pour un ensemble de configurations aléatoires générées
par la matrice de densité d’essai. Ces quantitées (énergies et forces) ont
été calculés sur les super-cellules 2 × 2 × 2 et 4 × 4 × 4 en utilisant les
mêmes paramètres que ceux utilisés pour les calculs harmoniques (DFPT).
Le nombre de configurations aléatoires que nous utilisons est de l’ordre de
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mille. La différence entre les matrices dynamiques harmoniques et anhar-
moniques est interpolée sur une grille de 14 × 14 × 14 pour SnTe. Pour le
PbTe aucune interpolation n’est nécessaire puisque la super-cellule 4×4×4
est déjà adéquate pour décrire les résultats expérimentaux.

Résultats & Discussion

Dispersion des phonons harmonique

Figure A.1: Courbe de dispersion des phonons harmoniques pour PbTe et SnTe pour
différents paramètres de mailles. Pour les paramètres de mailles expérimentaux (lignes
rouges) chaque système ne présente aucune fréquence négative. Pour les paramètres de
mailles optimisés par la méthide PBE (lignes bleues), le spectre phononique du SnTe
montre des fréquences négatives au point Γ, indiquant ainsi une instabilité structurelle.
Les modes TO au point gamma a une forte dépendance sur le volume..

Dans les matériaux ferroélectriques et thermoélectriques, les spectres
de phonons dépendent fortement du volume utilisé dans les calculs [47],
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de ce fait, nous étudions d’abord la dépendance des spectres de phonons
harmoniques en fonction des paramètres du réseau. Dans la Fig.(A.1), on
montre nos calculs des dispersions de phonons harmoniques au sein de la
DFPT pour le PbTe et le SnTe en utilisant (i) les paramètres de maille PBE
à température nulle (ii) les valeur expérimentales [26, 27] aexp = 6.46Å et
6.32 Å respectivement. Dans les deux cas, les paramètres expérimentaux
sont plus petit que les valeurs théoriques, comme si le système subit une
pression finie. Comme prévu, les résultats dépendent fortement du volume.
Dans le cas de PbTe, l’utilisation du paramètre de réseau expérimental
durcit tous les phonons, mais le durcissement est particulièrement impor-
tant pour le mode optique transverse (TO) au centre de la BZ qui se décale
de 3,17 meV à 6,19 meV. Cependant, dans les deux cas, les fréquences des
phonons harmoniques sont positives et aucune instabilité structurelle n’est
détectée dans PbTe, en accord avec les données expérimentales. Le PbTe
est habituellement référencé comme ferroélectrique débutant en raison de
la douceur du mode phonon TO. Il est important de souligner que dans
le cas du PbTe, les expériences [42, 19] montre un levée de dégénérescence
clair entre les modes de phonon LO/TO. Nous avons donc inclus cet effet
dans notre calcul harmonique.

A la pression ambiante, le SnTe subit une transition de phase dans la
plage de température de 30 à 100 K. A basse température, le cristal passe
de la symétrie cubique (Fm 3 m) à la symétrie rhomboédrique (R 3 m).
La distorsion est une transition de phase de déplacement impliquant une
petite dimérisation dans la cellule unitaire [30]. Cette distorsion est com-
patible avec une instabilité d’un phonon au centre de la BZ. Les échantillons
réels du SnTe sont non stœchiométriques et la température de transition
ferroélectrique dépend fortement du nombre de trous présents dans le sys-
tème. Elle est d’environ 100 K pour des concentrations de trou de l’ordre
de 1 × 1020 cm −3 et diminue jusqu’à environ 30 K pour des concentrations
de trous dix fois plus grandes. A ce niveau élevé de dopage, on ne s’attend
pas à une levée de dégénérescence LO /TO, qui sera donc négligée dans la
simulation

La dépendance du calcul harmonique sur le volume est plus forte dans le
cas du SnTe. La transition ferroélectrique (phonon TO imaginaire au centre
de la BZ) est présente lors de l’utilisation du volume théorique du PBE
alors qu’elle disparaît si le volume expérimental est utilisé. Cela indique
à nouveau le rôle important du volume utilisé dans le calcul des spectres
de phonons dans ferroélectriques et thermoélectriques. Dans le reste de
l’article, nous considérons le paramètre de réseau optimisé PBE à T = 0K
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dans tous les calculs. Pour le SnTe, comme nous nous intéressons aux
températures inférieures à 100 K, nous négligeons les effets de la dilatation
thermique.

Phonons anharmoniques

Tellurure de plomb (PbTe)

Dans la Fig. A.2 Nous comparons les courbes de dispersion de phonons
du PbTe à 300K obtenues par la SSCHA aux données expérimentales INS
obtenues par Cochran et al. [42]. Nos courbes calculées sont en bon accord
avec les résultats expérimentaux. Nous obtenons une valeur plus élevée que
les expériences pour les modes TO au centre de la BZ ce qui est cohérente
avec les observations expérimentales plus récentes d’un double pic dans
cette région [19]. Les calculs antérieurs [87] ont trouvé un bon accord pour
le mode TO d’énergie inférieure au point Γ, sans pour autant obtenir une
bonne description des branches de phonons de haute énergie. Des mesures
plus récentes de l’INS [19] ont suggéré la présence d’un phonon satellite
fortement dépendant de la température près du point Γ et proviennent du
mode TO. En outre, lorsque la température augmente, un croisement évité
entre les branches de phonons LA et TO le long de la direction Γ X est
rapporté à T > 300 K.

Afin de déterminer si l’approximation SSCHA peut décrire les phonons
satellites et d’étudier l’occurrence du croisement évité, on calcule la self-
énergie des phonons sur une grille plus dense de 40 × 40 × 40. La Fig.(??)
montre notre dispersion de phonons anharmoniques calculée comparée à la
fonction spectrale du PbTe obtenue en utilisant la self-énergie de la SSCHA.

Nous montrons également, avec des points roses, l’énergie des phonons
TO et de leurs satellites telle que mesurée dans les expériences INS détail-
lées dans la Réf.[19].

Le satellite et le croisement des bandes LA et TO à 300 K sont bien
décrits par notre méthodologie. De plus, les énergies des pics TO à Γ
obtenus par le SSCHA sont en accord avec les valeurs observées. La
présence de ces caractéristiques a également été étudiée dans la littéra-
ture en utilisant différentes méthodes. En particulier, des méthodes non
perturbatives telles que la technique du potentiel effectif dépendant de
la température (TDEP) [64] avec laquelle des résultats similaires ont été
obtenues.
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Figure A.2: Courbes de dispersion des phonons harmoniques (lignes pointillées) et an-
harmoniques (lignes pleines) pour PbTe à 300 K, comparées avec les expériences INS
[42] à 300K. La courbe de dispersion des phonons anharmoniques (Ωqµ) est obtenue
d’après l’équation (A.20) et comprend la contribution de l’énergie propre sous la forme
bulle.

Tellurure d’étain (SnTe)

Les calculs pour le SnTe sont reportés sur la figure (A.4) où une compara-
ison entre les spectres de phonons obtenus via SSCHA à T = 100K et les
expériences d’ IXS récentes [84] à T = 75K est présentée. Même si ce
système a été étudié théoriquement auparavant en utilisant des méthodes
telles que le TDEP et la dynamique du réseau (SCAILD) auto-cohérent
[84], les calculs ont porté sur des températures élevées. Nos courbes de dis-
persion anharmonique calculées présentent les principales caractéristiques
des données expérimentales pour toutes les directions de haute symétrie
étudiées le long de la BZ. Dans l’ensemble, nous trouvons un bon accord
avec les données expérimentales.

Afin d’étudier la transition de phase structurale du second ordre dans
le SnTe, nous évaluons le carré de l’énergie des modes TO à Γ en fonction
de la température T . Nos données avec l’inclusion de l’anharmonicité sont
cohérentes avec une transition ferroélectrique à ≈ 23 K. Cependant, cette
valeur doit être prise avec précaution car les calculs théoriques sont limités
par l’erreur dans la connaissance de la fonction d’échange et corrélation qui
conduit à une grande variation dans le volume d’équilibre. D’autre part,
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Figure A.3: Fonction spectrale de PbTe à 300K calculée le long de la trajectoire X-Γ-X
(carte en couleur). Les lignes pleines représentent les courbes de dispersions des phonons
anharmoniques, les points noirs les données expérimentales de réf.[42] et les carrés roses
les valeurs expérimentales du pics pour le centre de zone d’après les expériences plus
récentes de la réf.[19]. Le code de couleur est déterminé par la valeur de σ(q, ω), équation
(A.21).

expérimentalement, la température de transition de SnTe dépend fortement
du dopage de l’échantillon, variant de 0 K à environ 120 K pour différentes
concentrations de porteurs. La figure (A.5) compare nos résultats concer-
nant le carré l’énergie du mode TO avec les expériences IXS [84] récentes.

Conclusions

Nous avons appliqué une nouvelle technique [18] basée sur utilisant l’approximation
harmonique stochastique et auto-cohérente qui nous a permis d’étudier la
transition de phase via le calcul de l’hessienne de l’énergie libre. Nous avons
étudié les spectres de phonons anharmoniques dépendant de la température
du PbTe et du SnTe. Nous avons trouvé une forte dépendance de propriétés
vibrationnelles en fonction de la fonctionnel d’échange et corrélation util-
isée dans le calcul ab-initio et sur le volume d’équilibre correspondant. En
utilisant la fonctionnelle PBE avec le volume théorique d’équilibre, nous
trouvons un très bon accord avec les expériences d’INS. Le formalisme de
la SSCHA n’est pas seulement capable de décrire les spectres à une seule
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Figure A.4: Courbes de dispersion des phonons harmoniques (lignes pointillées) et an-
harmoniques (lignes pleines) pour SnTe à 100 K (lignes rouges), comparées avec les
expériences IXS [84] à 75K (points noirs). La courbe de dispersion anharmonique (Ωqµ)
est obtenue d’après l’équation (A.20) et comprend la contribution de l’énergie propre
sous la forme bulle.

particule, mais aussi de nombreuses propriétés (comme les satellites des
phonons TO) sont correctement expliquées. Enfin, nous décrivons la tran-
sition de phase ferroélectrique dans SnTe de la structure Tm3 m à haute
température vers la structure R3m à basse température. La valeur de la
température critique ferroélectrique dépendant fortement du volume utilisé
dans les calculs, par conséquent, de la fonctionnelle d’échange et corréla-
tion.
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Figure A.5: Énergie au carré pour les phonons TO au centre de la zone en fonction de
la température. Les carrés rouges présentent les résultats obtenus à l’aide de l’équation
(A.20), et les carrés noires présentent les résultats d’ONeil et al.[84]. L’extrapolation
linéaire montrent que les modes s’ammolissent à une énergie nulle aux alentours de la
Tc ≈ 23 K d’après nos calculs.



116



Bibliography

[1] M. Morini, M. Pinelli, P. R. Spina, and M. Venturini Applied Energy,
vol. 112, p. 205, 2013.

[2] S. Varnhagen, A. Same, J. Remillard, and J. W. Park Journal of Power

Sources, vol. 196, no. 6, p. 3360, 2011.

[3] S. FuiTie and C. WeiTan Renewable and Sustainable Energy Reviews,
vol. 20, p. 82, 2013.

[4] A. Royale and M. Simic Procedia Computer Science, vol. 60, p. 1443,
2015.

[5] A. Montecucco, J. R. Buckle, and A. R. Knox Applied Thermal Engi-

neering, vol. 35, p. 177, 2012.

[6] R. J. Goldstein, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H.
Kuehn, P. J. Strykowski, K. K. Tamma, J. V. R. Heberlein, J. H.
Davidson, J. Bischof, F. A. Kulacki, U. K. S. Garrick, V. Srinivasan,
K. Ghosh, and R. Mittal International Journal of Heat and Mass

Transfer, vol. 53, no. 21-22, p. 4397, 2010.

[7] S. Twaha, J. Zhu, Y. Yan, and B. Li Renewable and Sustainable Energy

Reviews, vol. 65, p. 698, 2016.

[8] G. J. Snyder and E. S. Toberer Nature Materials, vol. 7, p. 105, 2008.

[9] F.D.Rosi Solid-State Electronics, vol. 11, no. 9, p. 849, 1968.

[10] C. Wood Reports on Progress in Physics, vol. 51, p. 459, 1988.

[11] V. L. Kuznetsov, L. A. Kuznetsova, A. E. Kaliazin, and D. M. Rowe
Journal of Materials Science, vol. 37, no. 14, p. 2893, 2002.

[12] Y. Gelbstein, Z. Dashevsky, and M. P. Dariel Physica B: Condensed

Matter, vol. 363, no. 1-4, p. 196, 2005.

117



118

[13] G. S., W. Cochran, R. A. Cowley, and G. Dolling Physical Review

Letters, vol. 17, p. 753, 1966.

[14] E. R. Cowley, J. K. Darby, and G. S. Pawley Journal of Physics C:

Solid State Physics, vol. 2, p. 1916, 1969.

[15] W. Cochran, R. A. Cowley, G. Dolling, and M. Elcombe Procedings of

the Royal Society A, vol. 293, 1966.

[16] I. Errea, M. Calandra, and F. Mauri Phisical Review Letters, vol. 111,
p. 177002, 2013.

[17] I. Errea, M. Calandra, and F. Mauri Physical Review B, vol. 89,
p. 064302, 2014.

[18] R. Bianco, I. Errea, L. Paulatto, M. Calandra, and F. Mauri Physical

Review B, vol. 96, p. 014111, 2017.

[19] O. Delaire, J. Ma, K. Marty, A. F. May, M. A. McGuire, M.-H. Du,
D. J. Singh, A. Podlesnyak, G. Ehlers, M. D. Lumsden, and B. C.
Sales Nature Materials, vol. 8, p. 614, 2011.

[20] C. Li, O. Hellman, A. M. J. Ma, H. Cao, X. Chen, A. Christianson,
G. Ehlers, D. Singh, B. Sales, and O. Delaire Physical Review Letters,
vol. 112, p. 175501, 2014.

[21] L. Muldawer Bulletin of the American Physical Society, vol. 38, p. 443,
1975.

[22] L. Muldawer Journal of Nonmetals, vol. 1, p. 117, 1973.

[23] L. J. Brillson, E. Burstein, , and L. Muldawer Physical Review B,
vol. 9, p. 1574, 1974.

[24] Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi,
K. Segawa, and Y. Ando Nature Materials, vol. 8, p. 800, 2012.

[25] X.-L. Qi and S.-C. Zhang Review of Modern Physics, vol. 83, p. 1057,
2011.

[26] K. Dalven Infrared Physics, vol. 9, p. 141, 1969.

[27] R. F. Brebrick Journal of Physics and Chemistry of Solids, vol. 32,
p. 551, 1971.



119

[28] K. L. S. Kobayashi, Y. Kato, Y. Katayama, and K. F. Komatsubara
Phisical Review Letters, vol. 37, p. 772, 1976.

[29] Landolt-Börnstein, Non-Tetrahedrally Bonded Elements and Binary

Compounds, vol. 41. Springer.

[30] A. N. Mariano and K. L. Chopra Applied Physics Letters, p. 282, 1967.

[31] K. M. Rabe and J. D. Joannopoulos Physical Review B, vol. 32, no. 4,
p. 2302, 1985.

[32] M. E. Lines and A. M. Glass, Principles and Applications of Ferro-

electrics and Related Materials. Oxford, 1977.

[33] J. O. Dimmock, I. Melngailis, and A. J. Strauss Physical Review Let-

ters, vol. 16, p. 1193, 1966.

[34] L. Esaki and P. J. Stiles Physical Review Letters, vol. 16, p. 1108, 1966.

[35] P. B. Littlewood, B. Mihaila, R. K. Schulze, D. J. Safarik, J. E. Guber-
natis, A. Bostwick, E. Rotenberg, C. P. Opeil, T. Durakiewicz, J. L.
Smith, and J. C. Lashley Physical Review Letters, vol. 105, p. 086404,
2010.

[36] P. Hohenberg and W. Kohn Physical Review, vol. 136, p. B864, 1964.

[37] W. Kohn and L. J. Sham Physical Review, vol. 140, p. A1133, 1965.

[38] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D.
Joannopoulos Review of Modern Physics, vol. 64, p. 1045, 1992.

[39] S.-H. Wei and A. Zunger Physical Review B, vol. 55, p. 13605, 1997.

[40] K. Hummer, A. Grüneis, , and G. Kresse Physical Review B, vol. 75,
p. 195211, 2007.

[41] J. Heyd and G. E. Scuseria Journal of Chemical Physics, vol. 118,
no. 18, p. 8207, 2003.

[42] D. Parker, X. Chen, and D. J. Singh Physical Review Letters, vol. 110,
p. 146601, 2013.

[43] L. Xu, H.-Q. Wang, and J.-C. Zheng Journal of Electronic Materials,
vol. 40, p. 641, 2011.



120

[44] G. A. Akhmedova and D. S. Abdinov International Journal of Ther-

mophysics, vol. 45, p. 854, 2009.

[45] Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil,
D. Broido, G. Chen, and Z. Ren Proceedings of the National Academy

of Sciences USA, vol. 110, p. 13261, 2013.

[46] K. M. O. Jensen, E. S. Bozin, C. D. Malliakas, M. B. Stone, M. D.
Lumsden, M. G. Kanatzidis, S. M. Shapiro, and S. J. L. Billinge Phys-

ical Review B, vol. 86, p. 085313, 2012.

[47] A. S. J. An and D. J. Singh Solid State Communications, vol. 148,
p. 417, 2008.

[48] H. A. Alperin, S. J. Pickart, J. J. Rhyne, and V. J. Minkiewicz Physical

Review Letters, vol. 40A, p. 295, 1972.

[49] B. Fultz Progress in Materials Science, vol. 55, no. 4, p. 247, 2010.

[50] R.F.Brebrick Journal of Physics and Chemistry of Solids, vol. 24,
no. 1, p. 27, 1963.

[51] J. Kohanoff, Electronic Structure Calculations for Solids and

Molecules: Theory and Computational Methods. Cambridge, 2006.

[52] R. M. Martin, Electronic Structure: Basic Theory and Practical Meth-

ods. Cambirdge, 2008.

[53] S. Baroni, S. de Gironcoli, A. D. Corso, and P. Giannozzi Review of

Modern Physics, vol. 75, p. 515, 2001.

[54] M. Born and R. Oppenheimer Annalen der Physik, vol. 20, p. 457,
1927.

[55] N. W. Ashcroft, Physique des solides. EDP, 2002.

[56] R. P. Feynman Physical Review, vol. 56, p. 340, 1939.

[57] P. D. DeCicco and F. A. Johnson Proceesings of the Royal Society A,
vol. 310, p. 111, 1969.

[58] R. M. Pick, M. H. Cohen, and R. M. Martin Physical Review B, vol. 1,
p. 910, 1970.



121

[59] P. Giannozzi, S. de Gironcoli, P. Pavone, , and S. Baroni Physical

Review B, vol. 43, p. 7231, 1991.

[60] L. E. Ballentine, Quantum Mehanics. World Scientific, 1998.

[61] R. M. Sternheimer Physical Review, vol. 96, p. 951, 1954.

[62] L. Paulatto, I. Errea, M. Calandra, and F. Mauri Physical Review B,
vol. 91, p. 054304, 2015.

[63] M. Lazzeri and S. de Gironcoli Physical Review Letters, vol. 81,
p. 2096, 1998.

[64] A. H. Romero, E. K. U. Gross, M. J. Verstraete, and O. Hellman
Physical Review B, vol. 91, p. 214310, 2015.

[65] A. A. Maradudin and A. E. Fein Physical Review, vol. 128, p. 2589,
1962.

[66] M. L. M. Calandra and F. Mauri Physica C: Superconductivity,
vol. 456, p. 38, 2007.

[67] B. Rousseau and A. Bergara Physical Review B, vol. 82, p. 104504,
2010.

[68] M. Lazzeri, M. Calandra, and F. Mauri Physical Review B, vol. 68,
p. 220509, 2003.

[69] X. Gonze and J.-P. Vigneron Physical Review B, vol. 39, p. 13120,
1989.

[70] L. Paulatto, F. Mauri, , and M. Lazzeri Physical Review B, vol. 87,
p. 214303, 2013.

[71] G. Deinzer, G. Birner, and D. Strauch Physical Review B, vol. 67,
p. 144304, 2003.

[72] M. Lazzeri and S. de Gironcoli Physical Review B, vol. 65, p. 245402,
2002.

[73] W. Li, J. Carrete, N. A. Katcho, and N. Mingo Computer Physics

Communications, vol. 185, no. 6, p. 1747, 2014.

[74] N. Bonini, M. Lazzeri, N. Marzari, and F. Mauri Physical Review

Letters, vol. 99, p. 176802, 2007.



122

[75] I. I. M. M. Calandra and F. Mauri Physical Review B, vol. 80,
p. 241108, 2009.

[76] P. Souvatzis, O. Eriksson, M. I. Katsnelson, and S. P. Rudin Physical

Review Letters, vol. 100, p. 095901, 2008.

[77] O. Hellman, P. Steneteg, I. A. Abrikosov, and S. I. Simak Physical

Review B, vol. 87, p. 095901, 2013.

[78] D. Hooton , The London, Edinburgh, and Dublin Philosophical Maga-

zine and Journal of Science, vol. 46, p. 422, 1955.

[79] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, 3rd

ed., Statistical Physics Vol. 5. (Butterworth-Heinemann, 1980.

[80] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavaz-
zoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso,
S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann,
C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,
C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov,
P. Umari, and R. M. Wentzcovitch Journal of Physics: Condensed

Matter, vol. 21, p. 395502, 2009.

[81] K. B. J. P. Perdew and M. Ernzerhof Physical Review Letters, vol. 77,
p. 3865, 1996.

[82] N. Troullier and J. L. Martins Physical Review B, vol. 43, p. 1993,
1991.

[83] P. E. Blochl Physical Review B, vol. 50, p. 17953, 1994.

[84] C. D. O’Neill, D. A. Sokolov, A. Hermann, A. Bossak, C. Stock, , and
A. D. Huxley Physical Review B, vol. 95, p. 144101, 2017.

[85] Y. C. X. Ai and C. A. Marianetti Physical Review B, vol. 90, p. 014308,
2014.

[86] Y. C. X. Ai and C. A. Marianetti Physical Review Letters, vol. 113,
p. 105501, 2014.

[87] T. Shiga, J. Shiomi, J. Ma, O. Delaire, T. Radzynski, A. Lusakowski,
K. Esfarjani, , and G. Chen Physical Review B, vol. 85, p. 155203,
2012.



123

[88] N. Hatcher, O. Y. Kontsevoi, , and A. J. Freeman Physical Review B,
vol. 79, p. 020202, 2009.

[89] N. Hatcher, O. Y. Kontsevoi, , and A. J. Freeman Physical Review B,
vol. 80, p. 144203, 2009.

[90] K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao, A. Zhang, F. Jin,
Y. Zhong, X. Hu, W. Duan, Q. Zhang, L. Fu, Q.-K. Xue, X. Chen,
and S.-H. Ji Science, vol. 15, p. 144203, 2016.

[91] S. H. Vosko, L. Wilk, , and M. Nusair Canadian Journal of Chemistry,
vol. 58, p. 1200, 1980.

[92] J. P. Perdew and A. Zunger Physical Review B, vol. 23, p. 5048, 1981.

[93] C. Lee, W. Yang, and R. G. Parr Physical Review B, vol. 37, p. 785,
1988.

[94] J. P. Perdew and Y. Wang Physical Review B, vol. 45, p. 13244, 1992.


